M. D. PREŠIĆ

A METHOD FOR SOLVING EQUATIONS IN FINITE FIELDS

ON CERTAIN FORMULAS FOR EQUIVALENCE AND ORDER RELATIONS

Marica D. Prešić A METHOD FOR SOLVING EQUATIONS IN FINITE FIELDS

(Communicated April 29, 1970)

Summary

In this paper we give a method for solving equations of the form $\mathcal{G}(x) = 0$, where $\mathcal{F}(x)$ is a polynomial over the finite field $GF[p^n]$. The general solution is determined by formula (2), providing the equation $\mathcal{F}(x) = 0$ is possible.

Let $GF[p^n]$ be a Galois field of order p^n , and ε a generator of cyclic group of this field. Our main result is the following theorem.

Theorem. Let

$$\mathcal{J}(x) = 0$$

be an equation over $GF[p^n]$. If the equation (1) has at least one solution, then the general solution of (1) is determined by the formula

$$x = \Pi + \mathcal{J}(\Pi)p^{n-1} + \varepsilon(\mathcal{J}(\Pi)\mathcal{J}(\Pi+1))p^{n-1} + \varepsilon^2(\mathcal{J}(\Pi)\mathcal{J}(\Pi+1)\mathcal{J}(\Pi+1+\varepsilon))p^{n-1}$$

$$(2) + \cdots + \varepsilon^{p^{n}-3} (\mathcal{J}(\Pi)\mathcal{J}(\Pi+1) \dots \mathcal{J}(\Pi+1+\cdots+\varepsilon^{p^{n}-4}))^{p^{n}-1} + \\ + (\varepsilon^{p^{n}-2}+\eta) (\mathcal{J}(\Pi)\mathcal{J}(\Pi+1) \dots \mathcal{J}(\Pi+1+\cdots+\varepsilon^{p^{n}-3}))^{p^{n}-1}$$

where $\eta = 2 + 3 \varepsilon + \cdots + (p^n - 1) \varepsilon^{p^n - 3}$, and Π is an arbitrary element of the field.

In the proof we use:

(i) If
$$x \in GF[p^n]$$
, then $x^{p^n-1} = 1 \ (x \neq 0)$

$$=0 (x=0)$$

(ii) The elements

$$0, 1, 1+\varepsilon, \ldots, 1+\varepsilon+\cdots+\varepsilon^{p^n-3}$$

are all distinct.

The proposition (ii) may be proved as follows. Suppose that for some natural numbers m, m' the equality

$$1 + \varepsilon + \cdots + \varepsilon^m = 1 + \varepsilon + \cdots + \varepsilon^{m'} \quad (0 \le m' \le m \le p^n - 3)$$

holds. Hence we obtain: $1 + \varepsilon + \cdots + \varepsilon^{m-m'-1} = 0$.

Further, multipying the last equality by $\varepsilon - 1$ we conclude that $\varepsilon^{m-m'} = 1$. This is not possible, because $m - m' < p^n - 3$.

Similarly, it may be proved that $1, 1+\epsilon, \ldots, 1+\epsilon+\cdots+\epsilon^{p^n-3}$ are different from 0.

The elements $1, 1+\varepsilon, \ldots, 1+\varepsilon+\cdots+\varepsilon^{p^n-3}$ (their number is p^n-2) are roots of the equation $x^{p^n-1}=1$. Denote by η a root of this equation different from them. Then, by Viète's formula we have

$$1+(1+\varepsilon)+\cdots+(1+\varepsilon+\cdots+\varepsilon^{p^n-3})+\eta=0$$
,

therefore

$$\eta = 2 + 3 \varepsilon + \cdots + (p^n - 1) \varepsilon^{p^n - 3}$$
.

Consequence. If Π is a fixed element of $GF[p^n]$, then the elements

$$\Pi$$
, $\Pi+1$, $\Pi+1+\varepsilon$,..., $\Pi+1+\varepsilon+\cdots+\varepsilon^{p^n-3}$, $\Pi+\eta$

are all distinct. In other words, the set $\{\Pi, \Pi+1, \Pi+1+\epsilon, \ldots, \Pi+1+\epsilon + \cdots + \epsilon p^{n-3}, \Pi+\eta\}$ is equal to the set $GF[p^n]$.

Proof of theorem. Let Π be an element of the field $GF[p^n]$. If Π is a solution of (1), then by formula (2) we obtain $x = \Pi$. It follows, immediately, from the structure of formula (2) and proposition (i). In the case Π is not a solution of equation (1) we consider the following sequence

(3)
$$\Pi$$
, $\Pi+1$, $\Pi+1+\varepsilon$,..., $\Pi+1+\varepsilon+\cdots+\varepsilon^{p^n-3}$, $\Pi+\eta$

and the first member of it being a solution of (1). Such member exists as $\mathcal{F}(x) = 0$ is a possible equation.

Suppose, first, that this assumed solution is of the form

$$\Pi + 1 + \varepsilon + \cdots + \varepsilon^m \ (m \leq p^n - 3),$$

According to

$$\mathcal{J}(\Pi) \neq 0$$
, $\mathcal{J}(\Pi+1) \neq 0$,..., $\mathcal{J}(\Pi+1+\cdots+\epsilon^{m-1}) \neq 0$, $\mathcal{J}(\Pi+1+\cdots+\epsilon^m) = 0$ and proposition (i), by formula (2) we obtain

$$x = \Pi + 1 + \varepsilon + \cdots + \varepsilon^m$$
.

In the case $\Pi + \eta$ is the first member of sequence (3) satisfying the condition $\mathcal{F}(\Pi + \eta) = 0$, the formula (2) becomes

$$x = \Pi + (1 + \varepsilon + \cdots + \varepsilon^{p^n-2}) + \gamma.$$

Since $1, \varepsilon, \ldots, \varepsilon^{p^n-2}$ are all roots of the equation $x^{p^n-1}=1$ their sum is 0. Consequently, in both cases formula (2) gives a solution of equation (1). The proof is finished.

Remark. In the case of Galois field GF[p] it may be, similarly, proved that the general solution of the equation (1) is given by the following simple formula:

(4)
$$x = \Pi + \mathcal{J}(\Pi)^{p-1} + \mathcal{J}(\Pi)^{p-1} \mathcal{J}(\Pi+1)^{p-1} + \cdots + \mathcal{J}(\Pi)^{p-1} \mathcal{J}(\Pi+1)^{p-1} \cdots \mathcal{J}(\Pi+p-2)^{p-1}.$$

$$(\Pi-an \ arbitrary \ element \ of \ GF[p])$$

For instance, the general solution of the equation

$$x^2 + bx + c = 0$$
 $x \in GF[3]$

is given by formula

$$x = cb + D (2 \Pi^2 + (2 b + 1) \Pi + c^2)$$
 $(D \stackrel{\text{def}}{=} b^2 + 2 c)$

providing $D^2 = D$.

REFERENCES:

[1] S. B. Prešić, Une méthode de résolution des équations dont toutes les solutions appartiennent à un ensemble fini donné (in print).