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Preface

This course of 21 lectures on RECENT
DEVELOPMENTS IN THE THEORY OF POLAR CONTINUA is based
mostly on the former course I had the pleasure to give
at the Intermnational Centre for Mechanical Sciences in
Udine during the Sebtember—October session in 1969.
Being aware of many important topics in the mechanics
of polar continua which I did not include in my form-
er course, and even more being aware of the plenty of
mistakes, and most of them were not of the typographic
al nature, I was very glad to receive the invitation
of the Rector of CISM to give another course of lec-—
tures on the same subject as I did nine months ago.

Owing to the lack of time at home, I
had to prepare this course in Udine. The Rector, W.
Olszak, the Secretary General, Professor L. Sobrero,
together with the complete technical and administrat-
ive staff of CISM did everything possible to make my
stay and work here not only efficient, but also a
pleasure. I mostly admire their support and assistance.

In parallel to this course, at CISM
were held the courses by the most distinguished scien
tists, Professors Eringen, Nowacki, Mindlin and Soko-
lowski on more spectialized topics of polar continua.
Therefore, I have omitted from my lectures the chap-
ters dealing with the applications of linearized the-

ories to some special problems, such as wave propaga-
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tion, stress concentration, singular forces ete. I
have added a chapter on some aspects of the shell the
ory, and 2 chapters on polar fluids and on the theory
of plasticity, as well as some other minor corrections
and additions (e.g. on incompatible strains with ap-
plications to thermoelasticity and to the theory of
dislocations). Also the list of references is correct
ed and the references are also given to some recently
published papers.

I mostly appreciate the help of Mr.dJ.
Jarié, M. Se. in correcting the list of references
and in checking the proofs in the main text, as well
as the help of Mr. M., Micunovié, B. Eng. in writing
the formulae.

The International Centre for Mechanical
Sciences in Udine paid for the second time in one
year 1ts attention to the mechanics of polar continua.
Appreciating very much this interest in this modern
branch of mechanics, I hope that this course of lec-
tures (which I.delivered with the greatest pleasure)
will be, besides all imperfections and may be even
conceptual errors, at least a small contribution

to the further development of continuum mechanics.

Udine, July 16, 1970

R. Stojanovid



1. Introduction

Classicél continuum mechanics considers material
continua as point-continua with points having three degrees of
freedom, and the response of a material to the displacements of
its points is characterized by a symmetric stress tensor. Such
a model is insufficient for the description of certain physical
phenomena.

Already in 1843 St. Venant [471] * remarked that
for the description of deformations of thin bodies a proper theo
ry cannot be restricted to the analysis of deformations of a
straight line which can be only lengthened and bent, but must
also include directions which can be rotated independently of the
displacements of the points.

A further generalization of this idea was to at-
tach to each point of a three-dimensional continuum a number of
directions which can be rotated independently of the displace-
ments of the points to which they are attached. That physical
bodies might be presented in this way was suggested in 1893 by
Duhem [94]. In the study of crystal elasticity Voigt [473, 474]

came to the same ideas. It is the merit of the brothers Eugene

The numbers in square brackets refer to the list of refer-
ences at the end of these lectures.
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and Frangois Cosserat that a theory of such oriented continua

was developed, and there are three papers by them[71, 72, 73]
published in 1907-1909 which are the basis of all later work on
polar continua. However, their work remained forgotten until 1935,
when Sudria [437]gave a more modern interpretation of their theo
ry, applying the contemporary vectorial notation.

One of the essential features of polar continua
'is that the stress tensor is not symmetric, and the well known
second law of Cauchy is to be replaced by another one from which
the Cosserat equations follow,

In oriented bodies the antisymmetric part of the
stress tensor, according to the Cosserat equations, is related
to the divergence of a third-order tensor of couple-stresses.
This tensor, through the constitutive relations, depends on the
deformations of the directors, but the deformations of directors
are not the only deformations responsible for the couple-stres-
ses,

The non-symmetry of the stress tensor appears
also if the higher order deformation gradients are taken into
account, instead of the first-order gradients only, as it is the
case in the classical continuum mechanics. According to Truesdell
and Toupin [467], Hellinger [202]was the first in 1914, to ob-
tain the general constitutive relations for stress and couple-
stress, generalizing an amalysis of E. and F. Cosserat.

In 1953 Bodaszewski [39]developed a theory of non-
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—symmetric stress states, but without any reference to earlier
works. He applied the theory to elasticity and fluid dynamics.

Since 1958, the general interest in the non-sym-
metric stress tensor and in the Cosserat continuum rapidly in-
creases., In that year Ericksen and Truesdell published a paper
on the exact theory of rods and shells in which they considered
a generalized Cosserat continuum, i.e. a medium with deformable
directors, but without any constitutive assumptions. Glinther
[190] gave a linear theory (statics and kinematics) of the Cosse-
rat continuum, with a very interesting application to the con-
tinuum theory of dislocations, and Grioli [179] developed a the
ory of elasticity with the non-symmetric stress tensor. Erick-
sen's theory of liquid crystals and anisotropic fluids is also
an application of the theory of oriented bodies [101] .

There are different physical and mathematical
models of continua which serve as generalizations of the clas—
sical concept of a point continuum. All such models in which the
stress tensor is not symmetric are regarded here as POLAR CONTI-

NUA.

2. Physical Background

It was already mentioned that the classical mo-
del of a material continuum is insufficient for the description
of a number of phenomena. In the case of thin bodies this can

already be seen.
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If we regard a very thin circular cylinder, a
one-dimensional représentation is the sufficient approximation
for the study of its elongation, but twists are excluded from
such considerations. In order to include the twist we may asso-
ciate a unit vector with each point of the line, and rotations
of this vector give us the needed information on the twist. Ob-
viously, this rotation is independent of the displacements of
points of the line.

For the study of a flexible string a rigid triad
of unit vectors may be attached to each point of the string.

In the theory of rods, plates and shells the sit-
uation is similar. In the direct approach to the theory of rods,
Green and Laws .D53, 156] define a rod as a curve at each point
of which there are two assigned directors. The theory of plates
and shells may be based on the model, consisting of a deformable
surface with a single director attached to each of its points.
Such a surface is called by Green and Naghdi [165]a Cosserat sur
face.

A crystal in the continuum approximation is a
point continuum, but the rotations of particles cannot be reprea
sented in such an approximation. In order to include the interac
tions of rotating particles in crystal elasticity, Voigt M73,
474]was the first to generalize the classical concepts of con-
tinuum mechanics.

Ericksen [105]developed the theory of liquid crys-
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tals and anisotropic fluids assuming that a fluid is an ordi-
nary three-dimensional point continuum with one director at each
boint. Particles of the fluid are assumed to be of the dumb-bell
shape.

Continuum mechanics is a method for the study of
mechanical properties of bodies the dimensions of which are very
great in comparison with the interatomic distances. The discrete
structure of matter, in fact, is to be studied if we wish to
make an exact theory of the behaviour of matter. For bodies con
taining a large number of particles it is practically impossible.
The classical point continuum is just an approximation, and
some models of continua are constructed in such a way to repre-
sent a better approximation and to include some effects which can
not be interpreted from the point of view of a point continuum,

In a series of papers Stojanovié, Djurié and Vu-
josevié [428] in 1064, Green and Rivlin (for references see Riv
lin [378]) have taken as the starting point the discrete struc-
ture of particles which constitute the medium. Each particle
consists of a number of mass-points. The continuum representa-—
tion consists of a point continuum, the points correspond to
the centres of gravity of particles, and in a number of defor
mable vectors, the directors. The distribution of masses in
such a representation is specified through some inertia coeffic
ients, The forces acting on mass-points in the continuum repre-

sentation reduce to the simple forces acting on the points of
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the continuum and on the director forces acting on the directors,
as well as to the simple and director surface forces (stresses)
and couples, measured per unit area of the deformed surface.

Krd8ner, Krumhansl, Kunin and other authors approach
this problem of approximation from the point of view of solid
state physics [255] . We shall mention here only the very im-
pressive picture of the couple-stress given by Kr8ner in a dis-
located crystal [252] . From the distribution of microscopical
stresses, applying an averaging process, Krdner computed the
macroscopic moments., The obtained couple-stress he attributed
to the non-local forces, i.e. to the long-range cohesive forces,

Mindlin [285] and Eringen and Suhubi [138] intro-
duced microstructure into the theory of elasticity and into con
tinuum mechanics, in general., The unit cell of material with

-microstructure might be interpreted as a molecule of a polymer,
as a crystalite of a polycrystal, or as a grain of an incoherent
material. The concept of microstructure Eringen introduced also
into the fluid mechanics [121] .

Eringen generalized further the model and defined
micromorphic materials [125]. A volume element of such a mater—
ial consists of microelements which suffer micromotions and mi-
crodeformations. Micropolar materials are a subclass, in which
the microelements behave as rigid bodies.

The theory of multipolar media by Oreen and Riv-

lin [172, 173]represents a very fine abstract and general math-
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ematical treatment of generalized continua, from which many the-
ories follow as special cases.

| Besides the physical models mentioned which serv-
ed as a basis for different continuum-mechanical representations,
there is a number of other theories and treatments inspired by
the problems of solid-state physics (Teodosiu [449]), or by the
structure of technical materials {(Misicu [306]) or by the math-
ematical possibilities for generalization of classical concepts
(Grioli [179], Aero and Kuvshinskii [5]).

Granular media represent also the field in which
the methods of generalized continuum mechanics are applied (Oshi
ma [347] ).

It is impossible to mention all contributors to
the contemporary development of continuum mechanics, and we re-
stricted this list only to some of them whose work most inspired

further research.

3. Motion and Deformation

We shall regard material points as the fundament-

al entities of material bodies.
A body B is a three-dimensional differentiable

hanifold, the elements of which are called material points. *

% This definition of a body corresponds to the definition given
by Truesdell and Noll [468]. Noll [330] developed a very general
approach to continuum mechanics, but we are not going to follow
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The material points MjMp.may be regarded as a set of abstract ob
jects M mentioned in the Appendix, section Al, so that the 1:1
correspondence of the points M| and of the points of a three-di-
mensional arithmetic space establishes a general material three-
dimensional space. Singe bodies are available to us in Euclideanb
space, we shall relate the points M, to the points of Euclidean
space, establishing a 1:1 correspondence between the points My of
a body B and points x of a region R of this space. The numbers
xL,L = 1,2,3 represent coordinates of the material point M and
the points X are places in the space occupied by the point M .
Any triple of real numbers xhb==h2§ may be re
garded as an arithmetic point, which belongs to the arithmetic
space Az . A 1:1 smooth correspondence between the material points
M of a body B and arithmetic points§ , such that Xk= Xk“4),K =
= 1,2,3 represents a system of coordinates in which individual

material points are characterized by their material coordinates

X, K =1,2,3 .

A 1:1 correspondence between points X of a region
R of Euclidean space, and points M of a body B is the configura

tion of the body,

it since it does not include plasticity and mostly is concerned
with the non-polar materials, regarding elasticity, visco-elasti
city and viscosity from a unique point of view. For the general
approach to this theory, because of its highest mathematical ri-
- gour and for a very complete bibliography we refere the readers
to the book by Truesdell and Noll [468].
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= M = X xE,x%) . (3.1)

The points x" represent places in the space occupied by the ma—
terial points M and we shall refer to the coordinates x“ as to

the spatial coordinates. The functions x'=x“(X) are assumed to
~n

be continuously differentiable,

In general no assumptions are made on the geomet-
ric structure of the material manifold and it is not to be con-
fused with one of its configurations. It is advantageous to

choose one configuration as the reference configuration and to

identify material coordinates with the spatial coordinates in
the reference configuration,

Thus, the material points of a body B in the re-
ference configuration are referred to a system of coordinates
X , which is an admissible system of coordinates in Euclidean
space, and in the following we shall refer to Xkas to the mate-
rial coordinates.

Motion of a body is a one-parameter 1:1 mapping

o= oo, XL D = xkx ), (3.2)

or shortly

x = x(X,t),

n N oo
of the points M in the reference configuration Ky on the points
X occupied by the material points at a moment of time t , which
N
determines a configuration K; = K(t). The parameter { is a real

parameter and it represents time, We assume that the functions
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X = 5(5) are continuously differentiable,

We assume that
dxX k
(3.3) det_K = d.etx5K # 0,
0X
so that there exists the inverse mapping
K K
X = X(I’,xa,x3,t),
short:
(3.4) 5 = i(ﬁat)-
The partial derivatives
' k K
(3.5) Fie = axk/ox” = x*
K
FOos axfraxk = x" L,

are called deformation gradients,and the total covariant deriva-

tives (see Appendix, section A3)

X 'kt,-na,x shyeoky ?

represent deformation gradients of order 2 ,3 ,... N .

Let Ky and K be two configurations of a body B,
K, referred to material coordinatesXK, and Kreferred to spatial
coordinates x*. The systems of reference X# and x* are chosen in
dependently of one another. The deformation is a mapping of one

configuration on the other,

(3.6a) x! = xe(z) ,
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X' = X(x) . . (3.6b)

) _
If S and ds® are squares of the line elements in the configu-

rations K and K respectively,

4s°

it

L M
G ydxX ax", (3.7)
d52 = g%mdxc dx"‘,

using the mappings (3.6) we may represent the line element of
the reference configuration in terms of the coordinates of the

deformed configuration and conversely. From (3.6) we have

dx" = xidx'  dx! = xidx' (3.8)
and
ds® = ¢, dxtdx", (3.9)
ds® = C_ydXdX".
Here
Com = CLHXEEXTm (3.10)

is the spatial deformation tensor, and

[ m
Civ = GemXiLX5n (3.11)

is the material deformation tensor.
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It is always possible to decompose a non-singular
matrix m into one symmetric and one positive definite matrix,
k k ~t *k _t
(3.12) M.g = R'LS'E = S 'tR'?,)
. * . 3 .
whereE, 2 and § are uniquely determined ( cf. Ericksen [100],

§ 43). Applying this polar decomposition theorem to the matrix

E (cf. [468]) of deformation gradients, we obtain
(3.13) F = R-U = VR
n N N NN
where R is orthogonal, and U and x , determined by
2 2

(3.14) v’ = F'E Vv = FE

are the right and the left stretch tensors, respectively. The

deformation tensors C and B

nJ o~

(3.15) ¢ =V =FF
B =Y - EF

are accordingly called the right and the left Cauechy-Green ten—

SOrs.

T
Since F = {x%K} y the transposed matrix E
~N

is determined by

T ¢ LM
Foo= {gkax;LGL}

n

and for the components of the tensors S and E we have



Deformation and strain tensors 17

K k 8 KM KM
CL = QX Xm6 = G Cy (3.16)

k KL k n "ik ‘1k
By = G XjXjiQm = C; = gmC . (3.17)

The tensor C, with the components

An KM k m
¢k = G xjxjy (3.18)

is the reciprocal of the spatial deformation tensor ¢,
N
“lim o"

Cj.kc =

If a body suffers only a rigid motion, the distances between its

points are preserved, there are no deformations and
Choo = Gy Cht = Gkt - (3.109)

The material and the spatial strain tensors are

defined by the following formulae
Equ = (. ~ Gy = Ygy - cw)
kLo = 5k KUy €k = 5\Gke T Cue/s (3.20)

where we denote, as usually, material tensors and material com-—
ponents by capital letters and capital indices, and spatial ten
sors and spatial components by small letters and small indices,

Velocity of a material point 5 is the vector v
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with the components

ax*(X , 1)

(3.21) Vo= xb |
v x ot x = const.

In general, if T = T(x,X,t) 1is a time dependent double
~ NN ~n
tensor field (See Appendix, section Al and A3), the time deriva
. K
tives with the material coordinates X kept fixed are called

material derivatives and are denoted by a superposed dot. Some-

times it is useful to place the dot above a superposed bar,
which denotes upon which quantity the operation of the material

derivation is to be performed. For the tensor field T we have
~n

K... K -
LK. OT..oh. (0T, [t 1% _ V.t
i = = +<w {mE}T...t_” )x -
K

oT... K... .
(3.22) = —Tk + T...km’zxc

Acceleration a is a vector with the components

defined by

: o - v VL dv’ Vo
(3.23) a* = v' = x' = % +{;k}v°‘v“ = S’t +v,&x<".

The rate of change of the arc element may be cal

culated directly from (3-7)2,

(3.24) ds? = g-v&<dx'”dxé + dxi’d_xif) :
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Since
v v
dx* = x;dX ,

and the material coordinates are kept fixed, we have

dxv = xidX" = zaxt = wiaY" = widx* (3.29)
and
d;s2 = Ev},kdxé‘d,xk_ = Zd}kdxéfd,xk (3.26)
where
d;, = %(VM U = v (3.27)

is the rate of strain tensor.
The gradients of velocity v,;may be decomposed
into the symmetric and the antisymmetric part. The antisymmetric

part

l(v— ) (3.28)

2

Wi = VY

v -V

&

2y

represents the vorticity tensor.
The tensors of the rate of strain and of the vor
ticity are mutually independent, but the gradients of these two

tensors are related by a simple relation:

1 1 .
Wi = Wi T Vi) = g b Vg s e Vi)
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(3.29) = dy,; - d;

v T ad'k[i')i:l '

A motion is a rigid body motion if ds = dS,and
the conditions for a motion to be a rigid body motion are given
by (3.19). In terms of the strain tensors these conditions re-
duce to E = 0 and e = 0. For a rigid body motion the rate
of strain vanishes and the velocity field has to satisfy the ob-

vious equations

(3-30) 'U'(;,,J_) = 0.

The conditions (3.30) are necessary and sufficient for a motion
to be a rigid motion. Iﬁ,dxi = whis an elementary diéblacehént
of a body, from (3.30) it follows that the necessary and suffi-

cient conditions for displacements to determine a rigid motion are
(3.31) wi,p = 0.

These equations are called Killing equations. In Euclidean space
the equations (3.30) and (3.31) are integrable and the integrals
represent components of the velocity field and of the displace-
ment field for rigid motions.

Let d.{B' and d:gB,

X
(3.32) AR = dX'Gc, 4R = dX Gy

N

be two infinitesimal vectors in the initial configuration of a
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body. These two wectors determine a surface element dg,
K
dS = diRxdoR = (GexG)dyX dpX" (3.33)
with the components
dS, = Cul(GixG)diX dpX’ (3.34)
or, according to Appendix (Al.29),
X L
d.SM = EMKLCL1X d,aX . (3-35)

The surface element may also be represented by an antisymmetric

tensor,

ds’® = ¢""ds, = 2d,x7dx", (3.36)

K K
For a surface given by the equations X = X Qﬁ,uﬁ)

may choose the vectors c4} and dpR to have the components

K
ax’ - gxzd‘*‘, d X" = 2 qu (3.37)
W

and from (3.35) and (3.36) we obtain

K. L
_ IX 9X TR
dSy = anKLO—u}mdu’ du (3.38)
[p al
45"t - WX g taud . (3.39)
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When the body suffers a deformation (3.6), we have

K k
0X K 0x
(3-40) _au’“ = X,k(')_u,“' y (N = 1,2)
; k k 1,2
where the equations of the deformed surface are X° = X [X(u,,u)].

Introducing (3.40) into (3.38)1 we obtain

However,

KoL N n K L 1 n
Enc XX = Eng X XonX5 X5y = VG det(X) e Xin

and
dxX Ox An
(3.41) dSM = ’H\/_d’et(x’tfikin d'u' d’u' =1 X;Hd'sn,
L ow?
where
g 4
(3-42) J = 'édvet(x,]'> .
Hence
_ x* dx 1 4.2
dSn = ”"a_u}_?d'w du y
which represents the surface element of the deformed surface.
Also
Ox[P (')xq]
(3.43) dsPd = du! du?

)

oul aul
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and it may be easily verified that

as™ = XD x5 dsPe . (3.44)

The volume element dv in the initial configuration
of a body may be defined in terms of three infinitesimal displa-

cement vectors d’“B = d“XKEK , o« = 1,2,3,

K L M
After a deformation we have

d.V = tKLHX'Ek XE%X?M dixk dvgx!dv?,xm .
Since
T
tKLMX‘;(le;-CX?m = \/Edet(xzt)enm = \/‘S‘det(xit)szm ’
with the notation (3.41)2 we may write
-1

-1
dv = T €, dix"doxtdsx™ = T dv, (3.46)

where dv is the volume element in the deformed configuration,
dv = &, dx dyxtdsx™ . (3.47)

Some authors, mostly British, prefer the use of convected coor-

dinates, with respect to which the numerical values of coordin-
ates of material points in a deformable body remain unchanged

K
during the motion of the body. Let X = const. be three independ-
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ent families of material surfaces. At any moment of time these

surfaces define a convected system of coordinates for a given

K
motion, and during the motion we have x* = X 0f. To avoid ambi-
k
guities we shall denote convected coordinates by O .
'L . . . . . .
If Tx(ﬁ) is a tensor field in the initial con-

figuration of a body, at time t its components will be
t Ket Tt
(3.48) Tk<9) = bkbLTK (ﬁ,t) .

Since it is no more necessary to distinguish between material
and spatial coordinates, it is possible to consider simply the

. -t . — : L e
tensor field T@(z,t) which coincides with Ty at the initial mo-
ment £y of time. Thus, the fundamental metric form at time } will

be

(3.49)  ds® = g,,(0,0)d0°de’ = gy (X,HdX X",

and gy, coincides at the initial moment t, with the components
GgL > and with the components Cy at time t. The strain tensor,

with respect to convected coordinates, is defined by

(3.50) e = %[gm(g,t) T

From (3.49) we have

(3.51) ds® = §.(9,hd0“de
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and for the rate of strain tensor follows the expression

4. Compatibility Conditions

For a given tensor field g(i), or g(ﬁ), the defor

mations
x = x(X) or X = X(x) (4.1)

do not necessarily exist. The existence of the deformations de-—
pends on the integrability conditions of the equations (3.10) or
(3.11), and these conditions are usually called in continuum mech

anics the compatibility conditions.

There are six independent equations (3.10), with
nine independent deformation gradients X§k' In order to find the
deformations we have first to find the deformation gradients, but
since the number of the unknowns, regarding the equations (3.10)
as a system of algebraic equations, exceeds the number of equa-
tions, we shall first differentiate partially the equations (3.10)
with respect to the spatial coordinatesxz, assuming that the de-
formations (4.1) exist. Thus we obtain a system of 18 equations
with 18 unknowns OMOHXK ,

9,C aLGMNX%X?mX?n*

mn
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(4.2) + G, 0, %" x5 + X" 0,0,x") .

Permutating the indices f,m,n we may construct the Christoffel

symbols of the first kind for the tensor ¢

(403) [Y’m)n]g = %(Olcmn + amcmt - anc%m) =

= [LM)N]GXElX?mX’:n + GHNx?naEOmXM 3

where D_M,N]Gare the Christoffel symbols for the fundamental

n

tensor g . Since there are 18 equations (4.3); we easily find

M
the derivatives 9,0,X :

N NK n LN
(4.4) 9,0,X° = 6 x;[tm,n], - {N ]’X;zX;m .
~ LMJs
NK n “Tak N
According to (3.18) we have G Xx;, = ¢ X;, , and since
. -1, k
(4.5) c™[tm,n], = {zm}c’

~

(4.4) reduces to

N N N1 ot M N
. o X' = [n }x- - X X0 = .
(4 6) a% mX {Dm . mn {LM}G W Nom F?,m

n

N

The integrability conditions of (4.6) are dp.Fy, = 0.
Differentiation of (4.6) with respect to x" and

the elimination of the second-order derivatives of X's by the

aid of (4.6) gives for the integrability conditions the relat-
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ions
Rigm (X5, = Rigit (X5 XGX5, = 0

where B(S) and B(g) are the Riemann-Christoffel tensors (see Ap-

pendix, (A4.10)) for the Riemannian connections{l<]-and{ K }.
Imle LMQ

~

However g is the metric tensor of Euclidean space and Eﬁg)vanisg

es identically. Therefore the integrability conditions reduce to

20w g, * {;t}c{ztn}g)m = 0. D

LY n

Ritm (C)

R
Transvecting R,;, with c,; we obtain the covari-

ant Riemann-Christoffel tensor

Rk!mn = e(ak[zm,n]s - -éSt[Bm,S]g[kn,t]S')[kz] (4-8)

which satisfies the following three identities (cf. Schouten

[402] ):

Rk!mn = —lemn )
Riten = ~Ritum s (4.9)
Rklmn = Rmnk! ]

and this reduces the number of independent components of the
tensor Ryy,, to six.

The Einstein curvature tensor A with the. compo-
o~
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nents

AY = R - IRgH,

where

[ Y omimes et
R ¢ gk 9 &Rﬁkm ’ R

7
g:;;R
in three-dimensional spaces may be obtained from (4.8) by
vi | (kB gmn
(4.10) | AT = gtV R

and the compatibility conditions may be expressed in terms of
the Einstein tensor, which is symmetric.

The compatibility conditions are usually written
in terms of the strain tensor €, and may be derived from (4.8)

and (4.10) substituting ¢ from (3.20)2,
S = 8-°2¢

and neglecting the products of the Christoffel symbols in (4.8),

as small quantities of the second order. Thus,

vkt &mn
(4.11) &t epmn = O
where "," denotes covariant differentiation with respect to the
fundamental tensor g .
nN

If the compatibility conditions (4.8) for a given

strain are not satisfied, we may write

(4.12) At = niie)
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and n is the incompatibility tensor. In the linearized case we
Y]

have

T e TP (4.13)

km,ﬂn

When n # Oa deformation of the form (4.1) does
not exist and the strain tensor may be interpreted as a tensor
which represents a deformation from a non-Euclidean configuration
N of the body considered into one of its Euclidean configura-
tions. This interpretation of incompatible strains is applied

in the theory of dislocations and in thermoelasticity.

4.1, Incompatible Deformations

When the compatibility conditions are not satis-
fied but the deformation tensor C(X), or c(x) is given, the
~NoN LV .Y)

K
quantities X;, which appear in (3.10),
K L
G X5 X5 = Cuelx) (4.1.1)

are not deformation gradients. In other words, the space with
the fundamental tensor S is not the Euclidean space. To indicate
that Xék are not deformation gradients ( i.e. partial deriva-
tives), we shall introduce the notion of distorsion and denote

L t8)
them by 6()') and GL )

L AN L A(p)
6By = Oh, OpOL = o} (4.1.2)
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such that

(4.1.3) oMax" = dut

and du® are not coordinates of the Buclidean space. (We may also
interprete ut as non-holonomic coordinates in the Euclidean

()
space). Since O | are not deformation gradients, the Pfaffians

(4.1.3) are not integrable and

(4.1.4) 2,00 - 8,6% = 25, 6% # 0.

To determine the geometry of the non-Euclidean
space in which the distorted body is to be now considered, we
shall introduce some assumptions: a) The space is a linearly
connected space; b) coefficieénts of linear connection rﬂi are
completely determined by the distorsions; c) the distorsions are
smooth and continuously differentiable functions of coordinates
Xﬁd) the space admits absolute parallelism and the distorsions
represent in it three fields of parallel vectors. From these

assumptions we may write

) NN
(4.1.5) 00 - M@y = 0

and the coefficients of connection are determined by the expres

sion

)
(4.1.6) FHKL =. 9&)0”@ L)
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To bring the body back into the Euclidean space,
into its final configurationK;, we have to subject it to an ad-

(A) 2
ditional incompatible deformation (distorsion) ¢ v, or &n,,

such that
doydu = dx! . (4.1.7)
Combining the distorsions (4.1.3) and (4.1.7), we obtain
dxt = e axt . (4.1.8)

M
Since x™ and X are coordinates in the Euclidean
space, the relation (4.1.8) must be integrable and the products

(N
- of distorsions $a)and 8 have to represent deformation gradi-

ents,
;
¢ = x5, (4.1.9)
L (A L
Oy = X5 - (4.1.10)
It may easily be verified from (4.1.6, 9, 10)
that
k k ( 5 OZXK
r""" - Q(x)aﬂéz = rHLX X,Qx K + x’Ke— (4.111)
Ox’ox"

If g:{ and gfé are the fundamental tensors corresponding to the

K
connection Ny and M,y , respectively, we may define the correspond
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ing strain tensor by

4
(4.1.12) 2Ex. = g -Gk, 28 = g - 9 .

It is not possible, however, to determine direct
ly the rate of strain and vorticity tensors. Let x% and x% be
two infinitesimally close to one another points in the deformed

configuration K,

1
(4.1.13) xi - x} = Axb = gydut .

Since Au'is determined independently through the difference of
K K
coordinates Xi—X2 in the initial configuration,
X K K K 2\
(4.1.14) Xa - X1 = AX = G(X)d,u, >
AL&X is independent of time and if the configuration K changes
with time, only the distorsion () may be considered as functions
[)V]

of time., Let the equations of motion of points of the body con-

sidered, in its final Euclidean configurationK; ,be = x*() .
Then

- k (ko Ak = ‘i>kA )
(4.1.15) x; -~ Xy = Qv = ¥y)»Au

(vk = ).
But
oMz, = vMxy + Ax) = vF o4 v"‘tAx" + oo,
n o~ ~N
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and we may write
s k(A
Av = wHAx' = dyalyAxt, (4.1.16)

Since this relation has to be valid for arbitrary pairs of points
Xy and.gg, the gradients of the velocity vector have to satisfy

the relation:

(A)
v:‘g = ‘I’(X)Qg . , (4.1._17)

Using the fundamental tensor g, of the configuration K, we write

(A)
Vpp = Smk‘h)‘?e ;

and for the rate of strain and for the vorticity tensors we

have the expressions

.k ) - (A :
du = o=y, Wi = qngan®y - (4.1.18)

From the expression (4.1.18)2 for the vorticity

tensor we can calculate its gradients,

( (a)

wm!,n = [gkm(Q(X Q('XQB ")][m!]

The distorsions S(M are only implicite functions of time, and

using (4.1.10) we obtain

: ()
‘V"’)’n = 4’(},)“'\7 + é(;‘)&q’()& P = (4.1.19)

_ W)z &
= Boy. t ‘?mﬂ @)
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and finally,

ok

()
(4.1.20) Wy, = [gua(Ey ‘I’(x)n + ¢ ‘Pmﬂ ‘I’(}n + ‘I’z“%)][mu

5. Oriented Bodies

A body to each point of which is assigned a set

of vectors g@),m = 1,2,...,n, represents an oriented body.

The vectors g@ﬁ'are directors of the body. In general, deforma~
tions of the directors are independent of the deformations of
position.

Let the directors in an undeformed reference

configuration Kybe the vectors

(5.1) Dy = Bel®)

with the components 2(; referred to a material system of refer-
enceXK . A deformation of an oriented body is determined by

the equations

(5.2) ' x = x(X)

[a VAN

do = D) = duX) .

Directors are not material vectors. For material
vectors g(# the deformation is determined by the deformation of

position,
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k k K
D( = )C',KD(“) B (53)

o)

In an oriented body the vectors

Au:) = d(:n - xéKD(i) (5.4)
represent the difference between the deformed directors and the
vectors obtained from the directors in the reference configura-
tion by the deformation of position.,

The Cosserat continuum in the strict sense is a
material medium to each point of which there are assigned three
directors, which represent rigid triads of unit wvectors. The
directors in this continuum suffer only rigid rotations, and
length and angles between the directors are preserved through-

out the motion so that

k 11 K L
ke dmdp = CuDbyy = Dep = const..  (5.5)

A medium with deformable directors represents a

generalized Cosserat continuum.

5.1 Discrete Systems and Continuum

Models
The basic notion in the solid state physics is the
crystal laféiéé. A unit cell of a crystal is composed of four
lattice points My,M,,M,,M3;. Let My be a lattice point., Any three

vectors 815 87,33 are lattice vectors if they are position vectors
N
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of the lattice points My, My, My with respect to My .of the unit

cell. The vectors
(5.1.1) r = Bgi + ma, + Ndg (¥,m,n— integral numbers)

determine the lattice points of a perfect crystal.

Motions of a crystal are determined if determin-
ed are the motions of its lattice points. However, instead of
the motions of the lattice points it is possible to regard the
motions of one lattice point for each cell, and the motions of
the lattice vectors 3, for each individual cell. This may be con
sidered as a four-point model which under suitable assumptions
may be used for a continuum approximation of an oriented body,
as was done by Stojanovié, Djurié and Vujosevié [428] . A more
general approach to the generalized Cosserat continuum with an
arbitrary number of directors is proposed by Rivlin [377, 378]
and in the following we shall consider Rivlin's n-point model.

We assume that a body consists of particles Py,.

.., Py and that each particle consists of n material points My,.

.+»M, with masses my,...m and with position vectors ry,..,r, with
respect to a fixed origin g in the space.
If Cp is the centre of masses of the particle P,
and@,, Vv = 1,...,n position vectors of the pointsM,,, from parti
~
cle dynamics we obtain for the momentum, moment of momentum and

kinetic energy of a particle P the following expressions:*

*Rivlin [377, 378] investigated the transition from a discrete X
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Discrete systems

K = Xmib, = Xmy,, (5.1.2)
v=1 v=i :
?,0 = varvxvv = mr XV + vao x0,, (5.1.3)
~ v=t ® v=l o~
T = %(mvc ¥ Zimvgv Qv> : (5.1.4)
Here we have
' or, :
vy, = v = ?ﬁ_ ’ (5.1.5)
9 = zv - :c ’ (5.1.6)
Ymeo, = 0, (5.1.7)
vatl W
mo= xm,, (5.1.8)
v=1
mr, = vaﬁv . (5.1.9)
va=i

Introducing the coefficients (which are not tensors)

e = %Zm o or | (5.1.10)

system to continuum, including some implications of the first
and second laws of thermodynamics, without writing the expres-—

sions for momentum and moment of momentum.
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the relations (5.1.3, 4) may be rewritten in the form

= R :
(5.1.11) b= omleoxvo+ i gxxg“) ,
me2 o, ihps s
(5.1.12) | T = §(v° + i ”gx-g“) .

From the last two expressions we see that for the dynamical
specification of the particle Pwe need to know the quantities: m

— the mass of the particle,ik” — the dimensionless coefficients
which characterize the distribution of masses inside the parti-
cle, and the vectors 0, which determine the configuration of
the particle, " \

To denote that all the quantities which appear

in (5.1.2 = 12) correspond to the particle P we shall label them

with the index P so that we write

0 P p P P . P
5?3 ,g’,P’ Mp, Myy Py Teo gvy ,%“’ TP ’
and
n n
- P P P
(5 1 13) mp = va y mPr,c - va,r;v y
v=i v=1i
S pLPp 0 P_.P
5}’ = Yomyry Wb = mP<};cX5c + l'p Oxx )

For a body consisting of N particles we have now

for the momentum

N
(5.1.14) K = 2 mprk

p=1
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for the moment of momentum

and for the kinetic energy
N 1 N
T =XT = §Zmp(£§'i‘,§+ ibret.0P) L (5.1.16)
P=1 N~

To pass from this discrete system of particles
to a continuum we have to replace the sums by integrals. In or-
der to do so we assume that our system of particles occupies a
domain B + @B where OB is the boundary of the body B . We assume
P P P P

further that the discrete vectors resfes Qy vy may be re-
[a*]

and Q
N.
placed by continuous vector fields r,r and d, and d, and the
~ 2] ~ ~n
discrete scalarsrnpandbﬁfbby continuous scalar fields ¢ and Rt
It must be noted that the passage from a system of particles to
a continuous model can be eff€cted only if all the quantities
involved, which are connected with the particles, vary but little
as we pass from one particle to its neighbours.
We assume that a region V of B with a boundary

S is sufficiently large to contain many particles. Hence we

may write

Tm = [edv, (5.1.17)
v

P , |
Ymb = /gvd.v . (5.1.18)
v v
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(5.1.10) Lmeri = /QZdV,
v v
(5.1.20) Zmpzsxf\f: = /szﬁdv ,
| v v
(5.1.21) Ympflrl = /ai-f;dV :
v Y
(5.1.22) Ympidroixol- = f t“gmxdmdv
V n n V
. - P
(5.1.23) gmpb "gi Qp /Qb FdoyddV .
\

Thus the expressions for momentum, moment of mo-—

mentum and for the kinetic energy for a part V of the body B ob

tain the form

(5.1.24) ' § = /Qﬁd’v’
\)
(5.1.25) v - /9%"2 + PrdaypxddV
v
1 S Y
(5.1.26) T - §/g<5.5 + P dad v
N}

The continuum representation of the originally
discrete system has all the properties of a generalized Cosserat
medium: to its points r attached are the directors gon, the mo-

tions of which are independent of the motions of the points.
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5.2 Materials with Microstructure

1
Let a body be composed of microelements AV in
. ! .
which ‘a continuous mass density P exists, such that the microe-
1
lements AV represent material continua. A macro-volume element

dV is composed of the micro-volume elements CiV',
v = /d,v' : (5.2.1)
v

and we assume that the macro-mass dMin dV is the average of all
masses indV. Denoting by P'dV' = dM the micro-mass of the

. J -
micro-volume element dY, .  .we may write

/P'dv' = dM = P4V . (5.2.2)
dv-

With respect to a fixed Cartesian coordinate Sys—
u l“ 3 » ' . .
tem Z let Z be coordinates of points Z in a micro-volume ele-
~
. l M
mentdVin a reference configurationK;. The integral over the

macro-volume element

/P'z'“dv' - PZ"aV (5.2.3)
daV
determines the centre of mass g of the macro-volume elementdV,

| 106 [}

Denoting by R =7 e the position vectors of the points Z of micro-

~ N ~n

o
elements, by S =7 €« the position vectors of the centres of
1 —ls
mass of macro-volume elements dV and by P = = e the position
o~

I
vectors of the points R relative to the centre of gravityB s
~N

R = R+ P (5.2.4)

[a¥]
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all with respect to a fixed Cartesian system of reference, we
have in the coordinate notation
I ot o —0%

(5.2.5) Z = 7 +:=

In a deformed configuration K(t)let the positions
of points Rlbe x‘and of the points R be ro. The relative posi-—

[hV)

tion vectors of r' with respect to the new positions of the cen-

~n
tres of mass let be Q'. The equations of motion of the centres

ny

of mass of the macro—elements dV, which become dv and of the

\
points R are

(5.2.6) ro= rr\;(}\i},t), R = g(g,t),
ros r®E, R o= RELY,

and we assume that in the deformed configuratizon the positions

of the points g'are defined by the relations

(5.2.7) z' = : + o or z'% = 2% & §'“.

b

250

The further assumption we make is that the motion (5.2.6) car—
ries the centres of mass of dV into the centres of mass of the

deformed macro-volume elements dv ,

(5.2.8) Jeriav = erdv.
dv
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From (5.2.6) we have

r' = rR+P,H = rRY) + @', (5.2.9)
where
o' = Q(E,P",t). (5.2.10)

Expanding (5.2.9)1, under the aksumption that g'is an analytic

—1% .
function of = , we obtain

i)gyn
o' = oR,0,t)+ SR (5.2.11)
Through (5.2.9), we see that for g' = 0
Q(B,O,t) = 0, (5.2.12)
and if we write
aazg')“ = xR0, xA = aaff, (5.2.13)

in the linear approximation we obtain the equations of motion

of points R' in the form
~

, (5.2.14)

or

. (5.2.15)
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The coefficients %“reciprocal to %, are defined by the relations

. 0=
(5.2.16) xg = 5
i1
and
(5.2.17) xx g = 0%, xHxf = 8% .

The velocity y'of a pointBl is defined by
(5.2.18) vo= M o= r 40 = ovo+x -
~N ~N ~ ~

or, in the componental form

(5.2.19) 2% = 3% 4 xHIT

Eliminating = P erom (5.2.19) we obtain

(5.2.20) v = v* 4 ki‘,,xf%" = v*+ viET
where

(5.2.21) V% = xﬁ‘ﬁxf = vilzlz,nt] = viz,b .

For a macro-volume element dvthe momentum is giv

en by the relation

(5.1.22) dK = /.d,rls' = /Q‘\n{'dv' = /9"(}3 +vf‘pélﬁ)dv' = gvdv,
dv dv dv
and for a portionwvof a body we have

(5.2.23) K = [eydv

v
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0
The moment of momentum d& for the macro-volume

element dv  will be

af = [erxgav = foln+ @y v kI Nav (5220
dv dv

Since g'are the position vectors of the points r' relative to the
N nN

centre. of mass of the macro-volume element, we have

dv
and
eo d Vv '_—‘“dl
d,m = grxvdv + g%x?&m_ v . (5.2.25)
dv
In the componental form we have
foa =l ¢ ‘)"pz':"“'v
‘%x?v(‘tt— - Apv K = ‘% ’ (5-2-26)
and using (5.2.14) this becomes
0'x%, I = &y X % esPey 2.2
@'x%, = o X B, I I e (5.2.27)
. e
= ?&ﬁx?é“; = .

0
Hence, for the moment of momentum d% we may write

df’ = grxydv + xoxks QT T dv . (5.2.28)

~N

dv
Using the inverse of (5.2.15),

—1 . Py "
I = €T, (5.2.20)
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by (5.2.13) we see that

06— . . N
(5.2.30) /e'lwlpdf Xx”‘x)f/a'é ¥ dv
dv dv
and if we introduce the "micro-inertia density", A by the ex—

pression

_ A
(5.2.31) gi*tdv = /9,‘% g¥dv'
dvr A
o
and the "macro-inertia density moments" [ * by

«f . .
(5.2.32) I Xy P

the expression (5.2.28) for the moment of momentum becomes

0 . .
(5.2.33) db = grxv + g»“‘x&xx dv .

~ ~ PR

For a portion v of the body we have now

~n o

. 0 0 - .
(5.2.34) b = /d,& = /Q(va + 1 ’*?&,Vx?\g%)dv .
. i g v

Analogously, we find for the kinetic energy the

expression

(5.2.35) T = [g(g-\“r, + L"*‘%x-j&»)dv .

N |—

Materials with micro-structure were first consider
ed by Eringen and Suhubi in elasticity [138, 442] and in the
fluid mechanics [124] . Here we diverged slightly from the ori-

ginal exposition of Eringen and Suhubi since we wanted to write
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the expressions for g)and T in a form similar to the correspond-
ing formula in the section 5.1, obtained from the consideration
of a discrete system,

In the original papers (cf. [124]) the coeffi-
cients Iuﬁ stay instead of i*}, and i*? instead of I“p , and, fol-

lowing our notation, the coefficients
A . . D 166 — !
M = x,f“xp’“/P; =Pay ' (5.2.36)
dav
are named "micro-inertia moments", and the coefficients

'Lcaﬁ — /P|Z|uznﬁdvl !(5237)
av ‘

{
¢

are constant material coefficients. We prefer to use here the
densities defined by (5.2.31, 32)
According to Eringen [123], materials affected by

micro-motion and micro-deformation are micromorphic materials.

(>, Micropolar media are a subclass of micromorphic

materials, and they exhibit microrotational effects, i.e. the
material points in a volume element can undergo only the rota-
tional motions about the centres of mass.

The materials with microstructure of Mindlin [285,

289] coincide with the model given above. Mindlin considered the
infinitesimal deformations only, and his theory is restricted to
the linear case., If we assume that the deformations are infini-
tesimal and if we make no distinction between the material and

spatial coordinates Z" and z%, for the micro~ deformation we may
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write
(5.2.38) gh - P ws y

where W'® are components of the micro-displacements. From (5.2.15)

it follows then

) SOV N Y A SAPVIR O S v S ALy
(5.2.39) v o= (7 - BT R (k- BRE,
where the quantities Y%P.defined by the expression

| -p du'p :
(5.2.40) Y= S = i - 8

og™

are called by Mindlin the micro-deformations. Denoting by u* the

displacements of particles (which are not necessarily represent—

ed by their centres of mass),
(5.2.41) u® = z% -1

the macro-strain is given by

' ou du.
- LA _“§>
(5.2.42) Cup 2<azm Y 92h)

and the relative deformation by

alkp
(5.2.43) ap = o ~ w&p

In this theory the quantities W“p play the role of directors,
and the medium with micro-structure is a generalized Cosserat

medium.
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5.3. Multipolar Theories

In a series of papers Green and Rivlin @72, 173,
175] , Green [151] , and Green Naghdi and Rivlin [170] developed
the theory of multipolar continua which represents a very general,
but a very formal approach. Let Ze‘ be coordinates of a particle

in reference position and z* its position at time

z2%(v) = z“(g,v:), -0 < T < t. (5.3.1)

It is possible to consider the position of the partidk:gaj time

T also in terms of the current position at time ¥, so that
2 3 .
z¥(v) = =¥z',z%,2°,7,1) . (5.3.2)

A simple QX-pole displacement field is defined

in two forms,

Zuai...aa‘(r) = Z“Bi,_,gx(Z,’«:), (5.3.3)

and
Zuﬁi.../ba‘(7’-> = Zmﬁi...ﬁx(%’taq‘.) . (534)

The examples of such multipolar displacement

fields are the gradients

= (5.3.5)
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and

' z%(v)
azM. . ozl

(5.3.6) 2%y .5, (T =

The time derivatives of the multipolar displacements represent
the multipolar (2r-pole) velocity fields.

In multipolar theories the deformation is describ
ed by the simple deformation field 5(7) and by v tensor fields,
say ““Ai"‘Ax(T) , y = 1,2,...,v . The tensor fields

WeeAs .. A (r)  are called multipolar deformation fields. In
1 )

1967 Green and Rivlin [175] showed that the multipolar theory
can be considered as a special case of the director theory, with
the multipolar deformation fields u“Ai"‘Ar corresponding to
3% directors.

The theory of multipolar media was applied by

Bleustein and Green to fluids [38].

5.4 Strain-Gradient Theories

The state of strain of a body at a point 5 de-
pends on the relative displacements of points in a neighbourhood
N(X). If X + AX is a point inN(X), and the equations of motion

o N n o

are
(5.4.1) Xt = x%%,t)

the relative displacements of all pointsﬁ+A£for arbitrary AZ

are determined by the deformation gradients
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‘ v v
Xyky x,KiKz,..., x,Ki.._.KN, e e (5.4.2)
Material derivatives of these deformation gradients are the ve-

locity gradients,
'U'ZK, VEMKZ,--'? U;K1-.--KN"" . (5-4-3)
The theories which consider the influence of the higher—order
deformation and velocity gradients are known as the strain-gra-
dient theories.
According to (3.20) and (3.11), by differentia~

tion we obtain

k b
Exin = QuuXmeXon » (5.4.4)
and we see that the first gradient of strain involves the second
gradient of deformation.
The deformed directors at two points, say % and

f)\(} + A& in a neighbourhood N%) will be according to (5.2)
k k (X
d(“) = dr(m) N) ] (5-4-5)

digX + AX) = digX) + i AX + .

Hence, the director deformation at 5 is characterized by the
k k

director gradients d’(u);LJ d(m);LiLg)"' .

From (5.4) it follows then
that

k k k K k K
d’(er.);L = A(m);L + x;KLD(ec) + x;KD(u.);L y (5.4.6)
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If an oriented body degenerates into an ordinary body the direc
tors will become material wvectors and.A;qvanishes. In this case
we may choose the directors B@” in the reference configuration
to be parallel vector fields so that])&hL = 0 . Consequently,
the director gradients will be proportional to the second gra-

dients of deformation,
k k K

and the theory of an oriented body will degenerate into a strain-
—-gradient theory.
In Cosserat bodies the directors g@qfonn rigid

triads, such that

(5.4.8) d e

WY

diy) = DD = const..

[at}

In this case the rates of the directors will be

(5.4.9) %m = wx@m’.

NN

wherese is the rate of rotation of the triads of directors. In

the componental form we may write
, - i
(5.4.10) Gm = Enijwide = Wi.dq

If there are only three directors, o« = 1,2,3 and, in the Cosse
rat continuum in the strict sense there are only three directors,

: C
the reciprocal triads d exist, and for the tensor w we have
n

() |
(5.4.11) W = d'nd'(u)m .

nm
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From (5.4.8) it follows that the left-hand side
of (5.4.11) is an antisymmetric tensor. If the rotations of the
director triads are constrained to follow the rotations of the

medium, which are given by

Oow = Vinm o (5.4.12)

nm ym]

where v'=x"is the velocity vector, for the corresponding medium

it is said that it is a Cosserat continuum with constrained ro-

tations (Toupin [463] ).

5.5 Shells and Rod s as Oriented

Bodies

One of the essential problems in the theory of struc
tures is the simplification of the general three-dimensional the-
ories of materials. All structures are three-dimensional bodies,
but certain geometric properties justify the introduction of ap-—
proximations which give sufficiently good results, at least for
engineering purposes. In the Introduction to these lecture notes
we mentioned St., Venant's remark that for the description of thin
bodies an analysis of deformation of a straight line, or of a
surface, is insufficient, but an extensible line may serve as the
first approximation for a rod. Deformable planes and surfaces
play the same role in the theory of plates and shells, The main
question is what is happening with the points which in an ini-

tial configuration were situated outside the middle surface of the
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shell considered, or which were not on the middle line of a rod.
There is a number of different hypothesis (Kirchoff, Love, Vla-
sov etc.), and all these hypothesis have a definite value, under
corresponding assumptions.

In this section we shall give a brief account of
the approximations of a three-dimensional medium for shells and
rods, according to the theory recently developed by Green,

and Naghdi [157] and by Green and Naghdi [169].

5.5.1 Shells

3
Let X=0define a surface S in the initial confi
guration of a body, and let the position vector of any point on

S be

(5.5.1.1) R = R',x)

For the surface S we assume that it is smooth and non-intersect-
ing. At time t the surface S will he s and the points on § are

determined by the position vector
1,2
(5.5.1.2) ro= rX,X5t)
nN ~n

We further assume that a three-dimensional body is bounded by

the surfaces

(5.5.1.3) X = B (A <0 < B)

>
>
U
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and by a surface

FXL,X3) = 0 . (5.5.1.4)

The relations (5.5.1.3, 4 ) fix a shell in the initial (refer-
ence) configuration.

For the simplicity in writing we shall put X3 = X,
and we shall let the Greek indices take the values 1, 2,

At time t we may introduce spatial coordinates x*

such that
x* = x"‘(Xi,th)
1,2
x> = x o= x(X,X,X:t)

and we assume that the shell in this instant of time is fixed

by the bounding surfaces
x = o, x =/, (¢« < 0 < p)
fix!,x?) = 0

The coordinates x* may be selected to be convected coordinates

and then we have

The position vector of any point of the shell is

a function of coordinates and time,
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(5.5.1.5) r* = 5*(x’,X2,X;t>,

and for sufficiently small « and 8 we may represent 5* by the

convergent Taylor series in the vicinity of §,

ad ONr*
1,2 1
(5.5.1.6) r* rOCXSE + Y .
~ ) =N ( aXN >X=0

The quantities

3'r*

v
) = %(u)
ax -

(5.5.1.7) ;}—(

may be called directors, and we see that they are functions of

coordinates of the points on the middle surface s,
(5.5.1.3) doy = datX,xiD)
Tt o (V) I { () A RAT R

At any instant of time t the configuration of a shell is comple
tely determined by the configuration of the surface s and by the
directors g(m .

The velocity vector at a point X of the shell

will, according to (5.5.1.6) be

. S N
(5.5.1.9) gt o= Y = pr XX dw
where
(5.5.1.10) v = ;';(X‘,x?t)
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We shall define the base vectors g, at the points

of the shell by

05*
%k = P (5.5.1.11)

and the base vectors a,at the points of the surface s by

‘ or
3, = — . (5.5.1.12)

2

9o = 2.+ LxX' o (5.5.1.13)

Let g*(s*)be the density of matter at the points of the shell,
The momentum of any part v of the shell, bounded by the surfaces
o <X £p and by a contour ¢ enclosing an area ¢ of the surface
will be

- /g ; //*\/‘v+§jx d,N)>dXd,Xd.X (5.5.1.14)

iV

|w»

e
|

The vectors v and g(m are independent of X, and

we may put
/g*vgdx = gVa , (5.5.1.15)

where @ is the density of matter per unit area of the surface

s and

g = det‘g;&, gv& = gu%d_’ (5.5.1.16a)
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(5.5.1.16b) a = d;eta“/s 3 aup = 2“°2/3 .

1 2
The quantities @ and a are functions of X and X only. We shall

also write
A N N
(5.5.1.17)/g*x VGax = ok'va, (N = 2,3,4,..)

where

: A
(5.5.1.18) /g*x\/gdx = 0 .

of

The last relation fixes the surface s with respect to the bound

N 1
ing surfaces o and A , The quantities k are functions of X and

XZOMy.
From (5.5.1.14) we have now
(55119) K = /Q(V + ZkNa(N)>d'0' .
~ P

For the moment of momentum we have now

I

0
§ /Q*r*xv*dnr =
~ N

b d

p
(551200 = [[orvg[rxy + ExMoxd + guxy) +
o o M=1

+ Z XN+MS(N)X8~,(M):IdX1d,x2dX y
1

e

and if we introduce the notation
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J)
N+H N+M
/Q*X VgdX = ok "va , (5.5.1.21)

(]
for the moment of momentum we obtain the expression

L . 00 N+M - .
0= fely + L loxdu + o)+ Xk dapx|do . (5.5.1.22)
A N=2 M,N=1

Using the same notation and procedure, we find for the kinetic
energy of the considered portion of the shell the following ex-

pression

< N . o | N+W - .
T - gfe(ry v 2 XK wdw ¢ XK S du)do. 55020
0. = =1 .

N, ¥

If Dy, DQ),... are directors in the initial configuration, and

if .
R = R+

18

N
X D
N=1
is the position vector for points of the shell in the initial con

figuration, the equations of motion may be considered in the form
L] & .
ro= r®0;5 de o= dw[DuXTt] . (5.5.1.24)

Retaining in (5.5.1.6) only the terms linear in X we see that in
this approximation all points of the shell which were in the ini
tial configuration situated on the straight line EU)X , in the
deformed configuration will be again on the straight linegkﬂx.
The higher approximation in (5.5.1.6) we take, the more precise
description of the distribution of the points of the shell out-
side the middle surface s we obtain. In the linear approximation

the expressions (5.5.1.19, 22, 23) will obtain the form analo-
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gous to (5.1.24, 26), or to (5.2.23), but for a medium with a
single director field.

Some other contemporary approaches to the shell
theory, such as Reissner's (see Section 12), which is partly
based on the earlier work of Glinther [189, 190] and Schifer [390]
may be considered as a special case of the here outlined general
approach. Reissner regards shells as Cosserat bodies with rigid
director triads. In that case the configurationof a shell is des
cribed in terms of the position vector'sof points on the middle
surface, and in terms of the rotation vector 2 , which is inde-
pendent of the displacements of points on s and describes the
rotations of shell elements (cf. Reissner [368, 370, 371], Reiss

ner and Wan [375, 376] , Wan [479, 480, 481]).

5.5.2 Rod s

The basic ideas for the theory of rods are essen-

tially the same as for the general theory of shells, sketched

above. Let

(5.5.2.1) X" = 0, e« = 1,2

be the parametric equations of a smooth and non-intersecting
curve C in the space; we consider this curve as the middle curve

of a rod. The position vector of any point of the rod in the ini

tial configuration 1is

(5.5.2.2) B* _ g*(x’,xz,x>,
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3
where X=X is the parameter varying along C. It is assumed that
%
B for sufficiently small values of X“may be expanded into a
series
* 2. K
* “OE | %1y 9 ~

R = R(0,0,X)+X ——-&+—X X To%i.u%p +-,(5523)

~ ~ ax® 2 aX"™* X
where R is the position vector of any point on C.

~N

Introducing the notation

n. %
L<L> - b
nl axoq-“(,)xun v=0 - TR (5524)
we may write
R® = R+ X X XDy, (5.5.2.5)

At a time t the curve C will be ¢, and the posi-

tion vector of points of ¢ will be r, such that

n

* o OGKOKE) = r0,0,68) + L XXM ., (5.5.2.6)
~ ~ ~ n=1 v

where we have put

d _ 1( '

.. .0 - TN .5.2.
! ax™. .. dx ")x"‘=0 (5.5.2.7)

C T

The directors d“{ . are functions of the variable X along ¢
n R}

K
and of the time t. Here again x* = 6§X are considered coor-

dinates.
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The base vectors at the points of the rod are

: 8:*
(5.5.2.8) g = P

and the tangential vector a to the middle curve ¢ is given by

b)

| or
(5.5.2.9) a = 3 = iﬁ% y  lass = 23‘%3)-

From the last two relations we find

00 - %,
(5.5.2.10) f}x“’ xunagm o,
gs = §+n=1 X

We assume that the rod is a three-dimensional

body bounded by a surface
' 1,2
(5.5.2.11) f(X,X) = 0

such that X =const. represents curved sections ¢ bounded by
closed curves, We shall consider an arbitrary element of the
rod bounded by o <X gfand by the surface (5.5.2.11).
The momentum of the considered element of the
rod will be the vector
(5.5.2.12) K = /g*g"‘dv = /9‘*\/§(3+ Z:X“’...X““é.“i__,“n)dv .
v v

'
Since v and d“r"“nare independent of X , X, we may write
~N

(5.5.2.13) //g*\/gcix‘dx2 - oyay;

3
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//9*@x“*...x“"dx‘dx2 = k™A ) (5.5.2.14)

o

and

p [rd
K = /9(‘,3 +n§km1m“"9u4~-“n) A dX . (5.5.2.15)

The expressions for the moment of momentum will

be obtained from

v (5.5.2.16)
_ /9*(5 + IXLXd, )x(v + TxPLxPrg, o Vdo
n n n m - m/

and using (5.5.2.14) we may write it in the form
A
0 m1---“n o “1“'“"
fg - /9(‘.Exg + ;k :xgui-.-mn + ;k 9“1.-.¢ xv +

n o~

(5.5.2.17)

[a}]

+ Z kmim“npi.“ﬁmg’“y'-“nxapi'“ﬁm) 333dx

Applying the same procedure, for the kinetic e-

nergy of the considered section the rod we find the expression

~n n

ﬁ 00
T = %/g(v.g +2) l<°""'°°"v-é,eq”_oc +
o n=2 (5.5.2.18)
R Z ku(-..mnﬁ‘l..-ﬁm gﬂy--“n. 9}51---/5",)/&33 aX .

nm=1
o
The linear approximation with respect to X

leads to the representation of rods in which we consider instead

of rods curves with two directors attached to their points (cf.
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Section 7.3).

6. Forces Stresses and Couples

In the mechanics of particles it is usually proved
that a system of forces, say fy,f@2, ... ,f(» acting on a system

of particles M;,...,M may be reduced to the resultant force

i M=

(6.1) | Fo= Pf,m

v
and to the resultant couple, which is defined with respect to a

pole 9 by the expression

0 n
(6.2) M = _ziﬁbxﬁu) y

where r, are position vectors of the particles M, with respect to
9 . In continuum mechanics an immediate generalization is insuf-
ficient to describe all the forces and couples which appear, even
if the suitable assumptions are made for the transition from a
discrete system to a continuum model.

In the following definition we partly follow
Truesdell and Noll [379] , but we introduce some additional de-
finitions in order to consider more general models of continua,

Let v be a part of a body B and S the bounding
surface of thewv, and let the motion of the body be given by the

equations

(6.3a) x' = x;%’t))
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,d'(:c) = d(;)(‘%,t), (« = 1,2,..n) (6.3b)

and let 0 =g, be the density of matter.
1. At each time { there is a vector field i(%,t)

defined per unit mass, which we call the external body force.

The vector Ekhﬂ'defined by the voltume integral
) = [eftod (6.4)

is called the resultant external body force exerted on the part

v at time 1.
2. At each time t there is an antisymmetric tensor
field P¥(x,t) defined per unit mass, which we call the external

body couple. The resultant body couple is defined by the volume

integral

Mity) = /gt'“*(f)dv. (6.5)

3. At each time 1, to each part v of the body B
corresponds a vector field {(x,t) , defined for the points X on
the bounding surface s of o . It is called the stress (or the

density of the contact force), acting on the part v of B . The

resultant contact force F%Qu) exerted on v at time t is defined

by the surface integral

Fv) = 5{3(5,1;)@5. (6.6)
S
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4. At each timet, to each part v of the body B cor
responds an antisymmetrié tensor field m' defined for the point

X on the boundary s of v . It is called the couple stress (or

the density of the contact couple) acting on the part v of B, .

The resultant contact couple M::Qv)is defined by the surface

integral

(6.7) M w) = ?gm"‘.*(x,v)d,s.
S
5. The total resultant force exerted on the part

v of B is defined as the sum of the resultant body force and the

resultant contact force,
(6.8) Flv) = Fr(v) + Fy(w)

6. The total resultant couple exerted on the part

v of B is defined as the sum of the resultant body couple and

the resultant contact couple,

Vi)

m .

(6.9) M) = M) + M

According to the stress principle (cf. [469]

there is a vector field £(£,£) defined for all points x in B
~N
and for all unit vectors n such that the stress acting on any

part v of B is given by

(6.10) Hx,w) = tlx,n),
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where n is the exterior unit normal vector at the points x on
the boundary of S.
In elementary continuum mechanics it is proved

that the stress vector t(x,n) y
LV IV B,

v
t(x,n) = “},,2)%-» (6.11)
may be represented in the form

Hx,n) = t."}(;\c,)n}g-b , (6.12)

s
where { %%) are components of the stress tensor. From (6.6) we
obtain now that the components of the resultant stress are given

by the integral

Flw) = fg)gin ds . (6.13)
5 .N

In analogy to the stress vector we may write for

the couple stress

7 = m't

m'¢(x , v) m'(x ,n), (6.14)
and

z = mik |

m'¢(x,n) m'E(x)n, (6.15)
where m4* = —mtkis the couple-stress tensor (cf.[469]).

7. At each time t, at each part v of the body B
(o)
there are vector fields K (xt)defined per unit mass, which we
n n

call the external director forces. The vectors Ek&v)defined by
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the integral

(6.16)  Filw) = [95(“’<5,t)du, e o= 1,2,...,n)

i g

are called the resultant director forces exerted on the part v

of the body at time t.
8. At each time t, to each part v of the body B
e2) '
correspond vector fields hm(ﬁ,v), defined for the points x on
~ ~

the boundary s of v , which we call the director stresses. We

assume that there are vector fields ﬂykﬁnﬁ, defined for all
points of v and for all unit vectors n , such that the director

stresses acting on any part v of B are giwven by

(6.17)  K%Gx,w = h¥x,p, (e o= 1,2,...,0 .

n

The resultant director stresses are given by the surface integ-—

rals

(6.18)  Filv) = 5{9<°"(5,v>ds . (e o= 1,2,...,n)
: S

. (e2)
For the director stress vectors h (x,n)we assume
n NN

that they may be represented in the form

(6.19) W(x,m) = K%

2N
3
o]

e
2
2

and that

(6.20) Q(“)(ﬁ,v) = r“\’(")(g,g) = h(“w(g)gcn}
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. Lo Oy .
The quantities h “* we call the director stress tensors.

9. The total resultant director forces exerted
on the part v of B are defined as the sum of the resultant dir-

ector forces and the resultant director stresses,

F;(v) = Fi(v) +Fiv) . (6.21)

We assume that the number of the director force

vectors and of the director stress tensors is equal to the num-

ber of the directors dy _of the body
~

The momenta of forces and stresses are defined by
the following expressions:
a) The moment of the external body force at a point X , with

respect to the origin 0 :

rxof (6.22)

and the resultant moment for the part v of B
/stidv . (6.23)
v

b) The moment of stress at x, with respect to the origing:
rxt(x, n) , (6.24)
n NN ~n

and the resultant moment of stress:

Frxalz,mds (6.25)
S
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¢) The moment of the director forces at x:
(6.26) ol = d._xok™x ,t)
* Sa wTSS NN
‘and the resultant of the director forces for the part v of B:

(6.27) /g g,(u)xg(“)(rxu ,t)dv

d) The moment of the director stresses at x:
(6.28) 4 xh™(x , n)

: ' @ n Ny’ ?
and the resultant moment of the director stresses,

(6.29) jgﬁ,l(u)xb(“)(i ;n)ds
S

The total resultant moment of forces acting on a
part v of a body B at time t is the sum of the moments of body
and director forces, of body and director couples, and of the
moments of stress and director stresses, and of the couple stres

ses,
()
(6.30) (rxf + dpyxk™ + Lldv +

~

b
I
°o

(e2)
h

~

+ Plrxt + dyxh ™ + mds .

U’Re\‘ﬁ

This may be written in the component form as follows:

up

L (e k(k)ﬁ]

= 2 g(z[“fﬁ] + dy) + 1Yy +

+ 242t P18 4 el L pebnn ds
S
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6,1 A Physical Interpretation

Physical interpretations of the director forces
depend on the model considered., For a medium consisting of part
icles which are composed of mass points, as was the medium con-

sidered in the section 5.1, we may assume (Rivlin [377, 3781)

(P) f“’) ® of

that the external force m « acts on the mass point m'
[,V

th th
theP particle. The resultant external force acting on the P

particle is

: (P) (P)
o@e) = mPr (6.1.1)

=1

(P) (P)

and if we assume that the discrete sets of vectors f and fu
~n n

may be replaced by continuous vector fields f and fm, defined
. ~ N
throughout the body B , for a part v of B we may write for the

resultant body force

: ()P
Ef(v) = gm "= Jefdv . (6.1.2)
Denoting again by SW)the position vectors of the
(P)

« the position vectors

centres of mass of the particle and by o
o
of the mass points inside the particles, with respect to the

(P f(P)

corresponding centres of mass, the moment of the force m’,

with respect to the origin Q will be

®)
('™ + g(z))xm@f,u : (6.1.3)

For a particle P we have for the resultant moment
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of external forces the expression

(6.1.4) P()Xm(P)f X (P)xm(P)f

and for the part v of B under the suitable assumptions we may

write

(6.1.5) Z( (P (P)f Z (P)xm(i’ﬁ(:))

/gzxidv + /Qg(u)xfmd.v ,

v
where according to the section 5.1 the discrete vectors g(f,? are
replaced by continuous vector fields g(u). "
According to Rivlin [378], the field f represents
the body force field, and 2“ are the director force fields.
According to this model of Rivlin's, if g is the
bounding surface of v in B, under the assumption that on the
surface S the discrete vectorsiwkumliu may be replaced by con-
tinuous vector fields E and.th, we may write
(6.1.6) gmmf” - fgds,

where d§==£d5 is the directed surface element and 2 is the

unit vector, and
(6.1.7) gm fﬂ fdmxymas

represents the simple surface force field, or the stress, and

2t 2e+

(j are the director surface force fields,or the director stres-
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ses according to the terminology introduced in the previous

section.

7. Balance and Conservation Principles

The differential equations of motion in classical
continuum mechanics are usually derived from the law of conser-
vation of mass (equation of continuity), and from the Euler's
laws of balance of momentum and moment of momentum. Since we
postulate here the validity of these laws, we regard them as
principles,

Let v be a part of a body B and s the boundary
of v . Let I be the density of a quantity in balance, Q its in-

flux (or efflux) per unit area of the bounding surface and B
~nN

its source per unit volume., The equation of balance has the gen

eral form

d _ .
d—tv/Idv - z%ds +f§dv (7.1)

where dgjs the oriented surfacefﬂement,dg = st , and n the
unit normal vector tods. If the source vanishes, the equation
of balance becomes the equation of conservation.

In classical mechanics we assume that there are
neither sources nor influxes of mass., If 0 is the density of mass,

so thatdm,

ogdv = dm , (7.2)



74 7. Balance and conservation principles

is the mass contained in the volume dv, the mass contained in

the part v of the body considered will be

(7.3) mlv) = fgdv

v

From (7.1) we may write now the law of conservation of mass,

dm _ d -
dt dtV/Qdu 0,

which may be written in the form
(7.4) /(Qd'u + gd—v) =0

For a body in motion the equations of motion of

its points are
(7.5) = <X, G o= 1,2,3)

where XK are material, and x* spatial coordinates. IfdVis the
volume element of the body in an initial configuration referred
to the coordinates Xk, and dv the corresponding volume element
in a configuration K(}) at time t, the volume elements dv and

dV are related by the formula

(7.6) dv = Jdv ,

where

(7.7) I = \/%d.et(xk;K) .
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From (¥.6) we have now
dv = Tdv (7.8)
and since¥

f= I = ldivye , (7.9)

~

from (7.4) we immediately have the global form of the law of

conservation of mass

/(Q +gui)dv = 0 (7.10)

this has to be valid for an arbitrary part v of the body and
therefore we finally obtain the local form of this law, which

is often called the equation of continuity,

In general, the density 0 is a function of po-
sition and time, @ = Q(ﬁ,t)and.é = dg/ot +90, V. Substituting

this in (7.11) we obtain the continuity equation in another

*According to the rule for the differentiation of determinants
. - v, el 2l oAt ¢ . '
if a det a..& , then élflDL = aé A)k ,kwhere A>k 1s the cofac+
tor i : )
r in a corresponding to the element a,} Since X;k = (cofactor

k
for xjx ) / (det xj, ), we have

‘.( koK m ) k m
) detI,K = x;KX,D(d/etx;M)bk = 'U';kd,etx;n
= X

where v 1s the velocity vector.
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form,
99 k
(7.12) FTE (ov )’k = 0.

The principle of balance of momentum states that

the rate of the global momentum 5 of a part v of a body B is
equal to the total resultant force exerted on the part v of the

body. According to (6.4), (6.6), (6.8) and (6.10), for the total

reshltant force we have

(7.13) Flv) = fgidv + @ t(x,n)ds .
v )
We assume the momentum 5 of a part v of a body B

to have the form given by (5.1.24) or (5.2.23)

K = /ovd,v,
~N -

v

and the balance of momentum equation reads

(7.14) d%tvfg}“yd\_’ = !gidv +2§£(5,2)ds.

Using (6.12) and referring for the sake of simplicity all quan-
tities to a Cartesian system of reference z%;the component form

of (7.14) becomes

(7.15) aq't-/gi“dv = /gf“dv +51§’c“/s np ds
v v S

Performing the differentiation on the left-hand side and apply-
ing the divergence theorem to the surface integral on the right-

-hand side of (7.16), and using the continuity equation (7.11)
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we obtain

[ev=av - [+t av (7.17)

v

which is valid for an arbitrary part ¥ of B and therefore the
relation (7.17) must be valid at all points of B, which give

the local equation for the balance of momentum;

- Y %
= t Bt gf . (7.18)

This is a tensorial equation and for arbitrary curvilinear coor-

dinates x* we have

oVt = pref (7.19)
where (see Appendix, (A3.10) )
vo= a—a"% + v:;v:* : (7.20)

andt?;represents the covariant derivative of { with respect to
x¢, or the divergence of the tensor 1.
Y]
In the local form (7.19), the equations of balance

of momentum represent the set of three differential equations of

motion for points of a bodyB.

The principle of balance of moment of momentum

states that the rate of change of the moment of momentum of a
part v of a body is equal to the total resultant moment of forces
acting on v .

From the discussion in the section 5 we see that
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the exﬁression (5.1.25) may be considered as a general form of
the moment of momentum, since various physical models which lead
to continuum models yield for the moment of momentum expressions
of that form. Using (6.29) we may write directly the principle of
balance of moment of momentum,

(7.21) dt elrxy + i ”‘dmxd.(y‘))d,v

= /g(sxi + Cmi(x)xﬁ()‘) + Pdv +9§(5x£+%(x)xbm+ m)ds
v S

For Cartesian coordinates by the application of (6.30) in the
component form, the relation (7.21) reduces to

. )
dit/g(z[“ ZM + i Pd,()_) d{;’))d

(7.22) - /g(z[wfﬁl d[mkmm Py +

v

+ f(z[“t/’]‘ + dE;‘)hmM‘ + m“ﬁ*)nxds )

Differentiating the integral on the left-hand side of (7.22),
applying the divergence theorem to the surface integral, using
the continuity equation and the equations of motion (7.18), and

since the coefficients V¥ are symmetric, from (7.22) we obtain

S lepl o el
/-O(LMA' d(;;d}(}}b) + b)'P' d,(;s d;(sy))d,v
(7.23)
[ee (M/}] - [es] (e (k)ﬁ] o
= /[Q(d(l)k + ¢ p) + p (d,(m ¥ +m P’)’x]dv

v
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However, from the analysis in the sections 5.1
and 5.2 it follows that the coefficients i ** may be assumed to
be independent of time, and since the relation (7.23) has to be
valid for an arbitrary part v of the body, we obtain from (7.23)

the local form of the principle of balance of moment of momentum,

% o o Lo, () «
Obkpd’(k d(») = t[ﬂ ] + (d[mk(x + ¢ p>+(d-(mh ﬁ +m p?),r . (7.24)

Let us introduce the notation

. (o« Al
bx»d(x)dw = O'dﬁ,

* ol
s d [ k(x)m A

Il
o
~

© MB) x
’“M+dmh Br . m*P¥ (7.25)

a

ke
=
]

With this notation the relation (7.24) obtains the simple form

*06
26.«}5 - t[ﬁm] v ol A, r’;mﬁxﬁ ) (7.26)

The principle of moment of momentum in this form
(for elastic materials) was obtained by Toupin [463] from

Hamilton's principle., He named %P the spin angular momentum

o«
per unit mass, H ¥ corresponds to Toupin's hyperstresses, and




30 7. Balance and conservation principles

H[“M *

he identified with the couple-stress tensor. The appar-
ent discrepancy in the terminology and symbols is due to the
fact that Toupin considered separately materials with directors,
and materials which are described in terms of a strain-gradient
theory. The couple stress tensorg}which we introduced independ-
ently of the hyperstresses corresponds to the couple-stress ten-
sor in Toupin's strain-gradient theory.

From (7.24) and (7.25) it is evident that it is
impossible in the total effect to separate the influence of body
moments from the director moments, and the influence of couple-
—stresses from the hyperstresses.

Assuming that there are no deformations of the
directors and that there are no director forces and director

stresses, the relation (7.26) reduces to

(7.27) gep m L+ et”

A

)

which substitutes Gauchy's second law

g+ o P

(7.28)

valid only in the non-polar case,

In the theory of anisotropic fluids and liquid
crystals , Ericksen [101 ~117] writes a separate equation of
balance fof the director momentum. Ericksen considers liquid

crystals as packets of rod-like molecules, which correspond to

a one-director continuum model, Generalizing this idea we may
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introduce the principle of balance of the director moments

(Stojanovié, Djurié, Vujosevié [428] , Djurié [86] , Stojanovié
and Djurié [426] in the form

d [ .apye (A ep (Mo

4t/ 8V Pdndv = oh™ Tdsy + [gk T dv, (7.29)

v S v
where on the right-hand side we have written in the component
form the expression for the total resultant director force (6.21)
Performing the indicated differentiation and ap-

plying the divergence theotrem in (7.29) we obtain

ol’“*‘&(;) = ho”)“”,ﬁ+oko')°° | (7.30)

4 4

as an independent set of the differential equations of motion
for the directors.

_ Using (7.30),_the equations'(7.24) may be reduc-—
ed to the form which does not include explicitly the inertial

terms,

ghedd m“ﬁ*,? + g%“ﬁ + d,([;),rh(k)ﬁ]* , (7.31)

(]
and which admits the non-vanishing of t also in non~oriented

media.
It is obvious that the antisymmetric part of the stress tensor
is affected by the director stresses if the medium considered
is an oriented medium,
Since all the equations of motion (7.18), (7.26),

(7.30) are tensorial equations, we shall write these equations
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directly in the component form valid for an arbitrary system

of curvilinear coordinates

(7.32) it = 1% 4+ of',
R (Mg M)

(733) Qb P’d(m = h v + gk y
Y T = 3% %

(7.34) Qo.q - t[d'] + 22 ¢ + mqk,k ,

Ghirk = 1,2,3;  Np = 1,2,...,n).

Elﬁninating from (7.34) the spin angular momentum g , as it

was élready done in (7.31), decomposing in (7.32) the stress
tensor into its symmetric and antisymmetric parts and substitut
ing the antisymmetric part from (7.34), we obtain the set of
3n + 3 differential equations of motion,

(ig) .

. vk [v (M1
(7.35) @x = t . +m¢ly +(dph

)’J" + th&’&"_ gfb ’

Aig N

(7.36) gittdgy = h" + gk

Obviously, the motion xt==xkﬁﬁ)is affected by the deformations
of the directors and by the director stresses, and the motion
of the directors,d,(bx) = dlz)v)(?\(.,t) is affected only by the director
stresses and director forces,

It is in some cases more convenient to use the

equations of motion written in the compact vectorial notation,
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than in the component form. If we multiply the relations (7.32)
and (7.33) with the base vectors g; (see Appendix, Sections Al
LN

and A3), we obtain

.l dg -. o ) dé‘*‘) ~
X gi' = a = Vv, d'(y»)g'u = dt = g()") )
9 1 i Wi (Mg
Vg = 00E0 . n g - shvEr
fbgb _ ‘f', k(A.)LgL _ k(k)’

and (7.32) may be written in the fomrm
\/’ c}(\/‘t‘*> +af , (7.37)
M

e Mg
2 dy = Jeoa c ek )

Composition of (7;34) with the Ricci alternating

tensor &mi& gives the vectorial equation

_. y * *
0¥, = (gixt)gu+ el + 20/GTIGa s (730

where we have used (6.12) and (6.15), and

_ i SRR SR P 7'
Opn = '2—8 }0.& ’ 2m = ﬁtmd.g ?
} v %, . x. .
o= ttg, mo= Segmiie (7.40)
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Thus, we may write
k

(7.41) 06 = gyxi + 9: + —1—-0k(\/—g':\k) .
) S ~ ~ \/§ o

7.1 The Cosserat Continuumn

The Cosserat continuum is the medium in which the
directors represent rigid triads of unit vectors, so that the
motion is described by the motion of points and by an independ—l
ent rotation of the director triads. Accofding to (5.4.11) the
rotation of the directors is determined by the field of the an-

gular velocity tensor‘g(xﬁ), so that we have

‘v

. o
(7.1.1) diy = wid
from which follows
.- o L
(7.1.2) diy = (0" + wy'w)d(, .
The angular velocity tensor W is antisymmetric and instead of

nine functions d.(;l)(%,t) we have to consider only three independ-

ent componehts of w.
n
From (7.34) and (7.25) we easily obtain three in-
dependent equations for the determination of the angular veloci-

ty tensor,

Cijl % *i

(7.1.3)  o[I"(ojf + witwN]r,y = £ ami gttt
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where

CINTE

= M d'(bx)d‘fp,) ’ (7.1.4)

which represent the density df inertia coefficients per unit mass
According to (5.1.10), for a particle consisting

of n mass points the directors g@ﬁ are position vectors of the

mass points with respect to the centres of mass of correspond-

ing particles, and therefore we have
g “ P L o b
52 VOB = FZ, g€L) -

Hence, [ ﬁeue components of the inertia tensor of the particle
considered, Also for the media with microstructure when a curvi-
linear system of coordinates x¥ is introduced into (5.2.32) and
(5.2.,360) and when the Vectors X, are identified with the direc-
tors, a relatlon of the form of (7.1.4) will be obtalned

Taking the material derivative of | v (with R
independent of time) and using (7.1.1) we find

a1t
ot

k

v k : vk L
IR - Tl - et = 0. (7.1.5)

This relation Eringen [124] calls the conservation of micro-
—inertia,
The complete set of equations of motion of a Cos

serat continuum consists now of the following equations

dg k
1 °0 -
) ot T (Qu™) 0, (7.1.6)
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“ Vi
gx' = t7. +of (2
| Gp kg ik
(7.1.6) [ - B - 1" wd = 0, (3
b 1 oy X1
o[ 1wyt + wiw,, ][vﬂ = 17 ame s 0l L (4

Substituting in the last equation (7.1.6) the

angular velocity tensor<ni3by the angular velocity vector w

w, = ;Cm%
and recalling (7.41), we may write (7.1.6) in the form
| . k *
(7.1.7) @6 = i + (Ltg)x% = gkx:\c’ + gl +
where we have put

{iny = {ne] -1},

(7.1.9) | Lw = {ITw"}.

(7.1.8)

29--
i

In the linear theories it is assumed that the an-
gular velocity is sufficiently small, such that the spin moment

may be approximated by
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For microisotropic materials (cf. Eringen ﬁ32] )

it is assumed that

T I L (7.1.10)

A very interesting field of application of the

theory of Cosserat media is the dynamics of gradual media. Oshima
[347] considered a model of a granular medium assuming that

there are no director forces and director stresses and disregard
ing the coefficients of inertia of the granulae. quin [74] as~
sumes the same kinematical model as Oshima. A more general ap-
proach is offered by the theory of micropolar media (Eringen
[123 - 127]), but this theory is not yet explicitly applied to
granular materials. Satake considered first [385] a granular
medium in the absence of volume and director forces and moments,
but in a recent paper [386] he included these forces into the
consideration. Satake approaches the problem from the point of
view of a purely linear theory and, the same as Oshima, he assum-
es certain a priori described mechanical properties of the medium
(elasticity). Cowin admits the medium to be a composition of elas
tic and viscous phases.

A much wider field of applications is offered if
the directors do not constitute rigid trihedra. The micropolar j
theory of Eringen generalizes the idea of a Cosserat continuum
admitting the directors to deform, but restricting the number of

directors to three. A large number of applications is covered
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by the later development of the micropolar theory. (Cf. e.g.
Ariman [14,15] , Ariman and Cakmak [18], Ariman, Cakmak and Hill
[17] , Askar and Cakmak [19] , Askar, Cakmak and Ariman [20]).
A structural model of a micropolar continuum
(Askar and Cakmak [19] ), which consists of a two-dimensional
network of orientable points, joined by extensible and flexible
points, yields the equations very close to those obtained by
Eringen and Suhubi [138, 442] , Eringen [126] and Mindlin [286,

29ﬂ , Starting with continuum principles.

7.2 Bodies with On e Director

The theory of liquid crystals and anisotropic
fluids of Ericksen [101-117] (cf. also Leslie [267, 268] )
is based on the assumption that the media such as liquid crys-
tals and suspensions of large molecules may be described by the
position vectors of the particles and by a simple director field.
The differential equations of motion may be obtained from our

equations (7.32-34), together with the continuity equation (7.11):
. k
g +ovy =0

i v v
(7.2.1a) ox' = t7. + of
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[ij]

gl o brgd (7.2.1b)

To obtain these equations from (7.11) and (7.25)
we have to assume that there are no director stressestl, no coup
1e—stressesan and no volume couples 5 . Under such assumptions
the equation (7.2.1)4 is a direct consequence of the moment of
momentum equation (7.24) .

Another example of a one-director theory is the
theory of Cosserat surfaces. (Creen, Naghdi and Wainwright [171]
Green and Naghdi [163 - 167]).

A Cosserat surface is a two-dimensional material
manifold s to each point of which a simple director field.is as
signed. This surface is embedded in a three-dimensional Euclide
an space, Let x*,& = 1,2 be coordinates defining points on the
surface andx3=0 at all points of the surface. The position vec
tor of a point of s at time t and the director g are functions

of positionx®and of time },
ro=rx%t), d = dx*t). (7.2.2)

B
~n

sume that gz is the unit normal vector to s, so that
~N

gx'gﬁ = Gupo (guxgﬁ)'gS > 0, (& # p)
(7.2.3a)



00 7. Balance and conservation principles

(7.2.3b) g* = g*g, .

From the theory of surfaces it is known that the

second fundamental tensor b“p of a surface is defined by

f)g_v, «
(7.2.4) g“”} = b“ﬂg?’ ) 5;3 = —bﬁgu7
where "|" denotes covariant differentiation with respect to the

metric form on the surface §.
Let E and k be the assigned force and the assign
~N

ed director force per unit mass, -

« 3
(7.2.5) F = F g.,+Fg3
u 3
K = kg,+ kgs.

[

The stress vectorz’ is to be regarded as a force
per unit length of a curve bounding an area on s . The same
holds for the director stressrr, so that
o ) [ 3

tﬁ

3¢
(7.2.6) dp 1 g5,

2t

« o« Jee
h = h)3 gﬁ + h 93 .
~ ~ ~
To write the equation of continuity,(7.11) in
the appropriate form we have to calculate the divergence of the

velocity vector v considering (7.2.3). Let the velocity vector

of a point on § be
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The Hamiltonian operator on the surface s is

= 90

and we have

v, = Vv =
NN

240

0".(9156)0;013 + vﬁi)“gp + gz,i)“v35 + v3awg3) .

which in virtue of (7.2.4) becomes

v _ o ht
v = vlu_b

5L %

'U’S.

Substituting this in (7.11) we obtain the continuity equation in

the form
g + gv%, - bv’) = 0. (7.2.7)

[+
Differentiation of the stress vectorsti gives
n

"3

Ae Do S ‘ S
Inb‘ = 1 'tgﬁ + i %ﬁ')‘ + 1 lx%\” +1 g3ly )
which because of (7.2.4), reduces to

We obtain the similar expression for the derivatives of the dir-

o
ector stress vectors h
~N

pe B = 3 P
hyy = (W - byh )gﬁ + (i + bgyh )§5 - (7.2.9)

From the vectorial form of the differential equa-

tions of motion (7.19),
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o 4d
oy = L +el,

~ e
by scalar multiplication with the base vectors g“ and 93 we ob-
~ ~N
tain the following three differential equations of motion:

o o
T T

0a’ = ts'f“ + b“},tp“ + ng ,

-

where 5 is the acceleration vector with the components (a“,a3).
Green, Naghdi and Wainwright [171] assumed that
there is an additional physical director force which they denot
ed by m* and which acts over the curves x*.
For the motion of the director d(x“t) we shall
write élso the equations (7.33) in the compact (vectorial) form
to which our equations (7.33) reduce in the case of a single

director field,

d‘_' L
mo= hytelk-id),

-

where m represents the additional physical force, and @; is the
"N
inertia density at the points of the surface. Since the director

stress depends only uponx®, we may write

(7.2.11) = h.+ gk - id),

o -

23

and by scalar multiplication with gp and 93 this equation gives
~n N

the following equations in the component form:
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I A Car Y ol

, (7.2.12)
3 o

m> = h |, + b.‘ﬁhﬁ“ + ok’ - id”) .

The equations (7.2.7), (7.2.10) and (7.2.12) re-
present the basic set of equations for a Cosserat surface. In
the original paper of Green, Naghdi and Wainwright, as well as
in the subsequent work of Green and Naghdi, the equations of mo-—
tion are derived directly from the consiaérations of the surface

2

and not from a general theory of the generalized Cosserat conti-
nua.

In the applications of the theory of Cosserat sur
faces to the theory of elastic plates and shells it was assumed
that in the initial configﬁreition D@ = 0 and 9(3) = e3. For furth-

er references see e.g. [163, 164, 167, 318] . *

2L
Ay

Ericksen and Truesdell [12ﬂ gave a very elegant and exact
theory of strain and stress in shells, assuming that three di-
rectors are assigned to each point of the surface. The work of
Cohen and DeSilva [64, 65] on elastic surfaces is based also on
the assumption that three directors are assigned to the points
of the surface, and they based their work on the results of E-
ricksen and Truesdell. Their equations of equilibrium may be
derived directly from our equations (7.32, 33). However, in the
theory of elastic membranes [66] they consider, at the points
of the membrane, a single director field. The director is taken
to be normal to the surface and the only deformation it suffers
is the deformation of its magnitude.
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73 Bodies with T wo Directors

A Theory of Rods

As an example of two-director bodies we shall con
sider the theory of rods by Green and Laws [153, 155], which was
applied to the theory of elastic rods by Green, Naghdi and Laws
156] . |

A rod is considered as a curve !, imbedded in
Euclidean three-dimensional space. At each point of the curve
there are two assigned directors. Let © be a convected coordin-
ate * defining points on the curve, and let ¥ be the position

vector, relative to a fixed origin, of -a point on the curve,
(7.3.1) ro= r(@).

Let dgy = gyanddy) = gp be the assigned directors
~ ~ R Y

and let the vector g3 tangential to the curve,
N

ar,
(7.3.2) ds = 75>

be considered as the third vector of the triad, so that

g = (gixga)-gg > 0.

~ ~n n

LY

¥ Convected coordinates, by the definition, move with the body
and deform with it so that the numerical values of such coordin-
ates for each point of the body remain unchanged.
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Along f we may construct the reciprocal triad g" , such that
~n

9.9; = 9y, 99 = g, gig, =g (733

v

g‘"g& = b, g'tg, = b .

- We shall introduce the notation

~ Lk k o -k '
. ¢ .xbj. g . 30 = X, . (7.3.4)

0 3¢ T Fuo 9

It is assumed that the stress acts along the

curve ! ., The stress vector 3(6,@ according to (6.11) is

b V3 v
Lo, = tleng, = tTging = t'g; . (7.3.5)
Since ny =n=1, the components of the stress tensor reduce to
3
£ =t  the total resultant stress exerted on a segment (91,92)

of a rod is

0, '
10y) - 10) = [t@)] " . (7.3.6)

(ex)
For the director stress vectors h , according to

(6.19) and (6.20) we may also write

(e} CADE) &)y
©,mg, - h“@geny = hg, (7.3.7)

n ~

h“(o,n) = h

and the moment of the director stresses, defined by (6.27), be-

comes

()b (e}
dwxh g, = h g,xg; . (7.3.8)

2%
I
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The resultant moment of the director stresses exerted on the seg-

ment (0,,0,) of the rod will be according to (6.28),
. 5
(7.3.9) }:(ez) - %(91) = [}::(0)]91 .

If we assume that there are no body couples !

n

and no couple stresses m acting on the curve %, and since the
~

mass dm of the line elementds is given by

(7.3.10) | dm = gds = g\gs3d0,

the law of conservation of mass and the principles of balance of

momentum (7.14) and of the moment of momentum (7.21) obtain the

form
02
(7.3.11) %/g g33d® = 0,
84
o2 . 92
d ' %
(7.3.12) a;fag g33d0 = fef,\/gssde + [1@],,
8y 9y
8,
7.313)  Gletoxy + M doxdando =
9y
9
) %
= /g(zx't + dpyxk )Vgszzdl + [,'sz + “'191 .
6y

Since 91 and 02 are convected coordinates of two

points of the curve and remain unchanged under the deformations
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of the curve, it follows from (7.3.11) that @\/Qsz is independent
of time and the law of conservation of mass may be written in the

form

gVgs = KO, (7.3.14)

where J(©) is an arbitrary function of position.,

Using the simple relation

B2

0
(KO, = / %’;do,
8y

the equations (7.3.12) and (7.3.13) obtain the form¥*

02 92

_ 0t
/Q‘gvgssd@ = /(Qf, gs3 + ﬁ)de ) (7.3.15)
8 o, 04
/g(zxg + L’““gmxé(m)\/gﬁde = (7.3.16)
0, o
: ») )
= /[9(£X£ + Q(X)XE( Wass + ﬁ%xi + &)]d(‘) .

6y

These two equations must be valid for an arbitrary segment
(91,92), which yields the local form of the equations of balance,

i.e. we get the equations of motion:

(=1
-+

1
ds

B

(7.3.17)

ey = ef +

N
(=3
@

Y
i« We take "% to be indipendent of time [155].
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( 8) N - { a}"
7°3’1 L Pd, = (._‘V. )
Qv N(Mx g(y,) QE + \/ﬁ 90 + g.’)xl:, ’

(T = daxk™ .

~

where we have applied (7.3.17) to simplify the equation (7.3.18).
To write the equations of motion in the component

form we have to apply the formula

T '» |
N 0T moN )
a0 (ae +T""‘)9"’

~

where T(D,1t) is a tensor defined along the curve i, and.x;}is

N
defined by (7.3.4). Hence, the scalar products of the vectorial
equations (7.3.17, 18) with the base vectors gb give the follow-

o~

ing six differential equations of motion:

(7.3.19) V- v g.f'" + L(% + x,;}t'“) ,

200
Il

o At = v 1 e A, m v
(7.3.20) gi (g(;‘?xg(»,)g ol + _\/g[ae + X +(%xg3)£] .

Since we have

v b v Vg k
(% Xg3)'£ = g *(g&xgﬁz = g *Eéskgkz = g &8&_3kt y

and k must be different from 3 according to the definition of

the g-tensors, the equation (7.3.20) may also be written in the

form
v

(7.3.21) _o.i,**"(g(x)xéw) = gl"" + —1—<3%- + X" 9'"}5,;3“'5"‘)-
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The equations (7.3.14), (7.3.19) and (7.3.21) re
present the basic set of the equations of motion in the general
theory of rods by Green and Laws.

Ericksen and Truesdell [121] assigned to each
point of a rod three directors and discussed in detail the state
of stréin and stress from this point of view, without making any
constitutive assumptions oh the mechanical properties of the 7
material of the rod, In their criticism of the classical descrip-
tion of the strain in a rod, the inadequacy of the classical
description of twist and the insufficiencies of the theories
which do not assume the material to be oriented in the sense of
the generalized Cosserat continuum become obvious. Cohen's theo—
ry [63] of elastic rods is based on the kinematics and statics
of Ericksen and Truesdell. An independent approach to the theory
of rods, but with the same form of the equations of motion (7.3.14

19, 21) is presented by Suhubi [440].

8. Some Apphcaﬁonsof(Ha%kmlThennodynmnms

During the last ten years a great work has been
done on the development of thermodynamics of continua. Our inter
est here is primarily directed towards the application of thermo
dynamics in the derivation of the constitutive equations, and we

shall restrict our considerations to the classical formulations
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of the first law and the second law of thermodynamics. The read-
ers interested in the modern contributions up to 1965, may be
referred to the book by Truesdell and Noll ([468] , and for the
later work to the papers by e.g. Chen [61], Green and Laws [154],
Green and Rivlin [176], Kline and Allen [236], Leigh[265], Trues
dell [466, 467] , Uhlhorn [470]etc.

' The experience shows that mechanical processes
cannot be separated from thermal phenomena. Mechanical work may
make a body hotter, or heating may produce certain mechanical
effects, such as e.g. thermal dilatations and thermoelastic stres
ses, |

' To indicate how hot is a body the temperature 0
is introduced as a fundamental entity. It is assumed that there
exists an absolute zero © =0 which is the lowest bound of @ and

for all processes ©>0,

It is postulated that the total energy of a body

is the sum of the kinetic eneérgy produced by the motion of the

mass points of the body and of an internal energy E.

For the internal energy it is assumed that it is
an absolutely continuous function of mass, so that for a part v

of a body it may be written

(8.1) E - /cdm - [etav

o

where € is the specific internal energy,
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¢ = &x,t) . (8.2)

The increment of the total energy per unit time
depends on the rate P at wﬁich the mechanical forces do work (the
mechanical working), and on the total input (output) of the non-
mechanical working (heat), which we shall denote by Q.

Mechanical working is the rate at which the body
forces f the director forceslém, the body couples E ‘the stres—
ses‘E the director stresses h(hnd couple stresses n\do work. Ac
cording to the definitions of the section 6,2,!3X)and m are
defined for the points on the boundary s of a part v of the body
considered, Therefore the working of f k()and & is to be summed
over all the points of v, and the working of the forcest, h and
m over the points on the bounding surface s .

The kinetic energy T of a part v of a body we

shall assume to be in the general case represented by the expres

sion of the form (5.1.26),
T = %/Q(I"Iv + L)‘”d&)d(w)dv , (8.3)

where we assume that the coefficients ™ are independent of

time. The rate of the kinetic energy will be now

T = /Q(bev + 'L)'V’c.ia)d(y);,)dv . (8-4)

v

Using the equations of motion (7.32, 33, 34),

ox' = tu3 + ofL (8.5a)
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o aanh i o8
(8.5b) oL Pd’(p) = h i ¥ Qk ’
Y G "k
vg
got = 17 + gl + v*,k)

where owing to the tensorial character of the quantities involv-
ed we may from (7.25) write the corresponding expressions for

curvilinear coordinates,

(8.6) ' o't = x’“dmd’(m ;

X ¥ o ] x: [y, (W3
e adgk Y, mi - +dgh ",

and for the rate of the kinetic energy we have the expression

(8.7) T = yg(t'"kfc-u + mkdwv - mi w, )d.sk +

5
+ ‘/‘Q(fbx,' + k(Mba(xﬁ - ?,o*w;,&)d.v - W,

v

By W we have denoted here

(8 S)W de«'U’ = ‘/‘(t(w) (M& d()‘)’kw;’}'i' hM kd/(md_ K = m \0 k)d'v

The right-hand side of (8.7) represents the mechanical working

P .

The non-mechanical working Q is assumed to rise

from surface and volume densities,

- k
(8.9) Q zgq ds, + v/hd.m,
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where ¢ is the rate at which heat flows through the surface, and

h is the heat generation per unit mass (source). q is often call
n

ed the heat flux vector.

The first law of thermodynamics postulates that

T+E = P+Q. (8.10)
From (8.10), using (8.1) and (8.5-9), we obtain

gt = w + g4 +gh, (8.11)

which represents the local law of balance and energy. According.

to (8.1), (8.3), (8.8) and (8.9) we see that the first law of
thermodynamics is also of the form of a balance law, and there-~
fore it represents in the global form (8.10) the law of balance
of the total energy.

From experience we know that at least one part of
the mechanical working goes into heat, and the rest is again
available for the mechanical work. Therefore we assume that W
may be decomposed into a reversible part EM/ and into an irrever-
sible part pW which may also be called the dissipative part of

W , such that
W = W+ ,W. (8.12)

The reversible part of working goes into the potential energy 2:,

such that X = DW and

Yy = /E\“W = /gcdv, (8.13)

v
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where ¢ is the specific strain energy, or the elastic potential.

The difference between the rate of the specific
internal energy and the rate of reversible work we shall denote

by On , so that
(8.14) gt = fw +gln,

where v represents the specific entropy and is defined per unit

mass and per unit temperature, and from (8.11) we obtain
. k
(8.15) eOn = pw + qj + gh,

which represents the equation of production of specific entropy.

If we assume that all stresses, director stresses

and stress—couples may be decomposed into parts which do revers-—
: (3 X . . )
ible work (g} ,Eb » £M), and which do dissipative work (Dz,bh )

pM ), we may write

) M) A
(8.16) L = el +obt5 h™ = b +oh 5 om o= emo+om.

From (8.15) it follows that any portion of the
stress, director stresses and couple-stresses which does recover
able work makes no contribution to the entropy (Truesdell and
Toupin [469] ).

On the basis of (8.11, 12, and 15) we may write

o0 [ - [l o B - [pen

- T v
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The quantity H defined by

H = /gndv

v

is called the total entropy. Now, from (8.17) we obtain

H - f%‘ - /de = /l(bw + S9ﬁ()dv. (8.18)

0 0 e

b\ v

The postulate of irreversibility, also called the

second law of thermodynamics states that

k
o g_fiﬁh - gb. S
v 2{ - /% dv > 0. (8.19)

In the form (8.19) this law is also known as the Clausius~Duhem

inequality, or the entropy inequality. In the local form this
law reads |
00 - oh - g + 10,9 > 0 (8.20)
- n - q)k 9 ,kq . .

Sometimes it is convenient to use the Helmholtz

free energy ¥ per unit mass, defined by the relation
gy = & - 0On. (8.21)
In substituting this equation into (8.14) we find
op + gné = [w. (8.22)

Using (8.11) we may rewrite (8.20) in the form

which includes the mechanical working w,
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(8.23) -Qé + 000 + w + ée#qk z 0,

and if we introduce the free energy into this inequality, it

_becomes

(8.24) - - gqé + w + %O,qu 2 0,

A process in which

is called isothermal ,

is called adiabatic ,

is called isentropic ,

is called isoenergetic .

[a: 23 THEE -» I «» 1
i 1]
o O O ©

When in (8.19) we have the equality, we have the
case of equilibrium and the corresponding process is reversible.

From (8.14) and (8.22) we see that the strain
energy ¢ is equal to the internal energy € if the process is i-
sentropic, and the strain energy ¢ is equal to the free energy
v if the process is isothermal.

An inspection of (8.8) shows that for the recover
able part of working we may write

(L)
Ew = Etb&

8.2
(8.25) Nk« ¢

Vi k
+Eh& dunk"sm* Wik
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Since
Et(mdq = gulEt(u&) ,: )
Eh()‘)?fk‘i(x),;r = szd(x)kEhM*]k :; ) (8.26)
E"‘L&k‘”a},k = 9;‘25'“."“(“,3;1( = gnemmk)vf;k
and since
“:; - I;ELXL;} ’
vf}k = (vf}),k = (x_ELXE&)’k = x;LKX§}X§k+x;LLX;L°-\k, (8.27)
a‘%k),k = ;&)_;;X?k )

we see that W may be expressed as a linear function in the

material derivatives of the gradients of deformation and of the

directors,
S, xhe s dy;x
Thus,
e = gn[ﬁth;Lef + d(x)keh()‘)&]kxi - “X>¢k]lt_g,L +
. (8.28)
+ Eh(k)&k fkd'(k) < = Qupgm }k)x%e}xl;(k_



108 8. Some applications of classical thermodynamics

According to (8.14), we may assume that the inter
nal energy is a function of the deformation and director gradients

and of the entropy,

L 4 4
€ = €0, , X, dapksn)
so thatit

. e 7 o8 Tt . dE.
(8.290 & = —i')éT X+ a—f X + —— dogx + an n.
(b HY 0x; L dd ok

Since the relation (8.14) must be valid for any processes, it
1 T,
> XkL 5 )ik

¢
must be satisfied for arbitrary rates Xxj_

and. 3 , which yields the following relations

g v 9§k

(8.30) gm (&\k) = -09g E f’ Xk X500 s
x5,
(M) jk it _oE kK
(8.31) eh = Q9 1 Tk
_ . (7K
o SYAR I AN ST ) A w_08 e ¥
(8.32) " = 9[9' z(O_!x,L + —z“xﬂ(L) + (9 ! t d’?kbk)m.]xm] .
Ix;, XKL dd ik '

Hence, from the first law of thermodynamics we may obtain certain
relations for the reversible parts of the symmetric part of the

stress tensor, and of the symmetric part of the couple-stress

tensor and for the director-stress tensor. The dissipative parts

3% We follow here the procedure applied by Stojanovié and Djurié
[425, 427] and by Stojanovié, Djurié and Vujosevié [343] in the
case of elasticity.
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remain unchanged.

Regarding the dissipative parts of the stress ten
sor,couple-stress tensor and of the director stress tensors,there
is a discussion whether or not the inequalities (8.19), or (8.23,
24) present any restrictions. E.g. Kline [235] demonstrated that
from these inequalities without additional assumptions further
conclusions cannot be made, but Leigh[265] (in the non-polar case)
finds certain restrictions and applies the second law of thermo-
dynamics to plasticity and linear viscous flow. Green and Rivlin
[176] obtained the differential equations of theories of gener—
alized continua by the systematic use of the first and second
law of thermodynamics, but applied the procedure only to the re-
versible case (cf. aiso Green and Laws [154]).

I find, however, that in some cases the principle
of least irreversible force by Ziegler [516] is very useful.*
Ziegler applied it to a number of cases in the theory of non-
polar materials,

For polar materials this principle was applied
for the derivation of the constitutive relations of plasticity
and viscous flow by Komljenovié [243], Plavsié [359, 361],Plav-
sié and Stojanovié [363]and Djurié[88].

Ziegler assumed that the entropyflhas two parts,

% This principle is not generally accepted and some authors
have serious objections on its general validity.
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the irreversible part n” and the irreversible part 0 , so that

(8.33) o o= ¥
and
(8.34) 00" = Jw |

These relations satisfy the equation of production of entropy.
Further he assumed the second law of thermodynamics (for dt > 0)

to be of thé form
(8.35) n" = .
From (8.,20) we see that this assumption is valid only if

(8-36) O,qu < 0

b

which is not in contradiction with the experience, since the
temperature flows from the parts of the body with higher temper
ature to the parts with lower temperature., It follows then from

(8.34) that

The rate of entropy production fﬁn is independent
of the heat éxchange and may be a function of the:rates of de-

formation only.
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If x*, k = 1,.,n are variables which describe
the configuration of a thermodynamical system and if Xﬁ? are ir
reﬁersible forces, we may write

o= Xpdxk . (8.38)

In an n-dimensional space of the variables x* the

dissipation function

$(x) = o' | (8.39)

k

for each prescribed value of the velocities X represents a sur-

face,
#i) = M. (8.40)

Assuming that a process considered is quasistatic,
i.e. the change of the coordinates xX and of the temperature O

is sufficiently slow, the principle of least irreversible force

states that:

If the value M > 0 of the dissipétion function
$(x*) and the direction v, of the irreversible force(Xt)= Xvk)
are prescribed, then the actual quasistatic velocity‘ick minimizes
the magnitude X of the irreversible force Xt) subject to the
condition $(x*) = 0,

For the justification of this principle we refer
to Ziegler's paper [516] .

As a consequence of this principle it follows
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=

that the components of the irreversible force have to satisfy

the equations

@ 0é
(8.41) X, = xa—ik ,
where
| 98 .\
(8-42) A= Q(O_x’“x > .

When we identify the components Xt)with the com-
ponents of the irreversible parts of the stress tensor, coup}e
stress tensor and tensor of the director stresses, and the veloc
ities xX with the corresponding rates of the deformation of posi
tion and directors, from (8.,40) follow the relations for pl, p M

(
and Db )o

81 Invariance of the First Law of

Thermodynamics and the Equations

of Motion

The first law of thermodynamics may be written

in the explicit form (cf. 8.10)

d 1 foapwsy -
P}xz

~N

(8.1.1) = (ft\:‘-}“r +
’ (
+ fed + Ko - b + Wy

v

dpy - mw + qids +
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where we have put

| Vi W . (Wig
:E'H = t N b .g,m = h d'(k)‘»”j, ’
vik ) - Wy *
my = m*wn , kody = ko day, , (8.1.2)
Vi «
.\E,‘:,’ = ! wb; y .

and W is the antisymmetric vorticity tensor defined by (3.28).
Two motions of a body considéred differ by a rig—
id body motion if the velocities of the points of the body differ
by a rigid body velocity. Let E'and g*be two velocities of a
poijnzﬁ, and let a andfg be two constant vectors. A rigid motion

is defined by the velocity field
v o= a+wxir-ry = b+ wxr (8.1.3)
~n ~ n ~ ~ ~N o~ ~n

where r is the position of 5 and ro is an arbitrary constant vec
tor. Sincesg is the angular velocity vector, its componenfs are
w, = %Ct}km&" and wt* = —whE,

We postulate now the invariance of (8.1.1) under
superposed rigid body motions. This means that the form of (8.1.1}
is invariant for all motions which differ by an arbitrary rigid
motion.

When in (8.1.1) ¥ is substituted by g-+g,the pos

tulate will be satisfied only if
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8.1.4) [[agbav +(yb+ 3" )adv] - frbds+ [ofbav

2
For arbitrary B and b we obtain two relations,
~ -

the law of conservation of mass,

which by (3.46) obtains the usual form

(8.1.5) | Ie = @0,
and the equation of motion (7.19),

(8.1.6) o’ =t 4 of .

To investigate the consequences of the invariance
of (8.1,1) under superposed arbitrary rigid body rotations, we

have to substitute vy v d'().)’d'(M and w by

(5.1.7) § o e exly e uxp)
dpy — day + wxdpy

.ém - é(x) + ‘:,’X(é;m + &,’XQ(M) ’
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respectively. Thus we obtain the relation
/2‘,:,"[[}1',’ + M dpxdyldy =
= /g w-(rxf + d.mxk + Ddv + (8.1.8)
v

(rxt +‘g,mxb’m + m)ds .

NN

+

veg

Using (8.1.6) and after the application of the divergence theorem

for arbitrary rotations @ we obtain

[d. v] [v (X)d—]k

oi*dgydfy = 14 (gafy ‘”*]H“*) (dogh™ " +mH), (8.1.9)

which coincides with (7.34).

The equations of motion of the directors (7.33)
may be obtained from the invariance of the relation (8.1.1)
under arbitrary rigid translations of the directors. If ggbare

arbitrary constant vectors, and if we substitute éﬁﬂ by
day + Ca

in (8.1.1), it follows immediately that the form of the first

law of thermodynamics will be preserved if
S A (PHIN _
Covil@i™"d(y - gk - h" 7)) = 0,

which for arbitrary Cpy, reduces to (7.33).
This last requirement, that (8.1.1) is invariant

if the rates of the directors are changed by some arbitrary, con
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stant rates, is ah extension of the well-known invariance of the
energy-balance law under superposed rigid motions in classical
continuum mechanics. This extension however, is not unnatural
since (8.1.3) are related to the displacements of the points of
the body, and the motions of the directors are independent of
the motions of the points, That was the principal reaéon for our
introduction of this new, additional requirement for the invar-
iance of- (8.1.1).

From the results in this Section we see that the
postulated invariance of the first law of thermodynamics under
arbitrary rigid motions of the points and of the directors is
equivalent.with the principles of balance of the Section 7, and

contains all these separate principles as special cases,

9. Some General Considerations on Constitutive Relations

[a

The relations (8.30-32) for the reversible part
of the stress, director stresses and couple-stress tensor, as
well as the relations for the irreversible parts which follow
from (8.40), have to satisfy some additional assumptions in or—
der to represent constitutive relations.

Constitutive relations in mechanics describe the
response of a material to deformations, The response is charac-—

terized by the intrinsic properties of matter and not by the
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choice of coordinates, or by the choice of the way of describing
deformations, rates of deformation, motions etc. Constitutive re
lations,never describe completely-mechanical properties of real
materials, but only some of the dominant properties considered
for some particular purposes. Therefore, a material which would
completely behave according t; some prescribed constitutive re-
lations is an ideal material and does not exist in the Nature,

The first question, regarding the consfitutive
relations, is: which quantities are to be determined by these
relations and which quantities are to be considered as variables,
There are 3n+3 differential equaﬁions (7.35) and (7.36) from
which the motions x = 5(?\(',1)and A = g(,‘)(%,t) may be determined if
the forces ﬁ and 5& and the couples & are prescribed, but there
are HO+27=45 components of the tensorszj,bwkuw.m which cannot
be determined from these equations. If we turn to the laws of
thermodynamics, we obtain some relations, but then two new ad-
ditional quantities are introduced, temperature © and entropyr.
Expressing the laws of thermodynamics in terms of the internal
energy £, or in terms of the free energy ¢ we may regard 0, or
n respectively, as a quantity to be determined by a constitu-
tive relation,

There are two methods for the formulation of con-—
stitutive relations. One method is: to assume certain relations
and to subject them to certain restrictions which follow from

thermodynamics and from the principles which will be introduced
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later, The other method consists in deriving the relations from
the energetic considerations based on thermodynamics; so obtain
ed relations are then to be subjected to further restrictions
furnished by the additional principles.

The number of the assumed additional principles
which are to be imposed on the constitutive relations varies
from author to author. Since we are going to consider the con-
stitutive relations which follow from the energetic considera-
tions, and since we are not going to consider problems of more
complex nature such as viscoelasticity and dependence of the
state of stress on the history of deformation, we shall restrict
the number of additional assumptions to two principles,
1° The principle of material frame indifference, and
20 The principle of local action,

The discussion of various other principles in
continuum mechanics may be found e.g. in the books by Truesdell
and Noll [468] and by Eringen [122, 131],

The two mentioned principles are independent of
the so called material symmetries. In order to obtain the rela-
tions for a particular class of material symmetries, we have to
require, in addition, that the constitutive relations are inva-
riant with respect to a subgroup of the group of orthogonal trans
formations which characterizes the class of material symmetries
considered,

. . .
Let z® and 2 be two orthogonal Cartesian coordin
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ate systems with origins at 0 andg, and let an event be describ
ed with respect to these two systems by {5,t} and{g,f]», where 1
and -f are times measured by tyo observers at 9 and g. A change

of the frame of reference is expressed by the formula

0 = Qg+ a*®) (9.1)
t = t-v,
or
z* = Q0 (DE + ® (9.2)
| t = t+7T.
Here
ot = of, apa) = 8, (9.3)

: : -1 T
and we assume that le an orthogonal matrlx,g =Q .

~N

If Iis a tensor field with components T... and
:1:: .. with respect to the coordinate systems 95 and gg respec—
tively, and if the components transform according to the trans-
formation law for tensors when both, the dependent and independ

ent variables, are transformed according to (9.1.2), the tensor

field T is said to be frame-indifferent, or objective.
0N

The components of the position vector ‘);:Z“S“are
obviously not objective quantities since they transform accord-

ing to (9.1.2).
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The components of the velocity vector‘g are de-

fined with respect to the two considered reference frames by

(9.4) ‘U'“ = éu , ,Gu = 'Z"'u
From (9.1) we have
(9.5) v = Q'},zp + prvﬁ + a%

and obviously the velocity vector is not an objective vector,

Writing (9.5) in the form
(9.6) v, = (.l“,‘zx + Q‘:‘v)v + A,

we obtain for the velocity gradients the following transforma-

tion law,
ov y 9zt A vy gzt
. — = Q,,
-7 ozh ozh | % dzF g3
. oA XOV)‘
= quQp + Q“ a }“'Qp

Hence, the velocity gradients are not objective quantities. How-—
ever, the rate of strain is an objective tensor. From (9.7) we

have

HB )

A A
Ozﬁ + 0 O‘(ﬁ Q“)k + Qu Qﬂ. v(X,p.) b)

ol
R
-
I
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but in view of (9.3)
oz N d A
Qﬁ Qu)\. + Q“ pr = a‘i(Q}g qu) = 0 ’
and obvicusly
—— A -]
d“p = Qe: Qﬁ d-x’& .

From (9.7) it may be seen that the vorticity ten
SOT Wy p =v[u,ﬁ] is not an objective tensor, but the gradients of

this tensor are objective quantities., We have
w“ﬁ = Q[p Q«.]K + Q“ Qﬁ ‘w‘;\,},,
and

- AR
Wepy = Qe GOy, (9.8)

If points of a body are referred to a system of
. . . N . -~
material Cartesian coordinates Z and if z* and Z* are two spa-

tial reference frames, we see from (9.1) that
9z _ = 02°
PRy L W
0z 0Z

and the deformation gradients are objective. The same holds for

(9.9)

the higher order deformation gradients

2 2
= % o W
0 Z - Q 0z

Y&l Vis *oaztez”

The principle of material frame indifference re-

s etc. (9.10)

quires that: Constitutive equations must be invariant with re-
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spect to rigid motions of the spatial frame of reference.
R [+ o @ .
A function F(Vyy, Vi, ..., 2%) of vectors Vi is
objective or frame-indifferent if it remains invariant under rig-
id motions of the spatial frame,

If only translations are regarded, 2% = "+ a% it follows that
- o«
Voo = Va
and the condition of objectivity for the function F reduces to
F(\,\{(ﬂ)' co, 2%+ a%) = F(\n{(ﬂ’ . ..,Z“) .

If the translations a* are small quantities, from the Taylor'ser—
ies expansion of the function F we obtain that it will be objec—

tive only if

oF _
c‘)z“—o

i,e, if it does not depend explicitly on spatial coordinates of
position.,

Let us see now which restrictions are imposed on
the function F by arbitrary rigid rotations of the spatial frame,
if F is an objective function.

Let Q be the matrix
Q = (8 + w3,

where W = -wﬁ_:is an arbitrary infinitesimal rotation, and
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¢ = przﬁ = (6; + m“fﬁ)z‘3 . (9.11)

If F is an objective function of vectors V(:) ,V =42,.,n, it will

satisfy the relation
[+ 4 [- 1 =, 0t ot -
FVig, - -« 5V) = FVg, ..., Vi) . (9.12)

From (9.11) we have

7%

A 7 .
= Vg + Vgui (9.13)
and the invariance requirement (9.12) reduces to the relation
FVig, - ..) = Flvg + V&m‘i‘/5 A BN -~ (9.14)

For sufficiently small tofb we may expand F into the Taylor ser-

ies,

N\

o . - o o AF B e
F(v“) + led_p,.. ) = F(Vm,...) + 21 lv; V(v)(a)_ﬁ + ...,
v= {v)

Hence, if F is an objective function, for infinitesimal rota-

tions,g we obtain that F has to satisfy the condition
OF
Z —Tv(v)‘*’?;s = 0. (9.15)

But & is an arbitrary antisymmetric tensor and (9.15) reduces

to the system of three differential equations (Toupin E460] )

n

oF )
OF - 0. (9.16
<\az=fl. E)V(v) W (e p] )
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The equations of (9.16) are tensorial equations.
If the variables are objective quantities, we may write (9.16)
in the form appropriate for arbitrary curvilinear coordinates

k
Xy

(9.17) (2 gbza—FgV(i))u.] =0
v=iT Vi i

The principle of local action states that: the

state of stress at a point g of a medium is determined by the
motion inside an arbitrary neighborhoodf«g)of the point %, and
the motion outside this neighbourhood may be disregarded.

Under the"state of stress" we understand the val-
ues of all the quantities which describe the stress field ( z,

()
h, m etcs)o If ?(Z(Z)) is a function which describes the

~N
state of stress at Z at time {, according to this principle, at
a configurationk&t%ﬂwzstate of stress at Z is determined by the
]
instantaneous configuration of the neighbourhood N(Z). Let % be
~N

a point iangL At the configuration K({) the relative position of

7' with respect to Z is given by
~nN . ~N

Az = 2(Z,0 - 2Z,0 .

o

106
ifrZ ~72 = AZ“, we may write

o« 2 [
(9.18) Az= = QEazt L O ET z7Mpzr .
Y 2a9z% 02"

Since the state of stress at Z is determined by the local con-
~n

figuration of an arbitrary neighbourhood.N(Z), it follows that ,
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y must be a function of the deformation gradients,
oL o o
y = ‘P(z;ki’ z;xila""z)xi...XN)"’th) . (9'19)

If ¢ is the internal energy function € and if N
is the highest order of the deformation gradients which appears
in the expression for the ene;gy, according to Toupin [463] ’

- the corresponding material is said to be of order of N.

Stojanovié and Djurié [425, 426] g,enerélized this
notion to directed elastic bodies, considering the strain energy
as a function of the deformation gradients of an orderN, and of
the director gradients of an orderM, such that € is a function
of the form *

t = f-(xrx;xi}(xixz;--»xl;(x,...xN§d(l;)}x,d(kx);»(ixzad(‘;(\)xixe...KH;Q;,%) : (9.20)

In the following we restrict our considerations
to the materials of the orderN=2 and M=1, i.e. the constitutive
variables, which are to be considered as independent variables,

in the expression for the internal energy density are first and

% A number of authors considered the strain energy as a function
of the components d%k) of directors, and not only as a function
of the gradients of the directors (mostly in linear theories).
From our considerations in the section 8 (see eq. (8.28)) it does
not follow that the components of the directors appear explicitly
as constitutive variables and therefore we omit them here.
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second order deformation gradients and the director gradients,

so that

k k k )
(9.21) E = &x5xke, dayk Ny X) -

Generalizations to higher order materials are in
principle simple, but require more involved notafion which makes
the expression less clear, The higher order gradients of defor-
mation and directors may be identified with the multipolar dis-
placements, and the theory then might be directly applied.

The materials for which the constitutive relations

do not depend explicitly on X are called homogeneous and we
N

shall consider only such materials,

9.1 The Internal Energy Function

The internal energy function € in the form (9.21)
has, according to the principle of material frame indifference,
to satisfy the conditions of the form (9,17). When the constitu-
tive variables are identified with the components of the vectors

Vi) according to the table

t t t L ? 2
Vi » V(z) s Viy  — X3y, X525 X33

t ] 4 [}
V“)"" 7\Q$ > Xyfy e oy X533

2 1 ] A
v(10)7 ey Vl3n+9) g d'(i);b“ ) d’(n);S ’
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- the equations (9.17) obtain the form

o OF ¢ e ¢ h) i
{9 2(-97 Tk oLk 5’ dix)m)]“.] = 0. (9.1.1)
aIJK ‘ XKL ! (x);K &

This represents a system of 3 linear partial dif-
ferential equations with 3 x (3nt9) variables V&), / :=.1,2,3;
v = 1,2,...,3n+ 9.

The internal energy € is an arbitrary function of . 3x(3n.+.9) -
-3 = 9n + 24 independent integrals of the system (9.1.1)°

It is a matter of a direct calculation to verify

that the integrals of the system (9.1.1) are the material ten-

sSOors

a b

Cap T QapXiaXip (9.1.2)
a b

Geas = QabX;caXsp (9.1.3)
a b '

Farb = Qap ;a0 (wps - (9.1.4)

These tensors are invariant under the transformations of spatial

coordinates., Since

Chog = Cpa Gcag = Gacs (9.1.5)

there are 6 +18 + In independent integrals C , Gy F(u) and the in-
~N ~n ~N

ternal energy is an arbitrary function of these quantities,

K
¢ = &(Ch, Geap s Furn 5 X ) . (9.1.6)
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9.2 Irreversible Processes

The dissipation function ¢ in (8.39) is a func-
tion of certain generalized velocities. According to the princi=-
ple of material frame indifference ¢ has to be a function of
objective variables, Such variables are the components of the
rate of strain tensor dL; = V()0 the gradients of vorticity
Wik o as well as the second gradients Ui, ik of the veloc~
ity vector,

For oriented media the rates of directors d%;)
and the gradients <iLﬁk of these rates are objective tensors,
With respect to rigid motions (9.1.3) of Cartesian frames, it

follows that the directors are objective vectors,
= P AN
dw = .,
but the rates
= A

d(“) = d«(“)Q_“ + d'(“)Q'P'
and the gradients of the rates
;X « }A‘ A .V » . )' RY)
d(u),/; = d'(oc),vQ-y.Q/b + d’(u),vQ-F.Qp
are obviously not objective quantities,

From (8.8) we have for the dissipative part pw

of the mechanical power the expression
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(v&) (X)&k

pw = b Tdg, +

vgk
(d(mk - Wy dmk) m¢ Wik ¢ (9.2.1)
However, we may write
dm‘},k - wébd(k)'v,k = (d'(k)é - Wf:d(x)‘u),k + “’}tkd’(m , (9.2.2)
where

dw; = dw; - witday, (9.2.3)

is the co-rotational time flux (cf. [469] ) of the vector g(n.It

A
may directly be verified that d4mijs an objective vector. Hence,

we may rewrite now (9.2.1) in the form

(b&) Mk

(W k
+ ph

pWw = Dt d(x) ko~ (m bk + d,(ux)h )W'v&’k . (9.2.4)

Hence, all rates which appear here,

A

diz 5 Wik s Gk (9.2.5)

are objective, It would be natural to assume now that the dis-
sipative function ¢ depends on the objective rates (9.2.5). But,
according to the definition, ¢ is a function of velocities, and
therefore it might be regarded as a function of i%x, iEKL) d4xﬁK
via the objective variables (9.,2.5).

For the derivation of the constitutive relations for irreversible
processes we may turn now to Ziegler's principle, or to consider

the Clausius-Duhem inequality. Ziegler's principle of least ir-

reversible force is so far applied only to the case of non-orien
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ted polar media, where it was assumed (for references-see sec—

tion 8) that

(9.2.6) ¢ = 8(di;, W) -

v )

Formal difficulties for the application of the
Clausius-Duhem inequality are evident, since the internal ener-
gy function &, or the free energy ¢y , have to be regarded as
functions of ng, IEKL;<16$K , and not of the rates (9.2.5).
Therefore we may only quote Rivlin [377], who said that "The
application of the Clausius-Duhem inequality to inelastic ma-
terials iS...... questionable, It should, however, be realized
that the results obtained from many applications are, in the
main, not very strong".

The only possibility which remains is to intro-
duce the constitutive relations by assumption, and in the form
which will not violate the laws of motion and the laws of ther-
modynamics, The form of the assumed relations depends on the
mechanical properties which are to be considered. Often in the

applications of this method is used the principle of equipres—

ence: A quantity present as an independent variable in one con-
stitutive equation should be also present in all, unless its
presence contradicts the laws of physics, or the rules of in-
variance (cf. [468] ). It should be noted that this principle
is not generally accepted.

In general, constitutive equations have to be in
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accordance with the laws of thermodynamics, i.e. not to violate

them. Let us write Clausius-Duhem inequality in the form (8.24),

-oVY - gqé+ w o+ %e,qu z 0,

and let us assume that some generalized forces Xk are functions

of some generalized velocities v®, (k =1,2,...,n),0f 2,9,0:,0,,

etc. We have
k
wo o= X, (9.2.7)

and if we assume the principle of equipresence, the quantities
Y,n, Xy, qk have all to be functions of the same set of va-

riables,
(Y,n,X,,q") = fonct.(g,0;,0,0,,v") . (9.2.8)

Introducing this into the Clausius-Duhem inequality we obtain

— _ dY; oY - oY .«
o,b+ﬁ6+—e—;0,b+(’mv>—

(9.2.9)
- Qqé + X vk + ‘é‘e,qu z 0

According to the law of conservation of mass we

have

g = -ely, (9.2.10a)
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k
(9.2.10Db) 2. = ..,ula - ka - 091y,

where I4 is the first invariant of the rate of strain tensor,
and x* are spatial (three-dimensional) coordinates of position
of the points of the medium,

The 1nequa11ty (9.2.9) has to be satisfied for

k

arbitrary rates O, 9);, ¥ and it follows that the necessary

condition for this is that

aY @Y oY
(9211) o= -F5, g7 = 0, 5 =0

Thus, the free energy function for irreversible processes re-

duces to

(9.2.12) Y = Yo

h’Q,u?

0)

and the inequality (9.2.9) reduces to

Y. a¥ 0
(9,2'?)_2 + 02,."9,\;>Id + aa,v(gk ‘:u + Qabld,) +
(9.2.13)
k e)qu
+ X v o+ 5 0

Obviously, from this inequality it does not seem
possible to derive the constitutive equations, but whatever are
the assumed constitutive relations, they have to satisfy the

inequality (9.2.13).
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In this discussion of the Clausius-Duhem inequali-
ty we restricted our considerations to the first gradients of e
and © , but the procedure might be applied to any grade of the
gradients and to any number éf the other constitutive variables
assumed in the theory.

In the theory of inelastic properties of non-polar
media, owing to the recent developments of the thermodynamics of
continua, some progreés is made by Leigh [265] and Dillon [84].

In the following sections we shall discuss the
constitutive relations of some particular media, when the consti
tutive relations are expressed in the form of functions. More
general theories, based on functionals, are not very much devel-

oped™.

10. Elasticity

In some modern treatments the difference is made

between elastic and hyperelastic materials. Hyperelastic mate-

rials are those for which an elastic potential exists and the
stresses may be derived from this potential. For elastic mate-
rials the existence of such a potential is not necessary. Hyper-

elastic materials are elastic, but elastic materials are not nec

YA
"~

For some aspects of viscoelasticity we refer the readers to
the papers by DeSilva and Kline [83] and by Eringen [123, 130].
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essarily hyperelastic., We restrict our considerations, accord-
ing to this division, to hyperelastic materials.

In the sense of thermodynamics the mechanical
work done by a deformation of an elastic material is reversible
and it is accumulated in the elastic potential energy ¢ , so

that from (8.12, 13) we have

(10.1) wo= W, c = ).

The local law of balance of energy (8.11) may be written in one

of the forms corresponding to (8.14) or (8.22),

(10.2) Qé = w+ g0n
or
(10.3) of = [w - gnb

Since the dissipative part of working vanishes we shall drop
the subscript "E".
According to the section 8, we assume the specif-

ic internal energy to be a function of the form

2 3 [4
(10.4) ¢ = &(x;, x0, dyik, N)

and the specific free energy to be a function of the form

1] A 4
(10.5) Y = Y(x;, x5k, ogk , 0) .

If we take the energy balance equation in the
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form (10.2), from (8.29, 32) we obtain the following expressions

for the temperature, stress, director stress and couple-stress:

o - 8 - (10.6)
n’
Wy w98 b 9t ¢ w6 i\ Lk
t =9.[9 <_—Tx7L+'—r—x)KL)+<g ] q’(l))k)[..]x7l(:|) (10-7)
x50 X5KL Od 5k K
.. . P :
m i = -29"‘a—fx;xx;L, (10.8)
X%

Wi - !
N Qg"g—a%——xf,( . (10.9)
dd 5«

The similar set of equations follows if the free
energy function Y is used instead of € , but since in Y the tem-
perature 0 is regarded as one of the constitutive variables,the

corresponding constitutive equation for entropy will be

- oY
Y

The relations (10,7 - 9) cannot be regarded yet

(10.10)

as constitutive relations. First, the internal energy must be
an objective function, and second, the symmetry properties of
the left and right-hand sides of the relations (10.7, 8) have
to be the same, i.e. the necessary and sufficient conditions .
for the tensorial equations (10.7 — 9)to be satisfied are that
the irreducible parts of the left and right-hand sides of each
of the equations are equal (Toupin [462] ).

According to this requirement the relations (10.6)
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and (10,9) present no restrictions on the function €, since the
requirements are identically fulfilled, but the relations (10.6)
and (10,7) present considerable restrictions.

On the left-hand side of (10.7) we have the sym—
metric part of the stress tensor, and hence the antisymmetric
part of the right-hand side must vanish. This yields the set of
three equations |

(10.11) [g (ix,L + 028 xngL + Ld’z}x)}»()] =
31,L XKL ddpyx

If we compare this with (9.1.1), which followed from the princi-
ple of material frame indifference, we see that (10.11) is iden-
tical with (9.1.1). Accordingly, the internal energy must be a

function of the fomm
K
(10.12) § = 6(CAB » Geap s Furpy Ry X ) .

To investigate the restrictions imposed by the

symmetries of (10.8) we have first to find the irreducible parts

Wk =

of the tensor m Mt , knowing thatm“* = — mt"*, According

to the Appendix, (A2.26 - 29), the irreducible parts of the ten-
Vi
sor M are

w»

3 -
|
(@)

(10.13a)

>
3 .
|
o
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PM' - %quk R
(10.13b)

%(m'”'fk + mé o) = —PM“‘.’ .

Hence, the right-hand side of (10.8) has to satisfy 10 conditions

(10.13)1,

1 9€ &k
(9 : I)Kx;L)(..k) =0, (10.14)
0%y, v¢ |
and one condition (10.13)2,
. ¢k
<gb2 Of x;KxHJU}H = 0, (10.15)

dx;¢,

and the tensor mbuk) has only 8 independent components.

Owing to the symmetry of the gradients th,; xELK
(10.15) is identically satisfied.

Relations (10.14) represent an additional system
of 10 partial differential equations which must be satisfied si-
multaneously with the system (10.11). According to the defini~
tions of the tensors g,g and Eh)’ (9.1.2-4), it is obvious that
(10.14) will yield restrictions only on the tensor g . It may be
directly verified that the system (10.14) is satisfied by the

material tensor
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{10.16) Disgc = Gcragn = CC[A,BJ

Hence, the specific internal energy € is an arbitrary function
K .«
of the tensors (,D,F(,)and of 0 and X . For homogeneous materi-
NN TN

K
als & does not depend onX ,

(10.17) € = &Cup,Drpcs Funp,n) -

To write the mechanical constitutive equations
(10.7-9) we have to perform the differentiations of the intern-
al energy function considering it as an arbitrary function of
the form (10.17), which gives for the derivatives the following

expressions:

9 0t 9Cyy . ot 0Dy5¢ , ot OF . an
- )
OIEL Cm ax%L Dype ang OFers i)x%L
(10.18) | of - aga aD';BC ,
dxiy, B dxiy,
Y3 9t 9F.p

L oF b
dd i “AB dd ik
According to (10.11), the equation for the sym-
metric part of the stress tensor becomes now
i af 08 & ok
(10.19) i = E![Qb (—g'x;L Nk ](w )

4
dx;, 0x;¢,
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and the complete set of the mechanical constitutive relations is

(g) ot i ¢ b G ¥ ot v i
t = 0(2—::; X + ——— XXy m + /X ) 10.20
- aCKL K*&sL ODKLH K LM aFuK[_ K Gt 9 ( )
Wk ot i oW
mk = Tt S (10.21)
KLM
i P ¢
hME ] 9t Xy X - (10.22)
IFp

For applications it is advantageous to substitute
the deformation tensor C by the strain tensor E (3.10). It is
~N ~N
also possible to represent the tensor R in terms of the strain

gradients,
Dape = 2E¢rapy - (10.23)

From the constitutive relations (10.20-22) we see
that the symmetric part of the stress tensor is affected by the
strain of position, by the strain gradients and by the deforma-
tions of the directors, but couple-stresses depend (explicitly)
only on the strain gradients, and the director stresses depend
explicitly only on the deformations of the directors.

It is to be explicitly mentioned that in the ther
modynamical approach to the constitutive relations the couple
stress tensor remains indetermined. Out of its nine components

only eight appear in the equation of energy balance and only
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eight are determined by the constitutive relations.
So far, except in the theory of dislocations

(Kr8ner and Hehl[200], Stojanovié [419, 421], Stojanovié and
Djurié [425] ) the general relations (10.20-22) were not used
in the applications., The applications are mostly concerned with
more special classes of materials, i.e, with materials of grade
two (the strain gradient theory), and with different kinds of
oriented (directed) materials. For the materials of grade two

the internal energy is assumed to be of the form

(asd
]

(10.24) ¢C,D,n,

R

and for the oriented materials of the form
(10.25) € = &C,D,,n .

In the section 4. we have already discussed the
compatibility conditions for the deformation tensor S . To ob-
tain the compatibility conditions for the tensor D we shall use

~
the commutativity of the covariant differentials in the Euclide-
an space. From (10.16) we obtain after differentiation
Coapp = 2Dppep + Cepan -
Eliminating the derivatives of the tensor C we obtain

(10.26) Duge,p + Dapen * Doacs = O

From the definition (9.1.4) of the tensors E“we
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find

]

A B
iy = FansX5 X5, . (10.2.7)
. A )
Assuming that X;, are deformation gradients, we may write

A,y = F

by¢ wig ?
and for the spatial components of the tensors!iﬁwe have

F

-3

S 0 . | (10.2.8)

Now, from (10.27) we have

AyB G Ao B AyB
iy = Fans,cXiX5 X5 + Fann(Gi X5 + X5 X500
and obviously
Fm[AB,C] =0 " (10.2.9)

which represents the compatibility conditions for the tensorsfF,.
LY

10.1 A Principle of Virtual Work

and Boundary Conditions

To derive the boundary conditions for elastic
polar materials we shall generalize the principle of virtual
work used by Toupin [462] for static equilibrium in the theory
of elastic materials of grade two. In a slightly more general

form this principle was also applied to generalized Cosserat con
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tinua by Stojanovié and Djurié [426] .
We assume the principle of virtual work in the

form

(1()_1_1) : 6T + OE = ow ,

where 8T is the virtual work of inertial forces, 6E is the first
variation of the internal energy and 0w is the virtual work of
all body and contact forces acting on a part v of a body. At the

points of the boundary s of o the normal derivatives Déx’ and

Db d,zu) of (by assumption) independent variations bx*and 6d:“)
are to be considered also as independent.

In general, it may be assumed that the boundary
s consists of a finite number of surfaces J bounded by curves
€ . The boundary curves represent edges.

The gradients ¢ of a functionyg, defined in the
interior and on the boundary of v, may be decomposed on the bound
ary of v into the. surface gradient Dk? and the normal gradient

Dy ,
(10.1.2) 9 = Dy + nDey,

where n is the unit normal to the boundary surface $ . Toupin in
troduced a three-dimensional extension of the second fundamental

tensor 2 of a surface by (see foot-note next page)

(10.1.3) b.. = -D.n. = -D.n.
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For any smooth tensor field f... defined at points

of a smooth surface § Toupin introduced the integral identity

. . . |
/D-uf...n}d,s = f(b N —byJfds + ?men}f...dt , (10.1.4)
J 3 €
where m = Txn and T is the unit tangent to €, and dlis the scal-

ar line element of €,
If the integral transformation (10.1.4) is applied
to all surfaces J, i.e. to the whole boundary s of v, one gets
‘ k
/D-bf...n}d,s = %(b knyn; = by f..ds +/[m-bn°-‘f...]d.2 , (10.1.5)
S )

¢
where[ ]represents the jumps of the enclosed quantity when an
edge is approached from éither side. We assume that the boundary
s of v has no edge and that f... is smooth throughout s, so that
the line integral in (10.1.5) vanishes.

For the virtual work of inertia forces we assume

the expression

oT = /Q(i'”bx-b + i bdgydv (10.1.6)

v

% Let wye=12 be coordinates on S, and the equations of the sur
face are x"=x"(W*). From (10.1.3) it follows that
Lo é 4
by xuXiy = NX.p = bgs
where bm/} is the second fundamental tensor and xf,_p are cova-
. . . ¢ .
riant derivatives of x;, with respect to the surface metric. It

is to be noted that for the points on the surface n;xfu = (f
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-

and for the variation of the internal energy we may write

(10.1.7)  dE = fg(ﬂ;—bx‘fK+Lf—6xl':u+ af bdz(x);»()d«"-
v 10X LKL (A)5K

Since the spatial coordinates only are subject

to variations we shall use the following relations:.
k k "
bx;K = (bx >,mx;K
k 1 . m
(10.1.8)  bxy = [Ox*) . x3 ] = (bxk);m,x?,(x;L+(6x"),mx;,<,_
k k m
bd’(l,);K = (bd(x)),mI;K ’

and (10.1,7) may be rewritten in the fomm

IE = ["le?" + O—E'I?KL>(bxk>,m

i k

> TOXy Ix;¢L
(10.1.9)
m A m k
+ ._Qg'_x;Kx;L(bxk)’mz + i’ I;K(bd(;\)),m]d‘l)' .
P dd

For the sake of brevity in writing let us introduce the notation

A;‘m = 9<LITK -+ %x?KL) Iy

Ix;y 0% ¢,
mt dE m b
(10.1.10) B, Q——T¥;L ,
(V3 e
() m o0& m
P-k = k I’K’
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and
3, = /A:"(bxk)’md,v,
5, = /B[(M(bxk),m,d,v,
3; = [P ®dg .dv
For J; we have

3

/[(Akmbxk),m - A::m i):ck]d,v

J; may be written in the form

m -m -(Imz)
3 = f[(Bk Pox*), + B 0% Jdv - szsk ;
v S

Since we may write

3

1

?g/\:"bxknmd,s —/Asmbxkdu :
) b4

(10.1.11)

(10.1.12)

dx*n,ds . (10.1.13)

‘/‘(BLmbxk),mch = j‘lg(B‘;M!bxk),mngd,s,

applying the integral identity (10.1.5) this becomes

S

+ B nmng(Dbx“)}ds ,

32 = %{I:DBLmznmnn + (bttnmni - bms)B‘;ms]bxk +
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and for J, we definitively have

/B:"!)m, dx*dv +

(10.1.14) +7§{[DB;“"nmnc+(b§nmn, b, By - 2B,"" n,Jox* +
S

+ BLmz nmng(Dbxk)}d,s .

For 35 we obtain similarly

. o)-m o)em
(10.1.15) 35 = %#.kbdammds"/y?kwbd@dv'
S v

Collecting the results we obtain for OE the ex-

pression

OF = f[( Av .+ B D8k < PO b ]dv +

v

“m -mt ™ m
(10.1.16) + %{[’A‘k n, t+ (DBk )nmng + (bttnmng - bmg)Bkz‘ 2B, fmn,]bxk+
S

o)-m
+ P( & n bd,(“) + Bk n ng(Dbxk)}ds .

According to the form of (10.1.,16) it is natural

to assume for the virtual work 6w the expression

bw = /(Lkbx" + 520d L )dv +
(10.1.17)

%[Mkbx # N (Db + TV0d ]ds
S
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(ee) ()
where ’|; R m , N, S¥and T are some generalized forces.,

~ ~
Introducing now &T,0E and dw from (10.1.6, 16, 17)
k- k
into (10.1.1) and assuming that the variations 8X , Déx"* and od
in v and on s are independent, we obtain the following relations:

in v ¢

: Em bon '
0" - A +B . =L, (10.1.18)
cap ! (o) Em () 2
o - = b 10.1.1
Qi rfdyy - P s , ( 9)
on § :

Em mn : mn mn
A nm+(DBe )nmnn+(bttnmnn—b )B! —2B2 n = MB, (10.1.20)

mn ’ ymiin

petmy o gt (10.1.21)
Bzm"nmn,, - N!. (10.1.22)
From (10.8), (10.9), (10.19) and (10.1.10) we see that
A(L‘;) t(i}) ,
Be'_"" = _ptlm) (10.1.23)
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According to (10.11) we also have *

(10.1.24) T A e S

which substituted in (10.1.18) yields

) (tm) b{mn) [t (@)m]p ?
gx’ =t L +m ’mn+d,(m),Ph +L .

This, together with (10.1.19),

(p)t
h}*’ ™ + s(m)l

m ’

. .. z
0L dy)

14
represents the equations of motion. Here we may identify L with

t Im ¢
g(f + 17 ﬂ) , and s*® yith gk“d . The boundary conditions fol-

low from (10.1,20-22),

{em) ’ [t (s} m) " t o ) )
t nm + d(“‘))Ph an +Dmt(‘“ )nmnn _(btnmnn - bmn)me( )+ 2m3( "3mnn = M )
(e} Bm (o)
(10.1.25) h™n, = T,
4
_mz(m“)nmnn - N

* The equation (10.1.24) follows also from the requirement that
OE 1is invariant under virtual rigid displacements., Let xi be
Cartesian coordinates., The virtual rigid displacements are

bx* = ak+£h*KLxé and 6da)=£k”Kthu_, where a¥ and K, are arbi-
trary constants. Introducing this into (10.1.14) and requiring
that the energy of every part of the body is separately invariant
under all rigid variations we obtain (10.,1.24).
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(ee)

The generalized forces M , T  and N are certain surface trac-
~N N ~

tions which are to be prescribed on the boundary of the body.

10.2 Elastic Materials of Grade

Two
When the internal energy is a function of deformg
K
tion gradients x?K and xtKL and of X and n only, the mechanical

constitutive relations (10.20, 21) obtain the form

) oF v ¢ ot G ¥

t = Q<20CKLx)Kx’L + aDKLHx)KI;LH> ’ (10.2.1)
V(3K o v Y o
meeT = ~Qgp TS - (10.2.2)

According to the Appendix (Al.32), the couple-
stress tensor miikmay be represented by the second order tensor
mik, and this tensor may be decomposed into its deviatoric and
spherical part, where the deviatoric part is

1
2

B

f,“&m."&k - rmpqrbt (10.2.3)

mi - mFPo; = iﬁépq

or

) . -
meE = phy mpett (10.2.4)

)
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where
(10.2.5) pik = g

In the constitutive relations (10.2.2) only the symmetric part
m*&%)  of the couple-stress tensor appears, and from (10.2.4)

we see that
(10.2.6) . mek o

Since there are only eight independent components
of the tensor mLQk)(cf. 10.13), and since the deviator has only
eight components (cf. App. (A2.4)), we may represent the devia-

tor p‘ik in terms of the tensor m‘“*),
(10.2.7) prik o %(2,“»(;,1() + meGdy

The invariant CukmL@k = m*, of the couple-stress
tensor remains undetermined since there are only eight consti-
tutive equations (10.2.2), and also in the boundary conditions
(10.1.25) only the symmetric part of the couple-stress tensor
appears. According to Koiter [241] , without any loss in general

ity we may assume that m;k

is equal to zero,
The tensor Dy y is antisymmetric in K and L and

if we introduce the second-order material tensor
N 1 NKL

(10.2.8) Dy = 55 Dgim
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the constitutive equations (10.2.1) obtain the form

(i) o v & E JNKL G &
t = Q( LxX, + —é"'a_Na x;KI;LM) ) (102-9)
oD

where we have used (3.10), and for the deviator ;M; we get from

(10.2.3, 7, 8,) the relation

}"'ék - _%ga_f;‘CNKL
aD'y

For isotropic materials the internal energy must

v G
ﬁL}Bx;Kx;Lx;M . (10.2.10)

be a function of isotropic invariants (see App. section A2) of

the tensors E and D |
~N n

1 2 2 '3 4
f.. = C(IE,HE,DIE, HD) ]ID) ]I[ED7 HIED, HIED)"') . (102.11)

Teodosiu [449 — 453] applied the general theory
of elastic materials of grade two to media with internal and
initial stresses and particularly to the determination of inter-
nal stresses produced by dislocations. He also considered a
more general theory in which the couple~-stress tensor is not un-—
determined., A proposal for such a generalization was already
given by Toupin [462] on the basis of the analysis of the boun-
dary conditions (10.1.25)3. From the antisymmetry of the couple-
stress tensor it follows that the traction N has to be orthogon-
al to the boundary Surface,hyn = 0, but this requirement for
the traction N is without a physical motivation. For that reason
Toupin proposed a more general theory in which the complete

couple-stress tensor would be determined.
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For infinitesimal deformations we may assume that

K
the coordinates X and x* coincide in the reference configuration,

such that
Kk _ yKek k
¢ o= X g+ u",
Ko gk k ¢ '
(10.2.12) Xiw = Op + uU,yo, ,
l.‘ _ k blbm
Liiw = U gmOLOn,

where 4 is an infinitesimal displacement. The deformation ten-

sors in the linear approximation are

N kot kgl
Exe ® epdgd = ugndgd|
(10.2.13)
N kot
Dyin % Dyradxdidy

where
(10.2.14) Dt = 2€n0,0 = 2Wityn o
(10.2.15) Wig = Uit

It is accustomed, however, to represent the third-
order tensors p and D by their second-order duals. Since the ro-
~n ~
. : vk
tation tensor w,, may be represented by the vector w' = %C Wi

we may put

(10.2.16) Kij = Wi
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and the linear constitutive relations may be written in the

form

v g) vikt vike
t C," ey + C' kyy

ikt vy ke (10.2.17)
M® ey + My' kg

pt

For isotropic materials the fourth-order tensors

C and M are linear combinations of the fundamental tensors

~n ~nN

such that
vgkt . o o
Cyf = w,giigt + pogtigtt + y,g'gl,
vike . L . (10.2.18)
M = a,gttg*t + b,g"gtt + c'\,g"g‘go‘k (v=1,2),

Since the constitutive relations (10.2.17) for
isotropic materials have to be invariant under the full orthogon
al group of transformations, we shall obtain them substituting
the elasticity tensors from (10.2,18) into (10.2.17).

In the linear theory we may assume that the den-
sity @ is approximatively equal to the density in the reference
configuration, @ = Q5.

For isotropic materials in this approximation the internal ener-
gy function may be approximated by a quadratic polynomial in
the isotropic invariantsI,., I, and 1HD ,2HD of the tensors e and

D , and it may be written in the form (Koiter [241] )
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(10.2.1 - V1P, et ed COUNE v
9) 9.t G[l_2vle+e¢e°{+28(k,4kb +nk,&kﬂ)],

2
where G is the shear modulus, v is the Poisson ratio and 2GE
2
and 2nGl are two additional new elastic constants. The constant

? has the dimension of length and is called the characteristic

length of the material. n is a non-dimensional number,
The constitutive relations (10,2.9, 10) may be

written now in the form

G _ o, 0t _ ('»& _V 'v})
b Qoge,. ~ 2Ot 1Ty e9)
(10.2.20) ¢
ot

P gei = 46K+ k)
d.b

These relations were obtained by Aero and Kuv-
shinskii [§] in 1960. Grioli [180] studied the non~linear theo-
ry and in the linearization he obtained the similar expressions,
but he neglected the terms involvingn . Mindlin and Tiersten

[283] considered the linear constitutive equations as a result
of linearization of the relations derived by Toupin, and they
applied the linear theory to a number of problems in vibrations
and stress concentration (cf. also Mindlin[287]). One of the
most interesting effects of couple-stresses is its influence on
the stress concentration factor which appears to be a function
of the characteristic length P and to be less than what is u-
sually assumed in the non~polar theories to be its value, For

detailed study of the influence of couple-stresses in linear
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'elasticity we refer the reader, among others, to the papers by
Mindlin and Tiersten [283], Mindlin[284] , [287], Mindlin and
Eshel [288], Koiter [241], Neuber [324] , and, for the problems
of stress concentration, to the book by Savin[387] which appear-
ed in 1968 and where detailed references may be found.

Lomakin [275] applied Lagrange's variational
principle to derive various boundary conditions. He also complet
ed the theory proving the validity of the principle of minimum
potential energy, generalizing Clapeyron's theorem for the strain
energy and proving the uniqueness theorem. |

Within the theory of materials of grade two (or,
within the strain-gradient theory) a generalization of Rivlin's
method for the construction of general solutions in non-linear
elasticity was presented by Stojanovié and Blagojevil [424] and
by Blagojevié [33, 34] . It is found that owing to the influen-
ce of couple-stresses the Poynting effect, which is in the non-
linear theory of elasticity attributed to the second-order terms,
appears as an effect of the first order in hemitropic materials.

A very fine and general synthesis of work of
Grioli, Aero and Kuvshinskii, Bressan [47] and other authors is

presented by Galletto [107]
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10.3 T h e Elastic Cosserat Continuunmn

When the influence of the strain gradients in the
internal energy function is neglected, according to (10,20-22)
the couple-stress tensor m will vanish and the constitutive

relations obtain the form

) ] S ot b b,
(10.3.1) b= Q(axixxﬂ + OF“KLI"‘d'(“)’L) a
()i v b
(10.3.2) h™ = %FM TdoL -
KL

The directors in a Cosserat medium represent
rigid triads and therefore we may assume that in the initial
K
(reference) configuration the directors D(,) coincide with the

K
base vectors of a Cartesian system of reference X , i.e.

K K
(10.3.3) Dw = Dwgx, Dw = b,

For infinitesimal deformation we may write

x* = XK():Z +ouk
(10.3.4)
dw = Dw* £XDiw
or
k &
(10-3-5) d’(u) = 6: + Qu.

where W is an infinitesimal displacement vector, and {} is an
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independent rotation of the director triads. However,

k k k ot
Xy = Og + uibdy,

k| koo p
d’(n))?« = Qu,?,bl. ’

and the deformation tensors are

(10.3.6)

(10.3.7)

thus, we may consider as the constitutive variables the strain

tensor €, and the gradients of rotation Xy

mo akm
Ly = € Q«.k,% -

1
2

= "Xyap OF

(10.3.8)

From (10.28) we easily obtain the compatibility

conditions for the tensor X,,; . From (10.3.7) we have

~ kel em
Fu[KL,H] R X[m0k O Oy

Since the indices k,},m here must have different values, there

are just three independent relations, which may be written in

the form

ok ®,m
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Using now the antisymmetry of X ., = —-%X ., , and writing
Luke = euktx?l

we find
x-z[l,m] =0

This is, however, identically satisfied, since from (10.3.7)2

we see that the relation
m
I,[;,n] = 0

represents the compatibility condition. In this context we also
refer the reader to the compatibility conditions for micromorphic
elastic media derived by Eringen [134] .

The constitutive relations (10.3.1, 2) for g=@,become now

("d*) ot ot
t Qo(aeu ax:M Bl f.))
(10.3.9)
h(Mv‘. = 0 ot

however, Xaig is an antisymmetric tensor and the index A is of

the tensorial character. Applying (10.3.8) we may now write

(ig) ot ot v 0E o
(10.3.10a) t'¥ = (_ m o _ g “.)
) 2o\ae,, " axn gxm T

n -n
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hy = ot | (10.3.10b)
ox",
¢
Where
ht = %5;xnhx"}- (10.3.11)

The internal energy € may be approximated now

by a quadratic polynomial,

o X, .. o '
0,8 = 0[1 _"2vxf+ efef + 28 (xhxy +q*x_“}x;*;,)]' (10.3.12)

and the linear consitutive relations have the form completely

analogous to (10.2.20),

o)
t ¢

2c(e'"4+ v Ieg“>,
1-2v
(10.3.13)
' LTI S
h. = 4G? (x} + n:_}).
*
Here again we have a "characteristic length" § of the material,
and a nondimensional constant ﬁ.
‘ The linear theory of elasticity of Cosserat mate
rials is studied extensively by Schifer [390-395] , who also
elaborated a method for solving the equilibrium problems in

terms of the stress-functions [394] , and applied the theory to

the theory of dislocations * [396—398].

* | mostly appreciate the late Prof. Schifer's kindness to put
at my disposal his yet unpublished results on the dislocation

theory in the Cosserat continuum.
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The theory of non-symmetric elasticity developed since 1966 by
Aero, Bul'gin and Kuvshinskii[4-6, 52,260] is based on the as-
sumption that particles of a medium may suffer rotations inde-
pendent of the displacements, which makes their theory to be, in
fact, a theory of Cosserat media,

The equations of motion (7.1.6)2 4 in the linear-
2
ized theory of Cosserat continua obtain the form

(10.3.14)

el . (v v k o
ol ™o = 9 R g a M

where the hyperstress tensor HLJk defined by (7.25)4 appears
only as an antisymmetric tensor, ’
The moments of director forces appear here in the form of body
couples. The effect of hyperstresses in the linear theory of an
elastic Cosserat continuum is obviously the same as the effect
of couple-stresses in the strain-gradient theory. For that reason
many authors consider both kinds of "materials" as Cosserat ma-
terials, or simply as materials with couple-stresses without
making any distinction between the two kinds of materials.,
Transvecting the equation (10.3.14) with Cmié
and reﬁresenting the rotation tensor w™ by the rotation vector
Wy = 1Ctn&w"3‘ , we obtain

2
(10.3.15) ojte, = &,.t" + H
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where (see Section 7.1)

. n k vk
J':\ = Inbrz - I:U Hm = tmiJ.H d )
(10.3.16)
v (es)j_
Mm = t‘mi,a'.d(u.) .

For microisotropic media by (7.1.10) we have

ivo= e (10.3.17)

and the equation (10.3.15) obtains the form often used by vari-

ous authors in the linearized theories.

10,4 Elastic Materials with Micro-

structure

a) Micromorphic and micropolar materials.— The

basic theory is developed by Eringen and Suhubi [123-130, 137-
139, 442] . It is assumed that for the microelements are valid

the Cauchy laws of motion,

(10.4.1)

where primes denote that the quantities are related to microe-

lements. For macromaterial the corresponding quantities are ob-
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tained through the averaging, e.g.

lLd" [} l’} 1 'i 1 l' .
(10.42)  [f*dsattds;, [ef'dv - gf'dv; eo.
ds dv
The stress and volume moments are defined by the

relations

]

_ /t'."} glkdsi )\i&k d.s& .
(10.4.3)

S

.d e i}
. df"gf g€ “dv

vE
et “dv ,

vik
and A\¢ represents the "first stress moment"”, which is not the

same as the couple-stress. Further, in the relation
(10.4.4) /g‘a"’g'*dv' = pd'tdv

dv
the quantity ¢'¢ is defined as the "inertial spin", and the sym-

metric tensor $'¢, defined by
(10.4.5) /t”*dv' = s'tdv
: dv

represents the "microstress average',
The constitutive relations, according to our no-

tation (cf. section 5.2) read

k ot _«
ty = ng’K y
(10.4.6a) LK
o _k ot k ot ko
S‘.‘; = .<—,x;x+ gd'm + i dmk) »

ax;K ad.m adv(x),x
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k-m k om ,
A, = ga—f'x;Ld.(,,) . n = 1,2,3) (10.4.6b)
(L '

where it is assumed that the internal energy € is a function of

the mechanical constitutive variables

k

k ! v 10.4.
Xk > Sy, dayk (10.4.7)

The stress moment i;coincides with our.hyperstress,
and this theory may be regarded also as a theory of generalized
Cosserat continua. »

The difference between the general theory outlin-
ed in the section 10.3 and the theory of micromorphic continua
is in the assumption that the internal energy depends explicitly
on the components of the directors, and, also, in the assumed
existence of two independent stresses ~ the macro-stress E and
the micro-stress average S .

In micropolar bodies the micro-elements are rigid.
The directors in this case represent rigid triads and the theory
reduces to the theory of elastic Cosserat media (10.3).

If we assume the internal energy € to be a func-

tion of the variables (10.4.7) and of the specific entropy n ,

) t ]
t = t’(x;k)d'(l)7d’('k);l<)n)7

and if we apply the principle of material frame indifference to

obtain the equations which correspond to (9.17), we shall obtain
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that € is an arbitrary function of r and of the materials tensors

koot

Coo = GueTix*
K ot

(10.4.8) Yo = lex-,dem ’
r  dg

Kab = Gee Xx oL -

Owing to the symmetry of the tensor g there are 42 independent
integrals g,]:and E of the (three in number) equations (9.17).
In the theory of micromorphic bodies there are only three direc-
tors and the greek indices are regarded also as material tensor-
ial indices.

The tensors G and [ are included in the general
theory of the section 10, in which the tensor R is to be omitted
since € does not depend now on the second-order deformation grad-
ients xtKL . The tensor [ corresponds to Fj .Y and E are called

micro-deformation tensors.

As in the case of Cosserat materials in the sec—

tion 10.3, for micropolar materials we may write

1]
(10.4.9) dpy ® 07 + wy!

and for the tensor I we have

(10.4.10) Yoo ® gox + Uk + Wox .
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The corresponding strain tensor
Ked
b = (Yo - 900y = uyy+uw, ,  (10.4.11)

is not symmetric, Its symmetric part coincides with the strain
tensor corresponding to g,so that in the linear theory of micro-—
polar bodies the state of strain is described in terms of the

strain components

ey = ek = Uy
Cieer = wig + vy (10.4.12)
Yubm = Yitm

These measures of strain appear in the theories
of Aero and Kuvshinskii [5, 6] and in many other linear theories
of Cosserat media,

b) Microstructure.— The linear theory of elastic

bodies with microstructure was developed by Mindlin [284, 285] .
The continuum is composed of unit cells which have some proper—
ties of crystal lattices. The theory represents, in the mechan-
ical sense, the linearized version of the theory of the general-
ized Cosserat continua with deformable directors (section 5.2).
The directors represent microdeformations, and since there are

only three directors in this theory we may putdhu=YqJ where.ﬁg}
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are displacement-gradients in the micro-medium,

“P;’} = au'}/ﬂx'i’ .

Denoting by x* and w' Cartesian coordinates and components of the

macro-displacements, resp.,the relative deformation is given by

du
¥y = = - Y
¢ dx’ ¢
and the macro-strain by

Macro-deformation gradients are determined by the tensor

which represents the tensor of director-gradients.

The state of stress is described by the ordinary

(Cauchy) stress t”, by the relative stress Uai,and by the double

stress pﬁ}k , such that (for @ = go = 1
v ¥ o ot
(10.4.13) t* = % g - o =
M'a;, ab‘t,‘,’ d Ox'v}.k ’

and the equations of motion are

+
(]
—”
]
(=]
<

v Vi
(t + O &))é-
(10.4.14)

.. . Tk Sy ook
¢ <4l
AL S | = Y, .

v
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ik o 1 6.2
Q&_ are certain double forces, and Vot = %Q'(df)

i 0
L . . . ¢
are certain inertial coefficients. The quantities d' depend on

the "unit cell" of the medium cénsidered. The symmetric part“ﬂbp
of the microdeformation represents the micro-strain, and the
antisymmetric part is the micro—rotation,ﬂkqj = tnﬁ(cf. Section
5.2).

This theory contains the linearized equations of
Cosserat continua as a special case, and the linear version of
the strain-gradient theory as a special case,too. Eringen[130]
showed, however, that this theory coincides with the theory of
micromorphic materials. The theory of Mindlin, however, is elab
orated only in the linear version and it is difficult to say
from the coincidence of two theories in their linear form if

they agree in general, or they represent two different theories.

10,5 Incompatible Deformations

Under certain circumstances a field of stresses
cannot be associated to a field of deformations which satisfies
the compatibility conditions (see App. sections A4 and section
4). Such situations appear in thermoelasticity and in the theory
of dislocations. In the classical linear thermoelasticity, in the
Duhamel — Neumann law, it is assumed that the total strain €
which satisfies the compatibility conditions, is composed of two

strains which do not satisfy these conditions, of an elastic
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strain efwhich produces thermal stresses, and of a strain e’
~ ~n

which depends on the distribution of temperature in a body.

This idea was used in the linear theory of dislocations for the

determination of internal stresses produced by dislocations (cf.
Kr8ner [246] ) and later it was generalized first in the theory

of dislocations by Kr8ner and Seeger [247] . Glunther [189] estab
lished a very important.and interesting relation between the in

compatibilities of the Cosserat continuum and the structural cur
vature of a dislocated crystal.

Stojanovié, Djurié and Vujoshevié [419-421, 429,
432-434, 475-478] developed a general theory of elastic incom-
patible deformations which was applied to thermoelasticity and
dislocations [419, 421].

The theory is based an the assumptions (see sec~
tion 4.1) that the deformation gradients corresponding to a de-
formation.xk==x*(¥)of a body from an initial (and unstressed)
configuration K, into a deformed (and stressed) configuration

K may be decomposed into two deformations, such that

k () K K ()
(10.5.1) = 0 , Xu = Opix ,

A
where Q(M and 9() represent reciprocal triads of vectors, as
~n ~n
)
well as é(?\.) and § .
~N ~N

The linear differential forms

(10.5.2) du* = Q(t)dxk and du* = e?dx"
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are in general non integrable. The vectors Qu)represent elastic
distorsions, and ga)are plastic or thermal distorsions (the ter
minology depends on the applications; in the theory of disloca-
tions these distorsions are plastic). The coordinates w owing
to the non-integrability of (10.5.2) may be interpreted as co-
ordinates of points of a non-Euclidean, linearly connected space
with the coefficients of connection (with respect to the systems

k K
of reference x* and X )

’ K
Mo = 2, My = 040,04 . (10.5.3)

In the following sections we shall consider two
special cases, In the first case we assume that the internal e-
nergy € is a function of the elastic distorsions and their grad-

ients (Stojanovié [422] ),
! 3
t = t<§(%)7§(k.],m) (10.5.4)

and in the second case we assume that € is a function of distor

tions and director gradients (Stojanovié [421] ),
4 {p)
& = "(Q(x))d'm,n)- (10-5-5)

In the first case the theory may be reduced to the theory of
elastic materials of grade two, and in the second case to theory

of elastic generalized Cosserat materials,
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10,5 Elastic Materials of Grade

T wo
We consider the local Clausius-Duhem inequality

(8.24) in the form

; : (v4) Vik 1 k
(10.5a.1) oY - gnb + t Td; - mtw +-§qu 2 0
and we assume that the free energy function Y is a function of
13 12 )
&u » QOJ,M and of the temperature © . Using (4.1.17)and (4.1.

19), the inequality (10.5a.1) may be written in the form

oY (vg) (&) ik W) UL )
<—97 + g”t ¢ QJ‘ - mz*k‘i&’k — mm*k‘P g Q(P') gé )Q(M +
(10.5a.2) ™ | o ok
Y () oY k9
+<—-—-' *k >Q(Mk (99 >9+ 5 2 0 .
OQ().),R

This inequality is to be satisfied for arbitrary variations of

. 2 N
% > %w,m and O and it will be satisfied if

) 3 } oY ¢ oY .k
(10.5a.3) £ = og ’(ﬁr‘i&+ A Q(x),e),
9%y 9%, « %0 4
Vi b OV gz
(10.5a.4) mitk = -Qg ' v 20
M),k
(10.5a.5) n o= -
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Remains the inequality
lo.q > o (10.52.6)

which is to be satisfied by the heat-conduction 1aw;

The relations (10.5a.3-5) represent the consti-
tutive equations for elastic incompatible deformations. It is
to be nofed that the couple-stress tensor in (10.5a.4) is com-
pletely determined.

When distorsions dégenerate into deformation

gradients, we put
ol
Q(x) = X, X = X bx
and
§' I
(X),k - x;%}b ;k ]

) .
and m'#* reduce directly

and the constitutive equations for t“}
to (10.19) and (10.21). The indeterminacy of the couple stress
tensor appears as a consequence of the assumption made a priori
that the compatibility conditions are satisfied.

- Introducing the request that the free energy func
tion is invariant under rigid motions, and the right-hand side

of (10.5a.4) possesses the same symmetries as the left-hand

side, we obtain the system of linear differential equations

vt/ OY 4 H ' oY ;K
[98 ,Q(J'xﬁ ;P‘?&),u- - ‘fm,zﬂ[m = 0 (10 52.7)

0@0') Oé(”,k OQ(M,&
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AN ALY,
(10.5a.8) (9' n ‘f&))u.) =0
%y, ¢

There are 21 independent equations (10.5a.7-8)
with one unknown function and 36 independent variables. This
system admits 36-21=15 independent integrals.

» It might be easily verified by direct calculation
that the following material tensors satisfy the system of dif-

ferential equations considered,

(p) a
(10.5a.9) Cig = Cpa = Qab‘b(..)‘f(p)en ep = gabx;AxibB )

(w)  (p) ()‘)
(10.5a.10) DABC = _DBAC = abQ(“ Q(p) §(r)@ 6

()
where Q are distorsions introduced in (10.5.1).

The function ¥ which satisfies the system of e-
quations (10.5a.7-8) is an arbitrary function of 15 independent

components of the tensors C and D and of temperature,
! N ~n

Y = Y(C,D,0),

NN

and we finally obtain after some calculations the following set

of constitutive equations,

el 20[ ehxty 4 2 0Y (b xi —xxT)L]
(10.5a.11) b A58 ODABC 3A X3BC AXSL TeB/p
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ik oY i _k -
mitk = ggabncxiﬁfnx;c, (10.5a.12)
where
L ) L
Toa = BycOqy - (10.5a.13)

10.5b CGeneralized Elastic Cosserat

Materials

To derive the constitutive equations of the gen-
eralized elastic Cosserat medium with incompatible deformations
we shall consider the strain energy function in the form(10.5.5),
and apply the principle of virtual work (Stojanovié [432] ). We
shall restrict our attention to the static case since we are
here interested in the constitutive equations, and the equations
of motion are not affected by incompatibilities..We assume the

principle of virtual work in the form

) (10.5b.1)

where

E = /gtdv, (10.5b.2)

and

A = /a(f-va'“ + ghyod ) dv +?§(bexh + Coydd)ds . (10.5b.3)
S

LV
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: o) .
We assume that dx' and &d, are independent va-
riations; f; is the external body force, gtx)are external direc-
tor forces, F, and C{M are surface tractions on the bounding sur

face s of v .

From (10.5b.2) and (10.5.5) we have

(10.5b.4) o = [o(2t-04g + D bdpy)dv .
v 0@(” ('ld,,+

By Appendix (A5.10) the expression (10.5b.4) will become

(10.56.5)  F = /..[( B - B ane)osg + €6 Jdv

(,‘) vyb
Writing
(i]4 0€ G B\, .m .m
(10.5b.6) 9.(—2"' du,z‘f’ )‘I’m = h,
OC
(10.5b.7) oc')d(y') b
Vid

and applying the modified divergence theorem (Appendix, (A5.9))to
(10.5b.5) we obtain the expression for the variation of the in-

ternal energy in the suitable form,
v () )
(10.5b.8) OE = /(tt ox' + h(»)& 6d ! )dv + ?g(tgébx + h(* 6d.”)d,s

The principle of virtual work gives now the equi-

librium equations

& 3
(10.5b.9a) b v e = 0
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g u
hw,; + @960 = O (10.5b.9b)

and the conditions on the bounding surface S,

¢
by, = F.

(10.5b.10)

v&
h(}'-) n; G(}“') .

The equations (10,5b.6-7) represent the constitu—
tive equations, where { is the stress tensor, and Fuﬁ are three
director stresses. The equation (10.5b.10)2 is equivalent to

(10.9), and (10.5b.10)1 reduces to (10.7) when the distorsions
o€

: = 0 ).

XKL

degenerate into deformation gradients (and for

10,6 Thermoelasticity

Thermal deformations represent the best known
example of incompatible deformations. If we denote by e the coef-
ficient of thermal dilatation and by O(X) the increment of tem
perature from an initially and everywhere in the body considered
constant reference temperature |, =const., the strain tensor (in

Cartesian coordinates)

.= .. .0.1
e} uOby} (10.6.1)

will not satisfy the compatibility conditions (4.11), unless the

temperature O is constant, or a linear function of position co-
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ordinates,

To obtain the stress-strain relations in thermo-
elasticity, we shall consider the distorsions 0?), introduced
in the section 4, as thermal distorsions, We further assume that
thermal stresses are produced by the elastic distorsions é&).

For isotropic materials the thermal distorsions are isotropic

functions, and for Cartesian coordinates we may write
(VY) "
(10.6.2) b, = dX,0)d"
~

L
In this case T¢y , given by (10.5a.13), becomes

L
(10.6.3) Tea = ‘7",c6\iy

and we have

(10.6.4) Dpgc = Cerapy = 2Ecrap)

For isotropic materials the free energy Y is an
isotropic function i.e. it is a function of isotropic invariants
of the tensors E,Eand of the temperature ( cf. Appendix, Sect.,
A2).

The constitutive equations (10.5a.11-12) reduce

for isotropic materials to

. . B
(10.6.5) ¢ = o DX uhiaty 4 2 A ¢

I.:Axfnc)(. )
OE, 0D ¢ v
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A linear approximation

. oY P
m%k = 20 P xl‘:CX;l ’ (10.6.6)
aD
where

_ K P { PAB
Qo = Jg = \/gdetxik , Dg= 55 Dpge - (10.6.7)

To obtain linear constitutive equations it is
sufficient to approximate Y by a polynomial quadratic in the

strains,
0o = ATE + A TTe + Aslg0 + AT + AIIp + A,0° + ... (10.6.8)
where

L=Eh, Te=EeEp, 1Ip=DgD%, IIj=D"D" . (10.6.9)

For infinitesimal deformation gradients, and
for sufficiently small temperatures © we may write £ ~ e and the
~ o~

constitutive equations (10.6.5-6) become

9 2 AL, + AsB)0% + 2Aelt
(10.6.10)

m"'k = 2A4Dl_(z + 2A5Dzk .

For the material constantsAj,...,As we may intro-

duce the traditional notation,

2A1 = )\- y A3 = 0, Aa = G ’ (10.6.113.)
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1

2 2
(10.6.11b) A, = 2GE , As = 206nt |

(cf. 10.2.19), and the equations (10.6.10) obtain the form in
which they are well known in the linear theory of thermoelasti-
city with couple-stresses. These equations were first derived
directly, within the frames of a linear theory by Nowacki [334].
Nowacki [3334338] developed the linear\theory of the non-sym—
metric stress in thermoelasticity, without referring to the in
compatibilities of the thermal strains, which is not necessary
in linear theories, He derived the constitutive relations for
both the materials of grade two, and for the Cosserat (i.e.
micropolar) materials. Thermoelasticity of materials with mi-
crostructure, also without entering into the problems of incom-

patibilities, was studied by Wozniak in a number of papers [500

-504, 506, 507] .

10.7 Di slocations

Dislocations are a kind of defects in the struc-
ture of matter. In the atomic structure of solids we can observe
that the lattice points in real crystals are not perfectly ar-
ranged. A perfect arrangement of lattice points exists only in
ideal crystals. In a real crystal, when compared with the cor—
responding perfect pattern, it is possible to observe vacant

lattice points, atoms on the places where should not be an atom,
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extra atoms etc. Such defecté are called by solid state physic
ists point defects. For mechanical properties of solids, prima-
rily of metals, of greater importance are defects distributed on
a surface which is bounded by a closed contour, For instance,

all lattice points on a crystalographic plane bounded by a clos-—
ed curve may be missing, or it is possible to have on this plane
extra lattice points. Such two-dimensional defects are called

dislocations. The curve bounding the surface upon which the miss

ing or extra lattice points are located is the dislocation line,

and this curve cannot be an open curve,

Crystals with dislocations may be compared with
ideal crystals of the same crystalographic class. In the regions
sufficiently far from the dislocation we say that the crystal is
"good".A closed curve which encircles the dislocation line, pass
ing through the lattice points in the "good" region of the crys

tal,is called the Burgers circuit. When a real crystal is com-

pared with the (imagined) ideal crystal and when the Burgers
circuit is mapped upon the ideal crystal, lattice point by lat-
tice point, the curve in the ideal crystal will not be closed.
The vector which measures this closure failure is called Burgers
vector E . A dislocation is completely characterized by its dis
lacation line and by its Burgers vector,

Dislocations produce internal stresses iﬁ solids
and.these stresses cannotAbe associated to a uniquely defined

field of displacements, i.e. the strain tensor which corresponds
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through the elastic stress—strain relations ‘to the internal
stresses produced by dislocations do not satisfy the compatibi-
lity conditions. The only way to release a body from internal
stresses is to cut it.

Let us consider a body with an isolated disloca-
tion, and let us consider a part of that body with the rectilin-
ear segment of the dislocation line. The dislocation line can
be isolated by a circular cylinder with a very small diameter.
If we cut this element along a plane which is passing through
the dislocation line, but with the cut ending on the cylinder,
the element of the body will deform in order to release the in
ternal stresses., Two portions of the body, facing one another
along the plane of the cutting will suffer a displacement rela—-
tive to one another, The displacements 6g,of points, with the
position vector r with respect to an origin on the dislocation

line, are given by the formula
dbu = b + dxr
~ ~N ~N N
b = const., d = const.

(Weingarten's theorem), where B is the Burgers vector and % is
the rotation vector.

If we introduce a system of rectangular Cartesian
coordinates, with the Z -axis along the dislocation line, the
following classification of dislocations is due to Volterra.

For g = 0 and b parallel to one of the coordinate axes, X,Y and
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Z respectively, the dislocations are of the 1st, 2nd or 3rd
kind respectively, and for'g=05uul g parallel to one of the

axes X,ch? Z ,the dislocations are of the 4th,5th or 6th kind,
respectively. The dislocations usually considered in the litera-—
ture on dislocations are belonging to the first three kinds of
of Volterra dislocations. An arbitrary dislocation, in fact, has
a constant Burgers vector, but its inclination tp‘the dislo-
cation line is changing along the line. The dislocations of the

last three kinds are called sometimes disclinations.

a) Dislocations and Deformations of Directors

Let us regard simultaneously a crystal with dis—
locations and the corresponding perfect reference lattice. The
lattice vectors DOJ of the perfect crystal are determined by
the lattice points and if the crystal is subjected to a defor-
mation, the lattice vectors are deformed as material vectors,
Hence, the lattice vectors of a perfect crystal cannot be con-
sidered as directors of a Cosserat medium. The lattice vectors
in the perfect undeformed crystal represent fields of parallel
vectors in the Euclidean sense,

If we refer the reference lattice to a coordinate
system XK, and the dislocated lattice to a coordinate system XK,
it is impossible to determine the lattice points of the dislocat
ed crystal by the mappings of the form

= xk(ﬁ) (10.7.1)
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. )
and the lattice vectors d of the dislocated crystal cannot be
” »)
regarded as deformed lattice vectors D of the reference crystal
[aV]

i.e,, there are no relations of the form

() (a),, K
(10.7.2) d, = DKX;k
If P is a lattice point of the dislocated crystal
()
and if D; are components of the lattice vectors of the reference
crystal transported parallel to]’, for the components of the lat-

) ey .
tice vectorsd; we may write

(10.7.3) d, = D, +A

() (
The vectors A vanish if the directors d, deform as material vec

tors.

An infinitesimal displacement along the lattice

vector 99313 represented by the expression
09 B
(10.7.4) dr* = d.dx'.

Let f be a closed contour passing over lattice points in the
"good "region of a dislocated crystal and surrounding a disloca-

tion line (or zone with dislocations). The contour integral
(M) ) AN
(10.7.5) Ab " = ?%tr* - 3{(1)L + A )dx!
t P

determines the components of the Burgers vector in the directions
) () ' )
of the lattice vectors d, . The Burgers vectors Ab corresponding
~ o

to the dislocations surrounded by ! is given by the components
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Ab' = Ab d'm (10.7.6)
o)

where da) are vectors of the reciprocal director triad,d.zx)d,} = (');
For an infinitesimal region AF encircled by ¢ we

have from (10.7.5)

FU //(Du S A([l: DdF ~
(10.7.7)

(D (A v
(D[},-v] + AT AR

e
Since the vectors D; represent fields of parallel vectors, the

Y
gradients D}Lvanish and we have
)

A ()
Ab- = Ap b]AF _ (10.7.8)
Wma1A§+0, we obtain from (10.7.6) and (10.7.8) for the disloca-

tion density tensoru{Ethe expression

A
[ = d'rl tvm Ab = d. Ag_),b] . (10.7-9)

" BF =0 AF
(cf. Stojanovié [419], and also Toupin [464]).

This relation, or its equivalent

.k k 4
et o= ddy = boegy (10.7.10)

where the fundamental metric tensor B of the Euclidean space is
used for the raising and lowering of indices, represents the bas

ic relation between the distribution of dislocations and the
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gradients of directors[425, 419] .
)
The existence of the directors ¢ for a given
distribution of dislocations depends on the integrability of

the equations (10.7.10), which we can write in the form

: () () ot L)
(10.7.11) Oud;d_ - O&d,u = 2“'\’} dt .

Differentiating this relation with respect to:xkand_alternating

the indices i3k we obtain

N W, b O
(10.7.12)  Opd,d;y = dy Opeeii] + efi/d,gdy

The left-hand side of (10,7.12) vanishes because of the com-
. mutativity of partial derivatives, and the integrability con-
ditions reduce to the relations
. B 3 L0
(10.7.13) 0&«;,” = —'[dr(x)(akdt )“”_ ][irj.k] .
The indices v} k involved in the alternation in
(10.7.13) must all have different values and hence there are
only three independent relations (10.7.13) for §=1,2,3. Nothing
will be lost if we transvect the relations with the alternating
vik
Ricci Tensor %é formed with respect to the Euclidean metric

tensor b . Writing

(10.7.14)
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and

0 oy W, '
dd,dy = -dy 9,dy = Dy (10.7.15)

the integrability conditions (10.7.13) obtain the form
k 2 '
ak“kl + bkmumg = _Dmt “Mt . (10.7.16)

Here b:t are the Christoffel symbols of the first kind for the
tensor b and by, = Vb,

b) Geometry

In the continuum theory of dislocations the stress
-free state (N) of a dislocated crystal is considered in a linear
ly comnected metric space with torsion [247] . If g;; is the fun
ok .
damental tensor of this space and 5;; the torsion tensor, the
k
coefficients of connection F}; are given by
k k <k
M = g + hiy (10.7:17)
where g?}are the Christoffel symbols of the second kind for the

tensor g and

~N

k Ck & k

Mg = S T St S o
;. N (10.7.18)
Sb} = r[a;]

Writing

{/b b
Qijk = '2"(\7;9“ + V.9 - nga;) > (10.7.19)
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b
where Vm denotes the covariant differentiation with respect to

k
the Euclidean metric tensorg[247] , the coefficients I'-b} may be

expressed by the relations

, . k k ] <ok
(10.7.20) M, = by + g" g+ Dy

k ok
o+ G

'uJ. v M

]
(o3

If we assume that the lattice vectors of a dis-
located crystal represent fields of parallel vectors in the
space L3, they have to be covariant constant with respect to

k
the connection ri&,

‘ r
(10.7.21) Cvd? - a-d(:) - l'-k;d.(.}) + 0,

v & v v
and from (10.7.15) it follows that

k A
(10.7.22) l-:} = Dl(& = d(x)avd,(&) .

Hence, the geometry of the non-Euclidean space Lj
)
is completely determined by the directorsd , i.e., by the latti
ce vectors of the dislocated crystal,

From (10.7.10) and (10.7.22) we see that the tor

Lk
sion tensor Su.of Ls is equal to the dislocation density tensor,

<ok .k
(10.7.23) Su& = oc” .

The integrability condition (10.7.16) may be
brought to a more familiar form. If we substitute partial deriy
atives by the covariant derivatives with respect to the Euclide-

an metric b, i.e.
~
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b k ¢ m
okt = Vot - b« - b e, (10.7.24)

m

and if we use the expression (10.7.20) for the coefficients of

connection, the expression (10.7.16) reduces to

b
kb P A "
Ve = -G, ek, (10.7.25)

Using the fundamental tensor g;; of L; for the rais-

ing and lowering of the indices, so that
wgy, = (10.7.26)
the integrability conditions obtain the form
0 ko ke vE
Viw®l = g7G e . (10.7.27)

This coincides with Kr8ner's and Seeger's generalization to the
non-linear case of the conservation law for the dislocation den-
sity tensor, given in the linear theory by Nye.

In the treatment of the continuously distributed
dislocations Kondo and Kr8ner and Seeger [247, 248] consider the
space Lz corresponding to the (N)-configuration of a dislocated
crystal with the coefficients of connection determined in terms

_ _ )
of the distorsions ¢, ,

Nk
B = a0, (10.7.28)

k :
The coefficients [g, determined in terms of the directors dq)

vrava Tantradiioaad F9nect hysr D2 T har =+ A1 BF s an . B EAAE e o S o e
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n
of the two spaces, L3 and L3z are equivalent, In Lz the disloca-

tion density tensor is also equal to the torsion tensor of the

space,
(10.7.29) vt = Mg = b £t -

The integrability condition of (10.7.29) reads
(10.7.30) . T+ blett = et

Comparing this with (10.7.16) we see that the coefficients of
connection r:}and F;_of the spaceslszand t3 are equal, which
makes the geometries equivalent,

The time does not permit us here to discuss the
problem of internal stresses, but we shall note here that the
theory of internal stresses contributed very much to the increase
of interest in incompatible deformations and in the theory of
elasticity with the non—-symmetric stress tensor. (Cf. Krdner
[ 252, 253, 255,.256] ). Hehl and Kr8ner have calculated direct—
ly couple-stresses for an isolated dislocation [200] . An increas
ing number of papers deals now with dislocations in directed
media. Claus and Eringen [62]approached this problem from the
point of view of micromorphic mechanics and gave a comparative
analysis of some other contributions in this field. Cf. also
Ben—Abraham [29] , Minagawa [281] and Claus and Eringen [62] .

The linear theory of moving dislocations in the
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Disclinations

and by Kluge [240].

¢) Disclinations

One type of disclinations, which corresponds to
Volterra dislocations of the sixth kind, called wedge disclina-—
tions, has been detected experimentally in the two-dimensional
lattice formed by vortex lines in the mixed state of type II
superconductors.

Since the disclinations represent a rotational
closure failure, in analogy to dislocations, they can be assoc-
iated to the incompatibilities of rotation of a Cosserat triad
of directors.

According to (10.28), the compatibility conditions

for the director deformation read

Ferasey = O (10.7.31)
and for infinitesimal rotations this reduces to

m —

I.[!,n] = 0

which may be also written in the form
v 3tn 4 - 0
e = ¢ I_g)“ = .

If these compatibility conditions are not satis-—

.
fied, the tensor O &represents the disclination density tensor

(Anthony, Essmann, Seeger and TrHuble [13] , Claus and Eringen
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[ 62] . Up till now the theory is not much developed.

11 Shells Plates and Rods

We mentioned already that in the theories of
thin bodies, with one (or two) dimensions small in comparison
with the remaining two (or one) dimensions of the body; the e-
quations valid for the three-dimensional continuum may be simplif
ied, This is of the greatest technical importance. Different
approximations of the three-dimensional equations lead to dif-
ferent models, but the common characteristic of all these models
is that the orientation of the elements, the presence of couple-
—stresses and hyperstresses etc. appear as a result of the ap-
proximation and as a substitute of the neglected thickness of
the body considered,

In 1958 Ericksen and Truesdell [121] gave an
analysis of stress and strain in rods and shells from the point
of view of the theory of oriented bodies, and they indicated the
significance of couple-stresses in the exact description of the
state of stress. Their considerations were based on the geometry
of rods and shells and they have not made any constitutive as—
sumptions.

Since 1958 a large number of papers appeared,
mostly dealing with elastic shells and rods. In this section we

shall give only a brief review of some of the most characteristic
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approaches to this important part of Applied Mechanics. Our at-
tention will be concentrated on the theory of shells with only
a very short accoﬁnt of some of the ideas which appeared recent
1y; We refer here also to the references quoted at the end of

the sections 7.2 and 7.3.

11,13 Theories with Rigid Directors

In 1958 Giinther [189] considered the Cosserat
continuum with rigid director triads and assumed that the points
of the continuum have six degrees of freedom, so that at each
point we may consider a displacement vector % and a rotation

vector g which is independent of W . The deformation is deter
u r

mined by the deformation vectors .

€, = u + gix¢ , (11.1a.1)
, = 9,¢, (11.1a.2)

with the components

k
ti’} = u’é,'u - f’b}k‘} y (1113«3)

SALANRY S (11.1a.4)
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Thus we see that the kinematics of Giinther coin
cides with the kinematics of micropolar media (cf. section (10.4).
The symmetric part of CL@ corresponds to the strain tensor € =
= Eué)of the linear theory, and the antisymmetric part repres-—
ents what might be called a resultant rotation, composed of the

rotation induced by the displacement and of an independent ro-

tation 2 s
k

The static equations may be obtained from the
principle of virtual work. Let i be the volume force and | the
volume couple acting on points of the body v and q and p the
surface tractions and couples acting on the body :urfaé; S
bounding v. All forces and couples are in equilibrium if

(11.1a.6) /g(nf,-bg + Lod)dv +31§(q-bg + pdéds = 0.
s ~N ~N

v

For rigid motions

(11.1a.7)
bx;, = 0,,(62) = 0.

Multiplying (11.la, 7) by Langragian multipliers t'dv and mids,
respectively, integrating the first of these relations over v

and the other over s and subtracting the so obtained expressions
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from (11.1a.6) we obtain

Jl508 + mtbx, - ety - b b8)dy -
v (10.11a.8)
- flaby + podds = 0
5 ~N

For arbitrary Ou and 8@ follow now the equations which corres—
pond to (7.37) and (7.41) for a =0, g =0, and the boundary

conditions

i = 9, mn, = Py "(10.11a.9)
where n is the unit normal to S .

This approach to the mechanics of Cosserat con-
tinua Glinther applied in 1961 [190] to the theory of shells.
Iet ¢ be the middle surface of a shell, and n the unit normal
to ¢ . Ifx® =12 are coordinates on @, the rotation and dis-

placement vectors for the points on ¢ are given by

L %
$ = ¢a,+8&n, u = wa®+un, (10.11a.10)

wherey‘:r(xgxz)is the position vector for points of the middle
~n LN

surface, and a, are the base vectors defined by the relations

i 2
= n .
o OX" ) gS ~(I y X )

2
1l
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The deformation vectors are

(11.1a.11) Re = 8,82, &, = du+ g.,x¢,

~

or

(11.12.12) %, = XJgy+ Xen, &, = E,0" + &n

~ ~n

with the components

RS Ak T SR T L

-2

(11.1a.13)
bup = Up o —bopu—e, 8, & =u + bpu.j, + eupép .

Here we used the notation

€, = nxa , b, = -9,n

4
e
2
8
]
Fd
o
)
>
{
2
R
({e]
@

(11.1a.14)

where bup is the second fundamental tensor of the surface,

(11.1a.15)

and tup is the two-dimensional permutation (Ricci) tensor

€up = 0@ux2Y) = - Epu = VAey,,
(11.1a.16)
(e = € = 0, e = —€y = 1) .
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The equilibrium equations

Glinther introduced certain "response quantities"

K and M of the shell, defined by

K = KPvy = (K2, + K’nlv,
Cow (11.1a.17)

m = gpvp = (\/EM“PQ,‘ + Viﬂﬁg)v,, ,

where v is the unit normal to an arbitrary closed curve C in the
middle surface ¢, and f is the unit normal to . Let i and { be
external force and couple acting on the points of the middle
surface, and let dK and dM be forces and couples acting on the
poihts of the bounding curve € of ¢ . Glinther postulated the

principle of virtual work in the form

-[[eg bty + MY - //g(m+ L62)do +
o (11.1a.18)
+ $ldK-by + dMODAC . |

Assuming that the vectors 65 and t')g may be vari-
ed arbitrarily, introducing (11.1a.7) into (11.1a.8) and apply-
ing the divergence theorem we find the system of equilibrium e-

quations for points on the middle surface,

eoKyrof = 0,
(11.1a.19)

€My + gk r el = 0,
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and for the points on the bounding curve C,
(11.1a.20) Kedx® = dK, Mde* = dM.

If we write now

(11.12.21)  e*PK, = vaN®, e*PK, = VaN",

o~

the quantities Np“ represent the components of the shell forces
(membrane forces), andlq“ are components of the transversal
force,

Denoting again by " |5 " covariant differentia-
tion with respect to the coordinates x* on ¢ , scalar multipli-
cation of the equations (11.1a.19) with the base vectors will
give the equilibrium equations in the componental form,

o .3

3 N“|“ + ba_ﬁNc’.}s 5 f = 0 3

f +_\/_§

I
(=]

(11.1a.22)N“Pm - b;Np'+

mlse

, e“p(M‘,ﬁ,,, - me/,) - €, Va N® + ol, =0 -
(11.1a.23)
e“”(M,,,, + biMM,) +€up\/§Np“ + b3

i
o

Let mP = m'”g“+-mﬁn be some new moments, related to the moments
o~ ~

Eﬁ by the relations

m? = MM xn + M mn],

o~ N‘ o~ NrNN
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or, in the componental form,
A A
R T A [P CE I ER-7)

The equilibrium equations (11.1a.23) obtain now

the form

m“}s\p - \/-a_.N“ + E“ﬁbﬁ?mf + Qeuﬁ%ﬁ = 0 y
(11.1a.25)

m* ., + E“p(\/épr + b/;m'“) + 0ls = 0

The equilibrium equations (11.l1a.23) are essen-
tially the same as the equilibrium equations (7.2.10) for Cos—
serat surfaces in the static case. The difference appears when
we compare the equations (11.,1a.25) with (7.2.12), since the
later equations do not include the influence of the forces N&
upon the director stresses b“. This difference is a consequence
of different kinematical models which served as bases of the
theories.

To establish a connection between the forces and
momentsE, m (or N and m ) acting on the points of the middle
surface ¢, and the usual three-dimensional stress tensor 2 , We
shall assume that the position of points of the shell are deter
mined by the coordinates x*,(e¢ = 1,2) on ¢ and by the normal dis—

tance x° =z of the points considered from ¢. Thus, for an arbi-

trary point of the shell we may write
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(11.1a.26) 5* = 5(x1,x2) + zn(x’,xz) .

The base vectors g; at r¥ are
~ ~

or*
gu':ﬁs:%u"—zaun:gu—zgu)
(11.1a.27)
g = 27

and the components of the fundamental tensor g;; are

g“ﬁ = auls - ZZb“J} + Zegu'gp )
(11.1a.28) Jus = 0,

933 =

23

R3S

]
—

Considering the shell as a three-dimensional body
we assume that the stress vector ! is defined for the surface
3
elements orthogonal to the middle surface ¢ , i.e.t =0 and
N

(11.1a.29) b=t

where v, are components of the unit normal to an arbitrary curve

C on 6. IfdC is the arc element of C with the unit normal v ,
~

the contact force d5 acting on the surface element vdCdz will be

tﬁ

~

(11.12.30) dlﬂ(} = v/,d,Cdz.
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Let us denote the unit tangent vector to C by ¢ ,
~

dx* |
5= jf%'gx . (11.1a.31)
Then we have
Vg = (“xn)g = (gax )-nd’_xx ( 2
AT TSI I*PN 40 - 11.1a.32)

However, according to (11.1a.16) we may write

Ipxgs = Vgey, = \/ge,ax = h€p s

(11.1a.33)
g = 31192 — 912912
and we have
dK = €uhtPg.dzdet | '
" pnt gy . (11.1a.34)
From (11.1a.20)1 we see that along C
dK = dK,dx*,
and therefore
d, = €,htPq.d
na pA gu z. (11.1a.35)

Introducing the "reduced stress tensor" de'by the relations

¢h

g

N

~N

G‘Lpg; = G“ﬁa.‘ + GSPL‘ 3 (11.13..36&)
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et = ¢ 9.3 = fmgx%“ =
(11.1a.36b) = Zb“tm
o -
we see that
(ll;a.37) dK, = Em(‘ho"‘/’g“ + htSpn)dz )

Integrating over the thickness —% € Z €2 of the

a
2
shell we obtain the forces st s

2
(11.1a.38) x = Ep),(f Vﬁdz)%b .
By (11.1a.21) we find R
p
(11.1a.39) | \/'a‘§Js = a,(ho‘Pdz |
)
or
a 3
¢ 3
(11.1a.40) VaN“* = /ho“"/‘dz, anN® = ntPdz .
-3 -3

Giinther also considered the moment

(11.1a.41) dM = =znxdK = €4hz6"Pdzdx™E, ,

~N ~
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where
€, = nxa; . (11.1a.42)

Since €5 = 0, by (11.1a.20)2 we find

dMy = & €, hro*hdz (11.1a.43)
and
dMPX = Euyepxhzo‘“ﬁdz. (11.1a.44)
Integration over -—% £ Z < % gives
2

(11.1a.45)

Comparing the results with (11.1a.24) we obtain the expressions

for the moments induced by the stresses,

a

2
m“p - /hzc“)}dz s mp = 0 . (11-18"46)

AW

Obviously the moments m*® are directly connected
with the stress field in the shell, When the three-dimensional
theory is reduced to the two-dimensional theory, for a more com
plete picture of the stress—field it is necessary to consider

not only the resultant forces N, ,but also the resultant couples
~N)
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m. !
According to (11.1a.46)2, the equilibrium equations
(11.1a.25)2 reduce to

(11.1a.47) GE N + € bim™ + oty = 0,
which is equivalent to

(11.1a.48) VAN'Z - N%Y) = mt by + m2*py + obs; = 0
From (11.1a.23)1'we have

- wh pv o ” «
(11.1a.49) VaN® = €%'¢et M)wl».""..’" = m*‘|»+22 .

The constitutive equations for an elastic, iso-

tropic and homogeneous shell Glinther obtained from the two-di-

mensional Hooke's law,

g=f

(11.1a.50) _E_[4-vghg + vgghHly,,
1 -

where Tap is the strain tensor,
= Moh -
ri\.y. 2 g?\.}& gky ’

and g3, is the deformed metric. If the points on the middle sur-

face ¢ suffer a displacement W, from (11.1a.28) we have

Qup = a;p-ZZpra-zac;p,
(11.1a.51)

C“ﬁ = b“‘bﬁ ’

NN
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where
a'“p = a“ﬁ“'e{mp ,
(11.1a.52)
t‘n’.ﬁ = Za(dup) )
and
a, = O(r+uw = a,+d,u. (11.1a.53)

From (11.1a.53) and from g;n'= 0 we find for n'in the first

approximation (for infinitesimal displacement gradients)
n' = n—-(nd ua* . (11.1a.54)
From (11.13..15)1 we see that in the deformed configuration
A
bup = 00 - (ndwatlag + )

and when the products of the displacement gradients are neglected

bap = bupt+ (9,95uln

I
o
&
-l
!
(-]
R
>

(11.1a.55)

where

wp = ‘,’I("ma/sﬁ) (11.1a.56)

5O

represent the change of curvature. When the shell is in the ini-
tial configuration flat, i.e, when we consider a plate, the ten-

sor §,p represents the curvature of the deformed plate,
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Finally, from (11.13..51)2 we may write
t 1 l 1 ‘l}" 1 ]
Cocp = b b/”- = a b“;\bﬁ)& ~
(11.1a.57) A
% Cep -~ (bugm +ba0.1)
where we have put

~ A
(11.1a.58) %up = Quptbylyy

and Cxp is the deformation tensor, &yp = £yap .

The strain tensor will be now

(11.1&.59) Kxx = %(g;ﬁ - gu}}) = c(ﬂﬂ’)-*- Z up 22 (b oﬁl+b/5hul)

From (11,1a.36) and (11.1a.50) we obtain for the

reduced stress tensor the expression

(11.12.60) ¢} = 1 E 2[(1—\’)9“"(9"-3’3)+vg“‘(g°‘-gﬁ)]h».
-V ~N n

Introducing xup.from (11,1a.59) and using (11.1a.46) we finally

obtain the constitutive equations for the shell,

o p— 2 % 4 v v
vaN Pl Ev ‘[(1 - v)a Xaﬁp[aw) + 12<§‘b7t9.vy« * %bp‘-’.vk'
(11.1a.61)
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3
m*P = L—{G via**af |:0>~yt +b; AEiop) +b pton = ZHCW}

120 - v?)
N (11.1a.62)
+ v[a*Pg + 2™ by + b7 - 2Ha“l‘a]} :
Here we have put
H = %b:, £ = a°‘}3£ws , Q= a“ﬁgmp, (11.1a.63)

11,1lb Reissner's Theory

From the point of view of continuum mechanics,
Reissner's approach to the theory of plates and shells [368—376]
(cf. also Wan [479-471] ) is based on the same kinematical model
as Glinther's theory (see equations (11.1a.1-5). Reissner's deri-
vation of the shell equations differs from that of Ginther in the
approach to the problem of constitutive equations. Reissner devel
oped an iteration procedure for deriving two-dimensional equations
from an integro-differential formulation of the three-dimensional
theory.

If we introduce into the fundamental equations of

motion (7.37) and (7.41) the notation

*
G- T, vgnt = 1,

(11.1b.1)

5o
)
e
1l
2o
50
S
2eo%
!
2.0
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the equilibrium equations may be written in the vectorial fomm

(11.1b.2) QI +p = 0,

Two vectorial equations of equilibrium (11.1b,2),
together with six compatibility conditions for GlUnther's defor

mation vectors‘(ll.la.l—Z),

n .
¥ = €Mdx, = 0

~ ’

(11.1b.3) @\ "
I = € "(Qt, + gyxx,) = 0,

~N

represent the basic set of equations of Reissner's theory.

The faces of the shell are given by the equations

x> = z = talx!,x?,

where x%, o = 1,2 are coordinates on the middle surface ¢ of the
shell, and x=zis orthogonal to ¢ . In the original papers Reiss
ner chooses xi, x? to be the lines of curvature of the middle

surface, The face boundary conditions are

(11.1b.4) z = %
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Stress and couple resultants in the two-dimension

al theory are assumed to be

[T

*‘
dz, M, = /M.+znxT )dz, (11.1b.5)

ot

where n is again the unit normal vector to @,

$» =073 (11.1b.6)
The two-~dimensional theory is obtained from the
three dimensional theory by the systematic elimination of x3=z.
We assume again that the position vector of any point of the

shell is given by the relations of the form

r* = p(el, )+ 2l 1Y (11.1b.7)

where r is the position vector of points on 6 . If a, are base
N

vectors on ¢ we have

(11.1b.8)

(11.1b.9a)

B
I
|
(=4
—
i
o)
i
|
=~
I~
—
NS
|
270
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0 o K
(11.1b.9b) - T -d.M - guxT -gq —R(M ") - kxT q .

4 ~N ~N

Using the property of the sign-function sgn(x) ,

d -
(—Esgn(x) = 28(x) ,

where 8x)is the delta~function, the integration of. the two e-

pIs

quations (11,1b,9) may be performed using the formulae 3

A L

a
2
/ anly - 2[R(T") + pldy ,
(11.1b.10) 2
* k
sgnly - 2)[5(5 )+ q+ g, xT ]dy

X »
]
PO
o \-Nln

3 %3
Introducing now the values for T~ and M  into the face boundary
~ ~N

conditions (11.1b.4) 1> we obtain the relation

(11.1b.11) ~<ia> - %/2 gn(y+ ) R(T )+p]dy =0,
2

v We use the following elementary properties of the integrals
involving the delta-functions. a) 8(x-xg)=0 , X#Xg5,Db) /6(I)d,x =
= 1, C) ff(y)b(y-x)d.y = f(x) . Now, if f(I) F(x) , and if we

write a

2
fx) = —%/sgn(y-X)F(y)dy ,

by differentiation we obtgin

2
fx) = [6(y—x)F(y)d.y = F(x)
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which gives
2
/[E(I“Hp]dy = 0. (11.1b.12)
-% |
Similarly, from (11.1b.4)2 we obtain
?
*“ k
/[E(m ) +q +gix 1 Jdy = 0. (11.1b.13)
2

Remembering the relations (11.1b.5), we see that (11.1b.12) may

be rewritten in the form

auﬂ + (pdz = 0 (11.1b.14)

e

in which it represents the two-dimensional equilibrium equation
for the resultant forces N~ . Using (11.1b.2)1 we obtain from

(11.1b.13)

%
*“ [ o
/[Ou([‘j +znxT)+axT +znxp+ q + nx0313+ nxTS]d.z =0.

rolw

However,
3 3 3
Znxds T~ = 0{znxT’) -~ nxT
o~ o~ o~ N ~ ~

and in view of the face boundary conditions and (11.1b.5)2 we
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finally have

rojw

a
2

(11.1b.15) o.M + 5uxI“dz+ (g +znxp)dz = 0,

[

X
R

™ol
roiw

which represents the two-dimensional equilibrium equation for
resultant couple-stresses.,

To obtain the two-dimensional deformation vectors
we shall use the compatibility conditions (11,1b.3). To distin—
guish three-dimensional deformation vectors from the two-dimen-—
sional deformation vectors, we shall denote three- dimensional
vectors by Sm(z) s 5“(2) and two~dimensional vectors by &,
X, o From the first set of compatibility conditions we obtain

n

two relations,
05504(2) = am55(z) ’
and the integration gives

(11.1b.16) x(2) = §“+/0u53(z)dz
0

From the second set of the compatibility conditions we also have

two relations, .

(11.1b.17) 9382 = 8,&5(2) - nxx (@) + g, xx5(2)
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which may be rewritten in the form

958 (2) = 0,&5(z)-nxx, - QX/a.g},z;(ﬂ)dﬂ +
0

+ a,.xx5(z) + 29 nxxs(z) .

Integrating this for 0 < nf < z we obtain

X

E(2) = ¢,- ZnXx,, + 3;X/§§(Yl)dﬂ +/n0“nx55(n)d.n +
0 0

+/16M£3(r1)d,n —fz[gxfyauiﬁn)dq}dy .
0 0o 0

Integration by parts gives

z M z x
/(Qxfo,‘zz,(n)dn)dy = znxfaug(y)dy —fygxﬂ,£3(y)dy ,
0 0 0 0

and we finally have

E(2) = € -znxx, + ﬁnxfis(y)dy +
o (11.1b.18)

+[[a“'§3(y) +y0.(nxxy) - zgxowfs(y)]d.y
0
Introducing (11.1b.16) and (11.1b,18) into the
three—dimensional compatibility conditions which were not used
in the derivation of (11.1b.16) and (11.1b.18), we obtain two

two~dimensional compatibility conditions,
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0,xp ~dpx, =0,
(11.1b.19)

0,65 - 0p€ vaxxy-2apxx, = 0.

To obtain the components of the deformation ten-—
sors we shall consider the scalar products of the vectors gu(z)
and x,(2) in the relations (11.1b.16) and (11.1b.18) with the
base vectors gu'and az =n (Reissner does not use the base vec-

tors, but the unit tangent vectors to the lines of curvature on

G),
X (2) = xg +/Tu;[55;(y)]dy )
: 0
@=1,2; i=1,2,3)
(11.1b.20) E.(2) = €. + zE-b‘,sx;" - G“M/xﬂ(y)fiy +

0

+f5«; [E5(y), x5.(y)]dy ,

0

%V

€uis = (@uxain
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3
Components of the stress vector | may be obtain~
n

ed applying the same procedure to (11.15.10)1,

T = 7% = Lfsgny-2R(T+play ,  arvzn)
where *
Ri.(lu) - B(In)?"v - Ru[T«.u(y)] ’

vk
and for the components of the couples M we obtain

rol»

P,:Ls(z) /sgn(y z)[R (E“) +q"+ (g'”xgk)-lk]d.y . (11.1b.22)
-3
In (11.1b.20) we have the expressions for twelve
components of the deformation x,,(z) , €,,(2) , expressed in
terms of the components of fu(z), x3£z), through certain integ-
ral relations.
For three-dimensional elastic bodies the linear

constitutive relations are of the form

*
6,2 = OO T @ + Ch M (@)

(11.1b.23)

) ke @ *u
IL}(Z) Dij,sz (Z)+Di’a'.k3M (Z)
Introduction of the strain and stress components
from (11,1b.20-22) into these constitutive equations yields a

system of eighteen integral equations for the determination of
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x-

vk

T , M5 €5 and x3, as functions of z ., Together with the
six two-dimensional equilibrium equations (11.1b.14, 15) and
with the six two-dimensional compatibility-conditions (11.1b.16,
17) we thus have a system of thirty integrodifferential equa-
tions for thirty quantities, among which twelve quantities tab
and X; do not depend on 2 .

As an illustration of these integro-differential
equations, we shall write only three of them, and for transvers
ally isotropic material for which Reissner assumes the linear

stress—strain relations

_Ya

!t’uu = %[Twu. —v(IT—Tuu)] E1T33 ’
(11.1b.24) 5,‘;5=“TVT¢;5, (e # B)
1

T5, €33= L(Tzs -vlg, Ii=T+ Ty

i
t'c:S:é'TuS) t3¢= Ez

G

1 X t 1 X
xuﬁ R Ma} p) Xaz = _Z—Mu.’) ’ X3y = 2_M3u ’
h F h H hH,
(11.1b.25)
1 x*
X33 = ——Ms3
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E.g. we have

2 f V. | 5
by + Zxi +/5“d.y = éTu - ET - SE. sgnly - =k + p’ldy ,
0 2

E
0
z 1 *
x“+/.T“dy=—2—M“,... ; etc.
0 h F

Further elaboration of the iteration and approxi-
mation methods to be applied to the integro-differential equa-
tions of this shell theory is beyond the scope of this exposition.
We shall only notice here that in the theory of shallow shells
(Reissner and Wan [376] , Reissner [371] , Wan [479]) the shell
is considered as a surface, but the kinematical model is the
same as in the general theory. The theory of shallow shells is
completely two-dimensional and does not involve the integro-dif-

ferential equations of the general theory.

11.2 Theories with Deformable

Directors

The theories of plates, shells and rods with de-
formable directors are based on the assumption that the three-
—dimensional material is an ordinary material in the classical
sense, and the appearance of the directors in the theory is a

result of the reduction of the three-dimensional theory to a one
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or two—dimensional theory. We have already reviewed some of the
basic ideas and relations in the sections 5.5.1, 5.5.2, 7.2 and
7.3 but in those sections we have not considered the constitutive
equations,

It seems to me that the most general approach is
offered by the theory of Green, Naghdi and Laws [157, 169] . In
this section we shall give only an outline of their treatment
of the subject.

We consider the energy balance law in the form
(8.1.1), assuming that there are no volume couples acting on the
points of the body and that the material is non-polar. For the

kinetic energy we use (5.5.1.23),
(11.2.1) %f&"(%g*'g + & )dv ?g(tv +q*)ds+/ *(fv +h)dy .

For the part v of the shell we choose a cylinder
defined by a closed contour C on the middle surface, and by the

surfaces X =& and X=3, The element of an area of the surface

X = const is

1 2 1 9 | )
(11.2.2) |(g1xgz|dx dX” =]gy822 ~ G12garldX dX = gg>3dxdx".
For the surface integral on the right-hand side of (11,2.1) we
may write now

$Hds = [Hdcdx + H/gg™]
s A

dx'dx +[H ag ] fst dx?
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where A is the cylindrical surface determined by the contour C

and dC is the arc element of C . Thus we may write

gtds -ftan+([t/ag™] [t 99" | P)dx‘dxe. (11.2.3)
s A

. . 3/\[,33
=“h 1 =
For X the unit normal vector 1s n g / g and therefore

b VoGP « G

~N

For X =5 we have { = —f/ 935 and

?%d,s =/‘£dCdX+[\/§f]£dxidX2 . (11.2.4)
Similarly we sobtain |
%q*ds =fq*d<:dx +<[q* gg“]xzu;{q*W]xzﬁ)dx’dxz (11.2.5)
s A

If we put in (11.2.2)H==H“n¢, where n is the u-
nit outward normal to the surface A , we have to use the follow-

ing relation
n.dA =g, ndA =g, (rxgsdCdX ,

where = is the unit tangent vector to the curve C, and’VdC==dxﬁgp;
~ ~ n

Further
n, dA =(gsx g.‘)-gﬁcLX/j = \@(esmd,X1 + emdxz) . (11.2.6)

Thus

p
/Hd,l\ =5£/(\/§H‘dx'°' ~JgH dX\dX .
A (S
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)'s ~N
If we put /\/QH“d.X = Hu, and in the analogy to (11.2.6), at the

intersection of the surfaces A and X =0 denote by v the nommal

to C, we have

2 1
(11.2.7) v,dC = vadX , v,dC=-vadX .
Using this we finally obtain

(11.2.8) fHdA =9§ﬁ“vudc - 9§ﬁdc .
A C ¢

We introduce now the notation

p

(11.2.9) /g*i*v'gfd,x +[\/§ls]i = ofVa,
? *

11.2.10 * 3Ba* B> =

( ) [9 n*vgax + Nag®q¥| +|Vag™a ]H ghva
B

(11.2.11) /ﬁu\@dx = NJa, (N = N“v“)
? N N N

(11.2.12) /x”@gndx = MVE, (M =M

p
(11.2.13)  [q**ygaX = 4", (@ = q"v.)

(11.2.14) /a*c*\/gdx = otVa ,

o
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A
/Q*L*XN@d-X*“[EXN 9935])(_ +[£XN gg“]x_/3 = QEN\fa.(ll.Z.14a)
Using now the formulae (11.2.2-13) we obtain from

(11.2.1) the following expression for the energy balance law,

= ~.<6+ vvs Y+l ¥ kMNd(N)'a>d‘0 -
dt) 2o T T 2N (11.2.15)
-] N Nc
= /g(h+Fv+ Z L d(N)>d0' +§£<N v+ Z M d(N)'Q)d'C
J ~N o N=1~ N : ~ N N=1 v~

This expression is complefely two-dimensional.

From the invariance of the energy balance law un-
der superposed rigid body motions we obtain, using (11.2,15),
the equations of motion and the simplified energy equation.
Following the procedure of the section 8.1 we obtain the follow-

ing equations,

o+ovi, -v’h,) = 0, (11.2.16)
ov = N +¢of - ZkNé(n) , (11.2.17)

’ (11.2.18)
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where

(11.2.19) m"Va

~n

»
N/XN_i£5\/§d.X :

Using the equations of motion (11,2.16-19) the

energy equation may be reduced to the simpler form,

. IPo 2 Np S Nie o
(11.2.10)@€ + N a5 + ¥, mdpy, + M Ay.+gh+ql, =0,
_ N=1 N=1

where
1Bes < e ™ .
NPS = NP Sty + TR
N=1

)"N}u = d(N)jSIu - bp«d(m ’

(11.2.21) s
Mise = O,dqys + bLdmp s

auﬁ = 2é'p .

If we introduce the free energy function Y =&-n6,

and if we assume
Y = ¥, €up r Mia » Ani)

following in principle the procedure of the section 10 we obtain

the constitutive equations of the two dimensional shell theory,



The constitutive equations 221

A 4
n ae )
(11.2.22)
e a‘f Ny a'\P Nie oY
N = = M == .
Qaeuﬁ " aad(m'v ’ eaxm“

Without entering deeper into the details of this
shell theory we shall only mention that the constitutive equa-
tions resemble very much the constitutive equations of the theo
ry of micromorphic media (10.4.6). The appearance of the direc
tors and of the director gradients here is natural consequence
of the reduction of the three-dimensional theory to two dimen—
sions. For details of the theory we refer the reader to the
original papers [157, 169]. In the last of these papers Green

and Naghdi have developed a general, non-isothermal theory.

11.3 Rods

The general theory of rods of Green, Naghdi and
Laws [157, 169] is in essence based on the same ideas as were
the ideas in the just outlined theory of shells. The fundamental
quantities are already derived in the section 5.5.2, and for
the first approximation (in which a rod is considered as a line
with two directors) in the section 7.3.

The one-dimensional form of the energy equation
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3
(11.2.1) for a part § < X € §, of a rod, where X = X is the
parameter varying along the middle line, is (we are using the

notation of the section 5.5.2)

.0
MN=1 N
(11.3.1) 8
o0
061 .&N
- fg(33+23 Ao, +h> 354X +
N=1
J
o . §2
+ [g-g DN L B q}
N=1 8
Here

[t gaxtax’ = [kex'ax’ = qvas;
“{"'“N

f/kx“‘...x""‘dx‘c}lx2 - gk a3

f/kh*dxidxz+§§q*(nidxa—nadXi)\/ﬁ = ohyam ,
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//k“f,*dxidxe+9§\/§(£1dxz—£2dx1) - o fVass

et xaxax g™ X - 1ax) = g £ NVaT

//.:‘,5\/§dX1dX2 =n; f/x"*...x°‘“£3\/§otx‘dx2 = poLN

The double integrals are over any cross-section
X = const of the rod, bounded by the curve (5.5.2.11), and the
line-integral is along the curve defined by (5.5.2.11) and
X = const.

From (11.3.1) the rod equations may be derived
following the procedure analogous to that applied in the preced
ing section to the shells and we refer the interested reader to

the original papers by Green, Naghdi and Laws.

11,4 Laminated Composite Materials

Laminated composites represent because of their
practical engineering interest an important field of applica-
tions of the theory of materials with directors. In parallel
layers each layer might be considered as a uni~directorial mi-

cro~element. This point of view was adopted by Hermann and
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Achenbach, who developed a general dynamic theory of laminated
composites. Details of their theory are beyond the scope of
this course of lectures and we refer the readers to the original

papers [1, 2, 3, 203] where further references may be found.

12. Polar Fluidg_

In comparison with the theory of elasticity, the
theory of polar fluids is considerably less developed, although
there are certain effects predicted by the theory which might
be experimentally observed.

The flow of a fluid, if it is not an "ideal"
fluid, is a dissipative process and the constitutive equations
cannot be directly derived from the laws of thermodynamics, as
was the case with the theory of elasticity.

The equations of motion,

¥ '
(12.1) ox' = t*’f} + gf",
T Wi} WH
(12.2) gvtdyy = h L+ ek,
. L Ciid *- - *: .
(12.3) QF't = {74 m“*&k + of ¢

have a gemeral validity, independently of the consistency of

the material. These equations do not impose any restrictions on
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the constitutive equations. But the laws of thermodynamics,

9t = w+ gh + a*\ (12.4)

e6n ~ gh - g, + ée,kq“ > 0, (12.5)
impose certain restrictions, since the constitutive equations
cannot violate them.

The general scheme to be followed in the formulé |
tion of the theory of polar fluids might be considered as the
following one. First, select a mechanical model and the appro-
priate kinematical variables, and then postulate constitutive
equations and see that they are in agreement with the laws of
thermodynamics. |

There are today two main concepts of polar fluids,
" besides the theory of liquid crystals and anisotropic fluids
which might be considered as a special case of a general theory
of "éeneralized Cosserat fluids" which does not exist yet. Both
theories predict certain effects which are expected to give an
experimental evidence of the influence of the non-symmetric
stress upon the distribution of velocities.

In the following subsections we shall give a brief

review of these theories.



226 .12, Polar fluids

12, 1 Micropolar Fluids

The basis of the theory of ﬁicropolar fluids re-
presehts the general concept of a micromorphic medium, which
was introduced into fluid mechanics first by Eringen [124] par-
allel with the development of the theory of micromorphic :elas-
ticity, and later further developed in a series of papers *
Eringen [123, 125, 125, 133, 135] , Eringen and Ingram [137],
Allen, DeSilva and Kline [10,11], Allen and Kline [12], Ariman
[15], Ariman and Cakmak [16, 17, 18] , Condif and Dahler [69],
Kirwan and Newman [233, 234] , Kline [235] , Kline and Allen [236,
237, 238] , Liu [272], Rao et al. [367]etc.).

Quantities which characterize the state of stress
in a micromorphic medium (cf. section 10.4) are the stress ten—
sor tié , the micro-stress average tensor s4 and the first
stress moment tensor }}}k . The rates,according to our notation,

are: velocity gradients Vi 2 gyration Wi, and the gyration

gradients uré,k . If the phenomena including the heat conduction

v
are excluded from the considerations, there are nineteen unknowns

which have to be determined through the equations of motion:

olx, 1), Iem(“x,,t), vix, 1), wux, ).

# A similar theory was independently developed by Aero, Bul'gin

and Kuvshinskii [4].
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The principle of objectivity requires that the con

stitutive variables are objective tensors. Such tensors are the

rate of deformation di} and the micro-deformation rate tensors

b and a,
~ ~N

d’bj. V() o
by = wy 4+ v, (12.1.1)
ik Wik .

According to Eringen [124] , a fluid is a micro-

fluid if its constitutive equations are of the form

—t
i
-
—~
&
c-
~
-
~
£
<
o
-
€

), (12.1.2)

W
I
o
~
v
£
a
€

2\; = b’(vi}} » Wi wL},k) ’
subject to the spatial and material objectivity and

b= s = -1, A =0 (12.1.3)

when d.;,&=v(;”p=0 and bu& =.w;,é + Vi’)} =0 .

Another assumption which is made in the theory of

fluids with micro-structure is that the fluid possesses an inter

#
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nal enérgy ¢ which depends solely on the entropy n , specific

. - - k m
volume 1/9 and on the micro-inertia I =,

il

- km
(12.1.4) ¢ tn,g™t, 1),

With this we may define the following quantities, thermodynamic

temperature © , thermodynamic pressure T and thermodynamic

micro-pressure ;. ,

o = & x = 2%
: 07’1 g,l- const ae n,l =const
(12.1.5)
7("’} = af
aI&.r\,e=const

For the constitutive equations we shall write now
(12.1.6) t = f(d,b,a), =gld,b,a), A =hid,b,a

where { and s are second-order tensors, and 5 is a third-order
~ ~n

tensor., The principle of objectivity requires that

fadq’, 0bQ', ga@'@) = QfQ,

A YN

and similarly for g , and for h ,

R T

39,988, 20'0) = 8AQ

~N N ~
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where Q is an arbitray orthogonal matrix. If we selectQ = -1

we will obtain

29

tAen

p
~

gld,b,-3a) = gd,b,al (12.1.7)
hd,b,-a) = -hd,d,a)

and it follows that i and g have to be even functions, and h
~N . *
an odd function in a.
The general constitutive equations that were con

sidered by Eringen [124] were

T 2

where b - d and ér— d are introduced instead of b for later
convenience,

According to (12.1.3) we may add that for the
vanishing g. and g the right-hand sides of (12.1.8) have to

satisfy the following conditions,
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£10,0,0) = -md§, g"(0,0,00 = -mwd},
(12.1.9) N
2,.(0,0,0) = 0.

Taking all this into account, in the linear ap-

proximation the constitutive equations for micro-fluids are

b= (- hgtrd e hotr(p - d)]t + 2y + 2polb-d)+ 20 - ),

n

(12,1.10)
s = [-mwantrd +notrlb - A1 + 28,4 + (b + BT -2d).

)"kem = <x1amrr+ ¥ pme t X'}arrm)bkl +
+(¥4a3rr + st X6a'rr2)bkm+
(12.1.11)

+(¥;a.k”_ + r&arkr + Y?arrk)b%\ +

F¥10Qkem T $112umt + ¥128tkm T X133k T P14 it + 15 ek -

A micro-fluid is a micropolar fluid if the gyra-

tion tensor w is the angular velocity tensor for the particles,

vik vk g ;
i,e. if wi,,j. = —mé; , and 1f>‘,* = -\ ¢ . In this case a-ba-,,‘:-a}-uk.
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The constitutive equations for micropolar fluids

are much simpler than the equations for micro-fluids,

-k V‘I k .
mt = “vw,r b g+ ﬁvwfz + )‘v‘.()e’mg k ,
(12.1.12)
k K k K l
= o+ Ab)o"y + (@p, + kDA, + k(R - w*)
where
Qi = Vi w o= €,

vé

and the micro-stress average S disappears from the equations.

The spin becomes

= TR
6 = &yot = ju, . (12.1.13)
The equations of motion are

o(v - f) = —grad® +(\, +p,)grad div v+ (u, +k AV + k (Vxw), (12.1.14)

oljw-b = (x+p)graddivw + y,Aw + k(Vxv) - 2k w0 . (12.1.15)

For w=10=0,k=0, =N, =¥,=0 these equations
reduce to the Navier-Stokes equations. The theory of micropolar
fluids includes four additional coefficients of viscosity, be-

sides the two coefficients A, and j, which were known in the
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non-polar theory of viscous fluids.

The considered constitutive relations for micro-
polar fluids do not violate the Clausius-Duhem inequality, and
the inequality only imposes certain restrictions on the coeffic-
ients of wviscosity.

Aero, Bul'gin and Kuvshinskii [4] developed in
1964 independently a theory of fluids with the non-symmetric
stress tensor, which is completely analogous to Eringen's theory
of micropolar fluids, i.e. the directors represent rigid triads.
Also in 1964 appeared a paper by Condif and Dahler [69] in which
the fluid considered corresponds to the micropolar fluid, but
their constitutive equations (linear) involve only five coeffic—
ients of viscosity. Allen, DeSilva and Kline [233] proposed a
more general theory of fluids with deformable directors, but
this theory is not completely developed. Recently appeared also
a paper by Eringen [133] in which certain extensions of the the-
ory of micro-fluids are studied in order to include deformable
micro—elements. Quite recently also appeared a paper by Liu [272]
in which some generalizations of the theory of micropolar fluids
are suggested, in order to derive the equations for turbulent

parallel flow from the general theory.
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12,2 Dipolar Fluids and Fluids of

Grade T wo

Theory of dipolar fluids originates in the theo-
ry of multipolar continua proposed by Green and Rivlin [172,
173, 174] .

In the theory of dipolar fluids the constitutive
equations are to be postulated (Bleustein and Green [38]), or
derived (Plavsid [358-361] ) for energy, entropy, heat flux,
stress and dipolar stress, considering as constitutive variables
the density of matter @ , gradients of the density @ ; and @ ;;,
temperature and temperature gradients 0 07;, ’ G,L}, and first
and second gradients of the velocity, Vi Viik e

Assuming that the Helmholtz free energy function

Y is a function of the form
Y = Ye,qe;, 00 bijraip,0,0,,65) (12.2.1)
where

I.'& a

i) bk T Yk (12.2.2)

Bleustein and Green considered the Clausius-Duhem inequality in
the form

9,;qL
0

. . > vk
vg
-g(Y +n6) - e Y ey 2 0.0 (12.2.3)
Gk
Here z are components of the "dipolar stress" which are
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symmetric in the first two indices. From an analysis it follows

that ¥ camnot depend on other quantities, but on o and ©

(cf. section 9.2 and equ. 9.2.11 ), and the inequality (12.2.3)

H’"‘ v

] _ mn .
reduces to(v = & 8 n Q,n)-

(12.2.4) 6":’ e.q'“
0° kiv v
[Z(U})k <0 "g}k +e a.gvk)] b T z 0.,

The constitutive equations are derived only for

homogeneous incompressible fluids. For such a fluid we have

'U'l:k ® [, = 0, and Bleustein and Green obtained the following

constitutive relations:

by +99;; = 2pd;; +p6..,

Z( )k + Y. b‘,k + vak = h,guak" + hz(a;’a'_k + ad'_;,k) +
(12.2.5)

+ hSak&» + )‘9»&9 k »
q, = wa;,+k0O;
Here ¢ , Y, are some arbitrary functions to be det—

ermined in the course of solution of each particular problem,

Under certain, in the thermodynamical sense, more
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restrictive conditions, Plavsié [361] derived the constitutive e
quations for dipolar fluids from Ziegler's principle of the least
irreversible force (see section 8). He considered the dissipa-
tion function in the form
» (i i)k
= s o= ot
0 = @On = tUd.+X " ay. (12.2.6)

Since dL} and a;:, are objective tensors, the dissipation func-—

tion may be regarded in the form

$ = é(dy&, a;;k) 3 (12.27)

‘g
and from Ziegler's principle (8.41) follow the constitutive e~

quations,

(12.2.8)

These equations, when linearized, reduce to the equations (12.2.
5).

In analogy to materials of grade two in the the-
ory of elasticity, where the strain energy function is a func-
tion of the strain gradients, we may consider "fluids of\grade
two" where the dissipatioﬁ function will depend on the second-

order gradients of vorticity., This case was studied also by Plav
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sié [358, 360] ,
(12.2.9) b o= ddy, wyp)

Using again Ziegler's principle Plavsié obtained the constitu-
tive equations for the symmetric part of the stress tensor and
for the symmetric part mbuk) of the couple-stress tensor, which
is in complete analogy to the theory of elastic materials of
grade two. When linearized, the constitutive equations read

Gy

£ = —pg* + mylygt + 2nd

(12.2.10)

Kij = ~(2fl3‘%; + 2ngwy)

where Hij is the deviatoric part of the second-order couple-
—stress tensor. Here we have four coefficients of viscosity, but
in thevequations of motion besides the two coefficients which
appear in the Navier-Stokes equations there will be present only

one coefficient, the coefficient of "rotational viscosity".The

equations of motion read

(12.2.11) 93 = -gradp + nAv - nsAAv .

The essential difference between various approach
es to polar continuum mechanics is in the assumed kinematics,
For micropolar fluids there are two independent vectors which

describe the configuration of a fluid, the velocity vector and
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the micro-rotation (or gyration) vector. In the theory of dipo-
lar fluids and in the theory of fluids of grade two there is just
one vector field, the velocity vector. However, since the sec-—
ond gradients of the velocity vector are objective quantities,
their combinations contained in the vorticity gradients are also
objective quantities and the dipolar fluids are a more general
type of fluids than the fluids of grade two, Moreover, the the-
ory of dipolar fluids by Bleustein and Green is basedvon a more
general thermodynamical basis, valid also for heat-conducting
fluids, and not on the restrictions as is in the case when we
apply Ziegler's principle.

A very fine comparison of the theories of micro-
polar and dipolar fluids is made by Ariman [15] .

Independently of the difference, all existing the
ories of polar fluids predict certain effects which might be
experimentally detected, and all theories are in agreement on
the nature of these effects, In a number of papers the theories
were applied to various flow problems, mostly to the study of
channel and pipe flow and are obtained velocity profiles., Inde—
pendently of the theory which was applied, the obtained veloc-
ities differ from the velocities obtained in the classical hydro
mechanics, Towards the middle of the channel or of the pipe the
velocities are smaller in the case of polar fluids than in the
case of a classical fluid., Plavsid [359] studied the viscometric

flow of polar fluids and predicted theoretically certain measur—-
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able effects which might help in the determination of the coef-
ficients of the rotational viscosity. It should be noted that
already in 1962 S.C. Cowin [74] discovered that in oriented
fluids such effects of rotational viscosity are to be expected.
The theory of Condif and Dahler [69] was inspired
by the problem of fluids containing some rigid structures., The
same problem was considered by Kirwan and Newman [233] , who
also considered fluids with deformable structures [234], basing
their considerations on the theory of micropolar fluids. Afana-
s'ev and Nikolaevskii [7] considered the same problem as Kirwan
and Newman in [233], but referring only to the work of Aero,
Bul'gin and Kuvshinskii [4] and to Ericksen's papers on aniéo—

tropic fluids,

i2,3 Liguid Crystals

In the section 7.2 we already derived the differ-
ential equations of motion of liquid crystals, according to E-
ricksen's theory. In addition to the contact and body forces
which appear in (7.2.1), Leslie [268] introduced another force
g which is defined as an intrinsic director body force per unit
;olume. To avoid ambiguities in the notation, the director vec—

tor, which was previously denoted by 9 , we shall denote now by

n . The equations of motion now read
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do ]

d_; + Qv)j. = 0,

gvt =t 4 of (12.3.1)
on’ =hi’;+gk"+g.".

With the aid of these equations the local energy

balance law may be written in the form

: i i V e
et = gh+ g +t dy; + WING = @' N+ t 7wy, (12.3.2)
where
. ko . k
Nij = N +wigns; s Npo= np+ wgn® (12.3.3)
and
B4 = 1" - bl + gint. (12.3.4)

From the invariance of (12.3.2) under a superpos

. v .
ed rigid rotation w;; = -u;; it follows that t is sym—

metric,* This reduces (12.3.2) to

* This is not identically satisfied in (12.3.4) and has to be
taken as a request into account when constitutive equations are

formulated,
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(12.3.5) et = gh + ql:k N t”dw} + h‘”N;,'» - g'N,

v

Leslie assumes the entropy inequality in the form

(12.3.6) dt/ ndv —/—dv +f’1€p;’d5i’ = 0
M)

where, according to some new concepts in thermodynamics, p, is

the entropy flux which is not necessarily equal to the heat flux

per unit temperature. Writing 9, =9, -0p, and combining (12.3.5)
and (12.3.6) we obtain

(12.3.7) t”d;}+ h'""’N;; - g'N; - 0,p - g(Y+nd) - ', > 0.

The quantities which have to be determined through the constitu-
tive equations are

PRARLT ST S
(1238) t’)n)qv’p)h 7t ,g"',

and the objective .independent variables are

,0,n",n' ,N;,di;,0),

v&)

(12.3.9)
From an analysis corresponding to that at the end of the section
9.2 we find that

(12.3.10) Y = Y(Q,Q’n;”ni"})’ n = _.al .

For static isothermal deformations Leslie obtained
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the following constitutive equations,

o= gt Sl 29”5%%“52,
s )b
h, = o2 4 «D'n,, (12.3.11)
Ind,
g, = —9% - (ocoD*n-b),i ,
where
D, = nyn¥ - nnb, (12.3.12)

and «y is a coefficient which is a scalar function of the tem-
perature © and of the magnitude of the director n. Ericksen [109]
obtained the same constitutive equations, but without the terms
involving the coefficient «;.

Leslie's equations'are applied to a number of
special problems of interest to physicists working on liquid
crystals, However, there is still a discrepancy between the the
ory and some observed phenomena., As is the case in the whole the
ory of polar media, the lack of estimates for constants which
appear in the theory prevents a comparison of predicted results

with the results of measurements.,
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The theory of plasticity represents even in the
classical continuum mechanics a field in which certain fundament
al problems are not solved. The existing engineering theories
give for practicél purposes sufficiently good results, but such
theories represent only phenomenological descriptions which are
more or less in good agreement with experiments, and the nature
of the plastic flow from the physical standpoint, except in met
als, is not well understood yet, |

At a microscopic scale the mechanism of plastic
flow in metals is explained as a consequence of the motion of
dislocations, but there is still not existing a theory which is
capable of connecting the phenomenological theories with dislo-
cations. Polar media in the problem of plasticity play an inter—
esting role, since one of the first applications of certain
concepts in mechanics of Cosserat continua was just in the theory
of diskocations (Glinther [189]). However, the theories of plastic
ity in polar materials are still far from representing a missing
link between the theory of dislocations and the problems of plas
tic flow.

In 1964 Komljenovié [243] considered an elastic-
plastic body with couple stresses, Assuming that the stress and
couple-stress tensors may be separated into reversible (elastic)

and irreversible (plastic)parts, he considered the energy balance
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equation,

()

: . & . .
gt = QOI’] + (Et + Dt *))du& - (E“’]”J< + Dmu*k)'\ﬂ"—’}’k (13'1)

and assumed that
§ = & K k )
= 4N, Xog, Xk (13.2)

oy = Q(i",i‘;K,ic:‘KL) (13.3)

where ¢ is the dissipation function.

For elastic parts of the stress and of the couple
—-stress tensor Komljenovié obtained the well-known equations
from the non-linear theory of materials of grade two. To obtain
the constitutive equations for EE and M he applied a method
which corresponds to Ziegler's principle of least irreversible

force. The yield condition is considered in the form

: (13.4)

where k = const. Since ¢ is assumed in the form (13.3), only
for linearized constitutive equations it was possible to sub-

stitute in ¢ the rates xS  and i%KL by the stress and
’ b

couple-stress tensors and to write the yield condition in the
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form
(13.5) Hp,m -k > 0.

For isotropic materials and in the absence of couple-stresses
the dissipation function is an isotropic function and (13.5)
reduces to the Henckey-Mises yield condition.

' In 1967 Sawczuk [389] developed the theory of
plastic flow in Cosserat continua with constrained rotations.

The kinematical variables in Sawczuk's theory are

d'u,; = ‘:"(L,;); X, = w
(13.6)

)
The dynamical variables are the symmetric stress tensor ©'¢ =1

and the deviator of the couple-stress tensor Hij = mh{'%"ﬁkbb}'

For the dissipation function it is assumed that it is of the

form
_ g .
(13-7) Q = t dv& + }J,a'xi,& =z 0

A further assumption is that the dynamical va-
riables are homogeneous functions of degree zero in time and

homogeneous of order zero in the kinematical variables,

OSL& 05;,}
od d”+f)x Xrs = 0

rs rs

(13.8a)

)
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aFL' dp,
fd, + —2x,, = 0 (13.8b)
adrs rs axrs rs )
where §,; 1s the deviatoric part of the stress tensor, $;; =
= bb&. i -Sb.kb‘ujl .
From (13.8) it follows that
A B :
Si; = %aly, » Wiy = PpTi s

(13.9)
A=1,...,5, B =1,.,8,

A B
where TL} and TL; are linearly independent tensorial functions
of d and x , and &, and By are scalar functions of d and X . In

the tensorially linear form we have

Sip = wdy + waXgy,  Hep = Mdi + Baxgp
(13.10)

il = Y%L o

and ®’s , ]fs and y are scalar functions of the second-order in-
variants of the kinematical variables,

Further analysis is based on the fact that in plasticity there
does not exist a one-to-one correspondence between the invarijants
of the kinematical and of the dynamical variables. Since there

is the same number of theAvariables s and p on one side, and

o~

g and x on the other side, from 13.9 it is possible to estab -



246 13. Plasticity

lish the relations between the two kinds of the invariants. The
requirement that there are no 1:1 correspondences between the in
variants yields the vanishing of the functional determinant.

Denoting the invariants of the second order by

x = d-i,;,da;, Y = XepXep, EFOS XLaXrig o
g = SipSipr M= BepHap o g = PLPL]

etc,, we have

<

(13.11) ‘QSElELLEE

o€, n, T

The tensorially linear flow law may be considered

in the form

(13.12) d,; = %5;4 yXep = TR s Tng T T B
| 4 I
where
n en i 2§
(13.13) Scx = %E = Mg > % T ng ;

and Ay and A, have the dimension of length. Elimination of §
from the relations between the invariants x,y, 2 leads to the
establishment of the yield condition, (13.12) is in general not

compatible with any potential rule for plastic flow.



Lippmann's theory of yielding 247

Lippamn [270] considered a Cosserat continuum
with directors which represent rigid triads. The kinematical

variables of Lippman's theory are

dij = € = vy, wy = vy, xy = dw, (13.14)

and the dynamic variables are
g6 A 1, mi £ mit (13.15)

The dynamic variables represent a system of 18 components of a
generalized force g = {Qia"'7Q18} . 18 components of dL}; X
and of %:2-5 are considered as 18 components of a generalized

velocity q = {a93,---> ds} -

The basic assumption of the theory is the extrem
um principle of Sadowski, Philips and Hill: for arbitrary veloc
ities q the forces g have such values that the shape-defor-

mation action

(13.16)
is maximal, oA = O .
The most interesting assumption of Lippmann is

that there are at least 2 and at most 18 yield-conditions,

fp(@) = 0, (@ < p < 18). (13.17)



248 13. Plasticity

—

Then we have simultaneously

of,
(13.18) q,0Q, = 0, 0—ka0k = 0,
and consequently
.
(13.19) A = Mepq,

where KP are proportionality factors.

For various specific conditions Lippmann derived
various yield conditions of the classical theory of plasticity
as special cases of his theory. He also applied the theory to
a number of problems which are of technical and practical impor
tance,

At the end we shall mention here also that some
attempts were recently made for the formulation of various the-
ories of other anelastic phenomena. There are papers on visco-
elasto-plasticity (Misicu [294] ), and on visco-plasticity
(Radenkovié and Plavsié [362]), as well as on viscoelasticity
(e.g. Eringen [129] , Askar, Cakmak and Ariman[20] , DeSilva
and Kline[8i] , McCarthy and Eringen [278], etc.). All these
theories represent very important contributions which we unfor-
tunately have no time to analyze in detail here, but as a gen-
eral conclusion we might say that even in the polar theories of

elasticity, and elasticity is physically the simplest situation,
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we have not succeeded yet in establishing a general theory and
that in the theories involving irreversible phenomena a great

deal of work remains to be done.






Appendix

For theoretical considerations it seems to me
that the most suitable in the nonlinearized expositions is the
notation of the double tensor field theory (cf. Ericksen "Ten-
sor Fields" [100] ). Assuming that the readers are familiar with
the tensor analysis, the aim of this Appendix is to present only
a survey of notation and some basic properties of ordinary and.

double tensor fields which are used in the lectures.

Al. Coordinates, Tensors.

2
An ordered set of numbers x = I’,I,...,I“} (we con-
o~

sider only real numbers) represents an arithmetic point. The
numbers x* are coordinates of the point x . The set of all pos
sible arithmetic points, obtained when the coordinates take all
possible values, represents an n-dimensional arithmetic space An.
If M is a set of objects m, such that there is
a 1:1 correspondence between the objects of the set M and the
points 5 of a region A of An we may say that the numbers x.i'
are coordinates of the objects m , and that the objects m are
pictures of the arithmetic points x .

If there is a 1:1 mapping of points x of a re-
~N

gion A in An upon points x of a region A in the same An,
~N
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x* = xXx',x%,...,%",
(A1.1)

< = zMx',x?,...,x"M,

we say that the XX

represent another coordinate system with re-
spect to which the objects m are determined. The set M of ob-
jects m , together with the coordinate system xk, and a group

of transformations (Al.1) which introduces all admissible sys—

tems, represents an n-dimensional geometric space X, . The ob-

jects m are now points of the space X, .

The coordinate transformations are transforma-
tions of numbers characterizing the same point m .

If R is a region in X, with points A €R referred
to a coordinate system xk, and if R is another region in X,
with points B referred to a system of coordinates XK, the 1:1

mappings of the points of R upon the points of ﬁ s

k= xk(X;,...,Xg),
(A1.2)
X3

Kt
X (xp,...,x0,

represent a point transformation,

In the following, if x* are coordinates of a point
in X, , we say it is the point x .
~

A geometric quantity in Xn at a point x is defin-
N
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Geometric objects. Vectors

ed by a set of numbers, sayN, and by a transformation law which
enables us to determine these numbers when a coordinate transfor
mation is performed. If xﬁ and i: are coordinates of a point
P in Xn given with respect to two coordinate systems, and FQ,

Q=12 .. Nare the components of a geometric object F , the gener

al transformation law has the form

=k 9=
=1 _ = le 1l - 0 0'x
FQ{ZEP} ‘Pn(ﬁ{fp},...,, WXL Xy PRCER i s ,) .

If the transformation law does not depend explic

itly on the coordinates of the point P, and on the partial der-
ivatives of higher order than the first, the geometric object

1s a geometric quantity.

A scalar is a geometric quantity with one compo-—

nent and with the transformation law
px',..., x™ = o(x',...,x" . (A1.3)

Covariant vectors are quantities with the number

of components equal to the number of the dimensions of the space,
n=N ., If v, and ¥; are components of a covariant vector v ata

point x , the transformation law for covariant vectors reads

k ,
vy, = “kgl&' (Al.4a)
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- 58 (k=
(A1.4b) vy = Vv £ =12,...,n) .
Ox
Here and in the following we apply the usual summation conven—

tion for repeated indices,

For a contravariant vector grwith components wk

and ! the transformation law reads

’

=
\T}E = ‘wkgi. ’

dxk

(A1.5) )
wk o= \-‘-’2_0_1_".

0x

A tensor T of covariant order p and contravariant
order q is a quantity with n®'? components 1¢L;i&r”*q and

with the transformation law

(A1.6) TJTT}V4q = T “~4q0xE1“_OxFPOi&ﬂ__8i5q'
h ' dxt  9%‘r 0xbt  9x td

The order of this tensor is p + q .
A tensor all of whose indices are superscripts
(subscripts) is said to be a contravariant (covariant) tensor.
If the components of a tensor remain unchanged
when two of its co- or contravariant indices interchange their

places, we say that the tensor is symmetric with respect to

these indices, e.g.
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- Par _  rapr
Tijee = Toge, T = T

if components of a tensor change sign when two of its co- or
contravariant indices interchange their positions, the tensor

is antisymmetric, e.g.
= - par _  _T9qpr
Ti,é.kt = T;k;z ) T = -T7 .

A second-order tensor may always be decomposed

into its symmetric part,

- |
T(L}) = E(Tb& + Td-") 3 (A1.7)
T(Lp _ l(Ti'} N T}L) ,
2
and into its antisymmetric part,
T[;;] - %(TL} B T“) )
(A1.8)
-
T['u;] = §(TL;, - T}i,) ’
such that
T T(;o;) . T[Lj,] ,
(A1.9)

TL; = T(L}) + T[u&] .
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There are tensors defined simultaneously with

respect to two points of the space, and these two points are, in

k

general, referred to two different coordinate systems, say x"and

XK + Such tensors reprcsent the double tensor fields. Let t‘f,&nx),')p
be such a tensor. With respect to coordinate transformations at
X it transforms like a contravariant vector, and with respect
to coordinate transformations at r)\(, it transforms like a covariant
vector, Eg K aizf)XK
(A1.10) - L "Ka_xk;,)? .

Further examples of the double tensor fields are

partial derivatives of the point transformations (Al.2)

]
i

k ok K K
(a1.11)F .« a—;,( X F gxk ;
X

In Fuclidean spaces  there exist rectilinear or—
thogonal (Cartesian) systems %, & =1,2,.,n , and if such a co-
ordinate system is admissible in an Xn, besides some other prop-
erties which will be mentioned later, we say that it is Euclide-

an space, The unit vectors in the directions of the coordinate
lines z® we shall denote by 2“:3“. The position of a point Z in

E, is determined by the position vector o
_ o
(A1.12) r = z"e.,

where r%=z®are the components of r . If x" is an admissible co-
~N

ordinate system in Euclidean space, i.e. if there exist the coor-
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the coordinate transformations

x(z!, ... 2"

2*(x!,...,x")

(A1.13)

which are analytic functions in the neighbourhood of the point

~

system x' are given by

14

v « 0X

r = Z 5;;,

Zu = r"'o_zf
ax’

Denoting by g,

~

Z , the components of the position vector r with respect to the

(A1.14)

the base vectors of the coordinate

systemx',the position vector r may be expressed now in the form
~

(A1.15)

(A1.16)

The reciprocal base vectors gb, defined by the
~N

r = .
L= r'g
where
~|' % 01;,
relations
gi, _ o« 0L
~ ~ 02“

(A1.17)

represent the reciprocal vectorial base, For Cartesian coordin-
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ates, the scalar products of the base vectors are

(A1.18) S“S = b; y smsp = 6‘,‘}3 ’ g“ep = bujs 5

~n

where 95 = Oyp = 0% = {é’“ :ﬁ are the Krone.cker symbols. Hence

58

: 9x’ 0zP 0x' 028 _ o
99 = § oz g~ Moz T O
LU ] axé z axd'

We shall use the symbol l for the matrix -{6;]- .
The scalar products of the base vectors g, and gb

give the components of the fundamental tensor ( 9i; and.gi& ) for

the systems of coordinates x", which is a symmetric tensor,

0z" 9z°
A]-.l .. = . . = .. 3 b
(h1.19) 9= $% " % T by iT
and also
VL qiqh = qit = gehOx’ dx!
(A1.20) J 37 g 92" 9zP

Transvection of co- and contravariant components of the funda-

mental tensor gives the components of the unit tensor,
Vi - v
(A1.21) g'tg =

-
Denoting by G ¢ the cofactor in the determinant

g==detgbé, corresponding to the elementg;isuch that

(A1.22) gt = G}Lgbk)
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f

from (A1,22) we have

io_ ¢ = g6 (A1.23)
9 = g ’ g&u = g v .

where G&; is the cofactor in d.etg.”"“ corresponding to the element
g't , and
.. ' -1
det g"d' = (det g,/&> . (A1.24)

In 3—dimensional Euclidean spaces the vectorial product of two
base vectors €, and &p,% #8 is the vector te %, B,y all differ

ent, If « § ¥ is an even permutation of the numbers 123, we have
euxey = e, (e, p,y #) (A1.25)
and if it is an odd permutation,
e.xey = —e, (a,8,y#) . (AL.26)

Hence we may define completely antisymmetric unit tensors € .p,

and e**¥ Dby the scalar products

(eaxgple,

]
[4)
R
>
-

(A1.27)

]
o
R
e
-

(e*x 5/3) ef

~

Under arbitrary coordinate transformations the
unit tensors € do not behave as tensors. The transformation law
involves the Jacobian of the coordinate transformation and such

tensors are named relative tensors, However, if we make the scal
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ar products analogous to (Al.27), we obtain using the relations

(AL.16, 17)

(A1.28) 0z~ 02/3 0z? — (d'

9z* 9z 9z? 9z
“M.Oxi' dx¢ dx ¢

(g-,xg})gk = etax )e-u}k ’

where €,k are now numerical symbols with the same meaning the
unit tensors for Cartesian coordinates have, From (A1.19) we

have now

2

g - (detbup)(detg—i:)a = (et

and therefore for (A1.28) we may write

(A1.29) Lk

n
—~
2eQ
pomy
x
w0
-
~—r
Q
x

Similarly
ko Lo ik 1 ik
(A1.30) ¢ = (g'xgt)g" = —e"".
. vk .
The quantities tbék and ¢ are true tensors under arbitrary

coordinate transformations and often they are referred to as

the Ricci tensors,

Using Ricci tensors an antisymmetric tensor may
v v
be represented by a vector. For instance, if M t=—M t the ten—
sor M has three independent nonvanishing components in Ef3and
~)

we may represent it by a covariant vector
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M 1 J’k
v = —8;- M
2 ik ’ (A1.31)

M = e .

Analogously, if m*e* = _mé*% is an antisymmetric
third ~order tensor, we may represent it as a second~ order

mixed tensor,

my = é

(midd = &'mik .

ik
Epym
(A1.32)

Using the components of the fundamental tensor

the operation of raising and lowering of indices may be defined,

such that

g, Tl = T, (AL.33)
and

glT Il = Tl (AL.34)
Thus

t'»j, _ g"*kt:v.k - gékg”’tzk - 9”'53,

and for the scalar product of two vectors, say w and v, we may
o~ N
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write

_ v _ v _ vy _ v
(A1.35)  wv = u'v, = gpuv o= ghugr o= upyt.

The vectorial product of two vectors, say a and

b , is a second-order antisymmetric tensor,
n

axb = {ab’ - ab’} = {c},
(A1.36)

oo U
¢ = -t

and using the Ricci tensor we may represent it as a vector c
- Lot = g et
(A1.37) ¢k = FhieT = Y :

Tensors, as geometrical quantities, are defined
at points of the space, and the operations of addition may be
performed only if the tensors considered are brought to the same
point of the space. If we have to add two tensors, or to compare
them, and they are not defined at the same point, one of the ten
sors must be shifted parallely to ;he point in which the other
tensor is defined. In Cartesian coordinates the components of a
vector which represents a field of parallel vectors at all points
of the space are equal, but with respect to curvilinear coordin-
ates this is not true and we have to define the operation of par
allel shifting which will enéble us to compare components of ten
sors which are not given at the same point.

Let v be a field of parallel vectors inEjzand let
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v¥ be its components at a pointf,and VK its components at a
point 5 . The two points may, in general, be determined with
respect to two different coordinate systems, x* and XK . Let g
and z be the coordinates of the two points considered with re-
spect to an absolute Cartesian system of reference and v and
VA the components of the vector field.g—with respect to this
Cartesian system. Since by assumption v is a field of parallel

vectors, we have

vt = 6}VA, or V' = Lot (A1.38)

According to the transformation law for vectors we have

k A A
ot = v“a—zi, v o= VKaZk , (A1.39)
ax X

and the relations (A1.38) may be written in the form

A . ) K
oo @IATK K L DX 02k ()

v A - A A o K
2z gx* ’ *0z" ox
The quantities
A K '
0x* 97 K _ padX 0z
gy = 5}\%—,( , gl = B x T -
0z" 9¥ 072 0x (A1.41)
(with gfgi = 8}, ga = 89,

are the Euclidean shifters (Doyle and Ericksen [92] , Toupin

[460] ). Using the shifters we may perform the shifting of an

arbitrary tensor from one point of the space to another.
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As an example let us consider a vector field v
at a point (R,@) given with respect to a system of polar coordin
ates in the Fuclidean plane, and let us shift it to a point(r{,q;)
given with respect to the same system of coordinates. Since Z£=X,
z° =Y; zi=x,za=y;X&=R,Xa=§;xi=r,x2=cp and since the coordi-

nate transformations at the two considered points are

P
il

Rcosd, Y Rsin$

ol
l

rcosg, vy rsiny

from (Al1.41) we obtain the following expressions for the compo-

nents of the shifter:

911 = cos(y -9, 9?2 R sin(y - &)

2

gy = %si.n(é -9, g5 Rr-cos(é -9 .

Using now (1\1.40)1 we easily obtain the components vkof the vec

tor v when shifted from the point (R,®)to the point (r,¢):

vl o= Vicos(!p ~4) + RV’ sin(y -9),

2 1.1 R.,2
vE o= =Visin@@ - ) + oV ocos@@ - 9 .
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The shifters g&K represent another example of
double tensors, and applying them to an arbitrary tensor by par-

allel shifting we perform the conversion of indices, e.g.

¢ —K _ 13
gxT.ra = Tora
If gnn and Gyy are components of the fundamental
K
tensors corresponding to the coordinate systems:xkand X at the
points x and 5 of the space, from (A1,19) and (Al.41) we obtain
A B
5 0Z 87
AB K L
0X X
K
k and g be base vectors for cur-

QI.‘KQ.BLSH = = Gy .

k
Let g, , g ,g
~ K
vilinear coordinate systems x* and X respectively, According to

(A1,16, 17) we have

or k
~ 0z* k IxX" o
= -~ = Y= = -
gk oxk oxK Sc& ) g aZ“"’ b
oR ® K K
™ OX X (VA

The Euclidean shifters may be defined as scalar products of the

base vectors considered at two different points of the space,

gkﬁ =. g« 5 ngK = QL.(K; (A1.42)
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and we may write the following formulae:

Gy it e = 9uG1L,

o~

(A1.43)

Iy 9k gk = S -

The infinitesimal displacements dr at a point x
~J ~N

are vectors of the form

~ 0x

and the square of the displacementdr represents the fundamental
(metric) form for the space and for the considered system of

coordinates,

(A1.45) ds® = drdr = gbg&dxidxi = g%dxbdxé.

Hence, the fundamental tensor in the Euclidean space is the met
ric tensor.

Physical components of vectors and tensors are
defined only for orthogonal systems of coordinates (gL}= 0 for
vo#A Q) . If we write for the base vectors g, = h,gy, , with

R 4
h, = |g;| , where g,, are unit vectors colinear with the base
~

vectors, evidently we have

(A1.46) h, = Vgu
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and

gi
o, = V%TT (not summed). (A1.47)

We may also write gb = hugg with

~

gL (not summed). (A1.48)

and from (A1.23) we see that for orthogonal coordinate systems

Vi 1
9" = — . (A1.49)

g

The physical components of a vector are scalar

products of the vector and of unit vectors colinear with the
base vectors. Thus, for the physical components of a vector V
which will be denoted by V(i1 )since the indices are neither co-,

nor contravariant we have

{ k
0y m gkgb »/ng

= Vi = Vg

V(i) =

240

~N

(A1.50)

Physical components of tensors are defined in an-
alogy to the definition just introduced for vectors, e.g. for

a second-order tensor we have

£ by b

tGh)) = — = = — : (A1.51)
,/gwgw Vi 9;; \/g”g”
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Besides the decomposition of a second-order ten-
sor into its symmetric and antisymmetric parts, for mixed ten~
sors also may be introduced a decomposition into its deviatoric
and spherical parts., The deviator of a tensor I is defined by
the expression
(A1.52) T, = T, - %Tl.(kbi )

and its spherical tensor will be

S_.v 1k V
T& = 3ka‘_ 3

such that for the considered tensor we have

A2, Invariants

Let Ty ,..., | be tensor variables. Any scalar

function of these variables,

(A2.1) fq:(l) RS I(k)) ’

which remains invariant with respect to arbitrary coordinate
transformations is an absolute invariant of the tensor:Im,“”Bm.
However, there are invariants only with respect to some partic—

ular groups of transformations. We are mostly interested in ortho
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gonal transformations.
For a linear transformation of Cartesian coor-—

dinates

A A i - A

- e
= Q zF+a’, 2" = Q2" +b, (A2.2)

we say that it is orthogonal if
Q = detQ, = #i, (A2.3)

and the matrix of the coefficients of this transformation has

T -1
the properties @ =Q , where T denotes the transposition of a
matrix. If @=%*1, the transformation (A2.,2) belongs to the group

of full orthogonal transformations, and if @=+1, we have the

group of proper transformations.
Functions (A2.1) invariant with respect to the

full orthogonal group are called isotropic invariants, and if

they are invariant only with respect to a subgroup of the full

orthogonal group,then it is said that they are relative invar-

iants with respect to that subgroup. If a function is invariant

only under the transformations of the group of proper orthogonal

transformations, such invariants are called hemitropic invariants.
If I is a symmetric tensor of the second order,

the principal invariants of T are:

|

| o—
on
Q-
—

Iy = L (A2.4)

—
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{ gt
E'!b!:tTi,Tj.)

1 ei; L _m_n
HIT = ﬁbtﬁtTaT;Tw

and all three invariants are isotropic.

Here we have used the symbols

vik
t". ‘.’!mn)
CHAE NS HAE IR L M I

The principal directions of a second-order sym—

metric tensor are the directions determined by the unit vectors

n , such that T;np = Thn* , or

(A2.5) (Ty - Topm® = 0

and there are three such directions. Since the equations (A2.5)

are homogeneous, the nontrivial solutions for n exist if
~N

(A2.6) det(Ty - Téz) = 0,

which represents a third-order equation in T,

(42.7) ST A LT LT+ = O,
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and the solutions T(x) are the principal values (eigenvalues,
proper values) of the tensor I .

@ ‘he vectors of a triad re—

If we denote by 2
ciprocal to the triad of the vectors n(, obtained for & =123
from (A2,5), it is possible to introduce a coordinate transfor-
mation so that the new Cartesian coordinates Z® are colinear

with the principal directions,

=X ) e
2= g%, (A2.8)
% = na)ix ,
where
nfg)n(‘;) = b:‘” nMnfy = of . (A2.9)

P
The components TP' of T with respect to the new

coordinates z ™ are

-2 ©
= A
T}'t = Tﬁn(mn

M\

% )

and according to (A2,5) and (A2.9) we have

TF () %
Tjw - T(y)“(‘;)"u = T(Mbp . (A2.10)

Hence, the principal values of a tensor I are its components
with respect to a Cartesian coordinate system with coordinate
axes colinear with the principal directions. With respect to
this system of coordinates the matrix of the tensor I has only
diagonal elements.

The powers of a tensor | are defined by the ex—
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pressions
29, A
T, = T.7,,
(A2.11)
A _ % % A
T'P’ T.ecT.)ST.y. ’

and from (A2.10) it follows that

2 3

=X 2 =% 3.

TF’ = T(}")bi" Iy TP’ = T(V')bl“' oo =

Since T(p)are the solutions of (A2.7) we have ob
viously

3
(A2.12) T(y)b; = L T(p\b:l - Ip T(y)éz: + ]1176:1
or

3 2

(A2.13) = LI -I]+1,

which represents the Cayley-Hamilton theorem.

For an antisymmetric tensor M= =__MP“V of the
third order, the corresponding second order tensor, according to
(A1,32) is given by

. <
(A2.14) Mxx = %eM},M "

Because of the nonsymmetry of m for the construc—

tion of the invariants we have to regard besides its components

-

Mix also the components M#; = gx“ngMx ’

which makes the
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list of invariants larger than the list of invariants of a sym-

metric second-order tensors., There is one linear invariant,

’ (42.15)

Ty~ Lo
Ty = LelmiMT -
and there are eight independent cubic invariants, etc,
If we write for Iy the expression
Iy = %euhM“M, (42.17)

and apply the orthogonal transformation (A2.2) to the components

of M, we obtain
~

_ i 3 j3 Sy SApy
IH = Ee,‘ﬁer Q)" Qv .
Since
eun. ,°07QF = (det0;®) =+
afiy VA W v € A elp.v - = eky.v;

and it follows that Iy is a hemitropic invariant.
. 1 2 . .
The invariants [Iyand Iy are isotropic.
The joint invariants of a symmetry tensor I and

of a non-symmetric tensor M are
~
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quadratic
v,, b vt
(A2.18) Oy = TyM, = T;M,;
cubic
1 vt ..m
My = T,T,M
o MWy = TM M
(A2.190) 3 C o
My = TMM,
4 v m L
My = T,MM,,

Possible are also other combinations of one sym—
metric and one non-symmetric second-order tensor, which are not
listed in (A2.18,19), but it may easily be verified that the
listed invariants (cubic and quadratic) are the only independent
invariants. For higher order invariants I have not tried to es-
tablish the list of independent invariants.

Among the listed joint invariants, Iyy andiﬂ[Tn
are hemitropic, and the remaining invariants are isotropic.

The principal invariants of a symmetric tensor T

~n

may be expressed also in terms of the principal values of -RX) 5

I = Ty + Ty + Ty,
(A2.20) I = TaTe * ToTa + TnTe »

O = TyTyTe .
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Sometimes it is useful to consider the moments
I;, II; , instead of the principal invariants. The moments are

related to the principal invariants by the formulae

. 3

= v 2 2

I = T.;Tfi, = I; -2L; = 2 T »
w=1 (A2.21)

3
I‘? e 3IT]IT + 31]11- = ZT&) .

PES I

= Voo ok
M, = T.;,TfkT.a

In the theory of plasticity often is used the so called octaedral

invariant ;

12
]

/2
3a; = [21f - 60] = Y[Tw- Tl . (a2.22)

[ I d

If a tensor is decomposed into its spherical and

deviatoric parts,

v 1 v v 1 v StV vV
Ta’ = 31_[6* + (T& - 3IT6}> = TJ- + b."_ ) (A2.23)

the principal invariants of the spherical part are

S S _1_

IT=IT7 IIT=3

and the first invariant of the deviatoric part vanishes identical

2 S 3
G, O = g5k (a220)

ly
IT = IT = O . (AZ.ZS)

Since (A2.25) represents a relation between nine

components of a tensor, it follows that a deviator has only eight
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independent components.

A second-order tensor can be uniquely decomposed
into its symmetryc and antisymmetric parts. For a third order ten
sor such a decomposition is more involved because we are search-
ing for its irreducible parts. Toupin [462] introduced the follow
ing decomposition.

Let Miék be an arbitrary tensor of the third

order. Its irreducible parts are:

the symmetric part

ik (34

(A2.26)sM =M = Sii(M“k + M“‘" +M“} + Mifkj . M‘;Lk . Mk};) ,

the antisymmetric part

(a2.27) M = ME o LRk iR g g g ki

>

AN

the principal parts

PMM %(Mij,k o MR M Mm) ,

(A2.28) . . . . .
_ISMva.k _ %(Mv&k + M*uk 3 Mk;u _ M&kv) ‘

The symmetric part SE] has 10 independent com-
ponents, the antisymmetric part has 1, and the principal parts
Pw and §m have 8 independent components each, so that the
tensor m is determined by 27 independent components of its ir-

reducible parts, and
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ERUR SRS A W (A2.29)
A3. Differentiation

L
If Vis a vector field in Ey with components V

and V; with respect to a coordinate system xb, the partial der-

ivatives of the vector V are given by the expressions

)

:xxm - ?)Z:gk +Vk% = (&Yk +{;B}Ve>gk, (A3.1)
or

oV v, , ag’ v,k .
where

ko _ oV {l<} ! A
Ve = % * 1me vV, (A3.3)
OVB k ‘
Vi = ax" {m!}vk ! (43.4)

represent the covariant derivatives of co- and contravariant

components of the vector field V.
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The quantities
(A3 5) [Emn] = ag"‘ = 1<Ogmn agnl oQ!m)
A L L P "L PR

are the Christoffel symbols of the first kind, and

dg
k
(A3.6) { } = g“"[tm,n] = = gk

mb ax"

are the Christoffel symbols of the second kind.

In general, if I'is a tensor of contravariant or
der p and covariant order q , the covariant derivatives of its
components are tensors of contravariant order p and covariant

order q+1,

TL""LP, ' - 0 L{...LP .
T gk axk T Hedg
P . . . .
Z Ve T\q...u“_i e"eni""’p
(43.7) s Nl T e -
. wsi bk 1

For the sake of brevity we write sometimes for

partial derivatives

d _ 9

YL = m *

(A3.8)

The covariant differential of a tensor I is a
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tensor of the same order, defined by the expression

0T 1. = Tl .dx*. (43.9)

Let I be a time-independent tensor field, The ab-
solute time derivatives of the components of I=I(x,t) are defin-
~

ed by the formula

“e k .

= L — = A3.10
dt ot LT (43.10)

For double tensor fields we define partial and
k
total covariant derivatives. If.T,&I,X)is such a tensor, the
M o~~~

partial covariant derivatives are defined by

k aT k
T = X } " A3.
T o {1 (A3.11)
k
k 0T M ok
' ox- LK

If there is a mapping x = x(X), the total covariant derivatives
~N ooy
L ' . .
with respect to x¥and X are defined as a generalization of the

classical rule

k k koo b
Toe + ToXe s (A3.13)

—
=
n

—
=
-

1]

k )
T + T.K)tfo ’ (A3.14)
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L .
where ng and fo are the gradients of the mapping 5**})\(} . The
chain rule of ordinary differential calculus also holds for

total covariant differentiation,

(A3.15)

Ad. Linearly Connected Spaces

Let V* be components of a vector field in k3,
referred to a system of Cartesian coordinates and let us per-
form a parallel displacement of the vector V from a point z to
a neighbouring point z + d.z . The components of the vector V
will remain unchanged. Denoting by d.V the change of the com

ponents at a parallel displacement along d% we may write

(A4.1) | av® = o

3
However, when the vector field V is referred to an arbitrary

system of curvilinear coordinates xi’, (A4.1) will obtain the

form

(A4.2) avh - -{l;}v”dx'

k
The vector field V at a point x+dx has the com-
~ ~N
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ponents
k k kg '
v (5 + d.ic') = V (5) + 0, Vidx +.... (A4.3)

The difference between the field value of the vector V atx +dx
n ~n ~N

k k
and V +dV is the covariant differential,

*
V' = Viz+do-V' = (a,vk + { - }v“‘)a:' L (Ad.4)
~ ~ Bm )

According to (A4.2) parallelism in Euclidean
space is defined (in the sense of differential geometry) as a
linear connection of the increment 3\/“ of the components of
the vector Vk and the components dx' of the displacement.

The law (A4.2) may be generalized writing

vt = —rpvTdxt, (A4.5)

k
where r)m are arbitrary functions of position and are called

coefficients of connection of a linearly connected space L3.

In general, the coefficients r?; are not sym-
metric, and the antisymmetric part Sé;k = rém]is the torsion ten-
sor of the spacelLs,

Generalizing the rules for covariant differen—

tiation to linearly connected spaces we may write for the co-

variant derivatives of a contravariant vector

k k m
Vi = Ve TV, (A4.6)
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k
and from the requirement that V,g transforms like a mixed se-
cond-order tensor we obtain the transformation law for the coef

ficients of connection:

R P FAR FAGE T AN
"oxf oz oxt  ax' axiox*

Ll
|

(A4.7)
Ft9xmdx" 9E¢ _ 0x"dx" '
"oTEdxk 9xt  dxt axk 0x"dx"

R )
From (A4.7) it follows that S, =~ is a tensor indeed.
Parallelism in an L, is, according to (A4.5),
defined only for infinitesimal displacements. If ABC is a curve
k k
in L3, the total increment AV  of the components V of a
vector transported parallely from A to C along the curve will be
k * ok k
AVS = /dV - -frhv“dx‘.
' ABC ABC
If AB'C is another curve connecting the points

A and C, the increment of the components of the vector Vk a—
long this curve will be
A'VE = /Qv“,
: AB'C
and the increments A|Vk and A”Vk are, in general, not equal,
i.e., the integral along the closed contour AB CB'A is not van-

ishing,
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%*
AV = 74 dvh = -jérfmv'"dx“ = AV - AT
ABCB'A '

. k ,,m k .
Denoting -l V by f, and applying the Stokes

theorem,

k k mb :
j{;fgdxt = /./fm,m]d.F ‘ (A48)
F

) 1]
where F is the surface enclosed by the contour ABCBA and dF"”

ml bm .

are components of the surface element, AF =-AF  , we have

k ook mn
av' = [[Ro VAT, (44.9)
F
where
..Lk k k k .t k ot

anﬁ = aml_me - amrn?; + rn‘c rml - rmtrnﬂ (A4.10)

is the Riemann-Christoffel curvature tensor.

If angk vanishes at all points of the space,
we say that this space is with absolute parallelism (or with
teleparallelism).

In Euclidan spaces the fundamental tensor 9}
is covariant constant, i.e. its covariant derivatives are iden-
tically equal to zero. If anlyz admits a symmetric covariant
constant vector field gi; » we say that the space L3 is metric.
Let us assume that an Lz with the coefficients of connection

koo . . . .
rzm is metric and that its fundamental metric tensor is gi; >
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then we have
3 f
(84.11) ik = NGy~ Nagu-Ngge = 0.
The integrability conditions of (A4.11) are
(9,9, - 0k02)9a; = 0,
and after some calculations they reduce to
(A4.12) _ an(gk) = 0.

Hence, if the Riemann-Christoffel tensor for a linear connection
rtm is symmetric with respect to the second pair of indices,
the connection is metric,
The linearly connected space is Euclidean if:
19 the coefficients of connection are symmetric,
2° it is a metric space,

3° the fundamental form of the space
(A4.13) ' ds® = g%d.x'”d.xf*

is positive definite, and
4° if the Riemann-Christoffel tensor vanishes everywhere in the
space., If all these conditions are satisfied, it is possible to

find a coordinate transformation

= x¥z', 2?27
(A4.14) ;
z = =z%(x' x%,x%),
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such that the fundamental tensor with respect to the new coor-

dinate system z* obtains the form

x* dxt A
= _ = b . .1
gor.ﬁ 0z% azﬂgu& (9.3 ( 5)

QD

In some problems we have to deal with the cor—
respondence of a set of points of Euclidean space with a set of
points of a linearly connected space Lz . If x* is a system of
coordinates in Euclidean space, and u® a system of coordinates
in Lz there do not exist 1:1 finite mappings of the form
' o= x'whufu?),

(A4.16)
u* = uix' x% x?)

5

but only the local mappings of infinitesimal elements dx' and

du®,
dx’ = #)ydut. O (A4.17)
We assume that the relations (A4.17) are linearly independent,
detd., # 0 (A4.18)

so that there exist the inverse relations

du* = Q(-:‘>dx'”. (A4.19)



286 Appendix

The integrability conditions of (A4.17)

(a4.200  2st = 047 - 0E; = 0

v
and those conditions are, in general, not satisfied.

The Vectors 2(‘) constitute in ES three vector
fields and at each point there are lines the tangents of which
are colinear with the vectors g(“) . The differential equations
of these lines are

dx? _ dx?

i
(A4.21) dx  _

F ¥ ¥
Let us assume that there is a linearly connected
space with the coefficients of connection rf} such that the
vector fields ngconstitute fields of absolutely parallel vec-
tors, i.e, with respect to the connection considered, the vec-

tors Q(“) are covariant constant everywhere in the space,
~n
' k k B
(A4-22) 0m§(¢) + rmgé(u) = 0 .
: o (ex) : :
Transvection of this with @, and using the relations

o (o
(A4.23) 8l = 8, e = o

we obtain

k (o) k k
(A4.24) Fon = 2,08, = ¢,0,¢
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It may easily be verified that substituting Eﬁ from (A2.24) into
the expression (A4.10) for the components of R;;é&it will identic
ally vanish, According to (A4.12) it follows that the'conditions
for the space considered to be metric are identically fulfilled.
From the preceding it follows that it is always
possible to associate a linearly connected metric space to a
non—- integrable mapping, and the torsion of this space does not
necessarily vanish,
The torsion tensor of the connection (A4.23) is
given by

(e0)

(e} k
n Q((ir.)smn ) (A4‘25)

San = @i)"’[m@]

mn

and it is obvious that the space associated to a non-integrable
mapping will be Euclidean only if the torsion vanishes i.e, if
the mapping is integrable (this is a necessary, but not a suf-
ficient condition).

The quantities obtained by transvecting vectors,
tensors etc. of Euclidean space with the components of the vec-

(e}
tors &y, &, e.g.

~

o« e (e2) R

are often called non-holonomic components of those quantities,




288 Appendix

A5. Modified Divergence Theorem for

Incompatible Deformations Varia-—

t ions.

Since there are no integrable mappings of a non-
—Riemannian space upon the Euclidean space, a straightforward

application of the divergence theorem to the integrals of the

form
S

is impossible. We assume that I is any regular differentiable
tensor field in E3. S is the surface bounding an arbitrary volume
v of a body B .

The whole region v may be divided into a number

of small elements Av, with bounding surfaces AS, and we have

(A5.2) I = Y1, =Y
i

o= ¢=1

b
% I vids, .
85

For Cartesian coordinates X' we may choose Av,
to be cuboids with edges parallel to the Cartesian axes x‘, xz, x>

such that the sides of the cuboids are Ax' ,Axa, Ax®, If we put

Th' = T, we have

(A5.3a) I, = fﬂdy+/fd%+/T%%+
™ ast As2
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; /T‘cts1 + /T2d32 - /Tsds?, . (5. 3b)
b5y, -4s% 82

1 2 3

Putting X =X", y =x"; 2 =X", the faces ASL 5 Asi ) Asi will

be orthogonal to the axes xi,xz,x‘z’. Thus on the faces Aszcwe have

ASi.' | Ti = T‘l(I + AI,y,Z>,

[

and on the face

~Asl: Tt - Ti(x,y,z> i
Similarly

2 2
As, : o= Ty + Ay,
-AsZ TP = Tz(x,y,z),
As): T = TS(x,y)z + Az)
~As’ T3 = ’

- = T(xy,2 .

Hence, for the pair of integrals

AS

1

]“ = -/.T1d51 - /Tid,si = /AT1d51 (A5.4)
{ 1 !
AS,, -88,,
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we have
y+ldy =z+dz

(A5.5) IL = / / [T1(x +Ax,y,z) - Ti(x,y,z)] dydz .
.7 F4

However, for a regular tensor field TL& and for

sufficiently small Ax’ we have
i ' 1 {
(A5.6) T(x+Ax,y,2 = T,(x,y,2)+ 8T Ax+....

For the velocities v' we have (4.1.16)

- TR
+Avt = v+ gy, Ax'.

v

(A5.7) v’

x+bx,y,3 x,y,2

The difference AT1 in (A5.6) obtains now the form
W 1 -
(45.8) AT' = (TiaLeT + 0,T) v)Ax: .

For infinitesimal elements Av, the mean-value

1
theorem may be applied to the integrals J, , and it gives

I, o= (T'éhe, +0,T.v)AxAyAz

and, in general,

G 2N o
L= (Tldge; + 9,7 vide.
When Ay — O and n — o the sum (A5.2) becomes the volume integral
over v and for any curvilinear system of coordinates we may

finally write
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i ¥ FETREY!
I = ?ngu ds; = /(V.;Tf’fo‘fu)Q; Jav . (5.9)

When we deal with the variations 8x" of coordin

ates (cf. Stojanovié[421]), it follows from (4.1.12) that

Abxt = dxi-dxi = bdykut = 0BE Axi .

: ) (A
When the directors d; are compared at two points,

say P and Q of a body, we have for sufficiently near to one an-

other points
dV00} PP = 4d® - 4P agi)
The variation of this difference will be
5d7{a} - 0d{P} = oAd} = Axibd; + d.)0AxS .

But we also have

sAd) = od, {0} -ad{P} = (bd]) Axt,

and
») : W A W,
(6d-v >)d' Ax* = b(dbﬂ)AI&' +.d;’,g§} 6@[F)AI& .

Since this expression must be valid for arbitraryAx¢, we fin-

ally have

(bd[). = 8(di) +diyeos], . (45.10)

'
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