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ON LATTICES OF SOME CONGRUENCES
ON REGULAR SEMIGROUPS

Branka P.Alimpi¢ and Dragica N.Krgovi¢

Abstract. In this paper E-unitary and E-reflexive congruences on a regular semigroup
S are considered. The set W(S) of all E-unitary congruences and the set R(S) of all
E-reflexive congruences on S, ordered by inclusion, are complete lattices. A complete
haomomaorphism of the lattice fL(S) onto the lattice af all group congruences, and a
complete V -homomorphism of the lattice R(S) onto the lattice of all Clifford congru-
ences on S are obtained.

Throughout this paper, S stands for an arbitrary regular semigraup, and E(S) denotes
the set of idempotents of S, It is known that a congruence ¢ on a regular semigroup
S is uniquely determined by its kernel kerg = {x €S|(JecE(S))x eel and trace
trﬁ): 9|E(S)[ZJ . Let Con S be the congruence lattice of S, K and T equivalences on
Con S defined by

S)Kf <> kere = kerf and eTf <= trf) = trf .
It is known that K-classes [PK’ 9KJ and T=classes f?_r, FTJ are intervals on Con S

(75,09

Let geCon 5. If 8 is a class of semigroups, and S/pe Ef, then S) is a &-congruen—
ce on S. In the paper, 6 and ¥ denote respectively the least group and the least Cli-
fford congruence on S, and <o denotes the universal congruence Sx S on S. For unde-
fined notations or terminology see [37],[8].

RESULT 1.[5]. Eo_r any family ' < Con s,
E— T
(\/ = ) .
f‘e? pe¥ PT’ ge’{ E eé? 9
RESULT 2. [4; 5] For any family § < Con S,

ker M = /M ker -
ge&? PEF 3

This paper is in final form and no version of it will be submitted for publication else-
where.



A regular semigroup S Js E-unltary If, for any a€S and e cE(S), ae eE(S) Implies
.a ¢ E(S).

RESULT 3. (1] . The following statements for a congruence ¢ on S are equivalent

(1) 1% Is E-unitary.
(i) ae € kers) = aekery,

(aeS, ecE(S)).
() ker ¢ = ker (¢v6). '
w ¥ -pve .

(v) S)K Is a group congruence.

Let {L(S) denotes the set of all E-unitary congruences on a regular semigroup S.

LEMMA L. For any family ¢ ccon s,
T cUS) = NT Ul
Proof. Let F <ll(S), and a¢S, ec E(5). Then
(by Result 2)

(since 9&?1(5))
(by Result 2).

ae ¢ ker N p &> (vpeTFlae ¢ ker
e lvp ¢
= (voeTF)a € ker p
= a € ker M\ .
= 5§
Hence, according to Result 3 N s an E-unitary congruence.
Let 96 Con S. The existence of the least E-unitary congruence TC(‘P) containing ?
follows from Lemma 1.
Hence, for § < t((S),fﬂ:(v?.) [s the least E-unitary congruence containing v ¥, lLe. the
family ¥ has the Join T (v¥) In WU(S). We summarlze thls observation and Lemma |
In a theorem as follows.

THEOREM L. The set 1 (S) of all E-unitary congruences on a regular semigroup S orde-

red by inclusion fs a complete lattice, and a complete N\ -subsemilattice of Con S.

Let 9 € Con S. Since ovE {s the least group congruence 6(33) contalning 9 , and
PSR (9) ©6(p) =pve , we obtain pré < (PIve cQve.

We have therefore established the following.
LEMMA 2. For any Qe Con §,
oV 6= T (9)ve.

THEOREM 2. Let S be a regular semigroup. The mapping
p:p—pve (Qeu(s))
is a complete homomorphism of the lattice UL(S) of all E-unitary congruences onto

the lattice [6,cu] of all group congruences on S.
The classes of the complete congruence induced by this homomorphism are K-classes.

Proof. Obviously, @ maps U(S) onto [6,w] . Let § be any family of E-unitary
congruences on S. Then by Theorem | F(wv5) is the join of § in U(S). Thus we

have .
(ﬂ(?\é/?9)><j>= 4% WE = @IVE oy Lemms 2)
9}6(?V6) = §>e/‘§’ (Q(P).

Further, since N\ & U(S), we obtain

(by Result 3)

(by Result 2)

(by Result 3)
(by Result 2)

ker(gg_e)\/6) = ker@?
= /M kerQ
pegT
oy ker(?\/G)

?G
= ker M\ (QVG)
pes

On the other hand, tr((gg Q Jv6) = tr Pfgg(c?\/b‘) = CWg(s)

<o we have (?fe\q‘? Y P = ?C; (QCP)

From Result 3 we have, for any ¢, er(S), ?v6=§\/6<‘;?ker9 = kerf . So we
have ?(Pzgcb(:p QK.

From this theorem and Result 3 it follows
COROLLARY. Let F<U(S). Then

NeX

. K
(29X 4

. K _ K
(ii) (ﬁ(e\ég)) = ?\e‘/;g)

A regular semigroup S is called E-reflexive if, for any a,bes and e E(S), eab ¢ E(S)
implies eba g £(S).

RESULT 4. [l] . The following statements concerning a congruence SJ on Con S are

equivalent

(i) 0 is E-reflexive.

(ii) §3K is a Clifford congruence.
(iii) ker §> = ker( ?\/ ).




Let R.(S) denctes the set of all E-reflexive congruences on S. By Lallement’s Lemma,

- for any @&Con S we have QGQ_(S) if and only if
eab ¢ kerg = eba € kerp (a,be S, ec E(9)).

Therefare, the proof of the following lemma is similar to the proof of Lemma 1.

LEMMA 3. For any family % <Con §
T =R() > NF RS

Let P ¢ Con S. The existence of the least E-reflexive caongruence JL(SD) on S conta-
ining ¢ follows from Lemma 3.

Hence, for ¥ € R.(S), A{v%E) is the least E-reflexive congruence on S containing
Vv, ie. it is the join of the family T in R(S).

So we have the following result for E-reflexive congruences corresponding to the result

for E-unitary congruences given in Theorem |.

THEOREM 3. The set R.(S) of all E-reflexive congruences on a regular semigroup S

ordered by inclusion is a complete lattice and a complete /N -subsemilattice of Con S.

Let 9€C0n S. Since Qv w is the least Clifford congruence \7(?) containing @, and
J\(?)E V(?), it follows

LEMMA 4. Let ?eCon S. Then
OV Y=R(Q)V Y.

THEOREM 4. Let S be a regular semigroup and

Y:p—=9Qvy (ge RSN

Then

(i) The mapping Y is a complete \/-homomorphism of the lattice ®(S) of all
E-reflexive congruences onto the lattice v, cu__[ of all Clifford congruences on S.

(i) 'ker_((ffe}; ©)¥) = ker AN (¢¢r) and

N ), < .
(A < £ (3 <Rsn

Moreover, ? Y= ?‘P:)PK‘? (?, f c (Q(S)).
Proof. (i) According to Result 4, any Clifford congruence is E-reflexive. Hence, ¥

maps R(S) onto the lattice [ V,@w] of all Clifford congruences on S. Let F be any

family of E-reflexive congruences on S. Then by Theorem 3 A ( \/ ?) is the join of
’ pcd

% in QR (). Thus we have

- - V) (by Lemma 4)
(3\5\6{3?))\{/ J\(?éé?)\/ﬂ (92/3?)\/ y Lem

) = (oY)
924(?\/ pe¥ S
(ii) Obviously (eg p)vosg@(gvv), for any & <R (5).

Since /O ¢ RAS), we have
PeT

v V) = ker (by Result 4)
ker ((?9 ? )AVAV)] QQ?
= M kerg) (by Result 2}
eeT
= M ker(?vv) (by Result 4)
P9
= ker /M (EN\)) (by Result 2).
oet

From Result 4 we have, for any 05§ eRus),
9 \/\7=§V\)=——‘;ker(? vy = ker(§v)))<'=> ker? = kerf .
Therefore, gﬂf’:f‘f’ = ?Kg .

Let ‘.69(3)[309(5)] denotes the lattice of all band [semilattice] of groups congru-
ences on S. Clearly, ‘S(j(s) = [v, w]

Using Result 1 and the equivalences[l] :
Qe R4S e ' =QVp and
0SS e 9T =9V .

where (5[02] is the least band (_semilattice] congruence on S we have the following

analogue of Theorem 2.

THEOREM 5. Let S be a regular semigroup. Then

(i) The mapping

Fpt 0 — QVp (?e%'(S))

is a complete homomorphism of the lattice PG(S) onto the lattice LG,w] of all band

congruences on S.
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(ii)

The mapping
i =SV (e T9(s)

is a complete homomorphism of the lattice Y%(S) onto the lattice ['lr(,u):] of all

semilattice congruences on S.

The.classes of the complete cangruences induced by these homomarphisms are T-classes.

For a band of groups, the same result was proved in [6] (Corellary, 8.12).
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SEMIGROUPS WHOSE PROPER SUBSEMIGROUPS ARE (RIGHT-)
t - ARCHIMEDEAN

Stojan Bogdanovié and Todor Malinovié

Abstrect. In [il S. Bogdanovié characterized senmi-
groups whose left ideals are left archimedean semigroups.
B. Pondelilek in 7] described semigroupns whose praoper
one-sided ideals are t-archimedean semigroups. Semigroups
with an idewpotent  in which every subsenigroup is &
t-crchimedean semigroup are studied by 4.C. Spolentini and
A. Varisco 2). )

In this paper we generalize their results to arbitrary
semigroups. lioreover, we characterize semigroups in which
every proper subsemigroup is right archinedean.

Troughout this paper let 27 denote the set of all
positive integers.

A semigroup S is archimedean if for any a,b €35 there
exists ne€Z¥ for which aleSbS, [G]. 5 is »ight archimedean
if for every a,b €S there exixtx n €2Z% such that an €bS,
[8] . 5 is t-archimedean if for every a,b €3 there exists
n &7+ for which alebSNSb, [8] .

Undefined notions and terminology are as in [_5] and [6].

This nape~ is in finedl form #nd no version of it will
pe zubriitted for rublication clsewherc,



I'rom [i\, we state the following

TIOEORIM 1. Lvery proper right ideal of a semigroup S
is a right archimedean subsemigroup of S8 if and only 1if
one of the following conditions holds:

1° 8 is right archimedean;

2° S contains exactly two right ideals Rl and R2
which are right simple semigroup and S=RyJ Ry

50 S has a maximal right ideal M whichfis right
archimedean and M < aM for every a €5 <M.
We also use the following results

THEQ" M 2. [5, u] Let M be a proper right ideal of
a semigroup S. Then M is a unique maximal ideal if and only
if one of the following conditions holds:

(1) 8 = {a}, aZyaned

(i1) SM =JaesS| aS=S} if and only if S~ MN=PUK,
where P= {a €5~M | aM=M } is a right simple semigroup of S
and K= {a.eS\\H\ aM:S} is a two-sided ideal of a semigroup

S~ M,

COROLLARY 1. Dﬂ Let S be a nartially right simple
semigroup and M be unique maximal right ideal of S, Then !
is a two-sided ideal if dnd only [{ $i1 is a right simple
subsemigroup of S.

DEFINITION 1. A semigroun S8 is R-semigroup

—_—

if for any
a,b €S there exists n €Z% such thet a'¢ b-<a,b> .

L-senmigroup is defined dually.

Remerk 1. It is easy to verify that a semigrup S is an

R-semigroup if and only if every subsemigroup of S is right
archimedean.

THEOREM 3. Every prover subsemigroup of a semigroup S

a right archimedean subsemigroup of § if and only if one
the following conditions holds:

(i) 8 is an R-semigroupj

(ii) B contains exactly two right ideals Ry and R,
which are right simple R-semigroups, S=R1 U R2 and 5= <a,b>

o |+
iR

for every a€R;, bE&R,;
(iii) S has a (maximel) two-sided ideal M which is an

R-semigroup, S~H is a right simple R-semigroup and S= <a,b”

for every a €bM, be€S~ M.

Proof. Suppose that S is not right simple. If every
proper subsemigroup of S5 is right archimedean, then every
proper right ideal of S is right archimedean. Hence, by
Theorem 1, we have one of the cases 1°, 2° or 39 of this
theorem. If 1° holds, then every subsemigroup of S is right
archimedean so 8 i3 an R-semigroup. Suppose that 2° holds.
Then S5 contains exactly two right ideals Rl and R2 which
are right simple. Hence, every subsemigroup of Rl and R2
is right archimedean, and thus R1 and R2 are R-semigroups.
Let aél?.l and b€R2 be arbitrary elements. Then 5=<La,b7.
Indeed, if <a,b» # S, then £a,by is a right archimedean

semigroup and so
( 3x€<a,by )( Jnez™)(a=bx).

From this we have that a'¢ R which is not possible. If

b
39 holds, then @i is a unique2maximal right ideal of S, and
by Theorem 2, we have that S~ M= {a , agL)aE=H or
S~¥={a€s| a8=5]. If S \M={a}, a”yali=¥, then S is right
archimedean, From this we have that 5 is an R-semigroup.
Assume that 3 ~1Ii= {a €S | aS=8 }. Then, by Theovem 2, we
have

S~M=PUK,
vhere P :{aéﬁi\iilaﬁ=ﬁ} is a right simple sewmigroup of o
and K= {a eS8~ |ali=8] . But, in this case ¥=@. Tndeed,
if K#@, then there exists an element a € X such that

ax=a A ay=x
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ideals of & which are risht simple R-sen

mroups and S= La,b)

e M, Si M is rig imede 1d Y €M .
for some x,y€ Since is right archimedean and y,xa for arbitrary elements a.€Rl, bEZRE. Tt e and f are the
we have that idempotents of Rl and Hg, respectively, then d=<ge,f 5.

(3Am ez ((xay)e yi)

- . . +
. ) om ’ i Furthermore, ef&lly, fe €R, and there eists myn&€? such
which implies x =yu for some ué&€HM. Thus, we have | that :
1 )
2m ) : n

a=ax=ax“ =ayu=xy € I, e=(ef)’ A £=(fo)"
which is not possible. Hence, S ~Ii is a right simple R-semi- . . - 5 . . .
since Rl and iy are the R-semigroups. From this we have

group and M i1s a unique maximal two-sided ideal (Corollary 1) _
which is an R-semigroup. ef=e A fe=f.
Let a€li and beS~M be arbitrary elements and let ! Hence,
<a,by #5. Then <a,by is right archimedean and thus <eyfr = {e,f}
(3Inez")( Ire La,by )(b =ax). and thus S is a band and 18| =2, Let (iii) holds and let e
Trom this we have that b"€l, which is not possible. and f are the idempotents of Ii and S~ ¥, respectively.
Now, let S be right simple. Then every subsemigroup of Then
S is right archimedean and thus 3 is an D-senigroup (Remark 1). ' ef, fe ¢k
and
The converse follows immediately. . (Ju,nezZ)(e=(ef) A e=(re)™),
since M is an R-semigroup. T'rom this we have
ef=e A fe=e.
Hence,
THRCREN 4. Every proper subsemnigroup of 2 semigroup S Le £y = {e,fB
is 2 right archimedean with idemnotents if and only if one ant thus 3 is a band and }S]=2.
of the following conditions holds: The converse follows immediately.
1° S is a periodic R-gemirroun; From [1] we state the following.
2° 5 is o band and IS| =2.
Proof. Let every proper subsemigrour of *» is a right

LEIMMA 1. 5 is a right simple t-archimedean semigroup
arhimedean with idempotents. Then, by Theorem 3, we have if and only if 5 is a group.

one of the cases (i), (ii) or (1ii) of this theorem. If (i)

holds, then «ayis right archimedcan with idempotents for ‘ DETIRITICE 2. A semigroup S is T-sezigrouvn if for any
any a €3 and thus l a,b €5 there exists nez’ such that ale b-La,b> b,

: (Je eE(5))(Inez™)(al=e).
Trom this we have that element a is of finite o-der. : Remark 2. It is clear that a semigroup 5 s T-semigroup
Hence, 5 is a periodic R-semicvoup. But, *the cases (ii) if and only if every subscmigroup of 3 is t-archinedean.
and (iii) are possible only if < is a band and [8]=2,

Indeed, let S:ng)H? where Hl and R2 are the disjoint right



THEOTEN 5. Lvery proper subsemigroup of & is t-archimedcan
if and only if onc of the following conditions holds:
1° S is 2 T-semigroup;

L.

2° 5 ie p vand and |8|=2

Proof. Buppose that S is not right simple and let every
proper subsewigroup of S be t-archimedean. Then, by Theoren
we have one of the cases (i), (ii) or (iii) of this theorem.
If (i) holds, then 35 is right archimedean (Remark 1). Let
R(S) dcnote the union of all proper right ideals of S, If
R(B)#3, then k(%)= is a unique maximal right ideal of 8
and it iz a t-archimedean semigroup. By Theorem 2, we have
that 5~ti= {a€85)aS=8} or Sxl= {a}, a2u ali=K, If
S~ li= {a.ES \aS:SS, then S ~M is a subsemigroup of S and we
have that

(Inez)(a"¢ vSci)

for any a €i3~1t, beli, since 5 is right archimedean, which

is not possible. If 8~M= {a}, then 5 is

t-archiredean and thus & is a T-serigroup (Remark 2). lNow,

assune that 2(32)=5. In this case we can prove that & is of
the type 1°. But, the cases (ii) and (iii) are possible
only 3if 3 is a bard and [S|=2. Indeed, let 3=Rju Ty, where
Ql and .5 are disjoint right ideals of % whnich are right

simple O-serigroups and S=<a,b) for arbitrary elemcnts aERr

b € 32. Then, by Lemma 1, we have that Hl and R2 are groups.
If ¢ and f arc the identities of Rl and Rz, rcspectively,
then
(D S=c¢a,f>.
Furthermore,
efGEH_A fe € R2
and
(c£)P=(efe)f=(ef)r=et.

Since-ﬁl is a mroup, it follows that

(2) ef=e.
Similarly
(%) fe=f

Frot (1), (2) and (%) we have
S={e,f]

and thus ¢ i a band and 151=2. If (iii) holds, then | is

13

a two-sided id2nl o L oed w1 de a richt sivple seri-
croup. Yosthe vore, o ~i' is t-archiredean and by lemnma 1,

we have fthat ~0 iz o ~roun. let x be an arbitranry eleront

of I" and let 2 he the identity of S ~i.. Then,

G ey, xe, e e

for any }':EZ+ and thus
(5) B= {e,exy =<e,xe>.

From this we hnve thal x=ey for some y €85 so that
(6) cr=c(ey)=ey=x

and thus

-
<

(7 ( (ve)(xe)... (xe)=x(ex)... (ex)e=x"c.
By (5), (&) and (7), it follows that
8= {e, xXe, x2e,...j
and thus

5 2
_ I 2 1

A= 18, X'e, X'e,..07

is a subsemigroup of 5. Pince A i1s t-archimedean we have

egx eA = L

which 1s not possible. llence,

oo § ﬁ.?. 5 52 A p [

2= (e, xe, x e,...}: 1xX"e, X7e,. .7y e’
and thus

. 2 %
(8) M= {x%e, x7e,...}
By (&), (7) ané (8) it follows that
xe=xNe=(xe)"

for some k »1 and thus ' 1s a group. fo~ the identity

- -
(xe)k 15 e o this Troun e have

8= {(xe) ™, e J=1x" e e §
and thus $ is 2 band and [S]=2,
Wow, let 5 be =wight simmle. Then we have two cases:
(a) 3 is left simple. In this case I is a T-zeci~roun.
(b) If 3 is not left simple, then using the dual  of
Theowem 3, we hawe, as in the case when 5 i1z not risht
=irple, that 3 is T-serisgroun or B i35 2 band erd [3=2.

The convetso follows imediately.
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PR Y

1. DEFINITION OF (F,8,m)-ASSOCIATIVE

BJ 1.5, Putsh
- Torunr 6(1°

a, Sand of t-archiunedean semigroun, Senmisroup
73), 232-239. Let F be a (nonepmty) set and &: f = §(f), p: £ = p(f) be

' two mappings from F into the set of positive integers. If A is
a nonempty set and &: £ —~ F is a mapping from F Into the set F

| of vector valued operations such that

Stojan Logdarovié Todor lalinovid £ a0 Ap(f)/
26000 -~ Pandevo 17500 — Veanie, |
iloZe Fijade 114 eniinon i — -
& 1 LCQ31JOJa 4/16 then a vector valued algebra (A;F) is built up. We call (A;F)=A

Tugoslavia Yumoslavia
f instead of f. The integers §(f) and p(f) are called the nggEQ

We will consider in this paper a class of vector valued

algebras which satisfy the condition

(VFEF) S§(f) > m, (1.1)

This paper is in final form and no version of it will be
submitted for publication elsewhere.
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where m=p(f) 2 2 is fixed. The elements of F will be called E{i_

(Note that 1¢F).

First we will define polynomial operations (on A) inductive-

ly in the following way:
(i) 1 and every f€F are polynomial operations
(ii) 1f 9,91,...,gp are polynomial operations such that
1
G(g)=0(g1)+...+p(gp) ), then the operation h=g(g1x---xgp) is a

polynomial operation.

(Here: h(i}=9(91(£1)g2(£2)"‘gp(fp))’ where x=£j...§p and
the length |x | of the string x, is Ix 1=8(g }.)

Clearly, 6(h)=6(g1)+...+6(gp) and p(h)=p(g).

The set of all polynomial operations of A will be denoted

by PF(A)=PF. CGhviously,
(YheP ) h # 1 —> o(h) = m. (1.2)

According to (1.1), §(f)-m>0 for every f€F. The positive

integer
i(f) = &§(f)-m (1.3)

will be called the index of the operation f. The index of the

identity operation is O. We denote by P’ the set PF\(I} (of non-

identity polynomial operations belonging to PF)'

PROPOSITION 1.1. The set i(P’) of the indexes of the noni-

dentity polynomial operations coincides with the se-

migroup generated by the set i(F)=J of indexes of the

primary operations, i.e.

I(P") = <Ki(F)> = <J>.

3
) p(g) will denote the dimension, and §(g) the length of
the polynomial operation g.

17

Proof. Let h€p’, and h=gf, where g€P’, fGPF. Since
8(h)=8(f), o(f)=68(g) and p(h)=p(g), it follows that

i(h) 8(h)~p(h) = S8(f)-p(f)+p(£f)-p(g) = i(f) +i(g).

If h=gxf where

8 § § §(f
(gxf) (x3097 58097 = (qx809), £y,
then i(h) = i(g) +i(f).
Inductively, if h=g(g1x...xgp), where g€p’, g1,...,ngPF ,
then
ith) = i(g) + ilg )+...+i(g ). (1.4)
We can assume that i(g)€<J> and that either i(gv)=0 or
i(gv)G<J>.This implies that I(h)€<J>, i.e. i(P’')& <J>.
Conversely, let k€<J> and k¢gJ. Then there exist i,,...,ireJ,

B i . .
such that k=i +...+i . Put h=f (fyx1 ')...(f x1*17 7%
r 2 r

i(fj)=ij. Then i(h) = k, i.e. <> i(p’). (

r=1) where

Now we are ready to introduce the concept of vector valued

associative.

an (F,8,m)-algebra (A;F) is called an (F'é’m)'§§§9§£25£2§

1ff any two polynomial operations of A with the same length are

equal, i.e.
(g,hGPF & &8(g) = 8§(h)) =—> g = h. (1.5)

Using the notation J=i(F) and the fact that the dimension

of the operations is fixed, an (F,8,m)-associative (A;F) will be

Further on we will often write [xf(g)] [xf+m] instead

§(g)

1
and [x]=x for the identity operation.

of g(x ), where g is a fixed polynomial operation, k=i(g),

From the definition of the notion of a (J,m)-associative we

obtain the following
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PROPOSITION 1.2. If (A;J) is a (J,m)-associative, then for

every k€J, (A;[ ]) is an (m+k,m)-semigroup ([3]). 1]

(J,m)-associative.)

2. EXAMPLES OF (J,m)-ASSOCIATIVES

we will consider two examples of (J,m}-associatives.

Example 1. Let (A;[ ]) be an (m+d,m)-semigroup and let
d|i(f) for every f€F, where F is the set of all (m+sd,m)-opera-

tions obtained from [ ] by the general associative law ([3]).

Define S(f
(veer)  £(alf) = [a80F7].

Then (A;[ 1) becomes an (F;6,m)-associative.

Example 2. Let A={a,b,c}, a#b#c#a and J be a set of positi-
ve integers such that d=GCD(J)¢J. Denote by p the least element
of J. Then the set L=J\f{ap | a 2 1} is nonempty and let g be the

least element of L.

Define a set F={fk { k€J} of vector valued operations on A

in the following way:

(YkE€T) G(fk) = m+k, o(fk) = m and

k +
mtk (™) if k=q, (27 )=(¢""7
fk(x1 )= 1

)

Uam) otherwise.
We are going to show that (A;F) is a (J,m)-associative.

Namely, let h€P’ be a polynomial operation with a positive

index k€J. Then the following implication holds:

h # fq or x # (cm+q) => h(x) = (a™). (2.1)

Wwe will show (2.1} by induction of the construction of po-
lynomial operations.
If hE€F, then (2.1) is satisfied by the definition of F.

Assume that h=g(g1x...xgr). Then g#l1 and put

19

k=i(h) = i(g) + 1(91)+...+i(gr). Therefore
k = g <=> g = £, g,=.-.=g =1. (2.2)

Namely it is clear that the implicatlon <== is true. Let k=q. Then
i(g) < q, i(gv) < g and i(g) ¥ 0, which implies that i(g)=q,
i(g,)=0.

Let g#fq or gxfl for some A. In the first case we have
h(x)=g(y)=(am). In the second case, i.e. if g=fq and gA#I for

m+q)

some X, we have h(x)=g(y), where y#(c and therefore g(i)=(amL

Clearly, (2.1) implies that (A;F) is a (J,m)-associative.

3. (K,m)-SUBASSOCIATIVES OF (m+d,m)-SEMIGROUPS

Let (A;J) be a (J,m)-associative and J= L<Z<J>. Then, for
every 2€L, by the given (J,m)-associative (A;J), an (%+m,m)-ope-
ration is induced such that (A;L) is an (L,m)-associative. Note
that (A;L) is not essentially different from (A;J). Therefore,
further on, we will consider only (K,m)-associatives where K is

a subsemigroup of the additive semigroup of positive Integers.

In this case, i1f M<K, then a given (K,m)-associative (A;K)
induces a corresponding (M,m)-associative wich is called an

M-restriction of (A;K). Specially, if k€K, then we have (m+k,m)-

We note that an (m+k,m)-semigroup 1s in fact a (<k>,m)-

associative.

(m+d, m)-semigroup (0;[ ]) iff a | cep(k), aco and

(Vaf+meak+m) ﬂ§f+m] = [af+m]. (3.1)

PROPOSITION 3.1. A (K,m)-associative (aA; [ |) is a (K,m)-

subassociative of an (m+d,m)-semigroup iff (A;[ ]) is

a (K,m)-subassociative of an (m+1,m)-semigroup.
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Proof. If (A;[ ]) is a (K,m)-subassociative of a (d+m,m)-
semigroup (Q)[ T ), then (Q;[ ]') is a (d+m,m)-subsemigroup of
an (m+l,m)-semigroup (P;[ ]) ([4]). Thus, (A;[ ]) is a (K,m)-
subassociative of a an (m+1,m)-semigroup {P;[ ]).

Conversely, if (A;H ]) is a (K,m)-subassociative of an
(m+1,m)-semigroup (Q;[ ]/), then the operation [ ] defined by
d+m d+mq:

(¥x,€0) [x 1= <5771,
is the (m+d,m)-operation induced by [ ]' on @, and (A;H:]) is a
(K,m)-subassociative of an (m+d,m)-subsemigroup (Q;[ ]).

PROPOSITION 3.2. A (K,m)-assoclative is &a (K,m)-subassoci-

ative of an (m+1,m)-semigroup iff d=GCD(K)EK.

Proof. If d€K, then the (K,m)-associative (A;[ ]) is a
(K,m)-subassociative of an (m+d,m)-semigroup (A;[ ]) induced by
the (K, m)-associative (A;[ 1).

Conversely, we will show that if d¢K, then the (K,m)-asso-
ciative (A;F) of Example 2 is not a (K,m)-subassociative of an
(m+d,m)-semigroup.

Suppose that there exists an (m+d,m)-semigroup (P;[ ]),

such that A< P and

k+m k+m
(¥x €a)(VKEK)E, (x; ") = [x1 ].

Let q be as in Example 2 and g=tp+r, where dlr and r > 0.

Then
(bm) - F (cq+m) [Ctp+r+m] - [[Ctp+m]cr] _
= [a"6%) = [£,,(a"PT™e"] = [[aP77)ET] -
fq(atp“"c[) = (a")

which contradicts the fact that b#a.
Thus, (A;F) 1is not a (K,m)-subassociative of an (m+d,m)-
semigroup, and, by Proposition 3.1, (3;F) is not a (K, m)-subas-

sociative of an (m+l1,m)-semigroup as well. []

21

COROLLARY 3.3. If dgGCD(K), then the class of (K, m)-subas-

sociatives of semigroups is a proper subclass of the

class of (K,m)-associatives. [

It is desirable to have an axiom system for the c¢lass of
(K,m)-subassociatives of (m+l,m)-semigroups. Such a system is
describea in [2] when m=1, but we do not know a convenient axiom
system of (K,m)-subassociatives of (m+l,m)-semigroups in the

case m=22,

We can only state the following prbposition, which does not

give enough informations for this class of algebras.

PROPOSITION 3.4. Let (0;[[ ]) be a (K.m)-associative and let

(P;[ ]) be the free (m+l,m)-semigroup with a base Q.

Denote by = the minimal congruence on P,such that

km+k

m+k
3 ]

1 = »7) in (0;[ 1) — [a] (p™)

1

Then (Q;[ ]) is a (K,m)-subassociative of an (m+!,m)-

semigroup iff the following statement is satisfied

a,b€Q =—=> (a = b ==> a = b).[

(Above, (XT) B (g?) means x§': y.. for every ve{1,2,...,m}).

v
We note that a satisfactory description of free vector va-

lued semigroups is given In [5].
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Cc - (m,n) -IDEATL SEMIGROUPS
Cirié Miroslasvw

ABSTRACT: In this paper we consider semigroups in
which every cyclic subsemigroup is an (m,n)-ideal.

INTRODUCTION: The generalization of the ideal of
semigroups are given by S. Lajos, by a notion of an (m,n)-
ideal of a semigroup @J. P. Protié and S. Bogdanovié con-
sidered (m,n)-ideal semigroups in which every subsemigroup
is an (myn)-ideal [5]. This class of semigroups are descri-
bed by P. Protié and S. Bogdanovié [5,6]. Bi-~ideal semi-
groups, as a special case of (m,n)-ideal semigroups, are
described by B. Trpenovski L?], S. Bogdanovié, P. KrZovski,
B. Trpenovski and P, Protié [8]. The construction of the
(m,n)-ideal semigroup is given by S. Bogdanovié and S. Milié

[9]. |

Here, we consider c—(m,ﬁ)-ideal semigroups in which
every cyclic subsemigroup is an (m,n)-~ideal. In Theorem 1.5.
c-(m,n)-ideal semigroups are described by an ideal extension.
In Theorem 4.l. we have a construction of a c-(m,n)-ideal
semigroup, where results of Theorem l.1. [lO] are used ( see
also the book of S. Bogdenovié (1], Chapter VIII ).

1. ¢-(m,n)-IDEAL SEMIGROUPS

A subsemigroup A of a semigroup S is an (m,n)-
ideal of § if A"SA™CA, where m,n€ NMJ{0} ( A®s=sa®°=s ) [4].

This paper is in final form and no version of it will be
submitted for publication elsewhere.
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S is an (m,n)-ideal semigroup if every subsemigroup of S is
an (m,n)-ideal of S [5]. Every (1,1)-ideal semigroup we call
bi-ideal semigroup.

S8 is a ¢-(m,n)-ideal semigroup if every cyclic sub-
semigroup of S is an (m,n)-ideal of S. It is clear that the
class of all (m,n)-ideasl semigroups is a subclass of the
class of all c-(m,n)-ideal semigroups.

The (m,n)-ideal of S generated by nonempty subset
cor sis [c] = cJc?...Uc®2Uclsch, 1f c={a} we ob-

tain the principal (m,n)-ideal of S generated by element a
which is [a]m,n= alJ a?J...[Ja™ B alsa".

A subset R of a partisl semigroup Q is a partial
subsemigroup of Q if for x,yE R, xy€ Q implies xy€ R. A par-
tial subsemigroup R of a partial semigroup Q is an (m,n)~-
ideal of Q if RPQR™ZQ implies R®QR™ER. Q is an (m,n)-ideal
partiel semigroup if every partial subsemigroup of Q is an
(myn)-ideal of Q [5]. Q is a8 ¢c-(m,n)-ideal partial semigroup
if every partisl cyclic subsemigroup of Q is an (m,n)-ideal
of Q.

Let S be a semigroup with zero O, then S is a nil-
semigroup if for every s€ S there exists k€ N such that ak=0
[8]. A partial semigroup Q is & partial nil-semigroup if for
every a8 € Q there exists k€ N such that an ( In [6] it is
called the power breaking partial semigroup).

THEOREM 1.l. The folloving conditions on a semi=-
group S sre equivalent:

(i) § is c¢~(m,n)-ideal

(i1) (¥a€ 8) a"saCa)

(1i1)  (¥aes) [&, =&

Proof: Let a€ S and iet S be a c-(m,n)-ideal semi-
group. Then s Sang<a> S(a)ng <{@>. Conversely, let (ii) holds
and let <a> be a cyclic subsemigroup of S. Since <adT={aP:
pZm}, then every element from <a)ms<a>n is of the form aPsal
where p>m and q=n, whence aPsal-aP PaBsaPa? M ¢ ey lad &
C <8>. Thus (i¥X=>(ii).

(i1) =(iii). Then [g]

n.on= alJa?l...Ua®JelsaP &
b}
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S@ J@Uees |Jd=<ad. Conversely, aPsa™T 2], —<a> i.e.
(i1)=(iii).0

THEOREM 1.2. Let S be a8 ¢~(myn)-ideal semigroup.
Then: -

(1) S is periodic

(ii) the set E of all idempotents of S is a rec-

(111) S\E is 8 ¢-(m,n)-ideal partisl nil-semi-
group o

(iv) (¥a €8) |<@)|<em+2n+1

(v) 5 is a disjoint union of the meximal uni-
potent c—(m,n)-idesl semigroups S ={x€s (Fprem x =e}
e€E and e is & zero in Se

(vi) (’v‘e,be S) eaeb€<ambn>, where e  and e
are the idempotents from <a8)> and <bd.

Proof:

(1) Let agS. Let <a) be an infinite semigroup.
Then B=<{a®)= {a :k€ N} is a subsemigroup of § and a“®aa<R¢
€ B"SB™=B which is impossible. Hence, for every a€ S, <@ is
a finite semigroup and so E#d.,

(ii) For e €E we have that eSe(_:(e>-={e}, whence for
every x€ S is exe=e and by Proposition 3.2, [3] E is a rectan-
gular besnd. Also, for every e€ S-and every x€ S from exe=e we
have that ex=exex and xe=xexe whence ex and xe sre elements
from E and E is an ideal of S.

(iii) From (i), for every a € S\ E the cyclic subse-
migroup <{g)> contains an idempotent and S\ E is a partial nil-
semigroup. Let A be & cyclic partisl subsemigroup of S\ E
generated by element a € S\\E. Then amSangS\E implies that
a™sa™=A whence A is an (myn)~ideal of S\\E and S\E is a
partisl c-(m,n)-ideal semigroup.,

(iv) Let a€ S and PE N be the smallest natural num-
ber such that aP€ E and let aP=e. Then ap+l=aap and ap+l=apa

b

implies that ap+l=ea=ae€E since E is an ideal of S. Every
finite cyclic semigroup is unipotent, whence ap+1=e, e is a
zero in <@) and <ad={a,a%,...,aP=e}. Let p>2m+2n+l. Then for
the gemigroup B from (i) we have the same contradiction as
like in (i). Hence 2m+2n+l1>p, where p= |<a>{,.
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(v) Let x,yESe. Then, there exists p,q& N such
that xp=yq=e snd e is a zero for x and y. By Theorem l.1l.
we have that (:qy)me(xy)ne xy) i.e. e € (xy)>. Hence, there
exists T€ N such that e=(xy)T.

(vi) Let a,b€S and e, € 8), eb6<b>. Let g€ &™™>

i.e. (ambn)k=g. Then gea=ambn(ambn)k'leae amSee§<a>, whence

Be =€ye Also, ebg=eb(ambn)k_lambn€ ebSbn§<b>, whence e g=e, .
From geg =, and e g=e, we have that g=ge e, g=e e, i.e. €,8, €
€ &™™y.0
THEOREM 1.3. Let Q be a periodic partial c—(m,n)~

jdeal semigroup, E be a rectangulsr band and Q(|E=@. Let
f: 5=QUE—E such that f(e)=e for every e€E snd f/, is 8
partial homomorphism. We define an operation on S by

{xy ags in Q, if x,y€Q and xy is definied in Q

f(x)f(y) otherwise

Then S is a c¢-(m,n)-ideal semigroup.

Proof: Et_a:s€ S. Then a%sa” €Q implies amsan=ak€
¢ ). Let a"sa” ¢ Q. Then aPsal=r(a™) £(s)f(a®)=r(a)f(s)f(a)"=
=f(a)f(s)f(a). If pE N is the smallest number such that
aP¢ Q, then aPeasP lag(a)r(a® 1)er(a)f(a)P Lar(a)f(a)=£(a).
Hence, alsal=f(a) € <a>.0

THEOREM l.4. 8 is 8 c¢~(myn)-ideal semigroup with

zero if and only if 8 is a c-(m,n)~ideal nil-semigroup.

Proof: Let S be a c-(myn)-ideal semigroup with ze-
ro O and let a€ S, Then af0a®¢ @di.e, OF &), Hence, S is =
nil-semigroup. If e is an idempotent from S then 0€ <{ed={e},
whence e=0 and S is unipotent. Conversely follovs immediate-
ly.m

Let M and T be the disjoint semigroups and T con-
tains a zero O. The semigroup S is called ideal extension of
a semigroup M by T if M is an idesal in S and the Rees quoti-
ent semigroup S, is isomorphic to T [2].

THEOREM 1.5. S is g c-(m,n)-ideal semigroup if and

only if S is an ideal extension of the rectangulsr band E by

a ¢~(m,n) —ideal nil-semigroup.

Proof: Let S be a ¢-(m,n)-ideal semigroup. By The-
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orem 1.2,(iii) we have that S\E is a c-(m,n)-idesl partial
nil-semigroup and we can get S’E from S\ E by the extension
by O as like in Theorem l.3.. From this Theorem SyE is a c¢c-
-(myn)-ideal semigroup.

Conversely, let S is an idesl extension of the rec-
tangular band by 8 c-(m,n)-ideal nil-semigroup. For a€ S\E
ve have that (a@)m%(a@)ng«ae»:((a}) , where aQ is the
class of the element a of modE. Hence for all b& S we have
that (a@)m(be)(ae)t@), whence a"ba®€ <ad. Also, for e€E
we have that emSen=eSe=e(eSe)e=eEe=e.

Hence, for every a €S we have that amSanE <{a> and
by Theorem 1,1, it implies that S is a c-(m,n)-ideal semi-
group. ]

2. (m,n)-IDEAL SEMIGROUPS

THEOREM 2.1. The folloving conditions on a semi-

group S are equivalent:

(1) S is (m,n)-ideal

(ii) clscPC<e) for every nonempty CCS

(iii) [C]m,n=<C> for every nonempty CC_S

Proof: Let (i) holds. Then for every nonempty sub-
set C of S we have that <COUs<COICE(Cdi.e. CBsCcPLCY s>
E &>, Conversely, if (ii) holds, let B be a subsemigroup of
S and C is the set of generators of B, Then x¢€ B® is of the
form x=a;...a; where aiE B and y€ B® is of the form F=by.eeby
where bJ.E B. Since ai,bJ.E B and C generates B, we have that

aiE Cki(kiZ 1), bjé er(erl). Then xsy€ B"SB™ is of the form
X5y=8...8:6b;...b € CKL. . cEmsCTL, . cTnacKlt: - KmgoT14e « 430,
=KL+« e #ky=MgMgpnaT +o - e +T0=0r (03¢0 (CYC(CH=B. Hence, we
have that (i)&(ii).

Let (ii) holds. Then [¢]_ = clUc2U...[Jc™2

’
U c®sc®&<ed ... U4ed=<c)>. Conversely, let (iii) holds.
Then C¢"SCPC[C] | =<C>, whence (ii)&(iii).O]
b}
THEOREM 2.2. If S is an (m,n)-ideal semigroup, then

S is an idesl extension of the rectangular band E by a8 (m,n)-
idesl nil-semigroup.
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~

Proof: SE is a semigroup with zero. By Theorem 3.1,
[5] S\\E is a partial (m,n)-ideal semigroup and we can get
from S\\E by an extension by the zero as like in Theorem
3.2.[5]. From this Theorem Sk is en (myn)-ideal semigroup
and by Theorem l.4. it is a nil-semigroup.[]

3. BI-IDEAL SEMIGROUPS

COROLLARY 3.1. ggg_folloving conditions on a semi-
group S are equivalent:

(i) S is bi-idesl

(ii) cscC{CH>for every nonempty CCS

(iii) B[p]=<c>_§§; every nonempty CC-S

(iv) (¥a,b€S) asb<a,

(v) (¥a,b€ 8) {a,b}S{a,b’}Q(a,b>

(vi)  (¥a,b€s) Bls,b]=<e,

Proof: From Theorem 5.[8] we have that (i)&(ii)&
>(iii). Also, it is clear that (iii)=(vi).

(vi) =(v) since {a,b}S{s,b}=Bfa,b]=<Ca,b>

(v) =>(iv) since aSbT{a,b}S{e,b} <2,

© (iv)=(4ii) since for every sshb€ CSC we have that

asb€ asb<a,tpCC>.0

The folloving Theorem 3.3. and Lemma are got from

Theorem l.5. and Theorem 1l.2.,(vi) for the c-bi-ideal semi-

group.
THEOREM 3.3, S EE E_E—Ei-ideal semigroup ii and on-

ly if S is an idesl extension of the rectangular basnd E by 8

c-bi-ideal nil-semigroup.
LEMMA: Let S is s c-Ei—ideal semigroup. Then for

every a,b€ S eaegg_<ab>, where e, and e, 8re idempotents
from <a) and <bd.

‘-—_ COROLLARY 3.4. S is a bi-ideal semigroup if and
only if 5 is an ideal extengzon of the rectangular band E

by a bi-ideal nil-semigroup.

Proof: Let S be 8 bi-ideal semigroup. From Theorem
2e2¢ We have that SE is & bi-ideal semigroup and it is & nil-
semigroup.

Conversely, let S be an idesl extension of the rec-
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tangular band E by a bi-ideal nil-semigroup $4. Then ¥ is a
c-bi-ideal nil-semigroup and by Theorem %.3. 5 is a c-bi-
ideal semigroup and the condition of Lemma holds.

Let a,b,s€ 5. If asb& E, by Lemma we have that
asb:eaeseb=eaeb€ {a,b>. If asb& S\E i.e. asb=0 in %E’ then
by Corollary 3.1. we have that asb€ {a,b) in S¢ since S is
a bi-ideal semigroup, whence asb&{a,b> in S, Hence, the
condition aSb&=(a,b) holds for every a,b€ S and by Corollary
3.1. S is a bi-ideal semigroup.l]

4, THE CONSTRUCTION OF 4 C-(m,n)-IDEAL SEMIGROUP

CONSTRUCTION: Let E=IxJ be a rectangular band and
let Q be a partial semigroup such that Ef]Q=¢.

Let ¢: p—a(bp be a mapping from Q into the semi-
group Y(I) of all mappings from I into itself and, also, let
Y: p—»‘Pp be a mapping from Q into ¥(J).

For all p,q€ Q let:

L) pac =P =00, Y, =YY,

(i1) qu Q = QZFDP=const. , (Pp(Pq=const.

Let us define a multiplication on S=ELJQ with:

(1) (1,3)(x,B)=(1,0)

@) p,3)=GP_,3)

(3) (,3)p=(1,3 %)

) pa=r€Q = pg=r€S

(5)  pa& Q@ =pe=GO D ,3Y Y )

Then S with this multiplication is a semigroup [10,

5,1—VIII]. A semigroup which is constructed in this way will
be denoted by > (I,J,Q,O¥).

THEOREM 4.1. 8 is a c-(m,n)~ideal semigroup if and

is a partial c-(m,n)-ideal semigroup (m,n>1).

Proof: Let S is a c-(m,n)-ideal semigroup. Then by
Theorem 1.5. S is an ideal extension of a rectangular band E
by a c¢-(m,n)~ideal nil-semigroup T=5. Let Q=T\O=S\E. Then
Q is a c-(m,n)-ideal partial semigroup.
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From Theorem 4.20.[2]we have that S is a subsemi-
group of an ideal extension S of a translational hull {XE)
of E by T. Since translational hull ((E) is a semigroup with
jdentity, then by Theorem 4.19.[2] we have that the multipli-
cation on S is determined by a partial homomorphism £:Q»CUE)

with:
={ab if ab€Q

£(a)f(p) if ab§Q
va=uf(a), au=f(adu , wuv=uv
for all a,b€ Q and all u,vE€(XE).
The translational hull {XE) of a rectangular band
E-IxJ is isomorphic to a Cartesian product F(I)xJ(J) where
the multiplication is given with:

(@, PP, P=(D,P, Y, P
for a1l (P, 9, (P, P NeNE [3].

Also, E is an ideal of (WE) and elements from E
are of the form ((bl (PJ) where (Dl and (PJ are constant ma-
ppings i.e. for every k€I and every fea

x(®r=i and LPI=; .
Then, we can write (i,j)= ((Dl (Pa) Then
(1,)(D, DI=(PH, PHCD,P)=(P O}, PIWV)=(1,59)€ E
@D, 9)G,)=(0, 93P, PH=(P P, P PH-GY,EE

For a€ Q let f(a)—(q)a,q)a). Since f is a partial

homomorphism, for a,b€ Q, ab€ Q we have that

(@ s @ )= £a0)=2()£(B)=(D P IO, P = P,
’q)a%)b) whence (pab=q>bd>a and q)ab=(Paq)b.

Since S is a subsemigroup of E, we have that ab=
=f(a)f(L)EE i.e. (Cqu)a,‘Pa(Pb)EE for a,b€Q, ab&QqQ ,
whence b g=const. and. (PaLPb=const.

Hence conditions (i) and (ii) hold.

From the definition of a multiplication on S we
have that conditions (1) and (%) hold and

a(i )=1(a)(1,3)=(P , P D (1,9=(1,, 3
jla=(i,5)f(a)= (1,3)(@)3,9) )=(1,5@, )
%rabGQ,mk

ab=f(a)f(b)—(d5bq)a,q)aq)b)=(iquq}a’jq)aq)b)

since q)bq)a=const and (Paq)b=const. Hence, conditions (2),
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(3) and (5) hold.

Conversely, let S=§Z(I,J,Q,¢L4D where Q is a parti-
al c¢-(m,n)-ideal semigroup. It is clear that QJ{O} is a c-(n,n)
~ideal nil-semigroup and S is an ideal extension of a rectan-
gular band E by Q|J{0}. Hence, by Theorem 1.5. we have that
S is a c-(m,n)-ideal semigroup.l

THEOREM 4.2. S is a c-(m,0)~ideal ( ¢-(O,n)-ideal)
semigroup if and only if S is an ideal extension of a left
zero ( right zero) semigroup E by a c¢-(m,0)-ideal ( c- (O n)-
ideal) nil-semigroup. (mzl(nzl))

" Proof: Let S is a c¢-{m,0)-ideal semigroup. Then for
all a€ S,¢a)> must be a finite semigroup, since azmaE§<a2>mSg;
€= a"). Then § is periodic and the set E of all idempotents
from S is nonempty set. For all e€ E and s€ S we have that
es=e"s€ (ed"SCT(ed=1{e}, i.e. es=e and, also, (se)(se)=sese=
=s(es)e=see=se, Then se,es€ E i,e. E is an ideal of S. Now,
it is clear that SE is a ¢-(m,0)~-ideal nil-semigroup.

Conversely, if S is an ideal extension of a left
zero semigroup E by a c¢-(m,0)-ideal nil-semigroup, then for
a€ S\E we have that (ap)mSE§;<(aP)>=<a>, where ap is the
class of the element a of modE. Hence, for all bES we have
that (ap)m(bp)g<a> i.e. a™b€ (ad. Also, for e€E we have
that e"8=eS=e(eS)=eE=e. Hence S is a c-(m,0)~ideal semigroupl]

COROLLARY 4,3. S is a (m, 0)=ideal ((O,n)-ideal)
semigroup 3{ 329 92}! Ef S 1s an ideal extension of a left
zero ( right zero) semigroup E by a (m,0)-ideal ((O,n) ideal)
nil-semigroup. (m>1(n =1)) T -
T COROLLARY 4,4, S iS a c—(m O)—ideal ( c—(O n)—ideal)
semigroup if and only if 5 is isomorphic to a semigroup §:(I
E_Q_G;QS—hhere IIT—E_a;a Q is ;_SE;EI;E_C (m OS_;E;;i_gemlgroup
(1J1=1 and Q is a partial c- (O n)-ideal semigroup).(m>1(nz1))

COROLLARY 4.5, $ is a (m,0)-ideal ((O,n)-ideal) se-
migroup if and only if S is isomorphic to a semigroup > (1,J,
2,0, ygéfg [I]=1 and Q is a partial (m,0)-ideal semigroup
([J1=1 and Q is a partial (O,n)-ideal semigroup). (n=1(n2=21))

COROLLARY 4.6. S is a E}—ldeal semigroup 1f and on-
ly if S is isomorphic to a ggmlgroup >(1,7,9,0,¥) where Q is
a partial 9}—1deal semigroup.

Proof: By Theorem 1.[9] and Corollary 3.4.L:
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POST THEOREM FOR VECTOR VALUED SEMIGROUPS

G. Cupona, S. Markovski, B. Janeva

Abstract. The main result of this paper is the following

THEOREM. Let‘m,k,p and g be integers such that m,k,q 2 1,
p20. If (Q;[ 1) is an (m+ptg,m+p)-semigroup, then there is an

(m+1,m)-semigroup (P3;[ ]) such that QCP and
m+prqQy ot _ mtp+ + .
Ea1 ] = (b1 Py <—> [a1 P q] = [DT p]’ (")

for any a,,b,€Q. (If p=0, then we write [bT] instead of (b7).)

0. We give here necessary preliminary definitions and re-
sults.

Let n and m be positive integers such that n-m=k=21. A

mapping

1)[ ]: (ysenehx)) [x,--x ]

n m R s
from Q@ to Q is called an associative (n,m)-operation iff the

following identity is satisfied for every j€{1,2,...,k}:

ny_n+ky _ Jr.i+ny_n+k
[[X1]Xn+1] - I:X1 [Xj+1]xj+n+1] )

1 5 r

. on Q" is tne r-th cartezian power of Q;xs is an abbreviation
or e ust i it i
for th g" Tiigg (i§§ue2cedx Xgpqe++-Xg 1f a <8, and it is ,empty”
. s &) stands for (xm,xa+1,...,x8).
] This paper.is in final form and no version of it will be
supmitted for publication elsewhere.
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valucd semigroups is defined in [§]).

If [ ] is an (n,m)-operation, nonnecessarily associative,

. s
then we can define an (m+sk,m)-operation [ ] , for every s 2 1,

in the following way: [X?]1 = [x?] and
[ka+m]s = [xE[xiEtm]s_1] if s 2 2

The following ,associative law" holds:

0.1. If (Q;[ ]) is an (m+k,m)-semigroup, then for every

r,s = 1, j€{1,2,...,sk} the equality:
. sk r+s .
J.rk+m _ r.jr.rk+myr_sk qs
[X1 1 j+1 - [X1[ 1 ] Xj+-.]
is an identity on (Q;[ ]).

As a corollary we have:

0.2. If (Q;[ ]) is an (m+k,m)-semigroup then (Q;[ 1%y is

an (m+sk,m)-semigroup for any s 2 1. (In the future, we will omit
the index s in [ ]S. Thus, an (m+1l,m)-semigroup (Q;[ ]) induces
an (m+k,m)-semigroup (Q;[ ]) for any k 2= 1. We note that this
simplification in the notation is already used in the formula-

tion of Theorem.)
1f (P;[ ]) is an (m+1,m)-semigroup and if QG P such that:

m+k

m+k —_ [a1

m+k
(a)

)€Q JeQ™,

then we say that Q is an (m+k,m)-subsemigroup of (P;[ ]). In

k

this case, the restriction of [ ]~ on Q induces an (m+k,m)-semi-

Thus, the conclusion cf Theorem for p=0 can be stated as
follows:

THEOREM 1. Every (m+k,m)-semigroup is an (m+k,m)-subsemi-
group of an (m+l,m)-semigroup.

We note that the following generalization is a corollary

of Theorem 1:
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THEOREM 17. Every (m+sk,m)-semigroup is an (m+sk,m)-subse-
migroup of an (m+k,m)-semigroup.

Also, in the case p >0, the following generalization is a

corollary of Theorem:

THEOREM 2. If m,p,q and k are positive integers such that k

semigroup (Q; [ ]) there is an (m+k,m)-semigroup (P;[ ]) such
that QCP and (*) holds for any av,ber.

We have named the subject of this work Post Theorem, beca-
use there is an analogy with corresponding Post’s Theorem for
polyadie groups ([4]). The question whether Post Theorem is true
for vector valued groups is a natural one, but we do not know

the answer till now.

Further on we assume that m 2 2, since our Theorem reduces
to the well known Post Theorems concerning embeddings of polya-
dic semigroups in (binary) semigroups (see, for example [2]) in
the case p=0, m=1, and to the fact that every vector valued se-
migroup is a vector valued subsemigroup of a (binary) semigroup
([1]) in the case m=1, p>0.

We also note that in the proof of our results we use some
ideas from the paper [3], where a convenient description of free

vector valued semigroups is given.

1. Let (Q;[ 1) be an (m+p+q,m+p)-semigroup and let
(E;Q ]i | s 21, i€{1,2,...,m}}) be the absolutely free universal
algebra with a base Q, where [ ]? is an m+s-ary operator symbol
for any s 2 1 and any i€{1,2,...,m}. We will give below a des-

cription of this algebra.

If X is a non empty set, then X* is the set of all finite
sequences on X (including the empty sequence). (In other words,

X% 1s the free monoid (freely) generated by X.) If P

noted by d(x). The empty sequence (denoted by 1) has, by defi-~
nition, dimension zero. Also, we will write x? instead of

X1X2...Xr..



36

We put Q, = Q, N = (1,2,...,m} and
C_ = {ueQ® | d(u) 2 m+1}
S S

Q = QSLJCSXNm’

and

Thus we have:

1.1. u€Q iff u€Q or u=(v,i), where ve€Q*, d(v) 2 m+l, ieNm.

Now, the algebra (Q;{[ ]? ls = 1, ieNm}) is defined in the

following way:

If s > 1, u1,u2,...,us+m€§, and iGNm, then:
s+mys _ s+m .
[u1 ]i = (u] T,1).
By putting:
s+mys _ m — stmys _
[u$™M° = v <= [u]77]] = vy,

we obtain the absolutely free vector valued algebra Qs ]S,s > 1)

with a base Q, where [ ]S is an (m+s,m)-operation on Q.
Remark: We will use below the following notations:

(i) a,b,c,d (with or without indexes) will always denote

elements of Q.

(ii) x,y,z,u,v,w,t (with or without indexes) will always

denote elements of @*.

(iii) (x,3i)€Q will always mean that x€Q% is such that
d(x) = m+l.

(iv) Sometimes, for technical reasons, an element uiGG
will be denoted by (u?,i), where u“65, iGNm. (Note that (uT,i)@Q
by the construction of Q.)

We assume that the meaning of ,an appearence of u in v",

and ,w is obtained from v by substitution of an appearence of u
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in v by t", are clear. Also, the validness of the two properties

below are evident.

1.2. If u€Q and if v is obtained when an appearence of

u’€q in u is substituted by v“€Q, then vEq.

1.3. If (xyz,i)€Q, and (y,v)€Q, where d(xz) 2 1, then

u = (x(y,1)(y,2)...(y,m)z,i)6Q as well'’.

We define two relations ‘7 and B in Q as follows.
If u,veEQ, then
T s uia* v iff v is obtained from u when an appearence of
(bT+p,i) is substituted by (aT+p+Sq’i), where
m+pt+sq _ m+p . ) _ m .._
[a1 ] = (b1 ) in (Q,H ]). (If p=0, then (b1’l)_bi')

Fg :\Jﬁr v iff v is obtained from u when an appearence of

(xyz,3)€0 is substituted by (x(y,v)$:1z,j), where d(y)zm+1.

Then, we define a relation -~ by:

~iu o~ v Iff ub— v or vk U Oor Ufs vV Or v

1 1 5 by U, i.e. - is
the symmetric extension of the union of PT' and Ff

Finally, let = be the reflexive and transitive extension

of -, i.e.

s: WU = v iff there exist wo,w1,...,wr66, such that u=w_,
vEW r=0, and wj_1 ~ wj for each j€{1,2,...,r}.
Thus:
1.4. = is an equivalence relation on Q. (Namely, it is the
smallest equivalence relation containing f;’ and h{ .)

The following lemma is true:
LEMMA 1. (b77P i) = (TP i) <= TP 1) = (MP,1).
Namely, Lemma 1 is a consequence of Lemma 2, given below.

To state Lemma 2, we will denote by Q° the set

) Sometimes we use the abbreviated notation
(x(y,V)T:1z,i) for (x(y,1)...(y,m)z,1i).
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Q" = 7',y [aeq, el 3.
(If p=0, then Q7=Q.)
LEMMA 2. There exists a map £:Q » Q with the properties:
(i) &(u) = u, for every u€Q”;
(ii) u ~ v and (g(WEQ” or &(v)EQT) =—> g(u) = ¢lv).

Let us assume that Lemma 2 1is true, and (bT+p,i) = (CT*p,i).
Then, there exist wo,w1,...,wr€6 such that w°=(bT+p,i),
wr:(CT+P,i) and Wy for each j8{1,2,...,r}. Since wo,wréQ’,
glwyd=w,, E(wr)=wr, and also €(w°)=£(w1)=---:£(wp), i.e.

(bT+p,i) =Wy T W, ® (cT+p,i).

The proof of Lemma 2, that is the construction of the map
¢, will be given in the next part of this paper. Here we will

show that Theorem is a consequence of Lemma 1.
First we state two propositions.

1.5. = is a congruence on the algebra (G;[ 1%, s21).

Proof: It is clear that if u,v€Q, x,y€Q* are such that

uis v, d(xy)=m+s-1, s =21, then (xuy,i)k;—(xvy,i) for every
i@Nm, and this implies that = is a congruence.

Denote the factor algebra (Q/x;[ 1%, s =21) by (P;[ ]%, s=21
and the operation [ ]1 py [ ]. If x,y,2z€Q% are such that
d(y) zm+1, d(xz) 21, then for every ieNm we have

. m .
(xyz,l)h?(x(y,v)v:1z,1),

i.e. (xyz,i) = (x(y,v)T:1z,i), and this implies that:

1.6. (P3[ ]) is an (m+1,m)-semigroup.

Now we are ready to show that Theorem is a consequence of
Lemma 1.

First we consider the case p=0. Thus, we have an (m+q,m)-
semigroup (Q;[[ ]). Then, Q”=Q, and by Lemma 1 we have: a z b —>

a = b. Therefore we can assume that QC P, and if EaT+Sq] = (bT),
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m+sq - .
then (a1 q,l) B bi for each 1€Nm, and this implies that

(a77%9] = ™ in (p3[ ]).

Conversely, let [aT+Sq] = (bT) in (P35 1), i.e. (aT+Sq,i) x

= bi for eacg+igNm, and let Ea?+sq] = (cT) in (Q;E ]). Then we

have Loz
oy (a1

,1) and thus bi ST By Lemma 1, this implies

bi = ey This completes the proof of Theorem 1, i.e. of Theorem

for p=0.

It remains the case p > 0.

Let (Q;[ ]) be an (m+p+g,m+p)-semigroup, and let Q and
(P;[ ]) be defined as before. We have that a * u=—>a = u, for

neither of the relations aFT-u, uli"a, al;—u, ul;-a holds. Thus

we& can assume that QCP.

+p+ .
Ef [aT ptsqy - (bT+p) in (Q;[ 1), then (aT'P784 4 -
- m . .
= (b, P i) for each 1€Nm, and thus we have [aT+p+Sq1 = [bm+p]

i 1
in (P;[ ]). Assume that we also have [aT+p+Sq] = [cT+p] in
, +p . . .
(Py[ ]). Then (bT Pli) = (cT+p,1), and this, by Lemma 1, implies

m+p . m+p . .
that (b p,l) = (e, p,l), i.e. b = c, for any ve€{1,2,...,m+p}.

This completes the proof of Theorem for p > 0.

2. Here we will construet a mapping £:Q » Q such that the

conditions of Lemma 2 will be satisfied.

Define the length |x| of an element x€Q% by

1] =0, Ja] = 1, Ju, )= ul, Jtv)=]t]+]v],

where (u,i)€q.

The mapping ¢:Q » Q will be defined by induction on the
length of elements of Q as follows:

(€eD)] gla) = a.

Let u=(x,1)€Q, where XZX Xyt X, x1,...,xs€§. Assume that
for every veQ, such that |v|<|ul|, £(v)€D is well defined, and
that the following statements hold:

JECuY | <], €Ce(v)) = €(v), £(v)Fv <—> le¢vy| < |v] (2.1)
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Thus €(x) is a well defined element of Q for every vGNS,
and 1f we put
y 7 oelx )erelx)
then by (2.1) ;# x iff |y|<|x]|. Assume that y # x. Then we define
g(u) by:
(1) g(u) = g(y,i).

Assume, now, that y = x, and that x has the following form:

X = x’(y1,1)(y2,2)---(ym,m)x"
where x” has the least possible length. Now, g(u) is defined by

-

(ii) g(u) = e(x7y x"7,1).
If x = aT+p+Sq, s21 and if [aT+p+Sq]:(bT+p), then g(u) is
defined by:
(iii) g(w) = BI'P1)
(Note that in the case p=0 (bT,i) denotes b, .)

If g&(u) is not defined by either of the cases (0)-(iii),
then we put

(iv) gCu) = u.
Thus €:Q + § is a well defined mapping.

We can extend £ to a mapping £%:Q% - Q% by the usual way.
Namely,

£5(1) =1, u€Q => €%(u) = €u), £%(xy) = £5(x)g*(y)

Further on we will write § instead of &£%.

We say that x is reducible if £(x) £ x or x:x'(y1,1)-'-

-'-(ym,m)x", where d(yv) >m+1 for veEN Otherwise x 1s said to

-
be reduced.

The following nine propositions are clear by the definiti-

on of ¢,
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2.1, 8(eCuw)) = g(u).
2.2, 8(w) #u <= |g(w ]| < Jul.
2.3. glxyz) = g(xgly)z).
2.4, (xyz,1)eQ => g(xyz,i) = E(xElydz,i).
2.5. If p>0 then:
a) gluwyeqQ <==> ueq;
by €a'T, i) = (a™7 1), rell_.
2.6. If (x,1)6Q and &(x,i) = (y,j)éQ, then i = j.
2.7. If (x,1)€Q is such that £(x,1)€Q, then &(x,i)€Q for
every jeN

2.8. Let veQ be obtained from u€Q in such a way that one
appearence of u”€Q is substituted by v7€Q. If £(u”) = £(v”) then
g(u) = g(v).

_.B — -
2.9. If x—a1(y,A)z, B 20, x 22, &gly,») = (y,xeq, (x,1)€Qq,
then £(x,i)&Q".

2.10. Let xz # 1, (y,»v)€Q and suppose that &£(y ,v) =y ,v)
— — - v
or E(yv,v)EQ . Then: '

5(x(y1,1)-'-(ym,m)z,i) = E(xy1z,i) (2.2)

Proof: Let g(yv,v) = (?V,v). By induction on the lengths of
the elements of Q*% it can be easily seen that (2.2) is true if

anyone of the following four conditions is satisfied:
aj E(xy1---ymz) # XY, ey pzs
b) x is reducible;
c) vy £ v, for some ) 2 2;
d) y 1is not reduced.

In the case when none of a), b)), c), d) is true, then (2.2)
follows by the definition of ¢.
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2.11. Let [§T+p+§q] (®™*P) in (Q;[ ]), and suppose that

m+p+sq

v€Q is obtained from u€Q when an appearence of a in u is
replaced by bT+p. Then
g£(u)eQ” or g(v)EQ” ==> g(u) = g(v).

Proof: There exists an a 2 0 and U U see sl s vo,v1,...,va€§
such that

u o= ug, Vo= v,

uy = (xxux+1zx,1x), vy T (XAVX+1ZA’lx)’ 0<i<a (2.3)

u = (x a™tprsa, s ), voo= (x pM*P, ,i ).

o a1 a a o o 1 a o

It is clear that if one of the following conditions

a) g(x_++:x 2

K _eeeX Z e
o a o Zo) ? o o

o o?
b) Xy

is satisfied, then we can obtain a sequence of elements cf@ﬁ]ﬁf%,
Useeslys VEV SV 5

is reducible for some i,

,Vu such that (2.3) is satisfied, and moreover

g(u) = e(W), €(v) = £(v), [ul<|ul, |v]<]v],

which implies g(u)=g(v) by induction.
Thus we can assume that:

a’) E(XA) = X E(ZA) = z, for any i, and

A

b”) x, is reduced for any i.
If there exists a A such that E(UA) = g(vx), then by 2.8
we have g(u) = g(v).
Consider the case o = 0, 1.e.
u = (xaT+p+sqz,i), v oz (be+pz,i)

and [a77P"99) = M'Py in (5[ .
If z is reducible then we can again obtain two elements
u = (xaT+p+qu',i), v o= (be+pz’,i)

such that
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E(u) = (W), &(v) = (), [uf <|ul, [V]<Iv]

and the proof follows by induction. So, we can assume that z is
reduced.

B

17

Now, £(uW)€Q” or g(v)EQ”, iff x=c

r 20. Then we have:

2=dr where B+y = rgq,

e(u) = (Ep%a?+p+sqdr],i) =
([BaT'Pe9aY],1) -

B..m+p .Y . _
([_Tc1b1 d1],1) =

= g(v).

There remains the case o >0. By the same argument as in the
case a = 0 we can assume that Za is reduced. Also as 1in the case
a = 0 we can conclude that
I g(ua) % vy iff g(ua) = g(vu)eQ 5
and by 2.8 we will have g(u) = g(v).

Thus, we can assume that g(ua) = U and then we will also

| have E(va) = v

| The fact that g£(uy)€Q” or g(v,)E€Q” and o« >0 implies that
g(uo) #ug, ¢lvy) # vo. Let B be the largest number such that

i g(us) ? uB or g(vB) £ VB. Then we have B < o and
5(u8+1) = Ugyqo €<VB+1) = VB+1'
Since it is assumed that Xg is reduced, from the equalities
ug = (XBUB+1ZB’18)’ vg = (XBVB+1ZB’16)
it follows that E(UB) # ug or g(vB) # Vg> iff one of the follo-
wing three statements hold:
1) Xg = X (t1,1)-~-(tv_1,v—1), iB+1 = v > 1,
zg = (tv+1,v+1)---(tm,m)z’;
’ 2) iB+1 =1, zg = (t2,2)-~-(tm,m)z’;
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3) zg = z’(t1,1)---(tm,m)z“ and XBUB+1Z” XBVB+1Z’ are
reduced.
In the case 1) we have
E(us) = g(x"t,z ’18) = E(VB)
which implies &(u,) = €(v_ ) by 2.8.
In the case 2) we have
g(uB) = g(us), g(vB) = g(vB),
|EB:<|UB|’ [vg| = |V3i>
where
Ug = (XgXg, UgyaZgy 2 hig)s Vg = (XgXg, Vg, 2g, 270100

and the conclusion follows by induction.

In the case 3) we have the same situation as in 2) where

ug = (XBUB+1Z t,z77,1,), Vg T (XBUB+1Z t,z”7,1,).

This completes the proof of 2.11.

As a corollary from 2.8 we obtain the following proposition:

2.12. If u,vEQ are such that ubr v, then g(u) = £(v).

To complete the proof of Lemma 2 we need the following pro-

position:

2.13. Let u,ve€Q and Ubzv. If £(u)EQ” or £(v)EQ”, then
g(u) = g(v).

Proof: From Wbz v it follows that there exist an a 2> 0,
ux,vxea such that

=
I

5 C (XXUA+1ZA’1A)’ vy T <XAVA+1ZA’1A>’ 0gx<a

u_ o= (xayza,iu), v, ® (xa(y,l) "'(y,m)za,ia).
By the same arguments as in the proof of 2.11 we can assu-
me that:
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a) &ly) =y, &(x,) = x C(z\) =z for every »;

A2 X2

L) Xy is reduced for every .
If £(y,v)EQ” or £(y,v) = (y,v) then by 2.10 we have
5(uu) = E(va), and, by 2.8, g{u) = g(v).
Thus we can assume that g(y,v) = (bT+p,v)€Q’ and
gCy,v) 2 (y,v)
Let y be réducible and let y = y’(y1,1)---(ym,m)y", where
y” is reduced. Then, xay’ is reduced, for if it were reducible,

then we would have

X, F x’(t1,1)---(ty_1,y—1), y’© o= (ty,y)---(tm,m)y'/', y=2,
but this is impossible by 2.9.
Thus we have:
&(ua) = g(ua), E(vm) = g(va)

where

u, = x yyy Za,la), v, * (xa(y .y 0 yTy Ly ,m)Za,J

and this implies there exist u,v€Q such that
glu) = g, ¢gv) = gy, |uf < |ul, [V]<][v], EFE'V.

Thus, the conclusion follows by induction.

Therefore wé can assume that y is reduced. Then £(y,v)e€Q”,
g(y,v) # (y,v) is possible only if y = aT+p+Sq, s21. If

EaT+p+Sq] = (bT+p) in (Q;[ ]), and if we put

v

+ -
= (x b"Py ,1 )
a o 1 a a
Vy T 0 Vaeazye 1))

we obtain that ¢(v) = ¢(v ), and by 2.11 we have g(u) = g(v, ).
This completes the proof of 2.13.

finally conclude that (i) of Lemma 2 is a corollary of

2.5 b), and (ii) is a corollary of 2.12 and 2.13.
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3. We make a few more remarks.

The (m+1,m)-semigroup (P;[ ]), obtained in 1, has a univer-
sal property of this kind:

If (P7;{ ]7) is any (m+l1,m)-semigroup, such that Q€ P’ and
[T7PT9] = TPy in (03[ ) <=
_. m+p+qq - _ m+pq - - . .
<= [a7T7PT9)7 = TP in (P[]
for all av,bVeQ, then there exists a unique homomorphism
e:(P;[ 1) » (P"3[ ]17), such that £(a)=a for all a€qQ.

It should be noted that when Theorem 1~ and Theorem 2 are
considered, the (m+k,m)-semigroup used there has not this uni-
versal property. Nevertheless, by slightly modified construction
of Q, one can get an (m+k,m)-semigroup with wanted universal
property. Namely, we first construct the absolutely free vector

valued algebra Q~ of type ([ ]° [s 21} freely generated by Q,

where [ ]S is a symbeol for an (m+sk,m)-operation for all s >1.
Further, we define the relations Ij, I2, > in the same manner
as in 1. In such a way the obtained (m+k,m)-semigroup (P7;[ ]7)
is the wanted universal (m+k,m)-semigroup for the given (m+p+q,
m+p)-semigroup (Q;[[ ]). We can realize a proof of this fact al-
most without any changes, but we actually do not need such a

proof, since the universal property of (P7,[ ]7) is clear if we

have had proved Lemma 1 for k = 1.
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ON D-REGULAR NEAR-RINGS
Vulicé Dadié

Abstract. In this paper we define a class of the D-re-
gular near-rings,where D is a defect of distributivity., We con-
sider some properties of the D-reqular near-rings which gene-
ralize corresponding properties of the reguiar near-rings.

A left zero-symmetric near-ring R is a set with two
binary operations + and . such that:

O

1¥ (R,+) is a group (not necessarily abelian)

o . .
2 (R,.) is a semigroup

o

37 The left distributive law holds, i.e.

X(Y+z)=xy+xz for all x,y,z€R.

Let R be a near-rina and let (3,.) be a muitiplica-
tive subsemiaroup of (R,.) whose elements generate (R,+).
Denote by D=D(S) the normal subgroup of the group (R,+} aene-

rated by the sert
{d/d=-{xs+ys)+(x+y)s, s€S, xyeR}

It was proved in |3| that D is an ideal of R, If S is a pro-
per subset of R, then we say that R is a near-ring with the
defect of distributivity D. If we wish to stress the set S
of aenerators, tien we write (R,S). Thus, in the near-rina
(R,S) with the defect D, every element reR can be represen-
ted as a finite sum %(i)si (siES) and for all x,yeR, sgS there
exists ded such that

{x+y)s=xs+vs+d

This paper is in final form and no version of it wiil be submitted
for publication elsewhere.
Supported by S1Z for Scientific Research of SRCH.
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Specially, if D={o)Jthen R is a distributively generated (d.g)
near-ring.

if h:R*R'is a homomorphism of the near-rings (R,S)
and (R’,S’) with the defects D and D'respectiveiy, then we
reguire that (SYhES’. A right ideal A of R is a normal sub-
group of (R,+) such that (x+a)y-xyeA for all x,yeR, atA. A
right ideal A of R is an ideal of R if ragA for ali a€A, reR,
An R-subgroup B of R is a subgroup of (R,+) such that bres
for ail beB, reR. An ideal P of R wiil be cailed completely
prime if abeP implies atP or beEP.

DEFINITION 1. Let R be a near-ring with a defect of
distributivity 0. We say that R is a D~reqular near-ring,if

for all x€R there exists yER such that xyx-x€0.

Examples. 1) Every regular near~ring is D-regular,but

not conversely.

2) The near-ring whose additive group is (26,+) and

multiplication is defined by the

following table (!7],(34)p.409) is -LHl—L-Z 345
. 3(0 ¢ 0 0 0O

a D-regular near-ring, where
p=1{0,3}, but it is not regular. Fjos b 320
. 2/¢ 1 2 3 45
3. The near-~ring EA(Lb) of 30000 0 0
A—endomorphlfmes of the group (Zh’+) Ko 5 4 3 20

— ~ 3 .

for A={5,2} (4] ,Table 1,p.71) with slo 12345

D={fo,f3,f12,f13}is D-regular. This

near-ring is not regular

PROPOSITION 1.a2) Every homomorphic image of a D-regu-

_ e

lar near-ring is again D-regular.

b) A direct sum of D-regular ncar-rings is a

lar ‘near-iing toc.

C-regu-

Proof.a) The assertion follows from the fact that for
a homomorphism h of near-rings R and R’with the defect D and

D’respectively, holds (D)h&D?

b) The resuit follows by the definition of D-reqular

near-rings and by the Theorem 2.3b) of]3]
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THEQREM 1. R is a D-regular near-ring, if and only if

R/D is a regular near-ring.

Froof.Let R be a D-regular near-ring, then there is a

natural near-ring homomorphism M:R+>R/D, Since R/D is a d.q.

near-ring (]3|, Cotollary of Theorem 2.6) it follows by Pro-
position 1 that R/D is regular,

Conversely, if R=R/D is regular, then for all XER the-
re exists JER such that xyx=x. Thus, for all xER there exists

YER such that xyx=-xeD.

DEFINITION 2, We say that an eiement x of the near-~
-1ing R with a defeclt D is a notrivial D-idempotent, if
xz-st,where xgD.

Clearly, an element x€R is a D-idempotent, if and only

if x+D is an idempotent in R/D,

COROLLARY 1., Let R be a D-reqular near-vring, Then for

all x€&R and vER such that xyx-x€D, the elements xy and yx are

D-idempotents.

Prooi. Since R=R/D is a regular near-ring, the elements
xv+D and vx+D are idemnotents in R, i.e.(xy)z-xySD and

(yx)z-yxED.

DEFINITION 3. A near-ring R with a defect of dis-

tributivity D is said to be D-simple if R has not other

nontrivial ideals besides D.

Clearly, if R is D-simple, than R/D is a simple near-

-ring.

DEFiINITION 4, Let R be a near-rina R with a defect D.
We say that the element xER is D-nilpotefit if there is a na-
we sa glement = £ L S = na
tural number n such that x"€D and x" g§0. The near-ring R

has only trivial D-nilpotent elements if x €D implies xeD.

|t is evident that every nilpotent element x isD-nilpo-
tent in R,if and only if x+D is nilpotent in R/D. A non emoty
subset A of R is a D-nil subset, if every eiement in A is

D~niiporent. A D-nil R-subgroup B is nontrivial if B#0D.
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By the following coroliary we extend the part of the Theorem

2.0« in Bfto a class of D-regular near-rings.

COROLLAKY 2. Lgf R be a D-simole near-rina satisfving

the d.c.c. on R-subgroups and with only trivial D-nilpotent
ele

ments. Then R is D-reagular near-ring.

Proof.A simple near-ring R/D has only trivial hilpotent elements
and satisfies the d.c.c. on R-subgroups. By Theorem 2.1,(6)in
S|R/D is a regular near-ring. 8y using the Theorem 1 it follows
that R is D-regular,

The following theorem extends the results of \IlKThe-
orem 2) and [6], (Theorem 4.2) to a class of D-regular near-
-rings.

THEQREM 2. _L_.::_t (R,S) _!igg_leir_-_ri_n_ﬂw_itﬂ identit_y_ and with a
defect 5. Then R is D-reguiar, if and only if every princi-
pal R-subgroup of R coincides with a principsl R-subgroup
yengrated by an D-idempotent.

Proof. Suppose that R is a D-regular near=-ring, i.e.

for all x&R there exists yER such that xyx-x€D. By Corollary
1, the elements xy and yx are D-idempotent. Clearly,{xy)RExR,
On the other nand, if we write every reR as a finite sum
r=§(tsi)(si55), then we have xR=(-d+xyx} R=xyxR+d’(d,d’el).
Thus, xRE{xyx)RE(xy)R. Consequently xR={xy)R, where xy is a

D-idempotent element in R.

Conversely, let for x€R xR=zR, where z-zzso. We need
only to show that R is a D-reqular near-ring. Since R is with
identity, there exist u,veER such that x=zv and z=xu. Hernrce,
for v=3{+s.){s.€5) we have

x:zv:(d+22)v=(d+22)2(tsi), (deD)

x=2t(d+z‘)si

x=zf(dsi+zzsi+di)’ (d,dieD)

x=d'+222(f5;): (d’,dsiCD)

x—d’+sz

x=d'+zx

x=d’+xux
Thus x-xux€D and cosequentiy R is a D-regular near-ring.

LEMMA 1. Let R be a near-ring with a defect of dis-

tributivity 0. A D-idempotent element x is D-nilipotent, if

and oniy if x is a trivial D-nilpotent element.
2 R 2
Proof. Let x“-xgD, i.e. x“=d+x for some d&D. Now assu-
me that x is a D-nilpotent element in R.Thus, there is an in-

2
on n, x -xegD impli-
n-1

teger n such that xnaD.Then, by inducti

on
es x"-xgD. Namely xn+1=xn-].x2=xn_‘(d+x)=x .d+x". Assume
n

that the assertion is true for n, i.e.x -xt€D.Hence,

n+i_ n~1 . +1 -

X =X ~d+d}+x, where d,dIED and thus x""'-xxD, Therefore,
. P . z n . L.

if x is D-idempotent, i.e. x =-xe€D,then x €D impiies x&D.

The following proposition generalizes the Corollary

1 in|l],
PROPOSITION 2. If R is a D-regular near~-ring with
identity, then R contains po pontrivial D-pjl1 R-subgroups.

Proof. Asume that B is a nontrivial D-nil R-subaroup.
Therefore B contains D-nilpotent elements that are not in D.
If beEB is such an element, then by Theorem 2 there exists a

nontrivial D-idempotent c¢ (cgD) such that cR=bR. Since R has

an identity so c=c.lg€bR, i.e.c€B. Thus, the element ¢ is D-nil-
potent. By Lemma 1 it follows that c is a trivial D-nilpotent
element,i.e. cef, a contradiction.

The following result is a modification of (FP property

(171 ,p.288).

LEMMA Z, Let R be a near-ring with a defect D. !f R

has no nontrivial D-nilpotent elements, then abtD implies

ba€D and arbed for all reR.

Proof. If aben, then (ba)'=ba.ba...bacD.But,since R has

. n
no nontrivial D-nilpotent elements,it follows bagD.Also,(arb) =
=arb.,arb...aru. Since batD and 0 is an ideal of R,we have

N
{arb) €b,i.e. arbeD.
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A part of the following thoerem is a yeneralization
of a statement proved by H. Bell in {2].
THEOREM 3. Let R be a near-ring with a defect D#R

and having no nontrivial D-nilpotent elements., Then R conta-

ins a family of completely prime ideals whose intersection

is D. Moreover, if R is a D~regular near-ring, then R/D is a
regular d.g. near-ring which is isomorphic to a subdirect sum

of div&siog rings

Proof. Since D#R there existL muitiplicative subsemi-
groups which do not contain the elements from D. By applica-
tion of Zorn’s Lemma there is a maximal subsemiaqroup H with

respect to excluding the elements of G.Define
AD(M)=(XER/axED for at least one agM}

Wwe first prove that AO(H) is an ideal of R. |Fu,v€AD(M),then
aueD and bveD for some a,beEM. By Lemma 2 we obtain abugD and
abveD, i.e. ab(u-v)ed. Hence u—vaAD(M). Also, al(x+u-x)=
=ax+au-ax€D and so x+u-x€AD(H) for all uEAD(H),xeR. Furtner
for all usAD(M) and x,yeR we have a ((x+u)vy-xy=(ax+au)y-axyeD,
because D is an ideal of R. Thus ((x+u)y-xysAD(M) and AD(M)is
a right ideal-of R, By using Lemma 2 it is easy to show that
AD(H) is a left ideal of R. Consequently, AD(M) is an ideal
of R.

M is the set-theorvtic complemet of AD(H). It suffices
to stow that R\M < AD(M) holds. Namely, if xgM then the multinlicative
subsemiqroup aenerated by M and x must contain the elements from D.Hence,
some finite product containing the elements x and méM as at least one
factor, belongs to D. By using Lemma 2 we have (mx)nCD

for some integer n and thus mx&D, i.e. xEAD(M)g

n L
Now we prove that [ AD(M)=D. Every element x in R
(x§D)does not belong to at least one of the ideals AD(H).

Thus ﬂ A (M)=D. Since DSA (M) for any M, it follows A (#)=0

D D

1f R is a hb-reqular near-ring, then by Theorem 41 R/D
is regular. By using the Corollary of the Theorem 2.6 in|3]|
it foliows that R/D is a d.g. near-ring. Also, R/D nhas no

nontrivial D-nilpotent eiements. From Theorem | of|8|we get
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Chai N oo s e .
that R/D is isomorphic to a susdirect sum of division rings

DEFINITION 5. A near~ring R wit

h a defect D is a
D-subdi C i - i e o
: ubdirect sum of near-rings Ri’ if and only if there exist
the idea} i€ f i il = . N
the eals Ai (iei) of R with Th =D and Ri=R/Ai as near-rings.

Froof. -dire i
Let R be a D-direct sum of hpear-rings R.. Thus

there exists a famil of i
ti Ty |d§al> Ai of R such thatRi=R/Aiand

n —_
. A.=D. From this it foll DR, n A
i ol lows n, = Ki=Ri and ; 5L= D becaus
i Ay = D. Thus § 's @ subdirect sum of near-rinas R.. By
i : i
using the Corollary of the Theorem 2.6 in |3fwe have that
R/0 and Ri are d.g. near-rinags, because DGAi for all igt,
.. R . .
Conversely, if T is a suE?lrec; sum of ngar-rings
R., then there exist id L — i f i
; 2 R ideals ) of o With e D and
) . D +R
R.&2— S — =2 =R
| Ai ince Ai Ai we have Ri_i. Also ? Ai= D, because
T T '
A
i D = 0 . Thus R is a D-direct sum of near-rings R..
i ¥

By using the Definition 5, we can exiend the Theorem
! |n[8lto a class of D-reqular near-rings expressing this

resuit in the form of a D-subdireci sum representation,

THEGREM 5 tet R be a D-reguiar near-ring with a de-

fect D. Then R is isomorphic to a D-subdirect sum of divi-

sion rings, if and only if R has no nontrivial D-nilpotent

elements.

Proof. Let R be isomorphic to a subdirect sum of

?|v|510n rings R;, then there is a famijy of ideals .
Tel) _ = - n . oL
! ) s?gh that Ri R/Ai and ? A.=D. Thus x '&D implies
x EAi for all i€l. Since R/Ai has no notrivial nilpotent
elements, then from (x+Ai)n=xn+A.EA. it foliows x+A.EA

i i i [
Hence xSAi for ali igl, i.e xepD. Therefore R has no nontri-

vial D-~nilpotent elements.



Conversely, if R has no nontrivial D-nilpotent ele-
ments, then R/D is a d.g. near-ring and &/D0 has no nontrivi-
al nilpotent elements. By Theorem | R/D is a regular near-
ring. Using Theorem 1 in 8], it follows that R/D is isomorp~
hic to a subdirect sum of division rings Ri-Consequently by
Theorem 4, R/D is isomorphic to a D~subdirect sum of division

rings Ri'

COROLLARY 3, ff R is a D-regular near-ring without

nonirivial D-nilpotent elements, then additive commutator

f R is contained in D.

Proof. By the Theorem 5> R iy isomorphice to a U-sub-
direct sum of divison rings RI' Thus, there is a family of
ideals Ai such that ?Ai=0 and RiE R/Ai' Hence, the additive
group of R/Ai is abelian. Consequently for any Ai the addi-
tive commutator of R is contained in Ai i.e it is contained

in D.
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FREE VECTOR VALUED SEMIGROUPS

Donc¢o Dimovski

Abstract. The aim of this Paper is to give i
o act, a combi-~
natorial description of free vector valued semigroups. o

O. Vector valued semigroups are defined in [1],
where the question about a suitable description of free vec-
tor valued semigroups is stated. In this paper we answer this
gueslion, i.e. we think the answer is satisfac%ory. I thank
Frofessor Cupons for the helpfull conversations during the
course of this work,

. 1. Here we recall the necessary definitions and
inown results. FProm now on, let ‘m,m be integers, such that
222 oand n-m=X% 21,

tet Q be a nonempty set and ( 1:Q% — Q" a map.
e Lt 3 ; 3
Hope, U is the i°B product of Q.) Then we say that
(w0 @) is an (n,m)-groupoid. If LI((ayyennra ))=(byqayb )
» . TR G o! j
oy we ot [al] = (bT), where cg stands for cic;
if 1 % j, aud for the "empty sequence" if i > Je
¥¢ say that an (n,m)-groupoid (Q;[1) is an (n,m)-
scid, oup  if for each 1 <j<k , the identity
(0.1 Ly n+k - [ Jr.j+ny_n+k -
) [lxl]xn+1] xl[xj+1]xj+n+l
ol i (Q;L‘Do
. ¢or piven (n,m)-groupoid (Q;L ) and integer sz1,
anl (uhlm,m)igroupoid (Q;1Y) is defined by:
LY =01
(1. v (5+1)k+mas+1l  def nq_(s+1)k+m3s
[ ] g [[xl]xn+1 ] .

(
\

SREELER
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By taking Q with all the [ 18 , S21, we get an m-dimen-
(Q;{C2%\e » 1}). The proof
of the following féct is by induction.a

Proposition 1. An (n,m)-groupoid (Q; L 1)
(d,m)~semigroup if and only if for each r,s = 1, and each
0 < j < sk, the identity

rk+mir Sk rk+m sk S+
(1.3) fﬁg[y j+l Exl RAY 3+l

holds in the. vector valued algebra (0;4[1%)s = %), e

To each (n,m)-groupoid (Q;L 1)
two universal algebras (Q; []l,..., []m) and

(Q; {L]E\sal, 1<is m}), defined by )

sional vector valued algebra

is an

we can associate

. LI -T2
(1.4 S§+m 5 ' sk+mqs
[557)° = D) <> x5 =55 &
These universal algebras are called component algebras for
(Q; [ 1). The definition of (n,m)-semigroups and Proposition 1.
iuply:
Proposition 2. (4) An (n,m)-groupoid (Q;[1) is an
(niyt emigroup if and only if for each 1 £ i £ m and each

-

4

n)-se
£ J € Ik, the identity
(1.17)

- n 0, _n+k +n 3+n n+k
{[lel"‘lxl]mxn+l i l §+l]1"'[xg+l nXj+n+

holds in the algebra (Q; []l,..o, []m).
(B) An (n,m)-groupoid (Q;[71)
if snd only if for each 1 ¢i < m, Ty82 1, O0£J £ Xk, the

is an (n,m)-semigroup

identity ]
(1.37) [xd[yrk+m]i..' §k+ ; 351 [xl rk+mxifl §+r
holds in the algebra (0;{[ ]i |s =1, <isg m}) . 1

2. '"he fact that the (n,m)-groupoids can be charac-—
térincd Ly the associated component algebras, allows us to
translate all the notions from the universal algebras to the
class of (n,m)-groupoids., It is clear that each of these no-
tions can be defined directly for the (n,m)-groupoids. The
same 1y true for the (n,m)-semigroups. Here we do not give
explicit formulations of the corresponding definitions.
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Proposition 2. implies the following:

Proposition 3. An arbitrary ncnempty set B is a
basis of a free (n,ﬁ)—semigroup, and moxeover, B
thought as a subset of the (n,m)-semigroup. B

can be

The Proposition 3. is stated in [2], but a suitable
description for free (n,m)-semigroups was not given. The aim
of this paper is to give a combinatorial description of free
(n,m)-semigroups,

In the following, for a nonempty set X, the set of
all finite sequences with elements from X will be denoted
by x*,

Let B be a nonempty set. VWe define a sequence of

sets B_,B.,...,B_,B by induction as follows:

0?71 p’ p+lrccct
Bo = B
Let Bp be defined, and let C_ be the subset of

sk+m €B

B; which consiscts of all elements uy ’ sy 521,

Define BpTL To be BPU CPX U\Im ; where E\Im = {1,2,...,1:1}.
Let E = UPZO Bp "
Then «u€¢B if and only if ue€B or u = (u]S_k+m,i)

for some u,<B , szl, i€ wo .

Homark., By giving different "names" to the elements
We may assume that for each p, C XN N B = @, and
B; does nol conitain elements of the form ui y T22, u €B .

. P
efine a length for elements of a map

in B,

B, i.e.

{ 1:B-— @ , @~ the set of positive integers) as follows:
If ue€ebB then J|ul = 1;
. _ sk+m _
It w = (uy7 7,1) then jul = lugl +lusl+eeatiug, .

5y induction on the length we are going to define
amop ¥Y:B-—+B ., Por beB, let ¥Y(b) = b. Let' uel and
suppose that for each v e€B with ivi< |ul, Y(v)€EB , and

(2.1) It Y(v) £ v then }¥P(v)l < lvl;
(2.2) YOP(v)) = ¥P(v)

Let u = (u Sk+m,1). Then, for each o, Y(u)=v,€ B
inodsiined, 1M(ul < lugl and P(¥(uy)) = \P(ud). Let

slm
('v']) -t T";,l) .
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(1) If for some o, u, # v, , then |v,|<|uy}, and
so, (vl <lul. In this case let Y(u) = ¥Y(v).

Because |9l < |ul it follows that ‘¥Y(v) is defined,
and ‘moreover, (2.1) and (2.2) imply that [YC)) = 19(v)] < vl < Jul,
P(u) £ u, ang Y P)) =P(P(v)) =Pv) = Plu).

(i1) Let wy = vy for each «. Then u = v. Suppose
that there is 36{0,1,2,...,51{} and r 21, such that
Uiy = (wikﬂn,v ), for each Y €N , and let t be the
smallest sucn J . In this case, let

k+m _sk+m
W(u) = \P(u r ut+m+l’1)

Because l(ul wi‘k“‘m uB 5)[ <lul it follows that

Y(u) 1is well defined, and moreover, (2.1) and (2.2) imply
that Y(u) £ u, [Y@)| < |lul and YY) = Y(u).

(iii) If P(u) cen not be defined by (i) or (ii),
let Y(u) = u. In this case, Y(P(u))= Y(u)=v and |{Y(u)}={uj.

Ny

he above discusion and (i), (ii) and (diii)
complete the inductive step, and so we have defined & map
Y:8B —» B , Moreover, we have proved the following:

Lemmns 4, (a) Por beB, ¥Y(b) = b,

) (b) For each ué€dE, W)(u)l jul.
(c) Yor ueB, if Y(u) # u, then |¥Y(uw)| < {ul.
(d) Yor each ueB®, PY(Y¥Y()) =¥). &

llext, we have the following lemmas.

Lemma 5. Let u = (u5k+m

for 1 sd < sk+m, Then:

,ide B and let vy = ¥P(uy)

(a) P(u) = \P(vik+m,i); and
(L) P(u) = gp(uel—l Vg usdk:i],i) for each 1 <o« sk+m,

roof, (a) If wuy = v, for each « , “then (a) is
obvious. If there is o{ , such that uy # vy , then (&)
follows from (i)

(b) If uy = vy , then (b) 1is obvious. If uy £ v,
then (b)) follows from (a), Lemma 4.(d) and (i) . &
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_ Jomna 6, et u = (u SKHR1),  3€(0,1yeu0,8k], and
u;, = (vi ,d) for some r =1 and each o(e{_N Then

dbd
rk+m sk+m
Plu) = ‘P(u uJ+m+l’1)_ .

Proof., By induction on the length.,

(4) Let \P(ut) = W # u. for some lst<j or
Jtmtl €t g ském, or W(v_) = z_ £ v_ for some 1 «qxrktm,
Then Y(u) 1is defined by (i) ‘and Y¥(uw) =¥(w) where

= (vSk’Lm,i) W, o= Y (up) for esch 1l<@3 < sk+m. Because

fwl<jul, by Induction, and using Iemma 5. (a),

P(w) =¥(w) = \p(wi(zrkm l)...(zrk+m,m) gfx;xfl’l)
—\p(w' r1(+m sk+m i) =

j+m+1’l
= \P(\p(u . .\o(ua. )\a(vl). . Pl

- j rk+m sk+m .
\P(u j+m+1’1) N

rk+m)?(uj+m+1)‘ ° '\p(uslﬁm) »i)

Above, P(uy) was denoted by wy , and “p(vb,) by zy .

(B) Let Y(uy) = uy end Y(va) = v for each
ledej, Jtm+l « L ¢ sk+m and 1 < A srkim, and let

k17('v'§‘“'m,c;(') # (v'{}”m,o{) for scme 1 =< o < m. Then

YIEEE ) must be defined by (ii), since Y(va) = vs for
each 3. 8o, there is O =<t <rk such that Viry = (W§k+m,v)

fédr each V €N . By induction, since ](Vikﬂn, vl «jul, we

have that \P(vrk+m, ¥) = W(vt wpk+m gf;fl’ ¥) for each ¥.

Then, by induction, and using Lemma S5¢y

Y () - MCTE S DI GV DI
t I+ rk
- Qe B GTID L WD ST e
g f e i e

Y J ¢ pk+m pk+m k+m sk+m
?(u 1(w 1)...(w )v£+m+1 J+m+1’l) =
rk+m sk+m .
*P(u ,j+m+l’l)'

Above, we lhiave applied Lemma 6. on w and z where

]

. de,t . pkim  rk+m t pk+m rk+m sk+m
Cog vy o) 0 v peg 1) eee(vy Wy FETL )Lty

_ J . t¢ pkem pk+m rk+m sk+m
- (ul v]‘(u1 ,1)...(w ,m) Vermtl Sirmel

sucible, since  |wh < lul and  \z\ < |ul.

1,i) and

yi); It was
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(€) et Pluy) = uy for each 1 ¢ d < sk+m. Because
of the assumption in the Lemma, it is possible to apply (ii).
If the given 'j is the smallest such number, then by (ii)
H) = g RS,
If not, let t be the smallest such number. Then for each
yeER, u.,, = (zpk+m, ¥), and because t«j and u,j+-(’éut+m
for each 1 =+« ¢ m-1, it follows that t+msj. Then by
induction and (ii),

t k+m _j rk+m k
AC ‘P(u Zp u%+m+l(v ’1)"'<Vr +m'm)ugfn+1xflrl) =
- t pk+m J rk+m _sk+m
= ‘p(ul el Ytem+l V1 u;}+m+l'1) =
t, pk+m pk+m rk+m sk+m .
= ¥ luy(z D)oo (BB myad ) vT Uimeyol) =
- ‘P(uJ v,r}c+m usk+m i)
171 J+m+1? ¢
Above, we have applied Lemma 6. on w = (ul pk+mu§1:;$xl’l)
and (uJ lk+mu§}:;’1fl,i); ‘It was possible since [wl < |ul

and (w’l < lul |

Now', let Q =¥(B) . By Lemma 4.(d),
cAulued, Yu) = ut.
Deilne amap [1 Q" — Q° ’ ‘
(2.%) [ul] = (v‘f) = vy = ‘P(.ul,i) for each i &M
. Bbecause u.€ Q, it follows that (u?,i)ég, and so0:
P(ul,i)e @ for ecach i €N . Hence [ 1 is well defined.

heorem 7, (Q;T 3) 1is a free (n,m)-semigroup with
o basis D,

, y +n n+k m
' lroof. (4) TLet [xJ[xg_”_ J+n+l] = (8y) , and
[x 5!’:‘]‘] = (b]). Then = ‘P(ngll, o) and
= Y’(x ]’ J{gfgkl,l) for each of,i € DN . Lemmas 5. and

. j +n n+k
G ?.mply that sy = \P(XJ(X%+1'1)---(XJ+l,m)XJ+n+1,l)

\P(xn+k,1) for each i € [Nm .

Gt ek n+k m n

vn Fho other side, let “xl]xuﬂ.-l = (cy) and [xl] (dl)
siwilarly as above, Lemmas 5. and 6, imply that for each

. v n+k .
e \f)(x k,l), i.e. a; =c;. Hence, for each

L : n u+k +n n+k R
Pk, Xn+1‘l [xl [_xgﬂ jens1d o teee (Q5 (1) is
mo () uxTu't;I‘OUp-
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(B) Because ¥Y(b) =b for each b€ B, it follows
that B<Q, Let u = (uSk+m,1)e Q, and suppose that for
each 1 o € sk+m, U.,{E(B> where <B> _is the (n,m)-subsemi~
group of (Q;[ 1) generated by B. Since u. € ¢B>, it follows
that fu k+m] = (a ) €¢BY, i.e. a; €<B7 for each i€ (N .

But a; = \o(uﬂk+m,1) = P(u) = u, since ue€Q, i.e. ue<lB?,
Hence, (B) 0, i.e. (Q;C0 is generated by B, Here we
have used (1.2) and Proposition 1.

(C) Let (G;L1 be an (n,m)-semigroup and let
f:B—~» G be @ map., Define a map g:Q —=G, by induction,
as follows: for bEB let g(b) = £(b); and

yi) = x. <=7 (xrf

skim s [g(ul)...g(usk+m)].
This map is well defined, since (u]s_k+m,i) = (Vikﬂn,j) for
elements from Q implies that 1 = J, s =1, and uy= vy
for each 1 £ A <sk+m, Let h:B — G be the map go'P, i.e.
n(u) = g(¥(u)). It is clear that h\, = g. Now we are going
4o show by induction, that h(uSan,:L) = [[g(ul')...g(usk+m)__\i
for each (uSle,l)eF with udeO. Since uy € Q, it
follows that “P(uSkﬂn,l) is not defined by (i).

Ir ‘P(uSk+m,i)
sk+m

g(uy

(uikﬂn,i), then
b1) = (u] Telupdeceglug 5 .
If ‘f)(uSan,:L) £ (uSk'Hn,:L), then \P(u5k+m,1) is

defined by (ii). Let p = rk+m and Uy, y = (vl,v) for each
\)(-ZEI‘Im. Then

PSR 1) )- g(P(ud VP uTE 1) =
=[50y e e 8(05)8(v ) e 0B(v IECug, 1 g ) e eBlugy )] 5
'”‘[[‘5(“1)‘g(uj)[g(vl)‘G(VP)-.‘)g(u;jﬂnﬁE)'g(uskﬂn)]i:
=Eg(ul)...g(uj)ﬂg(vl)... 8(vy))y eeee
"[g(vl)"'g(vp)]mg(uj+m+1)“’g(u k+m)]'
= [g(ul)...g(uj)g(\fp 1)...g(vp,m)6(ua+m+1)

b 'g(usk+m)]i =
~[Buy)guy)ECuy, 1 )8y, )8Cu s, 0,1 )8 Cuge )]

sk+n

h(u ,1)
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The above implies that g is an (n,m)-homomorphism, since

a([uf™];) = g(P()™,1)) = bluy™,4) = [8Cay)eeesy,y)];,
k+m

iece gm([u1 1 = [g(ul)...g(uk+m)].*|

Remark 8, From the construction of Q, it follows
that B ic a free algebra with signature {[1f|s»1, ie O]
generated by B, where []i denotes an sk+m operation.
It uel, then we can say thet Y(u) is an "irreducible
representative" of u. The definition of Y implies that
Y(u) 1is obtained from u by a finitely many transformations

of type
oo (VERY 1) R ) L 1) o (e o 1)

and Lemmas 4.,5., and 6, imply that ¥(u) does not depend
on the ocder of those transformations.
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oN (3,2) -~ GROUPS

Dondo Dimovski

Abstraect. The goal of this paper is to put together
some kuown facts about (3,2)-groups. Some equivalent defini-=’
tion for (%,2)-groups are given. It is mentioned that finite
(3,2)~groups do not exist. An elementary proof that finite
(3,2)~groups with less than 12 elements do not exist is given.
At the ond, it is shown that (3,2)-groups do exist, by giving
a combinatorial description of & free (3,2)-group without ge-~
neratoru. Such & group is counteble-infinite.

0. Introduction. Vector vslued groups are defined in
[1]. Here we focus on vector velued (3,2)-groups. A (3,2)-gro-
up is a set G together with a map [ J: 2= G° satisfying
the following conditions:
(1) [((xyz]t] = [kfyzﬁﬂ , (eassocistivity); and
(2) Yor given a,b,c € G, there exist x,y,z,t€ G such that

[axy] = (b,e) = [zte] (molvabllity of equations).

Because of (1) [[...[Ixyi]t]...]uﬂ is denoted by
[xyzt...u]. .

In [1], Theorem 4.3 it is stated that a free (3,2)-
sroup is nuntrivial, i.e. has more than one element. Although
the statement is true, the proof has some gaps. In professor
Cupona’s seminar at Skopje, we tried to f£ill up these gaps.
lu this puper, a combinatorisl description of free (3,2)-gro-
ups Jltuout generstors is given, showing that they are nontri-
si2l. scsides this, we give some basic facts, equivalent defi-
niviuns, eund nouexistence conditions for (3,2)-groups.
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1. Basic facts. Let (G,[7]) be a (3,2)-group.
Proposition 1. (G2,a) where (x,y)-(z,t) = [xyzt],
ig & group with identlty element a pair Se,e). Moreover:

1) (xye)+(e,y) = [xeey] = (x,7) ;

2) [xyz] =[xab) <> (y,z) = (2,b) <=7 [yzx] = [abx] ;

5) Yor each x€ G, there exist unique y,z€G, such that
{xyz] = [3zx] = [zxy] = (e,e), end if x =y or y =z
or z =Xx, then x = y = z ; and

4) For each x¢ G, [xee} = [eex].

The proof of this Proposition is given in [2]. ®
We denote the pair {xee] by {(x),A(x)). This de~
fines wmaps o,A:G —» G, In this notation, for each x,y,z€G

[xyz] = [xyl(2)A(2)] = [xd(3)B(3)z] = [L(x)A(x)yz] . Horeover

led(e)Ae)] = (e,e) = («(e),A(e))e((e),B(e)) .

Froposition 2. Let £:G° —»G° be the involution

£(x,5) = (y,x). Then (G,LI), where [xyz]’'= £([zyx]), is =
(3,2)-group. In the group (G“,°) asmociated to (G,[T), the
pair (e,e) is still the identity element, and
f((xyy)e(z,t)) = £(z,t)+2(x,¥y). Moreover, d'=p end p'=d
i.e. ('(x),A(x)) = [xee) = (B(x),d(x)) .

Proof.(i) Associativity: [[xyz}‘t)’ = [t([zy=x1)t])’
2(Tee(e((2gxI]) = £([t[z2y)]) = £([[tz3]x]) = -
[x£([tzy))]" = [x[rzt]']’.

(ii) The solvability of the equstions for [ 1
follows from the solvabilit& of the equations for [ 1 and
the fact thet f is a bijection.

(iii) The operation o on 2 is defined by
{x,7)0(2,t) = [xyzt]" = £(£(z,t)-£(x,¥y)). Hence,
(xy7)0(eye) = £(f(e,0)+2(x,y)) = £((eye)2(x,y)) = ££(x,y)

= (x,7) , and
[xeel’ = t([eex]) = £(K(x),A(x)) = (A(x),d(x)) . B

Froposition 3. If for some x€G (i) o (x)
(i1) A(x) = x, or (11L) A(G)NB(G) # P , then |G|

Proof. Because of Proposition 2. 1t is enough to

"

il
u

X, OT
1.

congider only (i) and (4ii).
(i) Let o(x) = x. Then [xee) = (A(x),A(x)) =
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= [xA(x)ee] implies that [A(x)ee] = (e,e). Now, for each
zeG, (z,8(x)) = [2A(x)ee] = [zee] = [eoz] = [A(x)eez] =
= (B(x),z), implies that =z =/43(x), f.e.lGl=1,
(41i) Let of(x) =/A(y). Then frbm [xee] = (of(x),A(x))
and [yee] = W(3),A(3)) = ((¥),d(x)) we have that
(W(7),x) = [d(y)xee] = [L(F)ot(x)A(x)) = [yeea(x)] = (3,A(x)),
i.ca 3 =ol(y). Now, (1) implies that |Gl= 1. N

Yroposition 4. (1) If e €d(al(G)), then |Gi= 1,
(2) If for sove x€G, x = L(l(x)), then e €/B3(G).
(3) If for some x€G, x = A(A(x)), then e € &(G),
(4) It e e A(A(G)), then iGl= 1.
(5) If for some x,y€G, x =o«((x)) and y =A(A(y)), then
1Gl= 1,

Proof. (4) follows from (1) and Proposition 2.
(%) follows frouw (2) and Proposition 2. (5) follows from
(2), (3) and Proposition 3.(iii).

(1) Let e =ol(d(x)), 1.0. [d(x)e0] = (e,AW(x)).
Then, [Al(x))ee] = (e,ol(x)) = &K(B(x))),AAA(x)))), i.e.
oL(G)N A(G) # & . Now apply Proposition 3.(iii).

(2) Let x = L({(x)). Then [xee] = («(x),A(x)) =
= [«(x)eeh(x)] = [_d(d(x))ﬂ(ok(x))ﬂ(x)] = [ xAld(x))A(x)]
implics that Al(x)) = A(x) = e, 1.e. e€p(G). &

2. Equivalent definitions of (3,2)-groups. The next
Proposition gives an equivalent definition for (3,2)-groups,

analogous to the definition of (ordinary) groups via a bina-
ry, unary and nullary operations.

Troposition 5. The existence of a (3,2)-group struc-
ture on a set G is equivalent to the existence of: maps
[1:6° —» G° and g:G — G, and an element e€G =matisfying
the following conditions: (i) The map [ ] is sssociative, i.e.
(Gorzitl = [x{yze]) 5 (11) [xyeel]l = (x,3); (i1i) g = idg;s
and (iv) [xg(x)g2(x)] = (e,e). We say that g is the
{ 1-inverse map,

roof. Let (G,[71) be a (3,2)-group. Then (] and
¢ €6 (Jroposition 1.) setisfy (i) and (ii). For x€G, let
g(z) = y, where [xyzl = (e,e). Then Proposition 1. implies
thal. (1ii) and  (iv) are satisfied.
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Conversely, let [ 1, g, and e€G De given, satig~
fying (1) to (iv). The condition (i) 1= the auociativgty
tor £ 1. Let e,b,c€G. Then (b,c) = (pceel = [beg(a)e (a)al
='[eebéj = [ag(a)gz(a)bé] implies that [axy) =2(b,c)=[uva]
for (z,y) = [g(a)ga(a)bc] and (u,v) = [beg(ade (a)]. 1

. Proposition 6. The existence of a (3,2)-group struc-
ture on & set G 4is equivalent to the existence of a group
structure on G~ and elements e,e”, ol , A €G =satisfying
the following conditions: (1) (e’ ,0) 4is the identity element
1n the group G2 (2) (x,e)(e’,3) = (x,7); and (3) W,A)(x,e)
= (e’ ,x)(«,).

Proof. Let (G,L1) pe & (3,2)-group. Then (Ge,-) is

_a group (Proposition 1.) and e = e’, o=d(e), A=Ae)

gatiszy (1), (2) and (3).
Conversely, let G~ be & group and e,e’, A, B € G
satisfy (1), (2) and (3). Define a map [ 1:G T‘?(} by:
[xyzl = (x,e)(,A)(T,2)0 , )
i z) = 119)(0(,{5)(799) e’ ,2) =
e 4 e = EX,e)(e',y)(d,A)(e',Z) = (x,7)(dyPA)(esz).
(i1) [Ixyedt] = [xzl(,m)(e”,t) =
(x,7) (L, ) (e y2) (oL, B)(e”yt) =
= (x,e)(e’ 7)) (L, M(d,A)(z,e)(e yT)=
(x,e)(lyB)(7,8) s B (24%) =
(x,0)(ol4B) [yzt] = [x[y2t]] .
(iii) For given &,b,c€G, [axy} = (b,c) = [uvs]

where (x,y) = (d,ﬁ);l(a,e)“l(b,c) and
(u,v) = (b,CD(e’,a)'l(ol,/ﬂ)'l . R

vroposition 7. The existence of a (3,2)-group struc-
rure on a set G is equivaslent to the existence of a group
structure on a set H and X€H, such that |X} =Gl and each
‘ is a2 unigue product of two elements from X,

il

#

il

element from H
Proot. Let (G,[1) be a (3,2)-group. Define
1= {(d),BE | x€GY.

‘"hen iToposition 1. implies that each element from the group

(02 .) is a unique product of two elements from X, and |Xl=1Gl.
?
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Conversely, let H be a group and X< H satisfies the
condition from the Proposition. Then the map r:x2 ~—»H
defined by £(x,y) =.xy, is a bijection..Define LI on X by
lxyzl = I"l(xyz). Then [xyzl = r—l(r(x,y)z) = r_l(xr(y,z)),
and so: [[xyz]t] = I_l(f([xyz])t) = I_l(xyzt) = Ix{yztl].
Horeover, for given a,b,c €X, f'l(a_lbc), r-l(bca_l)e X2,
and go [ér_l(a'lbc)] = (b,e) = [f_l(bca'l)a] . Hence,
(%,L1) is a (3,2)-group. Since there is a bijection from X
to G, 1t follows that there is a (3,2)-group structure on G. i

Proposition 8. The existence of a (3,2)-group struc-
ture on a set G 18 equivalent to the existence of inclusions
P, ¥: G —» Porn(G) psatisfying the following conditions:

(1) P(x)(a,3) = ¥(y)(x,8) for each x,y,a€G; and
(2) P(x)e¥(y) = Y(y)e¥(x) tor each x,y€G, where o is
the composition of permutations.

Proof. Let (G4L1) be a (3,2)~group. Define ¥ and
Y by ¥Y(x)(a,b) = [xab] 2nd V¥ (x)(2,b) = [abx]. The (3,2)-
group structure on G implies that Y and ¥ are inclusions
from G to Perm(G2) and satisfy the conditions (1) and (2),
Conversely, let Y and ¥ are given and satisfy
(1), and (2). Define £7:67 —» G° by [xyzl = P(x)(y,z)., Then
(1) implies that [xyz]) = ¥ (z)(x,y), and (2) implies that
[ 1 is sgsociative, For given a,b,ce G, [axyl = (b,c) =[uva],
vhere (x,y) = FP(a»_l(b,c) and (u,v) = Oy(aﬁ_l(b,c). ]

3. (Non) kxistence conditions for (3,2)-groups. In
(2] it i shown that the existence of a (3,2)-group structure
on 2 finite set G, implies that € is a divisor of |G| or
|Gl= 1. (Here ]G] is the number of elements in G.) The next
Proposition gives an elementary proof that on a set with 6
clements there does not exist a (3,2)-group structure. Profe-
szér John Thompson provided me with a proof that finite
(5,2)-groups do not exist. He proved that if G is a finite
proup and X €G such that XX = {xy\x,y’ex} = G and )X\2=\Gl,
ten |G|l= 1, Then we apply Proposition 7. His proof uses
saous algebras over the field of complex numbers, Wedderburn’s
ilicosen, and representations and characters of finite groups.
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Proposition 9.. A set with 6 elements does not admit
a (3,2)-group structure.

Proof. Let ‘GI: 6, and let (e,e) be the identity

element in the group (Gz,-). Propositions 3. and 4. imply
that \{e,d(e),d(d(e)),h(a),ﬁ(ﬂ(e))}| = 5, Proposition 4.
implies that ol (l(cl(8))) £ e £ A(A(A(e))), oL {L((e)))Adll(e)),
and A(A(A(e))) £ A(Ale)). Since L((st(e))) # A(A(A(e))) and
|Gl = 6, it follows that o/(d(d(e))) = oA(e) or A(A(A(e)))=A(a),
By Proposition 2, we can assume that «(d(e(e))) = «(e). Then
Proposition 4. implies that A(A(A(e))) £ A(s), and so:
G = {e,dle),d(d(e)),Ae),B(A(e)),AA(AeINY .
How, of(al{d(e))) =ol(e) implies that A(l{(e)) = A (L(e))) = e.
I2 AA(Ae)))) =A(n(e)), then Propozition 3. implies that
{6l= 1. Hence, AAB(A(e)))) = Ale). Then [ese] = (d(e),A(e))
and |eee] # [eeh(B(B(e)))] imply that L(B(A(R())))=d(d(s)),
Now, [eef(n(n(e)))]=[(l(e))d(B(6))J(B(B(e)))IBB(B(eI)]
implies that [J(L(e))A(A(e))d(B(R(e)))] = (o,e)., This, toge-
ther with [ed(e)fle)] = (e,e) and o(d(e))Ae,d(e),p(e) implies
that Jf(A(e)) # e,d(e),A(e) , and since J{A(e))£A(B(e)),
d{A(e)) # A(AB(e))), it follows that ol(A{e)) = d(L(e)), and
by Proposition 1., J(A(f(e))) = o(d(e)). Now,
(eye) = [d(d(e))olleotle))dol(e))] =[cl(eded(eded(ede] =

= [ed(c)ed(e)ed(e)) implies that (Ale),A(e))=(e,x(e)).B

4, Iree (3,2)-groups without generators. In this
section we give a combinatorial description of a free (3,2)-
group without generators, i.e. generated by the empty set ¢5.
This group is an initial object in the category of (3,2)-gro-

ups, and is countable-infinite.
Let A, ={el. It Ay, X370 is defined, let

A

k41 © {(X?,i)lxjél\k, nz3, i = 1,2} U'Ak\

M(eex,i){i = 1,2, x €A, X # e} .
Above, x? stands for XyXpeaoX ) X e

Let A = U;fo Ay, end let S(A) be the free semigroup
senerated by a. We say that xli = a€S(A), x.€4A has dimen-
sion u  end write dim(a) = n. Define a length |a| of

a v x? e 5(4a), X € A, by induction, as follows:

fel = 15 |ei = |x§\ = }xll+ lx2\ + aeo + ]xn\; and

69

n . n
I(Xl,l)l = lel. Roughly put, a length of x¢ S(A) is the
nunber of appearances of e in x.

Let B, = {x|xes(a), |x| < x}.

Define & map ‘Y:S(A) —» S(A) by induction on the
length, as follows:

(1) P(e) = e;

(2) Suppose that ¥ is defined on Sp_q - Let

M= {xlxe8(2), |x} = X, din(x) = 1%;
LN {egu||uj = x-2, dim(u) = 1, P(u) = u £ of;
By = {uj ]ua.eA, nz2, ]ul:“ =X, W(uj) = uj}\ Ny; eand
T = Sp (8 v M VB VR,
T -
Eenkfkan-Mkn(NkURk)= Ty N(N,UR, VM) = @
L= B VB UN VR VT,
The extension of ¥ on S
(4) Pleen) = uee.
Hext, the extension of ‘f on Sg-1UNUR,  is defi-~
| s . n . a
neoa ‘ fo.}lg!ix. Let l').léRk. 1123{1ne \p(un) to ba:
(5.0 PCPG™ ) ir [Pl | ul-l

(B.2) Y(uyP(u3))  ir |Pud)) < | udl;
(2.3) v§ (=PG5 ir n -2, g = (v8,1), 1-1,2, t33;

and S
k-1Y Ny is given by

, ) X 4 3
(2.4) Yluy) if u =4, u; = uvee, or ui = ueev, oOr
uy = eeuv;
N . % t -
(8.5) ee if uy = (v1,2), u, = (vl,l),\p(vfug l) = ee anc
t 235
(B.6) u]  otherwise.
The next extensi i
o nsion of ‘¥ on Sk—1UNkURkU Tk is
given by
s \ -
¢y *P(Uju2...un) =\p(‘10(ul)‘?(u2)...‘p(un)).
At the end, the extension of P on 8. is given by
SN n . . .
() \e((ul,l)) = (?(u?),l),tlZB, i = 1,2, (Here we use the
??L;flog \(ulu2,1) =u;, 1 = 1,2, It is necessary, because
uJ.):;('P(u]_))Z 2 ftor n7,2.)
Ihe essential parts in the definition of ¥ are (4,
(5030, (6.4) and (B.5). The part (A) implies the fact
fzesd = [eex] (Proposition 1. 4)), the part (B.3) implies the
tusvelulivity, the part (B.4) implies that (e,e) is the iden-
Lity olewkent in the associated group (Proposition 1.) and the
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part (B,5) implies that each x has unique y,z such that
lxyz1 = (e,e) (Proposition 1. 3)). The other parts are given
only because of the“technical difficulties in the proof of
the following:

Lenmma 10, The map ¥ is well defined and satisfies
the following conditions:
1. Ple) = e;
2, din(P(x)) = 1 if and only if dim(x) = 1;
4. dim(?(ulu2)=2 it and only if ?(ulua) = ?(ul)¥Ku2>;
4, P(eeu) = Y(u)ee;
5. Y(uee) =Y (u)es;
6o 1P (D) £ [ul]s

7. 1f ug A ceu and ¥Y(u,) = Uy then PP(“g)\ = luﬁl if

ond only if Y(u}) =" uf ;
8. Y(ud) = P(uI tp(uBul, ) for each lere¢sgun;
9. Y((u3,1)) = (P(u]),i) for n%3, i=1,2; and

1C, W(uE) = (e,e) if and only if ‘P(ugul) = (eye) « B

The procf of this Lemma, although straightforward
by induction on the length, is very long, s0 we do not give
it Lere. It will appesr in & paper about free (n+l,n)-groups.

) Let G =‘Y(A). Define maps £1+85:G —> G Dby induc-
tion on the length ag follows:
(a) gi(c) = (eee,i) , 1 =1,2;
(1) 5 ((u],1))=P(u],2)e; (v, )85 0, e e ugy (uy)Ep(uyg),i);5 and
n .
(C) ‘5i(<ug’2)) =\’P(Sl(un>52(un)'-'51(111)82(“1)(“1,1)!1)'

Lemma 11, For each x €G, \P(xgl(x)ge(x)) = ee.

Yroof. The following equations, using induction on
the lenpth ond lemma 10, imply Lemma 11,
¥(eiece,l)(ece,2)) = Yeeee) = ee; .
“P(('ll?,l)()]((\l;,l))ge((urf,l)))=\Ku11181(un)82(un)¢oogl(ul)ga(ul))

n
se = Y(gy(u dgy(u Je.egy(uydgs(uyduy) =
= Y(gy ((u],2))g,((u],2))(u],2)) =
= \P((urll,r’.’)gl((UQ,Z))SQ((ui’@))). |
Lefine a map []:G3—+ G2 by
fuvw) = (FPCuvw,1),Pluvw,2)).

71

theoren 12. (G, 1) is a free (3,2)-group generated
by lhe empty set b,

Proof, (i) [Iuvv]z] = [P (uvw,1) Yluvw,2) z] =
= (Y(uvwz,1),P(urnz,2)) = [uP(vvz,1)P(vwz,2)] = [ulwwzl]l,

(ii) Let a,b,c & G, Then [ax;x,] = (b,c) = [ylyza],
vBeze  (x),xy) = [g)(8)gp(adve]l and (31,7,) = [beg(adgy(a)].

(iii) Let (G",[ 1) be a (3,2)-group, (e’,e) the
identity eleuw:nt in the associated group, and g“:G” —» G’
the [ -inverse map, Define f£:G —p G° by induction on the
longth as follows: f(e) = e”; r((uﬁ,i)) = 8;, 1 =1,2,
nz5 and (a),8,) = [f(ul)r(ue)...r(un)]' « The map f
is well defined, and the proof that f is a (3,2)-homomor-

-phism, i.e. (£,£)(Txyzl) = [t(x)2(3)2(2)]", is by induction

on the length and using Lemma 10. HMoreover, f is a unique
(3,2)-honmomorphism from (G,L1) +o G ,11).

Remork 13. Since (G,[1) is a (3,2)-group and
[xgl(x)gg(x)] = (eye), it follows that g = g, is the
( T-inverse map,

Romark 14, The set G is infinite (countable)., For
e§?m?lu, u, = (un_lee,l), u, = e, n>l, is a sequence of
dislinct clements in G . ;
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PROCEEDINGS OF THE CONFERENCE
wALGEBRA AND LOGIC", CETINJE 1986.

MODAL DUALITY THEORY

Kosta Do3en

Abstract. This talk is about some results concerning the dual-
ity between modal algebras and frames. The presentation of these
results is preceded by an introductory part, in which an assess-
ment is made of modal logic in the light of contemporary research.
There the generality of this research is stressed, and it is to
illustrate this generality that attention is focused on modal
duality theory, one of the most abstract areas of modal logic.

Introduction

Modal logic is the general theory of unary propositional
operators. This is not a definition one is likely to find in
textbooks. Neither is it a definition applicable to modal
logic from the beginning of its history in the twentieth cen-
tury. A change of subject occurred in modal logic in the
sixties, with the advent of formidable model-theoretic tools.
Before, modal logicians studied particular systems, which

were meant to formalize the notions of necessity and possibil-

ity, and they produced a real jungle of such systems. After
the sixties, modal logicians were increasingly less concerned
with particular systems, and concentrated their attention on
methods with which they could deal with whole classes of sys-—
tems. These classes cover the more traditional systems of
modal logic, but they include also many things whose connex-

ion with necessity snd possibility, in spite of some family

resemblances, is at best remote. Nowadays, particular systems

in works of modal logic often occur only as examples, to make

This paper is in final form and no version of it will be submit-
ted for publication elsewhere.
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this or that technical point, and for no other purpose.

Another change of direction of research occurred in the
seventies. Now the point was not so much the development of
tools to deal with this or that particular system, or even
with whole classes of systems: the model-theoretic tools
themselves became an object of study. Of course, the abstract
study of models can have repercussions on their development
for eventual application. However, as it happens often in
mathematics, this application is not the main inspiration:
the abstract study of models is motivated by independent mathe-

matical interest.

It is because of this concern with whole classes of sys-—
tems, and with the abstract study of models, that we claim
that modal logic is the genefal theory of unary propositional

operators.

What are the unary propositional operators modal logic
deals with? We said these are not anymore only the tradition-
al operators "it is necessary that", and its dual, "it is
possible that”, The search for a single system formalizing
these operators has probably come to an end. There is no such
single system. The two opérators above can have a variety of
meanings, depending on the context they are used in, What
modal logic can give us are tools to deal with practically

any of these particular meanings.

Because of this vagueness in the meaning of "it is neces-
sary-that", the study of this operator was replaced by the
study of unary operators whose meaning 1is similar, but more
precise - and also more interesting for mathematics. It seems
safe to say that "it is necessary that" is not anymore the
central unary operator of modal logic. If there is such a

central operator, then that would be "it is provable that".
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Again, this is not a claim one is likely to find in textbooks,

but a number of facts could substantiate this claim.

First, the vest known modal logics are 54, 35, and some
logicg in their vicinity. Already on an intuitive level, the
connexion between these logics and provability is quite strong
(see [Lemmon 1959] ). On a more technical level, there is a
famous translation of Heyting’s logic into S4, or into logics
in the vicinity of S4 (ef. [Do¥en 1986]), and this translation
Jjustifies reading S4-like necessity operators as "it is prov-
able that". This translation connects modal logic with topo-
logy, and, in particular, with Tarski’s Cn operator, which is
of a topological inspiration (see references in [Czelakowski &
Malinowski 1985]). Why this translation works could be real-
ized from the Gentzen-style syntactical analysis of S4 and S5
in [Do%en 1985] and [DoZen 1986a] (cf. [Scott 1971] ). Note
that this analysis finds a connection with provability for S35,

and 55-1ike logics, as well,

The central role of provability in modal logic could also
be substantiated by the very great-success of the modal analysis
of G8del’s arithmetical provability predicate (see [Boolos

1979]), which also involves logics in the vicinity of S4.

But, there are many more unary operators besides "it is
provable that" modal logic is able to deal with. Some of the
most famous are: "it will always be the case that", "it is
known that" and "it is obligatory that". These unary operators
are studied in branches of modal logic which are called re—

spectively: tense logic, epistemic logic and deontic logic.

Recently, a new branch of modal logic, called dynamic logic,
has developed around the study of operators drawn from comput-
er science, like the operator "after every computation accord-

ing to the programme P it is true that".
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The binary propositional connectives studied by modal
logic, like the connective of strict implication, are defin-
able in terms of nonmodal connectives and unary modal opera-
tors. Nowadays, these binary connectives are very seldom
taken as primitive, as modal logic has increasingly become

conscious of its vocation to study unary operators.

Modal logic deals mainly with propositional systems.

This is to be expected of a theory concerned with unary prop-
ositional operators. To consider these operators together
with quantifiers often complicates matters, and prevents re-
sults to be stated sharply. In a certain sense, quantifiers
too are unary propositional operators, but, of course, the
apparatus of binding of variables makes them fall out of the
field of propositional logic (sre, however, [Kuhn 1980] for

an attempt to treat quantifiers as modal operators).

Is modal logic able to deal with arbitrary unary prop-
ositional operators? Without ©trying to answer this question
with precision, it seems safe to say that the success of modal
logic in dealing with particular operators, and the consider-
able sophistication of its tools, makes it very probable that
practically any unary operator for which some axioms are of-
fered could bve dealt with. That means, modal logic could try
to give models, and answer technical questions concerning
completeness, decidability, and the like, with a reasonable

chance of success.

This contrasts with the situation we find in the study
of nonclassical propositional logics. There is as yet no
logical theory able to claim the title of "general theory of
binary propositional connectives™. Such a theory should cover
not only two-valued, or many-valued, or intuitionistic, or rele-

vant connectives, but any connectives we might wish to consider.
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The generality of modal logic, though great, is not
such that it could not be greater. One limitation comes from
a nearly exclusive concern with the interpretation of modal

operators found in Kripke semantics:

xE0A < Vy(xRy = yFA),
xEOA &S Jy(xRy & yEA).
Although there were sporadic attempts to modify this inter-
pretation, like, for example, the following, using an n+l-ary
relation R [Jennings, Johnston & Schotch 1980] :
= cre
xEDOA V¥ ... Vy, OBy eeuy, = (v, Fa ore.or y E A,

and though there is a well-known more general interpretation

called neighbourhood semantics (sometimes also called Scott—

—Monfagué semantics), the enormpus majority of papers in the

central areas of modal logic deals with Kripke semantics. The
reasons for that are probably the connexions with relativized
quantifiers, the possibility to deal effectively with the main
logics around S4 and S5, and the already considerable general-
ity of Kripke semantics itself, 'Another reason is probably
that the great body of papers in the general study of model-
—-theoretic tools deals with Kripke semantics: +to change now
the object of study would be like changing the rules of chess,

and having to revise the bulk of existing chess theory.

Another limitation of contemporary modal logic is the
fact that it studies unary operators added to a Boolean basis;
i.e., the nonmodal context in which these operators are intro-
duced is classical., This is quite understandable: this logic-
al context is not only the simplest, but presumably the most
important. However, a really general theory of unary operators
should pay attention to unary operators in nonclassical logics

too. A start in the investigation of intuitionistic modal
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logic (see [Bo¥ié & DoZen 1984] and [DoZen 1985a)]), and rele-
vant modal logic (see [Boiié 1983]), seems to have been made.
An output of these investigations is the analysis of negation
as a modal operator, an analysis suggested by the greater
fluidity of negation in nonclassical logics (see [BoZié 1953],
[DoSen 1986b] and [DoSen 1986c]). What has not even been
started is the analysis of modal logic in some kind of minimal
logic. However, the discovery of this minimal logic is proba-
bly tied to the creation of a general theory of binary prop-

ositional connectives.

Modal model theory may be divided into: completeness

theor which studies completeness problems involving modal
tneory,

systems and various types of models; correspondence theory, :

which studies the definability of conditions on models by

modal formulae, and the other way round; and duaiity theory,

which studies the interconnexions between types of models in
a general algebraic setting. In the second part of this talk
we shall present some rudiments of modal duality theory, in
order to illustrate the abstract level of studies in modernm
modal logic. The results which we shall discuss are from ’
[DoSen 1986d4], which develops ideas of [Goldblatt 1976] and

[Thomason 1975].

An extensive survey of modal logic, including duality
theory, and its interconnexions with other areas of research,

can be found in the second volume of the Handbook of Philo—

sophical Logig [Gabbay & Guenthner 1984], and in particular

in the first chapter [Bull & Segerberg 1984], and in the
fourth chapter [van Benthem 1984]. A useful guide to the
modern literature is also [Bull 1982], [Bull 1983] and [Bull
1985]. Basic notions of category theory, which we need in
the second part, can be found in the introductory parts of

[Pareigis 1970].
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Modal algebras and frames

A frame F is a nonempty set C, the carrier of F, together
with some associated relations or functions defined over C,
We can imagine that a modal model is made out of a frame in
two steps: first we spread over the frame a modal algebra, and

then we define a valuation on this algebra.

A modal algebra A is a Boolean algebra with an additional
unary operation L. If we consider modal logic in a nonclas-
sical setting, the underlying algebra need not be Boolean: it
can be a Heyting algebra, or something else. A valuation is
a homomorphism v from a propositional language with a modsl

operator [Jinto 4 so that for formulae p:

V(D) = Lv( ).

In modal duality theory valuations don’t play an essen-—
tial role: once we have spread a modal algebra over a frame,
valuations are obtained automatically. It is this business

of spreading which becomes the main subject.

To spread a modal algebra over a frame means to define
it in terms of the frame. The power set (°C of C is of course
a Boolean algebra, but we can also consider subalgebras of
this power set algebra, The problem is to define in this set
Boolean algebras (RF a unary operation I in terms of the
relations or functions of the frame F. There are two ways of

doing this, which give rise to two distinct types of frames.

Pirst, we have relational frames, where we are given a

. . 2
binary relation RSC . 1In terms of R we can define a succes—

sor function $:C—{®C by S(x) = {y: xRy} (the members of S(x)

are the successors of x). Conversely, in terms of § we can

define R by xRy <= y€S(x). So, relational frames and
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successor frames amount to the same thing. With such frames F,

in the power set algebra, or its subalgebra, AP, for BEC in
(AF, we define L by:
LB = {x: S(x)<B}.

Second, we have neighbourhood frames, where we are given
a neighbourhood function N:C— (P(AF), the set AF being a
subset of (PC.(the set N(x) is the set of neighbourhoods of

x). In terms of N we define L by:
1B = {x: BEN(x)}.

Now, it is clear that, conversely, N can be defined in
terms of L by:
N(x) = {B: xeIBY.
So, a neighbourhood frame ig essentially a set modal algedbra
spread over a carrier. The function N may be taken as defined

in terms of L.

TIs the same thing true for relational frames, viz. is R
always definable in terms of L? The answer is: no. If AF

is the whole power set {’c, then, indeed, we have:
(1) s(x) = n{B: xeLBY,

or equivalently: )
xRy < YVB(xelLB = y€B).

However, if (AF is not the whole power set 0)0, but a proper
subalgebra of CPC, then we may have:
s(x)g N{B: xe1B}.

The problem is S(x) need not be an element of AF: if it were,
we would have (1). So, we distinguish a subtype of relational

frames where (1) holds: we call these frames reducible frames.

The question from which modal duality theory starts is:
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for an arbitrary modal algebra A, can we find an isomorphic
algebra oRF spread over some frame F? The answer is: yes,

there is always such a neighbourhood frame. If the algebra
A is normal, i.e. if L1 =1 and L(blr\bz) = Lb,NLb

1 2?
is always an isomorphic WA F where F is a relational frame.

there

These answers are usually couched as results in category
theory: one establishes duality (categorial equivalence with
contravariant functors) between categories of modal algebras
and categories of frames. These results of category theory
yield much more than an answer to our original question. They
induce us to try to translate algebraic theorems (of which we
know much more) into theorems about frames. For example, we
might try to answer the following: for what constructions on
frames are closed classes of frames which correspond to modal
algebras which make a variety? What on frames corresponds to

homomorphic images, subalgebras, direct products?

Let us sketch how our duality results look like. On the
algebraic side let us take the category MA of modal algebras
defined by:

objects: modal algebras,
morphisms: homomorphisms,

and the category NMA of normal modal algebras which differs

from MA by requiring that its objects be normal modal algebras.

On the frame side we have first the category DF of

descriptive neighbourhood frames defined by:

objects: descriptive neighbourhood frames,
mozﬁhisms: frame norphisms.

We shall define descriptive neighbourhood frames together with
a functor EF which will associate with every modal algebra A

a frame FA spread over A, and with every homomorphism h
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between modal algebras a frame morphism fh. If A is a modal
algebra, & A will have a carrier CA made of all ultrafilters
of A, and if for an element b of A we have q(b) = {XECA:
bex}, then NA(X) = %q(b): LbEX}. The mapping q is an iso-
morphism from A to A (%A), as in Stone’s Representation
Theorem. Now, dually, we define a mapping p:C—>00(07C) by
p(x) = {B: x EB}, where B is in \AF. A frame is descriptive

iff p is one-one and onto.

The frame morphisms of DF are defined as follows. If
£:C -~ C, and (Af)(B,) ={xl: fix )eBZ}, then f is a frame
morphism iff for every B2 in OQF2

(i) (u’-’cf)(Bz)E(ﬂ:Fl,

1

(ii) (qu)(B2)€ Nl(xl) <~ B2€N2(f(xl))'

A frame morphism is a frame isomorphism iff f is one-one and

onto, and f_l is also a frame morphism (which is not autonmat-
ically satisfied). The mapping p defined above is a frame
isomorphism from a descriptive F to $ (AF). Now, if h:a —>A,
is a homomorphism, we define the frame morphism
.g:h:CAZ—»CAl by (371'1)()(2) =-{b1: h(bl)€X2}'. So, we have
completely defined the functor EF from categories of modal
algebras into categories of frames. In the same way, A is

a functor from categories of frames into categories of

modal algebras., The functors AR and F are contravariant.
. It is possible to establish the following theorem:

THEOREM 1. The categories MA and DF are dual by the functors
A and F.

This theorem means that the following diagrams commute:
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h £
A — 4, B ——— 7,
9 9 Py Py
A(GA) iy A (F ) SFMFl) Fern F(AT,)

A neighbourhood frame F is a filter frame iff for every
X €C we have that N{x) is a filter (not necessarily proper)

of AF, The category DFF is defined by the following:

objects: descriptive filter frames,
morphisms: frame morphisms.

We can prove the following:
THEOREM 2,
A and &F.

The categories NMA and DFF are dual by the functors

Reducible relational frames are intertranslatable not
with filter frames, but with a slightly more restrictive type

of neighbourhood frames, which we call hyperfilter frames; for

every B in AF these frames satisfy:
AN(x)SB = BEN(x).

(Note that this does not entail that for every x the set N(x)
1s a complete filter, i.e. it dces not entail that NN(x)e N(x),
since () N(x) need not belong to RF.) A hyperfilter frame is
always a filter frame, but for infinite frames we don’t neces-
sarily have the converse. A reducible frame becomes a hyper-

filter frame with the following definition of N:

N(x) ={B: s(x)<B},
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where B is in (#F. Conversely, a hyperfilter frame becomes

a reducible frame with the following definition of S:
S{x) = NN(x).

Frame morphisms on descriptive hyperfilter frames can equi-
valently be defined by replacing (ii) by:
(117) 8,(£(x))) = {£(x,): x,€5, (x))}.

Although not every filter frame is a hyperfilter frame,
every descriptive filter frame is a hyperfilter frame. So,
descriptive filter frames are intertranslatable with descrip-
tive reducible frames. Our Theorem 2 then amounts to a re-—
sult of [Goldblatt 1976] which establishes duality between
NMA and the category of descriptive reducible frames with

frame morphisms.

Let us now consider the frames F of a more usual kind,
where AF is the whole power set algebra., We shall call such
frames full. What categories of modal algebras are dual with
categories of full frames? An answer is provided by the fol-

lowing.
Let CAA be the category:

objects: complete atomic modal algebras,
morphisms: complete homomorphisms,

and let FNF be the category:

ijects: full neighbourhood frames,
morphisms: frame morphisms.

The functor (; from CAA to FNF is defined by the following.
If A is an object of CAA, then for the frame (%A we have:

CA = {a: a is an atom of A},

¥(a) = {zcct: agLuzl.
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If h:Ai—¥A2 ii a c:mplete homomorphism, then the frame mor-
phism h:C"25C"l is defined b =
C& s defined by (Cgh)(az) alﬁaQSh(al).

Then we can prove the following:

THEOREM 3. The categories CAA and FNF are dual by the func-
tors (A& and Cg.

If NCAA differs from CAA by requiring moreover that its
objects be normal modal algebras, and FFNF differs from FNF
by requiring moreover that its objects be filter frames, we

can prove:

THEEOREM 4. The categories NCAA and FFNP are dual by the
functors (R and C:g . o

Full relational frames, which are always reducible, are
intertranslatable with full hyperfilter frames, as above.
Full relational frames are the usual Kripke frames for modal

logic.

Let now CCAA be the category which differs from CAA by
requiring moreover that its objects be modal algebras which

satisfy:

LNfv,: iery = n{rn,: ier},
These modal algebras are normal. Next, let HFNF be the
category which differs from FNF by requiring moreover that
its objects be hyperfilter frames (in these frames for every
x we now have that N(x) is a complete filter). The following

theorem, with which we conclude this lecture, can be derived

from [Thomason 1975]:

THEOREM 5. The categories CCAA and HENF are dual by the
functors (& and C}
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ON HUHOTOFIES OF n-ARY SRUULUVIDS SITH DIVISION

Ivo Zurovidé

Abstract. The properties of homotopic mappings of binary gro-
upoids are cdescribec in [27. In this poper some properties of
n-ary groupoids with division in regerd to homotopies especi-
2lly in the case when the homotopic image of that groupoid is
a n-ary quasigroup are investigated.

et us first summarize the notations and terminology which

we use in this peper.
iccording to [1_] the sequence @,, @ 4,..., An is denoted with
m m m
(@;)i=n or briefly with a;* . inalogously (@;éi);-4 and (ab),
are designations for the sequence a;b,, @5, byeq,---1 Am bm -
- - n
"he sequence Q,,...,Q:.,, Qiyy, -1 Qn ,S0-C8lled i-cut of @,

- (A
is denoted with a:", al, or a|.

¢ n
Analogously,(al:)rl denotes the i-cut of (ab),. The sequ-
eNCes Q,,.e., @iy, C, Qipyry @n DA @ by, o) Qg biny ) € Aty bives

3 n <
.., @, by are denoted with aylc and (ab); lc respectively.
“he n-ary groupoid <G\&f>is n-ary groupoid with i-division
¢ n

if and only if for every (a%*? | > € & there exists at least

¢
one x &G such thst w(a?lx) = Quia -
The n-ary groupoid<<6760> is n-ary groupoid with division
(briefly Im-groupoid) if and only if it is n-sry groupoid
with i-division for every ( € Jn= [4,2,...,71}. ; y
The i-class of solutions of Tm-groupoid {&,w) for (aj‘“l) éG,

£ . <

¢=1,2,...,m,1is the set @<a’"4f>: {X €G:w<larixy= a”-”-}'

1
Jor every ¢ € J, the i-translation of n-ary proupoid L&, wd

“his paper is in final form and no version of it will be sub-
mitted for publication elsewhere.
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l<ar [" > € ¢™7 and operation co is the mapping
. . c
I P . ' eo [ X = n
T aniyi 6= 6, = anfy w<Lalix>.
OCbviocusly, every tramslation of Dn-groupoid is a surjection.
The homotopy of n-ary groupoid < & w> into n-ary groupoid

{&,5> is an ordered (n+l)-tuple { ¢2**> of mappings from
G into G such that (V(x"‘>é@ )(fn“‘w(x") Eol(wx)T >,

It is well known that a homotopic image of a m-groupoid is

a In-groupoid.

LEMA 1. Let (&, w> be Dn-groupoid, let @,,... ,@ns+4s Dbe
meppings from the set (r onto a set (+ and let 5<(‘(’X):>=
= Pnygw {X*> for any elements X,,...,xn of the set G.

{ G, is Dn-groupoid if and only if
(Vx> (or> €GT) (@axa=ds N N Gcxi=eye A

/\ e /\ ‘(an.‘—’ C(’nVn) =$ CF'L'f’I C'J<X?>=C€ndqw <>'4 > &l>
Proof. If { G,& » is Dn-groupoid, it is easy to verify that
{1) holds.
Conversely, if <xF> , <YM> £ ¢ such that @ x;=¢,y; for
every ¢ € Jnand if (1) holds, then ¢n,, co<XP> =G, . wiyr>
and consequently &< (@x)>=w(wy)r >, which means that
<G’,l:)> is a n-ary groupoid. Since <§,Z}> is the homotopic
image of the Dn-groupoid { &, ¢ Y by the homotopy < (p""”’>
it follows that <G,&> Y is Dn-groupoid.
SIRCREM 1. Let <§ 5> be a homotopic image of In~groupoid
{ G, co> by homotopy { @r**> and let @n,, Dbe bijection.
<w; ¢ > is a n-ary guasigroup if and only if
e n < .

(V(/ Gjn ) (\7’ <arh‘l> 6& ) X, Ve é <anM }' >ﬁ<ﬂ'x[:(efyi-(2>

- 4 - . .
Froof. If <G.,E> is a n-ary quasigroup, it is easy to verify
that (2) holds.
Conversely, let (2) holds, let aj be a preimege of aj for

the mapping ¢y for every 3=4,2,,4-1,¢{#,.., 2 end let X',
” for the mapping ((‘ . ‘'ihen

x"” be preimages of %7 7

Slar|x'y= w<amz">=>w<(<ea)1 J . x >—

:CJ—<(<€Q)4 lq’t'xn>:>(€n44w<afjxl> @n*4w<a }X”>:>

¢ ¢
Swlal i xD=wlar | x"D>=>ex'= gx"'= X' =X",
which completes the proof.
LisdTHITICN 1. Let (&, co» Dbe Dn-groupoid and let @, {=4,2,7,
where @ ;= {Qig) ) Qiiey s QU lea '...'Q‘-n“'>, be any elements
of the set G™.

The set {w<al>: aGlEI AN 0.26- LA\ /\anefh]an}
ls lled {1- d
calle n)-oroduct of the classes of solutions . a,

-a yee- - of Dn-groupoid <G w>
THECREM 2. Vor every Dn-groupoid <G'cu> these conditions

are equivalent:
. : - n A .
Uy: There exists s homotopy < (pq > , where @, ., i

a
bijection, such that the homotopic image <§'Z3> gi;(G,cu>
by this homotopy is a n- ary guasigroup,

“2‘(3<Z"l>€G )w<z"lX> co<z"}y>:::>
= (V<zrl3€6m )izt x> = wlzriyd

for every ¢ € Jn-

Uy: Every (1-n)-product of the classes of solutions of
Im-groupoid (@, co> is an one-element set.

Proof. It is enough to prove that U 'é Uaﬂ U = Uy

(Uy=>uy). If wlzZy }x) ca(z"]y), then by Theorem 1.
b x=@ Y. It follows that for every <z"l> € G" !

w{zrfx>= <ew<eww<za Fx>= cen.1w<(«;z)4 fe.x>=
= GL(CZ) @y d=0ll oz ¥ = o<z 1Y),
2° (U9=;>"3) 1f xS and wynr )are elements of the \1 -n)

-product of classes of solutions -a, -a E‘Ba
1) 2) &tn,

then C*)<(a‘3)3"4 ' X¢ > —_ W((aga-)5_4 , Ve > for
every ¢ Gjn Tt follows that for every ¢ Ejn

(V<Z4I>EGM)°0<Z"1X d=wlzZrive >, (3

Jrom (3), taking for ¢ 1, 2, ..., n successively and

10

moreover substituting Z,,...,Z ;-4 with Y4, -, Y~
respectively, and Z  ,, 5+, Zn With Keuq, .. ) X n TeE-
spectively, one obtains the system of n equations
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“

-4 M n .
wlyi, XU D> = wdYa, X4 >, t=4,2,..., 7 yhence it
follows that w{X*>=w dyr).
=® (Up=> Uy). Let {a™ ve a certain element of G and let
— . H n f_lff w<zn> n n
w (TE<Q.:‘)>ZI')IZ=4 - 4 for every <za >€G -
First we verify that the implication
= g Fw X = (1@ < .
(2 ¢apy¥e = T gy Yy A A TIE (ny%e = T2 oy
— nN\ _ 48
A... /\EE<Q::~4>X77.—;l-[‘;.—’-<a::-4>yn>—_—$w<)(4 >—Ou<‘/:‘> ()
holds for every x> ,{yr> € G" _ ) |
. - . ¢ [4
1r (T8 ¢anis X = T pqnfy Yo |, i.e. wlalixd=wallvd
for every ¢ € Jn , then X: and Y. are elements of one I
and the same i-class of solutions of [n-groupoid <[;.03>
for every ¢ € Jn -
Sonsequently w<{ X > =¢co {Y®* > , i.e. implication (&)
holds. Since ZE(Q.}‘]L> ; ¢=4,2,..., 2, are surjections,
. - . n
it follows by Lemma 1. that <(:E<a4";>)i=4 ) g> , where
£ is the identity mapping of the set ( , is a homotopy
of Dn-groupoid { G, Y onto Dn-groupoid <G—I & P . Since
3
for every ¢ € Jn and for any Lar* ] > EQGT
c . : ¢
XV € [@]gqniefy = wlarix:y=wlar|y > =
T ‘ G Y ¢ .
= = Capyy X4 T B Kar iy e
it follows by heorem 1. that <GICT>> is a n-ary quasi-
group.
Let us exemplify that there exist In-groupoids which satisfy
the conditions given in Theorem 2.
Let C‘* be the set of 21l nonzero complex numbers, let + de-
notes the usual multiplication of complex numbers and let for

. def. n, n n
»* 2 n
eVery Xy, Xz;---, X2 € C Co(X:‘>_—(X4) -()(;) (Xn_) ’
where 74,7, ,..-; 2n are given natural numbers.

Tt is easy to verify that {C®cw) is n-groupoid which satisfi-
es the abovementioned conditions.

1. ¥.%7. ilelousov, {'snovy teorii kvaziucruop I lup, “auka,

Moskva, 1967. 93
2. N.I. Prodan, mekotorye voprosy teorii g i 3

: X ruppoidov s dele-
niem, Voprosy teorii’ kvazigrupp i lup. . tii %134

1971, 104_115;. grupp up, --tiinca, Kifinev,

Ivo Purovié

Fakultet graditeljskih znanosti
51000 Rijeka

Viktora Cera Emins 5
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T-k-SEMINETS

Radoslav Galié

Abstract. In /1/ J.Aczel (1965) investigates in detail
3-nets to which quasigroups are associated and in 1967. V.Havel
/4/ defines 3-seminets with injection to which partial groupoids
are associated. M.A. Taylor (1971) in /5/ also defines 3-semi-
nets, but with associated multigroupoids. In the monograph /2/
(1971) V.D. Belousov considered k-nets to which correspond an
orthogonal system of quasigroups. J.USan (1977) in /6/ defines
k-seminets to which correspond special an orthogonal system of
partial quasigroups.

In this paper we introduce and investigate T-k-seminets,
as a generalization of 3-seminets from /5/, to which partial
(k-1)-multigroupoids are associated. The relation between
T-k-seminets and k-seminets from /4/ and /6/ is also consi-
dered.

Let P be a nonempty set, and Xl""xk

joint partitions of a set P. The sets Xi, i€e Nk= {1,2,..., K},

be mutually dis-

will be called classes, their elements xaexi will be called
blocks, and the elements of P will be called points. We will
say that the ordered (k+1)-tuple N=(P, Xl,...xk) is a
T-k-seminet 1if and only if the following properties hold:

This paper is in final form and no version of it will be

submitted for publication elsewhere.
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T1. If p is a block, then there is a point p€ P such that

peb.

We say that a k-tuple Xl""’xk of blocks in a relation
and we write R(xl,...,xk) if and only if there is a point pe€eP
such that p éxi for each iENk.

T2. If b and b’ are blocks from the same class and if

,
R(xl""’xi—l’ b,...,xk) <> R(xl""’xi—l’ b ,...,xk) for each
i€ Nk and for all Xl""’xi—l’xi+1""’xk concurrent with b
or b', then b=b’.
T3. If p and p’ are points and X 5%, are blocks from

different classes and if pexi, p’exi for each ieNk, then p=p’.
Note that Xi’ iGNk, being partitions of a set P, consist of

disjoint blocks.

1,...,Xk) is finite if

P is a finite set, i.e |P|<o0. In this paper only finite

We say that an T-k-seminet N=(P,X

T-k-seminets are considered.

So, T-k-seminets are generalization of a variant 3-semi-

nets in the sense of Taylor /5/.

Example 1. Let P={1,2,3,4,5,6,7,8,9,0} be a set of points

and let the blocks and the classes (Fif.l1) be given as follows:

X o= {x;={1,2,3), =x,= {4,5,6,7,8,9,0}} ,

Y ={y,-{8) , y,=1{1,2,4,5,6,7,9}, y,={3,0}} ,
z2={z=(1,0], 2z,=(2,9,9} , zg= {3,5,6,7,8}} and

v ={v1={4,7,o}, v={1,5}, wv.={2,8}, v,={3,6,9}} .
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Figure '1.

It is easy to verify that N=(P,X,Y,Z,V) is a T-4-seminet.

Let P be a nonempty set, and & a nonempty set of subsets

of P. Let the sets Xl""’xk’ k€N\{1,2} partition the setX
We say that the elements of P are points, the elements of > are
blocks, and the sets Xl""’xk we call classes of blocks. Then
we say that N=(P,X1,...,Xk) is a U-k-seminet 1if and only if the

following condition are satisfied:

Ul. Through each point from P passes one and only one
block from each of the classes Xi’ iE,Nk.
U2. Any two blocks from different classes have at most

one point in common.

Such a structure is introduced in /6/ where was called
simply a k-seminet.
There arises the question of relation between T-k-seminets

and U-k-seminets.

From Example 1. it follows already that there exist
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T-k-seminets which are not U-k-seminets, since some blocks (xl
and y2, for instance) from distinet classes have two points in

common.

THEOREM 1. Every U-k~-seminet is a T-k-seminet.

Proof. Let N=(P,X1,...,Xk) be a U-k-seminet. Clearly the

sets Xl,...,X are mutually disjoint partition of a set P. One

k
has to show that the axioms T1-T3 are satisfied.

Let b be a block, i.e. bzXlu...UthzP(P)'\[¢} . Then b=4g,
so that there is péP such that pe¢ b, which implies peb. Thus T1.
holds.

Let us prove T2. Take two blocks b,b’ from the same class

and let it hold R(Xl""’xi—l’b’xi+l"'

.,xk) for all x

.,xk) if and only if

y
R(xl,...,xi_l,b Xy SRR S SR RRRTE

concurrent with b or b’. Then, according to the definition of

the relation R, there exist points p and p’ such that

N ...Nx

pexlf‘]...nxi_ln b(\xi+ K (%)

1

P € xlﬂ ...flxi~1ﬂ B’N xi+1ﬂ v xk

Further, because of U2., for all j,m eNk\ i}, j#m, we
have }xj/\xm|5; 1, and this gives p=p’. Now, from(3), we have
p €bNDb’, which by Ul. implies b=b’.

Let p,p’ be points and xl,x2,...,xk blocks from different
classes such that pexi and p’exi for each ieNk so that, in parti-
cular, we have {p,p’} ¢ xln x2. Now U2. implies p=p’ and T3. is

proved.
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=1

Let S be a nonvoid set, P a nonvoid subset of S , k=3
and Z a partition on P such that there exists an injective
mapping ¥ :Z —> S. Then the ordered triple N=(S,Z, ¥ ) is called

an H-k-seminet /3/.

In /4/, for k=3, such a structure is called just 3-seminet.
In /3/ it is shown that the H-k-seminet N=(S,Z, /) can be
given alternatively N=(P,Xl,...,Xk) so that:
(’v‘xie Xi)(ijexj)(i;éj = lxin * | £ 1) holds. In Example 1.

T-k-seminet is not H-k-seminet since [xln y2I> 1.

Let Al""’Ak’ Ay+1 be nonvoid sets and let D be a nonvoid
subset of Alx...xAk. Let £ be any mapping from D into ﬁﬂAk 1)’
+
i.e. :D—> .
i.e. £ :D @(Ak+l)

Then we say that &£ is a partial k-multioperation and we write

ca = Ce D .
ey, wva=qda , d, (a,.80€D, {ay ) e P ) (1)
The set {ak+1,j) is called the product ofkthe elements al,...,ak,
and for the ordered k-tuple (al"”f’ak)=(a1) we say that it
belongs to the domain of the partial k-multioperation, which we
write as (al,...,ak) €D

An ordered (k+2)-torku M=(A1,... &L ), which sati-

A LA
TR Tk+1’
sfies (1), is called partial k-multigroupoid.

It D=A1x...xAk, then M is called k-multigroupoid.

In order to simplify things we introduce the following

notations:

© o (Wu €A ). .. ( (v
fri Gupe A Gy je A DB e Ay ) (e A

o . y
(vécﬁ(u; 1, a, ¥ ) <= veklul ! ;

'Ti+l 1 % Yia
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D (al,...,ak)ED

A partial k-multigroupoid M:(Al,...,Ak,Ak+1,&J is said to

be i-T-cancellative if and only if the following condition hold:

w(a‘;)aAlx...xAk)(Va;eAi><w:>m:»m:>f)>> (2).

Further (2) is equivalent to each of the following formulas:

)

1 —
(v<a‘I>eA1x...xAk)(Va’ie A)@= (RAD =) (3),

2 =
(a5 €A x.. xA ) (Val e A )@= (BATE=¢)) (3).
1 1 k i i
This follows easily from the following tantologies:
(p=>(qg=>r)) <> (b A g => r),

(p=>aq)<>(Tg = Tp) t Hp=>a)s= p A g

If property (2) is fulfilled for each ie Nk’ then we say

&) is a T-cancellative partial

that M=(A , ... A AL s

k-multigroupoid.

A partial k-multigroupoid M:(Al,...,Ak,Ak+l,<£) is said to
be i-incompressible if and only 1if it holds:
o i-1 k
1°. For each a, ¢ A, there is a (k-1)-tuple (al s ai+1 )
i
i- k
£D
such that (a1 , al,ai+1)
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2°. For each a there is a k-tuple (al,...,ak)ED

k+1€Ak+1

such that ak+1 £ (al,...,ak).

If property (10) holds for each i€N then we say that

k,
M=(Al,...,Ak,Ak+l, L) is an incompressible partial k-multigroup-
odis.
THEOREM2. Let N=(P,X1,...,Xk) be a T-k-seminet. Let be

a map from Xlx...xX to @ka)\\(é} defined as follows:

k-1

VX ). (3)

xkéf£(xl,...,xk_1)<i>R(x1,...,x «

k-1

Then M=(X ,...,X_ l,xk,oC) is a partial (k-1) - multigrou-

poid which is T-cancellative and incompressible.

Proof. Let N=(P,X ...,Xk) be a T-k-seminet. Then, using

1’

(3) and (1) we see that M=(Xl,...,Xk_l,Xk,<£) is a partial

(k-1)-multigroupoid.

Now, let us prove that M is é-T—cancellative partial
(k-1)-multigroupoid.

The case Vv =>_L is obvious (since v{L —=> p)1)= T).

If vft = T. Then (3) and T2. imply that v Y= T. Now, the
implication #=>(H => ¥) is reduced to T :ﬁ>(p2L> T) which
holds true for every sentence p. Hence our partial (k-1)-multi-
groupoid is i-T-cancellative for each i ¢N

k
o
So it remains to prove incompressibillity, i.e. 1o and 2 .
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Let xie X2, ieNk. Then by Tl. there exists a point p€ P

such that p¢€ xi. Hence owing to xl,...,xk partitions of P there
i-1 k
i - € .ee
exists a k-tuple of blocks (Xl , Xi’xi+1) Xlx xXk such that
i-1
R(xl,...,xi,...,xk). Furthermore, by (3) we get xks oC(xl X5
k-1 i-1 k-1
i.e. * €D

Xip)e Beee (xgTuxg g )

We have shown that M=(A1""’Ak—l’Ak' L) is a cancellative
incompressible partial (k-1)-multigroupoid, which is said to be
associated to the T-k-seminet N=(P,Xl,...,Xk) and which we denote
by M(n).

A partial k-multigroupoid M=(A1,...,Ak,Ak+l, L) is said to

be i-cancellative if and only if the following condition hold.
(¥(a) €A x...xA ) (Vale A )@= (H=>¥)) ().

THEOREM3. Let M:(Al,... } L) is 2 partial i-cancel-

’Ak’Ak+1

i k- tigr id. 0 M=(A_,...
lative multigroupoi Then ( 1 ,Ak,Ak+

1,<ﬁ) is i-T-cancel-

lative.

Proof. From (4) we find that & = (H =>%¥) reduces to
1
p l:y“f, (p:B=¥).

Which is true for every sentence p{(= ).

THEOREM4. There exist partial k-=multigroupoids which are

i-T-cancellative but not i-cancellative.

Proof. Let P={1,2,3,4,5,6,7,8,9,0} be a set of points

and Let the blocks and the classes (Fig. 2) be given as follows:

Xo={x ={1,2,3,4,} , = {5,6,7) . x4 =18,9,0}},

*o
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{1,4,5,8!} ) y2 = {2:6193 ¥ y3 = {3.71 s y4={0)7}

<
i}
~,
<
-
i

and

z={z, ={5,8,97 , 2,={1,6} , 2z ={0,2,4} , z4={3,7}}

% 5 5 1 4
7 7,718 6 2
5 Zy 3
0
y4 11, 7
300 %0
Figure 2.

In figure 2. is depicted a T-3-seminet N=(P,X,Y,Z). According
to the theorem 2. it has associated partial i-T-cancellative
2-multigroupoid M, for each 1€ {1,2,3} . This M is not 2-cancel-
lative because.

Txe X)(Fy, € V) ( Klx,y )=k(x,y,) = v, =,

which 1s equivalent to

(Ixe X)(3F v, € vy(3 ygeY)(<ﬁ(x,yl)= &(x,y2)/\ vy, # y2).

This is because we have
xg, v1) =Llxg, ¥y )AY, # v,

THEOREMS. To every incompressible T-cancellative partial

k-multigroupoid a T-(k+l)-seminet is associated.

Proof. Let M=(A_ ,...,A ,A , &) be an incompressible
— 1 k' k+1

T-cancellative partial k-multigroupoid. NOw we will construct the

corresponding T-(k+l)-seminet. Let



P = {p=(a YEA x...XA A € oC(al,...,ak)} ()

cea s
1’ Tkl 1 K+l K

be the set of points of the derived structure. Let us define

classes Xi’ i1€N where Xi is a collection of the subsets of

k+1’
set P of the following form:

Xi,a: P/ﬁ(Alx...XAi_lx {a} xAi+lx...xAk+l) (6)

where a run through Ai.

Clearly the sets xi(aeAi) are disjoint and by incompressi-
bility of L we conclude that they are nonempty and that they

cover P, hence Xi is indeed a partition of P.

We have to check that so defined (k+2)-tuple N=(P,Xl,...,

i i T1.-T3.
Xk+1) satisfies T1

We have already noted that xi a are nonempty, hence T1.

follows.

Let us define an (k+1)-any relation by

P € ey 7
R(xl, ,xk,xk+l) <> A, &Ial, ak) (7)
where X'=Xi’ai’ 1€Nk+1.
. ie
Proof of property T2. Let Xi,a’ Xi,a’ belong to Xi’ i Nk+1’

and let it hold

R(xl""’xi,a""’xk+1

)<;3>R(x1,...,x_ R ) (8)

for all x e, X, X, Vee s X concurrent with x, or X, .
1’ L S R VO P+l i,a i,a’

Owing to (6), (7) and i-T-cancellativity of M partial k-multi-

groupoid (8) is equivalent to (2). This means that X, = xi Q-
Let p= .. and p’=(a’,...,a’ P b i
et p (al, ,ak+1) c€Pp p (al ak+1) € e points
and let x, € X,, b.,e A, be blocks such that for every ieN
i,bji 1 i i k+1

and p’e x,

it holds péx, .
P i,bj 1,bji

.
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Then, owing to (6) for every ieN we have ai=b_ and a’'=b_,
i i i

k+1’
i.e. ai=ai, and this gives p=p’. Thus T1l. holds.

Therefore, to any T-cancellative incompressible k-multi-
groupoid M we can associate a T-(k+l)-seminet which will be de-

noted by JY(M) .
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SOME CHARACTERIZATIONS OF n-BANDS

Pano Krzovski

Abstract. An idempotent n-semigroup 1iIs called an n-band.
Some well-known properties of bands (i.e. of 2-bands) are ge~
neralized in this paper.

0. First we will state the necessary preliminary definitions

and results.

If (x1,...,xn) - XqXgeooX) is an associative n-ary operation

on a set S, then we say that S is an n-semigroup. A subset A of S
i p=

is called an i-ideal of § iff s ’As”'lg A (as usual, s%as? 'sas”,

sT 'as%=s""

ideal; A 1is an ideal -iff it is an i~ideal for every ie{1,2,...,n}.

me ideal. If x is a given element of §, then N(x) will denote the

intersection of all filters of S which contain x.
An n-semigroup S is called an n-band iff it is jidempotent,

i.e. iff the identity x"=x holds in S. If, in addition, S is com-

mutative and for every iv’ jv >0 such that

Lyt i, et dyp = Jo+ J +eeat G = A,
the identity

iy ig iy K N Ty

P P T

holds in S, then we say that S is an n-semilattice. A congruence

ttice.

we will formulate some results proved in [5] and [6]. Thro-
ughout the paper, S will denote a given n-semigroup if it is not
salid otherwise.

This paper is in final-form and no version of it will be
submited for publication elsewher.
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0.1. ([5] 3.2) The relation n defined in S by
xny <=> N(x) = N(y)
is the minimal semilattice congruence on S.

(If x€S, then the n-class which contains x will be denoted
by Nx.)

0.2. ([6] 2.2) If xt’:‘sn—‘lxsn—1 for every x€S, then

1= -1

- n n-a
N = {yes | xes® " 1ys” 7", yes" T 'xs"7},

also for every x€S.
0.3. ([5] 2.1) The following conditions on an n-semigroup S
are equivalent.
(i) Every n~class of S is a left simple n-semigroup.

n

n-1 n-1 n-1
(ii) For every x€S, XE€S x and xS S s X .

n-A n-1
(iii) For every x€S, NX={yGS | xes y, Y€S x}.
1. Now we will give a characterization of n-bands by means
of the n-classes.

Proposition 1. An n-semiqroup S is an n-band Iiff for every
x€S the following eguality holds:

NX = {yes |x=(xyn_1)n_1x, y=(yxn_1)n~1g}. (1)

Proof. Let S be an n-band. Then

-1 - n-1_n_n-=1
x = x* = xn xnxn ’es xS ,
and so, by 0.2., we have
- - n-a1 n-n1
N = {yes | xes™ "ys™T?, yes"T'xs" 7).

ég this it follows that, if x€S and yeNX, then there exist

. - uch that
PR b1, ,bn_1 s

Therefore:
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_ n-1 = n-=1
x xx a ...an_1yb1...b _1x
n-1
= a,. an 1(yb1b2...bn_1x ) =
n-1.n
=a,...a _1(yb1b2...bn_1x ) =
= ( b.b b "y b, b b n- (b b b
a1a2...an_1g Py P n_1)x y b b,... n_1x ). (yb, PRI A

= xy”‘1(gb1b2...bn_1x“")"'1 =

n-1.n

= (xy ) (9b1b2...bn_1x ) =
_ n-1 . n-1_ n-1 n
= (xy ) xy (yb1b2...bn x ) =

- (xyn—1)n—1x.

1. 1—1

By symmetry: y=(yxn- ) y and so (1) is proved.

Conversely, suppose that S is an n-semigroup in which (1)
holds. Then, if x€S, we have x, anNX and:

n-1 n-1 n{n-4)+1
x = (xx ) x = x )

n-— - P -
xn - (xnx 1)n 1xn - x(2n 1){(n-1)+n

n{(n-1)+1 _n{n-a
KA(n=) 4 n(=a)

i.e. S is an n-band. |

2. It is well known (see for e}ample ([3] p. 45) that a band
is a two-sided simple iff it is a rectangular band, i.e. 1Iff it
satisfies the identity xyx=x. We give a description of two-sided

simple n-bands, for any n, in the following proposition.

Proposition 2. An n-semigroup S is a two-sided simple n-band
iff it satisfies the identity

(xyn—1)n—1x = x. (2)

Proof. Let S be a two-sided simple n-band and let x,y€S. Then

n- n- . . .
S 1yS 1=S, by which it follows that there exist a1,...,an_1,
b_,...,b €S such that
1 n-1
X = &@,3.-.a b,...b .
1 n-,7%1 n-1

Using this, we have that:
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= b n-1
X = a,...a_  yb, ..bn_1x
n-1.n
= a1...an_1(yb1...bn X )
-1 n-1.,n-1
= a1...an_1yb1. sb X (yb,...b _ . x )

i.e. that the identity (2) is true.

Conversely, if an n-semigroup S satisfies the identity (2),
then by Proposition 1, § is an n-band. Beside this, for all x,yé€s

we have

n=1 n-i1 n-i n-4
y = (yx ) y€S xS ’,

i.e. S=Sn—1xsn—1, by which it follows that S is two-sided simple.

3. We will glive here a description of one more class of

n-bands.

Proposition 3. If S is an n-band, then the following state-

ments are equivalent:

(i) The identity xgn-1=x holds in every n-class of S.

. n-1 n-1
(i1i) For every x€S5, xS < s x.

1

(iii) For every x€s, N(x)={yes ngn_ =x}.
(iv) S satisfies the identity
xyn—1 _ (xyn—1)n—1x_
Proof. (i) => (ii). It is clear that if an n-semigroup sa-

tisfies the identity xgn_1=x then it is left-simple. Thus, by
0.3., one obtains that (i) Implies (ii).

;- n- n- ;
(ii) =—> (iii). Let xS 1§.S 'x for every x€S. Since
n-1 n-1_n_.n-1_n

x x

x=x"=x Xx=x €S by 0.3 we obtain that

,

N, = {yes | xes" "y, yes"T'x}.

By this, it follows that if yeNx, then there exist e, €s,
n-1
such that x=a a_...a y. Therefore
1 2 n=1
n-4 n-1 n-1
x = x a_ ...a = ... 0=
1 n_]y X a1 an_Jy Xy .

We will prove now that the set T={y€S lx€Sn_1y) is a filter.

Let u_u_...u €T. Then
1 2 n
n-1 n-1 n-i+1 i-1 n-1 n-i+1 -1
xX€S u u_...u_ = § u. u_... U_...U
a2 n Yar Yy L/
n-1 n-i+1 n-1

c S uu_...u, (=) u..

1 2 i = I

Therefore uiGT for i=1,2,...,n.

Conversely, let u1,u2,...,uneT. Then xesn_1u ’
1

n-~» n-=1 . .
X€S U,s.-., XES u, and so, using (ii),
n-1 n n-1_n-14 n- n-
xes” 'xVa VTS Ty s T sy g
2 n
n-1 n- n-
(= u S ‘u_...s Tu u ... <
1 2 n-1 n= -
g s 'y u_...u .
1 2 n

. n__n-1 .
Therefore u1u2...un6T, and since x=x"€S x, 1t follows that
N(x)ES T.

Let y€T. Then x=a_ a_...a
12 n

filter, it follows that y€N(x) which means that T< N(x). Hence

_1geN(x), and since N(x) is a

T=N(x), i.e. N(x)={yes | xes" " 'y}.

n-1 . n-
But, x€S y Iff x=xy 1, and therefore we have

N(x)={y€es |x=xyn_1}.

(iii) => (iv). The set N(xyn_1) is a filter of S. By the

assumption,

n- n- - -
N(xy ') = {zes | xy" 1 = xyn 107

. n-1 . - - -
Since x,y€EN(xy ), it follows that xyn 1=xyn 1xn ! and
n-a n-1_ n-1 . . .
y x=y xy which implies that

n-1 n-1_n-1 n-+1__n- - - -
xy = xy x = xy xx"7% = xyn 1xgn WL e, =

n-1 _n-1
= (xy ) .

(iv) =—> (i). If S is an n-band, then for every xEN_, by
x
Proposition 1, we have

x = (xy?T1)RT o xy"TT.



4. We will show now that the n-semilattices are,

usual binary semilattices (i.e. commutative idempotent semigroups).

in fact,

Proposition 4. An n-semigroup S Is an n-semilattice iff the-

noon

re exists a binary operation

ttice and the following identity is satisfied:

X _ X_4..X = X X _ ... X .
12 n 1 2 n

on S such that (S;-) is a semila-

(4.1)

Proof. Suppose first that § is an n~semilattice and define

a binary operation "." on S by
X-y = xy .

Then, (5;-) 1is a commutative groupocid and

n~+1 _n-
(x-y)+z = xy T2 1,

1,n=1

x-(y-z) = x(yzn— ) -1 n-4 . n-1

xy? T2

- xyn—1zn—221+(n—z)(n—1)

n~q n-a
= Xy z ;

thus (S5;-) Is a semilattice. Also we have that:

X .x _ n-1_n-1 n-1 _
At XX = XXy Xy LLlax) =
n-1 n-1,._n-1 n-2
= x,X; ...x { ) x =
n-» "n-1"n’"n
n-1 n-1 n-1._n-2
= x_Xx e X x x x =
12 n-z2 n-1 n n
1+{(n-2 n-=1
= X X_X_...X x x 1 I )
1 3 n-2"n-1"n
S X XX,

i.e. (4.1) is true.
If (S,0) is a semilattice such that

X X_a-.X = X_O...
1 %5 n X1O 2 OXn,

then

n-a
X0y = X0yoyo...o0y = Xy ,

(4.2)

5. The following problem is considered in the paper
[4; pp- 138~139]: given a class @ of semigroups, find a "reasona-
ble" definition of the corresponding class ‘€(n) of n~semigroups.

One of the possible solutions is to say that:

"An n-semigroup S belongs to %ﬁn) iff there exists a semi-

group (S;-)€¥ such that the identity (4.1) is satisfied".

The proposition 4 gi?es the possibility to characterize In
such a way the class of n-semilattices, but we should note that

this kind of defining classes of n-semigroups Is not suitable.

In order to illustrate this assertion we will consider the
symmetric group of permutations G={(1),(12),(13),(23),(123),(132)}.
The set of transpositions, S$={(12),(13),(23)} is a ternary semi-
group with respect to superposition of mappings; moreover, this
3-semigroup is a 3-band and a 3-group. But, there is no binary

semigroup (S;-) in which (4.1) would hold.

We mention that the Propositionsl, 2 and 3 are well known
for n=2. (See, for example, [3].) This propositions suggest to
example, the 3-semigroup S={(12),(13),(23)) satisfies this iden-
tity, because (xy2)2x=x2x=x, and so we can consider $ as a rectan-

gular 3-band.

Note that if we want to carry over the property of antico-
mmutativity of rectangular bands to the n-ary case, then we .ome
to another class of n-semigroups as it is shown in [1]. Namely,

one obtains that an n-semigroup S satisfies the gquasiidentity

x => x=y

XZ ,_,oae2Z
1 n-1

neq¥ T YZq ---Z

iff there exists a binary rectangular band (S;-) such that

X1...Xn = X1-Xn.
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INDEX OF IRREDUCIBILITY IN THE FORMAL POWER SERIES RING

Aleksandar Lipkovski

Abstract. In the present note the index of irreducibility of a given for-
mal power series is introduced. Freely speaking, it is the smallest degree
of its homogeneous form which is an obstacle for reducibility. Some examp-
les are given. A natural conjecture about this number is stated, together
with same supporting arguments.

As it is known, the ring A=K{{x,,...,x,11 of formal power
series in n indeterminates over a field K is a unique factori-
sation domain, In author”s recent work the notion of strong
irreducibility has been introduced in connection with geomet-
rical and combinatorial properties of corresponding Newton po-
lyhedra, and some families of strongly irreducible elements
have been found (see (2] part II and also £31). In this note
an attempt to introduce an integer parameter for irreducible
elements is made, which leads to an interesting and natural
problem, Its proof would provide us with nice stratification of
the set of irreducible formal power series.

Let £=>7a;x" ¢ A (i is a multiindex). £,=2, a.Lxi will de-

AR
note the homogeneous form of £ of degree k, ord £ is the degree
of the initial form of f.WW\=(x1,...,xh) is the maximal ideal

of the local ring A. If ord £=0, then f is a unit, if ord £f=1,

then £ is irreducible. We shall always assume that d=ord f > 2.

; . K
DEFINITION 1, £ is reducible modulo k ¢ ¥ if there is a geWil

such that f+g is reducible. QOtherwise f is irreducible modulo k.

DEFINITION 2. Index of irreducibility of the series f is the
number (or +oo) i(f)=Sup{k€ﬁN | £ reducible modulo k}.

This paper is in final form and no version of it will be submitted for
publication elsewhere.
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Pemarks. 1. f reducible mod k => £ reducible mod 1< k.
2. f reducible => f reducible mod k for all k.
3. i(f)=inf{ke]N \f irreducible mod k}-—1.

Before stating examples, let us recall some notions and proper-
ties from [2]. For £¢ A, its support is the set supp f =
={i€-22\ai# O}. N (£) =conv (supp f+ZR:) is the Newton polyhedron
of £. We say that £ is strongly irreducible if its Newton po-
lyhedron cannot be decomposed in the sum of such polyhedra.
Since N(£g)=N(f)+N(g), strongly irreducible elements are irre-
ducible. One sufficient condition of indecomposability will be
used here, namely if N(f) has an indecomposable face which in-
tersects all coordinate hyperplanes, then N(f) is indecomposa-
hle (see L2] part IT,§1-2).

Example 1. For f=xy+z"e¢K[(x,y,z)) we have i(f)=m. More gene-
rally, for f=x"y®+z” with M(k,1,m)=1 we have i(f)=max(k+l,m).
Indeed, under this condition f is (strongly) irreducible: N(f)
has an edge with vertices (k,1,0}, (0,0,m). If p> max(k+l,m),
this edge appears also in N{(f+g) for all ge& TW'. Therefore,
i(f) < max(k+tl,m). On the other hand, if p ¢ max(k+l,m), we have
twQ possibilities, If max(k+1l,m)=k+l, then p.< k+l and xkyléﬁﬂ%
if max(ktl,m)=m, then p¢ m and z"%TTﬁ In both cases f is redu-
cible modulo p. This means exactly that i(f)=max(k+l,m).

Example 2. For f=thye+zm with k<1< m and M(k,1)=1, we have
i(£)=1, Indeed, f is (strongly) irreducible, since N(f) has an
edge with vertices (k,0,0), (O,l,Of. If p>1, then for any
gEYmF, f£g=xk+yt+ﬁ.where héYﬂhaand N{f+g) also has that edge.
Therefore, i(f)< 1, On the other hand, if p¢ 1, then y(+z'“e'?TLP

and £ is reducible modulo p. Therefore, i(f)=1.

Given fe¢ A, let S, (£f) denote the system
g.h, = £,
g,h,tg,h, = £,

T - P DR %
with indeterminate homogeneous forms g;, h

Remark., S, (f) has a solution =} §,(f) has a solution for all 1g k.

i of degree i (1gi¢k-1).
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PROPOSITION 1. i(f) is the least number k for which the system

Sy_,(f) has no solution.

proof. Obviously, f reducible mod k <> S5, ,(f) has a solution.
Therefore we have i(f)=sup&k{f reducible mod k}=
=sup{k|5k(f) has a solution}+1=inf{k‘SK(f) has no solutions}.

K+
Remarks. 1. If S,(f) has a solution and f’e¢-f+T , then S, (£7)
has also a solution. Indeed, §,{f)=S (f").
2. Tf i(f)=m, then for all £ £+, i(f")=m.

We see that if i(f) is finite, then f is irreducible. One may

ask, under what conditions the converse holds?

THEOREM 1. If f is strongly irreducible and regular with res-

pect to all indeterminates, then i(f) is finite.

Proof. Under the conditions stated, there is an k¢WN such that
all vertices of N(f) lay undexr the hyperplane x,+...+x,=k. Then
N(f€g)=N(£f) for all gé7nK. But f is strongly irreducible and
so is ftg., This means that i(£)< k.

It seems acceptable that the condition of regularity may be
dropped, since adding a ge7NK to £ (not necessarily regular)
will change only some unbounded faces of N(f) and for a suffi-
ciently large k will not change the indecomposable skeleton of
NM(£) (see [3]), So we arrive to

CONJECTURE 1, £ is stréngly irreducible = i(f) is finite.

Since the definition of i(f) does not involve the notion of
Newton polyhedra and strong irreducibility, one may state
even strongexr hypothesis.

CONJECTURE 2. f is irreducible = i(f) is finite.

This seems to be very natural. In fact, if i(f)=+o0, then for
all k we have a solution of S, (f) or equivalently,

(1) for all keN, f£= g™ h™ mod T",
The problem is to patch this solutions together, to obtain a
factorisation f=gh in A. Unfortunately, the ring A is not com-
pact in Tl-adic topology (otherwise we could pick out a con-
vergent subsequence of g“),gn),,., to obtain g). Instead of

compactness, we have a weaker property of linear compactness
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{see 11Jch.1II1,§2,7 and §2 ex.14,15), which means that only the
filters In A with basis of affine linear sets (i.e. sets of the

form atl where I is an ideal in A) must have an adherent point.

In fact, this property is a consequence of completness (ibid. ex.22)
and is not particularly useful for us, The conjecture 2 would fol-

low from & (stronger) statement about the sequence g("ﬂ

. 4 K
(2) for all k exists an 1>k, such that g()—g‘“67ﬁ ,
which would enable us to pick out a convergent subsequence.
Howevex, statement (2) seems to be too strong: it is not clear

(<) exist an g(“ (1>%) with the same k-jet.

why should for each g
It would Be, maybe, possible to find, by some kind of diagonal
argument, a new sequence §Jk)which fulfills (2) and still has
the propexty (1).

Note.Conjecture 1 is proved in [3].
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SEGIGROUES WHOSE SUBSEMIGROUPS AxE Leli UNITARY

Todor lalinovié

Lbstract. Ve give the definition of strougly left regular
semigroup and we characterize the semigroupns 2 having one of
the following properties: (a) every ieft (right) ideal of 5
is left unitary, (b) every one-sided ideal of 3 is left unitary,
(¢) every subsemigroup of 5 is left unitary.

Trougnhout this paper let 7" denote the set of all positive
integers.

A nonempty subset A of a semigroup 5 is left unitary if
x s and a,ax ef 1imply x €A; right unitary is defined dually;
A is unitary if it is both left and right unitary. A semigroup
$ is regular if a caSa for every a €83; left (right) regular if
a €5a2(a €2a2) for every a €S,

For nondefined notions we refer to i1 ,

DuPTHITEON 1. A semigroup 5 is strongly left regular if

(Va,bed)(aec8Sab v a€ba),
A strongly right regular semigroup is defined dually.

fal)

TEONEY 1. A semigroup 8 is stroarly left regular if an
o
1)

only if everwy left ideal of & is left unitary.

Proof. Let 5 be a strongly left regular senmigroup and
let L be a left ideal of S. If a,x€S arbitrary element, then
x €S8ax v X € Sxa

This parer is in final form and no version of it will
be submitted for nublication elsewhere.
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an? 50
(1) X=yax v X=zxa
for zome z,v€S8., If a,ax €L, then xa €l and from (1) we
have that
x=yax €L < L

x=zxa €5L € L.
Hence, L is left unitary and thus every left ideal of S is
left unitary.
Conversely, lct every left ideal of S is left unitary
and let ¥»,a €8, If L(ax) and L(xa) are the left ideals of

S5 generated by elements ax and xa, respectively, then

L=L(ax) U L{xa)
is a left idezl of S and so

(2) lL=ax Uxa USax USxa.
From this we have that

(3) xa, xax € L
and thus

(#) xel,

since L is left unitary. By (2) and (&), it follows that
X=ax vx=Xa Vv X €3ax vX €3xa.
If x=ax, then
2
x=a"x=a(ax) € Sax.
o, consider case x=xa. Since axa €9xa and
axa2=a(xa)a=axa<£Sxa
we must have a eSxa. llence,
a,axa € 5%
and thus
X=Xa € 3xa,
since Sxa is left unitary. Consequently we conclude that
X €3xa v X €%ax

and thus 5 is strongly left wegular.
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emark It is clear that,if 7

then 2 is not left wnitary.

is ;roner »ipht ideal

adsroup s is

TR0 M0 2. Lvery one-sided ideal of a se:

left unitery if and only if 5 is a richt groun.

Proof. Let cverybne-sided ideal of 5 is left unitary.

Then, by Remark 1, we must have S is right simnle and thus

(5) (Vaed)(ad=8).
On the other hand
(6) (Yaes)(aesa),

since £ is strongly left unitary (Theorem 1).
From {5) and (/) it follows that
(Vae 5¥acasa’)
and thus 5 is 2 union of groups. Since 5 is right simple
we have that 5 is a right group.

Conversely, let 3 be a right group and let L be an
arbitrery left ideal of 3. If a,ax€l for some x€&8, then,
by Theorem IV. 3.9. Eﬂ, we have that 5 is regular and thus

(7) ax=(ax)y(ax)
for some y €S. Since S is left cancellative so by (7), it
follows that

x=(xy)(ax) €511
Hence, L is left unitary and thus-every left ideal of 5 is

left unitary.

LA 2. Lvery two~-sided ideal cf a semicroup S is

left wnitary if and only if S is simple.

Proof. Let every two-sided ideal of 5 is left unitary
and let I he an arbitrary two-sided ideal of “. If a €&l is
an arbitrary element, then

(10) (Vxe8)(axel).

Since T is left unitary so x €I wich tocether with (10)

imnplies I=2 znd thus & is simple.

]“J .

rce the converse is obhvious, the lema i3 rroved.
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THEOEM 3. Every subsenifroun of a semigroup S is
left unitary if and only if S is a periodic right group.

Proof., Let every subsemigroup of S is left unitary.
Then by Theorem 2, we have that S is a right group.
Let a be an arbitrary element of 5. Then

<av= {a,ag,aa,...}
is a subsemigroup of 8 generated by a. If cay is infinite,
then
2
(11) A={a ,a3,...}
is a subsemigroup of S, Since A is left unitary so

aB,aBaEA =>a € A
which together with (11) implies

k
a=a

for some k €2" and k »2. Hence, S is periodic.

fal

Conversely, let S5 be a periodic right group. If A is a
subsenigroup of 8, then A is periodic and thus A is a union
of disjoint groups. Since S is right simple it follows that
every idempotent of S is a left identity. Suppose now that

(12) a,ax €A
for some x €S5. Let a” €A be an inverse of a in a subgroup
G of A, Then

a

(13) a‘ax €4
and from this we have that

(14) ) X €A,

From (12) and (14), it follows that A is a left unitary,
and thus every subsemigroup of S is a left unitary.

COROLLARY Every subsemiproup of a semigroup S is

unitary if and only if S is z nperiodic group.
- Proof. ZFollows immediately from the Theorem 3.

NG CUES LI O
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ON THE NUMBER OF U;-LIKE EXTENSIONS OF
OOUNTABLE MODELS OF PA
Zarko Mijajlovid

Abstract
Uging first-order logic with the additional quantifier "there
exist uncountably many x”, we show that there are £ e -like

extensions of countahble models of forazl arithmetics.

We propose a method for counting @;-like elementary end-extensions
(abr. e.e. extensions) of countable models of Peano arithmetic (abr. PA).
Gaifman’s approach by using minimal types, gives a powerful method for
determining the number of end-extensions of models of PA. On the other
hand, R. Kossak was the first who studied the problem of determining the
number of W;-like extensions which satisfy additional properties (for
example models which are recursively saturated), cf. [3], [6]. The method
in this paper is based on the logic L{Q}, where Q denotes the quantifier
"there exist uncountably many ", and end-extensional types introduced in
{11. When we are dealing with L(Q), we shall assume the notation as it is
introduced in [2], and when we speak about models of PA we shall use the
notation and terminology as in [1] and [7]. However, minor changes are
possible. For example, we shall assume throughout that Qx satisfies the
fifth Keisler’s axiom K5, i.e. @Qx(x=x). Therefore, the standard models
of L(Q) are uncountable. The reader is warned that standard models of
logic L(Q) are nonstandard models of PA in first order logic. The quan-
tifier 4x 1is defined by: ,;Ix'f’ o 1x¥. Thus L{4) is an extension of
first order logic with equality obtained by adding a new quantifier 4x.
Obviosly, properties of this quantifier can be easily deduced from the
properties of the quantifier Qx, see e.g. [6]. Models will be denoted by
letters A,B,C,..., and their domains by A,B,C,... respectively.

This paper is in final form and no version of it will be submitted for pub-

lication elsewhere.
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First we state some results on the logic 1.{(Q) and models of PA. By
PA(Q) we denote Peano arithmetic in L(Q), but with induction scheme ap-
plied to all formulas Lpa(Q), where Lpa denotes the usual language of for-
mal arithmetic. We remind that an w,-like model of PA is such a model M
in which every initial segment is countable, but M itself is uncountable.
If M is a model of PA, then the quantifier Qx over M defined by
(1) ME  QxPx e Vy dx(y<x A ¢X)
satisfies all the Keisler’s axioms K1-K5:

Kl. TJ&x(x=y v x=z),

K2. ¥x(¢¥ —SY) s —ax¥),

K3. @& Yxe>Qy Yy, y does not occur in ¢x,

Ki. Q IxFxy — IxQy ¥xy v Iy $xv,

K5. @x(x=x).

For so introduced quantifier Q, the following theorem shows that
uy -like models can be characterized in L(Q).

THECREM 1. A model M of PA is an w;-like model iff M is a standard
model of PA(Q).

Proof (—>) Suppose M is an w;-like model of PA. Then for any formula
¢ of Lpa(Q) the following holds:

Mk @x¥x iff there are uncountably many a ¢M such that M} ¢a
iff there are cofinally many aeM such that M- fa
iff ME Vy Ix(yx A Px)

i.e. M satisfies (1). Thus M is a model of PA(Q) since the natural or-
dering < defines the quantifier which satisfies Keisler’'s axioms. We see
that M is a standard model of PA(Q) since ME Qx(x=x).

{«-) Suppose M is a standard model of PA(Q). As ME @x(x=x), M is un-
countable. Further, we show

Claim PA(Q)F ¥y dx(x<y).

We prove the claim by induction in PA(Q):

As  Mx(x<O = x=0) — ( Ix(x=0) — 4x(x<0)), we have
(n PA(Q) | Ax(x<0).
Further, Ax{x<y’) <« Ax(x<{y v x=y)

< AX(X<y) A dx(x<0),

80 by induction hypothesis and (1), the following holds
(2) PA(Q)F  Ax{x<y) — Ix(x<y?’).

Therefore, Ml Vy 4x(x<y), hence every initial segment of M is countable.
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Now we shall review some general lemmas from [2] about the logic
L(Q) in order to apply them later on to PA(Q). For the moment, let L de-
note an arbitrary first order languasge. Following the notation in [2], if
F is an arbitrary set of formulas of L{(Q), then "F= (¥ :¥eF]. A F-
type is a subset P< FUTF such that for all P ¢ F, either ¥Y¢ P or
1Pe P. If A is a model of L, then F(A) denotes the set of all types re-
alized in A, The following lemma will play the main role in counting -
like models.

LEMMA 2. (Lemma 5.4. in [2]). Let [ be a set of sentences and F(x) a set
of formulas of L(Q), and let To(xe), Zi(xi), ... be countably many sets
of formulas of L(Q). Suppose [" has a standard model A such that A omits
each set 2 n{xs) and F(A) is uncountable. Then there is a set M of stan-
dard models models of [ such that [Ml= 21 , and each B€EM omits each set
2., and for any two distinct models B,C &M, we have F(B)#F(C), and in
fact:

(1) neither F(B) ¢ F(C) nor F(C) ¢ F(B).

Now it should be clear what is our strategy for constructing a
large number of w;-like models (possibly with some special properties,
e.g. recursively saturated models) extending given countable model M of
PA: we shall construct an w;-like model N extending M, and which realizes
uncountably many types, and then apply above lemma. The model N will be
obtained as a union of a continious Wj;-chain of e.e. extensions starting
from M. To ensure a sufficient number of ktypes realized in M, we shall use
Gaifman’s results on end~extension  types. For the reader’s convenience
we recall the definition of end-extension types, cf [1] p. 242-243. A type
t{v) over a model M, say of PA, is unbounded if {(a<v) ¢ t{v) for every
aeM. t(v) is an end-extension type if it is unbounded, and if t’ is a
type over M and t c¢t’ then M{t’) (M(t’) is a model N2 M of PA generated by
MV (b}, where b realizes t’ in N) is an end-extension of M. In the next
we shall use some properties of end-extension types, as they are stated in
[1].

LEMMA 3. Let M be a countable model of PA. Then there is an w)-like model
N such that M <N, and M realizes uncountably many types over M.

Proof Let A be a minimal model of PA such that A < M (such a model ex-
ists since PA has built in Skolem functions). By Corollary 2.20 in [1]
there are |Al” end-extension types over A, so there is a sequence

<tp(v): E<®> of end-extension types over A such that for ¥ ,\S(C’Jx



128

t‘g(v)u ts(v) is inconsistent. We now construct simultaneously two w,-se-
quences of types Sy and models MI as folows. First we take Mo= M, and
so(v)= to(v)U (a<v: acM). We see that so(v) is consistent as otherwise
there are aj,...,an €« M\A such that

to(VvIF Tl(ai<vian...nasv), i.e.

to(VIF T 3Ivieeva(yid<v A AYa<V).
But this is a contradiction since to (V) is unbounded.

Further, for ¥ <@ define My.:= Mx(s}),and at limit stages take
M. = UM.S, while SB(V)= tE(v)u {acv: aeME) for alle<x . By [1] SE(V) are

ooy
end-extension types, so for K= U Mj we have:

¥
10 K is an wj;-like model.
20 M <K,
30 K realizes uncountably many types over M (these are SS(V) ,¥<0n ). B

THEOREM 4. Every countable model of PA has 2 «wh-like e.e extensions.

Proof If M is a countable model of PA, then by Lemma 3 there is an w;-
like model which is an e.e. extension of M and which realizes uncountably
many types over M. By Theorem 1, N is a standard model of PA(Q). Since
M<eN, the model N omits all types:

(1) S .(x)= {x#b: bla) U (x<a), acM.

Therefore, by Lemma 2, there is a family T of size 71 of standard models
of PA(Q)V Th(M,m)m.u such that each NET omits all types (1), i.e. M<eN,
and for distinct B,C<T, F(B)# F(C), i.e. B #C. By Theorem 1, models in T

are w;-like. g

With 1litle change in the proof one can show the following variant

of the above theorem.

THEOREM 5. If M is a countable model of PA then there is a family T of
size 2*0 such that:

Each A €T is an w;-like e.e.extension of M.

If A,BET and A # B then neither A is embeddable in B nor B is
enbeddable in A.

This fact follows from the condition (1) of Lemma 2.

Now, one can try to obtain Kossak’s result in [5]:

(K) There are 2“1 w, ~like recursively saturated e.e. extensions of

every countable recursive model.
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In such an attempt we take the theory PA(S), cf [4], consisting of PA, in-
duction scheme for all formulas of Ls= Lea ¥ {S}, S is an additional umary
predicate symbol saying that S is a satisfaction class. Then by Theorem
1.4. in [4], countable models of PA(S) are exactly recursively saturated
models of PA. Therefore, if M is a countable model of PA(S) and t is an
end-extension type, then M(t) is recursively saturated. Then one would
expect that the family T constructed as in Theorem 4 furnishes Kossak's
result. But it may appear that reducts of models of T to the language Lga
are isomorphic, so the question of obtaining (K) in this way remains open.
However, this attack rises the following question.

Let us introduce the equivalence relation in T defined by A~B iff
AlLea = BiLea, and let {Ti: i€1} be the corresponding partition of T. If
k= 1I{, then we have the following possibilities, assuming that 2" is a
regular cardinal (like in the case of GCH for example):

10 If k=2"" then there are 2 nonisomorphic recursively saturated
nodels extending M, i.e. Kossak's result follows immediately.

20 If k<2“t then there is a class T; of the cardinality 2*1, i.e.

(1) There is an «,-like model of PA with 2*1 inductive satisfaction
classes.

Now we rise the problem: is (I) true?
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I,2
0 BA3ICE U IEQORMAUMAX HEKOTOFHX AJTEBP JU
Jyman Taron
Pesmve. B craThe paccMaTpuBanTcH Iedo mo T'epcrerxadepy
OMHOTO KJACCa TIpAIyHWPOBAHHHX amreop Ju, OMuU3xux K CBOCOITHOR

amredpe Jdu, lIpelnaraerca yIOOHHH ajlopUTM IJIA NOCTDOEHUA da-
3nca cBoComHOR anrelpH Jm. PesyiabTaTH, IOJNYy9YeHHHE DaHee A
TOYTH CBOOOIHHX aarelp ¢ OIHEM ONDENEJINWM COOTHOWSHHEM
BTOpO# CTemerm, 0C00mEeHH Ha CJIy4Yal OIHOTO OXZHOPOIHOTO COOT-
HOUleHW TIPOUIBOJBHOR CTeNeHH.

Beenenme. lzBecTHO, 4TO WJIACCH M3OMODPHUSMA HUWILIOTEHTHHX
anrelp Ju GurcUpOBaHHO DPA3MEPHOCTY Hal HEKOTODHM IIOJEK
OUDEIENIINTCA HACopaMn IapaMeTpoB ~ 2AEMEHTOB 3TOTO IIOJA.
TomxomaAmyM CPeICTBOM IJIA H3YYSHEA 5TEX KIACCOB NPEICTaBIA-
eTcq NOoHATHEe medopmammu anrelpH, XOTopoe BBes M. I'epcreHxa-
Gep [I]. 370 ocodoro Buna dormapEHe CTeNeHHHE DANH, ABJIAN—
MUecs TakuMy Ke WHBapHaHTaMu anredp Ju, Kak m UX aBTOMODIZ-
3MH Wi quideperimpoBaHua. OCUX Pe3yIbTaTOB 0 IedopManviax
anredp, K CORAJICHWO, IIOKA IOJYYEeHO CPABHHUTEINHHO MAJiO, XOTH
OHW W3YYaJHCh I DABJUIHHX KJAcCOoB auredp Ju. B yacTHOCTH,
HaM¥ UCCJEeNOBaHH JefopMaluw HEKOTODHX airelp Ju, A KOTO-
PHX MORHO B SABHOM BHIS IIOCTPOXTDH YIOOCHHI IJIA BHUUCJHSHWA Oa-
auc [2]. Iig 8TOTO HEOGXOIMMO YHODANOYATH MHORECTBO 06pPa3y-
X cBodomHol anreSpy Ju [ . ey ey < ... Le, . HazoBem
gucao o0pasyiux , BXOIANMX B OPOM3BOJBHOE ACCOIMATHBHOE

I/ CraTea meYaTAeTCA B OKOHYATENLHOM BUNE W HUKAKOK €e Ba-
DHEHT IDPYyTEM H3IAHUAM IPeRIaTaThCs He OyIBT.

2/ ABTop OmErOZapuT 3a IoMomp "PasEcKoBANHA CKymHOCT CJo-—
BexHue", xoHTpaxt N CI-050I-I0I-8.
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croso U= e se © 4 €TO mmEo#: [U[=k u mycrs cioBa

e 3
I_‘2 5
IDMH Gosblie 1 OYOYyT YyHODANOYSHH JIeKCHKOT'pajudeckyu. Bymem k
TOMy X6 CUMTATH KaxIoe CJOBO MAHbIE JI0COTO €ro Havasa.

OIPEIRIEHIE I. AccolmaTWBHOE CJHOBO (L HaBSHBaETcs NDABWIBHHM,
econ I moCOTO ero pasdueHud W =W U” Ha Ipa HeMyCTHX NOX-
CJIOBA, VMEET MECTO HeDaBeBCTBO W >u”u’.

CHpaBemIuBO CJeAylllee yTBODPRICHMS, HOKa3aHHOe A.M. WpUOBHM
[3] :

VTBEPENEHVE I. lycrs [, cmoGommasn arredpa Ju ¢ oGpasymmumy

O], 83, <o) €y X Bcl, ee mOIMHORECTBO,O@NaNaKlee CICLYI-

mUMU CBOHCTBAMH: A

(I) mig Jodoro X€DB accomwaTmBHOE CJIOBO X, HONYYICHHOE ¥3
X oTdpacHpaHweM CKOGOK, gBIAETCS NDABIIBHHM;

(2) JoCOR DAEMEHT MHOReCTBa B, mWnmHa KoToporo Josbme I,
ABJIACTCA KOMMYTATODOM IBYX DJIEMEHTOB H3 B ; A

(3) ecam piemenT X€B mmeer Bmm X =[[y,z],t] , 10 Z< T .

Torma MHORECTBO B fBiAercA $a3UCOM aNreCDH L .

OKasHBAETCH, UTO HA KAKIOM IPABAIBLHOM ACCOLEMATUBHOM CJOBE
MORHO EeNWHCTBEHHHM 0GDA3OM DACCTABUTH CKOOKE Tax, YTOOH IO-
JyYEICA HEKOTOpHil siemenT Gasuca B [3].

1. B masipHejimeM HaM NOHANOCATCA CJIENyWlUe IBA CBOHCTBa acco-
NUATVBHEX CJOB:

JEMMA T. Jndoii KOHEO HNDOW3BOJHHOTO NPABMILHOTO CJOB4A CTDOTO
MeHBbIIe 3TOIO CJoBa.

ToKa3aTEeIbCTEO. UPEIIONORAM, ITO KOHel clobBa (4 coBmamaer ¢
HEKOTODHM HAYaJIOM DTOTO CJIOBA:
’
a) U= Wvw' . Torma ms npaBWIBLHOCTU cioBa L BHTEKaeT, UTO
/ V4 4 /,,7
wu'v<eu =uwvuw g wvevdd, Brasur U =Uvi<vun -

IPOTHBOpEYLE . ) , L L
6)U_=V/VV” , Toe VV= VV " =U" . Oreoma ULV LU =UV g

/ 4
v/« v" . Tostomy moxyuaem, d4ro U v'u’ =vihv<vivy,
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a 3T0 NPOTHBOPEYUT NPAaBMIBLHOCTHU CJOBA u.

JEMMA 2. Ecmy K IDOH3BOJBHOMY NDABWIBHOMY CJOBY L0GaBJAESTCA
IpyToe IDABUWIBHOE CJIOBO, KOTODOE K TOMY X MEHBIE HepBOTO,
TO NOQJYIEHHOE CJAOBO TOXe CYyNeT IDPABWILHHM.

IoKa3aTeIBCTBO . PACCMOTDYM OTHENBEHO KAKOHA U3 TpeX BO3MOAHHX

TUIOB PA3CUeHnA MOJYIEHHOTO GCJIOBA.

a) UV=w' 4"V u commacuo semme I mmeem U VU'<uvu’ < WUV,
YTo ¥ TpedoBANOCh HOKABATE. ,

) Amaormuo B cayae UV = UV VY momywaem, wro V'UVLVU.

B) Ocramock yOemursed, yro VUKWV, Ecam cioBo V' xopode
ciosa U , To aT0 oueBmmHO: VU< UVU < UV | B npoT@BONOLOK~
Hom caygae V=v'v", tme lv/l= (Wl u yvu, npmvesnan ewe pas
aemvy I, mosywaem, wro VU = v'v'u L YUV'U < UVU LUV,
YeM IOKa3aTeJbCTBO JIEMMH TIOJHOCTHI 3AKOHYEHO.

Tenmeps Mu yxaxeM 5PPerTUBHHI aAJITODUTM LA NOCTPOEHHEA OIpere-
JISHHOTO BHIle Gasuca B c¢BoGomHo# anrelpH Ju L , KOTODH# 3a-
KJI0YaETCA B NOCISHCBATEIBHOM IOJYUEHHH GABUCHHX 3JEMEHTOB
IPOX3BOJBHON IJIMHH .

TEOPEMA I. IycTh y®e HOCTDOSHH BCEe DJEMEHTH fasmca B , man-
HA KOTODHX He IIDEBHEAGT HEKQTODOTO HATYDAJBHOTO wucsa K , X
IycTh W ODOM3BONHHOE NPABWIbHOE Ca0BO mumH k + I . Torma
sqemenr x =(y,z]€l , mis xoroporo X =W, IpuHALIERAT
MHOXECTBY B ecCJu A TOJHKO eCJu Z camoe IJVHHOE IpaBWIBHOE
CJIOBO, KOTODOE MORHO HOJYYWTH U3 (L OTHATHUEM KAKOT0-TO ero
HavaJa, & y M Z IODpU 2TOM OpUHAmjIexatT dasucy B .

JorasaTesbeTBO. COIVIACHO YTBEPRIEHMO I MH JOMXHH YOeIWThHCA,

YTO CJIOBO ? Taxkie OyleT NDAaBWILHHM, 4 9JeMeHT X GJyIeT

YIOBNETBOPATH IIYHKTY (3) 3TOTO YTBEDKEOHEA.

SaMeTEM, YTO HEOPABWIHHOE CJIOBO MOXET IOJYYUTHCA M3 IpABUIH-

HoTo cJjoBa (l ToCNe OTHATUA KAKOTO-TO er'0 KOHIa V TOJBKO B

CIUIEMyIMIX CIydasx:

a)  =u'U... WYV, tme W- mpaBwIBHOE CIOBO cTporo GOJb-
me V ;o

) = wuw'v, rne W, " - ypaBwmeHre ciora m U U >V,
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Ho B 0GOMX CJy4asX NpUYMEHAA JeMMy 2 IIOJYy4aeM, YTo CJOBO 'V
FBJAAGTCA MPABWIBHEM, & eTO IMHA CTDOTO doJrblle IJIMHH CJIOBa
V= Z YTO NPOTHBOPEYUT NPEIIOJOXEHAIM TEODENMH .

TOYHO K Taxowry #e TPOTUBOPETMo M IDUXONMM, NOUyCKad T10

y =Cy’, y°1, y">z U NpUMEeHAS elle pa3 JemMy 2. Ilo3ToMy Moxem
CUUTATE, YTO TOOpPEeMa IOJHOCTBED NOKA3aHA.

2 Hawma ciemynmas LesJp HailTE yOoOHHH Oasmc B anredpe
=L/ 1I(e), Tme I(e) - umean:, MOPOXRISHHHN IPOE3IBOJIHHHM
HOpMKpOBaHHHM OTHOPOZHHM COOTHOmMEHMeM cTelmeH:m d>2 :

e =.2[ X.e; =0, e, npm { >h— JeKCEKOTPAINIECKE YIIOPALO—
L=

YeHHHE SJeMEeHTH Oazuca B , IIWHA KOTODHX He YOHBaerT.

OOPEIEIEHVE 2. HazoBeMm DJ6MEET X €[, perVJIADHHEM, €CJM OH

caM, a Tawke Bee DJEMeHTH,IpoW3BelleHUMEeM KOTODHX OF gpJAdeTrcd,
I2XT IDU OTCPACHBAHNY CKOCOX NDABWILHHE 4CCOIVATUBHHE CJOBA.

JEMMA 3. IIpou3BoJbHHE DPEeryJSpHHi BJAEMEHT X € L BupagkaeTcs
vgpes OasMCHHE DJIEMEHTH B CHSNYKIIEM BHIE:

x=e;,+2% e , rme =%.
3(:. 3

IoRa3aTeNBCTEO. B X0Ne pasiomeHuwd »JeMeETa X Ino dasucy B
HaM ODPUXOZHTCA IPUMEHATEH TOXNECTBO fIKOOU U 34KOH aHTMKOMMY—
TaTUBHOCTH, EME¥®e MeCTO B airedpax JIPI B IepPBOM CJy4Yae MH
samensem Bupaxennme [[y/, y“1,2], Tme y” >% ma CYMMY

[€y’',2) , y71+ [y', [y”, 2]] . Boeck BTODOE Claraemoe JaeT

OpU ONYCKAHWM CKOGOK TO ®E NPABWILHOE CJIOBO, UTO W UCXONHOE
BHpa®keHue. )3 IepPBOTO Xe CJATaeMOoTO noxyqaeTc;i choro MEHB-
ee CJIOBO, IOCKOJBKO COTJACHO JIeMME 2 ZY < Y“Z, a sHaguT

n v2y%¢y’y”’z . lo Toi xe mpWENEe MH IOJyUNM CJOBA
MEHBLE X ¥ ecau OyeMm NPMMEHATEH HPABWIO SHTHKOMMY TATYBHOCTH.

CJEICTBUE I. SamenuM kamnuit M3 Ca3WCHHX BJEMEHTOB €. , LIT
A N /
KOTOPOTO ‘6, ABJIASTCH MONCJOBOM ‘€; , HA DJIEMEHT ., WO
YeHHHI ¥3 e, B DPE3YJbTATe CASNVINVX NeHCTBu:
(a) cHBUr JeBHX CKOOOK, HE CONepRAaWuXcsi B €, , HO Haxoud-
A_ N
¥XCA BHYTDU BHPARCHNS gce; » 9= e, B Hauauo 3TOXO
BHDaREHUA;
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(6) modaBJeHMe B HAYAJC BHDAKEHWS Q CTONBKUX JIEBHX CKOGOK,
CKOJBKO UX CHNQ CHBUHYTHX, W B KOHIC g TaKOTO %e KOJU-
YecTBa IPABHX CKOOOK;

(B) 3amMeHa BXOXNEHW/ DJI6MEHTE €, HA BJAEGMEHT e ;

(1) orGpacHpanve IBORHEX CKOGOK, ECJY OHE O0DA3OBAJUCE .

llosygerHoe maxvM o6paszoM ¥3 B MHORecTBO B’ ramue oyner

Gasucom anredps L .

Jox23aTe bCTBO. 3TO BHTEKAET HENOCDPENCTBEHHO W3 YTBE P IS HUA
I v jgemvu 3.

BocnoJsmsyemcs Teneph eme ONHIM YTBeDXNSHHEM, NOKA3AHHHM A.U.

Upmonrm (4]

VTBEPEIEHVE 2. Ecou naement x€L OIDVHAIORAT Mueayxy I(e)
TQ cTapllee QCOUMATHBHOE CJIOBO, HOJVYCHHOE HOCHAS DASJIOXKSHIUA

X mo Gasucy B, X oTCpACHBAHMA CROCOK, COLEDRUT CJOBO ’e:‘

Ha ochoBanum ciefcTBuA I ¥ NOCTENHETO yTBeDKIEHHWS IOJIYIAEM
clenynmee onucaHue dazuca anredpu L

e
CJEICTBUE 2. MHOJx{eCTBO B , nosyvemmoe s B’ QTODacHBa-
HEEM 5JEeMEHTOB e‘ , GOymer daswcom mommpocTpaHctea L& L

U30MODIHOTO IPOCTDAHCTEY AJIreCpH L

OdoszHaumM 4yepes Xg H Xy I(e)— " L—KONE{IOHGHTH IPOU3—
BOJIBHOTO oJieMeHTa X€L[ , m myets J GyIeT KAHOHWYECKIH
onmMopdE3M anredpe L Ha anredpy [_ IIpoodpas MpoOU3BOJIE-
HOTO onemez{'ra aeL ODY DTOM OTocSpaxcemm GyHmeM 0603HAYATH
gepes a eL as KatzeCTBe Gazuca anreSpH L ¢ MH BHOEpEM MHO—
xectso By = T (B) ={E;= T(e;) : e,€B}.

3. Tenepr M¥ B oocwomxm DDECTYNKTE K U3Y9YeHo0 xedopnMalipdi
asTeGpH L Dyers { € e (Lo Ly Symer mpouspossnas rpau:yn
DPOBaHHaA 2—xouenb a 5? JnHeiHoe 0TOSpakeHue airelpH L
cels, ompelesieHHOE HaMM CJIeIyIyM odpaaorvr O'paHUYEHUE

Ha OOIIPOCTDPAHCTBO BJIEMEHTOBR JIJWNH 1 — y’ f/ —~ 9TO HEKO—
TOPHE SHAOMODPU3M BTOTO IPOCTPAHCTBA, 4 WA m)yrmc Ga3uCHEX
BJIeMeHTOB E. = [EL , B JGBe moJyaraeM

&) =lYE), 2 (5, 9E0] - A5, 5.0 .
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Torna KOUelb f f 5@{ gymeT meficTBOBaTH HyJIeBHM 00pasoM Ha
napax CJOB +Ej) € By X By , E;>Lj, raxux 410 (B, E;]
IPIHATISKUT B Kpome TOI‘O ec.ma E,= [ E ., E ,,] TO MH

L ,,)_/(E /s B, —(y(E,”» 8]~ [&, 9@, -
-zoz YGE;) .

CJIG,IIOBaTeJH:HO paBMepHOCTB IIPpOCTPaHCTBA

Vis(f @, 5.0 fed? oo /8 (Lo Le)

paBHA
M= diml - o‘«im([y(Em,),Em,,h[Eh,, Y&+ té o Y(E;) : ye[nJ(LI)>.

Hamwa Iiesib mMOKA3aTh, YTO JONOJHUTEJbHHE YCJIOBWA, HAJOXESHNHE
Ha KOLeIb ZB NpeInoJIoReHM, YTO OHa ABJAETCHA EOI.UI}UIOM,
CIYRAT KCHKINYUTEJHHO I onpeneneﬂm 3Ha4YeHUA / Ha napax

asucmrx cxos (E; , Bj Y# (B, B, », E >EJ ,
L'E Eajé Be , TO GCTL meeT Mec'ro cnemnauaa
TEOPEMA 2. Hir(Le,Le)—M )

IoxasaTeqncTBO. 3aMeTmM CHAYAa, YTO U3 TPUBHAJLHOCTH BTODOi
TPYNIOH IPANyAPOBAHHEX KOTOMOJIOTMH IV CBodom{oﬁ HWIBETIOTEHT -
HoOl a.nrecipu T [5] Butexaer, uro £ (E 0 ma mapax
(B, , E j lel+ledl<d mmmodorofe‘i{z(Le,Le).Onpe—
e LIS nponsgomaoro 2JIEMEHTa 76 lj JvHelHHE omepaTop
A é End ( L. ), KOTODHIl HepeBOIOUT KaEIHit 13 CA3MCHHX SJEMEeHTOB
e ‘B CyMMy 2JEMEHTOB, IOJYYSHHHX N3 eL.’ 38MEHO# KaKoTO-TO
BXOK,IIGHI/LFI oJeMEeHTa € Ha DJEeMEHT ¢ , a Ha GA3HMCHHX BJEMEHTax
e, € B IeicTByeT HyJIeBHM odpasom Joxaxem, UTO TOTHA <-KONEIb
4, ompenenemas xax AY(E; , B ) —TA [e., e] ABIAETCA
KommwIoMm. IPIA 2TOTO 3aMeTiM, qTo

[TA?y[eé , ed' VB ] =T [Aj[e; , ed-] , ek] =7FA7f[e;, %']O v e

u [Ei’ Ed‘] -1 [e;, 3'11 , TO3TOMY

72’Ala L'[E; , EJ] ’I, ek] +L(7FA2 [e;, ed-J , EKJ =7l/Ay[[eb. , ed-J, %]

OTcoIa NPWMeHAd TOXRIECTBO Axodu mojydaem, 4To
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e F s Fof)z,, 5, 8,) = ay [FeF G ejiei)= 0,
rne ;az (X, y,Z) =£(%(X: Y)vz) +;£(7(y,2’), X) +f{g(21 X), y)
m F(x,y) =[x, y]. CremoaremsHo _},pie Z;“r([,e,/,e) .

IycTh Teneps {yl, Joi een M} Kaxoli-ro 0a3uc NpocT—
pasicrsa Yy . JToxaxem, uto Torma { f% f%, ...,/ %} oymer
6a3uCcoM IPOCTpPaHCTBa Hg( L ) JluHejiHas He3aBUCHMOCTL
YKa3aHHHX KOIMMOB O9eBUIHO, BHTeKaeT ¥3 TOro, 4TO

3(7 (E ' ? EH,, =y;- [ipoBepumM, 4TO OHU ABJIANTCHA IOJHOH CHC-

Temoit., BomieM TpoU3BONBHHI HETPUBHANLHHY TI'DAIyUDOBAHHHA KO-
, ma xoroporo J(E,., E,.)= 0. Mu yxe 3maem, |ro
%(k,, J)=0, ecmm k+t%d. Tloxarem, uro %[L Ly )=0.

Eema E; = E,, EJ— El~?E, 1. 0 mudo [E;, B;]€Bg, muco

fE E ] = E,, sHagur f(E‘ , E) = 0. To xe camoe pacCyrmeHUe
npmwemnwo ecan Ep>E; u [Ei/=1, wm E;=[E,, Ex, E.<E;.
B ocTaBmemcs oerqae Korna [E E ]¢Be, U3 YCJIOBUSA Komm.m
YHOCTH TOJYIaeM

P&, B)=flEy o Bl Br)+ f(By, [Bs, )

BHYTpeHHNE KOMMYTATOPH PACKJIANHBANTCA N0 CASHCHHM 2JEMEHTaM,
CTPOTO OONBIIM EJ , TO3TOMy IJifi 3aBeplleHus IOKa3aTeJbCTBa
HOCTATOYHO NPEMEHUTE HHIYKIMO 11O BHCOTE BJEMeHTa E Iz
PaccMoTpIM, HakoHert, cuydaii k’+ k” >d. Ipivemm oCHOBHY®O HH-
IYyKIH0 110 cmeAapHoﬁ IJvHE CcJoB E; Ed' ¥ LOUOJHUTENBHYH IO
BHCOTE CJIOBa e e OcHoBaHue ,HJ[H JOMOJIHUTENbHON MHIYKITUA.

y Hac TORe HMEeeTcH, nocxmrbny + Ey B, Jmbo smement dasmce,
auéo 0. CoIvIaCHO MHIYKTWBHHM IIPeNIIOJOKEHUAM :

i([E/,EI/] E :f(E <y [E L0 EJ])M
/(2. (B, (ST TR 1)

Hocxomﬂcy KOMmyTaTop [E;, EJ] =[[E;, E;), E J, rae E. 2K,
[IPUBOIHTCS K[E~ E“’]GB 7O LA TAXI Hap % . l) 0.

Eciu %2 B CJOBO e ed BXOIUT €,, TO MH cHavata MoXel IOGUTHCH
TOT0, YTOGH OHO HOAHOCTB0 BXOLWIO JHGO B e , GO B ed , a 3a-



M=

TEM MH, 3aMeHsd ero CYMMoi S_Z{(«x,) €5 , COIJIACHO Jiemme 3, mo-
N A -

HU3UM BHCOTY e;e:, IONAIad TeM CAMHM B YCJCBUA IONOJHITENH-

Hoft MHIYKIMZ. 3HAYUT, TeopeMa IOJHOCTHK JOKA3aHA.

4. B 3aximoueHve PACCMOTDEM BONPOC O NPOIGHKAEMOCTH HANNEHHX
JOKAJBHHX TedopManuii anreSpH L, .

TEOPEMA 3. Jig ywdoro sJIeMeHTa Y€ Vd KOLMKJI 7/ / OPOTOJKAEM ,
npuueM §-Toe HpofoJkeHue 3anaercd dopmysoit

s (Ei’ EJ):?CA'; [e. , eJ-]

JIokasarenscTBo. COrIAaCHO OTMEYEHHHM BhIe CBOHCTBaM oTodpa-
xemuit JU = Ag , IoXy4aeM 4To

TT'A;[L'eL, e.a-], evk] =

THLCe;, e]7. e, ]+ TAjLe; . e, €]
fgg(CE(ﬂ EA] , Ek)+ 7( A;‘[—AZ[G,_ , ed] 7 ek] =
y 4,4 .
js ( F(E;s, EJL; , 2k)+4_4(f; (Ei , Ej) , Ek)+ YZ’AJ%;L'(A%[e‘- , e)-jo, ek]=
=2 G )R,

losToMy, BOCHONB30BABUUCE TOXTECTBOM AKOOH, IOMYUMM TPedy eMuil
pesyapTar:

S0 g4 s, )
zoﬁ—:fr (5,5 8) = Tay FeFleeie)= 0.
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ON ADDITIVE PUWER MAPS OF RINGS

Veselin Perié, Sarajevo

Abstract. Let R be an associative nonzero ring with addi-
tlve power map f ! Xp> x® (x€R) for some natural numbex
m>»1l. It can be @lementary prowed that the set N of all
nilpotent elements in R is an ideal of R [8]. This fact
and also the commutativity of the ring R/N follows imme—
diately from a nontrivial result of I. N. Herstein [5],
£6] (see also [1],[2]). Moreover, it is easy to see that
if R is locally unitary then R is of squere-free charac-
teristic char(R) dividing kT-k for all positive integers
k, hence for all prime factors p of char(R), p-1 divides
m-1l. Assuming that R is locally unitary and that, for e~
very prime factor p of char(R), there is a natural number
m(p§> 1 such that f is additive, we prove here: i) If
m(p) is not a p—powggpghen the ring R/N is a subdirect
sum of finite fields R, (i €1I) whose(cliaracteristics P
(1€ 1) divide char(R),lhence also k®‘P)_kx for all positve
integers k and all prime factors p of char(R); ii) If, e-
specially, m{(p) is not divisible by p, then N = O; iii)
In both cases 1) and ii) R is periodical, in fact there
exists an integer n>1 such that, for all x in R, x™= xT
in the case i), and x® = x in the case_ ii), where m =

= max{ m(p): p prime fsctor of c¢har(R)Y ; iv) For R as in
i) and m as in 1ii), S:={x® + y: x€R, ye€ N} is a locally
unitary subring of i and the restriction of fj on S is a
ring endomorphism. The results i), ii) and iii) improve
some recent results of the author [9), end iv) Eives a_par-—
tial answer to a question recently posed by H. Pell [4].

1. INTRODUCTION

We consider here an associative nonzero ring R and denote
by N the set of all nilpotent elements of R. #e will frequ--
ently assume that R is locally unitary, i.e. for every x in

R there is an idempotent ey in R such that €peX = X.e . = Xo

This paper is in final form and no version of it will be
submitted for publication elsewhere.

This research was supported by SIZ nauke SR Bill.
JSubject class.,: 16 A /0.

Key words: additive power map; subdirest sum of finite fields;
periocdical ring.



For our purpose the idempotency of ey is not/ essencial

and thus "locally unitary" will actually means the same
as "s-unitary".

We assume that there exists a natural number m>1 such

that the power map f : x>x® (x¢R) is additive, i.e.

such that R satisfies the identity

(1 (x + P = %™+ ¥ .

The following wellknown result is due to I. N. Herstein
[5], [6]. His proof is not elementary at all (see also

(1}, [2D-

THEOREM A. If an associative ring R satisfies the identity

(1) for a given natural number m>1, then the commutator

the ring R/N is commutative.
In [8] we gave an elenentary proof of the following lemma.

LEMMA B. Let R be an associative ring satisfying the iden-
tity (1). If m>1, then N is an ideal of R.

Recently we proved in [9] also in an elementary manner, the
following propositions.

THEOREM C. Let an associative locally unitary nonzero ring.

R satisfy the identity (1) for some integer m>1 not a pri-

me power. Then N is an ideal of R and the ring R/N is a

subdirect sum of finite fields R. (i€ I) whose characteris-

tics py (i€1) divide 2™-2.

THEOREM D. Let R be an associative locally unitary nonzero

ring satisfying the identity (1). If mw>1 is relatively
prime to 2™ _ 2, then N = 0 and R is a subdirect sum of fi-

nite fields Ry (i € 1) whose characteristics P; (i€ 1) divi-
de 2% - 2.

TH~OREM E. Let an associative locally unitary nonzero ring

R satisfy the identity (1) for two values of m:m=s5>1

and m = t>1. If s, %, 25 - 2 and 2% - 2 are relatively
prime, then N = O and R is 3 subdirect sum of finite fields

2 - 2.
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THEOREM F. Let R be a ring as in theorem D or E. Then

there is a nsatural number n>1 such that x™® = x for all

x in R.

THEOREM G. Let R be a ring as in theorem C. Then there
is a natural number n>1 such that ™ = ™ ror all x in R.

In the proof of theorem C actually was proved the follo-

wing lemma.

LEMMA H. Let an associative locally unitary nonzero ring

R satisfy the identity (1) for some natural number m>1,

Then R has a nonzero characteristic char(R) dividing K- k

for all integers k>1. Moreover, N is an ideal of R and the

domains R, (i€ 1) whose characteristics Py (1€ 1) divide
char(R).

The proposition 2 in [9] could be stated as this lemma.

LEMMA K. Let R be an integral domain satisfying the identi-

ty (1). If m>1 is not a p-power for p = char(R), then R
is a finite field of characteristic p dividing k" - k for
all integers k> 1.

In the Section 2 we improve theorem C proving theorems 2

and 5. Similarly we improve also theorems D and E ( see
theorems & and 6). In the Bsction 3 we extend the asserti-—
on of theorems F and G to the situation of theorems 4, 6
and 2, 5 respectively (see theorems 7 and 8).

In the last SBection 4 of this note we consider a question
recently posed by H. Bell [4] and give a partial answer to
this question (see theorem 11).

2. ADDITIVE POWER MAPS AND SUBDIRECT SUM RECRESENTATIONS
We start with the following lemma.

LiMMA 1. Let R be an sssociative locally unitary nonzero

ring satisfying the identity (1) for some integer m>1.

Then N is an ideal of R and R is of nonzero characteris-

tic char(R) satisfying condition
(]
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(2) char(R/N) = char(R) divides k"-k for all k>1.
Moreover, for every prime factor p of char(R), p-1 di-

vides m-1 and mp—l, where X

m=7p p.mp, p}'mp.

If m is even, then char(R) = 2.

Proof. By lemma B, N is an ideal of R, and in view of lem-
ma H, R has a nonzero characteristic char(R) which divides
k™-k for all integers k>1. To prove (2) it suffices to
prove thsat

char(R/N).x = O (x&R).
In one hand

(char(R/N).ex)k = 0 (k = k(x) an integer),
since char(R/N).exéiN for all x in R. But since m>1, this
will be valid for some m-power k = nd (j = j(m) an inte-
ger). On the other hand, in view of (1),

(char(R/N).ex)mJ = char(R/N).egj,
hence 3
char(R/N).x = (char(%/m).ex)m x =0
for 811 x in R.
We prove now that char(R) is squere-free. In fsct, for q
the product of all different prime fzactors of 2m—2, q is
squere-free and by (1)

(a.e )" = q.eff (x€R).
But,

(q-ex)m qm.eﬁ = C (x€ER),
since 2™-2 divides ¢™. Hence,

q.ei =0, i.e. gax = 0 (x€R).
Since char(R) divides g, char(R) is also squere-free.
Finally, for every prime feactor p of char(R), p divides
K-k = k.(km~l—1) for all integers k>1l. For p = 2, then

surely p-1l divides m-1 and m_-1. For p odd, p must divides
km—I b
= Y
. from
p N kp
m-1=7p .mp -1=0p (mp—l) +p "= 1
follows that p-1 divides mD—l too.

in the multiplicativekgroup Z

If m is even, then for no odd prime p, p-1 can divide wm-1,

-1, hence p-1 divides m-1 if we take k of tThe order p-1
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hence in this case char(R) = 2. But we can conclude also
in the following wmanner. For m even, from (1) it follows
2e$ = 0, hence 2x = O for 8ll x in R, and thus char(R)=2.

lNow we can state the following improvment of theorem C.

THEOREM 2. Let R be an associative locally unitary nonze-
ro ring satisfying the identity (1) for some integer m>l.
If m is a p—power for no prime factor p of char(R), then

N is an ideal of R and the ring R/N is a subdirect sum of

finite fields R, (i€ I) whose characteristics p; (i€1)

divide char(R), hence also k™-k for all integers k> 1.

Proof. iAccording to lemma H, N is an ideal of R and R/N

is a subdirect sum of (noncommutative) integral domains

R, (1€1I) whose characteristics p; (1 €1) divide char(R).
By the assumption, m>1 is not & p,-power (i€ I), hence

in view of lemma X, R; (1€I) is a finite field and p; di-
vides k"-k for all integers k> 1.

COROLLARY 3. Let R be an associative locally unitary non-

zero ring satisfying the identity (1) for some integer

then H is an ideal of R and the ring R/N is a subdirect
sum of finite fields R; (i€1I) of cheracteristics p;=2

(i€I). For m = 2, R is commutative.

Proof. If m is even, then char(R) = 2 by lemma l. If mo-
reover m is not of the form 29 (3=1,2,+..), then by theo-
rem 2, N is an idezl of R and the ring R/N is subdirect sum
of finite fields Ry (i€ 1I) of characteristics p; = 2 (ie€e1I).
For m=2, we cannot use theorem 2. But in this case R is com-
mutative, because of (x+y)2 = x2+y2, i.e. xy + yx = O for
all x,y in R and char(R) being =gual to 2.

Let now % be an associative locally unitary nonzero ring
with nonzero characteristic char(R). If R satisfies the i-
dentity (1) for some integer m >1 such that R is m-torsion
free, then all condition of theorem 2 are fulfiled. Namely,

in this case p}m for all prime. factors p-of char(R). Suppo-
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se, that p| m for some prime factor p of char(R). Then
there exists an y in R such that p_lchar(R).y # O. But in
this case, for x = p~1char(R).y we have x # 0 and mx =

= (mp—l)cbar(R).y = 0, which is not possible, since R is
m-torsion free.

Moreover, in this special case we have also N. = O. In
fact, as in the proof of ([9], Th. 3) we have mx = O for
all x in R with x2 = 0.

Hence we have proved the following result.

THEOREM 4. Let an associative locally unitary nonzero ring

R satify the identity (1) for some integer m>1l. If R is
m-torsion free, then N = O and R is a subdirect sum of fi-

nite fields Ry (i€ I) whose characteristics P (1€ 1) di-
vide char(R), hence also k"-k for all integers k>1.

It is well known that, under conditions of theorem 4, N=0
and the ring R is commutative (see for inst. [41, L. 1(c)).
The proof of this fact is not elementary, since it make use
of a nontrivial result of H. Bell ([3], Th. 5). We remark,
that this fact can be also derived from theorem A. But this
fact is a corollary of our elementary proved theorem 4.

#ince an associative locslly unitary nonzero ring R satis-
fying the identity (1) for some integer m>1 is surely
m-torsion free if m is relatively prime to 2m—2, theorem D
is =21so0 a corollary of theorem 4, lMoreover, instead of prim-
ness of m to 2m—2, it suffices that m, 2m—2, 5m—5, «e. are

relatively prime to conclude that R is m-torsion free.

Let now R be an associative locally unitary nonzero ring of
nonzero characteristic char(R). Suppose that for every prime
factor p of char(R) there exists an integer m(p)> 1 not a
p-power such that the power map fm(p) is additive on R. Then
by notations of lemma H and ia view of lemma K, each of bthe
integral domains Ri (i€1I) is a finit:> field of characteris-
tic py (i €1) dividing char(R), hence also km(p)—k for all
integers k> 1 and all prime factors p of char(R). Thus, the
following theorem is wvalid.
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PHEOREM 5. Let R be an associative locally unitary nonze-
ro ring of characteristic char(R). Buppose that for ever
prime factor p of char(R) there is an integer m(p) >1 not
a p-power such that the power map fm(o) is additive on R.
Then N is an idezl of R and the ring R/N is a subdirect
sum of finite fields Ry (ie1) whos; characteristics py
(i€7I) divide char(R), hence also k p:—k for all prime
factors p of char(R) and all integers k>1.

For {m(p): p prime factor of char(R)} a singleton {m}, we
are in the situation of theorem 2, which is a special ca-

se of theorem 5.

Let now by notations of theorem 5, for every prime factor
p of char(R), m(p)>1 be not divisible by p. Then, for e-
very x in R with x“ = O we derive n(p).x = O for all pri-
me factors p of char(R), and from this it follows that

x = 0. Hence we have the following theorem.

THEOREM 6. Let ® be an associative locally unitary nonze-

ro ring of nonzero characteristic char(R). Suppose that
for every prime factor p of char(R) there is an integer
m(p)>1 not divisible gx p, such that the power ap fm(p)

flnlte flelds Ry (i €1) vhose characterlstlcs P; (ie1)
divide char(R), hence also k (p)—k for all prime factors

p of char(R) and 3ll integers k>1.

For {m(p): p prime factor of enar(R)}Y a singleton [m},
from theorem & imediately follows theorem 4. But theorem E
is also a corollary of theorem 6. Namely, in the situation
of theorem E we can take m(p) = s or m(p) = t, since every
prime factor p of char(R) divide 25_2 ana 2% -2, hence p4 s
or ptt in view of the fact that s, ¢, 252 and 2%-2 are

relatively prime.
3. ADDITIVZ POWER MAP3 AND PERIUDICITY OF RINGS

Our purpose is to prowe that a ring R satisfying condition

in any of theorems 2, %, 5 or 6 is periodical. More preci-
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sely, we will prove the following two theorems.

THEOREM ?. For a ring R as in theorem 4 or 6 there is a
n

natural number n>» 1 such that x° = x for gll x-in R.
THEOREM 8. For a ring R as in theorem 2 or 5 there is a
natural number n> 1 such that x"" = x" for all x in R,

where m = max {m(p): p prime factor of char(R)} in the
case of theorem 5.

The proof of theorem 7 is the same as the proof of the-
orem D ([9], Th. 6) and will be omited.

For the proof of theorem 8, which is similar to the proof
of theorem G ([9], Th. 7), we need the following lemma.

s in theorem 2 or 5, then x® =0

LEMMA 9. If R is a ring

for all x in where m = max {m(p): p prime factor of

N,
char(R)} in the

case of theorem 5.

The above lemma follows from the next somewhat more gene-
ral result.

LEMMA 10, Let an associative locally unitary nonzero ring

R satisfy the following conditions:
i) There is a sgere—free positive integer q such

that qx = O for all nilpotent elements x in R;

ii) For every prime factor p of q there exist inte-

gral numbers aj, 85, eeey an(p) (depending on p and) not
all divisible by p, such that

r(p) _
81X + 83X+ ee. ar(p>x =0

for all nilpotent elements x in R.

Then xT = O for all nilpotent elements x in R, where r =

max {r(p): p prime factor of q}.

n

Proof. Let x be an arbitrary element in N. If x = O it is
nothing to prove. Assume that x # O. The subring X of R
generated by x is (commutative and) of nonzero characte-
ristic char(X) dividing q. Hence, because of i), ¥ is a
direct sum X = Xl . & Xk of rings Xj of prime charac-
teristics p. dividing q. Since x = Xy +oeee Xy (xje‘Xj)

we have x© = x{ + see + xi , and 1t suffices to show that

147

x5 =0 (j=1,2,...,k). &very x. is of course nilpotent.

Thus, by ii), there exist integral numbsrs al”"’ar(pj)

not all divisible by p., such that

a;x; + ...J+ a x?<pj) = 0.

. : 1 Cx(py)y C o

If a; is the first coefficient which is not divisible by

pj, then using the above equation we can express x> as a
i+l

linear combination with integral coefficients of xj’ ceey

xg(pj). But this implies that x§ = 0, nence x- = O.

In the case of theorem 2 or 5 the conditions i) and ii)
are satisfied, since by lemma 1 we can take q = char(R),
r(p) = mn(p) - 1, 8y = (m](-p)), cee o ar(p) = (?(g))-

The idea of the proof of lemmna 10 is essentially that of
([4], L. 1(v)), a result similar to lemma 9 and stated for
m>1 not a prime power.

Now we can return to the proof of theorem 8, As in the proof
of ([9], Th. 6) we can see that there is an integer n>1
such thet x - x"€N for all x in R. In view of (1) and lem-
ma 9 this implies x® = (x™ + y)® = x™ + y® = ¥™® for all

x in R, where y = x-x"€ N.

The assertion in lemma 9 can be sharped in the following
manner.

LEMMA 97, Let R be a ring as in theorem 2 or 5 and let

m(p)=p p.mp , D4 o, ,
for every prime factor p of char(R). Then x" = O for all
nilpotent elements x in R, where m” = max {pkp: p prime
factor of char(R)}.

Proof. By lemma 1, char(R) is a product of differnt prime
factors, say char(R) = Py+Pye..P, . Hence, R is a direct
sum R =R_%+ ... 3R of associative locally unitary
nonzero rinés Rp. (j:l?E,...,k) of characteristics Py
(3=1,2,.000,k)e Y

We will show tiat, for every prime factor p of char(R),

P -0 (x€n ),

vhere Np is the set of 211 ﬁilpotent elements in Rp .
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Namely, fog XER_, "
p m
p.m p.o m(p), m(p) p P{%p_
(xP ) P +(e§ )y P o= ox o +e p:m[(x+ex) ] =
= (xP 7+ eg ) P,
since x ahd ey commute in Rp and char(Rp) = p. Suppose that
«P P # 0. Then ﬁhere is a positiﬁe integer t such that

P P -
(xP )t = 0, and (xP )t 1 £ O.
But from k k Km k m
- P - plm t-1 p] t=1.p p] p
(x5 1P “a(el™HP 1% . oty L™ oot
and (xP p)t = 0 it follgws
P ot
o . (xP HFL <ol
Since p*’mp, this imﬁ%ies
(xP H®L <o,
hence a contradiction.

We remark that m<m = max {m(p): p prime factora of char(R)}
in the case of theorem 2 or 5, and m’= 1 in the case of the-

orem 4 or 6 in according with N = O.

4, ADITIVE POWER MAPS AND RING ENDOMORPHISMS

If an associative ring R with additive power map f (m>1) is
commutative, then f_ is obviously a ring endomorphism, For in-
stance, this is the case if R is as in theorenm 4 or 6. It may
be somewhat interesting the question recently posed by H. Beil
[4]: when an additive power map fm (n>1) of an associative
ring R is a ring endomorphism.
We list and comment here some results of H. Bell concerning
this question.
By a result of Hirasno and Tominaga ([7], L. 1), for an addi-
tive power map fm (m>1) of an associative ring R there is a
positive integer k such that [k,y]k = O for all x,y in R,
where fx,y]denotes the commutator xy-yx of x and y. Using
this result H. Bell proved for an associative ring R with
additive power map fm (mn>1) the folloving propositions:

(a) There exists a positive integer k for which

fﬁ ig a ring endomorphism ([%], Th. 1);

(b) If R is unitary and m is not of the form 2d
(j=2), then fi is & ring endomorphism ([4}, Th. 3);

(¢) f, is @ ring endomorphism if and only if
x™& Z the centrum of R for all x in R, assuming that R is
unitary and

i) R is 2-torsion free ([}, L. 3) or
ii) m is odd ([4], Th. 2);

(d) If R is unitary and m is odd and squere-
free, then f is a ring endomorphism ([4], Th. @).

As mentioned by Bell ([4], Remark 5), the above propositions
"R is unitary" can be replaced by " R is s—unirary". We re-
mark that the proof of (a) and also of the “only if" part in
(c) make use of the nontrivial theorem A, For (b) and the "if"
part in (c¢) ii) it was used the in theprem 4 elementary pro-
ved fact ([4], L. 1(c)) that in the case of this theorem the
ring R is commutative. For (b) was also used a fact ([4], L.
1(b)) following from the elementary lemma 9. For (d), besi-
des of some elementary resoning, was used only "if" part of
(¢) in ii).

Hdence, (b), (d) and the "if" part in (c¢) can be proved elemen-
tary too.

Now we can prove in an elementary manner the following
theorem giving a partial answer to the above question of H.
Bell. Let as mention that, in the case of theorem 5, m =

= max {m(p): p prime factor of char(R)} is not of the form

2d (3j=21). Namely, for m = 2d (321), char(R) = 2 and m = m(2)
is not a 2-power, hence we are then in the situation of the-
orem 2.

theorem 5 we denote by m the max {m(p): p prime factor
char(R)}. Then S: [x™+y: x¢R, y€N} is a locally unita-
nonzero subring of R and the restriction of foon S is

= g 12

ring endomorphism.

Froof. By theorem 2 or 5, N is an ideal of R and the ring
R/N is commutative. ence,
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xmy" = (xy)® + 2z
for x,y in R and for appropriate z in N, Thus, % is closed
under multiplication. From

(x-y)™ = x™ - y® (x,y €R)

and the fact thst N is an ideal of R folows that O is a
subring of R.
Obvously, 8 i1s nonzero and locally unitary.
Let now u = x° + y, v = xg_] + ¥ (x,le_R, y,yléN) be ar-
bitrary elements in S. Then clearly

(u + v)T = W™ + v&,
But also

(uv)™® = uBD,
Namely,
(uv)® = (xmxT+xmyl+yxT+yyl)m = xmx$)m =

= ((xxl)m+Z)m = (xxl)m ’
since xmyl+yxT+yyi_éDIand z® = 0 for all z€N by lemna 9.
In the case of theorem 5, m is surely not of the form 29
(j=1), and in the case of theorem 5, as allready mentio-
ned m is also not of th%s form. Therefore, in view of (b)
i m

(xx )™ = x x? = (xm+y)m.(x?+yl)m=umv .

hence (uv)® = ylvy®@,

Remark 12. In the situation of theorem 11, by theorem 8
there is an integer n 1 such that x = X y for all x
in R and an aopropriate y in N depending on x. Prom this
easily follows that

X = xk.(n—l)+1+

Y

for all positive integers k, wheri T is an appropriate
element in N depending on x and k. If k.(n-1)+1 is a
multiple of m for some positive integer k, then the abo-
ve equation implies that S = R. Hence, in this cas, £ is

a ring endomorphism of.R.
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WARD DOUBLE QUASIGROUPS
Mirko Polonijo

Abstract. If (Q,*) and (Q,:) are quasigroups which
satisfy (a-c):(b-c) = a:b then (Q,-,:) 1is said to be a
Ward double quasigroup, We prove that for any Ward double
[ quasigroup (Q,*,:) there is a group (Q,o) and bijections p,v
on Q such that x.y = xQ(v(y))‘1 , X1y = p(xoy~

J.M.Cardoso and C.P.da Silva introduced the notion of
Ward quasigroup (briefly W-quasigroup; cf. [1],[81) and the
author proved in [5] that W-quasigroup could be defined as
é quasigroup (Q, <) which satisfies the law of right transi-

i tivity, i.e.
(W) (a*c)<(bec).= a-b

Since the right transitivity is the (13)-conjugate of the
associativity (seel31), it follows that (Q,+) 1is a W-quasi-
group iff its (13)-conjugate is a group.

Let us mention that H.Furstenberg in [ 4] used the word
half-group for a right transitive groupoid and K.P. Chinda in
[2] called it a hemigroup. Further, in [6] it was shown that
the existence of W_quasigroup is equivalent to the existence
of a so-called Desargues system (cf.[71).

In the present note we define Ward double quasigroup and

describe its structure (Theorem, Remark 2).

DEFINITION. We say that (Q,.,:) 1is a Ward double quasi-

group (briefly Wd-quasigroup) if (Q,.) and (Q,:) are

I This paper is in final form and no version of it will be submitted for
publication elsewhere.
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quasigroups satisfying
(Wd) (a-c):(b-c) = a:b
for all a,b,c £ Q.

Hence, W-quasigroup is a special case of a Wd-quasigroup.

Example. Let (Q, =) be a group and (Q,:) 1its (13)-conju-

gate, i.e. a:b=c¢ iff e¢+*b = a , i.e. a:b = a-b-1, where
b_1 is the inverse of b in the group (Q,+). Then (Q,-,:)
is a Wd-quasigroup. Indeed, since (a:b)*b = a, we have

a*c =[((a+*c):(b ¢))+(b+c) ={[(a-c):(bec)l=bl-c and (Wd) follows.

LEMMA. If (Q,-,:) 1is a Wd-quasigroup,then

(1) ara = b:b , i.e. (Q,:) 1is unipotent

(2) atu = b:v and c¢:u = d:v imply a:c = b:d
(3) a:b = ¢:d implies Db:a = d:c

Proof. (1) For any two a,b e Q, there is ¢ e Q such
that a = bec and therefore a:a = (b-c):(b-c) = b:b.

(2) Let a:u = b:v , c:u = d:v and w 'defined by wu-w =v.
Hence b:v = a:u = (a-w):(u-w) = (asw):v and d:v = (c-w):v,
i.e. b= a*w and d = c¢*w which implies a:c=(a-w):(c w)=b:d.

(3) 1is a direct consequence of (1) and (2).

COROLLARY 1. Let (Q,-,:) be a Wd-quasigroup.

(1) If (Q,:) has a right unit, then (Q,:) 1s a W-quasi-

group.

(2) If (Q, " is unipotent, then (Q,-) is a W-gquasigroup.

Proof. (1) Let 1 be a right unit for (Q,:), i.e. x:1=x
for all x e Q. Then a:c = (a:ec):1 , b:e=(b:c):1 for all
a,b,c € Q and therefore a:b = (a:c):(b:c) by Lemma.

(2) Let (Q, - be unipotent, i.e. there is 1 e Q such
that x-x=1 for all x e Q. Hence a:b = (a+b):1 and there-
fore " a+b = c¢*d iff a:b = c:d, which implies (W) by (Wd).

Remark 1. Obviously, any W-quasigroup is unipotent (Lemma)
and has a right unit.

PROPOSITION. If (Q,-,:) is a Wd-quasigroup, 1 & Q a

fixed element and , a binary operation on Q defined by the

equivalence xoy = z iff =z:y = x:1, then (Q,o0) is a group.

Proof. Obviously (Q,e) 1is a quasigroup. Further, for
a,b,c e Q 1let aob = u, uoc = v, boc = w. To prove associati-
vity we have to show that aow = v holds. Since wu:b = a:1l,

vie = u:l, wie = b:1 it follows wu:b = a:1 and v:w = u:b

which gives v:w = a:1 1i.e. aow = V.

COROLLARY 2. Let (Q,*,:) be a Wd-quasigroup and (Q,:)
the (13)-conjugate of (Q,*). Then (Q,-) is a group (compa-
re with the given example).

Proof. (Q,:) is unipotent and put x:x = 1. Let (Q,o0) be
a group defined in the Proposition. Since 1+x = x it follows
x:1

(x+1):(1+1) = (x+1):1 , i.e. x*1 = x, i.e. x:1 = x. Hence,
xey = z 1iff z:y = x = x:1 iff xoy = z , i.e. (Q,*) 1is a
group.

THEOREM. For any Wd-quasigroup (Q,*,:) there is a group
(Q, o) and bijections p,v on Q such that

Xy = x0(\:(y))_1
-1
x:y = p(xoy ')
for all x,y € Q , where y"1 is the inverse of y with res-

pect to the group operation o.

Proof. Let (Q, +,:) be a Wd-quasigroup and (Q,0o) a group
defined by (xoy):y = x:1 , for a,fixed element 1 in Q, as
it was done in the Proposition. Element 1 is the unit of the
group, because x:1 = x:1 and x:x = 1:1. Further, if y—‘I is
the inverse of y in (Q,o0) then it is defined by 1:y_1:y:1,
-1

which is equivalent to 1:y = y 1. Now, from (xoy_1):y_1:x:1

and 1:y_1 = y:1 it follows x:y = (Xoy_1):1. If we define p,v
by p(x) = x:1 and v(x)ex = 1, we get x:y = p(xoy_1) and

x: vwly) = (xey):(v(y)ey) = (x*y):1 i.e. x-y = xo(v(y))—1.

Remark 2. Evidently, if (Q,o0) 1is a group and p,v bijec-
tions on Q and ¢, : binary operations on Q defined by
Xy = xo(v(y))_1, X:y = p(Xoy-1), then (Q,+,:) 1is a Wd-quasi-
group.

COROLLARY 3. Let (Q,+,:) be a Wd-quasigroup.
(1) If (Q,:) has a right unit, then there is a group

(Q, 0 and a bijection v on Q such that
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x*y = xo(v(y))_1
X:y = xoy"1

(2) If (Q,+) 1is unipotent, then there is a group (Q,o0)

and a bijection p on Q such that
- X'y = xoy_1
X1y = p(xoy_1)

Proof. (1) Take a right unit of (Q,:) for a fixed element
1 in the proof of Theorem, which implies p(x) = x (compare
with Corollary 1, statement (1)).

(2) Take x-+x (which is a constant) as a fixed element 1
in the proof of Theorem, which implies v(x) = x (compare with

Corollary 1, statement (2)).

COROLLARY 4. If (Q,+) 1is a W-quasigroup, then it is the

(13)-conjugate of a group.

Proof. (Q,+) 1is unipotent by Lemma and (13)-conjugate of

group (Q,o) by Corollary 3.

[V
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THE LaTTICE OF r-SEMIPRIME IDEMPOTENT-SZP:KATING
CONGRUENCES ON r-SEMIGROUP
Protié Petar

Aibstract, In this paper we consider some idempotent-
—-separatIng congruences on a J-regular semigroup. In this way
we obtain a generalizetion of results of D. Krgovié|9|. R. Fe-
igenbeum described in|6|the lattice 7. (S) of idempotent-sepa-
rating congruences on a regular semigroup S. Here we describe
the lattice T(S) of r-semiprime idempotent-separating congru-
ences on an r-semigroup S.

1. Preliminsry results asnd definitions

A semigroup S is g-regular if for every &€ S there
exists a positive integer m such that a® € a®sa™. We denote by
RegS the set of all reguler elements of S. An element a’ is an
inverse of a if a=ea’a and a’=a‘sa’. As ususlly we shall deno-
te by V(a) the set of all inverses of a. A semigroup S is
J'-orthodox if S is f-regular and the set E(S) of &ll idem~
potents of S is a subsemigroup of S |2].

On a T~regular semigroup S we define a mapping
r : S —> RegS by r(a)=a", where m is the smallest positive in-
teger such that ae RegS.

DEFINITION 1.1 |12| S is an r-semigroup if it is
7 —regular and r(ab)=r(a)r(b) for all a,b £S.

IEMMA 1.1 |L2| Let S be an r-semigroup. Then RegS is
& subsemigroup of 5 and r is homomorphisum.

DEFINITION 2.1 [12| A relation p on a f-reguler se-
migroup $ is r-semiprime if a ¢ r(a) for all a€S.

This paper is in final form and no version of it
will be submitted for publication elsewhere " .
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if P is an r-semiprime relation on a f-regular semi-
group S, then apb <> I‘(a)f r(b) for 211 a,bES,
Define on a JX-regular semigroup S the equivalence re-
lations * ( ®") by
aZb < Sr(a)=Sr(b) ( a2 < r(a)sS=r(b)s )
and ¥*= ¥*NL" |8]. Each ®*-class contains at most one idempo-
tent |8].
PROPOSITION 1.1 |8| et a and b be elements of a
£ -rezgular semigroup S. Then
' (1) (a,D)ET* & (Fa’€ V(r(a))) (@ EV(x(b)))
a’r(a)=b’r(b).
(ii) (a,b)EX <= (Fa € V(r(a)))(Fb € V(x(2)))
a’r(a)=b‘r(b), r{a)a’=r(b)b’.
The subsemigroup K of & semigroup S is full if E(S)<K.
For an eg-uivalence relation o on & semigroup S, we
define the kernel and the trace of £ by
kerd ={ a€S : (Je€E(S)) ale} and trd =°L|E(S)
respectively.

For nondefinied notions we refer to |1,3,4].

2. Some idempotent-separsting congruences on a

J-regular semigroup

The next lemma follows from Proposition 1.1.

LEMMA 2.1 Let o« be an egquivalence relation
f~regular semigroup S. Then

(i) dEzr* = kers ={a€S:(e’ € V(z(a))) asLa’r(ad}.
(ii) L €#* =—> ker« ={ac5:(Ja” €V(r(a))) aLa'r(a),
a’r(a)=r(a)a’}.

The subsemigroup K of a X -regular semigroup S is in-
verse-closed if V(regK) < regK where regK=KMNRegS and V(regK)=
U{v(a):a € regK} |12

' PROPOSITION 2.1 JLet K be g full, inverse-closed sub-
semigroup of a Jf-regular semigroup S and « an equivalence
relation on S such that /< *. The relation (K,) defined on
S by
(1) a(K )b <= adb A ( b € V(r(b))) r(a)b €K
is an equivalence relation on S for which reg(ker(K,))=
KNreg(kerd) and tr(K )=trd .

The subsemigroup K of a Ji-regular semigroup S is

\

na
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r-semiprime if r(a)€ K = a€X |12}.

COROLLARY 2.1 Let K be & full, inverse-closed r-semi-
prime subgemigroup of a J-reguler semigroup S and < an r-se-
miprime equivalence on S such that o < x*. The relation (K,)
defined on S by (1) is an r-semiprime eguivalence on S and
ker(K )=K Nnkerd , tr(Ky)=trd.

THEOREM 2.l|15| If S be a JT-regular semigroup, then
an r-semiprime congruence f on S is idempotent-separating if
and only if o< 2*.

The meximum idempotent-separating congruence K on a
I -regular semigroup S is described in |5| and |13|. The con-
gruence f cn an r-semigroup S is an r-semiprime congruence|l?
The following theorem describes r-semiprime idempotent-separa-
ting congruences on an r—semigroup.

THEOREM 2.2 Let p be an r-semiprime idempotent-sepa~
rating congruence on an r-semigroup S. The following ststememts
are equivalent.

(1) apd

(ii) apb A Gv e V(xr(b))) r(a)b’c kere

(iii) a¥d A @b € v(x(d))) r(a)b'ékerf 3

(iv) @Qa'eVv(r(a)))@3b € v(x(1)))( a'r(a)=b"r(b),
r(a)a’=r(b)b’, r(a)b’ € ker p ).

Proof. (i) => (ii) Let apb and b '€ V(r(b)). Then
r(a) P agb(’r(b) and r(a)b’p r(b)b’, and so r(a)b’e kere.

(ii) = (iii) By Theorem 2.1.

(iii) = (iv) By Proposition 1.1.

(iv) = (i) Let a'r(a)=b'r(b), then Sr(a)=Sr(b)
a¥'b. Simil~-arly, a’S=b’S < a’2*b’. Since r(a)b’'r(b)a’r(a)b’=
r(a)a’r(a)a’r(a)b’=r(a)b’, we have r(a)db’ € RegS. Now Sr(a)b’=
Sr(b)b ¢e= r(a)b’2"r(b)b’. Simil-arly, r(a)a’S=r(a)bh’s
r(a)a’2*r(a)b’. Hence, r(a)b’x"r(b)b’. But r(a)b’€ kerp impli-
es that r(a)b'? e for some e€ E(S), Then r(a)b’#*e, which im-
plies r(b)b“=e. Therefore r(a)b’¢ r(b)b” so that r(a)=r(a)ar(a)
=r(a)b'r(b)§> r(b). Hence, apb.

The following corollary describes the r-semiprime idem-
potent-separating congruences on a f-regular semigroup.

COROLLARY 2.2 Let 4 be an r-semiprime idempotent-se~

varating congruence on z & -regular semigroup S. The following

statements are equivalent.
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(i) apb j
(ii) axb A (Fb’EV(r(d))) r(adb’ € ker¢ ;
(1ii) (Fa’€ v(z(2)))@3v € V(x(2)))( a'r(a)=b"r(b),
r(a)a’=r(b)b", r(a)b € kerp Je
The following corollary describes the maximum idempo-
tent-seperating congruence pon en r-semigroup.
COROILARY 2.3 Let S be an r-semigroup. The following
statements are equivalent.
(i) apdb ;
(i1) a¥'d A (b € V(x(d))) r(a)b’€ kerp ;
(i1i) @Fe’e v(r(a)))@v e V(x(0)))( a’r(a)=b"r(b),
r(a)a’=r(p)b’, r(a)b’ € kerp ).
The relstion )/ defined on r-semigroup S by
y={(a,b)€8x8 : r(a)=r(b)}
is the minimum r-semiprime idempotent-separating congruence on
S]13|. The following corollary gives a new description of )
on an r-semigroup.

COROLLARY 2.4 Let S be an r-semigroup. The following
statements sre equivalent.
(1) aVYb
(ii) 2% A (b’ € V(r(b))) r(a)b’€ kerV ;
(1ii) @a’€ v(x(a)))3b" € V(x(»)))( a’'r(a)=b"r(b),
r(a)a"=r(®)b”, r(a)b’ € kery ).
A semigroup S is orthodox if S is regular and E(S) is
a subsemigroup of S.
THEOREM 2.3 Let S be 8 J-regular semigroup. The foll-
owing statements sre equivalent.

(1) RegS is orthodox semigroup;

(ii) S is ~Z-orthodox semigroup;

(iii) (Fa,b € Reg8)(Wa € V(a)) (Wb € V(b)) (b a" € V(ab));

(iv) If e €E(S), then V(e)< E(S) and RegS is a subsemigro-
up of S.

The subset K of a f-regular semigroup £ is self-conju-
cate if a’(regK)acregK for all a€ RegS and for all a’€ V(a)lla.
The subsemigroup K of a fX-orthodox semigroup S is normal if K
is full, self-conjugate and inverse-closed. If ¢ is & (r-se-
miprime) congruence on a Jf-orthodox semigroup S then kerf is
12

a (r-semiprime) normal subsemigroup of S,
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THEOREM 2.4 Let K be a normal r-semiprime subsemigro-

up of 8 ¥-orthodox r-semizroup & snd p a (r-semiprime) con-
fruence on S guch that )oggf’. The relation <Kf) defined on S
by

a(Kf)b a8y b A @b € Vvir(p))) r(a)b’ €K
is a (r-semiprime) congruence on S for which reg(ker(K?))=
K(\reg(kerf) ( ker(KQ:Kﬁkerf ) and tr(K?)=trV.

Proof. According to Proposition 3.1 and Corollary 3.1,
it suffices to prove that (Kf) ip compatible. Let a(K?)b and
c€S, then by pcx” we have that there exists. a’ € V(r(a))
such that a’r(a)=b r(b). Let ¢’ € V(xr(c)), then

r(ac)e’b’=r(a)r(c)c’ b’ r(b)b’=r(a)r(c)c’a’r(a)b’ €
r(a)Ka’ <K€ K.
Since ¢’b’ € V(x(b)r(c)=r(bc)) and since p is a congruence,
we have ca(Kp)cb.

The following theorem describes an r-semiprime idem-
potent~separating conzruence on & S-orthodox r-semigroup.

THEOREM 2.5 Let K be a normel r-semiprime subsemigro-
up of a X -orthodox r-semigroup S such that K= ker/ll . The re-
lation (K,“) defined on S by

a(Kulb = apub A (b€ v(z(b))) ria)b €K
is sn r-semiprime idempotent-seperating congruence on S and
K=ker(Kp). -

Conversely, if P is an r-semiprime idempotent-sepa-
reting congruence on S then kerp is a normal r-semiprime
subsemigroup of S, kerps kerp and p =(Ku), where K=kerp .

Proof. The direct part follows from Theorem 2.4.
ficcording to Theorem 2.2 , the converse is true.

3. The lattice

Let T (8S) be a set of 211 r-semiprime idempotent—sepa-
rating congruences on an r-semigroup S. By Corollary 2.2
is the greatest and by Corollary 2.4 J is the least element
in 7T (S). Hence, T(S) is a complete lattice. The main theor-
em will characterize lettice T(8).

Let Sbean r-semigroup, then let us denote with ‘C(RegS)
the lattice of idempotent-separating congruences on the regu-
ler subsemigroup RegS.



162

LEMMA 3.1 Let S be an r-semigroup and let p be a
congruence on & regular semigroup RegS. Then the reletion

" on S defined by

(2) a?b«:::’ r(a)?r(b)

is an r-semiprime congruence on S.

Proof. It is clear that P is an equivalence. Let
afb e r(a)f r(b), cfd = r(c) 1 r(d),
then r(ac) r(e)r(e) P r(b)r(d)=r(bd) so it follows that acfbd
( by (3) ). Hence, F is a congruenceon S and it is r-semi-
prime.
COROLLARY 3.1 Let S be an r-semigroup and pe T (Regs),
then f € T (8) (f defined by (3)).

THEOREM 3.1 Let S be an r-semigroup. If fi and P2
are r-semiprime congruences on S and YglRegS = fﬂ“&egs s then

f_L = ?2 °
Conversely, if f) and f] are congruences on RegS and
i

'ﬁ='53;, then ¢ =¢ .

Proof. ©ILet a,b&€ S, then
ap b <= r(a) f;r(b) < r(a) mRegS r(b)
= r(a) £\ Regs r(b) <= r(a) er(b) = aylb

and 80 ? =§7 .

;2

Conversely, let a,b € RegS, then

apb &> a=r(a) ?Lr(b)=b — a?lb = afzb
and 80 ﬁ = fz'

COROLLARY 3.2 If S is an r-semi rou s ? an r-semipri-

me copgruence on S and f) f’lRegS y then p= f
THEOREM 3.2 Let S be an r-semigroup, then the mapping
' (RegS) —> 7C(S) defined by h(f)—?l is an isomorphism.

Proof. Let p€ (8), then g ?IRegse % (RegS) and by
Corollary 3.2 ¢ =1 % . Hence, h(?)—y and the map h is onto.

Let ﬂ,fze Z(RegS) and h(f4)='§5‘= @:h(%), then by The-
orem %.1 £=5, and the map h is sninjection.

Let a,b€& i, ?,?E’C(RegS) and BEF o then

B a?&b(::> r(a)gﬂr(b) —>r(a) Syﬂr(b)d::,a'f’;b
and so f, € . Hen;e, the map h is order preserving.

The map h ~ : (8) — T(RegS) defined by h—l(f)=
p= PlRegs is an inverse for the map h. Reelly, if @€ ¢(8)
then by Corollery 3.2 we have

(hon™H)p =n(n™1(p))=n(p)~
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Similarly, (h—loh)?= p» where p€'C(S). Also, i g E L)
and S?iQQ then 1?1 ﬁ\Regu—mRegS ?2 , and so h~ (Q)Ch (S)Z)
Hence, the map h ~ is order preserving. By Lemma 2, 2 % |1)
we have that the map h is an isomorphism and the lattices
T(8) and 7 (RegS) are isomorphic.
Let S be an r-semigroup and
(3 ¢ ={(ap)EsxS : (Fa'€V(x(2)))({Tp € V(x(b)))
2’r(a)=b’x(b), r(a)e’=r(b)b”, r(a)b',a'r(b)Eker‘u.},
then,clesrly, 'CEIU. .

J. Megkin [lo! and R. Feigenbaum {6} have described
the maximum idempotent-separating congruence /4 on a regular
semigroup.

THEOREM 3,3 |6| The moximum idempotent-separating con-

gruence on a regular semigroup S is given by
po={(ap)esxs : (Fe’€V(a))@b € V(b)) a’e=d’D,
aa’=bb’, &b’ ,8’b€ ker | }.

If S is an r-semigroup and I the maximum idempotent-
-separating congruence on S, e the maximum idempotent-separa~
ting congruence on regular semigroup RegdS, then

M= /"{4 (h(}li)=H) and /u1=f‘L|RegS .
Similarly, if 4, is an identity relation on RegS, then
V= /l (h(’L) ) and 4= V\Regs .
Also, kerlui kerILL/\RegS. Since RegS is a subsemigroup on S and
a’,r(a),b”,v(b) € RegS we have by (3)
) po={(aplesxs : (Fa’ € V(r(a))) (I’ € V(z(b)))
a’r(a)=b’'r(b), r(a)a’=r(b)b’, r(a)b’,a’r(b) € ker/»ki}
and so % is the maximum (r-semiprime) idempotent-separating
congruence on S.

DEFINITION 3.1 [6] ILet S be a regular semigroup .and
A s subset of S.

(i) A will be cal I~closed ( R-closed ) if
a,b€ A with T 2 <Dy (R 25 By ) implies ab,ba€ A. If A is both
L—closed and R—closed A is said to be I~-R-closed.

(11) A will be called L-self-conjugate ( R-self-co-
njugate ) if 2¢ A and x€S with L < L ( R <R, ) implies
xax € A ( x"ax€ A ) for all x € V(x). If A is both I-self-
conjugate and R—self—mj@te, A is said to be I~R-self-co-
njugate. o T T

(iii) A will be called H-regular if for gach a€ A
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V()NE,NA # & .
In Definition 3.1 the clases of known Green relation
are denoted by L,R and H.
Let S be a regular semigroup. In |6| is defined set
A ={acs : E(S)SASkery and A is I-R-closed,
L-R-self-conjugate, H-regular subset of S}
where [z is the meximum idempotent-separating congruence on S.
THEOREM 3.4 |6| Let S be a reguler semigroup. The map
A— (R={(a,p)€8x8 : (Ja’€ V(a))@b € V(b))
a’a=b’b, aa’=bb’, ab’,a’bE A}
is a 1l:1 order preserving map of (7 onto the set of idempotent-
—-separating congruences on S,

Let S be an r-semigroup, f"i the maximumidenpotent-sepa-
rating congruence on RegS and
& = { ASRegs : E(S) SASkerp, snd A is I-R-closed,
L-R-self-conjugete, H-regular subset of RegS] .
By the following theorem we describe the lattice T(S).
THEOREM 3.5 E ) E an r-semigroup. The mep
A—>(4)={(a,p)€sx8 : Ga € V(r(a)))@b’ € V(z(b)))
a’r(a)=b r(b),r(a)a’=r(b)d’, r(a)b’,aT(b)c 4}
is 2 1:1 order preserving map of A onto the set of r-semipri-

me idempotent-separating congruences on S.
Proof. Let A€ A , then by Theorem 3.4 the relation
(A) = {(a,b) € RegSxRegS : (Fa"€ V(a))(Ib € V(b))
a’a=b’b, aa’=bb’, ab’,a’b€ A}
is en idempotent~separating congruence on RegS,
i.e. (A)le T (RegS). By Corollary 3.l relation () defined on
S by a(s)b <> r(a)(4) 1r(b) is an r-semiprime idempotent-
—separating congruence on S, i.e. (A) € T(8), and clearly
(n) ={(aplesxs : Fa'e V(x(a)))EFb €V(x()))
e’r(a)=b’r(b),r(a)a’=r(b)b’y r(a)p,a'r(b)€E A} .
By Theorem 3.4 the mep A —> (A)l is & 1:1 order preserving
ot # omto U (RegS) and by Theorem 3.2 the map (‘I“)l_%’ (4) is
a 1:1 order preserving of “C(RegS) onto 7C(S). Hence, the map
A —> (A) is a 1:1 order preserving of & onto T(S).
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CONSTRUCTIVE ASPECTS OF ABELIAN GROUPS
Daniel A. Romano

Abstract. This paper contains a constructive develop-
ment, in Bilshop s sense, of facts about subgroups and cosub-
groups of groups in general nondiscrete case. It contains cri-
teria for direct sums of groups, and examples of subgroups of
groups for which there exist compatible cosubgroups.

0. Introduction. For all notions of constructive mathe-
matics the reader is referred to {(1],({21,[6]1,(71,[8] and [9].
The papers [3],{4] and [5] consist of elementary definitions,
notation, terminology and basic facts about sets and algebraic
structures in Bishop’s constructive mathematics which will be

used here,
Throughout this paper all groups will be understood to
be commutative.

l. Preliminaries -
DEFINITION 1. Let (M,=M,%M,+) be a group and let
(H,:M,#M) be a subset of M.

a) For H we say that it is a subgroup of the group M iff
oEH,
XEHA YEH — X+y€BH,
XeH —» -x€ H.

b) For H we say that it is cosubgroup of the group M iff
odg:H,
Xx+y&€H > Xx€H vV y€&H,
-X€H -9 x€&H,

AMS Subject Classification (1980): Primary 03 F 65;
Secondary 20 A 99, 20 K 99.

This paper is in final form and no version of it will
be submitted for publication elsewhere.
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DEFINITION 2. Let (M,=\,#y,+) be a group and let R be
2 relation on M.

a)¥le say that R is a congruity relation on M iff
(¥xem)((x,x)&R),
(¥xye M)((x,Y)ER === (y,X)ER),
(¥xyzeM)((x,7)€R A (¥,2)ER = (X,2)ER),
(¥xyuve M) ((x,y)E€R A (u,v)ER = (x+u,y+V)ER).

b) We say that R is a cocongruity relation on M iff
(¥xe M) ((x,x) € R),
(Fxye M) ((X,7)ER —=> (¥,X)ER),
(¥xyzeM)((x,2)€R ~ (X, Y)ER V (¥,2) €R),
(¥xyuv € M) ((x+u,y+V)E R =—> (X,Y)ER Vv (u,v)€ R).

PROPOSITION l. Let (M,=M,#M
a relation on M. Then a relation R is a congruity (cocongruity)
relation on M iff the set H = {x€ M:(x,0)€ R} is a subgroup
(cosubgroup) of M and (x,y)€ R <= x-y€ H.

,+) be a group and let R be

COROLLARY 1.1. Let (M,=M,%M,+) be a group. Then
i) A relation =M is a congruity relation on M and the
set (o) = {x€M:x =M o} is a subgroup of the group M.

a

ii) A relation %M is cocongruity relation on M and the
set M, = { x€M:x Y o} is a cosubgroup of the group M.

DEFINITION 3. a) Let R and C be, respectively, a con-
gruity and a cocongruity relation on the group M. We say that
R and C are compatible iff

(¥xy€ MV((x,7)€ R A (X,5)€C),
(¥xyz€ M ((x,7)€ R A (¥,2)€ C == (x,2)€ C).

b) Let H and P be 3 subgroup and cosubgroup, respecti-

a
vely, of the group M. We say that H and P are compatible iff
(¥x€ M)Uxe H A xeP),
(¥xye M)(X€H A JEP = Xty EP).

LEMMA 2. Let (M,=M,#M,+) be a group and let R and C be

a congruity and a cocongruity relation, respectively, on M, and .

let H and P be a subgroup and a cosubgroup of M corresponding
to R and C, respectively. Then R and C are compatible iff H

and P are compatible.

Proof. i) The first condition for compatibility follows
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from the second: suppose (X,y)E€R and (x,y)&C. Then (y,x)€C
and

(x,3)ER A (y,X)E C = (x,x)€C
what it 1s impossible. So

W(x,y)€R A (x,¥)€C).
ii) Let R and C be compatible. Then
X€EH A JEP ¢ (x,0)€ R A (¥,0)€EC &

=+ (X,0)ER A (0,-Y)EC = (X,-J)&C &= x+y €P.
iii) Let H and P be compatible. Then
(X3,3)ER A (¥,2)EC &2 Xx-JEH A y-2&P =—

> X-y+y-2€P o= x-2€P = (x,2)€C.

2. The main results

2.1. Construction of subgroups. For a cosubgroup P of
the group (M,:M,#M,+) we can construct compatible subgroup of
M. The set @ we will understood as its cosubgroup compatible
with M.

PROPOSITION 3. Let (M,=M,%M,+) be a group and let G be
2 cocongruity on M. Then a relation 7C defined by
_ (%,7)€ 1C = W(x,5)EC)
; is a congruity relation on M compatible with C.
Proof.

(3, x) €E C &= (¥(u,V) € CI((u,v) #5 (X5%)) ==
= (¥(u,v)e )V (u,v) =4 (x,%x)) ==
= W (0,vIE C)((u,v) =4 (x,%)) =
— T((x,X)€C) e (x,x)&C.
(%,7)€7C &= V((%,7)E C) = 1((¥,X)€C) ¢+ (y,x)e&C.
(X,7)€7C A (¥,2)€7C == ((x,¥)EC) A W(y,2)eC) =
=W (%,5)€C V (y,2)€C) == ((x,2)€C) == (x,2)€&IC.
(x,y)€C A (u,v)ENC &= ((x,¥)EC)AT((u,v)EC) —
= (x,7)€ CV (u,v)EC) = V1((X+U,y+V) € C) =
s (X+U,y+V) EC.

(x,7)E1C A (¥,2)EC &=
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G (va)e_‘c A ((y,X)GC v (X,Z)EC) — (X,Z)EC-

CORCLLARY 3.1.([61,{91) Let (M,=,#y»+) be & group

and let P be a cosubgroup of M. Then a set P = (xeM:‘\(xe P)‘]

is a stable subgroup of M compatible with r.

COROLLARY %.2. Let (M,=M,;£M,+) be a group. Then a set

My is a subgroup of M compatible with M, and we have (o)g_‘\Mo.

PROPOSITION 4. Let (M,=y,#y,+) be 2 group and let P be

a cosubgroup of M. Then a set
P = {xeM:ixdeP}
is a subgroup of M compatible with P and we have P € P,

Proof.
i) 0€E P «= o0&,

ii) Let x€P A ye P, i.e. x g P A y dEP. Surely it holds

A (x+yeP). Let z€P be an arbitrary element. Then
Z2EP ==y Z-X—~J+X+YEP mwb z2-X~-YEP V X+ty€P —>
-y 2z-X-YEP 3 o =—» z-X-Y ;!M 0 b Z #M X+Y -
So x+y&EP, i.e. x+y € P.
iii) x€P =0 x P = (Fu&P)(x Fy u) &=
e (VUEP)(~x #y -u) == (¥veP)(V #y —¥) = X P e
= —x(E?.
iv) PP = g
XEPA JEP v X PA YEP o x & P A X+y-XEP
- xdEP A (G+YEPY ~XEP) = X+Y¥E P.
v) xePe= x &P = (FueP)(u Fy x) —
- (¥ue& P)\(u =y x) & W(RueP)(x = u) = (X EP) &=

e XEP.

COROLLARY #4.l.Let (M,=M,;£M,+) be a group. Then a set

_ﬁo is a subgroup of the group M compatible with MO and we ha-

ve (o)< Mo & M, -
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2.2. Examples of constructions of cosubgroups. There

exists examples of subgroups of the group M for which we can
construct compatible cosubgroups in M.

PROPOSITION 5. let (Vl,:M,;éM,+) be a group. Then
a) The set M[n)
b) The set C{n] {x€M:nx ;éM 0} is a cosubgroup of M;
¢) M[n] and C[n) are compatible in M.

[{i]

{xeM:inx =y 0o} is a subgroup of M;

il

Proof.
b) (x€C{n]e= nx #y 0 =—=b x Fy 0) == odeClnl;

x+y € C[n) = n(x+y) %M O == NX+ny ;!M 0 ===
— DX Fy 0V DY Fy O =2 xeC{n]v yecinl;
-x€ C[n] &= n(-x) Ay © => 0X Fy 0 &= X& cinl;
¢) xeM[nY A yec{n] ¢ nx =y O ANy #yo =
- n(x+y) £y 0 & x+y&cCln].

S and T (denoted by M = 8 & T) iff

(1) (¥x€ M) (Is€8)(TEeD(x = s+t),
(2) (¥s€s)(¥teT)(s+t =y 0 =% s =y 0A t =4 o),
(%) (¥s€ 8)(¥te T)(s ;éM oV t %M 0 = S+t ;!M 0).
Note. Let M be a group, and let S and T be its subgroups.
We write
Cg = {s+t€ S+T:t #, of, Cp = {s+t€s+T:s #, o}.

THEOREM 6. Let M be a group and let S and T be its
subgroups. Then M = S @ T iff

) M=S38+ T,
(%) SCNT = (o),
(6) CgliCq = M .
Proof.
a) Let M = 3 ® T.
i) It is obvious that & = S5 + T
ii)

e 5
XE ST o (asxe S)(_:_}txe TY(x =i Sy t tx){
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-x+s_)+t_ =, ©
{( x x M s =_.xAt_=,0As, =, 0Nt = X
=) X

= "x M x M x M M

sx+(—x+tx) =y ©
== X =M O.
iii) M2 X =y Sx+tx #M o =P S ;!M oV t %M 0 &
e XE€Cp VY x€Cgq &= XECSK_)CT .
b) Let the properties (4) - (6) hold. Then
iv) (¥xeM)(Dses)(IteTH(x =y s+t);5
v) (¥se8)(¥te T)(s+t =y 0 == S =y -t€ SMT = (0) ~=
—0 5 =y t =y 0)s
vi) (¥se 8)(¥teT)(s "éM oVt ;!M 0 ==
e s+t &Cqp Vv s+t € Cg = s+tECSUCT = M, == s+t ;éM 0).

COROLLARY 6.1. Let M = 8 @ T. Then

a) The set CS is 8 cosubgroup of M compatible with S,

b) Cq s{x&M:x&S].
Proof.
a) (t #y o = s+t Ay 0) =+ o0&k Cgqs

~X&Cg &= -X =y s+t€CS(——o T ;:’M o =» -t %M o —
—y X = —s—tecs-,
X =y sxn‘,x NY =y sy+ty A X+Y € CS Q> tX+t2Y #M 0 =
—_ by ;éM oV ty %M 0 > xecs\/ JE€Cgs
XES A yeCS = X =y sx+txe S ANy =M sy+tyecs P
M
b) x =

=2 t = ol\ty;!Mo —_— tx+ty;!Mo¢-=-o X+Y€ Cg-
M s 1, € Cq & ty ;!M 0 — tx+(sx—u) Ay © (ue 8)
g sfx"'tx %M u (uesS) &= x & S;

xe S = X =y S tty %M (UES) = s+t ;éM S, &=

a— tX #Mo &==‘-7X6CS -

COROLLARY 6.2. Let £:M —=H be an onto homomorphism
Then Kerf is a direct summand of ™.
Proof. As f is an onto horomorphism, then There exists

a homoworphism h:H — M such that f.h = IdH' Then:

i) X€H w=—» f(X)GCH == (%) =y (£.0)(£f (%)) &=

== f{x~hf(x)) g 0 = x-hf(x)€ Kerf
and

X =y X-nf(x) + bf(x) € Kerf + {nf(x)€mixe M)
ii) If x€ Kerf (T, where T = {hf(x)€ M:xe M}, we have
£(x) =y © and (A ye H)(x =i h(y)). Then
y B(Y) =y B((f.h)(¥)) =y hf(h(y)) =y bf(x) =, o.
30 KerfM\7T = (o).

P

iii) Let Crers = {x€eM:hf(x) %M 0} and

Cp = {xe UER hf(x)}. Then
o ;!M X = X - hf(x) + hf(x) = x %M hf(x) v hf(x) %M o
A XQCTV xe C
So Mo = CTLJC

Kert &% ¥€CpICyeryr -

Kerf °©

PROPOSITION 7. Let (M,=,,#y,+) be a group and let

(Hl,Pl) and (HZ’P2) be two pairs consisting of compatible sub-

groups and cosubgroups of the group M, such that Hl(ﬂP2 # Do

If Hy is a subgroup of the group .I:Il and P,& P,, then the set
P1/(H5,HP,) = {x+H, € M/(H2,P2):x6Pl}

is a cosubgroup of the group M/(H2,P2) compatible with the sub-

group Hl/(Hz,PgﬁHl) in N/(He,Pz).

Proof.

*+Hy € P1/(H5 PoMH ) &= XEP 1S Py == x+Hy #p Ho g

(x+H5)+" (y+H,) € Py/(Hy PorMH ) e
o= X+y+H,€ Pl/(Hg,Pgﬁ Hl) e X+ty€ P =% XEPV JE Py &
= X+H,€ Py/(Hy  PolMH ) v y+H,€ P1/(Hy Pyl M) )5

—'(x+H2)€ Pl/(He,PamHl) e —X+H,€ Pl/(Hz,P2mHl) =
&= -XE€P] == XEP] & X+H € Pl/(H2’P2mHl);

x+H,€ Hy/(Ho, Po(\Hy) A y+H,€ Py/(Hy,PoMVH ) =2
< XEH] N YEP] == X+YE P e X+¥+H,€ P1/(Hy, Pol ).
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be
of

COROLLARY 7.1.(The Isomorphism Theorem) Let (M,=M,fM,+)

a group and let (Hl,Pl) and (H2,P2) be two pairs consisting

compatible subgroups and cosubgroups of the group M such

that P, VHy # @, and let H, be 2 subgroup of the group H, and

qu; P2. Then there exists an isomorphism

f:M/(Hl,Pl) I (M/(H21P2) )/(Hl/(Hgapaﬁﬂl)apl/(Hz’PgnHl))-

(1)
2]

(31

fu]
{51
(6]
(7]

(8l
(9]

Proof.
The isomorphism f is defined with
*x+Hp — (x+H2)+H1/(H2,P2("\Hl).
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CONTRAINTUITIONIST LOGIC AND SYMMETRIC
SKOLEM ALGEBRAS - CONTINUATION 4
Kajetan Seper

Abstract. Classical logic is conceptually symmetric although
its various presentations are generally asymmetric. Constructive logic, in-
tuitionist as well as contraintuitionist, is conceptually asymmetric and its
presentations_are necessarily more or less asymmetric. As early as
1917 Skolem, [{], originated and investigated a conceptually and presentati-
onally symmetric system of "logic of classes™, by quite formal algebraic me-
ans, as a more general system than the classical system of Boolean algebras.
Later on, the system was called variously: implicative-subtractive Skolem
algebras (Curry) or semi-Boolean algebras and Heyting-Brouwer logic (Raus-
zer), and investigated by various methods (Rauszer). Some decades
ago appeared a number of more or less symmetric and constructive systems of
"logic with strong negation" (Fitch,Nelson, Markov, Vorob’ev, and others),
culmirating in ZaslavskiY's, L2l , "symmetric constructive logic". Here
we propose a system, NS, of "constructive symmetrist logic", CSL, which is
traditionally constructive, totally symmetric, and free from strong negation.
The system is founded on general symmetrist ideas and stipulations. It unifi-
es both systems, those of intuitionist and contraintuitionist logic, and ex-
tends each of them conservatively. It is closely related to and more general
than the systems mentioned above.

0. INTRODUCTION. In the previous paper, [3], a direct unificati-
on of the asymmetric systems of intuitionist and contraintuitionist logic was
sketched and only fragments of the resulting systems of "symmetric intuition-
ist logic", SJL, and "absolute symmetric Skolem algebras", SA, were stated. In
these cntinations we wish to improve the deficiency by stating the systems in
their entirety.

To realize this program we have, in the first place, to make it
precise how to handle logical deductions involving assumptions as well as

contraassumptions simultaneously. This is done in this contimuation.

This paper is in final form and no version of it will be submit-
ted for publication elsewhere.
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As we imagine a logician in the role of a constructive (effec-
tive, or operative) symmetrist constructing the system, we prefer calling

it from now on more appropriately and specificly constructive symmetrist lo-

gic, CSL.
In the continuations to come we intend to elaborate suitable

algebraic and topological representations.

1. CONSTRUCTIVE SYMMETRISM. To begin with, a symmetrist asso-
ciates to each formula, especialy to each schematic formula involving a con-
nective, its positive (or t-) and its negative (or f-) meaning. For a cone
structive symmetrist, the former is to be intuitionist, modeled by construc-
tions (or proofs), and the latter containtuitionist, modeled by contracon-~
structions (disproof's, or refutations). A formula is considered to represent
a true statement, or a false statement, if it is capable of being intuitio=
nistically constructed, or contraintuitionistically constructed (or contra-
constructed), respectively. The truth criteria will be specified by down-
wards applicable natural deduction rules and the falsity criteria by up-
wards applicable ones. As we proceed we shall generalize these stipulations.

The problem of generalization of the stipulations arises, e.g.,
if we wish to handle the intuitionist © as a f-comnective. To fix its me-
aning in that case we have to state sufficient and necessary conditions un-
der which, possibly simultaneously from some assumptions (or t-assumptions)
and contraassumptions (or f-assumptions), a =9 -formula A © B is to be con-

sidered as capable of being contraconstructed i.e. as representing a false

statement. The conditions are: under all the given t- and r-assumptions, A is
to be true ggg B false. Therefore, the natural deduction rule should invol-
ve a certain mixture of downwards applicable rules (or t-rules) and upwards
applicable rules (or f-rules) combined together. Such a situation appears
neither in intuitionist nor in contraintuitionist logic, but it does appear
quite normally in constructive symmetrist logic.

Similarly, the same problem arises if we wish to handle the
contraintuitionist c#: as a t-connective.

The acceptance of symmetrist attitude makes it possible and ini-
tiates, for completing the intuitionist and contraintuitionist connectives,
new connectives to be introduced. The new connectives should be introduced
in the constructive manner of intuitionist-like, or contraintuitionist-like,
or by combined constructions.

E.g., the abjunction A%y B (read as '"sine" or '"but false") is
introduced as a t-connective by the same ooditicans as tor2> as a f-connecti-
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ve, but if we treat it as a f-connective, the conditions are quite different

from those for O as a t-connective: ANy B 1is considered to represent a

false statement if either A is false or B is true. Hence, "y and 2D are

only "partially cross-expressible" by each other; more exactly, Y\ as a
t-connective and 223 as a f-connective are expressible by each other only.

Regarding its logical dual, the contraabijgnetion BN A (right-
to-left reading applied, and read as’‘'contrasine" or "but true"), both \N
and R\ are "totally cross-expressible" by each other: \g as a t-connecti-
ve and N\ as a f-connective, as well as "\ as a f-connective and R\ as a t-
connective, are expressible by each other.

The role of these "mixed" junctions is analogous to that of "pu-
re" junctions A and V

The constructive symmetrist introduces also new logically dual
"mixed" plications, t-plication g and f-plication < (right-to-left re-
ading applied), the conditions for and the role of which being analogous to
those of "pure" plications ©© and ¢$: .

For a constructive symmetrist, the t- and f-meanings associated
to formulas, and schematic formulas involving comnectives, are not meant as
being separated from each other —  the former being understood by an in-
tuitionist and the latter by a contraintuitionist — but rather as being
simultaneously present. From a constructive symmetrist’s viewpoint the t-me-
aning is to be modeled on intuitionist-like s-constructions.(st-constructie-

ons) which include the intuitionist ones,and the f-meaning on contraintuiti-

onist-like s-constructions (sf-constructions) which include the contraintu-

itionist ones. Both s-construction modelings will be realizedby a kind of
natural s-deduction. Consequently, for formulas of particular form their s-
truth and s-falsity criteria will be specified by simultanecusly downwards
and 1mards applicable natural s-deduction rules.

2. s-RULES. The general multiple form of simple (or local) na-
tural s-deduction rules (or s-rules) is

t-premises .y . f-conclusions
I

t-conclusions f-premises

Any s-rule is quadripartite: one distinguishes its left (or t-)
and its right (or f-) part; and, for each of these parts, one distinguishes
its premise and its conclusion part.

Any s-rule is bidirected: for each of its parts, either left

or right, one distinguishes the direction from premises to conclusions.
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The complex (or global) .s-rules may be assumed by additional
information of various types which alter the applicability stipulations with
respect to simple s-rules.

The notion of s~deduction generated by the multiple rules could
be inductively defined (and visually represented) by a kind of bidirected
quadripartite graphs. (or sm-graphs) or by a kind of bidirected dichromatic

bipartite graphs (or séO)—graphs) (both being closely related to and gene-
ralizing~Shoesmith and Smiley’s bipartite graphs).
However, for the sake of simplicity in this paper we shall use

only strictly singular form of s-rules i.e.

A .. A
1 n |
st-rules: T
= "B Cp... C1
and Ay .. An D
sf-rules: AA%TT, C
p*tt T

The complex s-rules we shall use in this paper are all of the
same type: to any t-premise formula a formula may be indicated in brackets
and placed above or on the right-hand-side of it; to any f-premise formula
a formula may be indicated in brackets and placed bellow or on the left-
hand-side of it.

Thus, the notion of s-duduction generated by the singular rules

is inductively defined by means of bidirected trees (or s-trees) as follows.

3. s-RULE APPLICATION. 3.1.The basis of induction consists of
exhibiting the most elementary s-deductions associated to formulas.

Any formula A supplied with an indication of its t- or f-sta-

tus is a s-deduction; more exactly, the elementary s-deduction of the form
ad

is a st-deduction of A from itself as a t-assumption, and the elementary=s-

deduction of the torm

TA

is a sf-deduction of A from itslef as a f-assumption.

3.2. The inductive step depends on the rule chosen, and consists
of extending given s-deductions so to form a new s-deduction according to
the rule. The step may be called the rule application, and the new deduction
its result,

Capital Greek letters possibly with sub- and super-scripts
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denote as usually formula sequences.

3.2.1. For any chosen simple st-rule, given st-deductions of Al
(iz1,...,n) from t-assumptions /’? and f-assumptions Aﬂ , and given sf—de-
ductions of Ck (k=1,...,p) from t-asqumptlons /"' and f-assumptlons Aﬂ
the extended. ssaeduction of the form

(B being bellow all A and Ck) is a st-deduction of B from t-assumptions

V& - WA /':], /-",, f; and f-assumptions A"Al"" An, A1’
Z37

p’

3.2.2. Similarly, for any chosen simple sf-rule, under the same
conditions as above, the extension

(D being above all Ai and Ck) is a sf-deduction of D from t-assumptions /Fv

and f-assumptions /).

3.2.3. In both cases of a s-deduction the repetition of assumpti-
on formulas is allowed to be omitted.

3.2.4. If the chosen s-rule is complex, then any of its indicated
formulas placed above or on the left-hand-side of a premise formula P is
meant to be a t-assumption of the given s-deduction of P; otherwise, if it
is placed bellow or on the right-hand-side of P, it is meant to be a f-as-
sumption of the given s-deduction of P.

The complex s-rule prescribes the indicated assumption formulas

to count no more as such but as "discharged" by the application.
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Yy, s-DEDUCIBILITY. As a consequence of the definition of s-deduc- s-rules of NS
st-rules sf-rules
tion one defines as usually two kinds of s-deducibility relations i.e. E
I-rules E-rules -rules  I-rules
st-deducibility: P] A t+ B A B A AR, A B AyAhy -
sf-deducibility: 0 o4 /7] A
A, A, A\ B
or, more compactly, ‘ i , AvB, L i e cJ
I J2 EvE R B 52 "AvA, K B
S TAvBL ana TARDD, r. . .
respectively. A ! ANB A\B, B A 1B A\yB A\YB
ivstsrr v — 3B FragE ! -7
|
5. THE SYSTEM NS OF CSL. The s-formulas of CSL are defined also s ~e o Teal
I ‘\\ \ﬁ

in the usual way i.e. as formed from atomic formulas by the binary connecti- [ H '
A
ves A VYN DEDCand the zero-ary ones (or constants) | T . ‘ —B'Q_Ai— BR_A'_B_ i+ Sh "BI\A YERE li‘ ¥

In order to anticipate multiple rules, and consequently multip-

le deductions, yet persisting in singular ones, we shall use the following ’ ———————————————————————————————————— —

miltiple rules as abbreviations for singular ones: [A] .
: | B A ADOB B 1A _ADB
sl [&]1 S . e $5 4o ST o
Vel D ...D 7~ ek epl... glp] ‘
1.9 1 for 1 q ) !
B, ... B 1 E v \
Pt A4 A 5 !
t
and « B&a, B B BG-A
BEAVE "B+ o S sg&r A + 8 3
I E ‘ Al
4
' BTlE ... I'BJJE E ... E a A, AZDB
n 1 B[a]l, 428, i
[ [ [74] ; DBF "B TR ST "ok, -y
and i
. / ;
tor ! B A A5 @A1 A B
—— —3 = . B4
A . A san n S8 “paer Yty 5
Ve D e e e o
D
. N A A A
The particular s-rules of NS are divided into several groups and T3 Ju—g—+ S9 —
subgroups (st-,sf-,I~,E-; junctions Av&ﬁ , plications 34’.2’6, absurds _L
T ;intuitionist J 1-l, contraintuitionist CJ 1-4) according to the following
B A,
. I
table: S10 —V?CJ. —lT-
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The role of l-as a t-constant is that of a st-absurd having
no st-construction. In JL, its role is that of an intuitionist absurd having
no intuitionist construction; J4 is traditionally called "ex falso quodlibet',

efg, and it can be abbreviated by the multiple "antiaxiomatic"

ef‘qm A‘_

For-this reason «S9E is called st-efq.

The role of_L as a f-constant is that of a sf-theorem having a
sf-construction.

Similar remarks apply to—T.as a f- as well as a t-constant.
Therefore S10%E‘is called sf-"ex vero quodlibet", sf-evq.

4591 is called st-'nmon-contradiction", st-ncd; under st-efq

it can be replaced by

A !
B"A

S10% 1 is called sf-ncd; under sf-evq, it can be replaced by

A | B
A

Hence, under st-efq and sf-evq, both st- and sf-cnd together can be abbre-

viated by the multiple "s-antiaxiomatic"

A
sm—cnd —‘FT
Remark 1. If the table contained the following rules instead
A A L
— 59 . l_L t
™
| Ty A S10 AL
T A A

then one would obtain the symmetric D-system, DSL.
&S10E can be called st-"tertium non datur', st-tnd; under
&310I; it can be replaced by the multiple "axiomatic”
A

A

S9—>E can be called sf-tnd; under S9-»1, it can be replaced by

-

being the same as above. Hence, under &S10I and S99 1I,the multiple "s—axi-
omatic"
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A
s -tnd _A_“_._

can abbreviate both st- and sf-tnd.

Remark 2. If the table contained besides the cnd-rules also
the tnd-ones, one would obtain the symmetric classical system, KSL.

Remark 3. Especially with respect to S9 and S10 some other com-

bination of rules might be of interest, e.g., that for the symmetric minimal
system, MSL, containing neither the cnd-rules nor the tnd-ones.

Remark 4. In this paper we do not consider the class of s-ab-
surds,J.z, neither we iterate the process to obtain CSL of second order, CSL,,
and so forth.

Remark 5. One obviously extends the presented propositional
logic to the full predicate one.

Remark 6. One also obviously transforms the presented natural
s-deduction formulation, NS, of CSL into its coextensive s-sequent czlculus
reformulation, LS.

Remark 7. To be sure that the system CSL extends the systems of
JL and CJL conservatively, one has to prove the following theorem.

THEOREM. For any (intuitionist) av3.l -formulas / and B,

S LEBL (inNS) <2 /FB (in NJ)
nholds good. For any (contraintuitionist) AVd,‘.T -formilas 4 and B,

[AL LD (inNS) 4 DH4A (inNCD)
holds good. .

Remark 8. If ane wishad to transform the presented singular system,
NS, of CSL into its coexten-sive multiple reformulation, NmS, one should
prove the following theorem.

THEOREM. For any s-formilas /, /7, A=8,, ...,B , and A=
DQ""’D1’ Ay Vi
LM vALA Gaws) & [T/, v AN ALGnws)

AT [AA"VAO(in NS)
hold good. Here lﬂh stands for B3s conjunction, if mZ2, or for B1 itself, if
m=1, or for-r-, if m=0; similarly, :50 stands for Dis ad junction, or D1
itself, or_l_, respectively.

Mmﬂ9.ﬂmr%&h&d%LwMﬂMwoﬂyAVD#LTam
51,2,5,6,9,10 is a minimal unification of both JL and CJL. (It was but menti-
oned in [3] under the name of "simple'".) The whole CSL extends it conservati-

vely as well.
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6. s-EXPRESSIBILITY. In sec.1 we have indicated some types of
expressibility of connectives. The expressibility is now precisely defined
by s~interdeducibility.
DEFINITION. For given s-formulas A and B, one defines the fol-
lowing types of s-expressibility relation:
tf-, or ft-, expressibility by
AE B <ED>BE A AL H(BalBERAL
t-expressibility by
A B EDALEBT & B[F AL
f-expressibility by
peme &> (e [BE]A
cross-expressibility by
Ax=B: &3> AEB & AXB

parallel-expressibility by

A=B & AwmB & AZ=B

The first three relations are called partial, and the last two total.

COROLLARY. a) The relations ==, == , and = are reflexive,
symmetric, and transitive. b) The relation x= is symmetric and parallel-
transitive: A x= B & Bx=C :=$> A = C. ¢) The following expressibility
relations hold good:

AyB = ADB
Bga = BN &
APB = AVE
BAA = BCA
Ay Bxs ANB
The last relation shows that each of Yy or’\ is cross-expres-
sible by the other. In such a case we say that each of them is cross-quasi-
definable by the other, and so, under that view, superflucus.If we had cho-
sen oniy one of them as primitive, the relation, as we say, cros-gquasi-de-
fines the other by the chosen one, and the relation is called its cross-
quasi-definition. However, for the sake of symmetricity of presentation, we
have chosen both.
Similarly, a connective may happen to be parallel-expressible
by another one, in case of which we say it is parallel-quasi-definable by
the other.
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E.g., the injunction A LB and the equivalence ADE€B are defi-
ned by such quasi-definitions:

/\LB: x= AvB
ADC B: = (ADB) A (BD4)

Next we list the most interesting quasi-definitions.

DEFINITION. The "weak" negations are defined as reductions to

absurd:
negation by A: = AD 4~
contranegation (or affirmation) by AL = T'Ct.A
t-affirmation. by A=A 2L
f-negation by At =T

and the "strong" plications as two-sided combinations:

in-ex-plication (or t-biplication) by A=B:

(A=B)N (A&-B)
ex-in-plication (f- or contra-biplication) by.

BkA: = (BoAN(B& A)
(A@B) A (BRA)
(A@B) (B&ZA)

t-cross-plication by AgZaB:

f-cross-plication by BrPa:

Remark 10. For the chosen connectives, problems of their indepen-
dence, completeness etc. arise. If deeper insights into CSL are needed, its
tetralogical foundational study is to be developed (in the sense of Loren-
Zen's dialogical foundation of logic).

7. STRONG NEGATIONS. As mentioned in the abstract, a number of
systems of logic with strong negation appeared by several authors. However,
all those systems are presentationally asymmetric, and indeed t-presented.

The logically dual “strong" connectives, strong negation, -- A,
and strong contranegation (or strong affirmation), A--, are introduced as
new connectives in CSL by the following rules which characterize them as t—
as well as f-connectives explicitely:

-« A, A .
——t— ! S11 o Ay--4
P Ar- A $12 T Ay A--

Thus one obtains the system of a quasi-t-presentation of CSL, call it CSL:.-.
containing -« .- and S11, 12, in addition.



Obviously, -+Ax= A and A+-x= A hold, and hence ~+ A = A+ - holds,
too. Sb, —« and-~ are totally parallel-interexpressible. If -« 1is the only
primitive connective, it is denoted simply by -, and the system itself by
CSL:~.

The relations ~A 3 At and -A = 4A show that - is a combination of
-4 as a f-connective and L as a t-connective.

The system CSL:- can be simplified in various ways. E.g., the rela-
tions

ANB=AA -B

BRAA=-Bva

BdsA = —(-A2 -B)

APB=-ADB

BZ4A = -(AD -B)

T=-1

enable to reduce it to the system of a restricted quasi-t-presentation of
CSL:-, call it Av2- _restricted CSL:-, with only - A v >DJl., S11, and S1,
2,5,9 replaced by the transforms Sx1,2,5,9 ,respectively:

-A,
¥, = e -(AA B), i,
& ST E &S S™ AR ¥ —(A1AA2)‘_
-(A,vA,)
<« S2 T <s2 s*2 LS oh
i
¥e - * -(A™B), -(ADB), + A -B
< S5 F 55 S5 T - e LN
H
Ky — ¥
4 S"9 T &39 S79 !
- A
Remark 11. If, in addition, S11 is replaced by
A A x
—xr Tt s
containing <}Sx11 solely, one obtains the system of a pseudo-presentation
of .Av> L -restricted CSL:-, call it CSL¥:- AvD L, having no explicite
characterization of -. This property is a remarkable disadvantage of the

system (and similar systems with strong negation).
Remark 12. More drastical modifications of CSL:- {restricted or

not) are possible, and some of them actually appeared in the literature.E.

g., the system of a deformed presentation of restricted CSL:-~, call it
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CSL:- 3, is obtained by replacing D by =3 and $%5 by the corresponding trans-
form S5 for m1. If, in addition, S11 is replaced by 8*11, one obtains the
system of a deformed pseudo-presentation of CSL:-, call it CSL¥._ avalll .
Remark 13. Disregarding minor differences, the system cSL¥ is essen-
tially that of Vorob’ev and fhe systems CL:- mard (1 are thoee of ZaslavskiY.
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MAPPINGS OF ORDERED SETS
by Milan R. Taskovi¢

Abstract
In this paper we present some new characterizations of indu-
ctiveness, completeness,conditionally completeness and chain completeness

of posets in terms of fixed apexes, fixed edges and fixed points.

1. INTRODUCTION AND MAIN RESULTS. An order-preserving
(isotone or increasing) map f of a partially ordered set (:=poset) P to
itself has a fixed point if there exists an element £ in P such that
f(£) = £. P is said to have the fixed point property if every isotone map
f of P into itself has a fixed point. The first of the fixed point theorems
for partially ordered sets goes back to Tarski and Knaster (c.f.[ TA]J),
who proved that the lattice of all subsets of a set has the fixed point
property. In the mid - 1950‘s Tarski [TAl published a generalization:
Every complete lattice has the fized point property . Tarski [ TA]
raised the question whether the converse of this result also holds. Da-
vis [ DA] proved the converse: Every lattice, with the fixed point
property is complete.

In [RI] , Rival published a far-reaching extension: Every

isotone map of finite, connected poset P into itself has a fixpoint.

Let a poset P be calied INDUCTIVE (CHAIN COMPLETE) when
every non-empty chain in P has an upper bound (supremum} in P. Many
authors have investigated properties of posets satisfying some sort of
chain-completess condition and used them in a variety of applications.
Tarski’s fixpoint theorem generalizes to chain-complete posets, i.e. if
f:P+P is an isotone map and P is a chain-complete poset, then the set
of fixpoints is a chain-complete poset under the induced order. This
sharpens the results of Abian and Brown [AB] , that every isotone,
self-map of chain-complete poset has a fixpoint. Conversely, Markowski
MG show that if every isotone map f:P+P has a least fixpoint, P is
chain-complete.

*} This paper is in final form and no version of it will be submited
for publication elsewhere.
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Also, Klimed [KJ] characterized chain complete posets in terms of the
least fixed points of relatively isotone selfmappings.

In this paper we consider a concept of FIXED APEXES for the
mapping f of a poset in‘to itseif. A map f of a poset P to itself has a

fized apex u€P if for yeP there is peP such that flu) =v and fp) =u.

The point u,v P are called fixed apexes of f if f(u) =v and f(v) = u.

in this paper we present a new characterization of inductive-

ness (chain-completeness) of posets in terms of the fixed apexes.

The analogous problem for conditionally complete (that is,
every nonempty subset of P with upper bound has its supremum)

partially ordered sets has remained largely unexplored.
it should be pointed out that the result of Davis [ DAl cannot

be transferred to the completely ordered sets that are not lattices. That

is seen from the following example.

EXAMPLE 1. Let the set P ={a,b,c} be ordered by = so that
asb, asc and assume the elements b, ¢ are ancomparable; as shown on

the diagram (Fig. 1):

Fig. 1 Fig. 2

Every isotone mapping f:P*P has the fixed point, but yet P is still not
completelly ordered set. However, P is conditionally complete.

We begin with a statement for conditionally complete sets.

FIXED POINT LEMMA: Let (P,s) be a partially ordered set
and fa mapping from P into P such that:

(A) f <is an isotone mapping,
(B) f bas a fork i.e. asf(a)sf(b)sb for some a,beP, and
(C) Thesetla,bl or Pis a conditionally complete.
Then
(1.1.)The set I(P,f):={xeP:f(x)=x} is nonempty ,

and
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(1.2.) Neither of the conditions (A), (B}, (C) can be
deletedif (1.1.) is to be valid.

A Drief proof of this statement may be found in our paper of
conditionally complete posets i.e.see Taskovi¢ EMmIT.

In connection with the preceding, analogous to the Fixed
Point Lemma we have an immediate consequence:

LEMMA 0. Let (P,5) be a chain complete poset and f an
isotone mapping from P into Psuch that
(LF) f has a left fork i.e. asf(a) for some aeP.

Then there exists a fixed point of f
Let P be a partially ordered set and f a mapping from P into
P. For any f:P+P it is natural to consider the following set

Sub f(P):=f(P)U(aEP|a: ub C, for some chain C in f(P)},
where ub C is an upper bound of C.

We begin with the following Lemma which is essential.

LEMMA 1. (Eixed Apexes Lemma). Let L be an inductive
lattice and f a mapping from Pinto itself such that
(M) xsfz(x],fox- all xeSub f(L).

Then there exists a fixed apex of f.

We notice that the map f has a fized apex if and only if
f2:=0(f) has a fized point. -

Namely, if f has fixed apexes u,veL, then u=f(v) and v=flu},
i.e. we can see that u=f2(u) and v:fz(v). Hence, the equation x=f2(x)
has a solution. On the other hand, if the equation x:fz(x) has a solu-
tion 5:f2(5) for some ¢el, then f has fixed apexes g, f(¢ )eL, because
C:fZ(E] and f(§)=f(€). This completes the proof of preceding remark.

PROOF OF LEMMA 1. Since L is a inductive lattice, then L
is with majorant i.e. every non-empty chain in L has an upper bound
in L. By Zorn’s lemma (or Bourbaki‘s lemma) there exists a maximal
element z€Sub f(L) i.e. Sub f(L) has a maximal element. From the
condition (M) we have zgfz(z) and because 2z is a maximal element of
the set Sub f(L) it will be also fz(z)sz. Hence, we obtain the relation
f2(z):z, i.e. the equation x:fz(x) has a solution zelL. Hence, from the
preceding remark, f has a fixed apex. This completes the proof of this
Statement.



THEOREM 1. For a lattice L to be inductive it is ne-
cessary and sufficient that every mapping f on L to L with the condition
(M)  has a fired apex.

Proof. Since the condition of this theorem is known to be
necessary for the inductiveness of a lattice, from Lemma 1, we have only
to show that it is sufficient. In other words, we have to show that, under
the assumption that the lattice L is not inductive, there exists mapping
fon L to L without fixed apexes and with the condition (M).

Suppose that the lattice L is not inductive. We first notice
that there exists at least one subset of L without a majorant, upper bound
{for otherwise the lattice would be inductive). Hence we can find a chain
A of L with the foIlewing property :an upper bound i.e. magjorant of
A, does not exists in L.

Let U be a chain cofinal with A such that

U:={ x€A xosx} . Xg=a fixed element of A=minU.

Thus all the elements of U can be arranged in a sequence i.e.one can

show that there exist increasing sequence (xa} in U such that:{ x }is
a

strictly increasing and, for each teU, there exists a(t) such that a(t)<a

implies £ sx ., and an upper bound of { x_} does not exist.

We define a mapping f from L into itself according to the
following presciption

_ X,, If x=x €U
(M fix) = { ‘XOB;zminU it xgU

where xu5x e (xOl + XB) for any a<{B8<{w,and where w is any (finite or
transfinite) ordinal. Thus we have defined a function f on L to L. Now,
for any x€ U(> Sub f(L)) we have xﬁfz(x) i.e. x=xa§xy=f(xe):f(f(xa):
=f2(x O)=f2(x), for a<B<y<w; so f satisfies the condition (M), and does
not has a fixed apex.
Thus the function f:L*L satisfies the condition (M) and does

not have fixed apexes. This completes the proof of this main statement.

' The following result of Bourbaki [ BOJ , allows us to prove
the basic fixpoint for complete lattice without using the Axiom of Choice
(see [MTJ). We extensions this statement of Bourbaki [ BOJ, in our paper
[MT} .

LEMA 2. (Fixed Point Lemma). fgt L be an inductive lattice
and f a mapping from L into itself such that
(T) x5 f{x), for all x&Sub f(L).
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Then there exists a fixed point o f.

PROOF is analogous to the proof of the preceding Lemma 1
(see, Taskovi¢ [ MT]).

In connection with the preceding, L is said to have the general
fized point property if every map f of L into itself with the condition (T)
has a fixed point. Analogously, L is said to have the fixed apex property
if every map f of L into itself with the condition (M), has a fixed apex.

We are now in a position to formulate our the following general

main statement.

THEOREM 2. Let L be a lattice, then the following statements

are equivalent:

(a) L is an inductive lattice,
(b) L has the fixed apex property,
(c) L has the general fixed point property.

PROOF. From Theorem 1, (a) is equivalent to the condition (b).
Lemma 2 implies that (c) is a consequence of (a). Thus, we need only show
that (c) implies (a).

Suppose that the lattice L is not inductive. Then there exists
a sequence (chain) A in L, that does not have an upper bound. We de-
fine a mapping f from L into itself with (1). Then f is well defined and
for any x€Sub f(L) we have xsf(x), i.e. i.e. x=%Sxg = f(xq4) = f(x).
Thus, f satisfies the condition (T}, and does nat have a fixed point. Thus,

the proof is complete.

2. SOME COROLLARIES. In this section we give applications
of the preceding statements.

We hotice, in [ KJ] Klime§, [ KP] Kurepa and [ BB] Baclawski-
Bjorner considered the concept of a fixed edge for the order-reversing
(antitone or decreasing) mapping of a lattice into itself. Let f be an anti-
tone mapping of a lattice L into itself and let asb be elements of L. An
ordered pair (a,b) is called a fixed edge of f if f(a)=b and f(b)=a. We
notice that fixed edges are evidently fixed apexes, and the set of all
fixed edges can be a proper subset of the set of fixed apexes. Also, fixed
point is evidently fixed apex.

In connection with this, we are now in a position to formulate

the following statement.



THEOREM K. (Klime3 L KJJ). Let L be a complete lattice and
fan antitone mapping of L into itself. Then there exists a fized
edge of f.

PROOF. L is a complete lattice, and applying Lemma 1 to the
set S:={xelL | 'xifz(x) }, we obtain that f has fixed apexes uy€S, where
v=sup!(f2,L) for l(fz,L):=(xeL | x=f2(x)} and usv, i.e. f has a fixed
edge. .

in connection with the preceding, we notice that the terms
of fixed edges are not best sufficiency for characterization of inductive-

ness of lattices.

Namely et L:=IN ={0,1,2,...} be the chain of the natural
numbers. L is obviously not inductive Let f be an antitone mapping
on L, then the set {0,1,...f(0)} is closed under f, because 0<k implies |
f(k)sf(0). But this is a finite inductive lattice, i.e. from Theorem K,f
has a fixed edge, which is a fixed edge of L too.

This example proof the preceding remark.

ih this section, we present a new characterization of chain-
completeness and completeness of posets i.e. lattices. 1

Let P be a partially ordered set and f a mapping from P into |
P. For any f:PP it is natural to consider the following set

f(P):=f(P)U{aeP | a=sup C, for some chain C in f(P)}.

In connection with the preceding, analogous to the Lemmas 1,2

we have an immediate consequence:

LEMMA 3. Let L be a complete lattice and f a mapping from
L into ttself such that

(LM} x g fA(x), for all x&F(L)

Then there exist a fized apex of f.

LEMMA 4. Let L be a complete lattice and f a maping from
L into itself such that

(LT} x s f(x), for all xef(L)

Then there exists a fixed point of f.
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PROOFS. L is complete fattice, and hence f(L) is an inductive lat-

tice, also. Applying the Lemmas 1,2 to the set f(L), we obtain that f has a
fixed apex or a fixed point.

LEMMA 5. Let P be a totally ordered set by the order relation
5. If the nonempty part A of P does not have a supremum, then there is, by
relation s, well ordered subset A0 of the set A which does not have an upper
bound in A.

PROOF. According to Zermelo’s theorem there is a well order §
of set A. Based on the theorem of transfinite definition, there is the funciion
f:A>{0,1} with the characteristics:

[¢]

1 f(a) = 1, where a = min A in the system (A, §),

20

it is or whether it is not td{x, for every t K x for which f(t) = 1.

f(x) =1 or f(x) =0, for every x B a, x€A, according whether

Due to f(a)=1 the set Ao:f_1({ 1})C A is nonempty. On the other
hand,

(a) xdy=x<y, for all x,yer.

Indeed, let A1 be the set of all elements ter with characteristic
that (4)is valid for aHx,ye{uer:u S: t} . It is evident that aeAl.
iIf v.e A1 ~ for every vE{ueAO:u g t}, where teAO, then the
condition {4 ) is valid and y Bt (because this condition and hypothesis
x B y lead to yeA1 and x,yE(ueAO:u 8 y}; in the case when,
y=t and xer, relation x gy, i.e. x g t lead to, x<{t=y, having in view
the way in which the set Ao is defined and the characteristic 2° of the func-
tion f. Hence according to the theorem of the transfinite induction the
equality A1=Ao is proved, that is, the condition (a) is valid for every x,yEAO.
Having in view the well order by the relation H of the set Ao' from that it
follows immediately

x B y «=x<y, for all x,ygAO

and it means that the set A0 is well ordered by the relation g

At last, tet x€A. This element cannot be the upper bound of the
set A, because we would have x=maxA=supA. Because of that the set
X:={teA] x<t} is nonempty; there is y=minX in the system (A, B ). Then
x<y and t B y implies tsx<{y, for every tEAo, and this latter, considering
the way in which the set A0 is defined, gives ye Ao' That is, the set Ao
has also the upper bound in A.

In connection with the preceding, L is said to have the locally
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Lo THEOREM 5.(Taskovi¢ [ TIJ [ Mil).let (P,s)be a poset

and quppose 1f X, Y are upper bowds of a basuded aubsets X of P, then there is
’ + X X $Yy. For
general fixed point property if every map f of L into itself with the con- an upper bound z for such that zsX and 75y. For set P to be
: conditionally complete it is necessary and sufficient that every increasing
function f : P+P with fork has a fixed point.
We note, that the partially ordered set P on Fig.2. is not condi-

dition (LT), has a fixed point. Analogously, L is said to have the Z'oca?ly
fized apex property if every map f of L into itself with the condition (LM},

has a fixed apex.

i . tionally complete, however, every isotone mapping f:P+P has the fixed point.
From the preceding statements and Lemma 5, we are now in a posi- Y p Y pping p

. . This prove that the condition:
tion to formulate our the following general main statement:

(DD) if x,y are upper bounds of a bounded subsets X of P, then there is
i an upper bound z for X such that zsx and zsvy:

THEOREM 3. Let L be a lattice, then the foilowing statements are pp =X 4
. cannot be removed in preceding statement.
equivalent:

In connection with the preceding, analogous to this statement and

(a) L s a chain-complete lattice, ]

. . Lemma 1 we have an immediate consequence:
(b) L has the locally general fixed point property
(c} L has the locally fixed apex property.

THEOREM 6. Let (P,2) be a partially ordered set with the
. condition (DD).For set P to be chain complete it is necessary and suffi-
PROOF. From Theorem 2, and Lemma 4, (b) is a consequence of

tent that every 1 A t1 f:P>P with left fork has a fixed
the condition (a). Lemma 3 implies that (c) is a consequence of (a), i.e. (b). ‘ cren at every tncreasing function P> fe 5 i

. . } point.
Thus, we need only show that (c) implies (a). \
Suppose that the lattice L is not complete (chain-incomplete). Then

PROOF . The necessity follows from Lemma. It remains to prove the
there exists a sequence (chain} A in L, that does not have a least upper Y p

sufficiency. In othe ord h to sh t under the assumption
bound. We define a mapping f from L into itself with (1). Then f is well defi- et Y r words, we have to show that, P
ned and for any x€ U(3f(L)) we have xéfz(x), i.e. x=xu§ @zf(xe)zf[f[xa)):lex),
for al{B{y<w. Thus, the condition (LT) holds, for x€F(L). Thus, f satisfies

the condition (LT), and does not have a fixed point. Thus, the proof is com-

that the set P is not conditionally complete, there exists an increasing
funection fon P to P such that ( B), without fixed points.

ot | Suppose that the set P is not conditionally complete. Then there
plete.

I exists a nonempt art U of P which is bounded fro b
Let P and Q be posets and f:P>Q a map (posets are nonempty by Pty P whie rom above and has not

. . . . its supremum. Let us denote by V the set of all e .
definition). Map f is inf-preserving if for all XCP such that infX exists in P S sup ¢ 14 upper bounds of U. The

sets U and V are nonempty, U has no su , d v infi .
and f(ianX):ianf(X). e pty premum, an has no infimum
Clearly infV does not exists, for if it did, it would coincide with supU, what

We are now in a position to formulate the following statement, from contradicts the supposition that U has no supremum. One can show that

the preceding statements. there exist sequences (generalized) {xa}in U and { xs} in V such that:

THEOREM 4. et L be a lattice. If L has minimum, then the

1 x is i i f .
following statements are equivalent: (1) { O‘} is increasing and, for each t€U, there exist a (t) such ao(t)<a

implies tsxOl , and

(a) L is a complete lattice,
(b) L has the locall ixed apex property, R ,
y I ‘ P p. ¥ — (2) {x,} is decreasing and, for each teV, there exists B8 (t]J<8 such

(c) L has the locally general fixed point property, 8 .

) ) that g({t)<g implies x _ st.
(d) (Tarski [ TA], Davis {DA]) ). L has the fixed point property, 8
(e) (Markowski [MG1). Bvery inf-preserving map 1L has a To define f:P»P for any element x € P, we distinguish two cases

least fixpoint. depedent upon whether x is a lower bound of{xB} or not . In the first case,

by (1) and (2}, if x is not an upper bound of (xa} then



(3) ﬂx)=mmua:xaix).

where, a_{b ‘will be used to express the fact that aZb does not hold.

In the sacond case, we let
(4) f(x) = max(xu cx 1 XB}'

Thus we have defined a function f on P to P. From (1) - (4) if
follows clearly that either f(x)_{x of x}f(x) for every x&€P; thus f has no

fixpoints, and also then {B) holds.

Let x and y be any elements of P with xsy. If x is a lower bound
of(xs} but y is not, then, by (1)-(4), f(x)sf(y). If bouth x and y are
lower bounds of {XB) we see from (2) and (4) that f(x)sf(y). Finally, if
x is not a lower bound of (xe},then y is not either, and by an argument
analogous to that just outlined (using (3) and (4) we again obtain f(x)sf(y).

Thus the function f is increasing, and the proof of the theorem is complete.

Special cases of Theorem have been discussed by Davis [DA],
Tarski [TA] and some others.
Let L be a lattice. in this part we consider the following functional

equation
(FE) (x):= f(f(x)) = glx), xet,
where g:L+ L is a given jxreasing function and f:L>L is the unknown
function.

We notice, the equation (FE) has a solution if the equation
(E) FgF: = F(g{F(x)) = x, xEL,
has a solution where g is a given increasing function and FL*L is the

unknown function.

LEMMA 6. Let L be an incomplete lattice. If there
extsts an antitone function N:L-L such that
(1)  g(a)=b(a,bEL)=(3IxEL) (Il (b) =xAT (x) =a) ,

then the equation (FE) has a solution of the form f(x)=g(®(x)),

where 6(x) <s an arbitrary solution of the equation (E).

PROOQOF. The equation (E) has a solution if the condition (IT)

holds. In that case its solution is © (x}, i.e.
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©goO=x, XxEL. Then, for f{x) =-g(® (x)), we have

2(x) = flgle(x)) = g(O(g(a(x))) = gix),

which means that f(x) = g(© ) is a solution of (FE). This proves the pre-

ceding statement.

IN PARTICULAR, if © (x) is a decreasing mapping, then f(x)=g(© )

is a decreasing function, because g:L»L is a given increasing function.

2. Further results. With the help of Lemmas we now obtain the main
result of this section,

THEOREM 7. For a lattice L to be complete it is necessary
that every antitone mapping on L to L have a fized edge,

and sufficient that L with the condition (M) has the fixed edge property.

We note that the condition (I} can be replace with the condition that
the functional equation (FE) has a solution an antitone function f:l> L, where
g:L>L is a given increasing function and g(x) # x, x€L.

We are now in a position to formulate the following statement

THEOREM 8. Let L be an incomplete lattice. If the functional
relation (equation)

(F) ¢2(><) = g{x) # x or ¢2(x) # x, xe€L

where g:L»L ©s a given increasing function and ¢ :L>L is the unknown
antitone function, has a solution; then there exists an antitone mapping
fon L to L without fized edges.

We note, on the other hand, that it is easy to construct an incomp-
lete lattice which the condition that (F) has a solution, but the condition (1)
is not satisfied.

EXAMPLE 1. Let L:=(...,-3, -2, -1, 1,2, 3,...} be the chain
of the integer numbers. L is obviously not complete. Then, the condition (II)
is not satisfied, i.e. the equation (FE) does not have solution in the class
of desreasing functions, where g:L»L is an increasing map with g(x)}#x, X€EL.
But, the equation, relation, (F)} has a solution in the class of decreasing
functions. We give an example. For g(n)=4n, n€L, we have the function

f(n) = - 2n, n€ L such that f is a solution of the equation (F}).
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Proofs. Since the condition of the theorem is known to be nece-
ssary for the completeness of a lattice, from Lemma 6, we have only to show
that it is sufficient. In other words, we have to show that, under the assump-
tion that the lattice L is incomplete, there exists an antitone mapping f on

L to L without fixed edges.

Suppose that the lattice L is not complete. We first notice that
there exists a least one subset of L without a least upper bound (for othervise
the lattice would be compiete}. Hence we can find a subset 4 of L with the
following properties: V4 does not exists and if X is any subset of L with
smaller power than 4, then VA exists. Thus all the elements of 4 can be

arranged in a sequence i.e, one can show that there exist increasing sequence

i.e. one can show that there exist increasing sequence{xu) in A such that: (1).

Let us denote by B the set of all upper bounds of {xa}. Clearly
AB does not exist, for it did, it would coincide with V(z:a) ; this result
would contradict (1}. Now B, like 4, is either empty or infinite. Since B is
partly ordered by the relation £, there is a strictly decreasing sequence
{IB} such that (.7:8} is a subset of B with which: (2).

To define g:1»>L for any element x€&L, we distingush_two cases
depedent upon whether X is a lower bound of {XB} or not. In the first case,
by (1)~(2), if x is not an upper bound of{xa} then (3) and (4).

Thus we have defined a dunction g on L to L. From (1)-(4) it
follows clearly that either g(x)#x or x*g (x)'for every €L , thusg has no
fixpoints.

Let x and y be any elements of L with z3y . Ifx is a lower bound
of(xs} but y is not, then, by (1)-(8),9(g/2g(y/) . If both x andy are lower
bounds of {xs} we see from (2) and (4) that g(xz)zg(y) . Finally, if x s
not a lower bound of {xB} . then y is not either, and by an argument analo-
gous to that just outlined (usign (3} and (4)) we again obtain g(x)X g(y)
Thus the function is increasing, and g(x)#z for all z€L.

From Lemma 6, define an antitone mapping f:I»L such that
f'g(ac)::f(f(x)):g (z). Let us prove that so defined mapping f:L~L does not
have fixed edge.

If f would have an edge (u,v) , then it would be alsg f(u)=v,
f(v)=u . and hence fg(u)zf(u)=u ,fz(v)zv . However, by construction it
foltows fZ(r)=g(:c);éx for all zel, , we have a contradiction.

Thus the function f:L»{ is an antitone and does not have fixed
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edge. This completes the proof of the statements 7 and 8.

We notice that the following example will show that the condition
(I} cannot be omited in the Theorem 8.

Example 2 . Let L:=IN ={ 0,1,2,...} be the chain of the natural
numbers. L is obviously not complete . Let f be an antitone mapping on L,
then the set {0,1,...,f(0)} is closed under f, because Kk implies f(k)sf(0).
But this is a finite complete lattice, i.e. from Lemma 5 f has a fixed edge,

which is a fixed edge of L too.

However, the condition (II) is not satisfied, i.e. the equation (FE)
does not have solution in the ciass of decreasing functions, where g:lz L is
an increasing map with g(x)#x, x€l. Now, every antitone mapping f:IN.»IN

has 2 fixed edge, but yet lattice IN is still not completeily ordered.

Alsc, the condition that the functionatl equation (F) has a solution

in the class of decreasing function is not satisfied.

At the end of this paper we notice, in the our paper( T1] was
considered the preceding problems (see Theorem 1,2 of [Til). But the
establishment of this problems was not good, and therefore was are turning

again on this in Theorem 5 and 7.
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A NOTE ON NON-EXISTENCE FOR SOME CLASSES OF
CONTINUOUS (3,2) GROUPS

XKostadin Trendevski

Abstract. In this paper it is proved that if M is n-cu-
he (n$1), or M is n-dimensional sphere, or M is a connected
subset of R which contains more than one point, then there
does not exist o continuous function [ J:MxMxM —[xM which
defines a (3,2) group on M.

The definition of (n,m) groups (ns>m) is given in (1] .
Ye give here only the definition of (3,2) groups.

DEFINITION 1. The pair (M, []) is (3,2) group if [ 47

A —
— 11° and the next conditions are satisfied

() (U poae)  Llveldl=loedl]
(ii) For arbitrary a.b,c€M the equations @xy]:(b,c)

and [xya]=(b,c) have solutions for x and y.

It cen be proved that the equations in (ii) have unique
solutions if (M,[ 1) is (3,2) group.

Dimovski [5] has shown the existence of non-trivial

(3,2) group by constructing the free (3,2) group. In this pa-
ver we shall give some results of non-existence for some clas-
ses of continuous (3,2) grouvs.

The menping W:ngﬁg —4142 defined by w((a,b),(c,d))=
= [pbc]d] induces a group structure (M2,¥0. If <el’62) is
the identity in (Ng,W) then it is oroved in [2] thet e;=e5.
sunpose that (e,e) is the identity in the group (Mg,ﬁl) and
let

oLx)= o = gle,e,x),  Plx)= p, = hle,e,x) (1)

This paper is in final form and no version of it will
be submitted for nublic-tion elsewhere.
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where g and h are the first and the second components for
the mapping [J}. Then it will hold also that

g(x,e,8)=clx , h(x,e,e)=f (2)
It is easy to verify that o, and >y also satisfy

g(aa °<x ) ﬂx)=a) h(aa °(x9 /3,)::‘:1 (53

g(dx ) fbx,b)=X, h(d-x ] Px ab):bv (L‘L)

for erbitrary a,o&M.
Dimovski [5] has proved the following lemma.
TEMMA 1. If (M,[ }) is nontrivial (3,2) group, 1i.e.
|MI»2, then for arbitrary x,y€ M it is satisfied
ot X, /b,ﬁ‘ x and oLyt Py -

1f [ ] is continuous function it follows that g and

h are also continuous functions and from (1) it also fol-
lows that & and p2 are continuous functions.
THEOREM 1. There does not exist continuous function

[ ]:D%x0"xD” —»D"xD" where D" is n-cube (n31) which de-
fines a (3,2) group on D",

Proof. iAssume that there exists a (3,2) group with the
required properties., Then o 1is continuous function on DV
and Brower fixed-point theorem implies that there exists a
point y such that o ,=y. This contradicts the lemma.B

THEOREM 2. There does not exist continuous function

]:Snxsnxsn—> sPxs" (n%1) which defines a (3,2) group
n
n S .

Proof. Assume that there exists 2 continuous function

[]:Snxsnxsn-——»SnxSn which defines a (%,2) group. Since
o is continuous function on Sn, it maps s" on a compact
subset of 8"™. It follows from the lemma above that o is not
a bijection, and since o((Sn) is closed subset of S“, the-
re exists a point ves" and €>0 such that B(v,€) No(8™)=¢
where B(y,€)={z €5” 1 d(z,y) <€} . The set g\ B(y,€) is ho~-
meomorphic to n-cube and ol(Sn\B(y,e))gsn\:‘s{_}',E). Brower
firxed-point theorem implies that there exists 2 ncint
zeSn\B(y,E) such that of, =2 and this contradicts Tthe
lemma.l

THEURIM 3. There does not exist continuous function

Z
[]:H’——)l»’:? wicre  is 2 connected subset of R, such that
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[]defines a nontrivial (3,2) group on M.
Proof. Assume thst there exists a continuous function

with the required properties. We should consider three possi-
bilities a) M:[O,l] , ) 1={0,1) and ¢) }M=(0,1) hecause
each connected subset of R such that [MI>1 1is homeomorphic
to one of these three zecs. A

a) In this case the proof follows from the theorem 1.

b) From the chove lemms it follows that if the inequali-
Ty L>x holds for x=x, then it holds for each xeM. It
2lso holds for the inequalities o, <X, P > X and (3 <X
Since o, >0 and 3 >C e obtain that for each xelM o, >X
ana Py > % The mappings o and A are continuous and

lim o, = lim p, =1 and so we obtzin that there exist x,veN
x=14 X9 -

such that ex=4, . This ccntradicts the lemma above,
¢) Analogously ss in the previous case we see that
(1) (Toen) o, <X<P, or (ii) (¥
Now we will prove that the equation h(e,y,z)=z has solution
for y,zeM.

/5;:<X< oLy

xeM xeM )

Assume that o,<x<p, for esch x€(0,1). Then
h(e, oy, py)=%x<p,. On the other hand it folleows from (1)
that h(e,e, px)z./&/!‘ > p, - The function o(t)=n(e,t, p, )-—[5,

is positive for t=e and negative.for t=o,. Hince 6 is con-
tinuous, there exists ye (0,1) such that &6(y)=0, i.e.
n(e,y, by )= fiy-

Assume that o, > >f, for each x €(0,1). Then the
function ©(t)=h(e,t, P )= p  1is positive for t=e, and ne-
gative for t=e. 3ince & is continuous, there exists ye(0,1)
such that h(e,y, p )=py -

Fow we will orove that the equation g(z,x,e)=z has so-
lution for x,ze M.

issume that o, <X <p . Then the function  6{t)=
=g( e, ,t,e)- o, is positive for t=p, and negative for t-e,
and © 1is continuous. Lo there exists v e (0,1) such that
gl dy ¥,e)= o, .

issume that b <x <o, . Then the function e(t)=
=g( oty,t,e)- o, is positive for t=e and negrtive for t=p,
and © is continuocus. uo there evists y € (0,1) such that
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@(dx yYs8)= ody « . .

3ince the equation h(e,y,2z)=z has solution, it fol-
lows that ([eyz]=(p,z) where v=g(e,y,2z). On the other
nand, from (4) it follows that [dr_ﬂpz]=(p,z), and since
the equation [xyz]=(p,z) has unique solution for x &and y,
we obtaln o =e. Similarly, since the equation g(z,x,e)=z
has solution it follows that [z x e] =(z,q) where
g=h(z,%,e). On the other hand, from (3) it follows that
[z<£$ﬂ$]=(z,q), and since the equation [zxy]=(z,q) has
unique solution for x and y, we obtain /3$=e. Hence ol =f

and this contradicts the lemma.B
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At—GROUPOIDS

Janez USan

Abstract

In this article At—groupoids are induced, as one

generalization of At—quasigroups [4], i.e. of A@—quasigroups
[2] , i.e. of Ag—and At—algebras (-quasigroups)[1l]. By means
of A?—quasigroups one can coordinatise the finite regular pla-
nes whose lines £ satisfy the condition |£|> 3[3], and by At—
-quasigroups finite TCL-geometries (2H-geometries) whose lines
£ satisfy the condition |£|> 3[4}. Among other things, it is
proved in the paper that by means of A_-groupoids one can co-
ordinatise the finite 2H-geometries whdse lines & satisfy the

condition |[&]® 2! It is proved, in fact, that to every A -grou-

poid there corresponds one finite 2H-geometry, and that to every
finite 2H-geometry there corresponds a class of disjoint gene-
romorphic A -groupoids. Here every A -groupoid with |{a,b]l]|> 3,

a b, is generomorphic with some At-quasigroup.

This paper is in final form and no version of it will
be submitted for publication elsewhere.

AMS mathematics subject classification (1980): 20NOS.
Key words and phfasés: A?—quasigroups, At—quasigroups,
At—groupoids, 2H-geometry.



Let (T,A),|T|=téN~{1}, be a groupoid. A subgroupoid
1
generated by a,b€T will be denoted by ({a,bl,A) )

1) .
DEFINITION 1. A groupoid (T,A),|T|=teN~{1} }, is

said to be an At—grougoid iff:
GO (vaeT)A(a,a)=a ; and

1 a#bac#dala,bl#(c,d)=|[a,bln [c,al|< 1

9]

for all a,b,c,d€T.

PROPOSITION 1. If a groupoid (T,A),|T| =teNn~{1},
satisfies Gl and

§§ (vaeT) (3beT ) (3c€T ) (a#baaFcala,bl#(a,c]), then

(T ,A) satisfies GO as well.

Proof
From
{a,b]#{a,claatbaasc,

and by Gl, it follows that

(a) |{a,blafa,c]|=1.
The assumption
A(a,b)=d#a

implies that

de{a,bladefa,c],

|{a,blnla,c}|= 2.
This contradicts to (a), proving the proposition.
Tab. 0 represents a groupoid ({1,2,3},a) in which

[1,21=[1,3)=(2,3], i.e. which fails to satisfy the proposition

1) a#b=|la,bl|> 2.
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Al 12 53
l__E.Li_LE, Tab. 0
2 1:3;2
33 1"2‘—1 1]
[a,bl#[c,d]lraFbac#d —
1)

for all a,b,c,d€{1,2,3}. Thus, ({1,2,3},A) satisfies G1°'.
Thereby, since ({1,2,3},A) is not an idempotent groupoid, we

get the following proposition:

PROPOSITION 2. There is a groupoid (7,a),
|T|=ten~{1}, satisfying Gl, and fails on GO.

PROPOSITION 3. Let (T,A),|T|=téN~(1}, satisfies Gl.

Then it also satisfies:

G2 every subgroupoid ([a,b],A),a#b, of (T,A) is

generated by any two different elements of the
set [a,bl.

Proof

Let a,b,c,d€T be four arbitrary elements, such that

(1) ab ,
(2) c#d and
(3) c,d€[a,b].

By (2) and (3) it follows that

(4) |(a,blnlc,d]] = 2.

Now, considering (1),(2) and the contraposition of
Gl, we get

(5) |la,bIn{c,al] > 1 => [¢,d] = [a,b]

Finaly , by (4) and (5) we conclude that the propo-~

sition holds.

PROPOSITION 4. If a groupoid (T,a), |T| = ten~{1},

1)v(dap)=T.
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satisfies G2, then (7,A) satisfies Gl as well.

Proof
Let a,b,c,d€T be such that

(a) fa,bl#lc,d)lraz#bac#d .

Suppose that the proposition is not valid, i.e. that (a) impli--

es
(b) [{a,blnlc,d]|>1.

Hence, it follows that there are p,qeT such that
(c) p#a A p,q€la,b] A p,qg€lc,d).

Finally, (c) implies (by G2) that

[a,bl=[p,ql=[c,d],

[alb]=[cld]l
which contradicts to (a), proving the proposition.

By Definition 1, Proposition 3 and Proposition 4,

we conclude immediately that the following proposition also
holds:

THEOREM 5. An idempotent groupoid (T,n),|T| =
=t eN~{1}, is an At~grougoid iff (T ,A) satisfies G21).

DEFINITION 2, We say that an indempotent groupoid

(T,n),|T| = teN~{1}, is an AS - groupoid iff:
G3 a# b= |[a,bl| = meN{1}

for all a,beT .

PROPOSITION 6. If a groupoid (T,A) is and A} - gro-

upoid , then it is an At—groupoidz)

1) Gl<=> G2,

2) The converse does not hold: Proposition 11.
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Proof

Let a,b,c,d€T be any four elements such that

a#Zb A c#d A c¢,d€la,b].

Since c#d and c¢,d€[a,b], it follows that:
{c,d] « [a,b].
Hence, using G3, we get that:

[c,d]l=[a,b].

Thus, we have proved the implication: G3 => G2. Hence, by
Theorem 5, we conclude that (T,A) is an At—groupoids.

Idempotent guasigroups satisfying G3 are said to
be Aﬁ—quasigroups. They are introduced in [2] as a genera-
lization of Ag—and Ai—algebras (~quasicroups) {1]. Idempo-
tent quasigroups satisfying Gl are said to be At—quasigro-
ups. They are introduced in [4] as a generalization of A?—
quasigroups.

There is no A?—groupoid on a .twoelement set. An
Agfgroupoid is given on Tab. 1. On any (finite) 7 with at
least three elements, there is an A:—quasigroup {(3]. An Ag—

groupoid which is not quasigroup :is shoun on Tab. 2

Ajl]2 A|l]23]
1)1 ]2 1]1]3]2
2112 2 (1121
301|113
Tab. 1 Tab. 2

The following proposition is an immediate consequen-—

ce of Proposition 3 and of Definition 2:

COROLLARY 7. If (T,A) is an At—grougoid, then

(la,bl,n) is gg»Ag—grouggig_for all a,beT,a#b; m=|[a,b]].
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Let T be an unempty set, and let L be an nonvoid
collection of some unempty subsets of T. Then we say that ([
is a partition of Fartmanis of type 2 on the set Tl) iff the

following two conditions are satisfied:
H1 (VRET) (VBET) (A#B=(31R€L) (AELABEL)); and
H2  (veel)[2]> 2 [61°).

We shall say that the ordered pair (7,L) is an 2H-
-geometry, the elements of the set T will be the points, and

the elements of L - the lines 3).

An immediate consequence of Hl is the following

condition:

H3 (W2€l) (VL €L) (2797 => [2087[<1). -

Let (T,A) be an A -groupoid. Let also

ey

L def {[a,bl|a,bETra#b}.

Then, by Proposition 3 and by the fact that H1<=>H3 A H17,

where

H1®  (VAET) (VBET) (A#B= (32€l) (A€LABEL)) ¥

and since|[a,b]|> 2, we conclude that the following proposition

holds:

1) Shortly: 2H-partition of T.

2) To every 2H-partition of the set T there corresponds a
ternary equivalence relation on T, and conversly [7].

3) 2H-geometries are TCL-geometries satisfying H2 [4-5]. For

example, there are k-seminets (T,{LT}), ken~{1,2} (8],
k
whose underlying sets (T,L), L=iglLi, are TCL-geometries

violating H2. Regular planes [1-3] are 2H-geometries

satisfying the condition: (VR€L) (vOEL)|L|=]|g]

4) There are finite idempotent guasicroups violating Gl (4]
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PROPOSITION 8. If (T,A), |T|=ten~{1}, is an A~
-groupoid, 2nd
{2) L def {{a,bl]a,beTra%b},
then (7,L) is a 2H~-geometry.

Hence, by the definition of a regular plane, we get
the following proposition:

. . m

COROLLARY 87 If (T,A),|T|=teN~{1}, is an A -grou-
poids, and L is given by (&), then (7,Ll) is a regular plane.

The following lemma also holds:

LEMMA 9. (J.8iftar, [3]) For every ménN~{1,2}, there
; m . 1)
is an A -gquasigroup .

Hence, using the fact that an Ag—groupoid exists

(Tab. 1) we conclude:

LEMMA 9 For every méN~{l} there is qg_AQ—grougoid.

|T|=ten~{1}, there corresponds an A -groupoid (T,A).
Proof

Let (T,L) be a finite 2H-geometry; |T|=tEN\{l}7).
Using lemma 97, we get the following:

1° on every line RiEL,i€I, there is A binary opera-
tion A(l), i€I, such that (Ei,A(l)) is an Aﬁ—groupoid; m={2, 1.
Hl and 1° imply:

2° For any two a,b€7,a¥b, there is one and only
(l),iEI, such that A(l)(a,b)ET.

Because of Hl, every a€l is in at least one of the

one (from those choosen in lo) A

1) The proof is given by the construction of one class of

Aﬁ-quasigroups ; MENN{1,2}.
2) H2.
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216 The following proposition is %bvious:

o
sets &,,1€I. Hence, by 1 and by Corollary 7, we get:
i’ P PROPOSITION 12. To be generomorphic is an RST-

3° ror every a€T there is at least one (from those -relation on the set G(T) of all gqroupoids on T.
choosen in 1°) A(l),iEI, such that where the equality holds -

for every i€I such that a€f,. PROPOSITION 13. If a groupoid (T,A) is genero&orghic
Now, by 2° and 3°, we conclude: with an A -groupoid (7,B), then (T,A) is also an A -groupoid.
4° (T,A) is a groupoid, where A gggigIA(l).

3° Implies Proof

5© (T,A) is an idempotent groupoid. Consider Gl for (T ,B), i.e.:

[0}

Now, by H1, H2, 1°, 2°

and 3%, we get: (Va€T) (vbeT)veeT) (vaeT) (la, bl #lc,dl n

o]

6 (T,A) satisfies Gl.

A a#bAc#d:¢|[a,b]Bn[c,d]B|< 1).
The proposition is proved. i
Hence, since (T7,A) and (T,B) are generomorphic, i.e.

Remark 1.
—_— (Vx€T)(Vy€T)[x,y]A=[x,y]B ,
By Lemma 9, to each 2H-geometry (T,l) satisfying

Wwe get:
2leN~{1, 2} for every L€L one can associate an A,-quasigroup [4] .
% ’ v ¢ dnastgrony (Va€T) (VbeT) (veeT) (vdeT) ((a bl Fle,d) A
Fig. 1 represents
J P . A aFbacfd =|(a,bl nlc,dl, | <1).
a 2H-geometry, with: |[{1,4}|= Thereby, since [a,a]A=[a,a]B={a) for every a€T, we conclude that
= [{2,4}|=]{3,4}|=2 and [{1,2,3}|= the proposition holds. ..
= 3. Thus, by Proposition 10, By Proposition 8 and by the definition of generomorp-
we get: 1 2 3 hism, we conclude immediately:
Fig. 1
THEOREM 14,. If A _-groupoids (7,A) and (7,B), are
PROPOSITION 1l. There is an A —groupoid which is not : generomorphic, then the corresponding 2H-geometries (T,LA)
an A?—grougoid 1 and (T,L,) are equal;
N LA={[a,b]A|a,beTAa¢b},LB={(a,b]B|a,beTAa¢b}.
* *
The proof of Proposition 10 and the definition of
hi impl i s ition:
We say that a groupoid (T,A) is generomorphic with a generomorphism imply the following propositior:
groupoid (T,B) iff THEOREM 14,. Let (T,L) be a finite 2H-geometry, and
§:9) [a,b]A = [a,b]B for all a,beT. let (T,A) and (T,B) be the corresponding At"EESEPSEEE l).

1) An analogous proposition holds for A _-quasigroups [4]. 1) In the sence of Proposition 10.
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Then, (T,A) is generomorphic with (7,B).

Remark 2.

By Lemma 9, one can associate an Ag—quasigroupl)
to Figure Fano (i.e. to a projective plane of order 3).
However, by means of the Ag—groupoid from Tab. 2, one can
associate an A%—groupoid which is not a quasigroup to the

same plane. The influence of the medial law in Amn-quasigroup

to the desargues-property of the corresponding regular planes
was considered in {91].

Using Proposition 10, Remark 1 (Lemma 9) and Theo~

rem 142, we get that the following proposition holds:

THEOREM 15. Every Ag-groupoid (T,A) satisfying

(va €T)(Yb€T)(a#b => |[a,b]]| >3)

is generomorphic with some At—quasigroup.

Immediately by Definition 1, we get-

A -groupoid.
t

') Considered already in [1].
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PROCEEDINGS OF THE CONFERENCE
+ALGEBRA AND LOGIC", CETINJE 1986.

ON CEP AND CIP IN THE LATTICE OF
WEAK CONGRUENCES

Gradimir Vojvodié, Branimir Se3elja

Pbstract. The aim of this paper is to give some lattice
characterizations cf the congruence extension vneoperty (CEP)
as well as of the congruence intersection property (CIP, see
below) of an algebra 4, the lattice being the one of all weak
congruences (all congruences on all subalgebras) on 4.

(CEF and CIP appear together among the conditions for
the modularity of that lattice).

We show that 4 satisfies::

- CEP, if and only if D (diagonal) obevs the lattice can-

cellation law;

- CIp, if and only if D |is distributive element;

- both CEP and CIP if and only if D is neutral element;
(all in the lattice of weak congruences) .
We also characterize CEP and CIP by means of an embed-
ding and an isomorphism of the above lattice into‘the Cartezian

product (S(4) xC(4),<) (subalgebras and ordinarv congruences) .

This paper is in final form and nc version of it will be sub-

mitted for publicatiornelsewhere
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0. Let 4 =(A,F) be an algebra and KS A the set of jts

constants. Then ([8]1), a y_ea_k congruence relation p on 4 i is

a symmetric, transitive and compatible relation on 4, satisfy-
ing a weak reflexivity: If c€XK, then cpc.
We shall denote by

S(4) the set of all subalgebras of 4;
C(4) the set of all congruences on 4;

Cw(A) the set of all weak congruences on 4;

C(B) the set of all congruences on B € S(4).

CW(A) is obviously a set of all congruences on all

subalgebras of 4, i.e.

c,(4) = U(c(B)|Bes(a)) .

Also, it is clear that (Cw(A),<) is a lattice.

A is said to have the congruence extension property
(CEP) ([11,{31,{7]1) if every congruence on an arbitrary sub-~
algebra of A is a restriction of a congruence on 4.

A is said to have the congruence intersection property
(CIp), if for all p,8 €C_(4)

(DAG)A= pAAOA v

where
def
Py = Noecid)|lpco).
If dp is a diagonal of p, i.e.
dp=pAD , where D = {(x,x)]|xe€nl} ,
then Pp = F vD
It was proved in [8] that:
I (CW(A),<) is an algebraic lattice, (C(4),<) is its sub-

lattice (as a filter generated by D ) and (S(4),<) is (up to
the isomorphism) a retract of (Cw(A),<) (as an ideal generated
by D ). The subalgebras are represented in CW(A) by diagonal
relations.

. '223
I1 (Cw(/l) ,<) is a modular lattice iff

(i) (s(4) ,<) 1is a modular lattice;
(ii) (C(4) ,<) 1is a modular lattice;
(iii) A satisfies CEP;
(iv) A satisfies CIP.

A finite group has CIP iff it is Hamiltonian ([9]}).
In {10], CEP, and CIP are given among the conditions
for the complementness of the lattice (<, 4),<).

In the following we shall need some special elements
of a lattice [4].
Let L be a lattice and a€ L. Then,

i (1) a is distributive element if for all X,vyE€L
av (xay) = (avx)alavy)

(2) Dually, a is codistributive if

an{xvy)l = (aax)v(any)

(3) a is neutral element if for all X,vEL
(aAax) vixay)viyaa)=(avx) a (x vy) A (yvva)

(This notion is obviously selfdual).

PROPOSITION 1. An algebra satisfies CEp if and
only of for all o,eecw(A), pAD =8AD , and pvD =0vyD

imply p=8. (i.e. iff Dy obeys the concellation law).

Proof. NMote that pAD =8AD and pvD =0vD is
equiva i = =
quivalent with dp de and on QA‘

Suppose first that A satisfies CEP. Then, (see [8])
the mapping p>p,r from C(B) to C(4) (BeS(A), pecC(B)) is an

injection. Thus, if do=d0, then p,8€C(B), and since pA=QA

it follows that p=96.

Let now 4 violatesthe CEP, i.e. suppose that there is
pE€C(B), BES(4), such that for everv 6 €C(4), 0#82/\9. Since
p<32 and p < Py it follows that
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def

2 _ R .
g =— B ApAzp , and Op = Pa (p <o implies pA<oA ,

and 0 <P, gives g, < pA) .
Since p,0€C(B), d =de, but p # o and the ii_c_e_m__ce]_.la—

8
tion is not satisfied. O

The following characterization of CIP is obvious:

PROPOSITION 2. # satisfies CIP if and only if D

is a distributive element in (Cw(A),<).
proof. Straightforward, since pAf=pA_vD . 0O

COROLLARY 3. A satisfies CI? if and only if the map-
ping h:cw(A)a-C(A) such that h(p) =p,, is & homomorphism.

Proof. The ecquality

v
oaY Cn

is satisfied for all p,8€C_(4) (since pA==pV D ). Thus, CIP

(pv @), =

(i.e. (pAa@),=p,n 6,) holds iff h is a homomorphism. O

(The proof follows from Proposition 2 as well, since by Ore’s
theorem (see for example Theorem 2.2. III in (4}) D is dis-
tributive in (Cw(A),g) iff p>pvD is a homomorphism of that
lattice into it~”s filtexr [D ) =C(4).)

Remark. UNote that the dual mappina for h in Corollary

3 is always a homomorphism [8]:

(3°) The mapping k:Cw(A) +S5(4) such that k(p) =dp is a homomor-
phism.

(ST A),<) is a sublattice of diagonals, i:somorphic with (5(4),<).

In the following we identify those two structures).

The duality becomes obvious if we put

c(a) = [p) s(a) = (D1

= vD a = AD
Pa p o p
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Remark 2. Let [pA] = {eecw(A) :pA=9A} be a class in
cw(A)/ker}1 to which p belongs. It is clear that ([pA],<) is a

sublattice of (CW(A),<) if A satisfies CIP. In that case,
(FPA,<) where FOA=={d0|Q € IpA]} is (up to the iscmorphism) a

sublattice of (S(4),<) (the proof is straightforward.)} Thus,
if algebra A satisfies CIP, then every congruence p on 4 de-

termines a lattice of associated subalgebras (Fp,<).
Consider now an algebra A satisfying both CEP and CIP.

PROPOSITION 4. An algebra 4 satisfies CEP and CIP if
and only if D 1is a neutral element in the lattice (Cw(A),<).

proof. It is one result of Gratzer and Schmidt (1961,
see Theorem 4.2. IXII in [4)]) that an element of a lattice is
neutral iff it is distributive, codistributive and obeys the

concellation low. Consider D . Since for p,® eCw(A), dva =

= dp vde (see [8]) it follows that
D A{pv®) = (D Ap) vI(D A8) .

i.e. D 1is codistributive element in Cw(A).

The proof now follows by Propositions 1. anéd 2. O

PROPOSITION 5. An algebra 4 satisfies CEP and CIP

if and only if the mapoing f:C_(4) >S(4) x C(4), given by

£(p) =(dp,pA) is an embedding.

proof. Let 4 satisfies CEP and CIP. Then by Proposi-
tion 4 D is neutral element in (C_{4),<). Now, the mapping

f:Cw(A) +S(A) xC(A) such that f(p) =(dp ) is a homomorphism

rDA
by Corollary 3 and its dual (37). f is a bijection since D
satisfies the cancellation low.

On the other hand, if f is an embedding, then by Theo-
rem 4.2, IITI in [4] D 1is neutral if this embedding is such
that

f(b ) = (D ,D )

which is obviouslyv satisfied.



Thus, D is neutral and by Proposition 4 A4 satisfies

CEP and CIp. O

Now we shall give the necessary and sufficient condi-

tion under which the mapping f from Proposition 5 is an iso-

morphism. (This condition is implicit in [10]).

f:Cw(A) +S{4) x C(A) where f(p) = (d

PROPOSITION 6. For an algebra A, the mapping

p,pA), is anisomorphism if

and only if the lattice of congruences on _anv subalgebra of
A is isomorphic with the lattice of congruences on the whole

algebra 4, under the mapping p>oy-

Proof. If £ is an isomorphism, then bv Proposition

5 A satisfies CEP and CIP. By CEP, p > p, (p€eC(B), BES(A))
is an injection. By CIP, this is a homomorphism. It is "onto"

since every pair (dBZ,O) has an inverse image (undex. f) p &€ C(B).

But then 8 =pp- Thus P> py is an isomorohism.

On the other hand, if p>p, (p €C(B)) is an isomorphism

from C(B) to C(4), then f (defined in Proposition 5) is also

an isomorphism, since

[11]

[2]

(33

(4]

i) f is a bijection;
ii) f and f_l preserve the order (see (10]). [m]
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ON LOCAL (NONASSOCIATIVE) MEAR-RING

Veljko Vukovié

ABSTRACT. We make an extension of a part of the theory of
local associative near-rings which is analogous to the cor-
responding part of nonassociative near—rings theoxy.

In fect, we initiate a study of local nonassociative
near-rings in this paper. The necessary back ground materi-
al from the theory of nonassociative near-ring is given in
Section 1. The definitions and basic properties of local
(nonassociative) near-ring are given in Section 2.

1., PRELIMINARTES

DEFINITIONS 1., A unitary right nonassociative near-ring

is a nonempty. set S with two binary operations addition (+)

and multiplication (e), such that :

1, The elements of S form a group (S,+) under pddition ,

2. The elements of S form a groupoid (S, +) under multiplica-

tion,
%. ¥x€85, xe0 = 0o, where o is the additive identity of S,

4, There exists an element 1(S such that l.s =s.l =5, for

all s€s,
e ¥X37:265, (X + ¥)o2Z = XeZ + YoZ .

DEFINITION 2. A normal subgroup N g (8,+) is called

the left ideal of a near-ring § if

s(sl+ n) - s €N

and two sided ideal if nsélN and s(sl+ n )—5516 N, for all n(N
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and all s,s.€S.

L subgroup (H,+) of S is called an S-subgroup if SHEH.
Near—-ring homomorphisms and S-homomorphisms are defined in
the usual manner. The kernels of (nonassociative) near-ring
homomorphisms are ideals of S and every ideal I of S gives
rigse to a near-ring homomorphism with kernel I.

Beidleman [2]calls 5 left ideal strictly maximal if

it is maximal as an S-subgroup and proves that an ideal I
is strictl;} maximal if and only if S/T is a near-field.

A left radical J(S) of a (nonassociative) near-ring
S is defined by J(S) :{ﬂ M/M is strictly maximal left ideal
of 5} (see D£.3 [3]).

The element a ={sr)t - s(zt), s,r,tE is said to be

an associator of the ordered trinle (s,r,t). The ideal E(S)

generated by the subset A(8) = a =(sr)t-s(rt); s,r,t(S is

called an associator-ideal and the set A(S) an associator

of §.

2. BASIC PROPERTIES OF IOCAL (NONASSOCIATIVE) NBAR-RING

DEFINITION 3, Let L be a subset of S of elements with-
out left inverses, i.e. L ={[ €3/5 ,-/SZJ » 5 is said to be a

— — P Aol

local near-ring if L is a left S-subgroup (Df. 2.1.[1]).

THEOREM 1. Let S be & near-ring , A(S)SL and (I,+)
be a subgroup of (S,+). Then S is a local near-ring if and

only if (U=8\L, «) is a groupoid.

PROOF, 1° If S is a local near-ring, then (U,+«) is a grou-

poid . Assume that xy =g€L » for some x,y €S\L. Taen,

-1 -1
X = x

(xy) g. From here, y+a = x"y:::py =:{']{—a, where a
is the ussociator of the ordered triple (x-l, X,y ) and 21

is a left inverse of x . Since x‘lgGL and a €L then

i

=(x"]f—a) €L is a contradiction . 50, xey€8\L, ’
2° If A(S) is contained in L and (L,+) is & subgroup
of (S,+), then L is an S-subgroup and from here S is a lo-
cal near-ring. Supose that for some €L and some s€s, s/fL.
Then for some x¢ S\L , x(s?) =1 . Hence (xs)[+a = 1 and
(xs)€= l1-a . Hence since there exists a left inverse of s ’
sey (xs)™%, it follows (xs)"l((xs)é) = (xs5)~1(1-2) ana &+ &=
=(xs)"l(l—a), where a, a, are the associators of ordered tri-
ples (x, S,Z) and ((xs)‘l, xs,é) respectively.
Since atL, (xs)'l, (1-a), (xs)'l(l-a) € U then Z+ ay €S\
is a contradiction to /AaléL + Thus, s£€ T and the proof

is finished.

THEOREM 2. Let S be a local ( nonassociative) near-

-ring. Then, (L,+) is the unique maximal S—gubgroup.

PROOF. If N is an arbitrary proper S-subgroup of S then
N&L, because no element of N has a left inverse , Conver-
sely, if N>L, i.e. if for some x(N, :«:{L, then there exists
some y such that yx = 1 €N and N would not be a proper S-
—subgroup. This theorem is given by Maxson for a local asso~

ciative near-ring (T.2.2. [1] D

T > . )
LEM% 1. If S is, in general 2 Ronassociative, local

near-ring and L contains the associator A(S) of s, then the

elements of L do not have right inverses.
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PROOF. Suppose that there exists some { of L with a rignt
inverse ,f) in L then Zf: 1¢ U contradicts to ZZ)GL. Hen-
ce the elements of L do not have right inverse in L. Let
some element £€1 has a right inverse s€U, i. eo Ls=1,As
stL, then 1-s gL and there exists x€U such that x(1~sd)=
1. As (1-8d)s = s-(sé)s = a then s = (x(l—s[))s and x((1-

1

sb)s) + aq = x(s—s(gs) +a)+a;=%xa+ 8 €L, where a, &
are the associators of the ordered triples (s,@,s) and (s,
(l-—sé), s) respectively. This contradiction establishes the
lemma .

4 nonzero element a of 5 is called a unit if st=1ts=1,

for some t€S .

—

Denote by A the subset of all nonunits of S.

COROLIARY. If S is, in enerzl, a nonassociative, local

near-ring and if every element of U has a right inverse,
then Ly=24 =1, where L; is the subset of all elements of

S without right inverses.

THEOREM %. Let every eglement of U has 2 right inverse,

then S is a local (nonassociative) near-ring if and only

if the subset A is a left S—subgroup.

PROOF. It is clear that 4 =1L, if every element of U

has a right inverse. If A is the S-subgroup then it conta-
ins L. If there exists ZQKL such that g(A , then for some
1, kl-1€4 . But this is imposible. Therefore, A=T .

The left associator ideal 4 2£ S _1_s_ the minimal left

ideal of S generated by associator 4(S) of 8.

A near-ring (S,+,+) is

only if (s\{0}, ¢) is a group.

THEOREM 4, Let S be a local near-ring , Ap the left
associator ideal of S and A(8)S ={ es/afa(s); SGS}E A(S)

If 4y# S then L is the maximal right S-subgroup. Moreover,

if the distributor ideal D of S is not eaqual to S then Lis

an ideal of § and S/L is & skew near-fild.

PROOF. Let S be a local (nonassociative) near-ring and
Ay left associator ideal of it. Since es € a(s), (af a(s),
s€5), then [s (-5 +a +'§ﬂsl—s E—§+a+'s_)s]] = @ and from here
Es(-§+a+§):|sl= E+s[(—§+a+'s')sﬂ =3 + s[—-asl+'§sl]€ A(S), for
all a€A(S) and 2ll s, slGS « So, AZ is & two-sided ideal of
S. If A[* S theh Aﬁ is the left proper S-subgroup and by
the Th. 2, AZEL' Let h : Ay—>L be the inclusion map. Then
h induces an S-epimorphism h : S/AZ——>S/L and hence
S/by/kerh ¥ 8/L . However, S/hyis associative. Since
(S/L\{@} , o) B (Uye) is associa-tive. Since (U,s) is by Th.
1. a groupoid, then (S/L\{‘O‘}), ») is a groupoid. Since LZ24y
then the elements of L do not have right inverses (L. 1.).

Suppose now s¢L and let s"be a left inverse of s. Sin-
ce we have proved that s'éffL , then there exists s"€U such
that s"s” =1. Then s"=s and consequently ss =s"s” = 1 =sg” which
implies s is an unit in S. From here it follows that Ld=L=
=4 . Hence fs€L, for allgéL and all s€S; otherwise if [s¢
(L then (és)s"-— (ss")=a and (/s)s" —/: a=>(/s)s“= a+-£, vhe—

re s'is a right inverse of s. Since (Zs)s”(U and a+[€ L is
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a contradiction, this establishes the first part of the the-
orem., Because, if H is any proper right S-subgroup then HEI.
Since (U,-) is the group, (S/I\{O}, «) =(U,+), (I,+)
is the normal subgroup and a proper ideal of S, then S/Lis
a skew near-field. Really, since C, D, G an ascending cen-
tral series of the group (S,+) then (S,+) is a nilpotent
group and by Th.6.4.1o.E{] (L,+) is a normal subgroup of S.
So, (L,+) is a member of some normal.central series of (S,+
and there exist a normal subgroup K of (S,+) such that K2L.
If K¢S and if we denote by T the normal subgroup generated
by L, then X2 T, It follows L # S. If K=S, then T=L#S.
Otherwise, if there exists LT and,ﬁ%]&, then s=1¢T, for
some séS, This contradiction establishes the second part

of the theorem (shere C the commutor of (S,+) )

THEOREM 5. Let S be a local near-ring in which each ele-

nent of U has a right inverse element, then L is the maxi-

mal right S-subgroup if and only if L contains the associ-

ator A(S).

PROOF. 1° If each element of U has a right inverse and
the right relative associator 4 of L in S is contained in
L , then ks belongs to L, for all k(L and all séU. Otherwi-
se, ks€¢L , i.e. (ks)x=1, for some x€U . Hence, k(sx)-a=1
and k(sx)=1+a, where a is the associator of the ordered
triple (X,s,x). 4As there exists a right inverse of sx, say
(sx)—l, then (k(sx))(sx)_1=(l—a)(sx)~l and from here k-, =
=(1—aJ'(sx)'1, where a, is the asSociator of ordered tri-
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ple (kysx%,(sx)"1). Since k-a, €L then (1-a)(sx)-1erL, But, by
Thale, (1-a)(sx)~1€U . Mis contradiction proves the first
part of the Theorem. Really, if K any proper right S-sub-
group then K&L, Otherwise, if there exists k¢1 such that
k€K then ky=1, for some yf(U. It means that 1€K and K=§ is
a contradiction.

2° Conversely, suppose that L is.4 proper maximal right
S-subgroup, i.e. kséL, for all k€L and 211 s€S. Then, (ksix-
~k(sx)=a€L, for all k¢L and all s,x€S,

IEMMA 2. Every proper S—-subgroup of a unitary near-ring

S is contained in a meximal S-subgroup (See Eﬂ).

THEOREM 6. Let S be a (nobassociative) near—ring invhich

£(8) is contained in L. Then, S 1s local if and only if S con-

tains a unique left maximal S-subgroup (See Th.2.8.Eﬂ).

PROOF. 1° If § is local, then S containes a unique ma-
ximal S-subgroup (Th.2.).

2° Conversely, if A(S) I, then S is local, i.e. L= M.
Really, Sk, k€L, is a proper S-subgroup. But, x(sk)-(xs)k=
=a ¢ A(S), for all x,s€S. Hence x(sk)=a+(xg)k ¢ M. So, L=H,
vhere M is a unique maximal S~subgroup (See the proof of Th.

2.8.[A]).

An element x of a (nonassociative) near-ring S is ca-—

1led right quasirepular if and only if y(1l-x)=1, for some

v&S. A left S-subgroup N is guasiregular if and only if each

IEMMA %, If S is, in general a nonassociative, localggg?
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-ring, then T is guasiregular (See L.2.9.EL] J.

The proof is the same as one of L.2.9.[l].

THEOREH 7. If the radical of S is J(S) and J(S)#S then
5 is local (nonagsociative) near-ring if and only if L = J(8)
(see Th.2.lo.[l]).
The proof is the same as one of Th. 2.lo. [l] .

If S5 is a local associative near-ring, then it is com~-
pletely primary. If S is a ring, then the converse is true
1 . That this is not the case for a near-ring, in general,
is shown by the next examples.
EXAMPIE 1, Let S be the left nonassociative néar-ring
given by the following operation tables:

Table 1. Table 2

+|olalbleld ‘e '.Ioalb[o!dQe"
ololal|bl ¢ |d le olooo 0 © of
alols blela e ajojalb C! 4, o !
bblalolea lo blolcja bla'! e |
clcleld ob |a cloib ic a!efd;
d|dijb |clale |p dlololio o’o"o{
elele albod elOOOOLOLOi

The radical J(S) of S is {_o, dyer, L={o,d, e}, A=

={o, d, e}. So, 8 is a local nonassociative near-ring.
EXANPIE 2, (S,+,-l), where the operations + and ., are

defined by tables l. and %. respectively.

Table 3. Table 3.(continuation)
°1lolajblc|d e 1l ol a|{b; c| d e_{
[s) 0oloJolo O 0 c o] b al ¢l e d
) Olajbjcld [ e d ol o]l o] o[ o[ o
b ol aj] bl c]d e e ol © ol o019
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The radical of S is {o, da, \e}, but L =.Eo, c, d, ej. S0, Ly

Z J(8). S is not a local near-ring,

EXAMPIE 3, Let (Ip vt 'p ) be the ring of integes
modulo p, where p is prime., Then S=(IpxIp s+, B ) is an
affine near-ring , where +, ® are the operations : componet
wise addition and affine multiplication : (x,y)@(xl,y.‘) =
=(x.xl , qu1+y) sy (x,7), (xl, yl) éIpxIp respectively. Also,
the radical J(S)= L ={o xIp° Hencey, 5 is a local near-ring.
Since J(S)# S and J(S)=1L then Th.?7 holds. However, in non-
associative near-ring T = (IpxID sty @l), (wherc @:
(xty)&l(xl 1yl)=(x°xl ) (X’yl)'y) 3 (X,y),(xl,yl) € Ipx Ip s
I:{oJxIp y J(T) ={(o,o)5 and J(T) #L . Hence, Th.7. can not
be applied to this example, because T has not right identi-
ty. If T-subgroups Ipx o} and {o}xlp of (T,+) do not con -
sidered as proper maximal T-subgroups then J(T) ={o}x Ip and

this case can be included in above conception.

REFERENCES
1. C. J. Maxson: On Local Near-Ring, Math. Zeitscher. lo6,
197-205(1968).

2. J. Beidleman: Quasi-regularity in Near-Rings, Math. Z.
89, 224-229(1965%.

5 n 4 Radical for Near-Ring Modules, Mich.iath.
J.12, 377-383(1965).

4o Scott WlliamR. Group Theory, New Jersey Prentice-Hall,
1

5. V. Vukovié¢ : (Nonagssociative) Near-Rings, Glasnik Hate-—
matidki, Vol 20(40)(1985%, 299-287,



	Gray TIFF-Simplex_001
	Gray TIFF-Simplex_002
	Gray TIFF-Simplex_003
	Gray TIFF-Simplex_004
	Gray TIFF-Simplex_005
	Gray TIFF-Simplex_006
	Gray TIFF-Simplex_007
	Gray TIFF-Simplex_008
	Gray TIFF-Simplex_009
	Gray TIFF-Simplex_010
	Gray TIFF-Simplex_011
	Gray TIFF-Simplex_012
	Gray TIFF-Simplex_013
	Gray TIFF-Simplex_014
	Gray TIFF-Simplex_015
	Gray TIFF-Simplex_016
	Gray TIFF-Simplex_017
	Gray TIFF-Simplex_018
	Gray TIFF-Simplex_019
	Gray TIFF-Simplex_020
	Gray TIFF-Simplex_021
	Gray TIFF-Simplex_022
	Gray TIFF-Simplex_023
	Gray TIFF-Simplex_024
	Gray TIFF-Simplex_025
	Gray TIFF-Simplex_026
	Gray TIFF-Simplex_027
	Gray TIFF-Simplex_028
	Gray TIFF-Simplex_029
	Gray TIFF-Simplex_030
	Gray TIFF-Simplex_031
	Gray TIFF-Simplex_032
	Gray TIFF-Simplex_033
	Gray TIFF-Simplex_034
	Gray TIFF-Simplex_035
	Gray TIFF-Simplex_036
	Gray TIFF-Simplex_037
	Gray TIFF-Simplex_038
	Gray TIFF-Simplex_039
	Gray TIFF-Simplex_040
	Gray TIFF-Simplex_041
	Gray TIFF-Simplex_042
	Gray TIFF-Simplex_043
	Gray TIFF-Simplex_044
	Gray TIFF-Simplex_045
	Gray TIFF-Simplex_046
	Gray TIFF-Simplex_047
	Gray TIFF-Simplex_048
	Gray TIFF-Simplex_049
	Gray TIFF-Simplex_050
	Gray TIFF-Simplex_051
	Gray TIFF-Simplex_052
	Gray TIFF-Simplex_053
	Gray TIFF-Simplex_054
	Gray TIFF-Simplex_055
	Gray TIFF-Simplex_056
	Gray TIFF-Simplex_057
	Gray TIFF-Simplex_058
	Gray TIFF-Simplex_059
	Gray TIFF-Simplex_060
	Gray TIFF-Simplex_061
	Gray TIFF-Simplex_062
	Gray TIFF-Simplex_063
	Gray TIFF-Simplex_064
	Gray TIFF-Simplex_065
	Gray TIFF-Simplex_066
	Gray TIFF-Simplex_067
	Gray TIFF-Simplex_068
	Gray TIFF-Simplex_069
	Gray TIFF-Simplex_070
	Gray TIFF-Simplex_071
	Gray TIFF-Simplex_072
	Gray TIFF-Simplex_073
	Gray TIFF-Simplex_074
	Gray TIFF-Simplex_075
	Gray TIFF-Simplex_076
	Gray TIFF-Simplex_077
	Gray TIFF-Simplex_078
	Gray TIFF-Simplex_079
	Gray TIFF-Simplex_080
	Gray TIFF-Simplex_081
	Gray TIFF-Simplex_082
	Gray TIFF-Simplex_083
	Gray TIFF-Simplex_084
	Gray TIFF-Simplex_085
	Gray TIFF-Simplex_086
	Gray TIFF-Simplex_087
	Gray TIFF-Simplex_088
	Gray TIFF-Simplex_089
	Gray TIFF-Simplex_090
	Gray TIFF-Simplex_091
	Gray TIFF-Simplex_092
	Gray TIFF-Simplex_093
	Gray TIFF-Simplex_094
	Gray TIFF-Simplex_095
	Gray TIFF-Simplex_096
	Gray TIFF-Simplex_097
	Gray TIFF-Simplex_098
	Gray TIFF-Simplex_099
	Gray TIFF-Simplex_100
	Gray TIFF-Simplex_101
	Gray TIFF-Simplex_102
	Gray TIFF-Simplex_103
	Gray TIFF-Simplex_104
	Gray TIFF-Simplex_105
	Gray TIFF-Simplex_106
	Gray TIFF-Simplex_107
	Gray TIFF-Simplex_108
	Gray TIFF-Simplex_109
	Gray TIFF-Simplex_110
	Gray TIFF-Simplex_111
	Gray TIFF-Simplex_112
	Gray TIFF-Simplex_113
	Gray TIFF-Simplex_114
	Gray TIFF-Simplex_115
	Gray TIFF-Simplex_116
	Gray TIFF-Simplex_117
	Gray TIFF-Simplex_118
	Gray TIFF-Simplex_119
	Gray TIFF-Simplex_120
	Gray TIFF-Simplex_121
	Gray TIFF-Simplex_122

