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Summary. It has been proved the following result): Any -algebra may be embedded in
a semigroup. G. Cupona?) raised the problem: Is it possible to embed any entropic algebra
in an entropic groupoid.

In this paper this problem is solved but not only for entropic algebra. Namely, we
shall prove the following result:

Any Q-algebra is embeddable in an entropic groupoid.

The main role in the proof is played by the term xaxayx* which is unchangeable
under the law

(E) XY*ZU** = XZRVUN*,

Similarly, it may be proved that any (2-algebra may be embedded in a groupoid
holding some law Z if there exists a term unchangeable under Z. For example, for the law

Xy*zuxx = uyxzx+*, a corresponding unchangeable term is axsyasx.

I. Our main result is the following

Theorem 1. If Q is an arbitrary Q-algebra®) there exists an entropic® groupoid
(G, ©) having the following properties:
1° Q is a subset of G;

2° If w=Q is an n-ary operation, then there exists in the set G an element ®
such that

D X[ Xyt s Xp@W=X,X; * *+ XnO0wOw - - 0w (H>2)
(n—lf:times

(2) X0=Xwow (n=1)

3 w=0wwow (1=0)

where

XyO o 4 o o?uyoo.
t Cohn P. M., Universal algebra, Tokyo, 1965, 184—186.
2 On some primitive classes of universal algebras, Mat. vesnik, 3(18) pp. 105—108, 1966,
3 That means: the groupoid (G, o) holds: xyozuoo = xzoyuoo.
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At first, we introduce some definitions and prove one lemma. Let G
be the minimal set satisfying the following two conditions:

The set Xd;rQUQ is a subset of G;
If u, vEG then uve<cG.

It is clear that (G, o) si a groupoid, where woLiuve.

In the set G we consider the following minimal subset O:

X is a subset of O;

If u, v€O and 0S8 then uwewveecO.

Further, in the set O, we define some operations which are necessary in what

follows. Let w&Q(n), then
def

(1) Uy » * " Un @ = U Uy * * - Un Olo.(i,'_;ow (n=2)
(n—1)—times

(29 10 1w o (n=1)

39 0% 6o oo (n=0)

where

def
U0 —UWOWV O .
Next, we introduce binary relations — and ~.

Definition. We say that t, 1, where t,, t, =G if and only if:

The term 1, may be obtained from the term t, by substituting one subterm
o« of t, by the term B, where o and 3 may be:

1. « is of the form uveu viee, then B is uuevv,ee;
I, a=x,x;+» X0 (X, = Q), then B=x,x,- - -xp0 and B Q;

1. Let x,x,, ..., xa=Q and a=Xx,X,++ - Xpo (¢ € Q), than  is the term (the
word) X, X, - - - XnO.

In the cases 1, 11, 111 we write, respectively

Hit, HiEtL, Lt
I 1 1

Let ~ be the minimal equivalence relation in the set G which prolongs
the relation + (t. i. — C ~).

The relation ~ is a congruence in the groupoid (G, o).
Lemma. If y—v and u€ O, then vE O,
Proof. Let w € O. We will distinguish three cases:

1. ubv; 2. utv; 3. ukv,
I u HI

and we will prove that in each of them v& O holds.

Ad 1. In this case, at first, we deduce:
P. If t is an element of O, then each of its subterm of the form uveu,v, ee
is an element of the set O and consequently, sastisfies v=u, =, where w € Q.

We prove that by induction on o(t), the lenght of the word t. For
ipstance, s (x)=1, o(xye)=3. P. is true if o(f)=1, since ¢ has no subterm
of the form uveu,v,ee.
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Let
t=tioewt,ee, c(t)=n(n>1)

and let o« =yveou,v,@ be a subterm of ¢ If « is a subterm of ¢, or of ¢,
we apply induction hypothesis. In the opposite case the term ¢ must be of
the form vwewv, ®e where u,v, are certain elements of the set O and o €,
That completes the inductive proof.

By the property P., each subterm of ¢ (+& 0) of the form wveu v, ee
(t. i. the subterm which may be ’changend’ under the law (F)) is an element
of the set O and, consequently, is ’unchangeable’ under (E). Accordingly, the
following condition holds:

(4) u}—v:>u=v u=0)
By (4) we conclude if u< O and uIP—v than v<= O.

The definitions of -, 5 imply the proof in the cases 2. and 3.||

2. Proof of the theorem. At first, let us prove the following:

If x,y€Qand x=y then x—y, where x, y are the equivalence classes of
x, y with respect to ~.

Let x=y. Tt means that there exists a natural number n and elements
Uy, U, ..., Ug (4= G) such that

uy, Uy Uy, Lo, Unoy Uy X=Uy, Y =1Un.

Because of x, y=O we have (by Lemma) u,, t, ..., 2= 0, too. Now we
introduce the following interpretation Int:

Int (x)-(,i,ifx if x&€Q
It (t,1y - @) Int (1)) Int (8) - - - Int () & (0 € Q(k))

Obviously, Int is a function which carries a subset of the set O into Q and

the image of the sequence w,, u,, ..., un is the following sequence of the
algebra Q:
(5) Int(uy), Int(u), Int(u), ..., Int(us).

If wi b ugpr then (4) implies u; = w4 and, consequently, Inf (ug) = Int (ui+1).
1

In the case uihuﬂ-l or u-i]lTIuiH, by the definitions of the relations II—I and

“l—l, we also obtain Inf (u;) = Int (ui+1). That implies the following property of (5):
(6) Int(u) =Int ()= - - - = Int (un).

By definition of Int it follows

@) Int(u)=x, Int(uz)=y,

because of x=u; and y=us. The equalities (6) and (7) imply x=y, as
asserted.
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In order to conclude the proof of the theorem we introduce
(8) GG xvo¥xyo.
By definition of the relation ~ (t. i IF-) it is easily seen that (G, o) is an

entropic groupoid.
Further, in the set

0¥ (x/ x€ Q)

for each & €Q(n), we define a binary operation oo and n-ary operation ® as
follows

— — def - - —  ~ def— =—
(9) XYO0p— XPO0@; X1Xp ... Xp@O=X;Xp* - -Xp®

By (8) and (9), and by definition of the operation ® we obtain the
following equalities
(1”) ;1;2' . .;n(I)Z—.;C]}Z c 2 Xpn0pOw * * 0w (n> 2)
(n—1)—times
(2") xo=xwoy (n=1)
(3") w=wwoe (1=0)
It is clear that Q is an Q-algebra (o is corresponding to ).

By the first part of that proof it follows that Q and Q are isomor-

phic algebras (an isomorphism is f:x-x). That completes the proof of
the theorem. ||

3. The proof of the Theorem 1. suggests the following
Theorem 2. If the groupoid law

(2) Fi(xy, X3, ooy Xn, X, p)=F(x, X3, .., Xn, X, ))

has the following property:

C. The term Fi(a, a, ..., a, x,y) (@ is a constant) is unchan-
geable under (Z), that means that the terms Fi(a, a, ..., a, x,¥)
and Fy(a, a ..., a, x,y) coincide.

then for each Q-algebra Q there exists a groupoid (G, o) holding the law (Z)
and satisfying the following two conditions:

1° Q is a subset of G;

2° If @ EQ(n) then there exists an element <G such that (I — (3) holds,
where xyomdérFl(a, ©, ..., o X »)-

The proof is analogous as in the Theorem I. ||

For example, the law xy*zus* =uy#*zx** satisfies the condition C. and
thus the operation 0w is defined as follows: XVoe 2w X%y e ++.
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