boZ̆Idar D. vUJaliović

GEOMTRIZACIJA KRETANA I PORSMECOTA EEKONVERZATIVIH SISTA章A

* nizu primena savremene diferencijalne geometrije na racionalnu mehaniku, od naročitog je značaja problew geometrizacije kretanja. Pcdovim pojmon se obicho podrazumeva iznalaženje takvog prostora u kome ce diferencifalne jednaçine kretanja imati sto neposrednifu i jednostavniju geometriffshanterpretaciju.

Geometrizacija u ovo smislu pokazala se naročito pogodna pri proučavanju imoenergiskih - konzervativnih sitstema. Poznato je, naime da se Mopertijev princip može iskazati u obliku koji ekaplicira njegov geometrijski karakter:

Trajektorije konzervativnon dinamicikor sistana au geodeziske 1 Inife u Rimanovom koni haracionom grostaxi akoione要etrike. $[1],[10],[12]$.

Cilj ovoga rada je da, sa jedne strane, prosim primenu Mopertijevog principa na nekonzcrvativne sisteme, /ne tretirajući ga kao varijacioni princip već inafuda a vicu njegov geonetrijski smisao u gore navedenam oblicu/, aa druge strane, primeni dobijene rezultate na prouçavanje porcmećaja holonomnih skleronomin dinamickih sistoma;

Problemom geometrizacife kretanfa čifi je pionir Sing [10] bavilo se dosta autora. Medjutim, problemon geometrizacije Mopertifevog principa 1 njegovim prosirenjem na tekonservativme sisteme, bavio se samo A. Lihnerovid [a], koji je uglavnom proučavao prifodu dobijenih prostora. Pitanje geometrizacije poremećaja kako konzervativnih tako i nckonzervativih sistema i poveztvanje ove teorije sa grupom afinih kretanja nije do sad tretirano.

 nemarinne moerainate $\hat{i}(A=1, i, \ldots h)$ zivom strem

 same fankcise polozaja.

$$
d H=\sum_{\lambda} d q^{\lambda}
$$

Zaton zive aile n diferencijalnom oblima lrat
A.21 $d T=d A$

 A.3/ $\frac{\delta^{\omega}}{d t} \equiv \ddot{p}^{w}+\Gamma_{\mu \nu}^{u} q^{\mu} q^{v}=\theta q_{\nu}^{\omega}$
gea aimbol $6 / d t$ oxnačava apsolutni izvod po rsaman a ancen na hoeficijente povananosti

* unali se na neholonompe skiuronompe dinamike aiacone,

3. Toofiationtat peramanonti.

5. E0romočagt meina singa.
G. wrometos pitanju.
7. Dorenećaj1 mponaterfativin sistona.
2. O reqenfina pormmecofmin jednaxina.
9. O jodnon frugnon kxtorijum 6 tabilaotut stacloncumin krotanja.

Pošto se apsolutni diferencijal skalara poklapa sa običnim diferencijalom, to cemo diferenciranjem /Lil/ dobiti

$$
2 d T=\left(\delta^{r} g_{\lambda \mu}\right) \dot{q}^{\lambda} \dot{q}^{\mu}+2 g_{\lambda \mu}\left(\delta^{r} \dot{q}^{\lambda}\right) \dot{q}^{\mu}
$$

Iz/1.3/ sledrina je $\delta \dot{q}^{\lambda}=\theta \dot{q}^{\lambda} d t \equiv \theta d q{ }^{\lambda}$; pa poslednja
jednačina postafe: jednačina postaje:

$$
2 d T \equiv\left(\delta^{r} g_{\lambda \mu}\right) \dot{q}^{\lambda} \dot{q}^{\mu}+g_{\lambda \mu} \theta \dot{q}^{\lambda} \dot{q}^{\mu} d t
$$

Koristuct /1.2/ i identičnost / $1.1 /$ imaćemo:
odnosno

$$
1.5 /\left({ }_{\delta}^{\delta} g_{\lambda \mu}+2 \theta g_{\lambda \mu} d t-2 \frac{d A}{2 T} g_{\lambda \mu}\right) \dot{q}^{\lambda} \dot{q}^{\mu}=0
$$

Kako je izraz u zgradi simetričan mora biti $/\left[^{3}\right]^{s t r a}$.16/
$11.5 \% \quad \delta g_{\lambda \mu}=-2\left(\theta d t-\frac{d A}{2 T}\right) g_{\lambda \mu}$
उ opštem slučaju je $1 \mu_{n} /[4]$, str. $86 /$

$$
\delta_{\lambda \mu}^{r}=\nabla_{\nu}^{r} g_{\lambda \mu} d q^{\nu} \equiv-Q_{\nu \lambda \mu} d q^{\nu}
$$

odnosno: $\nabla_{y}^{\Gamma} g_{\lambda \mu}=-Q_{y \lambda \mu} \quad$ gde simbol ∇_{ν} označava kovarijantui izrod u odnosu na sistem koeficijenata povezanostil r

Iz jednačina:

$$
\partial_{\nu} g_{\lambda \mu}-\Gamma_{\nu \lambda}^{\omega} g_{\omega \mu}-\Gamma_{\nu \mu}^{\omega} g_{\lambda \omega} \equiv-Q_{\nu \lambda \mu}
$$

za zadano $Q_{\nu \lambda \mu} / t j$. ako su poznati kovamijantni izvodi pomoćnog tenzora $g_{\lambda \mu} /$ imamo da je: $/[4]$, str.86/
11:6/ $\Gamma_{\lambda \mu}^{\omega}=\left\{\begin{array}{l}\omega \\ \lambda \mu\end{array}\right\}+S_{\lambda \mu}^{\cdot \omega}-S_{\mu \cdot \lambda}^{\omega}+S_{\cdot \lambda \mu}^{\omega}+$

$$
+\frac{1}{2}\left(g^{\omega \nu} Q_{\lambda \mu \nu}+g^{\omega \nu} Q_{\mu \nu \lambda}-g^{\omega \nu} Q_{\nu \lambda \mu}\right)
$$

ovde je $\int_{\lambda \mu}^{\prime \cdot \omega}$ t.zv.tenzor torzije, a $\left\{\begin{array}{c}\omega \\ \lambda \mu\end{array}\right\}$ Kristafelovi simboli druge vrste obrazovani u odnosu na pomoćni tenzor $g_{\lambda \mu}$ " U našen slučaju je:
$11.712\left(\theta d t-\frac{d A}{2 T}\right) g_{\lambda \mu} \equiv Q_{\nu \lambda \mu} d q^{v}$
Pretpostavimo da je skalami mnozilac θ iz / $13 /$ oblika:

$$
\theta=\theta_{V} \dot{q}^{y}
$$

gde sn θ_{y} kovarifantili vektori koje treba odrediti. Ha osnovu uvedene predpostavke, $1,7 /$ postojei
1.8, $2\left(\theta_{\nu}-\frac{Q_{v}}{2 T}\right) g_{\lambda \mu} \equiv Q_{\nu \lambda \mu}=2 \phi_{\nu} g_{\lambda \mu}$; gde je ni9/ $\phi_{\nu} \equiv \theta_{\nu}-\frac{Q_{\nu}}{2 T}$

Jednačine $11.5 \% /$ odnosno $/ 1.8 /$ definišn kvazi-metričkn povezanost. Za odredjivanje koeficijenata $\Gamma_{\lambda \mu}^{\omega}$ treba odrediti $\theta_{\nu} 1$ tenzor torzije $S_{i \mu}^{\prime \cdot \omega}$. Medjutim, geodeziske linije ne zavise od tenzora torzije, naime

$$
\left(S_{\lambda \mu}^{\prime \prime \omega}-S_{\mu \cdot \lambda}^{\prime \omega}+S_{\cdot \lambda \mu}^{\omega}\right) \dot{q}^{\lambda} \dot{q}^{\mu} \equiv 0,
$$

1 A. $3 /$ postaje:
odnosno zbog /1.1/ imaćemo

$$
\begin{aligned}
& \ddot{q}^{\omega}+\left\{\begin{array}{l}
\omega \\
\mu
\end{array}\right\} \dot{q}^{\lambda} \dot{q}^{\mu}+2 g^{\nu \omega} \Phi_{\lambda} g_{\mu \nu}-\dot{q}^{\lambda} \dot{q}^{\mu}-2 T g^{\nu \omega} \phi_{\nu}=\phi_{\nu} \dot{q}^{\lambda} \dot{q}_{i}^{\omega} \\
& \frac{\delta^{\psi} \dot{q}^{\omega}}{d t}=\theta_{\nu} \dot{q}^{\nu} \dot{q}^{\omega}-2 g^{\nu \omega} \Phi_{\lambda} g_{\mu \nu} \dot{q}^{\lambda} \dot{q}^{\mu}+2 T g^{\nu \omega} \phi_{\nu}
\end{aligned}
$$

Da bi bio ispnjen usiov zadatika/1.4/mora biti:

$$
\begin{aligned}
& \theta_{\nu} \dot{q}^{\nu} q^{\omega}-2 g^{\nu \omega} \phi_{\lambda} g_{\mu \nu} \dot{q}^{\lambda} \dot{q}^{\mu}+2 T g^{\nu \omega} \Phi_{\nu} \equiv Q^{\omega}: \\
& \theta_{\nu} \dot{q}^{\nu} \dot{q}^{\omega}-2 \phi_{\nu} \dot{q}^{\nu} \dot{q}^{\omega}+g^{\omega \nu} \phi_{\nu} \cdot 2 T \equiv Q^{\omega}
\end{aligned}
$$

Posle zarene /1.9/ u posledndi izraz, Luaćemo:

$$
\begin{aligned}
& \theta_{v} \dot{q}^{\nu} \dot{q}^{\omega}-2 \theta_{\nu} \dot{q}^{\nu} \dot{q}^{\omega}+\frac{Q_{\nu}}{T} \dot{q}^{\nu} \dot{q}^{\omega}+2 T g^{\omega \nu} \theta_{\nu}-g^{\omega \lambda} Q_{\lambda} \equiv Q^{\omega}, \\
& -\theta_{\nu} \dot{q}^{\nu} \dot{q}^{\omega}+2 T \dot{g}^{\omega \nu} \theta_{\nu} \equiv 2 Q^{\omega}-\frac{1}{T} Q_{\nu} \dot{q}^{\nu} \dot{q}^{\omega} ; \\
& \theta_{\nu}\left(2 T g^{\omega \nu}-\dot{q}^{\nu} \dot{q}^{\omega}\right) \equiv \frac{Q_{\nu}}{T}\left(2 T g^{\omega \nu}-\dot{q}^{\nu} \dot{q}^{\omega}\right) \\
& p a j e
\end{aligned}
$$

n.10/ $\theta_{y}=\frac{Q_{v}}{T}$
i konačno 1

$$
\begin{aligned}
& \text { A.11/ } \theta=\frac{Q_{\nu} \dot{q}^{v}}{T} \\
& \text { A.12/ } Q_{\nu \lambda \mu} \equiv 2\left(\theta_{\nu}-\frac{Q_{\nu}}{2 T}\right) g_{\lambda \mu}=2\left(\frac{Q_{\nu}}{T}-\frac{Q_{\nu}}{2 T}\right) g_{\lambda \mu} \equiv \frac{Q_{\nu}}{T} g_{\lambda \mu}
\end{aligned}
$$

Traženi koeficijenti povezanosti imaju vrednosti:

$$
\begin{aligned}
1.13 / \Gamma_{\lambda \mu}^{\omega} & =\left\{\begin{array}{l}
\omega \\
\lambda \mu
\end{array}\right\}+\sum_{\lambda \mu}^{\cdots \omega}+\frac{1}{2 T} g^{\omega \nu}\left(Q_{\lambda} g_{\mu \nu}+Q_{\mu} g_{\nu \lambda}-Q_{\nu} g_{\lambda \mu}\right) \\
& \equiv\left\{\begin{array}{l}
\omega \\
\lambda \mu
\end{array}\right\}+\sum_{\lambda \mu}^{\prime \omega}+\frac{1}{2 T}\left(Q_{\lambda} \delta_{\mu}^{\omega}+Q_{\mu} \delta_{\lambda}^{\omega}-Q^{\omega} g_{\lambda \mu}\right)
\end{aligned}
$$

gde je sa $\sum{ }_{\lambda \mu}$ označen deo koji zavisi od torzije,

$$
\sum_{\lambda \mu}^{\prime \omega} \equiv S_{\nu \mu}^{\prime \omega}-S_{\mu \cdot \lambda}^{\omega \omega}+S_{, \lambda \mu}^{\omega}
$$

koji je ostao proizvoljan jer ga uslovi zadatka ne odredjuju.
Na osnovu /1.13/i/1.11/ diferencijalne jednačine kretanja postaju:
/1.14/ $\quad \frac{\delta^{\omega}}{d t}-\theta \dot{q}^{\omega} \equiv \frac{\delta \dot{q}^{\omega}}{d t}-Q^{\omega}=0$
Mnozenjem gornjè jednačine sa \dot{q}^{τ} imaćemo:

$$
\frac{\dot{\dot{q}^{\omega}}}{d t} \dot{q}^{\tau}=\theta \dot{q}^{\omega} \dot{q}^{\tau}
$$

isto tako je

$$
\begin{aligned}
& \frac{r}{\delta} \dot{q}^{\tau} \dot{q}^{\omega}=\theta \dot{q}^{\omega} \dot{q}^{\tau} \\
& \frac{\delta}{r} \dot{q}^{\omega} \dot{q}^{\tau}-\frac{\delta \dot{q}^{\tau}}{d t} \dot{q}^{\omega}=0
\end{aligned}
$$

Baje
ini: /[3], str.131/
11.15/ $\ddot{q}^{\lambda} \dot{q}^{\top}-\ddot{q}^{\top} \dot{q}^{\lambda}+\left(\Gamma_{\mu \nu}^{\lambda} \dot{q}^{\tau}-\Gamma_{\mu \nu}^{\tau} \dot{q}^{\lambda}\right) \dot{q}^{\mu} \dot{q}^{\nu}=0$
aun Jednačine / . 14 / odnosno /1.15/ au pomate kao diferencijalne jednačine geodeziskih linija, napisane u odnosu na proizwolfni parametar $\quad t_{*}$

Ma osnova isnetog možemo formulisatil sledeći:
STAV: 酎lonomi, nekonzervativni, skleronomai dinamički sistem
kreće se po geodeziskof linifi, u konfiguracionom prostoru sa
koeficifentima povezanosti /1,13/
Iz teorije trajektorija ponnato je/[5], str. 159 / da ce se dinamički sistem kretati po geodeziskoj linifi i u slučaju kada polje sila, koje na njega deluje, ima pravae tangente na trajektoriju
u svakoj tack $k i$ /osobene trajektorije, trajectories remarquables/. U vezi sa ovim može se primentiti da su intencije gornjeg izvodjenja bile, da se pronadje prostor u kome će naš dinamicki sistem da se kreće po osobenin trajektorijama, što se jasno vidi iz jednačine /1.3/ koju nožemo interpretirati kao drugi NJutnov zakon, gde je na desnof strans "silan: $\bar{Q}^{\lambda} \equiv \theta \dot{q}^{\lambda}$

Pronadjimo ada takav linearno povezani prostor u kome će vreme biti afini parametar.

Iz diferencijalne geometrije je poznato, da će dva linearno povezans prostora imati iste geodeziske linife ukoliko im se koeficijenti povezanosti razlikuju za tenzor: / [6] , stri.156/ $n_{1.16,} \Gamma_{\lambda \mu}^{\omega}-\Pi_{\lambda \mu}^{\omega}=\frac{1}{2 T}\left(Q_{\lambda} \delta_{\mu}^{\omega}+Q_{\mu} \delta_{\lambda}^{\omega}\right)$

Iz / 1.13/ vidi se da je u našem slučaju

$$
/ 1.17 / \prod_{\lambda \mu}^{\omega} \equiv\left\{\begin{array}{l}
\omega \\
\lambda \mu
\end{array}\right\}+\sum_{\lambda \mu}^{\prime \prime \omega}-\frac{1}{2 T} Q^{\omega} g_{\lambda \mu}
$$

Linearno povezani prostort $I_{f}\left(\Gamma / / 1 I_{d} \| \eta\right.$ su dinamički potpuno ekvivalentai jer je is puajen uslov $11.16 /$ a diferencijalne jednačine Kretanja u odnosu na sistem koeficijenata porezanosti /1.17/ glase:

Ovde neposredno sl edi dasm dinamički nekonzervativni sistem kreće po geodeziskoj linifi u prostoru sa koeficijentima povezanosti /1.17/ i u tom prostoru vreme igra ulogu efinog parametra.

2. TRAJEKGORIJ』 NLKONZ \because RVATIVYOG SIST MA

Ako iz jadnačina /1.14/

$$
\text { /2.1/ } \ddot{q}^{\lambda}+\Gamma_{\mu \nu}^{\lambda} \dot{q}^{\mu} \ddot{q}^{\nu}=2 \frac{Q_{\sigma} \dot{q}^{\sigma}}{2 T} \dot{q}^{\lambda}
$$

elimanišemo vreme 1 uvedemo kao prbmenlfivi porametar luk, definisan sa
/2.21 $\quad d s^{2}=g_{\lambda \mu} d q^{\lambda} d q^{\mu} \equiv 2 T d t^{2}$
inacemo

$$
\begin{aligned}
& \text { /2.3/ } \quad \dot{q}^{\lambda}=\frac{d q^{\lambda}}{d s} \frac{d s}{d t} \\
& / 2.4 / \quad \ddot{q}^{\lambda}=\frac{d^{2} q^{\lambda}}{d s^{2}}\left(\frac{d s}{d t}\right)^{2}+\frac{d q^{\lambda}}{d s} \frac{d^{2} s}{d t^{2}}
\end{aligned}
$$

Podjlmo opet od zakona žive sile /1,2/ a obliku

$$
\begin{aligned}
& d\left(\frac{d s}{d t}\right)^{2}=2 Q_{\lambda} d q^{\lambda} \\
& / 2.5 / \frac{d^{2} s}{d t^{2}}=Q_{\lambda} \frac{d q^{\lambda}}{d s} \\
& \text { 2amenom } / 2.5 / \text { u } / 2.4 / \text { imamo: } \\
& / 2.4 * / \ddot{q}=\frac{d^{2} q^{\lambda}}{d s^{2}} 2 T+Q_{\sigma} \frac{d q^{\sigma}}{d s} \frac{d q^{\lambda}}{d s}
\end{aligned}
$$

Jednačina /2.1/ postaje

$$
\frac{d^{2} q^{\lambda}}{d s^{2}} 2 T+\Gamma_{\mu \nu}^{\lambda} \frac{d q^{\mu}}{d s} \frac{d q^{\nu}}{d s} \cdot 2 T=2 \frac{Q_{\sigma}}{2 T} \frac{d q^{\sigma}}{d s} \frac{d q^{\lambda}}{d s} \cdot 2 T-Q_{\sigma} \frac{d q^{\sigma}}{d s} \frac{d q^{\lambda}}{d s}
$$

Odnosno: $\quad \frac{\Gamma}{d q^{\prime \omega}} \equiv \frac{Q_{\lambda}}{2 T} q^{\prime \lambda} q^{\prime \omega} \quad$ gde $j e \quad\left\{q^{\prime} \equiv \frac{d q}{d s}\right\}$

Medjutim je

$$
\frac{\delta q^{i \omega}}{d s}-\frac{1}{2 T} Q_{\lambda} q^{i \lambda} q^{i \mu} \equiv q^{\prime \omega}+\left[\left\{\begin{array}{l}
\omega \\
\lambda_{\mu}
\end{array}\right\}+\frac{1}{2 T}\left(Q_{\lambda} \delta_{\mu}^{\omega}+Q_{\mu} \delta_{\lambda}^{\omega}-Q^{\omega} g_{\lambda \mu}\right)-\frac{1}{2 T} Q_{\lambda} \delta_{\mu}^{\omega}\right]^{i \lambda} q^{i \mu}=0
$$

111

$$
\frac{\delta q^{i \omega}}{d s}-\frac{1}{2 T} Q_{\lambda} q^{\prime \lambda} q^{i \mu} \equiv q^{\prime \omega}+\left[\left\{\begin{array}{l}
\omega \\
\lambda \mu
\end{array}\right\}+\frac{1}{2 T}\left(Q_{\mu} \delta_{\lambda}^{\omega}-Q^{\omega} g_{\lambda \mu}\right)\right] q^{\prime \lambda} q^{\prime \mu}=0
$$

Nesimetrični deo koeficijenata povezanosti ne igra nikakvu ulogu u razmatranju, pa posmatrajmo samo simetričnt deo izraza u srednjoj zagradi:
$/ 2.6 / q^{\prime \prime \omega}+\left[\left\{\begin{array}{l}\omega \\ \lambda \mu\end{array}\right\}-\frac{1}{2 T} Q^{\omega} g_{\lambda \mu}+\frac{1}{4} T\left(Q_{\mu} \delta_{\lambda}^{\omega}+Q_{\lambda} \delta_{\mu}^{\omega}\right)\right] q^{\prime \lambda} q^{\prime \mu}=0$
Stavljajući
12.7! $\prod_{\lambda \mu}^{t \omega}=\left\{\begin{array}{l}\omega \\ \lambda \mu\end{array}\right\}+\frac{1}{4 T}\left(Q_{\mu} \delta_{\lambda}^{\omega}+Q_{\lambda} \delta_{\mu}^{\omega}\right)-\frac{1}{2 T} Q^{\omega} g_{\lambda \mu}$
diferencijalne jednačine trajektorija, mogu se naplsati u obliku:

$$
12.8 / \frac{\delta^{\hbar} q^{\prime \omega}}{d S} \equiv q^{\prime \omega}+\prod_{\lambda \mu}^{*} q^{\prime \lambda} q^{\prime \mu} \equiv \frac{\delta^{\prime} q^{\prime \omega}}{d s}-\frac{1}{2 T}\left(Q^{\omega}-Q_{\sigma} q^{1 \delta} q^{\prime \omega}\right)=0
$$

Iz izloženog sledi
STAV: Trajektorije nekonzervativnog sklgronomot dinanickoe
sistoma jesu geodeziske lini,ie u linesrno povzanom prostoru $I_{n}\left(\frac{\square}{n}\right)$ sa koeficijentima povezanosti $12.7 / \%$ U ovom prostoru ie dužina luka 1 afini parametax.
3. KOEFICIJENTI PCVEZANOSTI

Koeficijenti povezanosti: /1.13/, /1.17/ i/2.7/ su geodesiski ekvivalentni, tj. diferencijalne fednac̆ine kretanja napisane u odnosu na ove povezanosti, ne razlikuju se medju sobodm. Pošto je

$$
\begin{aligned}
& \Gamma_{\lambda \mu}^{\omega}-\Pi_{\lambda \mu}^{\omega} \equiv \frac{1}{2 T}\left(Q_{\lambda} \delta_{\mu}^{\omega}+Q_{\mu} \delta_{\lambda}^{\omega}\right) \\
& \Gamma_{\lambda \mu}^{\omega}-\Pi_{\lambda \mu}^{*} \equiv \frac{1}{4 T}\left(Q_{\lambda} \delta_{\mu}^{\omega}+Q_{\mu} \delta_{\lambda}^{\omega}\right) \\
& \Pi_{\lambda \mu}^{\omega}-\Pi_{\lambda \mu}^{*}=\frac{1}{4 T}\left(Q_{\lambda} \delta_{\mu}^{\omega}+Q_{\mu} \delta_{\lambda}^{\omega}\right)
\end{aligned}
$$

sve tri linearne povezanosti 1maju iste geodeziske linije,pa su i sva tri linearno povezana prostora

$$
\operatorname{Ln}(\Gamma), L_{n}(\Pi), L_{n}(\Pi)
$$

dinamički ekvivalentna.
Pošto je svaka od navedenih povezanosti funkcija i koordinata 1 izvoda koordinata po vremenu, jer svaka zavisi od žive sile sistema, to one pripadaju Klasi t.zv. Generalisanih afinih geodeziskin prostora, koje je 1928. g. pronašao J. Duglas / [7], str. 143 168 / a kasnije razradio K. Yano / [8], str. 185 - 194 /. Navodimo bez dokaza nekoliko činjenica, koje se odnose na ove prostore a koje ce nam trebati kasnije.

Apsolutni diferencijal vektora u generalisanom afinom geodeziskom prosøoru, u odnosu na koeficijente povezanosti $\dot{\Gamma}$ je:
13.1/ $\delta v^{\omega} \stackrel{\text { det }}{=} d v^{\omega}+\Gamma_{\mu \lambda}^{\omega} d q^{\mu} v^{\lambda}$
a kovarijatni izvod
13.21 $\Gamma_{\mu} v^{x} \stackrel{\text { det }}{=} \partial_{\mu} v^{x}-\Gamma_{\mu}^{\rho} \dot{\partial}_{\rho} v^{x}+\Gamma_{\mu \lambda}^{x} v^{\lambda} i$
13.31 $\dot{\nabla}_{\mu} v^{x} \stackrel{\text { det }}{=} \dot{\partial}_{\mu} v^{x}$
gde su uvedne oznake $\dot{\partial}_{\rho} \equiv \frac{\partial}{\partial\left(\frac{d q \rho}{d t}\right)}$ i $\Gamma_{\mu}^{\rho} \equiv \Gamma_{\mu \lambda}^{\rho} \frac{d q^{\lambda}}{d t}$ Dalye su
13.4/ $R_{\nu \mu \lambda}^{\prime \cdots x}=\left(\partial_{\nu} \Gamma_{\mu \lambda}^{x}-\Gamma_{\nu}^{\rho} \dot{\partial}_{\rho} \Gamma_{\mu \lambda}^{x}\right)-\left(\partial_{\mu} \Gamma_{\lambda \nu}^{x}-\Gamma_{\mu}^{\rho} \dot{\partial}_{\rho} \Gamma_{\lambda \nu}^{x}\right)+$

$$
+\Gamma_{\nu \rho}^{x} \Gamma_{\mu \lambda}^{\rho}-\Gamma_{\mu \rho}^{x} \Gamma_{\nu \lambda}^{\rho}
$$

1

$$
\text { 13.5/ } T_{\nu \mu \lambda} \cdot \cdot x=\dot{\partial}_{\nu} \Gamma_{\mu \lambda}^{x}
$$

t.zv, tenzori krivine.

Liov izvod koeficijenata povezanosti u generalisanom afinom geodeziskom prostoru, u polju vektora ξ, glasi:

$$
13.61 \underset{\xi}{\underset{\xi}{\mu}} \Gamma_{\mu \lambda}^{x} \equiv \nabla_{\mu} \nabla_{\lambda} \xi^{x}+R_{y \mu \lambda}^{\cdots x} \xi^{\nu}+T_{\nu \mu \lambda}^{\cdots x} \frac{d q^{\rho}}{d t} \nabla_{\rho} \xi^{x}
$$

4. NAPOMHNA O KONZERVATIVRIM SISTEMIMA

Geometrizacija kretanja nekonzervativnih sistema sadrǔi u sebi konservativaa kretanja kao specijalan slučay. Namera nam je da podvuc̆emo razlike/geometrijskogkaraktera/ koje karakterisu geometrisku interpretaciju fretanja, jeanih 1 drugin sistoma.

Podjimo pre svega od činjenice da se živa sila sistema/1.1/ može shvatiti kao kvadrat brzine u konfiguracionom prostoru, naime
/4.1/ $\quad 2 T \equiv v^{2} \equiv g_{\lambda \mu} \dot{q}^{\lambda} \dot{q}^{\mu}$

V tom slučaju zakon žive sile/1.2/ izgleda
$/ 4 . e / \quad d v^{2}=2 \frac{Q \lambda d q^{\lambda}}{2 T} v^{2}$
Kako je u osnovi naše geometrizacije postavijen uslov da se vektor brzine $\not \subset$ paralelno pomera duž tr jektorije, to jednačina $/ 4.2 /$ implicira generaliseni afini geodeziski prostor/Vajlovog tipa. $/[9]$, str. 22/. Ova jednačina podvlači, u isto vreme, razliku izmedju Rimanovog 1 Vajlovog prostora. Naime, u Rimanovom prostoru, pri paralelnom pomeranju, dužina vektore ostaje nepromenjena, dok se u Vajlovom menja po zakonu/4.2/koji se naziva kongmuentno pomeranje.
Kada se u jednadinu /1.5\%/ zameni vrednost zatiz /1.11/imano

$$
{ }_{\text {/4.3/ }} \quad{ }^{r} g_{\lambda \mu}=-\frac{Q_{V}}{T} d q^{\nu} g_{\lambda \mu}
$$

odnosno
14.4/ $\quad{ }_{\nabla}^{\nabla} g_{\lambda \mu}=-\frac{Q_{\nu}}{T} g_{\lambda \mu}$

Hames to tenzora $g_{\lambda \mu}$, uvedimo drugit tenzor $\bar{g}_{\lambda \mu}$, koji je proporcionalan sa pryim:
14.51 $\quad \bar{g}_{\lambda \mu}=\sigma^{2} g_{\lambda \mu}$
gde je \widehat{V}^{6} proizvoljni skalami faktor.
Kvarijantnim diferenciranjem /4.5/ dobićemo:

$$
\nabla_{\nu}^{\Gamma} \bar{g}_{\nu \mu}=2 \sigma g_{\lambda \mu} \partial_{\nu} \sigma-2 \sigma^{2} \frac{Q_{\nu} g_{\mu \mu}}{2 T}
$$

a zbog/4.4/i/4.5/bice:
/4.6/ $\quad \nabla_{\nu} \bar{g}_{\lambda \mu}=2\left(\frac{\partial_{\nu} \sigma}{\sigma}-\frac{Q_{\nu}}{2 T}\right) \bar{g}_{\lambda \mu}=-\frac{\bar{Q}_{\nu}}{T} g_{\lambda \mu}$
gde je;
14.71 $\bar{Q}_{\nu}=2 \frac{\partial_{\nu} \sigma}{\sigma} T-Q_{\nu}$

Prema tome, moguće je pomnoziti proizvodijnom funkcijom $\sigma(q)$ fundamentalni tenzor $g \lambda \mu$, a da se oblik jednačine/4.4/ ne promeni. Ovo znači, da u geodeziskom afinom prostoru Vajlovog tipa, nife moguće potpuro odrediti fundamentalni metrički tenzor, a samim tim ne postoj1 akcioni linijski elemenat;

Pokažimo da je za konzervativne sisteme, akcioni linijaki elemenat jednoznačajno odredjen, i da je prostor u tom slučaju Rimonov. Označimo sa U funkciju sile a sa h totalnu energiju sistema koja je u ovom slučaju konstantna.
tada je
$14: 8 / Q_{y} \equiv \partial_{y} \cup \quad 1$
/4.9/ T \quad T $=U+H$

Zamenom ovih vrednosti u/4.6/ imacemo:
/4.6\% $\quad \nabla_{\nu} \bar{g}_{\lambda \mu}=2\left[\frac{\partial_{\nu} \sigma}{\sigma}-\frac{\partial_{\nu} v}{2(u+4)}\right] \bar{g}_{\lambda \mu}$
Izaberimo skalar σ tako da je
/4.10/ $\quad \frac{\partial_{\nu} \sigma}{\sigma}=\frac{\partial_{\nu} U}{2(U+h)}$
pa sledi:
$/ 4.11 / \quad \sigma^{2}=\mathbb{C}(v+h)$
Jeanačina /4.5/ tada postide
111

$$
\bar{g}_{\lambda \mu}=\mathbb{C}(u+h) g \lambda \mu
$$

14.12/ $d \bar{s}^{2}=\mathbb{C}(u+h) d s^{2} ; \mathbb{C}=$ crust
sto predstavlja akcioni linifski elemenat.
Za vrednost σ 1z/4.11/ prostor sa koeficijentima povezanosti postoje Rimanov što sledi iz/4.6\%/
Prema tome za slučaj konzervativnog sistema, moguće je konformom transformacijom /4.5/. izvršiti prenormiranje metričkog tenzora tako da jednačina
${ }_{\text {4.13/ }} \quad \Gamma_{\nabla} \bar{g}_{\lambda \mu}=-\frac{\partial, v g_{\lambda \mu}}{v+h}$
postane:
/4.14/ $\begin{aligned} \nabla_{\nu} \bar{g}_{\lambda \mu} & =0 \\ & =1\end{aligned}$
Dokă̌imo malopredjašnje tvrdjenje, da fundamentalni tenzor nije a potpunosti odredjen, na taj način, sto cemo pokazati

$$
/ 4.15 / \quad \frac{\partial_{\nu} \sigma}{\sigma}=\frac{Q_{\nu}}{2 T}
$$

za slučaj da je sistem nekonzervativan.
Pomnožimo ovu jednačinu sa dqy i izvršimo sabiranje, pa ćemo imati
$/ 4.16 / \quad d(\ln \sigma)=\frac{Q_{y} d q^{\nu}}{2 T}$
Kako Qudq po predpostavci nije totalni diferencijal a faktor $1 / 2 \mathrm{~T}$ ne može da bude integracioni faktor /integracioni faktor može da bude konačna funkcija a ne kvadratna diferoncifalna forma/ jednačina/4.16/gubi smisao i naše trrajenje je dokazano. Prema tome, izran/4.7/ mogao bi se shvatita kao geometriska mera nekonzervativnosti uočenog dinamičkog sistema. Na kraju, napomenimo da konstanta C u/4.12/, ne igra bitmu ulogu, jer je lemenat luka u diferencijalnoj geometiji odredjen do na konstantu.

II DEO

TEORIJA POREMECAJA HOLONOMNIH SKALERONOMNIH

SISTHAA

5. PORBMECAJI U SMISLU SIVGA

Za izučavanje poremećenog kretanja skleronomin holonomnih dinamičkih sistema podjimo od Lagrančevih jednačina druge vrste, rešenih po ubrzanjima:
/5.1/ $\quad \ddot{q}^{\alpha}+\Gamma_{\beta \gamma}^{\alpha} \dot{q}^{\beta} \dot{q}^{\gamma}=Q^{\alpha} ; \quad\left(\Gamma_{\beta \gamma}^{\alpha} \equiv\left\{\begin{array}{l}\alpha \\ \beta \gamma\end{array}\right\}_{g}\right)$
gde generalisana sila Q^{α} savisi samo od položaja. Predpostavimo da nam je poznato jedno res̆enje jednačina /5.1/ recimo
$15.2 / \quad q^{\alpha}=q^{\alpha}(t)$
1 neka je takvo kretanje poremećeno iz bilo kojeg razloga. Predpostavljajući da su poremećafi dovoljno mali, za jednačine poremedenog kretanja možemo uzeti:

$$
\text { 15.3/ } \quad \bar{q}^{\alpha}=q^{\alpha}+x^{\alpha}(t)
$$

gde je χ^{α} vektor poremećaja.
Predpostavićemo da i poremećeno kretanje zadovoljava jednačine /5.1/kako je to nobičajeno u teoriji poremećaja, nailme:

$$
\frac{\ddot{q}}{\alpha}+\bar{\Gamma}_{\beta \gamma}^{\alpha} \frac{\dot{q}}{} \beta \dot{\bar{q}} \gamma=\bar{Q}^{\alpha}
$$

Ranvijajuci veličine $\bar{\Gamma}_{\beta \gamma}^{\alpha}$ i \bar{Q}^{α} u red, pod predpostavkom da su *ektori X^{α} male velicine prvog reda, imaćemo u prvoj aproksimaciji:

$$
\begin{aligned}
& \bar{\Gamma}_{\beta \gamma}^{\alpha}=\Gamma_{\beta \gamma}^{\alpha}+x^{\delta} \partial_{\delta} \Gamma_{\beta \gamma}^{\alpha}{ }_{1} \\
& \bar{Q}^{\alpha}=Q^{\alpha}+x^{\beta} \partial_{\beta} Q^{\alpha}
\end{aligned}
$$

Zamenom ovih vrednosti 1 vrednosti /5.3/u /5.1/ bice:

$$
\ddot{q} \alpha+\ddot{x}^{\alpha}+\left(\Gamma_{\beta \gamma}^{\alpha}+x^{\delta} \partial_{\delta} \Gamma_{\beta \gamma}^{\alpha}\right)\left(\dot{q}^{\beta}+\dot{x}^{\beta}\right)\left(\dot{q}^{\gamma}+\dot{x}^{\gamma}\right)=Q^{\alpha}+x^{\beta} \partial_{\beta} Q^{\alpha}
$$

maneanjem izraza u zgradi i zadrǔavajući se na veličinama prvog reda, a zbog/5.1/ dobićemo:
15.4/ $\ddot{x}^{\alpha}+2 \Gamma_{\beta \gamma}^{\alpha} \dot{q}^{\beta} \dot{x}^{\gamma}+x^{\delta} \partial_{\delta} \Gamma_{\beta \gamma}^{\alpha} \dot{q}^{\beta} \dot{q}^{\gamma}=x^{\beta} \partial_{\beta} Q^{\alpha}$

Ove jednačine éemo zvati klasične fednačine teorije poremećaja, Suština siedeé in transformacija, koje pripadaju singu, / [10], str.31-106/, sastoji se u tome, da se gornje jednačine naplšu u invarifantnom obliku. Invarifantnost se postiže time, što se veličine \dot{x}^{α} i \ddot{X}^{α} zamene sa apsolutnim izvodima $\frac{\delta x^{\alpha}}{d t}$ i $\frac{\delta^{2} x^{\alpha}}{d t^{2}}$. Znamo da je

$$
\begin{aligned}
& \frac{\delta x^{\alpha}}{d t}=\frac{d x^{\alpha}}{d t}+\Gamma_{\beta \gamma}^{\alpha} \frac{d q^{\beta}}{d t} x^{\gamma} \\
& \frac{\delta^{2} x^{\alpha}}{d t^{2}}=\frac{d^{2} x^{\alpha}}{d t^{2}}+\partial_{\lambda} \Gamma_{x \sigma}^{\alpha} \dot{q}^{\lambda} \dot{q}^{\alpha} x^{\sigma}+\Gamma_{x r}^{\alpha} \ddot{q}^{x} x^{\sigma}+\Gamma_{x \sigma}^{\alpha} \dot{q}^{\alpha} x^{r}+\Gamma_{\beta \gamma}^{\alpha} \dot{q}^{\beta} \dot{x}^{\gamma}+\Gamma_{\beta \gamma}^{\alpha} \Gamma_{\omega \bar{u}}^{\gamma} \dot{q}^{\beta} \dot{q}^{\omega} x^{\overline{4}} \\
& \cdot x
\end{aligned}
$$

ako se na desnoj strani poslednje jednaine mesto \ddot{q}^{x} stavi njegova vrednost iz/5.1/ posle dužeg: ali lakog računa jednačine
/5.4/ postaju:
$15.51 \frac{\delta^{2} x^{\alpha}}{d t^{2}}+R_{r i \beta}^{\alpha} x^{\delta} q^{\beta} q^{\gamma}=x^{\delta} \nabla_{\nabla} Q^{\alpha}$
Ove jednac̆ine je prit izveo Slng i primenjene su na čitav nia konkretnin problema iz oblasti stabilnosti kretanja. /na primer: 15 str. 635-641 /.

6. PORGMECAJ FUTANJ A

činjenica da su trajektorife konzervatimnog dinamičkog sistema, geodeziske linije u prostoru akcionog linijskog elementa /4.12/, pruža vrio velike mogućnosti za proučavanje poremećaja putanja 1 njihova geometrizaciju.
Podjimo od diferencijalnih jednačina trajektorija:
16:1/ $\quad \frac{d^{2} q^{\alpha}}{d \sigma^{2}}+\Gamma_{\beta \gamma}^{\alpha} \frac{d q^{\beta}}{d \sigma} \frac{d q^{\gamma}}{d \sigma}=0$
gde je: $\quad d \sigma^{2}=\mathbb{C}(u+h) d s^{2} ; d s^{2}=2 T d t^{2}$
a $\Gamma_{\beta \gamma}^{\alpha}$ koeficifenti povezanosti obrazovani u odnosu na skicionu metriku. Ha osnovu analize izvršene u odeljku 4, vrednost ovih koeficijenata dobija se direktno iz /1.13/ stavljajući

$$
\begin{aligned}
& Q_{\lambda}=\partial_{\lambda} U ; Q^{\overline{4}}=g^{a \nu} \partial_{\nu} U \equiv U^{\pi} i T=U+h \\
& 16: 2 / \Gamma_{\beta \gamma}^{\alpha} \equiv\left\{\begin{array}{l}
\alpha \gamma
\end{array}\right\}_{g}+\frac{1}{2(U+h)}\left[\partial_{\beta} U \delta_{\beta}^{\alpha}+\partial_{\gamma} U \delta_{\beta}^{\alpha}-U^{\alpha} g_{\beta \gamma}\right]
\end{aligned}
$$

Ponavljajući postupak kao u pročlom odeljku dobija se za poremedaje putanja sledeća jednacína
$16.31 \frac{\delta^{2} x^{\alpha}}{d \sigma^{2}}+R_{\theta \delta \sigma}^{\cdots \alpha} \frac{d q^{\theta}}{d \sigma} x^{\delta} \frac{d q^{\psi}}{d \sigma}=0$
gde su Riman - Kristofelov tenzor $R_{\theta \delta \sigma}^{\prime \prime .} \alpha \quad 1$ apsolutni izrod $\delta^{2} x^{\alpha} / \delta \sigma^{2} \quad$ obrazovani u odnosu na akciomil metriku.
Jednačine /6.3/ poznate su u diferencijalnoj geometriji kao jednačine kojima se meri t.zV. geodezisko odstupanje /"L'scart geodésique"/. , str. $217 /$

Ove jednačine predstavljaju uslov da poremećene geodeziske linife budu opet geodeziske linije.

Napišimo sada poremećajne jednačine u drugom invarijantnom obliku koji eksplicira njihov geometriski smisao.

Predpostavimo da poremećajni vektor obrazuje vektorsko polje, pa da je s toga fuakeija parametra σ preko koordinata, naime:

$$
x^{\alpha}=x^{\alpha}[q(\sigma)]
$$

Odavde sledi da je

$$
\begin{aligned}
& \frac{\delta x^{\alpha}}{d \sigma}=\frac{d q^{\lambda}}{d \sigma} \nabla_{\lambda} x^{\alpha} \\
& \frac{\delta^{2} x^{\alpha}}{d \sigma^{2}}=\frac{\delta}{d \sigma}\left(\frac{d x^{\alpha}}{d \sigma}\right) \equiv \frac{d q^{\mu}}{d \sigma} \nabla_{\mu}\left(\frac{d q^{\lambda}}{d \sigma} \nabla_{\lambda} x^{\alpha}\right) \equiv \\
& \quad \equiv \frac{d q^{\mu}}{d \sigma}\left(\nabla_{\mu} \frac{d q_{1}}{d \sigma}\right)\left(\nabla_{\lambda} x^{\alpha}\right)+\frac{d q^{\mu}}{d \sigma} \frac{d q^{\lambda}}{d \sigma}\left(\nabla_{\mu} \nabla_{\lambda} x^{\alpha}\right) \\
& \text { Medjutim } \frac{d q^{\mu}}{d \sigma}\left(\nabla_{\mu} \frac{d q^{\lambda}}{d \sigma}\right) \equiv \frac{\delta}{d \sigma}\left(\frac{d q^{\lambda}}{d \sigma}\right)=0
\end{aligned}
$$

jer je ovo jednačina kretanja/6.1/. pa gornjt izraz postaje

$$
\text { 16.4/ } \quad \frac{\delta^{2} x^{\alpha}}{d \sigma^{2}}=\frac{d q^{\lambda}}{d \sigma} \frac{d q^{\mu}}{d \sigma}\left(\nabla_{\lambda} \nabla_{\mu} x^{\alpha}\right)
$$

Zbog /6.4/ jednačina/6.3/ postaje

$$
\left(\begin{array}{l}
\text { jednačina } / 6.3 / \text { postaje } \\
\left(\nabla_{\lambda} \nabla_{\mu} X^{\alpha}+R_{y \lambda \mu}^{\alpha} x^{v}\right) \frac{d q^{\lambda}}{d \sigma} \frac{d q^{\mu}}{d \sigma}=0
\end{array}\right.
$$

Izraz u zagradi je simetričan. To dokazujemo time što je antisimetri. čni deo $T_{[\lambda \mu]}^{\prime \prime \alpha} \quad$ izraza

$$
T_{\lambda \mu}^{\prime \cdot \alpha} \equiv \nabla_{\lambda} \nabla_{\mu} x^{\alpha}+R_{\nu \lambda \mu}^{\cdots \cdot \alpha} x^{\nu}
$$

Jednak muli.
Zaista, posmatrajmo:

$$
T_{[\lambda \mu]}^{\cdots \alpha}=\nabla_{[\lambda} \nabla_{\mu]} x^{\alpha}+R_{\nu[\lambda \mu]}^{\cdots \alpha} x^{\nu}
$$

kako je

$$
\nabla_{[\lambda} \nabla_{\mu]} x^{\alpha}=\frac{1}{2} R_{\lambda \mu \nu}^{\cdots \alpha} x^{\nu}
$$

i

$$
R_{\nu[\lambda \mu]}^{\cdots \alpha} \equiv \frac{1}{2}\left(R_{v \lambda \mu}^{\cdots \alpha}-R_{v \mu \lambda}^{\cdots \alpha}\right)
$$

sledi

Zbog

$$
T_{[\lambda \mu]}^{\cdots \alpha} \equiv \frac{1}{2} x^{\nu}\left(R_{\lambda \mu \nu}^{\cdots \alpha}+R_{\nu \lambda \mu}^{\cdots \alpha}-R_{\nu \mu \lambda}^{\cdots \alpha}\right)
$$

$$
R_{\gamma \mu \lambda}^{\cdots \alpha}=-R_{\mu \nu \lambda}^{\cdots \alpha}
$$

\#oslednj1 izraz postaje:

$$
T_{[\lambda \mu]}^{\cdots \alpha} \equiv \frac{1}{2} x^{\nu}\left(R_{\nu \mu \lambda}^{\prime \prime \alpha}+R_{v \lambda \mu}^{\cdots \alpha}+R_{\mu \nu \lambda}^{\cdots \alpha}\right)
$$

v Rimanovim prostorima je: $R_{\lambda \mu \nu}^{\cdots \alpha}+R_{\nu \lambda \mu}^{\cdots \alpha}+R_{\mu \nu \lambda}^{\cdots \alpha}=0$
/[12] , str. $182 /$ pe je $T_{[\lambda \mu]}^{\prime \cdot \alpha} \equiv 0$
Jednačina /6.3/ se svodi na
/6.5/ $\quad \nabla_{\lambda} \nabla_{\mu} x^{\alpha}+R_{\nu \lambda \mu}^{\alpha} x^{\nu}=0$
/jer je $T_{\lambda \mu}^{\mu}$ simetriçan tenzor, a $\frac{d g}{d \sigma}$ može da bude makakav vektor [6] , str. 15 /
Medjutim, leva strana jednačine /6.7/ identična je sa izrazima za Liov izrod koeficijenata povezanosti prostora akcionog liniyskog elementa u odnosu na polje vektora poremećajax ${ }^{\alpha} /[9$, str.6/ $16.61 \underset{x}{\perp} \Gamma_{\lambda \mu}^{\alpha}=0$

Prema tome jednačine $/ 6.5 /$ predstavljaju potreban 1 dovoljan uslov da transformacije

$$
/ 6.7 / \bar{q}^{\lambda}=q^{\lambda}+x^{\lambda}
$$

definišu afino kretanje.

Ha osnovu steva K.Jana / [8] , str. 9 / afine transformacije /6.7/ prevode geodeziske linije u geodeziske linije, pa su i trajektorije poremećenog kretanja takodje geodeziske linije u prostoru akcionog linifakog elementa, íto je obahvaćeno 1 definicijom poremećenog kretanja.

Fozabavimo se sada pitanjem da it je mogucie i u slučaju nekonzervativnih sistema, nači neki drugi invaxijentai oblik poremećajním jednačinsma /5.5/.

V tom cilju podjimo od činjemice da su jednačine kretanja dinamičkog sistema s obzirom na povezanost / $1.17 /$ geodeziske linije u generalisanom afinom geodeziskon prostoru naimes
/7.1/ $\quad \frac{d^{2} q^{\alpha}}{d t^{2}}+n_{\beta \gamma}^{\alpha} \frac{d q^{\beta}}{d t} \frac{d q^{\gamma}}{d t}=0$
gde je
$77.2 / \Pi_{p, r}^{\alpha}=$ fanct $\left(q, \frac{d q}{d t}\right)$

Neka je poznato neko rešenje jednačina/7.1/ recimo:

$$
q^{\alpha}=q^{\alpha}(t)
$$

i ako je takvo kretanje poremećeno, uzmimo za jednačine poremećenog kretanja
17.31 $\quad \bar{q}^{\alpha}=q^{\alpha}+x^{\alpha}(t)$
gde kao 1 dosad vektor x^{α} smatramo malom viličinom prvog reda. Ponavljajući isti postupak kao 1 ranije a vodeći rec̆una o /7.2/亡maćemo za klasične poremećajne jednačine:

$$
\begin{aligned}
& 17.4 / \frac{d^{2} x^{\alpha}}{d t^{2}}+2 \Pi_{\beta \gamma}^{\alpha} \frac{d q^{\beta}}{d t} \frac{d x^{\gamma}}{d t}+x^{\delta} \partial_{\delta} \Pi_{\beta \gamma}^{\alpha} \frac{d q^{\beta}}{d t} \frac{d q^{\gamma}}{d t}+ \\
&+\frac{d x^{\gamma}}{d t} \partial_{\delta} \Pi_{\beta \gamma}^{\alpha} \frac{d q^{\beta}}{d t} \frac{d q^{\gamma}}{d t}=0
\end{aligned}
$$

gde je $\dot{\partial}_{\delta} \equiv \frac{\partial}{\partial\left(\frac{d q^{\sigma}}{d t}\right)}$
Apsolutni izvod vektora poremećaja prema /3.1/ je

$$
\frac{\delta x^{\alpha}}{d t}=\frac{d x^{\alpha}}{d t}+\Pi_{\beta \gamma}^{\alpha} \frac{d q^{\beta}}{d t} x^{\gamma}
$$

a drugi apsolutni izvod

$$
\begin{aligned}
& \frac{\delta^{2} x^{\alpha}}{d t^{2}}=\frac{d}{d t}\left(\frac{\delta x^{\alpha}}{d t}\right)+\Pi_{\beta \gamma}^{\alpha} \frac{\delta x^{\beta}}{d t} x^{\gamma} \\
& \frac{\delta^{2} x^{\alpha}}{\delta t^{2}}=\frac{d^{2} x^{\alpha}}{d t^{2}}+\partial_{\nu} \Pi_{\lambda \mu}^{\alpha} \frac{d q^{\nu}}{d t} x^{\lambda} \frac{d q^{\mu}}{d t}+\dot{\partial}_{\nu} \Pi_{\lambda \mu \mu}^{\alpha} \frac{d^{2} q^{\nu}}{d t^{2}} x^{\text {odnosno }} \frac{d^{\mu}}{d t}+\Pi_{\lambda \mu}^{\alpha} \frac{d x^{\lambda}}{d t} \frac{d q^{\mu}}{d t} \\
& \\
& \quad+\Pi_{\lambda \mu}^{\alpha} x^{\lambda} \frac{d^{2} q^{\mu}}{d t^{2}}+\Pi_{\beta \gamma}^{\alpha} \frac{d x^{\beta}}{d t} \frac{d q^{\gamma}}{d t}+\Pi_{\beta \gamma}^{\alpha} \Pi_{x \sigma}^{\beta} x^{x} \frac{d q^{\sigma}}{d t} \frac{d q^{\gamma}}{d t}
\end{aligned}
$$

ako mesto $d^{2} q^{\nu} / d t^{2}$ stavimo njegovu vrednost iz/7.1/posle sredjivanja doblćemo

$$
\begin{aligned}
& \frac{\delta^{2} x^{\alpha}}{d t^{2}} \equiv \frac{d^{2} x^{\alpha}}{d t^{2}}+\partial_{\nu} \Pi_{\lambda \mu}^{\alpha} \frac{d q^{\nu}}{d t} x^{\lambda} \frac{d q^{\mu}}{d t}-\dot{\partial}_{\nu} \Pi_{\lambda \mu}^{\alpha} \Pi_{\omega \sigma}^{\nu} \frac{d q^{\omega}}{d t} \frac{d q^{\mu}}{d t} x^{\lambda}+ \\
& +2 \Pi_{\beta \gamma}^{\alpha} \frac{d x^{\beta}}{d t} \frac{d q^{\gamma}}{d t}-\Pi_{\lambda \mu}^{\alpha} \Pi_{\tau \rho}^{\mu} \frac{d q^{\tau}}{d t} \frac{d q^{\rho}}{d t}+\Pi_{\beta \gamma}^{\alpha} \Pi_{x_{\sigma}}^{\beta} \frac{d q^{\sigma}}{d t} \frac{d q^{\gamma}}{d t} \\
& \text { Gamenom } \frac{d^{2} x^{\alpha}}{d t^{2}} \quad \text { iz ovog izraza u } / 7.4 / \text { dobiće se } \\
& \frac{\delta^{2} x^{\alpha}}{d t^{2}}+x^{\delta} \frac{d q^{\beta}}{d t} \frac{d q}{d t}\left[\left(\partial_{\delta} \Pi_{\beta \gamma}^{\alpha}-\partial_{\rho} \Pi_{\beta \gamma}^{\alpha} \Gamma_{\delta}^{\rho}\right)-\left(\partial_{\beta} \Pi_{\delta \gamma}^{\alpha}-\right.\right. \\
& \left.\left.-\dot{\partial}_{\rho} \Pi_{\delta \beta}^{\alpha} \Gamma_{\gamma}^{\rho}\right)+\Pi_{\delta \rho}^{\alpha} \prod_{\beta \gamma}^{\rho}-\Pi_{\rho p}^{\alpha} \Pi_{\delta \gamma}^{\rho}\right]+\dot{\partial}_{\rho}^{\rho} \Pi_{\beta \gamma}^{\alpha} \frac{d q^{\beta}}{d t} \frac{d q^{\gamma}}{d t} \frac{\delta x^{\delta}}{d t}=0
\end{aligned}
$$

Ili prema /3.4/1/3.5/
$17.5 / \frac{\delta^{2} x^{\alpha}}{d t^{2}}+R_{\delta_{\beta \gamma}}^{\cdots \alpha} x^{\delta} \frac{d q^{\beta}}{d t} \frac{d q^{\gamma}}{d t}+T_{\delta \beta \gamma}^{\ldots \alpha} \frac{\delta x^{\delta}}{d t} \frac{d q^{\beta}}{d t} \frac{d q^{\gamma}}{d t}=0$
Ovo je izras za geodezisko odstupanje u generslisanom afinom geodeziskom prostoru i predstavifa odigledno generalizaciju geodeziskog odstupanja u smislu singa 1 Levi - Živite.

Da bi ove jednacine napisali u drugom invarijantnom obliku predpostavimo da je poremećeno kretanje oblika:
/7.6/ $\bar{q}^{\alpha}=q^{\alpha}+x^{\alpha}[q(t)]$
Zbog ove predpostavke biće:

$$
\begin{aligned}
& / 7.7 / \frac{d x^{\alpha}}{d t}=\partial_{\nu} x^{\alpha} \frac{d q^{\nu}}{d t} \\
& / 7.8 / \frac{d^{2} x^{\alpha}}{d t^{2}}=\partial_{\mu} \partial_{\nu} x^{\alpha} \frac{d q^{\mu}}{d t} \frac{d q^{\nu}}{d t}-\partial_{\nu} x^{\alpha} \Pi_{\varphi_{\theta}}^{\nu} \frac{d q^{\varphi}}{d t} \frac{d q^{\theta}}{d t}
\end{aligned}
$$

Zamenom /7.7/1/7.8/u klasične poremećajne jednačine /7.4/, doblée se:

$$
\begin{gathered}
/ 7.9 /\left[\partial_{\mu} \partial_{\lambda} x^{\alpha}+x^{\nu} \partial_{\nu} \Pi_{\mu \lambda}^{\alpha}+\frac{d x^{\prime}}{d t}\left(\partial_{\nu} x^{\rho}\right) \dot{\partial}_{\rho} \Pi_{\mu \lambda}^{\alpha}-\Pi_{\mu \lambda}^{\rho} \partial_{\rho} x^{\alpha} t\right. \\
\left.+\Pi_{\rho \lambda}^{\alpha} \partial_{\mu} x^{\rho}+\Pi_{\mu \rho}^{\alpha} \partial_{\lambda} x^{\rho}\right] \frac{d_{q}^{\mu}}{d t} \frac{d q^{\lambda}}{d t}=0
\end{gathered}
$$

Kako je izraz u zagradi simetričan po $\lambda \quad i \mu$ to je

$$
\begin{aligned}
& \text { 77.10/ } \partial_{\mu} \partial_{\lambda} x^{\alpha}+x^{\nu} \partial_{\nu} \Pi_{\mu \lambda}^{\alpha}+\frac{d x^{\nu}}{d t}\left(\partial_{\nu} x^{\rho}\right) \partial_{\rho} \Pi_{\mu \lambda}^{\alpha}- \\
& -\prod_{\mu \lambda}^{\rho} \partial_{\rho} x^{\alpha}+\Pi_{\rho \lambda}^{\alpha} \partial_{\mu} x^{\rho}+\Pi_{\mu \rho}^{\alpha} \partial_{\lambda} x^{\rho}=0
\end{aligned}
$$

ili u tenzorskom obliku $\left./{ }^{8}\right]$, str. $188 / \%$
17.11/ $\nabla_{\mu} \nabla_{\lambda} x^{\alpha}+R_{\nu \mu \lambda}^{\cdots \alpha} x^{\nu}+T_{\nu \mu \lambda}^{\cdots \alpha} \frac{d \rho^{\rho}}{d t} \nabla_{\rho} x^{\nu}=0$

Medjutim, leva strana ovih jednačina identična je sa izrazom za Liov izvod keoficijenata povezanosti generalisanog afinog geodeziskog prostora, tf.:

$$
\text { 17.121 } \underset{x}{f} \prod_{\mu \lambda}^{\alpha} \equiv \nabla_{\mu} \nabla_{\lambda} x^{\alpha}+R_{\nu \mu \lambda}^{\cdots \alpha} x^{\nu}+T_{\nu \mu \lambda}^{\cdots \alpha} \frac{d q^{\rho}}{d t} \nabla_{\rho} x^{\nu}=0
$$

Jednačine /7.12/ predstavljaju potreban i dovoljan uslov da infinitezimalne transformacije - poremećeno kretanje /7.6/, obrazuju afino kretanje, u generalisanom afinom geodeziskom prostoru; Na osnova iznetog imamo sledeći

STAV: Poremećaino kretanje skleronomnog nekonzervativnog dinamičkog sistema, jeste afino kretanje u generalisanom afinom geodeziskom prostoru u kome su trajektorije neporemećenog kretanja geodeaiske linije, trajektomie poremećenog kretanja gu opet geodeziske lininife u istom prostoru.
8. 0 RESENJIMA POREMEC ANITH JEINAČINA

Da bi podvukli macaj teomje grupa n proucavanju poremećaja holonomilh dinaričkih sistema, diskutujmo predkodno egzistenciju rešenja parcijalnih poremećajnih jednačina/6.5/i /7.12/.

Podjimo od konzervativaih sistema. Poremoćajna jednačina za ove sisteme je:
18.1/ $\quad \nabla_{\lambda} \nabla_{\mu} x^{\alpha}+R_{\nu \lambda \mu}^{\cdots \alpha} x^{\nu}=0$
gde $a_{\lambda}^{a} \quad$ omnačva simbol kovarijantnog izvoda u odnosu na osnovni tenzor $a_{\lambda \mu}=(U+h) g_{\lambda \mu} \quad$ prostora elementa dejstva: Uvedimo tenzor $\ell_{0}^{\alpha} \mu$ jednačinom:
$18.21 \partial_{\mu} x^{\alpha}=-x^{h} \Gamma_{\mu}^{\alpha} h+b_{\mu}^{\alpha}$
$111\left(b_{\mu}^{\alpha} \equiv \nabla_{\mu}^{a} x^{\alpha}\right)$
ove jednačine 1 jednaçine /8.1/ napisane u obliku:
/8.3/ $\bar{\nabla}_{\lambda} b_{\mu}^{\alpha}=-R_{\nu \lambda \mu}^{\cdots \alpha} X^{\nu}$
obrazuju sistem parcifalnih diferencijalnih jednačina po $M^{2}+M$ nepoznatin velicina $x^{\alpha} i \quad b^{\alpha}$.
Uslovi integrabilnosti ovog sistema su: / [8]. str.56/

$$
\begin{aligned}
& E_{1} \equiv \pm \frac{ \pm}{x} R_{\nu \lambda \mu}^{\cdots \alpha}=0 \\
& E_{2} \equiv \frac{ \pm}{\alpha} \nabla_{\omega_{1}} R_{v \alpha \mu}^{\cdots \alpha}=0 \\
& E_{3} \equiv \frac{ \pm}{x} \nabla_{\omega_{2}} \nabla_{\omega_{1}} R_{\nu \lambda \alpha}=0 \\
& \cdots \cdots
\end{aligned}
$$

Prema posnatoj teoremi o egzistenciji rešenja sistema parcijalnih diferencijalaih jednačina/v. napr. [8], str. $93 /$, potreban i dovoljan uslov da sistem jednačina /8.1/ canosno /8.2/1/8.3/, koji u opǎtem slučaju nife potpun, dopušta res̆enje je, da postoji
 saglasme za sve vrednosti $x^{\alpha}: b_{\mu}^{\alpha}$ y oblasti posmatranja, a da jednačine gistema $H_{H}+1$ budu zadovoljene zoog jednac̆ine prethodnog sistema.

Ako su uslovi ove teoreme zadovoljeni i ako jo broj nezavisnith jednačina u prvih - sistema jednak $n^{2}+U-\pi$, tada res̆enje ovog sistema nije u potpunosti odredjeno vcí sadrži r proizvoljnin konstanata. Tada postoji r nezavisnih ros̃enja $x_{(\alpha) ;}^{i}(\alpha=1, \ldots, r)$ a prostor akcione metrike dozvoljava x - parametarsku grupu afinih kretanja /[14] estr. 396-400/.

Rešenja poremećajnih jednačina/8.1/ data su sa:
$18.5 / x^{i}=C^{(\alpha)} x^{i}(\alpha)$
sto sledi in činjenice da se svaka r - parametarska grupa moz̆e preestaviti preko r - jednoparametarskih grupa/vinapr. [13],str.39/ U slučaju da je prostor akcione metrike ravan tj. ako je

$$
R_{\nu \lambda \mu}^{*}=0
$$

tada su uslovi /8.4/ identičnosti po x^{α} i b_{μ}^{α} pa je rešenje u potpunosti odredjeno i broj nezavisnih afinih kretanja je $\mu^{2}+\mu$ Ovaj slučaj odgovara kretanju po inerciji ti. kada je

$$
U=0
$$

a kinematički linifski elemenat ima Euklidovu metiku.

Proučimo sada uslove integrabilnosti parcijalnih poremecejnin jeanačina za nekonzervativne sisteme M.12/:
/8.8/ $\stackrel{\pi}{\nabla}_{\mu}^{\pi} \nabla_{\lambda}^{\pi} x^{x}+R_{\nu \mu \lambda}^{\cdots x} x^{\nu}+T_{\nu \mu \lambda}^{\cdots x} \frac{d_{q}{ }^{9}}{d t} \nabla_{\rho} x^{\nu}=0$
Uvedimo kao i ranije temzor b^{x} jeanac̆inom
$18.71 \partial_{\lambda} x^{x}=-x^{h} \eta_{h \lambda}^{x}+b_{\lambda}^{x}$ odnosno $\quad b_{\lambda}^{x} \equiv \nabla_{\lambda} x^{x}$
odavde diferenciranjem po \dot{q}^{ν} imamo
18.81 $\partial_{\nu} b_{\lambda}^{x}=x^{h} T_{v h \lambda}^{\ldots x} ;\left(T_{v h \lambda}^{x} \equiv \dot{\partial}_{\nu} \Pi_{h \lambda}^{x}\right)$

1 jednačine /8.6/ tada postaju:
/8.9/ $\nabla_{\mu}^{\Pi} b_{\lambda}^{\alpha}=-R_{v \mu \lambda}^{\cdots \alpha} x^{\nu}-T_{\nu \mu \lambda}^{\cdots \alpha} \frac{d q^{\rho}}{d t} \nabla_{\rho}^{\Pi} x^{\nu}$
kalko je x^{α} samo funkcija položaja to sledi još da je 18.10/ $\quad \partial_{y} x^{\alpha}=0$

Sistem jednačina /8.7/ - /8.10/ je ekvivalentan sistem prvog reda jednačinama $/ 8.6 /$ po $n^{2}+\pi$ nepoznatih funkeije $x^{\alpha} b^{\alpha} \mu$ Uslovi integrabilnosti ovih jednačina su/ [8].str. 190/

Ukoliko uslovi integrabilnosti /8.11/i/8.12/ nisu identičnosti po X^{μ} i b_{ν}^{μ} tada se može dokazati da rešenje nije u potpunosti odredjeno 1 da zavisi od r proizvoljnih konstanti a da generalisani afini geodeziski prostor dopušta neku r-parametarsku grupu afinih kretanja. $/[8]$, str. 193/.
Ako su uslovi integrabilnosti identični zadovoljeni iz /8.11/i $/ 8,12 /$ sledi da je u tom slučaju:

$$
\begin{aligned}
& \text { 18.13/ } R_{v \mu \lambda}^{\cdots x} \equiv 0 \\
& \text { /8.14/ } T_{v \mu \lambda}^{\cdots x} \equiv 0
\end{aligned}
$$

Jednačina/8.14/tvrdi da je prostor u tom slučaju Rimanov tj. da je $\dot{\partial}_{\nu} \Pi_{\mu \lambda}^{x}=0$ a $/ 8.13 /$ da je ravan pa dolazimo do istog zaključka kao i ranije da se kretanje vrši po inerciji.

Kao zaključak potucimo tri činjenice koje slede iz izloženog u ovon poglaviju:

1/ Poremećaj1 konzervativnih dinamičkih sistema obrazuju grupu afinih kretanja u prostoru akcionog linijskog elementa. 2/ Poremećaji nekonzervativnih dinamičkih sistema obrazuju grupu afinih kretanja u generalisanom afinom geodeziskom prostoru. 3/ Poremećaji holonomih dinamičkih sistema shvaćeni kao rešenja jednačina/8.1/ odnosno /8.6/nisu odredjeni u potpunosti, već zavise od r proizvoljnih konstanti koje ne mogu biti odredjene uslovima zadatka.

Ova poslednja primedba, po našem mišljenju, niukoliko ne umanjuje praktični značaj grupne koncepcije u teoriji poremećaja: U mnogim praktičnim problemima iz ove oblasti izračunavanje vektora
poremećaja vrši se samo zato da bi se ocenila stabilnost kretanja posmatranog sistema. Smatramo da se neki zaključci u vezi sa stabilnošću kretanja mogu dobiti i bez potpunog poznavanja vektora poremećaja, a baš zahvaljujuči teorijl grupa.
9. O JEDNOM GRUPNOM KRITERIJUME STM BILNOSTI

STAEIOWARNIE KRETANJA

Za kretanje se kaže da je stabilno ako je dužina vektora poremećaja: $x^{2}=g_{\alpha \beta} x^{\alpha} x^{\beta}$ ograničena tokom kretanja.

Kriterijumi za ocenu stabilnosti kretanja, kako konzervativnih tako i nekonzervativnih kretanja, nisu dosad nadjeni. /ovde se misli na proučavanje stabilnosti Singovom metodom poremecaja/.

Jedini izuzetak čini stacionarno kretanje konzervatiVaih dinamičkih sistema, tj. takvo kretanje kod koga su pozicione generalisane koordinate 1 ciklicne generalisame braine konstantne tokoh kretanja.

Potreban i dovolian uslov za stabilnost ovakvog kretania je da se totalna energifa ne menia prilikom poremećaia. 10

Totalna energija je u ovom slučaju konstantna i iznosi za neporeme ćeno kretanje:
19.1/ $T+\Pi=h$
a za poremećeno:
19:21 $T^{*}+\Pi^{*}=h+\delta^{\prime} h$
gde je $\delta^{\prime} h$ varijacija konstantne energije.
Iz poslednjeg izraza sledi da je:

$$
\begin{aligned}
& \text { [z poslednjeg izraza sledi da je: } \\
& \begin{aligned}
T^{*} & =\frac{1}{2} g^{*}\left(\dot{q}^{\alpha}+\dot{x}^{\alpha}\right)\left(\dot{q}^{\beta}+\dot{x}^{\beta}\right) \approx T+\frac{1}{2} \partial_{\gamma} g_{\alpha \beta} \dot{q}^{\alpha} \dot{q}^{\beta} x^{\gamma}+g_{\alpha \beta} \dot{q}^{\alpha} \dot{x}^{\beta}= \\
& =T+\frac{1}{2}([\alpha \gamma, \beta]+[\beta \gamma, \alpha]) \dot{q}^{\beta} \dot{q}^{\alpha} x^{\gamma}+g_{\alpha \beta} \dot{q}^{\alpha} \dot{x}^{\beta}
\end{aligned}
\end{aligned}
$$

Ako mesto $\dot{x}^{\beta} \quad$ uvedemo $\frac{\delta x^{\beta}}{d t} \quad$ imaćemo

$$
\begin{aligned}
T^{*}-T & =[\alpha \gamma, \beta] \dot{q}^{\alpha} \dot{q}^{\beta} x^{\gamma}+g_{\alpha \beta} \dot{q}^{\alpha} \frac{\delta x^{\beta}}{d t}-g_{\alpha \beta}\left\{\begin{array}{l}
\beta \\
\sigma \gamma
\end{array}\right\} x^{\gamma} \dot{q}^{\sigma} \dot{q}^{\alpha}= \\
= & {[\alpha \gamma, \beta] \dot{q}^{\alpha} \dot{q}^{\beta} x^{\gamma}+g_{\alpha \beta} \dot{q}^{\alpha} \frac{\delta x^{\beta}}{d t}-\dot{q}^{\alpha} \dot{q}^{\sigma}[\sigma \gamma, \alpha] x^{\gamma} \equiv g_{\alpha \beta} \dot{q}^{\alpha} \frac{\delta x^{\beta}}{d t} }
\end{aligned}
$$

i razlika /9.2/i/9.1/daje / [15], stra626/
19.31 $g_{\alpha \beta} \dot{q}^{\alpha} \frac{\delta x^{\beta}}{d t}+\frac{\partial \Pi}{\partial q^{\alpha}} x^{\alpha}=\delta^{\prime} h$

Eliminišimo iz ovih jednačina vreme. U tu svihu podjimo od jednačine /2.5/ koja za sluc̆aj potencifalnih sila glasi:

$$
\frac{d^{2} s}{d t^{2}}=-\frac{d \Pi}{d s}
$$

odavde imamo proi integral u obliku:
19:4 $\quad i^{2}=2(h-\Pi) \equiv \lambda$
pa 19.3/ postaje:

$$
g_{\alpha \beta} \frac{d q^{\alpha}}{d s} \frac{\delta x^{\beta}}{d s} \lambda+\frac{\partial \Pi}{\partial q^{\alpha}} x^{\alpha}=\delta^{\prime} h
$$

odnosno:

$$
\text { 19.51 } g_{\alpha \beta} \frac{d q^{\alpha}}{d s} \frac{\delta x^{\beta}}{d s}+\frac{1}{\lambda} \frac{\partial \Pi}{\partial q^{\alpha}} x^{\alpha}=\frac{\delta^{\prime} h}{\lambda}
$$

Podjimo sada od jednačina /8.1/ koje pomnožene sa $a_{\alpha \sigma}$ i sabrane po \propto izgledaju:

$$
\nabla_{\lambda} \stackrel{a}{\nabla}_{\mu} x_{\sigma}+R_{\nu \lambda \mu \sigma} x^{\nu}=0
$$

Pomnožimo ove jedračine sa $\frac{d q^{\lambda}}{d \sigma} \frac{d q^{\mu}}{d \sigma} \frac{d q^{\sigma}}{d \sigma} \quad i$ saberimo po indeksima $\lambda_{1} \mu \quad i^{\sigma} \quad$. Pošto je tenzor $R_{y \lambda \mu \sigma}$ antisimetričan po μ
$i \sigma$ to je

$$
R_{\nu \lambda \mu \sigma} x^{\nu} \frac{d q^{\lambda}}{d \sigma} \frac{d q^{\mu}}{d \sigma} \frac{d q^{\sigma}}{d \sigma} \equiv 0
$$

pa gornja jednačina postaje:

$$
\left(\cdot \nabla_{\lambda}^{a} \nabla_{\mu}^{a} x_{\sigma}\right) \frac{d q^{\lambda}}{d \sigma} \frac{d q^{\mu}}{d \sigma} \frac{d q^{\sigma}}{d \sigma}=0
$$

Pos̆to je vektor $d q^{\lambda} / d r$ kovarijantino konstantan biće:

$$
\frac{\delta}{d \sigma}\left(\nabla_{\mu} x_{\sigma} \frac{d q^{\mu}}{d \sigma} \frac{d q^{\sigma}}{d \sigma}\right)=0
$$

pa sledi da je:

$$
\text { 19.6/ }\left(\nabla_{\mu}^{a} x_{\sigma}\right) \frac{d q^{\mu}}{d \sigma} \frac{d q^{\sigma}}{d \sigma}=\mathbb{C}
$$

odnosno

$$
19.6 \% \quad \nabla_{(\mu} x_{\sigma)} \frac{d_{0}^{\mu}}{d \sigma} \frac{d q_{\sigma}^{\sigma}}{d \sigma}=\mathbb{C}
$$

$$
\text { 19.71 } a_{\lambda \mu} \frac{\frac{\delta^{\prime}}{\lambda}}{d \sigma} \frac{d q^{\mu}}{d \sigma}=\mathbb{C}
$$

gde smo sa crtom naglasili da su odgovarajući vektori napisani u prostoru elementa dejstra.

Prevedim izraz /9.7/ u prostor kinematičkog linijskog elementa; pošto je:

$$
\begin{aligned}
& a_{\lambda \mu}=2(v+h) g_{\lambda \mu} \equiv \lambda g_{\lambda \mu} \\
& a{ }^{a} \bar{x}^{\lambda} \\
& \frac{a_{\sigma}}{d \sigma}=\frac{1}{\sqrt{\lambda}} \frac{\delta x^{\lambda}}{d \sigma}, \frac{d q_{\mu}}{d \sigma}=\frac{1}{\sqrt{\lambda}} \frac{d \psi_{\mu}^{\mu}}{d \sigma}
\end{aligned}
$$

Izras/3.7/ postaje:

$$
g_{\lambda \mu} \frac{\delta^{a} x^{\lambda}}{d \sigma} \frac{d q^{\mu}}{d \sigma}=\mathbb{a}
$$

Kako je apsulutni izvod $\delta / d o$ formiran u odnosu na koeficijente povezanosti/6.2/ imać emo:

$$
g_{\lambda \mu} \frac{d q^{\mu}}{d \sigma}\left\{\frac{d x^{\lambda}}{d \sigma}+\left\{\begin{array}{l}
\lambda \\
\nu \omega
\end{array}\right\}_{g} x^{\nu} \frac{d \sigma^{\omega}}{d \sigma}+\frac{1}{\lambda}\left[\partial_{\nu} U \delta_{\omega}^{\lambda}+\partial_{\omega} U \delta_{\nu}^{\lambda}-U^{\lambda} g_{\nu \omega}\right] x^{\nu} \frac{d q^{\omega}}{d \sigma}\right]=\mathbb{C}
$$

Što posle kraćeg računa daje:

$$
\begin{aligned}
& \text { posle kraćeg računa daje: } \\
& g_{\lambda \mu} \frac{d q^{\mu}}{d \sigma} \frac{\delta^{g} x^{\lambda}}{d \sigma}+\frac{1}{\lambda} x^{\nu} \partial_{\nu} \cup\left(\frac{d s}{d \sigma}\right)^{2}=\mathbb{C}
\end{aligned}
$$

Pošto je $d \sigma^{2}=\lambda d s^{2}$ to prelazkom na parametax $\}$ goinnji izraz postaje:

$$
\text { 19:8/ } \quad g_{\lambda \mu} \frac{d q^{\mu}}{d s} \frac{\delta^{2} x^{\lambda}}{d s}+\frac{1}{\lambda} x^{\nu} \partial_{\nu} U=\mathbb{C} \lambda
$$

Navedimo bez dokaza jedan pomoćni stav iz teorije grupa koji flasi: Dva prostora u konformom odnosu lmaće iste grupe kretanja ako je $x^{\vee} \partial_{\nu} U=0$ gde je λ koeficijenat proporcijalnosti $a_{\lambda \mu}=\lambda g_{\lambda \mu} \quad$ a $x^{\nu} \quad$ vektori infinitizimalnog pomeranja. $/[13]$, str. 23/

Predpostavino sada da vektori poremećenog kretanja obrazuju grupu kretanja, u prostoru elementa dejstva, /Ova predpostavka nije u oprečnosti sa konstataciom / / prošlog poglavija jer je svaka grupa kretanja u isto vreme i grupa afinih kretanja/. Tada jednačina /9.6'/ daje

$$
\nabla_{(\mu} x_{\sigma)}=0
$$

pajei

$$
\mathbb{C}=0
$$

ako je ta grupa takva da se poklapa sa grupom kretanja kinematičkog linjfskog elementa onda je i

$$
x^{\nu} \partial_{\nu} U=0
$$

pa se izrazi /9.5/1/9.8/ poklapaju jex je u tom slučaju:

$$
\frac{\delta^{\prime} h}{\lambda} \equiv c \lambda \equiv 0
$$

1

$$
\frac{\partial \eta}{\partial q^{\alpha}} x^{\alpha} \equiv-\frac{\partial U}{\partial q^{\alpha}} x^{\alpha} \equiv 0
$$

pa je uslov za stabilnost po Singu ispunjen.
Odavde sledi sledeća
Thortma Ako poremećail konzervativaog dinamičkog sistema definišu grupu kretanja u R1manovom konfiguracionom prostoru elemonta detstra i ako fe ta grupa identična sa grupom kretania konficuracionog prostora kinematickog linitskog elementa, stacionarno kretanje ie stabilno.
27.I 1963. god.

Beograd

IITERATURA

1. Lichserowicz, A.: Eléments de Calcul Tensoriel; Colldction Armand Colin; Paris 1950.
2. Lichnerowicz, A.: Les espaces a connexion semimétrique et la mécanique. C.R. Ac. Sci. 212: 328-331,1941
3. Eisenhart, L.P.: Riemannian Geometry; Princeton univ.press Princeton 1949.
4. Schouten, J. A and Struik, D.J., Binfuhrung in die neueren Methodes der Differontialgeometrie, I. Groningen-Batavia, Norrdhoff. 1935.
5. Bilimović, A.: Racionslna mehanika II - Mehanika sistema. Haučna knjiga, Beograd 1951.
6. Schouten, J.A.: Ricci Calculus, second edition, Springer 1954
7. Duglas, J.: The general geometry of paths. Ann. of Math. 2. 29. 1928.
8. Yano, K.: The thory of Lie derivatives and its apolications. North-Holland publ. Co. Amsterdam-Groningen 1955.
9. Thomas, T.Y.: The differential invariants of generalized spaces; Cambridge, Univ.press 1934.
10. Synge, J.L.: On the geometry of Dynamics, Fhil Transactions of the Roy. Soc. of Irondon. Ser. A. vol 226, P.P. 31 - 106.
11. Levi-Civita, T.: The apsolute differontial calculus. Blackie and s. London 1948.
12. Andjelie, T.: Tenzorski račun, Naučna knjiga, Beograd 1952.
13. Stojanovic, R.: Primene tenzorskog rackuna iff.geometrije u mehanici. tostaiplomski kurs 1960.
14. Knebelman, M.S.: Nat.Ac. of Sc.USA: Washington, Vol. 13. $\mathbb{N}^{\circ} 6192$
15. Lur'e A.I.: Analitičeskaja mehanika F.M. 1961.
