UNIVERZITET U NOVOM SADU PRIRODNO MATEMATIČKI FAKULTET INSTITUT ZA MATEMATIKU

SPECIJALNI ELEMENTI MREŽE I PRIMENE DOKTORSKA DISERTACIJA

kandidat:

Andreja Tepavčević

mentor:

Svetozar Milić

SADRŽAJ

UVOD

POGLAVLJE	I			
SPECIJALNI	ELEMENTI MREŽE	1		
1.1	UVOD	1		
1.2	OSNOVNE DEFINICIJE	2		
1.3	UVODNA TVRDJENJA			
1.4	1.4 NEKA SVOJSTVA DISTRIBUTIVNIH I			
	KODISTRIBUTIVNIH ELEMENATA			
1.5	KARAKTERIZACIJA BESKONAČNO DISTRIBUTIVNOG	11		
	ELEMENTA			
1.6	KARAKTERIZACIJA NEPREKIDNIH ELEMENATA MREŽE	13		
1.7	O IZOMORFIZMIMA NEKIH INTERVALA U MREŽI	16		
1.8	O IZOMORFIZMIMA IDEALA I FILTARA GENERISA-	18		
	NIH SPECIJALNIM ELEMENTIMA			
1.9	O MREŽNIM IDENTITETIMA, ZAKONIMA	23		
1.10	O JEDNAKOSTI ALGEBARSKIH FUNKCIJA	27		
1.11	KADA JE L _B PODMREŽA OD L?	34		
1.12	DEFINICIJE NERAZLOŽIVIH ELEMENATA MREŽE	36		
	I JOS NEKE DEFINICIJE IZ TEORIJE MREŽA			
1.13	O BIRKOFOVOJ TEOREMI REPREZENTACIJE	38		
1.14	UOPŠTENJE TEOREME BIRKOFA	, 39		
1.15	O KOLEKCIJI SVIH MREŽA SA IZOMORFNIM SKUPOM	41		
	∧-NERAZLOŽIVIH ELEMENATA			
POGLAVLJE :	T T			
	ELEMENTI BIPOLUMREŽE	51		
2.1	UVOD I OSNOVNE DEFINICIJE O BIPOLUMREŽAMA	51		
2. 2	DEFINICIJE I OSOBINE SPECIJALNIH ELEMENATA	53		
2.2	BIPOLUMREŽE			
2.3	TEOREMA REPREZENTACIJE ZA BIPOLUMREŽE	58		
2.4	DEFINICIJE I KARAKTERIZACIJA APSORPTIVNIH	60		
	ELEMENATA BIPOLUMREŽE			
2.5	TEOREMA REPREZENTACIJE BIPOLUMREŽE PREKO	62		
2.0	DIREKTNOG PROIZVODA			
2.6	IDENTITETI NA BIPOLUMREŽI	66		

POGLAVLJE III

PRIMENE U A	LGEBRI: MREŽE KONGRUENCIJA, PODALGEBRI,	
	SLABIH KONGRUENCIJA	68
3.1	MREŽE SLABIH KONGRUENCIJA ALGEBRI I NEKA	68
	SVOJSTVA ALGEBRI (CEP, CIP, WCIP, *CIP)	
3.2	KADA JE MREŽA CWA PODMREŽA MREŽE EWA, A	76
	KADA SE SA NJOM POKLAPA?	
3.3	O MREŽI SLABIH KONGRUENCIJA DIREKTNOG	85
	PROIZVODA ALGEBRI	
3.4	PRENOŠENJE MREŽNIH ZAKONA SA MREŽA KONGRUENCIJA	86
	I PODALGEBRI NA MREŽU SLABIH KONGRUENCIJA	
3.5	O PRENOŠENJU NEKIH SVOJSTAVA NA PODALGEBRE I	92
	FAKTOR ALGEBRE	
3.6	O MREŽI SLABIH KONGRUENCIJA FAKTOR ALGEBRE	97
3.7	MREZE SLABIH KONGRUENCIJA NEKIH POSEBNIH KLASA	107
	I VARIJETETA ALGEBRI	
LITERATURA		124

UVOD

Teorija mreža razvija se u poslednjih 100 godina paralelno sa tendencijama objedinjavanja oblasti u algebri i logici, strukturnih ispitivanja i nalaženja opštih zakonitosti. U tom smislu, karakterična je formalizacija logike (A.De Morgan, G Boole, sredinim prošlog veka), kao i razvoj univerzalne algebre (A.N.Whitehead, B.L.van der Waerden, početkom ovog veka). Posebno su za teoriju mreža značajna istraživanja C.S.Peirce-a, E.Schrodera, R.Dedekinda, krajem prošlog veka, kao i G.Birkhoffa, V.Glivenka, K.Mengera, J.von Neumanna i O.Orea, tridesetih godina ovog veka. Osnovni pojmovi teorije mreža, i njihova veza sa univerzalnom algebrom prvi put su celovito izloženi u Birkhoff-ovoj knjizi Teorija mreža (Lattice Theory) (1940, 1948, 1967) kao sinteza navedenih istraživanja. Fundamentalni rezultati Birkhoffa o kongruencijama, slobodnim algebrama i varijetetima odredili su pravce istraživanja koja se i danas obavljaju. Od šezdesetih godina naglasak je na strukturnim istraživanjima algebri preko mreža kongruencija i podalgebri. Teorija mreža razvila se kao posebna matematička disciplina, a pored primena u matematici (algebri,

projektivnoj geometriji, teoriji skupova, funkcionalnoj analizi,...), zbog svoje univerzalnosti, primenjuje se i izvan matematike (sociometrijska istraživanja, psihologija i dr., na primer u okviru Darmštatske škole). Potreba za ispitivanjem mreža na "većim" konačnim skupovima i njihovom vizuelnom interpretacijom dovode do uključivanja u ova istraživanja i timova kompjuterskih stručnjaka.

U okviru apstraktne teorije mreža započeta su nedavno (oko 70-tih godina) sistematična istraživanja specijalnih elemenata mreže čiji je značaj uočen unutar same teorije mreža. Njihova primena u univerzalnoj algebri dolazi do izražaja tek nedavno (Reilly, 1984). Ova doktorska disertacija pokusava da ukaže na istaknuto mesto tih elemenata u strukturnim istraživanja algebri (preko mreža podalgebri i kongruencija algebri i posebno mreža slabih kongruencija). Iz tog razloga bilo je nužno definisati neke nove specijalne elemente i ispitati i dokazati mnoga čisto mrežna svojstva, već poznatih i novo uvedenih elemenata.

Sa stanovišta apstraktne teorije mreža i srodnih struktura bilo je prirodno definisati i istražiti specijalne elemente i u slabijim algebarskim strukturama od mreža. Razlog za to je činjenica da specijalni elementi mogu uneti lokalnu zakonitost koja nije postulisana. Na taj način dobijene su i nove teoreme reprezentacije za bipolumreže.

* * *

U prvom poglavlju se proučavaju specijalni elementi mreže. U prva tri dela prvog poglavlja daju se osnovne definicije i tvrđenja iz ove oblasti, i navode se originalne definicije beskonačno distributivnog i neprekidnih elemenata. Originalni primer 1.1 prikazuje mrežu u kojoj postoji elemenat koji je neutralan, a nije beskonačno distributivan, što ilustruje potrebu uvođenja te definicije. U četvrtom, petom i

šestom delu prvog poglavlja proučavaju se specijalni elementi, daju se elemenata, kao i karakterizacije osobine već poznatih nove novouvedenih. U sedmom i osmom poglavlju se raspravljaju problemi koji su u vezi sa izomorfizmima nekih intervala, odnosno ideala i filtara generisanih nekim specijalnim elementima, pri čemu se u sedmom poglavlju koristi tvrđenje 1.12 preuzeto iz jednog rada S.Milića. U osmom delu su takođe navedena tvrđenja kojima je karakterisan izuzetan elemenat mreže. Sva ova tvrdenja imaju i svoju primenu u trećem poglavlju (u mrežama slabih kongruencija). U devetom i desetom delu se kada neki mrežni identiteti (zakoni), odnosno jednakosti ispituje nekih algebarskih funkcija važe na mreži, u zavisnosti od toga kada važe na idealima (filtrima) generisanim nekim specijalnim elementima. Slični problemi se rešavaju i za identitete koji sadrže beskonačne supremume (infimume). Ova tvrđenja se primenjuju u trećem delu kod utvrdivanja kada se neki mrežni identiteti prenose sa mreža podalgebri i kongruencija na mrežu slabih kongruencija, i kada se neka svojstva mreža slabih kongruencija prenose sa algebre na njenu podalgebru, i faktor algebru. U delu 11 se pokazuje kada je određena unija intervala u mreži podmreža te mreže, što se primenjuje u trećem delu za utvrđivanje kada je mreža slabih kongruencija faktor algebre do na izomorfizam podmreža mreže slabih kongruencija te algebre, i kada je izomorfna filtru u njenoj mreži slabih kongruencija.

U delovima 12-15 ispituje se drugi tip mrežnih problema, koji nemaju neposredne primene u algebri, bar ne kao tvrđenja u prethodnim delovima. Ovi problemi su u vezi sa \wedge i V-nerazloživim elementima mreže. U dvanaestom delu daju se osnovne definicije i tvrđenja iz ove oblasti, u trinaestom poznata Teorema Birkofa za distributivne mreže konačne dužine, a u četrnaestom uopštenje te teoreme preko ideala na skupu V-nerazloživih elemenata. U petnaestom delu ispituje se kolekcija svih mreža sa izomorfnim skupovima \wedge -nerazloživih elemenata.

Utvrduje se da je ta kolekcija i sama mreža u odnosu na skupovnu inkluziju, daje se potreban i dovoljan uslov za neku mrežu da pripada toj kolekciji, i ispituje se kada je ta kolekcija (mreža) jednoelementna i maksimalna (u ovom slučaju je ona Bulova mreža). Ovaj deo ukazuje na mogućnosti daljih istraživanja, jer se još mnogi problemi u vezi sa tom mrežom mogu postaviti.

U drugom poglavlju se definišu i ispituju specijalni elementi za bipolumreže, i rešavaju neki problemi reprezentacije, i važenja identiteta na bipolumrežama preko tih specijalnih elemenata, što opravdava njihovo uvođenje. U prvom delu drugog poglavlja daju se neke osnovne definicije u vezi sa bipolumrežama. U drugom delu se definišu specijalni elementi za bipolumreže, po analogiji sa mrežama; definišu se distributivan, beskonačno distributivan, standardan elemenat, njima dualni pojmovi, kao i neutralan i skrativ elemenat, i daju se neka osnovna tvrđenja u vezi sa tim elementima. Primer 1.1 pokazuje da ipak važi potpuna analogija sa mrežama, jer elemenat može biti ne distributivan, kodistributivan, standardan, kostandardan i neutralan, a da ne bude skrativ, što kod mreža nije slučaj. U trećem delu se daje jedna teorema reprezentacije za bipolumreže. U četvrtom delu definišu se razne klase apsorptivnih elemenata, za koje ne postoje analogni pojmovi u teoriji mreža, i dokazuju se neke osobine tih elemenata. U petom delu daje se teorema reprezentacije bipolumreže preko direktnog proizvoda ideala i filtra generisanih nekim specijalnim elementima. U šestom delu utvrđuje se kada se proizvoljni mrežni identitet sa ideala i filtra na bipolumreži prenosi na celu bipolumrežu, i daju se posledice tog tvrdenja za neke posebne klase bipolumreža.

U trećem poglavlju daju se primene nekih rezultata u algebri, uglavnom rezultata iz delova 4-11 iz prvog poglavlja. Primene su u uglavnom u vezi sa mrežama kongruencija, podalgebri i slabih kongruencija neke algebre. U prvom delu daju se definicije i osnovna

svojstva tih mreža. Definišu se neka svojstva algebri koja se mogu specijalnih elemenata u mreži pomoć karakterisati uz kongruencija, od kojih je beskonačno svojstvo preseka kongruencija (*CIP) originalna definicija. Primer 3.1 ilustruje opravdanje uvođenja te definicije, jer prikazuje algebru koja ima svojstvo preseka kongruencija, a nema beskonačno svojstvo preseka kongruencija. Navode se neke poznate karakterizacije, i daju neke nove, algebri koja imaju neka od tih svojstava (CEP,CIP, *CIP). U drugom delu rešavaju se problemi kada je mreža slabih kongruencija podmreža mreže slabih ekvivalencija, a kada se sa njom poklapa. U trećem delu se razmatra mreža slabih kongruencija direktnog proizvoda algebri. Prema poznatom tvrdenju iz algebre direktan proizvod mreža kongruencija dve algebre se može potopiti u mrežu kongruencija njihovog direktnog proizvoda. Ovde se utvrđuje da to nije slučaj i za mreže slabih kongruencija.

U četvrtom delu trećeg poglavlja rešava se problem kada se proizvoljni mrežni identitet prenosi sa mreža kongruencija i podalgebri na mrežu slabih kongruencija (ovo je do sada bilo poznato samo za neke mrežne identitete). Ovde su takođe dati potrebni i dovoljni uslovi pod kojima je mreža slabih kongruencija polumodularna.

U petom delu trećeg poglavlja, primenjujući tvrđenja iz prvog poglavlja dobijaju se uslovi za prenošenje nekih algebarskih svojstava (CEP, CIP, *CIP) sa algebre na njene podalgebre i faktor algebre. U šestom delu se daju potrebni i dovoljni uslovi da mreža slabih kongruencija faktor algebre bude do na izomorfizam podmreža mreže slabih kongruencija te algebre, i daju se uslovi pod kojim je ta podmreža filter u mreži slabih kongruencija te algebre (to je uvek slučaj sa mrežama kongruencija, odnosno, mreža kongruencija faktor algebre uvek je filter u mreži kongruencija te algebre).

U sedmom delu trećeg poglavlja ispituju se mreže slabih kongruencija nekih posebnih klasa algebri i varijeteta. Ispituju se mreže slabih kongruencija unarnih algebri, navode se već poznati i novi rezultati za mreže i grupe, kao i originalni rezultati za prstene, varijetete modula, Hamiltonove, B_-regularne algebre, Risove varijetete i varijetete skupova.

Na kraju je navedena Literatura sa 132 bibliografske jedinice.

* * *

Pored naslova pojedinih delova navedena je literatura koja je koriščena u tim delovima (rednim brojem iz spiska literature).

Svi dokazi koji su navedeni su originalni. Tvrdenja koja su preuzeta iz literature navedena su bez dokaza, sa oznakom broja iz spiska literature. Ako su dati originalni dokazi poznatih tvrdenja to je takođe naznačeno oznakom pored tvrđenja broja iz rada odakle je preuzeto tvrđenje. Osim rezultata koji su neobjavljeni, deo originalnih rezultata je objavljen samostalno, a deo u koautorstvu, u radovima navedenim u spisku literature.

* * *

Učešće na Konferenciji iz teorije mreža, održanoj povodom 80. rodendana G.Birkhoffa, u Darmštatu, 1991 godine, i susreti sa matematičarima koji su utemeljili teoriju mreža, G.Birkhoff-om, G.Gratzer-om i drugima, posebno su uticali na koncepciju ovog rada.

Želela bih da spomenem i sve one koji su na razne načine pomogli u nastajanju ovoga rada.

Kolege iz inostranstva, Hilda Draškovicova sa Univerziteta Komenskeho iz Bratislave, George Markowsky sa Univerziteta iz Meina i Ivan Chajda iz Prerova, Čehoslovačka su mi redovno slali svoje knjige i radove i obaveštavali me o najnovijim dostignućima i problemima, čime su mi omogućili da budem u toku sa razvojem u ovoj oblasti i pomogli mi u izboru teme za ovaj rad.

Kolega Branimir Šešelja me je pre više godina uputio na slabe kongruencije i postavio neke probleme iz ove oblasti, što je rezultovalo dugogodišnjom saradnjom i mnogim zajedničkim radovima.

Janez Ušan mi je prvi ukazao na značaj istraživanja u teoriji bipolumreža u kojoj smo sarađivali i imali zajedničke rezultate.

Bilo mi je zadovoljstvo saradivati sa mentorom Svetozarom Milićem, koji je postavio neke od problema koji su na ovom mestu rešeni, i dao niz korisnih sugestija koji su ovaj rad poboljšali.

Žarko Mijajlović inicirao je izlaganje mojih rezultata na Seminaru u Beogradu, pročitao rad i dao neke kritičke primedbe značajne za moj dalji rad.

Žikica Perović je rad veoma detaljno pregledao i dao niz korisnih sugestija i komentara.

Milan Grulović mi je pomogao u skraćivanju i ulepšavanju nekih dokaza i ispravljanju nekorektnosti u dokazu Tvrđenja 1.10.

Dragan Acketa pregledao je rad i dao neke korisne komentare.

Svima hvala!

Novi Sad, mart 1993.

Andreja Tepavčević

POGLAVLJE I SPECIJALNI ELEMENTI MREŽE

1.1 UVOD

Specijalni elementi mreže imaju veliku ulogu u reprezentaciji mreža i primenama u algebri, posebno u mrežama kongruencija, podalgebri i slabih kongruencija neke algebre. Značaj specijalnih elemenata je sledeći: U proučavanju nekih osobina mreža nije uvek potrebno da identitet važi na celoj mreži. Nekad je dovoljno posmatrati jedan ili više elemenata mreže koji zadovoljavaju određena svojstva. Najčešće se taj elemenat posmatra kao konstanta u toj mreži, ili se u nekom zakonu fiksira taj elemenat i traži se da tako dobijeni zakon važi na celoj mreži. Na primer umesto zahteva da mreža bude distributivna, za važenje nekih tvrđenja dovoljno je da neki fiksirani elemenat u toj mreži bude distributivan (odnosno da distributivni

zakon sa tim elementom fiksiranim na određenom mestu u zakonu uvek bude zadovoljen.)

O.Ore je 1935. godine prvi uveo pojam neutralnog elementa u modularnoj mreži. G.Birkhoff je 1940 proširio taj pojam posmatrajući neutralni elemenat u proizvoljnoj mreži. Neki autori neutralni elemenat nazivaju distributivnim. G.Gratzer i E.T.Schmidt su 1960 godine definisali standardni elemenat. N.R.Reilly je 1984 definisao i proučavao izuzetan elemenat. Neka svojstva specijalnih elemenata i svojstva mreža koja imaju određene specijalne elemente, kao i slične teme, pored gorepomenutih, dali su i J.Hashimoto, S.Kinugawa, O.Hajek, Iqbalunnisa, M.F.Janowitz, B.Šešelja, S.Milić, D.Acketa, G.Vojvodić, A.Tepavčević i drugi.

U ovom poglavlju će se navesti definicije i neka osnovna tvrđenja u vezi sa specijalnim elementima mreže, i biće dokazana neka mrežna tvrđenja koja su značajna i sama po sebi, a takođe će se neka od njih u ostalim poglavljima primeniti za rešavanje nekih problema iz algebre.

1.2 OSNOVNE DEFINICIJE [4, 18, 41, 104, 117]

Neka je (L,∧,∨,≤) proizvoljna kompletna mreža i a∈L.

Elemenat a je distributivan ako za sve x i y iz L važi:

 $av(x \wedge y) = (a \vee x) \wedge (a \vee y)$

Elemenat a je kodistributivan ako za sve x i y iz L važi: $a_{\Lambda}(x \vee y) = (a_{\Lambda}x) \vee (a_{\Lambda}y).$

Elemenat a je **standardan** ako za sve x,y∈L važi:

 $x_{\Lambda}(avy) = (x_{\Lambda}a)v(x_{\Lambda}y).$

Elemenat a je kostandardan ako za sve x,y \in L važi: x \vee (a \wedge y) = (x \vee a) \wedge (x \vee y). Elemenat a je komodularan ako za sve x i y iz L $x \leq y \text{ implicita } x \vee (a \wedge y) = (x \vee a) \wedge y.$

Elemenat a je **mod**ula**ran** ako za sve x i y iz L

 $a \le y$ implicira $a \lor (x \land y) = (a \lor x) \land y$.

Dva elementa b i c iz L čine modularan par ako za svako x∈L:

 $x \le c \text{ implicita } x \lor (b \land c) = (x \lor b) \land c.$

Elemenat a je neutralan ako za sve x,y∈L važi:

 $(a \wedge x) \vee (x \wedge y) \vee (y \wedge a) = (a \vee x) \wedge (x \vee y) \wedge (y \vee a).$

Elemenat a je izuzetan ako je neutralan i klase kongruencije indukovane sa m imaju najveće elemente koji čine podmrežu M od L.

Neka je $(L, \leq, 0, 1)$ kompletna mreža sa najmanjim elementom (0) i najvećim elementom (1).

Centar mreže L je podskup C⊆L elemenata iz L koji su neutralni i koji imaju komplemente.

Očigledno je da neutralni elemenat ima najviše jedan komplemenat, i da je taj komplemenat i sam neutralan, i da je centar mreže njena podmreža, i to Bulova mreža.

Uvodimo i sledeće definicije.

Elemenat a je beskonačno distributivan ako za svaku familiju $\big\{ x, \, \big| \, i \! \in \! I \big\} \text{ elemenata iz } L$

$$a \vee \bigwedge_{i \in I} x_i = \bigwedge_{i \in I} (a \vee x_i).$$

Elemenat a je beskonačno kodistributivan ako za svaku familiju $\{x, | i \in I\}$ elemenata iz L

$$a \wedge \bigvee_{i \in I} x_i = \bigvee_{i \in I} (a \wedge x_i).$$

Reći čemo da je elemenat a skrativ ako za sve x,y∈L

iz anx=any i avx=avy sledi x=y.

(*)

Svojstvo (*) nazvaćemo **svojstvo skraćivanj**a.

Slede još neke poznate definicije iz teorije mreža.

Elemenat a kompletne mreže L je kompaktan ako iz $a \le \bigvee_{i \in I} x_i$ sledi da je $a \le \bigvee_{j \in J} x_j$, za neki konačan podskup J \subseteq I.

Elemenat a kompletne mreže L je kokompaktan ako iz $a \ge \bigwedge_{i \in I} x_i$ sledi da je $a \ge \bigwedge_{j \in J} x_j$, za neki konačan podskup J \subseteq I.

Kompletna mreža je algebarska ako se svaki njen elemenat može prikazati kao supremum kompaktnih elemenata (tj. ako je kompaktno generisana).

Kompletna mreža je neprekidna sa gornje strane ako za svaki elemenat a∈L i svaki lanac C⊆L važi:

$$a \wedge Vx_i = V(a \wedge x_i).$$

Kompletna mreža je neprekidna sa donje strane ako je njoj dualna mreža neprekidna sa gornje strane.

Kompletna mreža je neprekidna ako je neprekidna i sa gornje i sa donje strane.

Svaka algebarska mreža je neprekidna sa gornje strane.

Svaka kompletna kokompaktno generisana mreža je neprekidna sa donje strane.

Navodimo i sledeće definicije iz kojih ćemo izvesti neke osobine beskonačno distributivnih elemenata mreže.

Elemenat a kompletne mreže L je ∧-neprekidan ako za svaki lanac {x, |i∈I}⊆L važi:

$$a \wedge_{i \in I} V_i = V_i (a \wedge x_i).$$

Elemenat a kompletne mreže L je v-neprekidan ako za svaki lanac {x, |i∈I}⊆L važi:

$$av_{i \in I}^{\Lambda} x_i = _{i \in I}^{\Lambda} (avx_i).$$

Elemenat a kompletne mreže je neprekidan ako je *\n-neprekidan i \n-neprekidan.

1.3 UVODNA TVRDENJA [4,41]

Sledećih nekoliko lema su poznata tvrđenja koja karakterišu neke od specijalnih elemenata mreže.

Lema 1.1 (Ore,1935.) Neka je L proizvoljna mreža i a elemenat iz L. Sledeći uslovi su ekvivalentni:

- (i) Elemenat a je distributivan.
- (ii) Preslikavanje $n_a: x \rightarrow a \lor x$ je homomorfizam mreže L na filter [a).
 - (iii) Binarna relacija θ_a definisana na mreži L sa: $x\theta_a y$ akko avx = avy

je relacija kongruencije.

Važi i dualno tvrđenje:

- Lema 1.1' Neka je L proizvoljna mreža i a elemenat iz L. Sledeći uslovi su ekvivalentni:
 - (i) Elemenat a je kodistributivan.
- (ii) Preslikavanje $m_a: x \rightarrow a \wedge x$ je homomorfizam mreže L na ideal (a).
 - (iii) Binarna relacija ϕ_a definisana na mreži L sa: $x\phi_a y \text{ akko a} \wedge x = a \wedge y$

je relacija kongruencije.

- Lema 1.2 (Grecer i Šmit, 1961.) Neka je L proizvoljna mreža i a elemenat iz L. Sledeći uslovi su ekvivalentni:
 - (i) Elemenat a je standardan.
- (ii) Binarna relacija ψ definisana na mreži L sa: xψ y akko (x∧y)va = x∨y za neko a ≤a,

je kongruencija.

(iii) Elemenat a je distributivan, i za svako x,y∈L
iz xva=yva i x∧a=y∧a sledi x=y.
Važi i dualno tvrđenje:

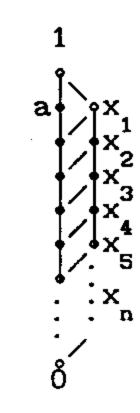
- Lema 1.2' Neka je L proizvoljna mreža i a elemenat iz L. Sledeći uslovi su ekvivalentni:
 - (i) Elemenat a je kostandardan.
- (ii) Binarna relacija ψ_a definisana na mreži L sa: xψ_a y akko (x∨y)∧a₁ = x∧y za neko a₁≥a,je kongruencija.
 - (iii) Elemenat a je kodistributivan, i za svako x,y∈L
 iz xva=yva i x∧a=y∧a sledi x=y.

- Lema 1.3 Neka je L proizvoljna mreža i a∈L. Sledeći uslovi su ekvivalentni:
 - (i) Elemenat a je neutralan.
- (ii) Elemenat a je distributivan, kodistributivan i za svako x,y∈L važi: iz xva=yva i x∧a=y∧a sledi x=y.
- (iii) Preslikavanja m_a i n_a su homomorfizmi i preslikavanje $x \rightarrow (x \land a, x \lor a)$ je potapanje iz L u $(a) \times [a)$.
- (iv) Postoji potapanje φ mreže L u direktan proizvod A×B, mreža A i B, gde mreža A ima najveći elemenat (1), mreža B najmanji elemenat (0), i φ (a) = (1,0).
- (v) Za sve x, y \in L podmreža generisana elementima x, y i a je distributivna.
 - (vi) Elemenat a je standardan i u L i u dualnoj mreži.
- Lema 1.4 (1) Svaki neutralan elemenat je standardan i kostandardan.
 - (2) Svaki standardan elemenat je distributivan.
- (3) Svaki standardan i kostandardan elemenat je neutralan.
 - Lema 1.5 Elemenat a pripada centru mreže (L,≤,0,1) ako i samo

ako je mreža L izomorfna sa (a] \times [a) u odnosu na preslikavanje $x \rightarrow (x \land a, x \lor a)$.

Sledi primer mreže u kojoj je elemenat a neutralan, a nije beskonačno distributivan:

Primer 1.1



Elemenat a je distributivan, kodistributivan i skrativ, a nije beskonačno distributivan, jer:

$$\Lambda(avx_i) = 1 \neq a = av0 = av\Lambda x_i$$

slika 1.1

Lema 1.6 U modularnoj mreži elemenat a je neutralan ako i samo ako je distributivan ili kodistributivan. ■

Lema 1.7 U proizvoljnoj mreži L važi:

- (i) Skup D svih distributivnih elemenata mreže L je zatvoren u odnosu na supremume, tj. za x,y∈D važi da x∨y∈D.
- (i') Skup K svih kodistributivnih elemenata mreže L je zatvoren u odnosu na infimume, tj. za x,y∈K važi da x∧y∈K.
- (ii) Skup S svih standardnih elemenata mreže L je zatvoren u odnosu na supremume i infimume, tj. za x,y∈S, važi x∧y∈S i x∨y∈S.
- (iii) Skup N svih neutralnih elemenata mreže L je zatvoren u odnosu na supremume i infimume, tj. za x,y∈N, važi x∧y∈N i x∨y∈N. Skup svih neutralnih elemenata mreže L je presek svih njenih maksimalnih distributivnih podmreža.

* * *

Slede nekoliko poznatih tvrđenja u vezi sa predstavljanjem mreže u obliku direktnog proizvoda mreža.

Tvrdenje 1.1 Postoji uzajamno jednoznačna korespodencija između razlaganja ograničene mreže L u direktan proizvod dve mreže i elemenata iz centra mreže.

Tvrdenje 1.2 Neka je L mreža sa 0. Ako se ona može predstaviti u obliku direktnog proizvoda $L=M_1\times M_2\times \ldots \times M_n$, gde su M_1 , za $i\in \{1,\ldots,n\}$ direktno nerazložive mreže, za svako drugo razlaganje $L=N_1\times N_2\times \ldots \times N_m$ mreže L u obliku direktnog proizvoda direktno nerazloživih mreža važi da je m=n i postoji permutacija α skupa $\{1,\ldots,n\}$ takva da je $M_1\cong N_{\alpha(i)}$ za svako $i\in \{1,\ldots,n\}$.

Mreža je konačne dužine ako je njen najduži lanac konačan.

Tvrđenje 1.3 Svaka ograničena mreža konačne dužine izomorfna je direktnom proizvodu direktno nesvodljivih mreža.

1.4 NEKA SVOJSTVA DISTRIBUTIVNIH I KODISTRIBUTIVNIH ELEMENATA

Sledećih nekoliko tvrdenja daju karakterizaciju distributivnih i kodistributivnih elemenata mreže i koriste se u dokazivanju nekih svojstava mreža slabih kongruencija u poglavlju III.

Tvrdenje 1.4 Ako je a distributivan elemenat mreže L, tada su sledeća tvrdenja ekvivalentna:

(i) za sve x,y∈L

x≤y implicira x∨(a∧y) = (x∨a)∧y; (a je komodularan elemenat);

(ii) za sve x,y€L

 $x\wedge(a\vee y) = (x\wedge a)\vee(x\wedge y)$. (a je standardan elemenat).

Dokaz. (ii)—→(i)

Neka je x≤y. Sada je y \wedge (a \vee x) = (y \wedge a) \vee (y \wedge x) = (y \wedge a) \vee x.

 $(i) \longrightarrow (ii)$

 $I_{Z} \times_{X} \times_{Y} \times_{X} = ((x_{X}) \times_{X} \times_{X}$

U sledećim tvrdenjima pretpostavlja se da je a kodistributivan elemenat mreže L i da klase kongruencije indukovane sa $m_a: x \longrightarrow x \wedge a$ imaju najveće elemente (za x \in L najveći elemenat u odgovarajućoj klasi neka je \overline{x}).

Tvrđenje 1.5 Ako je a kodistributivan elemenat mreže L tada su sledeća tvrđenja ekvivalentna:

(i) za sve x,y∈L

iz xna=yna i xva=yva sledi x=y; (a je skrativ)

(ii) za sve x,y∈L

 $x \le y$ implicira $x \lor (a \land y) = (x \lor a) \land y$

(a je komodularan);

(iii) za sve x,y∈L

 $x \le \overline{y}$ implicira $x \lor (a \land \overline{y}) = (x \lor a) \land \overline{y};$

(iv) za sve $x, y \in L$

 $xv(a_{\Lambda}y) = (xva)_{\Lambda}(xvy)$

(a je kostandardan).

Dokaz. $(i) \longrightarrow (ii)$

Neka je $x \le y$. Koristeći da je a kodistributivan elemenat, dobija se: $(xv(a\wedge y))\wedge a = (x\wedge a)v(y\wedge a) = (x\vee y)\wedge a = y\wedge a = (x\vee a)\wedge y\wedge a$. Takođe je: $(xv(a\wedge y))\vee a = x\vee a \ge ((x\vee a)\wedge y)\vee a$, jer je $x\vee a \ge (x\vee a)\wedge y$, a $iz x \le y$ sledi da je $xv(a\wedge y) \le (x\vee a)\wedge y$, pa važi i obrnuta nejednakost, odnosno: $(xv(a\wedge y))\vee a = ((x\vee a)\wedge y)\vee a$.

Koristeći (i) dobija se

$$xv(a\wedge y)$$
 = $(xva)\wedge y$.
(ii) \longrightarrow (iii)

Ocigledno.

$$(iii) \rightarrow (iv)$$

 $(x \lor a) \land (x \lor y) \le (x \lor a) \land (\overline{x \lor y}) = x \lor (a \land (\overline{x \lor y})) = x \lor (a \land (x \lor y)) =$

= xv(a∧x)v(a∧y) = xv(a∧y), koristeći uslov (iii) uz x≤xvy, činjenicu da je xvy najveći elemenat klase kongruencije indukovane sa ma i kodistributivnost elementa a.

$$(iv) \rightarrow (i)$$

Neka je xna = yna i xva=yva. Iz uslova (iv) sledi:

 $xv(a\wedge y) = (xva)\wedge(xvy) i yv(a\wedge x) = (yva)\wedge(xvy), pa je:$

$$x = xv(x \wedge a) = xv(y \wedge a) = (xva) \wedge (xvy) = (yva) \wedge (xvy) = yv(a \wedge x) =$$
$$= yv(a \wedge y) = y.$$

Tvrdenje 1.6 Ako je L polumodularna mreža konačne dužine i a je kodistributivan elemenat iz L, tada je a komodularan elemenat.

Dokaz Prema Teoremi 9, IV, 2 iz knjige [41] polumodular-nost mreže L implicira ekvivalentnost komodularnosti elementa a sa uslovom:

za sve x,y∈L y≤a implicira (yvx)∧a = (y∧a)v(x∧a).

Iz kodistributivnosti elementa a i y≤a sledi:

 $(y \lor x) \land a = (y \land a) \lor (x \land a) = y \lor (x \land a),$ odakle sledi da je a komodularan.

Tvrđenje 1.7 Ako je elemenat a∈L kodistributivan, i skrativ, tada su sledeći uslovi ekvivalentni:

- (i) a je distributivan;
- (ii) za sve $x, y \in L$:

$$(x \wedge a) \vee (x \wedge y) = ((x \wedge a) \vee y) \wedge x.$$

Dokaz. $(i) \longrightarrow (ii)$

1.5 KARAKTERIZACIJA BESKONAČNO DISTRIBUTIVNOG ELEMENTA [104]

Sledećih nekoliko tvrđenja daju karakterizaciju beskonačno distributivnog elementa mreže i primenjuju se u dokazivanju nekih tvrđenja u poglavlju III u vezi sa svojstvima mreže slabih kongruencija.

U sledećim tvrđenjima pretpostavlja se da je mreža L kompletna.

- Lema 1.8 Sledeća tvrđenja su ekvivalentna za elemenat a mreže L:
 - (i) a je beskonačno distributivan;
- (ii) preslikavanje $n_a: x \rightarrow x \lor a$ je kompletan homomorfizam iz L u filter [a);
 - (iii) relacija o definisana sa:

 xo y akko avx=avy

je kompletna kongruencija na L.

Tvrdenje 1.8 Elemenat a mreže L je beskonačno distributivan ako

i samo ako za svako b∈[a) familija {x∈L|a∨x≥b} ima najmanji elemenat. Dokaz.

Neka je a beskonačno distributivan elemenat mreže L i neka $b \in [a)$, i neka je $\{x, | i \in I\}$ familija $\{x \in L | a \lor x \ge b\}$. Važi da je:

 $a \lor_{i \in I}^{\Lambda} x_i = {\Lambda \choose i \in I}^{\Lambda} (a \lor x_i) \ge b$, pa i ${\Lambda \choose i \in I}$ pripada toj familiji, pa je i njen najmanji elemenat.

Obratno, neka je $\{x_j | j \in J\}$ proizvoljna familija elemenata iz L, i neka je $\bigwedge_{j \in J} (a \lor x_j) = b$. Sada $b \in [a)$, pa familija $\{x \in L | a \lor x \succeq b\}$ ima najmanji elemenat. Neka je to x_m . Za svako $j \in J$ važi da je $a \lor x_j \succeq b$, pa svako x_j , $j \in J$ pripada familiji $\{x \in L | a \lor x \succeq b\}$, i $x_j \succeq x_m$. Sledi da je $\bigwedge_{j \in J} x_j \succeq x_m$, a pošto $a \lor x_m \succeq b$, važi sledeće:

$$a \vee \bigwedge_{j \in J} x_j \ge a \vee x_m \ge \bigwedge_{j \in J} (a \vee x_j).$$

 $a \lor \bigwedge_{j \in J} x \le \bigwedge_{j \in J} (a \lor x_j)$ važi uvek, u svakoj mreži, pa sledi da je a beskonačno distributivan elemenat.

Sledeće tvrdenje karakteriše beskonačno-distributivan elemenat preko klasa kongruencije 🗞 .

Tvrdenje 1.9 Elemenat a mreže L je beskonačno distributivan ako i samo ako je modularan i za svako be[a), familija $\{x\in L \mid a\lor x=b\}$ ima najmanji elemenat.

Dokaz.

Ako je a beskonačno distributivan elemenat on je očito i modularan. Neka je $\{x_i | i \in I\}$ familija $\{x \in L | a \lor x = b\}$. Sada je av $\bigwedge_{i \in I} x_i = \bigwedge_{i \in I} (a \lor x_i) = b$, pa je $\bigwedge_{i \in I} x_i$ najmanji elemenat te familije.

Obratno, neka je $\{x_j | j \in J\}$ proizvoljna familija elemenata iz J. Neka je $\bigwedge_{j \in J} (a \lor x_j) = b$. Pošto be[a) familija $\{x \in L | a \lor x = b\}$ ima najmanji elemenat x_m . Koristeći da je a modularan elemenat, dobija se:

$$\int_{j \in J} (a \vee (x \wedge b)) = \int_{j \in J} ((a \vee x_j) \wedge b) = (\int_{j \in J} (a \vee x_j)) \wedge b \approx b,$$

pa je, za svako j \in J, a \vee (x, \wedge b) \geq b, a pošto je x, \wedge b \leq b, i a \leq b, sledi: a \vee (x, \wedge b) = b, odnosno x, \wedge b pripada familiji $\{x\in L \mid a\vee x=b\}$ za

svako j. Sledi da je x ≤x, za svako j∈J, i x ≤ \ x, odakle sledi:

$$\bigwedge_{j \in J} (a \lor x_j) = b = a \lor x_m \le a \lor \bigwedge_{j \in J} x_j.$$

Pošto ∧ (avx) ≥ av ∧ x važi u svakoj mreži, sledi da je elemenat a beskonačno distributivan.

1.6 KARAKTERIZACIJA NEPREKIDNIH ELEMENATA MREŽE [117]

U sledećem delu pokazana su neka osnovna svojstva neprekidnih elemenata mreže i karakterizacija beskonačno distributivnih elemenata preko neprekidnih elemenata.

Lema 1.9 Neka je L kompletna mreža.

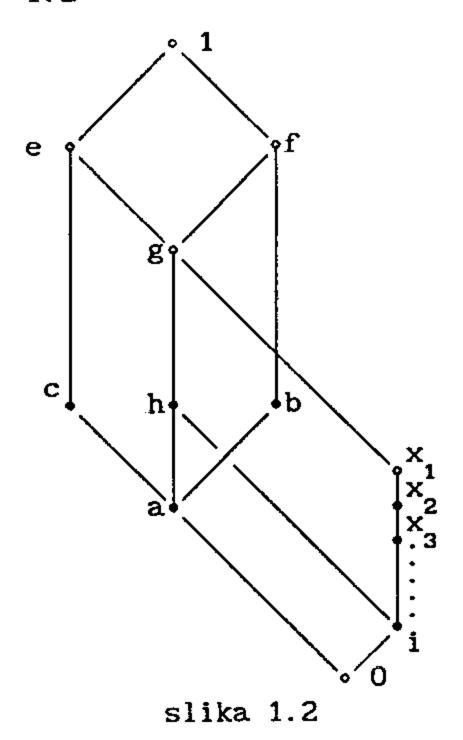
- a) Skup svih A-neprekidnih elemenata mreže L je zatvoren u odnosu na infimume.
- b) Skup svih v-neprekidnih elemenata mreže L je zatvoren u odnosu na supremume.
- c) Skup svih neprekidnih elemenata mreže L je neprekidna podmreža mreže L.
- Dokaz. a) Neka su a i b \land -neprekidni elementi mreže L, i $\{x, | i \in I\} \subseteq L \text{ proizvoljan lanac. Tada je: }$

and $V_{i \in I} = X_{i \in I} (b \wedge x_i) = V_{i \in I} (a \wedge b \wedge x_i)$, jer su a i b neprekidni elementi, a ako je $\{x_i | i \in I\}$ lanac, tada je i $\{b \wedge x_i | i \in I\}$ takođe lanac.

Tvrđenje pod b) je dualno tvrđenju pod a), a c) sledi direktno iz a) i b).

U sledecem primeru vidi se da infimum v-neprekidnih elemenata ne mora biti v-neprekidan elemenat (tj. skup v-neprekidnih elemenata ne mora biti zatvoren u odnosu na infimume): Takođe, skup \(\lambda - neprekidnih \) elemenata ne mora biti zatvoren u odnosu na supremume.

Primer 1.2



U mreži L b i c su v-neprekidni elementi, jer je
bv^x = bvi = f = ^(bvx,),
a za svaki konačni niz, i
svaki podniz niza {x | i∈I},
to svakako važi. Slično je
i za elemenat c. Elemenat a
koji je infimum ta dva elementa nije v-neprekidan,
jer:
av^x = avi =h ≠ g = ^(avx,).

Lema 1.10 U kompletnoj, kokompaktno generisanoj mreži svaki elemenat je v-neprekidan.

Dokaz. Neka je L kompletna, kokompaktno generisana mreža, a proizvoljan elemenat iz L i $\{x_i | i \in I\}$ lanac u L. Nejednakost av $\bigwedge_{i \in I} x_i \le \prod_{i \in I} (a \lor x_i)$ uvek je ispunjena, pa je dovoljno dokazati av $\bigwedge_{i \in I} x_i \ge \prod_{i \in I} (a \lor x_i)$.

Neka je c kokompaktan elemenat za koji važi $c \ge a \bigvee_{i \in I}^{\Lambda} x_i$. Iz toga sledi da je $c \ge a$ i $c \ge a$ i $c \ge a$ i i i z kokompaktnosti elementa c i toga da je $c \ge a$ i sledi da je $c \ge a$ i za konačan podskup J od I. Pošto je $\{x_i \mid i \in J\}$ lanac, $\{x_i \mid i \in J\}$ $\{x_i \mid i \in J\}$ $\{x_i \mid i \in J\}$ odakle sledi da je $c \ge a \lor x$ i $\{x_i \mid i \in J\}$.

Dobijeno je da je svaki kokompaktni elemenat koji je veći od $a \vee_{i \in I}^{\Lambda} x_i$ veći i od $A \cap_{i \in I}^{\Lambda} (a \vee x_i)$, takođe. Sledi da je $a \vee_{i \in I}^{\Lambda} x_i$ koji je infimum kokompaktnih elemenata, pa prema tome i infimum svih kokompaktnih elemenata većih od njega, veći od $A \cap_{i \in I}^{\Lambda} (a \vee x_i)$, odnosno, $a \vee_{i \in I}^{\Lambda} x_i \geq A \cap_{i \in I}^{\Lambda} (a \vee x_i)$, što je i trebalo dokazati.

Lema 1.11 Svaki beskonačno distributivni elemenat je v-nepreki-

dan.

Dokaz. Sledi direktno iz definicije.

Lema 1.12 Neka je a v-neprekidan elemenat (kompletne) mreže L i za S \subseteq L neka je $\mathscr G$ familija svih konačnih podskupova od S. Tada je a $^{\wedge}$ S = $^{\wedge}_{F}\in\mathscr G^{\wedge}F$.

Dokaz. Uočimo prvo da, ako je $S=\{x_{\alpha}|\alpha \in \lambda\}$, gde je λ beskonačan kardinal i, za $\alpha \in \lambda$, $S_{\alpha}=\{x_{\beta}|\beta < \alpha\}$, onda $\Lambda S = \bigwedge_{\alpha < \lambda} (\Lambda S_{\alpha})$. Inkluzija \leq je očigledna. S druge strane, za svako $\beta < \lambda$, $a_{\beta} \geq \Lambda S_{\beta+1} \geq \Lambda S_{\alpha} (\Lambda S_{\alpha})$, pa je i $\Lambda S \geq \Lambda S_{\alpha} (\Lambda S_{\alpha})$.

Tvrđenje očito važi ako je S konačan skup.

Dokazuje se indukcijom po kardinalnosti od S.

Ako je S= $\{x_n | n \in \omega\}$, prema prethodnom, važi:

 $a \vee AS = a \vee \bigwedge_{n \in \omega} (AS_n) = \bigwedge_{n \in \omega} (a \vee AS_n) = (s \text{ obzirom sa su } S_n, n \in \omega, \text{ konačni}$ $skupovi) = \bigwedge_{n \in \omega} (\bigwedge_{F \in \mathcal{F}_n} (a \vee AF)) \text{ (gde je } \mathcal{F}_n \text{ skup konačnih podskupova od } S_n)$ $= \bigwedge_{F \in \mathcal{F}} (a \vee AF).$

Pretpostavimo, dalje, da je tvrđenje tačno za sve skupove kardinalnosti manje od λ ($>\aleph_0$) i neka je $S=\{x_{\alpha}|\alpha<\lambda\}$, $S_{\alpha}=\{x_{\beta}|\beta<\alpha\}$. Tada je prema induktivnoj pretpostavci i ranijoj napomeni:

 $av^{\Lambda}S = av_{\alpha<\lambda}^{\Lambda}(^{\Lambda}S_{\alpha}) = ^{\Lambda}_{\alpha<\lambda}(av^{\Lambda}S_{\alpha}) = ^{\Lambda}_{\alpha<\lambda}(^{\Lambda}X \in \mathcal{Y}_{\alpha}^{(av^{\Lambda}X)}) = ^{\Lambda}_{X}(^{\Delta}X^{\Lambda}X), \text{ gde je}$ $\mathcal{Y}_{\alpha} \text{ skup svih konačnih podskupova od } S_{\alpha}.$

Očigledno je da važe i tvrđenja dualna tvrđenjima iz Lema 1.10, 1.11 i 1.12.

U Primeru 1.1 elemenat a nije v-neprekidan, pa zato nije ni beskonačno distributivan.

Tvrđenje 1.10 a je v-neprekidan i distributivan elemenat kompletne mreže L ako i samo ako je a beskonačno distributivan elemenat.

Dokaz. (---) Sledi direktno iz Leme 1.11.

(\longrightarrow) Neka je a v-neprekidan i distributivan elemenat mreže L i neka je $\{x_i | i \in I\}$ proizvoljna familija elemenata iz L. Tada je (koristeći Lemu 1.12),

 $a_{i\in I}^{\Lambda}x_{i}= \underset{F\in\mathscr{G}}{\Lambda}v \quad \Lambda_{F}, \quad \text{gde je } \mathscr{G} \text{ familija svih konačnih}$ podskupova od $\{x_{i} \mid i\in I\}$.

Iz distributivnosti elementa a sledi:

$$a \lor \Lambda F = \bigwedge_{x \in F} a \lor x$$
, za svako $F \in \mathcal{G}$, odakle sledi:
 $\bigwedge_{F \in \mathcal{G}} \Lambda \cap \Lambda \cap A \lor X = \bigwedge_{i \in I} (a \lor X_i)$.

1.7 O IZOMORFIZMIMA NEKIH INTERVALA U MREŽI [77]

Kod modularnih mreža poznato je sledeće tvrđenje:

Tvrđenje 1.11. Ako su a i b elementi modularne mreže, tada je $[a,avb]\cong [a\land b,b]$ u odnosu na izomorfizam $f:x\longrightarrow x\land b$.

U radu [75], dokazano je tvrdenje koje navodimo u nastavku. Iz njega se mogu izvesti neka svojstva izomorfnih modularnih mreža, kao i izvesne algebarske posledice.

Tvrdenje 1.12[75] Neka je L modularna mreža i, neka su a,a',b,b' i d elementi mreže koji zadovoljavaju sledeće uslove:

- 1. a'≤a i b'≤b;
- 2. a≤a'vd; b≤b'vd;
- 3. $a\wedge d = b\wedge d$.

Tada je interval [a,a'vd] projektivno izomorfan sa intervalom [b,b'vd].

Uvodenjem specijalnih elemanata, umesto zahteva da mreža bude modularna, dobijaju se lokalna svojstva sličnog tipa.

Lema 1.13 Ako je a standardan elemenat mreže L i b∈L, tada je

 $[a \land b, b] \cong [a, a \lor b]$ u odnosu na izomorfizam $f: x \longrightarrow x \lor a$.

Dokaz. Preslikavanje f zaista preslikava interval [aʌb,b] u interval [a,avb]. Prema Lemi 1.2 a je distributivan i skrativ elemenat. Iz distributivnosti elementa a sledi da je f homomorfizam. Neka je f(x)=f(y), odnosno xva=yva. Za x i y iz intervala [aʌb,b] vażi da je xʌa=yʌa (jer je x≤b, pa xʌa≤bʌa, a kako je bʌa≤x, to je xʌa=bʌa za svako x iz tog intervala). Sada iz skrativosti elementa a sledi da je x=y, odnosno, preslikavanje f je injekcija. Preslikavanje f je i sirjektivno, jer za svaki elemenat y iz intervala [a,avb] važi da se elemenat bʌy preslikava u njega. Zaista, (bʌy)va = (bva)ʌ(yva) = (bva)ʌy = y.

Lema 1.13'. Ako je b kostandardan elemenat mreže L i b \in L tada je $[a,a\lorb]\cong [a\land b,b]$ u odnosu na izomorfizam $f:x\longrightarrow x\land b$.

Dokaz. Dokazuje se slično kao u prethodnoj lemi.

Lema 1.13" Ako je a modularan i skrativ elemenat mreže L i b \in L, tada je [a \land b,b] \cong [a,a \lor b] u odnosu na izomorfizam f:x \rightarrow x \lor a.

Dokaz. f je injektivno i sirjektivno preslikavanje, što se pokazuje slično kao u Lemi 1.13. Neka x,y∈[a∧b,b]. Tada je:

 $(xva)\wedge(yva) = av((xva)\wedge y) = av((yva)\wedge x).$

Kako je a $\Lambda((xva)\Lambda y) = a\Lambda((yva)\Lambda x)$, jer je a $\Lambda x = a\Lambda y$, i a je skrativ elemenat, važi da je $(xva)\Lambda y = (yva)\Lambda x$.

Kako je (xva)ny n (yva)nx = xny, to je (xva)ny = (yva)nx = xny, pa je (xva)n(yva) = av(xny).

Znači, f je izomorfizam.

Tvrđenje 1.13. Neka su a,a',b,b' proizvoljni elementi mreže L i d kostandardan elemenat mreže L tako da važe sledeći uslovi:

- 1. a'≤a i b'≤b;
- 2. a≤a'vd; b≤b'vd;

3. $a\wedge d = b\wedge d$.

Tada je interval [a,a'vd] projektivno izomorfan sa intervalom [b,b'vd].

Dokaz. Prema Lemi 1.13' važi da je [a,avd]≅[a∧d,d] u odnosu na izomorfizam f:x→x∧d, kao i [b,bvd]≅[b∧d,d] u odnosu na izomorfizam f:x→x∧d. Iz uslova 3 sledi da je [a∧d,d]=[b∧d,d], pa je [a,avd]≅[b,bvd]. Iz uslova 1 i 2 sledi da je a'vd=avd i b'vd=bvd, odakle sledi da je [a,a'vd]≅[b,b'vd], što je i trebalo pokazati.

Važi i dualno tvrđenje.

Tvrđenje 1.14 Neka su a,a',b,b' proizvoljni elementi mreže L i d standardan elemenat mreže L tako da važe sledeći uslovi:

- 1. a≤a' i b≤b';
- a≥a'∧d; b≥b'∧d;
- 3. avd = bvd.

Tada je interval [a', nd, a] projektivno izomorfan sa intervalom [b', vd, b].

Gornja tvrđenja biće primenjena u razmatranju mreža slabih kongruencija u III poglavlju.

1.8 O IZOMORFIZMIMA IDEALA I FILTARA GENERISANIH SPECIJANIM ELEMENTIMA

Sledeća mrežna tvrdenja će se koristiti u dokazima tvrdenja koja karakterišu svojstva mreže slabih kongruencija nekih specijalnih klasa algebri. U mreži slabih kongruencija Λ (dijagonalna relacija) ima istaknutu ulogu, i mnoga svojstva algebri su u vezi sa položajem dijagonale u mreži slabih kongruencija. Λ je uvek kodistributivan

elemenat u toj mreži, i zato pretpostavljamo da je u sledećim tvrdenjima a kodistributivan elemenat, i to takav da klase kongruencije indukovane sa m imaju najveće elemente (razlozi za ovaj uslov su takođe algebarski, jer to važi u mreži slabih kongruencija proizvoljne algebre- ti najveći elementi su kvadrati podalgebri). Neka je skup tih najvećih elemenata označen sa M , i za svako xeL neka je \overline{x} elemenat iz M takav da je m \overline{x} \overline{x} .

Tvrdenje 1.15 Sledeća tvrđenja su ekvivalentna:

- (1) a je izuzetan;
- (2) (i) za svako $x \in (a]$ važi da je $[x, \overline{x}] \cong [a, \overline{x} \vee a]$ u odnosu na $n_a : y \rightarrow y \vee a;$
- (ii) preslikavanje f :x—xva je homomorfizam iz (a] u [a). Napomena 1.1 [x,y] je oznaka za interval, tj. [x,y]={z|x≤z≤y}.

Dokaz.
$$(1) \longrightarrow (2)$$

Neka je a izuzetan elemenat (distributivan, kodistributivan, komodularan i skup najvećih elemenata u klasama indukovanim sa m (M) je podmreža od L). Preslikavanje n zaista preslikava interval [x, x] u interval [a, xva], jer je n (x)=xva i n (x)=a, a n je očito izotono preslikavanje. n je injekcija, jer za dva elementa y, z∈ [x, x] važi da je y∧a=z∧a, pa ako je yva=zva, iz komodularnosti elementa a i Tvrđenja 1.5 sledi da je y=z. Dalje se pokazuje da je n sirjektivno preslikavanje. Neka y∈[a, xva]. Iz a≤y≤xva sledi da je

$$x=a\wedge \overline{x} \leq y\wedge \overline{x} \leq (\overline{x}\vee a)\wedge \overline{x} = \overline{x}.$$

 $y_{\wedge X}$ je elemenat koji se preslikava na y u odnosu na preslikavanje n_a .

Zaista, iz distributivnosti elementa a sledi:

$$(y \wedge \overline{x}) \vee a = (y \vee a) \wedge (\overline{x} \vee a) = y \wedge (\overline{x} \vee a) = y.$$

Preslikavanje n je izomorfizam, jer:

$$n_{a}(x\wedge y) = (x\wedge y)\vee a = (x\vee a)\wedge(y\vee a) = n_{a}(x)\wedge n_{a}(y)$$
, i

$$n_a(xy) = (xy)va = (xva)v(yva) = n_a(x)vn_a(y).$$

Uslov (ii) takođe važi jer je M podmreža, odnosno, $\overline{x}_{A}\overline{y} = \overline{x}_{A}\overline{y}$ (jer je $\overline{x}_{A}a = x_{A}a$ i $\overline{y}_{A}a = y_{A}a$, pa je $x_{A}y_{A}a = \overline{x}_{A}y_{A}a$, pa $x_{A}y_{A}$ pripada istoj klasi u odnosu na m kao i $\overline{x}_{A}\overline{y}$, i posto je to maksimalni elemenat neke klase, tražena jednakost važi) i $\overline{x}_{A}\overline{y} = \overline{x}_{A}\overline{y}$ (slično kao u dokazu prethodne jednakosti, pri čemu se koristi još i kodistributivnost elementa a), pa je:

$$f_{a}(x \wedge y) = \overline{x \wedge y} \vee a = (\overline{x} \wedge \overline{y}) \vee a = (\overline{x} \vee a) \wedge (\overline{y} \vee a) = f_{a}(x) \wedge f_{a}(y), i$$

$$f_{a}(x \vee y) = \overline{x \vee y} \vee a = (\overline{x} \vee \overline{y}) \vee a = (\overline{x} \vee a) \vee (\overline{y} \vee a) = f_{a}(x) \vee f_{a}(y).$$

$$(2) \longrightarrow (1)$$

a je po pretpostavci kodistributivan elemenat i postoje najveći elementi u klasama ekvivalencije indukovanim preslikavanjem m_a . Prvo se pokazuje komodularnost elementa a.

Neka za elemente x,y∈L vazi:

 $x \wedge a = y \wedge a$ i $x \vee a = y \vee a$. Iz $x \wedge a = y \wedge a$ sledi da x i y pripadaju istoj klasi kongruencije indukovane sa m_a , odnosno postoji $z \in (a]$, takav da $x, y \in [z, \overline{z}]$. Iz uslova da je m_a izomorfizam intervala $[z, \overline{z}]$ i $[a, \overline{z} \vee a]$ sledi da iz $x \vee a = y \vee a$ sledi x = y.

Dalje se pokazuje da je M podmreža. Pošto je f homomorfizam, sledi da je:

 $\overline{x \wedge y} \vee a = (\overline{x} \vee a) \wedge (\overline{y} \vee a) i \overline{x} \vee y \vee a = (\overline{x} \vee a) \vee (\overline{y} \vee a).$

Uvek je ispunjeno: $\overline{x} \wedge \overline{y} \geq \overline{x} \wedge \overline{y}$ (jer je $x \geq x \wedge y$ i $y \geq x \wedge y$, pa je $\overline{x} \geq \overline{x} \wedge y$ i $\overline{y} \geq \overline{x} \wedge y$). Pošto $\overline{x} \wedge \overline{y}$ pripada istoj klasi kongruencije indukovanoj sa m_a kao i $x \wedge y$, a $\overline{x} \wedge \overline{y}$ veći je od najvećeg elementa te klase, sledi da mora važiti: $\overline{x} \wedge \overline{y} = \overline{x} \wedge y$. Dalje je:

 $(\overline{x}\overline{y})$ va = $(\overline{x}\overline{v}a)$ v $(\overline{y}\overline{v}a)$ = $(\overline{x}\overline{v}\overline{y})$ va, i

 $(\overline{x}\overline{y})\wedge a = (xy)\wedge a = (x\wedge a)\vee(y\wedge a) = (\overline{x}\wedge a)\vee(\overline{y}\wedge a) = (\overline{x}\overline{y})\wedge a$, jer je a kodistributivan elemenat, pa primenom dokazane komodularnosti, sledi da je $(\overline{x}\overline{y}) = (\overline{x}\overline{y})$.

(f je, po pretpostavci homomorfizam iz (a) u [a). Medutim, pošto je $\overline{x} = \overline{t}$, ako te(a] i xna = tna, i $\overline{y}=\overline{u}$, za ue(a) i yna=una, pa važi i:

 $\overline{x} \wedge y \vee a = (\overline{x} \vee a) \wedge (\overline{y} \vee a)$ i $\overline{x} \vee y \vee a = (\overline{x} \vee a) \vee (\overline{y} \vee a)$. Ovo se koristi i u dokazu za distributivnost elementa- (*)).

Još treba pokazati distributivnost elementa a. Neka x,y \in L. Tada $(xva)\land(yva)\in[a)$. Iz a $\leq xva\leq xva$ i a $\leq yva\leq yva$ sledi: a $\leq (xva)\land(yva) \leq (\overline{x}va)\land(\overline{y}va) = (\overline{x})va$ (jer je f homomorfizam i vredi razmatranje (*)). Po pretpostavci n je preslikavanje iz $[t\land u, \overline{x}, y]$ (gde je t $\land a=x\land a$ i t \in (a] i u $\land a=y\land a$ i u \in (a]) na $[a, \overline{x}, yva]$, pa postoji elemenat p \in [t $\land u, \overline{x}, yva$], takav da je pva = $(xva)\land(yva)$. Elemenat x $\land y$ takođe pripada istoj klasi $[t\land u, \overline{x}, yva]$, pa pošto je n izomorfizam, važi sledeće:

 $(x \wedge y \wedge p) \vee a = ((x \wedge y) \vee a) \wedge (p \vee a) = ((x \wedge y) \vee a) \wedge (x \vee a) \wedge (y \vee a) = (x \wedge y) \vee a.$

Iz komodularnosti sledi da je x∧y∧p=x∧y, odakle, x∧y≤p.

Dalje, iz pva = $(xva) \wedge (yva)$ sledi da je pva≤xva. Takođe je i p∧a≤x∧a (jer je p∧a = \overline{x} ∧y∧a ≤ \overline{x} ∧a = x∧a). Sledi da je:

 $(p \lor x) \lor a = (p \lor a) \lor (x \lor a) = x \lor a, i$

 $(p \lor x) \land a = (p \land a) \lor (x \land a) = x \land a$, odakle je, primenom komodularnosti, $x = p \lor x$, odnosno, $p \le x$. Na isti način dokazuje se da je $p \le y$, pa je $p \le x \land y$, odnosno, $p = x \land y$, pa važi da je $(x \lor a) \land (y \lor a) = (x \land y) \lor a$.

Lema 1.15 Ako je

- (i) (a) \cong [a) u odnosu na $f_a: x \longrightarrow \overline{x} \lor a$ ($x \in (a]$), i
- (ii) iz $x \wedge a = y \wedge a$ i $x \vee a = y \vee a$ implicira x = y ($z a \times i y iz L$), tada je $z a \times \epsilon(a)$,

 $[x, \overline{x}] \cong [a, \overline{x} \lor a]$ u odnosu na $n_a : y \rightarrow y \lor a$ ($y \in [x, \overline{x}]$). Dokaz.

Ako y i z pripadaju $[x, \overline{x}]$ tada je y \wedge a=z \wedge a. Ako je y \wedge a=z \wedge a, tada iz (ii) sledi da je y=z, odnosno preslikavanje n je injektivno. Neka je y proizvoljan elemenat iz $[a, \overline{x} \wedge a]$. Pošto y \in [a), a prema (i) f je izomorfizam, sledi da postoji z \in [a], takvo da je y= $\overline{z} \wedge a$. $\overline{z} \wedge x$ pripada intervalu $[x, \overline{x}]$, jer je $\overline{z} \wedge x \wedge x$ i $\overline{z} \wedge x \wedge x$ (zbog $x \wedge x \wedge x$ i $\overline{z} \wedge x \wedge x$). Naime, iz

ye [a, \overline{x} va], sledi da je y= \overline{z} va $\leq \overline{x}$ va, a pošto je f izomorfizam, sledi da je z $\leq x$. Iz z $\leq x$ i kodistributivnosti sledi \overline{z} $\leq x$. Pošto je \overline{n} (\overline{z} vx)=y, preslikavanje je sirjektivno.

Neka $u,v \in [x,\overline{x}]$. Iz $u \le v$ sledi da je $n_a(u) \le n_a(v)$. Pretpostavimo da je $n_a(u) \le n_a(v)$, tj. $uva \le vva$. Sada je (uvv)va = (uva)v(vva) = vva. Iz kodistributivnosti elementa a sledi da je (uvv)va = (uva)v(vva) = vva (jer u i v pripadaju istoj klasi od m_a), odakle iz uslova (ii) sledi uvv = v, odnosno $u \le v$. Sledi da je n_a izomorfizam .

Tvrđenje 1.16 Tvrđenja (1) i (2) su ekvivalentna:

- (1) a) (a) \cong [a) u odnosu na $f_a: x \longrightarrow x \lor a$ (za $x \in (a]$);
 - b) iz x∧a=y∧a i x∨a=y∨a sledi x=y;
- (2) a je izuzetan i beskonačno distributivan elemenat od L i skup svih minimalnih elemenata klasa kongruencije određenih sa $n_a: x \rightarrow x \lor x$ je M_a .

Dokaz. $(1) \longrightarrow (2)$

Iz uslova a) i b), prema Lemi 1.15, sledi uslov (2)(i) Tvrđenja 1.15. Uslov (1)a) jači je od uslova (2)(ii) Tvrđenja 1.15, pa prema tom tvrđenju sledi da je a izuzetan.

Neka je b proizvoljan elemenat iz [a). Prema (1)a) postoji z∈(al takav da je b=zva. Pokazaće se da je z najmanji elemenat odgovarajuće klase kongruencije definisane sa n_a. Pretpostavimo da je y≤z za neko y za koje je yva = zva. Sada je zva = yva ≤ yva ≤ zva, pa je yva = zva. Ako je sada u=y∧a, onda je u = y, pa iz uva = zva sledi na osnovu (1)a) da je u=z. Odatle y∧a = z∧a i yva = zva , pa prema b) , sledi da je y=z. Tako je z minimalan elemenat odgovarajuće klase u odnosu na n_a i kako je ta klasa podmreža u L, z je njen najmanji elemenat. Na osnovu Tvrđenja 1.9 i 1.15 a je beskonačno distributivan, a skup najmanjih elemenata je upravo M.

 $(2) \longrightarrow (1)$

Prema Tvrdenju 1.9 klase kongruencije indukovane sa na imaju najmanje elemente, a po pretpostavci skup tih elemenata poklapa se sa M_a . Odatle sledi da je $M_a \cong [a]$ u odnosu na $\overline{x} \longrightarrow \overline{x} \lor a$. (a] $\cong M_a$ u odnosu na $\overline{x} \longrightarrow \overline{x} \lor a$, sto sledi iz činjenice da je a izuzetan. Sledi da je preslikavanje fa izomorfizam između (a] i [a), kao kompozicija dva izomorfizma. Uslov b) sledi direktno iz neutralnosti elementa a.

1.9 O MREŽNIM IDENTITETIMA, ZAKONIMA

Specijalni elementi mreže (distributivni, kodistributivni, neutralni, i sl.), u vezi sa odgovarajućim homomorfizmima n i m indukuju relacije kongruencije (Leme 1.1, 1.1', 1.2, 1.3, 1.8 i 1.15). Sledećih nekoliko tvrđenja razmatraju problem: ako mrežni identitet važi na faktor skupu u odnosu na te kongruencije, pod kojim uslovima on važi na celoj mreži. Iz tih tvrđenja slede značajne algebarske posledice u vezi sa identitetima na mreži slabih kongruencija algebre (poglavlje III).

U sledećim tvrdenjima pod proizvoljnim mrežnim termom će se podrazumevati term na jeziku mreže (sa dve binarne operacije). (Videti, na primer, [7]).

Lema 1.16 Ako je a distributivan elemenat mreže L i $f(x_1, ..., x_n)$ proizvoljan mrežni term, za sve $x_1, ..., x_n \in L$,

$$f(x_1,\ldots,x_n)$$
 va = $f(x_1$ va,...,x_n va).

Dokaz.

Sledi indukcijom po broju operacijskih simbola (k). Za k=0, f(x)=x, pa je f(xva)=f(x)va. Za k=1, f(x,y)=xvy ili f(x,y)=xvy. U prvom slučaju, f(x,y)va=(xvy)va=(xva)v(yva)=f(xva,yva). U drugom slučaju, f(x,y)va=(xvy)va=(xva)v(yva)=

operacijskih simbola, i neka f ima k operacijskih simbola. Tada je $f(x_1,\ldots,x_n) = f_1(x_1,\ldots,x_n) \vee f_2(x_1,\ldots,x_n), \text{ ili } f(x_1,\ldots,x_n) = f_1(x_1,\ldots,x_n) \wedge f_2(x_1,\ldots,x_n), \text{ gde su } f_1 \text{ i } f_2 \text{ termi sa manje od } k$ operacijskih simbola, pa za njih važi indukcijska pretpostavka. Tako je: $f(x_1,\ldots,x_n) \vee a = f_1(x_1,\ldots,x_n) \vee a \vee f_2(x_1,\ldots,x_n) \vee a \vee f_2($

f(xva, yva). Pretpostavimo da tvrđenje važi za sve terme sa manje od k

Važi i dualno tvrđenje:

Lema 1.16'. Ako je a kodistributivan elemenat mreže L i $f(x_1, ..., x_n) \quad \text{proizvoljan} \quad \text{mrežni} \quad \text{term,} \quad \text{za} \quad \text{sve} \quad x_1, ..., x_n \in L,$ $f(x_1, ..., x_n) \wedge a = f(x_1 \wedge a, ..., x_n \wedge a).$

Sledeće tvrdenje govori o prenošenju proizvoljnog mrežnog zakona sa (a] i [a) na celu mrežu L (a∈L).

Tvrdenje 1.17. Ako je a neutralan elemenat mreže L tada proizvoljni mrežni identitet važi na L ako i samo ako važi na filtru (a) i idealu [a).

Dokaz. (\longrightarrow)

Očigledno,

(←—)

Neka identitet $f(x_1, ..., x_n) = g(x_1, ..., x_n)$ važi na (a] i na [a). Tada za $y_1, ..., y_n \in L$:

$$f(y_1 \wedge a, \dots, y_n \wedge a) = g(y_1 \wedge a, \dots, y_n \wedge a), \text{ jer } y_i \wedge a \in \{a\}, \text{ i}$$

$$f(y_1 \vee a, \dots, y_n \vee a) = g(y_1 \vee a, \dots, y_n \vee a), \text{ jer } y_i \vee a \in \{a\}.$$

Prema Lemama 1.16 i 1.16' sledi da je:

$$f(y_1,...,y_n) \wedge a = g(y_1,...,y_n) \wedge a, i$$

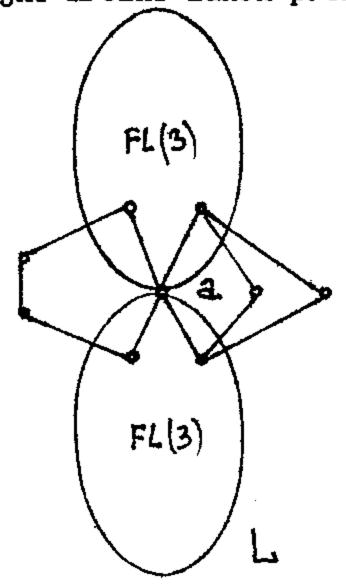
 $f(y_1,\ldots,y_n) \lor a = g(y_1,\ldots,y_n) \lor a, \quad pa \quad iz \quad Leme \quad 1.3 \quad i$ neutralnosti elementa a sledi da je:

$$f(y_1,\ldots,y_n) = g(y_1,\ldots,y_n).$$

Obratna implikacija u opštem slučaju ne važi. Naime, postoje mreže u kojima postoji elemenat a takav da je ispunjen uslov da mrežni zakon važi na mreži ako i samo ako važi na idealu (a) i filtru (a), a elemenat a nije neutralan, pa čak ne mora biti ni distributivan, ni kodistributivan, niti zadovoljavati svojstvo skraćivanja. Jedna takva mreža opisana je u sledećem primeru:

Primer 1.3

Data je mreža L, i aєL, takva da su (a) i [a) izomorfne slobodnoj mreži sa tri generatora FL(3). To je moguće, pošto slobodna mreža sa tri generatora ima najmanji i najveći elemenat. Mreža FL(3) sadrži kao podmreže proizvoljne slobodne mreže FL(n), pa i slobodnu mrežu sa prebrojivo mnogo generatora ([18]). Na mreži FL(3) ne važi ni jedan mrežni zakon koji se ne može izvesti iz aksioma mreže. Znači, svi zakoni koji važi na (a) i na [a) važe na proizvoljnoj mreži. Neka mreža L ima podmreže kao na slici 1.3. Očigledno je da tada elemenat a nije ni distributivan, ni kodistributivan, ni komodularan, a važi uslov da se proizvoljni mrežni zakon prenosi sa (a) i [a) na mrežu L.



Slika 1.3

Medutim, ako je data mreža L, i elemenat a∈L se posmatra kao

konstanta u jeziku, odnosno posmatra se algebra (L, \land, \lor, a) , tada važi i obratno tvrđenje:

Tvrdenje 1.18 Ako proizvoljan identitet važi na mreži (L, \wedge, \vee, a) ako i samo ako on važi na filtru [a) i na idealu (a], tada je elemenat a neutralan.

Dokaz. Na filtru [a) važi: $a_{\Lambda}(xvy) = a = a_{\Lambda}a = (a_{\Lambda}x)v(a_{\Lambda}y);$ $a_{\Lambda}(xvy) = x_{\Lambda}y = (a_{\Lambda}x) \wedge (a_{\Lambda}y);$

Iz Tvrdenja 1.5 svojstvo skraćivanja je, uz kodistributivnost elementa a, što je ispunjeno, ekvivalentan sa identitetom:

iz anx=any i x=avx=avy=y, sledi x=y.

xv(ay) = (xva)x(xvy), pa i ovaj identitet važi.

-Na idealu (a] važi:

 $a_{\Lambda}(xvy) = xvy = (a_{\Lambda}x)v(a_{\Lambda}y);$

 $av(x\wedge y) = a = ava = (avx)\wedge(avy);$

iz $x=a\wedge x=a\wedge y=y$ i $a\vee x=a\vee y$, sledi x=y, pa $va\check{z}i$ identitet: $x\vee (a\wedge y)=(x\vee a)\wedge (x\vee y)$.

Po uslovu tvrđenja, svi identiteti se prenose sa filtra [a) i ideala (a] na celu mrežu, pa za svako x,y∈L važi da je:

 $a_{\Lambda}(xy)=(a_{\Lambda}x)y(a_{\Lambda}y);$

 $av(x_{N}y)=(avx)_{N}(avy) i$

 $xv(a\wedge y) = (xva)\wedge(xvy)$, odnosno, elemenat a je neutralan.

Leme 1.16, 1.16' i Tvrdenje 1.17 ne važe u opštem slučaju u kompletnoj mreži ako za operacije smatramo proizvoljne infimume i supremume (∧S i VS, za proizvoljni skup S⊆L). Za mrežu L u Primeru 1.1 Tvrdenje 1.17 ne važi (ako uzimamo u obzir i proizvoljne infimume i supremume), jer su [a) i (a] kompletno-distributivne mreže (jer je svaki lanac kompletno distributivna mreža), a mreža L nije čak ni beskonačno distributivna, pa ni kompletno distributivna.

U sledećem delu daće se proširenje tih tvrđenja i za slučaj sa beskonačnomesnim operacijama.

Lema 1.17 Ako je a beskonačno kodistributivan elemenat mreže L i $f(x_1,x_2,\ldots,x_{\alpha},\ldots) \text{ proizvoljan mrežni izraz}^1(\text{koji može da sadrži i beskonačnomesne operacije}), tada za sve <math>x_1,\ldots,x_{\alpha},\ldots\in L$,

$$f(x_1, x_2, \dots, x_{\alpha}, \dots) \wedge a = f(x_1 \wedge a, x_2 \wedge a, \dots, x_{\alpha} \wedge a, \dots).$$

Napomena 1.2 Niz $x_1, \ldots, x_{\alpha}, \ldots$ može biti i neprebrojiv.

Dokaz. Indukcijom po broju operacijskih simbola.

Lema 1.17' Ako je a beskonačno kodistributivan elemenat mreže L i $f(x_1, x_2, \ldots, x_{\alpha}, \ldots)$ proizvoljan mrežni izraz (koji može da sadrži i beskonačnomesne operacije), tada za sve $x_1, \ldots, x_{\alpha}, \ldots \in L$,

$$f(x_1, x_2, \dots, x_{\alpha}, \dots) \wedge a = f(x_1 \wedge a, x_2 \wedge a, \dots, x_{\alpha} \wedge a, \dots).$$

Tvrđenje 1.19 Ako je a neutralan i neprekidan elemenat kompletne mreže L tada proizvoljni mrežni identitet (koji može da sadrži i beskonačnomesne operacije) važi na L ako i samo ako važi na filtru (a) i idealu [a).

Dokaz. Dokazuje se slično kao i Tvrdenje 1.17, koristeći Leme 1.17 i 1.17', i Tvrdenje 1.10, i činjenicu da je svaki distributivan i v-neprekidan elemenat i beskonačno distributivan, kao i da je svaki kodistributivan i ∧-neprekidan elemenat i beskonačno kodistributivan. ■

1.10 O JEDNAKOSTI ALGEBARSKIH FUNKCIJA

Do sada su razmatrani mrežni identiteti i njihovo prenošenje sa podmreže (filtra, ideala) na mrežu. U nastavku se sličan problem

¹ Definisan kao mrežni term koji uključuje i beskonačomesne operacije.

razmatra za jednakost algebarskih funkcija, tj. izraza u kojima se javljaju neke konstante ili fiksni elementi mreže. (U algebarskoj primeni ovih tvrdenja ti fiksni elementi biće neke istaknute podalgebre ili kongruencije date algebre).

Lema 1.18. Neka je 1 najvećí elemenat mreže L, b proizvoljni elemenat mreže L i $f(x_1,...,x_n)=g(x_1,...,x_n)$ proizvoljni mrežni identitet. Ako za sve $x_1,...,x_{n-1} \in L$

$$f(x_1,...,x_{n-1},1)=g(x_1,...,x_{n-1},1),$$

tada za sve $y_1, \ldots, y_{n-1} \in \{b\}$

$$f(y_1,...,y_{n-1},b)=g(y_1,...,y_{n-1},b).$$

Dokaz.

Sledi iz činjenice da je i najveći elemenat mreže L, a b najveći u (b). Za proizvoljne elemente, $y_1, \ldots, y_{n-1} \in (b)$ važi da je $f(y_1, \ldots, y_{n-1}, 1) = g(y_1, \ldots, y_{n-1}, 1).$

Indukcijom po broju operacijskih simbola se pokazuje da se taj zakon svodi na zakon koji ne sadrži 1, ili na 1=1 (sledi iz 1∧x=x i 1∨x=1). Kada umesto 1 u identitetu zamenimo b (iz b∧x=x i b∨x=b za x∈(b]) taj zakon se takođe svodi ili na zakon koji ne sadrži b (i to isti kao i u prvom slučaju, pa on važi), ili na b=b (u slučajevima kada smo u prvom slučaju dobili 1=1). U svakom slučaju, identitet važi.

Važi i dualno tvrđenje:

Lema 1.18' Neka je 0 najmanji elemenat mreže L, b proizvoljni elemenat mreže L i $f(x_1, \ldots, x_n) = g(x_1, \ldots, x_n)$ proizvoljni mrežni identitet. Ako za sve $x_1, \ldots, x_{n-1} \in L$

$$f(x_1,...,x_{n-1},0)=g(x_1,...,x_{n-1},0),$$

tada za sve $y_1, \ldots, y_{n-1} \in [b]$

$$f(y_1, ..., y_{n-1}, b) = g(y_1, ..., y_{n-1}, b).$$

Tvrdenje 1.20 Neka je a neutralan elemenat mreže L takav da

klase kongruencije indukovane preslikavanjem m_a imaju najveće elemente i $f(x_1, \ldots, x_n) = g(x_1, \ldots, x_n)$ proizvoljni mrežni identitet. Za be(a) označimo sa \overline{b} najveći elemenat klase kongruencije određene sa m_a kojoj pripada b.

Ako jednakost

$$f(x_1,...,x_{n-1},a)=g(x_1,...,x_{n-1},a)$$

važi na (a] i [a), tada:

$$f(x_1,...,x_{n-1},b)=g(x_1,...,x_{n-1},b)$$

važi na idealu $(\overline{b}]$ (odnosno za sve $x_1, \ldots, x_{n-1} \in (\overline{b}]$).

Dokaz.

Neka
$$x_1, \ldots, x_{n-1} \in (\overline{b}]$$
. Prema Lemama 1.16' i 1.18 važi:
$$f(x_1, \ldots, x_{n-1}, b) \wedge a = f(x_1 \wedge a, \ldots, x_{n-1} \wedge a, b) = g(x_1 \wedge a, \ldots, x_{n-1} \wedge a, b) = g(x_1 \wedge a, \ldots, x_{n-1} \wedge a, b) = g(x_1 \wedge a, \ldots, x_{n-1} \wedge a, b) \wedge a,$$

jer x ∧a,...,x ∧a∈(b), a po pretpostavci odgovarajuća jednakost važi na (a). Slično, prema Lemama 1.16 i 1.18':

$$f(x_1, ..., x_{n-1}, b) \vee a = f(x_1 \vee a, ..., x_{n-1} \vee a, a) = g(x_1 \vee a, ..., x_{n-1} \vee a, a) =$$

$$= g(x_1, ..., x_{n-1}, b) \vee a,$$

pošto odgovarajuća jednakost važi na filtru [a).

Prema Lemi 1.3, iz neutralnosti elementa a sledi da za sve $x_1, \dots, x_{n-1} \in (\overline{b}] \ važi:$

$$f(x_1,...,x_{n-1},b)=g(x_1,...,x_{n-1},b).$$

Važi i dualno tvrđenje:

Tvrdenje 1.20' Neka je a neutralan elemenat mreže L takav da klase kongruencije indukovane preslikavanjem n_a imaju najmanje elemente i $f(x_1,\ldots,x_n)=g(x_1,\ldots,x_n)$ proizvoljni mrežni identitet. Za $b\in [a)$ označimo sa \underline{b} najmanji elemenat klase kongruencije određene sa \underline{n} kojoj pripada \underline{b} .

Ako jednakost

$$f(x_1,...,x_{n-1},a)=g(x_1,...,x_{n-1},a)$$

važi na (a] i [a), tada:

$$f(x_1,...,x_{n-1},b)=g(x_1,...,x_{n-1},b)$$

važi na filtru (\underline{b}) (odnosno za sve $x_1, \dots, x_{n-1} \in (\underline{b})$).

Tvrdenje 1.21 Neka je a distributivan elemenat mreže L i b pripada filtru [a). Ako je f mrežni zakon oblika:

$$\bigwedge_{i=1}^{n} (bv \ f_{1}^{i}(x_{1}, \dots, x_{n})) = \bigwedge_{j=1}^{r} (bv \ f_{2}^{j}(x_{1}, \dots, x_{n})),$$

i ako f važi za $x_1, \ldots, x_n \in [a)$, tada on važi za sve $x_1, \ldots, x_n \in L$.

Napomena 1.3 Mrežni zakoni u ovom tvrđenju su svi oni zakoni u kojima se sva pojavljivanja b javljaju isključivo uz operaciju V.

Dokaz.

Neka je $\bigwedge_{i=1}^{n} (bv - f_{1}^{i}(x_{1}, \dots, x_{n}^{-})) = \bigwedge_{j=1}^{r} (bv - f_{2}^{j}(x_{1}, \dots, x_{n}^{-}))$, zasve $x_{1}, \dots, x_{n} \in [a)$. Neka $y_{1}, \dots, y_{n} \in L$. Iz bva=b, distributivnosti elementa a i Leme 1.16, i $avy_{k} \in [a)$ ($za \in \{1, \dots, n\}$), sledi:

Važi i dualno tvrđenje:

Tvrđenje 1.21' Neka je a kodistributivan elemenat mreže L i b pripada idealu (a). Ako je f mrežni zakon oblika:

$$\bigvee_{i=1}^{n} (b_{A} f_{1}^{i}(x_{1}, \dots, x_{n})) = \bigvee_{j=1}^{r} (b_{A} f_{2}^{j}(x_{1}, \dots, x_{n})),$$

i ako f važi za $x_1, \ldots, x_n \in \{a\}$, tada on važi za sve $x_1, \ldots, x_n \in L$.

Sledeća tvrdenja se primenjuju na mreže slabih kongruencija i daju odgovor na pitanje kada se neki mrežni zakon u kome učestvuju i konstante prenosi sa mreže kongruencija, odnosno mreže podalgebri na mrežu slabih kongruencija.

Tvrdenje 1.22 Neka je a neutralan elemenat mreže L. Ako be[a) i mrežni zakon $f_1(x_1,\ldots,x_n,b)=f_2(x_1,\ldots,x_n,b)$ važi za x_1,\ldots,x_n e[a) i $f_1(x_1,\ldots,x_n,a)=f_2(x_1,\ldots,x_n,a)$ važi za x_1,\ldots,x_n e(a], tada $f_1(x_1,\ldots,x_n,b)=f_2(x_1,\ldots,x_n,b)$ važi za x_1,\ldots,x_n eL.

Dokaz.

Neka $x_1, \dots, x_n \in L$. Primenom distributivnosti i kodistributivnosti elementa a i Lema 1.16 i 1.16', dobijamo:

$$f_1(x_1,\ldots,x_n,b)\vee a=f_1(x_1\vee a,\ldots,x_n\vee a,b)=$$

$$f_2(x_1\vee a,\ldots,x_n\vee a,b)=f_2(x_1,\ldots,x_n,b)\vee a, \text{ jer zakon važi}$$
 na [a) za b, i

$$f_1(x_1,...,x_n,b) \wedge a = f_1(x_1 \wedge a,...,x_n \wedge a,a) =$$

$$f_2(x_1 \wedge a,...,x_n \wedge a,b \wedge a) = f_2(x_1,...,x_n,b) \wedge a, \quad \text{jer zakon}$$
 važi na (a) za a.

Iz komodularnosti elementa a sada sledi da je :

$$f_1(x_1,...,x_n,b) = f_2(x_1,...,x_n,b).$$

Tvrdenje 1.22' Neka je a neutralan elemenat mreže L. Ako be(a] i mrežni zakon $f_1(x_1, \ldots, x_n, b) = f_2(x_1, \ldots, x_n, b)$ važi za $x_1, \ldots, x_n \in (a]$ i $f_1(x_1, \ldots, x_n, a) = f_2(x_1, \ldots, x_n, a)$ važi za $x_1, \ldots, x_n \in [a]$, tada $f_1(x_1, \ldots, x_n, b) = f_2(x_1, \ldots, x_n, b)$ važi za $x_1, \ldots, x_n \in [a]$.

U III poglavlju će se ispitivati kada se neka algebarska svojstva (koja se svode na beskonačne mrežne zakone, kao *CIP, na primer) prenose sa algebre na njenu podalgebru, ili faktor algebru. U tom cilju potrebno je prethodna tvrđenja dokazati za identitete koji sadrže i beskonačno-mesne operacije.

Dokazi za sledećih nekoliko tvrđenja su analogni dokazima odgovarajućih tvrđenja za identitete sa konačno-mesnim operacijama.

Lema 1.19 Neka je 1 najveći elemenat mreže L, b proizvoljni

elemenat mreže L i $f(x_1,\ldots,x_{\alpha},\ldots)=g(x_1,\ldots,x_{\alpha},\ldots)$ proizvoljni mrežni identitet (koji može da sadrži i beskonačnomesne operacije). Ako za sve $x_2,\ldots,x_{\alpha},\ldots\in L$

$$f(1, x_2, ..., x_{\alpha}, ...) = g(1, x_2, ..., x_{\alpha}, ...),$$

tada za sve $y_2, \ldots, y_{\alpha}, \ldots \in (b]$

$$f(b, y_2, \dots, y_{\alpha}, \dots) = g(b, y_2, \dots, y_{\alpha}, \dots).$$

Dokaz. Analogno Lemi 1.18.

Važi i dualno tvrđenje:

Lema 1.19' Neka je 0 najmanji elemenat mreže L, b proizvoljni elemenat mreže L i $f(x_1,\ldots,x_{\alpha},\ldots)=g(x_1,\ldots,x_{\alpha},\ldots)$ proizvoljni mrežni identitet (koji može da sadrži i beskonačnomesne operacije). Ako za sve $x_2,\ldots,x_{\alpha},\ldots\in L$

$$f(0, x_2, ..., x_{\alpha}, ...) = g(0, x_2, ..., x_{\alpha}, ...),$$

tada za sve $y_2, \ldots, y_{\alpha}, \ldots \in \{b\}$

$$f(b, y_2, \dots, y_{\alpha}, \dots) = g(b, y_2, \dots, y_{\alpha}, \dots).$$

Tvrdenje 1.23 Neka je a neutralan i neprekidan elemenat mreže L takav da klase kongruencije indukovane preslikavanjem m imaju najveće elemente i $f(x_1,\ldots,x_{\alpha},\ldots)=g(x_1,\ldots,x_{\alpha},\ldots)$ proizvoljni mrežni identitet (koji može da sadrži i beskonačnomesne operacije). Za be(al označimo sa \overline{b} najveći elemenat klase kongruencije određene sa \overline{b} najveći elemenat klase kongruencije određene sa \overline{b} pripada b.

Ako jednakost

$$f(a, x_2, \ldots, x_{\alpha}, \ldots) = g(a, x_2, \ldots, x_{\alpha}, \ldots),$$

važi na (a] i [a], tada:

$$f(b,x_2,\ldots,x_{\alpha},\ldots)=g(b,x_2,\ldots,x_{\alpha},\ldots),$$

važi na idealu $(\overline{b}]$ (odnosno za sve $x_2, \ldots, x_{\alpha} \in (\overline{b}]$).

Dokaz. Slično kao dokaz Tvrđenja 1.20.

Važi i dualno tvrdenje:

Tvrdenje 1.23' Neka je a neutralan i neprekidan elemenat mreže L

takav da klase kongruencije indukovane preslikavanjem n_a imaju najveće elemente i $f(x_1,\ldots,x_{\alpha},\ldots)=g(x_1,\ldots,x_{\alpha},\ldots)$ proizvoljni mrežni identitet (koji može da sadrži i beskonačnomesne operacije). Za be[a) označimo sa <u>b</u> najmanji elemenat klase kongruencije određene sa n_a kojoj pripada b.

Ako jednakost

$$f(a, x_2, \ldots, x_{\alpha}, \ldots) = g(a, x_2, \ldots, x_{\alpha}, \ldots),$$

važi na (a) i [a), tada:

$$f(b, x_2, ..., x_{\alpha}, ...) = g(b, x_2, ..., x_{\alpha}, ...),$$

važi na filtru $[\underline{b}]$ (odnosno za sve $x_2, \ldots, x_{\alpha} \in [\underline{b}]$).

Tvrdenje 1.24 Neka je a beskonačno distributivan elemenat mreže Lib pripada filtru (a). Ako je filmrežni zakon oblika:

$$\bigwedge_{i \in I} (b \vee f_1^i(x_1, \dots, x_{\alpha'}, \dots)) = \bigwedge_{j \in J} (b \vee f_2^j(x_1, \dots, x_{\alpha'}, \dots)),$$

i ako f važi za $x_1, \ldots, x_{\alpha}, \ldots \in [a)$, tada on važi za sve $x_1, \ldots, x_{\alpha}, \ldots \in L$. (I i J su proizvoljni indeksni skupovi).

Napomena 1.4. Mrežni zakoni u ovom tvrdenju su svi oni zakoni u kojima se sva pojavljivanja b javljaju isključivo uz operaciju V.

Dokaz. Analogno sa dokazom Tvrđenja 1.21.

Važi i dualno tvrđenje:

Tvrdenje 1.24' Neka je a beskonačno kodistributivan elemenat mreže L i b pripada idealu (a). Ako je f mrežni zakon oblika:

$$V_{i \in I}(b \wedge f_{1}^{i}(x_{1}, ..., x_{\alpha}, ...)) = V_{j \in J}(b \wedge f_{2}^{j}(x_{1}, ..., x_{\alpha}, ...)),$$

i ako f važi za $x_1, \ldots, x_{\alpha}, \ldots \in (a]$, tada on važi za sve $x_1, \ldots, x_{\alpha}, \ldots \in (a)$.

Twrdenje 1.25 Neka je a neutralan i neprekidan elemenat mreže L. Ako be[a] i mrežni zakon $f_1(b,x_1,\ldots,x_{\alpha},\ldots) = f_2(b,x_1,\ldots,x_{\alpha},\ldots)$ važi za $x_1,\ldots,x_{\alpha},\ldots$ e[a] i $f_1(a,x_1,\ldots,x_{\alpha},\ldots) = f_2(a,x_1,\ldots,x_{\alpha},\ldots)$ važi za $x_1,\ldots,x_{\alpha},\ldots$ e(a], tada $f_1(b,x_1,\ldots,x_{\alpha},\ldots) = f_2(a,x_1,\ldots,x_{\alpha},\ldots)$

 $f_2(b,x_1,\ldots,x_{\alpha},\ldots)$ važi za $x_1,\ldots,x_{\alpha},\ldots\in L$.

Dokaz. Analogno dokazu Tvrđenja 1.22.

Tvrdenje 1.25' Neka je a neutralan i neprekidan elemenat mreže L. Ako be(a] i mrežni zakon $f_1(b,x_1,\ldots,x_{\alpha},\ldots) = f_2(b,x_1,\ldots,x_{\alpha},\ldots)$ važi za $x_1,\ldots,x_{\alpha},\ldots$ e(a] i $f_1(a,x_1,\ldots,x_{\alpha},\ldots) = f_2(a,x_1,\ldots,x_{\alpha},\ldots)$ važi za $x_1,\ldots,x_{\alpha},\ldots$ e[a), tada $f_1(b,x_1,\ldots,x_{\alpha},\ldots) = f_2(b,x_1,\ldots,x_{\alpha},\ldots)$

1.11. KADA JE L PODMREŽA OD L? [106]

Neka je u sledećim tvrdenjima a kodistributivan elemenat mreže L, takav da klase kongruencije indukovane sa $m_a: x \to x \wedge a$ imaju najveće elemente. Kolekcija tih maksimalnih elemenata se označava sa M_a , i neka je za svako $x \in L$, \overline{x} odgovarajući elemenat iz M_a , odnosno, $m_a(x)=m_a(\overline{x})$.

Pošto je a kodistributivni elemenat mreže L, imamo da je $L=\bigcup ([a \land \overline{x}, \overline{x}] | x \in L),$

gde su intervali $[a \wedge x, x]$ klase kongruencije indukovane sa m_a .

Za proizvoljno be[a), neka je $L_b = \bigcup ([b \land \overline{x}, \overline{x}] \mid x \in L)$. L_b nije uvek i podmreža od L i sledeća tvrđenja daće neke dovoljne uslove pod kojima L_b jeste podmreža od L.

Ova tvrdenja primenjivaće se u poglavlju III pri utvrdivanju potrebnih i dovoljnih uslova za mrežu slabih kongruencija faktor algebre da bude podmreža mreže slabih kongruencija te algebre.

Tvrdenje 1.26 Neka je a modularan i komodularan elemenat mreže L, i neka je M podmreža od L. Ako je b kodistributivan elemenat u filtru L, tada je L podmreža od L.

Dokaz.

Neka u, v∈ U([bʌx̄, x̄] |x∈L). Tada u∈ [bʌȳ, ȳ] i v∈ [bʌz̄, z̄] za neke elemente y, z∈L, odnosno, bʌȳ≤u≤ȳ i bʌz̄≤v≤z̄. Sledi:

 $b_{\Lambda}\overline{y_{\Lambda}z} = b_{\Lambda}\overline{y_{\Lambda}z} \le u_{\Lambda}v \le \overline{y_{\Lambda}z} = \overline{y_{\Lambda}z},$

pa unve [bnynz, ynz].

Dalje je:

 $(b \wedge \overline{y}) \vee (b \wedge \overline{z}) \le u \vee v \le \overline{y} \vee \overline{z} = \overline{y} \vee \overline{z}$, posto je M podmreža od L.

Iz modularnosti elementa a u L i distributivnosti elementa b u [a), sledi da je:

Takođe važi i da je:

 $u \lor v \in [b \land (\overline{y} \lor \overline{z}), \overline{y} \lor \overline{z}].$

 $((b \wedge y) \vee (b \wedge z)) \wedge a = b \wedge (y \vee z) \wedge a$, jer je b≥a, i a je kodistributivan elemenat mreže L.

Pošto je a komodularan elemenat, sledi da je:

 $(b_N y) \vee (b_N z) = b_N(y \vee z) = b_N(y \vee z)$, odakle sledi da:

Tvrđenje 1.27 Neka je M podmreža od L, i be[a). Ako za y,zeL bvaži da je: $b \wedge (y \vee z) = (b \wedge y) \vee (b \wedge z)$ tada je L podmreža od L.

Dokaz. Neka $u, v \in L_b$, i $u \in [b \land \overline{y}, \overline{y}]$ i $v \in [b \land \overline{z}, \overline{z}]$ za neke elemente $y, z \in L$. Kao u prethodnom tvrdenju pokazuje se da $u \land v \in [b \land \overline{y} \land \overline{z}, \overline{y} \land \overline{z}]$, odnosno, $u \land v \in L_b$. Dalje, iz $b \land \overline{y} \leq u \leq \overline{y}$ i $b \land \overline{z} \leq v \leq \overline{z}$, sledi: $b \land (\overline{y} \lor \overline{z}) = b \land (\overline{y} \lor \overline{z}) = (b \land \overline{y}) \lor (b \land \overline{z}) \leq u \lor v \leq \overline{y} \lor \overline{z}$,

odakle sledi da je L_b podmreža od L.

1.12 DEFINICIJE NERAZLOŽIVIH ELEMENATA MREŽE I JOŠ NEKE DEFINICIJE IZ TEORIJE MREŽA [4,18,41]

U ovom delu date su definicije još nekih klasa specijalnih elemenata mreže, kao što su \wedge -nerazloživi, v-nerazloživi, elementi, itd., navedena su neka poznata tvrđenja reprezentacija mreže preko skupa njenih \wedge -(v-)nerazloživih elemenata, posebno distributivnih mreža.

U sledećim definicijama neka je L proizvoljna mreža, i a,b,c∈L.

Elemenat a je v-nerazloživ ako je različit od 0 (ako mreža ima 0)

i iz bvc=a sledi b=a ili c=a.

Elemenat a je ∧-nerazloživ ako je različit od 1 (ako mreža ima 1) i iz b∧c≈a sledi b≈a ili c=a.

Elemenat a je ∧-prost ako iz a≥b∧c sledi a≥b ili a≥c.

Elemenat a je v-prost ako iz a≤bvc sledi a≤b ili a≤c.

Elemenat a je **strogo ^-nerazloživ** ako skup svih x>a ima najmanji elemenat.

Lema 1.20 U distributivnoj mreži elemenat je ∧-nerazloživ ako i samo ako je ∧-prost.

Pošto će u pretpostavkama za neka od sledećih tvrđenja biti potrebni neki uslovi konačnosti, slede neke poznate definicije iz teorije mreža koje su u vezi sa tim.

Mreža L ima uslov opadajućih lanaca (descending chain condition-DCC) ako svaki njen neprazan podskup sadrži minimalni elemenat. Ovaj uslov je ekvivalentan sa sledećim: ne postoji beskonačan niz elemenata x_1, x_2, \ldots iz L takav da je $x_1 > x_2 > \ldots$

Dualno, mreža L zadovoljava uslov rastućih lanaca (ascending chain condition-ACC) ako svaki njen neprazni podskup sadrži maksimalni elemenat, ili ekvivalentno, ako ne postoji beskonačan niz x_1, x_2, \ldots elemenata iz L takav da je $x_1 < x_2 < \ldots$.

Mreža koja zadovoljava uslov rastućih lanaca zove se i Neterina mreža.

Analogne definicije važe i za parcijalno-uređene skupove.

Lema 1.21 U Neterinoj mreži L svaki elemenat se može izraziti u obliku neskrativog infimuma konačnog broja ∧-nerazloživih elemenata. ■

Važi i dualno tvrđenje.

Lema 1.21' U mreži L koja ispunjava uslov opadajućih lanaca svaki elemenat se može izraziti u obliku neskrativog supremuma konačnog broja v-nerazloživih elemenata.

Lema 1.22 Svaki elemenat u distributivnoj mreži ima najviše jedno predstavljanje u obliku neskrativog infimuma konačnog broja nerazloživih elemenata i najviše jedno predstavljanje u obliku neskrativog supremuma konačnog broja v-nerazloživih elemenata.

Posledica 1.1 Svaki elemenat u distributivnoj Neterinoj mreži jedinstveno se može predstaviti u obliku neskrativog konačnog infimuma \(\Lambda - \text{nerazloživih elemenata.} \)

Posledica 1.2 Svaki elemenat u distributivnoj mreži sa uslovom opadajućih lanaca jedinstveno se može predstaviti u obliku neskrativog konačnog supremuma v-nerazloživih elemenata.

Tvrđenje 1.28 U algebarskoj mreži L svaki elemenat može se predstaviti u obliku infimuma strogo A-nerazloživih elemenata.

1.13 O BIRKOFOVOJ TEOREMI REPREZENTACIJE [4, 18, 41]

U sledećem delu daje se karakterizacija proizvoljne mreže preko familije njenih A-nerazloživih elemenata (odnosno, preko familije ideala na parcijalno uređenom skupu njenih A-nerazloživih elemenata). Ovo tvrdenje je uopštenje Birkofove teoreme reprezentacije za distributivne mreže.

Dalje je razmatrana kolekcija mreža koje imaju isti parcijalno uređeni skup A-nerazloživih elemenata. Pokazano je da je ta kolekcija i sama mreža u odnosu na inkluziju, i ispitana su neka njena svojstva.

Napomena 1.5 Poznato je da je parcijalno uređeni skup v-nerazloživih elemenata distributivne mreže izomorfan parcijalno uređenom skupu
^-nerazloživih elemenata. Zato će se u sledećem delu paralelno koristiti i jedan i drugi taj parcijalno-uređeni skup.

Neka je (P,≤) parcijalno uređeni skup. Ideal je parcijalno uređeni skup I⊆P, takav da na njemu važi:

ako x∈I i y≤x onda i y∈I.

Ideal generisan elementom x, ili glavni ideal parcijalno uređenog skupa (P, \leq) , u oznaci (x) je skup $\{y | y \leq x\}$.

Dualno se definišu pojmovi filtra i glavnog filtra.

Neposredno se pokazuje da svi ideali parcijalno-uređenog skupa čine mrežu, koja je podmreža mreže ($\mathcal{P}(P), \cap, \cup$) (presek dva ideala i unija dva ideala su takođe ideali, a i skup P i \varnothing su po definiciji uvek ideali). Ta mreža svih ideala nekog parcijalno-uređenog skupa je očito distributivna mreža. Može se uočiti da su v-nerazloživi elementi te mreže baš glavni ideali (lako se pokazuje da se neki glavni ideal ne može prikazati u obliku unije dva druga ideala od koji su oba različita od tog glavnog ideala).

Dalje, na prirodan način može se uspostaviti izomorfizam između mreže tih ideala i mreže svih antiizotonih funkcija na parcijalno-uređenom skupu od koga smo krenuli. Neki ideal se, tim izomorfizmom preslikava na njegovu karakterističnu funkciju (za koju se pokazuje da je anti-izotona).

Iz ovih razmatranja može se izvesti poznata Teorema Birkhoffa.

Teorema 1.1 Neka je L distributivna mreža dužine n. Parcijalno uređeni skup X v-nerazloživih elemenata ima red n i L \cong $\mathbf{z}^{\overline{X}}$. Napomena 1.6 Ovde je $\mathbf{z}^{\overline{X}}$ skup svih izotonih funkcija na dualnom parcijalno-uređenom skupu od X, što predstavlja skup svih antiizotonih funkcija na X.

Posledica 1.3 Distributivna mreža L je izomorfna mreži ideala na
parcijalno uređenom skupu njenih v-nerazloživih elemenata.

U skladu sa Napomenom 1.5 ova posledica i gornje tvrđenje važi i za skup A-nerazloživih elemenata.

1.14 UOPŠTENJE TEOREME BIRKOFA

Dalje se može pokazati uopštenje Teoreme Birkofa za proizvoljnu mrežu konačne dužine.

Tvrdenje 1.29 Dat je parcijalno uređeni skup (X,≤) čiji su svi lanci konačni i neka je (I,⊆) mreža svih njegovih ideala. Neka je J⊆I takav da:

- (i) ako x,y∈J onda x∩y∈J
- (ii) X∈J
- (iii) svi glavni ideali od X pripadaju J ali nikada kao supremum familije elemenata iz J koja ne sadrži i taj ideal.

Tada je (J,⊆) mreža čiji je skup ∨-nerazloživih elemenata

izomorfan sa X.

Dokaz. Pošto je prema (i) i (ii) skup J zatvoren u odnosu na infimume i najveći elemenat mu pripada, on je mreža. Još treba pokazati da su glavni ideali od X takođe V-nerazloživi elementi i od J, i da J nema drugih V-nerazloživih elemenata.

Pretpostavimo da je neki neglavni ideal YeJ v-nerazloživi elemenat od J. To je nemoguće, jer je Y svakako unija nekih glavnih ideala, koji su svi u J, pa bi on bio supremum nekih elemenata različitih od njega samog.

Dalje, pretpostavimo da je Z neki glavni ideal od X, i treba pokazati da je Z v-nerazloživi elemenat od J. Ali, to je očigledno prema uslovu (iii), jer Z pripada J, ali nije supremum nekih drugih elemenata iz J različitih od njega samog.

Traženi izomorfizam između skupa (X,≤) i v-nerazloživih elemenata mreže J je takav da se svaki elemenat iz X preslikava u ideal koji generiše, i poredak je sa tim preslikavanjem saglasan, pa je to zaista izomorfizam.

Sledeće tvrdenje je uopštenje Teoreme reprezentacije Birkofa za proizvoljnu mrežu konačne dužine.

Tvrdenje 1.30 Neka je L proizvoljna mreža konačne dužine, i X skup njenih v-nerazloživih elemenata. Mreža L može se izomorfno preslikati u mrežu svih ideala nad skupom X, pri čemu se svaki v-nerazloživi elemenat preslikava u ideal generisan tim elementom, a proizvoljno $x=x_1 v \dots v_n$ (gde su x_i v-nerazloživi elementi) se preslikava u ideal generisan elementima x_1,\dots,x_n , tako da poredak ostaje očuvan.

Napomena 1.7 Razlaganje svakog elementa u obliku supremuma v-nerazloživih elemenata sledi iz Leme 1.21'.

Dokaz. Direktna posledica prethodnog tvrđenja.

Prethodna tvrdenja, kao što je rečeno važe analogno i za skup ^nerazloživih elemenata neke mreže.

1.15 O KOLEKCIJI SVIH MREŽA SA IZOMORFNIM SKUPOVIMA A-NERAZLOŽIVIH ELEMENATA [112]

Neka je (X, \leq) parcijalno uređeni skup konačne dužine i $\mathcal{L}(X)$ kolekcija mreža koje imaju X kao skup svojih \wedge -nerazloživih elemenata (odnosno, čiji je skup \wedge -nerazloživih elemenata izomorfan sa X). Prema Tvrđenju 1.30 svaka mreža iz familije $\mathcal{L}(X)$ može se predstaviti kao kolekcija ideala nad skupom X.-Posto je (prema Teoremi Birkofa) distributivna mreža izomorfna sa familijom svih izotonih funkcija iz X u 2, odnosno familijom ideala od X, sledi da kolekcija mreža $\mathcal{L}(X)$ ima najveći elemenat, i to je distributivna mreža koja ima X za parcijalno-uređeni skup \wedge -nerazloživih elemenata. Označimo tu, distributivnu mrežu sa $L_D(X)$. Iz prethodnog razmatranja sledi da se svaka mreža iz familije $\mathcal{L}(X)$ može posmatrati kao podskup od $L_D(X)$, pa $\mathcal{L}(X)$ odgovara parcijalno-uređenoj kolekciji ($\mathcal{L}(X)$, \leq) podskupova od $L_D(X)$. Međutim, može se primetiti da ni jedna mreža iz kolekcije $\mathcal{L}(X)$ nije podmreža mreže $L_D(X)$, jer među njima nema distributivnih.

Lema 1.23 Neka je (X, \leq) parcijalno uređeni skup konačne dužine i $L\in\mathcal{L}(X)$. Za svako $x\in X$ važi:

$$^{\Lambda}_{n}\{y\in X\mid x< y\}\in L,$$

gde je ^ infimum u mreži L_D.

Dokaz. Neka je $\bigwedge_L \{y \in X \mid x < y\}$ infimum u mreži L. Ovo je i elemenat mreže $L_n(X)$, pa važi da je:

$$x < \bigwedge_{x \in X} |x < y| \le \bigwedge_{x \in X} |x < y|$$
.

(x je n-nerazloživ elemenat u konačnoj mreži L, pa ne može biti jednak infimumu elemenata koji ne sadrže x), odakle sledi da je:

Neka u nastavku, za x \in X z $_x$ označava $^{\wedge}_{D}$ {y \in X| x<y $}$, odnosno, infimum u $L_{D}(X)$ (pa prema prethodnoj lemi i u ostalim mrežama u kolekciji $\mathcal{L}(X)$) svih $^{\wedge}$ nerazloživih elemenata iznad x. Ako je x maksimalni $^{\wedge}$ nerazloživ elemenat, neka tada z $_x$ označava x.

Lema 1.24 Ako za xeX važi da je $z_x \neq x$, tada važi da $z_x \rightarrow x$ (u $L_n(X)$) (gde je > relacija pokrivanja).

Dokaz. Ako ne bi važilo da $z_x \rightarrow x$, to bi značilo da postoji elemenat $a \in L_D(X)$ takav da $x < a < z_x$. Elemenat a nije α -nerazloživ, i manji je ili jednak od infimuma svih α -nerazloživih elemenata iznad njega, a pošto je z_x infimum svih α -nerazloživih elemenata iznad x, dobija se kontradikcija.

Lema 1.25 Neka je (X, \leq) parcijalno-uređeni skup konačne dužine i $L\in\mathcal{L}(X)$. Za sve x,y \in L važi da xv_ny \in L. (odnosno, xv_Ly = xv_Dy).

Dokaz. Ako je xv_py \land -nerazloživ elemenat, tada on svakako pripada mreži L. Ako to nije slučaj tada postoje elementi $a,b\in L_p(X)$ takvi da ax_py i bx_py . Sledi da je $ax_pb = xv_py$. Postoje elementi $x_1,\ldots,x_n,y_1,\ldots,y_m$ iz X takvi da je $a=\bigwedge_D x_i$ i $b=\bigwedge_D y_j$. Pošto je $\bigwedge_{L = i} x_i \times X_i$

$$^{\Lambda}_{L_{i}^{\Lambda}}^{\Lambda}_{L_{i}^{\Lambda}}^{\Lambda}_{L_{j}^{\Lambda}} \geq x \vee_{L_{i}^{\Lambda}}^{\Lambda}$$

Dalje važi da je:

$$x \vee_{D} y = \bigwedge_{D} X_{i} \wedge_{D} \bigwedge_{D} Y_{i} \ge \bigwedge_{L} X_{i} \wedge_{L} \bigwedge_{L} Y_{i} \ge x \vee_{L} y.$$

Pošto uvek važi da je $xv_D y \le xv_L y$, važi da je $xv_D y = xv_L y$, odnosno $xv_D y \in L$.

Napomena 1.8 Ovo tvrđenje može se izvesti i iz tvrđenja dualnog

Tvrđenju 1.29.

Sa X' označimo skup X $\cup \{z_x | x \in X\} \cup \{y \in L_D(X) | y = \bigvee_D X_i, \text{ gde je } X_i \subseteq X\},$ gde je (X, \leq) parcijalno uređeni skup i $L_D(X)$ odgovarajuća distributivna mreža.

Sledeće tvrdenje dokazuje da svaka kolekcija (£(X),⊆) ima najmanji elemenat.

Tvrđenje 1.31 Za parcijalno uređeni skup (X, \leq) konačne dužine postoji najmanji elemenat $L_{m}(X)$ kolekcije $(\mathcal{L}(X), \subseteq)$, gde je:

$$L_{\mathbf{m}}(X) = (X' \cup \{0, 1\}, \leq)$$

(≤ je uređenje iz $L_n(X)$).

Dokaz. Prema Lemi 1.23 za svaku mreżu $L\in\mathcal{L}(X)$, i svako $x\in X$, $z_x\in L$. Po konstrukciji svi supremumi (u $L_D(X)$) elemenata iz X su u svakoj mreżi L. Iz Tvrdenja o reprezentaciji mreze preko kolekcije ideala (Tvrdenja 1.30) sledi da 0 i 1 iz $L_D(X)$ pripadaju svakoj mreżi te kolekcije. Sledi da se $X'\cup\{0,1\}$ nalazi u preseku svih mreża kolekcije L(X). Dalje se pokazuje da je skup $X'\cup\{0,1\}$ zatvoren u odnosu na supremume iz $L_D(X)$. Prema Lemi 1.25 to vażi za dva elementa iz X. Prema Lemi 1.24 ako je jedan elemenat oblika z_x , za $x\in X$, tada je $z_x \vee y = x \vee y$, za svako y koje nije uporedivo sa z_x (ako je uporedivo, supremum se svakako nalazi u tom skupu). Odatle sledi da supremum svaka dva elementa (u $L_D(X)$) iz $X'\cup\{0,1\}$ ponovo pripada tom skupu.

Znači da $L_m(X)$ sadrži najmanji elemenat (0), i njegova svaka dva elementa imaju supremum u odnosu na poredak u $L_m(X)$, pa je $L_m(X)$ mreža, a pošto je sadržana u svakoj mreži familije $\mathcal{L}(X)$, ona je najmanja mreža te familije.

U sledećem razmatranju daće se opis proizvoljne mreže iz kolekcije $\mathfrak{L}(X)$.

Neka je $\{X, \leq\}$ parcijalno-uređeni skup konačne dužine, $\mathcal{L}(X)$ odgovarajuća kolekcija mreža, $L_p(X)$ najveća , a $L_m(X)$ najmanja mreža u

toj kolekciji, $X' = X \cup \{z_x | x \in X\} \cup \{y \in L_p(X) | y = v_p X_i, \text{gde je } X_i \leq X\}$, i $Y(X) = L_p(X) \setminus L_m(X)$ (razlika u skupovnom smislu). Y(X) je podskup od $L_p(X)$ i može biti jednak i praznom skupu, u kom slučaju kolekcija $\mathcal{L}(X)$ sadrži samo jednu, i to distributivnu mrežu.

Tvrdenje 1.32 Neka je (X, \leq) parcijalno uređeni skup konačne dužine, i $L\subseteq L_D(X)$, $L\neq\emptyset$. (L,\leq) je (u odnosu na uređenje \leq u $L_D(X)$) mreža iz familije $\mathscr{L}(X)$ ako i samo ako je $L=L_D(Z)$, gde je $Z\subseteq Y(X)$ i iz $x,y\in Z\cup X'$ i $x\vee_D y\in Y$ sledi da $x\vee_D y\in L$.

Dokaz. (\longrightarrow)

Ako Le $\mathcal{L}(X)$, tada je ona očigledno jednaka sa L $_{\mathbf{m}} \cup Z$, za neko $Z \subseteq Y$. Prema Lemi 1.25 L je zatvorena u odnosu na supremume iz L $_{\mathbf{D}}$ i traženi uslov je ispunjen.

(←—)

Sa druge strane pretpostavimo da je $L=L_m \cup Z$ za proizvoljan skup $Z\subseteq Y$ i da iz $x,y\in Z\cup X'$ i $x\vee_D y\in Y$ sledi da $x\vee_D y\in L$. Odatle sledi da je (L,\subseteq) zatvoreno u odnosu na supremume iz L_D , i pošto ima i najmanji elemenat (L,\subseteq) je mreža, koja, po konstrukciji ima X za skup njenih \wedge -nerazloživih elemenata.

Prethodno tvrdenje daje algoritam za konstrukciju proizvoljne mreže iz kolekcije $\mathcal{L}(X)$. Naime, znajući parcijalno-uređeni skup X, možemo, dodavanjem traženih supremuma i infimuma dobiti parcijalno uređeni skup X', i mrežu $L_{\mathbf{m}} = X' \cup \{0,1\}$. Dalje je $Y = L_{\mathbf{D}} \cup L_{\mathbf{m}}$. Tvrđenje 1.28 nam kaže dodavanjem kojih podskupova od Y na $L_{\mathbf{m}}$ dobijamo mreže iz kolekcije $\mathcal{L}(X)$. U sledećem tvrđenju pokazuje se da je $(\mathcal{L}(X), \subseteq)$ mreža.

Tvrdenje 1.33 Za parcijalno uređen skup konačne dužine (X, \leq) , $(\mathcal{L}(X), \leq)$ je mreža (u odnosu na skupovnu inkluziju).

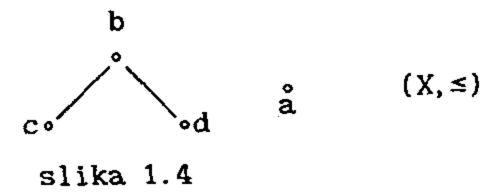
Dokaz. (£(X),⊆) ima najveći elemenat, i to je distributivna

mreža L_D . Takođe, skup $\mathcal{L}(X)$ je zatvoren u odnosu na preseke. Naime, ako su L_i i L_2 dve mreže iz $\mathcal{L}(X)$, tada je $L_1 \cap L_2$ takođe mreža iz kolekcije, jer je $L_1 \cap L_2$ neprazan skup, sadrži elemenat 0, i zatvoren je u odnosu na supremume, prema Tvrđenju 1.32.

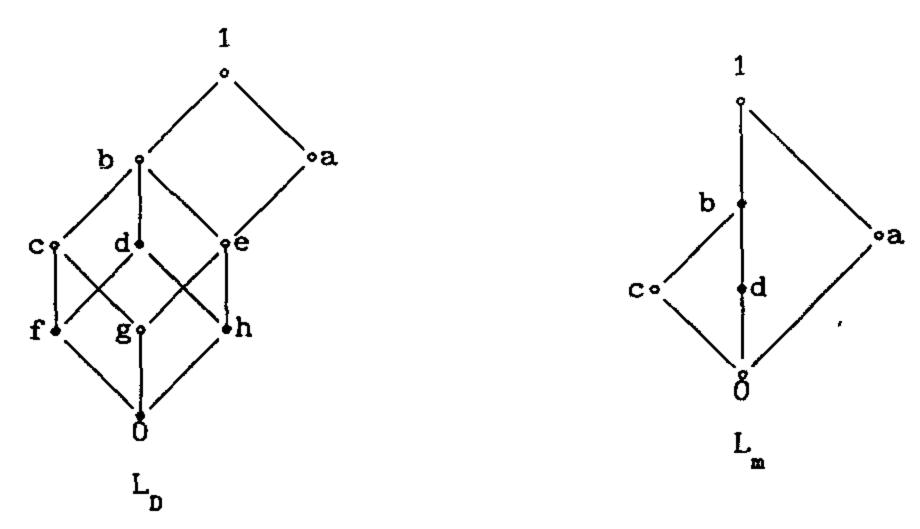
U sledećem primeru data je konstrukcija mreže $\pounds(X)$ za jedan parcijalno-uređen skup X.

Primer 1.4

Dat je parcijalno-uređeni skup (X,≤) na slici 1.4

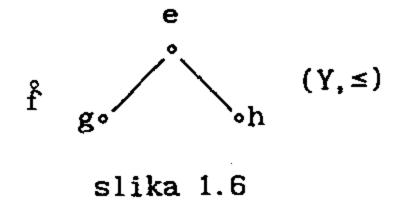


Najveća (distributivna) mreža, i najmanja mreža iz kolekcije $\mathcal{L}(X)$ su sledeće:



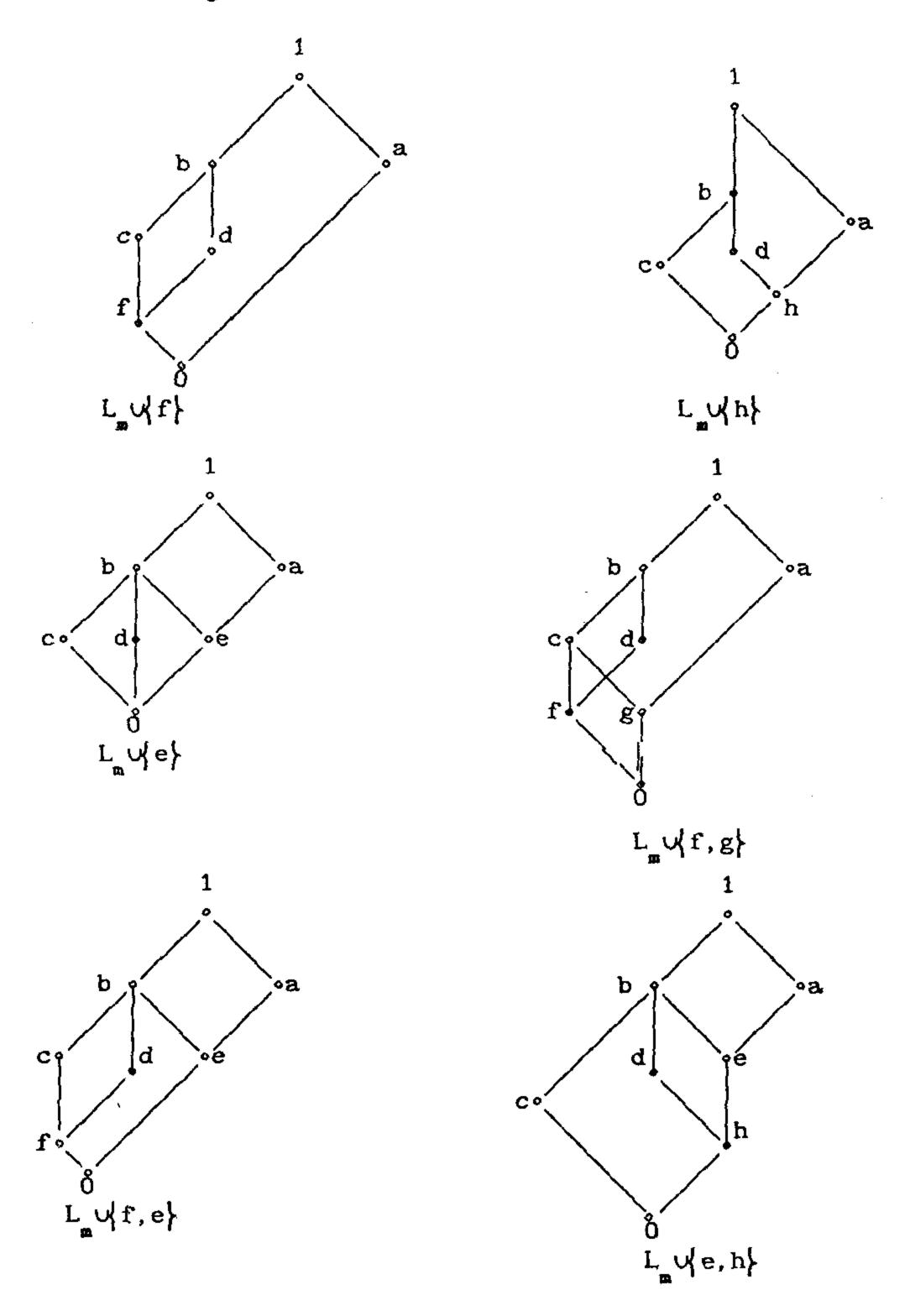
slika 1.5

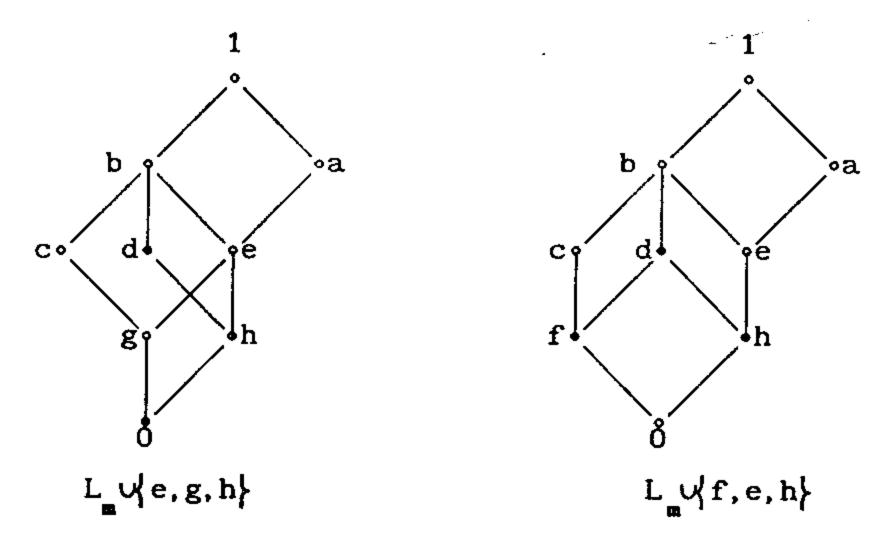
tako da je Y sledeći parcijalno-uređeni skup:



Prema Tvrdenju 1.32, mreže iz kolekcije $\mathcal{L}(X)$ dobijaju se kada se mreži L_m dodaju podskupovi skupa Y koji zadovoljavaju uslove tog tvrdenja, i to su: \emptyset , $\{f\}$, $\{g\}$, $\{h\}$, $\{e\}$, $\{f,g\}$, $\{f,h\}$, $\{f,e\}$, $\{e,g\}$,

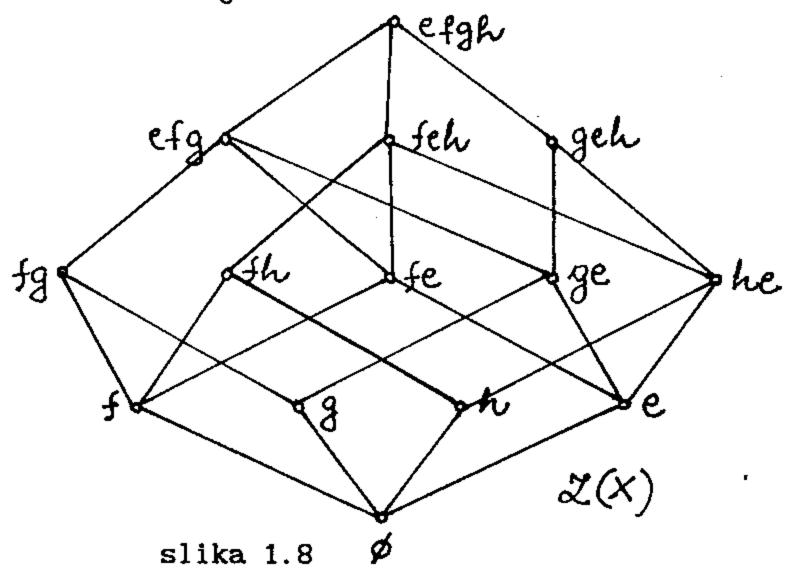
 $\{e,h\}$, $\{f,g,e\}$, $\{f,e,h\}$, $\{g,e,h\}$, $\{e,f,g,h\}$. Pored L $_D$ i L $_m$ neizomorfne mreže iz kolekcije $\mathcal{L}(X)$ su:





slika 1.7

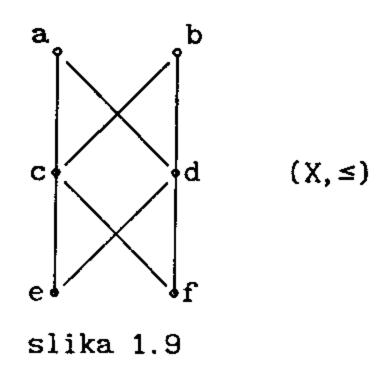
 $L_m \vee g$ je izomorfno sa $L_m \vee f$, h je izomorfno sa $L_m \vee f$, g, $L_m \vee e$, g je izomorfno sa $L_m \vee e$, h i $L_m \vee e$, f, g je izomorfno sa $L_m \vee f$, e, h, tako da u familiji $\mathcal{L}(X)$ ima ukupno 14 elemenata, i $(\mathcal{L}(X), \subseteq)$ je mreža na sledećoj slici:



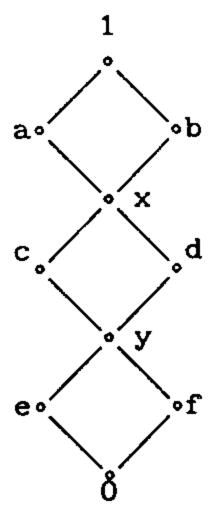
U sledećem primeru dat je parcijalno-uređeni skup za koji je $L_{m} = L_{D}^{-}, \text{ pa je familija } \pounds(X) \text{ jednočlana}.$

Primer 1.5

Na slici predstavljen je parcijalno-ureden skup (X,≤):



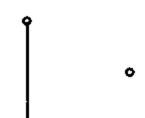
čija je mreža $L_{_{D}}$ i $L_{_{m}}$ na slici 1.10.



slika 1.10

pa je, prema tome mreža $\mathcal{L}(X)$ jednočlana.

Sledeće tvrđenje daje potreban i dovoljan uslov za parcijalno uređeni skup (X, \leq) da bi njegova mreža $(\mathcal{L}(X), \subseteq)$ bila jednočlana. Tvrđenje 1.34 $(\mathcal{L}(X), \subseteq)$ je jednoelementna mreža ako i samo ako (X, \leq) ne sadrži tri neuporediva elementa, niti podgraf, kao na slici 1.11.



slika 1.11

Napomena 1.9 Može se uočiti da su parcijalno uređeni skupovi koji zadovoljavaju ovaj uslov ili lanci, ili se sastoje samo od dva neuporediva elementa, ili su analogna parcijalnom uređenju na slici 1.9.

Dokaz. (←—)

Pretpostavimo da (X, \leq) ne sadrži tri neuporediva elementa, niti podgraf sa slike. Ono što se dokazuje je da je L_m distributivna mreža, pa je tada $L_m=L_D$, odnosno, $\mathcal{L}(X)$ je jednoelementna mreža. Dokaz se izvodi indukcijom po dužini parcijalno-uređenog skupa (dužini najdužeg lanca u X). Za d=1 X je ili jednočlan, a mreža L_m je tada \hat{l} , pa je distributivna, ili se sastoji od dva neuporediva

elementa • •, pa je L Bulova algebra: •()•, znači $L_m = L_p$.

$$\sim$$
, znači $L_m = L_p$

Pretpostavi se da tvrdenje važi za parcijalno uređene skupove sa dužinom manjom od n elemenata, i dokazuje se za d=n. Mogući su sledeći slučajevi:

a) X ima jedan maksimalni elemenat m, a X m ima dva maksimalna elementa, što je prikazano na slici: xº oy.

Po induktivnoj pretpostavci minimalna mreža koja ima za parcijalno-uređeni skup svojih ~-nerazloživih elemenata skup X < m } (L'je distributivna, i po konstrukciji je oblika:x. L'. y. Mreža L se može dobiti (po konstrukciji za minimalnu mrežu familije £(X) na sledeći način: x m y. To je mreža izomorfna mreži L', sa dodatkom

jednog elementa prema gore, pa pošto je L' distributivna mreža i L je distributivna mreža.

- X ima jedan maksimalni elemenat m, a X m ima jedan maksimalni elemenat: •x. Na sličan način kao u prethodnom slučaju, po induktivnoj pretpostavci mreža L' (minimalna mreža familije $\mathcal{L}(X \backslash \{m\})$) je distributivna. L se dobija od L' dodavanjem jednog elementa, slično kao za slučaj pod a), pa je i L distributivna.
- c) X ima dva maksimalna elementa m_1 i m_2 , a $X \setminus \{m_1, m_2\}$ ima jedan maksimalan elemenat, kao na sledećoj slici: "1°, /° "2. Tada je L' (minimalna mreža familije $\mathcal{L}(X \setminus m_1, m_2)$) distributivna, a po konstrukciji L_m se dobija od L'_m na sledeći način: $m_1 \circ m_2$, gde je mreža $L_m < 1, m_1, m_2$ izomorfna sa L'_m , a kako je L'_m po induktivnoj pretpostavci distributivna mreža, tada je i L_ distributivna mreža.
- X ima dva maksimalna elementa m_1 i m_2 , a $X \setminus \{m_1, m_2\}$ takođe ima dva maksimalna elementa, pa prema uslovima iz tvrđenja X

izgleda kao na slici $x_1 imes x_2 imes x_2$. Mreža L' (kao u prethodnim slučajevima) je distributivna, a mreža L se dobija od mreže L' na sledeći način: $x_1 imes x_2 imes x_3 imes x_4 imes x_4 imes x_5 ime$

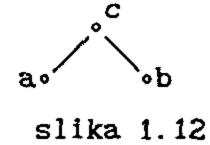
Ovim su ispitane sve mogućnosti, jer X ne sadrži tri neuporediva elementa, niti podgraf datog oblika.

(—→)

Pretpostavimo da X sadrži ili tri neuporediva elementa, ili podgraf o. Lako se može utvrditi, ispitujući sve mogućnosti, da L sadrži kao podmrežu pentagon, ili dijamant, što znači da L nije distributivna mreža, pa kolekcija £(X) sadrži bar dva elementa.

Sledeće tvrđenje govori o tome kada je £(X) Bulova mreža

Tvrđenje 1.35 Mreža $(\mathcal{L}(X), \leq)$ ima maksimalan broj elemenata $(2^{|Y|})$ elemenata ako i samo ako $(Y \cup X', \leq)$ ne sadrži podgraf kao na slici 1.12,



pri čemu su bar b i c u Y.

Napomena 1.10 Može se uočiti da je mreža $\mathcal{L}(X)$ u tom slučaju Bulova mreža.

Dokaz. Prema Tvrdenju 1.32 svaki podskup Z od Y određuje jednu mrežu L iz $\mathcal{L}(X)$ ako i samo ako je L=L \cup Z, gde je $Z\subseteq Y(X)$ i iz $x,y\in Z\cup X'$ i $x\vee_D y\in Y$ sledi da $x\vee_D y\in L$. Ovaj uslov je ispunjen ako i samo ako se podgraf na slici ne javlja u $Y\cup X'$, čime je tvrđenje dokazano.

SPECIJALNI ELEMENTI BIPOLUMREŽE

2.1 UVOD I OSNOVNE DEFINICIJE O BIPOLUMREŽAMA [2,60,74,82,89,92]

U prethodnom poglavlju ispitivani su neki specijalni elementi mreže sa ciljem da se čitav mrežni zakon (distributivnost, modularnost itd.) zameni odgovarajućim svojstvom samo jednog elementa. Specijalni elementi ne zahtevaju uvek razmatranje svih svojstava mreže. Prirodno je zato takve elemente razmatrati i na slabijoj algebarskoj strukturi od same mreže.

Jerzy Plonka je 1967. godine uveo pojam kvazi mreže, kao algebre $A=(A,+,\cdot)$ sa dve binarne operacije, na kojoj važe idempotentni, komutativni i asocijativni zakon za obe operacije (odnosno i (A,+) i (A,\cdot) su polumreže). Ako važe i oba distributivna zakona, takva algebarska struktura nazvana je distributivna kvazi

mreža. Kvazi mreža je generalizacija pojma mreže, a distributivna kvazi mreža je generalizacija pojma distributivne mreže (kvazi mreža na kojoj važi zakon apsorpcije je mreža).

R. Padmanabhan je 1971. kvazimrežu nazvao bipolumreža (bi-semilattice), a bipolumrežu (A,+,•) koja ispunjava sledeće:

x+y=x implicira x•z+y•z=x•z i

 $x \cdot y = x$ implicira $(x+z) \cdot (y+z) = x+z$,

nazvao je kvazimreža.

On je pokazao da su kvazimreže jednakosno definibilne identitetima za bipolumreže, i

$$(x+y)\cdot z + y\cdot z = (x+y)\cdot z;$$

 $(x \cdot y + z) \cdot (x + z) = x \cdot y + z.$

Bipolumreža (A,+,*) na kojoj važi identitet:

 $x+y\cdot x = (x+y)\cdot x,$

nazvana je Birkofov sistem.

Za bipolumrežu (A,+,•) mogu se definisati dva parcijalna uređenja:

x≤ y akko x•y=x

x≤_y akko x+y=y.

Ana Romanowska je u [89], bipolumrežu sa distributivnim zakonom:

$$x \cdot (y+z) = x \cdot y + x \cdot z,$$

nazvala ·-distributivna bipolumreža, a onu sa zakonom

$$(x+y)\cdot(x+z) = x+y\cdot z,$$

je nazvala +-distributivna bipolumreža.

Bilanac je bipolumreža (A,+,*) u kojoj su i (A,+) i (A,*) lanci.

Tačkasta •-polumreža (A,•,0) je •-polumreža (A,•) sa elementom O koji ima osobinu da je za svako x∈V, O≤ x.

Tačkasta bipolumreža (A,+, .,0) je bipolumreža (A,+,.), gde

je (A,•,0) tačkasta •-polumreža sa svojstvom 0≤₊x, za svako x∈A.

Ove definicije uvedene su u radu [92]. U nastavku će se tačkasta bipolumreža nazivati bipolumreža sa nulom, a bipolumreža $(A, +, \cdot)$ u kojoj postoji elemenat 1, za koji važi: $x \le 1$ i $x \le 1$ za svako $x \in A$, zvaće se bipolumreža sa jedinicom.

Filter F u bipolumreži (A,+,•) je neprazan podskup od A za koji važi:

ako x∈F i x≤y, onda i y∈F;

ako $x, y \in F$, onda i $x \cdot y \in F$.

Ako je $F \neq A$, i iz x+y $\in F$ sledi da x $\in F$ ili y $\in F$, onda je F prosti filter.

Ideal i prosti ideal se definisu analogno.

Ako je (A,+,•) bipolumreža, i S⊆A, filter generisan skupom S je najmanji filter koji sadrži S, a to je

 $\{y \in A \mid y \ge x_1 \cdot ... \cdot x_n, \text{ za neke elemente } x_i \in S\}.$

Filter generisan elementom x je $[x]=\{y|y\geq x\}$, i obeležava se sa [x).

Filter generisan jednim elementom naziva se glavni filter.

Analogno se definišu ideal generisan nekim skupom, i glavni ideal. Glavni ideal generisan elementom x je (x]={y|y≤x}.

Može se primetiti da ideal, odnosno filter nije u opštem slučaju i podbipolumreža, jer ne moraju biti zatvoreni u odnosu na drugu operaciju.

Dualno se definišu filter, odnosno ideal u odnosu na drugu operaciju, i obeležavaju se sa $[x)_+$ i $(x]_+$.

2.2 DEFINICIJE I OSOBINE SPECIJALNIH ELEMENATA BIPOLUMREŽE

U ovom poglavlju definisaće se i ispitivati specijalni elementi bipolumreže, i raznih klasa bipolumreže koji se ovde uvode analogno specijalnim elementima mreže, i daće se neka osnovna tvrđenja

o tim elementima, i neke teoreme reprezentacije bipolumreže preko direktnih proizvoda nekih filtara (ideala) generisanih tim specijalnim elementima.

Neka je (A,+,•) bipolumreža, i a∈A.

Kazaćemo da je elemenat a distributivan ako za sve x i y iz L važi:

$$a+(x\cdot y) = (a+x)\cdot (a+y).$$

Elemenat a je kodistributivan ako za sve x i y iz L važi:

$$a \cdot (x+y) = (a \cdot x) + (a \cdot y),$$

Elemenat a je beskonačno distributivan ako za svaku familiju $\big\{ x, \, \big| \, i \! \in \! I \big\} \text{ elemenata iz } L$

$$a + \prod_{i \in I} x_i = \prod_{i \in I} (a + x_i).$$

Elemenat a je beskonačno kodistributivan ako za svaku familiju $\left\{ x_i \, \big| \, i \in I \right\} \, \text{elemenata iz } L$

$$\mathbf{a} \cdot \sum_{\mathbf{i} \in \mathbf{I}} \mathbf{x}_{\mathbf{i}} = \sum_{\mathbf{i} \in \mathbf{I}} (\mathbf{a} \cdot \mathbf{x}_{\mathbf{i}}).$$

Elemenat a je standardan ako za sve x,y∈L važi:

$$x \cdot (a+y) = (x \cdot a) + (x \cdot y).$$

Elemenat a je kostandardan ako za sve x,y∈L važi:

$$x+(a\cdot y) = (x+a)\cdot (x+y).$$

Elemenat a je neutralan ako za sve x,y∈L važi:

$$(a \cdot x) + (x \cdot y) + (y \cdot a) = (a + x) \cdot (x + y) \cdot (y + a).$$

Lema 2.1 Neka je (A,+,•) bipolumreža i x,y,z,t∈A.

- (i) x•y≤_ax.
- (ii) x≤₊x+y.
- (iii) Ako je x≤,y i x≤,z, onda je x≤ y•z.
- (iv) Ako je $y \le x$ i $z \le x$, onda je $y + z \le x$.
- (v) Ako je x≤ y i z≤ t, tada je x•z≤ y•t.
- (vi) Ako je $x \le y$ i $z \le t$, tada je $x + z \le y + t$.

Dokaz. Sledi jednostavno iz definicija poretka. Na primer,

- (v) $x \le y$ je ekvivalentno sa $x \cdot y = x$, a $z \le t$ je ekvivalentno sa $z \cdot t = z$. Odatle sledi $x \cdot y \cdot z \cdot t = x \cdot z$, što je ekvivalentno sa $x \cdot z \le y \cdot t$.
- Lema 2.2 Ako je x kodistributivan elemenat bipolumreže (A,+,·) tada iz y≽,x i z≽,x, sledi y+z≽,x.

Dokaz. Iz $y \cdot x = x$ i $z \cdot x = x$ sledi $y \cdot x + z \cdot x = x$, pa pošto je x kodistributivan, sledi da je $(y+z) \cdot x = x$, odnosno, $y+z \geqslant x$.

Lema 2.3 Ako je x distributivan elemenat bipolumreže (A,+,•)
tada iz x≥,y i x≥,z sledi x≥,y•z.

Dokaz. Dualno prethodnoj lemi.

Lema 2.4 Nula i jedinica su uvek distributivni i kodistributivni elementi u bipolumreži, nula je uvek standardan elemenat, a jedinica kostandardan.

Dokaz. Direktno prema definicijama.

Tvrdenje 2.1 Ako je a kodistributivan elemenat bipolumreže (A,+,•) tada je filter (a), podbipolumreža bipolumreže A.

Dokaz. Ako $x,y \in [a]$, tada očito $x+y \in [a]$, i $x\cdot y \in [a]$, što sledi iz Leme 2.2.

Važi i dualno tvrdenje:

Tvrdenje 2.2 Ako je A distributivan elemenat bipolumreže (A,+,.), tada je ideal (a], podbipolumreža bipolumreže A.

- Tvrdenje 2.3 Neka je (A,+,•) bipolumreža, i a∈A. Tada su sledeći uslovi ekvivalentni:
 - (i) a je distributivan elemenat i filter [a]. je podbipolumreža;

(ii) filter [a), je podbipolumreža za $(A,+,\cdot)$ i preslikavanje $f:A \rightarrow [a)$, definisano sa f(x)=a+x je homomorfizam bipolumreže A na taj filter .

Dokaz. (i) \longrightarrow (ii)

Prema $u \in lovu$ (i) , filter [a], je podbipolumreža, pa je definisano preslikavanje homomorfizam bipolumreža. Takođe za $x \in A$ sledi da $f(x) \in [a]$ (što sledi iz Leme 2.1 (i)). Dalje je, koristeći distributivnost elementa a:

$$f(x+y) = a+(x+y) = (a+x)+(a+y) = f(x)+f(y);$$
 $f(x+y) = a+(x+y) = (a+x)+(a+y) = f(x)+f(y).$
 $(ii) \rightarrow (i)$

a+(x+y) = f(x+y) = f(x)+f(y) = (a+x)+(a+y), jer je f homomorfizam.

Tvrđenje 2.4 Ako je a distributivni elemenat bipolumreže $(A,+,\cdot)$ tada je binarna relacija ρ_a na A definisana sa:

$$x\rho_y$$
 akko $a+x = a+y$

relacija kongruencije na bipolumreži.

Dokaz. Ako je $x\rho_a y$ i $z\rho_a t$, odnosno, a+x=a+y i a+z=a+t, tada je: a+x+a+z=a+y+a+z, odnosno, a+(x+z)=a+(y+z), tj. $(x+z)\rho_a (y+t)$, kao i: $a+(x\cdot z)=(a+x)\cdot(a+z)=(a+y)\cdot(a+t)=a+(y\cdot t)$, tj. $(x\cdot z)\rho_a (y\cdot t)$, znači ρ_a je kongruencija.

Tvrdenje 2.5 Data je bipolumreža $(A, +, \cdot)$. Ako je binarna relacija ρ_a na A definisana sa: $x\rho_a y$ akko a+x=a+y, relacija kongruencije, tada važi sledeće: $a+(x\cdot y)=a+((a+x)\cdot (a+y))$, za sve $x,y\in A$.

Dokaz. Iz a+(a+x)=a+x sledi $(a+x)\rho_a x$. Na isti način se dobija i $(a+y)\rho_a y$. Odatle sledi $((a+x)\cdot (a+y))\rho_a (x\cdot y)$, pa je $a+(x\cdot y)=a+((a+x)\cdot (a+y))$, što je i trebalo dokazati.

Sledeće tvrđenje je dualno Tvrđenju 2.3.

Tvrđenje 2.6 Neka je (A,+,•) bipolumreža, i a∈A. Tada su sledeći uslovi ekvivalentni:

(i) a je kodistributivan elemenat; i ideal (a]+ ji podpibolumreža j

(ii) ideal (a) je podbipolumreža za $(A,+,\cdot)$ i preslikavanje $f:A\longrightarrow (a)$, definisano sa $f(x)=a\cdot x$ je homomorfizam bipolumreže A na taj ideal.

Sledece tvrđenje je dualno Tvrđenju 2.4:

Tvrđenje 2.7 Ako je a kodistributivan elemenat bipolumreže (A,+,•) tada je binarna relacija ρ na A definisana sa:

$$x\rho_a y$$
 akko $a \cdot x = a \cdot y$

je relacija kongruencije na bipolumreži.

Lema 2.5 Neka je (A,+,•) proizvoljna bipolumreža. Skup svih distributivnih elemenata bipolumreže A je zatvoren u odnosu na operaciju +, i dualno skup svih kodistributivnih elemenata bipolumreže A je zatvoren u odnosu na •.

Dokaz.

Neka su a i b distributivni elementi bipolumreže A, odnosno, $a+(x\cdot y) = (a+x)\cdot (a+y) \text{ i } b+(x\cdot y) = (b+x)\cdot (b+y) \text{ za sve } x,y\in A. \text{ Tada je:}$ $(a+b)+(x\cdot y) = a+(b+(x\cdot y)) = a+((b+x)\cdot (b+y)) = ((a+b)+x)\cdot ((a+b)+y), \text{ odnosno i } a+b \text{ je distributivni elemenat.}$

Kod mreža važi da za svaki standardni elemenat, kao i za svaki neutralni elemenat važi zakon skraćivanja (Leme 1.2 i 1.3 iz I poglavlja). To kod bipolumreža nije slučaj, pa se može definisati elemenat za koji to važi:

Elemenat a bipolumreže (A,+,•) je **skrativ** ako za njega važi: iz a•x=a•y i a+x=a+y sledi x=y, za sve x,y∈A.

U sledećem primeru elemenat b je distributivan, kodistributivan, standardan, kostandardan, i neutralan, ali on nije skrativ.

potapanje.

Dokaz. (\longrightarrow)

Iz distributivnosti i kodistributivnosti elementa a i Tvrdenja 2.1 i 2.2 sledi da su ideal (a), i filter [a), podbipolumreže, pa je [a]×(a], kao direktan proizvod dve bipolumreže i sama bipolumreža.

Neka xeA. Tada $g(x) \in [a]_x(a]_y$, jer je $a \le x+a$, pa $x+a \in [a]_y$, i $x \cdot a \le a$, pa $x \cdot a \in [a]_y$. Dalje je:

 $g(x+y) = (x+y+a, (x+y)\cdot a) = ((x+a)+(y+a), (x\cdot a)+(y\cdot a)) =$ $(x+a, x\cdot a)+(y+a, y\cdot a) = g(x)+g(y);$

 $g(x \cdot y) = (x \cdot y + a, (x \cdot y) \cdot a) = ((x + a) \cdot (y + a), (x \cdot a) \cdot (y \cdot a)) = (x + a, x \cdot a) \cdot (y + a, y \cdot a) = g(x) \cdot g(y).$

Preslikavanje je injektivno, jer iz g(x)=g(y), što je ekvivalentno sa $(x+a, x\cdot a)=(y+a, y\cdot a)$, sledi x+a=y+a i $x\cdot a=y\cdot a$, odakle iz skrativosti elementa a sledi da je x=y.

(-----)

Neka je preslikavanje $g:A \rightarrow [a]_{\times}(a]_{\downarrow}$ definisano sa $g(x)=(x+a, x\cdot a)$ potapanje. Iz g(x+y)=g(x)+g(y) sledi:

 $(x+y+a, (x+y)\cdot a) = (x+a, x\cdot a)+(y+a, y\cdot a) =$

 $((x+a)+(y+a),(x\cdot a)+(y\cdot a))$, odakle zbog jednakosti uređenih parova sledi da je $(x+y)\cdot a = (x\cdot a)+(y\cdot a)$, što važi za sve $x,y\in A$, odnosno, a je kodistributivan elemenat.

Dualno, iz g(x+y)=g(x)+g(y) sledi da je a distributivan elemenat.

Pošto je g injektivno preslikavanje, iz g(x)=g(y), odnosno (x+a, x•a)=(y+a, y•a) sledi x=y, što znači da je a skrativ elemenat.

2.4 DEFINICIJE I KARAKTERIZACIJA APSORPTIVNIH ELEMENATA BIPOLUMREŽE

U bipolumreżama ne vaże apsorptivni zakoni. Da bi se pokazala neka svojstva nekih klasa bipolumreża u vezi sa prethodno definisanim specijalnim elementima, potrebno je uvesti nekoliko novih tipova specijalnih elemenata, koji nemaju analogone kod mreża, a u vezi su sa apsorptivnim zakonima. Uvodimo zato sledeće definicije:

Neka je (A,+,•) bipolumreža, i a∈A.

Elemenat a je +-apsorptivan ako za svako xeA važi: a+(x·a)=a.

Elemenat a je ·-apsorptivan ako za svako xeA važi: a·(x+a)=a.

Elemenat a je +-koapsorptivan ako za svako x∈A važi: x+(a·x)=x.

Elemenat a je ·-koapsorptivan ako za svako xeA važi: x·(a+x)=a.

Elemenat a je skoro apsorptivan ako za svako xeA važi: a+(x·a)=(a+x)·a.

Elemenat a je skoro koapsorptivan ako za svako x∈A važi: x+(a•x)=(x+a)•x.

Elemenat a koji je ·-apsorptivan i +-apsorptivan je apsorptivan.

Elemenat a koji je •-koapsorptivan i +-koapsorptivan je koapsorptivan.

- Lema 2.6 U bipolumreži (A,+, •) za a∈A važi sledeće:
 - (i) Ako je a distributivan, tada je a skoro apsorptivan.
 - (ii) Ako je a kodistributivan, tada je a skoro apsorptivan.

- (iii) Ako je a standardan, tada je a skoro apsorptivan.
- (iv) Ako je a kostandardan, tada je a skoro apsorptivan.
- (v) Ako je a neutralan, tada je a skoro apsorptivan.

Dokaz. (v) a+(a+y) = (a+a)+(a+y)+(y+a) = (a+a)+(a+y)+(y+a) = a+(a+y).

(i)-(iv) se dokazuju slično.

Lema 2.7 Ako je a ·-koapsorptivan i standardan elemenat bipolumreže (A,+,·) tada je a skrativ.

Dokaz. Neka je a+x=a+y i a•x=a•y. Tada je:

$$x = x \cdot (a+x) = x \cdot (a+y) = (x \cdot a) + (x \cdot y) = (y \cdot a) + (x \cdot y) = y \cdot (a+x)$$

= $y \cdot (a+y) = y$.

Važi i dualno tvrđenje.

Lema 2.8 Ako je a +-koapsorptivan i kostandardan elemenat bipolumreže (A,+,•) tada je a skrativ.

Lema 2.9 Ako je a ·-apsorptivan, i ima bar jednu od sledećih osobina: distributivan, kodistributivan, standardan ili kostandardan, onda je on i +-apsorptivan, odnosno, on je apsorptivan.

Dokaz. Ako je a·(a+x)=a, tada je a+(a·x) =(a+a)·(a+x) =a·(a+x) =a Važi i dualno tvrdenje.

Lema 2.10 Ako je a standardan i apsorptivan elemenat bipolumreže (A,+,•) tada je a distributivan.

Dokaz. $(a+x)\cdot(a+y) = ((a+x)\cdot a)+((x+a)\cdot y) = a+(a\cdot y)+(x\cdot y) = a+(x\cdot y),$ koristeći, redom, standardnost elementa a, pa apsorptivnost i standardnost i ponovo apsorptivnost.

Važi i dualno tvrđenje.

Lema 2.11 Ako je a kostandardan i apsorptivan elemenat bipolumreže (A,+,.), tada je on kodistributivan.

Lema 2.12. Ako je a apsorptivan elemenat bipolumreže $(A, +, \cdot)$ tada iz $x \in (a]_+$ i $y \in [a]_+$ sledi $x \le y$ i $x \le y$.

Dokaz. Neka je $x \le a$, i $a \le y$. Tada je $x + y = (x \cdot a) + a + y = a + y = y$. Slično je $x \cdot y = (x \cdot a) \cdot (a + y) = x \cdot a = x$, odakle slede tražene nejednakosti.

2.5 TEOREMA REPREZENTACIJE BIPOLUMREŽE PREKO DIREKTNOG PROIZVODA

Dalje, da bi se dala teorema reprezentacije bipolumreže u obliku direktnog proizvoda nekih njenih podbipolumreža, potrebno je uvesti još neke definicije.

Neka je $(A,+,\cdot,0,1)$ bipolumreža sa nulom i jedinicom. Elemenat x' $\in A$ je komplement elementa x, ako je ispunjeno sledeće:

$$x \cdot x' = 0$$
 i $x + x' = 1$.

Tvrdenje 2.8 U bipolumreži (A,+,•,0,1) sa nulom i jedinicom svaki standardni elemenat koji ima komplement, ima jedinstven komplement. Takođe i svaki kostandardni elemenat sa komplementom ima jednoznačan komplement.

Dokaz. Neka je x kostandardan elemenat sa komplementima x' i x", odnosno, neka je x•x'=0 i x+x'=1, i x•x"=0 i x+x"=1. Tada je:

x' = x'+0 = x'+(x*x'') = (x'+x)*(x'+x'') = (x''+x)*(x''+x') = (x''+x)*(x''+x'') = (x''+x'') = (x'''+x'') = (x'''+x''') = (x''''') = (x'''''') = (x''

Znači, komplement je jedinstven.

Slično se pokazuje i za standardan elemenat.

Sledeće tvrdenje je Teorema reprezentacije bipolumreže preko

direktnog proizvoda njenih podbipolumreža.

Teorema 2.2 Neka je $(A,+,\cdot)$ bipolumreža sa jedinicom i nulom, i neka je a distributivan, kodistributivan, skrativ, komplementiran i (-ili +-)apsorptivan elemenat bipolumreže A. Tada je preslikavanje $g:A \rightarrow [a]_{\times}(a]_{+}$ definisano sa $g(x)=(x+a, x\cdot a)$ izomorfizam.

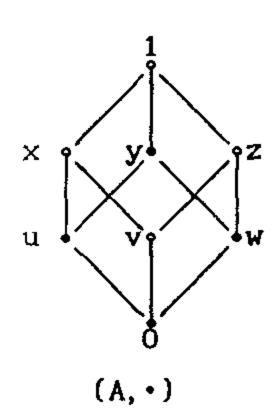
Dokaz. U Teoremi 2.1 dokazano je da je preslikavanje g potapanje. Još treba pokazati da je g sirjektivno preslikavanje.

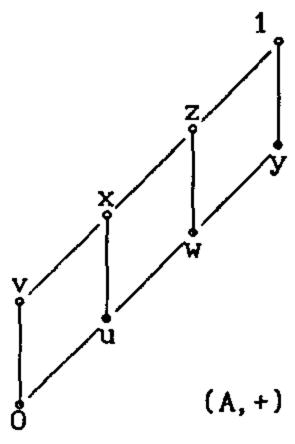
Neka je b komplemenat elementa a, i neka je (y,x) proizvoljan elemenat iz $[a]_x(a]_+$. Pokazaće se da se na taj elemenat preslikavanjem g preslikava elemenat $z=x+(y\cdot b)$. Zaista,

 $z \cdot a = (x + (y \cdot b)) \cdot a = (x \cdot a) + (y \cdot b \cdot a) = (x \cdot a) + (y \cdot 0) = x \cdot a + 0$ $= x \cdot a = x \text{ (koristeci kodistributivnost elementa a, osobine nule, komplementa, i činjenice da <math>x \in (a]_{k}$ Takođe je:

z+a = (x+(y+b))+a = x+(y+a)+(b+a) = x+((y+a)+(b+a)) = x+((y+a)+1) = x+y+a = (x+a)+a+y = a+y = y (koristeći distributivnost elementa a, osobine komplementa, jedinice i apsorptivnosti elementa a). Ovim je pokazano da je g izomorfizam.

Primer 2.2 Data je bipolumreža (A,+,*), gde je $A=\{0,1,x,y,z,u,v,w\}$ (slika 2.2)

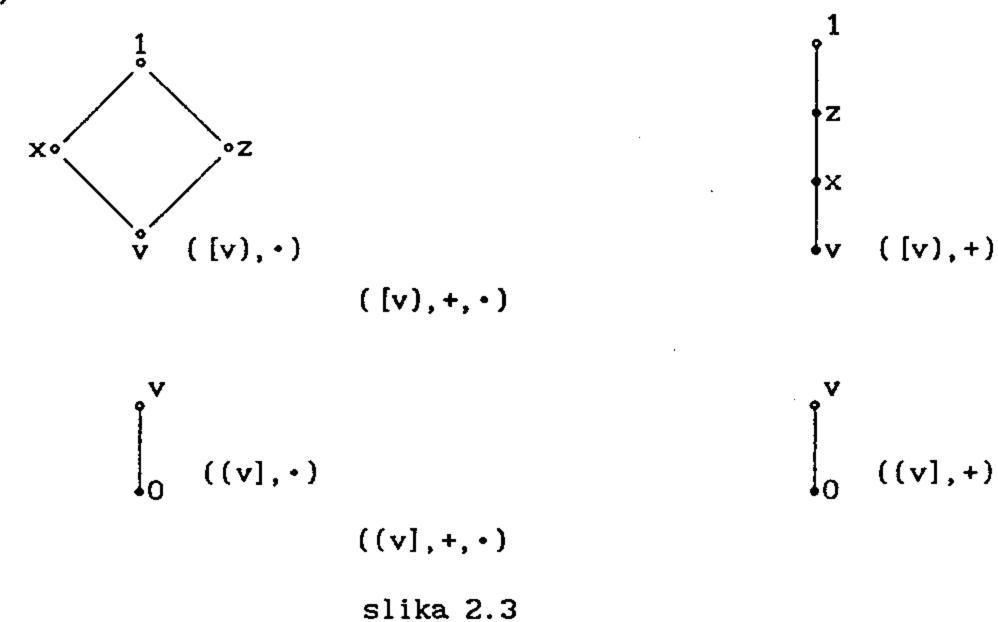




slika 2.2

Ova bipolumreža ima nulu i jedinicu, a elemenat v je distributivan, kodistributivan, skrativ, ima komplemenat (y), i apsorptivan je, tako da zadovoljava uslove prethodnog tvrđenja.

Bipolumreža (A,+,*) može se predstaviti u obliku direktnog proizvoda filtra (v) i ideala (v) (koji su podbipolumreže, i prikazani su na slici 2.3)



Pretpostavimo da se neka bipolumreża sa jedinicom i nulom może predstaviti u obliku direktnog proizvoda dve bipolumreże. Może se pokazati da te dve bipolumreże takode imaju jedinicu i nulu. Zaista, ako je $(A,+,\cdot)=(B,+,\cdot)\times(C,+,\cdot)$ (skraćeno, A=BxC) i 1= (b_1,c_1) , tada je $(b_1,c_1)^{\geq}_+(x,y)$, za sve $(x,y)\in B\times C$, pa je $(b_1,c_1)^{+}(x,y)=(b_1,c_1)$, odnosno $b_1+x=b_1$ i $c_1+y=c_1$, pa je $b_1^{\geq}_+x$ i $c_1^{\geq}_+y$. Na sličan način, iz $(b_1,c_1)^{\geq}_+(x,y)$ za sve $(x,y)\in B\times C$, sledi $b_1^{\geq}_+x$ i $c_1^{\geq}_-y$. Znači, b_1 je jedinica bipolumreże B, a c_1 je jedinica bipolumreże C. Ako je (b_0,c_0) nula bipolumreże A, analogno se pokazuje da je b_0 nula bipolumreże B, a c_1 nula bipolumreże C.

Posmatramo elemente $a=(b_0,c_1)$ i $a'=(b_1,c_0)$ iz $A=B\times C$. Ti elementi su jedan drugom komplementi, jer je $(b_0,c_1)\cdot(b_1,c_0)=(b_0,c_0)=0$, i $(b_0,c_1)+(b_1,c_0)=(b_1,c_1)=1$. Elemenat a je kodistributivan, jer:

 $(b_0,c_1) \cdot ((x,y)+(z,t)) = (b_0 \cdot (x+z),c_1 \cdot (y+t)) = ((b_0 \cdot x)+(b_0 \cdot z), \\ (c_1 \cdot y)+(c_1 \cdot t)) = (b_0 \cdot x,c_1 \cdot y)+(b_0 \cdot z,c_1 \cdot t) = ((b_0,c_1) \cdot (x,y))+((b_0,c_1) \cdot (z,t)).$ (z,t)).(Iskoriščena je Lema 2.4 po kojoj su nula i jedinica kodistributivni elementi).

Analogno se pokazuje da je elemenat a distributivan.

Dalje se može pokazati skrativost elementa a. Neka je (b_0, c_1) . $(x,y) = (b_0, c_1) \cdot (z,t)$ i $(b_0, c_1) + (x,y) = (b_0, c_1) + (z,t)$. Odatle sledi da je $(b_0, y) = (b_0, t)$ i $(x, c_1) = (z, c_1)$, odakle je y=t i x=z, tj. (y, x) = (t, z).

Elemenat a je ·- apsorptivan, jer: $(b_0, c_1) \cdot ((b_0, c_1) + (x, y)) = (b_0, c_1) \cdot (x, c_1) = (b_0, c_1)$. Na sličan način pokazuje se da je a i +-apsorptivan.

Posto je a distributivan i kodistributivan elemenat bipolumreže L, ideal (a], i filter [a), su podbipolumreže te bipolumreže. Takođe se pokazuje da je ideal (a], izomorfan sa bipolumrežom C. Zaista, preslikavanje $f:C \rightarrow (a]_{\bullet}$, definisano sa $f(x)=(b_{0},x)$ je izomorfizam. Za svako $x \in C$ važi $(b_{0},x) \leq (b_{0},c_{1})=a$, tj. $(b_{0},x) \in (a]_{\bullet}$. Za svako $x,y \in C$ je $f(x) \cdot f(y) = (b_{0},x) \cdot (b_{0},y) = (b_{0},x \cdot y) = f(x \cdot y)$ i $f(x) + f(y) = (b_{0},x) + (b_{0},y) = (b_{0},x + y) = f(x + y)$. f je injektivno preslikavanje, jer iz $f(x) = f(y) \leftrightarrow (b_{0},x) = (b_{0},y)$, sledi x = y. Dalje, neka $(b_{0},x) \in (a]_{\bullet}$, tada je $x \leq c$, i $x \in C$.

Na sličan način se pokazuje da je i filter [a), izomorfan sa bipolumrežom B.

Gornje razmatranje i prethodna teorema pokazuju sledeće tvrđenje:

Teorema 2.3 Neka je (A,+,*) bipolumreža sa nulom (O) i jedinicom

(1). Postoji uzajamno jednoznačno preslikavanje između svih razlaganja bipolumreže A u obliku direktnog proizvoda dve bipolumreže i svih elemenata bipolumreže A koji su distributivni, kodistributivni, skrativi, apsorptivni i imaju komplemente.

Bipolumreža $(A,+,\cdot)$ je direktno nerazloživa ako se ne može predstaviti u obliku BxC, gde su $(B,+,\cdot)$ i $(C,+,\cdot)$ bipolumreže sa više od jednog elementa.

Dužina bipolumreže (A,+*) je dužina dužeg lanca od najdužih

lanaca u polumrežama (A,+) i (A, .).

Teorema 2.4 Svaka bipolumreža sa nulom i jedinicom konačne dužine izomorfna je direktnom proizvodu direktno nerazloživih bipolumreža.

Dokaz. Sledi iz prethodne teoreme, i činjenice da kada je A=BxC, za bipolumreže A,B i C da je dužina bipolumreža B i C uvek strogo manja od dužine bipolumreže A.

2.6 IDENTITETI NA BIPOLUMREŽI

U sledećem delu će se ispitivati problemi koji su ekvivalentni problemima rešenim u poglavlju I za mreže: ako identitet važi na nekom idealu (filtru) u bipolumreži, kada on važi na celoj bipolumreži.

U tom cilju, na analogan način kao kod mreža (indukcijom po broju operacija u termu f) mogu se pokazati sledeće leme:

Lema 2.13 Ako je a distributivan elemenat bipolumreže $(A,+,\cdot)$ i $f(x_1,\ldots,x_n)$ proizvoljan term (na jeziku bipolumreže), za sve $x_1,\ldots,x_n\in A$,

$$f(x_1,...,x_n)+a = f(x_1+a,...,x_n+a).$$

Lema 2.14 Ako je a kodistributivan elemenat bipolumreže A i $f(x_1, ..., x_n)$ proizvoljan term, za sve $x_1, ..., x_n \in A$

$$f(x_1,\ldots,x_n)\cdot a = f(x_1\cdot a,\ldots,x_n\cdot a).$$

Sledeće tvrđenje govori o prenošenju proizvoljnog identiteta sa (a], i [a), na celu bipolumrežu A (a∈A).

Tvrdenje 2.9 Ako je a distributivan, kodistributivan i skrativ elemenat bipolumreže A tada proizvoljni mrežni identitet važi na A ako

i samo ako važi na filtru [a], i idealu (a].

Dokaz. (\longrightarrow)

Pošto je elemenat a distributivan i kodistributivan, prema Tvrdenjima 2.1 i 2.2 sledi da su filter [a), i ideal (al, podbipo-lumreže bipolumreže A, pa ako mrežni identitet važi na A, tada svakako važi i na [a], i (al,

(←--)

Neka identitet $f(x_1, ..., x_n) = g(x_1, ..., x_n)$ važi na (a], i na [a]. Tada za $y_1, ..., y_n \in A$:

$$f(y_1 \cdot a, ..., y_n \cdot a) = g(y_1 \cdot a, ..., y_n \cdot a), \text{ jer } y_i \cdot a \in (a], i$$

 $f(y_1 + a, ..., y_n + a) = g(y_1 + a, ..., y_n + a), \text{ jer } y_i + a \in [a].$

Prema Lemama 2.13 i 2.14 sledi da je:

$$f(y_1, \dots, y_n) \cdot a = g(y_1, \dots, y_n) \cdot a, i$$

$$f(y_1, \dots, y_n) + a = g(y_1, \dots, y_n) + a, pa iz skrativosti$$

elementa a sledi da je:

$$f(y_1,...,y_n) = g(y_1,...,y_n).$$

Napomena 2.2 Prethodno tvrdenje sledi i direktno iz Teoreme 2.2 (o potapanju), jer pošto je elemenat a distributivan, kodistributivan i skrativ elemenat bipolumreže A bipolumreža A može se potopiti u $(a] \times [a]$. Stoga ako neki identitet važi na $(a] \times [a]$, on važi i na A.

Posledica 2.1 Neka je (A,+,•) bipolumreža i a∈A distributivan, kodistributivan i skrativ elemenat. Ako su (al, i [a], redom, kvazimreža, Birkofov sistem, •-distributivna, ili +-distributivna bipolumreža, tada je i A, redom, kvazimreža, Birkofov sistem, •-distributivna, ili +-distributivna bipolumreža.

POGLAYLJE III

PRIMENE U ALGEBRI: MREZE KONGRUENCIJA, PODALGEBRI, SLABIH KONGRUENCIJA

3.1 MREŽE SLABIH KONGRUENCIJA I NEKA SVOJSTVA ALGEBRI (CEP, CIP, wCIP, *CIP) [4,7,21,104,105,107,120-123,127,130]

Data je algebra =(A,F), gde je A neprazan skup (nosač), a F familija finitarnih operacija na skupu A. Kongruencija ρ algebre = je relacija ekvivalencije na skupu A koja je i kompatibilna (saglasna sa operacijama), što znači da za svaku operaciju feF ranga n (n>0), i za sve $= x_1, \dots, x_n, y_1, \dots, y_n \in A$ važi da iz $= x_1 \rho y_1, \dots, x_n \rho y_n$ sledi $= f(x_1, \dots, x_n) \rho f(y_1, \dots, y_n)$, a za svaku nularnu operaciju (konstantu) ceF važi da je c $= \rho$ c). Skup svih kongruencija jedne algebre u odnosu na inkluziju čini algebarsku mrežu (koja se obeležava sa Con= A). Skup svih poduniverzuma jedne algebre (poduniverzum je podskup nosača te algebre koji je zatvoren u odnosu na operacije) je, u odnosu na skupovnu inkluziju takođe algebarska mreža, i označava se sa Sub= A. Slaba kongruencija $= \rho$ algebre = A je simetrična, tranzitivna i kompatibilna relacija na algebri = A (ovaj pojam prvi je definisao Tran Duc Mai [120-123] pod nazivom kongruencije u algebri, i ispitivao ih je za

grupe i Ω-grupe). Ovde će se pod slabim kongruencijama (po dogovoru i zbog jednostavnosti) posmatrati sve relacije kongruencije na podalgebrama algebre 4, sa dodatkom Ø, ali samo ako se time kompletira mreža. (Ako je mreža podalgebri već i sama kompletna mreža Ø se neće dodavati kao "rep" toj mreži). Ova konvencija je već uvedena, mada i nedovoljno objašnjena, u radu [130], u kome je i prvi put uveden naziv slaba kongruencija.

Za proizvoljnu algebru 4 sa Cw4 označava se familija svih slabih kongruencija algebre 4. Pošto je familija Cw4 zatvorena u odnosu na preseke i sadrži najveći elemenat (A² je takođe slaba kongruencija), sledi da je (Cw4,≤) kompletna mreža.

Lema 3.1[130] (Cw4,≤) je algebarska mreža.

Dokaz. Neka je 4 algebra. Posmatramo skup AxA i na njemu definišemo operacije:

za svaku n-arnu operaciju f∈F (n≠0).

$$f((a_1,b_1),\ldots,(a_n,b_n))=(f(a_1,\ldots,a_n),f(b_1,\ldots,b_n)).$$

Definišemo i nularne operacije (c,c), za svaku konstantu c iz A (nularnu operaciju iz F).

Zbog simetričnosti uvodimo novu unarnu operaciju s:

$$s((a,b))=(b,a),$$

kao i binarnu operaciju t koja očuvava tranzitivnost:

$$t((a,b),(c,d)) = \begin{cases} (a,d), & \text{ako je b=c,} \\ (a,b), & \text{u ostalim slučajevima.} \end{cases}$$

Neposredno se proverava da se podalgebre ove algebre $(A\times A, F\cup \{t,s\})$ poklapaju sa slabim kongruencijama na 4. Budući da je mreža podalgebri algebarska, algebarska je i mreža Cw4.

Data je algebra ¼ i neka je Cw¼ njena mreža slabih kongruencija. Istaknutu ulogu u Cw¼ ima dijagonala: Δ={(x,x)|x∈A}.

Lema 3.2 ∆ je beskonačno kodistributivan elemenat mreže Cw4.

Dokaz. Neka je $\{\rho_i | i \in I\}$ proizvoljna familija slabih kongruencija algebre 4. Treba pokazati da je:

$$\Delta \wedge \bigvee_{i \in I} \rho_i = \bigvee_{i \in I} (\Delta \wedge \rho_i).$$

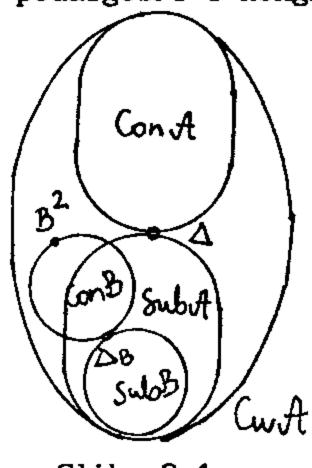
Neka $\rho_i \in Con\mathcal{B}_i$, za $\mathcal{B}_i \in Sub\mathcal{A}$, za svako i. Tada je $\forall \rho_i$ kongruencija na podalgebri $\forall \mathcal{B}_i$, pa je $\Delta \land \forall \rho_i = \{(x,x) | x \in \forall B_i\}$.

Sa druge strane, $\Delta \wedge \rho_i = \{(x,x) | x \in B_i\}$, pa je $\forall (\Delta \wedge \rho_i) = \forall \{(x,x) | x \in B_i\}$, odnosno, tražena jednakost je ispunjena.

Tvrdenje 3.1[130] Neka je Cw4 mreža slabih kongruencija algebre 4, i Δ dijagonala. Mreža kongruencija algebre 4 (Con4) je podmreža mreže Cw4 i Con4 = [Δ), a mreža podalgebri algebre 4 (Sub4) je izomorfna sa idealom (Δ], u odnosu na izomorfizam $\mathcal{B} \to \{(x,x) | x \in B, \mathcal{B} \in \text{Sub4}\}$. Staviše, za svaku podalgebru \mathcal{B} algebre 4, njena mreža kongruencija Con \mathcal{B} je interval $[\Delta_B, B^2]$, gde je $\Delta_B = \{(x,x) | x \in B\}$.

Iz ovog tvrdenja sledi da se u mreži slabih kongruencija neke algebre nalaze istovremeno i mreža podalgebri i mreža kongruencija te algebre i svih njenih podalgebri. Znači sva svojstva algebri pokazana sredstvima ovih mreža (SubA i ConA) mogu se pokazati i pomoću mreže CwA, a mreža CwA je još sveobuhvatnija nego te dve mreže, i mnoga druga algebarska svojstva se mogu proučavati metodima mreže slabih kongruencija.

Na slici 3.1 je šematski prikazan odnos mreža slabih kongruencija, kongruencija, podalgebri i kongruencija na podalgebri.



Slika 3.1

Iz Leme 1.1' iz Poglavlja I sledi da je preslikavanje $m_a:\rho\longrightarrow\rho\wedge\Delta$ homomorfizam iz Cw4 u (Δ), koji određuje relaciju kongruencije na Cw4. U jednoj klasi kongruencije su sve one slabe kongruencije, koje su istovremeno i kongruencije na istoj podalgebri (zadovoljavaju $\rho\wedge\Delta=\theta\wedge\Delta$). Svaka takva klasa kongruencije ima najveći elemenat (ako je \mathcal{B} odgovarajuća podalgebra najveći elemenat te klase je, kao što smo gore naveli, \mathcal{B}^2 kad se posmatra kao kongruencija na \mathcal{B}).

Napomena 3.1 Budući da se SubA potapa u CwA, odgovarajuće slike podalgebri- dijagonalne relacije često ćemo obeležavati kao same podalgebre: pisaćemo B umesto Δ_{2} , ako je B podalgebra od A.

U sledećem delu biće navedene definicije nekih od osnovnih svojstava algebri, koja će se karakterisati metodama mreže slabih kongruencija.

Algebra 4 ima svojstvo proširenja kongruencija (CEP) ako je svaka kongruencija na podalgebri od 4 restrikcija kongruencije na 4.

Algebra A ima svojstvo preseka kongruencija (CIP) ako za sve $\rho, \theta \in CwA$ važi da je:

$$(\rho \cap \theta)_{A} = \rho_{A} \cap \theta_{A},$$

gde je $\rho_{\rm A}$ najmanja kongruencija na ${\it A}$ koja sadrži $\rho.$ [130].

Algebra 4 ima beskonačno svojstvo preseka kongruencija (*CIP) ako za svaku familiju {ρ, |i∈I}⊆Cw4, važi:

$$\left(\bigcap_{i\in I}\rho_i\right)_{\mathbf{A}}=\bigcap_{i\in I}\left(\rho_i\right)_{\mathbf{A}}.$$

Algebra A ima jako svojstvo proširenja kongruencija (strong CEP) ako za svaku $\rho \in CwA$ $\rho \cup \Delta \in CwA$.

Očigledno, ako algebra ima jako svojstvo proširenja kongruencija, ona ima i svojstvo proširenja kongruencija. Obratno ne mora da važi, na primer Hamiltonove grupe imaju CEP, a nemaju jaki CEP. Očigledno je da jako svojstvo proširenja kongruencija implicira i CIP, kao i *CIP.

Algebra 4 ima slabo svojstvo preseka kongruencija (wCIP) ako za

svako p∈Cw4 i svako 0∈Con4 važi da je

$$(\rho \cap \theta)_{A} = \rho_{A} \cap \theta.$$
 [130].

Ako algebra ima CIP, ne mora da ima i *CIP, što pokazuje sledeći primer:

Primer 3.1

Neka je N skup prirodnih brojeva, i \oplus_k , k \in N, binarne operacije na skupu N, i f_i , i \in N, unarne operacije na skupu N, definisane sa:

$$x \oplus_{1} y = \begin{cases} 1, & \text{za } x = y = 1; \\ x + y - 2, & \text{za } x > 1 \text{ ili } y > 1. \end{cases}$$

$$x \oplus_{k} y = \begin{cases} k, & \text{za } x \le k, y \le k; \\ x + y - (k + 1) & \text{za } x > k \text{ ili } y > k \end{cases}$$

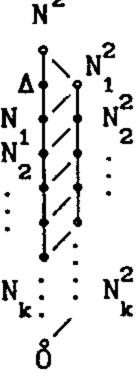
$$f_{1}(x) = \begin{cases} x, & \text{za } x = i, \\ x + 1, & \text{za } x \ne i \end{cases}$$

$$i \in \mathbb{N}.$$

Algebra $(N, \theta_k \ (k \in N), f_i \ (i \in N))$ ima svojstvo CIP, a nema *CIP. Zaista, podalgebre ove algebre su : $N_k = \{x \mid x > k\}$, za $k \in N$.

Kongruencije algebre (N,f₁(i∈N)), su sledeće: $\rho_k = \{\{1\},\ldots,\{k\}\}$, $\{k+1,k+2,\ldots\}$, za k∈N, a te kongruencije nisu saglasne sa θ_1 , jer iz $\{p_k\}$ i $\{k+1,k+2\}$ sledilo bi $\{1\theta_1(k+1)\}$ $\{p_k\}$ $\{p_k\}$ odnosno, $\{p_k\}$ $\{p_k\}$ sto nije tačno. Znači, jedine kongruencije algebre (N, θ_k (k∈N), f₁ (i∈N)) su $\{p_k\}$ i $\{p_k\}$ $\{p_$

Jedine kongruencije na podalgebrama N_k (k \in N) su Δ_{N_k} i N_k^2 , što se utvrđuje na isti način. Znači, mreža slabih kongruencija je prikazana na slici 3.2:



Slika 3.2

CIP očigledno važi, a *CIP ne, jer je:

$$(\bigcap_{k\in\mathbb{N}}\mathbb{N}_{k}^{2})\vee\Delta=0\vee\Delta=\Delta\neq\mathbb{N}^{2}=\bigcap_{k\in\mathbb{N}}(\mathbb{N}_{k}^{2}\vee\Delta).$$

Pošto je u mreži CwA $\rho_A = \rho \lor \Delta$, važi sledeće:

Lema 3.3 Algebra 4 ima CIP ako i samo ako je ∆ distributivni elemenat u mreži Cw4.

Lema 3.3' Algebra 4 ima *CIP ako i samo ako je ∆ beskonačno distributivni elemenat u mreži Cw4.

Lema 3.3" Algebra 4 ima slabi CIP ako i samo ako je ∆ modularan elemenat u mreži Cw4.

Sledeća tvrdenja su posledice mrežnih tvrdenja iz poglavlja I:

Tvrdenje 3.2 Sledeći uslovi su ekvivalentni za algebru 4:

Dokaz.

- (i) Za ρ , $\theta \in CwA$ iz $\rho \lor \Delta = \theta \lor \Delta$ i $\rho \land \Delta = \theta \land \Delta$ sledi $\rho = \theta$.
- (ii) Δ je komodularan elemenat mreže CwA.
- (iii) Za $\rho \in CwA$ i $\mathcal{B} \in SubA$, iz $\rho \leq B^2$ sledi $\rho \vee (\Delta \wedge B^2) = (\rho \vee \Delta) \wedge B^2.$
- (iv) ∆ je kostandardan elemenat mreže Cw4.

Pošto je Δ kodistributivan elemenat mreže CwA i klase kongruencije indukovane homomorfizmom $n_{\Delta}: \rho \longrightarrow \rho \land \Delta$ imaju najveće elemente (ti najveći elementi su kvadrati podalgebri), primenom Tvrdenja 1.5 iz poglavlja I dobija se da su uslovi (i)-(iv) ekvivalentni.

 $(iii)\rightarrow(0)$

Neka algebra 4 nema CEP, odnosno, neka postoji podalgebra 3 i na njoj kongruencija ρ , takva da ρ nije restrikcija neke kongruencije na 4. Pošto $\rho \in \text{Con}\mathcal{B}$, važi da je $B^2 \wedge \Delta \leq \rho \leq B^2$, pa je $\rho \vee (\Delta \wedge B^2) = \rho$. $\rho \vee \Delta \in \text{Con}\mathcal{A}$, pa je $(\rho \vee \Delta) \wedge B^2$ restrikcija kongruencije $\rho \vee \Delta$ na 3, što je po pretpostavci različito od ρ , pa je $\rho \vee (\Delta \wedge B^2) \neq (\rho \vee \Delta) \wedge B^2$.

Pretpostavimo da postoje ρ , $\theta \in CwA$, takve da je $\rho \lor \Delta = \theta \lor \Delta$ i $\rho \land \Delta = \theta \land \Delta$ i $\rho \ne \theta$. Sledi da su ρ i θ iz iste ConB, za $B \in SubA$. Bez gubljenja opštosti možemo pretpostaviti da je $\rho \lor \theta$ (ista svojstva kao i ρ i θ imaju ρ i $\rho \lor \theta$, na pr.). Pokazaćemo da ρ nije restrikcija nijedne kongruencije na A.

Ako je ρ restrikcija kongruencije $\sigma \in ConA$, onda je ona restrikcija i kongruencije $\rho \lor \Delta$ (zaista, iz $\sigma \succeq \rho$ i $\sigma \succeq \Delta$ sledi $\sigma \succeq \rho \lor \Delta$, pa iz $B^2 \land \sigma \succeq B^2 \land (\rho \lor \Delta) \succeq \rho$ i $B^2 \land \sigma = \rho$ proizilazi $B^2 \land (\rho \lor \Delta) = \rho$). Međutim, $B^2 \land (\rho \lor \Delta) = B^2 \land (\theta \lor \Delta) \succeq \theta > \rho$. Kontradikcija. Dakle A nema CEP.

Posledica 3.1 Algebra 4 ima CEP i CIP ako i samo ako je A neutralan elemenat u mreži Cw4.

Dokaz. ∆ je uvek kodistributivan elemenat u Cw4, svojstvo
CIP je ekvivalentno sa distributivnošću, a CEP sa zakonom skraćivanja,
pa prema Lemi 1.3 iz Poglavlja I sledi traženo tvrđenje.

Posledica 3.2 Ako je CwA modularna mreža, tada algebra A ima CEP i CIP.

Dokaz. Prema Lemi 1.6 iz Poglavlja I u modularnoj mreži elemenat je neutralan ako i samo ako je distributivan ili kodistributivan. Kako je ∆ uvek kodistributivan elemenat, ∧ je i neutralan elemenat, pa prema prethodnoj posledici algebra ima CEP i CIP.

Lema 3.4 Ako algebra 4 ima CEP svaka podalgebra 3 algebre 4 ima CEP.

Tvrđenje 3.3 Algebra 4 ima *CIP ako i samo ako za svaku kongruenciju θ∈Con4, familija {ρ∈Cw4|ρ,≥θ} ima najmanji elemenat.

Dokaz. Prema Lemi 3.3' A je beskonačno distributivni

elemenat u mreži CwA, pa dokaz sledi direktno iz Tvrdenja 1.8, iz poglavlja I.

Tvrđenje 3.4 Algebra 4 ima *CIP ako i samo ako su zadovoljeni sledeći uslovi:

- (i) za svako $\theta \in ConA$, familija $\{\rho \in CwA | \rho_A = \theta\}$ ima najmanji elemenat;
 - (ii) 4 ima slabi CIP.

Dokaz. Sledi iz Tvrdenja 1.9 iz poglavlja I.

Tvrdenje 3.5 [127] Algebra A ima CEP i CIP ako i samo ako je preslikavanje $f:CwA\longrightarrow SubA\times ConA$ definisano sa: $f(\rho)=(\rho\wedge\Delta,\rho\vee\Delta)$ potapanje.

Dokaz. Sledi iz Posledice 1.1 i Leme 1.3 iz Poglavlja I.

Sledeće tvrđenje daje potrebne i dovoljne uslove za preslikavanje f iz prethodnog tvrđenja da bude izomorfizam:

Tyrdenje 3.6[127]Za algebru 4, preslikavanje f:Cw4 \rightarrow Sub4 \times Con4 definisano sa: $f(\rho)=(\rho \wedge \Delta, \rho \vee \Delta)$ je izomorfizam ako i samo ako algebra 4 ima CEP i CIP i Δ je komplementiran elemenat u mreži Cw4.

Dokaz. Sledi iz Leme 1.5 iz Poglavlja I (o centru).

Posledica 3.3[127]Za algebru A, preslikavanje $f: CwA \rightarrow SubA \times ConA$ definisano sa: $f(\rho)=(\rho \wedge \Lambda, \rho \vee \Lambda)$ je izomorfizam ako i samo ako je mreža kongruencija ConB, za svako $B \in SubA$ izomorfna sa mrežom kongruencija ConA u odnosu na preslikavanje $\rho \rightarrow \rho \vee \Lambda$.

Dalje, može se ispitati kada je elemanat Δ (Λ -,V-)neprekidan elemenat u mreži slabih kongruencija. Očigledno je da ako algebra A ima *CIP da je tada Δ V-neprekidan elemenat mreže CwA. Obratno ne mora

da važi, jer je Δ v-neprekidan elemenat u svakoj konačnoj mreži, ali Δ ne mora da bude distributivan, pa ni beskonačno distributivan elemenat. Ali, ako je Δ v-neprekidan i distributivan, tada je on takođe i beskonačno distributivan.

Sledeća dva tvrđenja su direktne posledice Tvrđenja 1.10 iz poglavlja I.

Tvrdenje 3.7 Za proizvoljnu algebru A A je A-neprekidan elemenat mreže CwA.

Dokaz. Prema tvrdenju dualnom Tvrdenju 1.10 elemenat je ∧-neprekidan i kodistributivan ako i samo ako je beskonačno kodistributivan. Kako je Δ uvek beskonačno kodistributivan elemenat, on je i Δ-neprekidan.

Tvrdenje 3.8 Algebra 4 ima *CIP ako i samo ako ona ima CIP i Δ je v-neprekidan elemenat mreže Cw4.

Dokaz. *CIP je ekvivalentan sa beskonačnom distributivnošću, a CIP sa distributivnošću elementa ∆, pa je tvrđenje posledica Tvrđenja 1.10.

3.2 KADA JE MREŽA Cw4 PODMREŽA MREŽE Ew4, A KADA SE SA NJOM POKLAPA? [110]

Poznato je da je mreža kongruencija algebre 4 uvek podmreža mreže ekvivalencija algebre 4. Međutim, za mrežu slabih kongruencija to nije uvek slučaj. Naime, mreža Cw4 nije u opštem slučaju podmreža mreže EwA (mreže slabih ekvivalencija, odnosno mreže svih simetričnih i tranzitivnih relacija na skupu A, odnosno mreže particija u skupu A.).

U sledećem delu dati su potrebni i dovoljni uslovi pod kojima je mreža CwA podmreža mreže EwA, i potrebni i dovoljni uslovi pod kojima se te dve mreže poklapaju.

Odmah se može uočiti (što će biti primenjeno u sledećim

tvrdenjima) da je infimum u mrežama EwA i CwA isti, i da je to presek).

Sa EA označena je mreža relacija ekvivalencije na skupu A. Lema 3.5 Ako je A≠ø i ρ∈EwA, tada je ρ∪Δ elemenat EA.

Tvrdenje 3.9 Dijagonala A je neutralni elemanat u mreži EwA. Dokaz.

Neka ρ,θ∈EwA. Tada je:

 $(\Delta \wedge \rho) \vee (\Delta \wedge \theta) = (\Delta \cap \rho) \vee (\Delta \cap \theta) = (\Delta \cap \rho) \cup (\Delta \cap \theta) = \Delta \cap (\rho \cup \theta) = \Delta \wedge (\rho \vee \theta),$

pošto se infimum poklapa sa presekom, supremum dve dijagonalne relacije sa unijom, i $\rho \cup \theta$ i $\rho \vee \theta$ su ekvivalencije na istim podalgebrama. Znači, Δ je kodistributivan.

Prema sličnom razmatranju, i prema Lemi 3.5, dobija se da je:

 $\Delta \vee (\rho \wedge \theta) = \Delta \cup (\rho \wedge \theta) = (\Delta \cup \rho) \wedge (\Delta \cup \theta) = (\Delta \vee \rho) \wedge (\Delta \vee \theta),$ pa je Δ distributivan elemenat.

Iz $\rho \cap \Delta = \theta \cap \Delta$ i $\rho \cup \Delta = \theta \cup \Delta$, sledi da je $\rho = \theta$, jer je $(\mathcal{P}(A \times A), \cap, \cup)$ distributivna mreža, a zakon skraćivanja (iz x \wedge z=y \wedge z i x \vee z=y \vee z sledi x=y) je ekvivalentan sa distributivnošću u mreži.

Prema Lemi 1.3 iz Poglavlja I sledi da je ∆ neutralan elemenat.

Posledica 3.4. Preslikavanje $\rho \rightarrow (\rho \cap \Delta, \rho \cup \Delta)$ je potapanje iz EwA u $\mathcal{P}(A) \times EA$.

Dokaz. Sledi iz neutralnosti elementa Δ , Leme 1.3 iz poglavlja I i činjenice da je $\mathcal{P}(A)\cong(\Delta]$ u odnosu na preslikavanje $B\rightarrow\{(x,x)|x\in B\}$, za $B\subseteq A$, i $[\Delta)=EA$.

Posledica 3.5 Proizvoljni mrežni identitet važi na EwA ako i samo ako važi na EA.

Dokaz. A je neutralni elemenat mreže EwA, pa mrežni identitet važi na EwA ako i samo ako važi na EA i $\mathcal{P}(A)$, a poznato je da identitet važi na Bulovoj algebri ako i samo ako važi na dvoelementnoj.

Tvrdenje 3.10 A je beskonačno distributivni elemenat u mreži slabih ekvivalencija EwA, proizvoljnog skupa A.

Dokaz.

Neka je $\left\{ \rho_i \left| i \in I \right\} \right\}$ proizvoljna familija slabih ekvivalencija na A. Tada je:

$$\Delta \vee_{i \in I}^{\Lambda} \rho_{i} = \Delta \cup \bigcap_{i \in I} \rho_{i} = \bigcap_{i \in I} (\Delta \cup \rho_{i}) = \bigwedge_{i \in I} (\Delta \vee \rho_{i}).$$

Tvrđenje 3.11 Za proizvoljan neprazan skup A postoji algebra A=(A,F) takva da se mreža slabih kongruencija CwA poklapa sa mrežom slabih ekvivalencija EwA.

Dokaz. Neka je A proizvoljan neprazan skup. Traženi uslov zadovoljava idempotentna algebra, A=(A,f), gde je f unarna operacija definisana sa $(\forall x \in A)(f(x)=x)$.

Tvrdenje 3.12 Neka je &=(A,F) algebra čija je mreža slabih kongruencija CwA podmreža mreže slabih ekvivalencija EwA. Tada A ima jaki CEP, CEP, CIP i *CIP.

Dokaz. Prema Lemi 3.5 ako je Cw4 podmreža od mreže EwA, tada je $\rho V \Delta = \rho U \Delta$, pa 4 ima jaki CEP. Prema Tvrđenju 3.9 sledi da 4 ima CEP, a prema Tvrđenju 3.10 sledi da 4 ima *CIP.

Lema 3.6 Ako je Cw₄ podmreža od EwA tada je ₄ ∪-algebra.

Napomena 3.2 U-algebra je algebra čija je mreža podalgebri zatvorena u odnosu na skupovnu uniju.

Dokaz. Prema Tvrdenju 3.1 Sub# je izomorfna podmreži od Cw#, pa

je izomorfna i podmreži od EwA, podmreži dijagonalnih relacija na podskupovima od A koji su i podalgebre od A. Pošto je unija dve dijagonalne relacije na podskupovima od A takođe dijagonalna relacija na uniji tih podskupova, sledi da taj podskup mora biti i podalgebra, odnosno, A je U-algebra.

Tvrđenje 3.13 Ako je 4 Risova algebra koja ima CEP, onda 4 ima i jaki CEP.

Napomena 3.3 Risova algebra je algebra 4 za koju je za svako B∈Sub4, B²∪A kongruencija na 4.

Dokaz. Neka je 4 Risova algebra koja ima CEP i $\rho \in CwA$ za $\rho \in ConB$. Tada je prema Tvrđenju 3.2:

 $\rho\vee(\Delta\wedge B^2)=(\rho\vee\Delta)\wedge B^2, \text{ a pošto je }\rho\geq\Delta\wedge B^2, \text{ sledi da je}$ $\rho=\rho\vee(\Delta\wedge B^2)=(\rho\vee\Delta)\wedge B^2, \text{ pa je:}$

$$(B^2 \wedge (\rho \vee \Delta)) \cup \Delta = \rho \cup \Delta,$$

Koristeći uslov da je $\mathcal A$ Risova algebra, i iz $B^2 \lor \Delta$ $\ge \rho \lor \Delta$, dobija se:

$$(B^{2} \cup \Delta) \wedge ((\rho \vee \Delta) \cup \Delta) = (B^{2} \cup \Delta) \wedge (\rho \vee \Delta) = (B^{2} \vee \Delta) \wedge (\rho \vee \Delta) =$$

 $= \rho \vee \Delta$.

Iz distributivnosti Δ u EwA sledi da je: $\rho \cup \Delta = (B^2 \land (\rho \lor \Delta)) \cup \Delta = (B^2 \cup \Delta) \land ((\rho \lor \Delta) \cup \Delta) = \rho \lor \Delta,$

pa algebra 4 ima jaki CEP.

Tvrdenje 3.14 Ako je 4 Risova ∪-algebra koja ima CEP tada je Cw4 podmreža od EwA.

Dokaz. Neka je supremum u EwA označen sa +, a u CwA, uobičajeno, sa v (v je skupovna unija, a A je skupovni presek, kao i infimum u obe mreže.

Neka $\rho,\theta\in CwA$, odnosno neka $\rho\in ConB$ i $\theta\in ConG$, za $\mathcal{B},\mathcal{C}\in SubA$. Supremum relacija ρ i θ , u mreži slabih ekvivalencija je

slaba ekvivalencija koja ima dijagonalu koja je jednaka uniji dijagonala od ρ i θ , pa zato $\rho+\theta\in Ew(BUE)$.

Iz $\rho+\theta \in Ew(B\cup C)$, $\rho \lor \theta \in Con(B\lor C)$, $B\cup C = B\lor C$ sledi da je:

(*)
$$(\rho+\theta)\wedge\Delta = (\rho\vee\theta)\wedge\Delta$$
,

Prema Tvrđenju 3.13, algebra 4 ima jaki CEP, i iz te činjenice sledi da je za svako ρ∈Cw4:

$$\rho \lor \Delta = \rho + \Delta = \rho \cup \Delta$$
.

Prema tome, dobija se:

$$(\rho+\theta)+\Delta = (\rho+\Delta)+(\theta+\Delta) = (\rho\cup\Delta)+(\theta\cup\Delta) = (\rho\vee\Delta)+(\theta\vee\Delta)$$

Con₄ je podmreža od EwA, pa je:

$$(\rho \lor \Delta) + (\theta \lor \Delta) = (\rho \lor \Delta) \lor (\theta \lor \Delta) = (\rho \lor \theta) \lor \Delta = (\rho \lor \theta) + \Delta,$$

Sledi da je:

$$(**) (\rho+\theta)+\Delta = (\rho\vee\theta)+\Delta.$$

Pošto važi CEP, prema Tvrđenju 3.2, dobija se: $\rho+\theta=\rho \lor \theta$.

Sledeća dva tvrdenja daju potrebne i dovoljne uslove za algebru A da njena mreža slabih kongruencija bude podmreža mreže slabih ekvivalencija na skupu A.

Tvrđenje 3.15 Za algebru 4 važi da je njena mreža slabih kongruencija Cw4 podmreža mreže slabih ekvivalencija EwA ako i samo ako je 4 Risova U-algebra koja ima CEP.

Dokaz.

Iz Tvrdenja 3.13 sledi jedna implikacija, a iz
Tvrdenja 3.12 i Leme 3.6 druga (koristeći činjenicu da je svaka
algebra koja ima jaki CEP Risova algebra).

Tvrdenje 3.16 Za algebru 4 važi da je njena mreža slabih

kongruencija CwA podmreža mreže slabih ekvivalencija EwA ako i samo ako je A U-algebra koja ima jaki CEP.

U sledećem delu daće se karakterizacija algebri za koje se mreža slabih kongruencija poklapa sa mrežom slabih ekvivalencija na tom skupu. Radi se o algebrama kod kojih je svaka slaba ekvivalencija istovremeno i slaba kongruencija, odnosno, svaki podskup je istovremeno i podalgebra, a svaka relacija ekvivalencije na tom skupu je saglasna sa operacijama te algebre.

Lema 3.7 Ako je za algebru A CwA = EwA i |A|>1, tada A nema nularnih operacija.

Dokaz. Kada bi u algebri A postojale konstante tada bi one morale biti u svakoj podalgebri, pa bi postojala najmanja neprazna podalgebra. Znači prazan skup ne bi bio podalgebra pa ne bi važilo da je CwA = EwA.

Jednostavno je utvrditi da važi sledeća lema:

Lema 3.8 Svaki podskup od A je i podalgebra od A ako i samo ako za svako n, za svaku n-arnu operaciju na A i za sve x₁,...,x_n∈A važi:

$$f(x_1,\ldots,x_n) \in \{x_1,\ldots,x_n\}.$$

Lema 3.9 Ako je |A|=2 za algebru A, tada je CwA = EwA ako i samo ako je f(x,...,x)=x za svaku n-arnu operaciju f na A.

Dokaz. Prema Lemi 3.8, ako je $A=\{a,b\}$, dobijamo da je za svako $f\in F$: $f(a,\ldots,a)=a$ i $f(b,\ldots,b)=b$. Neka je $f(x,\ldots,x)=x$ za svako $f\in F$. Svaki podskup je očigledno podalgebra, a takođe i svaka relacija ekvivalencije na podskupu od A je kongruencija, pa je CwA=EwA.

Lema 3.10 Ako je ₄ algebra za koju je |A|=3 i Cw₄=EwA, jedine

binarne operacije na 4 su projekcije.

Dokaz. Neka je $A=\{a,b,c\}$ i algebra A=(A,F). Neka je $f\in F$ binarna operacija na A. Prema Lemi 3.8, važi da je f(a,a)=a, f(b,b)=b, f(c,c)=c i $f(a,b)\in\{a,b\}$. Neka je f(a,b)=a. Particija $\{\{a\},\{b,c\}\}\}$ indukuje kongruenciju ρ algebre A. Pošto $(a,a)\in\rho$ i $(b,c)\in\rho$, sledi da i $(f(a,b),f(a,c))\in\rho$, odnosno, $(a,f(a,c))\in\rho$, pa je f(a,c)=a. Na sličan način, koristeći druge particije od A, dobija se da je za sve x,y \in A, f(x,y)=x. Pod pretpostavkom da je f(a,b)=b, na sličan način se dobija da je za sve x, $y\in$ A f(x,y)=y.

Lema 3.11 Neka je A=(A,F) algebra za koju vażi da je CwA=EwA.

Ako za n-arnu operaciju f na A i a A,..., a A vażi da je:

$$f(a_1, ..., a_i, ..., a_n) = a_i$$

tada je:

$$f(x_1,\ldots,x_n)=a_i$$

za sve $x_1, \ldots, x_n \in A$, tako da je $x_j = a_i$ kadgod je $a_j = a_i$ za $j \in \{1, \ldots, n\}$.

Dokaz. Posmatra se relacija ekvivalencije ρ , određena particijom $\{\{a_i\},A\setminus a_i\}\}$. U skupu $A\setminus a$ svaki elemenat je u relaciji ρ sa svakim, pa je odatle, $(a_k,x_k)\in \rho$, ako je $x_k\neq a_i$. Ako je $x_k=a_i$, tada je i $a_k=a_i$, pa opet $(a_k,x_k)\in \rho$. Znači, $(a_k,x_k)\in \rho$, za svako $k\in \{1,\ldots,n\}$. Pošto je ρ i kongruencija na A, važi uslov saglasnosti, pa je:

$$(f(a_1,\ldots,a_n),f(x_1,\ldots,x_n))\in\rho, \quad \text{odnosno},$$

$$(a_i,f(x_1,\ldots,x_n))\in\rho, \quad \text{pa je } f(x_1,\ldots,x_n)=a_i.$$

Tvrđenje 3.17 Za algebru 4=(A,F) za koju je |A|≥3, mreža slabih kongruencija poklapa se sa mrežom slabih ekvivalencija skupa A ako i samo ako skup operacija F sadrži samo projekcije.

Dokaz. Ako su sve operacije iz F projekcije algebre \mathcal{A} , tada očigledno važi da je Sub $\mathcal{A}=\mathcal{P}(A)$.

Neka je ρ proizvoljna ekvivalencija na podskupu B skupa A. Ono što treba da se pokaže je da je ρ i kongruencija podalgebre \mathcal{B} . Neka je f proizvoljna n-arna operacija iz F i neka je za $x_1, \ldots, x_n, y_1, \ldots, y_n \in \mathcal{B}$, $(x_i, y_i) \in \rho$. Pošto je restrikcija projekcije na skup B takođe projekcija, dobija se da je:

 $(f(x_1,...,x_n),f(y_1,...,y_n))\in\rho$, pa je f kongruencija podalgebre \mathcal{B} , odnosno, f je slaba kongruencija na \mathcal{A} .

Obratno, pretpostavimo da je CwA=EwA i da postoji operacija f na A koja nije projekcija. To bi značilo da postoje elementi a_1, \ldots, a_n i b_1, \ldots, b_n iz A, takvi da je za neke i, j $\{1, \ldots, n\}$ gde je i \neq j

(1)
$$f(a_1, \ldots, a_i, \ldots, a_j, \ldots, a_n) = a_i$$

(2)
$$f(b_1, ..., b_i, ..., b_j, ..., b_n) = b_i$$
, i

(3)
$$a_{k} \neq a_{i}$$
 ili $b_{k} \neq b_{j}$, za svako $k=1,\ldots,n$.

(Iz Leme 3.8 sledi da $f(a_1, ..., a_n) \in \{a_1, ..., a_n\}, i f(b_1, ..., b_n) \in \{b_1, ..., b_n\}$).

Mogu se posmatrati sledeći slučajevi:

a)
$$a_i \neq b_j$$
 i b) $a_i = b_j$.

a) Neka je $a_i \neq b_j$. Posmatramo $x_1, \ldots, x_n \in A$ takve da je $x_k = a_i$ kadgod je $a_k = a_i$ i $x_k = b_j$ kadgod je $b_k = b_j$, za $k=1,\ldots,n$. Prema Lemi 3.11 iz (1) sledi da je $f(x_1,\ldots,x_n)=a_i$ a iz (2) $f(x_1,\ldots,x_n)=b_i$, a pošto je $a_i \neq b_i$ dobija se kontradikcija.

b) Neka je $a_i=b_j=a$. Iz (1),(2) i (3) sledi da je: $f(a_1,\ldots,a_n)=f(b_1,\ldots,b_n)=a, \ \ \text{gde} \ \ a_k=b_k \ \ \text{implicira}$ da je $a_k\neq a$.

Iz |A|≥3 sledi da postoje x,y∈A takvi da su a, x i y međusobno različiti elementi. Prema Lemi 3.11 i (1) dobijamo da je:

(1')
$$f(x_1,...,x_n)=a$$
,

gde je
$$x_k = \begin{cases} a, za & a=a \\ y, za & b=a \\ x, u \text{ ostalim slučajevima.} \end{cases}$$

Iz (2) sledi da je:

(2')
$$f(y_1, ..., y_n) = a$$
, gde je:
$$y_k = \begin{cases} a, za & b = a \\ x, u & \text{ostalim slučajevima.} \end{cases}$$

Neka je ρ kongruencija određena particijom $\{\{a,x\},A\setminus\{a,x\}\}$.

Neka je
$$z_k = \begin{cases} x, & za & x = a \\ x, & u \text{ ostalim slučajevima}, & za & k \in \{1, ..., n\}. \end{cases}$$

Posto je $x pz_k$, za sve $k \in \{1, ..., n\}$, a ρ je kongruencija, sledi da je:

$$(f(x_1,\ldots,x_n),f(z_1,\ldots,z_n))\in\rho.$$

 $z_i \in \{x,y\}, \quad \text{za svako i, pa } f(z_1,\ldots,z_n) \in \{x,y\}.$ Iz $f(x_1,\ldots,x_n) = a$, $(a,x) \in \rho$, $(a,y) \notin \rho$ if $(z_1,\ldots,z_n) \in \{x,y\}$ sledida je (*)

Ako posmatramo kongruenciju θ određenu particijom $\{\{a,y\},A\setminus\{a,y\}\}\}$, na sličan način kao u prethodnom slučaju dobija se:

$$(f(y_1, ..., y_n), f(z_1, ..., z_n)) \in \theta.$$

Iz $f(y_1, ..., y_n) = a, f(z_1, ..., z_n) \in \{x, y\}, (a, y) \in \theta.$

i (a,x)∉θ, sledi:

$$f(z_1,\ldots,z_n)=y,$$

što je u kontradikciji sa uslovom (*).

Ovo znači da pretpostavka da u F postoje druge operacije osim projekcija vodi u kontradikciju, što dokazuje da su sve operacije iz F projekcije.

Posledica 3.6 Za algebru A važi da se njena mreža slabih kongruencija poklapa sa mrežom slabih ekvivalencija na skupu A ako i samo ako je svaka ekvivalencija na A i kongruencija algebre A, a svaki podskup od A, i podalgebra od A.

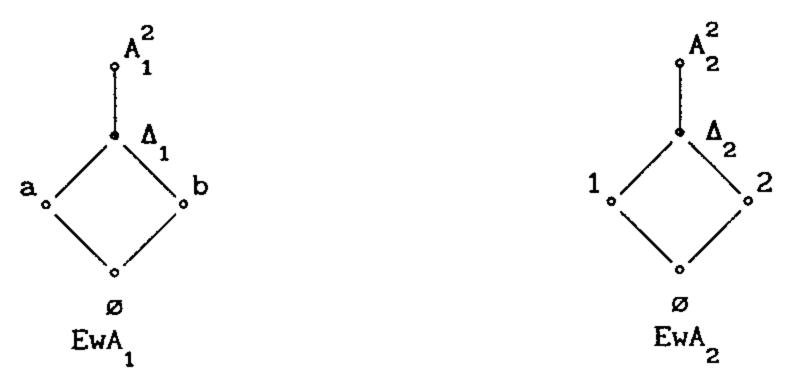
Dokaz. Ako je SubA=P(A) i ConA=EA, onda je svako f∈F
projekcija, pa dokaz sledi direktno iz Tvrđenja 3.14.

3.3 O MREŽI SLABIH KONGRUENCIJA DIREKTNOG PROIZVODA ALGEBRI

Neka su A_1 i A_2 proizvoljne algebre istog tipa. Poznato je da se mreža $\operatorname{Con} A_1 \times \operatorname{Con} A_2$ može potopiti u $\operatorname{Con} (A_1 \times A_2)$ (mrežu kongruencija direktnog proizvoda te dve algebra) sledećim preslikavanjem: $f(\rho_1,\rho_2)=\rho$, za $(\rho_1,\rho_2)\in\operatorname{Con} A_1 \times \operatorname{Con} A_2$, gde je ρ relacija na skupu $A_1 \times A_2$, definisana sa: $(x,y)\rho(z,t)$ akko $x\rho_1 z$ i $y\rho_2 t$. Direktno se proverava da je ρ kongruencija algebre $A_1 \times A_2$, kao i da je f potapanje. To sledi iz činjenice da je $\operatorname{EA}_1 \times \operatorname{EA}_2$ podmreža, do na izomorfizam, od $\operatorname{E}(A_1 \times A_2)$ i toga da je $\operatorname{Con} A$ uvek podmreža od EA , za svaku algebru A.

Postavlja se pitanje da li slično važi i za mreže slabih kongruencija. Odgovor je odrečan, čak i u slučajevima kada je CwA podmreža od EwA (za šta su uslovi ispitani u prethodnom delu). Naime, u opstem slučaju nije ni Ew $A_1 \times EwA_2$ podmreža, do na izomorfizam (u odnosu na analognu funkciju f), od Ew $(A_1 \times A_2)$, što se vidi iz sledećeg primera.

Primer 3.2 Dati su skupovi $A_1 = \{a,b\}$ i $A_2 = \{1,2\}$. Mreže EwA₁ i EwA₂ su izomorfne, i prikazane na slici 3.3:



Slika 3.3

 $\begin{array}{lll} A_1\times A_2=&\langle (a,1),(a,2),(b,1),(b,2)\rangle & i & \text{mrežu} & \text{Ew}(A_1\times A_2) & \text{\'eine} & \text{sve} \\ \text{simetrične i tranzitivne relacije na skupu} & A_1\times A_2 & \text{(gde je sa a označena} \\ \text{relacija} & \langle (a,a)\rangle, & \text{slično i za b, 1 i 2, a sa } A_1 & \text{je označena relacija} \\ & & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ &$

Elementi (a, Δ_2) i $(\Delta_1, 2)$ pripadaju mreži $EwA_1 \times EwA_2$. $f(a, \Delta_2) =$

 $\left\{ ((a,1),(a,1)),((a,2),(a,2)) \right\} \text{ if } \left(\Delta_1,2\right) = \left\{ ((a,2),(a,2)),((b,2),(b,2)) \right\}$ (f je definisano kao kod kongruencija, t.j. $f(\rho_1,\rho_2) = \rho$, za $(\rho_1,\rho_2) \in \text{EwA}_1 \times \text{EwA}_2, \text{ gde je } \rho \text{ relacija na skupu A}_1 \times \text{A}_2, \text{ definisana sa: } (x,y) \rho(z,t) \text{ akko } x\rho_1 z \text{ i } y\rho_2 t \right\}.$

 $(a, \Delta_2) \lor (\Delta_1, 2) = (\Delta_1, \Delta_2)$ (supremum u mreži $EwA_1 \times EwA_2$).

Dalje je $f(\Delta_1, \Delta_2) = \{((a,1), (a,1)), ((a,2), (a,2)), ((b,2), (b,2)), ((b,1), (b,1))\}.$

Sa druge strane je $f(a, \Delta_2) \vee f(\Delta_1, 2) = \{((a, 1), (a, 1)), ((a, 2), (a, 2)), ((b, 2), (b, 2))\}.$

Znači f nije izomorfizam, jer je $f((a, \Delta_2) \lor (\Delta_1, 2)) = \{((a, 1), (a, 1)), ((a, 2), (a, 2)), ((b, 2), (b, 2)), ((b, 1), (b, 1))\} \neq \{((a, 1), (a, 1)), ((a, 2), (a, 2)), ((b, 2), (b, 2))\} = f(a, \Delta_2) \lor f(\Delta_1, 2).$

3.4 PRENOŠENJE MREŽNIH ZAKONA SA MREŽA KONGRUENCIJA I PODALGEBRI NA MREŽU SLABIH KONGRUENCIJA

U ovom delu ispitivaće se osobine mreže Cw4, u zavisnosti od osobina mreža Sub4 i Con4, proizvoljne algebre 4. Pokazaće se da svojstva CEP i CIP imaju značajnu ulogu u prenošenju proizvoljnih mrežnih zakona sa Sub4 i Con4 na Cw4. Sledeća tvrđenja posledice su mrežnih tvrđenja iz poglavlja I.

Tvrđenje 3.18 Neka je A algebra koja ima svojstva CEP i CIP. Proizvoljni mrežni identitet važi na CwA ako i samo ako on važi na SubA i na ConA.

Dokaz. Ako algebra $\mathcal A$ ima CEP i CIP, Δ je neutralni elemenat u mreži Cw $\mathcal A$, što sledi iz Posledice 3.1 . Iz Tvrđenja 3.1 sledi da je Con $\mathcal A$ = $\{\Delta\}$, a Sub $\mathcal A$ \cong $\{\Delta\}$, pa ako identitet važi na Con $\mathcal A$ i Sub $\mathcal A$, prema Tvrđenju 1.17 iz poglavlja I sledi da identitet važi i

na mreži Cw4.

Posledica 3.7[130] Algebra 4 ima distributivnu mrežu slabih kongruencija ako i samo ako 4 ima CEP i CIP, i Con4 i Sub4 su distributivne mreže.

Posledica 3.8[130]Algebra 4 ima modularnu mrežu slabih kongruencija ako i samo ako 4 ima CEP i CIP, i Con4 i Sub4 su modularne mreže.

Dalje će se ispitivati kada se proizvoljan mrežni zakon (koji može da sadrži i beskonačno-mesne operacije) prenosi sa mreža SubA i ConA na mrežu CwA. Pokazalo se da u tome značajnu ulogu ima, pored svojstava CEP i CIP, i neprekidnost elementa Δ u mreži slabih kongruencija te algebre.

Tvrdenje 3.19 Ako algebra A ima svojstva CEP i CIP i A je v-neprekidan elemenat u mreži CwA, tada je proizvoljni mrežni zakon (koji može da sadrži i beskonačno-mesne operacije) zadovoljen na CwA ako i samo ako isti zakon važi na SubA i na ConA.

Dokaz. Sledi direktno iz Tvrdenja 1.19 iz Poglavlja I . ■

Posledica 3.9 Ako algebra 4 ima svojstva CEP i *CIP tada je proizvoljni mrežni zakon (koji može da sadrži i beskonačno-mesne operacije) zadovoljen na Cw4 ako i samo ako isti zakon važi na Sub4 i na Con4.

Dokaz. Sledi iz prethodnog tvrđenja i iz Tvrđenja 1.10 iz Poglavlja I.

Posledica 3.10 Algebra & ima beskonačno distributivnu mrežu slabih kongruencija ako i samo ako algebra ima CEP i *CIP i Sub& i Con & su beskonačno distributivne mreže.

U sledećih nekoliko tvrđenja daće se potrebni i dovoljni uslovi pod kojima je mreža slabih kongruencija neke algebre polumodularna.

Lema 3.12 Ako je mreža slabih kongruencija algebre A
polumodularna, i ima konačnu dužinu, tada algebra A ima CEP.

Dokaz. Sledi iz Tvrđenja 3.1 i Tvrđenja 1.6 iz poglavlja I.

Lema 3.13 Ako algebra \mathcal{A} ima CEP i wCIP, tada je za svako $\mathcal{B} \in \text{Sub} \mathcal{A}$ $\text{Con} \mathcal{B} \cong (\mathcal{B}^2 \vee \Delta)_{\text{con} \mathcal{A}}.$

Dokaz. Sledi iz Leme 1.13 iz Poglavlja I.

Tvrđenje 3.20 Ako je mreža slabih kongruencija algebre Apolumodularna mreža konačne dužine tada važi sledeće:

- (0) CwB je polumodularna mreža za svako B∈SubA;
- (i) Con B je polumodularna mreža za svako B∈SubA;
- (ii) Sub₄ je polumodularna mreža;
- (iii) za ρ , $\theta \in Con\mathcal{E}$, $\mathcal{E} \in Sub\mathcal{B}$ i $\mathcal{B} \in Sub\mathcal{A}$, važi: $\rho \succ \theta$ implicira $\rho \lor \Delta_{\mathbf{R}} \succ \theta \lor \Delta_{\mathbf{R}}$.

Dokaz. (0), (i) i (ii) slede iz činjenice da su sve mreže Cw^B i Con^B, za B∈Sub^A, kao i Sub^A konveksne podmreže mreže Cw^A. Ako neka od njih ne bi bila polumodularna, ni mreža Cw^A ne bi bila polumodularna, odakle sledi tvrđenje.

(iii)

Neka su ρ i θ iz ConC za $\mathcal{C} \in \operatorname{Sub}\mathcal{B}$ i $\mathcal{B} \in \operatorname{Sub}\mathcal{A}$, i neka važi: $\rho \succ \theta$. Iz $\rho \succeq \theta$ sledi $(\theta \lor \Delta_B) \land \rho \succeq \theta$. Ako bi važilo $(\theta \lor \Delta_B) \land \rho \succ \theta$, iz $\rho \succ \theta$ i $\rho \succeq (\theta \lor \Delta_B) \land \rho$ $\gt \theta$, sledilo bi $\rho = (\theta \lor \Delta_B) \land \rho$, odnosno $\rho \succeq (\theta \lor \Delta_B)$, odakle, $\rho \lor \Delta_B = \theta \lor \Delta_B$. Iz polumodularnosti mreže Cw \mathcal{B} sledi da algebra \mathcal{B} ima CEP (prema Lemi 3.12), pa iz $\rho \lor \Delta_B = \theta \lor \Delta_B$ i $\rho \land \Delta_B = \Delta_C = \theta \land \Delta_B$ i Tvrđenja 3.2 sledi da je $\rho = \theta$. Znači da nije $\rho = (\theta \lor \Delta_B) \land \rho$, pa iz uslova $\rho \succ \theta$ i $\rho \succeq (\theta \lor \Delta_B) \land \rho$ $\succeq \theta$ sledi $(\theta \lor \Delta_B) \land \rho = \theta$. Iz $(\theta \lor \Delta_B) \land \rho = \theta$ dobija se da $\rho \succ (\theta \lor \Delta_B) \land \rho$,

pa iz polumodularnosti sledi da $\rho \lor \theta \lor \Delta_B \succ \theta \lor \Delta_B$, odnosno, $\rho \lor \Delta_B \succ \theta \lor \Delta_B \equiv$

Tvrdenje 3.21 Ako je 4 algebra za koju su Con4 i Sub4 polumodularne mreže, i 4 ima CEP i slabi CIP tada je Cw4 polumodularna mreža.

Dokaz. Neka su ρ i θ iz CwA, i pretpostavimo da je ρ≻ρ∧θ. Neka ρ∈ConG, θ∈ConB, za B, G∈SubA. Mogu se razlikovati tri slučaja:

- a) C=B; b) C<B; i c) B i C su neuporedivi elementi mreže CwA.
- a) Iz Leme 3.13 posto važe CEP i slabi CIP, sledi da je:

$$\operatorname{Con}\mathscr{E} \cong (\operatorname{C}^2 \vee \Delta)_{\operatorname{Con} A},$$
 (*),

i iz polumodularnosti mreže Con₄, sledi:

 $\rho \lor \theta \succ \theta$.

b) Iz C<B sledi da $\rho \wedge \theta \in \text{ConC}$. Prema Lemi 3.4 CEP se prenosi na podalgebre, pa važi i na B. Iz Leme 3.13 sledi da je ConC $\cong (\mathbb{C}^2 \vee \Delta)_{\text{ConB}}$, u odnosu na izomorfizam $\rho \longrightarrow \rho \vee \Delta_{\text{B}}$, pa je :

$$\rho \lor \Delta_{B} \succ (\rho \land \theta) \lor \Delta_{B}$$
.

Pošto važi slabi CIP, iz Δ_B≤θ, sledi:

$$\Delta_{\mathbf{R}} \vee (\rho \wedge \theta) = (\Delta_{\mathbf{R}} \vee \rho) \wedge \theta$$
, pa je:

$$\rho \lor \Delta_{B} \succ (\rho \lor \Delta_{B}) \land \theta.$$

Con $\mathcal B$ je takođe polumodularna mreža (jer je Con $\mathcal B\cong (\mathbb B^2 \vee \Delta)$), pa važi:

 $(\rho \lor \Delta_{R})\lor \theta \succ \theta$, odnosno $\rho \lor \theta \succ \theta$

c) Neka su \mathcal{B} i \mathcal{C} neuporedive podalgebre od \mathcal{A} . Tada $\rho \wedge \theta \in \text{Con}(\mathcal{B} \wedge \mathcal{C})$. Iz $\rho \succ \rho \wedge \theta$ sledi da je $\rho = (\rho \wedge \theta) \vee \Delta_{\mathcal{C}}$. Odatle je:

$$\rho \vee \theta = (\rho \wedge \theta) \vee \Delta_{C} \vee \theta = \theta \vee \Delta_{C} = \theta \vee \Delta_{B \vee C}.$$

Iz kodistributivnosti elementa ∆ u Cw₄ sledi da je

 $(\{Con\mathcal{B} | \mathcal{B} \in Sub\mathcal{A}\}, \leq) \cong Sub\mathcal{A},$

pa iz polumodularnosti mreže SubA, sledi da je ({ConB|B∈SubA},≤) polumodularna mreža.

Iz $\rho \succ \rho \land \theta$, sledi $\mathcal{B} \succ \mathcal{B} \land \mathcal{C}$ (kad bi postojala algebra \mathcal{D} , takva da

je $\mathcal{B} > \mathcal{D} > \mathcal{B}$ Λ¢, tada bi bilo $\rho > \rho \Lambda((\rho \Lambda \theta) \vee \Delta_{D}) > \rho \Lambda \theta$, jer $\rho \Lambda((\rho \Lambda \theta) \vee \Delta_{D}) \in Con\mathcal{D}$, što bi bilo u suprotnosti sa $\rho \succ \rho \Lambda \theta$.).

Iz polumodularnosti mreže $(\{ConB|B\in SubA\}, \leq)$ sledi da je: $B\lor C \succ B$. Pošto $\rho\lor \theta=\theta\lor \Delta_{B\lor C}$ $\in Con(B\lor C)$ i $\theta\in ConB$, iz $B\lor C\succ B$ i CEPa u ConB (ne postoji $\theta_1>\theta$ takvo da je $\theta_1<\theta\lor \Delta_{B\lor C}$) sledi da je $\rho\lor \theta\succ \theta$.

Tvrdenje 3.22 Neka je A algebra sa mrežom slabih kongruencija konačne dužine. Ako za svako $C \in Sub A$, i sve $\rho, \theta \in C$

iz
$$\rho \succ \theta$$
 sledi $\rho \lor \Delta \succ \theta \lor \Delta$, (*) tada algebra $\mathcal A$ ima CEP.

Dokaz. Ako 4 nema CEP tada, prema Tvrđenju 3.2 postoji $\mathfrak{C}\in\operatorname{Sub}\mathcal{A}$ i $\rho,\theta\in\operatorname{Con}\mathcal{C}$ takvi da je $\rho\vee\Delta=\theta\vee\Delta$. Važi i $\rho\vee\theta\vee\Delta=\rho\vee\Delta=\theta\vee\Delta$, i za svaku slabu kongruenciju χ iz intervala $[\rho,\rho\vee\theta]$ i $[\theta,\rho\vee\theta]$ važi $\chi\vee\Delta=\rho\vee\Delta=\theta\vee\Delta$. Ako je CwA konačne dužine, tada postoje dve slabe kongruencije α i β , od njih tako da $\alpha\succ\beta$ i da je $\alpha\vee\Delta=\beta\vee\Delta$, pa ne važi uslov (*).

Sledeće tvrđenje je potreban i dovoljan uslov pod kojim je mreža slabih kongruencija konačne dužine polumodularna.

Tvrdenje 3.23 Neka je 4 algebra sa mrežom slabih kongruencija konačne dužine. Cw4 je polumodularna mreža ako i samo ako su zadovoljeni sledeći uslovi:

- (i) ConB je polumodularna mreža za svako B∈SubA;
- (ii) Sub₄ je polumodularna mreža;
- (iii) za sve $\rho, \theta \in Con\mathcal{E}, \mathcal{E} \in Sub\mathcal{B}, \mathcal{B} \in Sub\mathcal{A},$ iz $\rho \succ \theta$ sledi $\rho \lor \Delta_{\mathbf{B}} \succ \theta \lor \Delta_{\mathbf{B}}.$

Dokaz.

- (→) Sledi iz Tvrđenja 3.20.
- (\(\lefta\) Neka $\rho, \theta \in CwA$, $\rho \in Con\mathcal{B}$, $\theta \in Con\mathcal{B}$, $\mathcal{B}, \mathcal{C} \in SubA$, i neka $\rho \mapsto \rho \land \theta$. Mogu se razlikovati tri slučaja:

a) $\mathcal{B} = C$; b) $\mathcal{C} < \mathcal{B}$; c) \mathcal{B} i \mathcal{C} nisu uporedivielementi mreže Sub \mathcal{A} .

U slučaju a) $\rho \lor \theta \succ \theta$ sledi direktno iz polumodularnosti mreže \mathcal{B} (iz (i)).

- b) Iz $\mathcal{C} \mathcal{B}$ sledi da $\rho \wedge \theta \in \mathsf{ConC}$, pa prema (iii) sledi da $\rho \vee \Delta_{\mathsf{B}} \succ (\rho \wedge \theta) \vee \Delta_{\mathsf{B}}$. Iz $(\rho \wedge \theta) \vee \Delta_{\mathsf{B}} \leq (\rho \vee \Delta_{\mathsf{B}}) \wedge \theta \leq \rho \vee \Delta_{\mathsf{B}}$ i $\rho \vee \Delta_{\mathsf{B}} \succ (\rho \wedge \theta) \vee \Delta_{\mathsf{B}}$ sledi da je $\rho \vee \Delta_{\mathsf{B}} = (\rho \vee \Delta_{\mathsf{B}}) \wedge \theta$ ili $(\rho \wedge \theta) \vee \Delta_{\mathsf{B}} = (\rho \vee \Delta_{\mathsf{B}}) \wedge \theta$. Iz $\rho \vee \Delta_{\mathsf{B}} = (\rho \vee \Delta_{\mathsf{B}}) \wedge \theta$ sledi da je $\rho \vee \Delta_{\mathsf{B}} \leq \theta$, odakle $\rho \wedge (\rho \vee \Delta_{\mathsf{B}}) \leq \rho \wedge \theta$, tj. $\rho \leq \rho \wedge \theta$, što je u suprotnosti sa $\rho \succ \rho \wedge \theta$. Znači važi $(\rho \wedge \theta) \vee \Delta_{\mathsf{B}} = (\rho \vee \Delta_{\mathsf{B}}) \wedge \theta$. Sledi da $\rho \vee \Delta_{\mathsf{B}} \succ (\rho \vee \Delta_{\mathsf{B}}) \wedge \theta$. Po pretpostavci ConB je semimodularna mreža, pa odatle sledi da: $(\rho \vee \Delta_{\mathsf{B}}) \vee \theta \succ \theta$, odnosno, $\rho \vee \theta \succ \theta$.
- c) Iz Tvrđenja 3.22 sledi da algebra ima CEP, pa se ovaj slučaj dokazuje slično kao slučaj c) u Tvrđenju 3.21. ■

Sledeća tri tvrđenja daju potrebne i dovoljne uslove koje treba da ispuni algebra tako da njena mreža slabih kongruencija bude komplementirana, odnosno Bulova mreža.

Tvrđenje 3.24[101] Algebra & ima CEP, CIP, i komplementiranu mrežu slabih kongruencija ako i samo ako važe sledeći uslovi:

- (i) za svako $\mathcal{B} \in \text{Sub} \mathcal{A}$, preslikavanje $\rho \longrightarrow \rho \lor \Delta$ je mrežni izomorfizam iz Con \mathcal{B} u Con \mathcal{A} ;

 - (iii) Sub₄ je komplementirana mreža.

Tvrđenje 3.25[101] Neka je 4 algebra sa modularnom mrežom slabih kongruencija. Uslovi (i), (ii) i (iii) iz prethodnog tvrđenja su potrebni i dovoljni uslovi za mrežu Cw4 da bude komplementirana.

Tvrđenje 3.26[101] Za algebru 4 mreža slabih kongruencija Cw4 je Bulova mreža ako i samo ako su zadovoljeni sledeći uslovi:

- (i) za svako B∈SubA, preslikavanje ρ→ρ∨Λ je mrežni izomorfizam
 iz ConB u ConA;
 - (ii) Con# je Bulova mreža;
 - (iii) Sub4 je Bulova mreža.

3.5 O PRENOŠENJU NEKIH SVOJSTAVA NA PODALGEBRE I FAKTOR ALGEBRE

Dijagonalne relacije, kao specijalni elementi mreže slabih kongruencija, imaju istaknuto mesto u proučavanju zakona koji važe na toj mreži. O tim zakonima i njihovim algebarskim posledicama govorimo u nastavku.

Tvrđenje 3.27 Data je algebra \mathcal{A} koja ima CEP i CIP, i neka je $f(x_1, \ldots, x_n) = g(x_1, \ldots, x_n)$ proizvoljni mrežni identitet, i \mathcal{B} podalgebra od \mathcal{A} .

Ako jednakost $f(x_1,\ldots,x_{n-1},\Delta)=g(x_1,\ldots,x_{n-1},\Delta)$ važi na ConA i na SubA, tada identitet

$$f(x_1,\ldots,x_{n-1},\Delta_B)=g(x_1,\ldots,x_{n-1},\Delta_B)$$

važi na mreži CwB.

Dokaz. Direktna posledica Tvrđenja 1.20 iz Poglavlja I. 🗉

Posledica 3.11 Ako algebra 4 ima CEP i CIP, tada i svaka podalgebra 8 algebre 4 ima CEP i CIP.

Dokaz. Ako algebra $\mathcal A$ ima CEP i CIP, tada je Δ neutralan elemenat u mreži Cw $\mathcal A$, odnosno, zadovoljen je identitet $(x\wedge\Delta)\vee(y\wedge\Delta)\vee(x\wedge y)=(x\vee\Delta)\wedge(y\vee\Delta)\wedge(x\vee y)$ na celoj mreži Cw $\mathcal A$, pa i na Sub $\mathcal A$ i na Con $\mathcal A$, pa važi i $(x\wedge\Delta_B)\vee(y\wedge\Delta_B)\vee(x\wedge y)=(x\vee\Delta_B)\wedge(y\vee\Delta_B)\wedge(x\vee y)$ na Cw $\mathcal B$, odnosno Δ_B je neutralan elemenat mreže Cw $\mathcal B$, pa $\mathcal B$ ima CEP i CIP.

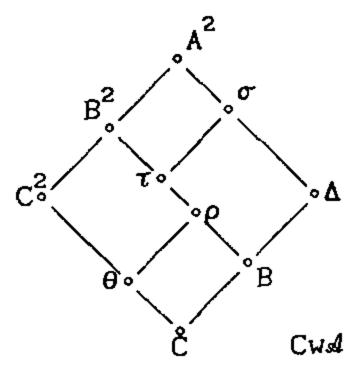
Napomena 3.3 Neposredno se pokazuje da ako algebra 4 ima CEP, da svaka podalgebra algebre 4 ima CEP. Svojstvo CIP se u opštem slučaju ne prenosi na podalgebre, što se vidi i iz sledećeg primera.

Primer 3.3 Dat je grupoid $A=(\{a,b,c,d,e\},*)$, sa skupom nularnih

operacija C={a,b,c}, gde je operacija * zadata Kejlijevom tablicom:

*	а	b	С	d	е
a	b	a	С	d	ď
b	a	a	С	d	е
C	C	С	b	C	С
d	đ	d	C	\mathbf{a}	а
е	d	е	С	a	d

Podalgebre ovog grupoida su C= $\{a,b,c\}$ i B= $\{a,b,c,d\}$. Kongruencije podalgebre $\mathcal E$ su Δ_c , C^2 i $\theta=\{\{a,b\},\{c\}\}$ (zadata preko klasa ekvivalencije). Kongruencije na podalgebri $\mathcal B$ su Δ_B , B^2 , $\rho=\{\{a,b\},\{c\}\}$, $\{d\}\}$ i $\tau=\{\{a,b,d\},\{c\}\}$. Kongruencije na algebri $\mathcal A$ su Δ , A^2 i $\sigma=\{\{a,b,d,e\},\{c\}\}$. Mreža Cw $\mathcal A$ je na slici 3.4:



Slika 3.4

Ova algebra ima CIP, što se jednostavno proverava primenom Tvrdenja 3.3, jer za svako $\theta \in \text{Con}\mathcal{A}$ familije $\left\{\rho \in \text{Cw}\mathcal{A} \middle| \rho_{\mathbb{A}} \geq \theta\right\}$ imaju najmanje elemente. Ova algebra nema CEP, jer je $\tau \lor \Delta = \rho \lor \Delta = \sigma$, a obe relacije su kongruencije na istoj podalgebri \mathcal{B} . Podalgebra \mathcal{B} nema CIP, jer je $(\tau \land \mathbb{C}^2) \lor \Delta_{\mathbb{B}} = \rho \neq \tau = (\tau \lor \Delta_{\mathbb{B}}) \land (\mathbb{C}^2 \lor \Delta_{\mathbb{B}})$.

Ovaj primer pokazuje da se ni wCIP ne prenosi u opštem slučaju sa algebre na podalgebre, jer algebra & ima wCIP, a podalgebra B ga nema.

Sledeće tvrdenje je dualno prethodnom.

Tvrdenje 3.28 Neka je 4 algebra koja ima CEP i *CIP, i neka je $f(x_1,\ldots,x_n)=g(x_1,\ldots,x_n) \text{ proizvoljni mrežni identitet. Za } \theta \in \text{ConA},$ neka je θ najmanji elemenat u klasi kongruencije n_a kojoj pripada θ . Ako $f(x_1,\ldots,x_{n-1},\Delta)=g(x_1,\ldots,x_{n-1},\Delta) \text{ važi na mrežama SubA i ConA},$ tada $f(x_1,\ldots,x_{n-1},\theta)=g(x_1,\ldots,x_{n-1},\theta) \text{ važi na filtru } [\theta) \text{ u mreži CwA}.$

Dokaz. Direktna posledica Tvrđenja 1.23' iz Poglavlja I, jer ako važi *CIP tada za svako θ klase indukovane homomorfizmom $a_{\Lambda}: \rho \longrightarrow \rho \lor \Delta$ imaju najmanje elemente (prema Tvrđenju 3.3).

Iz prethodnog tvrđenja može se zaključiti kada se neke osobine prenose sa algebre na njenu faktor algebru. Naime, u sledećem delu će se ispitivati kada je za $\theta \in \text{Con} A$ mreža $\text{Cw} A/\theta \cong [\underline{\theta}]$. Sledeće tvrđenje kaže kada se CEP i CIP prenose sa algebre na faktor algebru, pod pretpostavkom da taj izomorfizam važi.

Posledica 3.12 Data je algebra 4 koja ima CEP i *CIP. Ako je $\theta \in ConA$ kongruencija za koju važi: $CwA/\theta \cong [\theta]$ tada i faktor algebra A/θ ima CEP i CIP.

Napomena 3.4 U opštem slučaju se ni CEP ni CIP ne prenose na faktor algebre, a ni CEP i CIP zajedno.

Neke složenije jednakosti algebarskih funkcija takođe mogu da se prošire sa mreže kongruencija odnosno podalgebri na celu mrežu slabih kongruencija. O tome i o odgovarajućim algebarskim posledicama raspravlja se u narednih nekoliko tvrđenja.

Tvrđenje 3.29 Neka algebra 4 ima CIP, i neka θ∈Con4. Ako jednakost:

važi na Con₄, tada ona važi na celoj mreži Cw₄.

Dokaz. Direktna posledica Tvrđenja 1.21 iz Poglavlja I 🔳

Posledica 3.13 Ako algebra A ima CIP i θ je distributivni elemenat mreže ConA, i CwA/θ je podmreža mreže CwA, tada i faktor algebra A/θ ima CIP.

Dokaz. $\theta \lor (\rho \land \tau) = (\theta \lor \rho) \land (\theta \lor \tau)$ je jednakost oblika kao u prethodnom tvrdenju, pa direktnom njegovom primenom sledi ovo

tvrdenje.

Tvrdenje 3.30 Data je algebra \mathcal{A} , i neka $\mathcal{B} \in \text{Sub} \mathcal{A}$. Ako jednakost $\bigvee_{i=1}^{n} (\mathcal{B} \wedge f_{1}^{i}(x_{1}, \dots, x_{n})) = \bigvee_{j=1}^{r} (\mathcal{B} \wedge f_{2}^{j}(x_{1}, \dots, x_{n}))$

važi na SubA, tada on važi na CwA.

Tvrdenje 3.31 Data je algebra 4 koja ima CEP i CIP. Ako $\theta \in \text{Con} A$ i jednakost $f(x_1, \ldots, x_n, \theta) = g(x_1, \ldots, x_n, \theta)$ važi na ConA, i jednakost $f(x_1, \ldots, x_n, \Delta) = g(x_1, \ldots, x_n, \Delta)$ važi na SubA, tada jednakost $f(x_1, \ldots, x_n, \theta) = g(x_1, \ldots, x_n, \theta)$ važi na CwA.

Dokaz. Direktna posledica Tvrđenja 1.22 iz Poglavlja I. =

Posledica 3.14 Ako algebra A ima CEP i CIP i θ je kostandardan elemenat mreže ConA i CwA/θ je podmreža od CwA, tada i faktor algebra A/θ ima CEP.

Tvrdenje 3.32 Data je algebra \mathcal{A} koja ima CEP i CIP. Ako $\mathcal{B} \in \operatorname{Sub} \mathcal{A}$ i jednakost $f(x_1, \dots, x_n, \mathcal{B}) = g(x_1, \dots, x_n, \mathcal{B})$ važi na Sub \mathcal{A} , i jednakost $f(x_1, \dots, x_n, \Delta) = g(x_1, \dots, x_n, \Delta)$ važi na Con \mathcal{A} , tada jednakost $f(x_1, \dots, x_n, \mathcal{B}) = g(x_1, \dots, x_n, \mathcal{B})$ važi na Cw \mathcal{A} .

Dokaz. Direktna posledica Tvrđenja 1.22' iz Poglavlja I ■

Tvrdenja 3.27 do 3.32 mogu se uopštiti koristeći mrežna tvrdenja 1.23, 1.23', 1.24, 1.24', 1.25, 1.25' iz Poglavlja I, tako da se umesto jednakosti algebarskih funkcija sa konačno-mesnim operacija posmatraju jednakosti algebarskih funkcija sa beskonačno-mesnim operacijama. Jedini dodatni uslov u većini tih tvrđenja je neprekidnost elementa Δ u mreži slabih kongruencija. Prema Tvrđenju 3.7 Δ je uvek λ-neprekidan elemenat, a prema Tvrđenju 3.8 svojstvo *CIP je ekvivalentno sa CIPom i ν-neprekidnošću elementa Δ u mreži

Tvrđenje 3.33 Data je algebra $\mathcal A$ ima koja ima CEP i *CIP, i neka je $f(x_1,\ldots,x_{\alpha},\ldots)=g(x_1,\ldots,x_{\alpha},\ldots)$ proizvoljni mrežni identitet (koji može da sadrži i beskonačno-mesne operacije), i $\mathcal B$ podalgebra od $\mathcal A$.

Ako identitet $f(\Delta, x_2, ..., x_{\alpha}, ...) = g(\Delta, x_2, ..., x_{\alpha}, ...)$ važi na Conøi na Subø, tada identitet

$$f(\Delta_B, x_2, \ldots, x_{\alpha}, \ldots) = g(\Delta_B, x_2, \ldots, x_{\alpha}, \ldots)$$

važi **na mreži** C**wB**.

Dokaz. Direktna posledica Tvrđenja 1.23 iz Poglavlja I. 🔳

Posledica 3.15 Ako algebra 4 ima EEP i *CIP, tada i svaka podalgebra 8 algebre 4 ima CEP i *CIP.

Sledeće tvrdenje je dualno prethodnom.

Tvrdenje 3.34 Neka je 4 algebra koja ima CEP i *CIP, i neka je $f(x_1,\ldots,x_{\alpha},\ldots)=g(x_1,\ldots,x_{\alpha},\ldots)$ proizvoljni mrežni identitet (koji može da sadrži i beskonačno-mesne operacije) . Za $\theta\in ConA$, neka je θ najmanji elemenat u klasi kongruencije na kojoj pripada θ . Ako $f(\Delta,x_2,\ldots,x_{\alpha},\ldots)=g(\Delta,x_2,\ldots,x_{\alpha},\ldots)$ važi na mrežama SubA i ConA, tada $f(\theta,x_2,\ldots,x_{\alpha},\ldots)=g(\theta,x_2,\ldots,x_{\alpha},\ldots)$ važi na filtru $[\theta]$ u mreži CwA.

Dokaz. Direktna posledica Tvrđenja 1.23' iz Poglavlja I.

Posledica 3.16 Data je algebra 4 koja ima CEP i *CIP. Ako je $\theta \in \text{Con} A$ kongruencija za koju važi: $CwA/\theta \cong [\theta]$ tada i faktor algebra A/θ ima CEP i *CIP.

Tvrđenje 3.35 Neka algebra 4 ima *CIP, i neka θ∈Con4. Ako

jednakost:

Dokaz. Direktna posledica Tvrđenja 1.24 iz Poglavlja I. =

Posledica 3.16 Ako algebra A ima *CIP i θ je beskonačno distributivni elemenat mreže ConA, i CwA/θ je podmreža mreže CwA, tada i faktor algebra A/θ ima *CIP.

Tvrđenje 3.36 Data je algebra \mathcal{A} , i neka $\mathcal{B} \in \text{Sub}\mathcal{A}$. Ako jednakost ${}_{i} \overset{V}{\in} I \left(\mathcal{B} \wedge \ f_{1}^{i} \left(x_{1}, \ldots, x_{\alpha}, \ldots\right)\right) = {}_{j} \overset{V}{\in} J \left(\mathcal{B} \wedge \ f_{2}^{j} \left(x_{1}, \ldots, x_{\alpha}, \ldots\right)\right),$ važi na Sub \mathcal{A} , tada on važi na Cw \mathcal{A} .

Tvrđenje 3.37 Data je algebra 4 koja ima CEP i *CIP. Ako $\theta \in \text{Con} A$ i jednakost $f_1(\theta, x_1, \ldots, x_{\alpha}, \ldots) = f_2(\theta, x_1, \ldots, x_{\alpha}, \ldots)$ važi na ConA i jednakost $f_1(\Delta, x_1, \ldots, x_{\alpha}, \ldots) = f_2(\Delta, x_1, \ldots, x_{\alpha}, \ldots)$ važi na SubA, tada jednakost $f_1(\theta, x_1, \ldots, x_{\alpha}, \ldots) = f_2(\theta, x_1, \ldots, x_{\alpha}, \ldots)$ važi na CwA.

Dokaz. Direktna posledica Tvrđenja 1.25 iz Poglavlja I.

Tvrđenje 3.38 Data je algebra 4 koja ima CEP i *CIP. Ako $\mathcal{B} \in \text{Sub} \mathcal{A}$ i jednakost $f_1(\mathcal{B}, x_1, \ldots, x_{\alpha}, \ldots) = f_2(\mathcal{B}, x_1, \ldots, x_{\alpha}, \ldots)$ važi na Sub \mathcal{A} , i jednakost $f_1(\Delta, x_1, \ldots, x_{\alpha}, \ldots) = f_2(\Delta, x_1, \ldots, x_{\alpha}, \ldots)$ važi na Con \mathcal{A} , tada jednakost $f_1(\mathcal{B}, x_1, \ldots, x_{\alpha}, \ldots) = f_2(\mathcal{B}, x_1, \ldots, x_{\alpha}, \ldots)$ važi na Cw \mathcal{A} . Dokaz. Direktna posledica Tvrđenja 1.35' iz Poglavlja I.

3.6 O MREŽI SLABIH KONGRUENCIJA FAKTOR ALGEBRE [106, 109]

Teorema 3.1 Neka je A=(A,F) algebra i $\theta\in ConA$. Tada je $ConA/\theta$ izomorfno sa filtrom $[\theta]$ u mreži ConA, gde je izomorfizam α :

Ovo je poznato tvrdenje iz univerzalne algebre, koje tačno određuje mrežu kongruencija homomorfne slike proizvoljne algebre preko mreže kongruencija te algebre. U ovom delu ćemo se baviti mrežom slabih kongruencija homomorfne slike algebre, i njenim odnosom sa mrežom slabih kongruencija te algebre. Pokazalo se da mreža slabih kongruencija homomorfne slike algebre u opštem slučaju nije izomorfna filtru, pa čak ni podmreži te algebre.

Neka $\theta \in \text{Con} A$, i $\mathcal{D}_{\theta} = \{\mathcal{B} | \mathcal{B} \text{ je podalgebra od } A \text{ i } B[\theta] = B\}$, gde je $B[\theta] = \{x \in A \mid x \theta b \text{ za neko } b \in B\}$. \mathcal{D}_{θ} je familija podalgebri od A koje imaju svojstvo da seku kongruenciju θ pravilno po njenim klasama.

Mreži slabih kongruencija Cw A/θ u mreži CwA odgovara podskup $A_{\theta} = U([B^2 \land \theta, B^2] | \mathcal{B} \in \mathcal{D}_{\theta}),$

gde je $[B^2 \wedge \theta, B^2]$ interval mreže CwA.

Preslikavanje $\alpha: A_{\theta} \to CwA/\theta$ definisano sa $\alpha(\phi) = \phi/\theta$ (kao u Teoremi 3.1), je mrežni izomorfizam, kad se A_{θ} posmatra kao mreža u odnosu na poredak indukovan sa mreže CwA.

Zbog prethodnog razmatranja rešavajući problem u kakvom su odnosu \mathcal{A}_{θ} i $\mathcal{C}w\mathcal{A}/\theta$ i $\mathcal{C}w\mathcal{A}$, umesto $\mathcal{C}w\mathcal{A}/\theta$ posmatraće se u kakvom su odnosu \mathcal{A}_{θ} i $\mathcal{C}w\mathcal{A}$, odnosno, neće se praviti razlika između mreža $\mathcal{C}w\mathcal{A}/\theta$ i \mathcal{A}_{θ} .

U sledećem primeru Cw4/0 nije podmreža od Cw4.

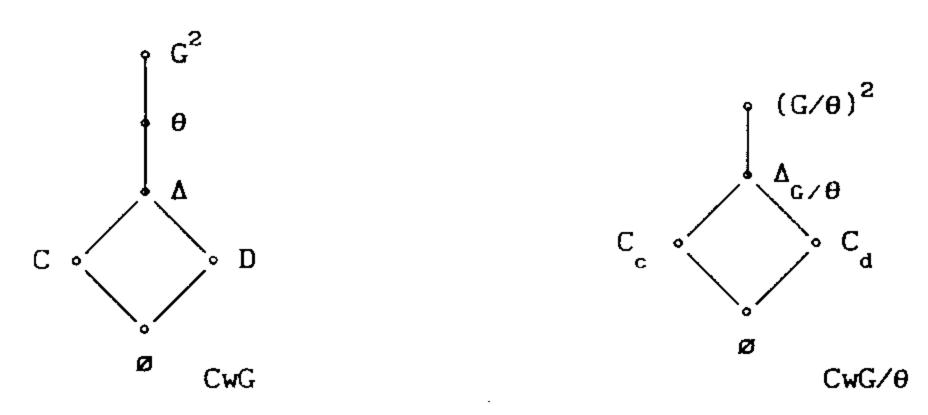
Primer 3.4

Grupoid (G,*) zadat je Kejlijevom tablicom:

* a b c d Podgrupoidi grupoida (G,*) su
$$\mathcal{E}=(\{c\},*)$$
 i a d d b c $\mathcal{D}=(\{d\},*)$. c b b c a d c c a d Kongruencije su: A^2 , Δ i $\theta=\{\{a,b\},\{c\},\{d\}\}$.

Ako obeležimo klase kongruencije θ , redom sa C_a , C_c i C_d , tada je $G/\theta = \{C_a, C_c, C_d\}$. Podgrupoidi od G/θ su $\{C_c\}$ i $\{C_d\}$, a kongruencije su samo $(G/\theta)^2$ i $\Delta_{G/\theta}$. Mreže slabih kongruencija CwG i CwG/ θ prikazane su

na slici 3.5:



Slika 3.5

Vidimo da G_θ nije podmreža od CwG, jer C∨D≠ θ u CwG.

Da bi CwA/θ bila podmreža od CwA, za neku algebru A i $\theta \in ConA$ moraju važiti neki čisto mrežni uslovi, ali oni nisu i dovoljni, što se može pretpostaviti već iz definicije za \mathcal{D}_{θ} koja je u vezi sa A_{θ} . Ono što sledi je razmatranje potrebnih mrežnih uslova, zatim nekih algebarskih uslova, i dati su i neki potrebni i dovoljni uslovi da mreža CwA/θ bude podmreža od CwA.

Lema 3.14 Neka su $\mathcal B$ i $\mathcal C$ podalgebre algebre $\mathcal A$ i $\theta \in \mathrm{Con} \mathcal A$. Ako $\mathcal B$, $\mathcal C \in \mathcal D_{\Theta}$, onda i $\mathcal B \wedge \mathcal C \in \mathcal D_{\Theta}$.

Dokaz. Ako su B i C unija nekih klasa od θ, tada je i njihov presek unija nekih klasa od θ.

Lema 3.15 Ako $\rho, \phi \in CwA$ pripadaju A_{Θ} onda i $\rho \land \phi \in A_{\Theta}$.

Dokaz. Neka $\rho \in \text{Con}\mathcal{B}$ i $\phi \in \text{Con}\mathcal{C}$, za \mathcal{B} , $\mathcal{C} \in \text{Sub}\mathcal{A}$, i \mathcal{B} , $\mathcal{C} \in \mathcal{D}_{\theta}$. Pošto ρ , $\phi \in \mathcal{A}_{\theta}$, važi da je $\beta^2 \wedge \theta \leq \rho \leq \beta^2$ i $\beta^2 \wedge \theta \leq \phi \leq \beta^2$, odakle je $\beta^2 \wedge \beta^2 \wedge \theta \leq \rho \wedge \phi \leq \beta^2 \wedge \beta^2$. Iz $\beta^2 \wedge \beta^2 = (\beta \wedge \beta)^2$, sledi $(\beta \wedge \beta)^2 \wedge \theta \leq \rho \wedge \phi \leq (\beta \wedge \beta)^2$, a iz prethodne leme, $\beta \wedge \beta \in \mathcal{D}_{\theta}$, odakle $\rho \wedge \phi \in \mathcal{A}_{\theta}$.

Teorema 3.2 Neka je A algebra i $\theta \in \text{Con}A$. $\text{Cw}A/\theta$ je podmreža od CwA ako i samo ako sledeći uslovi važe za sve B, $G \in \mathcal{D}_{\Theta}$:

(i)
$$\mathcal{B} \lor \mathcal{C} \in \mathcal{D}_{\theta};$$

(ii)
$$\theta \wedge (B^2 \vee C^2) = (\theta \wedge B^2) \vee (\theta \wedge C^2);$$

(iii)
$$\theta \wedge (B^2 \vee C^2) = \theta \wedge (B \vee C)^2$$
.

Dokaz. (←—)

Neka $\rho,\phi\in A_{\theta}$, i neka $\rho\in Con\mathcal{B}$, i $\phi\in Con\mathcal{C}$, za $\mathcal{B},\mathcal{C}\in\mathcal{D}_{\theta}$. Iz prethodne leme sledi da $\rho\land\phi\in A_{\theta}$.

Dalje je $(B^2 \wedge \theta) \vee (C^2 \wedge \theta) \leq \rho \vee \theta \leq B^2 \vee C^2$, pa iz uslova (ii) i (iii) i činjenice da je $B^2 \vee C^2 \leq (B \vee C)^2$, sledi da je $(B \vee C)^2 \wedge \theta \leq \rho \vee \phi \leq (B \vee C)^2$, pa iz (i) sledi da $\rho \vee \phi \in A_{\theta}$.

 (\longrightarrow)

Neka je \mathcal{A}_{θ} podmreža od Cw \mathcal{A} i $\mathcal{B}, \mathcal{E} \in \mathcal{D}_{\theta}$. $\mathbb{B}^2 \wedge \theta$ i $\mathbb{C}^2 \wedge \theta$ tada pripadaju \mathcal{A}_{θ} , pa i $(\mathbb{B}^2 \wedge \theta) \vee (\mathbb{C}^2 \wedge \theta) \in \mathcal{A}_{\theta}$. Pošto $(\mathbb{B}^2 \wedge \theta) \vee (\mathbb{C}^2 \wedge \theta) \in \mathrm{Con}(\mathcal{B} \vee \mathcal{E})$, sledi da $\mathcal{B} \vee \mathcal{E} \in \mathcal{D}_{\theta}$. Dalje, pošto je $(\mathbb{B} \vee \mathbb{C})^2 \wedge \theta \leq (\mathbb{B}^2 \wedge \theta) \vee (\mathbb{C}^2 \wedge \theta) \leq (\mathbb{B} \vee \mathbb{C})^2$, a uvek važi da je $(\mathbb{B}^2 \wedge \theta) \vee (\mathbb{C}^2 \wedge \theta) \leq (\mathbb{B}^2 \vee \mathbb{C}^2) \wedge \theta \leq (\mathbb{B} \vee \mathbb{C})^2 \wedge \theta$, sledi da je $(\mathbb{B}^2 \wedge \theta) \vee (\mathbb{C}^2 \wedge \theta) = (\mathbb{B}^2 \vee \mathbb{C}^2) \wedge \theta = (\mathbb{B} \vee \mathbb{C})^2 \wedge \theta$, odnosno važe uslovi (ii) i (iii).

Pošto uvek važi da je:

$$(B^2 \wedge \theta) \vee (C^2 \wedge \theta) \leq (B^2 \vee C^2) \wedge \theta \leq (B \vee C)^2 \wedge \theta$$

uslovi (ii) i (iii) su ekvivalentni sa uslovom:

$$(B^{2} \wedge \theta) \vee (C^{2} \wedge \theta) = (B \vee C)^{2} \wedge \theta$$

Pošto je mreža $(\{B^2 \land \theta \mid \mathcal{B} \in \mathcal{D}_{\theta}\}, \leq)$ (podmreža od A_{θ}) izomorfna sa mrežom Sub A/θ , iz prethodnog tvrđenja sledi:

Posledica 3.17 Za algebru A i θ∈ConA, CwA/θ je podmreža od CwA
ako i samo ako je SubA/θ podmreža od CwA.

Sledeća tvrđenja su direktne posledice nekih od mrežnih tvrđenja iz Poglavlja I , i daju neke potrebne uslove pod kojima je Cw4/0 podmreža od Cw4.

Teorema 3.3 Neka je 4 algebra sa nepraznom najmanjom podalgebrom $\mathcal{B}_{\mathbf{m}}$. Ako je θ kodistributivni elemenat mreže Cw4 i za svake dve podalgebre \mathcal{B} i \mathcal{C} iz \mathcal{D}_{θ} sledi da i \mathcal{B} V \mathcal{C} \in \mathcal{D}_{θ} tada je Cw4/ θ podmreža od Cw4.

Dokaz. Sledi iz Teoreme 3.2 Tvrdenja 1.27 iz Poglavlja I. 🗷

Posledica 3.18 Neka je $\mathcal A$ algebra koja ima CIP i nepraznu najmanju podalgebru $\mathcal B_{\mathbf m}$. Ako je θ distributivan i kodistributivan elemenat mreže Con $\mathcal A$ i ako za svake dve podalgebre $\mathcal B$ i $\mathcal C$ iz $\mathcal D_{\theta}$ sledi da i $\mathcal B \lor \mathcal C \in \mathcal D_{\theta}$, tada je Cw $\mathcal A \lor \theta$ podmreža od Cw $\mathcal A$ i $\mathcal A \lor \theta$ ima CIP.

Dokaz. Sledi iz Teoreme 3.2 i Posledice 3.13.

Posledica 3.19 Neka algebra $\mathcal A$ ima CEP i CIP i nepraznu najmanju podalgebru $\mathcal B$. Ako je θ kodistributivan i kostandardan elemenat mreže Cw $\mathcal A$ i ako za svake dve podalgebre $\mathcal B$ i $\mathcal C$ iz $\mathcal D_{\theta}$ sledi da i $\mathcal B \lor \mathcal C \in \mathcal D_{\theta}$, tada je $\mathcal C \lor \mathcal A \neq \mathcal C \lor \mathcal C \lor \mathcal A \neq \mathcal C \lor \mathcal C \lor$

Dokaz. Sledi iz Teoreme 3.2 i Posledice 3.14

Posledica 3.20 Ako algebra $\mathcal A$ ima distributivnu mrežu slabih kongruencija i nepraznu najmanju podalgebru $\mathcal B_{\mathbf m}$, i ako za svake dve podalgebre $\mathcal B$ i $\mathcal C$ iz $\mathcal D_{\boldsymbol \theta}$ sledi da i $\mathcal B \lor \mathcal C \in \mathcal D_{\boldsymbol \theta}$, tada je $\mathcal C \lor \mathcal A \lor \boldsymbol \theta$ podmreža od $\mathcal C \lor \mathcal A$ i $\mathcal A \lor \boldsymbol \theta$ ima CEP i CIP.

Dokaz. Sledi iz prethodne dve posledice i činjenice da ako je CwA distributivna mreža algebra A ima CEP i CIP, a i 0 je svakako neutralan elemenat.

Teorema 3.4 Neka je A algebra sa nepraznom najmanjom podalgebrom B_m , koja zadovoljava CEP i wCIP. Ako je θ distributivan element mreže ConA, i za svake dve podalgebre B i C iz D_{θ} sledi da i $B \lor C \in D_{\theta}$ tada je Cw $A \lor \theta$ podmreža od CwA.

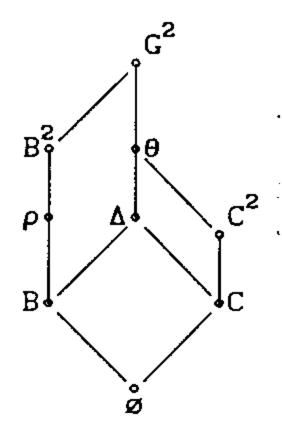
Dokaz. Sledi iz Teoreme 3.2 i Tvrđenja 1.26 iz Poglavlja I.∎

Posledica 3.21 Neka je A algebra sa nepraznom najmanjom podalgebrom B_m , koja zadovoljava CEP i CIP. Ako je θ distributivan element mreže ConA, i za svake dve podalgebre B i C iz D_{θ} sledi da i $B \lor C \in D_{\theta}$ tada je $C \lor A \lor \theta$ podmreža od $C \lor A \lor A \lor \theta$ ima CIP.

Uslovi iz prethodne teoreme nisu i potrebni da bi Cw4/0 bila podmreža od Cw4, što pokazuje i sledeći primer:

Primer 3.5 Neka je $\mathcal{G}=(G,*)$ grupoid, gde je $G=\{a,b,c,d,e\}$ i operacija * zadata Kejlijevom tablicom:

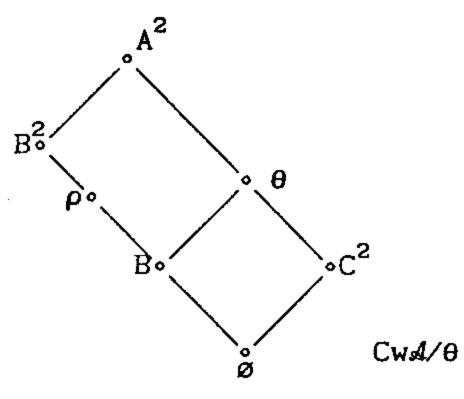
Podgrupoidi ovog grupoida su: $B=\{a,b,c\}$ i $C=\{e,d\}$. Kongruencije su: G^2 , $\theta=\{\{a\},\{b\},\{c\},\{d,e\}\}\}$ i Δ . Kongruencije na podgrupoidu $\mathcal B$ su B^2 , $\rho=\{\{a,b\},\{c\}\}\}$ i Δ Mreža slabih kongruencija Cw $\mathcal B$ je na slici 3.6:



Slika 3.6

Grupoid \mathcal{G} nema CEP (jer je $\rho \vee \Delta = B^2 \vee \Delta$), nema wCIP (jer je $(\theta \wedge \rho) \vee \Delta = \Delta \neq \theta = \theta \wedge (\rho \vee \Delta)$), pa ni CIP, i najmanja podalgebra je prazna.

Međutim, Cw A/θ je podmreža od CwA. Cw A/θ , odnosno A_{θ} , dato je na slici 3.7:



Slika 3.7

Znači, uslovi iz Teoreme 3.3 nisu i potrebni da bi CwA/θ bila podmreža od CwA.

U sledećem delu razmatraju se neke klase algebri koje zadovoljavaju uslov da je mreža slabih kongruencija proizvoljne homomorfne slike algebre podmreža mreže slabih kongruencija te algebre.

Najjednostavniji slučaj su algebre kod kojih sve podalgebre pripadaju \mathcal{D}_{Θ} za svaku kongruenciju Θ . Za takve algebre uslovi za mrežu slabih kongruencija homomorfne slike da bude podmreža mreže slabih kongruencija te algebre svode se na čisto mrežne uslove- na položaj elementa Θ u mreži CwA.

Druga klasa algebri koja zadovoljava potrebni algebarski uslov je klasa koherentnih algebri, algebri koje imaju svojstvo da ako neka podalgebra sadrži klasu neke kongruencije, tada je ta podalgebra unija klasa te kongruencije. Za koherentnu algebru 4 očigledno važi da iz $\mathcal{B}, \mathcal{E} \in \mathcal{D}_{\theta}$, za neko $\theta \in \mathsf{Con}\mathcal{A}$, sledi $\mathcal{B} \vee \mathcal{E} \in \mathcal{D}_{\theta}$.

Uz koherentnost, regularnost svake podalgebre za posmatranu algebru omogućuje ispunjenje i traženih mrežnih uslova Teoreme 3.2, pa važi sledeće tvrđenje:

Teorema 3.5 Neka je A koherentna algebra i $\theta \in \text{Con} A$. Ako su sve podalgebre iz \mathcal{D}_{Θ} regularne, tada je $\text{Cw} A/\theta$ podmreža od Cw A.

Dokaz. Uslov (i) važi, jer je A koherentna algebra. Još treba pokazati da za svako B i C iz D_{θ} važi $(B^2 \wedge \theta) \vee (C^2 \wedge \theta) = (B \vee C)^2 \wedge \theta$.

Neka je $\phi = \theta \wedge (B \vee C)^2$. Očito, $\phi \in Con(B \vee C)$ i ϕ je unija klasa od θ (jer $B \vee C \in D_{\theta}$). $\psi = (B^2 \wedge \theta) \vee (C^2 \wedge \theta)$ takođe pripada $Con(B \vee C)$. Pošto je uvek $\psi \leq \phi$, klase od θ koje pripadaju B i C su i klase od ψ , znači, ψ i ϕ imaju neke iste klase i pošto su obe iz $Con(B \vee C)$, i $B \vee C$ je regularna, sledi da je $\psi = \phi$.

Posledica 3.22 Za svaku grupu g, i N normalnu podgrupu grupe g,

Cw9/N je podmreža od Cw9.

Dokaz. Sledi iz Teoreme 3.5, jer je svaka grupa koherentna i regularna.

Posledica 3.23 Ako je ⊿ algebra u koherentnom varijetetu, tada je za svaku 0∈Con⊿, Cw4/0 je podalgebra od Cw4.

Dokaz. Sledi iz Teoreme 3.5 i činjenice da je svaki koherentni varijetet kongruencijski regularan.

Traženo svojstvo imaju i algebre kod kojih je unija svake dve njene podalgebre opet podalgebra. (∪-algebre):

Teorema 3.6 Ako je 4 ∪-algebra, za svako θ∈Con4, Cw4/θ je podmreža od Cw4.

Dokaz. Ako $\theta \subseteq \text{Con} \mathcal{A}$, i $\mathcal{B}, \mathcal{C} \in \mathcal{D}_{\theta}$, tada je očigledno i BVC = BVC unija klasa od θ , odnosno $\mathcal{B} \lor \mathcal{C} \in \mathcal{D}_{\alpha}$.

 $\theta \wedge B^2$ je unija klasa od θ koje pripadaju B, slično je i $\theta \wedge C^2$ unija klasa od θ koje pripadaju C. $(\theta \wedge B^2) \vee (\theta \wedge C^2)$ je kongruencija na BvC, odnosno BvC. $\theta \wedge (B \vee C)^2$ je unija klasa od θ koje pripadaju BvC, pa je to i najmanja kongruencija na BvC koja sadrži klase od θ iz B i klase od θ iz C, odakle sledi da je $(\theta \wedge B^2) \vee (\theta \wedge C^2) = \theta \wedge (B \vee C)^2$, što je i trebalo dokazati.

Posledica 3.24 Ako je ⊿ unarna algebra, tada je za svako θ∈Con⊿ Cw⊿/θ podmreža od Cw⊿.

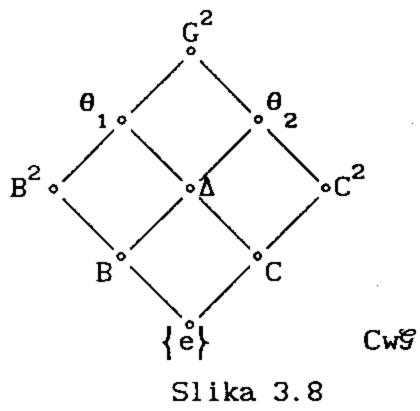
Dokaz. Sledi iz Teoreme 3.6 i činjenice da je unarna algebra v-algebra.

* * *

U sledećem delu ispitivaće se kada je mreža Cw4/θ za θ∈Con4,

pored toga što je podmreža mreže Cw4 (za šta su uslovi ispitni u gornjem delu) i izomorfna sa odgovarajućim filtrom u mreži Cw4 (kao što je to slučaj sa Con4/0 i Con4).

Primer 3.6 Neka je $\mathscr{G}=(\{e,a,b,c,d,f\},\cdot)$ ciklička grupa reda 6, tj. $b=a^2$, $c=a^3$, $d=a^4$, $f=a^5$ i $e=a^6$. Podgrupe ove grupe su: $B=\{e,b,d\}$, $C=\{e,c\}$ i $\{e\}$. Kongruencije su (zapisivanje po klasama): θ_1 : ebd, acf; θ_2 : ec, ad, bf; Δ i G^2 . Cw \mathscr{G} prikazana je na slici 3.8:



Ovde je $Cw\mathcal{G}/\theta_1 \cong [C^2)$. (jedino $C \in \mathcal{D}_{\theta_1}$).

Neka $\theta \in \text{Con}\mathcal{A}$, za algebru \mathcal{A} . Ispitivaće se kada je (kao u gornjem primeru) $Cw\mathcal{A}/\theta\cong [\underline{\theta}]$, gde je $\underline{\theta}= \Lambda(\rho \in Cw\mathcal{A}|\rho \lor \Delta \succeq \theta)$, u odnosu na preslikavanje $\rho \longrightarrow \rho/\theta$.

U Tvrdenju 3.3 pokazano je da je svojstvo *CIP za algebru A ekvivalentno sa postojanjem kongruencije $\underline{\theta}$ za svaku kongruenciju $\theta \in ConA$. Moguće je da algebra nema *CIP, a da za neku kongruenciju θ postoji $\underline{\theta}$. Ovde će se ispitivati kada to svojstvo $(CwA/\theta \cong [\underline{\theta}])$ važi lokalno, za neku kongruenciju θ , i kada važi globalno, za svako $\theta \in ConA$. Kod ispitivanja kada to svojstvo važi globalno, pretpostavljaćemo da algebra koja je u pitanju ima *CIP.

Tvrđenje 3.39 Neka je 4 algebra i za svako θ∈Con4 važi Cw4/θ≅ [θ). Tada važi sledeće:

- algebra A ima *CIP;
- 2) algebra A ima CEP;

3) za B∈Sub4 važi:

 $B[\theta]=B$ ako i samo ako $(B^2 \wedge \theta) \vee \Delta = \theta$.

Dokaz. 1) sledi iz Tvrđenja 3.3.

- 2) Pretpostavimo da algebra \mathcal{A} ne zadovoljava CEP. Tada postoje slabe kongruencije ρ_1 i ρ_2 iz iste podalgebre $\mathcal{B}\in \operatorname{Sub}\mathcal{A}$, takve da je $\rho_1\vee\Delta=\rho_2\vee\Delta=\theta$ $\in \operatorname{Con}\mathcal{A}$. Ako ρ_1 i ρ_2 nisu uporedive, posmatramo $\rho_1\wedge\rho_2$ $(\rho_1\wedge\rho_2)$ pripada takođe $\operatorname{Con}\mathcal{B}$, a zbog *CIPa je $(\rho_1\wedge\rho_2)\vee\Delta=\theta$). Znači, uzimamo da je $\rho_1<\rho_2$. Sada je $\operatorname{B}^2\wedge\theta\geq\rho_2$ i $\operatorname{B}^2\wedge\theta>\rho_1$. Sledi da $\rho_1\notin\operatorname{Cw}\mathcal{A}/\theta$, ali $\rho_1\geq\theta$, odnosno $\rho_1\in[\theta]$. Ovo je u suprotnosti sa uslovom $\operatorname{Cw}\mathcal{A}/\theta\cong[\theta]$, pa početna pretpostavka nije tačna, znači, CEP važi.
- 3) Neka $B \in Sub A$ i $\theta \in Con A$. Ako je $B[\theta] = B$, tada $B^2 \wedge \theta$ pripada, do na izomorfizam, CwA / θ , odnosno, pripada $[\underline{\theta}]$. Znači, $(B^2 \wedge \theta) \vee \Delta \geq \theta$, pa je $(B^2 \wedge \theta) \vee \Delta = \theta$.

Ako je $(B^2 \wedge \theta) \vee \Delta \approx \theta$, tada $B^2 \wedge \theta$ pripada filtru $[\underline{\theta}]$, pa $B^2 \wedge \theta$ pripada i $Cw A / \theta$, pa je $B[\theta] = B$.

Obrat ovog tvrđenja takođe važi:

Tvrdenje 3.39' Ako je \mathcal{A} algebra koja ima *CIP, CEP i za $\mathcal{B} \in \text{Sub} \mathcal{A}$ važi: $B[\theta] = B$ ako i samo ako $(B^2 \wedge \theta) \vee \Delta = \theta$, tada je za svako $\theta \in \text{Con} \mathcal{A}$,

Cw4/θ≅ [θ]

u odnosu na izomorfizam $\rho \rightarrow \rho/\theta$.

Dokaz. Za svako $\theta \in ConA$, θ postoji, jer A ima *CIP. Ono što treba pokazati je da $U([B^2 \wedge \theta, B^2] | B[\theta] = B$, za $\mathcal{B} \in SubA) = [\theta]$, za svako $\theta \in ConA$.

Neka $\rho \in [B^2 \wedge \theta, B^2]$, gde je $B[\theta] = B$. Iz $B[\theta] = B$ sledi da je $(B^2 \wedge \theta) \vee \Delta = \theta$, odakle $B^2 \wedge \theta \in [\theta]$, odakle $\rho \in [\theta]$. Ovim je pokazano:

 $U([B^2 \land \theta, B^2] | B[\theta] = B, za \mathcal{B} \in Sub A) \subseteq [\theta).$

Neka $\rho \in [\underline{\theta}]$, i $\rho \in \text{Con}\mathcal{B}$, za $\mathcal{B} \in \text{Sub}\mathcal{A}$. Sledi da je $\rho \vee \Delta \geq \theta$, odakle $B^2 \vee \Delta \geq \theta$. Pošto važi *CIP, sada je:

 $(B^2 \wedge \theta) \vee \Delta = (B^2 \vee \Delta) \wedge \theta = \theta$, pa je prema uslovu tvrđenja, $B[\theta] = B$.

Dalje je $(\rho \wedge \theta) \vee \Delta = (\rho \vee \Delta) \wedge \theta = \theta = (B^2 \wedge \theta) \vee \Delta$,

 $(\rho \wedge \theta) \wedge \Delta = (B^2 \wedge \theta) \wedge \Delta$, pa je, s obzirom da važi CEP,

 $\rho_{\Lambda}\theta = B^2_{\Lambda}\theta, \text{ znači, važi da je } \rho \geq B^2_{\Lambda}\theta, \text{ što pokazuje da}$ je: $[\theta] \subseteq U([B^2_{\Lambda}\theta, B^2][B[\theta]=B, \text{ za } \mathcal{B}\in \text{Sub}A).$

Prethodna dva tvrđenja dokazuju sledeću teoremu:

Teorema 3.7 Za svaku kongruenciju $\theta \in ConA$, algebre A važi: $CwA/\theta \cong [\underline{\theta}]$ u odnosu na izomorfizam $\rho \longrightarrow \rho/\theta$ ako i samo ako algebra A ima *CIP, CEP i važi uslov:

$$B[\theta]=B$$
 ako i samo ako $(B^2 \wedge \theta) \vee \Delta = \theta$.

Posledica 3.25 Data je algebra 4 koja ima CEP i *CIP. Ako za svaku kongruenciju ⊖∈Con4 i svaku podalgebru B∈Sub4 važi:

 $B[\theta]=B$ ako i samo ako $(B^2 \wedge \theta) \vee \Delta = \theta$ tada svaka faktor algebra A/θ ima CEP i CIP.

3.7 MREŽE SLABIH KONGRUENCIJA NEKIH POSEBNIH KLASA I VARIJETETA ALGEBRI

U sledećem delu ispitivaće se svojstva mreža slabih kongruencija nekih posebnih klasa algebri, kao što su unari, unarne algebre, mreže, grupe, prsteni, moduli, Hamiltonove algebre, Risove algebre,...

Algebra 4 je Hamiltonova ako je svaka podalgebra algebre 4 klasa neke kongruencije iz Con4.

Algebra A je regularna ako je svaka kongruencija jednoznačno određena svakom svojom klasom.

Algebra 4 je c-regularna ako je svaka kongruencija jednoznačno određena klasom koja sadrži konstantu c.

Neka je A algebra i A_m njena najmanja podalgebra (pretpostavlja se da je neprazna). Algebra A je A_m -regularna ako je svaka kongruencija jednoznačno određena klasom koja sadrži A_m .

Algebra 4 je Risova ako je za svako B∈Sub4, B²∪A kongruencija na 4.

Algebra 4 je ∪-algebra ako je njena mreža podalgebri zatvorena u odnosu na skupovnu uniju.

Algebra A je koherentna ako ima svojstvo da ako neka njena podalgebra sadrži klasu neke kongruencije, tada je ta podalgebra unija klasa te kongruencije.

U sledećih nekoliko tvrđenja ispituje se mreža slabih kongruencija unarne algebre.

Lema 3.16 Svaka unarna algebra je Hamiltonova.

Dokaz. Neka je A unarna algebra. Ono što treba da se pokaže je da je svaka podalgebra blok neke kongruencije. Neka $B \in \text{Sub} A$. Neka je ρ relacija definisana sa: $\rho = ((A \setminus B)^2 \cap \Delta) \cup B^2$. ρ je očigledno relacija ekvivalencije. Ako je a ρ b, onda ili a \in B i b \in B ili a=b. Ako a \in B i b \in B, onda $f(a)\rho f(b)$, za svako $f \in F$, jer je B podalgebra, a ako je a=b, tada i f(a) = f(b), za svako $f \in F$. Znači, ρ je i kongruencija, a B je njen blok, čime je tvrđenje dokazano.

Lema 3.17 Unarna algebra je ∪-algebra koja ima jaki CEP.

Lema 3.18 Unarna algebra ima * CIP.

Dokaz. Sledi iz Leme 3.17, jer jaki CEP implicira *CIP. ■

Lema 3.19 Ako je ∡ unarna algebra, Sub∡ je distributivna mreža.

Dokaz. Pošto je za B, K∈SubA, B∨K = B∪K, i B∧K = B∩K, tvrdenje važi.

Tvrdenje 3.40 Neka je 4 unarna algebra. Cw4 je modularna mreža akko je Con4 modularna mreža.

Dokaz. Prema Posledici 3.8 potrebni i dovoljni uslovi za modularnost CwA su da A ima CEP i CIP, i da su ConA i SubA modularne mreže. Iz Leme 3.17 sledi da algebra A ima CEP, iz Leme 3.18 da ima

CIP, a iz Leme 3.19 da je Sub# modularna mreža. Ovim je tvrdenje dokazano.

Tvrđenje 3.41 Neka je 4 unarna algebra. Cw4 je distributivna mreža ako i samo ako je Con4 distributivna mreža.

Dokaz. Sličan kao dokaz Tvrđenja 3.40.

U składu sa dogovorom na početku prvog dela ovog poglavlja ø se ne smatra kao elemenat mreže Cw4, osim ako to nije neophodno radi kompletiranja mreže. Samo pod tim uslovima važe sledeća lema, tvrdenje, posledica i primer:

Lema 3.20 Neka je 4 unarna algebra. Ako je Cw4 komplementirana, tada 4 nema pravih podalgebri.

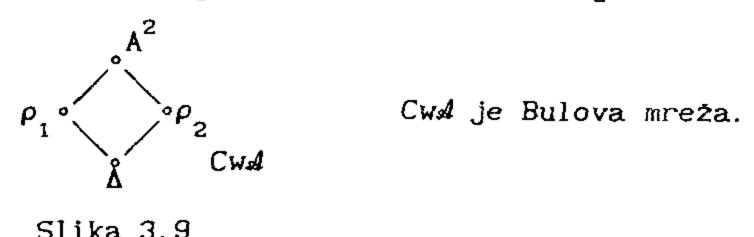
Dokaz. Ako je Cw\$\mathcal{A}\$ komplementirana algebra, onda svaki elemenat, pa i \$\Delta\$ mora imati komplement. Ako \$\Delta\$ ima komplement u Cw\$\mathcal{A}\$, onda mora postojati minimalna podalgebra od \$\mathcal{A}\$, za koju je \$|A|>1\$. Neka je to \$\mathcal{B}\$_m\$, i \$|B_m|>1\$. Tada je komplement od \$\Delta\$ elemenat \$\mathcal{B}^2\$_m\$ (jer komplement za \$\Delta\$ mora pripadati \$\text{Con}\mathcal{B}\$_m\$). Znači, \$\Delta \text{VB}^2\$_m = \$\Delta^2\$. Iz \$\Delta \text{VB}^2\$_m = \$\Delta \text{VD}^2\$_m\$ (Lema 3.12) sledi da je \$\Delta \text{UB}^2\$_m = \$\Delta^2\$, odakle je \$\B^2\$_m = \$\Delta^2\$, odnosno, minimalna podalgebra te algebre je sama ta algebra.

Tvrdenje 3.42 Mreža slabih kongruencija unarne algebre je komplementirana ako i samo ako ta algebra nema pravih podalgebri, i mreža
kongruencija te algebre je komplementirana.

Posledica 3.26 Mreža slabih kongruencija unarne algebre je Bulova mreža ako i samo ako ta algebra nema pravih podalgebri, i mreža kongruencija te algebre je Bulova mreža.

Primer 3.7 Neka je (A,f) unarna algebra, gde je $A=\left\{1,2,3,4,5,6\right\} \ i \ \frac{\left|1\ 2\ 3\ 4\ 5\ 6\right|}{f\left|2\ 3\ 4\ 5\ 6\ 1}.$ Ova algebra nema podalgebri, a

prave kongruencije su: $\rho_1 = \{1,3,5\}, \{2,4,6\}\}$ i $\rho_2 = \{1,4\}, \{2,5\}, \{3,6\}\}$.



Slika 3.9

Tvrdenje 3.43 Neka je 🖋 unarna algebra CwA je polumodularna mreža ako i samo ako je Con# polumodularna mreža.

Dokaz. Ako je Cwa polumodularna mreža, prema Tvrđenju 3.20. je ConA polumodularna mreža. Prema Lemi 3.19 SubA je distributivna mreža, pa i polumodularna, prema Lemi 3.17 4 ima jaki CEP, pa ima i CEP, a prema Lemi 3.18 4 ima *CIP, pa ima i slabi CIP. Prema Tvrđenju 3.21 Cw# je polumodularna mreža.

U sledećem delu karakterišu se mreže slabih kongruencija mreža, i daju se potrebni i dovoljni uslovi da mreža slabih kongruencija mreže bude modularna, distributivna, komplementirana i polumodularna.

Lema 3.21[100] Ako je £ mreža, Sub£ je modularna mreža ako i samo ako je £ lanac.

Lema 3.21' Ako je ℓ mreža, Sub ℓ je polumodularna mreža ako i samo ako je £ lanac.

Lema 3.22[100] Za svaku mrežu £, Con£ je distributivna mreža.

Lema 3.23[100] Ako je £ distributivna mreža, onda ona ima CEP. ■

Lema 3.24[100] Lanac & zadovoljava CIP ako i samo ako on nema više od dva elementa.

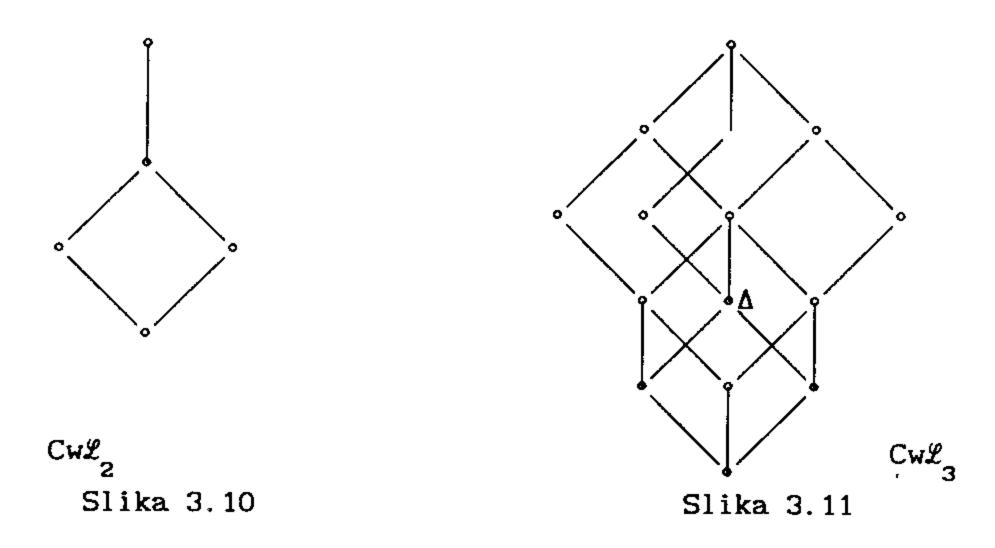
Teorema 3.8[100] Mreža L ima modularnu mrežu slabih kongruencija ako i samo ako je ona lanac sa ne više od dva elementa. 🗷 Teorema 3.9[100] Mreža 🗜 ima distributivnu mrežu kongruencija ako i samo ako je ona lanac sa ne više od dva elementa. 🖃 Teorema 3.10[100] Neka je $\mathcal{L}=(L, \wedge, \vee, 0, 1)$ mreža sa najmanjim i

najvećim elementom. Mreža £ ima komplementiranu mrežu slabih kongruencija ako i samo ako ona ima komplementiranu mrežu podalgebri.■

Teorema 3.11 Mreža L ima polumodularnu mrežu slabih kongruencija ako i samo ako je L lanac sa ne više od dva elementa.

Dokaz. Prema Tvrdenju 3.20, ako je Cw£ polumodularna mreža, tada je i Sub£ polumodularna mreža, odakle, prema Lemi 3.21' sledi da je £ lanac. Ako bi £ bio lanac sa više od dva elementa, tada bi Cw£ imala kao konveksnu podmrežu Cw£ (mreža slabih kongruencija troelementnog lanca), koja nije polumodularna (slika 3.10), pa ni Cw£ ne bi bila polumodularna.

 $Cw\mathcal{L}_2$ (mreža slabih kongruencija dvoelementnog lanca) je polumodularna mreža (slika 3.11), što dokazuje tvrđenje.



U sledećem delu karakterišu se mreže slabih kongruencija grupe i prstena.

Neka je $\mathcal F$ grupa i neka $\rho \in Cw\mathcal F$. Slaba kongruencija ρ jednoznačno određuje uređeni par $(\mathcal H,\mathcal K)$ podgrupa od $\mathcal F$, takvih da je $\mathcal K$ normalna podgrupa od $\mathcal H$. Podgrupa $\mathcal H$ je ona čijoj mreži kongruencija pripada ρ , a $\mathcal K$ je normalna podgrupa od $\mathcal H$ koja odgovara kongruenciji ρ na njoj $(\mathcal K)$ je klasa kongruencije ρ koja sadrži e- neutralni elemenat te grupe).

Važi i obratno, svakom uređenom paru (H, K) podgrupa od 9 takvom

da je K normalna podgrupa od H jednoznačno odgovara slaba kongruencija- ona kongruencija na H koju određuje K.

Znači, postoji uzajamno jednoznačna korespodencija između skupa svih slabih kongruencija grupe, i skupa svih uređenih parova $(\mathcal{H},\mathcal{K})$ podgrupa grupe \mathcal{G} , takvih da je \mathcal{K} normalna podgrupa od \mathcal{H} .

Medutim, ako posmatramo mrežu Sub \mathcal{I}_{\times} Sub \mathcal{I}_{\times} , mreža Cw \mathcal{I}_{\times} nije njena podmreža. Operacija \wedge se poklapa, jer ako je \mathcal{K}_{1} normalna podgrupa u \mathcal{H}_{1} i \mathcal{K}_{2} normalna podgrupa u \mathcal{H}_{2} , tada je i $\mathcal{K}_{1} \cap \mathcal{K}_{2}$ normalna podgrupa u $\mathcal{H}_{1} \cap \mathcal{H}_{2}$, ali operacija \vee se u opštem slučaju ne poklapa, jer ako je \mathcal{K}_{1} normalna podgrupa u \mathcal{H}_{1} i \mathcal{K}_{2} normalna podgrupa u \mathcal{H}_{2} , tada $\mathcal{K}_{1} \vee \mathcal{K}_{2}$ ne mora biti normalna podgrupa u $\mathcal{H}_{1} \vee \mathcal{H}_{2}$.

Dijagonala Δ mreže Cw \mathcal{G} odgovara uređenom paru (\mathcal{G} , $\{e\}$).

Neka je sa \overline{X} označena najmanja normalna podgrupa od \mathcal{G} koja sadrži \mathcal{K} . Neka je sa \mathcal{K} takođe označena i slaba kongruencija koja odgovara uređenom paru $(\mathcal{K},\mathcal{K})$. Očigledno je da je sada $\overline{\mathcal{K}}=\mathcal{K}\vee\Delta$, gde je Δ dijagonala mreže $Cw\mathcal{G}$. To dokazuje sledeće leme:

Lema 3.25 [102] Grupa g ima CIP ako i samo ako za svake dve podgrupe H i K od g važi:

$$\overline{\mathcal{H}} \cap \overline{\mathcal{H}} = \overline{\mathcal{H}} \cap \overline{\mathcal{H}}$$
.

Lema 3.26 Grupa 9 ima *CIP ako i samo ako za svaku familiju podgrupa od 9 $\{\mathcal{H}, | i \in I\}$ važi:

$$\bigcap_{i \in I} \overline{\mathcal{H}}_{i} = \bigcap_{i \in I} \overline{\mathcal{H}}_{i}$$

Sledeća tvrđenja daju karakterizaciju Hamiltonovih grupa preko svojstava mreža slabih kongruencija.

Hamiltonove grupe su nekomutativne grupe čije su sve podgrupe normalne. Znači, klasu grupa koje su i Hamiltonove algebre čine Hamiltonove i komutativne grupe.

Tvrđenje 3.44[102] Grupa 9 je Hamiltonova ili komutativna ako i samo ako ima CIP i CEP.

Ako je grupa 9 Hamiltonova ili komutativna, tada Dokaz. je Δ neutralni elemenat mreže Cwg, jer je preslikavanje $\rho \longrightarrow (\rho \wedge \Delta, \rho \vee \Delta)$ iz Cwg u SubgxCong potapanje. Zaista, za grupe cija je svaka podgrupa normalna definisana korespodencija između mreže Cw9 i svih uređenih parova podgrupa je potapanje (i operacija v se u ovom slučaju poklapa, jer ako je \mathcal{X}_1 normalna podgrupa u \mathcal{X}_1 i \mathcal{X}_2 normalna podgrupa u \mathcal{X}_2 , tada je i $\mathcal{K}_1 \vee \mathcal{K}_2$ normalna podgrupa u $\mathcal{H}_1 \vee \mathcal{H}_2$). Kod Hamiltonovih i komutativnih grupa je Sub9≅Con9 u odnosu na izomorfizam H→(9, H), za H podgrupu grupe g, gde je sa (g, H) predstavljena kongruencija koju indukuje (normalna podgrupa) H. Pošto se Cw9 potapa u Sub9xSub9, i postoji izomorfizam iz Suby u Cony, i Cwy se może potopiti u SubyxCony, i to potapanje je baš ono koje je potrebno, jer za p∈Cw9, ako njoj odgovara uređeni par $(\mathcal{H},\mathcal{K})$, $\rho\wedge\Delta$ je tada \mathcal{H} , a $\rho\vee\Delta$ je kongruencija određena sa (g,K), jer je K normalna podgrupa grupe g, i to je najmanja kongruencija koja sadrži ρ . Znači preslikavanje $\rho \longrightarrow (\rho \wedge \Delta, \rho \vee \Delta)$ je potapanje pa je prema Lemi 1.3 iz Poglavlja I ∆ neutralni elemenat mreže Cwg, pa, prema Posledici 3.1, važe CEP i CIP.

Ako grupa ima CEP i CIP, tada je preslikavanje $\rho \rightarrow (\rho \wedge \Lambda, \rho \vee \Lambda)$ potapanje iz Cw\$ u Sub\$xCon\$. Prema gornjem predstavljanju preko uredenih parova podgrupa, ako ρ predstavimo kao (\mathcal{H}, \mathcal{K}), gde je \mathcal{K} normalna podgrupa od \mathcal{H} , $\rho \wedge \Lambda$ odgovara podgrupi \mathcal{H} , a $\rho \vee \Lambda$ je najmanja kongruencija koja sadrži ρ , a ona je određena najmanjom normalnom podgrupom koja sadrži \mathcal{K} , a to je $\overline{\mathcal{K}}$. Znači, gornje potapanje možemo predstaviti kao (\mathcal{H}, \mathcal{K}) \rightarrow ($\mathcal{H}, \overline{\mathcal{K}}$). Znači, $\mathcal{K} \rightarrow \overline{\mathcal{K}}$ je takođe potapanje iz Sub\$u Con\$\mathcal{G}\$. Znači, Sub\$\mathcal{G}\$ je podmreža od Con\$\mathcal{G}\$, a pošto Con\$\mathcal{G}\$ predstavlja mrežu svih normalnih podgrupa grupe \$\mathcal{G}\$, imamo da je Sub\$\mathcal{G} \mathcal{G} Con\$\mathcal{G}\$, odnosno grupa \$\mathcal{G}\$ je Hamiltonova ili komutativna.

Tvrdenje 3.45[102] Grupa 9 je Hamiltonova ili komutativna ako i samo ako je njena mreža slabih kongruencija Cw9 modularna.

Dokaz. Grupa je Hamiltonova ili komutativna ako i samo ako ima

CEP i CIP, prema prethodnom tvrđenju. Kod tih grupa Cong i Subg su modularne mreže. Odatle sledi, prema Posledici 3.8, da je Cwg modularna mreža. Sa druge strane, ako je Cwg modularna mreža tada važe CEP i CIP prema Posledici 3.8, pa je grupa Hamiltonova ili komutativna.

Tvrđenje [3.46 [102] Grupa 9 je Hamiltonova ili komutativna ako i samo ako je A izuzetan elemenat u mreži Cw9.

Dokaz. Prema Tvrdenju 3.44 grupa je Hamiltonova ili komutativna ako i samo ako je Δ neutralan elemenat u mreži Cw9. Δ je i izuzetan, jer su najveći elementi klasa kongruencije indukovani sa $m_{\Delta}: x \longrightarrow x \land \Delta$ kvadrati podalgebri (tj. za $\mathcal B$ podalgebru od $\mathcal G$, slaba kongruencija određena sa $(\mathcal B, \mathcal B)$), a ti kvadrati čine podmrežu od Cw9.

Tvrđenje 3.47 Grupa 9 je Hamiltonova ili komutativna ako i samo ako ima *CIP.

Dokaz. Ako je 9 Hamiltonova ili komutativna svaka njena podgrupa je normalna, pa je *CIP očigledno zadovoljen.

Obratno, ako grupa $\mathcal F$ nije Hamiltonova ni komutativna, postoji podgrupa $\mathcal H$ koja nije normalna u $\mathcal F$. Neka je $\{\mathcal H_i \mid i\in I\}$ familija njoj konjugovanih podgrupa. Tada je $\overline{\mathcal H}=\overline{\mathcal H}_i$, za svako $i\in I$. Posto je presek svih međusobno konjugovanih podgrupa normalna podgrupa, važi da je:

 $\mathcal{H} \cap (\bigcap_{i \in I} \mathcal{H}_i) = \mathcal{N}$, gde je \mathcal{H} normalna podgrupa grupe \mathcal{G} .

Sledi da je:

$$\frac{\mathcal{H} \cap (\bigcap_{i \in I} \mathcal{H}_{i})}{i \in I} = \overline{\mathcal{H}} = \mathcal{H} \subset \mathcal{H} \subset \overline{\mathcal{H}} = \overline{\mathcal{H}} \cap (\bigcap_{i \in I} \overline{\mathcal{H}}_{i}),$$

odakle sledi da grupa 9 ne zadovoljava *CIP.

Posledica 3.27 Grupa g je Hamiltonova ili komutativna ako i samo ako ima CIP i ∆ je v-neprekidan elemenat mreže Cwg.

Dokaz. Sledi iz prethodnog tvrđenja i Tvrđenja 3.8.
Posledica 3.28[128] Konačna grupa 9 je Hamiltonova i komutativna

ako i samo ako ima CIP.

Problem. [128] Da li važi da je proizvoljna grupa Hamiltonova ili komutativna ako i samo ako važi CIP, odnosno da li kod grupa CIP implicira *CIP?

Mogući putokaz za karakterisanje grupa kod kojih je svojstvo "biti Hamiltonova ili komutativna" ekvivalentno sa svojstvom CIP, daje sledeće tvrđenje.

Tvrđenje3.47 Grupa $\mathcal G$ je Hamiltonova ili komutativna ako i samo ako za svaku normalnu podgrupu $\mathcal N$ od $\mathcal G$ familija podgrupa $\mathcal H_i$ od $\mathcal G$ takvih da je $\overline{\mathcal H_i} = \mathcal N$ ima najmanji elemenat.

Kod prstena situacija je analogna kao kod grupa.

Neka je $\mathcal P$ prsten i neka $\rho \in \mathbb Cw\mathcal P$. Slaba kongruencija ρ jednoznačno određuje uređeni par $(\mathcal R,\mathcal F)$ podprstena od $\mathcal P$, takvih da je $\mathcal F$ ideal prstena $\mathcal R$, i obratno, svaki uređeni par $(\mathcal R,\mathcal F)$ podprstena od $\mathcal P$ takav da je $\mathcal F$ ideal u $\mathcal R$ određuje jednu slabu kongruenciju iz $\mathbb Cw\mathcal P$. Kao kod grupa ni $\mathbb Cw\mathcal P$ nije podmreža od $\mathbb Sub\mathcal P \times \mathbb Sub\mathcal P$.

Dijagonala Δ u mreži Cw \mathcal{P} odgovara uređenom paru $(\mathcal{P}, \{e\})$.

Neka je sa $\overline{\mathcal{R}}$ označen najmanji ideal prstena \mathcal{P} koji sadrži podprsten \mathcal{R} . Ako je sa \mathcal{R} označena slaba kongruencija koja odgovara uređenom paru $(\mathcal{R},\mathcal{R})$ tada je $\overline{\mathcal{R}}=\mathcal{R}\lor\Delta$, pa važe sledeća tvrđenja:

Lema 3.27 Prsten $\mathcal P$ ima CIP ako i samo ako za svaka dva potprstena $\mathcal R$ i $\mathcal S$ od $\mathcal P$ važi:

$$\overline{\mathcal{R}} \cap \overline{\mathcal{G}} = \overline{\mathcal{R} \cap \mathcal{G}}.$$

Lema 3.28 Prsten $\mathcal P$ ima *CIP ako i samo ako za svaku familiju potprstena od $\mathcal P$ $\{\mathcal R_i \mid i \in I\}$ važi:

$$\bigcap_{i \in I} \overline{\mathcal{R}}_{i} = \bigcap_{i \in I} \overline{\mathcal{R}}_{i}.$$

U sledećim tvrđenjima karakterišu se Hamiltonovi prsteni, prsteni

kod kojih je svaki podprsten ideal.

Tvrđenje 3.48 Prsten $\mathcal P$ je Hamiltonov ako i samo ako ima CIP i CEP.

Ako je prsten Hamiltonov to znači da je svaki Dokaz. potprsten i ideal. Zato, ako je $(\mathcal{R}_1, \mathcal{I}_1)$ uređeni par koji odgovara slaboj kongruenciji ho_1 i $(\mathcal{R}_2,\mathcal{S}_2)$ uređeni par koji odgovara slaboj kongruenciji ρ_2 (\mathcal{G}_1 ideal od \mathcal{R}_1 i \mathcal{G}_2 ideal od \mathcal{R}_2) onda uvek važi da je $\mathcal{G}_1 \cap \mathcal{G}_2$ ideal od $\mathcal{R}_1 \cap \mathcal{R}_2$. Ovde važi i da je $\mathcal{G}_1 \vee \mathcal{G}_2$ ideal od $\mathcal{R}_1 \vee \mathcal{R}_2$. Znači, CwP je podmreža od SubP×SubP, pa i od SubP×ConP (jer je SubP≅ConP kod To potapanje iz Cw₹ u Hamiltonovog prstena). preslikavanje $\rho \rightarrow (\rho \wedge \Delta, \rho \vee \Delta)$. Zaista, $\rho \wedge \Delta$ određuje podalgebru na kojoj je ρ kongruencija, a ako ρ odgovara uređenom paru $(\mathcal{R},\mathcal{S})$, tada je \mathcal{S} ideal u \mathcal{R} , ali je ideal i u \mathcal{P} , jer je prsten Hamiltonov, pa za $\rho \lor \Delta$ odgovara uređeni par $(\mathcal{P},\mathcal{Y})$, koji je odgovarajući za potprsten \mathcal{Y} , kod izomorfizma iz $Sub\mathcal{P}$ u $Con\mathcal{P}$ (slično kao kod grupa). Znači, pošto je preslikavanje $\rho \rightarrow (\rho \wedge \Delta, \rho \vee \Delta)$ potapanje, Δ je neutralan elemenat, i važe CEP i CIP.

Obratno, ako prsten ima CEP i CIP, gore definisano preslikavanje $\rho \rightarrow (\rho \wedge \Delta, \rho \vee \Delta)$ je potapanje. To potapanje, slično kao i kod grupa indukuje preslikavanje $(\mathcal{R}, \mathcal{F}) \rightarrow (\mathcal{R}, \overline{\mathcal{F}})$, gde je \mathcal{F} ideal od \mathcal{R} , i $\overline{\mathcal{F}}$ najmanji ideal koji sadrži potprsten \mathcal{F} . Posto svaki ideal indukuje kongruenciju na prstenu, ovo preslikavanje indukuje potapanje iz Sub \mathcal{F} u Con \mathcal{F} , a posto je Con \mathcal{F} mreža svih ideala prstena \mathcal{F} , sledi da je Sub $\mathcal{F}\cong \mathrm{Con}\mathcal{F}$, i prsten \mathcal{F} je Hamiltonov.

Tvrđenje 3.49 Prsten $\mathcal P$ je Hamiltonov ako i samo ako je Cw $\mathcal P$ modularna mreža.

Dokaz. Ako je prsten $\mathcal P$ Hamiltonov, on zadovoljava CEP i CIP, a Con $\mathcal P$ i Sub $\mathcal P$ (mreže svih ideala prstena $\mathcal P$) su modularne mreže, pa je i Cw $\mathcal P$ modularna mreža (prema Posledici 3.8).

Obratno, ako je CwP modularna mreža tada P ima CEP i CIP, pa je prema prethodnom tvrdenju prsten Hamiltonov. ■

Tvrđenje 3.50 Ako je prsten $\mathcal P$ Hamiltonov onda $\mathcal P$ ima *CIP.

Dokaz. Ako je ₱ Hamiltonov prsten, svaki njegov potprsten je ideal, pa je *CIP očigledno zadovoljen.

Problem. Da li važi da je konačan prsten Hamiltonov ako i samo ima CIP?

(Kompjuterom je provereno da ovo tvrđenje važi za sve prstene sa najviše 8 elemenata).

U sledećem delu razmatraju se mreže slabih kongruencija za module.

U sledećim tvrđenjima M je desni \mathcal{R} -modul, ali razmatranje je potpuno isto i za levi \mathcal{R} -modul, ili za \mathcal{R} -modul nad komutativnim prstenom.

Tvrdenje 3.51 Svaki modul M ima svojstva CEP i CIP. ■

Dokaz. Prema Posledici 3.1 svaka algebra ima CEP i CIP ako i samo ako je preslikavanje $f: CwA \rightarrow SubA \times ConA$ definisano sa: $f(\rho) = (\rho \wedge \Lambda, \rho \vee \Lambda)$ potapanje. Kod modula važi da je Sub $M \cong ConM$, jer je svaki podmodul normalna podgrupa odgovarajuće grupe, koja određuje jednu kongruenciju te grupe, a ta kongruencija je i kongruencija na modulu (saglasna je i sa svim unarnim operacijama modula ("množenjem sa skalarima iz prstena")). Takođe svaka slaba kongruencija $\rho \in CwM$ jednoznačno određuje uređeni par podmodula od M (M_1 , M_2), takvih da je M_2 podmodul od M_1 , i obratno, svaki uređeni par podmodula (M_1 , M_2), takvo da je M_2 podmodul od M_1 jednoznačno određuje slabu kongruenciju ρ iz CwM. Za $\rho \in CwM$ važi da je $f(\rho) = (\rho \wedge \Lambda, \rho \vee \Lambda) = (M_1, M_2)$, gde je (M_1, M_2) odgovarajući uređeni par za ρ , gde M_2 označava istovremeno i

kongruenciju koja je određena sa M_2 na modulu M. Slično kao kod grupa pokazuje se da je preslikavanje f potapanje, pa svaki modul ima CEP i CIP.

Tvrđenje 3.52 Neka je MR-modul. Mreža slabih kongruencija CwM je modularna mreža.

Dokaz. Pošto su SubM i ConM modularne mreže (kao mreže normalnih podgrupa odgovarajuće grupe), a važe CEP i CIP, iz Posledice 3.1 sledi da je CwM modularna mreža.

Posledica 3.29 Varijetet modula je CEP i CIP varijetet. Varijetet modula je slabo-kongruencijski modularan.

U sledećem delu karakterišu se Hamiltonove algebre, kao i one koje su Hamiltonove i B_-regularne, preko svojstava njihovih mreža slabih kongruencija. U tom cilju koriste se sledeće leme:

Lema 3.29 Ako algebra ₄ ima jednočlanu najmanju podalgebru, tada svaka slaba kongruencija ρ∈Cw₄ ima klasu koja je podalgebra.

Dokaz. Neka je $B_m = \{e\}$, i neka $\rho \in CwA$. Neka je $B = \{x \in A \mid x \rho e\}$. \mathcal{B} je podalgebra algebre A, jer ako $f \in F$ i f je ranga n, i $x_1, \ldots, x_n \in B$, t j. $x_1 \rho e, \ldots, x_n \rho e$, sledi da $f(x_1, \ldots, x_n) \rho e$. B je klasa slabe kongruenci je ρ , što dokazu je tvrđenje.

Lema 3.30 Ako algebra ⊿ ima nepraznu najmanju podalgebru, tada za svako B, C∈Sub⊿ važi da je:

$$(B \lor C)^2 = B^2 \lor C^2.$$

Tvrdenje 3.53 Algebra A je Hamiltonova ako i samo ako za sve \mathcal{B} , $\mathcal{C} \in Sub A$,

u mreži Cw4.

Dokaz. Neka je A Hamiltonova algebra i neka je B < C (za $B, C \in Sub A$). Tada je $B^2 \leq C^2$. Svaka podalgebra, pa i B je tada blok neke kongruencije. Najmanja kongruencija koja sadrži B^2 je $B^2 \lor \Delta$, pa je B tada svakako blok kongruencije $B^2 \lor \Delta$. To znači da je $B^2 \lor \Delta \neq C^2 \lor \Delta$, jer ako bi važila jednakost, iz $C^2 > B^2$ sledilo bi da B^2 nije blok te kongruencije, što vodi u kontradikciju sa pretpostavkom.

Obratno, pretpostavimo da algebra $\mathcal A$ nije Hamiltonova. Znači postoji podalgebra $\mathcal B$ koja nije blok nijedne kongruencije, pa ni $B^2 \vee \Delta$. Neka je $C=B[B^2 \vee \Delta]$. $\mathcal C$ je takođe podalgebra od $\mathcal A$ i važi $B^2 \vee \Delta = C^2 \vee \Delta$. Znači da uslov (*) ne važi, čime je tvrđenje dokazano.

Posledica 3.30 Neka algebra ⊿ ima najmanju nepraznu podalgebru ⊿ Algebra ⊿ je Hamiltonova ako i samo ako za sve B, €∈Sub⊿,

iz B \neq C sledi da je B 2 \vee Δ \neq C 2 \vee Δ .

Dokaz. Neka je \mathcal{A} Hamiltonova algebra sa nepraznom minimalnom podalgebrom $\mathcal{A}_{\mathbf{m}}$, i neka su \mathcal{B} i \mathcal{C} dve proizvoljne podalgebre od \mathcal{A} za koje važi da je $\mathbf{B}^2 \vee \Delta = \mathbf{C}^2 \vee \Delta$. \mathbf{B}^2 i \mathbf{C}^2 su klase iste kongruencije od \mathcal{A} . B i \mathbf{C} svakako imaju neprazan presek, jer $\mathcal{A}_{\mathbf{m}} \subseteq \mathcal{B} \cap \mathcal{C}$. Sledi da je $\mathbf{B} = \mathbf{C}$.

Obratna implikacija sledi iz prethodnog tvrđenja. ■

Posledica 3.31 Algebra A u kojoj je najmanja podalgebra neprazna je Hamiltonova ako i samo ako je preslikavanje $B \longrightarrow B^2 \lor \Delta$ ($\mathcal{B} \in \operatorname{Sub} A$) injekcija iz SubA u ConA (u CwA).

Dokaz. Iz prethodne posledice sledi da je definisano preslikavanje injekcija.

Neka B, 6∈Sub4. Tada je:

 $(B^2 \lor \Delta) \land (C^2 \lor \Delta) = (B^2 \land C^2) \lor \Delta = (B \land C)^2 \lor \Delta$, jer važi CIP, i

 $(B^2 \lor \Delta) \lor (C^2 \lor \Delta) = (B^2 \lor C^2) \lor \Delta = (B \lor C)^2 \lor \Delta$, što sledi iz Leme 3.30, paje preslikavanje $B \longrightarrow B^2 \lor \Delta$ potapanje.

Sledeće tvrđenje karakteriše A - regularne algebre sa jednočlanom nepraznom podalgebrom.

Tvrdenje 3.55 Algebra A sa jednočlanom najmanjom podalgebrom A_m je A-regularna ako i samo ako je svaka kongruencija $\rho \in ConA$ jednaka $B^2 \vee \Delta$, za neko $B \in SubA$.

Dokaz. Za svako $\rho \in \text{Con } A$, prema Lemi 3.29 postoji podalgebra $\mathbb{C} \in \text{Sub} A$ koja je klasa kongrencije ρ . C je tada klasa i u $\mathbb{C}^2 \vee \Delta$, odnosno, kongruencije ρ i $\mathbb{C}^2 \vee \Delta$ imaju istu klasu koja sadrži $A_{\mathbf{m}}$, pa iz $A_{\mathbf{m}}$ -regularnosti algebre A sledi da je $\rho = \mathbb{C}^2 \vee \Delta$.

Obratno, pretpostavimo da postoje dve kongruencije ρ i θ koje imaju istu klasu B koja sadrži $\mathcal{A}_{\mathbf{m}}$ (prema dokazu Leme 3.29 ta klasa je podalgebra od \mathcal{A}). Po pretpostavci, postoje $\mathcal{C}, \mathcal{D} \in \mathrm{Sub} \mathcal{A}$, takve da je $\rho = \mathrm{C}^2 \mathrm{v} \Delta$, i $\theta = \mathrm{D}^2 \mathrm{v} \Delta$. B je klasa kongruencije ρ koja sadrži $\mathcal{A}_{\mathbf{m}}$, i pošto C takođe sadrži $\mathcal{A}_{\mathbf{m}}$, sledi da je C \leq B, odakle je C $^2 \mathrm{v} \Delta \leq \mathrm{B}^2 \mathrm{v} \Delta$. Pošto je $\mathrm{B}^2 \mathrm{v} \Delta$ najmanja kongruencija koja sadrži B kao klasu, a C $^2 \mathrm{v} \Delta$ sadrži B kao klasu, sledi da je $\mathrm{B}^2 \mathrm{v} \Delta = \mathrm{C}^2 \mathrm{v} \Delta$. Na sličan način dobija se da je $\mathrm{B}^2 \mathrm{v} \Delta = \mathrm{D}^2 \mathrm{v} \Delta$, odakle je $\mathrm{D}^2 \mathrm{v} \Delta = \mathrm{C}^2 \mathrm{v} \Delta$, odnosno $\rho = \theta$, što znači da je algebra $\mathcal{A}_{\mathbf{m}}$ -regularna.

Lema 3.31 Ako je 4 Hamiltonova algebra sa nepraznom najmanjom podalgebrom 4 tada za B, C∈Sub4,

iz B²∨Δ≤C²∨Δ sledi B≤C.

Dokaz. Pošto je A Hamiltonova algebra, B, odnosno C, su redom klase u $B^2 \lor \Delta$, odnosno u $C^2 \lor \Delta$. Iz $B \cap C \neq \emptyset$ i $B^2 \lor \Delta \leq C^2 \lor \Delta$ sledi da je $B \leq C$.

Tvrđenje 3.56 Ako je 4 algebra sa jednočlanom najmanjom podalgebrom 4, sledeća tvrđenja su ekvivalentna:

- (i) 4 je Hamiltonova i 4 -regularna;
- (ii) preslikavanje $B \rightarrow B^2 \lor \Delta$ ($\mathcal{B} \in Sub \mathcal{A}$) je izomorfizam iz Sub \mathcal{A} u Con \mathcal{A} . (u Cw \mathcal{A}).

Dokaz. $(i) \longrightarrow (ii)$.

Neka je 4 Hamiltonova algebra sa jednočlanom najmanjom podalgebrom 4 koja je 4 regularna. Prema Posledici 3.31 i Tvrdenju 3.55 preslikavanje B→B²∨∆ je bijekcija iz Sub4 u Con 4.

Ono sto jos treba dokazati je da je preslikavanje $B \longrightarrow B^2 \lor \Delta$ izomorfizam, odnosno, za $B, C \in Sub A$,

$$(B^{2} \lor \Delta) \lor (C^{2} \lor \Delta) = (B \lor C)^{2} \lor \Delta \quad i$$

$$(B^{2} \vee \Delta) \wedge (C^{2} \vee \Delta) = (B \wedge C)^{2} \vee \Delta.$$

Prema Lemi 3.30 važi da je:

$$(B_S \wedge \nabla) \wedge (C_S \wedge \nabla) = (B_S \wedge C_S) \wedge \nabla = (B \wedge C)_S \wedge \nabla.$$

Prema Tvrđenju 3.56 postoji podalgebra D takva da je:

 $(B^2 \vee \Delta)_{\wedge}(C^2 \vee \Delta) = D^2 \vee \Delta$. Prema prethodnoj Lemi iz $D^2 \vee \Delta \leq B^2 \vee \Delta$ i $D^2 \vee \Delta \leq C^2 \vee \Delta$ sledi da je $D \leq B$ i $D \leq C$, odnosno, $D \leq B \cap C$. Iz $(B \wedge C)^2 \vee \Delta \leq (B^2 \vee \Delta)_{\wedge}(C^2 \vee \Delta) = D^2 \vee \Delta$ sledi da je $B \wedge C \leq D$, pa je $B \wedge C = D$, odnosno: $(B^2 \vee \Delta)_{\vee}(C^2 \vee \Delta) = (B \vee C)^2 \vee \Delta$.

$$(ii) \longrightarrow (i)$$

Prema Posledici 3.31 algebra ₄ je Hamiltonova, a prema Tvrđenju 3.55 algebra ₄ je ₄ -regularna, što dokazuje tvrđenje. ■

- Lema 3.32 Ako je preslikavanje B→B²v∆ izomorfizam iz Sub4 u Con4 tada su sledeća tvrđenja ekvivalentna za svako €€Con4:
- (i) $Con\mathcal{E} \cong (\mathbb{C}^2 \vee \Delta)_{Con\mathcal{A}}$ (ideal u mreži $Con\mathcal{A}$) u odnosu na preslikavanje $\rho \longrightarrow \rho \vee \Delta$ ($\rho \in Con\mathcal{E}$);
 - (ii) Sub \cong Con U odnosu na preslikavanje $D\longrightarrow D^2 \vee \Delta_C$ (za

D∈Sub6).

Dokaz. Preslikavanje $D \rightarrow D^2 \vee \Delta$ je izomorfizam iz Subč u $(C^2 \vee \Delta)_{con A}$. Ako je $Con \mathcal{E} = (C^2 \vee \Delta)_{con A}$, tada je i Subč $\mathcal{E} = Con \mathcal{E}$, i obratno, ako je Subč $\mathcal{E} = Con \mathcal{E}$, tada je i $Con \mathcal{E} = (C^2 \vee \Delta)_{con A}$.

Tvrdenje 3.57 Neka je 🔏 algebra sa jednočlanom najmanjom podalgebrom 🔏 . Tada su sledeća tvrđenja ekvivalentna:

- (i) \emph{A} je Hamiltonova algebra i svaka podalgebra od \emph{A} je \emph{A} -regularna;
- (ii) preslikavanje $C \rightarrow C^2 \lor \Delta_B$ (CeSubB) je izomorfizam iz SubB u Con B, za sve BeSubA;
- (iii) algebra A ima svojstva *CIP, CEP, i skup minimalnih slabih kongruencija u klasama indukovanim preslikavanjem $\rho \longrightarrow \rho \lor \Delta$ je skup svih kvadrata B² (za $B \in Sub A$).

Dokaz.

- (i)←→(ii) Sledi iz Tvrđenja 3.56.
- (ii)←→(iii) Sledi iz Tvrđenja 1.16 iz Poglavlja I i Leme 3.32.

*

U sledećem delu karakterišu se Risove algebre, Risovi varijeteti i data je jedna karakterizacija varijeteta skupova preko svojstava mreža slabih kongruencija tih algebri, ili svih algebri tog varijeteta, koristeći, u ovom poglavlju već navedene rezultate u vezi sa problemom kada je za algebru 4 mreža Cw4 podmreža mreže EwA, a kada se mreže Cw4 i EwA poklapaju.

Tvrđenje 3.58 Za varijetet V sledeći uslovi su ekvivalentni:

- (2) Za svako 4€V, Cw4 je podmreža od Ew4.

Dokaz . $(2) \rightarrow (1)$

Sledi iz Tvrđenja 3.15.

 $(1)\rightarrow(2)$

Ako je V Risov varijetet i AeV, tada je mreža podalgebri SubAzatvorena u odnosu na skupovnu uniju i Azadovoljava jaki CEP ([*]), pa je prema Tvrdenju 3.16 za svaku AeV CwA podmreža od EwA.

Tvrđenje 3.59 Za varijetet 1 sledeći uslovi su ekvivalentni:

- (1) Za svako A∈V, CwA=EwA.
- (2)

 √ je ekvivalentan varijetetu skupova.

Dokaz. Sledi direktno iz Posledice 3.6.

LITERATURA

- [1] M. Aigner, Combinatorial theory, Springer-Verlag Berlin Heidelberg New York, 1979
- [2] R.Balbes, A representation theorem for distributive quasilattices, Fund. Math 68 (1970) 207-214.
- [3] R. Beazer, Coherent De Morgan algebras, Algebra Universalis, 24(1987) 128-136.
- [4] G.Birkhoff, Lattice Theory, Third Edition, Reprinted 1984, AMS, Providence, R.I.
- [5] G.Birkhoff, Some applications of universal algebra, Coll.Math. Soc. Janos Bolyai, 29.Univ.Alg, Esztergom (Hungary), 1977, 107-128.
- [6] B.Biro, E. W. Kiss, P. P. Palfy, On the congruence extension property, Coll. Math. Soc. Janos Bolyai, 29. Univ. Alg, Esztergom (Hungary), 1977, 129-151.
- [7] S.Burris, H.P.Sankappanavar, A Course in Universal Algebra, Springer-Verlag Berlin Heidelberg New York, 1981
- [8] I.Chajda, Lattices of Compatible Relations, Arch. Math. 2, Scripta Fac. Sci. Nat. Ujep Brunesis, X:89-96, 1974.
- [9] I.Chajda, Varieties with tolerance and congruence extension property, Arch. Math. (Brno) Vol. 21, No. 1(1985), 5-12.
- [10] I. Chajda, Partitions, coverings and blocks of compatible relations, Glasnik matematicki Vol. 14(34) (1979), 21-26.
- 11] I. Chajda, J. Duda; Rees algebras and their varieties, Publ. Math. Debrecen 32(1985) no. 1-2, 17-22.
- [12] I.Chajda, J.Duda, Blocks of binary relations, Acta Univ.Sci. Budapest, (1979),3-9.
- [13] B.Csakany, Ob ekvivalentnosti nekotorih klassov algebraiceskih sistem, Acta Sci. Math, 23(1962),46-57. (rus.)
- [14] B.Csakany, Primitivnie klassi algebr, ekvivalentnie klassam polumodulei i modulei, 157-164. (rus.)
- [15] B.Csakany, Varieties of affine modules, Acta.Sci.Math., 37 (1975) 3-10, Szeged.
- [16] B.Csakany, Varieties in which congruences and subalgebras are amicable, (1973), 25-31.
- [17] B. Csakany, Congruences and subalgebras, Annales Univ.Sci. Buda-

- pest, Sectio Math., 18(1975), 37-44.
- [18] P.Crawley, R.P.Dilworth, Algebraic theory of lattices, Prentice-Hall, Inc., N.J., 1973.
- [19] G.Czedli, R. Freese; On Congruence distributivity and modularity, Algebra Universalis 17(1983) 216-219.
- [20] A. Day; The congruence extension property and subdirectly irreducible algebras- an example, Algebra Universalis, Vol.3, (1973) 229-237.
- [21] A. Day; A Note on the Congruence Extension Property, Algebra Universalis 1 (1978), 234-235.
- [22] A. Day, E. W. Kiss; Frames and Rings in Congruence Modular Varieties, Journal of Algebra, Vol. 109, No. 2, (1987) 479-507
- [23] R.A.Dean, Elements of Abstract Algebra, John Wiley and Sons, Inc., New York London Sydney, 1966.
- [24] H. Draškovicova, Connections between some congruence properties in a single algebra, Contributions to General Algebra 3, 1984, 103-113.
- [25] H. Draškovicova, Weak direct product decomposition of algebras, Contributions to General Algebra 5, 1986, 105-121.
- [26] H. Draškovicova, The lattice of partitions in a set, Acta F.R.N. Univ. Comen. Math. XXIV (1970) 37-65.
- [27] K. Drbohlav, Remarks on Tolerance Algebras, Acta Universitatis Carolinae- Mathematica et Physica, Vol.22, No.1, 11-16
- [28] J. Duda, Mal'cev conditions for regular and weakly regular subalgebras of the square, Acta Sci. Math. 46(1983), 29-34.
- [29] J. Dudek, A. Romanowska, Bisemilattices with four essentially binary polynomials, 33. Contributions to Lattice theory, Colloq. Math. Soc. Janos Bolyai, Szeged (1980), 337-360.
- [30] J. Dudek; On Bisemillatices I, Collog. Math., 47 (1982), 1-5.
- [31] J.Dudek; On Bisemillatices II, Demonstratio Math., 15 (1982), no.2., 465-475.
- [32] J. Dudek; On Bisemillatices III, Math. Sem. Notes Kobe Univ. 10 (1982) no. 2, 275-279.
- [33] I.Fleischer; On extending congruences from partial algebras, Fund. Math., (1975) 11-16.
- [34] E. Fried, G. Gratzer, R. Quackenbush; Uniform congruence schemes, Algebra Universalis 10(1980) 176-188.
- [35] E. Fried; A note on congruence extension property, Acta. Sci. Math., 40(1978), 261-263.
- [36] E.Fried, A.F.Pixley, The dual discriminator function in universal algebra, Acta Sci.Math., 41(1979), 83-100.

- [37] J.Gałuszka; Generalized absorption laws in bisemilattices, Algebra Universalis, 19(1984), 304-318.
- [38] J.Gałuszka; On bisemilattices with generalized absorption laws, I, Demonstratio Math. 20 (1987) no 1-2, 37-43.
- [39] J. Gałuszka; Bisemilattices with five essentially binary polynomalis. Math. Slovaca 38 (1988) No. 2, 123-132.
- [40] R.M.Godowski; On bisemilattices with one apsorption law, Demonstratio Math. 19 (1986), no. 1, 237-246.
- [41] G. Gratzer, General lattice theory, Academie-Verlag Berlin, 1978.
- [42] G. Gratzer, H. Lakser; Two observations on the congruence extension property, Proc. Amer. Math. Soc., Vol. 35, No1(1975), 63-64
- [43] G. Gratzer, W. A. Lampe, On Subalgebra Lattices of Universal Algebras, Journal of Algebra, Vol. 7 No. 2 (1967), 263-270.
- [44] G. Gratzer, E. T. Schmidt, Characterizations of congruence lattices of abstract algebras, Budapest, 34-57.
- [45] G.H.Greco; On Raney's Theorems for completely distributive complete lattices, Colloquium Mathematicum, Vol LV (1988), Fasc. 2, 213-217
- [46] H.P.Gumm; An easy way to the commutator in modular varieties, Arch. Math., Vol. 34(1980), 220-228
- [47] H.P.Gumm; Geometrical Methods in Congruence Modular Algebras, Memoirs of the AMS, No 286, Vol.45, 1983.
- [48] J. Hagemann, C. Herrmann, A concrete ideal multiplication for algebraic systems and its relation to congruence distributivity, Arch. Math., Vol. 32 (1979) 234-245.
- [49] C. Herrmann, Affine algebras in congruence modular varieties, Acta. Sci. Math., 41(1979), 119-125.
- [50] M. Erne, Weak distributive laws and their role in lattices of congruences and equational theories, Algebra Universalis 25(1988) 290-231.
- [51] T. Evans, B. Ganter; Varieties with modular subalgebra lattices, Bull. Austral. Math. Soc. Vol. 28(1983), 247-254.
- [52] O. Frink; Ideals in partially ordered sets, Monthly, april 1954, 223-234
- [53] O. Hajek, Direct decompositions of lattices, I. Czech. Math. J., No. 1 (1957) 1-13.
- [54] A.A.Iskander, Extensions of algebraic systems, Trans. Amer. Math. Soc., Vol. 281. No. 1(1984)309-327.
- [55] J. Jezek; The lattice of equational theories. Part I: Modular elements. Czech. Math. J. 31(1981), 127-153.

- [56] J. Ježek; The lattice of equational theories. Part II: The lattice of full sets of terms. Czech. Math. J. 31(1981), 573-603.
- [57] J. Ježek; The lattice of equational theories. Part III: Definability and automorphisms. Czech. Math. J. 32(1982), 129-164.
- [58] B. Jonsson, Topics in Universal Algebra, Springer-Verlag Berlin. Heidelberg. New York, 1972.
- [59] J.A.Kalman, Subdirect decomposition of distributive quasilattices, Fund. Math. 71 (1971), 161-163.
- [60] R. McKenzie, A. Romanowska; Varieties of .-distributive bisemilattices, "Contribution to General Algebra", Klagenfurt 1979, 213-218.
- [61] R. McKenzie, G. McNulty, W. Taylor; Algebras, Lattices, Varieties, Vol. I, Monterey, California.
- [62] E.W.Kiss; Each Hamiltonian variety has the congruence extension property, Algebra Universalis 12 (1981) 395-398.
- [63] E.W.Kiss; Injectivity and related concepts in modular varieties, I Two commutator properties, Bull.Austral.Math.Soc., Vol32 (1985), 33-44.
- [64] E.W.Kiss; Injectivity and related concepts in modular varieties, II The congruence extension property, Bull.Austral.Math.Soc., Vol32 (1985), 35-53.
- [65] E. W. Kiss; Definable principal congruences in congruence distributive varieties, Algebra Universalis, 21(1985)213-224.
- [66] E.W.Kiss, L. Marki, P. Prohle, W. Tholen, Categorical algebraic properties. A compendium on amalgamation, congruence extension, epimorphisms, residual smallness, and injectivity, Studia Sci. Math. Hung. 18(1983), 79-141.
- [67] L. Klukovits, Hamiltonian varieties in universal algebras, Acta Sci. Math. Hung. (Szeged) 37(1975) 11-15.
- [68] W. A. Lampe, On the congruence lattice characterization theorem, Trans. Amer. Math. Soc., Vol. 182 (1973) 43-60.
- [69] W.A.Lampe, The Independence of Certain Related Structures of a universal algebra, I, Partial Algebras with Useless Operations and Other Lemmas, Algebra Universalis, Vol.2, fasc. 1, (1972), 99-112.
- [70] W. A. Lampe, The Independence of Certain Related Structures of a universal algebra, II, The Automorphism Group and Congruence Lattice are Independent, Algebra Universalis, Vol. 2, fasc. 3, (1972), 271-283.
- [71] W. A. Lampe, The Independence of Certain Related Structures of a universal algebra, III, The Subalgebra Lattice and Congruence Lattice are Independent, Algebra Universalis, Vol. 2, fasc. 3, (1972), 286-295.
- [71'] W. A. Lampe, The Independence of Certain Related Structures of a

- universal algebra, IV, The triple is Independent, Algebra Universalis, Vol. 2, fasc. 3, (1972), 296-302.
- [72] E. Lukács; On the polynomial functions of bisemilattices, Ann. Univ. Sci. Budapest Eötrös Sect. Math. 29 (1986), 223-226 (1987).
- [73] C. Malliah, P. Bhatta; Lattices all of whose congruences are neutral, Proc. Amer. Math. Soc, Vol. 94, Number 1, 49-51
- [74] G. Markowsky, Primes, Irreducibles and Extremal Lattices, preprint, August 1991.
- [75] S.D.Milić; On the isomorphism of modular lattices, Matematicki vesnik 2(17), 1965, str. 153-155.
- [76] S.Milić; Ob odnom dokazateljstve teoremi Sreiera v strukturah, Matematicki vesnik 6(21) 1969, str.161-162. (ruski).
- [77] S. Milić, A. Tepavčević, Special elements generalizing modularity in a lattice, Rev. of Res. Fac. of Sci, Univ. of Novi Sad, (u štampi).
- [78] R. Padmanabhan; Regular identities in lattices, Trans. Amer. Math Soc. 158 (1971) 179-188.
- [79] P.P.Palfy, Modular Subalgebra Lattices, Preprint-Nr-1097, 1987.
- [80] F.J.Pastijn, Constructions of varieties that satisfy the amalgamation property or the congruence extension property, Studia Sci.Math.Hung. 17(1982), 101-111.
- [81] D. Pigozzi; Amalgamation, Congruence-Extension, and Interpolation Properties in Algebras, Algebra Universalis, Vol. 1, 1972, 269-349.
- [82] J.Plonka; On distributive quasi-lattices, Fund. Math. 60(1967), 191-200.
- [83] J.Plonka; On the lattice of varieties of unary algebras, SIMON STEVIN, A Quartely Journal of Pure and Applied Mathematics Volume 59 (1985), Number 4, 353-364
- [84] Proceedings of Symposia in Pure Mathematics, Vol.II, Lattice Theory, AMS, Providence, R.I., 1961.
- [85] P. Pudlak, A new proof of the congruence lattice representation theorem, Algebra Universalis 6(1976) 269-275.
- [86] G.N.Raney; A subdirect-union representation for completely distributive complete lattice, Proc. Amer. Math. Soc. vol. 4 (1953) pp. 518-522.
- [87] G.N.Raney; Tight Galois Connections and complete distributivity, Trans. Amer. Math. Soc. 97(1960), 418-426.
- [88] N.R.Reilly; Representations of lattices via neutral elements, Algebra Universalis, 19(1984) 341-354.
- [89] A. Romanowska; On bisemilattices with one distributive law, Algebra Universalis, 10(1980) 36-47.

- [90] A. Romanowska; Subdirectly irreducible *-distributive bisemilattices I, Demonstratio Math. 13 (1980), no.3, 767-785.
- [91] A. Romanowska; On distributivity of bisemillatices with one distributive law; Universal Algebra (Esztergom, 1977.), pp. 653-661, Colloq. Math. Soc. Janos Bolyai, 29, North-Holland, Amsterdam, 1982...
- [92] A. Romanowska, J.D. H. Smith; Bisemilattices of subsemilattices, Journal of Algebra 70, (1981), 78-88.
- [93] A. Romanowska; Building bisemilattices from lattices and semilattices, Contributions to general algebra, 2 (Klagenfurt, 1982), 343-358, Hölder-Pichler-Tempsky, Vienna, 1983.
- [94] A. Romanowska; On some construction of bisemilattices, Demonstratio Math. 17 (1984), no. 4, 1011-1021.
- [95] I.G.Rosenberg, D.Schweigert, Compatible orderings and tolerances of lattices, preprint, 1984.
- [96] V.N.Salii, Resetki s edinstvenimi dopolenenijami, Nauka, Moskva 1984. (ruski).
- [97] L.A.Skornjakov, Elementi teorii struktur, Nauka, Moskva, 1982. (ruski).
- [98] J.Shapiro; Finite equational bases for subalgebra distributive varieties, Algebra Universalis, 24(1987) 36-40.
- [99] L.A.Skornjakov; Unars, Colloquia Math.Soc.Janos Bolyai, 29.Univ.alg, Esztergom (Hungary), 1977, 735-743.
- [100]B.Šešelja, G.Vojvodić, Weak congruences of a lattice, Zbornik radova PMF u Novom Sadu, 18,2 (1988) 205-209.
- [101] B. Sešelja, G. Vojvodić, On the complementedness of the lattice of weak congruences, Studia Sci. Mat. Hung. 24(1989), 289-293.
- [102] B. Šešelja, G. Vojvodić, A note on some lattice characterizations of Hamiltonian groups, Zbornik radova PMF u Novom Sadu, 19,1,179-184 (1989).
- [103]B. Seselja, G. Vojvodić, CEP and homomorphic images of algebras, Zbornik radova PMF u Novom Sadu 19,2, 75-80 (1989).
- [104] B. Šešelja, A. Tepavčević, Infinitely distributive elements in the lattices of weak congruences,, General algebra 1988, Elsevier Science Publishers B. V. (North Holland), 1990, 241-253.
- [105]B. Šešelja, A. Tepavčević, On CEP and semimodularity in the lattice of weak congruence, Zbornik radova PMF u Novom Sadu (u štampi). [106]B. Šešelja, A. Tepavčević, Weak congruence and homomorphisms,
- Zbornik radova PMF u Novom Sadu, Ser. Mat. 20,2 (1990), 61-69.
- [107] B. Šešelja, A. Tepavčević, Special elements of the lattice and lattice identities, Zbornik radova PMF u Novom Sadu, Ser. Mat. 20,2

- (1990), 21-29.
- [108] B. Šešelja, A. Tepavčević, On a construction of codes by P-fuzzy sets, Zbornik radova PMF u Novom Sadu, Ser. Mat. 20,2 (1990), 71-80.
- [109]B. Šešelja, A. Tepavčević, Filters in a weak congruence lattice, Zbornik radova PMF u Novom Sadu (u štampi).
- [110] B. Šešelja, A. Tepavčević, On a characterization of Rees varieties, preprint.
- [111] B. Šešelja, A. Tepavčević, Relational valued fuzzy sets, Fuzzy Sets and Systems, North-Holland Publ. Co., 52(1992) 217-222.
- [112] B. Šešelja, A. Tepavčević, On the collection of lattices determined by the same poset of meet irreducibles, Zbornik radova PMF u Novom Sadu (u štampi).
- [113]B. Šešelja, A. Tepavčević, G. Vojvodic, L-fuzzy sets and codes, Fuzzy sets and systems, North Holland Publ. Co., 53 (1993) 217-222.
- [114]B. Šešelja, A. Tepavčević, Fuzzy Boolean algebras, Proceedings of the International Workshop on Advances in Automated Reasoning, Beijing, China, Elsevier Science Publishers (u Štampi).
- [115] B. Šešelja, A. Tepavčević, Representation of lattices by fuzzy sets, Information Science, (u štampi)
- [116] A. Tepavčević, I. Stojmenović, Counting ninisomorphic paths in triangle-hexagonal grids, Zbornik radova sa IX međunarodnog simpozija "Kompjuter na sveučilistu", Dubrovnik, 1987.
- [117] A. Tepavčević, On the continuous elements of the lattice, Zbornik radova PMF u Novom Sadu (u štampi).
- [118] A. Tepavčević, Mrežno vrednosne algebarske strukture i kodovi, magistarski rad, 1990.
- [119] R. F. Tichy, The Rees congruence in universal algebras, Publ. Inst. Math. tome 29(43), 1981, 229-239.
- [120] Tran Duc Mai, Partitions and congruences in algebras, I. Basic properties, Arch. Math. 2, Scripta Fac. Sci. Nat. Ujep Brunesis, X: 111-122, 1974.
- [121] Tran Duc Mai, Partitions and congruences in algebras, II. Modular and distributive equalities, complements properties, Arch. Math. 3, Scripta Fac. Sci. Nat. Ujep Brunesis, X: 159-172, 1974.
- [122] Tran Duc Mai, Partitions and congruences in algebras, III. Commutativity of congruences Arch. Math. 2, Scripta Fac. Sci. Nat. Ujep Brunesis, X: 173-188, 1974.
- [123] Tran Duc Mai, Partitions and congruences in algebras, IV. Associable systems properties, Arch. Math. 4, Scripta Fac. Sci. Nat. Ujep Brunesis, X:231-254, 1974.

[124] Usporiadane množiny a zvazy, Vdedcky redaktor Tibor Katrinak, Univerzita Komenskeho, 1985. (ruski).

[125] Usporiadane množiny a zvazy II, Vdedcky redaktor Eva Gedeonova, Univerzita Komenskeho, 1988. (ruski).

[126] J. Ušan, A. Tepavčević, On one class of bisemilattices, Zbornik radova PMF u Novom Sadu, 19,2, 93-104 (1989).

[127]G. Vojvodić, B. Šešelja, On CEP and CIP in the lattice of weak congruences, Proceedings of the conference "Algebra and logic", Cetinje 1986., 221-227.

[128] G. Vojvodić, B. Šešelja, A note on the modularity of the lattice of weak congruences on a finite group, Contributions to general algebra-5, Wien 1987, 415-419.

[129] G. Vojvodić, B. Šešelja, Subalgebras and congruences via diagonal relation,, Proc. of the conference "Algebra and Logic", Sarajevo 1987, 169-177.

[130]G. Vojvodić, B. Šešelja, On the lattice of weak congruence relations, Algebra Universalis, 25 (1988) 121-130.

[131] G. Vojvodić, B. Šešelja, The diagonal relation in the lattice of weak congruences and the representtion of lattices, Zbornik radova PMF u Novom Sadu, 19, 1, 167-178 (1989).

[132] H. Werner, A Mal'cev condition for admissible relations, Algebra Universalis 3(1972), 263.