The Influence of Chemi-Ionization and Chemi-Recombination Processes on H lines in M dwarf Atmospheres

Anatolij A. Mihajlov¹, Darko Jevremović², Peter Hauschildt³, Milan S. Dimitrijević², Ljubinko M. Ignjatović¹ and France Alard⁴

¹Institute of Physics, P. O. Box 57, 11001 Belgrade, Serbia ²Astronomical Observatory, Volgina 7, 11160 Belgrade, Serbia ³Hamburger Sternwarte, Gojenbergsweg 112, 21029 Hamburg, Germany ⁴CRAL/ENS, 46 Allt'ee d'Italie, 69634 Lyon Cedex 07, France

INTRODUCTION

- influence of collisional chemi-ionization processes

$$H^{*}(n) + H => e + H_{2}^{+}$$
(1)

$$H^{*}(n) + H => e + H + H^{+}$$
(2)

- And the corresponding inverse recombination processes

$$e + H_2^+ => H^*(n) + H$$
 (3)
 $e + H + H^+ => H^*(n) + H$ (4)

was investigated in weakly ionized layers of Solar atmosphere and atmospheres of cool stars"

Efficiency compared with the relevant ionization and recombination processes

$$e + H^{*}(n) => e + H + H^{+}$$
(5)

$$e + e + H^{+} => e + H^{*}(n)$$
(6)

$$e + H^{+} => \varepsilon_{\lambda} + H^{*}(n)$$
(7)

- ε_{λ} denotes the energy of the emitted photon *P* of one $H^*(n)$ with n > 2 now with n > 1

Before $H^*(n)$ with n > 3, now with n > 1

general stellar atmosphere code PHOENIX

FIGURE 1. Structure of model atmosphere

FIGURE 2. Line profiles with (full) and without (thin) inclusion of chemi-ionization and chemi recombination processes for H_{α}

FIGURE 3. As in Fig.2 but for H_{δ} line

FIGURE 4. As in Fig.2 but for H_{ε} line

FIGURE 5. As in Fig.2 but for Pa_{ε} line

