ONIVERZIONS U - ISORA M PRIRODNO- PASSINASIÓNI FARMOS M

MR MIRJANA ŠOVLJANSKI EPISTEMIČKE I INTUICIONISTIČKE ARITMETIKE doktorska disertacija

Univerzitet u Beogradu
Prirodno-matematicki fakulteti
MATEMATIČKI FAKULTET
BIBLIOTEKA

Broj Doht. 218 Datum 29-04 1988.

BEOGRAD 1987. Epistemička aritmetika EA je klasična Peanova aritmetika baziraha na modalnom računu S4. Definisao ju je 1985. S. Shapiro u
[Sh2] i [Sh3] i predstavlja prvu aritmetiku baziranu ma modalnom računu.

Epistemička aritmetika EA je konzervativna ekstenzija Peanove aritmetike PA ([Sh3]), Heytingove aritmetike HA ([Go3], [FF1]) i modalnog računa S4 (u smislu de Jonghove teoreme-da je S4 upravo modalna logika epistemičke aritmetike [FF2]).

Epistemička aritmetika je data kao sistem u kojem je moguće posmatrati konstruktivne iskaze(interpretirajući [] kao " u principu je dokazivo" i prefiksirajući [] ispred svake podformule), nekonstruktivne iskaze(iskazi bez []) i iskaze parcijalne konstruktivnosti.

Epistemički sistemi, vezani za intuicionističke sisteme, javili su se prvi puta u radu Beesona i Ščedrova([BŠ]). Oni, da bi uopštili fp-realizabilnost na intuicionističku teoriju skupova i dokazali neizvedivost teorema neprekidnosti u toj teoriji utapaju intuicionističku teoriju skupova u teoriju skupova baziranu na modalnom računu S4 (uz dodatak nekih modalno-skupovnih aksioma). Tada, lefinicija fp-spelizabilnosti poklapa se sa definicijom preslikavanja ()* (2.4.24.) i za Heytingovu aritmetiku se može ponovo dobiti definacija

$$\square A \triangleq A \& Pr_{HA}(\lceil A \rceil)$$

gde je Pr_{HA} standardni predikat dokazivosti.

Još je Gödel primetio da se intuicionistički iskazni račun može interpretirati u modalni račun S4. Ideja te interpretacije je da modalni operator [] izražava epistemički pojam "neformalne dokazivosti".U radovima Shapira, Myhilla, Goodmana, Flagga i Ščedrova ova jednostavno ideja razvijena je u uspešan program integracije klasične i intuicionističke matematike i prošírena i na druge teorije.

Iako je epistemička aritmetika sistem sa klasičnom logikom, ona u sebi nosi i neke Brouwerove ideje pojma dokaza i dokazivosti i reflektuje neke metamatematičke karakteristike intuicionističkih sistema. Metode dokazivanja su adaptacija i klasičnih i intuicionističkih metoda.

Sama ideja da se formalizuju Brouwerovi pojmovi dokaza, konstrukcije i dokazivosti javljala se i ranije. U prvom poglavlju pokušali smo da pratimo tu ideju. Kako Brouwer nije koristio neki formalni sistem ,čak ni simboličku notaciju, formalizacija njegovih pojmova išla je postupno, divergirajući u više pravaca.

Epistemička aritmetike predstavlja jednu od najuspešnijih,ali istovremeno i najgrublju formalizaciju. Ona, u svojim mogućnos-tima integriše klasičnu i intuicionističku aritmetiku, ali istovremeno i polarizuje razlike.

U drugom poglavlju definisana je Heytingova aritmetika HA (koristimo Goodmanovu formulaciju iz [Go6]),Peanova aritmetika PA (primitivne konstante su→, ∀, ⊥,kao i u [BM]),epistemička aritmetika EA (EA=PA+S4) i intuicionistička epistemička aritmetika 1EA (IEA=HA+S4+aksiome XXVI-XXX - sistem koji donekle trivijalizuje □ i ima više neočekivanih osobina,ali u ovom radu ima prvenstveno tehnički karakter) i analizira se Churchova teza. Takodje,data je veza izmedju Heytingove i Peanove aritmetike i Heytingove i epistemičke aritmetike.

Treće i četvrto poglavlje posvećeno je ekstenzijama epistemičke aritmetike.U [Sh3] Shapiro razmatra mogućnost proširivanja
epistemičke aritmetike i primećuje da nije dovoljno da novi
aksiomi deduktivnog sistema budu tačni-novi aksiomi takodje
treba da ne budu nesaznatljivi,tj ako je A novi aksiom,onda je

**DA konzistentno sa originalnom teorijom.

U ova dva poglavlja ispitivali smo ekstenzije epistemičke aritmetike koje imaju svoje analogone u intuicionističkoj/klasičnoj aritmetici u sledećem smislu: sko je A novi sksiom, onda formula dobijena brisanjem svih II u formuli A je konzistentna sa Neytingovom sritmetikom, i pri tom, A zadovoljava Shapirov zahtev da se može konzistentno dodati epistemičkoj sritmetici.

Glavní rezultati u trećem poglavlju su:

- (i) koristeći metod Flagga i Friedmana, pokazujemo da su EA+eS $_{\rm PR}$, EA+eS, EA+eM $_{\rm PR}$, EA+eM i EA+eDNS konzervativne ekstenzije redom HA+S $_{\rm PR}$, HA+S, HA+M $_{\rm PR}$, HA+M i HA+DNS.
- (ii) u 3.9. formalizovali smo Goodmanovu verziju Flagg realizabilnosti i koristeći je pokazujemo da je EA+eECT konzistentna teorija.

U četvrtom poglavlju analiziraju se metamatematička svojstva ovih ekstenzija epistemičke aritmetike. Rezultati koji se odnose na ekstenzije EA (osim na EA+eCT) su originalni.

U dodatku Nº 1 rezultati su sistematizovani po teorijama.

U dodatku N^o 2 dat je spisak preslikavanja korištenih u ovom radu.

U dodatku N^O 3 dat je spisak shema formula i aksioma korište - nih u ovom radu.

U dodatku N^o 4 dat je spisak klasa formula korištenih u ovom radu.

Naglasak je stavljen na veze intuicionističkih /klasičnih aritmetika i njihovih epistemičkih analogona. Ekstenzije EA dobijene
su dodavanjem epistemičkih analogona (standardnih) shema koje
se mogu dodati Heytingovoj aritmetici. Takodje, analizirali smo i
zašto neke sheme nemaju odgovarajući epistemički analogon.

Isto tako, ispitivali smo i zatvorenost ekstenzija epistemičke aritmetike za epistemičke analogone standardnih intuicionistič-kih pravila.

Metode korištene u radu predstavljaju adaptaciju metamatematičkih metoda za klasičnu i intuicionističku aritmetiku, posebno,koristili smo razne varijante realizabilnosti,prevoda i preslikav mja i Shapirov rez.

Osim metamatematičkih svojstava epistemičke aritmetike, analizirana je i njena filozofska pozadina i ideje koje su dovele do formiranja jednog sistema kao što je ovaj. Zahvaljujem se profesoru dr Zoranu Markoviću za nesebičnu podršku, pomoć i ohra renje ,čitanje, komentarisanje i kritikovanje svih verzija ovoga rada, ispravljanje nekih od mojih grešaka, za brojne razgovore kojima me je vodio kroz ovu izuzetnu oblast i na savetima i sugestijama koji su mi omogućili izradu ovoga rada.

Zahvaljujem se docentu dr Milanu Božiću za dragocene savete za vreme izrade i konačnog uobličavanja ovog rada.

Zahvaljujem se profesoru dr Slaviši Frešiću za nesebičnu pomoć i podršku koju mi je sve vreme pružao.

Takođe, zahvaljujem se profesoru dr Žarku mijajloviću, decentu dr Kosti Došenu i mr Miodragu Kapetanoviću za pomoć, podršku i brojne diskusije.

PRVO POGLAVLJE

FORMALIZACIJA BROUWEROVIH POJMOVA DOKAZA I DOKAZIVOSTI

7.5

Every mathematician has the sense that there is a kind of metric between ideas in mathematics- that all our mathematics is a network of results between which there are enourmously many connections. In that network, some ideas are very closely linked, others require more elaborate pathways to be joined. Sometimes two theorems in mathematics are close because one can be proven easily given the other. Other times two ideas are close they are analogous, or even isomorphic. These are two different senses of the word " close " in the domain of mathematics. There are probably a number of others. Whether there is an objectivity, or whether it is largely an accident of historical development it is hard to say. Some theorems of different branches of mathematics appear to us hard to link and we might say that they are unrelated. But something might turn up later which forces us to change our minds.

If we could instill our highly developed sense of mathematical closeness - a " mathematician's mental metric " so to speak - into a program, we could perhaps produce a primitive " artificial mathematician ".

D.R. Hofstadter GODEL, ESCHER, BACH

1.NCRMALIZACIJA PROGREDOVIH FOJEOVA DOKAZA I DOKAZIVCETI

Predmet intuicionizma, po A.S. Troelstri ([Trl]) može biti opisan kao "konstruktivno matematičko mišljenje". Osnovni nedostatak ove jezgrovite definicije je objašnjenje pojma "konstruktivno" tj davanje definicije konstruktivnosti na formalno- zadovoljavajući način.

Haime, intuicionizam pravi legitimnu razliku izmedju konstruktivnog i nekonstruktivnog matematičkog mišljenja.

- 1.1. Osnovni konstruktivni principi su prema Beesonu ([Be3], [Be4]):
- 1.1.1. Kada matematičar dokaže da problem ima rešenje, on ili ona je u mogućnosti da pokaže, bar u principu, rešenje eksplicitno.
- 1.1.2. Za sve tvrdnje Y koje imaju smisla
- A-P Tvrditi je dokazati : $\Psi \leftrightarrow \exists p (p dokazuje \Psi)$ tj intuicionistička matematika izjednačava tvrdnje da neka formula važi sa njenom dokazivošću.

Radovi Gödela i Tarskog pokazuju da se mi ne možemo ograničiti na dokaze u formalnom sistemu- moramo govoriti o proizvoljnim konstruktivno- valjanim dokazima.

Konstruktivni dokazi se retko eksplicitno pojavljuju u matematici - to je delom/zbog A-P principa.

- A-P princip implicira sledeća pitanja ([Be4]):
- 1.1.3. Da li " p dokazuje A " može da se tretira na istom " nivou " kao i A ?
- 1.1.4. Da li postoji " univerzum " kojem sve " pripada " tako da kvantifikacija]p ima smisla ?

Intuicionistička matematika, po A.S. Troelstri ([Trl]) predstavlja refleksiju na opšte principe o konstrukcijama i konstruktivnim dokazima.

Brouwer je prvi primetio da rigorozno insistiranje na konstruktivnim dokazima menja značenje logičkih konstanti. Intendirana interpretacija, koja odgovara takvom pogledu na logiku,i koja pretpostavlja pozítivne odgovore na ova Beasonova pitanja, naziva se i

- 1.2. Brouwer- Heyting- Kreiselovo (BHK)- objašnjenje logičkih konstanti ([Trl], [Tr5]):
- 1.2.1. Svi objekti su konstrukcije.
- 1.2.2. (Konstruktivni) dokaz i (elementarna) konstrukcija smatraju se primitivnim konceptima i koristimo ih da damo značenje "složenog dokaza" preko "dokaza konstituenata ".
- 1.2.3. dokaz od A&B je par (r,s), takav da r dokazuje A, s dokazuje B;
- 1.2.4. dokaza od AVB sastoji se u specifikaciji dokaza od A ili dokaza od B;
- 1.2.5. dokaz od A→ B sastoji se u konstrukciji c koja transformiše bilo koji dokaz od A u dokaz od B (zajedno sa uverenjem da c ima svojstvo:

 $\forall d(d dokazuje A \Rightarrow c(d) dokazuje B);$

- 1.2.6. ___ je nedokaziv iskaz ;
- 1.2.7. ako promenljiva x prolazi osnovnim domenom D (tj domenom u kojem je svaka konstrukcija (objekt) koji mu pripada data kao takva (elementi d iz D " sadrže svoj sopstveni dokaz da pripadaju D ") možemo objasniti \forall xA(x) kao konstrukciju c koja kada se primeni na bilo koje d \in D daje dokaz c(d) od A(d), zajedno sa uverenjem da c ima svojstvo:

∀d(c(d) dokazuje A(d)).

Ako je D proizvoljan domen, c se primenjuje na par < d,d'>, d pripada D, d' je dokaz da d pripada D, zajedno sa uve-renjem

 $\forall d,d'$ (d' dokazuje $d \in D \Rightarrow c(d,d')$ dokazuje A(d)):

1.2.8. za x koje prolazi osnovnim domenom D, dokaz za $\frac{1}{3}$ xA(x) je dat kao par $\langle c,d \rangle$, c je dokaz od A(d), d \in D.

Za proizvoljan domen D, potrebna nam je uredjena trojka $\langle c,d,d' \rangle$, c je dokaz od A(d), d' je dokaz da d \in D.

Iskaz je tvrdjenje koje ima smisla i da bi utvrdili da je A iskaz treba da objasnimo šta znači imati dokaz za A.

BHK objašnjava logičke konstante na iskazima, ali u definiciji \rightarrow i \forall postoji izvesna doza nepreciznosti u zahtevu " zajedno sa uverenjem...". Zbog toga je BHK <u>objašnjenje</u> a ne <u>definicija</u>. Uverenje da konstrukcija c ima traženo svojstvo koje se traži u intendiranoj interpretaciji dokaza \rightarrow i \forall može biti <u>dokaz</u> - ali postoje odredjeni slučajevi kada je uverenje za tvrdnju pre psihološko usvajanje - na primer- kada je ono što treba da shvatimo krajnje očigledno ili kada se radi o <u>prvoj</u> teoremi.

Cvo objašnjenje logičkih konstanti nije <u>reduktivno</u>, ali ni intencija nije da se da objasnjenje izraženo preko prostijih pojmova koji su ranije uvedeni. Troelstra ([Tr5]) ističe da ni klasična definicija istinitosti nije reduktivna u istom smislu.

Uzima se da su " konstrukcija c se primenjuje na konstrukciju b" i " c je dokaz od A" odlučiva svojstva.

Za razliku od logike, intuicionistička aritmetika polazi od elementarnih konstrukcija ([D]):

1.2.9. prirodni brojevi su posledica (mentalnog) konstruk-

tivnog procesa koji se sastoji u ponavljanju dodavanja jedinice;

- 1.2.10. osobine prirodnih brojeva su posledica refleksije na takav konstruktivan proces;
- 1.2.11. princip indukcije je opravdan, na primer, utvrdjivanjem da naša aktivnost dokazivanja ide zajedno sa konstruktivnom aktivnošću.

1.3. Formalizacija i aksiomatizacija intuicionističke matematike

U svojim radovima Erouwer ([Brl] , [Br2]) je ukazivao da su dokazi u intuicionističkoj matematici mentalne konstrkcije koje postoje u svesti individualnog idealizovanog matematičara (kreativnog subjekta). Pisani zapis je pokušaj saopštenja pravog dokaza koji je mentalni objekat.

Taj matematičar koji se zanima za konstruktivnu matematiku je idealizovan, pa su onda njegove ideje jasne i razdvojene, a ne zbrkane kao što su često naše; njegova matematika je bezjezična aktivnost mozga. Jedna od glavnih Brouwerovih teza ([St]) je nezavisnost matematičkih misaonih procesa od jezika u svim aspektima. Brouwer je konzistentno odbijao da koristi simboličku notaciju (van Dalen [Brɔ]), delom iz averzije prema formalizmu kojim ju je Hilbert propratio, delom iz sopstvenog stila. On piše komotno, izbegavajući ekonomičnu upotrebu formalizma, konzistentno koristi izraze poput " apsurdnost apsurda od A " dok je na daleko čitljivije (rpr " Absurdity of absurdity of absurdity is equivalent to absurdity"; Brouwer [Brɔ]).

Ali, uzimajući u obzir Brouwerovo mišljenje o komuniciranju, njegov stil je logična posledica njegovog ličnog
iskustva i uverenja. Posebno, u slučaju intuicionizma,
postoje jaki aspekti ubedjenosti i obraćanja, pogotovo za
Brouwera koji je smatrao da je intuicionistička matematika
jedina korektna matematika - rezultat toga je ubedjujući,

ličan i neformalan stil, što se moglo i očekivati.

Govoriti o intuicionističkoj matematici, po Brouweru, je sugerisanje analognih matematičkih konstrukcija drugim ljudima.
Sličnost izmedju misaonih konstrukcija ljudi čini ovu komunikaciju mogućom. Matematički iskaz, po Brouweru, je dokazan mentalnim konstrukcijama, a ne primenjujući odredjene
zakone i pravila koja su nam unapred data. U takvoj logici
konstruktivnog rezonovanja on odbacuje svaku aksiomatizaciju
(formalizaciju).

Ali za matematičara u stvarnom životu, matematički jezik je važna pomoć u držanju pravca njegovih misli, razvrstavanju konfuzije, medjutim, jezik nije esencijalan za idealizovanog matematičara.

Heyting ([He4]) je smatrao da formalizacija intuicionističke logike služi i u druge svrhe- da izrazi logičke teoreme na jeziku koji je razumljiv tradicionalnim matematičarima.

Zbog toga, on je 1930. godine dao formalni sistem za intuicionistički račun predikata. Ovaj sistem predstavljao je formalizaciju pravila koja je Brouwer koristio u svojim radovima.

Heyting ([He2]) je smatrao da aksiomatizacija ima kreativnu funkciju (koja je neprihvatljiva intuicionistički) i deskriptivnu funkciju (koja je prihvatljiva intuicionistički).

Osim formalizacije samih pravila zaključivanja koja je rezultirala sistemima analognim klasičnim sistemima, postoji više načina da seanaliziraju sami dokazi, dokazivnost i konstrukcije koristeći neki formalni sistem. Začetak te ideje može se naći u radovima Kreisela ([Krl]) i Goodmana ([Gol] , [Go2]). Ovi radovi, kao i kasnije formalizacije Brouwerovih koncepata dokaza i dokazivosti rezultirale su postojanjem više formalnih sistema unutar kojih je takva analiza (u

odredjenoj meri) moguća.

Epistemička aritmetika je jedan takav sistem u kojem je moguće analizirati (neformalnu) dokazivost.

Prednosti aksiomatskog sistema u konstruktivnoj matematici su (Beeson [Be2], [Be4]):

- 1.3.1. <u>konceptualna jasnoća</u>: fundamentalni pojmovi su izolovani i moguće je videti suštinu dokaza;
- 1.3.2. strogost: jasno se vidi šta se predpostavlja i šta se dokazuje, nema mesta greškama nastalim nepreciznim raz-mišljanjem;
- 1.3.3. <u>opštost</u>: na primer, teorema važi u svakom formalnom sistemu baziranom na intuicionističkom računu predikata, a ne samo u Heytingovoj aritmetici;
- Prednosti <u>formalnog</u> aksiomatskog sistema su (Beeson [Be2], [Be4]):
- 1.3.4. <u>filozofska analiza</u>: omogućena nam je analiza filozofskih gledišta tako što su bitni elementi izloženi na precizan način i pokazane su njihove veze;
- 1.3.5. tehnički rezultati filozofskog značaja: omogućuje formulaciju metamatematičkih rezultata koji imaju i filozofski značaj. Da primer, Gödelov prevod dvostrukom negacijom pokazuje da je klasična matematika, na odredjen način sadržana u intuicionističkoj matematici;
- 1.3.6. komunikacija: olakšava komunikaciju matematičkih ideja. Na primer, Heytingova formalizacija intuicionističke logike omogućila je ljudima da razumu Brouwerove ideje.

Neki puta, smatra Beeson ([Be4]) potrebno je provesti formalnu aksiomatizaciju na odgovarajući način da bi se mogle dobiti sve prednosti formalnog aksiomatskog sistema- posebno " konceptualna jasnoća" i " filozofska analiza".

U ovom radu sve korištene teorije morale su biti formalizovane na odgovarajući način:

- 1.3.7. Heytingova aritmetika je data kao kod Goodmana ([Go6]). Tako prezentovana Heytingova aritmetika je ekvivalentna sa npr Troelstrinom formulacijom ([Tr3]) koja je korištena u [Š]. Osnovna razlika je da u Goodmanovoj formulaciji nije moguće razdvojiti aritmetički od predikatskog fragmenta.
- 1.3.8.Peanova aritmetika ima logičke konstante \rightarrow , \forall i \downarrow , dok su ostale logičke konstante definisane na uobičajeni način. Ovaj pristup odgovara onom korištenom u [BM], i ekvivalentan je sa npr Kleenejevom ([K2]) koji je korišten u [Š].

Ovako koncipirani formalni sistemi omogućili su da su epistemička aritmetika EA i intuicionistička epistemička aritmetika
TEA date tako da ove Beesonove prednosti formalnog aksiomatskog
sistema dodju do punog izražaja.

1.4. <u>Integracija klasične i intuicionističke matematike-</u> epistemička matematika

Jedna od fundamentalnih ideja konstruktivne matematike je da nema a priori datog pojma istinitosti u matematici - istinitost nekog iskaza je ustanovljena dokazujući ga, a samo značenje
nekog iskaza je dato objašnjavajući šta čini njegov dokaz.
Tako, dokaz ima fundamentalniju ulogu u konstruktivnoj matematici nego što ga ima u klasičnoj matematici. I pored toga,
sami dokazi se retko spominju kada se radi konstruktivna
matematika.

Sa klasične tačke gledišta, razlika izmedju intuicionističke i klasične matematike je u tome što intuicionistička matematika ne pravi razliku izmedju tvrdnje da neka formula važi i tvrdnje da je neka formula dokaziva (A-P princip).

Jedan od načina da se razlikuju ta dva pristupa je-za datu formulu se u klasičnoj matematici tvrdi njena valjanost,

a u intuicionističkoj matematici njena dokazivost.

Shapiro je dao jedan pristup integracije ova dva gledišta dodajući modalni operator [] klasičnoj logici, gde se [] A interpretira kao "(u principu) je dokazivo A" ili " (u principu) je saznatljivo A" i dodajući pravila koja odgovaraju tom značenju [] . Tada, postaje moguće razmatrati intuicionističku argumentaciju klasično interpretirajući formulu [] A kao tvrdnju da je A dokazivo, dok se u istovreme čuva uobičajeno značenje formule bez [] . Sistemi koji opisuju (neformalnu) dokazivost su oni bazirani na modalnom računu S4 i Shapiro ([Sh]) ih je nazvao epistemičkim smatrajući da takvi sistemi mogu pomoći da se osvetli, razume i formalizuje matematička aktivnost u intuicionističkom smislu.

Shapiro je u ([Sh2] i [Sh3]) dao nekonstruktivan jezik na kojem je moguće izraziti iskaze potpune i parcijalne konstruktivnosti i deduktivni sistem u kojem je moguće razlikovati konstruktivne i nekonstruktivne dokaze - i u takvom sistemu moguće je dati vezu izmedju intuicionističkih konstruktivnih i klasičnih epistemičkih procesa.

Shapiro u [Sh3] uvodi [] u klasičnu aritmetiku i modalnu logiku S4 kao odgovarajuću aksiomatizaciju za jezik intuicionističke matematike preveden na epistemički jezik. Flagg i Friedman ([FF2]) su pokazali da je S4 upravo iskazni račun epistemičke aritmetike u smislu sledeće teoreme:

1.4.1. Teorema (Flagg, Friedman [FF2]): Pretpostavimo da je ${\rm A(p_1,\dots,p_m)}$

formula iskaznog računa S4 takva da

S4 HA

onda postoje

 $\bigcap_{n=1}^{\infty} a_{n}$ o račenice B_{1}, \ldots, B_{m} na jeziku aritmetike takve da

 $EA \vdash A(B_1, \ldots, B_m)$.

Epistemička aritmetika predstavlja prvu aritmetiku baziranu na modalnom računu, i Belnap u [B] takvu mogućnost navodisamo da kontrastira teorije bazirane na modalnim računima.

Gödel [Gö2] razmatra aksiomatizaciju ekvivalentnu iskaznom računu S4 i sugeriše da DA može značiti "A je dokazivo", ali dodaje da "dokazivo" znači "dokazivo u principu".

Shapirov sistem razlikuje se od Boolosovih i Solovayevih radova ([Bo]) po tome što DA Shapiro interpretira kao "dokazivo u principu", a Boolos i Solovay kao " dokazivo u Peanovoj aritmetici", ergo, u partikularnom formalnom sistemu-odatle i različite modalne aksiome (S4 vs. G).
Sama ideja o epistemičkom sitemu koji će imati ekspresivnost epistemičke aritmetike javljala se i ranije.

Tako, Beth ([Bt]) razmatra da li je moguće dati jezik u kojem se može posmatrati veza izmedju klasične i intuicionističke matematike, ali ističe da se u tom slučaju moramo čuvati preranog prevoda rezultata iz jednog sistema u drugi i uočava komplikacije koje mogu nastati sa shemom indukcije (u epistemičkoj aritmetici shema indukcije se proširuje na sve formule jezika).

Po Heytingu ([Hel] , [He]) konstruktivna teorija je teorija u kojoj objekti postoje nakon što su konstruisani. Po Löbu ([Lö]), konstruktivizam u svom najširem smislu, je tendencija da se matematika posmatra u terminima kognitivnih tvrdnji. Nasuprot platonizmu koji motiviše klasičnu matematiku, konstruktivizam posmatra apstraktne objekte kao objekte mišljenja, i kao takvi, po Löbu, konstruktivni koncepti su eksplikacije partikularnih kognitivnih struktura.

Löb je primetio i problem referiranja na korisnika sistema ili jezika unutar formalnog konteksta. U njegovom radu, ljudski mozak je reprezentovan računarom kod koga su apstrahovani svi ostali aspekti ljudskih bića kao irelevantni za formalni koncept percepcije, a potom mentalna pojavljaivanja objekata u mozgu analizira u terminima teorije rekurzija.

Za Löba, klasična matematika duguje svoj razvoj (naivnim) metafizičkim koncepcijama fizičkog sveta, dok se konstruktivistički pogled na matematiku može smatrati apstraktnom rekonstrukcijom privatnog fenomenološkog sveta. U tom smislu je,po Löbu,i Brouwer posmatrao matematičke iskaze kao sintaktičke.

Po Löbu, intuicionistički iskazi su uporedivi sa klasičnim, smatrajući prve kao intuitivna iskustva i druge kao empirijska iskustva.

Fo Kreiselu ([Kr4]) u oba slučaja matematički dokaz je mentalni proces kojim ubedjujemo sebe u tačnost matematičkog iskaza i otkriće matematičkog dokaza jeifilogenetsko i ontogenetsko iskustvo.

U [Sh3] Shapiro uvodi veoma komplikovanu notaciju kojom uspeva da izrazi intuicionističke konstante u epistemičkoj aritmetici. Inspiraciju za taj prevod nalazi u BHK- objašnjenju logičkih konstanti i intuicionistički " mogu da dokažem A" tada se pojavljuje kao intendirana interpretacija DA. Za ovaj prevod postoji više ekvivalenata ([Go3] , [FF1] , [PM]) koji su i ovde korišteni i za koje nije potrebna dvostruka notacija kao kod Shapira.

Shapiro daje dve moguće interpretacije []A, ali ukazuje i na njihove nedostatke:

Prvo, \square A možemo interpretirati kao $\Pr_{\mathbb{T}}(A)$. Tada, sistem zahteva aritmetizaciju koja može da opiše standardni predikat dokazivosti, ali tada u formuli \square A, \square A je podformula, dok u formuli $\Pr_{\mathbb{T}}(\Pr_{\mathbb{T}}(A))$, $\Pr_{\mathbb{T}}(A)$ je term.

Druga mogućnost je posmatrati niz deduktivnih sistema $\{T_i\}_{i \in I}$. Tada, $\Box A$ je interpretirana kao $T_j \vdash A$, $\Box \Box A$ kao $T_k \vdash \Box A$, $(j \lt k)$. Kako je \Box intendirana da prezentuje neformalnu dokazivost, u praksi je neki puta teško specificirati sistem u kojem A jeste dokazivo, a pogotovo najmanji sistem u kojem A jeste dokazivo.

1.5. Neke ideje teorije o kreativnom subjektu i epistemička matematika

U zasnivanju epistemičke aritmetike Shapiro ([Sh2], [Sh3]) koristi i ideje koje su u bliskoj vezi sa idejama teorije o kreativnom subjektu kao što su pojam vremena, idealnog i idealizovanog matematičara, samorefleksija i samoinspekcija i sl.

1.5.1. vreme: Vreme i prostor su bili dva a priori data pojma kod Kanta. Frege je odabrao prostor kao jedini a priori dat pojam- Brouwerov izbor je bio dualan- (epistemičko) vreme shvaćeno kao diskretna progresija individualnih momenata. Posledica je da Aristotelovski pojam "istine" ne može biti primenjen na intuicionističku matematiku, tj da "tertium non datur" ne može uvek biti prihvaćen. Po Brouweru, matematičke teoreme su posledica mentalne aktivnosti kreativnog subjekta i od značaja je njegova mentalna aktivnost dokazivanja koja se izvodi u (epistemičkom) vremenu, što je Kreisel ([Kr2]) opisao pojmom

$\sum | \frac{1}{n} A$

(kreativan subjekt Σ je u trenutku n ustanovio A).

Ovakva temporalna referenca je u matematici delovala neuobičajeno i pitanje se postavljalo da li je to legitimno. Naime, za platoniste matematički iskazi su tačni ili netačni u matematičkoj stvarnosti i nisu stvar promene. Nasuprot tome, teorija o kreativnom subjektu zahteva da vreme bude podeljeno u ω diskretnih trenutaka saznanja i glavna crta te teorije sastoji se u činjenici da se znanje povećava vremenom, sa eksplicitnim referiranjem na stanje u kojem se \sum nalazi, jer on tada zna odredjene iskaze i ta referenca je odredjena iskaznim operatorom \downarrow . Same aksiome za \downarrow esencijalno zavise od naše idealizacije kreativnog subjekta.

Shapiro parcijalno odstranjuje vremensku zavisnost aktivnosti dokazivanja, naime, u epistemičkim sistemima se vreme ne uzima eksplicitno, ali se ne smatra ni da je pojam saznatljivosti nezavisan od vremena, te se iskazni operator \square primenjuje u

fiksnom, nespecificiranom vremenu. Shapiro ide čak tako daleko da postavlja pitanje da li postoji takav koncept kao što je apsolutna, vremenski nezavisna epistemička aritmetika i zaključuje da ili ekstenzija apsolutne epistemičke aritmetike (aritmetike saznatljivosti) nije aritmetika ili je u nekom smislu nesaznatljiva.

Interpretacija [] nije apsolutna (neformalna) dokazivost, već neformalna dokazivost u fiksno vreme što omogućuje da željeni dokaz bude <u>kasnije</u> dobijen.

1.5.2. idealizovani matematičar: Brouwer u [Br2] i [Br3] uvodi pojam kreativnog subjekta (idealizovanog matematičara) koji u epistemičkom vremenu dokazuje svoje teoreme. Konzistentno sa subjektivističkim principima intuicionizma, možemo misliti o nama kakvi bi želeli da budemo. Kreisel je u [Kr2] formalizovao teoriju o kreativnom subjektu i dao prvi aksiomatski sistem za tu teoriju. Taj sistem je sadržavao sledeće aksiome:

$$\sum_{n} A \quad \forall \quad \neg \sum_{n} A$$

(kreativan subjekt Z zna da li je ustanovio A ili nije);

C2
$$\sum \vdash_{m} A\& m \leftarrow n \rightarrow \sum \vdash_{n} A$$

(znanje je kumulativno)

C3
$$A \longleftrightarrow \exists n(\sum \vdash_{\underline{n}} A)$$

(univerzalnost matematičnog znanja; A važi akko je ustanovljeno u nekom trenutku aktivnosti kreativnosg subjekta).

Osim pojma vremena koje je uveo Brouwer i koje je izazvalo dosta suprotnih mišljenja, postavljalo se pitanje neophodnosti uvodjenja partikularnog kreativnog subjekta. Po Heytingu ([KHMB]]) za nas su od interesa matematičke konstrukcije, a irelevantno je ko ih izvodi. Samu formalizaciju načina na koji se prave matematičke konstrukcije dali su Kreisel ([Krl]]) i Goodman ([Gol]], [Go2]). Ali

$$\sum |_{n} A$$

može po Kreiselu ([Kr2]), da se posmatra i kao

$$\sum_{n}$$

(n-ti dokaz ustanovljava A)

uz pretpostavku da su dokazi uredjeni u ω -redu (svaki dokaz je mentalni, ne nužno konačni objekat s obzirom na intuicionističku koncepciju). Niz \sum_n nije dat nekim pravilom i ne koriste se empirijske informacije o redosledu kojim ljudi dolaze do dokaza. Time se iz teorije o kreativnom subjektu može ukloniti kreativan subjekt i njegovo epistemičko vreme ne gubeći ništa na ekspresivnosti te teorije.

Po Shapiru, u epistemičkim sistemima dokaz zahteva onog koji dokazuje (znanje zahteva onog koji zna), pa se operator O odnosi na partikularni subjekt- idealno matematičko društvo za koje ne postoje nikakva ograničenja da dobiju posledice svoje aktivnosti dokazivanja (svoga znanja).

1.5.3. A-P princip može da se posmatra kao jedna reformulacija aksiome C3. Na primer u teoriji o kreativnom subjektu važi sledeća teorema

$$\exists n (\sum \vdash_n \neg A) \leftrightarrow \neg \exists n (\sum \vdash_n A)$$

(A je netačno akko ne može nikada biti dokazano od strane kreativnog subjekta);

Sličan stav se može izvesti i iz A-P principa:

3p(p dokazuje ¬ A) ←> ¬3 p (p dokazuje A)

što je prihvatljivo jer A-P princip nije vezan za neki formalni sistem.

- 1.5.4. samorefleksija i samoinspekcija: I teorija o kreativnom subjektu i epistemički sistemi sadrže ideju o samorefleksiji (matematičko posmatranje pravca naših sopstvenih matematičkih aktivnosti) i samoinspekciji (matematički pregled korektnosti naše sopstvene matematičke aktivnosti) što po Leivantu ([Le]) predstavlja i Brouwerovu najoriginalniju ideju.
- 1.5.5. U [Trl] ,A.S. Troelstra je ispitivao da li su potrebni nivoi samorefleksije u teoriji o kreativnom subjektu i pos-matra služajeve oblika

$$\vdash_{n} A \rightarrow \vdash_{n+m} (\vdash_{n} A) i \vdash_{n} A \rightarrow \vdash_{n} (\vdash_{n} A)$$

ali zaključuje da tada A mora biti neka partikularna formula.

Dokaz (znanje) je u govornom jeziku reprezentovano netrivijalnim konceptom (dokaz da je ... dokaz; znam da--- znam), pa je
i u epistemičkim sistemima [] iterativan pojam (deduktivnost u
partikularnom sistemu nije iterativna, tj ne važi |- |- A).

1.5.6. U [Tr6] A.S. Troelstra iznosi mišljenje da teorija o kreativnom subjektu omogućuje interesantan, ekstreman primer kako intuicionističko gledište daje nove matematičke objekte koji nemaju mesta u klasičnoj matematici, iako sama teorija o kreativnom subjektu predstavlja konzervativnu ekstenziju klasične matematike.

Slično mišljenje za epistemičku aritmetiku dao je Smorynski ([Sm2]) - epistemička aritmetika je devijantna konzerva-tivna ekstenzija klasične aritmetike koja reflektuje neke osobine intuicionističkih sistema.

Genezu novih objekata u teoriji o kreativnom subjektu A.S. Troelstra objašnjava na sledećem primeru ([Tr6]):

Neka je Υneka funkcija iz N u N. Definišemo Υ tako da

Po aksiomi Cl, Ψn je definisano za svako n, po C2 i C3

$$\forall x (\forall x = 0) \leftrightarrow \exists x (\forall x = 0)$$

 Ψ je definisano referirajući na kreativan subjekt i lako se vidi da ako Ψ prolazi preko totalno rekurzivnih funkcija, Ψ ne može uvek biti rekurzivno.

S druge strane nema direktnog konflikta sa klasičnom logikom:

uvedimo funkcijsku konstantu Ψ_A za matematičke tvrdnje A (pretpostavljajući da je A slobodno od \vdash_n A , iako A može sadržavati druge Ψ_B) tako da :

$$f_n A \leftrightarrow Y_A n = 0$$
 $Y_A n \le 1$

Onda

$$(0=n_A \Upsilon)_n \to A$$

što se može dokazati uz pomoć klasične aksiome komprehenzije.

Van Dalen ([Tr6]) je primetio da možemo formalno ponovo uvesti ⊢n sa:

$$F_n = (\exists m \leqslant n)(\Upsilon_A m = 0)$$

Tako Cl-C3 postaju valjane i teorija bazirana na Cl-C3 postaje konzervativna ekstenzija odredjene klasične teorije (A.S. Troelstra ne specificira na koju klasičnu teoriju misli) koja ne sadrži in u svom jeziku, što pokazuje da teorija o kreativnom subjektu nije u konfliktu sa klasičnom matematikom.

Svi primerci aksioma Cl-C3 mogu se dobiti iz Kripkeove sheme

$$A \leftrightarrow \exists x (\Psi_A x=0)$$

što ne protivreči klasičnoj logici, ali isključuje interpretacije za bilo koji univerzum $\mathcal W$ funkcija koje sadrže $\Upsilon_{\rm A}$ ([Tr6]).

R. Vesley ([Ve]) je predložio i druge sheme iz kojih je izvediva Kripkeova shema, a samim tim i svi primerci aksioma Cl-C3.

1.5.7. M.Dummett ([Dul] , [Du2]) je predložio da se aksiome o kreativnom subjektu prošire sledećim aksiomema koje daju vezu izmedju logičkih konstanti i $\frac{1}{n}$:

(i)
$$\forall n(\vdash_n(A \& B) \longleftrightarrow \vdash_n A \& \vdash_n B)$$

(ii)
$$\forall n (\vdash_n A \lor \vdash_n B \to \vdash_n (A \lor B))$$

(iiii)
$$\forall n(\vdash_n A \rightarrow B \rightarrow (\vdash_n A \rightarrow \vdash_n B))$$

(iv)
$$\forall n (\vdash_{\overline{n}} \forall m \land m \rightarrow \forall m \vdash_{\overline{n}} \land m)$$

$$(v) \qquad \forall n (\exists m \vdash_{\overline{n}} Am \rightarrow \vdash_{\overline{n}} \exists m Am)$$

(vi)
$$\forall n (\vdash_{\overline{n}} \neg A \longrightarrow \neg \vdash_{\overline{n}} A)$$

Slično, u epistemičnoj aritmetici važe sledeće teoreme koje daju vezu izmedju logičkih konstanti i operatora **(**:

(i)
$$EA \vdash \Box (A \& B) \longleftrightarrow \Box A \& \Box B$$

(ii)
$$\stackrel{\frown}{EA} \vdash \Box A \lor \Box B \rightarrow \Box (A \lor B)$$

(iii)
$$EA \vdash \Box (A \rightarrow B) \rightarrow (\Box A \rightarrow \Box B)$$

(iv) EA
$$\vdash \Box \forall xAx \rightarrow \forall x \Box Ax$$

(v)
$$EA \vdash \exists x \Box Ax \rightarrow \Box \exists x Ax$$

(vi)
$$EA \vdash \Box_{7}A \longrightarrow_{7}\Box A$$

1.5.8. Dummett ([Du2]) je posmatrao i slučaj [Pha]

i definiše

$$B_1, \ldots, B_k \vdash_n A$$

sa " u trenutku n kreativan subjekt je ustanovio A iz B₁,..., B_k kao hipoteza". Sa ovom definicijom može se rezonovanje kreativnog subjekta proširiti i mogu se prihvatiti pravila sistema prirodne dedukcije uz odgovarajuću temporalnu konotaciju.

Sistem za prirodnu dedukciju epistemičke aritmetike dobija se dodavanjem pravila za uvodjenje i eliminaciju 🏻 sistemu prirodne dedukcije za Peanovu aritmetiku, tj pravila:

$$\square A$$
 $\square A$ $\square A$

(za (II) sve otvorene pretpostavke su oblika IB)

1.5.9. U [Du2] Dummett analizira i obrate shema navedenih u 1.5.7., tj sheme:

(i)
$$\forall n (\vdash_{\underline{n}} (A \lor B) \rightarrow (\vdash_{\underline{n}} A \lor \vdash_{\underline{n}} B))$$

(ii)
$$\forall n (\vdash_n \exists m \land m \rightarrow \exists m \vdash_n \land m)$$

(iii)
$$\forall n ((\vdash_n A \rightarrow \vdash_n B) \rightarrow \vdash_n (A \rightarrow B))$$

(iv)
$$\forall n(\neg \vdash_n A \longrightarrow \vdash_n \neg A)$$

$$(v)'$$
 $\forall n (\forall m \vdash_n A(m) \rightarrow \vdash_n \forall m Am)$

U opštem slučaju ove sheme su neprihvatljive: Martino ([M]) je pokazao da prihvatajući obrat od (i)' i (ii)' i interpretirajući $\sum \frac{1}{n} A$

kao " kreativan subjekt \sum je induktivno ustanovio A u trenut-ku n" možemo izvesti princip ekvivalentan monotonoj bar teoremi (v. [Tr3], [Tr5]).

(iii) i (iv) su netačni ([Du2]).

M. Dummett ([Du2]) je pokazao da su pri drugim interpretacijama, npr "kreativan subjekt \(\) je u trenutku n ustanovio
jedan ili više stavova iz kojih \(\) sledi direktno" prihvatljive su sheme (i), (ii) i (v), a pri interpretaciji "kreativan
subjekt \(\) je u trenutku n izveo konstrukciju koja je dokaz,
bez obzira da li je toga svestan ili nije", prihvatljive su
sheme (i) i (ii), ali ne i (v).

p.van Dalen([Du2]) je dao interpretaciju | preko Bethovih drveta:

Fn A je tačno u čvoru a akko a je ograđeno(barred) skupom čvorova dužine tačno n i u svakom je A tačno.

Pri toj interpretaciji svi primerci aksioma C2 i C3 važe u temenu Bethovog drveta, aksioma C1 važi za ona Bethova drveta za koja je "biti tačno u čvoru" odlučivo svojstvo. Takođe, tačni su svi primerci shema 1.5.7. i 1.5.9.(v), ali ne i 1.5.9.(i) i 1.5.9.(ii).

U [Go6] Goodman je definisao intuicionističku epistemičku aritmetiku IEA u kojoj su neke od aksioma sheme koje su su obrati teorema navedenih u 1.5.7.,tj sledeče sheme:

- (i) IEA $\vdash \Box$ (A \lor B) $\rightarrow \Box$ A \lor \Box B
- (ii) JEA → □∃xAx → ∃x□Ax
- (iii) IEA ├─ ∀x□Ax →> □ ∀xAx

Za shemu koja sadrži → Goodman ([Go6]) uvodi restrikciju,pa je i ona prihvatljiva:

(iv) IEA
$$\vdash \Box(A \rightarrow \Box A)\&(\Box A \rightarrow \Box B) \rightarrow \Box(A \rightarrow B)$$

U ovom sistemu važi

IEA
$$H$$
-(SO=0) $\rightarrow \Box$ (SO=0)

pa se za ¬A ne može izvesti ništa više nego za bilo koju formulu oblika A→B.

1.6. Egocentrični i sociocentrični sistemi

- U [Go4] Goodman razlikuje dve vrste znanja:
- 1. opšte znanje matematičkog društva kao celine
- 2. lično znanje matematičara iz tog društva.

I matematičko društvo i svaki pojedinac koji mu pripada su idealizovani i njihovo znanje se može formalizovati epistemič-kim operatorom koji zadovoljava sve aksiome za modalni račun S4.

1.7. Sistemi Fagina, Halperna i Vardija

Fagin, Halpern i Vardi ([FHV]) posmatrali su sisteme u kojima je moguće analizirati rečenice poput

" Ja znam da ti ne znaš da li on zna..."

Umesto kreativnog subjekta ili idealnog matematičkog društva,u [FHV] se posmatraju idealni procesori i sistem u kojem je moguće analizirati ne samo šta jedan procesor zna, već i njegovo znanje o znanju drugih procesora.

- U [Kr2] Kreisel je primetio da mi možemo posmatrati i više kreativnih subjekata, van Rootselaar ([Ro]) je razmatrao mogućnost komunikacije više kreativnih subjekata (u nekom trenutku n postoji iskaz A koji zna jedan kreativan subjekt i drugi ne zna A) i sisteme u kojima je moguća kvantifikacija preko kreativnih subjekata (svaki kreativan subjekt zna...). Slično kao što epistemička aritmetika u svojoj osnovi nosi neke fundamentalne ideje teorije o kreativnom subjektu, i ovi sistemi u sebi nose analogne ideje teorije o više kreativnih subjekata:
- (i) U [FHV] znanje je definisano kao nešto što neko zna da je tačno. Nosioci tog znanja su idealizovani racionalni procesori (igrači). Njihovo zajedničko znanje je da je svaki procesor sposoban za perfektnu introspekciju, logičko rezonovanje i to važi za sve procesore.
- (ii) Vreme se u ovim sistemima ne javlja eksplicitno, ali je implicitno sadržano u kontekstu- naime, budući da su ovi sistemi intendirani da imaju primene u računarstvu- imamo komp- jutersko vreme- fiksno, nespecificirano vreme u kojem možemo pratiti povećanje znanja sa vremenom.
- (iii) U [FHV] su date sledeće aksiome koje važe za sve procesore (igrače):
- 1.7.1. svi supstitucijski primerci iskaznih tautologija

1.7.2. bilo šta da igrač i zna to je tačno
□;A→A

1.7.4. igrač i zna šta ne zna

$$\neg \Box_{i} A \rightarrow \Box_{i} \neg \Box_{i} A$$

1.7.5. ono što igrač i zna zatvoreno je za modus ponens $\Box_{i} \mathbb{A} \& \Box_{i} (A \longrightarrow B) \to \Box_{i} B$

Igrači koriste sledeća pravila zaključivanja:

1.7.6.
$$\underline{A} \longrightarrow \underline{B}$$

Za svaki Di ovaj sistem je ekvivalentan modalnom računu S5.

U ovim sistemima najinteresantniji problemi vezani su za mogućnost komunikacije izmedju dva nosioca znanja i mogućnost praćenja njihovog znanja posle saznanja da drugi igrač nešto zna
/ ne zna, kao i odredjivanje granica do kojih se može povećati
njihovo znanje razmenom informacija. Strukture koje opisuju
stanja znanja mogu biti jako komplikovane (v. [FHV] za njihov
sistem).

Sledeći primer ilustruje tip rezinovanja gde se do rešenja dolazi zahvaljujući informaciji šta drugi igrači znaju u toku rada.

1.7.8. Primer (M. Stojaković [S]):

Od tri cela broja čiji je proizvod 900, Alisa zna vrednost srednjeg po veličini, a Boban sumu najvećeg i jednog od preostala dva. Alisa i Boban znaju šta je poznato kome od njih.
Vesna postavlja naizmenično pitanja koja, kao i odgovore čuju oboje.

```
1. A, da li znaš sva tri broja?
                                            A odgovara: Ne.
                                                          : Ne.
                      ##
2. B, "
           11
                                                          : Ne.
                                ţτ
                      11
                           31
3. A,
                                                          : Ne.
                                 11
                      Ħ.
                11
4. B, "
                                                          : Ne.
                                             A
                                 11
                            11
                       Ħ
                11
5. A, "
                                                  11
                                                          : Ne.
                                             \mathbb{B}
                                 11
                            11
                       11
                11
6. B, "
           ۲t
                                                   tt
                                                          : Ne.
                            11
                                 τŧ
7. A. "
                11
                                                   11
                                                          : Da.
                                      ?
                            11
                                 11
                       11
8. B, "
           11
```

Kako je Boban iz neznanja drugog igrača saznao koji su to brojevi?

Rešenje:

I Alisa i Boban vrše sve faktorizacije broja 900 na tri različita faktora. Već na prvo pitanje Alisa bi znala odgovor da je
srednji broj 2, 20 ili 25 zato što su takve faktorizacije jedinstvene. Pošto je ona odgovorila sa "Ne" i Alisa i Boban
takve faktorizacije izostavljaju sa spiska. Zatim, Boban bi
dao pozitivan odgovor da je zbir najvećeg broja i jednog od preostala dva jedinstven, pa i Alisa i Boban takve slučajeve brišu
sa spiska. Dalje, spisak analiziraju i skraćuju na isti način.
Kod osmog pitanja Boban ima spisak sa 4.9.25 i 5.9.20.
Kako je on znao koji su to brojevi, znači da mu nije saopšten
zbir 29 (25+4, 20+9) već 25 (20+5) ili 34 (25+9).

1.8. Beesonova teorija C

Umesto iskaznog operatora 🗆 koji je imao svoje poreklo u Gödelovim radovima i razvijen u epistemičkim teorijama Shapira, plagga i Goodmana, postoje i drugi pristupi. Jedan od njih je i Beesonov ([Be4]). On uvodi modalni operator □ koji ima jednu slobodnu promenljivu tako da:

Ako je $A(\vec{x})$ formula sa slobodnim promenljivama \vec{x} , onda je $(e \square A(\vec{x}))$ formula sa slobodnim promenljivama e, \vec{x} , koja se čita e dokazuje $A(\vec{x})$ ".

Koristeći ovaj operator, Beeson daje formalni sistem C koji reprezentuje ekstremne pozicije A-P principa. Aksiome tog sistema su:

(Beesonov sistem C ima ze osnovu teoriju EON (v. [Be4]) i ovde su od interesa samo one aksiome koje opisuju \square ; te aksiome su date indukcijom po izgradjenosti formule, i,kao i u aritmetici, disjunkcija je definisana preko \exists ,&, \rightarrow , a negacija preko \rightarrow i \downarrow , pa je poredjenje moguće; j je funkcija para, j i j su funkcije projekcije)

- (i) $(e \square A \& B) \longleftrightarrow (j_1 e \square A) \& (j_2 e \square B)$
- (ii) $(e \square A \rightarrow B) \leftrightarrow D \& j_2 e \square D$ gde je $D = \forall a(a \square A \rightarrow j_1 e a \square B)$
- (iii) $(e \square \forall_{xA}) \leftrightarrow D \& j_2 e \square D$ gde je $D = \forall_x (j_1 e x \square A)$
- (iv) $(e \square \exists xA) \leftrightarrow j_1 e \square A(j_2 e/x)$
- (v) e□A→A (refleksija)
- (vi) $A \rightarrow \exists q(q \Box A)$ (istinitost)
- (vii) (q □A) → q! (samo definisani objekti mogu biti dokazi)

Teorija C je konzervativna ekstenzija Heytingove aritmetike HA i u C nije dokaziva odlučivoste A, tj ne važi uvek

1.9. Ostali sistemi

1.9.1. Epistemička aritmetika je data kao sistem u kojem je moguće posmatrati konstruktivne iskaze (interpretirajući 🗆 kao " u principu je dokazivo " i prefiksirajući 🗅 ispred svake

podformule), nekonstruktivne iskaze (iskazi bez[]) i iskaze parcijalne konstruktivnosti). Ovakvi sistemi u kojima je moguća integracija klasične i intuicionističke matematike razvijeni su i za druge teorije kao što su aritmetike drugog reda (ščedrov [šč]), teorija tipova (Flagg [F4], Ščedrov [šč]), teorije skupova (Goodman [Go5], Myhill [My], Flagg [F3]). Ovi sistemi bazirani su na modalnom računu S4 uz dodatak još nekih modalnih aksioma.

1.9.2. Epistemičkoj aritmetici moguće je dodati i druge sheme koje proširuju njen iskazni fragment, npr

$$Grz \qquad \Box(\Box(A \to \Box A) \to A) \to A$$

Za EA + Grz = GrzA Flagg i Friedman ([FF2]) su dokazali sledeću teoremu:

Neka je A(p1,...,pk) formula iskaznog računa S4 + Grz takva da

Onda postoje rečenice B₁,...,B_k na jeziku GrzA takve da

GrzA
$$\not\vdash A(B_1, \dots, B_k)$$
.

1.9.3. Analogno, može se umesto iskaznog operatora 🗆 u značenju "u principu dokazivo", dodati novi operator Val u značenju

Val A akko A je valjano u svim modelima

ili

Val A akko A je valjano u svim skupovno-teorijskim modelima

i slično, uz odgovarajuću aksiomatizaciju.

Kreisel je razmatrao tu ideju u [Kr2] - u istom radu u kojem formalizuje teoriju o kreativnom subjektu. Shapiro razradjuje taj sistem u [Sh1].

1.9.4. U ovom poglavlju posmatrali smo one formalizacije Brouwerovih pojmova dokaza i dokazivosti za koje smatramo da su u vezi sa epistemičkim sistemima. Osim njih, postoje i drugi sistemi u kojima se pojavljuju "dokazi "i/ili "konstrukcije" u nekom obliku, kao što su Fefermanovi i Martin-Löfovi sistemi (v. [Be4]), Lifschitzovi sistemi ([Lil], [Li2]) sa epistemičkim predikatom, Smullyanovi ([Sl]) protosintaktički sistemi i mnogi drugi.

Univerzitet u Beogradu
Prirodno-matematički fakulteti
MATEMATIČKI FAKULTET
BIBLIOTEKA

Brej_____Datum____

DRUGO POGLAVIJE EPISTEMICKA I INTUICIONISTIČKA ARITMETIKA

If we agree about all the properties of "proofs", for example, than we can assume we are talking about the same thing. That's the purpose of formal system - to express ideas as precisely as possible.

M. Beeson

A Metamathematician's replica, [Be4]

2. EPISTEMIČKA I INTUICIONISTIČKA ARITMETIKA

2.1. Heytingova aritmetika HA

2.1.1. Jezik Heytingove aritmetike sadrži: numeričke promenljive (x,y,z,u,v,w,...), konstantu O (nula), unarnu funkcijsku konstantu S (sledbenik), konstante funkcijskih simbola za sve primitovno rekurzivne funkcije, = (jednakost medju brojevima), logičke konstante &, V, \rightarrow , \forall , \exists i \bot (koja se izjednačava sa (SO = O)).

Termi i formule definisani su na uobičajen način i usvajamo sve standardne konvencije o zagradama. Pod formulom Heytingove aritmetike (Fml(HA)) podrazumevamo formulu na jeziku Heytingove ove aritmetike.

Kao metamatematički simboli koriste se ⇒, ⇔, , , , , ; ; (jednako po definiciji).

- 2.1.2. Formalizacija Heytingove aritmetike može se dati u:
 - (i) sistemu prirodne dedukcije (v. [Pr] , [Tr3])
 - (ii) računu sekvenata (v. [T])
- (iii) sistemu Hilbertovog tipa (sistem koji se sastoji od aksioma i pravila izvodjenja (v. [Tr3] , [K2] , [Go6], [Sp])).

Sistem Hilbertovog tipa pogodan je za metamatematičko argumentovanje indukcijom po dužini dedukcije, što se koristi u dokazu teorema korektnosti, a sistem prirodne dedukcije i račun sekvenata za dokazivanje teorema.

2.1.3. Spectorov sistem aksioma ([Go6], [Sp]) za Heytingovu aritmetiku sastoji se iz sledećih aksioma i pravila zaključivanja:

```
A \rightarrow A
I.
                A, A \rightarrow B \Rightarrow B
II.
                A \longrightarrow B, B \longrightarrow C \Longrightarrow A \longrightarrow C
III.
                A & B \rightarrow A, A & B \rightarrow B
IV.
                 A \longrightarrow A \lor B, B \longrightarrow A \lor B
٧.
                 A \rightarrow B, A \rightarrow C \Rightarrow A \rightarrow B \& C
VI.
                 A \rightarrow C, B \rightarrow C \Rightarrow A \lor B \rightarrow C
VII.
                 A \& B \rightarrow C \Longrightarrow A \rightarrow (B \rightarrow C)
VIII.
                 A \rightarrow (B \rightarrow C) \Longrightarrow A \& B \rightarrow C
IX.
                 A \longrightarrow B(x) \Longrightarrow A \longrightarrow \forall xBx (x nije slobodno u A)
X_{\bullet}
                 A(x) \rightarrow B \implies \exists xA \rightarrow B (x nije slobodno u B)
XI.
                \forall xAx \rightarrow At (t je slobodno za x u A)
XII.
                 At \rightarrow \exists xA(x) (t je slobodno za x u A)
XIII.
XIV.
                 x=x
                 x = y \rightarrow y = x
XV.
                 x = y & y = z \rightarrow x = z
XVI.
                x = y \rightarrow t(x) = t(y) (t je term)
XVII.
                 0 = Sx \rightarrow 0 = S0
XVIII.
         Sx = Sy \rightarrow x = y
```

 $A(0) \& \forall x(Ax \rightarrow A(Sx)) \rightarrow \forall xA(x)$

XXI. Ako je A jedna od definišućih jednačina za simbol koji označava primitivno rekurzivnu funkciju onda je A aksioma.

2.1.4. Primedbe:

XIX.

XX.

- (i) Inicijalne funkcije su O (nula), S (sledbenik), I_n^{i} ($l \le i \le n$, za svako n; funkcija projekcija). Definišuće sheme su kompozicija i rekurzija. Primitivno-rekurzivna funkcija je data svojim rekurzivnim jednačinama (definišućim aksiomama).
- (ii) Uloga definišućih aksioma je dvostruka: Kao pravila izračunavanja i kao tvrdnji o preslikavanju numerala u numerale odredjena tim pravilima izračunavanja,

(iii) U Heytingovoj aritmetici važe sledeće definicije:

2.1.5. Dedukcija (formalni zapis dokaza) je reprezentovana konačnim nizom formula- svaka formula je aksiom, pretpostavka ili
je dobijena iz formula koje su dobijene ranije u nizu koristeći neko od pravila izvodjenja.

2.1.6. Teorema dedukcije:

$$\Gamma$$
, $A \vdash_{HA} B \implies \Gamma \mid_{HA} A \rightarrow B$

Dokaz: Indukcijom po dužini dedukcije.

2.1.7. Teorema : HA ├ (SO=0) → A

Dokaz: Indukcijom po izgradjenosti formule A. Atomarne formule su odlučive, tj važi

i pošto jezik sadrži konstante funkcijskih simbola za sve primitivno rekurzivne funkcije, važi

A atomarno
$$\Rightarrow$$
 HA \vdash A \longleftrightarrow (u=v),

gde su u,v termi ([Tr3]).

2.1.8. Primedba: Ova teorema je aksioma na originalnom (Spectorovom) ([Sp]) spisku aksioma. Nad Heytingovom aritmetikom ona je izvediva iz ostalih aksioma, ali uklanjajući je sa spiska aksioma nismo više u mogućnosti da razdvojimo aritmetički od predikatskog fragmenta.

Ovakav sistem aksioma je (nad Heytingovom aritmetikom) ekvivalentan bilo kojoj drugoj aksiomatizaciji (v. [Tr3]), ali
odabrali smo ovakav pristup zbog mogućnosti da se lakše ispituju osobine epistemičke aritmetike.

2.2. Churchova teza

2.2.1. Formalni sistem za elementarnu analizu EL

Elementarna analiza EL bazira se na Heytingovoj aritmetici. Njen jezik je jezik Heytingove aritmetike proširen promenljivama za unarne (brojno-teoretske) funkcije (a,b,c,d,...), konstantama Ap(aplikacija), \(\Pi\) (rekurzor), \(\Pi\)x.(operator apstrakcije za eksplicitne definicije) i funkcijskim kvantifikatorima.

Aksiome i pravila Heytingove aritmetike proširuju se do EL i dodaju definišuće aksiome za Ap, Π , λ x i varijanta aksiome izbora:

QF-AC-NN $\forall x \exists yA(x,y) \rightarrow \exists a \forall xA(x,ax) (A je bez kvantifikatora)$ katora)

Ovaj sistem je konzistentan ([KT]), kao i sistem dobijen dodavanjem sheme

AC-NN
$$\forall x \exists yA(x,y) \rightarrow \exists a \forall xA(x,ax)$$

2.2.2. Formalizacija elementarne teorije rekurzija

{x} (y1,...,yn) reprezentuje parcijalno-rekurzivnu funkciju.

 $T_n(x,y_1,\ldots,y_n,z)$ je Kleenejev T- predikat koji izražava "x je Gödelov broj parcijalno- rekurzivne funkcije $\{x\}$, z je Gödelov broj izračunavanja $\{x\}$ (y_1,\ldots,y_n) ." U je funkcija koja daje rezultat (the result- extracting function).

Svaka parcijalno- rekurzivna funkcija može biti reprezentovana kao

$$y(\min_{z}T_{n}(x,y_{1},...,y_{n},z)) \stackrel{\sim}{=} \Psi(y_{1},...,y_{n})$$
 (za odgovarajuće x)

Koristićemo sledeće definicije:

- (1) $t = r = \exists y(t=y \leftrightarrow r=y)$
- (2) t≅r ≐ ∀y(t=y & r=y) (t,r su parcijalno-rekurzivne funkcije)

(5) {e}
$$(x_1,...,x_n) = y = \exists z(T_n(e,x_1,...,x_n,z) \& Uz = y)$$

(4)
$$\{e\}(x_1,...,x_n)! = \exists y(\{e\}(x_1,...,x_n) = y)$$

2.2.3. Churchova teza

Ako se prihvati BHK- objašnjenje logičkih operacija i prirodnih brojeva, interpretacija Heytingove aritmetike ne stvara probleme, ali, potrebno je to uraditi i za brojno- teoretske funkcije u EL.

Jedno od mogućih objašnjenja je da su nam brojno- teoretske funkcije potpuno date zakonom "receptom" za izračunavanje vrednosti svakog argumenta. Onda, Heytingova verzija Churchove teze ([KT]]) - koja odgovara sistemu EL glasi:

"Svaka zakonom data funkcija je rekurzivna".

tj

"Svaki niz prirodnih brojeva je niz vrednosti neke rekurzivne funkcije".

Formalno zapisano, Churchova teza CT glasi:

CT \forall a \exists e \forall n \exists z(T₄(e,n,z) & a(n) = Uz)

U sistemima sa funkcijskim promenljivama Churchova teza se ponaša ([Tr3]) kao aksioma reducibilnosti: iskazi koji sadrže funkcije su redukovani na iskaze koji sadrže samo prirodne brojeve.

Kao posledica CT i AC-NN dobija se sledeća teorema u EL + AC-NN

$$\nabla T_0$$
 $\forall x \exists yA(x,y) \rightarrow \exists e \forall x \exists z(T_1(e,x,z)&A(x,Uz))$

koja je izražena na jeziku Heytingove aritmetike i koja se prihvata kao Churchova teza za Heytingovu aritmetiku.

S intuicionističke tačke Churchova teza je problematična, tj nije očigledno tačna ni očigledno konzistentna kada se doda intuicionističkim sistemima. CT_o je neizvediva u HA jer protivreči PA.

Uopštenje CT na shemu oblika

ECT_O
$$\forall x(Ax \rightarrow \exists yBxy) \rightarrow \exists e \forall x(Ax \rightarrow \exists y(Texy & B(x,Uy))$$

(y se ne pojavljuje slobodno u A, A je skoro negativna formula) je najopštiji oblik Churchove teze konzistentan sa HA.

ECT_o se koristi u karakterizaciji r- realizabilnosti (v. [Tr4]); u HA + ECT_o svaka formula je ekvivalentna svojoj r - realizabilnoj interpretaciji, tj važi sledeće za sve formule Heytingove aritmetike:

$$HA + ECT_0 \rightarrow A \leftrightarrow \exists x(xrA)$$

$$HA + ECT_0 \vdash A$$
 akko $HA \vdash \exists x(xrA)$

Restrikcijom formule A na neke podklase skoro negativnih formula dobijaju se slabije sheme koje su intuicionistički interesantne i imaju primene.

Obeležje intuicionističkih formalnih sistema je konzistentnost sa Churchovom tezom. To je, može se reći i kriterijum ([Be3]) da li će se neki sistem smatrati "formalno intuicionističkim": sve poznate (prirodne) teorije koje se smatraju intuicionističkim (od bilo koga) su konzistentne sa Churchovom tezom ili sa verzijom Churchove teze koja se može formulisati na tom jeziku.

2.3. Peanova aritmetika

Teanova aritmetika PA ima iste terme i atomarne formule kao i Heytingova aritmetika i sadrži samo \rightarrow , \bot , \forall kao logičke honstante.

Pornule su definisane na uobičajen način.

Fod formulom Peanove aritmetike (Fml(PA)) podrazumevamo formulu na jeziku Peanove aritmetike.

Aksiome Peanove aritmetike su:

- 1. Ako je A klasična tautologija, onda PA A.
- 2. Aksiome II, X, XII, XIV-XXI.

2.3.1. Markovljeva shema M ([Tr3], [Ma]):

Markovljeva shema M je shema

$$\forall x, y \land x \in \leftarrow (x, x) \land x \in \rightarrow \exists y \land (x, x) \rightarrow \exists y \land (x, x) \land x \in \rightarrow (x, x) \land x \in \rightarrow (x, x) \land x \in \rightarrow (x, x) \land (x,$$

i možemo je parafrazirati na sledeći način: pretpostavimo da je A predikat koji izražava neko svojstvo prirodnih brojeva i koji može biti testiran za svaki prirodni broj, i mi, indirektnim argumentovanjem znamo da postoji x takav da A(x) - tada, takodje verujemo da će računar sa neograničenom memorijom (ili algoritam) koji traži x takvo da A(x) eventualno naći jedno x (ako ima dovoljno vremena).

Teorija HA + M je konzistentna i konzistentna sa CT_0 , ali zahteva proširenje pojma "konstruktivno" u BHK- objašnjenju logičkih konstanti.

Od interesa je i slabija shema

$$M_{PR}$$
 $\forall x(\neg \exists yA(x,y) \rightarrow \exists yA(x,y))$ (A(x,y) primitivno rekurzivno)

ili, što je ekvivalentno

$$\mathbb{M}_{PR} \quad \forall \mathbf{x}(\mathbf{x},\mathbf{x},\mathbf{y}) \rightarrow \exists \mathbf{y} \mathbf{T}_{1}(\mathbf{x},\mathbf{x},\mathbf{y}) \rightarrow$$

2.3.2. Shema o nezavisnosti od premise IP ([Tr3], [Ma]):

Shema o nezavisnosti od premise je shema

$$(P \rightarrow \exists xQ(x)) \rightarrow \exists x(P \rightarrow Q(x))$$
 (x nije slobodno u P)

Po BHK - objašnjenju, $P \to \exists xQ(x)$ je slabije od $\exists x(P \to Q(x))$, pošto se u $P \to \exists xQ(x)$ informacija koja se dobija iz dokaza za P koristi da se konstruiše traženo P, dok u $\exists x(P \to Q(x))$ mi moramo konstruisati P nezavisno od dokaza za P.

Tako, shema o nezavisnoti od premise direktno utiče na BHK-objašnjenje logičkih konstanti jer su u njoj ograničeni tipovi preslikavanja dokaza u dokaze koji mogu biti korišteni da se dokaže implikacija oblika $P \rightarrow \exists xQ(x)$.

Za intuicionistička razmatranja od interesa su sheme gde P zadovoljava dodatnu restrikciju g, bilo sintaktičku ili logič-ku.

Slabije verzije sheme o nezavisnosti od premise koje su konzistentne sa Heytingovom aritmetikom su:

IP $(\neg A \rightarrow \exists x B(x)) \rightarrow \exists x (\neg A \rightarrow B(x))$ (x nije slobodno u A)

IP_o $\forall x(Av_A)$ & $(\forall xA \rightarrow \exists yB) \rightarrow \exists y(\forall xA \rightarrow B)$ (y nije slobodno u A)

IP_{PR} $(\forall_{xA} \rightarrow \exists_{yB}) \rightarrow \exists_{y}(\forall_{xA} \rightarrow B)$ (A je primitivno rekurzivna formula, x nije slobodno u A)

Takodje teorije HA + IP + CT $_{\rm o}$ i HA + IP $_{\rm o}$ + M + CT $_{\rm o}$ su konzistentne ([Tr4]).

2.3.3. Veza izmedju Heytingove i Peanove aritmetike

Još je Gentzen ([Ge]) primetio da se Heytingova aritmetika može proširiti do Peanove aritmetike dodavanjem odgovarajućih shema, ili obrnuto rečeno, po Gödelu, intuicionistička aritmetika se razlikuje od klasične tako što je samo deo klasičnog računa prihvatljiv ([Göl]).

Tako važi:

$$PA = HA + (\neg A \rightarrow A)$$

ili

$$PA = HA + (\neg AvA)$$

$$PA \doteq HA + IP + M$$

Vezu izmedju Peanove i Heytingove aritmetike, kao vrstu sintaktičkog prevoda, dali su Gödel ([Göl]) i Gentzen ([Ge]).
Naziv negativan prevod potiče od toga što se dobija prefiksiranjem -- (dvostruke negacije) nekim podformulama.

- 2.3.3.1. Definicija ([Tr3]): Negativan prevod je preslikavanje
 *: Fml(HA) -> Fml(HA) definisano indukcijom po izgradje-
- nosti formule A na sledeći način:

(i)
$$A^{\bullet} = A$$
 (A atomarno)

(ii)
$$\perp^{\circ} = \perp$$

(iv)
$$(A \vee B)^{\bullet} = \neg \neg (A^{\bullet} \vee B^{\bullet})$$

$$(v) (A \rightarrow B)^{\bullet} \doteq A^{\bullet} \rightarrow B^{\bullet}$$

(vi)
$$(\forall xA(x))^{\bullet} = \forall xA^{\bullet}(x)$$

$$(x)^{\circ}AxE_{TT} \doteq ((x)AxE)(iiv)$$

- 2.3.3.2. Teorema karakterizacije: Za bilo koju formulu A Heytingove aritmetike
 - (i) $PA \vdash A \iff HA \vdash A^{\bullet}$
 - (ii) PA $\vdash A \longleftrightarrow A^{\bullet}$

2.3.3.3. Teorema: Ako je A negativna formula Heytingove aritmetike

2.3.3.4. Posledica: Peanova aritmetika je konzervativna ekstenzija Heytingove aritmetike s obzirom na klasu negativnih formula.

2.3.3.5. Teorema: HA + DNS \vdash A° \longleftrightarrow \neg A gde je DNS shema $\forall x \neg \neg A(x) \rightarrow \neg \neg \forall x A(x)$

2.3.5.6. Primedba: Iz ovih teorema sledi da Heytingova aritmetika reprodukuje uobičajeno klasično rezonovanje za ¬,→, &, ∀, ali se za V i ∃ traže jači zahtevi od istinitosti. U [K2], [Tr3], [Sp] kao baza klasičnog računa uzeta je &, V,→, L, ∀, ∃ i tada je HA podteorija Peanove aritmetike- pristupkoji je uobičajen kada se govori o intuicionističkim teorijama koristeći sistem Hilbertovog tipa.

Ali, u [G81] G8del je primetio da se za zasnivanje klasičnog računa može uzėti kao baza \rightarrow , \bot , & , \forall , i tada je PA podteorija Heytingove aritmetike, a \forall i \exists su nove intuicionističke konstante (dok za Peanovu aritmetiku važe uobičajene definicije

$$A \vee B = (\neg A \rightarrow B) i \exists xAx = \neg \forall x \neg Ax).$$

Ova dva pristupa su ekvivalentna s klasične tačke gledišta, i pokazuju svoje razlike tek u odnosu na Heytingovu aritmetiku. Odlučili smo se za ovo drugo zbog epistemičkih sistema.

2.4. EPISTEMIČKA ARITMETIKA EA

2.4.1. Epistemička aritmetika EA je klasična Peanova aritmetika prvog reda bazirana na modalnom računu S4 i sa indukcijom za sve formule jezika.

Epistemička aritmetika EA ima iste terme i atomarne formule kao i Peanova aritmetika PA. Formule su izgradjene polazeći od atomarnih i koristeći

$$\rightarrow$$
, \perp , \forall , \square .

Ostale logičke i modalne konstante su definisane na uobičajeni način:

A & B
$$\doteq \neg (A \rightarrow \neg B)$$

A $\vee B \doteq \neg A \rightarrow B$
 $\neg A \doteq A \rightarrow (SO=0)$

$$A \leftrightarrow B \doteq (A \rightarrow B) & (B \rightarrow A)$$

$$\exists xAx \doteq \neg \forall x \neg Ax$$

$$\Diamond A \doteq \neg \Box \neg A$$

Sistem aksioma za Epistemičku aritmetiku dobija se dodavanjem sledećih aksioma i pravila aksiomama Peanove aritmetike:

XXII.
$$\Box A \rightarrow A$$

XXIII. $\Box A \rightarrow \Box \Box A$

XXIV. $\Box (A \rightarrow B) \rightarrow (\Box A \rightarrow \Box B)$

XXV. $A \Rightarrow \Box A$

Pod formulom epistemičke aritmetike (Fml(EA)) podrazumevamo formulu na jeziku epistemičke aritmetike.

2.4.2. Lema: Sledeće teoreme su dokazive u epistemičkoj aritmetici EA:

(i) $\square A$	ಪಿ 🗆	$\mathbb{B} \longleftrightarrow$	\square (A	& B)
-------------------	------	----------------------------------	--------------	-----	---

(ii)
$$\Box A \lor \Box B \rightarrow \Box (A \lor B)$$

(iii)
$$\Box \neg A \rightarrow \neg \Box A$$

(iv)
$$\Box \forall x \exists x \rightarrow \forall x \Box A$$

$$xAxE \square \leftarrow xA \square xE$$
 (v)

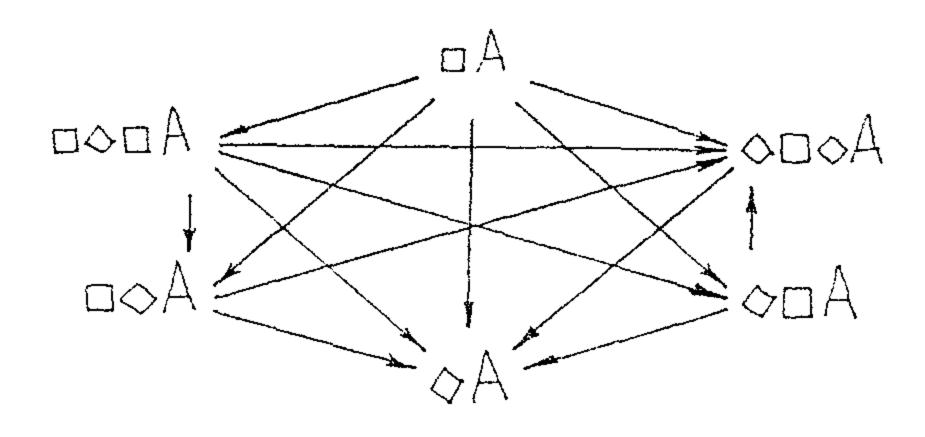
(vi)
$$\square \forall x \lambda x \leftrightarrow \square \forall x \square \lambda x$$

(vii)
$$\exists x \Box Ax \longleftrightarrow \Box \exists x \Box Ax$$

(viii)
$$\Box \Diamond \Box \Diamond A \longleftrightarrow \Box \Diamond A$$

(ix)
$$\Diamond \Box \Diamond \Box A \longleftrightarrow \Diamond \Box A$$

i sledeće implikacije važe u epistemičkoj aritmetici EA:



2.4.3. Definicija: Neka je Y preslikavanje formula epistemičke aritmetike u formule Heytingove aritmetike definisano indukcijom po izgradjenosti formule A na sledeći način:

(i)
$$Y(A) \doteq A$$
 (A atomarno)

(ii)
$$\Psi(\bot) = \bot$$

(iii)
$$\Psi$$
 komutira sa & , \vee , \rightarrow , \forall , \exists .

(iv)
$$\Psi(DA) \doteq \Psi(A)$$

2.4.4. Teorema: Za bilo koju formulu A epistemičke aritmetike

Dokaz: indukcijom po dužini dedukcije.

- 2.4.5. Posledica (Shapiro (Sh3)): Epistemička aritmetika je konzervativna ekstenzija Peanove aritmetike PA.
- 2.4.6. Definicija: Neka je Ψ preslikavanje formula epistemičke aritmetike u formule Heytingove aritmetike definisano indukcijom po izgradjenosti formule A na sledeći način:
- (i) $\Upsilon(A) \doteq A$ (A atomarno)
- (ii) $\Psi(\bot) = \bot$
- (iii) $\Psi(AVB) \doteq \neg \neg (\Psi(A)V \Psi(B))$
- $((x)A) \forall x \in \mathbf{r} = ((x)Ax \in \mathbf{P})$
- $(v) \qquad \qquad \forall (\Box \Delta) = \forall \forall (\Delta)$
- (vi) \forall komutira sa & , \rightarrow , \forall .
- 2.4.7. Teorema: Za bilo koju formulu A epistemičke aritmetike $EA \vdash A \implies HA \vdash \Upsilon(A)$
- 2.4.8. Primedba: Preslikavanja u kojima se 🗆 preslikava u uveo je K. Došen u [Do] .
- U [Sh3] Shapiro je pretpostavio da je epistemička aritmetika EA konzervativna ekstenzija i intuicionistička aritmetika HA.
- Goodman ([Go3]) je to dokazao interpretirajući EA u infinitarni iskazni S4 i dokazujući teoremu o eliminaciji sečenja, Flagg i Friedman ([FF1]) su dali veoma jednostavan dokaz istog tvrdjenja. Ovde su data i dva slična.

Analogni rezultati su bili poznati za iskazni račun (Mc Kinsey, Tarski [MT]) i račun predikata (Prawitz, Malmnüs [PM]).

Flagg i Friedman su pokazali da je epistemička aritmetika EA konzervativna ekstenzija Heytingove aritmetike koristeći dve vrste provoda:

$$()$$
 : Fml (HA) \rightarrow Fml (EA)

i

$$()$$
 (Ξ) : Fml $(\Xi A) \rightarrow Fml(HA)$

gde je E formula iz konačnog skupa l' formula Heytingove aritmetike. Ti prevodi su dati sledećim definicijama:

2.4.9. Definicija: Za svaku formulu A Heytingove aritmetike definišemo indukcijom po izgradjenosti formule, formulu A epistemičke aritmetike na sledeći način:

(i)
$$A^{n} \doteq A$$
 (A atomarno)

(ii)
$$L^{\alpha} = L$$

(iii)
$$(A \rightarrow B)^{\square} \doteq \square (A^{\square} \rightarrow B^{\square})$$

(iv)
$$(\forall xAx)^n \doteq \Box \forall xA^n x$$

(v) ()
n
 komutira sa & , \forall i \exists .

2.4.10. Teorema: Za svaku formulu A Heytingove aritmetike

$$HA \vdash A \implies EA \vdash A^{\square}$$

Dokaz: Indukcijom po dužini dedukcije.

2.4.11. Definicija: Za svaku formulu A epistemičke aritmetike EA kažemo da je <u>stabilna</u> ako

$$EA \longrightarrow A \longleftrightarrow \square A$$

2.4.12. Lema (Flagg [F1]):

(i) za bilo koje terme s,t, formula (s = t) je stabilna.

- (ii) svaka formula oblika UA je stabilna.
- (iii) ako su A i B stabilne formule, onda su to i A V B i A & B.
- (iv) ako je A stabilna formula, onda je to i BxA(x).
- 2.4.13. Lema (Flagg, Friedman [FF1]): A je stabilna formula.

U epistemičkoj aritmetici EA dokaziva su sledeća tvrdjenja koja takodje reflektuju osobine intuicionističkih sistema:

2.4.14. Teorema:

- (i) Ako su A i B stabilne formule, onda $EA \vdash \Box A \lor \Box B \longleftrightarrow \Box (A \lor B)$
- (ii) Ako je A stabilna formula, onda $EA \vdash \exists x \Box A(x) \longleftrightarrow \Box \exists x A(x)$

Da bi pokazali obrat teoreme 2.4.10, Flagg i Friedman su uveli prevod ([FF1])

$$()_{\Gamma}^{(E)}: Fml(EA) \rightarrow Fml(HA)$$

(E je formula iz konačnog skupa [formula Heytingove aritme-tike) sa sledećom definicijom:

2.4.15. Definicija: Neka je \lceil konačan skup formula Heytingove aritmetike HA i E formula iz \lceil . Pisaćemo \neg_E A za A \rightarrow E. Onda za svaku formulu A epistemičke aritmetike definišemo, indukcijom po izgradjenosti formule, formulu A $^{(E)}$ Heytingove aritmetike na sledeći način:

(i)
$$A_{\Gamma}^{(E)} = \gamma_{E} \gamma_{E}^{A}$$
 (A atomarno)

(ii)
$$(A \vee B)^{(E)}_{\Gamma} \stackrel{:}{=} \gamma_{E} \gamma_{E} (A^{(E)}_{\Gamma} \vee B^{(E)}_{\Gamma})$$

(iii)
$$(\exists xAx)^{(E)} = \exists TaT \exists xA^{(E)}(x)$$

(iv)
$$(\Box A)^{(E)} = \neg \Box \neg E \bigwedge_{C \in C} A^{(C)}$$

(v) ()(E) komutira sa &,
$$\rightarrow$$
, \forall .

ja negirane formule važi sledeće:

(i)
$$HA \vdash (\neg A)^{(E)} \longleftrightarrow \neg E^{A}^{(E)}$$

(ii) HA
$$\vdash$$
 ($\tau \tau A$) $\stackrel{(E)}{\vdash} \to A \stackrel{(E)}{\vdash} \to \tau_E \tau_E A \stackrel{(E)}{\vdash}$

2.4.16. Primedba: Ako je E=(SO=0), ovo preslikavanje se poklapa, na fragmentu bez \Box , sa Gödelovim prevodom dvostrukom negacijom(2.3.3.1.). Ako je E=(SO=0) i $\Gamma=\{(SO=0)\}$, ovo preslikavanje se poklapa sa Ψ (2.4.6.).

Iako prevodi sa τ_T i $\tau_E \tau_E$ pokazuju velike sličnosti, formule $\tau_T A$ i $\tau_E \tau_E A$ u opštem slučaju su neuporedive.

2.4.17. Teorema: Za svaku formulu A epistemičke aritmetike, svaki konačan skup [formula Heytingove aritmetike i svaku formulu E iz [

$$EA \vdash A \implies HA \vdash A \stackrel{(E)}{\vdash}$$

Dokaz: Indukcijom po dužini dokaza.

U dokazu se koriste sledeće osobine formula oblika ¬E¬EA:
2.4.18.Lema: Za bilo koje dve formule A,E € Fml(HA) u HA je dokazivo sledeće:

(i)
$$A \rightarrow \gamma_E \gamma_E A$$

(ii)
$$\tau_E^A \leftrightarrow \tau_E \tau_E \tau_E^A$$

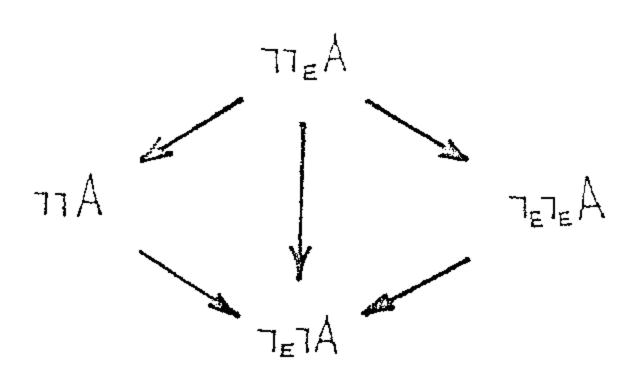
(iii)
$$\gamma_{E}\gamma_{E}(A \vee B) \longleftrightarrow \gamma_{E}\gamma_{E}(\gamma_{E}\gamma_{E}A \vee \gamma_{E}\gamma_{E}B)$$

(iv)
$$\gamma_{E}\gamma_{E}(A\&B) \longleftrightarrow \gamma_{E}\gamma_{E}A\&\gamma_{E}\gamma_{E}B$$

$$(v) \qquad (A \rightarrow B) \rightarrow (\tau_E \tau_E A \rightarrow \tau_E \gamma_E B)$$

(vii)
$$\forall x_{\exists E} \exists_E Ax \leftrightarrow \exists_E \exists_E \forall x_{\exists E} Ax$$

(viii) veza izmedju - i - je sledeća:

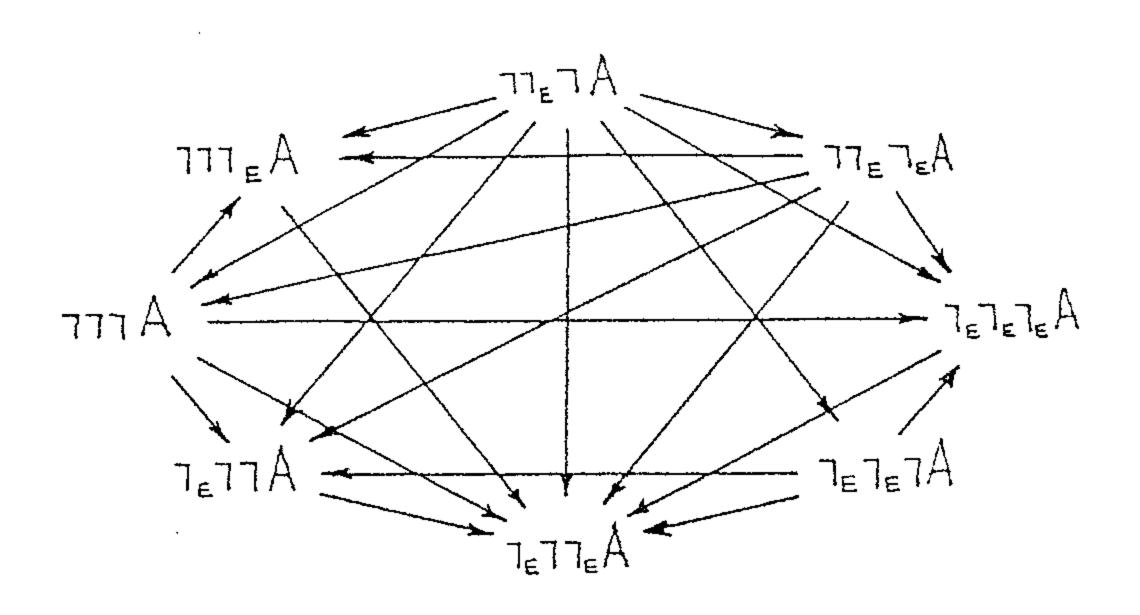


2.4.19. Lema: Za bilo koje dve formule A, E & Fml(HA) i bilo koji konačan skup[formula Heytingove aritmetike.

(i) Ako A $\in \Gamma$ onda $HA \vdash A \longleftrightarrow \bigwedge_{E \in \Gamma} \tau_E \tau_E^A$

(ii) Ako $(A \rightarrow B) \in \Gamma$ onds $HA \vdash (A \rightarrow B) \longleftrightarrow \bigwedge (7_C 7_C A \rightarrow 7_C 7_C B)$

2.4.20. Lema: Za bilo koje dve formule E, A Heytingove aritmetike, sledeće implikacije su dokazive u Heytingovoj aritmetici:



gde je
$$\gamma_E A = (A \rightarrow E)$$
 i $\gamma A = (A \rightarrow (SO = O))$.

2.4.21. Teorema(Flagg, Friedman (FFI)): Neka je A formula Heytingove aritmetike i neka je T konačan skup formula Heytingove aritmetike koji sadrži sve podformule formule A.Onda

HA
$$\vdash$$
 A \longleftrightarrow \bigwedge A \sqcap (C)

Dokaz: Indukcijom po izgradjenosti formule A.

(i)
$$M(A \vee B)_{\Gamma}^{a(c)} \longrightarrow M_{\tau_{c}\tau_{c}}(A_{\Gamma}^{a(c)} \vee B_{\Gamma}^{a(c)})$$

$$\longrightarrow M_{\tau_{c}\tau_{c}}(\pi_{c}\tau_{c}MA_{\Gamma}^{a(o)} \vee \pi_{c}\tau_{c}MA_{\Gamma}^{a(o)})$$

$$\longrightarrow M_{\tau_{c}\tau_{c}}(\pi_{c}\tau_{c}A \vee \pi_{c}\tau_{c}B)$$

$$\longrightarrow M_{\tau_{c}\tau_{c}}(\pi_{c}\tau_{c}A \vee \pi_{c}\tau_{c}B)$$

$$\longrightarrow M_{\tau_{c}\tau_{c}}(A \vee B)$$

$$\longrightarrow M_{\tau_{c}\tau_{c}}(A \vee B)$$

$$\longrightarrow M_{\tau_{c}\tau_{c}}(A \vee B)$$

(ii)
$$M(A \rightarrow B)_{r}^{a(c)}$$
 $M(a(A^{a} \rightarrow B^{a}))_{r}^{(c)}$
 Cer Cer

2.4.22. Teorema (Flagg, Friedman [FF1]): Za svaku formulu A Haytingove aritmetike

Dol:az: ⇒: Iz 2.4.1o.

$$\Leftarrow$$
: EA \vdash Aⁿ \Rightarrow HA \vdash Λⁿ(E) zs svsko E \in Γ (2.4 .17.)
$$\Rightarrow$$
 HA \vdash \bigwedge Aⁿ(C) \in Γ

sko / sadrži sve podformule formule A,iz 2.4.21.

$$\Rightarrow$$
 HA \vdash A.

- 2.4.23. Primedba: Koristeći 2.4.15. i 2.4.17. isti rezultat se može dobiti koristeći sledeća dva prevoda iz [PM] :
- 2.4.24. Definicija:Za svaku formulu A Heytingove aritmetike definišemo indukcijom po izgradjenosti formule formulu A* epistemičke aritmetike:
- (i) A* ≛ A (A atomarno)
- (iii) $(A \vee B)^r = \Box A^r \vee \Box B^r$
- $(iv) \qquad (A \rightarrow B)^* = \Box A^* \rightarrow \Box B^*$
- $(x)^{*}A\Box xE \stackrel{*}{=} ((x)AxE) \qquad (\nabla)$
- (vi) ()* komutira sa & i ∀ .
- 2.4.25. Teorema: Za svaku formulu A Heytingove aritmetike

$$HA \vdash A \Rightarrow EA \vdash A^*$$
.

Dokaz: Indukcijom po dužini dedukcije.

2.4.26. Teorema: Neka je A formula Heytingove aritmetike i neka je \(\int \) konačan skup formula koji sadrži sve podformule formule \(\Lambda \). Tada

pokaz: Indukcijom po izgradjenosti formule A.

2.4.27. Teorema: Za svaku formulu A Heytingove aritmetike

- 2.4.28. Definicija: Neka je () prevod Heytingove aritmetike u epistemičku aritmetiku dobijen umetanjem ispred svake podformule formule A.
- 2.4.29. Teorema: Neka je A formula Heytingove aritmetike i \(\Gamma\)
 konačan skup formula Heytingove aritmetike koji sadrži sve
 podformule formule A.Onda

HAM A
$$\leftrightarrow M$$
 A $+(C)$

Dokaz: Indukcijom po izgradjenosti formule A.

2.4.30. Teorema: Za svaku formulu A Heytingove aritmetike

Indukcijom po izgradjenosti formule A lako se pokazuje da važi sledeća veza izmedju prevoda () $^{\text{I}}$, () $^{\text{I}}$ i () $^{\text{I}}$:

$$EA \vdash A \hookrightarrow A \longleftrightarrow DA$$

2.4.31. Teorema(Flagg, Friedman , [FF2], [Sm2]): S4 je modalna logika epistemičke aritmetike EA.

2.5. Intuicionistička epistemička aritmetika IEA

2.5.1. Intuicionistička epistemička aritmetika IEA ([Go6]) je Heytingova aritmetika HA bazirana na modalnom računu koji sadrži sledeće aksiome i pravila izvodjenja:

I-XXI.aksiome Heytingove aritmetike

XXII.
$$\Box A \rightarrow A$$

XXIII. DA--- D D A

$$XXIV.$$
 $\square (A \rightarrow B) \rightarrow (\square A \rightarrow \square B)$

$$XXV$$
. $A \Longrightarrow \Box A$

$$((\Box A \rightarrow S0 = 0) \rightarrow S0 = 0) \rightarrow \Box A$$

XXVII.
$$\Box(AVB) \rightarrow \Box AV\Box B$$

$$\forall x \Box Ax \rightarrow \Box \forall x Ax$$

$$\mathbb{C}(A \to DA) \& (DA \to DB) \to D(A \to B)$$

Jezik intuicionističke epistemičke aritmetike TEA je jezik Heytingove aritmetike kojej je dodat modalni operator []. Termi i formule se formiraju na uobičajen način.

Pod formulom intuicionističke epistemičke aritmetike(Fml(TEA)) podrazumevamo formulu na jeziku intuicionističke epistemičke aritmetike.

2.5.2. U ovoj teoriji neizvediva je,u opštem slučaju formula

$$\neg \neg \Box A \longrightarrow \Box A$$

posebno, neizvedivo je ([606])

$$TT \square (S0=0) \rightarrow \square (S0=0)$$

i njoj ekvivalentna formula

XXXI.
$$(SO=0) \longrightarrow \square (SO=0)$$

Ali, ako je A bez
$$\square$$
, IEA \vdash (SO=0) \rightarrow A jer HA \vdash (SO=0) \rightarrow A (2.1.7.).

2.5.3. Teorema: Za sve formule intuicionističke epistemičke aritmetike

(i) IEA
$$\vdash$$
 A \Rightarrow PA \vdash Ψ (A)

(ii) IEA
$$\vdash$$
 A \Longrightarrow HA \vdash Υ (A)

Dokaz: Indukcijom po dužini dedukcije

(i)
$$\Psi(\Box \neg \neg \Box A) \leftrightarrow \neg \neg \Psi(A) \rightarrow \Psi(A)$$

(ii)
$$\Psi(\forall x \Box Ax \rightarrow \Box \forall xAx) \leftrightarrow \forall x \neg \neg \Psi(A) \rightarrow \neg \neg \forall x \Psi(A)$$

i važi
$$\Upsilon(A) \leftrightarrow \neg \neg \Upsilon(A)$$
, pa

$$\longleftrightarrow \forall x \neg \neg \forall (A) \rightarrow \neg \neg \forall x \neg \neg \forall (A)$$

$$\longleftrightarrow \forall x \neg \neg \forall (A) \rightarrow \forall x \neg \neg \forall (A)$$

- 2.5.4. Preslikavanje () $_{\Gamma}^{(E)}$ (E& Γ , Γ konačan skup formula Heytingove aritmetike) je neprimenljivo na IEA.
- 2.5.5. Definicija: Za svaku formulu A na jeziku epistemičke pritmetike EA definišemo preslikavanje () indukcijom po izgradjenosti formule A:
- (i) A^ ≜ A (A atomarno)
- (ii) $(A \lor B)^{\hat{}} = \neg \gamma (A^{\hat{}} \lor B^{\hat{}})$
- (x) $(x)^{x} = (x \times E)$ (iii)
- (iv) $(\Box A)^{\hat{}} = \neg \Box A^{\hat{}}$
- (v) () \uparrow komutira sa \rightarrow , \downarrow , \forall , \uparrow .
- 2.5.6. Teorema: Za svaku formulu A na jeziku epistemičke aritmetike

Dokaz:Indukcijom po dužini dedukcije.

TREĆE POGLAVLJE

EKSTENZIJE EPISTEMIČKE I INTUICIONISTIČKE ARITHETIKE

It's a question of throughness, Suppose it wouldn't have worked out-then something would be wrong. When I get all these details right, I get a feeling of satisfaction from seeing that things are in fact as I feel they should be.

M.Beeson

A Metamathematician's replica, [Be4]

3. EKSTENZIJE EPISTEMIČKE I INTUICIONISTIČKE ARITMETIKE

Aksiome i pravila Heytingove aritmetike bila su motivisana BEK-objašnjenjem i intendirana da formalizuju odredjene dokaze. Ali,u samoj formalizaciji malo se koriste konstruktivistički koncepti(dokaz,konstrukcija,...)i to stvara mogućnost za različite interpretacije.

"Svaka takva interpretacija može da se posmatra i kao definisanje precizno odredjenog"pojma konstruktivnosti" čije proučavanje može da osvetli još uvek neodredjen pojam koji je u osnovi intendirane interpretacije,ili ako se sumnja da postoji jedna interpretacija "intendirana" od svih konstruktivnih matematičara, proučavanje precizno definisanih interpretacija može pomoći da se opišu i razlikuju mogućnosti".(M.Beeson, [Bel]).

"Meintendirane"interpretacije intuicionističke matematike mogu se podeliti u dve grupe ([Tr5]):

- (i) modifikacije BHK-sheme: realizabilnost, Gödelova Dialectica interpretacija i njihove varijante.
- (ii) <u>istinosne semantike:</u> topološki, Kripkeovi, Bethovi modeli i njihove varijante.

Neintendirane varijante BHK-sheme daleko su korisnije u tehničkom smislu nego sama BHK-shema. Isto tako, pored metamatematičkih modifikacije BHK-sheme(npr Kleenejeva 1945-realizabilnost([Kl])), postoji i veliki broj formalizovanih realizabilnosti(npr r-realizabilnost ([Tr2])), prevoda i preslikavanja koja su motivisana tehničkin razlozima.

Realizabilnost je definisao S.C.Kleene u [K1], motivisan idejom da nadje vezu izmedju intuicionističke matematike i teorije rekurzija jer se obe teorije bave konstruktivnim problemima.

Realizabilnost je bila zamišljena kao reinterpretacija intuicionističke aritmetike tako da učini eksplicitnim neke karakteristike po kojima se razlikuje od klasične,kao što su svojstvo disjunktivnosti i eksplicitne definabilnosti,zatvorenost
za Churchovo pravilo i konzistentnost sa Churchovom tezom i
druga.

Ali Kleenejev pojem realizabilnosti nije bio samo varijanta BIMI-sheme, već se i esencijalno od nje razlikovao. Takodje, realizabilnost nije učinila objašnjenje logičkih konstanti preciznijim.

S druge strane, i rekurzivna realizabilnost, a i ostali metamatematički i formalizovani prevodi i preslikavanja poseduju
neka lepa formalna koja ih čine matematički interesantnim i
primenljivim u intuicionističkoj teoriji dokaza -prvenstveno
za dokaze neizvodljivosti nekih formula, relativne konzistencije intuicionističkih formalnih sistema i dokaze da je neki
intuicionistički sistem zatvoren za neko(metamatematičko) pravilo.

U takvim dokazima pokazuje se da su aksiome realizabilne i da pravila izvodjenja čuvaju realizabilnost. A onda, problem je samo formulisati pravi pojam realizabilnosti za pokazivanje da je data formula nerealizabilna i stoga neizvediva u sistemu, ili realizabilna i onda konzistentna sa aksiomama.

"Veliki broj mogućih varijanti realizabilnih interpretacija logičkih konstanti koje sve zadovoljavaju Heytingova pravila čini mi se da podržava mišljenje,da,ne postojanje već izbor izmedju formalističkih semantika je najplodniji rezultat ,bar u sadašnje vreme".(G.Kreisel, [Kr3]).

Epistemička aritmetika EA je klasična aritmetika koja reflektuje neke osobine intuicionističkih sistema. Metode kojima se ispituju njene osobine su adaptacija standardnih metamatematičkih metoda za klasičnu i intuicionističku aritmetiku.

Metodi korišteni u ovom radu su razne varijante realizabilnosti, metamatematička preslikavanja i prevodi i Shapirov rez.

[Sh3] Shapiro razmatra mogućnost proširivanja epistemičke aritmetike i zakljužuje da nije dovoljno da novi aksiomi deduktivnog sistema budu tačni-novi aksiomi takodje treba da ne budu nesaznatljivi, tj ako je A novi aksiom, onda je A konsistentno sa originalnom teorijom.

U ovom radu ispitivali smo ekstenzije epistemičke aritmetike koje imaju svoje analogone u intuicionističkoj aritmetici u sledećem smislu:

ako je A novi aksicm epistemičke aritmetike,onda formula dobijena brisanjem svih □ u formuli A je konzistentna sa Heytingovom aritmetikom,i pri tom A zadovoljava Shapirov zahtev da se može dodati epistemičkoj aritmetici.

Posebno, posmatrali smo sledeće sheme:

eDNS
$$\square \forall x \lozenge \square A \rightarrow \square \lozenge \square \forall xA$$

eHpr $\square \forall x(\square \lozenge \exists yA(x,y) \rightarrow \exists yA(x,y))$ ($A(x,y)$ primitivno rekurzivno)

eM $\square \lozenge \square A \rightarrow \square A$

eSpr $\square \forall x(\square \neg \exists yA(x,y) \lor \exists yA(x,y))$ ($A(x,y)$ primitivno rekurzivno)

eS $\square \square \square A \lor \square A$

eCT $\square \forall x \exists y \square A(x,y) \rightarrow \exists e \square \forall x \exists y(T_1(e,x,y) & \square A(x,Uy))$

eECT $\square \forall x \exists y \square A(x) \rightarrow \exists y \square B(x,y) \rightarrow \exists e \square \forall x(\square A(x) \rightarrow \exists y(\square B(x,Uy) & T_1(e,x,y)))$

(y se ne pojavljuje slobodno u $\square A(x)$)

Rezultati su sistematizovani po metodama dokazivanja, a u dodatku No l . po teorijama.

5.1. Primena preslikavanja Ψ na ekstenzije epistemičke aritmetike

Ψ je definisano u 2.4.3.

3.1.1. Teorema: Za svaku formulu A epistemičke aritmetike

(i)
$$EA + eM_{PR} \vdash A \Rightarrow PA \vdash Y(A)$$

(ii) EA+eS_{PR}
$$\vdash$$
 A \Longrightarrow PA \vdash $\Psi(A)$

(iii) EA+eM
$$\vdash$$
 A \Longrightarrow PA \vdash Ψ (A)

(iv) EA+eS
$$\vdash$$
 A \Longrightarrow PA \vdash Ψ (A)

(v) EA+eDNS
$$\vdash$$
 A \Longrightarrow PA \vdash $\Psi(A)$

3.1.2. Primedba: Ovo preslikavanje je neprimenljivo npr na EA+eCT, jer se sa Ψ preslikava u PA+CT_o.Isto tako, neprimen - ljivo je na bilo koju shemu A gde Ψ (A) protivreči Peanovoj aritmetici. Ψ (eCT)=CT_o je konzistentno sa Heytingovom aritmetikom.

3.1.3. Primedba: Y (eECT)=ECT je protivrečno sa HA, ali

$$EA \vdash eECT \rightarrow eECT$$

gde je eECT' shema

eECT'
$$\Box \forall x \exists y (\Box Ax \rightarrow \Box Bxy) \rightarrow \exists e \Box \forall x \exists y (T_1(e,x,y) & (\Box Ax \rightarrow \Box B(x,Uy))$$

(y se ne pojavljuje slobodno u A)

$$i \Psi (eECT')=CT_o$$
.

3.2. Primena preslikavanja Ψ na ekstenzije epistemičke aritmetike

 Ψ je definisano u 2.4.6.

3.2.1. Teorema: Za svaku formulu A epistemičke aritmetike

(i)
$$EA + eM_{PR} \vdash A \implies HA \vdash \Psi(A)$$

(ii)
$$EA + eS_{PR} \vdash A \implies HA \vdash \Upsilon(A)$$

(iii) EA+eM
$$\vdash$$
 A \Longrightarrow HA \vdash Υ (A)

(iv) EA+eS
$$\vdash$$
 A \Longrightarrow HA \vdash Υ (A)

(v) EA+eDNS
$$\vdash$$
 A \Longrightarrow HA \vdash Ψ (A)

3.2.2.Primedba: Ovo preslikavanje je neprimenljivo npr na EA+eCT ili bilo koju drugu teoriju dobijenu dodavanjem sheme A takve da je na HA+ Ψ (A) neprimenljiv Gödelov prevod dvostrukom negacijom.

3.3. Primena preslikavanja (), () i () na ekstenzije epistemičke aritmetike

() je definisano u 2.4.9., () u 2.4.24. i () u 2.4.25.

3.3.1. Teorema: Za svaku formulu A Heytingove aritmetike

(i)
$$HA+CT_o \vdash A \implies EA+eCT \vdash A$$

(ii)
$$\text{HA+ECT}_{o} \vdash A \implies \text{EA+eECT} \vdash A^{\mathbf{c}}$$

(iii)
$$HA+M_{PR} \vdash A \implies EA+eM_{PR} \vdash A^{n}$$

(iv)
$$\text{HA+S}_{PR} \vdash A \implies \text{EA+eS}_{PR} \vdash A^{\circ}$$

$$(v) \qquad \text{HA} + \stackrel{M}{\sim} \vdash A \implies \text{EA} + \stackrel{M}{\sim} \vdash A^{\square}$$

$$(vi) \qquad HA+S \vdash A \qquad \Longrightarrow \qquad EA+eS \vdash A$$

(vii) HA +DNS
$$\vdash$$
 A \Rightarrow EA+eDNS \vdash A

- 5.5.2.Primedba:Isti rezultati se mogu dobiti koristeći () i
- 5.5.5. Primedba: Ova preslikavanja primenljiva su na sve teorije rezmatrane u ovom radu.
- 3.4. Primena preslikavanja () $^{(E)}$ ($E \in \Gamma \subseteq Fml(HA)$, Γ konačan) na ekstenzije epistemičke aritmetike
- () $^{(E)}$ ($E \in \Gamma \subseteq Fml(HA)$, Γ konačan) definisano je u 2.4.15.
- 3.4.1. Teorema: Za svaku formulu A epistemičke aritmetike, svaki konačan skup [formula Heytingove aritmetike i svako E iz [

(i) EA+eS_{PR}
$$\vdash$$
 A \Longrightarrow HA+S_{PR} \vdash A^(E)

(ii) EA+eS
$$\vdash$$
 A \Rightarrow HA+S \vdash A(E)

3.4.2. Teorema: Za svaku formulu A epistemičke aritmetike, svaki konačan skup T formula Heytingove aritmetike takav da

$$HA \vdash \bigwedge_{C \in \Gamma} C \longleftrightarrow (S0=0)$$
 (ili də $(S0=0) \in \Gamma$)

i svako E iz [

(i)
$$EA + eM_{PR} \vdash A \implies HA + M_{PR} \vdash A_{\Gamma}^{(E)}$$

(ii) EA+eM
$$\vdash$$
 A \Longrightarrow HA+M \vdash A $\stackrel{(E)}{\cap}$

(iii) EA+eDNS
$$\vdash$$
 A \Longrightarrow HA+DNS \vdash A $\stackrel{(E)}{\vdash}$

Dokez: (i) A(x,y) do primitivno rekursivns formula

10 2.4.21.,3.3.1.,3.4.1. i 3.4.2. sledi

5.4.3. Teorema: Za sve formule Heytingove aritmetike

(i)
$$HA+S_{PR} \vdash A$$
 akko $EA+eS_{PR} \vdash A^n$

(iii)
$$HA + M_{PR} - A$$
 akko $EA + eM_{PR} - A$

(iv)
$$HA+M \rightarrow A$$
 akko $EA+eM \rightarrow A$

3.4.4. Posledica: Teorije EA, EA+eS_{PR}, EA+eM_{PR}, EA+eS, EA+eM i EA+eDNS su konzistentne relativno HA.

Dokaz:Neka je E jedna od teorija koje se spominju u ovoj teoremi i I njoj korespondentna teorija takva da

(za sve formule Heytingove aritmetike).Pretpostavimo da je E protivrečna.Tada,pošto E → (SO=0) ←→ (SO=0) ,iz E → (SO=0) sledi I → (SO=0).Ali,I je relativno konzistentna Heytingovoj aritmetici([Tr3]).

3.4.5. Posledica:

(i) EA
$$\not\vdash$$
 eCT (ii) EA $\not\vdash$ eECT

(iii) EA
$$\mathcal{H}$$
 eM_{PR} (iv) EA \mathcal{H} eS_{PR}

(ix)
$$EA + eS_{PR} \rightarrow eCT$$
 (x) $EA + eS_{PR} \rightarrow eM_{PR}$

(xi)
$$EA + eM_{PR} \not\vdash eCT$$
 (xii) $EA + eM_{PR} \not\vdash eS_{PR}$

Dokoz: HA $\not\vdash$ CT_o \Rightarrow EA $\not\vdash$ (CT_o) $\stackrel{\square}{\hookrightarrow}$ EA $\not\vdash$ eCT.

3.4.6. Primedba: Teorije poput $\text{HA}+\text{ECT}_0$, HA+IP ili $\text{HA}+\mathcal{T}(\text{A})$ gde je $\mathcal{C}(\text{A})$ neka shema sa restrikcijom da A pripada nekoj klasi formula ili ima određjen oblik, nemaju salogne epistemičke teorije koje bi bile njihove konzervativne ekstenzije dobijene ovom metodom, jer preslikavanje () $\overset{\text{(E)}}{\Gamma}$ ($\overset{\text{(E)}}{\Gamma}$ konačan skup formula Heytingove aritmetike koji sadrži formulu E) narušava potrebnu restrikciju formule A.

3.4.7. Primedba:Preslikavanje () $^{(E)}(\Gamma)$ konačan skup formula Heytingove aritmetike koji sadrži formulu E) je neprimenljivo na EA+eCT, jer za HA+CT $_{0}$ (eCT) $^{(E)}$ potrebno je da važi za svako E iz Γ :

$$\forall x_{\exists \exists \exists \exists x} \exists y \lambda(x,y) \rightarrow \forall x \exists y \lambda(x,y)$$

ili

$$\forall x_{\exists \exists \exists \exists x} \exists y A(x,y) \rightarrow \forall x \exists y_{\exists \exists \exists x} A(x,y)$$

ili

$$\forall x_{TETE} \exists y_A(x,y) \rightarrow \tau_{ETE} \forall x \exists y_A(x,y)$$

Ali formula

u opštem slučaju nije tautologija, dok

$$_{\exists \Xi^{\exists \Xi}} \exists yA(y) \rightarrow \exists y_{\exists \Xi^{\exists \Xi}}A(y)$$

į

$$\forall x_{T \in T \in A}(x) \rightarrow \tau_{E T \in Y} \forall x A(x)$$

protivreče HA +CTo.

3.4.8.Primedba:Kod teorija koje su dobijene dodavanjem shema oblika eA, takvih da Ψ (eA) sadrži dvostruko negirane formule (npr Ψ (eM_{PR})=M_{PR}), epistemičkoj aritmetici bilo je potrebno zahtevati dopunski uslov da

$$HA \vdash \bigwedge_{C \in \Gamma} C \longleftrightarrow (SO=0)$$
 ili $(SO=0) \in \Gamma$

da bi se dokazala teorema 3.4.2.,a samim tim i teorema 3.4.3. U teoremi 3.4.2. je proizvoljan skup formula i smatramo da se samim tim može proširiti još jednom formulom odredjenog oblika. U teoremi 2.4.21. je skup formula koji sadrži sve podformule formule A-ali sheme M_{PR}, M i DNS sadrže formulu (SO=0) kao svoju podformulu.

3.5.Primena preslikavanja () na ekstenzije epistemičke aritmetike

()^ je definisano u 2.5.5.

3.5.1. Teorema: Za svaku formulu A epistemičke aritmetike

(i)
$$EA + eCT \vdash A \implies IEA + \Box CT_o \vdash A^*$$

(ii) EA+eECT
$$\vdash$$
A \Longrightarrow IEA+ \square CT $_{o}$ \vdash A $^{\circ}$

(iii)
$$EA + eM_{PR} \vdash A \implies IEA + eM_{PR} \vdash A^{-}$$

(iv)
$$EA + eS_{PR} \vdash A \Rightarrow IEA + eS_{PR} \vdash A^{\hat{}}$$

(v)
$$EA + eM \vdash A \implies IEA + eM \vdash A^{\hat{}}$$

(vi)
$$EA + eS \vdash A \implies IEA + eS \vdash A^{-}$$

 $\forall x \exists y \ A^{(x,y)} \rightarrow \Box \exists e \forall x \exists y (T_{1}(e,x,y) \& \ A^{(x,Uy)})$ $\forall x \Box \exists y \ A^{(x,y)} \rightarrow \exists e \Box \forall x \Box \exists \exists y (T_{1}(e,x,y) \& A^{(x,Uy)})$ $\forall x \Box \exists y \ A^{(x,y)} \rightarrow \exists e \Box \forall x \exists \exists y (T_{1}(e,x,y) \& \Box A^{(x,Uy)})$ $\Box \forall x \exists \exists y \Box A^{(x,y)} \rightarrow \exists e \exists \exists z \Box \forall x \exists \exists y (T_{1}(e,x,y) \& \Box A^{(x,Uy)})$ $\forall x \exists y \Box A(x,y) \rightarrow \exists e \Box \forall x \exists y (T_{1}(e,x,y) \& \Box A(x,Uy))$ $\forall x \exists y \Box A(x,y) \rightarrow \exists e \Box \forall x \exists y (T_{1}(e,x,y) \& \Box A(x,Uy))$ $(e \ CT(A))^{A}$

1: $1A^{\Lambda} - B^{\Lambda}(x, Uy) \otimes T_{\Lambda}(e_{1}x, y)$ (1) $B^{\Lambda}(x, Uy) \otimes T_{\Lambda}(e_{1}x, y)$ $T_{\Lambda}(e_{1}x, y)$ $B^{\Lambda}(x, Uy) \otimes T_{\Lambda}(e_{1}x, y)$ (2) $A^{\Lambda} - B^{\Lambda}(x, Uy) \otimes T_{\Lambda}(e_{1}x, y)$ (2) $A^{\Lambda} - B^{\Lambda}(x, Uy) \otimes T_{\Lambda}(e_{1}x, y)$ (1) $A^{\Lambda} - B^{\Lambda}(x, Uy) \otimes T_{\Lambda}(e_{1}x, y)$ $A^{\Lambda} - B^{\Lambda}(x, Uy) \otimes T_{\Lambda}(e_{1}x, y)$

(1) $\Box (\Box A^{\wedge} \rightarrow (B^{\wedge}(x,Uy) & T_{1}(e,x,y))$ $\Delta^{\wedge} \rightarrow (\Box B^{\wedge}(x,Uy) & \Box T_{1}(e,x,y)) \qquad \Box B^{\wedge}(x,Uy) & \Box T_{1}(e,x,y) \rightarrow B^{\wedge}(x,Uy) & T_{1}(e,x,y)$ $\Box A^{\wedge} \rightarrow \Box B^{\wedge}(x,Uy) & T_{1}(e,x,y)$ $\Box A^{\wedge} \rightarrow (B^{\wedge}(x,Uy) & T_{1}(e,x,y)) \qquad (\Box A^{\wedge} \rightarrow (\Box B^{\wedge}(x,Uy) & T_{1}(e,x,y)))$ $\Box A^{\wedge} \rightarrow (B^{\wedge}(x,Uy) & T_{1}(e,x,y)) \rightarrow \exists e \Box \forall x \Box T \Box \exists y (\Box A^{\wedge} \rightarrow (\Box B^{\wedge}(x,Uy) & T_{1}(e,x,y)))$

DCT ((DA -- DB))

((K,X,9)) & T,(e,X,y)) → U3eVx3y D ((TID K → TIDB^(X,Uy)) & T,(e,X,y)) -04×3y (αA' -- B^) -- n3e4x3y ((αA' -- B'(x, Uy)) & T, (e, x, y) alx3ya(aA -> aB) -> a 3 e lx3ya(aA -> aBxUy) & T, exy) DVx3y(nA -- nB)^- n3eVx3y((nA -- nBxUy)^ & Texy

0433 (04'→B') → 03eVx3y (0A' → (B'(x,Uy) & T, (e,x,y))

o Vx a 11 a 3 y a (a A^ -- B^) -- Je a Vx a 11 a 3 (a A^ -- (B^(x, Uy) & T₁(e, x, y)))

17 (a Vx 713y (a M -> B^) -> Jea Vx 713y (a M -> (aB^(x, Uy)& T(e,x,y))

(K, x, y) T & (V, x, Uy) & T (-1) Y (T) Y (T) B (T) A T (-1) X (T) B T (-1) X (T) B T (-1)

(a Vx3y(aA --aB) -- JeaVx3y(aA-(aB(x,Uy)&T,(e,x,y)))^^

- 3y(DB(x,Uy)&T, (e,x,y)))^^ (UVx(UA - 3yDB) -- Jen Vx (DA EA ima klasičnu Logiku

(eECT(A,B))^

3.6. Rekurzivna realizabilnost, I

Flagg je u [F2] adaptirao rekurzivnu realizabilnost na toposima da bi dao rekurzivno realizabilan model i pokazao da je (epistemička) Churchova teza eCT valjana na tom modelu te se može konzistentno dodati epistemičkoj aritmetici EA.U tom radu dao je i verziju rekurzivne realizabilnosti za epistemičku aritmetiku.Osnovni pojam je:

" broj e realizuje rečenicu A s obzirom na skup X realizatora apsurda"

što obeležava sa e r_{X} A i definiše indukcijom po izgradje-nosti formule A:

(i) za A atomarno,er A akko (A tačno)ili(e € X)

(ii)
$$\operatorname{er}_{X}(A \to B)$$
 akko $\bigvee a(\operatorname{ar}_{X}A \Rightarrow \{e\}(a)!$ i $\{e\}(a)r_{X}B)$

(iii)
$$\operatorname{er}_X \forall y \land y \land a \land k \land o \forall a (\{e\}(a)! i \{e\}(a)r_X \land (\bar{a}))$$

(iv)
$$\operatorname{er}_{X} \square A \text{ akko} \quad \bigvee a (\bigvee b (\bigvee y \subseteq \omega \operatorname{br}_{y} A \Rightarrow \{a\}(b) ! \land \{a\}(b) \in X)$$

 $\Rightarrow \{e\}(a) ! \land \{e\}(a) \in X)$

&, V i∃su definisani preko →, ∀i⊥.

Ova realizabilnost poslužila je kao inspiracija za druge varijante rekurzivne realizabilnosti, mada je sama suviše komplikovana da bi se efektivno mogla koristiti.

3.7. Rekurzivna realizabilnost,II

Jednostavniji dokaz konzistencije (epistemičke) Churchove teze eCT sa epistemičkom aritmetikom EA dao je Flagg u [F1]: dovoljno je pokazati da je epistemička aritmetika konzistentna sa

$$\forall x \exists_{I} y A(x,y) \rightarrow \exists e \forall x \exists y (T_{I}(e,x,y) \& A(x,Uy))$$

gde je $\mathfrak{F}_{\mathrm{I}}$ intuicionistički egzistencijalni kvantifikator .

Flagg u dokazu koristi preslikavanje ()" dato indukcijom po izgradjenosti formule A:

- (i) A" $\stackrel{!}{=}$ (A \rightarrow p) \rightarrow p (A je atomarno,p je iskazno slovo drugog reda)
- (ii) ()" komutira sa &, \rightarrow i \forall .
- (iii) (\square A)" $\stackrel{!}{=}$ ((\forall pA") \rightarrow p) \rightarrow p (p je iskazno slovo drugog reda)

kojim se epistemička aritmetika preslikava u Heytingovu aritmetiku kojoj je dodat iskazni račun drugog reda.Sa ()"
(epistemička)Churchova teza eCT se preslikava u primerak
Churchove teze koji je konzistentnan sa tom teorijom.

3.8. Rekurzivna realizabilnost, III

Jednostavniji dokaz da je epistemička aritmetika EA konzistentna sa (epistemičkom) Churchovom tezom dao je Goodman ([Go6]) koristeći niz metamatematičkih preslikavanja kojima je simplificirao Flaggovu realizabilnost(iz 3.6.).U dokazu uvodi i teoriju TEA.

Goodman je definisao Flagg-realizabilnost za IEA,a zatim dao tri preslikavanja $()^{\circ},()^{4}$ i $()^{\circ}$ takva da:

- (i) HA ├ A ⇒ IEA ├ A (za svaku formulu HA)
- (ii) HA → A ⇒ EA ← A (za svaku formulu HA)
- (iii) EA | A => IEA | A^ (zs svsku formulu EA)
- 3.8.1. Definicija (Goodman, [Go6]): Za svaku rečenicu A intuicionističke epistemičke aritmetike IEA, svaki skup [prirodnih brojeva i svaki broj e, definišemo er A (e Flagg-realizuje
 rečenicu A s obzirom na skup [realizatora apsurda) indukcijom po izgradjenosti formule A.
- (i) $er_r A$ akko A je tačno ili $e \in \Gamma$ (A atomarno).
- (ii) er (A&B) akko j_ler_rA i j₂er_rB

(iv)
$$er_{\Gamma}(A \rightarrow B)$$
 akko za svaki broj a,ako $ar_{\Gamma}A$ onda $\{e\}(a)!$ i $\{e\}(a)r_{\Gamma}B$

(v)
$$er_{\Gamma}(\forall xAx)$$
 akko za svako n,{e}(a)! i {e}(a)r_{\Gamma}A(\overline{n})

(vi)
$$er_{\Gamma}(\exists xAx)$$
 akko postoji broj n takav da $j_1e=n$ i $j_2er_{\Gamma}A(\bar{n})$

(vii) er (
$$\square$$
A) skko za svaki skup $\Delta \subseteq \omega$,er \triangle A .

3.8.2.Teorema(Goodman[Go6]):Neka je $A(x_1,\dots,x_k)$ formula sa slobodnim promenljivama $x_1,\dots,x_k.$ Ako

IEA
$$\vdash$$
 A(x_1, \ldots, x_k)

onda postoji broj e takav da za svako n₁,...,n_k važi

$$\{e\} (n_1, ..., n_k)!$$

i za svako Γ⊆ω

$$\{e\}$$
 (n_1,\ldots,n_k) r_{Γ} $A(\bar{n}_1,\ldots,\bar{n}_k)$.

Dokaz:Indukcijom po dužini dokaza.

3.8.3. Posledica: IEA
$$\not\vdash$$
 (SO=0) \rightarrow \square (SO=0)

Zatim, Goodman definiše preslikavanje ()°:Fml(HA)→Fml(IEA) indukcijom po izgradjenosti formule A:

(ii) () komutira sa &
$$, \lor, \rightarrow, \urcorner, \forall, \exists$$

tako da za svaku formulu A Heytingove aritmetike

i važí sledeća teorema:

3.8.4. Teorema:Za svaku rečenicu A Heytingove aritmetike HA i svako 「⊊⇔

gde je r Kleenejeva 1 945-realizabilnost(v. [K1], [K4]).

Moristeći preslikavanje ()^, Goodman interpretira EA u IEA (dato u 2.5.5. i 3.5.1.).

Mako je shema

$$\Box \forall x \exists y \Box A^{(x,y)} \rightarrow \Box \exists e \forall x \exists y (T_1(e,x,y) \& \Box A^{(x,Uy)})$$

Flagg-realizabilna.posledica je:

3.8.5.Teorema(Flagg): EA+eCT je konzistentna.

Goodman je daoivezu izmedju Flagg-realizabilnosti i Kleenejeve 1945-realizabilnosti na sledeći način:

- 3.8.6. Teorema (Goodman, [Go6]): Neka je $A(x_1, \ldots, x_k)$ formula Heytingove aritmetike čije su slobodne promenljive x_1, \ldots, x_k . Tada, postoje parcijalno rekurzivne funkcije f i g takve da za bilo koje $\bar{n}_1, \ldots, \bar{n}_k$ i bilo koje e
- (i) ako e realizuje $A(\bar{n}_1,\ldots,\bar{n}_k)$ u smislu Kleenejeve 1945-realizabilnosti,onda $\{f\}(n_1,\ldots,n_k)$! i za bilo koje $\Gamma\subseteq\omega$

$$\{f\}(n_1,...,n_k) r_f A^{(\bar{n}_1,...,\bar{n}_k)}$$
.

(ii) ako za svako $\Gamma \subseteq \omega$, er $\Lambda^{\bullet}(\bar{n}_1, \ldots, \bar{n}_k)$ onda $\{g\}(n_1, \ldots, n_k, e)$! i $\{g\}(n_1, \ldots, n_k, e)$ r $A(\bar{n}_1, \ldots, \bar{n}_k)$, u smislu Kleenejeve 1945-realizabilnosti.

()~ je definisano sa

$$A^{\sim} \doteq (A^{\Delta})^{\sim}$$

za formule Heytingove sritmetike ,gde je () $^{\Lambda}$ Shapirov prevod dat indukcijom po izgradjenosti formule A Heytingove arit metike

- (i) $A^{\Delta} \doteq A$ (A atomarno)
- (ii) $(A \stackrel{\bullet}{\bullet} B)^{\stackrel{\bullet}{\bullet}} = \neg (\Box A^{\stackrel{\bullet}{\bullet}} \rightarrow \neg \Box B^{\stackrel{\bullet}{\bullet}})$
- (iii) $(A \lor B)^{\Delta} \doteq \neg \Box A^{\Delta} \rightarrow \Box B^{\Delta}$
- (iv) $(A \rightarrow B)^{A} \doteq \Box(A^{A} \rightarrow B^{A})$

$$(v) \qquad (\forall xAx)^{\Delta} = \Box \forall xA^{\Delta}x$$

$$(vi) \qquad (\exists x \land x)^{\Delta} \doteq \qquad \forall x \neg \Box \land^{\Delta}$$

takav da za svaku formulu Heytingove aritmetike važi

3.9.Rekurzivas - realizabilnost, IV

Da bi pokazali da je(epistemička) proširena Churchova teza eECT konzistentna sa epistemičkom aritmetikom EA,u ovom radu dajemo jednu varijantu formalizovane realizabilnosti koja se prema Goodmanovoj verziji Flagg-realizabilnosti odnosi kao Nelsonova formalizacija (v.[Tr2],[Tr4]) Kleenejeve 1945-realizabilnosti prema Kleenejevoj realizabilnosti.

3.9.1. Definicija:Svakoj formuli A intuicionističke epistemičke aritmetike IEA pridružujemo formulu

Heytingove aritmetike koja se čita"e realizuje formulu A s obzirom na formulu C". [je konačan skup formula koji sadrži formulu C.Definicija je indukcijom po izgradjenosti formule A:

(i)
$$er_{C}^{A} \stackrel{\cdot}{=} A \lor er_{C}(SO=O)$$
 (A stomsrno)

(iv)
$$\operatorname{er}_{C}(A \& B) \stackrel{*}{=} j_{1} \operatorname{er}_{C}^{A} \& j_{2} \operatorname{er}_{C}^{B}$$

(v)
$$\operatorname{er}_{C}(A \to B) \triangleq \forall a(\operatorname{ar}_{C}A \to \{e\}(a)! \& \{e\}(a)r_{C}B)$$

(vi)
$$\operatorname{er}_{C}(A \vee B) \triangleq (j_{1}e=o \rightarrow j_{2}er_{C}A) \& (j_{1}e + O \rightarrow j_{2}er_{C}B)$$

(vii)
$$er_{C}(\forall yAy) \stackrel{:}{=} \forall y(\{e\}(y)!\&\{e\}(y)r_{C}Ay)$$

(viii)
$$er_{C}(\exists yAy) = j_{2}er_{C}Aj_{1}e$$

(ix)
$$er_C \square A = \bigwedge_{E \in \Gamma} er_E A$$

5.9.2.Teorema:Za svaku formulu A intuicionističke epistemičke aritmetike,svaki konsčan skup formula [i svako C iz [

IEA-XXVI
$$\vdash$$
 A \Rightarrow HA \vdash er_CA za neko e .

Dokaz:Indukcijom po dužini dedukcije.Korak indukcije(automatski uključuje i bazu indukcije u ovom slučaju) raspada se u nekoliko slučajeva koji odgovaraju shemi aksioma ili pravila primenjenom da se dobije poslednja formula dedukcije.Za svaki primerak F sheme aksioma treba utvrditi da za svako C iz C

gde je F*univerzalno zatvorenje od F.Za svaku primenu pravila

$$\mathbb{F}_1, \dots, \mathbb{F}_K \Rightarrow \mathbb{F}$$

pokazuje se da pretpostavljajući (za svako C iz [)

$$\mathtt{HA} \vdash \mathtt{F}_{1}^{\star}, \ldots, \mathtt{F}_{k}^{\star}, \ \overline{\mathtt{n}}_{1}\mathtt{r}_{C}\mathtt{F}_{1}^{\star}, \ldots, \overline{\mathtt{n}}_{k}\mathtt{r}_{C}\mathtt{F}_{k}^{\star}$$

za neke $\bar{n}_1, \dots, \bar{n}_k$, pokazuje se da

$$HA \vdash \overline{n}r_{C}F^*$$
 za neko n.

Aksiome i pravila Heytingove aritmetike realizovani su na isti način kao i za r-realizabilnost(v.[Tr4]) tako da je dovolj-no proveriti da za neko e ,HA — er A gde je A univerzalno zatvorenje modalne aksiome.Pretpostavićemo da ove aksiome nemaju parametara.

XXII. $\Box A \rightarrow A$

Neks je $\{e\}(s) \cong s$. Tada je ovo teorema Heytingove aritmetike.

XXIII $\square A \rightarrow \square \square A$

 $er_{\mathbb{E}}(\Box A \rightarrow \Box \Box A) \longleftrightarrow \forall a(ar_{\mathbb{E}}\Box A \rightarrow \{e\}(a)! \& \{e\}(a)r_{\mathbb{E}}\Box \Box A)$

$$\longleftrightarrow \forall a (\bigwedge ar_{C^{A}} \to \{e\}(a)! \& \bigwedge \bigwedge \{e\}(a)r_{D^{A}})$$

$$Cerber$$

i neka je {e}(a)≅a,onda je ovo teorema Heytingove aritmetike.

$\mathbb{R}XIV \quad \Box A \& \Box (A \rightarrow B) \rightarrow \Box B$

$$\operatorname{er}_{\operatorname{E}}(\square A \& \square (A \rightarrow B) \rightarrow \square B)$$

$$\longleftrightarrow \forall a(j_1 a r_E \square A \& j_2 a r_E \square (A \rightarrow B) \rightarrow \{e\}(a)! \& \{e\}(a) r_E \square B)$$

$$\longleftrightarrow \forall a(\bigwedge_{C \in \Gamma} j_1 a r_{C} A \& \bigwedge_{C \in \Gamma} j_2 a r_{C}(A \rightarrow B) \rightarrow \{e\}(a)! \& \bigwedge_{C \in \Gamma} \{e\}(a) r_{C} B)$$

$$C \in \Gamma$$

i neka je $\{e\}(a) \cong \{j_{2}a\}(j_{1}a)$. Onda je ovo teorema Heytingove aritmetike.

$XXV A \Rightarrow \Box A$

IEA-XXVI
$$\vdash$$
 A \Rightarrow HA \vdash er_EA za svako E
$$\Rightarrow$$
 HA \vdash \Leftrightarrow CEC
$$\Rightarrow$$
 HA \vdash er_E \square A

XXVII $\square(AVB) \rightarrow \square AV\square B$

$$er_{\mathbb{R}}(\Box(A \lor B) \rightarrow \Box A \lor \Box B)$$

$$\longleftrightarrow \forall a(ar_{E} \square (A \lor B) \rightarrow \{e\}(a)! \& \{e\}(a)r_{E}(\square A \lor \square B))$$

$$\longleftrightarrow \forall a (\bigwedge ae_{\mathbb{C}}(A \lor B) \to \{e\}(a)! \& (j_{1}\{e\}(a)=0 \to j_{2}\{e\}(a)r_{\mathbb{E}} \square A)$$

$$\& (j_{1}\{e\}(a) \to 0 \to j_{2}\{e\}(a)r_{\mathbb{E}} \square B))$$

$$\longleftrightarrow \forall \texttt{a} (\ \, \big((\texttt{j}_1 \texttt{a} = \texttt{O} \to \texttt{j}_2 \texttt{a} \texttt{r}_C \texttt{A}) \, \& \, (\texttt{j}_1 \texttt{a} + \texttt{O} \to \texttt{j}_2 \texttt{a} \texttt{r}_C \texttt{B})) \to (\{\texttt{e}\}(\texttt{a})! \, \& \, (\texttt{d}) \text{ or } \texttt{c} \text{ or }$$

$$(j_{1}\{e\}(a)=0 \rightarrow \underset{C \in \Gamma}{\text{M}} j_{2}\{e\}(a)r_{C}A) & (j_{1}\{e\}(a)*0 \rightarrow \underset{C \in \Gamma}{\text{M}} j_{2}\{e\}(a)r_{C}B)))$$

i neka je $\{e\}(a) \cong a$.Onda je ovo teorema Heytingove arit-metike.

xAQxE←xAxEQ IIIVXX

 $er_E(D\exists xAx \rightarrow \exists xDA) \longleftrightarrow$

$$\longleftrightarrow \forall a(ar_E \square \exists xA \rightarrow \{e\}(a)! \& \{e\}(a)r_E \exists x \square A)$$

$$\longleftrightarrow \forall a (\bigwedge_{C \in \Gamma} ar_C \exists xA \to \{e\}(a)! \& j_2 \{e\}(a)r_E \Box Aj_1 \{e\}(a))$$

$$\longleftrightarrow \forall a (\bigwedge_{C \in \Gamma} j_2 a r_C A j_1 a \to \{e\}(a)! \& \bigwedge_{C \in \Gamma} j_2 \{e\}(a) r_C A j_1 \{e\}(a))$$

i neka je $\{e\}(a) \cong a$.Onda je ovo teorema Heytingove aritmetike.

XXIX $\forall x \square Ax \rightarrow \square \forall xAx$

$$\operatorname{er}_{\operatorname{E}}(\ \forall \, \operatorname{x} \, \square \, \operatorname{A} \to \square \, \forall \, \operatorname{xA}) \longleftrightarrow \ \forall \operatorname{a}(\operatorname{ar}_{\operatorname{E}} \, \forall \, \operatorname{x} \, \square \, \operatorname{A} \to \{\operatorname{e}\}(\operatorname{a})! \, \& \{\operatorname{e}\}(\operatorname{a})\operatorname{r}_{\operatorname{E}} \, \square \, \forall \operatorname{xA})$$

$$\longleftrightarrow \forall a(\forall x(\{a\}(x)! \& \{a\}(x)r_E \square A) \rightarrow \{e\}(a)! \& \bigwedge_{\epsilon \in \Gamma} \{e\}(a)r_C \forall xA)$$

$$\longleftrightarrow \forall a (\forall x(\{a\}(x)! \& \bigwedge \{a\}(x)r_{C}A) \rightarrow \{e\}(a)! \& \forall x(\{\{e\}(a)\}(x)!$$

$$\bigwedge_{C \in \Gamma} \{ \{e\}(a)\}(x)r_{C}A))$$

i neks je $\{\{e\}(a)\}(x) \cong \{a\}(x)$. Tada je ovo teorema Heytingove aritmetike.

XXX \square (A \rightarrow \square A) &(\square A \rightarrow \square B) \rightarrow \square (A \rightarrow B)

$$\operatorname{er}_{\operatorname{E}}(\Box(A \to \Box A) \& (\Box A \to \Box B) \to \Box(A \to B)) \stackrel{\longleftarrow}{\longleftrightarrow}$$

$$\longleftrightarrow \forall a(j_1ar_E \square (A \to \square A) \& j_2ar_E (\square A \to \square B) \to \{e\}(a)! \& \{e\}(a)r_E \square (A \to B))$$

$$\leftrightarrow \forall a (\bigwedge_{C \in \Gamma} j_1 ar_C(A \rightarrow \Box A) \& \forall c (cr_E \Box A \rightarrow \{j_2 a\} (c)! \& \{j_2 a\} (c)r_E \Box B)$$

$$\rightarrow (\{e\}(a)! \ \ \ \bigwedge_{C \in \Gamma} \{e\}(a)r_{C}(A \rightarrow B)))$$

Onda, za $\{\{e\}(a)\}(c) \stackrel{\sim}{=} \{j_2a\}(\{j_1a\}(c)) \text{ ovo je teorema Heytingove aritmetike.}$

3.9.3. Teorema: Za svaku formulu A intuicionističke epistemičke aritmetike, svaki konačan skup \(\Gamma\) formula intuicionističke epistemičke aritmetike koji sadrži sve podformule formule A koja se realizuje i svako C iz \(\Gamma\)

IEA
$$\vdash$$
 A \Longrightarrow HA \vdash er_CA za neko e

Dokaz:Ako asadrži sve podformule formule koja se realizuje tada, u slučaju aksiome

XXVI □¬¬□A→□A

「 sadrži i (SO=O),pa

$$\operatorname{er}_{\operatorname{E}}(\Box \neg \neg \Box A \rightarrow \Box A) \longleftrightarrow \forall s(\operatorname{sr}_{\operatorname{E}}\Box \neg \neg \Box A \rightarrow \{e\}(s)! \, k\{e\}(s)r_{\operatorname{E}}\Box A)$$

Pretpostavimo da arg D 77 DA

e je realizator formule ((($\square A \rightarrow \square A) \rightarrow \square A$) $\rightarrow \square A$).

3.9.4. Teorema: Za svaku formulu A intuicionističke epistemič-ke aritmetike i $\Gamma = \{(SO=0)\}$

Dokaz: Dovoljno je proveriti da HA \vdash er_ ($\bot \rightarrow \Box \bot$) za neko e er_ ($\bot \rightarrow \Box \bot$) $\longleftrightarrow \forall a(ar_\bot \bot \rightarrow \{e\}(a)! \& \{e\}(a)r_\bot \bot$) $\longleftrightarrow \forall a(\bot \rightarrow \{e\}(a)! \& \{e\}(a)r_\bot \bot$) $\longleftrightarrow (\bot \rightarrow \bot)$

3.9.5. Teorema: IEA $\not\vdash$ (SO=0) \rightarrow \square (SO=0)

Dokaz:Kako Γ sadrži sve podformule formule $(SO=0) \rightarrow \square$ (SO=0) tj $\{(SO=0), \square(SO=0)\}$, $(SO=0) \rightarrow \square$ $(SO=0)\} \subseteq \Gamma$, dovoljno je proveriti da za bar jedno $E \in \{(SO=0), \square(SO=0)\}$, (SO=0), (SO=0)

$$\operatorname{er}_{\operatorname{E}}((S0=0) \to \square(S0=0))$$
 za neko e

nije teorema Heytingove aritmetike.

(i)
$$E=(SO=0)$$

$$er_{(SO=0)}(SO=0 \rightarrow DSO=0) \leftrightarrow \forall a(ar_{\perp} \perp \rightarrow \{e\}(a)! \& \{e\}(a)r \perp \perp)$$

$$\leftrightarrow \forall a(SO=0 \rightarrow \{e\}(a)! \& \bigwedge_{c \in r} \{e\}(a)r \perp c)$$

a ovo je teorema Heytingove aritmetike za svako e.

$$\begin{array}{c} \text{CeL} & \text{CeL} \\ & & \bigwedge_{3} (\bigvee_{a \perp^{C}} T \rightarrow \{e\}(a); \, \& \, \bigvee_{b} \{e\}(a)_{L^{C}} T) \\ & & \longleftrightarrow_{A} (\bigvee_{a \perp^{D}} T \rightarrow \{e\}(a); \, \& \, \bigvee_{b} \{e\}(a)_{L^{C}} T) \\ & & \longleftrightarrow_{A} (\bigvee_{a \perp^{D}} T \rightarrow \{e\}(a); \, \& \, \bigvee_{b} \{e\}(a)_{L^{C}} T) \\ & & \longleftrightarrow_{A} (\bigvee_{a \perp^{D}} T \rightarrow \{e\}(a); \, \& \, \bigvee_{b} \{e\}(a)_{L^{C}} T) \\ & & \longleftrightarrow_{A} (\bigvee_{a \perp^{D}} T \rightarrow \{e\}(a); \, \& \, \bigvee_{b} \{e\}(a)_{L^{C}} T) \\ & & \longleftrightarrow_{A} (\bigvee_{a \perp^{D}} T \rightarrow \{e\}(a); \, \& \, \bigvee_{b} \{e\}(a)_{L^{C}} T) \\ & & \longleftrightarrow_{A} (\bigvee_{a \perp^{D}} T \rightarrow \{e\}(a); \, \& \, \bigvee_{b} \{e\}(a)_{L^{C}} T) \\ & & \longleftrightarrow_{A} (\bigvee_{a \perp^{D}} T \rightarrow \{e\}(a); \, \& \, \bigvee_{b \parallel^{D}} \{e\}(a)_{L^{C}} T) \\ & & \longleftrightarrow_{A} (\bigvee_{a \perp^{D}} T \rightarrow \{e\}(a); \, \& \, \bigvee_{b \parallel^{D}} \{e\}(a)_{L^{C}} T) \\ & & \longleftrightarrow_{A} (\bigvee_{a \perp^{D}} T \rightarrow \{e\}(a); \, \& \, \bigvee_{b \parallel^{D}} \{e\}(a)_{L^{C}} T) \\ & & \longleftrightarrow_{A} (\bigvee_{a \perp^{D}} T \rightarrow \{e\}(a); \, \& \, \bigvee_{b \parallel^{D}} \{e\}(a)_{L^{C}} T) \\ & & \longleftrightarrow_{A} (\bigvee_{a \perp^{D}} T \rightarrow \{e\}(a); \, \& \, \bigvee_{b \parallel^{D}} \{e\}(a)_{L^{C}} T) \\ & & \longleftrightarrow_{A} (\bigvee_{a \perp^{D}} T \rightarrow \{e\}(a); \, \bigvee_{b \parallel^{D}} \{e\}(a)_{L^{C}} T) \\ & & \longleftrightarrow_{A} (\bigvee_{a \perp^{D}} T \rightarrow \{e\}(a); \, \bigvee_{b \parallel^{D}} \{e\}(a)_{L^{C}} T) \\ & & \longleftrightarrow_{A} (\bigvee_{a \perp^{D}} T \rightarrow \{e\}(a); \, \bigvee_{b \parallel^{D}} \{e\}(a)_{L^{C}} T) \\ & & \longleftrightarrow_{A} (\bigvee_{a \perp^{D}} T \rightarrow \{e\}(a); \, \bigvee_{b \parallel^{D}} \{e\}(a)_{L^{C}} T) \\ & & \longleftrightarrow_{A} (\bigvee_{a \perp^{D}} T \rightarrow \{e\}(a); \, \bigvee_{b \parallel^{D}} \{e\}(a)_{L^{C}} T) \\ & & \longleftrightarrow_{A} (\bigvee_{a \perp^{D}} T \rightarrow \{e\}(a); \, \bigvee_{b \parallel^{D}} \{e\}(a)_{L^{C}} T) \\ & & \longleftrightarrow_{A} (\bigvee_{a \perp^{D}} T \rightarrow \{e\}(a); \, \bigvee_{b \parallel^{D}} \{e\}(a)_{L^{C}} T) \\ & & \longleftrightarrow_{A} (\bigvee_{a \perp^{D}} T \rightarrow \{e\}(a)_{L^{C}} T) \\ & & \longleftrightarrow_{A} (\bigvee_{a \perp^{D}} T \rightarrow \{e\}(a)_{L^{C}} T) \\ & & \longleftrightarrow_{A} (\bigvee_{a \perp^{D}} T \rightarrow \{e\}(a)_{L^{C}} T) \\ & & \longleftrightarrow_{A} (\bigvee_{a \perp^{D}} T \rightarrow \{e\}(a)_{L^{C}} T) \\ & & \longleftrightarrow_{A} (\bigvee_{a \perp^{D}} T \rightarrow \{e\}(a)_{L^{C}} T) \\ & & \longleftrightarrow_{A} (\bigvee_{a \perp^{D}} T \rightarrow \{e\}(a)_{L^{C}} T) \\ & & \longleftrightarrow_{A} (\bigvee_{a \perp^{D}} T \rightarrow \{e\}(a)_{L^{C}} T) \\ & & \longleftrightarrow_{A} (\bigvee_{a \perp^{D}} T \rightarrow \{e\}(a)_{L^{C}} T) \\ & & \longleftrightarrow_{A} (\bigvee_{a \perp^{D}} T \rightarrow \{e\}(a)_{L^{C}} T) \\ & & \longleftrightarrow_{A} (\bigvee_{a \perp^{D}} T \rightarrow \{e\}(a)_{L^{C}} T) \\ & & \longleftrightarrow_{A} (\bigvee_{a \perp^{D}} T \rightarrow \{e\}(a)_{L^{C}} T) \\ & & \longleftrightarrow_{A} (\bigvee_{a \perp^{D}} T \rightarrow \{e\}(a)_{L^{C}} T) \\ & & \longleftrightarrow_{A} (\bigvee_{a \perp^{D}} T \rightarrow \{e\}(a)_{L^{C}} T) \\ & & \longleftrightarrow_{A} (\bigvee_{a \perp^{D}} T \rightarrow \{e\}(a)_{L^{C}} T) \\ & & \longleftrightarrow_{A} (\bigvee_{a \perp^{D}} T \rightarrow \{e\}(a)_{L^{C}} T)$$

Za $\{e\}(s) \stackrel{\sim}{=} s$ ovo je teorema Heytingove aritmetike.

(iii)
$$E = ((SO=0) \rightarrow \square(SO=0))$$

$$er_{\Xi} \longrightarrow \forall a(ar_{\Xi}(SO=0) \rightarrow \{e\}(a) \& \{e\}(a)r_{\Xi} \square \bot)$$

$$\longleftrightarrow \forall a(ar_{\Xi} \rightarrow \{e\}(a)! \& \{e\}(a)r_{C}(SO=0))$$

$$cer$$

 $ar_{(SO=0)}(SO=0 \rightarrow \square SO=0)$ je teorema HA(slučaj (i)) pa sledi

ali,(SO=O) [, pa je jedan od konjunkata oblika

$${e}(a)r_{(SO=0)}(SO=0)$$

što je ekvivalentno sa (SO=O),pa je

$$er_E \to (SO=0)$$
 za $E = (SO=0 \to \square SO=0)$

Dalje, sledeći ideju Goodmana iz [Go6] definišemo

$$A^{n} = (A^{n})^{n}$$

za formule Heytingove aritmetike.

Važi sledeća teorema:

- 3.9.6. Teorema: Za sve formule Heytingove aritmetike
- (i) HA HA => IEA HA~
- (ii) $HA+ECT_0 \vdash A \implies IEA+DCT \vdash A^{\sim}$

Kako su \square CT i \square ECT $\text{HA-r}_E\text{-realizabilne}$ za E C , C konačan skup formula koji sadrži sve podformule formule koja se realizuje, posledica je

3.9.7. Teorema: EA+eCT i EA+eECT su konzistentne.

- 3.9.8. Primedba:Friedman je počeo da ispituje formule oblika $\gamma_E\gamma_E^A$ i $\gamma_C\gamma_E^A$ još u [Fr1].
- 3.9.9. Primedba: r_E -realizabilnost je uopštenje r-realizabilnosti-za E = (SO=0), pollapa se sa r-realizabilnosti na formulama Heytingove aritmetike.

MATE	rzitet u Beogradu -matematički fakulteti AATIČKI FAKULTET BLIOTEKA
Broj	Datum

ČETVRTO POGLAVLJE

METAMATEMATIČKA SVOJSTVA EPISTEMIČKIH I INSTUICIONISTIČKIH
ARITMETIKA

I like to think of these realizability interpretations as "black boxes "which extract algorithms from proofs.

M. Beeson

A Metamathematician's replica

[Be4]

- [KI] S.C.Kleene:On the interpretation of intuitionistic number theory, J.Symb.Logic <u>lo</u> (1945), str.lo9-124.
- [N2] S.C.Kleene:Introduction to Metamathematics, D. van Nostrand Comp. New York, 1952.
- S.C.Kleene:Disjunction and existence under implication in elementary intuitionistic formalism, J. Symb. Logic 27(1962), str.11-18.
- [K4] S.C.Kleene:Realizability-s retrospective survey,u:

 Cambridge Summer School in Mathematical Logic, Proceedings

 1971(ed.R.A.D.Mathias, H.Rogers), Lecture Notes in

 Mathematics 337, Springer-Verlag, Berlin, 1973, str.95-112.
- [Krl] G.Kreisel:Mathematical logic,u:Lectures on Modern Mathematics, Vol. 3 (ed. T.L. Saaty), Wiley, New York, 1965, str. 95-195.
- [Kr2] G.Kreisel: Informal rigour and completeness proofs,u:
 Problems in the Philosophy of Mathematics (ed. I. Lakatos),
 North-Holland, Amsterdam, 1967, str. 136-171.
- [Kr3] G.Kreisel: A survey of proof theory II,u:Proceedings of the Second Scandinavian Logic Symposium(ed.J.E. Fenstad), North-Holland, Amsterdam, 1971, str.lo9-170.
- [Kr4] G.Kreisel:Perspectives in the philosophy of pure mathematics,u:Proceedings of the Forth International Congress for Logic, Methodology and Philosophy of Science, North-Holland, Amsterdam, 1973, str. 255-277.
- [KHMB] G.Kreisel, J.Myhill, A.Heyting, Y.Bar-Hillel: Discussion, u:Problems in the Philosophy of Mathematics (ed. I. Lakatos), North-Holland, Amsterdam, 1967, str. 172-186.
 - [KT] G.Kreisel, A.S. Troelstra: Formal systems of intuitionistic analyses, Ann. of Math. Logic 1 (1970), str. 229-387.

4.1.2. Svojstvo eksplicitne definabilnosti

ED $\vdash \exists xA(x) \Rightarrow \vdash A(\bar{n})$ za neko n (x je numerička promenljiva, \bar{n} numeral, $\exists xA(x)$ zatvorena formula)

Friedman(1.c. [Sml]) je pokazao da u rekurzivno prebrojivim teorijama koje sadrže HA, DP implicira ED. Takodje u teorijama koje sadrže HA, DP je specijalan slučaj ED.

Heytingova aritmetika je zatvorena za DP i ED.Ovo se dokazuje koristeći Kleenejev ([K3]) ili Aczelov ([A]) metamatematički rez,ili,koristeći q-realizabilnost ([Tr2], [Tr4]) i dokaz se može proširiti na teorije HA+ Γ tekve da za svaku formulu B iz Γ važi Γ B,odnosno da je svako B iz Γ (HA+ Γ)-q-realizabilno i HA+ Γ je \sum_{1}^{0} -ekstenzija Heytingove aritmetike.

Epistemička aritmetike je zatvorena za analogna pryvila ,tj važi

4.1.3. Epistemičko svojstvo disjunktivnosti

eDP
$$\vdash \Box A \lor \Box B \Rightarrow \vdash A \text{ ili } \vdash B$$
($\Box A \lor \Box B \text{ zatvoreno}$)

4.1.4. Epistemičko svojstvo eksplicitne definabilnosti

eED
$$\vdash \exists x \square A(x) \Rightarrow \vdash A(\overline{n})$$
 za neko n

($\exists x \square A(x)$ zatvorens formula)

Da bi pokazao. da je epistemička aritmetika EA zatvorena za ta dva pravila, Shapiro je u [Sh3] definisao metamatematički rez [A,kao relaciju sličnu Kleenejevom rezu ([K3]):

4.1.5. Definicija(Shapiro): Neka je \(\Gamma\) (moguće prazan) skup rečenica epistemičke aritmetike. Definisaćemo \(\Gamma\) A indukcijom po izgradjenosti formule A:

4. METAMATEMATICKA SVOJSTVA EPISTEMICKIH I INTUICIONISTICKIH ARITMETIKA

<u>Fravilo</u> je skup (n+1)-torki formula, element tog skupa je primerak pravila. Pravilo je izvedivo za sistem H, ako za svazi primerak

$$\langle \mathbb{F}_1, \dots, \mathbb{F}_k, \mathbb{F} \rangle$$

pravila, važi

$$H \vdash F_1, \dots, H \vdash F_k \Rightarrow H \vdash F$$
.

Fravila su posladica dokazno-teoretskih zahteva veoma jednostavnog oblika:

da metamatematička preslikavanja formula Heytingove aritmetike u formule Heytingove aritmetike budu zatvorena za teoreme Heytingove aritmetike(teoreme teorije H).

Epistemička aritmetika EA je devijantna ({Sm2}) ekstenzija klasične Peanove aritmetike, ali reflektuje neke osobine koje su karakteristika intuicionističkih sistema. Metodi kojima se ispituju osobine epistemičke aritmetike predstavljaju adaptaciju ili uopštenje metoda kojima se ispituju analogne osobine intuicionističkih sistema. Ovde, koristićemo preslikavanja iz prethodna dva poglavlja, ali uvesti i neka nova.

Definicija pravila se proširuje na jezik epistemičke aritmetike na uobičajen način.

4.1. Svojstvo disjunktivnosti i eksplicitne definabilnosti

Fo BHK-objašnjenju, $A \lor B$ je dokazano akko je dokazano A ili je dokazano B. $\exists x A(x)$ je dokazano akko možemo konstruisati objekt a domena koji posmatramo i dokazati A(a).

Skoro svi formalni intuicionistički sistemi imaju odgovarajuće metamatematičko svojstvo, tj zatvoreni su za pravila:

4.1.1. Svojstvo disjunktivnosti

Dokaz:

⇒: Iz 4.1.6. i 4.1.7.

4.1.9.Teorema (Shapiro [Sh3]):Neka je EA+ (, gde je (skup rečenica epistemičke aritmetike, konzistentna teorija takva da (B za svako B iz (.Onda, za bilo koju rečenicu

$$\Box A \lor \Box B$$
 , $\exists x \Box A(x)$

epistemičke aritmetike, važi sledeće:

(ii)
$$EA + \Gamma \vdash \exists x \Box A(x) \implies EA + \Gamma \vdash A(\overline{n})$$
 za neko n

Dokaz:

(i)
$$EA+\Gamma \vdash \Box A \lor \Box B \implies \Gamma | \Box A \lor \Box B$$

$$(ii)$$
 EA+ Γ \mapsto Γ $\exists x \Box Ax$

 \Rightarrow $\lceil | \square A(\overline{n}) \rangle$ za neko n

 $\cdot \implies (EA + \Gamma \vdash A(\overline{n}) i \Gamma \mid A(\overline{n}))$ za neko n

 \Longrightarrow EA+ $\Gamma \vdash A(\overline{n})$ za neko n

4.1.10.Posledica: EA, EA+eCT i EA+eECT imaju svojstvo eDP i eED.

4.2. Barcan pravile

Koristeći Shapirov rez, može se pokazati sledeća teorema:

4.2.1. Teorema: Neka je HA+ [(| skup rečenica epistemičke aritmetike) konzistentna teorija takva da za svako B iz [,

(i)
$$\Gamma \mid A$$
 skko $EA + \Gamma \mid -A$ (A stomerno)

(ii) $\Gamma \mid A \& B$ skko $\Gamma \mid A$ i $\Gamma \mid B$

(iii) $\Gamma \mid A \lor B$ skko $\Gamma \mid A$ ili $\Gamma \mid B$

(iv) $\Gamma \mid A \to B$ skko $\Gamma \mid A$ ili $\Gamma \mid B$

(v) $\Gamma \mid A \to B$ skko $\Gamma \mid A$

(vi) $\Gamma \mid A \to B$ skko $\Gamma \mid A$

(vi) $\Gamma \mid A \to B$ skko $\Gamma \mid A \to B$

(vii) $\Gamma \mid A \to B$ skko $\Gamma \mid A \to B$

(viii) $\Gamma \mid A \to B$ skko $\Gamma \mid A \to B$

(viii) $\Gamma \mid A \to B$ skko $\Gamma \mid A \to B$

(viii) $\Gamma \mid A \to B$

(viiii) $\Gamma \mid A \to B$

(viiiii) $\Gamma \mid A \to B$

Ako je [prazno, pisaćemo | A za ø A.

4.1.6.Teorema korektnosti (za EA):Za bilo koju rečenicu A epistemičke aritmetike

$$EA \vdash A \Rightarrow A$$
.

Dokaz: Indukcijom po dužini dokaza.

4.1.7. Teorema korektnosti(za EA+ Γ):Za bilo koji skup rečenica Γ epistemičke aritmetike takvih da je EA+ Γ konzistentno ,ako za svako B iz Γ , Γ B, onda, za bilo koju rečenicu A epistemičke aritmetike

$$EA + \Gamma \vdash A \Rightarrow \Gamma \mid A$$

4.1.8. Teorema: Za bilo koju rečenicu A epistemičke aritmetike

(ii) Neka je EA+ [([skup rečenica epistemičke aritmetike) konzistentna teorija takva da

onda

$$EA+\Gamma \vdash \Box A$$
 akko $\Gamma \mid \Box A$

ti formule A:

(ii) ()
$$^{\#}$$
 komutira sa & , \vee , \rightarrow , \forall , \exists .

4.5.2. Teorems:Za svaki par formula A,E Heytingove aritmetike

HA ├─ A ⇒ HA ├─ A#

Dokaz: Indukcijom po dužini dedukcije.

Da bi sada pokazali da je HA zatvorena za MR_{pR},polazi se od

i za formulu E se uzima $\exists yA(x,y).Tada,(\neg\neg\exists yA(x,y))^{\#}$ je teorema HA i ekvivalentna je sa $\exists yA(x,y).$

Noristeći isto preslikavanje i činjenicu da $_{77}\exists$ yA(x,y) pripada klasi formula Γ_{0} za koju je HA+ECT $_{0}$ konzervativna ekstenzija HA može se pokazati da su HA+ECT $_{0}$ i HA+CT $_{0}$ zatvorene za MR $_{\rm PP}$.

Jedna od posledica zatvorenosti HA za MR $_{\rm PR}$ je da je Peanova aritmetika PA konzervativna ekstenzija HA s obzirom na \bigcap_{2}^{o} formule.([Tr4]).

Friedman je pokazao da je iz zatvorenosti Heytingove aritmetike za Markovljevo pravilo MR_{PR} i zatvorenosti za Churchovo pravilo CR_{o} izvediva zatvorenost Heytingove aritmetike za MR.

4.3.3. Teorema(Kreisel, (Tr4]): Sve teorije H, koje se nelaze izmedju Heytingove i Peanove aritmetike ,zatvorene su za Markovljevo pravilo MR_{PR} .

Dokaz:

$$\lceil \mid \exists$$
, onda, za svaku rečenicu $\forall x \square A(x) \in Sent(\exists A)$

$$EA + \Gamma \vdash \forall x \Box A(x) \implies EA + \Gamma \vdash \Box \forall x A(x)$$

Dokaz:

4.2.2.Posledica:Teorije EA, EA+eCT i EA+eECT su zatvorene za BR.

4.2.3.Primedba:Važi eS_{PR} | eM_{PR} ,ali ne i eS_{PR} | eS_{PR} ili eM_{PR} | eM_{PR}.Teorija HA+M_{PR} ima svojstvo disjunktivnosti i eksplicitne definabilnosti,ali se to dokazuje koristeći q-rerealizabilnost ([Tr3]),a ne neki od rezova za intuicionističku aritmetiku.

4.3. Markovljevo pravilo

Jarkovljevo pravilo za primitivno rekurzivne funkcije je pravilo

$$\exists R_{pR}$$
 $\vdash \neg \neg \exists xA(x,y) \Rightarrow \vdash \exists xA(x,y)$

(A(x,y) primitivno rekurzivna formula)

⊃pštija shema je

IR
$$\vdash \forall x, y(Av \neg A)$$
, $\vdash \neg \neg \exists xA(x,y) \Rightarrow \vdash \exists xA(x,y)$

Friedman je u [Fr2] dao veoma jednostavan dokaz da je Heytingova aritmetika zatvorena za MR_{PR} koristeći sledeće preslikavanje:

1.3.1. Definicija: Za bilo koji par formula E,A Heytingove aritletike definiše se preslikavanje () indukcijom po izgradjenosOva teorema se može proširiti na formule A(x,y) takve da

$$A(x,y) \longleftrightarrow B^{0}(x,y)$$
 z_{a} neko B

i B je odlučiva formula.

4.4. Troelstrino pravilo TR

Troelstrino pravilo TRpR je pravilo

$$PR_{PR}$$
 $\vdash \neg \neg \exists yA(x,y) \rightarrow \exists yA(x,y) \Rightarrow \vdash \neg \exists yA(x,y) \lor \exists yA(x,y)$
(A(x,y) primitivno rekurzivna formula)

o pravilo se može poopštiti na odlučive formule, tj

$$(y,x)AyE_{rr} \rightarrow (y,x)AyE_{rr} \rightarrow (y,x)AyE_{rr$$

leytingova aritmetika HA je zatvorena za $\mathrm{TR}_{\mathrm{PR}}$ i TR .Ovo se lokazuje koristeći Friedmanovo preslikavanje (4.3.1.) i uzitajući za E formulu $\neg\exists\,\mathrm{yA}(\mathrm{x},\mathrm{y}).\mathrm{Kako}$ $\neg\neg\exists\,\mathrm{yA}(\mathrm{x},\mathrm{y})\to\exists\,\mathrm{yA}(\mathrm{x},\mathrm{y})$ $\exists\,\mathrm{A}(\mathrm{x},\mathrm{y})$ primitivno rekurzivno) pripada klasi formula \lceil_{o} za loje je $\mathrm{HA}+\mathrm{ECT}_{\mathrm{o}}$ konzervativna ekstenzija HA , sledi da su i $\mathrm{HA}+\mathrm{ECT}_{\mathrm{o}}$ i $\mathrm{HA}+\mathrm{CT}_{\mathrm{o}}$ zatvorene za $\mathrm{TR}_{\mathrm{PR}}$.

l za epistemičke sisteme važi analogno pravilo, tj epistemičko Proelstrino pravilo za primitivno rekurzivne funkcije

$$(\mathbf{y}, \mathbf{x}) \wedge \mathbf{y} \in (\mathbf{y}, \mathbf{x}) \wedge \mathbf{y} \in \mathcal{A}(\mathbf{x}, \mathbf{y}) \rightarrow \mathbf{y} \wedge \mathbf{x} \in \mathcal{A}(\mathbf{x}, \mathbf{y}))$$

$$\vdash \Box \forall \mathbf{x} (\Box \neg \exists \mathbf{y} \wedge \mathbf{x} (\mathbf{x}, \mathbf{y}) \vee \exists \mathbf{y} \wedge \mathbf{x} (\mathbf{x}, \mathbf{y}))$$

$$\implies$$
 HA $\vdash \forall x \exists y \land (x,y)$ (konzervativnost za \sqcap_2^o formule)

$$\Rightarrow$$
 H $\vdash \forall x \exists y \land (x,y)$

I za epistemičke sisteme važi analogno pravilo,tj epistemičko Markovljevo pravilo za primitivno rekurzivne funkcije

$$eMR_{PR}$$
 $\vdash \Box \forall x \Diamond \exists y A(x,y) \implies \vdash \forall x \exists y A(x,y)$

(A(x,y) je primitivno rekurzivne formule)

4.3.4. Teorema: Teorije EA, EA+eS_{PR}, EA+eM_{PR}, EA+eS, EA+eM, i EA+eDNS zatvorene su za epistemičko Markovljevo pravilo za primitivno rekurzivne funkcije.

Dokaz:

Neka je E jedna od teorija koje se spominju u ovoj teoremi i I njoj korespondentna teorija takva da

za sve formule Heytingove aritmetike. $\Lambda(x,y)$ je primitivno rekurzivna formula.

· I je zatvorena za MR_{PR},ps

$$\Rightarrow$$
 I $\vdash \forall x \exists y A(x,y)$

$$\Longrightarrow E \vdash (\forall x \exists y A(x,y))^{0}$$

$$\Rightarrow E \vdash \Box \forall x \exists y \Lambda(x,y)$$

gde je A(x,y) formula epistemičke aritmetike takva da

$$A(x,y) \longleftrightarrow B^{\square}(x,y)$$
 za neko B

i

eECR' $\vdash \Box \forall x(A \rightarrow \exists yB) \implies \vdash \exists e \Box \forall x(A \rightarrow \exists y(T_1(e,x,y) \& \exists (x,Uy)))$ (y se ne pojavljuje slobodno u A,Ax \leftrightarrow C x za neko C i
C je skoro negativna formula, Bxy \leftrightarrow D xy za neko D)

4.4.1. Teorema: Epistemička aritmetika EA je zatvorena za eTRpp.

eTR se može uopštiti na formule A takve da

$$A \longleftrightarrow B^{\circ}$$
 za neko B

i B je odlučiva formula.

4.5. Churchovo pravilo

Churchovo pravilo CR je pravilo

$$CR_{o} \vdash \forall x \exists y A(x,y) \implies \vdash \exists e \forall x \exists y (T_{1}(e,x,y) \& A(x,Uy))$$

i sve teorije koje se smatraju intuicionističim su zatvorene za CR_o.Najopštija verzija Churchovog pravila koja se može formulisati na jeziku Heytingove aritmetike je

$$\exists CR_o \vdash \forall x(Ax \rightarrow \exists Bxy) \Rightarrow \vdash \exists e \forall x(Ax \rightarrow \exists y(T_1(e,x,y) \& B(x,Uy)))$$

(y se ne pojavljuje slobodno u A, A je skoro negativna formula)

Od interesa je i jedna slaba verzija Churchovog pravila

WCR
$$\vdash \forall x \exists y A(x,y) \Rightarrow \exists rekurzivna funkcija f $\forall n \vdash A(\overline{n},\overline{fn})$$$

jer u sistemima sa rekurzivnom aksiomatizacijom WCR je ekvivalantno sa svojstvom eksplicitne definabilnosti ED (Kreisel, [Tr3])-što implicira, po Troelstri, da sistemi koji zadovoljavaju EDneće biti u konfliktu sa Churchovom tezom.

Za epistemičke sisteme važi sledeće:

4.5.1. Teorema: EA,EA+eM $_{\rm PR}$,EA+eCT i EA+eECT zatvorene su za eCR' i eECR' gde su

eCR'
$$\vdash \Box \forall x \exists y A(x,y) \implies \vdash \exists e \Box \forall x \exists y (T_1(e,x,y) \& A(x,Uy))$$

Dodatsk N^o 2

I. Formalizovani prevodi

(i)
$$()^{5}: Fml(HA) \longrightarrow Fml(HA)$$
 2.3.3.1.

(ii)
$$\Psi : Fml(EA) \rightarrow Fml(HA)$$
 2.4.3.

(iii)
$$\Upsilon: Fml(EA) \rightarrow Fml(HA)$$
 2.4.6.

(iv) () :Fml(HA)
$$\rightarrow$$
 Fml(EA) 2.4.9.

(v)
$$()^{(E)}: Fm1(EA) \to Fm1(EA)$$
 2.4.15.

(vi) ()*:Fml(HA)
$$\longrightarrow$$
 Fml(EA) 2.4.24.

(vii) ()⁺:Fml(HA)
$$\rightarrow$$
 Fml(EA), 2.4.28.

(viii) (
$$J^{\bullet}: Fml(EA) \longrightarrow Fml(IEA)$$
 2.5.5.

(ix) ()":
$$Fml(EA) \rightarrow Fml(HA+Pp_2)$$
 3.7.

(x)
$$()^{\circ}: Fml(HA) \rightarrow Fml(IEA)$$
 3.8.

(xi) () Fml(HA)
$$\rightarrow$$
 Fml(EA) 3.8.

(xii) () : Fml(HA)
$$\rightarrow$$
 Fml(IEA) 3.8., 3.9.

(xiii)
$$r_E$$
: Fml(TEA) \rightarrow Fml(HA) 3.9.1.

(xiv)
$$(j^{*}:Fml(HA) \to Fml(HA)$$
 4.3.1.

II. Metamatematički prevodi

(i) Flagg-realizabilnost

-Flaggova verzija 3.6.

-Goodmanova verzija 3.8.1.

(ii) Shapirov rez 4.1.5.

Dodatak Nº1

amatematička svojstva epistemičkih aritmetika ispitivanih u ovom radu

KONZISTEN	KONZEK.	KONZEK.	e ED	eDP	BR	C MR PR	e CR'	eECR'
4.4.	PA 2. 4.5.	HA 2.4.22	4.1.10.	4.1.10	4.2.2.	4.3.4.	4.5.1.	4.5.1.
9.5. 4.5	C°	\sim	4.1.10.	4.1.10.	4.22	~ °	4.5.1.	4.5.1.
9. ¥.	~ °	C-0	4.1.10.	4.1.10.	4.2.2.	~	4.51.	4.51
4.4.	3. 4. 1.	HA+MPR 3.4.3.	Ĉ	<i>د</i> •	٠.,	4.3.4.	4.51.	4.5.1.
4.4.	5. 1. 1.	HA+ M 3. 4.3.			~ °	4.3.4.		
4.4.	3. 1. 1.	HA+SPR 3.4.3.			~ ∘	4.3.4.		
4.4.	PA 3. 1. 1.	HA+8 3.4.3.			<i>~</i> ،	4.3.4.		
4.4.	3.1.1.	44+DNS 3.4.3.			~ °	4.3.4.		
والمراب والمسالين المسالين المراور والمسالين		1, 4, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,	1.4.2.4.5.3.4.4.	1.4. 2. 4.5. 2. 4.22. 3. 4.3. 3. 4.3. 4.3. 4.3. 4.3	1.4. 2. 4.5. 2. 4.22 4.1.10. 4.1. 3. 4.3. 3. 4.3. 4.3. 4.3. 4.3. 4.	1.4. 2.4.5. 2.4.22 4.1.10. 4.1.10. 4.2. 1.1.10. 4.2. 1.1.10. 4.1.10. 4.2. 1.1.10. 4.1.10. 4.2. 1.1.10. 4.2. 1.1.10. 4.1.10. 4.2. 1.1.10. 4.1.10. 4.2. 1.1.10. 4.1.10. 4.2. 1.1.10. 4.1.10. 4.2. 1.1.10. 4.1.10. 4.2. 1.1.10. 4.1.10. 4.1.10. 4.1.10. 4.1.10. 4.1.10. 4.1.10. 4.1.10. 4.1.10. 4.1.10. 4.1.10. 4.1.10. 4.1.10. 1.1.10. 4.1.10.	1.4. 2.4.5. 2.4.22 4.1.10. 4.1.10. 4.2.2. 3.5. ? 2.4.22 4.1.10. 4.1.10. 4.2.2. 1.4.10. 4.1.10. 4.2.2. 1.4.3. ? 2 4.1.10. 4.1.10. 4.2.2. 1.4.3.4.3.	3.4. 2.4.5. 4.1.10. 4.1.10. 4.2.2. 4.3.4. 1.4. 3.4.3.

ne može se utvrditi korištenim metodama

ova epistemióka aritmetika reflektuje naka svojstva aritmetike koja nije zatvorena za takvo pravilo pa predpostavýamo da ne važi. -ova epistemióka aritmetika reflektuje

```
MXII. \square A \rightarrow A
       KAIII.
                                                \Box A \to \Box \Box A
      \mathbb{X} = \mathbb{I} = 
      XXV.
                                                       A \Rightarrow \Box A
     XXVI. UTTOADOA
     XXVII.
                                                               \square(A \lor B) \longrightarrow \square A \lor \square B
                                                             xA□xE←xAxE□
     MAIII.
                                                               \forall x \square Ax \rightarrow \square \forall xAx
    MXIX.
                                                              \Box(A \rightarrow \Box A) \& (\Box A \rightarrow \Box B) \rightarrow \Box (A \rightarrow B)
    XXX.
    • IXXX
                                                                    (SC=0) \rightarrow \square (SO=0)
                                                                   \forall x(\tau \neg \exists y \land xy \rightarrow \exists y \land xy) (Axy primitivno rekurzivna)
   M_{\mathrm{PB}}
                                                                    \forall x,y(Axy \lor \neg Axy) \rightarrow \neg \neg \exists yAxy \rightarrow \exists yAxy
\sim M
                                                                      \neg \neg A \longrightarrow A
                                                              (\forall xA \rightarrow \exists yB) \rightarrow \exists y(\forall xA \rightarrow B) (A je primitivno rekurzivno,
    \mathbb{P}_{\mathrm{PR}}
                                                                                                                                                                                                                                         x nije slobodno u A)
                                                              \forall x(A \lor 7A) \& (\forall xA \rightarrow \exists yB) \rightarrow \exists y(\forall xA \rightarrow B) (y nije slobodno u A)
   IP<sub>o</sub>
                                                          (\neg A \rightarrow \exists x B) \rightarrow \exists x (\neg A \rightarrow B) (x nije slobodno u A)
   IP
                                                                       \forall x_{77}Ax \rightarrow 77 \forall xAx
   DNS
                                                                 \forall x(\neg \exists y \land xy \lor \exists y \land xy) (Axy primitivno rekurzivno)
   S_{PR}
 S
                                                                    AV TA
                                                                  Vale Vn Bz(T, (e,n,z)&an=Uz)
   CT
                                                                   \forall x \exists y Axy \rightarrow \exists e \forall x \exists z (T_1(e,x,z) \& A(x,Uz))
   CT
                                                                    \forall x(Ax \rightarrow \exists yBxy) \rightarrow \exists e \forall x(Ax \rightarrow \exists y(T_1(e,x,y)\&B(x,Uy)))
  ECT
  ( y se ne pojavljuje slobodno u A, A je skoro negativna formula)
                                                                                  \Box A \times \Diamond \Box A \longrightarrow \Box \Diamond \Box A \times A
  e DNS
                                                                                \Box \forall x ( \Box \Diamond \exists y \land xy \rightarrow \exists y \land xy)  ( \land xy je primitivno rekurzivne).
 e^{M}PR
```

Dodatak Nº 3

Sheme formula i aksioma

C2
$$\sum \frac{1}{m} A \& m < n \rightarrow \sum \frac{1}{n} A$$

C3
$$A \leftrightarrow \exists n(\Sigma \vdash_n A)$$

I.
$$A \rightarrow A$$

II.
$$A,A \rightarrow B \Rightarrow B$$

III.
$$A \rightarrow B, B \rightarrow C \Longrightarrow A \rightarrow C$$

IV.
$$A \& B \rightarrow A$$
, $A \& B \rightarrow B$

$$V. A \rightarrow A \lor B , B \rightarrow A \lor B$$

VI.
$$A \rightarrow B, A \rightarrow C \implies A \rightarrow B \& C$$

VII.
$$A \rightarrow C$$
, $B \rightarrow C \Longrightarrow A \lor B \rightarrow C$

VIII.
$$A \& B \rightarrow C \Rightarrow A \rightarrow (B \rightarrow C)$$

IX.
$$A \rightarrow (B \rightarrow C) \Rightarrow A & B \rightarrow C$$

X.
$$A \rightarrow Bx \Rightarrow A \rightarrow \forall xBx$$
 (x nije slobodno u A)

XI.
$$Ax \rightarrow B \implies \exists xA \rightarrow B$$
 (x nije slobodno u B)

XII.
$$\forall xAx \rightarrow At$$
 (t je slobodno za x u A)

XIII. At
$$\rightarrow \exists xAx$$
 (t je slobodno za x u A)

$$x = x$$

$$xv. x=y \rightarrow y=x$$

XVI.
$$x=y \& y=z \rightarrow x=z$$

XVII.
$$x=y \rightarrow tx=ty$$
 (t je term)

XVIII. $0=Sx \longrightarrow 0=S0$

XIX.
$$Sx=Sy \longrightarrow x=y$$

XX. AO &
$$\forall x(Ax \rightarrow A(Sx)) \rightarrow \forall xAx$$

XXI. Ako je A jedna od definišućih jednačina za simbol koji označava primitivno rekurzivnu funkciju, onda je A aksioma.

Dodatsk N° 4

Neke klase formaula

- (i) △ je najmanja klasa formula takva da:
 - (1) atomarne formule, $\bot \in \triangle$;
 - (2) \triangle je zatvorena za & , \rightarrow , \vee ;
 - (3) $A \in \Delta$ it je term $\Rightarrow \exists x < tA$, $\forall x < tA \in \Delta$.

(ii)
$$\sum_{1}^{0} = \{\exists xA : A \in \Delta\}$$

$$(iii)$$
 $\prod_{2}^{o} = \{ \forall yA : A \in \Sigma_{1}^{o} \}$

- (iv) Klasa <u>negātivnih</u> formula je najmanja klasa formula takva da:
 - (1) atomarne formule, L su negativne formule;
 - (2) ako su A,B negativne formule, onda su to i $A\&B,A\rightarrow B$, $\forall xAx$.
- (v) [je najmanja klasa formula takva da:
 - (1) stomerne formule, $\bot \in \Gamma_0$;
 - (2) To je zatvorena za & , v , \ ;
 - (3) A je skoro negativna gormula, $B \in \Gamma_0 \implies \exists x_1, \dots, x_n \land (x_1, \dots, x_n) \rightarrow B \in \Gamma_0$.
- (vi) Klasa skoro negativnih formula je najmanja klasa formula takva da:
 - (1) atomarne formule, \bot i egzistencijalno kvantifikovane atomarne formule su skoro negativne formule;
 - (2) Ako su A,B skoro negativne formule, onda su to i $A \& B, A \rightarrow B, \forall xA$.

```
\Box \Diamond \Box A \rightarrow \Box A
ek
                  □\x(□¬∃yAxy V ∃yAxy) ( Axy je Primitivno rekurzivna)
\mathtt{eS}_{\mathtt{PR}}
            DIDAVOA
eS
                   ((yU,x)A \square \& (y,x,9)_T)y \exists x \square g \in (x,Uy))
eCT
            \Box \forall x (\Box Ax \rightarrow \exists y \Box Bxy) \rightarrow \exists e \Box \forall x (\Box Ax \rightarrow \Box x)
eECT
                                     \exists y (T_{\gamma}(e,x,y) \& \exists B(x,Uy)))
( y se ne pojavljuje slobodno u [Ax)
e \equiv CT' \Box \forall x \exists y (\Box Ax \rightarrow \Box Bxy) \rightarrow \exists e \Box \forall x \exists y (T_1(e,x,y)) \&
                    (\Box Ax \rightarrow \Box B(x, Uy)))
                  ( y se ne pojavljuje slobodno u DAx)
((v_{U},x)) \land \mathcal{A}(v,x,y) \uparrow_{T}(v_{X},x) \rightarrow \Box \exists e \forall x \exists y (T_{1}(e,x,y)) \land A(x,Uy))
```

- [Bo] G.Boolos: The Unprovability of Consistency, Cambridge University Press, Cambridge, Mass., 1979.
- [Erl] L.E.J.Brouwer:Consciousness, philosophy and mathematics, na:
 loth International Congress of Philosophy, Amsterdam,
 1940., u:Philosophy of Mathematics(ed.P.Benacerraf, H.
 Putnam), Basil Blackwell, Oxford, 1964., str. 78-84.
- [Er2] L.E.J.Brouwer:Intuitionism and formalism, Insugural Adress at the University of Amsterdam read October 14, 1912., u:Philosophy of Mathematics(ed.P.Benacerraf, H. Putnam), Basil Blackwell, Oxford, 1964, str. 66-77.
- [Br3] L.E.J.Brouwer: Brouwer's Cambridge Lectures on Intuitionism, (ed.D.van Dalen), Cambridge University Press, Cambridge, 1981.
- D.van Dalen:Lectures on intuitionism,u:Cambridge Summer School in Mathematical Logic, Proceedings 1971 (ed. R.A.D.Mathias, H.Rogers), Lecture Notes in Mathematics 337, Springer-Verlag, Berlin, 1973, str.1-94.
- [Dul] M.Dummett: The philosophical basis of intuitionistic logic, u: Logic Colloquium '73 (ed. H. E. Rose, J. H. Shepherdson), North-Holland, Amsterdam, 1975, str. 5-40.
- [Du2] M.Dummett:Elements of Intuitionism, Calredon Press, Oxford, 1977.
- [Dc] K.Došen: Modal translation and intuitionistic double negations, Logique et Analyse (u Štampi).
- [FHV] R.Fagin, J.Y.Halpern, M.Y.Vardi: A model-theoretic analyse of knowledge; Research Report, IBM Research Laboratory, San Jose, 1984.
- [F1] R.Flagg:Consistency of Church 's thesis with epistemic arithmetic, J.Symb.Logic 49 (1984), str.679-680. (abstract).
- [F2] R.Flagg:Church's thesis is consistent with epistemic arithmetic,u:Intensional Mathematics(ed.S.Shapiro),
 North-Holland,Amsterdam,1985,str.121-172.

Literatura

- [A] P.G.H.Aczel:Saturated intuitionistic theories,u:
 Contributions to Mathematical Logic(ed.H.A.Schmidt,
 K.Schütte, H.J.Thiele), North-Holland, Amsterdam, 1969.,
 str.1-11.
- [Bel] M.Beeson: A type-free Gödel interpretation, J. Symb. Logic 43(1978), str. 228-246.
- [Be2] M.Beeson: Formalizing constructive mathematics-why and how?, u: Constructive Mathematics (ed. F. Richman), Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1981. str.146-190.
- [Be3] M.Beeson:Problematic principles in constructive mathematics, u:Logic Colloquium '8o(ed.D.van Dalen, D.Lascar, T.J.Smiley), North-Holland, Amsterdam, 1982, str.11-55.
- [Be4] M.Beeson: Foundations of Constructive Mathematics, Springer-Verlag, Berlin, 1985.
- [BŠ] M.Beescn, A.Ščedrov: Church's thesis, continuity and set theory, J.Symb.Logic 49 (1984), str.630-644.
- [B] N.D.Belnap:Modal and relevance logic,u:Modern Logic-A Survey(ed.E.Aggazi),D.Reidel Publ. Co.,Dordrecht,1981, str.131-151.
- [BM] J.Bell, M. Machover: A Course in Mathematical Logic, North -Holland, Amsterdam, 1977.
- [Bt] E.W.Beth:Remarks on intuitionistic logic,u:Constructivity in Mathematics(ed.A.Heyting),North-Holland,Amsterdam,1959, str.15-25.

- [Gol] N.Goodman: A theory of constructio equivalent to arithmetic, u: Intuitionism and Proof Theory(ed.A.Kino, J.Mynill, R.Vesley), North-Holland, Amsterdam, 1970, str. lol-120.
- [Go2] N.Goodman: The arithmetic theory of construction, u:
 Cambridge Summer School in Mathematical Logic, Proceedings
 1971, (ed.R.A.D.Mathias, D.S.Scott), Lecture Notes in
 Mathematics 337, Springer-Verlag, 1973, str. 274-298.
- [Go3] N.Goodman:Epistemic arithmetic is a conservative extasion of intuitionistic arithmetic, J. Symb. Logic 49 (1984), str.192-219.
- [Go4] N.Goodman:Egocentric and sociocentric epistemic logic, J.Symb.Logic 50(1985),str.lo96.(abstract).
- [Go5] N.Goodman: A genuinly intensional set theory, u: Intensional Mathematics (ed.S.Shapiro), North-Holland, Amsterdam, 1985, str.63-80.
- [Go6] N.Goodman:Flagg realizability in arithmetic, J. Symb. Logic 51(1986), str. 387-392.
- [Hell A.Heyting:Some remarks in intuitionism,u:Constructivity in Mathematics(ed.A.Heyting),North-Holland,Amsterdam, 1959,str.69-71.
- [He2] A.Heyting:Axiomatic method and intuitionism,u:Essays on the Foundations of Mathematics(ed.Y.Bar-Hillel, E.I.J.Poznanski,M.O.Rabin,A.Robinson),The Magness Press, Jerusalem, 1961, str. 237-247.
- [He3] A.Heyting:Intuitionistic foundations of mathematics,u: Philosophy of Mathematics(ed.P.Benacerraf,H.Putnam), Basil Blackwell,Oxford,1964,str.42-49.
- He4 A.Heyting: Intuitionistic views on the nature of mathematics, Bollettino U.M.I.(4),9.Suppl.fasc.2,(1974),str.122-134.

- [F3] R.Flagg:Epistemic set theory is a con servative extension of intuitionistic set theory, J.Symb.Logic 50(1985) str.895-902.
- [F4] R.Flagg:Integrating classical and intuitionistic type theory, Annals of Pure and Applied Logic 32(1986), str. 27-52.
- [FF1] R.Flagg, H.Friedman: Epistemic and intuitionistic formal systems, Annals of Pure and Applied Logic 32(1986), str. 53-60.
- [FF2] R.Flagg,H.Friedman:Maximality in modal logic(rukopis), 1986.
- [Fr] H.Friedman: Some applications of Kleene's method for intuitionistic systems, u: Cambridge Summer School in Mathematical Logic, Proceedings, 1971. (ed. R.A.D. Mathias, H.Rogers), Lecture Notes in Mathematics 377, Springer-Verlag, Berlin, 1973, str.113-170.
- [Fr2] H.Friedman:Classically and intuitionistically provably recursive functions, u: Higher Set Theory(ed. H.Müller, D.S.Scott), Lecture Notes in Mathematics 699, Springer-Verlag, Berlin, 1978, str. 21-27.
- [Ge] G.Gentzen:On the relation between intuitionistic and classical arithmetic, u:Collected Papers of Gerhard Gentzen(ed.M.E.Szauo), North-Holland, Amsterdam, 1969, str. 54-67.
- [Göl] K.Gödel:On intuitionistic arithmetic and number theory, u:The Undecidable(ed.M.Davis), Raven Press, Hewlett, New York, 1965, str. 75-81.
- [G82] K.Gödel:An interpretation of the intuitionistic sentential logic,u:Philosophy of Mathematics(ed.J.Hintikka),
 Oxford,1969,str.128-129.

- [Le] D.Leivant: Intuitionistic formal systems, u: Harvey Friedman's Research on the Foundations of Mathematics (ed.L. Harrington, M.D. Morley, A. Ščedrov, S.G. Simpson), North-Holland, Amsterdam, 1985, str. 231-256.
- [Lil] V.Lifschitz:Constructive assertions in an extensions of classical mathematics, J. Symb. Logic 47 (1982), str. 359-387.
- [Li2] V.Lifschitz:Calculable natural numbers,u:Intensional Mathematics (ed.S.Shapiro),North-Holland,Amsterdam,1985, str.173-190.
- [Lö] H.Löb:Constructive truth, u:Constructivity in Mathematics (ed.A.Heyting), North-Holland, Amsterdam, 1959.str.159-168.
- [Ma] Z.Marković:Heytingova aritmetika,u:Četvrta konferencija
 "Algebra i Logika", Matematički odjel Prirodoslovno-matematičkog fakulteta Sveučilišta u Zagrebu, Zagreb,
 1984., str. 34-63.
- [M] E.Martino:Creative subject and bar theorem, u: The L.E. J. Brouwer Centenary Symposium (ed.A.S. Troelstra, D. van Dalen), North-Holland, Amsterdam, 1982, str. 311-318.
- [MT] J.McKinsey, A. Tarski: Some theorems about sentential calculi of Lewis and Heyting, J. Symb. Logic 13 (1948), str.1-15.
- [My] J.Myhill:Intensional set theory, u:Intensional Mathematics (ed.S.Shapiro), North-Holland, Amsterdam, 1985, str. 47-62.
- [Pr] D.Prawitz:Natural Deduction, a Proof-Theoretical Study.Almqvist and Wiksell, Uppsala, 1965.
- D.Prawitz, P.E.Malmnäs: A survey of some connections between classical, intuitionistic and minimal logic, u:Contributions of Mathematical Logic(ed.H.A.Schmidt, K.Schutte, H.J.Thiele), North-Holland, Amsterdam, 1968, str. 215-229.

- [Ro] B.van Rootselaar:On subjective mathematical assertions, u:Intuitionism and Proof Theory (ed.A.Kino, J.Myhill, R.Vasley), North-Holland, Insterdam, 1970, str. 187-196.
- [Shl] S.Shapiro:Principles of Logic and principles of reflection, J.Symb.Logic 40(1984), str.1446-1447(abstract)
- [Sh2] S.Shapiro:Introduction:Intensional and constructive mathematics, u:Intensional Mathematics(ed.S.Shapiro), North-Holland, Amsterdam, 1985, str.1-10.
- [Sh3] S.Snapiro:Epistemic and intuitionistic arithemetic,u: Intensional Mathematics(ed.S.Shapiro), North-Holland, Amsterdam, 1985, str.11-46.
- [Sml] C.Smorynski:Calculating fixed points II, Fund.Math. 109(1980), str.189-210.
- [Sm2] C.Smorynski: Nonstandard models and related developments, u: Harvey Friedman's Research in the Foundations of Mathematics (ed.L.A. Harrington, M.D. Morley, A. Ščedrov, S.G. Simpson), North-Holland, Amsterdam, 1985, str. 179-230.
- [S1] R.Smullyan:Modality and self-reference,u:Intensional Mathematics(ed.S.Shapiro),North-Holland,Amsterdam, 1985,str.191-212.
- [Sp] C.Spector: Provably recursive functions of analysis:
 a consistency proof of analysis of extensions of principles
 formulated in current intuitionistic mathematics,u:
 Recursive Function Theory(ed.J.C.E.Dekker), American
 Mathematical Society, Providence, 1962, str.1-28.
- [St] W.P.van Stigt:L.E.J.Brouwer, the signific interlude, u:
 The L.E.J.Brouwer Centenary Symposium (ed.A.S.Troelstra,
 D.van Dalen), North-Holland, Amsterdam, 1982, str. 505-512.
- [S] M.Stojsković:Algoritmi i automati,Univerzitet u Novom Sadu, Novi Sad, 1972.

- A.Ščedrov:Extending Gödel's modal translation to type theory and set theory ,u:Intensional Mathematics (ed.S.Shapiro), North-Holland, Amsterdam, 1985, str. 81-120.
- [8] M.Šovljanski:Aspekti realizabilnosti,Univerzitet u Beogradu,Beograd,1985,(magistarski rad)
- [T] G.Takeuti:Proof Theory,North-Holland,Amsterdam,1975.
- [Trl] A.S.Troelstra:Principles of Intuitionism,Lecture Notes in Mathematics 95,Springer Verlag,Berlin,1969.
- A.S.Troelstra:Notions of realizability for intuitionistic arithmetic and intuitionistic arithmetic in all finite types,u:Proceedings of the Second Scandinavian Logic Symposium(ed.J.E.Fanstad),North-Holland,Amsterdam,1971, str.369-405.
- [Tr3] A.S.Troelstra:Intuitionistic fotmal systems,u:

 Metamathematical Investigations of Intuitionistic Arithmetic

 and Analyses(ed.A.S.Troelstra),Lecture Notes in Mathematics

 344,Springer-Verlag,Berlin,L973,str.1-96.
- A.S.Troelstra:Realizability and functional interpretation, u:Metamathematical Investigations of Intuitionistic Arithmetic and Analyses, Lecture Notes in Mathematics 344, Springer-Verlag, Berlin, 1973, str. 175-274.
- [Tr5] A.S.Troelstra:Aspects of constructive mathematics,u:
 Handbook of Mathematical Logic(ed.J.Barwise),NorthHolland,Amsterdam,1977,str.973-1062.
- [Tr6] A.S.Troelstra: The interplay between logic and mathematics-intuitionism, u: Modern Logic-A Survey (ed.E. Agazzi),

 D.Reidel Publ.Co., Dordrecht, 1981, str. 197-221.
- R.Vesley: A palatable substitute for Kripke's schema, u:Intuitionism and Proof Theory(ed.A.Kino, J.Myhill, R.Vesley), North-Holland, Amsterdam, 1970, str. 197-207.

SADRÍAJ	Broj	Datum
DRDRDRD		
<u>Uvod</u>		i-v
Frvo poglavlje:Formalizacija Brouverov i dokazivosti		
1 donoblication	,	_
1.1. Osnovni konstruktivni principi		3
1.2. Brouver-Heyting-Kreiselovo(BHK) -	-objašnjenje	e logičkih
konstanti		
1.3. Formalizacija i aksiomatizacija i		
matematike		
1.4. Integracija klasične i intuicioni		
epistemička matematika		
1.5. Neke ideje teorije o krestivnom s		
matematika		
1.6. Egocentrični i sociocentrični sis		
1.8. Beesonova teorija C		
1.9. Ostali sistemi		
T. J. OBOUTH DEDOCMENT OF THE PROPERTY OF THE		
Drugo poglavlje: Epistemička i intuici	onistička a	ritmetika27
2.1. Heytingova aritmetika		29
2.2. Churchova teza	• • • • • • • • • •	32
2.3. Peanova aritmetika		
2.4. Epistemička aritmetika		
2.5. Intuicionistička epistemička arit	metika	48
Treće poglavlje:Ekstenzije epistemičke	i intuicio	nıstičke
aritmetike	· • • • • • • • • • • • • • • • • • • •	·····>1
•		
3.1. Primena preslik.anja Y na ekster		
aritmetike		
3.2.Primena preslikavanja 4 na ekste		
aritmetike		
3.3. Primens preslikavanja (), ()		
epistemičke aritmetike		••••••

3.4. Primena preslikavanja $\left(\right)^{\left(\mathrm{E}\right)}$ na ekstenzije epistemičke
aritmetike
3.5. Primena preslikavanja () na okstenzije epistemičke
aritmetike62
3.6. Rekurzivna realizabilnost, I
3.7. Rekurzivna realizabilnost, II
3.8. Rekurzivna realizabilnost, III66
3.9. Rekurzivna realizabilnost, IV
<u>Cetvrto poglavlje</u> : Metamatematička svojstva epistemičkih i
intuicionističkih aritmetika78
4.1. Svojstvo disjunktivnosti i eksplicitne definabilnosti80
4.2. Sarcan pravilo83
4.3. Markovljevo pravilo84
4.4. Troelstrino pravilo
4.5. Churchovo pravilo
Dodatak N ^o 190
Dodatak N° 291
Dodatak N ^o 392
Dodatak N ^o 4
Titeratura

