MARICA D. RADOJČIĆ

5 A

ON THE EMBEDDING OF UNIVERSAL ALGEBRAS IN GROUPOIDS HOLDING THE LAW XY*ZU**=XZ*YU**

Математички весник 5 (20) Св. 3, 1968. Београд

ON THE EMBEDDING OF UNIVERSAL ALGEBRAS Marica D. Radojčić IN GROUPOIDS HOLDING THE LAW XY*ZU** = XZ*YU**

(Communicated April 24, 1968)

Summary. It has been proved the following result¹): Any Ω -algebra may be embedded in a semigroup. G. Čupona²) raised the problem: Is it possible to embed any entropic algebra in an entropic groupoid.

In this paper this problem is solved but not only for entropic algebra. Namely, we shall prove the following result:

Any Ω -algebra is embeddable in an entropic groupoid.

The main role in the proof is played by the term xa*ay*** which is unchangeable under the law

$$(E) \qquad \qquad xy*zu** = xz*yu**.$$

Similarly, it may be proved that any Ω -algebra may be embedded in a groupoid holding some law Z if there exists a term unchangeable under Z. For example, for the law xy*zu** = uy*zx**, a corresponding unchangeable term is ax*ya**.

I. Our main result is the following

Theorem 1. If Q is an arbitrary Ω -algebra¹⁾ there exists an entropic³⁾ groupoid (G, o) having the following properties:

 1° Q is a subset of G;

 2° If $\omega \in \Omega$ is an n-ary operation, then there exists in the set G an element $\overline{\omega}$ such that

(2)
$$x \omega = x \overline{\omega} \circ_{\omega} (n = 1)$$

(3)
$$\omega = \overline{\omega \omega} \circ_{\omega} (n = 0)$$

where

$$xyo_{\omega} \stackrel{\text{def}}{=} x \stackrel{-}{\omega} o \stackrel{-}{\omega} yoo.$$

¹ Cohn P. M., Universal algebra, Tokyo, 1965, 184-186.

² On some primitive classes of universal algebras, Mat. vesnik, 3(18) pp. 105-108, 1966.

³ That means: the groupoid (G, o) holds: xyozuoo = xzoyuoo.

At first, we introduce some definitions and prove one lemma. Let G be the *minimal set* satisfying the following two conditions:

The set $X \stackrel{\text{def}}{=} QU\Omega$ is a subset of **G**;

If $u, v \in G$ then $uv \bullet \in G$.

It is clear that (G, o) si a groupoid, where $uvo \stackrel{\text{def}}{=} uv \bullet$.

In the set G we consider the following minimal subset O:

X is a subset of O;

If $u, v \in O$ and $\omega \in \Omega$ then $u \omega \bullet \omega v \bullet \bullet \in O$.

Further, in the set O, we define some operations which are necessary in what follows. Let $\omega \in \Omega(n)$, then

(1')
$$u_1 u_2 \cdot \cdot \cdot u_n \omega \stackrel{\text{def}}{=} u_1 u_2 \cdot \cdot \cdot u_n \underbrace{\circ \omega \circ \omega \cdot \cdot \cdot \circ \omega}_{(n-1)-\text{times}} (n \ge 2)$$

(2')
$$u \boldsymbol{\omega} \stackrel{\text{def}}{=} u \boldsymbol{\omega} \boldsymbol{o}_{\boldsymbol{\omega}} \quad (n=1)$$

(3')
$$\mathbf{\omega} \stackrel{\text{def}}{=} \omega \omega \mathbf{o}_{\mathbf{\omega}} \quad (n=0)$$

where

$$uv \mathbf{o}_{\mathbf{\omega}} \stackrel{\text{def}}{=} u \omega \bullet \omega v \bullet \bullet.$$

Next, we introduce binary relations \vdash and \sim .

Definition. We say that $t_1 \vdash t_2$ where $t_1, t_2 \in G$ if and only if:

The term t_2 may be obtained from the term t_1 by substituting one subterm α of t_1 by the term β , where α and β may be:

I. α is of the form $uv \bullet u_1 v_1 \bullet \bullet$, then β is $uu_1 \bullet vv_2 \bullet \bullet$;

II.
$$\alpha = x_1 x_1 \cdots x_n \omega$$
 $(x_2 \subseteq Q)$, then $\beta = x_1 x_2 \cdots x_n \omega$ and $\beta \subseteq Q$;

III. Let $x_1, x_2, \ldots, x_n \in Q$ and $\alpha = x_1 x_2 \cdots x_n \omega$ $(\alpha \in Q)$, then β is the term (the word) $x_1 x_2 \cdots x_n \omega$.

In the cases I, II, III we write, respectively

$$t_1 \vdash t_2, \qquad t_1 \vdash t_2, \qquad t_1 \vdash t_2.$$

Let \sim be the minimal equivalence relation in the set G which prolongs the relation \vdash $(t. i. \vdash \subseteq \sim)$.

The relation \sim is a congruence in the groupoid (G, o).

Lemma. If $u \vdash v$ and $u \in O$, then $v \in O$.

Proof. Let $u \in O$. We will distinguish three cases:

1.
$$u \vdash v$$
; 2. $u \vdash v$; 3. $u \vdash v$,

and we will prove that in each of them $v \in O$ holds.

Ad 1. In this case, at first, we deduce:

P. If t is an element of O, then each of its subterm of the form $uv \bullet u_1v_1 \bullet \bullet$ is an element of the set O and consequently, sastisfies $v = u_1 = \omega$, where $\omega \in \Omega$.

We prove that by induction on $\sigma(t)$, the length of the word t. For instance, $\sigma(x) = 1$, $\sigma(xy \bullet) = 3$. P. is true if $\sigma(t) = 1$, since t has no subterm of the form $uv \bullet u_1 v_1 \bullet \bullet$.

Let

$$t = t_1 \omega \bullet \omega t_2 \bullet \bullet$$
, $\sigma(t) = n(n > 1)$

and let $\alpha = uv \bullet u_1 v_1 \bullet \bullet$ be a subterm of t. If α is a subterm of t_1 or of t_2 we apply induction hypothesis. In the opposite case the term t must be of the form $u \omega \bullet \omega v_1 \bullet \bullet$ where u, v_1 are certain elements of the set O and $\omega \in \Omega$. That completes the inductive proof.

By the property P., each subterm of t $(t \in O)$ of the form $uv \bullet u_1v_1 \bullet \bullet$ (t. i. the subterm which may be 'changend' under the law (E)) is an element of the set O and, consequently, is 'unchangeable' under (E). Accordingly, the following condition holds:

$$(4) u \vdash v \Rightarrow u = v \quad (u \in O)$$

By (4) we conclude if $u \in O$ and $u \vdash v$ than $v \in O$.

The definitions of \vdash , \vdash imply the proof in the cases 2. and 3.

2. Proof of the theorem. At first, let us prove the following:

If $x, y \in Q$ and x = y then x = y, where x, y are the equivalence classes of x, y with respect to \sim .

Let x = y. It means that there exists a natural number n and elements $u_1, u_2, \ldots, u_n \ (u_i \in G)$ such that

$$u_1 \vdash u_2, u_2 \vdash u_3, \ldots, u_{n-1} \vdash u_n; x = u_1, y = u_n.$$

Because of $x, y \in O$ we have (by Lemma) $u_1, u_2, \ldots, u_n \in O$, too. Now we introduce the following interpretation Int:

$$Int(x) \stackrel{\mathsf{def}}{=} x \text{ if } x \in Q$$

Int
$$(t_1 t_2 \cdots t_k \mathbf{w}) \stackrel{\text{def}}{=} Int (t_1) Int (t_2) \cdots Int (t_k) \mathbf{w} \quad (\mathbf{w} \in \Omega(k))$$

Obviously, Int is a function which carries a subset of the set O into Q and the image of the sequence u_1, u_2, \ldots, u_n is the following sequence of the algebra Q:

(5)
$$Int(u_1), Int(u_1), Int(u_2), \ldots, Int(u_n).$$

If $u_i \vdash u_{i+1}$ then (4) implies $u_i = u_{i+1}$ and, consequently, $Int(u_i) = Int(u_{i+1})$.

In the case $u_i \vdash_{\Pi} u_{i+1}$ or $u_i \vdash_{\Pi} u_{i+1}$, by the definitions of the relations \vdash_{Π} and \vdash , we also obtain $Int(u_i) = Int(u_{i+1})$. That implies the following property of (5):

(6)
$$Int(u_1) = Int(u_2) = \cdots = Int(u_n).$$

By definition of Int it follows

(7)
$$Int(u_1) = x, \quad Int(u_n) = y,$$

because of $x = u_1$ and $y = u_n$. The equalities (6) and (7) imply x = y, as asserted.

In order to conclude the proof of the theorem we introduce

(8)
$$G \stackrel{\text{def}}{=} \mathbf{G}_{/\sim}; \quad \overline{xyo} \stackrel{\text{def}}{=} \overline{xyo}.$$

By definition of the relation \sim (t. i. \vdash) it is easily seen that (G, o) is an entropic groupoid.

Further, in the set

$$\tilde{Q} \stackrel{\text{def}}{=} \{ \bar{x} / x \in Q \}$$

for each $\omega \in \Omega(n)$, we define a binary operation \mathbf{o}_{ω} and n-ary operation $\widetilde{\omega}$ as follows

By (8) and (9), and by definition of the operation ω we obtain the following equalities

(1'')
$$\overline{x_1} \overline{x_2} \cdot \cdot \cdot \overline{x_n} \widetilde{\omega} = \overline{x_1} \overline{x_2} \cdot \cdot \cdot \overline{x_n} \underbrace{o_{\omega} o_{\omega} \cdot \cdot \cdot o_{\omega}}_{(n-1) - \text{times}} \quad (n \ge 2)$$

$$(2'') \quad \widetilde{x} \overset{\sim}{\omega} = x \overset{\sim}{\omega} o_{\omega} \quad (n=1)$$

(3'')
$$\tilde{\omega} = \tilde{\omega} \tilde{\omega} o_{\omega}$$
 $(n = 0)$

It is clear that \tilde{Q} is an Ω -algebra ($\tilde{\omega}$ is corresponding to ω).

By the first part of that proof it follows that Q and \tilde{Q} are isomorphic algebras (an isomorphism is $f: x \to \overline{x}$). That completes the proof of the theorem. | |

3. The proof of the Theorem 1. suggests the following

Theorem 2. If the groupoid law

(Z)
$$F_1(x_1, x_2, \ldots, x_n, x, y) = F_2(x_1, x_2, \ldots, x_n, x, y)$$

has the following property:

C. The term $F_1(a, a, ..., a, x, y)$ (a is a constant) is unchangeable under (Z), that means that the terms $F_1(a, a, ..., a, x, y)$ and $F_2(a, a, ..., a, x, y)$ coincide.;

then for each Ω -algebra Q there exists a groupoid (G, o) holding the law (Z) and satisfying the following two conditions:

1° Q is a subset of G;

2° If $\omega \in \Omega(n)$ then there exists an element $\overline{\omega} \in G$ such that (I) — (3) holds, where $xy\mathbf{o}_{\mathbf{o}} \stackrel{\text{def}}{=} F_1(\overline{\omega}, \overline{\omega}, \ldots, \overline{\omega}, x, y)$.

The proof is analogous as in the Theorem 1. ||

For example, the law xy*zu**=uy*zx** satisfies the condition C. and thus the operation \mathbf{o}_{ω} is defined as follows: $xy\mathbf{o}_{\omega} \stackrel{\text{def}}{=} \omega x*y\overline{\omega}**$.

