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ABSTRACT

Let T be a complete, first order theory in a countable language.’

We investigate certain nonisolation properties of types in smaill
N . .

superstable theories. Also, we prove that T has 2 o nonisomorphic

countable models in the following cases.

(A) T is strictly stable and the order type of rationals
cannot be embedded into O(T) and there is no strictly stable group

interpretable in T

(B) T is superstable, the generic of every simple group
definable in T © is orthogonal to all NENI types and

sup{U(p) | peS(T)}zw" .

RESUME

Soit T une théorie complete du premier ordre dans un langage
dénombrable. Nous <¢tudions gqguelgques propriétés des types non
isolés dans les théories petites superstables. Nous démontrons que

N _ A
T a 2 o moddles deux a deux non isomorphes dans les cas sulvants:

(A) T est strictement stable, O(T) ne contient pas de sous-ordre
du type des rationnels, et il n'y a pas de groupe strictement
stable interprété dans 9.

(B) T est superstable, le generique d'une groupe simple et
définissable dans T @ est orthogonal aux tout les type NENI et

sup{U(p) | peS(T)}2w".
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INTRODUCTION

The problem of determining the number of nonisomorphic countable
models of a first order theory in a countable language dates back
to 1961; Vaught conjectured that a complete such theory has either
finitely many, NO, or ZNO nonisomorphic countable models. Since
then, the only result proved for an arbitrary theory is Morley's
theorem asserting that if the number is Eﬂé, then it is Zﬂn; the
proof turned out to be a result in descriptive set theory and so
far no further progress in that direction has been made. However,
Baldwin and Lachlan proved in 1971 that an uncountably categorical
theory is either totally categorical or has X countable models.
Lachlan in 1974 proved that if a superstable theory has finitely
many countable models, then it is No-categorical and Nn-stable.

It seems that the right approach to the problem 1is through
the stability hierarchy. The most important result 1is that
Vaught's conjecture is true for w-stable theories, see [SHM]. The
next step would naturally be to prove it for superstable theories.
Saffe and Buechler initiated the proof of the weakly minimal case,
which is the simplest, properly superstable case. This was
finished by Newelski, who proved that the existence of a
nonisolated U-rank 1 type of infinite multiplicity implies the
maximal number of countable models. Recently, Newelskil and
Buechler completed the proof of the U-rank 2 case and Buechler
proved the unidimensional case.

In the proof of the w-stable case it was crucial that there
are enough strongly regular types, whose nonisolation properties
are determined by whether they are ENI or NENI. In this approach
the class of types which are orthogonal to all NENI types forms
the ‘'right' class of nonisolated types to work with. In between



lines of [SHM] one reads that this class contains precisely those

types psS(A) for which

there is a finite B2A and a nonforking extension q=S(B) of p,
(%) such that for all finite C2B and isolated reS(C), q¢ar.

Essentially, in all many model arguments in [SHM] it 1is this
technical property which is used.

Nevertheless, almost nothing is known about nonisolation
properties of types of 1limit ordinal U-rank. The only result in
+his direction is from {[CHL], stating that such types are not
present in No-stable Na—categorical theories. For example, it is
not known whether the height of the fundamental order has any
impact on the number of nonisomorphic countable models.

Our main task 1is to investigate nonisolation properties of
superstable types over finite domains in general. We introduce two
notions of nonisolations, eventual-strong (or esn for short) and
internal. Eventual strong nonisolation is defined by (*) above.
It happens that the only essential difference from the w-stable
case is a necessary passage to T°7, We prove the following result.

Theorem A Let T be a complete, small, superstable theory in a
countable language and let M be a monster model of T. In T,
consider the class of all nonalgebraic types having a finite
domain. Then the subclass consisting of all esn types is the
largest subclass which does not contain NENI types, and which is
closed under: conjugation by automorphisms of Jﬂ'q, nonforking
extensions and restrictions, and domination.

Internal nonisolation is introduced for regular types only.
It is preserved under nonorthogonality and parallelism {over
finite domains) and it states that the dependence is a definable
relation on the set of realizations of a type in question. It can
be viewed as a strong negation of the NENI property; it implies
eventual strong nonisolation. The use of internal nonisolation 1is
essential for the study of NENI types; One certainly expects that



the properties of NENI types involving definablility translate into
properties of internally isolated types involving o-definability

instead.

We study internally isolated types of U-rank ma+l. Here we
generalize the method from the proof from [CHL] that R -stable
R _~categorical theories have finite rank. We prove that
sufficiently large 'finitely generated subspaces' of internally
isolated types have big definable groups of automorphisms. This
fact turns out to be decisive in the proof of the following.

Thecrem B If T is a complete, superstable theory in a countable

language, U(T)=sup{U(p)|peS(T)}2wm, and the generic of every
N

simple, om=-definable group in T°? is esn, then I(T,NO)=2 o,

It seems that the last assumption in Theorem B is actually a
theorem (it is known to be true for types of finite U-rank).

Conjecture The generic type of a simple, superstable group is esn.

In the strictly stable case we restrict ourselves to theories
with no dense forking chains. This class of theories was recently
introduced by Pillay, see [HLPTW], and reasonably approximates
superstable theories; for example, we have regular decomposition
of (finitary) types. We prove that the major complication in
determining the number of countable models of these theories is
caused by the presence of big groups in T°? which witness almost
orthogonality.

Theorem C If T is a complete, strictly stable theory in a
countable language, has no dense forking chains and no strictly
stable groups definable in T°?, then I(T;NO)=2N0.

Let us briefly describe the contents of the thesis:

Following the Introduction is the first chapter called Review
of Basic Stability Theory in which we overview stability theory



techniques that are used in chapters 2 and 3. In the second chapter
we deal with NDFC theories. In 2.1 we develop notions of dimension
and Ua—rank through partial orders. In that way we have defined
not only Ua(p), as in [HLPTW], but also Ud(p]q) where p<q. This is
done bhecause of Proposition 2.1.7, which follows Lascar's 1idea
that the amount o¢f forking, “i.e. +the complexity of the
corresponding interval in O(T), is accurately measured by the
canonical base. In 2.2 we prepare some material for the proof of
Theorem C, which is presented in 2.3. At the end of 2.3 we note
that strongly nonisolated types can be present due to the
dimensional discontinuity property (didip, cf. [Sh]).

In the third chapter we deal with small superstable theories.
In 3.1 we investigate esn and internally nonisclated types and

prove Theorem A. 3.2 contains the study of internally isolated

+1

types of U~rank w and in 3.3 we prove Theorem B.



1. REVIEW OF BASIC STABILITY THEORY

Definition A complete, first-order theory which has infinite
models is #-stable if for all Mf T if |M|S» then [S(M)|[==. T l1s
stable if it is »-stable for some infinite cardinal =.

Throughout this chapter we fix a complete, stable theory T 1in
a countable language which has infinite models. We operate in a

monster model A.

1.1 Definability, fundamental order, forking, multiplicity, T

»

strong types, canonical basis

A set #SM is definable over A if there exists a formula with
parameters from A such that # is the solution set of it; we also
say that # is A-definable. A *-type 18 an infinitary type with
indexed set of variables. By an automorphism we mean an
automorphism of 4, and an A-automorphism is one that fixes A
pointwise. the corresponding groups we denote by Aut(AM) and
Aut, (H).

Definition peS(A) is definable if for all L-formulas ¢(x,y) there
exists a formula d#(y), possibly with parameters from A such that
for all ashA ¢(x,a)ep iff | de¢(a). |




The following fact is from [Shl].

Definability Lemma Any complete tvpe is definable.

Let ¢(X,y) be an L-formula. We say that #(X,y) is represented
in p if there is a<A such that ¢(x,a)ep. Therefore, when speaking
about ¢(x,y) being represented in p, we make distinction between
tuples x and y of variables, where x is reserved for the tuple of
variables and y for a tuple of parameters. To make this
distinction visible we write ¢(x;y). The class of p is the set of
all ¢(x;y) which are represented in p; we denote it [p]. The set
of all classes of types whose domain is a model of T, ordered by a
reverse inclusion, is called the fundamental order of T and is
denoted by O(T). For peS(A) consider the set

{[q]|p=q and dom(g) is a model} = O(T).

A maximal element, in O(T), of this set is called a bound of p,
The existence and uniquenes of bounds is provided by the following
theorem (Theorem 5.1 in [LP]).

Theorem on the bound Every complete type has a unique bound.

The bound of p is denocted by bnd(p). If p=tp(b/A) then we
write bnd(b/A) in place of bnd(p) and if A=® we also write bnd(b).

If A<B and peS(B) then we say that p does not fork over A if
bnd(p) = bnd(p|A). Otherwise, p forks over A. If qeS(A) and psq
then we say that q is a nonforking extension of p if g does not
fork over A; otherwise g is a forking extension of p. A formula
#{x) forks over A if any complete type whose domain contains A and
which contains ¢(x) forks over A.

Definition A is independent from B over C, or A | B if for all
C
asA, tp(a/BC) does not fork over C. If this is not the case then

we say that A forks with B over C¢ and denote it by A 4 B. A
‘ -

family {Bi|ieI}- ls independent over A if A | U{AjIjEI\{i}} is
A




true for all iel.

The following properties of the independence relation are
A.2 to A.5 from [M].

Existence For any A,B,C there is an A-automorphism f of A
such that £f(B) | C.
A
Monotonicity B | C and ASA'SAUC, C'SAUC implies B | C',
A A
Transitivity A<€A' B | C and B | A' implies B | C.
Af A A
Symmetry B | C implies C | B.
A A

The following is A.10 in [M]): for all A,B there is a

countable CSB such that A | B.
C

The Open Mapping Theorem Suppose that A<B and let F be the set of
all types from S(B) which do not fork over A. Then the restriction
map, which carries p to p|A, is onto, continous and open.

Proof Theorem 5.12 in [LP].

Proposition 1.1.1 1f A=B and p=S(B) then p forks over A if and
only if there exists a formula ¢(x,b)ep which forks over A,

Proof ([Sh] Theorem III.1.1(5).

Suppose that peS(A) and £ is an automorphism of the monster
model. Then by f(p) we mean {¢(§,f(§))|¢(§,§)6p}. Note that
£(p)eS(f(RA)).

Proposition 1.1.2& If A28, M is A-saturated and A-homogeneous,
ASM, |Bl<A, p,qeS(M) and bnd(p)=bnd(qg) then there exists an
A-automorphism f of the monster model which maps M onto M such
that f(p)=q.

Proof [B] Theorem III.2.36.



Proposition 1.1.3 Suppose that 3<»<0(T) and bnd{(a/B)=y.

Ca) If M=2B is ([B['<1-l~4rﬂ')"‘—s-:-.at,uratecilJ.r then there exists qeS(M)
which extends p such that bnd(gq)=£.

(b> If bnd(b/C)=# then there exists D such that tp(bC)=tp(aD)

and a | B.
D
Ccd If fﬁvazﬁgz... is a descending chain in the fundamental

order, then there are BEBiEBZE... such that for all i<jew
bnd(a/B )=3, and a ]]3 B,.

Proof (ad follows im;ediately from Theorem 2.3 in [LP]. To prove
Cb> let X=(|B|+|c|+r_ }" and let M2B be A-saturated and
A-homogeneous. By part (a) there exists an extension qeS(M) of P
such that bnd(q)=/3. After possibly replacing M by a B-automorphic
image, we can assume that al g. Further, let N2C be such that

tp(N)=tp(M) and b | N. Let f be an automorphism of the monster
C
model which maps N onto M and 1let b'=f(b). Therefore

bnd(b'/M)=bnd(a/M) and by Proposition 1.1.2 there is geAut(M)
which maps M onto M and such that g(b')} tp(a/M). Let h be an
M-automorphism such that h(g(b'))=a. Let D=h(g(f(C))). Since
h(g(f(b)))=a we have bnd(a/D)=bnd(b/C)=7 and since bnd(a/M)=73 we

have a | M and by monotonicity a | C.
D D
Cc) The finite case follows by induction from (a) and (b) and the

infinite from the finite by compactness.

Definition A  finite equivalence relation is a definable

equivalence relation on J&m, for some m, which has only finitely

many classes.

The set of all A-definable finite equivalence relations on A"
we denote by FE (A) and if the meaning of n is clear from the
context, then we simply write FE(A). The following is Theorem
111.2.8 in [Sh].

The Finite Equivalence Relation Thecorem Suppose that A<SB, psS(A)

and q ,q,€S(B) are distinct nonforking extensions of p. Then there



is an A-definable equivalence relation E such that

q, (X)" q (¥)*+ "E(x,¥).

If peS(A) then the multiplicity of p is the smallest cardinal
A such that p does not have AT pairwise contradictory nonforking
extensions. p is stationary if its multiplicity is 1. If pseS(A) 1is
stationary, then for all B2A there exists a unique nonforking
extension of p to B, which we denote by p|B.

Following Makkai, see [M], we consider "% as a many sorted
theory built as follows. The language of T & is that of T and for
each Zn-ary formula E{x,y) such that T+ 'E is an equivalence
relation' we have a sort S  and an n-ary operation symbol p . The
axioms of T * are those of T and those saying that 'Pe is a
surjective map of n-tuples onto S5_ and pE(x)=pE(y) iff E(x,y)'. We
will refer to pE(i) as the name for an E-class to which x belongs.

There is a natural one to one correspondence between models
of T and T°® and passage from one to the other preserves all
essential properties of a theory. Further in the text, MY will
denote the monster model of T ° corresponding to M.

Let E be an A-definable equivalence relation on M. Then the
equivalence classes of E have names in 4 & in the following sense.
Let a<hA and let @(X,y,a) be a formula defining E. By compactness
there exists a formula w(u)stp(a) such that v(u) proves that
¢(x,y,u) is an equivalence relation. Consider the formula F(xu,yv)
defined by u=v ~ ((#(X,¥,3) ~ ¥(3)) v —w(U)). Clearly, F defines
an equivalence relation and E(x,y) iff F(xa,ya). Therefore the
set {zesFl(H;:)z:pF(ia)}, which is A-definable, can be considered
as the set of names of E-classes and we write b/E for pF(ba). If
BEM’ then by B/E we denote {E/EfEEB} and if p=tp(b/A) then by p/E

we mean the type of b/E over A/E.

Equality is an equivalence relation on n-tuples of M, so when
operating in A°? we sometime identify an n-tuple with its name Dby
simply omitting its bar.



a is algebraic over B if there exists a formula ¢(x)etp(a/B)
which has only finitely many solutions in M, and we refer to such
a ¢ as a witness for algebraicity. a is definable in B if there is
¢(x)etp(a/B) such that a is the only solution of ¢ in M. A is
algebraic in B if every tuple of A is 80 and similarly for
definable. The set of all elements which are algebraic in B is the
algebraic closure of B and is denoted by acl(B); B is
algebraically closed if B=acl(B). Similarly, the definable closure
is defined and denoted by dcl(A). If we are considering in T°¢
then we write acl  (A) and dcl®¥(A). We say that tp(b/A) is
algebraic if beacl{(A).

The following is a consequence of the finite equivalence
relation theorem, see [M] B.4.

Theorem 1.1.4 (in T°') Every type over an algebraically closed
set 1s stationary. If BEB'=acl(B), A=A'=acl(A) and C<C'=acl(C)

then A | B if and only if A'| B'.
C o

Definition For any ¢ and A, the strong type of ¢ over A, denoted
by stp(c/R) is {E(x,c)|E€FE(A)}.

Clearly, stp(c/A)+ tp(c/A) and the converse is true if
tp(c/A) is stationary, in particular if A is algebraically closed
in 477 or if A=M. By a strong type extending peS(A) we mean a
strong type of a realization of p over A. Also, we say that
stp(c/A)=stp(b/A) if tp(c/acl®?(a))=tp(b/acl®¥(a)).

Strong types are in general not preserved by automorphisms of
the monster model. By a strong A-automorphism of M we mean an
A-automorphism which preserves strong types over A.

Let r=tp(c/A) be stationary. Hrushovski's 'quantifier' dri'r. is
defined as follows. Let ¢(x,y) be an L-formula. By (d x)¢(x,y) we
denote the formula defining ¢ in r|4. Since r is stationary
(d x)e(x,y) is over A. If r is a strong type over A then

(dri)cﬁ’(i,f}) is over acl®%(a). dy .is read ‘'for a generic vy

realizing r'.

10



Suppose that p,qeS(A) are stationary, af p bk g and a | b.
A

Then tp(3b/A) does not depend on the particular choice of a and b
and we denote it by pe®g. If p=g then we write p? instead of pep.

Similarly, we define p ®p,®...®p , p and };af':’t for ordinal a.

Definition A Morley sequence in peS(A) is an independent set

over A of realizations of p.

If I is an infinite Morley sequence in pES(A)' then I is
indiscernible over A and all members of 1 realize the same strong
type over A. Thus if p is stationary and |I|=u then If p“.

Let p,q be stationary. They are parallel if the corresponding
nonforking extensions to global types are equal. It is clear that
parallelism is an equivalence relation on the set of stationary
types. p 1s based on A if there exists a stationary type over B

parallel to p.

Theorem 1.1.5 (in T ') Suppose that p is stationary. Consider all
definably closed subsets of A°° on which p is based. Among them
there exists a minimal one which is the intersection of all of

them.
Proof Theorem III1.6.10 in [Sh].

For a stationary type p the minimal definably closed set on
which p is based is called the canonical base of p and is denoted
by Cb{(p). Since all strong types are stationary they have
canonical bases, and we write Cb{(b/A) instead of Cb(stp(b/A).
Since stp(a/A) is based on acl®(A) which is definably closed by
the previous theorem we have Cb(a/A)Eacl‘q(A). If tp(a/A) 1is
stationary and based on B then Cb(a/A)Edclnq(B). By [M] B.2'
every stationary type p is based on an infinite Morley sequence I
in p, hence Cb(p)sdcl®i(I).

11



2. o Orthogonality, regular types, ranks and superstability,

coordinatization, small theories

Definition Let peS(A), geS(B) and CSA.

(ad p and q are almost orthogonal, p¢$q, if whenever a and

b realize nonforking extensions of p and ¢ to AB, then a | b.
AB

(b) pi°C if p is almost orthogonal to every type in S(C).
(c¢d p is8 orthogonal to g, piqg, if whenever p' and q' are
nonforking extension of p and q then p'1 q'.

(d> piD 1iff p is orthogonal to all types in S(D).
(e p ¢+ q means that p is not orthogonal to q.

Suppose that peS(B), stp(B)=stp(B') and p'e5(B') 1is a
conjugate of p. Then pl© if and only if pip'. This fact is
Theorem V.3.4 in [Sh].

Definition Ca) B is dominated by C over A if for all D D | C
A

implies B | C.
A

Definition Let p,gqeS(A) and reS(B) be stationary.

(ad p is dominated by q if there are ak p and bk q such that
b dominates a over A.

(b p is eventually domlinated by r, p r, if for some C=2AB
p|C is dominated by r|({C over C. po rmeans p r and r p.

The pre-weight of B over A, p-wt(B/A), is the supremum of all
cardinals # for which there is a family {C,|ieI} which is
independent over A such that |I|=x and B forks with C, over A for
all i<€I. The weight of B over A, wt(B/A), 1is the supremum of

all p-wt(B/A') with A' ranging over all sets such that B | A'. For
A

12



p=tp(B/A} we define wt(p)=wt(B/A). If B is a set of tuples each
having weight one over A, then forking over A is an equivalence
relation on B. Also, nonorthogonality is an equivalence relation

on the set of stationary, weight one types.

Definition peS(A) is regular if whenever q is a forking extension

of p then pLlqg.

Theorem 1.2.1 Every regular type has weight one.

Proof This is Theorem V.3.1 in [Sh].

If peS(A) is a regular type and B is any set then dim(p,B) is
the size of a maximal subset of Bnp(AM) which is independent over
A; it is well defined by D.5 from [M]. If the meaning of p is
~clear from the context, then we simply write dim(B).

Definition T 1s superstable if there is no infinite strictly

decreasing sequence of bounds in O(T).

As an immidiate consequence of superstability we have that
every type does not fork over a finite subset of its domain.

Definition Define U-rank of complete types as follows.

(a) U(p)z0 for all p.

(b) U(p)Za+l, where o is an ordinal if there is a forking
extension g of p such that U(q)=a,

(c) U(p)zA where A is a limit ordinal if U(p)2¢ for all &<\,

(d) U(p)=a if a is the smallest ordinal such that U(p)Za, if
no such ordinal exists then U(p)=w.

If U(p) has ordinal value then we say that p is superstable,
Hence T is superstable if and only if every type is superstable.
Also, U(p)=0 if and only if p is algebraic. The following is
Theorem 8 in [L1]. ;

13



U-rank inequalities

U(a/Ab) + U(b/A)} = U(ab/A) = U(a/Ab) @ U(b/A)

As an immidiate corollary we have that a superstable type of

U-rank w” i regular (Corollary 2 in [L21}).

Definition R-~rank is defined for all, possibly incomplete, types

as follows.

Cad R(¢(x,a))x0 if ¢(x,a) is consistent.

(bY R(¢(x,a))za+l if there exists a formula w(x,b) which
forks over a such that R(w(x,b))Zo and F Vx(w(x,b)2¢(x,a)).

Ccd R(¢(x,a))zr, where X\ is a limit ordinal, if for all a<x
R(¢(x,a))za,

(d) R(p) = supiR(e(x,a))|®(x,a)=pt.

R-rank was introduced by Shelah (he calls it R(p,L,®)) in
[Sh]). The basic properties of R were proved there, such as: 1if
qSp are complete types then R(p)=R(q) and p is a forking extension
of q if and only if R(p)<R(g); T is superstable if and only if
every complete type has ordinal R-rank.

BEoth U and R are well behaved with respect to algebraicity
by Proposition 4.42 in [L]. If a<acl(bA) then:

R(a/A) = R(ab/A) = R(b/A) and U(a/A) = U(ab/A} = U(b/A).

Theorem 1.2.2 If p is a superstable, stationary type then it 1is

domination equivalent to a finite product of regular types. 1f, in
addition, peS(M) and M is Ni-saturated then there are regular
qlES(M) such that p O q®q®...8q .

Proof For T superstable this is Theorem V.3.9 in {Sh]; the proof
of the same fact from [M] loosens the superstability assumption.

Theorem 1.2.3 (in Tﬁq) Let U(p) = mﬁi-n1+ wdz'nz-i-‘ .ot mak-nk

- - '
where ai.—dzz. 2 . | * .
Cad There exists a type q such that U(g)so'x and q 4 p.

14



(k) wt(p) = 0+, +. ..+

Proof Propositions 4, 5 and 6 in [L2].

Definition If q is a reqular, stationary type then p is

q-semiregular jif pnzrcfnl for some m, and there 1is an Ni—saturated
model  M2AvVdom(q) such that for all a realizing a nonforking
extension of p to M there is a sequence b1bz"'bn with tp(bi/M)i:lq
and aeacl(qga...bnM). p is semiregular if there exists a regular

type g such that p is g-semireqular.

The following is a version of Shelah's theorem on semiregqular
types, V.4.11 in [Sh].

Theorem 1.2.4 (in T°%) If tp(a/A) is superstable then there is
ceacl(alA) such that U(c/n)=wa-n, where a is the smallest ordinal
exponent in the Cantor normal form of U(a/A) and wt(c/A)=n.
stp(c/A) 1is semiregular and whenever C2A and U(c/C)Ecu'ml then
stp(c/C) ¥ stp(c/A).

Proof Without any 1loss let A=0., Let r=tp(b/B) be stationary

such that U(r)=w", a | B and a + b. Let ceCb(Bb/a)\acl(@). Then
B

ceacl(a)Ndecl(I) where I=Bil::3iszz....Bk]3]c is a Morley sequence in

stp{Bb/a). D=BiBz...Bk is a Morley sequence in stp(B/a), which

does not fork over @, so a | D and hence c¢ | D. Therefore:

U(e) = U(c/D) = U(bibz...bk/n) < mm'l;

and we conclude that U(c)=wa'n; otherwise, Theorem 1.2.3(a) would
contradict the minimality of <,
Since a | D and a f Bb, we have a 4 b and, by minimality

D
of «, U(bi/D)Ewa. Thus, U(I::i/D)=t:n»‘:Jlt and bi[- r|D, for all i=<k. Let

m=k be the greatest integer such that {bibz...bm} is independent
over D. We show that m=n, that implies wt(c)Zn and by Theorem
1.2.3(b) m=n.

U(b,b,...b_/D)=w’'m follows immidiately, as well as

U(k ..b /bbb, ...b D) < « . Hence:

m+1 m+2 *
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oL . | '
U(bb,..b /D) ® U(b b _..b/bb, ..b D) < me&w = (ml),

o
and U(bibz...bk/D) < w {m+l).

Since c | D and cedcl(bb,...b D) we have:

ol

©”'n = U(c) = U(c/D) £ U(bb,...b /D) < « *(m+l) and m=n.
Suppose that C2A and U(c/C)2e” and assume that bb_ ...b D are

chosen so that l:aibz -+.b D | C. CEdCI(bibz .- .ka) and U(c:/C)Emﬁt
C
implies I.\f(b’hb2 .. .bk/DC)E: W™, Therefore, for some 1<i<k we must

have U(bi/DC)--wa, i.e. tp(bi/DC) does not fork over B,. But

U(bi/cD)«:ma, hence bi f ¢ and, since tp(bi/Bi)ch by the remark
| DC
after the definition of orthogonality, we have tp(c/C) ¢ r and

hence tp(c/C) ¢ tp(c).

Now, let q be regular and q ¢+ tp(c). With similar reasoning
as in the previous paragraph we get q 4 r, hence tp(c)nrn, and
tp(c) is r-semiregular.

Corollary 1.2.5 (in T °) If tp(a/A) is regular and superstable
then there exists bedcl(aA) such that U(b/A)=ma, whaere o is the
smallest ordinal exponent in the Cantor normal form of U(a/A).

Proof By the Theorem there is ceacl(aA) such that U(c/A)=wa. Each
aA-conjugate of ¢ forks with ¢ over A, by regularity of tp(a/A).
Hence if d is (a name for) the set of all aA-conjugates of ¢ then
dedcl(aA) and maﬂU(d/A)<wa'2. By minimality of « U(d)=ma.

Definition Let p,q be types, possibly incomplete. p is g-internal

if there exists an R -saturated model M=2dom(p)Wdom(g) such that
whenever ak p and tp(a/M) does not fork over dom(p) then there
are bisz;---;bk realizing g such that aEdcl(bibz.. .bkM).

The notion of internality is introduced by Hrushovski in
[H1l]. The following two propositions are from there.

Proposition 1.2.6 Suppose that p=stp(a/A) is g-internal where g
is over A. Let ® and Q be the sets of all realizations of p in q
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in M. Then there are integers m,k and an A-definable function
f:#xQ™+M such that whenever a'CF p°'° then there is beQ™ such
that a'=f(c,b) (X denotes the Cartesian power of X).

Proof Without loss of generality A=9. Let M and bsQ be such that
a | M and asdcl(bM). Let ababab,...ab be a Morley sequence in
stp(ab/M), long enough so that aEdcl(baibiazbz...akbk). Since
tp(a/M) does not fork over 9, {a,ai,az,...,ak} is independent.
Thus if c=aa,...a and b=bb,...b we have ach p*™, be@™ and
a=f(c,b) for some definable function f:ﬁkam*AL Since we can move
acM by an M-automorphism to any a'c'M'} tp(acM) the conclusion

follows.

Proposition 1.2.7 (in T %) Cad 1If stp{(a/B) ¥+ g and U(q)(mf:|l then
there is cedcl(aB)\acl(B) such that U(c/B)<wa.

Cby If A=B, p=tp(a/B), qgqeS(A) and p ¢f{ g then there exists
cedcl(aB) such that r=tp(d/B) is g-internal and nonorthogonal to

q.
Proof Ca) Let A=dom(q) and BUASC, a | C, bk g, b | C and a ¢+ b.

B A C
Pick ceCb(bC/aB)\acl(B). a | C implies ¢ | C and since c + bC,
B B B
we conclude that ¢ + b i.e. tp(b/B) £ gq. c¢ is definable over B
BC
from a finite Morley sequence in stp(bC/aB), say ¢,b,Cb,...Cb .

Clearly, U(bl/Cicz.”Ck)(ma for all i=k, so U(c/Cicz...Ck)-(wa.

tp(C/aB) does not fork over B, so a | CC,...C . It follows that
B

c | q&;...c and U(c/B)<wa. After replacing c¢ by (the name for)

B

the set of all conjugates of tp(c/aB) we have also cedcl(aB).

k

(b3 Let C, b and c¢=Cb(bC/aB)\acl(B) be as in the proof of
part (a). Then tp(c/B) is g-internal since C‘EdCl(cg_biczbz"'Ckbk)'
c I|-L C,C---C, and tp(b-CC,...C) is a nonforking extension of
q for all i<k. The same is true for any aB-conjugate of c, hence

it is true for tp(d/B), where d is the name for the set of all of
them. Finally, +tp(c/B) £+ q implies tp(d/B) ¢+ q.
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peS(A) is isolated if there exists a formula ¢(x)sp such that
if F #(a) then 'ak p. The topological context of isoclation 1is
clear; peS(A) is isolated if and only if it is an isolated point
in the topological space S(A). Therefore, as a consequence of the
Cpen Mapping Theorem we have that if q is a nonforking extension

of p and g is iscolated then p is isolated, too.

Isolation is transitive in the sense that if tp(a/b) and
tp(b/A) are isolated, then so is tp(ab/A) and vice versa.

For a fixed set A CBA-rank, the Cantor-Bendixson rank, is
defined for peS(A) as follows. For ordinals «, CBA(p)=a if p is an
isolated point in S(A)\{q|CBA(q)<a}; otherwise CB,(p)=w. If the

meaning of A is clear from the context then we write CB(p).

B is atomic over A if for all bsB tp(b/A) is isolated. B is
almost atomic over A if for all bEB there exists a finite A_SA
such that for all finite A=A, tp(E/Ai) is isolated. M is prime
over A if for each N2A there is an elementary embedding of M into
N. T is small if |S(ﬂ)|=HO. If T is small and A is finite then
|S(A)|EN0 and CB,(p) has ordinal value for all peS(A).

Proposition 1.2.8 If T is small and A is countable then there
exists a countable model M which is almost atomic over A; if, in
addition, A is finite, then there exists a prime model over A
which is atomic over A and is unique up to an A-isomorphism.

Proposition 1.2.9 If T is small and superstable then for all
countable A and N there exists a countable model M2AUN which is
almost atomic over AUN and is dominated by A over N.

Definition (ad A type peS(A) is almost strongly regular (or aSR)

via ¢(x) if p is nonalgebraic and for any stationary type q=S(B)
whose domain contains A, if e¢(x)eq then either pig or g is a

nonforking extension of p.

(b) p is not-so-strongly-regular (or sR) via e(x) if p is
stationary and it is a nonforking extension of a type which is aSR
via ¢(x). p is sR if it is sR via some ¢(x).
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We note that each sR type is regular.’

Theorem 1.2.10 Suppose that T is small and superstable. If g 4 N
then there is a sR type peS{(N) such that q ¢+ p.

Proof Theorem D.17 in [M].

Definition A type peS(A) is NENI if it is stationary and whenever

B is finite then p|AB is isolated.

1.3 Stable groups

By a stable group we mean a type-definable subset GSM such
that there exists a definable function, possibly with parameters
from M, whose domain is G?, whose range is G and which satisfies
the group laws; in that case we denote the function by - and, as
usual, we define . We also say that G is w-definable; it is
definable if G is a definable set.

Let #={H |ieI} be a family of definable groups. We say that %
is uniformely definable if there exists a formula ©(x,y) without
parameters, and a family -d={51[iEI} of tuples of elements of M
such that for all iel Hi is defined by @(x,ai). The following is
from [BS].

The Baldwin-Saxl Condition Let G be a stable group and 1let
%Eﬂﬁ|iel} be a uniformely definable family of groups. Then there
exists an integer n such that for all %'={H |iel'}<% there are

ii,...1i €I' such that: G N = GﬁHiiﬁHizﬁ. . .r"1Hiﬁ

Proposition 1.3.1 If G is a stable group then there exists a
definable group H2G such that the multiplications of G and H
coincide on G. Moreover, if G is w-definable over A, then G is
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the intersection of EHQ A-definable groups.

Proof This iresult is from [H1l], see also Theorem 5.18 in [P].

Let G be a stable group and let A be definable. We say that A
is left-generic of G if there are g;,gz,..‘,gHEG such that:

GEgiAungU - .UgnA

A formula is called left-generic iff the set defined by it is so
and a type is called left-generic iff all the formulas in it are
left-generic. Similarly, we define the concepts of a right-generic
set, right-generic formula and that of a right-generic type. the
following is 5.7 in {P].

Proposition 1.3.2 Every left-generic set is at the same time

right-generic and vice versa. The same holds for formulas and
types. By both left and right translation G acts transitively on
the set of generic types in S(G).

According to Proposition 1.3.2 we say that a set, formula or
type is generic if it is, equivalently, left- or right-generic.
Elements realizing generic types are called generic elements. The
following is derived from Chapter 5 in [P].

Proposition 1.3.3 Let G be stable. Then there exists a generic

type, generic types do not fork over @ and every element of G is a
product of two generic elements.

If peS(G) is generic, then the set of all elements of G for
which p is fixed by a translation by them, forms an o-definable
subgroup o©of G whose generic type is a generic of G, which is
called the principal generic.

Let ASG and let K be a definable group. By A/K we denote the
set {a, |asAl of right cosets of A modulo H=G"K. Note that if A is
definable then A/K is definable in G}, and if A is «-definable

then A/K is w-definable, as well.

¥

A superstable group is a stable group whose generic type has
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R-rank; by 1.3.3 this is equivalent to: every type of an element
of a group has R-rank. Generic types have maximal possible R-rank
and U-rank, and by U(G) we mean the U-rank of a generic type. The
following is III.8.1 in {[BeL].

U~rank inequalities for groups

If HEG are superstable and H is definable, then:

U(G/H) + U(HNG) < U(G) < U(G/H) & U(HNG)

Proposition 1.3.4 If G is an o-definable superstable group then

G is an intersection of =R  definable supergroups of G which has
the same R-rank and the same U-rank as G does.

Prcof This result is from [H1], see 5.19 in [P].

Let A=B be w-definable and superstable. A/B is not in general
an object in T“q, but by previous proposition it is closely
approximated by elements of MA°°; if BSC, where C is definable and
U(C)=U(B) then U(A/C) does not depend on the particular choice of
C. Thus when we write U(A/B) we mean by that U(A/C).

A stable field is a type~definable set endowed with two
definable binary operations which satisfy the field laws. The
following is from Theorem 1 in {[CS].

Theorem 1.3.5 A superstable field is algebraically closed.

The following proposition is a version of Hrushovski's
analysis from [H1], see also [H4]). The corollary is from [H4].

Proposition 1.3.6 Let G be w-definable and let H an x-definable
group of automorphisms of G, for 1<i<n. Suppose that a generic
type of G is nonorthogonal to a regular type p. Then there exists
a definable group H, such that GNH is a normal, Hl—invariant
subgroup of G for 1<i<n, G/GNH is p-internal and its generic type
is nonorthogonal to p.
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Proof Fact 1 in [H4), see also Theorem 2.26 in [P].

Corollary 1.3.7 If the generic of a field F is nonorthogonal to a

regular type p, then F 1s p-internal.

Proof Let F' denote the additive group of the field and F the
multiplicative one. Since the generic of F' is nonorthogonal to p
it has an F -invariant subgroup H such that F/H is p-internal and
infinite. Since F acts transitively on F+\{0} we must have H={0}

and F' is p-internal.

Theorem 1.3.8 If G is an w=-definable superstable group and
U(G)=ma'n+f where E<wa, then there existss an o-definable abelian
subgroup H of G such that U(H)Zwa.

Proof Theorem VI.1.2 in (Bel.

Definition Let ASG be type definable. A is oa-indecomposable if
for every definable group HSG U(A/HﬁA)<ma implies that A/HMA has
exactly one element. (Here by U'(I-‘L/HW&.)*m:r'mt we mean that IJ'(aI_I)m:f:’t
holds for all asi)

Definition Suppose that U(G)=@q-n+i where E<da. G is a~connected
1f there does not exist a proper subgroup H<G such that U(G/H)<wq.

Proposition 1.3.9 If G is an w-definable superstable group and
U(G)=w" - n+& where £f<w , then there is a unique o-definable
a-connected subgroup H of G such that U(H)=wa-n.

Proof See IV.4.6 in [Be].

The unigque subgroup H from the previous proposition is called

the a-connected component of G,

Proposition 1.3.10 Suppose that peS(A) is a stationary type of an
element of G, U(p):ma-n and let P be the set of all realizations
of p in G. Then ? is a-indecomposable.

Proof Without loss of generality assume that G is saturated.
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Suppose that A<B and that HSG is a subgroup definable over B. Let
gkp|B. Then gHEdcl(g“B) and since U(g/B)=wa-n we have that either
U(gH,/B)i'm.\ml or U(gH/'B)'—:O. Thus, either U(JJ-"/H)EM{:ll or U(*/H)=0. We
¢laim that i1if the second possibility holds then »*/H has exactly
one element; that completes the procf of the proposition.

50, suppose that U(P/H)=0. Let % be the set of all conjugates
0of H under AutA(G) and let K=n¢. By the Baldwin-~Saxl condition,
there is {Hi,Hz,...,Hk}Eﬂf such that HrH"...nH =K. It follows
that U(®/K)=0 and |#/H|£|P/K|. K is definable over A, being fixed
by all A-automorphisms of G. Thus, K induces an equivalence
relation with finitely many classes on # and since p is stationary
we must have |[Z?/K|=1. Then |P/H|[=1 as well, and the c<faim is

proved,

The following is a superstable version of Zilber's Theorem on
Indecomposables [Z1l]. Proposition 6 in ([H4] is a version in

stable context.

Zilber's Theorem on Indecomposables

Suppose that U(f:‘-;)=mm-n+tr where f<w” and that #={Al|iEI} is a
family of o—definable, a-indecomposable subsets of G each of them
containing the unit element. Then the group HSG generated by U¥ is
o—~definable and a-connected. Moreover, there exists a finite set

{i,,1,,...,1,}<I such that H=CA, B, <. -Alk)z.

Corollary 1.3.11 Suppose that U(G)ma_m,: where £<w” and that A
1s a definable, o-indecomposable subset of G. Then the group H
generated by A-A_l, which is the smallest subgroup of G such that
A is included in a single (right) coset of H, is definable; and
a-connected; moreover, there exists nelN such that H=(A-A_1)n.

Proof  Let ﬂ={a_1AlaEA}-. Every member of # is oa-indecomposable,
being a translate of an a-indecomposable set, and contains the
unit element. The conclusion follows from the previous Theorem.

-

Theorem 1.3.12 Suppose that A is an o-definable, a-connected
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abelian group and G 1is an infinite, o-connected group of
automorphisms of A and F=EndG(A). Then F 1is an iﬁfinite,
o~-connected, definable field and A is definably an F-vector space.

Proof This is Zilber's theorem from [Z2].

Theorem 1.3.13 Suppose that G is a solvable group of

automorphisms o©of an abelian group A, that both A and G are
ow-definable and a-connected and that A is G-minimal. Also suppose

that « < U(A),U(G) <« mdﬂ. Then in T @ +there is a definable

field F such that w® < U((F) <wa+l.

Praof This is a version of Nesin's theorem, see Theorem 3.8. in

[P].

The following theorem is crucial for the proofs of theorems A
and C. It is from [H1l] (cf. Theorem 2.20 in [P]).

Theorem 1.3.14 Suppose that p,qeS(A), p is stationary and

g~internal, Let *,Q denote, respectively, the sets of all
realizations of p and q@ in A, Then the group G=AutAQ{:P) of all
AQ-automorphisms of P 1is owo~-definable over A. Moreover, if
U(p):wa-m then G is a-connected.

Sometimes we write Autq(p) instead of Auphq(?).

24



2. THEORIES WITH NO DENSE FORKING CHAINS

<. 1 Dimension and Ua-rank

Let (P,=) be a partial order. For p,geP we denote by [p,q]P
the interval {xeP|p<x<q} ordered by (the restriction of) =, =,pl,
denotes {x€P|x<p} ordered by =<, and similarly we define (</P),,

(Pr<)F and [PrE)P-

Definition Let (P,£) be a nonempty partial order. Inductively,
define the dimension dim(P) which is -1, an ordinal or oo:

(1) dim(P)=-1 if |P|=1.

(2) dim(P)za+l if there is an infinite decreasing chain
P,”P,>P,>... such that for every iecw dim([p,,, P, 1, )2,

(3) dim(P)2X where A is a limit ordinal if dim(P)2a for
every a<i,

(4) dim(P)=a iff a 1s the greatest ordinal for which
dim(P)za holds; dim(P)=x iff dim(P)Za holds for all ordinals a.

Definition Let o be an ordinal and let (P,<) be a partial order.

Inductively we define U,-rank of (P,=):

(1) U_(P)20 if p=p,

(2) U, (P)Z2B+1 iff there exists peP such that u ((=,pl 020
and dim([p,E)P)aa,

(3) U,(P)=A where A is a limit ordinal iff U, (P)=f3 for all
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ordinals [3<X.

(4) Ua(P)=E,' where ¥ is an ordinal, 1if £ 1is the greatest
ordinal for which U_(P)2{. If no such ordinal exists then U (P)=c

Lemma =.1.1 Let (P,EP) and (Q,EQ) be partial orders.

Cad If f:P+Q 1is strictly increasing then dim(P)=dim(Q) and
U, (P)=U_(Q).

(b If o1 then U, (P)+U (Q) = U (PeQ)  where PeQ is the
set Px{0}uUQx{l} ordered by {({(p,0),(p',0)|p=p'} U
{((q,0),(q",0)|qsq'} v {((p,0),(q,1))]|p<P,qeQ}.

Proof: (a) is easy iqguction on dim(P) and Ud(P); we prove only
(b). QO is embedded in P&Q, so if Ua(Q)=m the conclusion follows by
part (a).

Let E=Ua(Q). We use induction on ¥. For ¥=0 it is obvious
and for ¥=1 it follows from the definition of Ua. Suppose that
E=n+l and let geQ be such that Ua((ﬂ,qlalrn and Uﬂ([q,ﬂ)ﬁ)=1.
By the induction hypothesis

U (P) + & = U_(P) + U ((Z,ql,) = U (Po(=,q],) = U ((5,q],.5)-
On the other hand 1 = Ua([q,ﬂ)a) = Ua([q,fé)Pm), and from the
definition of U, we get Uﬁ(P)+Ua(Q) = Uﬁ(P)+E+1 = Uﬁ(PﬁQ).

The case when ¥ is a limit ordinal is similar.

Lemma 2.1.2 Let (P,£) be a partial order. Then dim(P)=c if and
only if there exists an embedding of rationals into (P,=).

Proof: «)is clear so we prove only =). Bssume that dim{(P)=w, Let o
be an such that for all p,qesP dim([p,qu)za implies dim([p,q]p)=M.
Since dim(P)za+l there 1is an infinite decreasing chain
P,>P,>P, > .. such that for all iew dim([le,p’_]P)Ea, thus
dim( [le,pi]P):mu Applying the same reasoning to each [p’_ﬂ,pilp
for iew in place of P we get infinite descending chains
i i 1 . . L  § . . .
P.>P,>P,>...1n [piﬂ,pi]p so that dlm([pj+1,pj]l,)=m. Continuing in
this way we get a chain in P isomorphic to the rationals.
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Lemma 2.1.3 If (P ,=,) for i=n are nonempty partial orders then:

dim(P xP_x.. .xP_}=max{dim(P, ) (Qim(P,), ... ,Aim(P_)}.
(where P xP_x...XxP_ is ordered by the product order, i.e.

(P,,P,+-+-+0.) S (P}s/Pjs+--,P)) 1iff p=p, P, P, --- p.5 p').

Proof: Assume n=2. dim(PixPz) = max{dim(Pi),dim(Pz)} follows
immediately from Lemma 2.1.1, so we prove the reverse.inequality.
Actually, we show by induction on ordinals « that dim(PixPz)za
implies max{dim(P, ),dim(P,)}za. For a=-1 or 0 the claim is

obvious, so we distinguish the following two cases:

Case I oa=fi+]

Assume that dim(P xP,)Z3+l. Then there is an 1infinite
decreasing sequence (p,,p;)>(P, P /)>(P,,P;)>- - such that for all
iew dim([(p,,,P, ), (P, /P{)]p ,p 723 By the induction hypothesis

1" 2

for each iew either dim([Plﬂfpi]Pi)Eﬁ‘ or dim([pl_:i,pi')]Pz)Ef?
holds. Therefore either for infinitely many iew dim([p,  .p, 1, )=
or for infinitely many iew dim([p;, ,,p; )1, )= Thus ei*:her
dim(Pi}Z.r?+1 or dim(Pz)Eﬁﬂ holds. )

Case 2 o is a limit ordinal

Let ﬂ=U{0tE|E<R} where #==cf(a). By the induction hypothesis
for each £<#» at least one of dim(Pi)?_aE and dim(Pz)aaf holds. Thus
at least one of sets {E‘<n|dim(Pi)2aE} and {&‘(Hldim(Pz)Eaf} is
cofinal in » and that means that either dim(P, )Za or dim(P,)=a.

Thus we proved the lemma for n=2. The general case follows

rather easily from this one.

Definition Let ASB, psS(A) and pEqeS(B).

cad dim(p|q) = dim([bnd(q),bnd(l?)]m.r,)-

k>  U,(plq) = U ([bnd(q),bnd(Pp)], .-

Ced dim(p)=dim(p|r) where r is any algebraic extension oI
r, also Ua(p)=Ua(p]r).
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Further in the text, we will write dim(a/B) instead of
dim(tp(a/B)) and dim(a) instead of dim(a/®). Similarly for U -rank.

If we allow *—-types and not just types in the previous
definitions, we get the notions of dim and U, -rank of #*-types as

well.
Note that U0 is the usual U-rank and dim(p)=0 means exactly

that p has ordinal U-rank. Also, U_(p|q)=0 implies dim(p|q)<a.

Lemma 2.1.4 If A<B and C<acl(DA) then:

dim(C/A|C/B) < dim(D/A|D/B) and U_(C/A|C/B) < Ud(D/A]D/B).

Proof By induction on dim(C/A|C/B). Suppose that #>3,>... is an
infinite descending chain between bnd(C/B) and bnd(C/A) such that
dim(C/A|{C/B)} > dim([ﬁi+1,ﬁ1])=fi; By Proposition 1.1.3(c) there is
an increasing sequence of sets AS&;H%E;.. such that for all i<j
bnd(C/M)=#, C | A and C | M. Moreover, assume that UM | DB.
M1 Mi CA
Then, by the induction hypothesis dim(C/Mi]C/Mj) = dim(D/Mt|D/MJ.)
for all j<i, and hence dim(D/Mi]D/Mj)Efi. From the independence
assumptions we derive D | A , D | M, and D | M, for all i<j.
Mn Mi B

Therefore bnd(D/A) 2 bnd(D/Mb) >_bnd(D/M£} >.eee« = bnd(D/B). If

dim(C/A|C/B)=¢f+1 then we could choose B, 's so that ¢ =, and if
dim(C/A!C/B) is a limit ordinal then it can be chosen so that {.'s

form a cofinal sequence. In both cases the conclusion follows.

A similar argument works for U,-

Lemma 2.1.5 1f p<SgSr then U, (a|r) + U, (piq) = u,(plr). If r

is algebraic then U, (q) + Ua(plq) = U, (p).

Proof Follows from Lemma 2.1.1(b).

Definition T has no dense forking chains if the order type of
rationals can not be embedded into O(T).
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As an immediate consequence of Lemma 2.1.2 we have that if T
has no dense forking chains and pSq then dim(p|q)<e.

Theorem 2.1.6 Suppose that T has no dense forking chains.

Cad For any a,b and A=B and o=0,

dim(ab/A|ab/B) sup{dim(b/aAlb/aB), dim(a/Ala/B)}.
(by (U ~rank inequalities)

U, (b/an) + U, (a/A) = U,(ab/A) = U,(b/ah) & U, (a/a).
(c) Every type decomposes as a product of regular types.

Proof (a) is Lemma 10, (b) is Proposition 11 and (c) is Theorem
14 from [HLPTW],

We note the following instance of Theorem 2.1.6(a) and Lemma
2.1.4 that we will use often in this chapter: if dim(Ci/A)f‘_ia for
1=i<n and BSacl(C.C,...C A) then dim(B/A)=a,

Proposition 2.1.7 Let A=B, peS(A) and p=geS(B). Then:
dim(p{q) = sup{dim(c/A)|ceCb(q)}.

Proof: Without 1loss of generality, assume that A=9 and we
cperate in M°?. Let ceCb(qg) and let I=a,a,...a be a Morley
Sequence in (a stationarization of) q 1long enough g0 that
EEdcl(I). Let C=acl(c) and we show that dim(p|{q)2dim(C); since
dim(c)sdim(C) (by Lemma 2.1.4) this will imply the conclusion of
the Proposition.

Let I,=aa,...a , for k<n, let P={f<0(T)|A<bnd(C)} and for

3P jet Dﬁ be such that bnd(C/Dﬁ)=ﬁ. For k=n, 3<P, define

X ~
Pﬁ=bnd(ak/IkEﬁ) where E(s satisfies tp(Eﬁ/C)z-tp(Dﬁ/C) and

Eﬁ | I. We note that p; does not depend on the particular choice
C 'y
of E{?. Actually, since C is algebraically clesed, tp(Dﬁ/C) is

Stationary so it has a unique nonforking extension over CI, thus
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tp(EB/CI) is uniquely determined and hence tp(I/CEB) is uniquely

determined, too.

For natural k=n let Pk={p;|{?EP} with the inherited order
from O{(T). Now we show that PkE[bnd(q),bnd(p)lmT}. From the
definition of p; we have pgﬂbnd(p), and bnd(q)ﬂp; follows from:

bnd(q) < bnd(d /I,C) = bnd(3,/I,CE;) < bnd(3, /I,E,) = p:;.

The first inequality above is true since I is a Morley sequence in

q. From E; | I we have E, | a and the first equality follows. The
{3 Br'c

C

second inequality is clear and hence Pk_‘-‘:_.[ bnd(q),bnd(p)lom.

Further, order P xP x...xP  with the product order and define
a mapping f:P-»Pixsz...i:Pﬁ by f(ﬁ)=(p$,p;,...,p;). We show that
f is strictly increasing. Assume that 3,¥<P and Y=f?. By
Proposition 1.1.3(b) there are EB and E? such that:

tp(E;/C)=tp(Dy/C), tp(E,/C)=tp(D, /C), Es | ¢ and ELE, | I,

E C
¥
k - k - :
Then pﬁ-bnd(ak/IkEﬁ) and p?,:bnd(ak/IkE?,). From the independence
assumptions we derive I | E;, and thus a | E;. We have:
Ey IkEr

(1), Py = bnd(3,/LE;) 2 bnd(3 /LELE ) - bnd(&,/1,E,) = p,.

Thus pgap; and £ is increasing. Now, if ¥<? then C ¢ E and

"since Csacl(I) we have I ¢4 E, so for some jSn we have a + E
E, JIjEﬁ

- - , |
and bnd(aj/IjEﬁE},)<bnd(aj/IjEﬁ). We conclude that in (.)‘j the

' 4

strict inequality holds and p;<p;. This proves that f is strictly

increasing.

By Lemma 2.l1.1 we have dim(P)Edim(Pixsz...xPn) and by
- Lemma 2.1.3 we have dim(Pixsz...xPn)=dim(Pk), for some k=<n.

Therefore dim(P)-‘Edim(Pk). But PkE[bnd(q),bnd(p)lmT} thus

dim(P, )=dim(p{q) and we have:
dim(C) = dim(P) < dim(P ) = dim(p|q)

completing the proof of the Proposition.
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2.2 Strictly stable theories with no dense forking chains

Throughout this section we assume that T is strictly stable and
has no dense forking chains and we operate in M®? . Consider all

Complete types whose domain is finite. Let ozl be the smallest

Oordinal such that at least one of the +types considered has
dimension o and let ¢ be the smallest possible U_-rank of such a
type. We say that a type is an Co,&d)-type if its domain is finite,

its dimension is « and its U_-rank is ¢.

Lemma 2.2.1 If p=tp(a/B) is an («,f)-type then there exists
Cedel(3B)\acl(B) such that dim(c/B)=0. In particular, every
(o, )-type is nonorthogonal to a type of dimension 0.

Proof: Without loss of generality assume that B=0. Since a>0,
there exists an infinite sequence B3, >3,>..... below bnd(p) in
O(T). Let r=tp(a/C) be such that bnd(r)=3,. Note that >3 >....
is an infinite descending sequence below bnd(r) so that dim(r)z1.
If we replace C by a large enough finite subset of Cb(r) we can
assume that C is finite, r is a forking extension of p and
dim(r)>1.

By the minimality assumptions on o and { we have dim(r)=a and
Uu(r)=U_(p)=f. By Lemma 2.1.5 U, (r)+U,(p|r)=U,(p) and it follows
that Ua(Plr)=0~ Thus, dim(p|r)<a. By Proposition 2.1.7 we have

sup{dim(d) |deCb(r)} = dim(p|r).

Therefore sup{dim(d) |deCb(r)i<a and by the minimality
ASsumption on o we have dim(d)=0 for all deCb(r). Let deCb(r) be
Such that a + d and let c'eCb(d/a)\acl(?). c' is definable in a
finite Morley sequence aiaz...ak in stp(d/a). Also dim(d)=0, so

dim(aiaz...ak)m and dim(c')=0. Let c¢c be the name for the set of
all {3}-conjugates of c¢'. Since c'eacl(a) this set is finite so
Cedcl(a); also, every {a}-conjugate of c¢' has dimension 0 so that
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dim{c)=0. Finally, from E‘eacl(c)\acl(ﬁ)l we have ceacl(e)

completing the proof of the Lemma.

Proposition 2.2.« If T is strictly stable and bhas no dense

forking chains then I(T’“b) Z N

Proof Let B be finite, let p=tp(a/B) be an («,{)-type, 1let
A={dedcl(aB)|dim(d/B)=0} and let q=tp(a/AB). We show that q is
nonisolated.

Suppose, on the contrary, that e(x,b) is a formula over AB
which isolates g; here o(X,y) is an L-formula bsAB and without any
loss of generality we assume that Bsb. Clearly dim(b/B)=0 holds,
so that dim(a/b)>0 by Theorem 2.l1.6(a). By the minimality
assumptions on o and f# we must have dim(a/b)=a and U, (a/b)={. By
Lemma 2.2.1 there exists ceA\acl(b). Choose' 51|- stp(a/b) such

that a, c. Hence | ¢(a,b) holds and thus tp(a, /AB)=q. From
b .

the independence assumption on a we derive ceacl(a,b); on the

other hand cedcl(ab), so that tp(a /cB)=tp(a/cB) and

tp(a,/AB)*tp(a/AB)=q. This is a contradiction.

Let reS(dcl(aB)) be a nonforking extension of g. Then, by The
Open Mapping Theorem r must be nonisolated too, and r|Ba is
nonisolated as well. We have found a nonisclated type over a
finite domain, hence there exists a nonisolated type over @. To
complete the proof of the Proposition, we repeat the proof from

the superstable case, ¢f [Lal.

Suppose that T is small, otherwise I(T,H0)=2’Ha. Let tp(d) be
nonisolated and let d 4 .... be an infinite Morley sequence in

tp(d). For each n let M_ be prime over dd,...d . By Theorem
2.1.6(c) m=wt(d)<w. We show that in M_ there is no Morley sequence
in tp(d) of length m-n+l, which clearly implies the conclusion

of the Proposition.

If el tp(d) and EEMn then tp(e/d,d,...d ) is isolated, hence
by the Open Mapping Theorem e forks with dd,...d . On the other
hand wt(dd,...d ) = m'n, hence there is no independent set of

realizations of tp(d) of size m'n+l in M_.

32



Lemma 2.2.3 There exists a finite set aB such that if
A={cedcl(aB)|dim(c/B)=0} then:

(1) tp(a/B) is an («,%)-type,
(2) stp(a/A) is semiregular and superstable, and

(3) for every finite A SA and b for which dim(b/A,)=0

we have a | b.
A

Proof: Consider all (a,f)-types. Among them let p=tp(a/B) be such
that if A={cedcl(aB)|dim(c/B)=0} then dim(a/AB)=? is minimal
possible and Uﬁ(E/AB)=n is minimal possible as well.

Claim 1 3=0.

Proef stp(a/AB) is based on aB which is finite, so by the
minimality assumptions on o we have that dim(a/AB) is either « or
0. Suppose that f3za., Then dim(a/AB)=a and from U&(E/AB)EUG(E/B)=E
and minimality of £ we get Uﬁ(a/AB)=E. By Lemma 2.2.1 tp(a/AB) is
nonorthogonal to a superstable type. By Proposition 1.2.7(a) there
is a'edcl(aB)\acl(AB) such that tp(a'/AB) is superstable. Now, we
show that tp(a'/B) and A'={cedcl(a'B)|dim(c/B)=0} contradict the

minimality of /3.

From a'sacl(AB) we have dim(a'/B)>0 and from a'edcl(aB) and

the minimality assumption on & we have dim(a'/B)=a. Further, let
'=Cb(A/a'B). Each deB' is algebraic in a finite Morley sequence
in stp(A/B), so it 1is algebraic in a finite Morley sequence in
stp(d'/B) for some d'eA. But dim(d'/B)=0 hence dim(d/B)=0, and we

have just shown that B'SA'. Since B'=Cb(A/a'B) we have A | a'B
BI'
and thus a'| A. Thus:
BB'

dim(a'/A'B) = dim(a'/B'B) = dim(a'/ABB') < dim(a'/AB) = 0.

(The first inequality here follows from B'€A', the first equality

from a'| A ). We conclude that dim(a'/A'B)=0 and the proof of the
BB'
claim is complete.

Because dim(a/AB)=0, Theorem: 1.2.4 applies and there is

a'acl(aB) such that stp(a'/AB) is semiregular. We show that with
a'B in place of aB the conditions (1) and (2) are satisfied. Let
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A'= {d=dcl(a'B)|dim(d/B)=0} . and let B'=Cb(A/a'B). Then A | a'B
_ B
and hence A | a'. As in the proof of Claim 1 we get B'SA'. We
BB'
have:

U(a'/A'B) £ U(a'/B'B) < U(a'/AB) < U(a/AB).

The first inequality follows from B'SA', the second from A | a',
BB'
and the third from a'cacl(aAB). By the minimality assumption on »

we must have U(a'/A'B)=U(a/AB), hence U(a'/A'B)=U(a'/B'B) so

a'| A and stp(a'/A'B) is semiregular. Since a'sacl(AB), tp(a'/B)
BA' |
is an («,f)-type. Therefore, if we replace a by a' we have that

conditions (1) and (2) are valid.

We show that (3) follows from (1) and (2). Suppose that A <A
is finite and b is such that dim(E/AoB)=0, and b 4 a. Because

, AB

dim(b/A,B)=0 there is a finite A such that A SA<A and b | A.
BA
1

Let c=Cb(b/aB) be such that a + c¢. Clearly, ce=acl(Ad). Alsoc & is

AB
definable from a finite Morley sequence in stp(b/A B), which has

dimension 0, hence dim(c/A B)=0. Since ceacl(aB), the set of all
aB-conjugates of ¢ is finite so let dedcl(aB) be the name for that
set. Then dedcl(aB), dim(t_i/AiB)=0 and since dim(Ai/B)=0 we have
dim(d/B)=0. Thus deA and since ceacl(d) we have ceacl(AB) and

hence a | c. This is a contradiction and the Lemma is proved.
AB

2.3 Proof of Theorem C

Theorem C If T is strictly stable, has no dense forking chains
: ‘ N
and no strictly stable groups definable in T°?, then I(T,»® )=2 o.
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In this section we prove Theorem C. Let T he a theory with no
dense forking chains and no strictly stable groups definable in
it; we operate in M ', Let tp(a/B) and A be as in the conclusion
of Lemma 2.2.3. stp(a/B) is semiregular, so let g be a regular
type such that stp(E/A)nqm. We are going to construct ZNa
nonisomorphic countable models of T, so without any loss of
generality we absorb B into the language. Therefore, we have:

(1) tp(a) is an (o,%)-type,

(2) A={cedcl(a)|dim(c)=0},

(3) stp(a/A)ag , and

(4) for every finite A_SA and b for which dim(E/Aa)=0

we have a | b.
A

The absence of strictly stable groups definable in T

implies that the following, stronger version of (4) holds.

Lemma 2.3.1 For every finite AaEA stp(a/aA) L R, .

Proof: To prove the Lemma suppose, on the contrary, that A SA is
finite and that stp(a/A) is nonorthogonal to A, . Let r=tp(b/AD)
be nonorthogonal to stp(a/A) which is superstable. By Proposition
1.2.7(a) we can replace b by an element from dcl(bA ), so that r
is superstable. We are going to find a strictly stable group

which is definable in T°9%.

By Proposition 1.2.7(b) there exists a'edcl(a) such that
stp(a'/A) is nonalgebraic and r-internal. Let * be the set of all
realizations of stp(a'/A) and let R be the set of all realizations
of tp(E/An). By Theorem 1.3.14, the group of all AR-automorphisms
of # is w-definable over acl(A). Denote this group by G. We show
that G acts transitively on P.

Notice that for all finite B_SR we have dim(B_ )=0. So, by

| B.. Therefore
A (&
stp(a_/A) + stp(a /AR), so for Ea,aie.‘ﬁ' stp(Ea/AR)=stp(§1/M), and

G acts transitively on #. By Proposition 1.3.1, there exists an
acl(A)-definable group G_2G. Thus G, acts transitively on R, as

condition (4) above, for every 505? we have En

well, and we have:
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and let q, be the corresponding conjugate of q (so that rk::q:).
By Lemma 2.3.1 q 19, thus if k~#1 we have q-+q9, - Let I be an

independent set of size k of realizations of r notice that

1o 7
A Sdcl(e) for every el . Let M, be a countable almost atomic

model over WKI |keX}.

Consider the set of all 9-conjugates of stp(a/A) whose domain
is a subset of M, and which are realized in M,. Each of them is
domination equivalent to a power of a regular type; thus
nonorthogonality is an equivalence relation on our set. By a class
we mean an equivalence class of this relation and the class
containing r, is denoted by Ck. For every class ¢ define dim(C) to
be the greatest natural number n, if one exists, for which there
exists reC and a sequence of n realizations of r in M, which are
independent over the domain of r. Otherwise, define dim(C)=w,

Claim { k = dim(Ck) = 2mk+1 for every keX.

froof: The first inequality follows from the construction. To
prove the other one, let reCk, dom{r)=A' and let IsM, be an
independent set over A' of size n of realizations of r. We show
that ns2mk+1l, which suffices to prove the claim. Define:

C = WA, |ieX}UA! D = WHI |ieX\{k}}uC

For every ceC we have dim(c)=0 hence, by Corollary 2.3.2 each q,
is orthogeonal to every extension of tp(C). On the other hand,
stp(I/A') is domination equivalent to a power of g, thus
stp(I/A'})+ stp(I/C) and I is independent over C. Similarly, for
every ieX stp(Il/Ai) + stp(Il/C) thus L is independent over C and
stp(Ii/C)nq:m. But distinct qi's are orthogonal so U{Ii|iEX\{k}}
is an independent set over C of realizations of types which are
orthogonal to q. . Both stp(I/C) and stp(Ik/C) are domination
equivalent to a power of q, , hence both of them are orthogonal to
tp (I |ieX\{k}}/C) so stp(I/C)+ stp(I/D) and stp(I /C)+ stp(I, /D).
We conclude that stp(I/A')+ stp(I/D) and Btp(Ik/Ak)k stp(I /D). It
follows that both I, and I are independent sequences over D and
that both stp(I/D) and stp(_Ik/D) are domination equivalent to a
powexr of q,
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Now, let a ,a €l be distinct. We prove that aa 4+ I . Note
D

that tP(ai/az) is nbnisolated by the same argument as in the proot
of Proposition 2.2.2. By construction, for some finite set
JSWKI | ieX\{k}}, tp(a,a,/J1 ) is isolated, hence tp(Ei/JIkEZ) is

isolated, too. But tp(a,/a,) 1is nonisolated so that a 1 JI,

2,

and, since A'Sdcl(a,) we have a, +_JI_. Therefore aa, I-i;'JIk and

A'a
2
thus aa, + DI . From the previous paragraph we have I | D and
S A Al
hence aa, | D. From this and the last forking relation we derive
Al

the desired conclusion, i.e. aa ¢+ I, .
D

Over D, I, is an independent sequence of k elements, each of
which has weight m so that wt(Ik/D)=mk. Alsoc, every pair of
distinct elements of I forks with I, over D. Since there are at

least E%l disjoint pairs of elements of I (which form an
independent set over D, as I is such) we conclude that E%l % km

or n = 2mk+l, finishing the proof of Claim 1.

Claim 2 dim(€)=1 for all other classes.

Proof: Let c#C,_ for keX. By definition dim(C)=1, 80 it
remains to prove dim(€)=1l. Suppose, on the contrary that dim(c)z2.
Let reC, A'=dom(r) and let I=a a<M_ be a pair of independent
realizations of r. Let C=U{A1|iex}un' and let D=U{Ii|iex}uc. As
in the proof of Claim 1 we conclude that stp(I/A')+ stp(I/D) and

that implies that aa, | D.
Y
Now, by construction of M , for some finite set J\HI |isX}

tp(éi.Ez/J) is isolated, hence tp(Ei/JEE) is isolated, too. But

tp(a,/a,) is nonisolated so that a, £J and, since A'sdcl(a,) we
a
2

have a + J aa,  +J and aa, + D. This contradicts the above
A'S 12 A" 12 A
2

and the claim is proved.

Continuing the proof of Theorem C, define inductively 2
Sequence or natural numbers u_ in the following way:
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u =2 u = Z2m'u + 2
4 Nn+4 ™

For every Ysw\{0,1} let u(Y)={u |ieY} and let Ny=M, (y)-

If ¢ is a class in N, and dim(C)Z2 then by Claims 1 and 2,

for some ne¥Y we have u_ = dim(C) = Zmuh+l <u . Hence:

{n| for some class C in Ny u, = dim(C) < u_ } Y,

1

and for distinct Y,Zsw\{0,1} N, and N, are not isomorphic. We

N sy
conclude that T has 2 o nonisomorphic countable models finishing
the proof of Theorem C.

In the rest of this section we look more closely into the
situation that arose after Lemma 2.3.1 and prove that it induces
a 'strong' nonisolation property of tp(a/A). We introduce the
notion of a strongly nonisolated type, which will play an
important role in the next section in the proof of Theorem A.
Then, althought we did not use it in the proof of Theorem A, we
show that tp(a/A) is strongly nonisolated.

Example The following is a strictly stable, one-based theory with

only R nonisomorphic countable models. L={D,+,-,v1|iem}, anda
consider the structure (M'°'+"'Ai}iew where M is infinite abelian
group of exponent 2 and A =2A=2AR2... is an infinite descending
chain of subgroups each having infinite index in the previous one.
Let T=Th(M). Then T eliminates quantifiers, it is one-~-based and
strictly stable. Consider the type p={V, (x)|iewp{x=0}. It
determines a complete type g in S(9). U(g)=1l and every M is prime
over g(M), hence M depends only on dim(q,M) and T has exactly R,
nonisomorphic countable mcdels. Thus T is small and since every

small one-based theory is NDFC (by [H3! or [HLPTW]), T is NDFC.

Definition peS(D) 18 strongly nonisolated if for every B=2D and

every isolated type gq€S(B) we have pLuq.
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Let peS(D) be strongly nonisolated, 1let ge=S{(D) and let
p'eS(DB) be a nonforking extension of p. Note that p' is strongly
nonisolated, too. Also, 1if wt(g)=1l and g *ap, then g must be

strongly nonisolated as well,

The following lemma says basically that strongly nonisolated

types can be easily omitted.

Lemma 2.3.3 Suppose that D is finite and p=tp(a/D) is strongly

nonisolated. Then, if a | B and C is almost atomic over DB then
D
a | C. In particular, if pi tp(B/D) and if C is almost atomic over
D
DB, then pi tp(C/D).

Proof: For every finite ceC there is some finite B'SB such that
tp(c/DB') is isolated. Then since tp(a/D) is strongly nonisolated

and a | B' we have a | c. Therefore a | cB' and thus a | C.
D DB' D D

From now until the end of the section we operate in MY
Suppose that peS(D) isn't strongly nonisolated, dim(p)=0 and al p.
Then there are b and ¢ such that tp(b/cD) is isolated, a | ¢ and
-— —y -— -— D — —-—
a £+ b. We claim that such b and ¢ can be found so that stp(b/cD)

Dc

is semiregular. By Proposition 1.2.7(a) replace b by an element
from dcl(bcD) whose dimension over D¢ is 0, sSo assume that
dim(b/Dc)=0. Further, assume that b,c satisfying the above
requirements are chosen so that U(b/cD) is minimal possible. Then
by Theorem 1.2.4 there is b'eacl(bcD) such that stp(b'/cD) is
semiregular. But tp(b'/cD) is isolated and so is tp(b/b'cD). Also
U(b/b'cD)<U(b/cD), so by minimality of U(b/cD), we must have
a £+ b' (otherwise b and cb' in place of b and ¢ respectively
Dc

would contradict the minimality assumption). Therefore, if we
replace b by b' we have the desired conclusion.

Proposition 2.3.4 If peS(D) is ortﬁogonal to every finite subset
of D and dim(p)=0 then p is strongly nonisolated.
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Proof: Suppose on the contrary that p is not strongly nonisolated

and pick al p and b,c such that a | ¢, tp(b/cD) is isolated and
D

a { b. Also, by the previous remark, we can assume that tp(b/Dc)

Dc

is semiregular.Let r=stp(c/D) and let ¢(y,c) be a formula over oD

which isolates tp(b/cD). Let ¢(x,b,c) be a formula over boD which

forks over ¢D and for which [ ¢(3,b,¢) holds. Let w(X) be:
(d.2) (3yNP(Y,z)~e(X,¥,2)).

We claim that every type p' which is over D and which contains
w(x) is nonorthogonal to some stationarization of pP.
Assume that | w(a'). Let ¢'} r be such that a'| &' and let

D
b' be such that } #(b',c')~p(a',b',8'). Then tp(b'e!/D)=tp(bc/D)

S0 let f be an D-~automorphism of the monster such that f(b'c!')=bc
and let a''=f(a'). Therefore | p(3a'',b,2) and we conclude that
a''t b. Finally, since stp(b/DS) is semireqular it follows that
stg?E"/D) 1 stp(a/cD). Thus stp(a'/D) + stp(f “(a)/&'D) and since
£ '(a) realizes a nonforking extension of p to Dc' the claim is
proved.

To complete the proof of the Proposition, notice that w(x)
uses only finitely many parameters from acl(D), so it is over some
finite D,sacl(D); by the claim p is nonorthogonal to a type over
D, and that contradicts the assumption.
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3. SMALL SUPERSTABLE THEORIES

In this chapter we deal with nonisolated types and countable
models of superstable theories. The main results are theorems A

and B. It is convenient to assume that T is a complete, small,

superstable theory in a countable language, which we do, though
the smallness of T is not essentially used in section 2.

3.1 Nonisolated types in small superstable theories

Recall that p is strongly noniscolated if whenever B=2A and
gqeS{(B) is isolated then p¢aq.

Definition Let A be finite and peS(A). p is eventually strongly

nonisolated, or esn for short,

if a nonforking extension of p to
some finite set is strongly nonisoclated.

Suppose that A is finite and peS(A) is not esn. Then

for all finite B2A there is a finite C=2B, a and b such that
% - - - - —
(%) a | C, akFp, tp(b/C) is isolated and a 4 b.
A C
Assuming that we operate in uﬂaq, we can require stp(b/C) to be

gsemiregular, as in the remark after Lemma 2.3.3.
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I+ is clear from the definition that for types over finite
domains, eventual strong nonisclation is invariant under
taking nonforking extensions and restrictions. From the above
remark it is easily seen that in the case of regular types, the
property of being esn is preserved under nonorthogonality, as
well. Moreover, it is preserved under domination, that is 1f p (g
and p is esn then g is esn as well. Also, if p is a stationary
type and p O q,2q,®...8q is a regular decomposition of p, then
p is esn if and only if all the g 's are.

Since we are operating in a small theory the following

criterion is useful:

peS(A) is strongly nonisolated if and only if:
for all finite B2A, if M is prime over B, gsS(M) and g|B is a
nonforking extension of p then q is a nonforking extension of p.

Lemma 3.1.1 Suppose that A is finite, peS(A), v(x)ep and M=2A.
Then if w(M) = U ibsM | k w(b)} and |} vw(a) we have:
tp(a/w(M)) r tp(a/M).

Proof Proposition C.2'(i) in [M].

Corollary 3.1.2 a) Suppose that A is finite, peS(A) is not esn
and w(xX)ep. Then for any B=2A, C, b and a can be chosen such that
(*) holds and } w(b).

b)) Eventual strong nonisolation is invariant under passing
from T to T°° and vice versa, that is: if p is a type of an
element of T then p is esn in T iff it is esn in T ..

Proof (a) Let D2B2A and af p be such that a | D. Suppose that
A

the claim is not true. Thus for all finite E2B and all b if a | E
Lk w(b) and tp(b/E) is isolated then a | b. Hence if M is a pr?me
model over D, we have a | w(M). NowE, by Lemma 3.1.1 we have
a | M. Therefore, tp(a/M) ig a nonﬁprking extension of p. Since D

(M)
was arbitrary we conclude that tp(a/B) is strongly nonisoclated,

which is a contradiction.
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(b) If p is esn in T then clearly p is esn in T. The other
direction follows from part (a); assume that p is not esn in T *
and let BSAM be such that p is based on B, then by part (a)
-witnesses for p not being esn can be taken in M (for w(x) simply
take the formula “xSAM') hence p is not esn in T, as well.

Lemma 3.1.3 A nonisolated almost strongly regular type over a

finite domain is strongly nonisolated.

Proof Let A be finite and let peS(A) be nonisolated and aSR via
#(x). Further, let B=2A be finite, let p' be a nonforking extension
of p to B and let M be a prime model over B. Since p 1is
nonisolated and aSR via ¢(x) it is almost orthogonal to every
isolated type gq such that ¢(x)eq and dom(q)2B. Therefore we have
p'¢ﬂtp(¢(M)/B). Also, if q is a nonforking extension of p to (M)
by Lemma 3.1.1 we have qr q|M. This implies that p is strongly
nonisolated.

Definition Let psS(A) be a regular type.

Ca) p is internally isolated if for every integer nelN there
exists a formula ¢h(;‘1’;:2'""£n) over A, such that for every
strong type q over A which extends p the following holds:

2 )N (X)) N AUX DN 0 (XK, LB ) e TR, R,

b> p is internally nonisolated if it is not internally

isolated.

Lemma 3.1.4 Suppose that peS(A) is a regular type.

Ca) If there exists a strong type g over A which extends p
and a formula ¢%(§1,§2,...,§n) over acl¥(A) such that

SIEODIANC (C0 LARPRINAR {630 AN ¢ I NS0 I W € IS SN2y
then p is internally isolated.

(b) p is internally isolated if and only if some extension of
p to acl®¥(a) is internally isofated, if and only if all
extensions of p to acl®(A) are internally isolated.
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Proof (a) Suppose that g and ¢ (x,x,,...,x ), which is over
acl®“(A), satisfy the ~above condition. Further, let 5]=q and let
ecacl?(A) be such that qbn(;ti,;:z,...,:-ih) is over Ae. Thus tp(e/aA)
is algebraic so 1let w(y,a) be a formula which isolates it.

Consider the formula
(By)w(y,x) N (x,X,,...,x ,¥).

and denote it by ¢ (X ,X,,...,x ). It is over A. From the above
assumption it is consistent with q(;:i)’\ q(iz)’\ R A q(;:n) (take e
in place of y); since we can move ¢ by an A-automorphism to any
other strong type extending p while ¥ remains fixed we have that
the ¢« part of the equivalence holds. To prove = assume that q' is

a strong type extending p and

- __._“_-.:'

Fa' @M g (@) .. NG (3 )N e (3,,3,,...,3).
We show |= (q')"(ai,ﬁz,...,én). Let e' be guch that
F w(e"ai)h ¢ﬁ(£1;az; ...,ah,é').

From |} w(e',a ) and tp(a /A)=tp(a/A) we get tp(a,e'/A)=tp(ae/A).
Hence there is an A-automorphism taking ae' to ae. Thus it takes
g' to q and if b, is the image of a for 2<i<n we have

Fa(a)® q(b )N ... a(b )N ¢ (3,b,,...,b_,e).
It follows that k q'(2,b,,...,b ) and hence |k (q')7(3,3,,...,a ).

(b) Follows immediately from (a).

We note the following criterion of internal isolation. If p
is a regular type and g is a strong type extending p (over the
same domain) then p is internally isolated if and only if for
every integer n there exists a formula Pﬁ(ii,iz,...,ﬁn) consistent
with gq(x )" q(x,)N..." q(x_ ) such that

S{CIDLAN- (€730 LANNINNLANY- [6™SD AN CIN ¢ JF I35 B - ¢ ™35 S0 B
Lemma 3.1.5 Let peS(A) be a regqular type, let B be finite and let

qeS(AB) be a nonforking extension of p. Then p is internally
isclated if and only if q is.

Proof By Lemma 3.1.4 we can replace p and g by strong types over
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A and B, respectively.

») Suppose that p is internally isolated. For each nelN we
will find a formula @n(;:i,iz,...,;:n) over acl® (A) which witnesses

that g is internally isolated.

For every natural number n let ¢n(§1,iz,...,§n) be a formula

over A such that

(*)_ p(x )N p(X )N A p(x )N B (X,%,,...,X) & D (X ,X,, .00 ,X ).

L ™
By superstablllty there exists 1I= b |= p such that

tp(B/AL) L& p . Let r-stp(bibz...bm/BA). For every natural number n
let ¢ (X ,X,,...,X ) be the following formula

(4.¥,Y,-+-¥,) @ (X sXyyeesX Y s ¥preeer¥, ).

m

Clearly, e is over acl“(A). We claim that:

(%) q(X )N QXN LN QXN e (KK, X)) O (XK X]).

zf

The consistency condition is clear, so assume that

Fq(@a)” a(a )N ... AN qla) Ne (3,,3,,...,3)).

Let I'=b!b!...b'}F r|ABa a,...a . By the choice of ¢ we have
ke  (a,a,...,a,b!,bl,...,b')
Hence aa,...ab'b!...b'E p and aa,...a_k (p|AI') . Further,

from tp(BI/A)=tp(BI'/A) we get tp(B/Al')L pm hence 5152...EHA]IIB.
We conclude aa,...a f (p|ABI')" and 3aa,...a_F q .

&) Suppose that g 1is internally isolated and let
ph(ii,iz,...,;:n,ﬁ) be a formula over b, where B=b, such that (*¥)_
holds. Let r=stp(b/A) and let ¢n(§1,§2,...,in) be the formula
(d ¥)e (X ,X,,...,% ,¥). Clearly, ¢_ 1is over acl®¥(a) and the
consistency condition holds so it remains to show that

P(X )N D(x )N ... A PEIN G (X %y eeesX ) P (X, Xyyee X );

g

since n 1is arbitrary this implies <that p is internally
nonisolated.

) SupEo_se t1_1at 3,8, ,..,8 realize p, L ¢n(51,az,...ian) and
b'k r|Raa ...a . Therefore, a,a,...,a realize qg'=p|b'A and
F‘oﬁ(airazr---ranrﬁ')* Further, since g' is a conjugate of q[E'A,
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(**) holds with q' in place of g and b' in place of b, hence
5152...§ﬁ|- (q')" and 5152...5n|- p', finishing the proof of the

Lemma.

Lemma 3.1.6 Suppose that peS(A) is a regular, internally
nonisolated type, af p and bedcl1®(an)\acl®¥(A). Then tp(b/A) is
internally nonisclated.

Proof Let r=tp(b/A). Since Eeciclnq(én)\aclﬂq(h), r is reqular.
Suppose that r 1is internally isolated and we show that p is
internally isolated, too. For each nelN let ¢n(i1,§.2,...,in) be a
formula over A witnessing internal isolation of r. Let f be an
A-definable function such that } b=f(a). Let Pn(ii'iz"”'in) be:

AR ACALICID AR I ANNRARACE I 30 BN CAS 2PN 25 )

Clearly ® is over A. We claim that it witnesses that p is
internally isolated. Again, the consistency condition is trivially
satisfied so assume that q is a strong type extending p and:

F a(a )” q(a )N ...A q(a )N e (3,3,,...,a ).
Let El=f(51) for 1=i=n. Then stp(Ei/A)=stp(Ez/A)=...=stp(5n/A) and
this strong type extends r. Since } ¢n(51'52""'5n) witnesses
that r 1is internally isolated we have that ib,,b,...b} is
independent over A. By regularity of p and r, {ai,az...ah} is
independent over A and hence | q“(ai,az,...,ah). Therefore p is
internally isolated and the proof of the Lemma is complete,

Proposition 3.1.7 A regular, internally nonisolated type whose

domain is finite is eventually strongly nonisolated.

Proof Without any loss of generality we operate in 4°%. Let A be
finite and let peS(A) be an internally nonisolated, regular type.
We prove that p is esn. By Lemma 3.1.5 and the remarks from the
beginning of this section both internal nonisolation and eventual
strong nonisolation are invariant under nonforking extensions and
restrictions to finite sets, so after possibly adding a few
Parameters to A we may assume that p is stationary.

Let 5.'|- p and let EEdcl(E’A)' be such that U(B/A)=wa; it
exists by Corollary 1.2.5. Let g=tp(b/A). Then q is a stationary,
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regular type which is internally nonisolated by Lemma 3.1.6. We
are going to prove that g is esn; since the property of being esn
is preserved under nonorthogonality of regular types it follows

that p is esn, too.

Let n be the smallest integer such that for no formula
Ph(;{:{’;{z""’;{n) consistent with q(ii)h q(}_{z)ﬁ__ _A q(;:h) the
following holds:

q(;ii)h q(;{“.!)“‘ﬂ|ll . e (I(;EH)A 'Pn(;: -c-rin) = qn(;:ir;czr---r;in)-

Let ib,,b,,...,b _} be an independent set of realizations of gq.
We will prove that s=q|bb_...b A is strongly nonisolated; since
s is parallel to g it will follow that g is eventually strongly
nonisolated. By the minimality assumption on n there is a formula
¢(§1’;{2""'§h—1) over A such that:

).

Further, assume that s is not strongly nonisolated. Let d
contain bb, ...b _A, ak s|d and ¢ be such that tp(c/d) is
isolated, semiregular, o q® and a { c (they exist by the remark

d
after the definition of esn). Let ¢(z,d) be a formula which

isolates tp(c/d), let w(a,d,z)etp(c/da) fork over d and let
r=stp(a/5152. - En_i

— n—4 — —— -
z,...xh_i) e g (x’.,xz,...xh

a(x )N a(x )N A g(x )N e(x ,x _

A). Consider the formula
dri;(EE)CP(E:X_’) A W(ir§r;-:)) .

This formula is over acl(bb,...b _A). Denote it by
x(b_,b,,... ,Bn_i. e,x) where Eeacl(Eii:')z- . Eﬁ_in) . Further, let

v(4,X,,X,,...,X__ ) be a formula isolating tp(es/bb,...b _ A) and
let &(x ,%x,,...,Xx ) be
(X, X, .0a,X ) N AuCT(u,Xx,%X,...x ) N x(x,x,...x__,u,x)).

We cfaim that e(ii,:“i ..,iﬁ) satisfies

2% °*

q(;ii)A q(iz)A ----A q(iﬁ)A a(ii"iz,'.-’iﬁ) L2 qh(iil'izf"'f;: )‘

i)
So suppose F a(b/)N q(b)N ....A g(b!)A e(b!,b!,...,b!) and we
try to prove that b!b!...b'k q". Let €' be such that

FT(e',b!,b},...,B ') N x(b!,b!,...,b ! e",Db

1
27 n-1 n

From - ¢(E;,Ez',...,5;_i), we derive EiE;...E;_ik q = and since
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b t(e',b!,b},...,b ') we have

tp(b b,...b _ &/A) = tp(b!b;...b ',e'/A).

Thus, moving the Ei's and e' by an A-automorphism of the monster

-t ! T g T,
.+ by=b,,...,b _=b  and e'=e. Let

b!' be the image of b! under the automorphism. Therefore, we have

model we can assume that 5;=E

b x(Ei,E
d'k r|bb, ..b _b''A and if |} w(b!',d',c') N e(c',d') we have

,r+-+sb__,e,B'"); i.e. } djaicqo(i,i'r) AN w(b'',y,2)). If

tp(dc/A)=tp(d'c'/A), b'!''t c' and tp(E'/a') o q . It follows that
dl

stp(b''/d') 4+ q. Since U(q)=w" we must have U(E;'/&')Ewa. But
tp(b''/3d') is an extension of q,so U(b''/d')=w". We conclude that
tp(b''/d') is the nonforking extension of q. Since d'2b b ...b A
we have b''} qlbb,...b _A. Hence b '} q|b/b!...b ' A finishing
the proof of the claim.

But the <leim contradicts our choice of n and the proof of
the Lemma is complete.

Example We give an example of a regular, internally isclated esn

type. Let L={Vi|iem} and (M,Ai) jew Pe an L-structure, where the
A;'s are infinite disjoint subsets of M. Let p={-1Vi(x)|iem}. p
determines a complete, stationary, U-rank 1 type gqsS(9). q 1is

internally isolated, for if ¢>(xi,xz,...xn) is {}j(xi#xj), then

a(x " q(xz)’\. A q(xﬁ)" ¢(x ,%,,...%X ) & qﬁ(xi,xz,...xn).

Clearly g is orthogonal to all isolated types, sO g is esn,.

For the following definition, we fix some terminology. By the
full equivalence relation on a set A we mean the relation Az; we
say that an equivalence relation is nontrivial if it is neither
the full relation nor equality.

Definition peS{(A) 1is primitive if there 1is no nontrivial

A-definable eqguivalence relation on the set of realizations of p.
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Lemma 3.1.8 Suppose that A is finite and pseS(A) 1s a stationary,

internally isolated, regular type. Then there exists an
A-definable equivalence relation E such that q=p/E is
primitive.

Proof We operate in H°?, Since p is internally isolated, there is

a formula c;b[ii,iz) over A such that:
— — — — 2 - —
P, (%) ~ p,(X,) ~ @&(x,x)) & p (X,X,).

Thus, —%(X,,%x,) is an equivalence relation on the set of
realizations of p. By compactness, we can assume that it 1is an
A-definable equivalence relation, say E, on the whole monster
model. We show that our E and g=p/E satisfy the conclusion of the
Lemma.

Clearly, E is not the full relation and p is stationary, so q
is nonalgebraic and stationary. Suppose that F is an A-definable
equivalence relation on the set of realizations of q, other then
+he full relation. Since g is statiomary, F cannot have finitely

many classes, so whenever a,bl g and } F(a,b) then a + b. Now,
A
1f ¢,dk p and |} F(S/E,4/E), then c/E + d/E, which implies c ¢ @
A A
and hence Fk E(c,d), i.e. c/E=d/E. We conclude that F is equality

onn the set of realizations of q, and hence q is primitive.

Lemma 32.1.8 Suppose that peS(A) is a regular, primitive,

internally isolated type.

ca> If a=a b p then a | a,.

(b If akp, a+ b and wt(b/A)=1 then asdcl(bA).
A
Proof (a) Forking is a definable equivalence relation on the set

of realizations of p; hence it has to be the equality relation.
(b) Let a'fk tp(a/bA) be such that a'_| a. Then since
bA
wt(b/A)=1 we have a'4 a hence, by part (a), a=a'. Therefore
A

tp(a/bA) has a unique realization, so asdcl(bA).

Proposition 3.1.10 A regular, triv%al type over a finite domain,
whose U-rank is a limit ordinal, is internally nonisolated.
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Proof We show that a regular, trivial, stationary, internally
isolated type of limit ordinal U-rank is not primitive; then Lemma

3.1.8 implies the conclusion of the Lemma.

Supposé that A is finite and that peS(A)' is a primitive,
regular, trivial, internally isolated type of 1limit oxrdinal
U-rank. Let g be a forking, nonalgebraic extension of p and let
I=aa,a ,...a ... be an infinite Morley sequence in q.

...) is parallel to g so a ¢ aa .... But p is trivial
. A . )
and regular, so we must have a t+ a_ for some neN. By Lemma
A

3.1.9(a) we conclude :':'1:5“; SO tp(a/Aaiaz...) is algebraic. We have

reached a contradiction.

Proposition 3.1.11 If T is one-based then every regular type
over a finite domain whose U-rank is a limit ordinal is internally

nonisolated.

Proof Again we show that a regular, stationary, internally
isolated type of limit ordinal U-rank is not primitive, and Lemma
3.1.8 implies the desired conclusion.

Suppose that A is finite and that psS(A) is a primitive,
regular, internally isolated type of limit ordinal U-rank. Let
g be a forking, nonalgebraic extension of p. Let af g. Then, since

T is one-based, q is based on a, so if b} q|aA we have that a + b
A

and a#b, contradicting Lemma 3.1.9(a).

Lemma 3.1.12 Suppose that A is finite and peS(A) is a regular
type. Then p is NENI if and only if it is stationary, isolated and

internally isolated.

Proof 5) is obvious, so we prove only «). So assume that p is a
stationary, regular, isolated and internally isolated type. We
show that p is NENI; namely, that for all finite B=2A p|B is
isolated.

Let B2A be finite. By superstability, there exists nelN and
I=§152..§n|= p  such that tp(B/AI)L®p. Let v(x)ep be a formula
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z1,4....4..:,(ﬁ+1) be a formula over

which isolates p. Further, let ¢(§1,_
A such that

- - —_ - - - 4 = -
(TN VI A wE L) N eyaY,--Y L) @ P (VY- ¥,,);

Nn+41

¢ exists since p is internally isolated. Let g=stp(I/B). Consider

the following formula:
W(;:) ~ (dq;’)qb(;'if;zr---r;’nri)-
Denote it by #(x). So, ¢(x) is over acl®(B) and if we prove that

it isolates p|B, since jp|B - is stationary the conclusion will
follow.

Assume that f #(a), and let I'sbb,...b_ k g|aB. Then

i 2
b w(a) ~ #(b,b,,...,b_,a).

Since b,b,,...,b ,a realize p and } ¢(b,b,,...,b ,a) we conclude
5I‘|= phﬂ. Further, from stp(BI/A)=stp(BI'/A) and tp(B/AI).Lup
we derive tp(B/AI')L"p, and since al p|AI' we have B | a. It

follows that a | BI' and in particular af p|B.
A

Theorem A In T ', consider the class of all nonalgebraic types

having a finite domain. Then the subclass consisting of all esn
types 1s the largest subclass which does not contain NENI types,
and which 1is c¢losed under conjugation by automorphisms of WM,
nonforking extensions and restrictions, and domination.

Proof We have already mentioned that the subclass is closed under
nonforking extensions and restrictions, and domination. It is
easily seen that it is closed under conjugation by automorphisms,
too, so it remains to prove the 'largest' part in the Theorem;
that is:

€laim If p is orthogonal to all NENI types then it is esn.

Freef  Suppose that p is orthogonal to all NENI types. Every
regular type nonorthogonal to p has the same property, hence if we
prove the claim for regular types the general case will follow.
S0 assume that A is finite and that peS(A) is a regular type
which is not esn. We show that it is nonorthogonal to a NENI type.
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To simplifyv notation assume A=9,

Let qeS(B) be a type with minimal R-rank which is not
orthogonal to p and has finite domain. Clearly q is regular.
Also, assume that CB(g)} (actually CBB(q)) is minimal possible and
let w(x)=q be a formula having the same R-rank as q and isolating
g among types having CB-rank greater or equal than C'B(q). Then g
is aSR via w(x). Since q is nonorthogonal to p it is not esn.
Lemma 3.1.3 applies and we conclude that g is isolated, wlog by
w(x).

Let D=B be finite and let q'€S(D) be a stationary nonforking
extension of g. g'+f+ p implies that q' is not esn, hence there is
a finite set C=2D, b} q'|C, and an isolated type r=tp(a/C) such

that a f b. By 3.1.2(a) we may also assume | w(a). Since q is aSR

C | _
via w(x), tp(a/C) is a nonforking extension of tp(a/B), hence

tp(a/C) is regular. Since tp(b/C) is stationary and internally
isolated, Lemma 3.1.8 applies, hence there is b'edcl(Cb) such that

tp(b'/C) is primitive. Thus a + b and by Lemma 3.1.9(b) we
C
derive b'edcl(aC). Therefore tp(b'/C) is stationary and regular

(since b'edcl(bC) and tp(b/C) is stationary and regular), it is
isolated (since b'edcl(aC) and tp(a/C) 1is isolated), and
internally isolated (since it 1is 4' to p which is not esn, it is
not esn as well so Lemma 3.1.7 applies). By Lemma 3.1.12 it has to
be NENI and the proof of the claim is complete. |

3. 2. Regulér Iinternally isolated types

In this section we study internally isolated types in more detail.
The main result essentially says that 'finitely generated
subspaces' have large, definable groups of automorphisms, this of
course in M°7, So throughout we operate in A°°7,
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Let peS(A) be a regular, stationary, internally isolated
type. For k&N and 'E]= 1;:)k define D:(JH,E) = {x|= p| x ¢+ a}. We show
that Di(a‘}l,fri) = D:(aﬂ,fzz) is an A-definable equivalence relation
on the set of realizations of pk.. Intuitively, D:(aﬂ,é) is a
'subspace' of p(4) generated by a and internal isolation means
that the dependence (clp) ig definable on p(M). Formally:

Since p is stationary and internally isolated there 1is a
- -, _k
formula #(x,y) over A, so that for all x} p and ykp

L ¢(x,y) iff x ¢ v.
- ke - 2 k . P, o -
Now, let yi,yzl- p where y1=y;yi...yl for i=1,2. Let Ek(yi,yz) be:
- - k - - 2 - k-
@Y, 17,00 #(Y, 7,00 A (¥, 9,00 oy, ¥ ) ¢(y,,%,)...0 o(y,,¥,)-

By regularity of p, Ei is an A-definable equivalence relation on

- - k
the set of realizations of pk, and for yi,yz|= p we have
Dy (M,¥,) = D(M,y,) 1iff E_(¥,,Y,)-

By compactness we can assume that E: is an A-definable equivalence
relation on the whole of A,

- k | .
Let c=a/E: and let p{k}=tp(c/A). Since p €S(A) and EE is

definable over A, our p does not depend on the particular

_ " ¢k)
choice of af p .

Lemma 3.2.1 Suppose that peS(A) is a stationary, regular,

r
internally isolated type. Let ke, -c|=p(k} and let 1'9.1&2---3-,(F= D
be such that a/E =c.

(a) If bb,...b ¢ p* and EED:(JH,E) then tp(a/cA)=tp(b/ca).
In particular E/E:=c. More generally, if a'k} pk and c'=§'/E§ then
tp(ac/A)=tp(a'c'/A).
(b) If m<k, bibz...bm|- p. and EED:;(-M,E) then there exists
- k
metPrsz * « *BEDp (M,3) such that bb, ...b | p .
m - p - |
(c) If m“k Dbb,...b k p and bsD (#,a) then
tp(bibz. ) .bm/Ac)=tp(a1az-. . .am/Ac) .

Proof Without any loss of generality we assume that A=0.
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(a) Let g be an automorphism of the monster model such that
g(a,a,.. .ak)=b1b2. . bk
By regularity of p we have: for all xbp x + a iff x + b. Hence

k E:(Q,E) and E/E:m::. It follows that g(c)=c and g{(ac)=bc. We
conclude that tp(ac/A)=tp(bc/Aa).

(b) Let {b,b_,..,b}2{b,b,...b} be a maximal set (under
. . = - - | L
inclusion) such that {bi,bz..l.bL}EDi(aH,a) and | bibz...bL}- p._ By
regularity of p we easily get 1=k. | |

(c) Suppose that bDf p  and ESD:(-A‘»,_:E).,By__ part (b) there
exists b=bb,...b f p° such that bSDP(4,3). Then by part (a) we
have tp(bc/A)=tp(ac/A). In particular

tp(bibz. . ..b“_./cﬁ)-:-'t;;.\(ajlaz ‘. .am/cA) .

The following definition 1s justified by Lemma 3.2.1(c) for
the case m=1.

Definition Let peS(A) be a regular, stationary, internally

. - ke -
isolated type. For aad, ... |= p, where k<N, and c=a/Ei we
define pc=tp(al/cA).

Now we introduce some more notation. 1If c=5/E: and if
c'=a'/E., we write csc' iff k<k' and D; (H,a)<D. (H,a').

iemma 3.2.2 Suppose that A is finite and peS(A) is a stationary,
regular, internally isolated type. Further, suppose that k'2k, ck
Then:

and c'k p

ptk) ko *

(a) If c=c' and aFr p_, then a | c'.
C
<
(b)  U(p,) = Ul(p, ).
Proof To simplify notation assume A=9.

(2) Let c<c' and af p.- Find aiaz...ak,k pk‘ such that a=a_,
aiaz...ak/Ei’:c and aiaz...ak,/Eiﬁc'; this can be done by using
Lemma 3.2.1(b) twice. We show that c'e dcl(cak+1ak+z..-ak,). For
let £ be an automorphism fixing ca, ,.3a.,,---3, pointwise and let
tﬁ=f(ai), 1=i=k. Then, since f(c)=c and p is regular we have
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{xeM|xf P X ¥ aiaz"'ak} = {xeMlx}t p x ¢ bs.bz"'bk}'
and also
{xeM|xk p x + aa,...a.} = {xeM|xfk p x4+ bb,...ba ...alt.

Therefore c'=f(c') and every automorphism fixing ca & ...-3,
pointwise also fixes c'. Hence c's dcl(ca _a _..-38.)-

From the independence of {a ,a,...,a .} and cedcl(aa,..-a)

we get a, | -NIPE- NIRRTy and since c'edcl(ca _.a _..-a_ ) we
C
conclude a | c'.
c .
(b) Without any 1loss of generality we assume c=c'. Let

afF p,. Then we have:

U(p,) = U(a/c) = U(a/cc’) = U(a/e’) = U(p..).

Lemma 3.2.3 Suppose that A is finite and psS(A) 1is a
stationary, regular, internally isolated type of limit ordinal
U-rank. Further, let E be an A-definable equivalence relation such

that g=p/E is primitive. Then there exists an integer k_ =k (p)=2

such that for all kzk_  and df Qs 93 is nonalgebraic. Moreover,

if U(p):mﬁ+1 then then ka can be chosen so that each U(qd)zmﬁ.

Proof Clearly g is a regular internally isolated +type of limit
ordinal U-rank. Assume that af g and let B=2A be such that
r=tp(a/B) is a zionalgebraic, Forking extension of ¢; moreover
if U(q)="*l assume in addition U(a/B)2w”. Further, let
Izaa, ...a be a Morley sequence in stp(a/B) long enough so that
stp(a/B) is based on I. Let kﬂ=k be the smallest integer so that
a8, ... ; a_ - We will show that dg is nonalgebraic, where

. k : .
d=a1a2...ak/E: (by minimality of Kk, aiaz...ak|- p). Since I is a
Morley sequence, we have

0 < U(a/B) = U(a,/aa,...ah) = U(g,).

Therefore, d4 is nonalgebraic. By Lemma 3.2.2(b), if nzk and
ck g, then q, is nonalgebraic as well.

3+1 3+1

as well and from the above

If U(p)=w then U(q)=w
3

inequality we would have «° = U(q,). By Lemma 3.2.2(b) the
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igs a contradiction.

| k
+) By part «) we may assume that qﬁ%...akk p.. Suppose that
bb,...b b p° and bb,...bsD(4,3). By Lemma 3.2.1(a) we get
. |
tp(bibz...bk/cA)=tp(aiaz...ak/cA) and hence bibz.,.bkl-pc.

Lemma 3.2.5 Let peS(A) be a stationary, regular, internally
isolated type and U(p)=e . Then for all kzk (p) and all <} p,,
pl::-LaP.. .

- k
Proof  Suppose that kzk_, ch p,, and pZ +°n. Let af P and let

r=stp(B/A) be such that B | c and a ¢4 B. By Proposition 1.2.7(a),
a Ac
since 1::i(pc:)<ta:iﬂ'l we can assume that U(r)<wa. Then, since T.l'i(1::)=~'.v:-"::'t we

have pLlr.

Since E} ;:1-k and pﬁLr we have a | B. By Lemma 3.2.1(a) c=5/Ei,
A
thus cedcl(aA) and we have a | B. But this contradicts the above
“AcC .
assunption and we conclude that pELGA.

Lemma 3.2.6 Suppose that A is finite and peS(A) is a regular,

primitive, internally isolated type of limit ordinal U-rank. Let
kzk_(p) and let Ch P, Then:

(a) If a1|- P at p. and a~a, then a, Ilicazi In particular
Pe is primitive.

(b) If a} p_ and beacl(acA)\acl(ch) then asdcl(bch).

Proof (a) Since p is primitive and a™a, we have a, ]
A
Lemma 3.2.4(b) applies and ea! a,. If p_, were not primitive we

Ac
would have at least two distinct types of a pair of distinct

a, . Thus

realizations of p which is not the case.

C’

(b) If aiﬁ tp(a/bcA) and a*a then by part (a) a | a,, which
cA
is not possible since bE(aol(acA)ﬁaol(ach))\acl(cA).

H
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Corollary 3.2.7 Assume that A is finite, peS(A) is a primitive,
* 1

regular, internally nonisolated type and I.!(p)=u:-ﬁ+ . Then for all

k2k  and all ck p,,

e

(i) P, is semiregular, U(pc)=w n  and

3

(ii) If r is an extension of P, and U(r)zw then r ¢ P~

Proof Let ak P Then, by Theorem 1.2.4, there exists be€acl(achi)
such that if gq=tp(b/cA) then (i) and (ii) hold with q in place of
P’ and possibly some & in place of 3. But by the previous lemma
we have aedcl(bcA) and, since kxk  implies of = U(a/ch) < wﬁ+1:

(1) and (ii) are true.

Lemma 3.2.8 Suppose that A is finite, peS(A) is a regular,
primitive, internally isolated type of U-~rank Wt and k,k'zk .

Then for all ck p,, and c'fF p, . .
(a)  p. t P,
(b) P 1 A.

Proof (a) Baove 1 c=c’

Let ak P and let r=tp(a/cc'A). Since kzkd we have U(pc)Ewﬁ.

By Lemma 3.2.2, r and Pe are parallel, hence U(r)=U(pc)2wﬁ. Thus
3.2.7 applies and pc.* r. By parallellism 'pc,* Pe.-

Eave 2 Not (c=c’)
In this case let nZk'+k and let df} p , be such that c=d and

c'=d; to find such 4, pick ak pz and bk pZZ and choose a maximal
subset b' of ab which is independent over A, let m=|b'] and let
d=5'/EZ. By Case 1 and c=d we have Pq 1 Pg- Similarly, we have
Pg ! Poi+ But all these types are semiregular, hence p, 1 Por -

(b) Let d} p,, be such that c¢ | d. Then by part (a) we have

A
P. ¢ Pqy @and thus p_ + A.

Proposition 3.2.9 Suppose that A is finite and peS(A) is a
3+l There

primitive, regular, internally isolated type of U-rank w
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exists a type gqeS(A) such that U(q){m‘r}+1 and for all ka0 and all
ch Pir Pe is g-internal; also if G=Autq(pc) then G is

w-definable over cA and wﬁ = U(G) < mﬁ+1.

Proof Without loss of generality, let A=9. Fix kﬁko(p), CF P,
and atf P, By Lemma 3.2.8(b) there exists a type geS(9) such that
q 41 P and U(q)<mﬁ+l. By Proposition 1.2.7(b) there exists
bedcl(ac)\acl(¢c) such that tp(b/c) is g-internal. But by Lemma
3.2.6(b). aedcl(bc) hence p_ is g-internal. Note that if k'2k_ and

df P,., then by Lemma 3'.2.8(::1) s S ¢ Py’ and by semiregularity

we have Pg 1 q. Repeating the abc:-:e argument we get that Py is
gq-internal.

G is w-definable over cA by Theorem 1.3.14, s0 it remains to
prove the inequality. So, let QcAH4°® be the set of all realizations

of g and let a ,af p. be such that a ‘|: a,. By Lemma 3.2.5 we
have ch.n'@ and hence

tp(a, /cR) = tp(a,/cQ) pc|cQ.

Thus there is geG such that g(a1)=a2. Hence azEdcl(gaic) and
we have |
U(a,/ca,) = U(g/ca,) = U(g/c).

But from a, a, we have U(az/cai)=U(a2/c)=U(pc)zmﬁ. Therefore

© E
W’ = U(az/c) = U(g/c) = U(G).

On the other hand, every element of G is definable over c
from a finite sequence of realizations of P.i hence tl(G)«r:mﬁ‘“F‘l'lr

completing the proof of the Proposition.

G is the definable group we promised at the start of the

section.
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3.3 Proof of Theorem B

In this section we prove Theorem B. Recall that we have a
standing assumption that T is a complete, superstable, small
theory in a countab_le language. We operate in A,

Theorem B If  supi{U(p)|peS(T)}2«® and the generic type of
o - .. | N
any simple, «w~definable group in % ig esn, then I(T,Na)=2 o,

Lemma 3.3.1 Suppose that A is finite, peS(A) is an evéntually

strongly nonisolated type, M2A is prime over A, and {ai,'az,...} is
an infinite Morley sequence in p. Then for some nslN, tp(a /M) is
a nonforking extension of p.

Proof Let C2A be a finite set such that stp(ai/A)]C is strongly
nonisclated. Let M, be _prime over C and, without 1loss of
generality, assume that MSM. Since wt(C/A) igs finite and
{ai,az,...} is independent over A, for some neN tp(ath) is a
nonforking extension of stp('ai/A) and thus strongly nonisolated.
Then since M is atomic over G, tp(an-"Mi) is a nonforking

extension of p.

Lemma 3.3.2 If g £+ ¢ then for all M there is a regular type
peS{M) such that q 4 p. |

Proof For any M, q ¢ M, so by Theorem 1.2.10 there is an sR type
psS(M) such that p 4 g. p is regular.

Lemma 3.3.3 Suppose that there exists a family {p_ |new} of

regular, eventually strongly nonisolated types such that P, is
orthogonal to every conjugate of P, for all n”m. Then I(T,Hn)=zﬁn.

Proof Let -d={n|pn.l.@} and let -‘B={n|pﬁ +{ @}, Then at least one of #
and 2 is infinite and we distinguish the two cases:

Cove I £ is infinite.
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Without loss of generality we agsume that, for all nes#, P, is
stationary and strongly nonisolated and that Bn=dom(pn) is finite.
Also, assume that {B_|ne#} is independent over ©; to justify this
assumption note that if we replace o by a conjugate of itself
then the conditions of the lemma are still valid. Let B=\}{B_ |nes}
and let M be a countable almost atomic model over B.

Let X4 be arbitrary. We will construct a countable model M,
such that
me~ and for all C=M, and psS5(C), if tp(C)=tp(Bm)

(*) meX iff
and p is a conjugate of p, then dim(p,Mx)=No.

Inductively define a sequence of countable models {M;]nem}. Let
M}M. Further, suppose that M; has already been constructed. Let
5‘n be the set of all conijugates of pm‘s for all meX whose domain
is a finite subset of M: Note that '8={dom(p)|pe3"n} is countable
since M, is countable. Since T is small for all Ce¢ there are at

most countably many peé'"“n such that dom(p)=C. Therefore .?‘n is

countable. For ps¥ choose a countable Morley sequence in p|M_ and
call it Ip. Moreover, assume that our choice is such that
| n+i

Ih=U{Ip|pe3-‘n} is independent over M: Let M be a countable
model dominated by I  over M;, and let Mx=U{M:|new}.

To prove (*) notice that, by construction,' it is enough to
show that dim(p,,M,)=0 for all ke#\X. Let kes\X. Since p 1@ and B
is independent over @ we have p, rp |B. Since M is almost atomic
over B and ple is strongly nonisolated Lemma 2.3.3 applies, hence
pk|B|- p,|M. Since I is an independent set of realizations of
types which are orthogonal to p, we derive p . tp(I /M ). Further,
n+41

M, is dominated by I over M;, 50 ka.tp(M;“fM;) and hence
" We conclude that P, "PklMx and thus dim(pk,bg{)=0.

P, M, - P, M,

From X,Y=# and X*Y we get by (*) M #4 . Since # is infinite
R
I(T,R )=2"o,

Bave £; B is infinite.

Let M be a prime model. By Lemma 3.3.2, for every ne® there
exists a regular type r €5(M) such that r ¢ p . For nes let B =M
be a finite set such that r_ does not fork over B and let
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qn=rn|Bn. Note that g  might not be stationary. Clearly, q is
eventually strongly nonisolated, and for n*m r is orthogonal to
each conjugate of r_. Let X8 be arbitrary. Construct Mx in the

following way.

Inductively define a sequence of countable models {M;|new}.
Let M2=M. Further, suppose that M; has already been constructed.
Let ¥ Dbe the set of all conjugates of r_ 's for all meX whose
domain is a finite subset _L"Jf' M; As above, S"ﬁ is countable. For
pe¥ choose a countable Morley sequence in a nonforking extension
of p to M;: Moreover, assume that our choice is such that
Iﬁ=U{IP|pe$n} is independent over M; I is countableL sO let n-‘.[::i
be a countable model dominated by 1 over M , and let
Mx=U{M;|nem}. We claim that:
me® and for all CEMR and peS5(C), if tp(C)=tp(Bm)

(*%) meX 1iff
and p is a conjugate of L, then in M_ there

exists a countable Morley sequence in p.

By construction, it is enough to prove that for meB3“X there
does not exists in Mx an infinite Morley sequence in r . Suppose
that {a ,a,,...} is an infinite Morley sequence in r_ where me2NX,
By Lemma 3.3.1, for some keiN tp(a, M) is a nonforking extension
of r . As in the previous case we deduce that tp(a - M)+ tp(a M ),
so that a 1is not in M,/ completing the proof of the claim.

From X,Y<8 and X~#Y we get by (**) M M . Since B is infinite
we have I(T,N0)=2H0,

The orthogonality condition in Lemma 3.3.3 cannot be weakened
in general. The example of an abnormal type from [B] XVIII.4,
shows that the assumption is necessary in the Case 1 above.
However, under the conditions of Case 2 it c¢an be weakened; if
A is finite and {p |new} is a family of pairwise orthogonai,
regular, esn types which are nonorthogonal to A then I(T,HO)=2NU.
Since we won't use this fact, we only outline its proof. Without
any loss let A=9, First of all, by Lemma 3.3.3, we can assume that

each p 1is a conjugate of p . Also, we can assume that U(pn)=wa.
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Then arguing as in the Proposition 1.2.7, we can find a_ and b_
such that EnEdcl(En), U(l_aﬂ)«ﬁ:acfﬁl and q:stp(ﬁﬁ/ﬁh)m(pn);m for some
natural m. Hence for all n,k q_ is orthogonal to every extension
of tp(b, ); that is enough to control 'dimensions' of the q 's in
almost atomic models (as in the procf of Theorem C).

Lemma 3.3.4 Suppose that A is finite, v(x) and g are over A, w(x)
is g-internal, and q is a NENI tf,rpe with U(q)=wﬁ. Then for all
finite B2A, {x| F w(x) and U(x/B)<s } is definable over B.

Proof Without any loss of generality, assume that dom(qg)=A=B=9.
Let D={x|} w(x) and U(x)<wa}. We show that D is both closed and
open in the topology induced by formulas over acl®®(®). Since D is
closed under automorphisms of A it will follow that it 1s
@-definable.

Let ¢(y)=q be a formula which isclates gq. Suppose that a<D.
Since v is ¢-internal, there are c and b=b,...b_ such that a | <,
be¢ (M) and asdcl(bc). Moreover, we can assume that u(b/c)<w”; this
because U(a/c)<w . Let e(y,c) be a formula which isolates q|c and
let x=f(y,z) witness that asdcl(bc). Let r=stp(c)and consider the
following formula

b d z3yy,...v, (/\(#(y)~ 2(y,,2)) ~ x=£(y,2)).
i

Denote it by 8(x). Note that ¢ €(a). Suppose that L &(a') and pick
b'=b!...b' and c'} r|a' such that |
™
b /A\(#(b!) ~ w(b],c')) ~ a'=£(b",c").
1
Then tp(b;/E') is a forking extension of g so U(b;/&')<mq for all

i=n, so that U(::va'/E:')<mﬂl and, because a'l c', U(a')<md. Hence D

is open.

On the other hand, if U(a)?:md and F w(a) then stp(a) ¢ q,

hence there are ¢ and bk g|c such that a | ¢ and a { b. Let
- _ c
e{(y,c) be a formula which isolates g|c, and let » be such that

L o(b,a,c) and e(y.,a,c) forks over c. Let r=stp(c) and consider
the following formula

d z3y(e(y,X,2) < e(Y,2)).
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Denote it by €(x) and note that F @(a). Suppose that [ €(a') and
pick b' and c¢' such that c'k rja' and F g(b',a',c') ~ o(b',c"),

Thus b'k gjc' and a't b' so that stp(a'/c') ¥+ @ and therefore
c'
U(a‘/E')Ewa. Hence U(a')Ewa'and D is closed.

Lemma 3.3.5 (in MYy Suppose that A is finite, G is an A-definable
abelian group, peS(A) 1is a regular, stationary, internally
igsolated type of an element of G and E is an A-definable

equivalence relation such that:

(a) U(p)=ot1,

(b) g=p/E is a primitive NENI type, and

(¢} G is qfinternal.
Then one of the following two conditions holds:

(i) There exists a definable field F such that

o o4 1

&) ﬂ'U(F) < W

(ii) There exists an o-definable simple groupls such that

o« < urs) < o+l

Proof To simplify notation assume A=0,

By # and Q we dencte the sets of all realizations of p and g

respectively. For cf p,,

and af p}:: let c_f q,, denote the name
for the set {xE q | x 4 ai/_E az/E..._ak/E}. Note that Cy and c¢
are interdefinable; every automorphism fixing c also fixes c_ and

vice wversa.

$laim { There exists an integer k such that for all k=k
and all cf p

1

ks’ 1f d=CE then P. is qd-internal.

Preef: Since p is g-internal, by Proposition 1.2.6 there
exists a ©@-definable function f(y,z) such that dom( £)27°xQ",
ran(£)2P and if abf p°*" then there exists ueQ’ such that a=£(b,u)
(here X" stands for the cartesian power of X). Let k =s+t. We show
that k satisfies the claim, i.e. for kzk, cE p,, and d=c_ we
show that P, is qd-internal.

s+

Let af P.r let ahibz“'bg" p and let eiez....etts«'ﬁ’L be such
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that a=f(b,e/E), where e/E denotes e /E e,/E...e /E. From

dim(be) < s+t = k, < k,

dim(abe)
there exists b' and @' such that b/} p_ and e!} p,  for 1=i<s and
1£4i<t such that tp(ab'e')=tp(abe). To see this choose c'} p,, 8O
that a,bi,bz,...bﬂ,ei,ez,...,et all realize Pore By Lemma 3.2.1
tp(ac)=tp(ac'), hence there exists an automorphism of the monster
model, say g, which maps ¢ to c¢' and fixes a; let Eﬂ=g(5) and let

B+l

e'=g(e)). Hence ab'f p°  and a=f(b',e'/E).

We show that a, b' and e' witness that P is qd-internal.
From aE'|- p‘ﬂ and s+1<k, by Lemma 3.2.4(b), we have ab'f pzﬂ.
For 1<i<t we have e;/EF q4- Also a=f(b',e'/E) hence p. is
qd-internal, as we claimed.

Now we apply Proposition 3.2.9 to q, which is a primitive,
NENI type of U-rank 1.

Let kn=kﬂ(q) and let reS(9) be such that:

a . a+1

(i) A U(r) < w , and

(ii) for all k=k_ and dk-qﬂn, A4 is r-internal.
By Corollary 3.2.7
(iii) d4 is semiregular, U(qd)=¢a'nk , and |
(iv) whenever q' is an extension of dq4 and U(q')Zma then

q'+s Qg’ semiregqularity of Aq then implies q'f r.

6eim 2 For all k2k, and cf p,,, U(p )=w"'m for some meN.

Presf:  Suppose that the claim is not true. Let cfk p,  where

ted
kao contradicts the c¢laim. Then, since U(pc)<ma+1, we must have

U(pc)zw“-mk-i-f where 0<E<wa. Let ail- Pe- By Theorem 1.2.3, P is

nonorthogonal to a type of U-rank wn, where 0=7n<a. By Proposition

1.2.7(a) there is esdcl(ac) such that 0 < U(e/c) < . Because

¢ and d are interdefinable we have U{e/d) < w™,

Let azl- tp(a,/ec) be such that a | a_. Clearly, a

1 2
eC

1
Further, let d=cE and let b1=a1/E and bz-:az/E. Since bﬂbz

¥
C
Py
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and U(qd}=ma-nk and :1’.15(&-/d)Qcof't we have b1 | e , hence b1 | e.

d C
From a_ [ a, and 'tHEdcl(ai) we get b1 | a,, and by transitivity
ec ec
b, | ea,. Therefore b | a, and thus b | b . By Lemma 3.2.4(b)
C c C

applied to q we get b | b, so a | a,. By Lemma 3.2.4(b) again

applied to p we have a | a,, and that contradicts the above

observation.

Continuing the proof of the Lemma we fix kZmax{k_,k 2},
ct p,, and d=c_} q,,. Let P.SG be the set of all realizations of
P and let RcAH ' be the set of all realizations of r. P, is
stationary by Lemma 3.2.4(a) and U(pc)=wa'n by Claim 2; the
conditions of Proposition 1.3.10 are satisfied, hence Pc is

o-indecomposable.

Let Gﬂ:{xeGlU(x/c)<mﬁ+l}. If a,bEGa then a-b_"edcl(a"‘b"c)
so  U(a'b'/e) = U(a’b/c) = U(a/c)eU(b/c) < o™  and a'beq,
which implies that G, is a subgroup of G. But G is g-internal and

g is NENI so Lemma 3.3.4 applies and G, is definable over c. It

feollows that U(G, ) <w +1. Also, PC_GG and

o < U(P ) = U(G,) < DAty

Now we can apply Theorem on Indecomposables to PCCG so0 that

H=Gp(£ﬂC - P ) ig w~definable over c and H= (ﬁ' .Pc) for some n=N,

Fix al p,

p
c
is r-internal and K=Autacﬂ(ﬁc) is w-definable over ac, by Theorem

is qdwinternal by Claim 1 and 4 1s r-internal, hence P.

1.3.14. It is also a-connected by the same theorem.

We extend the action of'K to H in the following way. For all
. -1 —1
g=K and e<H if e=a1-bi -...-a.L-.b]_ where aubﬂ"‘faL'bL'E"Pc
define
gle) = g(ai)'g(bi)_i---‘g(al)'g(b,_)*‘.

Glaim 4 K is a group of (all) acR-automorphisms of H.

Preef There are a few points to be checked in this claim:

67



(1) For each geK the action of g on H is well defined.

Suppose that ai,bi,...al,ble.?c and a;,bi;...a{,b{e :Pc are

1

1 - L |
...'ai'h; . Then since g

—-v —4 ' =
guch that ai-}::i'...'a1 bL = a;-bi_
ig an automorphism of ?c we must have

—4 —1 -1 -1
g(a,)-g(b,) " ...g9(a) g(b) = g(al)-g(b))  ...g(a/) g(b),
s0o the action of g on H is well defined.

(2) Each ge€K is an acR-automorphism of H.

Suppose that [ #(e e ,...,e ) holds, where ecH and ¢ is a
formu;a over acR. For each i=m and j=<n, let ai,bieﬁ'c be such that
ej=]i'| a‘il' (bi)"i. We have:

Bl a; - (b:)"’“,F a. - (bf)",...,[[ a’* (b)™
and since g is a acR-automorphism of Pc we must have:

b alal) g(b) ™, gta ) g(b) .., q1 g(al) g(b) ™)
Therefore 1|- Mg(ei),g(ez):...,g(em)) and th; conclusion follows.
(3) If g,heK and ecH then g(h(e))=(g-h)(e) and g(e_i)=g(e.)_1.
Let e=]i1 ai*bi_i where al,btefpc. Then, since g,h are acR-auts

of PC we have:
g(h(e)) = g(h(f] a,°b ")) = g(f] b{a) h(b)7) =
i i

= I (geh)(3) (geh)(b) "= (geh)(J] &b ") = (g-h)(e).
The iprr::c:f of g(e ')=g(e)™" is simi;.ar.
Suppose that g(x)=x for all x<€H. In particular, for all yeﬁc,

(4) KEAutaGR

y-a-ieH, hence g(y*aﬁ1)=y-a_1. Thus c;,r(_',a')'t_:;(::l)_1=3a"a—:.“’l and since
g(a)=a we have g(y)=y. g is the identity map on Pc so g=1. Hence K
acts faithfully on H.

If hedut__,(H) then by h(y)=h(y-a ') -a~ we define an
acR-automorphism of Pc. Also h is identity if and only if h is
identity, and the conclusion follows.

Cloim B K acts transitively on a"i?c\clr(a) and
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w® < UKy < o™t

Preef: Since eveyy element of X is definable over a"c from

) . o+1
a finite sequence of realizaticons of pc we have U(K) < w .

Let b:b;‘a}- pi. Since stp{c) is p-semiregular and plstp(R) we
have ¢ | R. But by Lemma 3.2.5 we have pz \aﬂ (recall that k=2)
~ 2 . - 2
and hence bJak pclcR and b, "af pc{cﬂ. Therefore
tp(b,-a ‘/a"c"R) = tp(b -a /a"e R).

Because l::uz'rs.-"L and bi"af-1 both belong o H, there exists geK

such that g(bz'ad):bi-a"i. We have

ot

-~ - - - . -4 - -,
w < U(pc} = U(bi/;: a) = U[bijbz a“¢) = U(l::::l a /b2 a c)

- The second equality holds since b | b,"a; and the third one

C
Since bﬂl-af'1L and ]::‘:l are interdefinable over bz"a‘“c. Further, since

bi'a_iédcl(g‘“bz"‘a_"c) we have U(bi-aﬂ/bz'“a"c) = U(g/b,"a"c).

We conclude that 0™ < U(g/b,"a"c) = U{g/c”a) = U(K) and
the proof of the claim is complete.

Let H' be a K-invariant, m—definabie, proper subgroup of H of
maximal r-weight. By Proposition 1.3.4 it is an intersection of
acR~definable supergroups, so we can assume that H'=DNH, where D
is an acR-definable group. The acticn of K on H/H' is defined by:
for geK and beH g(bH,)=g(b)H,. Now, we replace H' by

''={x{x,, is fixed by all geK},

which is maximal, X-invariant, proper subgroup of H (by Claim 5
K acts transitively on aﬂiﬁc\clr(a)/ﬂ', so H'' 4is a proper
subgroup of H). Hence H' is K- minimal. Further, define:

K'={geK|g{(x)=x for all x<H/H'}.

€laim 6 K/K' is nontrivial and a~connected.

a o e is not included in H' so0, since H is o-connected, there
are b,b'ea‘iﬁc\clr(a) which are distinct modulo H'. Further, by
Claim 5 there is geK such that g(b)=b'. We conclude that g=K' and

K/K' is nontrivial. Since K is o-~connected, K/K' is a-connected as
well.
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what we have up to this moment is that K/K' 1s a group of
automorphisms of H/H', H/H' is abelian and K/K'-minimal, and both
H/H' and K/K' are nontrivial and o-connected. Suppose that the
condition (ii) from the conclusion of the Lemma does not hold.
Then every a-connected group is solvable and in particular K/K' is
solvable. Thus all the conditions of Theorem 1.3.13 are satisfied,
and (ii) holds.

+2

a+le y(F) < ™4,

Lemma 3.3.6 If FEMA * is a definable field and w
then the generic of F is esn.

Proof Suppose on the contrary that the generic of F is not esn.

Then it is nonorthogonal to an NENI type p such that Ucp)=ett. By

Corollary 1.3.7, F is p-internal. Let a<F, u(a)2«®*! and let B be

finite such that o”< U(asB) < «™"'. Let a' and B' be such that
tP(a'B')=tp(aB) and E‘B'I aB. Thus mﬂ < U(E'/BB') < m_ﬁ+1

ma+1£U(a/B'). Define

and

+1 o+ 1

E={x<F|U(x/B)<«" "} and E'={x<F|U(xX/BB')<w .

By Lemma 3.3.4 E is a B-definable subfield of F and E' 1is a
BB'—definable subfield of F and U(E),U(E')<w™*l. Also ESE', and

because a'=sE'\E we have E*E'.

By Theorem 1.3.5 both E and E' are algebraically closed,
hence E' is an infinite-dimensional vector space over E. Since
every element of an n-dimensional vector space 1is interdefinable
with an element of E' over a generic basis, U(E})-n = U(E') holds
for all integers n. Therefore ma+1 < U(E'), contradicting the

above.

Proof of Theorem B Suppose that U(T)'—E.mm and that there is no
simple «-definable group in T3 whose generic type is
nonorthogonal to an NENI type. We'll show that I(NO.T)=2H0. We
operate in M3, Let I be the set of all new such that there exists
a regular, eventually strongly nonisolated type p_ such that

U(p )=o .
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Glaim I ié.infinite.
Prsef: Suppose, on the contrary, that I is finite and let
n=max(I)+1l. We show that there is a finite set A, an A-definable

group G and p<eS(A) such that the conditions of Lemma 3.3.5 are

satisfied.

: +2
By our assumption on n, every regular type of U-rank W is

not esn and hence by Theorem A there exists an NENI type of U-rank

n+a

w ., By Lemma 3.1.8 there exists a primitive NENI type of U-rank
w e, Proposition 3.2.9 applies, hence there exists a finite set C
and an o-definable group H over C such that mn+1£U(H)<m“+z. By

Proposition 1.3.1 we may replace H by a C-definable supergroup of
H. Further, by Theorem 1.3.8 and 1.3.9, after possibly passing to

a subgroup of H and adding a few parameters to C, we assume that H

n+1_-

is abelian and U(H)=w m. Also, assume that m is minimal

possible; then from the U-rank inequalities for groups we derive

that H has no proper definable subgroup of infinite index which

has U-rank bigger than «"*

Further, the generic of H is nonorthogonal to a regular type

** which is not eventually strongly nonisolated and so

41

is, by Theorem A, nonorthogonal to a NENI type r of U-rank « .

of U-rank o

After possibly slightly enlarging C we can assume that reS{(C). By
Proposition 1.3.6 there exists a C-definable subgroup HSH such
that H/I-I1 igs r-internal and infinite. Since U(H)=mn+1'm, from
the U-rank inequalities for groups and the minimality of m, we
derive U(H/H )=

the following situation:

m. Therefore if we replace H by H/H, we have

+1

C is a finite set, reS(C) is NENI, U(r)=ew = and H is a
C-definable abelian group which is r-internal, U(H)=wwu“m. and
H has no proper, definable subgroup F such that w "SU(F)<U(H).

Now we proceed as in the proof of Theorem A. Let p, be a
type of an element of H whose domain is finite and contains C,
which is nonorthogonal to r and has minimal possible R-rank and
minimal possible CB-rank. As in the proof of Theorem A we conclude
that p, is regular, isolated by ¥(x) say, and internally isolated.
Moreover P, is not esn; this is because it is nonorthogonal to r
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which is NENI.

+1

We show that U(piyﬂﬁﬁ If U(pi)mﬁq then there would
+1

exist a forking extension of pi'whose rank is at least . Since

H is r-internal and U(r)=wwu, this extension is nonorthogonal to

+4

r, and that contradicts the minimality assumption on R(p1)‘ Hence
U(p,)=w""

Let df p, and B=dom(p ). Then stp(d/B)|Bd is not esn, so
pick witnesses for this; according to 3.1.2(a), there are A, a and
b such that A2Bd is finite, p, =stp(d/B)|A, a} P,/ F w(b), tp(b/A)

is iscglated and a ¢ b.
A

p, is stationary and internally isolated, so let E be an
A-definable equivalence relation, given by 3.1.8, such that p,/E,
is primitive. As in the proof of Theorem A, we show that p,/E is
NENI. Let a'=a/E . Note that p,/E =tp(a'/A) is stationary and
internally isoclated, because p,=tp(a/A) 1is. By Lemma 3.1.9(b)
a'edcl(bA) and since tp(b/A) is isolated, plz/E1 is isolated, too.
Hence pé/Ei.is stationary, internally isolated and isoclated, so by
Lemma 3.1.12 it is NENI.

prﬂ%_is nonorthogonal to r, hence it is nonorthogonal to the
generic type of H; by Proposition 1.3.6 there exists an
A-definable subgroup KsH such that G=H/K is p,/E -internal and
infinite.

Let p=tp(aK/A) (recall that aKEG is the name of the K-coset
which contains a). Since K is definable over A and pEESLA), p does
not depend on the particular choice of af p,- Let E be an
A~definable equivalence relation such that g=p/E is primitive. We

show that our G, p and E satisfy all the conditions of Lemma
3.3.5, i.e. that:

(1) p is a stationary, regular, internally isolated
+1

type nonorthogonal to the generic of G and U(p)=w  ,
(ii) q is a primitive NENI type, and
(1ii1) G is g-internal.
By the minimality assumption on U(H) we must have U(K)<wW”
Nn+4

From w = U(a/A) = U(K) & U(a, /A) we derive U(aK/A)=mn
Since p_=tp(a/A) is stationary and a _<«dcl(aph), p=tp(a, /A) is

+4
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stationary too, and since ﬁé + r we must have that p 4 r, and p
is nonorthogonal to the generic of G. Therefore (i) 1is satisfied.
(ii) holds by definition, so it remains to show that G is
g-internal. Actually, we show that each realization of g 1is
interdefinable over A with a realization of p,/E ; since G is
;E/Ei-internal it will follow that G is g-internal, as well.

From a 4+ a' and a + a /E we get a /E { & and since both

A A A
p,/E =tp(a') and q=tp(a, /E) are primitive, regular types we

conclude by Lemma 3.2.6(b) that a' and aK/E are interdefinable

over A. Since a} p, was arbitrary, the conclusion follows.

The conditions of Lemma 3.3.5 are fulfilled and we conclude

that there exists a definable field FeAH"? such that @ '<U(F)<w  ,

or there is an w-definable simple group S such that mHEU'(S)«.f"Hl

In the first case, Lemma 3.3.6 implies that the generic of F is
eventually strongly nonisolated, hence if s is regular, U(s)=mn
and s is nonorthogonal to the generic of F we have that s is esn
and thus ne€I. In the second case, it follows from our assumption
on T that the generic of 8§ is esn and, similarly to the first

case, that nel. The proof of the Claim is complete.

Continuing the proof of the theorem let {p |neI} be an
infinite family of regular, eventually strongly nonisolated types
such that U(pﬂ)w&in for all neI. Clearly for m,n€l and wm®n, p_ is
orthogonal to every conjugate of p . Thus the family {pﬁlnel}
satisfies the conditions of Lemma 3.3.3 and I(NG,T)=2Nb.

Example Let L={+,-,0,1,V1|0$i5n} and let 3"‘=(Fl,+,.-,,EL.,:l.l,,Fl)m,,::t,ﬂ:ﬁ be
an L-structure such that F2F =2...2F =2F is a sequence of

algebraically closed fields of characteristic 0, such that each of
them has infinite transcendence degree over the previous one. Let

T=Th(¥). Then T is superstable and if p,
U(p1)=w1. U(p)=w —~ where p is the generic of F. Every model of T

is the generic of Ft'then

is determined, up to isomorphism, by (dim(p),dim(p )), ., <, Hence
T has only ¥  nonisomorphic countable models.
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