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PREFACE 

This paper is an outcome of the seminar "Theory of spectral multipli
city in Hilbert space with application to stochastic process" that was held in 
the Mathematical Institute in Belgrade, during 1971-1973. 

Chapter I contains the material necessary for the understanding of Chap
ter n. According to Plesner's theory of spectral types ([15]) and "regularizing 
transposition" of Stone ([18]), by "geometrical" reasoning (Lemma 2, Ch. I) 
the well known theorem on the complete system of unitary invariants of a 
self-adjoint operator in Hilbert space is proved. The preliminary knowledge for 
this chapter the reader can find, for example, in the standard book by N. 1. 
Ahiezer and 1. M. Glazman. 

Applications of the results presented in Chapter I to stochastic processes 
considered as curves in Hitbert space are given in Chapter n. The knowledge 
required for this chapter the reader can find in Doob ([3]) or, for example, in 
the book by Cramer and Leadbetter ([7]). 

Appendices I and Il consider examples of Markov's processes and random 
fields. 

Appenix III contents one part of Cramer's results shown in the work [6] 
which we have seen after this work had been in print. 

The essential progress in Cramer's theory has been made by Yu. A. Ro
zanov: Theory of Innovation Processes (in Russian), Moscow, 1974. Rozanov's 
book became availabJe to us in the course of printing of this work; this is a 
reason why a survey of Rozanov's results is here missing. 
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INTRODUCTION 

Let Ix(t),a~t~b) be a complex-valued, second ordered stochastic process, 
i. e. ElX(t)12< +00 for each tE[a~b](E(x(t»=O, foreachtE[a~b]). Inthe 
correlation theory of stochastic processes, all properties of the process Ix (t») are 
defined and determined in terms of its correlation function r (s, t) = Ex (s) x( t) , 
s~ t E [a~ b). The connection of two second ordered processes Ix (t») and Iy (t)) 
is defined by their cross-correlation function p (s, t) = Ex (s) y( t ), S, t E [a~ b]. One 
of the main problems of the correlation theory is the problem of linear predic
tion: to find the random variable x (s; t), s < t, as a quadratic mean limit of the 
sequence L: Ckn X (tkn ), n = 1, 2, ... such that 

k:tkn~' 

Elx(t -x(S;t)12 

is minimal. A more general prob1em:5 the problem of linear filtration: to obtain 
the random variable y (s; t), s < t, as a quadratic mean limit of a sequence 

;.: CknY (tkn ), n = 1,2, ... such that 
k:tkn:b' 

Elx(t)-ji(s;t)1 2 

is minimal. 
Studying the stationary sequence IXk' k = ... , - 1, 0, + 1, ... ), A. N. Kol

mogorov ([13]) introduced the Hi1bert space method in the correlation theory 
of stochastic processes for the first time. Random variables x~ y~ ... of finite 
dispersion are considered as elements of Hitbert space CJ(J with the scalar pro
duct defined by (x~y)=Exji, xJy E CJ(J. Hence the stochastic process Ix(t») is a 
curve in the space CJ(J. The· problem of linear prediction is so reduced to the 
projection problem. Now, .x (s; t) is a projection of x Ct) on the subspace 
CJ(J ex; s), where CJ(J (x; s) is the smallest subspace spanned by the variables x (u), 
where u~s. Wold's representation ofstationarv sequence is 
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n 

x,,= LC,,-/cz/c, n= ... ,-I,O,+I, 
k=-oo 

... , (1) 

where (z", n = ..• , - 1,0, + I, ... ) is a sequence of the mutually orthogonal 
random variables such that 

%(x;n)=%(z;n) for each n= ... ,-I,O,+l, ... (2) 

Applying Stone's representation of the group of unitary operators, Kolmogorov 
gave the effective expression for the coefficients Cl> i = 0, 1, ... in Wold's repre
sentation. 

The equality (2) plays the fundamental role in the correlation theory. It 
shows that the stationary sequence (x,,) can be substituted by the sequence (z,,) 
and therefore that all the information about (x,,) is contained in (z,,). Also, (z,,) 
can be determined by means of (x,,). For example, from (1) and (2) it follows 
that a linear prediction can be expressed by 

III 

xm,,, = L en-le Z/c' m < n. 
k=-co 

Krein, Hanner and Kahrhunen (see, for instance [3]) extended Kolmogorov's 
result to the case of a stationary process (x (t), - 00 < t < + (0) with a continuous 
parameter. In this case Wold's representation of the process (x Ct)) is a stochastic 
integral (as quadratic mean integral) of a process with orthogonal increments 
(z(t), - 00 <t< + (0), i. e. 

where 

t 

x(t)= Ig(t-U)Z(dU). tE(-oo,+oo) 

-00 

%(x; t)=9'e(z; t), tE (- 00,+ (0), 

El z(dt)1 2 =dt. 

(3) 

(4) 

Let us notice once more that C 4) shows that, in the framework of the 
correlation theory, the processes Ix (t») and (z Ct») carry the same information, 
and that (z (t)), being the process with orthogonal increments, is easier to apply. 

It is now natural to study whether Wold's representation (3) can be exten
ded to the second ordered process (xC t), a~t~bl in a general case, i. e. the 
possibility of the representation 
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t 

x(t)= fg(t,U)Z(dU), t E [a, bj~~, (5) 

a 

where (z(t), a~t::;;;b) is a process with orthogonal increments and 

% (x; t) = 9(; (z; t), t E [a, b). (6) 

The first example of the second ordered process for which the represen
tation (5) is impossible was given by Hida in 1960. However that process had 
rather pathological properties (for example, the discontinuity in quadratic mean 
at each point). 

H. Cramer ([4]) solved the problem of Wold's representation in general 
form. It follows, by simple geometrical reasoning, that every second ordered 
process (x(t), a::;;;t~b) can be represented in the form 

t M 

X (t) = f L gn (t, u) Zn (du), (7) 

a n=1 

where (zn(t), a::;;;t::;;;b), n= I,M are mutually orthogonal processes with ortho
gonal increments and 

M 

9(; (x; t) = L Et) 9(; (zn; t), t E [a, b]. 

n=1 

It is evident that the represantion (7) is not uniquely determined. The question 
is which properties of the representation (7) are determined in terms of the 
correlation function r (s, t) of the process (x ( t)). Applying the theorem of the 
complete system of unitary invariants of a self-adjoint operator in a separable 
Hilbert space, Cramer pointed out that among the representations (7) exists one 
for which M is minimal (min (M) =N, N may be infinite) and that the measures 
induced by distribution functions Fn(t)=EI Zn(t) 12, a~t~b, n=l,N can be 
ordc;:red by absolute continuity: 

The equivalence classes PR' n = 1, N, of the measures induced by Fn , respe
ctively, are uniquely determined by the correlation function r (s, t). The sequence 

(8) 

is called the spectral type of the process /x(t)l. 
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Cramer's main result is that for any given sequence (S) there exists a 
stochastic process (x(t»), continuous in quadratic mean (and harmonizable), whose 
spectral type is that sequence. 

The representation 

t N 

x(t)= J 2:> .. (t> u)z" (du), tE[a,b], (9) 

IZ n=1 

of the process (x(t), a~t~b) satisfying (S) and 

N 

ge (x; t) = I Et> ge (z .. ; t), t E [a> b], (10) 

n=1 

will be called Cramer's representation. Equality (10) shows that any process 
(zn (t»), n = 1, N is determined by (x (t») and, conversely, that the process (x Ct») 
is determined by the processes (z,,(t»), n= 1,N. 

Now, the main problem of the whole theory is to determine explicitly the 
pectral type of the given process in terms of its correlation function (Cramer, [5]). 

Kallianpur and Mandrekar ([ 12]) extended Cramer's theory to an n-dimen
sional process and, more generally, to the process (x(t, cp), a~t~b, cp E <1», where 
<I> is a Hausdorff space with a denumerable base. The other generalizations of 
that theory and some special classes of processes are considered in Rozanov ([ 1 7]), 
Mandrekar ([14]), Rozanov and IvkoviC ([11]). 

From the continuity of the process Ix (t)) it follows that the correspon
ding space ge (x) (= ge (x; b») is separable. The analog theory in the case of 
non-separable space ge (x) can be developed using Plesner's generalized spectral 
types (IIJIecHep [15], Halmos fSl). 



Chapter I 

THE COMPLETE SYSTEM OF UNITARY INVARIANTS 
OF A SELF-ADJOINT OPERATOR IN SEPARABLE HILBERT SPACE 

1.1. The concept of spectral theory of self-adjoint operators 

The main aim of this chapter is to desribe the set of all self-adjoint ope
rators unitary equivalent to a given self-adjoint operator A, defined on a separable 
Hilbert space %. 

Two operators*) Al and A2 defined on Hilbert space %1 and %2 respectively 
(%1 and %2 may coincide) are said to be unitary equivalent if there exists an 
isomorphism U between %1 and %2 such that 

A2 = U Al U-l. (1.1) 

If %1 == %2 the operator U is called a unitary operator. 
The problem oJ unitary equivalence is to find the necessary and suffi

cient conditions for Al and A2 (in our case they are self-adjoint operators) 
under which exists the isomorphism U so that (1.1.) holds. 

From the geometrical point of view, there is no difference between uni
tary equivalent operators. So, the "description" of Al is, at the same time, 
the "description" of the whole class of operators unitary equivalent to Al. 

To find out if two operators Al and A2 are unitary equivalent we need, 
according to the definition, to prove the existence of the isomorphism U satis
fying (1.1.). In general, this is rather comlicated. Therefore, we shall solve the 
equivalent problem called: the finding of a complete system of unitary invariants 
of a self-adjoint operator. This means that we shall correspond an "object" FA 
to a self-adjoint operator A such that: 

(1) If Al and A2 are unitary equivalent, then F Al = F A2 ; 

(2) If F Al = F A
2
' then self-adjoint operators Al and A2 are unitary equi

valent; 
(3) For each "object" F there exists a self-adjoint operator A such that 

FA=F. 

*) The term "operator" means a transformation of the space % inso itself. 
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It should be noted that the spectrum of a self-adjoint operator satisfies 
only (1) and (3); so, the spectrum is not the complete system of unitary in
variants. 

The conditions (1), (2) and (3) describe a biunique correspondence between 
the set of all equivalence classes of self-adjoint operators and the set of all 
"objects" F. We shall see that the "objects" F are simpler than the corresponding 
operators and that their effective construction will be possible. Furthermore, 
the definition of an "object" F does not depend on the theory of operators. 

Further on, when nothing else is explicitly mentioned, all operators will 
be considered as self-adjoint operators defined on the same separable Hitbert 
space %. 

Let 

(E(t), a ~ t ~ b) (1.2) 

be a resolution of the identity in %, defined on some finite or infinite interval 
[a, b]. If M is a Bore! set, then B(M) means 

E(M) = f B(dt). 

M 

For any fixed x E % 

Px (M) = 11 B(M)x 112 (1.3) 

is a measure over [a, b]. Let.A be the set of all measures Px ( .). X E %:.A = 

= (Px ( .), x E %J. In./t we introduce the ordering relation < in the following 
way: PI (M) < P2 (M) if the measure PI (M) = 11 B (M) XI//2 is absolutely continuous 
with respect to the measure P2(M)=/IB(M)x2112. We shall say that PI(M) is 
subordinated to P2 (M). 

We shall say that PI (M) and P2(M) are equivalent (PI(M)"""'P2(M» if 
PI (M) < P2 (M) and pz (M) < PI (M) hold. As " ,..."," is the equivalence relation, 
we can consider the set of all equivalence classes.A I"""', The spectral type is 
an equivalence class, i. e. an element of .AI,...",. We shall denote by P the spectral 
type determined by the measure P (M), and for the measure P (M) we shall say 
that it belongs to the type p. The notation PI < P2 has the usual meaning. 

Different measures belonging to the same type P have the same family of 
null sets % p, but the families of null sets of different spectral types are different. 
This means that the spectral type P uniquely determines its family % p and 
conversely, the family of the null sets % p uniquely determines the spectral type p. 
It is evident, from the definition of the ordering relation <, that the spectral 
type PI is subordinated to the spectral type P2 if and only if % P~ C % PI' This 
simple fact enables us to point out that for two arbitrary spectral types there 
exists a uniqUely determined supremum P = Pl + P2 = sup (PI' P2)' defined by 
P(M)=PI(M)+P2(M). It means that %p =.!Vp n%p and therefore, P is uni-
quely determined. 1 2 
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The more general statement is true: any at most countable set (Pl' PI' ... ) 
of spectral types from .AI"'" has the supremum. Namely, without the restriction 
of generality, we can assume that L Pi CM) < + 00 for any Borel set _M (for, the 

i 

measures Pi CM) can be substimted by equivalent measures multiplying each 
Pi (M) by a sufficiently small positive number). Let the measOre p;CM) belong 
to the type Pi' Then for P (M) = L Pi (M) we have:.;V P = n.;V Pi and spectral 

i i 
type P = sup (Pl' P2' ... ) is uniquely determined. It follows that any at most 
countable set of spectral types is bounded. 

We shall denote with inf (Pl' P2' ... 1 the maximal spectral type subordinated 
to each PI' i = 1,2, .... 

The smallest element of the set .A I,..., is the spectral type 0 identically 
equal zero on the whole interval [a, b]. In this and the next chapter we shall 
operate with sets of spectral types having the maximal element (we shall see 
that the separability of CJb provides us with that). 

Two spectral types PI and P2 are said to be orthogonal if and only if 
inf (PI' P2) = O. 

Let CJb be a separable Hilbert space and A a self-adjoint operator defined 
on it. We shall first consider a spectral type of a subspace of CJb related to 
the operator A. 

We shall say that the subspace m of CJb is invariant with respect to the 
operator A ifAx E m for all x Em. The subspace m reduces A if both m and 
CJb e m are invariant with respect to A. The operator Al induced by A on 
any subspace m which reduces A will be called the part of the operator A. 

If A is a self-adjoint operator, any subspace invariant with respect to A 
reduces A ([1], § 46). 

It is well known ([1], § 75) that there is a one-to-one co respondence 
between the class of all self-adjoint operators and the class of all resolutions of 
the identity on the real axes. Let (E (t), a ~ t ~ b) be a resolution of the identity 
corresponding to a self-adjoint operatot A and let x be an arbitrary element 
of CJb. The subspace m (x) = .P lE (t) x, a ~ t ~ b )1) of CJb will be called the cyclic 
subspace of the operator A with the generating element x. The cyclic subspace 
reduces A. We shall denote by Px a spectral type determined by the measure 
PxCM)=IIE(M)xIl 2

• It can be shown ([1], § 83) that the cyclic subs pace m (x) 
of the operator A, generated by x E CJb, coincides with the set of all elements 
of the form 

b 

y= ff(t) ECdt) x, (1.4) 
a 

wheref(t) is a square integrable function with respect to Px (M), i. e. f(t) E.P2 (Px)' 
The correspondence f (t) ~ y is an isomorphism between the spaces.P 2 (Px) and 
m (x). 

1) .P I . I denotes the smallest subspace spanned by the elements in the parantheses 
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The spectral type Ps defined by the measure Px (M) with respect to the 
resolution of the identity of the operator A is called the spectral type of the 
element x. We say that measures and types of elements of CJG belong to the ope
rator A. The element x = 0 is the only element with zero type. The operator A 
is the operator with the maximal spectral type if and only if there exists the 
maximal spectral type among the types belonging to A. Any element generating 
the maximal spectral type is called the element with the maximal spectral type. 

The operator A is cyclic if there exists an element x E CJG such that 
CJG = 9R (x), i. e. if the whole space CJG is cyclic. It is easy to find the set of 
spectral types belonging to a cyclic operator A. If x is a generating element 
of CJG and Px its spectral type, then the spectral type a belongs to the cyclic 
operator A if and only if a < Ps' Indeed, if yE CJG, then there exists the 
function f(t)E!l'2(Px) such that (1.4) holds. Let a(M)=//E(M)y//2. Then: 

a(M)= f /f(t)/2 Px(dt)<px(M). 
M 

Conversely, if a < Px' then, according to the Radon-Nicodym theorem, 
there exists a non-negative px-integrable function ~ (t) such that 

a (M) = f ~ (t) Px (dt). 
M 

Since f(t) = V ~ (t) E!l'2 (Px)' the element y, corresponding to the function 
f(t), belongs to CJG. 

It follows that any element with the maximal spectral type in a cyclic 
space is the generating element. Hence the cyclic operator has the element with 
the maximal spectral type. 

The spectral type of the cyclic operator A is the maximal spectral type 
belonging to A. 

THEOREM 1. Let 9R (Xl) anp 9R (X2) be cyclic subspaces of the ope
rator A and suppose that the generating elements Xl and X2 have mutually 
orthogonal spectral types. Then the space 9R (Xl) EEl 9R (X2) is cyclic and its 
generating element X = Xl + X2 has a spectral type Px = P"l + PS2' 

Proof. We shall first show that the subspaces 9R (Xl) and 9R (X2) are 
mutually orthogonal. Let y be an element of 9R (X2)' Yl its projection on 9Il (Xl) 
and z = y - YI' As 9R (Xl) reduces A and z is orthogonal to 9R (Xl), we have 
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and therefore 

That means that the spectral type Py is subordinated to the type Py and, be
cause of Py < PX2' it holds that PYl < P:2. As PYl < PXl and as the spectral types PXl 
and Px are mutually orthogonal, it follows that PYl = 0, i. e. y = O. Therefore y 
is orth&gonal to 9R (Xl) for any yE 9R (x2), i. e. 9R (Xl) is orthogonal to 21i (xs). 

From 

2 2 

11 E(M)x 112= 11 E(M) L xj 112= L 11 E(M) Xj 112= PXl (M) + PX2 (M), 
i=1 i=1 

we see that Px = PXl + PX2 is the spectral type of the element X = Xl + X 2• 

Hence the spectral type Px belongs to X and is the maximal spectral type of 
the orthogonal sum 9R (Xl) EB 9R (x0. Because of E (M) X = E (M) Xl + E (M) X2' X 

is the generating element of 9R (Xl) EB 9R (X2), i. e. that space is a cyclic subspace. • 

Let Kp be the operator of multiplying by independent variable in the 
space 22 (p). One can show ([1], § 83) that the cyclic operator A with the 
spectral type P and the operator Kp are isomorphic. The operator Kp is called 
the canonical representation of the cyclic operator A. 

It follows that any cyclic operator is defined at a separable space since 
the space on which Kp is defined is separable. 

The next theorem is a simple generalisation of Theorem 1. 

THEOREM 2. The orthogonal sum of at most countable many cycli 
operators with mutually orthogonal spectral types Pi is a cyclic operator. It 
spectral type is P = sup (Pi)' 

We omit the proof. 

It is easy now to prove the following: 

THEOREM 3. Two cyclic operators are unitary equivalent if and only 
if they have the same spectral type. 

Proof. It is clear (from the definition of the unitary operator) that uni
tary equivalent cyclic operators have the same spectral type. Conversely, if two 
cyclic operators have the same spectral type P, then both of them are unitary 
equivalent to Kp and therefore they are unitary equivalent. • 

The problem of unitary equivalence is so solved for cyclic operators. In 
a general case, for self-adjoint operators in separable Hitbert space, the same 
problem will be solved by reducing it to the preceding problem. The first step 
is the following: 
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THEOREM 4. If A is a self-adjoint operator defined on any fixed (not 
necessarily separable) Hilbert space 9(;, then % can be represented as an 
orthogonal sum of subspaces, cyclic with respect to A. 

Proof. Let 9 be the partitive set of the family of all mutually orthogonal 
subspaces of %, cyclic with respect to A. We can introduce the partial orde
ring in 9 by inclusion. According to the axiom of choice, there exists the 
maximal totally ordered chain of mutually orthogonal subspaces. Let %1 be 
their orthogonal sum. We shall show that %1 = %. If this equality does not 
hold, there exists x#O in % e %1' Since %1 reduces A, % e %1 reduces A 
too. Therefore 9R ex) c % e %1> which contradicts the proposition that the 
chain is maximal. A 

Later on we will need the following: 

THEOREM 5. Let % = 9R (xo) and 9R (yo) c %. Let 10 E 22 (Pso) be a 
function corresponding to the element Yo, and Mo = (t : 10 (t) =F 0). Denote by 
9R

MO 
the set of all elements of % such that their corresponding functioris in 

22 (Pxo) vanish (almost everywhere with respect to Px~ outside of the set Mo. 
Then 9R(yo)=9RMO ' 

Proof. The subspace 2R (yo) consists of all elements 

b b 

Y= J g(t)E(dt)yo= J g(t)/o(t) E(dt) xo, 
a a 

where the function g (t) satisfies the condition 

b b 

J 1 get) 12 PyO (dt) = Jig (t)/o (t) 1 Pxo (dt) < + 00. 

a a 

Therefore the functions g(t)f1(t)E 22 (Pso) correspond to the elements of2R(yo)' 
If t~Mo then g(t)/o(t)=O and therefore all elements of9R(yo) belong to 9llMO ' 

Conversely, let Yl E 2RMO and gl (t) E 22 (Pxo) be the function correspondin to Y1' 
We set 

Then gl(t) =g (t)/o (t) and therefore y1 E2R(yo)' Hence 2R(Yo)=9RMO ' 
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Suppose that CJ(-; = 9n (x) and Yl . and Y2 are arbitrary elements of CJ(-; with 
the corresponding functions !1'!2E22(Px). Let MI=(t:fl(t)#O) and M 2 = 
=(t :!s (t) #0). From Theorem 5 it follows that the elements Yl andY2 generate 
the same cyclic subspace if and only if Ml = Ms almost everywhere with respect 
to PX. This means that the cyclic subspace of a cyclic space CJ(-; is uniquely 
determined by its spectral type. 

COROLLARY 1. In a cyclic space different cyclic subspaces have diffe
rent spectral types. 

1.2. The canonical representation of self-adjoint operators. Unitary 
invariants 

Theorem 4 shows that Hilbert space CJ(-; can be represented as an ortho
gonal sum of subspaces cyclic with respect to a self-adjoint operator A, i. e. 

CJ(-; = L Er) 9n (xk )· 

k<;:;1 

(1.5) 

In a general case, spectral types Px are not comparable and the cardi
nality of the set (Pxkl is not uniquely detefmined. In Theorem 7 we shall prove 
that CJ(-; can be represented as an orthogonal sum of cyclis subspaces 9n (Zk) 
such that 

(1.6) 

In order to show that this representation has some invariant properties 
we shall prove some preliminary facts. 

Let ~p be the set of all spectral types P and let fJ4 be Bore1 er-algebra 
over the segment [a, b] (on which P is defined). To each Borel set NE f14 we 
correspond the measure 

The spectral type of the measure PN(M) is subordinated to p. We define the 
mapping r p from f14 to ~p by 

LEMMA 1. The mapping rp is a homomorphism of er-algebra f14 onto~p. 

Proof. Since r p ([a, b]) = P[a, b] and if NI C N 2, then P NI < P N' so that r p 
is a homomorphism of t!l into ~p. It remains to be shown that r: is a homo-

2 
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morphism of PA onto I:p. For each C1 E I:p there exists a non-negative p-mea
surable function JCt) such that 

C1 CM) = jJ(t) P (dt), 
M 

for any ME PA. The set N = It :J(t)*OI belongs to PA. Since the measure C1 (M) 
has the same family of null sets as the measure 

PN(M)=p(M n N)= J XN(t)dt 
M 

COROLLARY 2. For each spectral type IX subordinated to a given 
spectral type P there exists the uniquely determined spectral type 't' such that 
P=IX+'t'. 

This follows directly from the preceding lemma and the fact that N" = 

=[a,b]",-Na,. 

THEOREM 6. Let PI and P2 be given spectral types and 

Then the spectral types Pl and" are orthogonal. 

Proof. Suppose that inf (PI' 't'l *0. That means that there exists a 
spectral type "1 * ° such that 

Then 

From P2> 't' it follows that 

&, 

REMARK 1. Theorem 6 is in fact the well-known Lebesgue theorem on 
the additive decomposition of a given measure P2 (M) into two parts: one ab-
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solutely continuous with respect to a given measure PI CM) and the second sin
gular with respect to P1 (M). 

LEMMA 2. Let ®(x) and ®(y) be two mutually orthogonal cyclic 
subspaces. Then there exist elements Zl and Z2 in ®(x) EB ®(y) such that 
® (x) EB ® (y) = ® (Zl) EB ® (Z2) and for spectral types P'l and P'2 holds P.1 > P'2' 

Proof. According to Theorem 6 there exists the uniquely determined 
spectral type 't' such that 

Py = inf (Px' p) + 't' 
and 

inf (pg, 't') = O. 

Since "t' < Py there exists the element u in ® (y) with the spectral type 't'. We 
set Zl TO x + u. Because of the orthogonality of spectral types Px and Py = 't' we get 

and 

(1.7) 

(Theorem 1). In ®(y) there exists the element Z2 with the spectral type 

As Pz1 > Px and Px> P'2 we have PZ1 > P'2' Since inf (Pz2, 't') = 0 we get 

or 

(1.8) 

From (1.7) and (1.8) it follows that 

Now we shall prove the following: 

THEOREM 7. Let A be a self-adjoint operator defined on a separable 
Hilbert space 9'e. Then there exists a represantation 

2* 
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N 

CJe = 2: EB Q1l (Zk)' (1.9) 

k=1 

such that 

(1.6) 

(The number N may be finite or infinite.) 

Proof. Let (1.5) be one representation of CJe. According to Lemma 2, there 
exist the elements Uu and U2k in Q1l (Xk), k = 2, N, such that Xk = UI/,: + U2k and the 
types Pu and Pu = inf (p 11-1 Px I are mutually orthogonal, i. e. PUn < 

1k 2k X1+ :E "II' k Ale 
;=2 

N 

p k k = 2, N; it is obvious that the subspace Q1l (Xl) EB 2: EB ® (Ulk ) is a 
Xl + :E "1;' k=2 

;=2 
N 

cyclic subspace with a generating element Zl = Xl + 2: Ulk whose spectral type is 
k=2 

N N 
the maximal spectral type in CJe. Hence 2: EB Q1l (xle) = Q1l (Zl) EB 2: EB ® (U2/r) and 

k=1 k=2 __ N 

p" < pz k = 2, N. Applyi(lg the same procedure to 2: EB ®(U2/,:) we can choose 
211: 1 k=2 

the element Z2 with the maximal spectral type in the space CJe e Q1l (Zl) = 
N 

= 2: EB Q1l (u2k). Evidently: Pz
1
> PZz. We continue this procedure until we get 

k=2 
the sequence (zkl such that 

N 

CJe = L EB Q1l (Zk) 
k=1 

and the relation (1.6) holds. 

REMARK 2. From the construction of the sequence (zkl h follows that 
the cardinality of its non-zero elements is not greater than the cardinality of 
the sequence (xkl. If inf (px 1:;60 these two cardinalities are equal. 

le 

The representation (1.9) with the condition (1.6) is called the canonical 
representation of the space CJe with respect to the operator A. The corresponding 
representation of the operator A as a sum of its parts, defined on these subspaces, 
is called the canonical representation of the operator A. The sequence (1.6) is 
called the spectral type of the operator A. 

The uniqueness of the sequence (1.6) follows from the proof of Theorem 7, 
i. e. (1.6) is independent of the choice of (xII:l. However the elements Zl' Z2' ••• ,z N 

themselves depend on the choice of /xkl. 
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LEMMA 3. Let %1 and %2 be two Hilbert spaces, A a self-adjoint 
operator defined on %1 and U an isomorphism hetween %1 and %2' If x is 
an arbitrary element in %1' then 

Uill( (x) = ill( (Ux), 

where the left side denotes the set Iy :y= Uz, zE ill(x)J. 

Proof. Let V be an isomorphism taking ill( (x) to !l'2 (Px)' Then UV-l is 
an isomorphism taking !l'2 (Px) to Uill( (x), i. e. U(]fl (x) is a cyclic subspace 
of %2' Since U is an isomorphism, the spectral type Px is the maximal spectral 
type in Uill(x) and the spectral type of the element Ux is Px' or Uill(x)= 
=®(Ux). • 

The necessary and sufficient conditions for the unitary equivalence of two 
self-adjoint operators are given by the following: 

THEOREM 8. Two self-adjoint operators are unitary equivalent if and 
only if they have the same spectral type. 

Proo£ Let Al and A2 be defined on %1 and %2 respectively. Suppose 
that A2 = U Al U-1, where U is an isomorphism taking %1 to %2' Let the 
sequence IZkl)J determine the spectral type of Al' We define a new sequence 

Izf») by Z<l) = U ~I), k = 1, N. From Lemma 3 it follows that ill( (zk2») = 

= U® (zkl )), k = 1, N, so P (2) = P Cl), k = 1, N. That shows that unitary equi-
Zk Zk 

valent operators have the same spectral type. 

Conversely, let Izi1») and IZk2») be sequences defining canonical represen
tations of %1 and %2 with respect to Al and A2 respectively and let Pz(l)--'pi2), 

k k 

k= 1, N. According to Theorem 3, there exists the isomorphism V~ taking 
ill( (~I») to ® (zk2»), k= 1, N. Any element X(I) E %1 is an orthogonal sum: 

N __ _ 
XCI) = 2: xkl ), xkl) E ill( (zkl »), k= 1, N. We define the operator U from %1 to %2 by 

k-I 

N 

UX(I) = )' V1c xi1). 
~ 
k-l 

Evidently) U is an isomorphism between %1 and %2 such that A2 = U Al U-l. • 

This theorem solves the problem of the complete system of unitary lDva
riants, formulated in 1.1. Let us notice that any set Ip~J of spectral types p~ 
belon~ng to A is an unitary invariant, but only the sequence (1.6), for which 

% = 2: ill( (z~) is the complete system of unitary invariants of A. 
k=l 
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1.3. The reducibillty of self-adjoint operators 

In this section we shall give conditions under which some subspace !Jll 
of a separable HiIbert space % reduces a self-adjoint operator A. It is well 
known ([I], § 74) that !Jll reduces A if and only if QTI reduces the correspon
ding resolution of the identity [B(t), a ~ t ~ b). Besides, QTI reduces A if and 
only if QTI is an orthogonal sum of subspaces of %, cyclic with respect to A. 
Indeed, if QTI reduces A and if Xl E!Jll, then QTI (Xl) C Qll. If X2 E Qll8Qll (Xl), 
since !Jll8!Jll (Xl) reduces A, then !Jll (X2) C!Jll8!Jll (Xl), etc. Continuing the 
procedure, we get the representation Qll= L: EEl !Jll(xk ). On the other hand, if 

k 
!Jll is an orthogonal sum of subspaces, cyclic with respect to A, then I]Jl re
duces A, since any of those cyclic subspaces reduces A. 

If we consider % and !Jll in canonical representation, it holds 

N N 

THEOREM 9. Let %= L: EEl QU(xn) and 9ll= L: EEl QU(un) be canonical 
n=l n=l 

representation of the space % and the subspace 9ll wich reduces A. Then the 
spectral type of the part of the operator A in 9R is subordinated to the spec
tral type of the operator A in CJ(J, in the following sense: M ~ N, P" < P. , ___ ______ n n 

n= 1, M, PUn =0, n=M+ I,N. 

Proof. Since POI is the maximal spectral type in CJ(J, it follows that PUl < POl. 
We can assume that PIll < P'! does not hold. Let us show that the assumption 
that P"2 < P. is not true yelds to the contradiction. If P" < P'2 does not hold, 
then tliere ~xists a spectral type 't", not identicly equeI t5 zero, orthogonal to 
P'2 and such that P"2 =inf [PU2' P. ) + 't", i. e. 9R (u2) = 9ll CUi) EEl 9ll (u"), where 
pu' = inf [PU2' Poz)' Pu" = 't". Let U b~ a unitary operator defined on 9ll such that 
U 9R (uJ C 9ll (Zl) and U 9R (u' ) C 9R (zJ. Since Pu" 1.. P. , n = 2, N, the subspace 

N n 

U911(u") can not belong to .L EEl 9ll(zn). Hence, U911(u")cQU(zJ. Since the 
n=2 

subspaces QU (uJ and !Jll (u") are mutually orthogonal, the subspaces U QU (uJ and 
U QU (u") are mutually orthogonal cyclic subspaces of the cyclic subspace QU (Zl). 
Therefore the spectral types PUl and p,," = 't" are mutually orthogonal, which is in 
the contradiction with a fact that 't" < p" < PUI < POl· Hence P"2 < Po2 • The assum
ption that Pus < PZs does not hold is, by 2the same reasoning, reduced to the con
tradiction e. t. c. A 

In a special case, when A is a cyclic operator, we have: 

THEOREM 10. Let % be a HiIbert space cyclic with respect to A. Let 
ill1 be a subs pace of %, and P'1lI a projection operator of % onto QU. The sub
space QU reduces A if and only if P'1lI = X. (A)2), where the function X. (A) is mea-

2) If h E!l'2 (p), where P is the maximal spectral type of the cyclic operator A, then 
h (A) is the operator defined by 

b 
h (A) x = .r h (t)E (dt) x, x E %. 



Application of spectral multiplicity in separable ... 23 

surable with respect to the spectral type of A and assumes only the values 
o and 1. 

Proof. Since A is a cyclic operator, there exists an element Xo E % such 
that QTI(xo)=5I'(E(t)xo, a::;;;;t::;;;;b)=%. As the element P9RXo belongs to %, it 

b 
can be represented in the form JJ(s) E(ds) xo, J(S)E!l'2(PxO)' Then E(t)P9Rxo= 

a 
b t 

= Jf(s)E(t)E(ds)xo= Jf(s)E(ds)xo• Since P>JJ1E(t)XoE%, then P,vIE(t)xo= 
Q a 
b t 

= I g (s) E (ds) E (t)xo = I g (s) E(ds) xo, g (s) E!l'2 (Pto)' 
a a 

The assumption that QTI reduces A impliesP9RE(t)= E(t)P9R for all tE [a, b]. 
Therefore 

t t f g(s)E(ds)xo = jf(S)E(dS)Xo (1.10) 

a a 

for all tE [a, b], or g(s)=J(s) almost everywhere with respect to Pxo' The equ
ality (1. 10) shows that the operators P9R ' and J (A) coincide on the dense set 
(E(t)xo, a::;;;;t::;;;;b), i. e. they coincide on %. From P~!=P9R we get (f(t»2=J(t) 
for all t E [a, b]. That means that the function J(t) can assume only the values 
o and 1. 

b 

Conversely, let P9R=X(A). For any XE%, we have P9Rx=JX(s)E(ds)x 
a 

t b t 

and E (t)P9R x = J X (s) E (ds) x. Since P9R E (t) x = I X (s) E (ds) E (t) x = J X (s) E (ds) x 
a a a 

we conclude that P 9R E(t)x = E(t)P9R x for all XE% and all tE[a,b]. 

COROLLARY 3. Any subspace QTI of a cyclic subspace % = QTI (xo) re
ducing A is a cyclic subspace with the generating element P 9R xO' 
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STOCHASTIC PROCESSES AS CURVES IN HILBERT SPACE 

n.l. Cramer representation 

Further on we assume that all random variables and stochastic processes 
under consideration are defined on a fixed probability space. 

Let % be a set of complex-valued variables x, y, . .. with the finite 
second ordered moment: El x 12 < + 00. Without loss of generality we shall 
assume that Ex = O. The set % becomes a Hilbert space if the scalar product 
is defined by (x, y) = E xy, x,y E %. The convergence in % is the convergence 
in nonn: x" -+ x as n -+ <X) means 1 i Xn - x 11 -+ 0 as n -+ 00. In tenns of proba
bility theory this is the convergence in quadratic mean: El x" - X 12 -+ 0 when 
n-+ 00. 

Let (xCt), a~t~b) be a second ordered process, i. e. Elx(t)12< + <X) for 
each tE[a, b] (Ex(t)=O for each tE [a" b]). The parameter t runs through the 
segment [a" b] which can be finite or infinite. The process (xCt), a~t~b) will 
be considered as a curve in Hilbert space %. 

Let % (x; t) be the smallest subspace spanned by the variables x (s) for 
all s~t, i. e. % (x; t) is a Hilbert space consisting of limits in quadratic mean 
of all possible sequences 

n 

where c"k are complex numbers and tnk~t. We set %(x)=%(x; b). 

In the sequel we assume that the following two condition are satisfied: 

(A) 1'he process (x (t)) is continuous in quadratic mean. This condition 
can be replaced by the' weaker one that (x (t)) is left-side (or right-side) con
tinuous in quadratic mean for each t E [a, b]. 
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(B) n ge (x; t) = O. This condition means that the process is regular or 
t>a 

purely nondeterministic. 
From (A) it immediately follows that ge (x) is separable. For a base in 

ge (x) we can choose a countable set (x(tk)), tk is a rational number in raj b]. 
Denote by E(t) (or, Ex(t)) projection operator from ge(x) onto ge(x; t). 

It is easy to see that (E(t), a~t~b) is a resolution of the identity of a self
adjoint operator in ge(x).lndeed,E(s)E(t)=E(min(sJt))foreachsJtE[a,b), 
E(t-O)=E(t) for each tE[aJb), (a)=O (because of the condition (B)) and 
E(b)= I. 

According to the theory of self-adjoint operators in a separable Hilbert 
space (Theorem 7, Ch. I), there are elements Zl' Z2' ... , ZN in ge(x), such that 

(11.1) 

and 
N 

ge (x) = L EB lJU(zn), (11.2) 

n=l 

where N may be infinite. 

The number N is minimal in the sense that for any set of elements Yl' 
M 

Y2' ... , YM in ge(x), satisfying ge(x)=:LEBlJU(Yn)' holds N<M. 
n=l 

For an arbitrary element zEge(X) we set z(t)=E(t)z. From the pro
perties of the resolution of the identity it follows immediately that (z (t); a~t~b) 
is the process with the orthogonal increments. The distribution function F. (t) = 
= 11 z (t) 112 = El z (t) 12, a~t~b, induces a measure belonging to the spectral type 
p. of the element z. In the sequel, without ambiguity, F. will be used in
stead of P.' 

The stochastic integral 

b 

jf(t)Z(dt) , 
a 

where (z(t), a ~ t < b) is the process with orthogonal incrementsandfE.<l'2(F.), 
will be considered in the sense of Doob ([3]), Ch. IX). Hence ge (z) is exac

b 
tly the set of elements of the form jf(t)z(dt), fE.<l'2(F.). Since z(dt)=E(dt)z, 

a 

it follows that ge (z) coincides with a cyclic subspace ® (z) generated by the 
element z. The converse statement is true in the following sense: 

LEMMA 1. Let (z(t), a~t~b) be a process with orthogonal increments. 
Then there exists an element Zo in ge (z) such that ge (z) :: ® (zo). 
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Proof. Let g E.If? 2 (F.) be a positive function almost everywhere with res:" 
pect to F •. We set 

b 

zo= jg(S)Z(dS). 
a 

Since 

t 

E(t)zo= jg(S)Z(dS), 

a 

it follows that measures induced by the distribution functions 11 E(t) Zo 1/2, a~t~b, 
b 

and F.(t), a~t~b, are equivalent. Therefore each element IJ(t)z(dt) of %(z), 
a 

can be represented in the form 

b 

jf(t)-;~t)- E(dt)zo, 
a 

i. e . . zo is the generating element of the cyclic subsl'ace % (z). 

The equality (11.2) can be written in the form 

N 

CJ(, (x) = 2: Et> % (zn), (11.3) 

n=l 

where z,,(t), a~t~b, n= 1,N are mutually orthogonal processes with ortho
gonal increments. Applying E(t) on (11.3) we get 

N 

%(x;t)= 2: Et> % (zn;t) for each tE [a, b]. (11.4) 

n=l 

From (11.4) it follows 

N t 

X (t) = 2: .f gn (t, u) Zn (du) for each t E [a, b). (11.5) 
n=l a 
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where 

N t 

~ Jlgn (t, U) 12 F'n (du) < + co for each t E [a, b]. 
n=l a 

DEFINITION 1. The equality (11.5) is called the Cramer representation 
fo the process (x (t), a~t~b). The sequence (11.1) is called the spectral type of 
the process (x (t)J. The number N is called the multiplicity of the process (x (t)J. 

The spectral type of the process (x (t) J will be denoted by ex or F x. 

EXAMPLE 1. For a wide-sense stationary process (x (t), - co < t < + co J 
there exists the well know Wold-Kolmogorov representation (see [3]) 

t 

x(t)= J g(t-u)z(du), t E ( - co, + co), 
-00 

where <;7G(x;t)=<;7G(z;t) for each tE(-CO,+CO), F.(dt)=dt andg(t)E2'2(F.) 
at the interval [- co, + co). Hence, the multiplicity of a wide-sense stationary 
process is N = I and the spectral type is equivalent to an ordinary Lebesgue 
measure over (- co, + co). 

In the proof of Lemma I we have shown that the multiplicity of a pro
cesss with orthogonal increments is N = 1 and its spectral type is F. Ct) = 

= 11 E(t)zo 11 2, a:;:;;t:;:;;b. . 
The fundamental result of the aplication of the theory of spectral multi

plicaty in Hilbert space to the theory of stochastic processes is the following: 

THEOREM 1. (see [4]) For any given sequence of spectral types 

(11.6) 

(N may be infinite), there exists a stochastic process (x(t)J, continuous in qua
dratic mean, such that (11.6) is its spectral type. 

In [4] it is shown that there exists even a harmonizable process (x (t)) 
for which (!",=(!. . 

Before proceeding to the proof of Theorem 1, let us make the following 
notice. 

Let s=cp(t), a~t~b, be a diferentiable, strictly increasing function. If we 
set y(s)=x(t) for s=cp(t), then the processes (x(t), a~t:;:;;bJ and (y(s), cp(a)~ 
~s~cp (b)J have equal spectral types in the following sense. Let 
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and 

be spectral types of (x (t)) and (y (s)) respectively. Since 9!j (y; s) = 9!j (x; t) for 
s=rp(t), tE[a,b], we have Nl=N2 and Fy,,(s)=Fxn(t) for s=rp(t), tE[a,b], 
n= 1, NI' Therefore we suppose, without loss of generality, that the distribu
tion functions, inducing the spectral type in (11.6), are defined on the seg
ment [0, 1]. 

Proof of Theorem 1. The proof essentially depends on the existence of 
. ..N 
disjoint subsets Al As, ... , AN of [0, I] (UAn=[O, I)), such that for each n, 

,,=1 
n = 1, N, and IX and ~, ° ~ IX < ~ ~ 1, the ordinary Lebesgue measure of An n [IX, ~] 
is positive. One construction of these sets is given in [5]. 

According to the Daniell-Kolmogorov theorem, there exist mutually ortho
gonal processes (Z,.(t), O~t~l), n=l,N with orthogonal increments for which 
Fz,. (t) = E I z" (t) 12 = F,. Ct), ° ~t ~ 1, n = 1, N, where Fn is the distribution func
tion inducing the spectral type en in (11.6). 

Let the function X,.(t), O~t~l, be the indicator-function of the set An. 
We shall first show that the process (Yn (t), O~t~ 1), defined by 

t 

Yn (t) =J X,. (u) z" (u) du,' t E [0, 1], 
o 

has the spectral type Fn. Obviously, 9!j (Yn; t)C 9!j(Z,.; t) for each t E [0, 1]. On 
the other hand, for each t E An we have 

Y~ (t) = Xn (t) z,. (t) = z,. (t). 

Since An is everywhere dense in [0, 1], we conclude that 9!j(Y~;t)=9!j(Z,.;t) 
for each tE [0,1]. As 9!j(Y~;t) is always in 9!j(Yn; t) it follows that 9!j(Yn; t)= 
=9!j(zn;t) for each tE[O, 1], i. e. Fyn=Fn. 

The processes (Yn (t)), n = I;N are, obviously, mutually orthogonal. 
We now define the process (x (t), ° ~t~ 1) by 

N N t 

x(t)= L ~ Yn (t)= L ~ JXn (u)zn (u)du, tE [0,1] 
n=1 n=1 a 

1 

(11.7) 

(factor - insures the convergence of the series in the case N = (0). Ob
n 

viousiy 
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N N 

%(X; t)CL EB%(Yn;t)= L EB%(z,,;t) 
n=l n=l 

for each t E [0, 1]. 

Any fixed t E [0, 1] belongs to one and only one set An n = 1, N. Let 
tEAk' From (H.7) we have .. 

(11.8) 

Since %(x';t)C%(x;t) for each tE[O, 1] andasAk is everywhere dense 
in [0, 1], from (H.S) we get . 

for each t E [0,1] and each k = 1, N. Hence 

N 

% (x; t) = L EEl % (zn; t) 
n=l 

for each t E [0, 1]. 

The last equality shows that the process (x (t)) has the given spectral 
type (H.6). 

The correlation function of the process (x(t)) is 

N s t 

r (s, t) = Ex (s) x (t) = L ~2 J f x .. (u)xn (~) Fn (min (u, vD du dv. 

n=1 0 0 

As r(s~t), O~s~t~1 is continuous, the process (xV)) is continuous in 
quadratic mean. £. 

REMARK 1. The following simple construction can be applied for obtai
ning the process (x(t), O~t~l) with a given spectral type (H.6) (see [9]) 

N t 

x(t)= L : Jg,,(t,U)Z~(dU),· tE[O,I], (11.9) 

n==-1 0 
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where 

{
I, iftE An' 

t,u = gn ( ) 0, otherwise. 

The same reasoning as in the proof Qf Theorem 1, Ch. II, gives 

N 

9'(; (x ;t) = 2: (f) 9'(; (in; t), ' 
n=l 

where, instead of the metric density of the sets An' n = 1, N, it is enough to 
assume that they are everywhere dense in [0,1]. However the process (x(t)J, 
defined by (II.9), is not continuous in quadratic mean because its correlation 
function 

N minls,tl 

r (s, t)= L ~2 J gn(s, u)gn (t, u) Pn (du) = 
n=l 0 

IPn (min (s, tl), if sand t are in the same 
= set An n = 1, N, 

0, otherwise, 

is not continuous. 

REMARK 2. The process (x (t), ° ~ t ~ 1J defined by 

N t t 

x(t)= L; f [ J (t-vhn (v) dV]Zn (du) , 
n=l 0 U 

is continuous and has the spectral type (11.6). This construction is very simi
lar to that in [4]. Mter showing 

for each t E [0,1] and each n = 1, N, the proof is analogous to the proof of 

Theorem 1, Ch. II. 

THEOREM 2. ([4]) The spectral type (}Il: of the process (x(t)J is uniquely 
determined by its correlation function res, t). 
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Proof. We shall prove that two arbitrary processes 

(x(t), a ~ t ~ b) and (y(t), a ~ t ~ b) 

with the same correlation function r (s, t) have the same spectral type. We 
define the operator U by y(t)=Ux(t) for each tE[a,b] and extend it by 
linearity to CJ(; (x). Since 

res, t)=(y(s), y'<t))=(Ux(s), Ux(t))=(x(s), x(t)), 

(a ~ s, t ~ b) it follows that U is an isomorphism of % (x) onto % (y). From 
the definition of the operator U it follows CJ(; (y; t) = UCJ(; (x; t), i. e. Ey (t) U =_, 
= UEx (t) for each t E [a, b]. According to the theorem of unitary invariants 
of self-adjoint operators (Theorem 8, Ch. I) we conclude that ey = ex' A 

The converse does not hold, i. e. if two processes have the same spectral 
type, their correlation functions need not coincide. For example, for a given 
process (x (t)) the process (y(t)) is defined by y (t)=f(t) x (t), where f(t) is a 
non-random function such that 0 ~ m ~ If(t) I ~ M for all t E [a, b]. Then 
%(y;t)=CJ(;(x;t) for eaChtE[a,b], i.e. Ey(t)=Ex(t) for each tE[a,b] and 
therefore ey = ex' On the other hand 

ry (s, t) = f(s)f (t) rx (s, t)=f.rx (s, t), a ~ $, t ~ b. 

Theorem 2 introduces the problem of expressing the spectral type ex of 
the process (x (t)) in the terms of its correlation function r (s, t). Before consi
dering this problem we shall give some shorter notations and one definition. 

Let (z (t) = (z" (t))" = I, N, a~t~b) be a stochastic process considered as a 
vector-column, where (z" (t), a~t~b), n = I, N, are mutually orthogonal pro

cesses with orthogonal increments. Set F(t)=Ez(t)z*(t)=(F,l;(t))j=l,N where 
k=l,N 

z*(t) denotes the transposed matrix ofz(t). The matrix function F(t), a~t~b, 
has non-zero elements only on the principal diagonal and we denote them by 
F." (t)= Fn~ (t)= El Z,.(t) 1

2
, n= 1, N. 

Let !l' 2 (F) be the Hilbert space of all complex-valued vector-row functi-
ons f(t)=(f" (t)"f=I,N, a~t~b, for which 

b f feu) F. (du) f* (u) < + 00. 

a 

The scalar product in !l' 2 (F) is defined by 

b 

<f1,i;> = jf,,(t)F(dt)f{(t), fl,f2E!l'2(F). 
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DEFINITION 2. The family of functions (g(c, u), a~u~cJ, where the 
parameter c E [a, b] is complete in £'2(F) if, for any fixed c, from 

s 

Ig(S,U)F(dU)f*(U)=O for all SE [a, c], 
u 

it follows that f(u)=O, a~u~c, almost everywhere with respect to F (i. e. 
I 

I feu) F (du) f* (u) = 0). 
a 

The spectral type (11.6) of the process (x(t), a~c~bJ can be written in 
terms of matrix function 

. 0 

F(c)= (11.6') 

o 

where the distribution function Fn (t), a~t~b, induces the measure which be
longs to the spectral type Pn' n= 1, N in (11.6). Hence the Cramer represen
lation of the process (x(c), a~t~b) with the spectral type (11.6') can be written 
in the form 

I 

X (t) = f get, u) z (du), t E [a, b], g(c, u) E £'2 (F), (11.10) 

a 

where F(c)=Ez(c)z*(c). 

THEOREM 3. The stochastic process (x (c), a ~ t ~ b) with the corre
ation function r (s, t), a ~ S, t ~ b has the spectral type (11.6') if and only if 

minIs, If 

res, c)= I g(s, u)F(du)g*(t, u), a ~ s, t ~ b, (II.Il) 
a 

where the family of functions fg (t, u), the parameter t E [a, b]) is complete 
in £'2 (F). 

Proof. If F is the spectral type of the process (x(t»), from the Cramer 
representation (11.10) it follows that 

3 
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s t 

r(s,t)=EX(S)x(t)'=(f g(s,u)z(du), J g(t, U)Z(dU)) = 

a a 

min Is, tl 

= J g (S, U) E z (du) z* (du) g* (t, u) = 

a 

minis, tl 

= f g (s, u) F (du) g* (t, U). 

a 

Let us show that the family of functions (g (t, u); the parameter t E [a, b]) 
is complete in 2'2 (F). Since (11.10) is the Cramer representation, any element y 

N 
from ge(x;t)=IEBge(zn;t) (t is any fixed point in [a,b]) is of the form 

n=1 

t 

y= J f(u)z(du), fE2'2(F). 

a 

The fact that, if (x (s),y) = 0 for all sE [a, t], then y = 0, can be written 
s 

as: if I g (s, u) F (du) f* (u) = 0 for all sE [a, t], then feu) = 0 almost everywhere 
a 

with respect to F on the segment [a, t]. That means that the family (g (t, u)) 
is complete in 2'2 (F). 

Conversely, let (z (t) = (zn (t))n=I, N, a ~ t ~ b) be a stochastic process for 
which Ez(t)z*(t)=F(t), a~t~b, and F(t) is from (II.ll). We set 

x(t)= J g(t,u)z(du), tE[a,b], (II.l2) 

a 

with (g(t,u)) from (11.11). Let us show that (11.12) is the Cramer representa
N 

tion of the process (x(t)). It is sufficient to show that ge(x;t)= IEB%(zn;t) 
n=l 

for each t E [a, b]. Suppose that the last equality does not hold. From (II.12) 
N 

it follows that ge (x; t) c I EB ge (Zn; t). Therefore there exists a non-zero 
n=l 

N 
element y E I EB ge (Zn; t) orthogonal to x (s) for all sE [a, t]. The element y 

n=l 
can be written in the form 
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t 

Y= J f(u)z(du), fE22 (F). 
a 

So, we have 

s 

(x (s),y) = J g (s, u) F (du) f* (u) = ° for all sE [a, t] 
a 

and 

t 

I/y 112 = J fCu) F (du) f* (u) > 0, 
a 

which contradicts to the assumption that the family of the functions (f(t, u), 
the parameter t E [a, b) is complete in 22 (F). 

Finally, the correlation function r (s, t) of the process (x(t)) defined by 
(II.12) is given with (II.lI). A 

EXAMPLE 2. Let the disjoint sets An' n = I, N be everywhere dense in 
N 

[0,1] and U An = [0,1]. We set 
n=l 

{
I,if UE[O, t], tEA,n' 

g(t,u)= no, otherwise 

(see . R~mark 1). It is easy to' see that the family of the functions (g(t, u) = 

= (gn (t, u))n=l-;N, the parameter t E [0,1]) is complete in 22 (F), where 

t . ° 
F(t)= , O:::;;;t:::;; 1. 

0. t 

Indeed, for each SE Ale n [0, I] and for any vector-row function 
f=(fn)n=T:N E22 (F) we have 

$ S 

r g (s, u) F (du) f* (u) = IIIe (u) duo 

o 0 

3* 

(H.13) 
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s 
If Ifk (u) du = ° for all sE Ak n [0, t] and as the set Ak is everywhere dense 

o 

in [0,1], it follows that fk (u) = ° almost everywhere on the segment [O,t]. Hence 
the function 

min Is, I1 { 

rC', t)-r gC" u)FCdu)g*Ct,u)~ 
min (s~ tl, if sand tare 

in the same set 
An' n= 1, N, 

0, otherwise 
(11.13) 

is the correlation function of a process whose spectral type is (11.13). An exam
ple of a process (x(t), O~t~ll with correlation function (11.13') is 

1 

x(t)= J get, u)w(du), tE [0,1), 
o 

where w(t)=(w,,(t»),.=I,N and the processes (w,,(t), O~t~ll are independent 
Wiener processes. 

RFMARK 3. The analyses of Theorem 3, Ch. 11, shows that this theo
rem holds under some more general conditions in the following sense: Let 

G(t)=(G. (t»)i=l,M 
Jk k=I.M 

be a matrix function with non-zero elements G"" (t) n = 1, M only on the prin
cipal diagonal and G"" (t) be distribution function on [a, b] (M may be infinite). 
Suppose that the function h (t, u), a~u~t, for each t E [a~ b] belongs to 22 (G) 
and that the process (x(t), a~t~bl is defined by 

t 

x(t)= f het, u)z(du), (11.14) 

a 

where E z (t) z* (t) = G (t), i. e. z (t) = (z" (t»)n=l-;M with El z" (t) 12 = G"" (t), 
n= I,M. Then 

M 

~(x; t)= 2EB~(z,,; t), for each t E [a b] (11.15) 

n=1 
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if and only if the family of the functions (h (t, u), the parameter t E [a, b]) is 
complete in 22 (G). The representation (II.14) with the condition (ILlS) is 
called proper canonical (see [9]). We shall consider this in the next section. 

II.2. The fully submitted process 

In the present section we discuss the relations between canonical and 
proper canonical representation ([9]), fully submitted process ([17]) and reduci
bilitty of the resolution of the identity in certain subspaces. 

DEFINITION 3. ([13], [17]) The process (y (t), a ~ t ~ b) is submitted 
to the process (x(t), a~t~b) if%(y;t)C%(x;t) for each tE[a,b]. 

DEFINITION 4. ([17]) The process (y(t), a ~ t ~ b) is fully submitted 
to the process (xCt), a~t~b) if %(y;t)c%(x;t) and %(Y)8%(y;t)c 
c % (x) 8 % (x; t) for each t E [a, b]. 

EXAMPLE 3. In the Cramer representation 

t N 

x(t)=J Lg,,(t,U)Zn(dU), tE[a,b], 

a n=1 

any process (zn(t)), n=I,N is fully submitted to the process {x(t)). 

EXAMPLE 4. We give an example of a process submitted to a given 
process, but not fully submitted. Let (w(t), ° ~ t ~ 1) be a Wiener process. 
The process (Wl (t), ° ~ t ~ 1) defined by 

t 

Wl(t)= J(2-3~)W(dU)' t>O, Wl(O) = 0, 
o 

is also a Wiener process, submitted to (w (t)). If (Wl (t)) is fully submitted to 
(w Ct)), then for each v < t < s 

or 

3 (1 1) (Wl (S)-Wl(t),W(v)) = '2 v 2 t --; 

and therefore, (Wl (t)) is not fully submitted to (w (t)). 
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DEFINITION 5. ([9]) Let (w(e)=(wn (t))n=l,M, a ~ e ~ b) be a vector 
column stochastic process, where (wn (c)), n = i~ are mutually orthogona1 
processes with orthogona1 increments (M may be infinite). Let the process 
(y (c), a ~ e ~ b) be defined by 

t 

y(e)= jh(e, u)w(du), eE [a,b], (11.16) 

a 

where het, u), a~u~e for each eE [a, b), belongs to 2'2(Fw ) (h(e, u)=O if 
u > c). The representation (11.16) is the canonical represeneation of the process 
(y (c)) if for all s~t, s, t E [a, b] holds 

$ 

P9(,(y; s)y (c) = j h (t, u) w (du). 
a 

EXAMPLE. 5 Let (z(e), a~t~b) be the process with orthogona1 incre
ments and J(e). a~t~b, be an arbitrary function in 2'2(PZ), Th representation 

t 

y(t)= ff(U)Z(dU), a~e~b, 
a 

of the process (y(e), a~e~b) is canonical. Indeed, as y(e)-y(s) is orthogona1 
to ge(y; s) for every s~e, we have 

s 

Pci}fJ(y;s)y(e)= j J(u)z(du). 
a 

DEFINITION 6. ([9]) The representation 

t 

y(t)= j h(e,u)w(du), eE[a,b], (11.17) 

a 

of the process (y(t), a~t~b) is a proper canonical representation if 
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M 

%(y; t)= L EB % (Wn ; t) 

n=l 

for each t E [a, b]. 

DEFINITION 7. ([4], [17]) The process (w(t), a~t~b) in the proper 
canonical representation (11.17) of the process (y(t), a~t~b) is the innovation 
proces of (y(t)). 

EXAMPLE 6. Every Cramer representation is a proper canonical one. 
It is evident that every proper canonical representation is the canonical 

one. The converse need not hold. For instance, if the function f(t), a~t~b, 
in example 5, is equal to zero on the set of positive p.-measure, then % (y; t) 
is a proper subspace of %(z; t) for at least one t E [a, b]. 

We wish to underline the fact that Theorem 7, Ch. I, shows how we 
can get, starting from any innovation process [wet)) of the process [yet)), the 
innovation process (Zy (t)) of (y (t)) in the Cramer representation of [y (t)). 

THEOREM 4. Let [x(t), a~t~b) and [yet), a~t~b) be two processes 
and let (z (t), a~t~b) be an innovation process of (x (t)). Then the following 
three statements are equivalent: 

(a) The process (y (t)) is fully submitted to the process (x (t)); 
(b) There exists the function het, u) E22 (ez), a~u~t, a~t~b, such that 

the representation 

t 

y(t)= J h(t,u)z(du), tE[a,b], (ll.18) 

a 

is a canonical representation of (y(t)). 
(c) For each tE[a,b] the subspace %(y;t) reduces the resolution of the 

identity (E",(s), a~s~b), defined by (x(t)). 

Proof. We shall first show that (a) and (b) are equivalent. From (11.18) it 
follows that % (y; t)C% (z; t) = % (x; t) for each t E [a, b]. The space 9G (Y)8 
e% (y; t) ts the smallest space spanned by the variables y (t + h) - Pg{; (y; t)Y (t + h) 
for all hE [0, b - t]. From the canonical representation (ll.18) it follows that 

y(t+ h)-PCJ6 (y; t)y (t+h)= 

t+h 

= r h(t+h, u)z(du) E %(x; t+ h) e %(x; t). 
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Hence %(y)8%(y;t)C%(x)8%(x; t) for each t E [a; b), i. e. the process 
( y (t)) is fully submitted to the process (x (t)). 

Conversely, let (y Ct)) be fully submitted to (x (t)). In order to show the 
existence of the canonical representation (11.18), it is sufficient to show that 
for all s~t, s~ t E [a, b) holds 

P %(y; s)Y (t) = E", (s)y(t). 

The last equality follows immediately from 

E", (s)y (t) =p% (x; s)Y (t) = 

Now we shall prove the equivalence of (b) and Cc). For all s< t, s, t E [a, b), 
we have from the canonical representation (11.18) that 

s 

E",(s)y(t) = J h(t,u)z(du)=P%(y;s)y(t) E 9'{;(y;s), 

a 

which means that 9'{; (y; t) is invariant with respect to E", (s), i. e. %(y; t) 
reduces (E", (s), a:S:;; s ~ b). 

Conversely, if %(y;t) reduces (E.,(s)) then, according to the section 1.3, 
there is an innovation process (z(t) = (Z .. (t))n=l, M) of (xCt)) such that 

M _ 
%(y; t)= L: EB %(zn; t), for each t E [a, b), M:S:;; M. 

n=1 
As%(x;t)8%(y;t) also reduces (E.,(s)), we have 

M 
%(x;t)89'{;(y;t)= L:EB%(Zn;t). 

n=1I1+1 

Hence the canonical representation of the process (y (t)) is 

t 

yCt)= r h(t,u)z(du), tE[a,b). 

a 
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Actually, the functions hn Ct, u), n = if + 1, M in h Ct, u) = (hn Ct, u))n=l. M are 
zero for all a ~ u ~ t and each t E [a, b]. A 

Concerning the relation between a canonical and a proper canonical 
representation in the case when M = 1 we can prove, by use of Th. 10, Ch. I, 
the following 

THEOREM 5. (see [9]) Let 

r 

y(t)= f h(t,u)w(du), tE[a,b], 
a 

be a canonical representation of the process (y (t)). Then there exists a pro-mea
surable function X (u), assuming the values 0 and 1, and the process (w (t), a~t~b) 
with orthogonal increments, defined by 

r 

w(t)= J X(u)w(du), tE [a, b], 
a 

such that the representation 
t 

Y Ct) = f hCt, u) w edu), t E [a, b], (11.19) 

a 

is the proper canonical representation of the process (y (t)). 

Proof. According to Th. 4, the subspace % (y) reduces the resolution 
of the identity (E(t)) in a cyclic space % (w). Let Wo be a generating element 
of % (w), such that w(t)=E(t)wo, tE[a~b]. According to Th. 10 and 
Corollary 2, Ch. I, 

b b 

wO=Pg(,(y)wo= J X Cu)E(du)wo = J XCu)w(du) 
a a 

is a generating element of % (y). If we set 

t 

w(t)=E(t)wo= J XCu)w(du), 
a 

then (11.19) is the proper canonical representation of the process (y(t)). A 
When M> 1 the situation is rather complicated. First of all, holds 
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THEOREM 6. The representation 

M t 

Y (t) = 2 J h" (t, u) w" (du), t E [a, b], (II.20) 

n=l a 

is the canonical one if and only if for each n, n = 1, M, rhe represetation 

t 

y" Ct) =J hn (t, u) w" (du),t E [a, b], 
a 

is the canonical representation of the process (y" (t)). 

Proof. The space % (y; s) is the smallest subspace spanned by the ele
M 

ments LYn (u) when u:::;;;s: 
n=l 

(II.21) 

Let us notice that [/(y,,(u), u:::;;;s)~%(Yn;s), but in a general case 

M M 

L EB [/ (Yn (u), U:::;;;S)c L EB%(Yn;S) 

n=l u=l 

which we have assined by introducing <:9. Hence 

M M 

PCJ6 (y; s) Y Ct) = P M ch 1'0 I () s: I ~ Yk (t) = ~ PCJ6 (y . s)Y" (t), s < t, ~ \LI J Y n u ,n __ s L L n, 
(II.22) 

n=l k=l n=l 

If (II.20) is the canonical representation then for each n, n= 1, M, 

s 

PCJ6 (Yn; ~)Y" (t) = f h" (t, u)wn (du), S < t, (II.23) 

a 

and therefore (II.2I) is the canonical representation of (y,,(t)). 
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Conversely, if (II.2I) is the canonical representation of (Yn (c)), n = 1, M, 
then, according to (11.23) and (II.22), it follows that (II.20) is the canonical 
representation of (y (t)). • 

EXAMPLE 7. Let (Wl(C), a~c~b) and (W2(C), a~c~b) be two mutually 
orthogonal processes with orthogonal increments. Then the representation 

t t 

y(C)=Wl(t)+W2(t)= !Wl(du) + ! w2(du), tE[a,b], 
a a 

is the canonical representation of the process(y (t)). 

REMARK 4. The last example shows that if all representations CII.2I) 
are the proper canonical ones, the representation (rr .20) need not be proper 
canonical. Therefore in a general case, the canonical representation cannot be 
reduced to the pro'per canonical one applying the procedure' from Theorem 5 
to each of the processes (wn Ct)) (compare with [12)]. 

According to Theorem 4, % (y) reduces the resolution of the identity 
M 

in 2: Efl % (z,,) and from Theorem 9, Ch. I, if follows that the multiplicity of 
n=1 

the process (y Ct)) is not greater then M' CM' ~ M), where M' is the number 
M 

of cyclic subspaces 911" in the canonical representation of the space 2: Efl % (zn) = 
n=1 

M' 

= 2: EEl 91(". 
n=1 

THEOREM 7. [17] Let the process (y (c), a ~ t ~ b) be fully submitted 
to the process (x (t), a < t ~ b) and let (!y=(!", with the finite mUltiplicity 
N=Ny=N",. Then 

%(y; t)=%(x; t) for each t E [a, b]. 

Proo£ If we show that %(y)=%(x), then the equality %(y; t)= 
= % (x; t) for each t E [a, b] follows immediately from the assumption of the 
theorem. Suppose that % (x) 8 %(y) :;to; then there is an element Zx, N+l:;tO 
in % (x) 8 % (y), such that 

P"y,1 > P.y , 2 > ... > P.y • N > P'x • N+l' 

The fact that the elements Zx. n' n = I, N can be choosen so that Zx. n = Zy, n' 

n = I, N, is in contradiction to the assumption that the spectral types of the 
processes (x (t)) and (y (t)) are equal. • 

EXAMPLE 8. ([17]) This simple example shows that the preceding 
theorem need not hold when N is infinite. 
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Let all spectral types P. ,n = 1, et:) be equal and 
x,1o 

co t 

x(t)= L J g"(t,u)z",,n(du), tE[a,b), 

be the Cramer representation of the process (x (t)). If we set 

co t 

Y (t) = L J g" (t, u) Zx, n (du) , t E [a, b], 
10=2 a 

then the spectral types ex and ey of the processes (x (t)) and (y(t)) are equal, 
but the spaces 9't7 (x) and 9't7 (y) are not equal. 

We end this section with, two theorems on the relation of spectral types 
of two processes which are in the relation of full submission. 

We say that the spectral type ey is subordinated to the spectral type e", 
(ey < e",) if P'!!'" < P.""", n = I, N, where 

P. 1 > P. > • . . > P. M 
U' Y'2 11' 

(we assume that P. = 0, n = M + 1, Nt y'n 

THEOREM 8. ([17]) If the process (y(t), a:(; t:(; b) in fully submitted to 
the process (x(t), a:(;t:(;b), then ey is subordinated to ex' 

Proof. Since the subspace 9't7(y) reduces the resolution of the identity 
in 9't7 (x), the proof follows immediately from Theorem 9, Ch. I. & 

The next theorem is somehow the converse to the preceding one. 

THEOREM 9. If the spectral type e: PI> P2 > ... > PM is subordinated 
to the spectral type e", then there exists a process (y(t), a:(;t:(;b) fully submi
tted to the process (x(t), a:(;t:(;b) and for which ey=e. 

Proof. From the facts mentioned on the page 14 we conclude: since 
P .. < Px,,, in each 9't7 (z"" .. ), n = 1, N, there exists a process with orthogonal in
crements (z,y." (t), a::(t:(;b) whose spectral type is Pn and whose space 9't7 (Zy.n) 
reduces (ExCt), a:(;t::(b). Hence the process (y(t), a:(;t::(b) with the inovation 
process (Zy.n(t))n=I.M is fully submitted to the process (x(t)). & 
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1I.3 The spectral type of some transformations of stochastic 
processes 

45 

The general problem of this section is: if the process (y (t), a~t~b) is 
a given transformation 

y(t)=T(t, (x(u), a~u~b)), tE[a,b], 

of the process (x (t), a~t~bl, what can be said about the spectral types ell 
and ex? 

We shall first consider the operator T defined in the following way: for 
each t E [a, b], Tx (t) is an element in % (x). The process (y (t), a~t~b) is 
defined by 

y (t) = Tx(t), t E [a, b]. (II.24) 

We extend the operator T by linearity and continuity to % (x). In such a way 
T is the linear operator of % (x) onto % (y). 

EXAMPLE 9. The operator T is defined by 

y (t) - T x (t) = x' (t), t E [a, t], 

and by linearity and continuity extended to % (x). 

In a general case we cannot make any conclusion about the relations of 
f!y and ex' connected by (11.24). The following example shows that even in 
the case of T being the projetion operator of % (x) onto a given subspace of 
%(x), the process (y (t)) need not be regular. 

EXAMPLE 10. ([10]) Let (w(t), O~t~l) be a Wiener process. It is 
well known (see, for instance, [16]) that such a process has the representation 

00 

w Ct) = L (Pk (t) Zk' t E [0,1], 
k=O 

where (j)k(t) = sin (k+ ~ ) nt, O~t~l, k=O,OCl are the eigenfunctions of the in

tegral operator with the kernel 

fw(s,t)=min(s,t), O~s,t~l, 
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and zk' k = 0,00 are mutually orthogonal random variables for which 

1 

Zk= I 'Pk(t)w(t)dtE%(W), k=O,oo. 

o 

We define the process Iy(t), O:::::;;t:::::;;l) by 

11 

Y Ct) = 2: 'Pk Ct) Zk> 
k=O 

where n is a fixed integer. The space % (y) (c % (w) is generated by the 
elements Zk' k = 0, n, and 

y(t)=P~(y)w(t), tE[O,l]. 

For any t> ° there exist numbers tu, tl> '" , tn in (0, t] such that the matrix 

( m Ct )k=O, 11 is non-singular. Therefore the linear system 
Tk J j=O,n 

has the unique solution 

11 

2: 'Pk (t1 ) Zk = Y (tj ), j = 0, n, 
k=O . 

n 

Zk = 2: ckjy Ctj ), k = 0, n. 
j=O 

Since Zk E %(y; t), k= 0, n, for any t> ° 
n %(y; t) (=%(y)*O 

1>0 

i. e. the process Iy Ct)) is not regular. 

EXAMPLE 11. Let the correlation function res, t) of the process 
. 02 r (s t) . 

Ix(t), a:::::;; t :::::;; b) have the denvate ~-, s, t E [a, b]. Suppose further, that 

in the Cramer representation 
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t 

x(t)= f g(t,u)z(du), tE[a,b), (II.25) 
a 

of the process (x Ct)) the function g Ct, u), a ~ u ~ t ~ b, is continuous with 
gCt,t)=O for each tE[a,b), and that the maximal spectral typeF. (t)of(x(t)) 
is absolutely continuous. (For instance, the stationary process (x (t), -00 < t < 
< + 00) with Wold representation 

t 

x(t)= fg(t-U)Z(dU), tEe - 00, + 00), 

- 00 

where g (t), t E [0, + 00) is continuous and g (0) = 0 satisfies these conditions.) 
We shall show that in this case the spectral type of the process (x' (t), a ~ t ~ b) 
is F",. We set 

tp} (t) dt o 

F.,(dt) = =tp(t)dt. (II.26) 

o 

From (I1.25) and (I1.26) we have for s ~ t, S, t E [a, b] 

s 

res, t)= f gCs,u)tpCu)dug*(t,u) 

a 

and 

s 

02 r (S, t) () () og* Ct, S) r 0 g Cs, u) () d og* Ct, u) 
---'----'- = g S, S tp S . + tp u u ---'='----'--'--

ot os Ot., os Ot 
a 

or 

r I (S t) = 0
2 
r (s,t) = 

x, ot os 

s 

= f og Cs, u) tp (u) du og* Ct, u) = 
os Ot 

a 
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s _ f ag (s~ u) F (d ) ag* (t~ u) [ b] - u, s < t, s~ t E a~ . 
os at 

(II.27) 

a 

{ 
og(t~ u) } 

We shall show that the family of functions at ' the parameter t E [a~ b] 

is complete in 22 (F). The condition that for f E 22 (F) and fixed t E [a, b] 

we write as 

or 

s 

j 
ag (s~ u) F (du) f* (u) = 0 for all s E [a~ t] 

os 
a 

• 
~jg(S, u)F(du)f*(u)=O for all sE [a, t], 
os 

a 

s J g (s~ u) F (du) f* (u) = 0 for all SE [a, t]. 

a 

As the family (gCt, u)) is complete in 2 2 (F), f=O almost everywhere with re
spect to F. From (11.27) and Theorem 3, Ch. II, it follows that 

t 

x'(t)=jag(t,U) z(du), tE[a~b], 
at 

a 

is the Cramer representation of (x' Ct)), i. e. Fx' =F. .. 
Now we shall consider a more general transformation, the so called non

-anticipative transformation. Let (zx(t), a~t~b) be an innovation process of 
the process (x (t), a::::;;t~b). The process (y Ct), a::::;;t~b) is a non-anticipative 
transformation of (xCt)) if 

t 

y(t)=T(x(u), a~u::::;;b)= jh(t,U)Zz(dU)' tE[a~b]. (II.28) 

a 

The last equality shows that the process (y (t)) is a non-antlClpative tran
sformation of the process (x (t)) if and only if (y(t)) is submitted to (x(t)). 

For instance ex = ey if and only if the family (h Ct, u)) is complete in 22 CF.,). 
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Or, if non-anticipative transformation Iy (t)) is fully submitted to the 
process Ix (t)) then f2y < f2x (Th. 8). 

EXAMPLE 12. ([5]) Let Ix(t),- 00 <t< + 00) be a stationary process 
with Wold representation 

t 

x(t)= !C(t-U)Z(dU), tE(- 00+ (0), 

=00 

and q (u), -:-.C!J < U < + 00, be a bounded, continuous and everywhere positive 
function. Let the processly (t) :- 00 < t < + (0) be the following non-anticipa
tive transformation of Ixct)): 

t 

y(t)= !g(t-U)q(U)Z(dU), tE(~OO.+oo). 
-co 

Since the family Ig (t - u), the parameter t E ( - 00, + (0)) is complete in !l' 2' it 
is easy to see that the family Ig(t-u)q(u), the parameter tE(- 00,+ (0)) is 
also complete in !l!2' Hence the spectral type of Iy(t)) is the ordinary Lebe-
sgue measure (Ny = 1).' " 

EXAMPLE 13. ([11]) Let the correlation· function r (s~ t), s, t E [a~ b] of the 
process Ix(t), a:;;:;:;t:;;:;:;b) be: Riemann integrable function and the function cp (t, u), 
a:;;:;:;u:;;:;:;t (cp(t,u)=O,u>t) be such that for each tE[a~b] the quadratic mean 
integral . 

b 

fCP(t~U)X(U)dU :, 
a 

exists. We define the process Iy (t), a:;;:;:; t :;;:;:; b) as a non-anticipative trans
formation _. 

y(t)= fcp(t, u)x(u) du, tE[a,b]. (II.29) 

a 

Considering the proper canonical representation 

t 

X Ct}= r g (t~ u) z., (du), t E [a, b], 
a 

4 
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of [X (t)), it is easy to transform (11. 29) into the form (11. 28): 

y(,)~ ! . ("U)[I g(u,v)z,(dv) ]dU ~ 

~ ! [I · (" u) g (u, v) du]., (dv), 'E [a, b]. 

Let us 'suppose now thilt F.! (t) is absolutely continuous. We shall show 
that, if the family [ep (t, u), the parameter t E [a, b]) is complete in 2 2, then 
Fy=Fx. 

t 

To prove that, it is sufficient to show that the family [ f 9 (t, v) g (v, u) dv, 
u 

the parameter tEla, b]) is- complete in 22(Fx). Let f E 22 (Fx) and t be any 
fixed number from [a, b]. If 

1[1 · (s, v)g(v, u)dv IF, (du)f*(u)~ 

-f .(S'U)[I g (u, v)F, (dv)f*(v) ]du~O 
for all sE [a, t], then, by the completness of [9 (t, u)l in 2 2, it follows that 

U . , J g (u, v) F" (dv)f* (v) = 0 
a 

almost everywhere on [a, t]. However, because of the continuity of Ft. (t)), the 
last equality holds everywhere on [a, t]. Since [g (t, u)l is complete in! 22 (F,,), 
it follows that f= 0 almost everywhere with respect to F", as we wanted 
to prove. 

HA. The stochastic processes regular everywhere and- proc~sses 
with discrete innovation 

The regularity of the process [x(t),.a~t~b) was defined as the condition 
that n % (x; t) = 0 or, in other notation, 

t>a 

.:'i . 
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N 

%(x; a+O)= ~ EB %(zn; a+O)=O, (11.30) 

n=1 

where (z (t) = (zn(t)n=I, N, a~t~b) is the innovation process of (x(t») in the 
Cramer representation. The condition (II.30) is equivalent to 

F.,(a+O)= lim F.,(t)=O, 
t-a+O 

or to the condition that the maximal spectral type F'l (t) in Fx is continuous 
at the initial point t = a. 

Let us notice that if a is a finite number, instead of the process (xCt)1 
on the segment [a, b], we can consider the process (x (t») on the larger segment 
[c,b], c<a, defining x(t)=O for tE[c,a). In such a way, the new process 
Ix (t») on rc, b] is always regular. However, we cannot do that if a= - 00. For 
that reason we shall not accept such an extension of the segment [a,b]. 

REMARK 5. Any (non-regular) stochastic process (x(t), a~t~b) can be 
uniquely represented as the sum of two mutually orthogonal processes 1Xr Ct), 
a~t~b) and lx, (t), a~t~b); 

x(t)=xr(t)+x.(t), tE [a, b], (11.31 ) 

where (xr(t») is a regular process and Ix. (t)) is a so-called singular Cor deter
ministic) process, such that %(xs;a+O)=%(xs)' To show that (II.3l) is true, 
it is sufficient to notice that x. Ct) = P9l:1 (x; a+O) X Ct), t E [a, b]. 

DEFINITION 8. ([10]) The process (x(t), a~t~b) is regular at the point 
to E [a, b] if the maximal spectral type P'l (t) in F., (t) is continuous in t = to. 
The process (x(t), a~t~b) is regular everywhere if it is regular at each point 
of [a, b]. 

EXAMPLE 14. A stationary (regular) process (x (t), - 00 <t< + (0) is 
regular everywhere. 

DEFINITION 9. The process (x(t), a ~ t ~ b) is the process with discrete 
innovation if the maximal spectral type P'1 (t) in F., (t) induces a discrete mesaure. 

We remark that p. Ct) does not have the discontinuity at t = a, since we 
consider only regular pro~esses. 

THEOREM 10. ([10]) Any proGess (x (t), a ~ t ~ b) can be uniquely 
represented as ~he sum of two mutuallyorthogonal processes 

4* 
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x (t) = 4 (t) + X2 (t), (II.32) 

where (Xl (t), a ~ t ~ h) is regular everywhere and (X2(t), a ~ t ~ b) is the 
process with discrete innovation . 

. Proof. Let (z (t) = (z .. (t))"=I, N, a ~ t ~ b) be the innovation process in 
the Cramer representation of the process (x (t), a ~ t ~ b). We write the distri
bution function F z" Ct), a ~ t ~ b, as the sum 

where F z 1 Ct) is a continuous distribution function and F'''2 (t) induces a discrete 
measure. "In other words, the spectral type Fz .. is the sum of two orthogonal 
spectral types: . 

F z" = Fzn1+ Fzn2' 

I •. 

According to Theorem I, Ch. I, there exist two mutually. orthogonal 
processes with orthogonal increments (znl (t), a ~ t ~ b) and (zn2 (t), a ~ t ~ b) 
with spectral types EZ"1 and FSn2 respectively, such that 

Zn (t) = znl (t) + Z1i2 (t), t E [a, b), 

~ (zn; t) = ~ (znl; t) EB ~ (Z"2; t), t e [a, b). 
Since 

we have 

and 

Introducing (Zl (t) = (znl (t)) .. =I, N, a ~ t ~ b) and (Z2 (t) = (zn2 (t))n=I,N, a~t~bl 
we can write the. Cramer representation 

t 

x(t)= J g(t,u)z(du), tE.[a,b), 
a 

of (x(t)) as 

t t 

x(t)= fg(t, u) zl(du) + J g(t,v)z2(du), tE[a,b), 
a a 
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which proves (11.32). Finally, the uniqueness of (11.32) follows by the standard 
procedure. Let 

be another decomposition of (x (t)). Then 

Xl (t) - Xl (t) =, ~ (t) - X2 (t) t E la, b], 

which is a contradiction because the process (Xl (t) - Xl (t), a ~ t ~ b) is every
where regular and the process (X2(t)-x2(t),a~t~b) is the process with 
discrete innovation. • 

REMARK 6. According to the well-known Lebesgue theorem any distri
bution function F (t), a ~ t ~ b, has the unique decomposition 

where Fac (t) is. the distribution function inducing the measure which is abso
lutely continuous with respect to the ordinary Lebesgue measure, Fr! (t) induces 
the discrete measure and F. (t) is continuous distribution function which induces 
the singular measure (with respect to the ordinary Lebesgue measure). Now, 
similarly to the preceding theorem, any process (x(t), a ~ t ~ b) can be uniquely 
represented as a sum of three mutually orthogonal processes 

where (Xl (t), a~t~b) has an absolutely continuous maximal spectral type, 
(X2(t), a~t~b) has discrete innovation and (xa(t), a~t~b) has a continuous 
maximal spectral type singular with respect to the ordinary Lebesgue measure. 

Let (x(t), a~t~b) be a process with discrete innovation. The Cramer 
representation of that process has a simpler form since for the self-adjoint ope
rator A, defined by the resolution of the identity (E,,(s), a~s~b) the set 
(tI' t2, ... ) of discontinuity points of the maximal spectral type F'l (t) of (x (t)) 
is the set of all eigenvalues of A. (see [1], §82) The multiplicity Nk of the 
eigenvalue t k , k= 1, 2, ... is the number of the members of the sequence 

F'l (t) > F'2 (t) > ... > F'N (t), 

which has discontinuity at the point t=tk and N=sup N k • Let zn(tJ, n= I,Nk 
k 

be mutually orthogonal eigenvectors corresponding to the eigenvalue tkand let 
%" (tk ) be the space generated by zn (tJ, n = 1, N". Then 

%(x;t)= LEB%,,(tk ), tE[a,b], (11.33) 

tle"'! 

or 
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Nk 

X(t)= L ~>n(t'tk)Zn(tk)' tE[a,b]. (II.34) 

tk";'t 11=1 

Introducing Z (tk) = (Zn (tk)) n=I,N, k= 1, 2, ... , where zn(tk)=O for 
n = Nk+b N from (II.34) we get the Cramer representation 

·x (t) = L g (t, tk) z (tk), t E [a, b], (11.35) 

tk~t 

of the process (x (t)) with discrete innovation. The form (II.35) (or (11.34)) 
shows that the study of such a process is more simple then, for instance, the 
study of everywhere regular one. So, it holds 

THEOREM 11. Let (x (t), a<t<b) be the process with discrete innova
tion in a finite set of points (t1, t2, ... , tz) (tk=l=a, k= l~, T be a bounded 
operator in 9(;(x) and let the process (y(t), a~t~b) be defined by: 

y(t)=Tx(t), tE [a, b). (II.36) 

Proof. Applying T on (11.33) we have 

9(; (y; t) = L 9(; y (tk ), t E [a, b], 

tk;:;;'t 

where 

(II.37) 

From (11.37) it follows that. dim 9(;y(tk)<dim 9(;,,(tk ), k= I-;/, or the multi
plicty NYk of the eigenvalue tk with respect to (By (s), a:;:;;s:;:;;b) is not grea:" 
ter then the multiplicity N"k. of the eigenvalue tic with respect to (E" (s), 
a:;:;;s:;:;;b) (k=l,l). It means that Fy<F". .& 

The next example shows that Theorem 10. need not hold if the set of 
discontinuity points is not finite. 

EXAMPLE 15. Let (w(t), O:;:;;t:;:;;1) be a given Wiener process and let 
the process (x(t),-l:;:;;t:;:;;l) be defined in a following way: 
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{

O, -1~t~O, 

x(t)= W (_1), _1 <t<_l_, n=1,2, ... , 
2n 2n 2n- 1 

W (1), t= 1. 

1 
The spectral type F", (t) has the discontinuity points tic = -, k = 1,2, ... 

2" 
and t = ° is its point of continuity, 

The operator T and the process (y(t), - h;;t~11 are defined in the 
following way 

0, -1~t~O, 

l' (1) y(t)= Tx(t)= rW 2 ' ... , 

W ( ~) , t= 1. 

The only increasing point of the spectral type Fy is t = ° and hence Fy 
is not subordinated to FT.' 



Appendix I 

THE SPECTRAL TYPE OF WIDE-SENSE MARKOV PROCESS 

The class of wide-sense Markov processes is one of the simplest classes 
of second ordered processes. In this section we shall expose one simple proce
dure ([10]) for effective obtaining the spectral type of Markov process in terms 
of its correlation function. Multidimensional wide-sense Markov processes were 
studied in [9] and [14]. 

The process (x(t), a ~ t ~ b) is the (wide-sense) Markov process if for 
any s,tE[a,b], s~t, the projection of x(t) on <i7G(x;s) coincides with the 
projection of x(t) on the element x(s): 

Pg(, (x; $) x (t) = a (t, s) x (s), s ~ t. 

It is easy to show that the scalar function' a (t, s), defined for s~t, s, t E 
E [a, b] is 

r (t, s) 
a(t,s)=-( )' s~t; r s,s 

where r(t, s) is the correlation function of (x(t»). 

(1) 

According to the theorem of three perpendiculars, we get following tran
sitive property of a (t, s): for any tl ~ t2 ~ ta, tr, t2 ta 6 [a, b] we have 

(2) 

To avoid some non-essential difficulties, we shall assume in the sequel 
that r(t,s)#O for each t,sE[a,b] (see [9] and [11]). 

Let So be any fixed point from [a, b]. We define ([9]) the function 
g (t), a ~ t ~ b, by 

, I 1 ( )' t E [a, so], 
g(t)= aso,t· 

a(t, so) ,tE(so,b]. 
(3) 
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From (2) it follows that for any S ~ t, S, t E [a, b] we have 

g (t) 
aCt,s)= g(s)' 

Let the process (z(t), a ~ t ~ b) be defined by 

1 
z (t) =g (t) x Ct), t E [a, b]. (4) 

It is easy to show that (z Ct») is a process with orthogonal increments and that 

Pg(J (Z; s) z Ct) = z (s), s ~ t. 

Indeed, since9'(;Cz;t)=9'(;(x;t) for each tE'[a,b], we have for s ~ t 

. 1 I 
Pg(J (Z; $) z (t) = Pg(J (Z; $) g (t) x Ct) = g Ct) aCt, s) x Cs) = z Cs). 

From (4) it follows that the processes (x(t») and (zCt») have the same spectral 
type. Hence 

1 
F", (t) = F. (t) = Ig (t)1 2 ' r (t, t), 

or, from (3) and (1), we have 

{ 

Ir(so, t) 12 
r Ct, t) , 

F., (t) = 2 

, r (so, so) ,. rCt, t), 
r(t, so) 

t·E [a, so], 

t E (so, b]. 
(5) 

It remains to be, shown that the spectral type F.,(t) does not depend on the 
choice of the point so. For another SI (say So < SI) we have 

{

lr(SI,t)!2 [ ] 
( ) 

; tEa, SI , _ r t, t 
F.,(t)= ( ) 2 r Sl,SI ' , I r(t, SI) \. r(t,s), tE(SI,b]. 

(6) 
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From (1) and (2) it follows that 

p",(t)=1 r(Sl'SO) 12 F",(t), tE[a,b]. 
r (so, so) 

59 

A h .c-. 1 r (SI' so) 12 . ".c-. 11 [b] I h s t e lactor -(--) IS posItlVe lor a So, SI E a, , we conc ude t at the 
r So, So 

distribution functions (5) and (6) belong to the same spectral type. 

We remark that from 

we get 

Setting 

x(t)=g(t)z(t), tE[a,b], 

r(t,s)=g(t)F",(min (s,tJ)g(s), s,tE[a,b]. 

_{get), UE[a,t], 
g(t,u)- 0, uE(t,b], 

(7) 

(8) 

we conclude that the representation (7) is the representation (11.11) in Ch. H. 
Since g(t)::;i:O for all tE[a,b], the family (g(t,u), the parameter tE[a)b]1 
defined by (8), is complete in ..<if2 (F",). 



Appendix; II 

THE CRAMER REPRESENTATION OF A RANDOM FIELD , 
OVER THE· COMPLEX PLANE ' 

In Ch. I we have established the complete system of unitary invariants 
of a self-adjoint operator ina separable Hilbert space. However, all the menti
oned theorems hold even for normal op~rators defined ,in a separable Hilbert 
space (see [18], [15]). That enables us to give the Cramer representation of a 
random field I x C~), ~ E D), where the parameter ~ is a complex; number and 
D = I ~ : a ,,;; Re ~ ,,;; b, c";; Im ~ ,,;; d) is a fiilite or infinite rectangle in a complex 
plane. We shall give the procedure concisely (see [2]). 

Let us consider a field Ix (~), ~ E D), Ex (~) = 0, El x (~) 12 < + 00, ~ E D, 
with a correlation function r(~1>~0=Ex(~1)X(~2)'~1'~2ED. Let %(x;~) be the 
smallest linear space spanned by random variables x (~); where Re"/) ,,;; Re~, 
Im"/)";; Im~. 

We shall assume tl)at 
(', . . . 

(A) the field Ix (~), ~ E D) is continuous in quadratic mean for each ~ E D; 

CB} the field Ix (~), ~ E D) is regular, 1: e. 

n %(x; ~)= n %(x; ~)=O. 
I; : Re I;>a . I; : Im I;>c 

Let E (~) be the projection operator of % (x) onto % (x; ~). According 
to the assumptions CA) and (B), it follows that IE(~), ~ E D) is the resolution 
of the identity of a normal operator T in a separable Hilbert space % (x) 
([1],§82). 

The element x E % (x) produces the measure Px ( .) over a Borel field 
of sets from D, defined by 
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where 11= (~: llt ~Re ~ ~bl' Cl ~ Im ~~dlJ, a~llt < bl ~b, C~Cl < dl ~d, is a rec
tangle in D, and 

A field ( Z (~), ~ E DJ is a field with orthogonal increments if for every 
pair of disjoint rectangles III and 112, the increments Z (IlJ and z( IlJ are mutu
ally orthogonal random variables (z (11) = Z (b l + dli) - Z (b l + c1i) - (at + dti) + 
+ Z (llt + bli)). 

The following theorems are analogous to the theorems in Ch. n. 

THEOREM 1. For each field (xg),X E DJ holds the Cramer representation 

. N . 

x(~)= J 2:g%(~)"t))Z%Cd"t)), ~ED 
~~ n=l 

A~=("t):a~Re"t)~Re<:, c~Im"t)~Im~l, where (znC"t)),"t)EDI, n=l,N are mutu
ally orthogonal fields with orthogonal increments, 

(1) 

and 
. N 

%(x; ~)= 2 EB%(Zn; ~), for each (E D. 

n=l 

The sequence (1) is called the spectral type of the field (x(~)l. 

THEOREM 2. The correlation function rC~l' ~2)of the field (x(~)l uni
quely determines its spectral type. 

THEOREM. 3. For each sequence (1) there exists a field (x(~)J such 
that (1) is its spectral type. 



Appendi~ III 

ONE CLASS OF PROCESSES WITH MULTIPLICITY N = 1 

Let 

N 

X (t) = f g (t, u}z (du) =L f gn (t, u) z" (du), t E [a, b]; (1) 

a n=1 a 

be the Cramer representatiori of the real-valued process (x (t)). 

t 

THEOREM 1. [6] If each term J g" (t, u) Zn (du), a ~ u ~ t ~ b,n = 1 N, 
in (1) satisfies the conditions a 

1. g" Ct, u) and iJ g"iJC:,u) are bounded and continuous for all u, t: a ~ 
~u~t~b; 

2. g,,(t,t»O for all tE[a,b]; 

3. P,,(t)=Ezn2(t) is absolutely continuous and CfI,,(t)=P',,(t) has at most 
a finite number of discontinuity points in any finite subinterval of [a, b], then 
(x (t)) has multiplicity N = 1. 

Proof. We shall show that, if N> 1, then, for t E [a, b], the family of 
functions (g(t,u), a ~ u ~ t) is not complete in .!l'2(F), which is the contra
diction, because (1) is the Cramer representation. 

By hypothesis 3, we can find a finite subinterval [al' bl] of [a, b], such 
that the derivatives Cfll (t) and Cfl2 (t) are continuous and positive for all t El [al' bI]' 
To prove that the family (g(t, u)) is not complete in .!l'2(F), it issJlfficient to 
show that there exists the Vector-function . 
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such that 

t t t J (f(u))2 F (du) = f f~ (u) 'P] (u) du + J d (u) 'P2 (u) du > 0, t E [al bI], (2) 

s s s J g (s, u) feu) F (du) = J gl (s) u) 11 (u) 'PI (u) du + J gz (s) U)/2 (u) 'P2 (u) du = 0 (3) 

for all sE [at> t]. 
We may replace the condition 2 by the condition 

gn(t,t)=I, tE[a)b], n=I,N, 

if we transforme gn (t, u) and Zn (du) into gn (t) u) and zn (du), by writing 

Because of that, we may suppose that gn (t, t) = I, n = I, N, t E [a, b]. By the 
conditions 1. and 2., the relation (3) may be differentiated with respect to s, 
so we obtain 

s s 

.11 (S)<Pl (s) + f Ogl ~:' u) 11 (u) 'PI (u) du + 12 (s) Cfl2 (s) + J Og2;:)_~) 12(U)Cfl2 (u) = 0 

for all sE [al, t}. This equation is satisfied if, for example, 

The last two· equations- are the integral equations of Volterrat)rpe, where 
11 (S)CPl (s) and f 2 (s) P2 (s) are the unknown functions. By above hypothesis, each 
of these equations has the uniquely determined solution, which is bounded and 
continuous fo[se[ai,t];dhese '.solutionsare not almost everywhere equal to 



Application of spectral multiplicity in separable .... 65 

zero. Thus, the relation (3) is satisfied. Since ([)l (u) and '112 (u) are positive for 
u E [aI' bI]' it follows that (2) is also satisfied. .. 

THEOREM 2. [6] If in the representation 

t 

x(t)= J get, u)zCdu), t E [a, b], (4) 

a 

of the process (x Ct)), the functions g (t, u) and F (u) satisfy the conditions 1, 2, 3 
of the preceding theorem and if a is finite, then (4) is also Cramer repre
sentation (i. e., in this case, the proper canonical representation) of the process 
(x(t)). 

Proof. This theorem will be proved if we can show that the family 
)g(t, u)) is complete in .P2(F); we will do that like in the preceding theorem. 
The condition 

f g (s, u)f (u) ([) (u) du = 0, for all sE [a), tl, 

may be differentiated with respect to s, and we obtain 

8 

f ages, u) f (sh (s) + -a-s -feu) rp (u) du = 0, for all sE [a), t]. 

This is a homogoneous integral equation of the Volterra type and, under our 
c0Llditions, it follows that its the only solution is j(s)rp (s)= 0, s~[al' t]. Since 
rp (u) > ° in [aI' bJ, it follows that f(s) = ° for all sE (aI' bl ], i. e. almost every
where with respect to F. .. 

REMARK. If a = - 00, accord to the theory of the integral equations 
of the Volterra type, Theorem 2 will hold under the additional assumption 

t 

f I ag ~t; u) I du < 00 

-00 

for all tEe - 00, b]. 

5 
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