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PREFACE.

THE present volume concludes the reprint of the Scientific
Papers of the late Professor Sir George Gabriel Stokes.
As in the preceding volume, the brief editorial additions take
the form of undated notes enclosed in square brackets.

Various lectures and addresses on scientific subjects remain
over, which were considered to be not sufficiently original for in-
clusion in this collection, in those cases where they are not already
represented in other ways. Among them may be mentioned the
following :—

Solar Physics, the introductory lecture of a course, delivered
in the Theatre of the South Kensington Museum on April 6, 1881,
on behalf of the Committee on Solar Research. Reprinted in
Nature, Vol. xX1v. pp. 595—598 and 613—618.

The Absorption of Light and the Colours of Natural Bodues,
and Fluorescence; two lectures to science teachers at South
Kensington. Pp. 43, crown octavo, Macmillan and Co., 1876.

The Presidential Address to the British Association for the
Advancement of Science, Exeter Meeting 1869,—mainly recount-
ing recent progress in Science. .

Presidential Addresses at the Anniversary Meetings of the
Royal Society, 1886 to 1891 inclusive—mainly concerned with the
business of the Royal Society.

Annual addresses on scientific topics delivered as President of
the Victoria Institute :—ZThe Lumintferous Ether, 1893 ; The Per-
cepteon of Light, 1895 ; The Rontgen Rays, 1896 ; The Perception
of Colour, 1898.

Three volumes of Burnett Lectures delivered at Aberdeen
have been published by Macmillan and Co.; On the Nature of
Laght, Nov. 1883; On Light as a Means of Investigation, Dec. 1884;
and On the Beneficial Effects of Light, Nov. 1885. These lectures
have also appeared in a German Translation.

The courses of Gifford Lectures on Natural Theology in the
University of Edinburgh for the years 1891 and 1893 were
delivered by Sir George Stokes, and have been published in two
volumes by A. and C. Black; they are in part concerned with the
theological aspects of scientific knowledge.



vi PREFACE.

Some preparations have been made for a volume of biographical
character, to be occupied in part by a selection from Sir George
Stokes’ voluminous scientific correspondence, including some un-
published manuscript material. Stress of other engagements has
hitherto delayed this undertaking, but it is hoped that substantial
progress will soon be made.

It will be observed that the present volume represents the
period in which Sir George Stokes’ scientific activities were
mainly expended in the work of the Royal Society and of public
Scientific Committees, and in giving assistance to the investi-
gations of others. The volume thus consists largely of additions
and notes originally appended to memoirs by other authors.
Considerable care has been taken in making its contents as com-
plete as possible, and in the elucidation of points of ambiguity or
difficulty. It is hoped that no important printed contribution has
been overlooked. In one case, pp. 146—159, it has been thought
right to insert an unpublished manuseript of considerable length,
on the forms of water-waves of finite height, in what appeared to
be its natural sequence.

Acting on the advice of high authorities, the Smith’s Prize
Examination Papers set by Sir George Stokes in the University
of Cambridge for a long series of years, and also some early papers
of Problems set in the Mathematical Tripos, have been reprinted
in an Appendix.

The biographical sketch prefixed to this volume was contri-
buted by Lord Rayleigh to the Obituary of the Royal Society.
The photographic portrait which illustrated it, taken about the
year 1892, has again been made available by kind permission of
Mrs F. W. H. Myers.

If this collection serves to bring into due prominence a series
of memoirs which have at no time been sufficiently widely known,
although some of the greatest of British physicists have traced to
them much of their inspiration, any trouble that has been incurred
in collecting and editing the final volumes will have been amply
rewarded.

J. LARMOR.

St JouN’s CoLLEGE, CAMBRIDGE.
March 20, 1905.
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OBITUARY NOTICE.

[By Lorp RavimiGH. From the Proceedings of the Royal Society, 1903.]

Sik GEORGE GABRIEL STOKES, Barr. 1819—1903.

IN common with so many distinguished men Sir George
Stokes was the son of a clergyman. His father, Gabriel Stokes,
who was Rector of Skreen, County Sligo, married Elizabeth
Haughton, and by her had eight children, of whom George was
the youngest. The family can be traced back to Gabriel Stokes,
born 1680, a well-known engineer in Dublin and Deputy Surveyor
General of Ireland, who wrote a treatise on Hydrostatics and
designed the Pigeon House Wall in Dublin Harbour. This
Gabriel Stokes married Elizabeth King in 1711 and among his
descendants in collateral branches there are several mathematicians,
a Regius Professor of Greek, two Regius Professors of Medicine,
and a large sprinkling of Scholars of Trinity College, Dublin. In
more recent times Margaret Stokes, the Irish antiquary, and the
Celtic scholar Whitley Stokes, children of the eminent physician
Dr William Stokes, have, among others, shed lustre on the name.

The home at Skreen was a very happy one. In the excellent
sea air the children grew up with strong bodies and active minds.
Of course great economy had to be practised to meet the
educational needs of the family; but in the Arcadian simplicity
of a place where chickens cost sixpence and eggs were five or six
a penny, it was easy to feed them. They were all deeply attached
to their mother, a beautiful and severe woman who made herself
feared as well as loved.

Stokes was taught at home; he learnt reading and arithmetic
from the Parish Clerk, and Latin from his father who had been a
scholar of Trinity College, Dublin. The former used to tell with
great delight that Master George had made out for himself new
ways of doing sums, better than the book. In 1832, at 13 years
of age, he was sent to Dr Wall’s school in Dublin; and in 1835 for
two years to Bristol College, of which Dr Jerrard was Principal.
There is a tradition that he did many of the propositions of Euclid,
as problems, without looking at the book. He considered that he
owed much to the teaching of Francis Newman, brother of the
Cardinal, then mathematical master at Bristol College, and a man
of great charm of character as well as of unusual attainments.
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On the first crossing to Bristol the ship nearly foundered ; and
his brother, who was escorting him, was much impressed by his
coolness in face of danger. His habit, often remarked in after
life, of answering with a plain “yes” or “no,” when something
more elaborate was expected, is supposed to date from this time,
when his brothers chaffed him and warned him that if he gave
“long Irish answers” he would be laughed at by his school-fellows.

It is surprising to learn that as a little boy he was passionate,
and liable to violent, if transitory, fits of rage. So completely was
this tendency overcome that in after life his temper was remark-
ably calm and even. He was fond of botany, and when about
sixteen or seventeen, collected butterflies and caterpillars. It is
narrated that one day while on a walk with a friend he failed to
return the salutation of some ladies of his acquaintance, afterwards
explaining his conduct by remarking that his hat was full of
beetles!

In 1837, the year of Queen Victoria’s accession, he commenced
residence at Cambridge, where he was to find his home, almost
without intermission, for sixty-six years. In those days sports
were not the fashion for reading men, but he was a good walker,
and astonished his contemporaries by the strength of his swim-
ming. Even at a much later date he enjoyed encounters with
wind and waves in his summer holidays on the north coast of
Ireland. At Pembroke College his mathematical abilities soon
attracted attention, and in 1841 he graduated as Senior Wrangler
and first Smith’s Prizeman. In the same year he was elected
Fellow of his College.

After his degree, Stokes lost little time in applying his mathe-
matical powers to original investigation. During the next three
or four years there appeared papers dealing with hydrodynamics,
wherein are contained many standard theorems. As an example
of these novelties, the use of a stream-function in three dimensions
may be cited. It had already been shown by Lagrange and Earn-
shaw that in the motion of an incompressible fluid in fwo dimensions
the component velocities at any point may be expressed by means
of a function known as the stream-function, from the property
that it remains constant along any line of motion. It was further
shown by Stokes that there is a similar function in three dimen-
sions when the motion is symmetrical with respect to an axis.
For many years the papers, now under consideration, were very
little known abroad, and some of the results are still attributed by
Continental writers to other authors.

A memoir of great importance on the “ Friction of Fluids in
Motion, ete.,” followed a hittle later (1845). The most general
motion of a medium in the neighbourhood of any point is analysed
into three constituents—a motion of pure translation, one of pure
rotation, and one of pure strain. These results are now very
familiar; it may assist us to appreciate their novelty at the time,
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if we recall that when similar conclusions were put forward by
Helmholtz twenty-three years later, their validity was disputed by
so acute a critic as Bertrand. The splendid edifice, concerning
the theory of inviscid fluids, which Helmholtz raised upon these
foundations, is the admiration of all students of Hydrodynamics.

In applying the above purely kinematical analysis to viscous
fluids, Stokes lays down the following principle :—¢ That the differ-
ence between the pressure on a plane passing through any point
P of a fluid in motion and the pressure which would exist in all
directions about P if the fluid in 1ts neighbourhood were in a state
of relative equilibrium depends only on the relative motion of the
fluid immediately about P ; and that the relative motion due to
any motion of rotation may be eliminated without affecting the
differences of the pressures above mentioned.” This leads him to
general dynamical equations, such as had already been obtained
by Navier and Poisson, starting from more special hypotheses as to
the constitution of matter.

Among the varied examples of the application of the general
equations two may be noted. In one of these, relating to the
motion of fluid between two coaxial revolving cylinders, an error
of Newton’s is corrected. In the other, the propagation of sound,
as influenced by viscosity, is examined. It is shown that the
action of viscosity (u) is to make the intensity of the sound
diminish as the time increases, and to render the velocity of propa-
gation less than it would otherwise be. DBoth effects are greater
for high than for low notes; but the former depends on the first
power of u, while the latter depends only on w? and may usually
be neglected.

In the same paragraph there occur two lines in which a
question, which has recently been discussed on both sides, and
treated as a novelty, is disposed of. The words are—*“we may
represent an arbitrary disturbance of the medium as the aggregate
of series of plane waves propagated in all directions.”

In the third section of the memoir under consideration, Stokes
applies the same principles to find the equations for an elastic
solid. In his view the two elastic constants are independent and
not reducible to one, as in Poisson’s theory of the constitution of
matter. He refers to indiarubber as hopelessly violating Poisson’s
condition. Stokes’ position, powerfully supported by Lord Kelvin,
seems now to be generally accepted. Otherwise, many familiar
materials must be excluded from the category of elastic solids.

Tn 1846 he communicated to the British Association a Report
on Recent Researches in Hydrodynamics. This is a model of what
such a survey should be, and the suggestions contained in it have
inspired many subsequent investigations, He greatly admired the
work of Green, and his comparison of opposite styles may often
recur to the reader of mathematical lucubrations. Speaking of the
Reflection and Refraction of Sound, he remarks that “this problem

8. V. b
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had been previously considered by Poisson in an elaborate memoir,
Poisson treats the subject with extreme generality, and his
analysis is consequently very complicated. Mr Green, on the
contrary, restricts himself to the case of plane waves, a case
evidently comprising nearly all the phenomena connected with
this subject which are of interest in a physical point of view, and
thus is enabled to obtain his results by a very simple analysis.
Indeed Mr Grreen’s memoirs are very remarkable, both for the
elegance and rigour of the analysis, and for the ease with which
he arrives at most important results. This arises in a great
measure from his divesting the problems he considers of all
unnecessary generality ; where gemerality is really of importance
he does not shrink from it. In the present instance there is one
important respect in which Mr Green’s investigation is more
general than Poisson’s, which is, that Mr Green has taken the
case of any two fluids, whereas Poisson considered the case of
two elastic fluids, in which equal condensations produce equal
increments of pressure. It is curious that Poisson, forgetting this
restriction, applied his formulae to the case of air and water. Of
course his numerical result is quite erroneous. Mr Green easily
arrives at the ordinary laws of reflection and refraction. He
obtains also a very simple expression for the intensity of its
reflected sound....” As regards Poisson’s work in general there
was no lack of appreciation. Indeed, both Green and Stokes may
be regarded as followers of the French school of mathematicians.
The most cursory notice of Stokes” hydrodynamical researches
cannot close without allusion to two important memoirs of some-
what later date. In 1847 he investigated anew the theory of
oscillatory waves, as on the surface of the sea, pursuing the
approximation so as to cover the case where the height 1s not
very small in comparison with the wave-length. To the reprint
in Math. and Phys. Papers are added valuable appendices
ushing the approximation further by a new method, and showing
that the slopes which meet at the crest of the highest possible
wave (capable of propagation without change of type) enclose an
angle of 120°
The other is the great treatise on the Kffect of Internal
Friction of Fluids on the Motion of Pendulums. Here are given
the solutions of difficult mathematical problems relating to the
motion of fluid about vibrating solid masses of spherical or cylin-
drical form ; also, as a limiting case, the motion of a viscous fluid
in the neighbourhood of a uniformly advancing solid sphere, and a
calculation of the resistance experienced by the latter. In the
application of the results to actual pendulum observations, Stokes
very naturally assumed that the viscosity of air was proportional
to density. After Maxwell's great discovery that viscosity is
independent of density within wide limits, the question assumed
a different aspect; and in the reprint of the memoir Stokes
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explains how it happened that the comparison with theory was not
more prejudiced by the use of an erroneous law.

In 1849 appeared another great memoir, on the Dynamical
Theory of Diffraction, in which the luminiferous aether is treated
as an elastic solid so constituted as to behave as if it were nearly
or quite incompressible. Many fundamental propositions re-
specting the vibration of an elastic solid medium are given here
for the first time. For example, there is an investigation of the
disturbance due to the operation at one point of the medium of a
periodic force. The waves emitted are of course symmetrical
with respect to the direction of the force as axis. At a distance,
the displacement is transverse to the ray and in the plane which
includes the axis, while along the axis itself there is no disturb-
ance. Incidentally a general theorem is formulated connecting
the disturbances due to initial displacements and velocities. “If
any material system in which the forces acting depend only on the
positions of the particles be slightly disturbed from a position of
equilibrium, and then left to itself, the part of the subsequent
motion which depends on the initial displacements may be
obtained from the part which depends upon the initial velocities
by replacing the arbitrary functions, or arbitrary constants, which
express the initial velocities by those which express the corre-
sponding initial displacements, and differentiating with respect to
the time.”

One of the principal objects of the memoir was to determine
the law of vibration of the secondary waves into which, in accord-
ance with Huygens’ principle, a primary wave may be resolved, and
thence, by a comparison with phenomena observed with gratings,
to answer a question then much agitated but now (unless restated)
almost destitute of meaning, viz., whether the vibrations of light
are parallel or perpendicular to the plane of polarisation. As to
the law of the secondary wave Stokes’ conclusion is expressed in
the following theorem: “Let £=0, n=0, {=f(bt—x) be the
displacements corresponding to the incident light; let O, be any
point in the plane P, dS an element of that plane adjacent to O;
and consider the disturbance due to that portion only of the
incident disturbance which passes continually across dS. Let O
be any point in the medium situated at a distance from the point
0O, which is large in comparison with the length of a wave; let
00,=r, and let this line make angles @ with the direction of
propagation of the incident light, or the axis of #, and ¢ with the
direction of vibration, or the axis of z. Then the displacement at
O will take place in a direction perpendicular to 00;, and lying in
the plane Z0,0; and if ¢ be the displacement at O, reckoned
positive in the direction nearest to that in which the incident
vibrations are reckoned positive,

gf=§(1+cose)sin¢.f' (bt = 7).
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In particular, if
. . 2
F (0t —a)=csin ~ (bt — a),

we shall have
, cdS
&= Ve

Stokes’ own experiments on the polarisation of light diffracted
by a grating led him to the conclusion that the vibrations of light
are perpendicular to the plane of polarisation.

The law of the secondary wave here deduced is doubtless a
possible one, but it seems questionable whether the problem is
really so definite as Stokes regarded it. A merely mathematical
resolution may be effected in an infinite number of ways; and if
the problem is regarded as a physical one, it then becomes a
question of the character of the obstruction offered by an actual
screen.,

As regards the application of the phenomena of diffraction to
the question of the direction of vibration, Stokes’ criterion finds a
better subject in the case of diffraction by very small particles dis-
turbing an otherwise uniform medium, as when a fine precipitate
of sulphur falls from an aqueous solution.

The work already referred to, as well as his general reputation,
naturally marked out Stokes for the Lucasian Professorship, which
fell vacant at this time (1849). It is characterised throughout by
accuracy of thought and lucidity of statement. Analytical results
are fully interpreted, and are applied to questions of physical
interest. Arithmetic is never shirked.

Among the papers which at this time flowed plentifully from
his pen, one “On Attractions, and on Clairaut’s Theorem,” deserves
special mention. In the writings of earlier authors the law of
gravity at the various points of the earth’s surface had been de-
duced from more or less doubtful hypotheses as to the distribution
of matter in the interior. It was reserved for Stokes to point out
that, in virtue of a simple theorem relating to the potential, the
law of gravity follows immediately from the form of the surface,
assumed to be one of equilibrium, and that no conclusion can be
drawn concerning the internal distribution of attracting matter.

From an early date he had interested himself in Optics, and
especially in the Wave Theory. Although, not long before,
Herschel had written ambiguously, and Brewster, the greatest
living authority, was distinctly hostile, the magnificent achieve-
ments of Fresnel had converted the younger generation; and, in
his own University, Airy had made important applications of the
theory, e.g., to the explanation of the rainbow, and to the diffraction
of object-glasses. There is no sign of any reserve in the attitude
of Stokes. He threw himself without misgiving into the dis-
cussion of outstanding difficulties, such as those connected with

(14 cos @)sin¢ . cos g;r (bt —r).”
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the aberration of light, and by further investigations succeeded in
bringing new groups of phenomena within the scope of the theory.

An early example of the latter is the paper “ On the Theory of
certain Bands seen in the Spectrum.” These bands, now known
after the name of Talbot, are seen when a spectrum is viewed
through an aperture half covered by a thin plate of mica or glass.
In Talbot’s view the bands are produced by the interference of the
two beams which traverse the two halves of the aperture, dark-
ness resulting whenever the relative retardation amounts to an
odd number of half wave-lengths. This explanation cannot be
accepted as it stands, being open to the same objection as Arago’s
theory of stellar scintillation. A body emitting homogeneous
light would not become invisible on merely covering half the
aperture of vision with a half wave-plate. That Talbot’s view is
insufficient is proved by the remarkable observation of Brewster—
that the bands are seen only when the retarding plate is held
towards the blue side of the spectrum. By Stokes’ theory this
polarity is fully explained, and the formation of the bands is shown
to be connected with the limitation of the aperture, viz., to be
akin to the phenomena of diffraction.

A little later we have an application of the general principle of
reversion to explain the perfect blackness of the central spot in
Newton’s rings, which requires that when light passes from a
second medium to a first the coefficient of reflection shall be
numerically the same as when the propagation is in the opposite
sense, but be affected with the reverse sign—the celebrated “loss

of half an undulation.” The result is obtained by expressing the
-conditions that the refracted and reflected rays, due to a given
incident ray, shall on reversal reproduce that ray and no other.

It may be remarked that on any mechanical theory the reflec-
tion from an infinitely thin plate must tend to vanish, and therefore
that a contrary conclusion can only mean that the theory has been
applied incorrectly.

A not uncommon defect of the eye, known as astigmatism, was
first noticed by Airy. It is due to the eye refracting the light
with different power in different planes, so that the eye, regarded
as an optical instrument, is not symmetrical about its axis. Asa
consequence, lines drawn upon a plane perpendicular to the line
of vision are differently focussed according to their direction in
that plane. It may happen, for example, that vertical lines are
well seen under conditions where horizontal lines are wholly
confused, and vice versd. Airy had shown that the defect could
be cured by cylindrical lenses, such as are now common; but no
convenient method of testing had been proposed. For this pur-
pose Stokes introduced a pair of plano-cylindrical lenses of equal
cylindrical curvatures, one convex and the other concave, and so
mounted as to admit of relative rotation. However the com-
ponents may be situated, the combination is upon the whole
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neither convex nor concave. If the cylindrical axes are parallel,
the one lens is entirely compensated by the other, but as the axes.
diverge the combination forms an astigmatic lens of gradually
increasing power, reaching a maximum when the axes are perpen-
dicular. With the aid of this instrument, an eye, already focussed
as well as possible by means (if necessary) of a suitable spherical
lens, convex or concave, may be corrected for any degree or direc-
tion of astigmatism; and from the positions of the axes of the
cylindrical lenses may be calculated, by a simple rule, the curva-
tures of a single lens which will produce the same result. It is
now known that there are comparatively few eyes whose vision
may not be more or less improved by an astigimatic lens.

Passing over other investigations of considerable importance in
themselves, especially that on the composition and resolution of
streams of polarised light from different sources, we come to the
great memoir on what is now called Fluorescence, the most far-
reaching of Stokes’ experimental discoveries. He “was led into
the researches detailed in this paper by considering a very singular
phenomenon which Sir J. Herschel had discovered in the case of a
weak solution of sulphate of quinine and various other salts of the
same alkaloid. This fluid appears colourless and transparent, like
water, when viewed by transmitted light, but exhibits in certain
aspects a peculiar blue colour. Sir J. Herschel found that when
the fluid was illuminated by a beam of ordinary daylight, the blue
light was produced only throughout a very thin stratum of fluid
adjacent to the surface by which the light entered. It was un-
polarised. It passed freely through many inches of the fluid.
The incident beam after having passed through the stratum from
which the blue light came, was not sensibly enfeebled or coloured,
but yet it had lost the power of producing the usual blue colour
when admitted into a solution of sulphate of quinine. A beam of
light modified in this mysterious manner was called by Sir J.
Herschel epipolised.

Several years before, Sir D. Brewster had discovered in the
case of an alcoholic solution of the green colouring matter of leaves
a very remarkable phenomenon, which he has designated as
wternal dispersion.  On admitting into this fluid a beam of
sunlight condensed by a lens, he was surprised by finding the path
of the rays within the fluid marked by a bright light of a blood-red.
colour, strangely contrasting with the beautiful green of the fluid
itself when seen in moderate thickness. Sir David afterwards
observed the same phenomenon in various vegetable solutions and
essential oils, and 1n some solids. He conceived it to be due to
coloured particles held in suspension. But there was one circum-
stance attending the phenomenon which seemed very difficult of
explanation on such a supposition, namely, that the whole or a
great part of the dispersed beam was unpolarised, whereas a beam
reflected from suspended particles might be expected to be polarised
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by reflection. And such was, in fact, the case with those beams
which were plainly due to nothing but particles held in suspension.
From the general identity of the circumstances attending the two
phenomena, Sir D. Brewster was led to conclude that epipolic
was merely a particular case of internal dispersion, peculiar only in
this respect, that the rays capable of dispersion were dispersed
with unusual rapidity. But what rays they were which were capable
of affecting a solution of sulphate of quinine, why the active rays
were so quickly used up, while the dispersed rays which they
produced passed freely through the fluid, why the transmitted
light when subjected to prismatic analysis showed no deficiencies in
those regions to which, with respect to refrangibility, the dispersed
rays chiefly belonged, were questions to which the answers appeared
to be involved in as much mystery as ever.”

Such a situation was well calculated to arouse the curiosity
and enthusiasm of a young investigator. A little consideration
showed that it was hardly possible to explain the facts without
admitting that in undergoing dispersion the light changed its
refrangibilsty, but that if this rather startling supposition was
allowed, there was no further difficulty; and experiment soon
placed the fact of a change of refrangibility beyond doubt. “A
pure spectrum from sunlight having been formed in air in the
usual manner, a glass vessel containing a weak solution of sulphate
of quinine was placed in it. The rays belonging to the greater
part of the visible spectrum passed freely through the fluid, just
as if 1t had been water, being merely reflected here and there from
motes. But from a point about halfway between the fixed lines
G and H to far beyond the extreme violet, the incident rays gave
rise to a light of a sky-blue colour, which emanated in all directions
from the portion of the fluid which was under the influence of the
incident rays. The anterior surface of the blue space coincided, of
course, with the inner surface of the vessel in which the fluid was
contained. The posterior surface marked the distance to which
the incident rays were able to penetrate before they were absorbed.
This distance was at first considerable, greater than the diameter
of the vessel, but it decreased with great rapidity as the refrangi-
bility of the incident rays increased, so that from a little beyond
the extreme violet to the end, the blue space was reduced to an
excessively thin stratum adjacent to the surface by which the
incident rays entered. It appears, therefore, that this fluid, which
is so transparent with respect to nearly the whole of the visible
rays, is of an inky blackness with respect to the invisible rays,
more refrangible than the extreme violet. The fixed lines
belonging to the violet and the invisible region beyond were
beautifully represented by dark planes interrupting the blue space.
When the eye was properly placed these planes were, of course,
projected into lines.”

At a time when photography was of much less convenient
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application than at present—even wet collodion was then a
novelty—the method of investigating the ultra-violet region of
the spectrum by means of fluorescence was of great value. The
obstacle presented by the imperfect transparency of glass soon
made itself apparent, and this material was replaced by quartz in
the lenses and prisms, and in the mirror of the heliostat. When
the electric arc was substituted for sunlight a great extension of
the spectrum in the direction of shorter waves became manifest.

Among the substances found “active” were the salts of
uranium—an observation destined after nearly half a century to
become in the hands of Becquerel the starting point of a most
interesting scientific advance, of which we can hardly yet foresee
the development.

In a great variety of cases the refrangibility of the dispersed
light was found to be less than that of the incident. That light is
always degraded by fluorescence is sometimes referred to as Stokes’
law. Its universality has been called in question, and the doubt
is perhaps still unresolved. The point is of considerable interest
in connection with theories of radiation and the second law of
Thermodynamics.

Associated with fluorescence there is frequently seen a “false
dispersion,” due to suspended particles, sometimes of extreme
minuteness. When a horizontal beam of falsely dispersed light
was viewed from above in a vertical direction, and analysed, it
was found to consist chiefly of light polarised in the plane of
reflection. On this fact Stokes founded an important argument
as to the direction of vibration of polarised light. For “if the
diameters of the (suspended) particles be small compared with
the length of a wave of light, it seems plain that the vibrations in
a reflected ray cannot be perpendicular to the vibrations in the
incident ray.” From this it follows that the direction of vibration
must be perpendicular to the plane of polarisation, as Fresnel
supposed, and the test seems to be simpler and more direct than
the analogous test with light diffracted from a grating. It should
not be overlooked that the argument involves the supposition that
the effect of a particle is to load the aether.

It was about this time that Lord Kelvin learned from Stokes
“Solar and Stellar Chemistry.” “I used always to show [in
lectures at Glasgow] a spirit lamp flame with salt on it, behind
a slit prolonging the dark line .D by bright continuation. I always
gave your dynamical explanation, always asserted that certainly
there was sodium vapour in the sun’s atmosphere and in the
atmospheres of stars which show presence of the D’s, and always
pointed out that the way to find other substances besides sodium
in the sun and stars was to compare bright lines produced by
them in artificial flames with dark hines of the spectra of the lights
of the distant bodies*.”

* Letter to Stokes, published in Edinburgh address, 1871,



Stokes always deprecated the ascription to him of much credit
in this matter ; but what is certain is, that had the scientific world
been acquainted with the correspondence of 1854, it could not
have greeted the early memoir of Kirchhoff (1859) as a new
revelation. This correspondence will appear in Vol. 1v. of Stokes’
Collected Papers, now being prepared under the editorship of
Prof. Larmor. The following 1s from a letter of Kelvin, dated
March 9, 1854 “It was Miller’s experiment (which you told me
about a long time ago) which first convinced me that there must
be a physical connection between agency going on in and near the
sun, and in the flame of a spirit lamp with salt on it. I never
doubted, after I learned Miller’s experiment, that there must be
such a connection, nor can I conceive of any one knowing Miller’s
experiment and doubting....If it could only be made out that
the bright line D never occurs without soda, I should consider it
perfectly certain that there is soda or sodium in some state in or
about the sun. If bright lines in any other flames can be traced,
as perfectly as Miller did in his case, to agreement with dark lines
in the solar spectrum, the connection would be equally certain,
to my mind. I quite expect a qualitative analysis of the sun’s
atmosphere by experiments like Miller’s on other flames.”

By temperament, Stokes was over-cautious. “ We must not
go too fast,” he wrote. He felt doubts whether the effects might
not be due to some constituent of sodium, supposed to be broken
up in the electric arc or flame, rather than to sodium itself. But
his facts and theories, if insufficient to satisfy himself, were
abundantly enough for Kelvin, and would doubtless have convinced
others. If Stokes hung back, his correspondent was ready enough
to push the application and to formulate the conclusions.

It is difficult to restrain a feeling of regret that these impor-
tant advances were no further published than in Lord Kelvin’s
Glasgow lectures. Possibly want of time prevented Stokes from
giving his attention to the question. Prof. Larmor significantly
remarks that he became Secretary of the Royal Society in 1854.
And the reader of the Collected Papers can hardly fail to notice a
marked falling off in the speed of production after this time. The
reflection suggests itself that scientific men should be kept to
scientific work, and should not be tempted to assume heavy ad-
ministrative duties, at any rate until such time as they have
delivered their more important messages to the world.

But if there was less original work, science benefited by the
assistance which, in his position as Secretary of the Royal Society,
he was ever willing to give to his fellow-workers. The pages
of the “Proceedings” and “Transactions” abound with grateful
recognitions of help thus rendered, and in many cases his sugges-
tions or comments form not the least valuable part of memoirs
which appear under the names of others. It is not in human
nature for an author to be equally grateful when his mistakes are
indicated, but from the point of view of the Society and of science



in general, the service may be very great. It is known that in
not a few cases the criticism of Stokes was instrumental In sup-
pressing the publication of serious errors.

No one could be more free than he was from anything like an
unworthy jealousy of his comrades. Perhaps he would have been
the better for a little more wholesome desire for reputation. As
happened in the case of Cavendish, too great an indifference in
this respect, especially if combined with a morbid dread of mis-
takes, may easily lead to the withholding of valuable ideas and
even to the suppression of elaborate experimental work, which 1t is
often a labour to prepare for publication.

In 1857 he married Miss Robinson, daughter of Dr Romney
Robinson, F.R.S,, astronomer of Armagh. Their first residence
was in rooms over a nursery gardener’s in the Trumpington Road,
where they received visits from Whewell and Sedgwick. After-
wards they took Lensfield Cottage, where they resided until her
death in 1899. Though of an unusually quiet and silent dis-
position, he did not like being alone. He was often to be seen at
parties and public functions, and, indeed, rarely declined invitations.
In later life, after he had become President of the Royal Society,
the hardihood and impunity with which he attended public dinners
were matters of general admiration. The nonsense of fools, or
rash statements by men of higher calibre, rarely provoked him
to speech ; but if directly appealed to, he would often explain his
view at length with characteristic moderation and lucidity.

His experimental work was executed with the most modest
appliances. Many of his discoveries were made in a narrow passage
behind the pantry of his house, into the window of which he had
a shutter fixed with a slit in it and a bracket on which to place
crystals and prisms. It was much the same in lecture. For
many years he gave an annual course on Physical Optics, which
was pretty generally attended by candidates for mathematical
honours. To some of these, at any rate, it was a delight to be
taught by a master of his subject, who was able to introduce
into his lectures matter fresh from the anvil. The present
writer well remembers the experiments on the spectra of blood,
communicated in the same year (1864) to the Royal Society.
There was no elaborate apparatus of tanks and “spectroscopes.”
A test-tube contained the liquid and was held at arm’s length
behind a slit. The prism was a small one of 60°, and was held to
the eye without the intervention of lenses. The blood in a fresh
condition showed the characteristic double band in the green.
On reduction by ferrous salt, the double band gave place to a
single one, to re-assert itself after agitation with air. By such
simple means was a fundamental reaction established. The
impression left upon the hearer was that Stokes felt himself
as much at home in chemical and botanical questions as in
Mathematics and Physics.

At this time the scientific world expected from him a systematic
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treatise on Light, and indeed a book was actually advertised as in
preparation. Pressure of work, and perhaps a growing habit of
procrastination, interfered. Many years later (1884—1887) the
Burnett Lectures were published. Simple and accurate, thesc
lectures are a model of what such lectures should be, but they
hardly take the place of the treatise hoped for in the sixties.
There was, however, a valuable report on Double Refraction,
communicated to the British Association in 1862, in which are
correlated the work of Cauchy, MacCullagh and Green. To the
theory of MacCullagh, Stokes, imbued with the ideas of the
elastic solid theory, did less than justice. Following Green, he
took too much for granted that the elasticity of aether must have
its origin in deformation, and was led to pronounce the incom-
patibility of MacCullagh’s theory with the laws of Mechanics. It
has recently been shown at length by Prof. Larmor that MacCul-
lagh’s equations may be interpreted on the supposition that what
is resisted is not deformation, but rotation. It is interesting to
note that Stokes here expressed his belief that the true dynamical
theory of double refraction was yet to be found.

In 1885 he communicated to the Society his observations upon
one of the most curious phenomena in the whole range of Optics—
a peculiar internal coloured reflection from certain crystals of
chlorate of potash. The seat of the colour was found to be a
narrow layer, perhaps one-thousandth of an inch in thickness,
apparently constituting a twin stratum. Some of the leading
features were described as follows:—

(1) If one of the crystalline plates be turned round in its own
plane, without alteration of the angle of incidence, the peculiar
reflection vanishes twice in a revolution, viz., when the plane of
incidence coincides with the plane of symmetry of the crystal.

(2) As the angle of incidence is increased, the reflected light
becomes brighter, and rises in refrangibility.

(3) The colours are not due to absorption, the transmitted
light being strictly complementary to the reflected.

(4) The coloured light is not polarised.

(5) The spectrum of the reflected light is frequently found to
consist almost entirely of a comparatively narrow band. In many
cases the reflection appears to be almost total.

Some of these peculiarities, such, for example, as the evanes-
cence of the reflection at perpendicular incidence, could easily be
connected with the properties of a twin plane, but the copiousness
of the reflection at moderate angles, as well as the high degree of
selection, were highly mysterious. There is reason to think that
they depend upon a regular, or nearly regular, alternation of
twinning many times repeated.

It is impossible here to give anything more than a rough
sketch of Stokes’ optical work, and many minor papers must be
passed over without even mention. But there are two or three
contributions to other subjects as to which a word must be said.



Dating as far back as 1857 there is a short but important
discussion on the effect of wind upon the intensity of sound.
That sound is usually ill heard up wind is a common observation,
but the explanation is less simple than is often supposed. The
velocity of moderate winds in comparison with that of sound is
too small to be of direct importance. The effect is attributed
by Stokes to the fact that winds usually increase overhead, so
that the front of a wave proceeding up wind is more retarded
above than below. The front is thus tilted; and since a wave
is propagated mnormally to its front, sound proceeding up wind
tends to rise, and so to pass over the heads of observers situated
at the level of the source, who find themselves, in fact, in a sound
shadow.

In a more elaborate memoir (1868) he discusses the important
subject of the communication of vibration from a vibrating body
to a surrounding gas. In most cases a solid body vibrates without
much change of volume, so that the effect is represented by a
distribution of sources over the surface, of which the components
are as much negative as positive. The resultant is thus largely
a question of wnferference, and it would vanish altogether were 1t
not for the ditferent situations and distances of the positive and
negative elements. In any case it depends greatly upon the
wave-length (in the gas) of the vibration in progress. Stokes
calculates in detail the theory for vibrating spheres and cylinders,
showing that when the wave-length is large relatively to the
dimensions of the vibrating segments, the resultant effect is
enormously diminished by interference. Thus the vibrations of
a plano-string are communicated to the air scarcely at all directly,
but only through the intervention of the sounding board *.

On the foundation of these principles he easily explains a curious
observation by Leslie, which had much mystified earlier writers.
When a bell is sounded in hydrogen, the intensity is greatly
reduced. Not only so, but reduction accompanies the actual
addition of hydrogen to rarefied air. The fact is that the hydrogen
increases the wave-length, and so renders more complete the
interference between the sounds originating in the positively
and negatively vibrating segments.

The determination of the laws of viscosity in gases was much
advanced by him. Largely through his assistance and advice, the
first decisive determinations at ordinary temperatures and pressures
were effected by Tomlinson in 1886. In 1881 he brilliantly took
advantage of Crookes’ observations on the decrement of oscillation
of a vibrator in a partially exhausted space, to prove that Maxwell’s
law holds up to very high exhaustion and to trace the mode of
subsequent departure from it. Throughout the course of Crookes’
investigations on the electric discharge in vacuum tubes, in which he
was keenly interested and closely concerned, he upheld the British

* It may be worth notice that similar conclusions are more simply reached by
considering the paiticular case of a plane vibrating surface.
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view that the cathode stream consists of projected particles which
excite phosphorescence in obstacles by impact: and accordingly,
after the discovery of the Rontgen rays, he came forward with the
view that they consisted of very concentrated spherical pulses
travelling through the aether, but distributed quite fortuitously
because excited by the random collisions of the cathode particles.

A complete estimate of Stokes’ position in scientific history
would need a consideration of his more purely mathematical
writings, especially of those on Fourier series and the discontinuity
of arbitrary constants in semi-convergent expansions over a plane,
but this would demand much space and another pen. The present
inadequate survey may close with an allusion to another of those
“notes,” suggested by the work of others, where Stokes in a few
pages illuminated a subject hitherto obscure. By an adaptation
of Maxwell’s colour diagram he showed (1891) how to represent
the results of experiments upon ternary mixtures, with reference
to the work of Alder Wright. If three points in the plane repre-
sent the pure substances, all associations of them are quantitatively
represented by points lying within the triangle so defined. For
example, if two points represent water and aether, all points on the
intermediate line represent associations of these substances, but
only small parts of the line near the two ends correspond to
maxture. 1f the proportions be more nearly equal, the association
separates into two parts. If a third point (off the line) represents
alcohol, which is a solvent for both, the triangle may be divided
into two regions, one of which corresponds to simple mixtures of
the three components, and the other to proportions for which a
simple mixture is not possible.

A consideration of Stokes” work, even though limited to what
has here been touched upon, can lead to no other conclusion than
that in many subjects, and especially in Hydrodynamics and
Optics, the advances which we owe to him are fundamental.
Instinct, amounting to genius, and accuracy of workmanship are
everywhere apparent; and in scarcely a single instance can it be
said that he has failed to lead in the right direction. But, much
as he did, one can hardly repress a feeling that he might have
done still more. If the activity in original research of the first
fifteen years had been maintained for twenty years longer, much
additional harvest might have been gathered in. No doubt dis-
tractions of all kinds multiplied, and he was very punctilious in
the performance of duties more or less formal. During the sitting
of the last Cambridge Commission he interrupted his holiday in
Ireland to attend a single meeting, at which however, as was
remarked, he scarcely opened his mouth. His many friends and
admirers usually took a different view from his of the relative
urgency of competing claims. Anything for which a date was not
fixed by the nature of the case, stood a poor chance. For example,
owing to projected improvements and additions, the third volume
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of his Collected Works was delayed until eighteen years after the
second, and fifty years after the first appearance of any paper it
included. Even this measure of promptitude was only achieved
under much pressure, private and official.

But his interest in matters scientific never failed. The intelli-
gence of new advances made by others gave him the greatest joy.
Notably was this the case in late years with regard to the Rontgen
rays. He was delighted at seeing a picture of the arm which he
had broken sixty years before, and finding that it showed clearly
the united fracture.

Although this is not the place to dilate upon it, no sketch of
Stokes can omit to allude to the earnestness of his religious life.
In early years he seems to have been oppressed by certain theo-
logical difficulties, and was not exactly what was then considered
orthodox. Afterwards he saw his way more clearly. In later life
he took part in the work of the Victoria Institute: the spirit
which actuated him may be judged from the concluding words of
an Address on Science and Revelation. “But whether we agree
or cannot agree with the conclusions at which a scientific investi-
gator may have arrived, let us, above all things, beware of imputing
evil motives to him, of charging him with adopting his conclusions
for the purpose of opposing what is revealed. Scientific investi-
gation is eminently truthful. The investigator may be wrong, but
1t does not follow he is other than truth-loving. If on some
subjects which we deem of the highest importance he does not
agree with us—and yet he may agree with us more nearly than
we suppose—let us, remembering our own imperfections, both of
understanding and of practice, bear in mind that caution of the
Apostle: ¢ Who art thou that judgest another man’s servant? To
his own master he standeth or falleth.””

Scientific honours were showered upon him. He was Foreign
Associate of the French Institute, and Knight of the Prussian
Order Pour le Méritee. He was awarded the Gauss Medal in 1877,
the Arago on the occasion of the Jubilee Celebration in 1899, and
the Helmholtz in 1901. In 1889 he was made a Baronet on the
recommendation of Lord Salisbury. From 1887 to 1891 he repre-
sented the University of Cambridge in Parliament, in this, as
in the Presidency of the Society, following the example of his
illustrious predecessor in the Lucasian Chair. He was Secretary
of the Society from 1854 to 1885, President from 1885 to 1890,
received the Rumford Medal in 1852, and the Copley in 1893.

But the most remarkable testimony by far to the estimation
in which he was held by his scientific contemporaries was the
gathering at Cambridge in 1899, in celebration of the Jubilee of
his Professorship. Men of renown flocked from all parts of the
world to do him homage, and were as much struck by the modesty
and simplicity of his demeanour as they had previously been by
the brilliancy of his scientific achievements. The beautiful lines
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by his colleague, Sir R. Jebb, cited below, were written upon this
occasion.

There is little more to tell. In 1902 he was chosen Master of
Pembroke. But he did not long survive. At the annual dinner
of the Cambridge Philosophical Society, held in the College about
a month before his death, he managed to attend though very ill,
and made an admirable speech, recalling with charming simplicity
and courtesy his lifelong intimate connection with the College, to
the Mastership of which he had recently been called, and with the
Society through which he had published much of his scientific
work. Near the end, while conscious that he had not long to live,
he retained his faculties unimpaired; only during the last few
hours he wandered slightly, and imagined that he was addressing
the undergraduates of his College, exhorting them to purity of
life. He died on the first of February, 1903.

Clear mind, strong heart, true servant of the light,
True to that light within the soul, whose ray
Pure and serene, hath brightened on thy way,
Honour and praise now crown thee on the height
Of tranquil years. Forgetfulness and night

Shall spare thy fame, when in some larger day

Of knowledge yet undream’d, Time makes a prey
Of many a deed and name that once were bright.

Thou, without haste or pause, from youth to age,
Hast moved with sure steps to thy goal. And thine
That sure renown which sage confirms to sage,
Borne from afar. Yet wisdom shows a sign

QGreater, through all thy life, than glory’s wage;
Thy strength hath rested on the Love Divine.



MATHEMATICAL AND PHYSICAL PAPERS.

NoTrE oN CERTAIN ForRMULE 1IN THE CALCULUS OF
OperATIONS. (In a letter to Prof. Tairt.)

[From the Proceedings of the Royal Society of Edinburgh, X1, pp. 101-2.]

“January 14th, 1876.

“ForMULZE like those you sent me* are readily suggested by
supposing the function operated on to be of the form XAz, or say,
for shortness, 2%, with the understanding that no transformations
are to be made which are not equally valid for % Aae.

Thus
(c%x(%)”xa:aﬂ(a—l)g...(a_n+ 1) ga—n
=a(a—1) ...(a_n+1)<%>n$a
- ()
and

(w?%wybxa:(a-}- (o + 2)... (a0 + n) et
=(a+n)(a+n—1)...(a+1)a=n

d n
- wn (__ x’n wu .
dx

The direct transformation may readily be effected by noticing,
in the first instance, that any two operations of the form

d
x—m-i— 1 7 x’lﬂ
dx

* See ante [Proc. R. S. Edin.], p. 95.



2 NOTE ON CERTAIN FORMULZAE IN THE CALCULUS OF OPERATIONS.
are convertible. We find, in fact,

2
g otlii' am . g c%o an = a? <CTC.ZZL) +(m+n+1)a ogv + mn,

into which m and n enter symmetrically.
Replacing the operations in the left hand member of the first

formula by convertible operations, which will be separated by
points, we find

d d _ d d
d—xwd—m—d) X{LEZ?B”ZCT{L"
d Cl 1 = =2 2 d —1 22 d =1
d.—mx%.’b Xx;‘l.{i‘a/ .o %J/‘ ,

and so on. Hence

d d " — N N Ci N1 : N—1 d —1+2 : d :

2
=" ,{wn _(_i_ x*n-l—l L iig e d } ,

dx dx TV da

e ) (e ()

Again,
L T=0X —&
dx de ™’
@, =Xt — a?
da da”’
and so on. Hence
n
(2 g) = e Do gt Lo D,
da dw da de ™’



AN EXPERIMENT ON KLECTRO-MAGNETIC ROTATION.
By W. Sporriswoong, TrEAs.R.S.  [Extract.]

[From the Proceedings of the Royal Society, xx1v, Feb. 24, 1876,
pp. 403—407.]

¢

[THE experiment is on the rotation and spirality assumed in a
magnetic field by the luminous electric discharge through a gas.]

The following explanation of the phenomenon is due to
Prof. Stokes, from whose correspondence it is substantially taken.
The mathematical solution, although only roughly approximate,
is perhaps still quite sufficient to give the general character of
the experimental results *,

The magnetic field will be supposed uniform, and the lines of
force parallel straight lines from pole to pole. The path of the
current when undisturbed is also a straight line from pole to pole.
In such a condition of things, everything being symmetrical, no
rotation would take place. But if through any local circumstance,
as in the experiment in air, or through heating of the chamber as
in the exhausted tube, or otherwise, the path of the current be
distorted and displaced, then each element will be subject to the
action of two forces. To estimate these, let ds be an element of
the path, with rectangular components dz, dy, dz, C' the strength
of the current, and R the magnetic force with components X, V, Z,
which in the first instance will be treated generally. Then one
force will be that tending to impel the current in the direction of
the axes respectively, and may be expressed by

O(Ydz— Zdy)/ds, C(Zdx— Xdz)/ds, C(Xdy— Ydz)/ds.
Besides this, there will be the tendency of the current to follow

[* The electric discharge is considered as represented by a current in a flexible
inextensible conducting thread; see p. 243 supra. On the catenary, cf, Larmor, Proc.
Lond. Math. Soc. 1884, p. 170; and on the physical problem, cf. J. J. Thomson,
Conduction of Electricity through Gases, Ch. 1v.]

1—2
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the shortest path so as to diminish the resistance. Representing
this as a tension 7, the components at one end of ds will be

—7dz/ds, —rdy/ds, — Tdz/ds,
and those at the other
(rdw/ds) + d (vdz/ds), ...,
the algebraical sums of which are
d (rdwz/ds), d(rdy/ds), d(rdz/ds),

and the equations of equilibrium then become

C(Ydz — Zdy) + d (tdz/ds) =0............... (1),
C(Zdw — Xdz)+d (rdy/ds)=0............... (2),
C(Xdy— Ydz)+d(rdz/ds)=0............... (3);

taking s as the independent variable and multiplying by dz/ds
dy/ds, dz|/ds respectively, and adding, we obtain dr=0, or
7= constant. Again, multiplying by X, Y, Z and adding we
obtain
Xda/ds* + Ydry/ds* + Zdiz)/ds? =0 ............ (4),

which expresses that the absolute normal (or normal in the
osculating plane) is perpendicular to the resultant magnetic
force.

In the case of a uniform tint, X, Y, Z will be constant.
Integrating (4) and putting ¢ for the angle between the tangent
and the lines of magnetic force, we find

Xdaz+ Ydy + Zdz= Rds cos 1,

so that the tangent line is inclined at a constant angle to the line
joining the poles.
Again, the following combinations,
(2)dz—(3)dy=0, (3)do—(1)dz=0, (1)dy—(2)dz=0
give

Cde(Xdo+...)— CXds* 4+ (dz dy _dy dzZ) ds* =0, &,

ds ds* ~ ds ds?
de dy  dy d*z

or C(Rcosidx—de)+7<% 3;2—%@) ds =0, &c.

Transposing, squaring, and adding, and putting p for the radius of
curvature, we obtain

C*R*sin*v=7/p% or p=1/CRsiny,
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which is constant. The curve is therefore a helix. Also the radius
of curvature of the projection of the curve on a plane perpendicular
to the axis will be p sin?4, viz. = 7 sin¢/CR.

“The value of T depends doubtless on the nature and pressure
of the gas, and perhaps also on the current; but it must be the
same for equal values of C of opposite signs. Hence the handed-
ness of the helix will be reversed by reversing either the current
or the magnetic polarity. If the left-hand magnetic pole be north
(i.e. austral, or north-pointing), and the left-hand terminal positive,
the helix will be right-handed.”

The general nature of the phenomenon may therefore now be
described as follows:—* First, we have the bright spark of no
sensible duration which strikes nearly in a straight line between
the terminals. This opens a path for a continuous discharge,
which being nearly in a condition of equilibrium, though an
unstable one, remains a short time without much change of place.
Then it moves rapidly to its position of equilibrium, the surface
which is its locus forming the sheet. Then it remains in its
position of equilibrium during the greater part of the discharge,
approaching the axis again as the discharge falls, so that its
equilibrium position is not so far from the axis. Thus we see two
bright curves corresponding to the two positions of approximate
rest united by a less bright sheet, the first curve being nearly a
straight line, and the second nearly a helix traced on a cylinder of
which the former line is a generating line.

“It was noticed that the sheet projected a little beyond the
helix. This may be explained by considering that at first the
discharge 1s more powerful than can be maintained, so that the
curve reaches a little beyond the distance that can be main-
tained.”

The appearance of the discharge when viewed in a revolving
mirror (except the projection beyond the sheet, the illumination
of which was too feeble to be observed) confirmed the above
remarks.



ON THE Foci orF LINES SEEN THROUGH
A CRYSTALLINE PLATE.

[From the Proceedings of the Royal Society, xxv1, pp. 386—401,
June 21, 1877.]

At the Soirée of the Royal Society on the 25th of April
Mr Sorby showed me the method he had recently devised for
discriminating between minerals by focusing a microscope over a
delicate image of cross lines, which image was viewed, first directly,
and then through a crystalline plate, having previously been
adjusted to be at the distance of the lower surface of the plate.
With glass and singly refracting substances the alteration of the
focus produced by the interposition of the plate affords a measure
of its refractive index. But with a plate cut from a doubly
refracting crystal, not only is there more than one focal distance,
but for one at least of the pencils there is (except in special cases)
no true focus, but the foci of the two systems of cross lines are
found at two different depths, or else there is no sharply defined
image at all, according to the orientation of the lines relatively to
lines fixed in the crystalline plate. Moreover the result obtained
on applying the formula which, for a singly refracting plate, gives
the refractive index from the measured displacement of the focus
is often widely different from what is known to be the refractive
index of the crystal, for the pencil under examination, in a
direction perpendicular to the plate.

The phenomena will be described in detail by Mr Sorby in his
own paper. My object is to show how they flow from the known
laws of double refraction, as consequences of which they will
necessarily come under review*,

[* It seemed pretty certain that some of the phenomena must have been noticed
before, though I am not aware that they have been described, or their theory
worked out in'any detail. I find that Prof. Clifton has been in the habit of using
an instrument somewhat similar to Mr Sorby’s, which was procured several years
ago for the Museum of the University of Oxford, and that he was familiar with
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The simplest case is that of a uniaxal crystal, such as Iceland
spar, cut perpendicular to its axis. As regards the ordinary ray, a
plate cut from a uniaxal crystal, in whatever direction, behaves, of
course, like a plate of glass, so far as focusing is concerned, and
the index obtained is the true ordinary index. To find what takes
place as regards the extraordinary ray, we must have recourse to
Huyghens's construction.

Let O be any point in the further surface of the crystalline
plate, 04 perpendicular to the surface the direction of the axis,
OP the direction of any extraordinary ray. Let the plane of the

Fia. 1.

paper be the plane of incidence, AOP; take 04 to represent
the velocity of propagation () within the crystal in the direction
of the axis, and 0D in OA produced to represent the velocity of
propagation (unity) in air. With O as centre, construct the
half-spheroid, BAC, which is the extraordinary sheet of the wave-
surface, and the hemisphere E'DF representing the wave into
which a disturbance emanating from O would have spread in air

such things as the low apparent index of calcite for the extraordinary pencil nearly
in the direction of the axis, and the astigmatism in general of a pencil refracted
across a plate otherwise than by ordinary refraction ; and, further, that he utilized
these phenomena for the instruction of students as to the general form of the wave-
surface. No one, however, so far as I know, before Mr Sorby, had applied the
phenomena to the practical discrimination of minerals, or had worked them out
quantitatively and in detail; and it is my desire to complete the subject, by
supplying the mathematical theory, that must be my excuse for offering to the
Society an investigation which in itself consists merely in easy deductions from
well-known prineciples.

It is perhaps hardly necessary to refer to a paper by Dr Quincke in Poggen-
dorff’s Annalen (1862, Vol. xxvi, p. 563), containing some elaborate observations
on the focal lines formed within a doubly refracting plate, as his experiments were
made in a very different manner from those of Mr Sorby, and with a totally
different object in view. October, 1877.]
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in a unit of time, and let OB or OC be denoted by ¢. Let OP
cut the half-spheroid in P. At P draw a tangent plane to the
spheroid, the trace of which on the surface of the crystal is
projected in T'; and through the trace 7' draw a tangent plane to
the hemisphere, touching it in @), and join 0. Then if an extra-
ordinary ray travel within the crystal in the direction OP, the
refracted ray to which it will give rise will travel in a direction
parallel to 0Q. Hence if we now take OP to denote the whole
path of the ray within the plate, and draw Pg parallel to QO,
cutting OA4 in ¢, the ray OP, after refraction at P, will proceed as
if it came from ¢. Hence the limiting position of ¢, as P moves
up to 4, will be the geometrical focus, after refraction, of a small
pencil proceeding from O, and having OA for its axis.

Draw PM perpendicular to O4, and let m represent the ratio
of the sine of refraction to the sine of incidence. Then
m=0P: Pq;
and by similar triangles
Pq:PM=0T:0Q=0B8":PM.0Q,
since
0B*=0T.PM;
also
0P =04
ultimately. Hence as
04:0B:0Q=a:c:1,

we have ultimately

[

n = L—l; = &-
¢ op
where u, ' denote the ordinary and the principal extraordinary
indices of refraction, which are the reciprocals of a, c.

In this particular case the ordinary and extraordinary images
cannot be distinguished directly by their polarization, since each
consists of rays polarized in all azimuths. But if the objective of
the microscope be limited by a narrow aperture, so as to give a
predominance to rays lying in one plane, there will in the ordinary
image be a predominance of polarization in a plane parallel to the
length of the aperture, and in the extraordinary image of polariza-
tion in the perpendicular plane.
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Next take the case of a uniaxal crystal cut parallel to the axis.
In this case, as regards the extraordinary pencil, the divergence
after refraction will be different in the axial and equatorial planes,
so that a small pencil diverging from a point at the under surface
of the crystal will, after refraction, diverge from two focal lines;
and in order that a line may be seen distinctly, it must lie in one
of the planes of symmetry, in which case, at a certain focal adjust-
ment of the microscope, each element of the line would be seen as
a short line in the direction of the actual line, and therefore the
line as a whole will be seen sharply defined.

In the equatorial plane the extraordinary ray obeys the
ordinary law of refraction; and as regards divergence, therefore,
in this plane, on which depends clear vision of a line parallel to
the axis, the apparent index will be the same as the real index, u'.
In the axial plane everything will be the same in respect of
divergence as in the first case, except that the principal axes
of the ellipse which is the section of the extraordinary wave-
surface will be interchanged. Accordingly a line in the equatorial
plane will be seen distinctly at a focal adjustment which will give
an apparent refractive index p*: u'.

There will therefore, on the whole, be three focal adjustments
of the microscope at which one or other of the systems of cross
lines, or both together, will be seen distinctly, namely, one for the
extraordinary pencil, which is polarized in the equatorial plane, at
which the lines in the axial plane are seen distinctly ; another at
which the lines in the equatorial plane are seen distinctly; and,
intermediate between these, a third for the ordinary pencil, which
is polarized in the axial plane, at which both systems at once will
be seen distinctly. And the ordinary index, which will be given
by the ordinary image, will be a geometric mean between the two
apparent extraordinary indices, of which one, namely, that got
from the lines in the axial plane, will be the real extraordinary
index.

There are two uniaxal crystals, calcite and quartz, for which
we know accurately the principal refractive indices for the prin-
cipal lines of the spectrum from the measures of Rudberg. The
principal indices for these two minerals and the apparent indices
in the two directions mentioned above are given in the following
Table. The indices are given to four places of decimals, and the
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fixed lines O, D, K are chosen, whence the results applicable to
the kinds of light most likely to be employed may be obtained,
directly or by interpolation.

Calcite Quartz
Lines | vo 2 19 .
VoW - Ll ' L laal
2 " J m P 2 © m ‘ W
C...... 1-65645 ! 1°4846 | 13321 | 18438 1 1-5418 '1-5509 | 1'5601 “ 1-5328
D.... 16585 ‘ 1-4864 | 1-3322 | 1-8505 | 1-5442 ‘ 15533 16624 | 1'5352
K. 16636 | 1-4887 ‘ 1-:3322 | 1-8590 | 1-5471 | 15563 | 1'5656 i 1-5380

It 1s well known that the double refraction of quartz differs
from that of the generality of uniaxal crystals. Its wave-surface
for any colour, instead of being the sphere and spheroid of
Huyghens, is a surface of two distinct sheets, which, instead of
touching, only make a very close approach along the axis. The
polar diameters of the outer, or ordinary, and of the inner, or
extraordinary, sheet differ by minute and practically equal
quantities from the equatorial diameter of the ordinary sheet.
The effect of this, however, on the indices, real or apparent,
determined by Mr Sorby’s method on a plate cut perpendicular
to the axis, would not be sensible. The peculiarity would show
itself by giving the two images at different depths circularly
polarized, one right-handedly and the other left-handedly.

It may be noticed that the refractive index is given by the
reciprocal of the radius of curvature of a section of the wave-
surface by a plane perpendicular to the lines seen in focus, and
that in order that the lines may be seen distinctly, they must be
perpendicular to one of the planes of principal curvature. This
rule, as I proceed to show, is general; and it will much simplify
the calculation in more complicated cases, by enabling us to
dispense with the direct application of Huyghens’s construction.

Let O be a point in the first surface of the plate, and consider
a small pencil emanating from O in such a direction that its axis,
after refraction, is perpendicular to the plate. With centre O
describe half a wave-surface, of which only one sheet, DEF, is
represented in the figure to avoid confusion. In a direction
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parallel to the surfaces of the plate draw a tangent plane to the
wave-surface, touching it in £, Join OF, and draw G a normal

Fie. 2.

to the plate, and produce it to cut DF in H. Then OF is the
course of a ray within the crystal which, after refraction, proceeds
in a direction perpendicular to the plate, and is therefore the axis
of the pencil. Let OPQ be an adjacent ray, cutting the wave-
surface in P, and the tangent plane, which we may suppose
to coincide with the second surface of the plate, in . Then the
retardation of the wave on arriving at @, relatively to the wave at
E, will be the time the ray of light takes to travel from P to .
The form of the wave after refraction will depend only on the
value of this retardation, regarded as a function of the two co-
ordinates which determine the position of ¢ on the plate. This
follows at once from Huyghens’s principle. If we regard QF as a
small quantity of the first order, the retardation will be a small
quantity of the second order; and in determining the foci of the
refracted pencil we only want to know the retardation true to this
order, and we may substitute for the actual retardation any
quantity which bears to it a ratio that is ultimately one of
equality. Hence, as the wave progresses within the crystal
beyond DEF, we may feign it to be travelling in an ordinary
medium, with a velocity of propagation equal to the actual wave-
velocity in the direction A normal to the plate. For if from ¢
we concelve a normal QM drawn to the wave-surface, the actual
wave-velocity along M@ will differ from that in the direction HE
by a small quantity of the first order; and since the whole
distance MQ is a small quantity of the second order, we may
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neglect the variation of wave-velocity, and treat the medium as if
it were a singly refracting one, in which a wave was travelling
which had already, by some means, acquired the form DEF.

Through the normal KH draw the two rectangular planes of
principal curvature of the surface at X, and let (, ¢’ be the
centres of curvature, and p, p” the radii of curvature, on the same
scale in which HE represents the wave-velocity v in the direction
HE. Then the rays in that plane of principal curvature, the
normals in which intersect in C, may be thought of as diverging
from € in an ordinary medium, of which the refractive index
is v If 7 be the thickness of the plate, the distance of C' from
the second surface will be p7/v, and the product of this by v, or pr,
will give the distance of the focus in that plane after refraction
into air; and therefore the apparent index of refraction will
be p7%. Similarly p~? will be the apparent index in the other
plane. And in order that one or other of the two rectangular
systems of lines may be seen distinctly at the proper focus, the
lines must be placed perpendicular respectively to the two planes
of principal curvature.

A similar construction applies to the other pencil which the
plate is capable of transmitting independently, to which corre-
sponds the other sheet of the wave-surface, and which 1s polarized
n a plane perpendicular to the plane of polarization of the former
pencil. In a biaxal crystal, in which neither sheet of the wave-
surface 1s a sphere, there will in general be four focal distances at
which lines in proper directions can be seen distinetly. For either
pencil the two required directions are perpendicular to each other;
and if the plate be perpendicular to one of the principal planes,
or planes of optical symmetry of the crystal, the required direc-
tions of the cross lines are the same for both pencils, namely,
parallel and perpendicular to the plane of symmetry.

The case next in order of simplicity to that of a uniaxal
erystal cut parallel to the axis is that of a biaxal crystal cut in a
direction perpendicular to one of the principal axes; but before
proceeding to this it may be well to complete the investigation for
a uniaxal crystal, by considering a plate cut in any manner.

Let 6 be the inclination of the axis of the crystal to the
normal to the plate; a, ¢, as before, the polar and equatorial semi-
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axes of the spheroid. We need only consider the extraordinary
ray and the spheroid corresponding to it. Let p be the radius of
curvature of the elliptic section made by the principal plane, p’
the radius of curvature of the perpendicular section, which will be
the length of the normal drawn as far as the axis of revolution.
p and p’ are to be expressed in terms of §. We have

pl=a"2c?(acos* 0+ csin? ) ...l (2),
P'_l =2 (a2 cos? 6 + ¢ Sin2 0)% .................. (3).

(2) gives the apparent index as obtained by focusing on a line
perpendicular to the principal plane, and (3) as obtained by
focusing on a line in the principal plane.

We see from (2) that as € changes from 0° to 90°, p changes
from a7 ¢* to ¢ @? of which one is greater than ¢ and the other
less than ¢. Hence for an intermediate value of 8 p=a. For
this value we have from (2)

tan® @ =at ¢ ¥ (@b + )= p Wi+ ). (4).

In this case, as in that of a uniaxal crystal cut perpendicular
to the axis, there are only two focal distances at which a distinct
image 1s seen. But the two cases are easily distinguished ; for in
the present case the ordinary and extraordinary images are both
polarized in definite planes; also at one of the focal distances only
one of the systems of cross lines, namely, those parallel to the
principal plane, are seen distinctly; and, further, either extra-
ordinary image becomes confused when the plate is rotated in
its own plane.

For this particular inclination we have, in the case of Iceland
spar, according to the indices above quoted for the line D,
0=153°34.

In this mineral the normal to the plane of easy cleavage
is inclined to the axis at the angle 44° 37. Substituting this
value in (2) and (3), writing w™, w'* for «, ¢, we have, for the
apparent indices of the extraordinary pencil : —

For lines For lines
perpendicular to the parallel to the
prineipal plane prineipal plane
C.... 15777 .. 1-4094
For the fixed line ...... D..... 15809 ... 1:4104

E.... 1-5849 ... 1-4116
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In biaxal crystals the simplest case, and at the same time the
most important, is that of a plate cut perpendicular to one of the
principal axes, or so-called awxes of elasticity. As the calculation
for both pencils is precisely the same as for the extraordinary
pencil in a plate of a uniaxal crystal cut parallel to the axis, it
will be sufficient to give the result.

Let the principal axes be designated as those of «, ¥, z, to
which relate the parameters or principal velocities of propagation,
a, b, ¢, and their reciprocals, the principal indices, u, p/, p”. 1 will
suppose a, b, ¢, taken in descending, and consequently u, #/, u” in
ascending order of magnitude*. For the arrangement of the
Table, it will be convenient to specify the direction of the line
seen in focus, and that of the normal to the plane of polarization
of the image observed. When these directions are different, the
plane of the plate is defined, being that containing them both.
When they are the same, the plane of the plate may be either
of the principal planes containing that common direction; and,
indeed, it might be any plane containing it, only that the case of
a plate cut obliquely is not at present under consideration. The
apparent indices obtained by focusing will accordingly be arranged
as follows :—

Direction of line brought to focus

N
=

! Direction of normal to
plane of polarization
R
o
RS

It may be well to give the numerical results for aragonite

* In the previous investigation for Iceland spar a was taken for the ordinary
wave-veloeity, in order to conform to the notation in Airy’s tract, so that ¢ was
greater than «a.
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and topaz, as calculated from Rudberg’s indices. I have chosen
the same fixed lines as before.

' Aragonite Topaz

Fixed
lines

(’ ¢ 15282 | 18513 | 18420 | 106093 | 16284 | 16135
1D 1301 | 18576 | 18481 | 16116 | 16296 | 16148
M E | 1’5326 | 18653 | 18554 | 16145 | 146338 | 116189
! | \

¢ vese2 | 1677s | 18919 | 16262 ‘ 16114 | 16072
D | 16902 | 16816 | 13922 || 146285 | 1:6137 | 16115
£ | 16953 | 16863 | 1'3929 || 16315 | 16167 | 1'6123

|
,
l

l
¢ 1-6736 | 1-3885 | 16820 | 1-6040 | 1-5999 | 1-6188
D 16773 | 1-3887 | 16859 1-6063 | 16041 | 1:6211
E 16818 | 1-3892 | 16908 || 16093 | 1'6056 | 16241

The numbers in the squares xw, yy, zz are, of course, the real
principal indices.

I proceed now to the case of a plate cut in any direction
perpendicular to one of the principal planes, to which I propose to
limit myself, merely observing that the leading features of the
most general case have already been noticed.

The principal plane perpendicular to the plate being a plane
of optical symmetry, the proper directions for the cross lines are
parallel and perpendicular to that plane. Let the plane of sym-
metry be the plane of xz, without necessarily implying thereby
that the axis of y is that of mean parameter, and let 6 be the
inclination of the normal to the plate to the axis of z. The
section of the wave-surface, which I assume to be that of Fresnel,
by the principal plane being a circle and an ellipse, the formule
for the foci of a line perpendicular to the principal plane will be
the same as for a uniaxal crystal, inasmuch as the relation which,
in the case of a uniaxal crystal, subsists between the radius of the
circle and one of the semiaxes of the ellipse is not involved in
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the formule. For light polarized perpendicularly to the principal
plane, then, the apparent index for a line parallel to y is given
by (2), while for the other pencil it is simply b= or p'.

To find the foci for a line lying in the plane of symmetry, we
must have recourse to the wave-surface itself, and not merely to
its principal section. We have to find the radius of curvature at
any point in the principal section for a normal section perpen-
dicular to the principal plane.

Let P be a point in the principal section, PN the normal at P,
M a point in PN near P, and through M draw M@ parallel to g,
cutting in @ the sheet of the wave-surface to which P belongs.
Then the limit of M@+ 2PM, as M moves up to P, will be the
radius of curvature required.

Taking the equation of the wave-surface under the form

(x‘l + 3/2 + 22) (Cb2x2+ b2y2 +0222) —a? (bz + 02) xgz (5)
_b2<02+a2>y2—02(a2+b2)z2+a9b202=() S ...... B

let «, 0, z be the coordinates of P, and «+ 8z, y, z+ 8z those of (.
Substituting in (5), which, by hypothesis, is satisfied by the
coordinates #, 0, z, observing that 6z, &z are small quantities of
the order ¥?, and omitting small quantities of the order ¢, we
find
(@*a* + 22+ a* (2* + 2° — b* —¢*) } 22z
+{a2a?+ 2+ (P + 22— a?— %)} 2202 - ..., (6).
+ {a%{,ﬂ+0222+b2(x2+22-a2—02)}y2=0

Let PM =p, and first suppose I to lie in the circular section.
Then a?+22=05% x=bsind, z=bcos 0.  Also, as the normal
coincides with the radius vector,

8—;0 =872 = —%, 20w + 20z = — bp.

Substituting in (6) and putting 32 =2pp’, we find for the
curvature
_ b(a*sin?0 + c*cos? 0 + b* — a* — ¢?)

P =T b (a@sin? 0 + Peos 0) — a2

—1

or
—y _ b{(b* = a*) cos® 0 + (b* — ¢*) sin® 0]
¢ (b* — a?) cos? 0 + a? (b* — ¢?) sin*6
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which gives the apparent index for light polarized in the principal
plane when a line in that plane is brought into focus.

Next let P lie in the elliptic section. Then
a*x® 4?2t = atc?,
which reduces (6) to
2(a® + 2* — b*) (@b + ¢2282) 4 {b* (4 + 2° — 0 — ¢*) + a*¢*} 12 =0

dx 82 —p _ a*wdx + 28z
ar ¢z N(atar+ i) atar 4ot

and
which, on putting p’ for y*+ 2p, reduces (8) to
(@ + 2 =) (¢t + c*2) = (P (2* + 22— a* — ) + a*cp'=0...(9).

‘We have also

a’x
tan 8 = —,
ciz

which, combined with the equation to the ellipse, gives

ata? ctz? a?c? aa s s
e g T 2 = e —2 'Y (O
sin?@ cos?@ a%sin?@ 4 c2cos?d

2% + 22

T atsin?d +ctcos? O’

On substituting in (9), and reducing, we find

oy _ {0 — @) cos® 6 + (b* — ¢*) sin* 0] (a* cos* 0 + ¢* sin® O)? (10)
P a?(b* — a?) cos? 8 + ¢* (b* — ¢*) sin® 0 R

which gives the apparent index for light polarized perpendicularly
to the principal plane, when a line in that plane is brought into
focus.

To sum up. For the pencil which is polarized in the principal
plane the apparent index for a line perpendicular to that plane is
the real index b= or p’, while for a line in the principal plane it
is given by (7). For the pencil which is polarized perpendicularly
to the principal plane the apparent index for a line perpendicular
to that plane is given by (2), and for a line in the plane by (10).

On examining the expressions (7) and (10) and for radii of
curvature of normal sections perpendicular to the principal plane,
we see that if b be the greatest or least parameter they remain

s. V. 9
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constantly positive. But if & be the mean parameter, both ex-
pressions change sign twice, once in passing through zero, and
once through infinity, as 6 changes from 0° to 90°

The radii of curvature become infinite together when

2 __ 12
tan29=%__,_lc)2 ........................ (11);

that is, when the plate is perpendicular to the optic axis. For a
point in the circular section the radius vanishes when
o g G =0 )
tan® @ = (b gy T (12);
that is, when the plate is perpendicular to the ray-axis. For a
point in the elliptic section the radius vanishes when
a2 (az:_lﬂ) ,
T gy
that is, when the plate is perpendicular to the normal to the
elliptic section at the point where the two sections intersect.

tan? @ =

A figure may make these changes clearer. Let 20z be a
quadrant of the plane perpendicular to the axis of mean para-
meter. Let BB’ be the circular, and AC the elliptic section,

Fic. 3.

intersecting in R, P@ the common tangent, 2V a normal at B to
the elliptic section. Conceive a plate cut perpendicular to the
plane of @z, its normal being inclined at the angle 8 to Oz; and
imagine € to change continuously from 0% to 90°: and let p’, p,
represent the radii of curvature in the secondary plane (¢0z being
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deemed the primary plane) for points in the sections 4C, BB
respectively. As @ starts from zero, p’ starts from o and increases,
and p,” starts from b7'¢* and decreases. When @ becomes BOR,
p' vanishes, and beyond that becomes negative, while p’ continues
to increase. As @ increases to BOQ), p’ increases positively, and
p) negatively, to infinity, and beyond that both change sign, p’
becoming mnegative and p,’ positive. As 6 increases to ANR,
p’ decreases negatively to zero, while p," decreases positively from
infinity. On passing ANR, p’ becomes positive, and increases to
its final value, ¢, which it reaches when 6 =90°, while p,” decreases
to 1ts final value, ba% Thus though a >¢ we may say that as 6
increases from 0° to 90°, p” increases from @ to ¢ by passing through
w0 and 0, and p,” decreases from b~*¢* to b~'a* by passing through
0 and .

The extravagant changes of apparent index in the immediate
neighbourhood of the wave- and ray-axes could probably not well
be followed by the microscope, on account of the necessity of
working with pencils of finite angular aperture, which would make
the phenomena of focusing blend themselves with those of conical
refraction. But there can be little doubt that a large increase or
diminution of apparent index on approaching the critical region
would be readily discernible. That these changes are not con-
fined to the principal plane is evident, inasmuch as one principal
radius of curvature of the wave-surface becomes infinite at any.
point of the circle of contact of the surface with the tangent plane
perpendicular to the optic axis, and one principal radius of curva-
ture vanishes at the conical point, to whatever normal section it
be thought of as belonging.

Let us now resume the equations (2), (10), which give the
principal curvatures for the elliptic section, without deciding
beforehand anything as to the relative magnitude of the para-
meters.

As 8 changes from 0° to 90°, the radius of curvature in the
primary plane changes from a¢® to ¢™'¢? and that in the
secondary plane from a to ¢; and the ratio of the radii, therefore,
changes from a=2¢* to ¢~%a?, of which one is greater than 1 and the
other less than 1. If, then, both radii remain positive, as is the
case in the two principal planes passing through the mean axis,

the two radii must be equal for some intermediate value of 6.
2—2
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Hence there must be four umbilici in each of these planes. To
find the umbilici we must equate the values of p, p” given by (2),
(10), whence
arc?{(b* — a?) cos? 0 + (b* — ¢*) sin? 0 (cos? 6 + sin? )
={a?(b* —a?) cos? 0 + ¢ (b* — ¢*) sin® 6 (a? cos® 6 + ¢ sin? §),

which gives, after reduction,

az(bz . az)
02(b2 —_ 02)

tant 6 =

This expression shows that the umbilici in the elliptic section
made by the principal plane of greatest and least parameters are
imaginary. If we take vy, v, to denote the inclinations to Oy of
the normals to the umbilici in the planes of xy, zy, we have, by
the requisite interchanges of letters,

@@ =)

¢(a? —c?)
52‘(&5 _ b2) ------

tan? vy = tant vy, =

If a plate be cut perpendicular to the normal at one of these
umbilici, one of the polarized pencils which it transmits will give
the images of both systems of cross lines distinct together; and
the distinctness will not be affected by rotating the plate in its
own plane while the cross lines are fixed. In this respect it
agrees with a plate of a uniaxal crystal cut in an arbitrary
direction, with which it might easily be confounded. But if the
double refraction be strong enough to give a sensible lateral
separation of the two oppositely polarized images, the two cases
may be distinguished thereby in either of two ways :—First, if the
images be compared with a mark fixed to the focus of the eye-
piece, and the crystal be rotated in its own plane, while the object
viewed through it is fixed, in the case of a uniaxal crystal the
image free from astigmatism will remain fixed, while any point of
the other describes a small circle round its mean position, whereas
in a plate of a biaxal crystal cut perpendicular to the normal at
one of the umbilici above considered it is the reverse; the image
affected by astigmatism remains fixed, though its distinctness
alters, while any point in the other describes a small circle about
its mean position. Secondly, if the plane of separation of the
two oppositely polarized images be noticed, in a uniaxal crystal
the plane of polarization of the image which is free from astig-
matism will be parallel to the plane of separation, while in a
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biaxal crystal cut as above supposed it will be perpendicular
to the plane of separation*.

There are no umbilici in the circular sections of the wave-
surface made by the principal planes. If we equate p’ given by
(7) to be the radius of curvature in the primary plane, we get, in
fact, cos? 8 + sin? @ = 0, which cannot be satisfied.

The formule (15) give for vy, v, (ray D) in aragonite 69° 26’
and 45° 8"; in topaz 46° 49" and 55° 27",

In the employment of his method Mr Sorby has chiefly had in
view the discrimination of minerals, but it admits of one or two
interesting applications to optical theory.

At the time when Fresnel invented his theory of double
refraction it had been supposed, from the observations of those
who had specially examined the question, that in biaxal crystals
one of the rays obeyed the ordinary law of refraction; and
Fresnel proved by two methods, both requiring skill on the part
of the optician who cut the crystals, that the anticipation that his
theory led him to entertain that that would not prove to be the
case was verified. It is interesting to find that the extraordinary
character of the refraction of both rays in a biaxal crystal admits
of being established by such a comparatively simple mode of
observation as that of Mr Sorby.

The theory of Fresnel is confessedly wanting in rigour; and
though the observations of Huyghens, of Wollaston, and of Malus
proved that in Iceland spar Huyghens’s construction, if not
rigorously true, was at least a very close approximation to the
truth, it seemed desirable to put it to a sharper observational test,
more especially as different theories might lead to Huyghens’s
construction as a near approwxvmation. For instance, in a paper
read before the Cambridge Philosophical Society in 1849, 1
obtained a formulat which led me to perceive that double refrac-
tion would be simply accounted for by attributing it to a difference
of inertia in-different directions, such as would be produced if a

[* The first test supposes the surfaces of the plate to be pretty truly parallel, as
otherwise it would produce displacement in consequence of its slightly wedge-
shaped form ; and Mr Sorby thinks this requirement would prevent this test from
being of much use. As to the second test, it is needless to observe that in any case
in which we know independently which is the principal plane we need not attempt
to observe the lateral separation of the images. October, 1877.]

+ Cambridge Philosophical Transactions, Vol. viir, p. 111, [dnte, Vol. 1, p. 28.]
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fluid had to make its way among a number of bodies on the
average regularly arranged, that arrangement being different
in different directions, and that the wave-velocity on this theory
would be related to the direction of the wave normal just as in
the theory of Fresnel, with the exception that the reciprocals of
wave-velocities would take the place of the velocities themselves,
I refrained, however, from putting forward that theory either in
the memoir referred to or elsewhere (though I have incidentally
alluded to it in my report on double refraction*), because, on
calculating the difference of refraction of the extraordinary ray on
this theory and according to Huyghens’s construction, at about 45°
from the axis, where the difference would be greatest, I found it
barely small enough, as seemed to me, to have escaped detection.
Still this theory, which has occurred independently, in the same
or a similar shape, to others+, led me to wish for a more exact
verification: and in the report referred to I have proposed a
method which seemed to me well caleulated to lead to the desired
result. This method I carried out some years later in the case of
Iceland spar, though I did not publish the results; and I found
that, to the limit of error of my observations (about 0:0001 in
the index), Huyghens’s construction was fully confirmed, while
the error of the other was nearly a hundred times as great as
the limit of error of the observations}. The accuracy of the
Huyghenian law has also been confirmed by the elaborate obser-
vations of M. Abria§.

In the method of prismatic refraction employed by M. Abria
and myself, the difference between Huyghens’s construction and
the result of the theory just referred to 1s greatest about 45° from
the axis, while extremely close to the axis, or to the equator,
it would hardly be sensible. Mr Sorby’s method is remarkable for
this, that it brings out into prominence variations of refraction
with change of direction, though the absolute refractions which
are involved may be nearly the same. Thus Mr Sorby informs me

* Report of the British Association for 1862, Part 1, p. 269 [ante, Vol. 1v, p. 182].

+ See papers by the late Professor Rankine in the Philosophical Magazine,
Vol. 1 (1851), p. 441, and by Lord Rayleigh in the same, Vol. xrr (1871), p. 519
[Scientific Papers, Vol. 1, p. 118.]

+ This result is briefly mentioned in the Proceedings of the Royal Society,
Vol. xx, p. 443 [ante, Vol. 1v, p. 336].

§ dAnnales de Chimie, tom. 1 (1874), p. 289. [Also R. T. Glazebrook, Phil.
Trans. 1880, pp. 421—449; and C. S. Hastings, dmer. Jour. Sci. 1888. Cf. ante,
Vol. 1v, p. 336.]



ON THE FOCI OF LINES SEEN THROUGH A CRYSTALLINE PLATE. 23

that his method shows with perfect distinctness the two widely
different foci for a plate of Iceland spar cut perpendicular to the
axis, even though the inclination of the rays concerned to the axis
is so small that, when polarized light is used, which is extinguished
by an analyzer, the field remains dark after the interposition of
the crystal.

In the theory referred to above the extraordinary sheet of the
wave-surface is generated by the revolution of the curve which is
the envelope of straight lines whose distance, v, from the origin
is connected with their inclination, 90° — 6, to the axis by the
relation

v 2= 2cos*d + c2sin2 6.

The radius of curvature of this envelope at the axis is

¢*(2ac* — @), and accordingly the apparent index, m, is given by

/J,:;

m= 5= JI—p

Qu® — p?

which exceeds the apparent index, u~u® given by the spheroid of
Huyghens, by

The same formula will apply to a point in the equator if we
interchange w and u'.

Putting these excesses into numbers, according to Rudberg’s
indices for the line D in Iceland spar, we find 00536 and 0-1180,
giving for apparent indices 1-3858 instead of 1-3322 for a plate
perpendicular to the axis, and 1'9685 instead of 1:8505 for a plate
parallel to the axis when the microscope is focused on a line in the
equatorial plane. 'These differences are much too large to escape
detection.

Postscript.

Being anxious to complete the theory of the images free from
astigmatism by determining in what cases, if in any, they could
be formed by transmission in a perpendicular direction across a
crystalline plate cut otherwise than perpendicular to a principal
plane, I have since worked out the differential equation (between
two parameters) of the lines of curvature of the wave-surface,
the discussion of which shows that there are no umbilici out of
the principal planes. Hence the four directions determined by
equations (15) are the only ones perpendicular to which if a plate
be cut one of the images is free from astigmatism.—October 1877.



ON CERTAIN MOVEMENTS OF RADIOMETERS.
[From the Proceedings of the Royul Society, XXVvi, pp. 546-—555, 1877.]

NEARLY two years ago Mr Crookes was so good as to present
me with two of his beautiful radiometers of different constructions,
the disks of one being made of pith, and those of the other of
roasted mica, in each case blackened with lampblack on one face.
With these I was enabled to make some experiments, having
relation to their apparently anomalous movements under certain
circumstances, which were very interesting to myself, although
the facts are only such as have already presented themselves to
Mr Crookes, either in the actual form in which I witnessed them,
or in one closely analogous, and have mostly been described by
him. Although it will be necessary for me to describe the actual
experiments, which have all been repeated over and over again
so as to make sure of the results, I do not bring forward the facts
as new. My object is rather to endeavour to coordinate them,
and point to the conclusions to which they appear to lead.

I do not pretend that these conclusions are established; I am
well aware that they need to be further confronted with observa-
tion ; but as I have not leisure to engage in a series of experiments
which would demand the expenditure of a good deal of time, and
have lately been urged by a friend to publish my views, I venture
to lay them before the Royal Society, in hopes that they may be
of some use, even if only in the way of stimulating inquiry.

In describing my experiments I will designate that direction
of rotation in which the white face precedes as positive, and the
reverse as negative. It will be remembered that, under ordinary
circumstances, radiation towards either radiometer produces
positive rotation.

1. If a glass tumbler be heated to the temperature of boiling
water, and inverted over the mica radiometer, there is little or



ON CERTAIN MOVEMENTS OF RADIOMETERS. 25

no tmmediate motion of the fly ; but quickly a negative rotation
sets in, feeble at first, but rapidly becoming lively, and presently
dying away.

2. If after the fly has come to rest the hot tumbler be
removed, a postfive rotation soon sets in, which becomes pretty
lively, and then gradually dies away as the apparatus cools.

3. If the tumbler be heated to a somewhat higher tempera-
ture, on first inverting it over the radiometer there is a slight
posttve rotation, commencing with the promptitude usual in the
case of a feeble luminous radiation, but quickly succeeded by
the negative rotation already described. If the tumbler be heated
still more highly, the initial positive rotation is stronger and
lasts longer, and the subsequent negative rotation is tardy and

feeble.

4. If the pith radiometer be treated as in § 1, the result is
the same, with the remarkable difference that the rotation is
positive instead of negative; it is also less lively.

5. But if the tumbler be removed when the fly has come
to rest, 1t remains at rest, or nearly so.

6. If the tumbler be more strongly heated, positive rotation
begins as promptly as with light. In this case the tumbler must
not be left long over the radiometer, for fear the vacuum should
be spoiled by the evolution of gas from the pith.

7. If the tumbler be heated by holding it over the spout of
a kettle from which steam is issuing, and held there till the
condensation of water has approximately ceased, and be then
inverted over the pith radiometer, the bulb 1s immediately be-
dewed, and a megative rotation is almost immediately set up,
though sometimes, just at the very first moment, there is a trace
of positive rotation. The negative rotation is lively, but not
lasting ; and, after 15 seconds or so, is exchanged for a positive
rotation, which is not lively, but lasts longer.

8. 1If the tumbler be lifted when the negative rotation has
ceased, and the dewed surface be strongly blown upon, a lively,
but brief, positive rotation is set up.

9. To produce positive rotation by blowing, it is not essential
that the bulb be wet. If it be merely warm, and the circum-
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stances are such that the fly is at rest for the moment, or nearly
s0, blowing produces positive rotation, though much less strongly
than when the bulb is wet.

10. If the tumbler be heated as in § 7, and inverted over
the mica radiometer, the rotation is positive, as when the tumbler
is dry.

11. If the tumbler or a cup be smoked inside (to facilitate
radiation), heated to a little beyond the temperature of boiling
water, and inverted over the pith radiometer, a positive rotation is
produced ; and if, when this has ceased, which takes place in a
couple of minutes or so, the heated vessel be removed, a negative,
though not lively, rotation is produced as the apparatus cools.

12. These results do not seem difficult to coordinate so far
as to reduce them to their proximate cause.

As regards the small quantity, if any, of heat radiated directly
across the glass of the bulb, the action of which was experimentally
distinguishable by its promptitude, both radiometers behaved in
the ordinary way.

13. As regards the mica radiometer, when the bulb gets
heated, and radiates towards the fly, the fly is impelled in the
negative direction, as if the white, pearly mica were black and
the lampblack were white. And there is nothing opposed to
what we know in supposing that such is really their relative
order of darkness as regards the heat of low refrangibility ab-
sorbed and radiated by the glass; for the researches of Melloni
and others have shown that lampblack is, if not absolutely white,
at any rate very far from black as regards heat of low refrangi-
bility. On the other hand, glass and mica are both silicates, not
so very dissimilar in chemical composition; and it would not
therefore be very wonderful, but rather the reverse, if there were
a general similarity in their mode of absorption of radiant heat,
so that the heat most freely radiated by glass, and accordingly
abounding in the radiation from thin glass such as that of the
bulb, were greedily absorbed by mica. The explanation of the
reversal of the action when heat and cold were interchanged is
too well known to require mention.

14. With the pith radiometer, when the bulb as a whole
is heated, and radiates towards the fly, the impulse is positive,
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though less strong than in the case of the mica (§ 4); and when
the bulb as a whole is cooler than the fly the impulse is negative
§ 10)

But to explain all the phenomena we must dissect the total
radiation from or towards the bulb. When I first noticed the
negative rotation produced by a heated wet tumbler, I was
disposed to attribute it to radiation from the water, which
possibly the glass of the bulb might be thin enough to let pass;
but when I found that hot water in a glass vessel outside, even
though the glass of it were thin, produced no sensible effect,
and that blowing on the heated bulb when it was dry produced
a similar effect to blowing on it when dewed, though of much
less amount, I perceived that the moisture acted, not by direct
radiation from it, and in consequence of a difference of quality
between the radiations from glass and water, but by causing a
rapid superfictal heating of the bulb; and, similarly, the blowing
on the dewed surface acted by causing a rapid superficial cooling.
When the dry tumbler radiates to the bulb, the radiation is
absorbed at various depths; the absorption is most copious, it
is true, at the outer strata; but still the change of temperature
is not by any means so much confined to the immediate surface
as when we have to deal with the latent heat of vapour condensed
on it, or obtained from it by rapid evaporation.

Hence, thin as is the glass of the bulb (about 002 in. thick),
we must still, in imagination, divide it into an outer and inner
stratum, and examine the effects of these separately. The heat
radiated by either stratum depends only on its temperature; but
the radiation from the outer, on its way to the fly, is sifted by
passing through the inner, and the portion for which glass is
most excessively opaque is in great part stopped. It appears
from the observed results that the residue acts decidedly nega-
tively, while when the bulb is pretty uniformly heated there is
positive action. We may infer that if it were possible to heat
the inner stratum alone it would manifest a very decided positive
action.

15. In the struggle between the opposing actions of the
outer and inner strata we see the explanation of the strange
behaviour of the pith radiometer. In the experiment of § 7 the
outer stratum at first shows its negative action; but quickly
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the inner also gets heated, partly by conduction from the outer,
partly by direct radiation from the tumbler, and then the inner
prevails. In the experiment of § 5 the whole bulb cools, partly
by radiation, partly by convection, while the fly remains warmer;
and the slightly greater coolness of the outer than of the inner
stratum makes up for the superiority of the inner when the two
are equally cool, so that the antagonistic actions nearly balance,
and slight causes, such as greater or less agitation of the air,
suffice to make the balance incline one way or other. That the
inner stratum would prevail if the two were about equally cooled
may be inferred from the behaviour of the radiometer when the
bulb is pretty uniformly heated (§§ 4, 11), or shown more directly
by cooling the bulb with snow, when a negative rotation may be
obtained.

16. The complete definition of a radiation would involve the
expression of the intensity of each component of it as a function
of some quantity serving to define the quality of the component,
such as its refractive index in a standard medium, or its wave-
length, or the squared reciprocal of the wave-length*. The
experimental determination of the character, as thus defined, of
a radiation consisting of invisible heat-rays is beset with ditfi-
culties, at least in the case of heat of extremely low refrangibility ;
and in general we can do little more than speak in a rough way
of the radiation as being of such or such a kind. It is obvious
that the behaviour of radiometers by itself alone affords no in-
dication of the refrangibilities of the kinds of heat with which
we have to deal; nevertheless, by combining what we know
of the behaviour of bodies in respect to radiations in general
(especially luminous radiations, which are the most easily studied)
with what we observe as to the motions of radiometers, we may
arrive at some probable conclusions.

17. We may evidently conceive a series of ethereal vibrations
of any periodic time, however great, to be incident on a homo-
geneous medium such as glass, and inquire in what manner the

* A map of the spectrum, constructed with the squared reciprocals of the wave-
lengths for abscisse, would be referred to a natural standard, no less than that of
:omgstrb'm, which is constructed according to wave-lengths; while it would have the
great advantage of admitting of ready comparison with refraction speetra, the kind
almost always used.
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rate of absorption would change with the period; though whether
we can actually produce ethereal vibrations of a very long period
is another question, seeing that we can only act on the ether by
the intervention of matter, and are limited to such periods of
vibration as matter can assume when vibrating molecularly, in
a manner communicable to the ether, and not as a continuous
mass, in the manner of the vibrations which produce sound. We
may inquire whether, on continually increasing the period of
vibration, the glass (or other medium) would ultimately become
and remain very opaque, or whether, after passing through a range
of opacity, it would become transparent again, on still further
increasing the period of the incident vibrations.

18. This is a question the experimental answer to which, as
it seems to me, could only be given, in so far as it could be given
at all, as a result of a long series of experiments, of a kind that
Melloni has barely touched on. A variety of considerations, which
I could not explain in short compass, lead me to regard the second
alternative as the more probable, namely, that, on increasing the
periodic time, homogeneous substances in general (perhaps even
metals, though this is doubtful) become at last transparent, or at
least comparatively so. The limit of opacity, in all probability,
varies from one substance to another; and the lower it is, the lower
would be the lowest refrangibility of the radiation which the same
substance is capable of emitting.

19. In what immediately follows I shall suppose accordingly
that glass is strongly absorbing through a certain range of low
refrangibility, on both sides of which it gradually becomes trans-
parent again®. Imagine a spectrum containing radiations of all
refrangibilities with which we have to deal; let portions of this
spectrum on the two sides of the region of powerful absorption
for glass be called wings of that region, and let left to right be
the order of increasing refrangibility. Then the spectrum of the
radiation from a thin plate of glass, if it could be observed, would
be seen to occupy the region of chief absorbing (and therefore
emitting) power and its wings. The spectrum of the radiation
from the outer stratum of the bulb of the pith radiometer, after
transmission through the inner, would consist of two wings, with

* It may be noticed that this supposition, which, as appearing the more
probable, is adopted for clearness of conception, is not essentially involved in the

explanation that follows, which would hardly be changed if the ““left wing” were
not terminated on the left.
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a blank, or nearly blank, space between; it would resemble, in
fact, a widened bright spectral line, with a dark band of reversal
in its middle, save that, instead of being confined to extremely
narrow limits of refrangibility, the central space and its wings
would be of wide extent. It follows from the experiments that,
in the complete radiation from glass, the portions of the spectrum
called the wings together act negatively, the portion between
positively. It does not, of course, follow that each wing acts
negatively, but only that the balance of the two is negative.
When the tumbler is heated a little over 212° there is a slight
positive action from radiation which passes directly through the
bulb. The circumstances lead us to regard this as an extension
of the right wing; for it comes from a depth, measured from
the inner surface of the bulb in glass, 7.e. not counting the inter-
vening air, somewhat greater than the thickness of the wall of
the bulb; and we know that the more a solid body is heated,
the higher, as a rule, does the refrangibility of the radiation
which it emits extend, and the greater the proportion of rays
of high to those of low refrangibility. It is simplest, there-
fore, to suppose that the action of the right wing, like that of
the space between the wings, is positive, and that the observed
negative action in the experiment of § 7 is due to the excess of
negative action of the left wing over positive action of the right.
In the mica radiometer the experiments indicate no such differ-
ence of action in the different layers of the bulb as in the case
of the pith radiometer. Hence taking, in accordance with what
now appears to be made out to be the theory of the motion of
the radiometer, the direction in which the fly is impelled as an
indication which is the warmer of the two faces of the disks,
and that again as an indication which is the darker with respect
to the radiation to which it is exposed, we arrive at the
following results as regards the order of darkness of the sub-
stances for the three regions into which the spectrum of the
incident radiation has been supposed to be divided, the name
of the lighter substance being in each case placed above that
of the darker:—

Region of intense

Left wing. absorption by glass. Right wing.
. : : Lampblack. Pith. Pith.
From pith radiometer ......... { Pith. Lampblack. Lampblack.

Lampblack. Lampblack. Mica.

Fr i diometer ......... ; :
Yom mica radiometer {Mlca. Mica. Lampblack.
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Hence, on descending in refrangibility, the order of darkness
of the two substances of either pair is at first the same as for
the visible spectrum, and at last the opposite; and the reversal
of the order takes place sooner with mica and lampblack than
with pith and lampblack. The order falls in very well with that
of the chemical complexity of the three substances.

20. The whole subject of the behaviour of bodies with respect
to radiant heat of the lowest degrees of refrangibility seems to
me to need a thorough experimental investigation. The investi-
gation, however, is one involving considerable difficulty. We can
do little towards classifying the rays with which we are working
unless we can form a pure spectrum. A refraction-spectrum is
the most convenient; but the only substance known which would
be approximately suitable for forming the prism, lens, &c. required
for such a spectrum, and for confining liquids, is rock-salt, of which
it is extremely difficult to procure perfectly limpid specimens of
any size; and even rock-salt itself, as Professor Balfour Stewart
has shown, is defective in transparency for certain kinds of radiant
heat. Then, again, the only suitable measuring-instrument for
such researches, the thermopile, demands a thorough examination
with reference to the coating to be employed for absorbing the
incident radiation. Hitherto lampblack has been used almost
exclusively for the purpose; and it is commonly assumed, in
accordance with certain of Melloni’s results, that lampblack ab-
sorbs equally heat-rays of all kinds. DBut the experiments by
which Melloni established the partial diathermancy of lampblack
prove that rays exist for the absorption of which that substance
is unsuitable.

On calling on Mr Crookes after the above was written, I was
surprised to find that all his mica radiometers behaved towards
a heated glass shade in the opposite way to that he had given
me, going round positively instead of negatively. Mr Crookes
showed me and gave me a specimen of the kind of mica he
employs, as eminently convenient for manipulation. It is found
naturally in a condition resembling artificially roasted mica. It
is not, however, quite so opaque for transmitted light, nor of quite
such a pearly whiteness for reflected light as that which has been
artificially roasted at a high temperature. The mica radiometer
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that Mr Crookes first gave me, which I will call M,, was, Mr
Gimingham told me, the only one they had made with roasted
mica.

Mr Crookes was so kind as to give me, for comparative ex-
periment, a mica radiometer, which I will call M,, made from the
natural foliated mica. It revolves a good deal more quickly than
M, under the influence of light; it also gets more quickly under
way, indicating that the mica is thinner. When covered with a
hot glass it revolves positively, as already remarked; there is,
however, but little negative rotation when the glass is removed.

The difference in the thickness and condition of the mica
sufficiently explains the difference of behaviour of M, and M,.
Any radiant heat incident on the white face that reaches the
middle of the mica, whether it afterwards is absorbed by the
mica or reaches and is absorbed by the lampblack, tends to heat
the second or blackened face more than the first, and therefore
conspires with the heat incident on the lampblack, and absorbed
by it, to produce positive rotation; and the smaller thickness and
less fine foliation of the natural mica are favourable to the trans-
mission of radiant heat to such a depth.

P.S.—It might be supposed at the first sight that the change
of rotation from negative to positive (in § 7) was due, not to a
change in the conditions of absorption, but to the circumstance
that the inner surface of the bulb had become warm by conduction,
0 as to be warmer than the surfaces of the fly instead of colder.
For we now know that the “repulsion resulting from radiation,”
as in some way or other it undoubtedly does result, is an indirect
effect, in which radiation acts only through the alterations it
occasions in the superficial temperatures of the solids in contact
with the rarefied gas; and it might be supposed that when the
inner surface of the bulb passed from colder than the fly to
warmer, the direction of rotation would, on that account alone,
be reversed. This, however, is not so. If bulb and fly are at
a common temperature, and the instrument is protected from
radiation, the fly remains at rest whether the common tempera-
ture be high or low. If a small portion of the total surface in
contact with the rarefied gas be warmed by any means, repulsion
takes place, through the intervention of the rarefied gas, between
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the warmed surface and the opposed surfaces, if not too distant;
if it be cooled, the result is attraction. It does not matter
whether the surface at the exceptional temperature belong to
the fly or the bulb. The former takes place in the ordinary
case of a radiometer exposed to radiation, the latter in that of
a radiometer at a uniform temperature and protected from radia-
tion when a small portion of the bulb is warmed or cooled, in
which case the part at the exceptional temperature repels or
attracts the disk irrespectively of its colour or the nature of its
coating*. Suppose now that the fly is being warmed by radiation
from without, the bulb being cool, at least at its inner surface.
Let A, B be the two kinds of faces of the disks, and suppose 4
to be the better absorber of the total radiation. Then 4 will
be the warmer, and therefore will be more strongly repelled than
B. Suppose now that the bulb is heated till its inner surface
becomes warmer than the fly. Then the fly will still be receiving
heat by radiation, to some extent also by communication from
the gas; but this will be the same for both faces. Hence if 4
be still the better absorber of the two (4, B), 4 will be the
warmer, and being less below the temperature of the interior
surface of the fly will be less attracted, or, which is the same,
more repelled. Hence, whether the inner surface of the bulb
be cooler or hotter than the fly, a reversal in the direction of
rotation, while the fly is being heated, indicates a reversal in the
order of absorbing power of the two faces, and that, again, shows
that the order is different for different components of the total
radiation, and that the ratio of the intensity of those components
has been changed.

It is perhaps hardly necessary to observe that the radiometers
mentioned in this paper are of the usual form—that is to say,
that their arms are symmetrical, so far as figure is concerned,
with respect to a vertical plane passing through the point of
support. Accordingly the rotation which is attained, for instance,

* Theoretically there would be a minute difference of temperature, produced,
other circumstances being alike, by the difference in the absorbing or emitting
power of the two faces of a disk, as regards the radiation which is the difference
between the radiations from or towards the affected portion of the bulb and the
same portion at the normal temperature. But this, and the repulsion or attraction
corresponding to it, would be only a small quantity of the second order, the main
effect being deemed one of the first order.

S. V. 3
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with a radiometer with concave disks of aluminium, alike as to
material on both faces (of which kind, again, I owe a beautiful
specimen to Mr Crookes’s kindness), has not been referred to.
This rotation, depending on the more favourable presentation,
to the bulb, of the outer (and therefore nearer and more efficient)
portions of the fly on the convex than on the concave side, has
nothing to do with the one isolated subject to which the present
paper relates, namely, the elucidation of the peculiar behaviour
in certain cases of certain kinds of radiometers, by a consideration
of the heterogeneous character of the total heat-radiation.

November 20, 1877.

2nd P.S.—This morning I received from Mr Crookes an account
of the behaviour of a kind of radiometer which he was so good as
to construct at my suggestion. The consideration of an experi-
ment mentioned in a paper of his presented to the Royal Society,
which will shortly be read, and which he has kindly permitted
me to refer to, suggested to me the desirability of investigating
the effect of mere roughness of surface, all other circumstances
being alike, and the disk of the radiometer being metallic, so that
the two faces may be regarded as practically at the same tempera-
ture. Mr Crookes’s experiment, above referred to, led me to
suspect that mere roughness might increase the efficiency of a
surface ; and I suggested to him some experiments with heated
glass shades, or with a hot poker presented to the radiometer,
the bulb being covered with a cool tumbler to defend it from
being heated by the rays easily absorbed by glass. The result
in every case answered my expectation; and it may be stated
shortly that the law of the motion is that when the fly is hotter
than the bulb the rough surface is repelled, or, say, the motion is
positive ; when cooler, negative.

I subjoin Mr Crookes’s memorandum of the results of experi-
ment :—

“ Aluminium Radiometer (1326), one side of the vanes being
ruled closely with a sharp knife.

“1. Exposed to standard candle 3 inches off. Continuous
positive rotation (ruled side repelled) at rate of 3} revolutions
a minute.
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“2. Exposed to non-luminous flame of a Bunsen burner 3
inches off. Continuous positive rotation at the rate of 74 turns
a minute.

“8. The Bunsen burner removed. The positive rotation
gradually diminished till it stopped. No negative rotation.

“4. The bulb heated with Bunsen burner. Good negative
rotation ; then stopped, and rotated positively till quite cold.

“5. Bulb covered with a cold glass shade, and a large red-hot
ring applied round equatorially. Positive rotation, but not very
strong.

“6. On removing the shade and ring the positive movement
soon comes to rest.

“7. Covered with a hot glass shade, negative rotation, with
positive rotation on cooling (the same as 4).

“8. Plunged into hot water. Negative rotation.

“9. Removed from the hot water, and immediately plunged
into cold. Posttive rotation.”

Results nearly identical were obtained with another radiometer
described as “ silver radiometer (1327), one side coated with finely
divided silver, electro-deposited.”

We must accordingly recognize three distinct conditions under
which motion may be obtained in a radiometer, namely:—(1)
difference of temperature of the two faces, as in a pith radiometer
coated on one face with lampblack ; (2) more favourable presenta-
tion of one face than the other, as in a radiometer with curved
disks; (3) roughness of surface on one face (if this be really
different from 2). These three conditions may be variously com-
bined so as to assist or oppose each other, as the case may be, in
producing motion,

December 20, 1877.



ON THE QUESTION OF A THEORETICAL LIMIT TO THE
APERTURES OF MICROSCOPIC OBJECTIVES.

[From the Journal of the Royal Microscopical Society, June 5, 1878.]

I HAVE just received from Mr Mayall, jun., a photograph of
Professor R. Keith’s computations relative to an immersion 2
microscopic objective by Mr Tolles. I have not at present leisure
to go through this long piece of calculation, which I am the less
disposed to do as the calculation is perfectly straightforward, and
has evidently been made with great care, and I can see no reason
to question the result. The only reason for scepticism as to the
results of such calculations seems to be a notion derived from @
priort considerations, that it is impossible to collect into a focus a
pencil of rays emanating from a radiant immersed in water or
balsam of wider aperture than that which in such a medium
corresponds to 180° in air, or, in other words, than 2y, where v is
the critical angle.

I do not wish to enter into controversy on the subject, or to
criticise the arguments by which this statement has been sus-
tained ; I prefer to show directly that it has no foundation.

To disprove an alleged proposition, the shortest and least
invidious plan is often to show by one or more particular instances
that it is untrue.

Suppose a pencil of parallel rays is incident upon a refracting
medium of index u, and let it be required that it be brought
without aberration to a focus ¢ within the medium. By a well-
known proposition, the form of the surface must be that of a
prolate ellipsoid of revolution generated by the revolution of an
ellipse of which ¢ is the further focus and w= the eccentricity,
about its major axis, which is parallel to the incident rays. Con-
versely, if ¢ be a radiant within the medium, the emergent rays
are parallel to the axis.
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The limit of the incident parallel rays in any section through
the axis is the pair that touch at the extremities of the minor
axis. Consequently in the reversed pencil the limiting rays are
those that proceed from ¢ to the extremities of the minor axis.
If we suppose the index to be 1'525, for which y=40°59', the
extreme rays will be inclined to the axis at the complementary
angle 49° 1. Hence a radiant within glass may send a pencil of
aperture 98° 2', which by a single refraction shall be brought
accurately to a second focus at infinity. The double of the critical
angle is only 81° 58’, so that the aperture exceeds that supposed
limit by 16°4".

If it were required that the pencil after the single refraction
should converge to a real focus, the surface would have to be
generated by the revolution of a Cartesian oval instead of an
ellipse. If the distance of the point of convergence were con-
siderable compared with the dimensions of the glass, it is evident
that the oval would not differ much from the ellipse considered in
the first instance, nor would the extreme aperture in glass fall
much short of the limit assigned above. Or again, the rays
emerging from the ellipsoid might be brought to converge to
a second focus ¢ in air by receiving them on a prolate spheroid of
which ¢ is the further focus and u™ the eccentricity, and allowing
them to emerge from the glass by a spherical surface of which ¢’
is the centre. Or the parallel rays might be brought to a focus
without sensible aberration as is done in telescopes.

I do not, of course, propose this as a practical construction of a
microscope. It is intended simply and solely to show the fallacy
of the supposed limit of 2y assigned to the aperture, within a
medium, of a pencil which can be brought without sensible
aberration to a focus in air. As the sphericity rather than
spheroidicity of the surfaces employed does not enter in any way
into the arguments by which the limit in question is attempted
to be established, the spheroidal or Cartesian surfaces are quite
admissible in argument.

Nevertheless, as an example of what can be done without
going beyond spherical surfaces, and as bearing in a very direct
way on actual practice, I will take another instance.
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Let it be required to make a pencil diverging from a radiant
point @ in glass diverge from a virtual focus ¢ after a single
refraction into air.

If P be a point in the required surface, uQP — ¢P must be
conistant, which gives, according to the value we arbitrarily assign
to the constant, an infinity of Cartesian ovals, any one of which, by
its revolution round Qg, would generate a surface which may be
taken for the bounding surface of the glass. In one particular
case the oval becomes a circle, namely, when the constant =0, in
which case we have a circle cutting the line Qg internally and
externally in the ratio of 1 to u.

This case is represented in the figure, in which O is the centre of
the circle HA L, which by revolution round the line ¢@4 generates
the sphere. Rays diverging from @ within the glass proceed after
refraction at the surface of the sphere as if they came from ¢. To
find the limit of the pencil, we have only to draw the tangents
qHK, qLM, and HK, LM will be the extreme rays after refraction.

A
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The incident rays QH, QL corresponding to these are inclined to
the normals OH, OL at the critical angle. It is easy to prove
that the lines QH, QL are prolongations of each other, so that the
aperture wn glass of the pencil which, after refraction into air,
diverges without aberration from ¢, is 180°. The aperture HgL
of this peneil, after refraction into air, is 2+, which with the above
value of v, for which the figure is drawn, comes to 81° 58". Setting
aside chromatic variations, the refracted rays proceed, of course, as
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if they came from ¢, forming a pencil of aperture 81°58. A
pencil of aperture in air no greater than 81° 58 is one which all
parties allow can practically be brought to a focus; it could be
brought exactly to a focus by the use of surfaces other than
spherical.

The spherical surface of no aberration accords with the form of
the first lens to which the makers of immersion objectives have
been led. By reducing somewhat the excessively large segment
of a sphere represented in the figure, say reducing it to a hemi-
sphere, the space gained in front (of thickness @O if the reduction
be to a hemisphere) is available for the cover or interposed balsam,
which have both nearly the same index as the crown glass of the
first lens; and the aperture in glass, though reduced from the
extreme of 180°, still remains very large.



ON AN EASY AND AT THE SAME TIME ACCURATE METHOD OF
DETERMINING THE RATIO OF THE DISPERSIONS OF GLASSES
INTENDED FOR OBJECTIVES.

[From the Proceedings of the Royal Society, xxviI, June 18, 1878.]

IN examining the dispersive powers of a great variety of
glasses prepared by the late Rev. W. Vernon Harcourt, I had
occasion to examine several prisms which were too much striated
to show clearly even the boldest dark lines of the solar spectrum.
I found that I was able to get a fair measure of the dispersive
powers even of these by a method depending on the achroma-
tizing of one prism by another. If the method succeeded even
with such prisms, it stands to reason that it would be still more
successful with prisms of good glass.

For the construction of an objective we require but one datum
as regards the dispersions, namely, the ratio of the dispersions, or
rather, the ratio which on being treated as if it were the ratio of
the dispersions gives the best results in practice.

If it were not for irrationality, the matter would be com-
paratively simple. The ratio of the dispersions would then be
the same for whatever interval of the spectrum it were taken;
and we should merely have to take two well-defined lines, bright
or dark, situated as nearly as may be at the extremities of the
spectrum, so that any errors of observation should be divided by
as large a quantity as practicable, to measure the refractive
indices of the two glasses for each of those two lines, and to take
the ratio of the increments in passing from one line to the other.
But in consequence of irrationality we get a different ratio
according to the particular interval we choose; we are obliged,
unless we adopt some different method altogether, to observe more
than two lines in each glass; and when we have got the results,
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that is to say, the indices for several fixed lines in each glass, it
still becomes a question what it is best to do with them so as to
produce the best result.

Fraunhofer proposed an empirical rule for combining the
results*, but remarked that the number thus obtained was not
exactly that which answered best in practice. I have elsewhere
shown reason to think that the rule may be taken to be simply
that the ratio of dispersions to be chosen is that for an infinitely
small portion of the spectrum at its brightest part®; or in other
words, that the focal length of the combination of two glasses
must be made a maximum or minimum (it is practically a
minimum) at the brightest part of the spectrum.

The refractive index of one glass may be expressed in terms
of that of another, or of some standard glass, by an interpolation
formula with three, or at most four, terms. The most accurate
observations with prisms are only just sufficient to show that
a fourth term is needed, and for the practical purpose of the
construction of object-glasses, where in consequence of irration-
ality the ends of the spectrum are sure to be a good deal out of
focus, it will be amply sufficient to confine ourselves to three
terms. The three coefficients in the interpolation formula may
be determined by observing in each glass the indices of refraction
for three selected lines, though it is well to observe more than
three lines, and combine the results.

The angular extent of the spectrum being but small in
practical cases, the necessity of determining three constants by
observations made in it requires great delicacy of measurement.
Small errors of observation would easily produce an error in the
deduced ratio which would be sensible, or even material, in
practice.

For the actual construction of an object-glass we require, as
has been already remarked, the knowledge of only a single con-
stant relating to the dispersion, not of two; and if we can find
some test whereby to know when the required condition is
satisfied, we may dispense with such extreme accuracy in the
angular measurements.

* Denkschriften der K. Akad. der Wiss. zu Miinchen, Vol. v, p. 215,
t Report of the British Association for 1855, Part 11, p. 14 [ante, Vol. 1v, p. 63].
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Such a test is afforded by the secondary tints, which change
with extreme rapidity when the refracting angle of one of the
mutually achromatizing prisms, or the position of one of them in
azimuth, is altered. If a moderately narrow object with vertical
sides, black on a white ground, or white on a black ground, be
viewed through opposed prisms, one of crown and one of flint
glass, with a small telescope, and the prisms be set to achromatize
each other as nearly as may be, it will be found that the slightest
touch altering one of the prisms in azimuth alters notably the
secondary tints.

The secondary tints in an objective are readily shown by
directing the telescope to a vertical line separating light from
dark, such as the edge of a chimney seen in the shade against the
sky, and covering half the object-glass with a screen having a
vertical edge. So delicate is this test that on testing different
telescopes by well-known opticians, a difference in the mode of
achromatism may be detected. The best results are said to be
obtained when the secondary green is intermediate [in tint] between
green and yellow. This corresponds to making the focal length a
minimum for the brightest part of the spectrum.

To enable me to form a judgment as to the sharpness of the
test furnished by the tint of the secondary green, as compared
with the performance of an object-glass, I tried the following
experiment,.

A set of parallel lines of increasing fineness was ruled with
ink on a sheet of white paper, and a broader black object was laid
on it as well, parallel to the lines. The paper was placed, with
the black lines vertical, at a considerable distance in a lawn, and
was viewed through two opposed prisms, one of crown glass and
the other of flint, of such angles as nearly to achromatize each
other in the positions of minimum deviation, and then through a
small telescope. The achromatism was now effected, and varied
in character, by moving one of the prisms slightly in azimuth, and
after each alteration the telescope was focused afresh, to get the
sharpest vision that could be had. I found that the azimuth of
the prism was fixed within decidedly narrower limits by the con-
dition that the secondary green should be of such or such a tint,
even though no attempt was made to determine the tint otherwise
than by memory, than by the condition that the vision of the fine
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lines should be as sharp as possible. Now a small element of a
double object-glass may be regarded, so far as chromatic compen-
sation is concerned, as a pair of opposed prisms ; and therefore we
may infer that the tint of the secondary green ought to be at
the very least as sharp a test of the goodness of the chromatic
compensation as the actual performance of the telescope. And
such Mr Thomas Grubb, to whom I mentioned the test, found to
be actually the case in the progress of the construction of the
15-inch refractor for the Royal Society, the instrument at present
in the hands of Mr Huggins.

It follows therefore that two opposed prisms, representing the
glasses to be employed in an objective, are to be deemed to achro-
matize each other when one of the two secondary colours is about
midway between yellow and green.

The condition of achromatism of two opposed prisms is given
in the ordinary treatises on optics, but, so far as I have seen,
rather as an optical curiosity than as a matter of practical utility.
Sir David Brewster in his treatise on “ New Philosophical Instru-
ments,” p. 292, alludes to it as furnishing a conceivable mode of
determining dispersive powers, but mentions it only to condemn
it. I cannot imagine why, for, at least with the modifications
which I have been led to introduce in putting it in practice, I find
it to be no less excellent than easy.

The experimental arrangements are a good deal simplified by
making the prisms to be compared achromatize successively one
and the same prism chosen arbitrarily, and retained in a fixed
position, instead of making them directly achromatize each other.
I will first describe the method as I used 1t, premising that as the
prisms for which it was primarily designed were not of good glass,
I was content with less perfect arrangements than would have
been desirable for really good glasses. Nevertheless the apparatus
when used with good prisms gave very good results. The object
observed was a vertical slit, so wide that when viewed through the
opposed prisms a broad white stripe was seen, merely fringed at
the two edges with the secondary green and purple. The slit was
fixed at one end of a horizontal plank, near the other end of
which was fixed a vertical lens of about four feet focus. The slit
was in the principal focus of the lens. The plank rested on three
knobs, one under the slit, the other two near the other end. This
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mode of support prevented torsion of the plank, which would have
produced a lateral derangement of the slit. The rays from the
slit, rendered parallel by the lens, fell upon a prism, which I will
call the primary prism. This prism is fixed during the observa-
tion. Its angle and dispersive power, and the azimuth in which it
is set, are arbitrary within wide limits.

The beam emerging from the primary prism falls, at a little
distance, on a second prism resting on a stand movable along with
the verniers of a protractor reading to minutes (for the loan
of which I am indebted to Professor Miller), which latter rests
on the plank. As a matter of convenience, the prism has an
independent motion in azimuth, but when once placed in a
convenient position it is not afterwards moved except along with
the verniers.

The beam retracted and dispersed in contrary directions by the
two prisms is received on the object-glads of an achromatic
telescope unconnected with the graduation, with which the image
of the slit, if so wide an aperture may so be called, is viewed. In
general the edges of the aperture are seen coloured blue and red,
which colours, on turning the prism through its azimuth of
achromatism, are changed into red and blue by passing through
the secondary green and purple. That edge of the slit at which
the green is seen is alone attended to, and is treated as the
fiducial edge. The prisms are deemed to achromatize each other
when this colour is midway between yellow and green.

Should the observer wish to aid his judgment by observing
the purple as well, it would be proper to use an aperture of the
form represented in the figure, so that the green and purple
should be seen right and left along a common edge, and therefore
at the same angle of incidence, or rather at angles of incidence
having the same horizontal projection. I do not know that any-
thing would be gained by this; I have found it sufficient to
attend to the green.

The light employed had best be that of the sky, reflected
horizontally by a looking-glass. It should be fairly bright, but
not approaching to dazzling. Thus the light reflected from the
sky near the sun would be too bright. The room need not be
darkened ; in fact, it is better that the eye should be kept fresh



THE RATIO OF OPTICAL DISPERSIONS. 45

for the appreciation of colour by habitually looking about on
ordinary objects. A simple collimating lens such as I have
described is sufficient, though doubtless an achromatic would
theoretically be an improvement. It should be of longish focus,

at least in the case of a simple lens, lest any slight displacement
right or left of the middle of the incident beam should introduce
a minute dispersion due to the lens acting as a prism. If the
middle of the beam be not quite central, that does not signify,
provided the eccentricity be constant; for then the minute dis-
persion is merely added to that of the primary prism, which is
arbitrary. To ensure constancy of incidence on the lens, it is well
to limit it by an aperture with vertical sides, and to take care
that the beam employed is wide enough to fill the aperture.
Similarly it is well to take care that the beam falls centrically, or
pretty fairly so, on the achromatic viewing telescope. But what
is of much more consequence is that the ray passing through the
optical centre of the object-glass should pass centrically through
the eye-piece, as otherwise the dispersion of the eye-piece for
eccentrical pencils would alter the secondary tint. It is well,
therefore, that the viewing telescope should be furnished with
cross wires. The telescope is then moved a little till the fiducial
edge is on the cross wires when the tint is observed.

The determination of the azimuth of achromatism is the
capital observation on which the accuracy of the result depends;
in comparison with it, the rest of the measurements required may
be deemed exact. Accordingly a number of observations of this
azimuth should be taken, and the mean adopted. The mean
error will vary with circumstances, but it may be taken ordinarily
as a few minutes.

The mean reading for achromatism by itself alone gives
nothing, and must be combined with another determination in
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order to be available. The second determination which I found it
most convenient to make was that of the angle of incidence of a
particular part of the spectrum on the second prism for a known
azimuth of this prism.

If the brightest part of the spectrum were marked by a
definite line, we should choose that. As it is, the line D), though
not exactly at the brightest part, lies sufficiently near it for our
purpose, as will be better understood presently. No dark lines
can be seen in the reflected light, because we are using an
aperture, and not a mere slit. But if the slit be illuminated by a
soda flame instead of daylight, a well-defined yellow image of the
aperture will be seen, the fiducial edge of which can be pointed at
with precision.

To determine the angle of incidence I have employed two
methods, both of which I think it will be worth while to describe.
The first is the less direct, and involves a little subsequent calcu-
lation, but has the advantage of not requiring any additional
apparatus beyond what is wanted for the determination of the
azimuth of achromatism. In carrying out the first, and in
applying either, I suppose the angle of the prism and its index
for the line D known from a determination in the usual way.

First Method.—The azimuth of minimum deviation for the
line D could be determined pretty fairly by bringing the wire of
the viewing telescope to the fiducial edge when the aperture is
illuminated by a soda flame, and the edge is in or near its
stationary position, and taking the mean of several determinations
of the azimuth at which the edge is stationary. The angle of
incidence for minimum deviation is virtually measured in the
process of finding the index, and is therefore known; and by
applying with its proper sign the difference of mean readings for
achromatism with daylight and for minimum deviation with a
soda flame, we get the angle of incidence for achromatism.

This method is mentioned merely as naturally leading up to
that actually employed. It must be rejected as too slovenly,
since the uncertainty of the determination of the azimuth of
minimum deviation is liable to be greater than that of the
azimuth of achromatism.
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If we place the wire of the viewing telescope some way off the
stationary position of the fiducial edge, there are two azimuths of
the prism at which the edge will be on the wire, across which it
will move with a finite velocity as the prism is moved in azimuth.
Hence either azimuth could be determined with accuracy, and if
they were equidistant from the azimuth of minimum deviation,
the latter could be determined at once. This, however, is not the
case, but nevertheless the azimuth of minimum deviation can be
determined from the result.

Since the course of light may be reversed in refraction, it
readily follows that in passing from one to the other of two
azimuths which give equal deviations, the angles of incidence and
emergence are simply interchanged. Hence when the prism is
turned from one to the other of two azimuths for which the image
of the fiducial edge is on the wire of the viewing telescope, the
angle moved through is equal to the difference between the angles
of incidence and emergence in either position. Both azimuths,
and therefore their difference, can be determined with accuracy,
provided the azimuths be sufficiently remote from that of minimum
deviation.

The process of observation, then, is this. Set the prism a
good way, such as 10° or 15°, from the azimuth of minimum
deviation, and read the graduation. Turn the viewing telescope
till the fiducial edge is on its wire. Taking care to keep the
telescope fixed, turn the prism through the position of minimum
deviation till the edge is again on the wire, and read again.

Let ¢, J» be the angles of incidence and emergence or emerg-
ence and incidence, of which let ¢ be the greater. Let 2ua be
the angle, 4, of the prism, 23 the sum of 2« and the minimum
deviation, 2 the measured angle through which the prism has
been turned, or ¢ — 1. Since the sum of the internal angles = 2a,
we may represent them by a+2 and a—a Let ¢+ be
denoted by 2y. Then we shall have

Sin(y+v) _sin(y—v) _sinB
sin(a+a) sin(a—a) sina’

Eliminating « from these two equations, we find

costacos(B—y)cos(Bt+y) (1)

Oy T T oos (a—ry)cos(a+ry)
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which gives y, and then y + v, 7.e. ¢ or y, is known, The angle of
incidence for a known reading of the graduated circle being
known, we have only to apply the difference between this reading
and that for achromatism to that angle of incidence in order to
get the angle of incidence for the azimuth of achromatism.

Second Method.—In this a little telescope is used, which is
attached to the stand of the prism, so as to move with the
verniers of the circle. The telescope need not be achromatic, but
has cross wires in its principal focus.

After determining the azimuth of achromatism, the slit is
illuminated by a soda flame, and the prism with the verniers
turned till the fiducial edge is on the wires of the measuring
telescope, when the circle is read. The prism is then removed,
and the measuring telescope turned till the fiducial edge is seen
directly, and the circle is read again. Half the supplement of
the difference of the readings gives the angle of incidence when
the reflected image was on the cross wires; and by applying the
difference of readings for reflection and for achromatism, we get
the angle of incidence in the position of achromatism.

This angle, 4, having been determined by either of the above
methods, we have, by the known formula

du = U (2)

cosec cos ¢ cosr  cosec 1, cos ¢, cosyr/

where the letters with the suffix , refers to the second prism. For
the prisms would achromatize each other, as is supposed in the
deduction of the above formula in treatises on optics, under the
same circumstances in which they would achromatize, in succes-
sion, the same spectrum. In the application of the formula, it is
to be remembered that, of the two angles ¢, 4, the former is that
which lies on the side of the white light, and is, therefore, the
angle of incidence for the first, but of emergence for the second, of
two prisms which mutually achromatize each other.

In the application of the formula (2) the angles ¢’, 4+ belong,
strictly speaking, to the brightest part of the spectrum, which for
shortness I will call M, for which the value of the differential
coefficient du, : dp is supposed to be sought. But the distance of
M from D is so small that it will hardly make any sensible error if
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we use the values of the angles belonging to D, for not only is the
correction to the product cos ¢’ cosr for either prism very small,
but the two corrections are in the same direction, and therefore
tend to neutralise each other in the ratio of the products, with
which alone we are concerned. If, however, we care to introduce
the correction, it can be done at the expense of a little additional
calculation. In a crown glass the index for M may be taken as
greater by 0:001 than that for D, and in a flint glass as greater
by 0001 multiplied by a rough value of du,:du. The angle of
emergence ¢ may be taken to be the same for M as for D. For
the deviation, regarded as the function of the index, is a maximum
or minimum for M ; and D being so near M, the difference of
deviations for D and M will be quite insensible compared with the
errors of observation of the azimuth of achromatism, with which
it is associated. Let the letters ‘u, ", &c., refer to M, while
w, ¥, &c., refer to D. +fr is obtained by observation, and ', ¢’
must, in any case, be calculated from thence by the known values
of wand <. We have now merely to calculate the ‘¢’ and " for
each glass from the formulse

sin’¢p’ = ,’% sin ¢/, Y'=v—"¢, sin'yp="wsin'y’,

and substitute these values in the equation (2) instead of those
belonging to the line D.

The primary prism had best be made of very low flint glass (or
else be a compound prism formed of two prisms of crown and flint
glass respectively, with their angles turned the same way), so as
to fall about midway between the glasses to be compared, and
thereby divide between them the irrationality which has to be
encountered in the observation. The observation of the azimuth
of achromatism is most accurate when there is little or no irration-
ality ; and, if preferred, the crown glasses might be compared with
a standard crown, and the flint glasses with a standard flint, the
primary prism being in the one case any crown glass prism that
happens to be at hand, and in the other case a flint glass prism.
The crown glass to be measured being compared with the standard
crown by using them in succession to achromatize the same
primary crown in the same position, and similarly for the flint
glass to be measured and the standard flint, we can deduce the

ratio of the dispersions of the crown and flint glasses to be
S V. 4
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measured if we know, once for all, the ratio of the dispersions of
the standard crown and flint glasses. This may be determined
by a specially careful series of observations of the kind above
described, made once for all, or, if preferred, by the method of
indices.

The direct comparison of a crown and flint glass is, however,
so accurate, especially if a glass of infermediate quality be used
for the primary prism, that I feel satisfied it will suffice for prac-
tical purposes. It is hardly necessary to observe that, if the
primary prism be of infermediate quality to the two compared,
the right hand edge of the aperture will be the fiducial edge in
the one case, and the left hand edge in the other. In saying this,
I assume that we have not extravagant inclinations or differences
of angles to deal with, for there is a quasi-irrationality observed
even when two prisms of the same glass, but of different angles,
achromatize each other, which is, however, ordinarily so small that
it may be neglected in comparison with the real irrationality of
the media.

By turning the primary prism into a different azimuth, or
substituting a different primary prism, and repeating the obser-
vation, an estimate may be formed of the degree of reliance that
may be placed on the results.

To give an idea of the degree of accuracy of which the results
are susceptible, I subjoin a few numbers extracted from my
note-book. The prisms designated I 74, H 88, H 98, were
experimental prisms of phosphatic glass of different compositions.
They were more or less striated, but were good enough to show
the principal fixed lines of the spectrum. In the different deter-
minations of the ratio of dispersions, the primary prism was set
at different azimuths. In the calculation of (2) the indices for D
were used. The differences from the means are exhibited.

H 74 to H 98, 1-882, 1'-892 ; mean, 1-887 ; differences, — 0005,
+ 0°005.

H 74 to H 98, 1'755,1°761, 1781 ; mean, 1'766; differences,
—0011,— 0005, + 0-015.

It will be seen that, even with prisms such as these, by taking

the mean of different determinations, the uncertainty can hardly
be as great as one-half per cent.
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Extremely small prisms are quite sufficient for the deter-
mination of the ratio of the dispersions of the glasses by the
above method. It may, however, happen that an optician cannot
afford to remove even so small a piece of glass from a disk
intended for an objective, and has not a specimen of glass on the
identity of which with the glass of his disk he can thoroughly
rely. In such a case it is necessary to determine the optical
constants of the disk by means of facets cut on the disk itself.
A heavy and costly disk cannot be treated like a small prism, and
mounted on a small graduated instrument in the manner I have
supposed a small prism treated. To compare the ratio of the
dispersions of two such disks, one of crown glass and the other of
flint, the most convenient way would seem to be to leave the
disk fixed, let the light pass through it first, and then achromatize
it by a small prism of very low flint glass, mounted on a small
graduated instrument in the manner already explained. The
dispersions of the disks would be compared with each other by
comparing them in succession with the same intermediate

prism.

This, however, demands an additional determination beyond
what was required in the other process, since the prism through
which the light first passes is not the same in the two cases. The
element which best lends itself to measurement is the angle of
incidence on the first surface. The most convenient mode
of measuring this must depend on the general disposition of the
apparatus adopted to take the measurements for the angle of the
disk and the deviation of some one line, which must be made in
any case; it is accordingly best left to the choice of the observer.



ON A METHOD OF DETECTING INEQUALITIES OF UNKNOWN
PERIODS IN A SERIES OF OBSERVATIONS.

[Note appended to a paper by Prof. B. Stewart and W. Dodgson®*;
Proceedings of the Royal Society, XxIx, pp. 122-3, May 29, 1879.]

As the search for periodic inequalities of unknown period
must always be more or less laborious, it seems desirable to point
out another mode in which the search might be conducted, and
which seems to offer great facilities for the object, assuming the
possession of the required instrument.

It seems to me that the harmonic analyser of Sir William
Thomson is singularly well adapted to this purpose, which, as
T have ascertained from him, was one of the applications of his
machine that he has had in view.

If f(t) be any function of the time ¢ given by observation, and
2m/n a period p assumed at pleasure, then by plotting if neces-
sary the function on a scale adapted to the paper cylinder of the

machine, we shall get, by a simple mechanical process, the values
of the integrals

ff(t) sin ntdt, Jj(t) cos ntdt,

between any limits. We may take the inferior limit for the origin
of the time, and then by reading off the cylinders of the machine
for as many values of the superior limit ¢ as we please, we shall
get the corresponding values, as many as we like, of the integrals.
Suppose, now, that f(¢) contains a small term of the form
csin (n't + a),
where 7' is not much different from n, so that the period tried

approaches closely to the period p’ of this inequality. The
corresponding part of the integrals will be

Q()‘L’C~—n) sin {(n' —n)t+al — Qﬁf) sin {(n" +n)t+al,

[* This paper was republished with alterations and additions in Report of the
Committec on Solur Plysics, 1882, pp. 178—206: cf. note reprinted infra.]
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and

cos {(n' —n) ¢+ a} cos {(n' + n)t+a},

¢ ¢
T 2(n —n) T 2(n 4 n)
taken between the proper limits. The terms divided by n' 4 n
having but a small coefficient in the numerator, and having
a denominator which is not small, may be left to take their
chance with casual fluctuations; but the terms divided by n' —n
rise into importance from the smallness of the denominator, and
express an inequality in the integrals of comparatively large
amount and long period.

We may therefore confine our attention to the terms

sin[(n" —n)t+a], cos [(W —m)t+a],

c ¢
2 (n' —n) 2 (n' —mn)
occurring in the indefinite sine integral and cosine integral
respectively.

If, therefore, the values of these two integrals, obtained from
the two cylinders respectively, be plotted, we shall obtain a
periodic fluctuation of a period more or less long as we hit on
a period more or less near to that of the inequality which we have
supposed to exist. The zero points of the fluctuation in the sine
integral will correspond to the maxima and minima in that of the
cosine integral, and wvice versd. The reciprocal of the period of the
fluctuation will give the difference of the reciprocals of p and p’,
and thus p’ will be known from p provided only we know which of
the two, p, p’, is the greater. This will be shown by comparing
the phases of the fluctuations of the two integrals. Ifn' > n, the
fluctuation of the cosine integral will be a quarter of a period
behind, if #’ < n before, that of the sine integral.

If f(¢) be subject to known periodic inequalities with approxi-
mately known coefficients, the integrals should be cleared of the
terms thence arising, if of sufficient moment, by using their
analytical expressions, and the residues only plotted.

Of course f(¢) is not necessarily a function of the time given
by direct observation; it might be a function deduced from one so
obtained. For example, f(¢¥) might be the coefficient of the
principal term in the daily fluctuation of the element when each
day’s record is separately subjected to harmonic reduction.



DESCRIPTION OF THE CARD SUPPORTER FOR SUNSHINE RE-
CORDERS ADOPTED AT THE METEOROLOGICAL OFFICE.

[From the Quarterly Journal of the Meteorological Society, April, 1880.]

THE method of recording sunshine by the burning of an object
placed in the focus of a glass sphere freely exposed to the rays of
the sun, which was devised by Mr Campbell, commends itself by
its simplicity, and seems likely to come into pretty general use.
In the original form of the instrument the rays were received on a
hemispherical wooden bowl, concentric with the glass sphere, and
of such a radius that the focus should fall on its inner surface. The
instrument in this form will give total effects, but only in a very
rude manner the results for individual days, since the burnings
produced on neighbouring days run into one another, and to use a
fresh bowl for each day on which the sun shone would be out of the
question on account of the expense. Accordingly it is expedient
to adopt Mr Scott’s modification of the instrument, and replace the
wood by a slip of card, which can be renewed from day to day;
and it is necessary to support the slip in such a manner that the
image of the sun shall not run off it from sunrise to sunset, and
moreover that the focus shall fall, approximately at least. on the
surface during that interval.

The most obvious way of supporting the slip would be to make
it rest against the inner surface of a hemispherical bowl formed of
metal, slate, or earthenware, and such is the plan adopted at the
Royal Observatory. But this method could hardly be intrusted to
inexperienced observers ; for,in order that the slips may sufficiently
nearly fit the surface of the hemisphere, they must be narrow;
and in that case a moderate error in the placing of a slip would
suffice to make the image of the sun run off it in some part of the
day. Yet there is nothing to guide the observer as to the proper
placing but certain marks on the hemisphere, respecting which he
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might easily make a mistake, especially as the slip has to be
fastened by clamps. The slips have to be cut of a particular form,
varying with the declination of the sun; and though correctly cut
slips could be furnished from head-quarters, so many different
patterns are required in the course of the year that there is risk of
confusion on the part of the observer. If a dated blank slip were
returned to the Office, there would be nothing to indicate whether
the absence of marks of burning really arose from cloud, or was
due to a misplacement of the slip in the bowl.

Other forms of support have been devised in which the card is
simply slipped into its place, so that the fastening presents no
difficulty. But these mostly labour under one or other of two
defects, namely, that in the course of a long day the image is liable
to run off the slip, or that when the sun is a good way from the
meridian its image is too much out of focus.

It seemed therefore desirable to devise a form in which these
defects should be avoided, while at the same time it should be
sufficiently cheap in construction, and should demand little skill
on the observer’s part in the placing of the cards.

It is believed that these requirements are satisfied in the form
adopted by the Meteorological Office.

It is well known that a piece of paper or card, regarded as
a flexible but inextensible plane surface, cannot be bent, without
rumpling or tearing, into the form of a sphere, but only into that
of some developable surface. The locus of the focus of the sun’s
image for several successive days is a zone of the focal sphere, and
this zone may be replaced without sensible error by a zone of
a developable surface touching the sphere along the middle of the
zone, that is, along a small circle which represents the path of the
image for a single day, the change of declination during the day
being neglected. The developable surface which touches a sphere
along a small circle is of course a right circular cone. When the
sun is in the equator, and the small circle becomes accordingly a
great circle, the cone passes into a cylinder.

We must make provision for receiving the image through a
range from 23° 28" north of the equator to 23° 28’ south, or say for
round numbers, and to allow a little for the breadth of the image,
from 24° N. to 24° S. Let C (Fig. 1) be the centre of the sphere,
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AE an arc of a section of the focal sphere by a meridian plane
through C, the arc extending from 24° N. at A4 to 24° S. at E,
GG a portion of a section of the sphere. Divide the arc of 48° AK
into three equal parts, 4B, BD, DE, and draw tangents through
the middle points of these arcs, cutting the radii through 4, B, D,

G aqd

Ce

Dpd

G ed,

Fia. 1.

E, ina,b,d,e. Then the zone of the spherical surface generated
by the revolution of AZ may be replaced with very little error by
zones of two conical and one cylindrical surface, these zones being
generated by the revolution of ab, de, bd; and these being de-
velopable surfaces, bits of card may be applied so as to fit them
accurately. If R be the radius of the focal sphere, the extreme
error of focus committed will be R (sec8° —1). If the glass
spheres be of 4 inches diameter, and the glass be free from lead,
R will be a little under 3 inches, and 3 (sec 8° — 1) = 00275 nearly,
so that the greatest error of focus would be the 1-36th of an inch.
If instead of the central tangents we take lines parallel to them,
and passing through the middle points of Aa, Bb, Dd, the greatest
error will be halved, or reduced to the 1-72nd of an inch ; and as
the spheres burn very well through a range of 01 inch in distance
from the centre, the small error of the 1-72nd of an inch is of little
consequence. If we add, say 0020 inch for the thickness of the
card, and deduct & of 00275, or say 0:014, for the reason above
mentioned, we get 0006 to be added to the distance of the best
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burning focus from the centre to get the perpendicular distance
from the centre on any one of the three supporting surfaces. This
correction is so small that it may be neglected. In the pattern
adopted this perpendicular is taken at 289 inches.

The fiducial supporting surface is now reduced to that generated
by the revolution of abde about the polar axis through C, a line
therefore parallel to bd. This forms the inner surface of the
supporting material ; and from the winter to the summer solstice
the image travels from @ to e. From about October 14 to
February 27 the image is on some part of ab; from February 28
to April 10 in some part of bd; from April 11 to September 1
on de; and from September 2 to October 13 again on bd.

If the cards were in section no larger than the exact sizes ab,
0d, de, here given, the image would at certain times of the year
fall exactly on the edge of a card. The cards must therefore be a
little larger; and in order that they may lie without any rump-
ling on their fiducial developable surfaces, the material of the
support must be slightly cut away by prolonging a little in each
direction the cuts ab, bd, de. The prolongations of the cut bd
might even be made to extend a good way towards the middle
points of ab, de, and similarly for the others, without removing
more of the supporting surfaces than can perfectly well be spared.
The prolongation of the cuts may be utilised for the support of the
cards by undercutting, so as to leave flanges under which the
edges of the cards may be slipped. The form thus finally assumed
by a section of the supporting surface is represented in Fig. 2.

e

Fria. 2.

The construction of the supporting surface is not expensive.
A ring is cast of the approximate form generated by the revolution
of the section in Fig. 2, the middle zig-zag line being however
replaced by a circle as in Fig. 1, and the shaping of the inner
surface and the undercutting are then done in the lathe. When
shaped, the ring is cut into two by a plane through its centre, and
inclined to its axis at an angle roughly equal to the latitude of the
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place for which it is intended. One ring will thus serve for two
instruments, each half being mounted independently on a suitable
support.

The forms of the cards are easily found. The equinoctial slips
are of course straight. The form of the ends of these and of the
other slips is not now considered for a reason which will presently
appear. If we regard the summer and winter slips as infinitely
thin, and coinciding with the surfaces on which they rest, it is
evident that when developed they will form portions of circular
annuli, the bounding arcs having a common centre where the
line ab or de in Fig. 1 (p. 56) cuts the polar axis. The radius of
the developed slip, measured to the arc corresponding to the point
of contact, will accordingly be 2:89 cot 16°. If we allow 002 for
the thickness of the card, 1t will be more accurate to take 2:88 for
the coefficient ; and if we suppose the depth of the cuttings at the
two sides the same, so that the point of contact is in the middle of
the card, and if b be the breadth of a card in inches, the outer and
inner radii will be 10°04 + 40 inches.

The pattern of the rings, which' form the only part of the
apparatus involving much nicety in construction, is common to all
the earth, and at whatever place the ring is to be used the circle
in which the inner surface is cut by the ideal equatorial plane is
divided by the plane of actual section into two equal parts; it is
only the inclination of the cutting plane to the equator which
changes from place to place. If a common mean latitude were
adopted for the whole of England, little error would be produced ;
the semi-rings in the more northerly stations would merely rise
slightly above the horizontal plane through the centre of the ball
on the northern side of the east and west points, and pass a little
below 1t on the southern side, while for stations south of the mean
latitude the error would be reversed. As the sun hardly ever
burns when very near the horizon, this would be practically of no
moment. In that case a common pattern might be adopted for
the ends of the cards of any one of the three kinds, but as it is
desirable to take in somewhat wider ranges of latitude, such as
from Jersey to the Orkneys, and as it is just as easy as not to divide
the rings according to the actual latitudes of the places where they
have to be used, it has been decided merely to provide that the
cards shall be long enough for all the stations, and to leave it to
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the observers to cut off the ends of the cards level with the hori-
zontal edges of the semi-rings, where the complete ring has been
divided. Tt is, however, only in the case of the equinoctial cards
that there is any occasion to cut off the projecting ends as the ends
of the summer and winter cards are not in the way of the sun’s
rays, even at sunrise and sunset.

Each semi-ring is marked inside down its middle, that is, along
the line in which it would be cut by a bisecting plane passing
through the polar axis. In mounting the stands in the first
instance, once for all, this line is to be brought into the plane of
the meridian; and in the daily use of the instrument the cards
are to be pushed till the noon mark comes to the marked line.

The cards may be graduated beforehand by printing on the
cardboard. In planning them, if a batch of cards of the same kind
are drawn with the back of one in the bosom of the next, there is
very little waste, and the cards can be afterwards cut out by a
suitable punch.

For the equinoctial cards the hour lines are evidently a series
of parallel straight lines. The interval from one hour line to
the next may be taken as 2:887 12, or 0754 inch. For the
summer and winter slips the hour lines will be straight lines con-
verging (as they lie on the cardboard) to the common centre of
curvature of the outer and inner bounding circles. The distance
from one hour line to the next, measured along an arc passing
through the point of contact, will be 0'754 cos 16°, or 0°725 inch;
and as it subtends at the centre of curvature an angle of only
15°sin 16°, or 4° 7', the length of the chord will be sensibly the
same. If the length of the prolongations of the cuts ab, de in
Fig. 1 is the same towards, as from, the equator, the arc of con-
tact will be equidistant from the two bounding arcs, otherwise not.

Each half ring is mounted on a slab of slate, to which is fastened
a brass upright ending above in a flat surface, about 1 inch or
14 inch square, inclined to the plane of the base by an angle
representing an average latitude for the kingdom. The half ring
is fastened by screws to this flat piece, being cast for the purpose
in a form which is flat in the middle outside, as represented in
Fig. 2 in section. The complete ring, as cast, differs from a solid
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of revolution in having two such planes opposite to each other
outside, for the purpose of attachment to the slanting plane of the
upright. A pedestal ending in a small cup carries the glass ball,
which rests there by its own weight; and even should it be blown
aside by a very violent gale, it cannot fall out, at least in the
instruments suited for our latitudes, as the horns of the half ring
are not wide enough to let it through. It may, however, be

I1a¢. 3, showing Staund complete.

cemented for security’s sake. The instrument is mounted in its
place as a fixture, and then contains nothing movable except the
glass ball, which (if not cemented) can be lifted out and replaced
in its cup at pleasure. The cards are introduced at the edges
of the half ring, with their upper and lower edges under their
proper flanges, and then readily slip into their places. They are
pushed till the noon hour line is a prolongation of the line marked
inside on the brass, and the ends (in the case of the equinoctial
cards) are then cut off level with the horizontal edges of the half
ring, unless they should have been previously cut in the house,
from the pattern given by one of the cards that had been mounted
and cut in the instrument.
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In mounting the instrument in place, the points to attend to
are, (1) that it shall be level as regards east and west, (2) that the
axis of the ring shall be inclined to the horizon at an angle equal
to the latitude of the place, (8) that the plane passing through the
axis of the ring and the meridian line marked on its inside shall
be in the plane of the meridian. There is no occasion to change
the pattern of the upright supporting the half ring, since variations
of latitude may be allowed for in bedding the slate.

Directions for Adjusting and Using the Sunshine Recorder,
tssued by the Meteorological Council,

The instrument when in position faces the south; the glass
ball rests on the pedestal, and when the sun is shining casts an
image which chars a slip of card previously placed in the instru-
ment. As the sun travels from east to west, the place of the
image gradually moves along the card, which is thus scored during
sunshine, and left untouched when the sun is hid.

1. Adjustment for Concentricity.—It is possible that the
instrument may require this adjustment. To see whether it does,
put the ball into its cup, and see whether in the horizontal plane
passing through the ball’s centre the surface of the glass stands at
the same distance all round from the middle points of the belts
on which the cards are destined to lie. If not, the pillar support-
ing the ball may be adjusted by loosening the screw underneath
which fixes it, moving the pillar in the required direction, and
when it 1s right, turning the screw home.

If the adjustment is not within the range of the hole in the
slate, which for this object was designedly made a little large, the
hole may be enlarged a little in the required direction by filing.
Unless you are confident of being able to effect the adjustment thus,
you had best not attempt the filing, but write to the Office.

2. Chouce of Position.—It 1s almost needless to remark that a
position should be chosen where a clear view of the sky, or at least
of such portions of it as the sun is liable to occupy, 1s as little as
may be interfered with by buildings, trees, &e. The instrument
itself when roughly in position will show what portions the sun is
liable to occupy.
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3. Adjustment for Level.—The instrument is to be placed
level as regards east and west, though at most stations, as will be
mentioned presently, it requires to be tilted a little in the plane
of the meridian. The plane of the top of the instrument, that is,
the plane of section of the bowl, may perhaps not be quite parallel
to the upper surface of the slate base, and in adjusting for level it
is well not to trust to the surface of the slate, but to use the plane
of the top of the bowl.

4.  Adjustment for Latitude—In most of the instruments
which have been made for the United Kingdom, the brackets
supporting the bowl have been made to a common pattern, suited
to a mean latitude of about 53°. Except for stations very nearly
in that latitude, the stand will require to be tilted a little in the
plane of the meridian, through an angle equal to the difference
between 53° and the latitude of the place. At stations north of
53°, the northern edge of the stand will require to be raised, at
stations south of 53° the southern. For the moderate differences
of latitude with which we are concerned, the elevation of edge
required may be taken nearly enough at one-eighth of an inch for
each degree of difference between the latitude and 53°.

In some few of the instruments the brackets have been made
to suit a different latitude. In such cases the above rule will
apply on substituting that latitude for 53°.

The above rule will suffice for making the adjustment for
latitude very nearly right. To test and if need be correct it, the
height of the image of the sun should be noted on some day when

the sun is shining within an hour or so of noon, and compared with
the proper height for that day. This may be obtained from the
accompanying woodcut, which represents a section of the inner
surface of the bowl by a plane passing through the polar axis of
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the ball. The figure is graduated for every 2° of the sun’s de-
clination, as well as for the maximum declination ; and the days in
the spring and autumn halves of the year at which the sun has
most nearly any one of these declinations are written on the
woodcut. Should the day on which it is wished to test the adjust-
ment be some intermediate day, the proper place of the image
may be obtained by estimation, remembering that the declination
changes very slowly about each solstice.

5. Adjustment for the Meridian—This adjustment is best
made by means of the time; and as fairly correct time can now
nearly everywhere be obtained, it seems needless to give methods
of adjustment in which the time is supposed unknown.

Supposing then the instrument placed roughly in the plane of
the meridian, it may be adjusted, provided the sun is shining about
noon, by turning it a little, if necessary, in azimuth, so as to make
the image of the sun cast by the ball fall on the meridian mark in
the instrument at the moment of apparent local noon.

We are not restricted to noon for the adjustment. Any other
hour may be taken, supposing the card to have been properly
inserted, by taking advantage of the hour lines marked on the card.
At the moment when any hour is reached according to apparent
local time, the instrument is to be turned so as to cause the image
of the sun to fall on the corresponding hour line. Should it be
cloudy at noon, it would be well to choose for the adjustment an
hour not very far from noon, as in that way defects in the other
adjustments would have no appreciable effect on the adjustment
for the meridian.

This supposes the correct time to be at least fairly well known.
The time got from a railway clock will probably be Greenwich or
Dublin, &c. time, and to get the local mean time we must first
add or subtract a time proportional to the difference of longitude
between the station of observation and the place the time of which
is given by the clock, at the rate of 4 minutes per degree, adding
or subtracting according as the station of observation lies east or
west of the place for which the time is given by the clock. Having
thus got the local mean time, the local apparent time will be
obtained by adding or subtracting the equation of time, as given
in the accompanying table.
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TABLE giving for every TrHIRD DAY in LeapP YEAR the EquaTtioN oF
TmMe to the NEAREST HALF MINUTE, to be ADDED TO or SUBTRACTED
FROM Locarn MeaN TimE, according as the Sign is + or —, in order
to get Local Apparent Time.
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6. Confirmation of Adjustments.—In order that each of the
adjustments mentioned above should be sufficiently exact the
other adjustments would have to be nearly right. Hence, when
the adjustments are deemed to be right, they should be tested,
which may be easily done when the sun shines, even though not
quite continuously.

The adjustment for the meridian and the adjustment for level
east and west are tested together by seeing whether at apparent
local noon (or at 11 aun., 1 p.m., &c.) the image falls on the noon
hour line (or on the 11 am., 1 p.m. &c., hour line), and whether
the line scored by the sun on a card runs parallel to the nearest
edge of a flange confining the card. Theoretically, it should not
be quite parallel, on account of the change of declination of the sun
during the day; but even near the equinoxes this is too small to
come under notice.

If reasonable care has been taken in levelling the top of the
bowl in an east and west direction, no material error of level is to
be feared; and a defect of parallelism of the score to the flange,
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though such as might be produced by an error of level, should lead
the observer rather to question and to re-examine the adjustment
for the meridian. It may be that when the adjustment was made
incorrect time was used, or the correction for the equation of time
was forgotten, or applied with a wrong sign.

The adjustment for latitude is tested by seeing whether the
image of the sun falls at the proper height on the card corre-
sponding to the day of the year.

Once well adjusted, the instrument need not be disturbed, and
1t may be fixed in its place by cement or otherwise. It is possible,
however, that at some stations, from the positions of buildings, &c.,
one place might be best for the instrument in summer, and another
in winter. In such cases there is no objection to making the
change. Of course the instrument will have to be re-adjusted
after each change of position.

For the sake of those who wish to make use of the mathe-
matical expressions for the errors of time and parallelism produced
by given small errors of level and azimuth, the expressions are
here subjoined.

Let [ be the latitude, § the sun’s declination, both reckoned
positive when north, a the small error of azimuth, A that of level
east and west, & the error of hour angle entailed, p the error of
parallelism, a, A, %, p being respectively reckoned positive when in
the direction of the hands of a watch to an observer looking ver-
tically downwards for the first, horizontally northwards for the
second, downwards in the direction of the earth’s axis for the third,
downwards in the direction of the sun’s rays at apparent noon for
the fourth ; then

I={asin (I —8)—Ncos (I — &)} sec 9,
p = (acosl 4+ rsinl)sec s,

and a=pcos({—8)+hsinl,
A=psin(l—8)—hcosl.

7. Choice and Insertion of the Cards—Cards are provided
of three patterns, rectangular for the equinoxes, and curved for
summer and winter. The summer and winter cards are alike
except as to length (the summer cards being the longer), and as to
having the hour figures printed so as to be seen erect when in the

~
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one case the convex and in the other the concave edge of the card
18 held uppermost.

It will be noticed that the bowl is undercut inside so as to
leave six grooves roofed in by flanges which are destined to confine
the edges of the cards. The grooves or their flanges will here be
numbered from the top downwards. The winter cards are inserted,
concave upwards, with their edges under flanges Nos. 1, 3 and slid
along till the noon hour line is against the line marked on the
brass. Should the two marks on the brass not exactly agree, that
nearest to the equator of the instrument had best be used. Nothing
more is required in general till next day, when the card is pulled
out and a fresh one put in. In time of snow, however, when
there 1s any chance of sunshine, the snow should be removed from
between the ball and the card.

If the sun should be shining when a fresh card is being put in,
the observer should stand on the south side of the instrument, or
otherwise shade the ball, lest a false score should be made on the
card before it gets into the proper position.

The equinoctial cards are similarly inserted, with the hour
figures erect, under flanges Nos. 2, 5, and the summer cards,
convex uppermost, under flanges Nos. 4, 6.

The equinoctial cards are to be used during March and the
first 12 days of April, and again during September and the first
12 days of October; the summer or winter cards, as the case may
be, are to be used during the remainder of the year.

8. Shortening of the Equinoctial Cards.—If the ends of the
equinoctial cards were left projecting above the brass frame, they
would intercept the sun’s rays near sunrise and sunset. The parts
projecting above the horizontal top of the frame should therefore
be cut off. If the observer chooses, he may cut off the ends before
inserting the cards, by cutting one in the instrument, and using it
as a pattern by which to cut the others. It would be unnecessary
to remove the ends of the summer and winter cards, as they are
not in the way.
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A large number of experiments were made by means of two
similar instruments placed side by side, as well as more roughly in
other ways, on the effect of different modes of darkening the cards.
It might, perhaps, have been expected beforehand that black cards
would have been the most sensitive. Such, however, did not prove
t0 be the case. With blackened cards the earliest indication of
an effect of the sun’s rays consisted in a slight alteration of
the texture, visible only when the card was held so as to catch
reflected light; whereas, with a moderately darkened card an
alteration of colour produced by the heat could be seen before there
was any visible alteration of texture; and this singe could be seen
simultaneously with the determinate burns without the necessity
for holding the card in any particular direction. And though
the first change would most probably be produced on a black
card, experience proved that the first visible change was produced
on a suitably darkened card.

The difference between different kinds of cards was, however,
far less than might perhaps have been anticipated. It was only in
catching a few minutes more or less of a very feeble sunshine
that, with the exception, perhaps, of a few pale and unsuitable
kinds, one card differed from another. Cards darkened to a grey
with carbon were amongst the best. It was decided, however,
ultimately to employ prussian blue only moderately dark. Such
cards when viewed through a red glass, which transmits all the
visible rays which are strongest in heating effect, looks almost
black, while the rays of high refrangibility which it freely reflects
enable the record to be easily seen, while entailing but little loss
of absorption of rays powerful in their heating effect. It is
needless to remark that if a pigment were chosen merely from
& priory considerations, its behaviour with respect to the invisible
rays lying beyond the red would have to be taken into considera-
tion., But to do this experimentally would involve an expenditure
of time which the value of the result would hardly justify, since
the suitability of a pigment may be ascertained by direct trial.

PosTscrirT BY THE AUTHOR, March 16th, 1880.

The instrument was designed for use in the United Kingdom,
but there appears no reason why it should not be used even in

5—2
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extreme latitudes. At the North Pole, for instance, the plane
of section of a complete ring would be the equatorial plane, and
a half ring would go completely round the polar axis. It would
merely be necessary to remove half-an-inch or an inch of the
flanges confining the summer cards, in order to permit of the
introduction of the end of a card. The card would then be slipped
along in its grooves. A summer card for the North Pole, as it lay
flat, would form an arc of an annulus with its ends in the direction
of radii, and as it lay in position would form a complete annulus
of a right circular cone, with a division down one generating line,
where the edges of the slip of card would meet, without either
overlapping or leaving a gap, if the card had been properly cut.
The equinoctial cards would form complete annuli of a cylinder
divided along one generating line. They would, it is true, have a
flange to hold them in along one edge only, but that would be
sufficient. 'What was said in the paper as to the liability to mis-
place a slip in a simple hemispherical bowl, such as that employed
at the Greenwich Observatory, was intended only to apply to the
case of observers of little or no experience. The cards actually
used fit very easily into their grooves, so that it would require
a good deal of dirt to make them jam. The grooves would tend
to be kept clean by the daily removal and insertion of a card;
and when the time came for shifting from one pair of grooves
to another, a change made only four times in the year, it would,
apparently, be no great trouble to clean sufficiently the grooves.
coming into use should they be found to require it.



Ox A SiMmPLE MODE OF ELIMINATING ERRORS OF ADJUSTMENT
IN DELICATE OBSERVATIONS OF COMPARED SPECTRA.

[From the Proceedings of the Royal Society, Vol. Xxx1, pp. 470—473.
Received February 12, 1881.]

WHEN the identity or difference of position of two lines, bright
or dark, in the spectra of two lights from different sources has to
be compared with the utmost degree of accuracy, they are admitted
simultaneously into different but adjacent parts of the slit of a
spectroscope and viewed together. It was thus, for instance, that
Dr Huggins proceeded in determining the radial component of
the velocity of the heavenly bodies relatively to the earth., Tt is
requigite that the two lights that are to be compared should fall
in a perfectly similar manner on the slit: and it will be seen,
from a perusal of his paper, how careful Dr Huggins was in this
respect.

In a paper read before the Royal Society on the 3rd instant,
Mr Stone has proposed to make the observation independent of a
possible error in the exact coincidence of the lights compared, by
constructing a reversible spectroscope, by which the light should
be refracted alternately right and left, supposing for facility of
explanation the slit to be vertical.

The idea 1s an elegant one, but I apprehend that there would
be considerable difficulty in carrying it out. For a spectroscope
giving large dispersion is of considerable weight, and the reversal
of so heavy an apparatus would be liable to introduce possible
errors arising from flexure®. It would be difficult to make sure
that such did not exist, at any rate, unless the instrument were
constructed with great nicety and firmness, which would add

* After the present paper was sent in to the Society, I was informed by
Mr Stone that the spectroscope he had in his mind was a direct-vision one, which

could be turned in its socket, the slit and cylindrical lens remaining fixed. To
such an instrument the objection as to tlexure would not apply.
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considerably to the cost; and even then the care and time
required for the reversal would help to obliterate the observer’s
memory of what he had seen in the first position of the instru-
ment.

A method has occurred to me of effecting the reversal without
reversing the spectroscope, but merely giving a lateral push to
a little apparatus which need not weigh more than a few grains.

If the base of an isosceles prism be polished as well as the
sides, and a ray of light parallel to the base and in a plane
perpendicular to the edge fall on one of the equal sides of the
prism so as to emerge from the other, after suffering an inter-
mediate reflection (which will necessarily be total) at the base,
its course after refraction will be parallel to its course before
incidence; and there will, moreover, be no lateral displacement,
provided the lateral distance of the base from the incident ray
be such that the point of reflection is at the middle of the base.

If the slit of the spectroscope be covered by such a prism,
placed close to the slit and facing the collimating lens, to the axis
of which its base is parallel, it will not disturb the general course
of the light incident on the spectroscope, nor even produce a
lateral displacement provided the lateral position be that men-
tioned above; but in consequence of the reflection there will be
a reversal as regards right and left, and any error in the placing
of the lights to be compared will thus be detected and eliminated,
by comparing the spectra seen with the light from the slit direct
or reflected. If the prism be placed quite close to the slit it may
be made very minute in section, though it should be long enough
to cover the slit, and then the change of focus which it produces
will be insignificant.

There will be no need, however, to make the prism so very
minute, nor to place it so close to the slit, provided it be asso-
clated with a plate to take its place in the direct observation,
and compensate for the change of focus which is produced by its
introduction.

TLet ABCD be a section of the prism, let M be the middle
point of the base AB, KLMNO the course of a ray passing as
above described, which is supposed to be the axis of the pencil
coming through the middle of the slit. Let ¢ be the angle of
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incidence, which will be half the angle of the prism, and the
complement of either angle 4 or B, ¢’ the angle of refraction,
w the index of refraction, b the base AB, I the length of path,
LM + MN, of the ray within the glass, p=LN. In spectroscopic

K

F G
B
L
[¢]
™M
D
N
L
oV E H

work it is the focus of rays in the primary plane that we have to
deal with; and we get for the shortening (s) of the focus, or, in
other words, the distance by which the slit is virtually brought
nearer to the collimating lens,

cos*
peostd
But since MBL=90"—¢ and MLC = 90° — ¢’ we have

s=p—1

l_bCOS¢. also p=1cos(d—¢);

" Tcosg’

~ COS ¢ cos® ¢ 1

whence s=10 {cos (p—0 >cos & — I;&;ég 4),} =t (1 — ;) ,
where ¢ is the thickness of a compensating plate which shall
produce the same shortening of focus. In the figure, the part of
the prism which is out of use is represented as cut away, to make
the instrument more compact, and KFGH represents the com-
pensating plate. The faces 0D of the truncated prism, and ZF,
H@, of the plate, of course need not be polished, and had better
perhaps be blackened.

In the figure I have taken 80° for the angle of the prism, and
supposed w to be 1:52, which data give t=12250, nearly. A
blunter angle would have made the instrument a little more
compact in the direction AB, but I wished to avoid needless loss
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of light by the two reflections that accompany the refractions.
The size of the prism and compensating plate must depend upon
its distance from the slit, and the angle subtended at the slit by
the objective of the collimator. It should be a little larger than
what is just sufficient to take in the largest pencil that is to be
observed, but not beyond that. The object in keeping it as small
as conveniently may be, is that only a trifling change of focus may
be required when the instrument is pushed aside altogether, and
the slit viewed directly through the spectroscope, without the
slight loss of light due to the two reflections.

The compensating plate is represented as placed at the narrow
end of the prism, which permits of the two being cemented to-
gether, thereby facilitating the support. I do not think that the
minute quantity of light which is reflected at L, and scattered at
the surface (even though blackened) F'C in such a direction as to
mingle with the direct light would be any inconvenience, being
too faint to be visible at all. If it were wished to avoid this, or
to get more easy access to the surfaces 4D, BC, for cleaning if
requisite, the plate might be placed at the other side; but in that
case it must not be cemented to AB, as that surface is wanted
for total reflection,

The little instrument I have suggested may conveniently be
called a slit-reverser, to distinguish it from other arrangements
which have been proposed, and in which the spectrum itself is
reversed.

P.S. Feb. 21.—The method proposed above is more directly
applicable to such an object as the comparison of really or ap-
parently coincident lines in the spectra of two elements than to
astronomical measurements, because in the latter case a great
part of the difficulty arises from a want of perfect accuracy in
the clockwork movement of the equatoreal. Yet I cannot help
thinking that even for astronomical work the method will be
found useful; for we can pass in a moment from the direct to
the reflected image of the slit, and wice versd, and by taking
thé measures alternately in the two modes, and combining them
exactly as in weighing with a balance that is still swinging, any
error progressive with the time would tend to be eliminated.



DiscussioN oF THE RESULTS OF SOME EXPERIMENTS WITH
WHIRLED ANEMOMETERS.

[From the Proceedings of the Royal Society, Vol. Xxx11, pp. 170—188.
Received .1pril 26, 1881.]

IN the course of the year 1872, Mr R. H. Scott, F.R.S., sug-
gested to the Meteorological Committee the desirability of carrying
out a series of experiments on anemometers of different patterns.
This suggestion was approved by the Committee, and in the course
of the same year a grant was obtained by Mr Scott from the Govern-
ment Grant administered by the Royal Society, for the purpose
of defraying the expenses of the investigation. The experiments
were not, however, carried out by Mr Scott himself, but were
entrusted to Mr Samuel Jeffery, then Superintendent of the Kew
Observatory, and Mr G. M. Whipple, then First Assistant, the
present Superintendent.

The results have never hitherto been published, and I was not
aware of their nature till on making a suggestion that an anemo-
meter of the Kew standard pattern should be whirled in the open
air, with a view of trying that mode of determining its proper
factor, Mr Scott informed me of what had already been done, and
wrote to Mr Whipple, requesting him to place in my hands the
results of the most complete of the experiments, namely, those
carried on at the Crystal Palace, which I accordingly obtained
from him. The progress of the énquiry may be gathered from
the following extract from Mr Scott’s report in returning the
unexpended balance of the grant.

“The comparisons of the instruments tested were first instituted
in the garden of the Kew Observatory. This locality was found
to afford an insufficient exposure.

“ A piece of ground was then rented and enclosed within the Old
Deer Park. The experiments here showed that there was a con-
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siderable difference in the indications of anemometers of different
sizes, but it was not possible to obtain a sufficient range of
velocities to furnish a satisfactory comparison of the instruments.
Experiments were finally made with a rotating apparatus, a steam
merry-go-round, at the Crystal Palace, which led to some results
similar to those obtained by exposure in the Deer Park.

“The subject has, however, been taken up so much more
thoroughly by Drs Dohrandt and Thiesen (vide Repertorium jfiir
Meteorologie, Vols. 1v. and v.) and by Dr Robinson in Dublin,
that it seems unlikely that the balance would ever be expended
by me. I, therefore, return it with many thanks to the Govern-
ment Grant Committee.

“The results obtained by me were hardly of sufficient value to
be communicated to the Society.”

On examining the records, it seemed to me that they were
well deserving of publication, more especially as no other experi-
ments of the same kind have, so far as I know, been executed on
an anemometer of the Kew standard pattern. In 1860 Mr Glaisher
made experiments with an anemometer whirled round in the open
air at the end of a long horizontal pole*, but the anemometer
was of the pattern employed at the Royal Observatory, with
hemispheres of 375 inches diameter and arms of 6725 inches,
measured from the axis to the centre of a cup, and so was con-
siderably smaller than the Kew pattern. The experiments of
Dr Dohrandt and Dr Robinson were made in a building, which
has the advantage of sheltering the anemometer from wind,
which is always more or less fitful, but the disadvantage of
creating an eddying vorticose movement in the whole mass of
alr operated on; whereas in the ordinary employment of the
anemometer the eddies it forms are carried away by the wind,
and the same is the case to a very great extent when an anemo-
meter is whirled in the open air in a gentle breeze. Thus,
though Dr Robinson employed among others an anemometer of
the Kew pattern, his experiments and those of Mr Jeffery are
not duplicates of each other, even independently of the fact
that the axis of the anemometer was vertical in Mr Jeffery’s and

* Greenwich Magnetical and Meteorological Observations, 1862, Introduction, p. li.
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horizontal in Dr Robinson’s experiments; so that the greater
completeness of the latter does not cause them to supersede the
former.

In Mr Jeffery’s experiments the anemometers operated on were
mounted a little beyond and above the outer edge of one of the
steam merry-go-rounds in the grounds of the Crystal Palace, so
as to be as far as practicable out of the way of any vortex which
it might create. The distance of the axis of the anemometer
from the axis of the “merry” being known, and the number of
revolutions (n) of the latter during an experiment counted, the
total space traversed by the anemometer was known. The number
(V) of apparent revolutions of the anemometer, that is, the number
of revolutions relatively to the merry, was recorded on a dial
attached to the anemometer, which was read at the beginning
and ‘end of each experiment. As the machine would only go
round one way, the cups had to be taken off and replaced in a
reverse position, in order to reverse the direction of revolution of
the anemometer. The ¢rue number of revolutions of the anemo-
meter was, of course, IV +n, or NV —n, according as the rotations
of the anemometer and the machine were in the same or opposite
directions.

The horizontal motion of the air over the whirling machine
during any experiment was determined from observations of a
dial anemometer with 3-inch cups on 8-inch arms, which was
fixed on a wooden stand in the same horizontal plane as that
in which the cups of the experimental instrument revolved, at
a distance estimated at about 30 feet from the outside of the
whirling frame. The motion of the centres of the cups was
deduced from the readings of the dial of the fixed anemometer
at the beginning and end of each experiment, the motion of the
air being assumed as usual to be three times that of the cups.

The experiments were naturally made on fairly calm days, still
the effect of the wind, though small, is not insensible. In default
of further information, we must take its velocity as equal to the
mean velocity during the experiment.

Let V be the velocity of the anemometer (z.e., of its axis),
W that of the wind, 8 the angle between the direction of motion
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of the anemometer and that of the wind. Then the velocity of
the anemometer relatively to the wind will be

VY22V Weos 0+ Weeoveiieeeeen ().

The mean effect of the wind in a revolution of the merry will be
different according as we suppose the moment of inertia of the
anemometer very small or very great.

If we suppose it very small, the anemometer may be supposed
to be moving at any moment at the rate due to the relative
velocity at that moment, and therefore the mean velocity of
rotation of the cups in one revolution of the merry will be that
corresponding to the mean relative velocity of the anemometer
and the air. If, as is practically the case, W be small as compared
with V, we may expand (@) in a rapidly converging series accord-
ing to ascending powers of W. All the odd powers will disappear
in taking the mean, and if we neglect the fourth and higher
powers we shall have for the mean

Wz
V o
Ty
so that W2+4V is the small correction to be added to the
measured velocity of the anemometer in order to correct for the

wind.

On the other hand, if the moment of inertia of the anemo-
meter be taken as very great, the rate of rotation of the cups
during a revolution of the merry will be sensibly constant. If
V7 be the velocity of the anemometer relatively to the air, v the
velocity of the centre of one of the cups, and if we suppose the
rotation of the anemometer resisted by a force of which the
moment is F, then, according to Dr Robinson’s researches, we
have approximately

F=A4V"2-2BV’ -~ Cv*.

In the present case friction is not taken into account, and instead
of F' we must take the moment of the effective moving force.
Furthermore, it appears from the experiments of Dr Robinson, in
Dublin, that the observations were almost as well satisfied by
taking the first two terms only of the above expression for ' as
by taking all three, and this simplification may be employed with
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abundantly sufficient accuracy in making the small correction for
the wind. We have, therefore

F=AV"=2BoV oo, ),

where V' is given by (a). In order that the anemometer may be
neither accelerated nor retarded from one revolution of the merry
to another, the mean effective force must be nil; and taking the
means of both sides of the above equation, observing that, in
consequence of the supposed largeness of the moment of inertia,
v is sensibly constant during one revolution of the merry, we have
on employing the approximate value of the mean of V’ or (a)
already used

47
But if U be the constant velocity of air relatively to the anemo-

meter which would make the cups turn round at the same rate,
we have similarly

0=A(V+ W%)-QBv(V+ Wz).

0=AdAU2>-2BvU.

Eliminating Bv/A4 between these two equations we get

. we X
U <V+W>=V2+ W2 oo, (©),

and as the fourth and higher powers of W have been neglected all
along, we get from the last

3
U=V s (@),

so that, on this supposition, the mean correction for the wind is
3W2/4V, or three times the correction of the former supposition.

The mean value of the radical (a) is given by an elliptic func-
tion; but even in an extreme case among the experiments, when
the ratio of the velocity of the wind to that of the anemometer
is as great as 3 to 5, the error of the approximate expression
V+ W2/4V amounts only to about 001 mile an hour, which may
be quite disregarded. The error in employing (d) for the deter-
mination of U instead of (¢) is of about similar amount.

Three anemometers were tried, namely, one of the old Kew
standard pattern, one by Adie, and Kraft’s portable anemometer.
Their dimensions will be found at the heads of the respective
tables below. With each anemometer the experiments were
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made in three groups, with high, moderate, and low velocities
respectively, averaging about 28 miles an hour for the high, 14
for the moderate, and 7 for the low. Each group again was
divided into two subordinate groups, according as the cups were
direct, in which case the directions of rotation of the merry and
of the anemometer were opposite, or reversed, in which case the
directions of the two rotations were the same.

The data furnished by each experiment were: the time oe-
cupied by the experiment, the number of revolutions of the merry,
the number of apparent revolutions of the anemometer, given by
the difference of readings of the dial at the beginning and end
of the experiment, and the space S passed over by the wind,
deduced from the difference of readings of the fixed anemometer
at the beginning and end of the experiment.

The object of the experiment was, of course, to compare the
mean velocity of the centres of the cups with the mean velocity
of the air relatively to the anemometer. It would have saved
some numerical calculation to have compared merely the spaces
passed through during the experiment; but it seemed better to
exhibit the velocities in miles per hour, so a$ to make the experi-
ments more readily comparable with one another, and with those
of other experimentalists. In the reductions I employed 4-figure
logarithms, so that the last decimal in V in the tables cannot
quite be trusted, but it is retained to match the correction for
W, which it seemed desirable to exhibit to 0-01 mile.

On reducing the experiments with the low velocities, I found
the results extremely irregular. I was subsequently informed by
Mr Whipple, that the machine could not be regulated at these
low velocities, for which it was never intended, and that it some-
times went round fast, sometimes very slowly. Ile considered
that the experiments in this group were of little, if any, value,
and that they ought to be rejected. They were besides barely
half as numerous as those of the moderate group. I have ac-
cordingly thought it best to omit them altogether.

In the following tables the first column gives the group, H
standing for high velocities, M for moderate; the subordinate
group, — standing for rotation of the anemometer opposite to that
of the machine, + for rotations in the same direction; and lastly
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the reference number of the experiment in each subordinate
group. 7' gives the duration of the experiment in minutes; n
the number of revolutions of the machine; N the number of
apparent revolutions of the anemometer; S the space passed over
by the natural wind, in miles. These form the data. From them
are calculated: V, the velocity of the anemometer, in miles per
hour; W, the velocity of the wind; W2/2V the mean of the two
corrections to be added to V on account of the wind, according
as we adopt one or other of the extreme hypotheses as to the
moment of inertia of the anemometer, namely, that it is very
small or very large. The actual correction will be half the
number in this column on the first supposition, and once and
a half on the second. V;, V, denote the velocity of the anemo-
meter, or, in other words, of the artificial wind, corrected for the
natural wind on these two suppositions respectively, so that the
last two columns give 100 times the ratio of the registered
velocity to the true velocity, or the registered as a percentage of
the true, the registered velocity meaning that deduced from the
velocity of the cups on employing the usual factor 3.

The dials of the first two anemometers read only to 10 revo-
lutions, which is the reason why all the numbers IV end with a 0.
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The Old Kew Standard.

Diameter of Arms between Centres of Cups 48 inches; Diameter
of Cups 9 inches. Fixed to Machine at 223 feet from the
Axis of Revolution.

| |
, ‘ |
' Group | ,, | . - w2 | 300v | 300w
| anavwo. 7 o N L L T I A
H- | :
1 15 | 303 | 1690 | 07 | 3117 | 2:80 | 0113 1269 126-3 |
2 18 | 301 | 1690 | 05 | 2663 | 1467 | 005 | 1241 1238 |
3 16 | 301 | 1580 | 06 | 2996 | 2:25 | 008 | 1142 | 1139
4 17 | 300 | 1710 | 1-1 [2811 | 388 | 027 1259 | 1247,
5 17 | 300 | 1720 | 11 2811 3:88 | 027 1268 | 1255
6 | 22 | 400 | 2210 | 13 92896 327 | 018 | 1214 1206
7 23 | 400 | 2220 | 1-1 | 2770 | 287 | 015 | 12271 ;121
8 19 | 300 1670 | 07 | 2514 | 221 | 010 1226 | 1222
b9 19 | 300 | 1640 | 08 | 2514 | 253 | 013 | 1198 | 1193,
10 17 | 301 | 1670 | 08 2820 | 271 | 013 | 1221 ' 1215 |
j 11 19| 300 1670 | 08 2514 253 | 013 | 1226 | 1920
i ]
Mean..| .. | . | . | .. |2675 1278 [ 015 1226 1219
H+ |
1 17 | 302 | 980 | 00 2829 | 0:00 | 0:00 | 1142 | 1142 |
2 17 | 300 | 960 [ 10 2811 | 353 | 022 | 1126 1117 |
3 161 | 300 | 1000 | 14 3082 | 542 | 048 | 1157 1139 |
4 228 | 300 | 1080 | 18 2123 | 480 | 054 | 1223 | 1192
5 197 | 300 | 1020 | 07 12514 221 | 0410 | 1181 | 1177
6 16 | 300 | 1030 | 09 |29:86 | 3:37 | 019 | 1190 | 1182
7 18 | 300 | 1050 | 08 | 2654 267 | 013 |1208 | 1209 |
8 18 | 301 | 1060 | 06 | 2663 | 220 009 | 1214 | 1210
9 18 | 300 | 1000 | 07 2654 243 | 011 1217 | 12133
Mean... 12702 296 | 021 | 1184 [ 1175
- | |
1 30 | 300 | 1650 | 0:8 | 1592 | 1460 | 0-08 | 1208 | 120:2°
2 31 | 300 | 1670 | 16 | 1541 | 310 | 031 | 1217 | 1193
3 34 | 300 | 1570 | 19 |14:05 | 301 | 032 | 112:6 | 1101
4 36 300 | 1540 | 17 1326 | 283 | 030 | 1100 10746
5| 36 \ 300 | 1540 | 13 1326 | 217 | 0-18 | 1105 1090
Mean...| oo | o | e | . 11438 254 | 024 | 1151 1132
l][+ i |
1 28 | 301 | 880 | 00 |17:63 | 000 0-00 | 1026 | 1025
2 38 | 300 | 940 | 20 12557 | 315 | 038 | 1095 | 1064 |
3 38 | 300 | 890 | 16 |1257 | 252 \ 025 | 1057 | 1037 |
4 36 | 300 ; 990 | 08 |1326 | 133 007 | 1154|1149
5 35 | 300 | 990 | 10 1366 | 171 007 | 1153 1148 |
Mean... ... | .. | .. | .. L 1394 | 174 ’ 015 | 109-7 i 1085
\ |
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Adie’s Anemometer.

Diameter of Arms between Centres of Cups 13'4 inches; Diameter
of Cups 25 inches. Fixed to Machine at 207 feet from the
Axis of Revolution.

Group . . / w2 | 300v | 300v
and No. 1 " N 8 4 " 2v v, Vy

H-—

1 17 300 | 3860 | 10 | 2616 | 353 | 024 | 952 | 944

2 155 | 300 | 3650 | 1-4 |2861 | 545 | 052 895 | 879

3 224 | 300 | 3940 | 1-8 | 1970 | 480 | 058 | 967 | 940

4 19 300 | 3760 | 07 2333|221 | 010 | 931 | 927

5 16 300 | 3780 | 09 | 2771 | 337 | 020 | 935 | 928

6 18 300 | 3890 | 09 |2463| 267 | 0114 | 964 | 960

7 18 301 | 3980 | 07 |2472| 233 | 0111 | 986 | 982

8 18 300 | 3940 | 08 |2463 | 267 | 0’14 | 978 | 973

Mean...| ... veo 12494 338 | 025 | 951 | 942
H+

1 17 300 | 3240 | 11 |26:08| 389 | 0029 | 949 | 939

2 17 300 | 3330 | 111 |2608| 389 | 029 | 973 | 963

3 19 300 | 3760 | 07 12333 | 221 | 0:10 (1092 '1087

4 16 300 | 3780 | 09 | 2771 | 337 | 020 [1096 1088

5 19 300 | 3060 | 08 [2333| 253 | 0'14 | 903 | 898

6 17 301 | 3120 | 08 [2617| 282 | 0:15 | 916 | 911

7 19 300 | 3160 | 08 (2333 | 2563 | 0114 | 930 | 925

Mean...| ... e | 26715 | 303 | 0019 | 980 | 973
M-

1 38 300 | 3620 | 20 | 1167 | 316 | 043 | 877 | 849

2 38 300 | 3500 | 16 |11+67 | 253 | 043 | 847 | 817

3 36 300 | 3910 | 08 |1226 133 | 007 | 975 969

4 35 300 | 3430 | 10 | 1267 | 171 | 007 | 841 | 837

Mean...| ... w. | 1207 | 218 | 025 | 885 | 868
M+

1 31 300 | 32560 | 16 |14:30 | 310 | 034 | 943 | 937

2 34 300 | 2920 | 17 1304 300 | 0356 | 857 | 855

3 34 300 | 2940 | 19 | 1304 306 | 036 | 861 | 831

4 36 300 | 2760 | 17 |1231 | 283 | 033 | 814 | 792

5 36 300 | 2780 | 13 (1231 | 217 | 019 | 655 | 647

Mean...| ... v 13000 | 283 | 031 | 826 | 810
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Kraft’s Portable Anemometer.

Diameter of Arms between Centres of Cups 83 inches; Diameter
of Cups 33 inches. Fixed to Machine at 19°10 feet from the
Axis of Revolution.

Group , w2 | 3000 | 300v
and No. r " N s v " 2v v, v,
H -
1 19 300 | 5594 | 06 | 2163 | 1:89 008 956 | 954
2 174 | 303 | 5681 | 07 |2360| 269 . 015 962 | 954
3 15 303 | BY90 | 07 | 2722 | 280 | 014 '1028 | 1024
4 18 301 | 6086 | 05 |2279 | 167 | 006 1042 | 1040
5 16 301 | 6116 | 06 |2565 | 225 ‘ 0-10 | 1047 | 1043
6 17 300 | 6143 | 11 |2406 | 388 031 |1052 | 1036
7 17 300 | 6240 | 1-1 | 2406 | 388 ’ 031 | 1069 | 1055
8 22 400 | 7896 | 1-3 | 2479 | 327 021 |1014 | 1004
9 23 400 | 7900 | 1-1 | 23711 278 | 0-16 | 1015 100-9
10 19 300 | 5966 | 07 2153 221 | 011 |1023 | 1017
11 19 300 | 5751 | 08 |21'53| 253 | 0015 | 983 ' 977
12 17 301 | 56842 | 08 2414 | 282 | 016 | 996 | 990
13 19 300 | 5892 | 08 |21'63 | 263 | 015 | 1009 | 100°1
Mean...| ... ... 2355 | 271 | 016 |101'5 | 1008
H+
1 17 300 | b372 | 10 | 2406 | 353 | 026 | 1022 |101-0
2 154 | 300 | 5265 | 14 |2639| 542 ' 056 | 997 | 975
3 225 | 300 | 5460 | 18 | 1818 | 480 | 063 | 1025 | 989
4 19 300 | 5093 | 07 | 2163 221 | 011 974 | 968
5 16 300 | 5282 | 09 |2557 | 337 | 022 | 1006 | 998
6 18 300 | 5274 | 08 |[2272 | 267 | 016 | 1006 | 998
7 18 301 | 5300 | 06 | 2279 | 200 | 0009 | 1009 | 1005
8 18 300 | 5363 | 08 | 2272 | 267 | 0116 |102-2 | 1014
Mean...| ... e 12299 | 333 | 027 1008 | 994
M-
1 30 300 | 5488 | 08 1363 | 160 | 0009 | 933 | 925
2 31 | 300 | 5880 | 16 |1319| 310 | 036 | 992 | 966
3 34 300 | 5168 | 16 |12:03 | 253 | 027 | 868 | 848
4 34 300 | 5320 | 19 |12:03| 335 | 047 888 | 854
5 36 300 | 5030 | 17 | 1136 | 283 | 035 840 | 814
6 36 300 | 4910 | 13 | 1136 | 217 | 021 823 | 809
Mean...| ... vee | wo 12027 | 260 | 029 | 891 | 869
M+
1 38 300 | 4508 | 20 | 1076 | 316 046 | 848 | 814
2 38 300 | 4250 | 16 | 1076 | 263 030 | 809 | 787
3 36 300 | 5006 | 08 | 1136 | 1'33 008 | 953 | 947
4 35 300 | 4743 | 10 1169 | 171 | 012 | 903 893

Mean...| ... i .o | 11014 ] 2018 | 024 | 878 | 860
|
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The mean results for the high and moderate velocities, con-
tained in the preceding tables, are collected in the following table,
in which are also inserted the mean errors.

High Velocities Moderate Velocities
8
§ Directions Mom. inert. Mon. inert. Mom. inert. Mom. inert.
g of Rotation small large small large
£ — -
B
p.c. |m.e.| p.c. |[m.e.| p.e. me | p.e |me.

Opposite...| 1226 | 24 | 1219 | 23 | 1151 | 49 | 1132 | 52
% Alike....... 1184 229 | 1175 | 2.8 | 1097 | 45 | 1085 | 51
I

Mean....... 1205 | ... | 1197 | ... | 1124 | ... | 1108

ot

Opposite...| 951 | 23 942 | 2:3 885 | 45 868 | 50
% Alike........ 980 | 65 973 | 65 826 | 73 810 | 73
= Mean....... 965 | ... 95°7 855 | ... 839

Opposite...| 10156 | 26 | 1008 | 25 891 | 48 869 | 51
& | Alike....... 1008 | 12 | 994 | 13 | 878 | 50 | 860 | 60
~
. Mean.......| 10L'1 ..o} 10071 884 | ... 864 |

[

The mean errors exhibited in the above table show no great
difference according as we suppose the moment of inertia of the
anemometer small or large in correcting for the wind. There
appears to be a slight indication, beyond what may be merely
casual, that the errors are a little greater on the latter supposition
than on the former, which is what we should rather expect; for
an anemometer would get pretty well under way in a fraction of
a revolution of the whirling instrument. However, the difference
is so small that it will suffice to take the mean of the two as
the mean error belonging to the particular anemometer, class of
velocity, and character of rotation under consideration. From
the mean errors we may calculate nearly enough, by the usual
formule, the probable errors of the various mean percentages for
rotations opposite and alike. The probable errors of these mean
percentages come out as follows:
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Kew, 1-0 for high velocities; 27 for moderate velocities.
Adie, 15 » » 2:0
Kraft, 09 " " 18

> 3

2 2

These probable errors are so small that it appears that for the
high and even for the moderate velocities the experiments are
extremely trustworthy, except in so far as they may be affected
by systematic sources of error.

If we compare the registered percentages of the true velocity
of the air relatively to the anemometer according as the rotations
are in opposite directions or in the same direction, we see that
in five out of the six cases they are slightly greater when the
rotations are opposite. The sole exception is in the group “Adie,
high velocities,” which is made up of the groups “Adie H —”
and “Adie H +.” On referring to the principal table for the Adie,
we see that Experiments 3 and 4 in group H + give percentages
usually high, depending on the high values of N. These raise
the mean for the group, and make the mean error far greater than
those of the other five groups for high velocities. There appears
little doubt, therefore, that the excess of percentages obtained
for rotations opposite is real, and not merely casual. It is, how-
ever, so small as to give us much confidence in the correctness
of the mean result, unless there were causes to vitiate it which
apply to both directions of rotation alike.

It may be noticed that the difference is greatest for the Kew,
in which the ratio of r to R is greatest, » denoting the radius of
the arm of the anemometer, and R the distance of its axis from
the axis of revolution of the machine, and appears to be least
(when allowance is made for the two anomalous experiments in
the group “Adie H+”) for the Kraft, for which »/R is least.
In the Kraft, indeed, the differences are roughly equal to the
probable errors of the means. In these whirling experiments
r/R is always taken small, and we might expect the correction
to be made on account of the finiteness of R to be expressible
in a rapidly converging series according to powers of r/R, say

2 N8
A B (%) o %) +o.
We may, in imagination, pass from the case of rotations opposite
to that of rotations alike, by supposing I taken larger and larger
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in successive experiments, altering the angular velocity of revolu-
tion so as to preserve the same linear velocity for the anemometer,
and supposing the increase continued until R changes sign in
passing through infinity, and is ultimately reduced in magnitude
to what 1t was at first. The ideal case of R=c0 is what we aim
at, in order to represent the motion of a fixed anemometer acted
on by perfectly uniform wind by that of an anemometer uniformly
impelled in a rectilinear direction in perfectly still air. We may
judge of the magnitude of the leading term in the above cor-
rection, provided it be of an odd order, by that of the difference
of the results for the two directions of rotation. Unless, there-
fore, we had reason to believe that 4’ were 0, or at least very
small compared with B’, we should infer that the whole correction
for the finiteness of R is very small, and that it is practically
eliminated by taking the mean of the results for rotations opposite
and rotations alike.

We may accept, therefore, the mean results as not only pretty
well freed from casual irregularities which would disappear in the
mean of an infinite number of experiments, but also, most pro-
bably, from the imperfection of the representation of a rectilinear
motion of the anemometer by motion in a circle of the magnitude
actually employed in the experiments.

Before discussing further the conclusions to be drawn from the
results obtained, it will be well to consider the possible influence
of systematic sources of error.

1. Friction.—No measure was taken of the amount of friction,
nor were any special appliances used to reduce it; the anemo-
meters were mounted in the merry just as they are used in actual
registration. Friction arising from the weight is guarded against
as far as may be in the ordinary mounting, and what remains of
it would act alike in the ordinary use of the instrument and in
the experiments, and as far as this goes, therefore, the experiments
would faithfully represent the instrument as it is in actual use.
But the bearings of an anemometer have also to sustain the lateral
pressure of the wind, which in a high wind is very considerable;
and the construction of the bearing has to be attended to in order
that this may not produce too much friction. So far the whirled
instrument is in the same condition as the fixed. But besides
the friction arising from the pressure of the artificial wind, a
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pressure which acts in a direction tangential to the circular path
of the whirled anemometer, there is the pressure arising from the
centrifugal force. The highest velocity in the experiments was
about 30 miles an hour, and at this rate the centrifugal force
would be about three times the weight of the anemometer. This
pressure would considerably exceed the former, at right angles
to which it acts, and the two would compound into one equal
to the square root of the sum of their squares. The resulting
friction would exceed a good deal that arising from the pressure
of the wind in a fixed anemometer with the same velocity of wind
(natural or artificial), and would sensibly reduce the velocity
registered, and accordingly raise the coefficient which Dr Robin-
son denotes by m. the ratio, namely, of the velocity of the wind
to the velocity of the centres of the cups. It may be noticed
that the percentages collected in the table on p. 83 are very
distinctly lower for the moderate velocities than for the high
velocities. Such an effect would be produced by friction; but
how far the result would be modified if the extra friction due to
the centrifugal force were got rid of, and the whirled anemometer
thus assimilated to a fixed anemometer, I have not the means of
judging, nor again how far the percentages would be still further
raised if friction were got rid of altogether.

Perhaps the best way of diminishing friction in the support
of an anemometer is that devised and employed by Dr Robinson,
in which the anemometer is supported near the top on a set of
spheres of gun-metal contained in a box with a horizontal bottom
and vertical side which supports and confines them. For vertical
support, this seems to leave nothing to be desired, but when a
strong lateral pressure has to be supported as well as the weight
of the instrument, it seems to me that a slight modification of
the mode of support of the balls might be adopted with ad-
vantage. When a ball presses on the bottom and vertical side
of its box, and is at the same time pressed down by the horizontal
disk attached to the shaft of the anemometer which rests on the
balls, it revolves so that the instantaneous axis is the line joining
the points of contact with the fixed box. But if the lateral force
of the wind presses the shaft against the ball, the ball cannot
simply roll as the anemometer turns round, but there is a slight
amount of rubbing.



OF SOME EXPERIMENTS WITH WHIRLED ANEMOMETERS. 87

This, however, may be obviated by giving the surfaces where
the ball is in contact other than a vertical or horizontal direction.

Let AB be a portion of the cylindrical shaft of an anemo-
meter; CD, the axis of the shaft; KFGHI, a section of the fixed
box or cup containing the balls; LMN, a section of a conical
surface fixed to the shaft, by-which the anemometer rests on its
balls; FIKM, a sectioni of one of the balls; #, f, the points of
contact of the ball with the box; M, the point of contact with
the supporting cone; K, the point of contact or all but contact

(63

i/V"‘JB

of the ball with the shaft. The ball is supposed to be of such
size that when the anemometer simply rests on the balls by its
own weight, being turned perhaps by a gentle wind, there are
contacts at the points M, F, 1, while at K the ball and shaft are
separated by a space which may be deemed infinitesimal. Lateral
pressure from a stronger wind will now bring the shaft into con-
tact with the ball at the point K also, so that the box on the one
hand and the shaft with its appendage on the other, will bear on
the ball at four points. The surface of the box as well as that
on the cone LN being supposed to be one of revolution round
COD, those four points will be situated in a plane through CD,
which will pass of course through the centre of the ball.

If the ball rolls without rubbing at any one of the four points
F, I, K, M as the anemometer turns round, its instantaneous axis
must be the line joining the points of contact, ¥, [, with the fixed
box. But as at M and K likewise there is nothing but rolling,
the instantaneous motion of the ball may be thought of as one
in which it moves as if it were rigidly connected with the shaft
and its appendage, combined with a rotation over LNAB supposed
fixed. For the two latter motions the instantancous axes are CD,
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MK, respectively. Let MK produced cut CD in O. Then since
the instantaneous motion is compounded of rotations round two
axes passing through O, the instantaneous axis must pass through
0. But this axis is FI. Therefore, F/ must pass through O.
Hence the two lines 71, MK, must intersect the axis of the shaft
in the same point, which is the condition to be satisfied in order
that the ball may roll without rubbing, even though impelled
laterally by a force sufficient to cause the side of the shaft to
bear on it. The size of the balls and the inclinations of the
surfaces admit of considerable latitude subject to the above
condition. The arrangement might suitably be chosen something
like that in the figure. It seems to me that a ring of balls
constructed on the above principle would form a very effective
upper support for an anemometer whirled with its axis vertical.
Possibly the balls might get crowded together on the outer side
by the effect of centrifugal force. This objection, should it be
practically found to be an objection, would not of course apply
to the proposed system of mounting in the case of a fixed anemo-
meter. Below, the shaft would only require to be protected from
lateral motion, which could be done either by friction wheels or
by a ring of balls constructed in the usual manner, as there would
be only three points of contact.

2. Influence on the Anemometer of its own Wake.—By this
I do not mean the influence which one cup experiences from the
wake of its predecessor, for this occurs in the whirling in almost
exactly the same way as in the normal use of the instrument, but
the motion of the air which remains at any point of the course
of the anemometer in consequence of the disturbance of the air
by the anemometer when it was in that neighbourhood in the
next preceding and the still earlier revolutions of the whirling
instrument.

It seems to me that in the open air where the air impelled by
the cups is free to move into the expanse of the atmosphere,
instead of being confined by the walls of a building, this must be
but small, more especially as the wake would tend to be carried
away by what little wind there might be at the time. On making
some enquiries from Mr Whipple as to a possible vorticose move-
ment created in the air through which the anemometer passed,
he wrote as follows:—“1I feel confident that under the circum-
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stances the tangential motion of the air at the level of the cups
was so small as not to need consideration in the discussion of the
results. As in one or two points of its revolution the anemometer
passed close by some small trees in full leaf, we should have
observed any eddies or artificial wind had it existed, but I am
sure we did not.”

3. Influence of the Variation of the Wind; first, as regards
Variations which are not Rapid—During the 20 or 30 minutes
that an experiment lasted, there would of course be numerous
fluctuations in the velocity of the wind, the mean result of which
is alone recorded. The period of the changes (by which expression
it is not intended to assert that they were in any sense regularly
periodic), might be a good deal greater than that of the merry,
or might be comparatively short. In the high velocities, at any
rate, in which one revolution took only three or four seconds, the
supposition that the period of the changes was large compared
with one revolution is probably a good deal nearer the truth than
the supposition that it is small.

On the former supposition, the correction for the wind during
two or three revolutions of the merry would be given by the
formulee already employed, taking for W its value at the time.
Consequently, the total correction will be given by the formulee
already used, if we substitute the mean of W2 for the square of
mean W. The former is necessarily greater than the latter; but
how much, we cannot tell without knowing the actual variations.
We should probably make an outside estimate of the effect of the
variations, if we supposed the velocity of the wind twice the
velocity during half the duration of the experiment, and nothing
at all during the remainder. On this supposition, the mean of W?
would be twice the square of mean W, and the correction for the
wind would be doubled. At the high velocities of revolution, the
whole correction for the wind is so very small, that the uncertainty
arising from variation as above explained is of little importance,
and even for the moderate velocities it is not serious.

4. Influence of Rapid Variations of the Wind.— Variations of
which the period is a good deal less than that of the revolutions
of the whirling instrument act in a very different manner. The
smallness of the corrections for the wind hitherto employed
depends on the circumstance that with wuniform wind, or even
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with variable wind, when the period of variation is a good deal
greater than that of revolution of the merry, the terms depending
on the first power of W, which letter is here used to denote the
momentary velocity of the wind, disappear in the mean of a
revolution. This is not the case when a particular velocity of
wind belongs only to a particular part of the circle described
by the anemometer in one revolution. In this case there will
in general be an outstanding effect depending on the first power
of W, which will be considerably larger than that depending on
W= Thus suppose the velocity of whirling to be 30 miles an
hour, and the average velocity of the wind 3 miles an hour; the
correction for the wind supposed uniform, or if variable, then with
not very rapid variations, will be comparable with 1 per cent. of
the whole; whereas, with rapid variations, the effect in any one
revolution may be comparable with 10 per cent. There is, how-
ever, this important difference between the two: that whereas
the correction depending on the square leaves a positive residue,
however many experiments be made, the correction depending
on the first power tends ultimately to disappear, unless there be
some cause tending to make the average velocity of the wind
different for one azimuth of the whirling instrument from what
it is for another. This leads to the consideration of the following
conceivable source of error.

5. Influence of Partial Shelter of the Whirling Instrument.—
On visiting the merry-go-round at the Crystal Palace 1 found it
mostly surrounded by trees coming pretty near it, but in one
direction it was approached by a broad open walk. The con-
sequence 1is, that the anemometer may have been unequally
sheltered in different parts of its circular course, and the cir-
cumstances of partial shelter may have varied according to the
direction of the wind. This would be liable to leave an un-
compensated effect depending on the first power of W. 1 do
not think it probable that any large error was thus introduced,
but it seemed necessary to point out that an error of the kind
may have existed.

The effect in question would be eliminated in the long run
if the whirling instrument were capable of reversion, and the
experiments were made alternately with the revolution in one
direction, and the reverse. For then, at any particular point of



OF SOME EXPERIMENTS WITH WHIRLED ANEMOMETERS. 91

the course at which the anemometer was more exposed to wind
than on the average, the wind would tend to increase the velocity
of rotation of the anemometer for one direction of revolution of
the whirling instrument just as much, ultimately, as to diminish
it for the other. Mere reversion of the cups has no tendency to
eliminate the error arising from unequal exposure in different
parts of the course. And even when the whirling instrument is
capable of reversion, it is only very slowly that the error arising
from partial shelter is eliminated compared with that of irregu-
larities in the wind; of those irregularities, that is to say, which
depeﬁd on the first power of W. For these irregularities go
through their changes a very great number of times in the
course of an experiment lasting perhaps half-an-hour; whereas,
the effect of partial shelter acts the same way all through one
experiment. It is very desirable therefore, that in any whirling
experiments carried on in the open air, the condition of the
whirling instrument as to exposure or shelter should be the
same all round.

The trees, though taller than the merry when I visited the
place last year, were but young, and must have been a good deal
lower at the time that the experiments were made. Mr Whipple
does not think that any serious error is to be apprehended from
exposure of the anemometer during one part of its course and
shelter during another.

From a discussion of the foregoing experiments, it seems to
me that the following conclusions may be drawn:—

1. That, at least for high winds, the method of obtaining
the factor for an anemometer, which consists in whirling the
instrument in the open air is capable, with proper precautions,
of yielding very good results.

2. That the factor varies materially with the pattern of the
anemometer. . Among those tried, the anemometers with the
larger cups registered the most wind, or in other words required
the lowest factors to give a correct result.

3. That with the large Kew pattern, which is the one adopted
by the Meteorological Office, the register gives about 120 per
cent. of the truth, requiring a factor of about 25, instead of 3.
Even 25 is probably a little too high, as friction would be intro-
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duced by the centrifugal force, beyond what occurs in the normal
use of the instrument.

4. That the factor is probably higher for moderate than for
high velocities; but whether this is solely due to friction, the
experiments do not allow us to decide.

Qualitatively considered, these results agree well with those
of other experimentalists. As the factor depends so much on
the pattern of the anemometer, it is not easy to find other results
with which to compare the actual numbers obtained, except in the
case of the Kew standard. The results obtained by Dr Robinson,
by rotating an anemometer of this pattern without friction pur-
posely applied, are given at pp. 797 and 799 of the Phil. Trans.
for 1878. The mean of a few taken with velocities of about
27 miles an hour in still air gave a factor 2'36, instead of 250,
as deduced from Mr Jeffery’s experiments. As special anti-friction
appliances were used by Dr Robinson, the friction in Mr Jeffery’s
experiments was probably a little higher. If such were the case,
the factor ought to come out a little higher than in Dr Robinson’s
experiments, which is just what it does. As the circumstances
of the experiments were widely different with respect to the
vorticose motion of the air produced by the action of the anemo-
meter in it, we may I think conclude that no very serious error
is to be apprehended on this account.

In a later paper (Phul. Trans. for 1880, p. 1055), Dr Robinson
has determined the factor for an anemomecter (among others) of
the Kew pattern by a totally different method, and has obtained
values considerably larger than those given by the former method.
Thus the limiting value of the factor m, corresponding to very
high velocities, is given at p. 1063 as 2:826, whereas the limiting
value obtained by the former method was only 2:286. Dr Robin-
son has expressed a preference for the later results. I confess I
have always been disposed to place greater reliance on the results
of the Dublin experiments, which were carried out by a far more
direct method, in which I cannot see any flaw likely to account
for so great a difference. It would be interesting to try the
second method in a more favourable locality.
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I take this opportunity of putting out some considerations
respecting the general formula of the anemometer, which may
perhaps not be devoid of interest.

The problem of the anemometer may be stated to be as follows:
—Let a uniform wind with velocity V act on a cup anemometer
of given pattern, causing the cups to revolve with a velocity v,
referred to the centre of the cups, the motion of the cups being
retarded by a force of friction F'; it is required to determine v as
a function of V" and F, F having any value from 0, corresponding
to the ideal case of a frictionless anemometer, to some limit #),
which is just sufficient to keep the cups from turning. I will
refer to my appendix* to the former of Dr Robinson’s papers (Phil.
Trams. for 1878, p. 818), for the reasons for concluding that F is
equal to V2 multiplied by a function of V/jv. Let

Viv=E, FIV?=nq,
then if we regard & and » as rectangular co-ordinates, we have

to determine the form of the curve, lying within the positive
quadrant £On, which is defined by these co-ordinates.

BU\P 7
A
\ N
-£ 10 \m £
c.
_.77 D‘\ K

We may regard the problem as included in the more general
problem of determining v as a function of V and F, where v is
positive, but F may be of any magnitude and sign, and therefore,
V alsot. Negative values of I mean, of course, that the cups
instead of being retarded by friction, are acted on by an impelling

[* Reprinted infra, p. 95.]
+ Of course v must be supposed not to be so large as to be comparable with the

velocity of sound, since then the resistance to a body impelled through air, or
having air impinging on it, no longer varies as the square of the velocity.
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force making them go faster than in a frictionless anemometer,
and values greater than F; imply a force sufficient to send them
round with the concave sides foremost.

Suppose now F to be so large, positive or negative, as to make
v so great that 7 may be neglected in comparison with it, then
we may think of the cups as whirled round in quiescent air in
the positive or usual direction when /' is negative, in the negative
direction when F' is greater than F;. When F is sufficiently large
the resistance may be taken to vary as »% For equal velocities v
1t is much greater when the concave side goes foremost, than
when the rotation is the other way. For air impinging perpen-
dicularly on a hemispherical cup, Dr Robinson found that the
resistance was as nearly as possible four times as great when the
concave side was directed to the wind as when the convex side
was turned in that direction®. When the air is at rest and the
cups are whirled round, some little difference may be made by
the wake of each cup affecting the one that follows. Still we
cannot be very far wrong by supposing the same proportion, 4 to 1,
to hold good in this case. When /' is large enough and negative,
F may be taken to vary as ¢*, say to be equal to — L?*. Similarly,
when I is large enough and positive, /' may be taken equal to
L'v?, where in accordance with the experiment referred to, L' must
be about equal to 4L. Hence we must have nearly

n = — Lg%, when £ is positive and very large;
7 =4LE » negative "

Hence if we draw the semi-parabola OAB corresponding to the
equation n = 4L£ in the quadrant », O, — £ and the semi-parabola
OCD with a latus rectum four times as great in the quadrant
£ 0, — g, our curve at a great distance from the origin must nearly
follow the parabola OAB in the quadrant #, O, — £, and the parabola
0CD in the quadrant £ O, —», and between the two it will have
some flowing form such as PNMK. There must be a point of
inflexion somewhere between P and X, not improbably within
the positive quadrant £ O, . In the neighbourhood of this point
the curve NM would hardly differ from a straight line. Perhaps
this may be the reason why Dr Robinson’s experiments in the
paper published in the Phil. Trans. for 1878 were so nearly
represented by a straight line.

* Transactions of the Royal Irish Academy, Vol. xxi1, p. 163.
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ANEMOMETER BY EXPERIMENTS WITH A WHIRLING MACHINE.
By T. R. RosinsoNn, D.D., F.R.S.

Appendiz*,
[From the Philosophical Transactions, 1878, pp. 818—821.]

THE object of the experiments being to determine the relation
between the velocity of actual wind supposed uniform (the air
also being at, or reduced to, a normal density), the velocity of the
cups, and the friction, I assume in the first instance as correct, the
values of those two quantities given by the experiments with the
whirling machine, and proceed to consider the relation.

Let V' be the velocity with which the air passes the anemo-
meter, that is, in the case of the actual experiments, the velocity
of the centre of the anemometer itself corrected for the velocity of
the wind produced by it ; let v be the velocity of the centre of the
cups, & the moment of the total friction. Then supposing the
density of the air normal for a given anemometer, » will depend
only on V' and F, that is, there will be a functional relation
between the three variables V', v, F, leaving two of them in-
dependent.

In investigating experimentally the relation between two
variables, it 1s often very useful to plot the results of experiment,
as the general character of the relation sought, and the allowance
to be made for errors of observation can thus be estimated. The
relation between three variables would be expressed graphically
by a surface instead of a curve, and it is troublesome to model a
surface. If, however, we can find a relation between the variables
which is satisfied, provided some other relation is satisfied, we can
thereby reduce the number of independent variables from two to
one, and employ ordinary plotting in investigating the relation

[* Cf. footnote, supra, p. 93.]
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between the variables. In fact, the relation sought is reduced
from one of the form V'=¢ (v, /') to one of the form

FV0, )=y (A, 0, ),
where ¢, Y denote unknown, and £, f; known functions.

In the present case, since by hypothesis the anemometer is in
a permanent state, the moment of the friction is equal to the
total impelling force of the air, d.e., the total pressure arising from
the motion of the air, without distinction of impelling or retarding,
but reckoning the latter as a negative impelling force. Now, in
cases of rapid motion like that of the air passing the cups of the
anemometer, it is well ascertained that the resistance varies as the
square of the velocity, all other circumstances being the same.
Hence, with a given anemometer, when only the scale of the
velocities changes, t.e., when V varies as v, the moment of the
total impelling force may be expected to vary as the square of
the velocity. When the density changes it may be expected also
to vary as the density. Hence we may expect that when v varies
as V7, then F varies as p V"% or in other words that

F=pV2 @V e, (1),

where ¢ denotes some function the form of which is not at present
under consideration.

Let o/V'=§, F/[pV"=mn, and for each observation let the point
whose coordinates are £, n be laid down on paper. If Fp=' were
merely some arbitrary function of ¥V’ and », the points so laid
down would be spread out over the paper, but if equation (1) be
true they will lie in a definite curve.

The actual experiments were executed in series, in each of
which only one independent variable was changed, so that if the
experiments were infinitely numerous and infinitely exact the
locus of the point whose coordinates are £ 5 would be a definite
continuous curve. And the test of the truth of (1) is that the
curves belonging to the different series shall coincide, instead of
being arranged in some order of sequence.

Plate 68* shows the result of plotting the observations taken
with anemometer No. III. On inspecting the figure it will be
seen that the different series fit very well into one another.

[* Not here reproduced.]
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Departures there are no doubt in the individual observations from
a mean curve, but these appear to be casual, not methodical and
depending upon the order of the series.

The result of the observations then is confirmatory of the
fundamental supposition made hitherto, that when the friction is
so arranged that the velocity of the air passing the anemometer
bears a given ratio to the velocity of the cups, the moment of the
total impelling force varies as the square of either velocity.

Assuming then the truth of equation (1)* we have next to
inquire what is the form of the function ¢ ?

A complete hydrodynamical solution of the problem is altogether
beyond our power. On the other hand, the irregularities of the
observations prevent us from going, by observation alone, more
than a certain way towards the determination. We must, there-
fore, endeavour to combine as best may be the indications of
mechanical theory with the results of experiments.

In his paper “On the Cup Anemometer,” in the Transactions
of the Royal Irish Academy, Dr Robinson has shown that (sup-
posing the density constant, say =1) the relation between the
moment of the impelling force and the moment of the friction is
either accurately or approximately of the form

F=aV”=2B8V"v—ov® .cccociiininnnn, (2),

which would give for the locus of the point whose coordinates are
&, 7 the parabola

If now we turn to the plotting of the observations, we see that
the best smooth curve to represent the observations, free from
sinuosities which the observations do not warrant us in supposing
real, is either accurately or approximately a straight line,

in fact, so nearly does a straight line represent the observations
that 1t is not easy to say to which side the concavity of the line,
if curved it be, should lie. On the whole there appears to be a
slight indication of a gentle concavity towards the origin.

* It formed no part of the object of the experiments to determine the relation of
the impelling force to p, which merely comes in as a small correction for reducing
observations made on different days to a common standard. It is the dependence
of Fon V' and v that is contemplated in the text.

8. V. 7
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It may be remarked in passing that the formula (4) which the
experiments show to be at least very approximately true, leads to
a very simple expression for v in terms of V', namely—

v=aV’' —=b/V",
where ¢ and b are constants.

The figure shows that there cannot be much doubt as to the
distance from the origin at which the curve intersects the axis
of £ nor as to the direction of the curve at that point; and
generally that the curve is well determined in its right-hand half,
though 1t becomes more uncertain towards the left. If A be the
value of £ at the point of intersection, and — ¢ the tangent of the
inclination at that point, the equation of the curve, assumed to be
a parabola, will be

D=t =) = O E)ererrreen.. (5);

or again, if we suppose known two points ( p, k) and (g, k) lying in
the well-determined part of the curve, its equation will be

n=(@q—-p)th(qg—E+k(E—p)—C" (E-p)(E—}...(6);

and as AW—§)" or (§—p) (E—¢q) will be small throughout the
well-determined part of the curve, the constant ¢ or €’ will admit
of considerable latitude of variation without much affecting the
satisfaction of the observations. Conversely, if we attempt to
determine the constant ¢ or ¢’ from the observations, in addition
to the two elements \, ¢, or A, &, the determination will be extremely
precarious. And if we arrange the formula (5) or (6) according to
powers of £ so as to throw it into the form (3), the precariousness
of the determination of € or C’ will more or less affect all the
three constants a, 3, v.

Accordingly, if we take this formula, and attempt to determine
the three constants a, B, v, from the observations, it may be that
by different processes we shall arrive at results differing consider-
ably, not only as regards v, but even, though to a less degree, as
regards o and 8. It is not until we use the values of a, B, v, so
obtained for the determination of two out of the three elements of
the parabola which are well or fairly determined by the observa-
tions, that we perceive the accordance which underlies the apparent
discrepancy.
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If the simple formula (4) so nearly fits the observations, it is
by no means merely as an empirical formula of interpolation pre-
senting two arbitrary constants whereby an approximate accordance
may be brought about, or in the way that a small arc of an arbitrary
curve may be approximately represented by a straight line. The
observations were also plotted by taking for coordinates V' : v and
F v instead of v : V" and F : V", and in this case the curvature
of the curve was very decided. Accordingly, though the observa-
tions may be satisfied by the first two terms of the formula (2)
almost as well as by the three, that is by no means true of the
last two, though in both cases alike we have two arbitrary constanis
at our disposal.

7—2



Norte oN THE REDUCTION 0F MR CROOKES’S EXPERIMENTS* ON
THE DECREMENT OF THE ARc OF VIBRATION OF A Mrica
PLATE OSCILLATING WITHIN A BULB CONTAINING MORE OR
LESS RAREFIED (GAS.

[From the Philosophical Transactions, Vol. 0LXXII, 1881, pp. 435—446.
Received and read February 17, 1881.]

(Abstract from Proceedings of the Royal Society, Vol. XxxI, pp. 458—460.)

TaE determination of the motion of the gas within the bulb, which would
theoretically lead to a determination of the coefficient of viscosity of the gas,
forms a mathematical problem of hopeless difficulty. Nevertheless we are
able, by attending to the condition of similarity of the motion in different
cases, to compare the viscosities of the different gases for as many groups of
corresponding pressures as we please. Setting aside certain minute correc-
tions, which would have vanished altogether had the moment of inertia of the
vibrating body been sufficient to make the time of vibration sensibly inde-
pendent of the gas, as was approximately the case, the condition of similarity
is that the densities shall be as the log. decrements of the arc of vibration, and
the conclusion from theory is that when that condition is satisfied, then the
viscosities are in the same ratio. Pressures which satisfy the condition of
similarity are said to “correspond.”

It was found that on omitting the high exhaustions, the experiments led
to the following law :—

The ratios of the viscosities of the different gases are the same for any
two groups of corresponding pressures. In other words, if the ratios of the
viscosities of a set of gases are found (they are given by the ratios of the
log. decrements) for one set of corresponding pressures, these pressures
may be changed in any given ratio without disturbing the ratios of the
viscosities.

This law follows of course at once from Maxwell’s law, according to which
the viscosity of a gas is independent of the pressure. It does not, however,
by itself alone prove Maxwell’s law, and might be satisfied even were Maxwell’s
law not true. The constancy, however, of the log. decrement, when the
circumstances are such that the molar inertia of the gas may presumably

[* Sir W. Crookes’s experiments are described in the memoir preceding, “On the
viscosity of gases at high exhaustions,” Phil. Irans. Vol. cxxii, 1881, pp. 387—434.]
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be neglected, proves that at any rate when the density is not too great that
law is true ; and the variability of the log. decrement at the higher pressures
in all but the very light gas hydrogen is in no way opposed to it, though
Mr Crookes’s experiments do not enable us to test it directly, but merely
establish a more general law, which embraces Maxwell’s as a particular case.

The viscosities referred to air as unity which came out from Mr Crookes’s
experiments were as follows :—

(634 £ 0C N 11117
Nitrogen and carbonic oxide......... 0970
Carbonic anhydride .................. 0823
Hydrogen............... Chreereiieeneane 0500

The viscosity of kerosoline vapour could not be accurately deduced from
the experiments, as the substance is a mixture, and the vapour density there-
fore unknown. = Assuming the relative viscosity to be 0°0380, the vapour
density required to make the ‘experiments fit came out 3-408 referred to air,
or 4916 referred to hydrogen.

When once the density is sufficiently small, the log. decrement may be
taken as a measure of the viscosity. Mr Crookes’s tables show how com-
pletely Maxwell's law breaks down at the high exhaustions, as Maxwell
himself foresaw must be the case. Not only so, but if we take pressures at
those high exhaustions which are in the same ratios as “corresponding”
pressures, the log. decrements in the different gases are by no means in the
ratios of the densities.

It would appear as if the mechanical properties of a gas at ordinary
pressures and up to extreme exhaustions (setting aside the minute deviations
from Boyle’s law, &c.), were completely defined by two constants, suppose the
density at a given pressure and the coefficient of viscosity, but at the high
exhaustions at which phenomena of “ultra-gas” begin to appear, specific
differences came in, to include which an additional constant, or perhaps more
than one, requires to be known.

In the course of his long series of researches “On Repulsion
resulting from Radiation,” Mr Crookes had frequently occasion to
observe the deflections of a light bar or lamina of some substance
delicately suspended and oscillating by torsion. When such a bar
was set in vibration, the vibrations tended more or less rapidly to
subside, in consequence, no doubt, of the viscosity of the gas
enclosed in the apparatus. At first it seemed as if the rate of
subsidence tended to reach a constant value which remained the
same at all higher exhaustions. But as methods of exhaustion
were improved, and the gases were so rarefied that the effect of a
candle in causing repulsion distinctly fell off, the rate of subsidence
of the oscillations was found greatly to fall off too. This falling off
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at extreme exhaustions seemed to present a very interesting field
of study in connexion with the molecular condition of gases*. The
inquiry would naturally involve the observation of the nearly
constant rate obtained at somewhat lower exhaustions; and the
same apparatus would serve for experiments on the rate of subsi-
dence at higher densities, up to that corresponding to atmospheric
pressure.

A comparison of the rates of subsidence in different gases at
great but not extreme exhaustions was further interesting as a
new means of determining the ratios of the viscosities of different
gases. In fact, at high exhaustions, the motion of the gas tends
to a condition of ideal simplicity from which a comparison of the
viscosities of different gases would immediately result. The effect
of the viscosity of a gas on its own motion is regulated by the
value of a constant which I have elsewheret called the index
of friction of the gas, namely, the coefficient of viscosity divided
by the density. According to Maxwell’s law, the coefficient of
viscosity is independent of the density, and therefore the index
of friction varies inversely as the density. Hence as the exhaustion
proceeds the motion of the gas tends to become what it would be
if the viscosity were infinite, and the bounding surfaces had their
actual motion. In the limit, the instantaneous motion of the gas
depends only on that of the vibrating plate, to which it is pro-
portional, except in so far as the finiteness of the angle of oscillation

[* Inthe experiments of Kundt and Warburg, Ann. der Phys.1875-6, referred to in
Sir W. Crookes’s memoir, this stage of exhaustion was attained. These investigations
were conducted according to Maxwell’s plan of a disce vibrating torsionally between
fixed discs, but without definite measurement of the vacua employed; they revealed
a relative reduction of the amount of damping when the dises were brought
close together, which was ascribed by the authors to a slight frictional slip,
theoretically indicated, of the gas over the surfaces of the dises, to an extent varying
inversely as the pressure and thus sensible only at high exhaustions, This slip,
as extended by O. Reynolds to include gradient of temperature as well as velocity, is,
according to Maxwell’s later theory, Phil. Trans. 1879, Collected Papers, 11. p. 701,
essential to the action of Crookes’s radiometer. On the other hand, Sir W. Crookes
(loc. cit. p. 425) on the basis of his experience of high vacua, suggests a connexion
of this result, and also of some anomalies encountered in the case of hydrogen, with
the presence of aqueous vapour condensed on the plates; of this an effect had
been traced by the authors in a gradual change of viscosity after the exhaustion had
been stopped, but according to them the present effect appears at an earlier stage
in the exhaustion.]

1 “On the Effect of the Internal Friction of Fluids on the Motion of
Pendulums,” Camb. Phil. Trans. Vol. 1x, p. [8]. [4nte, Vol. 111, p. 1.]
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entails a difference of position of the plate relatively to the bound-
ing wall of the bulb, a difference however which is trifling on
account of the smallness of the angle through which the plate
oscillates. The forces therefore arising from the viscosity tend in
the limit to vary entirely as the angular velocity, and not, as is the
case when the index of friction is comparatively small, partly also
as the angular acceleration. The result therefore will be that the
oscillations are retarded by a force varying as the angular velocity
and producing therefore a subsidence of the motion such that
the proportionate rate of change of the arc is proportional to
the coefficient of viscosity.

Mr Crookes’s experiments were carefully made from pressures
as high as the atmospheric pressure downwards. At first there is
a very evident decrease of subsidence as the pressure decreases,
except in the case of hydrogen, in which it is very small, we may
say insensible. Then it remains very nearly constant for a con-
siderable range of exhaustion, and at last, for extreme exhaustions,
1t rapidly fades away.

In the second of these three stages the condition of ideal
simplicity above mentioned is doubtless approximately attained.
If however we confined our attention to this part only of the series,
the lower part, although so carefully made, would remain unutilised ;
and further, we should remain uncertain whether in taking the
logarithmic decrement as proportional to the viscosity our approxi-
mation was not too rough. -

The determination of the motion of the gas corresponding to a
given motion of the vibrating solid, and thereby the determination
of the forces which the gas exerts on the solid, forms a perfectly
definite problem, the solution of which, if it could be effected,
would lead to a determination of the coefficient of viscosity from
the observed influence of the gas on the motion of the plate. But
although in these slow motions the terms in the hydrodynamical
equations which involve the squares of the velocities are insensible,
so that the equations may be taken as linear, the problem is one
of hopeless difficulty except in a few simple cases. In the paper
referred to, I have given the solution in the case of a sphere
vibrating in a mass of fluid either unlimited or confined by a
concentric spherical envelope, and in that of a long cylindrical rod
vibrating in an unconfined mass of fluid. In the latter especially
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of these cases the solution involves functions of a highly compli-
cated form. For a lamina, such as that employed by Mr Crookes,
the problem could not even be solved if the fluid were regarded as
perfect, much less when the viscosity is taken into account.

But though we are baftled in the attempt to give an absolute
solution of the problem, theory indicates the conditions of similarity
of the motion of the gas in two different cases, and enables us
thereby to compare the viscosities when those conditions are
satisfied.

The bulb, vibrating plate, and torsion thread being always the
same, the two things that varied from one experiment to another
were the nature and the pressure of the gas, not the temperature,
which for the present was kept constant. The moment of inertia
of the lamina was sufficiently large to allow the time of vibration
t0 be nearly the same in the different experiments. For the
present I will suppose it constant, reserving to a later stage the
consideration of the correction to be made for its variation.

Let p be the density of the gas, p the observed pressure, D the
density under a standard pressure, u the coefficient of viscosity,
and let accented letters refer to another gas. The dimensions of
the terms in the equations of motion show that in comparing two
cases 1n which the nature and pressure of the gases alone differ,
the motions will be similar provided

7 4
N S B o (1).

el

0" p PD D
This condition being satisfied, the resultant pressures of the gas on
the solid will vary as u or as p; and as the logarithmic decrements
(1) will vary in the same proportion, we shall have

I v l v

—= 7, or — = SN ctrecesresersecssanne 2.

PP pD  p'D @

The equations (1) and (2) are such that when one is satisfied

so is the other. It will be convenient to regard (2) as giving the
condition of similarity, and then (1) or

gives the ratio of the viscosities at the two corresponding pressures
in the two gases.
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The times of vibration were practically constant when once
the exhaustion was pretty high, at least until the very highest
exhaustions were reached, when it fell off a very little; but at
atmospheric pressure and at low exhaustions it was somewhat
greater, though not much. TIts variability will not affect the
results obtained by the above method, provided only the times
are the same in the two experiments of each pair, which was very
approximately the case. Nevertheless it may be well to consider
the correction to be made in consequence of the inequality of the
times.

Let 7 be the time of vibration from rest to rest, then in
comparing two similar systems the time-scale must be varied,
so as always to be proportional to 7, and the hydrodynamical
equations show that for the condition of similarity we have, in
place of (1), the equation

'
BT QT
0=, (4).
As the two dynamical systems are not similar as a whole, but
only the gaseous parts of them, we must have recourse to the
equation of motion of the vibrating lamina. Let & be the angle
of torsion, I the moment of inertia, n218 the force of restitution,
which will be proportional to the angle of torsion, provided at
least the glass fibre be treated as perfectly elastic, as it doubtless
may be in considering the correction to be made for the inequality
of the times of vibration, even though its defect of elasticity might
not, possibly, be absolutely insensible in its influence on the main
motion. Then if there were no fluid the equation of motion of the
lamina would be

2
I Coll—g +n2l0=0.

As in the cases treated of in the paper of mine already referred
to, the resultant pressure of the fluid on the lamina (the term
“pressure” here including the tangential action), will partly agree
in phase with the displacement or force of restitution, partly with
the velocity of the lamina. The first part will have the effect of
adding to the mass of the lamina an ideal mass depending on the
density, viscosity, and time of vibration. From the dimensions of
the quantities involved with respect to time and density, this ideal
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mass must be of the form pf <’l%> . There is no need to express

the dependence of the function f on the scale of lengths. In
a similar manner the part of the resultant pressure which is
multiplied by d6/dt must be expressed by p multiplied by some

other function of wr/p and divided by a time. We may express

\

it therefore by 2pnk <M ), where n is ;:— Denoting the two

it
P
functions of ur/p by 4 and B respectively, we have accordingly for
the equation of motion

d#o

ap T 2Bpn d6 +atl0=0 ............ (5).

(I + 4p) o

The integral of this equation is

0 = e~ (¢ cosmt + ¢’ sin mt),
where
_ Bpn e arl Bpin?
1=Tv4p "™ TT+dp  (I+dpy

and since by definition of n, m =n, we have
al
I+Ap’

and then by eliminating 4 between the last equation and the last
but two we have

'+ ¢ =

atlq

= pn (1 + ¢%)

Now n is 7r/7, and ¢7 is the Napierian logarithmic decrement,
or [/M, M being the modulus of the common system. Hence (6)
becomes
_a*MIl
e (M + 1)’
and as B is the same in the two systems compared we have
L
p M4l pf " M4 1

an equation which takes the place of (2), and serves to define
corresponding densities, and then (4) gives the ratio of the
viscosities at those densities, or say, at the corresponding pres-



THE VIBRATIONS OF A MICA PLATE. 107

sures. If we eliminate the ratio of p to p’ between (4) and (7)
we get

P 1) = o (r MR D) s (8),

which takes the place of (3).

The ratio of the factor w2M? + I* to w2M? alone but little exceeds
unity ; thus even for oxygen at 760 millims. pressure it is barely
1:0085, and of course the ratio of that factor for one gas to the
factor for another gas at the corresponding pressure will differ
from unity still less. Hence it is almost a needless refinement to
keep in this factor at all. However, even if we retain it in (8) it is
quite superfluous in (7), which merely determines what densities
are to be deemed to correspond in seeking the logarithmic decre-
ments. For until extreme rarefactions are reached, to which the
above investigation no longer applies, the logarithmic decrement
changes so slowly that a small error in the density of one gas
which is deemed to correspond to a given density in another will
make no sensible error in the logarithmic decrement. And not
only may the factors above mentioned be omitted, but as the ratio
of 7 to v’ will differ but little from a ratio of equality, the formula
(7) may be dispensed with altogether, and the simpler formula (2)
employed. But when the logarithmic decrements have been found,
in determining the ratio of the viscosities from (8) it is better not
to disregard the quantities by which the ratios of = to 7" and of’
M+ 12 to w2 M2+ 17 differ from ratios of equality. And if we
now wish to know more precisely what densities or pressures do
correspond, we may obtain them from (4).

In the numerical calculations which follow, the difference in
the times of vibration (7) at corresponding pressures in the
different gases is neglected, and likewise the difference between
the ratios of the factors Mm®+ 1 and a ratio of equality. The
general effect of this omission, which is very minute, will be
considered in the end.

The values of D adopted were, hydrogen, 1; air, 14:42;
oxygen, 16; nitrogen, 14; carbonic anhydride, 22; carbonic
oxide, 14.

Tables were first formed of the logarithms of /pD for she
different gases for the various pressures given by Mr Crookes
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down to 076 millim. The pressures standing against equal
numbers in these tables for the different gases would be “corre-
sponding” pressures. The pressures corresponding to a given
number may be obtained from the tables by interpolation; and
as the experiments were made at close intervals it seemed sufficient
to regard only the two adjacent numbers and use proportional
parts.

Corresponding pressures :‘ Logs. of ratios to corresponding pressures in ai1
Air (0] N CO, (¢10) (] N CO, (610)
760 | 767-3 | 760-8 | 4133 | 7608 | + 0042 | 4+ ‘0005 | — -2645 | 4 0005
660 | 666'6 | 6609 | 3592 | 6630 | 4 0044 | + 0006 | — 2642 | 4 0020
560 | 5655 | 5596 | 3062 5638 | + 0042 | — 0003 | — 2622 | 4 ‘0029
460 | 4637 | 459°0 | 250°0 | 459'8 | + 0034 | — ‘0010 | — 2649 | — -0002
360 | 36569 | 3616 1947 | 3595 4+ -0071 | + ‘0019 | — 2669 | — -0006
260 | 2632 | 261-8 | 1419 | 2583 =+ -0053 | 4+ ‘0030 | — 2630 | — -0029
160 | 1612 | 1595 | 864 | 166'7 | + 0033 | — ‘0013 | — '2676 | — -0022
|
Mean of log p'/p «ovvvenviivinnnin. + 0046 | + 0005 | — 2648 | —. -0005
Number, or p'/p «.cooveviiiiiinni. 1:010 1:001 0540 0999
Log (p' D' +pD), from mean ...... ‘0497 1-9876 1-9186 1-9870
PO =pD i 1-121 0972 0829 0971

I do not think it worth while to give these tables at length,
but I subjoin a small table calculated from them, giving for oxygen,
nitrogen, carbonic anhydride, and carbonic oxide the pressures
corresponding to air pressures decreasing by 100 millims. from
760 to 160. It will be seen from Mr Crookes’s tables that below
these pressures there is little variation in [ until very high
exhaustions are reached. Hydrogen does not enter into the table,
as the highest pressure (760 millims.) in the experiments corre-
sponds to a pressure of only about 106 millims. in air. The table
containg also the logarithms of the ratios of the pressures in the
different gases to the corresponding pressures in air.

An inspection of the numbers in the same vertical column in
the right-hand portion of the above table shows that the logarithm
in question is constant as nearly as the observations can show.
This leads to the following law.
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If any pressure be taken in one gas and the pressures found
in other gases for which the coefficients of viscosity are as the
densities (pressures which have been defined as “corresponding ),
then if another system of pressures be taken proportional to the
former the pressures in the new system will also correspond ; and
consequently the ratios of the coefficients of viscosity of the different
gases will be the same for the pressures in one such system as in
another.

This law is in accordance with Maxwell’s law, but does not by
itself alone prove Maxwell’s law. It leaves the functional relation
between the coefficient of viscosity and the density for any one gas
arbitrary, and deduces from thence the relation for all other gases,
this relation introducing merely one unknown constant for each.
What the law gives may be put in a clear form by a geometrical
illustration. I assume Boyle’s law, so that for any one gas the
ratios of the densities in different cases or the ratios of the pressures
may be used indifferently.

Let, then, the relation between the viscosity and density be
represented graphically by taking abscissee to represent densities
and ordinates to represent coefficients of viscosity. Then the law
found above may be enunciated by saying that the curves for all
gases are geometrically similar, the origin being the centre of
similitude. Maxwell’s law would give a particular case of such
similar curves, namely, a system of straight lines parallel to the
axis of abscisse.

The deviation from uniformity of the logarithmic decrements
for any one of these gases at these comparatively speaking high
pressures is not therefore in any way inconsistent with Maxwell’'s
law, but is fully accounted for by the very natural supposition
that the rarefaction is not yet sufficient to render the molar inertia
of the gas insensible as regards its influence on the gas’s own
motion, a supposition which can be shown to be true when we
employ the approximately known absolute value of the coefficient
of viscosity. The same consideration shows, moreover, that we
have only to carry the exhaustion further in order to render the
effect of that inertia insensible, and accordingly, if Maxwell’s law
be true, to make the logarithmic decrement sensibly independent
of the pressure.
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That such is actually the case is shown by Mr Crookes’s tables
or the diagram A, in which they are graphically represented. We
observe a manifest tendency for the logarithmic decrement to
become constant till the law is interrupted by the breaking down
of viscosity attending extreme exhaustions, or by certain deviations
which in some cases (as in those of oxygen and kerosoline vapour)
show themselves a little earlier: these deviations will be referred to
further on; for the present I merely avoid exhaustions high enough
to introduce them. This approximate constancy of logarithmic de-
crement is observed in hydrogen from the first, which is accounted
for by the high index of friction of that gas as compared with the
others at equal pressure.

This evident constancy or tendency towards constancy in the
viscosity as the rarefaction goes on supplies the missing link, and
establishes Maxwell’s law on the basis of Mr Crookes’s experiments
even taken by themselves. It is not, of course, directly proved for
the higher pressures in the gases other than hydrogen; its exten-
sion to such pressures is a matter of inference, derived from
observing, first, that it is found to be true within such limits of
density that the condition of ideal simplicity supposed at the
commencement of this note is presumably sensibly attained ; and,
secondly, that above those limits, though we are unable from
mathematical difficulties to examine its truth directly, yet we are
able to deduce from theory one inference on the supposition of
its truth, which is found to be in accordance with the results
of experiment.

Hitherto the ratios of the coefficients of viscosity have been
deduced from a part of Mr Crookes’s tables, in which the log-
arithmic decrements changed very evidently with the pressure.
We may now deduce those ratios by what may almost be deemed
an independent method, namely, by attending only to the part of
the tables at which the logarithmic decrement is all but constant.
If the condition of ideal simplicity supposed at the outset were
quite attained, we might disregard the pressures in the comparison,
which would entitle that method to be considered quite distinct
from the former; but as that condition is not absolutely reached,
it will be proper not wholly to neglect the condition of correspond-
ence of pressure, though a rough determination of correspondence
will suffice.
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Suppose, then, we take the air pressures from 120 to 26 millims,
The ratio of the:corresponding pressures in oxygen, &c., is given in
the last line but two of the preceding table. The corresponding
limits are for oxygen 132 to 29; for nitrogen and carbonic oxide
the same (sensibly) as for air; for carbonic anhydride 65 to 14;
for hydrogen the limits are not given in the table, but they are
864 and 187 nearly. In strictness each pressure should be con-
sidered separately; but as the intervals were not intentionally
divided in a different manner for the different gases, and as the
logarithmic decrements are very nearly constant between the
specified limits, it seems sufficient to take the mean for each gas
of those corresponding to pressures that lie between the assigned
limits. We thus get for air, 1002 ; oxygen, ‘1120 ; nitrogen, ‘971 ;
carbonic anhydride, ‘822; carbonic oxide, ‘971 ; hydrogen, ‘500.
Reducing to air=1, and writing down for comparison the numbers
expressing the ratios of the coefficients of viscosity to that of air
given in the previous table, we have for the ratios in question—

0 N CO, co H
From air pressures, 760 to 160... 1121 0972 0-829 0971
” » 120 to 26... 1°118 0-969 0820 0969 0-499
Values adopted ........covvvnnennes 1-120 0970 0822 0970 0-499

We see that almost identically the same numbers are obtained
whether they are deduced from the higher pressures, for which the
logarithmic decrements notably diminish with the pressure, or from
the part of the tables in which they are nearly independent of the
pressure. The greatest difference is in the case of carbonic anhy-
dride, where it is rather more than one per cent. This difference
is in part accounted for by the omission of the correction for the
time of vibration. If the times of vibration at corresponding
pressures as determined by Mr Crookes be taken, they will be
found to be very nearly the same; indeed, the differences are
quite comparable with the errors of observation of those times.
Perhaps the differences could be got with greater certainty from
theory than from observation. According to theory the effect
of the gas on the time of vibration turns mainly on the term Ap.
Now, though 4 is a function which we cannot calculate, yet we
know that it is the same at corresponding pressures in two gases.
The effect at such pressures varies therefore from one gas to
another as the density, and therefore as the coefficient of viscosity.
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It is here supposed (as is practically true) that the term is so small
compared with 7, with which it is associated, that its square, &c.,
may be neglected.

Taking the time of two oscillations (or of one complete oscilla-
tion) for air at an exhaustion at which the effect of the molar
inertia has ceased to be sensible, but the slight decrease due to the
removal of the viscosity has not yet come in, at 10576, we get for
the mean effect at pressures 760, 660, ... 160 about 0520. The
coefficient of viscosity for carbonic anhydride being 18 per cent.
less than for air, we get 0¥036 for the average difference of times
in air and that gas, which is 4J;th of the average time; and since
according to (8) w o« v we must deduct 003 from the ‘829 given
above, leaving ‘820, the mean of which and 820 gives ‘823, nearly
the number adopted. Similarly the number 1121 for O in the
first line should be raised about -002.

There is still a small correction to make depending on the
factor w*M?+ 1% Since by (8) u varies as this factor, and £ is very
small compared with #2M?% and moreover u oc /! nearly, 1t will
suffice to deduct &/w2M? from /, and use the I's so corrected. The
correction being, however, very small, it will suffice to take an
average | and make the deduction for it. The deductions for the
six gases came to about ‘005, -009, ‘005, 1003, 005, :001. Deduct-
ing these numbers from the relative viscosities given above, and
reducing afresh to the scale air=1, we get the following final
numbers:

Air 0 N o, co H
1000 1117 0970 0-823 0970 0500

I have left kerosoline vapour to the last on account of the
uncertainty as to its vapour density. It is a mixture of different
substances, being the more volatile part of petroleum. I am
informed by Mr Greville Williams that it contains much pentane,
the theoretical vapour density of which on the hydrogen scale
would be 36. Taking at a venture D) =36, and choosing suppose
the pressure 54 millims., for which [ =-0404, and further assuming
the limiting logarithmic decrement for air before the breakdown
to be 01000, as it seems to be from Mr Crookes’s table, we find
0392 for the relative viscosity of kerosoline vapour. This is
pretty certainly too high. If we suppose the true number to be
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0380, we get for the air number corresponding to ! = 0425,
[=-1129, which from the table of results for air belongs to
p="740. This would give for the vapour density of kerosoline
. *0380 x 740 .

D= 1000 x 825 D =3408D = 4916 if D=1442.

For the air pressure corresponding to 54 millims. in kerosoline
we should have 740 x 54+ 82'5=4843. For the corresponding
logarithmic decrement we get from the table of experiments for
air '1059. The logarithmic decrement for kerosoline at 54 millims,
calculated from that for air at 4843 millims. is ‘1059 x *0390, or
"04024, which comes very near the observed number ‘0404. Tt is
curious that we should apparently be able to calculate very
approximately an unknown vapour density from observations on
the decrement of the arc of vibration of a vibrating lamina.

Before considering the falling off of viscosity at high exhaus-
tions, I would point out a result of theory which is of some interest
in connexion with the forms of Mr Crookes’s curves.

At p. [34]* in the paper of mine already referred to I have
given in equation (61) an expression (which has to be subsequently
multiplied by p) for the resistance to a sphere vibrating in a viscous
fluid within a concentric spherical envelope. When the index of
friction is sufficiently great, as will be the case when the exhaustion
is high enough, this expression may be developed according to
ascending powers of m, which will be convergent even from the
first. It will be found that the successive terms will be multiplied
by

— 2 4
mT2, ome, mE mt...,

where m? is a pure imaginary multiplied by p/u; and from the
mode of treatment there adopted it will readily be seen that the
terms fall albernately on the arc and on the time.

The same thing may, however, be shown to be true generally,
independently of the form of the vibrating body. It is here
supposed, as has been all along, that the motion is sufficiently
slow to allow us to neglect squares and products of the components
of the velocity, or of their differential coefficients. For if w/p be
very great, we may imagine the hydrodynamical equations solved

[* 4nte, Vol. 111, p. 36.]
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by successive substitution. First we should neglect the terms in p,
and solve the equations; then substitute in the terms multiplied
by p the result of the first approximation and solve again, and so
on. And though we cannot actually solve the equations, still this
consideration shows that the solution must be of the form

2 3
a,,u+bp+cp;+d.%+...,

where a, b, ¢, d ... involve neither u nor p. And by adopting the
artifice for the introduction of the time employed in the paper it
readily appears that the terms fall alternately on the arc and on
the time. Hence taking the two most important terms only in the
expression for the effect on the arc we shall have for I an expression
of the form
a'p+ c’p—z, or au+ 0’22]02.
p p

Hence in a curve plotted with [ and p for coordinates, the
tangent as p diminishes would tend to become parallel to the axis
of p, and the curvature where the curve cuts the axis of I would
vary from one gas to another directly as the square of the density
at a standard pressure and inversely as the coefficient of viscosity.
For the gases examined the curvatures near the axis of I would
therefore vary

for Air O N and CO Co, H
as 14:422+-1-000, 162+1-117, 142--0970, 2220823, 120500
or as 1-000, 1102, 0:971, 2:828, 0-010

It will be seen in Mr Crookes’s diagram A, that if we imagine
the curves continued upwards on their old lines, cutting off the
changes which take place at very high exhaustions, the tangent
tends to become vertical, and, moreover, the rate at which the
direction of the tangent changes as we go down agrees well, as far
as the eye can judge, with the above figures. We may notice in
particular the extreme flatness of the hydrogen curve.

As we proceed upwards to the higher exhaustions, the first
thing that strikes us (first in order of occurrence, very far from
first in order of magnitude) is the curious 4ncrease which is
observed in the logarithmic decrement in the case of oxygen and
of kerosoline vapour. Small as this is, Mr Crookes considers it
real. It puzzled me at first, since it occurs while the pressure
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is still comparatively high, such as 15 millims. or 20 millims., so
that the mean free path must still be extremely small, and might,
one would naturally suppose, be treated as infinitely small con-
sidering the dimensions of the apparatus. It occurred to me
afterwards that it is probably referable to the thinness of the
vibrating body. As the lamina moves there must in the immediate
neighbourhood of the edge be a thin stratum or cushion of gas in
which there is a very intense shearing motion. The intensity of
the shearing makes up in good measure for the narrowness of the
cushion, and renders the effect of the cushion a not insignificant
fraction of the whole. The narrowness of the stratum may well
be such as to forbid us to treat the mean free path as infinitesimal
long before we are prohibited from so regarding it in comparison
with the dimensions of the vessel, or the lateral dimensions of the
lamina. That among the four unmixed gases examined oxygen
should be the one to show this effect, seems to be connected with
the fact that at comparatively low exhaustions (such as 076
millim.) it shows repulsion effects much the most strongly*; and
both phenomena seem to indicate that for oxygen the length of
path (I do not say free path)is comparatively large, “ path” here
meaning the space throughout which a molecule preserves approxi-
mately its original direction of motion.

When we come to those high exhaustions at which the
decrement of arc gives way, the law of proportional logarithmic
decrements at corresponding (and those proportional) pressures,
which we hitherto found to be so accurately obeyed, breaks down
altogether. A single’ example will suffice to show this. Take
hydrogen at 330 M, for which [=00495. The ratios of corre-
sponding pressures resulting from the numbers for the relative
viscosities given on p. 107, and the numbers to which they lead,
are as follows :—

Gas Air [0} N CO, (6{0] H
Ratios of correspond-
ing pressures ...... 0-1387 01396 01386 00748 01386 1

Pressures correspond-
ing to 330 Min H 458 46°1 457 247 457 3300
[ calculated from [ in
H oo (0990 1106 0961 ‘0815 0961
! observed ............ ‘0758 0829 0722 ‘0526 ‘0734  0°0495

[* In this connexion the footnote, p. 102, may be referred to.]

8

o
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It would seem as if when a gas may be treated as a continuous
mass with continuously varying conditions of pressure, velocity, &e.,
as is done in the application of the hydrodynamical equations, a gas
is completely defined * as to its mechanical action by two constants,
suppose the density at a standard pressure and the coefficient of
viscosity ; but when the conditions are such as oblige us to take
account of the finiteness of path of the molecules, specific-differ-
ences are manifested which oblige us to introduce at least one
constant more in order that the gas may be even mechanically
defined; for of course I am not contemplating the chemical
properties. It is worthy of note in this connexion that the two
gases, oxygen and kerosoline vapour, which showed the phenomenon
of a rate of decrease of arc of vibration sncreasing with a decreas-
ing density, are just those which lie at the two extremes as regards
viscosity, while as regards density at a given pressure they are
separated by carbonic anhydride, which nevertheless does not show
the phenomenon in question. It may well be that the mode of
encounter of such complex structures as the molecules of a gas
varies from one gas to another; and that while some of the laws
of gases admit of explanation when the molecules are regarded as
elastic spheres, or as particles repelling one another according to
some definite law of force, other properties fail to receive an
explanation when such a simplification of conception is adopted.

* T here leave out of account such differences as the small deviations from
Boyle’s law which have been observed with different gases.



ON THE CAUSE OF THE LIGHT BORDER FREQUENTLY NOTICED
IN PHOTOGRAPHS JUST OUTSIDE THE OUTLINE OF A DARK
BoODY SEEN AGAINST THE SKY: WITH SOME INTRODUCTORY
REMARKS ON PHOSPHORESCENCE.

[From the Proceedings of the Royul Szcz'atg/, Vol. xxx1v, pp. 63—68.
Received May 20, 1882.]

AN observation I made the other day with solar phosphori,
though not involving anything new in principle, suggested to me
an explanation of the above phenomenon which seems to me very
likely to be the true one. On inquiring from Captain Abney
whether it had already been explained, he wrote: “The usual
explanation of the phenomenon you describe is that the silver
solution on the part of the plate on which the dark objects fall has
nowhere to deposit, and hence the metallic silver is deposited to
the nearest part strongly acted upon by light.” As this explana-
tion seems to me to involve some difficulties, I venture to offer
another.

1. I will first mention the suggestive experiment, which is
not wholly uninteresting on its own account, as affording a pretty
illustration of what is already known, and furnishing an easy and
rapid mode of determining in a rough way the character of the
absorption of media for rays of low refrangibility.

The sun’s light is reflected horizontally into a darkened room,
and passed through a lens*, of considerable aperture for its focal
length. A phosphorus is taken, suppose sulphide of calcium giving
out a deep blue light+, and a position chosen for it which may be

* The lens actually used was one of ecrown glass which I happened to have;
a lens of flint glass would have been better, as giving more separation of the
caustic surfaces for the different colours.

+ The experiments were actually made, partly with a tablet painted with
Balmain’s luminous paint, partly with sulphide of calcium and other phosphori in
powder.
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varied at pleasure, but which I will suppose to be nearer to the
lens than its principal focus, at a place where a section of the
pencil passing through the lens by a plane perpendicular to its
axis shows the caustic surface well developed. A screen is then
placed to intercept the pencil passing through the lens, and the
phosphorus is exposed to sunlight or diffuse daylight, so as to be
uniformly luminous, and is then placed in position; the screen is
then removed for a very short time and then replaced, and the
effect on the phosphorus is observed.

Under the circumstances described there is seen a circular disk
of blue light, much brighter than the general ground, where the
excitement of the phosphorus has been refreshed. This is separated
by a dark halo from the general ground, which shines by virtue of
the original excitement, not having been touched by the rays which
came through the lens.

2. The halo is due to the action of the less refrangible rays,
which, as is well known, discharge the phosphorescence. Their
first effect, as is also known, is however to cause the phosphorus
to give out light ; and if the exposure were very brief, or else the
intensity of the discharging rays were sufficiently reduced, the part
where they acted was seen to glow with a greenish light, which
faded much more rapidly than the deep blue, so that after a short
time it became relatively dark.

3. This change of colour of the phosphorescent light can
hardly fail to have been noticed, but I have not seen mention of
it. In this respect the effect of the admission of the discharging
rays 1s quite different from that of warming the phosphorus, which
as 1s known causes the phosphorus to be brighter for a time, and
then to cease phosphorescing till it is excited afresh. The differ-
ence 1s one which it seems important to bear in mind in relation
to theory. Warming the phosphorus seems to set the molecules
more free to execute vibrations of the same character as those
produced by the action of the rays of high refrangibility. But
the action of the discharging rays changes the character of the
molecular vibrations, converting them into others having on the
whole a lower refrangibility, and being much less lasting.

4. Accordingly when the phosphorus is acted on simul-
taneously by light containing rays of various refrangibilities,
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the tint of the resulting phosphorescence, and its more or less
lasting character, depend materially on the proportion between
the exciting and discharging rays emanating from the source of
light. Thus daylight gives a bluer and more lasting phosphor-
escence than gaslight or lamplight. I took a tablet which had
been exposed to the evening light, and had got rather faint, and,
covering half of it with a book, I exposed the other half to gas-
light. On carrying it into the dark, the freshly exposed half was
seen to be much the brighter, the light being, however, whitish,
but after some considerable time the unexposed half was the
brighter of the two.

Again, on exposing a tablet, in one part covered with a glass
vessel containing a solution of ammonio-sulphate of copper, to
the radiation from a gas flame, the covered part was seen to be
decidedly bluer than the rest, the phosphorescence of which was
whitish. The former part, usually brighter at first than the rest,
was sure to be so after a very little time. The reason of this is
plain after what precedes.

A solution of chromate of potash is particularly well suited for
a ray filter when the object is to discharge the phosphorescence
of sulphide of calcium. While it stops the exciting rays it is
transparent for nearly the whole of the discharging rays. The
phosphorescence is accordingly a good deal more quickly discharged
under such a solution than under red glass, which along with the
exciting rays absorbs also a much larger proportion than the
chromate of the discharging rays.

5. I will mention only one instance of the application of
this arrangement to the study of absorption. On placing before
excited sulphide of calcium a plate of ebonite given me by
Mr Preece as a specimen of the transparent kind for certain rays
of low refrangibility, and then removing the intercepting screen
from the lens, the transmission of a radiation through the ebonite
was immediately shown by the production of the greenish light
above mentioned. Of course, after a sufficient time, the part acted
on became dark.

6. I will mention two more observations as leading on to
the explanation of the photographic phenomenon which I have
to suggest.
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In a dark room, an image of the flame of a paraffin lamp was
thrown by a lens on to a phosphorescent tablet. On intercepting
the incident rays after no great exposure of the tablet, the place
of the image was naturally seen to be luminous, with a bluish
light. On forming in a similar manner an image of an aperture
in the window-shutter, illuminated by the light of an overcast sky
reflected horizontally by a looking-glass outside, this image of
course was luminous; 1t was brighter than the other. On now
allowing both lights to act simultaneously on the tablet, the
image of the flame being arranged to fall in the middle of the
larger image of the aperture, and after a suitable exposure cutting
off both lights simultaneously, the place of the image of the
aperture on which the image of the lamp had fallen was seen
to be less luminous than the remainder, which had been excited
by daylight alone. The reason is plain. The proportion of rays
of lower to rays of higher refrangibility is much greater in lamp-
light than in the light of the sky; so that the addition of the
lamplight did more harm by the action of the discharging rays
which it contained on the phosphorescence produced by the
daylight, than it could do good by its own contribution to the
phosphorescence.

7. The other observation was as follows:—The same tablet
was laid horizontally on a lawn on a bright day towards evening,
when the sun was moderately low, and a pole was stuck in the
grass in front of it, so as to cast a shadow on the tablet. After a
brief exposure the tablet was covered with a dark cloth, and carried
into a dark room for examination.

It was found that the place of the shadow was brighter than
the general ground, and also a deeper blue. For a short distance
on both sides of the shadow the phosphorescence was a little feebler
than at a greater distance.

This shows that, though the direct rays of the sun by them-
selves alone would have strongly excited the phosphorus, yet
acting along with the diffused light from all parts of the sky,
they did more harm than good. They behaved, in fact, like the
rays from the lamp in the experiment of § 6. The slightly inferior
luminosity of the parts to some little distance on both sides of
that on which the shadow fell, shows that the loss of the diffuse
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light corresponding to the portion of the sky cut off by the pole
was quite sensible when that portion lay very near the sun.

All this falls in very well with what we know of the nature of
the direct sunlight and the light from the sky. In passing through
the atmosphere, the direct rays of the sun get obstructed by very
minute particles of dust, globules of water forming a haze too
tenuous to be noticed, &c. The veil is virtually coarser for blue
than for red light, so that in the unimpeded light the proportion
of the rays of low to those of high refrangibility goes on continually
increasing, the effect by the time the rays reach the north increas-
ing as the sun gets lower, and has accordingly a greater stretch of
air to get through. Of the light falling upon the obstructing
particles, a portion might be absorbed in the case of particles
of very opaque substances, but usually there would be little loss
this way, and the greater part would be diffused by reflection and
diffraction. This diffused light, in which there is a predominance
of the rays of higher refrangibility, would naturally be strongest
in directions not very far from that of the direct light; and the
loss accordingly of a portion of it where it is strongest, in conse-
quence of interception by the pole in front of the tablet, accounts
for the fact that the borders of the place of the shadow were seen
to be a little less luminous than the parts at a distance.

8. The observations on phosphorescence just described have
now prepared the way for the explanation I have to suggest of the
photographic phenomenon.

It is known that, with certain preparations, if a plate be exposed
for a very short time to diffuse daylight, and be then exposed to a
pure spectrum in a dark room, on subsequently developing the
image it is found that while the more refrangible rays have acted
positively, that is, in the manner of light in general, a certain
portion of the less refrangible have acted in an opposite way,
having undone the action of the diffuse daylight to which the plate
was exposed in the first instance.

It appears then that in photography, as in phosphorescence,
there may in certain cases be an antagonistic action between
the more and less refrangible rays, so that it stands to reason
that the withdrawal of the latter might promote the effect of the
former.
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Now the objective of a photographic camera is ordinarily
chemically corrected; that is to say, the minimum focal length
1s made to lie, not in the brightest part of the spectrum, as in a
telescope, but in the part which has strongest chemical action.
What this is, depends more or less on the particular substance
acted on; but taking the preparations most usually employed, it
may be said to lie about the indigo or violet. Such an objective
would be much under-corrected for the red, which accordingly
would be much out of focus, and the ultra-red still more so.

When such a camera is directed to a uniform bright object,
such as a portion of overcast sky, the proportion of the rays of
different refrangibilities to one another is just the same as if all
the colours were in focus together; but it is otherwise near the
edge of a dark object on a light ground. As regards the rays in
focus, there is a sharp transition from light to dark ; but as regards
rays out of focus, the transition from light to dark though rapid is
continuous. It is, of course, more nearly abrupt the more nearly
the rays are in focus. Just at the outline of the object there would
be half illumination as regards the rays out of focus. On receding
from the outline on the bright side, the illumination would go on
increasing, until on getting to a distance equal to the radius of the
circle of diffusion (from being out of focus) of the particular colour
under consideration the full intensity would be reached. Suppose,
now, that on the sensitive plate the rays of low refrangibility
tend to oppose the action of those of high refrangibility, or, say,
act negatively, then just outside the outline the active rays,
being sharply in focus, are in full force, but the negative rays
have not yet acquired their full intensity. At an equal distance
from the outline on the dark side the positive rays are absent, and
the negative rays have nothing to oppose, and therefore simply do
nothing.

9. I am well aware that this explanation has need of being
confronted with experiment. But not being myself used to
photographic manipulation, I was unwilling to spend time in
attempting to do what could so much better be done by others.
I will, therefore, merely indicate brietly what the theory would
lead us to expect.

We might expect, therefore, that the formation of the fringe
of extra brightness would depend :—
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(1) Very materially upon the chemical preparation employed.
Those which most strongly exhibit the negative effect on exposure
to a spectrum after a brief exposure to diffuse light might be
expected to show it the most strongly.

(2) Upon the character of the light. If the light of the bright
ground be somewhat yellowish, indicating a deficiency in the more
refrangible rays, the antagonistic effect would seem likely to be
more strongly developed, and, therefore, the phenomenon might be
expected to be more pronounced.

(8) To a certain extent on the correction of the objective of
the camera. An objective which was strictly chemically corrected
might be expected to show the effect better than one in which the
chemical and optical foci were made to coincide, and much better
than one which was corrected for the visual rays.

It is needless to say that on any theory the light must not
be too bright or the exposure too long; for we cannot have the
exhibition (in the positive) of a brighter border to a ground which
is white already.

P.S.—Before presenting the above paper to the Royal Society
I submitted it to Captain Abney, as one of the highest authorities
in scientific photography, asking whether he knew of anything to
disprove the suggested explanation. He replied that he thought
the explanation a possible one, encouraged me to present the paper,
and kindly expressed the intention of submitting the question to
the test of experiment.

I have referred to the photographic action of the more and less
refrangible rays as antagonistic. This is practically true so far as
the explanation I have ventured to offer is concerned, inasmuch
as the more refrangible rays convert a salt of silver which is not
developed into one which is developable, while the less refrangible
convert the latter into one which is not developable. But Captain
Abney has pointed out to me that though the first and third salts
cannot be distinguished by appearance, nor by the action of the
developing solution, they are nevertheless not the same, so that the
two actions of the rays are not, rigorously speaking, antagonistic,
inasmuch as the one is not strictly the reverse of the other. Thus
with bromide of silver the explanation of the observed phenomena,
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according to Captain Abney, is that the undevelopable bromide is
converted, chiefly by the action of the more refrangible rays, into
a sub-bromide, which is developable ; and this again is converted,
chiefly by the action of the less refrangible rays, into an oxy-
bromide, which is undevelopable. As however under the ordinary
circumstances for obtaining a good picture the action of the light
is chiefly of the first kind, and a much longer exposure would be
required to bring out prominently the second kind of action, the
explanation I have suggested is not virtually affected, though the
two actions could not be prolonged indefinitely, as in the illustrative
experiment in phosphorescence described in § 6.
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[From First Report, Nov. 22, 1882, issued as Parliamentary Paper C, 3411,
signed by G. G. Stokes (Chairman), Balfour Stewart, J. Norman Lockyer,
W. de W. Abney, R. Strachey, W. H. M. Christie, J. F. D. Donnelly,
with F. R. Fowke, Secretary.]

SectioN IV ; CONCLUSIONS.
(1) Solar Phenomena.

1. Sun pictures—It appears to us probable that the varying
phenomena of the sun’s disc represent the play of a huge system
of convection currents, the down rushes of which are indicated
by the darker patches and up rushes by the brighter patches.
These currents appear to be always present on the sun’s surface,
and to give rise to the mottled appearance which it presents
under high magnifying powers. It would seem, however, that
the scale of these phenomena, and the rapidity of the indicated
motions, are on certain occasions greatly increased, presenting to
the observer that complex appearance which is associated with
the outbreak of spots. Thus sun spots may be supposed to denote
gigantic down currents of comparatively cold matter from above,
while the facule and red flames may denote the corresponding
up rush of hot matter from beneath.

We are also of opinion that it is in virtue of this convection
system that our luminary is able to bring to the surface the
intensely heated matter requisite to supply the enormous quantity
of radiant energy which 1t is known continuously to give out.
It would seem to follow that when this convection system is
peculiarly vigorous the radiation from the sun’s disc must be
peculiarly vigorous also. Now all observations tend to convince
us that the sun’s atmosphere is most agitated at epochs of
maximum sun spot frequency, and perhaps we may likewise
conclude from Mr Lockyer’s investigations that certain definite
levels present the spectral characteristics of a peculiarly high
temperature at such times. We must look to future spectro-
scople observations to settle these points by giving us evidence
from year to year of the velocity of motion in the up rushes



126 OBSERVATION OF SOLAR ACTIVITY.

and down rushes of the sun’s atmosphere, as well as of the
heights to which the red flames are carried; and also by pre-
senting us with a continuous record of the spectral lines exhibited
by certain selected portions of the solar disc.

On the whole the evidence, judging solely from the sun itself,
seems to us to be in favour of the view that our luminary is
most energetic in its radiation at times of maximum sun spot
frequency.

Should this inequality in the sun’s power prove to be of
practical influence on the meteorology of the earth, it would
become of great importance to be able to analyse sun spot records
in such a way as approximately to predict the state of the sun
for any future year. ‘

The ability to do this will depend on the possession of a series
of accurate sun spot records sufficiently extensive to enable us to
arrive at a true knowledge of the law of the sun’s variability.

At present, therefore, all attempts in the direction of analysis
must be regarded as merely preparatory, and our great aim must
be to bring together and collate the various scattered observations
of sun spots, facule, and prominences, so as to produce a trust-
worthy and sufficiently complete record to which some method
of analysis should then be applied. This, therefore, forms one
chief branch of the work we hope to see carried out, and we are
glad to think that all solar observers are anxious to do what they
can to hasten forward its completion.

Another object, of equal importance, is the establishment of
solar photographic observations for the future on such a basis as
may reasonably be expected to give a picture for every day, by
utilising the results of observations in different parts of the earth,
and avoiding thereby those interruptions of the record that must
occur in any single locality.

The back work in sun pictures consists of two parts. First,
the pictures mentioned in the catalogue appended to this report,
which ends with the year 1877, and, secondly, the Indian and
other sun pictures from the beginning of 1878 to the end of 1881.
It is probable that the total cost of reducing and collating this
back work will not exceed £1,000, which might be spread over
five years; and we recommend that this work be undertaken.

With respect to the future, we recommend that steps be taken
to secure a reasonable prospect of daily pictures, the Astronomer
Royal having undertaken to reduce such pictures as may be
necessary to form a complete series.

2. Spectroscopic Work.—When we consider that the spectro-
scope has been in our possession since 1869 as an instrument for
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continuously observing various localised phenomena of the solar
atmosphere, we cannot but express our regret that more has not
been done to employ this new instrument of research; for, even
yet, daily and systematized observations are almost unknown,

As there can be no question of the importance of a daily
record of spectroscopic solar phenomena, we proceed next to
discuss those special points to which, according to our present
knowledge (and in a new subject it is more than ever important
to make this qualification), our studies should be directed.

Foremost among these inquiries we would insist upon the
importance of obtaming records of all phenomena visible during
total eclipses of the sun. It must not be forgotten, that with
regard to the sun’s atmosphere, more information can be obtained
during an eclipse than from a year's work on the uneclipsed
sun; and with regard to the form and extent of the atmosphere
generally, we already know that the changes are so great from
eclipse to eclipse that inquiries may be greatly hampered in
the future if we fail to obtain these records whenever opportunity
occurs.

We believe that these opinions are shared by physical astro-
nomers in other countries, and this being so, concerted action by
civilized Governments may render the part to be taken by each
comparatively inexpensive.

Coming to the uneclipsed sun, we find that our great needs
at present are more observations of the chromospheric and
prominence lines in climates where these can be easily and con-
tinuously made.

Observations of the lines widened in solar spots rank, perhaps,
next in order of importance, as the facts show that the vapours
which produce them are not those which give rise to the appear-
ance of prominences. At present this work is limited to Greenwich
and South Kensington, and at the latter place at all events the
observations are confined to a restricted part of the spectrum.

We recommend that communications should be opened with
observatories where such work would be likely to be prosecuted,
suggesting simultaneous observations on a definite plan for a
limited period, say for the next three years; and that the re-
duction of these observations should be undertaken at South
Kensington.

In this way we believe results of the highest importance in
their bearing upon solar theory would be obtained in the shortest
possible time, and with a minimum of expense.

We now come to another part of the inquiry—that which
refers to combined laboratory and observatory work; to the com-
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parison of lines seen in the spectrum of the sun with those seen
in the spectra of terrestrial bodies.

Here, unfortunately, the work is almost entirely confined to
South Kensmgton where its progress is very slow, partly in con-
sequence of the limited facilities, partly in consequence of the
bad climate.

As such work is necessarily the keystone of the arch which
may unite celestial and terrestrial chemistry, we recommend that
certain steps should be taken to accelerate the rate of progress,
and we have indicated these to the Science and Art Department.

(2) Solar Radiation.

The best proof of solar variability would be the direct one
given by an actinometer or instrument so constructed as to
measure with accuracy the amount of radiant energy given
out by the sun, but as yet hardly any such observations have
been made.

We attach great importance to the use of such instruments
in the future, and we are in hopes that in India and elsewhere
much information may soon be obtained by their means.

But even assuming the possession of a perfect actinometer
there are considerable difficulties in the way of obtaining by its
means the true solar radiation.

Allowing, for the sake of argument, a variability in the sun’s
power, it seems probable that during those years when the sun
1s increasing in power the quantity of aqueous vapour suspended
in the air should also continue to increase. But it is known
from the researches of Prof. Tyndall and others that this would
imply a continually increasing atmospheric absorption, which
would stop each year an increasing proportion of the rays of the
sun, and prevent these from reaching the earth. It might thus
happen that observations of the solar radiation made near the
earth’s surface might give something much less than the true
increase of solar power, inasmuch as a continually increasing
proportion of the solar rays would have been year after year
intercepted by the atmosphere. The most obvious way of getting
out of this difficulty would be to make observations at high
altitudes, and we hope in addition to the records of the heat-
actinometer now in operation at the Alipore Observatory, near
Calcutta, to obtain records from one at Lé (at a considerable
elevation, about 11,000 feet, above the level of the sea). We
trust also that Dr Roscoe’s chemical actinometer will be established
at Lé. Furthermore, with the view of throwing light on the
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condition of fluctuations in the received solar radiation caused by
the atmosphere, we would suggest that these actinometers should
be used in conjunction with some qualitative instrument which
gives an immediate graphical and visible indication of the power
of the sun. A modification of an instrument devised by Mr
Winstanley would appear to be very suitable for this purpose.

Presuming that we are thus able to obtain unexceptional
observations at Lé, still it is certain that there must remain an
appreciable quantity of aqueous vapour in the air above.

It has been suggested by General Strachey that a travelling
observer carrying with him an actinometer might ascend to a con-
siderable height by a series of stages, making observations at
each. We might thus be able to obtain a more exact estimate
of the absorption of the air and moisture respectively, and thence
to deduce what the true solar radiation would be if we could
altogether escape the atmosphere.

We ought to mention that Professor Langley of the Allegheny
Observatory is at present devoting a good deal of attention to
this problem, and we are induced to hope that by the united
efforts of observers in the elevated portions of both hemispheres
a great deal of light may be thrown upon this important
subject.

This is, perhaps, the place in which to notice another species
of observation which it may soon be possible to make.

Captain Abney has discovered a method of photographing the
infra-red spectrum, and it is hoped that light may be thrown by
this method on solar radiation. Indeed, recent observations which
he undertook at an altitude of 9,000 feet tend to show that for
a qualitative and partially quantitative estimate of atmospheric
absorption the method promises results of high value.

It should here be remarked that, by comparing with a standard
certain definite regions of the spectrum unabsorbed by any of the
constituents of the earth’s atmosphere, we might be able to
ascertain any variation in the quantity or in the quality of the
true solar radiation.

We recommend that the heat actinometer by Prof. Stewart,
the chemical actinometer by Prof. Roscoe, and the supplementary
instrument by Mr Winstanley be established at Lé, it being under-
stood that the Indian Government is ready to bear the expense of
the instruments and of the observations with them.

We recommend also that the suggestions of General Strachey
already mentioned should, if possible, be carried into effect.

8. V. 9
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(8)  Influence of the State of Sun on the Meteorology
of the Earth.

While observations of atmospheric and of underground tem-
perature appear to give evidence of a fluctuation in the tempera-
ture of the air having the same period as that of sun spots, yet
on the whole they appear to show that a maximum of sun spots
corresponds to a low and not to a high temperature.

But if we bear in mind that temperature is an exceedingly
complex phenomenon, and that an excessive rainfall generally
produces a low temperature, we cannot receive this as evidence
tending to show that the sun is least powerful at epochs of
maximum sun spots. It seems possible, however, that something
might be done by confining ourselves to short-period inequalities,
if the existence of such inequalities should be made out with
tolerable certainty.

Professor Stewart has pointed out the apparent existence at
Toronto of fluctuations of diurnal temperature range, having
periods very mnearly corresponding to those of sun spots, and of
a nature which leads him to infer that a maximum of sun spots
is associated with a maximum of solar power. We think that
this investigation might be extended so far as to take three or
four prominent solar inequalities, and see whether they corre-
spond to similar inequalities of temperature range. This would
appear to be a method likely to show if there be any real
connexion between the sun spots and terrestrial meteorology,
waiving for the present the question of true periodicity in such
inequalities.

With respect to rainfall, while the observations appear to
indicate that at certain localities we have a maximum amount
of rain about the time of maximum sun spot frequency, yet we
cannot say that taking the rainfall stations as a whole there is
incontestable evidence of a single rainfall period corresponding
to that of sun spots. This subject is one that requires further
investigation; and observation of the heights of rivers appears
to be a hopeful direction in which to look for evidence bearing
on this question.

In the next place, with respect to storms, the evidence appears
to be favourable to an increase in the number of great atmo-
spheric disturbances, corresponding to times of maximum sun
spots, but the systematic discussion of anemometric observations
has hitherto received far too little attention.

It seems to us that a study of isobaric lines may throw light
upon the problems now before us. The relatively low suminer
barometer in the middle of continents, and high barometer at sca,
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and the opposite disposition of pressure which holds for the winter
months, are problems which deserve further investigation.

We hope that this subject may be advanced by the discussion
of a lengthened series of those excellent meteorological charts
which the American Government are now publishing.

We recommend that communications should be entered into
with the Meteorological Council, with the view of concerting
a plan for investigating with sufficient thoroughness the nature
and extent of the supposed relation between solar variability
and the meteorology of the Earth.

We have no hesitation in expressing our belief that the
continued careful study of solar phenomena will prove to be of
the greatest scientific value, and that there is no reason for
doubting that the advance of true knowledge in this direction
will, in some form or other, and sooner or later, prove to be of
real practical value also, as all experience has shown that it has
been in other branches of human knowledge.

Whether or not we shall ever possess the power of foreseeing
the character of the seasons in this country, or to what extent
they may in truth be related to those changes in the condition
of the sun to which our attention is specially directed, it is of
course impossible for us to say. But of the extreme importance of
doing all that lies in our power to advance a sound knowledge
of the laws of climate which so directly affect the well-being of
the whole human race there can be no question.

(4) Influence of the State of Sun on the Magnetism
of the Earth.

There can be no doubt that the diurnal range of the earth’s
magnetism is greatest when there are most sun spots, and that
on such occasions there is likewise an unusually large number of
magnetic storms with their accompaniments in the form of earth
currents and auroral displays.

There are also strong indications that the fluctuations in the
diurnal ranges lag, as a rule, in point of time behind the solar
influences which produce them.

This would most naturally lead us to suppose that these
diurnal ma%netic effects are not directly caused by solar magnetic
influences, but indirectly by solar radiation *.

Again, the large amount of variation in the declination range,
which increases nearly in the ratio of fwo to three between times

[* The insufficiency of any possible amount of direct magnetic change in the

Sun is now clearly recognised: cf. Larmor, Phil. Mag., Jan. 1884, p. 23; Lord
Kelvin, Address to Royal Society, Nov. 30, 1892, in Popular Addresses, 111, p. 509.]

9—2
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of minimum and times of maximum sun spots, might perhaps
induce us to locate the solar influence which brings about this
result in the upper regions of the earth’s atmosphere where there
is reason to think inequalities in solar radiation would be particu-
larly felt.

In order to investigate this subject we recommend: First, a
more extended comparison of the declination curves at Kew and
Stonyhurst, after the manner of the preliminary comparison
already referred to in this report. Secondly, a more extended
comparison between the meteorological and the magnetical
weather of the British Isles, after the manner of the preliminary
comparison also referred to in this report. Thirdly, a more
extended investigation with the object of deciding whether
declination range inequalities do really appear to travel from
west to east as far at least as phase is concerned.

Finally, with the view of carrying out the valuable suggestions
of Senhor Capello, contained in a letter published in an appendix
to this report, page 239, namely, that the directors of observatories
possessing self-recording magnetographs should arrange together
some uniform plan of utilising the curves produced by such
instruments, we recommend that communications should be
entered into with the Kew Committee of the Royal Society in
order to concert some method of action in this respect.

[From same Report, Nov. 22, 1882, p. 57.]
CONNEXION BETWEEN SOLAR AND TERRESTRIAL PHENOMENA.

Sun and Magnetism : New Theory.

With regard to the connexion between solar activity and
aurorse, magnetic disturbances, and earth currents, Professor
Stokes has proposed a new theory*. That aurorse consist in
electric discharges taking place, usually at any rate, in the higher
regions of the atmosphere, is allowed on all hands; the only
question is, how are these discharges occasioned, and what is the
nature of the connexion between phenomena apparently so re-
mote? Professor Stokes contends that the source of the discharge
is to be sought in atmospheric electricity, which not being
relieved by the thunderstorms which take place in low and
moderately low latitudes accumulates in the higher latitudes till
it has sufficient power to occasion a discharge. He regards the
earth as analogous to a Leyden jar, the lower portion of the

* Nature, Vol. xxrv, 1881, pp. 593—598 and 613-—618. [Lecture on Solar
Physies.]
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atmosphere forming the dielectric, while the higher portion bears
some analogy to the exterior metallic coating of a jar; only, the
air in the higher regions is far from being a good conductor, like
the tinfoil of the jar, and merely opposes a very much smaller
resistance to a disruptive discharge than does the denser portion
below. Thus when the difference of tension between the upper
atmosphere over one region and that over some other more or less
distant region becomes sufficient, a discharge takes place. The
opposite electricities, previously bound by induction at the surface
of the earth, being thus set free, a redistribution takes place,
giving rise to earth currents; and the assemblage of currents
partly terrestrial, partly atmospheric, form very nearly closed
circuits, and exercise magnetic influence at a distance, giving rise
to magnetic disturbances. When the sun is unusually disturbed,
the intensely heated portions of matter which come up from
below to the sun’s surface cause increased radiation, especially
as regards rays of high refrangibility, and this, bemg in part
absorbed in the upper regions of the earth’s atmosphere, is
supposed to render them better conductors, or rather to cause
them to oppose less resistance than before to disruptive discharges,
facilitating thereby displays of aurore, and occasioning the earth
currents and magnetic disturbances, which on this theory have
their origin in auroral discharges.

[From same Report, Nov. 22, 1882, Appendix A, by Prof. Stokes, pp. 75—77.]

MEMORANDUM AS TO ONE MODE OF DEALING WITH THE
INDIAN SOLAR PHOTOGRAPHS.

I assume the available data to be a set of photographs, each
taken at a known time, and presenting one fiducial line, whether
1t be the shadow of an equatorially mounted wire, or the common
chord of two solar images taken on the same plate after a suitable
interval without disturbing the telescope in the interim.

Taking the photographs in chronological order it will be con-
venient in the first instance to attach reference numbers to the
spots, which might be written on a waste positive, or on a hand
sketch. In successive photographs of what is unquesttonably the
same spot, it would be well to use the same reference number
followed by a distinctive letter 4, B, C.

For anything beyond a statistical enumeration of numbers and
areas the first step 1s to measure the position of a spot relatively
to the sun’s disc and the fiducial line. For this I have thought of
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two plans, the first the simpler and cheaper, the second the more
accurate and complete.

The first is to rule with diamond on glass, or better perhaps
etch on glass, a network of cross-lines, the interval being, say, the
100th part of the average diameter of the photographed image.
The photograph being placed with the collodion uppermost, the
scale 1s laid on it, with the ruled lines against the collodion, and
one set parallel to the fiducial line. The scale might be centred
on the photograph, but this would involve some trouble unless the
scale were provided with slow motions in two directions, and then
the photograph might be injured unless a little space were left
between, in which case errors of parallax might come in. Instead
of attempting more than a rough centering, it would seem best to
read both limbs and the spots just as they lie, when by a simple
calculation we get the abscisse of the spots referred to the centre
of the disc, and the diameter of the disc. I will suppose that the
latter plan is adopted. In that case the figuring of the graduation
had best go from zero on the left, instead of having the zero in the
middle. Supposing the photographs about 4 inches in diameter
each interval would be about the 25th of an inch, and might be
divided by estimation to 10ths.

We should commence with the readings taken in a direction
perpendicular to the fiducial line. Using a lens we should read
the first limb, the spots in succession, the second limb. A thread
moving parallel to the fiducial line would be required for guiding
the eye down a ruled line to the lower edge where the graduation
is figured. Precisely the same process would have to be gone
through for the readings in the perpendicular direction.

An exceedingly simple calculation would then give the two
coordinates of a spot measured from the centre of the image, and
referred to radius 100.

It may be noticed in passing that the effect of terrestrial
refraction is eliminated by referring each set of coordinates to the
measured diameter in its own direction. It is only, however, in
case the photograph were taken when the sun was pretty low that
the effect of refraction would be sensible.

The most convenient process is next to calculate the polar
coordinates (or in other words the distance from the centre and
angle of position) from the rectangular coordinates. Let S, E, P
be the centre of the sun, the earth regarded as a point, the spot.
The radius vector inferred from the rectangular coordinates is very
nearly that belonging to the orthogonal projection of SP on a
plane through S perpendicular to S&. A very minute correction,
which depends on the non-parallelism of SE&, PE, and which can
be made at once by inspection, suffices to reduce it to the
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orthogonal projection. The distance from the centre referred
to the scale radius =1 is the sine of the inclination of SP
to SK.

The time of taking the photograph being known, we get the
sun’s longitude L from the Nautical dlmanac, and thence the
inclination, /, of circles of latitude and declination passing
through the sun from the formula

tan J = tan O cos L,

where O is the obliquity of the ecliptic. The fiducial line, which is
applied primarily to the equator, is hereby referred to the ecliptic;
and by applying to this angle the angle of position, which forms
one of the polar coordinates, we get the inclination of the plane
ESP to a plane through ZS perpendicular to the ecliptic. Two
formulee equally simple with the above then give the heliocentric
latitude and longitude of the spot.

The other method, which I should prefer, is to measure at
once the polar coordinates, using a microscope of very low power
with cross-lines. The microscope slides along a horizontal rest,
graduated so as to read with a vernier, say to 0:001 inch, or else
0001 of the average radius. The rest and microscope are sup-
ported on a horizontal circle graduated to degrees, with a vernier
reading to 5 and by estimation to 1. The plate is laid on a
support underneath this, which is provided with slow motions in
two rectangular directions for centering.

If readings taken by applying a scale to the photograph and
estimating the fractions of intervals be deemed sufficiently
accurate, a glass scale graduated by concentric circles and radial
lines might be used instead of the rectangular network. The
estimation would be a little more troublesome and less accurate,
but the trouble of subsequent reduction to polar coordinates
would be saved.

We should thus get with very little trouble the heliocentric
places of the various spots in each photograph, referred to the
celestial sphere. But we should also wish to know the places
referred to the sun itself, treated as if it all revolved together like a
solid globe, which Carrington has shown to be only approximately
true. This might be done by calculation, using Carrington’s
elements. But the calculation is considerably longer than those
hitherto mentioned, and it would be desirable to avoid it by a
graphical process.

The simplest process of this kind that I have thought of, and
one which would, I believe, give the reduced places even more
accurately than is required considering errors of observation, is to
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use a large globe. This would have the further advantage of
presenting to the eye the combined results in a digested form.
The globe should be provided with two axes at an inclination of
7°15". The meridian circle should be graduated to degrees, better
perhaps subdivided to 20". The globe is a blank, save as to two
circles, the equators of the two axes respectively. These circles
are divided into degrees, or better to 20. One pole represents
the pole of the ecliptic, the other that of the sun’s equator.

The globe being mounted so as to turn for the ecliptic, the
places of the spots referred to the celestial sphere are entered on
1t by means of the latitudes and longitudes found as above.
‘When a sufficient number are entered to make it worth while, the
globe is mounted so as to turn about the other axis. An arbitrary
origin of time is taken, say 1879, January 1, Greenwich mean
noon. The dates of the photographs, reckoned from the beginning
of the year in days and fractions of a day, are divided by the
assumed time of the sun’s rotation, and the integral rotations
being omitted, the fraction of a rotation is converted into degrees.
Call this angle 4. The spots marked on the globe for a given
photograph are then all set back by the value of the angle 4 for
that photograph, and marked on the globe in ink of a different
colour.

We shall thus have depicted, not only the places of the spots
on the celestial sphere, but their places on a sphere turning with
the sun.

It would be desirable to lay down in the ecliptic position or
rather mounting of the sphere, not only the heliocentric places of
the spots, but also those of the earth in the ecliptic, and to have
provided a brass limb, a little more than a quadrant, which is
loose and intended merely for a ruler. Perhaps a mere flexible
strip of metal would be better. When a spot is observed a good
way from the centre of the disc, the quadrant rule should be laid
down between the places of the earth and the spot, and a line,
longer or shorter according as the spot was observed more or less
near the edge, drawn through the place of the spot. This may be
afterwards useful in comparing results, since the position of the
spot along the drawn line is more or less uncertain.

When the globe gets too full, the entries on it can be copied
out on two plane maps, one for celestial and the other for solar
places, the old entries on the globe painted out, and the globe
used afresh.
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[From same Report, Nov. 22, 1882, Appendix H, pp. 212—214.]

MEMORANDUM FOR THE USE OF OBSERVERS WITH PROFESSOR
BALFOUR STEWART’S ACTINOMETER, PREPARED BY PROFESSOR
G. G. StokES, SEC. R.S., AND ADOPTED BY THE COMMITTEE
ON SOLAR PHYSICS.

The Committee regard the instrument herein described as an
apparently good instrument, though it has not yet been tried
under conditions more favourable to actinometric observation than
can be obtained in the United Kingdom. Partly on this account,
but even more on account of the still immature condition of the
whole subject of actinometry, they deem it premature to attempt
to draw out anything like a code of instructions for regular
observation with it, and think it best to place the instrument in
the hands of one or more intelligent observers interested in the
subject, and residing in suitable localities at very considerable
elevations above the level of the sea, indicating to them the
objects which it is sought to attain, but leaving it in great
measure to their own judgment, and to the experience they will
gain in using the instrument, how best to carry out the observa-
tions in detail.

Let it be understood then that the chief object which it
1s sought wltvmately to attain by the use of an actinometer is a
knowledge of the variations (if any) in the heat radiation from the
sun itself.

The first great obstacle to the attainment of this object is
that arising from variations in the heat-intercepting power of the
earth’s atmosphere. To reduce this to a minimum a station is in
the first instance chosen which, while favourably conditioned in
other respects as regards climate, is well elevated above the level
of the sea, so as to get rid of the denser and more dusty and hazy
portions of the atmosphere. A suitable station having been
chosen, the next point is to select proper occasions for observation,
A cloud covering the sun would of course make the observation
impossible; but even a slight veil of cirrus is found to interfere
materially with the amount of heat coming directly (that is,
without any deflection) from the sun. Hence the observer should
choose times when the blue sky is to all appearance free from
haze. Detached clouds need not prevent an observation, unless
during some part of the time of exposure they come so near the
sun that the rays they reflect are liable to pass through the lens
in such a direction as to fall on the bulb of the thermometer.
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Vitiation of the observation by wisible causes of interception
of the heat rays having been thus guarded against, there still
remains the possibility of casual fuctuations being produced by
the 1nvisible constituents of the atmosphere. For the detection
of these, and for learning the conditions of their absence, we can
only have recourse to a comparison of the results of observations
made on different occasions. To render such a comparison
effective, memoranda should be made at the time of the observa-
tions of the condition of the atmosphere, so far as can be judged
by the eye, and by readings of the ordinary meteorological mnstru-
ments, and the altitude of the sun should be measured (no great
accuracy being required in the measures) and recorded, or else
subsequently calculated from the known time of day and year.

With a view to throwing light on the conditions of atmo-
spheric fluctuations in the raciation received at the surface of the
earth, the Committee would suggest that the actinometer above
described should be observed in conjunction with some qualitative
instrument which gives an immediate graphical and visible
indication of the power of the sun. An instrument devised by
Mr Winstanley, and modified by Captain Abney, would appear to
be very suitable for this purpose. A complete accordance between
the two instruments is not to be expected, because the ther-
mometer in Mr Winstanley’s instrument is exposed to radiation
from various directions. The difference between the two instru-
ments in this respect may be useful in throwing light on the
causes of atmospheric fluctuation.

When the observer has learned how to avoid at least the
grosser forms of atmospheric fluctuation, he may attack the
problem of the effect of the sun’s altitude on the amount of heat
radiation intercepted. For this purpose specially favourable days
should be chosen, and observations made at frequent intervals,
from shortly after sunrise to near sunset. The condition of the
atmosphere on these days should be carefully recorded. The days
used for the purpose should not be confined to one season, as it is
possible that the normal condition of the atmosphere at a given
place, and with it the amount of absorption for a given altitude
of the sun, may vary with the season. All through the observa-
tions above referred to, or at least after he has learned to
recognise and avoid the more serious atmospheric fluctuations, the
observer must bear in mind that the instrument itself (the acti-
nometer) is on its trial, and he must be alive to the possibility of
variations in the readings, due merely to different conditions
of exposure, or to other purely instrumental sources. For testing
the instrument itself, times should be chosen when, as far as the
observer can judge, there is a freedom from casual atmospheric
fluctuations, and it would be well to take a good number of
consecutive observations with the screen alternately on and off,
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When the observer has learned how to avoid, as far as may be,
merely casual atmospheric fluctuations, and considers that the
instrument has been sufficiently tested, he may commence ob-
servations taken with a view to their possibly forming part of
a permanent record. For this it would be proper to get a result
for each day, so far as atmospheric conditions permit; but how
many observations it would be desirable to take, whether they
should be taken at stated hours, or with stated altitudes of the
sun, or whether the most favourable opportunities as to atmo-
spheric conditions should be seized which present themselves, not
too far from noon, so that the sun has a high altitude, are
questions which cannot well be answered till the preliminary
experiments above mentioned have been made. The observations
for permanent record can hardly be reduced until the effect of
altitude has been determined, but they may be made as soon
as the observer has made sufficient progress in learning to avoid
casual sources of error.

‘When all has been done that can be done at one station, the
discussion of the records obtained may lead to presumptive
evidence in favour of a variation in the actual radiation emitted
by the sun itself; but so important a conclusion could not be
considered as established without corroborative evidence, arising
from the comparison of simultaneous observations at at least one
other favourably situated station widely separated from the
former. As soon, therefore, as the method shall have been brought
into thorough working order, especially as regards the rules to be
followed for the avoidance of casual atmospheric fluctuations,
it is desirable that the stations of observation should be
multiplied.



ON THE HIiGHEST WAVE oF UNIFORM PROPAGATION.
(Preliminary notice.)

[From the Proceedings of the Cambridge Philosophical Society, Vol. 1v, Pt. 6,
pp. 361—365. May 14, 1883.]

THERE 1is one particular case of possible wave motion,
applicable to a fluid of practically infinite depth, in which all
the circumstances of the motion admit of being expressed mathe-
matically in finite terms, the necessary equations being satisfied
exactly, and not approximately only; while the general expressions
contain an arbitrary constant permitting of making the amplitude
any whatsoever up to the extreme limit of cycloidal waves, coming
to cusps at the crests. This possible solution of the equations
was given first by Gerstner, near the beginning of the present
century. The motion however to which it relates is not of the
irrotational class, and could not therefore be excited in a fluid
previously at rest by forces applied to the surface; nor could it be
propagated into still water from a disturbance at first at a distance.
In fact, the conditions requisite for its existence are of a highly
artificial character; so that the chief interest of the solution is
one arising from the imperfection of our mathematics, which
makes it desirable to discuss a case of possible motion, however
artificial the conditions may be, in which everything relating to
the motion can be pretty simply expressed in finite terms.

There can be no question however that it is the irrotational
class of possible wave motions which possesses the greatest, almost
the only, intrinsic interest; since it is this kind alone which can
be excited in a fluid previously at rest by means of forces applied
to the surface, such for example as the unequal pressure of the
wind on the surface, or propagated into previously still water from
a distance.
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In a paper read before the Society in 1847, and published in
the Transactions*®, 1 have investigated the motion of oscillatory
waves in which the motion is not very small, by the method of
successive substitutions, proceeding to the second order in the
case of an arbitrary depth, and to the third order in the simpler
case in which the depth is infinite. In the latter case the terms
of the third order were found to be very small even in the case of
waves of very considerable magnitude. The series converge less
rapidly when the depth is finite; and when the length is very
great compared with the depth of the fluid the convergence
becomes so slow that the method practically fails, and is not
therefore applicable to solitary waves,

The circumstances of the motion of solitary waves of con-
siderable height have been investigated by M. Boussinesqt and
Lord Rayleighi.

The evidence of the existence of a type of oscillatory irrota-
tlonal waves which are uniformly propagated is derived from the
nature of the process of approximation, which is one of a
systematic character that can certainly be carried on to as many
orders as we please, all the conditions of the problem being satis-
fied to the order to which we step by step advance. If therefore
the series that we are working with be convergent, there can be
no question of the possible existence of uniformly propagated
waves. But for a given depth and given wave-length there
remains in our series a disposable constant on which the height
depends, and on the value of which the degree of convergency
depends. By taking this constant small enough the series will be
convergent ; though what the limit may be that separates con-
vergency from divergency, the process of expansion does not show.

It seems to me pretty certain that the series will remain
convergent until a singular point appears at the boundary of the
fluid. Some years ago I was led by simple considerations to the
conclusion that the occurrence of a singular point in the profile
at which two branches meet at a finite angle (or as it might
conceivably have been, touch, forming a cusp) entailed as a
consequence the existence of two tangents inclined at angles of

[* Ante, Vol. 1, pp. 197-—229,]
+ Comptes Rendus, Tom. Lxxir (1871), p. 755,
+ Philosophical Blagazine, Vol. 1 (1876), p. 257.
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4+ 30° to the horizon; so that the ridges of the waves came to
wedges of 120°*. In a supplement to my former papert lately
published I have conducted the approximation in a different
manner, which is more convenient for proceeding to a high order.
In this latter method the coordinates «, y are expressed in terms
of the velocity-potential ¢ and stream-line function 4, instead of ¢
and ¢ in terms of # and y. The approximation is carried to the
fifth order for deep water, and to the third when the depth is
finite. Still even in this method the labour of the approximation
rapidly increases with the order, so that the result of working out
a great number of terms would not repay the labour; and ex-
pansion by series is hardly applicable to the determination of the
circumstances of the highest possible wave. When a series whose
general term contains a power or other function of some parameter
@ is convergent when « lies below a certain critical value, and
divergent when it lies above, it may be convergent when « has the
critical value, but if so its convergence is very slow. If we allow
that the highest possible wave comes to a ridge of 120°, that,
combined with our knowledge of the form of waves of very con-
siderable height, would enable us to draw very approximately the
theoretical outline of the highest possible wave. But it is
tantalizing to get thus near it and not to be able to complete
the solution.

The expansion in series would be of little avail for the reason
I have mentioned; but it occurred to me that some method of
trial and exror might succeed. I have devised one which promises
so well that a notice of the method may not be without interest to
the Society, though I am not at present in a condition to present
the result, except it were in a rough way, not having completed
the numerical calculations required, nor even begun them in the
second, and that the more interesting, of the two cases to which
the method applies. I have employed the series contained in the
supplement before referred to, not however directly, for the
purpose of numerical calculation, but merely as stepping-stones
enabling me to effect a certain analytical transformation in which
the use of series is got rid of.

The method is not confined to the case of the highest possible
wave, but may also be used for lower waves, though unless the

[* dnte, Vol. 1 (1880), p. 226.]
+ Mathematical and Physical Papers, Vol, 1, [1880, pp. 314—326].



OF UNIFORM PROPAGATION. 143

wave 1s near the maximum it is better to have recourse to the
series. In any case of uniform propagation, we may readily reduce
the motion to a case of steady motion, and when that is done the
velocity of a particle at the surface will be the same as that of a
particle sliding along a smooth curve corresponding to the out-
line of the wave, and will accordingly be that due to the depth
below a fixed straight line, which for the sake of a name may be
called the datum line. In the case of the highest wave, since a
particle at the vertex of a wedge must be momentarily at rest,
the datum line will pass through the crest; in other cases its
height above the wave must be assumed for trial as well as the
outline of the wave.

The trial outline (and the trial datum line in the case of a
wave short of the highest) being known, the velocity at any point
of the surface is known, and therefore by an ordinary integration
or by a quadrature the velocity-potential at the surface is known.
Hence ¢ being known in terms of #, # is known in terms of ¢.
But the coordinates of points in the surface are given in terms of
¢ by equations (23), (24) of the supplement referred to on putting
Yr, the parameter of a stream line, =0. These equations have
been simplified by choosing the units of space and time such as to
make a wave-length, and also the change of ¢ in passing from one
wave to the next, each equal to 27, and % is the value of — 4 at
the bottom. The equations then become

w=—¢+2A, (" + e F)sinng....oooiininnn. (1),
Y= ZA, (% — ™) cos Nttt (2).

The negative sign of ¢ in the first of these equations arises
from choosing the direction of « positive as that of the propagation
of the waves in the first instance, and therefore the direction of #
negative as that of the superposed velocity by which the motion
is converted into steady motion.

2 having been determined in terms of ¢, # + ¢ is to be deemed
a known function of ¢, 7 (¢) suppose, which will have 27 for its
period. The coefficients 4, may then be deemed known, and on
substituting in (2) we shall have y expressed in terms of f (¢).
Denoting this expression for y by F (¢) we shall have
™ enk —en

1 2 k . Y
F(¢)=;2/0 i cosng sinng’ f(p") de’ ...(3),

¢ 4 g
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where of course the integration with respect to ¢’ may stop at =
if we double the coefficient, since f (27 — ) =—f (¢p).

If the trial curve had been the true outline, the curve of which
the ordinate is determined by (3) would have come out identical
with the original, which would have proved the original to have
been correct: otherwise the new curve will be a much closer
approximation to the true form than the trial curve, and may be
used as a fresh trial curve, and so on.

In (3) the integration is supposed to be performed first and
then the summation. If we attempted to perform the summation
first, we should encounter a series which is neither convergent
nor divergent, but fluctuating. Such a series may however be
summed by regarding it as the limit of the convergent series
formed from it by multiplying the nth term by the nth power of a
quantity less than 1, and which is supposed to become equal to 1
in the limit. The summation cannot however, so far as I know,
be actually effected except in two cases.

The first case is that of a fluid of infinite depth, for which the
fraction involving the exponentials becomes equal to 1, and the
series divides into a pair of series of sines of arcs in arithmetical
progression, which may be summed by regarding it as the limit of
another series; a view to which we are naturally conducted by
regarding the stream-line of the surface as the limit of a stream-
line taken first a little below the surface. The other case is that
in which the wave-length is regarded as infinitely great instead of
infinitely small compared with the depth of the fluid. In this
case we first take a crest for the origin of 2 and then make A
infinite, when the sum takes the form of a definite integral which
may be evaluated according to the known formula

@© HAT __ e—aw . a
f , gﬁmi sin baedw = ewblzaiﬁz .

As the other crests have moved off to infinity, we are in this

case left with a solitary wave.

The results in the two cases are as follows :(—

1. Case of oscillatory waves in a fluid of infinite depth

F@) =5 [ (& +0~F =0} ot I dx.
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2. Case of a solitary wave

F@)=4 [ 1@+ 0)~f 6= 0)) o

In the former case, partly as a severe test of the method, and
partly for other reasons, I took as the trial outline a serrated line
composed of straight lines inclined at angles® of +830° to the
horizon, giving ridges formed of wedges of 120° and troughs
formed of similar wedges inverted. Even in this case, where the
assumed form is so egregiously wrong as regards the troughs,
the first approximation led to a form presenting ridges of 120°,
which for a considerable way down hardly differed from the
original, while in lieu of the angular troughs I got a curved
outline, with a depth from crest to trough of about 022 of the
wave length, instead of 1/24/3 or 0:309+ as in the serrated outline
assumed for trial. The results of some other trials are encouraging
as to the success of the method, but as I mentioned already the
numerical calculations are not finished .

* In the case of a simple serrated outline, f(¢), and therefore F (¢), is
independent of the assumed inclination.

[+ This should be 0°288.]

[ See the paper next following.]



[Not before published.)

ON THE MaAXIMUM WAVE oF UNIFORM PROPAGATION. BEING
A SECOND SUPPLEMENT TO A PAPER ON THE THEORY OF
OSCILLATORY WAVES.

Proposed method® of drowing the wave profile, and determining the velocity
of propagation, for oscillatory waves on deep water, when the disturbance
is too great to be mastered by the approximations, proceeding according
to powers of b, giwven in last paper of Vol. I of my book.

From the approximations as far as they go, from our general knowledge
of the forms of waves, and in the case of the maximum wave from the
knowledge that it comes to a ridge of 120°, we can draw a flowing curve
representing approximately the wave outline. Draw also a horizontal line
above, at an estimated height so that the ordinate downwards from it to any
point at the surface may be that to which the velocity is due when the wave
motion is converted into steady motion. In the case of the maximum wave,
the horizontal line passes through the crests. Let the unit of length be the
one-2wth part of the length of a wave. Find graphically or numerically
fN/y ds as a function of » in the first instance. This will be ¢, save as to
a constant multiplier. Alter the scale so as to make the integral equal to =
for a half-wave. Then we get #—¢ (or x+¢ if we take ¢ negatively) as
a function, first of #, and then by re-plotting of ¢. Let it be f(¢), then the
relations

f(p)=Asin ¢+ A, 8in 2¢ + 4, 8in 3p+...,
y=2A;cos p+4,cos 2¢p+ d;co8 3p+...
give

Y=g | [ +)=F (=2} cot G

which is to be found graphically or by tabulation. Plot the curve, This will
coincide with the trial curve if the trial curve and trial line were right;
otherwise the curve will probably indicate the character of the correction,
‘We must then repeat the process on the better trial curve, and so on till we
get sufficiently near the truth.

22 September, 1880.

[* This abstract was found type-written, uniform with the paper which follows.]
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IN a supplement to the above paper (ante, Vol. 1, p. 314)
I have given a method which is much more convenient than the
original one for conducting the approximation when carried to a
somewhat high order. Yet even by this method the analytical
expressions become very laborious to work out when the order to
which we proceed is high. And even in the most favourable case,
namely, that in which the depth may be taken as infinite, the
convergency of the series we have to deal with becomes, as will
shortly be shown, very slow when the wave of greatest possible
height is reached; while when the depth is small compared with
the length of a wave, so that the waves approach in character to a
succession of solitary waves, the convergency though ultimately
assured is slow for a considerable way, and may even be exchanged
for divergency at first, long before the highest possible wave is
reached. It is therefore practically impossible to determine in
this way the form of the highest possible wave, or even of a wave
somewhat short of that.

Let us examine in the first instance the ultimate convergency
in the case of the highest possible wave.

It has been shown at p. 226 of the first volume (not indeed by
a method absolutely rigorous, since it involves the assumption
that the increase of height may be'pushed to the limit of giving
singular points in the outline) that the greatest wave comes to a
ridge of 120°, and that near the ridge the difference between the
velocity-potential and that at the ridge varies as the § power of
the distance, and consequently the distance as the 2 power of the
increment of velocity-potential. If therefore y be expressed as
a function, not of # but of ¢, we shall obtain a wave-like curve
presenting a series of cusps.

The values of the coordinates expressed in terms of the funec-
tions ¢, v, and simplified by choosing the units of length and time
such as to make m =1 and ¢ =1, are given in equations (23), (24),
on p. 320 of Vol. 1. In these equations the origins of « and ¢ are
taken at a troungh and the condition to be satisfied at the free
surface is not yet introduced. They are

z=—d+2A; [@UH 4 WD) singp ... (1),
Yy=—p+2A; {@VHH — e W} cos i ...l (2),
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where all integral values of ¢ from 1 to o are to be taken. The
parameter «Jr of the stream-line of the free surtace being 0, we
have for points in the outline of the wave

w=—¢+ ZA; (% + ) SIN TP .ovninnnnnnn, (3),
gy = SA; (e — ey COS U cuniininnnnnnn. (4).

Tet y be denoted by f(¢p). In terms of f(¢) supposed known
we can determine A4;. We have

(6% — ) A; = f 02” S(@)cosidp'dp .......... (5).

Suppose that at the point for which ¢ =7 there is a cusp,
and that elsewhere within the limits of integration f(¢) and its
derivatives have values that vary continuously without becoming
infinite. Divide the total interval 0 to 27 in (5) into a number
of partial intervals, and treat each by integration by parts. The
result for any interval will in general be

LF@sinig+ 57 () cos i — 3 £ ($)sinip— .,

which has to be taken between limits corresponding to the
beginning and end of the interval. For the particular interval
however comprising the cusp (which it will be convenient to
suppose situated within an interval and not at the edge) the above
transformation cannot be made, as f’(¢) becomes infinite within
the limits of the interval. Except as regards this interval, the
terms of the above development at the inferior limit will be
destroyed by those at the superior limit in the interval preceding,
and the terms at the superior limit by those at the inferior limit
of the interval following, which applies even to the first and last
intervals if we regard, as we may, the function f(¢) as returning
into itself. Hence we see that except as regards what is con-
tributed by the immediate neighbourhood of the cusp, the function
A; (€% + ¢~%) of 1 decreases faster as 1 increases than any inverse
power of ¢, 1t decreases in fact, in general, in geometric pro-
gression.

It F(§)=4 - B

in the immediate neighbourhood of the cusp, where ¢, =¢ —, we
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have for the part of A; due to that neighbourhood, omitting the
constant term, for which the above transformation does apply,

7 (6% — e~y A; = — Bf¢1% oS 1, depy,

and as we may contemplate this integral apart from the restriction
that 4 is to be an integer we may put it

d o
—_ B d_q/. f(l)l_‘; SIn Z¢1 dd)l .
Now when ¢ is very large,

f b sin i d,

taken from a given small negative to a given small positive
quantity will not sensibly differ from the integral taken from — co
to oo, which we know is I"(3)s~% Hence for very large values
of © we have for the part of 4; due to the neighbourhood of the
cusp
~ Br™! e‘”"% T'(3)i 8, or 37w 1T (2)Bet*iH.

It appears therefore from (4) that the coefficient of cosigp in a
term of very high order will vary ultimately as ¢%. The series
will therefore converge only very slowly.

It is however a point of no little interest to determine from
theory, at least approximately, the form of the highest possible
wave.

We have seen that analytical development of the coefficients
of multiples of ¢ is of little avail, because on the.one hand a
large number of terms of the series would have to be taken, and
on the other the labour of the approximation, even according to
the method explained in the first supplement (Vol. 1, p. 314)
increases rapidly with the order of the term. We must therefore
have recourse to some independent method.

I have devised a method, depending upon a sort of trial and
error, by which the true form can rapidly be approximated to,
though each approximation involves quadratures which would be
laborious if great accuracy were demanded; if however only
sufficient accuracy to arrive at a good figure is required, the
labour is not very great.
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Suppose an outline of the wave assumed for trial, the assumed
curve consisting of a series of undulations all alike, and sym-
metrical with respect to both the maxima and minima ordinates,
and everywhere of a flowing form, except (in the particular case of
the maximum wave) at the crests, where it comes to wedges of
120°. I say “in the particular case of the maximum wave”
because the method, though specially designed for the investiga-
tion of the maximum wave, is not confined to it, but is of general
application, and might be usefully employed were it wished to
investigate a wave short of the maximum, but still so high as to
make the series used in Vol. I too slowly comvergent to be prac-
tically useful. A tolerably near approximation to the true form
may be guessed from our knowledge of the approximate forms of
high though not excessively high waves. The assumed function
may be either expressed by an empirical formula, or by a numerical
table, or by a flowing curve which is drawn by eye with the aid of
a flexible ruler.

Let the wave motion be reduced to steady motion by super-
posing the requisite horizontal velocity. Then if the assumed
curve be true, the velocity along the surface will vary in the
same manner as that of a particle sliding along a smooth curve.
This follows from the equation of condition that has to be satisfied
at the free surface. The velocity at any point will in fact be that
due to the depth below a certain horizontal line, which for the
convenience of a name I will call the datum [line. If we are
dealing with the maximum wave, a particle at a crest will be
momentarily at rest, and therefore the datum line will pass
through the crests. If we are dealing with a wave short of the
maximum, the datum line will lie at a finite distance above the
crests. The height will be approximately known from our know-
ledge of the approximate motion of high waves. This height
must be assumed for trial as well as the form of the curve.

Let V' be the whole velocity; s the length of the curve
measured from the origin, which is placed at the lowest point;
1y, the depth of any point in the surface below the datum line.
Then without specifying the units of length and time we have

V =2y, ¢=—jvczs=-f«/27%%dx.
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The sign is here —, because the waves are supposed propagated in
the positive direction, so that in the steady motion the flow is
backwards. Since the units have been so chosen as to make the
length of a half-wave equal to 7, and the increment of ¢ in passing
in the positive direction from a trough to a crest equal to — 7, we
have accordingly

¢——7rf yls—dx/f ylz——dw ............ (6).

From this equation we can by integration or quadratures
determine ¢ as a function of & for any value of @ from 0 to ,
which determines ¢ generally on account of the symmetry and
periodicity of our functions. We may observe that # and — ¢ are
co-periodic, and have the same mean value. As ¢ is known in
terms of x, we may regard z as known in terms of ¢. Let
x+ ¢=F(¢p), then F () being deemed known, we can determine
4; from (3) by the usual formula, and then by substituting in (4)
we shall get v or f(¢). If the ordinates thus obtained agree with
those of the trial curve, it proves that the curve was right; other-
wise we shall obtain a new curve, which will be found to be a
much closer approximation to the true form. This may then be
used as a new trial curve, and so on until the approximation is
sufficient.

The process would however be futile from the slowness of
convergence of the series if we had first to determine the 4;s
and then sum the series. In the two extreme cases, however,
of a very great or very small depth the summation may be effected
in the first instance and the integration left to the end, and then
the integral may be obtained by quadratures. In the general
case we encounter, in the attempt to carry out this process,
a series which so far as I know cannot be summed. At this
point therefore the investigation takes one or other of two
different directions which require to be followed separately.

Case of Oscillatory Waves in Deep Water.

Writing e=%A4, for A4;, and then making % infinite, we have
from (1) and (2), for the expressions of the coordinates in terms
of the functions ¢,

#=—¢+ZA¥sindd ..o ("),
y=—Y+JA;6¥C08T0d ..ocviiiiiiiini.. (8),
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and from (8) and (4) we have, remembering the definitions of the

functions F (), f(¢),
F(p)=ZA4;8m0p ccvivvininiiiiniinn.. 9),

F(D)=Z4;c08%h.ccuiiiiiiininininnin. (10).

From these equations we can determine either of the functions
F(¢), f(¢) supposing the other known. Supposing F (¢) known,
we have

F(@#)= S cosig f j F (&) sin i/ ddy oo (1.

We cannot immediately transpose the order of the two
processes summation and integration, as the series would not
be convergent. But we may regard the expression (11) as the
limit of the expression thence obtained by introducing 7% into
the general term, where r is a quantity less than 1, and which
is supposed to become 1 in the limit. We thus get by summing
the series 2% cos icp sin t¢”

I rsin (¢ + ¢)
f(d))_%fo {1—2rcos(¢’+¢)+7n2
. rsin(¢'—¢) N
+1—2rsin(¢’—¢)+7,2} F(¢)de' ......... (12).

When r becomes 1, the two terms within brackets become
respectively 4 cot (¢’ + ¢) and ¥ cot } (¢’ —¢), and may be re-
placed by them accordingly, unless possibly in the immediate
neighbourhood of ¢"+ ¢ =0 or 7, when the cotangent becomes
infinite. Reserving this point for consideration a little further on,
and making the change, we have

F@ = g [T leoth (@ @)+ coth (6= §)) F($) 9.

On account of the periodicity of the function F(¢) it does not
signify at what point the integration begins provided the range
be 27r. Putting then ¢ +¢ or ¢'— ¢, as the case may be, =y,

and integrating from y =0 to x =2, and observing that #(¢)
changes sign with ¢’, we have

F@ =g [ B +20- Fp =) covbxdx

= o [[1F@+x0 = F (@~ cot by dxeerrrr(13),

0
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since the quantity under the integral sign in the first line remains
unchanged when 27 —y is written for .

As the substitution of 1 for » might have been reserved to the
end, and as the quantity under the integral sign in (13) does not
become infinite, but merely takes the form 0 x oo, remaining
finite, we see that the validity of (13) is not affected by the
circumstance that one of the terms within brackets in (12) is made
infinite within the limits of integration by putting »=1.

In just the same way F(¢$) might have been deduced from
J(¢) supposing the latter known. The result is

F()=— oo [ {F(d+x)~fb—2x)) cot b dy ...(14).
2 )y

By way of trying the method in such a way as to put it to
a pretty severe test, I took for the trial outline a serrated profile,
composed of equal straight lines inclined at angles of + 30° to the
horizon. The quadratures were worked roughly, as it was intended
merely to test the method, not to obtain a final result. In the
following figure 1t will be observed that the assumed form satisfies
the conditions of wave motion about the crests, while they are
egregiously violated in the neighbourhood of the troughs. The
figure* gives the outline obtained by the first approximation.
The dotted lines represent the trial outline where it does not
sensibly confound itself with the curve obtained.

The unit of length employed in the above investigation is the
one-27rth part of A, and to complete the solution we must determine
the unit of time, or what comes to the same, the velocity of
propagation, which hitherto has been taken as unity by properly
choosing the unit of time. For this we must revert to the
equation of condition at the surface, or, which is the same thing
otherwise expressed, the condition that, in the steady motion, the
motion of a particle at the free surface is the same as that of
a particle gliding along a smooth curve. The method followed in
the present and former supplements leads us naturally to define
the velocity of propagation by the constant ¢, though in the
general case of an arbitrary depth the relation of this constant
to the physical circumstances of the motion is not immediately
apparent, except to a first approximation, when the ambiguity

[* The rough figure has not been reproduced: see infra, p. 158.]
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in the meaning of the term “velocity of propagation” noticed in
Art. 3 of the original paper (Vol. 1, p. 202) does not occur. In
neither of the extreme cases however in which the ratio of the
length of a wave to the depth of the fluid is regarded as infinitely
small or infinitely great is there any ambiguity, whatever be the
magnitude of the motion.

We see from (7) that the increment of ¢ in passing from
a crest to a trough is —ar, or expressed in general units — JcA.
But by the condition at the surface it is also — [/(2gy,) ds taken
from a crest to the next trough, y, being the depth below the
datum line. Hence

c:%l\/%ldszcy 92{ .................. (15),

where v is a numerical factor which must be found by quadratures.
This particular form of expression is of course chosen to exhibit
the ratio of the velocity of propagation to what it would be in
infinitely low waves of the same height.

The components of the velocity at any point are given by the
differential coefficients of z or y with respect to ¢ or +, by the
formulae on p. 315 of Vol. 1, namely,

de g dx _ g dy

YTde T dgT " Ay
_dé_ o de o dy
v_@_—31w_31d¢ ............... (16).

_(da\t | fdxN\®
s_%) - (a;u)

At a great or even moderate depth, the series (7) and (8)
converge rapidly, on account of the factor ¢ in which + is
negative and not small, and F(¢$) being supposed known the
easiest way would doubtless be to develop F () in a series of sines
to a few terms, substitute the resulting values of 4,, 4,, 4;... in
(7) or (8), and differentiate. But in the case of the maximum
wave the series (7) and (8) would converge only slowly in the
neighbourhood of the surface; and in accordance with the spirit
of the method here employed we ought to dispense with the use
of the series.
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This may be done just as before. Either coordinate will serve
for the differentiation, and if we choose y we may employ the
equation (12) already obtained, merely writing » + 4 for f(¢) and
e¥ for r. Making the same further transformation as in that case
we get

Py

1/~ iny d
y+~lf=;J0 {F<¢+x)—F<¢—x)}éu:i—ﬁ—%"

(17).

To sum up, the method here suggested is as follows :—

From our knowledge of the theoretical forms of high waves we
must first assume a form as near the truth as we can guess. The
choice is assisted by our knowledge that if we are dealing with
the maximum wave the crests must be wedges of 120°, and if the
wave be a little below the maximum the crests must be rounded
in such a manner as to approach towards wedges of 120°. We
must further assume for trial a datum line. If the waves be
the highest possible, we know that the datum line passes through
the wedge-formed crests. If though high they are short of the
maximum, the datum line will lie above the crests. Its height
above the mean elevation will not greatly differ from what it is for
the maximum wave. We must now determine ¢ by quadratures
from (6) for a sufficient number of points. The functional relation
between ¢ and « being thus ascertained, to the degree of accuracy
that we think expedient, #+ ¢ is to be regarded as a known
function, F(¢), of ¢. The ordinate y or f(¢$) is then to be
calculated by quadratures for a sufficient number of points from
(18). The difference between the corrected outline and that with
which we started for trial will enable us to judge whether the
former may be deemed sufficiently exact ; if not, the process is to
be repeated, using the corrected outline for a new trial outline.
When we are satisfied with the outline, the equation (15) will
give the velocity of propagation, and thereby make known the
hitherto unknown unit of time to which the expressions are
referred.

The evidently near approach of the first approximation to the
true form even when we start with such an outlandish figure
as a serrated line formed of a succession of equal straight lines
inclined at angles of + 30° to the horizon, indicates that we need
not fear to use for the trial form a polygon of a moderate number
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of sides, so chosen as to make a tolerable approach to the true
form. In the form got for a first approximation from the serrated
outline, the troughs are in all probability still a little too low.
Guided by these considerations I take for the trial form a polygon
made up of lines inclined to the horizon at angles of 30° from
0 to 0’5 of the half wave’s length, 20° from 0'5 to 08, 10° from
08 to 09, and 0° from 09 to 1. From the figure on p. 212 of
Vol. 1, [not] reproduced a little further on, it seemed probable that
the hollows would be flatter towards their middles than towards
their sides. A polygon for trial form presents great facilities for
the first step in the calculation, namely determining ¢ in terms
of @, as the relation for each side in succession is given by a simple
formula,

In approximating to the maximum wave, it will be convenient
if we can find an ewmpirical formula of a tolerably simple character
that shall give for a single wave a near approximation to the true
form*, The result of the trial with the serrated outline, combined
with what we know of the character of the wave, will enable us to
come pretty close to the true form.

The empirical formula, giving », as a function of #, is not
meant to extend beyond the limits + 7 or x. The symmetry
requires that it be an even function of @ It must vanish at the
two limits, We must also have at the limits dy,/dx = + tan 30°.
Again the result of the trial with the serrated outline, as well as
what was shown at p. 226 of Vol. 1 regarding the form of ¢ or
in terms of the coordinates in the immediate neighbourhood of
a crest, leads to the conclusion that at the crest d?y,/da?*=0.
Assuming then the empirical formula

= A + Ba* + Ca* + Das,

and introducing the three conditions above mentioned, we get

a2 at o N3/ x? at s
91:A<1—3;2+3:T;—*>+ ’’’’’’ <97?:—14‘;4+r )-

H —
77.6 7‘—6

The remaining arbitrary constant 4 enables us to assign to v,
at the centre what may appear a probable value. The trough
would probably lie a little above that determined for a first

[* This passage was marked by the author to be omitted.]
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approximation in starting with the serrated outline. We may
accordingly assume as a near approximation y, = 1-33. This gives

22 4 6
v =1330 — 1:950 f? +0816 ”%4 — 0196 %6

Case of a Solitary Wave.

When the length of a wave is very great compared with the
depth of the water, it has been shown (Vol. 1, pp. 209, 325) that
unless the height be extremely small the series begin by diverging.
Accordingly as the length tends to infinity, the initial terms must
be very small, or else the sum would be very large, which is con-
trary to hypothesis. The terms will therefore get small and
numerous, and the proper form of the expression when the limit
of an infinite wave length is attained will be an integral. In the
expressions (1) and (2) the origin of ¢ has been supposed to be a
point where the wave is symmetrical right and left, and may be
therefore either a crest or a trough. In the investigation for the
waves in deep water it has been supposed to be a trough, but now
it will be more convenient to suppose it a crest.

Assuming then the origin to be at a crest, and supposing the
wave length to become infinite, the other elevations will move off
to infinity, and we shall pass to a solitary wave. Replacing the
sums in (1) and (2) by integrals, we shall have for the expressions
for the coordinates

w=—d+ f @ (1) (W 1 ¢n 0 sin ndda ... (a),
0
Yt f @ (1) (¥ — g4+ cos nddw ....(b),
0
where = denotes an arbitrary function, and for the coordinates of
the surface

z+ d=f(P) =f: @ (n) (€™ 4 e~™) sin npde ......(c),

Comparing (¢) with the known development of an arbitrary
function in a series of that form we have

@ (n) (e + ™) = —2’”—_[0 F(d)sinng' de,
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and now substituting in (d) we get

F(¢p)= f / o= cos nd sinnd’ dedd’...... (e).

enk + e—nk

But it 1s known that

? gk — gk d T 1
0 enk + —nk Sln naar = k ewa/?k — e—‘rralzk )

and applying this formula to (¢) we get

17~ 1
F((ﬁ) = E fo {ew @)k _ g (Pl i2k
1

7 7
em =)k _ p—m (¢’—¢)/zk} f(d) ) d¢ .

+

Since f(¢') changes sign with ¢', retaining the same magni-
tude, the quantity under the integral sign remains unchanged
when ¢’ changes sign; therefore we may take the integral from
— o to o and divide by 2, and then by an easy transformation
we get

F@) =1 [ 1@+ 0)—f (6= ) s ()

In a similar manner f(¢) might be expressed in terms of F ()
supposed known, but this expression will not be required.......

[This investigation, of which the preceding paper was an abstract, has been
found among Sir George Stokes’ manuscripts in a form ready for press, along
with a fair copy of the laborious calculations required for the three appli-
cations of the method to be mentioned presently. The following measure-
ments of the ratio ¢ of height of wave to length, taken from these three
plotted approximations, just as they have been found, are supplied by
Mr T. H. Havelock, Fellow of St John’s College, who has kindly examined
the manuscript calculations. They appear to show that the method is not so
successful as Sir George Stokes anticipated.

i.  The trial outline was a serrated profile composed of two equal straight
lines inclined at angles of +30° to the horizon. For it d=1/24/3=288 ; and
for the next approximation deduced therefrom, d="22, as stated supra, p. 145.

ii, The trial figure was a polygon made up of lines inclined to the
horizon, at an angle of 30° from 0 to 05 of the half wave length, 20° from 05
to 0-8, 10° from 08 to 0'9, and 0° from 09 to 1. In this case d=-21; and
from the next approximation deduced therefrom o =-165.

iii, The trial curve was a circular arc of 60°. In this case d=:134; the
next approximation gave d=195.



ON THE MAXIMUM WAVE OF UNIFORM PROPAGATION. 159

These calculations may be compared with the result given by Michell
(loc. cit. wnfra), which makes d for the highest wave equal to -142. It
will be observed that the change in d is in each case in the right direction,
but there is little sign of approximation to the true result.

The form of the highest possible waves, those with sharp summits of 120°,
has been completely determined by J. H. Michell (Piil. Mag. (5) XxxVI,
Dec. 1893, pp. 430—-437) for deep water, by a very refined analysis ; while, as
above mentioned, waves not near this limiting form are adequately treated
by Sir George Stokes’ previous method of approximation.

For this purpose Michell utilizes the function log dz/dw, where w=¢ +wjr
and z is the complex variable #+wy : the consideration of this function had
already led him (Michell, PAil. Trans. Jan. 1890, pp. 389—441 ; Love, Proc.
Camb. Phil. Soc. vir, May 1891, pp. 1756—201) to a general method of solution
of problems of steady jets or free streams in two dimensions, issuing from
reservoirs with straight boundaries. In the present problem, when reduced
as above to a steady motion, the same function can be extended over the
whole plane of z, and has no singularities except those corresponding to the
sharp crests of the waves. If the function dilz log g—; is used, these points are
simple poles, as Stokes had virtually shown. The poles being thus known,
the analytical type of this function is determined, and, introducing the surface
condition, the form of the profile of the waves is deduced by a rapid
approximation in a Fourier series. Cf. supra, p. 149.

The corresponding solution, by means of trains of image-poles, for waves
in water of finite depth, is only briefly sketched at the end of Michell’s paper.
It would include as a limiting case that of the solitary wave.

This latter problem has also been treated by J. McCowan (Phil. Mag. (5)
xxx1, 1891, pp. 45—58 and pp. 553—5H55, XXXVII, 1894, pp. 351—365) by
assuming, arbitrarily, suitable simple types of expression for w, namely

Uz +a tan §umz
for the general case, and
U (1= fh2 sec? humz) (1 — k2 sec? humaz)¥
for the highest or sharp-crested wave, in which the constants can be adapted
80 as to secure approximate satisfaction of the surface conditions; the results

are compared with those of Boussinesq and of Rayleigh. A further note
by Sir George Stokes, written in this connexion, is reprinted infra, p. 160.

Although as regards its special problem the fragment here published has
been superseded by Michell’s investigation, it is still of interest, on account of
the illustrations it affords, incidentally, of some refined points in analysis.]



NoreE oN THE THEORY OF THE SOLITARY WAVE.
[From the Philosophical Magazine, Vol. xxxI, Sept. 1891, pp. 314—316.]

IN a paper on the Solitary Wave by Mr J. McCowan, printed
in the July number of the Philosophical Magazine, for a copy
of which T am indebted to the kindness of the author, he refers
to a conclusion which I advanced in a paper written long since,
and reprinted full ten years ago, according to which a solitary
wave could not be propagated without change of form. As T have
known for the last ten years that this conclusion was erroneous,
and have published a paper in which the motion of a uniformly
propagated solitary wave was considered, I am not concerned
to defend it; but it may be well to point out the true source of
the error, respecting which I cannot agree with Mr McCowan.

While the first volume of my °Collected Papers’ was going
through the press, I was led to the conclusion (see p. 227) that
the highest possible waves of the oscillatory kind (the motion
being irrotational) presented a form in which the crests came
to wedges of 120°. On reflecting on the application of this to
very long waves propagated in water of which the depth is small
compared with the length of wave, I was led to perceive that the
conclusion above mentioned was erroneous, and also that the
source of the error was that it was not sufficient, even though
a solitary wave were very long, to treat it as indefinitely long, and
consequently to take the horizontal velocity as the same from the
surface to the bottom. On speaking on the subject to Lord
Rayleigh, he referred me to the previous papers on the solitary
wave by M. Boussinesq and himself, with which I was not at the
time acquainted. The conclusion of a supplement to my paper on
oscillatory waves, which forms the last article in Vol. 1, shows that
I was then fully alive to the possibility of the propagation of
a solitary wave without change; and in a short paper entitled
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“On the highest wave of uniform propagation (preliminary notice),”
read before the Cambridge Philosophical Society in 1883, and
printed in the Proceedings (Vol. 1v, p. 361), I have indicated
a new method, depending on a process of trial and error, for
determining numerically the circumstances of uniform propagation
of waves, whether of the oscillatory or solitary class, more especially
in the extreme case in which the crest comes to a wedge of 120°,
so that the wave is on the point of beginning to break*.

I cannot agree with Mr McCowan either that the form of
expansion which I used is inadmissible, or that the form which
he proposes at p. 58 to substitute, that of a series involving
exponentials in which the coefficient of # in the index is real, ig
(at least for my purpose) admissible. It is not true that a non-
periodic function of # cannot be expressed by means of periodic
functions; for example, the non-periodic function ¢=* may be
expanded in the definite integral

— 2 “
“wmlo
each element of which is periodic. On the other hand, the
form of expansion proposed by Mr McCowan is (at least for my

purpose) inadmissible, on account of the discontinuity of the
expressiont.

e e~ cos 2az . da,

I will now mention more particularly the step which led
me to a wrong conclusion. It is easily shown that in a very
long wave propagated in water the depth of which is small
compared with the length of the wave, the horizontal velocity
is nearly the same from the bottom to the surface for any vertical
section of the wave made by a plane perpendicular to the direction
of propagation. For a given depth of water and maximum height
of wave, this is so much the more nearly true as the length of the
wave 1s greater. The horizontal velocity tends indefinitely towards
constancy from top to bottom as the length of the wave increases
indefinitely. Now Sir George Airy has shown that for a wave
in which we may suppose the particles in a vertical plane to
remain always in a vertical plane, as they must do if the horizontal

[* See note appended supra, p. 158.]
[+ Mr McCowan replied that the ecriticism of this paragraph arose from
a misapprehension of his meaning.]

S. V. 11
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velocity is the same from top to bottom, the form of the wave must
gradually change as it progresses. It might seem therefore that,
however small we take the height of a wave at the highest point,
we have only to make the wave long enough and Airy’s investiga-
tion will apply, and the wave will change its form in time as it
travels along. Now in the solitary wave of Russell, the lower the
wave, the longer it is; and therefore it might seem as if we had
only to make the wave low enough and long enough and the
length would be so great that Airy’s investigation would apply,
and the form would change, though slowly.

The answer to this is that, however small we take the height,
we are not at liberty to increase the length indefinitely. There is
in fact a relation between the height and the length in a solitary
wave which can be propagated uniformly, which, though it is of
such a nature that the length becomes infinite when the height
becomes infinitely small, nevertheless forbids us for a given height,
however small, to increase the length indefinitely.

The possibility of the existence of a solitary wave of uniform
propagation is so far established by my investigation relating to
oscillatory waves, as that it is made to depend on the principle
that the infinite series by which the circumstances of the motion
of oscillatory waves is expressed must remain convergent until the
height is so far increased that the outline presents a singular point,
namely the wedge of 120°. If this be conceded, we have only
to make the wave-length (in the sense of the distance from crest
to crest, not in that of the distance from the point where one
of the swells begins to where it ceases to be sensible) infinite,
in order to pass to the case of a solitary wave uniformly pro-
pagated.



TaHE OUTSKIRTS OF THE SOLITARY WAVE,

[From Prof. H. Lams’s Hydrodynamics, 1895, p. 421.
Communicated by Sir GEORGE STORES*.]

THE motion at the outskirts of the solitary wave can be
represented by a very simple formula. Considering a progressive
wave travelling in the direction of a-positive, and taking the
origin in the bottom of the canal, at a point in the front part
of the wave, we assume

p=Ae ™ cosmy ..iiviiiininns ... (xiil).

This satisfies V¢ =0, and the surface-condition

d2¢) d¢_ .
%_;.gd—y_o ........... covenne.. (x1V)

will also be satisfied for y =h, provided

 tan mh
02=g/zW ................... ceeen(xV).

This will be found to agree approximately with Lord Rayleigh’s
investigation if we put m= b7

[* A letter to Prof. Lamb of date July 25, 1900, contains the following passage :
“I do not know whether you may have noticed that the equation I gave you
(Hydrodynamics [1895], p. 421, eq. xv)

tan mh
G h
is an exact equation, that is to say it gives an exact relation between two constants
relating to a solitary wave, namely, (1) the velocity of propagation, and (2) the
logarithmic decrement (or increment) of the velocity [of flow at the surface, which
is Ame "=t} at o great distance from the middle of the wave. It therefore
serves as a useful test of the degree of accuracy of an approximate solution of the
problem. Its application to a solitary wave only postulates two things, (1) the
possibility of the existence of a solitary wave, (2) the fact that in such a wave the
velocity [of flow] at a great distance from the middle of the wave ultimately
changes in geometric progression, Of neither of these postulates is there, I think,
any doubt.”]

11—2



ON A REMARKABLE PHENOMENON OF CRYSTALLINE REFLECTION.

[From the Proceedings of the Royal Society ;
received Feb. 25, 1885.]

Introduction.

IN a letter to me, dated March 29, 1854, the late Dr W. Bird
Herapath enclosed for me some iridescent crystals of chlorate of
potash, which he thought were worth my examination. He noticed
the intense brilliancy of the colour of the reflected light, the
change of tint with the angle of incidence, and the apparent
absence of polarisation in the colour seen by reflection.

The crystals were thin and fragile, and rather small. T did not
see how the colour was produced, but I took for granted that it
must be by some internal reflection, or possibly oblique refraction,
at the surfaces of the crystalline plates that the light was polarised
and analysed, being modified between polarisation and analysation
by passage across the crystalline plate, the normal to which I sup-
posed must be sufficiently near to one of the optic axes to allow
colours to be shown, which would require no great proximity, as
the plates were very thin. To make out precisely how the colours
were produced seemed to promise a very troublesome investigation
on account of the thinness and smallness of the crystals: and
supposing that the issue of the investigation would be merely to
show in what precise way the phenomenon was brought about by
the operation of well-known causes, I did not feel disposed to
engage in it, and so the matter dropped.

But more than a year ago Professor E. J. Mills, F.R.S., was so
good as to send me a fine collection of splendidly coloured crystals
of the salt of considerable size, several of the plates having an area
of a square inch or more, and all of them being thick enough to
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handle without difficulty. In the course of his letter mentioning
the despatch of the crystals, Professor Mills writes: “They (the
coloured crystals) are, I am told, very pure chemically, containing
at most 0-1 per cent. foreign matter. They are rarely observed—
one or two perhaps now and then, in a large crystallisation....I have
several times noticed that small potassic chlorate crystals, when
rapidly forming from a strong solution, show what I suppose to be
interference colours; but the fully formed crystals do not show
them.”

Some time later I was put into communication with Mr Stanford,
of the North British Chemical Works, Glasgow, from which esta-
blishment the crystals sent me by Professor Mills had come.
Mr Stanford obligingly sent me a further supply of these interest-
ing crystals, and was so kind as to offer to try any experiment
that I might suggest as to their formation.

I am informed that at the recent Health Exhibition a stand
was exhibited from the chemical works at Widnes, showing a fine
collection of brilliantly coloured crystals of chlorate of potash.
I did not see it. It would seem that the existence of these
coloured crystals is pretty generally known, but I have not seen
mention of them in any scientific journal, nor, so far as I know,
has the subject been investigated.

On viewing through a direct-vision spectroscope the colours of
the crystals which I had just received from Professor Mills, the
first glance at the spectrum showed me that there must be some-
thing very strange and unusual about the phenomenon, and
determined me to endeavour to make out the cause of the pro-
duction of these colours. The result of my examination is de-
scribed in the present paper.

SECTION I.— Preliminary Physical Examination.

1. Tt will be necessary to premise that chlorate of potash
belongs to the oblique system of crystallisation. The fundamental
form may be taken as an oblique prism on a rhombic base, the
plane bisecting the obtuse dihedral angle of the prism being the
plane of symmetry. Rammelsberg denotes the sides of the prism
by P, and the base by O, and gives for the inclinations of the



166 ON A REMARKABLE PHENOMENON

faces PP =104° 22" and CP =105°35". The face C, which is per-
pendicular to the plane of symmetry, is so placed as to bring three
obtuse plane angles together at two opposite corners of the
parallelopiped. The salt usually forms flat rhombic or hexagonal
plates parallel to the C plane, the edges of the rhombus being
parallel to the intersections of the P faces by the C plane, and the
hexagons being formed from the rhombic plates by truncating the
acute angles by faces parallel to the intersection of the (' plane
by the plane of symmetry.

The plane angles of the rhombic plates, calculated from the
numbers given by Rammelsberg, are 100° 56" and 79° 4/, while the
hexagonal plates present end-angles of 100° 56" and four side-angles
of 129°32'. These angles are sufficiently different to allow in most
cases the principal plane of a plate, or even of a fragment of a
plate, to be determined at once by inspection. But in any case of
doubt it may readily be found without breaking the crystal by
examining it in polarised light. There are good cleavages parallel
to the two P planes and to the C' plane. The crystals are very
commonly twinned, the twin plane being C.

2. If one of the brilliantly coloured crystals be examined by
reflection, and turned round in its own plane, without altering the
angle of incidence, the colour disappears twice in a complete re-
volution. The vanishing positions are those in which the plane of
incidence is the plane of symmetry. The colour is perhaps most
vivid in a perpendicular plane; but for a very considerable change
of azimuth from the perpendicular plane there is little variation
in the intensity of the colour. There is no perceptible change of
tint, but on approaching the plane of symmetry the colour gets
more and more drowned in the white light reflected from the
surface.

3. If instead of altering the azimuth of the plane of incidence
a plane be chosen which gives vivid colour, and the angle of in-
cidence be altered, the colour changes very materially. If we
begin with a small angle the colour begins to appear while the
angle of incidence is still quite moderate. What the initial colour
is, varies from one crystal to another. As we increase the angle
of incidence the colour becomes vivid, at the same time changing,
and as we continue to increase the angle the change of colour goes
on. The change is always in the order of increasing refrangibility;
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for example, from red through green to blue. Not unfrequently,
however, the initial tint may be green or blue, and on approaching
a grazing incidence we may get red or even yellow mixed with the
blue, as if a second order of colours were commencing.

4. 'The colours are not in any way due to absorption; the
transmitted light is strictly complementary to the reflected, and
whatever is missing in the reflected is found in the transmitted.
As in the case of Newton’s rings, the reflected tints are much
more vivid than the transmitted, though, as will presently appear,
for a very different reason.

5. As Dr Herapath remarked to me long ago, the coloured
light is not polarised. It is produced indifferently whether the
incident light be common light or light polarised in any plane,
and is seen whether the reflected light be viewed directly or
through a Nicol’'s prism turned in any way. The only difference
appears to be that if the incident light be polarised, or the re-
flected light analysed, so as to furnish or retain light polarised
perpendicularly to the plane of incidence, the white light reflected
from the surface, which to a certaln extent masks the coloured
light, i1s more or less got rid of

6. The character of the spectrum of the reflected light is
most remarkable, and was wholly unexpected. A direct-vision
hand spectroscope was used in the observations, and the crystal
was generally examined in a direction roughly perpendicular to
the plane of symmetry; but it is shown well through a wide range
of azimuth of the plane of incidence. No two crystals, we may
say, are alike as to the spectrum which they show, but there are
certain features common to all. The remarkable feature is that
there is a pretty narrow band, or it may be a limited portion of
the spectrum, but still in general of no great extent, where the
light suffers total or all but total reflection. As the angle of
incidence is increased, these bands move rapidly in the direction
of increasing refrangibility, at the same time increasing in width.
The character of the spectrum gradually changes as the angle of
incidence is increased ; for example, a single band may divide into
two or three bands.

The bands are most sharply defined at a moderate angle of

incidence. When the angle of incidence is considerably increased,
the bands usually get somewhat vague, at least towards the edges.
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7. The commonest kind of spectrum, especially in crystals
prepared on a small scale, which will be mentioned presently, is
one showing only a single bright band; and I will describe at
greater length the phenomena presented in this case.

When the angle of incidence is very small, the light reflected
from the reflecting surfaces of the crystal shows only a continuous
spectrum. As the angle of incidence is increased, while it is still
quite moderate a very narrow bright band shows itself in some
part of the spectrum. The particular part varies from one crystal
to another; it may be anywhere from the extreme red to the
extreme violet. It stands out by its greatly superior brightness
on the general ground of the continuous spectrum, and when it is
fully formed the reflection over the greater part of it appears to be
total. The appearance recalls that of a bright band such as the
green band seen when a calcium salt, or the orange band seen
when a strontium salt, is put into a Bunsen flame. The bright
band is frequently accompanied right and left by maxima and
minima of illumination, forming bands of altogether subordinate
importance as regards their illumination. Sometimes these seem
to be absent, and I cannot say whether they are an essential
feature of the phenomenon, which sometimes fail to be seen
because the structure on which the bands depend is not quite
regularly formed, or whether, on the other hand, they are some-
thing depending on a different cause.

Disregarding these altogether subordinate bands, and taking
account of the mean illumination, it seems as if the brightness of
the spectrum for a little way right and left of the bright band
were somewhat less than that at a greater distance.

When the main band occurs at either of the faint ends of the
spectrum, it is visible, by its superior brightness, in a region
which, as regards the continuous spectrum, is too faint to be
seen, and thus it appears separated from the continuous spectrum
by a dark interval.

When the angle of incidence is increased, the band moves in
the direction of increasing refrangibility, and at the same time
increases rapidly in breadth. The increase of breadth is far too
rapid to be accounted for merely as the result of a different law of
separation of the colours, which in a diffraction spectrum would be
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separated approximately according to the squared reciprocal of the
wave-length, while in bands depending on direct interference the
phase of illumination would change according to the wave-length.

8. The transmitted light being complementary to the incident,
we have a dark band in the transmitted answering to the bright
band in the reflected. In those crystals in which the band is best
formed, it appears as a narrow black band even in bright light.
When the band first appears as we recede from a normal incidence
it is extremely narrow, but it rapidly increases in breadth as the
angle of incidence is increased.

9. Some of the general features of the phenomenon were
prettily shown in the following experiment :—

Choosing a crystal in which the bright band in the reflected
light began to appear, as the incidence was increased, on the red
side of the line D, so that on continuing to increase the incidence
it passed through the place of the line D before it had become of
any great width, I viewed through the crystal a sheet of white
paper illuminated by a soda flame. A dark ring was seen on the
paper, which was circular, or nearly so, and was interrupted in two
places at opposite extremities of a diameter, namely, the places
where the ring was cut by the plane of symmetry. The light of
the refrangibility of D was so nearly excluded from the greater
part of the ring that it appeared nearly black, though slightly
bluish, as it was illuminated by the feeble radiation from the
flame belonging to refrangibilities other than those of the im-
mediate neighbourhood of D. The ends of the two halves of the
ring became feeble as they approached the plane of symmetry.
A subordinate comparatively faint ring lay in this crystal im-
mediately outside the main one.

10. Suspecting that the production of colour was in some way
connected with twinning, I examined the cleft edge of some of the
crystals which happened to have been broken across, and found
that the bright reflection given by the exposed surface was inter-
rupted by a line, much finer than a hair, running parallel to the
C faces, which could be easily seen with a watchmaker’s lens, if
not with the naked eye. This line was dark on the illuminated
bright surface exposed by cleavage, a surface which I suppose
illuminated by a source of light not too large, such as a lamp, or a
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window at some distance. The plane of incidence being supposed
normal to the intersection of the cleavage plane by the C faces,
on turning the crystal in a proper direction round a normal to
the plane of incidence, the light ceased to be reflected from the
cleavage surface, and after turning through a certain angle, the
narrow line, which previously had been dark, was seen to glisten,
indicating the existence of a reflecting surface, though it was much
too narrow to get a reflected image from off it. The direction of
rotation required to make the fine line glisten was what it ought
to be on the supposition that the fine line was the cleavage face of
an extremely narrow twin stratum.

11.  On examining the fine line under the microscope, it was
found to be of different thicknesses in different crystals, though in
those crystals which showed colour it did not vary very greatly.
On putting a little lycopodium on the cleavage face interrupted
by the fine line, it was seen that in those crystals which showed
colour the breadth of the twin stratum varied from a little greater
to a little less than the breadth of a spore. The thickness ac-
cordingly ranged somewhere about the thousandth of an inch,
such being the diameter of the spores. The stratum was visibly
thicker in those crystals which showed their bright band in the
red than in those which showed it in the blue.

12. That the thin twin stratum was in fact the seat of the
colour, admitted of being proved by a very simple experiment. It
was sufficient to hold a needle, or the blade of a penknife (I will
suppose the latter), close to or touching the surface of the crystal
while it was illuminated by light coming approximately in one
direction, suppose from a lamp, or from a window a little way off,
and to examine the shadows with a watchmaker’s lens. The light
reflected from the crystal comes partly from the upper surface,
partly from the twin stratum, partly from the under surface,
which, however, may be too irregular to give a good reflection.
The twin stratum is much too thin to allow of separating the
light reflected from its two surfaces in an observation like the
present, and it must therefore be spoken of as simply a reflecting
surface.

Corresponding to the three reflecting surfaces are three shadows,
where the incident light is cut off: (1) from the upper surface,
(2) from the twin stratum, (3) from the under surface. Where the
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body casting the shadow is pretty broad in one part, as the blade
of a penknife, the shadows in part overlap. The shadows are
arranged as in the figure, where the numerals mark the streams
of light reflected from the portions of the field on which they are
respectively written, 1 denoting the stream reflected from the
upper surface, 2, that reflected from the twin stratum, 3, that
reflected from the under surface.

Let the crystal show by reflection, at the incidence at which
the observation is made, say a green colour. Then this green
colour is seen in the full field 123, though mixed with the white
light reflected from the upper surface. The green is a good deal
more vivid in the field 23, as the reflection from the upper surface
is got rid of The green is wholly absent from the fields 3, 0, 13,
and 1. The field 3, and perhaps also the field 13, may show a
little of the complementary red from transmitted light. The
distinction between the fields 12 and 123 is not conspicuous, and
often cannot be made out. The distinction, so far as it depends
on the third shadow, is strongest between 3 and 0, and next to
that between 13 and 1. We are not obliged, however, to have
recourse to the third shadow, which is often difficult to see; the
first two are amply sufficient.

Suppose we take a crystal which is broken at the edge so as to
expose a cleavage surface interrupted by the cleavage of the narrow
twin stratum. The stratum usually lies a good deal nearer to one
C face than the other. Now when the two faces are yurned upper-
most alternately, and the distances between the first and second
shadows are observed, they are found to be, as nearly as can be
estimated, in the same proportion as the distances from the twin
stratum to the two faces respectively.

Again, one of the crystals showed the exposed section of the
twin stratum slightly inclined to one of the broad faces, which
though smooth to the touch did not give a perfect reflection of
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objects viewed in it. On holding different parts of the blade of
a penknife opposite to different parts of this face, the distance
between the first and second shadows was found to vary, as nearly
as could be guessed, in proportion to the thickness of crystal
between the upper face and the twin stratum.

The conclusion was confirmed by observations made with
sunlight; but the simple method of shadows is quite as good,
and even by itself perfectly satisfactory.

13.  Another useful method of observation, not so very simple
as the last, 1s the following. A slit, suppose horizontal, not very
narrow, is placed in front of the flame of a lamp at some distance,
and an image of the slit 1s formed by a suitable lens, such as the
compound achromatic objective of an opera-glass. The crystal is
placed so as to receive in focus the image of the slit, being inclined
at a suitable angle, usually in a plane perpendicular to the plane
of symmetry. The eye is held in a position to catch the reflected
light, and the images formed by the different reflections are viewed
through a watchmaker’s lens. If the slit be not too broad, the
images formed by reflection from the upper surface, from the twin
stratum, and from the under surface are seen distinct from each
other, so that the light reflected from the twin stratum may be
studied apart from that reflected from the upper and under
surfaces.

In this mode of observation it can readily be seen, by turning
the crystal in its own plane, and noticing the middle image, which
is that reflected from the twin stratum, how very small a rotation
out of the position in which the plane of incidence had been the
plane of symmetry suffices to re-introduce the coloured light, which
had vanished in that critical position, which appears to be a position
not merely of absence of colour, but of absence of light altogether ;
at least if there be any it is too feeble to be seen in this mode of
observation, though from theoretical considerations we should con-
clude that there must be a very little reflected light, polarised
perpendicularly to the plane of incidence.

14. On allowing a strong solution of chlorate of potash in hot
water to crystallise rapidly, in which case excessively thin plates
are formed in the bosom of the liquid, I noticed the play of colours
by reflection mentioned by Professor Mills as belonging to the
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crystals in general at an early stage of their growth. This, how-
ever, proved to be quite a different and no doubt a much simpler
phenomenon. The difference was shown by the polarisation of the
light, and above all by the character of the spectrum of the light
so reflected, which resembled ordinary spectra of interference, and
did not present the remarkable character of the spectra of the
peculiar crystals.

15. When, however, the whole was left to itself for a day or
s0, among the mass of usually colourless crystals a few were found
here and there which showed brilliant colours. These colours were
commonly far more brilliant than those of the crystals mentioned
in the preceding paragraph, and they showed to perfection the
distinctive character of the spectrum of the peculiar crystals. It
would have been very troublesome, if possible at all, to examine
the twinning of such thin and tender plates as those thus obtained
by working on a small scale; but the character of the spectrum,
which 1s perhaps the most remarkable feature of the phenomenon,
as well as the dependence of the colour on the orientation, may be
examined very well; and thus anyone can study these features of
the phenomenon, though he may not have access to such fine
coloured crystals as those sent me by Professor Mills.

16. A certain amount of disturbance during the early stages
of crystallisation, whether from natural currents of convection or
from purposely stirring the solution somewhat gently so as not to
break the crystals, seems favourable to the production of the
peculiar crystals. When the salt crystallised slowly from a quiet
solution I did not obtain them.

17. As it is easy in this way, by picking out the peculiar
crystals from several crystallisations, to obtain a good number of
them, the observer may satisfy himself as to the most usual
character of the spectrum. It is best studied at a moderate in-
cidence, as 1t is sharper than when the incidence is considerable.
The spectrum most commonly shows a single intensely bright
band, standing out on the general ground of a continuous spectrum
of moderate intensity.

A few cases seem worthy of special mention. In one instance
two bright bands were seen, one at each faint end of the spectrum,
somewhat recalling the flame-spectrum of potassium salts. In
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another case a red, a green, and a blue band were seen, reminding
one of the spectrum of incandescent hydrogen. This crystal in air
was nearly colourless at moderate incidences, but showed red at
rather high incidences. In another case the crystal was red of
intense brilliancy in the mother-liquor, but was colourless when
taken out, even at high incidences. Presumably the stratum in
this case was so thick that a steeper incidence than could be
obtained out of air was required to develop colour.

18. The number of coloured crystals obtained by crystallisa-
tions on a small scale, though very small, it is true, compared
with the number of colourless ones, was still so much larger than
Professor Mills’ description of the rarity of the crystals had led me
to expect, that I at one time doubted whether the simply twinned
crystals which are so very common, if taken at a period of their
growth when one component is still very thin, and of suitable
thickness, might not possibly show the phenomenon, though the
thin twin was in contact on one face only with the brother twin,
the other face being in the mother-liquor or in air. The circum-
stances of reflection and transmission at the first surface of the
twin plate must be very different according as it is in contact
with the brother crystal, or else with the mother-liquor, or air, or
some other fluid; and yet the peculiar spectrum was shown all
the same whether the crystal was in air, or immersed in the
mother-liquor, or in rock oil. However, to make sure of the
matter I took a simply twinned crystal, and ground it at a slight
inclination to the C face till the twin plane was partly ground
away, thus leaving a very slender twin wedge forming part of the
compound crystal, and polished the ground surface. On examining
the reflected light with a lens, no colour was seen about the edge
of the wedge, where the thickness of the wedge tapered away to
nothing; and that, although the bands seen near the edge in
polarised light, which was subsequently analysed, showed that
had colours been producible in this way as they are by a thin
twin stratum, they would not have been too narrow to escape
observation.

In another experiment a simply twinned crystal was hollowed
out till the twin plane was nearly reached. The hollowing was
then continued with the wetted finger, so as to leave a concave
smooth surface, the crystal being examined at short intervals in
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polarised light as the work went on, so as to know when the twin
plane was pierced. But though in this case the twin plane formed
a secant plane, nearly a tangent plane, to the worked surface, and
near the section the twin portion of the crystal must have been
very thin for a breadth by no means infinitesimal, as was shown
by examination in polarised light, yet no colours were seen by
reflection. I conclude therefore that the production of these
colours requires the twin stratum to be in contact on both its
faces with the brother crystal

19. The fact that a single bright band is what most usually
presents itself in the spectrum of the reflected light (though some-
times two or three such bands at regular intervals may be seen)
seems to warrant us to regard that as the kind of spectrum
belonging to the simplest form of twin stratum, namely, one in
which there are just the two twin surfaces near together. The
more complicated spectra seem to point to a compound inter-
ference, and to be referable to the existence of more than two
twin planes very near together; and in fact in some of the crystals
which showed the more complicated spectra, and which were
broken across, I was able to make out under the microscope the
existence of a system of more than two twin planes, close together.
Restricting ourselves to what may be regarded as the normal case,
we have then to inquire in what way the existence of two twin
planes near together can account for the peculiar character of the
spectrum of the reflected or transmitted light. ‘

SectioN IL—Of the Proxzimate Cause of the Phenomenon.

20. Though I am not at present prepared to give a complete
explanation of the very curious phenomenon I have described,
I have thought it advisable to bring the subject before the Society,
that the attention of others may be directed to it.

That the seat of the coloration is in a thin twin stratum,
admits I think of no doubt whatsoever. A single twin plane does
not show anything of the kind.

For the production of the colour the stratum must be neither
too thick nor too thin. Twin strata a good deal thicker than
those that show colour are common enough; and among the
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crystals sent to me I have found some twin strata which were a
good deal thinner, in which case the crystal showed no colour.

The more complicated spectra which are frequently observed
seem referable to the existence of more than two twin planes in
close proximity. There is no reason to think that the explanation
of these spectra would involve any new principle not already con-
tained in the explanation of the appearance presented when there
are only two twin planes, though the necessary formule would
doubtless be more complicated.

Corresponding to a wave incident in any direction, in one com-
ponent of a twin, on the twin plane, there are in general two
refracted waves in the second component in planes slightly inclined
to each other, and two reflected waves which also have their planes
slightly inclined to each other, the angle of inclination, however,
being by no means wery small, as chlorate of potash is strongly
double refracting. The planes of polarisation of the two refracted
waves are approximately perpendicular to each other, as are also
those of the two reflected waves; but on account of the different
orientation of the two components of the twin, the planes of
polarisation of the two refracted waves are in general altogether
different from those of the incident wave and of its fellow, the
trace of which on the twin plane would travel with the same
velocity. In the plane of symmetry at any incidence, and for a
small angle of incidence at any azimuth of the plane of incidence,
the directions of the planes of polarisation of the two refracted
waves agree accurately or nearly with those of the incident wave
and its fellow. In these cases, therefore, an incident wave would
produce hardly more than one refracted wave, namely, that one
which nearly agrees with the incident wave in direction of polarisa-
tion. In these cases the colours are not produced. It appears,
therefore, that their production demands that the incident wave
shall be very determinately divided into two refracted waves,
accompanied of course by reflected waves.

Tt seems evident that the thickness of the stratum affects the
result through the difference of phase which it entails in the two
refracted waves on arriving at the second twin plane. But whereas
in the ordinary case of the production of colour by the interposition
of a crystalline plate between a polariser and an analyser, we are
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concerned only with the difference of retardation of the differently
polarised pencils which are transmitted across the plate, and not
with the absolute retardation, it is possible that in this case we
must take into account not only the difference of retardation for
the differently polarised pencils which traverse the stratum, but
also the absolute retardation ; that is, the retardation of the light
reflected from the second relatively to that reflected from the first
twin plane.

21. T have not up to the present seen my way to going
further. It is certainly very extraordinary and paradoxical that
light should suffer total or all but total reflection at a transparent
stratum of the very same substance, merely differing in orientation,
in which the light had been travelling, and that, independently of
its polarisation. It can have nothing to do with ordinary total
internal reflection, since it is observed at quite moderate incidences,
and only within very narrow limits of the angle of incidence*.

[PosTscrrpr, from Nature, Vol. XXXII, p. 224, July 9, 1885.]

The appearance of Mr Madan’s paper in Nature, Vol. XXXII,
p. 102, induces me to offer some additional remarks on this
subject.

In the discussion that followed the reading of my paper
Mr Crookes referred to the closely analogous spectra exhibited by
opals, as deseribed in his paper (Proc. Boy. Soc., Vol. xvir). This
paper, though it came before me at the time when it was read, was
not in my mind when I wrote my own. I called shortly after-
wards at Mr Crookes’ house, and saw the spectra of his opals.
Supposing that there were sufficient grounds for the commonly
received idea that the colours of the opal are due to fine tubes in
the mineral, we did not at the time conceive that the phenomena
could be the same; were it not for this, I should certainly have
added to my paper a reference to that of Mr Crookes.

Mr Crookes was so good as to lend me his opals for more
leisurely study. The further examination has so impressed me
with the similarity of character of the spectra, that I am strongly

[* For further elucidation, see Lord Rayleigh, Phil. Mag. xxv1, 1888, pp. 256-265;
reprinted in Scientific Papers, 1z, p. 204. The phenomenon is reviewed in Lord
Rayleigh’s Obituary Notice, reprinted at the beginning of the present volume.]

s. V. 12
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disposed to think that the colours of the opal and those of the
chlorate crystals may be due to the same cause. This does not,
however, lead me to attribute tubes or striee to the chlorate
crystals, the structure of which can comparatively easily be made
out, but to doubt very greatly the theory which attributes the
colours of opal to fine tubes.

Mr Madan does not profess to have actually seen in the
chlorate crystals such tubes as he supposes to exist, nor could
I see anything of the kind on examining some of the crystals I
have got after the appearance of his paper. On the other hand,
I notice that Brewster did not state that he had actually seen the
supposed tubes, but merely inferred their existence from a com-
parison of the appearance under the microscope of the precious
opal with that of hydrophane. And Mr Crookes tells me that an
opal is not spoiled or affected by being immersed in water or even
oil. The fact is that it is extremely difficult to make out what
the actual structure is with which we have to deal in the case of
the opal, whereas in the case of the chlorate crystals it is unmis-
takable. Moreover, in the case of the chlorate crystals there is a
wonderful uniformity in the phenomena presented by the same
crystal, extending, it may be, over nearly the whole of even a
large crystal, whereas in the opal the colour extends over com-
paratively small patches; and even a single patch is seen under
the microscope to present differences of structure in different
parts. Hence if the colours in opal and those in the chlorate
crystals are really due to a similar cause, it seems much more
likely that a study of the phenomena of the chlorate crystals will
throw light on those of the opal, than that the phenomena of the
opal should furnish the key to the explanation of the colours of
the chlorate crystals.

In truth, I do not see how the presence of tubes, if such there
be in the opal, would account for the phenomena, and especially
for the very peculiar spectrum exhibited. The supposition of the
existence of rows of tubes leads one to look in the direction of
diffraction. But I do not see how monochromatic light, or, at
least, light almost monochromatic, can be obtained by diffraction.
And even independently of this consideration there is one feature
of the production of colour in the chlorate crystals which shows,
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at once and decisively, that at least in ¢heir case the colour cannot
be due to diffraction. If an iridescent crystal be chosen with an
even surface, and the flame of a candle in a dark room be viewed
by reflection in it, it is found that the colour is seen in the
direction of the regularly-reflected light. In fact, the coloured
light forms a well-defined image of the flame of the candle,
coinciding * with, or overlapping, the colourless image due to
reflection from the first surface. This differs altogether from what
we get in the case of a grating, or in that of mother-of-pearl or
Labrador spar. It agrees so far with the colours of thin plates,
or the colours shown by reflection by certain quasi-metallic sub-
stances, such as several of the aniline dyes, though the production
of colour in these three cases is due to three totally different
causes.

It has been conclusively proved that the seat of the colour in
the chlorate of potash crystals is in a very thin twin stratum;
and I entertain myself little or no doubt that the colour depends
in some way on the different orientation of the planes of polarisa-
tion in the two components of a twin, and on the difference
of retardation of the two polarised pencils which traverse the
thin stratum. But anything beyond this is at present only a
matter of speculation. I see only two directions in one or other
of which to look for a possible explanation; but as these could
only be propounded at considerable length, and the matter has not
at present advanced further, I refrained from saying anything
about it in my former paper, nor will I further mention it
here.

In conclusion, I would mention an interesting paper on “The
Spectrum of the Noble Opal,” by Prof. H. Behrens, a copy of
which I have just received by the kindness of the author. In
this paper, which is printed in the Neues Jahrbuch fiir Mineralogie,
&c., 1873, the author, who was evidently unacquainted with
Mr Crookes’s paper when he wrote his own, has described and
figured the peculiar spectra of several opals.
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THE COEFFICIENT OF VISCOSITY OF AIR. By HERBERT ToM-
LINSON, B.A. Communicated, with the addition of two
Notes, by Professor G. G. StoxEes, P.R.S.

[From the Plalosophical Transactions, Vol. 177, Part 11, 1886, pp. 767—799.
Received Jan. 6, read Jan. 14, 1886.]

Origin and Purpose of the Investigation.

THREE years ago I entered on a series of researches relating
to the internal friction of metals, little calculating, when I did so,
that the task which I had set myself would occupy almost the
whole of my spare time from that date to this. So, however, it
has been, and one of the many causes of delay has been the
necessity of making a re-determination of the coefficient of
viscosity of air; for the resistance of the air played far too
important a part in my investigations to permit of its being
either neglected or even roughly estimated. The coefficient of
viscosity of air may, according to Maxwell, be best defined by
considering a stratum of air between two parallel and horizontal
planes of indefinite extent, at a distance = from one another.
Suppose the upper plane to be set in motion in a horizontal
direction with a velocity of v centimetres per second, and to
continue in motion till the air in the different parts of the stratum
has taken up its final velocity, then the velocity of the air will
increase uniformly as we pass from the lower plane to the upper.
If the air in contact with the planes has the same velocity as the
planes themselves, then the velocity will increase v/r centimetres
per second for every centimetre we ascend. The friction between
any two contiguous strata of air will then be equal to that
between either surface and the air in contact with it. Suppose
that this friction is equal to a tangential force f on every square



ON THE COEFFICIENT OF VISCOSITY OF AIR. 181

centimetre, then f=uwv/r, where u is the coefficient of friction.
If L, M, T represent the units of length, mass, and time, the
dimensions of u are L7*MT.

Several investigators have attempted to determine the co-
efficient of viscosity of air, and the following table shows how
very widely the results obtained differ among each other.

TaBLE L
Cv(;efﬁci.ent of Temperature
Author*® aif %gsgz;;f: in degrees
units Centigrade
G. G. Stokes, from Baily’s pendulum
CXPEriments ..o.ovvveveeirereiirenenennn ‘000104
Meyer, from Bessel’s experiments...... *000275
Meyer, from Girault’s experiments ... 000384
MEYEr ivuiviiniiniiiiniierieiieieeiai, 000360 18
Meyer (second Paper)t .......ccovenennes 000333 83
” e -000323 215
’ 5 eerreerneeens “...| 000366 344
Maxwell ..oooiviiviiiiini, *000200 18

Further, Maxwell finds the coefficient of viscosity of air to be
independent of the pressure and to vary directly as the absolute
temperaturej. The above author gives the following formula for
finding u, the coefficient of viscosity, at any temperature 6° C.:

jw="0001878 (1 +-003650).

Maxwell offers an explanation of the difference existing
between his own results and those of Meyer, but states that
“he has not found any means of explaining the difference between
his own results and those of Professor Stokes.” Professor Stokes

* For references see Maxwell’s Bakerian Lecture, Phil. Trans. Vol. cLvi, 1866,
p. 249.

+ Meyer has more recently made other determinations of the coefficient, for
which see the end of the Paper.

+ This result does not seem to be confirmed by other experimenters. (See the
end of the Paper.)
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has, however, been good enough to inform me that, as at the time
of making his deductions from Baily’s experiments it was not
known that the coefficient of viscosity of air was independent
of the pressure, but, on the contrary, was assumed by him to vary
directly as the pressure, the resistance offered by the residual air
in Baily’s partial vacua was underestimated, and, as a consequence,
the deduced coefficient of viscosity was too small. It is to be
hoped that Professor Stokes will at some future period apply the
necessary corrections®, but as this has not yet been done, and as
we have still no explanation of the discrepancies existing between
the other values of u given in Table I, I wished to make some
independent observations on the viscosity of air for the purpose
of ascertaining how far these would agree with those of Maxwell,
in which I was inclined to place great confidence.

Maxwell employed the method of torsional vibrations of disks
placed each between two parallel fixed disks at a small, but casily
measurable distance, in which case, when the period of vibration
is long, the mathematical difficulties of determining the motion
of the air are greatly diminished. This method appeared to be
a very good one, but, as I wished to make my determinations under
conditions similar to those which held in my experiments on the
internal friction of metals, I have employed the torsional vibrations
of cylinders or spheres attached to a horizontal cylindrical bar
and moving in a sufficiently unconfined space. The mathematical
difficulties connected with the use of vibrating spheres are not
so serious, but those in which cylinders are concerned are very
considerable. They both, however, have been surmounted by
Professor G. (. Stokes in his valuable paper “On the Effect
of the Internal Friction of Fluids on the Motion of Pendulumst,”
and to this paper I am indebted for the mathematics essential to
the purpose of the present inquiry.

Description of Apparatus and Mode of Ewxperimenting.

A wire, ab (Fig. 1, p. 220), was suspended in the axis of an
air-chamber, W, made of two concentric copper cylinders enclosing
between them a layer of water. The outer diameter of the

[* See ante, Vol. 111, p. 137.]
+ Camb. Phil. Soc. Trans. Vol. 1x, No. 10 (1850). [Ante, Vol. 11, p. 1.]
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air-chamber was 4 inches, the inner diameter 2 inches, and the
length 4% feet. Resting on the top of the air-chamber and
wedged into it was a stout T-shaped piece of brass, C, to the
lower extremity of which was clamped one end of the wire. The
lower extremity of the wire was soldered or clamped at b to
a vertical cylindrical copper bar b@), which was in turn clamped
at () to the centre of a horizontal bar V'V. The bar V'V consisted
of a piece of thin, hollow, drawn brass tubing, of which the length
was 3070 centims. and the diameter 1420 centims. This bar was
graduated into millimetres and carried two suspenders, S, S, which
were clamped to it at equal distances from the centre (Fig. 3).
The suspenders were each provided with an index such that their
positions on the bar V'V could be readily estimated to one-tenth
of a millimetre. The mean diameter of the cylindrical portion,
SK, of each suspender was 0-3366 centim., and the length of this
portion 850 centims. To the ends, &, of the suspenders could be
screwed (Fig. 3) hollow cylinders of stiff paper or metal, or spheres
of wood; when the former were employed the suspenders were
provided with disks, m, m, of the same diameter as the cylinders,
and about 2 millims. in thickness. Two brass caps, D, D (Fig. 4),
provided with screws about 8 centims. in length and 2 millims. in
diameter, fit one into each end of the hollow bar V'V, and can be
easily removed from or placed in the latter.

To begin with, two cylinders or two spheres were screwed on
to the ends of the suspenders (in the former case right up to the
disks m, m), and the logarithmic decrement and the time of
vibration determined from a very large number of vibrations.
The cylinders or spheres were now unscrewed, and, the brass
caps, D, D, having been temporarily removed for the purpose, two
brass cylinders, &, b (Fig. 4), each of the same mass as either of the
vertical cylinders or spheres which had just been removed, were,
by means of companion-screws, cut along their axes, adjusted on to
the screws attached to the caps D, D, and at such a distance from
the latter as preliminary experiments had proved would give
nearly the same vibration-period, when the caps should be
replaced in the bar V'V, as had existed before the vertical
cylinders or spheres had been removed. The caps D, D, were
now replaced in VV, and the logarithmic decrement, together
with the time of vibration, was once more carefully determined.
Observations such as these, when certain corrections presently
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to be mentioned had been applied, enabled one to calculate the
effect of the resistance of the air on the vibrating vertical cylinders
or spheres as far as the diminution of the amplitude of vibration
was concerned.

The bar V'V with its appendages was protected by a wooden
box B of sufficient size to permit of vibrations, which, as regards
the resistance of the air, were practically as free as in the open*.
This box was provided with a window, EZ, and two side-doors,
lined with caoutchouc so as to fit air-tight; these side-doors were
kept shut, except when it was necessary to make fresh adjust-
ments. The torsional vibrations of the wire were observed by
means of the wusual mirror-and-scale arrangement, which is
sufficiently shown in Fig. 1, where M is the light mirror reflecting
an illuminated circle of light crossed by a vertical, fine, dark line
on to a scale bent into an arc of a circle of 1 metre radius, and
placed at a distance of 1 metre from the mirror.

My three years’ experience of the internal friction of metals
had taught me that this last is by no means constant unless the
greatest care be taken to prevent slight fluctuations of temperature.
The above-mentioned fact seems to have escaped the notice of
Maxwell and Meyer, probably on account of the internal friction
of the metal having a considerably less damping effect than the
resistance of the air in their experiments. With me, however,
especially in some cases, changes in the internal friction of the
metal would have rendered it very difficult, nay, impossible, to
attain the accuracy which I aimed at, and I deemed it advisable
to protect the wire still further, as follows:—The top of the
air-chamber W was well covered with baize, and surrounding W,
and concentric with it, was a larger air-chamber X, made of
tinned iron. This air-chamber was 114 inches in inner diameter,
15 inches in outer diameter, and 46 inches in height; the two
concentric chambers of which it was composed enclosed between
them a space 2 inches thick, stuffed with sawdust, whilst on the
top of the chamber was placed a double cover 4, also packed with
sawdust. Passing through the outer air-chamber X, and through

* In Fig. 1 the cylinders appear to be closer to the sides of the box than they
were in reality; the bar V'V faced the window, but, for the sake of showing the
arrangement of the cylinders better, it has been drawn facing the adjacent side of
the box. The centres of the cylinders were at least six inches from the sides of the
box.
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the walls of W, were two metal tubes in which were placed two
thermometers 7%, 7',, with their bulbs near the wire; these
thermometers were made by indiarubber tubing to slide air-tight
in the metal tubes. A section of the two chambers X and W
passing through one of the thermometers is shown in plan in
Fig. 2. The whole of this part of the apparatus rested on a stout
wooden table, in which was pierced an aperture of a size just
sufficient to allow the zinc tube Z, soldered to the air-chamber W,
to pass through it and into the box beneath. A third thermometer
T, served to give the temperature of the air in the box B, whilst
the mean of the readings of 7' and 1 was used for the temperature
of the wire. The thermometer 7, was divided to one-tenth of
a degree Centigrade, and had been tested at Kew; whilst the
thermometers 7, and T,, which were graduated in degrees
Centigrade, had been carefully compared by myself, degree by
degree, with T}.

The barometric pressure was registered by means of a delicate
aneroid barometer, reading to iy of an inch, which has been
in my possession for 15 years; this instrument I had recently
compared with a standard mercury barometer*.

Before commencing the actual experiments on the viscosity of
the air, it was found advisable to subject the wire to a preliminary
training, in order not merely to diminish the internal friction of it,
but also to make this last as constant as possible. In the first
place, the wire was well annealed ; this had the effect of reducing
the internal friction of the hard-drawn metal to less than one-half
of its previous amountt. In the next place, a load, equal to that
of the cylinders or spheres to be used, having been suspended
to V'V, the wire was alternately heated to 100° C. and cooled
again, this process being repeated for about a week, on each day
of the week, until there was no further alteration of the internal

* In spite of the long period which has elapsed since this instrument was first
made for me by the late Mr Becker, of Elliott Bros., the spring still shows a slight
amount of permanent yielding, which during the lasi two years has altered the
reading by ‘015 inch.

1 Tither silver, platinum, or copper wires, well annealed, may be used with
advantage. I should not recommend unannealed piano-steel wire as used by
Maxwell; the last metal possesses, it is true, great elasticity, but the internal
friction of silver, platinum, or copper can, by annealing, be made considerably less
than that of the unannealed steel.
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friction of the wire when cool. This treatment still further
reduced very considerably the damping of the vibrations due to
the wire. The manner in which the heating was effected will
be shown in a future Paper, in which also will be recorded the
results of experiments on the temporary effect of change of
temperature on the torsional elasticity and internal friction of the
metals used. When the wire had undergone this preliminary
treatment, and all the arrangements were complete, the bar V'V,
with its appendant cylinders or spheres, as the case might be, was
started by small impulses imparted by a worsted thread, until
the arc of vibration, as reckoned from rest to rest, had reached
about 400 divisions of the scale (about 10°, since 41:227 divisions
represented 1°).  After the arc of vibration from rest to rest had
subsided to about 200 scale-divisions, the vibrator was again
started, and this process was repeated until something like a
thousand oscillations had been executed®. Finally the vibrator
was re-started for the actual observations, through an arc of about
200 scale-divisions, and when about 50 oscillations had been
executed after this last starting the readings were begun.
Suppose that a,, by; a,, b,; as, bs; ay, by a;, by, and g, are eleven
consecutive readingst, the ten corresponding arcs from rest to
rest will be a,+0b,, b+ as, s+ by, by+ g, a5+0s, b+ ay, a,+ by,
by + ay, az+bs, by+a,. The means of a, + b,, b, + a; b, + a,, as+ bs;
ay+ by, b+ ay; by+as, a,+0,, and of a,+ b;, b, + a, were written
down, and if these agreed well with each other, which was almost
invariably the case, the logarithmic decrement of the mean of the
five means was taken. Now, say that n single vibrations have
taken place between the end of this and the beginning of the next
set of consecutive readings, the difference between the logarithms
of the first and second total means will, when divided by n + 10,
give the mean logarithmic decrement for a single vibration. The
logarithmic decrement was found to be constant in each experiment
within the limit of probable error; the deviations from uniformity
were sometimes in one direction and sometimes in the opposite,
and there was no evidence of any law of increase or diminution
of the logarithmic decrement as the amplitudes decrease. In the

* The object of this treatment was to reduce the internal friction to its
permanent condition, since long rest, or sometimes even a comparatively short rest,
always raised sub-permanently the internal frietion.

+ This number was always taken.
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intervals between one set and another of the readings, taken in
the manner mentioned above, other readings were taken for the
purpose of determining the vibration-period; the time of transit
of the light across the centre of the scale, first in one direction and
then in the opposite, was recorded for ten successive passages
by means of a good watch provided with a seconds-hand, a similar
series being recorded after every 200 vibrations. These last
observations enabled the period of vibration to be determined
with such exactness that we may completely disregard any error
arising from want of precision in this respect. From time to time,
at regular intervals, the readings of all three thermometers and of
the aneroid barometer were taken, so that the mean pressure of
the atmosphere, the temperature of the wire, and the temperature
of the air in the box B could be calculated with the necessary
accuracy. The greatest care was taken that the cylinders or
spheres suspended from the horizontal bar V7V should hang
vertically ; also that there should be no appreciable pendulous
motion of the wire; if such motion existed it was checked by
the hand before any of the readings were taken. Very great care
was also taken in determining the moments of inertia of the
vibrator in the various experiments, these being each obtained by
several different methods*, which gave very concordant results.
I shall have occasion in a future memoir to dwell on the various
sources of error to which determinations of moments of inertia are
liable ; so it will suffice, perhaps, here to mention that this part of
the work alone occupied my entire attention for nearly two weeks.
The following five experiments, or rather sets of experiments,
were made.

Exzpervment 1.

The wire was of well-annealed copper, 97 centims. in length
and 006272 centim. in diameter. Two cylinders, each having
a mass of 70°19 grammes, were used. These cylinders were made
of paper wrapped round a metal core a sufficient number of times
to secure the requisite stiffness; the different layers of paper were
pasted together, and when the whole was dry the metal core was

* The moments of inertia could be calculated with sufficient accuracy from the
dimensions and mass of the vibrating system; they were, however, determined also
indirectly by the two methods employed by Maxwell.
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withdrawn ; the outside of each of the cylinders was also coated
with French polish to prevent the absorption of moisture. The
mean diameter of each of the cylinders was measured by calipers
reading to 1g55th of an inch, and estimated to t5izyth of an inch.
In obtaining the value of the mean diameter of each cylinder,
twenty measurements were made, ten at equal intervals along the
whole length, and ten at the same intervals, but in a direction
at right angles to the first. The measurements showed a very
fair uniformity of diameter throughout the whole length, the
mean being 10079 inches for one cylinder and 10108 inches
for the other. In the calculations subsequently made it was
assumed that the diameter of each cylinder was the mean of the
two last given, 7.e. was 10093 inches or 25636 centims. The
lengths of the two cylinders were also very nearly the same,
being 60-90 centims. and 60°85 centims. respectively ; accordingly
each cylinder was assumed to have a length of 60:875 centims.
The ends of the cylinders consisted of wooden disks, into the
centre of which was let a small brass disk provided with a screw,
which was a companion to the screws at the ends of the suspenders,
S, K, so that the cylinders could be screwed right up to the disks
m, m (Fig. 3). The object of having the disks m, m, was to
eliminate the effect of the friction of the air about the ends of the
cylinders*, for Professor Stokes’s mathematical investigations only
apply strictly to cylinders of infinite length.

After the preliminary precautions previously mentioned had
been taken the logarithmic decrement was determined from a
great number of vibrations with the cylinders on; the cylinders
were then each turned round their axes through a right angle, for
the purpose of eliminating any error which might otherwise arise
from the section of the cylinder being slightly elliptical instead
of circular, and the logarithmic decrement was once more found.
The cylinders were now unscrewed from the suspenders, and, the
brass caps having been for the purpose removed from the hollow
bar V'V, the two brass cylinders £, &, were adjusted in the manner
before mentioned, so that the vibration-period might remain very

* It would have been well to have had these disks much thicker. As it is, the
disks would only imperfectly serve the purpose for which they were intended; the
effect about the ends of the cylinders was, however, completely eliminated in

Experiment IV. It would appear, moreover, from the results that with the long
cylinders here used the effect mentioned above is neglectable.
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nearly unaltered; the caps were then replaced. All the adjust-
ments alluded to above were performed very carefully so as to
avold jarring the wire, for if this precaution be not taken the
internal friction will be temporarily increased, and will not come
back to its previous value until the wire has been vibrated for
a considerable time. A period of more than an hour was now
allowed to elapse, the wire during this time being kept more or
less in a state of vibration, but not through a greater arc than
that represented by 400 scale-divisions from rest to rest, when the
logarithmic decrement was again determined. These processes
were repeated during some eight or nine hours of each day through
a period of three days, with the following mean* results:—

Paper Cylinders on.

Eg?ﬁ)ee;aﬁuif Temperatare Barometric Period of a Logarithmic
deorees of t}Iie wire height in singlevibration | decrement for
Cen%igrade inches in seconds one vibration
R | .
12:02 ' 12+43 ‘ 29-872 6:8373 0036476+
_ |
Paper Cylinders off.
12-25 12:31 29-817 ‘ 68202 ‘ ‘0009103

The moment of inertia of the whole vibrator when the paper
cylinders were on was 33773 in centimetre-gramme units.

Mathematical Formule necessary for the Investigation.

Before it can be shown how the results given above were
made use of in finding the coefficient of viscosity of air, it will
be necessary to point out how the requisite mathematical formulse

* T have not thought it necessary to give here more than the mean values, as in
a portion of a Paper on the internal friction of metals, which I hope shortly to be
able to offer to the Royal Society, I have entered fully into the details of experiments
very similar to these.

+ Mean of eight trials, each of 200 vibrations, the numbers varying from 0036300
to +0036969.
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can be obtained. I will first take the case of a cylinder vibrating
horizontally under the influence of the torsional elasticity of a
wire attached to its centre and hanging vertically.

Conceive the cylinder divided into elementary slices by planes
perpendicular to its axis. Let » be the distance of any slice from
the middle point, 6 the angle between the actual and the mean
positions of the axis, dF that part of the resistance experienced by
the slice which varies as the first power of the velocity. Then,
calculating the resistance as if the element belonged to an infinite
cylinder moving with the same linear velocity, we have by Art. 31
of Prof. Stokes’s paper,

M dE
W=""a
where M’ is the mass of fluid displaced by the slice, d&/dt =r d@/d,
71is the vibration-period, and %’ is a constant, provided the vibration-
period, the diameter of the cylinder, and the nature of the fluid
remain unchanged.

Let G be the moment of the resistance, [ the-whole length
of the cylinder, a the radius of the cylinder, and p the density
of the fluid; then

, . 7 pal A9
M’ =mpaidr, and G—_IT%’
whence
2l o p2]3
logy, dec. = & l;i); ! logie «ovvvevivinininnn. (1),

I being the moment of inertia of the whole vibrator.

When we have a pair of cylinders of equal mass and dimensions
suspended vertically from points equally distant from the axis of
the wire, we can easily prove in a manner similar to the above
that the logarithmic decrement due to the resistance of the air on
the cylinders is expressed by the formula

2 2ld2] !
logy, dec. = F—%]——r— logpe .covviviininins (2)*

* In this equation and in equation (4) the effect of the rotation of the cylinders
about the axes is neglected. For the necessary correction see the end of the Paper,
[The diameter of each cylinder is 8, and the distance between their axes d. The
exposition has been slightly condensed in the reprint.]
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If the logarithmic decrement be known, we can determine &’
from (2), and hence, by interpolation from the table given on
p- 46* of Prof. Stokes’s paper, m, this last being connected with x,
the coefficient of viscosity, by the formula

ng\/g ........................ (3).

Since 3, T, and p are known, we can from (3) find u.

In the case of two spheres of equal mass and dimensions there
is no difficulty in obtaining the following formule from the data
on p. 32% of Prof. Stokes’s paper :—

k' M'd?

4(1 + 200 logi € veeeecrnnnn. (4),

log,, dec. =

where [ is the moment of inertia of the whole vibrator, M’ the
mass of fluid displaced by each sphere, and £ and ¥ are connected
with u by the equations

in which « is the radius of each sphere.

Application of the Mathematical Formulw to the Results of
Lazpervment 1.

It will be seen that the logarithmic decrement with the paper
cylinders on is "0036476, whilst with the paper cylinders off it
is "0009103 ; therefore the logarithmic decrement due to the
resistance of the air on the cylinders only is approximately
0027373. I write ‘approximately’ because there are certain
corrections to be applied which I will now proceed to describe.
In the first place, the vibration-period, when the paper cylinders
were on, though nearly the same as when the cylinders were off,
was not quite the same. I therefore determined approximately
the value of u, without making this or the other small corrections

[* Ante, Vol. 111, p. 52, and p. 34.]
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to be mentioned presently, and used this value to obtain ap-
proximately the logarithmic decrement which would be due to
the resistance of the air on the cylindrical bar V'V and the
cylindrical portions S, K, of the suspenders. The logarithmic
decrement due to the resistance of the air on the other portions
of the suspenders and on the disks m, m, was obtained by making
independent observations, in which the bar was vibrated first with
the suspenders on the bar, and then with the suspenders off, but
with cylinders of equal mass placed inside the hollow bar V'V,
so that the time of vibration should remain unaltered.

Suppose that N\ represents the logarithmic decrement due to
the resistance of the air on the bar and the suspenders, and that
t,, t,, are the vibration-periods with and without the paper
cylinders respectively, then, with a sufficient degree of approxima-
tion, provided # does not differ much from ¢,, we have the amount
to be added to the uncorrected logarithmic decrement equal to
ML —tEth).

Again, the temperature of the air and the pressure of the
atmosphere were not quite the same with and without the paper
cylinders. It can, however, be shown that for the small differences
of temperature and pressure which we have here the logarithmic
decrement will be independent of the temperature® and vary
directly as the square root of the pressure; the amount to be
added to the uncorrected logarithmic decrement, owing to the

above causes, will therefore be A (1 —4p,/p,), where p; and p, are
the pressures with and without the paper cylinders respectively.

Further, when the cylinders were screwed on to the suspenders,
about 4 mms. of the latter entered the former, so that the observed
logarithmic decrement was less than it should be by an amount
which would be nearly equal to the logarithmic decrement due to
the resistance of the air on two vertical cylinders 4 mms. in length
and 03366 cm. in diameter; this could be calculated to within

* The logarithmic decrement will not be independent of the temperature unless
w varies as the absolute temperature. If we adopt the results of recent experiments,
364+1
273+t
temperature in degrees Centigrade. The correction which this would entail I have
neglected, as being inappreciable in these experiments.

the logarithmic decrement should approximately vary as ,\/ , where ¢ is the
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a sufficient degree of approximation by using the approximate
value of u. The amount in this particular case was "*0000037.

Lastly, the temperature of the wire was not the same with
and without the paper cylinders, but, as the effect of change of
temperature had been determined previously, this difference could
be allowed for.

No correction is required for any variation in the internal
friction of the wire itself, arising from difference in the vibration-
periods with and without the paper cylinders; for I had previously
satisfied myself that the diminution of amplitude resulting from
internal friction is nearly independent of the time of vibration.

Accordingly we have the following amounts to be added to the
uncorrected logarithmic decrement :—

For difference of time of vibration with and without paper

CYINAEIS toivviiiiiiiiiiiii i + 0000008

For difference of pressure of air ......ocevviiiiiiiieiiiieeinennnnn. — 0000005
For difference of temperature of the Wire ........ceeeeviueieennnens — 0000002
For portions of suspenders which enter the cylinders............ +-0000037
Total..cviiuiiiniiiiiniii s +°0000038

Corrected logarithmic decrement......... ‘0027411

In calculating p, the density of the air, I have assumed that
the latter is half saturated with moisture, and that the mass
of a cubic centimetre of dry air at 0° C, and under a pressure
of 299217 inches of mercury, is 0012930 gramme: thus, in the
present instance,

29872 -2 x 206 273

p= 99:9217 X 573 11202 x 001293 =-0012334.

The distance from each other of the axes of the two paper
cylinders was 20-80 centims., and this distance was maintained
in all the experiments which follow, except the last, where it was
2078 centims.

From these and the previous data we can, by means of
equation (2), get
k=16122;
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and hence, by interpolation, we can obtain from the table on
page 46 of Professor Stokes’s paper

m=11327.

Again, substituting this value of m in equation (3), we obtain
as the value of w in €.G.8. units, at the temperature of 12°02 C.,

00018294.

Lzperiment I1.

Two hollow cylinders, made of drawn brass tubing, and closed
at both ends, were used instead of the paper cylinders. As
measured by a gauge reading to ti5th of a millimetre, the mean
diameter of one cylinder was 096446 centim., and of the other
096279 centim. These values were obtained by gauging each
cylinder in ten different places, equidistant from each other, and
in the calculations each cylinder was assumed to have a mean
diameter of 096363 centim. The length of one cylinder was
60°92 centims., and of the other 60'85 centims., whilst the mean
of these numbers, .. 60-885 centims., was assumed to be the
length of each cylinder. The mass of each cylinder was 91900
grammes, and when the cylinders were on the bar V'V the moment
of inertia of the whole vibrator, in centimetre-gramme units, was
36702. The value of the vibration-period was 70590 seconds.
The temperature of the air was 1463 C., and the barometric
height 29707 inches. The uncorrected logarithmic decrement
due to the resistance of the air on the cylinders was ‘0012338,
and the corrected logarithmic decrement was ‘0012546. From
these data was deduced a value of u, at the temperature of

1463 C., of
00017718,

Lzpervment 111,

Everything else was arranged in the same manner as in
Experiment I, but, instead of the annealed copper wire, an
annealed silver wire, 97 centims. in length and 0100868 centim.,
in diameter, was used. The paper cylinders employed in
Experiment I. were used here, and when these cylinders were
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on the vibration-period was 30198 seconds. The temperature
of the air was 11°69 C., and the barometric height 30207 inches.
The uncorrected logarithmic decrement due to the resistance of
the air against the cylinders was ‘0016871, and the corrected
logarithmic decrement ‘0016905, The value of u at the
temperature 11°69 C. was calculated to be

00018143.

FEzpervment IV.

Acting on the advice of Professor Stokes, I modified
Experiment III. as follows. The logarithmic decrement was
determined with the paper cylinders already used, and also with
another pair of the same diameter, and made in the same manner,
but having a length of 7°700 centims., the vibration-period being
by the usual device maintained very nearly the same in both cases.
The difference between the two logarithmic decrements, ‘0024564
and 0009933, will therefore equal the logarithmic decrement due
to the resistance of the air on cylinders having each a length of
(60-875 —7-700) centims., 7.¢., 53175 centims. When the longer
paper cylinders were on the bar the vibration-period was 2:9994
seconds. The temperature of the air and the barometric height
were 10%64 C. and 30'057 inches respectively. The uncorrected
logarithmic decrement was "0014631, and the corrected logarithmic
decrement ‘0014638. The value of u at the temperature of
10°64 C., deduced from the above data, was

*00017955.

Experiment V.

The previous experiments had given such closely according
values of w that, though my investigations on the internal friction
of metals only required that the formulee for cylinders should give
consistent results, I felt that it would be of interest to ascertain
whether the use of spheres would be attended with the same
satisfactory agreement. The main difficulty to be encountered
with spheres is that the mass of a properly constructed spherical
shell makes it rather unsuitable for experiments on the viscosity

13—2
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of gases. After thinking over various plans of obtaining hollow
spherical shells of sufficiently accurate make, and not feeling
satisfied that I should be able to get, without much difficulty,
what I wanted, I decided on using solid spheres made of fairly
light wood. These spheres were specially turned for me, with
instructions to make each as exactly as possible 2% inches in
diameter. The turner executed his commission very fairly, for,
on gauging each sphere at ten different places with calipers
reading to ;5pth of an inch, I found that none of the readings
differed from the mean by so much as '3 per cent., and that the
mean diameters of the two spheres were 2:5103 inches and 2:5007
inches respectively. In the calculations each sphere was reckoned
as having a diameter of 25055 inches or 6:364 centims. The
masses of the two spheres were not quite so equal as I could
have wished, the apparent mass of one in air being 64-823 grammes,
and of the other 63761 grammes. No appreciable error will,
however, be introduced by considering the apparent mass of each
in air to be 64:292 grammes. The correction for the mass of air
displaced by each sphere amounted to 0168 gramme, so that
in the calculations the mass of each sphere was taken as 64-460
grammes,

The spheres were attached to the suspenders S, K, in the same
manner as the cylinders, but the disks were now dispensed with.
The moment of inertia of the whole vibrator when the spheres
were on was 30,927 in centimetre-grainme units, the vibration-
period was 28791 seconds, and the temperature of the air and the
barometric pressure were 9°97 C. and 29607 inches respectively.
The uncorrected logarithmic decrement due to the friction of the
air on the spheres was ‘0003462, and the corrected logarithmic
decrement was "0003483.

In deducing the value of w from the above data by the aid
of equations (4), (5), and (6), I assumed, in finding 2kM’, a value
for pu equal to the mean of that got from the other experiments;
this step is admissible, because 2kM’ is very small compared
with I*  Having determined the value of % by means of
equation (4), I substituted it in equation (6), and thus obtained
a quadratic equation for finding w. The quadratic may, however,

* In fact, is quite neglectable in the case before us.
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be converted into a simple equation by making use of the same
value of 4 as above in calculating the term % %TL;-, which was
thus found to be 0-16085. The last number is not small compared
with unity, and, had the final result proved to be as much as
10 per cent. greater or less than the mean of those got from
the other experiments, the above conversion of the quadratic into
the simple equation would not have been admissible. It will
be seen eventually, however, that the conversion is legitimate,
and the value of u at a temperature of 9°97 C. as determined
from the simple equation is

00019334.

Mathematical Formule required for the Effect of the Rotation
of the Spheres or Cylinders about their own Awes®.

Professor G. G. Stokes has been good enough to furnish me
with the following formule for the corrections not yet made for
the effect of the rotation of the spheres or cylinders about their
own axes.

Let A, be the logarithmic decrement due to the rotation, then
for the spheres

T SIS B
ouMs " va " 2 (va)
Ao = Ip T T logye..covuinnnes (M),
L+ et 26ay

where I is the moment of inertia of the whole system, T is the
time of a vibration from rest to rest, M’ is the mass of fluid
displaced by each sphere, a is the radius of the sphere, and

_
V= /\/2“7.
In the case of the cylinders, which were hollow, we have

to take into account the effect of the air both inside and outside.
For the air outside we may take

* What follows was added Sept. 16, 1886. [See Prof, Stokes’ second note, infra,
p. 207.]
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where P is the real part of the imaginary expression

Lo 35 L1357 188570  1.35.7.9.11
T 1 ®ma) T 1.2(8may ~1.2.3(8may " 1.2.3.4(8may "
ma 13 35 1°.3°.5.7 ’

1+ 1(8ma) 1.2(Sma) * 1.2.3(8ma)y

where

m= &/ZTB (cos 45° + v — 1 sin 45°).
T

On expanding P in descending powers of f, = &/ % a, we get

_ S g, 0375 _04922
Ve T ey T v

P

This series may be used with advantage in all the experiments
relating to the cylinders to estimate approximately the effect of
the air outside, but, unless the value of f is decidedly larger, the
value of A, 1s best found from the formula

_4M'pur

Ny = log Bak—1

Tp S (7 < R

where &, k', are the quantities tabulated at p. 46 of Professor
Stokes’s Paper.

The corrections, as calculated from both formulw, were found
to agree satisfactorily.
For the air inside we may use, for such values of «/ P 4 as
MT
we have here, the formula

oM
Ay = Tp’u (=@ logue oovvninniiinnnn. (11),

where M’ is the mass of air inside, and ¢ is the real part of the
imaginary expression

2 L4 ) 6
2.3ty g ma) g m gt

>

1 1 : ]
Lhg g mar+ g e g (mal'+ g g g (M) + ...
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A+V—1B

which is of the form v —iD

, and of which the real part is

AC+ BD
i

In the following table will be found the corrections necessary
to be made for the rotations of the spheres and cylinders about
their axes.

Cylinders.
Log. dec. . .
Number of uncorrected Effecé; .Odf alr Efifle]ei; doef air Corrected
experiment | for rotation outside s log. dec.
about axes * *
I ‘0027411 *0000313 ‘0000011 ‘0027087
I ‘0012546 *0000030 ‘0000000 ‘0012516
I1I ‘0016905 ‘0000173 *0000019 ‘0016713
v ‘0014638 ‘0000150 ‘0000017 ‘0014471
Spheres.
\
A ‘0003483 ‘0000159 ‘0003324

There is still a further slight correction to make, inasmuch
as the mercury of the barometer was not at 0° C. when the
aneroid was compared with the mercury barometer, whereas the
density of the air was calculated on the assumption of the mercury
being at 0° C. The correction is very slight, but the closeness of
agreement of the different experiments justifies us in making it.
It will be sufficient for this purpose to multiply each value of w as
determined from the above table by (1 4 -00018¢), where ¢ is the
temperature at which the aneroid was compared with the mercury
barometer. Applying all the corrections, the final results are as
follows :—

* In making these corrections an approximate value of x was used.
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TaBLE IT-—Cylinders.

Distance : ; Tempera- .
Number of | Length in | Diameter | between Vlbl"%’c&()_n- ture in Qoefﬁ.ctleng °
experiment | centims. |in centims. | the centres pelélon dm degrees | | eosityo %t
in centims.| 5° 5 Centigrade m ¢.a.s. unt
I 60875 2'5636 2080 68373 12:02 ‘ ‘00017900
11 60-885 0'9636 2080 7-0590 1463 ‘00017680
I1T 60875 25636 2080 3:0198 1169 | -00017767
v ‘ 53175 2:5636 2080 29994 10-64 ‘ ‘00017581

Spheres.

\ . .. { 6364 ﬂ 2078 \ 2-8811 { 997 ’ ‘00017626

Taking the means of the numbers in the sixth and seventh
columns, we find that the value of w at a temperature of

1179 C. is

00017711,

The Effect of the Presence of Aqueous Vapour on the
Viscosity of Air. ‘

The above experiments extended over a period of some months,
during which the air was in various conditions with respect to
being saturated with aqueous vapour, so that for a rough ap-
proximation we may assume that the mean value for u just given
will apply to air half saturated with vapour at a temperature
of 12° C,, and it would appear that the presence of the small
quantity of aqueous vapour which this implies would not affect
the value of p to an extent equal to that of the probable error in
experimenting. From the careful investigations of Mr Crookes*
we learn that at a temperature of 15° C., and under pressures
of from 760 to 350 millims, the presence of aqueous vapour has
little or no influence on the logarithmic decrement. By the aid of
Professor Stokes’s notet, I have estimated that at 15° C., and

* Phil. Trans., Part 11, 1881, p. 427.
+ See p. 440 of the above Paper. [Supra, p. 100.]
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under a pressure of 760 millims., the air when saturated with
aqueous vapour would be more viscous than perfectly dry air*
to the extent of only 2 per cent. It is not until the air is under
a less pressure than 350 millims. that the aqueous vapour begins
to show appreciable effect, but when the rarefaction is great the
moist air becomes considerably less viscous than dry air.

According to Maxwell+ damp air over water at a temperature
of 2111 C.,, and under a pressure of 101 millims,, is less viscous
than dry air by about g;th part.

On the whole it would seem that the aqueous vapour in the
air used in my experiments would hardly influence the value of u
to the extent of ‘1 per cent.

The presence of carbon dioxide in the air would still less affect
the result, as not only is the viscosity of carbon dioxide not very
remote from that of air, but the amount of the gas present is also
very minute.

Comparison of the Results of Recent Investigations of the
Coefficrent of Vascosity of Aur.

In the beginning of this memoir I pointed out the very large
discrepancies which existed between the results of different
experimenters, but, since I entered on my task, not only have
I acquired fresh information respecting what had already been
done, but also quite recently fresh investigations have been made.
Table IIT contains the required information.

Tasre IIL
Authority Coeffiiigﬁt ;tf a’ol sgf)si’r.y Method
0. E. Meyer{......... 0001875 Oscillating plates
» eeeeeeses 0001727 Transpiration
Puluj ceoveverenns. 10001798 N
Schneebeli§ ......... 0001707 »
Obermayer§ ......... 0001705 ’

* Mr Crookes adopted great precautions to render the air dry.
+ Phil. T'rans., Vol. crvi, 1866.

+ Phil. Mag., Vol. xx1, 1886, p. 220.

§ drchives Sci. Phys. Nat., Vol. x1v, 1885,
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In order to reduce my own observations to 0° C., I have made
use of the investigations of Professor Silas W. Holman on the
effect of temperature on the viscosity of air*. According to the
exceedingly careful and elaborate observations of this experimenter,
the coefficient of viscosity of dry air is not proportional to the
absolute temperature, but

i = pro (1 + 0-002751¢ — 0-00000034¢) ......... (12),

where ¢ 1s the temperature in degrees Centigrade, and ug, u,, are
the coefficients of viscosity at ¢* C. and 0° C. respectively.

My own observations were made with too small ranges of
temperature to show the relation between the value of w and the
temperature, but the above formula expresses more nearly this
relation as deduced from my experiments than [Maxwell’s]

formula
pe = o (1 4+ 0°00366¢).

Adopting, therefore, formula (12), we have the following
equation for determining the value of u at any temperature :—

pg ="00017155 (1 + 002751¢ — <00000034) ......(13).

The differences between the observed and calculated values
of u, for the five different sets of experiments are given below :—

Experiment Observed value of u; Calculated value of u; Difference

I 00017900 00017760 +-00000140
II 00017680 00017850 — 00000170
IIT 00017767 ‘00017704 + 00000063
v 00017581 00017653 —-00000072
v *00017626 ‘00017622 ~+ 00000004

The probable error is about "2 per cent., and, considering the
manner in which the five sets of experiments varied as regards
their conditions, it would seem that, even when all allowance has
been made for aqueous vapour, &c., the number ‘00017155 must
represent the value of w, for dry air within at least § per cent.
Now, this number agrees fairly with the values of w, obtained
by other observers with the transpiration method; it is, however,
more than 9 per cent. less than that obtained by Meyer with
oscillating plates, and by Maxwell. The mathematical difficulties

* Phil. Mag., Vol. xx1, 1886.
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attending Professor Meyer’s method of oscillating plates have been
already mentioned, but the method of Professor Maxwell does not
seem open to these objections, and indeed appeared to me to be so
good that I for some time attempted, though in vain, to account
for the difference between Maxwell’s result and my own. Professor
G. G. Stokes has, however, kindly interested himself in the
matter, and has shown in the accompanying note the possibility
of Maxwell’s result being too high. I may perhaps be allowed to
add that, if we only take the first two of the five sets of Maxwell’s
experiments, in which two the distances of the fixed from the
oscillating plates are so great as to render any error such as
suggested by Professor Stokes very small, we obtain a value
for the coefficient which is nearly identical with that obtained
by myself*.

ADDENDUM.

Note on the preceding Paper, by Professor G. G. Stoxes, P.R.S.
[Received January 14, 1886.]

The consistency of Mr Tomlinson’s different determinations
of the coefficient of viscosity of air, notwithstanding the great
variation in the circumstances of the experiments, and the
consistency with one another of the numbers got by a different
process by Maxwell, led me to endeavour to make out the real
cause of the difference, and I think the main part, at any rate,
of it can be explained by a very natural supposition.

The fact that Mr Tomlinson worked with air in its ordinary
state, whereas Maxwell’s air was dry, even if it tends in the right

[* The uncertainty arising from viscosity of the suspension is however greater
in these sets.

Prof. A. H. Leahy has pointed out (Maxwell's Scientific Papers, errata to Vol. 11),
that in finding the value of the moment 4 employed by Maxwell in his equations
(23) and (24), a value of the radius of the disk is used different from the one
previously recorded in the memoir, and that if this value is changed the result for the
viscosity will be reduced so as to approximate to the values obtained by more recent
experimenters.

In reply to an inquiry, Prof. Leahy states that the result of his examination of
Maxwell’s apparatus in 1886 was that the source of error suspected by Prof. Stokes
(infra) was not sensible, and that the numerical error above mentioned, along
with minor ones in calculating the effect of the edges of the disks, cleared up the
discrepancy. ]
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direction, would evidently not go nearly far enough. But it
occurred to me that the effect of any error of level in the movable
disks employed by Maxwell must have been much greater than
might at first sight appear. For suppose a very small error & to
exist, and suppose the fixed disks adjusted to be parallel to the
movable ones in the position of equilibrium of the latter. Then
the two systems must be, very nearly indeed, parallel throughout
the motion, since the angle of oscillation of the movable disks
to one side or other of the position of equilibrium is very small.
If 20 be the whole amplitude, the greatest error of parallelism will
be of the order 8u, and it would naturally appear at first sight
that the effect of so small an error of parallelism must be in-
significant for any such error of level as we can reasonably suppose
to have existed. But a little consideration will show that this
need not be the case when the distance between the fixed and
movable disks is very small compared with the diameter of the
latter. For suppose the disk to have been rotated through a
small angle p round a vertical axis; the rotation p may be
decomposed into a rotation p cos & round the axis of figure, and a
rotation psind round a horizontal axis in the plane of the disk.
As regards the former, the motion takes place as supposed in the
investigation. But as regards the latter the disk oscillates about
a horizontal axis in its own plane. Now, when the disks are very
near one another this oscillation entails a squeezing thinner of the
stratum of air opposite to one half of the disk, and a widening
of the stratum opposite the other half, the two halves being
alternately squeezed thinner and widened; and, since for such
slow motions the air is practically incompressible, this transfer
of air cannot be effected without a motion of the air along the
surface of the disk far larger than what would be produced by an
equal rotation about the axis of figure. Accordingly a very slight
error of horizontality in the movable disk might produce a sensible
error in the result, though an error of direction of similar amount
in the orientation of the fixed disk would be quite insignificant in
its influence on the final result.

This conclusion is fully borne out by the result of mathematical
calculation founded on the equations of motion of a viscous un-
compressed fluid. The calculation becomes very simple if we
treat the distance between the disks as very small compared with
the radius, neglect the special actions about the edge, and further
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neglect the inertia of the air, as we safely may, since it was small
in Maxwell’s experiments, especially those in which the disks were
at a small distance apart, and therefore the influence of viscosity
the greatest; or those again in which the air was rarefied.

Let the plane of a movable disk in its position of equilibrium
be taken for the plane of ay, the axis of figure for the axis of z,
and the intersection of a horizontal plane with the plane of the
disk for the axis of y; and let the opposed fixed plane be parallel
to the plane of 2y, and at a distance & from it. Let « be the
radius of the disk.

First, as regards motion round the axis of figure. Let
be the angular velocity of the disk. Then, according to the
simplifications adopted, the motion of the fluid will be a motion
of simple shearing, such that the velocity at a point whose
semi-polar coordinates are 7, 8, z, will be wr (b —2)/h in a direction
perpendicular to the radius vector. It will suffice to write down
the moment of the force which this calls into play, which is

Ut

O, rereeeeeeeeeesssieen

Next, for motion round the axis of 1. Let «” be the angular
velocity ; u, v, w, the components of the velocity; U, V, the mean
values of u, v, from 0 to h. Consider the prism of fluid standing
on the base dzdy, and extending between the planes. As the
volume of the prism is diminished at the base by o’zdzdydt in
the time dt, the excess of the volume of the fluid which flows out
across the face hdy, whose abscissa is « + d, over that which flows
in across the face hdy, whose abscissa is z, plus the similar
difference for the pair of faces hdz, must equal w'zdzdydt. This
leads to the equation

d_U_;_}LCE:

h dz dy

But, for motion between two close parallel planes, the velocity
parallel to the plane, and its components in two fixed directions in
that plane, vary as z (h —2), and therefore

Y 82i=2)

6z (h —2)
h? o

U, V= gz}* V ......... (2)
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The first equation of motion is

Fraldvr

dp  (d*u  dw | du
(M gyt ) (3).

Now, on account of the smallness of A, the space-variations of
the components u, v, of the velocity are much greater for z than
for # or y. Hence in (3), and the corresponding equation for v, the
first two terms in the right-hand members may be omitted, giving,
by (2),

dp  12u dp  12u

de b dy__hTV’

and then, from (1),'

dp  dp 1240’
da? +d(l,72__ [
or, in polar coordinates,

dp ldp Ldp_ 1%
drr " rdr rder h?

and if we take, as we may, p to mean the excess of pressure over
the pressure in equilibrium, we have the conditions that, p shall
vanish when r=a, and that p shall not become infinite at the
centre.

The equation (4) and the conditions at the mouth and centre
may be satisfied by taking

p=j(r)cosd,

which gives, from (4),

PO+t =L pe=-"

The integral of this equation is

__3p B
fr)y= 2h3r+Ar+T,

where A4, B, are arbitrary constants. The conditions at the centre

and mouth give
. _ Bpo'a?
_B —_— O, A —_— —W 3
whence
3uw’
P="9;5

(a®r — %) cos 6.
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The moment of this pressure about the axis of y is
[fprcos @.rdrd,

! 46
TR O

Qe (B).

The moments (B) and (A) are as ¢’o’ to 47w, and the works
of these moments in the time dt are as a?w” to 4h%w® If this
ratio be denoted by n to e, and w, o', are the components of an
angular velocity round an axis in the plane of zz, inclined at an
angle 8 to the axis of z,

or

2
tan?é = 4-1@2 N
a

In Maxwell’s experiments o was 528 inches, and when the
fixed and movable disks were closest & was 0°18475. If we
suppose the whole loss of energy 8 per cent. greater than that
due to rotation round the axis of figure, to which it was deemed
to be due, we have n=008, giving §=1°8. Now, no special
adjustment was made to secure the strict horizontality of the
movable disks, or at least none is mentioned ; the final adjustment
is stated to have been that of the fixed disks, which were
presumably adjusted to be parallel to the movable ones, and at
the desired distance. Hence such small errors of level as that
just mentioned may very well have occurred.

SECOND NOTE.—On the Effect of the Rotations of the Cylinders
or Spheres round thewr own Awzes 1in increasing the
Logarithmic Decrement of the Arc of Vibration.

[Received October 22, 1886.]

In Art. 9 of my paper on Pendulums* I pointed out that in
the case of a ball pendulum the resistance due to the rotation
of the sphere round its axis need not be regarded, on account
of the large ratio which the distance of the centre from the axis
of suspension bears to the radius of the sphere. In Mr Tomlinson’s
experiments the corresponding ratio is not near so great, and its

[* Camb. Phil. Trans., Vol. 1x, 1850 : ante, Vol. 11, p. 22.]
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squared reciprocal is not small enough to allow us to neglect the
correction altogether, especially in the case of the spheres, the
radius of which is much larger than that of the cylinders. In
both cases the problem admits of solution.

In both cases the motion of the suspended body may be
regarded as compounded of a motion of translation, in which the
centre oscillates 1n an arc of a circle, and a motion of rotation
about its axis of figure, supposed fixed; and, the motion being
small, the effects of the two may be considered separately. It is
the latter with which we have at present to deal. As regards the
motion of translation, the spheres or cylinders were sufficiently far
apart to allow us to regard each as out of the influence of the
other, and accordingly as oscillating in an infinite mass of fluid ;
and this is still more nearly true as regards the motion of rotation.
The problem, then, is reduced to this: a sphere or cylinder
performs small oscillations of rotation about its axis of figure,
which is vertical and regarded as fixed, in an infinite mass of
viscous fluid ; it is required to determine the motion, and thereby
to find the effect of the fluid in damping the motion of the
system of which the suspended body forms a part.

In the case of the sphere the problem of determining the
motion of the fluid is identical with that solved by Professor
von Helmholtz in a paper published in the 40th volume of the
¢ Sitzungsberichte ” of the Vienna Academy, p. 607, and reprinted
in the first volume of his collected works, p. 172, with the
exception that the arbitrary constants which occur in the integral
of the fundamental ordinary differential equation are differently
determined, since the condition that the motion shall not become
infinite at the centre is replaced by the condition that it shall not
be infinite at an infinite distance.

In the present case the motion is necessarily symmetrical about
the axis, so that it is alike all round any circle that has the axis
for its axis; it is, moreover, tangential to the circle. Let the fluid
be referred to polar coordinates 7, 6, = ; r being the distance from
the centre, 8 the inclination of the radius vector to the axis, and =
as usual. Then, taking p, u, to denote the density and coefficient
of viscosity, and observing that v = g cos @, where ¢ is the velocity,
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we easily get from the second equation of motion, by putting, as
we may, = =0 after differentiation,

dg 2dg 1 d (. .dg\ g B _
dr: ' rdr r2sin79@(mnedt‘})—ﬂsin?@—ﬁ%—_o"'(1),

and we have the condition at the surface
g=wasingd when r=a.....cccciiniinie (2),

where o is the angular velocity of the sphere, and a its radius.

The motion with which we have to deal is periodic, subject to
a secular diminution. The latter being actually very slow, it will
suffice, in calculating the force of the air on the sphere, to take the
motion as periodic, and expressed, so far as the time is concerned
by the sine or cosine of nf. It will be more convenient, however,
to use the symbolical expression ¢™, where ¢=4/(—1). The
general equation (1) and the equation of condition (2) can both be
satisfied by taking ¢ to be expressed, so far as ¢ is concerned, by
sin 0.  Assuming, then,

2

g=€"sin 0f (1) evvereriiiiiiiiiin, 3),
and writing ) )
wpn _imp
LR @),
we have
PO+ 2P0 = 26 —mf ) =0 (5).

Taking +m for that root of the imaginary m? which has its real
part positive, we have for the integral of (5), subject to the
condition of not becoming infinite at an infinite distance

F(r)=Aem (1 + i-) .................. 6).

r o mr?

Omitting the pressure in equilibrium, we shall have for the
force of the fluid on an element of the sphere a tangential pressure
(say T, referred to a unit of surface) acting perpendicularly to the
plane passing through the axis and the element, the expression
for which, reckoned positive when it acts in the direction of =
positive, is

T=p (le—z— g>r=“=,uei"‘ sin 6 (f’ (a)—%cO) ;

r
8. V. 14
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and the moment of the force taken all over the sphere is
[WT. 2ma?sin 0. o sin 0 d0 = Sarpade™t <f’ (@) —Jla@)

0
=MW (£ (@) —%‘”)

if @' =pfp, and M’ is the mass of the fluid displaced by the sphere.
Now we have, by (2), (3),
wa = e"f (a),

whence the expression for the moment becomes

(@)
2M'w (7(67)7 - ]> )

To get the whole moment, the above must be doubled, as
there are two spheres. If @ be the angular distance of the
vibrating system from the position of equilibrium, we may write
d6/dt for o ; and if the mixed imaginary within parentheses, with
sign changed, be denoted by P ++7(), the real part, P, will be that
which affects the arc of vibration, the imaginary part falling upon
the time, which we do not want. The Napierian logarithmic
decrement in one vibration will be got by dividing half the real
part of the expression for the moment of the forces by the moment
of inertia, or,say, MK It will therefore be 2w P/MK>.

Now we get, from (6),

ma + 8+ E
@) _ ma,
flay ST L

ma

and, taking the real part of this, we get finally, after reduction,

S S AT,
2u' M’ va ' 20a?
Nap. log. dec. = Wi 1 T T e N,
|
va 2007

Vi
where = \/(21177_) .

In the case of the cylinder the motion is in two dimensions,
and is most conveniently referred to polar coordinates r, 6, the
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origin being in the axis. The radius of the cylinder will be
denoted by @, the outer or inner radius according as we are
dealing with the air outside or inside.

The mode of proceeding is. precisely analogous to that in the
case of the sphere, and, ¢ being the whole velocity, we have

G="L () i (8),

where

S )+ '1;_7:1, (ry— -:—, S = (r)=0 ......... (9);

and the condition at the surface gives

the sign being + or — according as we are dealing with the air
outside or inside. The moment of this pressure on a length, I, of
the cylinder is

+ 2 pailein <f1' (@)1 (a)) — 2 (“jff(g) - 1) o...(12).

The equation (9) cannot be integrated in finite terms. Never-
theless, in the case of the air outside, the expression (12) for the
moment may be obtained in a finite form in terms of two functions,
k&, k' which I had occasion to tabulate for the purpose of finding
the resistance of a viscous fluid to a pendulum of the form of a
cylindrical rod.

Putting, as in my former paper,

S =/ () v (13),
{1, s, are the functions there denoted by F,, F;), we have

)+ %fo' (r)y—m2fi(r)=0...cccvunenn.. (14).

Now in both problems (that of my former paper and that of
the present note) the function f,(r) satisfies the same differential
equation (14) and the same condition of vanishing at infinity.
Hence the function f,(r) is the same in the two cases, save as to

142
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the value of the arbitrary constant, which is a factor of the whole,
and which disappears from the expression (12) as well as from
those of & and %\

The definition of & and £’ is given by equation (99) of my
former paper, viz.,

4y (@) _ Y

1-— %Qafo (a) =k ik

Now by (13), (14), and (15),

LY@ _af (@) mafy(a)
Ji(@) Ji (@) Jo' (@)
E+1—ik k=1 4k + 20k

DRl (T B Ay gy o

whence we get, as before, for the part of the logarithmic decre-
ment due to the external air, in consequence of the rotations
of the two cylinders round their own axes, M' denoting the
mass of air which would be displaced by one if solid and of
radius a,

aM'u'r B—1+k?

Nap. log. dec. = MR =Ty ko (16).

In the table given in Art. 837 of my paper, m denotes half the

modulus of ma, or
& Jm
EAVANTE

This table is not available for calculating the effect of the
internal air, for which we must have recourse to the differential
equation (9). The integral of this equation, expressed in ascend-
ing series, subject to the condition of not becoming infinite at the
origin, is

m2,r3 m4/}/-5 m6T7
fl(r)‘AJ[’"J”?‘;E“L2.42.6*2.42.62.7 * }

which gives

mia? miat mbab
@@ ___ 4 "sactraest
Ji(a) - 14 m2a2+ mia + msab (1),
2.4 2.6 2 g 8T

Let the numerator of this fraction be denoted by £ +¢F, and
the denominator by G'+¢H, where K, F, @, H are real; then the
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real part will be £G + FH divided by G+ H? and we shall have
for the correction due to the internal air
oMy EG+FH

Nap. log. dec. = 7 R I TR (18).

When the modulus of ma is small, it is rather more convenient
to expand (17) according to ascending powers of ma. This may
be done by actual division, or more conveniently by assuming
a series with indeterminate coefficients, and using the non-linear
differential equation of the first order in z obtained from (9)
by putting £’ (r) = zfi (r). Carried as far as to a®, the develop-
ment is

mia?  miet  mSa® mPa®  13mal 11m®2at*

4 T 06 1536 23040 T 4423680 T 55050240°

and, denoting the modulus of ma by f, and taking the real part,
we have

2N {f‘-‘ i L1 ...}...(19).

Nap. log. dec. = 5 r 2196~ 93040 * 55050240

This series must not be used when f is at all large, as the
convergence is too slow, and, as appears by a theorem due to
Cauchy, it becomes actually divergent when f=3340% nearly,
whereas the series in (17) are always convergent, and when f has
the above value converge rapidly.

When fis decidedly large the series in (17), though ultimately
convergent, begin by diverging, so that the calculation is trouble-
some, and moreover my table giving % and &’ is not carried
beyond f=8, as the calculation by a different method then
becomes very easy. In this case we should employ the integral
of (9), which is of the form ¢ or ¢ multiplied by a descending
series. The former exponential only will come in when we are
treating of the external air, and the latter only when of the
internal.

* The square root of the smallest real root of the equation

z z?
l—ﬂ-l' 2‘.42ﬁ_ ...=0.
The series would have become divergent still earlier if the equation just written had

had an imaginary root with a modulus smaller than 3:340...2.
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For the external air the integral is of the form

S 1.3 1.3.5
Si(r)=Ber {1+1.(8mr) 1.2 (Smry
12.8.5.7
+'17. Q,W— ...} ..................... (20),

the signs being alternately + and —, and the new factors in the
numerator being two less and two greater than the last factor in
the term before. We get from (12), (20), and the expression for
the logarithmic decrement in terms of 7' and the moment of
nertia,

[

Nap. log. dec. = 2w

uRE X real part of

3.5 1.3.5.7 1:.8.5.7.9
1.8ma+1.2(8ma,)2_1.2.3(8ma)3+"'
13 T35  T.8.5.7 _
1.8ma 1.2(8may  1.2.3(8ma)

...(21).

Instead of the latter part of (21), in which, however, the law
of either series is manifest, we may use its development according
to descending powers of @, which is

_3_+ 3 24 252 38456
e+t Sma (8ma)* * (8ma) (8ma)
+ 60768 1327104 +
Smay ~ (Smay T e

The expression for the correction for the internal air will be
got from the above by changing the sign of ma and of the whole,
or, in other words, by changing the signs of the 2nd, 4th, 6th ...
terms in the series in (21) or (22). It will be remembered that
ma is f(cos 45° + ¢ sin 45°).
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APPENDIX (recetved November 15th, 1886).

In the previous experiments the main loss of energy arising
from the friction of the air may be characterised as being due to
the fact that the air is pushed®. A small portion, however, of the
loss is occasioned by the rotation of the cylinders or spheres about
their own axes, and in this case the air may be said to be dragged.
Professor G. G. Stokes has, in the preceding note, deduced formulae
by means of which this last portion of the whole loss of energy
can be calculated, and it seemed of interest to determine whether
the coefficient of viscosity of air would prove to be the same as
before, when the air was entirely dragged. This will occur when
only one sphere or one cylinder is used, whose axis is made to
coincide with the axis of rotation. Accordingly I followed out
a suggestion of Professor Stokes in the manner detailed in the
following experiments.

Ezpervment V1.

A paper cylinder was made by wrapping drawing-paper several
times round a metal cylinder, which had been turned true through-
out its whole length, the different layers being pasted together.
When dry, the paper cylinder was removed from its metal core,
and its external diameter very carefully gauged by calipers reading
to 1iggth of an inch at six different places equidistant from each
other. It was then gauged at the same distances from the ends,
but in directions at right angles to the first. The following were
the two sets of gauges:—

Set T Set 1T
Diameter in inches Diameter in incheg
6:026 6:073
6:083 6:010
6:106 6:051
6:106 6:020
6:090 6:030
6:010 6:006
Mean 6:0701 6:0323

[* A balancing pair of cylinders or spheres were suspended from the ends of a
vibrating horizontal bar, supra, p. 178.]
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The circumference of the cylinder was next measured by a steel
tape at five different equidistant places:

Circumference in centims.
4864
4866
4860
4856
4835
Mean 48562

Allowing for the thickness of the steel tape, the circumference
is 48'485.

From the measurements made with the calipers and tape, the
mean diameter of the cylinder was 15370 and 15433 centims.
respectively, and the total mean 154015 centims.

It will be observed that the external diameter is nearly, but
not quite, uniform throughout; this no doubt arises from the fact
that the paper was not quite uniform in thickness. Inside, as far
as could be judged by inserting a straight-edge, the bore of the
cylinder was perfectly uniform throughout.

The inside diameter was determined by the calipers at the top
and bottom, at eight different places in all. It was also deter-
mined by gauging the thickness of the walls of the cylinder at the
top and bottom by means of a wire gauge, and subtracting twice
the thickness from the external diameter as measured by the
tape. The internal diameter, measured in the two different ways
mentioned above, was exactly the same for both, namely, 14-872
centims. The mean of the internal and external diameters is
151395 centims., and the mean radius 7-5698 centims.

The length of the paper cylinder was 6080 centims., and the
mass, allowing for the air displaced, was 5436 grammes.

The wire was inserted into a hole bored in the centre of one
end of a vertical brass rod 2 millims. thick and 15 centims. long,
and there soldered: the other extremity of the rod was soldered
into the centre of a horizontal, hollow, brass tube, of length
17-85 centims., of diameter 1:25 centims.,, and of mass 2920
gramimes.

From the hollow brass bar the paper cylinder was suspended ;
two holes, whose centres were 2% centims. from the top, being cut
in the walls of the paper cylinder for this purpose.
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Great care was taken in arranging the cylinder, so that the
axis of rotation might coincide in direction as accurately as possible
with the axis of the suspended system. As the paper cylinder did
not quite hang truly, it was made to do so by placing small strips
of tinfoil, as riders, on the top of the cylinder, and these strips
were carefully padded down by hand to the walls of the cylinder.
The usual previous precautions having been taken, the logarithmic
decrement was determined from seven sets of observations, each
involving 100 vibrations, as follows :—

Number of observation Logarithmic decrement

0026307
"0025856
‘0025837
‘0025810
0025700
‘0025849
0025550

~TO O WO

The observations were consecutive, and the mean of them is
0025844,

The paper cylinder was now removed, and in its place was
substituted a much shorter cylinder, made partly of paper and
partly of tinfoil, and having nearly the same mass and mean radius.
The dimensions of this cylinder were as carefully measured as those
of the longer cylinder, with both steel tape and calipers. The
mean of the inside and outside radius was 7-5132 centims., and its
real length was 12:80 centims. Since the radius is, however, not
quite the same as that of the longer cylinder, we must assume its
length to be 12:80 x G%)S centims., or 1252 centims. if we are

to use it for the purpose mentioned below.

The same pieces of tinfoil as had been used with the long
cylinder were used here, and for the same purpose. The log-
arithmic decrement was then determined by six sets of experiments,
each involving three times the number of vibrations employed with
the long cylinder.

Number of observation Logarithmic decrement

‘0009162
10009015
‘0008743
0008871
0009019
0008993

O O OO =
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These, like the others, are consecutive observations, and the mean
of them is ‘0008967.

Applying the corrections, mentioned in the paper, for small
differences in the vibration-periods, temperature, etc., when the
two cylinders were used, we have for the logarithmic decrement
due to a cylinder 60-80 — 12:32 centims. or 4828 centims. in length
the value

*0017029.

It follows, from Professor Stokes’s formule, that the logarithmic
decrement arising from the friction of the air against the inner and
outer walls taken together will be

%I’f logy e (V2f + V2 x 0-875f 1 — /2 x 0492215 + etc.),

. =
f being equal to \/ wr a,

where @ is the mean radius of the cylinder, = the vibration-period,
w the coefficient of viscosity, p the density of the air, M the mass
of air which would be contained in a cylinder of the same length,
and having an internal radius equal to @, and I the moment
of inertia.

The values of I and 7 were 36966 centimetre-grammes and
3'6038 seconds respectively. The corrected height of the barometer
was 29'354 inches, and the temperature 12225 C. The value of p
was calculated, as usual, on the supposition that the air is half
saturated with moisture.

The terms 0375/~ and 04922/ are so small that we may
calculate them by using an approximate value of u, and the series
converges so rapidly that it is quite unnecessary to include any
more terms in it*.

The value of u, determined from the data given above, was
found to be

*00017580.

* Indeed, the third term might have been dispensed with in this case, but not
in the next experiment.
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Experiment VII.

The copper wire used in the last experiment was about 44 feet
in length and 0’1 centim. in diameter. This was now changed for
one of the same length, but of 0°063 centim. diameter, so that the
vibration-period became 8930 seconds. The rest of the arrange-
ments were the same as in Experiment VI. The corrected
logarithmic decrement was ‘0027040, and the value of u deduced
as above was found to be ‘00017902 at a temperature of 13°100 C.

The mean of the two last experiments is -00017741 at a
temperature of 12°663 C. This result agrees so well with the
mean of those deduced from the previous experiments that it is
unnecessary to make any alteration in the formula already given
for finding the viscosity at any temperature.

I have entered more into the details of these last experiments,
as I think the present method can be more advantageously
employed than any of the others. Indeed, by spending sufficient
time over the experiments, whereby the errors likely to arise from
the somewhat unstable nature of the internal friction of the metal
may be more perfectly eliminated, it seems likely that very con-
siderable accuracy can be attained by it.

[Note added Dec. 8th, 1886.—A much greater number of
observations were afterwards made with the same cylinders
and wires, and resulted as follows:—With the wire used in
Lxperiment VL. the value of u obtained was ‘00017708 at a
temperature of 12°225 C., and with the finer wire of Experi-
ment VIL the value was 00017783 at a temperature of 13°075 C.
The mean of these values is ‘00017746 at 12°650 C., as compared
with ‘00017711 at 11°79 C., the mean of the other five sets of
experiments. If we allow for the difference of temperature by
using the previously given formula*, the agreement between these
two means is perfect.]

In conclusion, my warmest thanks are due to Professor Stokes
for his valuable suggestions and advice throughout the investi-
gation. To myself the experimental verification of Professor
Stokes’s formulee has been a source of great pleasure.

[* Supra, p. 202.]
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NOTE ON THE DETERMINATION OF ARBITRARY CONSTANTS WHICH
APPEAR AS MULTIPLIERS OF SEMI-CONVERGENT SERIES.

[From the Proceedings of the Caumbridge Philosophical Society,
Vol. vi, Pt. vi. Read June 3, 1889.]

INn three papers communicated at different times to the
Society *, I have considered the application of divergent series to
the actual and easy calculation, to an amply sufficient degree of
accuracy, of certain functions which occur in physical investigations,
but which can of course be considered quite apart from their
applications. These functions present themselves as the com-
plete integrals of certain linear differential equations, or it may
be as definite integrals which lead to such differential equations,
of which they form particular integrals; and as of course the
theory of the complete integrals includes that of any particular
integrals, the subject is best regarded from the former, and more
general, point of view.

The independent variable was taken as in general a mixed
imaginary, and the complete integral was expressed in two ways,
either by ascending series which were always convergent, or by
exponentials multiplied by descending series which were always
divergent (except in very special cases in which they might
terminate), though when the divergent series were practically
useful they were of the kind that has been called semi-convergent.
In either form of the complete integral, the arbitrary constants
appeared as multipliers of the infinite series (of the ascending or
descending as the case might be), or it might be, in part, of a
function in finite terms. The determination of the arbitrary
constants, a thing in general so easy, formed here one of the chief

* Camb. Phil. Trans., Vol. 1x, p. 166 [ante, Vol. 11, p. 329]; Vol. x, p. 105
[ante, Vol. 1v, p. 77]; Vol. x1, p. 412 [ante, Vol. 1v, p. 283].
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difficulties; and the capital problem may be stated to be, to find
the relations (linear relations of course) between the arbitrary
constants in the one and those in the other of these two forms of
the complete integral.

In the papers referred to, this was always effected by means
of a third form of the complete integral, in which it was expressed
by definite integrals, their coefficients forming a third set of
arbitrary constants. The first two forms of integral were useful
for numerical calculation, the one or the other being preferred
according as the modulus of the independent variable was small
or large; the second form indeed could be used only when the
modulus was sufficiently large, so that the adoption of the first
form in that case was not merely a matter of preference; the first
form could theoretically be used in any case, but the numerical
calculation would become inconveniently or even impracticably
long if the modulus were large. The third form was not con-
venient for numerical calculation, and was used only as a journey-
man solution, for connecting the arbitrary constants in the first and
second forms of integral with one another, by connecting them
each in the first instance with the set in the third form of
solution. I remarked that in the event of our not being able to
obtain a solution of the differential equation in the form of
definite integrals, the use of the first two forms of integral would
not therefore fall to the ground; the linear relations between the
arbitrary constants in the first and those in the second form could
still be obtained numerically, though in an inelegant and more
laborious manner, by calculating numerically from the ascending
and descending series for the same value of the variable, and

equating the results.

My attention has recently been recalled to the subject, and I
have been led to perceive that the constants in the first two forms
of the integral may readily be connected without going behind
the series themselves, so that the expression of the integral of the
differential equation by means of definite integrals may be dis-
pensed with altogether; and even if we failed to obtain a solution
in this form the two sets of arbitrary constants could be connected
exactly by means of known transcendents, and not merely approxi-
mately by numerical calculation.

The ascending, and always convergent, series treated of in the
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three papers already referred to were particular cases of one
which, on dividing the whole by a certain power of the variable,
has for general or (m + 1)th term

L'(m+a)l'(m+0)..
u’”=I‘(m+h)I‘(m+70)...w ............... (A),

there being at least one more I-function in the denominator than
in the numerator, so that the series is always convergent. The
connexion of the constants in the ascending and descending series
was made to depend on two things; one, the determination of the
critical amplitudes of the imaginary variable #, or p (cos € + ¢ sin ),
in crossing which the arbitrary constant multiplying one of the
divergent series was liable to change, and the mode of that
change; the other, the determination, for some one value of 6
lying within those limits, of that function of p to which the
whole expression by ascending series was ultimately equal when
p became infinite. The value of 6 always chosen was such as
to make all the terms in one of the ascending series regularly
positive; accordingly in the series whose general term is written
above it would be 6 =0, giving 2 =p. Now when p is very large
the series diverges for a great number of terms, but at last we
arrive at the greatest term, w,,, suppose, after which the series
begins to converge. For a great number of terms in the neigh-
bourhood of w,,, the ratio of consecutive terms is very nearly a
ratio of equality, but the product of those ratios presently begins
to tell. Let @ and B be two positive quantities as small as we
please; then the number of integers lying between (1—a«)m,
and (1+ p)m, will increase indefinitely as p and consequently m,
increases indefinitely, and moreover the ratio of Zu, taken for
values of m lying between the limits (1 — a)m, and (1 + B)m, will
ultimately bear to the whole series from 0 to cc a ratio of equality.
Hence in considering the ultimate value of the series we may
restrict ourselves to the portion of it mentioned above.

Now when m is very great we have ultimately by a known
theorem
L'(m +a) =V2m (m+a—1) {(m+a—1)/em+a=
or N a1 (1 L0 1>me_(m+w_l) )
m

or N 2rm . maime—m,
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Let h+k+...—a—b—...=s, and let ¢ be the excess of the
number of I'-functions in the denominator of u,, over the number
in the numerator; then the expression for u,, becomes ultimately

()t s (efm)mom™ e (B).

The ratio of consecutive terms, which may be obtained from
this expression, or more readily directly from (A), is since m is
supposed very large m™%p, and hence for the greatest term we may
take

Strictly speaking m, would be the integer next over the (in
general) fractional value of m which satisfies the above equation,
but it is easy to see that in passing to the limit we may suppose
the equation satisfied exactly. Within the specified limits of that
portion of our series which it suffices to consider, we see at once
that m, may be written for m when we are dealing with any
finite power of m, since a and B8 may be supposed to vanish after
p has been made infinite. We need therefore only attend to the
last portion (v) of w,, where

Y = (6 /7n>tmpm = egtmyy— tmmltm‘

Now treating m as continuous, 1.e. not necessarily integral, and
putting w for log v, we have

w =t(1+logm, —log m)m, =itm, when m=m,,

dw .
am ="' (log my —logm), =0 when m'=m,,
dw _ 1t ——iwhenm—m

dm: m’ m -

whence putting m=m, + p we have by Taylor’s theorem

2

w=tm, — ﬂb +...
2m,

This series proceeds according to powers of w/m,, which lies
between — a and 3, and therefore vanishes in the limit, and there-

fore ultimately

T
tu? ¢ m_‘L
w:tml__r’l:n’ v=c¢ ( * Zm,)_
1
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Now between the limits (1 —a)m, and (1 + 8)m, of m con-
secutive terms of the series S are ultimately equal, and we may
replace v by fvdm or fvdu; and the limits of u are — am, and
+ Bm,, that is in the limit — o0 and +o. Hence in the limit

27) :f ?}d}lz=/\/%7_r—znletml}

1-¢
Sl =175 (2mrmy) 2 my St (D),

which may be expressed by (C) in terms of p.

The function of p to which the complete series Su,, bears
ultimately a ratio of equality when p is infinite is thus found,
without the necessity of expressing the series in the first instance
for general values of p by means of a definite integral.

The same method will evidently apply to the series whose
general term is formed from (A) by integrations or differentiations
with or without intervening multiplications by powers of z, since
this process will merely introduce factors of the form m + ¢ into
the numerator or denominator or both, and in passing to the
limit for p= co these factors may be put outside after writing m,
for m.



ON A GRAPHICAL REPRESENTATION OF THE RESULTS
oF DR ALDER WRIGHT'S EXPERIMENTS ON TERNARY ALLOYS¥.

[From the Proceedings of the Royal Society, X11X, Jan. 29, 1891.]

SupposE three liquids, such as water, ether, and alcohol, of
which the third is miscible in all proportions with either of the
others, are mixed together, the temperature being kept constant.
According to circumstances, the mixture forms a single liquid
mass, or separates into two. In the latter case, if we suppose
that the liquids had been merely gently poured together, and
imagine the upper and under portions separately to be homogeneous
to start with, this state of things would not remain; an alteration
of composition would take place close to the surface of separation
on both sides, depending on the relative solubilities, &c., of the
ingredients. If now the two altered strata were mixed up with
the rest of the portions to which they respectively belong, the
same thing would go on again, and so on till a condition was
reached in which what we may call an equilibrium of composition
on the two sides of the surface of separation had been attained.
As this equilibrium depends only on the molecular forces, which
are insensible at sensible distances, it is evident that the equili-
brium would not be disturbed by removing a part of either the
upper or the under liquid, or by adding to it liquid of exactly the

[* The following preface to this note is taken from the Paper, ¢ On Certain
Ternary Alloys, Part 1v,” by Dr C. R. Alder Wright, I".R.S. and others, in which
the note oceurs.

“ A method of graphically representing the results of the experiments described
in the previous portions of these researches has been kindly suggested to one of us
by Sir G. G. Stokes, founded on a principle which he regards as self-evident. We
subjoin a note which he has been so good as to draw up for us, explaining the
application of this method, and then describe some further experiments which we
have instituted with a view to test the correctness of the assumed principle.’”]
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same composition as itself. This final state would take place only
very slowly in the manner conceived above; but if the mixture be
well agitated the total surface of separation, where alone the
change of composition can go on, is greatly increased, and, more-
over, the altered strata are mixed up with the rest of the liquids
to which they respectively belong, so that the final state is reached
comparatively quickly. I think I have seen an experimental
verification of this anticipation, namely, that equilibrium depends
only on the compositions of the upper and lower mixtures, and
not on their quantities, in a French serial, but I have not the
reference.

The same principles would apply to ternary alloys, which form
a homogeneous mass, or separate into two, as the case may be;
but of course the difficulty of preserving a constant temperature
is much greater, as well as that of giving sufficient agitation to
bring about the final condition.

It seemed to me that, for giving an insight into the results of
experiments with ternary alloys,a mode of graphical representation
might be usefully employed which is already well known. It is the
same as that which Maxwell used for the composition of colours, at
least with one slight addition. In this way the whole of the cir-
cumstances of the experiment, so far as they are material, would
be exhibited to the eye*.

Let 4, B, C be three liquids, such as water, ether, alcohol, or
else lead, zinc, tin, in fusion, of which the third (which for dis-
tinction may be called the solvent) may be mixed in all proportions
with either the first or the second. Take a triangle, 4 BC (Fig. 1),
which may be of any form, but is most conveniently chosen equi-
lateral ; and, to represent the composition of any mixture of the
three, imagine weights equal to those of the substances 4, B,
placed at the points 4, B, , and find their centre of gravity, P.
To each different set of proportions A : B: (' (the letters here
denoting weights) will correspond a different position of P, which

[* The theory of the equilibrium of coexistent phases had been fully developed
by Willard Gibbs, Trans. Connecticut Acad. 1875-8, who also introduced this
riangular diagram for a triple system: but his work was just beginning to attract
reneral attention at this date. For the type of system here discussed, defined by
he next sentence in the text, cf. Ostwald, Allgemeine Chemie, 2 ed. 1896-1902,
p. 984 and 1026 seq.]

15—2
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point will serve to represent to the eye the composition of an
actual or ideal alloy (supposing the substances to be metals) formed
of the three metals in the given proportions. If the quantity of
the solvent be sufficient, P will represent on the diagram the com-
position of an actual alloy. If it be insufficient, the alloy repre-
sented as to composition by £ will be ideal only; and on attempting
to form it the mass will separate into two layers. If we suppose
the agitation to have been sufficient, there will be equilibrium of
solution at the surface of junction, and the mass will have reached
its final state. Supposing this condition to have been attained, let
the two portions be analysed, and the points ), R representing
their compositions be laid down on the diagram, and joined by a

(o]

Fie. 1.

straight line. From the construction, this line must pass through
the point P if there has been no loss by volatilisation or oxidation.
Let the same thing be done for several other proportions of the
ingredients. Then the points ¢, R will lie in a curve aQLRD,
cutting 4B in two points a, b, which represent, the first, a saturated
solution of B in A, the second, a saturated solution of A4 in B.
Call this curve the crittcal curve, and the lines such as QR tre-lines,
or simply ¢ees. Then the critical curve and the system of ties will
represent the complete result of the experiments, supposing them
to have been exactly made. Alloys of a pair may conveniently be
called conjugate. Intermediate tie-lines may be interpolated by
eye; or if we prefer we may substitute for the system of ties
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their envelope, on which plan the result of the experiments would
be completely represented by two curves, the critical curve and the
envelope.

The critical curve separates mixtures of which alloys can
actually be formed from those on attempting to form an alloy of
which the mass separates into two layers. In the latter case, if
through P we draw a tangent to the envelope, cutting the critical
curve in @, R, the points ¢, R will represent the compositions of
the portions into which the mass separates, while their weights

will be as PR to PQ.

If L be the limiting position of the chord QR, or, in other
words, the point of contact with the critical curve of a common
tangent to it and the envelope, as P tends to coincide with L, the
two strata into which the mass separates tend to become identical
in nature. If we take a mixture of 4 and B, represented by a
point ¢ in ab, and continually increase the quantity of €' from 0,
the point P will ascend from ¢ towards (' until it reaches the
critical curve. At this stage the quantity of the second alloy has
just dwindled away to nothing, its nature, so long as there was any
of it left, differing from that of the other alloy. If, however, the
point ¢ lies in the line 'L, on increasing the quantity of C' the two
alloys merge into one.

On communicating to Dr Alder Wright this mode of graphical
representation, he tried it on a large scale on the results of two
pairs of series from the former experiments. In one pair the
temperature was 650°, and the proportion by weight of zinc to
lead was 2 to 1 in the first case, and 1 to 2 in the second. In the
other pair the weights of zinc and lead were equal, and the tem-
perature 650° in one case and 800° in the other. In the first pair
the agreement of the critical curves was very good, but the agree-
ment in the direction of the ties was not by any means equally
good. In the upper part of the figure, corresponding to the case
in which there was a considerable quantity of tin, though not
enough by any means to prevent the formation of two layers in
the entire mass, the difference of inclination ranged to about 5°
the ties in the first case being inclined to those in the second as if
they had been turned round in the direction of a line passing
through the lead corner of the triangle, and turning round in the
direction from lead-zine to lead-tin. In the second pair of series
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in which the weights of lead and zinc were equal, and the tem-
perature was 650° in the first case and 800° in the second, the
critical curve for 800° was of the same general character as that
for 650°, but lay a little inside it, which is just what was to be
expected, on account of the increase of solubility attending the
higher temperature. Moreover, the critical curve for 650° agreed
very fairly with those for the same temperature in the first pair,
notwithstanding the difference in the proportion of lead to zinc in
the three cases.

T had not anticipated the greater accordance existing between
the critical curves in different cases for the same temperature than
that shown in the direction of the ties. But, when the plottings
revealed it, it seemed to me that the cause was not far to seek.
When the molten mass has as yet been but slightly stirred, the
superposed alloys, supposed to be severally homogeneous, will most
likely be represented on the diagram by points, one or both of
which lie outside the critical curve. In this condition an alloy
represented by an external point, having the metal C to spare,
will be capable of dissolving bodily a portion of the other. This
process accordingly, being something analogous to the solution of
a salt till saturation is obtained, will go on as the stirring proceeds,
and be sensibly complete in a moderate time. The two alloys will
then be represented by two points lying on the critical curve.
Such alloys may be said to be associated. But the passage from
merely associated to truly conjugate alloys, as the stirring proceeds,
1s likely to be decidedly slower. For now neither alloy can bodily
dissolve any portion, however small, of the other; there can
only be an interchange of constituents across the surface of
separation.

The critical curve may be otherwise defined as the curve ex-
pressing the saturation of the solvent ¢ with a mixture in given
variable proportion of the remaining substances 4, B. That it is
really such, a little consideration suffices to show. The determina-
tion accordingly of the critical curve furnishes us with definite
information, even though we do not go into the ulterior question
of the condition of conjugation.

Perhaps the attainment of true conjugation might involve more
stirring than would be practically feasible with molten metallic
mixtures. The most hopeful way would seem to be to fuse the
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mass at a higher temperature than that intended for the experi-
ment, stirring it well, and then let down the temperature to that
intended, stirring all the time, and avoiding too rapid a fall of the
temperature.

If truly conjugate alloys were obtained, and portions of each
were taken and fused together at the temperature at which the
alloys were made, the compositions ought to be the same as before.
But if the alloys were merely associated, then, even if the stirring
in the second part of the experiment were sufficient to ensure
conjugation, the compositions would not be the same as the original,
nor would they be independent of the proportion of the two alloys
which the operator took for fusing together.

[Note by C. R. A. W., Feb. 25, 1891.—Sir G. G. Stokes has
pointed out to me that the diagram, Fig. 1, shows at once that,
inasmuch as the difference between the percentages of the solvent
in two conjugate alloys vanishes for the pair, a, b, being nil for
each, and again for the pair which merge into one, represented by
the point L, it must necessarily be a maximum for some inter-
mediate pair; and also that, in order to preserve the continuity
of conditions, we must, in crossing L, pass from the upper alloy
to the lower, and wice versd. Herce, if the entire system of
ties could be determined, so as to obtain every possible pair of
conjugate points lying, one on one side, the other on the other
side, of L, and if these values were plotted on the abscissa and
ordinate system, the curve representing the difference between
the percentages of the solvent, after having ascended and attained
a maximum elevation, must descend again to the base line at a
point corresponding with L. If we wish to continue the curve
beyond that point, we must now take the ordinates negative
instead of positive, the same in magnitude as before, and the
curve having crossed the base line, and attained a minimum
elevation, will ultimately ascend again to the final point on the
base line.]



ON AN OpricAL PROOF OF THE EXISTENCE OF SUSPENDED
MarreEr 1IN Frames. By Sir G. G. StokEs, Bart., F.R.S.
(In a letter to Professor Tait.)

[From the Proceedings of the Royal Society of Edinburgh.
Read June 15, 1891.]

8 BrLGRAVE CRESCENT, EDINBURGH,
June 13, 1891.

DeAR ProrEssor Tarr,—I write to put on paper an account
of the observation I mentioned to you to-night, in case you
should think it worth communicating to the Royal Society of
Edinburgh.

In the course of last summer I was led, in connection with
some questions about lighthouses, to pass a beam of sunlight,
condensed by a lens, through the flame of a candle. I noticed
that where the cone of rays cut the luminous envelope there were
two patches of light brighter than the general flame, which were
evidently due to sunlight scattered by matter in the envelope
which was in a state of suspension. The patches corresponded
in area to the intersection of the double cone by the envelope,
and their thickness was, I may say, insensibly small. Within the
envelope, as well as outside, there was none of this scattering.
The patches were made more conspicuous by viewing the whole
through a cell with an ammoniacal solution of a salt of copper,
or through a blue glass coloured by cobalt. In the former case
the light from the flame was more weakened than the scattered
light, which was richer in rays of high refrangibility ; in the latter
case the patches were distinguished by a difference of colour, the
patches being blue, while the flame (with a suitable thickness
of blue glass) was purplish. The light of the patches exhibited
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the polarisation of light scattered by fine particles—that is to say,
when viewed in a direction perpendicular to the incident light it
was polarised in a plane passing through the beam and the line
of sight.

When the beam was passed through the blue base of the flame
there was no scattered light. A luminous gas flame showed the
patches indicating scattered light like the flame of a candle, but
less copiously. They were not seen in a Bunsen flame or in the
flame of alcohol, but were well seen in the luminous flame
of ether. When a glass jar was inverted over burning ether,
the blue part, which does not show scattered light, extended
higher till, just before the flame went out, the luminous part
disappeared altogether. A Bunsen flame, fed with chloride of
sodium, did not show the phenomenon, though the flame was
fairly luminous.

The phenomenon shows very prettily the separation of carbon
(associated, it may be, with some hydrogen) in the flame, and at
the same time the extreme thinness of the layer which this forms.
It shows, too, the mode of separation of the carbon, namely, that it
is due to the action of heat on the volatile hydrocarbon or vapour
of ether, as the case may be. At the base, where there is a plentiful
supply of oxygen, the molecules are burned at once. Higher up
the heated products of combustion have time to decompose the
combustible vapour before it gets oxygen enough to burn it. In
the ether just going out, for want of fresh air, the previous decom-
position does not take place, probably because the heat arising
from the combustion is divided between a large quantity of inert
gas (nitrogen and products of combustion) and the combustible
vapour, so that the portion which goes to the latter is not sufficient
to decompose it prior to combustion.

In the Bunsen flame fed with chloride of sodium, the absence
of scattered light tallies with the testimony of the prism, that the
sodium is in the state of vapour, though I would not insist on this
proof, as it is possible that the test of scattering sunlight is not
sufficiently delicate to show the presence of so small a quantity of
matter in a solid or liquid state.—Yours, sincerely,

G. G. STOKES.
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P.S.—1I fancy the thinness of the stratum of glowing carbon is
due to its being attacked on both sides—on the outside by oxygen,
on the inside by carbonic acid, which with the glowing carbon
would form carbonic oxide.

[*When the above was written I was not acquainted with the
previous paper by Mr (G. J.) Burch, published in Vol. XXXI of
Nature (p. 272), nor did any of the scientific friends to whom I had
mentioned the observation seem to be aware of it. Had I known
of it, I should not have thought my paper worthy of being pre-
sented to the Royal Society of KEdinburgh, as Mr Burch has
anticipated me in the fundamental method of observation.

The reaction mentioned in the postscript is to be taken merely
as a specimen of the reactions, on the inside of the carbon stratum,
by which the carbon may be re-engaged in a gaseous combination.
Carbonic oxide is only one of the combustible gases, not originally
present, which are formed during the process of combustion, and
are found inside the envelope in which the combustion is going
on.—QG.G.S., November 20, 1891.]

[* This postseript oceurs in the reprint in Nature, Vol. xnv, p. 133.]



ON THE REACTIONS OCCURRING IN FLAMES.

[From the Proceedings of the Chemical Society, Feb. 4, 1892.]

“4, WiNDSOR TERRACE, MALAHIDE, IRELAND,
“23rd September, 1891.
74 )

“Dear DR ARMSTRONG,

“T enclose a little optico-chemical paper*, that is to say,
one in which the method is optical, but the results are of interest,
such as they have, rather from a chemical point of view. I use, to
express 1t in short terms, a flame as a screen on which to receive
an image of the sun.

“The reaction mentioned in the P.S. is to be taken as a specimen
of reactions of the kind, for though it probably takes place, there
are doubtless others also, as there are a lot of compounds found in
the interior of the flame.

“I read the other day your address to the Junior Engineering
Society, in which you speak of oxygen as combining with hydrogen
in preference to carbon; I should have supposed it would have
been the other way. Not only does the facility with which steam
is decomposed by glowing carbon favour this view, but it seems to
me to fit better with the phenomena of flames. According to my
notions, we must carefully distinguish between the changes which
take place in the partial combustion of a molecule and those which
are produced in neighbouring molecules as a result of the heat
thus produced. We may, for the sake of a name, call the former
pure-chemical, and the latter thermo-chemical. The action of the
heated walls of a tube is of the thermo-chemical kind ; it involves
a regrouping of the existing molecules under the molecular agita-
tion of a hot body, without bringing a fresh reagent (suppose
oxygen) into play from outside the molecule. I think that in the
blue base of the flame of a candle, where oxygen is plentiful, we
have pure-chemical changes. The blue shell invests for a little
way the highly luminous shell, like a calyx investing a corolla, and

[* Supra, p. 232.]
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I think the thin shell of glowing carbon, to which the bulk of the
light is due, owes its origin to a thermo-chemical change, the heat
being derived from the combinations with oxygen which take place
just outside it.

“I imagine that the hydrocarbon spectrum is due to a gas
formed by a pure-chemical as distinguished from a thermo-chemical
change. But what gas is it? It is commonly supposed to be
acetylene. To me it seems more probable that it is marsh
gas, formed by a pure-chemical, not a thermo-chemical, change.
According to my notion, this unknown gas (z, say) is a hydro-
carbon, which when burnt without admixture of other hydro-
carbons would show but feebly if at all the hydrocarbon spectrum.
More especially might this be expected to take place if it were
burnt at a reduced pressure, or considerably diluted with, say,
nitrogen. For in order that 2 should show its spectrum its
molecule must be in a state of violent agitation, which it might
be expected to be if it had been born as a result of partial com-
bustion, but would not be merely because it was going to be slain
by union with oxygen.

“I have not seen a statement as to the spectrum of marsh gas,
as pure as may be, when burnt. Perhaps you know about it.
As hydrocarbons in general (I don’t know how it is as to marsh
gas) show the same spectrum, # must be some gas of a simple kind
formed in the process of partial combustion, though probably
(at least under ordinary circumstances) itself burnt almost im-
mediately afterwards.

“Yours very truly,

“G. G. STOKES.”

“21st January, 1892.

“ DEAR PROFESSOR ARMSTRONG,

“Perhaps I may be allowed to add a few words in
explanation of what I meant by thermo-chemical change. I had
not in view thermic measurements. I will endeavour to explain
my ideas by an example. Let us contrast (¢) the formation of
water from mixed oxygen and hydrogen, (b) the formation of
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acetylene and hydrogen from marsh gas at a high temperature.
In both cases alike molecular agitation is required to bring about
the change; in (a) if the change be brought about at one point,
the consequent agitation supplies the requisite disturbance to the
neighbouring molecules, and the change is propagated with ex-
plosions; but in (b) I picture to my own mind the change as
taking place in this way. When sufficient heat is supplied to the
gas from without, the collisions of the molecules of the marsh gas
become sufficiently violent to allow the carbon atoms in a pair to
get into a condition in which their tendency to self-combination
comes into play, and in the coalescing a portion of the total hydrogen
in the pair is thrown off. But the continuance of this change is
dependent on a continuous supply of heat from without, under
which it is gradually effected. I should call (@) a pure-chemical
change, even though heat at one point is necessary to start it, and
I should call (b) thermo-chemical, even though chemical affinities
are concerned in.t. ,

“The results of Professor Smithells seem to me to make it

probable that # may be carbonic oxide.

“Yours very truly,

“G. G. STOKES.”



THE INFLUENCE OF SURFACE-LOADING ON THE FLEXURE OF
Beams. By Prof. C. A. Carus Wirson. (Extract.)

[From the Philosophical Magazine (5), xxx11, Dec. 1891, pp. 500—503.]

SINCE communicating the above*, Sir George Stokes has gone
very fully into this problem, and has kindly allowed me to quote
[* The problem considered is that of a slip of glass supported on parallel

rollers at B and C and subject to pressure P per unit length applied through
a roller on the other surface at 4. The glass, when thus stressed, is examined in

T

b
1 1
B a D 7 C

Y

a direction parallel fo the rollers, between crossed Nicols, along the line 4D, so
that the colours of polarization may reveal the nature of the strain. A measurable
feature is the neutral points which appear as black dots on the coloured field ; they
are at the places at which the two principal stresses, transverse and longitudinal,
are equal, where therefore the strain is a uniform dilatation and the refraction is
not double; and it is their theoretical determination, for comparison with the
results of observation, that is under consideration.

The author had obtained from M. Boussinesq the value of the stress produced
throughout the glags by the application of the surface-force P along the roller 4,
when the depth of the glass is unlimited. In fact, in his book Application des
Potentials..., 1885, M. Boussinesq had found by methods like those employed by
Stokes on the theory of diffraction in 1849 (ante, Vol. 1, p. 257), that due to
a point-force @ at 4 the traction across any element of interface parallel to
the boundary face, in the glass, is a simple radial push directed from 4 and of

intensity %00520, where 8 is the angle made by the radius vector with the
-
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the following extracts from letters I have received from him on
the subject.

“Let A be the point in the upper surface where the pressure
(P) is applied; B, C the points of support below, which I suppose
to be equidistant from 4 ; D the middle point of BC. Let y be
measured downwards from A4 ; denote BD or DC by a, and AD
by b. You have the expressions for the stresses produced by P in

D

an infinite solid <w=%rl~;>, and the question is, What system
must we superpose on this to pass to the actual case? This, as
I showed you, is the system of stresses produced by a system
of forces applied to the surface. The forces consist—(1) of the
two pressures $P at B and C; (2) of a continuous oblique tension
below, represented in drawing by a fan of tensions directed at
every point of the lower surface from the point A.

“Imagine now the beam cut into two by a plane along A4D.
Consider one half only, say that on the B side. Everything will
remain the same as before, provided we supply to the surface 4.D
forces representing the pressures or tensions which existed in the
undivided beam. On account of the symmetry, the direction
of these must be normal.

“At D the vertical pressure on a horizontal plane in the
infinite solid is compounded with an equal vertical tension due
to the fan. Hence, of the vertical pressure in 4.D which must be
superposed on the vertical pressure in the infinite solid, we know
thus much without obtaining a complete solution of the problem,
namely, that 1t must equal minus 2P/wb at D and 0 at 4. If we
suppose it to vary uniformly between, we are not likely to be far
wrong.

normal to the face: from this it is readily derived by a line-integration that the
effect of force P per unit length applied along the roller 4 is 2P/rr cos 6, or 2P/ry,
which is the expression indicated above in brackets near the beginning. The author
verified optically the formula kP/y along 4D, for a slip of glass supported under-
neath on a flat surface; and proceeded to a result for the original problem by
superposing on this vertical traction that arising from the pure bending of the slip
under the opposing applied torques. It was found that the position of the neutral
points along 4D indicated for  the value *726 instead of 2/w or *64. The object of
Sir George Stokes’ investigation is to remove this diserepancy. It is to be observed
that the rollers B and C are considered to be so far from 4D that the local effects of
the surface-loadings arising from them are immaterial.]
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“This leads to the following expression for the vertical pressure

in AD:—
ﬁ’(l_y‘
T \y 62)'

“Now for the horizontal. We know that the complete system
of external forces must satisfy the conditions of equilibrium of
a rigid body. The direction in each element of the fan passes
through 4, about which therefore the fan has no moment. Hence
the moment of the horizontal forces along A.D taken about 4 must
equal $Pa. Again, the resultant of the semi-fan is a force passing
through 4, and 1ts vertical component is $P. Its horizontal
component is the integral of

2Pl wds
T '(b~2+m2)2’
taken from O to infinity, or P/

“Hence of the horizontal forces along 4.D we know these two
things :(—

(1) The sum must equal P/,

(2) The moment round 4 must equal §Pa.

“In default of a knowledge of the law according to which the
force varies with ¥, it is natural to take it, for a more or less close
approximation, to be expressed by the linear function 4 + By, or
say Y. To determine the arbitrary constants 4, B, we have only
to equate the integral of Ydy to P/, and that of Yydy to 4 Pa,
the limits being 0 to b. We thus get for the expression for the
tension at any point of 4D,

P (é% _?i‘>'+§lf.(ﬂl_l> y
b\m b b \b x)b’

“ At neutral points the vertical pressure equals minus the

horizontal tension, giving

bra  \ ¥’ STaNY o .
(3 =8) G (1= 57) §+2=0s

or, putting for shortness dma_ 4=m,

b

2 1 1
2m<‘y> —my+2=0, therefore 4 =~ + i
b b e pTa T 16 m’
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For the neutral points to be real and different, we must have

2a _ 40
m>16, —b*>gr.

When the neutral points coalesce into one, we have m equal to 16,
y equal to }b; and for the ratio of the span to the depth, 2a/b
equal to 40/37, or 4245, or, say, the span is 4} times the depth.

“As regards the horizontal tension at points along AD, you
take a linear function of y as I do, and your condition of moments
is the same as my (2), but in lieu of my (1) you do what is
equivalent to taking the total tension n:l. You further omit the
correction to the vertical pressure when we pass from a solid of
infinite depth to one terminated by a plane below. You further
take the coefficient of P/y as k&, a constant to be determined by
the observations, instead of 2/ '

“Taking the place of the neutral point (at one-fourth of the
depth) and the ratio of span to depth as given by my formule,
and then treating them as if they had been the results of
experiment, and substituting in your formule for the determina-
tion of %k, I got 07947 instead of 0-64. The largeness of your
coefficient is I think fully accounted for by the employment of the
formulee which you used.

“[n vour method you take the stress belonging to the solid
supposce infinitely deep, and superpose it on the stress corre-
sponding to a pure bend.

“This comes to the same thing as retaining three terms only
in the equation I gave in my letter for determining the y of the
neutral points.

“The equation thus becomes

b b ptEEY
or
2m%—m%+2—0,
where
m:g%a instead of :—3%@—-—4«.

“When the two neutral points merge into one, we have in
S. V. 16
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both cases alike y equal to b, and the only difference is that
37w afb equals m instead of m plus 4.

“If you had supposed the coefficient for the infinite solid to
be an unknown quantity %, and had applied your observations
to determine it, using my formulee instead of your own, you would
have got something very close indeed to 0°64.

“It 1s noteworthy that in your problem, taken as one in two
dimensions, the theoretical stresses in the planes of displacement
are independent of the ratio between the two elastic constants ;
in other words, independent of the value of Poisson’s ratio.”

T have calculated the positions of the neutral points from
Sir George Stokes’s formula

y_1,

1
b 4" V16 m

for spans of 88, 100, and 120 millim. in a beam 128 millim.
long x 55 millim. wide x 19 millim. deep. These are given in
the following Table in the 2nd and 3rd columns. The results
of actual observations are given in columns 4 and 5; while
columns 6 and 7 give the same points as found by plotting the
intersection of the curves of pure bending and loading (infinite

solid assumed):—

Distance of Neutral Points from top edge, by
Span .
Sir (;‘rgfé;guelgtokes’s Observation Integsssfgson of
88......... 63 32 64 33 69 27
100......... 70 25 72 25 73 23
120......... 77 18 78 18 78 175

The error by the intersection method is greater in proportion
as the span is smaller; as might have been expected.

If the observed positions of the neutral points are inserted
in Sir George Stokes’s formula, the value 0'64 is obtained for the

. . 2P 1
constant & in the equation = —-f =

Y



ON THE BEST METHODS OF RECORDING THE DIRECT INTENSITY
OF SOLAR RADIATION.

[From the Report of the DBritish Association, September, 1892. Drawn up
by Sir G. G. Stokes, Chairman of the Committee*.]

TuE work of the Committee during the past year has been
confined to an examination, both experimental and theoretical,
of Balfour Stewart’s second actinometer when used as a dynamical
instrument. Actinometers may be divided into two classes, which
may conveniently be denominated dynamical and statical respec-
tively. In those of the dynamical class the mercury or other fluid
employed is examined while the head of the column is in motion, in
consequence of the exposure being varied by suitable manipulation,
and readings of the column are taken at chosen times, or else the
times are noted when the top of the column reaches chosen read-
ings. In the statical class the instrument is allowed to attain its
permanent state, subject of course to a secular change, such as
that due to the varying altitude of the sun, and the results are
deduced from the stationary readings of two or more thermometers,
Herschel’s, Hodgkinson’s, and Stewart’s first actinometers are
examples of the dynamical kind; the black bulb thermometer,
Violle’s actinometer, and Stewart’s second actinometer, when used
as he intended, are examples of the statical class. ‘

Stewart’s second actinometer has been already described (see
Reports of the Association for 1886, p. 63, and 1887, p. 82), but to
save the trouble of reference it may be well briefly to mention that
it consists of an envelope of thick copper, closed on all sides except
as regards a small hole to allow the sun’s rays to enter, and one to
allow the stem of the central thermometer to pass through. In
the actual instrument the envelope is cubical, and its temperature
is determined by three thermometers, with their bulbs sunk in

[* Cf. supra, p. 187.]
16—2
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hollow chambers in the thick metal, two (4, B) in the front face
of the cube, or that turned towards the sun, the third (C) in the
back face. The internal thermometer (D) has a lenticular bulb,
which 1s mounted so that 1t lies at the centre of the cube, or
nearly so, and has its plane perpendicular to the incident rays.
The copper cube is surrounded by a thick coating of felt, and this
by a covering of thin brass. The object of this arrangement is to
make the temperature of the copper cube sensibly the same all round,
and at the same time to prevent it from changing more than very
slowly when the instrument is exposed. The thermometers 4, B,C
were graduated to degrees, D to half-degrees, all Fahrenheit.

With a view to increasing the effect of the radiation from the
sun on the thermometer D its bulb was ordered to be of green
glass of a particular kind. This, as we ascertained from Mr Casella,
who made the instrument, occasioned a great deal of trouble, as
not only had a pot of green glass to be made specially for the
purpose, but many thermometers broke in the process of construc-
tion, the fracture taking place at the junction of the green glass
of the bulb with the colourless glass of the stem. In a future
instrument we should not think of encountering these difficulties,
since, as will presently appear, our researches led us to the con-
clusion that little advantage, if any, was gained by the substitution
of green for colourless glass in the construction of the bulb.

The principle of the instrument was to make any point of the
radiation thermometer (D) look, so to speak, in all directions
outwards at an envelope of uniform temperature, except as to
directions lying within a very small solid angle (that subtended
by the hole), within which the sun’s rays were admitted. If the
direct rays of the sun had been used the solid angle in question
could only be made small on condition of admitting only a very
small amount of the sun’s rays, which would not have sufficed to
raise the temperature of D sufficiently above that of 4, B, C. To
reconcile the two conditions of allowing the bulb of .D to be almost.
wholly surrounded by the copper envelope, and at the same time
permitting a sufficient amount of solar radiation to fall upon it,
a lens was introduced, mounted on a stem perpendicular to the
front face, to which face the plane of the lens was parallel, and
from which the lens was distant by its focal length. In this way
the necessary hole in the envelope need hardly be wider than the
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image of the sun, though it was convenient to allow some margin
in order to provide for the contingency of the pointing of the
instrument not being very exact. The lens was provided with
two diaphragms for optional use, one having twice the area of the
other.

The observations which have been taken at intervals during
the past year with a view to test the practical working of Stewart’s
second actinometer have been made by Professor McLeod; the
reduction of the observations has been mostly done by the Chair-
man, with whom also Professor McLeod has been in frequent
communication as to the lines of inquiry. In consequence of other
engagements, the observations have not yet been subjected to so
complete a reduction as the care with which they have been made
deserves; but enough has been done to serve as a guide to the
inquiry, and to permit of some general conclusions as to the
behaviour of the instrument.

As has been already stated, the instrument was intended for
use as a statical actinometer with permanent exposure. But it
seemed desirable in the first instance to study the march of the
thermometers when the instrument was first exposed to radiation
from the sun, or the sun’s rays were cut off after it had been
exposed for some time. This seemed to hold out a better prospect
of obtaining a thorough insight into the working of the instrument
than if it had been at once used as a statical actinometer; besides
which the latter use would have involved some outlay in the way
of providing some sort of equatorial mounting and clock movement,
and 1t did not seem desirable to go to the expense of this unless
preliminary testing showed that the instrument was likely to be
successful when used as a statical actinometer. ‘

The temperature of the case was determined from the readings
of the thermometers 4, B, C' by taking first the mean of 4 and B,
and then the mean of that and C. It was found, however, that A
and B always read almost exactly alike, and ¢ was not usually
more than one or two tenths of a degree lower. In any future
instrument it would doubtless be sufficient to determine the
temperature of the copper case by a single thermometer sunk
in one of the side faces, midway between the front and back
face.
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In spite of the felt packing the temperature of the case was
found to change more rapidly when the instrument was exposed
to the sun than was to be desired, and Professor McLeod found it
an improvement to introduce a screen of tinned iron placed a little
distance in front of the front side of the cube, and of course pro-
vided with a hole for letting the sun’s rays through that were to
fall upon the thermometer D. In most of the observations the
case thermometers were merely sunk in their holes, the sides of
which the bulbs might or might not touch in one or two_ places.
It was feared that in spite of the slowness of the change of tempe-
rature of the case, the lagging of the case thermometers might
possibly introduce a sensible error. Accordingly the effect was
tried of introducing a packing of reduced silver between the bulb
of the thermometer and the wall of the cavity in which it was
inserted. By packing in this manner one of the thermometers
4, B, and leaving the other unpacked, it was possible to judge
whether any sensible error was to be apprehended from lagging.
It was found that the packed thermometer was a little more prompt,
but the difference of temperatures read off was very small, little
more than emerging from errors of observation.

In the first regular observation on the march of the thermo-
meters under insolation, the four thermometers were read before
exposure, then the instrument was exposed, and the thermometers
read at intervals of a minute for a quarter of an hour, by which
time thermometer D had become sensibly stationary, having risen
51°3, while the case thermometers rose about 2°, the excess of D
over the temperature of the case rising to 49°7. The sun was
then screened off, and the reading of all the thermometers at
intervals of one minute continued for about half an hour. During
this time the case thermometers continued slowly to rise, the total
rise in the half-hour amounting to 1°°5; the central thermometer
fell, pretty rapidly towards the beginning, slowly near the end, till
it stood only 0°4 or 0”5 above the case thermometers. The sky
was very clear, and there were no clouds near the sun; and as the
insolation began at XII, 26, the decrease of the sun’s altitude
during insolation was but small.

It remains to be shown whether, and if so in what way, a
measure of the radiation can be obtained from the results.

Let 0 be the temperature of the insolated thermometer, 7' that



THE DIRECT INTENSITY OF SOLAR RADIATION. 247

of the case as measured by the case thermometers, ¢ the coefficient
of cooling, the rate of cooling being taken as following Newton’s
law, r the rate of heating of D due to solar radiation. Then in the
time d¢ the increment d@ of D’s temperature is made up of the
gain, rdt, due to radiation and the loss, ¢ (6 — 1), due partly to
convection, partly to the excess of the radiation from D to the case
over thab from the case to . We have therefore

%+gmeyw- ..................... (1)

If we suppose » and 7' constant, or subject only to slow secular
changes, so that they may be deemed constant in the integration,
we have

6=T+§+wﬂt ........................ (2).

Hence if w denotes the excess of temperature of the central
thermometer over that of the case, we see from (2), or directly
from (1), that « tends to the limit

when the time ¢ which has elapsed since exposure, or whatever
other change it may have been in the disposition of the instru-
ment, is large enough to permit of our neglecting the last term
in (2). The constant A, the reciprocal of ¢, in (3) denotes a time,
which may conveniently be called the lagging tvme of the thermo-
meter D.

Were the actinometer used as a statical instrument the simple
expression (3) is all that we should be concerned with. The
quantity 7 varies as the radiation, but involves a coefficient
depending on the particular instrument and for a given instrument
on the area of the diaphragm used, and on the presence or absence
of the quartz plate which is furnished for covering the aperture.
The constant ¢ need not be determined, as it is associated with
a coefficient depending on the instrument. By itself alone the
actinometer gives only the ratio of variation of the radiation.
To obtain an absolute measure the actinometer would have to
be compared, once for all, with some actinometer which gives
absolute results. We believe that the main object which Stewart
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had in view was to furnish an instrument which might supply
a means of detecting possible variations in the intrinsic intensity
of radiation from the sun, corresponding, suppose, to the sun-
spot period; and for this object the same instrument would be
employed throughout, so that we should not be concerned with
absolute measures.

In studying, however, the march of thermometer D when the
instrument is exposed, or else the sun’s rays cut off, we must have
recourse to equation (2), and now we can no longer dispense with
a knowledge of the value of the constant g. The easiest way of
determining it seemed to be to make use in the first instance of the
readings in the latter portion of the observation, when thermometer
D, after having been heated by exposure, was cooling in consequence
of the sun’s rays having been intercepted by a screen. In this case
r=0, and we have simply from (2)

Henee, if we plot the observations, taking the time for abscissa and
the logarithm of the excess u for ordinate, we ought to get a series
of points lying in a straight line.

On laying down the observations on paper it was found that,
after a slight initial irregularity, the dots representing the obser-
vations lay extremely closely in a straight line until the excess u,
which began at 49°7, was reduced to about 3°. They then began
to fall a little too high, and the height above the straight line
representing the previous observations kept increasing as we pro-
ceeded. 'We have not investigated the cause of this variation, but
it seems possible that it may have been due to a slight lagging of
the case thermometers. As these were still rising, though D was
falling, the lagging would make the temperature of the case appear
a little too low, and therefore the excess u a little too great, and
therefore the actual reduction of u would be somewhat less than
the calculated. The difference between the real and apparent
temperature of the case would be too small sensibly to affect the
result until the absolute excess u became comparatively small.
We are not, however, concerned with such small excesses % in the
actual use of the instrument. The lagging time deduced came out
5'6 minutes.
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The reciprocal of this was then introduced into equation (2),
which was then applied to the reduction of the first portion of the
observation, that portion, namely, which was concerned with the
rise of D consequent on exposure. As € and 7" are observed and
q deemed to be known, the equation contains only two unknown
quantities, namely, », which depends on the radiation, and the
arbitrary constant ¢. These might be determined by any two not
unfavourably selected observations of the series, and then the
observed and calculated values of w ought to agree for the rest.
This, however, was found to be by no means the case, and the
differences between theory and observation were far too methodical
to be attributable to errors of observation. Equation (2) was then
tried as a mere formula of interpolation, ¢ being taken as a dis-
posable constant as well as » and ¢. Any three observations would
of course theoretically suffice for the determination of the three
constants, and then the formula would give the calculated final
excess, to which 7 is theoretically proportional, or the calculated
value of u for any other observation of the series.

The numerical calculation is much facilitated by choosing for
the determination of the constants three observations equidistant
in time. If ¢ be the time of the first of the three and A¢ the
chosen interval, we have from (2)

r
Uy = g + ceth;
Auy = —ce™% (1 — g94%) ;

A2y, = ce™th (1 — e718%)2,

These equations give

Ay,
— ‘th = e— 0
1—e¢ Au,’
which determines ¢, and then
o (Auy)?
q =t Ay,

which gives the calculated final excess.

A rough calculation showed that four minutes was a very
suitable interval At to choose, which also agreed with the result
of actual trials. When various trios were taken from different
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parts of the series not too near the end, as there the differences
became small, and consequently errors of observation would be
telling, the calculated final excesses came out remarkably accord-
ant. It thus appeared that equation (2) was no mere formula of
interpolation, but that it was very well satisfied, provided, at least,
the higher part of the series were not included. The limit to
which the excess tended when it had become nearly stationary
was evidently a little, though only a little, lower than the
calculated limit. This is not to be wondered at, because in the
calculation it was assumed that the cooling followed Newton’s
law, which it is known is not sufficiently accurate when the excess
of temperature is as great as 40° or 50°, the cooling in such a case
being more rapid than if Newton’s law had been followed exactly,
the constant involved in it being determined by observations taken
with more moderate excesses of temperature.

The values of ¢ as determined by different trios did not come
out so closely accordant as the calculated final excesses, as might
indeed have been expected from the nature of the equations.
Still they agreed in showing that to satisfy the insolation observa-
tions the coefficient of cooling ¢ must be taken distinctly larger,
in the ratio of about 5 to 4, than when the thermometer cooled
after exposure. When a beam of the rays of the sun falls on the
front face of the thermometer a portion of heat is absorbed directly
by the mercury under the place where the rays strike. As mercury
is opaque the portion thus warmed would in the first instance form
a thin stratum adjacent to the surface by which the rays entered.
Of course currents of convection would arise in the mercury, and
also the fluid metal would conduct the heat. But if the heat thus
tends to get diffused, on the other hand there is a constant renewal
of the superficial heating. Now this specially heated stratum,
however thin, helps to raise the mean temperature of the surface,
but contributes comparatively little to the mean temperature of
the mass; in fact, if it were infinitely thin it would contribute
infinitely little. Now the rate of cooling is determined by the
average temperature of the surface taken all round, whereas the
indication of the thermometer is determined by the average
temperature of the whole mass of mercury. Hence the mean
temperature of the surface is greater than the mean temperature
of the mass; and therefore, if the rate of cooling is supposed to be
determined by the temperature indicated by the thermometer, in
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other words, to be what 1t would have been if there had been no
such inequality of temperature in different parts of the mass, we
must to make up for it take a larger coefficient of cooling.

Hitherto a single series only of observations has been mentioned.
In fact, a considerable number of series were taken, but as the
general mode of treatment and the general character of the results
are pretty nearly the same throughout, it does not seem necessary
to mention them except when they were made for the special
elucidation of particular points.

In the first series the diaphragm used with the lens was the
larger one, of 4/2-inch diameter. It seemed desirable to compare
the results obtained with this and with the smaller diaphragm
of 1-inch diameter. Accordingly, on a day when the sky was
clear, series were taken with the two diaphragms in succession.
On reducing the results it was found that the effect of radiation
through the larger diaphragm was as nearly as possible double that
through the smaller.

The object of the quartz plate was to prevent possible irregu-
larities arising from the action of the wind, which, it was thought,
might cause some interchange between the air inside and outside
the cube. It seemed desirable to try the instrument with and
without the quartz plate. Comparative series were accordingly
taken on a clear and not windy day with and without the quartz
plate. The effect was mn round numbers about 10 per cent. less
with plate on than with plate off. When the plate is used there
is loss by reflection from the two surfaces, besides which there
may also conceivably be loss by absorption. The loss by reflection
can easily be calculated by Fresnel’s formula for the intensity
of reflected light. If we disregard the double refraction, and take
w for the refractive index answering to the mean of the heat rays
incident, and take account of the rays reflected an even number of
times, as well as of those which are not reflected at all, we have
for the intensity of the transmitted light, that of the incident
being 1

g b »

w1
On multiplying the calculated final excess got from the observa-
tions without any plate by the above factor, it came, within the
limits of errors of observation, the same as the calculated final
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excess obtained from the observations with the quartz plate
on. It follows that there is no sensible loss due to absorption
in the quartz plate. It is to be remembered that the rays that
fell upon the quartz had already passed through the glass lens,
and also that in the radiation from the sun it is a comparatively
small proportion of heat rays that are absorbed by glass and similar
substances.

It remains to be explained in what way we were led to the
conclusion that the employment of green instead of colourless glass
for the bulb of the insolation thermometer must have made but
little difference in the results obtained.

Imagine a thermometer to be suddenly exposed to solar
radiation, as in Stewart’s second actinometer, and consider what
its behaviour ought to be on the two extreme suppositions:
(1) that the mercury in contact with the glass reflects perfectly
all the rays that fall upon it, but that the shell is partially opaque ;
(2) that the mercury reflects only partially, but that the shell is
perfectly diathermanous.

On the first supposition the mercury would not be warmed
at all by the rays which fell upon it, but only by conduction from
the shell, which itself would be heated by absorption of a portion
of the rays that fell upon it, either as they came from the sun
or as they were on their way back after reflection at the surface
of the mercury. The rise of temperature of the shell would
ultimately vary as the time elapsed. But if the shell were at
a given temperature the total heat received by the mercury from
the shell would vary ultimately as the time during which it has
been passing in. But as the temperature of the shell is not constant,
but its rise varies ultimately as the time since exposure, the total
heat received by the mercury will vary ultimately as the integral
of a quantity which varies as the time, and will therefore vary
ultimately as the square of the time.

On the second supposition the mercury receives its heat directly
from the sun, and the total heat received varies ultimately as the
time during which it has been receiving it.

Now in the actual observation the gain of heat was found to
be ultimately sensibly proportional to the time elapsed, not to the
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square of the time, as may be inferred from the fact that the rate
of increase was decreasing from the first. We may conclude there-
fore that the gain of heat was due almost entirely to the imperfection
of the reflection from the mercury, which entails direct absorption
by the mercury of the portion which failed to be reflected, and only
in a comparatively insignificant degree due to absorption of heat
by the shell in the passage of the heat through it. We may there-
fore infer that the substitution of green for colourless glass in the
shell of the bulb would make but little difference in the results
obtained. This agrees with the experience of Captain Abney,
who was led by his experiments on the diathermancy of various
kinds of glass to suppose that a thermometer with a bulb of green
glass would rise decidedly higher in sunshine than one with a shell
of colourless glass, but found on trial that the substitution of green
for colourless glass made only a slight difference.

That the rise should be due chiefly to absorption of radiant
heat by the mercury is not to be wondered at. We do not know
whether actual experiments have been made on the reflecting
power of mercury in contact with glass, but we should probably
not be far wrong in estimating it at about 65 per cent., which is
about the reflecting power of speculum metal in air. This would
leave as much as 35 per cent. of the incident rays to be absorbed
by the mercury.

In some of the experiments the change of temperature of the
case was barely slow enough to allow of regarding 7' as constant in
the integration of (1). But it is easy to prove that if 7" vary slowly,
though not infinitely slowly, in order to correct for the finiteness of
the rate of change, we have merely to add the term —d7/qdt to
the right-hand member of (2).



ON THE NATURE OF THE RONTGEN RAYS.

[From the Proceedings of the Cambridge Philosophical Society, Vol. 1x, 1896,
pp. 215-6. Read Now. 9, 1896.]

In this communication the author explained the views he had
been led to entertain as to the nature of the Rontgen rays, and
to a certain extent the considerations which had led him to those
conclusions. As Réntgen himself pointed out, the X rays have
their origin in the portion of the wall of the Crookes’ tube on
which the so-called cathodic rays fall, and it is natural that our
notions as to the nature of the X rays should be intimately bound
up with those we entertain as to the nature of the cathodic rays.
Two different views have been adopted on this question. Several
eminent Geerman physicists hold that the cathodic rays are essen-
tially a process going on in the ether, the nature of which nobody
has been able to explain; and that if any propulsion of molecules
from the cathode accompanies them, it is merely a secondary
phenomenon. The other view is that the cathodic rays are not
proper rays at all, but that they are essentially streams of mole-
cules. The latter view is that which, so far as the author knows,
is universally adopted in this country. The author expressed the
fullest conviction that the cathodic rays are no mere process going
on in the ether, but that the propulsion of molecules is of the
very essence of the phenomenon; only it is to be remembered
that the molecules are not to be thought of as acting merely
dynamically, by virtue of their mass and velocity; they are
carriers of electricity ; and it would seem to be mainly to this
circumstance that some at least of their effects are due. He
indicated what he believed to be the true answers to the objections
of those who regard the cathodic rays as processes in the ether;
and adopting the theory that they are streams of molecules, ex-
plained how, in his opinion, this theory, taken in connection with
the more salient features of the X rays to which the cathodic
rays give birth, leads us to a theory of the nature of the X rays.
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Everything leads us to regard the X rays as being, like rays
of light, some process going on in the ether; and sufficient indica-
tions of their polarization appear to have been obtained to lead
us, at least when those indications are taken along with the
undoubted polarization of the Becquerel rays with which they
have so many properties in common*, to refer the Rontgen as well
as the Becquerel rays to a disturbance transverse to the direction
of propagation. The absence of refraction, which is so remarkable
a feature of the X rays, leads us to regard their progress through
ponderable matter as taking place by vibrations in the ether
existing in the interstices between the ponderable molecules; a
view which if correct leads us incidentally to a somewhat novel
view as to the mechanism of the refraction of light. The absence,
or almost complete absence, of diffraction and interference of the
X rays leads to one of two alternatives:—either that they are of
excessively short wave-length, or that they are non-periodic or
only very slightly periodic, the X light being on the latter sup-
position regarded as a vast succession of independent pulses
analogous to the “hedge-fire” of a regiment of soldierst. Ac-
cording to the author’s view, each electrically charged molecule
on arrival at the target gives rise to an independent pulse, and
the vastness of the number of pulses depends on the vastness
of the number of molecules in even a minute portion of ponderable
matter.

[* Now however traced to a different cause: cf. infra, p. 274.]

[+ On the question whether these alternatives are essentially different, see, on
the other side, Lord Rayleigh, Nuture, nvir, 1898, p. 607, reprinted in Scientific
Papers, 1v, p. 353. According to the view expressed in the text there must be some
kind of statistical regularity in the succession of such pulses, in order that they
may reinforce each other, and thus constitute ordinary light capable of regular
refraction. Cf. infra, p. 272.]



ON THE NATURE OF THE RONTGEN RAYS.

[The Wilde Lecture; delivered July 2, 1897. From Memoirs and Pro-
ceedings of the Manchester Literary and Philosophical Society, Vol. XLL]

EVER since the remarkable discovery of Professor Rontgen was
published, the subject has attracted a great deal of attention in all
civilised countries, and numbers of physicists have worked experi-
mentally, endeavouring to make out the laws of these rays, to
determine their nature if possible, and to arrange for their applica-
tion. I am sorry to say that I have not myself worked experi-
mentally at the subject; and that being the case, there is a
certain amount of presumption perhaps in my venturing to lecture
on it. Still, I have followed pretty well what has been done by
others, and the subject borders very closely on one to which I have
paid considerable attention ; that is, the subject of light.

In Rontgen’s original paper he stated that it was shown
experimentally that the seat of these remarkable rays was the
place where the so-called cathodic rays fall on the opposite wall of
the highly-exhausted tube in which they are produced. I will not
stop to describe what is meant by cathodic rays. It would take
me too much away from my subject, and I may assume, I think,
that the audience I am now addressing know what is meant
by that term. This statement of Rontgen’s was not, I think,
universally accepted. Some experimentalists set themselves to
investigate the point by observing the positions of the shadows
cast by bodies subjected to the discharge of the Rontgen rays—to
investigate, I say, the place within the tube from which the rays
appeared to come. Now, when the shadows were received on
a photographic plate, and the shadow was joined to the substance
casting the shadow, and the joining lines were produced backwards,
as a rule they tended more or less nearly to meet somewhere
within the tube—Crookes’ tube, I will now call it—and some
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people seem to have had the idea that at that point of meeting or
approximate meeting there was something going on which was the
source of these rays. I have in my hands a paper published in
St Petersburg by Prince B. Galitzin and A. v. Karnojitzky, which
contains some very elaborate photographs obtained in this way.
A Dboard was taken and ruled with cross lines at equal intervals,
and at the points of intersection nails were stuck in in an upright
position. The board was placed on top of the photographic plate,
with an opaque substance between—a substance which these
strange Rontgen rays are capable of passing through, though it is
impervious to light. The shadows cast by the nails were obtained
on the photograph, and this paper contains a number of the photo-
graphs. It is remarkable, considering the somewhat large space
in the tube over which the discharge from the cathode is spread,
that the shadows are as sharp as they actually are ; and the same
thing may be affirmed of the ordinary shadows of the bones of the
hand, for instance, which one so frequently sees now. Another
remarkable point in these photographs is that in some cases it
appears as if there were two shadows of the same nail, as though
there were two different sources from which these strange rays
come, both situated within the Crookes’ tube. Now, have we
a right to suppose that the place of meeting of the lines by
which the shadows are formed, prolonged backwards into the
tube, is the place which is the seat of action of these rays? I
think we have not. If a portion of the Crookes’ tube which is
influenced by the cathode discharge be isolated by, we will say,
a lead screen containing a small hole, you get a portion of the
cathodic rays which come out through that small hole,and you can
trace what becomes of them beyond. It is found that the influence
1s decidedly stronger in a normal direction than in oblique direc-
tions. Professor J. J. Thomson, of Cambridge, who has worked
a great deal experimentally at this subject, mentioned that to me
as a striking thing. You might imagine that the fact that the
shadows appear to be cast approximately from a source within the
tube could be accounted for in this way. Supposing, as Rontgen
believed, that the seat of the rays is in the place where the cathode
discharge falls on the surface of the glass, those which come in an
oblique direction have to pass through a greater thickness of glass
than those which come in a normal direction. Now, glass is only
partially transparent to the Rontgen rays; therefore the oblique
8. V. 17
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rays would be more absorbed in passing through the glass than
the rays which come in a normal direction. I mentioned that to
Professor Thomson, but he said he thought the difference between
the intensity of the rays which come out obliquely and those
which come out in a normal direction was much too great to
be accounted for in that way*. I will take it as a fact, without
entering at present into any speculation as to the reason for it,
that the Rontgen rays do come out from the glass wall more
copiously in a normal direction than in an oblique direction.
Assuming this, we can rightly say that the results obtained by
Prince Galitzin and M. Karnojitzky, and similar results obtained
by others, do not by any means prove that the seat of the rays
is within the tube. Suppose, for example, that the tube were
spherical, and a portion of this spherical surface were reached by
the cathodic rays ; if the Rontgen rays which passed outside came
wholly, we will say, in a normal direction, produce the directions
backwards and you will get the centre of the tube. But we have
no right to say from that there is anything particular going on in
the centre of the spherical tube. The result is perfectly com-
patible with Rontgen’s original assertion, which I believe to be
true, as to the seat of the rays.

Everything tends to show that these Rintgen rays are some-
thing which, like rays of light, are propagated in the ether.
What, then, is the nature of this process going on in the ether ?
Some of the properties of the Rontgen rays are very surprising,
and very unlike what we are in the habit of considering with
regard to rays of light. One of the most striking things is the

* T have found by subsequent inquiry that the experiment referred to was not
made by Professor Thomson himself, but by Mr J. C. McClelland, in the Cavendish
Taboratory, and that on being recently repeated with the same tube the effect of
the X rays was found to be by no means so much concentrated towards the normal
to the wall of the tube as in the former experiment. It seems likely that the
difference may have been due to use of the tube in the interval, which would have
made the exhaustion higher, and caused the X rays given out to be of higher
penetrative power, so as to render the increased thickness of glass which the rays
emerging obliquely had to pass through to be of less consequence. But the subject
is still under examination. In consequence of the result obtained in the second
experiment, the statement in the text should be less absolute; but it may very
well have happened that in the experiments of others the conditions may more
nearly have agreed with those of the first experiment, causing what we may call
the resultant activity of the X rays to have had a direction leaning towards the
normal drawn from the point casting the shadow to the wall of the tube,
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facility with which they go through bodies which are utterly
opaque to light, such, for example, as black paper, board, and so
forth. If that stood alone it would, perhaps, not constitute a very
important difference between them and light. A red glass will
stop green rays and let red rays through ; and just in the same
way if the Rontgen rays were of the nature of the ordinary rays of
light, it is possible that a substance, although opaque to light,
might be transparent to them. So, as I say, that remarkable
property, if it stood alone, would not necessarily constitute any
great difference of nature between them and ordinary light. But
there are other properties which are far more difficult to reconcile
with the idea that the Rontgen rays are of the nature of light.
There 1s the absence, or almost complete absence, of refraction and
reflection. Another remarkable property of these rays is the
extreme sharpness of the shadows which they cast when the source
of the rays is made sufficiently narrow. The shadows are far
sharper than those produced under similar circumstances by light,
because in the case of light the shadows are enlarged as the effect
of diffraction. This absence, or almost complete absence, of dif-
fraction is then another circumstance distinguishing these rays
from ordinary rays of light. In face of these remarkable differ-
ences, those who speculated with regard to the nature of the rays
were naturally disposed to look in a direction in which there was
some distinet difference from the process which we conceive to go
on in the propagation and production of ordinary rays of light.
Those who have speculated on the dynamical theory of double
refraction have been led to imagine the possible existence in the
ether of longitudinal vibrations, as well as those transversal vibra-
tions which we know to constitute light. If we were to suppose
that the Rontgen rays are due to longitudinal vibrations, that
would constitute such a very great difference of nature between
them and rays of light that a very great difference in properties
might reasonably be expected. But assuming that the Rontgen
rays are a process which goes on in the ether, are the vibrations
belonging to them normal or transversal? If we could obtain
evidence of the polarisation of those rays, that would prove that
the vibrations were not normal but transversal. But if we fail to
obtain evidence of polarisation, that does not at once prove that
the vibrations may not after all be transversal, because the pro-
perties of these rays are such as to lead us & priori to expect great
17—2



260 ON THE NATURE OF THE RONTGEN RAYS.

difficulties in the way of putting in evidence their polarisation, if,
indeed, they are capable of polarisation at all. Several experi-
mentalists have attempted, by means of tourmalines, to obtain
evidence of polarisation, but the result in general has been nega-
tive. Of the two photographic markings that ought to be of
unequal intensity on the supposition of polarisation, one could not
say with certainty that one was darker than the other. Another
way of obtaining polarised light is by reflection at the proper
angle from glass or other substance; but, unfortunately for the
success of such a method, the Rontgen rays refuse to be regularly
reflected, except to a very small extent indeed. The authors of
the paper to which I have already referred appear to have had
some success with the tourmaline. Like others who have worked
at the same experiment, they took a tourmaline cut parallel to the
axis and put on top of it two others, also cut parallel to the axis,
and of equal thickness, which were placed with their axes parallel
and perpendicular respectively to that of the under tourmaline.
But they supplemented this method by a device which is not.
explained in the paper itself, although a memoir is referred to in
which the explanation is to be found—at least by those who can
read the Russian language, which unfortunately I cannot. T can,
therefore, only guess what the method was. It is something
depending on the superposition of sensitive photographic films.
I suspect they had several photographic films superposed, took the
photographs on these, and then took them asunder for develop-
ment, and after development put them together again as they
had been originally. They consider that they have succeeded
in obtaining evidence of a certain amount of polarisation. If we
assume that evidence to be undoubted, it decides the question at
once. DBut as the experiment, as made in this way, is rather
a delicate one, it is important for the evidence that we should
consider as well what we may call the Becquerel rays. If time
permits, I shall have something to say about these towards the
close of my lecture, but, for the present, I shall say merely that
they appear to be intermediate in their properties between the
Rontgen rays and rays of ordinary light*. The Becquerel rays
undoubtedly admit of polarisation, and the evidence appears on
the whole pretty conclusive that the Réntgen rays, like rays of

[* Of their actual complex constitution much exact knowledge has of course
since been gained.]
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ordinary light, are due to transversal, and not to longitudinal,
vibrations. It remains to be explained, if we can explain 1it,
wherein lies the difference between the nature of the Rontgen
rays and rays of ordinary light which accounts for the strange and
remarkable difference in the properties of the two. I may mention
that, although Cauchy and Neumann, and some others who have
written on the dynamical theory of double refraction, have been
led to the contemplation of normal vibrations, Green has put
forward what seems to me a very strong argument against the
existence of normal vibrations in the case of light. The argument
Green used always weighed strongly with me against the supposi-
tion that the Rontgen rays were due to longitudinal vibrations ;
and the experiments by which, as I conceive, the possibility of
their polarisation has now been established, go completely in the
same direction, showing that they are due, assuming them to be
some process going on in the ether; to a transversal disturbance of
some kind.

Now, the so-called cathodic rays are, as we may say, the
parents of the Rontgen rays. Consequently, if we are to explain
the nature of the Rontgen rays, it is very important that we
should have as clear ideas as may be permissible of the nature of
the cathodic rays. Now, two views have been entertained as to
the nature of the cathodic rays. According to one view, they are
not rayslof light at all, but streams of molecules which are pro-
jected from the cathode, and, if the exhaustion within the tube
be sufficient, reach the opposite wall. That was the idea under
which Crookes worked in his well-known experiments, and, so
far as I know, it is the view held by all physicists in this
country.  Another opinion, however, has been published, and
there are some eminent physicists who favour it, especially,
I think, in Germany. According to this latter opinion, the
cathodic rays are, like rays of light, some process going on in
the ether., The cathodic ray, coming from the cathode towards
the opposite wall of the tube, is invisible as such if you look
across it. There is in reality a faint blue light ordinarily, but
not necessarily, seen when you look across it. Lenard, in his
most elaborate and remarkable experiments, succeeded in pro-
ducing the cathodic rays within a space from which the gas was
so very nearly completely taken away that, although the cathodic
rays passed freely through the space, there was no appearance of
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the blue light when you viewed their path transversely. They
produced, however, the ordinary effect of phosphorescence at the
other end of the tube. The appearance, then, may be analogous
to that of a sunbeam coming from a hole in the clouds. If it
were not for the slight amount of dust and suspended matter in
the air, the sunbeam would be invisible if you looked across it.
But as the air is never free from motes, you see the path of the
sunbeam when you look across it by the light reflected from these
motes. Something of the same kind may be conceived to take
place with regard to the cathodic rays if they are some process
going on in the ether. But there are very great difficulties in
the way of this second hypothesis, and especially as regards
certain properties of the cathodic rays. In the first place, they
act mechanically. In Crookes’ experiments he succeeded in causing
a light windmill, if T may so describe it, to spin rapidly under
the action of the rays. And when they were received on a very
thin film of blown glass, the glass was actually bent under them
as they fell upon it. But that is not all. These cathodic rays
appear to proceed in a normal direction from the cathode, and
ordinarily proceed in straight lines. But—and this is the im-
portant point—they are capable of being deflected in their path
both by electro-static force and by magnetic or electro-dynamic
force. Nothing whatever of the kind occurs with rays of light, and
there are enormous, almost insuperable difficulties in the supposition
of any such deflection occurring if the cathodic rays are a process
going on in the ether. I will not go into all the arguments for
and against the two views, especially as the cathodic rays only
enter incidentally into the subject I have chosen to bring before
you. I will confine myself to one or two chief difficulties in the
way of the supposition that the cathodic rays are streams of
molecules. In his admirable experiments Lenard pro