UNIVERZITET U BEOGRADU PRIRODNO-MATEMATIČKI FAKULTET INSTITUT ZA MATEMATIKU

Doktorska disertacije " DIMENZIJA F-PROSTORA "

HASSAN KHALIFA ZOUGDANI

tekhybekhyldo yhbongg ЗА МАТЕМАТИКУ, МЕХАНІ Виблио

Број: Dokt.

Датум: 16.05.1985.

Želeo bih da izrazim svoju zahvalnost profesoru D. Adnadjeviću koji je pregledao rad, za stalnu podršku i korisne sugestije, Univerzitetu ALFATEH za finansijsku podršku i Mirjani Rapaić koja je prekucala ovaj rad.

SADRŽAJ:

		PREDGOVOR	1
Glava	0.	UVODNI TOPOLOŠKI POJMOVI	3
Glava	I.	OSNOVNI POJMOVI	7
		1. TEORIJA FAZI SKUPOVA	7
		2. FAZI TOPOLOŠKI PROSTORI	10
•		3. FAZI NEPREKIDNE FUNKCIJE	16
Glava	II.	-KOMBINATORNA DIMENZIJA F-PROSTORA	19
		1. GLAVNE KARAKTERIZACIJE	19
		2. TEOREME PODSKUPA I SUME	27
		3. LOKALNA -KOMBINATORNA DIMENZIJA	32
Glava	III.	KOMBINATORNA DIMENZIJA I	
		MODIFIKACIJA F-PROSTORA	37
		1. F-dim	38
		2. MODIFIKACIJA F-PROSTORA	45
		3. TEOREMA PROIZVODA	51
Glava	IV.	PROJEKTIVNI LIMES F-PROSTORA	59
		1. PROJEKTIVNI LIMES _BIKOMPA-	
		KTNIH F-PROSTORA	59
		2. PROJEKTIVNI NIZOVI F-PROSTORA	68
		3. F-dim LIMESA F-PROSTORA	72
		BIBLIOGRAFIJA	84
		LISTA SIMBOLA	87
		marker () to the company of the comp	

PREDGOVOR

Pojam fazi topologije, koji je uopštenje pojma topologije na skupu, uveo je 1968. godine Chang u [2]. Taj pojam se bazira na Zadehovom pojmu fazi skupa koji se pojavio 1965. u [31] i koji se koristi u mnogim granama matematike. Od tada mnogi autori razvijaju različite aspekte fazi topologije što sve više privlači pažnju istraživača u raznim oblastima nauke. Mi uvodimo pojam α -kombinatorne dimenzije fazi prostora, gde je $\alpha \in [0,1)$, kao uopštenje pojma kombinatorne dimenzije topoloških prostora.

Glave II, III i IV ovog rada kao da opravdavaju uvodjenje i proučavanje &-kombinatorne dimenzije fazi prostora.

Analogno teoriji dimenzije topoloških prostora, mi razmatramo teoremu potprostora, teoremu konačne sume i teoremu proizvoda.

Svakom fazi prostoru može se pridružiti topološki prostor snabdeven tzv. modifikovanom topologijom čija je kombinatorna dimenzija jednaka «-kombinatornoj dimenziji fazi prostora. Mi koristimo ideju modifikovane topologije da bismo tvrdjenja u vezi sa «-kombinatornom dimenzijom fazi prostora sveli na tvrdjenja o kombinatornoj dimenziji topoloških prostora.

Gradja ovog rada, osim uvodnih topoloških pojmova, podeljena je na četiri glave, dok se svaka glava sastoji iz tri paragrafa u kojima se obradjuju pojedinačne teme.

U glavi I date su definicije i stavovi u vezi sa osnovnim pojmovima fazi skupova i fazi topologije. Većinu od njih ćemo kasnije koristiti.

Glava II je posvećena «-kombinatornoj dimenziji fazi prostora. Ona se definiše u prvom paragrafu a stavovi 1.1, 1.4 daju njene glavne karakterizacije. Paragraf dva bavi se teoremama podskupa i konačnom teoremom sume, dok paragraf tri obradjuje lokalne osobine «-kombinatorne dimenzije.

paragraf glave III sadrži primene prethodne glave. Paragraf dva daje relaciju izmedju &-kombinatorne dimenzije fazi prostora i kombinatorne dimenzije topološkog prostora generisanog tim fazi prostorom (stav 2.3), kao i jednakost &-kombinatorne dimenzije ultra - Tychonoffljevog fazi prostora sa - kombinatornom dimenzijom njegove ultra Stone-Čechove fazi kompaktifikacije (stav 2.4). Paragraf tri bavi se teoremom proizvoda za fazi prostore koji zadovoljavaju izvesne uslove.

Finalna glava IV posvećena je proučavanju projektivnog spektra fazi prostora i projektivnog limesa fazi prostora na sličan način kao i kod topoloških prostora. U poslednjem paragrafu ove glave proučava se -kombinatorna dimenzija limesa fazi prostora.

Simbol doznačava kraj dokaza. On se takodje koristi na kraju nekog tvrdjenja čiji dokaz neposredno sledi iz prethodnih rezultata.

pojedine stavke su u svakom paragrafu posebno numerisane prema njihovom imenu i položaju tj. definicija 1.1, ..., 1.2,
..., lema 1.1, 1.2,... itd. Pozivanja na svaku stavku u različitoj glavi označavamo trostruko tj. navodi se glava, paragraf i
broj stavke u paragrafu. Na primer lema II.3.1 je lema 1 u paragrafu 3 glave II.

Citiranje literature stavljamo u [].

UVODNI TOPOLOŠKI POJMOVI

Pretpostavlja se poznavanje osnova opšte topologije kao i osnovnih pojmova u vezi sa kombinatornom dimenzijom topoloških prostora. U ovom kratkom uvodu dajemo u obliku teorema sažet prikaz nekih rezultata iz ovih oblasti. Neke od tih teorema biće uopštene na slučaj fazi topoloških prostora a neke će biti od posebnog značaja u daljem toku izlaganja.

Dajemo bez dokaza kratak pregled nekih rezultata uzetih uglavnom iz $\begin{bmatrix} 4 \end{bmatrix}$, $\begin{bmatrix} 5 \end{bmatrix}$, $\begin{bmatrix} 14 \end{bmatrix}$, $\begin{bmatrix} 21 \end{bmatrix}$, $\begin{bmatrix} 22 \end{bmatrix}$.

Znamo da je proizvod topoloških prostora kompaktan ako i samo ako je svaki činilac kompaktan. Taj rezultat je poznat kao teorema Tychonoffa dok topološki proizvod familije prebro-jivo kompaktnih prostora nije u opštem slučaju prebrojivo kompaktan. Ipak važi:

Teorema 1: Proizvod kompaktnog prostora i prebrojivo kompaktnog prostora je prebrojivo kompaktan. O

projektivni limes projektivnog spektra topoloških prostora može biti prazan čak i ako je svaki njegov činilac (X_s) neprazan a projekcije surjektivne. Sledeće dve teoreme daju dovoljne uslove pod kojima je projektivni limes neprazan.

Teorema 2: Projektivni limes projektivnog spektra nepreznih kompaktnih Hausdorffovih prostora je neprazan kompaktan Hausdorffov prostor.

Teorema 3: Neka je X projektivni niz nepraznih prebrojivo kompaktnih prostora. Ako su svi skupovi $f_{n,m}(X_m)$, $n \le m$, $n \in \mathbb{N}$, zatvoreni u X_n , onda je projektivni limes X neprazan i $f_n(X) = \bigcap_{n \in \mathbb{N}} f_{n,m}(X_m)$ $n \le m$, $n \in \mathbb{N}$. \square

Teorema 4: Projektivni limes projektivnog niza prebrojivo kompaktnih prostora i zatvorenih projekcija je prebrojivo kompaktan
prostor.

Teorema 5: Projektivni limes projektivnog niza perfektno normalnih prostora je perfektno normalan.

Teorema 6: Ako je X projektivni limes projektivnog niza prostora kod kojeg su sve projekcije surjektivne, onda je i svako kanoničko preslikavanje surjektivno.

Od prvog pojavljivanja teorije dimenzije u ranim dvadesetim godinama ovoga veka, pojam dimenzije se do danas značajno
razvio. Postoje tri dimenzione funkcije za topološki prostor ali
nas će interesovati samo kombinatorna dimenzija koja u suštini
zavisi od reda profinjenja konačnih otvorenih pokrivača prostora.

Sledeće dve teoreme karakterišu dimenzionu funkciju dim.

<u>Teorema 7:</u> Neka je X topološki prostor. Tada su sledeći iskazi ekvivalentni:

- (|) Prostor X zadovoljava nejednakost dim X≤n.
- (N) Za svaki konačan otvoren pokrivač $\left\{G_i\right\}_{i=1}^{k}$ prostora X postoji konačan otvoren pokrivač $\left\{H_i\right\}_{i=1}^{k}$ od X čiji je red \leq n i $H_i \subset G_i$ za svako i = 1,2,...,k.

<u>Teorema 8:</u> Neka je X normalan prostor. Tada su sledeći iskazi ekvivalentni:

- (!) Prostor X zadovoljava nejednakost dim X≤n.
- (||) Za svaki konačan otvoren pokrivač $\left\{G_i\right\}_{i=1}^k$ prostora X postoji otvoren pokrivač $\left\{H_i\right\}_{i=1}^k$ od X takav da je cl $H_i \subset G_i$ za svako $i=1,\ldots,k$ i red pokrivača $\left\{\operatorname{cl} H_i\right\}_{i=1}^k \leqslant n$.
- (|||) Za svaki konačan otvoren pokrivač $\left\{G_i\right\}_{i=1}^k$ prostora X postoji zatvoren pokrivač $\left\{F_i\right\}_{i=1}^k$ od X takav da je F_i Za svako $i=1,\ldots,k$ i red pokrivača $\left\{F_i\right\}_{i=1}^k$
- (IV) Ako je $\{G_i\}_{i=1}^{n+2}$ otvoren pokrivač prostora X onda postoji zatvoren pokrivač $\{F_i\}_{i=1}^k$ od X takav da je $F_i \subset G_i$ za svako $i=1,\dots,n+2$ i $\bigcap_{i=1}^{n+2} F_i = \emptyset$. \square

Poznato je da ako je dim X = O onda je X normalan prostor. Štaviše, imamo

Teorema 9: Ako je X kompaktan Hausdorffov prostor, onda je dim X = 0 ako i samo ako je X totalno diskoneksan. \square

Teorema 10: Za normalan prostor X, dim $X = \dim \beta X$, gde je βX Stone-Čechova kompaktifikacija prostora X. \Box

Teorema 11: Ako je M zatvoren podskup prostora X onda je dim $^{\text{M}}$ \leq dim X. \square

predjimo na ponašanje dimenzione funkcije dim u odnosu na topološki proizvod.

Teorema 12: Neka je X parakompaktan Hausdorffov prostor takav da je dim X = m a Y kompaktan Hausdorffov prostor takav da je

dim Y = n. Ako je bar jedan od njih neprazan onda je dim(XxY) $\leq m + n$. \Box

Teorema 13: Za svaki par X,Y kompaktnih prostora, pri čemu je bar jedan od njih neprazan, imamo da je $\dim(X \times Y) \leq \dim X + \dim Y . \quad \Box$

<u>Teorema 14:</u> Neka su X i Y Hausdorffovi prostori takvi da X x Y ima zvezdasto konačno svojstvo. Ako je bar jedan od njih nepra-zan onda je

 $\dim(X \times Y) \leq \dim X + \dim Y$.

Teorema 15: Ako je X prostor a Y lokalno kompaktan, parakompaktan Hausdorffov prostor onda je

 $dim(X \times Y) \leq dim X + dim Y$. \Box

Teorema 16: Neka je $\left\{X_{s}\right\}_{s\in S}$ familija prostora takva da je svaki prebrojivi proizvod prostora ove familije Lindelofov. Ako je dim $X_{s}=0$ za svako $s\in S$ onda je dim $\prod X_{s}=0$. \square

Teorema 17: Prostor X je kompaktan Hausdorffov i dim X = 0 ako i samo ako je X projektivni limes konačnih diskretnih prostora. □

Teorema 18: Neka je $X = \{X_s, f_{s,t}, S\}$ projektivni spektar nad S kompaktnih Hausdorffovih prostora sa projektivnim limesom X_s . Tada je dim $X \le n$ ako i samo ako za svako $s \in S$ i svako otvoreno pokrivanje U_s prostora X_s postoji $t \in S$, $s \le t$ tako da pokrivanje $f_{s,t}^{-1}(U_s)$ prostora X_t dopušta profinjenje U_t reda $\le n+1$. \square

Teorema 19: Neka je prebrojivo kompaktan prostor X projektivni limes projektivnog niza normalnih prostora i surjektivnih preslikavanja $\{X_n, f_{n,m}, N\}$ pri čemu je dim $X_n \le p$ za svako ne N. Tada je X normalan i dim $X \le p$.

Glava I:

OSNOVNI POJMOVI

Pošto mnoge definicije i pojmovi u fazi topologiji još nisu dobili svoj konačni oblik, mi posvećujemo ovu glavu osnovnim pojmovima teorije fazi skupova i fazi topologije. Dajemo brz pregled nekih od tih definicija i rezultata – bez dokaza u [1], [6], [7], [9], [10], [11], [12], [15], [16], [23], [28], [29], [30] koji se često koriste kroz ceo red.

1. TEORIJA FAZI SKUPOVA

Sa X ćemo uvek označavati neprazan skup, sa I zatvoren jedinični interval $\begin{bmatrix} 0,1 \end{bmatrix}$ a sa I xkup svih funkcija iz X u I .

Definicija 1.1: Fazi skup u X - u oznaci F-skup - je funkcija f : X \rightarrow I koja svakoj tački x \in X pridružuje vrednost funkcije $f(x) \in I$ (ili njen stepen u I).

Skup $\{x \in X : f(x) > 0\}$ naziva se nosač od f i označava sa f_0 . F-skup $f \in I^X$ takav da je f(x) = 0 za svako $x \in X$, označavaćemo sa $\overline{0}$ i on odgovara praznom skupu 0 a f-skup $f \in I^X$ takav da je f(x) = 1 za svako $x \in X$, označavaćemo sa $\overline{1}$. Ovaj f-skup odgovara skupu X.

Fazi tačka – u oznaci F-tačka – p u X je F-skup u X dat sa: $p(x) = \begin{cases} d & za \ x = x_0 & (0 < d \le 1) \\ 0 & za \ x \ne x_0 \end{cases}$

gde se x_n naziva nosačem tačke p.

Specijalna funkcija koju ćemo koristiti u daljim razmatranjima je karakteristična funkcija podskupa, tj. ako je A
podskup skupa X, onda se karakteristična funkcija A(A) od A na
X definiše sa

$$u(A) = \begin{cases} 1 & \text{ako je } x \in A \\ 0 & \text{ako je } x \notin A \end{cases}$$

što je jedan F-skup u X. Ako sa P(X) označimo familiju svih pod-skupova skupa X a sa ch(X) skup svih karakterističnih funkcija sa domenom X, medju njima postoji uzajamno - jednoznačna kores-pondencija koju ostvaruju sledeće dve funkcije:

$$0: P(X) \rightarrow ch(X) \text{ data sa } 0(A) = \mu(A)$$

$$\forall: ch(X) \rightarrow P(X) \text{ data sa } \forall (\mu) = \{x \in X : \mu(x) = 1\}.$$

Pošto su F-skupovi realno vrednosne funkcije koristićemo postojeće operacije sa funkcijama =, 4, 7, 1, ... da F-skupove dovedemo u vezu sa drugim F-skupovima.

Definicija 1.2: Neka su f,g dva F-skupa u X. Tada:

- (i) $f = g \leftrightarrow f(x) = g(x)$ za svako $x \in X$
- (ii) $f \le g \leftrightarrow f(x) \le g(x)$ za svako $x \in X$
- (iii) $p \in f \Leftrightarrow p(x) \in f(x)$ za svako $x \in X$ gde je p F-tačka
- (IV) $f \vee g = \max\{f(x), g(x)\}\ za \ svako \ x \in X$
- (V) f \land g = min $\{f(x),g(x)\}$ za svako $x \in X$ Opštije, za familiju $\{f_s\}$ F-skupova unija $(\sum_{s \in S} f_s)$ i presek $(\sum_{s \in S} f_s)$ definišu se na sledeći način:

$$\begin{bmatrix} \sum_{s \in S} f_s \end{bmatrix}(x) = \sup_{s \in S} f_s(x), \quad x \in X$$
$$\begin{bmatrix} \sum_{s \in S} f_s \end{bmatrix}(x) = \inf_{s \in S} f_s(x), \quad x \in X$$

(VI) F-skup co.f definisan sa (co.f)(x) = 1-f(x) naziva se komplement od f.

Za F-skupove f,g I X kažemo da su disjunktni ako je f A g = $\overline{0}$.

Pokazano je da ako je $f \in I^X$ onda $f \wedge co.f \neq \overline{0}$ u opštem slučaju i ako su $f_1, f_2 \in I^X$ tako da je $f_1 \wedge f_2 = \overline{0}$, onda je $f_1 + co.f_2$ ali da obratno u opštem slučaju ne važi što je devijacija u odnosu na obične skupove. To znači da mreža (I^X, \leq) nije komplementarna, dok de Morganovi zakoni važe, tj.

$$co(\bigvee_{s \in S} f_s) = \bigwedge_{s \in S} co.f_s$$

$$co(\bigwedge_{s \in S} f_s) = \bigvee_{s \in S} co. f_s$$

za svaku familiju {f_s} F-skupova u X.

Iz definicije 1.2 neposredno sledi:

$$(1)^{\circ}$$
 f \vee g = g \vee f i f \wedge g = g \wedge f

$$(\parallel)^{\circ}$$
 $f \vee \overline{0} = f$, $f \wedge \overline{0} = \overline{0}$ i $f \vee \overline{1} = \overline{1}$, $f \wedge \overline{1} = f$

$$(\parallel \parallel)^{\circ}$$
 co. $(co.f) = f$, $co.\overline{\square} = \overline{1}$ i $co.\overline{1} = \overline{\square}$.

Stav 1.1: Neka je f F-skup u X i neka je p F-tačka u X. Tada je f = $V\{p: p \in f\}$. \Box

Definicija 1.3: Neka je $\Upsilon: X \rightarrow Y$ preslikavanje skupa X u skup Y. Ako je f F-skup u X, onda je $\Upsilon(f)$ F-skup u Y definisan sa:

Ako je g F-skup u Y, onda je $\gamma^{-1}(g)$ F-skup u X definisan sa: $[\gamma^{-1}(g)](x) = g(\gamma(x)).$

Stav 1.2: Neka je γ preslikavanje kao u definiciji 1.3. Tada γ i γ^{-1} imaju sledeće osobine:

$$(1) \psi^{-1}(\bigvee_{s \in S} f_s) = \bigvee_{s \in S} \psi^{-1}(f_s)$$

$$(11) \quad \Psi^{-1}(\bigwedge_{s \in S} f_s) = \bigwedge_{s \in S} \Upsilon^{-1}(f_s)$$

(III)
$$\Psi(\bigvee_{s \in S} f_s) = \bigvee_{s \in S} \Psi(f_s)$$

(IV)
$$\psi(\bigwedge_{s \in S} f_s) \leq \bigwedge_{s \in S} \psi(f_s)$$

$$(\vee) \ \psi(\psi^{-1}(f)) \leq f$$

$$(\forall i) \ \Psi^{-1}(\Psi(f)) \geqslant f_{\bullet} \ \Box$$

možemo pisati $p_{x_0}^d$ ako je vrednost od p_{x_0} jednaka d i otuda je $p_{x_0}^d \in f$ ako i samo ako je $f(x_0)>d$ za $d\in [0,1)$.

Stav 1.3: Neka je γ : X \rightarrow Y preslikavanje skupa X u skup Y, f F-skup u X i $p_{X_0}^{ct}$ F-tačka u X. Tada je:

(II)
$$p_{x_0}^{d} \in f$$
 povlači $\psi[p_{x_0}^{d}] \in \psi(f)$.

2. FAZI TOPOLOŠKI PROSTORI

<u>Definicija 2.1:</u> Familija T F-skupova u skupu X naziva se fazi topologija na X (F-topologija) ako su zadovoljeni sledeći uslovi:

$$(F.T.1)$$
 $\overline{0}, \overline{1} \in T$

(F.T.2)
$$f_s \in T$$
 povlači $\underset{s \in S}{\bigvee} f_s \in T$, $s \in S$

(F.T.3)
$$f_i \in T$$
 povlači $\bigwedge_{i=1}^n f_i \in T$

Članovi familije T zovu se otvoreni F-skupovi a par (X,T) zove se F-prostor. Ako je f otvoren F-skup, onda se co.f zove zatvoren F-skup.

F-prostori su prirodna generalizacija topoloških prostora jer se topologija na X može posmatrati kao familija karakterističnih funkcija sa operacijama \leq , \vee , \wedge i co.

<u>Definicija 2.2:</u> Neka je (X,T) F-prostor. F-skup g u X zove se okolina F-skupa f u X ako je $f \leq g$ i postoji F-skup h $\in T$ takav da je $f \leq h \leq g$.

Pod unutrašnjošću F-skupa f - u oznaci int(f) - podrazumevaćemo F-skup.

$$int(f) = \bigvee_{s} \{g_{s} : g_{s} \leq f, g_{s} \in T, s \in S\},$$
f je otvoren ako i samo ako je $f = int(f).$

Zatvorenje F-skupa f - u oznaci cl f - je F-skup dat sa: cl f = $\left\{h_s: f \leq h_s, h_s \in \text{co.T, } s \in S\right\}$. f je zatvoren ako i samo ako je f = cl f.

Stav 2.1: Svaki F-skup f u F-prostoru (X,T) zadovoljava jedna-kost int(f) = co.(cl(co.f)). \Box

Gornji stav daje vezu izmedju operatora unutrašnjosti i zatvorenja u F-topologiji koja je analogna dobro poznatoj vezi izmedju tih operatora u topologiji.

Definicija 2.3: Neka je (X,T) F-prostor i $\beta \subseteq T$ potfamilija od T takva da je svaki $f \in T$ unija članova iz β . Tada se β zove baza za T. $S \subseteq T$ se zove predbaza za T ako je familija svih konačnih preseka članova iz S baza za T.

Stav 2.2: Neka je (X,T) F-prostor. Tada je β baza za T ako i samo ako za bilo koje f \in T i svaku F-tačku p u X, gde je p \in f, postoji $B\in \beta$ tako da je p \in 8 \leq f. \Box

Definicija 2.4: Za F-prostor (X,T) kažemo da je C_{II} ako po-stoji prebrojiva baza za T.

Definicija 2.5: Neka je (X,T) F-prostor i $\alpha \in [0,1)$. Kolekci-

ja U \subseteq T naziva se α -senčenje prostora X ako za svako x \in X postoji u \in U tako da je u(x)> α . Potkolekcija od U koja je takodje α -senčenje od X naziva se α -podsenčenje od X.

Definicija 2.6: Neka je (X,T) F-prostor i $d\in [0,1)$. Neka su U i V dva d-senčenja od X. Kažemo da je U d-profinjenje od V i pišemo U \leq V ako za svako u \in U postoji v \in V dako da je u \leq V.

Proizvoljno α -podsenčenje datog α -senčenja je α -pro-finjenje tog α -senčenja.

Pojam &-senčenja igra važnu ulogu u izučavanju i razvijanju teorije F-prostora analogno ulozi pojma pokrivača kod
topoloških prostora. Tako se &-kompaktnost, prebrojiva &-kompaktnost itd. ... definišu i proučavaju u terminima &-senčenja
kao što ćemo videti u sledećim definicijama i stavovima.

Definicija 2.7: F-prostor (X,T) je α -kompaktan $(\alpha$ -Linde-lofov) ako svako α -senčenje prostora X ima konačno (prebro-jivo) α -podsenčenje od X za $\alpha \in [0,1)$.

Definicija 2.8: F-prostor (X,T) je prebrojivo \leftarrow -kompaktan, gde je $\sphericalangle \in [0,1)$, ako svako prebrojivo \sphericalangle -senčenje prostora X ima konačno \sphericalangle -podsenčenje.

Primedba: Svaki &-kompaktan F-prostor je prebrojivo &-kompa-ktan a svaki &-Lindelöfov, prebrojivo &-kompaktan F-prostor je kompaktan.

Stav 2.3: Neka je (X,T) C_{||} F-prostor i & E[0,1). Tada je:

- (|) (X,T) je &-Lindelofov.

Definicija 2.9: F-prostor (X,T) je kompaktan ako za svaku familiju $\beta \in T$ i svako $\alpha \in [0,1)$ takvo da je sup $g > \alpha$, i svako $g \in \beta$ $g \in \beta$ takva da je sup $g > \alpha - \delta$. $g \in \beta_0$

Definicija 2.10: Neka je $\alpha \in [0,1)$ i $B \subset I^X$. Kažemo da je familija $B \not \sim$ -centrirana ako za svaki konačan izbor $c_1, c_2, \ldots, c_n \in B$ postoji $x \in X$ tako da je $c_i(x) \ge 1 - \alpha$ za svako $i = 1, 2, \ldots, n$.

Stav 2.4: Neka je (X,T) F-prostor, $\alpha \in [0,1)$. Tada je (X,T) α -kompaktan (prebrojivo α -kompaktan) ako i samo ako za svaku α -centriranu familiju B $\left\{ \left\{ c_i \right\}_{i=1}^{\infty} \right\}$ zatvorenih F-skupova u X postoji $x \in X$ tako da je $c(x) \ge 1-\alpha$ za svako $c \in B$ $\left(c_i(x) \ge 1-\alpha$ za svako $i = 1,2,\ldots$

Definicija 2.11: Neka je (X,T) F-prostor i $d \in [0,1)$. Kažemo da je (X,T) d-Hausdorffov (Hausdorffov) ako za $x \neq y \in X$ postoje $f,g \in T$ tako da je f(x) > d, g(x) > d (f(x)=l=g(x)) i $f \land g = \overline{0}$.

Primetimo da ako je F-prostor Hausdorffov, onda je on i $\not\sim$ -Hausdorffov za svako $\not\sim\in [0,1)$.

Definicija 2.12: Neka je (X,T) F-prostor, $A \in [0,1)$ i $A \subset X$. Tada:

- (1) A je d-zatvoren (d-zatvoren) ako za svako $x \in X \setminus A$ postoji $f \in T$ tako da je f(x) > d (f(x) > d) i $f \land A(A) = \overline{Q}$.
- (ii) A je podesno zatvoren ako je $\mu(A)$ zatvoren F-skup u X.

<u>Stav 2.5:</u> Proizvoljan presek &-zatvorenih skupova je &-zatvoren i konačna unija &-zatvorenih skupova je &-zatvoren skup. []

Sledeći stav daje odnos izmedju d-zatvorenosti i podesne zatvorenosti.

<u>Stav 2.6:</u> Neka je (X,T) F-prostor i neka je A C X. Tada su sledeći iskazi ekvivalentni:

- (†) A je podesna zatvoren skup.
- (II) A je l*-zatvoren skup.

Neka je (X,T) F-prostor i YC X. Tada familija $T_{\gamma} = \{f| Y: f\in T\}$, gde je f| Y restrikcija funkcije f na Y, zadovo-ljava sva tri uslova definicije 2.1, tj. T_{γ} je F-topologija na Y.

Definicija 2.13: F-topologija T_{γ} naziva se relativna F-topologija na Y ili F-topologija na Y indukovana F-topologijom na X, a (Y,T_{γ}) naziva se F-potprostor od (X,T).

mi obično izostavljamo relativnu F-topologiju T_γ i jednostavno pišemo F-potprostor Y.

Stav 2.7: Neka je (X,T) F-prostor, Y F-potprostor od (X,T) if $\in I^{Y}$. Tada:

- (|) f je zatvoren u Y ako i samo ako postoji zatvoren F-skup g u X takav da je f = g|Y.
- $(II) cl_Y f = cl_X f|Y. \square$

Primetimo da ako je β baza za F-prostor (X,T), onda je

 $\beta_{Y} = \{B/Y : B \in \beta\}$ baza za T_{Y} .

Stav 2.8: Neka je (X,T) F-prostor i YCX. Za svako & (0,1) važi sledeće:

- (i) Ako je (X,T) α -Hausdorffov, onda je (Y,T $_{\gamma}$) α -Hausdorffov.
- (川) Ako je (X,T) なーkompaktan (prebrojivo なーkompaktan) i Y ムーzatvoren u X, onda je Y ムーkompaktan (prebrojivo なーkompaktan). 口

<u>Stav 2.9:</u> Neka je (X,T) α-Hausdorffov F-prostor i Y⊂ X. Tada važi sledeće:

- (i) Ako je Y d-kompaktan u X onda je Y d-zatvoren u X.
- (II) Ako je $\{Y_s\}_{s\in S}$ opadajuća familija &-kompaktnih (prebrojivo &-kompaktnih) skupova u X onda je $\bigcap_{s\in S} Y_s$ neprazan i A-kompaktan (prebrojivo &-kompaktan).

Definicija 2.14: Za F-prostor (X,T) kažemo da je:

- (i) FT₁-prostor ako je svaka F-tačka zatvoren F-skup.
- (II) FT2-prostor ako za svake dve različite F-tačke p,q u X:
 - a) $p_0 \neq q_0$ povlači da postoje dva disjunktna otvorena F-skupa koji sadrže p i q respektivno.
 - b) $p_0 = q_0$, p(x) < q(x) povlači da postoji $f \in T$ tako da je $p \in f$ i $q \notin cl f$.
- (III) F-regularan prostor ako za svaki zatvoren F-skup g i sva-ku tačku p takvu da je p $\not\in$ q postoji otvorena okolina f od g takva da p $\not\in$ cl f.

Definicija 2.15: Za F-prostor (X,T) kažemo da je:

(|) slabo F-normalan ako za svaka dva disjunktna zatvorena F-skupa g_1 i g_2 postoje dva otvorena F-skupa h_1 i h_2

tako da je $g_1 \in h_1$, $g_2 \le h_2$ i $h_1 \le co$. h_2 .

- (ii) F-normalan ako za zatvoren F-skup g i otvoren F-skup f takav da je g \leq f, postoji otvoren F-skup h takav da je g \leq h \leq cl h \leq f ili ekvivalentno: za svaka dva zatvorena F-skupa g i g takva da je g \leq co. g \leq postoje dva otvorena F-skupa h i h takva da je g \leq h \leq co. h \leq co
- (III) perfektno F-normalan ako je F-normalan i ako je svaki zatvoren F-skup prebrojiv presek otvorenih F-skupova.
- Stav 2.10: Svaki F-normalan prostor je slabo F-normalan. D Obrat ovog stava ne važi u opštem slučaju.
- Stav 2.11: Neka je Y F-potprostor F-prostora (X,T). Ako je (X,T) FT_1 [FT2] (F-regularan), onda je Y FT_1 [FT2] (F-regularan).

F-potprostor Y F-normalnog prostora (X,T) nije F-normalan čak ni ako je Y &-zatvoren u X. U glavi III ćemo videti kada je F-potprostor F-normalnog prostora takodje F-normalan.

3. FAZI NEPREKIDNE FUNKCIJE

Definicija 3.1: Neka su (X,T) i (Y,R) F-prostori i neka je $Y: X \rightarrow Y$ preslikavanje. Kažemo da je Y F-neprekidno ako je $Y^{-1}(f) \in T$ za svako $f \in R$. Y je F-otvoreno (F-zatvoreno) ako je za svaki otvoren (zatvoren) F-skup u X, Y(f) otvoren (zatvoren) F-skup u Y. Y je F-homeomorfizam ako je Y F-neprekidno, bijektivno i F-otvoreno ili F-zatvoreno.

Stav 3.1: Neka su (X,T), (Y,R) F-prostori i neka je \forall : X->Y.

Tada su sledeći iskazi ekvivalentni:

- (/) \tau je F-neprekidno.
- (||) Za svaki zatvoren F-skup g u Y, $f^{-1}(g)$ je zatvoren F-skup u X.
- (III) Za svaki F-skup f u X, \forall (cl f) \leq cl(\forall (f)).
- (IV) Za svaki F-skup g u Y, $cl(\gamma^{-1}(g)) \leq \gamma^{-1}(cl g)$.
- <u>Stav 3.2:</u> Kompozicija F-neprekidnih (F-otvorenih) [F-zatvorenih] preslikavanja je F-neprekidno (F-otvoreno) [F-zatvoreno].
- Stav 3.3: Neka su (X,T), (Y,R) F-prostori i neka je $Y:X \rightarrow Y$ F-neprekidno preslikavanje. Tada za $A \in [0,1)$ važi sledeće:
- (i) Ako je $(X,T) \propto -kompaktan, onda je <math>\Psi(X) \propto -kompaktan kao$ F-potprostor od (Y,R).
- (II) Ako je (X,T) prebrojivo ∞ -kompaktan $(\infty$ -Lindelöfov), onda je Y(X) prebrojivo ∞ -kompaktan $(\infty$ -Lindelöfov).
- (III) Ako je (X,T) d-kompaktan a (Y,R) d-Hausdorffov onda je za α -zatvoren skup A u X, γ (A) d-zatvoren skup u Y. \square
- Stav 3.4: Neka su (X,T), (Y,R) F-prostori i neka su \emptyset , ψ : $X \rightarrow Y$ F-neprekidna preslikavanja. Ako je $(Y,R) \sim -\text{Hausdorffov}$, $\sim \in [0,1)$ onda je $\{x \in X : \emptyset(x) = \psi(x)\} \sim -\text{zatvoren}$ u X.
- Stav 3.5: Neka je γ : $(X,T) \rightarrow (Y,R)$ F-neprekidno preslikavanje. Ako je A α -zatvoren u Y onda je $\gamma^{-1}(A)$ α -zatvoren u X. \square

Neka je (Y,T) F-prostor, X skup i $Y: X \rightarrow Y$ funkcija. Tada je familija $Y^{-1}(T) = \{Y^{-1}(f) : f \in T\}$ najmanja F-topologija na X za koju je Y F-neprekidna. Ta F-topologija naziva se inicijalna F-topologija na skupu X.

Neka je $\{(X_s,T_s)\}$ familija F-prostora, $X=\prod_{s\in S}X_s$ direktan proizvod skupova X_s i neka su $p_s:X\to X_s$, $s\in S$ projekcije. Familiju $\{p_s^{-1}(f_s):f_s\in T_s,s\in S\}$ F-skupova možemo uzeti za predbazu F-topologije T na X.

Definicija 3.2: Neka je data familija $\{(x_s, T_s)\}$ F-prostora. Gore definisana F-topologija T na X zove se proizvod F-topologija a (X,T) se zove proizvod F-prostora.

Primetimo da su elementi baze proizvoda F-topologija oblika $\bigcap_{i=1}^{n} p_i^{-1}(f_i)$, $f_i \in T_i$ za $i=1,2,\ldots,n$.

Stav 3.6: Neka je (X,T) proizvod familije F-prostora $\{(X_s,T_s)\}_{s\in S}$. Tada važi:

- (/) Projekcije p_s su F-neprekidne za svako seS.

Stav_3.7: Neka je $\{(X_i,T_i)\}_{i=1}^{\infty}$ prebrojiva familija C F-prostora. Tada je proizvod (X,T) takodje C . \square

Stav_3.8: Neka je $\{(X_s,T_s)\}$ familija F-prostora. Ako je svaki (X_s,T_s) &-Hausdorffov (FT_1) [F-regularan] F-prostor onda je pro-izvod (X,T) &-Hausdorffov (FT_1) [F-regularan] respektivno.

Glava II:

U ovoj glavi definišemo α -kombinatornu dimenziju F-prostora, gde je $\alpha \in [0,1)$, i dajemo neke njene karakterizacije analogne dobro poznatim karakterizacijama kombinatorne dimenzije topoloških prostora. U drugom delu glave nalazimo neke teoreme podskupa i konačne sume, dok je poslednji paragraf posvećen izu-čavanju lokalne α -kombinatorne dimenzije F-prostora.

1. GLAVNE KARAKTERIZACIJE

Pojam reda familije F-skupova široko ćemo koristiti u izučavanju ⊄-kombinatorne dimenzije F-prostora.

Definicija 1.1: Red familije F-skupova $\{f_s\}$ nekog F-prostora (X,T)-je najveći ceo broj n za koji postoji McS, sa n+l elemenata, takav da je $\int_{s\in M}^{\infty} f_s \neq \overline{0}$. Ako takvog najvećeg broja nema onda kažemo da je red ∞ .

Otuda, ako je red od $\{f_s\}_{s\in S}$ jednak n, onda za svaka n+2 različita elementa s_1, s_2, \dots, s_{n+2} S imamo da je $\bigwedge_{i=1}^{n+2} f_s = \overline{0}$. Specijalno, ako je red od $\{f_s\}_{s\in S}$ = 0, onda se f_s sastoji iz uzajamno disjunktnih F-skupova različitih od $\overline{0}$.

Definicija 1.2: Neka je (X,T) F-prostor, n ceo broj $(n \ge 0)$ i neka je $\alpha \in [0,1)$. Mi definišemo α -kombinatornu dimenziju

F-prostora (X,T) - u oznaci F-dim, - na sledeći način:

- () F-dim X = -1 ako je X = 0.
- (||) F-dim X≤n ako svako konačno &-senčenje od X ima konačno &-profinjenje reda ≤n.
- (III) F-dim X = n ako je F-dim $X \le n$ i F-dim X > n-1.
- (iv) F-dim $X = \infty$ ako F-dim $X \le n$ nije tačno ni za jedno n.

<u>Primer 1.1:</u> Neka je $X = \{x_1, x_2, x_3, x_4\}$. Neka su f,g,h,l,m I^X definisani na sledeći način:

$$f(x) = \begin{cases} \frac{1}{6} & \text{ako je } x = x_1 \\ 0 & \text{inače} \end{cases}$$

$$g(x) = \begin{cases} \frac{1}{4} & \text{ako je } x \in \{x_2, x_4\} \\ 0 & \text{inače} \end{cases}$$

$$h(x) = \begin{cases} \frac{1}{3} & \text{ako je } x \in \{x_3, x_4\} \\ 0 & \text{inače} \end{cases}$$

$$1(x) = \begin{cases} \frac{5}{12} & \text{ako je } x \in \{x_1, x_4\} \\ 0 & \text{inače} \end{cases}$$

$$m(x) = \begin{cases} \frac{1}{4} & \text{ako je } x = x_4 \\ 0 & \text{inače} \end{cases}$$

Neka je $T = \{ \overline{0}, \overline{1}, f, g, h, l, m, fvg, fvh, gvh, gvl \}$. Tada je (X, T) F-prostor.

Stavimo $\alpha = \frac{1}{12}$. Tada je $\{f,g,h\}$ α —senčenje od X. Jasno je da je $\{f,g,h\}$ α —profinjenje bilo kojeg α —senčenja od X i da je red od $\{f,g,h\} \le 1$. Otuda je F—dim X ≤ 1 .

<u>Primer 1.2:</u> Neka je X kao u primeru 1.1. Neka su f,g,h \in I definisani na sledeći način:

$$f(x) = \begin{cases} \frac{5}{12} & \text{ako je } x = x_1 \\ 0 & \text{inače} \end{cases}$$

$$g(x) = \begin{cases} \frac{1}{4} & \text{ako je } x \in \{x_2, x_3\} \\ 0 & \text{inače} \end{cases}$$

$$h(x) = \begin{cases} \frac{1}{3} & \text{ako je } x = x_4 \\ 0 & \text{inače} \end{cases}$$

Neka je T = $\{\overline{0},\overline{1},f,g,h,fvg,fvh,gvh\}$. Tada je $\{X,T\}$ F-prostor. Ako stavimo $d=\frac{1}{6}$, onda je $\{f,g,h\}$ d-senčenje od X. Lako se vidi da je $\{f,g,h\}$ d-profinjenje bilo kojeg d-senčenja od X. Kako je $f \land g = g \land h = f \land h = \overline{0}$ i X $\neq \emptyset$ to je F-dim X = 0.

Sledeći stav daje korisnu karakterizaciju d.-kombinatorne dimenzije F-prostora.

<u>Stav lel:</u> Neka je (X,T) F-prostor, & E[0,1). Tada su sledeći iskazi ekvivalentni:

- (|) $F-\dim_{\alpha} X \leq n$.
- (||) Za svako konačno α -senčenje $\left\{f_i\right\}_{i=1}^k$ od X postoji α -senčenje $\left\{g_i\right\}_{i=1}^k$ od X reda \in n tako da je $g_i \in f_i$ za svako $i=1,2,\ldots,k$.
- (III) Ako je $\left\{f_i\right\}_{i=1}^{n+2}$ d-senčenje od X onda postoji d-senčenje $\left\{g_i\right\}_{i=1}^{n+2}$ tako da je $g_i \le f_i$ za svako $i=1,2,\ldots,n+2$ i $\sum_{i=1}^{n+2} g_i = \overline{G}$.

Dokaz. (i) \rightarrow (ii) Neka je F-dim $X \le n$ i neka je $\left\{f_i\right\}_{i=1}^k$ proizvoljno α -senčenje F-prostora X. Tada na osnovu definicije 1.2, $\left\{f_i\right\}_{i=1}^k$ ima α -profinjenje Y reda α n. Ako je α ve α , onda je α ve α ima eko ie $\{1,2,\ldots,k\}$. Za svako α ve α izaberimo i(α) k tako da je α ineka je α ve α i ineka je α ve α i i(α) ineka je α ineka je

 $(II) \Longrightarrow (III) \; \text{Neka važi} \; (II) \; \text{i neka je} \; \left\{f_i\right\}_{i=1}^{n+2} \; \text{d-senčenje} \\ \text{od X. Tada na osnovu pretpostavke postoji d-senčenje} \; \left\{g_i\right\}_{i=1}^{n+2}$

tako da je $g_i \le f_i$ za $i=1,2,\ldots,n+2$ i red od $\left\{g_i\right\}_{i=1}^{n+2} \le n$. Sada na osnovu definicije l.1 dobijamo da je $\bigwedge_{i=1}^{n+2} g_i = \overline{0}$.

 $(\text{III}) \Longrightarrow (\text{III}) \text{ Neka je } \left\{f_i\right\}_{i=1}^k \alpha - \text{senčenje od } X \text{ i neka važi}$ $(\text{III}). \text{ Možemo pretpostaviti da je } k > n+1. \text{ Neka je } g_i = f_i \text{ za } i \leq n+1 \text{ i } g_{n+2} = \bigvee_{i=n+2}^k f_i. \text{ Tada je } \left\{g_i\right\}_{i=1}^{n+2} \alpha - \text{senčenje od } X \text{ pa na}$ osnovu pretpostavke postoji $\alpha - \text{senčenje} \left\{h_i\right\}_{i=1}^{n+2} \text{ tako da je}$ $h_i \leq g_i \text{ za svako } i = 1, 2, \dots, n+2 \text{ i } \bigwedge_{i=1}^{n+2} h_i = \overline{0}. \text{ Neka je } m_i = h_i$ za $i \leq n+1$ i $m_i = f_i \wedge h_{n+2}$ za i > n+1. Tada je $M = \left\{m_i\right\}_{i=1}^k \alpha - \text{sencenje}$ čenje od X, $m_i \leq f_i$ za svako i i $\bigwedge_{i=1}^{n+2} m_i = \overline{0}. \text{ Ako neka kolekcija}$ od n+2 člana iz M ima presek različit od $\overline{0}$ onda se članovi iz M mogu prenumerisati tako da prva n+2 člana imaju nula presek. Koristeći prethodnu konstrukciju na M, možemo dobiti $\alpha - \text{sencenje}$ $M^* = \left\{m_i^*\right\}_{i=1}^k \text{ tako da je } m_i^* \leq m_i \text{ i } m_i^* = \overline{0}. \text{ Jasno je da je}$ $m_i^* \wedge m_i^* \wedge m_i^* \wedge \dots \wedge m_i^* = \overline{0}$ uvek kada je $m_i \wedge m_i^* \wedge m_i^* \wedge \dots \wedge m_i^* = \overline{0}$ gde su $i_1, i_2, \dots, i_s \leq k. \text{ Ponavljajući ovaj proces konačan broj puta, dobijamo } \alpha - \text{senčenje} \left\{s_i\right\}_{i=1}^k \text{ od } X \text{ reda } \leq n \text{ tako da je } s_i \leq f_i \text{ za } i = 1, 2, \dots, k.$

(11) => (1) je trivijalno. []

Dok pojam normalnosti igra važnu ulogu u razvoju kombinatorne dimenzije topoloških prostora, uloga F-normalnosti je nešto manja jer činjenica $g_1 \wedge g_2 = \overline{g}$ ako i samo ako $g_1 \leq \cos g_2$ ne važi u opštem slučaju kod F-skupova. To je navelo Kerrea [9] da uvede pojam slabe normalnosti za F-prostore, a nas navodi da uvedemo sledeću definiciju:

Definicija 1.3: F-prostor (X,T) zove se F_c -prostor ako za svaki par F-skupova f,g u X za koji je cl f \leq co.g važi da je cl f \wedge g = $\overline{0}$.

Primetimo da su za F_c -prostore pojmovi F-normalnosti i slabe F-normalnosti ekvivalentni. Na osnovu stava I 2.10, svaki F-normalan prostor je slabe F-normalan. Neka su sada g_1 i g_2 dva zatvorena F-skupa takva da je $g_1 \le co. g_2$. Otuda je cl $g_1 \le co. g_2$ pa kako je (X,T) F_c -prostor, to na osnovu definicije 1.3 sledi da je cl $g_1 \land g_2 = \overline{0}$ pa je $g_1 \land g_2 = \overline{0}$. Sada na osnovu definicije I.2.15 (I) postoje dva otvorena F-skupa h_1,h_2 takva da je $g_1 \le h_1$, $g_2 \le h_2$ i $h_1 \le co$ h_2 a to je i trebalo dokazati. \square

Definicija 1.4: Neka je $\{f_s\}_{s \in S}$ familija F-skupova u F-prostoru (X,T). Sveling ove familije je familija $\{g_s\}_{s \in S}$ F-skupova u X takva da je $f_s \leq g_s$ za svako s $\in S$ i $f_s \wedge f_s \wedge$

Stav 1.2: Neka je (X,T) F_-normalan prostor. Tada za svaku konačnu familiju $\left\{f_i\right\}_{i=1}^{k}$ zatvorenih F-skupova u X postoji konačna familija $\left\{h_i\right\}_{i=1}^{k}$ otvorenih F-skupova u X tako da je $\left\{\text{cl }h_i\right\}_{i=1}^{k}$ sveling familije $\left\{f_i\right\}_{i=1}^{k}$ i $f_i \leq h_i$ za svako $i=1,2,\ldots,k$.

Ookaz. Neka je data familija $\left\{f_i\right\}_{i=1}^k$ i neka je g_1 unija svih preseka oblika $f_i \wedge f_i \wedge \cdots \wedge f_i$ takvih da je $f_1 \wedge f_i \wedge f_i \wedge \cdots \wedge f_i$ takvih da je $f_1 \wedge f_i \wedge f_i \wedge \cdots \wedge f_i$ takvih da je $g_1 \wedge f_1 \wedge f_i \wedge \cdots \wedge f_i \wedge f_i \wedge f_i \wedge f_i \wedge f_i \wedge \cdots \wedge f_i \wedge f_i \wedge f_i \wedge f_i \wedge \cdots \wedge f_i \wedge f_i \wedge f_i \wedge f_i \wedge \cdots \wedge f_i \wedge f_i \wedge f_i \wedge f_i \wedge \cdots \wedge f_i \wedge f_i \wedge f_i \wedge f_i \wedge f_i \wedge f_i \wedge \cdots \wedge f_i \wedge f_i$

Familija $\{cl\ h_1, f_2, \dots, f_k\}$ je sveling od $\{f_i\}_{i=1}^k$ jer ako je $f_1 \land f_{i_1} \land \dots \land f_{i_m} = \overline{0}$ onda je $f_{i_1} \land \dots \land f_{i_m} \leq g_1$ pa je $co.(f_{i_1} \land \dots \land f_{i_m}) \geqslant co.g_1 \geqslant cl\ h_1$ tj. $cl\ h_1 \leq co(f_{i_1} \land \dots \land f_{i_m})$. Kako je (X,T) F_c -prostor to je $cl\ h_1 \land (f_{i_1} \land \dots \land f_{i_m}) = \overline{0}$. Akc primenimo ovo pravilo k puta, dobićemo familiju otvorenih F-skupova $\{h_i\}_{i=1}^k$ tako da je $\{cl\ h_i\}_{i=1}^k$ sveling od $\{f_i\}_{i=1}^k$ i $f_i \leq h_i$ za $i=1,\dots,k$. \square

Definicija 1.5: d-senčenje $\{f_s\}_{s\in S}$ F-prostora (X,T) je stežijivo ako postoji d-senčenje $\{g_s\}_{s\in S}$ od X takvo da je cl $g_s \leqslant f_s$ za $s\in S$.

Stav 1.3: Neka je (X,T) F-normalan prostor. Tada je svako konačno ~-senčenje stežljivo.

Dokaz. Neka je $\{f_i\}_{i=1}^k$ konačno α -senčenje od X. Stavimo $g_1 = \text{co.}[\{f_2 \lor f_3 \lor \dots \lor f_k\} \lor \bigvee_{h \in T} \{h: h \geqslant f_i \; \forall i=1,2,\dots,k\}] \land \mu(f_1^*)$, gde je $f_1^* = \{x \in X: f_1(x) \geqslant \alpha\}$. Tada je g_1 zatvoren F-skup u X i $g_1 \leq f_1$ pa na osnovu F-normalnosti prostora (X,T) postoji otvoren F-skup m_1 takav da je $g_1 \leq m_1 \leq cl$ $m_1 \leq f_1$ i $\{m_1, f_2, f_3, \dots, f_k\}$ je α -senčenje od X. Ako primenimo ovaj metod k puta, dobićemo α -senčenje $\{m_i\}_{i=1}^k$ od X takvo da je cl $m_i \leq f_i$ za svako $i=1,2,\dots,k$. \square

Definicija 1.5: Neka je (X,T) F-prostor i $A \in [0,1)$. Kolekcija B zatvorenih F-skupova u X zove se A-kosenčenje od X ako za svako $x \in X$ postoji $g \in B$ tako da je g(x) > A.

Sledeći stav daje karakterizaciju dimenzije F−dim_o F_c-normalnog prostora u terminima zatvorenih F-skupova. Stav 1.4: Neka je (X,T) F -normalan prostor i & [0,1). Tada su sledeći iskazi ekvivalentni:

- (!) $F-\dim_{\mathcal{L}} X \leq n_{\bullet}$
- (II) Za svako konačno ϕ -senčenje $\left\{f_i\right\}_{i=1}^K$ od X postoji ϕ -senčenje $\left\{g_i\right\}_{i=1}^{K}$ tako da je cl. $g_i \leq f_i$ i red od $\left\{cl.g_i\right\}_{i=1}^{K} \leq n$.
- (((() Za svako konačno d-senčenje $\{f_i\}_{i=1}^k$ od X postoji d-kosen- čenje $\{g_i\}_{i=1}^k$ tako da je $g_i \le f_i$ za svako $i=1,2,\ldots,k$ i red od $\left\{g_{i}\right\}_{i=1}^{n} \leq n$.
- (IV) Ako je $\left\{f_i\right\}_{i=1}^{n+2}$ konačno d-senčenje od X onda postoji d-kosenčenje $\left\{g_i\right\}_{i=1}^{n+2}$ tako da je $\bigwedge_{i=1}^{n+2}$ $g_i = \overline{0}$ i $g_i \leq f_i$ za i = 1.2, ..., n+2.

 $\underline{\text{Dokaz.}} \quad \text{(I)} \Longrightarrow \text{(II)} \; \text{Neka je F-dim}_{\mathcal{X}} \; \text{X in ineka je } \left\{f_i\right\}_{i=1}^{K} \quad \text{α-sen-}_{i}$ čenje od X. Tada na osnovu stava 1.1 postoji α -senčenje $\left\{h_i\right\}_{i=1}^k$ takvo da je $h_i \le f_i$ za $i = 1, 2, \dots, k$ i red od $\{h_i\}_{i=1}^{K} \le n$. Kako je (X,T) F-normalan, to na osnovu stava 1.3 postoji &-senčenje $\left\{g_i\right\}_{i=1}^k$ takvo da je cl $g_i \leq h_i$ za $i=1,2,\ldots,k$ i red od $\{cl\ g_i\}_{i=1}^K \leq n.$

 $(II) \Longrightarrow (III) \ i \ (III) \Longrightarrow (IV) \ je \ jasno.$ $(IV) \Longrightarrow (I) \ Neka \ je \ \left\{f_i\right\}_{i=1}^{n+2} \ \text{d-senčenje od X. Na osnovu}$ pretpostavke postoji \$d\$-kosenčenje \$\left(g_i\right)_{i=1}^{n+2}\$ od \$X\$ takvo da je $g_i \in f_i$ za svako $i=1,2,\ldots,n+2$ i $\bigwedge_{i=1}^{n+2} g_i = \overline{0}$. Na osnovu stava 1.2 postoji familija otvorenih F-skupova $\{h_i\}_{i=1}^{n+2}$ tako da je $g_i \le h_i$ $\leq f_i$ za $i=1,2,\ldots,n+2$ i $\left\{cl\ h_i\right\}_{i=1}^{n+2}$ je sveling od $\left\{g_i\right\}_{i=1}^{n+2}$.

Otuda je $\left\{h_i\right\}_{i=1}^{n+2}$ d.—senčenje od X, $h_i \le f_i$ i $\bigwedge_{i=1}^{n+2} h_i = \overline{0}$ pa je na osnovu stava 1.1 F-dim X $\le n$.

Neka je (X,T) F-prostor i neka je $\alpha_0 \in [0,1]$ fiksirano. Definisaćemo slabiju dimenzionu funkciju - u oznaci F_{α_0} -dim $_{\alpha_0} X$ - od X za $\alpha \in [0,1)$ na sledeći način: Ako je $\alpha \in [0,\alpha_0)$, onda je F_{α_0} -dim $_{\alpha_0} X \le n$ ako svako konačno α -senčenje od X ima α -profinjenje čiji je red α n. Ako je $\alpha \in [\alpha_0,1)$, onda je F_{α_0} -dim $_{\alpha_0} X \le n$ ako svako konačno α -senčenje od α ima α -profinjenje za neko α -senčenje od α ima α -profinjenje za neko α -senčenje od α -senčenje od α -senčenje od α -profinjenje za neko α -senčenje od α -senčenje od α -profinjenje za neko α -senčenje od α -senčenje od α -senčenje od α -profinjenje za neko α -senčenje od α -senčenje od α -profinjenje za neko α -senčenje od α -senčenje od α -profinjenje za neko α -senčenje od α -senčenje od α -profinjenje za neko α -senčenje od α -senčenje od α -profinjenje za neko α -senčenje od α -senčenje od α -profinjenje za neko α -senčenje od α -profinjenje za neko α -senčenje od α -senčenje

<u>Primer 1.3:</u> Neka je X = I i neka su za n = 1,2,3,4 funkcije $f_n,g_n \in I^X$ definisane na sledeći način:

$$f_n(x) = \begin{cases} \frac{2}{n+2} & \text{ako je } x \in [0, \frac{2}{3}] \\ 0 & \text{inače} \end{cases}$$

$$g_n(x) = \begin{cases} \frac{2}{2n+1} & \text{ake je } x \in \left[\frac{1}{3}, 1\right] \\ 0 & \text{inače} \end{cases}$$

Neka je T = $\left\{\overline{0},\overline{1},f_{n},g_{n},f_{n}\wedge g_{n},f_{n}\vee g_{n},\ n=1,2,3,4\right\}$. Tada je (X,T) F-prostor. Stavimo $\alpha_{c}=\frac{5}{8}$ i neka je recimo $\alpha=\frac{1}{12}$. Tada je $\left\{f_{4},g_{4}\right\}$ α -profinjenje svakog α -senčenja od X, gde je $\alpha\in\left[\frac{1}{12},\frac{1}{3}\right)$, pri čemu je red od $\left\{f_{4},g_{4}\right\}\leq1$. Otuda je F_{5} -dim $X\leq1$.

Primedba: Primetimo da ako je $\alpha_0 = 1$, onda je F_{α_0} -dim X = F-dim $\alpha_0 = 1$.

Ako je de[d,1), onda Fordim X i F-dim X ne moraju biti u vezi.

2. TEOREME PODSKUPA I SUME

U ovom paragrafu nalaze se neke teoreme podskupa i sume $za \sim -kombinatornu dimenziju F-prostora. Ako je Y F-potprostor F-prostora (X,T), u opštem slučaju nije tačno da je F-dim Y <math>\leq$ F-dim X. Videćemo pod kojim je uslovom gornja relacija tačna.

Stav 2.1: Neka je (X,T) & -kompaktan F-prostor. Ako je Y &zatvoren F-potprostor onda je:

$$F-\dim_{\alpha}Y \leq F-\dim_{\alpha}X$$
.

Dokaz. Neka je F-dim X
eq n, Y α -zatvoren F-potprostor od (X,T) i neka je \mathscr{G} konačno α -senčenje od Y $(\alpha \in [0,1))$. Za svako $x \in X \setminus Y$, postoji $u_X \in T$ tako da je $u_X(x) > \alpha$ i $u_X \wedge \mathcal{M}(Y) = \overline{0}$ na osnovu definicije α -zatvorenosti I.2.12. Tada je $\{\mathscr{G}, u_X\}_{X \in X \setminus Y}$ čenje α -kompaktnog F-prostora (X,T) pa ima konačno α -podsenčenje V. Kako je F-dim X
eq n, to V ima α -profinjenje M reda α no pa je M α -profinjenje od α reda α no α

Stav 2.2: Neka je Y F-potprostor &-Hausdorffovog F-prostora (X,T). Tada je:

$$F-dim_{\alpha}Y \leq F-dim_{\alpha}X$$
.

Dokaz. Neka je F-dim X \leq n i neka je $\left\{f_i\right\}_{i=1}^k$ & -senčenje od Y. Tada postoji familija $\left\{g_i\right\}_{i=1}^k$ otvorenih F-skupova takva da je $g_i/Y = f_i$ za $i=1,2,\ldots,k$. Sada neka je y \in Y. Tada za svako $\times \in X \setminus Y$ postoje dva otvorena F-skupa u $\times V_y, u_x$ tako da je $u_x(x) > d_y, v_y(y) > d_x$ i $v_y \wedge u_x = \overline{0}$ na osnovu definicije $d_x = 0$ Hausdorffnosti I.2.11. Stavimo $x \in X \setminus Y \setminus u_x$. Tada je $u \in T$ i $u \wedge u_z = \overline{0}$ za $z \in Y$. Otuda je $\left\{g_i, u\right\}_{i=1}^k$ konačno $d_x = 0$ senčenje od X pa na osnovu

pretpostavke postoji ∞ -profinjenje V od $\left\{g_i,u\right\}_{i=1}^k$ reda $\leqslant n$. Tada je VlY ∞ -profinjenje od $\left\{f_i\right\}_{i=1}^k$ reda $\leqslant n$. Otuda je F-dim Y $\le n$.

<u>Stav 2.3:</u> Neka je Y podesno zatvoren skup u F-prostoru (X,T). Tada je:

$$F-\dim_{\alpha} Y \leq F-\dim_{\alpha} X$$
.

Ookaz. Neka je F-dim $X \le n$ i neka je $\left\{f_i\right\}_{i=1}^k$ α -senčenje od Y. Tada postoji familija $\left\{g_i\right\}_{i=1}^k$ otvorenih F-skupova u X takva da je $g_i|_Y = f_i$. Kako je Y podesno zatvoren to je $\operatorname{co.} \omega(Y)$ F-otvoren u X na osnovu definicije I.2.12, i otuda je $\left\{g_i, \operatorname{co.} \omega(Y)\right\}_{i=1}^k$ α - senčenje od X. Iz F-dim $X \le n$ sledi na osnovu stava II.1.1 da postoji α -senčenje $\left\{h_i, \operatorname{co.} \omega(Y)\right\}_{i=1}^k$ od X takvo da je $h_i \le g_i$ za $i=1,2,\ldots,k$ i red od $\left\{h_i, \operatorname{co.} \omega(Y)\right\}_{i=1}^k$ α -senčenje od Y reda α n. Otuda je α -senčenje od Y reda α n i α -senčenje od Y reda α n i α -senčenje od Y reda α -senčenj

Definicija 2.1: F-potprostor Y F-prostora (X,T) je zatvoren ako je $\mu(X|Y)$ otvoren F-skup u X, svaki zatvoren F-skup u Y je zatvoren F-skup u X i za svaki zatvoren F-skup f u X, f/Y je zatvoren F-skup u Y.

Stav 2.4: Neka je (X,T) F-prostor a Y zatvoren F-potprostor od (X,T). Tada je:

$$F-dim_{\alpha}Y \in F-dim_{\alpha}X$$
.

Dokaz. Neka je F-dim $X \le n$ i neka je \mathcal{G} konačno \mathcal{A} -senčenje od Y. Tada je $U = \{ u \in T : u | Y \in \mathcal{G} \}$ konačna familija otvorenih F-skupova $u \times i$ otuda je $\{ U, \mathcal{M}(X \setminus Y) \}$ konačno \mathcal{A} -senčenje od X. Kako je

F-dim $X \leq n$ to na osnovu stava II.1.1 postoji konačno X-senčenje $\{V, \mathcal{M}(X \setminus Y)\}$ od X reda $\leq n$ takvo da je $V \leq U$. Otuda je $\{V \mid Y\}$ kona-čno X-senčenje od Y reda $\leq n$ i $V \mid Y \leq u \mid Y = \mathcal{G}$ pa je $Y \leq n$. \square

Definicija 2.2: Neka je Y F-potprostor F-prostora (X,T) i neka je \mathcal{G} d-senčenje od Y. Tada je \mathcal{G} prebrojivo ekstenzibilno $(na \ X)$ ako postoji prebrojivo \mathcal{A} -senčenje \mathcal{H} od X takvo da je \mathcal{H} IY \mathcal{A} -profinjenje od \mathcal{G} .

Stav 2.5: Neka je (X,T) α -Hausdorffov, α -Lindelöfov F-prostor. Tada je svako konačno α -senčenje ma kog F-potprostora Y od (X,T) prebrojivo ekstenzibilno.

Dokaz. Neka je y konačno α -senčenje F-potprostora Y α -Hausdorffovog, α -Lindelöfovog F-prostora (X,T). Tada postoji konačna familija $\mathcal{H}\subseteq T$ takva da je \mathcal{H} Y = \mathcal{Y} . Neka je y \in Y proizvoljno. Na osnovu definicije α -Hausdorffnosti, za svako $x\in X\setminus Y$ postoje $u_x, v_y\in T$ tako da je $u_x(x)>\alpha$, $v_y(y)>\alpha$ i $v_y\wedge u_x=\overline{0}$. Otuda je $\{u_x\}_{x\in X\setminus Y}$ familija otvorenih F-skupova u X a $\{\mathcal{H},u_x\}_{x\in X\setminus Y}$ je α -senčenje od X. Na osnovu definicije α -Lindelöfnosti I.2.7, postoji prebrojivo α -podsenčenje ω od $\{\mathcal{H},u_x\}_{x\in X\setminus Y}$ a ω -profinjenje od ω .

Stav 2.6: Neka je (X,T) &-Lindelöfov F-prostor. Tada je svako konačno &-senčenje &-zatvorenog F-potprostora prebrojivo ekstenzibilno.

Dokaz. Neka je Y α -zatvoren F-potprostor od (X,T) i neka je \mathcal{Y} konačno α -senčenje od Y. Za svako $x \in X \setminus Y$ postoji otvoren F-skup u_x u X, takav da je $u_x(x) > \alpha$ i $\mathcal{M}(Y) \wedge u_x = \overline{0}$ na osnovu definicije I.2.12. Otuda je $\{\mathcal{Y}, u_x\}_{x \in X \setminus Y}$ α -senčenje od X pa se

dokaz kompletira na isti način kao i kod stava 2.5. 🗆

Stav 2.7: Neka je (X,T) prebrojivo & -kompaktan F-prostor i neka je Y F-potprostor takav da je svako konačno &-senčenje od Y prebrojivo ekstenzibilno. Tada je:

Stav 2.8: Neka je (X,T) prebrojivo $-\infty$ -kompaktan, $-\infty$ -Lindelöfov F-prostor i neka je Y $-\infty$ -zatvoren F-potprostor od (X,T). Tada je:

 $F-dim_{\alpha}Y \leq F-dim_{\alpha}X$.

Dokaz. Sledi iz stavova 2.6 i 2.7 ili iz stava 2.1 i činjenice da je α -Lindelöfov i prebrojivo α -kompaktan prostor α -kompaktan. \Box

Teorema podskupa za f_{ω_o} -dim $_{\omega}$ zavisi od položaja broja ω u odnosu na fiksirano ω_o .

Stav 2.9: Neka je Y zatvoren F-potprostor F-prostora (X,T). Tada je: $F_{d,p}-\dim_dY \leq F_{d,p}-\dim_dX \quad za \quad d \in [d_0,1).$

Dokaz. Neka je F_{do} -dim $X \leq n$, $\alpha \in [d_c, 1)$ i neka je $\{f_i\}_{i=1}^k \ll -1$ senčenje od Y. Tada postoji familija $\{g_i\}_{i=1}^k$ otvorenih F-skupova u X takva da je g_i Y = f_i Za $i=1,2,\ldots,k$ pa je $\{g_i,\mu(X\setminus Y)\}_{i=1}^k$ konačno α -senčenje od X. Na osnovu pretpostavke postoji β -profinjenje V od $\{g_i,\mu(X\setminus Y)\}_{i=1}^k$ Za neko $\beta \in [0,d_o)$ reda $\leq n$. Otuda je $\{Y\mid Y\}$ β -profinjenje od $\{f_i\}_{i=1}^k$ reda $\leq n$ pa je F_{do} -dim $Y \leq n$. \square

Primedba: Stavovi 2.1, 2.2 i 2.3 važe za F_{ω_0} -dim samo ako je $\omega \in [\omega_0, 1)$.

Mi želimo da determinišemo dimenziju F-prostora u terminima dimenzije nekih od njegovih F-potprostora. Sledeća dva stava daju teoremu konačne sume za F-prostor koji zadovoljava odredjene uslove.

Primetimo da ako su Y_1 i Y_2 d-zatvoreni u F-prostoru (X,T) takvi da je $Y_1 \cap Y_2 \neq \emptyset$, onda je $Y_2 \setminus Y_1$ d-zatvoren u Y_2 .

Stav 2.10: Neka je (X,T) & -kompaktan F-prostor takav da je $X = \bigcup_{i=1}^{K} Y_i$ gde je za svako $i=1,2,\ldots,k$ Y_i & -zatvoren F-prostor od (X,T) i F-dim $Y_i \leq n$. Tada je F-dim $X \leq n$.

Dokaz. Neka je y konačno d-senčenje od X i neka je X = $Y_1 \cup Y_2$ (i = 1,2) tako da je F-dim $Y_1 \le n$ i F-dim $Y_2 \le n$. Tada su $\{\mathcal{Y}|Y_1\}$ i $\{\mathcal{Y}|Y_2\}$ konačna d-senčenja od Y_1 i Y_2 respektivno. Na osnovu pretpostavke postoje d-profinjanja V_1, V_2 od $\{\mathcal{Y}|Y_1\}$ i $\{\mathcal{Y}|Y_2\}$ tako da je red od $V_1 \le n$ i red od $V_2 \le n$. Sada ako je $Y_1 \cap Y_2 = \emptyset$, onda je $\{V_1, V_2\}$ d-profinjenje od \mathcal{Y} čiji je red $\le n$ pa je F-dim $X \le n$.

Ako je $Y_1 \cap Y_2 \neq \emptyset$ onda je $Y_3 = Y_2 \setminus Y_1 \quad \text{d-zatvoren u Y_2.}$

Otuda je F-dim $\chi_3 \le n$, $\gamma_1 \cap \gamma_3 = \emptyset$ i $\gamma_1 \cup \gamma_3 = X$. Sada kao i u prethodnom slučaju postoji ϕ -profinjenje $\{v_1, v_3\}$ reda $\le n$ pa je F-dim $\chi \le n$. \square

Stav 2.11: Neka je (X,T) d -kompaktan, d -Hausdorffov F-prostor k takav da je $X = \bigcup_{i=1}^{N} Y_i$ gde je Y_i d-kompaktan F-potprostor za svako i, a F-dim $Y_i \le n$. Tada je F-dim $X \le n$.

Ookaz. Sledi neposredno iz stava 2.10 jer je svaki d-kompaktan F-potprostor d-Hausdorffovog prostora d-zatvoren na osnovu stava I.2.9 (1). □

3. LOKALNA &-KOMBINATORNA DIMENZIJA

U ovom paragrafu se definiše i proučava lokalna ∞ -kombinatorna dimenzija F-prostora. Od sada će nam za g $\in I^X$, $\infty \in [0,1)$ g⁺ biti podskup $\{x \in X : g(x) > \infty\}$.

Definicija 3.1: Neka je (X,T) F-prostor. Tada se lokalna d-kombinatorna dimenzija od (X,T) - u oznaci loc F-dim X - definiše na sledeći način:

- (1) loc F-dim X = -1 ako je $X = \Phi$
- (II) loc F-dim $X \le n$ ($n \ge 0$) ako za svako $x \in X$ postoji otvoren F-skup g u X takav da je $g(x) > \infty$ i F-dim $g^+ \le n$.
- (III) loc F-dim $X = \infty$ ako loc F-dim $X \le n$ nije tačno ni za je-dan ceo broj n.

Stav 3.1: Neka je (X,T) &-Hausdorffov F-prostor. Tada su sledeći iskazi ekvivalentni:

(1) loc F-dim $X \leq n$.

(11) Svako ∞ -senčenje od X ima ω -profinjenje $\mathcal H$ takvo da je F-dim_h^+ \leq n za svako h $\in \mathcal H$.

<u>Dokaz.</u> (I) \longrightarrow (N) Neka je loc F-dim X \leq n i neka je U α -senčenje od X. Tada na osnovu pretpostavke, za svako $x \in X$ postoji otvoren F-skup g_X u X takav da je $g_X(x) > \alpha$ i F-dim $g^+ \leq n$. Na osnovu definicije α -senčenja I.2.5, za svako $x \in X$ postoji $u_X \in U$ tako da je $u_X(x) > \alpha$. Stavimo $h_X = g_X \wedge u_X$. Tada je h_X otvoren F-skup u X, $h_X(x) > \alpha$ i $h_X \leq u_X$. Otuda je $\mathcal{H} = \{h_X : x \in X\}$ α -profinjenje od U. Kako je $h_X = g_X \wedge u_X$ to je jasno $h_X^+ \leq g_X^+$. Medjutim, g_X^+ je α -Hausdorffov F-potprostor od (X,T), F-dim $g^+ \leq n$ pa na osnovu stava 2.2 dobijamo da je F-dim $g_X^+ \leq n$ tj. F-dim $g_X^+ \leq n$ za $h \in \mathcal{H}$ što je i trebalo dokazati.

(II) \Longrightarrow (I) Neka važi (II) i neka je x \in X proizvoljna tačka. Tada za svako y \in X \{x} postoje otvoreni F-skupovi uy, vx takvi da je uy(y)> \in , vx(x)> \in i uy \wedge vx = $\overline{0}$. Otuda je $\{u_y,v_x\}_{y\in X\setminus\{x\}}$ d-senčenje od X pa na osnovu pretpostavke postoji ∞ -profinjenje \mathcal{H} od $\{u_y,v_x\}_{y\in X\setminus\{x\}}$ tako da je F-dim h \in n za svako h \in \mathcal{H} . Odatle sledi da je loc F-dim X \in n. \square

Sledeći stavovi daju vezu izmedju α-kombinatorne dimenzije i lokalne α-kombinatorne dimenzije F-prostora.

Stav 3.2: Neka je (X,T) & -Hausdorffov, & -kompaktan F-prostor.Tada je:

loc
$$F$$
-dim $X \leq F$ -dim X .

Dokaz. Neka je F-dim $X \le n$ i neka je $x \in X$. Tada za svako $y \in Y \setminus \{x\}$ postoje otvoreni F-skupovi u_y, v_x u X takvi da je $u_y(y) > \alpha$, $v_x(x) > \alpha$ i $u_y \wedge v_x = \overline{0}$. Otuda je familija $\{u_y, v_x\}_{y \in X \setminus \{x\}}$ α -senče-

nje od X pa na osnovu α -kompaktnosti F-prostora (X,T) postoji konačan broj tačaka $y_1,y_2,\dots,y_k\in X\setminus\{x\}$ tako da je $\{u_y,v_x\}_{i=1}^k$ α -podsenčenje od $\{u_y,v_x\}_{y\in X\setminus\{x\}}$ tj. $\{u_y,v_x\}_{i=1}^k$ je konačno d-senčenje od X pa na osnovu pretpostavke postoji α -profinjenje \mathcal{H} od $\{u_y,v_x\}_{i=1}^k$.

Sada je za svako h $\in \mathcal{H}$, h $^+$ F-potprostor α -Hausdorffo-vog F-prostora (X,T) pa je na osnovu stava 2.2 F-dim h $^+\leq$ n što povlači da je loc F-dim X \leq n na osnovu stava 3.1. \square

Stav 3.3: Neka je (X,T) perfektno F-normalan, ∞ -Hausdorffov F-prostor. Tada je:

loc F-dim $X \leq F$ -dim X.

Dokaz. Neka je F-dim X \leq n i neka je \mathcal{H} \propto -senčenje od X. Zbog perfektne normalnosti imamo da je za svako he \mathcal{H} , h = $\bigvee_{i=1}^{\infty}$ fi gde je fi zatvoren F-skup u X za i = 1,2,... Studa je fi \leq h za svako i pa postoji otvoren F-skup gi takav da je fi \leq gi \leq cl gi \leq h. Neka je g = $\bigvee_{i=1}^{\infty}$ gi. Tada je g otvoren F-skup u X i g \leq h. Stavimo \mathcal{H} = {g \in T : g \leq h za svako he \mathcal{H} }. Tada je \mathcal{H} \propto -profinjenje od \mathcal{H} i za svako g \in \mathcal{H} imamo da je F-dim g † \sim n na osnovu stava 2.2. Otuda je na osnovu stava 3.1 loc F-dim X \leq n. \square

Definicija 3.2: Za F-prostor (X,T) kažemo da je lokalno - zatvoren ako za svako $x \in X$ postoji otvoren F-skup h u X takav da je $h(x) > \infty$ i h^+ je ∞ -zatvoren.

Sada dajemo neke uslove pod kojima se loc F-dim $_{\rm cl}$ i F-dim $_{\rm cl}$ podudaraju.

Stav 3.4: Neka je (X,T) & -kompaktan, lokalno &-zatvoren F-prostor. Tada je:

loc F-dim_X = F-dim_X .

<u>Dokaz.</u> \Longrightarrow Neka je F-dim $X \le n$. Na osnovu definicije 3.2, za sva-ko $x \in X$ postoji otvoren F-skup h u X takav da je h(x) > d i h^+ je d-zatvoren. Kako je F-dim $X \le n$ to na osnovu stava 2.1 dobijamo da je F-dim $h^+ \le n$. Otuda je loc F-dim $X \le n$.

Neka je loc F-dim $X \le n$. Tada za svako $x \in X$ postoji otvoren F-skup h_X u X takav da je $h_X(x) > d$ i F-dim $h_X^+ \le n$. Familija $\{h_X\}_{X \in X}$ je d -senčenje d-kompaktnog F-prostora $\{X,T\}$ pa postoji konačan broj tačaka $x_1, x_2, \ldots, x_k \in X$ tako da je $\{h_X\}_{i=1}^k$ konačno d-senčenje od X. Sada imamo da je F-dim $h_X^+ \le n$ za $i=1,2,\ldots,k$ i $X=\bigcup_{i=1}^k h_i^+$. Kako je $\{X,T\}$ lokalno d-zatvoren to je svaki h_X^+ d-zatvoren pa na osnovu stava 2.10 sledi da je F-dim d $X \le n$.

Stav 3.5: Neka je (X,T) &-Hausdorffov F-prostor i neka je Y F-potprostor od (X,T). Tada je:

 $loc F-dim_{\alpha}Y \leq loc F-dim_{\alpha}X$.

Dokaz. Neka je loc F-dim $X \le n$ i neka je \mathcal{H} -senčenje od Y. Tada postoji familija \mathcal{G} otvorenih F-skupova u X takva da je $\mathcal{G}|Y = \mathcal{H}$. Neka je $y \in Y$. Tada za svako $x \in X \setminus Y$ postoje otvoreni F-skupovi u_X, v_Y u X takvi da je $u_X(x) > \infty$, $v_Y(y) > \infty$ i $u_X \wedge v_Y = \overline{0}$. Otuda je $\{\mathcal{G}, u_X\}_{x \in X \setminus Y}$ o -senčenje pa na osnovu pretpostavke i stava 3.1, postoji \mathcal{G} -profinjenje \mathbb{G} od $\{\mathcal{G}, u_X\}_{x \in X \setminus Y}$ takvo da je F-dim \mathbb{G} a za svako \mathbb{G} . Tada je \mathbb{G} \mathbb{G} i mamo da je F-dim \mathbb{G} where \mathbb{G} is a svako \mathbb{G} in \mathbb{G} of \mathbb{G} in \mathbb{G} of \mathbb{G} in \mathbb{G} of \mathbb{G} of \mathbb{G} in \mathbb{G} of \mathbb{G} of

Sledeći stav daje teoremu konačne sume za lokalnu &kombinatornu dimenziju.

Stav 3.6: Neka je $(X,T) \sim -kompaktan$, lokalno $\sim -zatvoren F-prostor$. Ako je $X = Y \cup Z$, pri čemu je loc F-dim $Y \le n$ i loc F-dim $Z \le n$, onda je loc F-dim $Z \le n$.

Dokaz. Neka je loc F-dim $Y \le n$ i loc F-dim $Z \le n$. Za svako $x \in X$, na osnovu definicije 3.2 postoji otvoren F-skup h takav da je $h(x) > \emptyset$ i h^+ je \emptyset -zatvoren. Otuda je na osnovu stava I.2.8 h^+ \emptyset -kompaktan.

Sada ako je $x \in Y \setminus Z$, onda je $(h|Y \setminus Z))(x) > c$ i kako je loc F-dim $Y \le n$, to je F-dim $(h|(Y \setminus Z)) \ne n$. Ako je $x \in Z \setminus Y$, onda je $(h|(Z \setminus Y))(x) > c$ i na osnovu pretpostavke je F-dim $(h|(Z \setminus Y)) \ne n$. Ako je $x \in Y \cap Z$, onda je $(h|(Y \cap Z))(x) > c$ i F-dim $(h|(Y \cap Z)) \ne n$. Jasno da u svakom slučaju imamo da je $(h|(Y \setminus Z)) \ne n$, $(h|(Z \setminus Y)) \ne n$ i $(h|(Y \cap Z)) \ne n$ što povlači da je svaki od njih c-zatvoren u h.

Sada treba da dokažemo da je F-dim $h^+ \leq n$. Ako je h^+ jednak jednom od tri gornja podskupa, onda je jasno F-dim $h^+ \leq n$. Ako je $h^+ = (h!(Z\backslash Y))^+ \cup (h!(Y\cap Z))^+$ ili $h^+ = (h!(Y\backslash Z))^+ \cup (h!(Y\cap Z))^+$ onda u oba slučaja na osnovu stava 2.10 sledi da je F-dim $h^+ \leq n$ tj. za svako x \in X postoji otvoren F-skup h takav da je $h(x)>\sim i$ F-dim $h^+ \leq n$. Otuda je loc F-dim $X \leq n$. \square

Glava III:

KOMBINATORNA DIMENZIJA I MODIFIKACIJA F-PROSTORA

Veze izmedju topoloških i F→prostora proučavao je Lowen [10],[11], koji je funkcije w i i definisao na sledeći način:

Ako je $\mathcal{F}(X)$ skup svih topologija na X i F(X) skup svih F-topologija na X tada je:

a) i :
$$F(X) \longrightarrow (X)$$

 $T \longrightarrow i(T)$

i(T) je inicijalna topologija za familiju funkcija T i \mathbb{I} sa uobičajenom topologijom

b)
$$w : \mathcal{F}(X) \longrightarrow F(X)$$

$$R \longrightarrow w(R)$$

w(R) je familija odozdo ograničenih poluneprekidnih funkcija iz $(X,R) \longrightarrow I$ sa uobičajenom topologijom.

Prema a) možemo pridružiti svakom F-prostoru (X,T) topološki prostor (X,i(T)) koji se naziva modifikacija od (X,T) ili modifikovana topologija. Ova ideja svodi neke osobine F-prostora na topološke osobine, tj. ako je (X,T) \wedge -kompakt, tada je (X,i(T)) kompakt.

Na ovaj način se koriste dobro poznate osobine kombinatorne dimenzije topoloških prostora (za dokaz teoreme proizvoda
za F-prostore) kao i neka druga topološka svojstva kao i ČechStone-ova kompaktifikacija.

Do kraja ovog rada proučavaćemo dane A-osobine i A-osobine za svako A \in [0,1).

1. F-dim

Definicija 1.1: Neka je (X,T) F-prostor. Tada je F-dim $X \le n$ ako je F-dim $X \le n$, za svako $A \in [0,1)$.

Primer 1.1: Neka je (X,R) topološki prostor sa dim X ≤n.

Neka je T = $\{u(u)\}_{u \in \mathbb{R}}$. Tada je $\{x,T\}$ F-prostor. Zahtevajmo da je u F-dim X \leq n. Vidi se da je $\{u(u)\}_{i=1}^k$ konačno d-senčenje od X za svako $d \in [0,1)$. Tada je $\{u_i\}_{i=1}^k$ otvoren pokrivač $\{v_i\}_{i=1}^k$ od X reda \leq n i $v_i \leq u_i$ za $i=1,2,\ldots,k$.

Neka je $f_i \in I$ definisano sa

 $f_{i}(x) = 1 \text{ za } x \in V_{i}$ $za \ i = 1, 2, \dots, k$ $= 0 \text{ za } x \notin V_{i}$ $Tada \ je \ \left\{f_{i}\right\}_{i=1}^{k} \text{ d-senčenje od X za svako $d \in [0,1)$ takvo da je}$ $f_{i} \in \mu(u_{i}) \ za \ i = 1, 2, \dots, k \ i \ red \ od \ \left\{f_{i}\right\}_{i=1}^{k} \text{ je } \leq n. \ Zato \ je \ F-dim $X \leq n$.}$

Definicija 1.2: F-prostor (X,T) je $\not\sim$ -dopustiv ako za svako $V\subset T$, V sadrži bar dva člana, postoji $\not\sim\in[0,1)$ tako da je V \sim -senčenje od X.

Stav 1.1: Neka je $(X,T) \varpropto -dopustiv F-prostor$. Ako je F-dim X=0, tada je (X,T) slabo F-normalan prostor.

Dokaz. Neka je F-dim X=0 i neka su G_1 i G_2 disjunktni zatvoreni F-skupovi u X. Tada je $\left\{co.G_1,\ co.G_2\right\}$ \subset T. Kako je $\left(X,T\right)$ $\not\sim$ -

dopustiv, postoji $d \in [0,1)$ tako da je $\{co.G_1, co.G_2\}$ d-senčenje od X. Kako je F-dim X = 0, za svako $d \in [0,1)$ je F-dim X = 0, po definiciji 1.1, i zato postoji d-senčenje $\{f_1,f_2\}$ od X tako da je $f_1 \leq co.G_2$, $f_2 \leq co.G_1$ i $f_1 \wedge f_2 = 0$, tj. $f_1 \leq co.f_2$. Zato je $G_1 \leq co.f_2$, $G_1 \leq co.(co.f_1)$ i $G_1 \leq f_1$. Slično se pokazuje da je $G_2 \leq f_2$. \square

Posledica 1.1: Neka je $(X,T) \sim -dopustiv F_c-prostor$. Ako je F-dim X = 0, tada je (X,T) F-normalan prostor.

Uvedimo strožiju definiciju nula dimenzije F-prostora na sledeći način:

SF-dim X = 0 ako za svako konačno ∞ -senčenje od X postoji ∞ -profinjenje koje se sastoji od otvorenih i zatvorenih disjunkt-nih F-skupova. Jasno je da, ako je SF-dim X = 0, onda je F-dim X = 0 za svaki F-prostor (X,T).

Definicija 1.3: Neka su G_1 i G_2 disjunktni zatvoreni F-skupovi F-prostora (X,T). Tada su G_1 i G_2 jako razdvojeni u X ako postoji otvoren i zatvoren F-skup E takav da je $G_1 \le E$ i $E \le co.G_2$.

Stav 1.2: Neka je $(X,T) \propto$ -dopustiv F-prostor. Ako je SF-dim X=0 tada je svaki par disjunktnih zatvorenih F-skupova jako razdvojen u X.

Dokaz. Neka je SF-dim X = 0 i neka su G_1 i G_2 disjunktni zatvoreni F-skupovi. Tada je $\left\{ \operatorname{co.G_1, co.G_2} \right\}$ d -senčenje od X za neko $\operatorname{d} \in [0,1)$, jer je (X,T) d -dopustiv. Kako je SF-dim X = 0, to postoji d -senčenje $\left\{ f_1, f_2 \right\}$ od X takvo da su f_1 i f_2 otvoreni i zatvoreni, $f_1 \wedge f_2 = 0$ i $f_1 \leq \operatorname{co.G_1}$, $f_2 \leq \operatorname{co.G_2}$. Tada je, zbog $G_1 \leq \operatorname{co.f_1}$, $G_1 \leq \operatorname{co.(co.f_2)}$ tj. $G_1 \leq f_2 \leq \operatorname{co.G_2}$.

Definicija 1.4: F-prostor (X,T) je

- (i) Povezan ako su otvoreni i zatvoreni F-skupovi samo $\overline{0}$ i $\overline{1}$. F-skup g je povezan ako je g povezan kao F-podprostor.
- (|) Nepovezan, ako nije povezan.
- (III) Potpuno nepovezan, ako postoji ne povezan F-skup koji sadrži više od jedne F-tačke.

Stav 1.3: Neka je $(X,T) \land -dopustiv FT_1-prostor$. Ako je SF-dim X = 0, tada je X potpuno nepovezan.

Dokaz. Neka je SF-dim X=0 i neka je g povezan F-skup u X koji se sastoji od dve F-tačke p i q, p \neq q. Tada po stavu 1.2 postoji otvoren i zatvoren F-skup E, takav da p \in E i E \in co q. Zato je E $|g_0|$ otvoren i zatvoren u $|g_0|$ i E $|g_0|$ nije $|g_0|$ niti $|g_0|$, tj. g nije povezan, što je suprotno pretpostavci. Zato je (X,T) potpuno nepovezan.

Vratimo se teoremi podskupa datoj u delu 2 prethodne glave, ali ovog puta posmatrajmo dimenziju dim F-prostora umesto α -dim.

<u>Stav 1.4:</u> Neka je Y zatvoren F-podprostor F-prostora (X,T).

Tada je

$F-\dim Y \leq F-\dim X$.

Dokaz. Neka je F-dim X \leq n i neka je U konačno α -senčenje od Y, za svako $\alpha \in [0,1)$. Tada postoji familija W otvorenih F-skupova u X tako da za svako $\omega \in \mathbb{W}$, $\omega \mid Y \in \mathbb{U}$ i $\{ \mathbb{W}, \mathcal{M}(X \setminus Y) \}$ je konačno α -senčenje od X za svako $\alpha \in [0,1)$. Kako je F-dim X \leq n, tada po definiciji 1.1 postoji α -profinjenje V od $\{ \mathbb{W}, \mathcal{M}(X \setminus Y) \}$ čiji je red \leq n za svako $\alpha \in [0,1)$. Tako je $\{ \mathbb{V} \mid Y \} \alpha$ -finiji od $\mathbb{W} \mid Y = \mathbb{U}$

i reda ≤ n za svako ৫€[0,1). Zato je F-dim Y ≤ n. □

Stav 1.5: Neka je Y F-podprostor jako \propto -kompaktnog Hausdor-flovog F-prostora (X,T). Tada je

 $F-dim\ Y \leq F-dim\ X$.

<u>Dokaz.</u> Kako je (X,T) jako -kompaktan Hausdorffov F-prostor, tada prema stavu 2.8 [6] je $\mu(X,Y)$ otvoren F-skup u X i prema stavu 1.4 je F-dim X. \square

Stav 1.5: Neka je Y F-podprostor jako ∞ - Hausdorffovog F-prostora (X,T). Tada je F-dim Y \leq F-dim X.

Dokaz Sledi iz stava II 2.2 za svako «€[0,1).

Stav 1.7: Neka je (X,T) jako prebrojivo A-kompaktan F-prostor i Y F-podprostor od (X,T). Ako je svako konačno A-senčenje od Y $(Y \Leftrightarrow E[0,1))$ prebrojivo ekstenzibilno tada je

F-dim $Y \leq F$ -dim X.

Dokaz sledi iz stava II 2.6 za svako «∈[0,1). □

Stav 1.8: Neka je (X,T) jako &-kompaktan, takav da je X = $\bigcup_{i=1}^{k} Y_i$ gde je za svako-i, Y_i jako-&-zatvoren F-podprostor se F-dim $Y_i \le n$. Tada je F-dim X $\le n$.

Dokaz sledi primenom stava II 2.10, za svako $\alpha \in [0,1)$. \square Stav 1.9: Neka je (X,T) jako α -Hausdorffov F-prostor, $X = \bigcup_{i=1}^{k} Y_i$ i neka je svaki Y_i jako α -kompaktan F-podprostor se F-dim $Y_i \in \mathbb{N}$.

Tada je F-dim $X \in \mathbb{N}$.

<u>Dokaz</u> se izvodi koristeći stav II 2.11, za svako م∈[0,1). □

<u>Definicija 1.5:</u> Neka je Y F-podprostor F-prostora (X,T).

Tada je (X,T) konzervativan ako je za svaka dva F-skupa f i g u Y sa $f \leq g$, $f^* < g^*$ u X, gde je $f^* | Y = f$ i $g^* | Y = g$.

Stav 1.10: Neka je Y zatvoren F-podprostor konzervativnog F-normalnog prostora (X,T). Tada je Y F-normala.

<u>Dokaz.</u> Neka je f otvoren F-skup u Y i g zatvoren F-skup u Y takav da je g \leq f. Tada postoje zatvoren F-skup g* u X i otvoren F-skup f* u X takvi da je g = g*|Y i f = f*|Y. Kako je (X,T) konzervativan, to je po definiciji g* \leq f* u X. Kako je po pretpostavci (X,T) F-normalan prostor, to postoji otvoren F-skup h u X za g* \leq h \leq cl h \leq f* i odatle je g \leq h|Y \leq cl h|Y \leq f. Zato je Y F-normalan prostor.

Stav 1.11: Neka je (X,T) konzervativan F_c -normalan prostor i Y zatvoren F-podprostor od (X,T) takav da je F-dim Y \leq n. Ako je $\left\{f_i\right\}_{i=1}^{k}$ familija otvorenih F-skupova u X, gde je $\left\{f_i\right\}_{i=1}^{k}$ α - senčenje od Y za neko $\alpha \in [0,1)$, tada postoji familija $\left\{g_i\right\}_{i=1}^{k}$ otvorenih F-skupova u X tako da je cl $g_i \leq f_i$ i red od cl $\left\{g_i\right\}_{i=1}^{k} \leq$ n.

Dokaz. Neka je $\alpha \in [0,1)$ tako da je $\left\{f_{i}\mid Y\right\}_{i=1}^{k}$ α -senčenje od Y. Prema stavu 1.10, Y je F_c-normalan i zato, po stavu II 1.4, postoji α -kosenčenje $\left\{h_{i}\right\}_{i=1}^{k}$ od Y tako da je $h_{i} \in f_{i}\mid Y$ za $i=1,2,\ldots,k$ i red od $\left\{h_{i}\right\}_{i=1}^{k}$ \in n. Kako je Y zatvoren F-podprostor od (X,T), h_{i} je zatvoren F-skup u X za svako $i=1,2,\ldots,k$ i $h_{i} \in f_{i}$. Zbog F-normalnosti od (X,T) postoje otvoreni F-skupovi g_{i} u X takvi da je $h_{i} \in g_{i} \in cl$ $g_{i} \in f_{i}$ za svako $i=1,2,\ldots,k$. Tada je $\left\{cl$ $g_{i}\right\}_{i=1}^{k}$ nadkrivanje od $\left\{h_{i}\right\}_{i=1}^{k}$ i zato je red od $\left\{cl$ $g_{i}\right\}_{i=1}^{k}$

Stav_1.12: Neka je (X,T) konzervativan F_c -normalan prostor i neka je Y zatvoren F-podprostor od X takav da je F-dim $Y \le n$. Ako je F-dim $Z \le n$ za svaki zatvoren F-podprostor Z od (X,T) disjunktan sa Y, tada je F-dim $X \le n$.

Dokaz. Neka je F-dim Z \leq n i neka je $\left\{h_i\right\}_{i=1}^k \ll$ -senčenje od X za svako $d \in [0,1)$. Tada je $\left\{f_i \mid Y\right\}_{i=1}^k \ll$ -senčenje od Y i prema stavu 1.11, postoji familija $\left\{g_i\right\}_{i=1}^k$ otvorenih F-skupova u X tako da je $g_i \leq f_i$, red od $\left\{g_i\right\}_{i=1}^k \leq$ n i $\left\{g_i \mid Y\right\}_{i=1}^k \ll$ -senčenje od Y. Neka je $Q = \text{co.} \left[\bigvee_{i=1}^k g_i \vee \bigvee_{t \in T} \left\{t: t > f_i \mid \forall i=1,2,\ldots,k\right\}\right]$. Tada je Q zatvoren F-skup u X i $Q \leq \mu(X \setminus Y)$. Zbog F -normalnosti od (X,T), postoji otvoren F-skup h takav da je $Q \leq h \leq cl$ $h \leq \mu(X \setminus Y)$. Neka je $(cl h)_0$ nosač od cl h, tada je $(cl h)_0$ zatvoren F-pod-prostor od X koji je disjunktan sa Y. Sada je $\left\{f_i \mid (cl h)_0\right\}_{i=1}^k$ \ll -senčenje od $(cl h)_0$, i kako je po pretpostavci F-dim $(cl h)_0$ en, to postoji \ll -senčenje $\left\{m_i\right\}_{i=1}^k$ od $(cl h)_0$ tako da je $m_i \leq f_i \mid (cl h)_0$ za $i=1,2,\ldots,k$ i red od $\left\{m_i\right\}_{i=1}^k$ je \leq n.

Neka je definisano $d_i \in I^X$ za svako i = 1, 2, ..., k sa $d_i(x) = m_i(x)$ ako $x \in (clh)_0$ $= g_i(x)$ ako $x \notin (clh)_0$.

Tada je $\left\{d_i\right\}_{i=1}^k$ d.—senčenje od X takvo da je $d_i \leq f_i$ za $i=1,2,\dots,k$ i red od $\left\{d_i\right\}_{i=1}^k$ je \leq n. Odatle je F-dim X \leq n. Primenju-jući ovaj metod dokaza za svako d. \in [0,1) dobijamo da je F-dim X \leq n. \square

Stav 1.13: Neka je (X,T) konzervativan F_c -normalan prostor. Ako je X = YUZ, gde su Y i Z zatvoreni F-podprostori sa F-dim Y $\leq n$ i F-dim $Z \leq n$. tada je F-dim $Z \leq n$

<u>Dokaz.</u> Neka je $X = Y \cup Z$ i Q zatvoren F-podprostor od (X,T) disjunktan sa Y. Tada je Q zatvoren F-podprostor od Z i po stavu 1.4 je F-dim $Q \le n$. Odatle, prema stavu 1.12, sledi da je F-dim $X \le n$.

U ovom delu rada proučavaćemo lokalnu kombinatornu dimenziju uvedenu u delu 3 prethodne glave.

Definicija 1.6: Neka je (X,T) F-prostor. Tada je loc F-dim $X \le n$ ako je loc F-dim $X \le n$ za svako $A \in [0,1)$.

Stav 1.14: Neka je (X,T) jako & -Hausdorff-ov, jako & -kompa-ktan F-prostor. Tada je

loc F-dim X ≤ F-dim X.

Dokaz sledi iz stava II 3.2 za svako ≪∈[0,1). □

Stav 1.15: Ako je (X,T) savršeno F-normalan jako ∞ -Hausdorff-ov F-prostor, tada je

loc F-dim $X \leq F$ -dim X.

<u>Dokaz</u> se izvodi primenom stava II 3.3 za svako $\ll \in [0,1)$. \square

<u>Stav 1.16:</u> Ako je (X,T)jako d-Hausdorffov F-prostor i Y F-podprostor od (X,T), tada je

loc F-dim Y ≤ loc F-dim X.

Dokaz sledi iz stava II 3.5 za svako & = [0,1).

2. MODIFIKACIJA F-PROSTORA

 $\label{eq:modifikacija} \begin{tabular}{ll} $\mathsf{modifikacija} & \mathsf{F-prostora} & (X,T) & \mathsf{je} & \mathsf{topološki} & \mathsf{prostora} \\ $(X,i(T))$, gde je familija $$\{t^{-1}(A,1]:t\in T,A\in I\}$ subbaze za $$i(T)$ is za svako $A\in [0,1)$ je i_A(T) = $$\{t^{-1}(A,1]:t\in T\}$. Tada je i_A(T)$ topologija na X (vidi Lowen [12]) i$

$$i(T) = V \left\{ i_{\alpha}(T) : \alpha \in [0,1) \right\}.$$

Poznato je da skup svih odozdo ograničenih poluneprekidnih preslikavanja $\mathbf{w}(\mathcal{F})$, topološkog prostora (X,\mathcal{F}) u I snabdeven uobičajenom topologijom, čini F-prostor $(X,\mathbf{w}(\mathcal{F}))$ koji se naziva indukovan F-prostor.

F-prostor (X,T) se naziva topološki generisan ako postoji topologija $\mathcal F$ na X takva da je T = $\mathbf w(\mathcal F)$ ili ekvivalentno T = $\mathbf w(i(T))$.

U ovom delu rada i nadalje F-dim $_{\mathcal{X}_T}$ znači $\overset{\sim}{\sim}$ -kombinatornu dimenziju F-prostora (X,T) a dim X $_{\overset{\sim}{\mathcal{F}}}$ znači kombinatornu dimenziju od X sa topologijom $\overset{\sim}{\mathcal{F}}$ na X.

U ovom delu rada dalje se utvrdjuju veze izmedju kombinatorne dimenzije F-topologije na skupu X i kombinatorne dimenzije topologije na istom skupu X.

Lema 2.1: Neka je (X,T) F-prostor. Tada je $(X,T) \sim$ -kompakt $(prebrojiv \sim -kompakt)[\sim -kompakt][\sim -kompakt][\sim$

Dokaz. Familija u \subseteq T je \varnothing -senčenje od X ako i samo ako je $\bigcup t^{-1}(\varnothing,1] = X$. \square

Lema 2.2: Ako je $(X,T) \propto$ -Hausdorff-ov F-prostor, tada je $(X,i_{\rm cl}(T))$ Hausdorff-ov prostor.

Dokaz. Neka je (X,T) F-prostor i neka je $X \neq Y$. Tada po definiciji α -Hausdorffovog F-prostora, postoje u i v otvoreni F-skupovi u X takvi da je $u(x)>\alpha$, $v(y)>\alpha$ i $u\wedge v=0$. Odatle sledi da su $u^{-1}(\alpha,1]$ i $v^{-1}(\alpha,1]$ disjunktni otvoreni skupovi u $i_{\alpha}(T)$ takvi da je $x\in u^{-1}(\alpha,1]$ i $y\in v^{-1}(\alpha,1]$ tj. $(X,i_{\alpha}(T))$ je Hausdorffov prostor.

Sledeći stavovi daju odnose izmedju F-dim $_{\infty}$ F-prostora (X,T) i dim modifikovane topologije (X, $i_{\infty}(T)$).

Stav 2.1: Neka je (X,T) F-prostor i (X, $i_{\infty}(T)$) modifikovana to-pologija na X. Tada je

 $F-dim_{\alpha}X_{T} = dim_{\alpha}X_{i_{\alpha}}(T)$.

Dokaz. \Longrightarrow Neka je F-dim $X_T \le n$ i neka je $\left\{u_i\right\}_{i=1}^k$ konačan $i_{\infty}(T)$ otvoren pokrivač od X. Kako je $i_{\infty}(T) = \left\{t^{-1}(\alpha,1] : t \in T\right\}$, to je za svako $i \in \{1,2,\ldots,k\}$, $u_i = t_i^{-1}(\alpha,1]$ tj. $x \in u_i$ ako i samo ako iz $t_1(x) > \alpha$ sledi da je $\left\{t_i\right\}_{i=1}^k$ α -senčenje od X. po pretpostavci i stavu II 1.1, postoji α -senčenje $\left\{S_i\right\}_{i=1}^k$ od X tako da je $\left\{t_i\right\}_{i=1}^k$ $\left\{t_i\right\}_{i=1}^k$

Neka je $v_i = \{x \in X : S_i(x) > d\}$ za svako i = 1, 2, ..., k.

Tada je v_i $i_d(T)$ -otvoren za svako i = 1, 2, ..., k, $\bigcup_{i=1}^{k} v_i = \bigcup_{i=1}^{k} \{S_i^{-1}(d,1)\} = X, \quad v_i \in u_i \quad i$

red od $\left\{v_i\right\}_{i=1}^k$ je \leq n tj. $\left\{v_i\right\}_{i=1}^k$ je konačan $i_{\alpha}(T)$ -otvoren pokrivač od X čiji je red \leq n, i zato je dim $X_{i_{\alpha}(T)} \leq$ n.

Neka je dim $X_{i_d(T)} \le n$ i neka je $\{f_i\}_{i=1}^k d$ -senčenje od X za $d \in [0,1)$. Za svako $i \in \{1,2,\ldots,k\}$ neka je $u_i = f_i^{-1}(d,1]$. Tada je u_i $i_d(T)$ -otvoren i $\bigcup_{i=1}^k u_i = \bigcup_{i=1}^k \{f_i^{-1}(d,1]\} = X$ tj.

 $\{u_i\}_{i=1}^{K}$ je konačan $i_{\infty}(T)$ -otvoren pokrivač od X. Kako je Neka je definisano g_i : X -> I na sledeći način:

$$g_i(x) > A$$
 ako $x \in V_i$
= 0 ako $x \notin V_i$ $i=1,2,...,k$

 $g_{i}(x) > \Delta \quad \text{ako } x \in v_{i}$ $= 0 \quad \text{ako } x \notin v_{i}$ $0 \text{datle je } \left\{g_{i}\right\}_{i=1}^{k} \quad \Delta \quad \text{-senčenje od } X, g_{i} \in f_{i} \text{ za svako } i=1,2,\ldots,k$ i red od $\{g_i\}_{i=1}^{k}$ je $\leq n$. Zato je F-dim $X_T \leq n$. \square

Posledica 2.1: Neka je (X,T) F-prostor i (X,i(T)) modifikovana topologija na X. Tada je

$$F-\dim X_T = \dim X_{i(T)}$$

se izvodi koristeći stav 2.1 za svako d∈[0,1). □

U sledećem stavu se dokazuje da se kombinatorna dimenzija topološkog prostora (X,T) poklapa sa kombinatornom dimenzijom indukovanog F-prostora (X,w(≯)).

Stav 2.2: Neka je (X,\mathcal{F}) topološki prostor i neka je $(X,\mathbf{w}(\mathcal{F}))$ indukovan F-prostor. Tada je

$$\dim X_{\mathcal{F}} = F - \dim X_{\mathbf{w}(\mathcal{F})}.$$

Dokaz. \Rightarrow Neka je F-dim $X_{\omega(\mathcal{F})} \leftarrow n$ i neka je $\{u_i\}_{i=1}^{K}$ otvoren pokrivač od X. Za svako i \in $\{1,2,\ldots,k\}$ neka je $\mathcal{N}(u_i)$ karakteristična funkcija od u_i tj. $\mathcal{M}(u_i)(x) = 1$ ako $x \in u_i$ i $\mathcal{M}(u_i)(x) = 0$ ako $x \not\in u_i$. Jasno je da je $\left\{ \mu(u_i) \right\}_{i=1}^{\kappa} \subset w(\mathcal{F})$ i da je familija

 $\left\{ \begin{array}{l} \textit{A}(u_i) \right\}^k \text{ α -senčenje od X za svako $\alpha \in [0,1)$. Odatle sledi da postoji konačno α -senčenje $ \left\{ f_i \right\}^k_{i=1} \text{ od X za svako $\alpha \in [0,1)$ takvo }$

da je $f_i \le u(u_i)$ za svako i = 1, 2, ..., k i red od $\left\{f_i\right\}_{i=1}^k \le n$.

Neka je $v_i = \left\{x \in X : f_i(x) > \alpha, \forall \alpha \in [0,1)\right\}$ za svako $i = 1, 2, \ldots, k$. Tada je v_i otvoren podskup od X i $\left\{v_i\right\}_{i=1}^k$ konačan otvoren pokrivač od X čiji je red \leq n i $v_i \leq u_i$ za svako $i = 1, 2, \ldots, k$. Zato je dim $X_{\neq} \leq n$.

Neka je $f_i \in I^X$ za svako i=1,2,...,k definisano na slede-ći način:

 $f_i(x) > d$ ako $x \in V_i$ = 0 ako $x \notin V_i$.

Tada je $\left\{f_i\right\}_{i=1}^k$ familija odozdo ograničenih poluneprekidnih preslikavanja iz (X,\mathcal{F}) u I tj. $\left\{f_i\right\}_{i=1}^k$ je & -senčenje od X, gde je $f_i \leq g_i$ za $i=1,2,\ldots,k$ i red od $\left\{f_i\right\}_{i=1}^k$ je \leq n. Odatle sledi da je F-dim $X_{\omega}(\mathcal{F}) \leq$ n za svako d \in [0,1) i zato je F-dim $X_{\omega}(\mathcal{F}) \leq$ n. \square

Povezujući stavove 2.1 i 2.2 dobija se sledeći rezultat koji dokazuje da se kombinatorna dimenzija topološki generisanog F-prostora poklapa sa kombinatornom dimenzijom topološkog prostora koji generiše taj F-prostor.

Stav 2.3: Ako je (X,T) topološki generisan F-prostor, tada je F-dim $X_T = \dim X_{\overrightarrow{F}}$,

za neko ≠ na X. □

posledica 2.2: Neka je (X,T) Hausdorffov kompaktan F-prostor.
Tada je

F-dim
$$X_T = \dim X_{\mathcal{F}}$$

za neko 躇 na X.

Dokaz. Lowen je u [13] dokazao da je svaki Hausdorffov kompaktan F-prostor topološki generisan, te je prema stavu 2.3 dokaz kompletan.

<u>Posledica 2.3:</u> Neka je (X,T) jako ≪-kompaktan Hausdorffov Fprostor. Tada je

$$F$$
-dim $X_T = dim $X_{\neq}$$

za neko 7 na X.

Dokaz. Kako iz jake &-kompaktnosti sledi kompaktnost u Fprostorima [12], to je jasno da iz posledice 2.2 sledi posledica 2.3.

<u>Posledica 2.4:</u> Neka je U uobičajena topologija na R i neka je b uobičajena topologija na Q. Tada je

F-dim
$$R_{u(u)} = \dim R_{u} = 1$$

F-dim $Q_{u(b)} = \dim Q_{b} = 0$.

Definicija 2.1: Neka je (X,T) F-prostor. Naziva se ultra Tychonoff F-prostor ako je (X,i(T)) Tychonoff topološki prostor.

Martin [16] je dokazao da ako je (X,T) ultra Tychonoff F-prostor, tada (X,T) ima Stone-Čech-ovu ultra F-kompaktifikaci-ju. Za svaki F-prostor (X,T) ($\mbox{3}$ X, $\mbox{7}$) označava Stone-Čech-ovu kompaktifikaciju od (X,i(T)) a ($\mbox{3}$ X,T $_{\mbox{7}}$) označava F-prostor koji se sastoji od odozdo ograničenih poluneprekidnih preslikavanja iz ($\mbox{3}$ X, $\mbox{7}$) u I (sa uobičajenom topologijom) čija restrikcija na X pripada T.

Lema 2.3: Neka je (X,T) ultra Tychonoff F-prostor. Ako je $\{f_i\}_{i=1}^k$ d -senčenje od X za $d\in[0,1)$, tada postoji d -senčenje $\{g_i\}_{i=1}^k$ od β X tako da je $\{g_i\}_{i=1}^k$ od β X tako da je $\{g_i\}_{i=1}^k$

<u>Dokaz.</u> Neka je $\{f_i\}_{i=1}^k$ d -senčenje od X. Tada je $(3x, \mathcal{F})$ Stone-Čech-ova kompaktifikacija od (X, i(T)) i $u_i = f_i^{-1}(d, 1]$ je i(T)-otvoren u X za svako $i = 1, 2, \ldots, k$.

Neka je $\beta u_i = \beta X \backslash cl_{pX}(X \backslash u_i)$, i = 1, 2, ..., k. Definišimo $g_i : \beta X \longrightarrow I$ na sledeći način:

 $g_i(x) > \alpha$ ako $x \in \beta u_i$ i=1,2,...,k $= 0 \quad u \text{ ostalim slučajevima}$

Jasno je da je $\left\{\beta u_i\right\}_{i=1}^k$ familija otvorenih skupova u β X i da $g_i \in T$ za svako $i \in \{1,2,\ldots,k\}$. Treba da dokažemo da je $\left\{g_i\right\}_{i=1}^k$ α —senčenje od β X. Ovo sledi iz činjenice da je $\left\{g_i\right\}_{i=1}^k$ senčenje od β X ako je $\bigcup_{i=1}^k g_i^{-1}(\alpha,1] = \beta$ X. Kako imamo da je $\bigcup_{i=1}^k u_i$ = X, onda je $\bigcup_{i=1}^k h_i = \beta$ X i $g_i \mid X = f_i$ za $i = 1,2,\ldots,k$, čime je dokaz završen. \square

Sledeće tvrdjenje daje ekvivalentnost & -kombinatorne dimenzije ultra Tychonoff-og F-prostora i njegove ultra Stone-Čech-ove kompaktifikacije.

Stav_2.4: Neka je (X,T) ultra Tychonoff F-prostor i neka je $(\beta X, T_{\mathcal{J}})$ njegova ultra Stone-Čech-ova F-kompaktifikacija. Tada je

Dokaz. \Rightarrow Neka je F-dim $\mathcal{J}_{\mathcal{I}_{\mathcal{I}}}^{\mathsf{X}_{\mathsf{T}_{\mathcal{I}}}} \leq n$, $\mathsf{A} \in [0,1)$ i neka je $\left\{f_{i}\right\}_{i=1}^{k}$ A -senčenje od X. Po lemi 2.3, postoji A -senčenje $\left\{g_{i}\right\}_{i=1}^{k}$ od J_{X} tako da je $g_{i} \mid \mathsf{X} = f_{i}$ za $i=1,2,\ldots,k$.

Kako je F-dim $\beta X_{T \leq n}$, to postoji α -profinjenje V od $\left\{g_i\right\}_{i=1}^k$ ciji je red $\leq n$. Zato je $V \mid X$ α -profinjenje od $\left\{f_i\right\}_{i=1}^k$ reda $\leq n$ i F-dim $X_T \leq n$.

Neka je F-dim $X_T \leq n$ i neka je $\left\{f_i\right\}_{i=1}^k$ α -senčenje od βX . Tada je $\left\{f_i\mid X\right\}_{i=1}^k$ α -senčenje od αX i postoji α -profinjenje $\alpha X_T \leq n$ od $\alpha X_T \leq n$ ciji je red $\alpha X_T \leq n$. Prema lemi 2.3 $\alpha X_T \leq n$ postoje od $\alpha X_T \leq n$ ciji je red $\alpha X_T \leq n$ ciji je $\alpha X_T \leq n$ ciji je red $\alpha X_T \leq n$ ciji je $\alpha X_T \leq n$ ciji je ciji je red $\alpha X_T \leq n$ ciji je ciji je

3. TEOREMA PROIZVODA

U ovom delu rada utvrdjuju se uslovi pod kojima za kombinatornu dimenziju proizvoda F-prostora (XxY,TxR) (proizvod Fprostora (X,T) i (Y,R) važi sledeća nejednakost:

 $F-dim(XxY)_{(TxR)} \le F-dim X_T + F-dim Y_R$,

Ovaj rezultat se naziva teorema proizvoda za F-prostore. Koristeći modifikaciju F-prostora posmatranog u prethodnom delu ovog
rada, možemo proširite neke dobro poznate rezultate vezane za
teoremu proizvoda topoloških prostora na F-prostore.

Dokaz. Neka je ($\prod X_s$, $\prod i_d(T_s)$) topološki proizvod modifikovaseS seS seS nih topoloških prostora, ps projekcije u ($\prod X_s$, i ($\prod T_s$)) modiseS seS seS fikacija proizvoda F-prostora. Neka je u i ($\prod T_s$)- otvoren.

Tada je u = $f^{-1}(\alpha, 1]$, $f \in T_s$. Po definiciji proizvoda F-toposes 1 ogija I.3.3., $f = \bigvee_{s \in S} p_{si}^{-1}(g_s)$, $g_s \in T_s$ i p_s je F-nepreses i = 1 i i = 1

kidno. Za svako s \in S i svako f \in T_s je $(p_s^{-1}(f))^{-1}(\alpha,1] = p_s^{-1}(f^{-1}(\alpha,1]).$

Tada iz $u = \bigcup_{s \in S} \bigcap_{i=1}^{n} (p_{s_i}^{-1}(g_{s_i}))^{-1}(\alpha,1] = \bigcup_{s \in S} \bigcap_{i=1}^{n} p_{s_i}^{-1}(g_{s_i}^{-1}(\alpha,1])$

Sledi da je u otvoreno u $\prod_{s \in S} i_{s}(T_{s})$.

Neka je sada u otvoren u $\prod_{s \in S} i_{\alpha}(T_s)$. Tako je

 $u = \bigcup_{s \in S} \bigcap_{i=1}^{n} p_{s_i}^{-1}(t_{s_i}^{-1}(a,1]), f_{s_i} \in T_{s_i}$. Tada je

 $\bigcup_{s \in S} \bigcap_{i=1}^{n} p_{s_{i}}^{-1}(f_{s_{i}}^{-1}(a,1]) = \bigcup_{s} \bigcap_{i=1}^{n} (p_{s_{i}}^{-1}(f_{s_{i}}))^{-1}(a,1] i$

 $\bigvee_{s} \bigwedge_{i=1}^{n} p_{s_{i}}^{-1}(t_{s_{i}}) \prod_{s \in S} T_{s}.$

Neka je f = $\bigvee_{s} \bigcap_{i=1}^{n-1} (f_{s_i})$. Tada je u = $f^{-1}(\alpha,1]$ i zato je u otvoren u $i_{d}(\prod_{s \in S} T_s)$.

Stav 3.1: [Tychonoff-a teorema proizvoda] Neka je (X_s, T_s) seS familija F-prostora. Tada je $(\prod X_s, \prod T_s)$ α -komaktan ako i seS seS seS samo ako je (X_s, T_s) α -kompaktan za svako seS.

Dokaz. Ovaj stav je dokazalo mnogo autora, a ovde će biti dat kratak dokaz. Prema lemi 2.1 ($\prod X_s$, $\prod T_s$) je d-kompaktan ako seS seS i samo ako je ($\prod X_s$, $i_d(T_s)$) kompaktan. Prema lemi 3.1 je seS

 $(\prod X_s, i (\prod T_s)) = (\prod X_s, \prod i_d(T_s)).$ Poznato je da je seS seS seS

 $(\prod X_s, \prod i_o(T_s))$ kompaktan ako i samo ako je, za svako s $\in S$, s $\in S$

 $(X_s, i_s(T_s))$ kompaktan, odakle sledi da je za svako s $\in S$, (X_s, T_s) α -kompaktan F-prostor. \square

Stav 3.2: Neka je (X,T), (Y,R) par d-kompaktnih F-prostora. Tada je

$$F-dim_{\mathcal{L}}(X\times Y)_{(T\times R)} \leq F-dim_{\mathcal{X}} Y_{R} + F-dim_{\mathcal{L}} Y_{R}$$
.

Dokaz. Prema stavu 2.1 je

$$F-\dim_{\alpha}(X\times Y)_{(T\times R)} = \dim(X\times Y)_{i_{\alpha}(T\times R)}$$

Prema lemi 2.1 su $(X, i_d(T))$ i $(Y, i_d(R))$ kompaktni prostori, a prema stavu 3.1 proizvod topoloških prostora $(XxY, i_d(T) \times i_d(R))$ je takodje kompaktan. Prema lemi 3.1 je

$$(XxY,i_{\alpha}(TxR)) = (X,i_{\alpha}(T)) \times (Y,i_{\alpha}(R)).$$

Odatle je $dim(XxY)_{i_{cl}(TxR)} = dim(X_{i_{cl}(T)} \times Y_{i_{cl}(R)})$.

Dokazano je za slučaj kompaktnih topoloških prostora da je

$$\dim(X_{i_{\alpha}(T)} \times Y_{i_{\alpha}(R)}) = \dim X_{i_{\alpha}(T)} + \dim Y_{i_{\alpha}(R)}$$

Zato je F-dim $_{a}(XxY)_{(TxR)} \leq F-dim_{a}X_{T} + F-dim_{a}Y_{R}$. \Box

Posledica 3.1: Ako su (X,T) i (Y,R) jako -kompaktni F-prostori, tada je

$$F-dim(XxY)_{(TxR)} \leq F-dim X_T + F-dim Y_R . \square$$

Stav 3.3: Neka su (X,T) i (Y,R) prebrojivi &-kompaktni C_{II} F-prostori. Tada je

$$F-dim_{\alpha}(XxY)_{(TxR)} \leq F-dim_{\alpha}X_{T} + F-dim_{\alpha}Y_{R}$$
.

<u>Dokaz.</u> Kako je prebrojiv σ -kompaktan C_{11} F-prostor i σ -kompaktan (stav 1.2) to se dokaz izvodi primenom stava 3.2. \Box

Posledica 3.2: Neka su (X,T) i (Y,R) prebrojivi, &-kompaktni, &-Lindelof-ovi F-prostori. Tada je

$$F-\dim_{\mathbf{C}}(X\times Y)_{(T\times R)} \leq F-\dim_{\mathbf{C}}X_T + F-\dim_{\mathbf{C}}Y_R$$
.

Stav 3.4: Neka je (X,T) & -kompaktan F-prostor a (Y,R) prebrojiv &-kompaktan F-prostor. Tada je (XxY, TxR) prebrojiv -kompaktan F-prostor.

Dokaz. Kako je i (T) kompaktno a i(R) prebrojivo kompaktano, kao topologije na X i Y respektivno, po lemi 2.1 je tada (X,ia(T)) x (Y,ia(R)) prebrojivo kompaktan topološki prostor i prema lemi 3.1 je (XxY,ia(TxR)) prebrojivo kompaktan. Odatle, po lemi 2.1, je (XxY, TxR) prebrojivo &-kompaktan F-prostor.

Stav 3.5: Neka je (X,T) ultra Tychonoff F-prostor a (Y,R) pre-brojiv &-kompakt. Ako je svako konačno &-senčenje od XxY pre-brojivo ekstezibilno na βXxY , tada je

Dokaz. Neka je svako α -senčenje od XxY prebrojivo ekstenzibilno na β XxY. Kako je ultra kompaktan F-prostor i α -kompaktan tj. β X je α -kompaktan, to je prema stavu 3.4 (β XxY, T $_{\cancel{f}}$ XE) prebrojivo α -kompaktan. Po pretpostavci stava II 2.7 je

$$F-dim_{\alpha}(xxY)_{(TxR)} \leq F-dim_{\alpha}(\beta XxY)_{(TxXR)}.$$
 (a)

Prema stavu 2.1 je

$$F-\dim_{\alpha}(\beta X \times Y)_{(T_{\alpha} \times R)} = \dim(\beta X \times Y)_{i_{\alpha}(T_{\alpha} \times R)}$$
 (b)

Prema teoremi 0.15 Morite datoj u uvodu ovog rada je

$$\dim(\mathcal{J}XXY)_{i_{\mathcal{A}}(T_{\mathcal{J}}XR)} \leq \dim\mathcal{J}X_{i_{\mathcal{A}}(T_{\mathcal{J}})} + \dim^{Y}i_{\mathcal{A}}(R)$$
 (c)

Prema stavu 2.4 je

$$F-\dim_{\mathcal{X}_{T}} = F-\dim_{\mathcal{X}_{T_{\mathcal{F}}}} . \tag{d}$$

U relaciji (a), (b), (c) i (d) imamo

$$F-\dim_{\alpha}(XxY)_{(TxR)} \leq F-\dim_{\alpha}X_{T} + F-\dim_{\alpha}Y_{R}$$
,

što je trebalo dokazati. 🗆

Posledica 3.3: Neka je (X,T) ultra Tychonoff F-prostor, a (Y,R)

jako prebrojivo \sim -kompaktan. Ako je svako konačno \sim -senčenje od XxY prebrojivo ekstenzibilno na \nearrow XxY, za svako \sim \in [0,1), tada je

$$F-dim(XxY)_{(TxR)} \leq F-dim X_T + F-dim Y_R$$

Stav 3.6: Neka je (X,T) jako \leftarrow -Lindeloff-ov i jako prebrojivo \leftarrow -kompaktan F-prostor. Ako je (Y,R) jako \leftarrow -kompaktan F-prostor, tada je

$$F-dim(XxY)_{(TxR)} \leq F-dim X_T + F-dim Y_R$$
.

Dokaz. Kako je \sim -Lindelof-ov prebrojivo \sim -kompaktan F-prostor i \sim -kompaktan, to dokaz sledi iz posledice 3.1.

Zvezdasto konačne osobine uvedene u topološkim prostorima može se koristiti u sličnom obliku i za F-prostore. Neka je
(X,T) F-prostor. Kolekcija U F-prostora je zvezdasto-konačna u X,
ako svako u e U seče najviše konačno mnogo drugih članova iz U.

Definicija 3.1: F-prostor (X,T) ima α -zvezdasto konačnu osobinu (α -st.f.p) ako svako α -senčenje od X ima zvezdasto-konačno α -profinjenje.

Stav 3.7: Neka je (X,T) F-prostor. Ako (X,T) ima σ -zvezdasto konačnu osobinu $(\sigma$ -st.f.p.), tada (X,i) ima zvezdasto konačnu osobinu.

Dokaz. Neka je \mathcal{G} i $_{\mathbf{d}}(\mathsf{T})$ -otvoren pokrivač od X. Za svako $\mathsf{G} \in \mathcal{G}$ neka je $\mathsf{G} = \mathsf{h}_{\mathsf{G}}^{-1}(\mathsf{d},1]$, $\mathsf{h} \in \mathsf{I}^{\mathsf{X}}$. Tada $\mathsf{f}_{\mathsf{G}} \in \mathsf{T}$ i kako je $\mathsf{X} = \bigcup_{\mathsf{G} \in \mathcal{G}} \mathsf{h}_{\mathsf{G}}^{-1}(\mathsf{d},1] = \mathsf{G} \in \mathcal{G}$, to je $\mathcal{H} = \{\mathsf{h}_{\mathsf{G}} : \mathsf{G} \in \mathcal{G}\}$ d-senčenje od X. Kako (X,T) ima $\mathsf{G} \in \mathcal{G}$ d-st.f.p. to postoji zvezdasto-konačno d-proširenje V od \mathcal{H} . Neka je $\mathsf{w} = \mathsf{v}^{-1}(\mathsf{d},1]$, $\mathsf{v} \in \mathsf{V}$. Tada je w i $\mathsf{g}(\mathsf{T})$ -otvoren i familija

 $\mathbb{W} = \{\mathbb{W} : \mathbb{W} = \mathbb{V}^{-1}(\alpha, 1] \text{ za svako } \mathbb{V} \in \mathbb{V} \}$ je zvezdasto konačno profinjenje od \mathcal{Y} . \square

<u>Posledica 3.4:</u> Ako F-prostor (X,T) ima jako α -st.f.p., onda (X, i(T)) ima st.f.p.

Dokaz sledi iz stava 3.7 za svako d∈[0,1). □

Stav 3.8: Neka su (X,T) i (Y,R) jako d-Hausdorff-ovi F-prostori takvi da (XxY, TxR) ima jako d-st.f.p. Tada je

$$F-dim(XxY)_{(TxR)} \leq F-dimX_T + F-dim Y_R$$

Dokaz. Kako (XxY, TxR) ima jako &-st.f.p., tada prema posledici 3.4 (XxY, i(TxR)) ima st.f.p. (X,i(T)) i (Y, i(R)) su Hausdor-ffovi topološki prostori, prema lemi 2.2. Tada koristeći teoremu 0.14 Morite za topološki slučaj,imamo

$$\dim(XxY)_{i(TxR)} \leq \dim X_{i(T)} + \dim Y_{i(R)}$$

i odatle

$$F-dim(XxY)_{(TxR)} \le F-dim X_T + F-dim Y_R$$

Stav 3.9: Neka su (X,T) i (Y,R) & -Hausdorff-ovi F-prostori takvi da (XxY, TxR) ima &-st.f.p.. Tada je

$$F-\dim_{\mathcal{X}}(X\times Y)_{(T\times R)} \leq F-\dim_{\mathcal{X}} X_T + F-\dim_{\mathcal{X}} Y_R$$

Dokaz se izvodi na isti način kao za stav 3.8. 🗆

Definicija 3.2: F-prostor (X,T) je ultra parakompaktan F-prostor ako je (X,i(T)) parakompaktan topološki prostor.

Stav 3.10: Neka je (X,T) ultra parakompaktan jako \leftarrow -Hausdorff-ov F-prostor sa F-dim X_T = n i neka je (Y,R) jako \leftarrow -kompaktan, jako \leftarrow -Hausdorff-ov F-prostor sa F-dim Y_R = m. Tada je

$$F-dim(XxY)_{(TxR)} \leq m + n.$$

Dokaz. Po pretpostavci, lemi 2.1 i stavu 2.1, (X,i(T)) je parakompaktan Hausdorff-ov prostor sa dim $X_{i(T)} = n a (Y, i(R))$ je kompaktan Hausdorff-ov topološki prostor (što sledi iz leme 2.1 i leme 2.2) sa dim $Y_{i(R)} = m$, (po stavu 2.1).

Prema stavu 0.12 iz uvoda, imamo

$$dim(XxY)_{i(TxR)} = dim(XxY)_{i(T)xi(R)} \le m + n .$$

Odatle po stavu 2.1 imamo

$$F-dim(XxY)_{i(TxR)} \leq m + n.$$

Stav 3.11: Neka je $(X_s,T_s)_{s=s}$ familija ultra Tychonoff-ih F-prostora takvih da je svaki prebrojiv proizvod F-prostora 🐟 -Lindelof-ov. Ako je F-dim $X_s = 0$ sa $s \in S$, tada je F-dim $\prod_{s=0}^{\infty} X_s = 0$.

Dokaz. Prema stavu 2.1 je F-dim $_{a}X_{s}=0$ ako i samo ako je dim X_s $i_{\infty}(T_s) = 0$. Kako je $(\overline{11} X_s, \overline{11} T_s) & -Lindelof-ov, tada i=1 <math>x_s$ i=1je po lemi 2.1 ($\overrightarrow{|}$ X_s , $\overrightarrow{|}$ i (T_s)) Lindelof-ov.

Dalje se primenjuje teorema T.O.16 iz uvoda čime je dokaz završen.

Glava IV:

PROJEKTIVNI LIMES F-PROSTORA

Pojam projektivnog sistema topoloških prostora je bio široko razmatran kako sam za sebe tako i u okviru teorije dime-nzija značajno doprinoseći razvitku ove poslednje. Stoga mi se čini da je vredno pažnje uvesti ovaj pojam za F-prostore i razmatrati njegovu vezu sa kombinatornom dimenzijom F-prostora.

Posvetićemo prva dva odeljka ove glave definisanju i razmatranju pojma projektivnog sistema F-prostora i njegovog limes F-prostora i to u svetlu sličnog razmatranja u opštoj to-pologiji. Pokazuje se da je većinu rezultata - naročito onih koji važe za kompaktne Hausdorff-ove prostore - moguće generalizovati za F-prostore. U trećem odeljku ove glave vratićemo se &-kombinatornoj dimenziji gde ćemo dati neke karakterizacije od F-dim za limes F-prostor.

Pod c-bikompaktnim F-prostorom smatraćemo -Hausdorff-ov i c-kompaktan F-prostor.

1. PROJEKTIVNI LIMES -BIKOMPAKTNIH F-PROSTORA:

Neka je $\{(X_s,T_s):s\in S\}$ familija F-prostora indeksirana elementima usmerenog skupa S. Za svako s,t \in S, gde $s\leq t$, neka je dato preslikavanje $f_{s,t}:X_t \to X_s$. Za $X_F = \{X_s,f_{s,t},S\}$

reći ćemo da je projektivni sistem F-prostora ako je: $f_{s,t}$ je F-neprekidno za svako s,t \in 5 (s \in t) pri čemu je $F_{s,5}$ je indentično preslikavanje za svako s \in 5, i ako je s \in t \in r tada je $f_{s,t}$ o $f_{t,r}$ = $f_{s,r}$.

Neka je \overline{X} podskup Dekartovog proizvoda \overline{TT} X_s koji se sastoji od onih tačaka $x \in \overline{TT}$ X_s za koje je $f_{s,t}(p_t(x) = p_s(x), s$ za svako s,t \in S, s \neq t, gde su sa p_s , p_t označene odgovarajuće projekcije. Za svako s \in S, $f_s: \widetilde{X} \to X_s$ se naziva kanonskim preslikavanjem ($f_s = p_s|X$), a F-neprekidno preslikavanje $f_{s,t}$ se naziva F-vezujuće preslikavanje od X_r .

<u>Definicija 1.1:</u> Najgrublja F-topologija \widetilde{T} na \widetilde{X} za koju su kanonska preslikavanja f_s (s $\not\in$ S) F-neprekidna se zove projektivni limes projektivnog sistema X_F , a $(\widetilde{X},\widetilde{T})$ se naziva limes F-prostor projektivnog sistema F-prostora.

<u>Propozicija 1.2:</u> Neka je X_F projektivni sistem F-prostora (nad S) i neka je $(\widetilde{X},\widetilde{T})$ limes F-prostor od X_F sa kanonskim preslikavanjima f_s (seS). Tada skup svih F-skupova oblika $f_s^{-1}(u_s)$, $u_s \in T_s$, seS čini bazu za \widetilde{T} .

Dokaz. Neka je kolekcija svih F-skupova oblika $\{f_s^{-1}(u_s): u_s \in T_s\}$ i neka je ps projekcija za proizvod F-prostora $\{T_s \times S_s \in S_s \in$

projektivni sistem F-prostora. Neka je w otvoren F-skup u limes F-prostor $(\widetilde{X},\widetilde{T})$. Tada po propoziciji 1.1 postoji otvoren F-skup g u \widetilde{T} X tako da je w = $g|\widetilde{X}$. Po definiciji I. 3.2 proizvod seS

F-topologije, $g = \bigvee_{s_i \in S^+} \bigwedge_{i=1}^{n} p_{s_i}^{-1} (u_{s_i})$, $s^* \in S$, $u_{s_i} \in T_{s_i}$. Inači

$$w = (\bigvee_{s_{i}} \bigwedge_{i=1}^{n-1} p_{s_{i}}^{-1}(u_{s_{i}})) | \widetilde{x} = \bigvee_{s_{i}} \bigwedge_{i=1}^{n} (p_{s_{i}}(\widetilde{x})^{-1} = \bigvee_{s_{i}} \bigwedge_{i=1}^{n} f_{s_{i}}^{-1}(u_{s_{i}}),$$

tj.
$$w = \bigvee_{s_i} \bigwedge_{i=1}^{n} f_{s_i}^{-1} (u_{s_i})$$
.

Pošto je S usmeren skup, tada postoji te S tako da je s $_{i}$ \leq t za svako i = 1,2,...,n.

Neka je $h_t = \bigwedge_{i=1}^{n} f_{s_i,t}^{-1}(u_{s_i})$, tada je $h_t \in T_t$ i

$$f_{t}^{-1}(h_{t}) = f_{t}^{-1}(\bigwedge_{i=1}^{n} f_{s_{i},t}^{-1}(u_{s_{i}})) = \bigwedge_{i=1}^{n} (f_{s_{i},t}^{-1} f_{t}^{-1})(u_{s_{i}}) = \bigwedge_{i=1}^{n} f_{s_{i}}^{-1}(u_{s_{i}}).$$

Tada je $\bigvee_{t \geq s_i} f_t^{-1}(h_t) = \bigvee_{s_i \in S^*} \bigwedge_{i=1}^n f_{s_i}^{-1}(u_{s_i}) = w$

i $f_t^{-1}(h_t) \in \beta$. Odavde je zaista baza za T_t . \Box

Ova baza se zove standardna baza za \widetilde{T} i označava se sa $\beta(X)$.

<u>Propozicija 1.3:</u> Ako je (X_s,T_s) , $s \in S$ kolekcija FT_1 FT_2 , $x = X_s$ Hausdorff ili F-regularnih F-prostora, tada je limes F-prostor $(\widetilde{X},\widetilde{T})$ projektivnog sistema $X_F = \{X_s,f_s,t,S\}\}$ FT_1 , FT_2 $x = X_s$ Hausdorff, F- regularan F-prostor.

<u>Dokaz.</u> Iz propozicije I.3.8 i iz činjenice da su FT_1 , FT_2 , \propto -Hausdorff i F-regularan nasledna svojstva sledi dokaz naše propozicije.

Sledeća propozicija daće nam vezu izmedju indukovanog F-prostora projektivnog limesa topoloških prostora i limes F-prostora indukovanih F-prostora. Ali prvo dajmo Weiss-ovu propoziciju 3.4 [2] ako lemu bez dokaza.

Lema 1.1: Neka su data dva topološka prostora (X,R) (Y,J) i preslikavanje $f:(X,R) \rightarrow (Y,J)$. Tada je f neprekidno ako i samo ako $f:(X,w(R)) \rightarrow (Y,w(J))$ je F-neprekidno gde su (X,w(R)), (Y,w(J)) indukovani F-prostori na (X,R) i (Y,J) kao i glavi III.

Lema 1.2: Neka je $X = \{X_s, f_{s,t}, S\}$ projektivni sistem topoloških prostora nad S. Tada je $X_F = \{X_s, f_{s,t}, S\}$ projektivni sistem indukovanih F-prostora.

<u>Dokaz.</u> Za s,t \in S sa s \leq t, $f_{s,t}:(X_s,R_s) \longrightarrow (X_t,R_t)$ je neprekidno ako i samo ako je $f_{s,t}:(X_s,w(R_s)) \longrightarrow (X_t,w(R_t))$ je F-neprekidno po lemi 1.1, što dokazuje našu lemu.

Propozicija 1.4: Neka je $X = \{X_s, f_{s,t}, S\}$ projektivni sistem topoloških prostora. Ako je (X,R) projektivni limes prostora X,

tada je $(\widetilde{X}, w(\widetilde{R})) = (\widetilde{X}, (\widetilde{w(R)}))$.

 $\underbrace{\text{Ookaz}_{\bullet}} \longrightarrow \text{Neka je } g_{n} \ \overrightarrow{w(R)} \text{-otvoren } F\text{-skup. Tada po propoziciji}$ $1.2 \ g = \bigvee_{s} \bigwedge_{i=1}^{n} f_{s_{i}}^{-1}(u_{s_{i}}) \ \text{gde je } u_{s_{i}} \ \overrightarrow{w(R_{s_{i}})} \text{- otvoren } F\text{-skup i}$ $f_{s_{i}} : (\widetilde{X}, \widetilde{w(R)}) \longrightarrow (X_{s_{i}}, w(R_{s_{i}})).$

Ali $u_{s_{i}}^{-1}(\alpha, 1]$ je $R_{s_{i}}^{-1}$ -otvoren skup za svako $\alpha \in [0, 1)$ i za svako i = 1, 2, ..., n, $s \in S$. Kako je $(f_{s_{i}}^{-1}(u_{s_{i}}))^{-1}(\alpha, 1] = f_{s_{i}}^{-1}(u_{s_{i}}^{-1}(\alpha, 1])$,

to je $\bigcup_{s=1}^{n} (f_{s_i}^{-1}(u_{s_i}))^{-1}(\alpha,1] \xrightarrow{R-\text{otvoren skup. Dakle,}}$

 $\bigvee_{s_i} \bigcap_{i=1}^{n} f_{s_i}^{-1}(u_{s_i}) \in \overline{w(R)} \text{ tj. g je } \overline{w(R)}\text{-otvoren } F\text{-skup.}$

Tada je g w(R)-otvoren F-škup. Tada je g $^{-1}({}_{0},1]$ \widetilde{R} -otvoren skup za svako ${}_{0}\in [0,1)$. Znači

 $g^{-1}(d,1] = \bigcup_{s_i} \bigcap_{i=1}^{n} f_{s_i}^{-1}(u_{s_i})$ gde je u_{s_i} β_{s_i} -otvoren i

 $f_{s_i}: (\bar{X}, \bar{R}) \longrightarrow (X_{s_i}, R_{s_i})$ je kanonsko preslikavanje.

Sada za svako i = 1, 2, ..., n, $/(u_{s_i})$ je $w(R_{s_i})$ -otvoren F-skup i po lemi 1.1 $f_{s_i}^{-1}((u_{s_i}))$ je otvoren F-skup u \widetilde{X} i otuda

$$\bigvee_{s_{i}} \bigwedge_{i=1}^{n} f_{s_{i}}^{-1}(\mu(u_{s_{i}})) \text{ je } \widetilde{\psi(R)}\text{-otvoren F-skup. Ali } \bigvee_{s_{i}} \bigwedge_{i=1}^{n} f_{s_{i}}^{-1}$$

$$(\mathcal{M}(u_{s_i})) = \mathcal{M}(\bigcup_{s_i} \bigcap_{i=1}^{n} f_{s_i}^{-1}(u_{s_i}))$$
 tj. $\bigvee_{s_i} \bigcap_{i=1}^{n} f_{s_i}^{-1}(\mathcal{M}(u_{s_i})) =$

$$= (g^{-1}(\sim,1]) \geq g.$$

Odavde je g $\widetilde{u(R)}$ -otvoren F-skup i sledstveno $(\widetilde{X}, u(\widetilde{R})) = (\widetilde{X}, u(\widetilde{R}))$.

Lema 1.3: [10] 3.1: Neka su (X,T), (Y,S) topološki generisana F-prostora. Tada je $f:(X,T) \rightarrow (Y,S)$ F-neprekidno ako i samo ako je $f:(X,i(T)) \rightarrow (Y,i(S))$ neprekidno gde su (X,i(T)) i (Y,i(S)) modifikovane topologije. \Box

<u>primedba.</u> Koristeći gornju lemu mi primećujemo da ako je $X_F = \{X_s, f_s, t, S\}$ projektivni sistem F-prostora, tada je $X_s = \{X_s, f_s, t, S\}$ projektivni sistem modifikovanih topologija.

Sledeća propozicija daje vezu izmedju modifikacije limes F-prostora i projektivnog limes prostora modifikovanih topologija.

<u>Propozicija 1.5:</u> Neka je $X_F = \{X_s, f_s, t, S\}$ projektivni sistem topološki generisanih F-prostora. Ako je (X,T) limes F-prostorod X_F tada:

$$(\widetilde{X}, i(\widetilde{T})) = (\widetilde{X}, i(\widetilde{T})), i(T) = \prod_{s \in S} i(T_s).$$

Dokaz. \Longrightarrow Neka je G i(T)-otvoren skup. Tada je G = $g^{-1}(A,1]$ za $g \in T$ i $A \in [0,1)$. Po propoziciji 1.2, $g = \bigvee_{s \in S^*} f_s^{-1}(u_s)$ gde je $u_s^{-1}(A,1]$ i (T_s) -otvoreno, dakle G je i(T)-otvorensskup.

Neka je G i(T)-otvoren skup gde je i(T) projektivni limes prostor modifikovanih topologija $i(T_s)$, $s \in S$. Tada je $G = \bigcup_{s \in S^+} f_s^{-1}(u_s)$, u_s je $i(T_s)$ -otvoren i $f_s: (X,i(T)) \rightarrow (X_s,i(T_s))$ su kanonska preslikavanja; znači $u_s = g_s^{-1}(\alpha,l]$ za $g_s \in T_s$ i

∝∈[0,1) i otuda

$$G = \bigcup_{s} f_{s}^{-1}(g_{s}^{-1}(\alpha, 1]) = \bigcup_{s} (f_{s}^{-1}(g_{s}))^{-1}(\alpha, 1] = \bigvee (f_{s}^{-1}(g_{s}))^{-1}(\alpha, 1]$$

po lemi 1.3. tako da je $\bigvee (f_s(g_s)) \in T$ i sledstveno

 $V(f_s(g_s))(d,1] \in i(T)$ tj. G je i(T)-otvoren skup.

<u>Propozicija 1.6:</u> Neka je X_F projektivni sistem \mathscr{A} -Hausdorff F-prostora (nad S). Tada je X-zatvoren u ($\prod X_S$, $\prod T_S$) za $s \in S$ $s \in S$

Dokaz. Neka je $X_F = \{X_s, f_{s,t}, S\}$ projektivni sistem α -Hausdorff F-prostora, $x \in \prod_{s \in S} X_s$ i $x \notin \widehat{X}$. Tada postoji $s, t \in S$, $s \leq t$, tako da je $f_{s,t}$ $p_t(X) \neq p_s(X)$.

Iz α -Hausdorff-nosti postoje otvoreni F-skupovi u_s , v_s u_s u_s tako da je $u_s(p_s(x))>\alpha$, $v_s(f_s,t^p_t(x))>\alpha$ i $u_s\wedge v_s=0$. Otuda $(p_s^{-1}(u_s))(x)>\alpha$, $((f_s,t^p_t)^{-1}(v_s))(x)>\alpha$ u $(\exists x_s,\exists x_s)$. Neka je $u=p_s^{-1}(u_s)\wedge(f_s,t^p_t)^{-1}(v_s)$. Tada je u_s otvoren F-skup u_s u_s

Propozicija 1.7: Neka je $X_F = \{X_S, f_{S,t}, S\}$ projektivni sistem Hausdorff-ovih F-prostora. Tada je

$$\mu(\prod X_s X)$$
 otvoren F-skup u $\prod X_s$.
 $s \in S$

Dakaz. Neka je x = $\prod_{s \in S} x_s$ X. Tada postoji s,t $\in S$, s \leq t tako s $\in S$ da je $f_{s,t}$ $p_t(x) \neq p_s(x)$, te po definiciji I.2.3 Hausdorff-ovog F-prostora postoje u_s, v_s otvoreni F-skupovi u X_s tako da je u_s(p_s(x)) = 1 = v_s(f_{s,t} p_t(x)) i u_s \wedge v_s = 0. Dakle, $(p_s^{-1}(u_s))(x) = 1 = ((f_{s,t} p_t)^{-1}(v_s))(x)$. Ako stavimo $u_x = p_s^{-1}(u_s) \wedge (f_{s,t} p_t)(v_s)$, tada je u_x otvoren F-skup u $\prod_{s \in S} x_s$

<u>Lema 1.4:</u> Neka je Y pogodan zatvoren skup u F-prostoru (X,T).
Tada:

- (|) E je zatvoren F-skup u Y sledi E je zatvoren F-skup u X.
- (||) G je zatvoren F-skup u X sledi G|Y je zatvoren F-skup u Y.

<u>Ookaz.</u> Neka je E zatvoren F-skup u Y kao potprostoru. Tada postoji zatvoren F-skup G u X tako da je G/Y = E; znači E = $G \wedge \mu(Y)$ i $\overline{I}_{X} - E = \overline{I}_{X} - (G \wedge \mu(Y)) = (\overline{I}_{X} - G) \vee (\overline{I}_{X} - \mu(Y)) \text{ otvoren F-skup u}$ X po Demorganovom zakonu I.1.2; znači E je zatvoren F-skup u X.

(II) je jasno. \square

Pošto propozicija 1.7 pokazuje da za projektivni sistem X_F Hausdorff-ovih F-prostora, X je 1*-zatvoren, to iz propozicije I.2.6 sledi da je X pogodan zatvoren u $\prod X_s$. Ovo nas dovodi do sledeće propozicije.

Propozicija 1.8: Neka je $X_F = \{X_s, f_{s,t}, S\}$ projektivni sistem Hausdorff-ovih F-prostora. Tada je limes F-prostor (\widetilde{X}, T) zatvoren F-potprostor od $(\prod_{s \in S} X_s, \prod_{s \in S} T_s)$.

Dokaz. je direktna posledica propozicije 1.7 i leme 1.4. \square Korolar 1.1: Neka je X_F projektivni sistem jako & -Hausdorff
ovih F-prostora. Tada (X,T) je zatvoren F-podprostor od

($\prod_{s \in S} X_s$, $\prod_{s \in S} T_s$). \square

Sledeći rezultat je generalizacija jednog od najvažnijih rezultata za inverzne sisteme topoloških prostora.

<u>Propozicija 1.9:</u> Limes F-prostor projektivnog sistema &-bikompaktnih F-prostora je neprazan &-bikompaktan F-prostor.

Dokaz. Neka je (X,T) limes F-prostor projektivnog sistema $X_F = \{X_s,f_{s,t},S\}$ & -bikompaktnih F-prostora za & $\in [0,1)$. Poproduk teoremi Tychonoff-a za F-prostore - propozicija III.3.2 - i propoziciji I.3.8 $(\prod X_s, \prod T_s)$ je & -bikompaktni F-prostor. SeS seS seS seS prethodnim dobijamo da je (X,T) & -bikompaktan po propoziciji I.2.7.

Moramo dokazati još da je $X \neq \emptyset$. Za tes, neka je $Y_t = \{x \in \prod X_s : p_s(x) = f_{s,t} p_t(x) \text{ za svako } s \in S \text{ takvo da je } s \neq t \}$. Tada Y_t je α -zatvoren u $\prod X_s$ po propoziciji I.3.4 i $Y_t \neq \emptyset$. Naime, za $x_t \in X_t$ i za $s \in S$ neka je $Z_s \subseteq X_s$ i $Z_s = \{f_{s,t}(x_t)\}$ ako je $s \leq t$ i $Z_s = X_s$ inače. Neka je $Z = \prod Z_s$. Tada je $Z \neq f$, Z je podskup od $\prod X_s$ i $Z \in Y_t$.

Ako su t,s \in S takvi da je s \in t, tada je Y \in Y \in Sledi da je $\{Y_t\}_{t\in S}$ opadajuća familija \in -kompaktnih skupova te na osnovu propozicije I.2.8, mi imamo $\prod Y_t \neq 0$.

Neka je $x \in \bigcap_{t \in Y_t} Y_t$. Ako su t, $r \in S$, $t \le r$, tada kako je $x \in Y_r$, $p_t(x) = f_{t,r} p_r(x)$ imamo da je $x \in \widetilde{X}$ što se i tražilo.

<u>Korolar 1.2:</u> Neka je $(\widetilde{X}, \widetilde{T})$ limes F-prostor projektivnog sistema

 X_F jako \sim -bikompaktnih prostora. Tada je (X,T) jako \sim -bikom-paktan.

<u>Korolar 1.3:</u> Limes F-prostor projektivnog sistema C_{II} , prebro-jivo Δ -kompaktnih i Δ -Hausdorff-ovih F-prostora je neprazan.

Korolar 1.4: Limes F-prostor projektivnog sistema α -Lindelöf-ovih, prebrojivo α -kompaktnih i α -Hausdorff-ovih F-prostora je neprazan.

Definicija 1.2: Mi ćemo reći da je $Y_F = \{Y_s, f_{s,t}, S\}$ F-podsistem od $X_F = \{X_s, f_{s,t}, S\}$ nad istim usmerenim skupom.5, ako je Y_s F-podprostor od X_s i $g_{s,t} = f_{s,t}/Y_t$ (s,t \in S, s \in t.) Primetimo da je $f_{s,t}(Y_t) \subset Y_s$ (s \in t).

Propozicija 1.10. Neka je $X_F = \{X_s, f_{s,t}, S\}$ projektivni sistem F-prostora i neka je (X, T) njegov limes F-prostor. Dalje, neka je $Y_F = \{Y_s, g_{s,t}, S\}$ F-podsistem od X_F . Tada je limes F-prostor (Y, T_y) F-podprostor od (X, T).

Dokaz. Pošto je za svako s $\in S$, $Y_s \subset X_s$, mi imamo da je $Y = (TY_s) TX$ i da je $Y = T_s = T_s$ fotopologija indukovana topologijom s S proizvod $S = T_s = T_s$

Ali (TY_s , TT_s) je indukovan proizvod F-prostorom seS seS s Dakle (Y,T_y) je F-podprostor od (X,T). seS seS seS seS seS Neka je (X,T) limes F-prostor projektivnog sistema

 $X_F = \{X_s, f_{s,t}, S\}$ F-prostora sa kanonskim preslikavanjima $f_s : X \longrightarrow X_s$. Neka je $Y = \{f_s(\widetilde{X}), g_{s,t}, S\}$ F-podsistem od X_F . Tada je $(\widetilde{X}, \widetilde{T})$ limes F-prostor od Y_F .

Primetimo da je svako F-vezujuće preslikavanje $g_{s,t}$ surjektivno, što takodje važi i za kanonska preslikavanja $\widetilde{X} \longrightarrow f_s(X)$.

2. PROJEKTIVNI NIZOVI F-PROSTORA

Projektivni niz se posmatra kao specijalan slučaj projektivnog sistema. Primetimo da ako je $X = \{X_n, f_{n,m}, N\}$ projektivni niz nad N (N-prirodni brojevi sa uobičajenim poretkom) gde su svi X_n neprazni i $f_{n,m}$ surjektivno za svako $n,m\in \mathbb{N},\ n\le m,$ tada je projektivni limes X od X neprazan a da pri tome ne mora zadovoljavati nikakvo F-topološko svojstvo.

Propozicija 2.1: Neka je $X_F = \{X_n, f_{n,m}, N\}$ projektivni niz prebrojivo α -kompaktnih F-prostora. Ako su svi (skupovi $f_{n,m}(X_m)$ ($n \neq m$) α -zatvoreni u X_n , tada je limes F-prostor (X,T) od X_F neprazan.

Nokaz. Za svako ne N, $\left\{f_{n,m}(X_m)\right\}_{m\geq n}$ je kolekcija α -zatvorenih skupova u X_n po pretpostavci i

 $f_{n,n+1}(X_{n+1}) \supset f_{n,n+2}(X_{n+2}) \cdots f_{n,m}(X_m) \qquad m \geqslant n.$ Dakle, $\left\{f_{n,m}(X_m)\right\}_{\substack{m \geqslant n \\ \text{skupova u prebrojivom}}} \text{ is opadajuća kolekcija } \propto -zatvorenih$ skupova u prebrojivom $\propto -kompaktnom X_m$, te je po propoziciji $1.2.8 \bigcap_{\substack{n \leq m \\ n \neq m}} f_{n,m}(X_m) \neq 0 \text{ i prebrojivo je } \propto -kompaktan.$

Stavimo $Y_n = \bigcap_{n \neq m} f_{n,m}(X_m)$. Ako je $n \neq m$, tada je $f_{n,m}(Y_m) \subset Y_n$. U stvari, $f_{n,m}(Y_m) = f_{n,m}(\bigcap_{m \neq \ell} f_m, (X_\ell))$ $\subset \bigcap_{m \neq \ell} \{f_{n,m}(f_m, \ell(X_\ell))\} = \bigcap_{n \neq \ell} f_{n,\ell}(X_\ell) = Y_n$.

Sada neka je $y_n \in Y_n$, znači $y_n \in \bigcap_{n \neq \ell} f_{n,\ell}(X_\ell)$ tako da je dovoljno pokazati da je $y_m \in f_m, \ell(X_\ell)$ za svako $m \ge n$. Neka je m dato i izaberimo $\ell \in \mathbb{N}$ tako da je $\ell \ge n$, $\ell \ge m$. Tada $y_n \in f_n, \ell(X_\ell)$. Dalje, neka je $x_\ell \in X_\ell$ takvo da je $f_n, \ell(X_\ell) = y_n$. Stavimo $y_m = f_m, \ell(X_\ell)$; tada je $y_m \in Y_m$ i $f_{n,m}(y_m) = f_{n,m}(f_m, \ell(X_\ell)) = f_n, \ell(X_\ell)$ Dakle, $y_n \in f_n, m(Y_m)$ i napokon $f_n, m(Y_m) = Y_n$ $(n \le m)$.

Uzimajući $g_{n,m} = f_{n,m}|_{Y_m}$, mi.dobijamo projektivni niz $Y_F = \{Y_m, g_{n,m}, N\}$ F-prostora, gde su preslikavanja $g_{n,m}$ surjektivna. Znači limes F-prostor $(Y, \overline{Y_Y})$ od Y_F je neprazan i sledstveno (X, \overline{Y}) je neprazan F-prostor. \square

Definicija 2.1: Neka je Υ : $(X,T) \rightarrow (Y,R)$ F-neprekidno preslikavanje, Υ se zove jako F-zatvoreno ako je F-zatvoreno i ako za svaki α -zatvoren skup A u X, Υ (A) je α -zatvoren u Y.

Propozicija 2.2: Neka je $X_F = \{X_n, f_{n,m}, N\}$ projektivni niz prebrojivo $\not\sim$ -kompaktnih $\not\sim$ -Hausdorff-ovih F-prostora sa jako F-zatvorenim kanonskim preslikavanjima. Tada je limes F-prostor $(\widetilde{X}, \widetilde{T})$ prebrojivo $\not\sim$ -kompaktan F-prostor.

Dokaz. Neka je (X,T) limes F-prostor od X_F i neka je $\{E_i\}_{i=1}^\infty$ ∞ -centrirana kolekcija zatvorenih F-skupova u X. Po pretpostavci

 $f_n(\widetilde{X})$ je ∞ -zatvoren u X_n zasvako ne N, gde su f_n kanonska preslikavanja, te na osnovu propozicije I.2.7, $f_n(\widetilde{X})$ je prebrojivo ∞ -kompaktno.

Neka je $Y_F = \{f_n(\widetilde{X}), g_{n,m}, N\}$ gde je $g_{n,m} = f_{n,m}/f_m(X)$ n $\leq m$. Tada je Y_F podniz od X_F koji zadovoljava uslov propozicije 2.1, dakle, limes F-prostor $(\widetilde{Y}, \widetilde{T_Y})$ je neprazan i $\widetilde{Y} \subseteq \widetilde{X}$.

 $\text{Kako je } \left\{ g_{m}(E_{i}|\widetilde{Y}) \right\}_{i=1}^{\infty} \text{ d-centrirana familija zatvorenih } \\ \text{F-skupova u } Y_{m} \text{ i pošto je } Y_{m} \text{ prebrojivo } \text{ d-kompaktno tada po } \\ \text{propoziciji I.2.4 postoji } Y_{m} \in Y_{m} \text{ takvo da je } \left(g_{m}(E_{i}|\widetilde{Y}) \right) \left(y_{m} \right) \geq 1-d \text{ za svako } i = 1,2,\dots . \\ \text{Odavde sledi da postoji } y \in Y \text{ takvo } \\ \text{da je } g_{m}(y) = y_{m} \text{ i } \left(E_{i}|\widetilde{Y} \right) \left(y \right) \geq 1-d \text{ za svako } i = 1,2,\dots . \\ \end{aligned}$

Pošto je $\widetilde{Y}\subseteq\widetilde{X}$ to postoji $x\in X$ takvo da je $E_i(x)\geq 1-\alpha$ za svako i = 1,2,..., tj. $(\widetilde{X},\widetilde{T})$ je prebrojivo α -kompaktno.

<u>Propozicija 2.3:</u> Limes F-prostor projektivnog niza C_{ij} F-prostor.

<u>Ookaz.</u> Kako je po propoziciji I.3.7 proizvod prebrojive familije C_{II} F-prostora C_{II} F-prostor, to dokaz sledi iz opšte činjenice da je svaki F-podprostor C_{II} F-prostora C_{II} F-prostor.

Neka je (X,T) F-prostor, za $f \in I^X$ se kaže da je ℓ_{∞} skup ako je $f = \bigwedge_{i=1}^{\infty} g_i$ gde su g_i otvoreni F-skupovi za svako $i = 1,2,\ldots$ Dalje, za f se kaže da je f skup ako je f f f in f gde je f zatvoren F-skup za svako f in f zatvoren F-skup za svako f in f zatvoren f skupa f skup; f ako je f in f skup, tada je co f f skup.

Definicija 2.2: F-skup (X,T) se zove ℓ F-prostorom ako je svaki zatvoren F-skup u X ℓ_∞ -skup.

Jasno je da je svaki F-normalan ℓ F-prostor ujedno i savršeno normalan F-prostor.

 $\frac{\text{Propozicija 2.4:}}{X_{F}} = \left\{ X_{n}, f_{n,m}, N \right\} \text{ ℓ F-prostora, tada je } (\widetilde{X}, \widetilde{T}) \text{ ℓ ℓ F-prostora.}$

Dokaz. Pretpostavimo da je (X,T) limes F-prostor projektivnog niza X_F cl F-prostora i neka je E zatvoren F-skup u X. Tada za svako neN, cl $(f_n(E))$ je zatvoren F-prostor u X_n te iz hipoteze cl $(f_n(E)) = \bigwedge_{i=1}^{\infty} u_n$, gde je u_n otvoren F-skup u X_n za svako je u_n otvoren F-skup u u_n za svako je u_n otvoren F-skup u u_n za svako neN, imamo $f_n^{-1}(u_n) \ge u_{n+1,j}$, a $u_n \ge u_{n,j+1}$ za svako neN, imamo $f_n^{-1}(u_n) \ge E$ za $n \in N$.

Pretpostavimo da je q jedna F-tačka u X, $q \not\in E$, tako da za svako n, $q \in f_n^{-1}(u_{n,n})$. Za neko $n \in \mathbb{N}$, $f_n(q) \not\in c\ell(f_n(E))$ i sledstveno $f_n(q) \not\in u_{n,n}$, za neko $m \ge n$. Tada je $f_m(q) \not\in u_{m,n} \le f(u_{n,m})$. Znači $q \not\in f_m^{-1}(u_{m,m})$ i dakle $E = \bigwedge_{m=1}^{\infty} f_n^{-1}(u_{n,m})$, gde je $u_{n,m}$ otvoren F-skup u X_n .

Definicija 2.3: Preslikavanje $\Upsilon: X \rightarrow Y$ ima klint svojstvo ako za neki F-skup g u Y, i za neki F-skup f u X, $\Upsilon^{-1}(c\ell g)=$ = $c\ell(\Upsilon^{-1}(g))$ i Υ (int f) = int(Υ (f)).

Dokaz. Neka je (X,T) limes F-prostor projektivnog niza $X_F = \{X_D, f_{D,m}, N\}$ savršeno normalnih F-prostora. Po propoziciji

2.4 dovoljno je pokazati da je (X,T) normalan F-prostor. Neka je g zatvoren F-skup u X i h otvoren F-skup u X takav da je g h. Tada za svako n \in N, $cl(f_n(g))$ je zatvoren F-skup u X_n i $int(f_n(h))$ je otvoren F-skup u X_n tako da je $cl(f_n(g)) \leq int(f_n(h))$ Kako je X_n normalan F-prostor, to postoji otvoren F-skup k u X_n tako da je

$$cl(f_n(g)) \le k \le cl \ k \le int(f_n(h)).$$

Znači

$$f_n^{-1}(cl\ f_n(g)) \le f_n^{-1}(k) \le f_n^{-1}(cl\ k) \le f_n^{-1}(int(f_n(h))).$$

Pošto svako f_n ima klint svojstvo, tada

$$f_n^{-1}(f_n(cl g)) \le f_n^{-1}(k) \le cl(f_n^{-1}(k)) \le f_n^{-1}(f(int h)).$$

Drugim rečima

$$f_n^{-1}(f_n(g)) \le f_n^{-1}(k) \le cl(f^{-1}(k)) \le f_n^{-1}(f_n(h))$$

Cdatle

$$g \le f_n^{-1}(k) \le cl(f^{-1}(k)) \le h.$$

Skup $u = f_n^{-1}(k)$ je otvoren F-skup u \widetilde{X} i $g \le u \le cl$ $u \le h$, što se i tražilo.

3. F-dima LIMESA F-PROSTORA

Lema 3.1: Neka je (X,T) α -kompaktan F-prostor i neka je β baza za T zatvoreno u odnosu na konačno uniranje. Ako je $\{u_i\}_{i=1}^k$ α -senčenje za X, tada postoji α -senčenje $\{v_i\}_{i=1}^k$ za X koji se sastoji od elemenata iz β tako da je $v_i \in u_i$ za svako $i=1,2,\ldots,k$.

Dokaz. Neka je β baza za T. Za svako x \in X postoji neko $i \in \{1,2,\ldots,k\}$ tako da je $u_i(x) > \alpha$, gde je $u_i = \bigvee_{x \in \beta} b_x$, što daje $b_x \in u_i$ za neko $b_x \in \beta$; znači $\{b_x\}_{x \in X}$ čini jedno α -senčenje od X i po hipotezi postoji α -podsenčenje $\{b_1,\ldots,b_3\}$ od X. Za svako $t = 1,2,\ldots,s$ izaberimo $\{a_i(t)\}_{i=1}^{k}$ stavim $a_i = \{a_i(t)\}_{i=1}^{k}$ konačno uniranje to je $a_i \in u_i$ za $a_i = 1,2,\ldots,k$. Zaista, $\{a_i(t)\}_{i=1}^{k}$ je $a_i(t)$ -senčenje od X. $a_i(t)$

Propozicija 3.1: Neka je (X,T) limes F-prostor projektivnog sistema $X_F = \{X_s,f_s,t,S\}$ ∞ -bikompaktnih F-prostora. Ako je F-dim $X \le n$, tada svako ∞ -senčenje od X ima konačno ∞ -profinjenje reda $\le n$ čiji elementi pripadaju $\mathscr{F}(X)$.

Dokaz. Za $\Delta \in [0,1)$ neka je F-dim $X \le n$ i neka je V Δ -senčenje od X. Po propoziciji 1.9 (X,T) je Δ -bikompaktan F-prostor, gde je X neprazan, te postoji konačno Δ -podsenčenje $\left\{u_i\right\}_{i=1}^k$ za U. Kako je $\Delta(X)$ zatvoreno u odnosu na konačno uniranje dokaz sledi iz leme 3.1 i definicije za F-dim $\Delta(X)$ II.1.2.

Sledeća propozicija pokazuje da ako je (X,T) limes F-prostor projektivnog sistema ∞ -bikompakta koji zadovoljavaju da je F-dim $X_s \leq n$ tada je F-dim $X \leq n$.

<u>Propozicija 3.2:</u> Neka je $X_F = \{X_s, f_s, t, S\}$ projektivni sistemi d-bikompaktnih F-prostora takvih da je F-dim $X_s \le n$ za $s \in S$.

Tada je F-dim $X \le n$.

padaju $\beta(x)$, tj. u_i je oblika u_i = $f_{s_i}^{-1}(u_{s_i})$ $s_i \in S$, u_{si} je otvoren F-skup u X_{s_i} . Kako je S usmeren skup, to postoji t $\in S$ takvo da je $s_i \in t$ za svako s_i , i = 1, 2, ..., k.

Neka je $V_t = f_{s_i,t}^{-1}(u_{s_i})$. Tada V_{t_i} je otvoren F-skup u X_t i ako stavimo $V_t = \left\{V_t\right\}_{i=1}^k$ tada $f_t^{-1}(V_t) = U$.

Korolar 3.1: Neka je $X_F = \{X_s, f_s, t, S\}$ projektivni sistem strogo ∞ -bikompaktnih F-prostora takvih da je F-dim $X_s \le n$ za svako s \in S. Tada je F-dim $X_s \le n$.

Sledeća propozicija daje karakterizaciju &-bikompaktnih F-prostora preko limes F-prostora.

Propozicija 3.3: F-prostor (X,T) je strogo ∞ -bikompaktan i F-dim X = 0 ako i samo ako (X,T) je limes F-prostor konačno diskretnih F-prostora.

Dokaz. \Longrightarrow Neka je (X,T) limes F-prostor konačno diskretnih F-prostora. Za svako $\mathcal{A} \in [0,1)$ jasno (X,T) je α -bikompaktan F-prostor po propoziciji 1.9 jer svaki konačan diskretan F-prostor je α -bikompaktan.

Da bi dokazali da je F-dim X = 0 pretpostavimo obratno, tj. neka je F-dim X > 0 za svako $A \in [0,1)$. Uzmi $X_1 \in X$ i $g \in X \setminus \{x_1\}$, tada po definiciji A -Hausdorff-ovog F-prostora, postoje dva otvorena F-skupa u_{X_1}, u_{Y} $u \in X$ tako da je $u_{X_1}(x_1) > A$, $u_{Y}(y) > A$ i $u_{X_1} \land u_{Y} = 0$. Dakle, $\left\{u_{X_1}, u_{Y_1}\right\}_{Y \in X \setminus \{x_1\}}$ je A -senčenie za X i postoji konačan skup $\left\{y_1, \dots, y_Y\right\} \subseteq X \setminus \{x_1\}$, jer je X A -kompaktan, takav da je $\left\{u_{X_1}, u_{Y_1}\right\}_{i=1}^{i=1}$ konačan A -senčenje za X. Kako je F-dim X > 0, to postoji A -profinjenje A od $\left\{u_{X_1}, u_{Y_1}\right\}_{i=1}^{K}$ reda A 0, tj. postoje A 1, A 2, A 4 tako da je A 1, A 2, A 4 tako da je A 4 tako da je A 5 tako da je A 6 tako je kontradikcija. Dakle F-dim A 8 tako svako A 6 A 6 tako fe folim A 8 tako svako A 6 A 6 tako fe folim A 8 tako fe folim A 8 tako svako A 6 A 6 tako fe folim A 8 tako fe folim A 9 tako fe folim A 1 tako fe folim

Meka je (X,T) jako ∞ -bikompaktni F-prostor za koji važi F-dim X=0. Za svako $\infty \in [0,1)$, neka je $\mathcal{G}_{i} = \{G_{i}\}_{i \in A_{\infty}}$ ∞ -senčenje od X koji se sastoji od disjunktnih F-skupova, gde je A_{∞} konačan skup, tada $\Omega = \{\mathcal{G}_{i}\}_{i \in [0,1)}$ je familija svih konačnih disjunktnih ∞ -senčenja od X.

Ako je $f_{\mathcal{A}}$ d—senčenje od $f_{\mathcal{B}}$, $d \in \mathcal{B} \in I$, tada I je usmeren skup u odnosu na \in . Za $d \in \mathcal{B}$ mi možemo definisati $f_{\mathcal{A},\mathcal{B}}: A_{\mathcal{B}} \to A_{\mathcal{A}}$ sa $f_{\mathcal{A},\mathcal{B}}$ (i) = j, sledi $G_{j} \in G_{i}$, $i \in A_{\mathcal{B}}$, $j \in A_{\mathcal{C}}$.

Neka je za svako A_{α} data diskretna F-topologija (drugim rečima, A_{α} je F-topologija na A_{α} za svako $\alpha \in [0,1]$). Tada je jasno $f_{\alpha,\beta}$ F-neprekidno $(\alpha \neq \beta)$ i $A_F = \{A_{\alpha}, t_{\alpha,\beta}, I\}$ je projektivni sistem F-prostora nad I.

Neka je $(\widetilde{A},\widetilde{T})$ limes F-prostor od A_F i $f_\lambda = \widetilde{A} \longrightarrow A_\lambda$ neka je kanonsko preslikavanje za svako $\lambda \in I$.

Definišimo $\Psi: \widetilde{A} \longrightarrow X$ sa $\Psi(i) = x$ ako je $x \in \bigcap_{i=1}^{+} G_{i}^{+}$ tako da je $f_{\lambda}(i) = i_{\lambda} \in A_{\lambda}$.

Pokazaćemo da je \forall F-homeomofrizam. \forall je injektivno: Neka je i \neq j \in \widetilde{A} . Tada $f_{\lambda}(i) \neq f_{\lambda}(j) \in A_{\lambda}$ tj. $i_{\lambda} \neq j_{\lambda}$ i sledstveno $G_{i_{\lambda}} \neq G_{j_{\lambda}}$ za $G_{i_{\lambda}}$, $G_{j_{\lambda}} \in \mathcal{J}_{\lambda}$. Poslednje daje \forall (i) = x \neq y = \forall (j) ako je x \in $\bigcap_{\lambda \in [0,1)} G_{i_{\lambda}}^{+}$, y \in $\bigcap_{\lambda \in [0,1)} G_{j_{\lambda}}^{+}$.

 \forall je surjektivno: Neka je $x \in X$. Tada postoji $\lambda \in [0,1)$ i konačno disjunktno λ -senčenje f_{λ} tako da je $G_{i_0}(x) > \lambda$ za neko $G_{i_0}(x) = f_{\lambda}$ što povlači da je $f_{i_0}(x) = f_{\lambda}$

Znači postoji $i_0 \in \widetilde{A}$ takvo daa je $f_{\lambda}(i_0) = i_0$ i sledstveno $\Psi(i_0) = x$.

 \forall je F-neprekidno: Neka je u \neq 0 otvoren F-skup u X. Za $\lambda \in [0,1)$ postoji $i_0 \in \widetilde{A}$ i $x_i \in X$ tako da je u $(\lambda_i) > \lambda$ i $\forall (i_0) = x_i$ Otuda

$$Y^{-1}(u) = Y^{-1}[V p_{X_{i}} : x_{i} u^{+}, p_{X_{i}}(x_{i}) > \lambda] = V\{P_{Y^{-1}(X_{i})} : x_{i} \in u^{+}\} = V\{P_{i} : i \in \widetilde{A}\} = \text{otvoren } F\text{-skup } u \widetilde{A}.$$

 \forall je F-otvoreno preslikavanja: Neka je w otvoren F-skup u A. Tada $w = V\{p_i : p_i \in w\}$ i sledstveno $\forall (w) = \forall (V p_i) = V \forall (p_i) = V p_x$, gde je $x \in \bigcap_{d \in [0,1)} G^+$, $f_i(i) = i$, znači, $\forall (w)$ je $d \in [0,1)$ i , $f_i(i) = i$

otvoren F-skup u X. Dakle $(\widetilde{A}, \overline{T})$ je F-homeomorfan sa (X, T). \square Ako je $(\widetilde{X}, \overline{T})$ limes F-prostor projektivnog niza F
prostora koji zadovoljavaju F-dim $\leq p$ gde je $p \in \mathbb{N}$, $p \geqslant 0$, tada

prostora koji zadovoljavaju F-dim \leq p gde je p \in N, p \geqslant 0, tada pod kojim uslovima je tačno da je F-dim $\chi \leq$ p. Sledeće dve propozicije se bave tim pitanjem.

Propozicija 3.4: Neka je $X_F = \{X_n, t_{n,m}, N\}$ projektivni niz prebrojivo α -kompaktnih prostora koji zadovoljavaju F-dim $X_n \leq p$ $(p \in N, p \geqslant 0)$ i neka su svi $f_{n,m}(X_m) \propto -z$ atvoreni u $X_n(n \leq m)$. Ako svako konačno α -senčenje bilo kojeg F-podprostora od X_n je prebrojivo ekstenzibilno, tada je F-dim $X \leq p$.

Meka je $u_i = f_{n_i}^{-1}(v_{n_i})$ gde je $n_i \in \mathbb{N}$, a v_{n_i} je otvoren fiskup u X_n . Dalje, neka je $v_m = f_{n_i,m}^{-1}(v_n)$, $n_i \le m$ za svako $i = 1, 2, \ldots, k$. Stavimo $V_m = \left\{v_m\right\}_{i=1}^k$, tada je $f_m^{-1}(V_m) = U$ i $\left\{V_m \mid f_m(\widetilde{X})\right\}$ konačno α -senčenje od $f_m(\widetilde{X})$. Po propoziciji II.2.5

F-dim $f_m(\overline{X}) \leq p$ i sledstveno postoji konačno α -senčenje $\left\{G_m\right\}_{i=1}^k$ od $f_m(X)$ reda $\leq p$ i $G_m \leq V_m \mid f_n(\overline{X})$ za $i=1,2,\ldots,k$. Po pretpostavci postoji konačno α -senčenje $W=\left\{w_j\right\}_{i=1}^\infty$ od X_m tako da je $W \mid f_m(X)$ α -profinjenje od $\left\{G_m\right\}_{i=1}^k$ i otuda iz prebrojive

 α -kompaktnosti X_m-a postoji konačno α -podsenčenje $\left\{w_j\right\}_{i=1}^L$ (L > k). Drugim rečima, $\left\{w_j\right\}_{i=1}^k$ je α -profinjenje od

$$\left\{ \mathbf{G}_{m_{\mathbf{i}}} \right\}_{\mathbf{i}=1}^{k} \quad \text{reda} \leq \mathbf{p}. \quad \text{Znači,} \quad \mathbf{f}_{m}^{-1}(\left\{ \mathbf{w}_{\mathbf{j}} \right\}_{\mathbf{i}=1}^{k}) \text{ je } \mathbf{o} \text{-profinjenje}$$

od $f_n^{-1}(v_m)$ što povlači da je $f_m^{-1}(\left\{w_j\right\}_{i=1}^k)$ α -profinjenje od U reda $\leq p$, tj. F-dim $\widetilde{X} \leq p$.

<u>propozicija 3.5:</u> Neka je $X_F = \{X_n, t_{n,m}, N\}$ projektivni niz prebrojivo d-kompaktnih d-Hausdorff-ovih F-prostora sa jako F-zatvorenim kanonskim preslikavanjima. Ako je F-dim $X_n \leq p$ za svako ne N, tada je F-dim $X \leq p$.

Propozicija 3.5: Neka je jako prebrojivo \propto -kompaktni f-prostor (X,T) limes f-prostor projektivnog niza slabo normalnih f-prostor ra sa surjektivnim f-vezujućim preslikavanjima, gde je f-dim $\stackrel{\times}{\propto}$ n \leq p za svako n \in N. Tada je (X,T) slabo normalan f-prostor i f-dim $\stackrel{\times}{\propto}$ \in p.

<u>Dokaz.</u> Pokažimo prvo da je (X,T) slabo normalan F-prostor. Neka su H,k dva disjunktna zatvorena F-skupa u X i $f_n: X \longrightarrow X_n$ kanonsko preslikavanje za svako n \in N. Tada

$$\bigwedge_{n\in\mathbb{N}} f_n^{-1}(cl(f_n(k)) \wedge cl(f_n(H))) = 0$$

Kako je (X,T) strogo prebrojivo d-kompaktno po pretpostavci,

to je $f_n^{-1}(\operatorname{cl}(f_n(k)) \wedge \operatorname{cl}(f_n(H))) = 0$ za neko ne N po propoziciji I.2.4. Kako je svako $f_{n,m}$ (nem) surjektivno po hipotezi, to je svako f_n surjektivno po teoremi 0.3 i sledstveno $\operatorname{cl}(f_n(k)) \wedge \operatorname{cl}(f_n(H)) = 0$ u X_n . Ali X_n je slabo normalan F-prostor te postoje u_1, v_2 , otvoreni F-skupovi u X_n , tako da je $\operatorname{cl}(f_n(k)) \leq u_1$, $\operatorname{cl}(f_n(H)) \leq u_2$ i $u_1 \leq \operatorname{co} v_2$.

Odavde imamo

$$f_n^{-1}(cl(f_n(k)) \le f_n^{-1}(u_1), f_n^{-1}(cl(f_n(H))) \le f_n^{-1}(u_2)$$
 i

$$f_n^{-1}(u_1) \le f^{-1}(co u_2)$$
, tj. $k \le f_n^{-1}(u_1)$, $H \le f_n^{-1}(u_2)$ i

 $f_n^{-1}(u_1) \le co \ f_n^{-1}(u_2)$, gde su $f_n^{-1}(u_1)$ i $f_n^{-1}(u_2)$ otvoreni F-

skupovi u X. Dakle, (X,T) je slabo normalan F-prostor.

Neka je U = $\left\{u_i\right\}_{i=1}^{k}$ α -senčenje od X. Tada svako u_i =

 $= f_{n_i}^{-1}(v_{n_i}), \ n_i \in \mathbb{N}, \ v_{n_i} \text{ je atvoren F-skup u } X_{n_i}. \text{ Neka je } v_{m_i} = f_{n_i,m}(v_{n_i}) \ n_i \in m \text{ za svako } i = 1,2,\ldots,k. \text{ Stavimo } V_m = \left\{v_{m_i}^{-1}\right\}_{i=1}^k; \text{ tada je } f_m^{-1}(V_m) = 0, \text{ i kako je } f_m(X) = X_m, \text{ to je } v_m \text{ konačno } \alpha \text{ -senčenje od } X_m = f_m(X) \text{ za neko } \alpha \in [0,1). \text{ Kako je } F \text{ -dim } X_m \leq p, \text{ to postoji } \alpha \text{ -profinjenje } W \text{ od } V_m \text{ reda } \leq p \text{ te je } f_m^{-1}(W) \text{ } \alpha \text{ -profinjenje od } f_m^{-1}(V_m) = 0 \text{ čiji je red } \leq p.$

Dakle, F-dim $X \neq p$. \square

<u>Korolar 3.2:</u> Neka je jako prebrojivo \sim -kompaktni F-prostor (X,T) limes F-prostor projektivnog niza normalnih F_c-prostora sa surjektivnim F-vezama, gde je F-dim $_{\alpha}$ X_n $\leq p$ za svako n \in N.

Tada je (X,T) normalan F-prostor i F-dim X € p. □

Mi ćemo završiti ovaj odeljak dajući generalizaciju Delinić-Mardešićeve teoreme [19], drugim rečima daćemo dovoljan i potreban uslov za F-dim $X \leq n$. Koristićemo sličnu tehniku koja je korišćena prilikom dokaza te teoreme u topološkom slučaju.

Definicija 3.1. Projektivni sistem $X_F = \{X_s, f_{s,t}, S\}$ se zove \mathscr{A} -reverzibilnim ako za svaki otvoren F-skup u_s u X_s , $f_{s,t}^{-1}(X_s \mid \text{supp. } u_s)$ je \mathscr{A} -zatvoren u X_t , za $\mathscr{A} \in [0,1)$ i $s \in t$.

Lema 3.2: Neka je $(\widetilde{X},\widetilde{T})$ limes F-prostor \wedge -reverzibilnog sistema $X_F = \{X_s,f_{s,t},S\}$ \wedge -bikompaktnih F-prostora. Ako je s $\in S$ i u_s je otvoren F-skup u X_s takav da je supp. $u_s \supset f_s(\widetilde{X})$, tada postoji t $\in S$, $s \not\in T$ takvo da je $f_{s,t}(X_t) \subset \text{supp. } u_s$.

Dokaz. Pretpostavimo suprotno, tj. za svako t \in S, s \neq t mi imamo X $_t^* = f_t^{-1}(X_s)$ supp $u_s) \neq 0$. Po hipotezi X_t^* je α -zatvoreno u X $_t$ te otuda ono je α -kompaktno. Dalje, $X_F^* = \left\{X_t^*, f_{t,r}^*, S\right\}$, t,r \geqslant S i $f_{t,r}^* = f_{t,r}|X_t^*$ je projektivni sistem α -bikompaktnih F-prostora te mora imati neprazan limes F-prostor $(X_t^*, T_t^*) \subset (X_t^*, T_t^*)$ iz propozicije 1.9. Jasno $f_s(X_t^*) \subseteq X_s \setminus \sup u_s$ što je suprotno pretpostavci $f_s(X_t^*) \subset \sup u_s$. \square

Lema 3.3: Neka je $(\widetilde{X},\widetilde{T})$ dat kao u prošloj lemi, $U = \left\{ u_i \right\}_{i=1}^{K}$ d.—senčenje od X čiji članovi pripadaju $\Im(\widetilde{X})$ i neka je $s \in S$. Tada postoji $t \in S$, $s \neq t$ i konačno ∞ —senčenje $V_t = \left\{ v_t \right\}_{i=1}^{K}$ od X_t tako da je $f_t^{-1}(v_t) \leq u_i$ i red od $V_t \leq 0$ d reda $V_t \in V_t$ (ord $V_t \in V_t$) ≤ 0 d reda $V_t \in V_t$

Dokaz. Za svako $u_i \in V$, $u_i = f^{-1}(u_s)$, $s_i \in S$, u_s , je otvoren F-skup u X_s . Izaberi $s_0 \in S$, $s_0 > S$, s_1, \dots, s_k . Neka je $U_{s_0}i = f_{s_is_0}^{-1}(u_{s_i}), i = 1,2,...,k. Tada je <math>V_{s_0} = \{u_{s_0}i\}_{i=1}^{K}$ i $f_{s_0}^{-1}(u_{s_0}) = f_{s_0}^{-1} f_{s_i}^{-1}(u_{s_i}) = f_{s_i}^{-1}(u_{s_i}) = u_i$, a odavde $f_{s_0}^{-1}(u_{s_0}) = v$, tj. $f_{s_0}(u_{s_0})$ je d-senčenje od X. Znači v_{s_0} je α -senčenje od f $_{\mathbf{s}_{\mathbf{a}}}(\widetilde{\mathbf{X}})$ koje je α -kompaktno i sledi f $_{\mathbf{s}_{\mathbf{a}}}(\widetilde{\mathbf{X}})$ sup u_s gde je $u_s = \bigvee_{i=1}^{K} u_{s_i}$. Po lemi 3.2 postoji t \in S takvo da je $t \ge s_0 \ge s$ i $f_{s_0 t}(X_t) \subset \text{supp } u_{s_0}$. Stavimo $v_{t_i} = f_{s_0}^{-1}, t^{(u_{s_0}i)}$, tada je $V_t = \left\{ v_t, \right\}_{i=1}^{k}$ ∞ -senčenje od X_t i $f_t^{-1}(v_t)$ u_i za $i = 1, 2, \dots, k$. Sada ako je $v_{t i_1} \wedge \dots \wedge v_{t i_k} \neq 0$, to je $f_{s_0}^{-1}, t_{s_0}^{(u_{s_0})} \wedge f_{s_0}^{-1} t_{s_0}^{(u_{s_0})} \wedge \dots \wedge f_{s_0}^{-1} t_{s_0}^{(u_{s_0})} \neq 0$ te je takodje i $f_{t}^{-1} f_{s_{0},t}^{-1} (u_{s_{0},i_{1}}) \wedge \cdots \wedge f_{t}^{-1} f_{s_{0},t}^{-1} (u_{s_{0},i_{k}}) = f_{s_{0}}^{-1} (u_{s_{0},i_{1}}) \wedge \cdots \wedge$ $f_{s_0}^{-1}(u_{s_0}) \neq 0$. Sledi $u_{i_1} \wedge u_{i_2} \wedge \cdots \wedge u_{i_k} \neq 0$ te na kraju dakle dobijamo da je ord $(v_t) \leq ord(V)$. \square

Lema 3.4: Neka je (\bar{X},\bar{T}) dato kao u lemi 3.2. Ako je u sotvoren F-skup u X_s i v_t otvoren F-skup u X_t , s,t S, tako da je $f_t^{-1}(v_t) \leq f_s^{-1}(u_s)$, tada postoji reS, r>s,t tako da je $f_t^{-1}(v_t) \leq f_s^{-1}(u_s)$.

Dokaz. Pretpostavimo da tvrdnja nije tačna, drugim rečima za svako reS, r>s,t mi imamo $X_{\Gamma}^{+}=f_{s,\Gamma}^{-1}(X_{s}\setminus \text{supp } u_{s})\setminus f_{t,\Gamma}^{-1}(X_{t})$ supp v_{t} \neq p. Tada je $X_{\Gamma}^{+} \not\sim -\text{zatvoren } u_{\Gamma} \times x_{\Gamma}^{-1}$ i kao u lemi 3.2, mi bi smo imali inverzan podsistem $\not\sim -\text{bikompaktnih } F$ -prostora koji imaju neprazan limes F-prostor. Ovo bi vodilo ka:

Ova lema sada odmah daje sledeći rezultat.

primedba. U_s je α -senčenje od X_s i V_t je konačno α -senčenje od X_t takvo da $f_t^{-1}(V_t)$ profinjuje $f_s^{-1}(U_s)$; tada postoji reS,

 $r \ge s,t$, takvo da $f_{t,r}^{-1}(v_t)$ profinjuje $f_{s,r}^{-1}(v_s)$.

Propozicija 3.7: Neka je $X_F = \{X_s, t_s, t, S\}$ & -reverzibilan projektivni sistem & -bikompaktnih F-prostora sa limes F-prostorom (X,T). Tada je F-dim $X \le n$ ako i samo ako za svako se S i svako & -senčenje U_s od X_s postoji te S, s \le t, takvo da & -senčenje $f_{s,t}^{-1}(U_s)$ od X_t poseduje & -profinjenje reda \le n.

Dokaz. Neka je f~dim $\widetilde{X} \leq n$ i neka je U_s α -senčenje od \widetilde{X}_s . Tada je $f_s^{-1}(U_s)$ α -senčenje od \widetilde{X}_s . Po propoziciji 3.1 $f_s^{-1}(U_s)$ ima α -profinjenje $U = \{u_1, \dots, u_k\}$ čiji članovi pripadaju standardnoj bazi $\beta(\widetilde{X})$ i red od $V \leq od$ n. Po lemi 3.3, postoji t \in S, s \leq t, i konačno α -senčenje od $V_t = \{v_t\}_{i=1}^k$ tako da je $f_s^{-1}(v_t) \leq u_i$, za $i=1,2,\dots,k$ i $\operatorname{ord}(V_t) \leq \operatorname{ord}(U) \leq n$.

Na osnovu primedbe iza leme 3.4 gde za svako i = 1,2, ...,k, mi imamo $f_t^{-1}(v_t) \leq u_i$, te $f_t^{-1}(v_t)$ profinjuje $f_s^{-1}(u_s)$ sledi da postoji $r \in S$, $r \geq s$, t tako da $f_{t,r}^{-1}(v_t)$ profinjuje $f_{s,r}^{-1}(u_s)$. Znači ako je $w_r = f_{t,r}^{-1}(v_t)$, onda je $w_r \not\sim -$ senčenje od x_r jer v_t je $\not\sim -$ senčenje od x_t i jasno ord $(w_r) \leq$ ord $(v_t) \leq n$. Dakle, r i w_r zadovoljavaju traženo svojstvo.

Neka je U konačno ∞ -senčenje od X sa članovima za koje možemo pretpostaviti da su iz standardne baze $\mathcal{A}(X)$. Tada po lemi 3.3 postoji s \in S i konačno ∞ -senčenje U_S od X_S takvo da $f_S^{-1}(U_S)$ profinjuje V. Po pretpostavci postoji t \in S, s \in t, i konačno ∞ -senčenje V_t od X_t koje profinjuje $f_{S,t}^{-1}(U_S)$ reda \in n. Sledi da je $f_t^{-1}(V_t)$ konačno ∞ -senčenje od X koje profinjuje $f_S^{-1}(U_S)$ reda \in n. Sledi da je $f_t^{-1}(V_t)$ profinjuje U. Jasno, oro $(f_t^{-1}(V_t))$ \in ord $(V_t) \in$ n. Dakle, F-dim $X \in$ n što je i trebalo dokazati.

LITERATURA:

- Adnadjević, D. (1982): Separation properties of F spaces.

 Mat. vesnik 6(19)(34) 1-8
- [2] Chang, C. (1968): Fuzzy topological spaces. J.Math.Anal. Appl. 24, 182-190
- [3] Charalambous, M. (1967): The dimension of inverse limits.

 Proc. Amer. Math. Soc. 58, 289-295
- [4] Engelking, R. (1968): Gutline of general topology.

 North Holland
- [3] Engelking, R. (1978): Dimension Theory, North Holland
- [6] Gantner, T., Steinlage, R. and Warren, R. (1978): Compactness in fuzzy topological spaces, J.Math. Anal. Appl. 62, 547 562
- Hutton, B. (1975): Normality in fuzzy topological spaces. J. Math. Anal. Appl. 50, 74-79
- [8] I S Bell, J. (1984): Uniform spaces. Amer. Math. Soc.
- [9] Kerre, E. (1979): Characterization of normality in fuzzy topological spaces. Simon Stevin, Vol. 53 No. 3, 239-248
- Lowen, R. (1967): Fuzzy topological spaces and fuzzy compactness. J. Math. Anal. Appl. 56,-621-633
- [1] Lowen, R. (1977): Initial and final fuzzy topologies and the fuzzy Tychonoff theorem. J. Math. Anal. Appl. 58,11-21
- [12] Lowen, R. (1978): Comparison of different compactness notions in fuzzy topological spaces, J. Mat. Anal. Appl. 64, 446 454
- Lowen, R. (1981): Compact Hausdorff fuzzy topological spaces are topological, Top. its Appl. 12, 65 74
- Lončar, I. (1928): Inverse limits for spaces which generalize compact spaces. Glas. Mat. 17(37), 155-173
- [15] Malghan, R. Benchalli, S. (1981): On fuzzy topological spaces. Glas. Mat. 16(36), 313 - 325

- [16] Martin, H. (1980): A Stone-Čech ultra fuzzy compactification. J. Math. Anal. Appl. 73, 453 456
- [17] Morita, K. (1973): On the dimension of the product of Tychonoff spaces. Gen. top. Appl. 3, 125 133
- [18] Morita, K. (1979): Cech cohomology and covering dimension for topological spaces. Fund. Math. 87, 31-52
- [19] Mardešić, S. Dolinić K., (1968): A necessary and suficient condition for the n-dimensionality of inverse limits, Proc. Internat. Sympos. on topology and its applications (Herceg Novi) 124-129
- [20] Nagami, K. (1980): Dimension of non-normal spaces. Fund. Math. 109, 113-121
- [21] Nagami, K. (1970): Dimension theory, Academic Press.
- [22] Nagata, J. (1983): Modern dimension theory. Helderman Berlin
- [23] Rodabaugh, E. (1980): The Hausdorff separation axiom in fuzzy topological spaces. Top. Appl. 11, 319 334
- Rodabaugh, E. (1981): Suitability in fuzzy topological spaces. J. Math. Appl. 79, 273 285
- Pu Pao-Ming Liu Ying-Ming (1980): Fuzzy topology.

 1. Teighborhood structure of a fuzzy point and MooreSmith convergence. J. Math. Anal. Appl. 76, 571 599
- [25] Pears, A. (1975): Dimension theory of general spaces Cambridge University Press.
- [27] Sarkar, M. (1981): On fuzzy topological spaces. J. Math. Anal. Appl. 79, 384-394
- [28] Warren, R. (1978): Neighborhoods, bases and continuity in fuzzy topological spaces, Rocky Mount. J. Math., 8 No. 3, 459 470
- [29] Weiss, M. (1979): Fixed points, separation and induced topologies for fuzzy sets, J. Math. Anal.Appl. 50, 142-150
- [30] Wong, C. (1974): Fuzzy topology: Product and quotient theorems. J. Math. Anal. Appl. 45, 512 521

- [31] Zadeh, L. (1965): Fuzzy sets. Information and control 8, 338 353
- [32] Zougdani, H. (1984): Covering Dimension of Fuzzy Spaces Math. vesk. 36, 104 118.

LISTA SIMBOLA

I	zatvoren jedinični interval	6
IX	skup svih funkcija iz X u I	6
F - skup	fazi skup	6
fo	nosač od f	6
F-tačka	fazi tačka	7
×a	nosač fazi tačke	7
Д (A)	karakteristična funkcija skupa A	8
p(X)	skup svih podskupova od X	8
ch(X)	skup svih karakterističnih funkcija sa	
	domenam X	8
f∠g	f je sadržano u g	8
p∈f	p pripada f	8
\checkmark	unija	3
\wedge	presek	8
CO •	komplement	8
p & g	F-tačke sa nosačem x _o i vrednosti d	10
F-topologija	fazi topologija	10
F-prostor	fazi topološki prostor	10
int(f)	unutrašnjost od f	11
c1(f)	zatvorenje od f	11
U 🖒 V	U je -profinjenje od V	12
Χ \ A	komplement skupa A u X	14
FIX	restrikcije f na X	14
(Y,T_Y)	F-podprostor sa relativnom topologijom	14
TT X s∈S Xs	Dekartov proizvod	18
F−dim <mark>a</mark>	-kombinatorna dimenzija	20
F_dim	slaba ∞-kombinatorna dimenzija	30
loc. F-dim	lokalna «	32
g ⁺	{x∈X:g(x)>d}	32
F(X)	skup svih F-topologija na X	37
子 (×)	skup svih topologija na X	37
i(T)	inicijalna topologija za familiju	
•	funkcija T u I	37

w(子)	skup odczdo ograničenih polunepre-	
	kidnih funkcija iz (X,≯) u I	37
F-dim	kombinatorna dimenzija	38
SF-dim	jaka nula ≪-kombinatorna dimenzija	39
(X,i(T))	modifikovana topologija	45
(X,w(子))	indukovan F-prostor	45
F-dim X w(7)	-kombinatorna dimenzija indukovanog	
	F-prostora $(X, w(\mathcal{F}))$	48
dim X _i (T)	kombinatorna dimenzija modifikovane	
	topologije (X,i(T))	48
13×	Stone-Čech-va kompaktifikacija	49
$(\beta X, T_{\neq})$	ultra Stone-Čech-ova F-kompaktifikacija	49
∝-st.f.p.	α-zvezdasto konačna osobina	55
× _F	limes F-prostor	60
$\beta(\tilde{x})$	standardna baza za T	61
l∞ -skup	F-skup prebrojivog preseka otvorenih	
	F-skupova	70
H _{oo} -skup	F-skup prebrojive unije zatvorenih	
	F-skupova	71

UNIVERSITY OF BELGRADE

FACULTY OF SCIENCE DEPARTMENT OF MATHEMATICS

DOCTORAL DISSERTATION

" DIMENSION OF F-SPACES"

HASSAN KHALIFA ZOUGDANI

Belgrade, October 1984

ACKNOWLEDGMENTS:

I would like to express my sincere thanks to professor D. Adnadjević who supervised this work for his continuous encouragement and helpful suggestions, to University of ALFATEH for the financial support, and to Mirjana Rapaić who typed this work.

CONTENTS:

	-	Introduction	1
Chapter	0.	TOPOLOGICAL PRELIMINARY	4
Chapter	I.	FUNDAMENTAL CONCEPTS	Ş
		1. FUZZY SET THEORY	9
		2. FUZZY TOPOLOGICAL SPACES	13
		3. FUZZY CONTINUOUS FUNCTIONS	19
Chapter	II.	d-covering dimension of F-spaces	22
		1. MAIN CHARACTERIZATIONS	22
		2. THE SUBSET AND SUM THEOREMS	30
		3. LOCAL COVERING DIMENSION	35
Chapter	III.	COVERING DIMENSION AND MODIFICATION	
		OF F-SPACES	40
		1. F-dim	41
		2. MODIFICATION OF F-SPACES	48
		3. THE PRODUCT THEOREM	54
Chapter	IV	INVERSE LIMIT OF F-SPACES	62
		1. INVERSE LIMIT OF $pprox$ -BICOMPACT F-SPACES	62
		2. INVERSE SEQUENCES OF F-SPACES	72
		3. F-dim _{St} OF LIMIT F-SPACE	78
		REFERENCES	88
		LIST OF SYMBOLS	91

INTRODUCTION

The notion of fuzzy topology which is a generalization of the notion of topology on a set was introduced by chang in [2] 1968. This notion based on Zadeh's concept of fuzzy sets appeared in [3] 1965, which has been applied to several branches of mathematics. Since then many authors have developed various aspects of fuzzy topology, but still attracting the attention of researchers in a number of different fields. We introduce the concept of ϕ -covering dimension of fuzzy spaces, where $\phi \in [0,1)$, as a generalization of the concept of the covering dimension of topological spaces.

Chapters II, III and IV of this work may justify the introduction and the study of covering dimension of fuzzy spaces.

Analogous to the theory of the covering dimension of topological spaces, we consider the subset theorem, the finite sum theorem and the product theorem.

with each fuzzy space, a topological space can be associated called the modificated topology with covering dimension equal to the d-covering dimension of the fuzzy space. We use the idea of the modificated topology to reduce statements concering d-covering dimension of fuzzy spaces to statements about the covering dimension of topological spaces.

The material of this work, apart from the topological

preliminary, is organized into four main chapters, each chapt being made up of three sections which treat individual topics

The definitions and propositions given in chapter I a basic concepts of fuzzy sets and fuzzy topology where most of them will be needed in the subsequent.

Chapter II is devoted to the &-covering dimension of fuzzy spaces.

This is defined in section one and propositions 1.1, give its main characterization. Section two deals with the su theorems and the finite sum theorem, while section three trea the local properties of the α -covering dimension.

The first section of chapter III contains application of the previous chapter. Section two gives the relation between the covering dimension of a fuzzy space and the covering dimension of a topological space generating that fuzzy space proposition 2.3, as well as the equality of the α -covering dimension an ultra-Tychonoff fuzzy space with the α -covering dimension of its ultra Stone-Čech fuzzy compactification proposition 2. Section three deals with the product theorem for fuzzy spaces satisfying certain conditions.

Finally chapter IV is devoted to the study of the invese system of fuzzy spaces and the limit fuzzy space in a simlar way to the case of the inverse limit space of topological spaces, and of the covering dimension of the limit fuzzy spaces.

The symbol \square is used to denote the end of a proof. It is also used at the end of a statement whose proof follows easily from previous results.

Items in each section are numbered separately according

to their names and positions i.e. definition 1.1,...,1.2,..., lemma 1.1, 1.2,... and so on. References to each item in a different chapter are by triples indicating, respectively, the chapter, the section and the number of the item in the section i.e. lemma II.3.1 is lemma 1 in section 3 of chapter II.

Bibliographical references are put in [].

Chapter 0:

TOPOLOGICAL PRELIMINARY

The knowldge of the basic general topology and the elementary concepts of the covering dimension of topological spaces is assumed. In this short introduction a brief summary of some results in these areas which will be classified under theorems is considered. Those listed theorems either to be generalized to fuzzy topological spaces or because they are of particular importance in the subsequent.

We shall give a quick review without proofs of some results selected mainly from [4] [5] [4] [2] [2]

We know that the product of topological spaces is comact if and only if each factor is compact. This result is known by Tychonoff theorem, while the topological product of a family of countably compact is not in general countably compact. But we have:

Theorem 1: The product of a compact space with a countably compact space is countably compact.

The inverse limit of an inverse system of topological spaces may be empty even if each factor space (X_S) is non-empty and the bonding maps are surjective. Useful conditions under which the inverse limit is non-empty are given by the following two theorems.

Theorem 2: The inverse limit space of an inverse system of non-empty compact Hausdorff spaces is a non-empty compact

Hausdorff space.

Theorem 3: Let X be an inverse sequence of non-empty countably compact spaces. If all sets $f_{n,m}(X_m)$, $n \le m$, $n \in \mathbb{N}$, are closed in X_n , then the limit space \widetilde{X} is non-empty and $f_n(\widetilde{X}) = \bigcap_{n \in \mathbb{N}} f_{n,m}(X_m)$ $n \le m$, $n \in \mathbb{N}$. \square

Theorem 4: The inverse limit space of an inverse sequence of countably compact spaces and closed bonding mappings is countably compact space.

Theorem 5: The inverse limit of an inverse sequence of perfectly normal spaces is perfectly normal.

Theorem 6: If \widetilde{X} is the inverse limit space of an inverse sequence of spaces with all bonding mappings surjective, then each canonical mapping is surjective.

Since the first appearance of the notion of dimension theory in the early twenties there have been remarkable developments in this notion. There are three dimension functions for a topological space but we are interested in the covering dimension (dim) which depends essensially on the order of open refinements of finite open coverings of the space.

The next two theorems characterize the dimension function dim.

Theorem 7: Let X be a topological space. Then the following are equivalent:

- (|) The space X satisfies the inequality dim X ≤ n
- (II) For every finite open cover $\left\{G_i\right\}_{i=1}^k$ of X there is a finite open cover $\left\{H_i\right\}_{i=1}^k$ of X whose order $\leq n$ and

 $H_i \subset G_i$ for each $i=1,2,\ldots,k$. (III) For every open cover $\left\{G_i\right\}_{i=1}^{n+2}$ of the space X there is an open cover $\left\{H_i\right\}_{i=1}^{n+2}$ of X with $H_i \subset G_i$ for each $i=1,2,\ldots$ n+2 and $\bigcap_{i=1}^{n+2} H_i = \emptyset$.

Theorem 8: Let X be a normal space. Thenthe following statements are equivalent:

- (|) The space X satisfies dim X≤n
- (II) For every finite open cover $\left\{G_i\right\}_{i=1}^k$ of X there is an open cover $\left\{H_i\right\}_{i=1}^k$ of X such that each cl $H_i\subset G_i$ and the order of $\left\{\text{cl }H_i\right\}_{i=1}^k \leqslant n$.
- (III) For every finite open cover $\left\{G_i\right\}_{i=1}^k$ of X there is a closed cover $\left\{F_i\right\}_{i=1}^k$ of X such that each $F_i\subset G_i$ and order of $\left\{F_i\right\}_{i=1}^k \le n$.
- (iv) If $\left\{G_i\right\}_{i=1}^{n+2}$ is an open cover of X there is a closed cover $\left\{F_i\right\}_{i=1}^{n+2} \text{ of X such that each } F_i \subset G_i \text{ and } \bigcap_{i=1}^{n+2} F_i = \emptyset. \quad \square$

It is observed that if $\dim X = 0$, then X is normal space. More over we have

Theorem 9: If X is compact Hausdorff space then dim X = 0 if and only if X is totally disconnected.

Theorem 10: For a normal space X, dim $X = \dim \beta X$, where βX is the Stone-Čech compactification of X. \Box

Theorem 11: If M is a closed subset of a space X, then dim M \leq dim X. \square

We turn to the behaviour of the dimension function dim

under the cartesian multiplication.

Theorem 12: Let X be a paracompact Hausdorff space with dim X = m and Y a compact Hausdorff space with dim Y = n. If either X or Y is not empty, then:

 $\dim(X \times Y) \leq m + n$.

Theorem 13: For every pair X, Y of compact spaces of which at least one is non-empty we have

 $\dim(XxY) \leq \dim X + \dim Y$. \Box

Theorem 14: Let X and Y be Hausdorff spaces such that XxY has the star finite property. If X or Y is non-empty, then $\dim(XxY) \leq \dim X + \dim Y. \quad \Box$

Theorem 15: If X is a space and Y is a locally compact, paracompact Hausdorff space, then

 $\dim(XxY) \leq \dim X + \dim Y$. \Box

Theorem 16: Let $\{X_s\}_{s \in S}$ be a family of spaces such that any countable product of the spaces in this family is Lindelof. If dim $X_s = 0$ for each $s \in S$, then dim $TTX_s = 0$.

Theorem 17: A space X is a compact Hausdorff space with dim X = 0 if and only if X is an inverse limit of finite discrete spaces. \Box

Theorem 18: Let $X = \{X_s, f_s, t, S\}$ be an inverse system over S of compact Hausdorff spaces with the inverse limit X. Then dim $X \in \mathbb{N}$ if and only if for every $s \in S$ and every open covering U of X_s there exists $t \in S$, $s \in t$ such that the covering $f_{s,t}^{-1}(U_s)$ of X_t admits a refinement U_t of order $t \in S$.

Theorem 19: Let a countably compact space X be the inverse limit of an inverse sequence of normal spaces and surjective maps $\{X_n, f_{n,m}, N\}$ with dim $X_n \le p$ for each $n \in N$. Then X is normal and dim $X \le p$.

Chapter I:

FUNDAMENTAL CONCEPTS

Since many definitions and concepts in fuzzy topology have not yet taken their final forms, we devote this chapter to the basic concepts of the theory of fuzzy sets and fuzzy topology. We give a quick review for some of those definitions and results - without proof - given in [1] [6] [7] [9] [10] [11][12][15] [16][13][18][29][30] which will be used frequently thoughout this work.

1. FUZZY SET THEORY:

 $^\chi$ stands always for a non-empty set, I for the closed unit interval $\left[0,1\right]$ and I $^\chi$ for the set of all functions from χ to I.

Definition 1.1: A fuzzy set in X-denoted by F-set-is a function $f: X \to I$ which associates with each point $x \in X$ its value $f(x) \in I$ (or its grade in I).

The set $\{x \in X : f(x) > 0\}$ is called the support of f and is denoted by f_0 . The F-set $f \in I^X$ such that f(x) = 0 for all $x \in X$, will be denoted by $\overline{0}$ which corresponds to the empty set Φ and the F-set $f \in I^X$ such that f(x) = 1 for all $x \in X$,

will be denoted by \overline{f} . This F-set corresponds to the set X.

A fuzzy point - denoted by F-point - p in X is an F-set in X given by:

$$p(x) = \alpha \qquad \text{for } x = x_0 \quad (0 < \alpha \leq 1)$$
$$= 0 \qquad \text{for } x \neq x_0$$

where x is called the support of p.

We note that any two F-points p and q in X are distinct if and only if their supportes are distinct.

A special function which we shall find useful in the subsequent discussion is the characteristic function of a subset i.e. if A is a subset of a set X, then the characteristic function $\mathcal{N}(A)$ of A on X is defined by:

$$\mu(A) = 1 \qquad \text{if } x \in A$$
$$= 0 \qquad \text{if } x \notin A$$

which is an F-set in X. There is a one-one correspondence between the family of all subsets of a set X, P(X) and the set of all characteristic functions which have domain X, ch(X) i.e.

There are two functions:

$$\Phi: P(X) \longrightarrow ch(X) \text{ given by } \Phi(A) = \mathcal{U}(A)$$

$$\Psi: ch(X) \longrightarrow P(X) \text{ given by } \Psi(A) = \left\{x \in X \mid (x) = 1\right\}$$

Since F-sets are real valued functions, we will use the existing function operations of =, \leq , \vee , \wedge , to relate F-sets to other F-sets.

Definition 1.2: Let f,g be two F-sets in X. Then:

(|)
$$f = g \iff f(x) = g(x)$$
 for all $x \in X$

(||)
$$f \le g \iff f(x) \le g(x)$$
 for all $x \in X$

(III)
$$p \in f \iff p(x) \leq f(x)$$
 for all $x \in X$, where p is an F-point

(IV)
$$f \vee g = \max \{f(x), g(x)\}$$
 for all $x \in X$

(V)
$$f \wedge g = \min \{f(x), g(x)\}$$
 for all $x \in X$.

More generally, for a family $\{f_s\}_{s \in S}$ of F-sets the join $(\bigvee_{s \in S} f_s)$ and the meet $(\bigwedge_{s \in S} f_s)$ are defined by:

(VI) The F-set cof defined by (cof)(x) = 1 - f(x) is called the complement of f.

The F-sets $f,g \in I^X$ are said to be disjoint if $f \wedge g = 0$.

It is observed that if $f \in I^X$, then $f \wedge cof \neq 0$ in general and if $f_1, f_2 \in I^X$ such that $f_1 \wedge f_2 = 0$, then $f_1 \leq cof_2$ but this does not imply that $f_1 \wedge f_2 = 0$ generally, which is a deviation from ordinary sets; that is the lattice (I^X, \leq) is not a complemented lattice, while Demorgan's law holds i.e.

$$co.(\bigvee_{s \in S} f_s) = \bigwedge_{s \in S} co.f_s$$

and

$$co(\bigwedge_{s \in S} f_s) = \bigvee_{s \in S} co_i f_s$$

for any family $\{f_s\}_{s \in S}$ of F-sets in a set X.

It follows from definition 1.2 that:

$$(1)^0$$
 fyg=gyf and f $_{\Lambda}$ g=g $_{\Lambda}$ f

$$(\parallel)^{0}$$
 fy $\overline{0} = f$, fy $\overline{0} = 0$ and fy $\overline{1} = \overline{1}$, fy $\overline{1} = f$

$$(|||)^{\circ}$$
 co(cof) = f. co $\overline{0} = \overline{1}$ and co $\overline{1} = \overline{0}$.

<u>Proposition lel:</u> Let f be an F-set in X and let p be an F-point in X. Then $f = \bigvee \{P : p \in f\}$.

Definition 1.3: Let $\psi: X \longrightarrow Y$ be a mapping of a set X into a set Y. If f is an F-set in X, then $\psi(f)$ is an F-set in Y defined by:

If g is an F-set in Y, then $\Psi^{-1}(g)$ is an F-set in X defined by:

$$\left[\Psi^{-1}(g) \right] (x) = g(\Psi(x)).$$

Proposition 1.2: Let Ψ be a mapping as in definition 1.3. Then Ψ and Ψ^{-1} have the following properties:

$$(1) \quad \psi^{-1}(\bigvee_{s \in S} f_s) = \bigvee_{s \in S} \psi^{-1}(f_s)$$

$$(||) \qquad \psi^{-1}(\bigwedge_{s \in S} f_s) = \bigwedge_{s \in S} \psi^{-1}(f_s)$$

(III)
$$\psi(\bigvee_{s \in S} f_s) = \bigvee_{s \in S} \psi(f_s)$$

$$(1V) \qquad \psi \left(\bigwedge_{s \in S} f_{s} \right) \leq \bigwedge_{s \in S} \psi \left(f_{s} \right)$$

$$(V) \qquad \gamma (\gamma^{-1}(f)) \leq f$$

$$(\forall I) \quad \forall^{-1}(\forall (f)) \quad \geq \quad f_{\bullet} \qquad \Box$$

We may write $P_{X_0}^{d}$ if the value of P_{X_0} is d and hence $P_{X_0}^{d} \in f$ if and only if $f(x_0) > \infty$ for $d \in [0,1)$.

Proposition 1.3: Let $\Psi: X \longrightarrow Y$ be a mapping from a set X to a set Y, f be an F-set in X and $P_{X_0}^{d}$ be an F-point in X. Then: $(1) \Psi \begin{bmatrix} P_{X_0}^{d} \end{bmatrix} = P_{X_0}^{d}$

(||)
$$P_{x_0}^{d} \in f$$
 implies $\Psi[P_{x_0}^{d}] \in \Psi(f)$.

2. FUZZY TOPOLOGICAL SPACES

Definition 2.1: A family T of F-sets in a set X is called fuzzy topology on X (F-topology) if it satisfies the following conditions:

$$(F,T,1)$$
 $\overline{0}$, $\overline{1} \in T$

(F.T.2)
$$f_s \in T$$
 implies $\bigvee_{s \in S} f_s \in T$ $s \in S$

(F.T.3)
$$f_i \in T$$
 implies $\bigwedge_{i=1}^{n} f_i \in T$.

The members of T are called open F-sets and the pair (X,T) is called F-space. If f is an open F-set, then cof is called closed F-set.

F-spaces are a very natural generalization of topological spaces, as a mater of fact a topology on X can be regarded as a family of characteristic functions with the function operations of \leq , \vee , \wedge and co.

Definition 2.2: Let (X,T) be an F-space. An F-set g in X is called a neighbourhood of an F-set f in X if $f \leq g$ and there is an F-set $h \in T$ such that $f \leq h \leq g$.

By the interior of an F-set - denoted by int(f) - we mean the F-set:

$$int(f) = \bigvee_{s} \{g_{s} : g_{s} \leq f, g_{s} \in T, s \in S\}$$

f is open if and only if f = int(f).

The closure of an F-set f-denoted by c1 f is the F-set given by:

Proposition 2.1: Every F-set f in an F-space (X,T) satisfies int(f) = co(cl(cof)).

The above proposition gives the connection between the interior and closure operator in F-topology which is similar to the well konown connection between them in topology.

Definition 2.3: Let (X,T) be an F-space and $3 \subseteq T$ be a subfamily of T such that each $f \in T$ is the join of members of 3. Then 3 is called a basis for T. Also $S \subseteq T$ is called a subbasis for T if the family of all finite meets of members of S is a base for T.

Proposition 2.2: Let (X,T) be an F-space. Then β is a base for T if and only if, for any $f \in T$ and for every F-point p in X with $p \in f$, there exists $B \in \beta$ such that $p \in S \leq f$. \square

Definition 2.4: An F-space (X,T) is said to be C_{II} if there exists a countable base for T_{\bullet}

Definition 2.5: Let (X,T) be an F-space and $\alpha \in [0,1)$. A collection $U \subseteq T$ is called and α -shading of X if for each $x \in X$ there exists $u \in U$ such that $u(x) > \alpha$. A subcollection of U which is also an α -shading of X is called an α -subshading of X.

Definition 2.6: Let (X,T) be an F-space and $\alpha \in [0,1)$. Let U and V be two α -shadings of X. Then U is said to be an α -refinement of V, written $U \leq V$, if for each $u \in U$ there is $v \in V$ such $u \leq v$.

Any α -subshading of a given α -shading is an α -refinement of that α -shading.

The notion of α -shading plays an important role in the study and development of F-spaces analogous to the role of the notion of covering in topological spaces, and so α -compactness, countably α -compactness and so on... are defined and studied in terms of α -shadings as we shall see in the following definitions and propositions.

Definition 2.7: An F-space (X,T) is said to be α -compact $(\alpha$ -Lindelof) if each α -shading of X has a finite (countable) α -subshading of X for $\alpha \in [0,1)$.

Definition 2.8: An F-space (X,T) is called countably α -compact, where $\alpha \in [0,1)$, if every countable α -shading of X has a finite α -subshading.

Remark: Every d-compact F-space is countably d-compact, and every d-Lindelof countably d-compact is d-compact.

<u>Proposition 2.3:</u> Let (X,T) be a C_{ii} F-space and $\Delta \in [0,1)$. Then the following hold:

- (|) (X,T) is &-Lindelof.
- (||) If (X,T) is countably α -compact, then (X,T) is α -compact. \square

Definition 2.9: An F-space (X,T) is compact if for each family $\beta \in T$ and for each $\alpha \in [0,1)$ such that $\sup_{g \in \beta} \alpha \in S$ for each $\beta \in (0,\alpha]$ there exists a finite subfamily $\beta_0 \in S$ such that $\sup_{g \in \beta_0} \alpha = \delta$.

Definition 2.10: Let $\alpha \in [0,1)$ and $B \subset I^X$. Then b is called α -centred if for all $c_1, c_2, \ldots, c_n \in B$, there exists $x \in X$ with $C_i(x) \ge 1$ - α for all $i=1,2,\ldots,n$.

Proposition 2.4: Let (X,T) be an F-space, $\alpha \in [0,1)$. Then (X,T) is α -compact (countably α -compact) if and only if, for every α -centred B($\{c_i\}_{i=1}^{\infty}$) of closed F-sets in X there exists $x \in X$ such that $c(x) \ge 1 - \alpha$ for all $c \in B(c_i(x) \ge 1 - \alpha$ for all $i=1,2,\ldots$).

This proposition shows that if (X,T) is α -compact (countably α -compact), $\alpha \in [0,1)$, and for every α -centered $\beta \left(\left\{ c_i \right\}_{i=1}^{\infty} \right)$ of closed F-sets, then $\sum_{c \in B} c \neq 0$ ($\sum_{i=1}^{\infty} c_i \neq 0$).

Definition 2.11: Let (X,T) be an F-space and $\alpha \in [0,1)$. Then (X,T) is α -Hausdorff (Hausdorff) if for $x \neq y \in X$, there exist $f,g \in T$ such that $f(x)>\alpha$, $g(x)>\alpha$ (f(x)=1=g(x)) and $f \wedge g=0$.

Note that Hausdorff F-space implies \propto -Hausdorff F-space for any $\varpropto \in [0,1)$.

Definition 2.12: Let (X,T) be an F-space, $A \in [0,1)$, and $A \subset X$. Then:

(I) A is α -closed (α^* -closed) if for each $x \in X \setminus A$ there is $f \in T$ such that $f(x) > \alpha$ ($f(x) > \alpha$) and $f \land \alpha(A) = 0$ (II) A is suitable closed if $\alpha(A)$ is closed F-set in X.

Proposition 2.5: Arbitrary intersections of α -closed sets are α -closed, and finite unions of α -closed sets are α -closed.

with suitable closedness.

<u>Proposition 2.6:</u> Let (X,T) be an F-space and let $A \subset X$. Then the following are equivalent:

- (|) A is suitable closed set.
- (!!) A is 1 closed set.

Let (X,T) be an F-space and $Y\subset X$. Then the family $T_y=\{f|y:f\in T\}$, where f|y is the restriction of f to y satisfies the three conditions of definition 2.1, that is T_y is an F-topology on Y.

Definition 2.13: The F-topology T_y is called the relative F-topology on Y or the F-topology on Y induced by the F-topology T_y on X, and (Y,T_y) is called the F-subspace of (X,T).

We usually omit the relative F-topology T_y and simply write the F-subspace Y.

<u>Proposition 2.7:</u> Let (X,T) be an F-space, Y be F-subspace of (X,T) and $f \in I^Y$. Then:

(!) f is closed in Y if and only if there exists a closed F-set in X such that $f = g \mid Y$.

We note that if β is a base for an F-space (X,T), then $\beta_y = \{8 \mid y : 8\epsilon\beta\}$ is a base for T_y .

<u>Proposition 2.8:</u> Let (X,T) be an F-space and $Y \subset X$. For $\alpha \in (0,1)$ the following hold:

- (|) (X,T) is α -Hausdorff, then (Y,T_y) is α -Hausdorff.
- (II) (X,T) is α -compact (countably α -compact) and Y is α -compact closed in X, then Y is α -compact (countably α -compact).

<u>Proposition 2.9:</u> Let (X,T) be an A-Hausdorff F-space and $Y \subset X$. Then the following hold:

- (1) Y is d-compact in X, then Y is d-closed in X.
- (||) $\{Y_s\}$ is a decreasing family of α -compact (countably α -compact) in X, then $\bigcap_{s \in S} Y_s \neq \emptyset$ and is α -compact (countably α -compact). \square

Definition 2.14: An F-space (X,T) is called:

- (|) FT1-space if each F-point is closed F-set.
- (II) FT2-space if for each two distinct F-points p,q in X:
 - a) $p_0 \neq q_0$ implies that there exist two disjoint open F-sets containing p and q respect.
 - b) $p_0 = q_0$, p(x) < q(x) implies that there is an $f \in T$ such that $p \in f$ and $q \notin cl f$.
- (III) F-regular space if for each closed F-set g and each F-point p such that $p \notin q$ there exists an open nbhd. f of g such that $p \notin cl(f)$.

Definition 2.15: An F-space (X,T) is called:

- (|) weakly F-normal if for every two disjoint closed F-sets $g_1 \text{ and } g_2 \text{ there exist two open F-sets } h_1 \text{ and } h_2 \text{ such that } g_1 \leq h_1, \ g_2 \leq h_2 \text{ and } h_1 \leq \cos h_2.$
- (II) F-normal if for a closed F-set g and an open F-set with $g \le f$, there exists an open F-set h such that $g \le h \le cl$ h $\le f$ or equivalently: for every closed F-sets g_1 and g_2 such that $g_1 \le co$ g_2 , there exist two open F-sets h_1 and h_2 such that $g_1 \le h_1$, $g_2 \le h_2$ and $h_1 \le co$ h_2 .
- (III) Perfectly F-normal if it is F-normal and every closed F-set is a countable meet of open F-sets.

Proposition 2.10: Every F-normal space is weakly F-normal. O

The converse of this proposition is not true in general.

Proposition 2.11: Let Y be an F-subspace of an F-space (X,T).

If (X,T) is FT_1 , FT_2 (F-regular), then Y is FT_1 FT_2 (F-regular). \Box

The F-subspace Y of an F-normal space (X,T) is not F-normal even if Y is α -closed in X. We shall see in chapter III when an F-subspace of an F-normal is F-normal.

3. FUZZY CONTINUOUS FUNCTIONS:

Definition 3.1: Let (X,T) and (Y,R) be F-spaces, and let $\psi\colon X\longrightarrow Y$ be a map. ψ is called F-continuous if $\psi^{-1}(f)\in T$ whenever $f\in R$ and is called F-open (F-closed) if every open (closed) F-set f in X, $\psi(f)$ is open (closed) F-set in Y. ψ is F-homeomorphism if ψ is F-continuous bijective and F-open or F-closed.

<u>Proposition 3.1:</u> Let (X,T), (Y,R) be F-spaces and let $Y: X \longrightarrow Y$. Then the following are equivalent:

- (|) \psi F-continuous.
- (!|) For every closed F-set g in Y, $\gamma^{-1}(g)$ is closed F-set in X.
- (III) For every F-set f in X, $\psi(cl\ f) \leq cl(\psi(f))$.
- (IV) For every F-set g in Y, $cl(\Psi^{-1}(g)) \leq \Psi^{-1}(cl g)$. \Box

Proposition 3.2: The composite of F-continuous (F-open) [F-closed] is F-continuous (F-open) [F-closed] . \Box

Proposition 3.3: Let (X,T), (Y,R) be F-spaces and $Y: X \longrightarrow Y$

be an F-continuous map. Then for $\alpha \in [0,1)$, the following hold:

- ()) (X,T) is α -compact, then $\Psi(X)$ is α -compact as an F-subspace of (Y,R).
- (||) (X,T) is countably α -compacet (α -Lindelof), then $\Upsilon(X)$ is countably α -compact (α -Lindelof).
- (III) (X,T) is α -compact and (Y,R) is α -Hausdorff, then for α -closed set A in X, $\Psi(A)$ is α -closed set in Y. α

<u>Proposition 3.4:</u> Let (X,T), (Y,R) be F-spaces and let \emptyset , $\psi: X \longrightarrow Y$ be F-continuous. If (Y,R) is α -Hausdorff, $\alpha \in [0,1)$, then:

$$\{x \in X : \phi(x) = \Psi(x)\}$$
 is α -closed in X. \square

<u>Proposition 3.5:</u> Let $\psi: (X,T) \longrightarrow (Y,R)$ be an F-continuous map. If A is α -closed in Y, then $\psi^{-1}(A)$ is α -closed in X. \square

Let (Y,T) be an F-space, X is a set and $Y:X \longrightarrow Y$ is a function. Then the family $Y^{-1}(T) = \{Y^{-1}(f) : f \in T\}$ is the smallest F-topology on X making Y F-continuous. This F-topology is called the initial F-topology on the set X.

Let $\left\{(X_{\mathbf{S}},T_{\mathbf{S}})\right\}_{\mathbf{S}\in S}$ be a family of F-spaces, $X=\prod_{\mathbf{S}\in S}X_{\mathbf{S}}$ be the cartisian product of $X_{\mathbf{S}}$ (as sets) and let $P_{\mathbf{S}}:X\longrightarrow X_{\mathbf{S}}$, $S\in S$ be the projections. The family $\left\{P_{\mathbf{S}}^{-1}(f_{\mathbf{S}}):f_{\mathbf{S}}\in T_{\mathbf{S}},s\in S\right\}$ of F-sets can be taken as a subbase for an F-topology T on $X_{\mathbf{S}}$.

Definition 3.2: Given a family $\{(X_s,T_s)\}_{s\in S}$ of F-spaces. The F-topology T on X defined as above is called the product F-topology and (X,T) is called the product F-space.

Proposition 3.6: Let (X,T) be the product F-space of the family $\{(X_s,T_s)\}_{s\in S}$ of F-spaces. Then the following are equivalent:

- (|) The projection P_s is F-continuous for every $s \in S_*$
- (II) The product F-topology is the smallest F-topology on X for which the projections are F-continuous.

Proposition 3.7: Let $\{(X_i,T_i)\}_{i=1}^\infty$ be a countable family of C_{ii} F-spaces. Then the product F-space (X,T) is also C_{ii} . \Box

<u>Proposition 3.8:</u> Let (X_s,T_s) be a family of F-spaces. If each (X_s,T_s) is α -Hausdorff (F,T) [F-regular] F-space. Then the product F-space (X,T) is α -Hausdorff (FT_1) [F-regular] respectively.

Chapter II:

&-COVERNIG DIMENSION OF F-SPACES

In this chapter we define the α -covering dimension of F-spaces up to α -level where $\alpha \in [0,1)$ and give some of its characterization similar to the well known characterization of the covering dimension of topological spaces. Also we find some subset and finite sum theorems in the second part of this chapter, while the last section is devoted to the study of the local α -covering dimension of F-spaces.

1. MAIN CHARACTERIZATIONS:

The notion of the order of a family of F-sets will be widly used in our study of the covering dimension of F-spaces.

Definition 1.1: The order of a family of F-sets $\{f_s\}_{s\in S}$ of an F-space (X,T) is the largest integer n for which there exists $M\subset S$ with n+l members such that $\int_{s\in M} f_s \neq 0$. Or ∞ if there is no such largest integer.

Thus, if the order of $\{f_s\}_{s \in S} = n$, then for each n+2 distinct $s_1, s_2, \dots, s_{n+2} \subset S$ we have $\bigwedge_{i=1}^n f_{s_i} = 0$, and if the order of $\{f_s\}_{s \in S} = 0$, then $\{f_s\}_{s \in S}$ consists of pairwise dissections.

joint non-zero F-sets.

Definition 1.2: Let (X,T) be an F-space, n be an integer $(n \ge 0)$, and let $d \in [0,1)$. We define the α -covering dimension of (X,T) - denoted by F-dim X - as follows:

- (1) F-dim X = -1 if X = 0.
- (II) F-dim $X \le n$ if every finite α -shading of X has an α -refinement of order $\le n$.
- (|||) F-dim_dX = n if F-dim_d $X \le n$ and F-dim_dX > n-1.
- (IV) F-dim $X = \infty$ if F-dim $X \le n$ is false for every n.

Example 1.1: Let $X = \{x_1, x_2, x_3, x_4\}$. Let $f, g, h, \ell, m \in I^X$ be defined as follows:

$$f(x) = \frac{1}{6} \text{ if } x = x_1$$

= 0 otherwise

$$g(x) = \frac{1}{4} \text{ if } x \in \{x_2, x_4\}$$

= 0 otherwise

$$h(x) = \frac{1}{3} \text{ if } x \in \{x_3, x_4\}$$

= 0 otherwise

$$\ell(x) = \frac{5}{12} \text{ if } x \in \{x_1, x_4\}$$

= 0 otherwise

$$m(x) = \frac{1}{4} \text{ if } x = x_4$$

= 0 otherwise.

Let $T = \{ \vec{0}, \vec{1}, f, g, h, l, m, f \lor g, f \lor h, g \lor h, g \lor l \}$. Then (X,T) is an F-space.

Put $\alpha = \frac{1}{12}$, then $\{f,g,h\}$ is an α -shading of X, which is clearly an α -refinement of any α -shading of X and the order of $\{f,g,h\} \le 1$. Hence F-dim $X \le 1$.

Example 1.2: Let X be as in example 1.1. Let f,g,h \in I X be

defined as follows:

$$f(x) = \frac{5}{12} \text{ if } x = x_1$$

$$= 0 \text{ otherwise}$$

$$f(x) = \frac{1}{12} \text{ if } x = x_1$$

$$g(x) = \frac{1}{4} \text{ if } x \in \{x_2, x_3\}$$

= 0 otherwise

$$h(x) = \frac{1}{3} \text{ if } x = x_4$$

$$= 0 \text{ otherwise.}$$

Let $T = \{ \overline{0}, \overline{1}, f, g, h, f \lor g, f \lor h, g \lor h \}$. Then $\{X, T\}$ is an F-space. If we put $\Delta = \frac{1}{6}$, then $\{f, g, h\}$ is an Δ -shading of X, which is an Δ -refinement of any Δ -shading of X.

Since $f \wedge g = g \wedge h = f \wedge h = 0$, and $X \neq 0$, so F-dim X = 0.

The next proposition gives a useful characterization of the α -covering dimension of F-spaces.

Proposition 1.1: Let (X,T) be an F-space, $&\in [0,1)$. Then the following are equivalent:

- (!) $F-\dim_{\alpha}X \leq n$.
- (II) For any finite α -shading $\left\{f_i\right\}_{i=1}^k$ of X, there is an α shading $\left\{g_i\right\}_{i=1}^k$ of X of order \in n, and $g_i \in f_i$ for each $i=1,2,\ldots,k$.
- (III) If $\begin{cases} f_i \\ f_i \end{cases}$ is an α -shading of X, then there is an α shading $\{g_i\}_{i=1}^{n+2}$ such that $g_i \le f_i$ for $i=1,2,\ldots,n+2,$ and $\bigwedge_{i=1}^{n+2} g_i = 0.$

<u>Proof.</u> (I) \Longrightarrow (II) Let F-dim_XX $\not =$ n, and let $\{f_i\}_{i=1}^{k}$ be an $\not =$ -shading of X. Then by definition 1.2, $\{f_i\}_{i=1}^{k}$ has an $\not =$ -refinement V of order $\not =$ n. If $v \in V$, then $v \not =$ f_i for some $i \in \{1, 2, \ldots, k\}$. For each $v \in V$ choose $i(v) \not =$ k such that $v \not =$ $f_{i(v)}$ and let $g_i = \bigvee \{v \not \in V : i(v) = i\}$. Then clearly

 $\left\{ g_i \right\}_{i=1}^k \text{ is an α-shading of X whose order \leqslant n, and for each } \\ i = 1,2,\ldots,k, \ g_i \leqslant f_i .$

 $(\text{II}) \Longrightarrow (\text{III}) \text{ Let (II) be hold and let } \left\{f_i\right\}_{i=1}^{n+2} \text{ be an } \alpha\text{-shading of X. Then by assumption there is an } \alpha\text{-shading } \left\{g_i\right\}_{i=1}^{n+2} \text{ such that } g_i \leqslant f_i \text{ for } i=1,\ldots,n+2, \text{ and order of } \left\{g_i\right\}_{i=1}^{n+2} \leqslant n. \text{ So from definition 1.1 we get } \bigwedge_{i=1}^{n+2} g_i = 0.$

 $(\text{III}) \Longrightarrow (\text{II}) \quad \text{Let } \left\{f_i\right\}_{i=1}^k \text{ be an α-shading of X, and assume that } (\text{III}) \text{ is true. We may assume that $k > n+1$. Let $g_i = f_i$ for $i \le n+1$ and $g_{n+2} = \bigvee_{i=n+2}^k f_i$. Then $\left\{g_i\right\}_{i=1}^{n+2}$ is an α-shading of X and so by assumption there is an α-shading $\left\{h_i\right\}_{i=1}^{n+2}$ such that $h_i \le g_i$ for each $i = 1,2,...,n+2$, and $\bigwedge_{i=1}^{n+2} h_i = 0$. Let $\lim_i = h_i$ for $i \le n+1$, and $\min_i = g_i \wedge h_{n+2}$ for $i > n+1$. Then $m = \left\{m_i\right\}_{i=1}^k$ is an α-shading of X, each $m_i \le f_i$, and $\bigwedge_{i=1}^{n+2} m_i = 0$. If some collection of $n+2$ — members of M has a non-zero meet, then they can be renumbered so that the first $n+2$ — members have a zero meet. By applying the above construction to m_i, we can get an α-shading $m^* = \left\{m_i^*\right\}_{i=1}^k$ such that $m_i^* \le m_i$ and $\bigwedge_{i=1}^{n+2} m_i^* = 0$. Clearly $m_{i,1}^* \wedge m_{i,2}^* \wedge \cdots m_{i,n}^* = 0$ whenever $m_{i,1} \wedge m_{i,2}^* \cdots \wedge m_{i,n}^* = 0$ where $i_1, i_2, ..., i_s$ is less than or equal to k. So by a finite number of repetitions of this process we obtain an α-shading $\left\{s_i\right\}_{i=1}^k$ of X of order $\in n$ and $s_i \le f_i$ for $i = 1,2,...,k$.$

 $(11) \Longrightarrow (1)$ is obvious. \Box

The notion of normality playsan important role in the

development of the covering dimension of topological spaces, but the role of F-normality is slightly weaker because of the fact that: $g_1 \wedge g_2 = 0$ if and only if $g_1 \in co$ g_2 does not hold in general in case of F-sets. This led Kerre[] to introduce the notion of weak normality for F-spaces, and it leads us to the following definition.

Definition 1.3: An F-space (X,T) is called F_c -space if for each pair of F-sets f,g in X with cl f \leq co g then cl f \wedge g = 0.

We observe that for F_c -spaces, F-normality and weak F-normality are equivalent. For : by proposition I.210, every F-normal space is weakly F-normal. Now let g_1 , g_2 be two closed f-sets in an F_c -normal space (X,T). Then by definition I.2.15 (II), there exist two open F-sets h_1 , h_2 such that $g_1 \in h_1$, $g_2 \in h_2$ and $h_1 \in co$ h_2 . Since (X,T) is F_c -normal so by definition I.3, cl $g_1 \in co$ g_2 implies cl $g_1 \land g_2 = 0$ and hence $g_1 \land g_2 = 0$ as required. G

Definition 1.4: Let $\{f_s\}$ be a family of F-sets in an F-sets (X,T). A swelling of this family is a family $\{g_s\}_{s\in S}$ of F-sets in X such that $f_s \leq g_s$ for every $s \in S$ and: $f_{s_1} \wedge f_{s_2} \cdots f_{s_n} = 0 \text{ if and only if } g_{s_1} \wedge g_{s_2} \wedge \cdots \wedge g_n = 0 \text{ for every choice of indices } s_1 \cdots s_n \in S.$

Proposition 1.2: Let (X,T) be an F_c -normal space. Then for every finite family $\left\{f_i\right\}_{i=1}^k$ of closed F-sets in X, there is a finite family $\left\{h_i\right\}_{i=1}^k$ of open F-sets in X such that $\left\{cl\ h_i\right\}_{i=1}^k$ is a swelling of $\left\{f_i\right\}_{i=1}^k$ and $f_i \leq h_i$ for each $i=1,2,\ldots,k$.

<u>Proof.</u> Let $\{f_i\}_{i=1}^k$ be given, and let g_1 be the join of all meets of the form $f_{i_1} \wedge f_{i_2} \wedge \cdots \wedge f_{i_m}$ such that $f_1 \wedge f_{i_1} \wedge \cdots \wedge f_{i_m} = 0$. Then g_1 is closed F-set and $g_1 \wedge f_1 = 0$, so $f_1 \leq co g_1$, where $co g_1$ is open F-set. Since (X,T) is F-normal, there exists an open F-set h_1 such that $f_1 \leq h_1 \leq cl h_1 \leq co g_1$.

The family $\left\{\text{cl h}_1, \text{f}_2 \cdots \text{f}_k\right\}$ is a swelling of $\left\{f_i\right\}_{i=1}^k$ because: If $f_1 \wedge f_{i_1} \wedge f_{i_2} \cdots \wedge f_{i_m} = 0$ then $f_{i_1} \wedge \cdots \wedge f_{i_m} \leq g_1$ and so $\text{co}(f_{i_1} \wedge \cdots \wedge f_{i_m}) \geqslant \text{co } g_1 \geqslant \text{cl h}_1$ i.e. $\text{cl h}_1 \leqslant \text{co}(f_{i_1} \wedge \cdots \wedge f_{i_m})$. Since (X,T) is f_c —space then $\text{cl h}_1 \wedge (f_{i_1} \wedge \cdots \wedge f_{i_m}) = 0$. Thus if we apply thus principle K-times, we obtain a family of open F-sets $\left\{h_i\right\}_{i=1}^k$ such that $\left\{\text{cl h}_i\right\}_{i=1}^k$ is a swelling of $\left\{f_i\right\}_{i=1}^k$ and $f_i \leqslant h_i$ for $i=1,2,\ldots,k$.

Definition 1.5: An α -shading $\{f_s\}_{s \in S}$ of an F-space (X,T) is said to be shrinkable if there is an α -shading $\{g_s\}_{s \in S}$ of X such that cl $g_s \leq f_s$ for $s \in S$.

<u>Proposition 1.3:</u> Let (X,T) be an F-normal space. Then each finite α -shading of X is shrinkable.

Proof. Let $\left\{f_i\right\}_{i=1}^k$ be a finite α -shading of X. Let us put $g_1 = \operatorname{co}\left[\left\{f_2 \vee f_3 \cdots \vee f_k\right\} \vee \bigvee_{h \in T} \left\{h : h \geqslant f_i \ \forall \ i=1,2,\ldots,k\right\}\right] \wedge \mathcal{U}(f_1^*)$, where $f_1^* = \left\{x \in X \mid f_1(x) \geqslant \alpha\right\}$. Then g_1 is closed F-set in X and $g_1 \leq f_1$, so by the F-normality of (X,T), there exists an open F-set m, such that $g_1 \leq m_1 \leq \operatorname{cl} m_1 \leq f_1$, and $\left\{m_1, f_2, f_3, \ldots, f_k\right\}$ is α -shading of X. If we apply this method K-times, we obtain an α -shading $\left\{m_i\right\}_{i=1}^k$ of X such that $\operatorname{cl} m_i \leq f_i$ for each $i=1,2,\ldots,k$. \square

Definition 1.6: Let (X,T) be an F-space. A collection B of closed F-sets in X is called an d-coshading of X if for each $x \in X$, there exists $g \in B$, such that $g(x) > \alpha$. $\alpha \in [0,1)$.

The next proposition gives a characterization for F-dim of F_-normal space in terms of closed F-sets.

Proposition 1.4: Let (X,T) be an F_c -normal space, $d \in [0,1)$. Then the following are equivalent:

- (1) F-dim $X \leq n_{\bullet}$
- (II) For every finite α -shading $\left\{f_i\right\}_{i=1}^k$ of X, there exists an α -shading $\left\{g_i\right\}_{i=1}^k$ of X such that cl $g_i \leq f_i$ and order of $\left\{\text{cl } g_i\right\}_{i=1}^k \leq n$.
- (!||) For every finite d-shading $\{f_i\}_{i=1}^k$ of X, there exists an d-coshading $\{g_i\}_{i=1}^k$ such that $g_i \leq f_i$ for each $i=1,2,\ldots$..., k, and order of $\{g_i\}_{i=1}^k$
- (IV) If $\{f_i\}_{i=1}^{n+2}$ is a finite α -shading of X, then there exists an α -coshading $\{g_i\}_{i=1}^{n+2}$ such that $\bigwedge_{i=1}^{n+2} g_i = 0$ and $g_i \le f_i$ for $i=1,2,\ldots,n+2$.

Proof. (I) \Longrightarrow (II) Let F-dim $X \le n$, and let $\left\{f_i\right\}_{i=1}^{K}$ be an α -shading of X. Then by proposition 1.1 there exists an α -shading $\left\{h_i\right\}_{i=1}^{K}$ such that $h_i \le f_i$ for $i=1,2,\ldots,k$ and order of

 $\left\{ \begin{array}{l} h_i \\ i = l \end{array} \right\}_{i=1}^{K} \leq n. \quad \text{But } (X,T) \text{ is F-normal so by proposition 1.3 there} \\ \text{is an } \alpha \text{-shading } \left\{ g_i \right\}_{i=1}^{K} \text{ such that cl } g_i \leq h_i \text{ for } i=1,2,\ldots,k, \\ \text{and order of } \left\{ \text{cl } g_i \right\}_{i=1}^{K} \leq n.$

 $(11)\Longrightarrow (111)$ and $(111)\Longrightarrow (111)$ are clear.

 $(!V) \Longrightarrow (!) \text{ Let } \left\{f_i\right\}_{i=1}^{n+2} \text{ be an α-shading of X, by hypothesis there exists an α-coshading $\left\{g_i\right\}_{i=1}^{n+2}$ of X such that <math display="block">g_i \leqslant f_i \text{ for each } i=1,2,\ldots,n+2, \text{ and } \bigwedge_{i=1}^{n+2} g_i=0. \text{ By proposition } 1.2 \text{ there exists a family of open F-sets $\left\{h_i\right\}_{i=1}^{n+2}$ such that <math display="block">g_i \leqslant h_i \leqslant f_i \text{ for } i=1,2,\ldots,n+2, \text{ and } \left\{cl\ h_i\right\}_{i=1}^{n+2} \text{ is a swelling } of $\left\{g_i\right\}_{i=1}^{n+2}$. Thus $\left\{h_i\right\}_{i=1}^{n+2}$ is α-shading of X, $h_i \leqslant f_i$ and <math display="block">h_i = 0.$

Hence by proposition 1.1: $F-dim_{cL}X \leq n$. \Box

Let (X,T) be an F-space, and let $\alpha_0 \in [0,1]$ be fixed. We define a weaker dimension function - denoted by F_{α_0} - $\dim_{\alpha} X$ - of X at $\alpha \in [0,1)$ as follows: If $\alpha \in [0,\alpha_0)$, then F_{α_0} - $\dim_{\alpha} X \leq n$ if every finite α -shading of X has an α -refinement whose order α if $\alpha \in [0,1)$, then F_{α_0} - $\dim_{\alpha} X \leq n$ if every finite α - shading of α has a α -refinement for some α whose order α in α of α has a α -refinement for some α whose order α in α .

Example 1.3: Let X = I, for n = 1, 2, 3, 4 and let $f_n, g_n \in I^X$ be defined as follows:

$$f_{n}(x) = \frac{2}{n+2} \text{ if } x \in \left[0, \frac{2}{3}\right]$$

$$= 0 \text{ otherwise}$$

$$g_{n}(x) = \frac{2}{2n+1} \text{ if } x \in \left[\frac{1}{3}, \frac{1}{3}\right]$$

$$= 0 \text{ otherwise}$$

Let $T = \{\overline{0}, \overline{1}, f_n, g_n, f_n \land g_n, f_n \lor g_n, n=1, 2, 3, 4\}$. Then (X,T) is an F-space. Put $\alpha_0 = \frac{5}{8}$ and let $\alpha = \frac{1}{12}$ (say). Then $\{f_4, g_4\}$ is α -refinement of every α -shading of X, where $\alpha \in \left[\frac{1}{12}, \frac{1}{3}\right]$ whose order ≤ 1 . So F_5 -dim $X \leq 1$.

Remark: We notice that if $\alpha_0 = 1$, then $F_{\alpha_0} - \dim_{\mathcal{X}} X = F - \dim_{\mathcal{X}} X$ for $d \in [0, \infty)$.

If de[do,1), then Fd -dimax and F-dimax may not related.

2. THE SUBSET AND SUM THEOREMS:

In this section we find some subset and sum theorems for α -covering dimension of F-spaces. It is not true in general that if (X,T) is an F-space and Y is an F-subspace of (X,T) then F-dim α Y \leq F-dim α X. We will see under what condition the above relation is true.

<u>Proposition 2.1:</u> Let (X,T) be an ∞ -compact F-space. If Y is an ∞ -closed F-subspace, then:

Proof: Let F-dim $X \leq n$, Y be an α -closed F-subspace of (X,T), and $\mathcal G$ be a finite α -shading of Y $(\alpha \in [0,1))$. For each $x \in X \setminus Y$, there exists $u_X \in T$ with $u_X(x) > \alpha$ and $u_X \wedge \alpha(Y) = 0$ by definition of α -closedness I.2.10. Then $\{\mathcal G, u_X\}_{X \in X \setminus Y}$ is α -shading of X, and hence has finite α -subshading V(say) from the α -compactness of (X,T). Since F-dim $X \leq n$, V has an α -refinement M whose order α and so $M \setminus Y$ is an α -refinement of $\mathcal G$ whose order α and so $M \setminus Y$ is an α -refinement of $\mathcal G$ whose order α and α -refinement of $\mathcal G$ whose order

Proposition 2.2: Let Y be an F-subspace of an α -Hausdorff F-space (X,T). Then:

$$F-dim_{\alpha}Y \leq F-dim_{\alpha}X$$
.

Proof. Let F-dim X, and let $\left\{f_i\right\}_{i=1}^k$ be an α -shading of Y. Then

 $\left\{g_i\right\}_{i=1}^k \text{ is a family of open F-sets in X such that } g_i|Y=f_i \\ \text{for } i=1,2,\dots,k. \text{ Now let } y\in Y, \text{ then for each } x\in X\backslash Y \text{ there} \\ \text{exist two open F-sets in X,} V_y, u_X \text{ such that } u_X(X)>\alpha$, $V_y(Y)>\alpha$ and $V_y\wedge u_X=0$ by definition of α -Hausdorff 1.2. \mathcal{H} Put $u=\bigvee_{X\in X\backslash Y}u_X, \text{ then } U\in T \text{ and } u\wedge u_Z=0 \text{ for } z\in Y. \text{ Hence } \left\{g_i,u\right\}_{i=1}^k \\ \text{is finite } \alpha\text{-shading of X, and by assumption there is an } \alpha\text{-refinement } V\text{ of } \left\{g_i,u\right\}_{i=1}^k \\ \text{nement of } \left\{f_i\right\}_{i=1}^k \text{ of order } \leq n. \\ \text{is finite } \alpha\text{-shading of X} \right\}_{i=1}^k$

Therefore F-dim Y < n.

Proposition 2.3: Let Y be a suitable closed set in an F-space (X,T). Then:

Definition 2.1: An F-subspace Y of an F-space (X,T) is closed if $\mathcal{M}(X\setminus Y)$ is open F-set in X, each closed F-set in Y is closed F-set in X, and for each closed F-set in X, fly is closed F-set in Y.

Proposition 2.4: Let (X,T) be an F-space, and Y be a closed F-subspace of (X,T). Then:

Proof. Let F-dim $X \le n$ and let Y be a finite α -shading of Y. Then $U = \{u \in T : u | Y \in \}$ is a finite family of open F-sets in X and hence $\{U, \mu(X \setminus Y)\}$ is a finite α -shading of X. Since F-dim $X \le n$, there is a finite α -shading $\{V, \mu(X \setminus Y)\}$ of X order α by proposition II.1.1 and $V \le U$. But $\{V \mid Y\}$ is a finite α -shading of Y of order α and A and A

Definition 2.2: Let Y be an F-subspace of an F-space (X,T) and let $\mathcal G$ be an α -shading of Y. Then $\mathcal G$ is called countably extendable (to X) if there exists a countable α -shading $\mathcal H$ of X such that $\mathcal H$ Y is a precise α -refinement of $\mathcal G$.

Proposition 2.5: Let (X,T) be an α -Hausdorff α -Lindelof F-space. Then every finite α -shading of any F-subspace Y of (X,T) is countably extendable.

Proof. Let $\mathcal G$ be a finite α -shading of an F-subspace Y of an α -Hausdorff α -Lindeloff F-space (X,T). Then there is a finite $\mathcal H$ CT such that $\mathcal H$ Y = $\mathcal G$. Let $y \in Y$ by definition of α -Hausdorff, for each $x \in X \setminus Y$ there are $u_x, v_y \in T$ such that $u_x(x) > \alpha$, $v_y(y) > \alpha$ and $v_y \wedge u_x = 0$. So $\{u_x\}_{x \in X \setminus Y}$ is a family of open F-sets in X and $\{\mathcal H, U_x\}_{x \in X \setminus Y}$ is an α -shading of X. By definition of α -Lindelof I.2.7, there exists a countable α -subshading W of $\{\mathcal H, U_x\}_{x \in X \setminus Y}$ and WY is a precise α -refinement of $\mathcal G$. \square

<u>Proposition 2.6:</u> Let (X,T) be an d-Lindelof F-space. Then every finite d-shading of an d-closed F-subspace is countably extendable.

<u>Proof.</u> Let Y be an α -closed F-subspace of (X,T) and let \mathcal{G} be a finite α -shading of Y. For each $x \in X \setminus Y$, there is an open F-set u_x in X, such that $u_x(x)>\alpha$ and $\alpha(Y)\wedge u_x=0$ from definition I.242. So $\{\mathcal{G}, u_x\}$ is an α -shading of X and hence the proof. is completed by the same way of proposition 2.5. \square

<u>Proposition 2.7:</u> Let (X,T) be a countably α -compact F-space and let Y be an F-subspace such that every finite α -shading of Y is countably extendable. Then:

<u>Proof.</u> Let F-dim $X \leq n$, and $\left\{f_i\right\}_{i=1}^k$ be an d-shading of Y. Suppose that every finite d-shading of Y is countably extendable. Then there is a countable d-shading $\left\{g_i\right\}_{i=1}^n$ of X such that $g_i \mid Y \leq f_i$ for $i=1,2,\ldots,k$. Since (X,T) is countably d-compact, there is a finite d-subshading $\left\{g_i\right\}_{i=1}^n$ of X (n>k say) and so there is an d-shading $\left\{h_i\right\}_{i=1}^n$ of X whose order d i and i and

Proposition 2.8: Let (X,T) be countably α -compact α -Lindelof F-space and let Y be an α -closed F-subspace of (X,T), Then:

Proof. Follows from propositions 2.6 and 2.7 or from the observation that d-Lindelof and countably d-compact is d-compact and proposition 2.1.

The subset theorem for F_{d_0} -dim $_{d_0}$ depends on the position of d with respect to the fixed d_0 .

Proposition 2.9: Let Y be a closed F-subspace of an F-space (X,T). Then:

For $\alpha \in [\alpha_0, 1)$.

Proof. Let f_{α_0} -dim $X \leq n$, $\alpha \in [\alpha_0, 1)$ and let $\left\{f_i\right\}_{i=1}^k$ be an α -shading of Y. Then there is a family $\left\{g_i\right\}_{i=1}^k$ of open F-sets in X such that $g_i \mid Y = f_i$ for $i = 1, 2, \ldots, k$, and so $\left\{g_i, \mu(X \setminus Y)\right\}_{i=1}^k$ is a finite α -shading of X. By assumption there is an β -refinement V of $\left\{g_i, \mu(X \setminus Y)\right\}_{i=1}^k$ for some $\beta \in [0, \alpha_0)$ whose order α n. Hence $\{V \mid Y\}$ is β -refinement of $\{f_i\}_{i=1}^k$ of order α n. So

Remark: Propositions 2.1, 2.2 and 2.3 hold for F_{α} -dim only if $\alpha \in [\alpha, 1)$.

We wish to determine the dimension of an F-space in terms of the dimension of some of its F-subspaces. The following two propositions give the sum theorem for an F-space satistying some conditions in terms of a finite F-subspaces.

We observe that if Y_1 and Y_2 are α -closed in an F-space (X,T) such that $Y_1 \cap Y_2 \neq \emptyset$, then $Y_2 \setminus Y_1$ is α -closed in Y_2 .

Proposition 2.10: Let (X,T) be an α -compact F-space such that $X = \bigcup_{i=1}^{K} Y_i$ where for each $i=1,2,\ldots,k$, Y_i is α -closed F-subspace of (X,T) with F-dim $Y_i \le n$. Then F-dim $X \le n$.

Proof. Let \mathcal{G} be a finite α -shading of X and let $X = Y_1 \cup Y_2$ (i = 1, 2) such that F-dim $Y_1 \leq n$ and $Y_2 \leq n$. Then $\{\mathcal{G} | Y_1\}$ are finite α -shadings of Y_1 and Y_2 respectively. By

assumption there are α -refinements V_1 , V_2 of $\{Y_1\}$ and $\{Y_1,Y_2\}$ with order of $V_1 \leq n$, and order of $V_2 \leq n$. Now if $Y_1 \cap Y_2 = 0$, then $\{V_1,V_2\}$ is an α -refinement of $\{Y_1,V_2\}$ whose order $\leq n$ and so F-dim $X \leq \infty$.

If $Y_1 \cap Y_2 \neq \emptyset$, then $Y_2 \setminus Y_1$ is α -closed in Y_2 , let us call it Y_3 , so F-dim $_{\alpha}Y_3 \neq n$, $Y_1 \cap Y_3 = \emptyset$ and $Y_1 \cup Y_3 = X$. Hence by the same argument there is an α -refinement $\{v_1, v_3\}$ of whose order $\leq n$ and so F-dim $_{\alpha}X \leq n$. \square

Proposition 2.11: Let (X,T) be an α -compact α -Hausdorff F-space such that $X = \bigcup_{i=1}^{K} Y_i$ where Y_i is α -compact F-subspace for each i, with F-dim $X_i \subseteq n$. Then F-dim $X_i \subseteq n$.

<u>Proof:</u> Since each α -compact F-subspace of an α -Hausdorff is α -closed proposition I.2.3. Then the proof. follows at once from proposition 1.10.

The local α -covering dimension of F-spaces is defined and studied in this section. From now on, by g^+ for $g \in I^X$, $\alpha \in [0,1)$ we mean the subset $\{x \in X : g(x) > \alpha \}$.

Definition 3.1: Let (X,T) be an F-space. Then the local -covering dimension of (X,T)- denoted by loc F-dim X - is defined as follows:

- (1) loc F-dim X = -1 if X = 0
- (II) loc F-dim $X \le n$ (n > 0) if for every $x \in X$, there exists an open F-set g in X, with $g(x) > \alpha$ such that F-dim $\alpha^{g^+} \le n$.

(iii) loc F-dim $X = \infty$ if loc F-dim $X \le n$ is false for every integer n.

<u>Proposition 3.1:</u> Let (X,T) be an \sim -Hausdorff F-space. Then the following statements are equivalent:

- (|) loc F-dim_{α} $X \leq n$
- (!|) Every α -shading of X has an α -refinement $\mathcal H$ with F-dim α^+ on for every $h\in \mathcal H$.

Proof. (1) \Longrightarrow (11) Let loc F-dim $X \leq n$, and U be an α -shading of X. Then by assumption for each $x \in X$, there exists an open F-set g_X in X such that $g_X(x) > \alpha$ and F-dim $g^+ \leq n$. By definition of α -shading of X I.2.3, for each $x \in X$ there exists $u_X \in U$ such that $u_X(x) > \alpha$. Put $h_X = g_X \wedge u_X$, then h_X is open F-set in X, $h_X(x) > \alpha$ and $h_X \leq u_X$. If $\mathcal{H} = \{h_X : x \in X\}$, then \mathcal{H} is an α -refinement of U. Since $u_X = g_X \wedge u_X$ then clearly $h_X^+ \leq g_X^+$, but g_X^+ is α -Hausdorff F-subspace of (X,T) with F-dim $g_X^+ \leq n$, so by proposition 2.2 we get F-dim $g_X^+ \leq n$; that is F-dim $g_X^+ \leq n$ for $h \in \mathcal{H}$ as required.

 $(II) \Longrightarrow (I) \text{ Assume (II) and let } x \text{ be any point of } X. \text{ Then for every } y \in X \backslash \{x\} \text{ there are open } F\text{-sets } u_y, v_x \text{ such that } u_y(y) > \alpha$, $v_x(x) > \alpha$ and $u_y \wedge v_x = 0$ from definition I.2. So $\{u_y, v_x\}_{y \in X \backslash \{x\}} \text{ is an } \alpha\text{-shading of } X \text{ and then by assumption there is an } \alpha\text{-refinement } \mathcal{H} \text{ of } \{u_y, v_x\}_{y \in X \backslash \{x\}} \text{ such that } F\text{-dim } h^+ \leq n$ for every $h \in \mathcal{H}$; that is loc $F\text{-dim }_{\alpha} X \leq n$. \square

The following propositions give the relation betwen the α -covering dimension and the local α -covering dimension of F-spaces.

Proposition 3.2: Let (X,T) be &-Hausdorff &-compact F-space.

Then:

loc
$$F-\dim_{\alpha} X \leq F-\dim_{\alpha} X$$
.

Proof. Let F-dim X \leq n. Let x \leq X. Then for each y \in X\{x\} there are open F-sets u_y, v_x in X such that $u_x(y) > \alpha$, $v_x(x) > \alpha$ and $u_y \wedge v_x = 0$. Hence the family $\left\{u_y, v_x\right\}_{y \in X \setminus \{x\}}$ is an α -shading of X and by α -compactness of (X,T) there is a finite numbers of points $y_1, y_2, \ldots, y_k \in X \setminus \{x\}$ (say) such that $\left\{u_{y_1}, v_1\right\}_{1=1}^k$ is

 $\alpha\text{-subshading of }\{u_y,v_x\}_{y\in X\setminus\{x\}}$ i.e. $\{u_y,v_x\}_{i=1}^k$ is a finite $\alpha\text{-shading of }X$ and then by assumption there is an $\alpha\text{-refinement}$ and $\{u_y,v_x\}_{i=1}^k$.

Now for each $h \in \mathcal{H}$, h^+ is an F-subspace of an α -Hausdorff F-space (X,T) so by proposition 2.2 F-dim $h^+ \leq n$ which implies that loc F-dim X $\leq n$ from proposition 3.1.

Proposition 3.3: Let (X,T) be a perfectly F-normal α -Hausdorff F-space. Then:

$$loc F-dim_{\alpha}X \leq F-dim_{\alpha}X$$
.

Proof. Let f-dim $X \leq n$ and let \mathcal{H} be an α -shading of X. By perfectly F-normality for each $n \in \mathcal{H}$, $n = \bigvee_{i=1}^{\infty} f_i$ where f_i is closed F-set in X for each $i = 1,2,\ldots$. So $f_i \leq h$ for each i and hence there is an open F-set g_i such that $f_i \leq g_i \leq cl$ $g_i \leq h$. Let $g = \bigvee_{i=1}^{\infty} g_i$. Then g is open F-set in X and $g \leq h$. Put $\mathcal{H} = \{g \in T: g \leq h \text{ for each } h \in \mathcal{H}\}$, then \mathcal{H} is an α -refinement of \mathcal{H} and for each $g \in \mathcal{H}$ we have F-dim $g^+ \leq n$ from proposition 2.2.

Hence by proposition 3.1 loc F-dim $X \leq n$.

Definition 3.2: An F-space (X,T) is called locally α -closed if for each $x \in X$ there exists an open F-set h in X such that $h(x) > \alpha$ and h^+ is α -closed.

Next we give some conditions under which loc F-dim $_{\rm cl}$ and F-dim $_{\rm cl}$ coincide.

Proposition 3.4: Let (X,T) be an a-compact locally a-closed F-space. Then:

Proof. \Rightarrow Let F-dim $X \le n$. By definition 3.2 for each $x \in X$, there exists an open F-set h in X such that $h(x) > \alpha$ and h^+ is α -closed. Since F-dim $X \le n$ then by proposition 2.1 we get F-dim $h^+ \le n$. Hence loc F-dim $X \le n$.

Proposition 3.5: Let (X,T) be an A-Hausdorff F-space and let Y be an F-subspace of (X,T). Then:

Proof. Let loc F-dim $X \leq n$ and let $\mathcal H$ be an α -shading of Y. Then there is a family $\mathcal G$ of open F-sets in X such that $\mathcal G|_Y = \mathcal H$. Let $y \in Y$. Then for any $x \in X \setminus Y$, there are open F-sets u_x, v_y in

X such that $u_X(x) > \alpha$, $v_Y(y) > \alpha$ and $u_X \wedge v_Y = 0$. Hence $\{\mathcal{Y}, u_X\}_{X \in X \setminus Y}$ is an α -shading and hence by assumption and proposition 3.1 there is an α -refinement \mathbb{W} of $\{\mathcal{Y}, u_X\}_{X \in X \setminus Y}$ such that $\mathbb{Y} = \mathbb{W} = \mathbb{W}$

The next proposition gives the finite sum theorem of local d-covering dimension.

<u>Proposition 3.6:</u> Let (X,T) be an α -compact locally α -closed F-space. If $X=Y\cup Z$ with loc F-dim $_{\alpha}Y\leq n$ and loc F-dim $_{\alpha}Z\leq n$, then loc F-dim $_{\alpha}X\leq n$.

<u>Proof.</u> Let loc F-dim $_{\alpha}Y \neq n$ and loc F-dim $_{\alpha}Z \neq n$. For each $x \in X$ by definition 3.2 there exists an open F-set h such that $h(x) > \infty$ and h^+ is ∞ -closed. Hence by proposition I.2.8 h^+ is ∞ -comect.

Now if $x \in Y \setminus Z$, then $(h|(Y \setminus Z))(x) > \alpha$ and since loc F- $\dim_{\alpha} Y \leq n$, so F-dim $(h|(Y \setminus Z))^+ \leq n$. If $x \in Z \setminus Y$, then $(h|(Z \setminus Y))(x) > \alpha$ and from the assumption F-dim_{α} $(h|(Z \setminus Y))^+ \leq n$. If $x \in Y \cap Z$, then $(h|(Y \cap Z))(x) > \alpha$ and F-dim_{α} $(h|(Y \cap Z))^+ \leq n$. Clearly in either case we have $(h|(Y \setminus Z))^+$, $(h|(Z \setminus Y))^+$ and $(h|(Y \cap Z))^+ \in h^+$, which implies that each of them is α -closed in h^+ .

Now we have to show that $F-\dim_{\alpha}h^{+} \leq n$. If h^{+} equals one of the above three subsets then clearly $F-\dim_{\alpha}h^{+} \leq n$. If $h^{+} = (h|(Z\setminus Y))^{+} \cup (h|(Y\cap Z))^{+}$ or $h^{+} = (h|(Y\setminus Z))^{+} \cup (h|(Y\cap Z))^{+}$, then in both cases by the (finite sum theorem) proposition 2.10 we have $F-\dim_{\alpha}h^{+} \leq n$. i.e. for each $x \in X$ there is an open F-set h such that $h(x)>\alpha$ and $F-\dim_{\alpha}h^{+} \leq n$. Therefore loc $F-\dim_{\alpha}X \leq n$. \square

Chapter III:

COVERING DIMENSION AND MODIFICATION OF F-SPACES

The relation between topological spaces and F-spaces was studied by Lowen [$i \circ j$] [$i \circ j$] where the two functions w and i were used as follows:

If $\mathcal{F}(X)$ is the set of all topologies on X, and F(X) is the set of all F-topologies on X then:

a) i:
$$F(X) \longrightarrow \mathcal{F}(X)$$

 $T \longrightarrow i(T)$

i(T) is the initial topology for the family of functions T and I with the usual topology.

b)
$$w: \mathcal{F}(X) \longrightarrow F(X)$$

$$R \longrightarrow w(R)$$

w(R) is the family of lower semicontinuous functions from (X,R) to I with the usual topology.

From a) we can associate with each F-space (X,T) a topological space (X, i(T)) called the modification of (X,T) or simply a modificated topology. This concept reduces some properties of F-spaces to a topological properties i.e. if (X,T) is α -compact, then (X, i(T)) is compact.

We use this concept to benifit from the well known results of the covering dimension of topological spaces (in particular to get a product theorem for F-spaces), as well as from some other topological properties like Čechstone compactification.

Throughout the rest of this work we mean by a strong α -property an α -property for all $\alpha \in [0,1)$.

1. F-dim

Definition 1.1: Let (X,T) be an F-space. Then F-dim $X \leq n$ if F-dim $X \leq n$ for all $\alpha \in [0,1)$.

Example 1.1: Let (X,R) be a topological space with dim $X \leq n$.

For $u \in R$, let $\mathcal{U}(u)$ be the characteristic function of u. Put $T = \left\{ \mathcal{U}(u) \right\}_{u \in R}$. Then (X,T) is an F-space. We claim that F-dim $X \leq n$. To see that let $\left\{ \mathcal{U}(u_i) \right\}_{i=1}^{k}$ be a finite α -shading of X for any $\alpha \in [0,1)$. Then $\left\{ u_i \right\}_{i=1}^{k}$ is an open cover of X, and so there is a finite open cover $\left\{ v_i \right\}_{i=1}^{k}$ of X of order $\leq n$ and $v_i \leq u_i$ for $i=1,2,\ldots,k$.

Let $f_i \in I^X$ be defined by

$$f_i(x) = 1$$
 if $x \in v_i$ for each $i = 1, 2, ..., k$
= 0 if $x \notin v_i$

Then $\left\{f_i\right\}_{i=1}^k$ is an α -shading of X for all $\alpha \in [0,1)$ such that $f_i \neq \alpha(u_i)$ for $i=1,2,\ldots,k$, and order of $\left\{f_i\right\}_{i=1}^k$ n. Hence F-dim X \leq N.

Definition 1.2: An F-space (X,T) is called α -permissible if for each $V \subset T$, V contains at least two members, there is $\alpha \in [0,1)$ such that V is an α -shading of X.

Proposition 1.1: Let (X,T) be an α -permissible F-space. If F-dim X=0, then (X,T) is weakly F-normal space.

<u>Proof.</u> Let F-dim X = 0 and let G_1, G_2 be two disjoint closed

F-sets in X. Then $\left\{\text{co }G_1, \text{ co }G_2\right\}\subset T.$ Since (X,T) is α -permissible, so there exists $\alpha\in[0,1)$ such that $\left\{\text{co }G_1, \text{ co }G_2\right\}$ is α -shading of X. But F-dim X = 0 implies for all $\alpha\in[0,1)$, F-dim X = 0 by definition 1.1 and hence there is an α -shading $\left\{f_1,f_2\right\}$ of X such that $f_1 \in \text{co }G_2, f_2 \in \text{co }G_1$ and $f_1 \land f_2 = 0$ i.e. $f_1 \in \text{co }f_2$. Therefore $G_1 \in \text{co }f_2$ so $G_1 \in \text{co}(\text{co }f_1)$ and then $G_1 \in f_1$. Similarly $G_2 \in f_2$.

Corollary 1.1: Let (X,T) be an α -permissible F_c -space. If F-dim X = 0, then (X,T) is F-normal space. \square

We introduce a stronger definition of zero dimension of F-spaces as follows:

SF-dim X=0 if for every finite α -shading of X there is an α refinement consisting of open and closed disjoint F-sets. Clearly if SF-dim X=0 then F-dim X=0 for any F-space (X,T).

Definition 1.3: Let G_1 , G_2 be two disjoint closed F-sets of an F-space (X,T). Then G_1 , G_2 are called strongly separated in X if there is an open and closed F-set E such that $G_1 \leq E$ and $E \leq co G_2$.

Proposition 1.2: Let (X,T) be an ∞ -permissible F-space. If SF-dim X=0, then each pair of disjoint closed F-sets is strongly separated in X.

<u>Proof.</u> Let SF-dim X = 0 and suppose that G_1 , G_2 are disjoint closed F-sets. Then $\left\{\text{co }G_1, \text{ co }G_2\right\}$ is an α -shading of X for some $\alpha \in [0,1)$ because (X,T) is α -permissible. Since SF-dim X = 0, so there is an α -shading $\left\{f_1,f_2\right\}$ of X such that f_1,f_2 are open and closed, f_1 A f_2 = 0, and $f_1 \leq \text{co }G_1$, $f_2 \leq \text{co }G_2$. So

 $G_1 \leq co \ f_1 \ implies \ G_1 \leq co(co \ f_2) \ i.e. \ G_1 \leq f_2 \leq co \ G_2.$

Definition 1.4: An F-space (X,T) is said to be:

- (i) Connected if and only if the only open and closed F-sets are $\overline{0}$, $\overline{1}$. An F-set g is connected if g_0 is connected as an F-subspace.
- (II) Disconnected if it is not connected.
- (III) Totally disconnected if there is no connected F-set containing more that one F-point.

<u>Proposition 1.3:</u> Let (X,T) be an α -permissible FT_1 -space. If SF-dim X = 0, then X is totally disconnected.

<u>Proof.</u> Let SF-dim X=0 and let g be a connected F-set of X consisting of two F-points $p,q,p\neq q$. Then by proposition 1.2 there is an open and closed F-set E such that $p\in E$ and $E\leqslant co$ q. Hence $E|g_0$ is open and closed in g_0 and $E|g_0$ is not $\overline{0}_{g_0}$ and not $\overline{1}_{g_0}$. i.e. g is not connected contradicting our assumption that g is connected. Therefore (X,T) is totally disconnected.

We return to the subset theorem given in section 2 of the previous chapter, but this time we consider the covering dimension of F-spaces instead of the \varnothing -covering dimension.

<u>Proposition 1.4:</u> Let Y be a closed F-subspace of an F-space (X,T). Then:

F-dim Y ≤ F-dim X.

<u>Proof.</u> Let F-dim X \leq n, and let U be a finite α -shading of Y for all $\alpha \in [0,1)$. There is a family W of open F-sets in X such that for every $w \in W$, $w \mid Y \in U$, and $\{w, \alpha(X \setminus Y), \}$ is a finite α -shading of X for all $\alpha \in [0,1)$. Since F-dim X \leq n, then by

definition 1.1. there is an \propto -refinement V of $\{ \Psi, \mu(X Y) \}$ whose order \leq n for all $\alpha \in [0,1)$. So $\{ V | Y \}$ is α -refinement of $\Psi | Y = U$ whose order \leq n for all $\alpha \in [0,1)$.

Hence F-dim Y ≤ n. □

Proposition 1.5: Let Y be an F-subspace of a strong α -compact, Hausdorff F-space (X,T). Then:

F-dim $Y \leq F$ -dim X

<u>Proof.</u> Since (X,T) is strong α -compact Hausdorff, then by proposition 2.8 [6] $\mu(X|Y)$ is open F-set in X and it follows from proposition 1.4 that F-dim Y \leq F-dim X.

Proposition 1.6: Let Y be an F-subspace of a strong α -Hausdorff F-space (X,T). Then

F-dim Y ≤ F-dim X

Proof. Follows from proposition II.2.2 for all $\alpha \in [0,1)$. \square Proposition 1.7: Let (X,T) be a strong countably α -compact Fspace and Y be an F-subspace of (X,T). If each finite α -shading

F-dim $Y \leq F$ -dim X

of Y ($\forall \alpha \in [0,1)$) is countably extendable, then:

Proof. Follows from proposition II.2.6 for all d∈[0,1). □

Proposition 1.8: Let (X,T) be a strong α -compact such that $X = \bigcup_{i=1}^{Y} Y_i$ where for each i, Y_i is strong α -closed F-subspace with F-dim $Y_i \le n$. Then F-dim $X \le n$.

Proof. Apply proposition II.2.10 for each $\alpha \in [0,1)$.

Proposition 1.9: Let (X,T) be a strong d-Hausdorff F-space that K $X = \bigcup_{i=1}^{N} Y$, let each Y_i be strong d-compact F-subspace with

F-dim $Y_i \le n$. Then F-dim $X \le n$.

<u>Proof.</u> Apply proposition II.2.11 for each $\alpha \in [0,1)$.

Definition 1.5: Let Y be an F-subspace of an F-space (X,T). Then (X,T) is called conservative if for any two F-sets f,g in Y with $f \leq g$, then $f \neq g$ in X, where $f' \mid Y = f$, $g \mid Y = g$.

Proof. Let f be an open f-set in Y and g be a closed f-set in Y such that $g \le f$. So there are a closed f-set g^* in X, and an open F-set f^* in X such that $g = g^*|Y$ and $f = f^*|Y$. Since (X,T) is conservative then by the above definition $g^* \le f^*$ in X, but by assumption (X,T) is F-normal, so there is an open F-set h in X with $g^* \le h \le cl$ $h \le f^*$ and hence $g \le h|Y \le cl$ $h|Y \le f$. Thus Y is F-normal.

Proposition 1.11: Let (X,T) be a conservative F_c -normal space and let Y be a closed F-subspace of (X,T) such that F-dim $Y \leq n$. If $\left\{f_i\right\}_{i=1}^k$ is a family of open F-sets in X with $\left\{f_i\right|Y\right\}_{i=1}^k$ is an

d-shading of Y for some de[0,1). Then there exists a family $\left\{g_i\right\}_{i=1}^k \text{ of open F-sets in X such that cl } g_i \leqslant f_i \text{ and order of } cl\left\{g_i\right\}_{i=1}^k \leqslant n.$

Proof. Let $d \in [0,1)$ such that $\left\{f_i \mid Y\right\}_{i=1}^k$ is an d-shading of Y. By proposition 1.10, Y is F_c -normal and hence by proposition II.1.4 there exists an d-coshading $\left\{h_i\right\}_{i=1}^k$ of Y such that $h_i \leq f_i \mid Y$ for $i=1,2,\ldots,k$ and order of $\left\{h_i\right\}_{i=1}^k \leq n$. Since Y is closed F-subspace of (X,T) so h_i is closed F-set in X for each

 $\begin{array}{l} i=1,2,\ldots,k, \text{ and } h_i \leq f_i \text{ By F-normality of } (X,T) \text{ there are } \\ \text{open F-sets } g_i \text{ in } X \text{ such that } h_i \leq g_i \leq cl \ g_i \leq f_i \text{ for each } i=1,2,\ldots,k. \text{ In fact } \left\{cl \ g_i\right\}_{i=1}^k \text{ is a swelling of } \left\{h_i\right\}_{i=1}^k \text{ and hence } \\ \text{the order of } \left\{cl \ g_i\right\}_{i=1}^k \leq n. \quad \square$

<u>Proposition 1.12:</u> Let (X,T) be a conservative F_c -normal space and let Y be a closed F-subspace of X such that F-dim Y \leq n. If F-dim Z \leq n for any closed F-subspace Z of (X,T) disjoint from Y, then F-dim X \leq n.

Proof. Let F-dim Z < n and let $\left\{f_i\right\}_{i=1}^k$ be an α -shading of X for any $\alpha \in [0,1)$, then $\left\{f_i \mid Y\right\}_{i=1}^k$ is an α -shading of Y and so by proposition 1.11 there is a family $\left\{g_i\right\}_{i=1}^k$ of open F-sets in X such that $g_i \leq f_i$, order $\left\{g_i\right\}_{i=1}^k$ and $\left\{g_i \mid Y\right\}_{i=1}^k$ is an α -shading of Y. Put $\Omega = c_0 \left[\bigvee_{i=1}^k g_i \bigvee_{i=1}^k \left\{t: t > f_i \mid \forall i=1,2,\ldots,k\right\}\right]$

then Q is closed F-set in X and Q $\leq \mu(X \setminus Y)$. By F-normality of (X,T) there is an open F-set h such that $Q \leq h \leq cl$ h $\leq \mu(X \setminus Y)$. Let $(cl\ h)_Q$ be the support of cl h, then $(cl\ h)_Q$ is a closed F-subspace of X which is disjoint from Y. Now $\{f_i \mid (cl\ h)_Q\}_{i=1}^K$ is an α -shading of $(cl\ h)_Q$, where from hypothesis F-dim

is an α -shading of (cl h), where from hypothesis rediming $\{a_i\}_{i=1}^k$ (cl h) such that $a_i \leq a_i$ (cl h) for $a_i = 1, 2, \ldots, k$ and order of $\{a_i\}_{i=1}^k$ that us define $a_i \in I^X$ for each $a_i = 1, 2, \ldots, k$ by:

$$d_{i}(x) = m_{i}(x) \text{ if } x \in (cl h)_{o}$$
$$= g_{i}(x) \text{ if } x \notin (cl h)_{o}$$

So $\{d_i\}_{i=1}^k$ is an d_i -shading of X such that $d_i \le f_i$ for $i=1,2,\ldots,k$ and order of $\{d_i\}_{i=1}^k \le n$.

Hence $F-\dim_{\mathcal{A}} X \leq n$. Apply this method for every $\mathcal{A} \in [0,1)$, we get $F-\dim X \leq n$. \square

<u>Proposition 1.13:</u> Let (X,T) be a conservative F_c -normal. If $X=Y\cup Z$ where Y, Z are closed F-subspaces with F-dim $Y\leqslant n$, and F-dim $Z\leqslant n$, then F-dim $X\leqslant n$.

<u>Proof.</u> Let $X = Y \cup Z$ and let Q be a closed F-subspace of (X,T) disjoint from Y. Then Q is closed F-subspace of Z and by proposition 1.4 F-dim $Q \le n$. Hence by proposition 1.12 it follows that F-dim $X \le n$.

We end this section by returing to the local covering dimension introduced in section 3 of the previous chapter.

Definition 1.6: Let (X,T) be an F-space. Then loc F-dim $X \le n$ if loc F-dim $X \le n$ for all $\alpha \in [0,1)$.

Proposition 1.14: Let (X,T) be strong &-Hausdorff strong &compact F-space. Then:

loc F-dim $X \leq F$ -dim X

Proof. Follows from proposition II.3.2 for each $\alpha \in [0,1)$.

<u>Proposition 1.15:</u> If (X,T) is perfectly F-normal strongly α -Hausdorff F-space, then:

loc F-dim $X \leq F$ -dim X

<u>Proof.</u> Apply proposition II.3.3 for each $\alpha \in [0,1)$.

<u>Proposition 1.16:</u> If (X,T) is strongly A-Hausdorff F-space and Y is an F-subspace of (X,T), then:

loc F-dim $Y \leq loc F-dim X$

<u>Proof.</u> Apply proposition II.3.5 for each $d \in [0,1)$.

2. MODIFICATION OF F-SPACES:

The modification of an F-space (X,T) is a topological space (X,i(T)), where the family $\left\{t^{-1}(d,1]:t\in T,d\in I\right\}$ is a subbase for i(T), and if for all $\alpha\in[0,1)$ we put $i_{\alpha}(T)=\left\{t^{-1}(d,1]:t\in T\right\}$. Then $i_{\alpha}(T)$ is a topology on X (see Lowen [12]) and

$$i(T) = V\{i_{d}(T) : d \in [0,1)\}.$$

It is known that the set of all lower semicontinuous maps $w(\mathcal{F})$ from a topological space (X,\mathcal{F}) into I equipped with the usual topology forms an F-space $(X,w(\mathcal{F}))$ called the induced F-space.

An F-space (X,T) is called topologically generated if there is a topology \mathcal{F} on X such that $T = w(\mathcal{F})$ or equivalently if T = w(i(T)).

Throughout this section and the rest of our work, F-dim X_T means the α -covering dimension of the F-space (X,T), and dim $X_{\mathcal{F}}$ means the covering dimension of X with the topology \mathcal{F} on X.

Our main purpose in this section is to find a relation between the covering dimension of an F-topology on a set X and the covering dimension of a topology on the same set X and vice versa.

Lemma 2.1: Let (X,T) be an F-space. Then (X,T) is α -compact (countably α -compact) $[\alpha$ -Lindelof] if and only if $(X,i_{\alpha}(T))$ is compact (countably compact) [Lindelof].

Proof. The family $u \subseteq T$ is an α -shading of X if and only if $\bigcup_{t=1}^{t-1}(\alpha,1] = X$ completes the proof. \square

Lemma 2.2: If (X,T) is an α -Hausdorff F-space, then $(X, i_{\alpha}(T))$ is Hausdorff space.

<u>Proof.</u> Let (X,T) be an F-space and let $x \neq y$. Then from the definition of α -Hausdorff, there are u,v open F-sets in X such that $u(x)>\alpha$, $v(y)>\alpha$ and $u\wedge v=0$. Hence $u^{-1}(\alpha,1]$, $v^{-1}(\alpha,1]$ are disjoint open sets in $i_{\alpha}(T)$ such that $x \in u^{-1}(\alpha,1], y \in V^{-1}(\alpha,1]$ i.e. $(X,i_{\alpha}(T))$ is Hausdorff. \square

The following proposition gives the relation between $F-\dim_{ct}$ of an F-space (X,T) and dim of the modificated topology $(X, i_{ct}(T))$.

<u>Proposition 2.1:</u> Let (X,T) be an F-space and $(X, i_d(T))$ be the modificated topology on X. Then:

 $F\text{-}dim_{\alpha}X_{T} = dim_{\alpha}X_{i_{\alpha}}(T)$ $\underbrace{Proof_{\bullet}} \Rightarrow \text{Let } F\text{-}dim_{\alpha}X_{T} \leq n, \text{ and let } \left\{u_{i}\right\}_{i=1}^{k} \text{ be a finite } i_{\alpha}(T)\text{-}$ open cover of X. Since $i_{\alpha}(T) = \left\{t^{-1}(\alpha,1] : t \in T\right\}$ so for each $i \in \left\{1,2,\ldots,k\right\}, \ u_{i} = t_{i}^{-1}(\alpha,1] \ \text{i.e.} \ x \in u_{i} \ \text{if and only if } t_{i}(x)$ $> \infty$ which implies that $\left\{t_{i}\right\}_{i=1}^{k}$ is an ∞ -shading of X. By assumption and proposition II.1.1, there is an ∞ -shading $\left\{S_{i}\right\}_{i=1}^{k}$ of X such that $S_{i} \leq t_{i}$ for $i = 1,2,\ldots,k$ and order of $\left\{S_{i}\right\}_{i=1}^{k} \leq n$.

Let $v_i = \{x \in X : s_i(x) > \alpha\}$ for each i = 1, 2, ..., k. Then v_i is $i_d(T)$ -open for each i = 1, 2, ..., k,

$$\bigcup_{i=1}^{k} v_i = \bigcup_{i=1}^{k} \left\{ S_i^{-1}(\alpha, 1) = X, \quad v_i \subseteq u_i \quad \text{and} \right\}$$

order of $\left\{v_i\right\}_{i=1}^k \le n$. i.e. $\left\{v_i\right\}_{i=1}^k$ is a finite $i_{\alpha}(T)$ -open cover of X whose order $\le n$, so dim $X_{i_{\alpha L}(T)} \le n$

Let us define $g_i : X \longrightarrow I$ as follows:

$$g_i(x) > d$$
 if $x \in V_i$ for $i=1,2,...,k$
= 0 if $x \notin V_i$

Hence $\left\{g_i\right\}_{i=1}^k$ is α -shading of X, $g_i \leqslant f_i$ for each $i=1,2,\ldots,k$ and clearly order of $\left\{g_i\right\}_{i=1}^k \leqslant n$. So F-dim $X_T \leqslant n$. \square Corollary 2.1: Let (X,T) be an F-space and (X,i(T)) be the modificated topology on X. Then:

$$F-\dim X_T = \dim X_{i(T)}$$

<u>Proof.</u> Apply proposition 2.1 for each $\alpha \in [0,1)$.

The next proposition shows that the covering dimension of a topological space (X, \mathcal{F}) coincides with the covering dimension of the induced F-space $(X, \omega(\mathcal{F}))$.

Proposition 2.2: Let (X, \mathcal{F}) be a topological space and let $(X, \mathbf{w}(\mathcal{F}))$ be the induced F-space. Then:

$$\dim X_{\mathcal{F}} = F - \dim X_{\mathbf{w}(\mathcal{F})}$$

<u>Proof.</u> Let F-dim $X_{u(\mathcal{F})} \le n$ and assume that $\{u_i\}_{i=1}^k$ is an open

cover of X. For each $i \in \{1,2,\ldots,k\}$, let $\mathcal{M}(u_i)$ be the characteristic function on u_i . i.e. $\mathcal{M}(u_i)(x) = 1$ if $x \in u_i$ and $\mathcal{M}(u_i)(x) = 0$ if $x \not\in u_i$ clearly $\left\{\mathcal{M}(u_i)\right\}_{i=1}^k \subset u(\mathcal{F})$ and the family $\left\{\mathcal{M}(u_i)\right\}_{i=1}^k$ is α -shading of X for all $\alpha \in [0,1)$. Hence there exists a finite α -shading $\left\{f_i\right\}_{i=1}^k$ of X for all $\alpha \in [0,1)$ such that $f_i \leq \mathcal{M}(u_i)$ for each $i=1,2,\ldots,k$ and order $\left\{f_i\right\}_{i=1}^k \leq n$.

Let $v_i = \{x \in X : f_i(x) > d, \forall \alpha \in [0,1)\}$ for each i = 1, 2,...,k. Then each v_i is open subset of X and $\{v_i\}_{i=1}^k$ is clearly a finite open cover of X whose order $\leq n$ and $v_i \leq u_i$ for each $i = 1, 2, \ldots, k$. So dim $X_{2^k} \leq n$.

Let us define $f_i \in I^X$ for each $i=1,2,\ldots,k$ as follows

$$f_i(x) > d$$
 if $x \in v_i$
= 0 if $x \notin v_i$

Then $\left\{f_i\right\}_{i=1}^k$ is a family of lower semicontinuous maps from (X,\mathcal{F}) into I. i.e. $\left\{f_i\right\}_{i=1}^k$ is α -shading of X, where $f_i \leq g_i$ for $i=1,2,\ldots,k$ and order $\left\{f_i\right\}_{i=1}^k \leq n$. So F-dim $X_{\mathbf{w}}(\mathcal{F}) \leq n$ for any $\alpha \in [0,1)$, which implies that

$$F-\dim X_{\mathbf{w}(\mathcal{F})} \leq n \cdot \square$$

Combining propositions 2.1 and 2.2 together we get a main result shows that the covering dimension of a topologically generated F-space coincides with the covering dimension of the topological space generating that F-space.

Proposition 2.3: If (X,T) is topologically generated F-space, then:

$$F-\dim X_T = \dim X_{\mathscr{L}}$$

for some \mathcal{F} on X. \square

Corollary 2:2: Let (X,T) be a Hausdorff compact F-space. Then

F-dim $X_T = \dim X_{\mathcal{F}}$

from some F on X.

Proof. Lowen in [/3] proved that every Hausdorff compact F-space is topologically generated, then by proposition 2.3 the proof is completed.

Corollary 2.3: Let (X,T) be strong α -compact Hausdorff F-space. Then:

F-dim
$$X_T = \dim X_T$$

for some \mathcal{F} on X.

<u>Proof.</u> Since strong X-compactness implies compactness in F-spaces [12]. Then it is clear that corollary 2.2 implies corollary 2.3.

Corollary 2.4: Let U be the usual topologyon the real line R, and let b be the usual topology on the rationals Q. Then:

F-dim
$$R_{u}(u) = \dim R_{u} = 1$$

F-dim $Q_{u}(b) = \dim Q_{b} = 0$.

Definition 2.1: Let (X,T) be an F-space. Then it is called an ultra Tychonoff F-space if (X, i(T)) is a Tychonoff topological space.

Martin [16] proved that if (X,T) is an ultra Tychonoff F-space, then (X,T) has a Stone-Čech ultra F-compactification. For an F-space (X,T), $(\beta X,\mathcal{F})$ denotes the Stone-Cech compactification of (X, i(T)) and $(\beta X,T_{\mathcal{F}})$ is an F-space consisting of lower semicontinuous maps from $(\beta X,\mathcal{F})$ into I (with the usual topology) whose restriction to X belongs to T.

Lemma 2.3: Let (X,T) be an ultra Tychonoff F-space. If $\begin{cases} f_i \\ f_i \end{cases} \text{ is an } \alpha \text{--shading of } X \text{ for } \alpha \in [0,1), \text{ then there exists an } \alpha \text{--shading } \begin{cases} g_i \\ i=1 \end{cases}$ of βX such that $f_i = g_i | X$ for each $i=1,2,\ldots,k$.

<u>proof.</u> Let $\{f_i\}_{i=1}^k$ be an α -shading of X. Then $(\beta X, \mathcal{F})$ is the Stone-Cech compactification of (X, i(T)) and $u_i = f_i^{-1}(\alpha, 1]$ is i(T)-open in X for each $i=1,2,\ldots,k$.

Let $\beta u_i = \beta X \setminus cl_{\beta X}(X \setminus u_i)$ i = 1, 2, ..., k.

Define $g_i : \beta X \longrightarrow I$ as follows: $g_i(x) > \alpha$ if $x \in \beta u_i$ i=1, 2, ..., k = 0 otherwise

Clearly $\left\{ \beta u_i \right\}_{i=1}^k$ is a family of open sets in βX , and so $g_i \in T_{\mathcal{F}}$ for each $i \in \{1,2,\ldots,k\}$. We need to show that $\left\{ g_i \right\}_{i=1}^k$ is α -shading of βX . This follows from the fact that $\left\{ g_i \right\}_{i=1}^k$ is α -shading of βX if $\bigcup_{i=1}^k g_i^{-1}(\alpha,1] = \beta X$. Since we have $\bigcup_{i=1}^k u_i = X$, then $\bigcup_{i=1}^k u_i = \beta X$ and $g_i \mid X = f_i$ for $i=1,2,\ldots,k$, i=1

completes the proof.

The following proposition gives the equality of the α -covering dimension of an ultra Tychonoff F-space and its ultra Stone-Čech F-compactification.

<u>Proposition 2.4:</u> Let (X,T) be an ultra Tychonoff F-space and let $(/3X;T_{\frac{1}{2}})$ be its ultra Stone-Čech F-compactification. Then:

$$F-\dim_{\alpha} X_{T} = F-\dim_{\alpha} \beta X_{T_{\alpha}}$$

Proof. \Longrightarrow Let F-dim $\mathcal{B}X_{T_{\cancel{J}}} \leq n$, $\alpha \in [0,1)$ and let $\left\{f_i\right\}_{i=1}^k$ be an α -shading of X. By the above lemma 2.3, there is an α -shading $\left\{g_i\right\}_{i=1}^k$ of βX such that $g_i \mid X = f_i$ for $i=1,2,\ldots,k$. Since F-dim $\beta X_{T_{\cancel{J}}} \leq n$, so there exists an α -refinement V of $\left\{g_i\right\}_{i=1}^k$ whose order $\leq n$. Hence V/X is an α -refinement of $\left\{f_i\right\}_{i=1}^k$ of order $\leq n$. i.e. F-dim $X_T \leq n$.

3. THE PRODUCT THEOREM:

In this section we shall find conditions under which the covering dimension of the product F-space (X \times Y, T \times R) of

F-spaces (X,T) and (Y,R) such that the inequality: $F-\dim(XxY)_{(TxR)} \leq F-\dim X_T + F-\dim Y_R$

holds. We call such results product theorems for F-spaces. Using the modification of F-spaces considered in the previous section, we can extend some well known results of the product theorems of topological spaces to F-spaces.

Lemma 3.1: Let (X_s, T_s) be a family of F-spaces and let $s \in S$ X_s , X_s , X

Proof. Let $(\underset{s \in S}{\mathbb{H}} \times_s, \underset{s \in S}{\mathbb{H}} :_{\alpha}(T_s))$ be the topological product of the modificated topological spaces, P_s be the projections and $(\underset{s \in S}{\mathbb{H}} \times_s, i_{\alpha}(\underset{s \in S}{\mathbb{H}} \times_s))$ be the modification of the product F-space. Let U be $i_{\alpha}(\underset{s \in S}{\mathbb{H}} \times_s)$ -open. Then $u = f^{-1}(\alpha, 1]$, $f \in \underset{s \in S}{\mathbb{H}} \times_s$. By the definition of product F-topology I.3.3, $f = \bigvee_{s \in S} f_s$. Psi is F-continuous. For any $s \in S$, and any $f \in T_s$ we have $(p_s^{-1}(f))^{-1}(\alpha, 1] = p_s^{-1}(f^{-1}(\alpha, 1])$. So $u = \bigcup_{s \in S} \bigcap_{i=1}^{n} (p_s^{-1}(g_s))^{-1}(\alpha, 1] = \bigcup_{s \in S} \bigcap_{i=1}^{n} p_s^{-1}(g_s^{-1}(\alpha, 1])$ implies that u is open in $f \in S$ is $f \in T_s$.

Now let u be open in $\prod_{s \in S} i_{\alpha}(T_s)$. So $u = \bigcup_{i=1}^{n} \bigcap_{s=1}^{p-1} (f_{s_i}^{-1}(\alpha,1]) \qquad f_{s_i} \in T_{s_i}$

Then $\bigcup_{s=1}^{n} p_{s_{i}}^{-1}(f_{s_{i}}^{-1}(a,1]) = \bigcup_{s=1}^{n} (p_{s_{i}}^{-1}(f_{s_{i}}))^{-1} (a,1]$

$$\bigvee_{\mathbf{s}} \bigwedge_{\mathbf{i}=1}^{\mathbf{n}} \mathbf{p}_{\mathbf{s}_{\mathbf{i}}}^{-1}(\mathbf{f}_{\mathbf{s}_{\mathbf{i}}}) \in \pi_{\mathbf{s}} \mathbf{T}_{\mathbf{s}}$$

Let $f = \bigvee_{s=1}^{n} \bigcap_{s=1}^{p-1} (f_{s})$. Then $u = f^{-1}(\alpha, 1]$ and hence u is open in $i_{\alpha}(\prod_{s \in S} T_{s})$.

<u>Proposition 3.1:</u> [Tychonoff product theorem] Let (X_s, T_s) seS be a family of F-spaces. Then $(\sum_{s \in S} X_s, \sum_{s \in S} T_s)$ is α -compact if and only if (X_s, T_s) is α -compact for all $s \in S$.

Proof. In fact this proposition has been proved by many authors and here we give the short proof. By lemma 2.1 $(\prod_{s \in S} X_s, \prod_{s \in S} T_s)$ is α -compact if and only if $(\prod_{s \in S} X_s, i_{\alpha}(T_s))$ is compact. By lemma 3.1 $(\prod_{s \in S} X_s, i_{\alpha}(\prod_{s \in S} T_s) = (\prod_{s \in S} X_s, \prod_{s \in S} i_{\alpha}(T_s))$. We know that $(\prod_{s \in S} X_s, \prod_{s \in S} i_{\alpha}(T_s))$ is compact if and only if for each $s \in S$, $(X_s, i_{\alpha}(T_s))$ is compact which gives that for each $s \in S$, (X_s, T_s) is α -compact F-space. \square

Proposition 3.2: Let (X,T), (Y,R) be a pair of α -compact F-spaces. Then:

$$F-dim_{\alpha}(XxY)_{(TxR)} \leq F-dim_{\alpha}X_{T} + F-dim_{\alpha}Y_{R}$$

<u>Proof.</u> From proposition 2.1 we have

$$F-dim_{\alpha}(XxY)_{(TxR)} = dim_{\alpha}(XxY)_{i_{\alpha}(TxR)}$$
.

By lemma 2.1 (X, $i_{\alpha}(T)$) and (Y, $i_{\alpha}(R)$) are compact spaces and by proposition 3.1 the product topological space (XxY, $i_{\alpha}(T)$ X $i_{\alpha}(R)$) is compact also. But by lemma 3.1

$$(XxY, i_{cl}(TxR)) = (X, i_{cl}(T)) X (Y, i_{cl}(R))$$

Hence
$$dim(XxY)_{i_{\alpha}}(TxR) = dim(X_{i_{\alpha}}(T) XY_{i_{\alpha}}(R))$$
.

We know in case of compact topological spaces that

$$F-\dim_{\alpha}(XxY)_{(TxR)} \leq F-\dim_{\alpha}X_{T} + \dim_{\alpha}Y_{R}$$

Corollary 3.1: If (X,T), (Y,R) are strongly & -compact F-spaces, then:

$$F-dim(XxY)_{(TxR)} \leq F-dim X_T + F-dim Y_R$$

Proposition 3.3: Let (X,T), (Y,R) be countably α -compact C_{ii} F-spaces. Then:

$$F-dim_{\mathcal{L}}(XxY)_{(TxR)} \leq F-dim_{\mathcal{L}}X_T + F-dim_{\mathcal{L}}Y_{R^*}$$

proof. Since countably a-compact C F-space is a-compact proposition I.2.3. Then the proof is completed by proposition 3.2.0

Corollary 3.2: Let (X,T), (Y,R) be countably &-compact, &Lindelof F-spaces. Then:

Proposition 3.4: Let (X,T) be an A-compact F-space, and (Y,R) be countably A-compact F-space. Then (XxY, TxR) is countably A-compact F-space.

Proof. Since $i_{cl}(T)$ is compact, and $i_{cl}(R)$ is countably compact as topologies on X and Y respectively by lemma 2.1. Then from the topological $(X, i_{cl}(T)) \times (Y, i_{cl}(R))$ is countably compact topological space and lemma 3.1 implies that $(XxY, i_{cl}(TxR))$ is countably compact. Hence by lemma 2.1 (XxY, TxR) is countably α -compact F-space. \square

<u>Proposition 3.5:</u> Let (X,T) be an ultra Tychonoff F-space, and (Y,R) be a countably α -compact. If each finite α -shading of

XxY is countably extendable to BXxY, then:

$$F-dim_{\alpha}(XxY)_{(TxR)} \leq F-dim_{\alpha}X_{T} + F-dim_{\alpha}Y_{R}$$
.

Proof. Let each finite α -shading of XxY is countably extendable to β XxY. Since ultra compact F-space is α -compact i.e. β X is α -compact, so by proposition 3.4 (β XxY, T_{β}XR) is countably α -compact. By assumption and proposition II.2.7, we have

$$F-\dim_{\alpha}(XxY)_{(TxR)} \leq F-\dim_{\alpha}(\beta XxY)_{(TxR)}$$
 (a)

By proposition 2.1, we have

$$F-\dim_{\alpha}(\beta X \times Y)_{(T_{\cancel{Z}} \times R)} = \dim(\beta X \times Y)_{i_{\alpha}(T_{\cancel{Z}} \times R)}$$
 (b)

We appeal to Morita's theorem'given in the topological preliminary we get

$$\dim(\mathcal{J}_{XXY})_{i_{\mathcal{A}}(T_{\mathcal{F}}XR)} \leq \dim\mathcal{J}_{i_{\mathcal{A}}(T_{\mathcal{F}})}^{*} \dim^{Y}_{i_{\mathcal{A}}(R)} \qquad (c)$$

But from proposition 2.4 we have

$$F-\dim_{\mathcal{L}} X_{T} = F-\dim_{\mathcal{L}} \mathcal{J} X_{T_{\mathcal{F}}}$$
 (d)

From the relations (a), (b), (c) and (d) we have

which completes the proof. a

Corollary 3.3: Let (X,T) be an ultra Tychonoff F-space, and (Y,R) be a strong countably α -compact. If each finite α -shading of XxY is countably extendable to βXxY for all $\alpha \in [0,1)$, then

$$F-dim(XxY)_{(TxR)} \leq F-dim X_T + F-dim Y_{R^*}$$

<u>Proposition 3.6:</u> Let (X,T) be strong α -Lindelof and strong countably α -compact F-space. If (Y,R) is strong α -compact F-space, then

$$F-dim(XxY)_{(TxS)} \le F-dim X_T + F-dim Y_R$$

<u>Proof.</u> Since α -Lindelof countably α -compact F-space is α -compact. Then corollary 3.1 finishes the proof.

The star finite property introduced in topological spaces can be used in a similar way for F-spaces. Let (X,T) be an F-space. A collection U of F-sets in X is said to be star - finite if every $u \in U$ meets at most a finite number of other members of U.

<u>Definition 3.1:</u> An F-space (X,T) is said to have α -star-finite property (α -st.f.p) if every α -shading of X has a star-finite α -refinement.

Proposition 3.7: Let (X,T) be an F-space. If (X,T) has an α -star finite property, then $(X, i_{\alpha}(T))$ has a star finite property.

Proof. Let $\mathcal G$ be an $i_{\alpha}(T)$ -open cover of X. For each $G \in \mathcal G$, let $G = h_G^{-1}(\alpha,1]$, $h \in I^X$. Then $f_G \in T$ and since $X = \bigcup_{G \in \mathcal G} h_G^{-1}(\alpha,1] = \bigcup_{G \in \mathcal G} f_G(\alpha,1) = \bigcup_{G \in \mathcal G} f_G$

Corollary 3.4: If an F-space (X,T) has a strong \emptyset -st.f.p., then (X, i(T)) has a st.f.p.

<u>Proof.</u> Follows from proposition 3.7 for each $\varnothing \in [0,1)$. <u>Proposition 3.8:</u> Let (X,T), (Y,R) be strong \varnothing -Hausdorff F-spaces such that (XxY, TxR) has the strong \varnothing -st.f.p. Then: F-dim $(XxY)_{(TxR)} \le F$ -dim X_T + F-dim Y_R . Proof. Since (XxY, TxR) has the strong α -st.f.p. then by corollary 3.4, (XxY, i(TxS)) has the st.f.p. (X i(T)) and (Y,i(R)) are Hausdorff topological spaces from lemma 2.2. Then we apply Morita's theorem α

$$\dim(X \times Y)$$
 $i(T \times R) \leq \dim X_{i(T)} + \dim Y_{i(R)}$

and hence

$$F-dim(XxY)_{(TxR)} \leq F-dim X_T + F-dim Y_R$$

<u>Proposition 3.9:</u> Let (X,T), (Y,R) be α -Hausdorff F-spaces such that (XxY, TxR) has the α -st.f.p. Then

$$F-\dim_{\alpha}(XxY)_{(TxS)} \leq F-\dim_{\alpha}X_{T} + F-\dim_{\alpha}Y_{R}$$

Proof. Follows by the same way of proof of proposition 3.8. a

Definition 3.2: An F-space (X,T) is called ultra paracompact F-space if (X, i(T)) is paracompact topological space.

<u>Proposition 3.10:</u> Let (X,T) be an ultra paracompact strongly α -Hausdorff F-space with F-dim X_T = n and (Y,R) a strong α -compact strong α -Hausdorff F-space with F-dim Y_R = m. Then:

F-dim
$$(XxY)_{(TxR)} \leq m + n$$

<u>Proof.</u> By assumption and lemma 2.1 and proposition 2.1, (X, i(T)) is paracompact Hausdorff with dim $X_{i(T)} = n$, and (X, i(R)) is compact Hausdorff topological space from lemmas 2.1 and 2.2 with dim $Y_{i(R)} = m$ from proposition 2.1. From the topological sliminary 0.12, we have

$$dim(XxY)_{i(TxR)} = dim(XxY)_{i(T)xi(R)} \le m + n.$$

Hence by proposition 2.1, we get

$$F-dim(XxY)_{i(TxR)} \leq m + n$$
.

<u>Proposition 3.11:</u> Let (X_s, T_s) be a family of ultra Tychonoff F-spaces such that any countable product F-space is α Lindelof. If F-dim $X_s = 0$ for $s \in S$, then F-dim $X_s = 0$.

Proof. From proposition 2.1, F-dim_XX_s = 0 if and only if dim X_s i_{\(\alpha(T_s)\)} = 0. Since $(\iint_{i=1}^{\infty} X_s, \iint_{i=1}^{\infty} T_s)$ is \(\alpha-\)Lindelof, then by lemma 2.1, we have $(\iint_{i=1}^{\infty} X_s, \iint_{i=1}^{\infty} i_{\alpha}(T_s))$ is Lindelof.

The proof is completed by appling Theorem 0.1 6 of the topological preliminary 0

Chapter IV:

INVERSE LIMIT OF F-SPACES

The notion of the inverse limit of topological spaces has been widly considered and its connection with the dimension of the spaces has a great contribution to the development of the dimension theory of topological spaces. It is worth while to introduce this notion for F-spaces and look at its relation with the covering dimension of F-spaces.

We devote the first two sections of this chapter to the introduction and the study of the notion of inverse system of F-spaces and its limit F-space in the light of the study of this notion in case of general topology, where most of the results - specially for compact Hausdorff spaces - can be generalized analogously to F-spaces. We return in the third section to the α -covering dimension, where we give some characterization of F-dim $_{\alpha}$ for the limit F-space.

By α -bicompact F-space we mean an α -Hausdorff and α -compact F-space.

1. INVERSE LIMIT OF &-BICOMPACT F-SPACES:

Let $\{(X_s,T_s):s\in S\}$ be a family of F-spaces indexed by a directed set S. For each s,t $\in S$ with $s\leq t$, let $f_{s,t}:X_t\longrightarrow X_s$ be a mapping. We call $X_F=\{X_s,f_{s,t},S\}$ an inverse system of

F-spaces over S if: $f_{s,t}$ is F-continuous for each s,t \in S (s \leq t) such that $f_{s,S}$ is the identity (for every S), and if s \leq t \leq r, then $f_{s,t}$ of $f_{t,r} = f_{s,r}$.

Let \widetilde{X} be a subset of the cartesian product T_S , consisting of the points $x \in T_S$ such that $f_{s,t}(p_t(x)) = p_s(x)$ for each pair $s,t \in S$ with $s \in t$, where p_s , p_t denote the projections. For each $s \in S$, $f_s : \widetilde{X} \longrightarrow X_s$ is called the canonical mapping $(f_s = p_s|\widetilde{X})$, and the F-continuous mappings $f_{s,t}$ are called the F-bonding mappings of X_F .

<u>Definition 1.1:</u> The coarsest F-topology \widetilde{T} on \widetilde{X} for which the canonical mappings $f_s(s \in S)$ are F-continuous is called the inverse limit of the inverse system X_F , and $(\widetilde{X},\widetilde{T})$ is called the limit F-space of the inverse system of F-spaces.

Proposition 1.1: The limit F-space $(\widetilde{X},\widetilde{T})$ of an inverse system $X_F = \{X_s, f_{s,t} : S\}$ is the relative F-subspace of the product F-space $(\prod X_s, \prod_{s \in S} T_s)$ on \widetilde{X} .

<u>Proof.</u> Let $(\widetilde{X},\widetilde{T})$ be the limit F-space of X_F and let $f_s:\widetilde{X}\to X_s$ be the canonical projections for $s\in S$. According to definition I.2.11 it is enough to find for any open F-set w in \widetilde{X} an open F-set g in g in g in g in g such that g in g

for each s_i so $p_{s_i}^{-1}(u_{s_i})$ is open F-set in $\prod X_s$ and if we put $s \in S$

 $g = \bigvee_{s=1}^{\infty} p_{s_i}^{-1}(u_{s_i})$, then g is open F-set in $\prod_{s \in S} X_s$ and clearly $g \mid \widetilde{X} = w$. \square

<u>Proposition 1.2:</u> Let X_F be an inverse system of F-spaces (over S) and let $(\widetilde{X},\widetilde{T})$ be the limit F-space of X_F with canonical mappings $f_s(s \in S)$. Then the set of all F-sets of the form $f_s^{-1}(u_s)$, $u_s \in T_s$ $s \in S$ forms a basis for \widetilde{T} .

Proof. Let β be the set of all F-sets $\left\{f_s^{-1}(u_s):u_s\in T_s\right\}_{s\in S}$ and let p_s be the projection from the product F-space $\left(\prod X_s, x_s\right)$ onto (X_s, T_s) for $s\in S$ where $X_F=\left\{X_s, f_{s,t}, S\right\}$ is an inverse system of F-spaces. Let w be an open F-set in the limit F-space (X,T). Then by proposition 1.1 there exists an open F-set g in $\prod X_s$ such that $w=g|X_s$. By definition I.3.2 of the product $g\in S$ and $g\in S$ is $g\in S$ and $g\in S$ and $g\in S$ such that $g\in S$ is $g\in S$ and $g\in S$ such that $g\in S$ if $g\in S$ is $g\in S$ and $g\in S$ such that $g\in S$ is $g\in S$ and $g\in S$ such that $g\in S$ is $g\in S$ and $g\in S$ such that $g\in S$ is $g\in S$ and $g\in S$ such that $g\in$

$$\mathbf{w} = (\bigvee_{s_{i}} \bigwedge_{i=1}^{n} \rho_{s_{i}}^{-1}(\mathbf{u}_{s_{i}})) | \widetilde{\mathbf{X}} = \bigvee_{s_{i}} \bigwedge_{i=1}^{n} (\rho_{s_{i}} | \widetilde{\mathbf{X}})^{-1}(\mathbf{u}_{s_{i}}) = \bigvee_{s_{i}} \bigwedge_{i=1}^{n} f_{s_{i}}^{-1}(\mathbf{u}_{s_{i}})$$
That is
$$\mathbf{w} = \bigvee_{s_{i}} \bigwedge_{i=1}^{n} f_{s_{i}}^{-1}(\mathbf{u}_{s_{i}}).$$

Since S is directed set, then there is $t \in S$ such that $s_i \le t$ for each $i = 1, 2, \dots, n$.

put
$$h_t = \bigwedge_{i=1}^{n} f_{s_i,t}^{-1}(u_{s_i})$$
, then $h_t \in T_t$ and

$$f_{t}^{-1}(h_{t})=f_{t}^{-1}(\bigwedge_{i=1}^{n}f_{s_{i},t}^{-1}(u_{s_{i}})=\bigwedge_{i=1}^{n}(f_{s_{i},t}^{-1}f_{t}^{-1})(u_{s_{i}})=\bigwedge_{i=1}^{n}f_{s_{i}}^{-1}(u_{s_{i}}).$$

Then

$$\bigvee_{t \ge s_i} f_t^{-1}(h_t) = \bigvee_{s_i \in S^*} \bigwedge_{i=1}^n f_{s_i}^{-1}(u_{s_i}) = w$$

and $f_t^{-1}(h_t) \in \beta$.

Hence /3 is a base for T as required. -

This base is called the standard basis for \widetilde{T} and denoted by $\beta(\widetilde{X})$.

Proposition 1.3: If (X_s, T_s) s \in S are FT_1, FT_2 , α -Hausdorff or F-regular F-spaces, then the limit F-space $(\widetilde{X}, \widetilde{T})$ of the inverse system $X_F = \{X_s, f_{s,t}, S\}$ is FT_1 , FT_2 , α -Hausdorff F-regular F-space.

<u>Proof.</u> By proposition I.3.8 each of FT₁, FT₂, α -Hausdorff and F-regular is productive and clearly each of them is heredatory which completes the proof. \Box

The next proposition gives the connection between the induced F-space of the inverse limit of topological spaces and the limit F-space of the induced F-spaces. But first we restate weiss's proposition 3.4 [29] as a lemma without proof.

Lemma 1.1: Let (X,R), (Y,f) be two topological spaces and $f:(X,R)\longrightarrow (Y,f)$ be a mapping. Then f is continuous if and only if $f:(X,w(R))\longrightarrow (Y,w(f))$ is F-continuous where (X,w(R)), (Y,w(f)) are the induced F-spaces on (X,R) and (Y,f) as in chapter III.

Lemma 1.2: Let $X = \{X_s, f_{s,t}, S\}$ be an inverse system of topological spaces over S. Then $X_F = \{X_s, f_{s,t}, S\}$ is an inverse system of induced F-spaces.

roof. For s,t \in S with s \leq t, f_{s,t}: $(X_s,R_s) \longrightarrow (X_t,R_t)$ is ontinuous if and only if f_{s,t}: $(X_s,w(R_s)) \longrightarrow (X_t,w(R_t))$ is Fontinuous by lemma 1.1finishesthe proof.

<u>roposition 1.4:</u> Let $X = \{X_s, f_{s,t}, S\}$ be an inverse system of opological spaces. If $(\widetilde{X}, \widetilde{R})$ is the inverse limit space of X, then $(\widetilde{X}, w(\widetilde{R})) = (\widetilde{X}, (w(\widetilde{R})))$.

 $\begin{array}{l} \underbrace{\text{Proof.}}_{s} \Longrightarrow \text{Let g be } \underline{w(R)}\text{-open F-set. Then by proposition 1.2} \\ g = \bigvee_{i=1}^{n} f_{s_{i}}^{-1}(u_{s_{i}}) \text{ where } u_{s_{i}} \text{ is } \underline{w(R_{s_{i}})}\text{-open F-set and} \\ f_{s_{i}} : (\widetilde{X}, \underline{w(R)}) \longrightarrow (X_{s_{i}}, \underline{w(R_{s_{i}})}). \text{ But } u_{s_{i}}^{-1}(d, 1] \text{ is } R_{s_{i}} \text{-open set for} \\ \text{any } \alpha \in [0, 1) \text{ for each } i = 1, 2, \ldots, n, s \in S. \text{ Since } (f_{s_{i}}^{-1}(u_{s_{i}}))^{-1}(d, 1] \\ = f_{s_{i}}^{-1}(u_{s_{i}}^{-1}(\alpha, 1]), \text{ then } \bigcup_{s=i=1}^{n} (f_{s_{i}}^{-1}(u_{s_{i}}))^{-1}(d, 1] \text{ is } \widetilde{R}\text{-open set.} \\ \text{So} \\ \bigvee_{s=i=1}^{n} f_{s_{i}}^{-1}(u_{s_{i}}) \in \underline{w(\widetilde{R})} \text{ i.e. } g \text{ is } \underline{w(\widetilde{R})}\text{-open F-set.} \end{array}$

Let g be $w(\widetilde{R})$ -open F-set. Then $g^{-1}(a,1]$ is \widetilde{R} -open set for any $\alpha \in [0,1)$.

So

 $g^{-1}(\alpha,1] = \bigcup_{s_i} f_{s_i}^{-1}(u_{s_i}) \text{ where } u_{s_i} \text{ is } R_{s_i} \text{-open and}$ $f_{s_i} : (\widetilde{X},\widetilde{R}) \longrightarrow (X_{s_i},R_{s_i}) \text{ is the canonical. Now for each } i =$ $1,2,\ldots,n, \ \mathcal{M}(u_{s_i}) \text{ is } w(R_{s_i}) \text{-open } F\text{-set and by lemma 1.1}$ $f_{s_i}^{-1}(\mathcal{M}(u_{s_i})) \text{ is open } F\text{-set in } \widetilde{X} \text{ and hence } \bigvee_{s_i} f_{s_i}^{-1}(\mathcal{M}(u_{s_i})) \text{ is }$ $w(\widetilde{R}) \text{-open } F\text{-set. But } \bigvee_{s_i} f_{s_i}^{-1}(\mathcal{M}(u_{s_i})) = \mathcal{M}(\bigcup_{s_i} f_{s_i}^{-1}(u_{s_i}))$ $i.e. \bigvee_{s_i} f_{s_i}^{-1}(\mathcal{M}(u_{s_i})) = \mathcal{M}(g^{-1}(\alpha,1]) \geqslant g.$ So g is $w(\widetilde{R}) \text{-open } F\text{-set. Therefore } (\widetilde{X}, w(\widetilde{R})) = (\widetilde{X}, w(\widetilde{R})). \square$

Lemma 1.3: [10] 3.1: Let (X,T), (Y,S) be two topologically generated F-spaces. Then $f:(X,T)\longrightarrow (Y,S)$ is F-continuous if and only if $f:(X,i(T))\longrightarrow (Y,i(S))$ is continuous where (X,i(T)) and (Y,i(S)) are the modificated topologies. \square

Remark: Using the above lemma we observe that if $X_F = \{x_s, f_s, t, S\}$ is an inverse system of F-spaces, then $X = \{x_s, f_s, t, S\}$ is an inverse system of modificated topologies.

The following proposition shows the relation between the modification of the limit F-space and the inverse limit space of the modificated topologies.

<u>Proposition 1.5:</u> Let $X_F = \{X_s, f_{s,t}, S\}$ be an inverse system of topologically generated F-spaces. If $(\widetilde{X}, \widetilde{T})$ is the limit F-space of X_F then:

$$(\widetilde{X},i(\widetilde{T})) = (\widetilde{X},i(\widetilde{T}))$$
 $i(T)=\prod_{s\in S}i(T_s)$.

<u>Proof.</u> \Longrightarrow Let G be an $i(\widetilde{T})$ -open set. Then $G = g^{-1}(\alpha,1]$ for $g \in \widetilde{T}$ and $\alpha \in [0,1)$. By proposition 1.2, $g = \bigvee_{s \in S^*} f_s^{-1}(u_s)$ where $f_s : \widetilde{X} \longrightarrow X_s$ and $u_s \in T_s$. But

 $G = (\bigvee_{s} f_{s}^{-1}(u_{s}))^{-1}(\alpha,1] = \bigcup_{s} f_{s}^{-1}(u_{s}^{-1}(\alpha,1]) \text{ where } u_{s}^{-1}(\alpha,1] \text{ is}$ $i(T_{s})\text{-open, so } G \text{ is } i(T)\text{-open set.}$

Let G be an i(T)-open set where i(T) is the inverse limit space of the modificated topologies $i(T_s)$ seS. Then $G = \bigcup_{s \in S^*} f_s^{-1}(u_s)$, u_s is $i(T_s)$ -open and $f_s: (X,i(T)) \longrightarrow (X_s,i(T_s))$ is the canonical mappings, so $u_s = g_s^{-1}(\alpha,1]$ for $g_s \in T_s$ and $\alpha \in [0,1)$ and hence

$$G = \bigcup_{S} f_{S}^{-1}(g_{S}^{-1}(\alpha,1]) = \bigcup_{S} (f_{S}^{-1}(g_{S}))^{-1}(\alpha,1] = \bigvee (f_{S}^{-1}(g_{S}))^{-1}(\alpha,1]$$
 by lemma 1.3 so $\bigvee (f_{S}(g_{S})) \in \widetilde{T}$ and so $\bigvee (f_{S}(g_{S}))(\alpha,1] \in i(T)$ i.e. G is $i(\widetilde{T})$ -open set. \square

Proposition 1.6. Let XF be an inverse system of &-Hausdorff

F-spaces (over 5). Then \widetilde{X} is α -closed in $(\prod X_s, \prod T_s)$ for $\alpha \in [0,1)$.

<u>Proof.</u> Let $X_F = \{X_s, f_{s,t}, S\}$ be an inverse system of α -Hausdorff F-spaces, $x \in \prod X_s$ and $x \notin \widetilde{X}$. Then there exist s,t $\in S$, $s \in t$, such that $f_{s,t}p_t(x) \neq p_s(x)$. By α -Hausdorffness there are open F-sets u_s, v_s in X_s such that $u_s(p_s(x)) > \alpha$,

 $v_s(f_{s,t} p_t(x)) > \alpha$ and $u_s \wedge v_s = 0$. Hence $(p_s^{-1}(u_s))(x) > \alpha$, $((f_{s,t} p_t)^{-1}(v_s))(x) > \alpha \text{ in } (T(X_s, T(T_s)).$

Let $w = p_s^{-1}(u_s) \wedge (f_{s,t} p_t)^{-1}(v_s)$. Then w is open F-set in $\prod_{s \in S} X_s$, $w(x) > \alpha$ for $x \in \prod_s X_s \setminus \widetilde{X}$ and for any $y \in \widetilde{X}$, w(y) = 0. Hence $w \wedge u(\widetilde{X}) = 0$, that is \widetilde{X} is α -closed as required. \square

Proposition 1.7: Let $X_F = \{X_s, f_{s,t}, S\}$ be an inverse system of Hausdorff F-spaces. Then

 $\mu(\prod X_s \setminus \widetilde{X})$ is open F-set in $\prod X_s$. $s \in S$

Proof. Let $x \in \prod_{s \in S} X_s \setminus \widetilde{X}$. Then there are $s,t \in S$, $s \leq t$ such that $f_{s,t}p_t(x) \neq p_s(x)$, so by definition I.2.3 of Hausdorff F-space there exist u_s, v_s open F-sets in X_s such that $u_s(p_s(x)) = 1 = v_s(f_{s,t}p_t(x))$ and $u_s \wedge v_s = 0$. So $(p_s^{-1}(u_s))(x) = 1 = ((f_{s,t}p_t)^{-1}(v_s))(x)$. If we put $w_x = p_s^{-1}(u_s) \wedge (f_{s,t}p_t)(v_s)$, then w_x is open F-set in $\prod_{s \in S} X_s$ and $w_x(x) = 1$ for $x \in \prod_{s \in S} X_s \setminus \widetilde{X}$. So for each $x \in \prod_{s \in S} X_s \setminus \widetilde{X}$ we can find an open F-set w_x such that $w_x(x) = 1$, and hence $Au(\prod_{s \in S} X_s \setminus \widetilde{X}) = \bigvee \{w_x : x \in (\prod_{s \in S} X_s \setminus \widetilde{X})\}$ which is open F-set in $Au_s \in S$.

Lemma 1.4: Let Y be a suitable closed set in an F-space (X,T). Then:

- () E is closed F-set in Y implies E is closed F-set in X.
- (||) G is closed F-set in X implies G|Y is closed F-set in Y.

Proof. Let E be closed F-set in Y as subspace. Then there exists a closed F-set G in X such that G|Y = E; that is $E = G \land \mu(Y)$ and so $\overline{I}_X - E = \overline{I}_X - (G \land \mu(Y)) = (\overline{I}_X - G) \lor (\overline{I}_X - \mu(Y)) = \text{ open } F\text{-set in X by Demorgan's law I.1.2; that is E is closed F-set in X.$

(II) is clear.

Since proposition 1.7 shows that for an inverse system X_F of Hausdorff F-spaces \widetilde{X} is I^* -closed, then it follows from proposition I.2.6 that \widetilde{X} is suitable closed in $\prod X_s$. This leads seS to the following proposition.

<u>Proposition 1.8:</u> Let $X_F = \{X_s, f_{s,t}, S\}$ be an inverse system of Hausdorff F-spaces. Then the limit F-space $(\widetilde{X}, \widetilde{T})$ is a closed F-subspace of $(\widetilde{T}_{s,s}^X)$.

Proof: is an immediate consequence of proposition 1.7 and lemma 1.4.

Corollary 1.1: Let X_F be an inverse system of strong α -Hausdo-rff F-spaces. Then $(\widetilde{X},\widetilde{T})$ is a closed F-subspace of $(\widetilde{X},\widetilde{X},\widetilde{T})$ is a closed F-subspace of $(\widetilde{X},\widetilde{X},\widetilde{X},\widetilde{X},\widetilde{X})$

The following result is a generalization of one of the most important result in the inverse limit of topological spaces 0.2.

<u>Proposition</u> 1.9: The limit F-space of an inverse system of ϕ -

bicompact F-spaces is non-empty &-bicompact F-space.

Proof. Let (X,T) be the limit F-space of an inverse system $X_F = \{X_s, f_{s,t}, S\}$ of α -bicompact F-spaces for $\alpha \in [0,1)$. Then by Tychonoff product theorem for F-spaces - proposition III.3.2 - and proposition I.3.8 $(\prod X_s, \prod T_s)$ is α -bicompact seS seS subject that (X,T) is α -bicompact by proposition I.2.7.

Now we have to show that $\widetilde{X} \neq \emptyset$. For $t \in S$, let $Y_t = \left\{x \in \prod_{s \in S} x_s : p_s(x) = f_{s,t} p_t(x) \text{ for each } s \in S \text{ such that } s \in t\right\}$. Then Y_t is α -closed in $\prod_{s \in S} x_s$ from proposition I.3.4 and $Y_t \neq \emptyset$, for let $x_t \in X_t$ and for $s \in S$ let $Z_s \subseteq X_s$ with just one point $f_{s,t}(x_t)$ if $s \in t$ and $Z_s = X_s$ otherwise. Let $Z_s = \prod_{s \in S} x_s$. Then $Z_s \neq \emptyset$, $Z_s = x_s$ and $Z_s = x_s$ and $Z_s = x_s$.

If t,s \in S such that s \in t, then $Y_t \subset Y_s$. It follows that $\{Y_t\}_{t\in S}$ is a decreasing family of α -compact and hence by proposition I.2.8, we get $\bigcap_{G\in S} Y_t \neq \emptyset$.

Let $x \in \bigcap_{t \in S} Y_t$. If $t,r \in S$ with $t \le r$, then since $x \in Y_r$, $p_t(x) = f_{t,r} p_r(x)$ which implies that $x \in \widetilde{X}$ as required. \square Corollary 1.2: Let $(\widetilde{X},\widetilde{T})$ be the limit F-space of an inverse system X_F of strong α -bicompact. Then $(\widetilde{X},\widetilde{T})$ is strong α -bicompact. \square

Corollary 1.3: The limit F-space of an inverse system of C_n , countably α -compact and α -Hausdorff F-spaces is non-empty.

<u>Proof.</u> Since C_{ii} countably α -compact is α -compact by proposition 1.2.3, then the proof is completed by proposition 1.9. \square

Corollary 1.4: The limit F-space of an inverse system of α - Lindelof, countably α -compact and α -Hausdorff F-spaces is non-empty. \Box

Definition 1.2: We shall say that $Y_F = \{Y_s, g_{s,t}, S\}$ is an F-subsystem of $X_F = \{X_s, f_{s,t}, S\}$ over the same directed set S, if Y_s is F-subspace of X_s and $g_{s,t} = f_{s,t}|Y_t$ (s,t $\in S$, $s \le t$). We note that $f_{s,t}(Y_t) \subset Y_s$ (s $\le t$).

<u>Proposition 1.10:</u> Let $X_F = \{X_s, f_{s,t}, S\}$ be an inverse system of F-spaces and let $(\widetilde{X}, \widetilde{T})$ be its limit F-space. Let $Y_F = \{Y_s, g_{s,t}, S\}$ be an F-subsystem of X_F . Then the limit F-space $(\widetilde{Y}, \widetilde{T}_{\widetilde{Y}})$ is an F-subspace of $(\widetilde{X}, \widetilde{T})$.

Proof. Since for each $Y_s \subset X_s$ so we have $\widetilde{Y} = (\prod Y_s) \cap \widetilde{X}$ and $\widetilde{T}_{\widetilde{Y}}$ is the F-topology induced by the product F-space $(\prod Y_s, s \in S)$ on \widetilde{Y}_s .

But ($\prod Y_s$, $\prod T_s$) is induced by the product F-space ses ses ses so $(\widetilde{Y},\widetilde{T_{\widetilde{Y}}})$ is an F-subspace of $(\widetilde{X},\widetilde{T})$. \square ses ses ses

Corollary 1.5: Let $(\widetilde{X}, \overline{T})$ be a limit F-space of an inverse system $X_F = \{X_s, f_{s,t}, S\}$ of F-spaces with canonical mappings $f_s : \widetilde{X} \to X_s$. Let $Y = \{f_s(\widetilde{X}), g_{s,t}, S\}$ be an F-subsystem of X_F . Then $(\widetilde{X}, \overline{T})$ is the limit F-space of Y_s .

We note that each F-bonding map $g_{s,t}$ is surjective and the canonical maps $\widetilde{X} \longrightarrow f_s(\widetilde{X})$ are also surjectives.

2. INVERSE SEQUENCES OF F-SPACES:

The inverse sequence is considered as a special case of an inverse system. We notice that if $X = \{X_n, f_{n,m}, N\}$ is an inverse sequence over N (N is the set of positive integers with its usual ordering) with all the sets X_n are non-empty and all bonding maps $f_{n,m}$ ($n \le m$) are surjectives, then the inverse limit X of X is non-empty without imposing any F-topological conditions.

<u>Proposition 2.1:</u> Let $X_F = \{X_n, f_{n,m}, N\}$ be an inverse sequence of countably α -compact F-spaces. If all $f_{n,m}(X_m)$ ($n \le m$) are α -closed in X_n , then the limit F-space (\widetilde{X}, T) of X_F is non-empty.

<u>Proof.</u> For any $n \in \mathbb{N}$, $\left\{f_{n,m}(X_m)\right\}_{m \geqslant n}$ is a family of α -closed sets by assumption in X_n and

$$f_{n,n+1}(X_{n+1}) \supset f_{n,n+2}(X_{n+2}) \cdot \cdot \cdot f_{n,m}(X_m) \qquad m > n.$$

So $\left\{f_{n,m}(X_m)\right\}_{m\geqslant n}$ is a decreasing family of α -closed sets in a countably α -compact X_m , and then by proposition I.2.8 $\bigcap_{n\leqslant m} f_{n,m}(X_m) \neq \emptyset \quad \text{and is countably } \alpha$ -compact.

Let us put
$$Y_n = \bigcap_{n \neq m} f_{n,m}(X_m)$$
.

If
$$n \le m$$
, then $f_{n,m}(Y_m) \subset Y_n$. In fact
$$f_{n,m}(Y_m) = f_{n,m}(\bigcap_{m \le \ell} \{f_{m,\ell}(X_\ell)\}) \subset \bigcap_{m \le \ell} \{f_{n,m}(f_{m,\ell}(X_\ell))\}$$
$$= \bigcap_{n \le \ell} f_{n,\ell}(X_\ell) = Y_n.$$

Now let $y_n \in Y_n$, that is $y_n \in \bigcap_{n \le \ell} f_{n,\ell}(x_\ell)$, so it is enough to show that $y_m \in f_{m,\ell}(x_\ell)$ for any $m \ge n$. Let m be

given and choose $\ell \in \mathbb{N}$ such that $\ell \geq n$, $\ell \geq m$. Then $y_n \in f_{n,\ell}(X_\ell)$, let $x_\ell \in X_\ell$ such that $f_{n,\ell}(x_\ell) = y_n$. Define $y_m = f_{m,\ell}(x_\ell)$ so we have $y_m \in Y_m$ and $f_{n,m}(y_m) = f_{n,m}(f_{m,\ell}(x_\ell)) = f_{n,\ell}(x_\ell) = y_n$. Hence $y_n \in f_{n,m}(Y_m)$ and then $f_{n,m}(Y_m) = Y_n$ ($n \leq m$).

By letting $g_{n,m} = f_{n,m}/\gamma_m$ to be the restriction of $f_{n,m}$ to γ_m , we obtain an inverse sequence $\gamma_F = \{\gamma_m, g_{n,m}, N\}$ of F-spaces, where the F-bonding mappings $g_{n,m}$ are surjectives. Hence the limit F-space $(\widetilde{\gamma}, \widetilde{\Gamma}_{\widetilde{\gamma}})$ of γ_F is non-empty and consequently $(\widetilde{\chi}, \widetilde{\tau})$ is non-empty F-space.

Definition 2.1: Let $\psi: (X,T) \to (Y,R)$ be an F-continuous map, ψ is called strongly F-closed if it is F-closed and for any α -closed set A in X, $\psi(A)$ is α -closed in Y.

In the following proposition we give the condition under which the limit F-space of an inverse sequence of countably α -compact α -Hausdorff F-spaces is countably α -compact.

<u>Proposition 2.2:</u> Let $X_F = \{X_n, f_{n,m}, N\}$ be an inverse sequence of countably α -compact α -Hausdorff F-spaces with strongly F-closed canonical mappings. Then the limit F-space $(\widetilde{X}, \widetilde{T})$ is countably α -compact F-space.

<u>Proof.</u> Let $(\overline{X},\overline{T})$ be the limit F-space of \overline{X}_F and let $\{E_i\}_{i=1}^\infty$ be an α -centered family of closed F-sets in \overline{X} . By assumption $f_n(\overline{X})$ is α -closed in X_n for each n and n, where f_n is the canonical mapping and hence by proposition I.2.7, $f_n(\overline{X})$ is countably α -compact.

Let $Y_F = \{f_n(\widetilde{X}), g_{n,m}, N\}$ where $g_{n,m} = f_{n,m}|f_m(\widetilde{X}) n \leq m$. Then Y_F is a subsequence of X_F satisfying condition of proposi-

tion 2.1, therefore the limit F-space $(\widetilde{Y},\widetilde{T}_{\widetilde{Y}})$ is non-empty and $\widetilde{Y}\subseteq\widetilde{X}$.

Now $\left\{g_{m}(E_{i}|\widetilde{Y})\right\}_{i=1}^{\infty}$ is α -centered family of closed F-sets in Y_{m} and since Y_{m} is countably α -compact then by proposition I.2.4 there is $y_{m} \in Y_{m}$ such that $(g_{m}(E_{i}|\widetilde{Y}))(y_{m}) \geqslant 1 - \alpha$ for all $i=1,2,\ldots$. So there is $y \in \widetilde{Y}$ such that $g_{m}(y)=y_{m}$ and $(E_{i}|\widetilde{Y})(y) \geqslant 1 - \alpha$ for all $i=1,2,\ldots$.

Since $\widetilde{Y} \subseteq \widetilde{X}$ so there is $x \in \widetilde{X}$ such that $E_i(x) > 1 - \alpha$ for all $i = 1, 2, \dots$ i.e. $(\widetilde{X}, \widetilde{T})$ is countably α -compact. \square

<u>Proposition 2.3:</u> The limit F-space of an inverse sequence of C_{ij} F-spaces is C_{ij} F-space.

<u>Proof.</u> Since the product of a countable family of C_{11} F-spaces is C_{11} F-space by proposition I.3.7, then the proof follows from the clear observation that any F-subspace of a C_{11} F-space is C_{11} F-space.

Let (X,T) be an F-space, $f\in I^X$ is called ℓ_∞ -set if $f=\bigwedge_{i=1}^\infty g_i$ where g_i is open F-set for $i=1,2,\ldots$, and f is called H - set if $f=\bigvee_{i=1}^\infty h_i$ where h_i is closed F-set for $i=1,2,\ldots$. We note that the complement of an ℓ_∞ -set is H_∞ -set; that is if f is an ℓ_∞ -set, then co $f=H_\infty$ -set.

Definition 2.2: An F-space (X,T) is called ℓ F-space if each closed F-set in X is an ℓ_∞ -set.

It is clear that every F-normal ℓ F-space is perfectly normal F-space.

Proposition 2.4: If $(\widetilde{X},\widetilde{T})$ is a limit F-space of an inverse sequence $X_F = \{X_n, f_{n,m}, N\}$ of ℓ F-spaces, then $(\widetilde{X},\widetilde{T})$ is ℓ F-space.

Proof. Suppose that $(\widetilde{X},\widetilde{T})$ is the limit F-space of an inverse sequence X_F of cl F-spaces and let E be a closed F-set in \widetilde{X} . Then for each $n \in \mathbb{N}$ cl $(f_n(E))$ is a closed F-set in X_n and hence by hypothesis cl $(f_n(E)) = \bigcap_{i=1}^n u_{nj}$, where u_{nj} is open F-set in X_n for $j=1,2,\ldots$ and for each $n \in \mathbb{N}$, $f_{n,n+1}^{-1}(u_{nj}) \geq u_{n+1,j}$, $u_{nj} \geq u_{n,j+1}$ clearly for $n \in \mathbb{N}$, $f_n^{-1}(u_{n,n}) \geq E$.

Suppose that q is an F-point in X, $q \notin E$ such that for each n, $q \in f_n^{-1}(u_{n,n})$. For some $n \in N$, $f_n(q) \notin cl(f_n(E))$ and hence for some $m \neq n$, $f_n(q) \notin u_{n,m}$. Then $f_m(q) \notin u_{m,m} \leq f(u_{n,m})$. So $q \neq f_m^{-1}(u_{m,m})$ and therefore $E = \bigwedge_{m=1}^{\infty} f_n^{-1}(u_{n,m})$, where $u_{n,m}$ is open F-set in X_n .

Definition 2.3: A mapping $\Psi: X \longrightarrow Y$ has a clint property if for an F-set g in Y, and an F-set $f \in X$, $\bigwedge^{-1}(\operatorname{cl} g) = \operatorname{cl}(\Psi^{-1}(g))$ and $\Psi(\operatorname{int} f) = \operatorname{int}(\Psi(f))$.

Proposition 2.5: If $(\widetilde{X},\widetilde{T})$ is a limit F-space of an inverse sequence $\widetilde{X}_F = \{X_n, f_{n,m}, N\}$ of perfectly normal F-space with surjective F-bondings and canonical mappings have a clint property, then $(\widetilde{X},\widetilde{T})$ is perfectly normal F-space.

Proof. Let (X,T) be a limit F-space of an inverse sequence $X_F = \{X_n, f_{n,m}, N\}$ of perfectly normal F-spaces. By proposition 2.4, it is enough to show that (X,T) is normal F-space. Let g be a closed F-set in X and h be an open F-set in X with $g \le h$. Then for each $n \in N$, $\operatorname{cl}(f_n(g))$ is closed F-set in X_n and $\operatorname{int}(f_n(h))$ is open F-set in X_n with $\operatorname{cl}(f_n(g)) \le \operatorname{int}(f_n(h))$ from the assumption. Since X_n is normal F-space, then there is an

open F-set k in
$$X_n$$
 such that
$$cl(f_n(g)) \le k \le cl \ k \le int(f_n(h)).$$

So

$$f_n^{-1}(cl\ f_n(g)) \le f_n^{-1}(k) \le f_n^{-1}(cl\ k) \le f_n^{-1}(int(f_n(h)))$$

Since each for has a clint property, then

$$f_n^{-1}(f_n(cl g)) \le f_n^{-1}(k) \le cl(f^{-1}(k)) \le f_n^{-1}(f(int h))$$

That is

$$f_n^{-1}(f_n(g)) \le f_n^{-1}(k) \le cl(f^{-1}(k)) \le f_n^{-1}(f_n(h))$$

Hence

$$g \le f_n^{-1}(k) \le cl(f^{-1}(k)) \le h$$
.

Let $u = f_{\Pi}^{-1}(k)$ the u is open F-set in \widetilde{X} and $g \le u \le cl$ $u \le h$ finishes the proof. \square

3. F-dim OF LIMIT F-SPACE:

Lemma 3.1: Let (X,T) be an α -compact F-space and let β be a base for T closed under finite joins. If $\{u_i\}_{i=1}^k$ is an α -shading of X, then there is an α -shading $\{v_i\}_{i=1}^k$ of X by member of β such that $v_i \leq u_i$ for each $i=1,2,\ldots,k$.

<u>Proof.</u> Let β be a base for T. For each $x \in X$ there is some $i \in \{1,2,\ldots,k\}$ such that $u_i(x)>\alpha$ so $u_i=\bigvee_{b_i \in \beta}b_x$ which gives that $b_x \leq u_i$ for some $b_x \in \beta$; that is $\{b_x\}_{x \in X}$ forms an α -shading of X and hence by assumption there is a finite α -subshading $\{b_1,\ldots,b_s\}$ (say) of X. For each $t=1,2,\ldots,s$ choose $\mathcal{G}(t)$ such that $b_t \leq u$ (t) and set $v_i=\mathcal{G}(t)=i$

closed under finite joins, so $v_i \in \beta$ and $v_i \le u_i$ for i=1,2, ...,k. Clearly $\left\{v_i\right\}_{i=1}^k$ is an d-shading of X.

<u>Proposition 3.1:</u> Let $(\widetilde{X},\widetilde{T})$ be a limit F-space of an inverse system $X_F = \{X_s, f_{s,t}, S\}$ of α -bicompact F-spaces. If F-dim X $\leq n$, then every α -shading of \widetilde{X} has a finite α -refinement with order $\leq n$ and whose members belong to $\beta(\widetilde{X})$.

Proof. For $\alpha \in [0,1)$ let F-dim $\widetilde{X} \leq n$ and let U be an α -shading of \widetilde{X} . By proposition 1.9 $(\widetilde{X},\widetilde{T})$ is α -bicompact F-space where \widetilde{X} is non-empty and hence there is a finite α -subshading $\left\{u_i\right\}_{i=1}^k$ of U. Since $\beta(X)$ is closed under finite joins, the proof follows from lemma 3.1 and the definition of F-dim α II.1.2. \square

The next proposition shows that if $(\widetilde{X},\widetilde{T})$ is the limit F-space of an inverse system of \varnothing -bicompact each with F-dim $_{\mathbf{d}}^{\mathbf{X}}$ s then F-dim $_{\mathbf{d}}^{\mathbf{X}}$ \leq n.

<u>Proposition 3.2:</u> Let $X_F = \{X_s, f_{s,t}, S\}$ be an inverse system of d-bicompact F-spaces such that F-dim $X_s \le n$ for $s \in S$. Then F-dim $X_s \le n$.

<u>Proof.</u> Let $U = \{u_i\}_{i=1}^k$ be an α -shading of X whose members belong to $\beta(\widetilde{X})$; that is u_i is of the form $u_i = f_{s_i}^{-1}(u_{s_i})$ $s_i \in S$, u_{s_i} open F-set in X_{s_i} . Since S is directed, so there is $t \in S$ such that $s_i \le t$ for all s_i , $i = 1, 2, \ldots, k$.

Let $v_t = f_{s_i}^{-1}$, $t(u_{s_i})$. Then v_t is open F-set in X_t and if we put $V_t = \left\{v_t\right\}_{i=1}^k$, then $f_t^{-1}(v_t) = U$.

Now $f_{t}(X)$ is d-closed in X_{t} by proposition I.2.8 and

I.3.3 and V_t is an α -shading of $f_t(\widetilde{X})$ for: let $x_t \in f_t(\widetilde{X})$. Then $x_t = f_t(x)$ for some $x \in \widetilde{X}$, since $f_t^{-1}(V_t)$ is α -shading of \widetilde{X} so there is $f_t^{-1}(v_t)$ such that $f_t^{-1}(v_t)(x) > \alpha$, then $V_t = (f_t(x)) > \alpha$ i.e. $V_t = (x_t) > \alpha$. Since F-dim $f_t(\widetilde{X}) \leq F$ -dim $f_t(x) \leq C$

 $X_t \le n$ by proposition II.2.1, then there exists an α -refinement of u of v_t whose order $\le n$. Hence $f_t^{-1}(u)$ is α -refinement of $f_t^{-1}(v_t) = u$ i.e. $f_t^{-1}(u)$ is α -refinement of u of order $\le n$ which implies that F-dim $x \le n$.

Corollary 3.1: Let $X_F = \{X_s, f_{s,t}, S\}$ be an inverse system of strong α -bicompact F-spaces such that F-dim $X_s \leq$ for every $s \in S$. Then F-dim $\widetilde{X} \leq n$. \square

The next proposition gives the characterization of the α -bicompact F-space in term of the limit F-space.

<u>Proposition 3.3:</u> An F-space (X,T) is strong \varnothing -bicompact with F-dim X=0 if and only if (X,T) is a limit F-space of finite discrete F-spaces.

<u>Proof.</u> \Longrightarrow Let (X,T) be the limit F-space of finite discrete F-spaces. For each $\alpha \in [0,1)$ clearly (X,T) is α -bicompact F-space by proposition 1.9 since each finite discrete F-space is α -bi-compact.

To show that F-dim X=0 assume the contrary i.e. let $F-\dim_{\mathcal{C}}X>0$ for each $\alpha\in\{0,1\}$. Take $x_1\in X$ and $y\in X\setminus\{x_1\}$, then by the definition of α -Hausdorff F-space, there are two open F-sets u_{x_1} , u_y in X such that $u_{x_1}(x_1)>\alpha$, $u_y(y)>\alpha$ and $u_{x_1}(x_1)>\alpha$, $u_y(y)>\alpha$ and is an α -shading of X and then

there is a finite set $\left\{y_1,\dots,y_y\right\} \subseteq X\setminus\{x_1\}$ from the α -compactness of X, such that $\left\{u_{x_1},u_{y_1}\right\}_{i=1}^k$ is a finite α -shading of X. Since F-dim X>0, so there is an α -refinement V of $\left\{u_{x_1},u_{y_1}\right\}_{i=1}^k$ of order ≥ 0 ; that is there are at least $v_1,v_2\in V$ such that $v_1\wedge v_2\neq 0$. But V is α -refinement of $\left\{u_{x_1},u_{y_1}\right\}_{i=1}^k$ i.e. for u_{x_1},u_{y_2} (say) there are $v_1,v_2\in V$ such that $v_1\wedge v_2\neq 0$ and $v_1\wedge v_2\in V$ such that $v_1\wedge v_2\neq 0$ and $v_1\wedge v_2\neq 0$ such that $v_1\wedge v_2\neq 0$ contradiction. Hence $v_1\wedge v_2\neq 0$ and $v_1\wedge v_2\neq 0$ and $v_1\wedge v_2\neq 0$ contradiction. Hence $v_1\wedge v_2\neq 0$ for each $v_1\wedge v_2\neq 0$.

Let (X,T) be a strong α -bicompact F-space with F-dim X=0. For each $\alpha\in[0,1)$, let $\mathcal{G}_{\alpha}=\left\{G_{i}\right\}$ be an α -shading of X by disjoint F-sets where A_{d} is a finite set, then $\Omega=\left\{G_{i}\right\}$ is the family of all finite disjoint α -shadings of A-shadings of A-shadings of A-shadings of

If f_{α} is an α -refinement of f_{β} , we say $\alpha \in \beta \in I$, then I is a directed set by \leq . For $\alpha \in \beta$ we define $f_{\alpha,\beta}: A_{\beta} \longrightarrow A_{\alpha}$ by $f_{\alpha,\beta}(i) = j$ implies $G_j \in G_i$, $i \in A_{\beta}$, $j \in A_{\alpha}$. Let each A_{α} be given the discrete F-topology (i.e. I is the F-topology on A_{α} for each $\alpha \in [0,1]$). Then clearly $f_{\alpha,\beta}$ is F-continuous $(\alpha \leq \beta)$ and so $A_F = \{A_{\alpha}, f_{\alpha,\beta}, I\}$ is an inverse system of F-spaces over I.

Let $(\widetilde{A},\widetilde{T})$ be the limit F-space of A_F and $f_\lambda=\widetilde{A}\longrightarrow A_\lambda$ be the canonical mapping for each $\lambda\in I$.

Define $\psi:\widetilde{A}\longrightarrow X$ by $\psi(i)=x$ if $x\in\bigcap_{\lambda\in[0,1)}G_i^+$ such that

$$f_{\lambda}(i) = i_{\lambda} \in A_{\lambda}$$

We show that γ is F-homeomorphism. γ is injective: Let

 $i \neq j \in \widetilde{A}$. Then $f_{\lambda}(i) \neq f_{\lambda}(j) \in A_{\lambda}$ i.e. $i_{\lambda} \neq j_{\lambda}$ and hence $G_{i_{\lambda}} \neq G_{j_{\lambda}}$ for $G_{i_{\lambda}}$, $G_{j_{\lambda}} \in G_{\lambda}$ this implies that $\Psi(i) = x \neq y = \chi(j)$ if $x \in \Lambda$ $G_{\lambda} \in [0,1)$ $G_{\lambda} \in [0,1)$ $G_{\lambda} \in [0,1)$ $G_{\lambda} \in [0,1)$

Y is surjective: Let $x \in X$. Then there is an $\lambda \in [0,1)$ and a finite disjoint λ -shading \mathcal{G}_{λ} such that \mathcal{G}_{i} $(x)>\lambda$ for some $\mathcal{G}_{i} \in \mathcal{G}_{\lambda}$ which implies that $x \in \mathcal{G}_{i}^{\dagger}$ and $i_{0\lambda} \in \mathcal{A}$. So there is $i_{0\lambda} \in \mathcal{A}$ such that $f_{\lambda}(i_{0}) = i_{0\lambda}$ and hence $\Psi(i_{0}) = x$.

 $\label{eq:power_power_set} \mbox{γ is F-continuous: Let $u \neq 0$ be an open F-set in X. So for some $\lambda \in [0,1)$ there exist $i_0 \in \widetilde{A}$ and $x_{i_0} \in X$ such that $u(x_{i_0}) > \lambda$ and $Y(i_0) = x_{i_0}$. Hence$

$$\psi^{-1}(u) = \psi^{-1} \left[V \left\{ p_{x_{i}} : x_{i} \in u^{+}, p_{x_{i}}(x_{i}) > \beta \right\} = V \left\{ p_{i}^{-1}(x_{i}) : x_{i}^{-1} \in u^{+} \right\}$$

$$= V \left\{ p_{i}^{-1} : i \in \widetilde{A} \right\}$$

is F-open map: Let w be open F-set in \widetilde{A} . Then $w = V \Big\{ p_i : p_i \in w \Big\}$ and hence $\bigvee (w) = \bigvee (V p_i) = V \bigwedge (p_i) = V p_{\chi(i)} =$

If $(\widetilde{X},\widetilde{T})$ is the limit F-space of an inverse sequence of F-spaces with F-dim $\leq p$ where $p\in N$, $p\geq 0$. Under what conditions is it true that F-dim $\widetilde{X}\leq p$. The following two propositions deal with this question.

Proposition 3.4: Let $X_F = \{X_n, f_{n,m}, N\}$ be an inverse sequence of countably X -compact with F-dim X $\leq p$ $(p \in N, p \geq 0)$ and all $f_{n,m}(X_m)$ be X-closed in X_n $(n \leq m)$. If each finite X-shading of any F-subspace of X_n is countably extendable, then F-dim X $\leq p$.

Proof. Let $U = \left\{u_i\right\}_{i=1}^k$ be an α -shading of \widetilde{X} and let each finite α -shading of any F-subspace of X_n ($n \in N$) is countably extendable.

Each $u_i = f_{n_i}^{-1}(v_{n_i})$ where $n_i \in N$, v_{n_i} is open F-set in X_{n_i} . Let $v_{m_i} = f_{n_i,m}^{-1}(v_{n_i})$, $n_i \le m$ for all i = 1, 2, ..., k. Put $V_m = \left\{ v_m \right\}_{i=1}^K$, then $f_m^{-1}(v_m) = U$ and $\left\{ V_m | f_m(\tilde{X}) \right\}$ is a finite α -shading of $f_m(\widetilde{X})$. By proposition II.2.5 F-dim $f_m(\widetilde{X}) \leq p$ and hence there is a finite σ -shading $\left\{G_{m_{1}}^{K}\right\}^{K}$ of $f_{m}(\widetilde{X})$ whose order $\leq p$ and $G_{m_i} \leq v_{m_i} | f_n(\widetilde{X})$ for i = 1, 2, ..., k. By assumpti- $\mathbb{W}[f_m(\widetilde{X}) \text{ is a precise } \text{α-refinement of } \left\{G_m\right\}^{k} \quad \text{and hence from }$ countably α -compactness of X_m there is a finite α -subshading $\left\{w_{j}\right\}_{i=1}^{L}$ (L > k say) of X_{m} . i.e. $\left\{w_{j}\right\}_{i=1}^{K}$ is d-refinement of $\{G_m, \}^k$ whose order $\leq p$. So $f_m^{-1}(\{w_j\}_{j=1}^k)$ is d-refinement of $f_m^{-1}(v_m) \text{ which implies that } f_m^{-1}(\left\{w_j\right\}_{i=1}^L) \text{ is an α-refinement of }$ U of order $\leq p_{\bullet}$ i.e. $F-\dim_{\mathcal{A}} X \leq p_{\bullet}$

Proposition 3.5: Let $X_F = \{X_n, f_{n,m}, N\}$ be an inverse sequence of countably α -compact α -Hausdorff F-spaces with strongly F-closed canonical mappings. If F-dim $X_n \in p$ for each $n \in N$, then F-dim $X \in p$.

Proof. Let $(\widetilde{x},\widetilde{T})$ be the limit F-space of $X_F = \{x_n, f_{n,m}, N\}$, $F-\dim_{\alpha} X_n \leq p$ for each $n \in N$ and let $U = \{u_i\}_{i=1}^k$ be an α -shading

of \widetilde{X} . Then as in the case of the previous proposition, we get a finite α -shading $f_m^{-1}(V_m)=U$ and $\left\{V_m\big|f_m(X)\right\}$ is a finite α -shading of $f_m(\widetilde{X})$ where $f_m(\widetilde{X})$ is α -closed in X_m by proposition 1.4 and the hypothesis and then from proposition II.2.3 we have $\operatorname{F-dim}_{\alpha}f_m(\widetilde{X})\leq p$. So there is an α -refinement W_m of $V_m\big|f_m(\widetilde{X})$ whose order $\leq p$ and hence $f_m^{-1}(W_m)$ is α -refinement of $f_m^{-1}(V_m)=U$ i.e. $f_m^{-1}(W_m)$ is the required α -refinement of $G_m^{-1}(V_m)=U$ i.e. $G_m^{-1}(W_m)$ is the required α -refinement of $G_m^{-1}(V_m)=U$ i.e. $G_m^{-1}(W_m)=U$ i.e. $G_m^{-1}(W_m)$

<u>Proposition 3.6:</u> Let a strong countably ∞ -compact F-space (X,T) be the limit F-space of an inverse sequence of weakly normal F-spaces and surjective F-bondings with F-dim $X_n \leq p$ for each $n \in \mathbb{N}$. Then (X,T) is weakly normal F-space and F-dim $X \leq p$.

<u>Proof.</u> Let us show first that (X,T) is weakly normal F-space. Let H,k be two disjoint closed F-sets in X and $f_n: X \longrightarrow X_n$ be the canonical mapping for each $n \in N$. Then

$$\bigwedge_{n\in\mathbb{N}} f_n^{-1}(cl(f_n(k)) \wedge cl(f_n(H))) = 0$$

Since (X,T) is strong countably d-compact by assumption, then $f_n^{-1}(\operatorname{cl}(f_n(k)) \wedge \operatorname{cl}(f_n(H))) = 0$ for some $n \in N$ from proposition I. 2.4. Now each $f_{n,m}$ $(n \in m)$ is surjective by hypothesis, so each f_n is surjective by theorem 0.3 and hence $\operatorname{cl}(f_n(k)) \wedge \operatorname{cl}(f_n(H)) = 0$ in X_n . But X_n is weakly normal f-space so there are u_1, u_2 open F-sets in X_n such that $\operatorname{cl}(f_n(k)) \leq u_1$, $\operatorname{cl}(f_n(H)) \leq u_2$ and $u_1 \leq cou_2$.

Hence

$$f_{n}^{-1}(\operatorname{cl}(f_{n}(k)) \leq f_{n}^{-1}(u_{1}), \ f_{n}^{-1}(\operatorname{cl}(f_{n}(H))) \leq f_{n}^{-1}(u_{2}) \ \text{and}$$

$$f_{n}^{-1}(u_{1}) \leq f^{-1}(\operatorname{co}\ u_{2}).$$
 That is

 $k \leq f_n^{-1}(u_1)$, $H \leq f_n^{-1}(u_2)$ and $f_n^{-1}(u_1) \leq co \ f_n^{-1}(u_2)$ where $f_n^{-1}(u_1)$ and $f_n^{-1}(u_2)$ are open F-sets in X.

Therefore (X,T) is weakly normal F-space.

We end this section by giving a generalization to Delinić and Mardešić's theorem [9] i.e. to give a necessary and sufficient condition for F-dim_dX \leq n. Following a similar technique we start with some lemmas.

Definition 3.1. An inverse system $X_F = \{X_s, f_{s,t}, S\}$ is called α -reversable if for an open F-set u_s in X_s , $f_{s,t}^{-1}(X_s \setminus supp.u_s)$ is α -closed in X_t for $\alpha \in [0,1)$ and $s \in t$.

Lemma 3.2: Let (X,T) be the limit F-space an ∞ -reversable inverse system $X_F = \{X_s, f_{s,t}, S\}$ of ∞ -bicompact F-spaces.

If $s \in S$ and u_s is an open F-set in X_s such that supp. $u_s \supset f_s(\widetilde{X})$, then there exists a $t \in S$, $s \le t$ such that $f_s(X_t) \subset \text{supp. } u_s$.

Proof. Assume the contrary: that is for every $t \in S$, $s \leq t$ we have $X_t^* = f_{s,t}^{-1}(X_s | \text{supp } u_s) \neq 0$. By hypothesis X_t^* is α -closed in X_t and hence it is α -compact. Then $X_F^* = \left\{X_t^*, f_{t,r}^*, S_t^*\right\}$, $t,r \geq S$ and $f_{t,r}^* = f_{t,r} | X_t^*$ is an inverse system of α -bicompact F-spaces and would have a non-empty limit F-space $(X_t^*,T_t^*) \subset (X_t^*,T_t^*)$ from proposition 1.9. Clearly $f_s(X_t^*) \subseteq X_s | \text{supp. } u_s$ which contracts the assumption $f_s(X_t^*) \subset \text{supp. } u_s$.

Lemma 3.3: Let (X,T) be as in the prvious lemma $U = \{u_i\}_{i=1}^K$ be an α -shading of X whose members belong to $\beta(X)$ and let $s \in S$. Then there exists $t \in S$, $s \le t$ and finite α -shading $V_t = \{v_t\}_{i=1}^K$ of X_t such that $f_t^{-1}(v_t) \le u_i$ and order $V_t \le t$ order U.

 $f_{s_0}^{-1} f_{s_i}^{-1} s_0(u_{s_i}) = f_{s_i}^{-1}(u_{s_i}) = u_i$. Then $f_{s_0}^{-1}(u_{s_0}) = u_i$. i.e. $f_{s_0}(u_{s_0})$

is \mathscr{A} -shading of \widetilde{X} . Hence U_s is an \mathscr{A} -shading of $f_s(\widetilde{X})$ which is \mathscr{A} -compact and then $f_s(\widetilde{X})\subset \text{supp. } u_s$ where $u_s=\bigvee_{i=1}^{u}u_{s_i}$

By lemma 3.2 there exists t \in S such that t \geqslant s₀ \geqslant s and $f_{s_0t}(X_t) \subset \text{supp. } u_{s_0}$ put $v_{t_i} = f_{s_0,t}^{-1}(u_{s_0i})$, then $V_t = \left\{v_{t_i}\right\}_{i=1}^k$

is an α -shading of X_t and $f_t^{-1}(v_{t_i}) \le u_i$ for i = 1, 2, ..., k.

Now if $v_{t} i_{1} \wedge \cdots \wedge v_{t} i_{k} \neq 0$, then $f_{s_{0}, t}^{-1} (u_{s_{0}} i_{1}) \wedge f_{s_{0}}^{-1} t^{(u_{s_{0}} i_{2})} \wedge \cdots \wedge f_{s_{0}}^{-1} t^{(u_{s_{0}} i_{k})} \neq 0$ and hence

$$f_{t}^{-1} f_{s_{0}, t}^{-1} (u_{s_{0} i_{1}}) \wedge \cdots \wedge f_{t}^{-1} f_{s_{0}, t}^{-1} (u_{s_{0} i_{k}}) = f_{s_{0}}^{-1} (u_{s_{0} i_{1}}) \wedge \cdots \wedge f_{s_{0}}^{-1} (u_{s_{0} i_{k}}) \neq 0.$$

Consequently

$$u_{i_1} \wedge u_{i_2} \wedge \cdots \wedge u_{i_k} \neq 0.$$

Therefore order $V_t \in \text{order } U_{\bullet}$

Lemma 3.4: Let (\widetilde{X}, T) be as in lemma 3.2. If u_s is an open F-set in X_s and v_t is an open F-set in X_t , s,t \in S such that $f_t(v_t) \leq f_s(u_s)$, then there exists $r \in S$, $r \geq s$,t such that $f_t(v_t) \leq f_s(u_s)$.

<u>Proof.</u> Suppose that the assertion is false i.e for every $r \in S$, r > s, t we have $X_r^* = f_{s,r}^{-1}(X_s \setminus supp. u_s) \setminus f_{t,r}^{-1}(X_t \setminus supp. v_t) \neq \emptyset$. Then X_r^* is α -closed in X_r and as in case of lemma 3.2, we would have an inverse subsystem of α -bicompact F-space which has a non-empty limit F-space. This would lead to

Supp.
$$f_t^{-1}(v_t) \setminus \text{Supp. } f_s(u_s) \neq \emptyset$$

Conctracts our assumption that

$$f_t^{-1}(v_t) \le f_s^{-1}(u_s).$$

This lemma gives at once the following result .

Remark: U_s is an α -shading of X_s and V_t is a finite α -shading of X_t such that $f_t^{-1}(V_t)$ refines $f_s^{-1}(U_s)$ then there is $r \in S$, $r \ge s$, t such that $f_{t,r}^{-1}(V_t)$ refines $f_{s,r}^{-1}(U_s)$.

Proposition 3.7: Let $X_F = \{X_s, t_{s,t}, s\}$ be an α -reversable inverse system of α -bicompact F-spaces with the limit F-space (\widetilde{X}, T) . Then F-dim $X \le n$ if and only if for each $s \in S$ and each α -shading U_s of X_s there is $t \in S$, $s \le t$ such that the α -shading $f_{s,t}^{-1}(U_s)$ of X_t has an α -refinement V_t of order $\leq n$.

Proof. Let $F-\dim_{\alpha}\widetilde{X} \leq n$ and let U_s be an α -shading of X_s . Then $f_s^{-1}(U_s)$ is an α -shading of \widetilde{X}_s . By proposition 3.1 $f_s^{-1}(U_s)$ has an α -refinement $U=\{u_1,\dots,u_k\}$ whose members belong to the standard basis $\beta(\widetilde{X})$ and order of $U\leq n_s$. By lemma 3.3, there exists $t\in S$ with $s\leq t$ and a finite α -shading of $V_t=\{v_t\}_{i=1}^k$ of X_t such that $f_s^{-1}(v_t)\leq u_i$ for $i=1,2,\dots,k$ and order $V_t\leq order\ U\leq n_s$.

By the remark ofter lemma 3.4 where for each $i=1,2,\ldots,k$, we have $f_{\mathbf{t}}^{-1}(v_{\mathbf{t}_i}) \leq u_i$, then $f_{\mathbf{t}}^{-1}(v_{\mathbf{t}_i})$ refines $f_{\mathbf{s}}^{-1}(u_{\mathbf{s}_i})$ and hence there exists $\mathbf{r} \in S$, $\mathbf{r} \geqslant \mathbf{s}$, \mathbf{t} such that $f_{\mathbf{t},\mathbf{r}}^{-1}(v_{\mathbf{t}_i})$ refines $f_{\mathbf{s},\mathbf{r}}^{-1}(u_{\mathbf{s}_i})$. So if $\mathbf{w}_{\mathbf{r}} = f_{\mathbf{t},\mathbf{r}}^{-1}(v_{\mathbf{t}_i})$, then $\mathbf{w}_{\mathbf{r}}$ is α -shading of $\mathbf{x}_{\mathbf{r}}$ because $v_{\mathbf{t}_i}$ is α -shading of $\mathbf{x}_{\mathbf{t}_i}$ and clearly order $\mathbf{w}_{\mathbf{r}} \leqslant \mathrm{order} v_{\mathbf{t}_i} \leqslant n$. Therefore \mathbf{r} and $\mathbf{w}_{\mathbf{r}}$ satisfy the required property.

Let U be a finite α -shading of \widetilde{X} where members of U can be assumed in the standard basis $\beta(X)$. Then by lemma 3.3 there is $s \in S$ and a finite α -shading U of X such that $f_s^{-1}(U_s)$ refines U. By assumption there exists $t \in S$, $s \leq t$, and

a finite α -shading V_t of X_t which refines $f_{s,t}^{-1}(U_s)$ and order of $V_t \leq n$. Hence $f_t^{-1}(V_t)$ is a finite α -shading of X which refines $f_s^{-1}(U_s)$ and then $f_t^{-1}(V_t)$ refines U_s . Clearly order $f_t^{-1}(V_t)$ \leq order $V_t \leq n$. Therefore F-dim $\widetilde{X} \leq n$ as required. \square

REFERENCES:

- [1] Adnadjević, D. (1982): Separation properties of F spaces.

 Mat. vesnik 6(19)(34) 1-8
- [2] Chang, C. (1968): Fuzzy topological spaces. J. Math. Anal. Appl. 24, 182-190
- [3] Charalambous, M. (1976): The dimension of inverse limits.

 Proc. Amer. Math. Soc. 58, 289 295
- [4] Engelking, R. (1968): Outline of general topology.
 North Holland.
- [5] Engelking, R. (1978): Dimension Theory, North Holand
- [6] Gantner, T., Steinlage, R. and Warren, R. (1978): Compactness in fuzzy topological spaces, J. Math. Anal. Appl. 62,
 547 562
- [7] Hutton, B. (1975): Normality in fuzzy topological spaces.
 J. Math. Anal. Appl. 50, 74-79
- [8] I S bell, J. (1964): Uniform spaces. Amer. Math. Soc.
- [9] Kerre, E. (1979): Characterization of normality in fuzzy topological spaces. Simon Stevin, Vol. 53 No 3, 239-248
- [10] Lowen, R. (1976): Fuzzy topological spaces and fuzzy compactness. J.Math. Anal. Appl. 56, 621-633.
- [11] Lowen, R. (1977): Initial and final fuzzy topologies and the fuzzy Tychonoff theorem. J.Math.Anal.Appl.58,11-21
- [12] Lowen, R. (1978): Comparison of different compactness notions in fuzzy topological spaces, J.Math.Anal.Appl.64 446-454
- [13] Lowen, R. (1981): Compact Hausdorff fuzzy topological spaces are topological, Top. its Appl. 12, 65-74
- [14] Lončar, I. (1982): Inverse limits for spaces which generalize compact spaces. Glas. Mat. 17(37), 155-173

- [15] Malghan, R.Benchalli, S. (1981): On fuzzy topological spaces. Glas. Mat. 16(36), 313-325
- [16] Martin, H. (1980): A Stone-Čech ultra fuzzy compactification. J.Math. Anal. Appl. 73, 453-456
- [17] Morita, K. (1973): On the dimension of the product of Tychonoff spaces. Gen. top. Appl. 3, 125-133
- [18] Morita, K. (1979): Cech cohomology and covering dimension for topological spaces. Fund. Math. 87, 31-52
- [19] Mardešić, S. Dolinić K., (1968): A necessary and suficient condition for the n-dimensionality of inverse limits, Proc. Internat. Sympos. on topology and its applications (Herceg Novi) 124-129
- [20] Nagami, K. (1980): Dimension of non-normal spaces. Fund. Math. 109, 113-121
- [21] Nagami, K. (1970): Dimension theory, Academic Press.
- [22] Nagata, J. (1983): Modern dimension theory. Helderman Berlin
- [23] Rodabaugh, E. (1980): The Hausdorff separation axiom in fuzzy topological spaces. Top. Appl. 11, 319-334
- [24] Rodabaugh, E. (1981): Suitability in fuzzy topological spaces. J. Math.Appl. 79, 273-285
- [25] Pu Pao-Ming Liu Ying-Ming (1980): Fuzzy topology.

 1. Neighborhood structure of a fuzzy point and Moore-Smith convergence. J.Math.Anal. Appl. 76, 571-599
- [26] Pears, A. (1975): Dimension theory of general spaces
 Cambridge University Press.
- [27] Sarkar, M. (1981): On fuzzy topological spaces. J.Math. Anal. Appl. 79, 384-394
- [28] Warren, R. (1978): Neighborhoods, bases and continuity in fuzzy topological spaces, Rocky Mount. J.Math., 8 No. 3, 459-470
- [29] Weiss, M. (1979): Fixed points, separation and induced topologies for fuzzy sets. J.Math.Anal.Appl. 50, 142-150

- [30] Wong, C. (1974): Fuzzy topology: Product and quotient theorems. J.Math. Anal. Appl. 45, 512-521
- [31] Zadeh, L. (1965): Fuzzy sets. Information and control 8, 338-353
- [32] Zougdani, H. (1984): Covering Dimension Of Fuzzy Spaces Math. vesk. 36 104-118

LIST OF SYMBOLS

Ţ.	closed unit interval	9
Ľ X	set of all functions from X to I	9
-set	Fuzzy set	9
f O	support of f	9
point	fuzzy point	10
×a	support of a fuzzy point	10
u(A)	characteristic function of a subset A	10
p(X)	set of all subsets of X	10
ch(X)	set of all characteristic functions which	
	have domain X	10
f∠g	f contained in g	10
p ∈ f	p belongs to f	10
\checkmark	join (sup.)	11
\wedge	meet (inf.)	11
ca.	complement	11
م × _و	F-point with support x and value	
F-topology	fuzzy topology	13
F-space	fuzzy topological space	13
int(f)	interior of f	13
cl(f)	closure of f	13
U ≜ V	U co-refinement of V	
X \ A	complement of the set A in X	16
flX	the restriction of f to X	
(Y,T _Y)	relative fuzzy subspace	17
ses s	cartisian product	20
F-dim _d	≪-covering dimension	23

Fdim	weak d-covering dimension	29
loc. F-dim	local &-covering dimension	35
g ⁺ =	$\{x \in X : g(x) > \alpha\}$	35
F(X)	set of all F-topologies on X	49
子 (X)	set of all topologies on X	40
i(T)	the initial topology for the family of	
	functions T to I	40
⊌(≠)	set of lower semicontinuous functions from	
	(X, F) to I	40
F-dim	covering dimension	41
SF-dim	strong zero &-coving dimension	42
(X,i(T))	modificated topology	40
(X,w(≠))	induced F-space	40
F-dim _d X _{w(≠)}		
	space (X, w(≠))	50
dim X _{i(T)}	covering dimension of the modificated	
	topology (X,i(T))	49
/3×	Stone-Cech compactification	53
(3x,T ₇)	ultra Stone-Cech F-compactification	53
a-st.f.p	d-star finite property	59
≾ ౯	inverse system of Espaces	62
$(\widetilde{X},\widetilde{T})$	limit F-space	63
$\mathcal{Z}(\widetilde{X})$	standard basis for \widetilde{T}	54
Ĉ∞ -set	the F-set of countable meet of open F-sets -	74
H _∞ -set	the F-set of countable join of closed	
	F-52ts	74