UNIVERZITETU BEOGRADU PRIRODNO-MATEMATIČKI FAKULTET
OSiNOVNA ORGANIZACIJA UDRUŻENOG RADA ZA MATEMATIKU,MEHANIKU I ASTRONOMIJU

Mlr Jovo M. Šarović

APROKSIMACIJA FUNKCIJA ANOLITIČKIH U POJASU

- DOKTORSKA DISERTACIJA -

Izražavam iskrenu zahvalnost
Dr MIHAILU KONSTANTINOVIČU POTAPOVU, profesoru Mehaničko-matematičkog fakulteta Moskovskog državnog univerziteta, za pomod i podrusku u radu.

$$
S A D R \check{Z} A J
$$

PREDGOVOR 3
GLAVA I
POSTAVL工ANJE PROBLEMA I NJEGOVA ISTORIJA 5
§1. Definicije i oznake 6
§2. Definicije klasa $5^{\delta} \mathrm{H}_{\mathrm{p}}^{\psi}$ i $\mathrm{E}^{\delta} \mathrm{B}_{\mathrm{p} \theta}^{\psi}$ 8
§3. Poznati rezultati za funkcije iz klase
$5^{\delta} \mathrm{H}_{\mathrm{p}}^{\psi}$ 10
§4. Poznati rezultati za funkcije iz klase
$5^{\delta}{ }_{B}{ }_{\mathrm{p} \theta}^{\psi}$ 14
GLAVA II
DEFINICIJE I POMOĆNE TVRDNJE 17
§l. Oznake i definicije 17
§2. Pomoćne tvrdnje 23
GLAVA III
DIREKTNE I OBRNUTE TEOREME APROKSIMACIJA ZA FUNKCIJEiz KLASE $G^{\delta}{ }^{H}{ }_{\mathrm{E}}^{\psi}$45
51. Direktna teorema aproksimacije za funkcije
iz rlase $\sigma^{\delta} \mathrm{H}_{\mathrm{E}}^{\psi}$ 45
§2. Obrnuta teorema aproksimacije za funkcije iz klase $\sigma^{\delta} H_{E}^{\psi}$ 49
53. Potrebni i dovoljni uslovi pripadanja klasi $\sigma^{\delta} H_{E}^{\psi}$ funkcija sa monotonim ili lakunarnim Fu- rierovim koeficijentima 58
§4. Dodatni rezultati obrnutoj teoremi 67
GLAVA IV
DIREKTNE I OBRNUTE TEOREME APROKSIMACIJA ZA FUNKCIJEIZ KLASE $5^{\delta} B_{E \Theta}^{\psi}$73
51. Direktne teoreme aproksimacije za funkcije iz klase $\sigma^{\delta} \mathrm{B}_{\mathrm{E} \odot}^{\psi}$ 73
§2. Obrnuta teorema aproksimacije za funkcije iz
klase $\sigma^{\delta} \mathrm{B}_{\mathrm{E} \theta}^{\psi}$ 76
§3. Potrebni i dovoljni uslovi pripadanja klasi $6^{\delta} B_{E \ominus}^{\psi}$ funkcija sa monotonim ili lakunarnim Furierovim koeficijentima 79
§4. Dodatni rezultatni obrnutoj teoremi 93
ZAKLJUČAK 106
LITERATURA 111
\qquad

PREDGOVOR

U disertaciji se razmatraju pitanja aproksimacije funkcija analitičkih u pojasu pomoću trigonometrijskih polinoma u metrici nekog maksimalnog simetričnog prostora. U njoj su, uglavnom, izloženi rezultati iz navedenog područja teorije približenja koje je dobio autor.

Rad se sastoji iz četiri dijela (glave).

U početku prve glave uvedene su definicije pojmova i oznake koje će se koristiti u radu. U drugom paragrafu definisane su klase funkcija $E^{\delta} H_{p}^{\psi}$ i $5^{\delta} B_{p \theta}^{\psi}$. Formulacija problema i njegova istorija je sadržana u trećem i četvrtom paragrafu.

U drugoj glavi definišu se klase funkcija $5^{\delta} H_{E}^{\psi}{ }^{i}$ $\sigma^{\delta} \mathrm{B}_{\mathrm{p} \theta}^{\psi}$.

Da bi se olakšalo čitanje rada, u ovoj Glavi su návedene teoreme različitih autora i pomóne tvrdnje (leme) i njihovi dokazi koje je formulisao i dokazao sam autor. Ovdje nijesu navedeni opšte poznati stavovi.

Treća i četvrta glava predstavljaju glavni (osnovni) dio disertacije. U njima su formulisane i dokazane direktne i obrnute teoreme aproksimacija za funkcije iz klasa koje su definisane u drugoj glavi. Te teoreme i leme iz druge glave su osnovni rezultati disertacije.

Ako se citira neka formula iz prethodne glave, u zagradi se navodi redni broj glave, paragrafa i formule. Ako se radi o formuli iz te iste glave, ali iz prethodnog paragrafa, u zagradi se navode redni brojevi paragrafa i formule a u slučaju formule iz tog istog paragrafa, navodi se samo broj formule. Takav se princip primjenjuje i pri citiranju lema i teorema.

Autor

GLAVAI
 POSTAVLJANJE PROBLEMA I NJEGOVA ISTORIJA

U skoro svim oblastima matematike značajnu ulogu imaju zadaci o aproksimaciji složenih objekata pomoću manje složenih. U većini takvih slučajeva veoma je korisno poznavanje osnovnih metoda, rezultata i problema teorije aproksimacija tj. teorije približenja. U posljednje vrijeme, u okviru teorije aproksimacija, uglavnom se izučavaju aproksimacije individualnih funkcija ili čitavih klasa, pomocu zadanih potprostora čiji su elementi funkcije u izvjesnom smislu prostije od funkcija koje se aproksimiraju.

Najčešće ulogu takvih potprostora imaju skup algebarskih polinoma ili, pak, (u periodičnom slučaju) skup trigonometrijskih polinoma.

U ovome radu biće razmatrana pitanja aproksimacije funkcija $f(z)=f(x+i y)$, realnih na osi $x, 2 \pi$-periodičnih po promjenljivoj x i analitičkih u pojasu $\Delta=\{-\infty<x<+\infty,|y|<\delta\}$, pomocu trigonometrijskih polinoma čiji stepen nije veći od n-l, u normi nekog maksimalno simetričnog prostora.

s1. DEFINICIJE I OZNAKE

DEFINICIJA l.1.1. Kažemo da funkcija $F(x)$ pripada prostoru L_{p} i pišemo $F(x) \varepsilon L_{p}$ ako je $F(x)$ realna 2 - periodična funkcija:
a) izmjoriva, ako je $p_{E}[1,+\infty)$, pri čemu je

$$
\left\|F_{\|}^{\prime}\right\|_{p}=\left\{\rho_{0}^{2 \pi}|F(x)|^{P_{d x}}\right\}^{\frac{1}{p}}<\infty
$$

b) neprekidna, ako je $p=\infty$, pri čemu je

$$
\|F\|_{\infty}=\|F\|_{C}=\max _{x}|F(x)|
$$

DEFINICIJA 1.1.2. Sa $\omega_{k}(F, t) p$ označavamo mod u l
 $\operatorname{ra} L_{p} ; t j$.

$$
\omega_{k}(F, t)_{p}=\sup _{|h| \leqslant t}\left\|\Delta_{h}^{k} F(x)\right\|_{p}
$$

gdje je

$$
\Delta_{h}^{k} F(x)=\sum_{v=0}^{k}(-1)^{k-v} C_{k}^{v} F(x+v h)
$$

DEFINICIJA 1.1.3. Sa $E_{n}{ }^{(F)}{ }_{p}$ označavamo naj bolju aproksimaciju funkcije $F(x) \varepsilon L_{p} u$ metrici prostora L_{p} pomoću trigonometrijskih polinoma čiji stepen nije veći od n-1, tj.

$$
E_{n}(F)_{p}=\inf _{n-1}(x)\left\|F(x)-T_{n-1}(x)\right\| p
$$

gdje je

$$
T_{n-1}(x)=\sum_{v=0}^{n-1} \alpha_{v} \cos v x+\beta_{v} \sin v x,
$$

a $\alpha_{\nu} i \beta_{\nu}$ - realni brojevi.
DEFINICIJA 1.1.4. Kažemo da je $F(x) \in H_{p}^{r}$ ako je $F(x) \in L_{p}{ }^{i}$ $\omega_{k}(F, \delta){ }_{p} \leqslant M \delta^{r}$,
gdje je $k>r>0, p \varepsilon[1,+\infty]$ i M - neka pozitivna konstanta.
DEFINICIJA 1.1.5. Kažemo da je $F(x) \varepsilon B_{p \theta}^{r}$, ako je $F(x) \in L_{p}$ i

$$
\int_{0}^{1} t^{-r \theta-1} \omega_{k}^{\theta}(F, t) p^{d t<\infty},
$$

gdje je $k>r>0, \theta \in(0,+\infty), p \varepsilon[1,+\infty]$.
DEFINICIJA 1.1.6. Kažemo da je funkcija $\psi(\delta)$ funkcija tipamodulaglatkostidisisemo $\psi(\delta) \varepsilon M H(\sigma)$ ako je:

1. $\psi(\delta)$ nenegativna i neprekidna na $[0,+\infty), \psi(\delta) \neq 0$,
2. postoji $\sigma \geqslant 0$ takvo da za bilo koje $\lambda \geqslant 0$ vrijedi nejednakost

$$
\psi(\lambda \delta) \leqslant C(\lambda+1)^{\sigma} \psi(\delta),
$$

gdje pozitivna konstanta C ne zavisi od $\delta i \lambda$.
DEFINICIJA 1.l.7. Sa H_{p}^{ψ} označavamo skup svih funkcija iz $F(x) \varepsilon L_{p}$ za koje vrijedi nejednakost

$$
\omega_{\mathrm{k}}(F, \delta)_{\mathrm{p}} \leqslant \mathrm{M} \psi(\delta),
$$

gdje je $\psi(\delta) \varepsilon M H(\sigma), M$ neka pozitivna konstanta.
Primijetimo da se klasa funkcija H_{p}^{ψ} poklapa sa klasom

H_{p}^{r} ako je $\psi(\delta)=\delta^{r}$ i $k>r>0$.

DEFINICIJA 1.1.8. Sa $\mathrm{B}_{\mathrm{D}}^{\theta} \mathrm{O}$ označavamo skup svih funkcija $F(x) \varepsilon L_{p}$ za kojə vrijedi nejednakost

$$
\int_{0}^{1}\left[\frac{\omega_{k}(F, t)_{\mathrm{p}}}{\psi(t)}\right]^{\theta} \frac{\mathrm{dt}}{\mathrm{t}}<\infty
$$

gdje je $\psi(\delta) \varepsilon \mathrm{MH}(\sigma)$ i $\quad \theta \varepsilon(0,+\infty)$.
Očitc je da se klase ${\underset{p}{i}}_{\psi}^{\psi}$ i $B_{p \theta}^{r}$ poklapaju ako je $\psi(\delta)=\delta^{r}$ i $k>r>0$.
§2. DEFINICIJE KLASA $5^{\delta} \mathrm{H}_{\mathrm{p}}^{\psi}$ i $5^{\delta} \mathrm{B}_{\mathrm{p} \theta}^{\psi}$

Za funkcije, koje su analitičke u pojasu, poznate su (V.[1] i [2]) sljedeće činjenice:

1. Neka je $f(z)=f(x+i y)$ realna funkcija na osi $x(y=0), 2 \pi$-periodična po x, analitička u pojasu $\Delta=\{-\infty<x<+\infty,|y|<0\}$.

Ako za bilo koje y takvo da je $|y|<\delta$ i neko $p \in(1, f \infty]$ funkcija $\phi_{Y}(x)=\operatorname{Ref}(x+i y)$ (kao funkcija nezavisno promjenlijive x) ima osobinu

$$
\left\|\phi_{Y}(x)\right\|_{p} \leqslant M
$$

gdje je M pozitivna konstanta koja ne zavisi od y, to postoji, i pri tome samo jedna funkcija $\phi(x) \varepsilon L_{p}$ takva da za skoro sve x postoje granične vrijednosti $\underset{y \rightarrow-\delta}{\lim } \underset{(x+i y)}{ } i$
lim Ref(x+iy) i pri tome skoro svuda vrijede jednakosti $y^{\rightarrow+\delta}$

$$
\lim _{y \rightarrow-\delta} \operatorname{Ref}(x+i y)=\operatorname{limRef}_{y \rightarrow+\delta}(x+i y)=\phi(x)
$$

pri čemu je

$$
\|\phi(x)\|_{p} \leqslant M
$$

i

$$
\begin{equation*}
f(x)=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left\{1+4 \sum_{m=1}^{\infty} \frac{q^{m}}{1+q^{2 m}} \operatorname{cosm}(x-t)\right\} \phi(t) d t, \tag{1}
\end{equation*}
$$

gdje je $q=e^{-\delta}$.
2. Ako je $\phi(x) \varepsilon L_{p}$ za neko $p \in(1, \infty]$ i

$$
\|\phi(x)\|_{p} \leqslant M
$$

gdje je M pozitivna konstanta, tada je funkcija $f(x)$ definisana desnom stranom jednakosti (1), takva da je $f(z)=$ $=f(x+i y)$ realna funkcija na osi $x(y=0), 2$-periodična po promjenljivoj x, analitička u pojasu $\Delta=\{-\infty<x<+\infty,|y|<\delta\}$ i za svako y takvo da je $|y|<\delta$, funkcija $\phi_{Y}(x)=\operatorname{Ref}(x+i y) \quad$ (kao funkcija jedne promjenljive x) ima osobinu

$$
\left\|\phi_{y}(x)\right\|_{p} \leqslant M
$$

i pri tome za skoro sve x vrijede jednakosti
$\operatorname{limRef}_{y \rightarrow-\delta}(x+i y)=\operatorname{limRef}_{y \rightarrow+\delta}(x+i y)=\phi(x)$.
$\mathrm{y} \rightarrow-\delta \quad \mathrm{y} \rightarrow+\delta$
Funkciju $\phi(x)$ nazivaju graničnom funkcijom funkcije $f(z)$.

DEFINICIJA 1.2.1 Kažemo da je $f(x) \varepsilon \sigma_{0}^{\delta} H_{p}^{\psi}$ ako je $f(x)$ realna, 2 -periodična funkcija, koja se može predstaviti u obliku (1) i takva da njena granična funkcija $\phi(x)$ pripada klasi H_{p}^{ψ}.

DEFINICIJA 1.2.2. Kažemo da je $f(x) \varepsilon E^{\delta} B_{p \theta}^{\psi}$, ako je $f(x)$ realna, 2 -periodična funkcija takva da se može predstaviti u obliku (1) i takva da njena granična funkcija $\phi(x)$ pripada klasi $\mathrm{B}_{\mathrm{p} \theta}^{\psi}$.

§3. POZNATI REZULTATI. ZA FUNKCIJE IZ KLASE $\sigma^{\delta}{ }^{\delta}{ }_{\mathrm{H}}^{\mathrm{p}}$

Prve rezultate o aproksimaciji funkcija analitičkih u pojasu dobio je S.N. Bernštajn 1912. godine. Njemu pripadaju sljedeće dvije teoreme:

TEOREMA I ([3]). Ako je $f(z)=f(x+i y)$ realna funkcija na osi $x(y=0)$, 2π-periodična po promjenljivoj x, analitička u pojasu $\Delta=\{-\infty<x<+\infty,|y|<\delta\}$, tada njena najbolja aproksimacija $E_{n}(f) u$ metrici prostora C pomocu trigonometrijskih polinoma, čiji stepen nije veci od $n-1$, zadovoljava uslov

$$
\begin{equation*}
\overline{\lim }_{n \rightarrow \infty} \sqrt[n]{E_{n}(f)} \leqslant e^{-\delta} \tag{2}
\end{equation*}
$$

TEOREMA II $([4])$. Ako je $f(x)$ realna 2 i-periodična funkcija i ako za nju vrijedi nejednakost (2), gdje je $\delta>0$, tada je funkcije $f(z)=f(x+i y)$ analitička u pojasu $\Delta=\{-\infty<X<+\infty,|y|<\delta\}$.

Ako se od funkcije $f(z)=f(x+i y)$ zahtijeva nešto više od analitičnosti u pojasu $\Delta=\{-\infty<x<+\infty,|y|<\delta\}$, može se dobiti bolja procjena od procjene (2) za $E_{n}(f)$.
N.I. Ahiezer je pojačao tvrdjenje teoreme I dokazujuçi sljedecu teoremu:

TEOREMA $I_{1}([2])$. Ako je $f(z)=f(x+i y)$ realna funkcija na osi $x(y=0)$, 2 -periodična po promjenljivoj x, analitička u pojasu $\Delta=\{-\infty<x<+\infty,|y|<\delta\}$ i takva da je

$$
-1<\operatorname{Ref}(x+i y)<1
$$

tada vrijedi procjena

$$
E_{n}(f) \leqslant \frac{8}{\pi} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{2 k+1} \cdot \frac{e^{(2 k+1) n \delta}}{1+e^{2(2 k+1) n \delta}}
$$

koja se ne može poboljšati pri uslovima navedenim u teoremi.

Nametanjem jačih ograničenja na funkciju $f(x+i y)$ dobijena su preciznija tvrdjenja od tvrdjenja I, $I I$ i I_{1}. U nizu radova (V.[1] i $[5]-[9]$) poboljšana su tvrdjenja I, II i I_{1} za funkcije iz klasa $E^{\delta} H_{p}^{\psi}$ i $E^{\delta} B_{p \theta}^{\psi}$.

$$
\text { U radovima }[1] \text { i }[5] \text { dokazane su sljedeće tvrdnje }
$$ za funkcije iz klase $\sigma^{\delta} \mathrm{H}_{\mathrm{p}}^{\mathrm{r}}$:

$$
\begin{gathered}
I_{2} . \text { Ako je } f(x) \varepsilon \bar{D}^{\delta} H_{p}^{r} \text { tada je } \\
E_{n}(f)_{p} \leqslant \frac{C}{e^{n \delta} n^{r}}
\end{gathered}
$$

gdje pozitivna konstanta C ne zavisi od $n(n=1,2,3, \ldots)$.

$$
\begin{aligned}
& I I_{1} \text {. Ako je } \\
& \qquad E_{n}(f)_{p} \leqslant \frac{C}{e^{n \delta} n^{r+1}}
\end{aligned}
$$

gdje pozitivna konstanta C ne zavisi od $n(n=1,2,3, \ldots)$, tada je

$$
\begin{gathered}
f(x) \varepsilon \sigma^{\delta} \mathrm{H}_{\mathrm{p}}^{\mathrm{r}} \\
\text { U radovima }[6] \quad i[7] \text { rezultati } I_{2} i I_{1} \text { su pobolj- }
\end{gathered}
$$

Sani. Dokazane su sljedece tvrdnje:
I_{3}. Ako je $f(x) \varepsilon E^{\delta} H_{p}^{r}$, tada za bilo koje $q \varepsilon[1,+\infty]$ vrijedi nejednakost

$$
E_{n}(f)_{q} \leqslant \frac{C}{e^{n \delta} n^{r}}
$$

gdje pozitivna konstanta C ne zavisi od $n(n=1,2,3, \ldots)$. Tvrdjenje se ne može poboljšati na cijeloj klasi funkcija $\sigma^{\delta} H_{p}^{r}$.
II_{2}. Ako je

$$
E_{n}(f)_{q} \leqslant \frac{C}{e^{n \delta_{n} r}}
$$

gdje pozitivna konstanta C ne zavisi od $n(n=1,2,3, \ldots)$, i ako postoji p takvo da je $2 \leqslant p \leqslant \infty$ i $r>1-\frac{1}{p}$, tada je

$$
\mathrm{f}(\mathrm{x}) \varepsilon 5^{\delta} \mathrm{H}_{\mathrm{P}}^{\mathrm{r}} \mathrm{l}+\frac{1}{\mathrm{p}}
$$

Navedeno tvrdjenje se ne može poboljšati na cijeloj klasi funkcija $E^{\delta}{ }_{H}^{r} \frac{r-1+\frac{1}{p}}{p}$.

$$
\text { U radu }[8] \text { ti su rezultati poopšteni na sljedeci }
$$ način:

$$
I_{4} \text {. Ako je } f(x) \varepsilon E^{\delta} H_{p}^{\psi} \text {, tada za bilo koje } q \varepsilon[1,+\infty]
$$ vrijedi nejednakost

$$
E_{n}(f)_{q} \leqslant \frac{C}{e^{n \delta}} \psi\left(\frac{1}{n}\right)
$$

gdje pozitivna konstanta C ne zavisi od $n(n=1,2,3, \ldots)$.

$$
\begin{aligned}
& I I_{3} \cdot \text { Ako je } \\
& \qquad E_{n}(f)_{q} \leqslant \frac{C}{e^{n \delta}} \psi\left(\frac{1}{n}\right)
\end{aligned}
$$

gdje je $\psi(\delta) \varepsilon M H\left({ }^{\sigma}\right)$ i pozitivna konstanta C ne zavisi od $n(n=1,2,3, \ldots) i$ ako postoje prirodan broj $k i p e[2,+\infty]$ takvi da funkcija $\psi_{1}(\delta)=\psi(\delta) \delta^{\frac{1}{p}-1}$ ima sljedeća svojstva:
a) $\psi_{1}(\delta) \varepsilon \mathrm{MH}\left(\sigma_{1}\right)$,
b) $\left\{\sum_{v=n}^{\infty} \frac{1}{v} \psi_{1} p^{(}\left(\frac{1}{v}\right)\right\}^{\frac{1}{p}} \leqslant C_{1} \psi_{1}\left(\frac{1}{n}\right) \quad$ za $p<\infty$,
c) $\sum_{\nu=n}^{\infty} \frac{1}{v} \psi_{1}\left(\frac{1}{v}\right) \leqslant C_{1} \psi_{1}\left(\frac{1}{n}\right) \quad$ za $p=\infty$.
gdje pozitivna konstanta C_{1} ne zavisi od $n(n=1,2,3, \ldots)$, tada je

$$
\mathrm{f}(\mathrm{x}) \varepsilon \mathrm{E}^{\delta} \mathrm{H}_{\mathrm{p}}^{\psi_{1}}
$$

i tvrdjenje se ne može poboljšati na cijeloj klasi funkcija ${ }_{5} \delta^{H_{p}}{ }^{\psi}{ }^{1}$.

U ovome radu je pojaçano tvrdjenje II_{3}. Osim toga, tvrdjenja $I_{4}, ~ I I_{3}$ i njihova pojačanja prenesena su na maksimalne simetrične prostore.
§ 4. POZNATI REZULTATI ZA FUNKCIJE IZ KLASE $E^{\delta} B_{p \theta}^{\psi}$

Za funkcije iz klase $5^{\delta} \mathrm{B}_{\mathrm{p} \theta}^{\mathrm{r}}$ u radu [7] su dokazane sljedece tvrdnje:
III_{1}. Ako je $f(x) \varepsilon \sigma^{\delta} \mathrm{B}_{\mathrm{p} \theta}^{r}$, tada je

$$
\sum_{k=1}^{\infty} E_{k-1}^{\theta} l^{\prime}(f)_{q} e^{k \delta \theta} l_{k}^{r \theta_{1}-1}<\infty
$$

za bilo koje $q \varepsilon[1,+\infty]$ i bilo koje $\theta_{1} \varepsilon[\theta,+\infty)$; tvrdjenje se ne može poboljšati na cijeloj klasi funkcija $\delta^{\delta} B_{p \theta}^{r}$.

$$
I V_{1} \text {. Ako je }
$$

$$
\sum_{k=1}^{\infty} E_{k-1}^{p}(f) q^{k \delta p^{-}} k^{r p-1}<\infty
$$

i ako je r > $1-\frac{1}{p}$ i $p \varepsilon[2,+\infty)$, tada je

$$
\mathrm{f}(\mathrm{x}) \varepsilon \sigma^{\delta} \mathrm{B}_{\mathrm{p} \theta_{1}}^{\mathrm{r}-1+\frac{1}{\mathrm{p}}}
$$

za bilo koje $\theta_{1} \varepsilon[p,+\infty)$.
Tvrdjenje se za $\theta_{1}=p$ ne može poboljšati na cijeloj klasi funkcija $\sigma^{\delta} B_{p p}^{r-1+\frac{1}{p}}$.

U radu [9] ti su rezultati poopšteni na sljedeći način. Dokazana je tačnost sljedećih tvrdnji:

III $_{2}$. Ako je $f(x) \varepsilon b^{\delta} B_{p \theta}^{\psi}$, tada za bilo koje $q \varepsilon[1,+\infty]$
i bilo koje $\theta_{1} \varepsilon[\theta,+\infty)$ vrijedi nejednakost

$$
\sum_{v=1}^{\infty} \frac{e^{v \delta \theta_{1}}}{v \psi^{\theta} 1\left(\frac{1}{v}\right)} E_{v-1}^{\theta}(f)_{q}<\infty ;
$$

to tvrdjenje za $\theta_{1}=\theta$ nije moguće poboljšati na cijeloj klasi funkcija $5^{\delta} \mathrm{B}_{\mathrm{p} \theta}{ }^{\psi}$;
IV_{2}. Ako je

$$
\sum_{v=1}^{\infty} \frac{e^{v \delta p}}{v \psi^{P}\left(\frac{1}{v}\right)} E_{v-1}^{p}(E) q^{<\infty},
$$

gdje je $\psi(\delta) \varepsilon M H\{\sigma)$ i $p \varepsilon[2,+\infty)$ i ako postoje prirodni k i $\theta_{1} \varepsilon[p,+\infty)$ takvi da funkcija $\psi_{1}(\delta)=\psi(\delta) \delta^{\bar{p}^{-1}}$ ima sljedeće osobine
a) $\psi_{1}(\delta) \in \mathrm{MH}\left(\sigma_{1}\right)$,
b) $\left\{\sum_{v=1}^{n} \frac{1}{v \psi_{1}^{P}\left(\frac{1}{v}\right)}\right\}^{\frac{1}{\rho}} \leqslant \frac{C}{\psi_{1}\left(\frac{1}{n}\right)}$,
gdje pozitivna konstanta C ne zavisi od $n(n=1,2,3, \ldots)$, tada je

$$
\mathrm{f}(\mathrm{x})_{\varepsilon} \bar{B}^{\delta_{\mathrm{B}}} \mathrm{p}_{1}{ }_{1}
$$

To se tvrdjenje za $\Theta_{1}=p$ ne može poboljšati na cijeloj klasi funkcija $E^{\delta}{ }_{B}{ }_{p p}{ }^{1}$.

U radu su poboljšana i pojačana navedena tvrdjenja za funkcije iz klase $\sigma^{\delta} \mathrm{B}_{\mathrm{p} \theta}{ }^{\psi}$.

Osim toga turdjenja II_{2} i IV_{2} kao i njihova pojačanja prenesena su na maksimalne simetrične prostore.

Rezultati rada su izlagani na Seminaru za teoriju aproksimacija Mehanǐko-matematǐkog fakulteta MGU kojim rukovodi prof. M.K. Potapov za vrijeme boravka na MGU.

Neki rezultati su publikovani u radu $[20]$. Dio rezultata je predat u štampu (V. [21], [22]).
GLAVA II

DEFINICIJE I POMOCNE TVRDNJE

§l. OZNAKE I DEFINICIJE

DEFINICIJE 2.1.1. Funkcionalni banahov prostor E, 2π-periodičnih realnih izmjerivih funkcija (u daljem radu ne pravimo razliku medju ekvivalentnim funkcijama) naziva se simetričnim, ako

1. iz toga što je $g(x) \varepsilon E$ i $|f(x)| \leqslant|g(x)|$ skoro svuda na $[0,2 \pi]$ slijedi da je $f(x) \varepsilon E$ i

$$
\|f\|_{E} \leqslant\|g\|_{E}
$$

2. iz toga sto je $g(x) \in E$ i funkcija $|f(x)|$ jednakoizmjeriva sa funkcijsom $|g(x)|$ slijedi da je $f(x) \varepsilon E i$

$$
\|f\|_{E}=\|s\|_{E} .
$$

DEFINICIJA 2.1.2. Simetrični prostor E na kome je
definisana norma desnom stranom jednakosti

$$
\|f\|_{E}=\sup _{\|g\|_{E^{\prime}} \leqslant 1} o^{\rho^{2 \pi}(x) g(x) d x}
$$

gdje je E'-dualni prostor simetričnog prostora E, naziva se maksimalnim simetričnim prostorom.

U daljem radu razmatraćemo samo maksimalne simetrične prostore.

Sa A označavamo klasu prostora E, gdje su E maksimalni simetrični prostori.

Primijetimo da su za $p \varepsilon[1,+\infty]$ prostori L_{p} maksimalni simetrični prostori. Pri tome pod L_{∞} podrazumijevamo prostor C - neprekidnih realnih 2π-periodičnih funkcija.

DEFINICIJA 2.1.3. Za normirani prostor E_{1} kažemo da je uložen u normirani prostor E_{2} i pišemo

$$
E_{1} \subset E_{2}
$$

ako vrijedi:

1. ako je $F(x) \varepsilon E_{1}$ tada je $F(x) \varepsilon E_{2}$
2. postoji konstanta C koja zavisi samo od E_{1} i
E_{2} takva da vrijedi

$$
\|F\|_{E_{2}} \leqslant C\|F\|_{E_{1}}
$$

za svako $F(x) \varepsilon E_{1}$.

DEFINICIJA 2.1.4. Sa $\omega_{k}(F, t)_{E}$ označava se modul glatkosti (u metrici prostora $E, E \in A$) reda k funkcije $F(x) \varepsilon E$, tj.

$$
\omega_{k}(F, t)_{E}=\sup _{|h| \leqslant t}\left\|\Delta_{h}^{k_{F}(x)}\right\|_{E}
$$

gdje $\Delta_{h}^{k} F(x)$ označava k-tu razliku funkcije $F(x)$.

DEFINICIJA 2.1.5. Sa H_{E}^{ψ} označavamo skup svih funkcija $F(x) \varepsilon E$ takvih da za svaku od njih vrijedi nejednakost

$$
\omega_{k}(F, \delta)_{E} \leqslant M \psi(\delta)
$$

gdje je $\psi(\delta) \varepsilon M H(\sigma)$ (V. definiciju 1.l.6), $k>\sigma, E_{E A} i M$ neka pozitivna konstanta.

Primijetimo da se za $\psi(\delta)=\delta^{r}, E=L_{p} i k>r>0$ klasa funkcija $H_{\underset{\sim}{\psi}}^{\psi}$ poklapa sa klasom H_{p}^{ψ}

DEFINICIJA 2. 1.6. Sa $B_{\text {E }}^{\psi}$ označavamo skup svih funkcija $F(x) \in F_{t}$, za koje vrijedi nejednakost

$$
\int_{0}^{1}\left[\frac{\omega_{k}(F, t) E}{\psi(t)}\right]^{\theta} \frac{d t}{t}<\infty
$$

gdje je $\psi(\delta)_{\varepsilon} \mathrm{MH}(\sigma)$ i $\quad \theta \varepsilon(0,+\infty)$.
 $\psi(\delta)=\delta^{r} i \quad k>r>0$.
klase funkcija $B_{E \theta}^{\psi}$ i $B_{p \theta}^{r}$ poklapaju.

DEFINICIJA 2.1.8. Sa $E_{n}(F)$ E označava se najbolja aproksimacija (približenje) funkcije $F(x) \varepsilon E$ u metrici prostora E, (E\&A) pomocu trigonometrijskih polinoma čiji stepen nije veci od $n-1$, tj.

$$
E_{n}(F)_{E}=\inf _{T_{n-1}(x)} F(x)-T_{n-1}(x) \|_{E}
$$

gdje je

$$
T_{n-1}(x)=\sum_{\nu=0}^{n-1}\left(\alpha_{\nu} \cos \nu x+\beta_{\nu} \sin \nu x\right)
$$

a α_{ν} i $\beta_{\nu}{ }^{-r e a l n i ~ b r o j e v i . ~}$

DEFINICIJA 2.1.9. Sa Λ_{2} označavamo klasu 2d-periodičnih realnih integrabilnih funkcija $\phi(x)$ sa lakunarnim Furierovim redom

$$
\phi(x) \sim \sum_{\nu=1}^{\infty} b_{v} \cos 2^{v} x .
$$

DEFINICIJA 2.1.10. Sa M označavamo klasu 2』-periodičnih realnih integrabilnih funkcija $\phi(x)$, čiji Furierov red

$$
\phi(x) \sim \frac{a_{0}}{2}+\sum_{\nu=1}^{\infty} a_{v} \cos v x
$$

ima monotono opadajuce koeficijente, tj. vrijedi

$$
a_{0} \geqslant a_{1} \geqslant a_{2} \geqslant \ldots \text { i } a_{v} \rightarrow 0 \text { za } v \rightarrow \infty .
$$

Furierov red funkcije $f(x) \varepsilon L_{1}$ zapisivaćemo ili u realnom obliku

$$
\frac{a_{0}}{2}+\sum_{k=1}^{\infty} a_{k} \cos k x+b_{k} \sin k x
$$

ili u kompleksnom obliku

$$
\sum_{k=-\infty}^{+\infty} c_{k} e^{i k x},
$$

gdje je

$$
\begin{aligned}
& a_{k}=\frac{1}{\pi \rho_{0}} \int^{2 \pi} f(t) \cos k t d t, b_{k}=\frac{1}{\pi} \int^{2 \pi} f(t) \sin k t d t, \\
& a_{0}=\frac{1}{\pi} \int_{0}^{2 \pi} f(t) d t, \quad c_{k}=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(t) e^{i k t} d t .
\end{aligned}
$$

Parcijalne sume Furierovog reda funkcije $f(x)$ oznaとavacemo sa $S_{N}(f, x), t j$.

$$
S_{N}(f, x)=\frac{a_{0}}{2}+\sum_{k=1}^{N}\left(a_{k} \cos k x+b_{k} \sin k x\right)=\sum_{k=-N}^{N} c_{k} e^{i k x}
$$

DEFINICIJA 2.1.11. Kažemo da funkcija $f(x)$ pripada klasi $\sigma^{\delta} \mathrm{H}_{\mathrm{E}}^{\psi}(\delta>0, \psi(\delta) \varepsilon M H(\sigma), E \varepsilon A)$ ako je $f(x)$ realna, 2π-periodična funkcija i takva da se može napisati u obliku
$f(x)=\frac{1}{2 \pi} 0_{0}^{2 \pi}\left\{1+4 \sum_{m=1}^{\infty} \frac{q^{m}}{1+q^{2 m}} \operatorname{cosm}(x-t)\right\} \phi(t) d t$,
gaje je $q=e^{-\delta}$, i pri tome njena granična funkcija $\phi(x)$ pripada klasi H_{E}^{ψ}.

DEFINICIJA 2.1.12. Kažemo da je funkcija $f(x)$ iz klase $\delta^{\delta} \mathrm{B}_{\mathrm{E} \theta^{\prime}}^{\psi}(\delta>0, \psi(\delta) \in \mathrm{MH}(\sigma), 0<\theta<\infty, E \in A)$, ako je f(x)-realna, $2 \mathbb{q}$-periodična funkcija, takva da se može predstaviṫ u obliku (1), pri čemu njena granična funkcija $\phi(x)$ pripada klasi funkcija $B_{E \theta}^{\psi}$.

Neka je $\sum_{k=-\infty}^{+\infty} c_{k} e^{i k x}$ Furierov red funkcije $f(x)$ a $\sum_{k=-\infty}^{+\infty} A_{k}(y) e^{i k x}$ Furierov red funkcije $\phi_{y}(x)=\operatorname{Ref}(x+i y)$, tada za Furierove koeficijente c_{k} i $A_{k}(y)$ funkcija $f(x) \quad$ i $\phi_{Y}(x)$ vrijedi

$$
\begin{equation*}
A_{k}(y)=c_{k} \frac{e^{k y}+e^{-k y}}{2} \tag{2}
\end{equation*}
$$

Ako se funkcija $f(x)$ može prikazati u obliku (l) i ako $\phi(x)$ ima Furierov red $\sum_{k=-\infty}^{+\infty} \alpha_{k} e^{i k x}$, tada je

$$
\begin{equation*}
\alpha_{k}=c_{k} \frac{e^{k \delta}+e^{-k \delta}}{2} \tag{3}
\end{equation*}
$$

Primijetimo da iz (2) i (3) slijede nejednakosti

$$
\begin{equation*}
\left|A_{k}(y)\right| \leqslant e^{|k| \delta}\left|c_{k}\right| \quad, \quad\left|c_{k}\right| \leqslant 2 e^{-|k| \delta}\left|A_{k}(y)\right| \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
\left|\alpha_{k}\right| \leqslant e^{|k| \delta}\left|c_{k}\right| \quad, \quad\left|c_{k}\right| \leqslant 2 e^{-|k| \delta}\left|\alpha_{k}\right| . \tag{5}
\end{equation*}
$$

§2. POMOĆNE TVRDNJE

LEMA 2.2.1. Ako se $f(x)$ može prikazati u obliku (1) i ako je $K_{o}(x)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \phi(t) d t i$

$$
K_{n-1}(x)=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left\{1+4 \sum_{m=1}^{n-1} \frac{q^{m}}{1+q^{2 m}} \operatorname{cosm}(x-t)\right\} \phi(t) d t
$$

tada za bilo koje $E, F{ }_{\varepsilon} A$ vrijede nejednakosti

$$
E_{n}(f)_{F} \leqslant\left\|f(x)-k_{n-1}(x)\right\|_{F} \leqslant \frac{C}{e^{n \delta}} E_{n}(\phi) E
$$

gdje pozitivna konstanta C zavisi samo od E i δ.

DOKAZ. Funkcija $K_{0}(x)$ je trigonometrijski polinom stepena nula a $K_{n-1}(x)$ je trigonometrijski polinom čiji stepen nije veci od $n-1 \quad(n \geqslant 2)$.

Neka je $T_{n-1}(x)$ trigonometrijski polinom čiji stepen nije veći od $n-1$ a koji najbolje aproksimira funkciju $\phi(x)$ u metrici prostora $E, t j$.

$$
E_{n}(\phi)_{E}=\left\|\phi(x)-T_{n-1}(x)\right\|_{E} .
$$

Kako je polinom $T_{n-1}(x)$ ortogonalan na cosmx za $m \geqslant n$ i kako je E uloženo $u L_{1}$, to vrijede sljedece nejednakosti

$$
E_{n}(f)_{F} \leqslant\left\|f(x)-K_{n-1}(x)\right\|_{F} \leqslant C_{1} \sup \left|f(x)-K_{n-1}(x)\right|=
$$

$$
=c_{1} \sup \left\lvert\, \frac{2}{0 \leqslant x \leqslant 2 \pi} 0^{\int_{m=n}^{2 \pi}} \sum_{m}^{\infty}\left(e^{m \delta}+e^{-m \delta}\right)^{-1} \operatorname{cosm}(x-t)\left[\phi(t)-T_{n-1}(t)\right] d t^{t} \leqslant\right.
$$

$$
\leqslant \frac{C_{2}}{e^{n \delta}} \int_{0}^{2 \pi}\left|\phi(t)-T_{n-1}(t)\right| d t=\frac{C_{2}}{e^{n \delta}}\left\|_{\phi}(t)-T_{n-1}(t)\right\|_{L_{1}} \leqslant
$$

$$
\leqslant \frac{C_{3}}{e^{n \delta}}\left\|\phi(t)-T_{n-1}(t)\right\|_{E}=\frac{C_{3}}{e^{n \delta}} E_{n}(\phi) E
$$

LEMA 2.2.2. Neka je $f(x) \varepsilon E,(E \varepsilon A)$. Tada za Furierove koeficijente funkcije $f(x)$ vrijede nejednakosti

$$
\left|c_{0}\right| \leqslant C\|f\|_{E}, \quad\left|c_{k}\right| \leqslant\left. C E\right|_{|k|^{(f)}}, \quad(|k| \geqslant 1)
$$

gdje pozitivna konstanta C ne zavisi od $f(x) i k$, $(k= \pm 1, \pm 2, \pm 3, \ldots)$.

DOKAZ. Neka je $T_{k-1}(x)$ polinom stepena $|k|-1$ koji najbolje aproksimira funkciju $f(x)$ u metrici prostora E, ($E_{\varepsilon} A$). Taj polinom je ortogonalan sa $e^{i k x}$, pa je zbog toga

$$
c_{k}=\frac{1}{2 \pi} \rho_{0}^{2 \pi}\left[f(x)-T_{k-1}(x)\right] e^{i k x} d x .
$$

Kako je prostor E uložen $u L_{1}$, to iz posljednje jednakosti i činjenice da je $T_{k-1}(x)$ polinom najbolje aproksimacije funkcije $f(x)$ u metrici prostora E, slijedi

$$
\begin{aligned}
& \left|c_{k}\right| \leqslant \frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f(x)-T_{k-1}(x)\right| d x=\frac{1}{2 \pi}\left\|f(x)-T_{k-1}(x)\right\|_{L_{1}} \leqslant \\
& \leqslant c_{4}\left\|f(x)-T_{k-1}(x)\right\|_{E}=C_{4} E_{k} \mid(f)_{E}, \\
& \left|c_{o}\right| \leqslant \frac{1}{2 \pi} \int_{0}^{2 \pi}|f(x)| d x=\frac{1}{2 \pi}\|f\|_{L_{1}} \leqslant C_{5}\|f\|_{E} .
\end{aligned}
$$

Lema je dokazana.

Primijetimo da iz nejednakosti (4) i tek dokazane procjene $z a\left|c_{k}\right|$ slijedi nejednakost

$$
\begin{equation*}
\left|A_{k}(y)\right| \leqslant C e^{|k| \delta_{E}}|k|^{(f)} E \quad, \quad\left(\mid k_{\mid}^{\prime} \geqslant 1\right) \tag{6}
\end{equation*}
$$

Ako se funkcija $f(x)$ može predstaviti u obliku (1.1), to koristeci nejednakost (5) i procjenu za $\left|c_{k}\right|$ možemo pisati

$$
\begin{equation*}
\left|\alpha_{k}\right| \leqslant C e^{|k| \delta_{E}}|k|^{(f)_{E}}, \quad(|k| \geqslant 1) \tag{7}
\end{equation*}
$$

TEOREMA 2.2.1 ([10]). Neka je $f(x) \varepsilon L_{p}, p \varepsilon[1,+\infty)$, $q \varepsilon(p,+\infty]$ i neka vrijedi nejednakost

$$
\sum_{n=1}^{\infty} E_{n}(f)_{p^{n}}{ }^{\frac{1}{p}-\frac{1}{q}-1}<\infty
$$

tada je $f(x) \varepsilon L_{q}$, pri čemu je

$$
E_{n}(f)_{q} \leqslant C_{p q}\left[E_{n}(f)_{p^{n}} n^{\frac{1}{p}-\frac{1}{q}}+\sum_{k=n+1}^{\infty} E_{k}(f)_{p} k^{\frac{1}{p}-\frac{1}{q}-1}\right]
$$

gdje pozitivna konstanta $C_{p q}$ zavisi samo od piq.

Ako je

$$
E_{n}(f)_{E} \leqslant \frac{C_{6}}{e^{n \delta}} \psi\left(\frac{1}{n}\right)
$$

gdje pozitivna konstanta C_{6} ne zavisi od $n(n=1,2,3, \ldots$), to se funkcija $f(x)$ može analitički produžiti u pojas $\Delta=\{-\infty<x<+\infty,|y|<\delta\}$, tj. funkcija $f(z)=f(x+i y)$ je analitička u pojasu Δ.

DOKAZ. Kako je E uložen $u L_{1}$, to je prema pretpostavci leme

$$
E_{n}(f)_{L_{1}} \leqslant C_{7} E_{n}(f)_{E} \leqslant \frac{C_{8}}{e^{n \delta} \psi\left(\frac{1}{n}\right)} .
$$

Primjenjujuci teoremu Stečkina-Konjuškova (T.l), tek dokazanu procjenu za $E_{n}(f)_{L_{1}}$ i svojstva funkcije $\psi(\delta) \varepsilon$ ϵ MH (σ) dobijamo

$$
\begin{aligned}
& E_{n}(f)_{C} \leqslant C_{9}\left[E_{n}(f)_{L_{1}} n+\sum_{v=n}^{\infty} E_{v}(f)_{L_{1}}\right] \leqslant \\
\leqslant & C_{10}\left[\frac{n}{e^{n \delta}} \psi\left(\frac{1}{n}\right)+\sum_{v=n}^{\infty} \frac{1}{e^{v \delta}} \psi\left(\frac{1}{v}\right)\right] \leqslant
\end{aligned}
$$

$$
\begin{aligned}
& \leqslant C_{11}\left[\frac{n}{e^{n \delta}} \psi\left(\frac{1}{n}\right)+\psi\left(\frac{1}{n}\right) \sum_{v=n}^{\infty} \frac{1}{e^{v \delta}}\right] \leqslant \\
& \leqslant C_{12}\left[\frac{n}{e^{n \delta}} \psi\left(\frac{1}{n}\right)+\frac{1}{e^{n \delta}}\left(\frac{1}{n}\right)\right] \leqslant C_{13} \frac{n}{e^{n \delta}}
\end{aligned}
$$

Tako smo dokazali da vrijedi

$$
E_{n}(f) c \leqslant C_{13} \frac{n}{e^{n \delta}}
$$

otkuda slijedi da je

$$
\overline{\lim }_{n \rightarrow \infty} \sqrt[n]{E_{n}(f)} C \leqslant e^{-\delta}
$$

Prema Bernstajnovoj teoremi (T. l.3.II), to znači da se funkcija $f(x)$ može analitički produžiti u pojas $\Delta=\{-\infty<x<+\infty,|y|<\delta\}$, tj. funkcija $f(z)=f(x+i y)$ je analitička u pojasu Δ. Lema je dokazana.

LEMA 2.2.4. Neka je $\psi(\delta)$ funkcija tipa modula glatkosti, tj. $\psi(\delta) \in M H(\sigma)$, tada za bilo koji prirodan broj k vrijedi nejednakost

$$
\sum_{\nu=1}^{n} v^{k-1} \psi\left(\frac{1}{v}\right) \leqslant C_{15^{n^{k}} \psi\left(\frac{1}{n}\right)}
$$

gdje pozitivna konstanta C_{15} ne zavisi od $n(n=1,2,3, \ldots)$.

DOKAZ. Ako se koriste svojstva funkcije $\psi(\delta) \varepsilon M H(\sigma)$, jednostavnim transformacijama nalazimo da je

$$
\begin{aligned}
& \sum_{\nu=1}^{n} v^{k-1} \psi\left(\frac{1}{v}\right)=\sum_{\nu=1}^{n} \nu^{k-1} \psi\left(\frac{n}{v} \cdot \frac{1}{n}\right) \leqslant C_{16} \sum_{\nu=1}^{n} v^{k-1}\left(\frac{n}{v}+1\right)^{\sigma} \psi\left(\frac{1}{n}\right) \leqslant \\
& \leqslant C_{16} \sum_{\nu=1}^{n} v^{k-1}\left(\frac{2 n}{v}\right)^{\sigma_{\psi}}{ }_{\psi\left(\frac{1}{n}\right)}=C_{16}(2 n)^{\sigma} \psi\left(\frac{1}{n}\right) \sum_{\nu=1}^{n} v^{k-1-\sigma} \leqslant \\
& \leqslant C_{17}(2 n)^{\sigma} \psi\left(\frac{1}{n}\right) n^{k-\sigma} \leqslant C_{18} n^{k} \psi\left(\frac{1}{n}\right) .
\end{aligned}
$$

Lema je dokazana.

LEMA 2.2.5. Neka je $f(x) \varepsilon E,(E \varepsilon A)$ i neka vrijedi nejednakost

$$
E_{n}(f)_{E} \leqslant \frac{C_{19}}{e^{n \delta} \psi\left(\frac{1}{n}\right)}
$$

tada za Furierove koeficijente c_{k} funkcije $f(x)$ vrijede nejednakosti

$$
\left|c_{k}\right| \leqslant \frac{c_{2 o}}{e^{|k| \delta}} \psi\left(\frac{1}{|k|}\right)
$$

gdje pozitivna konstanta C_{20} ne zavisi od $k(k= \pm 1, \pm 2, \ldots)$.

DOKAZ. Primjenjujuci lemu 2 i pretpostavku leme zaključujemo da vrijedi

$$
\left|c_{k}\right| \leqslant C_{21} E_{|k|}(f) E \leqslant \frac{C_{22}}{e^{|k| \delta}} \psi\left(\frac{1}{|k|}\right)
$$

Lema je dokazana.

Primijetimo da iz nejednakosti (4.1) i tek dokazane procjene $\mathrm{za}\left|c_{k}\right|$ slijedi da je

$$
\begin{equation*}
\left|A_{k}(y)\right| \leqslant C_{22} \psi\left(\frac{1}{|k|}\right) \tag{8}
\end{equation*}
$$

TEOREMA 2.2.2 ([12]). Ako je $f(x) \varepsilon L_{p} i l<p<\infty$, tada vrijedi nejednakost

$$
\left\|f(x)-S_{N-1}(x, f)\right\|_{p} \leqslant C E_{N}(f) p
$$

pri tome puzitivna konstanta C zavisi jedino od p.

LEMA 2.2.6. Neka je $I_{P_{1}} \subset \in L_{p_{2}},\left(1<p_{2} \leqslant P_{1}<\infty, E \varepsilon A\right)$ i $f(x) \varepsilon E \cap \Lambda_{2}$ tada $z a 2^{m-1}<n \leqslant 2^{m}$ vrijede relacije

$$
E_{n}(f)_{E}<E_{2} m(f)_{E}<\left(\sum_{v=m}^{\infty} b_{v}^{2}\right)^{\frac{1}{2}}
$$

Ovdje i dalje u radu zapis $A(n) \rightleftharpoons B(n)$ označava da postoje pozitivne konstante C^{\prime} i $C^{\prime \prime}$ koje ne zavise od n ($n=1,2,3, \ldots$) takve da vrijede nejednakosti

$$
C^{\prime} B(n) \leqslant A(n) \leqslant C^{\prime} B(n)
$$

DOKAZ. Koristeći ulaganje $L_{p_{1}} \subset E$ jednakost

$$
S_{n-1}(x, f)=S_{2^{m}-1}(x, f)
$$

Zigmundovu lemu (V. [17], str. 217), teoremu 2 i ulaganje $E \subset L_{p_{2}}$ dobiće se

$$
\begin{aligned}
& E_{n}(f) E \leqslant\left\|f(x)-S_{n-1}(x, f)\right\|_{E} \leqslant C_{23} \| f(x)-S_{n-1}(x, f)_{\|_{1}}= \\
& =C_{23}\left\|f(x)-S_{2^{m}-1}(x, f)\right\|_{P_{1}} \leqslant C_{24}\left\{\sum_{v=m}^{\infty} b_{v}^{2}\right\}^{\frac{1}{2}} \leqslant \\
& \leqslant C_{25}\left\|f(x)-S_{2^{m}-1}(x, f)\right\|_{p_{2}}=C_{25}\left\|f(x)-S_{n-1}(x, f)\right\|_{p_{2}} \leqslant \\
& \leqslant C_{26} E_{n}(f) p_{2} \leqslant C_{26}\left\|f(x)-T_{n-1}(x)\right\| p_{2} \leqslant \\
& \leqslant C_{27}\left\|f(x)-T_{n-1}(x)\right\|_{E}=C_{27} E_{n}{ }^{(f)} E,
\end{aligned}
$$

gdje je $T_{n-1}(x)$ polinom čiji stepen nije veći od n-l a koji najbolje aproksimira funkciju $f(x)$ u metrici prostora E.

Koristeći tek dokazanu procjenu i nejednakosti

$$
E_{2^{m}}(f) E \leqslant\left\|f(x)-S_{2^{m}-1}(x, f)\right\|_{E} \leqslant C_{28^{2}}{ }_{2}{ }^{(f)} E
$$

$$
\begin{aligned}
& E_{n}(f)_{E} \leqslant C_{29}\left\{\sum_{V=m}^{\infty} b_{V}^{2}\right\}^{\frac{1}{2}} \leqslant C_{30^{E}}{ }_{2 m-1}(f)_{E} \leqslant \\
& \leqslant C_{31}\left\{\sum_{V=m}^{\infty} b_{V}^{2}\right\}^{\frac{1}{2}} \leqslant C_{32} E_{n}(f)_{E} .
\end{aligned}
$$

LEMA 2.2.7. Neka je $f(x) \in E, \psi(t) \varepsilon M H(\sigma), 0<\theta<\infty, \delta>0$, ($\mathrm{E} \varepsilon A$).

Ako je

$$
\left\{\sum_{v=1}^{\infty} \frac{e^{v \delta \theta}}{v \psi^{\theta}\left(\frac{1}{v}\right)} E_{v}^{\theta}(f)_{E}\right\}^{\frac{1}{\theta} \cdot<\infty},
$$

tada se funkcija $f(x)$ može analitički produžiti u pojas $\Delta=\{-\infty<x<+\infty,|y|<\delta\}$, tj. funkcija $f(z)=f(x+i y)$ je analitička u tom pojasu.

DOKAZ. Iz uslova leme slijedi da je

$$
E_{n}(f)_{E} \leqslant \frac{C_{1}}{e^{n \delta}} n^{\frac{1}{\theta}}, n=1,2,3, \ldots
$$

Kako je E uloženo $u L_{1}$, to je

$$
E_{n}(f)_{L_{1}} \leqslant \frac{C_{2}}{e^{n \delta}} n^{\frac{1}{\theta}}
$$

Primjenjujući teoremu Stečkina-Konjuškova (T.l) dobijamo

Univerzitet a Beosradu Prirodno-matematicki fakulter MATEMATICKI FAKULTET BIBLIOTEKA

Broj \qquad Datum \qquad

$$
\begin{aligned}
& E_{n}(f)_{C} \leqslant C_{3}\left[E_{n}(f)_{L_{1}} n^{+} \sum_{k=n+i}^{\infty} E_{k}^{(f)} L_{l}\right] \leqslant \\
& \leqslant \quad C_{4}\left(\frac{n^{\frac{1}{\theta}+1}}{e^{n \delta}}+\frac{n^{\frac{1}{\theta}}}{e^{n \delta}}\right) \leqslant C_{5} \frac{n^{\frac{1}{\theta}+1}}{e^{n \delta}}
\end{aligned}
$$

otkuda neposredno slijedi da je

$$
\overline{\lim }_{n \rightarrow \infty} \sqrt[n]{E_{n}(f)} c \leqslant e^{-\delta}
$$

Prema Bernštajnovoj teoremi, posljednja nejednakost znači da se funkcija $f(x)$ može analitički produžiti u pojas $\Delta=\{-\infty<x<+\infty,|y|<\delta\}$.

Lema je dokazana.

LEMA 2.2.8. Neka je

$$
I^{\theta}=\int_{0}^{1}\left[\frac{\omega_{k}(\phi, t) E}{\psi(t)}\right]^{\theta} \frac{d t}{t}, I_{1}^{\theta}=\sum_{v=1}^{\infty} \frac{1}{v}\left[\frac{\omega_{k}\left(\phi, \frac{1}{v}\right) E}{\psi\left(\frac{1}{v}\right)}\right]^{\theta},
$$

tada vrijede nejednakosti

$$
C_{1} I_{1} \leqslant I \leqslant C_{2} I_{1},
$$

gdje pozitivne konstante C_{1} i C_{2} ne zavise od funkcije $\phi(x)$.

DOKAZ. Koristeci svojstva funkcije $\psi(\delta) \varepsilon \mathrm{MH}(\sigma)$ i svojstva modula glatkosti, možemo pisati

$$
\begin{aligned}
& I^{\theta}=\int_{0}^{1}\left[\frac{\omega_{k}(\phi, t)}{\psi(t)}\right]^{\theta} \frac{d t}{t}=\sum_{v=1}^{\infty} \int_{\frac{1}{v+1}}^{\int^{\frac{1}{v}}\left[\frac{\omega_{k}(\phi, t)}{\psi(t)}\right]^{\theta} \frac{d t}{t} \geqslant} \\
& \geqslant C_{3} \sum_{v=1}^{\infty}\left[\frac{\omega_{k}\left(\phi, \frac{1}{v+1}\right)}{\psi\left(\frac{1}{v}\right)}\right]_{\frac{1}{v+1}}^{\theta} \int_{\frac{1}{v} \frac{d t}{t} \geqslant C_{4} \sum_{v=1}^{\infty} \frac{1}{v}\left[\frac{\omega_{k}\left(\phi, \frac{1}{v}\right)}{\psi\left(\frac{1}{v}\right)}\right]^{\theta}=}=C_{4} I_{1}^{\theta} .
\end{aligned}
$$

Analogno

$$
\begin{aligned}
& I^{\theta}=\int_{0}^{1}\left[\frac{\omega_{k}(\phi, t) E}{\psi(t)}\right]^{\theta} \frac{d t}{t}=\sum_{v=1}^{\infty} \frac{\int_{v}^{\frac{1}{v}}}{v+1}\left[\frac{\omega_{k}(\phi, t) E}{\psi(t)}\right]^{\theta} \frac{d t}{t} \leqslant \\
& \leqslant C_{5} \sum_{v=1}^{\infty}\left[\frac{\omega_{k}\left(\phi, \frac{1}{v}\right) E}{\psi\left(\frac{1}{v+1}\right)}\right]^{\theta} \frac{1}{v}^{\frac{1}{v}}{ }^{\frac{d t}{t}} \leqslant C_{6} \sum_{v=1}^{\infty} \frac{1}{v}\left[\frac{\omega_{k}\left(\phi, \frac{1}{v}\right)}{\psi\left(\frac{1}{v}\right)}\right]^{\theta}= \\
& =C_{6} I_{1}^{\theta} .
\end{aligned}
$$

Lema je dokazana.

$$
\text { TEOREMA 2.2.3 }([13],[14]) \text {. Neka je } F(x) \in E,(E \varepsilon A) \text {, tada }
$$ je

$$
\begin{aligned}
& E_{n}(F)_{E} \leqslant C \omega_{k}\left(F, \frac{1}{n}\right)_{E} \\
& \omega_{k}\left(F, \frac{1}{n}\right)_{E} \leqslant \frac{C}{n^{k}} \sum_{\nu=1}^{n} v^{k-1} E_{v}(F)_{E},
\end{aligned}
$$

gdje pozitivna konstanta C ne zavisi od funkcije $F(x)$ i n ($n=1,2,3, \ldots$).

LEMA 2.2.9. Ako je

$$
I^{\theta}=\int_{0}^{1}\left[\frac{\omega_{k}(\phi, t)}{\psi(t)}\right]^{\theta} \frac{d t}{t}, \quad I_{2}^{\theta}=\sum_{v=1}^{\infty} \frac{1}{\nu \psi^{\theta}\left(\frac{1}{v}\right)} E_{v}^{\theta}(\phi) E
$$

tada vrijedi nejednakost

$$
I_{2} \leqslant C_{1} I,
$$

gdje pozitivna konstanta C_{1} ne zavisi od funkcije $\phi(x)$.

DOKAZ. Prema teoremi 3 i lemi 8 vrijedi
$I_{2}^{\theta} \leqslant C_{2} \sum_{v=1}^{\infty} \frac{1}{v}\left[\frac{\omega_{k}\left(\phi, \frac{1}{v}\right) E}{\psi\left(\frac{1}{v}\right)}\right]^{\theta} \leqslant C_{3} \int_{0}^{1}\left[\frac{\omega_{k}(\phi, t) E}{\psi(t)}\right]^{\theta} \frac{d t}{t}=C_{3} I^{\theta}$.
LEMA 2.2.10. Neka je $\psi(\delta) \varepsilon M H(\sigma)$, tada za bilo koji prirodan broj $k>\sigma$ i bilo koje $\theta \varepsilon(0,+\infty)$ vrijedi nejednakost

$$
\sum_{v=n}^{\infty} \frac{1}{v^{k \theta+1} \psi^{\theta}\left(\frac{1}{v}\right)} \leqslant \frac{C}{n^{k \theta} \psi^{\theta}\left(\frac{1}{n}\right)},
$$

gdje pozitivna konstanta C ne zavisi od $n(n=1,2,3, \ldots)$.

DOKAZ. Neka je $v \geqslant n$. Prema svojstvu 2 funkcije $\psi(\delta)$ vrijedi

$$
\psi\left(\frac{1}{n}\right)=\psi\left(\frac{1}{v} \cdot \frac{v}{n}\right) \leqslant C_{1}\left(\frac{v}{n}+1\right) \sigma_{\psi}\left(\frac{1}{v}\right) \leqslant C_{2}\left(\frac{v}{n}\right) \sigma_{\psi}\left(\frac{1}{v}\right) .
$$

Iz posljednje nejednakosti očito je

$$
\frac{1}{\psi\left(\frac{1}{v}\right)} \leqslant C_{3}\left(\frac{v}{n}\right)^{\sigma} \cdot \frac{1}{\psi\left(\frac{1}{n}\right)} .
$$

Iz te nejednakosti, za k>o slijede nejednakosti

$$
\begin{aligned}
& \sum_{\nu=n}^{\infty} \frac{1}{\nu^{k}+1} \psi^{\theta}\left(\frac{1}{v}\right)
\end{aligned} C_{4} \sum_{\nu=n}^{\infty} \frac{1}{\nu^{k \theta+1}} \cdot \frac{\nu^{\sigma \theta}}{n^{\sigma \theta} \psi^{\theta}\left(\frac{1}{n}\right)}=.
$$

Lema je dokazana.

TEOREMA 2.2.4. ([15]). Neka su brojevi $a_{v}, b_{v} i$ β_{v} takvi da je

$$
a_{v} \geqslant 0, \quad b_{v} \geqslant 0, \quad \sum_{v=1}^{n} a_{\nu}=a_{n} \beta_{n},
$$

tada:

1. za p iz razmaka $1 \leqslant p<\infty$ vrijedi nejednakost

$$
\sum_{v=1}^{\infty} a_{v}\left(\sum_{\xi=v}^{\infty} b_{\xi}\right)^{p} \leqslant p^{p} \sum_{v=1}^{\infty} a_{v}\left(b_{v} \beta_{\nu}\right)^{p},
$$

2. a za p iz razmaka $0<p \leqslant l$ vrijedi nejednakost

$$
\sum_{v=1}^{\infty} a_{v}\left(\sum_{\xi=v}^{\infty} b_{\xi}^{\gamma}\right)^{p} \geqslant p^{p} \sum_{v=1}^{\infty} a_{v}\left(b_{v} \beta_{v}\right)^{p} .
$$

TEOREMA 2.2.5 ($\left[_{n} 16\right]$). Neka je $a_{v} \geqslant 0, b_{v} \geqslant 0, a_{v}{ }^{+}$, $b_{\nu}{ }^{\downarrow}, \beta-$ realan $\operatorname{broj} i \sum_{\nu=1} a_{\nu}=a_{n}{ }_{n}, n=1,2,3, \ldots$ tada:

1. za p iz razmaka $0<p \leqslant 1$ vrijedi nejednakost

$$
\sum_{v=1}^{\infty} a_{v}\left(\sum_{n=v}^{\infty} b_{n} n^{\beta}\right)^{p} \leqslant c_{1} \sum_{v=1}^{\infty} a_{v}\left(b_{v} v^{\beta}\right)^{p_{\xi}} v^{p-1}
$$

2. a za p iz razmaka $1 \leqslant p<\infty$ vrijedi nejednakost

$$
\sum_{v=1}^{\infty} a_{v}\left(\sum_{n=v}^{\infty} b_{n} n^{\beta}\right)^{p} \geqslant C_{2} \sum_{v=1}^{\infty} a_{v}\left(b_{v} v^{\beta}\right)^{p_{\xi}} v_{v} p-1,
$$

gdje pozitivne konstante C_{1} i C_{2} zavise samo od p i B.

LEMA 2.2.11 Neka je $0<\theta<\infty,\left(E_{\varepsilon A}\right), \psi(t) \varepsilon M H(\sigma)$, tada je uslov

$$
\begin{equation*}
\left\{\sum_{v=1}^{\infty} \frac{1}{v \psi^{\theta}\left(\frac{1}{v}\right)} E_{v}^{\theta}(\phi)_{E}\right\}^{\frac{1}{\theta}}<\infty \tag{9}
\end{equation*}
$$

potreban i dovoljan da bi funkcija $\phi(x)$ pripadala klasi $B_{E \theta}^{\psi}$.

DOKAZ. Neka je ispunjen uslov (9) i $1 \leqslant \theta<\infty$. Primjenjujući lemu 8, teoremu 3 i teoremu 9 dobicemo nejednakosti

$$
\begin{aligned}
& I^{\theta}=\delta_{0}^{1}\left[\frac{\omega_{k}(\phi, t)}{\psi(t)}\right]^{\theta} \frac{d t}{t} \leqslant C_{1} \sum_{v=1}^{\infty} \frac{1}{v} \frac{\omega_{k}^{\theta}\left(\phi, \frac{1}{v}\right) E}{\psi^{\theta}\left(\frac{1}{v}\right)} \\
& \leqslant C_{2} \sum_{\nu=1}^{\infty} \frac{1}{v^{k \theta+1} \psi^{\theta}\left(\frac{1}{v}\right)}\left[\sum_{m=1}^{\nu} m^{k-1} E_{m}(\phi) E\right]^{\theta} \leqslant \\
& \leqslant C_{3} \sum_{\nu=1}^{\infty} \frac{1}{\nu^{k \theta+1}} \frac{\psi^{\theta}\left(\frac{1}{v}\right)}{}\left[\nu^{k-1} E_{\nu}(\phi) E^{\beta}\right]^{\theta},
\end{aligned}
$$

gdje se β_{ν} odredjuje iz uslova

$$
\sum_{m=v}^{\infty}-\frac{1}{m^{k \theta+1} \psi^{\theta}\left(\frac{1}{m}\right)}=\frac{1}{v^{k \theta+1} \psi^{\theta}\left(\frac{1}{v}\right)} \beta_{\nu} .
$$

Prema lemi 10, za B_{ν} vrijedi

$$
\beta_{v} \leqslant C_{4} v,
$$

i tada

$$
I^{\theta} \leqslant C_{5} \sum_{v=1}^{\infty} \frac{1}{v \psi^{\theta}\left(\frac{1}{v}\right)} E_{V}^{\theta}(\phi) E^{<\infty} .
$$

Neka je sada $0<\theta \leqslant 1$. Provodeći postupak kao u prvom slučaju, zamjenjujuci teoremu 4 sa teoremom 5, zaključujemo da je

$$
I^{\theta}<\infty .
$$

I tako smo dokazali da za bilo koje $\theta \varepsilon(0, \infty)$ za koje vrijedi (9) funkcija $\phi(x)$ pripada klasi $B_{E \ominus}^{\psi}$.

Neka je sada $\phi(x) \varepsilon B_{E \theta}^{\psi}$. Primjenjujuci teoremu 3, lemu 8 na osnovu definicije klase $B_{E \ominus}^{\psi}$ imamo

$$
\begin{aligned}
I_{2}^{\theta} & =\sum_{v=1}^{\infty} \frac{1}{v \psi^{\theta}\left(\frac{1}{v}\right)} E_{v}^{\theta}(\phi) E \leqslant C_{6} \sum_{v=1}^{\infty} \frac{1}{v \psi^{\theta}\left(\frac{1}{v}\right)} \omega_{k}^{\theta}\left(\phi, \frac{1}{v}\right)_{E} \leqslant \\
& \leqslant C_{7} \int_{0}^{1}\left[\frac{\omega_{k}(\phi, t) E}{\psi(t)}\right]^{\theta} \frac{d t}{t}<\infty .
\end{aligned}
$$

Lema je dokazana.

TEOREMA 2.2.6 ([17]). Neka su α, β i a_{v} takvi da je $0<\alpha<\beta<\infty, a_{v} \geqslant 0$, tada vrijedi nejednakost

$$
\left(\sum_{v=1}^{\infty} a_{v}^{\beta}\right)^{\frac{1}{\beta}} \leqslant\left(\sum_{v=1}^{\infty} a_{v}^{\alpha}\right)^{\frac{1}{\alpha}}
$$

LEMA 2.2.12 Ako je

$$
\left\{\sum_{v=1}^{\infty} \frac{1}{v \psi^{\theta}\left(\frac{1}{v}\right)} E_{v}^{\theta}(\phi)_{E}\right\}^{\frac{1}{\theta}}<\infty
$$

gdje je $\psi(t) \varepsilon M H(\sigma), \theta \varepsilon(0,+\infty)$, (EعA) tada za bilo koje $\theta_{1} \varepsilon[\theta,+\infty)$ vrijedi nejednakost

$$
\left\{\sum_{v=1}^{\infty} \frac{1}{v \theta^{\theta} 1\left(\frac{1}{v}\right)} E_{v}^{\theta} 1(\phi)_{E}\right\}^{\frac{1}{\theta} 1} \leqslant C\left\{\sum_{v=1}^{\infty} \frac{1}{v \psi^{\theta}\left(\frac{1}{v}\right)} E_{v}^{\theta}(\phi)_{E}\right\}^{\frac{1}{\theta}},
$$

gdje pozitivna konstanta C ne zavisi od funkcije $\phi(x)$.

DOKAZ. Koristeci svojstvo funkcije $\phi(t)$, teoremu 6 i provodeći jednostavne transformacije, dobijamo da je

$\leqslant C_{1}\left\{\sum_{m=0}^{\infty} E 2^{\theta^{m}}(\phi) E \frac{1}{\psi^{\theta} 1\left(\frac{1}{2^{m}}\right)} \sum_{\nu=2^{m}}^{2^{m+1}} \frac{1}{v}\right\}^{\frac{1}{\theta}} \leqslant$
$\leqslant C_{2}\left\{\sum_{m=0}^{\infty} E_{2^{m}}^{\theta 1}(\phi) E \frac{1}{\psi^{\theta} 1\left(\frac{1}{2^{m}}\right)}\right\}^{\frac{1}{\theta}} \leqslant$

$$
C_{2}\left\{\sum_{m=0}^{\infty} E_{2^{m}}^{\theta}(\phi) E \frac{1}{\psi^{\theta}\left(\frac{1}{2^{m}}\right)}\right\}^{\frac{1}{\theta}}=C_{2}\left\{\frac{E_{1}^{\theta}(\phi)}{\psi^{\theta}(1)}+\sum_{m=1}^{\infty} E_{2^{m}}^{\theta}(\phi) E \frac{1}{\psi^{\theta}\left(\frac{1}{2^{m}}\right)}\right\}^{\frac{1}{\theta}} .
$$

Koristeci osobine najbolje aproksimacije i činjenicu da je $\psi(\delta) \varepsilon M H(\sigma)$, lako je vidjeti da vrijedi

$$
\begin{aligned}
& \left\{\sum_{\nu=2}^{\infty} \frac{1}{\nu \psi^{\theta}\left(\frac{1}{v}\right)} E_{\nu}^{\theta}(\phi) E^{\frac{1}{\theta}}=\left\{\sum_{m=1}^{\infty} \sum_{\nu=2^{m-1}+1}^{2^{m}} \frac{1}{\nu \psi^{\theta}\left(\frac{1}{\nu}\right)} E_{\nu}^{\theta}(\phi) E^{\}^{\frac{1}{\theta}}} \geqslant\right.\right. \\
& \geqslant\left\{\sum_{m=1}^{\infty} E_{2^{m}}^{\theta}(\phi) E \sum_{v=2^{m-1}+1}^{2^{m}} \frac{1}{v \psi^{\theta}\left(\frac{1}{v}\right)}\right\}^{\frac{1}{\theta}} \geqslant C_{3}\left\{\sum_{m=1}^{\infty} E_{2^{m}}^{\theta}(\phi) E \frac{1}{\psi^{\theta}\left(\frac{1}{m-1}\right)} \sum_{v=2^{m-1}+1}^{2^{m}} \frac{1}{v}\right\}^{\frac{1}{\theta}} \geqslant \\
& \geqslant C_{4}\left(\sum_{m=1}^{\infty} E_{2^{m}}^{\theta}(\phi) E \frac{1}{\psi^{\theta}\left(\frac{1}{2^{m}}\right)}\right\}^{\frac{1}{\theta}} . \\
& \text { Prema tome, vrijede nejednakosti } \\
& \left\{\sum_{v=1}^{\infty} \frac{1}{{ }_{v \psi^{\theta}}{ }^{\theta}\left(\frac{1}{v}\right)} E_{v}^{\theta}{ }^{1}(\phi){ }_{E}\right\}^{\frac{1}{\theta}} \leqslant C_{2}\left\{\frac{E_{1}^{\theta}(\phi)}{\psi^{\theta}(1)}+C_{5} \sum_{v=2}^{\infty} \frac{1}{v \psi^{\theta}\left(\frac{1}{v}\right)} E_{\nu}^{\theta}(\phi) E^{\frac{1}{\theta}} \leqslant\right. \\
& \left.\leqslant C_{6} \sum_{v=1}^{\infty} \frac{1}{v \psi^{\theta}\left(\frac{1}{v}\right)} E_{v}^{\theta}(\phi)_{E}\right\}^{\frac{1}{\theta}} .
\end{aligned}
$$

Lema je dokazana.
Da bi dokazali osnovne rezultate rada bice nam potrebne i sljedece teoreme.
tEOREMA 2.2.7 ([19]). Ako je $F(x) \varepsilon C$ i za sve $x \varepsilon[-\pi, \pi]$ vrijedi jednakost

$$
F(x)=\sum_{k=1}^{\infty} a_{k} \cos k x,
$$

gdje je $a_{k} \geqslant 0$, to vrijede nejednakosti

$$
\sum_{k=2 n}^{\infty} a_{k} \leqslant 4 E_{n}{ }^{(F)} C, n=1,2,3, \ldots
$$

TEOREMA 2.2.8 ([10], [11]). Neka je $F(x) \in M \cap L_{p}$ za neko $\mathrm{p}, \mathrm{l}<\mathrm{p}<\infty$. Tada vrijede nejednakosti

$$
\begin{aligned}
& E_{n}(F)_{p} \leqslant C_{1}\left\{a_{n} n^{l-\frac{1}{p}}+\left[\sum_{\nu=n+1}^{\infty} a_{v} p_{v}^{p-2}\right]^{\frac{1}{p}}\right\}, \\
& E_{n}(F)_{p} \geqslant C_{2}\left\{\sum_{\nu=2 n}^{\infty} a_{v}^{p_{\nu}}{ }^{p-2}\right\}^{\frac{1}{p}}
\end{aligned}
$$

gdje pozitivne konstante C_{1} i C_{2} ne zavise od $F(x)$ in.

LEmA 2.2.13 Ako je

$$
a_{0} \geqslant a_{1} \geqslant a_{2} \geqslant a_{3} \geqslant \ldots \text { i } a_{\nu} \neq 0 \text { za } v \rightarrow \infty \text {, to za }
$$

nizove $\left\{b_{v}(y)\right\}_{v=0}^{\infty}$, gdje je

$$
b_{v}(y)=\alpha v \frac{e^{v Y}+e^{-v y}}{e^{v \delta}+e^{-v \delta}}, \quad(|y| \leqslant \delta)
$$

vrijede nejeanakosti

$$
\begin{aligned}
& \qquad b_{0}(y) \geqslant b_{1}(y) \geqslant b_{2}(y) \geqslant b_{3}(y) \geqslant \ldots \\
& \text { Osim toga, } b_{v}(y) \rightarrow 0 \text { za } v \rightarrow \infty, \text { tj. niz }\left\{b_{v}(y)\right\}_{v=0}^{\infty} \text { je } \\
& \text { monotono opadajuci. }
\end{aligned}
$$

DOKAZ. Dokazacemo da je
$b_{v}(y) \geqslant b_{v+1}(y), v=0,1,2,3, \ldots$ za bilo koje $y(|y| \leqslant \delta), t j$. dokazaćemo tačnost nejednakosti

$$
\alpha_{v} \frac{e^{v y}+e^{-v y}}{e^{v \delta}+e^{-v \delta}} \geqslant \alpha_{v+1} \frac{e^{(v+1) y}+e^{-(v+1) y}}{e^{(v+1)}+e^{-(v+1) \delta}}
$$

Kako vrijedi

$$
\alpha_{v} \geqslant q_{v+1}, v=0,1,2,3, \ldots, \text { to je dovoljno dokazati da je }
$$

$$
\frac{e^{v y}+e^{-v y}}{e^{v \delta}+e^{-v \delta}} \geqslant \frac{e^{(v+1) y}+e^{-(v+1) y}}{e^{(v+1) \delta}+e^{-(v+1) \delta}}
$$

Posljednja nejednakost ekvivalentna je nejednakosti

$$
\frac{e^{(2 v+2) \delta}+1}{e^{(2 v+1) \delta}+e^{\delta}} \geqslant \frac{e^{(2 v+2) y}+1}{e^{(2 v+1) y}+e^{y}}
$$

tj. nejednakosti

$$
\left[e^{(2 v+2) \delta}+1\right]\left[e^{(2 v+1) y}+e^{Y}\right] \geqslant\left[e^{(2 v+2) Y}+1\right]\left[e^{(2 v+1) \delta}+e^{\delta}\right]
$$

otkuda dobijamo

$$
\begin{aligned}
& \left(e^{\delta}-e^{y}\right)\left[e^{(2 v+1)(y+\delta)}-1\right]+\left(e^{v+\delta}-1\right)\left[e^{(2 v+1) \delta}-e^{(2 v+1) y}\right] \geqslant 0 \ldots \\
& \text { Iz uslova }|y| \leqslant \delta \text { slijedi da je } \\
& e^{\delta} \geqslant e^{y}, e^{(2 v+1)(\delta+y)} \geqslant 1, e^{y+\delta} \geqslant 1, e^{(2 v+1) \delta} \geqslant e^{(2 v+1) y}
\end{aligned}
$$

i tačnost posljednje nejednakosti je očigledna.

Kako $a_{v} \rightarrow 0$ to i $b_{v} \rightarrow 0$ za $v \rightarrow \infty$.
LEMA 2.2.14 Neka je $I_{P_{1}}^{\subset} E \subset L_{p_{2}}, \psi(t) \varepsilon M H(\sigma)$, $\left(1<P_{2} \leqslant P_{1}<\infty\right),(E \varepsilon A), f(x)_{E \Lambda_{2} \cap E, t a d a} \cap a 2^{m-1}<n \leqslant 2^{m}$ $i 0<\theta<\infty$ vrijedi procjena

$$
\sum_{v=1}^{\infty} \frac{e^{v \delta \theta}}{v \psi^{\theta}\left(\frac{1}{v}\right)} E_{v}^{\theta}(f) E<\sum_{m=0}^{\infty} \frac{e^{2^{m} \delta \theta}}{2^{m} \psi^{\theta}\left(\frac{1}{2^{m}}\right)} E^{\theta}(f) E
$$

DOKAZ. Koristeci lemu 6 , osobine funkcije $\phi(t) \varepsilon M H(\sigma)$
i provodeci jednostavne transformacije dobijamo nejednakosti

$$
\begin{aligned}
& =\frac{e^{\delta \theta}}{\psi^{\theta}(1)} E_{1}^{\theta}(f) E+\sum_{m=1}^{\infty} \sum_{v=2^{m-1}+1}^{2^{m}} \frac{e^{v \delta \theta}}{\nu \psi^{\theta}\left(\frac{1}{v}\right)} E_{V}^{\theta}(f) E= \\
& =\frac{e^{\delta \theta}}{\psi^{\theta}(1)} E_{1}^{\theta}(f) E_{m=1}^{+\sum_{2^{m}}^{\infty}} E^{\theta}(f) \sum_{\nu=2^{m-1}+1}^{2^{m}} \frac{e^{\nu \delta \theta}}{\psi^{\theta}\left(\frac{1}{v}\right)}= \\
& =\frac{e^{\delta \theta}}{\psi^{\theta}(1)} E_{1}^{\theta}(f) E_{m=1}^{+} \sum_{2^{m}}^{(f)} E^{\circ} \cdot I,
\end{aligned}
$$

gaje je

$$
I=\sum_{\nu=2^{m-1}+1}^{2^{m}} \frac{e^{\nu \delta \theta}}{\psi^{\theta}\left(\frac{1}{v}\right)} .
$$

procijenićemo I odozgo i odozdo.
Prema svojstvima funkcije $\psi(t) \varepsilon M H(\sigma)$ dobijamo da je

$$
I=\sum_{\nu=2^{m-1}+1}^{2^{m}} \frac{e^{\nu \delta \theta}}{\nu \psi^{\theta}\left(\frac{1}{\nu}\right)} \leqslant \frac{1}{\left(2^{m-1}+1\right) \psi^{\theta}\left(\frac{1}{2^{m}}\right)} \sum_{\nu=2^{m-1}+1}^{2^{m}} e^{\nu \delta \theta} \leqslant
$$

$\leqslant \frac{2}{2^{m} \psi^{\theta}\left(\frac{1}{2^{m}}\right)} \cdot I_{1}$,
gaje je

$$
I_{1}=\sum_{\nu=2^{m-1}+1}^{2^{m}} e^{\nu \delta \theta}
$$

S druge strane vrijedi

$$
\begin{aligned}
I= & \sum_{\nu=2^{m-1}}^{2^{m}} \frac{e^{\nu \delta \theta}}{\nu \psi^{\theta}\left(\frac{1}{v}\right)} \geqslant \frac{1}{2^{m} \psi^{\theta}\left(\frac{1}{2^{m-1}+1}\right)} \sum_{\nu=2^{m-1}+1}^{2^{m}} e^{\nu \delta \theta} \geqslant \\
& \geqslant \frac{C}{2^{m} \psi^{\theta}\left(\frac{1}{2^{m}}\right)} \cdot I_{1} .
\end{aligned}
$$

Procijenićemo I_{1} odozgo i odozdo. Oc̆igledno vrijedi nejednakost

$$
\begin{aligned}
I_{1} & =\sum_{v=2^{m-1}+1}^{2^{m}} e^{v \delta \theta}=\sum_{v=2^{m-1}+1}^{2^{m}}\left(e^{\delta \theta}\right)^{\nu}=\frac{\left.e^{\delta \theta\left(2^{m-1}+1\right)}-e^{\delta \theta\left(2^{m-1}+1\right.}\right)}{e^{\delta \theta}-1} \\
& =\frac{e^{\delta \theta}\left(e^{2^{m} \delta \theta}-e^{2^{m-1}} \delta \theta\right.}{e^{\delta \theta}-1} .
\end{aligned}
$$

Kako za ml vrijede nejednakosti:
a) $\mathrm{e}^{2^{m} \delta \theta}-\mathrm{e}^{2^{m-1} \delta \theta}<\mathrm{e}^{2^{\mathrm{m}} \delta \theta}$
b) $e^{2^{m} \delta \theta}-e^{2^{m-1} \delta \theta} \geqslant C e^{2^{m} \delta \theta}$, gdje je
$c=1-\frac{1}{e^{\delta \theta}},(C<1)$, zaključujemo da je

$$
I_{1} \asymp e^{2^{m} \delta \theta}
$$

Prema tome vrijedi

$$
I \asymp \frac{e^{2^{m} \delta \theta}}{2^{m^{m}} \psi^{\theta}\left(\frac{1}{2^{m}}\right)}
$$

tj.

$$
\sum_{v=1}^{\infty} \frac{e^{v \delta \theta}}{v \psi^{\theta}\left(\frac{1}{v}\right)} E_{\nu}^{\theta}(f)_{E} \asymp \sum_{m=0}^{\infty} \frac{e^{2^{m} \delta \theta}}{2^{m} \psi^{\theta}\left(\frac{1}{2^{m}}\right)} E_{2^{m}}^{\theta}(f)_{E} .
$$

Lema je dokazana.

LEMA2.2.15 Ako je $f(x) \varepsilon E,(E \varepsilon A)$ i ako vrijedi

$$
E_{v}(f)_{p}=e^{-v \delta_{\psi_{1}}\left(\frac{1}{v}\right)}
$$

gdje je $\psi_{1}(t) \varepsilon M H\left(\sigma_{1}\right)$, tada vrijedi procjena

$$
\sum_{v=1}^{\infty} \frac{e^{v \delta \theta}}{\nu \psi^{\theta}\left(\frac{1}{v}\right)} E_{v}^{\theta}(f)_{p}=\sum_{m=0}^{\infty} \frac{e^{2^{m} \delta \theta}}{\psi^{\theta}\left(\frac{1}{2^{m}}\right)} E_{2^{m}}^{\theta}(E)_{p}
$$

DOKAZ. Koristeći pretpostavku teoreme osobine funkcija $\psi(t) \varepsilon M H(\sigma)$ i $\psi_{1}(t) \varepsilon M H\left(\sigma_{1}\right)$, provodeći jednostavne transformacije dobićemo nejedrakosti

$$
\begin{aligned}
& \sum_{v=1}^{\infty} \frac{e^{v \delta \theta}}{v \psi^{\theta}\left(\frac{1}{v}\right)} E_{v}^{\theta}(f)_{p}=\frac{e^{\delta \theta}}{\psi^{\theta}(1)} E_{1}^{\theta}(f)_{p}+\sum_{v=2}^{\infty} \frac{e^{v \delta \theta}}{v \psi^{\theta}\left(\frac{1}{v}\right)} E_{v}^{\theta}(f)_{p}= \\
& =\frac{e^{\delta \theta}}{\psi^{\theta}(1)} E_{1}^{\theta}(f) p_{m=1 v=}^{\sum_{2}^{m-1}+1} \sum_{v \psi^{\theta}\left(\frac{1}{v}\right)}^{\sum_{m}^{m}} E_{v}^{\theta}(f)_{p}< \\
& =\frac{e^{\delta \theta}}{\psi^{\theta}(1)} E_{1}^{\theta}(f) p_{m=1}+\sum_{v=2^{m} \cdot-1}^{\sum_{1}} \frac{2_{1}^{m}\left(\frac{1}{v}\right)}{v \psi^{\theta}\left(\frac{1}{v}\right)}= \\
& =\frac{\psi_{1}^{\theta}(1)}{\psi^{\theta}(1)}+\sum_{m=1}^{\infty} \frac{\psi_{1}^{\theta}\left(\frac{1}{2^{m}}\right)}{\psi^{\theta}\left(\frac{1}{2^{m}}\right)} \sum_{\nu=2^{m-1}}^{m} \quad \frac{1}{\nu}<\frac{\psi_{1}^{\theta}(1)}{\psi^{\theta}(1)+\sum_{m=1}^{\infty} \frac{\psi_{1}^{\theta}\left(\frac{1}{2^{m}}\right)}{\psi^{\theta}\left(\frac{1}{2^{m}}\right)}=} \\
& \simeq \frac{e^{\delta \theta}}{\psi^{\theta}(1)} E_{1}^{\theta}(f) p_{m=1}^{\infty} \frac{e^{2^{m} \delta \theta}}{\psi^{\theta}\left(\frac{1}{2^{m}}\right)} E_{2^{m}}^{\theta}(f) p_{m=0}^{\infty} \sum_{\psi^{\theta}\left(\frac{1}{2^{m}}\right)}^{2^{2^{m}} E^{\theta}} \text { (f)} p \text {. }
\end{aligned}
$$

Lema je dokazana.

TEOREMA 2.2.9. ($[15]$). Neka su brojevi $a_{v}, b_{v}{ }^{i}$ B_{ν} takvi da je

$$
a_{v} \geqslant 0, \quad b_{v} \geqslant 0, \quad \sum_{v=n}^{\infty} a_{v}=a_{n} \beta_{n},
$$

tada:

1. za p iz razmaka $1 \leqslant p<\infty$ vrijedi nejednakost

$$
\sum_{\nu=1}^{\infty} a_{\nu}\left(\sum_{\xi=1}^{\nu} b_{\xi}\right)^{p} \leqslant p^{p} \sum_{\nu=1}^{\infty} a_{\nu}\left(b_{\nu} \beta_{\nu}\right)^{p}
$$

2. a za p iz razmaka $0<p \leqslant 1$ vrijedi nejednakost

$$
\sum_{v=1}^{\infty} a_{v}\left(\sum_{\xi=1}^{v} b_{\xi}\right)^{p} \geqslant p^{p} \sum_{v=1}^{\infty} a_{v}\left(b_{v} \beta_{v}\right)^{p}
$$

GLAVA III

direktne I Obrnute teoreme aproksimaciua za funkcide IZ KLASE $5^{\delta} \mathrm{H}_{\mathrm{E}}^{\boldsymbol{*}}$

§1. DIREKTNA TEOREMA APROKSIMACIJE ZA FUNKCIJE IZ KLASE $\sigma^{\delta} H_{E}^{\psi}$

Svaku teoremu koja utvrdjuje procjenu odstupanja, u nekom smislu, date funkcije (ili klase funkcija) od polinoma ili od nekih elemenata u koje se ta funkcija (klasa funkcija) preslikava pomoću nekog niza operatora, nazivamo direktnom teoremom.

U ovom paragrafu nas ce interesovati odgovor na pitanje, kako ta procjena za funkcije iz klase $5^{\delta} H_{E}^{\psi}$ zavisi od glatkosti granične funkcije $\phi(x)$.

TEOREMA 3.1.1 Ako je $f(x) \dot{\varepsilon} \mathcal{S}^{\delta} H_{E}^{\psi}$, (EعA) tada za bilo koje $\mathrm{F} \mathrm{\varepsilon}$ A vrijedi nejednakost

$$
E_{n}(f)_{F} \leqslant \frac{C}{e^{n \delta} \psi\left(\frac{1}{n}\right)}
$$

gdje pozitivna konstanta C ne zavisi od $n(n=1,2, \ldots)$. Tvrdjenje se, ne može poboljsati na cijeloj klasi funkcija $E^{\delta_{H}}{ }_{E}^{\psi}$ uz uslov da postoje p_{1} i p_{2} takvi da je

$$
L_{p_{1}} \subset \in \subset L_{p_{2}}, \quad L_{p_{1}} \subset F \subset L_{p_{2}}
$$

DOKAZ. Neka je $f(x) \varepsilon E^{\delta} H_{E}^{\psi}$. Primjenjujući lemu 2.2.1, teoremu 2.2.3 i definiciju klase H_{E}^{ψ}, možemo pisati

$$
E_{n}(f)_{F} \leqslant \frac{C_{1}}{e^{n \delta}} E_{n}(\phi)_{E} \leqslant \frac{C_{2}}{e^{n \delta}} \omega_{k}\left(\phi, \frac{1}{n}\right)_{E} \leqslant \frac{C_{3}}{e^{n \delta} \psi\left(\frac{1}{n}\right)},
$$

gdje pozitivna konstanta C_{3} ne zavisi od $n(n=1,2,3, \ldots)$.

Dokazaćemo da se tvrdjenje teoreme ne može poboljšati.
Neka se funkcija $f(x)$ može predstaviti u obliku (1.2.1) i neka je njena granic̆na funkcija $\phi(x) \varepsilon \Lambda_{2}$ i takva da je

$$
\begin{equation*}
\left|b_{v}\right| \asymp \psi\left(\frac{1}{v}\right) \tag{1}
\end{equation*}
$$

gdje je funkcija $\psi(\delta) \varepsilon M H(\sigma)$ koja zadovoljava uslov

$$
\begin{equation*}
\left.\sum_{\xi=n}^{\infty} \frac{1}{\xi} \psi^{2}\left(\frac{1}{\xi}\right)\right\}^{\frac{1}{2}} \asymp \psi\left(\frac{1}{n}\right) . \tag{2}
\end{equation*}
$$

Neka je E, FEAi neka postoje p_{1} i p_{2} takvi da je $1<\mathrm{P}_{2}<\mathrm{P}_{1}<\infty \mathrm{i}$

$$
\begin{equation*}
L_{p_{1}} \subset E \subset L_{p_{2}}, \quad L_{p_{1}} \subset F \subset L_{p_{2}} \tag{3}
\end{equation*}
$$

Tada vrijedi:

1. za $2^{m-1}<n \leqslant 2^{m}: E_{n}(f)_{F} \asymp E_{2^{m}}(f)_{F}=e^{-2^{m} \delta_{\psi}}\left(\frac{1}{2^{m}}\right)$,
2. $\omega_{k}(\phi, \delta)_{E} \asymp \psi(\delta)$.

Dokazacemo tvrdjenje pod 1.

Prema nejednakosti (2.1.5) uslova (1) za|E \mid i svojstvu funkcije $\psi(6)$ dobićemo nejednakosti

$$
\begin{aligned}
& E_{2^{m}}(f) F \leqslant \| f(x)-S_{2 \underline{m}_{1}}\left(x, f\left\|_{F} \leqslant C_{4}\right\| f(x)-S_{2 \text { m }_{1}}(x, f)_{C} \leqslant\right. \\
& \leqslant C_{5} \sum_{\nu=m}^{\infty} e^{-2 \nu}{ }^{\nu} \delta\left|b_{\nu}\right| \leqslant C_{6} \sum_{\nu=m}^{\infty} e^{-2^{\nu} \delta_{\psi}} \psi\left(\frac{1}{2 \nu}\right) \leqslant \\
& \leqslant C_{7} \psi\left(\frac{1}{2^{m}}\right) \sum_{\nu=m}^{\infty} e^{-2^{\nu} \delta} \leqslant C_{8} e^{-2^{m} \delta} \psi\left(\frac{1}{2^{m}}\right) .
\end{aligned}
$$

Ako se iskoristi uslov (1) za $\left|b_{v}\right|$, nejednakost
(2.1.5) i lema 2.2.2, može se pisati

$$
\left.e^{-2^{m} \delta} \psi\left(\frac{1}{2^{m}}\right) \leqslant c_{9} e^{-2^{m} \delta}\left|b_{m}\right|=c_{9} e^{-2^{m} \delta}\left|c_{2^{m}}+c\right| 2^{m}\left|\leqslant c_{10}\right| c_{2^{m}} \right\rvert\,<c_{11} E_{2^{m}}(f)_{F} .
$$

I tako je dokazano da vrijedi

$$
E_{2^{m}}(f)_{F} \nsucc e^{-2^{m} \delta_{\psi(}\left(\frac{1}{2^{m}}\right)}
$$

Primjenjujući lemu 2.2.6 i uslov $2^{m-1}<n \leqslant 2^{m}$, dobijamo da je

$$
\left.E_{n}(f)_{F} \asymp E_{2^{m}}(f)_{F} \simeq e^{-2^{m} \delta_{\psi(}} \frac{1}{2^{m}}\right)
$$

Dokazaćemo tvrdjenje 2, tj. dokazacemo da granična funkcija $\phi(x)$ pripada klasi $H_{E}^{\psi} i$ da ne pripada široj klasi.

$$
\text { Zaista, primjenjujuci lemu 2.2.6, uslov (1) za } b_{v} i
$$ uslov (2) za funkciju $\psi(\delta)$, dobićemo da za $2^{m-1}<n \leqslant 2^{m}$ vrijedi

Univerzilet a Besstata

> Prirodno-matematicki fakultell MATEMATICKIFAKULTET
> BIBLIOTEKA

Broj

$$
\begin{align*}
& E_{n}(\phi) E \simeq E_{2^{m}}(\phi)_{E}=\left\{\sum_{v=m}^{\infty} b_{v}^{2}\right\}^{2}=\left\{\sum_{v=m}^{\infty} \psi^{2}\left(\frac{1}{2^{v}}\right)\right\}^{\frac{1}{2}}= \\
& <\left\{\sum_{\xi=2^{m}}^{\infty} \frac{1}{\xi} \psi^{2}\left(\frac{1}{\xi}\right)\right\}^{\frac{1}{2}} \simeq \psi\left(\frac{1}{2^{m}}\right)=\psi\left(\frac{1}{n}\right) . \tag{5}
\end{align*}
$$

Prema teoremi 2.2.3, tek dokazanoj nejednakosti i lemi 2.2.4, utvrdjujemo da za $k>o$ vrijedi
$\omega_{k}\left(\phi, \frac{1}{n}\right) E \leqslant \frac{C_{12}}{n^{k}} \sum_{\nu=1}^{n} v^{k-1} E_{v}(\phi) E \leqslant \frac{C_{13}}{n^{k}} \sum_{\nu=1}^{n} v^{k-1} \psi\left(\frac{1}{v}\right) \leqslant C_{14} \psi\left(\frac{1}{n}\right) \quad$.

I tako, uzimajući u obzir da je

$$
E_{n}(\phi)_{E} \leqslant C_{15^{\omega_{k}}}\left(\phi, \frac{1}{n}\right)_{E}
$$

i da vrijedi nejednakost (5), dobićemo nejednakosti

$$
\begin{equation*}
C_{16} \psi\left(\frac{1}{n}\right) \leqslant \omega_{k}\left(\phi, \frac{1}{n}\right)_{E} \leqslant C_{17} \psi\left(\frac{1}{n}\right) \tag{6}
\end{equation*}
$$

Poznato je da za bilo koje $\delta \varepsilon(0,1]$ postoji $n \geqslant 1$ takvo da je

$$
\frac{1}{n+1}<\delta \leqslant \frac{1}{n}
$$

Koristeći svojstva modula glatkosti i funkcije $\psi(\delta)$ iz nejednakosti (6) dobićemo da za $\delta \varepsilon(0,1]$ vrijedi procjena

$$
\omega_{k}(\phi, \delta)_{E}=\psi(\delta) .
$$

Tako je dokazano, da za funkciju $\psi(\delta)$ koja ima svojstvo 2) i za prostore E i F sa svojstvom 3), postoji funkcija $f(x) \varepsilon E^{\delta} H_{E}^{\psi}$ takva da vrijede tvrdnje (4). To upravo znači da
se tvrdjenje teoreme ne može poboljšati na svim takvim klasama funkcija $\sigma^{\delta} H_{E}^{\psi}$.

§2. OBRNUTA TEOREMA APROKSIMACIJA ZA FUNKCIJE IZ KLASE $5^{\delta} H_{E}^{\psi}$

Obrnutom teoremom u teoriji aproksimacija funkcija nazivamo svaku teoremu koja utvrdjuje stepen glatkosti funkcije (ili klase funkcija) u zavisnosti od brzine konvergencije ka nuli njene (njihove) najbolje aproksimacije.

Pojam obrnute teoreme u teoriju aproksimacija uveo je Bernštajn 1912. godine. Njemu pripadaju prvi rezultati iz te oblasti.

Nas će interesovati uslovi koje treba nametnuti na najbolju aproksimaciju funkcije $f(x)$, tako da njena granična funkcija $\phi(x)$ pripada klasi Nikoljskog u nekom maksimalnom simetričnom prostoru $2 \mathbb{q}$-periodičnih realnih funkcija.

TEOREMA 3.2.1 Neka je $f(x) \varepsilon E,\left(E_{\varepsilon A}\right), \delta>0 \psi(t) \varepsilon M H(\sigma)$. Ako vrijedi nejednakost

$$
\begin{equation*}
E_{n}(f)_{F} \leqslant \frac{C}{e^{n \delta}} \psi\left(\frac{1}{n}\right), \tag{7}
\end{equation*}
$$

gdje pozitivna konstanta C ne zavisi od $n(n=1,2,3, \ldots), i$
ako postoje broj $p \varepsilon[2,+\infty]$ i funkcija $\psi_{1}(\delta)$ takvi da je
a) $\psi_{1}(\delta) \in M H\left(\sigma_{1}\right)$,
b) $\left\{\sum_{\nu=n}^{\infty} \psi^{p}\left(\frac{1}{\nu}\right)_{\nu} p^{p-2}\right\}^{\frac{1}{p}} \leqslant C_{2} \psi_{1}\left(\frac{1}{n}\right) \quad$ za $2 \leqslant p<\infty$,
c) $\sum_{\nu=n}^{\infty} \psi\left(\frac{1}{v}\right) \leqslant C_{2} \psi_{1}\left(\frac{1}{n}\right) \quad$ za $p=\infty$,
gdje pozitivna konstanta C_{2} ne zavisi od $n(n=1,2,3, \ldots)$, tada je

$$
\mathrm{f}(\mathrm{x}) \varepsilon E^{\delta} \mathrm{H}_{\mathrm{p}}^{\psi_{l}}
$$

To tvrđjenje se ne može poboljšati na cijeloj klasi funkcija $E^{\delta_{H}}{ }_{p}^{\psi_{l}}$.

DOKAZ. Neka je ispunjena nejednakost (7), tada prema lemi 2.2.3, utvrdjujemo da se funkcija $f(x)$ može analitički produžiti u pojas $\Delta=\{-\infty<x<+\infty,|y|<\delta\}$.

Dokazaćemo da se funkcija $f(x)$ može predstaviti u obliku (1.2.1). RazmotriEemo dva slučaja:

1. Neka je p $\varepsilon[2,+\infty$). Prema teoremi Peli (V.[18], str. 202), nejednakosti (2.2.8), uslovu b) za funkciju $\psi(\delta)$ i prema ulaganju $E \subset L_{1}$, dobijamo

$$
\begin{aligned}
\left\|\phi_{y}(x)\right\|_{p} & \leqslant c_{3}\left[\left|A_{0}(y)\right|+\left(\sum_{v \mid=1}^{\infty}\left|A_{v}(y)\right|^{p}|v|^{p-2}\right)^{\frac{1}{p}}\right] \leqslant \\
& \leqslant C_{4}\left[\left|c_{0}\right|+\left(\sum_{v=1}^{\infty} \psi^{p}\left(\frac{1}{v}\right) v^{p-2}\right)^{\frac{1}{p}}\right] \leqslant \\
& \leqslant C_{5}\left(\|f\|_{L_{1}}+\psi_{1}(1)\right) \leqslant c_{6}\left(\|f\|_{E}+1\right) .
\end{aligned}
$$

2. Neka je sada $p=\infty$. Tada iz nejednakosti (2.2.8), uslova c) zà funkciju $\psi(\delta)$ i ulaganja $E \subset L_{1}$, slijedi

$$
\begin{aligned}
& \left\|\phi_{Y}(x)\right\|_{C} \leqslant\left|A_{0}(y)\right|+\sum_{|\nu|=1}^{\infty}\left|A_{v}(y)\right| \leqslant\left|c_{0}\right|+C_{8}|v|_{=1}^{\infty} \psi\left(\frac{1}{|v|}\right) \leqslant \\
& \quad \leqslant c_{9}\left[\|f\|_{L_{1}}+\psi_{1}(1)\right] \leqslant c_{10}\left(\|f\|_{E}+1\right) .
\end{aligned}
$$

I tako je dokazano da za bilo koje y $(|y|<\delta)$ vrijedi

$$
\left\|\phi_{Y}(x)\right\|_{p} \leqslant M
$$

gdje konstanta M ne zavisi od y. Kako je $p \varepsilon[2,+\infty]$, to znači (V. [1]. str. 150) da postoji granična funkcija $\phi(x) \varepsilon L_{p}$ takva da se funkcija $f(x)$ može predstaviti u obliku (1.2.1).

Dokazacemo da granična funkcija $\phi(x)$ pripada klasi $H_{p}^{\psi_{1}}$. Kako se $f(x)$ može predstaviti u obliku (1.2.1), to prema nejednakosti (2.1.5) i tvrdjenju leme 2.2 .5 slijedi procjena

$$
\begin{equation*}
\left|a_{v}\right| \leqslant C_{11} \psi\left(\frac{1}{|v|}\right) . \tag{8}
\end{equation*}
$$

Razmotrimo dva slučaja:

1. neka je $\left.p \varepsilon_{-}^{-} 2, \dot{+}\right)$. Primjenjujući teoremu Peli, nejednakost (8) i uslov b) za funkciju $\psi(\hat{)}$) dobijamo

$$
\begin{aligned}
E_{n}(\phi)_{p} & \leqslant \| \phi(x)-\left.S_{n-1}(x, \phi)\right|_{p} \leqslant C_{12}\left\{\sum_{\left.v\right|^{2}}^{\infty}\left|\alpha_{v}\right|^{p}|v|^{p-2}\right\}^{\frac{1}{p}} \leqslant \\
& \leqslant C_{13^{2}}^{\left\{\sum_{v=n}^{\infty} \psi^{p}\left(\frac{1}{v}\right) v^{p-2}\right\}^{\frac{1}{p}} \leqslant C_{14} \psi_{1}\left(\frac{1}{n}\right)}
\end{aligned}
$$

2. neka je sada $p=\infty$. Primjenjujući nejednakost (8) i uslov c) za $\psi(\delta)$ vrijedi

$$
\begin{aligned}
E_{n}(\phi)_{C} & \leqslant\left\|\phi(x)-S_{n-1}(x, \phi)\right\|_{C} \leqslant|v|_{n}^{\infty}\left|\alpha_{v}\right| \leqslant \\
& \leqslant C_{15} \sum_{v=n}^{\infty} \psi\left(\frac{1}{v}\right) \leqslant C_{16} \psi_{1}\left(\frac{1}{n}\right)
\end{aligned}
$$

Tako je dokazano da uz pretpostavke teoreme vrijedi

$$
E_{n}(\phi)_{p} \leqslant C_{1>\psi_{1}}\left(\frac{1}{n}\right)
$$

gdje pozitivna konstanta C_{17} ne zavisi od $n(n=1,2,3, \ldots)$.

Prema teoremi 2.2.3,tek dokazanoj nejednakosti i lemi 2.2.4 za k>o vrijedi

$$
\begin{aligned}
& \omega_{k}\left(\phi, \frac{1}{n}\right)_{p} \leqslant \frac{C_{1} 8}{n^{k}} \sum_{v=1}^{n} v^{k-1} E_{v}(\phi)_{p} \leqslant \\
& \leqslant \frac{C_{19}}{n^{k}} \sum_{v=1}^{n} v^{k-1} \psi_{1}\left(\frac{1}{v}\right) \leqslant C_{20} \psi_{1}\left(\frac{1}{n}\right) .
\end{aligned}
$$

Za bilo koje $\delta(0<\delta \leqslant 1)$ postoji $n \geqslant 1$ takvo da je

$$
\frac{1}{n+1}<\delta \leqslant \frac{1}{n} \text {. }
$$

Koristeci osobine modula glatkosti i funkcije $\psi_{1}(\delta)$
dobija se

$$
\begin{aligned}
\omega_{k}(\phi, \delta)_{p} & \leqslant \omega_{k}\left(\phi, \frac{1}{n}\right)_{p} \leqslant \omega_{k}\left(\phi, \frac{2}{n+1}\right)_{p} \leqslant \\
& \leqslant c_{21} \psi_{1}\left(\frac{2}{n+1}\right) \leqslant c_{22} \psi_{1}\left(\frac{1}{n+1}\right) \leqslant c_{23} \psi_{1}(\delta) .
\end{aligned}
$$

I tako smo dokazali da je

$$
\phi(x) \varepsilon H_{p}^{\psi}
$$

Dokazacemo da se tvrdjenje teoreme 1 ne može poboljšati.

Neka se funkcija $f(x)$ može prikazati u obliku (1.2.1), gdje je

1. $\phi(x) \varepsilon M \cap L_{p}$ ako je $p \varepsilon[2,+\infty)$,
2. $\phi(x) \varepsilon C$ i za svako $x \in[-\pi, \pi]$ vrijedi jednakost

$$
\phi(x)=\sum_{\nu=1}^{\infty} a_{\nu} \cos v x,
$$

gdje je $a_{v} \geqslant 0$ i $p=\infty$.

Neka su funkcije $\psi(t)$ i $\psi_{I}(t)$ takve da je:
a) $\psi(t) \varepsilon \mathrm{MH}(\sigma), \psi_{1}(t) \varepsilon \mathrm{MH}\left(\sigma_{1}\right)$
b) $\left\{\sum_{\nu=n}^{\infty} \psi^{p}\left(\frac{1}{\nu}\right) \nu^{p-2}\right\}^{\frac{1}{p}} \asymp \psi_{1}\left(\frac{1}{n}\right) \quad$ za $p \varepsilon[2,+\infty)$,
c) $\sum_{\nu=n}^{\infty} \psi\left(\frac{1}{v}\right)=\psi_{1}\left(\frac{1}{n}\right) \quad$ za $p=\infty$,
d) $a_{v}=\psi\left(\frac{1}{v+1}\right), v=0,1,2,3, \ldots$,
tada vrijedi:

1. $E_{n}(f)_{E} \asymp e^{-n \delta_{\psi}\left(\frac{1}{n}\right)} \quad$ za bilo koje EعA,
2. $\omega_{\mathrm{k}}(\phi, \delta)_{\mathrm{p}}<\psi_{1}(\delta)$.

Dokazaćemo tvrdjenje pod l. Koristeći nejednakost (2.1.5), uslov c) za a_{v} i osobine funkcije $\psi(\delta)$ dobijamo da je

$$
\begin{aligned}
E_{n}(f)_{E} & \leqslant\left\|f(x)-S_{n-1}(x, f)\right\|_{E} \leqslant C_{1}\left\|f(x)-S_{n-1}(x, f)\right\|_{C} \leqslant \\
& \leqslant C_{1}\left|\sum_{v=n}^{\infty}\right| c_{v} \left\lvert\, \leqslant C_{2} \sum_{v=n}^{\infty} e^{-v \delta_{a}} \leqslant C_{3} \sum_{v=n}^{\infty} e^{-v \delta_{\psi}} \psi\left(\frac{1}{v}\right) \leqslant\right. \\
& \leqslant C_{4} \psi\left(\frac{1}{n}\right) \sum_{v=n}^{\infty} e^{-v \delta} \leqslant \frac{C_{5}}{e^{n \delta} \psi\left(\frac{1}{n}\right)} .
\end{aligned}
$$

Dalje, prema osobini d), nejednakosti (2.1.5) i lemi 2.2.2 vrijedi:

$$
\frac{C_{6}}{e^{n \delta}} \geqslant\left(\frac{1}{n}\right) \leqslant \frac{C_{7}}{e^{n \delta}} a_{n} \leqslant C_{8}\left(c_{n}+c_{-n}\right) \leqslant C_{9} E_{n}(f)_{E}
$$

ב＝j：je je dokazano da je

$$
E_{n}(f){ }_{E} \asymp e^{-n \delta_{\psi}\left(\frac{1}{n}\right)}
$$

こーケミコミÉemo tvrdjenje 2．Ako je pe $[2,+\infty)$ ，tada za monotono $\check{ミ ミ 三 ミ j u c ́ e ~ k o e f i c i j e n t e ~} a_{n}$ vrijedi nejednakost

$$
\begin{equation*}
a_{n^{n}}^{1-\frac{1}{p}} \leqslant c_{10}\left\{\sum_{k=\left[\frac{n}{2}\right]}^{n} a_{k}^{p} k^{p-2}\right\}^{\frac{1}{p}}, \tag{9}
\end{equation*}
$$

$\Xi シ ミ \equiv$ ミozitivna konstanta C_{10} zavisi samo od p ．

Primjenjujuci poznate nejednakosti

：x 20，$\left.y \geqslant 0,(x+y)^{\alpha} \leqslant x^{\alpha}+y^{\alpha} \leqslant 2(x+y)^{\alpha}, 0<\alpha<1\right)$
tニニニニーu 2．2．8 i koristeci osobine funkcija $\psi(\delta)$ i $\psi_{1}(\delta)$ dとニこうこ se

$$
\begin{aligned}
& \left.\sum_{=}=\right)_{p} \leqslant C_{11}\left\{a_{n^{n}}^{1-\frac{1}{p}}+\left[\sum_{k=n+1}^{\infty} a_{k}^{p} k^{p-2}\right]^{\frac{1}{p}}\right\} \leqslant \\
& \leqslant C_{12}\left\{\left[\sum_{k=\left[\frac{n}{2}\right]^{n}} a_{k}^{p} k^{p-2}\right]^{\frac{1}{p}}+\left[\sum_{k=n+1}^{\infty} a_{k}^{p} k^{p-2}\right]^{\frac{1}{p}}\right\} \leqslant \\
& \leqslant C_{13}\left[\sum_{k=\left[\frac{n}{2}\right]}^{n} a_{k}^{p} k^{p-2}+\sum_{k=n+1}^{\infty} a_{k}^{p} k^{p-2}\right]^{\frac{1}{p}}=C_{13}\left[\sum_{k=\left[\frac{n}{2}\right]^{\infty}}^{a^{p}} k^{p-2}\right]^{\frac{1}{p}} \leqslant \\
& \leqslant C_{14}\left[\sum_{k=\left[\frac{n}{2}\right]^{\infty}}^{\left.\psi^{p}\left(\frac{1}{k+1}\right) k^{p-2}\right]^{\frac{1}{p}} \leqslant C_{15}\left[\sum_{k=\left[\frac{n}{2}\right]}^{\infty} \psi^{p}\left(\frac{1}{k}\right) k^{p-2}\right]^{\frac{1}{p}} \leqslant}\right. \\
& \leqslant C_{16 \psi_{1}}\left(\frac{1}{\left[\frac{n}{2}\right]+1}\right) \leqslant C_{17 \psi_{1}}\left(\frac{1}{n}\right) .
\end{aligned}
$$

Ako je $p=\infty_{\text {, }}$ tada prema osobini c) vrijedi

$$
E_{n}(\phi) C \leqslant\left\|\phi(x)-S_{n-1}(x, \phi)\right\| C \leqslant \sum_{v=n}^{\infty} a_{v} \leqslant C_{18} \sum_{v=n}^{\infty} \psi\left(\frac{1}{v}\right) \leqslant C_{19 \psi}\left(\frac{1}{n}\right) .
$$

Tako smo dokazali da vrijedi

$$
E_{n}(\phi)_{p} \leqslant C_{20} \psi_{1}\left(\frac{1}{n}\right),
$$

gdje pozitivna konstanta C_{20} ne zavisi od $n(n=1,2,3, \ldots)$.

Primjenjujući teoremu 2.2.3, tek dokazanu nejednakost i lemu 2.2.4, za k>o vrijedi

$$
\begin{align*}
\omega_{k}\left(\phi, \frac{1}{n}\right) & \leqslant \frac{C_{21}}{n^{k}} \sum_{\nu=1}^{n} \nu^{k-1} E_{v}(\phi) \\
& \leqslant \frac{C_{22}}{n^{k}} \sum_{\nu=1}^{n} \nu^{k-1} \psi_{1}\left(\frac{1}{v}\right) \leqslant C_{23} \psi_{1}\left(\frac{1}{n}\right) . \tag{10}
\end{align*}
$$

Za bilo koje $\delta(0<\delta \leqslant 1)$ postoji $n \geqslant 1$, takav da je

$$
\frac{1}{n+1}<\delta \leqslant \frac{1}{n} \text {. }
$$

Koristeći svojstva modula glatkosti i funkcije $\psi(\delta)$ dobijamo

$$
\begin{aligned}
& \omega_{k}(\phi, \delta)_{p} \leqslant \omega_{k}\left(\phi, \frac{1}{n}\right)_{p} \leqslant \omega_{k}\left(\phi, \frac{2}{n+1}\right)_{p} \leqslant \\
& \leqslant C_{24} \psi_{1}\left(\frac{2}{n+1}\right) \leqslant C_{25} \psi_{1}\left(\frac{1}{n+1}\right) \leqslant C_{26} \psi_{1}(\delta)
\end{aligned}
$$

Tako smo dokazali da je

$$
\phi(x)_{E} H_{p}^{\psi_{1}} .
$$

Dokazaćemo da funkcija $\phi(x)$ ne pripada široj klasi od klase H_{p}^{ψ}. Zaista, za $p \varepsilon[2,+\infty)$, primjenjujuci teoremu 2.2.8, uslov b) i osobine funkcije $\psi(\delta)$ dobijamo

$$
\begin{aligned}
& E_{n}(\phi) \\
& p \geqslant C_{27}\left\{\sum_{v=2 n}^{\infty} a_{v}^{p} \nu^{p-2}\right\}^{\frac{1}{p}} \geqslant C_{28}\left\{\sum_{\nu=2 n}^{\infty} \psi^{p}\left(\frac{1}{v}\right) v^{p-2}\right\}^{\frac{1}{p}} \geqslant \\
& \geqslant C_{29 \psi_{1}\left(\frac{1}{2 n}\right) \geqslant C_{30 \psi_{1}}\left(\frac{1}{n}\right) .}
\end{aligned}
$$

Za $p=\infty$, koristeći teoremu 2.2.7, uslove d) i c) dobijamo $E_{n}(\phi) C \geqslant C_{31} \sum_{\nu=2 n}^{\infty} a_{\nu} \geqslant C_{32} \sum_{\nu=2 n}^{\infty} \psi\left(\frac{1}{v}\right) \geqslant C_{33 \psi_{1}}\left(\frac{1}{2 n}\right) \geqslant C_{34 \psi_{1}}\left(\frac{1}{n}\right)$.

Tako je dokazana tačnost nejednakosti

$$
E_{n}(\phi)_{p} \geqslant C_{35} \psi_{I}\left(\frac{1}{n}\right) .
$$

Iz te nejednakosti i teoreme 2.2.3, slijedi da je

$$
\omega_{k}\left(\phi, \frac{1}{n}\right)_{p} \geqslant C_{36} E_{n}(\phi)_{p} \geqslant C_{37 \psi_{1}}\left(\frac{1}{n}\right) .
$$

Iz posljednje nejednakosti i nejednakosti (10) slijede nejednakosti

$$
C_{38} \psi_{1}\left(\frac{1}{n}\right) \leqslant \omega_{k}\left(\phi, \frac{1}{n}\right)_{p} \leqslant C_{39 \psi_{1}}\left(\frac{1}{n}\right)
$$

Za bilo koje $\delta(0<\delta \leqslant 1)$ postoji $n \geqslant 1$ takvo da je

$$
\frac{1}{n+1}<\delta \leqslant \frac{1}{n}
$$

Korištenjem osobina modula glatkosti i funkcije $\psi(\delta)$ za $\delta \varepsilon(0,1]$ dobija se da je

$$
\omega_{k}(\phi, \delta)_{p} \asymp \psi_{1}(\delta)
$$

I tako je dokazano, da uz pretpostavke teoreme postoji funkcija $f(x)$ takva da je

$$
\begin{aligned}
& E_{n}(f)_{p} \simeq e^{-n \delta_{\psi}\left(\frac{1}{n}\right)} \\
& \omega_{k}(\phi, \delta)_{p} \simeq \psi_{1}(\delta) \quad \text { za } \delta \varepsilon(0,1] .
\end{aligned}
$$

Prema tome, funkciia $\phi(x)$ pripada klasi $H_{p}^{\psi_{I}}$ i ne pripada široj klasi, što znači da se tvrdjenje teoreme ne može poboljšati na cijeloj klasi funkcija $5^{\delta_{H}}{ }_{p}{ }^{1}$.
§3. POTREBNI I DOVOLJNI USLOVI PRIPADANJA KLASI E ${ }^{\delta} H_{E}^{\psi}$ ZA FUNKCIJE SA MONOTONIM ILI LAKUNARNIM FURIEROVIM KOEFICIJENTIMA

TEOREMA 3.3.1 Neka je $f(x) \varepsilon E \cap A_{2}, E \varepsilon A, \delta>0$. Neka funkcija $\psi(t)$ zadovoljava uslove
a) $\psi(t) \varepsilon M H(\sigma)$
b) $\sum_{\nu=n}^{\infty} \psi\left(\frac{1}{2^{\nu}}\right) \leqslant C_{1} \psi\left(\frac{1}{2^{n}}\right)$,
tada

$$
f(x) \in G^{\delta} H_{E}^{\psi}
$$

ako i samo ako za bilo koje $F \varepsilon A$ i $2^{m-1}<n \leqslant 2^{m}$ vrijedi nejednakost

$$
\begin{equation*}
E_{n}(£) F \leqslant \frac{C_{2}}{e^{2^{m}}} \cdot \psi\left(\frac{1}{2^{m}}\right) \tag{11}
\end{equation*}
$$

gdje pozitivne konstante C_{1} i C_{2} ne zavise od $n(n=1,2,3, \ldots)$.

DOKAZ. Neka je $f(x) \in E^{\delta} H_{E}^{\psi}$. Koristeći jednakost

$$
S_{n-1}(x, F)=S_{2 \mathbb{m}_{1}}(x, f)=K_{2 \mathbb{m}_{1}}(x)
$$

i lemu 2.2.1, dobijamo

$$
\begin{aligned}
E_{n}(f)_{F} & \leqslant\left\|f(x)-S_{m-1}(x, f)\right\|_{F}=\| f(x)-S_{2^{-\frac{m}{1}}}(x, f)_{F}= \\
& =\left\|f(x)-K_{2^{-m}}(x, f)\right\|_{F} \leqslant \frac{C_{3}}{e^{2^{m_{\delta}}} \psi\left(\frac{1}{2^{m}}\right)} .
\end{aligned}
$$

Neka je ispunjena nejednakost (11). Uzimajuci u obzir da za $2^{m-1}<n \leqslant 2^{m}$ vrijedi

$$
e^{-2^{m}} \psi\left(\frac{1}{2^{m}}\right) \leqslant C_{4} e^{-n \delta} \psi\left(\frac{1}{n}\right)
$$

to iz nejednakosti (ll) slijedi da je

$$
\begin{equation*}
E_{n}(f)_{F} \leqslant C_{5} e^{-n \delta} \psi\left(\frac{1}{n}\right) \tag{12}
\end{equation*}
$$

Prema lemi 2.2.3, zaključujemo da je funkcija $f(x+i y)$ ana1itička u pojasu $\Delta=\{-\infty<x<+\infty,|y|<\delta\}$.

Dokažimo da se funkcija $f(x)$ može predstaviti u obliku (1.2.1). Iz tačnosti nejednakosti (11) i leme 2.2.5, slijedi procjena

Tada prema nejednakosti (2.1.4) vrijedi

$$
\begin{aligned}
& \left|A_{-2}{ }^{v}(y)\right|=\left|A_{2}{ }^{v}(Y)\right| \leqslant C_{8} \ddagger\left(\frac{I}{2 v}\right) \\
& \text { Koristeći tek dokazanu procjenu za }\left|A_{2 v}(y)\right| \text { i uslov }
\end{aligned}
$$

b) dobijamo

$$
\begin{aligned}
& \left\|_{Y} \phi_{Y}(x)\right\|_{C} \leqslant \sum_{v=0}^{\infty}\left[\|_{-2}(y)\left|+\left|A_{2}(y)\right|\right] \leqslant C_{9} \sum_{v=0}^{\infty} \psi\left(\frac{1}{2}\right) \leqslant\right. \\
& \leqslant C_{10} \psi(1) \\
& \text { tj. } \phi_{Y}(x) \varepsilon C . \\
& I \text { tako za bilo koje } y(|y|<\delta) \text { vrijedi }
\end{aligned}
$$

$$
\left\|\phi_{Y}(x)\right\| c \leqslant M
$$

gdje je M pozitivna konstanta koja ne zavisi od y. A to znači (V. [1], str. 150.), da postoji granična funkcija $\phi(x) \varepsilon C$ a samim tim $i \phi(x) \varepsilon L_{p}$, takva da se $f(x)$ može predstaviti u obliku (1.2.1).

Iz činjenice da se funkcija $f(x)$ može prikazati u obliku (1.2.1), procjene za $\left|c_{2_{v}}\right|$ i nejednakosti (2.1.5) slijedi da je $\phi(x) \varepsilon \Lambda_{2}$ i da je

$$
\left|b_{2 v}\right| \leqslant c_{10} \psi\left(\frac{1}{2 v}\right) .
$$

Dokazaćemo da granična funkcija $\phi(x)$ pripada klasi H_{E}^{ψ}. Zaista, koristeci osobine najbolje aproksimacije, procjenu $z a\left|b_{2}\right|$ i uslov b) dobićemo da za $2^{m-1}<n \leqslant 2^{m}$ vrijedi
$E_{n}(\phi)_{E} \leqslant E_{2^{m-1}}(\phi)_{E} \leqslant C_{11}\left\|\phi(x)-S_{2^{m-1}}(x, \phi)\right\|_{C} \leqslant$
$\leqslant C_{11} \sum_{v=m-1}^{\infty}\left|b_{2}\right| \leqslant C_{12} \sum_{v=m-1}^{\infty} \psi\left(\frac{1}{2^{v}}\right) \leqslant C_{13} \psi\left(\frac{1}{2^{m-1}}\right) \leqslant$
$\leqslant \quad C_{14} \psi\left(\frac{1}{2^{m}}\right) \leqslant C_{15} \psi\left(\frac{1}{n}\right)$.

I tako je dokazano da uz pretpostavke teoreme vrijedi nejednakost

$$
E_{n}(\phi)_{E} \leqslant C_{15} \psi\left(\frac{1}{n}\right)
$$

gdje pozitivna konstanta C_{15} ne zavisi od $n(n=1,2,3, \ldots)$.

Prema teoremi 2.2.3, tek dokazanoj nejednakosti i
lemi 2.2.4 za k>o vrijedi

$$
\begin{aligned}
& \omega_{k}\left(\phi, \frac{1}{n}\right) \leqslant \frac{C_{16}}{n^{k}} \sum_{\nu=1}^{n} v^{k-1_{E}}(\phi) \\
& \leqslant \\
& \leqslant \frac{C_{17}}{n^{k}} \sum_{v=I}^{n} v^{k-1} \psi\left(\frac{1}{v}\right) \leqslant C_{18} \psi\left(\frac{1}{n}\right)
\end{aligned}
$$

gdje pozitivna konstanta C_{18} ne zavisi od $n(n=1,2,3, \ldots)$. Tada koristéci činjenicu da za bilo koje $\delta \varepsilon(0,1]$ postoji $n \geqslant 1$ takvo da je

$$
\frac{1}{n+1}<\delta \leqslant \frac{1}{n}
$$

Prema osobinama modula glatkosti i funkcije $\psi(:)$ dobijamo da je

$$
\begin{aligned}
\omega_{k}(\phi, \delta)_{E} & \leqslant \omega_{k}\left(\phi, \frac{1}{n}\right)_{E} \leqslant \omega_{k}\left(\phi, \frac{2}{n+1}\right) \leqslant \\
& \leqslant C_{19} \psi\left(\frac{2}{n+1}\right) \leqslant C_{20} \psi\left(\frac{1}{n+1}\right) \leqslant C_{21} \psi(\delta)
\end{aligned}
$$

gdje pozitivna konstanta C_{21} ne zavisi od $n(n=1,2,3, \ldots)$. A to znači da funkcija $\phi(x)$ pripada klasi H_{E}^{ψ}. Teorema je dokazana.

Primijetimo da je desna strana nejednakosti (12) veća od desne strane nejednakosti (11). Zbog toga je procjena (ll) bolja od procjene (12), tj. za funkciju $f(x)$ sa lakunarnim Furierovim koeficijentima, teorema 3.3.1 poboljšava tvrdjenje teoreme 3.1.1.

TEOREMA 3.3.2 Neka je

$$
f(x) \sim \frac{d_{0}}{2}+\sum_{v=1}^{\infty} d_{v} \cos v x
$$

gdje je

$$
\mathrm{d} v \frac{\mathrm{e}^{\delta v_{+}} \mathrm{e}^{-\delta v}}{2}+0
$$

Neka je funkcija $\psi(t)$ takva da vrijedi:
a) $\psi(t) \varepsilon \mathrm{MH}(\sigma)$,
b) $\quad\left\{\sum_{v=n}^{\infty} \frac{1}{v} \psi^{p}\left(\frac{1}{v}\right)\right\}^{\frac{1}{p}} \leqslant C_{1} \psi\left(\frac{1}{n}\right), p \varepsilon(1,+\infty)$,
tada je

$$
f(x) \varepsilon b^{\delta_{H}}{ }_{p}^{\psi}
$$

ako i samo ako za bilo koje EعA vrijedi nejednakost

$$
E_{n}(f)_{E} \leqslant \frac{C_{2}}{e^{n \delta_{n} 1-\frac{1}{2}}} \psi\left(\frac{1}{n}\right),
$$

gdje pozitivna konstanta C_{2} ne zavisi od $n(n=1,2,3, \ldots)$.

DOKAZ. Neka je $f(x) \varepsilon 5^{\delta} H_{p}^{\psi}$, tj. $f(x)$ može biti prikazana u obliku (1.2.1), gdje je $\phi(x) \varepsilon H_{p}{ }_{p}$, tada $a_{v} \neq 0$. Koristeci teoremu 2.2.3 i definiciju klase H_{p}^{ψ} dobijamo

$$
E_{n}(\phi)_{p} \leqslant C_{3} \omega_{k}\left(\phi, \frac{1}{n}\right)_{p} \leqslant C_{4} \psi\left(\frac{1}{n}\right) .
$$

Kako je $p \varepsilon(1,+\infty)$, to za monotono opadajuće koeficijente a_{n} vrijedi nejednakost (9). Prema toj nejednakosti, teoremi 2.2.8, procjeni za $E_{n}(\phi)$ piosobinama funkcije

$$
\begin{align*}
& \psi(t) \in M H(\sigma) \text { imamo } \\
& a_{n} n^{1-\frac{1}{p}} \leqslant C_{5}\left[\sum_{\nu=\left[\frac{n}{2}\right]}^{\sum_{n}} a_{v}^{p} v^{p-2}\right]^{\frac{1}{p}} \leqslant C_{6}^{E}\left[\frac{n}{2}\right] \\
& a_{n} \leqslant \frac{C_{8}}{n^{1-\frac{1}{p}}} \psi\left(\frac{1}{n}\right) \tag{13}
\end{align*}
$$

Kako se funkcija $f(x)$ može prikazati u obliku (1.2.l), to prema nejednakostima (2.1.5), (13) i svojstvima funkcije $\psi(t)$ za bilo koje E\&A vrijedi

$$
\begin{aligned}
E_{n}(f) & \leqslant\left\|f(x)-S_{n-1}(x, f)\right\|_{E} \leqslant C_{9}\left\|f(x)-S_{n-1}(x, f)\right\|_{C} \leqslant \\
& \leqslant C_{9} \sum_{v=n}^{\infty} d_{v} \leqslant C_{10} \sum_{\nu=n}^{\infty} e^{-v \delta_{n}} a_{v} \leqslant C_{11} \sum_{\nu=n}^{\infty} e^{-v \delta}{ }_{\nu}^{\frac{1}{p}-1} \psi\left(\frac{1}{v}\right) \leqslant \\
& \leqslant C_{12} n^{\frac{1}{p}-1} \psi\left(\frac{1}{n}\right) \sum_{v=n}^{\infty} e^{-v \delta} \leqslant C_{13} \frac{1}{e^{n \delta_{n} 1-\frac{1}{p}} \psi\left(\frac{1}{n}\right)} .
\end{aligned}
$$

Neka za neko EqA vrijedi nejednakost

$$
\begin{equation*}
E_{n}(f)_{E} \leqslant C_{13} \frac{1}{e^{n \delta_{n} 1-\frac{1}{p}}} \psi\left(\frac{1}{n}\right) . \tag{14}
\end{equation*}
$$

Na osnovu leme 2.2.3, utvrdjujemo da je funkcija $f(x+i y)$ analitička u pojasu $\Delta=\{-\infty<x<+\infty,|y|<\delta\}$.

Dokazaćemo da se funkcija $f(x)$ može prikazati u obliku (1.2.1). Zaista, prema lemi 2.2.2 i nejednakostima (14) vrijedi

$$
\left|c_{v}\right| \leqslant C_{14} E_{|v|}^{(f)} E \leqslant \frac{C_{15}}{e^{|v| \delta}|v|^{\frac{1}{p}-1} \psi\left(\frac{1}{|v|}\right)}
$$

Tada iz nejednakosti (2.1.4) slijedi

$$
\left|\mathrm{A}_{v}(y)\right| \leqslant C_{15}|v|^{\frac{1}{\mathrm{p}}-1} \psi\left(\frac{1}{|v|}\right)
$$

Poznato je (V.T. 2.2.2) da za bilo koje $p_{\varepsilon}(1,+\infty)$ i $F(x) \in L_{p}$ vrijedi nejednakost

$$
\left\|F(x)-S_{n-1}(x, F)\right\|_{p} \leqslant C_{1} E_{n}(F)_{p}
$$

Neka je $F(x)=\phi_{Y}(x), n=1, S_{o}\left(x, \phi_{Y}\right)=\frac{A_{O}(y)}{2}$.

Tada vrijedi

$$
\begin{gathered}
\left\|\phi_{Y}(x)-\frac{A_{0}(y)}{2}\right\|_{p} \leqslant C_{1} E_{1}\left(\phi_{Y}\right)_{p} \\
\left\|\phi_{y}(x)\right\|_{p} \leqslant \phi_{Y}(x)-\frac{A_{O}(y)}{2} \|_{p}+(2 \pi)^{\frac{1}{P}} \frac{A_{0}(y)}{2} \leqslant \\
\leqslant C_{2}\left[E_{1}\left(\phi_{Y}\right)_{p}+A_{0}(y)\right] \leqslant C_{3}\left[E_{1}\left(\phi_{Y}\right)+\|f\|_{p}\right]
\end{gathered}
$$

Kako je $c_{o}(f)=A_{o}(y) i\left|c_{o}(f)\right| \leqslant \frac{1}{2 \pi} \int_{0}^{2 \pi}|f(x)| d x=\frac{1}{2 \pi}\|f\|_{L_{1}}$
to je $A_{0}(y)<M$. Dokazacemo ograničenost za $E_{1}\left(\phi_{Y}\right)_{p}$.

U Lemi 2.2.13 je dokazano da koeficijenti $A_{v}(y)$ zadovoljavaju uslov

$$
A_{0}(y) \geqslant A_{1}(y) \geqslant A_{2}(y) \geqslant \ldots, A_{v}(y) \rightarrow 0 \quad \text { za } v \rightarrow \infty,|y| \leqslant \delta .
$$

Ako je pe $(1,+\infty)$, tada za monotono opadajuce koeficijente $A_{n}(y)$ vrijedi nejednakost (9).

Primjenjujuki teoremu 2.2.8, nejednakosti (9) i (13) i osobine funkcije $\psi(\delta)$ dobijamo $E_{n}(\phi) p_{p} \leqslant\left\|\phi(x)-S_{n-1}(x, \phi)\right\|_{p} \leqslant C_{7}\left\{a_{n} n^{1-\frac{1}{p}}+\left[\sum_{v=n+1}^{\infty} a_{v}^{p} \nu^{p-2}\right]^{\frac{1}{p}}\right\} \leqslant$

$$
\begin{aligned}
& \left.\leqslant C_{8}\left\{\left[\sum_{v=\left[\sum^{n}\right.}^{n}\right]^{n} a_{v}^{p}{ }_{v}^{p-2}\right]^{\frac{1}{p}}+\left[\sum_{v=n+1}^{\infty} a_{v}^{p} v^{p-2}\right]^{\frac{1}{p}}\right\} \leqslant C_{9}\left[\sum_{v=\left[\frac{n}{2}\right]}^{\infty} a_{v}^{p} v^{p-2}\right]^{\frac{1}{p}} \leqslant \\
& \leqslant C_{10}\left[\sum_{\left.v=\left[\frac{n}{2}\right]^{\frac{1}{v}} \psi^{p}\left(\frac{1}{v}\right)\right]^{\frac{1}{p}} \leqslant C_{11} \psi\left(\frac{1}{n}\right)} .\right.
\end{aligned}
$$

Tako je dokazano da uz pretpostavke teoreme vrijedi nejednakost

$$
E_{n}(\phi)_{p} \leqslant C_{25} \psi\left(\frac{1}{n}\right)
$$

gdje pozitivna konstanta C_{25} ne zavisi od $n(n=1,2, \ldots)$.

Tada prema teoremi 2.2.3, procjeni za $E_{n}(\phi){ }_{p}$, lemi 2.2.4 za k>0 vrijedi

$$
\begin{aligned}
& \omega_{k}\left(\phi, \frac{1}{n}\right) p \leqslant \frac{C_{26}}{n^{k}} \sum_{v=1}^{n} v^{k-1} E_{v}(\phi) p_{p} \leqslant \\
& \quad \leqslant \frac{C_{27}}{n^{k}} \sum_{v=1}^{n} v^{k-1} \psi\left(\frac{1}{v}\right) \leqslant C_{28} \psi\left(\frac{1}{n}\right) .
\end{aligned}
$$

za bilo koje $\delta(0<\delta \leqslant 1)$ postoji $n \geqslant 1$ takvo da je

$$
\frac{1}{\mathrm{n}+1}<\delta \leqslant \frac{1}{\mathrm{n}}
$$

Koristeci svojstva modula glatkosti i funkcije $\psi(\delta)$ očito vrijedi

$$
\begin{aligned}
\omega_{k}(\phi, \delta)_{p} & \leqslant \omega_{k}\left(\phi, \frac{1}{n}\right)_{p} * \omega_{k}\left(\phi, \frac{2}{n+1}\right)_{p} \leqslant \\
& \leqslant C_{29} \psi\left(\frac{2}{n+1}\right) \leqslant c_{30} \psi\left(\frac{1}{n+1}\right) \leqslant c_{31} \psi(\delta) .
\end{aligned}
$$

A to znači da je

$$
\phi(x)_{\varepsilon} H_{p}^{\psi} .
$$

Teorema je dokazana.
§ 4. DODATNI REZULTATI OBRNUTOJ TEOREMI

TEOREMA 3.4.1 Neka je $f(x) \in E,(E \varepsilon A), \psi(t) \in M H(\sigma)$,
$\delta>0$. Ako vrijedi nejednakost

$$
E_{n}(f)_{E} \leqslant \frac{C_{1}}{e^{n \delta}} \psi\left(\frac{1}{n}\right)
$$

gdje pozitivna konstanta C_{1} ne zavisi od $n(n=1,2,3, \ldots)$, i ako postoje kroj $p \varepsilon[2,+\infty]$ i funkcija $\psi_{l}(\delta)$ takvi da je:
a) $\psi_{1}(\delta)_{\varepsilon} \mathrm{MH}\left(\sigma_{1}\right)$,
b) $\left.\quad \sum_{v=n}^{\infty} \psi^{p}\left(\frac{1}{v}\right) \nu^{p-2}\right\}^{\frac{1}{p}} \leqslant C_{2} \psi_{1}\left(\frac{1}{n}\right) \quad$ za $2 \leqslant p<\infty$,
c) $\sum_{\nu=n}^{\infty} \psi\left(\frac{1}{v}\right) \leqslant C_{2} \psi_{1}\left(\frac{1}{n}\right) \quad$ za $p=\infty$,
gdje pozitivna konstanta C_{2} ne zavisi od $n(n=1,2, \ldots)$, tada za bilo koje $p_{1} \varepsilon[2, p]$ vrijedi

$$
\mathrm{f}(\mathrm{x}) \varepsilon \delta^{\delta} \mathrm{H}_{\mathrm{p}_{1}}^{\psi_{2}}
$$

gdje je

$$
\psi_{2}(\delta)=\psi_{1}(\delta) \delta^{\frac{1}{p_{1}}-\frac{1}{p}}
$$

DOKAZ. Ponavljajući dokaz teoreme 2.1 utvrdjujemo da je funkcija $f(x+i y)$ analitička u pojasu $\Delta=\{-\infty<x<+\infty,|y|<\delta\}$, i da postoji njena granična funkcija $\phi(x)$ takva da se funkcija $f(x)$ može predstaviti u obliku (1.2.1).

Dokazacemo da granična funkcija $\phi(x)$ pripada klasi $H_{p_{1}}^{\psi}$.

Neka je $2 \leqslant p_{1}<p<\infty$ (slučaj $p_{1}=p$ razmatran je
u teoremi 2.1). Prema teoremi Peli (V. [18], str. 202) i nejednakosti (8) vrijedi

$$
\begin{aligned}
& E_{n}^{p_{1}(\phi) p_{1} \leqslant\left\|\phi(x)-S_{n-1}(x, \phi)\right\|_{p_{1}}^{p_{1}} \leqslant C_{3}\left(\underset{|v|^{\Sigma} \mid \geqslant n}{ }\left|\alpha_{v}\right|^{p_{1}}|v|^{p_{1}-2}\right) \leqslant} \\
& \leqslant C_{4}\left[\sum_{\nu=n}^{\infty} \psi \psi^{p}\left(\frac{1}{v}\right) v^{p_{1}-2}\right]=C_{4}\left(\sum_{v=n}^{\infty}\left[\psi\left(\frac{1}{v}\right) v^{\left.1-\frac{2}{p}\right]^{p}} \cdot \frac{1}{v^{2\left(1-\frac{p}{p}\right)}}\right) .\right.
\end{aligned}
$$

Primjenjujuci Helderovu nejednakost sa eksponentom $\frac{p}{p_{1}}>1$

$$
\begin{aligned}
& \text { vrijedi } \\
& \qquad p_{n}(\phi) p_{1} \leqslant C_{4}\left[\sum_{v=n}^{\infty} \psi^{p}\left(\frac{1}{v}\right) v^{p-2}\right]^{\frac{p_{1}}{p}}\left[\sum_{\nu=n}^{\infty} \frac{1}{p^{2\left(1-\frac{p_{1}}{p}\right) p^{\prime}}}\right]^{\frac{1}{p^{\prime \prime}}},
\end{aligned}
$$

gdje je $\frac{l}{p^{\prime \prime}}=1-\frac{P_{1}}{P}$.

Odakle je

$$
\begin{aligned}
& E_{n}^{p_{1}}(\phi) p_{1} \leqslant C_{5}\left[\sum_{\nu=n}^{\infty} \psi^{p}\left(\frac{1}{v}\right) v^{p-2}\right]^{\frac{p^{\prime}}{p}} \cdot \frac{1}{n^{1 / p^{\prime}}}= \\
& =C_{5}\left[\sum_{v=n}^{\infty} \psi^{p}\left(\frac{1}{v}\right)_{v}^{p-2}\right]^{\frac{p^{\prime}}{p^{\prime}}} \frac{1}{n^{1-n_{1} / p}} \leqslant C_{6} \psi_{1}^{p_{1}}\left(\frac{1}{n}\right) \cdot \frac{1}{n^{1-p_{1} / \underline{p}}}= \\
& =C_{6}\left[\psi_{1}\left(\frac{1}{n}\right) \cdot \frac{1}{n^{1 / p_{1}-1 / p}}\right]^{p_{1}} \text {, }
\end{aligned}
$$

tj.

$$
E_{n}(\phi)_{p_{1}} \leqslant C_{7} \psi_{1}\left(\frac{1}{n}\right) \cdot \frac{1}{n^{1 / p_{1}-1 / p}}=C_{7} \psi_{2}\left(\frac{1}{n}\right) .
$$

Neka je $p=\infty$ i $2 \leqslant p_{1}<\infty$. Tada prema teoremi Peli, nejednakosti (8) i uslovu c) za $\psi(\delta)$ vrijedi

$$
\begin{aligned}
& E_{n}(\phi) p_{1} \leqslant\left\|\phi(x)-S_{n-1}(x, \phi)\right\|_{0_{1}} \leqslant C_{8}\left(\sum_{\nu \mid \geqslant n}^{\sum}\left|\alpha_{v}\right|^{p_{1}}|\nu|^{p_{1}-2}\right)^{\frac{1}{p_{1}}} \leqslant \\
& \left.\leqslant C_{9}\left[\sum_{v=n}^{\infty} \psi^{p_{1}}\left(\frac{1}{v}\right) \nu^{p_{1}-2}\right]^{\frac{1}{n}} \leqslant C_{9} \underset{\xi=\left[\sum_{g_{2}}\right]}{\infty} \sum_{\nu=2^{\xi}}^{2^{\xi+1}} p_{1}\left(\frac{1}{v}\right) v^{p_{1}-2}\right]^{\frac{1}{p_{1}}} \leqslant \\
& \leqslant C_{10}\left[\sum_{\xi=\left[1 q_{2} n\right]}^{\infty} \psi^{p_{1}}\left(\frac{1}{2^{\xi}}\right) 2^{\xi\left(p_{1}-1\right)}\right]^{\frac{1}{p_{1}}} \leqslant \frac{C_{10}}{n^{1 / p_{1}}}\left[\sum_{\xi=\left[1 \sigma_{2} n\right]}^{\infty} \psi^{p_{1}}\left(\frac{1}{2^{\xi}}\right) 2^{\xi^{p}}\right]^{\frac{1}{p_{1}}} \leqslant \\
& \left.\leqslant \frac{C_{10}}{n^{1 / P_{1}}} \sum_{\xi=\left[\lg _{2} n\right] .}^{\infty} \psi\left(\frac{1}{2^{\xi}}\right) \cdot 2^{\xi_{\leqslant} \leqslant} \frac{C_{10}}{n^{l / P_{1}}} \sum_{v}^{\infty}=\alpha_{-}^{l} g_{2} n\right] \psi\left(\frac{1}{v}\right) \leqslant \\
& \leqslant \frac{C_{11}}{n^{1 / p_{1}}} \psi\left(\frac{1}{2^{\frac{F}{1}} g_{2}^{n]}}\right) \leqslant \frac{C_{12}}{n^{1 / p_{1}}} \psi\left(\frac{1}{n}\right) .
\end{aligned}
$$

Koristeći teoremu 2.2.3, tek dokazanu nejednakost i lemu 2.2.4 za k>o vrijedi

$$
\begin{gathered}
\omega_{k}\left(\phi, \frac{1}{n}\right) p_{1} \leqslant \frac{C_{13}}{n^{k}} \sum_{v=1}^{n} v^{k-1} E_{v}(\phi) p_{1} \leqslant \frac{C_{14}}{n^{k}} \sum_{v=1}^{n} v^{k-1} \psi_{2}\left(\frac{1}{v}\right) \leqslant \\
\leqslant C_{15} \psi_{2}\left(\frac{1}{n}\right) .
\end{gathered}
$$

Za bilo koje $\delta(0<\delta \leqslant 1)$ postoji $n \geqslant l$ takav da je

$$
\frac{1}{n+1}<\delta \leqslant \frac{1}{n}
$$

Koristeci osobine modula glatkosti i funkcije $\psi_{2}(t)$
vrijedi

$$
\begin{aligned}
\omega_{k}(\phi, \delta) p_{1} & \leqslant \omega_{k}\left(\phi, \frac{1}{n}\right) p_{1} \leqslant \omega_{k}\left(\phi, \frac{2}{n+1}\right) p_{1} \leqslant \\
& \leqslant C_{16} \psi_{2}\left(\frac{2}{n+1}\right) \leqslant C_{17} \psi_{2}\left(\frac{1}{n+1}\right) \leqslant c_{18} \psi_{2}(\delta) .
\end{aligned}
$$

A to znači da je

$$
\phi(x) \varepsilon_{H_{p_{1}}}^{\psi_{2}}
$$

Teorema je dokazana.

TEOREMA 3.4.2 Neka je $f(x) \varepsilon E$, ($\varepsilon_{\varepsilon A)}$) $\psi(\delta) \varepsilon M H(\sigma)$, $\delta>0$. Ako vrijedi nejednakost

$$
E_{n}(f)_{E} \leqslant \frac{C_{1}}{e^{n \delta} \psi\left(\frac{1}{n}\right)}
$$

gdje pozitivna konstanta C_{1} ne zavisi od $n(n=1,2,3, \ldots)$ i ako postoji funkcija $\psi_{1}(\delta)$ takva da je:
a) $\psi_{1}(\delta) \in \mathrm{MH}\left(\sigma_{1}\right)$,
b) $\left\{\sum_{\nu=n}^{\infty} \psi^{2}\left(\frac{1}{v}\right)\right\}^{\frac{1}{2}} \leqslant C_{2} \psi_{1}\left(\frac{1}{n}\right)$,
gdje pozitivna konstanta C_{2} ne zavisi od $n(n=1,2,3, \ldots)$, tada je

$$
f(x) \varepsilon E^{\delta} H_{H_{1}}^{\psi_{1}}
$$

za bilo koje E_{1} takvo da je $L_{2} \subset E_{1}$.

DOKAZ. Kao i u teoremi 2.1 utvrdjujemo da je funkcija $f(x+i y)$ analitička u pojasu $\Delta=\{-\infty<x<+\infty,|y|<\delta\}$, i da se funkcija $f(x)$ može predstaviti u obliku (1.2.1). Dokazaćemo da granična funkcija $\phi(x)$ pripada klasi $H_{E_{1}}^{\psi_{1}}$.

Iz činjenice da je prostor L_{2} uložen u prostor E_{1}, Parsevalove jednakosti, nejednakosti (8) i uslova b) slijedi

$$
\begin{aligned}
E_{n}(\phi) E_{1} & \left.\leqslant C_{3} E_{n}(\phi) L_{2} \leqslant\left(\sum_{\nu \mid=n}^{\infty} \alpha_{\nu}{ }^{2}\right)^{\frac{1}{2}} \leqslant C_{4} \sum_{\nu=n}^{\infty} \psi^{2}\left(\frac{1}{v}\right)\right]^{\frac{1}{2}} \leqslant \\
& \leqslant C_{5} \psi_{1}\left(\frac{1}{n}\right) .
\end{aligned}
$$

Tada, prema teoremi 2.2.3, lemi 2.2.4, za bilo koje k>o vrijedi

$$
\begin{aligned}
\omega_{k}\left(\phi, \frac{1}{n}\right)_{E_{1}} & \leqslant \frac{C_{6}}{n^{k}} \sum_{\nu=1}^{n} \nu^{k-1} E_{\nu}(\phi) E_{1} \leqslant \\
& \leqslant \frac{C_{7}}{n^{k}} \sum_{\nu=1}^{n} \nu^{k-1} \psi_{1}\left(\frac{1}{v}\right) \leqslant C_{8} \psi_{1}\left(\frac{1}{n}\right) .
\end{aligned}
$$

Za bilo koje $\delta(0<\delta \leqslant 1)$ postoji $n \geqslant 1$ takvo da je

$$
\frac{1}{n+1}<\delta \leqslant \frac{1}{n}
$$

Koristeci svojstva modula glatkosti i funkcije $\psi_{1}(\delta) \varepsilon M H\left(\sigma_{1}\right)$ dobija se

$$
\begin{aligned}
\omega_{k}(\phi, \delta) E_{1} & \leqslant \omega_{k}\left(\phi, \frac{1}{n}\right) E_{1} \leqslant \omega_{k}\left(\phi \frac{2}{n+1}\right)_{E_{1}} \leqslant \\
& \leqslant C_{9} \psi_{1}\left(\frac{2}{n+1}\right) \leqslant C_{10} \psi_{1}\left(\frac{1}{n+1}\right) \leqslant C_{11} \psi_{1}(\delta) .
\end{aligned}
$$

A to znači da je

$$
f(x) \varepsilon E^{\delta} H_{E}^{\psi} 1
$$

Teorema je dokazana.
GLAVA IV

DIREKTNE I OBRNUTE TEOREME APROKSIMACIJA ZA FUNKCIJE IZ KLASE $\sigma^{\delta} B_{E \ominus}^{\psi}$

§1. DIREKTNE TEOREME APROKSIMACIJE ZA FUNKCIJE IZ KLASE $E^{\delta} B_{E \theta}^{\psi}$

$$
\begin{aligned}
& \text { TEOREMA 4.1.l Neka je } f(x) \varepsilon E^{\delta} B_{E \theta}^{\psi} \text { tada vrijedi } \\
& \left\{\sum_{\nu=1}^{\infty} \frac{e^{\nu \delta \theta} 1}{\nu \psi^{\theta} 1}\left(\frac{1}{v}\right)\right. \\
& \left.E_{v}^{\theta}(f)_{F}\right\}^{\frac{1}{\theta} 1}<\infty
\end{aligned}
$$

za bilo koje $\mathrm{F}_{\varepsilon} A$ i $\theta_{1} \varepsilon[\theta,+\infty)$.

DOKAZ. Neka je $f(x) \varepsilon E^{\delta} B_{E_{\ominus}}^{\psi}$ tj. neka se $f(x)$ može predstaviti u obliku (1.2.1). Prema lemi 2.2.1 za bilo koje F_{ε} A vrijedi

$$
E_{V}(f)_{F} \leqslant \frac{C_{1}}{e^{v \delta}} E_{V}(\phi) E
$$

gdje pozitivna konstanta C_{1} ne zavisi od $f, \phi, v \quad(v=1,2, \ldots)$.

Primjenjujuci tu nejednakost, lemu 2.2.12, teoremu Džeksona (T. 2.2.3), lemu 2.2.8 i definiciju klase $B_{E \theta}^{\psi}$ dobiće se nejednakosti

$$
\begin{aligned}
& \left\{\sum_{\nu=1}^{\infty} \frac{e^{\nu \delta \theta_{1}}}{\nu \psi^{\theta} 1\left(\frac{1}{v}\right)} E_{\nu}^{\theta^{\theta}}(f)_{F}\right\}^{\frac{1}{\theta_{1}}} \leqslant C_{2}\left\{\sum_{v=1}^{\infty} \frac{1}{\nu \psi^{\theta}\left(\frac{1}{v}\right)} E_{\nu}^{\theta}{ }^{\theta}(\phi)\right\}^{\frac{1}{\theta_{1}}} \leqslant \\
& \leqslant C_{3}\left\{\sum_{v=1}^{\infty} \frac{1}{v \psi^{\theta}\left(\frac{1}{v}\right)} E_{v}^{\theta}(\phi)_{E}\right\}^{\frac{1}{\theta}} \leqslant C_{4}\left\{\sum_{v=1}^{\infty} \frac{1}{v} \frac{\omega_{k}^{\theta}\left(\phi, \frac{1}{v}\right) E_{2}}{\psi^{\theta}\left(\frac{1}{v}\right)}\right\}^{\frac{1}{\theta}} \leqslant \\
& \leqslant C_{5}\left\{\int_{0}^{\int^{1}}\left[\frac{\omega_{k}(\phi, t)}{\psi(t)}\right]^{\theta} \frac{d t}{t}{ }^{\frac{1}{\theta}}<\infty .\right.
\end{aligned}
$$

Teorema je dokazana.

$$
\begin{aligned}
& \text { TEOREMA 4.1.2 Ako je } f(x) \varepsilon 5^{\delta} B_{E \ominus}^{\psi} \text {, tada je } \\
& \left\{\sum_{m=0}^{\infty}\left[\frac{e^{2^{m} \delta}}{\psi\left(\frac{1}{2^{m}}\right)} E_{2^{m}}(f)_{F}\right]_{i}^{\theta}\right\}^{\frac{1}{\theta_{1}}}<\infty,
\end{aligned}
$$

za bilo koje $F \varepsilon A$ i $\theta_{1} \varepsilon[\theta,+\infty)$. Tvrajenje teoreme se ne može
poboljšati za $\theta_{1}=0$ na cijeloj klasi funkcija $\sigma^{\delta} B_{E_{\theta}}^{\psi}$.

DOKAZ. Neka je $f(x) \varepsilon \sigma^{\delta} B_{E_{0}}^{\psi}, t j$. neka se $f(x)$ može predstaviti u obliku (l.2.1). Prema lemi 2.2.1 za bilo koje FeA vrijedi

$$
E_{V}(f)_{F} \leqslant \frac{C}{e^{v \delta}} E_{V}(\phi)_{E}
$$

gdje pozitivna konstanta C ne zavisi od f, ϕ i $v(v=1,2, \ldots)$.

Primjenjujuci tek navedenu nejednakost, teoremu 2.2.6, teoremu Džeksona (T.2.2.3), lemu 2.2.8 i definiciju klase $B_{E \ominus}^{\psi}$ dobija se
$\left\{\sum_{m=0}^{\infty}\left[\frac{e^{2^{m} \delta}}{\psi\left(\frac{l}{2^{m}}\right)} E_{2^{m}}(f)_{F}\right]^{\theta}\right\}^{\frac{1}{\theta_{1}}} \leqslant C_{1}\left\{\sum_{m=0}^{\infty}\left[\frac{1}{\psi\left(\frac{1}{2^{m}}\right)^{2}} E_{2^{m}}(\phi)_{E}\right]^{\theta_{1}}\right\}^{\frac{l}{\theta_{1}}} \leqslant$ $\leqslant C_{1}\left\{\sum_{m=0}^{\infty}\left[\frac{1}{\psi\left(\frac{1}{2^{m}}\right)} E_{2^{m}}(\phi) E\right]^{\theta}\right\}^{\frac{1}{\theta}} \leqslant C_{2}\left\{\sum_{m=0}^{\infty}\left[\frac{1}{\psi\left(\frac{1}{2^{m}}\right)} \omega_{k}\left(\phi, \frac{1}{2^{m}}\right)_{E}\right]^{\theta}\right\}^{\frac{1}{\theta}} \leqslant$
$\leqslant C_{3}\left\{\sum_{\nu=1}^{\infty} \frac{1}{{ }_{v \psi} \theta\left(\frac{1}{v}\right)} \omega_{k}\left(\phi, \frac{1}{v}\right)_{E}\right\}^{\frac{1}{\theta}} \leqslant C_{4}\left\{\int_{0}^{1}\left[\frac{\omega_{k}(\phi, t) E}{\psi(t)}\right]^{\theta} \frac{d t}{t}\right\}^{\frac{1}{\theta}}<\infty$.
Da se tvrdjenje teoreme ne može poboljšati slijedi
iz teoreme 4.3.1.

PRIMJEDBA. U ovom paragrafu smo dokazali dvije di-
rektne teoreme, teoremu 4.1.1 i teoremu 4.1.2. To je u vezi sa sljedećim: prema lemi 2.2.14, za funkcije sa lakunarnim Furierovim koeficijentima tvrdjenje teoreme 1 je slabije od tvrdjenja teoreme 2.
prema lemi 2.2.15, postoji klasa funkcija za koju su tvrdjenja teorema 1 i 2 identična. $Z b o g$ toga smo naveli dvije direktne teoreme.
§ 2. OBRNUTA TEOREMA APROKSIMACIJE ZA FUNKCIJE IZ KLASE $\sigma^{\delta} \mathrm{B}_{\mathrm{E} \theta}{ }^{\psi}$

TEOREMA 4.2.1 Neka je $f(x) \varepsilon E,\left(E_{\varepsilon A}\right), 0<\theta<\infty$, $\delta>0, \psi(t) \varepsilon M H(\sigma)$. Ako: l) vrijedi nejednakost

$$
\begin{equation*}
\left\{\sum_{v=1}^{\infty} \frac{e^{v \delta \theta}}{v \psi^{\theta}\left(\frac{1}{v}\right)} E_{v}^{\theta}(f)_{E}\right\}^{\frac{1}{\theta}}<\infty, \tag{1}
\end{equation*}
$$

2) Postoji broj p takav da je $p \varepsilon[2,+\infty]$ i $\theta \geqslant p^{\prime}$ gdje je $\frac{1}{\mathrm{p}}+\frac{1}{p^{\prime}}=1$, a funkcija $\quad \psi_{1}(t)=\psi(t) t^{\frac{1}{\mathrm{p}}-1}$ ima osobine
a) $\psi_{1}(t) \in \operatorname{MH}\left(\sigma_{1}\right)$,
b) $\left\{\sum_{v=1}^{n} \frac{1}{v \psi_{1}^{\theta}\left(\frac{1}{v}\right)}\right\}^{\frac{1}{\theta}}<\frac{C_{1}}{\psi_{1}\left(\frac{1}{n}\right)}$,
gdje pozitivna konstanta C_{1} ne zavisi od $n(n=1,2,3, \ldots)$, tada je

$$
f(x)_{\varepsilon E^{\delta}}^{\delta_{p}}{ }_{p \theta_{1}}^{\psi_{1}}
$$

za bilo koje $\theta_{1} \varepsilon[\theta,+\infty)$.

Tvrdjenje teoreme za $\theta_{1}=\theta$ nije moguce poboljšati na cijeloj klasi funkcija $E^{\delta} B_{p \theta}^{\psi l}$.

DOKAZ. Iz tačnosti nejednakosti (1), prema lemi
2.2.7, utvrdjujemo da se funkcija $f(x)$ može analitički produžiti u pojas $\Delta=\{-\infty<x<+\infty,|y|<\delta\}$.

Dokazacemo postojanje granične funkcije $\phi(x)$. Poznato je da za $p \varepsilon[1,+\infty]$ i $F(x) \varepsilon L_{p}$ vrijedi nejednakost

$$
\left\|F(x)-S_{n-1}(x, F)\right\|_{p} \leqslant C_{2} \log (n+2) E_{n}(F)_{p}
$$

Neka je $F(x)=\phi_{Y}(x), n=1, S_{o}\left(x, \phi_{Y}\right)=\frac{A_{0}(y)}{2}$,
tada je

$$
\begin{aligned}
& \left\|\phi_{Y}(x)-\frac{A_{O}(y)}{2}\right\|_{p} \leqslant C_{3} E_{1}\left(\phi_{Y}\right)_{p} \\
& \left\|\phi_{Y}(x)\right\|_{p} \leqslant\left\|\phi_{Y}(x)-\frac{A_{O}(y)}{2}\right\|_{p}+(2 \pi)^{\frac{1}{p}}\left|\frac{A_{O}(y)}{2}\right| \leqslant \\
& \leqslant C_{4}\left[E_{1}\left(\phi_{Y}\right)_{p}+\left|A_{O}(y)\right|\right] .
\end{aligned}
$$

kako je

$$
c_{0}(f)=A_{0}(Y) i
$$

$$
\left|c_{0}(f)\right| \leqslant \frac{1}{2 \pi} \int_{0}^{2 \pi}|f(x)| d x=\frac{1}{2 \pi} \| f_{L_{1}}^{\prime} \leqslant C_{i!}^{*} f_{i E}^{*},
$$

to je $\left|A_{o}(y)\right| \leqslant M$.

Dokazaćemo ograničenost za $E_{1}\left(\phi_{y}\right)$ p. Prema teoremi Hausdorfa-Janga (V. [18], str. 191.), teoremi 2.2.4, uslovu b) za $\psi(\delta)$, nejednakosti (2.2.6) i pretpostavci teoreme dobija se

$$
\begin{aligned}
& E_{1}^{\theta}\left(\phi_{Y}\right)_{p} \leqslant C \sum_{\nu=1}^{\infty} \frac{1}{\nu \psi_{1}^{\theta}\left(\frac{1}{\nu}\right)} E_{\nu}^{\theta}\left(\phi_{Y}\right)_{p} \leqslant C \sum_{\nu=1}^{\infty} \frac{1}{\nu \psi_{1}^{\theta}\left(\frac{1}{\nu}\right)}\left[\sum_{n \mid=\nu}^{\infty}\left|A_{n}(y)\right|^{P^{\prime}}\right]^{\frac{\theta}{p!}} \leqslant \\
& \leqslant C_{5} \sum_{v=1}^{\infty} \frac{1}{\nu \psi_{1\left(\frac{1}{v}\right)}^{\theta}}\left[\left|A_{v}(y)\right|^{P_{v}^{\prime}}\right]^{\frac{\theta}{P^{\prime}}}=C_{5} \sum_{v=1}^{\infty} \frac{1}{v v_{1}^{\theta}\left(\frac{1}{v}\right)}\left|A_{v}(y)\right|^{\theta} v^{\frac{\theta}{D^{\prime}}}= \\
& =C_{5} \sum_{\nu=1}^{\infty} \frac{\left|A_{v}(Y)\right|^{\theta}}{v \psi^{\theta}\left(\frac{1}{v}\right)} \leqslant C_{6} \sum_{v=1}^{\infty} \frac{1}{v \psi^{\theta}\left(\frac{1}{v}\right)} e^{\nu \delta \theta} E_{V}^{\theta}(f)_{E}<\infty .
\end{aligned}
$$

I tako je dokazano, da za bilo koje y(|y|< $)$ vrijedi

$$
\left\|\phi_{y}(x)\right\|_{p} \leqslant M
$$

Kako je $p \varepsilon[2,+\infty]$, to znači (V. [1], str. 150.) da postoji funkcija $\phi(x) \varepsilon L_{p}$ takva da se funkcija $f(x)$ može predstaviti u obliku (1.2.1).

Dokazaćemo da funkcija $\phi(x)$ pripada klasi $B_{p \theta_{1}}^{\psi}$, za bilo koji $\theta_{1} \varepsilon[\theta,+\infty)$. Zaista, prema lemi 2.2.12, teoremi Hausdorfa-Janga, uslovu b) za funkciju $\psi(\delta)$, nejednakosti (2.2.7) i nejednakosti (1) vrijedi

$$
\begin{aligned}
& \left\{\sum_{\nu=1}^{\infty} \frac{1}{\nu \psi_{1\left(\frac{1}{v}\right)}^{\theta}} E_{\nu}^{\theta}{ }_{\nu}(\phi)_{p}\right\}^{\frac{1}{\theta}} \leqslant C_{7}\left\{\sum_{v=1}^{\infty} \frac{1}{\nu \psi_{l}^{\theta}\left(\frac{1}{v}\right)} E_{v}^{\theta}(\phi)_{p}\right\}^{\frac{1}{\theta}} \leqslant \\
& \leqslant c_{7}\left\{\sum_{v=1}^{\infty} \frac{1}{\nu \psi_{1\left(\frac{1}{v}\right)}^{\theta}}\left[|k|^{\sum}\left|\alpha_{k}\right|^{p^{\prime}}\right]^{\left.\frac{\theta}{p^{\prime}}\right\}^{\frac{1}{\theta}}} \leqslant c_{8}\left\{\sum_{v=1}^{\infty} \frac{1}{\nu \psi_{1}^{\theta}\left(\frac{1}{v}\right)}\left[\left|\alpha_{v}\right|^{p^{\prime}}\right]^{\frac{\theta}{p^{\prime}}}\right\}^{\frac{1}{\theta}}=\right. \\
& =C_{8}\left\{\sum_{\nu=1}^{\infty} \frac{\left|a_{\nu}\right|^{\theta}}{\nu \psi^{\theta}\left(\frac{1}{v}\right)}\right\}^{\frac{1}{\theta}} \leqslant C_{9}\left\{\sum_{v=1}^{\infty} \frac{1}{\nu \psi^{\theta}\left(\frac{1}{v}\right)} e^{\nu \delta \theta} E_{v}^{\theta}(f)_{E}\right\}^{\frac{1}{\theta}}<\infty . \\
& \text { Iz te nejednakosti, prema lemi 2.2.11, slijedi da je } \\
& \phi(x) \in B_{p \theta_{1}}^{\psi_{1}} .
\end{aligned}
$$

Dokaz da se tvrdjenje teoreme ne može poboljšati slijedi iz tačnosti teoreme 4.3.2.
53. POTREBNI I DOVOLJNI USLOVI PRIPADANJA KLASIE ${ }^{\delta} \mathrm{B}_{\mathrm{E} \theta}^{\psi}$ FUNKCIJA SA MONOTONIM ILI LAKUNARNIM FURIEROVIM KOEFICIJENTIMA

TEOREMA 4.3.1 Neka je $f(x) \in \Lambda_{2} \quad E,(E \varepsilon A), 0<\theta<\infty$.
Neka funkcija $\psi(t) \in M H(\sigma)$ ima osobine:
a) $\left[\sum_{m=0}^{\nu} \frac{1}{\psi^{\theta}\left(\frac{1}{2^{m}}\right)}\right]^{\frac{1}{\theta}} \leqslant C^{\prime} \psi\left(\frac{1}{2^{\nu}}\right)$,
b) $\sum_{\nu=0}^{\infty} \psi\left(\frac{1}{2^{\nu}}\right)<C^{\prime \prime}$,
gdje pozitivne konstante C^{\prime} i $C^{\prime \prime}$ ne zavise odv ($\nu=1,2,3, \ldots$). Tada funkcija $f(x)$ pripada klasi $E^{\delta} B_{E \Theta}^{\psi}$ ako i samo ako za bilo koje $\mathrm{F} \varepsilon$ A vrijedi nejednakost

DOKAZ. Ako je $f(x) \varepsilon E^{\delta} B_{E \theta}^{\psi}$, to, kako je dokazano u teoremi 2, za bilo koje FeA vrijedi nejednakost (2).

Neka vrijedi nejednakost (2) za neko $F \varepsilon A$. Iz te nejednakosti slijedi da je

$$
\begin{equation*}
E_{2^{m}}(f)_{F} \leqslant \frac{C_{1}}{e^{2^{m} \&} \psi\left(\frac{1}{2^{m}}\right)} \tag{3}
\end{equation*}
$$

Uzimajuéi u obzir da za $2^{\mathrm{m}-\mathrm{l}}<\mathrm{n} \leqslant 2^{\mathrm{m}}$ vrijedi

$$
e^{-2^{m} \delta_{\psi}\left(\frac{1}{2^{m}}\right)} \leqslant C_{2} e^{-n \delta} \psi\left(\frac{1}{n}\right)
$$

to, koristeći lemu 2.2.6, nejednakost (3) i tek dokazanu nejednakost, slijedi

$$
E_{n}(f)_{F} \leqslant \frac{C_{3}}{e^{n \delta}} \psi\left(\frac{1}{n}\right)
$$

Prema lemi 2.2.7, utvrdjujemo da se funkcija $f(x)$ može analitički produžiti u pojas $\Delta=\{-\infty<x<+\infty,|y|<\delta\}$.

Dokazaćemo da se $f(x)$ može predstaviti u obliku (1.2.1). Koristeci lemu 2.2.2 i nejednakost (3), dobijamo procjenu

$$
\left|c_{-2} \nu\right|=\left|c_{2 v}\right| \leqslant c_{4} E_{2}(f)_{F} \leqslant C_{5} e^{-2^{m} \delta_{\psi}}{\left(\frac{1}{2^{m}}\right)}
$$

Zbog nejednakosti (2.1.4) i tek dokazane procjene dobijamo

$$
\left|A_{-2}{ }^{v}(y)\right|=\left|A_{2}{ }^{\nu}(y)\right| \leqslant C_{6} \psi\left(\frac{1}{2 v}\right) .
$$

Iz te procjene i uslova b) za funkciju $\psi(t)$ slijedi

$$
\left\|\phi_{y}(x)\right\| c \leqslant \sum_{v=0}^{\infty}\left[\left|A_{2^{v}}(y)\right|+\left|A_{-2 v}(y)\right|\right] \leqslant C_{7} \sum_{v=0}^{\infty} \psi\left(\frac{1}{2^{v}}\right) \leqslant C_{8} .
$$

I tako, za bilo koje $y(|y|<\delta)$ vrijedi

$$
\left\|\phi_{Y}(x)\right\|_{C} \leqslant M
$$

gdje je M pozitivna konstanta koja ne zavisi od y. A to znacti, da postoji granična funkcija $\phi(x) \varepsilon C, t j . \phi(x) \varepsilon L_{p}$ za bilo koje $p \varepsilon[1,+\infty]$ takva da se funkcija $f(x)$ može predstaviti u obliku (1.2.1).

Kako se $f(x)$ može predstaviti u obliku (1.2.1), to iz nejednakosti (2.1.5) slijedi da je $\phi(x) \varepsilon \Lambda_{2}$ i da vrijedi

$$
\left|b_{m}\right| \leqslant c_{9} e^{2^{m} \delta_{E}} 2^{m}(f)_{F}
$$

Dokazaćemo da granična funkcija $\phi(x)$ pripada klasi $B_{E 0}^{\psi}$. Zaista, koristeći osobine najbolje aproksimacije, svojstva funkcije $\psi(t) \varepsilon M H(\sigma)$ i provodeći jednostavne transformacije, dobice se

$$
\begin{aligned}
& I_{2}^{\theta}=\sum_{V=1}^{\infty} \frac{1}{\nu \psi^{\theta}\left(\frac{1}{V}\right)} E_{V}^{\theta}(\phi) E=\frac{1}{\psi^{\theta}(1)} E_{1}^{\theta}(\phi) E_{V=2}^{\infty} \frac{1}{\nu \psi^{\theta}\left(\frac{1}{v}\right)} E_{V}^{\theta}(\phi) E^{\infty}= \\
& =\frac{1}{\psi^{\theta}(1)} E_{1}^{\theta}(\phi)_{E^{\prime}}+\sum_{m=1}^{\infty} \quad \sum_{V=2^{m}}^{2^{m+1}-1} \frac{1}{v \psi^{\theta}\left(\frac{1}{V}\right)} E_{V}^{\theta}(\phi)_{E} \\
& \leqslant \frac{1}{\psi^{\theta}(1)} E_{1}^{\theta}(\phi) E^{+C} 10 \sum_{m=1}^{\infty} E_{2^{m}}^{\theta}(\phi) E \frac{1}{\psi^{\theta}\left(\frac{1}{2^{m+1}-1}\right)} \sum_{v=2^{m}}^{2^{m+1}-\frac{1}{v}} \leqslant \\
& \leqslant C_{11}\left\{\frac{1}{\psi^{\theta}(1)} E_{1}^{\theta}(\phi) E^{+} \sum_{m=1}^{\infty} \frac{E_{2^{m}}^{\theta}(\phi)}{\psi^{\theta}\left(\frac{1}{2^{m}}\right)}\right\} \leqslant C_{11} \sum_{m=0}^{\infty} \frac{E_{2^{m}}^{\theta}(\phi)}{\psi^{\theta}\left(\frac{1}{2^{m}}\right)} \leqslant \\
& \leqslant C_{11} \sum_{m=0}^{\infty} \frac{\left\|\phi(x)-S_{2^{m_{1}}}(x, \phi)\right\|_{E}^{(}}{\psi^{\theta}\left(\frac{1}{2^{m}}\right)} \leqslant C_{12} \sum_{m=0}^{\infty} \frac{\left\|^{\phi(x)-S_{2 m_{1}}}(x, \phi)\right\|^{\theta}}{\psi^{\theta}\left(\frac{1}{2^{m}}\right)} \leqslant \\
& \leqslant C_{13} \sum_{m=0}^{\infty} \frac{1}{\psi^{\theta}\left(\frac{1}{2^{m}}\right)}\left[\left|\nu \sum_{v=m}^{\infty}\right| b_{v} \mid\right]^{\theta} \leqslant c_{14} \sum_{m=0}^{\infty} \frac{1}{\psi^{\theta}\left(\frac{1}{2^{m}}\right)}\left[\sum_{v=m}^{\infty}\left|b_{v}\right|\right]^{\theta} .
\end{aligned}
$$

Razmotrićemo dva slučaja:

a) Neka je $0<\theta \leqslant 1$, tada, koristeći teoremu 2.2.6 i uslov a) za funkciju $\psi(t)$ dobijamo

$$
\begin{aligned}
& I_{2}^{\theta} \leqslant C_{14} \sum_{m=0}^{\infty} \frac{1}{\psi^{\theta}\left(\frac{1}{2^{m}}\right)}\left[\sum_{v=m}^{\infty}\left|\omega_{\nu}\right|\right]^{\theta} \leqslant C_{14} \sum_{m=0}^{\infty} \frac{1}{\psi^{\theta}\left(\frac{1}{2^{m}}\right)} \sum_{v=m}^{\infty}\left|b_{v}\right|^{\theta} \leqslant \\
& \leqslant C_{14} \sum_{v=0}^{\infty}\left|b_{v}\right|^{\theta} \sum_{m=0}^{\nu} \frac{1}{\psi\left(\frac{1}{2^{m}}\right)} \leqslant C_{14} \sum_{v=0}^{\infty} \frac{\left|b_{v}\right|^{\theta}}{\psi^{\theta}\left(\frac{l}{2^{v}}\right)} ; \\
& \text { b) Neka je } \theta \geqslant 1 . \text { Prema teoremi } 2.2 .4 \text { vrijedi }
\end{aligned}
$$

$$
I_{2}^{\theta}<\left.C_{14} \sum_{m=0}^{\infty} \frac{1}{\psi^{\theta}\left(\frac{1}{2^{m}}\right)}\left[\sum_{v=m}^{\infty} \mid b_{v}\right]\right|_{1} ^{\theta} \leqslant C_{15} \sum_{m=0}^{\infty} \frac{1}{\psi^{\theta}\left(\frac{1}{2^{m}}\right)}\left|b_{m}\right|^{\theta} \xi_{m}^{\theta},
$$

gdje se $\xi_{\text {m }}$ odredjuje iz uslova

$$
\sum_{\nu=0}^{m} \frac{1}{\psi^{\theta}\left(\frac{1}{2^{m}}\right)}=\frac{\xi_{m}}{\psi^{\theta}\left(\frac{1}{2^{m}}\right)}
$$

Tada iz uslova za $\psi(t)$ slijedi

$$
\xi_{\mathrm{m}} \leqslant C_{16},
$$

$t j$.

$$
I_{2}^{\theta} \leqslant C_{17} \sum_{m=0}^{\infty} \frac{\left|b_{m}\right|^{\theta}}{\psi\left(\frac{1}{2^{m}}\right)} .
$$

I tako je dokazano da vrijedi nejednakost

$$
I_{2}^{\theta}=\sum_{v=1}^{\infty} \frac{1}{v \psi\left(\frac{1}{v}\right)} E_{v}^{\theta}(\phi)_{E} \leqslant C_{18} \sum_{m=0}^{\infty} \frac{\left|b_{m}\right|^{\theta}}{\psi^{\theta}\left(\frac{1}{2^{m}}\right)},
$$

za bilo koje $\theta \varepsilon(0,+\infty)$.
Koristeci procjenu za $\left|b_{m}\right|$, tek dokazanu nejednakost i pretpostavku teoreme, dobijamo

$$
\sum_{v=1}^{\infty} \frac{1}{v \psi^{\theta}\left(\frac{1}{v}\right)} E_{V}^{\theta}\left(\phi^{\prime}\right) \leqslant C_{19} \sum_{m=0}^{\infty} \frac{e^{2^{m} s \theta}}{\psi^{\theta}\left(\frac{1}{2^{m}}\right)} E_{2^{m}}^{(f)}{ }_{F}^{<\infty} .
$$

Na osnovu leme 2.2.11 zaključujemo da je

$$
\phi(\mathrm{x}) \varepsilon \mathrm{B}_{\mathrm{E} \theta^{\prime}}^{\psi}
$$

$t j$.

$$
f(x) \varepsilon 5^{\delta} B_{E \ominus}^{\psi}
$$

Teorema je u potpunosti dokazana.

TEOREMA 4.3.2 Neka je $0<\theta<\infty$,

$$
f(x) \sim \frac{d_{0}}{2}+\sum_{\nu=1}^{\infty} d_{\nu} \cos \nu x
$$

gdje je $d_{\nu} \frac{e^{v \delta}+e^{-v \delta}}{2} \downarrow 0$. Neka je funkcija $\psi_{l}(t)=\psi(t) t^{\frac{1}{p}-1}$ takva da je
a) $\psi_{1}(t) \varepsilon M H\left(\sigma_{1}\right)$,
b) $\left\{\sum_{\nu=1}^{n} \frac{1}{\nu \psi_{1}^{\theta}\left(\frac{1}{v}\right)}\right\}^{\frac{1}{\theta}} \asymp \frac{1}{\psi_{1}\left(\frac{1}{n}\right)}$.

Tada je

$$
\mathrm{f}(\mathrm{x}) \varepsilon 5^{\delta} \mathrm{B}_{\mathrm{p} \theta}^{\psi_{1}}
$$

ako i samo ako vrijedi nejednakost

$$
\begin{equation*}
\sum_{v=1}^{\infty} \frac{e^{\nu \delta \theta}}{\nu \psi^{\theta}\left(\frac{1}{v}\right)} E_{v}^{\theta}(f) E^{<\infty}, \tag{4}
\end{equation*}
$$

za bilo koje EعA.

DOKAZ. Ako funkcija $f(x)$ zadovoljava nejednakost (4), to, kako je dokazano u teoremi 4.2.1 za pe[2,+m] vrijedi

$$
\mathrm{f}(\mathrm{x}) \in \sigma^{\delta_{\mathrm{B}}}{ }_{\mathrm{p} \theta}^{\psi_{1}}
$$

Neka je $1<p<2$. Iz tačnosti nejednakosti (4), prema lemi 2.2.7, utvrdjujemo da se funkcija $f(x)$ može analitički produžiti u pojas $\Delta=\{-\infty<x<+\infty,|y|<\delta\}$.

DokazaCemo postojanje granične funkcije $\phi(x)$. Poznato je.(T.2.2.2) da za bilo koje pe(1, $+\infty$ i $F(x) \varepsilon L_{p}$ vrijedi nejednakost

$$
\left\|F(x)-S_{n-1}(x, F)\right\|_{p} \leqslant C_{1} E_{n}(F)_{p} .
$$

Neka je $F(x)=\phi_{Y}(x), \quad n=1, S_{o}\left(x, \phi_{Y}\right)=\frac{A_{0}(y)}{2}$.

Tada vrijedi

$$
\left\|\phi_{Y}(x)-\frac{A_{o}(y)}{2}\right\|_{p} \leqslant c_{2} E_{1}\left(\phi_{Y}\right)_{p}
$$

$$
\begin{aligned}
& \left\|\phi_{Y}(x)\right\|_{p} \leqslant\left\|\phi_{Y}(x)-\frac{A_{O}(y)}{2}\right\|_{P}+(2 \pi)^{\frac{1}{p}\left|A_{O}(y)\right|} \\
& \leqslant C_{3}\left[E_{1}\left(\phi_{Y}\right)_{p}+\|\left. A_{O}(y)\right|^{2}\right.
\end{aligned}
$$

Kako je $c_{C}(f)=A_{o}(y)$ i

$$
\begin{aligned}
\left|c_{o}(f)\right| \leqslant & \frac{1}{2 \pi} f_{0}^{2 \pi}|f(x)| d x=\frac{1}{2 \pi}\|f\|_{L_{1}} \leqslant C_{4}\|f\|_{E} \text {, to je } \\
& \left|A_{0}(y)\right| \leqslant M .
\end{aligned}
$$

Primjenjujuci lemu 2.2.13 utvrdjujemo da Furierovi koeficijenti $A_{V}(y)$ funkcije $\phi_{Y}(x)=\operatorname{Ref}(x+i y),(|y| \leqslant \delta)$ zadovoljavaju uslov

$$
A_{0}(y) \geqslant A_{1}(y) \geqslant A_{2}(y) \geqslant \ldots \quad i A_{v}(y) \rightarrow 0, \quad \ddot{v} \rightarrow \infty
$$

Dokazaćemo ograničenost $E_{l}\left(\phi_{Y}\right) p \cdot$

Kako je $p \varepsilon(1,+\infty)$, to za monotono opadajuće koeficijente $A_{v}(y)$ vrijeđi teorema 2.2.8. Drimjenjujući tu teoremu i poznate nejednakosti, dobijamo da je

$$
\begin{aligned}
\mathrm{E}_{1}^{\theta}\left(\phi_{Y}\right)_{\mathrm{p}} & \leqslant C_{5} \sum_{v=1}^{\infty} \frac{1}{\nu \psi_{1}^{\theta}\left(\frac{1}{v}\right)} \mathrm{E}_{v}^{\theta}\left(\phi_{Y}\right)_{\mathrm{p}} \leqslant \\
& \leqslant C_{6} \sum_{v=1}^{\infty} \frac{1}{v \psi_{1}^{\theta}\left(\frac{1}{v}\right)}\left[A_{v} v^{1-\frac{1}{p}}+\left(\sum_{n=v+1}^{\infty} A_{n}^{P} n^{p-2}\right)^{\frac{1}{p}}\right]^{\theta} \leqslant
\end{aligned}
$$

$$
\leqslant C_{7}\left(\sum_{v=1}^{\infty} \frac{1}{v \psi_{i}^{\theta}\left(\frac{1}{v}\right)}\left[\sum_{n=v}^{\infty} A_{n}^{p} n^{p-2}\right]^{\frac{\theta}{p}}+\sum_{v=1}^{\infty} \frac{A_{\nu v}^{\theta} \theta\left(1-\frac{1}{p}\right)}{v_{v}^{\theta}\left(\frac{1}{v}\right)}\right\}
$$

Razmotricemo dva slučaja:
a) $0<\frac{\theta}{p} \leqslant 1$,
b) $\frac{\theta}{p} \geqslant 1$
a) Neka je $0<\frac{\theta}{p} \leqslant 1$. Prema teoremi 2.2 .5 vrijedi

$$
\sum_{v=1}^{\infty} \frac{1}{v \psi_{1}^{\theta}\left(\frac{1}{v}\right)}\left[\sum_{n=v}^{\infty} A_{n}^{p} n^{p-2}\right]^{\frac{\theta}{p}} \leqslant C_{8} \sum_{v=1}^{\infty} \frac{1}{v \psi_{1}^{\theta}\left(\frac{1}{v}\right)}\left(A_{v}^{p} v^{p-2}\right)^{\frac{\theta}{p}} v_{v}^{\frac{\theta}{p}-1} \xi_{v}
$$

gdje se ξ_{v} odredjuje iz uslova

$$
\sum_{n=1}^{v} \frac{1}{\nu \psi_{1}^{\theta}\left(\frac{1}{n}\right)}=\frac{\xi_{v}}{v \psi_{1}^{\theta}\left(\frac{1}{v}\right)}
$$

Uzimajuci u obzir posljednju jednakost iz pretpostavke teoreme, slijedi da je

$$
\xi_{v} \leqslant C_{9} v
$$

Tada je

$$
E_{1}^{\theta}\left(\phi_{Y}\right)_{p} \leqslant C_{10} \sum_{\nu=1}^{\infty} \frac{A_{v}^{\theta}}{v \psi^{\theta}\left(\frac{1}{v}\right)} .
$$

b) Neka je $\frac{\theta}{p}>1$. Prema teoremi 2.2.4 vrijedi
$\sum_{v=1}^{\infty} \frac{1}{v \psi_{1}^{\theta}\left(\frac{1}{v}\right)}\left[\sum_{n=v}^{\infty} A_{n}^{p} n^{p-2}\right]^{\frac{\theta}{p}} \leqslant C_{11} \sum_{v=1}^{\infty}-\frac{1}{v \psi_{1}^{\theta}\left(\frac{1}{v}\right)}\left[A_{v}^{p} v^{p-2} \beta_{v}\right]^{\frac{\theta}{p}}$,
gdje se β_{v} odredjuje iz uslova

$$
\sum_{n=1}^{v} \frac{1}{n \psi_{1}{ }^{\theta}\left(\frac{1}{n}\right)}=\frac{\beta_{v}}{v_{1}{ }^{\theta}\left(\frac{1}{v}\right)}
$$

Iz posljednje jednakosti i pretpostavke b) teoreme slijedi da je

$$
\beta_{\nu} \leqslant C_{12}{ }^{\nu}
$$

Tada je

$$
E_{1}^{\theta}\left(\phi_{Y}\right)_{p} \leqslant C_{13} \sum_{v=1 \nu \psi^{\theta}\left(\frac{1}{v}\right)}^{\infty} \frac{A_{v}^{\theta}}{}
$$

Tako smo dokazali da uz pretpostavke teoreme vrijedi nejednakost

$$
E_{1}^{\theta}\left(\phi_{Y}\right)_{p} \leqslant C_{14} \sum_{v=1}^{\infty} \frac{A_{v}^{\theta}}{\theta}\left(\frac{1}{v}\right) \quad
$$

Koristeći nejednakosti (2.2.6) i (4), dobijamo da je

$$
E_{1}^{\theta}\left(\phi_{Y}\right) p \leqslant C_{15} \sum_{\nu=1}^{\infty} \frac{e^{\nu \delta \theta}}{\theta \psi^{\theta}\left(\frac{1}{V}\right)} E_{\nu}^{\theta}(f) E^{<\infty}
$$

I tako je dokazano da za bilo koje $y(|y|<\delta)$ vrijedi

$$
\left\|\phi_{Y}(x)\right\|_{p} \leqslant M
$$

Kako je $p \in(1,2)$, to znači (V. [1], str. 150) da postoji funkcija $\phi(x) \varepsilon L_{p}$ takva da se $f(x)$ može predstaviti u obliku (1.2.i).

Dokazaćemo da funkcija $\phi(x)$ pripada klasi $B_{p}^{\psi}{ }_{1}$. Zaista, primjenjujuci teoremu 2.2 .8 i poznate nejednakosti zakljư̌ujemo da je

$$
\begin{aligned}
& I=\sum_{v=1 \nu \psi_{1}{ }^{\theta}\left(\frac{1}{v}\right)}^{\infty} E_{v}^{\theta}(\phi) p^{\leqslant} \leqslant C_{16} \sum_{v=1 v \psi_{1}}^{\infty} \frac{1}{\theta}\left(\frac{1}{v}\right)\left[a_{v} v^{1-\frac{1}{p}}+\left(\sum_{n=v+1}^{\infty} a_{v}^{p} v_{v}^{p-2}\right)^{\frac{1}{p}}\right]^{\theta} \\
& \leqslant C_{17}\left\{\sum_{\nu=1 \nu \psi_{1}}^{\infty} \frac{1}{\theta}\left(\frac{1}{v}\right)\left[\sum_{n=v}^{\infty} a_{v}^{p} v^{p-2}\right]^{\frac{\theta}{p}}+\sum_{\nu=1}^{\infty} \frac{a_{v \psi_{1}}^{\theta}\left(\frac{1}{v}\right)}{\left(1-\frac{1}{p}\right)^{\theta}}\right\}=I_{1}+I_{2} . \\
& \text { Razmotricemo dva slučaja: a) } 0<\frac{\theta}{p} \leqslant 1 \text {, b) } \frac{\theta}{p} \geqslant 1 \text {. }
\end{aligned}
$$

a) Neka je $0<\frac{\theta}{p} \leqslant 1$. Primjenjujući teoremu 2.2 .5 vrijedi

$$
I_{1} \leqslant C_{18} \sum_{v=1 \nu \psi_{1}^{\theta}\left(\frac{1}{v}\right)}^{\infty}\left(a_{v}^{p} v^{p-2}\right)^{\frac{\theta}{p}}=C_{18} \sum_{v=1}^{\infty} \frac{a_{v \psi^{\theta}\left(\frac{1}{v}\right)}^{\theta}}{}
$$

Otkuda je

$$
i \leqslant C_{19} \sum_{v=1 v \psi^{\theta}\left(\frac{1}{v}\right)}^{\infty} \frac{a_{v}^{\theta}}{}
$$

b) Neka je $\frac{\theta}{p} \geqslant 1$. Prema teoremi 2.2.4 vrijedi

$$
I_{1} \leqslant C_{20} \sum_{v=1 v \psi_{1}^{\theta}\left(\frac{1}{v}\right)}^{\infty}\left[a_{v}^{p} v^{p-2}\right]^{\frac{1}{p}}=C_{20} \sum_{v=1 v \psi^{\theta}\left(\frac{1}{v}\right)}^{\infty} \frac{a_{v}^{\theta}}{}
$$

Otkuda je

$$
I \leqslant C_{21} \sum_{\nu=1}^{\infty} \frac{a_{v}^{\theta}}{v \psi^{\theta}\left(\frac{1}{v}\right)}
$$

I tako je dokazano da uz pretpostavke teoreme vrijedi
nejednakost

$$
\sum_{v=1}^{\infty} \frac{1}{v \psi_{1}^{\theta}\left(\frac{1}{v}\right)} E_{v}^{\theta}(\phi)_{p} \leqslant C_{22} \sum_{v=1}^{\infty} \frac{a_{v}^{\theta}}{v \psi^{\theta}\left(\frac{1}{v}\right)}
$$

Koristeći nejednakost (2.2.7) i nejednakost (4) dobija se

$$
\sum_{\nu=1 \nu \psi_{1}^{\theta}\left(\frac{1}{v}\right)}^{\infty} E_{v}^{\theta}(\phi)_{p} \leqslant C_{23} \sum_{v=1}^{\infty} \frac{e^{\nu \delta \theta}}{v \psi^{\theta}\left(\frac{1}{v}\right)} E_{v}^{\theta}(f)_{E}<\infty .
$$

Prema lemi 2.2.11, iz posljednje nejednakosti zaključujemo da je

$$
\phi(x)_{\varepsilon} B_{p \theta}^{\# 1} .
$$

 $f(x)$ koja zadovoljava uslov (4) pripada klasi $5^{\delta} B_{p \theta}^{\psi}$.

Neka je $f(x) \varepsilon G^{\delta} B_{p \theta}^{\psi}$, tj. funkcija $f(x)$ može biti predstavljena u obliku (1.2.1), gdje je $\phi(x) E M \cap L_{p}$.

Zbog činjenice da se $f(x)$ može predstaviti u obliku (1.2.1), nejednakusti (2.1.5) i monotonosti koeficijenta a_{n}, slijedi

$$
\begin{aligned}
& \sum_{\nu=1}^{\infty} \frac{e^{\nu \delta \theta}}{v \psi^{\theta}\left(\frac{1}{v}\right)^{\theta}} E_{\nu}^{\theta}(f) E \leqslant C_{V} \sum_{\nu=1}^{\infty} \frac{e^{v \delta \theta}}{v \psi^{\theta}\left(\frac{1}{v}\right)}\left(\sum_{n=v}^{\infty} d_{n}\right)^{\theta} \leqslant \\
& \leqslant \quad c_{2} \sum_{v=1}^{\infty} \frac{e^{v \delta \theta}}{v \psi^{\theta}\left(\frac{1}{v}\right)}\left(\sum_{n=v e^{n \delta}}^{\infty} \frac{a_{n}}{v}\right)^{\theta} \leqslant c_{2} \sum_{v=1}^{\infty} \frac{e^{v \delta \theta} a_{v}^{\theta}}{v\left(\frac{1}{v}\right)}\left(\sum_{n=v}^{\infty} e^{-n \delta}\right)^{\theta} \leqslant C_{3} \sum_{v=1}^{\infty} \frac{a_{v}^{\theta}}{v^{\theta}\left(\frac{1}{v}\right)} .
\end{aligned}
$$

Prema teoremi Konjuškova (T.2.2.8), vrijedi
$\|\phi\|_{p}^{\theta}+I_{2}^{\theta}=\sum_{v=1}^{\infty} \frac{l}{v \psi_{1}{ }^{\theta}\left(\frac{1}{v}\right)} E_{v}^{\theta}(\phi) p_{p}+\|\phi\|_{p}^{\theta} \geqslant C_{4} \sum_{v=1 v \psi_{1}{ }^{\theta}\left(\frac{1}{v}\right)}\left(\sum_{n=2 v}^{\infty} a_{n}{ }_{n}{ }_{n}{ }^{p-2}\right)^{\frac{\theta}{p}}+\|\phi\|_{p}^{\theta}$.

Procijenićemo izraz:

$$
\prod_{p} \prod_{\nu=1}^{\theta} \frac{1}{\nu \psi_{1}^{\theta}\left(\frac{1}{v}\right)}\left(\sum_{n=2}^{\infty} a_{n}^{\infty} p_{n}^{p-2}\right)^{\frac{\theta}{p}}
$$

Očito je da vrijedi

$$
\begin{aligned}
& I=\sum_{v=2}^{\infty} \frac{1}{v \psi_{1}{ }^{\theta}\left(\frac{1}{v}\right)}\left(\sum_{n=v}^{\infty} a_{n} p_{n} p-2\right){ }^{\frac{\theta}{p}}=\sum_{\xi=1}^{\infty} \frac{1}{2 \xi \psi_{1}{ }^{\theta}\left(\frac{1}{2 \xi}\right)}\left(\sum_{n=2 \xi}^{\infty} a_{n} p_{n} p-2\right)^{\frac{\theta}{p}}+ \\
& +\sum_{\xi=1}^{\infty} \frac{1}{(2 \xi+1) \psi_{1}{ }^{\theta}\left(\frac{1}{2 \xi+1}\right)}\left(\sum_{n=2 \xi+1}^{\infty} \quad a_{n} p_{n} p-2\right)^{\frac{\theta}{p}}=\overline{I_{1}}+\bar{I}_{2} .
\end{aligned}
$$

Koristeci osobine funkcije $\psi_{1}(\delta)$, dobija se

$$
\begin{aligned}
& \bar{I}_{2}=\sum_{\xi=1}^{\infty} \frac{1}{(2 \xi+1) \psi_{1}^{\theta}\left(\frac{1}{2 \xi+1}\right)}\left(\sum_{n=2 \xi+1}^{\infty} a_{n} p_{n} p^{-2}\right)^{\frac{\theta}{p}} \leqslant \\
& \leqslant C_{5} \sum_{\xi=1}^{\infty} \frac{1}{2 \xi^{\psi_{1}}{ }^{\theta}\left(\frac{1}{2 \xi}\right)}\left(\sum_{n=2 \xi}^{\infty} a_{n}^{p_{n} p-2}\right)^{\frac{\theta}{p}}=C_{6} \overline{I_{1}}
\end{aligned} .
$$

Otkuda, na osnovu teoreme Peli, nakon jednostavnih transformacija, dobijamo

$$
\begin{aligned}
& \sum_{v=1}^{\infty}-\frac{1}{v \psi_{1}} \frac{1}{\theta}\left(\sum_{n=v}^{\infty} a_{n} P_{n} p^{-2}\right)^{\frac{\theta}{p}}= \\
& =\frac{C_{7}}{\psi_{1}{ }^{\theta}(1)}\left[\left(\sum_{n=1}^{\infty} a_{n} p_{n} p-2\right)^{\frac{\theta}{p}}+\sum_{v=2}^{\infty} \frac{1}{v \psi_{1}{ }^{\theta}\left(\frac{1}{v}\right)}\left(\sum_{n=v}^{\infty} a_{n} p_{n} p-2\right)^{\frac{\theta}{p}}\right] \leqslant \\
& \leqslant \quad C_{8}\left[\|\phi\| p_{v=1}^{\theta} \sum_{v \psi_{1}\left(\frac{1}{v}\right)}^{\infty}\left(\sum_{n=2 v}^{\infty} a_{n} p_{n} p^{-2}\right) \frac{\theta}{p^{\theta}}\right] .
\end{aligned}
$$

Razmotrićemo dva slučaja: a) $0<\frac{\theta}{\mathrm{p}} \leqslant 1$ b) $\frac{\theta}{\mathrm{p}} \geqslant 1$
a) Neka je $0<\frac{\theta}{\mathrm{p}} \leqslant 1$. Prema teoremi 2.2.4, vrijedi

$$
\begin{aligned}
& \phi_{\|} p^{\theta}+\sum_{v=1}^{\infty} \frac{1}{v \psi_{1}^{\theta}\left(\frac{1}{v}\right)} E_{v}^{\theta}(\phi)_{p} \geqslant C_{9} \sum_{v=1}^{\infty} \frac{1}{v \psi_{1}^{\theta}\left(\frac{1}{v}\right)}\left(\sum_{n=}^{\infty} a_{v}^{p} n_{n}^{p-2}\right)^{\frac{\theta}{p}} \geqslant \\
& \geqslant C_{10} \sum_{v=1}^{\infty} \frac{1}{v \psi_{1}^{\theta}\left(\frac{1}{v}\right)}\left(a_{v}^{p} p_{v} p-2 \mu_{v}\right)^{\frac{\theta}{p}},
\end{aligned}
$$

gdje se μ_{v} odredjuje iz uslova

$$
\sum_{\xi=1}^{v} \frac{1}{\xi \psi_{1}{ }^{\theta}\left(\frac{1}{\xi}\right)}=\frac{\mu_{v}}{v \psi_{1}{ }^{\theta}\left(\frac{1}{v}\right)}
$$

Uzimajući u obzir posljednju jednakost i pretpostavku b) teoreme, slijedi da je

$$
\mu_{v}<v .
$$

Tada je

$$
\phi \|_{p}^{\theta}+I_{2}^{\theta} \geqslant C_{11} \sum_{v=1}^{\infty} \frac{1}{v \psi_{1}^{\theta}\left(\frac{1}{v}\right)}\left(a_{v}^{p} v^{p-2}\right)^{\frac{\theta}{p}}=C_{11} \sum_{v=1}^{\infty} \frac{a_{v}^{\theta}}{v \psi^{\theta}\left(\frac{1}{v}\right)}
$$

b) Neka je $\frac{\theta}{p} \geqslant 1$. Primjenjujući teoremu 2.2.5, vrijedi

$$
\|\phi\|_{p}^{\theta}+I_{2}^{\theta}=\sum_{v=1}^{\infty} \frac{1}{v \psi_{1}^{\theta}\left(\frac{1}{v}\right)} E_{v}^{\theta}(\phi)_{p} \geqslant C_{9} \sum_{v=1}^{\infty} \frac{1}{v \psi_{1}^{\theta}\left(\frac{1}{v}\right)}\left(\sum_{n=v}^{\infty} a_{n} p_{n} p-2\right)^{\frac{\theta}{p}} \geqslant
$$

$\geqslant C_{12} \sum_{v=1}^{\infty} \frac{1}{v \psi_{1}^{\theta}\left(\frac{1}{v}\right)}\left(a_{v} p^{p-2}\right)^{\frac{\theta}{p}}=C_{12} \sum_{v=1}^{\infty} \frac{1}{v} a_{v}^{\theta}\left[\frac{1}{v_{v}-\frac{1}{\theta} \psi_{1}\left(\frac{1}{v}\right)}\right]^{\theta}=$

$$
=C_{12} \sum_{v=1}^{\infty} \frac{a_{v}^{\theta}}{\nu \psi^{\theta}\left(\frac{1}{v}\right)}
$$

Tako je dokazano da uz pretpostavke teoreme vrijedi nejednakost

$$
\sum_{\nu=1}^{\infty} \frac{e^{\nu \delta \theta}}{\nu \psi^{\theta}\left(\frac{1}{v}\right)} E_{v}^{\theta}(f)_{E} \leqslant C_{13}\left[\sum_{v=1}^{\infty} \frac{1}{v \psi_{1}^{\theta}\left(\frac{1}{v}\right)} E_{v}^{\theta}(\phi)_{\underline{p}}+\| \phi_{p}^{\theta}\right]
$$

Iz te nejednakosti, uzimajući u obzir da je $\phi(x) \varepsilon B_{p \theta}^{\psi}$, prema lemi 2.2.11, zaključujemo da vrijedi nejednakost

$$
\sum_{v=1}^{\infty} \frac{e^{v \delta \theta}}{v \psi^{\theta}\left(\frac{1}{v}\right)} E_{v}^{\theta}(f)_{E}^{<\infty}
$$

Teorema je dokazana.
§4. DODATNI REZULTATI OBRNUTE TEOREME

TEOREMA 4.4.1 Neka je $f(x) \varepsilon E, E_{\varepsilon} A, \psi(t) \varepsilon M H(\sigma)$, $\delta>0,0<\theta<\infty$. Ako: 1) vrijedi nejednakost

$$
\sum_{v=1}^{\infty} \frac{e^{v \delta \theta}}{v \psi^{\theta}\left(\frac{1}{v}\right)} E_{v}^{\theta}(f) E^{<\infty}
$$

2) postoji broj $p \varepsilon[2,+\infty]$ i $p^{\prime} \geqslant \theta$, gdje je $\frac{1}{p}+\frac{1}{p^{\prime}}=1$,
3) postoji funkcija $\psi_{2}(t)$ takva da je:
a) $\psi_{2}(t) \varepsilon \mathrm{MH}\left(\sigma_{2}\right)$,
b) $\sum_{\nu=1}^{n} \frac{1}{v \psi_{2}{ }^{\theta}\left(\frac{1}{v}\right)} \leqslant \frac{C_{1}}{n \psi^{\theta}\left(\frac{1}{n}\right)}$,
gdje pozitivna konstanta C ne zavisi od $n(n=1,2,3, \ldots)$, tada je

$$
f(x) \varepsilon E^{\delta} B_{p \theta_{1}}^{\psi}
$$

za bilo koje $\theta_{1} \varepsilon[\theta,+\infty)$.

DOKAZ. Prema lemi 2.2.7, utvrdjujemo da se funkcija $f(x)$ može analitički produžiti u pojas $\Delta=\{-\infty<x<+\infty,|y|<\delta\}$.

Dokazaćemo da postoji granična funkcija $\phi(x)$. U dokazu teoreme 2.1 dokazano je da vrijedi nejednakost

$$
\left\|\phi_{y}(x)\right\|_{p} \leqslant C_{2}\left[E_{1}\left(\phi_{y}\right)_{p}+\|f\|_{p}\right]
$$

Dokazaćemo ograničenost za $E_{1}\left(\phi_{Y}\right) p_{p}$. Kako je $p \varepsilon[2,+\infty]$, to prema teoremi Hausdorfa-Janga (V. [18], str. 191), teoremi 2.2.2, uslovu b) za funkciju $\psi_{2}(t)$, nejednakosti (2.2.6) i pretpostavci teoreme, vrijede nejednakosti

$$
\begin{aligned}
& E_{1}\left(\phi_{Y}\right)_{p} \leqslant \sum_{v=1}^{n} \frac{1}{\nu \psi_{2}^{\theta}\left(\frac{1}{v}\right)} E_{v}^{\theta}\left(\phi_{Y}\right)_{p} \leqslant C_{3} \sum_{v=1}^{\infty} \frac{1}{v \psi_{2}^{\theta}\left(\frac{1}{v}\right)}\left(\sum_{n}^{\sum} \mid \geqslant v\right. \\
& \left.\left|A_{n}(y)\right|^{\prime}\right)^{\frac{\theta}{p^{\prime}}} \leqslant \\
& \leqslant C_{3} \sum_{v=1}^{\infty} \frac{1}{v \psi_{2}^{\theta}\left(\frac{1}{v}\right)}|n|_{=v}^{\infty}\left|A_{n}(y)\right|^{\theta}=C_{3}^{\sum} \sum_{n=1}^{\infty}\left|A_{n}(y)\right|_{v=1}^{\theta} \frac{1}{v \psi_{2}^{\theta}\left(\frac{1}{v}\right)} \leqslant
\end{aligned}
$$

$$
\leqslant C_{4} \sum_{n=1}^{\infty}\left|A_{n}(y)\right|^{\theta} \frac{1}{n \psi^{\theta}\left(\frac{1}{n}\right)} \leqslant C_{5} \sum_{n=1}^{\infty} \frac{e^{n \delta \theta}}{n \psi^{\theta}\left(\frac{1}{n}\right)} E_{n}(f)_{E}<\infty
$$

I tako je dokazano da za bilo koje $y(|y|<\delta)$ vrijedi

$$
\left\|\phi_{Y}(x)\right\|_{p} \leqslant M
$$

gdje je M konstanta koja ne zavisi od $y(|y|<\delta)$. Kako je $p \varepsilon[2,+\infty]$, to znači (V. [1], str. 150) da se funkcija $f(x)$ može predstaviti u obliku (1.2.1).

Dokazaćemo da funkcija $\phi(x)$ pripada klasi $B_{p \theta_{1}}^{\psi_{2}}$ za bilo koje $\theta_{1} \varepsilon[\theta,+\infty)$. Zaista, prema lemi 2.2.12, teoremi Hausdorfa-Janga, teoremi 2.2.6, uslovu b) za funkciju $\psi_{2}(t)$, nejednakosti (2.2.7) i pretpostavci teoreme, vrijedi

$$
\begin{aligned}
& \left\{\sum_{\nu=1}^{\infty} \frac{1}{\nu \psi_{2}{ }^{\theta} 1\left(\frac{1}{v}\right)} E_{\nu}^{\theta}(\phi)_{p}\right\}^{\frac{1}{\theta} 1} \leqslant C_{6}\left\{\sum_{\nu=1}^{\infty} \frac{1}{\nu \psi_{2}^{\theta}\left(\frac{1}{v}\right)} E_{v}^{\theta}(\phi)_{p}\right\}^{\frac{1}{\theta}} \leqslant \\
& \leqslant \quad C_{6}\left\{\sum_{v=1}^{\infty} \frac{1}{v \psi_{2}^{\theta}\left(\frac{1}{v}\right)}\left[\sum_{n=v}^{\infty}\left|\alpha_{n}\right|^{p^{\prime}}\right]^{\frac{\theta}{p^{\prime}}}\right\}^{\frac{1}{\theta}} \leqslant C_{6}\left\{\sum_{v=1}^{\infty} \frac{1}{v \psi_{2}^{\theta}\left(\frac{1}{v}\right)} \sum_{n=v}^{\infty}\left|\alpha_{n}\right|^{\theta}\right\}^{\frac{1}{\theta}}= \\
& =C_{6}\left\{\sum_{n=1}^{\infty}\left|\alpha_{n}\right|^{\theta} \sum_{v=1}^{n} \frac{1}{\nu \psi_{2}{ }^{\theta}\left(\frac{1}{v}\right)}\right\}^{\frac{1}{\theta}} \leqslant C_{7}\left\{\sum_{n=1}^{\infty}\left|\alpha_{n}\right|^{\theta} \frac{1}{n \psi^{\theta}\left(\frac{1}{n}\right)}\right\}^{\frac{1}{\theta}} \leqslant \\
& \leqslant C_{8}\left\{\sum_{n=1}^{\infty} \frac{e^{n \delta \theta}}{n \psi^{\theta}\left(\frac{1}{n}\right)} E_{n}^{\theta}(f) E\right\}^{\frac{1}{\theta}}<\infty
\end{aligned}
$$

I tako je dokazano da vrijedi nejednakost

$$
\left\{\sum_{\nu=1}^{\infty} \frac{1}{v \psi_{2}^{1}}{ }^{1}\left(\frac{1}{\nu}\right) \quad E_{v}^{1}(\phi)_{p}\right\}^{\frac{1}{\theta}}<\infty
$$

Iz te nejednakosti, na osnovu leme 2.2.11 utvrdjujemo da je

$$
\phi(x) \varepsilon B_{p \theta_{1}}^{\psi_{2}}
$$

za bilo kc je $\theta_{1} \varepsilon[\theta,+\infty)$, tj.

$$
\mathrm{f}(\mathrm{x}) \varepsilon \mathrm{E}^{\delta} \mathrm{B}_{\mathrm{p} \theta_{1}}^{\psi_{2}}
$$

Teorema je dokazana.

TEOREMA 4.4.2 Neka je $f(x) \varepsilon E, E \varepsilon A, \psi(t) \varepsilon M H(\sigma), \delta>0$, $1 \leqslant \theta<\infty$. Ako: 1) vrijedi nejednakost

$$
\left\{\sum_{\nu=1}^{\infty} \frac{e^{\nu \delta \theta}}{\nu \psi^{\theta}\left(\frac{1}{v}\right)} E_{v}^{\theta}(f)_{E}\right\}^{\frac{1}{\theta}}<\infty,
$$

2) postoji broj p takav da je $p \in[2,+\infty]$ i $\theta \geqslant p^{\prime}$ gdje je $\left.\frac{1}{p}+\frac{1}{p}=1,3\right)$ postoji funkcija $\psi_{3}(t)$ takva da je
a) $\psi_{3}(t) \varepsilon \mathrm{MH}\left(\sigma_{3}\right)$
b) $\sum_{\nu=1}^{n} \frac{1}{\nu \psi_{3}^{\theta}\left(\frac{1}{v}\right)} \leqslant \frac{C_{1} \psi_{3}^{p^{\prime}\left(\frac{1}{n}\right)}}{n \psi_{3}^{\theta}\left(\frac{1}{n}\right) \psi^{p^{\prime}\left(\frac{1}{n}\right)}}$,
gdje pozitivna konstanta C_{1} ne zavisi od $n(n=1,2,3, \ldots)$, tada je

$$
\mathrm{f}(\mathrm{x}) \varepsilon 5^{\delta} \mathrm{B}_{\mathrm{p} \theta_{1}}^{\psi_{3}}
$$

za bilo koje $\theta_{1} \varepsilon[\theta,+\infty)$.

DOKAZ. Na osnovu leme 2.2.7 utvrdjujemo da se funkcija $f(x)$ može analitički produžiti u pojas $\Delta=\{-\infty<x<+\infty,|y|<\delta\}$.

Dokazaćemo postojanje granične funkcije $\phi(x)$. Vec je dokazano da vrijedi nejednakost

$$
\left\|\phi_{Y}(x)\right\|_{p}<C_{2}\left[E_{1}\left(\phi_{Y}\right)_{p}+\|f\|_{E}\right] .
$$

Ostaje da dokažemo ograničenost za $E_{1}\left(\phi_{y}\right)$ p. Prema teoremi Hausdorfa-Janga (V. [18], str. 191) i teoremi 2.2.4 vrijedi

$$
\begin{aligned}
& E_{1}^{\theta}\left(\phi_{Y}\right) p^{\leqslant} \sum_{\nu=1}^{n} \frac{1}{\nu \psi_{3}^{\theta}\left(\frac{1}{v}\right)} E_{\nu}^{\theta}\left(\phi_{Y}\right)_{p} \leqslant \sum_{\nu=1}^{\infty} \frac{1}{\nu \psi_{3}^{\theta}\left(\frac{1}{v}\right)}\left[\sum_{n=\nu}^{\infty}\left|A_{n}(y)\right|^{p^{\prime}}\right]^{\frac{\theta}{p^{\prime}}} \leqslant \\
& \leqslant C_{3} \sum_{v=1}^{\infty} \frac{1}{v \psi_{3}^{\theta}\left(\frac{1}{v}\right)}\left[|A(y)|^{P^{\prime}} \beta(v)\right]^{\frac{\theta}{p^{\prime}}},
\end{aligned}
$$

gdje se $\beta(v)$ odredjuje iz uslova

$$
\sum_{m=1}^{v} \frac{1}{m \psi_{3}^{\theta}\left(\frac{1}{m}\right)}=\frac{\beta(v)}{v \psi_{3}^{\theta}\left(\frac{1}{v}\right)}
$$

Iz posijeanje jednakosti na osnovu uslova b) slijedi

$$
\equiv(v) \leqslant c_{4} \frac{\psi_{3}^{p^{\prime}}\left(\frac{1}{v}\right)}{v \psi_{3}^{\theta}\left(\frac{1}{v}\right)} .
$$

Koristeći tek navedenu nejednakost, nejednakost (2.2.6) i pretpostarku teoreme, slijedi

$$
\begin{aligned}
& E_{1}^{G}\left(F_{1}\right)_{p} \leqslant C_{5} \sum_{v=1}^{\infty} \frac{1}{v \psi_{3}^{\theta}\left(\frac{1}{v}\right)}\left|A_{v}(y)\right| \frac{\theta^{\theta} 3\left(\frac{1}{v}\right)}{\psi^{\theta}\left(\frac{1}{v}\right)}= \\
= & C_{5} \sum_{v=1}^{\infty} \frac{1}{v^{\theta}\left(\frac{1}{v}\right)}\left|A_{v}(y)\right|^{\theta} \leqslant C_{6} \sum_{v=1}^{\infty} \frac{e^{v \delta \theta}}{v \psi^{\theta}\left(\frac{1}{v}\right)} E_{v}^{\theta}(f)
\end{aligned}
$$

I tako je dokazano da za bilo koje $y(|y|<\delta)$ vrijedi

$$
\left\|\phi_{y}(x)\right\|_{p} \leqslant M
$$

Kako je $p \in[2,+\infty]$, to znači da se funkcija $f(x)$ može prikazati u obliku (1.2.1).

Dokazaćemo da funkcija $\phi(x)$ pripada klasi $B_{p \theta_{1}}^{\psi_{3}}$. Zaista, prema lemi 2.2.12, teoremi Hausdorfa-Janga i teoremi 2.2.4, vrijedi

$$
\begin{aligned}
&\left\{\sum_{v=1}^{\infty} \frac{1}{v \psi^{\theta} 1\left(\frac{1}{v}\right)} E_{v}^{\theta} l^{\theta}(\phi)_{p}\right\}^{\frac{1}{\theta}} \leqslant C_{7}\left\{\sum_{v=1}^{\infty} \frac{1}{v \psi_{3}^{\theta}\left(\frac{1}{v}\right)}\left[\left|\alpha_{v}\right|^{o^{\prime}} \beta(v)\right]^{\frac{\theta}{p^{\prime}}}\right\}^{\frac{1}{\theta}} \leqslant \\
& \leqslant C_{7}\left\{\sum_{v=1}^{\infty} \frac{1}{v \psi_{3}^{\theta}\left(\frac{1}{v}\right)}\left[|k|_{v v}\left|\alpha_{k}\right|^{p^{\prime}}\right]^{\left.\frac{\theta}{p^{\prime}}\right\}^{\frac{1}{\theta}} \leqslant C_{8}\left\{\sum_{v=1}^{\infty} \frac{1}{v \psi_{3}^{\theta}\left(\frac{1}{v}\right)}\left[\left|\alpha_{v}\right|^{p^{\prime}} \beta(v)\right]^{\frac{\theta}{p^{\prime}}}\right\}^{\frac{1}{\theta}},}\right.
\end{aligned}
$$

gdje se $\beta(v)$ odredjuje iz uslova

$$
\sum_{m=1}^{v} \frac{1}{m \psi_{3}^{\theta}\left(\frac{1}{m}\right)}=\frac{\beta(v)}{v \psi_{3}^{\theta}\left(\frac{1}{v}\right)}
$$

Iz posljednje jednakosti i uslova b) slijedi

$$
\beta(\nu) \leqslant C_{9} \frac{\psi_{3}^{p^{\prime}}\left(\frac{1}{v}\right)}{\psi^{p^{\prime}}\left(\frac{1}{v}\right)}
$$

Iz te nejednakosti, nejednakosti (2.2.7) i uslova teoreme slijedi da je

$$
\begin{aligned}
& \left\{\sum_{v=1}^{\infty} \frac{1}{v \psi_{3}^{1}\left(\frac{1}{v}\right)} E_{v}^{\theta}(\phi)_{p}\right\}^{\frac{1}{\theta_{1}}} \leqslant C_{10}\left\{\sum_{v=1}^{\infty} \frac{\left|\alpha_{v}\right|^{\theta}}{v \psi^{\theta}\left(\frac{1}{v}\right)}\right\} \leqslant \\
& \leqslant C_{11}\left\{\sum_{\nu=1}^{\infty} \frac{e^{v \delta \theta}}{\nu \psi^{\theta}\left(\frac{1}{v}\right)} E_{v}^{\theta}(f)_{E}\right\}^{\frac{1}{\theta}}<\infty .
\end{aligned}
$$

I tako je dokazano da vrijedi nejednakost

$$
\sum_{v=1}^{\infty} \frac{1}{{ }_{v \psi_{3}}^{1}\left(\frac{1}{v}\right)}-E_{v}^{\theta}(\phi)_{p}^{<\infty}
$$

Iz te nejednakosti, na osnovu leme 2.2.11, utvrdjujemo da je

$$
\Phi(x) \varepsilon 5^{\delta} \mathrm{B}_{\mathrm{p} \theta_{1}}^{\psi_{3}}
$$

za bilo koje $\theta_{1} \varepsilon[\theta,+\infty)$, tj.

$$
\mathrm{f}(\mathrm{x}) \varepsilon \sigma^{\delta} \mathrm{B}_{\mathrm{p} \theta_{1}}^{\psi_{3}}
$$

Teorema je dokazana.

TEOREMA 4.4.3 Neka je $f(x) \in E,(E \subseteq A), \psi(t) \varepsilon M H(\sigma)$, $\delta>0,2 \leqslant \theta<\infty$. Ako: 1) vrijedi nejednakost

$$
\sum_{v=1}^{\infty} \frac{e^{v \delta \theta}}{v \psi^{\theta}\left(\frac{1}{v}\right)} E_{V}^{\theta}(f)_{E}<\infty,
$$

2) postoji funkcija $\psi_{4}(t)$ takva da je
a) $\psi_{4}(t) \varepsilon M H\left(\sigma_{4}\right)$,
b) $\sum_{v=1}^{n} \frac{1}{v \psi_{4}^{\theta}\left(\frac{1}{v}\right)} \leqslant C_{1} \frac{\psi_{4}{ }^{2-\theta}\left(\frac{1}{n}\right)}{n \psi^{2}\left(\frac{1}{n}\right)}$,
gdje pozitivna konstanta C_{1} ne zavisi od $n(n=1,2,3, \ldots)$, tada je

$$
\mathrm{f}(\mathrm{x}) \in E^{\delta} \mathrm{B}_{\mathrm{F} \Theta_{1}}^{\psi_{4}}
$$

za bilo koje F takvo da je $L_{2} \subset F$ i bilo koje $\theta_{1} \varepsilon[\theta,+\infty)$.

DOKAZ. Na osnovu leme 2.2.7, utvrdjujemo da se funkcija $f(x)$ može analitički produžiti u pojas $\Delta=\{-\infty<x<+\infty,|y|<\delta\}$.

Dokazacemo postojanje granične funkcije. Već je dokazano da vrijedi nejednakost

$$
\left\|\phi_{Y}(x)\right\|_{2} \leqslant C_{2}\left[E_{1}\left(\phi_{Y}\right)_{2}+f \|_{E}\right] .
$$

Dokazacemo ograničenost za $\mathrm{E}_{1}\left(\phi_{\mathrm{Y}}\right)_{2}$. Koristeci Parsevalovu jednakost, dobijamo da je

$$
\begin{aligned}
E_{1}^{\theta}\left(\phi_{Y}\right)_{2} & \leqslant \sum_{\nu=1}^{\infty} \frac{1}{v \psi_{4}^{\theta}\left(\frac{1}{v}\right)} E_{v}^{\theta}\left(\phi_{y}\right)_{2} \leqslant C_{3} \sum_{v=1}^{\infty} \frac{\|_{y}(x)-S_{n-1}\left(x, \phi_{Y}\right)_{V 2}^{\theta}}{v \psi_{4}^{\theta}\left(\frac{1}{v}\right)}= \\
& =C_{3} \sum_{v=1}^{\infty} \frac{1}{v \psi_{4}^{\theta}\left(\frac{1}{v}\right)}\left[\sum_{\mid \geqslant v}^{\sum}\left|A_{v}(y)\right|^{2}\right]^{\frac{\theta}{2}},
\end{aligned}
$$

Prema teoremi 2.2.4, vrijedi

$$
E_{1}^{\theta}\left(\phi_{Y^{\prime}}\right)_{2} \leqslant C_{4} \sum_{v=1}^{\infty} \frac{1}{v \psi_{4}^{\theta}\left(\frac{1}{v}\right)}\left[\left|A_{v}(Y)\right|^{2} B(v)\right]^{\frac{\theta}{2}}
$$

gdje se $\beta(v)$ odredjuje iz uslova

$$
\sum_{m=1}^{v} \frac{1}{m \psi_{4}^{\theta}\left(\frac{1}{m}\right)}=\frac{B(v)}{v \psi_{4}^{\theta}\left(\frac{1}{v}\right)}
$$

Iz te jednakosti i uslova za funkciju $\psi_{4}(t)$ vrijedi

$$
[\beta(v)]^{\frac{\theta}{2}} \leqslant C_{5} \frac{\psi_{4}^{\theta}\left(\frac{1}{v}\right)}{\psi^{\theta}\left(\frac{1}{v}\right)}
$$

Na osnovu nejednakosti (2.2.6), tek dokazane nejednakosti i pretpostavke teoreme, slijedi

$$
\begin{aligned}
E_{1}^{\theta}\left(\phi_{Y}\right)_{2} & \leqslant C_{6} \sum_{\nu=1}^{\infty} \frac{e^{\nu \delta \theta}}{\nu \psi_{4}^{\theta}\left(\frac{1}{v}\right)} E_{\nu}^{\theta}(f)_{E} \frac{\psi_{4}^{\theta}\left(\frac{1}{v}\right)}{\psi^{\theta}\left(\frac{1}{v}\right)}= \\
& =C_{6} \sum_{\nu=1}^{\infty} \frac{e^{\nu \delta \theta}}{\nu \psi_{4}^{\theta}\left(\frac{1}{v}\right)^{\nu}} E_{\nu}^{\theta}(f)_{E}<\infty .
\end{aligned}
$$

I tako je dokazano, da za bilo koje y $(|y|<\delta)$ vrijedi

$$
\left\|\phi_{Y}(x)\right\|_{2} \leqslant M
$$

A to znači da se funkcija $f(x)$ može predstaviti u obliku (1.2.1).

Dokazaćemo da funkcija $\phi(x)$ pripada klasi ${ }^{B_{F} \psi_{1}}$. Zaista, prema lemi 2.2.12, ulaganju $L_{2} \subset F$, teoremi Parsevala, teoremi 2.2 .4 , nejednakosti 2.2 .7 i pretpostavci tereme, vrijedi
$\left\{\sum_{\nu=1}^{\infty} \frac{1}{{ }_{v \psi_{4}} 1\left(\frac{1}{v}\right)} E_{\nu}^{\theta}{ }^{1}(\phi)_{F}\right\}^{\frac{1}{\theta}} \leqslant C_{7}\left\{\sum_{v=1}^{\infty} \frac{1}{\nu \psi_{4}^{\theta}\left(\frac{1}{v}\right)} E_{\nu}^{\theta}(\phi)_{F}\right\}^{\frac{1}{\theta}} \leqslant$
$\leqslant C_{8}\left\{\sum_{\nu=1}^{\infty} \frac{1}{\nu \psi_{4}^{\theta}\left(\frac{1}{v}\right)} E_{v}^{\theta}(\phi)_{2}\right\}^{\frac{1}{\theta}} \leqslant C_{8}\left\{\sum_{v=1 \nu \psi_{4}^{\theta}\left(\frac{1}{v}\right)}^{\infty}\left[\sum_{n \mid \geqslant v}\left|\alpha_{n}\right|^{2}\right]^{\frac{\theta}{2}} \leqslant\right.$
$\leqslant C_{9}\left\{\sum_{v=1}^{\infty} \frac{\left|\alpha_{v}\right|^{\theta}}{v \psi^{\theta}\left(\frac{1}{v}\right)}\right\}^{\frac{1}{\theta}} \leqslant C_{10}\left\{\sum_{v=1}^{\infty} \frac{e^{\nu \delta \theta}}{v \psi^{\theta}\left(\frac{1}{v}\right)} E_{v}^{\theta}(f)_{E}\right\}^{\frac{1}{\theta}}<\infty$.

I tako je dokazana nejednakost

$$
\left\{\sum_{\nu=1}^{\infty} \frac{1}{\nu \psi_{4}^{\theta} 1\left(\frac{1}{v}\right)} E_{\nu}^{\theta}(\phi)_{F}\right\}^{\frac{1}{\theta}} 1<\infty
$$

Iz te nejednakosti i leme 2.2.11, utvrdjujemo da je

$$
\phi(x) \varepsilon B_{F \Theta_{1}}^{\psi_{4}}
$$

za bilo koje $\theta_{1} \in[\theta,+\infty)$, tj.

$$
f(x) \varepsilon 5^{\delta}{ }_{B_{E \Theta}}^{\psi_{1}}
$$

Teorema je u potpunosti dokazana.

TEOREMA 4.4.4 Neka je $f(x) \varepsilon E, E \in A, \psi(t) \varepsilon M H(\sigma)$, $\delta>0,0<\theta \leqslant 2$. Ako: 1) vrijedi nejednakost

$$
\left\{\sum_{v=1}^{\infty} \frac{e^{v \delta \theta}}{\nu \psi^{\theta}\left(\frac{1}{v}\right)} E_{v}^{\theta}(f)_{E}\right\}^{\frac{1}{\theta}}<\infty
$$

2) postoji funkcija $\psi_{5}(t)$ takva da je
a) $\psi_{5}(t) \varepsilon M H\left(\sigma_{5}\right)$,
b) $\sum_{n=1}^{\nu} \frac{1}{\nu \psi_{5}^{\theta}\left(\frac{1}{n}\right)} \leqslant \frac{C_{1}}{\nu \psi^{\theta}\left(\frac{1}{v}\right)}$,
gdje pozitivna konstanta C_{1} ne zavisi od $n(n=1,2,3, \ldots)$, tada je

$$
f(x) \varepsilon E^{\delta} B_{F \theta_{1}}^{\psi_{5}}
$$

za bilo koje F takvo da je $L_{2} \subset F$ i za bilo koje ${ }_{1} \varepsilon[\theta,+\infty)$.

DOKAZ. Na osnovu leme 2.2.7, utvrdjujemo da se funkcija $f(x)$ može analitički produžiti u pojasu $\Delta=\{-\infty<x<+\infty,|y|<\delta\}$.

Dokazacemo postojanje granic̆ne funkcije $\phi(x)$. Vec je dokazano da vrijedi

$$
\left\|\phi_{Y}(x)\right\|_{2} \leqslant c_{2}\left[E_{1}\left(\phi_{Y}\right)_{2}+\|f\|_{E}\right]
$$

Ostaje da dokǎ̌emo ograničenost za $E_{1}\left(\phi_{Y}\right)_{\dot{p}}$.

Prema Parsevalovoj jednakosti, teoremi 2.2.6, uslovu b) za funkciju $\psi_{5}(t)$, nejednakosti (2.2.6) i uslovu teoreme, vrijedi

$$
\begin{aligned}
& E_{1}^{\theta}\left(\phi_{Y}\right)_{2} \leqslant C_{3} \sum_{n=1}^{\infty} \frac{1}{n_{\psi}{ }_{5}^{\theta}\left(\frac{1}{n}\right)} E_{n}^{\theta}\left(\phi_{Y}\right)_{2} \leqslant C_{3} \sum_{n=1}^{\infty} \frac{\phi_{Y}(x)-S_{n-1}\left(x, \phi_{Y}\right) \| \frac{\theta}{2}}{n_{\psi}{ }_{5}^{\theta}\left(\frac{1}{n}\right)} \leqslant \\
& \leqslant C_{3} \sum_{n=1}^{\infty} \frac{1}{n_{\psi}{ }_{5}^{\theta}\left(\frac{1}{n}\right)}\left[|v|^{\infty}=n\left|A_{v}(y)\right|^{2}\right]^{\frac{\theta}{2}} \leqslant C_{4} \sum_{n=1}^{\infty} \frac{1}{n_{\psi}{ }_{5}^{\theta}\left(\frac{1}{n}\right)} \sum_{v=n}^{\infty}\left|A_{v}(y)\right|^{\theta}= \\
& =C_{4} \sum_{v=1}^{\infty}\left|A_{v}(y)\right|^{\theta} \sum_{n=1}^{v} \frac{1}{n \psi_{5}^{\theta}\left(\frac{1}{n}\right)} \leqslant C_{5} \sum_{v=1}^{\infty}\left|A_{v}(y)\right|^{\theta} \frac{1}{v \psi^{\theta} \cdot\left(\frac{1}{v}\right)} \leqslant \\
& \leqslant C_{6} \sum_{\nu=1}^{\infty} \frac{e^{v \delta \theta}}{v \psi^{\theta}\left(\frac{1}{v}\right)} E_{\nu}^{\theta}(f)_{F}<\infty . \\
& \text { I tako je dokazano da za bilo koje y (|y|<ס) vrijedi }
\end{aligned}
$$ nejednakost

$$
\left\|\phi_{Y}(x)\right\|_{2}<M .
$$

A to znači da se funkcija $f(x)$ može predstaviti u obliku (1.2.1).

Dokazaćemo da granična funkcija $\phi(x)$ pripada klasi ${ }_{B_{F} \theta_{1}}^{\psi_{5}}$ Zaista, prema lemi 2.2.12, Parsevalovoj jednakosti, teoremi 2.2.6, uslovu b) za funkciju $\psi_{5}(t)$, nejednakosti (2.2.7) i pretpostavci teoreme, vrijedi

$$
\begin{aligned}
& \left\{\sum_{n=1}^{\infty} \frac{1}{n \psi_{5}^{\theta} 1\left(\frac{1}{n}\right)} E_{n}^{\theta}{ }^{\theta}(\phi)_{F}\right\}^{\frac{1}{\theta}} \leqslant C_{7}\left(\sum_{n=1}^{\infty} \frac{1}{n \psi_{5}^{\theta}\left(\frac{1}{n}\right)} E_{n}^{\theta}(\phi)_{F}\right\}^{\frac{1}{\theta}} \leqslant
\end{aligned}
$$

$$
\begin{aligned}
& \leqslant C_{8}\left\{\sum_{n=1}^{\infty} \frac{1}{v \psi_{5}^{\theta}\left(\frac{1}{n}\right)}\left[|v|_{=n}^{\infty}\left|a_{v}\right|^{2}\right]^{\frac{\theta}{2}}\right\}^{\frac{1}{\theta}} \leqslant C_{8}\left\{\sum_{n=1}^{\infty} \frac{1}{n_{\psi}{ }_{5}^{\theta}\left(\frac{1}{n}\right)}|v|_{=n}^{\infty}\left|a_{v}\right|^{\theta}\right\}^{\frac{1}{\theta}}= \\
& =C_{8}\left\{\sum_{\nu=1}^{\infty}\left|a_{v}\right|^{\theta} \sum_{n=1}^{\nu} \frac{1}{n \psi_{5}^{\theta}\left(\frac{1}{n}\right)}\right\}^{\frac{1}{\theta}}<C_{8}\left\{\sum_{n=1}^{\infty} \frac{1}{n \psi_{5}^{\theta}\left(\frac{1}{n}\right)}|\nu|_{=n}^{\infty}\left|a_{v}\right|^{\theta}\right\}^{\frac{1}{\theta}} \leqslant \\
& \leqslant C_{10}\left\{\sum_{\nu=1}^{\infty} \frac{e^{v \delta \theta}}{\left.{ }_{v \psi^{\theta}\left(\frac{1}{v}\right)} E_{v}^{\theta}(E)_{F}\right\}^{\frac{1}{\theta}}<\infty . ~ . ~ . ~}\right.
\end{aligned}
$$

I tako je dokazana tačnost nejednakosti

$$
\left\{\sum_{\nu=1}^{\infty} \frac{1}{v \psi_{5}{ }^{\theta} 1\left(\frac{1}{v}\right)^{\theta}}{ }_{v}^{\theta}(\phi)_{F}\right\}^{\frac{1}{\theta}} 1<\infty
$$

Iz te nejednakosti, na osnovu leme 2.2.11, zaključujemo da je

$$
\phi(x) \in B_{F} \psi_{1}
$$

za bilo koje $\theta_{1} \varepsilon[\theta,+\infty)$, tj.

$$
\mathrm{f}(\mathrm{x})_{\varepsilon \sigma^{\delta}} \mathrm{B}_{\mathrm{F} \theta_{1}}^{\psi_{5}}
$$

ZAKLJUČAK

Izloženi rezultati pojačavaju, preciziraju, dopunjavaju i poopštavaju sve poznate rezultate o aproksimaciji funkcija analitičkih u pojasu $\Delta=\{-\infty<x<+\infty,|y|<\delta\}$.

Dokazaćemo to navodeci posljedice teorema dokazanih u radu.

1. Uzimajući u teoremi 3.1.1 $\mathrm{E}=\mathrm{F}=\mathrm{L}_{\mathrm{p}}{ }^{\prime} \psi(\delta)=\delta^{r}$, dobiće se teorema 1 iz rada [1], teorema 1 iz rada [5] i teorema 1 iz rada [6].
2. Uzimajući u teoremi 3.1.1 $E=L_{p}, F=L_{\hat{G}}{ }^{\prime} \psi(\delta)=\delta^{r}$ dobice se teorema 1 iz rada [7].
3. Stavljajući u teoremu 3.1.1 $E=L_{p}, F=L_{I}$ dobice se teorema 1 iz rada [8].
4. Stavljajući u teoremi 3.2.1 $\mathrm{E}=\mathrm{L}_{\mathrm{p}}, \psi(\delta)=\delta^{\text {r }}$ dobiće se poboljŠanje teoreme 2 iz rada [l] , poboljšanje teoreme 2 iz rada [5], teorema 2 iz rada [6] i teorema 2 iz rada [7].
5. Stavljajuci u teoremi 3.2.1 $\mathrm{E}=\mathrm{L}_{\mathrm{p}}, \mathrm{F}=\mathrm{L}_{\mathrm{q}}, \psi_{\mathrm{l}}(\delta)=\psi(\delta) \delta^{1-\frac{1}{p}}$, dobice se teorema 2 iz rada [8].
6. Stavljajući u teoremi 3.2.1 $\mathrm{E}=\mathrm{L}_{\mathrm{p}}, \mathrm{F}=\mathrm{L}_{\mathrm{q}}$,

ako je

$$
E_{n}(f)_{q} \leqslant \frac{C}{e^{n \delta} n^{1-\frac{1}{p}}[\ln (n+1)]^{\xi}} .
$$

gdje je $\xi>\frac{1}{p}, p \varepsilon[2,+\infty), q \varepsilon[1,+\infty]$,
i pozitivna konstanta C ne zavisi od $n(n=1,2,3, \ldots)$, tada je

$$
\mathrm{f}(\mathrm{x}) \varepsilon \mathrm{S}^{\delta} \mathrm{H}_{\mathrm{p}}^{\psi_{2}}
$$

gdje je

$$
\psi_{2}(\delta)=\left(\ln \frac{2}{\delta}\right)^{-\xi+\frac{1}{p}} .
$$

To tvrdjenje je novo, ono ne može biti ảobijeno iz rezultata prethodnih radova.
7. Uzimajuci u teoremi 3.2.1 $\mathrm{E}=\mathrm{L}_{\mathrm{p}}, \mathrm{F}=\mathrm{L}_{\mathrm{q}}$,
$\psi(\delta)=\delta^{1-\frac{1}{p}\left(\ln \frac{\tilde{n}^{-1 / p}}{\delta}\left(\ln \ln \frac{10}{\delta^{i}}\right)^{-\beta}, ~\right.}$
dobice se tvrdjenje:
ako je

$$
E_{n}(f)_{q} \leqslant \frac{C}{e^{n s} n^{1-\frac{1}{p}}[\ln (n+1)]^{\frac{1}{p}}[\ln \ln (n+10)]^{\beta}}
$$

gaje je $\beta>\frac{1}{p}, p \varepsilon[2,+\infty), q \varepsilon[1,+\infty]$
i pozitivna konstanta C ne zavisi od $n(n=1,2,3, \ldots)$, tada je

$$
f(x)_{\varepsilon 5} \delta_{H_{p}}^{\psi_{3}}
$$

gdje je

$$
\psi_{3}(\delta)=\left(\ln \ln \frac{10}{\delta}\right)^{-\beta+\frac{1}{p}} .
$$

Ovo tvrđjenje je novo, ono ne može biti dobijeno iz rezultata prethodnih radova.
8. Stavljajuci u teoremi 3.2.1 $\mathrm{E}=\mathrm{I}_{\mathrm{p}}, \mathrm{F}=\mathrm{L}_{\mathrm{q}}$, $\psi_{1}(\delta) \neq \psi(\delta) \delta^{1-\frac{1}{p}}$ dobice se tvrdjenje koje poopštava posljedice 6 i 7 . I ovo tvrdjenje je novo, ono nije posljedica rezultata prethodnih radova i zato je ono njihovo pojačanje.
9. Stavljajuci u teoremi 3.3.1 $E=L_{p}, F=L_{q}$, dobice se poboljšanje teoreme 3 iz rada [8].
10. Stavljajuci u teoremi 3.3.2 $\mathrm{E}=\mathrm{L}_{\mathrm{p}}, \mathrm{F}=\mathrm{C}, \psi(\delta)=\delta^{r}$, $r>1-\frac{1}{p}$ dobice se teorema 3 iz rada [7].
11. Stav1jajući u teoremi 3.3.2 $\mathrm{E}=\mathrm{L}_{\mathrm{p}}, \mathrm{F}=\mathrm{L}_{\mathrm{q}^{\prime}} \psi(\delta)=\psi_{\mathrm{l}}(\delta) \delta^{1-\frac{1}{p}}$ dobice se teorema 4 iz rada $[8]$.
12. Stavljajuci u teoreme 3.4 .1 i $3.4 .2 \mathrm{E}=\mathrm{L}_{\mathrm{p}}, \mathrm{F}=\mathrm{L}_{\mathrm{q}}$ dobiEe se tvrdjenja koja dopunjavaju rezultate iz radova
$[1],[5],[6],[7]$ i $[8]$.
13. Stavljajući u teoremi 4.1.1 $E=L_{p}, F=L_{q}, \psi(\delta)=j^{r}$ dobiće se teorema 5 iz rada [7].
14. Stavljajući u teoremi 4.1.1 $E=L_{p}, F=L_{q}$ dobice se teorema 2 iz rada [9].
15. Stavljajući u teoremi 4.1.2 $E=L_{p}, F=I_{q}$ dobi6e se nova teorema, koja precizira teoremu 5 iz rada $[7]$ i teoremu 2 iz rada [9].
16. Stavljajući u teoremu 4.2.1 $F=L_{q}, \psi(\delta)=\delta^{r}, r>1-\frac{1}{p}$ dcbiće se teorema 6 iz rada [7].
17. Stavljajuci u teoremu 4.2.1 $F=L_{q}, \theta=p$ dobiće se teorema 3 iz rada [9].
18. Stavljajući u teoremi 4.2.1 $F=L_{q}, E=L_{p}, \theta \neq \mathrm{p}$, dobicemo novu tvrdnju koja proširuje tvrdjenje teoreme 3 iz rada [9] na slučaj $\theta \neq \mathrm{p}$, koji nije razmatran u radu [9].
19. Stavljajuci u teoremi 4.3.1 $E=L_{p}, F=L_{q}$, dobice se poboljšanje tvrdjenja teoreme 4 iz rada [9].
20. Stavljajući u teoremi 4.3.2 $\mathrm{E}=\mathrm{L}_{\mathrm{p}}, \mathrm{F}=\mathrm{L}_{\mathrm{q}}$, dobiće se teorema 5 iz rada $[9]$.
21. Stavljajući u teoreme 4.4.1, 4.4.2 $\mathrm{E}=\mathrm{L}_{\mathrm{p}}, \mathrm{F}=\mathrm{L}_{\mathrm{q}}$, dobiće se tvrdjenja koja dopunjavaju tvrdjenja iz radova $[7]$ i $[9]$.

Na taj način, u ovom radu su svi prethodni rezultati za prostore $L_{p} i L_{q}$, o aproksimaciji funkcija analitičkih u pojasu pojačani, precizirani i dopunjeni.

Na kraju, treba primijetiti, da su u disertaciji svi rezultati za prostore $L_{p} i L_{q} i$ novi i stari poopšteni na maksimalne simetrične prostore, što do sada u takvim prostorima uopšte nije radjeno.

I tako, iz izloženog se vidi, da su zaista u ovom radu Svi poznati rezultati o aproksimaciji funkcija, analitičkih u pojasu: POJAČANI, PRECIZIRANI, DODUNJENI I POOPŠTENI.

литерат у pa

I. Никольский С.М., О равномерньх дифференциальннх свойствах аналитической функции в полосе, Mathematica (Cluj). 2(25), I, I49-I57 (I960).
2. Ахиезер Н.И., Лекии по теории апроксимации, М.Л.,(I947).
3. Бернпте前 С.Н., 0 наилучпем приближении аналитических функций при помони целжх функций конечной степени. Собрание сочинении. М., Изд-во АН СССР, Т.2, 408(I954).
4. Бернштейн С.Н., Конструктивная теория функций как развитие идей Чебшпева. Собрание сочинений. М., Изд-во АН СССР, T.2, 349(I954).
5. Walsh I. L. Sewell W. E., On the degree of polynomial aproximation to analytic functions; Problem B. Transactions of the American Mathematical Societu, 49, 3, 229-257 (1941).
6. Никольский С.М. и Потапов М.К., О граничньх свойствах функций, аналитических в полосе, Mathematica (Cluj), 4(27), I, I23-I30(I962).
7. Потапов М.К., К вопросу о граничных свойствах функций, аналитических в полосе, Mathematica (Cluj), 7 (30), 2, 343 - 356 (1965).
8. Potapov M. K. y Muniz Fernandez J. L., Estruktura carasteristica y carasteristica constructiva de funciones anallticas ena franja, Revista ciencias matematicas, Universidad de la Habana (Cuba), vol. $2 \mathrm{~N}^{\circ} 2$, (1980).
9. Muniz Fernandez J. L., Resumen de la Tesis presentada como aspirante al grado de candidato a doctor en Ciencias, en al Departamento de Teorija de Funciones de la Universidad de la Habana (1983).

IO. Кондшнов А.А., Наилучие приблишения тригонометрическими полюномами и коэфициенты Фурье, Матем.сборник, Т.44(86), ff I , 53-84 (1958) .
II. Конашков А.А., Наилучшие приближения при преооразовании коэффициентов Фурье с неотрицательными коэффициентами, Сибирский матем.журнал II.I, 56-78(1962).
I2. Потапов М.К., О наилучшем приближении аналитических функций многих переменных, ученые записки Ивановского государственного педагогического института, Т.ХУш(I958).
ІЗ. Лапин С.В., Соотношения между модулями непрернвности функций в различных симметричных простран ствах и некоторые теоремы вложения, ДАН СССР, 257, 汅, IO60-IO64(I98I).
I4. Тиман А.Ф., Теория приближения фуункции действительного neременного. М., Физматгиз.
I5. Leindler L., Uber verschiendene Konvergenzarten trigonometricher Reihen. III (Bedingungen in der Metrik von Lp), Acta Scient. Math., V. 27, $\mathrm{N}^{\circ} 3-4,205-215$ (1966).

I6. Потапов М.К., Конструктивные характеристики и теореме вложения для некоторых классов Функций, Диссертация, Москва (I973).

І7. Харди Г.Б., Литтлвуд Д.Е, Полиа Г., Неравенства, Г.И.И. Л., Л-456, Москва (I948).

I8. Зигмунд А., Тригономэтрические рядь, ГОИТИ ИКТП СССР (I939).

I9. Бари К.Н., Тригонометрические ряды, Москва (I96I).
20. Шарович И.М., К вопросу о приближен ии фуункций, аналитических в полосе. Трудн Конференции молодвх ученнх мех-мат.б-та MLY (I984).
2I. Šarović М.J., Приближение аналитических функций из класca $E^{\delta_{H_{H}}^{*}}$ - ($P_{\tilde{r}} \geqslant$ adato u štampu)
22. [Šarović M.J. Приближение аналитическпх Функций из клас-

Un:orsitet u Beogradu
Priondau-matematicki fakulteti
MATENATICKI FAKULTET
BIBLIOTEKA
B \qquad Dactam

