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EDITORIAL

An international mothematical symposium dedicated to the memory of
academician Dure Kurepa was held at the University of Belgrade, Yugoslavia,
from 27-28 May, 1996. The Symposium was organized by the Serbian Sci-
eniific Society, the Facully of Mathematics, the Mathematical Institute of
the Serbian Academy of Science and Art, and Union of Mathematicians So-
cieties of Yugoslavia, The joint Program and Organizing Committee was:
S. Todoréevic (chairman), D. Adamovié, D. ddnadevié, D. Cvetkovid, Lj.
Cirié, S. Dajovid, D. Dugosija, N. Duranovic-Milicié, O. Hadzié, A. Ivié,
Lj. Kocinac, V. Kovacevié-Vujéié, Z. Markovié, V. Midié, 7. Mijajlovid,
V. Perié, 5. Perovié, J. Petri¢, Z. Sami, M. Taskovié.

The ideas of Duro Kurepa (1907-1993) have had a significant influence
on modern mathematics, notably m set theory and foundetions. The most
well known are his works on ramified sefs and set-theoretical trees. His con-
siderations of various properties of trees (e.y. Suslin’s Property) and his
claims of the same to be postulales of the sel theory were proved consider-
ably later, with the advent of powerful new methods, through the works of
Jech, Silver, Solovay, Tennenboum, Todoréevic and others. The purpose
of the Symposium was to bring together researchers from the mathematical
areas i which Kurepa worked. So, contributions were in the set theory,
foundations, general topology, the number theory and other fields related to
Kurepa’s work. Sizty-eight papers were presented, and after o refereeing
process thirty-one of them were accepted for publication in the Scientific
Review.

The guest editors wish to express their gratifude to the Editoral Board
of Scientific Review for the suppori in preparation of this issue and also to
Mrs Alice Tosié for language editing, Mrs Nedeljha Vojnovicé for efficient
secretarial assistance and to Mr Miroslay Zivkovic for text processing.

Z. M. and V.K.-V.
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PDURO KUREPA
1907 — 1993

Pure Kurepa was born on August 16, 1907 in Majske Poljane near Glina
in Srpska Krajina as the fourteenth and last child of Rade and Andelija
Kurepa. He got his diploma in theoretical mathematics and physics at the
Faculty of Philosophy of the University of Zagreb in 1931. Kurepa spent
the years 1932-1935 in Paris at the Faculté des Sciences and the College de
France. He obtained his doctoral diploma at the Sorbonne in 1935 before a
committee whose members were Paul Montel, Maurice Fréchet and Arnaud
Denjoy. He received his post-doctoral education at some of the world’s
best institutions: the University of Warsaw and the University of Paris,
and after the Second World War he visited Cambridge (Massachusetts), the
mathematical departments of the Universities of Chicago, Berkeley and Los
Angeles, and the Institute of Advanced Studies in Princeton.

Kurepa's first employment was at the University of Zagreb in 1931,
ag an assistant In mathematics. He stayed in Zagreb as a professor until
1965 when he moved to Belgrade at the Faculty of Science. He remained
there until his retivement in 1977. Meanwhile, he was a visiting profes-
sot at Columbia University in New York, and Boulder, Colorade. Besides
his university ieaching, Kurepa organized successfully scientific work, too.
Professor Kurepa was the chairman of the Mathematical Department of
the Faculty of Philosophy in Zagreb; then since 1970 till 1980 chairman of
the Mathematical Seminar of the Institute of Mathematics of the Serbian
Academy of Sciences and Arts. He was a full member of this Academy,
the Academy of Science of Bosnia and Herzegovina, and a corresponding
member of Yugoslav Academy of Sciences and Arts in Zagreb.

Professor Kurepa was the founder and president of the Society of Math-
ematicians and Physicists of Croatia, and president of the Union of Yu-
goslav Societies of Mathematicians, Physicists and Astronomers. He was
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also president of the Yugoslav National Committee for Mathematics, as
well as president of the Balkan Mathematical Society. Furthermore, he was
the founder and for many years the chief editor of the scientific mathemat-
ical journal Mathematica Balkanico, now published in Sofia. Kurepa was
also a member of the editorial board of Belgrade’s Publications de I’Institut
Muathématique, and the German journal Zeitschrift fir mathematische Logtk
und Grundlagen der Mathemalik.

Professor Kurepa earned many awards, honors and distinctions. He re-
ceived the highest prize of former Yugoslavia, the Award of AVNOJ (1976).
Also, he was a member of the Tesla Memorial Society of the U.5.A. and
Canada (1982), the Bernhard Belzano Charter, and the Gramata Marin
Drinov of the Bulgarian Academy of Science (Sofia 1987).

The scientific output of Professor Kurepa was rather big. He published
about 200 scientific papers, and more than 700 writings: books, articles,
reviews. His papers were published in journals all around the world. and
some of them in the most recognized mathematical journals. He delivered
scientific talks at many universities of Furope, America and Asia; for exam-
ple, at Warsaw, Paris, Moscow, Jerusalem, Istanbul, Cambridge, Boston,
Chicago, Berkeley, Princeton and Peking. As Kurepa himself told once: “I
lectured at almost each of nineteen universities of (former) Yugoslavia, then
in almost every Furopean country, then in Canada, Cuba, Israel and Iraq,
and T gave at least ten lectures in each of the following countries: I'rance,
ftaly, Germany, the Soviet Union and the United States.” He participated
at dozens of international scientific symposia, and many of them were orga-
nized by himself.

The influence of Professor Kurepa on the development of mathematics
in Yugoslavia was great. As a professor of the University of Zagreb he intro-
duced several mathematical disciplines, mainly concerning the foundations
of mathematics and set theory. This is best witnessed by the following
words of Kajetan Seper, a professor of the University of Zagreb:

“Professor Kurepa was not only the professional mathematician and
teacher, but he was a scientist, philosopher and humanist as well, in the
true sense of these words. He was the founder and pioneer in mathematical
logic and the foundations of mathematics in Croatia, and modern mathe-
matical theories in Croatia and Yugoslavia. Generally speaking, he was the
catalyzer, the initiator and the bearer of mathematical science.

His arvival to Belgrade in the mid-sixties, and the subsequent influ-
ence he had on the mathematical community there, may be described with
almost the same words. Professor Kurepa exposed the newest results in
diverse mathemadtical disciplines through many seminars, courses and talks
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which he delivered at the Faculty of Scieuces and the Mathematical In-
stitute. The topics of his lectures included: the construction of Cohen
forciug, some questions concerning independence results in cardinal and or-
dinal arithnietic, ordered sets and general topology. But he was attracted 1o
other mathematical topics, too. He gave valuable coutributions to analysis,
algebra, number theory, and even to those mathematical disciplines which
were just appearing, as computer science, for example. The nniversality of
his spirit is portrayed by the list of university courses he taught: Algebva,
Analysis and Topology.

By publishing his doctoral dissertation in eztenso in Belgrade's Fubli-
cations Mathémaligue de Uliniversilé de Belgrude i 1935, Kurepa made a
first contact with the Belgrade mathematical comimuaity. In the beginning
of the fifties these contacts became deeper and maore frequent. Kuorepa was
invited already in 1952 to visit the University of Belgrade. On this occasion
he gave talks on the theory of matrices, and held a seminar with topics
1 set theory, topology and algebra. By attending these seminars, many
mathematicians gained ideas for their mathematical papers, while gradu-
ate students obtained themes for their master and doctoral theses. These
works includes virtually all doctoral theses of the older genervation of topol-
ogists, and many algebraists from all over Yugoslavia: Svetozar Kurepa,
Zlasko Mamuzié, Sibe Mardesié. Pavie Papi¢, Viktor Sedmak, and a few
years later, Ljubomir Cirié, Rade Dacié¢, Milosav Marjanovié, Veljko Perié,
Milan Popadié, Frnest Stipanié and Mivke Stojakovié. Professor Kurepa
was stupervisor {altogether 42 times) or member of examination boards for
dectoral dissertations for many other mathematicians: Many of these math-
ematicians continued and developed frther Kurepa’s work. notably Stevo
Todorcevié

Professor Kurepa had contacts with many mathematicians of the highest
rank from all around the world. Thanks to him sowne of these mathemati-
clans visited Belgrade: A. Tarski, P. Alexandroff. M. Krasner, N.A. Shanin,
. Devlin and others. Professor Kurepa especially was proud of his en-
counter with Nikola Tesla, the great Serbian scientist and engineer. with
whom Kurepa was lascinated.

Let me say few words about Kurepa’s work in topology, set theory and
number theory.

In topology Kurepa was interested in some generalizations (non-nume-
rical) of distance functicns. In this context there is a notion of Kurepa’s
psetndo-metric spaces. As it was already mentioned. in the middle of thirties
Kurepa was a doctoral student in Paris, and in that time he was influenced
by the French mathematical school, particulazly by the work of M. Fréchet.



4

Along this, Kurepa took a new way lo the notion of space. He defined the
notion of pseudo-distancial space generalizing a class of Fréchet’s spaces.
In this approach, values of distance function range in a totally ordered set,
instead of the set of positive reals, and the triangle condition on distance
function is replaced by an interesting relation in ordered sets. Later Frechet
came to the same notion and since then this class of abstract spaces are
known under the name of “Kurepa-Fréchet spaces”. It is interesting that
Kurepa wrote last time about these spaces in 1992, Someone probably would
recognize i this class of spaces the notion of Zadeh’s fuzzy sets. Anyway,
the phirase “sets of fuzzy structure” is contained in his book Set theory from
1951.

Trees, partially ordered sets in which every lower cone is a well-ordered
set, may be considered as a natural generalization of ordinal numbers. They
are special type of ramified sets which Kurepa introduced in his dactoral
thesis. By widespread opinion, this capital work is a first systematic study
on set-theoretical trees. In his thesis, and later in lus papers, Kurepa in-
troduced fundamental notions from the theory of infinite trees: Aronszajn
tree, Suslin tree and Kurepa tree. Kurepa proved many interesting prop-
erties concerning these objects. Probably the best known is the following
equivalent with the notable Suslin hypothesis:

SH & There 18 no Suslin iree.

Suslin hypothesis says that there is no Suslin line, i.e. a linearly ordered
set of the countable celularity, but which does not have a countable dense
subset,

Lebesgue in his paper in 1905 identified implicitly analytic functions
with Bair functions. In his proof he used an argument which was "simple
and short, but wrong”. The mistakei step in the proof was hidden in the
preof of a lemma which he considered as trivial, namely that a projection of
a Borel set is also a Borel set. Ten vears later, Susiin, a young and talented
Luzin’s student discovered the mistake. Suslin introduced the notion of
analytic sets, as projections of Borel sets, and he proved that there are
analytic sets that are not Borel sets. So emerged Descriptive set theory,
one of the deepest and raost interesting parts of set theory. However, Suslin
died soon (in 1919), and the formulation of Suslin hypothesis appear after
his death in his paper a year later. This hypothesis will play the central
role in the development of the theory of infinite trees, and in this progress
Kurepa’s work was of the principal importance. Namely. Kurepa was trying
since 1935 to solve SH. He did not succeed, simply it was not possible to
solve it in this time. Tools of the classical set theory were not adequate.
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However, Kurepa was the first who understood the importance of trees in
sef theory. Using infinite trees, Kurepa also found examples of topological
spaces with important and unusual properties.

Kurepa was noi able to prove the existence or non existence of Suslin
tree, neither of Kurepa tree. The postulate that there is a Kurepa tree
was named Kurepa hypothesis, shortly KH. The complete solution of the
problem of the existence of these trees was solved in the beginning of seven-
ties, when the new method, Cohen’s forcing, became a standard and prime
tool in set theory. So Solovay, Tennenbaunm and Jensen prove that SH is
independent from ZFC+CH (Zermelo-Fraenkel set theory plus Continuuim
Hypothesis), while Devlin proved in 1978 that all logical combinations of
CH, SH and KH are consistent with ZFC.

Kurepa had a distinguished ability to sense a good problem and a fine
construction, especially if they are connected to ordered sets. We cannot
mention all examples of this kind, but one problem from number theory
deserves a special attention, as it was considered by several Yugoslav math-
ematicians and mathematicians from abroad. Kurepa formulated during a
mathematical gathering in Ohrid in 1971 the following problem. First he
defined an arithmetical function which he called “the left factorial fanction”
as a sum of factorials of first n — 1 non-negative integers.

Then the formulation of 'n-hypothesis is stated as fellows: The greatest
common divisor of for 'n and n!is 2. This hypothesis has a lot of inter
esting equivalences, and it was considered by many wmathematicians. This
Lhypothesis is stated in the book “Unsolved problems in number theory” by
R. Guy under the number B4d. The hypothesis was checked recenily by use
of computers for n < 8.400.000 Kurepa announced the solution (he ringed
me up one early morning in the spring of 1992 to tell me this), but he never
published the solution. R. Guy in a letter to me irn 1991 mentioned that
R. Boud from G. Britain might solved the left factorial hypothesis, but this
proof did not appear either up to now.

Kurepa was attracted with maay areas in mathematics, besides Set The-
ory, General Topology, Foundations, and Number Theory. His work include
also themes in algebra {theory of matrices), numerical mathematics, com-
puter science and fixed-point theory, ls is not possible to discuss here his
full mathematical achievements, but in short we may say: Puro Kurepa
has great merits for the development of the foundations of set theory and
mathematics in general.

Z. Mijajlovié
Faculty of Mathematics
University of Belgrade
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SOUSLINEAN SPACES AND TYCHONOFF CUBES *

Stevo TODORCEVIC
Institute of Mathematics, Serbian Academy of Sciencie and Art
Kneza Mihaila 35, 11000 Belgrade, Yugoslavia
Department of Mathemaiics, University of Toronto,
Toronto, Canada M55 3G8

This is a short survey of results that spread from the famous problem pro-
posed by Michael Souslin in 1920 (see [23]):

(Souslin’s Conjecture) The unit interval is the only ordered continuam
which contains no uncountable family of pairwise disjoint open subinier-
vals.

The first advance on this problem was made by D. Kurepa {13] when he
showed that Souslin’s Conjecture is actually equivalent to the following
statement which deals with objects of a quite different sort from those ap-
pearing in continua theory:

(Kurepa’s formulation) Every partially ordered set P satisfies one of the
following four conditions:

(1} P is countable,

(2) P contains an uncountable chain,

(3) P contains an uncountable antichain,
(4) P contains the four-element poset ¢

There are two major lines of investigations of the Souslin probiem or prob-
lems motivated by it. The first line, siarted by Kurepa himself building on .

tResearch supported by NSERC and SFS,
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his formulation of the Souslin problem, is purely set-theoretical in nature.
It starts with the introduction of Souslin trees, the well-founded posets with
minimal elements {roots] violating all four properties (1)-(4) above. These
Souslin trees have received a considerable amount of attention throughout
the years, and especially after the invention of the Melhod of Forcing by
Paul Cohen in the early 60’s ([2], [3]). Shortly afterwards, S. Tennenbaum
24] showed that there is a Cohen extension of the set-theoretical universe
containing a Souslin tree. Independently, T. Jech [7] constructed another
Cohen extension with the same property. Not long after that, R. fensen
[8] showed that Souslin trees exist even in the smallest set-theoretical sub-
universe, the universe of constructible sets of Gddel [5]. This showed that
Cohen’s method of forcing was after all not needed if one just wants to pro-
duce a model with Souslin’s trees, the model existed already in 1940, It turns
out, however, that Cohen’s method was quite essential in producing a model
in which Souslin’s Conjecture is true i.e., in showing its full independence
from the ordinary axioms of set theory. In fact, Solovay and Tennenbaum
[22] had to invent a considerable extension of the original method of Cohen.
i.e., they had to invent the so-called fterated Forcing. It should be noted
that Ivurepa’s Souslin trees show up also in the Solovay-Tennenbaum con-
struction, but now as forcing-notions to be iterated. A number of people
including D.A. Martin noted that the Solovay-Tennenbaum construction
gives a model in which a considerable extension of Souslin’s Conjecture is
true. This is the so-called Mertin’s aziom which stafes that in the class
of forcing-notions satisfying the Souslin condilion (every family of pairwise
incompatible requirements mast be countable) one can always have filters
which are generic in some restricted sense, i.e., which rneet families of dense
open sels whenever they are not too large, e.g. if they have size simnaller
than continuum, or size not bigger than the first uncountable cardinal cor-
responding to two of the most {requently used versions of the axiem. {OQur
references to this axiom below will all concern the latter version.} This
gtarted an era of the so-called Forcing Azioms. an eva of unilying various
Forcing-constructions. Today. this represents one of the most vital fronts of
research in this field of mathematics.

The second line of investigation is topological in nature and was again
started by Kurepa [13] and later joined by Kraster [12], Marczewski (Szpil-
rajn) [16], Shanin {20], and others. The investigation is based on the obser-
vation that the Souslin problem is really a part of a more general problem
which asks whether the Souslin condition is as strong as the stronger con-
dition of separability in a given class of spaces. In fact there is a number
of different chain conditions (see [4]) that one can put on a given compact



9

space X and which in strength lie between separability and the Scuslin con-
dition. Here are some of the most prominent ones:

Souslin’s condition: Every uncountable family F of open subsets of X con-
tains two (distinct) sets U and V osuch that TNV # 0.

Knaster’s condition: Every uncountable lamily F of open subsets of X con-
tains an uncountable Knaster family £ le., an uncountable family £ C F
such that VNV % 0 for all {7 and V in K.

Shanin’s condition: Every uncountable family 7 of open subsets of X con-
tains an uncountable subfamily § such that (S # 8.

Separability: The family O af all nonempty open subsets of X can be de-
composed inte countably many subfamilies O, (n = 1,2,3,...) such that

(O, # 0 oy all n.

The following relationship between these four chain conditions should be
clear:

Separable — Shanin — Knaster — Souslin

Investigating in which classes of compact spaces we have that some of these
chain conditions are equivalent can be considered as a way of investigating
the corresponding versions of the Souslin problem. [or example, Knaster
[12] proved that Knaster’s condition is equivalent to the separability in the
class of ordered continua, so the original Sousin problem reduces to the
question whether Souslin’s and Knaster’s conditions are equivalent in this
class of spaces. Another, interesting line of research was motivated by the
following crucial question of Kurepa and Marczewski, a form of which al-
ready appears in the Scotiish book (see [19; Problem 192]):

{Question of productiveness). Which of these four chain conditions are pro-
ductive.

Here are some of the answers:

(N The product of no more than continuum many separable spaces is
separable, but no product of more than continuum many nontrivial spaces
is separable (Hewitt—Marczewski-Pondiczery; [6], [17], [18]).

(11) Knaster’s condition is preserved in products of any number of fac-
tors { Marczewski [16]).

(111} Shanin’s condition is preserved in products of any number of fac-
tors (Shanin [20]).

(IV) If Souslin’s condition is productive, then Souslii’s conjecture is
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true (Kurepa [14]).

In order to prove (I[1) Shanin invented his famous Delia-system Lemma {see
[211) which turned out to be uselul in many other contexts. For example,
ghis lemraa is wsed crucially in the Solovay-Teanenbaum iterated forcing
construction discussed above. The following resull can be counsidered as an
explanation of the relationship between these two apparently quite different
sets of results:

(V) Marting'a axiom is equivalent to the statement that Souslin’s and
Shanin’s condition are equivalent in the case of all compact Hansdorfl spaces
{ Todaréevié- Velickovié [25])

In fact, one can go further and prove the following result which shows that
Martin's axiom is nothing more than a Souslin’s conjecture for a class of
space nol much meove general than the class of ordered continua.

Theorern 1. Martin’s caiom is equivalent to the statement that every com-
pact first countable Souslin space 1is separable.

This leads to a possible line of sirengthening the originai Souslin’s conjec-
ture. To state this let us call (following M. Bell {1]) a compact space X a
Souslinean space i X s Souslin but not sepazable. Thus. Souslin ’s conjec-
ture states that the pathology of Souslinean spaces does not occur in the
class of crdered continua. Note that the pathology does occur in the class of
all compact spaces: By the Hewiti-Marczewski -Pondiczery theorem every
Tychonofl cube [0.31]4 over an index-set A of size bigger than continuum
is a Souslinean space. The fact that [0.1]4 is Souslin {aud in fact Shanin)
follows from the itheorems of Marczewski and Shanin mentioned above (see
{11} and (IIT}). So the following assertion, stating that large Tychonofl cubes
are essentially the only obstructions, can be considered as an ultimate form
of Souslin’s Conjecture.

(A} Twvery compact Souslinean space maps onte a Tychonoff cube of un-
countable weight.

Since no first-countable compact space maps onto an uncountable Tychonoff
cube, Theorem 1 teils us that (A) is at least as strong as Martin’s axiorn.
But (A) seems to be quite different from Martin’s axiom as the following
fact shows {revealing also the close connection between the Souslin Problewn

and the Continuum Problem ).

Theorem 2. If (A) holds then the minimal size of an unbounded subset
of NN wnder the ordering of eventual dominance is equal to the second
uncountable cardinal.
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Among the lines of investigations related to the Souslin Problem, we
mention the following well-known problem of von Neumann, alse appearing
in the Scottish book and at about the same time as the problems of Knaster
and Marczewski discussed above (see [19; Problem 163]):

(von Neumann’s problem) Does weak-distributivity and the Souslin con-
dition characterize measure algebras among all complete boolean algebras?

A measure algebra 15 a complete Boolean algebra A with a g-additive mea-
sure p: A — [0,1] such that p{a) > 0 for all @ # 0 in 4. An algebra A4 is
weakly-distributive if for every matrix apm,(n, m € N) of positive elements

of A such that
o0
Z Upm = 1
m=1

for all n, there exists a sequence {k,} € N such that

o0 kn

[1> aun #0

n=1m=1
This problem was shortly afterwards analyzed by D. Maharam ([15]) who
showed that the compleie boolean algebra associated to the Souslin tree
serves as a counterexample to von Neumann's question. However, the cor-
responding famous reformulation of von Newmann’s guestion, also due to
Maharam ([15]) and known under the name of Conirol Measure Problem,
is still widely open. It has been reformulated to a purely combinatorial
question about submeasures on the countable free algebra by Kalton and
Roberts (see [9], [10]). It is interesting tha$ this process of reformulating
followed closely the chain-condition method described above. This 1s not
50 surprising if one knows that the existence of a strictly positive finitely
additive measure on a boolean algebra A is simply a chain condition that
also lies between separability and the Souslin condition. This is a result of
J.L. Kelley [11] which says that there is a finitely additive strictly positive
measure u : A — [0,1] if and only if there is a decomposition

Ao} = [ 4.
n=1
such that Int(A4,) > 0 for all n. Here, for a given B C A\{0}, the intersec-
tion number Int(B) is defined to be equal to the infimum of all ratios of the
form

cal{by, ..., by)

Tt
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where (by,...,0,) is a finite sequence of (not necessarily distinct) elements
of B and where cal(dy,...,0,) is the maximal cardinality of a subset [ of

{1.....n} such that
Hbi # 0

ief
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THE VERY IDEA OF AN OUTCOME

Nue] BELNAP
Department of Philosophy, University of Pittsburgh,
Pittsburgh PA 15260

Abstract. We define, in branching-time structures, an algebra of "simple
outcomes” and an algebra of "outcomes of a set of choice points.” The
former is boolean. the latter orthomodular.

Keywords: outcome, branching time, orthomodularity

What is an outcome? Outcomes make no sense if our world is fully de-
terministic. So we work in branching time, the simplest representation of
indeterminism. (Tree, <) is a branching-time (BT) structure iff it is a partial
ordering with no downward branching and with the existence of ¢lb(my, ms)
whenever mq, mqg € Tree. Members of T'ree are called moments. Moments
my, Ma are conststent if either my < mq or my < my, and otherwise incon-
sistent.

We first define the algebra of simple outcomes, following a chain of ideas
from von Neumann via [1]. Define mq L mg iff m; and m, are inconsistent.
Then for a set M of moments, define M+ = {my : ¥mg[ms € M — my L
mz]}. The set M+ is the orthocornplement of M. Call M a simple outcome
iff M = ML+, The algebra of simple outcomes is given by (O, *, A, V) where
0 is the set of simple outcomes, M+ is as just defined, My A M, is the set
meet My N My, and My v My = (M) U M)+t

It is shown in [1] that any algebra following out these definitions from an
irreflexive and symmetric relation is bound. to be an ortholattice. The first
result reported here is that the algebra of simple outcomes is boolean, al-
though it is not a set algebra. More interesting is the nonmathematical fact
that simple outcomes "look like” outcomes. For instance, if you are not in a
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simple outcome, then you can always find a path to its orthocomplement—
and conversely: the orthocomplement of M is the outcome that has begun
to happen exactly when M can no longer begin to happen.

Simple outcomes are "outcomes of something or other.” Suppose, how-
ever, we fix on a special set F and ask {for the "ontcomes of £.7 For this we
define my Ly mq by: my L mg and glb{my, me) € E. So when my Lg my,
we know that F contains the exact place of splitting that makes at least
one of my, my henceforth impossible. Then we follow out the von Neumann
chain of definitions exactly, keeping in mind the relativization to £, and
ending with O = {Og, 1%, Ap,Vg). This we call the algebra of outcomes
of E.

Examples show that Op is not boolean. Let e.g. Tree = {mq, m,, my,
Mg, Mg, My, My— |} begin with mg, and split so that m, and my are each
just above mg. Let m, and m, each split so that m.4 and m,_ are just
above m,, and m,+ and m,_ above m,. Story: the physicist decides at mq
whether to make the # or the y measurement, which are inconsistent (each
can be made but not both). Then the measurements at m, and m, have
each two possible results, + or —. If we are interested in "the outcomes
of the measurements” (unmixed with the decisions of the physicist), we let
E = {m,,my}. The resulting lattice of outcomes has just the six elements
{0, {mzy}, {mar}, {mys }, {my— }. Tree} and is obviously not boolean.

Theorem. Regardless of the tree structure and choice of B, QO is ortho-
modular: If My, My € Qg and My C My, then My Vg (M58 Ag My) = My,

This second result is interesting because, while the present very simple
intuitive basis invelves indeterminism, there is no connection with gquantum-
mechanical "funny business,” to which nonboolean orthomodularity is usu-
ally attributed.

Hardly anything additional is known about how the choice of Tree and
E influences the structure of J; almost all questions are open.

REFERENCES

(1] Goldblatt R.H., Semantic analysis of prthologic, Journal of Philosephical
Logic 3 (1974), 19-35.
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A CONJECTURE ABOUT IDENTITY, INTERPOLATION
AND THE LENGTH OF PROOFS IN TW _-1IDf

Aleksandar KRON
University of Belgrade

Abstract. It is known that in the system Tw_,—1D of purely implicational
relevance logic there is no theorem of the form (4 —~ A) (NOID). We conjec-
ture that NGID is equivalent to the following interpolation property: for any
theorem (A — ) of Tw_,~1D. if there is a formula B such that (4 — B)
and (B — () ave theorems of TW_-ID, then there is a natural number n
such thal for any natural number m and any formulas By, ..., By, il

(14 - Bl)u(Bl s BQ);"'?(‘Bmfl — Bm)T(BTTL i C)

are theorems of Tw_-ID, then m < n.

We show that the interpolation property stated ahove is equivalent to
the following provability property: for any formula A, If 4 is a theorem of
TW_—ID, then there is a natural number n such that the length of proofs
of 4in Tw _-ID is not greater than n.

1. THE SYSTEMS TW_-ID, TRW _-1D AND TWY-ID

The only connective in the language of TW_-ID is —~. If A and B are
formulas, so is (A — B). We shall write (AB) instead. The parentheses are
omitted as usual, with the association to the left. Also, we write A.BC for
A(BC).

The only rule of TW _,-1D is modus ponens {MP).

tThis research has been supported by the Science Fund of Serbia {grant number 04014)
through the Mathematical Institute in Belgrade.
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The axioms of TW _-ID are all formulas of the form

ASU AB.BC.AC

APR BC.AB.AC

By a proof tree of a formula € in TW _ 1D we understand a finite tree
such that:

(a) (" is at the origin of the tree;

(b) if B is a node that is not an end node, then there is an appli-
cation of MP with the premises A and 4B such that A and A8 are nodes
immediately ahove B,

(c) if B is an end node, then it is an axiom of TW_-1D.

By the length of a proof tree of ' we understand the number of nodes
in the longest branch of the tree.

Theorem 1. [Lei there be a proof irce of C of length n, n > 1, end let
By, Bu_1,C be a branch of length n: then there is a node of this proof
of the form A,. ... A C such that Ay, ..., A, are theorems of TW _—1D.

Proof. [t is clear that any B;, 1 < ¢ < n — 1, is either a major or a
minor premise in an application of MP. If B; is the major premise. then
Bi = B!Bit1, where B! is the corresponding minor premise; if' B, 1 Is the
major premise, then B,_y = B] ., .

Let us define a branch A, _1,..., 41, C of the given proof of C as follows:
if B, 1 is the major premise in the application of MP, then Ay = B,_q;if
B,.1 is the minor premise, then 4, is the corresponding major premise,
f}] = Bn__],C.

Suppose that Ay, ..., Ay, C have been defined; then Az = B, p_q, if
B _—1 15 the major premise in an application of MP; furthermore, Ay =
Bop1Ag, if By_i_q is the minor premise of MP, where, obviously, B,_x.q
B,,—i is the corresponding major premise.

By induction on k, I <k < n — 1, it can be shown that 4, _1,.. ., A4;.C
is a branch of the given proof of . Moreover, 4; is of the form I}, ;.
Suppose that Ay is of the form Dy Dy_y. ... .D1C and let us consider Agyy.
W Ags) = Bp—g—1 1s the major premise in an application of MP, then Az =
Bl Ay =B, DDy .. .D1Cyif By_p_q is the minor premise in
an application of MP, then A, is the corresponding major premise; hence,
f1k+1 = Bn_k_1;4k = Bn-—k—l-Dk s .,ch.

By the construction, Aj,..., 4, are theorems of TW_-1D.



19

This proves the theorem.

There is an alternative formulation of TW _,-ID called herein TRW _ -1D.
It has the axiom-schemata ASU and APR, but the rules are:

SU From AB to infer BC.AC
PR From BC' toinfer AB.AC
TR From AB and BC to infer AC

It is clear that the theorems of TRW _-ID are theorems of TW _-ID.
That the theorems of TW_.—ID) are theorems of TRW _ -ID follows by an
induactive argument showing that TRW _-ID is closed under MP.

The proofs of theorems in TRW _-1D can be written in a normal form.

Theorem 2. For any proof of a thearem of TRW _ -ID containing n appli-
cotions of TR there is a proof of the same theorem contwining n applications
of TR such that no application of TR precedes an application of either S{J
or PR.

Proof. Suppose that {¢) AC is obtained from {a) AB and (b) BC by TR,
and that (d) C'D.AD is obtained from (¢} by SU.

Obviously, we can apply SU to (b) and (a) first, to obtain (b") CD.BD
and (a’) BD.AD. and then to apply TR to (b") and (a’) to prove (d).

Suppose that (¢) AC is obtained from (a) AB and (b) BC by TR, and
that (d) DA .DC is obtained from (¢) by PR.

We can apply PR to (a) and {b) first, to obtain (') DA.DB and (b")
DB.DC, and then to apply TR o (b") and (a’) to prove (d).

It is clear that if the first proof has »n applications of TR, so does the
second.

Theorem 3. If (a) AB and (b) BC are proved in TRW _-1D such that
{a) is obtained by an application of SU ( of PR) in the last step and (b}
is obtained by an application of PR { of SU) n the last step, then there
ig a proof of AC by TR such that the left premiss {(a’) in this application
of TR is obtained by PR (SU) in the lust step and the right premiss (b’)
is obtained by SU (PR} in the lasl step.

Proof. Suppose that (a) is DE.FF, obtained from (a') FIJ by SU, and
that (b} is FE.FG, obtained from (b’) £G by PR. It is clear that from (b’)
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we can derive DFE.DG by PR and that from (a’) we can prove DG FG by
ST

Suppose that (a)is £D.LF, obtained from (a’) DF by PR, and that (b)
is EF.GF, obtained from (b} GE by SU. Now from (b’) we obtain ED.GD
by SU and from {a’) we can prove GD.GF by PR.

Theorem 4. If (a) AB s obtained either by SU or by PR and (b} BC
is an aziom then there is a proof of AC by TR such that the ieft premiss
(b') of this application of TR is an aciom.

Proof. Let {a) be DE.FE, obtained from {a’) FD by SU, and let (b}
be the axiom ['E.EG.FG. We can take (b’) to be DE.EG DG, then we
apply SU to (a'), to obtain (a”) DG.F(G, and then we use PR to prove (b")
{(EG)DG).EG.FG.

if (b) is the axiom FE.GF.GE, we take (b") to be DE.GD.GE, and
we apply PR to (a’) to obtain GF.GD; now we use SU to prove (b”)
(GDYGE).GF.GE.

Let (a) be DE.DF, obtained from £F by PR, and let (b} be the axiom
DEFEG.DE. We can take (b') DE EG. DG, and appty SU to (a’) to obtain
FGEEG, and then SU to prove (b7) (EGHDG).FG DG,

H(b)is the axiom DEGD.GFE, we {ake (b7) to be DFE.GD.GE, and ap-
ply PR io (a") to prove GE.GF,and then PR again, to obtain (GD)(GE).GD.
GF.

This completes the proof of the theorem.

Theorem 5. [f AC s a theorem of TRW _-1ID, then either AC is an
ariom or there are non-negutive integers k, m, n and formulas By, ..., By,
Dh,... Dy, and Ey, ..., E, such that af least one of k, m, and n is not 0,
and

Ab‘h . 'kalBijkD]v . -aDmfIDmaDmEl-, i ’)—En—lEn: EnC

are theoremns of TRW _~ID satisfying the following conditions:

(1) TR is not used i the proof of any of them;

(2) ABi,...,Br_1B; are arioms;

(3) BiDy,..., Dy Dy are oblained by an application of SU ( of PR}
in the last slep;

(4) Dk, En By, EC are obtained by an application of PR (
of SU) in the last step.

Proof. By Theorems 1 - 3.
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The proof of AC' in TRW _,-[D having the form described in Theorem 4
is called normal. Hence, for any theorem of TRW_,-ID there is a normal
proof.

The most important theorem of TW_-ID and hence of TRW _-1D is
NOID:

Theorem 6. There is no theoremn of TW_-ID and hence of TRW_-ID
either of the form AA or of the form ABB or of the form A.ABB or of the
form ABBA.

Proof. Ci. (2], [3], [4] and [5].

By a code we understand a finite sequence of 0’s and 1’s. The empty code
is @. The letters a, b, ¢, ... range over the set of codes. By the length I(a)
of a code ¢ we understand the number of 0’s and 1’'sin a. Y a = ay...am
and b = by...0,, ther ab = a7 .. auby ... by

With each occurrence of a subformula B in a formula A we associate a
code f{B,A) as follows:

(i) flAA) = 0;
(i) if f(BC,A) =00, then f(B,A) = a0l and f(C, A) = a00;
(iii) if f(BC,A)=al, then f(B,A)=0al0and f(C,A)=all.

If the code a is the initial segment of a code b, we write ¢ < b;1f @ < b
and a # b, we write @ < b.

Following [1] we shall call an occurrence of a subformula B in a formula
A antecedent or consequent if f(B,A) = al or f(B,A) = al, respectively,
for some code a.

For any code a we define the code a™*. If @ = §, then = = (); further-
more, 071 = 1,171 = 0 and (eb) ! = a 1071

Let us define the depth of an occurrence of a subformula B in a formula
A as follows: if f(B, A} = a, then {(a)— 1 is the depth of B in A.

Let B be a subformula of A with a code ¢ in A; then we shall write A[B, 4]
for A. We have (A A5)[B,0le] = A4[B,0a7 Ay and (41 A42)[B,00a] =
A1A2[35 0&',:[

If A = A[B,al, we shall write A[B/C, a] for the result of the substitution
of an occurrence of ¢ for the particular occurrence of B with the code ¢ in
A. Obviously, A[B/C,a]=C if a =0and A[B,0] = B.

Theorem 7. Let AB be ¢ theorem of TW_~ID; then so are

(a) D[A,a0|D[A/ B, a0} and (b) D{A/B,al]D[A,al].
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Proof. By induction on the depth of A in D

Let the depth of A in D be 0; then A = D and B = D[A/B,0]. Obvi-
ously, D{A,0}1D[A/B,0] = AB.

Let D= D]_Dg.

If D[A4,01a0} = Dy[A,0e¢ *1]Dy, then D1[A/B,0a"11]D1{4,0a"11]is a
theorem by induction hypothesis. Hence, by ASU and MP we obtain

D1[A, 067 1Dy . Dy[A/B,0a™ 1] Dy,

i.e. D[A,01a0lD[A/B,01a0].
If D[A,00a0] = Dy D3[A, 0al], then Dy[A, 0a0]Dg[A/ B, 0a0] is a theorem
of TW_-ID by induction hypothesis. Hence, by APR and MP we obtain

D1(D2[A,0a0]).D1(Dy[A/ B, 0a0]),

i.e. D[A,00a0]D[A/B,00a0].

If D[A4,01al] = Dy[A,0a70]D;, then Di[A,0a10]D4[A/B,0a70] is a
theorem of TW _~ID by induction hypothesis. Hence, by ASU and MP we
get

Di[A/B,0a710]Dq.D1[A,0a70] D,
Le. D[A/B,01al]D[A,01al].

If D[A,00al] = D1(D9[4,0a1]), then Dy[A/B.0al]Ds[A4,0al] is a theo-

rem by induction hypothesis. Hence, by APR and MP we get

Di(D2[A/B,0al]).D1( Dy A, 0al]),

i.e. D[A/B,00a1]D]4,00al]

The system TW2-ID was defined by K. Dogen and the present author.
It has no axioms and the rules are:

sue From D[AB, a0] to infer D[AB/BC.AC, al]
PR! From D[BC,a0] to infer D[BC/AB.AC, al]
sut From D[BC.AC,al] to infer D[BC.AC/AB, al]

PR! From D[AB.AC, al] to infer D[AB.AC/BC, al]
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SU® and PR are called O-rules; SU' and PR! are called 1-tules.

Sappose that we have started applying these rules to a formula A4, and
that, after a finite nonzero number of applications of these rules we have
obtained the formula B; then we shall write A — B to denote both this
fact and the derivation of B from A. Also, we shall write 4 — B — (' if
A — Band B — C.

Let us define the set of theorems of TW2-ID: suppose that 4 — B:
then 4B is a theorem of TWYI-ID.

K. Dogen has remarked that in TWY-ID every derivation can be written
in a normal form.

Theorem 8. If DF is a theorem of TW 1D, then there is a derivation of
DF in TWY-ID such that no application of a 1-rule precedes an application
of a O-rule.

Proof. If an application of a 1-rule precedes an application of a 0-rule,
there is the possibility of reversing that order. Let us see how this can be
done.

Let SUT be applied to £ in a derivation of I’ from D, let E’ be the result
of this application, and then let a O-rule (say SUY) be applied to £’ with
the result E”. Thus, £ = E[BC.AC,al] and F' = E[BC.AC/AB,al]. If
now HI.GI is substituted for a consequent occurrence of GH in £, then
this consequent occurrence of GH exists in F as well, and hence SU® can
be applied to E first, and then we may apply SU! to derive E”.

We take care of the remaining rules in a similar way.

Theorem 9. [f A — B, then there is a derivation of AB in TWY-ID
such that every application of a 0-rule (if any) at depth d precedes all ap-
plications of the O-rules at depth d', d < d'.

Proof. If an application of a 0-rule at depth ¢ precedes an application
of a 0-rule at depth d, d < d’, there is the possibility of reversing that
order. For example, let SU° be applied to E, £ = E[AB,a0], at depth
d’, in a derivation of F from D, let F' be the result of this application,
B = E[AB/BC.AC,a0], and then let SUY be applied to E' at depth d,
d < d’, with the result E”, as follows: let the displayed occurrence of BC.AC
in £’ be in a consequent occurrence of a subformula GH' of E’, say, H =
H[AB.b0) and H' = H[AB/BC.AC,b0]. Suppose, moreover, that SUY is
applied to GH' in E’ at depth d, d < ¢ and b < a, to derive £, where
E" = E'|GH'/H'I.GI,b0]. It is clear that we may apply SU® to F at depth
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d first, to obtain E[GH/HI.GI,b0], and then SU° again, at depth &', to
obtain £
We take care of the remaining cases in a similar way.

Theorem 10. [f A — B, then there is a derivation A — B in TW-ID
such that every application of a 1-rule (if any) at depth d precedes all appli-
cations of the 1-rules at depth d', d > d'.

Proof. If an application of a 1-rule at depth d precedes an application of
a l-rule at depth d, d > d’, there is the possibility of reversing that order.

Let SU! be applied to £ at depth d’ (in £) in a derivation of F' from D,
let E be the result of this application, and then iet a 1-rule be applied to £
at depth d (in £'), d > &', with the result E”. Thus, say, ' = E[BC.AC, al]
and E' = P[BC.AC/AB al]. 1f now GH is substituted for an antecedent
occurrence of #1.G1in E’, then this antecedent occurrence of H1.G1 exists
in £ as well, and hence SU! can be applied to £ first, at depth d, and then
we may apply SU! at depth d’ to derive E”.

We take care of the remaining cases in a similar way.

Let us call a derivation A — B normal if

(1) no application of a 1-rule precedes an application of a 0-rule;

(2) mno application of a O-rule at greater depth precedes an application
of a 0-rule at a smaller depth;

(3) mno application of a 1-rule at smaller depth precedes an application
of a 1-rule at a greater depth.

Theorems 7 — 9 show that for any theorem AB of TWI-ID there is a
derivation 4 — B in a normal form. In the sequel we shall assume that
all derivations are in normal form.

We define an application of & O-rule to be principal if the depth of the
occuzrrence of the subformula to be substituted is 0.

A derivation A — B is called principal if it consists of principal appli-
cations of 0-rules at depth 0 only.

If there is a principal derivation A — B, we shall write A — B to
denote this fact and the principal derivation of B from A. .

A derivation A —— B 1s called non-principal if it is not principal.

A derivation of A — B is called inuer il it contains no principal appli-
cation of a 0-tule.

Theorem 11. AB —— CD is an inner derivation iff cither (1) A = C
and B — D or(2) B=DandC — Aor{3) B— D and C — A.
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Proof. By the normal form theorem we have the "if part” of the theorem.
On the other hand, in each of the cases (1) - (3) we prove AB — CD.

Theorem 12. TW-ID is equivalent to TW _-1D.

Proof. If D[AB,a0] — D[AB/BC.AC,a0]in TW2-ID contains a single
application of SU°, then, by Theorem 7, D[AB,a0lD[AB/BC.AC, a0]is a
theorem of TW _-ID. This shows that TW _~ID is closed under SU®.

In a similar way, by using Theorem 7, we take care of the remaining
rules.

Hence, if A is a theorem of TW‘E—ID, then it is a theorem of TW _ -ID.

The axioms of TW _-ID are easily derived in TW-1D.

It is obvious that in TWP?!-ID we have neither p — A4 nor 4 — p
nor A —- pp. Therefore, we may write MP in the form: if A — B and
AB — CD, then ¢ — D.

Let us show that TWY-ID is closed under MP.

Suppose that 4 — B and AB — (C'D.

If AB — (D iz an inner derivation, then either A = ¢ and ¢ —
B— Do B=Dandl — A —Doll — A— B — D by
Theorem 1.11.

Let AB = FFGH — CDand AB # EI'GH.

By induction on the number of principal applications of 0-rules we can
prove that £ F — GH.

Suppose that there is only one principal application of a 0-rule; then
either (a) B=LE, G=Aand F=Horelse(b) =G, F=4and H = B,
say (a).

We have A — B; this means that starting with A and applying the
0-and 1l-rules we eventually obtain B. Let us start with BF; in this formula
every consequent occurrence of a subformuja in B is an antecedent occur-
rence in BE, and conversely, every antecedent occurrence of a subformula
in B is a consequent occurrence in B It is easy to see that AF can be
obtained from BF by applying the saine rules that lead from A to B in re-
verse order. This means that 4F is obtained from BF by applying a 0-rule
instead of the corresponding 1-rule and a 1-rule instead of the corresponding
0-rule.

Hence, if A — B, then BF — AF.

We proceed in case {b) in a similar way.

Suppose that the number of principal derivations in AB — FF.GH is
greater than 1. If EF.GH is obtained by SU° from GFE, then F = H and
G — FE, by induction hypothesis. As above, we see that FF — GH.
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We proceed in a similar way if £ F.GH is obtained by I_’RD.

As a consequence, if D = EF.GH, then C —— D. Otherwise, we
have K F.GH — (' D; hence, by Theorem 1.11, either C = £F and ¢ —
GH— Do D=GHand( — EF — Do — FF — GH — D.

Therefore, TWYL-1D is closed under MP and every theorem of TW_ 1D
is a theorem of TW9-ID.

In the sequel we shall write "theorem” instead of "theorem of TW_ 1D
(of TRW_-ID, of TW®-ID)” if it is not important to refer to the system
under consideration.

The following theorems will be useful in the next section.

Theorern 13. If 4151, ..., Am By and A1 By, ... . An By are theorems,
m > 1, then the following conditions are satisfied, m > 1, for any k,[ &
{1,...m}:

(a) either Ap = Ay, or A, — Ag;

(b) ifk <land Ap #£ Ay, then A; — Ay;

{c) either By = B, or By — B,

(d) ifk <1 and By # B,,, then By — By;

(e) A = Ap for at most one k € {1,...,m—1};

() By, = By for at most one k € {1,...,m—1}.

Proof. Let 415, ..., 4,,5,, be theorems.

By induction on the length of proof of A1 8y, ... Ap B, in TW —ID
we can prove that the conditions (a) - (f) are satisfied.

Suppose that 4pBg.4151.42 85 is an instance of ASU; then A, = Ay,
By = Ay and By = B,. By NOID, A3 # A; and By # Bg. If it is an instance
of APR, then AQ = Al; AO = B] and BO = Bg. BY NO].D, Ag -‘,é AD and
By # Bi. Hence, (a) - (f) hold.

Suppose that 4By and AgBy. ... .An B, are theorems such that

A By o Ap B

is obtained by MP. By induction hypothesis, (a) - (f) hold for 4¢By, A, B,
ooy A B, and ApBo A By, ... AL By it is easy to check that they hold
for AgBo, A1B1, ..., ApB,,, and A1 By ... . A, B, as well.

Theorem 14. If {(a) A — By — ... — B, — C, n > 1, then {b)
AB.B1 By ... -BkBk—i-l- ....B,_1B,. B,C.AC is a theorem.

Proof. Suppose that (a) and proceed by induction on n. If n = 1, then
AB,.B1C.AC is an axiom. If n > 1, suppose that 7 is a theorem, where
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D = ABy.B1By. ... . BgBiy1. ... By B, AB,. Since B,C is a theorem,
by PR we obtain D.AB1.B\By. ... .ByByy1. ... . By_1 By AC. Hence, by
MP we have (b).

2. THE CONJECTURE

Let A — B — ('; then B is called an interpolant for AC.

Let A— By — By — ... — B,.1 — B, ~—— ('; the sequence
By, ..., B, is called a chain of length n from A to C.

Let there be a chain from A to C; if there is a natural number » such
that any chain from A to C is of length not greater than n, then n is called
the interpolation number for the theorem AC. If there is no interpolant for
AC, then the interpolation number for AC is zero.

The interpolation number for a theorem AC, if it exists, is the unique
upper limit of length of any chain from A to C.

It is clear that if any theorem AC has an interpolation number, then
there is no theorem of TWOID of the form AA.

On the other hand, by using NOID we can prove that for some theorems
AC there is only a finite set of chains from A to €. Hence, for some theorems
NOID and the existence of at most a finite number of finite chains for these
theorems of TWY'-ID are equivalent. -

If the set of chains from A to C is finite, then there is an interpolation
number for AC. On the other hand, a priori there might be an interpolation
number for AC and yet the set of chains from A to €' to be infinite,

Now we state our conjecture:

CONJ,y for any theorem AC of TWC-ID} there is an interpolation
number.

The conjecture is non-trivial. Suppose that

A-— B — ...— By — Bnhy1 — ... — Bpan — C

such that each B;, 1 < ¢ < m is obtained from its immediate predecessor
by a O-rule, and that each B; (and C), m < j € m + n, is obtained from
its immediate predecessor by a l-rnle, in a derivation in normal form. Tt is
clear that each B; is of a degree greater than the degree of its immediate
predecessor, and that each B, (and (') is of a degree smaller than the degree
of its immediate predecessor. If the conjecture is false, then there is a
theorem AC of TWY-ID such that for any m and n there are interpolants
Bl.. . B, Bl By for AC.
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Hence, the conjecture means that if 4 — € in TWYID, then there
is a natural number n such that the number of applications of 0-and-1 rules
in any derivation of A — ' is smaller than n.

Let us consider the conjecture in TRW _-ID. Suppose that there is a
proof of AC' containing n applications of TR. By the normal form theorem,
there are formulas By ... B, and a normal form of this proof

ABy, B\ By, ... By 1By, BoC

containing n applications of TR. Of course, there might be possible applica-
tions of TR in the proof of AC that were not realized ~ we might have used
TR more than n times, but we didn’t. Let us call such applications of TR
hidden. Now our conjecture is equivalent to the claim:

CONJ, The number of hidden applications of TR in a proof of AC
in TRW _-1D, for any A and C, is finite.

This is in TRW _-ID equivalent to the claim:

CONJ, For any A and ' there is a natural number n such that in
any normal proof of AC the number of interpolants for AC in such a proof
is smaller than n.

The conjecture in TW_~ID can be stated is the following form:

CONJ; If AC is a theorem, then there is a natural number n such
that any proof of AC in TW_-ID is of length smaller than n.

Let us show that CONJ3 is equivalent to CONJ4.

Suppose that AC is a theorem and that there is a natural number n such
that any proof of AC in TW __-1D is of length smailer than n, bui that,
on the other hand, there is a chain By,..., B,n, n < m, from A to C. By
Theorem 14, AR, .B1By. ... . By 1By . B .AC is a theorem. Since AB;,
By B;, ..., Bp_1Bn, B, C are theorems as well, there is a proof of AC in
TW_. 1D of length m, contrary to CONJs.

Suppose that n is the interpolation number for AC in TWY-ID and that
there is a proof of AC in TW_.-ID of length m > n. By Theorem 1 there
is a node of this proof of the form Cy. ... .C,, . AC such that Cy. ... .C, are
theorems. It is clear that Oy = Ap By for some Ay and By, 1 < k& < m.
Let us apply Theorem 13. Suppose that there are 1 < 4,7 < m such that
A=A and C = B;, Wehave A — A, — ... — Apyg — Apy —
Ay — By — B;_; — B, — C — a chain of length greater than n from
A to (7, contrary to CONJ;.
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Abstract. This short note will indicate the role Xurepa’s trees have as-
sumed in algebra and will lead the reader to the sources that discuss re-
lationships of Kurepa’s hypotheses with algebraic coustructions, such as
p-groups (both commutative and non-commutative) and valuated vector
spaces. More details may be found in the forthcoming [3] and the references
therein. The relevant initial source is Kurepa's dissertation, (reprinted in

[5]).
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1. NON-ABELIAN GROUPS

The relationship between Kurepa’s trees and non-abelian groups was essen-
tially in the making when B.H. Neumann brought about various charac-
terisations of finite-by-abelian and center-by-finite groups (as in [6]). The
author did not anticipate the relationship at the time; it sprang out of later
generalizations of the results in this paper.

Proposition 1. (Brendle, [1]) The following are equivalent
(1) There is a Kurepa tree
(2) There is an extraspecial p-group which is Z,, but not 2,
(8) There is an FC group which is Z,,, but not Z,,,
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Proposition 2. (Brendle, [1]) The following are equiconsistent:
(1) ZFC +~ KH

(2) ZFCH for any FC-group G and k = wy,wy of |G/Z(G)| = &, then
there is an abelian subgroup A < G, with [+ Ng{A)] = &,

(3) ZFC+ any estraspecial p-group of size wy has an abelian subgroup A
with (G : Ng(A)] = ws.

2. VALUATED VECTOR SPACES

We begin with a statement about the existence of &-Kurepa trees in terms
of valuated vector spaces:

Theorem 1. (Cutler, Dimitrié, [2]) Let k be an uncountable reqular cardi-
nal and R a cardinal greater than k. Then there s a r-Kurepa tree with al
least B w-branches if and only if, for every field F of cardinality < &, there
exists a valuated F-vector space V. with the following properties:

(a) [V] =&,

(b) V(r) =0,

(c) for every i < &, |V/V ()| < &,

(d) the completion V of V in the r-topology has cardinality > X,

Remark: If in the theorem above |V| = R, then the constructed & Kurepa
tree T has exactly ® s-branches.

The following is a strengthened version of Theorerm 1 {from the existence
of a certain valuated vector space to the existence of a Kurepa family).

Theorem 2. (Cutler, Dimitrié, [2]) Let & be an uncountable regulur car-
dinal and ¥ a cardinal greater than k. Then there is « k-Kurepa family
of cardinality > N, if and only if there exists o valuated vector space V. of
cardinality x, over a field of cardinality < &, with the following properties:

{a) Vi) =0,

(b) for every (limit) 1 < k, V/V{%) has the (i, r}-closure property.

(c) the completion V of V in the k-topology has cardinality > N.

3. ABELIAN P-GROUPS

Theorems 1 and 2 are used to give proofs of two Keef’s results, utilizing some
of the techniques similar to those he used. The approach in [2] is different
in that it deals only with the socies of the groups in question whenever
possible.
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Proposition 3. (Keef, [4]; Cutler, Dimitric, [2]) Kurepa’'s hypothesis is
equivalent to the existence of a Cy, -group (7 of length wy and cardinality
> Ry with a p¥t-pure subgroup A of cardinality Ry such that the closure of
A in G in the wy-topology has cardinality « > V.

A group & with properties as in the last proposition, is called a &- Kurepa
extension of A, whereas 4 is a k-Kurepa subgroup of G (all for & > Vp). It
may be shown that if such an extension exists, then there is one satisfying
|G| = . Thus, there exists a x-Kurepa extension if and only if there exists
a Kurepa [amily of cardinality .

Theorem 3. (Keef, [4]; Cuiler, Dimiirid, [2]) Kurepa’s hypothesis is equiv-
alent to the existence of a C, -group of length wy and balanced projective
dimension 2.

Theorem 4. (Keef, [4]) The following are equivalent
(i} ~KH

(2) Every C, -group of length wy has a balanced projective dimension of
at mosi 1.

(3) For any Cy, -groups A, B of length wy, Tor(A, B) is a direct sum of
countables.

{4) For every C, -group A of length wy, and every group B, the group
Ext( A, B)/Ext(A, B){w) is complete in the wy-topology

(5) The cluss of wy-dse’s coincides with the class of pseudo-dsc’s

(6) Anwy-dsc is a dsc iff it is complete in its wy -topology.
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Abstract. The aim of the paper is to prove the completeness theorem for
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Let A be a countable admissible set such that A C HC and w € A. The
probability logic L 4p was introduced in [4] by H.J. Keisler. This logic is
similar to the infinitary logic L 4, except that probability quantifiers FZ > r
(£ is a finite sequence of variables) are used instead of the usual Yz and
Jdz. A model of this logic is a classical model without operaticns with a
probability measure on the universe, such that each relation is measurable.
The formula { PZ > r)o{&) means that the set { Z: (&) } has a probability
greater than or equal to r.

The axioms and rules of inference of L 4p are listed in [5].

The logic Lﬁ% is similar 1o the probability logic L 4p. The only difference
is that the list of axioms of Lg% has the following aziom of finitely many
valued measure added:

\/ceQ+ /\so@bn ((Pi' > 0)p(Z) = (P > c)p(F)),

where &, € A and ®,, = { ¢ :  has n free variables }.

' Research supported by the Science Foundation of Serbia grant number 0401A, through
Math. Inst. Sexrbian Academy of Science and Art
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The probability structure for Lﬁn is a structure (I, ¢} such that U is
a classical first-order structure Wlthout operations and g is a finitely many
valued probability measure.

We shall prove that this axiomatization is complete for ¥; definable
theories with respect to the class of probability models with finitely many
valued measure, by combining a consistency property argument, such as that
of Keisler [5] or Hoover [3], and a weak-middle-strong model construction,
such as that of Ragkovic [6].

We shall introduce two sorts of auxiliary structores.

Definition 1. (1) 4 weak structure for Lf,P is a structure (U, ,un>ﬂ>1 such
that each py, is a fintely additive probability measure on A™ with euch sin-
gleton measurable and the set wz = {b € A" : (U, pn) = 2,0} is pn-
measurable for each (Z,7) € Lﬁg and @ € A™.

(1) A middle structure for Lﬁp 15 o weak structure (U, pn) such that the

following is true: There is a ¢ > O such that for each formula (%, §) € Lfn
and each @ € A™, if up{pz) > 0, then . {pz) > c.

By means of a consistency property argument similazrly as in [3] or [5]
we prove that a Xy definable theory of Lg% is consistent if and only if it
has a weak model in which each theorem of L%}, is true. Let C € A bea

set of new constant symbols introduced in this Henkin construction and let
K=1Lud.

Theorem 1. (Middle Completeness Theorem) A 2y definable theory T of
g

sp s consistent if and only if it has a middle model in which each theorem

of Ix”fg is true.

Proof. In order to prove that consistent 2 definable theory T of Kﬂ% has a
middle model, we introduce language M with three sorts of variables, such
as that of Ragkovi¢ [6]: XY, 7, ... variables for sets, z,y, z,... variables
for urelements and 7, s,17, ... variables for reals from [0,1]. The predicates
of M are < for reals, F,(Z, X) for n > 1 and & = z1,...,2, {with the
canonical meaning & € X} and p( X, r) (with the meaning p(X) = r). The
constant symbols are set constant symbol A, for each ¢ € f{ﬁ% and r for
each r € [0,1]n A. The functional symbols are + and - for reals.

Let 5 be the first-order theory of M4 which has the following list of
formulas: axiom of well-definedness, an axiom of extensionality, axioms of
satisfaction, axioms which tell us that u is an additive function, axioms for
an Archimedean field and axioms which are transformations of axioms of
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K ﬁn as listed in Raskovié¢ [6] (with the remark that gy = pg = p), together

Wlth the aziom of realizability of all sentences ¢ in T
(VL”)El(Z‘, A‘P)J
and the aziom of finitely many valued megsure

(F) (3c > 0YVX) (u(X) > 0 = p(X) > ),

where u(X) > r<fi—:6f>(35)(s >rAu(X,s).
A standard structure for M 4 is the structure

B= (B PEnHu y T S:Aga'r)nZl,goeK‘,reFa

where P C |J,» P(BV), EEC B*x P, F = F'n[0,1], F/ C R is a field,
pBiP — P4, F?— F, <C F2, AB ¢ P and K’ C KL,

The theory S is &y definable over A. To prove that S is consistent it
is enough, by the Barwise Compactriess Theorem (see [1]}, to show that

55 C 5, 55 € A has a standard model. First, note that a weak structure
(U, ) for Kf{% can be transformed into a standard structure by taking:

AB ={de A" (U, ) | ©ld]} and P = {AF : @E[’ﬁn} Since the

axiom
Vo /\we(%]n (PT > 0)@(F) — (P > ¢)plE))

holds in the weak model (U, u,), where Sy C 5j, S; € A is the closure for
the substitution of constant symbols from € and disjunction and {S5)), =
{ ¢ & 5} : whas n free variables }, it follows that

(A {{d e A" {U,pn) = ¢ld, @) 0 @ € Sof, B p +,,<, {d € A" :
(Uﬂ P"TL> ‘: (P[(L’ E.]}? 71)7&21,'\;3650,?6[0,1]0«4
is the standard model for 5} and S, too.

Lasily, note that a standard model B of § can be transformed into a
middle model B of T by taking:

#c RE iff ES(&, Ap) for an n-ary relational symbol R € I,
pBXy =1 iff uB(X,r) for X e P(B).
In order to prove the main result, we shall use the following theorem
(see [2]).

Theorem 2. Let F be a field of subsets of a set Q. Then p is a finitely
many valued probability measure on F of and only +f there s a real number
¢ > 0 such that u(A) > ¢ whenever A € F and p(A) > 0.
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It follows from the Loeb-Hoover-Keisler construction (see [3] and [5])
that the axiom of finitely many valued measure implies that (I} holds for
all internal sets in the nonstandard superstructure. The property {F) also
holds for all Loeb measurable sets because these can be approximated by
internal ones. Thus, it follows from Theorem 2 that each middle maodel in

which all theorems of Lﬁn hold is elementarily equivalent to a probability
fi

model for L%, As a consequence of the preceding, we obtain

Theorem 3. (Completeness Theorem for Lﬁn) A ¥ definable theory T of

ijg 15 consistent of and only if T has a probability model with finitely many
valued measure.

Finally, let us note that the structure {({f, 1), where p is a finitely many
valied probability measure, cannot be axiomatized so that the extended
completeness theorem holds. The following example (see [6]) of a countable

consistent theory 7' in Lﬁn does not have a probability meodel with finitely
many valued measure.

Example Let L = { Ri(2),Ra(2),...} be a Ay definable set which is

not a subset of an element of A, and let w1, @2, ... be an enumeration of all

formulas from L]jl%. Then there exists the first predicate, denoted by 5,(z),

not occurring in @y, . . ., @y otherwise L € TC{gy)u. . UTC(p,) € A, which
would imply that L € A4 as a Ay definable set.
It is obvious that the countable theory

T={(Peyz Dz #ytu{{(Po>0){5(z)A...AS.(z)) :neEw}
U{({Pe<1/2")S(z) néw}

does not have any probability maodel with finitely many valued measure. We

prove that T is consistent in Lﬁn

Let A be a unit interval [O 1] and let x4 be a Lebesque measure on
[0,1]. For B, = [0.1/2*") we have 0 < p(B,) < 1/2*. Let A% =
Bﬁ;l . OB” be a Boolean atom, where B! = B, fori = 1 and 8! = A\ B,
for: = —1.

{u, p:) B, if By, = Sm for some m
By, otherwise.

We interprete the predicates by taking Ry

Since only finitely many predlcates S.(z) can occur in an element of A4, it
follows that the set { Ai-% (A% ) > 0} is finite. The theory T' and

S
all axioms of Lﬁ“ are satlsﬁed except pelhaps the axiom of finitely many
valued measure. But for ¢ = min{ p (A% ) - p {AY% ) > 0}, it follows

] - ﬂ;‘

that this axiom holds as well. Thus, T is consistent in Lﬁ%
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In the natural language there are a great number of words and expressions, more or less complex,
to describe location and direction. In the actual world, the location of a non-moving individual or
direction of its movement, should the individual be moving, can generally be determined in two
ways:

{I) Absolute: Using some sort of coordinate system or some system of addresses, for example:
country - town - street - house - apartment - individual.

(JD) Relative: Using some specific individual as the main point of locative reference and
determining the position of all other moving or non-moving individuals relative to this point.
Usually the point of locative reference is: speaker, listener, a person being the topic of
conversation, or some object. Practically any individual can be the main point of locative
reference in some context, which gives the consideration of locations and directions the highest
degree of complexity.

For expressing relative position of an individual (moving or non-moving) many natural languages
usually have a list of prepositions which play the key role in the description of locations and
directions. For example, English has the following list [5]:

- at, to_from, toward(s), away from, agains!

- on, on o, off

- in, into, oul off. inside, outside, within

- in front of, behind from behind, bevond. before, after
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- by, past, beside, near, opposite

- along, alongside

- across

- around/round, about

- between, among

- above, below, beneath, underneath, up, up to, down, under, from under
- over

By combining prepositions with common noun or noun phrases (in the corresponding noun case)
a long list of locative and directional expressions can be built. For example:

at the table, on the table, in the table, across the road, along the road
near me, away from me, before me, after me

Apart from this there are also adverbs or adverbial expressions such as: here, there (in Serbia
there are three possibilities: ovde, fu, onde), to here, fo there (in Serbian ovamo, tamo. onamo.
from here, from there (in Serbian  odavde, odatle, odande ), lefi, right, this way, nexi o an
similar.

In addition to these simple words or expression, location and direction can be determined by
means of very complex natural language focutions and transformations: relativization,
nominalization, all sorts of embedded sentences and other kinds of syntactic transformations.
Just to feel the complexity of the topic we give several examples:

The book which is on the table was given to me by Mary

My brother proposed that we all go to a theater performance

There was a theater performance tfo which my brother proposed that we all go

The orchard where we are picnicking belongs to my uncle

Intensionai logic [6], [10] seems to be good enough for the treatment of locations and directions,
It suffices to add to the basic types the types of locations and directions. Thus the appropriate lis
of basic type wouldbe o, 1, o, B, w, § T, @ (truth values, individuals, speakers, listeners,
locations, directions, time moments, possible worlds). Compound types are built up in the
standard functional way.

Locative and directional qualifiers and qualifying expressions have difterent roles in the
syntactic and semantic structure of a sentence. The first role 1s the one of verb, noun or adjective
inner participant (obligatory or optional). In this case it belongs to the framework of the verb,
noun or adjective and is reflected in its type. Verbs of such kind are:
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live (somewhere), come (somewhere), arrive (somewhere), arrive (from somewhere),
return (somewhere), come (from somewhere), be (somewhete), ravel (somewhere)

put (something somewhere), take (something from somewhere)

move (something from somewhere to somewhere)

Che types of the verbs live (somewhere), put (something somewhere) would then be:
o{L THHBI(ME) (D), oL L S P)(mHB)(T)(w)

T'he second role is that of adverbial modifiers (of verb, noun, adjective, adverb, sentence). In this
-ase locative and directional qualifiers (or qualifying expressions) do not change grammatical
-ategory (and type) of the expression they modify. For example, locative verb modifiers of unary

and binary verbs are of the types:
(o((oM{ePIEHB) (I @N((PHR)(BNTH )
(o(t (oL LU PHAHN NI H (B HTHBHT)(w)
respectively, and locative sentence modifiers are of the type:
{o(o(w))(w)

Following the ideas developed in (9] and [7] locative and directional deep case operators such as

these:
Loc in, Loc on, Dir to , Dir from , Dir way

can built in the standard intensional logic. For example the sentences:
John came to Belgrade, John came to the capital of Serbia, John walks in a
park

have the following logic structures:

came(John, to Belgrade), came(John, to the capital of Serbia)
I x[park(x)a in x(walk) John))

Using locative and directional deep case operators the corresponding translations would be:
Aa Ab Ap Ad At Aw CA' (J, Dir 1p(B)), Aa Ab Ap Ad At Aw CA'(J, Dir 1o(CS}")
Aa Ab Ap Ad At Aw (3 x)(PA' (x)aLoc in(x) (WA' XTI))
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where J, B, CS, PA, CA, WA are abbreviations for John, Belgrade, the capital of Serbia , par.
came, walks, R'is the abbreviation for R(w){t)(d)(p)(b)(a) where R is a symbol having the typ
of form MM PHTHIN TH ) (M being any type) and &, b, p, d, t, w are variables of types  a, B, 1
0, T, 0 respectively.

In the subsequent text we confine curselves to locatives. The intensional logic we use is TIL [10
in which the basic types are pairwise disjoint non-empty sets o, 1, &, 3, @, T, @ (truth values
individuals, speakers, listeners, locations, time moments, possible worlds, where o={T, 1}). Th
type 7 of locations is a subset of the partitative set P(E), where E is the domain of Fuclidean
space E. Thus locations are sets of vectors. The idea is based on the fact that solid objects in the
actual world (for a given state of affairs) can be treated as sets of material points each having a
specific position determined by coordinates in some three dimensional Euclidean space. The
exact position of the object is then determined by the set of coordinates of all its points and the
less precise position is determined by any set containing the set of these coordinates as its
subset,

We give sorme examples of sentences with locative expressions and their translations into the
intensional logic TTL. The atomic constructions of TIL corresponding to natural language words
are built by the capitalization of the first letter and transformation of the italic format into non-
italic. For txample, for the sentence: John lives in Paris , the corresponding TIL atomic
constructions are: John, Live, In, Paris. The type T of the TIL expression S is usually noted in th
following way: S / 1.

Example 1. The sentence:

John lives in Paris

is built from the binary verb  /live (somewhere}, preposition in, and two proper names:  Joh
Paris. The corresponding atomic constructions in TIL and their types are the following:

Tohn /¢ Paris /1, a/a, b/B, p/x®, t/1, w/®, Lives/ ot R )(B)m)(T) w),
In/m(y)
To simplify the notations we use the following abbreviations:
(i) stands for ()(BYm){(T)(w), 3w stands for Aa Ab Ap At Aw
R’ stands for R(w)(D)(d)(b)(a) (R is of type n(y,) for any )

The construction corresponding to the above sentence is then the following:
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2w Live'(John, In(Paris))
simifar to the previous is the sentence:
John lives in a viflage

n which, however, we have the determiner a. Tn the corresponding TIL construction the common
1oun symbol Village (having the type o(1)(,)) and the existential quantifier 3 occur:

aw [(3 2)([Village'(z) A Live'(John, In(z))]]
Of the same sort are the sentences:

John lives somewhere, John [ives nowhere
having the following constructions:

AW [(3 pLive'(John, p)l, 5w [—(3 p)Live'(John, p)]
where p is a variable of type .

The construction corresponding to the sentence John lives in a village can be written in a more
natural way using the operator So having the type (o(o(1)((;,)){(0(V){)):

AW [So(Village)(5 w [Az Live'(John, Tn(z))]])]
We recall that the definitions of operators So, Ev, both having the type (o(o( U0 (),
read:
So(X)(Y)e (3D[X(2) # Y'(2)), Bv(X)(Y)e V2[X(2) = Y'(2)]
where X,Y are variables of type o(t)(,), and z is a variable of type 1.
The sentence:
John lives in a small village

differs from the sentence John lives in a village only in the adjective small. The corresponding
TTL symbol Small is of the type ((o{(1))(0(1)(;;)))(), so that it suffices to built first the expression
Small'(Village) which is of the type of 1), and after that to precede the construction the same way
as in the case of the sentence John lives in a village. The result will be:

AW [So(yw [Small'(Village)])(y w [Az Live'(John, In(z))])]
Example 2. The sentences:

It is dark in the park, In this room it is very cold
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have similar TIL constructions. The corresponding atomic constructions in TIL are:
Parl / O(L)((D), Room/o(t){(y),  Dark / o(m)(g), Cold 7 o(m)(y)s
Very / (o(m)(o(m) () ()
The / (0(0((IN(OM)(ey)), This / (0(o(NEM(), x /1, In/ ()

where Dark and Cold have the meaning "be dark somewhere”, "be cold somewhere". The
determiners The and This have the same type as So, Ev considered in the previous example. The
constructions:

The(Park), This(Room)

are both of type O(O(l)(w)), so that they can be applied on constructions of type O(L}(m). Th
constructions:

Dark{In(x}), Very'(Cold)(In(z})
are formulae, i.e. they are of type 0, and the constructions:
AW [Az [Dark'(In(x)]], Aw [Az [Very'(Cold){In(z))]]

are both of type O(L)(m) so that the constructions The(Park), This(Room) can be applied on thetr
The new constructions both of type o are obtained in the next step:

The(Park){; w [Az [Dark'(In(x}]]), This(Room)(3w [Az [Very'(Cold)(In{z))]]}
The application of A operator on a, b, p, 1, w, 1s all that remains:

2w [The(Park)(y w [Az [Dark'(In(x}1])] ,

2w [This(Reom)(p w [Az [Very'(Cold){In(z)}]])]
Example 3. The construction corresponding to the sentence:

She wrote a letter with a pencil in a small café
is buiit from the atomic construciions:

Wrote / o1 1 n)(m), Letter / o(t)(m), Pencil / O(L)(m), Café / O(L}((DL

Small / (O(L)(O(L){m)))(w)
So /(00O gy)- She/t, x/1, v/, z/v, In/ gfy)
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Applying the operator So three times on the formula:
Wrote'(She, x,y, In{z))

more precisely applying So{  Aw[Small'(Caté)]), So(Pencil), So(Letter) on the corresponding
sonstructions of type o(U){,):

oW [Az [Wrote'(She, x, v, In(z)]1],
2w [Ay {So(yw [Small'(Café)])(5 w [Az [Wrote'(She, x, y, In(z))1D]]
2w [Ax [So(Pencil)( w [Ay[So(3 w [Small'(Café)]}(; w(y zl Wrote'(She, x, v,
In(z) 1D
respectively, we obtain:

So(Letter) (w [Ax [So(Pencil)(j w [ly {So(3 w [Small'{Café)])
(aw [Az [Wrote'(She, x, y, In(z))IDIDTD

Finally, after applying 5 w the following construction:

AW [So(Letter) ( w [Ax [So(Pencil)(3w [Ay [So{y w [Small'(Café)])
(w [hz [Wrote'(She, x, v, In(z)}[DIDID]

will be obtained. If we want to reduce the whole construction to the usage of the existential
quantifier 3 only, the result is the following:

AW (3 xy z [Letter'(x} A Pencil'(y) A Small'(Café)(z) » Wrote'(She, x, y, In{z))}]

Example 4. In the sentence:
Peter saw two young people there

the quantifier Two, having the expected type (o(o(t)(m)))(o(t)(w)), occurs. For any type & it can
be defined as:

Two(X)Y)e 3 zi2p[2#22A X (2 )AX(ZIAY (ZDAY (2) A Y =Ax[x = 7;v X = 75] ]
where XY are variables of type O(E_,)(m) and x, z;, z are variables of type L.
Atomic constructions for the given sentence are:

Saw /ofL1 n}(m), Peaple/ 0(1}(0)), Young/(o(t)(o(t)(w)))(w)

There / T o) Two / ((0(0(1)(03)))(0(1)(@), Peter /1, x /v, In/w()



48

First we construct Young'(People) which is of type o(1) and after that we apply on it the operator
Two. The obtained construction:

Two{Young'(People))
1s of type o(o(t)(m)) and it can be applied on the formuia-in-intension:
AW [Ax [Saw'(Peter, x, There))]]
which yields the formula:
TwoéYoung'(People))(}Lw [Ax [Saw'(Peter, x, There)]])
[ns the last step we apply the operator 3 w and obtain the construction:
3w [Two(Young'(People))(5 w [Ax [Saw'(Peter, x, There")|])]
Similar constructions can be obtained for the sentences:

Peter mei two poor students in New York
My friend met many good linguists in Prague
Our professor visited a number of good galleries in New York

For locative adverbial modifiers of any type 1 we introduce the binary operation + of type n(n v
). The purpose of this operation 1s to introduce the compound system of addresses such as:

fn Belgrade, Terazije street.
In the actual world he operation p+c has its full meaning when G is a sublocation of p.
Example 5. In the TIL construction corresponding to the sentence:
John lives in Paris, Kennedy streel
the operation + of type {7 ®) occurs. The atomic constructions for this sentence are:
Live/o(1 TE)(OJ), Paris /1, Kennedy-Street /1, John /v, /(1)
The whole construction reads:
aw [Live'(John, In(Paris)+{Kennedy Street))]
The following sentence has a similar construction
He lives in a small village, the main street
AW [So(pw [Small'(Village)D(; w [(Ax [The(yw [Main'(Street)])
(uw [Ay [Live'(He,In (O+(yNIDDHD]
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ft has been built from the following atomic constructions:
Live /o1 :rr,)(m), Srnall / (O(t)(O(L)(m)))(m), Main / (0(l)(0(t)(w)))(m),
He /1, In/ (V)
Street / 0(1)(03)» Village / O(L}(m), So/ (O(O(L)(m)))(O(L)((D)),
The / {o(0(V) gy ())
Example 6. In the sentences:
In New York, every man is nervous
In this country everybody runs
the focative modifiers in New York, in this couniry modify the sentences:
Every man is nervous, Everybody runs

which means that the corresponding TIL constructions corresponding to the above locative
modifiers are of the type (o(o(m)) (@) For the first sentence this is the construction In(New
York), and for the second the the construction In(u). The atomic constructions are the following:

Run/ O(l)(m), Is-nervous / 0(")(03)’ Person / O(L)(m), Man / O(L)(m),
Country / 0(l)(m)
New York /1, So /((O(O(L)(m)))(O(L)(m)), This /(o(o(L)(m)))(o(L)(m)),
_ In /({00 (V)

and the complete constructions:

W [(In(New York))Y{yw [Ev(Man)(Is-nervous)])]]

5w [This(Country)(Au[(In{u)Y (5 w {Ev(Person)(3 w [Ax Run'(x) )])])]
Example 7. For the sentence:

In every small town, in the suburb, evervbody knows everybody

the compound construction Tn{z}*+n{u) plays the role of locative adverbial sentence modifier.
The atomic constructions are the following:

Know /o(t L)(m), Person /O(L)(w), Town /O(L)((D), Suburb /0(1 L)(m),
x/vy/fyz/iLu/y

Ev/ (0(0(1) () M0y The /(000 g)):
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/(000 (@) (V)
and the construction corresponding to the whole sentence:
AW [So(yw [Small'(Town3])( w [Az [The(y w [Au [Suburb'(u,z)]})
((In{z)+Tn(u))'(h w [Ev(Person)(3 w [Ax [Ev(Person)
(W [Ay [Know'(x,y))DIID]
Example 8. In the sentence:
In this country, one finds book-shops on all major streels in every town

we have both a locative sentence modifier (in this country) and locative inner participants (two of
them: on all major streets, in every town). The atomic constructions are:

Fmd /o1 ﬁ)(m), Major / (0(1)(0(1}((0)))(03)
x/, v/, z/1, uf, One/t
In/wm(), In/ ((O(O(m))(m))(t)
Country / 0(1)(®), Town / 0{1)((0), Book-shop / O(L)(m)’ Street / O(L)((D}
S0/ (0(0(1) () O gy EV/ (0(0(t) ) (00,
This / (0(0(V) gy ) 0(Vgyy)
The complete construction reads:

This(Country)(;w [Au [(In(u)Y(,w [So(Book-shop)

O [MJEv(Town) (w [AY[Ev(jw [Major'(Street)])

(yw [Az [Find(One, x, In(y)+Oo(z)DIDIDDID

As far as the foundation of the  meaning of locatives is concerned there are several refations
which have been recognized and explored. The most important is the relation:

being on that and that place
which can determine:
- location of an individual (expressed by a noun or noun phrase)
- location of an action (expressed by a verb or predicate)
- location of a property (expressed by an adjective or adjective phrase)

- location of an event (expressed by a formuia) etc.
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On the basis of the ideas of Resher's topological logic [8] we give some of the meaning
postulates which characterize the location of an event (expressed by a formula of TIL} and the
location of an action (expressed by a unary verb).

I F,G are any formulae and  p,s are locative formula modifiers (having the type (O(O{m>)){m)),
then the following meaning postulates seem to be acceptable:

pl(km (=F)) = ﬁF)a(?\,(l)l;‘}
Velp'(uwlg Gow FID] < o’ wlBvhr(3w F)])
Evb'w F) = F

plhw [ w FY)= c(hwF)
or, instead of the fast postulate:
p'w [C'(Hw F)]) < (p+oy(aw F)

The constant locative modifier Evh, as well as the modifier Soh (meaning everywhere,
somewhere), both of type (O(O(w))}(w) are introduced by the obvious definitions:

Evh'(sw F) & V¥ p[p'(hw F)], Soh'(w F) < d plp'(w F))

The only rule of interfevence is:
F

p (AwF)
It does not seem acceptable to have as a meaning postulate the converse of the implication:
PGW(=F)) = —p'Gw F)

The reason is the following: If it is the case —p'(3w F), i.e. if itis not the case p'(3 w F), then one
possibility is that p'(y w(—=F)) (i.e. on location p takes place —F), but it could also happen that F
takes place on some other location which is not on p.

For the location of an action the corresponding meaning postulates would be the following
V plo(w (PO Nl o'(w EvRE)) )
(Evh'(XD(v ) = X(v)
POw [S'(X)N) < o' (X)(y)

or, instead of the last postulate:

p'Gw ['(ODY) & (p+o) (X))
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where p, ¢ are variables having the type of adverbial verb modifiers ((O(L))(O(L)(w)))(m), Xisa
variable denoting an unary verb, p'is already introduced abbreviation for p(w) (i.e for
p(wWH)(d)(p)(b)(a), where a, b, p, d, t, w are variables of types o, 3, ®, 8, T, @ respectively), v is
a variable of type 1, Evh (as well as Soh) is a constant adverbial verb modifier meaning
everywhere (somewhere) introduced by definitions:

Evh'(X)(y ) <> ¥ plp'(X){y)), Soh'(X)(v) < 3 plp'(X)( )]
The corresponding rule of interference is:

X(y)
o' (XXy)

Adding some new meaning postulates, for example those related to the Boolean or non Boolean
conjunction of locative modifiers, requires much more investigation in the light of results {11,

[4]
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Ahstract. The continuum problem and the existence of ultrafilters with
jumping cardinality over smaller cardinals are related via the two cardinal
problems.

Keywords: continuum problem, nonregular ultrafilters, two cardinal prob-
lem.

In ZFC all cardinals are on the aleph line which can be expressed by
QN«:. = Nar+f(ce)* o e O‘l"d,

where f : Ord — Ord, (we call it a continnum displacement function).
By Cantor’s theorem f{e) > 1, oo € Ord. Also f has to by monotonic and
¢f(Nagf(ay) > Ny The behavior of f has been investigated in detail; we
list some exciting possibilities:

(Vo) fla) =1 «— GCH, is consistent with ZFC, Godel,
F{0) = 2, consistent with ZFC, Cohen ’63;

“On regular cardinals f can have arbitrary values”, (respecting monotony
and the cofinality condition), Easton "67;

ZFC + k is a measurable cardinal F (Ya < x)f(a)j =1 — f(r) = 1.
Scott 61
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ZFC F (Ya < w)fla) = 1 — flwy) =1, Silver 74;

ZFCF (Yo <w)f(a)=1— flw) <4, the same holds for all singular
cardinals of the uncountable cofinality;

ZFC + 2% is RVM & (Ve < 2%0)2% = 2% Prikey 74
If 2%¢ is a real valued measurable then it is weakly inaccessible, hence

280 = wpig) = Wy, Lo FO) = 20,
(Vn)f(n)= 1A flw) > 1, consistent from the existence of huge cardi-
nals, Magidor '77;
Chang’s conjecture implies: if Ry is a strong limit then 2% < R s
Magidor ’77;

There is an ¥, saturated ideal over w; which implies 2% = ¥, — 281 =
N, Prikry, Jech "74;

When f(o) < 2% we say that f is bounded at o, and when f{o) = 2%
we say that f is {very) unbounded at o. Let T" be a first order theory with
unary predicate symbol U. T admits pair (o, 3) if there is a model of T of
cardinality « in which the cardinality of U is 4.

Definition 1. The pair (o, 3) 1s {when exists) :

Left Large Gap (LLG) for T off T' admits («, 3) and does not admit
any (o', 3) for o' > a.

Right Large Gap (RLG) for T off T admits (o, 3) and does not admit
any (o, 3') for 5" < 5.

Large Gap (LG) for T iff (e, ) is LLG and RLG.

It is clear that we can correspond partial cardinal functions A;, ¢ € 2,
to any theory 7', so that (when exists):
(Aolr), k) is LLG,
(&, A1(k))1s RLG,
for all K.

Lemma 1. Lei Ag and Aj be cardinal operations defining LLG for theories
Ty and Ty |, for many k. If one of the following holds:
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L GCH;

2. Ag 18 monotonous;
3 Ap(R)1 = Aplw);

then there is a theory T such that ((AgoAf)(k), &) is LLG for T. Similar
is true for RLG.

Proof. Let % = (4,V,...) be a model for 77 such that V is an interpretation
of predicate symbol § and |V} = Aj(x). 4] = (Ao o A))(4).

Let 8 = (B,U,...) be a model for T2 such that U is an interpretation
of predicate symbol P and |U| = &, |B| = Aj(x). We may suppose that
Ly, M Ly, = 0 and that 75 has universally closed axioms. Consider the
extension T of Ty obtained in the following way. First, take 77 to be a theory
in the language L1, U Ly, with the axioms of Ty. Extend T7 to T" adding
interpretations of axioms of 7% in the language L7, UL7,. The interpretation
is defined in the following way. On Ly, it is the identity. In the axioms of T3
every subformula of the form {Jz )¢ is replaced with the formula (3z)Q(z) A
. The universe of the interpretation is ¢}, so we introduce the axiom
{(32)Q(x). If Fis an n-ary functlon symbol of the language then the axiom
of T is formula Q{zy) A ..o A Qay) — Q(F(21,...,2,)). Using the bijection
|B| = |V, a model 2, an expansion of 2, is constructed. Let f be such a
bijection. Extend f to an isomorphism. For ¢ € Ly, define A = fle). It F
is a function symbol in Ly, define:

By r-1 —1f ., e ;
FAay o an) = F (f Fal),...,f (ap}) if ah‘...'?ane v,
arbitrary otherwise.

If Ris a predicate symbol in Lz, define the interpretation of £
B%ay, yan) iff RP(F M a1), o N (1))

Now consider predicate symbol P in Ly and model %" = (A, U, ...} for T'. A"
is ({Aago Af)(k), x) model. Let % = (A, V,U,...) be some model for T with
|| = k. Let ¥V and U be interpretations for  and P, respectively. Lef
Ly, be (the reduction of L) {Q}U Ly, and let T have the interpretations
of axioms of T as the only axioms. It follows that [V| < Al(x). Using the
hypothesis in a similar way, we get |A] < (Ago Ap)(x).

Corollary 1. Let Ty and Ty have (A(x),k)) and (k,I'(x)) as LLG and
RLG, for many k, respectively, Then there is theory T for which (A(r), (%))
is LG
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Corollary 2. With the hypothesis of the corollary the following is true for
any ultrafiller D:

HMVWHT HWHM<HI w)l < AU #D

There are theories [1] Ty and Ty such that for all x:

(k7. K) is LLG for Ty; (2% k) is LLG for Ts.

From Lemina 1. we get:

for all A, {(wy(A),A) and (3,(A), A) are LLG if T is any finite combi-
nation of w,(), Jo() then for all A, (T{A). A\)is LLG.

Lemma 2. Let D be a uniform ultrafilter over A. If X% = X then
[T Al = 2%

For any wniform witrafilter D over « cardinal o define its cordinal trace
by:
ctrp={Ajw<A<2° A A= |Ha¢|, for some a; <o, 1 € }.
D

If \etrp| 2 1 we say that D has cardinal jumps or D is jumping. The
first examples of jumping ultrafilters over small cardinals are the nonregular
ultrafilters of Magidor [2].

Let (I'(s}, k) = {(we(k). k) = (w,.5) be a LLG for some theory T'. Let
D be a uniform ultlaﬁlter Qvel wy with jumps after «. i.e.

TT=0 < [T]wel,
D D
and let w>*s = w,. Then using the above conditions and Corollary 2.
! Hh,' = u.)-,:’, < ‘Hw’o—| = 2wa = wa_i_f(a)
D
WSH‘*’E < wel I_J:ﬁ|)_w7,?,4.§1

e n<o+t floy<n+&<n+o

this means that 2% is limited by the sum of minctrp and the length £
of LLG, thus the continuum function is well-bounded. On the contrary.
the large f(o) reduces the possibility of jumps, for instance max{w,|o|} <
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| fla)], makes n < f(o) < n+ ¢ impossible. We can formulate the former
as foliows.

Lemma 3. Let D be a uniform uvitrafilter over A, jumping after k. If there
is @ theory for which (F(a}, o) is LLG for sufficiently many o and I'{(x) = A
then A<* = X implies f(\) is well-bounded.

Some examples with the above notation:
L. (D nicely separates & and wy) | [[ps] < w, — f(o) <o,

2. (V€ € w)(Vr) (welr), k) is LLG. Let we (k)% = we (k). If there is a
uniform ultrafilter over wg (%) jumping after x then f(o}is a successor
ordinal and well-bounded.

3. Ler D be a jumping uitrafilier over ¥y5 and Nf?” = Nis.

Aa) If [ Tpw| < Nys then 2% < Nag.

(b) If 2%° = R, then there is no jurnping ultrafilter over Nys.

4. Let 2%s = N, +1 and Nizg“ = Ni5. Then if there is a jumping ultrafilter
over ¥y, there would have to be |[[pwl| = ¥, , thus singular. Is it
possible? o

Questions.

1. Is condition A<* = A in Lemma 2. necessary?

2. Can Lemma 1. be generalized to combine more than finitely many
LLG s into LLGT

3. Are there examples of LLG (T(k), x) with T'{x) > R, (&) for sufficiently

many w7
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The main purpose of this note is to give an answer to a question of A.R.D.
Mathias (see [3; 8.6]). We assume that the reader is familiar with the basic
theory of Forcing. Recall that for a filter I/ on the set of pasitive integers
N the Prikry poset, Py, is defined as follows: a typical condition is {s, 4},
where s is a finite set, and A is an element of /. The ordering is defined by

(1) {s, A) < (¢, B) if and only if ¢ is an initial segment of s, 4 2 B, and
s\ tis included in B.

Recall that [A]? denotes the family of all unordered pairs of elements of
the set A. An ultrafilter & on N is selective (or Ramsey) if and only if for
every partition of the family [N]2 into two pieces thereis an A € If which is
homogeneous for this partition, i.e. the set [A]? is included in a single piece.
The following remarkable theorem was proved by Mathias in [3; Theorem
2.0):

Theorem 1. If M is ¢ transitive model of a large enough fragment of Sel
Theory and U is o selective ultrafilter in M, then a set X is Py-generic over
M if and only if it is included modulo finite in every A €N M.

This result is the main ingredient of the proof that in Solovay’s model
in which all sets of reals are Lebesgue measurable the partition relation
w — (w)” holds; see [3]. In [3; 8.6] Mathias asks the following (recall that
L denotes the constructible universe):

Question 1. Is there a criterion similar to that of Theorem 2.0 for a pair
(X,Y) of reals to be Py x Py-generic over L?
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The motivation for this question comes from the Recursion Theory, and
the question about the complexity of the set of all hyperarithmetically en-
codable subsets of N; see [3; page 101}, Below we will give such a criterion,
even without using an assumption that the ground madel is the subuniverse
of all constructibie sets. Let C denote the starndard poset for adding a Co-
hen real. We say that posets P and Q are equivalent if their regular open
algebras are isomerphic, l.e. if they yield the same forcing extensions. By
[1; VIL7.11}, if @ is densely embedded into P (see [1; VIL7.7]) then P and
g are equivalent.

Theorem 2. For every filter U, poset Py X Py 1s equivalent to Py x C.
Proof. Let PPy be the following poset: a typical condition is p = {8y, 5, Ap),

where (s, A,) and {f,, A,) are conditions in P, and the ordering is defined
by p < ¢ if

(2) {85, Ap) <y, (59, Ag) and {1, Ap) <y, (1g, Ay
Obviously PPy is densely embedded into Py x Ty by
{s,t, Ay = {{s, A), (1, A}).

Now consider the product P x C. We canr assume C is the poset of all finite
partial functions from N into {0,1,2} ordered by the extension, because
all nonatomic countable posets are equivalent (see [1; VIL{C3)]). Let PCy
denote the set of all conditions in Py x € of the form

p={(s,4),0), where dome = |s].

Obvicusly PCyy is dense in Py x C, so it suflices to prove that it is isomorphic
to PP The mapping from PCy into PPy defined by

({ng,...,ne}, A, o) — {ng|o(?) # 0}, {nila(i) £ 1}, A)
is the desired isomorphism. This proves theorem.
Corollary. 4 finite product of two or more copies of Py is equivelent to
Py % Py

Note that the proof of Theorem 2 gives the following more precise state-
ment (yx is a characteristic funection of the set X):

Theorem 3. If M is a transitive model of a large enough fragment of Set
Theory and U is a selective ultrafilter in M, then a pair (XY is Py x Py-
generic over M if and only if:
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fa) X UY is Py-generic over M, and

(b} function xx + xv: X UY — {0,1,2} s C-generic over M[X UY].

So by using Theorem 1 and the well-known characterization of Cohen-
generic reals (see [2]), we can answer the above question of Mathias.

Corollary. If M is a transitive model of a large enough fragment of Set
Theory and U is a selective ultrafilter in M, then a par (XY} is Py x Py-
generic over M of and only if:

fa) X UY is included modulo finite in very A€ U N M, and

(b} function xx + xy: X JY — {0,1,2} avoids all meager F, subsets of
{0,1,8V%YY coded in M[X UY].
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Abstract. We give an overview and a comparison of topologies in the
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plication, is continuous, unsolvable terms are compactification points and
normal forms are isolated points with respect to the topologies considered.
Similarities and differences between these topologies will be pointed out as
well.
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1. INTRODUCTION

The type topology in untyped lambda calculus is introduced via typability
in intersection type systems. Intersection type systems are extensions of
simply typed lambda calculus with an additional type forming operator,
intersection, and a special type w which is given the property to type every
lambda term. The sets Vr, = {N ¢ A|T'F N : ¢}, whete T F N . g
means that the lambda term. N is typable by the type o in the context T
in the intersection type system. form a basis for this topology. The set Vr »
consists of all lambda terms typable by the same type o in the given context
T.

Tree topology is based on the notion of Bohm trees (see [1]}. The tree
topology on the set of all untyped lambda terms A is the smailest one that
makes the mapping BT : A — B continuous, 5 is the set of all Béhm-like
trees, meaning that the open sets in A are of the form BT ~1(0), with ©
open with reference to (w.r.t.) the Scott topology on B. The sets Oprp =
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{N e A|M® C N}V form a basis w.z.t. this topology on A, where M) is
the lambda term reconstructed from BT*{ M), the Bohm tree of the lambda
term M of length %&. The set O i consists of all lambda terms whose Bohm
trees contain the same Bohm tree of 445,

Once again intersection type systems are tied with topology. This time
it is the filter topology on the set of all untyped lambda terms A. The set
of filters F is defined on the set of intersection types. The filter topology

is the smallest topology that makes the mapping || | : A — F, where
M| = {¢]l' F M : ¢}, continuous. The open sets in A are of the form
O|I= 1, with @ open w.r.t. the Scott topology on the set of filters JF.

Using topological tools, basic lambda calculus concepts can be expressed
topologically. Unsolvable terms are compactification points and normal
forms are isolated points. The basic operation of the lambda caleulus, ap-
plication, is continuous, w.r.t. these topologies.

In Section 2 the type topology is presented. In Section 3 topological
properties of the lambda calculus are investigated. Section 4 is a brief
overview of two other topologies, tree topology and filter topology. Similar-
ities and differences between them are discussed.

2. TYPE TOPOLOGY

The types of an intersection type assignment system are propositional for-
mulae with the connectives — and N , where 7 is a specific conjunction,
called infersection, whose properties are in accordance with its interpreta-
tion as an intersection of types. The basic notions and properties of inter-
section type assignment systems are given in [3] and can be found in the
surveys of typed lambda calculi in [2] and [5].

The set of intersection types 1" is defined in the following way:

Definition 1. (i) V ={a.8,v,01,...} CT (V is a denumerable set of
propositional variables),

(it) wel.
(iit)  Ife,7e€T, then (0 — 7)€ T.
fiv)  Ifo,reT, then{onT)eT.

Let a, 3,7v,01, ... be schematic letters for type variables, and let 8, ¢, o, 7,
d1,... be schematic letters for types.

Definition 2. (i) A pre-order < s introduced on T in the following way:
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lLLo<co S5 (c—pin(o—=71)<o—(pnT)
Zo<r, r<p=>0a<p 6 onNv<g, onNr<r

F oo<w T o<T, clp=>a<TNp
{Jwlw—w . o<, T€<H =20 —-7<0—71].

(t1) a~7if and only ife <t andrT < 0.

Let A be the set of untyped (type—free) lambda terms, and let x, 4. z. 24, ...
be schematic letters for term variables and M, N.P, @, M,,... schematic
letters for lambda terms. The expression M : o, called a statement, where
M e Ao € T links the terms of A and the types of T\ M is the subject and
o is the predicate of the statement M : ¢. If z € V, then 2 : 7 is a basic
statement. A contert is a set of basic statements. [', A, Ty, ... are used as
schematic letters for contexts. B will denote the set of all contexts.

Definition 3. The following rules determine the intersection type assign-
ment system D«

: T
{(start rule) M—UE—;
Fr:a
I+-Mic—1 I'EN o T,o:0bM:7
— D (=1 ’ :
(= £) F'-MN:7 ( ) FE{(AaM):e— 7
nE 'FM:enT 'eM:ionr (1 I'-M:o THM:7
(NE£) T-M:0 ' FEM:7 THFM:onvr
W) T
'bM:0c o<
(<) :
I'-M:v

Some examples of typability in this system are:
F Azzr: (oN{g — 7)) =713
Q= (Azaen)(drar) e

Every term in normal form has a principal type in the system Dl The
most important property of the principal type of a normal form N is that all
other types that type N can be obtained from the principal type by some
operations on types (see [6]). We will need later the following property,
which is proved in [5].

Proposition 1. (i} Let N be a normal form, and let T F N . 7 be a
principal typing of N. Then, if T = M &, there is an n-reduct ¢ of N such
that M —35 ().
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(i} Let N be a fn-—normal form, and let T' - N : 7 be a principal typing
of N. If ' M =, then M —3 N.

It is possible to introduce a topology on the set of lambda terms A via
the typability of lambda terms in DQ<. We shall call it type topology.

Let us consider a set of all lambda terms that can be typable by the
same type in the same context, say

Vre={MeAlTFM:o }.

If I' is empty, meaning that the terms typable by o are closed, i.e. do not
contain free variables, then we will write just V,.

I'UA will denote the context obtained from the contexts I' and A, such
that x co e TUA fandonlyifz:oc&€l,ora:0€ Aorz: ¢’ €T,
z:0” € Aand o =d' No”.

Lema 1.(i) ¢ is inhabited if and only if Vp, # 0 for some context T'.
(”’) VF,a n V/_\.,'r c VFUA,J["IT-

(11i) Vr,, = A for any context T".

Proof.
(i) Obvious.

(i) From M € Vr,NVa, it follows that T M : 0 and A - M : 7 for
some contexts I and A. Obviously, TUAF M :oand TUAF M : 7.
Herce, by (NJ) we obtain that TUA F M : o N 7. The converse does
not hold, eg. ifz:otr a0, 27k a7, thenz . onN7rz 0, o
cn7hkae:rand hence 2 :oNTF 20N 7 by (N/). However, from
z:oNTka:onT wecannot conclude z e a:ovandax:7kF a7,

(iii) Obvious, since every lambda term is trivially typable by w in any

context.

Proposition 2. The family {Vrq}reB e form a basis for a topology on
Al

Proof.

(i) Every lambda term is typable in DQ«; so for every lambda term
M € A there is a context " and a type 7 € T such that T'F M : 7.
That is M € Vp ;.
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(ii) Forevery twosets Vr, and Va -, we have that Vo, NVa » C Vroa oers

according to Lemma 1(ii).

The introduced topology will be called type topology. Open sets in the type
topology are defined in the usual way:

Definition 4. A4 set @ C A is open if for any term M € O there is a set
Vr » such that
MeVr, and Vr,CO.

3. TOPOLOGICAL PROPERTIES

Familiar Jambda calculus concepts can be expressed topologically. Now we
can show the continuity of application with respect to the type topology.
We will show the following properties of the type topology:

- Application is continnous with respect to the type topology.
— Unsolvahle terms are compactification points (bottoms).

~ fAn—normal forms are isolated points.

Theorem 1. (Continuity Theorem)
Given F & A, Then the map M — FM s continuous {w.r.t. the type

topology).

Proof. We have to show that
(YVre 3 M) (3IVrs 5 MIQ EVrs = FQ € Vr,).

If M € Vre, then T' = FM @ g. By the structural property of the intersec-
tion type system D¢ given in [3] there is a type ¢ such that

P’FF:6d—-candl - M4

Hence, there is Vr s to which M belongs. f @ € Vrs,ie, T F @ : 4, then
by (— E') we have that I' = 7'¢) : ¢.

Let us consider some properties of the introduced topology that are
related to 8- and n- reduction.

Lema 2. Let M, N € A,
(1) f M —3 N, then¥Vo e TV € B (M €Vr, & N €Vr,).
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(i) M =, N, then¥o € TYT € B (M € Vry => N € V).

(i) If N € A is a By—normal form, then

M g N ifand onlysf Vo € TV € B (M € Vr, & N € Vr,).

Proof.

(i) The subject reduction property helds for the intersection type system

(if)

(iif)

and therefore it M —g N, thenVo e TV € B (M € Vr, = N €
Vr o). But it implies that Vo ¢ TV € B (N € Vr, = M € Vr, ) as
well, since D)< is closed under §-expansion.

M —=, N implies that Vo € TVI' € B(M € Vr, = N € Vr, ) since
D« is closed under n-reduction, but it does not imply the other
implication because it is not closed under 5-expansion.

A counter-example is 1 = Axy.x2y —, Az.x = |, but there are types of
[, which are not types of 1 such as &« — «, where a is a type variable,
since

FAzae o — oa, but Y ryay o — o
Hence, | € Vo, but 1 &€ V,_,,.
(=) By (i).

(<) Let T' = N : o be a principal typing of N. Hence, [' - M : =.
Therefore by Proposition 1(1) M —3 N.

J-equal terms cannot be separated. Lambda terms that are S-equal
belong to the same open sets therefore we shall identify them. By “up to
F-equality”™ we mean that if a normal form N is in a set, then all the terms
that are fJ-equal to N are in the same set.

Proposition 3. (i} Unsolvable terms are compactification points (bottoms).

(ii) If N is o normal form, then there is a type p € T and a context T

such that
Vf,p = {PIAN —y P}( up to :5).

(iii) Br-normal forms are isolated poinis (up to =g).
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Proof.

(i) If M is an unsolvable term, then it is typable only by a type, which
is equivalent to w, therefore if M € Vr,, then ¢ ~ w. However,
Vre = Vrw = A by Lemma 1(ili). Therefore A is the only open
set containing unsolvable terms, and hence they are compactification
points.

(ii) If N is a normal form, then there is a principal typing I F N : 7. For
every term M for which I' - M : 7, i.e., M € Vr, by Proposition 1(i)
there is an n-reduct P of N such that M —3 P. By Lemma 2(i}) P €
Vr .z, also. P is a normal form as well. Hence Vr, = {P|N —, P}
up to F-equality, since M =5 P .

(i) Obvious, since if N is a fHn-normal form, then by (ii) there is a Vr »
which is a singleton, i.e., Vr » = {N} up to fF-equality.

This topology is not yet g, since two different unsolvable terms cannot
be separated.

The Genericity Lemma, is a consequence of the Continuity Theorem, as
proved in [1].

Proposition 4. (Genericity Lemma)
Let M and N be lambda terms such that M is unsolvable and N has a
normal form. Then, for oll lambda terms F

FM =N =VYLeA(FL=g, N).

Proof. Let Ng, be the 3y-normal form of N,ie, N —p, Ng, If1
Ngy @ 7 is a principal typing of Ng,, then as shown in Proposition 3(iii},
there is Vi » = {N3,} which is a singleton up to =g. Again, by Proposition
3(i) Vr. = A is the only open set containing the unsolvable term M. By
the Continuity Theorem 1

(WWr3N)3Vrs> M)(L eVrs= FLEVr,).
Let us choose Vr . = Vp o = {Ng,}. Namely, Vrs = Vr, = A, and so if

L. e A, then 'L = Ng,. By Proposition 1(ii) this means that FL —3 Ng,,
and so F'L =g, N.
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4. BOHM TREE TOPOLOGY AND FILTER TOPOLOGY

The filter topology on lambda terms is introduced using the intersection type
system, as well.

Let 7 C P{T) be a filler model. The valuation of lambda terms §| |} :
A — Fis given by the following mapping

IM|| = {olTF M : 0} € F.

The Scott topology is defined on F in the following way:
Definition 4. A set O C F is open if:

(i) de O and d Ce, thene € O;

(1t) Ud; € O, then there is an v such that dy, € O.

This topology induces the so-called filter topology on A in the sense that
open sets in A are ||O||7! C A, where O C F is open w.r.t. the Scott
topology on filters.

The type topology and the filter topology are equivalent on the set of
¢losed lambda terms, in the sense that open sets w.r.t. the type topology are
open w.r.t. the filter topology and vice versa, as shown in [4]. The advantage
of the type topology is that it is defined on lambda terms directly, while the
filter topology is actually induced by the topology defined on filters.

Fach lambda term M € A is associated with a certain tree BT{M),
the so-called Béhm tree. The tree topelgy is based on the notion of Bohm
trees. We will recall here only some elementary notions, since the Béhm tree
technigue is rather involved, so for more details we would refer the reader
to [1] (Chapter 10). |

A X-labelled tree is a tree where an element of £ is written at each node.
Let

T={L}U{Az1...2py|n € N zy,.. ., 2,y variables}

Then BT(M) is a X-labelled tree defined as follows.

BT{M)= L if M is unsovable

AL .. TpY
BT(M) = VAN if M hasahnf Axy...z,4dd ... M,
BT( M) BT(M.,,)
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Let 5 denote the set of all BGhm trees. Then B8 = (B C) is a complete
partial ordering. Consider the cpo B with the Scott topology, as in Definition
4.

The tree topolyy on the set of all lambda terms A is the smallest one
that makes the map

BT :A—=B

continnous, meaning that open sets of A are of the form BT~1(0), with ©
Scott open in 5.

A-equal lambda terms cannot be separated neither in the tree topology.
since they have equal head normal forms, and hence the same Bohm tree,
nor in the type topology. since they are typable by the same types, as shown
in Lemma 2(i). On the other hand n-equal terms can be separated in both
of these topaologies, since they do not necessarily have the same head normal
forms and they are not lyped by the same types. For example n-equal terms
1= Awy.wy —, Av.z = | are not typable by the same types as we saw in the
proof of Lemma 2(ii}). Both of them are head normal forms, even normal
forms, but not equal. This means that their Béhm trees are different.

REFERENCES

'1] Barendregt, II.P., The Lambda Calculus - [ts Syntar and Semantics,
2nd edition, North-Holland, Amsterdam, 1984.

[2] Barendregt, H.P., Lambda calculi with types, n: S. Abramsky, D. M.
Gabbay, T. 5. E. Maibaum (eds.), Handbook of Logic in Computer
Science, Oxford University Press, Oxford, 1992, 117-309.

[3] Barendregt, H.P., Coppo M., and Dezani-Ciancaglini, M., A filter
model and the completeness of type assignment, The Journal of Sym-
bolic Logic 48 (1983), 931-940.

[4] Ghilezan, S., Intersection types in lambdae calculus and logic, Ph. D.
Thesis, University of Novi Sad, 1993.

[5] Krivine, J.L., Lambda-caleul types et modéles, Masson, Paris, 1990.

[6] S. Ronchi della Roca and B. Venneri, Principal type schemes for an
ertended type theory, Theoretical Computer Science 28 {1984), 151-
171.



SCIENTIFIC REVIEW (1996), Number 19-20, pp. 75-81

GENERALIZING LOGIC PROGRAMMING TO
ARBITRARY SETS OF CLAUSES

Slavisa B. PRESIC
Faculty of Mathematics, University of Belgrade,
Studentskr trg 16, 11000 Belgrade, Yugosiavia

Abstract. In this paper, which is a brief version of [3], we state how one
can extend Logic Programming to any set of clauses.

Keywords: Logic Programming, deduction, completeness

The basic part of Logic Programming, particularly Prolog, in fact deals with .
the following two inference rules:

{1) Fopbp

(2) FopVaqpVoVogebpe— Fla, g

{where F is a set of (positive) Horn formulas and p is any atom,
i.e. a propositional letter)

Indeed, the informal meaning of rule {1} is:
An atom p is a consequence of a set of elauses if p is an element
of that set.

Similarly for rule (2) we have this meaning:

An atom p is o consequence of @ set F . pV =g V ...V g (i.e of the set
Fopp A A g = p), ifqr, .. g are consequences of the set F.

In the sequel we use the following facts from mathematical logic (see [2]):

(3) The notion of formal proof in the case of propositional logic (assuming
we have chosen some tautologies as axioms, and that modus ponens
is the only inference rule).
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(4) The Deduction theorem' : FLAF B «— FF A= B where F is
u sel of propositional forinulas and A, B are some such formulas.
(5} Completeness Theorem: Any propositional formula is a logical the-
orem if and only if it is o tauiology.
We also use the symbols L, T which can be introduced by the following
definitions
1 stands for o A -az T stands for a VvV ~a

where @ is an atom {chosen arbitrarily}. Further, let F be any set of propo-
sitional! Jormulas and 4 a formula or one of the svmbols L, T.. Then a
sequent is any expession of the form F - 4, with the meaning:

¥ Is a logical consequence of F

Lemma 1. Let F be any sei of propositional formulas not containing the
atom p, and let ¢1{p), ¢2{p), ... be propositional formulas containing p. Then
we have the following equivalences

{6) (v) Fopdp).dalp). b p —— Fon{ L), dal{ L), ... b L
(11} Foop), d2lph o b op = Foo{Thga{T), . F L

Proof. First we give proof of the —- part of (i). Then, we have the
following "ruplication-chain™

Fo@ulp)s dalp), . b p
— For some formulas fi, ..., f, of F and some formulas ¢y (p), ..., dis(p)
we have: fi, .., [ @np) o 0islp), .. F p
{ Finiteuess of the propositional proof)
— ki o dalp) S d(p)
(By (4))
— Formula
h= = h=>eap)= .= dslp)=p
is a tautology
(By {5))
— Tormula fi = .= fi=en(l) = = (L) = L

is a tautology

n fact, only the ——-part is the deduction theorem. But, the —-part is almost
trivial.



—— Formula
iz o= fadi(li= . =2 ¢{l)=> L
is a logical theorem

(By (5))

— Formula

Ji oo fra bl L), o @is( L) F L
holds.

(By (4))
— Fodq (L), do{ L), ... b L

which completes the proof. Proof of the — part of (i) reads:
Fo( L), ol L), - L

—— For some formulas fi, ..., f of F and some formulas ¢;{ 1), ...

we have:  fi, oo fro0n{L), ., dis(L), .. F L
{Finiteness of every formal proof)
— Ffiz o> f=2dal)l= =2 d(L)= L
(By (4})
— Formula
A== haoa(l)=> =2 d:(L)=> 1
is a tautology
(By (5))
— Formula
fi= .= f=0p) = .= dulp)=p
is a tautology

— Formula

h= .= f=éalp)=> ... = dis(p)=p

is a logical theorem

(By (5))

77

s Qf)is(—l—)
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—- Formula

f}.'l T fT') ¢11(p}’ ey @23(}9) i_ p
holds.

(By (4))
- .7:.,(,?51(_'{9), ¢2(p): ok P

which completes the proof of {i).

We have omitted a proof of (ii) because (i) can be proved in a similar way
as (1).

Notice that Lemima 1 can be expressed by the following words:

A literal? o 15 a logical consequence of the given set if and only if the
corresponding® sel is inconsistent,

Now we prove the following lemma.

Lemma 2. The equivalence
(?) ]‘—\p1v\/}7k1"lf—-‘—r F —lpi,,fl_“ﬂpk

{wheve p; 18 any literal)}
is true.

¥

Proof. We have the following 'equivalence-chain’:
FomV..Vpe b L

— Fh{mV. . Vp =1}

(By (4))
s Fl(mpr A A )

(Using a well-known tautclogy)
— FlFapy, . Fl--pg

which completes the proof.

Besides (6) and (7) we emphasize the following obvious equivalences
(8) FToe— F Lk L

(9) F,THA«— FFA

{Ais a literal or the symbol L)

2A literal is an atom or the negation of an atom
*.e. one of the sets F, (L), (L), ... or F, o (T), (T, ...
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Suppose now that JF is a given set of clanses and + is a literal or L. s
it possible that using the equivalences (8), (7), (8), (9) one can establish
whether or not 1 is a logical consequence of 77 In order to answer this we
introduce the following inference rules?

(R1} F,LF L —F T

(R2) 7, o1(p). da(p)y . Fp e Fod(L),da(L),...F L
Foip)s dalp), . b op e F o (T),¢o(T), ... F L

(¢i(p) is any clause containing p)

(R3) Fommv ... Vpp b L— Fl-p o, FlE-m
(where p; is any literal)

(Rd) F.THA —— FFHA
(A is a literal or the symbol L)

We emphasize that in the sequel for the set F we suppose that it does not
contain a clause of the form ...q VvV —q...,where ¢ is any atom. Namely, such
a formula is equivalent to T, consequently it should be omitted®. Similarly,
if it happens that by applying rule (R2) some clause becomes equivalent to
T then we will also omit it.

Roughly speaking rules (R1),{R2),(R3).(R4) are used as follows:

We start with a question (a sequent) of the form F & 1 and apply rules
(R2).(R3),(R4) several times. If at some step we can apply rule (R1),
the procedure stops with the conclusion that ¥ is a logical consequence
of F. However, if at some step we oblain the sequent = L (then F is
an emnply set) the procedure stops with the conclusion that ¥ is not a
logical consequence of F.

Example 1. Answer the following questions:

pkp? 2)pgbp? 3)bp? 4)gkp?

5y gV pgVphkp? 6)p,opVagVor,pV-ogVspVsVatk L7
where p,q,7,8,t are atoms.
Answer,
1) Applying (R2) we obtain the sequent L F L and by (R1) we get the
sequent B T so the answer is: Yes.

*We point out that the set & may be also an empty set.
>This is compatible with rule (R4)
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2) Applying (R2) we obtain a new question, i.e the sequent L,q - L, and

now applying {R1) we obtain the sequent b T so the answer is: Yes.

3) Applying (R2) we obtain the sequent b L so the asnwer is: No.

43 By (R2) we obtain the sequent g - L and after that by (R3) we obtain

the sequent = =g, Finally, by (R2) we obtain the sequent - L such that the

answer is : No.

5) By (R2) we obtain the sequent -¢,q - L. Now by (R3) applied to the

literal —¢ we obtain the sequent ¢ F ¢, further by (R2) we obtain the sequent

1 L and finally by {R1) we obtain the sequent I T so the answer is : Yes.

6) Now by (R3) applied to clause p we obtain the sequent

apV gV orpV gV s, pV sV otk ap

By (R2) (and (R4) applied twice) we obtain the sequent

gV -ork L

At this step applying (R3) we obtain two new sequents, i.e. questions
=g ? and ¢ ?

The answer to the first question is No, so the final answer is also: No.

Concerning rules (R1)-(R4) we have this lemma.

Lemma 3. (Soundness of rules (R1)-(R4)). Let F be any set of

cluuses. Suppose that we start with a sequent F F o, where ¥ is a literal

or the symbol L. If using rules (R1)-(R4} we oblain the sequent = T or the

sequent = L, then i is / is not « logical consequence of set F ., respectively.

Proof follows immediately from the fact that rules (R1)-{R4) are based on

logical equivalences (6)-(9).

Let now F F ¢ be any sequent. By Val{F & ) we denote its fruth value,

defined by:

If ¥ is a logical consequence of set F then Val{F & 1) is true
otherwise Val(F & 1) is false.

According to this definition and to rules (R1)-(R4), i.e. to equivalences
(6)-(9) we have the following equalities

(10} Val(h T)= true
Val(k L)= false
Vall F, LF L)= true
Vall F, T F )= Val( F F )
Vall F,d1(p), d2(p), - b py= VallF, (L), b2 1), .. - L)



Vall L o1(p).da(p)e . b =p)= VallF o (T), éo( Th o F 1)
(¢:(p) is any clouse containing p)

Vol Fopy VooV B L)
= Vol( F+ —py) and . . . and ValF F —p;)

{where p; 1s any literal.i.e. an atom or the negation of an atom)

Suppose that F is a finite set. Then, in fact, these equalities define the func-
tion Vel recursively on the number of all member of set F. Consequently,
these equalities suggest how to calculate Vel{lF F 2). In other words we
have the following assertion:

(1L) If F is a finite set then one can effectively calculate Val(k ). ie.
establish whether or not 4 s o logical consequence of set F.

Next we will prove the following basic thecrem.

Theorem 1. (Completeness) Lei F be o set of some clauses and ¥ o
Literal or the symbol L. Then:

W 1s a logical consequence of set F if and only if starting with F =
and applying rules (R1}-(R4) a finite number of times one can obtain
the sequent b T.

Proof. The if - part follows immediately from Lemma 3. To prove the
only if - part suppose now that 2 is a logical consequence of set F. Then
1 is a logical consequence of some i nitesubset 4 of set F (for: every
formal proof is finite). Next, by (11) we conclude that starting with the
sequent A F @ and applying rules (R1)-(R4) a finite number of fimes one
can obtain the sequent F T. Consequently, also starting with the sequent
F t ¢ and applying rules (R1)-{R4) a finite number of times one can obtain
the sequent b T. The proof is complete.
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Abstract. We discuss a number of propositional probabilistic logics that
allow us to express statements such as "I « holds with probability s, and
5 follows from o with probability ¢. then the probability of 5 is r.

Keywords: logic, probability, completeness, decidability.

1. INTRODUCTION

We will give a survey of a number of propoesitional probabilistic logics. They
are conservative extensions of the classical propositional logic that allow
statements such as "if e holds with probability 5, and g follows from a with
probability ¢, then the prabability of 3 is #7. This statement speaks about
the probability of «, and 3, but in our approach the formula itself is teue
or false, and it does not have any numerical value as in fuzzy logic. We
will describe the syntax and the semantics of the logics and present results
about their finiteness, completeness, compactiness, and decidability, In this
paper we will consider only propositional logics, since the crucial questions
about probabilistic logics already arise at that level. We note that a similar
approach can also be applied in the first order cage.

' This work was snpported by the Serbian Ministry of Science and Technology, through
the Mathematical Institute, Belgrade.
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2. SYNTAX

In order to express statements about the probability of some event, the
classical language is augmented by a probabilistic operator P for every s
from a presupposed set called the set of indices and denoted By I. The set
Iis a subset of [0, 1].

Starting from the set of primitive propositions ¢ = {p,¢.7,...} and
using classical operators and a probabilistic operator P for every s € I,
we make the set of all propositional probabilistic formulas. For example,
Posa A Poy(a — B) — Ps, 3 is a probabilistic formula.

The intuitive meaning of Ps o is that the probability of « is greater or
equal to s. -

The other probabilistic operators Pe,, Peg, Py, and P—, can be defined
as _|_P23, P21_5ﬁ7 ﬁPS and PZS A PSS‘

3. SEMANTICS

We use a possible-world approach to give sernantics to probabilistic formu-
las. The probabilistic models are similar to the well-known Kripke models.
The main difference is that our models use finite additive probabilistic mea-
sures to attach the truth-values to the formulas. This means that formula
P ais satisfied if the measure of the set of worlds that satisly « is greater
or equal to s. We assume the so-called measurable case, i.e. that to every
formula in every model there corresponds a well-defined probability. The
structures of the presented models depend on the corresponding logics, so
we will give the precise definitions later on.

4. PROBABILISTIC LOGICS

Let us consider some combinations of the following parameters:
the length of formulas,

the set of indices,

the iteration of probabilistic operators and
- the ranges of measures
that lead to a number of probabilistic logics.

In this paper we will use hoth finite formulas, and formulas with count-
able conjunction and disjunction. The set of indices [ = {s : Ps, is an
operator } can be: a finite subset of [0, 1], the set of rational aumbers from
[0,1], or the whole set of real numbers from [0, 1]. Obviously, different
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choices of these parameters produce different levels of expressiveness of the
resulting logics.

We do allow {or we do not allow) the iteration of probabilistic operators,
so the formula Ps;Ps,a is (is not) a formula of the logical language. In the
latter case we have a simpler decision procedure, while in the former we can
speak about higher order probabilities.

When the models arve considered, we distinguish two basic cases: in the
first one we allow only probabilistic measures with finite ranges, while in
- the second one arbitrary probabilistic measures are permitted. The choice
of this parameter implies an interesting result: compactness holds only for
probabilistic logics whose models have a fixed finite range of measures. This
means that in the general case the logics do not have any extended complete
finite axiomatization. This is not surprising, because it is well known that
compactness trivially follows from the extended completeness and finiteness
of proofs. We can only obtain the finiteness property as a consequence of
the Archimedean axiom for real numbers when we use a fixed finite range
of measures. So, some of cur logics ave essentially infinite. We use in these
logics ordinary finite formulas, while proofs can be infinite.

5. PROBABILISTIC LOGICS WITHOUT THE ITERATION OF PRO-
BABILISTIC OPERATORS

In this section we present probabilistic logics whose languages do not al-
low the iteration of probabilistic operators, or the mixing of classical and
probabilistic formulas. These logics possess similar semantics and axioma-
tizations.

5.1. The logic LPPs5s

In the simplest logic LPPss (L means logic, the first P - propositional,
and the second one - probabilistic, the first S corresponds to the set of
indices, while the second one corresponds to ranges of measures) we use
only finite formulas and consider a fixed, finite set S = {0 = 51, 89,...,8, =
1}, a subset of [0, 1], while the set I of indices and ranges of measure are
equal to 5. Also, we do not allow the iteration of probabilistic operators,
or the mixing of pure classical propositional formulas and formulas that
contain probabilistic operators. For example, if o is a classical propositional
formula, then a Vv P () is not a propositional formula. LPPss is fully
described in [3] and [4].

Let (in this section) «, § and 7 denote a classical propositional formula,
while A and B denote probabilistic formulas.
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The models for LP Fs g are tupies

M = (W, {lelw}, )

where W is a set of worlds, 7 is a propositional valuation, [a]w is the set of
worlds that classically satisfy the classical propositional lormula a, {[alw }
is an algebra of subsets of W, and j is a finite additive probabilistic measure
with finite range 5 defined over {[aw}.
As can be seen, thereis only one measure in each of the models. It follows
that satishability is a property of the whale model, and not of worlds in the
models.
Let M be a probabilistic model of the class described above. The fol-
iowing properties hold for the satisfaction relation |F:
- M Fa iff (VwmiViw = o,
- M “‘ PZSO: iff u([a]w) 2 S,
- M |- =B iff it is not M |- B and
M- AABAUEM |- Aand M|FB.
A complete axiom system for L P Ps g include the following eight axioms:

Al o — (8 —a)
A2 (o = (B = 7)) = e = ) = (o — 7))
A3, (=8 = —a) = {o— 1)
Ad. qu&
Ab, PZsO’- — P>.,.Oi7 5 >7
AB. (Posa A Pori A P> Lm0V =B)) = Ps it sen(aV B)
AT. (PSSQ* APy — P<md‘n(1’(s+r))(a’ v A)
AR, P>Sia - pESH»J (44

and two rules of inference (F denotes provahbility):
R1. From + A4 and - A — B infer = 5.
R2. From + o infer + Pex.

The first three axioms with the modus ponens form an axiomatization of
the classical propositional logic. The other axioms are about probabilistic
reasoning: A4 is about the nonnegativity of probabilistic measure, A5 is
about the monotonicity of probabilistic measure, A6 and A7 are about finite
additivity and A8 concerns the finite range of measures. The R2 rule is so-
called probabilistic generalization.

The extended completeness, compactness and decidability theorems hold
for LP Ps g. In the proof of the extended completeness theorem we construct
a maximal extension £ of a consistent set & of formulas in the following way:
let & be the set of all propositional consequences of G, let Ay, A;.... be an
enumeration of all probabilistic formulas, and Fg = GUGU{Ps1a: o € G}.
Then Fy = Fip U{e;}, U Fiog U {a;}, Is consistent, otherwise f;, = Fi_q,
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and finally, ¥ = U;F;. Now, we define worlds of the canonical model to
be classical propositional interpretations that satisfy all classical formulas
from [, and the measure i so that u([a]) = max{s : Ps,a € F}. The
axioms guarantee that we obtain a probabilistic model that satisfies G.
Since we nse a finite axiomatization, compactness is an easy consequence of
the extended completeness. Decidability follows from the fact that LPPs s
possesses the final model property (every logic mentioned in this paper
posseses this property) and that measures have a fixed finite range. So, we
have to examine only a finite number of finite models to check whether a
formula is satisfiable.

5.2. The logic LPP[()]]],S

As a generalization of LPPg 5 we can consider the logic denoted LFPFyg 13 s
in which the set 7 of indices is allowed to be the whole set of [0, 1]. On the
other hand, the corresponding models are as abeve, and the ranges of their
meagures remain egual to 5. Now, there are uncountable many formulas.
But, by adding the following axioms to the axiom system for LPPs g:

A9. P<S(1f — Pgs&

AlQ. Prga— Po,a, s> 7
Wwe can prove the same theorems as above. The main difference in the
proofs is that in the extended completeness proof we first define a fragment
as a suitable countable subset of the set of all formulas, and then use only
formutas from the fragment in the construction of the maximal consistent
set.

Naote that we cannot perform the opposite. Namely, we cannot describe
the models whose ranges of measures are [0, 1] using a set of formulas that
contain probabilistic operators whose indices belong only to the finite subset
of [0, 13.

5.3. The ].Ogic LP‘P[O,I],[O.”

If we allow that the set [ of indices and ranges of measures are [0, 1], we have
a quite different situation: the compactness does not hold. For example,
although every finite subset of the following set of formulas

F={-Poa}jU{Pepme:n=12,. }

is satisfiable, the set F itself is not satisfiahle.
To achieve an extended complete axiomatization of L P P 1) [0,1] We have
to avoid the finiteness of the previous logics. We add the following rule:
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R3. From b B — Ps,_y,, @, for every positive integer, infer - B — Ps
to the axiom system for LPFjg 1)5. Also, we exclude axiom A8, because it is
easy to see that it is not valid with respect to the considered class of models.
In the proof of the extended compactness theorem we use a fragment as
above, while in the construction of an maximal consistent extension of &
consistent set of formulas there is also the following rule: if A; = B — Psa,
and if F;_1 U {A;} is not consistent, then F; = F,_y U{H — “Pss 1m0},
for some %. And this is enough to prove the theorem.

Although LFP Py 1)0,1) possesses the finite model property, this does not
mean that we have to consider only a finite number of models in the sat-
isfiability checking procedure, as can be done for LPPs 5 and LPFg ) s-
The cause is that ranges of measures are not fixed and finite. Nevertheless,
LPP[O,l],[CI,l] is decidable.

Let p1,...,pn be all the primitive propositions in a formula A and let
an atom be At = £p; A 0. & pn, where where +p denotes either p, or
=p. By the propositional reasoning, we transform a formula A into its
disjunctive normal form DN F{A). A is satisfiable if and only if at least
one of the members of DN F(A) is satisfiable. These members look like
D= xPs, a0 AL £ Pyes,, 0. We now translate every member of DN F({A)
into a system of linear equalities and inequalities. Fvery system contains
the following equalities :

¥ e iA1= 1

p(AL) 2 0
as well as a linear inequality for every member =Ps, a; of Dy

2 AteDNF(ag) AL p 8
where p denotes < if & means -, and > otherwise. So, we reduce the
satisfiability checking problem to a decidable linear system solving problem.

6. THE LOGIC LPPpq.

Let us consider a class of probabilistic models that satisfy the constraint:
there is a real number ¢ from (0, 1) such that for every model M, its measure
w, and for every formula « if u([a]w) > 0, then u[ajw) > ¢. Using a lemma
from the measure theory, we can show that every model in the class has a
measure with a finite range. Again, compactness does not hold: an example
is the set F = {Psc(a)A Peopyjn(a)}. We obtain a complete axiomatization
by adding
AllL P>0(a) — Pucla)

to the axiom system of LFPq )01 The decidability of the logic can be
proved using the same arguments as above.
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6.1. The logic LPPA, Fin

The last logic in this section concerns the class of all probabilistic models
whose measures have finite ranges. Let A be a countable admissible set thag
contains w and the propositional probabilistic language. In LP P4, rin the
conjunction symbol and the disjurction symbol may be applied to finite or
countable sets of formulas. We extend the axiom system for LP Py )0,
with the axioms of the propositional part of the L p p, logic {2], as well
as with a generalization of the axiom All:
Al2. Vo Aser (Poooe — Pyoar)

where F' € A. Hence, in this logic we have both infinite formuias and proofs.
The completeness now follows from the above explanation and the middle
model construction procedure [2].

7. PROBABILISTIC LOGICS WITH THE ITERATION OF PROBA-
BILISTIC OPERATORS

Let us shortly consider the class of models with the following structure:
M = (W,n, Prod)

where W is a set of worlds, and 7 is a classical valuation as above. Prob
is a function which assigns to every world v € W a probability space
(W(w), V{u), ulu)), where Wiw) C W, V(u) is an aigebra of subsets of
W(u) and p{un) is a finite additive measure over V(u). To describe such
models we allow formulas with the iteration of probabilistic operators. So,
B — PssPs.ais a formula of cur langnage. The main semantical conse-
quence of the above choice is that the satisfaction relation |k is a relation
between worlds and formulas:
w [ Poso ff plw)([ajw ) 2 s

Now, we can combine the other parameters from Section 4, and produce
the corresponding logics. The new logics, and the logics from Section 5,
possess similar properties. For more details see [1] where a logic that is an
extension of LPPs g is described.

8. SOME APPLICATION OF PROBABILISTIC LOGICS

Reasoning about uncertainty is required by many artificial intelligence ap-
plications {expert systems, decision making systems, fault tree analysis, ...).
Very often data and rules used in deduction are not known with certainty.
Since classical logic is useful when the knowledge is crisp, it is desirable to
have a logic that enables divect reasoning about uncertainty.
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Using the described probabilistic logics we can deduce whether some
conclusions follow from premises. Similarly, we can examine the probabil-
ity that conclusions follow from suppositions, or we can look for the most
probable event in a set. Probabilistic logics are also applicable in situations
where it is difficult to attach precise probabilities to events, but it is possible
to give upper and lower bouads for probabilities, or, at least, it is possible
to compare (unknown) probabilities of events.
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apartness which come from the above results.
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Let (R,=,#,+. ) be a commutative ring with an identitiy where the di-
versity relation # is an apartuness in the sense of books [1], [3], [8], [9] and
papers [2], [4], [5]. A subset § of R is a coideal ([4], [5], [8], [9]) of R if and
only if

O#Srﬂ
—r€S=>z2c s,
t+yeS=>rzelSvyes,
sy e S=>re€SAyelb.

The coideals of a commutative ring with apartness were first defined and
studied by W. Ruitenburg 1982 ({8]). After that, coideals (anti-ideals) were
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studied by A. S. Troelstra and D. van Dalen in their monograph [9]. The
author proved in his paper [4] that if 5 is a coideal of ring K, then the
relation ¢ ou R, defined by (z.y) € ¢ if @ — y € 9, satisfies the following
properties:

(1) (Yz € R)((x,2)#q) consistent ({3})

(2) (Vz,ye R)((»,y)Cg={y, 2} Eq) symmetric

(3YWWe, e e B){(z,2)€qg= (Vye R){z,y)€qV (v, 2) € q) cotransitive
(3D

() (Ve y,uve Bz +u,y+v)eq¢=>(a,y)€qVi(vv)€q)

(5) (Yo, y,u,v € S){(zu,yo) € ¢ = (z,9) € gV (u,v) € q)

A relation g on R, which satisfies properties (1)-(5), is called cocongruence
on R ([4],{5]). A relation g on a set (R, =, :#), which satisfies properties (1)-
(3), i.e. which is a consisitent, symmetric and cotransitive relation en R is
called a coequality relation on R ([2]). If ¢ is a cocongruence on ring R
then the set S = {z € R | (x.0) € g} is a coideal of B ({4]). Let J be an
ideal and 5 be a coideal of ring K. Ruitenburg, in his dissertation {[&], page
33) first stated the requirement that J C -S5. This condition is equivalent
with the following condition: )

(Ve,yc R)Y{zeJAyeS=>a+ycs).

in this case we say that J and 5 are compatible. W. Ruitenburg {8] first
raised the question about the existence of a coideal § compatible with a
given ideal J and the question about the existence of an ideal J compatible
with a given coideal §. If ¢ is a congruence on R, which is determined by
S, then J and § are compatible if and only if:

(6) (Va,y,z€ R){({z,y) € enly,z) € g= {2.2) € q).

In the general case, if ¢ is an equivalence and if 7 is coequivalence on a set
(R,=,%#) we say that they are compatible if and ounly if they satis{y the
condition {6). So, we have the following questions:

(1) If 5 is a cordeal of R, is there an ideal J of R compatible with 57

(11) If J is an ideal of R is there a coideal S of B compatible with J ¢

In this paper we shall answer these questions by cifing some previous
results. Most of these results are obtained by author. or other considera-
tions on the notions and notations of constructive mathematics we refer to
books {1], [3], [8], [9] and on the constructive commutative ring theory we
refer to books [3], [8], [9] and papers [2], [4], [5], [6], [7].
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In the further course of this work we need the following result which
answers the first question. Let Y be a subset of . By z#Y we deuote
(Vy € Y)(x # y) and by ¥ we denote the set {z € R | z#Y}. The following
result answers the question about the existence of an ideal of £ compatible
with the given coideal 5 of R.

Theorem 1. ([5], Proposition 3.5} Let § be a coideal of ring B. Then, §
is an itdeal of B compatible with 5.

To answer the main question about the existence of a coideal § compati-
ble with given ideal J we need the following notion. Let ¢ and b be relations
on aset (K,=,7#). By b+ o we denote the filled product of relation @ and
relation b defined by

bxa={(z,2)ERx R|(Vye R){{z,y)€aV(y,z)€b)}

The filled product is associative and (b+a)™! = ¢7 ' xb 1. Forn > 2, "a
means a * a * ---o (n factors). Put 'a = a. The next theorem gives a very
important construction.

Theorem 2. Let a be a relation on a set (R,=,#). Then the relation

cla) = m "a is a cotransitive relation on R.
nEN

Proof. For cotransitivness we need to prove that
(z,2) € cla) = (Vy € B)((z,y) € c(a) V (y,2) € c{a)),
l.e. we need to prove that
(z,2) € cla) = (Yy € R)((Vi e N)(z,y) € ‘a) v ((Vj € N)(y,2) € a),
First, we have

(z,2)€cla)y = (z,2) € fa=axa
= (Vy € R){{z,y) € aV(y,z) € a).

Second, for n > 2, suppose that
(2,2) € cla)= (z,2) € *a ="a+"0
& (Vye R)((z,y)e™aV (y,z) € "a).
Thus, we have

(z,2) € cla) = (2,2) € Antl) g = nhlg o ntly
& (Yy € B)((z.y) € "av(y.2) € "a).
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Therefore, for each natural number n, we have

(2.2) € e(a) = (Yy € R)((¥i < n)((2,9) € ‘a} V (V) < n)((3.2) € 7).

Finally it means

(z,z) € ela) = (Vy € RB){(z,y) € e(a) V (g, 2) € c(a)).

Il @ is relation on R, then the relation ¢(a) is called cotransitive closure
of a. For this notions we have the following result:

Corollary 2.1. {[6]) Let e be an equivalence on a set (R,=,#). Then the
cotransitive closure ¢(8) is ¢ coequality relation on R compatible with e,

The following theorem gives a construction of cocongruence on the ring
(R,=,#,-+,-) on the basis of the given coequality relation on R.

Theorem 3. Let ¢ be the coequality relation on ring R. Then the relation

is a cocongruence on K.

Proof.

¢ = {(z,y) € R* | (35,1 € R){(at+ 5,9l +5) € q)}

() (u,v) € " & (ds,t € R)((ut + s, vt + 5) € ¢)

= (s, € R)(Vz € R)(Is,t € R)((ut + s, vt + 5)
£ (st 4 8,09+ )

& {3s,t e RY{Ve € R)}{(ut+s# 2t + 5
Vot 4+ s # xt + os)

= (Vee R)(u#2Vo#e)

& (V2 € R)((2,2)#q);

(22) (u,v) € ¢~ & (s, t € R)((ut + s,vf + 5) € ¢)

& {(3s,t € R){{vi+ 5,0t + ) € q)
& (v,u) € g

(21¢) (u,w) € ¢" & (Is,t € R)((ut + s,wi + 5} € q)

= (Js,1 € R)(Vv e R)((ut + s,vt+s) g
V(vt + s, wt + s) € q)
Vo € R){(w,v) € ¢V (v, w) € ¢");

= (
(i) (u+z,v+y)€q* & (35,0 € R)(((u+ )t +s5,(v+y)t+35)€q)
= (

Jaet+ st € R){((ut+at+s, vl +xt+5)€q
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V(3s +vt,t € R)((vt+ zt+ s, vt + yt + 3) € g)
= (w, v} €q" V(2. y) € ¢
(v) (uz,vy) € ¢" & (Fs,t € R)((uzl + s, vyt + 8) € q)
= (3s,t € R)((uat + s,uyt + 8) € ¢
Viuyt + s, vyt + 8) € ¢)
= (3s,ut € B)((z(ut)+ s, y(ut) +s)EqVv
(35, yt € R)(ulyt) + s, v(yt) + 5) € q);
= {z,y)€q¢" Vi) € g

Corollary 3.1. ([7]) Let J be an ideal of ring R. Then there is coideal
S(J) compatible with J.

f

Proof. Let J be an ideal of ring B. Then e = {(z,y) € R? |z —~y € J}
is a congruence on K. Thus, by Corollary 2.1, the relation ¢ = c(€) is
a coequality relation on ring R, and, by Theorem 3, the relation ¢* is a
cocongruence on K. By one of the theorems of paper [4], the set S{J) =
{z € R|(x,0) € ¢*}is a coideal of B. Further, we have

ce€JryceS=>ze Ayt~ el
sreJAly+zeSvVv-zcl)
> (—zeJA-—zES)Vy+ael
& ((—z,0)€en(—z,0)egd")Vy+aes
= (t,s€ R)((—et+s,s)cen(—att+ss)eq)Vy+ze s
= (Ft,s € R)((~zt+s,8)€en(—at+s,s)€e)Vyt+aes
= (3, sc R){{(~zt+s,s)cene=0vy+aes
S yt+res.

We can now formulate two questions about the connections between
ideals and coideals.

Question 1. Let §) be a coideal of a commutative ring R. We can construct,
by Theorem 1, the ideal ¢} compatible with J, and we can construct, by
Corollary 3.1, the coideal S{(J) compatible with Q. What kind of connection

exists between coideal ) and 5(Q))7

Question 2. Lei J be an wdeal of a commutative ring K. We can construct,
by Corollary 3.1, the coideal S(J) of R compatible with J, and we can

construct, by Theorem 1, the ideal S(J) of R compatible with S(J). What

kind of connection exists between ideal J and S{J)?
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ON p-ADIC SERIES WITH RATIONAL SUMS

Branko DRAGOVIC
Institute of Physics, P. Q. Box 57,
11001 Belgrade, Yugoslavia

Abstract. For a class of power series with coefficients which contaln fac-
torials, the domain of p-adic convergence and the summation formula are
derived. The problem: of rational points is studied in detail. The so-called
adelic surmmation of divergent counterparts in the real case is also consid-
ered.

Keywords: p-adic series, summation formula, adelic summation

1. INTRODUCTION

Prof. Djuro Kurepa was a mathematician with wide interests in mathe-
matics, and not only in mathematics; among the many problems he was
interested in p-adic spaces [12]. This paper on p-adic series is devoted with
respect to his scientific personality and to him as a great Serbian mathe-
matician.

FP-adic numbers were introduced in mathematics about ane hundred
years ago by K. Hensel. In modern mathematics, p-adic analysis (for an
excellent exposition see [13]) is a rapidly developing subject. Different as-
pects of p-adic numbers and analysis have been employed in many fields of
mathematics, e. g. in number theory and the arithmetic theory of algebraic
groups. Since 1987, there has been significant activity in the application of
p-adic mathematics in various parts of theoretical and mathematical physics
(for a review, see e.g.[2], [11], [14], and for new achievements see [10]).

According to the Ostrowski theorem any non-trivial norm on the field
of rational numbers ¢} is equivalent to the usual absclute value or to some
p-adic norm. By definition, the p-adic norm of a rational number 0 # z =
p¥r/s (where integers r and s are not divisible by given prime number p) is
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|z |,= p~,and | 0 |,= 0. This norm is a mapping from @ into non-negative
rea] numbers and has the following properties:

() |2 |p>0,] 2 |,= 0if and only if z = 0,

(@) | 2y [p=] = |o| ¥ |5,

(i) |2 +y [p< max (|2 |, |y lp) <l el +|ylp foralaye@.
Because of the strong triangle inequality | z + y |,< max ([ z |, ,| ¥ |5) it
is called non-archimedean (or ultrametric) norm (valuation).

It is well known that the field of real numbers £ can be obtained by
completion of B with respect to the absolute value. The field of p-adic
numbers ), may be regarded as a completion of () with respect to the p-
adic norm. Note that for each prime number p there is one @,. ¢/, is neither
isomorphic to R nor ¢}, where ¢ is a prime distinct of p. Any z € (), has
the expansion

+oo
(1) m:Zanp”, a, € {0,1,---,p—-1}, kel
n=k

which is convergent with respect to the p-adic norm, and it is in an opposite
direction to that one of the real case.

Many concepts of p-adic analysis are introduced in analogy to classical
{real) analysis, but convergence is treated with respect to the p-adic norm.
One of the basic objects which we often encounter in pure p-adic analysis
as well as in its applications to physics, is the infinite power serles.

My interest in p-adic series was initiated in 1987 [1] by the observation
that divergent perturbative series which we usually deal with in theoretical
physics, are p-adic convergent. In fact, such power series have the form

(2) S Ant, A €Q,
n=0

and may be treated in R (2 € R) as well as in any @, (x € Q,). Loosely
speaking, the less convergence there is in the real case, the more convergence
there is in the p-adic one, and vice versa.

This series property (2) that it may be divergent in R and convergent
in all ¢, (for all but a finite number of p), leads to a question regarding to
possible connection between convergence in some p-adic number fields and
the summation of the series divergent counterpart in K. An answer can be
found within ), because @ is a subfield of B and ¢J, for all p. Namely,
the sum of the divergent series depends on the way of summation. When a
series is p-adic convergent and has a definite rational sum for all or almost
all @p, then it seems natural to attach this rational sum to the divergent
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counterpart in £. This method of summation of divergent series is called
adelic summation [3].

The power series which we usually encounter have only a trivial rational
sum 4.e. there exists a rational sum only for the argument 2 = 0. How-
ever, one can find power series (2) which are p-adic convergent and have
{usually one) non-trivial rational point. Such series contain factorials in
the coefficients and they are similar to divergent perturbative expansions
in quantum fieid theory and string theory. Since in such cases z plays the
role of a coupling constant, the rational value {which gives a rational sum)
could be taken as iis physical value.

In this article we mainly consider summation in the rational points of
the series

(3) > ean+ B) Py(n)atm

n=0

from the p-adic point of view.
Some other aspects of p-adic series and their possible connection with
the real case can be found in the author’s papers [3}-[9].

2. CONVERGENCE
Power series (2) is p-adic convergent for some z € @, if and only if [13]
(4) | Apz™ |~ 0asn — oo .

Unlike the real case, (4)is not only a necessary but also a sufficient condition,
and this is a direct consequence of the strong triangle inequality of the p-adic
norm.

To find the domain of convergence of (3) we shall need an equation of
the form

(5}, [mllp=p~ 71,

where 5,, is the sum of the digits in the canonical expansion of positive
integer m over p. For example, if m = mg + myp+ -- -+ m,p” then 5, =
Soi_gmi. In (5) the exponent (m — Sy, )/(p — 1) is the number of factors p
in m!. For a derivation see [13].

Let

(6) Py(n) = Cpn® 4 4+ Cyn + Cy

be a polynomial of degree k over n with the coefficients Cy,---,Cy € Q.
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Theorem 1. The power series

(7) Ze”(an + AN Pe(n)zt T e = 41,

n=0

where o, € N, f,v € No = NU{0}, and Pr(n) is a polynomial (6), has
the domain of p-adic convergence given by

(8) | 2 |p< pDs

Proof. The p-adic norm of the general term of (7) is
(9) | (an+ 5) | Pr(n) fpl 2 [

where | Pr(n) [,< [Jnax | Ci |p- According to (5) one has
_1._

_ctn-}—;B—San_!_@ )
P Beln) [l e [

which for a large enough n behaves like
(10) (T 2 ,)""

Expression (10) tends to zero as n — oo if and only if | z [, satisfies (8).

From (8) it follows that the region of convergence of (7) depends on
parameters o and g, but it cannot be smalier than

(11) 1 x M,S 1.
Recall that
(12) . k<1,

where & is an integer. Hence, the series (7) is p-adic convergent for any
x € Z and it holds in ¢, for every p. There are also possibilities for (7} to
be convergent for some z € Q\Z if o« > 2.

3. SUMMATION

We want to give a formula which is suitable for summation of the series (7)
for all cases which allow rational sums.

Let us denote (m + 1)y = (m + 1)---(m + «) and let A,(n) be a poly-
nomial of the form (6}.
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Theorem 2. The summation formula

o0

Zen(an LA (an + B+ Dadg(n+ 1)z — e A (n)}a*™ Y =
(13
= —eflA,(0)2"

holds under those conditions which make the series (7) convergent.

Proof. The left-hand side of (13) may be rewritten in the form

e am + B)lAy(n)a*™ Y = 3 "™ (an + §)lA,(n)2

n=1 n=0

which after mutual cancelation of terms for n > 1 gives

(14) —efIAL(0)a .

Although Eq. {13) is based on a rather trivial structure it gives highly
non-trivial results.

Note that one can take any 2 which belongs to the domain of convergence
(8) and put it into formula (13). In such case one gets a series of the form
(7) with the corresponding sum. If 2 € @ and satisfies (8) then the sum
of that series is the rational number (14). The sunmation formula (13)
does not depend on the number field @, and for z € ¢ from the domain of
convergence yields the same surn (14) valid in all @,

Proposition 1. The series (7) has a rational sum for some & € @) which
satisfies (8), if there exists an euziliary polynomial A,(n) such that

(15) Pi(n)=(an+ 84+ 1)a4,(n+ Dz* — ed,(n) ,
where n = k — a.

Proof. Let there exists a polynomial A,(n) = a;n” + -+ + a1n + ag,
where @, - ap € (J, which satisfies (15). Then according to the summation
formula (13) the rational swm of (7) does exist and the sum is given by (14).

Proposition 2. For a given z € () also belonging to the domain of con-
vergence one can always find one polynomial P,(n), and countably many
of them if k > a, such thal the series (7) has a sum which is a rational
number.
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Proof. According to (15) for = 0 one obtains Pa(n) = (an+ S+ 1),24—¢
as the polynomial of the lowest degree. If » >» 1 then the polynomial
Pi(n) = Poyy(n) and it is determined by the coefficients of 4,(n).

All possible polynomials A,(n) generate all polynomials Py(n) ,k =
a1 > , which yield the rational summation of (7). The problem of finding
all possible Pg(n), which are related to rational sums for some z¢ € (J may
be reduced to

[&0]
(16) Zez”(om + N 4 g =

n=0
where
(17) (an + 8+ DaAy(n+ Dzl —eA,(n) = n* 4 u
(18) ~ef3A,(0)zg = v .
Then the general form of desired Pi(n) is

k

(19) Pi(n) = Cipn¥ 4+ Can® + Y Ciu; -

Now we can write the subclass of (7) which has a rational sum for some
zp € ¢ from the common p-adic domain of convergence, i.e.

o0 k i
(20) ZEH(Q’“*‘»@)!{Z Cin' + ZC’iui}w””“ :
n=0 1=or =

where u; are defined by (17) and Cy,---C) € Q. When we put & = zp then
(20) has the rational sum

k k—a
(21) > Covp = —eflaf Yy A(0) .
= 7=0

To illustrate the above general consideration we shall give two simple
examples, where the polynomial Pi(n)is in the reduced form.

Example 1. {a=2z=1,8€ Ny, Ag(n) =1).

(22) is”(n+ﬁ)!(n+ﬁ—e+1): —el

n=>0

Example 2. (a=2=1,0€ Ny ,A(n)=n+ag).

(23) D> M+ B - (B T (28+3)e— 1] =eBlf-e+2).

n=(
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4. CONCLUDING REMARKS

From the above consideration it follows that series (7) may have rational
sums only for some polynomials Pi(n) of the form (15) with the degree
k > o. In other words, only series of the form (20} have rational sums
which are given by (21}.

In the Introduction, a possible connection between the divergent series
in K and its convergence in all ¢}, was mentioned as a motivation for the
investigation of p-adic series. Now we can introduce the following method
of summation of divergent series at rational points.

Definition. (of adelic summation). Let a series be divergent in the real case
and convergent in @, for all but u finite number of p. Let also such series
allows a number field invariant summaetion with a ralional sum for some
variable © € . We call adelic summation of the divergent series extrapo-
lation of the number field tnvariant summation for convergent counterparts
to this divergent series at the same ralional points.

Thus if the series (20}, (22) and (23) in the real case make sense at all,
then it seems the most natural to assign to them the rational sum (21).

There is no signature that there exists some other summation formula
except (13), which is number field invariant and leads to rational summation.
Thus there is a reason to introduce the following

Hypothesis. Equation (13)is a unique summation formula which includes
all rational sums of the series (7).

As a cansequence of the above Hypothesis it follows that we have thus
presented all possible series of the form (7) which have rational sums for ra-
tional values of z also belonging to the region of convergence. In particular,
the most simple examples

i al | i(—l)“n!
n=>0 n=0

do not have a rational sum. A similar result has been conjectured earlier
[6], [9], [13].
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Vojvode Stepe 305, 11000 Belgrade, Yugoslavia

Abstract. [n this work, one can find a definition of a sequence w4, n €
N U {0}, m € Z which is a generalisation of the functions n! and 'n. The
author discusses Kurepa’s hypothesis and, using a sequence #, ,,, deduces
several hypotheses which are equivalent to Kurepa's.

Keywords: left factorial, Kurepa’s hypothesis.

. INTRODUCTION

In [5] B. Kurepa defined the left factorial by:

n—1
(1.1) In=Y kl,n€N.
k=0

In the same paper a hypothesis was stated
(KH) (In,n) =2, ne NAn>1,

where (a,b) denotes the greatest common divisor of integers « and o . It
was proved in [5] that KH is equivalent to the assertion that for all prime
integers p, p > 2,

(1.2) Ip £ 0 mod p)

and this is the most {requent form of considering KH. In [7] - [11] there
are several statements equivalent to KH, which are all shown in [4]. KH is
verified in [2] for n < 10%, and in {14] for n < 2%°. In [13], a generalisation
of the functions n! and 'n is given. This paper is the natural continuation
of paper [13].
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2. SEQUENCES yo AND u,,,

A sequence 1, is defined in [13] as

i

(2.1) U = [ ¢ ](n) =3 (-1 (D k. one N {0}

-z, P

We can give a combinatorial meaning to a sequence y,, where y,, n > @,
represents the number of derangements of the set of n elements, i.e. the
number of those mappings of the set of n elements 1-to-1 and onto itself,
that do not leave any element invariant, namely, do not map any element
onto itself. In [13], beside other things, it is proved that for every n € N,
the following equalities hold

(2.2) Yn = NYn—i + (= 1)"

(2.3) 3 (Z’) e = n!

k=0

(25) > (1) -1k = o
k=1
2 6 P Y B ol Gt i

where [z] denotes the integer part of real number z. From the cited equalities
a number of congruences by module p, p € P follow. Among others, the
following holds

(2.7) yp = =1 {mod p),
2%) Jot = tp (modp),

(2.9) Ym + Ymap = 0 (modp), m € N U {0}
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A sequence u,,, is defined in [13] by

(2.‘.0) ) uan —_ u-'(':)(o)
where .
xr 131 tm—1
: e [ diy | diy--- Lo dlt g, 12 > 0
211)  unle) = O S [ St

ezf(‘m)(x),m <0

and where f(z) = ¢™*(1—2)~1. In [13], it is firstly proved that a sequence
U, m 0 special cases produces functions n!, 'z and y,, l.e. it is shown that
for every n € N {0}, the following equalities hold

(2.12) Un,o = 7,
(2.13) Uny =0, (10 =0),
(214) Ug,—n = Yn-

A number of equalities that are satisfied by a sequence u,_,, were also proved
in [13]. Thus, among other things, it was proved that:

(215) Un,m T Upomal = Untlm+l, TE NU {O}a me Z,

(2.16) M>N = Uy =0, n€NU{0},me N,

(2.17) Z(—-l)k“mun,k = Up—1m-1, PENU{0}, me Z, m<n,

k=m

(218) Zuk,m = Up,m+l — UD,m+ls B € N U {0}7 me Z, m<n,
k=0

(2.19) S (- (”) Uptim = Upm-n, k,n € NU{0}, me Z,
—Q

?

n
(220) Z (?) Ukm—i = Wndhms k,ne NU {0}, me 7,
1=0 .
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7 k ,
, Ak 7
(220) tn - = Y (?Z)'ywk =nl) (*1)‘”(1.) (n jr ’)i!, k.on € Nu{0},
i=0 '

=0
(2.22) (m=1)tnm = (R—=m+ 1Dt mo1 —Unm-2+c(n,m), n € N, m € 7,

(2.23) wnyom = (n—m+NUppri;m—(n+ Dy +aln,m)n € N, me 7,
() m22

-2 .
g, m < 2
From the cited equalities, a number of congruences by module p, p € P

follow. Thus, among others, for every p € P the following holds:

where a{n, m) = {

(2.24) Uk,m + Ukmep = Upik,m { modp), k€ NU{0}, me Z,
(2.25) Upon = Upikm (Modp), k€ NU {0}, me Z,
{2.26) Upp1,2 = 1 { modp).

Let us prove some more properties of a sequence u, ,,, l.e. especially of
SEQUENCE Y.

Theorem 2.1. For every n,m € N, m < n, the following holds

71

(2.27) Y = (n)m!yﬂ_m + (4)%’“(”) kL
m go k

Proof. Bearing in mind (2.1}, we obtain

[ a— |
3
—
m
i |
| ®
| I )
H —
if 2
fan]
fl
TN
3 =
—
=3
=,
¥
l.
3
i
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and that is what we wanted to prove.

Theorem 2.2. Let A and B be sets, both containing n + k elemenis, such
that AN B contuins k elements. The number of those mappings of sel A
onto set B that do not map any element onto itself is u, _p.

Proof. Let
A={1,2,. .k k+1,...,k+n} and
B={1,2,..., k1.2 . . . »n'}
Under the conditions of the theorem, none of the elements, 1.2,..., %, maps

onto itself.

Bearing in mind the combinatorial meaning of sequence y,, one can
deduce shat, if it had been forbidden for element & + ¢ to map onto i’ for
i=1,2,...,n, the number of mappings would have been ..

But, according to the conditions of the theorem, it is not forbidden for
element k 4 ¢ to map onto ¢, ¢ = 1,2,...,n, and thus the number, a;,, of

mappings is
" (n
=3 (e

i=0

since neither of the elements k+4¢, 7= 1,2,...,n, or one of them, or two, ...
, or all n of them can be mapped onto ¢. Bearing in mind (2.21) it follows
that

Alen = Un,—k»

and that is what we wanted to prove.

‘ n
Theorem 2.3. For every m.ne N, m < 5 the following holds

m 17 n—1m
(2.28) Yn = Z (k) (m _ k) Upp—io, — ke Um — o = (n—2m | &) -

k=0

Proof. The number of derangements of the set A = {1,2,...,n} is y,.
Let B and C be subsets of set A, such that each contains m elements
(m < g)
One can count the number of derangements of set A on following way:
We map B onto C, and A — B onto A — C, when B is fixed and ' is
chosen among all choices,
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If we assume that 5N C contains & elements, £ = 0,1,...,m, then for
fixed set B, we can choose C'in (7} (F7") ways.

According to Theorem 2.2, the number of mappings of the set B onto
set C' (such that there is no invariant element) is %y —g 4, and the number
of mappings of the set A — B onto A — (', (also with no invariant element)
1S Upy g —(n—2m+k)» and thus (2.28) directly follows, and that proves the
theorem.

Especially, for m = n and by substituting 2n instead of n into (2.28)
one obtains

n 2
n
(2.29) Yan = Z [(!J un_k,_k} .
k=0
Also, substitution m = p, n = kp, p€ P, k > 2, in (2.28) gives
p
Py ((k=1)p _
Yip = Z (1) ( p—i Up—i,—iUp—i —([k=2)p+i) =
=0

((k —pl)p

)up,[]up.—(k‘-—Z}p + g, ~ptio, —(h-1)p { modp?).
Since, according to (2.21)
Up 0 = Uy (k—2)p = 0 (modp!)
and bearing in mind (2.14), it follows that
(2.30) Yo = Yplk—1)p (modp?).
Considering (2.30), by induction on £, one can easily establish that

(2.31) Yep = yif ( mod p?).

3. KUREPA’S HYPOTHESIS

Using the properties of the sequences u, ,,;, and y, it is not hard to formulate
a number of hypotheses equivalent to KH. In [13], among the other things
it was marked that KH is equivalent to every one of the following assertions

(3.1) o1 # 0 (modp), Vpc PAp23,

(3.2) Yp2 # 1 (modp), Vpe PAp23,
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(3.3) Y £ —1 {modp*), ¥pc PAp>3,
(3.4) ty_12 % 0 (modp), Vpe PAp>3,
(3.5) Ypi12 2P+ 1(modp?), ¥pe PAp23,
(3.6} (FKVME > pAugs 21 (madp)),YpeE PAp > 3.

Let us prove some more assertions equivalent to KH.

Theorem 3.1. KH is equivalent to: (¥p € PAp > 3)(3m e {0,1,...,p=1})
such that

(3.7) Um £ Yp—m— 1)(m!) (modp).

Proof. By substituting n = p— 1 in {2.27), and bearing in mind (1.2) and
(2.8) we obtain

B p—1 -1
!p:yp1=<m>’rn’ypm1+2( )F’”( N )k!
-1

= (=1 mlyy o,y + Z kl =

k=0
(3.8) = (~1)™mly,_m_y+lm £ 0 (modp).

H

mi{p—m—Dl=mlp—(m+1))p-(m+2))--(p-(p-1)) =
= (p - D=1 = (1) (modp),

it follows that by substituting p — m — 1 by m, in {3.8) , we obtain (3.7},
and that is what we wanted to prove.

Let us note that, especially, for m = p—~ 1 and m = p— 2, in (3.7), we

P

-1
obtain equalities (3.1) and (3.2). Also, for m = ——, {3.7) becomes

(3.9) vy 7! (p—;—l> (f’%l)' (mod p).
2
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Theorem 3.2. KH is equivalent to the assertion: (¥p € PAp > 3)(3n C
N UA{0}) such that

(310) Un-tp,3 ;7§ n—1 (modp)

Proof. Since (2.23), bearing in mind (2.13) and (2.15), we obtain

Upz = (’!’n‘, - 1)(1;%_1,2 - un_gyg) + 1= (n — 1)’11;«,—,,_2]1 +1=
={n—1)}Hn—-2))4+1 (n>2)

and thus from {2.22} it follows that

2Ungp3z = (7 + P —2NUpip2 — Unepr TR+ p=
=(n+p-2)(n+tp-){{n+p-2)-tn+p)+2n+2p-2=
=[n+tp-2)(n+p-1)=1)(n+p)-
—(n+p=-2)n+p—-1){(n+tp-20+(n+p-1))+2n+2p-2=
=[ntp-2)n+p—1)-1U{(n+p)) -
—(ntp-2n+p)+2n+2p-2=
=(n®—3n+1)('p)+2n -2 (modp),

i.e.

Upgp,3 = %(ﬂz —3n+ (') +n -1 (modp),

and according to (1.2) we conclude that the theorem is correct.

Let us note, that according to the properties of sequence u,, ,,, one could
{formulate many more assertions equivaient to KH. Butl the nature of these
assertions implies that if KH is the theocrem, then the whole problem belongs
to the category of hard problems of the number theory.
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Abstraet. In this note a notion of the Bourgain algebra (A, B)s is extended
to the case of commutative topological algebras. It is proved that (A, Bjy is
a closed subalgebra of B, il B* separates the points of B. 1t is also shown
that (H(A),C(A))y, = C({A)y, where H{A), resp. C(A) denotes Irechet
algebra of all holomorphic, resp. continous, functions in the open unit disc
AC C.

Keywords: Bourgain algebras, topological algebras.

Let B be a commutative Banach algebra with norm || - || and let A C B be
a linear subspace (not necessarily closed). We let ¢¥(A) denote the space
of weakly null sequences in A. The notion of the Bourgain algebra of A
with respect to B was introduced by J. Cima and R. Timoney [3] in their
study of the Danford-Pettis property ol uniform algebras and it is based on
a coustruction of J. Bourgain involving operators of the Hankel type.

The Hankel type operator 57 on A generated by the element f € B is the
mapping S¢: A — B/A defined as Si(¢) = 74(fg), where 74 : B — B/A
is the natural projection. The Bourgain algebra (A, B), of A with respect

"The research of the second anthor was partially supported by grants from the IREX
and from the NSF (MONTS)
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to B is the set of all elements f € B for which 57 is completely continuous.

Thus f € (A, B)y when S5(c?(A)) C cg'"(B/A). I other words (A, B
consists of all f € B such that for every {p,} € ¢Z(A) there exists a
sequence {¢,} in A for which

(1) lim |ignf = gali = 0.
00

[t is known that {A, B}, is a commutative Banach algebra; moreover,
AC (A By il Alis an algebra (e.g. [3]). We call B the enveloping clgebra
of the Bourgain algebra (A, B)y. Note that the structure of (A, B), is quite
sensitive to B,

The argument is actually valid in the more general setting of commuta-
tive topological algebras. Let B be a commutative topological algebra and
A its subalgebra. We denote by ¢¥( A) the space of bounded weakly null
sequences in A.

Definition 1. The Bourgain algebra (A, B)y of A relative to B is the sel of
all elements f € B for which Sp(c2(A)) C ¢, (B/A), where 7 is the topology
on B/A that is inherited from B.

In other words (A, B)y consists of all f € B such that for every {p,} €

c??(A) there exists a sequence {g,} in A for which
(2) ’ﬁm (enf = gn) = 0.
n-— 20

Proposition 2. Lei 4 C B be commulalive topological algebras. Fuery
completely continuous Hankel type operator Sy 1 A — m4(fA) maps bounded
weakly Cuuchy sequences in A onto Cauchy sequences in BjA.

Proof. Suppose that {g,}, is a bounded weakly Cauchy sequence in 4
for which the sequence {7 4(fg.)}. is not Cauchy in B/A. Then there is a
neighbourhood U of 0 in B/A such that for every natural ¥ > 0 one can
find naturals nag, may > M with 74(fgn,, ) — Ta(fgm,, ) ¢ U. Hence the
sequence {Ta( f(Gna — G )} 37—y does not tend to 0in B/A. The complete
continuity of 5y implies that the boubnded sequence {gn,, — Gmp }o7_q 18
uot weakly null in A. Hence F{gy,, — gm, ) does not tend to 0 for some
F e A*. Therefore {F(g,)}, is not Cauchy, i.e. {g,}n cannot be a weakly
Cauchy sequence.

Note that the dual space B* does not separate the points of B lor every
commutative topological algehra B. Local convexity of B is one suflicient
condition for this.
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Theorem 3. Lei B be a commutative topological algebra and A a subalge-
bra of B. The Bourgain elgebra (A, B)y is a closed commutative topological
subalgebra of B.

Proof. If f € {4.B), then given a bounded weekly null sequence {p,} €
c¥(A). o € A, there are elements A, € A, such that p,f — h, — 0. Note
that {#,} is a bounded weakly null sequence in 4, since ¢, f is bounded
and tends weakly to 0.

Now let fi, f; € (A, B)y and suppose that {@,} is a bounded weakly
null sequence in A. By the Bourgain algebra property there are h,, € A such
that @, fi ~ i, — 0. By the above remark {%, } is a bounded weally null

sequence in A, Therefore theve are &, € A such that b, f; — &, — 0. Now

(3) Jihawa — ke = fal fron — ho) + (f2hn = ki) — 0.

Consequently fif2 € (A, B), and hence (A, B); is an algebra.

Let {¢,} be a bounded weakly null seqence in A, f € B is the limit
of elements [, € {A.B), and let U be a hounded set in A that containes

For a given neighborhood W of 0 in B let V' be a neighborhood of 0
such that V 4V C W. Take a neighborhood V) of 0 with 1"12 C V. There is
at > 0 such that tI/ C Vi. Let kg be such that f — f, € ¢V for all k& > kg.
Take such a k and choose A% € A such that fre, — hE — 0 as n — 0. Then
fion—hE = (F = fi)on + (Jepn —bE) € iV - UV = tU-Vi+V CVE+HV C
V +V C W for big enough n. Consequently, (4. B); is closed in B.

Note that 4 C (4. B), if A is an algebra.

Example 4. Consuder the olgebra B = C{A) equipped with compact open
topalogy on the open unit disc A and let A = H(A) be the subalgebra of
holomorphic functions in A, Then (H(A),C(A)), = C(A).

Note that both C{A) and H(A) are Frechét algebras. Therefore ev-
ery weakly null sequence in C{A) is bounded by the uniform boundedness
principle (cf. [4], Theorem 2.6).

First we show that the function  belongs to (H(A),C(A)),. The calcu-
lation is similar to the corresponding one for C{A) (e.g. [2]). Given a weakly
null sequence {w,} in H(A), consider the functions h,(z) = f”(z)‘:"”@ €
H(A). Note that h,(z) tends weakly to 0 in H(A) since the map ¢ ——
h o= 59—_":191 c H{A) — H(A) is a continuous linear operator. From ¢,(z) =
zha(2) 4+ ©,{0) we have that Zp,(2) — h(2) = (1212 = 1) ha(z) + Z¢a(0).
Fix an v € (0,1). Then %%XIEL’O"(Z) — hy(2)] < Pg%xmn{z)] + a0 — 0
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by Montel’s theorem. Therefore Z@,(z) ~ h,y(2) tends to 0 in the compact
open topology in A, Consequently z € (H(A),C{A)) , as claimed.

Thus (H(A),C(A))s contains the restrictions of all polynomials in z
and 7 on A; therefore it contains the algebra C{A). Since C(A) is the
closure of C(A) in the compact open topology in C(A) we conclude that
(H(A),C(A)), = C(A).

REFERENCES

(1] Bourgain J., The Dunford-Pettis property for the ball algebra, the
polydisc-algebra and the Sobolev spaces, Studia math. 77 (1984), 245-
253.

[2] Cima J., Stroethoff K., Yale K., Bourgain algebras on the unit disk,
Pacific J. Math. 160 (1993), 27-41.

[3] Cima J., Timoney R., The Dunford-Peltis property for certain planar
uniform algebras, Michigan Math. J. 34 {(1987), 99-104.,

(4] Rudin W., Funciional Analysis, McGraw-Hill, Inc., 1991.

(5] Yale K., Bourgain algebras, in: K. Jarosz, (ed.), Proceedings of the Con-
ference on Funciion Spaces, Lecture Notes in Pure and Appl. Math.,
Vol. 136, Marcel Dekker, 1992, 413-422,



SCIENTIFIC REVIEW (1996), Number 19-20, pp. 119-125

ON TYPES OF SETS IN TOPOLOGICAL CLASS SPACES

D. CIRIC
Department of Mathematics, Faculty of Philosophy
University of Nis, Cirtla « Metodija 2, 18000 Nis, Yugosiavia

Abstract. In our previous papers, we introduced the notion of a class
space, i.e. topologies on proper classes, and defined and studied the various
topological concepts on such spaces. In this paper we introduce and study
a class of T-regular sets, 7-transitive sets, 7-ordinals and 7-inductive sets,
an analogues of corresponding notions in the Set Theory and give some of
their properties.
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1. INTRODUCTION

In our previous papers [2] and [3] we introduced the notion of a class space,
i.e. topologies on proper classes, and gave a reason for studying these spaces.
First we shall review some notations. Concerning class spaces, we shall use
the notations and definitions introduced in (2], [3]. For example, capital
letters X.,Y, Z,... denote classes, and z,y, 7, ... sets. Greek letters may
stand both for classes and for sets. Our metatheory is based on the NBG
class theory if not otherwise stated. Further, we shall assume the usual
constructions and definitions from set theory and class theory. For example,
we would remind the reader that a class X is transitive if it follows from
¥ €y € X that # € X. Throughout the paper K will denote a transitive
class. For the sake of convenience, following is a review axioms for class
spaces as we shall often refer to them.

Let K be a class and 7 and ¢ be classes of subsets of K. We call triple
K = (K,7,0) a topological class space if the following axioms are satisfied:

0. ber, Der
1. z,2yer=>zNyeT
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2. Foranyi.and (z;f je¢), (Vi€ia;er)y= Urer
3. For any a € K there is ¢ £ 7 such that a & x.

4. Vo erVyco z—-yeT.

U'. zyc€o=>aUy€o.

2. Forany i, and (z;] j€4), (Vjeia;€0)=>Nz, €0

3. For any subset o of A there is y € o such that o C y.

. VecrVyeo y—z €0

Flements of + are called open subsets while elements of ¢ are closed
subsets of K. By a proposition in [2] it follows that o is uniquely determined
by . and vice versa. Also, if A is a set, then KX becomes a standard
topological space.

Various topological notions for class spaces, such as continuity, com-
pactuess, the product of class spaces, etc., were introduced in our previous
papers, and some results concerning these notions were proved. The most
important result obtained is that the finite product of compact class spaces
is also a compact class space.

In this paper we shall discuss and develop the notion of 7-regular sets,
and we shall introduce the notion of r-ordinal numbers and research some
ol their properties.

In the following. & derotes the closure of set » € A in class space K. If
not otherwise stated, N denotes the set of non-uegative integers.

2. m-BREGULAR SIT'S

Let K = (K, 7,0) be a topological class space, where £ is a transitive class.
The set S € K satisfies the condition (¥} in K, if there exists an # € § such
that 7 1.5 = 0.

Proposition 1. If class K, in topological class space K = (K, 7,0}, is o
model of pairing, wnion and mfintty axioms such that every element of I
satisfies the condilion (*), then there is no infinite scquence Tg, Z1, ..o, Tny oo
30 that the following holds:

(%) To221,T1 323,285 D Ty, ..

In particular, there is no sel @ € K such that » € & and there are no
Peycles”:
Tp E L, ETy, ..., 50 € Tp.

Proof. If we suppose that there exists an infinite sequence g, 21, ..., Tn, - - .
of elements in class A with property (**), we can consider set S = { zg, 1,
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v Zp,...}. Pairing, union and infinity axioms hold in class K, and set S
will also be an element of &, hence set § is a nonempty set and this set
satisfies the condition (*). So, there exists an element 2 € § with ZN5 = §,
and also, there exists an index £ € N, such that z = 21 € 5,50, 2, N8 = (),
but this is impossible because z341 € Zx N 5.

Definition 2. Let K = (K, r,0) be a topological class space, with a transitive
class K. The set § € K is a r-regular set if $ ¢ 5.

Proposition 3. Let K =] copp Va- It is possible to construct a nondis-
erete structure of topological class space on class K, K = (I, r,0), such that
every element 5 € K is a 7-requlor sel.

Proof. Let o be a nonlimit ordinal. Put X =V, — V,_;. Let us assume
some nondiscrete topology on X. With the help of the family of all open
and closed sets in topological space X, we can define two classes of subsets
of K such that K = (K,7,¢) becomes a topological class space.

Really, if § € K, then S C K andso SN X = Bor SNX # Q. Fother
TeridUnX = @andif & N X is a nonempty open set in topological
space X. A nonempty set F helongsto o if FNX =Pand f FNX is a
nonempty closed set in topological space X. Put § € rNo.

For two nonempty sets 2 and y in a class 7, we have (z Ny)N X =
(xN X)n(ynX),so axiom 1 holds for topological class spaces.

Let {z;| j € i} Cr. From (Uz;)n X = U;(a; N X) it follows that Uz;
is in class 7. So axiom 2 holds, for topological class spaces, too.

I{ ¢« € K then there exists z € 7 with @ € #. Really, if o € X, the set X
is an element of 7 and axiom 3 holds.

If z ¢ X, we can have 2 € V,_;. Then {z} € r,and 2 € {z} € 7. If
@ ¢ V., then also {z} € 7 with 2 € {z}. So, axiom 3 of topological class
spaces holds.

ForzerTand y€owehave (z —y)NX =(zNX)—(yNX)anditis
easy to see that axiom 4 holds.

Similarly, ii is easy to see the validity of axiom !’ because for z € ¢ and
y & o, wehave (zUy)NX ={znX)U{ynNX).

We have ((2;)NX = (;(z;NnX), and so the intersection of the members
of & will be in &. This means that axiom 2’ holds.

if z € K, then there exists a y € ¢ with ¢ C y. Really, if 2 € X then
2 C Vooy € 0,since XNV, =8 If e ¢ X, that might be z € V,_4,
and obviously @ € V,_1 € a. Otherwise if z € V,, then a < renk(z) and
T C Vigni(z) We have Vigap(ey N X = X, hence Vrénk(x) € g so axiom 3’
holds.
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Let us prove that the structure of topological class space K = (K,7,0)
is nondiscrete, hence, there exists a set £ € K such that £ £ F.

If N X = 0, then F € ¢ and s0 we have F = F. The topology on set
X is nondiscrete topology, and there exists a set F' ¢ X with F # F, where
Lhe adherence is in topological space X. F' € I since F € V11 C K. From
PNX = F.F will be in K, thus & # F.

Finally, let & € A be an elemeunt of class &', We can have 51 X = §.
and in this case § = §.

From the regolarity axiom we cannot have 5 € § = S. and every such
set S will be 7-regular set. Let us suppose that SNX # 0. Then 55 © X,
bul we cannot liave § € 9. 50,18 § € §it must be S € §— § ¢ X, but this
is impossible hecanse o < rank(S). so we don’i have S € X ¢ 1,,. Hence
S5 -5 eg,S5¢ 5, which means set S is a r-regular set.

S0, every seb in a topological class space K = (K, 7,0)is a 7-regular set.

Theorem 4. Let K = (K,7,0) be a topological class space, where K is a
model of ihe Set Theory, such that every element of IV, satisfies the condition
(*). Then for every nonempty class O C K there exisls S € O, such thal
S5nC=0.

Proof. Let 5§ € (. Wecan have SNC =0or 5NC #0. U SN =10
the theorem is proved. Let as suppose that SN C # §. We can construct a
set T in the following way: Put So = 5, 51 = U,c5, % 52 = Upes, & -
LSJ,,_H = Upes, Tseves e Put T = Uwen 5. The set Sy = 5 C T, and from
SNC £ Dit foliows TN == X £ 0. As class K is a model of the Set
Theory and every element in I satisfies the condition (*), 1t follows X € I
hence X # 0 and X satisfies the condition (*), so there exists an element
x e X such that 31X =0 Letnsprovethat aNC =0, v 2 X =T N
means ¥ € T, so there exists n € ¥ such that 2 € 5, and & C 5,01 C T
Hence, for y € # we have y € T and y € CLeg. y & T and y € ', thus
y € X N& =0 and this is a contradiction.

Definition 5. Let K = (K. 7,0) be o lopological class space. The set T is
o T-transitive set if for every x € T, 4t holds that & C T

If set 7 is a r-transitive set, then T is a transitive sel. It is easy to sce
that set T can be transitive, but not r-fransitive.

Definition 6. Let K = (K, 7,0) be a topological cluss space as in Theorem
4. Then we can define a relation < on K in the next way: for o € K and
Bek weput o < fifac .

For nondiscrete structure of topological class space, there exists o € K
such that a # &. Neither @ < &, nor @ < a hald. The first velation means
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that v € & but this is impossible because every element o € K is a 7-regular
set, also, @ < a means & € @ which is impossible because of the axiom of
regularity. If & = 3, then the elements « and f are incomparable elements
in respect to the relation <.

Definition 7. If K = (K, 71,0) is a topological class space with the cond:i-
tions for K as in Theorem 3, we can define the notion of m-ordinals.

For a set oo, we say it is ¢ T-ordinal, if it is T-transitive, and for & we
say it is a well-ordered set with the relation <.

Theorem 8. Let K = (K, 1,7) be a topological class space, where K satisfies
the conditions as in Theorem 3, then:

(a) 0 =0 isar-ordinal.

(b) If o is @ 7-ordinal and 8 € a, then 8 is a T-ordinal.

(c) If & and 3 are T-ordinals, with & C 3, then there exists a T-ordinal
v such that 3 = & and v € 3.

(d) If K is a T\ -topological class space, then for every r-ordinal o, & U
{a} is a 7-ordinal, too.

(e) Let ORD; be a class of all T-ordinals, then the relation < defined
above is a partial ordering on CRD..

(f) If C CORD; is a nonempty class of 7-ordinals, then (| C is also o
T-ordinal.

Proof.

(a) The proof is obvious.

(b) If e is a 7-ordinal and g € & then 3 is a 7-ordinal. Really, & is a
r-transitive set and from 8 € & we have 8 C @&. The set @ is a well-ordered
set with the relation <, and so 4 will be well-ordered with < | 5. The set
is a 7-transitive set. Really, if v € 3, and § € 4 then § € 3, hence 7 C G,
e.g., the set 3 is a T-transitive set. This means set § is a 7-ordinal.

(¢) Let o and 3 be T-ordinals, with @ C 3. The set 7 —a is a nonempty
subset of well-ordered set 3, so this set has a minimal element v with respect
to relation <. The set v € 3 will be a 7-ordinal corresponding to (b) and &
is an initial segment for v € 3. Also, the initial segment for v will also be
¥, 80 % = Q.

{d) Let us suppose that a is a 7-ordinal in Ty-topological class space K.
Let us prove that & U {a} is a 7-ordinal too. Really, the set @ U {a} is a
T-transitive set. For 8 € aU{a} = auU {a} = aU {a}. We can have 7 € &
and in this case we have 3 C @ C @ U {a}, because  is 7-transitive. But we
can also have § = ¢ and § C @. Obviously, the set & U {a} is a well-ordered
set with the relation <. Let us note that sets & U {3} are 7-ordinals for
every 3 with property J = @.
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(e} Let ORD; be a class of all 7-ordinals in topological class space K.
For ordinals o and # in ORD,, the relation o < 3, defined by a € 3, is
transitive, since 3 is 7-transitive. Also, we cannot have a < 7 and 8 < «
because a < o is impossible by 7-regularity for all elements in K. Tor a
nondiscrete structure of topological class space K there exists incomparable
elements for relation <. Also, we have @ = {8 € ORD, | 5 < a}.

(f) Let ¢ C ORD; be a nonempty class of 7-ordinals. Then vy = [V is
a 7-ordinal too. Really, v is 7-transitive, for 5 € 7 if and only if # € &, for
every a € C. If § € 3 from the transitivity of <, in @, it follows that § € 7
and finally 3 C 7.

Obviously, the set v is a well ordered set by <.

Definition 9. The set 5 is e T-inductive set, if § € S and if for every
x €S it holds that T U {z} € 5.

I N, =[){X | X is a 7 — inductive set}, then N, will be a 7-inductive
set. In Ty-topological class space K, it holds that N, = N, where N is the
set of all natural numbers.

Proposition 10. Let K = (K, 7,0) be a Ty-topological class space. If the
set X iz a T-inductive set, then S = {e¢ € X | 2 C X} is T-inductive, too.

C X. Let z € 5. Then

Proof. First, § € 5, because § € X and § = 0
micXand{z)CXCXit

zU{z} € X and zU{z} = zuU {z}. Fro
follows that & U {z} C X.

Proposition 11. Let K be a T -topological class space. If X is a T-inductive
set, then S = {z € X|z is a 7 — iransitive set} is 7-transitive, too.

Proof. If » € 9, then z is 7-transitive. Let us prove that is & U {z} Is
T-transitive, too. Really, let y € ZU {z} = 7 U {z}. Then y € Z, and from

the r-transitivity of z, it follows that § C # C 2 U {a} or ¥ = z, and so
gCcTCczU{z}. 0 €5, since d e X and @ is T-transitive.

REFERENCES
[1] Bourbaki N., Topologie generale, Hermann, Paris, 1971.
(2] Ciri¢ D, Mijajlovié 7, Topologies on classes, Math. Balkanica {1990).

[3] Ciri¢ D., Mijajlovié 7, Class spaces, forthcoming in Math. Balkanica
1995,



125

[4] Cirié D., Mijajlovié Z, On dimension of class spaces, forthcoming in
FILOMAT 1995 (Proc. of Int, Conf. on Algebra, Logic and Discrete
Mathematics, Nig 95).

[5] R. Engelking, General Topology, PWN, Warszawa, 1977.

[6] A. Fraenkel and Y. Baz-Hillel, Foundations of Set Theory, North-
Helland, Amsterdam, 1958.

[7] K. Kunen, Set Theory. North-Holland, Amsterdam. 1983.

[8] A. Levy, Basic Set Theory, Springer-Verlag, Berlin, 1979.



SCIENTIFIC REVIEW (1996), Number 19-20, pp. 127-135

AROUND PSEUDO-DISTANCIAL SPACES |

Ljubiga R.D. KOCINAC
Faculty of Philosophy, University of Nig
18000 Nis, Yugoslavia

Abstract. We consider some classes of spaces which are ¢lose to the class
of pseudo-distancial (or linearly uniformizable, or 7-metrizable) spaces. A
new class of spaces is defined and studied.

Keywords: pseundo-distancial space, biguotient mapping, {ob-space, bira-
dial space, almost biradial space, almost bisequential space.

AMS Subject Classification (1991): 54E15, 54C10, 54A20, 54A25

. INTRODUCTION

Let 7 be a regular cardinal number. A {Tychonofl') space X is called -
metrizable or linearly uniformuzable if the topology of X is generated by a
uniformity &/ on X having a well-ordered base 5 of order type 7 (where
By < By <= By > Byfor By, By € B)

These spaces were introduced by H. Kurepa in 1934 [13] (in a different
form) under the name pseudo-distancial spaces (see also [13}-{18], [19], [22]-
[24], {25], [5]} as probably the best generalization of the usual metric spaces.
This definition is one of the equivalent formulations. Note that pseudo-
distancial spaces play an important role in nonlinear numerical analysis.
Nowdays there are many papers about 7-metrizable spaces (see the paper
[5} and references there inj.

A characteristic property of 7-metrizable spaces s 7-additivity. Recall
that a space X is 7-additive if the intersections of less than 7 many open
sets in X are open. _

Let us mention two characterizations of T-metrizable spaces.

t* Supporied by the Serbian Scientific Foundation, grant N 04M01.
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1.1. ([26]) 4 regular space X is r-metrizable if and only if it is T-additive
and has a base which ts the union of v many locally finite collections of open
subsets of X.

1.2, ([12]) A regular space X is r-metrizable if and only if it is T-additive
and kdv(X) = 7.

(The k-developability degree kdv{ X)) of a space X is the smallest cardinal
7 for which there exists a family {i, : @ € 7} of open covers of X with the
property that for every compact setl. £ C X and its every neighborhood V
there is a U, such that S{(C. U} C V)

Another typical property of 7-metrizable spaces is that they are (ob-
spaces. A space X is called a lob-space if its every point has a linearly
ordered {by the reverse inclusion) local base.

A topological group is linearly uniformizable if and only if it is a lob-
space [21] and a 7-metrizable topological group is a monotonically normal
space (R. Heath; see [5]).

In this paper we give some results on spaces which are images of 7-
metrizable spaces under different kinds of continuous mappings. A new
class of spaces is also considered.

The notation and terminology we use are standard and follow that of
5] and {6]. All spaces are assumed to be regular 77 and all mappings are
continuous surjections. 7 is always a regular infinite cardinal.

2. IMAGES OF LINEARLY UNIFFORMIZABLE SPACES

In the last vears several results concerning images or preimages of 7-metrizable
spaces vnder some kinds of cortinuous mappings have been obtained. We
will mention some of these results.

Let us recall some definitions. A mapping f: X —= VY is

(a) [20] biguotient if whenever F is a filter base in ¥ accumulating at a
point y € ¥V, then f~1(F) accumulates at some = € f~'(y};

(b) [10] 7-biguotient if whenever {B, : « € 7} is a decreasing 7-sequence
of subsets of ¥ accumulating at a point y € ¥, then {f/71(Bs) : a & 7}
accumulates at some x € f1(y);

(c) [6] pseudo-open (or hereditarily quotient) if whenever B is a subset
of ¥ and y € B, then z € f~1(B) for some z € f~1{y).

Definition 1. ([7]) A space X s said to be chain-net if for every non-closed
set A C X there exists ¢ point x € A\ A and a T-sequence (&, 1o € 7) in
A converging to z. X is radial if for every A C X and every z € A there is
a T-sequence (o 1 @ € T) in A converging to .
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Definition 2. ([9]) (see also [2], [4]) A space X is called biradial if whenever
a filter base F accumulates at ¢ point x € X, then there erists a famzly S
of subsets of X such that:

(1) S is linearly ordered by O;
(ii) n{5:5€ 8} ={z};
(ii1) & converges to z;

(iv) S is synchronous with F (i.e. SNF £ 0 for every § € S and every
FerF)

Definition 3. ([10}) A space X is called strongly r-radial if for every
decreasing T-sequence (Ag 1 o € T) of subsets of X accumuloting af 2 € X,
there exist z, € A, such that the sequence (2, @ o € T) converges to z. X
is strongly radial if it s strongly T-radial for some cardinal 7.

Images of linearly uniformizable spaces under mappings are shown in
the next table. We also indicate a reference about the corresponding result.
{Husek and Kulpa [8;T.2] have proved that the class of all open images of
r-metrizable orderable spaces coincides with the class of all [ob-spaces X
having the property x{z, X ) = 7 for every non-isclated z & X .)

mapping space

open lob (8]

pseudo-open radial [7]

quotient pseudo-radial  [7]
biquetient biradial  [9)
T-biquotient strongly 7-radial [10]
closed irreducible 2-to-1 | weak-butterfly (5]
closed irreducible proto-metrizable 5]

In what follows we use the notion of the Arhangel skit number of a space
introduced by the author in 1983 (see [5]).

Definition 4. The Arhangel skii number A(X) of a space X is the smallesi
eardinal T such that there ewists a perfect mapping [ from X onto some
r-metrizable space Y,

Now we are going to give some results involving the Arhangel’skii num-
ber.

Definition 5. ([10]) Let v be a cardinal. A space X is called a 7-bi-k-
space if for every filter buse F accumulating al a point x € X there exists a
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decreasing T-sequence (S, 1 o € 7) of subsets of X converging io a compact
set O C X and synchronous with F. If X is a 7-bi-k-space for some cardinal
T we say that X is a linearly bi-k-space.

Definition 6. ([11]) (a) A space X is called monotonically bi-k if theve 1s
e cardinal T such that for each decreasing 7-sequence (A, : « € 7) of subsets
of X and each x € N{A, : a € T} there exists a decreasing T-sequence (4
o € 7) of subsets of X converging to the compact set C = N{S, 1« € 7} and
having the property x € N{Sy:a €7} and v € S, N A, for every o € 7.

(b) If in the definition above all the sets A, are equal to a set A we call
X a linearly singly-bi-k-space.

Definition 7. ([10], [11]) A space X is linearly singly bi-k (linearly bi-
k, monotonically bi-k) if and only if ¢t is a pseudo-open (bigquotient, T-
biquotient) image of a space Y with A(Y') = 7 for some cardinal 7.

Therefore, we have the following table regarding the images of spaces
which admit perfect mappings onto linearly uniformizable spaces.

mapping ‘ space
pseudo-open | linearly singly bi-k
biquatient linearly bi-k&
r-biquotient | monotonically bi-k

3. ALMOST BIRADIAL SPACES

In this section we introduce a new class of spaces and prove somie assertions
concerning this class.

A filter base F is called w-directed filter base if for every countable family
A C F there exists a member £ € F such that ' C NA.

We call a space X almost biradial if for every w-directed filter base F on
X accumulating at a point & € X there is a (decreasing) chain S converging
to z and synchronous with F.

For an almost biradial space X let lc(X) < 7 mean that the length
of every chain § in the definition of almost biradial spaces is < 7. When
le(X) = w, X is sald to be an almost bisequential space (see [3], where
almost bisequential spaces are defined and studied under the name weakly
bisequential spaces as a generalization of bisequential spaces [1], [20]).

Clearly, every biradial space is almost biradial.

Proposition 1. Fvery almost biradial space is radial.

Proof. Let A be a subset of an almost biradial space X and z € A. The
family {A} is an w-directed filter base that accumulates at z. Since X is



131

almost biradial there is a decreasing chain § of subsets of X converging to
¢ and synchronous with {A}. For every 5 € S take a point zg € ANY. We
have a chain {zg : S € §) of points of A which converges to 2 and witnesses
that X is a radial space.

Recall that a space X is said to be a P-space if the intersection of any
countable family of open subsets of X is also open. Then we have:

Proposition 2. Let X be a P-space. If every subspace of X having cardi-
nality < le{ X )d(X) s almost biradial, then X is also almost biradial.

Proof. Let 4 be a dense subset of X such that |A] < 7 = le(X)d( X) and
let F be an w-directed filter base on X accumulating at some 2 € X. As X
is a P-space, the collection

Fa={ANnU : U is open in X and contains some F € F}

is an w-directed filter base on 4 and accumulates at x (in fact, converges
to z). By assumption, the set A U {z} is almost biradial, hence there
exists a chain S4 of subsets of A U {z} converging to z and synchronous
with F4. The family K = {Cix(M) : M € Fy4} is an w-directed filter
base on X that converges to . The proof will be completed if we prove
that X is synchronous with F. Suppose it is not and take F € F and
Cly(M) € K such that FNClx(M) = 0. Then X \ Clx(M) is an open
subset of X which contains F* € F so that X \ Clx(M) € Fu. Therefore,
(X \Clx(M))n M # 0 which is impossible. This contradiction proves that
K and F are synchronous.

Remark. If every subspace A of a space X such that |4] < le(X)d(X) is
biradial, then X is itself hiradial.

Theorem 1. Every almost rodial space X of couniable pseudocharacter is
almost bisequential.

Proof. Let F be an w-directed filter base on X accumulating at a point
z € X and let {U; : ¢+ € N} be a family of open subsets of X such that
N{U; 1 € N} = {z}. (We suppose that z ¢ Fy for some Fy € F, because
otherwise the proof is trivial.) Since X is almost biradial, there is a chain
S of subsets of X which converges to = and synchronous with 7. For
every ¢+ € N choose an element 5; in & such that =z € 5; € U; and put
S* ={8&;: ¢ & N}. It is clear that §* is a chain synchronous with F. Let
us show that &* converges to . Suppose, on the contrary, that there exists
a neighbourhood W of z such that 5;\ W # @ for each ¢ € N. One can find
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a member 7" € & for which z € 7" C W holds. From the fact that S is a
chain it follows that T C 5; for every 7 € N so that we have

Tcn{8:ie N} C{U;:ie N} ={z}.

However, I'N Fy # @ implies TN(X'\{z}) # 0 and we obtain a contradiction
which proves that $* converges to #. So, X is an almost bisequential space,

Theorem 2. FEvery reqular ccc almost biradiol P-space X is almost bise-
guential.

Proof. Let F be an w-directed filter base on X accumulating at a point
z € X. Let

A={A: Aisopenin X and A D F for some ' € F or z € int(A)}.

Since X is a P-space the family A has the countable intersection property
and so there is an w-directed filter base B containing A. Clearly, B accu-
mulates at x. As X is an almost biradial space there exists a chain & of
subsets of X' converging to  and synchronous with B. Consider the family
S* = {int(§) : § € 8}. The regularity of X implies that the chain S*
converges to . We are going to show that for every 5 € 8&* and every
F € F we have SN F # (. Suppose that there are 5* € S* and F € F
such that §*N # = §. Then X\ .5* € A and, since the set M = 5%\ int(5)
is nowhere dense, X \ M € A. We have

STA(XANMIN (XS Cmt(5%)n (X \int(57)) = 0.

However, this contradicts the fact that (X \ M) (X' §%) # 0.

The chain {5> : §* € §*} shows that in X one can take chains having
cardinality < |8*|. As elements of $* are regular open sets and every chain
consisting of such sets has cardinality < ¢{X') we conclude that /e{X) < w,
i.e. X is an almost bisequential space.

Theorem 3. Let X be a reqular almost biradial space with the Baire prop-
erty. Then every point & in X 1is the limit of a chain consisting of (regular)
open subsets of X .

Proof. Let z be an arbitrary point in X. Let A" denote the collection of
all subsets of X which are unions of countably many nowhere dense subsets
of X. Of course, if K is a countable subcollection of A, then UK € A.
Therefore, the family F = {X \ M : M € A} is an w-directed filter base
on X, and, since every F ¢ F is a dense subset of X (because X has
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the Baire property), F accumulates at . Since X is almost hiradial there
exists a chain & of subsets of X converging to z and synchronouns with F.
It follows from this that V1S = @, hence & does not contain a member
which is nowhere dense in X, i.e. for every § € S we have int(5) # 0. Let
A = {int(S) : § € S}. Then all elements of the chain .4 are regular open
sets, A is synchronouus with F and since X is a regular space, this chain

converges to .

Corollary 1. If X s a regular ccc almost biradial space with the Baire
property, then | X| < 2%,

Proof. Every chain in X consisting of regnlar open subsets of X cannot
have more than ¢(X) members. By the previous theorem X is an almost
bisequential space. The cardinality of every reguiar almost bisequential
space is < 295 [3;Prop. 6].

REFERENCES

(1] Arhangel'skii A.V., On invariants of character and weight type, Trudy
Moskov. Mat. Obshch. 38 (1979), 3-23.

[2] Arhangel’skii A.V., On biradial topological spaces and groups. Topology
Appl. 36 {1990), 173-180.

(3] Arhangel’skii A.V., Bisequential spaces, tighiness of products, and
metrizability conditions in fopological groups, Trudy Moskov. Mat. Ob-
shch. 55 (1994), 268-284,

[4] Arhangel’skii A.V., Bella A., The product of biradial compact spaces,
Topology Appl. 45 (1992), 157-162.

5] Cammaroto F., Koginac Lj., Some results on w,-metrizable and related
spaces, Bolletino Un. Mat. [taliana (7) 7-B (1993), 607-629

(6] Engelking R., General Topology, PWN. Warszawa, 1977.

[7] Herrlich H., Quolienten geordneter Rdume und Folgenkonvergenz,
Fund. Math. 61 {1967), 79-81.

[8] Husek M., Kunlpa W., Open images of orderable spaces, Proc. Amer.
Math. Soc. 88 (1983), 711-715.

19] Kotinac Lj., Bi-quotizent images of ordered spaces, Publ. Inst., Math.
(Beograd) 39(53) (1986), 173-177.



134

110] Kocinac L., Two theorems concerning bi-quotient maps, Matem. vesnik
38 (1986), 58-64.

[11] Kotinac Lj., Linearly singly bi-k-spaces, Publ. Inst. Math. {Beograd)
45(59) (1988), 169-177.

[12] Kotinac Lj., A characterization of w,-metrizable spaces, Zbornik rad.
Fil. fak. (Ni§), Ser. Mat. 4 (1990), 79-82.

[13] Kurepa B., Tableaur ramifiés d’ensembles. Espaces pseudodistanciés,
C.R. Acad. Sci. Paris 198 {1934), 1563-1565.

[14] Kurepa D., Ensembles ordonnés et ramifiés, Publ. Math. Univ. Bel-
grade 4 (1935), 1-138.

(15] Kurepa D., Le probléme de Souslin et les espaces abstraits, C.R. Acad.
Sci. Paris 203 (1936), 1049-1052.

[16}) Kurepa D., Sur les classes (£) et (D), Publ. Math. Univ. Belgrade 5
(1936), 124-132.

17] Kurepa B., Sur Uécart abstrait, Glasnik Mat.-Fiz. Astr. 11 (1956),
1056134,

(18] Kurepa B., On the ezistence of pseudo-meiric non-totally orderable
spaces, Glasnik Mat.-Fiz. Astr. 18 (1963), 183-194.

(19] Mamuzi¢ Z.P., Introduction io General Topology, Beograd, 1960; No-
ordhoff, Groningen, 1963.

[20] Michael E., A quintuple quotient guest, Gen. Top. Appl. 2 (1972}, 91~
138.

21] Nyikos P., Reichel H.-C., Topologicaly orderable groups, Gen. Top.
Appl. 5 (1975), 195-204.

122] Papit P., Sur les espaces pseudo-distanciés, Glasnik Mat.-Fiz. Astr. 9
(1954), 217-228.

(23] Papi¢ P., Sur les espaces pseudo-distanciés complétes, Glasnik Mat.-
Fiz. Astr. 11 (1956), 135-142.

[24] Papic P., Sur une classe d’ensembles ordonnés et les espaces pseudo-
distunciés, Glasnik Mat.-Fiz. Astr. 11 {1956), 161-168.



135

[25] Todoreevié S., On a theorem of 9. Kurepa, in: Topology and Order
Structures §, Math. Centre Tracts 142, Amsterdam (1981), 173-176.

26] Wang Shu-Tang, Remarks on w,-additive spaces, Fund. Math. 55
i
(1964), 101-112.



SCIENTIFIC REVIEW (1996}, Number 19-20, pp. 137-146

A SEQUENCE OF KUREPA’S FUNCTIONS

Gradimir V. MILOVANOVIC
Faculty of Plectronic Fngineering, Department of Mathematics
University of Nis, P.O, Box 73, 18000 Nis, Yugoslavia

Dedicated to the memory of Professor DJ. Kurepa

Abstract. In this paper we define and study a sequence of functions
{Km(2)}E% |, where K_;(z) = T'(z) is the gamma function and Ky(z) =

K(z) is the Kurepa function [5]-16]. We give several properties of K, (z)
including a discussion on their zeros and poles.
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1. INTRODUCTION

The left factorial function 2 — K{(z) was defined by Professor DJ. Kurepa
{see [5]-[6]) in the following way

(1) K(2) :/ Polty (Rez > 0).
L i—1

Firstly, he introduced the so-called left factorial as
=0, Wm=0+1U+ - +(n-1)} (neN)

and then extended it to the right side of the complex plane by (1). The
function £{z) can be extended analytically to the whole complex plane by

(2) K(z)=EK(z+1)-T(z+1),

"This work was supported in part by the Serbian Scientific Foundation, grant number
04MD3.
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where I'(z) is the gamma function defined by
I'(z) = / e~ dt (Rez > 0) and 2I(z)=I{z+ 1).
0

Kurepa [6] proved that A(z) is a meromorphic function with simple poles
at the points z; = —k (k£ € N\ {2}). Graphs of the gamma and Kurepa
functions for real values of z are displayed in Fig. 1.

Fig. 1: The gamma function I'(z) = £ _1(2) (dotted line) and the Kurepa
function K(z) = Ky(x) (solid line)
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Slavi¢ [10] found the representation

, T 1/ 1 =
I‘\/(z‘) = —; cotwz 4 ;‘(z E -+ ’}’) + z P(Z - ﬂ),
n=l n=0

where v is Euler’s constant. These formulas were also mentioned in the book
[8]. A number of problems and hypotheses, especially in number theory,
were posed by Kurepa and then considered by several mathematicians. For
details and a complete list of references see a recent survey written by Ivié
and Mijajlovié [4].

In this paper we define and study a sequence of complex functions
{]1'7,1(2)}:;‘:_17 such that the first two terms are the gamma function and
ihe Kurepa function, i.e., N_3(z) = I['(2) and Ky{z) = K{z). In Section 2
we give the basic definition of the sequence {K,,(z)}1%°_, and main prop-
erties of such functions including their graphs for the real values of z. Zeros
and poles of /,,(z) are discussed in Section 3. Numerical calculations, se-
ries expansions, as well as some applications of such functions will be given

elsewhere,

2. BASIC DEFINITIONS AND PROPERTIES

Definition 1. The polynomials t — (,,{(t;2), m = —1.0,1.2,..., are
defined by
. . = m4 2y y
(3) Qe =0 Qi =Y (" -1
v=0

For example, a few first polynomials are given by
Qoltsz) =1,
Qutiz) =1+ (24 D(t- 1),
Qult:z) =14 (z+2)(t 1)+ %(32 + 324 2)(t - 1)%,
Qslt;z) =1+ {2+ 3_)(6 -1+ %(z"2 + 5z +6)(1 — 1)*
+%(23 +62° F 1z 6)(t—1)%

It is easy to see that the following result holds:
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Lemma 1. For every m € Ny we have
Q62 = Qa2+ 1) 4 oz 4 1)z 42)- (- m)(t = )™
This Lemma can be useful for constructing the polynomials ¢ ,.(¢; 2).
If we define A, as the standard forward difference operator
AL flz) = flz +1) = flz),
then equality (2) can be expressed in the form
A Kg(2) = K_q1(z + 1),

where we put K(z) = Kp{2) and F(z) = K_1{z). Our goal here is to define
the functions K, (z), m = 1,2,..., such that

A Kp(2)= KNy (z 4+ 1), m=20,1,....

In our considerations we also use the k-th order difference operator A%,
defined inductively as

AVf(zy= fz), AR = AL (AE()) (ke N,
Firstly, we prove the following auxiliary result:

Lemma 2. For cvery m € Ng we have

A Qm ) — (t - l)@m I(t z+ J—)

Proof. According to previous definition we have

Asz(t; 3) - Qm(i; z+ ]-) - Qm(t§3)

:i(m-PVerl)(tHl)y_i(mjz)(i_l)y

=0 =0
= ; (ij)(t — 1)
m—1
=t-1% (mljz-l_l](t——l)“
w=0
= (= 1)Qma (24 1),

Definition 2. The sequence {I{m(z)};i_l is defined by

+oo gzdmo .z
(4) Km(z)zfo ‘ (13:’:& ) et g1 (Rez > 0),

where Q. (t; 2) given by (3).
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Fig. 2: The function K{z)

—
L

[RCJ S ——
L

Theorem 1. For Rez > ( we have

Ayl p(z) = Kz + 1) — Kp{z) = Kooz + 1)
aricd ‘

ALK (2) = Kop_i(2 + 1), 1= 1.2, .,m+ 1.
Proof. Using Lemma 2 we obtain

AT — Q) = T 5 ALQ (L 2)
=t = DT — Qo2+ D).
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Then
, +ee et — QL 2)] _,
Azlﬁm(z) - /{; AZ |: (t _ l)m+1 e di
= /+°° PP = Quobr 1)
0 {t - 1)m

= Kp1(z + 1)
[terating we obtain

ALK ()= AT VK, (24 1) = ATPR,, ol 42y = = Komi(z + ).

Fig. 3: The function Ks(z)
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For i = m 4+ 1 we find

ATV R, ()= K (z+m+1)=T(z+m+ 1).

Fig. 4: The function Ks(z)

It is easy to see that for nonnegative integers the following result holds:

Theorem 2. For n,m & Ny we have
; n—1

= ¢ m+n
Kofn)=>" (_;) ZI/!(U +;+ 1), Ko (0) = 0.

=0 =1
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If we put

Sy=uy (_}y (v >0),

i!
=0
e, S, = w51+ (—1}" with Sp = 1. then K,,(n) can be expressed in the

following form
= m+n
Ko )= -
() uZO (1/—1— m + 1)5

Since

,5'0 =1, Sl =0, Sy=1, S3=2, S4=9, 5;= 44, ete.,

we have
I{fn'(oj = O‘ IL‘m(l) = 1’ Il—m(z) =m Jf’ 21
1
Kn(3)= ;2—(7712 + 51 + R),
1
Km(4) = g(ma + 9m? + 32m 4 60),
efc.

The function K,,(z}, m € N, can be extended analytically to the whole
complex plane by

(5) Kplz) = Kp(z41) = Kppoy{z + 1)

Suppose that we have analytic extensions for all functions K ,(z), v < m.
Using (4) and (5) we define /A, (2) at first for =z satisfving Rez > —1, then
for Rez such that Rez > —2, etc. In this way we obtain the function A, (z)
in the whole complex plane.

An evaluation of the Kurepa function A'o(#) for some specific z in (0, 1),
using quadrature formulas with relatively small accuracy, was made by
Slavi¢ and the author of this paper (see [G]). Recently, we [9] gave power
series expansions of the Kurepa function Ko{a+ 2}, ¢ > 0, and determined
numerical values of their coefficients b,(a) for « = 0 and « = 1, in high
precision (Q-arithmetic with machine precision & 1.93 x 10721}, Using an
asymptotic behaviour of b,(a), when v — oo, we gave a transformation
of series with much faster convergence. Also, we obtained the Chebyshev
expansions for Kp(1 4+ 2) and 1/Kg(1 + z). For similar expansions of the
gamma function see, e.g. Davis [2], Luke [7], Iransén and Wrigge [3]. and
Bohman and Froberg [1].

Graphs of functions & ,(z), m = 1.2, 3, for real values of 2 are displayed
in figures 2, 3, and 4. respectively.
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3. ZEROS AND POLES

Firstly, we prove:

Theorem 3. For each m € Ng we have

(6) Ko (=n) =0, n=20,1,...,m.

Proof. For m = 0 the statement is true (Ko(0) = 0).

Suppose that (6) holds. Then, for n = 0,1,..., m, we have
Kopgi(=n— 1) = Kpqa(-n) — K (-n) = Kypo(-n).
Since I(,,+1(0) = 0, we conclude that

Ii’m+1(—1) = I(m+1("‘2) == I&"m,_|_1(—7?'b) = Iﬁrm+1(—’ffl - 1]

Similarly as in [6] we can conclude that the functjon K., (z){m > 1) has

7?L

an infinite strictly decreasing sequence {ég o of zeros

f[()m) =0, fgm) = -1, ..., i) = —n,
{f:n) €(—-k—1,-k) (m+1<kcN)

{m) _

Poles of &,,(z) are in the points z, ' = ~n{n=m+ l,m+2,...),
except the point 3.50) when _K()(Z»EO)) = Wo{—-2)=1.
The poles of gamma function ['(z) = K_1(z) are z.fl_l) = —n, n =
0,1,..., with the corresponding residues
] __1 kel
Res,-_,['(2) = ( ﬂ]) (n=0,1,...).
Puttling

RS;'”) = Res;= 5 W in(2) (n>m+ 1),
we can prove by induction the following result:

Theorem 4. For every n > m + 3 we /za.ﬁe that

B =R, - S R,

v=m—+2

where

RETT-;-)l = (*1)m+1> Rfﬂ)z = m{— 1)m+l-
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For m = 0 Theorem 4 reduces to Kurepa’s result [6], §6:

R = Res, s Kolz) = -1,

S
R,(,LD) = Res,—_, Kolz) = — Z === (n>3).

) e
p=2

We note that z = —2 is not a pole of Kg(z) (Rgo) = Q).
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Let X and Y be metric spaces. The following theorem is well-known.

Theorem 1. The map [ : X — Y is continuous if for every sequence (z,,)
in X from

1) nh—{go Ty = 29
it follows
(2) Jim f(zn) = f(zo)

The purpose of this paper is to state a theorem of the above type for
uniformly continuous maps. -

Of course directly from the definition the following theorem can be
stated: The map f : X — Y is uniformly continuous if for any two se-
quences [2,), (¥x) in X from
(3) lm d(@n, ys) =0

n—~uo
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it follows

The idea is to eliminate some of the sequences. It is clear that if a map
is continuous then for the uniform continuity only the sequences which are
not contained in a compact subset are of interest. We can make a further
selection, i.e. only sequences are of interest which tend to an end of X.
The notion of end can be found in the papers of Freudenthal [3], [4] (also
(11, [2]). The crucial point in the proof is Theorem 4, a modified version of
Theorem 3 from [3].

Lemma 2. Let X be connecled, and let § be an open nonempty subset of

./Y, Q # X. The'n @\Q ?E @

Proof. If the statement of the lemma is not true, ie. @ = @, then Q
is a closed subset of X. Then ¢) is open and closed at the same tinie and
¢ # X, and it follows that X is not connected.

This is a contradiction, so the statement of the lemma must be true.

Theorem 3. Let X be connected, locally connected, Ty and locally compact.
Let K © X, K compact, If Il CV where V is open, then V' contains all
components of X\K, but finitely many.

Proof. Let {@; | b € B} be the set of components of X\ Let {{), |« €
A} be the set of components of X\ K which are not completely contained
in V. ie.

(5) Qa N{XN\V) # 0.

Since X is locally connected each @, is open. From Lemma 2, @, \Q, # 0,
and it follows that

(6) Q,NK #9.

Since X 1s locally compact, it follows that for every @ € K, there exists
a neighborhood U7, C V such that T, is compact.

The covering of K, {U, | x € K} contains a finite subcovering {U,,, Uy,
oo Uy }e If we put

(7) U=U, Ul U---ul,,,

then I/ is compact.
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From Q. N K # 0 it follows that @, NT # 0. Also Q, NI is open in Q,
and we can apply Lemma 2 in the space ,. Then we have

(8) (Qe NUNQaNUY#G
l.e.
(9) Q. N (TN # 0.

Also each point of U\U is in some @y, b € B.
Since \U is compact it follows that there exists a finite covering { (s, .
Qiyrv -2 Quyy of UNU. But for every a € A,

(10) Qo € @b, Qv -1 W, }

i.e. A s finite.

Definition. We call a subspace of X essential if it is not contained in any
compact subset of X .

Theorem 4. Let X be Ty, connected, locally connected and locally compact.
Then for every compact C there exists a compact D, O C D, such that X\ D
has only o finite number of components,

Moreover, D can be chosen such that each of the finite number of com-
ponents of X\ D is essential.

Proof. Let ¢ be compact in X. Since X is locally compact there exists

an open set I/ and a compact K’ such that € C UV C K’ By the previous

theorem, I/ contains all the components of X\('. except a finite number.
For a given nonesseutial component of X\C not contained in U/, there

exists a compact set which contains this component. Decause the number

of these components is finite, it follows that there exists a compact set A,

such that & € K’, and K contains all nonessential components of X\
Let {@Q, | ¢ € A} be all nonessential components of X\ (. We put

(11) p=|Ja.lJc

a€A

Then X\.D is a union of essential components of X\C'. Since X is locally
connected, every component of X\C is open. and it follows that X\D is
open, i.e. D is closed. From £ C K we have that D2 is compact.

Moreover, X\ D contains only a finite number of components and all
components are essential.
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To state the main theorem we need the definition of the notion of end.
We denote by S(X\C') the set of components of connectedness of X\(' for
any compact set €' in X. Then the set of ends E(X) of X is:

(12) E(X)=1lmS(X\C)

where the inverse limit is taken over all compact subsets ¢ of X .

Definition. A sequence of compacis (C,) in X,
CrCCaCCrC -+

s cofinal if:
(13) Jcu=x

and any compact subset C in X is contained in some C,,.

Lemma 5. In any locally compact, Ty space with a countable basis there
exisis ¢ cofinal sequence of compacts.

Proof. Let 5 be a countable basis for X. Then for each point z € X there
exists a B, € B and a compact set K, such that ¢ € B, ¢ K,. The sel
A={B, |z € X} is also countable, i.e.

(14) A:{Bg;'$€X}:{Bl,Bg,Bg,...}’
and
(15) JB.=X.
n=1
Let Cl = Pl, Cg = E_]_ U Eg, C;} = Fl UEZ U§37... . Then (Cn) is the

required cofinal sequence of compacts. To prove this let €' be an arbitrary
compact subset of X. Then C can be covered by a finite number of sets
from A. Let n be the largest index of these sets. Then ' C C,.

For spaces X in which there exists a cofinal sequence of compacts (C),),
CyCcCaCC3C e
the set of ends F{X) consists of all sequences

@1 2@2DQsD
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where (J; € S(X\C)).

The definition does not depend on the choice of the cofinal sequence
(C,). It follows that for fixed cofinal sequence (C,} in X each end of X is
uniquely determined by a sequence @y D Qo D @32 ---.

Definition. The sequence (xy) in X has the limit at the end ¢ determined

by the sequence (1 O Qo D Q3 D -+ ((xg) tends to the end g) if for any n,
there exists an index ko such that

(17) 2k € Qn,
for all k > ky.

Theorem 6. Let X be a separable metric space, locally compact, connected
and locally connected. Let Y be a metric space and f: X — Y be a contin-
wous map. Then [ is uniformly continuous if for any sequence (2,) in X
such that (x,,) tends to some end of X, and another sequence (y,) from

(18) Hm dizp,y,) =0
TG
it follows that

(19) lim d(f(x,), f(ya)) = 0.

=

Proof. Suppose that the theorem is not true, i.e. function f is not uni-

formly continucus. This means: there exists an € > 0, such that for any

6 > 0 there exist z,y € X, such that d{z,y) < e, and d( f(2), f(y)) > ¢.
We choose a cofinal sequence of compact sets

CicCyclsc---

such that each X\, has only a finite number of components.

We define subset P(X\C,) of the set of components of X\, in the
following way: @, € P{X\C,) if and ouly if there exists a point 2, € Qp,
and a point gy, € X such that: )
(20) Az, 14n) <

il

=z~

and

(21) d(f(zn), flyn)) 2 €.
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Let
[T ={(@1Qa . Q) [ Qi € P(X\C), i = 1,2,
(22)
@1 202202}
and
HOO = {(Q1, Q2 @nr. . ) Qi € P(X\Cy), i=1,2,...,
(23)

@12Q22-2Q.2 1}

Since fis uniformly continucus on each compact C, it follows that P{X\C})
Z0,n=1,2,.... For any 401 € P(X\Cyy,) there exists a component
Q; € P(X\C;) such that Q41 C Q. It follows that [], # 0 for all indices
7.

We have to prove that [[_ # §.

There exists QY € P(X\Cy) such that for each n there exists an n-
tuple (which depends on n), (@1, @2....,&») € [1, (if this is not true, then
starting from some ng, []., = @ for all » > ng because P{X\C1) is finite).

Suppose we have

a A0 0
(24) (@%.0% @D e,
such that for each n > j there exists an n-tuple {which depends on n),

(25) Q4,8 Q% Qi Q) €

Then there exists Q?H € P(X\Cj41), such that for each n there exists an
n-tuple (which depends on n),

(26) (Q?ana'--aQ?sQ?+1>---uQn) € Hn

(if this is not true then we will have that there exists ng, such that [], =0,
for all n > nyg).
In this way a sequence

(27) (Q?a@%aﬂ@?? ?4—1?"-) & Hoo’
s constructed, such that
oI Q2% D

j.e. this sequence determines an end of X.
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From the consiruction there exists a point z; € Q?, and a point y; € X
such that:

(28) d(mjr y,?) < 317!
and
(29) d(f(z;), fly;)) = e

Further, since the sequence (z.,} tend to an end of X, we have a contradic-
tion.
The conclusion is that the map f must be uniformly continuous.

Corollary. Let X be a connected manifold (with or without boundary), ¥
a metric space and f X — Y «a conlinuous map. Then [ is uniformly
continuous if for any sequence (x,) in X such that (z,) tends te some end
of X, and another sequence (y,) from

(30) lim d{x,,y,) =0

n—xX

it follows that

(31) nh-lgo d(f(rn)vf(gnn = 0.
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Let us give a definition of linear operator L, or more precisely L{g, a), which
is the obhject of our investigations. Its domain consists of functions y{xz).
from Lo{0, ), satistying v € Lo(0, 7). and {0} = y(7) = 0. For such func-
tions y{a), we put Ly = —y" + ¢{xiy -+ v(a). Here, g(x) is a complex-valued
funetion, called a potential. We assume that the potential is a summable
fanction. ie. ¢{z) € L,(0,7), if not specified otherwise. Here, 0 < a < 7.
Let us also formulate a corresponding boundary probiem with a spectral
paramether A = 2% 4

(1) —y"(x) + gla)yla) + yla) = Aylz),
(2) 9(0) = 0,

{3) y(r) = 0.
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In the first part of the present paper. we will investigate the asymptotic
behaviour of the eigenvalues of the problem (1)-(3). In the second part, an
integral equation, on the unknown g¢{z), is derived. Using this equation, the
main result of the present paper is obtained. We prove that one sequence
of eigenvalues determines both potential ¢ and parameter ¢, under certan
restrictions, in the case of symmetric potential, ¢(7 — z) = ¢{z). Various
questions of spectral theory, for the operator L and for similar operators,
were studied in earlier papers. In paper [1], ar expansion problem is sofved.
In our paper (2], a trace formula is obtained.

Theorem 1. [f the function g(z) has o bounded variation derivation, then

the following formula, for eigenvalues A, (n =1,2,...) of the problem (1)-
(3), holds:

1 .
(4) An =2+ Oy + = Coln) + O(n72),

where

= %/: g(tydt, Ca(n) = ;21_—[] — (=1)"]sin an.

Proof. Equation (1) with condition (2) is equivalent to the integral equa-
tion
1—coszz 1

- —/ q(t)sin z(x — 1)y(t, z)dt,
0

(5) y(x,2) = cosinzz + y(a) = .

where ¢y denotes an arbitrary constant. Equation (5) can be solved by
the method of successive approximations. We will introduce the necessary
notations:

{

Ty =t o, 1), 121, QUTY) = [ alte), Ty = dtrdiy ... dty,
k=1

Di={Ti|0<t, <m,0<ty <1y, 0 St <ty

D ={T0<t £a,0<ty <y, 0S8 St )y
-1
S(z,Ty) = sin z(7 — {1 ) sin 24 H sin z(fg = {ge1)s
k=1
-1
SY(z, ) = sin z(a — ;) sin 2 H sin 2(tg — k1),
k=1
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i—1
Clz, 7)) = sinz(m — 11)[) — cos 2] | | sin z{tx — tiy1),
k=1

|

-1
CHz, Ty) = sin z(a — t;)[1 ~ cos zt;] H sin z(ty — thg1 ),
k=1

1 mw
@(m,z) =sinmz + —/ g{ty)sin z{m — 1) sin zt1dty
= Jo

— 1
35 [, ecrstz i,

1 —cosw <1
MR L /D Q(T)C(=, T))dT,.
=1 !

Now, let * = = in equation (5), and let the boundary condition (3)
be used. So, the characteristic equation for L, i.e. an equation having
eigenvalues (their square roots) as solutions, is derived:

(6) B(z,a) = o(m, 2)[1 = (a, 2)] + la, J(r,2) = 0.

To determine the asymptotic behaviour of the zeros of ®{z,a), Horn’s
iterative method can be applied. So, if we write

1 1
Zp =n+ Ecl(n) + ECQ(W‘) + O(nFS)a

then using (6), we find,

17 1 7
c1(n) = 5;/0 g(t)dt — g/o ¢(t) cos 2ntdt,

1=

—1wn ¥
ca(n) = 1=(=0" sin an + %/ (m — 2t)q(t) sin 2ntdt.
T Jo

T

The function ¢'(z) has a bounded variation, therefore one integration by
paris is allowed, and we find

alm) = 5= [ adi+ 0,

ca{n) = ﬂ sinan + O(n™1).
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Finally,

1 1 1)
Z, = — Ddt + - i -3,
=0t — : g(t)dt + 2 - sitan + O(n™"%)
All that remains Is to raise to the square, i.e. to compute A, = 22 (n € N).
Formula (4) is derived. The proof is completed.

With the help of the previous theorem, part of the inverse spectral prob-
lem may be solved right away. Let the sequence {A,}2%,, representing the
spectram of some operator L from the earlier-described class, be given. Can
the number a be determined (according to this sequence)? Let us form a
sequence:

_ )\gn+3 - (2n + 3)2 - /\gﬂ_g, + (2?’3 - 3)2

3 = :
' n(@) A2n+l - (27’2, + ].)2 — /\Zn—l + (2n - 1)2

From (4), it is easy to conclude:

sin Ja

g i ) =
Thus, when the spectrum is known, the expression on the right side of (7)
is known, i.e. a is found.

We want to form an equation on unknown ¢(z). Let us consider some
operator L{q,a) defined by (1)-(3). Let {A,}22; be the sequence of its
eigenvalues. The characteristic function ®(z), from (6), of this operator,
can be presented in two manners:

o0 22 o0 n?
(8) (IJ(z):A-z-H(l—-/\—n),A:TrH)\—n,
(9) B(z) = p(m, 2, q)[1 = (e, z,0)] + ¢la, 2, ¢)9(7, 2, q).

The function ¢(z, 2, ¢) is defined by:

Z

1 /7 .
c,o(x,z,q):sinmz-{-m/ g(ty)sin z(x — 1) sin 21 dty +
0

1 x 9]
'zl_'z / / q(ty)g(ta) sin 2(@ — i) sin 2ty sin 2(F — to)digdty + -+ -,
g Jo

and analogously for ¥(z, z, ).
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Since the two representations (8) and (9) hold for every z € €', we set
z = m (m - natural), and thus we get the sequence of equations:

0o 2 oo
T H o H(l -
n=1" n=1

= (7, m,q)[1 — ¥(a, m,q)] + pla, m. q)b(r, m.q).

(10)

We wish to establish a connection between the A, (given objects) and
Fourier’s coefficients (unknown) of the potential ¢. Let

G, :/ g{t) cos 2midt.
0

Let us introduce the new notations:

Applm.m, q) = Z mz/ QUTNS (m, T))d T},

[0
Argp(a,m, q) = Z —~ / Q(THS (m, T)dT) =
= i ¢{t)sinm{e — t)sin mtdt + Aqap(a, m, g),
m
( m+1
Ayp(m,m,¢) = / (t)sinmi[1 — cos mi]dt +

1
mf-l-? /D Q Tg) C m Tg)(lT[

2 !

+
,——\ﬂ—Mg

H

1)m+1 T
/ q(t)sin mi[1 — cos mt}dt + Aq(m,m, q),
0

Myla,m,q) = ;—% | g(t)sinm(a — t)[1 — cos mtldt + Axep(a, m, q).

Hence,
(momg) = T2 4 Ave(rm, )
™ = m i 4 3
w\m, L, g om 2 2@ q
1 —cosam
Yla,m,q) = S — Arypla,m, q),
wla,m,q) = sinam + Ayela,m, q),
1—-(~-1)
P(r,m,q) = ——(—— + Ay(w,m, g).
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Consequently,
{=nr 1 — cos am
A gl = e m g = =1 - e Jasn+
(11) 1 —cosam
(1= T2 Asp(m, ) — olm, m, @) A(a, m,q),
and
1—-(=1 —]yml
wla,m,g)d{r,m,q) = —(2—)—Sin am + ( )3 sin aim-
It
" 1 /7 (1™
(12) [/ ¢(t) sin mitdt — *f g(t) sin 2mitdt] + 1_(39_
0 2 Jo m

/q(t)sin1n(a—t)sinmtdt+a,9(a,m,q)z_\.gw(w,m?q)—}Agcp(a,m,q)w(w,m,q).
0

The equations (10) take a new form, after the relations (11) and (12)
are used (for m € N):

P (=1)™ . (~1y" 11— cosam
D(m) — —r sinem = [1- T]agm+
(1)t " . L .
+——5—sinam- L g(t)sinmidt — = q(t) sin 2midt] +
m 0 2 Jo

] - (~1)"
mS

(13) + / g(t)sinm{a — t}sin midi+
0

1l - cosam

_|_[1 —- 3 ]Agtr:)(ﬂ'vﬂl, q) - (P(ﬂ-a maq}Alw(aaﬂ%CI)-!'

T
+()D(a'a m, q)Aﬁl[)(”‘Ta T, Q) + A?"P(a» i, Q’)'ﬁb(ﬂ'a m, qJ‘

At this stage, we have to put some limitations on the potential. We
assume that

— " gltydt = 0.
(14) foq[t)t 0
Also, let

(15) a(x - ) = qla).

These two conditions do not restrict the generality of our analysis. The
last condition implies bgy, = fgr g(t)sin 2mitdt = 0, i.e. the potential ¢ is
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determined by its Fourier coefficients ag,, (because 0 < z < 7). Let us look
at the relation (13) when the number m is even. Then, on the right side, the
second and the third member vanish, if the additional supposition is made -
that ¢ is already determined by its coefficients of the form a4,y,. Therefore,
let also

; m
(16) 9(5 — ) = qlz).

In view of the previous suppositions, (13) can be rewritten as

1 [ 3 1 —cos2am

1 —cos2am
il =
(2m) T (2m)? (2m)? 1Agp(m,2m, ¢)

(17) ~ (7, 2m, q)A (e, 2m, q) + pla, 2m, g} Do(x, 2M, ¢) +
+ Aspla, 2m, q)w(m, 2m, q}.

]a4m+ [1—

Set ) . 9
— cos2am
==l ey b
and besides £, # 0 for every m € N. Let
1,
Ajrn, = —®(2m).
Em
We also put

Oum (g, 0) = —dmAyp(m, 2m, ¢} +
(18) + 5_1" [&,O(Ti’, Qma q)Alw(a’a va Q) - Lp(a, 277?,, Q)A?ﬂ/)(ﬂ-v va ‘?) -
- A?@(aw Qm? Q)w(ﬂa 2’."1’1,, Q)] .

Now, (17) receives the form
(19) gy = Aélm(’\m G,) + a4m(q,a), m & N.

It is easy to show that Ay, — 0 when m — o0, and that the series

(v
Z Adpm cOsdme

m=1

converges. Thereby, the numbers Ay, are Fourier’s coefficients of some func-
tion from L;(0,w). Let L1(0, 7) denote the subspace of L1(0,7) consisting
of all elements satisfying the conditions (14)-{16). By means of previous
examinations, the following result is already proved.
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Theorem 2. Let g € L/4(0,m). Let A, (n = 1,2,...) be the eigenvalues
of the operator L(g,a); for L{g,a), see formulas (1)-(3). Then, the sys-
tem of equations (18) holds, expressing a connection between the Fourier’s
coefficients agm of this potential g and these eigenvalues A, .

Set

2 [>w]
(20) flz) = — Z am COs 4.

=

We shall multiply every equation of system (19) by %cos 4mz, and, after
that, we shall sum up. As a result,

{21) glz) = f(z) + ; Z Cam (¢, &) cosdmz.

m=1

After the substitution A{z) = g(z) — f(z) is carried out, (21) transforms
into

«‘-1|l\')

(22) Z f+ h,a)cosdmae.

For equation {22}, the uniqueness of the solution will be studied, whereby
we rewrite (22) as:

(23) h=T(h),

where, clearly, T(h) is a nonlinear operator acting by the rule:

2 oo
T(h) = p Z Qam (f + Ry @) cosdma,

=1

We shall demonstrate that Banach’s theorem about a fixed-point can be
applied to the operator 7’ and to some ball with centre f. We assume that
T acts in the space L;1(0,7), L.e. we use the norm ||| = [ 1h(t)|dt. With

{
a certain liberty, we shall write F(7}) + H (13) for H (1) + h{ti)).
k=1

In accordance with the right side of formula (18), the expression for T'(h}
can be divided into four parts To(h) + T1(R) + T2(h) 4+ Ts(h), where:
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(24)  To(h)(z) = Zm cosdmz Z( :n) / [F(T) + H(T1)]S(2m, T1)dTr.
D,

Ly

Ti(h)(z}) = Z Eim - cosdmi - Z (Q—T}a)K/D [F(Ty,) + H(T ))S(2m, T, )dTh, -

=1
(25)

oo

1 .
) W/D [F(L,) + H{T1,)]C" (2m, T, )1,

ix=1
and for Th(h), T3(h) by analogy.
At this stage, we wish to make an appropriate estimate for Ty(hy) —
Tolhy). If we introduce the notation

(26) = sup Z I S(2m Tg)i] | cos 2mz|de,
then we have

[Ta(h)() = Tolh )@ < Y, | (D) + Hy(T)] = LT + T

sup S(2m, T | cos 2mz),
LT Ir;l m(g )E ! )'

and

(ko) = Tulba)l < o0 ) /0 LA + B (1) / () + ha(ta)]

/otl_] LF(t) + ha()]dty - - dia = [f(t1) + halt)] /Ot] [£(t2) + ha(t2)] -

ti—1
/(; [F) + balt)] dta . dis|dts,
(27)

1 To(h1) — To(h2) ‘<UOZE, £+ p) - llha = hof| =
= ag(e“f”‘"»o — 1|}y — hal},

where p = max{|}hu]], | ha]}.
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In order to estimate 7Y, we write

1 1 1 d
a1 = sup Z_l |£—mWS(Zm,T[l)WCI(z’ITL,sz”/O |c052m$|d$,

where "sup” is taken over Ty, € Dy, T}, € Dllg, Iy 2 1,1y > 1. The following
inequality is valid:

ITahe) - Talholl € o0 503 [ 1) + ()
0

ih=1l=1

iy =1
e [T ) et
a 0
. T |
U e [ [ o )~
al -1
—[.f(t1)+h2(i1)l/0 /O [F(t,) + ha(ty,)]ds, - - - dty-

@ ti t;oﬁl
- / [F(E) + ho(t) / / L) + ol el dey.
0 0 )

In view of the fact that the previous double series absolutely converges,
an arbitrary amalgamation in this series is legal. Let the k-th member
consist of all integrals having a dimension &. So,

fe el

I3 (ha) = Ta(ha)]) € 00 3,
k=2

- /O Lf(t) + (8] /Oa[f(t}J (e Y]de] -
)+ h(t)] / (F(#) + ha(eD0det] i

and for vs, etc. by analogy.
Can the numbers surpassing v be found? We have

2 € |lhy = Rall(NFI1+ ), p 2 max{{linl]; 1Azl }.

Analogously,

a

s < ] 1[7(t2) + oa(12)] ]0 (1) + ha(t2))drs /0 (8 + Rl -
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Ut + ot} 170+ haleldta [T + ha(eh et
K 8}
# [+ ) [ 1+ hateb] U0 + it -

—[ft1) + hsl tl)]/ [f )+ hol 51 ]/ +h2(t2 dtldt1|dt1,

then,

U711+ 902 + SULA = 9 = hall = SO+ Pl — ol

3
Ya < (——2_2!

In the same manner,

74_(2 S+ 97+ 5 23(|1f|l+p
4 g1+ 23 = fall = SIS+ 7B = ol

and, in general,
< (141 + p)F Nl = Bzl

Hence,
1110k ) — Ta(ha)l| <
(25)
— + _
o Y1+ o =l = o D2y = haf <1
k=1

The next two estimates are obtained in a similar way:

(29) 172(h1) — Talha)|| < 02[% + llil+e 7)1k, — Byl

||f +p
- |||f| — thl - h?”

Putting together the inequalities (27)-(30), we have:

(30) |T5(h) = Ta(ha)|| £ 0

(31) IT(hy) = T(ha)l| <

{(UO —|—O’3)(8”f“+p— 1)+ (0'1 —|—O’2 +O’3)%}th — hg” = O:”h} —/1-2”.
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At this point, it is easy to determine radius r of the ball having its
centre in point f, such that the transformation 7' is a contraction in this
ball {[|A]| < r},i.e. {|]l¢— f|| < r}. Preliminarly, it must he

(32) I+ r <1 (U= [ 1),
0
The quantity » must also satisfy the inequality
(33) (oot )M 1)k (o1 4y 5 o ILEL

We would remark that ¢; > 0 depends only on the number a, while f
depends on {A,} and a. It only remains to demonstrate that 7' transforms
the ball B(f,r) = {p,|lp — f| € r} into itself. That can be easily shown,
performing estimates of the type (27)-(30). The next theorem represents
the main result of the present paper. Its proof is contained in previous
investigations.

Theorem 3. Let the sequence of numbers {1, }°2, be given; and let these
numbers be the eigenvalues of some problem having the form (1)-(3) with
the potential from the set L'y(0,7); for L'1(0,7), see formulas (14)-(16).
Let the function f(a) be defined by formulas (8), (20). Let us suppose
that there exists a number v > 0, such that the inequalities (32), (33) are
satisfied. Then, in the ball B(f,r) = {p,|lp— f|| £ r} there exists the unique
function ¢ € L'1(0,7), such that L{g,a) has evactly the given numbers A,
as eigenvalues.

Remarks: The unknown potential ¢(z) can be reconstrucied by solving
equation (21). In further work, we shall attempt to "magnify” the radius »
by means of more precise estimates for the multiple integrals. The presented
method can be also applied (for proving uniqueness) when y(a), from (1),
is replaced by a more general linear functional. The method can be used
for various non-self-adjoint boundary problems.
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Let B{H ) and C; denote respectively the space of all bounded and Hilbert-
Schmidt operators acting on a separabhle, infinite-dimensional, complex Hil-
bert space 7. If F and F are the speciral measures on C, then for all X and
Y in Cq, the function v x § — trace( B(y)X F{§)Y™) defined on Borel rect-
angles in C* can be extended to an ¢-additive complex Borel measure ux vy
on C? satislying [ux yv| < | X[l2|Y ]2 as shown in [4]. This is a basic point
for the existence of essentially bounded functional calculus in two (gener-
ally non-commuting} normal operator variables which was first introduced
by Birman and Solomvak in [1] and [2] as double operator integrals.

Thus to every essentially bounded function in two complex variables
there corresponds a linear transformation (transformator) acting on C; as
its domain. As shown earlier by several authors, a global extension of this
domain to the whole B({H ) is not possible (see (3] for example). However,
we show in this paper how double operator integrals can be efficiently used
in some problems for generalized normal derivations, despite of the fact
that they represent B(H ) transformations. So, we start with the following
theorem from [7].

Theorem 1. For normal A and B and an arbitrary X in B{IH ) the funciion

Flsy = [ 1A AX B 4 | AP~ X BB,

15 convex and symmetric on [0, p), non-increasing on [0, p/2] and non-decreasing

on [p/2,p].
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Here we present a short proof of this theorem based on the following
integral representation formula:

(1) | AP~ AX|BIP=* + |APT X B|B)" M) =
‘ 2z Hwl? 8 4 |27 fwfwio! Zd N
z|z|fwlP=t + [z[Ptw|w]tT Hiaper ax st yiaw— xpipp-t (52 0)

o(d) a(B)

forall%ﬁsﬁtﬁp.
It was shown in [4] that the classical Fuglede-Putnam theorem and the

main result in [9] immediately follow from the following integral represen-
tation formula,

(21 IFAX = XF(B))E = // ' flz) = fw)?

- —w dityx_ x5z, w)

a(A)yxo(B)

whenever AX — X B isin €y and f is a Lipshitz function on ¢{A} U o(5).
Formula (1) itself can easily be shown for Hilbert-Schmidt class operators
X, according to the essentially bounded calculus (see also [4] for details).
To show its validity for all bounded X, we follow the lines of the proof of
formula (2) in [4] and we first prove it for off-diagonal pieces E;X F; of X
for all {i — j| >» 1. The formula is completed by the limit argument based on
1 e L I
2|2t HuwlP=E 4 [zt wlw]

for all complex z,w and g < s <t < p,then according to the fact that

the uniform boundedness principle. As

= || [A|f7YAX|BPP + AP X B B2,
2

P aje=1 axiBp—t | ap—: x g(m(e1

the conclusion follows from the above integral representation formula.
We conclude with an application of Jensen’s convexity theorem to double
operator integrals.

Theorem 2. Let A, B and X be in B(H) with A and B being self-adjoint
and X being in Co. Then for every even natural number n we have

3) PIAX + X Bl € 27X I3 AT + X B

Proof. As shown in representation formula (2)

(4) HNX+XWﬁ:f/M”wW@M%m



169

for some measure g satisfying wx (C?) = ||X||2. Having the function 2 —
@™ convex on R for n even, we get

(5) o™+ y* = 2" Ha ]

and, in view of (4)
© X xB 22 g [ [l ey

The measure ;% = px /|| X||3 is a probability measure; now the application
of Jensen’s inequality gives

JA"X + X B3> 227 X 22 ( [ [+ v, y))

(7) = 27| X )37 AX + X B3
Tor compact operator AX — X B we have that
(8) JAX + XBIE" > || AX — X B3 = || [AX + X B"|I3

and now, the assertion of the theorem follows directly from (7) and (8).

Remark 1. This theorem is also true for all natural » because (5) is true
for all add natural numbers n; the proot requires mathematical induction
only.

For other applications of double operator integrals see [6] and [8l.
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Abstract. Ip the present paper we introduce a class @ (A, B, «) of p-
valent meromorphic functions with positive coefficients and obtain coeffi-
cient inequality, distortion theorem, radius of convexity and convex linear
combination. Various results obtained in this paper are shown to be sharp.
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1. INTRODUCTION

Let €}, denote a class ol functions of the form

_ 1w W
(1) flz) = ;§+Z&p+nzp+ (tpgn = 0)
n=0

which are analytic and p-valent in the punctured dise U* = {z | 0 < |z| < L}.
For A, B fixed we define a class ¢ (A4, B, o) as follows.

Definition. A function [ € @, is in (5 (A, B,a) if 2f/(2)/ [(2) has the
form
2f'(z) _ _pt+pB+ (A= B)p - ojw(z)

(2) flz) L+ Buw(z)

- Here w(z) is reqular in U = {z | |2| < 1} and satisfies w(0) = 0 and
lw(z)] <l forzelU; 0<a<p,-1<A<B<L<L, 0<B<L.
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The condition {2) is equivalent to

2RI
f(z)
Bzf'(z) )
S B (A= B - o)

The study of the aforementioned class ¢} (A, B, o) was especially motivated
by the recent work of Uralegaddi and Ganigi [6] and similar work has been
done by many researchers, Aouf [1], Cho et al [2], Mogra-Reddy and Juneja
[5], Clunie [3], Miller [4].

In the present paper we have obtained coefficient inequality, distortion
theorerm, radius of convexity and closure theorem. Various resulis are shown
to be sharp.

2. COEFFICIENT INEQUALITIES

The following theorem gives a necessaty and sufficient condition for a func-
tion to be in @ (4, B, a).

Theorem 1. A function f(z -+ Z pin 2?7 (Gpn > 0) is in
Q; (A, B, ) if and only if

Y {2+ A+ B)p+na(l+ B)+(B - Aatapn < (B - A)p-a).

n=0
The result is sharp.

Proofl. Let |z] = 1. Then from (3) we have

2f(2) B Bzf!(z) B I = s 20|
72| T em 4= B )| = | S+ i
(B-A)p-—a)= > [B(p+n)+ (B~ Aa+ Aplayy 2"

[e0]
<> 2+ A+ B)p+na(14 B)+(B-A)alapyy ~(B—A)(p-a) < 0; by hypothesis.

n=0
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Hence by the maximum modulus theorem f € Q5( A4, B, «). For the converse
assume that
zf'(z)

f(z)
+[pB+ (A= B)(p— o)

+1

Bzf'(z)
f(z)

&0]
> 20+ njegn
=0

- <1
(B-A)p—a)- Z[B (p+n) -+ (B - A)a + Aplaj,, 22"

8

Since |Re (2)| < |z| for all z we have

o0

5+
(4) Re n=0 < 1.

0

(B—A)p—a)= > [B(p+n)+(B— A+ Aplayyn 2"

n=0

Choose values of z on the real axis so that zf'(z )/f(z} is real. Upon clearing
the denominator in (4} and letting z — 1 through real values we obtain

> (2p+ n)apen < (B-A)p-a)— Y [Blp+n)+ (B - Ao+ Aplapn.
n=0 n=0

This gives the required relation. The result is sharp, the extremal function
being

(B— A)p— a)zp
{2+ A+ B)p+ (14 B)n+(B - Aja}’

- 1
f():—'|' n=20,1,2,...

3. DISTORTION THEOEM AND RADIUS OF CONVEXITY

Theorem 2. If f(z) = — o Zap+nz " (tpgn > 0) is in @3(A, B, a)
then
i _ (B - A)(p - Q)Tp 1 (Z)'
v (24 A+ B)p+ (B - A)a] T
1 Ly (B~ A)(p - o)r?

[(2+ A+ B)p+ (B - 4)a]
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and
p (B —A)(p—ajrr?
rp+l [(1—|—B)+(B Ao ~

< |f(=)]

< P (B - A)(p—a)r!
— ot (L4 BY+ (B - Ao

Proof. From Theorem 1, we have

[(2+ A+ Blp+ (B~ A Zam

n=0

s§}@+A+Bm+u+Bm+w~Ammwn
=0

<(B-A)p-a)

and we have,

5, (B~ A)p- o)
2 S (24 A+ Blp-+ (B - jal
Hence
[Fl < = + Z%Jr Pt
< L + 7P i a
= Pt+n
n=>0
iy B-Ap-ar
(2+A+ Blp+ (B~ Al
and
1 = Pt
SOy
n=0
1 e
2 T—p -7 Z a’p-}-n
n=0
1 (B~ A)p—ajr?

2

7 T2t At BT (B-Aa]
The bounds for | f(#)] are sharp and are attained for the function:

(B - A)p— )z’
[(2+ A+ Bp+ (B - A)a]

; T
at z =7, re'2p

fe)= =+
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Also we have

e ¢]
P _
()] < e + Z(p+ n)ap+nr?9+n L
=0
p p—1 S
S F T ()
n=0
0
e -
‘fl(z)i 2 W — Z(p + n}a.p+nfpp+ﬂ 1
n=0
p _ [»w]
2 TS i Z(p +2)0p4a-
=0

Since
(B—A)a+{1+B)p+n) < (1+Bn+(2+A+B)n+(B-A)a, n=0,1,2,...

we have

[ee]

(1+B)+ (B~ A)ay (p+n)apin

n=0
<Y (14 Bm+ (B=Aa+ (24 A+ B)plapen
n=0
<{B - A)p- o)
The bounds for | f'(z)| follow.

Theorem 3. If f(z) 15 in Q(A, B,a) then f(z) is meromerphically p-
valently convex in

1
1+ B 2+ A+ B B~ Aalp?] @
[(1+Bin+(2+ A+ Bp+( )a]pJ T a0,

0< |z < C;v:”éf[ (B —A)(p—a)p+n)y

The result is sharp.

Proof. It suffices to show that

Zf”(z) J
1y

FRE L

<1, for 0 < |z| < C}.
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We have

> (2p+ n)(p b n)apy 2T

_ | a=0

2843l + o
n=0
S (2 + 0)(p + n)ayyn 2
< n=0

- oG

2p7 = 3l o+ )il

n={}

L+ 4y

zf!"{z

The last expression is bounded above by 1 if

o0

2
(5) Z ,:(p—l};n)] ap+n1212;o+n <1

n=0

By Theorem 1, we have

(6)

224+ A+Byp+(1+B)n+ (B - A
2 (B-Dp-a) =t

In view of (6), (5) is true if

2 .
%o [(pw;ﬂ)] 5|4 < [(2+ 4+ B()gt(i;(rpB_)f;;L (B - A)&]’

Solving (7) for |z| we obtain

(Lt B)n + (24 A+ Blp + (B~ A)alp?] oo
(B-A)p- a)p+n) |

© e

Putting |z| = Cp in (8) the result follows.

The estimate is sharp for the function

_ 1 (B - A)(p— c)2?tm .
flz)= g~ + (1f B LT AL BT (B Al for some n.
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4. CONVEX LINEAR COMBINATION
In this section we shall prove that the class Q}(4, B,a) is closed under

convex linear combinations.

i
Theorem 4. Let f,_1(2) = —, and
z

o (B A)p— )7t
Trtalz) = 2P + [(1+Bm+(2+ A+ B)+(B- 4] "
Then f € Qp(A, B, o) if and only if it can be expressed in the form f(z) =
Z Aptn fp4n(2) where Ay, > 0 and Z Apn = 1.

n=—1 a=-1

=0.52,....

Proof. Suppose

2)= D dpsnforal2)

n=-—171

1 o0
= o + Z A;.cr-l-nfp-m(Z)
a=0

Then
L P14 B+ (24 A+ Blp (B - Aol
(1+Bn+(24+ A4+ Bp+ (B - A)al i
. =S Mpn=1-A1 <L
(B—A)(p—a) 2
Hence, f € Q5(A, B,«). Then
(B-A)p- o)
,n=0,1,2,...
ST Bt 21 A+ Blp+ (B-Aal "
Settlng
1+ Bn+ 24+ A+ Blp+ (B - Aal
A n = Ty = ,1,2,.”
& (B - A)(p- o) frine =0
and -
Ap-1 = 1- Z)‘Hn
n=0
we obtain

J(z) = Z )\p+ﬂf1a+n

n=—1
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Abstract. In this paper we consider a double array of random variables
which are independent in each row and have geometric distributions with
different parameters. The condition of uniformly asymptotically negligi-
bility is not satisfieé for this double array, and consequenily the limiting
distribution of the sum 5, of the rundom variables in the nth row cannot
be derived from classical limit theorems. Nevertheless, the exact distribu-
tion of the sum of random variables in the nth row can be determined.

Keywords: sum of independent random variables, geometric distribution,
condition of uniformly asymptotically negligibility.

1. INTRODUCTION

Let
Xll’ Xl?a levl-:
X?,la X227 XZkg:
(1)
ana X'n.?: Xnkn:

be a double array of random variables. For each n € {1,2,...} let us denote

kn kn
Sy = ZXW" o = ZVar(Xm).
=1

i=1
We suppose that k, — oo as n = oo and the random variables X,; are
independent in each row.
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In dealing with the double array { X.;) it is essential

(a) to determine the exact distribution of the sum S, (if it is possible)
or ‘

(b) to determine the asymptotic distribution of the sum S, and to inves-
tigate the question of the "speed” of convergence, i.e. the difference between
the approximating expression and its limit.

The exact distribution of the sum 5, can be determined in some cases,
for example if the terms X,,; have a normal distribution, Poisson distribution
or uniform distribution on the segment [0, 1}, {2]. Of course, there are many
cases for which 1t is not easy to find the exact distribution. Ir such cases
the limit theorems for the sum 5, are of essential interest. If a sequence
of distribution functions F, {of random variables 5,,) converges weakly to
normal (0,1) distribution, as in the central limit theorem, then an estimate
of the remainder term F,(z} — ®(x) is necessary for numerical caleulation
in many mathematical applications.

The classical assumption is that individual terms in the sum 5, are neg-
ligible. More precisely, the double array (X,;) is uniformly asymptotically
negligible if the following (UAN}) condition is satisfied:

‘Xm' - EXml 2

On

lim max P{

E} = (0 for every ¢ > 0.
n—00 1<i<kn

Classical limit theorems were established on the basis of the TAN condition
and an exelent presentation of this theory is given in [1]. If the UAN con-
dition is not satisfied one can use the classical method of truncation or the
mare sophisticated method of centres and scatters of probability distribu-
tion introduced in [3]. In this paper we shall consider an example of a double
array of random variables for which the UAN condition is not satisfied.

2. ADOUBLE ARRAY OF RANDOM VARIABLES WITH GEOMET-
RIC DISTRIBUTIONS

Tn this paper we consider a double array of random variables

X117
XQ]v X??a
(2) N

Xﬂl) 1Yn2a XT‘L‘I‘L)

where for every n > 1 the following conditions are satisfied:
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(a) The random variables X,;, 1 < ¢ < n are defined at the same
probability space (2, A,P) and mutually independent;

(b) For every ¢ € {1,2,....n}, the random variable X,; has a geometric
—i4+1
distribution with the parameter p,; = -T-L—w-?ﬁj_—, ie.
7

P{Xp=1}=pn =1,
P{Xpi =k} = pull —pa)™™ !, k=1.2.3,..; 2<i<n

Theorem 1. For the double array (2} with specified geometric distributions
of the random variables X,; the UAN condition is not satisfied.

Proof. It is easy to prove that the following equalities hold true:

1 ‘ 1 1
B(Xu)= —, Var(Xp)=— — —;
e i Pai

L 1
E(8,) = nzz ~nlnn (n— o);
=1

T Tt G v

, 1 1 nig?
VO,T(.SR):RZ E ﬁ_n E =~ g (n — 00).
i=1 i=1

If 0 < & < v/6/(27) and n is an even positive integer, then the following
relations hold true:

P — Xm‘ [ Xnn_ ’rm‘
max P{MZE}ZP{| E( X )| 25}

1<ign Tn Ty,

2 P{ann - ?El 2 Ean} > P{X"fm S n— Egn} Z P{—’Ynn S ’g}

n 1 nf2
:1—P{Xm>§}:l—<1——) —1-e? (n= ),

7

i.e. the double array (Xg;) is not uniformly asymptotically negligible (and
consequently the Lindeberg condition is not satisfied).

Let S, = Xy + X2+ ...+ X, be the sum of the random variables
in the nth row of double array (2). It is interesting that the exact distribu-
tion of the sum 5, can be determined using some combinatorial reasoning,.
Actually, the following theorem holds true:
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Theorem 2. For every n > 1 the random variable S, takes values from
the set {n,n+1,...} with probability 1, and for cvery k € {n,n+1,...} the
following equality holds true:

(3) P{S, =k} = Z (L B 1) (”‘THD .

Proof. We shall give the following interpretation of the random variables
Xpi. Forfixed n > 1, let us consider a sequence of independent trials, where
each trial consists of choosing a number from the set ¥, = {1,2,...,n}. We
suppose that each of the naumbers 1, 2, ..., n has the probability 1/n to be
chosen in every trial. The trials should be repeated uniil each of the numbers
1, 2, ..., n occurs. Let us now suppose that after some number of trials
exactly ¢ — 1 of numbers from the set N, have been chosen, and let X/ be
the number of new trials that should be made until the ith number from the
set N, occurs. Then, the random variabie X! has the same distribution
as the random variable X,;. We shall identify Lhese two random variables.
The sum 5, = X,y + Xp2 + ...+ X, can be interpreted as the number of
trials until each of $he numbers from set N, occurs. In the future we shall
use this interpretation of the random variables X,; and 5,.

Tet w = ¢y¢9. .. ¢y be one of the possible sequences of numbers from set
N, that can be chosen in the first m trials. We shall call the cutcome w:
m-variation of the elements 1, 2, ..., n. Then, the probability of outcome

w after the first m trials is equal to nim Let k€ {n,n+1,...} be fixed and
let Ay be the event that after the first & — 1 trials each of the numbers 1, 2,

.., n — 1 has been chosen, but the number n has not been chosen. Let us
denote: M — the set of all (£ — 1)-variations of elements 1,2, ..., n—1; M; -
the set of all (k—1)-variations of elements from the set {1,2,...,n—1}\{i},
where 1 < ¢ < n—1. Then, we have Ay = M\ (M UM;U.. .UM, _1). Using
the principle of inclusion and exclusion (see [1]) we get that the number of
elements of the set Ay is given by

| Akl = |M\ (M1 UMz UL U M,y)

- S(_mi (n . 1)(’!1 —i- 1)L

Since every (k — 1)-variation from Aj; has the probability n=*+1, it follows
that the fol]owmg equality holds true:
n—2

Py = -0 (" (”——mi)k

=0
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Let By be the event that after the first £—1 trials exactly n—1 of the numbers
from the set N, have been chosen. Then, we have P(By) = nP(Ay). Since

the numbers from set N, will occur in the kth trial with the probability —,
7
it follows that

P{Sn“'k}_m Bk)_ ( )

SRCIC

This completes the proof of Theorem 2.

3. A NUMERICAL EXAMPLE

Modern computers give us new possibilities in calculating the probabili-
ties concerning the sums of independent random variables. The equali-
ties (3) allow us to calculate the probabilities concerning the random vari-
able §,. For example, in the following table we give the values of prob-
ability p, of the event P{S5, < FS5,} for some values of n (for every
n € {6585,6586,...,8614} we have p, = 0.5708...):

'7‘)?, Pn 1 Pr Tt Pn

| 2] 0.750000 || 101 | 0.571868 | 6585 | 0.570880
3] 0.617284 || 102 | 0.574419 || 6586 | 0.570864
4 10622924 || 103 | 0.573733 || 6587 | 0.5708%4
5| 0.606364 | 104 | 0.573028 || ... [ 0.5708...
6 | 0.582845 [ 105 | 0.572307 |[ 8612 0.570877
7| 0.611154 [[ 106 | 0.574636 | 8613 | 0.570854
[ 8]0.579272 | 107 | 0.573858 || 8614 | 0.570857
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Abstract. The paper considers variational inequalities with cone con-
straints. The characterization of solutions and sufficient conditions for the
existence of solutions are given. An algorithm for the numerical solution
of a problem is proposed and the convergence of the generated sequence of
points is proved.
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1. INTRODUCTION

Let X be a real Banach space, I/ C X a convex closed subset of the space
X and F: X — 257 a point-to-set mapping from X to its dual space X*.

The variational inequality VI(F,U) is the problem:

Find w € U such that there exists y € F(u) satisfying

—
[y
e

Vovel)y<yv—u>>0.

There are many problems which can be [ormulated as variational in-
equalities, for example convex programming problems, some problems from
game theory, equilibrivm problems in economics and traffic, linear comple-
snentarity problems, optimal control problems, etc.

This paper considers variational inequalities in a real Banach space,
when the feasible set of points is described by the cone constraini. In Section
3 some existence theorems are proved. In Section 4 the characterization of
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solutions is given. In Section 5 an approximation of solutions of variational
inequalities VI(F,U) is presented and the convergence of the generated
sequence of points to a solutien is proved.

2. DEFINITION, NOTATION, PRELIMINARIES
A multi-valued mapping £ : X — 2% is said to be a monotone operator if
(Vay, 0 € dom(£))(Vyn € Fa1))(Yya € Fz)) < 41 — 12,21 — 22 >2> 0,

where dom(F) = {u € X|F(u) # 0}. The monotone operator F is said to
be strictly monotone if this inequality is strict for z; # z3, and maximal
monotone if its graph

) = {{z,y) € X x Xy € Flz)}

is not properly contained in the graph of any other monctone operator. The
dual cone of a set £ C X is the closed convex coue

Et ={ve X*|(Vue E) <v,u>>0}

Let X,Y be Banach spaces; let 5 C Y he a closed convex cone with a
nonempty interior. We shall say that the mapping ¢ : X — Y is S-convex
if, for every o € (0,1) and u;,uy € X, the following holds:

ag(ur) + (1 — a)g(uz) —glav; + (1 - a)uz) € 5

Let U € X be a closed convex subset of X. A point z is called a radial
point of U if

(Vwe U)N3a>0) [z,2-alw-2)]C U

If U has a nonempty relative interior U/ with respect to some norm for
X then U has a radial point.

3.  EXISTENCE OF SOLUTIONS

In this Section we shall suppose that X is a real Hilbert space and <, >:
X x X — R is a bounded bilinear form. Then there is a linear continuous
operator A : X — X, such that

(Vu,v e X) < u,v >= (Au, v),

where {,) denotes the inner product.
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Lemma 3.1. Let G : X — 2% be a point-to-set mapping, which is upper
semicontinuous and G(u) is closed for every u € X. Furtheremore, let us
suppose that sequences of points {u,}, {v.} and {c,} saiisfy conditions

ty, € dom(G), v, € X, 2, € Ry
and

lim u, = u € dom{G), lim v, = v, lim &, =0
n—rod N—0C =00

Then from
vy € Gup) + e, B

it follows that v € G(u).
Proof. Since & is upper semicontinuous, it follows that
(Ve > 0)(38 > 0)G{u+ 6B) C G{u)+eB.

From

lim w, = u, im ¢, = v and lim ¢, =0,
T3 O i—r 0 =1

it follows that, for every ¢ > () there exist ngy, ny, ne € N such that

(2) (VY > no)||vn - v]| < %
(3) (Vn > n )Gl{u,) C Glu)+ §B
(4} (¥n > n9)0 < g, < -53-

Since v, € G(uy,) + €, 8, for n > max{ng, ny,n2}, it follows that
v, € Glug) + 6,8 C Glu)+ %B + %B = Glu) + %—g-B,
and from (2}, (4) we have
(Ve > 0)v € Glu) +¢B.
Hence

ve ((Gu)+2B) = Glu)

e>»{
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Theorem 3.1. Let X be a real Hilbert space, U C X « nonempty, conver
and compact subset, F 1 X — 2% a poini-to-set mapping which s upper
semicontinuous, U C dom(F), F{u) is a convez, compact subset of the space

X, for every uw € U. Then there exist solutions of variational inequality
VILF,U).

Proof. Let G : U — 2% be defined by
Glu) = u—~ A(F(u)),

where A © X — X, is a linear continuous operator from X in X, which
is associated to bilinear form <, >. Then G is upper semicontinuons, and
for every w € U, (/{u) is convex and compact. From Theorem 1.2.2. ([1})
it follows that for every £ > 0 there exists a locally Lipschitzean map ¢, :
X — X such that

I(g.} C I(G) +eB.

We define f, : U — U, for ¢ > 0, with
fe(u) = PU(Q‘S(U))-

Since g. and Py are continuous, it follows that f. is continuous too. Let
{en} be a sequence of points with

£n € Ry lim g, = 0.

n—r3

IFrom Schauders Theorem, it follows that there exists u,, € I/ such that
Up = fen(Un) = Pu(ge, (tn) € Pu(Gluy) + £:.B) C Pu(Glun)) + €. B

Let H(w):= Py(G(u)). Then H is upper semicontinuouvs, and has the
property

(5) Uy € H{up) + e, B

Since U is compact we can suppose that there exists v € U such that
lim w, = u. From Lemma 3.1. and (5) it follows that

(6) we Hiu) = Pu(Glu) = Pu(u - A(F(u))
From (6) it follows that there exists y € F(u), such that

= PU(U - Ay)
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From that we have
(Vo € Ulu,v—u) > (u— Ay, v — u)
(VoclU)<yv—u>>0.
So u is a solution of the variational inequality VI(F,U).

Theorem 3.2, Let X be a real Hilbert space, U C X, a nonempty, conver
and compact subset, F : X — 2% g point-to-set mapping, which is lower
semicontinuous, U C dom(F), F(u) is a conver, compact subset of the
space X, for every u € U/. Then there exist solulions of variational inequality
VIF,U).

Proof. Let G be defined as in the proof of Theorem 3.1. Sinee F(u},
for v € U, is compact and convex, from the lower semi-continuity of F,
it follows that F'is lower semi-coniinuous in the e-sense. Then & is lower
semi-continuous, and G{u)is convex and compact for © € U. From Theorem
1.11.1.([1]) it follows that there exists ¢ : U — X, which is a continuous
selection from (. We define f: U — U with

h(w) = Pu(g(u)).

Then h is continuous. Since U is a convex, compact subset of X, from
Schauders Theorem it follows that there exists uw € U/ such that

u= hiu) = Pulg(u}) € Pu(Glw)) = Pulu— ACF(w),
and there exists y € F(u), such that
= Pu(u— Ay).
As in the proof of Theorem 3.1 it follows, that w is a solution of the

variational inequality VI(F,U).

4. CHARACTERIZATION OF SOLUTIONS

In this Section the characterization of the solutions of variational inequality
VI(F, U} is given.

Let
U={uelUy| —glu)e S5},

where Uy € X is a convex set and g+ X — Y is S-convex, 5 is a closed
convex cone with a nonempty interior.
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Let us denote by H a set of generators for $7; thus & C 5t and St is
the closure of {ah | h € coH }.
We define

Ho={ge H| <qglu)>=0 forall uwelU}

He= H\ H-.

If ) is a weak* compact subset of H. such that 0 € co@) then we define
A={uvelh| <qg(u}><0, forallge H\Q}.
Let K =@Q%. Then Kt = cone(clco@).
The associated problem for V/{F,U) is

(u, M) € Ax KY A{V(v,0) € A x ETY(< ApF(u)+ 3y < A glu) >, 0—u>

(7) > 0A < —glu),p—A>2>0)

Theorem 4.1. Let £ : X — 2% be a point-to-set- mapping from the Banach
space X to ats dual X*, 5 CY a closed conver cone in Banach space ¥ and
5 has a nonempty interior. Furtheremore let Uy C X be o conver subset of
X andU ={uely| —glu) € b}, where g: X — Y is §-convex, and there
exists (qg) (u; d) for g € Q, that is bounded on the set {d € X|||d|| < 1}.

(a) If (u, A) is @ solution of {7) for some Ag > 0 then w is a solution of
VIIE,U). If u is a solution of VI(F,U) then there exists \g > 0,1 € B,
such that g + [|A]] # 0, so that pair (u, A) is o solution of (7).

(b) If U has a radial point # w and if u is a solution of VI(F,U), then
for some A € K the pair (u, A) is a solution of the system (7) for Ao = L.

Proof. (a) From the proof of Theorem 1 ([12]), it follows that

(8) welUA—g(u)eSifand only if ue AA —g(u) € K.

Let (u,A) be the solution of the system (7). From. (7) it follows that

(Vo e K1) <, g9(u) ><< A g(u) >,
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and from that < A,g(u) >= 0. From the S-convexity of ¢ and A € K7 it
follows that Ag: Uy — R is convex, and

(9) (Vredy < Aglu)>)<rv—u><< Mgy > — < A glu)><0

whenever v € {J.

From (7) it follows that (Vu € K1) < p,g(u) >< 0, and —g(u) € K.
From (7), (8) and (9) it follows that u is a solution of variational inequality
VI(EU).

Let w € U be a solution of variational inequality (1). ket us define a
continuous linear map f:Y — C{(@Q) by

Continuity follows since @ is weak* compact. We denote by J the cone
of nonnegative functions in C'(¢}). Then

w€AAN-g(u)e Kifandonly if u € AA=(fg)(u) e J
Hence there does not exist a solution » € A such that
< Flu),v—u><0A=(fg)v)e L

Alternative theorems ([11], Theorem 2) and ({10}, Theorem 2.5.1) show
that there exists Ag > 0 and p € JT, not both zero, for which

(10} (Vo € A) < AgF(u),v—u> +p(fg)v) >0

Then A = pf € K. From (10) it follows that < A, g(u) >= 0 and the
saddlepoint condition for the Lagrangian L(v, A, Ag) = Ap < Flu),v ~u >
+ < A g(v)>is

(V’U S A)(V,LL = I(_I-)L(‘bﬂ”'_[,, AC‘) < L(U}Aﬁ)\ﬂ) < L(U7A7AD)'

From this it follows that (7) holds.

{b) From (a) it follows that there exist Ag > 0 and A € K+ such that
{7) holds. Suppose that Ag = 0; then p # 0. Since ¢} is compact, p € C(Q*)
is represented by a regular Radon measure w on (), where

(¥ € CLQ))p = /Q i,
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Since p(J) C R4, w is a nonnegative measure. As < A, g(u) >= 0 we have
fQ < q,g(u) > dw = 0. Since < ¢,g(u) >< 0 and w > 0, w vanishes except

on ¢y ={g € Q| <g,g(u) >=0}. But p# 0 and as w is regular, w{4) > 0
for some compact A C 1. Then the following holds

(Vg € @1)v(q) = (g9) (w0 — ) < 0.

¢(q) is negative and bounded away from zero on A, hence (¥r € 8, <
Ag(u) >) < r,v—u >< 0. But this is contradicted by (7) with Ay = 0.
Hence Ag # 0, and Ay = 1 may be assumed. So (u, A) satisfies the system
(7) for Ag = 1.

5. APROXIMATION OF SOLUTIONS

Let X,Y he Hilbert spaces, and let /o C X be a convex and closed set.
Furthermore let U7 = {u € Ug | —g(u} € S}, where ¢ : X — ¥V is S—convex.
The associated system for the variational inequality is

(12 (u, A) € Up x ST A(V(v,u) € Uy x §T)
< Flu)+ 0y < Ajglu) >0 —u>2 08 < —glu),p— A >2 0.
Then the following propositiens hold.
Lemma 5.1, If a pair {u, A) is ¢ solution of system (12) then u is ¢ solution

of VI(F,U).

Proof. Suppose that a pair (%, A) is a solution of system {12). Then from
(12) it follows < A, g(u) >= 0 and for every p € S* < p,glu) >< 0. It
foliows from this that

—glu) e (SHt = 5.

SoueU. Let v € U. Then for r € &, < A, g(u) >
<rv—u><0<< A g(v) > — <A glu) >=< A g{v) >
holds. From (12) it follows that
veUANBye Flu)(VeelU)<y,v—u>>0.
So u is a solution of variational inequality VI(F U).

Lemma 5.2. If mapping I in variational inequality VI(F,U) is mawi-
mal monotone, and U C dom(F'), then mapping ®{u, \) = (Flu) + 0y <
A g(w) >, —gl(u)) in system (12) is mazimal monotone too.
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Proof. @{u,A) = (F(u)+ 8, < X, g(u) >, —glu)).
Since £ is monotone and Ag: Uy — R is convex, it follows that
< @ur, Ay) — Blug, Ag), (w1, M) — (ug, Ag) >=< Fur)— Flug),wa —ug > +
<Az glw) > — < Ag,g(u) > — < 8y < Ay g(ug) >,u1 —ug > o+

<AL glug) > — < A glur) > — < 0y < A, g{ug) > ug —up >> 0.

So © is monotone and since F' and §,(Ag) are maximal monotone it follows
that ® is maximal monotone ([18]).

|

Let the sequence of points {(u,, A,)} be defined by induction:
ug € Up, ho € §F
and if (w,,An) € Ug X ST, (g1, Ans1) Is defined by

(13&) Un+1 € PUO (u'n - an(F(uﬂ) + E’ﬂuﬂ))

(135) /\n+1 = PS+ (’\n - an(ﬁg(un) + ERAR))

Using the results from [5] we can show that the sequence of points generated
by algorithm {13) converges to the sclution of system (12). Namely the
following theorem holds:

Theorem 5.1. Let X,Y be Hilbert spaces, U # 0, Uy C dom(F} F: X —
X mazimal monotone, g+ X — Y, S—conver, and there exists I > 0 such
that

(Vu € Up)(Fy € Fu))llyll < L1+ [lull)
(Vu e Up, d e §T)(Fy € 8y < X, g(u) >)|lyll < L1+ |ul)
(Y € Upjllglu)] < L%+ [ul})

Furthermore suppose that for sequences (ay,) and (,,) the following holds:

an > 0,6, > 0,0, — 0,6, — 0,0, = 0(c,,),

(24
. En — Enti

E cxnsﬂ:oo,hm‘n—n-‘-l:().
n— 00

2
Qs
n=1 nn
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Then a sequence of points {{(u,, A,}} generated by algorithm (13) con-
verges to the solution of system (12}, and a sequence of points (u,) converges
to some solution of the variational ineguality VI{F,U).

Proof. The proposition follows from Theorem 3.1 ([5]). We will prove that
operator ® : Up x 7 — X x § satisfies the hypotheses of Theorem 3.1
([5]}). Indeed, if F' is maximal monotone then ¢ issmaximal monotone too.
Furthermore we have

1@ Cu, M = [[(F(w) + 8 < A glu) >, —glu))]| <
1 E ()] + 100 < A, g(u) > || + [lg(ulll <
[E (] + A0 < Ay glu) > )| + lg(a)ll € 2L(1 + [[ull + [|A]])-

So & satisfies the condition in Theorem 3.1 ([5]). From this it follows
that the sequence of points (u,, A,) converges to some solution of (7), and
then the sequence of points {u,} converges to some solution of VI(F,U).
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One of the most useful results in optimization theory is the following sepa-
ration theorem for disjoint convex sets:

Theorem 1. Let X and Y be two nonempty disjoint conver sets in R™ .
Then there exists o hyperplane {z | a¥x = b}, a # 0 which separates them,
that is,

ale <b, forzeX

aTy >bh, foryey.

This fundamental result is used in deriving theorems of the Kuhn-Tucker
type, necessary optimality conditions and some other results in convex anal-
ysis. Thus for instance, the following unsolvability theorem for linear in-
equalities is a consequence of Theorem 1:

Theorem 2. The sysitem of linear inequalities and equalities
Avx > by
Agz = by

has no solution, iff there exist vectors A > 0 and p such that

May+uT4,=0
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Mhy + 1y > 0.

For the sake of completeness, we shall sketch the proof of the nontrivial
part.
If the system has no solution, then

(2)¢K

p=((4)o- (D alrem azo

Since Y is closed, there exists a convex ball X with center

()

disjoint with Y. Separating X and Y we find vectors A and p such that

where

(ATA +uTAy)e — ATz <0
for all 2 € ™ and all z; > 0. This gives
ATar+ 54, =0

and A > 0. On the other hand,

Az 4 pzg > 0, for (rcl) € X
Lo

gives Aby + pby > 0.

Bearing in mind that Theorem 2 has an elementary proof by induction in
number of variables (see for instance Vajda [1]), it is interesting to note that
we can directly prove Theorem 1 from Theorem 2 using as topological fact
the well-known finite intersection theorem for compact sets (Berge-Ghouila
Houri {2]).

2 {

Proof of Theorem 1. Choosing any 2, 2%, .., #* from X and ¢, 4%,...,y
from Y we claim that the system in {(pg,p2,. .., Pk 01,92, 22 1)

k i
ot =Y gy =
=1 7=1
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k
E:Pizl
=1

|
> e =1

=1

p;>0,i=1,2,... .k
q; >0, 7=12,...,1

has no solution. Using Theorem 2, we find a vector a, nonnegative numbers
Ai, e=1,2, .. kand u;, 7 =1,2,...,0 and numbers A and g, such that

Tal b AN =0, =1, 2,... k 5
—aly’ +p4p;=0,1=1,2,...,1
At p>0.
From these relations, we conclude that
alz' <aly, forall i= L2,...,k;3=1,2,...,1

thus @ # 0. For z € X, y € YV define

7

Ajg,y = {a, | a,T(y— x) > 0and 1< “(LH < 2},

Then A;, is a nonempty compact set and

N Ary #9,

ze{zla?,. . a*}, ye{y! ¥ ,..0'}

2

for any ', 22, ..., 2% 41 9%, ..., y". From the finite intersection theorem, it

follows that

[ Aey #0.

TzeX, yeY

Let @ be any of its elements. Then, e’ (y—z) > 0forall z € X,y € Y.

The separating hyperplane is a¥z = b, where b = in{}aT*y.
=
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Abstract. Data Envelopment Analysis (DEA) is a decision making tool
based on linear programming for measuring the relative efficiencies of a set
of comparable units. Besides the fact that it can identify which units are
relatively efficient and which are not, for each inefficient unit, DEA identifies
the sources and level of inefficiency for each of the inputs and outputs. This
paper is a survey of basic DEA models and their comparison is given. The
effect of model orientation {(input or output) on the efficiency frontier and
the effect of convexity requirements on returns to scale are examined.

Keywords: efficiency, DEA models, efficiency frontier.

1. INTRODUCTION

Omne of the most importani principles in any business is the principle of
efficiency which means that the best possible economic effects (outputs) are
attained with as little economic sacrifices as possible {inputs). FEfficiency
can also be defined as a requirement that the desired targets be achieved
with minimum use of the available resources. In order to assess the relative
efficiency of a business unit, it is necessary to consider the conditions and
operation results of other units of the same kind and determine the real
standing of the results of such a comparison.

In the simplest case, where units have a single output and a single input,
efficiency is defined as their ratio. However, more typical organizational
units have multiple incommensurate inputs and outputs and the relative

T'This paper has been partiailly supported by the Ministry of Science and Technology
of Serbia (project code 10 T 02)
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efficiency of any unit is defined as the ratio of a weighted sum of outputs
and a weighted sum of inputs. :

Recently, the Data Envelopment Analysis method has become popular
in assessing the relative efficiency of business entities. DEA is a technique
of mathematical programming that determines the efficiency of a unit based
on its inputs and outputs, and compares it to other units involved in the
analysis. It can best be described as data-oriented in that it effects per-
formance evalnations and other inferences directly from observed data with
minimal assumptions [5]. The efficiency of a Decision Making Unit (DMTU)
is measured relative to all other DMUs with the simple restriction that all
DMUs lie on or below the extremal frontier. DEA is non-parametric method
as it does not require any assumption about the functional form (e.g., a re-
gression equation, a production function, etc.). It is a methodology directed
to fromtier rather than central tendencies. While statistical procedures are
hased on central tendencies, DEA is an extremal process. DEA analyzes
each DMU separately and calculates a maximal performance measure for
each.

At presents this is one of the most popular fields in operations research,
a fact that is confirmed by a large number of papers published in the course
of a year. The bibliographies released periodically by Seiford [9] already list
more than 1000 references. These papers inform about the ample possibili-
ties of using DEA to evaluate the performances of bank branches, schools,
university departments, farming estates, hospitals and social institutions,
military services, whole economic systems (regions) and others. DEA is
a methodology comprised of several different interactive approaches and
models used for the assessment of the relative efliciency of DMU and the
assessment of the efficiency frontier. It supplies information important for
managing the operations of both efficient and non-efficient urits. This paper
is a survey of basic DEA models and some of ways in which these models
can be used are also given.

2. DEA MODELS

DEA methodology, originally proposed in (4], is used to assess the relative
efficiency of a number of entities using a common set of incommensurate
inputs to generate a common set of incommensurate outputs. The original
motivation for DEA was to compare the productive efficiency of similar
organizations, referred to as DMUs.

Let z;; - denote the observed magnitude of an ¢ - type input for entity
jlzif>0,7=1,2,..,m,7=1,2,...,n), and y,; - the observed magnitude
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of an r-type output for entity j (y,;, > 0,r =1,2,...,8,7 = 1,2, ...,n). Then,
the Charnes-Cooper- Rhodes (CCR) model is formulated in the following
form for a selected entity k :

MODEL (M1)

Z Ur Yrk

.. r=1
(1) Maximize hy = ————
Z VT ik
i=1
subject to

(2) <L (=12..,n)
ZTJI‘I”
i=1
(3) u, > g, (r=1,2,...,8)
(4) wze, (1=1,2,...,m)
where:

v; - the weights to be determined for input 1, m - the number of inputs;
u, - the weights to be determined for output r; & - the number of outpuls;
hy - the relaiive efficiency of DM U; n - the number of entities;
¢ - o small positive parameter.

Relative efficiency fig, of one decision-making unit %, is defined as the
ratio of the weighted sums of their outputs (virtual output) and the weighted
sums of their inputs (virtual input). As for decision-making unit £ (DM U}),
for which a maximum in objective function (1) is being searched, condition
(2)is true, so we obviously have 0 < hy < 1, for each DM Uy, The weights v;
and u, show the importance of each input and output and are determined
in the model so that each DMU is as efficient as possible. Given that
condition (2) is true for every DMU, this means that each of them lies on
the efficiency frontier or beyond it. In case Max hy = A} = 1, this means
that efficiency is being achieved, so we can say that DM Uy is efficient.
Efficiency is not achieved for A} < 1, and DMUg is not efficient then.
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DMUk is considered relatively inefficient if it is possible to expand any of
its outputs without reducing any of its inputs, and without reducing any
other output (output orientation), or if it is possible to reduce any of its
inputs without reducing any output, and without expanding some other of
its inputs (input orientation).

Problem (1) - (4) is nonlinear, nonconvex, with a linear and fractional
objective function and linear and fractional constraints. The above ratio
form yields an infinite number of solutions and if (u*,»*) is optimal, then
(ou™, ov*) is also optimal for @ > 0. Using a simple transformation de-
veloped by Charnes and Cooper (1962), the above CCR ratio model can
be reduced to the linear programming form (Primal CCR model) so that
LP methods can be applied. In this model the denominator has been set
equal to 1 and the numerator is maximized. The input oriented CCR primal
model is:

MODEL (M2)

(5) Max hj = Z e Yrk

r=1

subject to

(6) ivimik =1
=1

&
(7) Zu.ryrj—waij <0, (j=1,...,n)
r=1

=1
(8) w2 e, T=1,2,...,8
(9) e, i=1,2,...,m

The mathematical model presented above is linear and can be solved using
any of the well-known program packages for linear programming. However,
in practice the dual task for problem (5) - (9) is often solved, which is:

MODEL (M3)

{10) Min Zj — E(Z st + Z s7)
r=1 1=1
subject to

(11) ZAijj—Sj-zy'f‘k: (7’21,2,...,3)
i=1
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(12} Zkﬁ'?ik—Z/\jxij—S?j_:O-, (i:ln,Q,....m)

{(13) Aj,sF,sT 2 0; Zp —  sign unbound.

The basic idea behind DEA is conveyed the best in the dual CCR. modet
(M3) that is much easier to solve because of calculating size. The dual
model for a given unit using input and output values of other units tries
to construct a hypothetical composite unit out of existing units. If it is
possible, the given unit is inefficient, otherwise it is efficient and lies at the
efficiency frontier. The efficiency frontier is a set of segments interconnecting
all the efficient DMUs and acts as an envelope for inefficient units. An
inefficient unit can be enveloped below (input-oriented model) or above
(output-oriented model).

Because the problems described by models (M2) and (M3) are associ-
ated, and also because of the duality theorem in linear programming, DM Uy
is efficient if and only if the conditions for optimal solution (A*, st*, 7%, Z7)
are satisfied for problem (10) - (13%:

(14) Zr =1

(15) s = s7* = 0 in all alternate optima

Then, using optimal solution (A*,s%*, 57", Z}) of problem (10) - (13},
we can determine:

(16) X! =ZiX, -5~
(17) VI =¥, st

It can be shown that after CCR projection {(16) and (17}, DM Uy with
altered inputs X} and outputs ¥, becomes efficient. Differences AX}, =
X — X}, and the AY, = ¥} — ¥}, show the estimated amount of input
and ontput inefficiency, respectively. Thus it can be seen for inefficient
DMUy, how to change its inputs and outputs, so it can become efficient.
We should emphasize that for each DMU, (j = 1,2,....n) taken as DM Uy,
the appropriate linear programming problem (10} - (13) is solved. Hence,
we should solve n linear programming tasks with form (10) - (13), with
(s +m + 1) variables and (s + m) constraints per task.

CCR models {dual and primal) with an input orientation are still the
most widely known and used DEA models despite the numerons modified
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models that have appeared. CCR models assume constant returns to scale.
DMU operates under constant returns to scale if an increase in inputs results
in a proportionate increase in the output levels. These models calculate
overall efficiency in which both pure technical efliciency and scale efficiency
are aggregated into a single value. The envelopment surface obtained from
the CCR model has the shape of a convex cone. The efficient DMUs would
lie on top of the facets, while the inefficient ones would be covered under
the cone. In a single input and output case the efficiency frontier reduces
to a straight line. The CCR model yields the same efficiencies regardless of
whether it is input or output oriented.

Certainly the most important extension of the original CCR models
is given in [1], where Banker, Charnes and Cooper introduced one more
additional constraint in model (M3):

(18) iA}' =1
=1

This constraint makes possible variable returns to scale and provides
that the reference set is formed as a convex combination of the DM Us
which are in it (the ones that have positive values for A in the optimal so-
lution). A DMU operates under variable returns to scale if it is suspected
that an increase in inputs would not result in a proportional change in the
outputs. The convexity constraint ensures that the composite unit is of sim-
ilar scale size as the unit being measured. This model (BCC model) vields
a measure of the pure technical efficiency that ignores the impact of sale-
size by comparing a DMU only to other units of similar scale. Often, small
units are qualitatively different from large units and a comparison between
the two may distort measures of comparative efficiency. This measure of
efficiency is always at least equal to the one given by the CCR model. The
envelopment surface obtained from the BCC model results in a convex hull,

DEA model can be input- or output-oriented. The input-oriented model
contracts inputs as far as possible while controlling outputs. In input-
oriented models, an inefficient unit is made efficient through the propor-
tional reduction of its inputs, while its output proportions are held con-
stant. The output-oriented model expands outputs as far as possible while
controlling inputs. In output-oriented models, an inefficient unit is made
efficient through the proportional increase of its outputs, while the input’
proportions remain unchanged. The input and output measures are always
the same in the CCR model, but frequently differ in the BCC model. Thus,
if we are using the CCR model, we can solve one model and give either
interpretation. If we solve the BCC input model, we can give only an input
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interpretation, and we must solve the BCC output model for an output in-
terpretation. Another difference between the BCC and CCR models deals
with scalar transformations of all data for a given DMU. The efficiency mea-
sure in the CCR model is unchanged by scalar transformations, since the
efficiency ratio of the scaled DMU is unchanged. On the other hand, scalar
transformations of a given DMU change the scalar size and could easily
affect the efficiency measures from the BCC model.

A family of related basic DEA models (input- and output-oriented) is
presented in Table 1, see [10]. Model Py is an input-oriented primal CCR
model. Models PIy, Pl; and Pl; are obtained from Pl by adding a variable
U.. Pls is an input-oriented primal BCC model. Model D/y is an input-
oriented dual CCR model. Models D'y, D13 and D13 are obtained from D1
by adding a constraint on the sum of the multipliers A. D5 is an input-
oriented dual BCC model. Similarly, we get models PO,, (p = 1,2,3) from
POg by adding a variable v., and DO, (p = 1,2,3) from D0y by adding
the same envelopment constraint.

Models 7y (Pl and D/;) and Oy [ PO; and DOq) allow increasing re-
turns to scale. A DMU operates at increasing returns to scale if a propor-
tionate increase in all of its inputs results in a greater than proportionate
increase in its outputs. These models are hybrid models in which the ef-
ficient {rontier consists of two parts from the previous models, the lower
portion of the ray segment and the upper portion of the convex hull bound-
ary segments. Models I, (Pl and DIy) and Oy (PO3 and DOs3) allow
decreasing returns to scale. A DMU is said to operate at decreasing returns
to scale if a proportionate inczrease in all of its inputs results in a less than
proportionate increase in its outputs. These models are hybrid models in
which the efficient frontier cousists of two parts, the lower portion of the
surface of the convex hull and the upper portion of the ray segment. Thus,
these hybrid models are completely determined by CCR (Ply, POIs, Dy
and DOq) and BCC (Pls, PO3, DI3 and DO3) models.

An inefficient DM U can he made more efficient by projection onto the
frontier. Madel orientation determines the direction of projection for inef-
ficient DM Us. In an input orientation one improves efficiency through the
proportional reduction of inputs, whereas an output orientation requires
proporiional angmentation of outputs. For the input madels an inefficient
DMU, (Xg, Yy), is projected "back” to the boundary point (6Xg, Y¥p). 8 is
the contraction factor in 2/, models. For the output models an inefficient
DMU, (X, Yg),is projected "up” to the boundary point [ Xq, ¢¥5). ¢ is the
expansion factor in DO, models. These boundary points may be efficient
for one orientation and inefficient for the other.
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Table 1: DEA models

Input oriented

Miltiplier problem Envelopment problem
(F1,) (DI)
maxz = p! Yo + i, min ¢
7 a,A
s.t. vl X =1, sk, YA > Yo,
weel + 07V -0 TX <0, X0 — XX >0,
ur >0, g free, A > 0.
vT >0,
where
ux = 0in Ply, For DIy : append noting
<0in P, For DIy : append T <1
> (in Pl,, For DIy : append efX > 1
free in Fls. For DI5: append eT A =1

Output oriented

Miltiplier problem Envelopment problem
(PO,) (DO,)
ming = v Xo + v, max ¢
Uy &M
st ulYy =1, s.t. XA < Xg,
veel - ptY +07TX >0, PYy =Y A <O,
wr >0, & free, A > 0.
vT >0,
where
e = 0 in POp, For DOp : append noting
< 0in POy, For DO4 : append eTA < 1
> 0in PO,, For DOy : append eTA > 1
free in P(5. For DOs: append el X =1

The effect of model selection can be interpreted equivalently in terms of:
(1) a restriction on A,
(ii) a restriction on the supporting hyperplane, ot

(iil) a restriction on the returns to scale allowed.
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These equivalencies are given in the next Table [10]:

Restrictions
Model A Hyperplane Returns to scale
p=10 None  Passes through origin  Only constant allowed
p=1 XA <1 e <0 (v > 0) Increasing is allowed
p=2 ZN>1 . > 0 (v, <0) Decreasing is allowed
p=3 Zx=1 None None

We have presented basic DEA models here. We can find in the literature
numerous extensions of basic DEA models, see [5]. Some of these are:

- constraints are brought to weights for particular inputs and outputs,

- constraints are brought to amounts of particular virtual inputs and
outpuis,

- inputs and cutputs that cannct be controlled are brought into the
analysis,

- categorical variables are brought into the model,

- models for ranking relatively efficient DM Us are developed.

3. DEA MODEL UTILIZATION

This sections discusses how DEA models can be used to assess DMUs. A
key stage in a DEA assessment is identification of the input/output vari-
ables pertaining to the units being assessed, see [2]. Since DEA is used to
evaluate performances by directly considering input and output data, re-
sults will naturally depend exclusively on the input/output choice for the
analysis and the number and homogeneity of the DMUs to be evaluated. In
this stage it is important to consult the people working in the units which
are to be evaluated so that major inputs and outputs can he identified prop-
erly. In principle, it is important to envelop in the analysis all important
inputs, namely all the resources used and all important outputs, namely
the products and services produced. However, a large number of inputs and
outputs compared to the number of units to be evaluated may reduce the
discriminating power of the method. The larger the number of inputs and
outputs compared to the number of the units to be evaluated, the greater
the chances that the units will allocate appropriate weights to a single sub-
set of inputs and outputs that will make them appear efficient. In order to
preserve the discriminating power of the method, the number of the units to
be evaluated should be much larger than the number of inputs and outputs.
Some aunthors suggest from experience that the number of DMUs should
exceed the number of inputs and outputs by at least twice. Boussofiane et
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al. in [2] propose testing the correlation between inputs and outputs, as one
of the possible ways to reduce their number. If a pair of inputs is positively
correlated then they are multiples of each another, and one may be omitted
without any implications upon the efficiency to be rated. The same applies
toc outputs. The availability of data may also affect the choice of inputs and
outputs in practice. In case data on an input or output are not available
then the possibility should be checked of using a substitute for which such
data will be either available or can be relatively easily obtained.

DEA is a methodology of several different interactive approaches and
models used to assess the relative efficiency of DMUs and to assess the
efficiency frontier. I{ supplies information important for managing the op-
erations of both eflicient and nonefficient urits. Ior each inefficient unit,
DIA identifies a set of relatively efficient units making thus-a peer group
for the inefficient unit. The peer set for an ineflicient unit consists of units
having the same optimum weights as the inefficient uwnit, but having a rel-
ative efficiency rating of 1. Such peer units are identified rather easily by
the fact that they all have a positive value for A in the optimum solution
to (M3) for an inefficient unit. The identification of peer groups should be
very useful in practice. Peer units can be used to highlight the weak aspects
of the perlormance of the corresponding inefficient unit. The input/output
levels of a peer unit can also sometimes prove useful target levels for the
inefficient unit.

The solution of any DEA model provides information as to how much
relatively inefficient units should reduce their inputs, or increase their out-
puts, to become relatively efficient. For each inefficient DMU (one that lies
below the frontier), DEA identifies the sources and level of inefficiency for
each input and output. The level of inefficiency is determined by compar-
ison to a single reference DMTU or a convex combination of other relevant
DMUs located on the eflicient frontier that utilize the same level of inputs
and produce the same or a higher level of outputs. We have seen in the
previous section that we can get this using the optimal solution to model
(M3) and relations (16) and (17). We can get to similar information by a
sensitivity analysis of the optimal solution in model (M1). These results
are very important to managers, because they pointing to the sources of
inefficiency for relatively inefficient DMUs.

FEfficiency improvement is not only inefficient but also efficient units
can be attained by identifying what is efficient operating practice. It can be
usnally found in the relatively efficient units. However, among the relatively
efficient units some are better than others to set a good example. The
need to distinguish the relatively efficient units and find out what a good
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operating practice is, emerges from the essence of a DEA model that allows
a unit to select the weights that will show it as having maximum efficiency.
In this way the units may appear efficient because within their choice of
welghts all very small input subsets are ignored. Moreover, the inputs and
outputs assigned larger weights could be given secondary importance while
those that are ignored could be associated with the units’ main functions.

To distinguish the relatively efficient DMUs Boussofiane et al. [2] sug-
gested the following methods (or a combination of these):

- cross efliciency matrix,

- distribution of virtual inputs and outputs,

- weight restriction, i

- frequency by which an efficient unit appears in the peer groups.

4. CONCLUSION

DEA is non-parameter methodology for evaluating the efficiency of non-
profit DMUs. It consists of solving several mutually connected linear pro-
gramming mathematical models for each DMU. While each of these models
addresses managerial and economic issues and provides useful results, their
orientations are different and, more importantly, they generalize and pro-
vide contact with these disciplines and concepts. Thus, models may focus
on increasing, decreasing, or constant returns to scale as found in economics
that are here generalized to the case of multiple outputs.

The extensive but probably incomplete bibliography (9] is intended to
document the diffusion and growth of DEA. The bibliography is evidence
of DEA applications involving a wide range of contexts, such as education
(public schools and universities), health care (hospitals, clinics, physicians},
banking, armed forces (recruifing, aircraft maintenance}, auditing, sports,
market research, mining, agriculture, retail outlets, organization effective-
ness, transportation {ferries, highway maintenance), public housing, index
number construction, benchmarking, etc. Qur most importance experiences
in DEA application are presented in {6], [7] and [8]. In [8], DEA is applied
in evaluating the relative efficiency of 32 branches of "INVESTBANKA”
bank in Belgrade. The results obtained in [7] show that DEA can be very
successfully used in supporting the decision making process of investment
banks. The DEA method is applied in assessing the relative efficiency of
20 investment programs in agriculture. In [6], it is shown how DEA can be
used for the comparative analysis and ranking of 30 districts in Serbia.
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Abstract. In this paper we present a generalization of the Armijo step-size
algorithm. This generalization of the Armijo algorithm is based on so-called
"forcing functions”. Tt is proved that this generalized algorithm is well-
defired. Proof is given of the convergence of the obtained sequence of points
to a first-order point of the problem of the unconstrained optimization, as
well as an estimate of the rate of convergence.

Keywords: unconstrained optimization, forcing fuuction, step-size algo-
rithm

1. INTRODUCTION
We consider the problem of unconstrained aptimization:
(1) min{p(z)|z € D},

where w: 0 C R™ — R is a continuously differentiable function on the open
set, ).

We consider iterative algorithms for finding an optimal solution to prob-
lem {1) generating sequences of points {z;} of the following form:

(2) Thyl = Tk — RSk, k':O:]:"')

"This research was supported by the Science Fund of Serbia, grant number 04MO3,
through the Institute of Mathematics, Serbian Academy of Science and ART
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where we suppose that the direction vector s (where s is a nx 1 direction
of search) satisfies the condition:

(3) Sk # 0, (VCJO (wk)#g” > 0,

and the step-size oy is defined by a special step-size algorithm.
The original Armijo step-size algorithm [4] defines the step-size ag for
the sequence {z;} satisfying the relations (2) and (3) in the following way:

ap =0 if  {Te(ed,sk =0
otherwise, ap > 0 is a number satisfying
oy = 2—i(k)’
where (k) is the smallest integer from 7 =0,1,..., such that
Tp — Q'isk e D
and

wlze) = elze — 27%s) 2 7 27 (e (we), s1),

where G < 7 < 1 is a preassigned constant.
At first, we shall give some preliminaries which we need in the following
text.

Definition 1. (See [5/). 4 mapping o: [0,00) — [0,¢) is @ forcing func-
tion if for any sequence {ix} C [0, 00)

Im o(tx) =0 wmplies lm tx =0
k—oco k—roa

and o{t) >0 for t > 0.

(The concept of the forcing function was first introduced by Elkin in
[3].)
Definition 2. (See [5]). Let {z)} C R™ be any sequence converging to .
Then the R ~ convergence factors are defined as follows:

lim sup jlox - Z|F i p=1,
—_— 00

Ro{z} = 5
? klim sup |z — Z||7* o p> 1.

If 0 < Ry{xp} < 1, the sequence {z} is said to converge to T ot least R —
linearly.
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Lemma 1. Let ©: D C R™ — R be continuously differentiable on an open
set Dy C D and suppose that {z,} C Do converges to z* € Dy. Assume
that 7 (z*) = 0, that ¢ has a second derivative al z* and the Hessian
matriz H{x*) is invertible, and that there is an n > 0 and a ko for which

e(zi) — @ (zep) 2 || Vo ()’ Vh 2 ko
Then By{zp} < 1.
Proof. See [3].

Lemma 2. (See [6]). Let ¢: D C R* — R be twice continuously differen-
tiable and let there exist an m, 0 < m < oo such that

milyl)* < (y, H(z)y) forall v €D, y€R"

Then the function ¢ is strongly conver and the set {z | ¢ (2) < o (zq)} is
bounded for any z9 € D.

2. A GENERALIZATION OF THE FIRST ORDER ARMIJO STEP -
SIZE ALGORITHM

We consider a sequence of points {z;} with properties (2) and (3) where
the step ay is defined in the following way:

ap =0 if (Tolzg),se) =0
otherwise, ap > 0 is a number satisfying

ar=q ", g> 1,

where i(k) is the smallest integer from 7 = 0,1,.. ., such that
(44) Tk —q sy € D

and

(45) @ lzi) = p(zr — awst) > aro (T (21), 54)),

where o: [0,00) — [0,00) is a forcing function such that &4 < o (¢) < §at
for every ¢ > 0 and some 0 < &; < 63 < 1.

Since D is open, 23 — ¢ 's; € D for sufficiently large 1. The existence
of a finite (k) such that oy = ¢~*(*) satisfies (4) is proved in the following
lemma.
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Lemma 3. Let p: D C R* — R be continuously the differentiable on an
open sei Do C L and suppose that ry, ap = q~" and sy, satisfy (7@ (zk), s%)
0) [Ikamk - q_zs,k»] - D ana’

v

ole) = (e — ¢ 'sk) < ¢ o (Ve (2a), 54))
Jor some i (= 0,1,...) and ¢ > 1, where o: [0,00) — [0,00) is a forcing
Junction such that o (1) < 6t for every t > 0 and some 0 < & < 1.
Then there exists a finite 1* > ¢ such that (4) holds.
Proof. Define the function ': [0,1] — R in the following way:
(o) — @ (2 - A g s

\ ;A€ (0,1
FOY={  Agive (o)) (0.1
1 L A=0,

By L’Hospital’s rule, we have F(A) — 1as A - 0, so that F'is continuous
on [0, 1]. Consequently, since F{0) = 1 and

g ((V‘P (Ik)a ‘Sk>)

F1) < (Ve (24), sk)

<6<,

o (v (24) 54))
o i - (Ve (B1).5%)
finite 2, A = ¢7% (0 < A < 1, such that

F(A) takes on all valus between and 1. Hence, there exists a

a (v (zr), 5i)) <
(Fo(mh ey S TA<h

le. {4) will be satisfied for @ = qiq*", ie. for i* =441

Theorem 1. Let : D C R* — R be a continuously differentiable function
on the open set D, Let the sequence {x}} be defined by relations (2), (3) and
(4). Let T € D be a point of accumulation of {zi} and K1 a set of indices
such that 2, — T for k € Ky. Assume that there exists o 5 > 0 such thal

(Ve (ze)se) 2 Bl v o lzllilsell for k€ Kv and 7@ (ak) # 0,
that the sequence {si} is uniformly bounded (k € K)) and

Isell = (Il 7 @ (2]} Sor all k € Ky,

where ji: [0,00} - [0,00) is a forcing function such that p(t) > mt for
some p > 0. Then e (T) = 0.
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Proof. There are two cases to consider.
a) The set of indices {i(k)} for k € K is uniformly bounded above by a
number 1.

Since, by (4) the sequence {@(z:)} is monotone decreasing and each
{7 ga(f.ck),sk) > 0 it {ollows that

o0

@ (zo) — (T} = Z[ (21) — 0 (ze)] 2 Y [ lan) — @ (@r)] 2
kEK
Z ¢ Bo((veze),si) > a7 Y silve (o), si) >
kEf\] kE.Kl
> 607 > Bl el sl 2
ke K,
268070 > vl lk)HM(HVﬁP(Ek)H)
ke Ky
> mé g > e el
ke Ky

Since ¢ (T) Is finite and since |[7 ¢ (24)||* = 0, it follows that @ () —
0 for k € K. Hence, by continuity of 7, we have 79 () = 0. b} There
is a subset of indices Ay C Ky such that klir]n i{k) = co. Because of the
CHz

definition of ¢ (&), then either
T+ g ‘;k )]
or

o(z) =@ (e ¢ B8 < g I (G (an), )

—
[y
R

If the cause [or termination of iteration k were that zg +¢ *¥*ls, ¢ D
infinitely often, then, since 1 (k) — oo for & € K, and because the sequence
{sx} is uniformiy bounded, it follows that T is on the boundary of D). Since
L2 is an open set, T ¢ 17, which is a contradiction to the theorem assumption.

Thus, without loss of generality (5) can be consider tohold forall k € K.

Because i 1s by assumption continucusly differentiable and {sg} is uni-
formly bounded, it follows that {5) can be written as:

T = g O G (), 56) + o(q T se]]) <
< O o ({7 (2k), 56))
< g7 IS, (G (2h), 54)-

wlzg)—plz,—q
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Hence,

q_i(k)Jrl(VﬂP(%),Sk)(l = 82) < o™ I s},

Dividing by 271 (])F1||s, || yields

o(g B Isill) (T (ar), 56 (1 — 82)
gt )+ N

> B(1 = 8)l| 7 ¢ (i)

Because {s;} is uniformly bounded, taking the limit as & — oo for
k € K, yields, by continuity of /¢:

B0 -alve@l <o
Since 3 > 0,1 — by > 0, it follows ¢ (%) = 0.

Theorem 2. Let the assurnptions of Theorem 1 be satisfied. Let additionally,
the function @ : D C R™ — R be twice continuously differentiable and such
that there exists an | > 0 satisfying

(6) Nlyll* < (y, H(z)y) forall z €D, yeR"

Then the sequence {z} generated by the generalized Armajo algorithm con-
verges to T, where T is the unique oplimal solution to problem (1), at least
R - linearly.

Proof. From condition (6) it follows that the function ¢ is, by Lemma 2,
strongly convex and that the level set N = {2 € D | ¢{zs) < ¢{zq)} for
some zg € D) is convex and compact. Furthemore, since  is twice continu-
ously differentiable, from (6) it also follows that there exists an L > 0. L > 1
such that

(7) 1lyl* < (5, H(z)y) < L|y|® forall z€ N, yeR".

From relation (4) we have that ¢ {24} > @{2441); hence zpyq € Nifap € N,
By Theorem 1 we have that || 7 @ (%)|| = 0.
By strong convexity of ¢ it follows that 7 is the unique optimal solution
to problem (1).
Denote by F the following function:

Flz,s,a)=¢(z)— ¢{z — as).

By Taylor’s theorem we have

1
Flzg, sp, o) = o7 (zy), o:zj (1= t){sk, H{z — tosy )sg)dt.
0
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From this equation, in view of (7), it follows that

1
Pk, 5,0) 2 o(9 (), 55) — 5o Lllsill
Using the function ¥, because of the definition of 7 (k}, we have:

Flag, si,g” Y < ¢ B0 (G (r), 1))
i.e., by introducing the function F:

Flag, serq P71 = Plag,si, g7 O = g7 O 10 (G (24), 50)) < 0
Flag, e, ) 2 ¢ TN G0 (20), 50) ~ %Q-Zi(k)_2L|l3k||2 -
— g "o ((Ve e, s) 2
> OB () sl
OB T o (@ skl - 5o 2L s P
= %"i(k)_lﬁ(l =~ &)l 7 o (z)ll lskll

— 5 R s ? < 0.

1

From the last inequality it follows that

g BT > 26(1 = &)l 7 ¢ (wi)]
B Llsgll ’
q_i(k) > g2 81 &)y (Tk)” .
- L[]l

i.e.

Finally, from (4 B) it follows:

wla) ~@lzs — g7 Wy 2 ¢ Wa (e (e, s1)) =
N g 0% (1 = 83)6
- L

| v @ (ze)])?
=l 7 ez,

2q/3%61(1 — 63) >0

From the last inequality, by Lemma 3 it follows that the sequence {z}
converges to T at least R — lineazly (where T is, as we have already proved,
the unique optimal sclution to problem (1}).

where =
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3. CONCLUSION

Because of general assumptions about the objective function ¢, the general-
ized algorithm can be used to solve a wide class of unconstrained optimiza-
tion problems. Also, the choice of forcing functions o(t}) with the property
b1t <o(t) <t 00 < by < by < 1,15 wide.

[Finally, this generalized algorithm can be used to solve constrained opti-
mization problems (see {1], [2]) when constraints are adequately considered.
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ON THE PROBLEM OF DISCRETE OPTIMIZATION
WITH PHASE CONSTRAINTS
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Abstract. We consider the problem of discrete optimization with phase
constraints, using Clarke’s tangent cone for an extension of the Milyutin-
Dubovitskii approach, based on the Intersection Principle as an abstract
condition which satisfy nonconvex sets approximated by convex cones, to
nonsmooth optimization problems.

Keywords: Intersection Principle, Clarke’s tangent cone, nondifferentiabil-
ity

1. INTRODUCTION

Milyutin and Dubovitskii formulated a general approach for a broad class
of extremal problems with differentiable constraints, based on the extension
of the Kuhn-Tucker theorem to infinite-dimensional spaces and an analysis
of Pontrjagin’ s Maximum Principle [7}, called the Intersection Principle.

Let Qq, 8y, ..., 8, be simultaneosly the subsets of the linear topological
locally convex space R™ and the convex cones. Suppose that Qg is a subspace
and Q; = i), 1 = 1,...,n. Then

ﬂQi =0 = Z)\i = 0 (at least one A; # 0),

=0 1=20

AEeQEA{z)> 0V € Q,,1=0,1,...,n.
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This approach has the disadvantage that all but one of the convex sets
must be open. Boltyanskil resolved this problem in the finite-dimensional
case using the definition of the tent (tangential convex cone) as convex ap-
proximants generated with constraints. His "method of tents” is applicable
to a broad class of optimization problems with differentiable data.

Definition 1. Let C C R™ and 29 € C. A convez cone K is a {smooth) tent
for C' at zg if there exist a neighoorhood T of zg and o (smooth) continuous
map U : X — R" satisfying conditions:

V(KN C O

U(z) =2+ o{z — zg),Vz € 1.

Using the "method of tents”, Boltyanskii formulated and proved the
necessary conditions of optimality for discrete control problems with and
without phase constraints in the form of Pontrjagin’s Maximum Principle.

In Watking’ paper [11] it is shown that Clarke’s tangent cone satisfies
the intersection theorem and, as a corollary, the Intersection Principle. The
Milytin-Dubovitskii approach is thus extended to the nondifferentiable opti-
mization theory through the use of Clarke’s tangent cone and so the neces-
sary conditions of optimality for discrete conirol problems could be extended
to a nonsmooth problem with and without phase constraints.

2. CLARKE’S TANGENT CONE AND THE INTERSECTION PRIN-
CIPLE

The following neighbourhood characterization of Clarke’s tangent cone Te(zq)
of a closed set €' C R™ at zp € ' is equivalent to Clarke’s definition in [4].

Definition 2. Let C' C K™ be closed and 19 € C.
v € Te{zg) if and only if Ve > 0,38, A > 0 such that
'+ tlvteB)NC#0, Viel0,A,Va' € Cn{zg+ 8B}

for all v in any compact subset 5 C To{zg).

Watkins [8] proved that a solid Clarke’s tangent cone (intTo{zp) # 0) is
a tent for C at zo and that a family of Clarke’s tangent cones satisfy:
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The Intersection Principle: 4 system of tangential approzimants sat-
isfies the Intersection Principle if, whenever K, 1 = 1,...,m are tangential
approzimants at zo for sets C; (C; C R*,i = 1,...,m), and at least one
cone K; is not a subspace, and the family of cones is inseparable, then the

T
set ﬂ C; contains points arbitraridy close to, but distinct from zg.
=1

In the same paper Watkins proved that a family of Clarke’s tangent
cones also satisfies the following intersection theorem:

Theorem 1. Let C;i = 1,...,m be closed subsets of R" with zg €

T
Cma1 = m C;, and assume that Clarke’s tangent cones Tg,(zp),2=1,...m

=1
are inseparable, Then

T
1=1
Theorem 2. Clarke’s tangent cone satisfies the Intersection Principle.

3. DISCRETE OPTIMIZATION PROBLEMS

We consider the control problem in which the trajectories and controls are
defined with sequences

{1} z{(0), z(1),. .., z(N); u(0),u(l),...,u(N),
foreach t =0,1,...,N.

Here z(t) € R™ u{{) € B™ and for each z(t) there exists u(t) € Uy, t =
0,1,..., N — 1; thus the phase state can be uniquely defined:

(2) z(t+ 1) = filz{(t),u(t)), t=0,1,...,N -1

We shall now discuss the following discrete control problem:

(P1) : For given initial phase state z(0) define discrete process

(3) w(0), u{1), ..., u(N - 1)
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(4) z(0),2(1),...,z(N)

satisfying functional relation (2) and minimizing functional

N-

(5) el k), u(k))

=0

)—ﬁ

I[f we suppose that for each { = 0,1,..., N the phase constraints
(6) z(t) € M, C R",

are satisfied then we can consider the following discrete control problem with
phase constraints:

{ P} For initial phase state z(0) define discrete process (3), (4), satisfying
functional relation (2) and phase constraints (6}, and minimizing functional

{5).

If
M,=R"t=0,1,...,N,

we have the discrete control problem without constraints, denoted by (Fy).
4. MATHEMATICAL PROGRAMMING PROBLEM

Formulated discrete control problems (£;) and {P3) could be considered as
mathematical programming problems.

Let us denote
{(7) ol = a'(t), ul = ui(r),

1=0,1,....om;7=1,...,mt=1,...,N; 7=0,1,...,N = 1,

and consider z%,ui', as coordinates of point z = (i, ui’r) € R* n=(m+7r)N.
Thus, every discrete process (3}, {4) corresponds to a point z € R", satisfying
(2),1.e.

(8) —miﬂ + ff(:z:t,ut) =0;4i=1,....m;t=0,1,..., N —~1,

where, for t = 0, zg = (2},...,27) = 2(0).
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If we denote
(9) T ={z=(c" ul) € R":ug € Ug},
where the coordinates zi, w)(r # §) are arbitrary, we have that
(10) z:(mi,ui)EET,T:O,l,...,N*l,

and on the contrary, if z = (2!, ul) satisfies (8),(9), then discrete process
(3),(4), defined by (7) will satisfy condition (2} and u(7) € U,. "

Thus, if we denote by % the set of all points z € R™ satisfying (8),(10),
we have a one-to-one correspondance between discrete process (2), (3), (4)
and the points of the set .

Consider the {Tunctions
(11) Fi(z) = —aiy 4+ Flegu),i=1,.. . mii=0,1,...,N -1,

and denote with i the set of all the points 2 € R™ satisfying the conditions
Fi(z) =0, and with

m N-—1

Q= (] %,

=1 =0

the set of all the points z € R", satisfying the equations
F{z)=0,e=1,...,mt=0,1,...,N - L
Then
E=0"NZ%N-- NZno.

If we denote
N =1

FO2) = )7 flenu),

then it is evident that the value of functional (5) is J = F"(z), and that
the discrete problem {P;) is equivalent to the problem of determining the
minimum of function F%(z) on set I.

Definition 3. The bounded function [ : B" — R is ¢ locally Lipschitz
function if for any set B C R” there exists a constant K > (:

lf(Zl) - f(.?:g)l < Klzl - ZQ’,VZl,Zg c B.
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Definition 4. The epigraph of o bounded locally Lipschiiz funciion [ -
R™ — R, denoted by epi( f) , is the set

epilf) = {(2,5) € B" x R: f(z) < s).

Definition 5. The generalized gradient of a bounded locally Lipschitz func-
tion f: B* — R at point zg € R™ is the set

0f(20) = {z € R* : (z,—1) € N(20, f(20))},

where Ng(zo, f(20)) is the polar cone of closed set I, defined by the epigraph
of function [ al the point zy.

Remark 1. The connection between the generalized gradient of a locally
Lipschitz function at a point zo and Clarke’s tangent cone to the epigraph
of fat (20, f(z)) is expressed by the polar relation

Ni(z) = (Te(z0))° = {z € B" 1y € Tg(2), <y, 2 >< 0},

Clarke exploited these notions in [4], [5] in deriving the necessary opti-
mality conditions for nonconvex nonsmooth variational problems.

Assume that F°(z),¢.(2), h;(z)(1 = 1,...,n;5 = 1,...,m) are bounded
locally Lipschitz functions mapping the Banach space X — R, and given
closed subset £ C X. Then the following could be proved:

Theorem 3. (Clarke) If F9(2) = mig FY(z) and the constraints
Z€

(12) gi{2) <0, =1,...,m
(13) h(5) =0, 5 =1,...,m,
hold, then there exist the numbers ro,v;,8;(6 = 1,...,n57 = 1,...,m), at

least one of them is not 0, and the point z* € X*, satisfying the following
condifions:
Lrg20, 20, 2=1,...,n;

7

2. Tigz'(Z(}):U, t=1,...,m
3. 2" €100 F(z0) + Y ridgizo) + »  5;0h;(z0),

i=1 i=1
4. -z € NE(ZO).
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This theorem can be proved by the same method Boltyanskii used to
demonstrate a similar proposition in [2]. This treatment implies the con-
struction of Clarke’s tangential cones for the set ¥ at the point zg, and the
sets defined by the inequalities (12) and the egualities (13). After that, the
Intersection Principle is applied to the considered family of Clarke’s tangen-
tial cones.

The same analogy can be developed for the problem (F;) with phase
constraints if we assume that the set ¥ includes the sets defined by the
inequalities and the equalities corresponding to the phase constraints.

Theorem 4. [f F(z) = min FUz) and the constraints
2E
G(:) <0, i=1,. m
h‘j(z) v =L my
g

=0
p(z) <0, [=1,...,ng
Qk(z):()y k:l,...,ms,

hold, then there exist the numnbersro, vy, sy, tweg (A=1,...,m; 7 =1,...,m;
I'=1,...,ns k=1,...,m,) at least one of them is not 0, and the point
2t € X* (X7™ congugate space of X)), satisfying the following conditions:
Lrg2>0,m200=1..,n),m>0{=1,...,n5);
2. rigi(z2g) =00 =1,...,n), ho{z0) =0l =1,...,n,);

3. 2" € rgdF%(2) + Z r:0g:(z0) + Z 8;0h;(20 )+

i=l 1=1
+ > tpz0) + Y widai(z0);
=1 k=1

4, —z% ¢ IVE(ZO).
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Abstract. The problem of finding a numerical solution for the nonlinear
integral equations

(1) y{z) — /T Kz, s,y(s))ds = f(z)

(2) o) = [ K (e Flylo)ds = f(2)

is considered. Two methods for the discretization of (1) and (2) are pro-
posed. The first method is based on numerical integration and interpola-
tion. In the second methaod, the Euler-McLaurin formula and numerical
derivation are used. The numerical resulls obtained using these methods
are presented and compared.

Keywords: discretization, numerical solution, nonlinear, integral equa-
tions.

1. INTRODUCTION

Integral equations have a significant role in practice. A lot of problems from
mechanics, physics, aerodynamics, astronomy, etc. (see {1] and [4]) can be
resolved by solving the corresponding integral equations.
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We consider nonlinear integral equations in the following forms

3) () = )+ [ Klo,su(lds

4) o) = [+ | K Plylds
and look for the solution y(z) on the interval:
a<v<b (a,b€R)

We assume that all functions in (3) and (4) are continuous in the corre-
sponding domains. QOur consideration could be applied to other forms of
integral equations, especially, if it is possible to express y(z) as in the fol-

lowing example:
yz)= & (1,/ Ix"(m,s)y(s)ds) ,

but in these cases an additional examination about the existence and nnique-
ness of selution y(x) is necessary.

For integral equations (3) and (4) we assame that the following condi-
tions hold

‘I((LL‘,S,Z]) - I(’(SE,S,?:QN S m(jﬂ)s)!zl — 2:2|p

[ s tonas

< n(z)

{5)
T b z
/n2(s)ds§N2, /d:c/ m*(z,s)ds < M?*, a<s<z<bh

where

- N and M are real constants, and

- n{z) and m(z, s} are the integrable functions with their squares.

In {4] it 1s quoted that if the conditions (5) are satisfied, then the ex-
istence and uniqueness of solution y(z) are provided for equation (3} (but
we will not consider these problems). In addition, coaditions (5) are suffi-
cient for the convergence (see [4]) of the iterative processes described by the
formulas
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yeri(z) = flz) + /x K{xz, s, ye(s))ds,

(6) . k=0,1,2,...
ors (1) = 1(2) + | K(a,9)F(an(s))ds.

if the initial approximation yo(z) is known. (The initial approximation is
an arbitrary continuous function, but usually yo(z) = f(z) is taken.)

Of course, all our considerations hold {for the most popular integral equa-
tions - linear integral equations. If the function F(y(s)) in {4) is y(s), we
get a linear integral equation.

2. DISCRETIZATION

In most cases, it Is not possible to find the solution of (3) and (4) in an
analytical form. Because of that, different kinds of nuraerical methods are
nsed.

The iterative process described by (6) ensures a way to find approxi-
mate solutions. Moreover, if this process is used in the analytical form,
even during the calculation of the first or the second iteration, the analyt-
1cal expressions obtained by (6) usually become too complex. Therefore,
discretization is necessary.

The first step in discretization is to discrete the problem. Therefore, we
are looking for the approximate solution y(z) of (3) and (4) in the discrete
point set:

Gp={zi|lae=ao <2y < - <, =0}

We use the iterative process (6) to find an approximate solution and the
main problem encountered is to select a way of discretization for this pro-
cess. The key action in discretization is calculating the values of function
Wiz, s, y(s)) and its integral:

(7 / Wz, s, y(s))ds

The form of function W{z, s, y(s)) depends on the equation used in (6). We
propose two approaches in the calculation of (7) and we practically create
two methods for the discretization of (6). In (7) = is a parameter and in the
process of calculating, z always has concrete value,
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Approach I. This approach is based on numerical integration and inter-
polation. Approach T is firstly applied in [3] for the discretization of Chap-
lygin’s method. Later we recognize that this approach is more general and
could be used {or the discretization of different analytical methods.

In each iteration k(& = 0,1,2,...) we do the following steps:

Step 1. yi(z) is replaced by an associated interpolation function Sy ,.(%).

Step 2. Discretization of W(z, s, yx(s)) is made by calculating its values
on (+y.

Step 3. Integrand Wi(z,s,yu(s)) is replaced with W, (z, s, S ,(s)) using
the same interpolation function as in Step 1.

Step 4. Some of the formulas for numerical integration are applied in the
computing of (7).

Afier the computation of (7} it is easy to find the approximate value for
y(x)-

The variety of numerical integration formulas used in Step 4 and inter-
polation formulas used in Step 1 generates different schemes for the solution

of (4) and (5).

Approach II. This approach is based on the Euler-McLaurin formula and
nuinerical derivations. It is firstly applied for the discretization of Chaply-
gins method too ([2]), and later in other analytical methods. An equidistant

grid G, = G}, (the steplength k is constant, h = (b= a), x; = a+h, 1=
0,...,n) is assumed.
According to the Fuler-McLaurin formula we have:
- i1
1
(8) / W a5, y(s)ds % 5(Wo(e) +2 3 Wile) + Wile)] -
J j':].

B & BQ;‘ 27 (27-1) ) Y
~ W (g, a,y(a)))

where Wi(z) = W{z,z;,y(z;)), i = 0,1,...n. By are Bernoulli’s numbers,
implicitly defined by

. oo k
(©) L= B

. =
et —1
. k=0



233
and from (9) we have:

1 1 1 1 1
Bo=1, By =~—-= == = - = = By = ——
o=1, B 5 . . Ba , B a7 D8 30"

covy Bogg1 =0, B> 1L
To apply formula (8), it is necessary to know the values of derivatives of the
function Wz, s,y(s)) on Gj. The derivatives are approximated by finite
differences using the values of Wiz, s,y{s)) on &G, A global description
of the algorithm for this discretization approach is shown by the following
steps:

Step 1. Compute the approximate value of integral (7) using the trape-
zoidal rule.

Step 2. Compute the values of W(x,s,y(s)) on Gy.

Step 3. Approximate the derivatives of W(z,s,y(s)) using finite differ-
ences.

Step 4. Improve the value of integral (7) using formula (8).

In the process of programming, different modifications of this aigorithm are
possible. For example, using the derivatives of different orders in (9}, we
could approximately estimate the error in the obtained values on (.

3. NUMERICAL EXAMPLES

We will now present the numerical results obtained using both of the de-
scribed approaches to discretization. Special software, developed in the
programming language Pascal, is pplied for this purpose. The program
stops when two consequtive iterates have the same value. All examples of
the integral equations considered here are taken from [4].

Example 1. Let us have the integral equation:

T 2
ylz) = / —jj}—(j)ds with the exact solution y¥(z) = =
0 &

If we apply Approach I, utilizing the Gaussian integration method with 7
nodes and cubic spline interpolation, for b = 1.0, n = 10, 3y = 0, after 24
iterations we have:
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z y{x) y"(z)
100 1.0000000010  1.0000000000
2.00  2.0000000032  2.0000000000
3.00  3.0000000044  3.0000000000
400 4.0000000117  4.0000000000
5.00  5.0000000226  5.0000000000
6.00  6.0000000223  6.0000000000
7.00  6.9999999901  7.0000000000
8.00  7.9999999040  8.0000000000
9.00  8.9999997447  9.0060000000
10.00 9.9999994972  10.0000000000

Example 2. For the integral equation:

yle) =1+ 2/ y(s)ds with the exact solution y%(z) = 2”
1

we will also apply Approach 1. Using the Lagrange interpolation and the
simpson rute for A= 0.1, n = 10, yo = 1, after 10 iterations we get:

T
1.10
1.20
1.30
1.490
1.50
1.60
1.70
1.80
1.90
2.00

ylz)
1.2100000000
1.4400000000
1.6900000000
1.9600000000
2.2500000000
2.5600000000
2.8900000000
3.2399999998
3.6099999996
3.9999999989

y*(z)
1.2100000000
1.4400000000
1.6900000000
1.9600000000
2.2500000000
2.5600000000
2.8900000000
3.2400000000
3.6100000000
4.0000000000

Example 3. For the same problem as in example 2, Approach II is ap-
plied, using finite differences of order 5 for the approximation of necessary
derivatives (m = 5). The following numerical results are obtained:



z
1.10
1.20
1.30
1.40
1.50
1.60
1.70
1.80
1.50
2.00

y(z)
1.2100000000
1.4400000000
1.6900000000
19600000000
2.2500000000
2.5600000000
9.8899999999
3.2399999998
3.6099999995
3.9999999980

Example 4. The integral equation

COS T

1 z .
y(z) = / cos® sy (s)ds +
0

COsS T

1

v (z)
1.2100000000
1.4400000000
1.6900000000
1.9600000000
2.2500000000
2.5600000000
2.8900000000
3.2400000000
3.6100000000
40000000000

has the exact solution 3% (z)

" ((z - 1)cosz)
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Using Approach II, (using the same finite differences as in the previous

example) for & = 0.05,n = 16, after 15 iterations, we have:

T
0.0
0.10
0.15
0.20
0.25
0.30
0.35
¢.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80

y(z)
1.0539512026
1.1166926334
1.1898341759
1.2754270512
1.3761173876
1.4953641150
1.6377596540
1.8095140011
2.0192069735
2.2789979735
2.6066502542
3.0200930323
3.5800144004
4.3582432279
5.4668205170
7.1768332073

yE(z)
1.0539487404
11166899093
1.1898311090
1.2754235562
1.3761133653
1.4953594308
1.6377541283
1.8095073806
20191989218
2.2789878547
26066373045
3.0290707863
3.5889976185
4.3581975324
5.4668044987
7.1766209984
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4. CONCLUSION

Analyzing the obtained numerical values we can conclude that boinh ap-
proaches to discretization give quite good results. Moreover, further the
oretical study of the error estimation is necessary. Some considerations
related to error estimation for the iterative process (6), especially for the
linear case, can be found in [1] and [4]. Additional analysis is essential for
successful application of the presented discretization approaches.
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Abstract. The class of all labelled initially-finally connected digraphs with
a fixed number of points (and arcs) is counted and corresponding numerical
data are given.
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graphs

1. INTRODUCTION

In the literature, {for example in [1], several classes of connected digraphs are
defined. A digraph is weakly connected if, by ignoring all orientations of its
arcs, we get a connected multigraph. A digraph is called strongly connected
iff every pair of its points is mutually accessible (point v is accessible from
point u if there exists a directed path {rom point u to point v). A digraph is
untaterally connected iff for every two of its points at least one is accessible
from the other. For initially connected digraphs there is a point (at least
one) called a source, such thai every point is accessible from this point.
Similarly, a digraph is finally connected if there exists a point (at least one)
called a sink, which is accessible from every point. The class of initially-
finally connected digraphs is naturally defined, too, namely, as a class of
digraphs with at least one source and one sink. In the literature we can
find the term "digraph with a source (sink)” instead of the term "initially
(finally) connected digraph”, also we can say a "digraph with a source and
a sink” instead of an "initially-finally connected digraph”. Here we follow
the notation of Liskovec (for example [6]).

In his list of unsolved graph enumeration problems Harary [1] mentioned
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the problem of enumerating the above-defined classes of connected digraphs
with n points, both for labelled and unlabelled digraphs. Note that Harary
did not mention (we don’t know why) certain results of Liskovec referring
to these classes. Liskovec [2] counted strongly connected digraphs, and his
formulas were simplified by Wright [3]. The case of unlabelied strongly con-
nected digraphs, and the case of unlabelled rooted digraphs with a source
were also solved by Liskovec [4-7]. In (8] Robinson gave a combinatorial
prool of the simplified Liskovec-Wright formulas and counted labelled ini-
tially and unilaterally connected digraphs. Anncuncing the results of his
research Robinson [9] outlined a way to count the class of all unlabelled
strongly connected, initially and unilaterally connected digraphs with n
points.

In this paper the problem of counting initialiy-finally connected iabelled
digraphs is solved, and the already known results for the number of strongly
connected and the number of initially connected digraphs were obtained as
intermediate results.

2. THE MAIN NOTIONS AND AUXILLIARY RESULTS

In what follows all digraphs will be labelled digraphs, if not stated otherwise.

Let Go,G1,...,G, be some finite classes of digraphs. We say that Gy is

of the type {G1,Gy, ... G} i

1) every digraph Gg from Gp can be represented in the form G; UG, U
. UG, where Gy € G; foreach 1 = 1,2,...,n;

2) for each collection of digraphs G; € G;, @ = 1,2,...,n, the digraph
GrUGRU .. UG, belongs to class Gp;

3) for two different collections of digraphs, G; € G, and G € G;, v =
1,2,...,n, the digraphs G1 UG U ... UG, and G UG, U ... UG,
are different.

{Here the operation U is defined in such a way that for every two digraphs
Gy = (V1, £y) and Gy = (Vz, Eq) the digraph Gy UGy is a digraph with the
set of points V3 UV, and the set of arcs By U Ey). Then it is clear that the
equation holds:
|Gol = 1G1] - |Gal - ...+ |Gl

Let us denote by O, an empty digraph of the order n (without arcs and
with 7 points). We denote by 3, ,, the class of all bipartite digraphs whose
parts contain m and n points respectively, and every arc of these digraphs
has its beginning in the first and its end in the second part. We take that
Optn € Bomn. Let us designate by D, the class of all digraphs with =
points.
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Let G = (V, E) be a digraph and U, W C V. Denote by Acce{U, W;G)
the maximum subset of the set W, such that for every v € Acc(U,W; &)
there is w € U, such that in digraph G there exists a directed path from u
to v, 1.e., point v is accessible from point « or, which is the same, point u is
antiaccessible from point v. Let us assume here that UNW C Acc(U, W;G)
(we also take into account the paths of length 0). Also, designate by
Acc(U,W;G) the set of all points from W antiaccessible from some point
from U.

Let arbitrary sets V3 and Va, Vi N V5 = @, be given, where |Vi| = m and
Vol = n, m ¢ N, n e NU{0}. Let G =(V, E), where V = V; U V;, be an
arbitrary digraph such that E{Vi) = (V1 x V1) N E = 0, Acc(Vy, Vy; G) =

3 and (Vo x Vi) N E = . We denote the set of all such digraphs by
Ay, (Vo) if it is clear from the context which sets V; and V; are meant, then
instead of Ay, (V) we use the notation A,,{n). It is clear that the number
of elements in Ay, (V3) does not depend on the sets Vi and V,, but only on
their cardinality. We denote A, (n) = [An(n)].

Lemma 1. For every m € N the recurrent formula

n~—1
Am(n) = 280ty ol mRl L (k)
k=0

holds, with the initial condition A, (0) = 1.

Proof. lLet us fix the sets V; and V;, ¥y NV, = 0, so that [V3} = m and
V2] = n, m € N, n € NU{0}. Let A,(n) be the set of all digraphs
G =(V, E) where V = V3 UV;, such that E(V}) =0 and (Vo x Vi)NE = 0.
Denoie Am(n) = [An(n)l. Also let V3(G) = Ace(V4,V3;G) for arbitrary

G € Ap(n). Denote by Ay, (n k) the class of all G from A,,(n), such that

‘V3(G)| =k, and let A ( |A (n}k‘)l Then
n—1
(1) m(n ch

Let us calculate the number A, (n, k). Let By = [(Vo\V3) x Va] N E. Tt is
obvious that [V3 x (Vo\V3)|N E = @ and E| can be an arbitrary subset of the
set (Vo\Va) x V5. 1t is easy to see that the digraphs Gy = (ViUVa, E(V1UV5)),
Go = (VoA\Va, E(Vo\V3)) and Gy = (Va, By} are from the classes A, (k),
Dy, and B, _r respectively. It is clear that class f\m(n, k) is of the type
{Am(%), Dn_i, Bawi g} This means that

(2) j\m(n7 k) — }\m(k) Q(Rfk)(n—k—]) Q(n—k]k - 2(n—k)(ﬂ#l) /\m(k)-
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As it 1s obvious that

j\m(n) — 2n(n—1) omn _ 2n(n+m—1)

3

then the statement of the lemma follows from (1) and (2).

Let arbitrary disjeint sets V;, Vo and Vi be given, where |Vi| = &,
[Va] = mand |Va] = n, k,n € N, m € NU{0}. Let Ay, 1,(V2) be a class of all
digraphs G = (V, E), where V = V, UV, U V3, such that E(Vy) = E(Vs) = 0,
every point from the set V3 is accessible from some point from the set ¥} and
antiaccessible from some point from the set Vi, and [(Va U V3) x Vi] N E =
(Vax Va)yn B = (Vi x V)0 2 = 0. If it is clear from the context what
sets Vi, V2 and Vy are meant, then instead of the notation Ay, y,(V2) we
use the notation Ag,(m). It is clear that the number of elements of the
set Ay 1, (V2) depends only on the cardinality of the sets Vi, V3 and V3.
Therefore we denote Ay n(m) = |Ag.(m)].

Lemma 2. For every k,n € N, the recurrent formula

m-—1

Aka(m) = M(m) 27 = 3 Cr dppa(m — 1) i al2)
=0

holds, with the initial condition A; {0} = 1.

Proof. Let us fix some disjoint finite sets V), V4 and V3, where [Vi| = £,
|Vo| = moand [V3] = n, k,n € N, m € NU{0}. We denote by Ay ,(m) the set
of all digraphs G = (V, E),V = VUV, U V3, such that £(V}) = E(V3) = 0,
Vg - ACC(V],VQ; G) and [(VzUV;g)XVl]ﬂE = (%XVQ)(IE = (V1XV3)QE =
B. Also let V3(G) = Vo N Acc(Vs, Vo; G) for every G € Ay n(m). We denote
by Akx(m;i) the class of all G from Ag (m), such that |V3(G)| = v It is
clear that [Ay .(m)| = Ay(m)2™". Then )

@ Aealm) = el = 3 CoelAaaloms) =

= Ap(m) 27" — Z ¢ Aga(ms )|,

Let us calculate the number |Ay ,(m;1)]. It is clear that [(V\Vy) % V4|NE =
0. Let us consider the digraphs G7 = (Vi U V,, E(V, U VR)\E(V, U VY)) and
Gy = (Vi U VR U Vo, EA[E(V U VoNE(VL U V))]). Tt is obvious that the
digraphs G| and 4 belong to classes Agy;(m — i) and Ay (i) respectively,
and that the class of digraphs A, (m; ) is of the type { Apsi(m—i), Ara{i)}.
This means that |Ay,.(m;1)] = Agps(m — 1) Ago(i). Then the statement of
the lemma follows from (3).
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3. INTITALLY-FINALLY CONNECTED DIGRAPHS

Let G = (V, ) be some digraph. We say that G is an initially connecled
digraph if there is u € V, such that Acc({z},V;G) = V; such point %
15 called a source. We say that ¢ is a strongly connected digraph, if for
every {(u,») € V? there is a directed path in G from u to v, that is all
the poinis in the digraph are sources. We denote by [{n) the class of all
initially connected digraphs with n points and with fixed sources, and let
i(n) = [I(n)|. Alsolet ns denote by Q(n) the class of all strongly connected
digraphs with = points, and let ¢(n} = [Q(n)|. From the above it is easy to
see that 1(n) = 2771 Ay(n ~ 1), that is, that the recurrent formala

n—1

(4) ;(“) — Qn(n-l) _ zci 12(”4 iMn-1) (7)
5=1
holds.

The result for the class of strongly connected digraphs, which was first
proved in [2] immediately follows {rom the above given lemmas and from
(4).

Theorem 1. For the number g(n) of sirongly connected digraphs with n
points the following recurrent formula

g(n) = i(n) - ZC’J l}\ (n—7q(f)

holds, with the initial condition {0} = 1.

Proof. 1t is obvious that ¢(n) = A 1(n — 1) {we introduce one virtual
point). By lemma 2 we have that

=2

Ma(n =1 =2"" A(n = 1) =Y CL_y Al — i = 1) A (i),

=0

Using the relation #{n) = 271 A;(n— 1) we get the statement of the theorem.
Let G = (V. E) be some digraph, and { < |V/]. We say that & is {-initzally
(I-finally) connected if:
1) there exists V) C V, |Vi| = [, such that for every v € V and for every
u € Vi there is a directed path in G from u to v (a path from v to ),
that is Acc ({u},V;G) =V (Ace{({u},V;G) = V) for every u € Vi;
2) there does not exist a subset of V' which has more than [ elements
and has the property of the set ¥ from 1.
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We call the points from the set V| sources (sinks). In other words, the
digraph (' is I-initielly (I- finally) connected if it has exactly { soutces (sinks).
We denote the class of all {-initially ({-finally) connected digraphs with n
points by Li(n) (Fi(n)). Digraphs with »n points which contair al least one
source (sink) constitute class I{n) (F(n)) of all initially (finally} connected
digraphs. Let us also consider the class Tl a(n), kLN, k41 <n,ofall
digraphs with » points, which have exactly & sources and exactly { sinks. It
is clear that if the intersection of the set of all sources and of the set of all
sinks in a digraph is not empty, then it is sirongly connected. We denote by
I1(n) the class of all digraphs with n points which have at least one source
and at least one sink. Let 4(n) = [L(n)], i(n) = [I(n)], filn) = |E{n)l,
flny = [P0, ifis(n) = |TLF (n){ and if(n) = |IF(n)|. It is obvious that
the following {ormulas hold:

i

i(n) =) i;(n),

1=1

Jny =3 f(n),
i=1

n—1 yi—1i
if(n)=aq(n)+ > ifisln).
=1 j=1
Let
. O

for abitrary 2,5 € N, k€ NU{0}. Let us prove the following statement.
Theorem 2. [or the number ig(n) (f(n) of all l-initially {I-finally) con-
nected digraphs with n points and the number i fi ;(n) of all initially-finally
connected digraphs with n points which have exactly k sources and exactly |
sinks, the follownng formulas hold:

ix(n) = fuln) = CEA(n = &) g(k),
ifia(n) = CrCh_y a(k) a(l) Mealm — k= 1),

for abitrary kI, ne N, k,k+1 < n,

Proof. We shall prove the second formula (the first {ormula is similarly
obtained). Firstly, let us note that the set of all sources {sinks) in an
arbitrary digraph determines a digraph that is stromgly connected, that
is, the set of all sources {sinks) is ils component of strong connectedness.
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Now, let G = (V, E) be a digraph from class [F,;(n). Let us denote
the sets of all 1Ls k sources and ! sinks by V; and V3 respectively. It is clear
that Vi NV, = @ (otherwise G would be a strongly connected digraph). Let

= V\(V1 U V3). We can assume that V; # . It is clear that

=V, (i x Vi) k) e Qk),
(Va,(Vax V3)n E) € Q(i),

= (V,EN[(Vy x V) U (Ve x Va) U (VA X Va)]) € Agg(n — k= 1),
Gq_( U Vs, (Vi x Va)n E) € By,

I i

and that the class IFy {n) is of the type {Q(k), Q(D), Ags(n —k — 1), B}
So, the number of all digraphs from [Fj (n) with fixed sets of sources V)
and sinks Va is g(R)g(DMy(n — k= 1) (if Vo = 0, as (VA x Va) N E # 0,
then by (5) we get that the same relation holds). As the choice of disjoint
subsets V) and V3 of the set ¥V is arbitrary, we have the statement of the
theorem.



244
4. TABLES

Using the obtained recurrent formulas, the cardinalities of all the above-
mentioned classes of connected digraphs with n points, n < 30, were calcu-
lated on a computer. Here we give only the number of all initially-finally
connected digraphs with n points, » < 20. Our calculations do not agree
with those in [8] for the cases of strongly connected, unilaterally connected
and initially connected digraphs for n > 7.

. From the above-given formulas it is easy to obtain the formulas for the
number of all initially-finally connected digraphs with a fixed number of
arcs.

The third table gives the numbers of all nenisomorphic initially-finaily
connected digraphs (the problem of their enumeration has not yet been
solved). '

The number of all initially-finally connected digraphs with n < 20 points

1 1

2

3 18

4 3424

3 962020

5 1037312116

7 4344821892264

8 T17T71421308713624

9 4T16467927380427847264

10 1237465168798883061207535456

11 1297923989772809185344542332007104

12 54443306585134263226243220332594352670016

13 913429314361471421630261703458729460990513248512

14 6129964251882515261054472090251920309790658538573860096

15 1645503177733288384586116507920619235642546108359341100411780608
16 176684664347284973763111082742401944150484468391738627637019210845

5830960

17 758854984960124422441257112611398737819231881444704038505491778861
2189218403938304

18 130370300026622248599703135686213619461581085131225526813568259651
926175542583586025687248896

19 8O589T892164657352217146580173273344229353550422221277586744161882

7352599603435356742676315502186192896
20 246262538369102439628535244312743522999462081332830098063375330217
T58703430201483624T187932268733739585811672375296
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The namber of all initially-finally connected digraphs with ! arcs and with n points, n < 7

hn [ 1 12 3 4 5 ] 6 7
0 | 1 ]o 0 0 0 0 0
1 2 0 0 0 0 0
2 1 6 0 0 0 0
3 20 24 0 0 0
4 15 234 120 0 0
5 6 672 2544 720 0
6 1 908 16880 28200 5040
7 792 55000 351600 328320
8 495 | 111225 2185860 6830460
9 220 | 161660 8410500 71142540

10 66 | 183006 22861044 457789542
11 12| 167660 47827680 2063736444
12 1| 125945 81394740 7080364065
13 77520 116692320 19567339470
14 38760 143934660 45325126575
15 15504 154538696 90499079832
16 4845 145245435 158841949245
17 1140 119718630 248399944842
18 190 86486385 349230046305
19 20 54626580 443990373120
20 i 30044979 512277729264
21 14307150 537543858312
22 5852925 513501619764
23 2035800 446674955160
24 593775 353667944665
25 142506 254654937306
26 27405 166508378463
27 4060 98672228676
28 435 52860207765
29 30 25518729810
30 1 11058116839
31 4280561376
32 1471442973
33 445891810
34 118030185
35 26978328
36 5245786
37 850668
38 111930
39 11480
40 861
41 42
42 1
| = [ 1 13 | 48 | 3424 | 962020 | 1037312116 4344821892264
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The number of all nonisomorphic initially-finally connected digraphs with
! arcs and with »n points, n < 5

Dn 142 3 4 5]
ol1lo| ol 0 0
1 1 0 0 0
2 1 1 0 0
3 4 1 0
4 4 11 1
5 1 31 23
6 1 45 152
7 38 | 486
8 27 1 992
9 13 | 1419
10 5 1641
11 1 [ 1485
12 1] 1i52
13 707
14 379

15 154
16 61
1T 16
18 )
19 !
20 1
L1211 7173 8675

REFERENCES

{1 Harary, F., and Palmer, E.M., Graphical Enumeration, Academic Press,
New York and London, 1973.

[2] Liskovec, V.A., ”0On a recurrent method for the enumeration of graphs
with labelled vertices”, Soviet Math. Dokl 10 {(1969) 242-246 [Dokl.
Akad. Nauk SSSR 184 (1969) 1284-1287).

(3] Wright, E.M., "The number of strong digraphs”, Bull. London Math.
Sec. 3 (1971) 348-350.

[4] Liskovec, V.A., ”Enumeration of rooted digraphs with a source” Vesci
Akad. Navuk B. SSR Ser. Fiz-Math. Navuk (1969) 23-32 (in Russian).



247

[5] Liskovec, V.A., "The number of strongly connected oriented graphs”
Mat. Zametki 8 (19707 721-732 (in Russian).

[6] Liskovec, V.A., "The number of initially connected digraphs” Dokl
Akad. Nauk. B, SSR 15 (1971) 293-294 (in Russian).

[7] Liskovec, V.A., ”Enumeration of rooted digraphs with a source II. The
Redfield-Robinson method” Vesct Akad. Navuk B. SSR Ser. Fiz-Mal.
Navuk (1973) 35-44, 136 (in Russian).

[8] Robinson, R.W., "Counting labeled acyclic digraphs™, New Directions
i the Theory of Graphs, Academic Press, New York, 1973, 239-273.

(9] Robinson, R.W., ”Counting strong digraphs” (research announcement},
Journal of Graph Theory 1 {1977} 189-190.



SCIENTIFIC REVIEW (1996), Number 19-20, pp. 249-264

CALCULATION OF THE FOURIER TRANSFORM ON
FINITE NON-ABELIAN GROUPS THROUGH
DECISION DIAGRAMS
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Fuaculty of Flectrical Engineering, Beogradska 14,
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Abstract. The paper presents a calculation procedure for the Fourler trans-
form on finite non- Abelian groups through decision diagram representations
of discrete functions. The procedure permits the processing of functions on
large groups and thus removes the complexity of calculation as the chief lim-
iting factor in applications of the Fourier transform on finite non-Abelian

groups.

L. INTRODUCTION

The concept reported in mathematics as the Kurepa tree was introduced by
Djuro R. Kurepa in his Ph.D. dissertation in 1935 [12]. In computer and
information sciences, this concept can be recognized as a particular data
structure denoted as the decision tree. After the publication of Bryant’'s
paper [1], decision diagrams (DDs) derived by the reduction of the decision
trees have been widely used for representations, manipulations and calcu-
lations with discrete functions. Reducfion is performed by deleting the
redundant nodes and sharing the equivalent sub-trees in the decision tree
associated to a given function f.

Various DDs for switching [16], and discrete functions [2], [13], [17], [19],
[20], are defined and applications are found, for example, in signal processing
including logic design. linear programming, function decomposition. etc.
DDs have proved very useful in spectral techniques considered te be part
of abstract harmonic analysis devoted to applications mainly in electrical
engineering. Thanks to DDs, applications of spectral techrigues have heen
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considerably extended to these areas where the complexity of calculating
discrefe transforms was the chief limiting factor. Regarding digital signals?,
calculation algorithms for discrete transforms though DDs proposed first in
{3] have an impact comparable to that of the fast Fourler transform (FFT)
[4] in the processing of discrete signals.

The algorithm suggested in [3] for the Walsh and Reed-Muller trans-
forms was extended to various discrete transforms [13], [14], [22]. However,
all these results concern signals described by functions on finite Abelian
groups.

Among different discrete transforms, the Fourier transform on finite
non-Abelian groups is recommended as the best choice in some particular
applications [10], [9], [11],[24]. Therefore, in this paper we extend the theory
of calculation algorithms for discrete transforms through DDs to functions
on finite non-Abelian groups.

In Sections 2 and 3 we explain and illustrate by example the represen-
tation of discrete functions by DDs and briefly repeat some hasic definitions
of the Fourier fransform on finite non-Abelian groups. Using the matrix
interpretation of this transform in Section 4, we define the calculation pro-
cedure for the Fourier transform ou finite non-Abelian groups in Section
5.

2. DECISION DIAGRAMS

Let (= be a finite, not necessarily Abelian, group & of order g. We associate
permanently and bijectively with each group element a non-negative integer
from the set {0,1,...,g — 1}, providing that 0 is associated with the group
identity. In what follows, each group element will be identified with the
fixed non-negative integer associated with it and with no other element.
We assume that &G can bhe represented as a direct product of subgroups
G1,...,G, of orders gy, ..., g,, respectively, ie.,

(J') G = x?:lGh g = H?.—-lgia g1 S g2 _<.. S Gn-

The convention adopted above for the denotation of group elements
applies to the subgroups G, as well. Provided that the notational bijections
of the subgroups G; and of G are consistently chosen, each z € G can be
uniquely represented as

(2) ﬁrzae% z; € Gy, e G,

=1

'Digital signals are discrete signals whose amplitudes take values in finite sets.
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with

n . y E
. Wipgy, t=1,....n—1,
1, =N

where g; is the order of &5,
The group operation ¢ of (G can be expressed in terms of the group

operations ¢ of the subgroups Gy, e =1,...,n by:
voy=la ly, 22200 .. Ta ), 296G, Ty € Gi

Therefore, a Tunction f{x} on ' can be aliernatively considered as an
n-variable function f{ry,....2,), 2; € G,.

A given f on the decomposable group G of order g can be conveniently
represented by a decision diagram with » Jevels consisting of nodes at the
level ¢ with g; output edges, The nodes corresponding to the same variable
#; form the i-th level in the DD, The poiut where an edge connecting non-
successive levels, Le., the edge longer than 1, crosses a level 1s denoted as a
cross point in the DD {20} Such a DD is a straightiorward generalization of
the binary decision diagrams (BDDs) [16] and multi-terminal binary deci-
sion diagrams (MTBDDs) [3] defined originally on finite dyadic graups and
multiple-place decision diagrams {MDDs) [17] on p-adic groups to functions
on arbitrary finite groups.

We will explain and illusirate the decision diagram representation of
discrete functions by the following example.

Example 1. Let GGy = O x (Y x Sy, where (3 = ({0,1},B) be the
basic cyclic group of order 2 with & denoting the modulo 2 addition and
Sa = (0,(132).{123),(12),(13},(23), o) the symmetric group of permuiations
of order 5. Group elements of 53 will be denoted by 0,1,2,3,4,5, respectively.
[ising this nototion the group eoperalion of S3 is shown wm Table 1. A
function f on Gay given by the truth-vector

=[0,6.2.1,0,0,2,1.1.0,0.0,1,1,1,1,1.1,1,1,1,1,2,2)7,

can be represented by the generalized multi-terminal decision diagroms shoun
in Fig. 1. In this figure, ] denotes that the variable x; takes the value j.
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Table 1: Group operation of 53

o]0 1 2 3 4 5
01e 1 2 3 4 35
111 2 0 5 3 4
212 0 1 4 5 3
313 4 5 0 1 2
414 5 3 2 0 1
505 3 4 1 2 0

S
q;
x! %
42 0 ql.l
x X % X
Qa0 )y D51} 3 Do}
x, X+,
x4x c

x5\ a X

6 0 2 1

a%ﬂ+x34+x35 b=x33+x34+x35
c=x, x4 x)

DD representation of f in Example 1.

3. FOURIER TRANSFORM ON FINITE NON-ABELIAN GROUPS

Basic concepts of the Fourier transform on finite non-Abelian groups can
be summarized as follows.

Any finite group is a compact group, so that all the results of Fourier
analysis on compact groups are true for finite groups. In the case of finite
groups '
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l. Every irreducible representation of a finite group ' is equivalent to
some unitary representation.

2. Every irreducible representation is finite dimensional.

3. The number of non-equivalent irreducible representations £, of a fi-
nite non-Abelian group & of order g is equal to the number of equiv-
alence classes of the dual object T of . Denoting this number by &,
it follows

K1

Zri:g.

==}

We will use the following notation to discuss the definition and prop-
erties of the Fourier transferm on finite non-Abelian groups.

Let us denote by P the complex field or a finite field. Henceforth it
will be assumed that:

1. char P= 0. or char P does not divide g.
2. P is a so-called splitting field for &

Recall that a complex field is a splitting field for any finite group. We
denote by P({G) the space of functions [ mapping & into P,ie., f+ G — F.

Let i be the number of equivalence classes of irreducible representa-
tions of & aver F. Each such equivalence clags contains just cne unitary
representation. We shall denote the A unitary irveducible representations
of G In some fixed arder by Rg.Ry,....Rux_1. We denote hy R, (=) the
value of R, at v € (5.

Note thai R, () stands for a non-singular +, by 7, matrix, with ele-
ments R,{:.“J)(.r), = 12,

If the group G is representable in the form (1}, then its unitary ir-
reducible represeniations can be obtained as the Kronecker product of the
unitary irreducibie representations of subgroups G, ¢ = 1,. .., n. Therefore,
the number A" of unitary irveducible representations of & can be expressed
as:

(3) K= H K,
i=1

where [; is the nwmnber of nuitary irreducible representations of the sub-
group (ry.
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Now, for a given group G of the form (1), the index w of each unitary
irreducible representation R, can be written as:

w = Zbiwh w; €40,1,..., K, 1}, we{0,1,...,K -1},

i=1
with

C(Teia By i=1n— 1,
(4) bzr{ 1, i=n,

where K; is the number of unitary irreducible representations of the
subgroup .

The functions REZ’J)(J:), w=0,1,...,K -1, 4,7=1,...,r, form an
orthogonal system in the space P(). Therefore, the direct and the inverse
Fourier transform of a function f € P(() are defined respectively by,

g—1
(5) Sp(w) = rug™ Y flu)Ry(u),
u=0
=1
(6) fle) = Tr(Si(w)Ry(z)),
=0

Here and in the sequel we shall assume, without explicitly saying so,
that all arithmetical operations are carried out in field P.

3.1. Matrix interpretation of the Fourier transform on finite non-
Abelian groups

To derive the matrix interpretation of the Fourier transform on finite non-
Abelian groups we need the generalized matrix multiplications defined as
follows [18].

Definition 1. Let A be an (m X n) matriz with elements a;; € P, 1 €
{0,1,....m—=1}, 7€ {0,1,...,n~1}. Let [B] be an (n x 1) matriz whose
elements by, 7€{0,...,n~1}, k€ {0,1,...,7 =1} are (p X p) matrices
of not necessarily mutually equal orders with elements in P, We define
the product A @ [B] as an (m x r) malriz [Y] whose elements g, 1 €
{0,1,...,m—1}, ke {0,1,...,r — 1} are (p X g} mairices with elements
in P given by

n—1
yir = D aijbji.
i=0
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The product [B] ) A is defined similarly.

Definition 2. Let [Z] be an {m X n) mairiz whose elements z,; i €
{0,4,...,m =1}, 7 € {0,1,....n — 1} are the square matrices of not
necessarily mutually equal orders with elements in P. Let [B] be an (n x r)
matriz whose elements by, 7¢{0,1,...,n =1}, ke {0.1,...,r =1} are
square matrices of not necessarily mutually equal orders with elements in P.
Under the condition that the matrices z;; and by are of the same order or,
if not. that one of them is of the order 1. the product of matrices [Z] and
[B] is defined as an (m X r) matriz Y = [Z] o [B] whose elements y;p € P
are given by

n—1

Yik = Z Tr{zijb,k).
=0

Definition 3. Let [Z] be an (m x n) matriz whose elements z;;, €
{0,1.....m—1}, 7e{0,1,....n=1} are (px g} matrices of not necessarily
mutually equal orders with elements in P. Let [B] be an (nxr) matriz whose
elements bjp, 7€ 4{0,1,...,n=1}, k€ {0.1,...,r=1} are (sx1t) malrices
of not necessariy mutually egual orders with elements in P. The element-
wise Kronecker product of matrices [Z] and [B] is defined as an {m x r)

matriz {V] = |Z] © [B] whose elements vy, are given by

n—I1
Vik = ZZU ¢ bk,

=0
where ® denotes the ordinary Kronecker producl.

By using the matrix operations thus defined, the Fourier transform pair
defined by (5) and {6) can be expressed as follows.

Definition 4. Let f € P(() be given as a vector £ = [f(0),..., flg— V]7.
Then ite Fourier transform is given by

S0 =g BRI G A,
where [Sy] = [S(0), ..., SHE-1)]T. and [R)7! = [by,] with by, = 7, RS (q),
se{0.1,. .., K -1}, ¢ge{0,1,...,9-1}.

The inverse Fourier fransform is given by

f = [Rjo[Sg],
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Table 2: Unitary irreducible representations of S3 over GF(i1)

z R(] Rl R2
0 1 L 1
11 1 I A
21 1 B
3,1t 10 C
4] 1 1 D
511 10 E
1 9 5 8 5 3
o d]eas )= [30)
10 5 8 5 3
C‘[o 10]? D‘[s 6}’ E_[s 6]

where [R] = [ay;] with a;; = R;(i), 1€ {0,1,...,9— 1}, 7€ {0,1,.... K —
1,

Example 2. The unitary irredicible representations of Cy in Ezample §
reduce (o the group characters and considered over the Guolois field GF(11)
are given by the Walsh transform matriz in GF(11)
11
wW=46 { 110 ] |

The unitary irreducible representations of Ss over the Galois field GF(11)
are shown in Table 2. Therefore, the Fourter transform on (o4 tn Erxample
I is defined by the transform matriz

110 1 10
1 1 1 1 1 1
& 1 1 1 10 10 10 ,
21 2B 2A 2C 2D 2K

[RJ‘1:W®W®[SB]:6.6.2_<[1 1]®[1 1}@

with oll the calculations performed in GF(11).
For function f in Erzample 1, the Fourier speclrum is given by the
matriz-valued vector

[Sf] = 6[559':Sf(2)a 3, 5=Sf(5)7 617an(8)> 7, l,Sf(ll)]T,
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where
5 2 5 2
s-| 5 5 sm= ) 1]
sf(8>—{g f] sf(m:[g f]

4, MATRIX INTERPRETATION OF THE FAST FOURIER TRANS-
P'ORM ON FINITE NON-ABELIAN GROUPS

A fast algorithm for implementation of the Fourier transform on finite non-
Abelian groups based on the classical Coley-Tukey FFT, is formulated in an
analytical form in [8]. It seems that an earlier relevant result on this subject
can be found in [5]. The matrix interpretation of FF'T on finite non-Abelian
groups we will discuss was given in [18].

To obtain a fast algovithm for the computation of the Fourier transform
on finite non-Abelian groups we use the Good-Thomas factorization as in
the case of the FF'T on finite Abelian groups {6], [7]. [23].

The matrix [R] in the definition of the Fourier transform on finite non-
Abelian groups is the matrix of unitary irreducible representations of & over
P. Since (¢ is representable in the form (1), the matrix [R] can be generated
as the Kronecker product of (/; x g;} matrices [R,] of unitary irreducible
representations of subgroups G, ¢ € {i,....n}, le,

=1

where @ denotes the Kronecker product.
Owing to the well-known properties of the Krouecker product, the same

applies to the matrix [R}™!, i.e., for this matrix the following holds
R]™ = Q)R]
=1

This matrix can be factorized further into the element-wise Kronecker
product of n sparse factors [C*], 7€ {l,...,n} as
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where

. I(ny.gi)’ 7 <1
(7) Sil=9q Rl7, g=i
e, unpy. 7 >0

where L,x, 15 an (e x @) identity matrix.

Each matrix [C*] uniquely describes one step of the {ast Fourier trans-
form performed in n steps. The algorithm is best represented and performed
through a fiow-graph consisting of nodes connected with branches to which
some welghts are associated [18].

The matrix representation and the corresponding fast algerithm ob-
tained in such a way is similar to the FFT on finite Abelian groups, but
some important differences appear here. See [18] for a detailed discussion.

5. COMPUTATION OF THE FOURIER TRANSFORM ON FINITE
NON-ABELIAN GROUPS THROUGH DDs

FET algorithms on Abelian and non-Abelian groups are based upon ihe
vector representations of discrete functions. It follows from the definition of
FFT and their matrix description that the space complexity of FFT on a
decornposable group ¢ of order g approximates ({g). The time complexity
is O(ng). Thus, the application of FFT is restricted to groups of relatively
small arders. To overcome this vestriction, the calculation procedures based
on the decision diagram representation of discrefe functions are proposed
for various discrete transforms on Abelian groups [3]. [13], [14], [22]. That
approach can be extended to finite non-Abelian groups owing to the ma-
trix interpretation in Section 4. Tor this purpose we need the following
definition.

Definition 5. The operation of concatenation, denoted by ©, over an or-
dered set of n vectors

1A ALY of order m is the operation producing a vector S of order nm
consisting of n successive subvectors Aq, ..., A,

Example 3. Applying the operation of concatenation to the set of three
vectors A = |ajagas]”, B = [hibaba]?, C = [creoes]? produces the vector
D=AcBe¢C= [alagagblbgbgclcg(:g]T.

From the theory of Good-Thomas I'I'T, calculation of the Fourier
transform on a decomposable group & of order g, can be performed through
n Fourier transforms on the constituent subgroups G of orders g,. It follows
that the calculation of the Fourier coefficients of f on a finite decomposable
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begin {procedure}
fort=mnto 1l
for k = 0 to §; do
Determine g; x by using the rule {8).
Store [S;] = ¢1.
end{procedure}

Figure 1: Calculation procedure for the Fourier transform.

group (& of order g given by the DD can be carried out through the following
procedure.

5.1. Calculation procedure

Given a function f on the decomposable group G of the {orm (1):

1. Represent f by the generalized MTBDD. Denote by ¢; the number
of non-terminal nodes at the ¢-th level, i.e., the level corresponding to
the variable 2; of f, in this DD.

2. Descend the DD in a recursive way level by level starting from the
constant nodes at level (n + 1) up to the root node at level 1.

3. For ¢ = n to 1, process the nodes and cross points in the DD by using

the rule
gi—1
Gielwi) = P07 > qip R (2 1), k=0,..,Q: -1,
(8) 7=

wy=0,...,K;— 1,

easily derived form the matrix factorization of [R]™1.

End of procedure.

Note that for ¢ = n, ¢41,; takes the value of the constant node where
the j-th outgoing edge of the corresponding node points to. Expressed in
programining pseudo code, the procedure is shown in IMig. 2.

Ii shouid be pointed out thatf there are no matrix computations. More-
over, all calculations are preformed as vector operations in the computation
of Fourier coefficients through this procedure, which ensures its efficiency.
The matrix-valued vector determined in ¢ is the Fourier spectrum of f.
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The procedure is probably best explained through an example using
the matrix notation.

Example 4. The Fourier spectrum of [ in Erample 1 is calculated using
the proposed procedure as follows.

1. The non-terminal nodes gz g, ¢31, ¢3,3 and the cross point g9 are pro-
cessed first using matriz {Ss) in [R]™'. The input date for the proce-
dure are the values of constani nodes. Thus, the following is deter-

mined
i 7 8
- 3 ~ 8
Q’B,O— r 10 4 s 31 = 4 0 5
L7 o9 0 4
[ 1 5
- 0 _ 7
q3:2 - M 0 0 b QS,S — 70
1o o 0 4

2. The non-terminal nodes ga0, ¢z, are processed using W. The fol-
lowing is determined

7 8
3 8 |
g2,0 = 6 10 4] + 40 o
7 2] ] 0 4
S
3 8
©6 w41 T 14 0 ’
17 2] 0 4
T 5
0 7
G, = 6 o 01| |17 0 °
oo ] 0 4
R 5
o 6 410 ‘
0 0 70
00 0 4
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3. The root node is processed using W. The following is determined

L s
4} 9
T 2 9 0
q=6 [9 3J5+ [o 2}9 o
3 2
3 2 2 0
9 10 | | L 0 9 _
Ly
0 9
7 2 9 0
o6 [9 3]5 }10 {0 2]9
3 2
3 2 20
L[ 9 10| ] L 0 9

Thus, the Fourier spectrum of f is equal to the malriz-valued vector de-
termined in g1 and it is equal to that celewlated by definition in Frample
1.

Thanks to its recursive structure, the calculation procedure as well as
the calculated Fourier spectrum can be represented by decision diagrams.
The corresponding DDs differ {rom these used to represent f in the same
way that the FFT algorithms on Abelian groups differ from FFT on non-
Abelian groups [18]. DDs representing the Fourier spectrum of functions
on finite non-Abelian groups are matrix-valued, since the values of constant
nodes are Fourier coefficients. The number of outgoing edges of nodes at
the -th level are determined by the cardinality 4, of the dual object T'; of
G

The efficiency of the DD representation of f depends on the number
of different values f can take. In the same way, the efficiency of DDs repre-
sentation of the Fourier spectrum of f depends on the number of different
TFourier coefficients. In this way, it depends indirectly on the number of
different values of f.

6. CLOSING REMARKS

There are at least two reasons to extend the fast calculation algorithms for
the Fourier transform to functions on finite non-Abelian groups:
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. There are signals in reality that are naturally modelled by functions

ot finite non-Abelian groups. Examples of such problems are reviewed
in [9], [10], [24].

. In some applications, the use of non-Abelian groups offers cansiderable

advantages compared to the Abelian groups [11], {15].

Unlike FFT, the procedure presented in this paper does not require

storage of the complete vector representing values of f and, thus, permits
the Fourier processing of functions on large finite non-Abelian groups. In

that way, it removes the complexity of calculation as a limiting factor for
applications of the Fourier transform on finite non-Abelian groups.
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