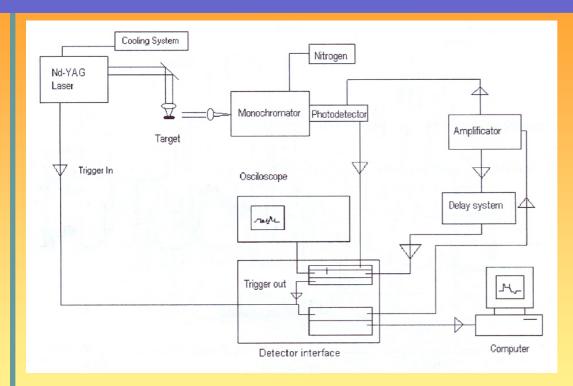
# EXPERIMENTAL AND THEORETICAL STARK WIDTHS FOR Au II

R. Mayo<sup>1</sup>, M. Ortiz<sup>2</sup>, M. S. Dimitrijević<sup>3</sup>, Z. Simić<sup>3</sup>


<sup>1</sup> Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Avda. Complutense, 22, 28040 Madrid, Spain

<sup>2</sup> Dpto. de Física Atómica, Molecular y Nuclear, Facultad de Ciencias Físicas, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain 3 Astronomical Observatory, Volgina 7, 11160 Belgrade, Serbia

#### Introduction

- We have studied experimentally and theoretically the Stark widths from several lines of Au II, and, some of them not measured before.
- The interest:
  - the knowledge of its atomic structure to check the adequacy of theoretical models
  - its astrophysical importance because it contributes to the opacity in spectra of chemically peculiar stars (Leckrone et al. 1993).

#### **Experiment**



• The experimental plasma conditions were obtained from a Boltzmann plot of the temperature and by means of the Saha equation.

- The experimental work was performed in the facility provided by UCM (Universidad Complutense de Madrid) and employed the LIBS technique
   Laser Induced Breakdown Spectroscopy.
- Nd:YAG laser beam focused
  → surface of the target (pure gold) → generate the plasma.
- the neutral atom and other higher ions from gold were present
- some isolated lines were ruled out → self-absorption

**Table 1.** Experimental results for Stark full width at half maximum (FWHM) of Au II spectral lines . The electron density is  $(1.45\pm0.23)\times10^{17}$  cm<sup>-3</sup> and the temperature is  $16200\pm1400$ K.

| λ(Å)    | Transition                        | $W_{exp}(A)$        |
|---------|-----------------------------------|---------------------|
| 1921.00 | $6s(3/2,1/2)_2$ - $6p(3/2,1/2)_1$ | $0.0338 \pm 0.0058$ |
| 2044.59 | $6s(3/2,1/2)_1$ - $6p(3/2,1/2)_2$ | $0.0372\pm0.0072$   |
| 2215.64 | $6p(5/2,1/2)_2$ -7s $(5/2,1/2)_3$ | 0.0424±0.0074       |

#### Theoretical calculations

The theoretical results were obtained using the modified semiempirical approach (Dimitrijević and Konjević 1980).

**Table 2.** This table shows electron-impact broadening parameters for Au II , calculated within modified semiempirical approach for a perturber density of  $10^{17}$  cm<sup>-3</sup> and temperatures from 5000 up to 50000K.

| Temperature (K) | Transition              | $\mathbf{W}_{th}(\mathring{\mathbf{A}})$ | Transition              | $W_{th}(A)$ |
|-----------------|-------------------------|------------------------------------------|-------------------------|-------------|
| 5000            |                         | 0.041                                    |                         | 0.147       |
| 10000           |                         | 0.029                                    |                         | 0.103       |
| 20000           | 6s(3/2,1/2)-6p(3/2,1/2) | 0.020                                    | 6p(5/2,1/2)-7s(5/2,1/2) | 0.072       |
| 30000           | 2015.8Å                 | 0.016                                    | 2263.8Å                 | 0.059       |
| 40000           |                         | 0.014                                    |                         | 0.053       |
| 50000           |                         | 0.012                                    |                         | 0.049       |

### Comparison

| λ(Å)    | Transition                        | W <sub>exp</sub> /W <sub>th</sub> |  |
|---------|-----------------------------------|-----------------------------------|--|
| 1921.00 | $6s(3/2,1/2)_2$ - $6p(3/2,1/2)_1$ | 1.15                              |  |
| 2044.59 | $6s(3/2,1/2)_1$ - $6p(3/2,1/2)_2$ | 1.12                              |  |
| 2215.64 | $6p(5/2,1/2)_2 - 7s(5/2,1/2)_3$   | 0.38                              |  |

## Thank you!