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PREFACE.

Five yearsago I had the pleasure and the privi-
lege to be invited by the University of Lucknow to
deliver a course of lectures in January and Feb-
ruary, 1949, The text of those lectures is being
presented in this volume,

I take this opportunity to express my affec-
tionate gratitude to Professor A. N. Singh,
Head of the Department of Mathematics, for the
kind invitation to me to deliver this course of
lectures at Lucknow and for making their publ-
cation possible, and to Dr A. Sharma who has
translated into English several additions which
I have made in the original text and who has
read the proofs and directed the printing.

Warsaw, W. SIERPINSKI.
December, 1953,
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N THE CON

wFL N

EQUIVALENCE BY FINITE
DECOMPOSITION

1. Congruence of sets. The congruence of
geometrical figures 1s a well known notion of
elementary geometry, Two geometrical figuresi.e.,
two sets of points lying on a straight line, on a
plane or 1n a space of three dimensions are
congruent 1f they can be obtained one from the
other by translation, rotation or symmetrical
reflexion, It has been proved that a necessary
and sufficient condition that two sets 4 and B
should be congruent (4=DB) is that there exists an
univocally reciprocal conformity conserving the
distances, 1,e., a relation such that if ¢ and g, are
two arbitrary points of the set 4, and b and b,
their corresponding pointsin the set B, then the
distance between @, and a, is equal to the distance
between b, and b,,

are called ¢sometric. Thus instead of saying
“congruent sets’” we can say isomelric sets too.
The notion of isometry may be applied not only
to sets of Euclidean spaces of arbitrary finite
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number of dimensions, but even to more general
spaces called metric in which the notion of the
distance between two elements is defined.

There exist sets of points, even on the straight
line, which are congruent with their proper part
(which is different from the whole)—the half-
straight line for example.

According to A. Lindenbaum, a set 1s mono-
morphic when it is not congruent with any of its
proper parts.). We shall prove the following:

Theorem 1 :—Eack bounded set of points on a
strasght line is monomorphic,

Proof—We begin by proving that by a rotation
of the straight line by 180° around an arbitrary
point, no linear set can pass into its own proper
part, Suppose, however, that by such a rotation
the linear set E passes into its own part H. Let us
denote by z an arbitrary point of the set E. By
rotation let 1t pass into the point 2’ of the
set H. z’ is therefore a point of the set £ which
by the rotation passes into a point of the set H,
It is plain that by the mentioned rotation the
point z’ will pass into the point z; thus this belongs
to H. We have proved in this way that each

)  Fundamenta Mathematicae 8 (1926), p. 217,
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point of the set E belongs to H{. Hence the set
E is comprised in H,i.e., K and as the contrary
is also true, 1.e., HC £ (H has been supposed to be
a part of K), we have H=#&. Therefore, the set H
is not a proper part of the set &.

Suppose now that & denotes an arbitrary linear
set and E(a), for a real number @, the translation
of the set % along the straight line by length a.
E(a) 1s therefore a set of all real numbers z + a,
where z is an element of the set & (ie, z ¢ £). It
is obvious that if H = E(a), then H(-a) = & and
H(b) = E(a+Db).

Suppose the linear set £ i1s bounded. There
exists then a positive (finite) number d, such
that for each pair of points z and 2’ of the set &
their distance is less than d,ie.,| z-2" | <d. If
by a translation of length @ the set E passes
into its part, that is if £(¢) < £ then we have
£(2a) < E(a) < £ and generally E(rna) c & for
n=12..,.If vz, € E, then for a positive
integer n, zo + na € E(na) < £, whence
| (o+na)—z,| < d, or| na | < d for n=12,...,
which for =0 is impossible. Thus a linear
bounded set cannot by any translation (different
from zero) pass into its own proper part,

As we proved, neither by rotation nor by
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translation can a bounded set pass into its own
proper part. Theorem 1 has been, therefore,
proved.

Theorem 1 is not true for sets of points on
a plane. Instead of it we have

Theorem 2—There exists a plane bounded set
congruent with its own proper part.

Proof—Let a denote an angle incommensurable
with = and p a positive number. The set £ of
the plane having as polar coordinates (p, ka),
where & = 0, 1, 2,... Is congruent, as may be
easily seen, with its own proper part £— {( p, 0)},
obtained by the rotation through the angle a

St MR W A

- A Ll n e reraa
Al UL LS Ullgl 1V

The set £ 1s obtained by the successive settings

UL ule A1y U.P lellJU RIC WIlLl vl mugbu UL

the perimeter of the circle) repeated an infinite
number of times on the perimeter of the circle
\.L: -ry =p ) in the p J_JUDIU].VU dueumuu Lcounter-ciockK-
wise sense) beginning from the point p = (z, y),

where z=p, y=0. The set & - {(p, 0)} is here
r\L“n:“n,J 'p'-!!\“ﬂ L1, o de T ermanm v Fa I
vpualilicud 1rulll vie 1w VR 3] Uy ICIHIVY lllg UIIU

pomt p..

The set £ is, of course, a countable one. If
we wanted to obtain an uncountable bounded set,
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congruent with its own part, it would be enoungh to
replace the points of the set £ by radii, meeting in
the centre of the circle excepting the centre itself,

It should be observed that an example of an
uncountable set (of the power of the continuum),
congruent with 1ts own part could be found on the
perimeter of a circle as well. Suoch an example,
however, would be much more difficult. It may be
proved with the aid of Zermelo’s axiom that there
exists a plane bounded set £, congruent with its
own proper part H, and such that the set #—H
will not be of surface measure zero,

It will be observed that the necessary and
sufficient condition, that a set comprised in the
Euclidean space should be monomorphic, is that
it is no proper part of any set of the space with
which it i1s congruent.

Two sets each of which s congment with a
pﬁ’i‘ﬂ UJ b}w uwl.",w are nol mnecessari oby buﬁgf’ééblw
For instance: the set A of all real non-negative

numbers and the set B obtained from the set 4 by

L2 B aWad Pl i 7Y vl!\ Ve Y 2 s o il Wel a)

dUJUluillg bU 1U ULIU nuamoer —"J. d1 IOV l_/Ungl U.UL[U
In order to see that the set B 1s congruent
with a part of the set 4, we move it through the
length 1. The sets 4 and B are not congruent, as
there exists for each point of the set 4 a
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point at a distance less than 1/2, while the point
—1, belonging to B, does not possess this property.

[0

Some theorems, apparently easy, concerning
the congruence of sets (even though linear),
are difficult to prove and require the use of
Zermelo’s axiom, e.g., the following theorem of

Kuratowsk: :

If aset £ can be decomposed in two ways into
sums of two disjoint congruent sets = A4 4+4,=
B,+B, where A, = A4,and B, = B,, then the sets
4, and B, are each sums of four disjoint sets, res-
pectively congruent (i.e., 4,=M + M, + M +M,,
B =N+ N,+ N, + Ny, where M; = N, for
i=1,2,3,4))

*Here is a problem regarding the congruence
of sets which seems to be very elementary, but

whose solution I know nn]v for the case of linear

AR Sef Pk L

sefs:

E being any set of points whatsoever, can we
always take out one point from E in such a way
that the residual set may not be congruent with E ?

I can prove that thisis so for a linear set £,
but I do not know if this 1s true for all infinite

1)  Fund. Math., 6, p. 243.
*Added to § 1 in 1952 while in press,
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plane sets (or for sets in three dimensional
space).

For linear sets, the following theorem (an
immediate result of this is the positive solution
of our problem for linear sets) holds good:

Theorem 2 a. £ being a linear set, there
exists at most one point P of E such that E- {p)=£,
(A=B denotes that the sets 4 and B are

superposable by translation or by rotation).

Proof: Let E be a linear set and let us
suppose that it contains two distinct points p
and ¢ such that

E~{p\=Fand E - {Q’}

lid

[ say that the set £ - {p) can not be super-
posable with £ by rotation (of the straight line
on which it is situated, through an angle =
about any point of this straight line). Indeed,
let ¢ be the rotation which transforms the set
E into the set £ - {p}; that 1s to say ¢(&)=
E—{p). Let p'=¢(p); we have then p’ € & —{p},
therefore ' ¢ E and ¢(p') € (&) = £—{p)],
whence ¢(p')=E p, which is impossible, since evi-

dently QS(p’) = ¢q§(p) = 7.

The set E — {p} is therefore superposable with
£ by translation, and so also 18 £—{g). There
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exist, therefore, two real numbers ¢ and b such
that & —{p}=E(a) and E-{q}=FE (b), where
E(c) denotes the translation by a length ¢ of the
set # (along the straight line) that is to say, the
set of all numbers x+¢, where z ¢ E. As p € E,
whence £==FE —{p}, we have a==0. As ¢==p,

we have g € £ —{p}, so that g ¢ E(a), whence
g—a €k

As a=0, g—a=q, therefore g —a € £ —{q},
that 1s to say q¢—a € E(b), whence g—a—b¢€ &
and ¢ —b e £(a), and as E(a) < E, we find that
g—b e E, whence g ¢ E(b)=FE— (g}, which 1s
impossible.

The hypothesis that we have p ¢ E, ¢ € E and

E-—-I}r)l = F =f - Iﬁl mmnlies a contradiction and

.I.J.LI.tIAA\JLJ W VA AAVA WIAAW/ VAT LL WALWA

the theorem is proved.

Corollary.~—If E is a non-empty linear set, there
exists a point p of E such that the sets E and
— {p} are not superposable.

Pamnf The corollarv i1s evident for sets con-

J-J A b T ALA VAR W J.v.l- LI\JU-.J

taining only one point O.If E contains two distinct

points p and ¢, we conclude from theorem 2a that
at least one of the sets F — lml and K - lnl 18 not

superposable with E.

Now for plane sets we can prove the
following :
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There exists a plane set B contaiming two
distinct points p and q such that B —{p}=E and
E-{g}=E".

The set £ and the points p and ¢ can be
defined in the {following way :

Let a =¢' and let B= exp ( 87 ) be a complex
number of modulus 1 which is algebraically
independent of the number a. Let ¢ be a complex
number which is not a rational function of a and
B with rational coefficients.

Let ¢ be the rotation of the plane through the
[ 1 about the point 0, and let ¥ be the rotation
of the plane through the angle 6§ about the pomnt
¢; we then have, for complex z:

¢(2) =az and Y{(2)=(2 — c)B+c.
We put, for complex z: ¢°(2) =y°(¢)=2 and denote
by ¢~' and y~' rotations inverse with respect to
¢ and .
Let E be the smallest plane set such that
(1) 0e Eand 1 ¢ E,

(2) if 2z €E, we have ¢(2) € £ and
)@ €

(3) Hze Eandz == 1, we have ¢~'(2) € E,

'Y See p.116.
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(4) if z € E and 20, wehave y~'(z) ¢ E.
We can prove that !

(5N AMIN—=F— 11V and A F)

—FE—1{0).
YA — 4T WY

—

It follows from the above that the sets
E — {1} and E — {0} are superposable with Z.

The following problem is open:

Does there exist a non-empty plane set E (or
situated in the space of three dimensions) such that
E - {p}=E whatever the point p of E may be ?

Now, there exists in Hilbert space an enumer-
able set E such that, whatever the point p of E
may be, the set E—{p) 18 congruent (i.e., isome-
tric) with E. Such a set s, for example, the set
E of all those points of Hilbert space of which
all the coordinates are zero except only one
(whatsoever) which=1.

2. Translation of sets—There exists of course
no linear set containing more than one point
and disjoined with each of its translations.

It 13 easy to give examples of linear infinite
sets having with each of their translations one
common point at most. Such a set is for instance

') See W. Sierpinski, Fundamenta Mathematice 37
(1950) p. 2—4,
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the set composed of all the numbers 10", where
n =1,2,.... There may also be defined a linear
perfect set (not empty), having with each of its
translations one common point at most, See my
note published with late S. Ruziewicz in 1932, It
may be proved that such a perfect set, generally
measurable, is necessarily of measure zero.

Zermelo’s axiom of choice is used to prove the
existence of alinear set (non-measurable), the com-
plement of which is of interior measure zero
and which has with each of its translations one
common point at most.

It may be proved without any difficulty that
A At oo Y MxF 1 AT 1
viere du nov €xXIistv vtwo linear Sets M J4d Ly SUuci
that each is the complement of the other, each
contains morethan one point and each translation
AL Ar e Y o Y et AT
ULy d NdsS Wil edCl vIansiation oOL [y one comimon
point at most.” S. Banach proved in 1932 °) the
existence of two linear sets M and N of the power
of the continuum such that they are complements
each of the other and each translation of M has
with each translation of N less than 2%° (thus if
nRO - i Lo N ¢ g
2™ = R, at most 8 ) common points.

) Fund. Math., 19. p. 17.
®) 8. Ruziewicz and W. Sierpifiski, Fund Math., 19, p. 20,
" Fund. Math., 19, p. 13.
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If we admit the continuum hypothesis, we

can prove the existence of a family F of 2° linear
sets of the power 280 such that for two arbitrary
sets of the family F, each translation of one of
them has with each translation of the other an
enumerable set of common points at most.")

It may also be proved that if 28°=y, there
exists a linear set of power 2% and measure zero,
which differs from each of its translations by an
enumerable set of points at most.?)

On the other hand we can prove the following
proposition with the admission of the hypothesis
of the continuum:

There exists a decomposition of the straight line
into 2%° disjoint sets each of the power 2%°, such

nreh? Inaro $rrm ofnram o
Ffeo

fl)nf reanns Fanrenn n?nf; n]nmn f;; e ’ an
eyt v ireve b’w,bOJUf

~ ¥
il any by ANSLarion oy Lite St

each of these sets into ilself, with the exception of an
enumerable set of points at most.*

I shall prove here that a family F (of the power
of the continuum) of infinite sets of positive integers
may be defined in such a way that for two arbitrary

s AL

) Fund. Math., 19, p.21.
2)  Fund Math., 19, p. 22

%) W, Sierpinski;: Comm. Math. Helvetici, 22(1949) p. 317
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sets of the family F the translation of one of them
has with each translation of the other a fimte set
of common points.

Indeed such is the family of all the sets &,
corresponding to real numbers x>0, where E,
denotes the set of all integers

2" (2Enx+1), (n=l, 2,....)

where Lt denotes the greatest integer not sur-
passing ¢,

If x and y are two distinct real numbers>0
and ¢ and b two real numbers, let us suppose that

te b (a) E/(b).

According to the definition of the sets £, and
E, there exist positive integers m and n such that

(1) t=2" (2Bmx+1)+a =2"(2&ny +1)+b,

hence
(2) 2™ (2Emz4 1) - 2" (2Eny+1)=b — a.
Therefore, b — @ is an integer.
If a =5, formula (2) gives
2" 2Emzr+1)=2" (2Eny+1),

hence m=n and Emz=Eny, and it follows that
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and as be £, we have E(b—a) 3= E. S0 E ¢ $(E)
and E(c) € $(£) for real ¢, and it is seen that
the family ¢(#) contains more than one set.

Now the following problem arises: May the
family $(E) be composed of a finite number n> 1
of sets? We shall prove that the answer is
in the negative,

Lemma. Let n denote a positive integer > 1.
If there exists for a linear set E a real number a
such that the sets

(1) E(ka), where & = 0, 1...., n -1,
are all distinct, then there exists another real number
b such that the sels

are all distinct.

Proof:—We put b= afn and admit that there
exist two sets among the sets (2) which are equal.

Let

(3) E(kb)=E(kb), where 0 <k, < k, < n.
As n =2, 1t cannot be that &k, = 0 and k,=mn, consi-
dering that £ = E(0)3F=£(a) = E(nb). Therefore
we have 0<k, - k, < n. It 1s, however, plain that
the cquality £ (c,) = E(c,) gives E = E(c,~c,) and
according to (3) we have

(4) E=E((k~k)D), where 0 <k <k, <n,
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Now from the equality £ = E{c) it follows
that & = L(kc) for [ integral, and (4) gives

I

' 1 /1./1.
L’J—-—HKID

N ARV AN
iy~ )0)

S

for k integral, and in particular for k=n (as b
= afn)
E=E((k-k)a),

where k, -k, 1s one of the numbers 1, 2, ...,
..., n =1, which 18 contrary to the hypothesis
that the sets (1) are all distinct. This proves the

lemma,

Let £ now be a linear set neither empty nor
contaming all the real numbers. As we have
proved above, the family ¢(Z) contains more than
one set and there exists a real number @ such that
E +# E(a). The hypothesis of our lemma is there-
fore valid for n=2. It results, then, from our
lemma, by induction, that it is valid for each posi-
tive integer n. So the family ¢(#) cannot be

(Y rmit S es 1 21
nnive. 1nus we nave proved tine

Theorem 3—If £ s a linear set n

ore thon thore o
Crs, vhlCrt ¢lilTe CL

sets superposable by

[ ] .
mnr nontrasmnang ol f
rtOF CONLlivrivivy v o

e ]

an infinily of linear distine
translation on &.

Now the problem arises ;: Can the family $(£)
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be enumerable ? 'The question is rather delicate.
In the present state of the science it is impossible
to give an effective example of a linear set & such
that the family &(E) should be enumerable,
since, as we shall see, such a set should not be
measurable in the Lebesgue sense. We can
demonstrate the existence of such a set by the aid
of Zermelo's axiom.

In reality G. Hamel has proved by the aid of
Zermelo’s axiom the existence of a basis B of all
the real numbers, 7. e, the (uncountable) set of
real numbers a, b, ¢, .... different from zero, such
that each real number x may be represented in
onc way only in the form

(5) z= aatBbtyct. . .,

where a, B, y,.. are rational numbers among
which, in each particular case there 1s a finite
number (or nul) of non nul values.

Let, ¢ be a given number of the basis

et ¢ be a gi I asis
£ the set of all the real numbers of the for
where a=0,

It results easily from the property of the basis
B that if a and a, are distinct rational numbers,

then K (aa)l(a,a)=0. Indeed, if there exists
a rteal number z such that 2 ¢ K (az) and
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z e E(a a), then z - aa e £ and 2 ~ a @ € £, which
gives rmmediately ( according to the definition
of E), (a,-a)e e E, and that is impossible,
since a 4= a,.

On the other hand let (5) denote an arbitrary
real number. It is obvious that F(z)=E(aa). The
family ¢(K) which is evidently coincident with
the family of all the distinct sets E(x), where
18 an arbitrary real number, coincides also with
the family of all the sets K(aa), where a 13 a
rational number, and the family ¢( & ) 1s conse-
quently enumerable (since the number @, a given
number of B, 13 not equal to zero). Thus we
have with the aid of Zermelo’s axiom the

Theorem 4—There exists o linear set £ and
an nfinite sequence of linear sets, each two of
which are disjoint, and such that each linear set
superposable by translation with E 1s one of the
elements of the sequence and vice versa.

One can also prove with the aid of Zermelo’s
axiom the following theorem due to Prof. E. Cech:

There exists a linear set K neither empty nor
contarning all the real numbers, such that for any
real number t the infinite sequence of sets

(6) E, E(t), E(2t), E(3t), . ..
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conlains merely a frnite number of distanct sels.

Let B={a, b, ¢, . . .} denote the Hamel basis
and ¥ the set of all the numbers of the form

pat+gbtret+ .. .,

where the coefficients are integers, of which only
a finite number 1s not equal to zero. The set
E does not contain every real number, since
it results from the property of the basis B, for
instance, that the number ¢/2 does not belong

to £.

Now let ¢t be any real number, { =aa+8b+
yc+..., where a, B, v, ... are rational numbers
of which a finite number is not nul. If m
is the common denommnator of the numbers
a, By vs... (not nul), it may be easily seen that
mt ¢ F and K(mt )= FE. This implies immedi-
ately that each term of the infinite sequence (6)
is equal to one of the sets

Thus Cech’s assertion has been established.

Suppose now that £ is a linear set such that
the family ¢(#) i3 enumerable, and let $(&) be
(B, E, ... ). Now the set £ +E, + E, +...
covers the whole straight line and as the sets
£, E,, «.,are superposable with F, the latter
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cannot be of zero measure ( since the sum of an
enumerable infinity of sets of measure zero is of
measure zero and consequently cannot cover the
straight line).

As E(z) e ¢(E) for real z—an uncount-
able infinity of numbers—and as ¢(&) = (&,
E, ...}, 1t follows that there exists an index
m such that the equality E(x) = £, is valid foran
uncountable infinity of real numbers 2. Let € be
any positive number. There exist then real num-
bers z and 2’ such that 0<z - 2 <e and E(z) =
E. ., E(@)=E,_, giving immediately E (z) = E(2')
and E(z -2)=F. Therefore, there exist arbitrarily
small real numbers > 0 such that E(t) = £,
which implies E(kt) = & for k integral, It follows
immediately that there exists an infinite sequence
of real numbers ¢,,¢,,...dense in the straight hneand

such that E(t;)=F for i=1,2,...,and B =3 B(t)

Now, as we know from the theory of Lt(:l;esgue

measure, if a set K 1s not of measure zero, then

oo
P « 72\ = ~

the sum & Lail;) isa set the ex
of which its-equa.l in each interval to the length of
this interval. As this sum is equal to E, it may
be seen that the exterior measure of the set E in

any interval is equal to 1ts length.

Let the complement of the set £ be denoted
by H and for¢ =1, 2, ... the complement of E;
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by H;. Of course, the equality E(x) = E gives H(z)
= H and it may be casily deduced from 1t that
o(H)=(H,, H,,..). It may be proved as for the
case of the set %, that the exterior measure of
the set H in any interval is equal to the length
of the interval. Hence the sets £ and H which
are complements of each other are both of the
interior measure nul. So they are not measur-

able in the Lebesgue sense. Thus we have proved
the

Theorem 5. Fach linear set E satisfying

the theorem 4 15 not measurable in the Lebesque
sense.

From theorems 3 and S there results the

Theorem 6. If 2M°=w, then each linear
measurable (vn the Lebesque sense) set K, neither
empty nor contarning all the real numbers, admats
an wnfinity of linear distinct sets of the power of the
continuum superposable by translatron on L.

I do not know any proof of the theorem 6
which would not be based on the bypothesis of
the continuum. It is easily seen that if Fisa
linear set composed of ounly one point, or a
bounded interval, or the whole straight line devoid
of one point only, then the family ¢(E)1s of
the power of the continuum. Now the following
question may be raised : if m 1s a given arbitrary
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cardinal number, not finite, and not superior to
the power of the continuum, does there always
cxist a linear set such that the family ¢(E) is
of the power m ? In the light of theorem 4 this
problem does not present any interest unless it
13 proved without the use of the hypothesis of
the continuum.

If we modify the above proof of the case
m =¥, (theorem 4) we can prove with the aid
of Zermelo's theorem on well ordering (and
without using the hypothesis of the continuum)
that the answer to the question is positive. The
notion of the Hamel’s basis should be generalized
at this stage by the substitution of the field of

rational numbers which consti tute the coeflicients
of the development (5) by a field of real numbers

of the power m."

Now the following problems arise :

Does there exist a linear set F such that the

familv of all the linear distinet sets similar to &

SN L1A J..LJ LARUANL

in the sense of elementary geometry should be
enumerable ?

Does there exist a plane set £ such that the
family of all the plane distinct sets congruent

1) Fund, Math,, 35, (1948), p, 161,
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with E (i.e. superposable by translation or by
rotation) should be enumerable?

T, Kapuano has proved in 1951 that the
reply to each of these two problems is in the
negative.’

3. Equwalence of sets by finte decompo-
sitton. Let 4 and B be two sets situated in
an Kuclidean space (or more generally in an
arbitrary metric space). We write 4 = Band
say that the sets 4 and B are equivalent by
decomposition into » parts if there exist sets

A,,4,,...,4, and B,,B,,...,B, such that
1° A=A +4,+...+4,, B=B,+ B,+...+B,,
2° AkAz :BkBl':.O for 1<k <l<n,

3° 4, =B, for k=12, ...,n.

If there exists for two sets 4 and B a positive
integer 7 such that 4 = B, we shall say that the
sets A and B are equivalent by finite decomposition.
That means that the sets 4 and B may be de-
composed into the same finite number of dis-
Joint parts, respectively congruent. We shall
write then 41B,

') Comptes Rendus, Paris, 232 p. 1621-1622,
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We shall mainly treat here the equivalence
of sets by decomposition into two parts, which
represents an 1mmediate generalisation of the
congruence of sets; they differ, however, from
it very sensibly.

The notion of the equivalence of geometrical
figures by decomposition into two parts is very
well known from elementary geometry. We
should, however, stress the essential difference
between the definition of this equivalence in ele-
mentary geometry and that adopted here.

For instance it 1s well known from elementary
geometry that a right angled isosceles triangle
B ABC may be decomposed

by its height BD into two
triangles from which a
square may be formed (i.e,,
Z N\ by the rotation of the tri-
D ¢ angle BDC around the point

B by 270°), This, however,

B B does not enable us to state

that our triangle and square
are equlvalent by decom-
/ position into two parts (in

our meaning), since the tri-

A D angles ABD and BDC into
which the triangle ABC has been decomposed, are
not disjoint, as they possess the common side BD.
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I POi _'yh dron ) are said in
elementary geometry o be equivalent by decom-
position if they can be decomposed into a finite

-
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and €qual numoer Ol polygons (Or I“)lyucu 1‘8)
respectively congruent, which do not possess
common interior points.

In our sense two sets are equivalent by finite
decomposition if they can be decomposed into a
finite and equal number of arbitrary sets of
points, respectively congruent and possessing no
common points,

If E is a non-empty set situated in an Eucli-
dean space, there exist, as may be easily proved,

2%odistinct sets of this space at most, congruent
Mo

2
with E. There exist 2  linear distinct sets
equivalent by decompomtmn into two parts to

t‘wn atrataht lina Tn rdarn fn ah e 11 T alhall
HE Straigniv 1ine il UOTGEL WO 500w Loils, 1 Sndig
first prove

Theorem 7. The strawght lune ts equivalent by
decomposition nto two parts to the set oblained from

the strarght line by the retraction of an arbitrary
bounded set.

Proof. Let P be the set ofall the points of
the straight line and B an arbitrary bounded
subset of P. Thus the set B 13 contained in the
interior of a finite segment of length I, Let us put
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(1) P,=B+B(l)+B@2)+...,

where B(/) denotes the translation of the set B
along the straight line by the length /.

Any two terms of the sum (1) are certainly dis-
joint and congruent, so we have P,() = P,. Let
us put P,=P-P,, We shall have evidently
P=P+P, PP,=0,P-B=P(l)+ P, P(I).-P,;=0;
taking into consideration that P (/)= P,, wededuce
P 5 P— B, which was to be proved.

As the family of all the bounded subsets of
Ko
2 ?
the straight Iine is of the power 2 it  results
Ro
2
immediately from theorem 7 that there exist 2
linear distinct sets equivalent to the straight line

by decomposition into two parts.

If4={1,23,..},B={2,34,...},0(={3,4,5, ...}
we have

A>DB, A> C,B=C, but (4 -B) is not L (4-0),

[

since A-B=1,4-C=2,

Therefore if Band C are two congruent subsets
of the linear set A, the sets 4 —~Band A -C can
be not equivalent by finite decomposition.

Evidently the relation = is symmetrical, yet it
18 not transitive for n > 2.
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let 4= {
C=1{1,5,9,13). As A=|{
[3.4)2(5,6),
deration that 6}, C={1,6}+
{2,6}={9,13}, we have B3 C. So we have 4 ; B
and B 5 C, but we do not have 4 7 C, nor even
A3 C. Nowif we had 4 5 C, there would exist
decompositions into disjoint sets A=A +4,+ 4,
and C=C +C,+C,, where 4, =C,4,=C,, 4,=C,.
As the set A contains 4 elements one at least of
the sets 4,, 4,, 4,, say 4, contains more than one
element. Hence there would exist elements @ and
b of 4, such that a==b; a and b belong, how-
ever, to 4, and allthe more to 4, hence | a —~b | <3.

As A=C, there would exist in C two elements at

O I"IEJ*‘O'I’\!‘ID " ) rrl\'ln]"\ 16 Inmnnnatatant it h ha
a4 UDLaalluve o o, Whiuvl 1o MU LIDLDVCILILU WIlLLL ULLQ

definition of the set C. So 4 7 C is not true.

I:S

+
B, and taking into
2 9,

17
101},

Now it may be easily shown that whatever
be the sets of points A, B, C the formulae 4 B
and B3 C imply the formula 4 7 C, Indeed, if
A 7 B, there exist decompositions A=A 4+ A4,,
B=B,+B,, where 4,4,=B,B,=0, A =B, A,=B,,
and if B3 C, there exist decompositions B= B,"+ B,
C=C,+ C,,where B/B/=C,C,=0,B/'=C,,B,/=C,.
These decompositions give immediately decomposi-
tions into two disjoint sets:

B1 = BxB; + B Bzr’ B = BzB1'+ Bszry
B/'= BIBI' + BB B, ' BIB; 4 Bsz'.

271 ?
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As 4, = B,, there exists a decomposition of A,
into two disjoint sets:
A=A4/+A4", where 4/ =B B/
A" =BB,),and 4/'A/" =0.

Similarly as 4,= B,, it may be seen that
A=A+ A,”, where A/=B,B,
A,'’=B,B, and 4,’4,"'=0,

and as B' = C,, B, = C,, it follows that
C,=0+C/", where C/C," =0,
C/=BB' and C/'=B,B/,
C, = C,/+0C,”, where C,/C,"” =0,
C, =BB,, and C,” =B,B,.

Thus decompositions into 4 sets have been
obtained:

A=A1'+A1”+A2’+A2”, C=CII+02I+010+02”’
where 4, = O/, A" = C;, 4, = (", 4," = C,".

It results at once that 4 T C.") Later we shall
prove more generally that the formulae 4% B and
B = C imply the formula 4 = C. It follows that

the relation £ is transitive.)

It may be proved that for a bounded segment
0 < 2 < 1] we have I FI-{0}, but not
I-{o0}.

) Aand C being two sets (e. g., linear), such that

A4 = C, I do not know if there always exists a set B, such
that 45 B and B3 C.

Mo ey
M“ o |

|
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*For the equivalence by finite decomposition 1n
the sense of elementary geometry, it may be
remarked that F. Bolyai has proved that two
polygons having equal surfaces are equivalent by
finite decomposition to a finite number of triangles.

H. Steinhaus has proposed the problem whe-
ther we can divide the square into a finite num-
ber of squares of which no two are congruent.
It has been proved that the square whose side is
175 can be divided into 24 squares, not congru-
ent two by two, whose sides are expressible by
natural numbers. We do not know if we can
divide the square into less than 24 parts not con-
gruent two by two.")

Theorem 7a. Let £ be a linear infinite set.
There exists an infinite sub-set H of K, such that the
sets & and H are not equivalent by finite decompost-
tion, l.e., there exists no natural number m such

that

* Added to §3 while in Press in 1952,

________ o= a S

) See The Dissection of Rectangles into Squares,
Duke Math. Jour. 7 (1940) pp. 312-340; R. Sprague, Math.
Zeit. 46 (1940) p. 460 - 471; M. Goldberg, Amer. Math.
Monthly 47 (1940) p. 570 - 571 and Scripta Mathematical
18 (1952) p. 17-24; E. Bodewig, Indagationes Mathematicae
9 (1947) p. 34; C. J. Bouwkamp, ibid p. 58, and B.A.
Kordemskij and N. Rusaleff, The strange square (in
Russian) Moscou-Leningrad 1952 (159 pages).
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E=E +E,+...+E,,
(1) and
H = H1+H2+ ses +Hm:

where E.E,=H H,=0for1 <k <l << m,

and where the set E, is superposable (by transla-
tion or rotation) with H, for k =1,2,...,m) (l.e.,
Ek = Hk for k=1, 2, ,m)

Proof. There are two cases.

(i) The set £ is unbounded. The linear set
E being infinite, there exists, for each natural num-
ber n, an interval d, of length d, containing at
least n distinct pomts of E. I define by induction
an infinite set p,, p,, ... of points of £ as follows:-

Let n be a natural number > 1, and suppose
that we have already defined the points p,, p,, ....

voers Preyr
Since the set £ is not bounded, there exist

points in E whose distance from each of the points

Diy Pos e, Pu—y 18 greater than 31, 32, ves El—nzf let p,
be one of these points.

Put H={p, p,, ...}. We see easily that, if
k>=m > land if n 1s a natural number = %,

the distance of p, from p, is > d,. It follows
immediately that there does not exist in H any
system of m (> 1) points, the distance between
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any two of which is < d,,, (because one at least of
these points will have an index & = m).

PRV E BN

“ TR -y FaY ‘-L J- -L‘ [ W TN ?‘. L
L LULINULAC Kl no

Let us Suppose vna
m is a nabural number which we can uppose >
1. As the interval d_, contains at least m?
distinct points of E, one at least of the sets
E,E, .., E, say E,, contains at least m points
of d,.. If we had £, = H,, the set H, and @

fortiori, the set H would contain at least m dis-
tinct points having two of the distances < d .,
which is, as we have proved, impossible. The sets
E and H < E are therefore not equivalent by
finite decomposition.

s:a.,
=

(1) The set E is bounded, The set E being
infinite (and bounded), there exXists, by the theo-
rem of Bolzano-Weierstrass, a point of accumula-
tion ¢ of E (1.e., 0 € E'). We shall define an infi-
nite set p,, p,, ... of points of E by induction
as follows. Let p, be any point whatsoever of
E other than @, Let n be a natural number > 1
and suppose that we have already defined the
points p,, P,, ... y Pa—y and that they are all differ-
ent from a. Let ¢ be a positive number such that
2¢ 13 smaller than the distance between any two
of the points a, p,, Pp+ ...y Pu—y- As a € E', there
exists a point p, of E whose distance p(p,, o) from
a is less than each of the numbers €, €,,...,€,. Put
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Hzlpzzh, Pyztss o3 Prdgyy oo bo
If H contains m (> 1) distmct points, at least

Lowrimn ~L L e SOV XT A% _f\“r] ~ ‘ ) Ip— r]
1WO Ol tnem, Say Pi24, and Py, will have indices.

> m? + 1, and from the definition of the points p,,
we will have

p(pkz-h, LI) < € 24y
and p(plz+1r a’) < €m2yy,

whence P(Prztis Prets) < 2 €pmpiye

Therefore there does mnot then exist in H for a
natural number m > 1 m distinct points having
their mutual distances > 2¢,., .

Let us suppose that formulae (1) hold true
where m is a natural number > 1. The distance
between two distinet points of the setp,, 2., ... , Ppe
being > 2¢€ .., one at least of the sets
E,E, ., h6E,, say F,, contains at least m points
of I/ having their mutual distances > 2¢,.,,.
This is thentrue for the set H, = £, and, a fortiort,
for the set H, which is, as we have shown,

impossible.

In the cases (i) and (i) the sets E and H are
not equivalent by finite decomposition and our
theorem is proved. It can be generalised easily
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to infinite sets situated in an euclidean space of a
finite number of dimensions, but not to any infinite
metric spaces.

Theorem 7b. If K, E, ... is an infinite aggre-
gate of infinite linear sets such that for every natural
number n, £, 4, is equivalent by finite decomposition
to a subset of E,, then there exists an infinite set &
such that for every natural number n, E s equi-

valent by finite decomposition to a subset of E,,
but not to £,.

Proof. By hypothesis, there exists a set
H, c E,such that E, LI, (i.c., E,is equivalent,
by finite decomposition to H,). Similarly, there
exists a set H FE, such that E, £ H. The formulae
E,LH HcE,and E, L H, prove (Sce corollary
of Theorem 23) that there exists a set I, H,,
such that £, £ H,. We thus obtain by induction an
infinite aggregate of sets & =H DH,DH.D
such that £, L H, forn=1, 2, ... .

LI

WU n " d\.}ﬁ e b l.l.'-}.rq J. n t"O ‘-lllﬁ‘ p p Iq Of

[Py L}\_iuu

points p, p,, ... and ¢, ¢, ... as follows. Let
p, and ¢, be two distinct points of /. Let n be

a 1_13_1;111'31 number > 1 and suppose fhgt we have
already defined the points p,, ps ... » Pu., and
Qi Qo> ooy uye The set H, being infinite (and
also equivalent by finite decomposition to the
infinite set E,), there exist distinet points p, and ¢,



EQUIVALENCE OF SETS 35

of If,, distinct from each of the points

pl’ p2’ "'3pn“1’ ql’ 92""" q'n-y PutHO:{p13p2’ "'}'
Seeing that I DH,> ..., we evidently have, for

every natural number n :

{pn’ p‘n+1’ pn+2r } - Hn
and ‘gni Tnt19 Tntas ---} = Hn_Ho-

From theorem 1, there exists an infinite sub-
set £ of H, which is not equivalent by finite de-
composition to I7 .

By meansof the properties of the sets p,, p,, ...
and ¢,, ¢,, ..., we find easily the following decom-
positions into two disjoint sets

Ho: {pu Doy wors Ppmy } F ‘pna Pt "']
and

-Tn: {9,., Dr g1 oaes gzn-z} + {pni Drntr» }’

where evidently

{Dys Dos vevs Pui} el {Qm Oneg1s oovs Qoamez} -

We deduce from this at once that the set [, is
equivalent by decomposition into n parts to the
subset T, of H,. As ECH,and H, L E, ,we con-
clude from this that the set £ 1s equivalent by
fmite decomposition to a sub-set of E, (for
n=1,2, ...).
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Now let us suppose that for a natural number n
we have ELE ., Since Ec H,and H, LT, < H,,
there exists a set G such that £ LG T, H, and,
as B LK and E, L H,, this gives, as we know,"
T, LH_ therefore, seeing that H LT and I LK, ,
we find that H, L E, and since £ L E,, we get
H L E, contrary to the definition of the set Z.

The theorem 2 is thus proved.

4. Some theorems on the equivalence of sels by
decomposition into two parts.

Theorem 8. The stravght line is equivalent by
decomposition nto two parts to the set obtained
by the retraction of an arbitrary enumerable set
Jrom the straight line.

Proof. Let P be the set of all the points of
the straight line and D a given enumerable subset
of P. It is known that the set of all the numbers

=Yy
7 wherez e D,y e D and k=+1, % 2,...,
enumerable. As the set of all positive numbers

LW W

18
1s uncountable, there exists a positive number «
such that

=1 L.
L

b ———

k
Let p and ¢ be two distinct integers. If we

suppose that D(pa).D(qa)==0 then there would

.QA._‘n,..AnTA___|1 . O
1 &£ ¢ U’y EU!E“‘II’ idio-.-

]

a

") See Corollary of Theorem 23.
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exist elements z and y of Dsuch that z4+pa = y+ga,

~ Y
&k

which is in contradiction with the definition of the
number ¢. Thus we have D(pa).D(qa) = 0 if p
and ¢ are both distinct integers. We put

and putting k = q — p==0 we should have a=%_Y

P, =D+ D(a)+D2a)+....

The terms of this sum are sets any two of which
are disjoint and congruent. Considerations simi-
lar to those of theorem 7 will complete the de-
monstration. Thusone gets P 7 P—~D and the
proof is completed.

The word ‘enumerable’ in the theorem 8 could
be substituted uy ‘of the power inferior to
that of the continuum’, the demonstration,
however, would then require, in the general case,
the use of Zermelo’s axiom to enable the deduec-

tion of §m2 < 2% from m<2®°,

Corollary. The set of all the real numbers is
equivalent by decomposition info two parts to the set
of all the vrrational numbers as well as to the set of
all the transcendental numbers.

The proof of the corollary results immediately
from the fact that the sets of all the rational num-
bers as well as all the algebraical numbers are enu-

merable sets, Now we have
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Theorem 9. Thke set of all the irrational num-
bers is equivalent by decomposition into fwo parts
to the set of all the transcendental numbers.

Proof. Theorem 9 cannot be immediately
derived from the corollary, since the relation 3 18
not transitive. Let P denote the set of all the
real numbers, R the set of all the rational num-
bers and A the set of all the algebraical numbers,
and a a transcendental number.

We put 4, =4 —R. 1t is easily seen that the
terms of the sum

P,=4,+ A(a)+ 4,2a)+ . ..

are two by two superposable and disjoint
(since the equality z+ka = y+ la, where z € 4,
y € A, and where & and [ are distinct integers,

z=Y . .
Wnnrr‘.l Tanr] tNn rp — v w 'n]n 1 ;mnr\QQIkln nn“c‘:g
Vil ITau UV — LALLM IO LPUB0IVLIU, LUULIoL

-k

dering that a 1s a transcendental number). We put

-]
o

D _ /D TN\, D
Ly=\=)+ L,
and 1t gives

P—R:P1+P._,_, P1P2:0_,P-A:(P1"'A‘)+Pg:
(PI—AI)P2:0’ Pl_A;:PI'

It is readily verified that P- R 3 P-4 and the
theorem is proved.
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Theorem 10. The set of all the rational numbers
and the sct of all the algebraical numbers are nof
equiwalent by finite decomposition.

Proof. Let A=A 4+ A,+ A, +A,+...+ A, be
a finite decomposition of the set A4 of all the
algebraical numbers. One term at least of this
sum, say A, contains an infinity of numbers of
the form %,./2 where k=1, 2, .... As the dif-
ference between two distinct numbers of this form
is always irrational, the set 4, cannot be congru-
ent with any part whatsoever of the set R of all
the rational numbers. So the relation 4 = R does
not hold. This demonstration of the theorem 10 is
due to Prof. S. Mazur.

Theorem 11. The set B of all the rational
numbers and the set D of all finite decimal fractions
are nolt equivalent by finite decomposition,

Proof (given by S. Mazur). Let R=R +R,
+ ...+ R_be a finite decomposition of the set R,
One at lcast of the terms of this decomposition,
say R, contains an infimity of numbers of the
form 1/p, where pisa prime number. So there
exist two prime numbers p>5and ¢>p such
that the numbers 1/p and 1/q belong to R,. As
the difference (1/p)—(1/g) is not a finite decimal
number, the set R, is not congruent with any
subset of D. Thus the relation B = D does not hold.
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Theorem 12. The set D of all the fimie
decimal fractions and the set E of all the finite
dyadic fractions are not equivalent by finite decom-
position.

Proof. Let D =D,+D,+...4+D,. One at least
of the terms of the decomposition, say D, contains
an infinity of numbers of the form 1/5%, where
k=1,2, .. (since evidently all these positive
numbers belong to the set D). Hence there exist
two posttive integers & and [ > %, such that
1/5% € D and 1/5' ¢ D, Now it is easily seen that
(1/5%) - (1/5%) does not belong to E and this implies
that D, cannot be congruent with a part of £.
Thus the relation D = £ does not hold, It may be
proved that each infinite set situated in the
Euclidean space contains an infinite subset to
which it 15 not equivalent by finite decomposition,
This 18 not generally true for infinite metric
spaces, For instance, an enumerable metric
space in which the distance between two distinct
arbitrary points is equal to 1, is congruent (iso-
metric) with each of its infinite subsets.

Theorem 13. If a and b are two arbitrary real
numbers, A s the set of all the rational numbers
< a and B the set of all the rational numbers < b,
then 4 5 B.
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Proof. Let us suppose, as we may, a =& b, e.g.,
a < b. Let mbe a positive integer such that
m > b—a. We denote by @ the set of all the

rational numbers z satisfying ¢ < < b and we put

B, =@+ Q(—m)+ Q(—2m)+ Q(-3m)....

It is really seen that the terms of this sum are
sets two by two disjoint and superposable. We
put B, = B— B, which gives

B=B1+ Bz’ B1'82=Oa A:B_Q:(B1 _Q)"'Bz’
(B1 = Q)'82:09 Bl _Q=B1( _m) = Bl'

It follows from it immediately that 4 5 B,
which was to be proved,

It is plain that we have 4 = B only in the case

when b — ¢ is a rational number. For a=,/2 and

‘) .‘l\l\ ﬂf\" A n“lJ D L W “ﬂ “““““““““ m.‘l\t\
U—-— ~/O IJULU 8SeL8S A ana O are nov ULLB.I.LLUIIIJ 111G

same is true for a=— /2 and b= ,/2. The set of
all the rational numbers < ,/2 and the set of all
Bue muonm numbers > ,\/ 2 U;he i1atter lt: not bupel-
posable by rotation around the point zero with the
set of the rational numbers <J2) are not con-
_____ PR P a laa

lL.<s A,
lLlBI_lb ..LIlG dlU uUWUVUl eq LllV lUth vy gg=
L

composition into two parts.

It should be observed that in theorem 13 the
words ‘rational’ could be replaced by ‘algebraical’,
“irrational’ or ‘transcendental’.
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Let us point out that it results immediately
from a theorem of Banach’ that if for two sets

X and Y the formulae X =Y, Y and Y=X X
are valid then X 37,

Theorem 14. If S denotes a spherical surface
(in the space of 3 dimensions), D a finite or enu-
merable subset of S, then S-D 7 S.

Proof. Suppose, as we evidently may, that S
is the sphere 2% + 942> =1. As the set D is finite
or enumerable there exist straight lines crossing
the centre of the sphere and containing no point of
D. Now it may be admitted that the axis OZ is
one of these straight lines. If p is a given point of
D, let a(p) be the angle > 0 and < 2x formed
by the plane passing through p and the axis OZ
and the plane XOZ, Let B be a given angle, and
D(B) the set into which D is transformed by the
rotation of the sphere S around the axis OZ
through the angle B. T say that the angle § may
be chosen in such a way that the sets

@ D, D(B), D2B), D3B), ..
should be two by two disjoint.

Indeed, if for integers ¥ and ! = 0, where
k<1, there is ¢ € D(kB)D(IB), then evidently there
exist points p, and p, of D, such that

Y Fund. Math., 6, p. 239, Th. 2.
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a(pp=a(p,) + kB - 2k= and a(q)=a(p,)+ 1B - 2L,

where k, and [, are integers. Thus we obtain

(3) B = o(p,) = 0(2121*;02(31 ~k)w

As the set of all the numbers

(4) a(p,) = a{p,) + 2sm
n

(where p, € D, p, € D, s is an integer and n a posi-
tive integer) is enumerable, there evidently exists
among the numbers (4) a distinct number g (where
0<B<2r). This number B does not satisfy the
equality (3) and the sets (2) are disjoint two by
two. Let us put

I=D+ D(B)+ D2B) +
and R =S-1.

We bave I(B)=1 - D, hence I - ) = I, and since

S=I1+R,IR=0, S—-D= (I Dy+R,(I-D)R=0,
it may be deduced that S—D 7 8. This proves
theorem 14.

5. Theorem 15. A rectangular isosceles triangle
is equivalent to a square by finile decomposition.

Proof. We divide the square K=AEBD, the
the sides of which are equal to 1, into 3 disjoint
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parts: (1) the triangle ABD, its side tncluded, (2)
the interior of the triangle AEB with its side £4
and withoutits end-points (i.e., without the points
E and A) and (3) the side EB with the end point
E and without B, In order to formm from these
three sets of points the triangle ABC, we need,
of course, a segment of

E 8
a straight line of the
length BC - EB= ,/2-1,
“ containing only one of
its endpoints. Thus, if
! 2 ¢ we want to prove that a

rectangular isosceles triangle is equivalent to a
square by finite decomposition, it will be sufficient
to show that the square K is equivalent by finite
decomposition to the same square devoid of a seg-
ment of the straight line /2~ 1 long, containing
only one of its end points. O being the centre of
the square, we take for this purpose the segment
S=0P of the length / 2 - 1 with Pand without O.
Let a denote an angle incommensurable with 27,
for instance a=1. S(a) 1s the segment obtained
by the rotation of the segment S around the point
O through the angle a. One evidently has the de-
composition into the disjoint sets
E=5+8(a)+S(2a)+ S(3a) + ...

and it 1s easily found that E < K and
E(a)=E-8S.
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It may be deduced from it at once that
K 3 K~ 8 and this proves theorem 185.

b 3l l’\]nm vy O TP l‘\ ."\ ':ﬁ LL:\
il .Ll].CU)’ $1% PLLU Wil 15 UG

smallest positive integer n for which the trla,ngle
is = K'? §8.Banach and A.Tarski have proved"
that the necessary and sufficient condition that
two polygons (situated in a plane) should be equi-
valent by finite decomposition, is that they should
have the same area (it may be observed that the
necessity of this condition is much more difficult
to prove than 1its sufficiency). As to the polyhe-
dron the situation is quite different. According to
a theorem of Banach and Tarski (proved with the
aid of Zermelo’s axiom) two bounded polyhedra

[a g Lo ]".I'Tﬂ""?ﬂ fsYahhh B v n]nh'l- 1‘\1? ‘p;n;+q r]annm-r\nc-';+:n~n
[+ W] CUlVV CUJD C\iu1vcuu:uu IJJ EIILLU uuuu;uyunxu;uu

(even if their volumes are distinct)?. In particular
the solid sphere is equivalent to a cube by finite

141N Noar we . AN nt Ynoaw 1f a etvela 2
U_LULL A3V XYY O WYU WU J_ U Dl V LE v ULl ULIY

equivalent by finite decomposition to a square of
the same area.

Theorem 16. Each segment of the straight line
s equivalent by finite decomposition to one of its

') Fund. Math., 6, p. 260 (cor. 20). cf. A. Tarski ‘On
the equivalence of polygons’ (Polish), Przeglad Mat. Fiz,
2, 1924, p. 12 and p. 14.

) lc. p. 263, Th,27.
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Proof. Suppose I is the segment 0<z<1 and
a an Irrational number, 0 < a < 1. We put
pr=ka— Eka, for k=0, 1, 2, ..., where Et denotes
the greatest integer < ¢, and X denotes the set of
all such numbers p, (k=0, 1, 2, ...) and Y the set
of all numbers p, of X such that 0<p, <1 ~a. One
puts Z=X-Y T=1I-X; Z' denotes the set of all
the numbers p, of X satisfying 0 < p, < a.

We have I=T+ Y 4 Z and therefore a decom-
position of the set I into three disjoint sets. Now
Z = X-Y is evidently the set of all the numbers
pr (k=0,1,2,...) satisfying 1—a <p,<1, or
what comes to the same, satisfying 1 -a<p, <1,
since p, = 1 - a would have had as a consequence
ka - Bka=1-a, whence (k+1)a = Eka + 1,
which is impossible (for k=0, 1, 2,...) as a is
an 1irrational number. I say that the set Zis
a translation of the set Z' by the length 1 —a.

Indeed, if p, € Z, then 1—a < p, < 1, hence
0<pp+a-1<a<l and E(p, +a -1)=0, there-
fore as Pr+a— l:ka—Eka+a—1 = (k+ l)a—
Eka=1,0=H(p,+a=-1) = E(k+ Da —FEka -1,
then pr+a=1= (k+1)a—-Elk+ Va=p,,,, ie.,
0<pPr4, <1, and hence p,,, € Z'. On the other
hand if p, € Z’, then 0<p,<a whence k>0 and
1 -a<p,+1-a<l; therefore as 0<1 - a, then
E(p.+1-a)=0, hence as p,+ 1 —a=ka — Eka+
1 -a::(k— l)a - Eka + 1, E(k— l)a ~ Fka+ 1=0,
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and py+1—a = (k - Da - E(k - Da=p, 1-a<L
Py <1, hence p,_, € Z, Thus Z=7'.

Now, suppose Y =X —[Z + {0}]. So Y’ is the
set of all numbers p, (k=0, 1, 2, ...) such that
a<<p,<l. If p, €Y, then 0 p,<1-a, hence
a <P+ a<1, therefore E(p, + a) =0, andas p, + a
=(k+ )a— Eka, E(k+1)a=E(ka), then p;+a=
(k+Da—-Ek+Da=p,y, a<p,4,<1, thus
iy, € Y. If, however, p, € Y, then a < p, <1,
thus £>0and 0 < p, —a<1—@, hence considering
that 1 - a<C1, one obtains E(p, —e)=0, so that
on account of p, -a = (k-1)a— Eka, we have
E(k - Ya=Fka, and p, —a=(k -1)a - E(k—1)
a=p;_,, 0 < p,_,<l—a, therefore p,_, € Y. It
may be seen that the set Y’ is a translation of the
set Y by the length a, so that ¥ = Y.

We put I' =T+ Y +2Z'. As thesets T, Y’
and Z' are disjoint, there 18 I 3 I', Now, we evi-
dently bhave I'=I-{0}. On the other hand,
suppose I”" =1+ {2}. It gives I=I'+ {0}=T+ Y’
+ 72 +{0}, I"'=I+{2}=T+ Y+ Z+ {2}, which
leads immediately toI 7 I'”, The proof of theo-
rem 16 is completed.

It results easily from the demonstrations of
the theorems 15 and 16 thata (closed) square is 3
to any of its proper subsets and that a (closed)
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segment of a straight line is 5 to any of its proper
subsets. Now, it may be proved that a (closed)
segment is not 3 to any of its proper subsets. On
the other hand, it may be proved with the aid of
Zermelo’s axiom that a (closed) segment of a
straight line i1s ¥ to a non-measurable (in the
Lebesgue sense) set containing the segment’),

The set of all the rational numbers 1s 7 to one
of its proper subsets (e.g., to the set of all the
rational numbers < 0 or > 1), Now we have

Theorem 17. A bounded set of rational num-
bers 1s not equivalent by finite decomposition to any
of its proper subsets.

Proof: Suppose A is a bounded set of ra-
tional numbers equivalent by finite decomposition
toa set B, where Bc 4 and B4 4. So there
exists a positive integer n and the decompositions

A=4, +4,+ 4.+ ...+ A4,

B=B +B,+B,+... +B,
into non-empty disjoint sets, where A4,= B, for
k=1,2, .., n.

and

Thus there exists for k=1, 2, ... , n a transfor-
mation f, of 4, into B, which is either a transla-
tion or a rotation, This implies immediately the

') Sierpiaski, Prace Math, Fizyczne 43, 1935 p. 1.
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into (non-empty) disjoint sets where 4,=B, for
k=1,2,.. n

Thus there exists for &k =1,2,..., n a transfor-
mation f, of 4, into B, which is either a transla-
tion or a rotation. This implies immediately the
existence for (k=1,2,...,n) of a real number g, such
that f.(z) =a,+z or f,(x)=a,-2x for z € 4,,
Considering that the sets 4, and B, are formed
of rational numbers, we see that @, is also ra-
tional, We put f(z) = fi(z) forz e 4, (k = 1,
2. »n).  So the function f(z) will be defined for
z € A and it 1s easily seen that it transforms in
a reciprocally univocal way the set 4 mto B, It
may also be verified at once that for z € 4,

upon z (we have namely, for z ¢ 4,: [ () = 1 and
l(x)=01f ¢ # k), and the sign * depends upon =z

Denoting by f ™)(x) the mth iteration of
f(z) (v.e., the function fff...f (x) ) we obtain for

Sl R

m fime s

m=1,2,,..,andzr € 4:

f(m)(m) = k(z).a, + k(x)a. + ... + k(z)e, 7,
where k(z) (:+=1,2, ...,n) are integers depending
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on x (and on m), and the sign + depends on x
(and on m).

Tot ~ ho +hoa common denaminatar af ratinnn
1Oy § 00 wie CUHIIVA Ucohuiliilawol U1 Tdviviia
numbers a,, @, ..., @,. We have

f(m)(:c) = (i-(é@im, for z € A4,

where ¢(z) is an integer (depending on z and m).

As the set 4 is bounded, the function c(z) is
also bounded, and it assumes only integral values
of which a finite number are distinct. It follows
from it that when z is a given number of 4, the
infinite sequence

z, f(), f(@), fff(z),. -

cannot be formed of numbers different from one
another,

Considering that B < 4 and B# 4, there exists
a number z, € 4—B. Therefore there exist posi-
tive integers k and p such that

Now as the function f assumes distinet values
in 4 we have

L =f(p)(wo>’
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which is impossible since z, ¢ B, f'?)(z) € B, for
z € 4 and p 1s a positive integer. The hypothesis
that 4 £ B implies a contradiction, whereby theo-
rem 17 1s proved.

It is to be observed that there exists a linear
enumerable bounded set which is equivalent by finite
decomposilion to any of ils proper parts. Such 18
the set K={p , ps...) where p, =ka - Eka for k=0,
1,2,.., Where a 13 an irrational number of the
interval (0,1), e.g.,a=,/2-1, Indeed we have
E 5 E—{p,). Inreality, let E denote the set
of all the numbers p, <1~ a of E, and let us put
E,=FE-E,. It may be easily verified that

E=E + E_. E—-inp\=FK
17 0]

2» 4

EE,=0, E (a)E,(a~1)=0.

Theorem 18.—There exisis a fnmﬂw m" infinite

e - w e R WS u-v wF VUV

sets of positive integers of the power of the continuum
no two of which are equivalent by finite decompost-

v‘uvlvl.

Such s the famaly of all the sets {Ex, K2z,
E3x, ...} where x assumes all real values > 1
(where Et denotes the greatest integer < ¢).

Proof. Let A4 and B be two infinite sets of
positive integers equivalent by finite decompo-
sitions into disjoint sets so that,
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A=A +4:+ ... +4,, B=B +B.+.. .+B,,
where 4 =B, for7=1,2,..., m

I
e
o

3
+
5-‘

and B are superposable by tranQIatlon (let B,=
A(a,) for =1, 2, ., p) and that for s = p+1, p+2
.. » m they are superposable by rotation. It is plain
that the numbers a,(i=1,2, ..., p) are integers and
that 4; z=p+1, p+2, ..,m) are finite (two infinite
sets of positive integers could not be superposable
by rotation).

If n 1s a given positive integer, we denote by
P the number of all the numbers of the set
of positive integers P which are < a.
It 1s easily seen that for each Integer a,
| Plioda) - P) | < [a|. It results from it im-
mediately that | B ~ 4.7 | < | a. | fori=102,

...,p and 1t implies that | A‘"’ B») | < ¢ where

¢=la, |+ |a2 | +.. +|aﬂ_,,(-%-Ap+1 +A piat .. C+4,

is an integer independent of n.

Let z and y be two real distinct numbers > 1,
for instance * < y, and let us put

A={Ez, E2z, ... ) and B={Ey, £2y, ...}.

It 1s readily verified that

1 n+1
nt -1< A<l ——

E
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and By < g gt !
Y Y

whence, A‘“)>?3’——1—2 Bin)g ?3—-'-—1;
z ? Y

hence A(n) — Bn)> (n41) %ﬁv - 2

30 that we have

lim (4~ B"))= 4 o

n=w

‘which is contradictory to the inequality/4‘") — B{»)|
<gqforn=1 2, ., shown above under the
assumption that 4 L B. Thus the sets 4 and B
cannot be equivalent by finite decomposition and
this proves the theorem 18.

It 1s to be observed, that one can name a
family I of power 2%° of linear enumerable sets
such that none of them s equavalent by finite decom-
posttion to @ subset of another one'?. This theorem
13 an immediate corollary of the

Theorem 18.% There exists a fa'mﬂfu F (m" the

N W B wiind ULV ME W

power of the continuum) of dzstmct mﬁmte sets of
positive 1ntegers, such that of Ee F, Hel', E &= H
and if B and H, are infinite sets such that b, Ck
and H < H, then E, L H 15 not true.

Proof. Let N(z) denote the set of all the

numbers

1) W. Sierpinski, Annals of Math, 48 (1947) p. 642,
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2" (2Bnz + 1)
2° \ for z real and > 1, where n =1,2,...

Let z and 3 be two distinct real numbers and

ﬂl il 111 hWU ]JJJ.I.LU.LIU SCUS SucCn ©nav 1\-._1\' kub}

and H < N(y), and let us suppose that B, 7 H .

There exists a positive integer m such that
E, z H, Therefore there exist sets 4,, 4,,....4,,
and B,, B,, ..,B,, such that

E =4 +4,+. . +4,, H=B+B;+..+B,,

A, A, = B, B, =0 for 1<k<lI<m, and
A,=B, for k=1, 2,...

As the set E_ is infinite, one at least of the sets

A Lro rratannn

A o oand A
f.ll, dz, eeny .[:lm, 1OL lll'dbdul_lbtj Ul £ Scl 44

1s rmfnita
13 I3 luu.l.ll C.

Therefore there exist two points

ﬂl ﬁ2
1 _ o2 '(2En+l) . o = 92 “(2Enwtl) . 4
such that
1
1
As A=B, there correspond to points p, and
p, of 4, two points of B,

g=22 “(2Eny+1) and g,= 22 "“(2Eny+1)
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such that
pl Q\ Q2

(because two congruent infinite sets of positive
integers are superposable by translation),

Then
02 "*(2En,z + 1)( o2 "(2Enz+1) -2 *(2Enz+1) _ 1)

o2 (2Eny+ 1)(22"3(2En3y+1)-2 2Eny+1) _ 1)

which gives at once

nz (2Enx+1)= 22ﬂ4(2E'n‘y + 1),

thus n,=n, and 2En,z4+1=2Eny+1, then
Tl o Tl . e . .
D’Nz.b:ﬂ' 04y dii(l ' '!baib - 'lb2y I (\ .l 3
thus n,< 1

T le-y ]

which 1s contradictory to (1).

Therefore the formula F I H cannot be true,
Now it 1s easily seen that the family F of all the
sets N(x), where z > 1, possesses the required pro-
perty. The proof of the theorem 18* is therefore
completed.

7. We say that a set of points K admits a
paradozical decomposition if it 1s the sum of two
disjoint sets, each of which is equivalent to E by
finite decomposition,
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Theorem 19:—No linear set (not emply) admais
a paradoxical decomposition’ .

Lemma. Suppose r and s are two positive
wntegers. If u,, Ys,...,u, arer given real numbers
then the number of all the distinct sums formed of s
terms (equal or unequal), each of which is one of the
numbers u, Uz,...,u, 15 < (s+ 1),

Indeed, each of the above mentioned sums is
defined, when for each 7=1, 2, . . .,r, the number
n; of terms equal to u, that 1t contalns, 1s
known. Now each of the numbers n, n,...,n,. 1s
evidently > 0 and <'s, The number of all the
distinct systems of numbers =, n.,...,n, 18 there-
fore < (s+1)". So we can consider our lemma

as proved.

Supposc next that the linear nonempty set
E admits of a paradoxical decomposition & = 44-B.
Then AB =0 and there exist two positive integers
p and ¢ such that & 3 4 and £ 7 B. Thus there

exists a (J.ecumpUblmon of the sets £, 4 and B
into sums of disjoint sets:

E=E +E;+.. +E,, 4=4 + 4:+..+4,
E=E +&,+..+FE ,B=B+B,+.. +B,,

where B, =d4. fori=1, 2,...,p and E, = B, for
7:: 1: 2,... ,g.

1) W. Sierpinski, Actas Acad. Nac. Ciencias, Lima,
Vol. 11, (1946).
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Let ¢, (for =1, 2,..,p) be the transforma
tion of E. into A4, realizing the congruence £, =4,
and let ¢, (for :=1,2, ..., ¢) denote the transfor-
mation of £;" into B; realizing the congruence

E;=B. We put
(1) ¢()=¢i(a) for @ € By, (i=1, 2, ...,p)

and
(2) (@) =y(x) for ze B, =1, 2, ... ,9).

As the sets 4, 4,,..., 4, are disjoint, the function
¢(z) transforms the set & into A in a reciprocal
univocal way and similarly the function y(z)
transforms in a reciprocal univocal way the set
E into B, As the set E 1s not empty, there exists
an element x, € &/ and it is easily seen that we
may suppose without detriment to the generality
of our demonstration that z,=0. Thus we have
0¢ £, hence ¢ (0) €4 and (0) € B; therefore ¢(0)=Z=
(0) since AB=0. Considering that the function
¢ (or ) possesses distinct values in £ we have
¢$(0) == ¢(0) and ¢ (0) == 44(0). Now we have
forz e B, ye E: ¢(x) € 4, (y) e B; thus (since
AB = 0) ¢(z) == {(y) and in particular

$h(0) = (0),  ¢8(0) == ¢3(0),

¢(0) = $¢(0) and $:4:(0) == Jf(0).
Thus the numbers ¢¢(0), ¢4(0), £:¢(0) and ¢4(0)

are all distinct, An easy induction shows that if s
13 a given positive integer, the 2° numbers
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(3 80 8,0 |
are all distinct where 8, for + =1, 2,...,51s one
of the functions ¢ or ¥,

Suppose ¢ is a number of the sequence 1, 2
.., p. If the function ¢, realizes the congruence
E; = A, there exists a real number a; such that

¢i(x)= tr+0; for z € E..

According to (1) there exists for each number z
of E a number 2(x) of the sequence 1,2, ...,
p such that ¢(x)= +a + a;,). Similarly there exist
g real numbers b, b,,..., b, and for each number »
of E a number j(z) of the sequence 1,2, ..., ¢
such that J(x)=tx+b;(). It results from it
at once that each number of (3) is of the form

(4) c+6t. . .+,

where every ¢; (1=1, 2,...,s) 18 one of the r
[ e s 1 1) mi11vihnme L s [ e ™ ' A ¢ L
\=<«P T 47) DUMDETS G,y T &yeesy By, T O, T 0y

..:tby. As the numbers (3) are different it may

be deduced, according to the lemma (considering

vkl \U} D Ul vilo LUIILL \'::/} uvila b L \\_\o < l} « AVWUWY

1t Is known that this inequality is false for s suffici-
ently great (since lim (s41)"275 = Oforr is a
positive integer). =

So the hypothesis that the set £ admits of a
paradoxical decomposition implies a contradic-
tion, The theorem 19 is therefore proved,
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It should be observed that the theorem 19
does not apply to plane sets. Kor plane sets we
have the following

Theorem 20,—There exists a plane set which
18 the sum of two disjoint sets, each of which s
congruent wath 1t.

An example of such a set has been given by
the late S. Mazurkiewicz and myself in 19147,
Suppose ¢ 1s the translation of the plane through
the length 1 along the axis of abscissas and ¢ the
rotation of the plane around the point O through
the angle equal to 1 radian (s.e., =(180/m)°), Let &
be the set formed of the point O and of each point

uuua.u_wu LI U Uy bUU use U.I. bllt? cransSiorima lUub

¢ and ¢ a finite number of times in an a bltrary

successiveness, Let d=¢(E), B = ¢(E). Since

avidantly A~ 0 D~ P | A — I A D — p 'l‘-

DVLLLULLU.I..Y L1 =— u’ ir - U’ [cYELVE AL N Ay AN u

remains to prove that AB=0. It should be
remarked by the way that the transformations ¢

and l’f are exnressed In the wplane of complex

WALYA Wl v -tl..l AR LA A AL VLAV t’ tl

numbers by the formulae

¢(z) = z+ 1 and Y(z)=eiz

It results from it that each point pof Eis a

) C. R.Paris, t, 158, p. 618 (Se'ance du 2 mars 1914),
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polynomial in ef having integral coeflicients,
Moreover its constant term is posttive, 1if p
belongs to 4 and nul, if p belongs to B. 1f there-
fore A and B had a common point, we should
have an algebraical equation in e’ having as
coefficients nonidentical integers, and that 1s
impossible taking into consideration that €' 1sa
transcendental number,

It may be proved that a plane set, which is
the sum of two disjoint sets, each of which is con-
gruent with it, cannot be bounded"’, We shall see
later on that there exist bounded sets in space of
3 dimensions which possess this property.

It should still be observed that it may be

proved that fnfr each m < 2 Ve #7500 exists a plunv%e

rl-lv wVasilw W VLLLIy rSs ik blleU U v

set which can be decomposed into m disjovnt parts
superposable with 1it?.

8 Theorem 21. The set I, = [0 <z <1]
15 a sum of an enumerable infinity of disjount sets
each two of which are 3 °.

Proof. Let us divide all the numbers of I
into classes putting two numbers of I in the same

e
Pt
&

) A. Lindenbaum, Fund. Math, &, p. 218
) W. Sierpinski, Fund. Math, 34, p. 9,

®) F. Hausdorff, Grundzuge der Mengenlehre, Leipzig
1914, p. 401,
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number. Thus one gets a decomposttion of I,
into 2%° enumerable disjoint classes, Let N
denote a set containing one and only one number
of each class. (Such a set N exists according to
the Zermelo’s axtom). Now, let r be a rational
number 0< r <1 and let us denote by N[r] the
set of all the numbers x+r -~ E(x+r) Wwhere
reN., We evidently have N[r]el,, Let yel,.
There exists, in view of the definition of N, an
reN and a rational number r with 0 < r <1
such that y —x = +7r. If y — 2 =r, we
obtamn y = x + r, and considering that y e [,
Ey=20, te, E@w+7r)=0,and y=2 + r —
E(x + r), we have ye N[r]. Iy - 2= -7,
where r > 0, we have y = = — r and taking into

4Ll —~

PR [ 41 o4 L T I AT PR W e N o s ——
consiaeravion tnav Yy € 11, Ly == 7‘) — vanu Yy —
x 1 (as + l—r) we gety e N|[l—r],
Where 0 < r < 1. Consequently we have I,
AT Lﬁ_.h il A o« i Mm.'..._,_ i mvrdmnd e En all
-—LLVLTJ, WIICTE ©T0€ sSuimin ﬂg I8 exyendaca uwvo dli

the rational numbers 7, where 0 < r < 1

Now if r, and 7, denote two rational numbers,
<1 <L 0<r < 1,7, &=, and if we suppose
that N[ J N [r2] == 0, then there exists a number
y such that y e N[r,] and y e N[r.]. According
to the definition of the sets N[r|, there exist two
real number #, and », such that z ¢ N, 2 ¢ N,
y = % +r - E@® + 1), y=(x+mn)
E(z,4+1;); whence x —®,=7r, — v, + Bz, + 1)
— Bz + n).
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So the number z, -z, 1s rational and implies,
as &, e N and 2, € N (according to the definition of
N ), that x = hence r,—r, = E(x, + ) —

LW 1 .\ 2Lt M S T U
La\ Wy 17, ). 111crelore v nuliper ’rl
integer, which s impossible, since 0 < 7, <1,0 <
7, <1 and r, &= r,. Thus the terms of the sum

I, = = N[r] are disjoint sets.

-7, 18 an

Now suppose that r 1s a rational number,
0 <r < 1. Let N/[r|denote the set of all the
numbers x of N satisfying # < 1 ~ r and let us
put N,[r]= N~ N [r]. So the set N is the sum of
two disjoint sets : N = N,[r] + N,[r]. We denote
by N,r] or by N,r] the set of all the numbers
x + r — E@® + 7) of N[r] according as x ¢ N [7]
or z ¢ N,r]. We shall certainly have N[r| =
N,[r]+ N [r]. Since for x € N,[r], we have z < 1 — 7
(according to the definition of N[r] ), therefore
0<z + r < land E(w+7r) =0. N,[r]is the set
of all the numbers x+4r where x ¢ N[r]| i.e., N,[7]
is a translation of N[r| through the length #
Now since for x € N,[r] we have x> 11—, then
1 <z+r <2 (since z<<1 and » < 1), whence
E( + r)=1; N(r) is the set of all the numbers
r + r — 1, wherex ¢ NJ[r] e, NJ[r]1s a trans-
lation of N,[r] through the length r — 1. It gives
N,[r] = N [r] and N,[r] = N,[r].

If N,[7].NJ[r] &= 0 there would exist
(according to the definition of N,[r] and N,[r])
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two numbers x, ¢ N [r] and z, € N,[r] such that
r, +r = K + Y=z, +r — E(x, + r) and
the number x — 2, would be rational, hence
(as N[r] + N[r] N)z, = wx,, This is impos-
sible, since N [r] Nz[r] = 0. So the sets N,[7r]
and N,[r] are disjoint. Therefore we have for r
rational, 0 < r < 1

N=N([r] + NJr], N[]N[]=

Nlr]l = Nr]+ N[r],  N[r] N[r]1=0,

N[r] = N[, N [r] = Njr],
and finally N[r]53 N. So I, is the sum of R,
disjoint sets, each of whichis 3 N, Thus the proof
of theorem 21 1s completed.

It should be observed that Prof.J. von

A snisan rennnn haa nrnern Al ) that T .0 +tho

J'C‘bblfbulb’(r .I.ICIID J:J'lUVULI. : ULl b ‘1 v vIto Ob!/!i’ll UJ-F go
disjoint sels two by two congruent and the same
applies to the closed nterval I = (0 < # < 1)
anrq tha nnan .v\"- nnx n] fn -~ 1\ MTha darmnnao
a ne open meervar (U < & < 1), 1€ uaémons-
’

tration, however, making use of the Zermelo
aXlom, 1s rather long,

The set I, 18 evidently the sum of two sets
disjomnt and congruent ([0 <z < 3] and|} <
x < 1]). Now it may be proved that a closed
interval 7 1s not a sum of two disjoint and con-
gruent sets,

In 1924 the late S.Ruziewicz has proved (mak-
mg use of the Zermelo’s axtom but not admitting

1) Fund, Math. 11, p. 230.
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the continuum hypothesis) that for each cardinal
number m < 280 the straight line is the sum of
m disjoint sets two by two congruent Y.

The sets into which S, Ruziewicz decomposes
the straight line are not measurable in the
Lebesgue meaning. A decomposition of the
straight line into m (where 8, < m<28°) disjoint
and congruent (measurable or not) sets may be
obtained in an easier way as follows,

Let E denote an arbitrary set of real positive
numbers of the power m and let I be the sct of
all the numbers, which are sums of a finite num-
ber of numbers the absolute value of which
belongs to E. It may be easily proved that

Tr AT e By | N I V5 S 1 S L
H=m. Now we divide all the real numbers into
classes, putting two real numbers into the same
class 1f and only if thelr difference belongs to H.
Let N be the set containing one and only one
number of each of these classes. If a 1s a real
number, we denote by N(a) the translation of
AY L__ .1 | T B . h 2 - I AN | 11
N by the length a. It 1s eastly verified that
the straight line 1s a sum of m disjoint congruent
sets N(a) where ae H.  Admitting the conti-
e aapna ) AR i A Y anrins Fn  anaanmcend Al .3 2T
nuwuse 1Yottt (14 reuy ve provcw it LIETe
exists a plane set E such that the plane s «
sum of 2%° disjoint sets, each congruent with E,

) Fund. Math., 5, p. 92.
2) Fund. Math. 21, p. 39.
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and that at the same time the plane is the sum of an
enumerable infinity of sets, each congruent with EY).

Now, if m is a given cardinal number and if
the straight line is the sum of m disjoint sets con-
gruent by translation with any set £, the straight
line 1s not the sum of less than m sets congruent

by translation or rotation with E2.

Let us point out that the following proposition
may be proved with the admission of the hypo-
thests of the contmuum :

The straight line is the sum of 2N° disjoint
sels, each of which 1s equivalent to the straight line
by enumerable decomposition ).

Two sets of points A4 and B are said to be

equivalent by enumerable decomposit?}on and are
denoted hv A d B if there exist two mnfinite sequ-

AL RAALLA LIV mANS \1“

ences of sets Al, A,,....and B,, B,,... fulfilling the

three following conditlons: 1°4= A +A2 . and
B=B +B:+..., 2.4,4,=0 and B,B,= 0

et Jlklj‘—v [ JF N LN

k-l, 3°A=B, for k—12....

0

e

kS

)  Fund, Math. 21, p. 39, and W. Sierpinski, Hypothese
du continu (Warszawa 1934, Monografje Matema-
tyczne Vol. 4), p. 100 Proposition Cg,

2)  Fund, Math. 24, p. 247.

% W. Sierpifiski, Mathematica 23 (1947-48), p. 52.
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L e L ) If A—=E—= Band 4 n
7. 1Reorem L. L] A 2 1a O D anu A D,

then 4 == E. "

31l

Proof. According to 4 = B there exist sets 4,,
Aga . ’An a,nd B], Bz,..., B’n SllCh that

’A=A,+4,+... + A4, B=B,+B,+... + B,,
20 AkAZ = BkBZZO fOI‘ 1€k<lé’n,
and 3° 4,=B, for k=1,2,...,n.

It results from 3° that there exists for
k=1,2,...,n, an isometric transformation (s.e.,
conserving distances between two points) ¢, of
the set 4, into By, z.e.,

(1) B z?sk(Ak)-
We put

(2) ¢(x)=é, (x) forzed, (k=12,...,n)

The function q& evidently transforms the set

.(1 1111;() LUG set D lLl a I'G(JIPTOCd.l LlIllVUGd:l Wdy,
and we shall say that it realizes the equivalence

A 7 B: Thus we have ¢(4) =Bc 4 and generally

tk/ AN — A Lo T 1 ¢ e 41
(P k/:[)(_x‘il()l' IC——.l,é ,bU Uﬂdbq) \11 - E)Lﬂ

all the more for k=1,2,.... We put

3) A'=(4-E)+¢(Ad-E)+ ¢4~ E)
+¢(A4-E)+....

') S. Banach and A. Tarski, Fund, Math. 6, p. 252,
Cerol. 9; A. Lindenbaum and A. Tarski, Comptes
Rendus des s€ances de la Soc. des Sc. et L. de Var-
sovie, XIX, cl. 11T (1926), p. 328, Th, 9. W. Sier-
pinski, Fund Math, 33 (1945), p. 230 (Lemma 1).
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The set A" might have been defined without
the use of an infinite series of sets, simply as the

common part of all the subsets X of A4 verifying
A-FE c Xand ¢(X) < X

We have A’ A, We put
(4) 4"'=4-4'
(5) E'=¢(4)
According to (4) and 4’4, we have
(6) A=A4"+4" and 4’4" =0.
It follows from (5), A4 and $(A)=BCE,
that B’ = ¢(4") = ¢(4) = BC E and consequently
(7) E'cCE.
The formula (3) gives

$(ANV=¢p(4 - E)+ (A= E)+ ¢4 - E) + ...
and according to (3), (5) and (7):

(8) A'=(4~E)+¢(4)
=(A-E)+E =A-(F-FE')

which, on considering K4 and (4), gives
E-E'=4-A4"=4" IHence

(9) E=L"+ A" and E'4" =0.
According to (6) we have 4=A"A+ A" and it
follows from 1° and 2° that the decomposition of
A into n 4 1 disjoint sets 1s
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(10) Ad=4'4 +AA,+... +4'A,+ 4

As the function ¢ has distinet values 1 A4 we have
from (6), (5) and (1),

(11) ¢(d'dy)=¢(4"). $(A;)=E'B,
for k=1,2, ..., n.

Now, according to (2) we have ¢(A4'4,)=
¢(A'A); as the function ¢, 1s an isometric trans-
formation (of 4, into B,) we also have ¢(4'4,) =
A' A, hence, according to (11) :

(12) A’A, =E'B, for k= 1,2, .., n
From 2° the sets E'B,(k=1, 2, ..., n) are disjoint.

ML . Lol M\ and I — D ton !~ D
i10e iormula (/) ana £ D glve L» D,

hence E’'=E’B and according to 1° and (9) :
E-EB +B,+...+B,)=E-E'B=E-L'=4".
Thus

(13) E=E'B, + E'B,+... +

and from 2° and (9) the terms of this decomposi-
tion are disjoint sets,

We obtain 4-—===F from (10), (12) and (13).

TnF1

Therefore the theorem 22 is proved. From this
at once follows the
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Corollary., If ADEDB and AL B, then ALE.

In particular, the theorem 22 gives (for n=1):
(14) If ADEDOBand A= Bithen 4 5 K.

It should be observed that the equivalence 45 £
cannot, be here substituted by the congruence

A= B. Indeed,if 4= L’[ac 0],’ B= E[m
E =B+ {0} then A=B, A:L’DB and 4 1s not—-L’.

Theorem 23. If A = Band B= C then A== C?

Proof. It results from A = B that there exist
decompositions 1° fulfilling the conditions 2° and
3°. From B = C it results that there exist de-

compositions
Uﬁ)B-B +B/+... + B, and
C=C,+C,+...+C,,.

such that
(16) B,’B,’=C,C;=0 for 1<k <I<m

and

(17) B/ = C,forl=1,2, ..., m

A o vk
Wo puy

D) E[P(x)] denotes the set of all the real numbers

fulfilling the condition P(x).
) S. Banach and A. Tarski, Fund. Math, 6 p. 246-

248 (Th. 3).
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(18) Bk,1= B}‘B; for 1 < k =n and 1 QE < ™m
According to 1°, (15) and (18) we have
(19) B,=B, ,+ B, ,+ ...+ By, for 1<<k<n an

(20) B/ =B+ B, + ........ +B,,; for 1<i<m.

Now 1t follows from (18), 2° and (16), that for
k, k=1,2,..,n,1,1=1,2, ..., m,

(21) Bk,l Bkl’h::O When k::kl or Z::ll

According to 3°, (19), 2° and (21) there exist for
k=1,2,..., n, decompositions

(22) d,=4,, +4; .+ ...+ 4,
such that for 1<k<n, 1<k, <n, 1<I<m, 1L <m
we have
(23) A4y,

and
(24) 4,,=B;, for 1<k<n 1<]/<m.

;=0 when k=tk or 1=l

‘.I
oty

Similarly it results from (17), (20), (16) and (21)
that there exist for [=1, 2, ..., m decompositions

(25) CZ=C1,Z+C2,I+‘ ' . +Cn,l

such that
(26) Cy,; Cy,,;,=0 when k==k, or I=H],
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and

(27) B, =C,, for 1<k<n, 1<I<m

"I \

The formulae 1" (15 ) (? ) a ( 5) g 1ve

28) A= 3 %AH,C_E > Cp.

k=1 ]=1 I=1 k=1
and since from (24) and (27), we have

Ak,l = Ck’l fOI' k: 1,2, ..-’n, l:1,2, Y/

the formula (28), (23) and (26) prove that 4=ZC,
which was to be demonstrated.

It should be mentioned that it is not possible
to replace in theorem 23 the product mn by a

smaller number. If indeed A={1, 2,.., mn}, B
JURY T TR W R & SR N U wsrl o fane 1
IS LHEe seL U]l dll Lue Lll.lLLlUG.lB !ﬁf’blb"f’b, wnere n—1,
2,...n l=1, 2..,m, and if C ={mn, 2mn, ..

(mn)"""} then it ma,y be easily seen that A4 3 B

T) AAAAA L1 £ove ey mvmes -
b u.uu A k b LlUtj:'i Nnov 1014 10r airt Ly Pum I.VU

1nteger k<mn.

The theorem 23 implies the following
Corollary. IfAZ Band BI Cthen A L C.

Thus the relation I is transitive.

Theorem 24. If ATB— Band Bf A —A
A LIVVUL VEIL ™7 -lJ L1 = JJl'h_ A7 Wit 47 :.Lll\_.{_l
the'nA_J:B.

Proof., Let ¢ (and ) be the function realiz-
ing the equivalence 471 B, (and BfA4,); thus
¢(A)= B, and (B)=A4
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We put ¢{¢(4)]=4,. As ${4)=B, B the func-
tion ¢ realizes the equivalence B, f 4,, and since
A I B, itresults from the corollary that 4 1 4,.
Now as 4,=J(B,) < $(B)=A, < 4, the equival-
ence A I A, gives according to the corollary of the
theorem 22 that 4f4, and from BfA and
the corollary of the theorem 23, we see that 4 B,
which was to be proved.

It 1s to be observed that a slight modification
of the proof of the theorem would lead to the
theorem that

If4z BcBand B 4 c 4, then 4;+7 B."”

m+n

Theorem 25, A4 segment of the straight line s
not equivalent by finie decomposition to any smaller
segment,

Proof. Let us admit that a segment of the
straight line of length dis [ to a segment of a
smaller length ad where 0<a<1, It obviously
results from 1t that if [ 1s an arbitrary positive
number then each segment of the length [ is { to
a segment of the length ol and therefore, accord-
ing to the corollary of theorem 23, also to a seg-
ment of the length a*l where k=1,2,.. As

1) This theorem has been announced by A. Linden-
baum and A. Tarski 1n 1926 without proof (l.c., p. 328,
theorem 8).
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0 <a<1 there exists a positive integer £ such that
0<a*<}. Thus each segmentis £ toasegment
contained in its half, It follows from it, according
to the corollary of theorem 22 that each segment
is [ to its half, the centre of the segment being
counted or not. Now, this is inconsistent with
theorem 19. So the proof of theorem 25 is com-
pleted.

It should be observed that the word ¢‘segment”
in the theorem 28 could be replaced by “square”,
the demonstration, however, would be much more

complicated,

There exist theorems concerning the equival-
ence by finite decomposition, the wording of which
is simple and the demonstration difficult. To this
class belongs the following theorem of D. Konig
and S.Valko’ ")

If for a positive integer m there exist two decom-

positions of a linear set into m disjornt sets 4, + 4,

-+ A =B B, + B shere A=A and
T oo T A, ['r 2 T . "'rum, wnere i p anw

B., By for 1<t <m and 1< k <m, then 4,55 B,.
The proof 1s difficult even for m = 3.

(Generalizing the notion of equivalence by finite
decomposition, the equivalence of sets by decom-

) Fund. Math. 8, p. 131. For m=2 see C. Kura-
towski, Fund, Math. 6 p.236,and for m=2» sece S. Banach
and A, Tarski, Fund. Math. 6 p. 254.
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position into m sets could be considered, where m
denotes a cardinal number satisfying §, < m < 2%e.)
We shall cite without demonstration the following
theorem :

Ro
One can name a family ¢ of the power 0?

of linear sets, such that for m<2®° two distinct

sets of the family ¢ are never equivalent by decompo-
siton wnto m sets ?.

10. The Hausdorff’s paradozx.

Theorem 26.> The surface S of the sphere
1s the sum of four disjoint sets A, B, C, D where
D s an enumerable set and A = B=C = B+ C,

Proof. Let ¥ and @ denote two axes passing
through the centre O of the sphere § and 1» the
angle between these axes; this angle will be fixed
later. ¢ denotes the rotation around the axis &
by the angle (= 180°) and ¢ the rotation around
the axis ¥ by the angle 3w (=120°). Evidently
¢*=y¢*=1, where 1 indicates the 1identical trans-
formation of the three-dimensional space R, into
itself.

Let G be the set of all the transformations
of R, into itself, obtained by the application of

1) See P. Erdos, Annals of Math. 44 (1943), p. 644
?9) See W. Sierpinski, Annals of Math. 48 (1947), p. 641,

3) F. Hausdorff, Grundzuge der Mengenlehre, Leipzig
1914, pp. 469-472.
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the transformations ¢ and ¢ a finite number
of times 1n arbitrary successiveness. (It is easily
seen that G' forms a group of transformations).
Since ¢* =4’ = 1, on writing the transformations
which form G as products of a finite number of
transformations ¢ and i, we shall be able to
substitute each factor ¢™ by the factor ¢, where
r 1s the remainder in the division of the number
m by 2, and each factor ™ by "', where v’ 1s
the remainder in the division of m by 3 (e.g., $°=
¢, po=¢* $°=y¢® = 1). Consequently G will be
formed from the identical transformation 1 and
from transformations which are products of a
finite number of factors ¢, i and ¢* ~let us call
them fundamental factors—the factor ¢ being
never followed by itself, while the factors s or *
are never preceded by the factorsi nor by the
factor ¢,

It should be pointed out that the transforma-
tions ¢ and ¢ are not commutable: that ig
s == J¢p d.e., there exist points p of R, such
that ¢ (H(p)) == ¢ (¢(p)). For instance it may
be easily seen that 1t is true for each point p of
the axis ® different from O. So the group G does
not form an abelian group.

In order to write systematically all the trans-
formations forming G we divide them into classes,
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putting in the class &, all those which are pro-
ducts of n fundamental factors and the identical
transformation 1 constituting the class ;. Thus
the class G, will be formed by three transfor-
mations ¢, s, . It is readily verified that in
order to obtain the class G, ., from the class G,
it is sufficient to multiply (from the left) the
transformations of G the first factor of which 1s
¢, by # and by ? while those transformations

the first factor of which is s or ¢% by ¢.

Thus from G, ={¢, ¥, ¢’} we obtain that
G,= {9, ¥°d, ¢4, ¢47).

Now from G, G,= (¢4, Y'dih, Yy, ' defs, pifid,
$*p}, and from G, we have G ={fdyd, S ¢/,

bofid, Pob, b, diied, Sdi’, e

(It may be calculated that for n=1, 2, ..

E2 ) iy
G, contalns 27242 ?

transformations, namely

n
27 transformations the first factor of which is ¢
En_"'l
and 2~ ? the first factor of which is ¢ or *).
Now we arrange all the transformations of G'in
an infinite sequence, writing successively the
transformations of the classes G,, G, G,,... :

2 2 >
(@) 15 ¢, 4, %5 S, '8, g, ¢47;....
We shall prove that the angle between the
aXes @ and ¥ can be chosen in such a way that
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all the transformations of this sequence should be
distinct. Above all we notice that, except for the
first, each transformation of G' has one of the four
forms

(1) e=y™dgm¢ . Pmap
(2) B = ¢z .. d™n
(3) vy = dPmrdmz . nd
(4) & = Y™™ ... pYmn,

where n 1s a positive integer (excepting the case
vy = ¢) and the power exponents m , m,, ...,m, are
equal to 1 or 2.

We denote by lv the angle between the axes
& and ¥. We take the axis ¥ as the axis OZ (in a
rectangular system of co-ordinates) and the plane
containing the axis & as the plane XZ. Let
N=(x, y, z) be a given point of the space R, and

(,[J(N):(:IJ” y” Z’).

On applying the well known formulae of trans-
formation of co-ordinates we at once get

x = xA—yp,
() 1y = zp—yA
Z =z

where we have put for abbreviation A= cos §n = — §;
= sin 27 = 3
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Considering that *=~* is the rotation around
the axis ¥ through the angle — 27, and putting
Y(NY= (2, y', 2"y where N=(z, y, 2), we obtain

the formulae

= A+ yp
@) {y’ = —ap— YA
2 = 2,

The formulae () and (¢~') may be written to-
gether as follows

' = A Fyu
(¥*) {y’ = fap - YA
7 = 2.

Now putting ¢(N)=(', ¢, 2") for N = (z,y, 2),
we obtain

! — X COS V42 SIn v

r =
(¢) {y,":-' -y
2 = Xxsinv-42 cOS v,

We put L ¢(N)=(2', 9, 2') for N = (z, y, 2);
the formulae (¢) and (f*') give immediately
—2A cos vt yp+2A sin v

= TFap cos v+ yAtzu sin v
= ¥ Sln v4-2 COS v.

S

W) |y

z!

Now, let a be a transformation of G given by
the form (1), We put a(N)=({ 9, {) for
N=(0,0,1). T say that we shall obtain the

formulae
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£ =sinv|acos" v+ .., ]
(¢) {n==smv][bcos" 'v+. .. ]
£ = ¢Ccos"v+,..,

where @ cos" ' v+ ..., bcos" ™Yy, ..,and ccos" v+ ...,
are polynomials in cosy of degree n—1 and n
respectively, the coefficients of which as poly-
nomials in A and u with integral coeflicients belong

to the field K(,/3).

Our assertion is evidently true for n=1, since
Y=y, and the formulae (y¥'¢) give for ¢YE'¢(N)
=(§, », {,), where N=(0,0,1), the following ones

(6) ¢é=Asinvy, yp =+psin v, {=cos ».

Let us suppose our assertion to be true for a
positive integer nm 1i.e., that when a 1sa trans-
formation of the form (1) fora given n, we have
for a(N) = (£, 5, {) the formule (o). Let ¢'=/* ¢a.
The formule (y*'¢)and (a) give for a’'(N)=(z',y, 2’)
the formule

[W- 2§

=sinvi(c=a)Ac
[N

y'=Fsinv[acos" v4 ..]p cosv
— sin v [beos" v L]
+[ccos"v+.. Jpsinwy
=sin [+ (c—a) pcos” v+ ... |
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2'=8in*v [@ cos" v+ ... [+ [c cos" v+ ... jcos v
=(¢c—a)cos"t v+.,.,
that 1s to say

x'=sin v [@’ cos" v+ ... ]
y =sinv [b cos" v+ ... ]
2'=c cos" v+ .,
where
(6) a'=(c—a)), b'=%(c—a)u, c'=c-a,
which proves that our assertion is still true for
n+ 1. So it is proved by induction for n=12,....

Now the formulw (6) give (as A=—3)
¢’ —a'=(c—a)(l=N=3(c-a)

where by easy induction

¢-a=(3)"
(since for n=1, ¢.e., for a = yT'¢, evidently a = A,
¢=1 according to (5), thus c-a=1-1=3). So

¢'=c~-a=(3)" therefore ¢= ()" (since ¢ corres-
ponds to an index less by one than that corres-
ponding to ¢).

Thus we have proved that for N=(0,0,1),
a(N)= (¢, 1, {), (when a is of the form (1))

{=(3)""cos" v+...,
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where on the right there is a polynomial of degree
m in cos v with algebraic coefficients (belonging
to the field K(./3)). Itresults from it that if
cos v 1s not a root of any polynomial with
algebraic coefficients (i.e,, if cos v is a transcen-
dental number), then the point N =(0,0,1) will
not be transformed into itself by any transfor-
mation of the type (1), and consequently no trans-
formation of the type (1) will be identical (s.e.,=1).
On the ground of the transcendence of the number
e’ it may be proved that this condition will be
satisfied for v=2, and that is the case in which
the angle v between the axes & and ¥ 18= 1.

Thus we have proved that the angle between

4 N NWNnao M r] Ale YV XY 1\(\ !‘I‘L\f\ﬂﬂ“ Ql n1"| 0 AT X7
UIIG QUACE YW uu b 4 .l.l.l.ClJ‘)’ MO VIV OULL J. L (e B R W) oo YY &b

that no transformation (1) will be =1, Now, we
shall prove that i1t results from it that no trans-
formation f‘)\ () and fﬁ[\ ‘IQ—*I Qupp@se indeed

EASAd LLLALAU VLN / \U/ COoLlv4 _I./ A g Sem—

that a tra,nsforma,tlon B of the type (2) is=1.

According to B=1, evidently pfd=déd=1. Now,
accordine to (2). Aﬁ'r#. 18 pmﬂppﬂv of the form

uuuuuu b \— I,

(1), which is 1mpossible, since we have just proved
that no tmnsformation (1) is= 1, Therefore no

Suppose now tha,t a transformation & of the
type (4) is =1'), We denote y™1d™2,.. $f™n

') Hausdorff’s proof (1. c. p. 470) is to be slightly
modified as the transformation ™1™y is not always
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by 6,. If 6n=1, then p*~™1 §,m1=1, therefore
o = PYMmagyMa. M- 1¢hmn T = 1, The sum
m, +m, may of course assume onc of the values
2, 3or 4. If m_+4+m =4 or m_+m,=2, the
trapsformation o is of the type (2), which 1s
inconsistent with the relation =1, as we have
just proved. If m,+m, =3 then ¢ed=oym: difms ..,
¢dyy™n-1 and the transformation ¢yi¢ is of the type
(4) (being =1 as o=1and ¢*=1). It contains
however less factors than 6" and it may be desig-
nated by d»-2 1n conformity with our notation.
The process adopted above for 5 may be repeat-
ed for & ,_, and we conclude (fromé’ _,=1) that
there exists a transformation 6" _,=1. Repeat-
ing this process a finite number of times we con-
clude that either %=1 or 6,"=1. Yet both are
impossible, simce 6 *=¢F where p=1 or p= 2, while
on the other hand 6,*=yP¢?=1 would 1mply
¢=4~?~7 which 1s Inconsistent with the fact that

¢ 1s distinct from 1, b and /*. So we have proved
that no transformation of the type (4) is=1.

Let us finally suppose that a transformation

y of the type (3) = 1. y=1 gives ¢yp=1, Now

rliﬁlrl\::,zml ri&:[:mg nl.:/:m'_‘ Or /‘.Ir fu:fil\\ nL-un(.:r,\ rpl‘\r_‘n
PYP=y¢ 1o ..o Te OU N Y =0) ¢yg=¢6. 1ne

last case 1s Impossible as ¢ == 1 and in the first

of the form (l)-,‘_e. g., for m=1, 821,/;9595(’51/}2, we have
Jmmy oY m e = S S = gl')lﬁ(;s and consequently J™ ) lljml
is of the form (3) and not of the form (1).
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case ¢yd 1s of the type (4), hence =1, as we
have previously proved, and this is inconsistent
with ¢yd=1. Therefore no transformation of the

type (3) = 1.

Thus we have proved that (for our choice of
the angle v) no transformation, (1), (2), (3) and
(4) =1, id.e., no transformations of the sequence
(G) excepting the first = 1. It results from it
that all the transformations of the sequence (G)
are distinet (for the angle v chosen by us). In-
deed, suppose that two terms ¢ and 7 occupying
two distinct places in the sequence (@) are equal,
t.e., o=7, It gives ¢v7'=1. Here 7 cannot be
equal to 1, because this would imply that ¢=1,
which occupies a place in the sequence (&) other
than 7. Thus 7==1, thereby ¢ = 7 5= 1and s and =
are of the forms (1) to (4); hence

o= pF i P n
r=¢ 12 PY pdd,

where m, m, .., M, 4, ¢s, ..., are the numbers 1
or 2 and £, I, r, sareeither 0 or 1. It follows that

3 > 3

PES™ Gz Pl p T a7

pae =1,

— o T

(1) |

According to the property proved concerning
the transformations (1)—(4), the left side of this
formula cannot represent any of these transfor-
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mations. It is easily seen that this implies the
equalities:

=8 My = Gy Mgy = Qi » My =G K=7
which by means of (7) prove that the transfor-

mations ¢ and + occupy the same place 1n the
sequence (@) and this is inconsistent with the
hypothesis. So the transformations of the

sequence (@) are all distinct.

It should be observed that when ¢ denotes the rota-
tion of the plane through the angle 7 around the point
zy=X, + 1y, == 0 and y; denotes the rotation of the plane,

around another point of the plane, e.g, z,=0, through
the angle -—237-7 then the transformations of the sequence
(G) are not all distinct. It is readily verified that we have
then ¢p(z)=2z,-z, J(z)= €z, where ¢ =3(~1+iy/3)and it
follows that (¢y)°=1.

Now we divide by induction each class & into
three sub-classes &, G, ¢ " in the following

n n

way. Let G'={1}, G "=G'"=0 and let us

subclasses G,', G,", G ' for an integer n. If
o€, there exists only one ¢ ¢ G such that

one of the three cases is to ensue:

1) o=¢p, Where the first factor of g is i or 7,
2) o=¢p, 8) o=¢?p; while in the last two cases the
first factor of ¢ is 4.
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We put in the first case
ceG”’ ., if pPe@  and oe & 4, it
pPel ~+G .

In the second case we put
ceG@ il Pel 5, oG 11 if pe G7,,
ce ' L, U pelG .

In the third case we put
ceG i PG, oG, HPeG,
se G L ifped .
The classes &, .\, @ nyy, G 4, will be evident-
Iy disjoint,

We put

GO=60, + GO+ GO, + ... fori=1,2 3:
so we shall have a decomposition of & mto three
disjoint parts

(Q’) I} .'d)l_/;- X ;27 /i

-

(") $, ¢ B°P, dhpihy il

rrr 2 2

Y SRR 2 A g2 12
(G"") e P i, b

If X denotes & set of tranformations, we indi-
cate by «K the set of all the transformations op

where £ ¢ K. Let p belong to G’; there exists
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then an integer 0 such that p e @ . Ifn=0
then =1 hence ¢p=¢eQ,”, yP=y e G/, JF p=1J’
e@"". If n9=0, then n>2 (since ¢,'=0). There
exists thenp, e ¢ _, such that three cases are pos-

sible:
1) p=d¢p, and o or®13the first factor of 2,

2) p=yp,, (3) P=y*P,. In the last two cases
¢ is the first factor of g,

(1) If p=¢p,,then considering that p @,  and
taking into account the definition of @ ', we find
p e’ _ +G", _  hencedpp=p G _ +G"  _,
and after the definition of @ ' and &', we have
bp eGPl

(2) If p=1ip, the definition of @'/, ., gives
dpe@G@’ o, and as p e @', 1t 1s found from the de-
finition of ¢ that p,e @' __,, hence yp=4p, ¢ G’
and Jfp=p e G _,.

(3) If p=4¢°p,, then considering that p ¢ @', we
obtain p, eG"', _, ,hencepp G’ ,,,dP=p G’ _,
= szp: ‘ppl € Gnr”'

0 c GII+GIII 2’!

o elF’,
2 o A

Hence, as ¢ 18 an arbitrary element of &'

(8) ¢G/ o= GH"‘G’”, (/JG’ - GH, KIL'2G’ C GIH.
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Let now p belong to G, There exists an
integer nsuch that p e G,," and thereexistsap e @, _,
such that three cases are possible: 1) p=d¢p,
(2) p =ip,, 3) p=¢/°p, the first factors of p, being
defined as above. 1) If p=dp,, then on considering
that p ¢ G," we have p € (,_, hence p=p, €
G ny, and p € @ (by the definition of G/, ).

2) If p= Sh,, then p, € G’n_” hence ¢p ¢ G’n_l_],
pp=P, € G[}’ﬂ+1'

3) If p=y* p,, then P, ¢ G'",_,, hence ¢p ¢
G'n_,, PP p=ip, €@, Thusthereis always dpe@,
hence

(9) " @, J'Q" <@,
whence "=’ " < J@.
If finally p € G, then there exists a positive in-
teger n such that pe ¢, and a p, e (7,_ such that

the following three cases are possible: 1) p=dp,,

2) p=ip,, 3) p=4°p,, the first factors of p being
defined as above.

1) If p=¢p, then according to the definition
of &, and G", there isa pe G, +G", and this is

inconsistent with p e ¢,,"", Therefore this case is
not possible.

2) If pe p, then from pe G,” we have
p, e 0"y_, hence ¢p e G, ., and Yp=¢’p ¢ Q,’.
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3) If p=y*p,, then p, e @, _,, hence ¢pel’ ., and
Yp=p, e G _. Thus we always have &P ¢ (7,
p € (' hence

(10) 4G, Y@< @,
whence @'"=¢°G"" (@,

The formulae (8), (9) and (10) give 1mme-
diately

(11) (IbGl: G’r+G!H l‘bG’ G” (’[)260' G!H

It 1s known from the geomefry of move-
ment that when a body 1s displaced in such a way
that one of its points remains fixed, then such a
movement is equivalent to a rotation (by a cer-
tain angle) around an axis passing through the
fixed point.

To each transformation of G different from 1
there corresponds an axis of an equivalent rota-
tlon, Such an axis intersects the given sphere in
two points (poles), As the set of the transforma-

1y That axis could be found in the following
way: Let T, Uand T/, U’ denote two points of the given
body before and after the considered movement. Through
the centres of the segments T 77 and U U’ we draw planes
perpendicular to those segments. If the planes are not
identical, then the straight line of their intersection will be
the required axis and if on the contrary they are identical
then the required axis will be the straight line of inter-
section of the planes T U O and T7 U’ O where O is the
fixed point of the movement,
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tions of ¢ 1s enumerable, the set D of all the poles
is enumerable as well. It is plain that for each
rotation around an axis passing through the cen-
tre of the splere (the rotation which is an 1denti-
cal transformation, ¢.e,, the angle of which 1s a
multiple of 27 being excluded) two pomts and
only two points of the surface of the sphere
remain at their places, viz., the two poles of the
considered rotation. We conclude that no point
of the surface § of the sphere, the points of the
set D excepted, remains at 1ts place for any trans-
formation of the sequence (@) save for the iden-
tical transformation 1, G being a group of trans-
formations, we have

VAN T S VAN
(12) oAP) =+ o \P)
g

-@_-‘0 h
Ip€o-L1,
4

Indeed, if we had for a certan D ¢ S =D and

for » and o' belonging to @, «(p)=<'(p), then we

would have o/o”'(p)=p, which gives oo7'=1
/r:l‘;hh Qin .0]"):) [ Ry o TV n\ th

7 o — ) 17 / nn  _— ' 0
\D J WS W ‘lJ LS U, \r\'b JJ.(IIVGIJ (: J.J/ FES WY NV W g—aQg Cull

that is inconsistent with the hypothesis.

Let G(p) denote the set of all the points
obtained from the point p of S— D by the apph-

cation of any transformation of the sequence @,
We have

G(p)=1p} +{d(p)} + {¥(p)} + ()} + (P (D)} +
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in short, G(p)=3 {s(p)}. All the terms of the
o€
series G(p) are formed of distinet points of S.

Now, let » and p’ be two distinet points of
8- D. Then there 1s

(13) either G(p)=G{p"), or G(p G(p')=0.

Indeed, if G(p)G(p')=£0, there exist two
transformations o, and o' of ¢ such that o/(p)

0

=, (p’). It results from it for o € G that
o(p)=oo; o (P)=0 07" o/ (P)s

and putting o'=o0, "', we find o e G and o(p)

=,'(p’) which proves that «(p) e G(p") for ¢ el

and therefore @(p) < G(p’). Similarly we find

that G(p") < @(p), thus G(p)=G(p’'), and the
formula (13) 1s proved,

R, RN I SN & R 3 [P SUNRUR L 3 PN SR 4 | I
ANOW we ulviae dll uie PU.L[le Ul LIIE sEL O — L/

into classes, two points p and p’ of S -D being
ranged in the same class only if G(p)=G(p’). So
F DY T 4 | y 2 WU [P R N By A PR
whne SeL O — L) ]38 UBUUIH]_JUSBU. 111v0 LlleUlIlb \UHLL[IlU.L'
able) classes, According to Zermelo’s axiom there
exists a set M containing one and only one
element of each o
can write

thhea nlacoac Wl ot corn
LItDSE  Cldbsts, LYVIUCHLLY WE

S-D=3 olM)=M + M)+ (M)
0€G F (M) + b M)+ ..+



HAUSDORFF PARADOX 91

It 1s easy to see that the terms of this series
are disjomnt sets. Indeed, let us suppose that for
o €@, Je (G, o o, we have o(M)o'(M)=£0;
then there exist a p e M and p’ € M such that
o{p)=0o'(p’) which gives, as we know G(p)=G(p’).
Thus considering that p e M, p’ ¢ M and from
the definition of the set M, we have p = p/,
which gives o(p)=o'(p) contrary to (12), since
Mc S-D.

We put

(14) A:‘ E U(M), B: E O'(M), 0 —_ EO‘(M)
0€G oeG! veG'"

As G=6G"+G" +@G" is a decomposition of ¢ mto
three disjomnt parts, we shall have a decomposition
of § ~ D into three disjoint sets :

(16) S~D=A+B+0C.
It is easily found from (14) and (1 1) that

(16) $(A)=B+C, §(4)=8, §(4)=

(It should be vointed ouf; Hmf rl.(n ::_D and

EIVAI-J.V\J\A S LA W oAV W \r\u

y(D)=D). According to (16) we have

(17) A=B=C=B+C

and the formulae (15) and (17) show that the sets
A B C and D satisfy the conditions of the

theorem 26. Thus the proof is completed,
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It follows from (17) that B+ C is an uncountable
bounded set (in the space of three dimensions) and
that 1t is the sum of two disjoint sets each of which
is congruent with it. According to what has been
sald above (§7) there exists no bounded plane set

possessing this property.
11.  The paradox of Banach and Tarska.

Suppose S= A+ B+ C + D 1s the decomposition
of the surface S of the sphere fulfilling the conditions
of theorem 26. Thus there exist the decomposi-
tions A=4 +4,, B=B,+ B, C=C,+ C, where the
sets 4, 4., B,, B,, C,, C, are two by two congru-
ent and disjoint, and 4, =4. We have

S=A4+A4,+B +B,+C, +C,+ D

where the sets on the right are two by two disjoint,
We put

S,=A4 +B,+C+D, 8,=4,+B,+C,

and 1t 15 easily seen that S, 58 and 8,37 S—D.
Now, according to theorem 14, we have S -D 5 §
and 1t is readily verified that the formulae P 3 Q
and Q 7 R give P35 R (see theorem 23). Thus
S, ¥ 8.

So it has been proved that

() 8=84+8,,88,=0,8, $8and §, 5 8.
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In other words, the surface S of the sphere
may be decomposed into 10 disjoint parts, the 4
and 6 of which give respectively after suitable
rotations and translations, two surfaces of spheres
of the same radius,

It should be mentioned that Mr. R. Robinson
has recently proved in a different (tlhough not so
elementary) way that S=§,+§,, where §,5,=0,
S, 78 and S, 7 S

If mstead of the points of the surface of the
sphere, we take the corresponding radii with the
exclusion of the centre and if we consider that the
solid sphere deprived of one of its points 1s equiva-
lent by decomposition into two parts to a whole
sphere (which may be ecasily deduced from the
theorem 14 by placing into the sphere the surface
contained in it and passing through the point to be
eliminated) we immediately conclude from (1) that
a (solid) sphere 15 equivalent by finite decomposition
to two disjount spheres of the same radius. This
Jast assertion has been deduced in 1924 in a much
more complicated way by S.Banach and A. Tarski

{rom Hausdorff’s theorem.?,

T e m————

) Fund. Math. 34, p. 254.

2) Fund. Math. 6, p. 62 (Lemme 22); c.f. W. Sierpinski
Fund. Math, 33, p. 229,
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The passage from the paradox of Hausdorff to
the paradox of Banach and Tarski (i.e., the correc-
tion of ““the lack of the beauty” of the Hausdorff’s
theorem which had to take advantage of the enu-
merable set D) may be obtained by a simple appli-
cation of the theorem 14, the proof of which 1s
quite elementary .

It may be proved that each solid sphere S is
the sum ofa family (ofthe power of the continuum)
of disjomnt sets, each of which 1s £ 8. The demons-
tration of this theorem 1s very troublesome .

Lemma . JIf a bounded set E situated in a
three dimensional space conlains a solid sphere K,

then & I K.

Proof. Let r be the radius of the sphere K.
As the set E is bounded, it is contamed in a fintte
number, say 8, of cubes @, Q,, ..., ¢, each of
which has a diagonal=2r. K, K,, ..., K, denote
disjoint spheres, each of which 1s = K. According
to the theorem of Banach and Tarski that we
have just proved, we have K f K +K, and
K,f K.+ K, hence K L K +K,+ K, and by easy

A DN W AU UL AR LN [ U R
mMauculon 1v 18 10Uunda uvildu

1y See W. Sierpinski, Rendiconti Accad. dei Lincei, Ser
VIII, Vol. 1V, p. 270-272, and Fund. Math, 35§, p. 138,

2y See W. Sierpifiski, Fund. Math. 33, p. 244,

?) Banach-Tarski, Fund. Math. 6, p. 263, lemma 23.
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2) KK +K+ . +K,

Now,as B < @, +Q,+ ...+ Q,, the set £ may be
decomposed into s disjomtsets 5=F + E,+...+ E,
where £, < . for:=1, 2, ..., s

If + denotes a number of the sequence 1, 2,..., s
the cube ¢, whose diagonal =27 is congruent with
a part of the sphere K (the radius of which is=r),
Thus the set £, < €. 1s also congruent with a sub-
set of K,. Itresults from 1t at once that K is £ to
a subset of A +K,+....+ K, hence by (2) and the
corollary of the theorem 23, K is f also to a subset
H of K. Now, as Hc K c Eand £ H, it

follows by the corollary of the theorem 22 that
F K th t}\ng t]'\ mm

N
aLd - AA CViLL Le drN,

completed.

proof of our lemma 1s

Theorem 27 9, If E, and E, are two bounded
sels situated in the three dimensional space and if
each of them contains a sold sphere, then E, [ E,.

Proof. K and K, denote solid spheres contained
respectively in £, and E,. Let us suppose, as we
evidently may, that K, = K,. We have from the
above lemma K, [ K and E, £ K, ; thus according
to the corollary of theorem 23, E_ £ E,, which was
to be p1oved

- ————trs e

1) Banach- Tarski, Fund Math, 6, p. 244 and p, 263.
Th, 24,
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In particular 1t results from theorem 27 that
two solid spheres of different radiv are eguivalent by
fimte decomposition, A sphere 1s also £ to a cube.
With regard to circles Banach and Tarskr have
proved ') that two circles are equivalent by finite
decomposition only when thewr radii are equal,
The question whether a circle 13 £ o a square (of
the same area) has not been solved,

12. We shall deduce from theorem 27 an 1m-
portant consequence about the Banach’'s measure

of sets of points.

In an m — dimensional Eueclidean space R_, by
Banach’s measure we mean each function festab-
ishing a correspondence between an arbitrary
hounded set £ of R_and a real finite number
f() = 0 such that

(D) f(E)=fE)if B, =F, (where E, and E,
are bounded sets of R,),

NS N

(3) f(T) =1, if Tisa cubein R, with sides
equal to 1,

It results from (1), (2) and the definition of the
relation £ that
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Suppose there exists a Banach’s measure m R,
and let @, and ¢, denote disjomnt cubes with
sides=1. We have by theorem 27: Q, £ Q, +Q,,
hence by (2): f(Q,) =f(Q, + @) =f(€) +f(¢), thus
f(Q,) = 0and this is in contradiction with (3).
Therefore we have the

Theorem 28. There exists no measure of
Banach in R,.

A moment’s consideration shows that there
exists no measure of Banach in R,, where m=3,
4,5, .... If there existed, for example, a measure
of Banach in R,, say u, then there would exist
such,a measure f in R, simply by puttmg for
the bounded sets F of R,, f(E)=p(H) where His
the set of all the pomts (z,, =, z,z,) of R, for
which (z,, z,, z,) € £ and 0<z,<1,

S. Banach proved, however, in 1923 the exis-
tence of Banach’s measure im R, and in R, but
the demonstration 1s st2ll very troublesome!), In
his book Theory of linear operations® he gave
another proof, Moreover, a strictly algebraical
demonstration of the existence of the Banach’s
measure 1s due to A. Tarski®).

1) Fund, Math. 4, p. 7.

) Monografje Matematyczne t. I (Warszawa-Lwow
1932), p. 32,

%) Fund. Math, 31, p. 56; c. f. C, R. Soc. Sc. Varsovie
21 (1929), p. 114,
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It should be observed that a Banach’s measure
1s not in an enumerable manner additive. Indeed,
according to the theorem 21 the linear set
I, =[0<z < 1] 18 the sum of an enumerable infinity
of disjoint sets two by two 3 ,say I, =& +E,+...
AsE 7 F,, wehave u(E )=u(&)for k=1, 2,..,
where u(%) denotes the Banach’s measure of the
linear set #. If p(#)=0, then u(&)+u(&,)+
..=0,and if p(& )>0, then p(&) + p(&,)+...=»;
thus there 1s always

p(L,) (B +p(E)+ ..

as it results from the demonstration of the theorem
16 that I, I I where I is the interval 0<z<1 and

from (3), u(I) = 1, hence u(l) = 1.

Now 1t is known that Henri Lebesgue has
defined for m=1,2, ... a family L,, of bounded
sets of £ and for each set £ ¢ L, a real number
f(B)=f,(E) = 01n such a way that for each finite
or infinite sequence of disjoint sets of L, &, I, ...
the formulae (1) and (3) hold as well as

(4) fIE,+Eq+. )=flE)+fE)+ ...

The sets forming L, are said to be measurable
L R and the function f,(£) 1ssaid to be the

Lebesgue m-dimensional measure of E. The family
L, is very large: no set effectively defined1s known
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at present, the non-measurability L of which could
be proved (though there may be effectively defined
linear sets for which there exists no method of
discerning whether they are measurable L or
not) ). The known demonstrations of the exis-
tence of non-measurable I sets make use of the
Zermelo’s axiom. It isplamn that the sets E|,
B, .. .satisfying the conditions of the theorem
21 are not measurable L.

The following problem is said to be the general-
ized problem of measure :

Does there exist for a given set I a function
establishing a correspondence between each subset
D A-p T l"lv\tJ s -II\!‘\] - o e v\f\ﬂ‘g‘l"“:TTA -f-':n;-t-n 1’\111\:\1—\’\--
i vl I ajill «& lodal LIV J.'IJ.CBGJLJJ.VU Lilluve LI UCT

f(E) in such a way that
(@) fI)=1,

B) LB, +E,+. . ))=fE)+fE)+. .., f E,Cl
k=1,2,.. and £, E,=0 for k=,

(y) f(Ey=0 if & is composed of only one
element of I?

It has been proved by the aid of the conti-

1} C. Kuratowski, C. R. du Congrés Intern. des
Math, a Ziirich, 1932.
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nuum hypothesis? that when I is an interval
(or more generally an arbitrary set of real num-
bers), the answer to the generalized problem of
measure is in the megative, On the other hand
it may be proved without making use of the
hypothesis of the continuum that the answer to
the generalized problem of measure is negative
for any set I whatever of power << 8,

I shall quote here, without proof, three theo-
rems the demonstrations of which will appear
in the vol. 37 (pp. 203-212) of the periodical
Fundamenta Mathematicae :

If I ws a bounded set situated in R, and of
the me~demensional (Lebesque) exterior measure
m (E)>0 and of p s an arbitrary real number
>m, (), then there emsts in R, a set H such
that H I E and m (H)=p.

When E 1s a set measurable L situated on
the straight kne or on the plane, there exists no
set H L B and such that m ,(H) < m(E).

If B s a bounded set situated in R, where
mz 3, and such that m, (E)> 0, there exists
for each real number p, such that 0<p <m (E),
o set H of R, which s I E and such that
m,(H)=p.

) See my book Hypothese du continu (Monografje
Matematyczne, 1V, Warszawa—Lwow 1934y, p.107;

cf. S. Banach and C. Kuratowski, Fund. Math, 14, p. 129
and E. Szpilrajn, Fund. Math, 22 pp. 304-308.
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13. The absolute measure. Let X be a linear
bounded set. The upper bound of the lengths
of all the (closed) intervals which are f to a sub-
set of X 13 called by Mr. Tarski the absolute
wnterior measure of X and is denoted by a,(X).
The lower bound of the lengths of all the intervals
containing a subset equivalent to X by finite de-
composition 1s called absolute exterior measure of
X and is denoted by ¢, (X),

It results immediately from theorem 25 and
the corollary of theorem 22 that a segment
of a straight lineis not I to a subset of a
smaller segment. This umplies, after the defini-
tion of a¢,(X) and @,(X) that for each linear
bounded set X

0 < a(X) <a,(X)<+ow.

If ,(X)=a,(X) then the set X is said to be
absolutely measurable and the number a(X)=a(X)
=a,(X)is called absolute measure of X. It is
easily seen that each finite segment is absolutely
measurable and that 1its absolute measure coin-
cides with its length,

It may be proved’) that if f is an arbitrary
Banach’s measure in R, then for each lnear

') A. Tarski, Fund. Math. 30, p. 229, Th. 3 14.
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bounded set X

4,(X) < f(X) < a,(X).

It results from it that if X is absolutely mea-
surable, then a{ X) = f(X),

It may be proved that a necessary and suffi-
cient condition that a hinear bounded set X should
be absolutely measurable 1s that f(X)=g(X)
where f and ¢ denote two arbitrary Banach’s mea-
sures in R, Y

There exist absolutely measurable linear sets
which are not measurable in the Lebesgue sense
e.g., the sets obtained by the decomposition of a
segment into an enumerable infinity of disjoint
sets and [ as In theorem 21%. Conversely
there exist sets measurable in the Lebesgue
sense which are not absolutely measurable (e.g.,
the bounded sets of the first category of a posi-
tive Lebesgue measure). ®)

14. The paradox of J. von. Neumann.

As we know (by theorem 19) the segment

(HQ well as the sau HT‘P\ do not admit of nnrnﬂnvlnn]

- T M\l Wk W WA WS LR R L

decompositions. There eXists, however, another

) 1., p. 230, Cor. 3. 19,
2y l.c, p. 232, th, 4. 11.
% 1l.c., p. 232, th, 4. 10.
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paradoX concerning the segment of the straight
line and the square, shown by Mr. J, von
Neumann 1n 1929.

Suppose 4 and B are two sets of points. The
set B is said to be metricolly smaller than A4, if
there exists a reciprocally univocal transformation
fof 4 into B which diminishes the distances bet-
ween the points. More precisely, if 2(p, q)
denotes the distance from p to ¢ one must always

have P(fip), f(g)) < P(p.g) for any p € 4, g € B.

We shall say that a set B 1s smaller by finite
decomposition than A if there exists a decompo-
sition of the set 4 and B into the same finite
number n of disjoint sets A=A +4,+ ...+ 4,
B=B + B, + ...+ B, such that for k= 1,2, . .,n
the set B, is metrically smaller than the set 4,

Mr. J. von Neumann has proved with the aid
of Zermelo’s axiom that a segment of the
straight line 1s smaller by finite decomposition
than a segment of smaller length). His de-
monstration 1s very tedious, Now, I have
deduced 1n an elementary way from the paradox
of Banach and Tarski that each circle (0<2®+
¥’<r®) is smaller by fimte decomposition than
any circle (the circle itself being comprised) 2.

'y Fund. Math. 13, p. 115.

9y Fund. Math. 35, p. 204; cf. W. Sierpinski, Com -
mentarii Math. Halvetici 19 (1946-1947), p. 22 3.




Appendix

During the weeks that I have lectured at the
University of Lucknow, several problems have
been put and some even resolved by my audi-
ence, specially by Mr, A. Sharma. This supple-

mentary note contains their exposition,

Mr. A, Sharma has put the problem whether
we can combine the theorems 7 and 8, This is
the answer,

Theorem 29. If P is the aggregale of all the pornts
of the line, N the aggreqate of all the irrational
numbers of the wnterval (0, 1), D the aggregate of
all the rational numbers, then we do not have

P—(N+ D)3
Proof : Let us suppose that P— (N ) ’2”'
holds true. There exists then decampﬁslt
P=P +P, P- (N + )= +

WherePPg._QQ-‘O P =Q,P,=0, ASP =0,
there exists an isometric tlansforma,tlon f of the
line Pinto itself which transforms P, into Q..
We have then f(P)=€@, Put @=f(P,), As
f(Py=P, we have
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P=f(P)=f(P .+ P,)=f(P) +f(P:)=0, + Q.
and seeing that P1P2*~0 (and that f i1s a one to

R L = P O
one bldllSlUlllldtlUll U ue ll[lt’),

0=f(P,Po)=f(P)) f(P,)=0,0.

We have thus P=@Q, + ¢ and Q@ =0and Q=f(P,)
= P,, so that from P, = (J),, we have @) = @),.
There exists then an isometric transformation
¢ of @ into @,. Now, as @ ,=0and Q,CP=¢,
+@Q, we find that Q,c@Q and @,7=0Q, since
. +Q,=P—(N+D)y== P=0Q + 0.

Now, as we know, a linear aggregate cannot be

transformed into its aliquot part by a rotation :
the transformation n‘. 1s then a translation (a,]nnp'

the length of a line), say of length a, te.,
we have Q,=Q(a). As Q,CQ,+Q,=P - (N+D),
we have Q(N+D)=0; hence seeing that
(N+D) € P=0Q+Q we find that N+D < @,
The aggregate ¢ contains then all the rational
numbers. If @ i1s a rational number, 1t will be
evidently the same for the aggregate Q(a)=0,,
which 1is impossible, seeing that @, © @, +@,=
P~ (N+D), whence QD = 0. The numbera

1s then irrational.

Put é=Fa+1—-a ; 1t will be evidently an 1rra-
tional number of theinterval (0, 1) sothat £ N @),
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whence £+ a ¢ Q(a)=Q,. Now, we evidently have

E+a=FEa+l e D,

We will then have @.D == 0, which is impossible.
The hypothesis that P 5 P —(N+ D) implies

then a contradiction and our theorem is proved.
We now prove the following theorem :

Theorem 30, If B is a bounded set of real num-
bers and D an enumerable set of real numbers,

we have on denoting by P the sel of all the points
on the strarght line :

P-(B+D)z P
) > SRR o T and 2 Matmer bhattn el 03 s 4 o PR SRR T |
¥ | 7UUJ- A1 Aty L0 Ul ]5 UUU-I].UUU, 1 IS sl hud;lﬁu

in an interval a<z<b. Let @, be the set of
s <a and @, the set of all the

USRI M - L AT nvrsd nandTer 1o wrn
Iedil 1u luelﬁ e U. YYo UVIU.Ullhly Had ve
Q (b _a) + Qz —
and we see easily that the translations of the set

nd the set @,— D give a sum which is

P—D. , where D, 13 at most an enumer-
This sum 18 then {" om our theorem R z. P,

VAilL/iA X1 VARV NSA Vo ALX

On the other hand, this sumisevidently; (€, D).l.
(Q,— D). From theorem 23, we have then

(Q1"'D) + (Qz-D) : P

;..Q
p—o
S-'*Og:
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Also we evidently have
@,-D) + (9,-D) c P~ (B+D) < P.
Krom theorem 22, we then find
P-(B+D)73 P,

The problem remains open whether in the
general case, the number 5§ could be replaced by
a smaller number.

Theorem 31. If E denotes the set of all the
squares of matural numbers, we do not have E I

£-{1}.
Proof. Suppose that we have
E m E - {1},

where m is a given natural number. We have
then the decompositions of £ and £ — {1} into
m disjoint sets :

E=E +E+ ..+E,
and
E-{1})=H+H,+ ... +H,,

0 m
~

-
Ara — 1
Al 10L v =— 1 3 aeayllly

(3 1 b

Let E, be a term of the series for £ which 1s an
infinite aggregate, As E, = H, and as E,, In so0
far as it is an infinite aggregate of mnatural
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numbers, can not be congruent by rotation with
the aggregate of natural numbers H,, we con-
clude that £, is congruent with H, by transla-
tion, say H,=F, (a). If the number a 3= 0,
then, on denoting by p° any element whatso-
ever of &, we have p* + a ¢ H, hence (observing
that H, < E —{1}) p* + a = ¢°, whence
(g+p)(g—p)=aand g+ p < lal,so that p < |a1,
contrary to the fact that the aggregate K is
infinite. We have then a=0 and H,=F, for
each infinite term of the series E, + E,+....+F,,.
If the terms &, &#,, ---, £, of & are finite and the
terms ., £..,, ..., & infinite we have £, =
Hfori=s+ 1,5+ 2 -, m, and if we put

P —- ES'I'I - Es+2 +... +Em

then E=8 +E,+ -+ E 4+ P, and £ - {1} =
H+H, + -+ H, + P, Nowas £,;=H; forv =
1,2, ., m, and as the aggregates £, E,,..., E, an

H, H, -, H, are respectively finite and disjoint,
the aggregates £ + £, + - + E,and H, + H, +
... + H have the same number of elements, hence
also the aggregates ¥—P =K +E,+ ...  + &,
(since P(E +E,+ .. + E)=0) and K - {1} -

have the same finite number of elements.

Now, this is impossible since £ —{1} < &,
{(1}ée Pc £- {1}and {1} e E—P,and £~ {1} =P
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is an aliquot part of £ - P.
We then cannot have

As for the problem whether for two aggre-
gates 4 and C such that 4 5 C, there always
exists a set B such that 4 7 B 5 C, the problem
remains still open even for finite aggregates of
natural numbers. Now, Mr. A, Sharma has
shown that the answer to this problem is positive
for all the aggregates A4 containing at most 7
elements,

Mr. A Sharma has also shown that there
exist aggregates 4 and C, such that 4 7 C, for
which there does not exist any aggregate B such
that 4 § B 5 C. Such are for example the aggre-
gates

A=11,23 4} and C = {1, 10, 10% 10°}.
The problem remains open whether for two aggre-
gates 4 and C such that 4 7 C there always exists
an aggregate B such that 4 T B % C,

I do not know also whether » being a natural

mran O nnl awmA 1 L2 R P
nunioper > < ana a allll U Ut?lug UWU nuil- uuuuucu

aggregates such that 4 = C, whether there always
exist n — 1 aggregates B,, B,,... B, _, such that

A?'Bl§82§' "an'—lio'



110 CONGRUENCE OF SETS

Theorem 32 Let n be a natural number. When
the sets A and B are congruent and AB contains
less than in{n41) ponts, then A—B = B - A",

Proof. Our theorem is evidently true for n = 1,
since then the sets 4 and B are disjoint.

Let now n be a natural number and suppose
that our theorem 1s trite for the number n. Let
A and B be two sets (situated in any metric space
whatsoever) such that 4 = B and the set P = AB
contains less than {(n+1)(n+2) points.

As A = B, there exists an isometric transforma-
tion f of the set 4 into B since P= AB C A, we
have P=f(P). Letf~* be the inverse transforma-
tion of f (that is, an isometric transformation of

Binto 4). As P=ABCB, we have
f1 () < f1(B)=4
and
(1) 4 =B=A4 - P=[A = (P+f~*(P))]+[/"*(P) - P]
and

Now
fA-[P+f(P)])= f(4)-f(P+1(P))
=B ~[f(P)+ P]
so that
1y This theorem has been enunciated by A. Linden-
baum without proof in Fund. Math 8 (1926), p. 218



APPENDI X 111
(3 A- [P+f(P)] = B-[f(P)+ Pl
Let us now distinguish two cases:

1) When the set Pf(P) has less than
}n(n + 1) points,

Our theorem being, by hypothesis, true for the
number n, 1t follows from P = f(P) that P —f(P)3
f(P)-P. Now,as f*(Py—P=f(P-f(P))=
P —-f(P),1t follows that f~*(P)—~P = f(P) — Pand
from (1), (2) and (3) we find at once that 4 -5
o0 B-A,

2) When the set Pf(P) has at least n(n + 1)
points. Now, as the set P, hence also the set f(P),
hasless thani(n + 1)(n+2) points, the set f(P) -

P=f(P) — Pf(P) has less than i(n+1)(n+2)—

in(n+1)=n+ 1 points, hence at most n points.
Thesets Pand f(P) being finite and having the same

number of points, the sets P —f(P)= P — Pf(P)and
fiP) = P=f(P)~ Pf(P) have the same number of
points. As f~Y(P)—P = f~' (P —f(P)), we con-

JNT D

clude from it that the sets f~*(P)— Pand f(P)— P
have the same number < n of points and there-
fore we have f~1(P) = f(P)- P. From (1), (2)

nJA\" / T

and (3) we conclude that 4 —-BI57 B—A4.

We have thus proved that if our theorem is
true for the natural number n_1t is also true for
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the number n+1. Now, as 1t is true for n=1, 1t
follows from 1t, by 1nduction, that it is true for
every natural number.

Theorem 33. Inthe theorem of Lindenbaum,
the number in(n + 1) cannot be replaced by any
larger natural number.

Proof. 1t will be sufficient to prove that
there exists for every natural number %, two finite
sets of points of the straight line, 4, and B,,
such that 4,= B,,, that the set 4,8, has in(n+1)
points and that 4, - B, 5 B, — A, does not hold.

To this end, we put f(x) =z + 1 for real z
and let, for a natural number n>1, 4__, be the
set of all the natural numbers kn + [, where

k=12 .,nandl =0, 1, 2,..., k—1 that is,
A -1 — {n,

”

2n, 2n + 1

3n,3n + 1, 3n + 2,
(4)

n’, n’ + 1, 0" + 2,...,0° +(n=1)}
Now, put

(5) Bn—l =f(An—1)°

Askn+ k< (k+D)n fork=12.. n-1,
we easily see that
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(6) A,...—-B,_, ={n,2n,3n,...,n"}

(7) B,-.—-4,_, = {n+]1,2n+2, 3n+3,... ,n*+n},
From (4) the set A, _, has 142+  +n =
in(n+1) elements and since

An-—-an—l = An—'l - (4., —=B,_.)
and since from (6), the set A4 __, — B, _, has
n elements, we conclude that the set 4 __, B, _,
has ¢n(n+ 1) —n=1n(n—1) elements.

Suppose that
’An—l —Bn—l n—1 B"-I—A‘n—l-

It follows from it at once that the set
A._, —B,_,, although containing n points, con-
tains at least a pair of points, say pn and g¢n,
where 1 < p < q < n, which 13 congruent with
a pair of points of the set B,_, — 4,._,, say
{(n+1)r, (n+1)s}. We have then

gn—pn=|(n+Dr = (n+ s| = (n#1) |7 |

The number (n+1)|r—s|=n|r—s|+ |r—s]
1s then divisible by n, which i1s impossible, since
r and s are two distinct numbers of the set 1, 2, ...,
n and we have 0<|r—s| <n.

The formula 4__, — B =B _, - 4.,

anx —= 1 Fra B |

Y + L ¥i

cannot then hold good. = being any natural
number >1, our assertion about the existence of
the sets 4, and B, forn =1, 2, ... 1s found proved.
This completes the proof of our theorem,
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Theorem 34, Ifthe sets A, A,, A,, and also
the set C,, C,, C, are disjoint and if A;=C,
fori=1,2, 3, and if each of the sets A, and A,
contain at most two elements, then there exists a
set B such that

4 +A4 4+ A4

(.ll 1 112 .r.l3

= R
y 42

|l

C,+C

Proof. As A = (|, there exists an isometric
transformation of the space such that f(4, = C,. Put

B=[A4,+,+4,) f7(C,+C,) ]
+[A2 _f“1(02+03)]+[f-1(03) - (Az +As) ]

We have

B=[A4+4,+4,f(C,+C))]

+[fH(C,) = (4, +4,)]

the two terms on the right being disjoint sets
(because C,C, = 0, f~(C)f~'(C;) = 0 hence
A, f-1(C,) = 0). Theset A, hence also the set
C, = A4,, have at most two points and the same
is true of the sets f~'(C,) and 4,. Now, as
A,+4, = C,+C, = f~1(C,+C,), we easily see from
f1C,) =0, = A4, that

G = (4, +4,) = 4, - [ (Co4C))

(since, if 1n each of the two congruent sets con-
taining at most two points, we suppress one point
or two points In each of them, we evidently obtain



APPENDIX 115

congruent sets),
We have thus:

N

N
»

r . : A L1
LAy F Ayt dyf

i

— A1+A2 +- Aa'
On the other hand we have

B = f(B) = f(4,)+[f(4,)+/(4;) (C,+C,)
+[f(4) = (C,+C)) ]
+ {0 = [ f{d,)+f(4,)]}
= C.+ f(4,) +C, f(4) +[C, - f(4,) ]
= [0, +C,f(4,)+C,) +[f(4, ) - 03]

‘ﬂ1!\‘

Now as 03 =4, = Jf(As) and 03 = Jf(As}: we
find as above (because f(4,) = 4,=C,) that
f(dy)~C, = G ~f(4,)

Hence
[C,+C,f(4,)+C,) + [f(4,) - C,]
3 [C+Cot(A)+C1+[C, —f(4,)]=C,+C,+C,.
We have thus B C,+C,+C,,




ERRATA,

Page 9. The proof is inaccurate because of
the assumption ¢°(z)=¢°(2)=2 in line 16 which
implies c=¢Q, Therefore for page 9 and the first
five lines of page 10, read the following :

“Now the following problem is open :

Does there exist a plane set & contorning two
distinct points p and q such that & — {p} = E and
E-{q} =E?

Mr. J, Myecielski has proved that the answer
to the analogous problem for sets in three dim-
ensional space is positive. His proof will appear in
the Fundamenta Mathematicae Vol. 41 or 42, Mr,
Mycielski also informs me that he has recently
proved that there exists on the surface of the
sphere (in three dimensional space) an enumerable
set & such that E'— {p} = for every point p of E,
and a set H of the power of the continuwum, such
that we have H— F = H for every set F which 1is
at most enumerable.”
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NOTE

THESE lectures on the analytical formule relat-
ing to the motion of the top were delivered on
Monday, Tuesday, Wednesday, and Thursday,
October 12-15, 1896. They were reported and
prepared in manuscript form by Professor H. B.
Fine of Princeton University, and the manuscript
was revised by Professor Klein.



LECTURE 1

In the following lectures it is proposed to con-
sider certain interesting and important questions
of dynamics from the standpoint of the theory of
functions of the complex variable. I am to de-
velop a new method, which, as I think, renders
the discussion of these questions simpler and
more attractive. My object in presenting it, how-
ever, is more general than that of throwing light
on a particular class of problems in dynamics.
I wish by an illustration which may fairly be
regarded as representative to make evident the
advantage which is to be gained by dynamics
and astronomical and physical science in general
from a more intimate association with the modern
pure mathematics, the theory of functions espe-

ALV AAL L LW N W e

cially.

I venture to hope, therefore, that my lectures
may interest engineers, physicists, and astronomers
as well as mathematicians. If one may accuse
mathematicians as a class of ignoring the mathe-
matical problems of the modern physics and astron-
omy, one may, with no less justice perhaps, accuse

1
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physicists and astronomers of ignoring departments
of the pure mathematics which have reached a
high degree of development and are fitted to ren-
der valuable service to physics and astronomy. It
1s the great need of the present in mathematical
science that the pure science and those depart-
ments of physical science in which it finds its most
important applications should again be brought
into the intimate association which proved so fruit-
ful in the work of Lagrange and Gauss.

I shall confine my discussion mainly to the

problem presented in the motion of a top—
meaning for the present by “top” a rigid body
rotating about an axis, when a single point In
this axis, not the centre of gravity, is fixed In
position.

In the present lecture I shall present some
preliminary considerations of a purely geometri-
cal character. But it is necessary first of all to
obtain an analytical representation of the rotation
of a rigid body about a fixed point, and I shall
begin with a statement of the methods ordinarily
used.

We introduce two systems of rectangular axes
both having their origin at the fixed point: the
one system, z, vy, 2, fixed in space; the other, X
Y, Z, fixed in the rotating body. Then the ordi-

nary equations of transformation from the one
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system to the other, wlich way be exhibited in
the scheme:

X Y Z

xla b ¢

af bl’ cf

1)

S~

2 a” b” C”

give at once, when the nine direction cosines,
a, b, ¢, a', --+ are known functions of the time ¢,
the representation of the motion of the movable
system X, Y, Z, with respect to the fixed systemn
Ty Yy %

As is well known, these cosines are not inde-
pendent; they are rather functions of but three
independent quantities or parameters. It 1s cus-
tomary to employ one or other of the following
sets of parameters, both of which were introduced
by Euler.

The first set of parameters, which 1s non-sym-
metrical, consists of the angle # which the Z-axis
makes with the z-axis, and the angles ¢ and y,

~xcrhimh +4ha liva Af 1ntanan - ~f +h
UL Ul Llk

» Al Al ) | _n-‘-':r\ s |'\'V\lq VV
YWILIU L DILIC 1111v LILULCLDCA L1V

vl 'uby' allul s\ I -

o

planes makes with the X-axis and the x-axis
respectively. Because of the frequent use made
of these parameters in astronomy, I shall call
them the ‘“astronomical parameters.” When the
cosines a, b, ¢, --- have been expressed in terms
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of them, the orthogonal substitution (1) be-
COIES
X Y Z
2! cos ¢ cosy~—cos 9 sin ¢ siny, —sing cosy —cos§ cose siny, sin §siny
(2) ylcos¢siny +cos§singcosy, —sineg siny +cosd cos¢ cosy, —sin g cosy
z sin 9 sin¢ , sin g cos¢ . cos §

The second set of parameters may be defined
as follows. Every displacement of our body is
equivalent to a simple rotation about a fixed axis.
Let o be the angle of rotation, and a, b, ¢ the
angles which the axis makes with OX, OY, 0Z;
and set

A=cosa sin%, B = cos b sin %, C = cos ¢ sin 2, D:cos—"é.

The quantities 4, B, €, D (of which but three
are independent, since, as will be seen at once,
A*+ B2+ O + D*=1) are the parameters under
consideration. In terms of them our orthogonal
substitution (1) is

X Y Z
x| D2+ A2— B2—(C?,2 (AB—CD), 2(AC+BD)
(3) ¥|2(AB+CD), D*+B—(C2- 4% 2(BC—A4D)
2|2(AC—BD), 2(BC+AD) D'+ (?— 42— B

or, if use be not made of the relation
A? 4 B + 02+D2=1,

a substitution with these coefficients each divided
by A4+ B*+4 C? 4 D% T shall call these the
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“ quaternion parameters,” inasmuch as the qua-
ternionists make frequent use of them. The
quaternion corresponding to our rotation is

g=D +14 4 jB + kC.

Tlese parameters are very symmetrical, and for
that reason very attractive. Nevertheless, they
do not prove to be the most advantageous system
for our present purpose. Our problem is not a
symmetrical problem. In it one of the axes, Oz,
in the direction of gravity, plays an exceptional
role ; the motion of the top is not isotropic.

Tustead of either of these commonly used sys-
temns of parameters, I propose to introduce another,
which so far as I know has not yet beenw employed
in dynamics.
Let x, y, 2 be the coord
sphere fixed in space which has the radius » and
the centre O, and X, Y, Z the coordinates of a
point on a sphere congruent with the first but fixed
in the rotating body. As the body rotates, the
second sphere slides about on the first, but remains
always in congruence with it.

It is characteristic of every point on the first
sphere that the relation

x4y r+z
r—z ax—1y

holds good between its coordinates.
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If we represent the values of these equal ratios by
¢, obviously ¢ is a parameter for the points of the
sphere, which completely determines one of these
points for every value that it may take. Thus the
upper extremity of the z-axis is characterized by
the value « of ¢, the lower extremity by the value
0; to real values of { correspond the points on the
great circle of the sphere in the plane ¥y =0, and to
pure imaginary values the points of the great circle
in the plane z = 0.

For the points of the second sphere, in like man-
ner, there is a parameter Z connected with the co-
ordinates X, Y, Z by the equations,

X+1Y r+ 272 _7
r—2 X—iY

which defines these points as ¢ defined the points
of the fixed sphere.

If now £ and Z be parameters of corresponding
points on the two spheres, what is the relation be-
tween these parameters when the second sphere is
subjected to a rotation ? It is a simple linear rela-
tion of the form

_eZ+ B
:_'}IZ+3,

in which a, 8, v, 8 are themselves in general complex
quantities, but so related that o is the conjugate im-
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aginary to 8, and B to —y ; or, adopting the ordi-
nary notation, @ =6 and 8 =—7.

It is obvious, a priori, that the relation must be
linear, and a very simple reckoning such as T have
given in my treatise on the Icosahedron (p. 32)
establishes the special relations among the coeffi-
cients. There are but four real quantities in-
volved in «, B, y, &, only the ratios of which
need be considered independent, since these ratios
alone appear in the expression for ¢; unless, as is
generally more convenient, we introduce the fur-
ther relation ad — By =1.

It is these quantities e, 8, y, 8 connected by the
relation #é — By = 1, which together with ¢ we pro-
pose to use as our parameters in the discussion of
the problem now under consideration. They were
introduced into mathematics by Riemann forty
years ago, and have proved to be peculiarly useful
in different geometrical problems intimately con-
nected with the theory of functions, especially in
the theory of minimal surfaces and the theory of
the regular solids. We hope to show that they may
be employed to quite as great advantage in the study
of all problems connected with the motion of a rigid
body about a fixed point.

Corresponding to the orthogonal substitution (1),
we have in terms of our new parameters the substi-
tution
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X+iY —Z — X +1Y
x4 1y o 2af B
(4) —2 oy @b + By (33
—x+ 1y ¥ 2 vy &

as may be demonstrated without serious reckoning
as follows. And I may remark incidentally that 1t
seerms to me better wherever possible to effect a
mathematical demonstration by general considera-
tions which bring to light its inner meaning rather
than by a detailed reckoning, every step in which
the mind may be forced to accept as Incontro-
vertible, and yet have no understanding of its real
significance.
Consider the sphere of radius 0,

2% y2 +22=0,
It is an imaginary cone whose generating lines
join the origin to the so-called “imaginary circle
at Infinity,” the circle in which all spheres inter-
sect at infinity. For this sphere,

x + 1y 4
€= = T

or ey —zie—wy=:¢: -1

Here to each value of the parameter ¢ there cor-
responds a single (imaginary) generating line of

the cone, and vice versa. In other words, there is
a relation of one-to-one correspondence bhetween
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the (imaginary) generating lines of the cone and
the values of ¢, or the cone is unicursal.

There is, of course, the same relation between
the generating lines of the congruent cone

X2 4 Y24 22 =0,
which is fixed in the moving body, and the pa-

rameter , :X+ in 7 |
—7Z X 1Y

When the body rotates, this cone is simply cax-
ried over into itself, so that the generating lines
in their new position are in one-to-one corre-
spondence with the same generating lines in their
original position. Between the parameters Z and
{, which correspond to the generating lines in these
two positions, there is, therefore, also a relation of
one-to-one correspondence, or the two are connected
linearly, ¢.e. by a relation of the form :

aZ + B
};Z+8’

where, as above, we suppose

¥ —
=

ad — By =1.

If now we avail ourselves of the advantages to

and substitutions by replacing
¢ by & and z by &,
¢ Z,
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this single equation may be replaced by the two
homogeneous equations :

{1 = oy + By,
{, = yZ, + 0Z,,
and the equations connecting z, ¥, z, and ¢, and
X, Y, Z, and Z become,
vy —z:—2+ Yy =40 4
X+1Y:—Z: =X +iY=272:2/2,: 7
From these equations it follows that
4+ Y= (X +i1Y)+2aB(— 2)+ BH(— X +1Y)
—2=ay(X + 1Y)+ (a8 + By)(—Z) + B3 (—X+1iY)
iy =YX +iY)+2y8(— Z)+ (= X +iT).
For it is immediately obvious that = 4- ¢y is pro-
portional to 2 therefore to
«*Z? 4 2 afRZ,Z, 4 B*ZS,
and therefore finally to
X+ i)+ 2aB(— Z2)+ B(— X +1iY);
and in like manner, that — 2 and — @« + {y are pro-
portional to
ay (X + 1Y) + (@b + By)(— Z) + B3(— X + 1Y),
and
V(X 4+ i)+ 298 (— Z2)+ &(— X 1Y)
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respectively. And that x4 iy, —2, —x 4 iy are
severally equal to these expressions and not merely
proportional to them, follows from the fact that the
determinant of the orthogonal substitution connect-
ing x, ¥, z with X, ¥, Z must equal 1,

The demonstration, to be sure, applies directly
to the points of the imaginary cone only. But
it is known in advance that the transformation
which we are considering is a linear one for all
points of space. Its coefficients are the same for
all points, and we have merely availed ourselves
of the fact that the imaginary cone remains un-
changed by the transformation to determine them.
The same result might have been reached, though
less simply, by using the general formula { = -T——f
The equations (4), therefore, are those which con-
nect the coordinates of the initial and final posi-
tions of any point rigidly attached to the rotating
body.

The relations between our new parameters, e,

B, v, 9, and the astronomical pammeters 8, b, ¢,
Fa and the

l.l 1. , CULIVL ULl

A, B, C, D, on the other, are of immediate in-
terest and of importance in the subsequent dis-
cussion. They are to be had very simply by a
comparison of the coeflicients in the three scheines
(2), (3), (4), and, after reduction, prove to be:

an +ha An
LW N §

il LEY ¥ & W i
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(AT g erw
a:cosé-e 2, Bzmlng-e 2
() | - -
H — ) — o+
yzz'sinﬁ-ﬂ'_ﬂ, S=cos?.¢ 2 ,
2 2
=D 4 i( B=— B+ i4,
and _ .
')/:B-{-’LA, 8= D —1iC

Our new parameters are thus imaginary comnbina-
tions of the real parameters in ordinary use. Mathe-
matical physies affords many examples of the ad-
vantage to be gained by employing such imaginary
combinations of real quantities. Itisonly necessary
to cite the use made of them in optics by Cauchy.

I may remark that Darboux i1n his Le¢ons sur
la théorie générale des surfaces, Livre 1., treats the

subject of rotation in a manner which is very simi-
lar +n +hat whirh yefe) ha v £Al1l AvrnA Bnt v

1clbd UWY LLLCLL YY 111Ul ALCUY W LWLLASYY L.

the ¢ itself is considered directly as a function of
the time and not the separate coefficients «, 8, v, 8
His method thus lacks the simplicity which is pos-
sible when these are made the primary functions.

We now turn to a brief consideration of the
meaning of the substitution

¢ = ali + ,8,
7Z + 0
when «, B, y, 8 are still regarded as functions of

the time, but are general complex quantities, not
connected by the special relations « =38, 8 =— 7.
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We shall consider ¢ also as capable of complex
values, not for the sake of studying the behavior
of a fictitious, imaginary time, but becanse it is
only by taking this step that 1t becomes possible
to bring about the intimate association of kinetics
and the theory of functions of a complex variable
at which we are aiming.

What i1s the meaning of the above formula?
It is still a real transformation of the sphere
on which we have defined ¢ into itself, a linear
transformation in which the coefficients are all
real,

If the radius of the sphere be 1, as we shall
assume throughout the discussion of this general
transformation, or its equation when written homo-
geneously, be:

w2+y2+z2_t2=01

the equations connecting @, y, 2, t and X, Y, Z,
T are those indicated in the following scheme:

X+1Y X—1iY T+Z T-—-2

Etiy | ad 8y oy g3
6 w—iy | B | s« | ya | B
t 42 «f _ Ba o B8R
t— 2 v8 8y vy 88 B
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and when these equations are solved for z, y, 2, t,

in terms of X, ¥, Z, T, it will be found that the

coefficients are real, as has been already stated.
This scheme may be derived in a manner analo-

gous to that followed in deriving the scheme (4).
The equation of the sphere

Y 42—t =0,
or (+ ) (e —iy) + (2 + t)(z—t) =0,
may, as 1s readily verified, be written in the form,

Ty —yit et —2=04" 1 640" L 8L,
&

*=¢, and ¢, &' are, for real values of z, ¥,

&

2, t, the conjugate imaginaries to ¢, {, respectively.

As above, ¢=2tW_t+%
t—z T—1
If then Z,, Z, Z,, Z,) be quantities similarly
defined with respect to the movable sphere

Y21 V2, 72 m2 __ N
L T AT T LT — o =Y,

we have corresponding to the transformation

_aZ+ B
= ’
vZ + o
the two pairs of equations:
{, = aZ, + BZ,, {' = ez, + Ezg',
$o = yZ, + 8Z,, &' =vZ, + SZ2',

if the transformation is to be real.
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And from this series of equations it follows by
the reasoning used on page 10 that x4 iy is
equal to

B (X+i¥) + BY(X + 1Y)+ a7 (T + Z) +B5(T— Z),

and x — %y, t 4 2, t — 2 to the corresponding expres-
sions indicated in scheme (6).

The scheme (6) at once reduces to the scheme
(4) when the special supposition is made that
¢=98and 8 =—7 And since this is the sufficient
and necessary condition that (6) reduce to (4), we
have here an independent demonstration that these
relations hold good among the parawmeters «, 8, vy, 8
when the motion is a rotation about a fixed point.

The general transformation (6) represents the
totality of those projective transformations or col-
lineations of space for which each system of gen-
erating lines of the sphere, 2* + 2 4- 22 —2=0, is
transformed into itself, and among which all rota-
tions of the sphere are obviously included as
special cases. This is the geometrical meaning of

the equation
aZ + B
vZ + )

7
S

for unrestricted values of «, 8, y, 8.

But the transformation admits also of a very
interesting kinematical interpretation which I shall
consider at length in my third lecture. With
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respect to it our sphere of radius 1 plays the role
of the fundamental surface or “absolute” in the
Cayleyan or hyperbolic non-Euclidian geometry.
For any free motion in such a space the absolute
remains fixed in position as in ordinary space the
imaginary circle at infinity a® 4 * + 2 =0, t =0,
does, whicl is its absolute.

The transformation therefore represents a real free
motion in non-Euclidean space, and the six inde-
pendent real parameters involved in the ratios
«:fB:y:8 correspond to the «° such possible
motions. Interpreted in Euclidean space, the trans-
formation represents a motion of the body com-
bined with a strain.

I close the present lecture with two remarks.

First, there is nothing essentially new in the con-
siderations with which we have been occupied thus
far. I have merely attempted to throw a method
already well known into the most convenient form
for application to mechanics.

Second, the non-Euclidean geometry has no meta-
physical significance here or in the subsequent discus-
sion. It 1s used solely because it is a convenient
method of grouping in geometric form relatious
which must otherwise remain hidden in formnulas.



LECTURE II

I ~ow proceed at once to the discussion of the
Lagrange equations of motion for our top, only
pausiig to remark once more that this problem of
the top 1s for us typical of all dynamical ques-
tions which are related to a spliere. To this cate-
gory belong also the problein of the spherical pendu-
lum (which in fact is a special case of the problem
of the top), the problem of the catenary on the
sphere, and all problems of the motion of a rigid
body about a fixed point. The simplest problem

of the type is that of the motion of a rigid body
about its centre of gravity, the Poinsot motion, as
we shall name it after Poinsot who treated it very
elegantly.

We shall first state the equations in terms ot the
astronomical parameters; and to give the expres-
sions as simple a form as possible, I shall suppose
the principal moments of inertia of the top about
the fixed point of support each equal to 1. One
may call such a top a spherical top, as its momental
ellipsoid 1s a sphere. I wish it understood, how-
ever, that this restriction is not essential to the

17
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application of our method, but is rather made
solely for the sake of rendering its presentation
more easy.

On this assumption, we have for the kinetic
energy, T, of the motion the expression

T=3%(dp" +y%+2¢'y' cosd 4 979,
where &', ¢/, ¢' are the derivatives of 8, ¢, ¢ with
respect to t; and for the potential energy, V, the
expression
V= Pcos ¥,
where P represeuts the statie moment of the top

with respect to O.
The Lagrange equations are:

o7 o7 o7
d— d— d—
! By 8 _8(T—V)
/i A AR e

The first two equations are especially simple in
having their right members equal to zero, and
we are therefore able to derive immediately the
two algebraic first integrals

'+ ¢! cos ¥ =n,
I{J’—{— (#'COST?:Z.

The quantities n» and ! are constants of integra-
tion, to be determined from the initial conditions

of the motion, In the following discussion we
shall suppose them positive,
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In addition to these integrals, we have the equa-

tion of energy
T+ V=rt,

where k also is a constant determined, like { and =,
by the special conditions of the problem.

Solving the first two equations for ¢' and ¢/, and
substituting the results in the third, and setting
cos & = u, and

U=2Pu®—2M?+2(n—P)u+2h -0 —n

we obtain finally for ¢, ¢, and ¢, expressed as func-
tions of u, the formulas

t=f—q-?'f—'— ¢=fn-—lu du, ¢=fl-—'nu du.
Nz 1 —u? /T 1—-w /T

The problem of the motion of the top is thus re-
duced to three simple integrations or quadratures,
as indeed was demonstrated by Lagrange himself.
These integrals are elliptic integrals, U being
a polynomial of the third degree in u, the first an
elliptic integral of the “first kind” (which is
characterized by being finite for all values of the
independent variable), the remaining two elliptic
integrals of a more complex character.

It is often said that dynamics reached its ulti-

AL R N o

b Prmen 1w dlhna lhanda AL T a e A il kA oAan
Il LIl 111 LIS llddlus Ul JJdJ%ldJ-llsU, dilll LIS l_;ly
“return to Lagrange’ 1s frequently raised by
those who set little store by the value for physical
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science of recent developments in the pure mathe-
matics. But this 1s by no means just. Lagrange
reduced our problem to quadratures, but Jacobi
made a great stride beyond him, as we matliema-
ticians think, by iutroducing the elliptic functions,
which enabled him to assign to ¢ the rdle of inde-
pendent variable and to discuss the remaining varia-
bles u, ¢, ¢ directly as functions of the time. An
advantage was thus gained not only for the under-
stunding of the essentiul relations of the variables to
one another, but for simplicity of computation also.
The coefficients «, 0, ¢, a', ..., are uniform (or oue
valued) functions of ¢, and one of the most useful
properties a function can possess, if its values must
be computed, is that it be wniform. This work of
Jacobi is not as well known as it should be, hav-
ing first appeared posthumously, in the second vol-
wne of his collected works, published by the Berlin
Academny in 1882. T may add that his pupils, Lott-
ner and Somoff, developed the same method in pa-
pers published in 1855 independently. It is shown
in these papers that the nine cosines «, b, ¢, +++, Inay
be expressed in terms of theta functions.*

* As is well known, Jacobi gave analogous formulas for
the nine cosines of the Poinsot motion in 1849, Closely re-
lated to this representation of the cosines is the interesting
theorem to which we shall return later on, that the motion
of our top may be reproduced by compounding two Poinsot
motions,
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But while the q, b, ¢, ..., considered as functions
of t, are much simpler than the integrals of La-

grange, ‘thv are at the saine time much more coms-

plicated than our parameters o, 8, y, 6. These
parameters prove to be the siinplest possible elliptic
functions of ¢; so that by introducing them we carry
to its completion the work begun by Jacobi, of re-
ducing our problem to its simplest elements.

For the proper understanding of this treatment
of the motion of the top, some knowledge of the
nature of elliptic functions is obviously necessary;
and I know of no readier means of gaining this than
Riemann’s method of conformal representation, — of
which, moreover, we shall have other important

applications to make later on.
In accordance with thig

- LS Y ARA i ']

S|

the “ Riemann surface ” of the function v/ U on the
plane of the complex variable u, in the follow-
ing manner: The polynomial U vanishes for three
values of %, all of which may readily be shown
to be real, and becomes infinite when v =w. Two
of these roots, e, e, lie between —1 and 4 1; and
the third, e, between + 1 and . Therefore, VU
1s a two-valued function of w everywhere in the
u-plane, except at the four points of the real axis,
e, €y €3, €,. L0 obtain a surface, therefore, between
whose points and the values of /U there shall be
a one-to-one correspondence, we lay over the u-plane
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two sheets, which are everywhere distinet except at
tlie points ey, e, e, €., in which they coalesce, and
associate with the points in the two sheets which
lie immediately over any point » In the wu-plane,
the two corresponding values of v/ U, one with each.

It will be found that if the point » describe any
simple circuit in the u-plane, which encloses one
and but one of the points e, e, e, e,, returning
finally to its initial position, v/ U will pass froin
the one to the other of the two values which
correspond to the initial value of w; the point
corresponding to w in the Riemann surface of VU,
must, therefore, move from a position m the one
sheet to a position immediately under (or over) this
in the other. But this i1s possible only if we sup-
pose the two sheets to cross along some line running
out from each of the points, e, e, €, ¢,,—not to
intersect, but to cross, as non-intersecting lines
in space may be said to cross. Inasmuch as this
is the simplest hypothesis possible, we shall take
as these lines of crossing, in the present case, the
segments, ee,, ege,, of the real axis; and have, as
a rough representation of the Riemann surface

of VU, the following figure:

Co -f &1 €z 2 £ Ceo
FIG' 10
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where we have shaded the positive half-sheets of
the surface and have marked the segments, ee,,
e,6, by heavy lines.

The points, e, e, €, €,, are called the “branch
points 7 and the segments, e, es€,, the “branch
lines” of the surface.

To construct in the ¢-plane the figure which is
the conformal representation of this Riemann
surface, we conceive of this surface as cut into
four half-sheets, by an incision made all along
the real axis, and seek first the conformal repre-
sentation of the upper half-sheet. To obtain this,
we cause the point u to move, in the positive
sense, along the real axis, from e, through egeqe,,
back (from the left) to ¢ and study the corre-
sponding changes of value of ¢ by means of the

integral, t-..—_f—@g’:, by which 1t 138 defined.
VU

We thus find that as the point u traces out the
real axis in its plane, the corresponding ¢ traces
out a rectangle in 1ts plane, which we may rep-
resent by the figure:

Co )
(-d)
! A €

Fig, 2,
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to the angular points of which we have attached
the values of u to which they correspond, and
which we have shaded, since the sense in which
its perimeter was traced shows that it is 1ts inte-
rior which corresponds to the shaded half-plane
of the preceding figure.*

As long as the integral which defines ¢ is left
an indefinite integral, this rectangle remains free
to occupy any position in the ¢-plane, —only the
directions of its sides, parallel respectively to the
real and Ilmaginary axes, and their lengths, —
call them o, and w, —are completely determined.
But when the integral is made definite, by making
e, the lower limnit of integration, the angular
point, e,, coincides with the origin in the ¢-plane,
and the rectangle takes a definite position in the
plane.

From the image which we have thus obtained
of the one half-sheet, the images of the three
reinaining half-sheets are to be had at once
by the process of “symmetrical reproduction”,
which yields for the Riemann surface, when
cut in the manner indicated, the complete
1mage :

* The figure is a rectangle since VU is real from u = ¢;
to u =ey, and from u =e3 to u = ¢,,, and a pure imaginary
from # =e. to u =ey, and from u =—ez to u =e3. At ¢
{ — const. vanishes as (u — ei)%.
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6: € €2

K

The symmetry of the figure with respect to
the sides, e,e,, and e.e;, of the original rectangle,
will be at once noticed. Each of the four smaller
rectangles 1s the 1mage of one half-sheet; the
shaded, of th

fa i
DJ..L(I.:\A.GLL, A0 -tl D

shaded, of the negative.
But we have not yet obtained the complete

1Hiv
Ul

o] [» ]
LAY 1ich

geometrical representation of w, regarded as a
function of ¢ The Riemann surface of two sheets,
which we have thus far been considering, pos-
sesses a distinet point for every value of VU re-
garded as a function of », but not for ¢ when so
regarded. The 1integral ¢ 1s affected by an ad-
ditive constant if « be made to trace in the
Riemann surface a closed path which surrounds
ee;, or one which surrounds ese; so that the
Riemann surface of ¢ 18 one possessing the same
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branch points as the Riemann surface of /U,
but having an infinite number of sheets, into
any one of which 1t 1s possible to move the
tracing point, u, if no such cut be made 1in
the surface as that made above along the real
aXx18.

It 1s a great advantage of the Riemann method
that the complete image in the ¢plane of this
uncut Riemann surface of an infinite number of
sheets may be had from the image already ob-
tained for the cut surface, by simply affixing a
rectangle, congruent with this image, to each of
1ts sides, repeating the process for the new rec-
tangles, and so on Indefinitely, until the entire
t-plane is covered by congruent rectangles, any one
of which may be brought into coincidence with
any other by two translations, one in the direc-
tion of the real, the other in the direction of
the 1maginary, axis.

From the result of this construction, there at
once follows a conclusion of the very first 1mn-
portance. The image of the complete Riemann
surface of ¢ entirely covers the t-plane, but without
the overlapping of any of its parts. It follows 1n-
mediately, therefore, that to each point in the
t-plane there corresponds but a single point in
the Riemann surface, or that », and VU as well,
18 a uniform function of ¢
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The equation connecting ¢ and u is:

L (i
S VT
And the conclusion which we have reached 1s,
that the functional relation of u with respect to ¢,
defined by this equation, is vastly more simple
than that of ¢ with respect to w; to each value
of w there corresponded an infinite number of
values of ¢, while to each value of ¢ there corre-
sponds but one value of w. As thus defined, u
18 called an elliptic function of t.

Let o, he the length of the side e,e; of the
small rectangle, which was the image of a half-
sheet of the Riemann surface, and o, the length
of the side e,e;; then, obviously, if we set u
= ¢ (?), and t, be any point of the complete rec-
tangle (Fig. 3), since t, + m; 2 o, + m, 2 iw, 18 for any

inteeral values of m

= Moy sl T RAls LA R s A --w‘i,

of another of the rectangles, ¢ (¢, + 2 m e, + 2 myioy)
= ¢ (t)); or the elliptic function, w, is doubly peri-
odic, with the perlods 2w, 2iw,.

Let us next consider the nature of ¢ and ¢ when
regarded as functions of . The integrals by which
they are expressed in terms of wu are elliptic
integrals of greater complexity than is the integral
for t. There are on the Riemann surface of VU
four points, at which each of these integrals be-

m. the correspondinge voint
Z3 o I
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comes logarithmiecally infinite; namely, the points
— 1, +1, in the upper sheet, and the same points
in the lower sheet. Elliptic integrals possessing
such points of logarithmic discontinuity are called
“elliptic integrals of the third kind,” and 1t is
possible to express any such integral in terms of
integrals of the first kind and “normal ” integrals
of the third kind, such, namely, as possess but two
points of logarithmic discontinuity with the resi-
dues +1 and — 1 respectively.

But if instead of making this reduction of the
integrals directly, we introduce those combinations
of ¢ and ¢ which constitute our parameters «, 3, vy, 8,
a remarkable simplification at once ensues such as
renders any further reduction unnecessary. Surely
a preestablished harmony exists between the prob-

o T T T I M

lem before us, and our parameters «, 3, v, o.

: ¢ ey
Since %=0C0S ;€ 2,
9 w41
and COS — = + ,
2 2
we have iminediately

_ YU+l +n)  de low 2
J Iy Cyp o %

when for ¢ and v their values are substituted.
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And in like manner,

(‘\/ff—t(l—n) du

Y2 T

2u—=1) VU
10g7=f\/(7+2(2—7z) du |

10gﬁ= _5 10g2:

2—1) vy %P

» _"}'_ )
10g3=j \/(;) dtm dqi — 3 log 2,
2w+l VU
and these are all normal integrals of the third kind,
each with but two points of logarithmic discontinuity

which are distributed in the rectangle of the pertods

as indicated in the accompanying figure, if we sup-

&y [~

///// Al

'!-

4

Z%‘*’/ /fj;, W
NGy %// 5@?//

pose as we shall find it convenient to do later on

For = — (Z + 71)2 when w=—1, and U=
—( —n)*when w=+1. If, therefore, of the two
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values of /U, which correspond to v =—1, we
take (I + ), the factor VU 4¢ (I 4+ n) in the nu-
merator of the expression for log & will be canceled
by the factor 2v/U in the denominator, while if we
take —i({+n), the numerator vanishes; so that
the point — 1 in one of the sheets of the Riemann
surface of v/ U is the only finite point of discontinu-
ity of the integral log «. 1t is, moreover, a logarith-
mic discontinuity with the residue 1, since log« there
becones « as log (v +1). On the other hand, for
=00, t.6. at €w, log @ becomes infinite as 4 logu. This
again 18 a logarithmic discontinuity, with the residue
— 1, since e, i3 at infinity and a branch point. And
like considerations apply to the remaining integrals.
By the introduction of the parameters a, 8, v, 6,
therefore, the four logarithmic discontinuities of
the integrals ¢, y, are assigned one to each of the
four normal integrals loge, logpB, logy, logéd—
normal integrals whose remaining points of discon-
tinuity, correspondiug to e», coincide at the origin.
While log «, log 8, log y, log 8, as now defined are
much simpler functions of %, and therefore of ¢, than
are ¢ and y, their exponentials , 8, y, 8 are simnpler
still. These are uniform functions of ¢ having each
one null-point and one c-point in every parallelo-
gramn of periods. Such functions may always be ex-
pressed, apart from an exponential factor, by the
quotient of two & or two o-functions of the sim-
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plest kind — functions which possess one null-point
in each parallelogram of periods, but no «o-point.

Of the dfunctions we shall only panse to re-
mark that Jacobi introduced them into analysis as
being the simplest elements out of which the elliptic
functions could be constructed. He obtained for
them expressions in the form of infinite products
and infinite series. They are affected by an expo-
nential factor when the argument is increased by a
period, but remain otherwise unchanged. The #§-
functions of the simplest class, with which alone
we are concerned, vanish when the argnment takes
the value zero or a congruent value.

The o-function of Weierstrass 13 a more elegant
function of the same character.

Inasinuch, therefore, as «, B, v, o, are
of ¢, which vanish for { = —ia, o + zb, w,— b, +
respectively (the valnes of ¢ corresponding to the
points v = #+ 1 in the above figure) and which all

become infinite for ¢ =0, we have for thein the
following expressions:

- o(t) ’ - o (?) ’
gt — e+ ib) _ 7 a9 —1a)
O OB

where k, A, are constauts to be determined from
the 1nitial conditions of the motion. Their values
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depend on those of the “transcendental ” constants
w, wy A, b, a8 the values of these in turn depend
on those of the “algebraic” congtants, P, &, I, n.

We shall call functions such as «, 8, y, 8, which
1188 being donbly periodic by an exponential fac-
tor ouly, “multiplicative elliptic functions.” All
elliptic functions are expressible as quotients of §-
or g-functions, and evidently of such quotients the
sunplest possible are those which have a single & or
o of the simplest kind in both numerator and de-
nominator. We may therefore state the result of
onr discussion 1n these terms: We have shown that
our parameters a, B, y, 8 are multiplicative elliptic
Junctions of the simplest kind, so that by introducing
them we have resolved the problem of the top into its
simplest elements.

From these expressions for «, 8, y, 8§ one may
obtain expressions for the nine direction cosines
a, b, ¢c-«- 1n the forin of quotients of o- or +#-func-
tlons —snch as Jacobi got for thein — with the
least possible reckoning.*

e yroscope (Maﬂz
Ann. xxix,, 1887) that the quaternion explessmhs for the
nine direction cosines are very simple, and our parameters
are but linear combinatious of the quaternion parameters.

Hess, however, niakes no direct use of our parameters and

probably was not aware of the formula, ¢ = el + B
lies at the basis of our discussion. L

* Hess has remarked, in |

l—"

is paper on
Ir

, which
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I~ the lecture of yesterday we reached the con-
clusion that our parameters «, B8, y, 6 may be
expressed as quotients of simple o-functions of
the time ¢, and we now turn to the geometrical
interpretation of these formulas.

As I have already asked you to notice, a, 3, y, 6
are not ordinary elliptic functions of ¢, but func-
tions which are affected by an exponential factor
when ¢ 18 increagsed by a period; in consequence
of which I called them ¢“multiplicative elliptic
functions.” When ¢ 13 increased by the period
2w, they are affected by an imaginary factor of
the form e, and when ¢ is increased by the period
2 iwy by a real factor of the form «.

Let ns first of all consider the curve described
by the apex of the top on the fixed sphere. 'This 18
the point Z = oo of the movable Sphere, so that,
reverting to the formula:
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Like a, 8, v, 8, this { 18 defined in terms of ¢ by
a multiplicative elliptic function of the first degree,
involving besides the exponential factor only the
quotient of two siinple o-functions.

This is an essential siinplification of the repre-
sentations of this motion given hitherto. Thus,
were one to apply the methods used by Hermite in
his Applications des fonctions elliptiques, published
twenty years ago, and start not from the equation of
{ in terms of Z, but from those of x4y, —z, —x+iy
in terms of X4 1Y, —Z, — X + 1Y (See page 8),
one would obtain for the motion of the apex of the

NN AN Lha amive bt~
U ne ejuarion

x4+ 1y =— 2 af,

which represents the motion by means of a multi-
plicative elliptic function of the second order. The
curve thus defined 18 not the curve traced by the
apex on the fixed sphere, but the orthogonal pro-
jection of this curve on the xy-plane.

I shall, for convenience, call curves like those
which we have just been considering “multipli-
cative elliptic curves,” distinguishing when neces-
sary between those on the sphere and those on
the plane, and assigning to them a degree corre-
sponding to the number of simple o-quotients in
the expressions which define them. Thus the
curve traced by the apex of the top on the fixed
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sphere is a multiplicative elliptic curve of the first
degree, its orthogonal projection one of the second
degree. The earliest example of such a curve of
the first degree is the herpolhode of a Poinsot
motion, the motion of a body about its centre of
gravity. That this herpolhode 1s such a curve
was first shown by Jacobi.*

It is easy to get a notion of the geometrical
character of the curve traced by the apex of the
top. For the particular case when / — ne, =0, the
stereographie projection of the curve has the shape

indicated in the following figure:

=0

P
N

Fia. 5.

* Concerning the multiplicative elliptic curves, see Miss
Winston’s dissertation: Ueber den Hermiteschen Fall der
Laméschen Differentialgleichung, Gottingen, 1897,
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As we wish to restrict ¢ to real values, we here
make e, the lower limit of integration of the
(i
J v’

thing, snppose the ¢ of the preceding formnulas

integral ¢== or what comes to the same

replaced by t' =1t + iw,

The radius of the circle marked w=e; is the
modulus of those points ¢ for which ¢ is O,
2wy ---; for all these points w= ¢, On the other
hand, the radius of the circle marked » = ¢, is
the modulus of those points ¢ for which t=
3wy, e

The curve of the figure is that traced by the
stereographic projection of ¢ as ¢ varies through
real values, and consists of an infinite number of
congruent arcs which touch the inner circle and
form cusps at the outer one. If the top be given
an initial thrust sideways (when ! — ne, is no longer
0), these cusps will be replaced by loops or wave-
crests.

Evidently any one of these arcs may be brought
into coincidence with the consecutive one by one
and the same rotation about the origin. The
transformation which effects this rotation 1is
¢ = e, so that the meaning of the imaginary
Wo by ed when ¢ is in-
creased by the real period 2 o, is perfectly obvious.
We shall find that since { is affected by the real
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factor « when ¢ is increased by the imaginary
period 2 iw,, the effect on the curve of this increase
in ¢t is to transformm it into a curve similar to
itself, and symetrically placed with respect to
the origin.

But before attempting a more minute examina-
tion of the curve traced by the apex of the top,
let us consider the polhode and herpolhode of the
motion.

On each instantaneous axis of rotatlon let a
segment be measured from the fixed point, equal
in sense and magnitude to the amount of rota-
tion about this axis. The aggregate of these
segments constitute a portion of one cone if they
be caused to remain fixed in the moving body,
of another if they be caused to remain fixed in
space. The first cone, or the curve in which its
elements terminate, is called the ‘polhode,” the
second the “herpolhode,” and it 1s evident that
the motion of the body may be had by rolling
the first cone or curve on the second cone or
curve.

To obtain the equation of the polhode, con-
sider the infinitesimal rotation in time d¢ about
the axis for which the components of rota-
tion with respect to X, Y, Z, are p, g, v, respec
tively. The axis is for the instant fixed 1
space, and we have for the effect of the rota-
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tion on any point of the moving sphere the

equations :
X=4+X" —rdtY' 4 qdtZ,

Y=4ratX'+Y  —pdtZ,
Z=—qdtX"4+ pdtY' 4 Z',
For this motion therefore the quaternion param-
eters (see page 4) are:

A= L, B':%dt, O’=%dt, D=1,

and therefore the corresponding parameters a, 8, v, 8
are:

W =14 gr="1""2q
,_ g+ y_q W
V=5 dt, 6'=1 7 dt.

If therefore a, 8, y, 8 (unprimed) be the parame-
ters of the transformation from the axes X, 7Y, Z
fixed in the body to the axes =z, y, # fixed in space,
we may obtain the parameters o+ de, S+ dg,
y + dy, 8 + d8 of the transformation which defines
the position of the body after the infinitesimal

rotation, by combining the two substitutions:
{1=eady + BL, (' = a'Z, + B4y,
$o=v&i' + 8L, &' = 2y +0'Z,,
the result of which is:
&= (aa' + By) 2, +(af' + B3')Z,
{o=(ya' + 8y")Zy +(yB' + 88")Z,.
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It follows, therefore, that

@+ de=aa'+ By, B+ dE8=«B'+ 3,
y+dy=vya'+8&', 0+ dd=yp" 4 8,

whence do = (Ha + g+ B) dt,

2 2

o/ ad5 B
—92i( g% __ 548

P+ g %(Bdt (R)
./ d8 qda
__.p—}—lq—Z?((XC—ZZ_S—(NE),
T:Z%(a@—ycj—@>

dt dt

We will not stop to derive the corresponding
equations for the components =, x, p of the herpol-
hode. They differ fromm those just obtained for
p, q, r only in having « and 8 interchanged and the
signs of 8 and y changed.

But I wish to make two remarks which are sug-
gested by the above reckoning, with regard to the
nsefnlness of our parameters «, 8, y, 8. The one 1s
that two linear sumbstitutions in terms of them
combine binarily instead of quaternarily as do the
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corresponding quaternion substitutions; the other,
that the four linear ifferential equations which
define them in terms of ¢, p, ¢, r break up into two
pairs, in one of which only a and # are involved, in
the other only y and 8. To appreciate how 1mpor-
tant this advantage 1s, one need only compare with
our discussion the discussion of the same question in
Darboux’s Legons sur la théorie générale des surfaces.
Returning to our spherical top, and substituting
in the general equations which we have just obtained
the values of «, 8, y, 8 which characterize its motion,
we have for its polhode and herpolhode not equa-
tions of the second degree, as was to have been
expected from the expressions for p + ig, ete. in
terms of «, B, v, 98, but much simpler expressions.
I cannot give the reckoning which leads to them
since T have not given the values of the constants
k\ Ay +»- which appear in the formulas on page 31.
But the expressions themselves are of the form

: L o(l — 10 — b
P-I—’LQ::.k’eMU( +mlg(t) ), r=n;

’C” ,\”co—(t + oy — Q4 + ?:U)
e 20
Both the polhode and the herpolhode of the spheri-

T+ 1k =

PR N S PR P & N T S R R s s en s O L a1 . I A S i
cal top are eiiptic plane curves of the first degree.
Darboux has given this result In his edition of
Despeyrous’ Mechanies, obtaining it by the use of
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elliptic integrals instead of elliptic functions. He
does not call the curves elliptic curves of the first
degree, but curves of the same character as the
herpolhode of a Poinsot motion. It should be
added that the curves are of the first degree in the
cage of the spherical top only.

Our theorem is closely connected with the cele-
brated theorem of Jacobi already mentioned: that
the motion of the top may be represented by the
relative motion of two Poinsot motions (or rotations
about the centre of gravity); for both the polhode
and herpolhode of the top’s motion are themselves
herpolhodes of Poinsot motions, being elliptic
curves of the first degree. One may demonstrate
Jacobl’s theorem most simply by expressing the
a, B, v, 8 of each of the Poinsot motions in terms of
t, and then combining the two motions.

I may finish this part of my discussion with the
remark that the attention of students of the geome-
try of Salinon and Clebsch is apt to be confined too
exclusively to algebraic curves. We have before
us an 1llustration of the valne of transcendental
carves. It 1s only in the very exceptional case
when the multiplicative factor x =1, and y, is com-
mensurable with =, that the curves we have been
studying become algebraic.

To sum up the conclusions which we have thus
far established; we have proved that the motion of
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the spherical top on a fixed point of support may be
completely defined geometrically in terms of elliptic
curves of the jirst degree.  We have also shown that
the variation of the parameters u, 3, v, 8 with the time
t may be pictured by curves of the same character,

Let us now resume the study of the curve traced
by the apex of the top.

The parameters «, 8, v, 8, and ¢ are all elliptic
functions of the argument ¢, and the full meaning
of elliptic functions comes to light only when the
argulnent is supposed capable of taking complex
values. Thus only, in particular, will the double
periodicity of the functions come into evidence.
There exists, then, an analytical necessity, so to
speak, that we complete our geometrical study of

. .
the th'’e maotinn hyv avtandin
UJ LU rlaoin

ot tn commnlev valileg
ULl v UUl}' (™) AALAWVJULLVSLL Lb 4 Uwrs ALV L)

mplex values
of ¢ When that has been accomplished, 1 shall
show that to the entire aggregate of possible
motions of the top in complex time there corre-
sponds the free motion of a certain rigid body in
non-Euclidean space, and thus bring to a definite
outcomme the considerations which I presented at
the close of my first lecture,

Our problem being to determine the path traced
by the point { when the point £ is made to describe
any path in the t-plane, it is clearly of prime impor-
tance that we determine fivst of all the 1mage on
the {-sphere of a parallelogram of periods in the
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t-plane. To that, indeed, we shall confine our
attention. Instead, however, of finding this image
directly we shall find it easier to obtain the images of
the tour half-shieets of the Riemann surface of /U,
of which, it will be remembered, the four smaller
rectangles into which the entire parallelogram of
periods was subdivided were severally the images.

Let us first reproduce (in Fig. 6) the figure of the
parallelogram of periods (see page 29) and that of
the Riemann surface of v U.

\.
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tangles in order to be able to distinguish readily
between their several immages in the figure which
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we are to construct. It will be remembered (see
page 28) that log ¢ and logy became infinite at the
points u=—1 and u =+ 1, respectively, of one
sheet of the v U-surface, and that log 8 and log 3
became infinitc at the corresponding points of the
other sheet —the other functions 1n each case re-
maining finite. In the figure, a and d are the
images of the positive and negative halves of the
first of these sleets, and ¢ and & the images of
the positive and negative halves of the sccond.

Our £ 1s expressed 1n terms of » by the elliptic
Integral of the third kind:

log¢ = log{ &)= —VU+i(nu—10) du
’ ° Y w —1 N

We may now draw the following coneclusions

immediately :

4 log <fx~> 1s complex along the segments ee,,

Y
ese,, of the real axis of the w-plane, but re.l along

@
the segments ey, e.e;.  Therefore — or ¢ moves
Y

along a meridian of the ¢-sphere when w moves
along the real axis from e, to e; or from e, to e
but, on the other hand, describes one of the ares
which appeared in the figure of the real motion of
the top’s apex, when » moves on the real axis from
e, to e, and an arc different from this, when » moves
from e, to e,.
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. d 4 : ,
Agaln, i log <ﬁ) vanishes when u = e, in the
I4

first approximation as =, and takes the finite value
i’

when u = e, (this because of the hypothesis

1 — e’
which we retain here, that I — ne, = 0); when w=e,
or e, on the other hand, it becomes infinite, as
_1 1
(w—e)"% or (u-— e, 2 Therefore the curve traced
by the point ¢ as the point » moves along the real
axis from e, through e, e, e; to e, will present
angles whose measnre 1s = at the points corre-

sponding to e, and e, and angles whose measure

. ™ . .
1s - at the points corresponding to e; and e,

e

I will not give the image of the v/ U-surface on
the sphere, but the stereographic projection of this
image on the xy-plane from the point { = . If to
the explanations already given it be added that ¢,

a(t + 1a
ot -(— :: +)ib)’ be-
comes 0 and o« respectively at the points —1 and
+ 1 of the contour of the half-sheet or rectangle a,
and remains finite and different from 0 for all
points on the contour of b, it will readily be seen
that the images of the half-sheets or rectangles a,
b, are roughly of the form indicated in the follow-
ing figure: the two contours which we have marked
e, € e ¢ ¢, being the stereographic projections
of images of the real u-axis first when this axis 1s

whose value in terms of ¢ is ket
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regarded as the contour of the positive half-sheet

a, second when it is regarded as the contour of

the negative half-sheet b. A{
The two arcs ee, are similar and sym- N\

metrically placed with respect to the

pomnt {=0. The one which lies to

the left appeared in the figure of

the real motion of the top’s apex .,

(Fig. 5).
If now we complete this

figare by a second half /Z[ =

symmetrical vuth this gl %
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v/ Ussurface or of the entire parallelogram of periods
in the ¢-plane (Fig. 8). We suppose an incision
made in the v/ U-surface along the segnent ee,e, of
the real axis.

It will be noticed that the image covers doubly
the portion of the plane which lies within the
two arcs ey, €, €, {=w, which lie to the right,
the two sheets being joined along a branch line
which runs from e, to {=cw. From the figure
we infer that e, is a branch point of ¢, but not so the
point =00 ; for a circuilt cannot be made of the point
{ = o without passing into the portion of the plane
bounded by the half-arcs e, e, { =0, lying to the
left, which does not belong to the image. And these
conclusions may readily be verified by reckoning.

We may describe our figure as a quadrilateral, one
of whose pairs of opposite sides are the rectilineal
segments running from the points e, through { =,
and which, were they produced, would intersect at {=0,
and the other pair, the two curvilinear arcs eye,e,.

The sides of each pair go over into each other
by the substitution of ¢ which corresponds to a
change of ¢ by one of the periods 2 e, 24w,: the
straight sides by the rotation about { =0 defined
by the “elliptic substitution’” {'= e#%{, which we
have already considered and which we have indi-
cated in the figure by the double-headed curved
arrows; the curved sides by the transformation
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e,
~
.

L
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Fig. 8,
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defined by the “hyperbolic substitution” {'= «{,
in consequence of which they are similar and sym-
metrically placed with respect to the centre of
similitude { = 0. TIn the figure we have indicated
the latter transformation by the double-headed
straight arrows which intersect at ¢ = 0. 'The sig-
nificance of both the periods 2 e,, 27w, for the curve
traced by the apex of the top 1s thus made evident
by our figure. And indeed we have now clearly
before us for the first time the reason that the
curve described in real time should be represented
by elliptic functions. It is but a portion of the
complete curve, or rather domain, which comes to
light when we avail ourselves of the entire field of
complex numbers in which the representation of
both periods 1s alone possible.

The Riemann surface determined by { = S_((t_) the

curve traced by the opposite extremity of the top’s
axis, Z = 0, may be constructed similarly.

For real values of ¢t we have é’ﬁl m which
o (t) a(ty

means simply that W} and ;(?)2 are opposite ex-

tremities of one and the same diameter of the
sphere. For complex values of t this formula is
to be replaced by the more general one

HON10)
y® ()
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If now we suppose these two Riemann surfaces
to be projected back again to the surface of the
fixed sphere, and the points of the two which
correspond to the same value of ¢t to be joined,
the resulting system of rays will represent the oo?
positions which the axis of the top may take in
the general (non-Euclidean) motion which corre-
sponds to any motion of t in the parallelogram of
periods.

Of these «»? “axes,” only those pass through
the centre of the sphere which correspond to real
values of t. These are the axes which meet the
curved arc ee.e, of the preceding figure which lies
to the left. Those axes which meet the other
curved arc e,ee, intersect in another point of the
central line (i.e. of the vertical through the centre
of the sphere); namely, the point into which the
centre of the sphere is transformed by the hyper-
bolic substitution already explained. A visible
representation of the possible motions of the top’s
axis in complex time is to be had by constructing

the figures for % and § on an actual sphere and
Y

joining a number of corresponding points by

straight lines.

mt. . Al .“.ﬂ
A 1lE U.ULI.Uly 11111

PO . A ~1.
ems o1 1l

rays which
are elements of the polhodes and herpolhodes of
all motions possible in complex time, may be con-

-J_ . L
1te byb U
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structed in like manner, and a complete geomet-
rical representation be thus obtained of the top’s
motion. The constructions are more complicated,
but there 1s no essential difficulty in carrying
them out.

In fact, the only serious difficulty in this entire
method of discussion is, that all our ordinary con-
ceptions of mechanics involve the notion that time
1s capable of but one sort of variation, We are so
accustomed to regard the mechanical conditions
which correspond to small values of t, as, so to
speak, the cause of those which correspond to
greater values, and to picture the changes of con-
figuration as following one another in definite order
with the varying time, that we find ourselves at a
loss for a mechanical representation when ¢, by
being supposed complex, becomes capable of two
degrees of variation.

To avoid this diffienlty as far as possible, let us
suppose t no longer capable of varying in every
direction in the parallelogram of periods, but only
along a line parallel to the real axis. In other
words, 1n ¢ == t, 4 ¢, let us regard ¢, as constant in
each particular case, and t, as alone varying. In this
manner, by subsequently giving ¢, all possible values,

T vy Oy T L[\]TQ - o A N eI L 2] 4 §\11 ‘I'\f\r«_rﬂ_:L\.‘Q r;r\-‘nnr\.lg‘r
Wwio lllClJ‘y Ld T 11U QUCULLLLIL dll PUDDIUJ.L/ CUlH ploa

values of ¢, but we conceive them as ranged along
the o' parallels to the real axis. Regarded thus,
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the Riemann surfaces g, [g become carriers of cer-
tain curve systems, and the system of oo axes is
distributed among «' ruled surfaces.

In this manner we separate the totality of the
positions of the top in complex time into an infi-
nite number of simply infinite sets of positions,
These sets of positions are characterized not only
by the initial values of t, but by the values of the
constants of integration, which must have been
introduced had the reckoning which we have merely
sketched been actually carried out. 1t should per-
haps have been stated earlier that in the interest
of complete generality these constants must now
be supposed complex, for we are now operating
in the domain of complex numbers. Moreover,
only by supposing them complex shall we have
constants enough at our disposal to meet all the
conditions of our generalized problem of motion.

So far our figures have been constructed with a
view to obtaining a clear geometrical representation
of the entire content of our analytical formulas.
But their chief interest lies in this: that one can
give them a req/ dynamical meaning, that one
can find a real mechanical system by whose mo-

-Qteﬂ T acoart that
4, [ RN Sy ¥ u
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determine a certain free mechanical system, namely,
a rigid body freely moving in non-Euclidean space
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under the action of certain definite forces, which in
real time carries out exactly that infinity of forms of
motion which we have just been describing, the one
or other of them daccording to the choice made of the
initial conditions of motion. 'The mechanical sys-
tein is a generalized one, but it belongs to the do-
main of real dynamiecs,

Let us consider the general problem of the motion
of a rigid body under the action of any forces, in
the non-Euclidian space whose absolute is the sur-
face: B4R t2=0.

The earliest investigation of the motion of a rigid
body in non-Euclidean space was made by Clifford
in 1874 — though the investigation was not pub-
lished until after his death, in his collected works.
The same problem has been considered also by
Heath in the Philosophical Transactions, 1884. DBoth
these mathematicians, however, have treated the
case of the elliptic non-Euclidean geometry, not
the hyperbolic, and have contented themselves
with establishing the differential equatious of the
blem.

I shall proceed analytically, as this method is
more readily understood by one who is not well
versed in non-Euclidean geometry, and immediately
obtain differential equations for the motion of a
certain rigid body in non-Euclidean space perfectly
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analogous to thie equations for the motion of the
top in real time, but involving two sets of varia-
bles,

To have the general case before us at once, T sup-
pose the parameters ¢, ¢, &, and the tine t, all com-
plex and set

¢ =1+ idy Y=y + iy, =70, 4108, t=1 41,

These parameters are connected with 7" and V,
the kinetic and potential energy, by the well-known
Lagrange equations:

5) s (55)_sr—m

dt o dt o)
(\8'1{’ / — V) .
8#’

In these equations set
T=T +iTy, V=V1+1iV,

Siuce, then, oT _ 0T, BT"’

W - géT 819'
STI BTl .
819’ 8:9 -

and similarly,

3T _ 8T, 8T, . 8T _3T, 8T,
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and since, furthermore, by our hypothesis, dt = dt,,
the first of our equations breaks up into the two
equations involving real variables only,

) un_n, 1)
) ST, —Vy \89,) T—Vy)
a, &,  dt, 89,

and the remaining two equations behave similarly.

Thus, every real mechanical problem again re-
duces to a real problem when the variables are
made complex, provided the real part only of the
complex ¢ be supposed to vary, but the problem of
a motion involving twice the number of variables.

Applying this general conclusion to the particular
question before us, it 1s evident without any further
discussion that the problem of the motion in com-
plex time of a top whose point of support is fixed is
changed into a problem of real dynamics; the
problem of the non-Euclidean motion of a rigid
body. 'This motion has six degrees of freedom in-
stead of three, corresponding to the six parameters,
3y V9 b1, oy Yy, Yo, and its kinetic and potential

energy are 7, and Vi, ther

T and V.

But what is the rigid body, and what the force
producing the motion ? We shall content ourselves
with simply answering these questions without en-
tering upon the considerations appertaining to non-
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Euclidean geometry by which our conclusions are
reached.

the integral

f (ux + vy + wz + ot)?
(u2 + ,U2 + w2 o (02)(332 + yZ + 22____ t2)

dm,

evaluated throughout any body in the correspond-
ing non-Euclidean space, is called the ‘“second
moment” of the body with respect to the plane
whose co-ordinates are u, v, w, o. In the particular
case before us this integral, when evaluated, will be
equal to 1, independently of the values of u, v, w, .
Remembering that u, v, w, 0 are constants with

respect to the integration, the result may be written

Au? +2 Buv 4 -+

, which therefore = 1.
u2 + ,U2 + w2 . (02

Now the surface whose equation in tangential co-
ordinates is
A +2 Buv 4+ -0 =0

is called the “null-surface.” In the case before us,
therefore, the null-surface coincides with the absolute.
This 1s the rigid body of our non-Fuclidean motion.

The force prodncing the motion may be defined
as follows: In the figure (Fig. 9) let g represent the
fixed axis of gravitation (through the pointof support
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of the top), » the axis of the top, and p the non-
Fuclidean perpendicular common to g and ». The
angle between ¢ and r is then

defined as ¢ = ¢, + id,, where &

represents the angle between the

planes gp and rp, and i¢, in non- g P

Euclidean angular measure is the
distance p.

The force is then the wrench N
represented in intensity by 7 sin 4, o
of which the real part represents the rotating force
acting about p and the lmaginary part represents
the thrust along p.

In conclusion, allow me to remark once again
that this non-Eueclidean geometry involves no eta-
plhysical consideration, however interesting such
considerations may be. It is simply a geometrical
theory whick groups together certain geometrical rela-

their study.
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I~ the latter part of yesterday’s lecture we ven-
tured a little way into what Professor Newcomb
has called the ¢ fairyland of mathematics.” Ignor-
ing the limitation of the top’s motion to real time,
we gave full play to our purely mathematical
curiosity. And there can be no doubt that it
is proper and indeed necessary within due limits
to proceed after this manner in all such investiga-
tions as that now before us. It is possible only
thus to develop a strong and consistent matlie-
matical theory. But we should not yield ourselves
wholly to the charm of such speculations, but rather
control themn by being ever ready to return to the
actual problems which nature herself proposes.

We turn again to-day, therefore, to the real top,
and proceed to investigate 1ts motion when the
point of support is no longer fixed, but movable
in the horizontal plane. This 1s the case of the
ordinary toy top.

It has been well known since the time of Poisson
that the differential equations of this motion can
be integrated in terms of the hyperelliptic inte-

o8
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grals, And it is the main purpose of my present
lecture to show that these inteqrals may be treated

. '
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elliptic integrals were treated, by aid of the general
‘“automorphic functions,” of which the elliptic func-
tions are a spectal class.

The “toy top” has five degrees of freedom of
motion, two of them relating to the hiorizontal dis-
placement of the centre of gravity, and the other
three to the motion around this centre. The hori-
zontal motion of the centre of gravity is very
sinple, being, as is well known, a rectilinear mo-
tion of constant veloeity. Consequently, 1o essen-
tial restriction of the problem 1s involved in
assuming the horizontal projection of the centre
of gravity to be a fixed point. By this assump-
tion the problem is again reduced to one of three
degrees of freedom only, and we have besides ¢t 1o
other variables to cousider than the parameters
¢, Y, 9 or «, B, y, 8 of the previous discussion —
the parameters here defining the position of the top
with respect to axes through 1ts centre of gravity.

To obtain first the ordinary formulas which de-
fine the motion in terms of the astronomical param-
eters: let & represent the weight of the top, s the
distance of its centre of gravity from the point of
support, and again represent the product G, i.e. the
static moment, by P. Also, for the sake of sim-
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plicity, let us again suppose that the three prineci-
pal moments of inertia of the top, in this case
with respeet to the axes through its centre of
gravity, are all equal to 1.

Then the kinetic energy, 7, and the potential en-
ergy, V, are given by the following equations: viz.

T=3(¢" +y" + 2 ¢y cos 8 + 87 + Pssin® - %),
V= Pcos ¥,

which differ from the corresponding expressions
in the special case where the point of support is
fixed only in the appearance of the additional tern
Ps.gin?#. 8" in 7. As this term will disappear if
s = 0, though we take G, i.e. P, different from zero,
the elementary case may be described from the
present point of view as that of a top of infinite
weight whose centre of gravity coincides with its
point of support.

On substituting these values for 7" and ¥V in the
first two Lagrange equations,

5T 18T

b,
e 7 dt 7

d

we obtain immediately, as before, the two algebraic
first integrals
¢ + ¢y’ cos § = n,

y' 4 p'eos =1
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[f from these last equations we reckon out ¢’
and ¢', and substitute the resulting values in the

T+ V= h,

we obtain ¢, ¢, and ¢ 1n the form of integrals in
terms of the variable .
As before, we set v = cos ¢, and

U=2P =2+ 2(n— P)u+ (2h —F—nb),
when these integrals become

f fdu\/ (1 4 Ps) — Psu’
_ b

vU
b= f'n — lu duv (14 Ps) — Psu’
1—w? VU ’
_ (l—nu, duv (1 + Ps) — Psu®
v J 1—q VU

These formulas differ from the corresponding
formulas for the elementary case m that the new
irrational factor V(1 4+ Ps) — Psu? here appears in

p=2. In addition to the former branch-points of
the Riemann surface in the u-plane, viz. e, e, ¢, €.,
two new real branch-pomts appear, viz.:



62 MOTION OF THE TOP

I shall call them e,, ¢;, and assume them to be nu-
merically greater than e; The Riemaun surface
1s therefore a surface of two sheets with six branch-
points e, e, e, e, €., ¢, ranged along the real axis
of the u-plane, as indicated in the following figure:

y 7

(l)

Fi¢, 10,

In addition to the branch-points, I have indicated
the pummuub of the puuw.s —]—J., -—L, since these
particular values of wu, corresponding to 3 =0,
# =, play, as in the elementary case, a special
rOle in our discussion,

The time ¢ is no longer an integral of the first
kind; that is to say, an integral which remains
finite for all values of », but an integral of the
second kind, which becomes infinite for u = o, as
V' — 2su. An integral of the second kind, it may
be added, is one having a point of algebraic dis-
continuity only. The integrals ¢ and ¢, on the
other hand, have each of them, as before, four
logarithmic points of discontinuity; namely, the
four points » =+ 1 of the Riemann surface.

The first step to be taken is to replace the in-

tegrals ¢ and ¢ by normal hyperelliptic integrals
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of the third kind; that is, by integrals possessing
each but fwo logarithmic points of discontinuity
with the residues +1 and -1, This i1s accom-
plished precisely as in the elementary case, by
introducing log «, log B, log vy, log 8. As before,
these prove to be normal integrals of the third
kind, each having a logarithmic discontinuity (with
the residue + 1) at one of the points u =+ 1, and
all having a second logarithmic discontinuity in
common (with the residue —1) at the point
u—=o. This follows at once from the result of
the reckoning if it be noticed that the expression
(14 Ps) — Psu? reduces to 1 for u = + 1,

It 1s evident, therefore, that tke parameters e,
B, v, 8 play the same fundamental réle here as in
the case of the top whose point of support is fixed.
And in the following discussion we shall no
longer use ¢ and ¢, but «, 8, y, 6. These vari-
ables possess on the Riemann surface a 0-point
each at one of the four points v = +1, and a com-
mon «-point at u=-oc0. I have not thought 1t
necessary to enter into the details of this reduc-
tion, as it is so completely analogous to the re-
duction in the more elementary case.

But when we attempt to repeat the next step
of the previous discussion, and endeavor, by 1n-
verting the hyperelliptic integral ¢, to assign to
t the role of independent variable, we find at
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once that there 1s a profound difference between
our present problem and the previous more special
problem. This difference is masked when we con-
fine our attention to the top’s motion in real
time. For as ¢ varies, remaining always real, the
value of u vibrates as before between the values
e, and e, while ¢ and ¢ are each increased by
real periods. The difference comes to light, how-
ever, as soon as, allowing ¢ to take complex values,
we proceed to construct in the t-plane the lmage of
the Riemann surface. As the image of a half-sheet
of this surface, we have now, instead of the simple

rectangle of the elementary case, an

"C.»
E
<D
¥4
&
g

with one of its angular ponts at nﬁmty, as in the
following figure:

///

7l Gz '
TMa. 11,

and when by the methods of symmetrical and con-
gruent reproduction, we go on to construct from
this ficure the image of the entire Riemann sur-
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face, we at ouce encounter the difficulty that this
image will cover the (-plane not simply, as in the
elementary case, but rather with an imfinmite num-
ber of overlapping hexagonal pieces. To a single
point in the ¢plane, therefore, will correspond not
one, but an mfinite number of values of wu, that
is to say, u 1s no longer a uniform function of ¢.

I may remark that it is often said that the
inversion of the hyperelliptic integrals is impossi-
ble. This is not true; it is not impossible to in-
vert them, but to get uniform functions by the
process.

There i1s a well known method of generalizing
the result of inverting the elliptic integrals and
obtaining functions, ‘“ hyperelliptic functions,” as
they are called, which are in a proper sense the gen-
eralization of the elliptic functions. The method
is due to Jacobi, and goes by his name.

e are two hyperelliptic 1ntegra

first kind 1n the case before us:

[ du
Yy = Y T !

v VU« V14 Ps— Psu?

5
ot
-l

@

”_f u - du
p = . .
VU1 4+ Ps— Psu?

Jacobi forms double J-functions of v, v, viz
6 (v, v, in terms of which he seeks to express
the other variables as uniform functions. This
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18, perhaps, the greatest achievement of Jacobi,
and for general investigations of the highest im-
portance, but it promises us little aid in the prob-
lem which we are considering, To avail ourselves
of it, we should need first to develop a method

for detormimine whﬂ‘l‘ U’Q]l ae nf o
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corresp
to the same value of t. We are therefore reduced
to the direct computation of hyperelliptic integrals
if we wish to avoid the complicated equation for
v, and v, which results if we eliminate ¢.

Is it possible, then, by any means whatsoever, to
obtaim for the general motion of the top formulas
analogous to those which we succeeded in establish-
ing for the top whose point of support was fixed ?
Yes, by availing ourselves of the theory of the uni-
form automorphic functions.

A uniform automorphic function of a single vari-
able 5 is a function f(5), which satisfies the func-

tional equation

7(er ) = s,

where a,, b, ¢, d, have given constant values for
each of the values of v: 1, 2, 3 ... .o —for all of
which the functional equation 1s satisfied.

The automorphic functions, therefore, are func-
tions which are transformed into themselves by an
infinite but discontinuous group of linear substitu-
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tions. They are the generalization of the elliptic
functions which consists in generalizing the perio-

dicitv of these functions, but leavine tlie number
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of the variables unchanged, while Jacobt’s hyper-
elliptic functions are a generalization which consists
in inereasing the number of variables, but leaving
the periodicity unchanged,

I shall present what I have to say regarding
them geometrically. And, indeed, the general mo-
tion of these automorphic functions, as well as
the knowledge of their most important properties,
originated from geometrical considerations, and
geometrical considerations only. Even now the
analytical details of the theory have been only
partially developed.

Oy nvnh]om aQ
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this: to define a variable », of which t, «, 8, y, 8
shall be uniform automorphic functions, as were «, 3,
vy, 6 of ¢ 1tself in the elementary case.

]
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To revert to the elementary case — the fact that ¢
was itself a “ uniformizing’ variable, 7.e. a variable
of which » was a uniform function, was brought to
light by finding that when the image in the #plane
of a single half-sheet of the Riemann surface on the
u-plane was reproduced by symmetry and congru-
ence, this image covered the ¢-plane simply. May
we not, then, construct in the plane of a variable
n & rectangular hexagon which shall be the image
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in the n-plane of a half-plane u, and which on
being reproduced shall cover the oplane or a
portion of it simply, and then subsequently, from a
study of the conditions which determine this hexa-
gon, derive in definite analytical form the functional
relation between » and u ?

It 1s in fact possible, as the theory of automor-
phic functions shows, to construct such a rectangu-
lar hexagon, and that in essentially but one way.
Its sides are not line segments, but ares of circles
which themselves cut the real axis of the »-plane at
right angles. It has the following form :

Fia. 12,

The mere geometrical requirement that the figure
be made up of ares of cireles which cut the real axis
orthogonally, and cut each other orthogonally also
at the six points e, ey ¢, €4, €., €, 1s 0of course not
enough to determine it completely. There are a

certain nnmber of parameters which remain unde-
L A AL AR ARL PSS A LY l-lw.-w“,lullu&u T ALAVSAR A VS 4aALlAUALL A

termined, and which are to be so determimned that
the hexagon is an actual conformal representation
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of the half w-plane with the given branch-points
ey €+ ¢e.  The fundamental theorem of the theory
of automorphic funct
accomplished In one, and essentially but one, way.

Having determined the image of the one half-
sheet of the Riemann surtace on the u-plane, the
infinitely many remaming images are to be had
by constructing the figure mto whicl the original
image 1s transformed by inversion with respect to
each circle of which one of its sides is an are, by
repeating the same construction for the resulting
hexagons, and so on Indefinitely.

By this process the entire upper half of the
n-plane is simply covered without overlapping by
rectangular hexagons, whose sides are circular arcs.

Wnnlw r\'p +] [a ] 1"\DVO{'¥‘I‘\T\G Q A yYmAammon I‘\F [} Tnn]‘p_cvl Fayal
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of the Rlema,nn surface. And if they be alternately
shaded and left blank, the shaded ounes are images
of positive half-sheets, the blank ones of negative
half-sheets of the surface.

Evidently, then, to a single point in the p-plane
there corresponds but a single point in the Riemann
surface, or v and VU are uniform functions of 7
On the other hand, the points in two of the hexa-
gons which correspond to the same value of u, /U,
and may be called “equivalent points,” are con-
a,n + b,

nected by a formula of the form »' =
¢,p + d,

Y, a8 in
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the special elliptic case the corresponding points of
two of the parallelograms of periods were connected
by the formula t'=t+2 w0, + 2myiw,.  Thus v and

+/ U are uniform automorphic functions of =z, satis-
fymng the equation:

f(n)—f(an_}_b\
\6y + &,/

I may remark that Lord Kelvin made use of
this sort of synunetrical reproduction more than

fifty years ago in his researches on electrostatic
potential. But his ﬁgures were solids bounded by
portions of sphe
se that
of other distinct solids should result from them
by the process of reproduction.

Not only w and VU, but also V1 + Ps — Psu?,
and again ¢, «, B, vy, 8, are uniform functions of

our new variable », functions, it may be added,
which exist ouly in the upper half of the »-plane.
Hence » is the uniformizing variable which we have
been seeking, the variable whick plays the réle taken
by t tn our discussion of the special problem.

We turn therefore to the consideration of ¢, e, f3,
v, 8, regarded as funcilons of .

The variable t is affected additively by the lmear
substitutions of » which correspond to the suc-
cessive reproductions of the figure; i.e. with every
substitution it is Increased by a constant. More-
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over, it becomes mfinite, and that simply infinite
algebraically, at all those points of the y-plane
which correspond to the point e, of the wu-plaue,
the points, namely, which are equivalent to the
single angular point marked e, in the hexagon
of our figure,

On the other hand, «, B, y, 8, are affected multi-
plicatively by the lincar substitutions of ». Each
becomes zero in one series of equivalent points, and
that simply, and each becomes infinite, and that
also simply, In another series of equivalent points.

The oo-points are the same as those for which
t becomes infinite; the 0-points are the points on
the perimeters of our hexagons which correspond
to the four points = + 1 of our original Riemann
surface of two sheets on the w-plane. The two
points corresponding to v =41 we may name ¢/,
a”, and the two points corresponding to u = —1,

, b, in sue ch a manner that the sertes of e quiva-

A1 Alendy ALY L

lent 0-pomnts of «, B, y, 8, correspond respectwely
to a', b, b, a'.

On this characterization of our functions,a, 8, v, 8
we have now to base their analytical representation
in terms of y. Thisis to be accomphshed by means
of the functions which 1n this more general case of
the automorphic theory play the same fundamental
role as the elliptic o-functions in the more elemen-
tary case-—the so-called prime-forms. The prime-
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Jorm is not a function of u, but a homogeneous

Sunction of the first degree of u,, n, (where :7}: = 7);

like the elliptic o-function, it vanishes at all of a cer-
tain series of equivalent points, and 18 nowhere infinite.

I use the name prime-form because all the al-
gebraic integral forms belonging to the Riemann
surface admit of being similarly expressed as
products of suitably chosen prime-forms, just asin
ordinary arithmetic integers as products of prime
numbers. It may be added that these prime-forms
are not completely determined quantities. They
may be altered by certain factors, the exact ex-
pression of which here would cause too serious a
digression.

If now we represent the prime-form whose zero-
points are the series of equivalent points correspond-
ing to the point m of the Riemann surface by the
symbol Z(n,, 5,; ), we have the following analytical
representation of our functions ¢, «, 8, y, 8, viz. :

F— 2'(7719 N2 800),
Z(my m2; )

o — 2y 125 a’) g Z(m1y 2; 5’),
3(m; M2 €w) S(0ny 725 €x)

_ 20y m23 D) s _ 20,7125 @)
S(m, m2; ) 2(0ms 125 )

And so we find here, as before, that the functions
a, B, y, 8 prove to be the simplest elements for the
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representation of the top’s motion. They are the
simplest quotients of the elementary functions of

+lan i honn rallintrn hnd o ?? 11r1’\;n1] hace vranlanad tha
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“elliptic body ” of our earlier discussion.
It may be remarked that these formulas at once
reduce to ¢t = » and the previously obtained elliptic

formulas on making the hypotheses PZO, s =0,

which are equivalent to supposing the point of
support fixed.

Moreover, it must be said that these expres-
sions for ¢, e, B, y, 8 are only to be understood as
having a formal significance. There is altogether
lacking the actual determination of the constants
left at our disposal by the definitions of the 3’s, and
which, it may be added, differs for the ditferent 3’s
which appear in the formulas for ¢, «, 8, v, 8.

And with this we come upon the point at which this
theory 1s still incomplete. The exact determination
of the formulas, and 1n general the means of reckon-
ing them out by practicable methods, are for the
most part wanting. The theory of the automorphic
functions which for a time was a matter of prinecipal
interest in the theory of functions has in recent
years not attracted the attention nor found the
support which it seems to deserve. [ have there-
SJore the more gladly laid stress here on the fact that
these are not only functions possessing a theoretical
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interest, but functions which necessarily present them-
selves if one will completely solve even the simplest

consider the geometry of this more general case of
the top’s motion also.

I will, however, give the equation of the curve
traced on the horizontal plane by the point of sup-
port. It is a4+ iy = 2 «aBs, as results from the for-
mulas on page 8, by giving X, Y, Z the values of 0,
0, — s, respectively. For the values of = and y de-
pend on «, 8, v, & alone, these quantities, in the
present case, conditioning the motion of the centre
of gravity up and down its vertical, and no terms
appearing n the expressions for x and y due to

- [ ]
+hiie nmintiom
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And I may also make the general remark that in
this geometrical study the non-Euclidean interpreta-
tion plays an important rdle. For while the curves
traced by the apex, ete., have in real time a form
quite similar to that in the case of the fixed point
of support, the Riemann surface as described by the
apex on the fixed sphere brings fully into evidence
the difference between the elliptic and hyperelliptic
characters of the two motions. Instead of the
quadrilateral which was represented in Fig 8 we
should here have a hexagon.
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INTRODUCTION.

§ 1. A great many if not all of the problems in mathematics
may be so formulated that they consist in finding from given
data the values of certain unknown quantities subject to certain
conditions. We may distinguish different stages in the solution
of a problem. The first stage we might say is the proof that the
quantities sought for really exist, that it is possible to satisfy
the given conditions or, as the case may be, the proof that it is
impossible, In the latter case we have done with the problem.
Take for instance the celebrated question of the squaring of the
circle. ' We may in a more generalized form state it thus: Find
the integral numbers, which are the coeflicients of an algebraic
equation, of which 7 is one of the roots. Thirty years ago
Lindemann showed that integral numbers subject to these con-
ditions do not exist and thus a problem as old almost as
human history came to an end. Or to give another instance
take Fermat’s problem, for the solution of which the late Mr.
Wolfskeh] of Darmstadt, has left $25,000 in his will. Find the

re » 2 o +hat QDf)QFv thao Dn|1n+1nn
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where n is an integral number greater than two. Fermat main-
tained that it is impossible to satisfy these conditions and he 1s
probably right. But as yet it has not been shown. So the
solution of the problem may or may not end in its first stage.

In many other cases the first stage of the solution may be so
easy, that we immediately pass on to the second stage of finding
methods to calculate the unknown quantities sought for. Or
even if the first stage of the solution is not so easy, it may be
expedicnt to pass on to the second stage. For if we succeed in
finding methods of calculation that determine the unknown quan-

v
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to the first stage.

There are not a small number of men who believe the task of
the mathematician to end here. This, T think, is due to the
fact that the pure mathematician as a rule is not in the habit of
pushing his investigation so far as to find something out about the
real things of this world. He leaves that to the astronomer, to
the physicist, to the engineer. These men, on the other hand,
take the greatest interest in the actual numerical values that
are the outcome of the mathematical methods of calculation.
They have to carry out the calculation and as soon as they do so,
the question arises whether they could not get at the same result
in a shorter way, with less trouble. Suppose the mathematician
gives them a method of calculation perfectly logical and con-
clusive but taking 200 years of incessant numerical work to
complete. They would be justified in thinking that this is not
much better than no method at all. So there arises a third stage
of the solution of a mathematical pi‘Ob}mu in which the UUJeCL 1S
to develop methods for finding the result with as little trouble as
possible. 1 maintain that this third stage is just as much a
chapter of mathematics as the first two stages and it will not do
to leave it to the astronomer, to the physicist, to the engineer or
whoever applies mathematical methods, for this reason that

these men are bent on the results and therefore they will be apt
to nvpr]nnb the full ceneralitv of the methods Hm:nr hannan o
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hit on, while in the hands of the mathematician the methods
would be developed from a higher standpoint and their bearing
on other problems in other scientific inquiries would be more
likely to receive the proper attention.

The state of affairs today is such that in a number of cases the
methods of the engineer or the surveyor are not known to the
astronomer or the physicist, or vice versa, although their prob-
lems may be mathematically almost identical. Tt is particularly
so with graphical methods, that have been invented for definite



INTRODUCTION. vii

eneral exposition makes them ﬂnnlmn})lp
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to a vast number of cases that were originally not thought of.

In this course I shall review the graphical methods from a
general standpoint, that is, I shall try to formulate and to teach
them in their most generalized form so as to faciitate their
application in any problem, with which they are mathematically
connected.! The student is advised to do practical exercises.
Nothing but the repeated application of the methods will give
him the whole grasp of the subject. For it i1s not sufficient to
understand the underlying ideas, it is also necessary to acquire a
certain facility in applying them. You might as well try to learn
piano playing only by attending concerts as to learn the
graphical methods only through lectures.

1 For the literature of the subject see ‘“Encyklopidie der mathematischen

Wissenschaften,” Art. R, Mehmke, ‘‘Numerisches Rechnen,” and Art. F
Willers and C. Runge, “Graphische Integration,”



CHAPTER L

GrapHICAL CALCULATION.

§ 2. Graphical Arithmetic—Any quantity susceptible of mensu-
ration can be graphically represented by a straight line, the
length of the line corresponding to the value of the quantity.
But this is by no means the only possible way. A quantity
might also be and 1s sometimes graphically represented by an
angle or by the length of a curved line or by the area of a square
or triangle or any other figure or by the anharmonic ratio of four
points in a straight line or in a variety of other ways. The
representation by straight lines has some advantages over the
others, mainly on account of the facility with which the ele-
mentary mathematical operations can be carried out.

What is the use of representing quantities on paper? It is a
convenient way of placing them before our eye, of comparing
them, of handling them. If pencil and paper were not as cheap
as they are, or if to draw a line were a long and tedious under-
taking, or if our eye were not as skillful and expert an assistant,
graphical methods would lose much of their significance. Or,
on the other hand, if electric currents or any other measurable
quantities were as cheaply and conveniently produced in any
desired degree and added, subtracted, multiplied and divided
with equal facility, it might be profitable to use them for the
representation of any other measurable quantities, not so easily
produced or handled.

The addition of two positive quantities represented by straight
lines of given length is effected by laying them off in the same
direction, one behind the other. The direction gives each line a
beginning and an end. The beginning of the second line has to
coincide with the end of the first, and the resulting line represent-

ing the sum of the two runs from the beginning of the first to
1
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the end of the second, Similarly the subtraction of one positive

quantity from another is effected by giving the lines opposite direc-
tions and letting the beginning of the line that is to be subtracted
coincide with the end of the other. The result of the subtrac-
tion is represented by the line that runs from the beginning of
the minuend to the end of the subtrahend. The result is positive
when this direction coincides with that of the minuend, and nega-
tive when it coincides with that of the subtrahend. This leads
to the representation of positive and negative quantities by lines of
opposite direction. The subtraction of one positive quantity from
another may then be looked upon as the addition of a positive and
a negative quantity. I do not want to dwell on the logical explana-
tion of this subject, but I want to point out the practical method
used for adding a large number of positive and negative quantities
represented by straight lines of opposite direction. Take a
straight edge, say a piece of paper folded over so as to form a
straight edge, mark a point on it, and assign one of the two
directions as the positive one. Lay the edge in succession over

L] - L] *
the different lines and run a pointer along it through an amount

equal in each case to the length of the line and in the positive
or negative direction according to the sign of the quantity. The
pointer is to begin at the point marked. The line running from
this point to where the pointer stops represents the sum of the

given quantities. The advan-
? - tage of this method is that the

intermediate pnsﬁtiong of the

pointer need not be marked pro-
vided only that the pointer keeps
its position during the move-
ment of the edge from one line
Fia 1. to the next. Asan example take

the area, Fig.1. A number of

rectangular strips  cm. wide are substituted for the area so that,
measured in square centimeters, it is equal to half the sum of
the lengths of the strips measured in centimeters. The straight

Y
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ips in succession and the pointer is
run along them. The edge is supposed to carry a centime-
ter scale and the pointer is to begin at zero. The final position
of the pointer gives half the value of the area in square centi-
meters. The drawing of the strips may be dispensed with, their
lengths being estimated, only their width must be shown. If
the scale should be too short for the whole length, the only thing
we have to do is to break any of the lengths that range over the
end of the scale and to count how many times we have gone
over the whole scale. I have found it convenient to use a little
pointer of paper fastened on the runner of a slide rule so that it
can be moved up and down the metrical scale on one side of the

WeeNl
NE—
=
__é-':.
1

o

Fia. 2.

slide rule. The area is in this manner determined rapidly and

with considerable accuracy, very well comparable to the ac-

(LY Nl LW LY ¢ ¥y Al Tl S ALE pAANVE RV AN LVF ¥ LW

curacy of a good planimeter. If the area of any closed curve
is to be found, the way to proceed is to choose two parallel
lines that cut off two segments on either side (see Fig. 2), to
measure the area between them by the method described above
and to estimate the two segments separately. If the curves of
the segments may with sufficient accuracy be regarded as arcs
of parabolas the area would be two thirds the product of length
and width. If not they would have to be estimated by substitut-
ing a rectangle or a number of rectangles for them.



4 GRAPHICAL METHODS.

In the same way the addition and subtraction of pure numbers
may also be carried out. We need only represent the numbers
by the ratios of the lengths of straight lines to a certain fixed
line. The ratio of the length of the sum of the lines to the length
of the fixed lines is equal to the sum of the numbers. The con-
struction also applies to positive and negative numbers, if we
represent them by the ratio of the length of straight lines of
opposite directions to the length of a fixed line.

In order to multiply a given quantity ¢ by a given number,
let the number be given as the ratio of the lengths of two straight
lines a/b. If the quantity ¢ is also represented by a straight line,
all we have to do is to find a straight line * whose length is to
the length of ¢ as @ to b. This can be done in many ways by

I S

LN
5

NN

lk——a—a-l

[ ¥4
<

Yo

Fia, 3. Fic. 4.

constructing any triangle with two sides equal to ¢ and b and
(lrdwmg a blrﬂ]lar Lflallgle WILH Lﬂﬁ biut‘, LIldL COTreSpOHUb to U md(le
equal to ¢. As a rule it is convenient to draw o and b at right
angles and the similar triangle either with its hypotenuse parallel
(Fig. 3) or at right angles (Fig. 4) to the hypotenuse of the first
triangle. Division by a given number is effected by the same con-
struction; for the multiplication by the ratio a/b is equivalent
to the divisions by the ratio b/a.

If a, b, ¢ are any given numbers, we can represent them by the

ratios of three straight lines to a fixed line. Then the ratio of
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Multiplication and division are in this way carried out simul-
taneously. In order to have multiplication alone, we need only
make b equal 1 and in order to have division alone, we need only
make a or ¢ equal 1.

In order to include the multiplication and division of positive
and negative numbers we can proceed in the following way. Let
the lines corresponding to @, x, Fig. 3, be drawn to the right side
of the vertex to signify positive numbers and to the left side to
signify negative numbers. Similarly let the lines corresponding
to b, ¢ be drawn upward to signify positive numbers and down-
ward to signify negative numbers. Then the drawing of a
parallel to the hypotenuse of the rectangular triangle a, b through
the end of the line corresponding to ¢ will always lead to the

number
ac

z =
whatever the signs of a, b, ¢ may be.

The same definition will not hold for the construction of Fig. 4.
If the positive direction of the line corresponding to a is to the

right and the positive direction of the line corresponding to b is

11p“r9rAQ then the nositive directions of 2 and ¢ mm’hf to be such

AL LAY/ EE l" TARL A WAV ARL]) AN AES A

that when the right-angled triangle z, ¢ is turned through an
angle of 90° to make the positive direction of « coincident
with the positive direction of e, the positive direction of ¢ coin-
cides with the positive direction of b. If we wish to have the
positive direction of x upward, the positive direction of ¢ would
have tobe to the left, or if we wish to have the positive direction
of ¢ to the right, the positive direction of & would have to be
downward. If this is adhered to, the construction for division
and multiplication will include the signs.
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§ 3. Inmtegral Functions.—We have shown how to add, subtract,
multiply, divide given numbers graphically by representing thein
as ratios of the lengths of straight lines to the length of a fixed
line and finding the result of the operation as the ratio of the
length of a certain line to the same fixed line. By repeating
these constructions we are now enabled to find the value of any
algebraical expression built up by these four operations in any
succession and repetition. Let us see for instance how the values

of an integral function of x, that is to say, an expression of the form

ag + ax + ax® + -- - 4 ax"

may be found by geometrical construction, where ag, a4, - - - a,,
are any positive or negative
''''''''''' %""‘"-"":;’IB?;

__________ ?_r_,;::_’_*? B, numbers. We shall first as-
"'16,_,_»_*_’_'__94 . sume that all the numbers are
/’;’tﬂ T ’ BM positive, but there is not the

e i =% . . .
-~ least difliculty in extending
the method to the more gen-

eral case.

Now let ag @1, ta, *-- an
signify straight lines laid off
on a vertical line that we call
the y-axis, one after the other

, as if to find the straight line
0 x 1 7
Q,A—L'a,-l'-""an"""’ +Qm_
FIG. 5. v 1 1 1 st ] 1] (L3

The lengths of these lines measured in a conveniently chosen
unit of length are equal to the numbers designated by the same
letters. In Fig. 5 ao runs from the point O to point (), ; from
Cito Cs, +- - an from C, to Cryy.

Let « be the ratio of the lines Ox and 01, Fig. 5, drawn hori-
zontally from O to the right. The length O1 is chosen of con-
venient size independent of the unit of length that measures the

lines ao, @1, - - - @n. The length Oz is then defined by the value
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" "~ 0 14+ +lr'\ Ar_nvia
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el to the y-axis.
Through C.+ draw a line parallel to Oz, that intersects those two
parallels in P, and B,. Draw the line B,C, that intersects the
parailel through 2 in P,;. Then the height of P, above C,
will be equal to a,2. For if we draw a line through P,_; parallel
to Ox intersecting the y-axis in D, the triangle C, D, P, will be
similar to C,C.11B, and their ratio is equal to «, therefore
CnD, = a,x. Consequently the height of P, above C,; is
equal to C,4D, = a,2 4+ a,—1. Now let us repeat the same
operation in letting the point D, take the part of C,;;. Through
D, draw a line parallel to Ox, that intersects the parallels through
xand 1in P, and B,—,. Draw the line B, _,C,_; that intersects

the parallel through z in P,_,.

Then the height of P,_» above D -1 W
Cr-1 will be equal to all? Bt B,
o Sy - L |y
4 e ””-
Cr1Dn-x = (anx + a,q)2, % les-- Blsloo g,
a'ﬂ ’/““/I /’/’
and the height above C,_» will be e g
- 0
equal to a L
i
an®® + Apax + @y a,
Continue in the same way. Draw 0 ¥ 1

P, 3B, s parallel to Oz, draw
Bn_gcﬂ_g and ﬁnd the point Pn_3.
Then the height of P,_3 above C,—» will be

Fia. 6.

(an$2 + apnax + an—2)m
and the height of P, 3 above (3
an®® + ng2® + 0pox + ans

Finally a point Py is found (see Fig. 6 for n = 4) by the inter-
section of BiC, with the parallel to the y-axis through x, whose
height above O 1s equal to

anx™ 4 @pax™ 4 -+ o + ao
Let us designate the line 2Py by y, so that
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Y= @™ + an " 4 -0 A a4 ag,
in the sense that v is a vertical line of the same direction and
length as the sum of the vertical lines a,.2%, an_1 2™, -+ - a2, a,.
The same construction holds good for values of z greater than
1 or negative. The only difference is that the point 2 is beyond
the interval O1 to the right of 1 or to the left of 0. The negative

sign of
A, Anx + @y, 2,22 + a, 2, ete.,

will signify that the direction of the lines is downward. Nor are
any alterations necessary in order to include the case that several
or all of the lines aq, a1, * - - @, are directed downward and corre-
spond to negative numbers. They are laid off on the y-axis in
the same way as if to find the sum

a+ o+ a+ -+ ay,

Cot1 lying above or below C, according to a, being directed
upward or downward. The construction can be repeated for a
number of values of . The points Py will then represent the
curve, whose equation is

y=o+axr+ -+ a2

x and y measuring abscissa and ordinates in independent units
of length.

In order to draw the curve for large values of @ a modification
must be introduced. It will not do to choose 01 small in order
to keep « on your drawing board; for then the lines B,C, will
become too short and thus their direction will be badly defined.

L - -
The way to proceed is to change the variable. Write for instance

X = z/10, so that X is ten times as small as z and write

A, = a,-10%
Then as

y = ag+ a- 10 +a2102 + -+an10”1—0;
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y= Ao+ 4 X + A,X2+ --- 4+ 4,X".

Lay off the lines 4y, Ay, --- A, in a convenient scale and let
X play the part that x played before. The curve differs in scale
from the first curve and the reduction of scale may be different
for abscissas and ordinates but may if we choose be made the
same so that it is geometrically similar to the first curve reduced
to one tenth. It is evident that any other reduction can be
effected in the same manner. By increasing the ratio /X we
enhance the value of 4, in comparison to the coefficients of lesser
index, so that for the figure of the curve drawn in a very small
scale all the terms will be insignificant except 4,X™. In this
case the points Cy, C;, ---, C, will very nearly coincide with O
and only (41 will stand out.

It is interesting to observe that the best way of calculating an
integral function

a0 + o + @2t 4+ -- - 4 a2

for any value of x proceeds on exactly the same lines as the
geometrical construction. The coefficient a, is first multiplied
with ¢ and @, is added Call the result a,—,’. This is again
multiplied by 2 and a,_s is added. Call this resuit a,-»’. Con-
tinuing in this way we finally obtain a value of a/, which is equal
to the value of the integral function for the value of x considered.
Using a slide rule all the multiplications with & can be effected
with a single setting of the instrument. The coefficients ¢, and

the values a,” are best written in rows in this way

dpn Qp-a Qur-2 -~°-° Qo

Gpl Any'T -+ @'T a'x

/ ! /! !
Opn—q Qn-o *°°- M Qo

The accuracy of the slide rule is very nearly the same as the
accuracy of a good drawing. But the rapidity is very much
greater. When therefore only a few values of the integral func-
tion are required, the geometrical construction will not repay
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a drawing of the curve. The values supphed b calculation
would have to be plotted, while the geometrical construction
furnishes the points of the curve right away and in this manner
gains on the numerical method.

There is another geometrical method, which in some cases
may be just as good. Let us propose to find the value of an
integral function of the fourth degree.

y = ao+ air + a2’ + a37® + ot

and let all coefficients in the first instance be positive.

The coefficients ay, @1, a2, 23, a4 are supposed to be represented
by straight lines, while « will be the ratio of two lines. The lines
@o, @1, A2, a3, a4 are laid off in 2

_.AD broken line a4 to the right from
/,«(;” ch Co to Cy, @y upward from C; to
Be= 'g:b = -:3_\ Cf;\\ (2, ap to the left from C; to C, a3
\ ol / N \ downward from C; to (4, a4 again
\ Y ol \ to the right from C to Cs (Fig. 7).

N B ¥ NEEE . -

Y 7

L Cs J \ T%xrough Cs drawa} line 54 to
:4 E \ a point A on C3Cy or its prolonga-
T ao“; Lf C, ¥ tion and let  be equal to the
Fie. 7. ratio Cid : CiCs taken positive

when 04 has the same direc-
tion as (3Cs. Then we have

A = .
LA gy

and

Cs4 = ar + as.

(:A4 and (s34 are positive or negative according to their direction,
being the same as the direction of C3Cy or opposite toit. Through
A draw the line 4B forming a right angle with Cs4 to a point B
on C,C; or its prolongation. Then we have

C3B = C3ASC = (0493 + d3) £
and
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"B = g.02 4+ g.r 4+ 4.
Lot} a;xre as.

wWovv 1

(3B and (B are positive or negative according to their direction
being the same as the direction of C>C; or opposite to it. Simi-
larly we get

aira 2

CiD = a@® + a2 + ax + oy,
and finally
CoF = ag* 4+ ast® + w2 + a2 + a,.

CoF is positive, when E is on the right side of €y and negative
when on the left side. When the point 4 moves along the line
C;Cy, the point E will move
along the line Co(; and its
position will determine the
values of the integral function.
To find the position of E for
any position of 4, we might . 1
use transparent squared paper, ~T"
that we pin onto the drawing *ﬂ_
at (s, so that it can freely be -

~

™t

[1<

A<

by

.

turned round Cj; Following
the lines of the squared paper
along CsABDE after turning it through a small angle furnishes
the position of E for a new position of 4 (Fig. 8).

To include the case of negative coefficients we draw the corre-
sponding line in the opposite direction, If for instance a3 is
negative C3C; would have to lie above €;; but C:4 would have
to be counted in the same way as before, positive in a downward,
negative in an upward direction.

The extension of the method to integral functions of any degree
is obvious and need not be insisted on. It may be applied with
advantage to find the real roots of an equation of any degree.
For this purpose the broken line CsABDE would have to be
drawn in such a way that E coincides with Cp. In the case of
Fig. 7, for instance, it is easily seen that no real root exists.
Fig. 9 shows the application to the quadratic equation. A circle

Fi1c. 8.
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r:l wn Oyvor ~
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18 CoCs 0

furnish the points 4 and A’ that correspond to the two roots.
Both roots are negative in this case.

The first method of constructing

e ———

L q;?g@"'— ’ the values of an integral function can
AN be extended to the case where th
y l \ \_J\A e e en.e 0 the case ere the
/ /% 7|\  function is given as the sum of a

;I 4/ /'( 4.\ number of polynomials of the form
Y 1
\ f '/ , }
\ I AN\l = at a1 +ab—pE—g
A tae-peE—e=n+
= ao" ) Let us again suppose ag, a1, @, *- -
Fra. . to represent straight lines laid off as
before on the y-axis upwards or down-
wards as if to find their sum. «,p, ¢, r -+ - are meant, to be num-

bers represented by the ratio of certain segments on the axis of
abscissas. Let us consider the case of four terms, the highest poly-
nomial being of the third degree. The fixed distance between the
points marked p and p+ 1, gand ¢+ 1, r and r + 1 on the
axis of abscissas, Fig. 10 is chosen arbitrarily and the position

o]
:-Ci ! '/-"QO
| e
A, P oo
Lo e g
C 3 e 5 -
" Fr=do
a T
2{__02 A__ “_.1}-:‘ . "{’331 2
aft T
FO Ay |
a |
Q,) } -
P q r x ptl gl ril x”

Fic. 10.

of the points marked p, ¢, r, 2 is made such that the ratio of
Op, Oq, Or, Oz to that fixed distance is equal to the numbers

p, q, r, . For negative values the points are taken on the left
of 0.
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Draw parallels to the y-axis through p, ¢, r, 2, p 4+ 1, ¢ + 1,

r 4+ 1. On the parallel through r 4+ 1 find the point @, of the
same ordinate as C,; and on the paraliel through r find the point
Ao of the same ordinate as (3 Join 4y and ¢ by a straight
line and find its intersection P, or that of its prolongation with
the parallel through . The height of P, above C; or A, is
equal to az(x — r) and the height above (s is equal to az(x — 7)
4+ @2. On the parallel through ¢ 4+ 1 find a point ¢, of the same
ordinate as P, and on the parallel through ¢ a point A, of the
same ordinate as (.. Join A, and @y by a straight line and find
its intersection P, or that of its prolongation with the parallel
through«. The height of P. above (; or 4, 1s equal to

las(x — 1) 4+ &)@ — 9),
and the height above (1 is equal to

a(x—r)(x—q) + w@—q) + a.

Finally find a point @, on the parallel through » 4 1 of the
same ordinate as P» and a point A4» on the parallel through p of
the same ordinate as ;. Join 4; and ¢, by a straight line and
find its intersection P or that of its prolongation with the par-
allel through 2. The height of P; above Cy or 4, will then be

[as(x — ) (@ — q) + @(x — q) + a)(@ — p)

and the ordinate of P; will be equal to the given integral function

N L oafmo— N )
V) T w24 YI\L ¥/

+ a(x — p) + ao.

For large numbers p, q, r, x we use a similar device as before by

LY n,( — \ —_— ﬂ
g = W\« AT 4/

"

introducing new numbers P, @, R, X equal to one tenth, or one

hundredth or any other fraction of pgrz. For instance
P =910, @ =q/10, R=1r/10 X = ¢/10.
We then write
Ao = ag, A1 = 10a;, 4y = 100a,, Az = 1000as,
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y= Ao+ H(X—P)+ A (X— P)( X — Q)
+ A3(X — P)(X — @)(X — R).

A A AA A L‘I‘I’\{I 2 gt + 1’\ d!1nn

185 L1y L1y, £12, 413 aliu y INUGT el OC U

e values are constructed in the same way as

-

="
H..
=

convemently an
before.

Now let us consider the inverse problem. The values of the
integral function are given for

rL=p q TS,

find the lines aq, a1, a2, a3, so that the value of the integral function
may be found for any other value of 2 in the way shown above.
Let us designate the given values of the integral function for
X= P, q,7,8bY Yp, Yg, Yr, ¥» and the points on the parallels through
P, q, 7, s with these ordinates by P, @, R, S (see Fig. 12).
Forz = p the integral function

y=ao+ a@—p +a@—p(z—q + al@—p@E—q(z—r)
reduces to aq. Therefore we have y, = ao. The point (; is
found by drawing a parallel to the axis of abscissas through P
and taking its intersection with

the axis of ordinates.
Cz,—-----------———i/A In order to find ; draw a
straight line through P and ¢
and find its intersection 4 with
] ER 4B . the parallel through p 4+ 1 (Fig.
‘, 11). A parallel to the axis of
0 ! abscissas through A intersects
? 7 pn the axis of ordinates in C,. For

P Y

Fic. il. the differences Ye—Yp and Ya—Yp
(writing y, for the ordinate of
A) are proportional to the differences of the abscissas and con-
sequently in the ratio (g — p) : 1. Therefore
Ya — Yo

Yo — Yp = ¢ — p = .

A
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In the way as the

\J J a pulllu AL waAAYS I.IW.I.W s

might join any point X on a parallel through « with the point P,
find the intersection with the parallel through p + 1 and draw a
parallel to the axis of abscissas. The point of intersection of

t 0 on the par lle] thrgug}m q we

Fig. 12.

this parallel with the vertical through « let us call X’ and its
ordinate y’. Then we have

Y=y = L= =+ w(@— ) + as@— @ — 7).

Let us carry out this construction not only for # = ¢ but also
for x = r and = s. This leads us to three points ', R’, §’
on the verticals through ¢, r, s, whose ordinates are the values
of the integral functions

= (a0 + o) + @@ — ¢ + az(x — q)(x — 7).

In this way we have reduced our problem. Instead of having
to find an integral function of the third degree from four given
points P, @, R, S, we have now only to find an integral function
of the second degree from three given points @', R/, §’. A second
reduction is effected in exactly the same manner. @’ is joined
with R’ and S’ by straight lines and through their intersection
with the vertical through ¢ 4+ 1 parallels to the axis of abscissas
are drawn that intersect the verticals through r and s in the
points R’ and S’ respectively. The ordinates of these points
are the values of the integral function y’’ defined by
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tll" ar "

¥ 7 Yq
r— q

y' =y = = gy + a3(x — 1),

forx =rand z = s, or

y' = ap+ a1+ ay + az(x — 7).
The horizontal through R” intersects the axis of ordinates in the
point (3. Finally we find C; by drawing a parallel to the axis
of abscissas through the intersection of R”'S” or its prolongation
with the vertical through r 4+ 1.

Having found the points C1(C2C3Cy we can now for any value
of x construct the ordinate

y=a+ a@—p + a@—p)(z—q)
+ w@x—p)@—@@@—r1),

and thus draw the parabola of the third degree passing through
the four points P, @, R, S.

The construction may be somewhat simplified first by making
p+ 1 =¢q. Our data are the points P, ¢, R, S, and we are

pb‘I‘IeLLly dL llUt’,I'Ly LU I.[ldahﬁ LIIB V—BI'LILdl LIlI'UUBn p "r .l LUlIlClue
with the vertical through @. In this case the point Q' will
coincide with . 'The parabola of the second degree through the
points §'R'S’ is again independent of the distance between the
verticals through ¢ and ¢ 4+ 1 and at the same time independent
of the point P. Therefore we are perfectly at liberty, for the

construction of any point of this parabola, to make the vertical
throueh q J-- 1 rﬁntnrnrla nnfh the v.orflngl thronoh p even if the

u;;;uung ALdl wvaanyy Livi wiaad \Jublj A v LT S N Y O LW

distance of the verticals through P and @ is different from that
of the verticals through @ and R. R” will in this case coincide
with R’. The procedure is shown in Fig. 12. Starting from
the points P, @, R, S the first step is to find R/, §’ by connecting
R and S with P and drawing horizontals through the inter-
sections A,, 4, with the vertical through q¢. The next step is to
find §” by connecting ¢ (identical with @) with S’ and drawing
a horizontal through the intersection with the vertical through r.
Now the straight line R”S” can be drawn (R” being identical
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ch any point 2 take the inter-

Aax

with

AL

R, On the vertical throu
section with R''S”” and pass horizontally to the point 4.’ on the
vertical through . Draw the line @'4.” and find its intersection
with the vertical through «. This point i1s on the parabola
through Q'R'S’. DPass horizontally to the point 4, on the
vertical through ¢ and draw the line 4.P. Its intersection with
the vertical through « i1s a2 point on the parabola of the third
degree through P, @, R, S.

The method is evidently applicable to any number of given
points, the degree of the parabola being one unit less than the
number of points.

The methods for the construction of the values of an integral

function may be applied to find the value of any rational function
y = R(x).

For a rational function can always be reduced to the form of a
quotient of two integral functions

R(@) = qi(2)/g2(2).

Now after having constructed curves whose ordinates give the
values of ¢1(2) and go(x) for any abscissa 2 (Fig. 13), R(z) is found
in the following manner.

Through a point P on the Ay Axis KM

axis of abscissas draw a | v )

parallel to the axis of or- ¢ L
dinates. Let Gy and G, / (a/’"

be the points whose ordi-
nates are equal to ¢ (@)
and ¢ (x). Pass horizon- 1 @ Axis
tally from G; to Gy’ on the
vertical through P and
from G to G’ on the axis of ordinates. Draw a line through
P and Gy and produce it as far as A4 where it intersects the
horizontal through G;. Then R(2) is equal to the ratio Gy'A
to PO. GyA may then be set off as ordinate on the vertical

Fra. 13,
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R(x) in lengt when OP is chosen as the unit of length.
§ 4. Linear Functions of Any Number of Variables.—Let us
consider a linear function of a number of variables xy, 22 - -+ @y,

ay + oy + e + - + an’,,

where ag, a1, @2, - -+ an are given numbers positive or negative.
The question is how the value of this linear function may be
conveniently constructed for various systems a;, s, - Zn.
Suppose ag, @, - -+ a, to represent horizontal lines directed to
the right or left according to the sign of the corresponding number
and to be laid off on an horizontal axis in succession as if to find
the sum

G+ o+ a4 -+ an

ao begins at O and runs to 1, gz begins at C; and runs to C, and
so on (Fig. 14). The numbers ;, @, -+ &, let us represent

Fra. 14.

by ratios of lengths. We draw a vertical line through O and
choose a point P on the horizontal axis. Then let x; be equal
to the ratio 01/PO, ay = 02/P0, ete. If P is chosen on the left
of 0, we take the point 1 above O for a positive value of 2y and
below O for a negative one and the same for the other points.
Mark a point 0 above O in the same distance from O as P. Join
the point P with the points 0, 1, 2, 3, 4, - -- and draw a broken
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e (A4, A. 4. in g1 1nh o manner t}\nt A 3¢ an tho voantinal

s A-LU-L-LJ_AAAJ-LQA.I-Q ALiL Ll.\.;.l.l i 1ilidial Al 44 A0 ViL LAIC Yol uviLdal

through (1 and 0A, is parallel to PO, A, on the vertical through
(', and A¢A; parallel to P1, 45 on the Vertical through C; and 4,4
parallel to P2 and so on. Then the ordinate y, of Ay will have
the same length as ¢y and will be directed upward when the
direction of ag is to the right, and downward when the direction
of ay is to the left. The difference 3y — y, of the ordinates of 4,
and Ag is equal in length to a1, as 31 — ¥, and a; have the same
ratio as 01 and PO. A, will be above or below 4y according to
the line ayr; being directed to the right or to the left and it is
understood that a;z; has the same direction as a; for positive

An-1
40 4, Az As
P Yo i [t |Us Yn-
\0 1 o, 05 Cy Cn O’(mlfAn
3
Fia. 15.

values of 1 and a direction opposite to a; for negative values
of 2. Thus the ordinate 3 has the same length as the line
ag + ax; and its direction is upward or downward according to
the direction of the line ag 4+ a;x; being to the right or to the left.
In the same way it is shown that the ordinate % of the point 4,
is equal in length to

ag + a1 + asxs,
and ys3 to
ap + oty + axs + azxs

and so on, the direction upward or downward corresponding
to the positive or negative value of the linear function.,
If the values of @1, s, -- - x, satisfy the equation

a+ o+ e+ -+ a2 =0

the ordinate y, must vanish, that is to say, the point 4, must
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coincide with C,;1, the end of the line a,. And vice versa if 4,
and Cryy coincide the equation is satisfied. Consequently if we
know all the values but one of the numbers ;, 5, - - 2, the

unknown value can be found graphically. For suppose 23 to be

An. éAﬂ 1
P yn|-2 yn-].
\O C], Ca Cn—lCn Cn+L=An
n

Frc. 16.

the unknown value we can, beginning from O, find the broken
ine as far as 4, and beginning from the other end 4, we
can find it as far as 4; (Fig. 15). A parallel to 4,453 through P
furnishes the point 3 on the axis of ordinates. If @y, 2, ++- Tnny
are known and only z, not, we can draw the broken line as far
as A,_1and as 4, has to coincide with (.1, we can draw a parallel
to A, 4, through P and find the point n on the axis of ordinates

Aa AA“ o ——

Ag AL A, 2o ' ‘l
As

0O C C: Cs G50 CyC7

Ly

Fie. 17.

that determines the value @, by the ratio On/PO or On/Oo. In
Tioe 15 and 18 all thao aanffhins a3t

Figs. 15 and 16 all the coefficients aq, a1, ---, are positive. A
negative coeflicient a5 is shown in Fig. 17. The only difference
is that C; lies to the left of C5 and consequently the broken line
passes from A4 back to 4.

If we keep the points 0, 1, 2, - - -, in their positions but change
the position of P to P’ (Fig. 18) and repeat the construction of
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the broken line, we obtai

he ()/1 ! -’4 "« .. instead of 04,4145
The ordinate y,’ of th

Ldajjiajsa

poi s evidently
0

e
0 01 Oa
Ya “a0P0+a1PrO+ +aa.f)70

and therefore

, _ PO
Yo = proy Yo

That is to say, by changing the position of P without changing
the position of the points 0, 1, 2, - - - we can change the scale of
the ordinates of the broken line. They change inversely pro-

2

Fic. 18.

portional to PO. It may be convenient to make use of this
device in order to make the ordinates a convenient size inde-
pendent of the scale that we have chosen for the points 0,1, 2, - - -
that determine the values

01 02

xl:-o—ﬁ, %:56,....

A linear equation with only one unknown quantjty
Qy -+ X = 0

18 solved by drawing a parallel to 4,4, through P. Let a second
equation be given with two unknown quantities

bo + bixy + bexz =

The lines by, by, by are laid off as before. Knowing z; as the
solution of the first equation we can construct the broken line
OB,B; corresponding to the second equation and as B, must
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coincide with the end of b,. we can draw 2
vvvvvvv WA - A U‘, LI W s RA AR AL LYy VY iy

through P and find 2. In a similar manner we can ﬁnd x
from a third equation

(343

DY)

4 o

fe
bl IR 1

e - oo 4 o
W i

’ = f
1 1 Lads = Uy

Py
i

and so we can find any number of unknown quantities, if
each equation contains one unknown quantity more than those
before.

In the general case when n unknown quantities are to be
determined from n linear equations each equation will contaiu
all the unknown quantities, and therefore we cannot find them
one after the other as in the case just treated. But it can be
shown that by means of very simple constructions the general case
is reduced to a set of equations, such as has just been treated.
Let us begin with two

] C;i__cf_ h SO.T-“A\Q.! .:?:_J@z L iﬁ_ﬁ equations an.d. two un-
| A &1 \\\\ ¢2 \ ’ll Ii known quantities.
Ofi bo ! \B b, ‘\Blbz \iBz L ag + oy + mx = 0,
e 19 bo + by + byaz = 0.
The lines a,, al, a, are laid off on a horizontal line OAgAlAg and

tho Bnee b B B An ane | TP S o (Y 100
the lines 0, ul, b, on another horizontal line O'B¢B,B; \L 15 19).

Now let us join O and 0, 4y and By, 4, and B, 42 and B: by
straight lines and let us draw a third horizontal line intersecting
them in the points 0"CyC,(C;. These points correspond to a
certain linear function

co + a2y + oas,

and it can be shown that it vanishes when 2, and 2» are the same
values for which the first two linear functions vanish. Let the
distance of the first two horizontal lines be [ and the distance of
the third from the first and second » and k. Then it can readily
be seen that

h
00=a0+“l(bn"‘ao)=’z‘ao+

k h
7 bg.
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For a parallel to 00’ through A4, defines with the line 4,B; on

the third and second horzontal line segments equal to ¢y — ag

and by — ao and as these segments have the ratio h/l, it follows
that

1

o= ot b= ag =

By drawing a parallel to A¢B, through A, and to 4,B, through
As or through B, (which comes to the same thing), we convince
ourselves in the same way that

h k h
¢ = oy + ?(bl_al):’fal+"2'b2
and
h k h
e=6+ jh—a =70t b

Multiplying the equation
ay + a4+ agry = 0
by k/l and the equation

bo + by 4+ by = 0
by h/l and adding the two products, we obtain

cg + ey + ey = 0.

The third horizontal need not lie between the first two. If it
lies below the second we have merely to give k a negative value
and if it lies above the first we have to give b a negative value
and the same formulee for ¢y, 1, & hold good. Consequently the
conclusjon remains valid, that from the first two equations the
third follows.

Now as we are perfectly at liberty to draw the third horizontal
line where we please, we can let it run through the intersection
of the straight lines 4,B; and AsB,. In this case the points C;
and C; must coincide and consequently ¢; must vanish. If ¢
does not vanish we can by what has been shown above find z;
and with z; we can find 2z from either of the two first horizontal
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say, in case t

straight lines A, B», A,By, AoB, all pass through the same point,
while 00" does not pass through it, the two given equations
cannot simultaneously be satisfied. For if they were, it would
follow that

co + ¢y -+ core = 0,

and as ¢, and ¢, are zero ¢y would have to be zero, which it is not
as 00 is supposed not to pass through the intersection of A.B,,
A By and 4¢B,. If on the other hand all four lines A3B,, A4,B,
AoBy, 00" pass through the same point, ¢g, ¢; and ¢, will all three
vanish. In this case the two given equations do not contradict
one another, but bybb, will be proportional to a¢ai@s. The

Ao 4 4y 4 A 4
0 1) | T i 1 X )
/ \ \ \ / \ !
. \
O, IIBO \uB 1 \BQ '.\B,’i "B‘] \B,) ’BG
X 1 |
i \ ! \ I’ 1 f
d .,@ 0 \C: \Ce CaCi Vs s
Co' Cy I ¢y 1 Cy I Cs i Cs !

second equation will therefore contain the same relation between
2, and 2. as the first, so that there is only one condition for
and 2; to be satisfied. We may then assign any arbitrary value
to one of them and determine the value of the other to satisfy the
equation.

In the case of two linear equations of any number of quantities
ry, X2, * -+ &n We can by the same graphical methud eliminate one

of the quantities. In Fig. 20 this is shown for two linear equa-
tions with six unknown quantities, The two horizontal lines
0 Ao A1 A 43444546 and O'ByB1B:B3BBsBs represent two linear
equations. Through the intersection of A3;B; and 4,B, a third
horizontal line is drawn intersecting the lines 00', 4B, A,B,,

+ AgBs in 07CyCy --- Ce. As €3 and C; coincide, the line ¢
vanishes and x; is eliminated, so that the equation assumes the

form
co + Xy + carat-czrs + x5 + cers = O,
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tities isrepresented geometrically on six horizontal lines. W
keep one of these; but instead of the other five we construct five
new ones from which one of the unknown quantities has been
eliminated by means of the first equation. Now it may happen
that at the same time another unknown quantity is eliminated,
then this quantity remains arbitrary. Of the five new equations
we again keep one that contains another unknown quantity and
replace the four others again by four new ones from which this
unknown quantity has been eliminated. Going on in this
manner the general rule will be that with each step only one
quantity is eliminated, so that at last one equation with one un-
known quantity remains. Instead of the given six equations
with six unknown quantities each, we now have one with six,
one with five and so on down to one with one. The geometrical
construction shows that this system is equivalent to the given
system, for we can just as well pass back again to the given
system. We have seen above how the unknown quantities
may now be found geometrically. It may however happen in
special cases that with the elimination of one unknown quantity
another is eliminated at the same time. To this we may then
assign an arbitrary value without interfering with the possibility
of the solution. Finally all unknown quantities may be elimi-
nated from an equation. If in this case there remains a term

different from zero it shows that it is impossible to satisfy the
Q‘IVPn Pmm’rmnq q:mn]’ranpmlqlv If no term rpmamq the two

equations from which the elimination takes its origin contain the
same relation between the unknown quantities and one of them
may be ignored.
§ 5. The Graphical Handling of Complex Numbers.—A complex
number
2=+ iy

is represented graphically by a point Z whose rectangular codrdi-
nates correspond to the numbers ¢ and y. The units by which
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the cobrdinates are measured, we assume to be of equal le
We might also say that a complex number is nothing but an
algebraical form of writing down the cosrdinates of a point in a
plane. And the calculations with complex numbers stand for
certain geometrical operations with the points which correspond
to them.

By the “sum” of two complex numbers

an=x+yr and =2+ yn

we understand the complex number

%3 = X3 + ys
where

. =a+ a2 and ys= g1+ yo
and we write

23 = 21 + 2.

Graphically we obtain the point Z; representing z; from the
points Z; and Z. representing z; and z by drawing a parallel

to 0Z, through Z; and making Z,P
4 fptn- 213 c.nnn] t~ 7. in longth

(Fig. 21) equal to 0Z; in length

and direction or by drawing a paral-

11" lel through Z» and making Z,P

f / IJ equal to OZ; in length and direc-
|

. Az Ya tion. The coordinates of P are
! i ! evidently equal to 2y 4+ 2 and
T  un+tn

Two complex numbers z and 2’
Fia. 21 are called opposite, when their sum
is zero.

242'=0 or x=—2a and y=—y or z=—7.

The corresponding points Z and Z’ are at the same distance from
the origin O but in opposite directions.

The difference of two complex numbers is that complex
number, which added to the subtrahend gives the minuend

2e 4+ (3 — 22) = 1.
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21— 2= (g —x) + (yy — yz)’i-

This may also be written

21+ 2" where 2/= —2= —2 — .
That is to say, the subtraction of the complex number 2, from z,
may be effected by adding the opposite number — z. For the
geometrical construction of the point Z corresponding to 2z, — 2
we have to draw a parallel to 0Z; through Z; and from Z, in
the direction from Z; to O we have to lay off the distance Z,0.
Or we may also draw from O a line equal in direction and in length
to Z.Z;. This will also lead to the point Z representing the
difference 2; — 2.
The rules for multiplication and division of complex numbers
are best stated by introducing polar codrdinates. Let r be the
positive number measuring the distance 0Z in the same unit
of length in which @ and y measure the abscissa and ordinate, so
that

r= vl 4 o

and let ¢ be the angle between 0Z and the axis of 2, counted in
the direction from the positive axis of x toward the positive
axis of y through the entire
circumference (Fig. 22). Then
we have Z

= rcoSe, ¥ = rsing T

and /g ¢
\

z =+ yi = r(cose¢+ sin ¢t),

Let us call » the modulus
and ¢ the angleof 2. The an- Fra. 29,
gle may be increased or di-
minished by any multiple of four right angles without altering
z, but any alteration of r necessarily implies an alteration of .
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By the product of two complex numbers
2y = re? and z = roetd

we understand that complex number z; whose modulus 7; is
equal to the product of the moduli 7, and r, and whose angle ¢3
is the sum of the angles ¢, and ¢ or differs from the sum only by
a multiple of four right angles

The definition of division follows from that of multiplica-
tion. The quotient z; divided by 2 is that complex number,
which multiplied by 2 gives z,. Therefore the product of its
modulus with the modulus of z must be equal to the modulus of
z; and the sum of its angle with the angle of 2 must be equal to

the angle of 2. Or we may also say the modulus of the quotient

!HA Dﬂl'll‘)] l"\ +"\D 1T + ‘F +1"\D mf\rl"'l] l"m nh{'] .+G nh”]
<1/*¢ 18 equal 10 Line quotient O Tiie modGull ry/ry and Its angie

equal to the difference of the angles ¢; — . An addition or
subtraction of a multiple of four right angles we shall leave out
of consideration as it does not affect the complex number nor
the point representing it.

The geometrical construction corresponding to the multi-

plication and division of complex numbers is best described by
constdering two quotients each of two complex numbers that

A 1L L) WL C LYYy g i A AR

give the same result. Let us write

Ri/% = 23/%.

The geometrical meaning of this is that

?‘1/7'2 = T3/’f4,
and

L1 2 = Y3 ™ P4

That is to say, the triangles Z;0Z, and Z;0Z, are geometrically
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ymilar (Fig. 23). When three of the points Z, Z,, Z;, Z, are
given the fourth can evidently be found. For instance let
7\, Zs, Z4 be given. Draw a parallel to Z,Z; intersecting 0Z,
at a distance r, from . This point together with the inter-
section on 0Z, and with O will form the three corners of a tri-

angle congruent to the triangle Z,Z;0. It will be brought into

Y

v
Z,‘:l

Fi1a. 23. Fic. 24,

the position of Z,Z30 by being turned round O so as to bring the
direction of the side in 0Z; into the position of 0Z;. Thus the
direction of 0Z; and its length may be found.

This construction contains multiplication as well as division as
special cases. Let Z, coincide with the point ® = 1, y = 0, so
that 2z, = 1 (Fig. 24), then wehave

21/ = 23 Or 21 = Z2.

From any two of the points Z,, Z,, Z; a simple construction gives
us the third.
The geometrical representation of complex numbers may be used
to advantage to show the properties of harmonic oscillations.
Let a point P move on the axis of &, so that its abscissa at the
time ¢ ;s given by the formula

x =71 cos (nt+ a),

n, r and « being constants. We call r the amplitude and nt + «
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forwards between the limits x =7 and 2 = — r. The time

T = 2x/n is called the period of the oscillation, it is the time in
which one complete oscillation backwards and forwards is per-
formed.

Now instead of x let us consider the complex number

z = rcos(md + a) + rsin(nt + a)t
or
z = re™toi

of which « is the abscissa and let us follow the movement of
the point Z. For{ = 0 we have
2 = re™,
Designating this value by zy, we can write
2 = goe™,
The geometrical meaning of the product
At

is that the line 0Z, is turned round O through the angle nf. For
the modulus of €™ being equal to 1 the modulus of 2z, is not
changed by the multiplication. The

4 movement of the point Z therefore
t=T/,4§"*“"“\\ consists in a uniform revolution of
,,/ \ hizo 0Z round 0. At the moment = (
/ \ o\ the position is 0Z, and after the

- M "4 time T = 2x/n the same position is
\ 7 N / . . .
te) o \ . occppled again. The revolution goes
.. \\/’,; 5 on in the direction from the positive
SeadeoT =2 axis of a2 to the positive axis of y
(Fig. 25).
Fra. 25, The movement of Z is evidently

simpler than the movement of the
projection P of Z on the axis of a.
Let us consider a motion composed of the sum of two harmonic
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x = 1 c08 (nt 4+ ) + r2cos (nf + ap),

and let us again substitute the motion of the point Z correspond-
ing to the complex number

For t = 0 the first term is

ay = Tigali
and the second term

2 = T2€q‘.

Introducing 2 and 22 into the expression for 2 we have

o = zlgn!i + 2:'26"“ — (zl + 22)6"“ —_ zsgn!i
where
23 = 2 + 2.

This shows at once that the movement of Z is a uniform circular
movement consisting in a uniform revolution of 0Z round O.

oyt F e 1

mveddri e ndt 4o T
L OLIIG IHUIINCLIIL ¢ — U 1o

m. .
11 pusitivil

complex number

Th
x = r3cos (nl + as)

where r; and o3 designate modulus and angle of z;. Thus the
sum of two harmonic motions of the same period is shown also
to form a harmonic motion.

The same holds for a sum of any number of harmonic motions
of the same period. For the complex number

o = Tig(nt‘i*al)i + T26(nt+a2)1' + .. + T,\B(Mﬂ'\)i

where 7, 7, - 72 @1, o, -+ a, and n are constants may be

written

o = zlenti + Zggnﬁ' + e s + 2,')\6"’“
or
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where

Z=2n+zn+ -+ 2.

The movement of Z therefore, excepting the case 2y = 0, consists
in a2 uniform revolution of 0Z round 0, 0Z always keeping the
same length equal to the modulus of z5. The position of 07 at
the moment { = 0 is 0Z,.

The motion of a point P whose abscissa is

x = g * cos (nf + a)

where a, k, n, « are constants (a and k positive) is called 2 damped
harmonic motion. It may be looked upon as a harmonic motion,
whose amplitude is decreasing. To study this motion let us
again substitute a complex number

z= ae " cos (nf + «) + ae™* sin (nt 4+ o)z,

or
2 = ae—kt,g(nc+ﬂ-)z’

or

where zp 1s written for the complex constant ae™.
The product

Age™ !
is a complex number corresponding to a point Z; on the same
radius as Z;, coincident with Z;, at the moment { = 0 but ap-

nrnanhno* (0 in a ceometrical ratio after t = 0. In unit of time

hadiaed b oY LA/ LA A ANA L AVRALS v s a A, A anaAa

the distance of Z,; from 0 decreases in the constant ratio e™* : 1,
The multiplication with ¢"% turns 0Z, round O through an angle
nf. We may therefore descnibe the motion of Z as a uniform
revolution of OZ round 0, Z at the same time approaching O
at a rate uniform in this sense that in equal times the distance
is reduced in equal proportions (Fig. 26). At the moment ¢ = 0
the position coincides with Z;. We speak of a period of this
motion meaning the time T = 2r/n in which 0Z performs an
entire revolution round 0, although it does not come back to its
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original position. Any part of the spiral curve described by Z
i a given time is geometrically similar to any other part of the
curve described in an interval of equal duration. For suppose
the second interval of time hap-
pens 7 units of time later, we

. t=Th ="~~~
shall have for the first interval //5"'\ .
’ \ \\
y A N
§ 4 —
o = zoe—k!,gnh’ ”; \\ =0
\
{ \ [
[} | A \
and for the second interval : =T + >
\ -~ \ !
v "_,-’ \ i
2 = zpg R L gnttn)s, =Y NS
\\ \\ /I/
Now if z; and 2 are the values “‘nm_--"i;g%
of z at two moments #; and ?, of |
the first interval and z,’ and 2’ Fia. 26,

the corresponding values of 2’
at the moments #; + 7 and ¢ + 7 of the second interval, we have

!
gl = pgrkitit)  pn(—e)i — A1

2

Therefore the triangle 7,07, is geometrically similar to the
triangle Z,’0Z,’. As Z, and Z. may coincide with any points
of the first part of the curve, the two parts are evidently geo-
metrically similar.

The projection of Z on the axis of z performs oscillations
decreasing in amplitude. The turning-points correspond to those
points of the spiral curve described by Z, where its tangent is
parallel to the axis of y, that is to say, where the abscissa of dz/dt
vanishes.

Now

dz

= (= ke )Mo = (= & + i)z

or

dz

dt L
— = — k4 nz = pe*
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where p and X are the modul
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=
+

Consequently, if we represent dz/df by a point Z’, the triangle
Z'0Z will remain geometrically similar to itself. The turning
points of the damped oscillations correspond to the moments
when 07’ is directed vertically upward or downward or when the
angle of dz/dt is equal to #/2 or 3xr/2. The angle of z will then
be n/2 — X or 37/2 — X plus or minus any multiple of 2r. As
the angle of 2, on the other hand, is changing in time according
to the formula

nt + «,

we find the moments where the movement turns by the equation

nt+a= r/2— A+ 2N,
or
4+ a= 372 — A+ 2N,

N denoting any positive or negative integral number. The time
between two consecutive turnings is therefore equal to =/n, that
is, equal to half a period. All the points Z corresponding to
turning points lie on the same straight line through the origin O
forming an angle 37/2 — X\ with the direction of the positive axis
of . The amplitudes of the consecutive oscillations therefore

Let us consider the vibrations of a system possessing one
degree of freedom when the system is subjected to a force varying
as a harmonic function of the time and let us limit our considera-
tions to positions in the immediate neighborhood of a position
of stable equilibrium. If the quantlty x deterrmnes the position
of the system the oscl tion atisfy a differential of

the form

q"at n

d“’x + kdx + n%r = F cos (pi)!

where m, k, n, p, F are positive constants.
1 See for instance Rayleigh, Theory of Sound, Vol. I, chap. ITI, § 46.
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This is another case where the introduction of a complex

variable
2= a4 yt

and the geometrical representation of complex numbers helps to
form the solution and to survey the variety of phenomena that
may be produced.

In order to introduce z let us simultaneously consider the
differential equation

d2 d
t2+k y—{-ny = F sin pt,

and let us multiply the second equation by ¢ and add it to the
first. We then have

dzz dz

d o + k + nZz = Fer4,

The movement of the point Z representing the complex number
z then serves as well to show the movement corresponding to z.
We need only consider the projection of Z on the axis of z.

A solution of the differential equation may be obtained by
writing

e

=z

Introducing this expression for z and cancelling the factor ¢?*

we have
2o(— mp® + kpt + n?) = F,

or

F
zﬂz__mp2+kp,i+n2'

o 1s a complex constant, that may be represented geometrically
as we shall see later on.

This solution
2 = goePh

is not general. If 2’ denotes any other solution so that
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n?zo' dz’ , )
mom R T 7 + n%’ = FePh,

we find by subtracting the two equations

a’g"— 2 dz — 2 ,
m (dtz —l+k—7—2+n2(z —2) =0
or writing
2l — 2=y,
d*u du

The general solution of this equation is
w = et + ue,

where %, and u; are arbitrary constants and A; and A\; are the
roots of the equation for A

m\2 4 kN4 n? =
ML k K 2
?\2}& -2-—7;3=|: 4m? .

If k?/4m? is greater than n? so that the square root has a real
value, V'k%/4m? — n? will certainly be smaller than %/2m. There-
fore \; and \; will both be negative and the moduli of the complex
numbers 1,6M and e will in time become insignificant. If,
on the other hand, £*4m? is smaller than n?, both complex
numbers 1,¢** and u2¢** correspond to points describing spirals that
approach the origin, as we have seen above, in a constant ratio

L9 TLUPN W Sy PF ¥ § 41c 111 L3} ALdL ¥ LU SN R W A1L s AL AR L IR A

for equal intervals of time. Therefore they will also in time
become insignificant,
After a certain lapse of time the expression

Z = ZeeP?

will therefore suffice to represent the solution.

The point Z moves uniformly in a circle round O of a radius
equal to the modulus of zp, completing one revolution in the
period 27/p, the period of the force acting on the system. The
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x = rgcos (pf + a),

where 7y 1s the modulus and « the angle of z;. It is a harmonic
movement with the same period as that of the force: F cos pt,
but with a certain difference of phase and a certain amplitude
depending on the values of F, m, k, n, p.

It is important to study this relation in order to survey the
phenomena that may be produced. For this purpose the geo-
metrical representation of complex numbers readily lends itself,

In the expression for zg

F
= + ki & ¥

2p =

let us consider the denominator
— mp* + kpr + n?,

and let us suppose the period of the force acting on the system

ranm m b m and

o nranctante of tha o
14 1L LA ALY, \3'} LA W g "U’ l'.f', w 14 LA

nnt dotorminad whila +
i vl CUIbualls
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the amplitude of the force F have given values. The quantity p
is the number of oscillations of the force during an interval of
27 units of time. This quantity p we suppose to be indeter-
minate and we intend to show how the amplitude and phase
of the forced vibrations compare with the amplitude and phase
of the force for different values of p.

Let us plot the curve of the points corresponding to the complex

number
n? — mp2 + kpla

where p assumes the values p = 0 to 4 oo,

This curve is a parabola whose axis coincides with the axis of
x and whose vertex Is in the point 2 = n%, y = 0. We find its
equation by eliminating p from the equations

x=nt— mpl, y=kp,
V1Z.,
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2o,

But it is better not to eliminate p and to plot the different points
for different values of p. In Fig. 27 the curve is drawn for p = 0
to ¢ and the polnts lor

i ) p=0,1, 2, 3 are marked.

p=2 . . .
\ R p The ordinates increase in

1 L[ ]
X proportion to p; they are

e equal to 0, k, 2k, 3k for

4m—] p=20,1, 2, 3. The dis-

tance between the projec-

Fie. 27, tion of any point of the

curve on the axis of # and

the vertex is proportional to p% It is equal to 0, m, 4m, 9m for
p=20,1,23.

For any point P on the parabola let us denote the distance

from O by r and the angle between OP and the positive axis of
x by ¢ so that

Im—

L3

nt — mp? + kpt = re’,
Then we have

) = Ted“:a
and consequently

- E L{pt—d)i

2= —e ,

r
and
F
= cos (pt — o)

The amplitude F/r of the forced vibration is inversely propor-
tional to r. Thus our Fig. 27 shows us what the period of the
force must be to make the forced vibrations as large as possible.
It corresponds to the point on the parabola whose distance from
0 is smallest. 1t is the point where a circle round O touches the
parabola. In Fig. 27 this point is marked R. It may be called
the point of maximum resonance, When the constants of the
system are such that the ordinate of the point, where the parabola
intersects the axis of ¥ 1s small in comparison with the abscissa
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of the vertex, then OR will lie close to the axis of y (Fig. 28). In
this case the angle between OR and the positive axis of z will be
very nearly equal to 90°, that is to say, the forced oscillations will

lag behind the force oscil-

R 1 Tr,.1 1 ;v ‘7?

lations by a little less than a

quarter of a period. Keep- p

ing m and n constant, this — Dyt

will take place for small val-

ues of k&, ¢. e., for a small

damping influence. A small Fia. 28,
deviation of p from the fre-

quency of maximum resonance will throw the point P away from R,
so that r increases considerably and ¢ becomes either very small
(for values of p smaller than the frequency of maximum resonance)
or nearly equal to 180° (for values of p larger than the frequency
of maximum resonance). In other words for small values of k the
maximum of resonance is very sharp. A dewviation of the period

of the force from the period of maximum resonance will lessen the
amplitude of the forced wvibration considerably. The lag of its
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phase behind that of the force will at the same time nearly vanish,
when the frequency of theforce is decreased or it will become nearly
as large as half a period, when the frequency of the force is in-
creased. For larger values of k the parabola opens out and this
phenomenon becomes less marked. The minimum of the radius r
becomes less pronounced. The angle between OR and the axis of
x becomes smaller and smaller and for a certain value of £ and all
larger values the point R will coincide with the vertex of the para-
bola. In this case, there is no resonance. When the period of
the force increases indefinitely (p becoming smaller and smaller)
the amputuue of the forced vibration will increase and will

approach more and more to the limit

F
n2’

but there will be no definite period for which the forced vibra-
tions are stronger than for all others.



CHAPTER II.

|

Monrke INDEPENDENT VARIABLES.

§ 6. Functions of One Independent Variable.—A function y of
one variable

y = f(x)

is usually represented geometrically by a curve, in such a way
that the rectangular codrdinates of its points measured in certain
chosen units of length are equal to x and y. This graphical rep-
resentation of a function is exceedingly valuable. But there is
another way not less valuable for certain purposes, more used in
applied than in theoretical mathematics, which here will occupy
our attention.

Suppose the values of y are calculated for certain equidistant
values of x, for instance:

=_6)_5:_4)_3) _21_13())

line. Draw the umform scal
i one side of the straight line and
B mark the points that correspond
to the calculated values of ¥ on
the other side of the straight line.
Denote them by the numbers =z
— that belong to them (Fig. 29).
The drawing will then allow us to
read off the value of y for any of
the values of x with a certain ac-
curacy depending on the size of the
scale and the number of its partitions and naturally on the fine-
40
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S

1ess of the drawing, It will also allow us to read off the value
of y for a value of x between those that have been marked, if
the intervals between two consecutive values of x are so small
that the corresponding intervals of y are nearly equal. We can
with a certain accuracy interpolate values of « by sight, On the
other hand, we can also read off the values of x for any of the
values of y. We shall call this the representation of a function
by a scale.

We can easily pass over to the representation of the same
function by a curve. We need only draw lines perpendicular
to the line carrying the scales through the points marked with
the values of # and make their length measured in any given
unit equal to the numbers z that correspond to them (Fig. 29).

In a similar way we can pass

=
EIJ

from the representation of the %)
function by a curve to the rep- AT
resentation by a scale. £ ‘:’5
The representation by a scale S
may be imagined to signify the o
movement of a point on a straight - ;/
line, the values of * meaning the 1/:;__25
timeand the points marked with -~ i RN g
these values being the positions

. h ] Fia. 30.
of the moving point at the times

marked. By passing over to the curve the movement in the
straight line is drawn out into a curve with the time as abscissa
(Iig. 30).

The representation by a scale is used in connection with the
representation by a curve for the purpose of drawing a function
of a function.

Let y be a function of x and x a function of {. Then we wish
to represent y as a function of ¢.

Let y = f(x) be given by a curve in the usual way and let

= o(f) be given by a scale on the axis of # marking the points
wheret = 0, 1, 2, -.-, 12, We then find the values of y corre-
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+, 12. These ordinates as a rule will not be equidistant. But

[ LR ARSI BV NP LY I S
1T LIle OIruingles UL LIE CUrve
5— - -2 —% —
=, I il y = fle(®))
3— 8 3—]
o __""0 2__'_0 - - *
21_ T N with ¢ as abscissa (Fig. 31).
. T o The representation of a func-
—’__5 — .
S tion by a scale may be general-
2

S 2~ , ized in the respect that neither
(A I O

of the two scales fﬂ‘ning one an-

— 32

s LA 428222 22%

&

l-g...—l l ——4 | l -]

— | other on the straight line need
B — . necessarily be uniform. The in-
@ _‘ly —6t x | 3 t
o 3

tervals of both scales may vary
Fra. 32, from one side of the scale to the

other. If the variation is suffi-

ciently slow the interpolation can nevertheless be effected with
accuracy. We may look at this case as composed of two cases

of the first kind.
f@) =y and y= g®.
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scale {

fl@) = g@,
w..lle the scale y is cut out (Fig. 32)

. The Principle of the Slide Rule.—Let us investigate how
the relatlon between x and { changes by sliding the z- and f-scales
along one another.

If we slide the a-scale through an amount y = ¢ so that a
point of the a-scale that was opposite to a certain point y of the
y-scale, now is opposite y + ¢, then the relation between x and ¢
represented by the new position of the scales will be given by
the equation

flx) = g(®) + c.

If , t and 2/, ¢, denote two pairs of values that are placed
opposite to one another, we shall have simultaneously

fl@) = g@®) + ¢,

f@y = gt) +
or by eliminating ¢

fl@) — g = f(2) — g(t").

The ordinary slide rule carries two identical scales ¥ = log x and
y = log t that are able to slide along one another, 2 and ¢ running
through the values 1 to 100. We therefore have

logx — logt = logz’ — log?,
b o’ ] o b
or
x x
t v
1 1,5 2 25 3 4 5 6 (8 910 —_—
L"”‘ . :1} I%:_!:':_I| rlg
1 L5 2 25 3 4 5 6 7 8§ gio|—>x

F1a. 33.

That is to say, in any position of the x- and {-scale any two values
x and f opposite each other have the same ratio (Fig. 33). This
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L

e the n
1s the p
It enables us to calculate any of the four quantities =z, ¢, 2/, ¢
if the other three are given. Suppose, for example, z, t, «’

known. We set the scales so that x appears opposite to f,

[}
the use of the slide rule 1s founded.

I ? |
T T 1 T T T 117 T—T T T T 1177
E——>1 1 152 8 4 5678010 15 20 30 40 60 30100
F— } Y 115 I? T ? 1ji ? ?l ]' T ? 1? 1?
= [ 1 L5 9 3 i 5 6 7 8 510
< X L
) _l s
Fic. 34

then ¢’ is read off opposite to 2. On the other edges the slide
rule carries two similar scales one double the size of the other
(Fig. 34). We may write

= 2log X and y= 2 logT.

By means of a little frame carrying a crossline and sliding over
the instrument, we can bring the scales z and 7T or ¢ and X op-
posite each other. If, for example, for any position of the
instrument £y T and " T’ are two pai of values OppOSife each
other, then

logxz — 2log T = loga’ — 2log T,

or
A~ 4
L _ L
T T
If any three of the four quantities 2, T, 2/, T’ are known the
£ .-at 1. 1 (P L4 | PO LN BT M S
IOUrell may e read ol 111U we [INnAa Liie value
2
xT’
T2 bl

by setting T opposite to # and reading off the value opposite to
T’. Or we can find the value of

T
X

by setting x opposite to T and reading off the value opposite 2’.
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Fia. 35.

The scales t, T may then be expressed by
y=1—1logt and y=1—2log T,

[ being the entire length of the scales.

By setting the instrument to any position and considering the
scales x and { or X and T by means of the cross line we have
logx+ logt = loga’ + logt’ and log X + log T = log X’ + log T”
or

at = 2t and XT = X'T",

so that any two values opposite to one another have the same
product.

For 2 and T wehave

Divide by u so that

W + a= *?:6'
and set T = 1 opposite to X = b. Then taking T = « we find
on the same cross line t = u? and X = b/u, so that we read the
two values u? and b/u directly opposite to each other on the
scales t and X. If b/u is positive, it decreases while u? increases.
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ence b/u — u? is equal to a. Having found it the T-scale gives

us the root of the equation. For example take

S —

by
=

or

We set T = 1 opposite X = 3 and run our eye along the scales
X and ¢ (Fig, 36), to find the place where t — 5 = X. We find

e I S 2 N Y R S W J )
' (____T

T

i p 6 75 910]

it approximately at { = 6.2, and on the T-scale we read off
T = 2.50 as the approximate value of the root. This is the
only positive root. But for a negative root 3/u is negative,
d[l(] uleTEIOTE' Llle pOSILIVG leut’; UI O/bﬂ pJ.Ub LL- WOUld 1ave to UB
equal to 5. 'We run our eye along and find { = 3.37 opposite to
X = 1.63, approximately corresponding to T = 1.84. There-
fore — 1.84 is another root. As the coefficient of %? in the first
form of the equations vanishes it follows that the sum of the
three roots must be equal to zero. This demands a second

negative root approximately equal to — 0.66. To make sure
that 1t is 80, we set the Instrumen t back and take H’lp h er end
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of the T—scale as representing the value T = 1 and give it the
position this end had before. Running our eye along the
scales X and ¢, we find ¢ = 0.43 opposite to X = 4.57, giving
X +¢t=5.00. On the T-scale we find 0.655, so that the third
root is found equal to — 0.655.

When b is negative there is always one and only one negative
root. For « running through the values « = 0 to — o0, w*—b/u
will run from — o0 to 4 oo without turning. When b is positive
there is always one and only one positive root; for then «? — b/u
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runs frgm — o0 to 4+ oo for =10t + o Tn the ﬁ}."St

QO
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ca
there may be two positive roots or none; in the second case there
may be two negative roots or none. For positive values of a
one root only exists in either case. This is easily seen in the first

form of the equation
w4+ au = b,

because from a positive value of a it follows that «® + aw will
for v = — o0 to 4 oo, run from — o to 4+ oo without turning
and will therefore pass any given value once only.

In order to decide whether in the case of a negative value of a
there are three roots or only one let us write

For negative values of b we have to investigate whether there
are positive roots. For positive values of » the function u2—b/u
has a minimum, when the differential coefficient vanishes, 2. e., for

2u+£2-=0,

or

S

Having set our slide rule so that { gives us »? and X gives us
— b/u, we find the value u where the minimum takes place by
running our eye along and looking for the values X, ¢ opposite
each other for whieh X is twice the value of ¢

2t = X,

Then t + X is the minimum of v? — b/u, so that there will be
two or no positive roots according to { 4+ X being smaller or
larger than — a. For positive values of b, we have to find out
whether there are negative roots. The criterion is the same.
After having set T = 1 opposite to b and having found the
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Then t + X is the minimum of all values that «* — b/ assumes
for negative values of ». If the minimum is smaller than — a
there are two negative roots; if it is larger there are none, If it
is equal to — a the two negative roots coincide.

For the equation

’MQ‘_E): 3

S

for instance, we find ¢ = 1.31 opposite to X = 2.62 (Fig. 36),
so that 2t = 2,62 = X. Now t+ X = 3.93 is smaller than 5,
therefore %2 — 3/u will assume the value 5 for two negative
values of % on either side of the value u = — T = — 1.143
for which the minimum of «* — 3/u takes place.

On the same principle as the slide rule many other instruments
may be constructed for various calculations. In all these cases
we have for any position of the instrument

fl@) — g() = f(2") — ¢,

where z, t are any readings of the two scales opposite each other
and 2't’ the readings at any other place. f(x) and g(f) may be
any functions of 2 and ¢ It will only be desirable that they

be limited to intervals of z and ¢, which contain no turning
+ Tlan t"\ " f +‘-\n s

olnts 1L15€ LilC Sailil LIl oCdl
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apid reading
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poln e
than one value of x or { and that will prevent
of the instrument,

Let us design an instrument for the calculation of theincrease
of capital at compound interest at a percentage from 2 per cent,
upward. If 2 is the number of per cent. and ¢ the number of
years, the increase of capital at compound interest is in the pro-

portion
(1 00) |
+ 7 .
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For taking first the logarithm and then the logarithm of the
logarithm, we obtaln

log ¢ + log log (1 + 100) = log ' + log log (1 + 100)

We have only to make the z-scale

2
y = + log log (1 +- 100) log log (1 4 100)

and the t-seale
y = logn — logt.

For 2 = 2 we have y = 0 and therefore in the normal position
of the instrument { = n. On the other end we have t = 1 and
therefore y = logm. Now let us take n = 100, so that y = 2
for t = 1. Say the length of the instrument is to be about 24
cm., then the unit of length for the y-scale would have to be 12
cm. In the normal position of the instrument the readings z, ¢

opposite to each other satisfy the equation

x \! 9 \ 200
(1+1‘o“o)=(1+166)'

Opposite t = 1, we read the value z; = 624 and this gives us

100
(1 +- 100) = 14 = 100 = 14 6.24 = 7.24,

A capital will increase in 100 years at two per cent. compound
interest in the proportion 7.24 : 1. Or we may also say the
number 2; = 624 read off opposite { = 1 is the amount which is
added to a capital equal to 100 by double interest of 2 per cent.
in 100 years. The same position of the instrument gives us the
number of years that are wanted for the same increase of capital
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at a l her percenta ge. FFor all the values x, f
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For any other given percentage & and any other given number
of years { the increase of capital is found by setting x opposite
to t and reading the x-scale opposite to £ = 1. The only restric-
tion is that the ratio is not greater than 7.24, else { = 1 will
lie beyond the end of the a-scale.

For a given increase of capital the instrument will enable us
either to find the number of years if the percentage is given, or
the percentage if the number of years is given, subject only to
the restriction mentioned.

We can build our instrument so as to include greater increases
of capital by choosing a larger value of n. =n = 1000, for in-
stance, will make y = 3 for ¢ = 1. If the instrument is not to
be increased in size the scales would have to be reduced in the
proportion 2 : 3.

Let us consider another instance

In the normal position of the instrument the scale division

marked x = % corresponds to ¥y = 0 and 1s opposite to ¢ =
]F we 1’!91‘ } — oo an the other pnﬂ f.l’lp ?ﬁhﬂ‘f}] of fhp ‘.'nc.‘.hr'nmpnf
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will correspond to y = 1/n. Let us choose n = 0.1, so that the
length of the instrument is y = 10, That is to say, the unit of
length of the y-scale is one tenth of the length of the instrument.
For any position of the instrument we have

1,1 11
x+t‘?+t’

If the scale division marked x = o0 1s opposite to ¢ = ¢ we can
write 2’ = o, ' = ¢ and have
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The instrument will therefore enable us to read off any one of
the three quantities x, ¢, ¢, if the other two are given, the only
restriction being that all three he within the limits 0.1 to .
The instrument may be used to determine the combined resistance
of two parallel electrical re-

sistances, for the resistances

satisfy the equation %
Fia, 37.

SRR

1 1 1
R TR

Simnilarly it may be used

to calculate the distances of an object and its image from the
principal planes of any given system of lenses. For if f is the
focal length and x and ¢ the distances of the object and its im-
age from the corresponding principal planes (I'ig. 37), the equa-
tion 1s

1 1 1

= ;-
On the back side of the movable part of an ordinary slide rule
there generally is a scale

y =2+ logsint.

When this part is turned round and the scale is brought into
contact with the scale
y = log z,

we obtain for any position of the instrument

logx — logsint = loga’ — logsint’,

or

x a

sint sin ¢’

for any two pairs of values z, t that are opposite each other.
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negle opposite the larcer
ngle opposite the large

a
AJ.V L&

of the two the 1nstrument ives at once the angle opposite the
other side. Similarly when two angles and one side are given,
it gives the length of the other side.

If 2" = a 1s the value opposite to ¢ = 90°, we have

!
i

T = asinf

Thus we can read the position of any harmonic motion for any
value of the phase.
An instrument carrying the scales

y = logsina and y = logsint
enables us to find any one of four angles z, ¢, 2/, ¢’ for which

sin 2 sin 2’
sinf sin ¢’

if the other three are given. Thus, knowing the declination,
hour angle and height of a celestial body, we can read the azimuth
on the instrument. We have only to take 2 = 90° — height,
t = hour angle, 2’ = 90° — declination, then # = azimuth or
180° — azimuth,

It is not necessary to carry out the subtraction 90° — height and

00° — deelination. The rhﬁ'm-pnnp mav be counted on the arale

ol A LLRUWW A A v R e I.I.J.LIJJ lllll WAL LAah, UL CUL MW

by imagining 0° written in the place of 90°, 10° in the place of
80° and so on and counting the partitions of the scale backwards
instead of forward.

§ 8. Rectangular Codrdinates with Intervals of Varying Size.—
The two methods of representing the relation between two
variables either by a curve connecting the coérdinates or by
scales facing each other lead to a combination of both.

Suppose the rectangular coordinates 2 and y are functions of
» and o,

x = o(u) and y = Y(v).

The function z = ¢(u) is represented by a uniform scale for z
on the axis of abscisse facing a non-uniform scale for v. The
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function y = ¢¥(z) 1s represented by a uniform scale for y on
the axis of ordinates facing a non-uniform scale for ». Through

the scale-divisions u let us draw vertical lines, and through the
scale-divisions » let us draw horizontal lines. These two systems
of parallel lines form a network of rectangular meshes of various
sizes (Fig. 38), and any equation between % and » may be repre-
sented by a curve in this plane.

The usefulness of this method will be seen by some examples.
It enables us by a clever choice of the functions ¢(u) and y(2)

wlhee—————
abp———————

o fpo———

Fia, 38. Fia. 39.

to stmplify the form of the curve. It is easily seen, for instance,
that a curve representing an equation f(u, v) = 0 may always be
replaced by a straight line, if we choose the u-scale properly.
For when the points v = 1, 2, 3, 4, --- of the curve are not on
a straight line, let them be moved to a straight line without
altering their ordinates (Fig. 39). This will change the w-scale
but it will not alter the equation f(u, ) = 0 now represented by
the straight line.

Suppose we want to represent the relation

where @ and b are given numbers. If « and v were ordinary
rectangular codrdinates the curve would be an ellipse. But if we
make

r=u and y =
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and the curve will therefore be a straight line running from a
point on the positive axis of x to a point on the positive axis of
y. The point on the axis of x corresponds to the value v = = ¢
on the wu-scale, and the
point on the axis of y cor-
responds to the value » =
= b on the v-scale (I'ig. 40).

Any point on the straight
line corresponds to four
combinations +u, +v;—u,
JIIEL5T2 f25 T8 T8 iinwy 0w, — v, —u, — 7, be-
cause x has the same values
for opposite values of u
and y for opposu;e values of ». We can read » as a function of

y(fv)1~

{‘\I | I f 1

F1a. 40.

262

’U

is given, we find the common solutions of the two equations by
the intersection of the corresponding straight lines. Fig. 40
shows the solutions of the two equations

u2 ,02

ot =1
and

y2  2%p?

gtz=1b

approximately equal to v = = 1.2 and » = = 2.4,
Another function much used in mathematical physics

-
V= a¢ ma



GRAPIIICAL REPRESENTATION OF FUNCTIONS. HH

L
oht line bv meane of the came

y:IOgv) L= U5,

x
y =loga— s,

where logv and log @ are the natural logarnthms of » and a.
The u-scale 1s laid off on the axis of z and the z-scale on the axis
of ¥ and we have to join the points v = 0, » = g and » = m,
v = af/e. The point ¢ = a/e 1s found by laying off the distance
vr=1 to » = e from » = a downward (I'ig. 41). We are not
obliged to take the same umts of length for 2 and y.
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Suppose we had to find the constants a and m from two equa-
tions

’?..‘L‘|‘2
P = A€ me
and
_Hg?
Vo — AL m2*

Our diagram would furnish two points corresponding to w, »
and ws, . The straight line joining these two points intersects
the axis of ordinates at » = a and intersects the parallel through
v = gje to the axis of abscissee at v = m.
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itself in such a form that more than two pairs of values u, »
would be given but all of them affected with errors of observation.
The way to proceed would then be to plot the corresponding
points and to draw a straight Iine through the points as best we
can. A black thread stretched over the drawing may be used to
advantage to find a straight line passing as close to the points
as possible (Fig, 42).

In several other cases the varables « and » are connected with
the rectangular codrdinates x and y by the functions

In applied mathematics the problem would as a rule present

x = logu and y = logno.

A
10
By
4
3
2
| 1|2 8 lilsig! Rllro
\\ >
) 3l5 i
Fia. 42. Fia. 43.

“Logarithmic paper” prepared with parallel lines for equidistant
values of w and lines perpendicular to these for equidistant values

are given by straight lines. For by

5—‘
o

re 4+ sy = logec.

The straight line connects the point ¥ = ¢ on the u~scale with
the point » = ¢° on the v-scale.
Loganthmic paper is further used to advantage in all those



ces where a varjet
are considered that differ only in % and » being changed in some
constant proportion. If w and » were plotted as rectangular
coordinates the curves representing the different relations be-
tween « and » might all be generated from one of them by altering
the scale of the abscisse and independently the scale of the ordi-
nates, so that the appearance of all these curves would be very

different. Let us write

f(u, v) =

as the equation of one of the curves. The equations of all the
rest may then be written

f(g,%)=0,

where a, b are any positive constants. The points u, » of the
first curve lead to the points on one of the other curves by taking
u a times as great and » b times as great. For if we write v’ = au
and v = bu the equation f(u, ») = 0 leads to the equation

curves be-

"D

Using logarithmic paper the diagram of all these cur
comes very much simpler. The equation f(u, ») = 01s equivalent
to a certaln equation ¢(x, y) = 0, where z = logw, ¥y = loge.
Now let 2/, ¥’ be the rectangular coérdinates corresponding to

w’, v so that

'D

= loguw = logu 4+ loga = x4+ log q,

y' = log v = log v+ logb =y -+ logd.

The point 2/, ¥’ is reached from the point z, ¥ by advancing
through a fixed distance log @ in the direction of the axis of z
and a fixed distance log b in the direction of the axis of y. The
whole curve

f(uy v) = 0
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It can be made to coincide with any one of the curves by
moving it along the directions of x and .

§ 9. Functions of Two Independent Variables.—When a func-
tion of one variable ¥y = f(x) 1s represented by a curve, the values
of x are laid off on the axis of 2 and the values of y are represented
by lines perpendicular to the axis of z. In a similar way a
function of two independent variables

Z = f(x’ Y)

may be represented by plotting x and y as rectangular coérdinates
and erecting lines perpendicular to the axy plane, in all the
points z, y, where f(z, y) is defined and making the lengths of
the perpendiculars proportional to z. In this way the funection
corresponds to a surface in space. Now there are practical
difficulties in working with surfaces in space and th
appears desirable to use other methods, that enable us to rcpresent
functions of two independent variables on a plane. This may
be done in the following way.

Taking z, y as rectangular coordinates all the points for which
f(x, y) has the same value form a curve in the ay plane. Let
us suppose a number of these curves drawn and marked with the
value of f(z, ). If the different values of f(x, y) are chosen
suffictently close, so that the curves lie sufficiently close in the
part of the xy plane that ocur drawing comprises, we are not only
able to state the value of f(x, y) at any point on one of the drawn
curves, but we are also able to interpolate with a certain degree
of accuracy the value of f(x, y) at a point between two of the
curves. As a rule it will be convenient to choose equidistant
values of f(x, y) to facilitate the interpolation of the values
between. The curves may be regarded as the perpendicular
projection of certain curves on the surface in space, the inter-

Lt‘\ﬂt‘\rhﬂﬁ
HeTeIorc u.
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sections of the

surface by equidistant planes parallel to the
plane.

The method 1s the generalization of the scale-representation
of a function of one variable. For a relation between ¢ and x
represented by a curve with ¢ as ordinate and x as abscissa, 1s
transformed into a scale representation by perpendicularly
projecting certain points of the curve onto the axis of z, the
intersections of the curve by equidistant lines parallel to the axis
of z and marking them with the value of £. A scale division in
the case of a function of one variable corresponds to a curve in
the case of a function of two independent vanables.

This method of representing a function of two indcpendent
variables by a plane drawing or we might also say of reprcsenting
a surface in space by a plane drawing, is used by naval architects
to render the form of a ship and by surveyors to render the form
of the earth’s surface and by engineers generally. Let us apply
the method to a problem of pure mathematics.

The equation
24+ pz4+qg=10

defines 2 as a function of p and q. Let us represent this function
by taking p and ¢ as rectangular codrdinates and drawing the
lines for equidistant values of z.

For any constant value of z we have a linear equation between
the variables p and ¢, and therefore it 1s represented by a straight
line, This line intersects the parallels p = 1 and p = — 1 at
the points ¢ = — 2 — 2 and ¢ = — 2* 4 2. Let us calculate
these values for z = 0; = 0.1; = 0.2 --- = 1.3 and in this way
draw the lines corresponding to these values of z as far as they
lie in a square comprising the values p = —1 to + 1 and
g= —1to + 1. Fig. 44 shows the result. On this diagram
we can at once read the roots of any equation of the third degree

of the form
2+ pzt+qg=0,

where p and ¢ lie within the limits — 1 to -+ 1. Forp = 0.4and
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g = — 0.2, for instance, we read 2 = 0.37, interpolating the value
of 2 according to the position of the point between the lines
z= 0.3 and z = 0.4, We also see that there Is only one real
root, for there is only one straight line passing through the point.
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Fia. 44,

On the left side of the square there is a triangular-shaped region
where the straight lines cross each other. To each point within
this region corresponds an equation with three real roots. For
example, at the point p= — 0.8 and ¢ = + 0.2 we read z =
— 1.00; -+ 0.28; -+ 0.72. On the border of this region two roots
cotneide,

For values of p and ¢ beyond the limits ~ 1 to -+ 1 the diagram
may also be used. We only have to introduce 2’ = z/m instead
of z and to choose m sufficiently large.

Instead of

2+prtqg=0
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we obtain

32° - pmz’ + ¢ = 0,
or dividing by m3,

or
2" 4 '+ ¢
where
P q
e T

By choosing a sufficiently large value of m, p’ and ¢’ can be
made to he within the limits — 1 to -+ 1 so that the roots 2/
may be read on the diagram. Multiplying them by m we
obtain the roots z of the given equation.

A function of two independent variables need not be expressed
in an exphcit form, but may be given in the form of an equa-
tion between three variables

g(u, v, w) = 0,

and we may consider any two of them as independent and the
third as a function of the two. The graphical representation
may sometimes be greatly facilitated by modifying the method
described before. The curves for constant values of one of the
three variables, say w, are not plotted by taking « and » as
rectangular codrdinates, but they are plotted after introducing
new variables x and y, x a function of % and y a function of » and
making x and y the rectangular codrdinates,

In some cases, for instance, we can succeed by a right choice
of the functions z = ¢(u) and ¥y = Y(v) in getting straight lines
for the curves w = const. This will evidently be the case,

'-h
]
)

a(w)e(w) + bw)¥(v) + c(w) = 0,

a, b, ¢ being any functions of w, ¢ any function of v and ¢ any
function of ».
For introducing
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v = o), y= )
the equation will become
ax -+ by + ¢ =0,

where a, b, ¢ are constants for any constant value of w.

As an example let us consider the relation between the true
solar time, the height of the sun over the horizon, and the declina-
tion of the sun for a place of given latitude. Instead of the
declination of the sun we might also substitute the time of the
year, as the time of the year is determined by the declination of
the sun. QOur object then is to make a diagram for a place of
given latitude from which for any time of the year and any
height of the sun the true solar time may be read.

In the spherical triangle formed by
the zenith Z, the north pole P (if we sup-
pose the place to be on the northern
hemisphere) and the sun S (Fig. 45), the

sides are the complements of the dech-

ALY RN AASPRS A W RAEN AL Wi AR LA A

nation §, the height h, and the latitude
¢. The angle t at the pole is the hour
angle of the sun, which expressed in
time gives true solar time.

The equation between these four quantities may be written in
the form

sin £ = sin ¢ sin § -+ cos ¢ cos & cos L.

The latitude ¢ is to be kept constant, so that ¢, k, 8 are the only
variables.
Now let us write

r = cost, y = sinbk,
so that the equation takes the form
y = sin ¢ sin 8 4+ 2 cos ¢ cos 8.

When 2z and y are plotted as rectangular codrdinates, we obtain
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a straight line for any value of 8. Let us draw horizontal lines
for equidistant values of b = 0 to 90° and vertical lines for equi-
distant values of ¢t = — 180° to -} 180° or expressed in time

from midnight to midnight (Fig. 46). In order to draw the
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Fiag. 46,

straight lines 8 = const., let us calculate where they intersect
the vertical lines corresponding to = — 1 and 2 = -+ 1 or
expressed in time corresponding to midnight and to noon. For
x = — 1 we have y = — cos (¢ + 8), and forz = + 1 we have
y = cos (¢ — 8). Let us draw a scale on the vertical z = — 1
showing the points y = — cos (¢ 4 8) for equidistant values of
(¢ -+ &) and a scale on the vertical x = -+ 1, showing the points
y = cos (¢ — 8) for equidistant values of ¢ — 8. The scale is
the same as the scale for &, with the sole difference that the values
of ¢ — & are the complements of h and the values of ¢ - 8 the
complements of — k. For a latitude of 41°, for instance, we

have

For il ¢+ 08 o— 08
June 21, . ... . 23.5° 64.5° 17.5°
September 23 and March 21..... ... 0 41° 41°

December 21, .. ... oo —23.5° 17.5° 64.5°
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of o+ & and

lqs]
“

)

pny

values ¢ — & furnish the Intersections with
the verticals x = — 1 and @ = + 1, so that the straight lines
can be drawn corresponding to these days of the year. The two
outward lines are parallel but the middle line is steeper. Their
intersections with the horizontal line h = 0 show the time of
sunrise and sunset.!  Strictly speaking the straight lines do
not correspond to certain days. The straight line determined
by any value of & changes its position continually as § changes
continually. But the changes of § during one day are scarcely
appreciable unless the drawing 1s on a larger scale.

If in the equation
ar+by+c=20

a and b are independent of w, only ¢ being a function of w, all
the straight lines w = const. are parallel. In this case we are

not obliged to draw the

A / straight lines w = const.
/ /f, o
Y= @) VA V7 It will suffice to draw a
8_[__ /! /"'/ , . »
T NS N/ line perpendicular to the
6+ LIS / ,
H {w’:,’;é’,'/ S lines w = const. and a
al / / i L /9 .
N Y scale on 1t that marks the
1 YA, » . .
ol S points corresponding to
- ,/, f/_// .// I/ r] -‘-n“-l- Trn]rinn ;\‘p an
1t/ ;s /' CL:lL.UULDLal L VYalutd Ul .
4 !
o 7 On the drawing we place a
01 2 |3 4 5 @=¢mw) sheet of transparent paper
Fre. 47, or celluloid,on which three

straight lines are drawn 1s-

suing from one point in the direction perpendicular to the u-scale,
v-scale and w-scale (Fig. 47). If we move the transparent materal

without tur

AL

nine it and make

the first two lines intersect the u-and-»
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scale at given points, the w-scale will be intersected at the point
corresponding to the value of w. This method has the advantage

! That is to say, the moment when the center of the sun would be seen on
the horizon, if there were no atmospherical refraction. To take account of
the refraction, the line # = — 0.6° would have to be considered instead of
k=0,
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that we can use the same paper for a great many relations of
three variables, as we can place a great many scales side by side.
Or, in the case of one relation only, we may divide the region of
the values u, », w into a number of smaller regions and draw three
scales for each of them, placing all the w-scales or v-scales or
w-scales side by side. The drawing will then have the same
accuracy as a drawing of very much larger size in which there
is only one scale for each of the three vanables.

§ 10. Demction of One Plane on Another Plane.—Let us now
consider two quantities 2 and y each as a function of two other
quantities v and v

i

£ @(u’ ’D),

y = Y(u, ).

In order to give a geometrical meaning to this relation between
two pairs of quantities let us consider 2 and y as rectangular
coordinates of a point in a plane and u, » as rectangular coordi-
nates of a point in another plane. We then have a corre-
spondence between the two points. When the functions ¢(u, v)
and Y(u, o) are defined for the values %, » of a2 certain region,
they will furnish for every point v, » of this region a point in
the xy plane. Let us call this a depiction of the uz plane on
the xy plane. Similarly a function of one variable x = o(u)
might be said to depict the « line on the 2 line. We may there-
fore say that the depiction of one plane on another plane is, in
a certain way, the generalization of the idea of a function of one
variable. Let us suppose ¢(u, v) and ¥(u, v) both to have only
one value for given values of w and » for which they are defined.
Then there will be only one point in the zy plane corresponding
to a given point in the wo plane. But to a given point in the
xy plane there may very well correspond several points in the
uv plane,

Let us try to explain this by a graphical representation of the
depiction of planes on each other. For this purpose we draw
the curves x = const. and y = const. in the uv plane for equi-

6
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equidistant lines parallel to the axis of  and to the axis of y.
The point of intersection of two lines ¥ = a and y = b corre-
sponds to the points of intersection of the curves

nt v g
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Qo(u) ’D) = a and \b(u; fv) = bs

in the uo plane. If in a certain region of the wr plane, that
we consider, they intersect only once there is only one point in
the region of the u» plane considered and one point in the ay
plane corresponding to each other. Fig. 48 shows the depiction
of part of the ur plane on part of the zy plane. We have a net
of square-shaped meshes in the xy plane and corresponding 1s a
net of curvilinear meshes in the uo plane.

Let us consider the curves x = const. in the uv plane as the
perpendicular projections of curves of equal height on a surface
extended over that part of the wp plane. From any point P
of the surface corresponding to the values %, » we proceed an
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F1a. 48.

infinitely small distance, v changing to v + du, v to v + dv and
x to x + dx, where

-

. de de
dx = audu—{— 3 dv.

Let us write
du = cos ads, dv = sin ads,

where ds signifies the length of the infinitely small line from
u, v to # + du, v+ do in the uo plane and « the angle its direc-
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tion forms wit osttive axis of z. Let PN bea
whose projections on the v and » axis are equal to aqa/au and
do/0v and let us write

de d ¢

— = T COSN = rsSinA,
ou > 9w

r being the positive length of PN and \ the angle between its
direction and the positive axis of z. Then we have

dx d + = rds cos (a — \),

or

dx
7, = T Cos (e — N).

dx/ds measures the steepness of the ascent. It is positive when
the direction leads upward and negative when it leads downward
and its value is equal to the tangent of the angle of the ascent.
From the equation

dx

5 = 1rcos (& — \)
ds :

we see that the ascent is steepest for o« = A, where da/ds = r.
The line PN in the u, »-plane shows the perpendicular projection

of the line of steenest ascent oOn the anirface » — .-./u M and the
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length of PN measured in the same unit of length in which u and
» are measured 1s equal to the tangent of the angle of the ascent.
Let us call the line PN the gradient of the function o(u, v) at the
point u, ». The direction of the gradient 1s perpendicular to the
curve o(u, v) = const, that passes through the point «, v; for in
the direction of the curve we have

dx

E_‘; = 0;

and therefore
a— A= = 90°

If PN’ is the gradient of the function Y (u, v) at the point «, v, the
angle between PN and PN’ must be equal to the angle formed
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by the curves x = const. and y = const. that intersect at the
point u, v, or equal to 1ts supplemen according to the angle of
intersection that we consider.

Suppose the gradients PN and PN’ do not vanish in any of
the points in the region of the u» plane that we consider and
that their length and direction vary as continuous functions of
v and . Let us further suppose that the gradient PN’ (com-
ponents: dy/du, dy/dv) 1s for the whole region on the left side
of the gradient PN (components: d¢/du, d¢/dv), or else for the
whole region on the right side of the gradient PN, then it fol-
lows that any one of the curves x = const. and any one of the
curves y = const. can only intersect once in the region considered.

This may be shown by considering the directions of the curves
x = const. and ¥ = const. in the up plane. Let us consider
that direction on the curve y = const. in which x increases. If
this direction deviates from PN the deviation must be less than
90°, because dx/ds and therefore cos (a — \) 1s positive, Let us
further consider that direction on the curve x = const. in which

Yy increases. If it deviates from the direction of PN’ the devia-

ARV WA AR AAS WAL RALR W W A WSS A ALY SAss ¥

tion must be less than 90°. Let us call these directions the
direction of 2 (on the curve y = const.) and the direction of y
(on the curve # = const.). Now if the gradient PN’ is on the
left of the gradient PN the y direction must also be on the left
of PN (for if it were on the night of PN being perpendicular to
PN 1t would form an obtuse angle with PN’) and therefore it
must be on the left of the = direction (for if it were on the right,
PN’ being perpendicular to the x direction would form an obtuse
angle with the y direction, which we have seen to be impossible).
Stmilarly it may be seen, that if PN’ is on the right of PN, the
direction of Yy will also be on the nbut of the direction of = If
therefore PN’ is on the same side of PN in the whole region
constdered, the direction of y will also be on the same side of the
direction of x for the whole region considered. This excludes
the intersection of two curves # = const. and y = const. in more

than one point. For, suppose there are two points of inter-

t’b
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section and we pass along the curve y = const. in the direction of
x. At the first point of intersection we pass over the curve
x = const. from the side of smaller values of 2 to the side of
larger values of . Now if the values of 2 go on increasing
as we go along the curve y = const. we evidently cannot get
back to a curve £ = const. corresponding to a smaller value of z.
The only possibility of a second point of intersection would be
that the direction in which the value of z increases on the curve
y = const. becomes the opposite, so that in advancing in the
same direction in which we came = would decrease again.

The same holds for the curve
x=const. If we passfrom one
point of intersection with a "
curve ¥ = const. along a curve
x = const. to a second point
of intersection with the same
curve the only possibility 1s
that the direction of y also be-

[ ] L] L]
romMes annneite I ."I‘IQ 1¢d AVa
CWVLRIL,S VP piUaiuves B 5§ Qo iy Su BN OF, S

cluded as in contradiction with Fia. 49.

the direction of y being on the

same side of the direction of 2 throughout the whole region (Fig.49)
It will be useful to look at it from another point of view. Let

us consider a point 4 in the wr plane corresponding to the

values «, » and let us increase  and » by infinitely small positive

amounts du and dp, so that we get four points ABCD, forming a

rectangle corresponding to the coordinates.

A:u,v; Bru+du,v; C:u v+ dv, D:u+ du,v + do.

In the zy plane these points are depicted in the points A,
B, C, D, the intersections of two curves v and u + du with two
curves ¢ and » + dv (Fig. 50).

The projections of the line AB in the xy plane on the axes of
coordinates are obtained by calculating the changes of z and y
for a constant value of » and a change du in the value of u
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2 du, dy =Y
oM T 4, 0%

da,

Similarly the projections of AC are obtained by calculating the
changes of x and y for a constant value of » and a change dv in the

dipta UL ALy UL LA U

value of »
Yy

Fv' d?).

d
dr; = E;—de, dy, =

Denoting the lengths of AB and AC by ds; and ds; and the angles
that the directions of 4B and AC form with the direction of the

A
C D
dv
A—— /
— . d
U
Fia. 50.

positive axis of x (the angles counted in the usual way) by 7

an Al TATO ayvao’
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dx; = dsy cos y1, dy = ds;siny

and

dmz = dé‘g COS 73, dyz = dSz sin Y2,
or

d¢ dsi 9y . ds

a'—u = COS 71%: a'_‘u = 51n 71 du
and

:_qe _ CESz 8\.!'/ P CE-SE

o COs 72%, %-— Sin s d?J.
We may call

@1_\[9_22 o\
du (au) +(au)

the scale of depiction at A in the direction 4B and
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the scale of depiction at A in the direction AC. It is here under-

d-nnr] that the up nlnnp is the original which 1s denicted on the

L2 O LY S blAAWJ. quuwu VIl wllw

xy plane. If we take it the other way the scales of depiction
in the directions AB and AC are the reciprocal values du/ds,
and do/dss.

The area of the parallelogram ABCD in the xy plane is

dody dedy

dSlng Sin (72 — 'Yl) = (.(9—’&-(3_?}- —_ o au) dud'v

According to the way in which the angles 42 and v, are defined
sin (y2 — 1) is positive, when the direction AC points to the left
of the direction AB (assuming the positive axis of y to the left
of the positive axis of z), and sin (y; — ¥1) is negative, when AC
points to the right. Now dudwvis equal to the area of the rectangle
ABCD in the uov plane. Therefore the value of

{q Al’} A{fl Al}
U Uy Uy VY

du 0v dv Ju

is the ratio of the areas ABC'D in the two planes and its positive
or negative sign denotes the relative position of the directions
AB and AC in the 2y plane. We may call this ratio the scale
of depiction of areas at the point A.

agoaw_ d @Oy
Ju Jv dv Ju

is called the functional determinant of the functions ¢(u, ») and
v (u, ).

We have found the scale of depiction of lengths in the direc-
tions AB and AC. Let us now try to find 1t in any direction
whatever. From any point A in the uv plane, whose codrdinates
are « and v, we pass to a point D close by whose coSrdinates are
u + Au, v+ Av. In the zy plane we find the corresponding
points 4 and D with codrdinates (Fig. 51).
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o= () o Ar = H(u+ Au. v 4 Ap)
A: w ilty U/ . | ‘l"‘\w ! y vl /
y=v¥wv) ¥yt Ay =yut Ay v+ Ao

We expand according to Taylor’s theorem, and writing for
shortness

e _de 00
o=y T Gy VT g YT gy
we find
Ax = @, Au + @A+ terms of higher order,
AY = YuAu + Av + terms of higher order.
A AV
v
Ax
(44 _
D :
AE]M D }Aw
——————— { Au v Il b
;
F1a. 51,

The length of AD and the angle of its direction we denote by
Ar and a in the up plane and by As and X in the zy plane.
The limit of the ratio As/Ar, to which it tends, when D approaches
A without changing the direction AD is the scale of depiction
at the point A4 in the direction AD.
Writing

Au = Ar cos a,

Av = Ar sin a,
we obtain

Ax = (@y €08 a + ¢» sin a)Ar + terms of higher order,
Ay = (Yu c0s a + Y sin a)Ar + terms of higher order.

Dividing by Ar and letting Ar decrease indefinitely, we have in
the limit

dx
= ¢u COS a + ¢, SIn a,
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v/
hat

ar = Y COS a + Yy SN a.

For dx/dr and dy/dr we may also write ds/dr cos \, ds/dr sin \.

dS -
acos)\ = @y COS & + ¢ SIn a,

ds

&;sin A = Y, €08 @+ ¥, sin a.

These equations show the scale of depiction ds/dr corresponding
to the different directions X in the 2, y-plane and « in the u, -
plane.

By introducing complex numbers we can show the connection
still better.

Let us denote

_ ¢ X9 . _ At
4= dr+dr?' dr®’
A1 = €0u+ \z/u?f,
2= @yt Yt

Multiplying the second of the two equations by ¢ and adding
both they may be written as one equation in the complex form:

2 = 21 €o8 a + 2 sin a.

The modulus of zis the scale of depiction of the uv plane at the
point A4 in the direction . The angle of 2 gives the direction in
the a2y plane corresponding to the direction a. For a = 0 we
have z = z; and for « = 90°, 2 = 2.

Let us substitute

gai + g_-m‘ 8&1? — e—-df
Cos @@ = sin o = :
2 ’ 22
and write
21 + 2/t A 2/
a= - _ ~—— =
2 3 2 3

so that the expression for z becomes
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a — Gt I UC .

This suggests a simple geometrical construction of the complex
numbers z for different values of @. The term ae® is represented
by the points of a ci cle described by turning the line that

represents the complex number a round
the origin through the angles ¢=0-- 27
The term be* 1s represented by the
points of a circle described by turning
the line that represents b round the ori-
gin in the opposite direction through the
angles « = 0 -+ - — 27 (Fig. 52). The
addition of the two complex numbers
Fre. 52, ae** and be ** for any value of « is easily
performed. The points corresponding
to the complex numbers z describe an ellipse, whose two princi-
pal axes biseet the angles between aand b. This 1s easily seen
by writing

Y

a = el h = pegldsteni

«y corresponds to the direction bisecting the angle between o
and b and «; denotes half the angle between a and b (positive or
negative according to the position of a and b).

o = Tlg(ao_ul-i-a)i + 1-26(00+a1-4)="
or
Tlg(a—ul)i + T € --—(0'.'—-0'.])1:

={'T‘1—L—'T‘n\ c-{f\a‘_/\h\—L—
vl w“wly

1 lz}\.au\u 1

I

T

(ri — 79) 8
vl </

{ o o)
({2 Qi/es

1
FLAL

Denoting the codrdinates of the complex number ze~* by £ and 7
we have
. "= ¢05 (¢ — ) and -
1+ T2 h— T

= sin (@ — ay),

and consequently the equation of an ellipse

_ g 7
(r1 + r2)? + (rl — )t
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+
ag gives us the points corresponding to z. The principal axes
are 2(ri+ r:) and 2(ry — 1) (Fig. 53). The construction of

IS, R e AT R o0 11
Lol plowting 41 4l & we 11na ZQ/Z ana

Fig. 53 is obvious. A
— &/1 by turning 47, through a right angle to the right and to
the left. From these points lines are drawn to Z;. 'The bisection
of these lines give a and b.

The figure shows that in case a and b have the same modulus,
the triangle — Zy/i, Z), Z»[i becomes equilateral and AZ; is per-
pendicular to the line joining — Zy/7z and Zyft. In this case AZ;

and A7, "}'Q‘I'I}d have fhe same Or the annq;fp r"rpCh.nn Rnt ac
A4 & [ ¥ Al A wr Liyvriis A LAv 44

AVA L na&dF [y € Wt % WAL .t.l.t.l LW LAl v

Rl = Qu —l— 1,[/“?:, e = @y —I— 1,[/1,?:, thiS Would mean that gouybv — go,_,gf/u
= (.

The radit of the ellipse (Fig. 53) measured in the unit used
give the different scales of depiction corresponding to the dif-
ferent directions in the xy plane. We might also say the ellipse
is the image in the a2y plane of an infinitely small circle in the
uv plane, magnified in the proportion of the infinitely small radius
to 1, with its center in A.

Z; corresponds to a = 0 and Z; to a = 90° and for « = 0 to 90°

wn
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to Z, through the shorter way,
— 7, corresponds to « = 180° and — Z> to a = 270°. Now we
have shown above that a positive value of the functional deter-
minant ¢,, — @u\, means that Z, 1s on the positive side of Zj,
so that in this case Z moves in the positive sense (that is,1in the
direction from the positive axis of z to the positive axis of y) with
increasing values of «. With a negative value Z moves in the
opposite direction.

Let us now suppose that the curves = const. and ¥ = const. in
the uv plane intersect except on a certain curve where their direc-

ves on the ellipse from

k|
NFRAL &4 \tU‘_l LY E .. 5 s A\/

=Y

Fia. 54.

tions coincide in the way shown in Fig. 54. On this curve the
functional determinant D = o, — ¢py, must vanish because
the directions of the gradients coincide. Let us see what the
depiction on the xy plane is like,

Running along one of the curves y = const., say y = w,
toward the curve D) = 0 we intersect the curves x = z,, x3, 22
until at the point A4 on the curve x = x; we reach the curve D = 0.
Tn the Ty pln

na +1“Iﬂ NOarrng ™M ':‘r\ "'1\ :n (AT 2% ]In] + o~ Ln n‘r'1
L1l LIicC AL ii

L0 COITESPpONnaIng pati i1s a paraun€i to the axis

of x at a distance y; passing through x4, 23, 2» and reaching a
point A at ;. If we now proceed on the curve y = g in the
up plane beyond the curve D = 0, we again intersect the curves
x2, 23, etc., but in the inverse order. Thus the corresponding
path in the zy plane does not pass beyond A, but turns back
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through the same points &y, y1; 3, ¥,
any of the other lines y = const. If we trace the line in the
ay plane that corresponds to the points in the u» plane, where
the curves x = const. and ¥ = const. touch, we find the depiction
of the uv plane only on one side of the curve in the xy plane.
The other side has no corresponding points », ». However to
every point (' on this side of the curve, there are two correspond-
ing points C' in the u» plane, one on either side of the curve
D = 0. Imagine two sheets of paper laid on the ry plane; let
them both be cut along the curve AB. Retain only the two
pieces on this side of the curve and paste them together along
the curve. The u» plane 1s in this way depicted on the paper
in such a way that there 1s one point and one only on the paper
corresponding to each point in
the region of the uv plane con-
sidered. The curve D =0 in
the u» plane corresponds to the

rim where the two pieces of pa-

per are pasted together. Any

line straight or curved passing
over the curve D = 0 in the uw
plane,corresponds to a line running from one of the sheets onto the
other. It need not change its direction abruptly when it reaches
the rim and passes onto the other sheet. For it may touch the
rim in the direction of its tangent. This is actually the rule
and the abrupt change of direction is the exception. Any line
LAL (Fig. 55) in the uv plane, whose tangent as it crosses the
curve D = 0 at 4 does not coincide with the common tangent
of the curves # = const, and y¥ = const. will correspond to a line
in the xy plane, that does not change its direction abruptly
when 1t touches the nm.

This is best understood analytically. Let us consider corre-
sponding directions at the points 4 in the uo» plane and in the
xy plane. We have seen above that corresponding directions

(Fig. 56) are connected by the equations
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- L

y 4
I
f |
=~ ] R
2 : dy/dr
|
I
A \ .= . M_ s
| dejdr 2 7
Fia. 56.

ds dx :
cos)\&"“ i ¢y COS a + ¢y SIn a,

sm)\g‘z % Yy COS @ + Yy Sin a.

At the point 4 we have
ﬂau'p*v — @v\bu = (.

Assuming that the gradients at 4 do not vanish, so that we
can write

)

Gu =T COSY, @y = TSIn%w,

!, wf A~ ot

. — 14
Yu

L Y R |
Yo — T oill’y,

I
~
o
<
7]

-

where r and 7’ are positive quantities, the equation guyp— @ou=10
reduces to sin (y — 4’) = 0, that is, y = 4" or vy = ' + 180°.

COS?\&‘; = r cos (a — v),

~—~
R
S—

I
="
-

!

L

o

Consequently for all directions « in the wv plane for which

cos (a — v) 1s not zero, we have
’

T
t = == —,
gA .
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A and the opposite corresponding t all the different directions
« except only a direction for which cos (¢ — v) = 0. In the
latter case, that is, when the direction « is perpendicular to the
direction vy of the gradient, <. e., in the direction of the curves
x = const. and y = const., we have

ds
cos)\a-;= 0,
. ds

Therefore ds/dr = 0 and A remains indeterminate. Any direction
A for which tg A differs from + #'/r corresponds to a fixed direction
a=~v+ 90°0ra = vy — 90° whileds/dr = 0.

As the curve D = 0 1s depicted on the rim of the two sheets
of paper, all those lines that intersect the curve D = 0 in a
direction different from the direction of the curves z = const.
and y = const. are depicted in the zy plane as curves having
their tangent at A in common with the rim. All lines in one of
the sheets of paper that touch the rim at A in a direction differ-
ent from that of the nm must be the depiction of lines in the uw
plane that reach A in the direction of the lines 2 = const. and
y = const. The scale of depiction is zero in the direction of the
curves x = const. and y = const. In any other direction «
we find it different from zero for:

— = %2 + %) cos? (@ — 7).

dr

It is a maximum in the direction a = ¥ or v+ 180° perpendicular
tothe curves x = const. and ¥ = const.

It may help to understand all these details if we discuss an
example where the depiction of the u» plane on the xy plane
has a simple geometrical meaning, the planes being ground plan
and elevation of a curved surface in space. The rim in the
xy plane is the outline of the surface, the projection of those
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points where the tangential plane is perpendicular to the plane
of elevation.

Suppose a cylinder of circular section cut in two half cylinders
by a plane through its axis. Suppose one of the half cylinders
in such a position that its axis
forms an angle 8 with the
ground plan, the plan of ele-
P! oD vation being parallel to its

axis, Fig. 57. Let us intro-
AB i =z~ duce rectangular codrdinates
A R D u, v in the ground plan and
|
[

Y

A

v

} rectangular codrdinates x, y
E : l]v L Ll in the plan of elevation. A

\_'1 ‘.! point P on the cylinder is de-
B Q C fined by certain values u, »
]v which define its ground plan
SKO and certain values x, ¥ which

Y

we have

r=u
and

1
y=utgd + ——Va—1’

cos &
where a is the radius of the section. Now let us consider the
elevation of the points P as a depiction of their ground plan.
The functions ¢(%, ) and Y(u, ) in this case are
@(ui ’D) = U,

1
Y(u, v) = utg d+ mvﬁ— %,

?

cos 8Va — 2’

@uzl; 40?.320; \I/u=tg6, Yy = —

i
u\b‘v'— w ¥y — T .
v en¥ cos 6V a2 — 12
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The functional determinant vamshes for » = 0 on the line EF.
The lines ¥ = const. are the intersections of the cylinder with
horizontal planes. In the plan of
elevation they are straight hori-
zontal lines; in the ground plan
they are ellipses (Fig. 58). As we
pass along one of these curves we
cross the line EF in the ground
plan but we only touch it in the
plan of elevation, retracing the hori-
zontal line back again. The lines
x = const. are straight lines in both
planes, but in space they corre-
spond to ellipses. Again as we
cross £F in the ground plan we
only touch it in the plan of eleva-
tion and retrace the vertical line down again. Any curve on
the cylinder that crosses EF in a direction not perpendicular to

the nlan of plpvahnh 10. nrotected in the nlan of e]pvghhn with

LAy pradail i Awsas PEVJULLURL 34 LaIL il Ul Wil ¥ LAl

A P

F1a. 58.

EF as its tangent. For the real tangent in space lying in the
tangential plane of the cylinder can have no other projection, if
not perpendicular to the plan of elevation. In this latter case
the projection of the tangent is a point
and the tangent of the elevation is deter-
mined by the inclination of the osculatory
~ vplane.

There is a particular case to be consid-
ered, when the curve D = 0 in the u» plane
coincides with one of the curves 2 = const.

F1G. 50, or y = const. (Fig. 59), assuming the gra-

dients of the functions (%, ») and ¥ (u, v)

not to vanish at the points of this curve. We have seen that at

a point where D = 0 the scale of depiction must vanish in the

directions of the curve x = const. or ¥ = const. Let the curve

D = 0 coincide with a line x = const., then it follows that the
7

D=0
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e depiction of this curve is zero and the depiction

must be contracted in a point. For the length of the depiction
of a curve x = const. is given by an integral

( dsd,
J 4"

where dr denotes an element of the curve and ds/dr the scale

of depiction in the direction of the curve. As ds/dr is zero all

along the curve the integral must necessarily vanish.

AV ' As an example let us con-
sider

x = uw,
Yy = 2.
4 : .
=x  The lines x = const. in the un

—% plane are equilateral hyper-

bolas, the lines y = const. are
/ parallels to the axis of u (Fig.
60). Along the axis of u we

\ILLHM have at the same timey = 0,
F1G. 60. x=0 and D=9v=0. The
whole axis of u is depicted in
the point = 0, y = 0 of the ay plane.

Let us finally consider the case where the scale of depiction
at any point is the same in all directions, though it need not be
the same at different points.

Writing as before

A1 = Py + \I/u?:; = @y + \bvi;

=
U
bt 0 S0

_hdas_i_dy,_ds N
T d Tt T &t

the connection between the scale of depiction ds/dr and the
angles \, « determining corresponding directions in the zy plane
and in the uv plane is given by the equation

Z = 21008 a + & sin ¢,
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or
z = qe* + be™*,
where
a=3(z1+ zM), b=31iz— nhk).

In the case where the scale of depiction ds/dr, that is to say, the
modulus of z, is independent of «, one of the constants a or b

must vanish, as we see at once from the construction of z (Fig.
52). Let us consider the case b = (),

ds
g = aga.i — rﬂg."."

dr

The complex number a may be written | a| ¢**, where | a|

denotes the modulus of a and «, the angle. Both may vary

from point to point, but at every point they have fixed values.
Consequently we have

ds
5= la] and A= a+ aq
That is to say, from an angle « determining a direction in the
uv plane, we find the angle A determining the corresponding
direction in the xy plane by the addition of a fixed value «.
Any two directions a, o’ will therefore form the same angle as
the corresponding directions A, A in the zy plane. The same is
true when ¢ = 0 and z = be™*. The only difference is that in
this latter case the direction of z rotates in the opposite sense
with increasing values of «.

Analytically depictions of this kind are represented by func-
tions of complex numbers,

x4+ yi = flut+n) or x4+ yi = flu — n).

Assuming the function to possess a differential coefficient we have
dxr = 0y, , .
= — —q = o=
= o o1 =Ffu=w),

dx = dy. , “ s
32—”8?)'}"8,07’—” if(uﬂ:v?’)?’y
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— 2/1.

2
i
&
.
-
=
a2
i

Hence in the first case
a=3%ian+r/l)== b=ik—2al)=0

and in the second case
a = 0, b= 21.

§ 11. Other Methods of Representing Relations between T hree
V ariables.—The depiction of one plane on another may be used
to generalize the graphical representation of a function of two
variables or a relation between three variables, as we prefer
to say.

As we have seen before, an equation

g(, ¥, z) =0

between three variables z, y, z can be represented by taking z
and y as rectangular codrdinates and plotting the curves z =
const. (Fig. 61) for equidistant val-

A ues of 2. Suppose now the xy plane
] P~ to be depicted on another plane.
=T Q‘\\ 1 The lines 2 = const.,y = const. and

L\ .\\\\.\¥ 7 == copst, . . 11 1 I
INSNNNN z = const. will be represented by
\\\\; / three sets of curves. The fact that
4 }2‘0%% three values z, v, 2 satisfy the equa-
tion g(x, ¥, 2) = 0 is shown geo-
T=coust, metrically by the intersection of
Fic. 61. the three corresponding curves in

one point.

Another method for representing certain relations between

three variables u, », w consists in drawing three curves, each
curve carrying a scale. The values of u, », w are read each on
one of the three scales. The relation between three values u, o,
w i3 represented geometrically by the condition that the corre-
sponding points lie on a straight line (Fig. 62). This method is
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far more convenient than the one

= ¥ AR ¥ X ¥

=
oo
el .
=

less trouble to place a ruler over two points u, » of two curves
and read the value w on the scale of the third than to find the
intersection of two curves u = const. and » = const. among sets
of others, pick out the curve w = const. that passes through the

T
L]
5

Fia. 62.

same point and read the value of w corresponding to it. For we
must consider that the curves corresponding to certain values
of u and v are generally not drawn, but must be interpolated and
so must the curve w = const. It is true that interpolations are
necessary with both methods, but the interpolation on scales
like those in Fig. 62 is easily done,

It must however be understood that while the three sets of
curves form a perfectly general method for representing any rela-
tion between three variables, the other method is restricted to cer-
tain cases. In order to investigate this subject more fully we
shall have to explain the use of ine codrdinates.

Whan wa annlr rnnf-n'nrrn]nr
YYLICILL WU apply LGLLGLLE WLl

point in a plane, we may say that x determines one of a set of
straight lines (parallel to the axis of ordinates) and y determines
one of another set of straight lines (parallel to the axis of abscissas)
and the point is the intersection of the two (Fig. 63, I). A
similar method may be used to determine a certain straight line
in a plane. Let z determine a point on a certain straight line,
x being its distance from a fixed point A on the line measured
in a certain unit and counted positive on one side and negative
on the other. Let y define a point on another straight line

NEVAT r]lhn-l-oo m oar +
UUJLL WAL ) oy L
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parallel to the first, ¥ being its distance from a fixed point B on
the line measured in the same way as 2. The straight line
passing through the two points is thus determined by the values

A A
@ of (1) z

g —— "

—]
£

Y
|
Yy

&)
N
&

Fia. 63,

x and y and for all possible values of z and y we obtain all the
straight lines of the plane except those parallel to the Lines on
which = and y are measured. For simplicity we choose AB
perpendicular to the two Lines (Fig. 63, II). Let us call z and y
the line codrdinates of the line connecting the two points 2 and

Y ;n Fig_, 63, II n’l the came wav ag xr and Y 1n plﬂ' 03 T are

AL waAYw WAL g w2 ddaxva AULE S & s O

called the point codrdinates of the point where the two lines
x and y intersect.
A linear equation between point codrdinates

y=mx -+ pu

is the equation of a straight line. That is to say, all the points

whnqp codrdinates satiefv the pnuwhnn Im aon a certain qh-mo-hi-

AILFTV LASLSL VAR LARA L LA LRLIR Y Al g WS AR S AL W AR AL .l.wnb-llb

line. If, on the other hand, we regard x and y as line cordinates
we find the analogous theorem: all the straight lines whose
line co8rdinates satisfy the equation

y = mr-+ u

pass through a certain point. The equation is therefore called
the equation of the point.

In order to show this let us first draw the linex =0, y = 4
(APO in Fig. 64). If now for any value of x we make AR = x
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and DN T +ha neant ~F indananntimn ~F PO s d A D o ergd LA
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independent of z, for

PO mzx

—_— e m,

AO x

The ratio PO/AO determines the psition of O and as it is
independent of x and the positions of 4 and P are also inde-

pendent of x, the same is true for O. A |

For negative values of m, PO and @ o
A0 have opposite directions so that 0 =0
0 lies between A and P. ’L——7 Tz !
For a given point 0, we can find 7!
the corresponding values of mandu .|} g " :
by joining O with the points 4 and |
the point corresponding to x = 1. y B o7
If P and @ are the intersections of Fro. 64,

these lines with the line on which y
is measured, we have BP = u and PQ:= m. Any point in the
plane thus leads to an equation

y = mx + p,

except the points on the line on which z is measured. For
m = ( the equation reduces to
¥y =4

that is, the equation of a point on the lin: on which y is measured.

Instead of ¥ = ma + u, we might &lso write x = m'y + 4/,
and go through similar considerations -hanging the parts of z
and y. This form does not include tle points on the line on
which y is measured, but it does incluce the points on the line
on which 2 is measured. For these we nave m’ = 0.

The general equation of a point in lire codrdinates is given in
the form

ar + by + ¢ = (,

from which we may derive either of the first-mentioned forms
dividing it by a or b.
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x, determining the point of intersection of the line BO (Fig. 64)
and the a-line, while y, determines the point of intersection of
the line A0 with the y-line.

A curve may be given by an equation

am(w)x + hi(wy -+ e1(u) = 0,

in which ay(u), bi(u), e1(u) are functions of a variable v. Any
value of u furnishes the equation of a certain point and as u
changes the point describes the curve. Let us suppose the curve
drawn and a scale marked on it giving the values of u in certain
intervals sufficiently close to interpolate the values of u be-
tween them. Two other curves are in the same way given by
the equations

w(0)x + b(v)y + o) =0,
az(w)x 4 by(w)y + cs(w) = 0,

and scales on these curves mark the values of » and w.

T L ] L ] L ]
Nerw we ara anahled ta farmnlate the randition whirh mnet ha
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satisfied by the values u, », w in order that the three corresponding
points lie in one straight line. If x and y are the line codrdinates
of the line passing through the three points, 2 and y must satisfy
all three equations simultaneously.

Consequently the determinant of the three equations must
vanish

ar(becs — byea) + az(bzer — bies) + az(bey — becr) = 0,

and, vice versa, if the equation between u, », w may be brought
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into this form 'hprp av. bi. eq are anv functions of 4. .. bo. 2 anv
J.J-J-UU LAAR J-Ul- LAN v A W , UL Vl AR W WAJ-J A R L] WA W’ W‘, U‘, Uj WI.J.J
functlons of v as, bs, € functions of w, we can form the
equations

ax + by + ¢y = 0,
@ + by + 2 = 0,
a3x+ b3y+03 = 0,

and represent them graphically by curves carrying scales for

u, o, w. The relation between u, », w is then equivalent to the

condijtion that the corresponding points on the three curves lie

on a straight line. But it must be remembered that only a

restricted class of relations can be brought into the required form,

so that the method cannot be applied to any given relation.
The equation of a point

axr+ by +c¢c=0

remajns of the same form, when the units of length are changed
for x and y. If 2’ denotes the number measuring the same length

ac the ‘nnmhpr m 1’\111- m another un + the two numbers muct hsn,fp o

14] AAN ALLALALRF AAL WALV AN L b AL L TY ALLALLARS R L] LAA VAL, 44iy

constant ratio equal to the inverse ratio of the two units. There-
fore, by changing the units independently, we have

x= N, y= uy
and the equation of the point may be written
arr’ -+ buy’ + ¢ = 0,
‘v + by +¢ =0,

where ¢/ = \a and b’ = ub.

It is sometimes convenient to define the line coérdinates in
another way. Let ¢ and » denote rectangular codrdinates
measured in the same unit, then the equation of a straight line
can be written

C
"~

= tg 902 —I_ 705

where ¢ is the angle between the line and the axis of ¢ and 7,
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Now let us call tg ¢ and 7 the line coordinates of the straight
line represented by the equation and let us denote them by =z
and y. Thus the values of 2 and y define a certain straight line
and any straight line not parallel to the axis of ordinates may
be defined in this manner. The condition that a straight line
x, y passes through a point £ % is expressed by the equation

n=m£+y,
or

= — fr -+

If we fix the values of  and y, all the values £, 4 that satisfy this
equation represent the points of the straight line 2, ¥ and we
therefore call it the equation of the straight line. If, on the
other hand, we fix the values of £ and 4, all the values x, y that
satisfy the equation represent the straight lines that pass through
the given point §, 4, and therefore we call it the equation of the

point.
The more general form
axr + by + ¢ =
can be reduced to
a ¢
y=— 72—
v 0 0

It therefore represents the equation of the point, whose rec-

tangular codrdinates are ¢ = a/b and 5 = — ¢/b. The case
"'LI\“I'\ I\ . n Pl . )
wWilere o = y Of
ax+c¢c=10

represents the equation of a point inﬁnitely far away in the
direction ¢ or the opposite direction ¢ -+ 180°, ¢ being defined by

gl ndditid v ! £ = TAAliTRa Y

tgo=a= ——

All the straight lines, whose codrdinates x, y satisfy the equation

ar+c¢ =0
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correspond to the same value of = but to any value of y. That
is to say, they are all parallel and all the straight lines of this
direction belong to them.

Let us now discuss some of the applications of line coérdinates
to the graphical representation of relations between three
variables.

The relation

w = w
may be written in the form
log u + log » = log w,

or
x4+ y = log w,

when

x=logu and y = logno.

Let us plot x and y as line co- 4l . 1
ordinates on two parallel lines (Fig. x4+ | 15

65), with scales for the values of u
and ». The equations x = log u
and y = log » may be regarded as the equations of the points of
these two scales. The equation

Fia. 65.

xr+ y = logw

for any value of w is the equation of a point. It can easily be
constructed as the intersection of any lines x, y satisfying its
equation. For instance, the line 2 = log w, ¥ = 0 and the line
r =0, y=logw. The first line is found by connecting the
scale division ¥ = w of the u-scale with the point B, the second
by connecting the scale division » = w of the v-scale with the
point A. If the units of z and y are taken of the same length, the
point of intersection will lie in the middle between the two lines
carrying the % and » scales on a line parallel to the two other lines

and the w-scale will be half the size of the other two (Fig. 65).
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U = W
or
log u + logv = log w

expresses the condition that the three equations
x=logu, y=Ioge, 2+ y=logw

are satisfied simultaneously by the same values of x and y, that
is to say, that the three points on the u, », w scales corresponding
to the values of u, », w lie on the same straight line z, y.

The more general relation

u? = w,

where o and 8 are any given values, can be treated in the same
manner. Thus the pressure and volume of a gas undergoing
adiabatic changes may be represented. In this case we have

pot = w,

where p denotes the pressure, » the volume and & and w con-
stants.

For a given gas k has a given value, but w depends on the
quantity of the gas considered.
We write

x = logp, vy =logo.

The relation then takes the form

x -+ ky = logw,

and represents a point which may be con-

’ structed by the intersection of any two
' “_:1.41 straight lines z, y, whose codrdinates sat-
1 1 1 . . »
A Tor B isfy the equation, for instance
D w v
F1G. 66. x=logw, y=0
and
1
x = 0, y=]-610g'w.
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-

e+
=)
=

dw;sxon p = w of the p scale and the second line connects the
point 4 with the scale division of the ¢ scale for which y = & log w.
A perpendicular from the point of intersection on 4B meets it in
() and as the ratio AQ'/('B is

equal to the ratio of the seg- .l Lii0
ments on the p and » scales
log w/k log w = 1/k it is inde-
pendent of w. All the points +0.57 T+0.5
corresponding to different val-
ues of w lie on the same par-
allel to the p and » scales and
the w scale may be obtained
by a central projection of the _j5i
p scale on this parallel from
the center B (Fig. 66). We
might dispense with the con- =191
struction of the w scale as

lane ae tha ctraicht line Fnr
lullb L ¥ 1'% ) L ¥ ¥ LW [“1 ¥ Wlbllb LA AN 4 LF

the w scale is drawn. For in
using the diagram we gener- 2.5
ally start with values pg, 00 _sp! 1-20
and want to find other values |
p, v, for which

+-0.5

p@k = p(ﬂ’ﬂk' Fi1a. 67.

The straight line connecting the scale divisions p and » intersects
the w scale at the same point as the straight line connecting the
scale divisions pg and vy, so that we need not know the value of
pewe®. It suffices to mark the point of intersection in order to
find the value of p, when v is given or the value of » when p is
given.

Another example js furnished by the equation

wH w4y =
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x and y as line codrdinates any value of w determines

VAL -a 7 L)

If we regard e of w ne
the equation of a pomt. We plot the curve formed by these
points with a scale on it indicating the corresponding values of w.
Any values of z and y determine a straight line whose inter-
sections with the w scale furnish the roots of the equation. Each
point of the w scale may be constructed by the intersection of
two straight lines, whose coordinates x, y satisfy the equation,
for instance

r=0 y= —u

and 2= —w, y=02

In Fig. 67 the w scale is shown for the positive values w = 0 to
w = 2.5,

In the same manner a diagram for the solution of the cubic
equation

W rw -ty =

or of any equation of the form

w2t +y=0

may be constructed.

§ 12. Relations between Four Variables.—The method can be
generalized for relations between four variables.
Suppose four variables u, v, w, ¢ are connected by the equation

g(ui v! w! t) = 0!

and let us assume that for any particular value ¢ = {; the resulting
relation between u, », w can be given by a diagram of the form
considered consisting of three curves carrying scales for %, » and
w. Let us further suppose that for other values of ¢ the scales
for v and » remain the same, but the scale for w changes. Then
we shall have a set of w scales corresponding to different values
of . Connecting the points that correspond to the same value
of w we obtain a network of curves { = const. and w = const.
(Fig. 68). Any two values u, » furnish a straight line intersecting

1 For small values of w, this combination is not good because the angle of
intersection is small. One might substitute x = 2, y = — w? — 2w for the
first line.
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the network of curves. The points of intersection correspond to
values of ¢ and w that satisfy the given relation.
Any relation of the form

e(Wf(t, w) + Y(0)g(t, w) + h(t, w) = 0

may be represented in this way, ¢(u) denoting any function of
u, ¥(v) any function of » and f(,

w), g(t, w), h(t, w) any functions 15 1 ~5
of t and w. o 0
In this case we need only in- ? N
troduce the line coérdinates z, 3 6 -8
y, Writing 4l . =
= o(u), y= ). st 4 \ 10
-1
We then obtain a linear equation ¢4 * }
between x and y, \ -1z
T e -13
ft, wz+ gt wy+ bt w) =0, [ TF 002 34 ga
v
w

which for any given values of ¢
and w represents the equation of
a point. For a given value of ¢ and variable values of w we obtain
a curve ¢ = const. carrying a scale for w and for a series of values
of ¢ we obtain a set of curves { = const. Similarly for a given
value of w and variable values of ¢ the equation furnishes a curve
w = const., carrying a scale for ¢ and a series of values of w
furnishes a set of curves w = const. From any given values
of v and » the line coérdinates  and y are calculated and the
points where this straight line defined by z and y intersects
the network of the curves ¢ = const. and w = const. furnish
the values ¢, w that satisfy the relation together with the given
values of v and ». The relation between the height, azimuth,
declination of a celestial body and the latitude of the point of
observation may serve as an example. Let k, a, 6 denote the
height, azimuth and declination and ¢ the latitude. The angles
/2 — ¢, 72 — h, ©/2 — & are the three sides of a spherical
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he azimuth is defined as the supplement of
the angle PZS.
The equation is

sin § = sin ¢ sin kb — cos ¢ cos h cos a.

We write
r = cosa@ ¥y = sins,

Fia. 69.

so that the equation becomes
y = 8in psin b — x cos ¢ coS h.

We shall in this case use the second system of line cosrdinates
where z is the slope of the line measured by the tangent of the
angle formed with the axis of

0

I
abscissas and y is the ordinat 75& b
A‘p -‘-"\n :“-‘-ﬂ“nf\l‘g‘-: nY:J-]f\ J-Ln g\‘r:r\_ m /II ;-m
Ul LU JLILGINOULS VWIiLLL LIIC AGAld

of ordinates. If £ 5 denote the
rectangular codrdinates of the
point, the equation of the points
takes the form

pn=xf+y or y= 19— Ex,

so that in our case we have

£ = cos gcosh, n=sinesinh.

const. can be drawn by means
of these formulas. It is easily
seen that they are ellipses and
that the curves ¢ = const. are
the same as the curves & = const.

For a definite value of ¢ and a Frc. 70.
variable value of & we find

2 2
£ 7
cos? ¢ sin® ¢

=1,
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and for a definite value of & and a variable value of ¢

£ 7

cossh ' sin?h

= 1.

Any of the ellipses intersects all the others and in this way they
form a network. A point of intersection of the ellipse ¢ = ¢
and the ellipse & = ¢, also corresponds to the values & = ¢ and
© = 0, as the ellipse ¢ = ¢, is identical with the ellipse b = ¢
and ¢ = ¢ identical with k = ¢ (Fig. 70). The easiest way to
find this network consists in drawing the straight lines

£+ 9= cos (¢ — I,

and perpendicular to them the straight lines

E—9= COS(¢+h),

for equidistant values of ¢+ k and ¢ — h. The ellipses run
diagonally through the rectangular meshes formed by the two
systems of straight lines. The scales for ¢ and & are written
on the axis of coérdinates, both scales being available for both

wa‘mahleq 'P]wh Qﬂﬂlﬂ Fhr 3 IC.‘. “rmffpn Aan +]1ﬁ- avia nF Aardinatea
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and is identjcal with the scale for t and & on this axis. For the
ordinate corresponding to a given value 8 = cis sin ¢, and this is
also the ordinate of the point where the ellipse p =cor h=¢
intersects the axis of ordinates. The scale for the azimuth cannot
be laid down in exactly the same way as that for ¢, b and §
because cos a determines the slope of the straight line =z, v.
Let us draw a parallel to the axis of ordinates through the point
£=1 5= 0 and mark a scale for the azimuth on it, making
7 = cos a (Fig. 70). A line connecting the origin with any scale
division of this scale has the slope of the line * = cos a, ¥y = sin 4.
To bring it into the position of the line x, y it must be moved
parallel to itself, until its point of intersection with the axis of
ordinates coincides with the scale division 8. This suggests
another way of using the diagram. Let a pencil of rays be
drawn from the origin to the scale divisions of the azimuth scale

(Fig. 70), and let it be drawn on a sheet of transparent paper
8
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laced over the drawing of the ellip:

)

of 4 it is moved up down as the case may be so that the center
of the pencil coincides with the scale division 6. As long as the
celestial body does not materially alter its declination the dia-
gram 1n this position will enable us to find any of the three
values ¢, k, a from the other two.

As a second example let us consider the relation between the
declination 8, the azimuth a, the hour angle ¢ of a celestial body
and the latitude ¢ of the point of observation.

The relation is found by eliminating the height & from the
equation
Sin 6 = sin ¢ sin h — cos ¢ cos h cos a.

For this purpose we express sin b and cos k by the other angles

and substitute these expressions for sin & and cos k.
We have

cos b = cos § sin /sin a,
sin b = sin ¢ 8in é - cos ¢ cos 8 cos £
Substituting these values we find
sin 6 =sin? ¢ 8in §--8in ¢ cos ¢ cos 8§ cost—cos ¢ cosdsinf ctg a, or
cos® ¢ SiN & = SIN @ COS ¢ oS & o8  — cos ¢ cos d sin t ctg a.
Dividing by cos? ¢ cos § we finally obtain

to § = , sin ¢
£0 = 1g ¢ COS P

ctg a.

In order to represent this relation graphically we introduce line
coSrdinates

r=ctga and y = tgé
and find
) | sin {
= cost — T
Y g ¢ COS CoS ¢

Let us use the second system of line codrdinates. The rec-
tangular codrdinates ¢, g of the point represented by the equation
are found from it equal to:
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sin ¢

Aia W

= — - =1 cos 1.
£ cos g’ T B¢

The curves ¢ = const. are ellipses,

cos? p& + tg¢ = 1,

The curves t = const. are hyperbolas,

£ 7
gn?t  costt

The ellipses and hyperbolas are confocal, the foci coinciding
with the points § = = 1, y = 0, so that the curves intersect at
right angles.

The scale for ¢ may be written on the axis of ordinates at the
points where it intersects the ellipses. It is identical with the
scale for 4, the ordinate in both cases 0
being the tangent of the angle with the 60\1;;[1322 X
only difference that & is negative on ¥
the negative part of the axis and ¢ is
not. The scale for { may be written
on one of the ellipses corresponding to
the largest value of ¢ that isto be taken
account of. This ellipse forms the
boundary of the diagram, so that
larger values of ¢ are not represented.
Corresponding to the azimuth we draw
a pencil of rays on a sheet of trans-
parent paper, which is laid on the draw-

11w ~F 4-1-\0 ATIPTTO0 TLD navidan ~8 +L A
1116 vl LILC LUl Yo, ALl LTI uwl LIIC

pencil is placed on the scale division 8
and the azimuth is equal to the angles
that the rays form with the positive direction of the axis of or-
dinates (Fig. 71). It suffices to draw the curves and the rays
only on one side of the axis of ordinates. At the apex of the

ek

,(_3_88%
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meant to start from the focus ¢ = 1,9 = 0. When the center of
the pencil of rays is in the origin the rays form the asymptotic
lines of the hyperbolas, @ = 15° corresponding to { = 1%, a=30°
to t = 2" and so on.

3

9]



CHAPTER III.

THe GrRarHICAL METHODS OF THE DIFFERENTIAL AND
INTEGRAL CALCULUS.

§ 13. Graphical Integration.—We have shown how the ele-
mentary mathematical operations of adding, subtracting, multi-
plying and dividing and the inverse operation of finding the
root of an equation can be carried out by graphical methods and
how functions of one or more variables may be represented and
handled. But the graphical methods would lack generality and
would be of very limited use, if they were not applicable to the
infinitesimal operations of differentiation and integration. In-
deed it is here that they are found of the greatest value. In
many cases, where the calculus is applied to problems of natural
science or of engineering, the functions concerned are given in a
graphical form. Their true analytical structure js not known

ﬂnf‘ as a T‘]]IP an a‘n‘nrnV1m9hnn ]’\U" analvhnn] PY“‘I‘DQG](\Y\Q IQ nant
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easily calculated nor easily handled. In these cases it is of vital
importance that the operations of the calculus can be performed,
although the functions are only given graphically.

Let us begin with integration, because it is easier than differ-
entiation and of more general application.

Suppose a function y = f(x) given by a curve whose ordinate is
y and whose abscissa is x. The problem is to find a curve, whose
ordinate Y is an integral of the function f(x),

Y =Ixf(x)da:.

Let us assume the unit of length for the abscissas independent
of the unit of length for the ordinates. The value of ¥ measures
the area between the ordinates corresponding to a and x, the
curve y = f(x) and the axis of z in units equal to the rectangle

formed by the units of = and .
101
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le cace where f(x
A W s AL )W J \

is represented by a lin

Yzfcdm:c(a:—a,).

Y is the ordinate of a straight line intersecting the axis of = at
the point x = a. The constant ¢ is the change of Y for an
increase of x equal to 1.
If P is the point on the
/ axis of z forx = — 1 and

0 @) the point where the line
c‘ y = ¢ intersects the axis
of ordinates (Fig. 72) the

desired line is parallel to
Fia. 79, PQ. It is constructed by

drawing a parallel to PQ

through the point 2 = a on the axis of z (Fig. 72, where a = 0},
When a given value ¢; is added, so that the equation becomes

N

V = p v #Y de a
L = U ({4 w) | ul

it amounts to the same as when the straight line is moved in the
direction of the axis of ordinates through a distance ¢. For
x = g we then have Y = ¢, so that we obtain the line

Y = ¢(x — a) + ¢,
by drawing a parallel to P@ through the point x=a,y =

T 4 n cnpmm A lnnas 14 13 LY AN ot
11 the secona pldce 1et us assume l,lldal, l,llU 1ne y J L&) LUllblbLb

of a number of steps, that is to say, that the function has different

constant values in a number of intervals x = 2; to x, m to a3,
etc.,, while it changes its value abruptly at a, a3, etc. The
line presenting the integral

Y = f " f(@)da

does not change its ordinate abruptly. It consists of a con-
tinuous broken line, whose corners have the abscissas @, w3, ete.
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he directions of the different parts are found in the way just
described by the pencil of rays from P to the points «, 8, v, etc
(Iig. 73), where the horizontal lines intersect the axis of ordinates

[V

‘ ) o arallel to Pa through
the point = x, (in Fig. 73 21 is eq al to 0) as far as the vertical
x = x3. 'Through the point of mtersectlon with the vertical
x = 1 we draw a parallel to P8 as far as the vertical x = a3,
Through the point of intersection with the vertical x = x; we
draw a parallel to Py and so on.

Finally let us consider the case of an arbitrary function y = f(x)

represented by any curve. In order to find the curve

Y = f f)dz

we substitute for y = f(x) a function consisting of different
constant values in different intervals and changing its value
abruptly when « passes from one interval to the next, so that
the line representing this function consists of a number of steps
leading up or down according to the increase or decrease of f(x).

These steps are arranged in the following way. The horizontal
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part A;As of the first step (Fig. 73) starts from any point 4,

of the given curve. The vertical part 4.B; and the following
horizontal part B;B, are then drawn in such a manner that BB,
intersects the curve and that the integral of the given function
as far as the point of intersection K, is equal to the integral of the
stepping line as far as the same point. That is to say, the areas
between the stepping line and the given curve on both sides of
the vertical part 4,B; have to be equal. When K, is fixed the
right position of 4;B; may be found by eye estimate. The eye
is rather sensitive for differences of small areas. Besides a shift
of A28, tothe right or to the left enlarges one area and diminishes
the other so that even a slight deviation from the correct position
makes itself felt. In the same way the next step B.CiC: is
drawn with its vertical part B>(; in such a position that the
areas on both sides are equal. The integral of the given curve
as far as K. will again have the same value as that of the stepping
line as far as K.. And so on for the other steps. The integral
of the stepping line is constructed in the way shown. It is

rpnrpqpni-pd ]"nr a bhraken Line hpmnn1na- at the anf nF f]wp nrrh‘n ate
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of A;. The corners lie on the vertical parts of the steps or
their prolongations. It is readily seen that the broken line con-
sists of a series of tangents of the integral curve

Y = Ixf(x)da:,l

and that their points of contact with the integral curve lie on
the same verticals as the points 4, K,, K., ete. (In Fig. 73 these
points are denoted 0, 2, 3, --..) That these points lie on the
integral curve follows from the arrangement of the steps which

malba thoinfaornal ~F +

Mage tnC iNwCEra: 01 i g' 1ve lp‘ + nat K, K., --- equal tothe

ncrion at i phy Iy 77 7 LY Uial LU LIV

integral of the stepping line. Now in the points 4,, K, K, ---
the ordinates of the given curve coincide with those of the
stepping line. Hence both integral lines must for these abscissas
have the same direction.

1 In Fig. 73 the lower limit is 0.
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Having constructed the broken line and marked the points
2, 3, 4, --- (Fig. 73), the integral curve is drawn with a curved

ruler so as to touch the broken line in the points, 0, 2, 3,

As the given curve does not change its ordinate abruptly the
integral curve does not change its direction abruptly. The
drawing shows how well the integral curve is determined by the
broken line, There is practically no choice in drawing it any
other way without violating the conditions.

The ordinate of the integral curve is measured in the same
unit as the ordinate of the given curve y = f(x). It may some-
times be convenient to draw the ordinates of the integral curve
in a scale different from that of the ordinates of the given curve,
For instance the value of the integral may become so large that
measured in the same unit the ordinates of the integral curve
would pass the boundaries of the drawing board, or else they may
be so small that their changes cannot be measured with sufficient
accuracy. In the first case the scale is diminished, in the latter
case it is enlarged. This is done by altering the position of the

et P +tha ananton ~F +ha monnt il AF ravs +that dafina tha dirantiana
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of the broken line. If P approaches O the directions P«, P8, - - -
become steeper to the same degree as if keeping P unchanged we
had increased the ordinates of A;4,, BiBs, - - - in the inverse pro-
portion of the two distances P0O. Hence by diminishing the
distance PO the ordinates of the resulting broken line are enlarged
in the inverse proportion. On the other hand, by increasing the
distance PO the ordinates of the resulting broken line are di-
minjshed in the inverse proportion of the distances, because the
change of the directions Pa, P8, - - - caused by a longer distance
PO is the same as if the ordinates of A4;4,, BB,, --- were di-
minished in the inverse proportion, The broken line constructed
by means of the longer distance P’0 will therefore be the same as
if the ordinates of the stepping line were diminished. It therefore
leads to an integral curve whose ordinates are diminished in the
same proportion (Fig. 74).
The graphical integration of
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r*
Y = J f(x)dx
is not limited to values x > a. The method is just as well applic-
able to the continuation of the integral curve for x < a. The

o
~
- i ——— —— e ——

S2

b___ —
!
bl N b

Fig. 74.

steps have only to be drawn from right to left. The lower limit
a determines the point where the integral curve intersects the

There is a method for the construction of the vertical parts
of the steps, which may in some cases be useful, though as a rule
we may dispense with it and fix their position by estimation.

Suppose tl ' 1 B (Fig. 75)
HI N ouppose that A and 6 (Fig. (o)

= B are two points where the curve 1s
intersected by the horizontal parts
e 4 of two consecutive steps and that
P /E the curve between 4 and B is a

e | . .
u o parabola whose axis is parallel to
A EF G the axis of z. The position of the
Fre. 7. vertical part of the step between 4

and B can be then found by a simple
construction. Through the center C of the chord AB (Fig. 75)
draw a parallel CD to the axis of x, D being the point of inter-
section with the parabola. The vertical part EH of the step in-
tersects C'D in a point whose distance from C js twice the distance
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as we can prove that the area ADBGA 18 equal to the rectangle
EHBG. 'The area ADGBA can be divided in two parts, the tri-
angle ABG and the part ADBCA between the curve and the
chord. The triangle is equal to the rectangle FIBG, while ADBC A
is equal to two thirds of the parallelogram MNBA, and hence
equal to the rectangle EHIF. Both together are therefore equal
to the rectangle EITBG, and the two areas between the stepping
line and the curve on both sides of EIf are thus equal.

If the curve between 4 and B is sup-

H I XN p
posed to be a parabola with its axis par-

D// allel to the axis of ordinates the con-
K struction has to be modified a little.
AHEAC Through the center (' of the chord AB

(Fig. 76) draw a vertical line CD as far
as the parabola. On CD find the point

B / R ¢ K whose distance from C is double the
Fra. 76. distance from D and draw through it a
})cuu;ﬂ(ﬂ LY LIIC ullviwu sS11ir, LIIED Pdlallbl

intersects a horizontal line through C at a point L. Then EH
must pass through L. This may be shown in the following way.
The area between the parabola ADB and the chord AB is equal
to two thirds of the parallelogram MNBA, MN being the tan-
gent to the parabola at the point D. If D’ is the point of inter-
section of NN and the horizontal line through C, we have evi-
d8nflv

CL = 2D

Therefore the rectangle EHIF is equal to the area ADBA be-
tween the parabola and the chord and EII BG is equal to ADGBA.

Any part of a curve can be approximated by the arc of a
parabola with sufficient accuracy if the part to be approximated
is sufficiently small. When the direction of the curve is nowhere
parallel to the axis of codrdinates, both kinds of parabolas may
be used for approximation, those whose axes are parallel to the
axis of x and those whose axes are parallel to the axisof y. But
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et
>
3

W (Fig. 76),
we can only use those with vertlcal axes and when the direction
in one of the points is vertical we can only use those with hori-
zontal axes. Accordingly we have to use either of the two con-
structions to find the position of the vertical part of the step.
Do not draw your steps too small.  For, although the difference
between the broken line and the integral curve becomes smaller,
the drawing is liable to an accumulation of small errors owing
to the considerable number

) Fa | :“ el Fa B
1011 111 Ol€ O

i} of corners of the broken
line and little errors of
d drawing commjtted at the
f‘ corners, Only practical ex-
/y 7z perience enables one to find
// . ,. the size best adapted to
N — ®  the method.
° Fie. 77. Statical moments of areas
may be found by a double
graphical integration. Let us consider the area between the curve

y = f(x) (Fig. 77), the axis of x and the ordinates corresponding
toxr = 0and x = & The statical moment with respect to the
vertical through « = ¢ is the integral of the products of each
element ydx and its distance § — « from the vertical

¢
M = ‘L‘ (¢ — x)yda.

Let us regard M as a function of ¢ and differentiate it:

dM
= (= Dt [ e 6 D

= 0+ J yd.

That is to say, a graphical integration of the curve y = f(x)
beginning at x = 0 furmishes the curve whose ordinate is

dM
&
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the curve M as a function of & As M vanishes for £ = (Q the

second integration must also begin at the abscissa 2 = 0.

Blr-
] -
/ £
It / (&)
/ 4 fl
Y - A®
// /\"56’ s of < s
,/ ?y/ % rjsarﬁS\s ’/
@ el
P::' iy 9 I;} £ m>
I

Fig. 78 shows an example. Each ordinate of the curve found
by the second integration is the statical moment of the area on
the left side of it with respect to the vertical through this sar.e
ordinate. The ordinate furthest to the right is the statical
moment of the whole area with respect to the vertical on the
right. The statical moment of the whole area with respect to a
vertical line through any point 2 is the integral

l ; (1 — a)yde.

Considered ag a function of x its differential coefficient is

tq ¢
f (a:l — 2)ydx = f ydx.

That is to say, the differential coeflicient is independent of xj,

hence the statical moment is represented by a straight ine. As
its differential coefficient is represented by a horizontal line
through the last point on the right of the curve

£
f ydz,
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through P and through the point of intersection @ of the hori-
zontal line and the axis of ordinates (Fig. 78). The position of
the straight line is then determined by the condition that

A[z(ml — x)ydx

for x; = £ is equal to the statical moment

3
M(g) = f (¢ — 2)yde.

We have therefore only to draw a parallel to P@ through the
last point R of the curve for M (§) found by the second integration.
The ordinates of this straight line for any abscissa x; represent
the values of

If(xl — x)ydx

measured in the unit of length of the ordinates, The point of

- L
imftoranntian W arith tha avia af » dotanmineas +hae nacitian ~F +ha
ALlé L Db'ub.lu.ll A4 ¥Yi1Lll L1V @QAald Ul J4 UUveilu ] lll.l.l.lbb LIIT PUD_I L.I.UJ.I Ul- LILG

vertical in regard to which the statical moment is zero, that is to
say, the vertical through the center of gravity.
The moment of inertia of the area

Considered as a function of £ we find by differentiation
o = (e et [ e (6= 2y

=0+2J; (¢ — x)ydz.
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That i1s to sav, the differ
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ntial coefhics

AAA

e ual
statical moment about the same axis. ThlS h d for every value
of £ Hence we obtain 37 as a function of & by integrating
the curve for M(£). For § = 0 we have T = 0, so that the curve
begins on the axis of x at £ = 0,

The integral
f ydx

is zero for x = a. The curve representing the integral has to
intersect the axis of x at 2 = a (admitting values of 2 > a and
x < a), and it is there that we begin the construction of the
broken line. If instead we begin it at the point x = a, y = ¢
the only difference is that the whole integral curve is shifted
parallel to the axis of ordinates by an amount equal to ¢ upwards
if ¢ is positive, downwards if it is negative. But the form of the
curve remains the same. It is different when this curve is
integrated a second time. For instead of

e

Ja ydx
we now integrate

.,[ agydm: =+ e.

The ordinate of the integral curve is therefore changed by an
amount equal to ¢(x — a) and besides if the second integral curve
is begun at z = a, y = ¢ instead of 2 = a, y = 0 the change
amounts to

C(x _ a) + 0y,

so that the difference between the ordinates of the new integral
curve and the ordinates of the straight line

y=-c@—a+a

is equal to the ordinates of the first integral curve (Fig. 79).
This effect of adding a linear function to the ordinates of the
integral curve is also attained by shifting the pole P upward or
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downward For it ev idently comes to the same thine whether

WA\.- 1N i Ay \JULAAUU VLS LIV WRAFAARL ik i, WP Al Wl L

the curve to be integrated is shifted upward by the amount ¢ or
whether the point P is moved downward by the same amount, so
that the relative position of P and the curve to be integrated
is the same as before. Changing the ordinate of P by — c adds

Ix
. fff(oc)dmd:x:

< laa” yOe-a)

|, Clx-a)
ffdw+0

Arx

[1f @ydoda
Clét

xZ
[fxyde
L

¢(x — a) to the ordinates of the integral curve. e¢(ax — a) is the
ordinate of a straight line parallel to the straight line from the
new position of P to the origin.

By this device of shifting the position of P upward or down-
ward the integral curve may sometimes be kept within the
boundaries of the drawing without any reduction of the scale of
ordinates. A good rule is to choose the ordinate of P about
equal to the mean ordinate of the curve to be integrated. The
ordinates of the integral curve will then be nearly the same at
both ends. The value of the integral

f ydx

is equal to the difference between the ordinates of the integral
curve and the ordinates of a straight line parallel to PO through
the point of the integral curve whose abscissa is a.
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When the ordinate of P is accurately equal to the mean ordinate
of the curve to be integrated for the interval x = a to b the
ordinates of the integral curve will be accurately the same at the
two ends. But we do not know the mean ordinate before having
integrated the curve.

After having integrated we find the niean ordinate for the
interval x = a to b by drawing a straight line through P parallel
to the chord AB of the integral curve, 4 and B belonging to the
abscissas x=a and xz=b. This
line intersects the axis of ordi-

nates at a point whose ordinate y

is the mean ordinate. 4 B
Suppose a beam AB is sup- T o T

ported at both ends and loaded Fie. 80,

by a load distributed over the
beam as indicated by Fig. 80. That is to say, the load ondx is
measured by the area ydx. let us integrate this curve graph-

ically, beginning at the point 4 with P on the line AB. The
final ordinate at B
fyda:

gives the whole load and is therefore equal to the sum of the two
reactions at 4 and B that equilibrate the load. Integrating this
curve again we obtain the curve whose ordinate is equal to

rEVJ,“
J rax,
1]

f ydx

The ordinate of this curve at any point x = { represents the
statical moment of the load between the verticals *x = a and
x = ¢ about the axis x = & Its final ordinate BM, Fig. 81, is
the moment of the whole load about the point B, and as the reac-

tions equilibrate the load it must be equal to the moment of the
9

Y being written for
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reactions about the same point and therefore

e =22 220V il il

moment of the reaction at A about B. If the reaction at A is
denoted by F, we therefore have

Fub — a) = f Ydz.

That is to say, F, is equal to the mean ordinate of the curve

§
Y=f yda

in the interval @ = a to b, The mean ordinate is found by
drawing a parallel to AM through P which intersects the vertical
through A at the point F so that AF = F,. As DB is equal to

I -

~
Fa \"""ei—.--.._.______‘l,—-""

Y
!
I’
—_——
i
\
c:q rm""‘“‘

Fia. 81.

the sum of the two reactions a horizontal line through F will
Shifting the position of P to P’ on the hornizontal line FG
and repeating the integration

[
Ja Ydx,

we obtain a curve with equal ordinates at both ends. If we
begin at 4 it must end in B. Its ordinates are equal to the
difference between the ordinates of the chord AM and the curve
AM (Fig. 81), and represent the moment about any point of
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the beam of all the forces on one side of the
reaction),

The area of a closed curve may be found by integrating over the
whole boundary. Suppose 2 = a and 2 = b to be the limits of
the abscissas of the closed curve, the vertical 2 = a touching the
curve at 4 and the vertical x = b at B (Fig. 82). By 4 and B
the closed curve is cut in two, both parts connecting 4 and B.
Let us denote the upper part by ¥ = fi(z) and the lower part

by y = fo(x). The whole area is then equal to the difference

-

or equal to

ffl(m)dm—l—f fa(x)da.

We begin the integral curve over the upper part at the vertical
x = a at a point E, the ordinate of which isarbitrary, and draw
the broken line as far as F on the vertical x = b (Fig. 82). Then
we integrate back again over the lower part, continuing the
broken line from F to G. The line EG measured in the unit of
length set down for the ordinates is equal to the area measured
in units of area, this unit being a rectangle formed by PO and
the unmit of ordinates. That is to say, the area is equal to the
area of a rectangle whose sides are PO and EG.
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The method is not limited to the case drawn in Fig. 82, where

the closed curve intersects any vertical not more than twice. A
more complicated case is shown in Fig. 83, But in all those cases

Fic, 83,

where the object is not to find the integral curve but only to find
the value of the last ordinate the method, cannot claim to be
of much use, because it cannot compete with the planimeter.

For the construction of the broken line we have drawn the
steps in such a manner that the areas on both sides of the vertical
part of a step between the curve and the stepping line are equal.



DIFFERENTIAL AND INTEGRAL CALCULUS. 117

line in such a way that the areas on both sides of the horizontal
part of a step are equal (Fig. 84). Only the broken line would
consist of a series of chords instead of a series of tangents of the
integral curve. The points K,, K, ---, where the horizontal
parts of the steps intersect the curve would determine the ab-
scissas of the points of the integral curve, where its direction is
parallel to the direction of the broken line. But this forms very
little help for drawing the integral curve. That is the reason
why the former method where the broken line consists of a series
of tangentsis to be preferred. However where the object is only
to find the last ordinate of the integral curve the two methods
are equivalent.

§ 14. Graphical Differentiation.—The graphical differentiation
of a function represented by a curve is not so satisfactory as the
graphical integration because
the values of the differential A

. Y A A y'”:f(a")
coefficient are generally not
verv well defined bhv +he enirve /
¥ \./.I.J FrULlL LAaviikinviig UJ LilL Llsl ¥ wa /
The operation consists in / ,
drawing tangents to the given Q 4
curve and drawing parallels o G B
through P to the tangents =7 @ x
(Fig. 85). The points of in-
tersection of these parallels Fia. 85.

with the axis of ordinates fur-
nish the ordinates of the curve representing the derivative.
The abscissa to each ordinate coincides with the abscissa of the
point of contact of the corresponding tangent. The principal
difficulty is to draw the tangent correctly. As a rule it can be
recommended to draw a tangent of a given direction and then
mark its point of contact instead of trying to draw the tangent
for a given point of contact. A method of finding the point of
contact more accurately than by mere inspection consists in

drawing a number of chords parallel to the tangent and to
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oints of bis
sects the given curve at the point of contact (Flg 86) When a
number of tangents are drawn, their points of contact marked
and the points representing the differential coeflicient constructed,
the derivative curve has to be

: B, B drawn through these points.

0.7 Cf%ﬁl This may be done more accur-

ﬁ:g-il 0, Gy ately by means of the stepping

line. The horizontal parts of

the steps pass through the

P% A N points while the vertical parts
Fro. 6. lie in the same vertical as the

point of intersection of two
consecutive tangents. The derivative curve connects the points
in such a way that the areas between it and the stepping line are
equal on both sides of the vertical parts of each step. Thus
the result of the graphical differentiation is exactly the same

~
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Fia, 87.

figure that we get by integration, only the operations are carried
out in the inverse order.

A change of the distance PO (Fig. 87) changes the ordinates
of the derivative curve in the same proportion and for the same
reason that it changes the ordinates of the integral curve when we
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dinate of P only shifts the curve up or dow1 by qual amount,

so that if we at the same time change the axis of @ and draw it
through the new position of P the ordinates of the curve will
remain the same and will represent the differential coeflicient.

When a function f(2, y) of two variables is given by a diagram
showing the curves f(x, y) = const. for equidistant values of
f(x, y) the partial differential coefficients can be found at any
point g, ¥, by means of drawing curves whose ordinates represent
f(z, o) to the abscissa x or f(xg, ¥) to the abscissa y and applying
the methods explained above. For this purpose a parallel is
drawn to the axis of z, for instance, through the point xy, y,
and at the points where it intersects the curves f(x, y¥) = const,
ordinates are erected representing the values of f(z, y,) in any
convenient scale. A smooth curve is then drawn though the
points so found and the tangent of the curve at the point xz,
furnishes the differential coefficient df/dx for x = 2, ¥y = y,.

The differential coefficients df/dx, df/dy are best represented

P MU | 5 atmoo 13 £ - i

b.ld;pll.ll.,dallly Uy e | bl.c.ld;.lblll.a iine bl.cd;.ll.a.lllb ITom Lllt: puiatliL -L) y LU
which the differential coefficients correspond, and of such length
and direction that its orthogonal projections on the axis of =
and y are equal to df/dx and df/dy. This line represents the
gradient of the function f(x, y) at the point z, y.! It is normal
to the curve f(x, ¥) = const. that passes through the point =z, y,
its direction being the direction of steepest ascent. Its length

measures the slope of the surface z = f(x, ¥) in the direction of

R e e R L =285 JLsis VN A& 2% NaAaraSo R

steepest ascent. This is shown by considering the slope in any
other direction. Let us change = and y by

rcosa, rsila
and consider the corresponding change
Az = f(x+ rcosa, y + 7 sin a) — f(x, y)
of the function. By Taylor’s theorem we can write it

! See Chap, II, § 10.
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oL Y
U U

A Y% . .
5, T COS a + 5 r sin « + terms of higher order in r,

a 1s the direction from the point z, y to the new point 4 r cos «,
y + rsina and r is the distance of the two points. Dividing
Az by r and letting r approach to zero we find

Az of af

hm_?‘ = a*éCOSa—l—g:;jSlna

This expression measures the slope of the surface z = f(xy)
in the direction . Now let us introduce the length ! and the
angle A of the gradient, and write
a‘f = [lcos\, —_ =1lsinh
oy
Then we have

of of . _
Py cos a + aysma- [ cos (a — N).

That 1s to say, the slope in any direction « is proportional to
cos (@ — N), it is a maximum in the direction of the gradient
(e = \) and zero in a direction perpendicular to it and negative
in all directions that form an obtuse angle with it. When all
three codrdinates are measured in the same unit, the length of

] P | +41 . M le ariin 1 #4~ +hn tanoant ~F +ha anala ~F
1 UJ.G(LDU.[CU .lll Llllb uuu. .ID C\iual LU LIICT Ld;llb(:lll.. 'Ul. LllC allblc Ul

steepest ascent, Hence the length of the gradient varies with
the unit of length. When the unit of length in which the values
of f(zy) are plotted is kept unaltered, while we change the unit
of length corresponding to the values # and y, the length of the
gradient vanes with the square of the unit of length.

§ 15. Differential Equations of the First Order.—1n the problem

of solving a differential equation of the first order

L. 118.3 (e L LT L. 4L ™

dy = f(=z, 1)

by graphical methods the first question is how to represent
the differential equation graphically. If  and y are meant to
be the values of rectangular codrdinates, the geometrical meaning
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of the diff 2 x, y, where
f(x, y) is defined, the equation prescribes a certain direction for
the curve that satisfies it. Let us suppose curves drawn through
all those points for which f(x, y) has certain constant values,
Each curve then corresponds to a certain direction or the opposite
direction. Let us distinguish the curves by different numbers or
letters and let us draw a pencil of rays together with the curves
and mark the rays with the same numbers or letters in such a way

that each of them shows the direction corresponding to the

of the differential equation

i1s that at every point 2

First approximation

2nd approximation
{ Integration of the
curve below)

Fia. 88,

curve marked with that particular number or letter (Fig. 88).
Our drawing of course only comprises a certain region in which
we propose to find the curves satisfying the differential equation.
It may be that f(zy) is defined beyond the boundaries of our
drawing. Those regions have to be dealt with separately.

The graphical representation of the differential equation in

the region considered consists in the correspondence between

~2E% o St N WS AALIE VAN R Ay JEVF W LYE T ¥ e led N o T At Tt AF it FT wns/bl

the curves and the rays. It is important to observe that this
representation is independent of the system of coSrdinates by
means of which we have deduced the curves from the equation

d
i; = f(xy).
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We can now introduce any system of codrdinates £, n and find

from our drawing the equation

d
El_z = 90(577):

that 1s to say, we can find the value of ¢(§, 5) at any point &, g
of our drawing. If, for instance, the unit of length is the same
for £ and 7 we draw a line through the center of the peiicil of rays
in the direction of the positive axis of £ and a line perpendicular to
it at the distance 1 from the center. The segment on the second
line between the first line and the point of intersection with one
of the rays measured in units of length and counted positive in
the direction of positive n furnishes the value of (&, ) for all
the points £ 5 corresponding to that particular ray. In this
respect the graphical representation of a differential equation
1s superor to the analytical form, in which certain codrdinates
are used and the transformation to another system of coérdinates
requires a certain amount of calculation.

Now let us 'h‘v to find the curve +‘1rnn(r}1 a miven point P on

AN % WmATF hTAY 4 iy bA .t" Fa

the curve marked (a) (Fig. 8R) that satlsﬁes the differential equa-
tion. We begin by drawing a series of tangents of a curve
that is meant to be a first approximation. Through P we draw
a parallel to the ray (a) as far as the point ¢ somewhere in the
middle between the curves (a) and (b). Through @ we draw a
parallel to the ray (b) as far as R somewhere in the middle
between the curves (b) and (¢). Through R we again draw a
parallel to the ray (¢) and so on. The curve touching this
broken line at the points of intersection with the curves (a),
(b), «-- is a first approximation. But we need not draw this
curve. In order to find a better approximation we introduce a
rectangular system of codrdinates 2, y, laying the axis of x some-
what in the mean direction of the broken line. Let us denote
by 1 the function of = that corresponds to the curve forming the
first approximation. The second approximation 3. is then ob-
tained as an integral curve of f(x, 1), that is, of dy/dx
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re
Yo = yp—l_ J f((l), yl)dm:

denoting by x,, yp, the coordinates of P. For this purpose the
curve whose ordinates are equal to f(x, ) or dy/dx has to be con-
structed first. The values of f(z, y1) are found immed;ately at
the points where the first approximation intersects the curve
(a), (b) --- by differentiation in the way described above. A
line is drawn through the center of the pencil of rays parallel to
the axis of = and a line perpendicular to it at a convenient dis-
tance from the center. This distance is chosen as the unit of
length. The points of intersection of this line with the rays de-
termine segments whose lengths are equal to the values of f(x, 1)
on the corresponding curves. These values are plotted as ordi-
nates to the abscissas of the points where the first approximation

intersects the curves (a), (b), --- and a curve
Y = f(x, y1)

is drawn (Fig. 83). This curve is integrated graphically begin-
ning at the point P and the integral curve is a second approxi-
mation. Again we need not draw the curve. The broken line
suffices, if we intend to construct a third approximation. In

this case we have to repeat the foregoing operation. This can

now be performed much quicker than in the first case because the
values of f(x, y) on the curves (a), (b), --- have already been
constructed and are at our disposal. In order to find the curve

Y = f(x, 1)

we have only to shift the same ordinates to new abscissas and
make these coincide with the abscissas of the points where the
second approximation intersects the curves (a), (b), -+-. The
curve

Y = f(x: y2)

is then drawn and integrated graphically, beginning at the point
P.
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Suppose now the integral curve did not differ from the second
approximation, it would mean that

w=w+t [ J@wi,

or that

W _ fo, v,

that is to say, that g satisfies the differential equation,

If there is a perceptible difference the integral curve represents
a third approximation. It has been shown by Picard that pro-
ceeding in this way we find the approximations (under a certain
condition to be discussed presently) converging to the true solu-
tion of the differential equation, so that after a certain number
of operations the error of the approximation must become
imperceptible.

Denoting by . the function of the nth approximation we have

1= Yp + r f(a, y,)d.

7
J Tl JAE TT

Zp

The true solution with the same initial conditions y = y, for
x = x, satisfies the equation

y=v+ | f@ode

Hence
Y1 — Y = [ (f(z, yn) — Sz, yld,
J.,
or
, Yn) — f(@, y)
yn+1—y—~ff( R Y2 (4o — p)da.

Let us now suppose that the absolute value of

f(x, ya) — f(z, y)
Yn — y

for all the values of z, y, ¥, within the considered region does
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not surpass a certain limit 3, then it follows that a certain relation
must exist between the maximum error of y,, which we denote by
¢» and the maximum error of yn,i, which we denote by e,
The absolute value of the integral not being larger than

Me, |z — x, ]|
(| 2 — 2, | denoting the absolute value of 2 — z,) we have
b1 S M| 2— z,]en.

Hence as long as the distance @ — x, over which the integration
1s performed is so small that

Mla—x| £k<1,

k being a constant smaller than one, the error of y,,; cannot be
larger than a certain fraction of the maximum error of y,.
But in the same way it follows that the error of y, cannot be
larger than the same fraction of the maximum error of y,_;, and

so on, so that
€ntl :g ken ;; ﬁ?en_l res ;g k"BL

But as ¢; is a constant and k a constant smaller than one, ke

must be as small as we please for a sufficient large value of n.

That is to say, the approximations converge to the true solution.
M being a given constant the condition of convergence

Mlz—a2,| £k<1

limits the extent of our integration in the direction of the axis of .
But it does not limit our progress. From any point P’ that we
have reached with suflicient accuracy we can make a fresh start,
choosing a new axis of z suited to the new situation. As a
rule it does not pay to trouble about the value of M and to try
to find the extent of the convergence by the help of this value.
The actual construction of the approximations will show clearly
enough how far to extend the integration. As far as two consecu-
tive approximations show no difference they represent the true

curve.
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f(@, yn) — f(2, )
Yn — Y

has the same sign for all values z, ¥, y» concerned. Say it is
negative. Suppose further that y, — y is of the same sign for
the whole extent of the integration

Ynpn — Y = f [04) Z 12 0 (Yn — y)dz;
*»

Yn — Y

that is to say, the approximative curve y, is all on one side of the
true curve. Then if x — x, is positive, y»41 — ¥ must evidently
be of the opposite sign from y, — y, or the approximative curve
Yni1 is all on the other side of the true curve from y,. Forthese
and all following approximations the true curve must lie between
two consecutive approximations. If the first approximation ¥ is
all on one side of the true curve the theorem holds for any two
consecutive approximations. This is very convenient for the esti-
mation of the error,
In Fig. 88
f(:lt, yn) — f(m: _7/)
Yn — Y

is negative from the point P as far as somewhere near §. The
first approximation is all on the upper side of the true curve.
Therefore the second approximation must be below the true
curve at least as far as somewhere near S.

When the sign is positive the same theorem holds for negative
values of x — x,. If the integration has been performed in the
positive direction of x, it may be a good plan to check the result
by integrating backwards, starting from a point that has been
reached and to try if the curve gets back to the first starting
point. In this direction we profit from the advantage of the
true curve lying between consecutive approximations and are
better able to estimate the accuracy of our drawing.

We have seen that the convergence depends on the maximum
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absolute value of

f(.’E, yn) - f(m) .?/)
Yn — Y

for all values of 2, y, y» concerned. In order to find the maximum
value we may as well consider

of

ay
for all values of z, y within the region considered. For if we
assume df/dy to be a continuous function of y, it follows that
the quotient of differences

f(x: yn) — f(x: y)
Yn — Y

must be equal to df/dy taken for the same value of x and a value
of y between y and y,. This is immediately seen by plotting
f(x, y) as ordinate to the abscissa y for a fixed value of 2. The
value of the quotient of differences is determined by the slope
of the chord between the two points of abscissas y and y,. The
slope of the chord is equal to the slope of the curve at a certain
point between the ends of the chord. The value of 3f/dy at this
point is equal to the value of

Now let us consider how the coordinate system may be chosen
in order to make Hf/r%: as small as nnqcnhlp and thus obtain the

A LAY/ & AARRA AN W FLAARNAL  RALF ALV A RS A S VRILEIRE

best convergence. For this purpose let us investigate how the
value of 9f/dy changes at a certain point, when the system of
codrdinates is changed.

Let us start with a given system of rectangular codrdinates &,
» with which the differential equation is written

d
2 = b ).

The direction of the curve satisfying the differential equation
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Now let us introduce a new system of rectangular coordinates
x, y connected with the system &, 4 by the equations

r = tcosw-+ nsinw,
= —£sinw-+ 7 cos w,
which are equivalent to
£ = xcosw — ¥ sin w,
n = Xsin w+ ¥ COS w,
w being the angle between the positive direction of 2 and the
positive direction of §, counted from & towards x in the usual way.

The angle formed by the direction of the curve with the positive
direction of the axis of z is « — w, and therefore

dy _
dm tg (a w) = j(LE y)"

Consequently we obtain for a given value of w

af 1 Oo

ay cos? (a — w) Ay’

or remembering that « is given as a function of ¢ and »,
1 \

sinw—l——cosw)

of
5y cos® (a — w) k
For simplicity’s sake we shall assume that the axis of ¢ is the
tangent of the curve (£, 7) = const. that passes through the
given point, so that da/dt = 0.

We then have

af 1 da
dy  cost (a — w) a7

COS w,

and our object is to find how 3f/dy varies for different values of
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0 1t denote

of the gradient of o, which we represent by a straight line drawn
from the origin A (Fig. 89) perpendicular to the curve o = const.
or ¢(§, 1) = const.

It is no restriction to assume the value of da/dy positive; it

only means that the direction of the positive axis of 3 is chosen

\ \
\\\ \‘
A ‘\
\ \
\\ }
% B \
A \)
Y
A Y \\ \' ﬂ
G N T
7 s \ B
Gpa \\\ (N ) ’/’
eapss \'// i
» »-._J_:.)-:\’ {
e
o are \
Frc. 89.

in the direction of the gradient. Let us draw the line AB (Fig.
89) in the direction of the positive axis of ¢ and of the same length
as the gradient.

In order to show the values of df/dy for the different positions
of the axis of = let us lay off the value of 3f/0y as an abscissa.
For instance for w = «, df/dy assumes the value

The abscissa corresponding to this value is AB’ (Fig. 89), the
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orthogonal projection of AB on the axis of x. For any other
position AC (Fig. 89) corresponding to some other value of w,
we find da/dy cos w by orthogonal projection of AB on AC. Then
the division by cos (« — w) furnishes AC" and a second division
by cos (a — w) leads to AC. Thus a certain curve can be
constructed whose polar codrdinates are r = df/dy and w, the

equation in polar codrdinates being

O COS @ Ja

. — e 24
by cos? (@ — @) or [rcos (a — w)] 57 r COS .

r =

In rectangular codrdinates ¢, » the equation assumes the form
d
(cos af + sin an)? = —% 3

This shows that the equation is a parabola, the axis of which is
perpendicular to the direction «. AB’is a chord and the gradient

R in K. draw; 'K

ing AB in E, drawing EK
perpendlcular to AB’ as far as the axis of » and bisecting EK in
D, we find D the apex of the parabola. The three points 4, B, D
together with the gradient will suffice to give us an idea of the
size and sign of df/dy for the different positions of the positive
axis of x.
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r')f/ﬁ'u vanishes when the axis of x is perpendicular

A% a8 Rt PSS pARe i3 -w.-.

to the curve
a = const., so that it seems as if this were the most favorable
position. We must, however, bear in mind that the axis of z
is kept unaltered for a certain interval of integration. When we
pass on to other points the axis of z is no longer perpendicular
to the curve a = const. there. The position of the axis of z is
good when the average value of df/dy is small. In Fig. 90 the
parabolas are constructed for a number of points on the first
approximation of a curve satisfying the differential equation.

If we want to make use of the parabolas to give us the numerical
values of df/dy the unit of length must also be marked in which
the codrdinates are measured. The numerical value of df/ay
varies as the unit of length and therefore the length of the line
representing it must vary as the square of the unit of length.
But if we draw a line whose length measured in the same unit is

equal to —77— , this line would be independent of the unit of

1
of [y
length. For if [ is the line representing the unit of length and
1

y and — =, of/oy
of 0y
the ratio I/l; hencel” = F/I.

1
would be the ratio I/l and o/

Since I’ varies as I with the change of the unit of length I is
independent of the unit of length. This line I’ represents the

limit beyond which the product

Qi 0
Y

becomes greater than 1. If 8f/dy remained the same this would
mean the limit beyond which the convergence of the process of

approximation ceases. We might lay off the length of of / 5

the different directions in the same way as df/dy has been laid
off. The result is a curve corresponding, point by point, to the
parabola, the image of the parabola according to the relation of
reciprocal radii. But all these preparations as a rule would not
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nee with an axis
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pay. It is bhet to attack the integration at
of 2 somewh erpendlcular to the curves a = const. as long
as the direction of the curve forms a considerable angle with
the curve a = const. and to lose no time in troubling about the
very best position. The convergence will show itself, when the
operations are carried out. When the angle between the direction
of the curve that satisfies the differential equation and the curve
a = const. becomes small the apex of the parabola moves far
away and when the direction coincides with that of the curve
« = const. the parabola degenerates into two parallel lines per-
pendicular to the direction of the curve « = const. In this case
the best position for the axis of x is in the direction of the curve
a = const. Without going into any detailed investigation about
the best position of the axis of x we can establish the general rule
not to make the axis of = perpendicular to the direction of the
curve satisfying the differential equation, that is to say, not to
make it parallel to the axis of the parabola, But we hardly need
pronounce this rule, In practice it would enforce its own observ-

nrinn lana
ance, because for that position of the axis of 2 not only df/dy but

also f(x, y) are infinite and it would become impossible to plot
the curve Y = f(x, ).

There is another graphical method of integrating a differential
equation of the first order

% = fa, ),

which in some cases may well compete with the first method.
Like the first it is the analogue of a certain numerical method.

The numerical method starts from given values z, y and cal-
culates the change of y corresponding to a certain small change
of 2. Let k be the change of 2 and k the change of y, so that
x + h, y + k are the codrdinates of a point on the curve satisfying
the differential equation and passing through the point z, y. kis
calculated in the following manner. We calculate in succession
four values ky, ks, ks, ks by the following equations—
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](‘ = f(’r ’)I\}l
AN

h k
k2=f(x+2-,y+5‘)h,

(k| k)
b=flz+5u+3)b
ko= fz + h, y + ko).

We then form the arithmetical means

ok + ks k- ke
= ——— and g¢= 5

and find with a high degree of approximation as long as k is
not too large

k=p+ (g —p)
The new values
X=a+hk Y=y+k

are then substituted for x and y and in the same way the codrdi-
nates of a third point are calculated and so on.

This calculation may be performed graphically in a profitable
manner, if the function f(x, y) is represented in a way suited to

f‘—ﬂxzoy)
RAENN ]
i)

=

i KNS5 e |

!
v o-
Ta’

(B glol.
ng\l\ A R P

YNP
Fig, 91,

1 See W, Kutta, Zeilschrift fir Mathematik wnd Physik, Vol. 46, p. 443,

—
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T O

to the axis of ordinates: x =2, =23, T=10, * =
Along these lines f(x, y) is a function of y. Let us lay off the
values of f(z, ) as ordinates to the abscissa y, the axis of y being
taken as the axis of abscissas. We thus obtain a number of
curves representing the functions f(xe, ¥), f(z1, v), f(xs, ¥), - -~
Starting from a point A(ze, yo) on the first vertical x = x, (Fig.
91) we proceed to a point B; on the vertical 2 = x, in the following
way. By drawing a horizontal line through 4 we find the
point A’ on the curve representing f(xo, ¥). Its ordinate is equal
to f(xe, o). Projecting the point 4’ onto the axis of x we find 4"
and draw the line PA”, P is a point on the negative side of
the y-axis and PO is equal to the unit of length by which the
lines representing f(x, y) are measured. Thus

04" /PO = f(xo, yo).

Now we draw AB; perpendicular to PA”, so that if k and k
denote the differences of the coérdinates of 4 and B, we have

kifh = 04”[PO,

ky = f(xo, yo) b

From (] the point of intersection of the line AB; and the vertical
x = x; we find €, and C;” in the same way as we found 4’ and A
from A, only that ()" is taken in the curve representing the

values of f(x:. 2) and draw the line AB- nprnpnrlmnlnr to pﬂ v

QataLd i g \wl, Yy i waARl ARRAINY LA AFS A wraiia

Denoting the difference of the ordinates of A and Bs by ks we have

ke k1

OC//
=B —f(mo+ 5o ¥t g

or
k k
k2 = f(ﬁfo‘l'g,yo‘I‘El)h-

From C. the point of intersection of the line AB, and the
vertical = x; we find in the same way a point B; on the vertical
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2 = x1» and the difference &; between the ordinate of Bs and that

of 41is
) k
ks =f (330 +-2—: Yo + —22)}1-

From B; we pass horizontally to Bs’ on the curve representing
f(z2y) and vertically down to By”. The line AB, is then drawn
perpendicular to PB;3”, so that the difference k; between the
ordinates of B, and A is

ky = f(xo+ k, y + k3)h.

The bisection of B:B; and of BB, gives us the points E; and E;
and the point B is taken between E; and Es, so that its distance
from K is half its distance from E»;. The point B is with a high
degree of approximation a point of the curve that passes through
A and satisfies the differential equation.

B is then taken as a new point of departure instead of 4, and
in this manner a series of points of the curve are found.

In order to get an idea of the accuracy attained the distance
of the vertical lines is altered. For instance, we may leave out
the verticals x = 2; and z = x3, and reach the point on the
vertical x = x, in one step instead of two. The error of this

L] [ ] L
point should then be about sixteen times as large as the error on

the same vertical reached by two steps, so that the error of the
latter should be about one-fifteenth of the distance of the two.
If their distance is not appreciable the smaller steps are evidently
unnecessarily small.

The values of f(x, y) may become so large that an incon-
veniently small unit of length must be applied to plot them. In
this case x and y have to change parts and the differential

equation is written in the form

de 1
dy  f(x, )"

The values of 1/f(z, y) are then plotted for equidistant values of
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y as ordinates to the abscissa 2 and the constructions are changed
accordingly.

§ 16. Differential Equations of the Second and Higher Orders.—
Differential equations of the second order may be written in the
form ;

%g =f ( Z, Yy d—xy )
Let us introduce the radius of curvature instead of the second
differential coefficient. Suppose we pass along a curve that
satisfies the equation and the direction of our motion is deter-
mined by the angle « it forms with the positive axis of # (counted
in the usual way from the positive axis of 2 through ninety
degrees to the positive axis of y and so on), s being the length of
the curve counted from a certain point from which we start.

We then have

dy dx
(E:tga’ d_s: coS «.
Consequently
dy 1 da 1 da
d?  cos?a dx cosla ds’
or
do dgy
AL S
g, = costag.

da/ds measures the “curvature,” the rate of change of direction
as we pass along the curve, counted positive when the change
takes place to the side of greater values of o (if the positive axis
of 2 is drawn to the right and the positive axis of y upwards a
positive value of da/ds means that the path turns to the left).
Let us count the radius of curvature with the same sign as da/ds
and let us denote it by p. Then we have

1
=~ = cos® af(, y, tg ).
p

Thus the differential equation of the second order may be said
to give the radius of curvature as a function of 2, y, «, that is to
say, as a function of place and direction.



ree variables
Sented by a diagram, so that the length and sign of p may quickly
be obtained for any point and any direction.

Starting from any given point in any given direction we can
then approximate the curve satisfying the differential equation
by a series of circular arcs, Iet A (Fig. 92) be the starting point.
We make M, A perpendicular to the given direction and equal to
p in length. For positive values of p, M, must be on the positive
side of the given direction,for negative
values on the negative side, M, is y
the center of curvature for the curve
at A. With M, as center and M,A4
as radius we draw a circular arc 4B
and draw the line BM,. On this line
or on its production we mark the __
point M, at a distance from B equal
to the value of p that corresponds to
B and to the direction in which the Fia. 92.

rranlar arn raarnhoe R Wittt A aa
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center and M,B as radius we draw a circular arc BC and so on,

The true curve changes its radius of curvature continuously,
while our approximation changes it abruptly at the points
A, B, C, ---. The smaller the circular arcs the less will accu-
rately-drawn circular arcs deviate from the curve. But it must
be kept in mind that small errors cannot be avoided, when
passing from one arc to the next, Hence, if the ares are taken
very small so that their number for a given length of curve
increases unduly, the accuracy will not be greater than with
somewhat longer arcs. The best length cannot well be defined
mathematically; it must be left to the experience of the draughts-
man,

Some advantage may be gained by letting the centers and the
radii of the circular arcs deviate from the stated values. The
circular arc AB (Fig. 92) is evidently drawn with too small a
radius because the radius of the curve increases towards B, If
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e had taken the radius equal to M, B 1t would have been too
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large. A better approximatiou is evidently obtained by making
the radius of the first circular arc equal to the mean of M, 4 and
M, B, and the direction with which it reaches B will also be closer
to the right direction.

To facilitate the plotting an instrument may be used consisting
of a flat ruler with a hole on one end for a pencil or a capillary
tube or any other device for tracing a line. A straight line
with a scale is marked along the middle of the ruler and a little
tripod of sewing needles is placed with one foot on the line and
two feet on the paper. Thus the pencil traces a circular arc.
When the radius is changed, the ruler is held in its position by
pressing it against the paper until the tripod is moved to a new
position. By this device the pencil must continue its path in
exactly the same direction, while with the use of ordinary com-
passes it is not easy to avoid a slight break in the curve at the
joint of two circular arcs.

Another method consists in a generalization of the method

for the eranhiecal solution of a rhﬂ"nrnnhﬂl eauation of the first

PR LEF ¥ 3 W] b .I.A iUl A SAVALE AALLN A %W kil Viiua \1“wu

order.
A differential equation of the second order
d“’y = o249 %)
o\ 4.)

may be written in the form of two simultaneous equations of the

first order:
ay
dr

dz
7z = 9, 9, 2).

Let us consider the more general form, in which the differential
coefficients of two functions y, z of 2 are given as functions of
X, 1, 2 |

d
_y-_- f(m) y} z))
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dz
E:E = 9(33: Y, Z).

We may interpret z, y, z as the codrdinates of a point in space
and the differential equation as a law establishing a certain
direction or the opposite at every point in space where f(2, y, 2)
and g(x, y, z) are defined. A curve in space satisfies the dif-
ferential equation, when it never deviates from the prescribed
direction, Its projection in the 2y plane represents the function
y and its projection in the xz plane represents the function =z,

Let us represent y and z as ordinates and x as abscissa in the

same plane with the same system of coSrdinates. Any point in

viz ) *l
|
]
2
7 | (
| z 2
! ! ' P
) | )
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Fia. 93.

space is represented by two points with the same abscissa. The
functions f(z, y, 2) and g(z, y, 2) we suppose to be given either
by diagrams or by certain methods of eonstruction or calculation.
For any point that we have to deal with, the values of f(x, y, 2)
and g(x, y, 2) are plotted as ordinates to the abscissa x, but for
clearness sake not in the same system of codrdinates as y and z,
but in another system with the same axis of ordinates and an
axis of z parallel to the first and removed far enough so that the
drawings in the two systems do not interfere with one another.
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Starting from a certain point P(z,, y,, 2,) in Space we represent
it by the two points Py(xp, ¥p) and Py(xp, z,) in the first system
and the values of f(2p, ¥», 2») and g(xp, ¥p, 2p) by the two points
A4; and A in the second system of codrdinates (Fig. 93). The
points A; and A; determine certain directions M A;’, and M Ay’
of the curves z, y and x, 2, the point M (Fig. 93) being placed at a
distance from the axis of ordinates equal to the unit of length by
which the ordinates representing f(x, y, z) and g(z, y, 2) are
measured. Through P; and P we draw parallels to M A;,” and
M A4y as far as ¢ and @, with the codrdinates z,, y, and z,, 2,.
With these codrdinates the values f(x,, ¥4, 2) and g(xq, ¥4, 24)
are determined, which we represent by the ordinates of the
points B;, B.. These points again determine certain directions
parallel to which the lines Q1 R; and @R, are drawn, etc. In this
manner we find first approximations ¥ and z; for the functions
y and z and corresponding to these approximations we find
curves representing f(x, 1, 2;) and g(x, w1, 21). These curves are
now integrated graphically, the integral curve of f(x, 3, %)
beginning at P; and the integral curve of g(z, y;, ) at P» and

-a2% L2422 L2200

lead to second approximations 1 and z:

Yo = Yn + _ [‘ f(.’E, Ui Zl)dﬂﬁ,

P

x

=z, + [ g(x, y, z1)dx.
"

For these second approximations the values of f(x, %, 2) and
g(x, U2, 22) are determined at a number of points along the curves
x, ¥ and x, % sufficiently close to construct the curves representing
f(x, ¥, 22) and g(x, 4, 22). By their integration a third approxi-
mation s, 23 is obtained

Ya = Yo t+ j‘ f(@, o, 2)dz,
p
-

o):cp

2 =2pt | 9@ 1, 2)d,
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and so on as long as a deviation of an approximation from the
one before can still be detected. As soon as there is no deviation
for a certain distance * — x, the curve represents the true solu-
tion (as far as the accuracy of the drawing goes). The curve is
continued by taking its last point as a new starting point for a
similar operation.

The distance over which the integral is taken can in general
not surpass a certain limit where the convergence of the approxi-
mations ceases. But we are free to make it as small as we please
and accordingly increase the number of operations to reach a
given distance. It is evidently not economical to make it too
small. On the contrary, we shall choose it as large as possible
without unduly increasing the number of approximations.

In the case of a differential equation

@y _ dy
dx? YY1

we have f(a, y, 2) = z, and the curve z, x is identical with the
curve representing the values of f(x, y, 2). We shall therefore
draw it only once.

The proof of the convergence of the approximations is almost
the same as in the case of the differential equation of the first

For the n + 1* approximation we have

b = ot [ 5@ v 25 s = 2t [ g(e, g 2

For the true curve that passes through the point xp, yp, 2, we
find by integration

" Ma

O A
3
J J.
hence

i =y = [ 1320~ o, A

Zngl — 2= f lg(@, yn, 2n) — g(z, ¥, 2)ldx
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f@, Yn, %) — f(2, 4, 2) = g ?3 : 'jl):(x’ Y 2) (Yn — Y)

Lf(mﬁ Y Zn)_ - f(:l’, Y, Z) ‘. A
T v &

g — n- Al
n

and similarly
g(.’E, Yn, zﬂ) — 9(33, Y, zn) (

:‘E) Ny zn :‘CT b 2
g :E’ y) :zﬂ g x} y, z

The quotients of differences

f(m: Yns Zn) — f(’?:, Yy Zn)
Yn — Y

and the three others are equal to certain values of df/ay, af/dz,
dg/dy, dg/oz for values of y, = between y and y, and between =z
and 2, (¥, Yn, 2, 2. not excluded). Let us assume that for the
region of all the values of z, y, z concerned the absolute value of
of /oy and 9f/dz, is not greater than M;, and that of d¢/9y and
dg/0z not greater than Ms, and that 6., ¢, denote the maximum
of the absolute values of ¥y — y, and z — 2z, in the interval
xp to . Then it follows that the absolute values of

f(x, Yn, 2,) — f(x, ¥, 2) and 9(X, Yns 2a) — 9(2, Y, 2)
are not greater than
1M1(5n -I- én) and Mg(an + En).

Hence for the maximum values of y,4; — y and z,.; — 2, which
are denoted by 6,43 and eny; we obtain the limits

Ont é Ml(an + ) l r — Tp l y €ntl .-'_S_ My(3, + en) ! L Tp ! ’

and

Onts T €nti < (Ml + M) I L — Tp [ (8n + €n).

If therefore the interval « — x, of the integration is so far

reduced that
(My+ M) |2 — 2, | £k<],
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8nt1+ €nps 1s not larger than the fraction k of (5, + ¢
I i § 1 L) i | \ T

=2 HES s H

), but

fij2 el

from the same reason

(511 + fn) é k(an—l + en—l), (Bn-—l + en—'l) < k(aﬂ—2 + eﬂ—2): etc.;

bnpi + enn 2 k(8 + &),

That is to say, for a sufficiently large value of n 8., and eny;
will both become as small as we please.

As in the case of the differential equation of the first order it is
not worth while, as a rule, to investigate the convergence for the
purpose of finding a sufficiently close approximation by graphical
methods. It is better at once to tackle the task of drawing the
approximations and to repeat the operations until no further
improvement is obtained. The curve will then satisfy the
differential equation as far as the graphical methods allow it
to be recognized.

When the values of f(x, y, 2) or g(z, y, ) become too large
we can have recourse to the same device that we found useful
with the differential equation of the first order. Instead of z,
one of the other two variables y or z may be considered as inde-
pendent, so that the equations take the form

de 1  dz_g(xy2)
dy flx,y2° dy f(x,y2)’
or

dz  g(x,y,2)° dz 9@y 2)’
or we may introduce a new system of codrdinates 2/, y, 2’ and
consider the resulting differential equations.
The second method for the integration of differential equations
of the first order can also be generalized to include the second
order. Let us again consider the more general case

d dz
Jg = f(m, Y, 2.‘), dﬁx = g(.’E, Y, 2.‘).

Starting from a point z, y, z the changes of y and z (denoted by
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k and I) can be calculated for a small change k of z by the fol-
lowing formulas analogous to those used for one differential
equation of the first order:

kl = f(x: Y, Z)k; ll = g(.’E, Y, Z)h;

h k [ h k !
k. =f(x—l-2, y+ o, =+ ;)h; z2=g(:c+ 50 ¥yt 5, 2t é)k;

k k l h k
ks =f(x+2—, y+§2, 2t é)k; l3=g(x+ o y+§2, z—I—%)k;

ky = f(x + h, y+ ks, 2+ L)k; s=g@+h y+ ks, 24 Bk
pzfﬂz‘l-ka :k1+k4_ , b+L , L+L

9 q g 3 p = 9 g = D) >
and with a high degree of approximation,
k=p+3(¢—0p); l=2+ 3¢ —p).
These calculations may be performed graphically. For this
purpose the functions f(x, y, 2) and g(x, y, 2) must be given in
some handy form. We notice that in our formulas the first
argument assumes the values z, x + %/2, 2 + k. In the next
step where x + h, y + k, z + [ are the codrdinates of the starting
point that play the same part that z, y, z played in the first

step, we are free to make the change of the first argument the
same as in the first step, so that in the formulas of the second
step it assumes the values x + k, x + 3k,  + 2k and so on for
the following steps. All the values of the first argument can
thus be assumed equidistant. Iet us denote these equidistant
values by

Lo, T3, Tg, X3, °

lues of f(z, y, ) and ¢(z, y, 2)

only for the constant values

&L = Toy Ty Lo, " .

For each of these constants f and ¢ are functions of two inde-
pendent variables and as such may be represented graphically
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by drawings giving the curves f = const. and ¢ = const., each
value of x corresponding to a separate drawing. These drawings
we must consider as the graphical form in which the differential
equations are given. It may of course sometimes be very tire-
some to translate the analytical form of a differential equation
into a graphical form, but this trouble ought not to be laid to
the account of the graphical method.

The method now is similar to that used for the differential
equation of the first order. y and z are plotted as ordinates in
the same system in which z is the abscissa. Equidistant parallels
to the axis of ordinates are drawn

= X9 = X, T = I, etc.

On the first x = 2y we mark two points with ordinates y, and 2z,
and from the drawing that gives the values of f(xo, ¥, 2) and

\
\
A

N

S

Ty x, x

I
[ el T

3

L

1)

/
t:g_ & 5]

Fig. 94,

g(xo, ¥, 2) as functions of y and 2 we read the values f(xo, yo, o)
and g(xo, Yo, 20) and draw the lines from zq, yo, and zo, 2 to the

points
Xe, Yo+ k1 and  x, 20 + L.

The intersections of these lines with the parallel 2 = z; furnishes
the points
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ky L
&Iy, y0+5 and 3, 2 + 5

With these ordinates we find from the second drawing the values
[ k; I\ q [ ks I\
f(mhyo""i‘; Zo‘i‘é) an g(ﬂil,yo+§,zo+§ ’

and by their help we can draw the lines from =z, yo and =z, 2
to the points
x2, Yo+ k2 and a2, yo + b.

The intersections of these lines with the line x = a; furnishes the
points

ks b
X1, Yo 1+ 2 and @, 2+ 9’

and with these ordinates we find the values

k
f(ml,yu+%,zu+%'): g(ml)yﬂ_{_%:zﬂ_{_%)i

which enable us to draw the lines from xzq, yo and xo, 2o to x,
Yo 1 ks and @, 2o + I3

With these two ordinates we find from the third diagram (z = )
the values

f/m, A 1 ’n, -~ 1 ?\ nl‘\rl n/M A J_ Tn ~ 1 I\

J( @2, Yo 1T K3, o T i3} and  gi¥g, Yo T #3, B T 3),

which finally enable us to draw the lines from xgy, and o2 to
X2, Yo + ks and xo, 2o + 4

On the vertical ine + = x; we thus obtain four points, By, B,
B;, B4, corresponding to yo + ki, yo + ke, yo + ks, yo + k4 and
four points, By, By, By’, By, corresponding to zo+ 4, 20 + b,
zo + I3, 20 + I; (Fig. 94).

B:;B; and B;B, are bisected by the points C; and Cy; By'Bj’
and ByBy by the points Cy, Co'. Finally CiC: and C,/'Cy" are
divided into three equal parts and the points B and B’ are found
in the dividing points nearest to C; and Cy’.

The same construction is then repeated with B and B’ as

starting points and furnishes two new points on the vertical
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repeated with intervals of 2 of double he size, ”_lhe dlf"ference
in the values of y and of z found for « = 24 enables us to estimate
the errors of the first construction—they are about one-fifteenth
of the observed differences.

Both methods are without difficulty generalized for the integra-
tion of differential equations of any order. We can write a
differential equation of the nth order in the form

d"a:_ t dx dxn1
Pl A UL ER e |

or in the form of n simultaneous equations of the first order

dx
a =
d.’E]
a %
f'r!’)"
Ul n—2 =
dt n—l»
dwn—-—l

dt = f(t! Ly Ty, X2y * * ° xn—l)-

A more general and more symmetrical form is

d?:

fl(t £y Xy, ©° xn-—l):
dml
_d? = f2(t, Ly Tpy = mn-—l):

dr,._
xdt 1 = fn.(ts Xy Xy ¢ -’En—-l)-

The functions x, a3, @9, ++ + @a—y are then represented as ordinates
to the abscissa ¢, so that we have n different curves. When the
function f(¢, x, a3, @2, - - - x4—) is given in a handy form, so that
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its value may be quickly found {, x, x1,
v+« x,_1, there is no difficulty in constructing n curves whose
ordinates represent the functions x, a3, @, +++ x,—3. Starting
from given values of ¢, a, 23, 25, - - - 2,_1 we have only to apply
the same methods that have been explained for the first and the

second order.
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PREFACE.

TaEe solution of the general quadratic equation was known as
early as the ninth century; that of the general cubic and quartic
equations was discovered in the sixteenth century. During the suc-
ceeding two centuries many unsuccessful attempts were made to
solve the general equations of the fifth and higher degrees. In 1770
Lagrange analyzed the methods of his predecessors and traced all
their results to one principle, that of rational resolvents, and proved
that the general quintic equation cannot be solved by rational re-
solvents. The impossibility of the algebraic solution of the general

ac1iatian Af doorans mn i ~4Y whother hvratinnal arirraticnal racslr
LquuU].Ull. i \_.‘-(./61(./\_: o 1y - jj’ ¥Yiliwv plicl lJ‘y LAV LLIWVFLLICAL WL 1L 1€l uliacll JOEOULY -

ents, was then proved by Abel, Wantzel, and Galois. Out of these
algebraic investigations grew the theory of substitutions and groups.
The first systematic study of substitutions was made by Cauchy
(Journal de Uécole polytechnique, 1815).
. The subject is here presented in the historical order of its devel-
opment. The First Part (pp. 1-41) is devoted to the Lagrange-
Cauchy-Abel theory of general algebraic equations. The Second
Part (pp. 42-98) 1s devoted to Galois’ theory of algebraic equations,
whether with arbitrary or special coefficients. The aim has been
to make the presentation strictly clementary, with practically no
dependence upon any branch of mathematics beyond elementary
algebra. There occur numerous illustrative examples, as well as
sets of elementary exercises.

In the preparation of this book, the author has consulted, in

addition to various articles in the journals, the following treatises:
iii
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Lagrange, Réflexions sur la résolution algébrique des équations,
Jordan, Traité des substitutions el des équations algébriques; Serret,
Cours d Algébre supérieure; Netto-Cole, Theory of Substitutions and
its Applications to Algebra; Weber, Lehrbuch der Algebra; Burn-
side, The Theory of Groups Pierpont, Galois’ Theory of Algebraic
Equations, Annals of Math., 2d ser., vols. 1 and 2; Bolza, On the
Theory of Substitution-Groups and its Applications to Algebraic
Equations, Amer. Journ. Math., vol. XIII.

The author takes this opportunity to express his indebtedness
to the following lecturers whose courses in group theory he has at-
tended: Oscar Bolza in 1894, E. H. Moore in 1895, Sophus Lie in
1896, Camille Jordan in 1897.

But, of all the sources, the lectures and publications of Professor
Bolza have been of the greatest atd to the author. In particular,
the examples (§ 65) of the group of an equation have been borrowed
with his permission from his lectures.

The present clementary presentation of the theory is the out-
come of lectures delivered by the author in 1897 at the University
of California, in 1899 at the University of Texas, and twice in 1902
at the University of Chicago.

Cuicago, August, 1902
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FIRST PART.

TIIE LAGRANGE-ABEL-CAUCHY THEORY OF
GENERAL ALGEBRAIC EQUATIONS.

CHAPTER L

SOLUTION OIF THE GENERAL QUADRATIC, CUBIC, AND QUARTIC
EQUATIONS. LAGRANGE’'S THEOREM* ON THE IRRATION-
ALITIES ENTERING THE ROOTS.

1. Quadratic equatiou. The roots of 2*+pr+¢=0 are

1=3—p+Vp —4g), Bm=1(~p—Vp'—4g),
By addition, subtraction, and multiplication, we get

T+ T=—p, T T,=N p*—4q, Zyly=q.
Henee the irrationality v/ p?—4q, which oceurs in the expressions
for the roots, is rationally expressible in terms of the roots, being
equal to x,—x, Unlike the last function, the functions x, 4=,
and x,x, arc symmetric in the roots and are rational functions of

the coecfficients.
2. Cubic equation. The general cubic equation may be written

(1) 2 —cx? e —cy=0.
Setting x=%+13c,, the equation (1) takes the simpler form
(2) y'+py+q=0,

* Réflerions sur la résolution algébrigue des cquations, (Luvres de Lagrange,
Paris, 1869, vol. 3; first printed by the Berlin Academy, 1770-71,
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if we make use of the abbreviations
(3) pzcz“'%cfy q= "Cs"]'%clcz"?z’fﬁa-

The cubic (2), lacking the square of the unknown quantity, is
called the reduced cubic equation. When it is solved, the roots
of (1) are found by the relation x=y+ 3¢,

The cubic (2) was first solved by Scipio Ferreo before 1505.
The solution was rediscovered by Tartaglia and imparted to
Cardan under promises of secrecy. But Cardan broke his promises
and published the rules in 1545 in his Ars Magna, so that the
formule bear the name of Cardan. The following method of
deriving them is ecssentially that given by Hudde in 1650. By

the transformation

—,_ P
(4) y_z 3.’3’
3
the cubic (2) becomnes z3—-§?7)?;+q=0, whence
p3
6 3_ V___
(5) 2°+qz 57 0.

Solving the latter as a quadratic equation for 23, we get
2= —3q£VE, R=1¢*+3p"
Denote a definite one of the cube roots of —4¢++ R by

A/ D

YR
¥ —iq+V R
The other two cube roots are then
0¥/ ~3q¢+VR, ¥/ —3¢+VR,

where w is an imaginary cube root of unity found as follows. The
three cube roots of unity are the roots of the equation

r*—1=0, or (r—1(F*+r+1)=0.

The roots of r*+r+1=0are —4+3V —3=wand —3—§V —3=02
Then

{0\ 2 1 .e 11 N .3 __1
\Wv; w wT 1=V, o — 1.



SeC. 2] THEORY OF ALGEBRAIC EQUATIONS. 3
f the relation
(—3¢+VR)(— 3¢~V R)=1¢"~R=— 47",
a particular cube root ¢/ —3g—+'R may be chosen so that
Y ~1g+VR - ¥ ——VE=—4p.
/<3 +VER - @ Y/ ~3—VR=—1p,
@/ —3+VR - 0/~ 3q—VER = —3p.

Hence the six roots of equation (5) may be separated into pairs
in such a way that the product of two in any pair is —4p. The

In view

O

root paired with z is therefore ~—§—, and their sum z——g% is, in

view of (4), a root y of the cubic (2). In particular, the two roots
of a pair lead to the same value of ¥, so that the siz roots of (5)
lead to only three roots of the cubie, thereby explaining an apparent
difficulty. Since the sum of the two roots of any pair of roots
of (5) leads to a root of the cubic (2), we obtain Cardan’s formule
for the roots y,, ¥,, ¥, of (2):

=%~ 1 +VE+/ — 3—VE,
(7 . ‘=0 —1+VR+0* ¥/ —3¢—VE,
| yy=w? Y/ —3g+VR 1w —3—VR.

Multiplying these expressions by 1, «?, w and adding, we get,
by (6),

Y 3+ VR= 4y, + 0y, oy,

Using the multiphiers 1, w, «?, we get, similarly,

’\/_" Wq ~VER= 15(?!1 +w’y,).

ﬁ

(yl — 1) (Y~ Y Us— Yu)s
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o AT _ $ T ddder S __ 2
upon dpplylllb Lne _[‘ H,CL()I LI CcOorcIn d,IlU. bIlC lubllblbv w— (,U = (3N

Hence all the irrationalities occurring in the roots (7) are ratlonally
expressible in terms of the roots, a result first shown by Lagrange.
The function
=4~ ¥2) (s~ y0)* = — 27¢" — 4p*
is called the diseriminant of the cubic (2).
The roots of the general cubic (1) are

=y +3c, T,=Ut+ic, Xz=UstEC.
e By=Xa=Y1—Yey Xy X3=Yo Yy, T3 =YYy,
(8) (xx —*332) (:L‘z - 3:3) (3:3 - ml) = (yl'— yz) (yz - ys) (93"?}1)

VE=—6V —3Vig+5:p’

/-3
EXERCISES,

1. Show that x, + 0, + wz, =y, + 0¥y, + 0y, 1, + 02, + 0¥x, =Yy, + 0l + Y.
2. The cubic (2) has one real root and two imaginary roots if ££>0; three
real roots, two of which are equal, if R =0; tlree real and distinct roots if
R <0 (the so-called irreducible case).
3. Show that the discriminant (x;, —x,)%(x,—2x;)%(x;—2,)? of the cubie (1)
equals
€20, 4 18¢,C,63— 4ey® — dePeg —27c,2.

Hint: Use formula (8) in connection with (3).

4. Show that the nine expressions 3 —%q—!—\/ﬁ—l—\S/— %g—ﬁ, where
all combinations of the cube roots are taken, are the roots of the cubies

Y+py+9=0, y+oepy+q=0, y+e’py+q=0.

5. Show that v, +1+1:=0, Y+ +ya=p, Y= 1
6 Show that z, +x,+2,=¢,, ra,+20,+20,=0, w2,2,=c, usingEx. 5.

How may these results be derived directly from equation (1)?

3. Aside from the factor %, the roots of the sextic (5) are

(’bl: Ty Wi, +w2m31 ¢4: X+ wxy+ wzﬂfz?
2 1 2 3 1 5 4 3 2 1
O AN S A

These functions differ only in the permutations of z, 2, x,, As
there are just six permutations of three letters, these functions



be obtained from ¢, by permuting z,, x,, ,. For

reason, ¢, 18 called a six-valued function.
Lagrange s @ priort solution of the general cubic (1) consists
in determining these six functions ¢, ..., ¢, directly. They are
the roots of the sextic equation ({—¢,) ... (t—¢)=0, whose
coeflicients are symmetric functions of ¢, . . ., ¢; and conscquently
symmetric¢ functions of x,, x,, x, and hence * are rationally expressible
in terms of ¢;, ¢,, ¢;.  Since ¢, =0, J,=w¢,, cte., we have by (6)

(t - ¢1)(t — ¢2)(t — 9!’3) =1%— ¢13s
(E—g (=)t =) ==,

Hence the resolvent sextic becomes
(9) = (3P +¢ 0+ ¢3¢ =0
But O= 22+, + 2"+ (0 + 0 (2,2, + 2,25 + 2,7,)
== (2, + 2y + T4)* — 3(2, 2 + 2,24 + 2o3) == ¢,> — 3C,,
in view of Ex. 6, page 4. Also, ¢,*+¢,% equals

2(x 2+ 2®) — 3(x "y + 2,2, 4 20wy 22 2y - 11y7) 4+ 122 2,2,
= 3(3313 + 3’23 +25°) ($1 &+ 25)° + 182,252,

1 O L

Hence equation (9) becomes
—(2¢,*—9¢,c, + 2Tc )13+ (¢*— 3¢,) 3=
Solving it as a quadratic equation for ¢*, we obtain two roots @
and &', and then obtain
ﬁbl:%: ¢4:\3/5?'

e chosen to be an arbi tmry on
of 8, but V0’ is then that definite cube root
(10) é/ﬁ-\“/ﬁfchm 3¢,.
We have therefore the following known expressions:

Ty -|—wa:2—|—cu2a:3:\3/5", $1+w2mz+a’m3:wa Xy + Ty + Ty == €y

* The fundamental theoremn on symunetrie functions is proved in the
Appendix.
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1M1 :'

Multiplying them by 1, 1, 1; then by w?, w, 1; and finally by w,
and adding the resultmg equations in each case, we get

Jmlsg;(cl+xsf+x3/b"'),

1.
!‘I'J

(11 2l L2 (0 Ly 3/07)
\ii) Lay==3 6 YTw AT,
1m3= e, +w V0+wt /6.
4. Quartic equation. The general equation of degree four,
(12) it axd+bxtt+cx+d=0,

may be written in the form

(x®+ $ax)’=(3a* —b)x*— cx —d.
With Terrari, we add (24 4ex)y-+1y°® to each member. Then
(13) (z°+{ax+1y)*= (1o’ —b+y)a* + (Jay — )z + 1y’ —d.

We scek a value y; of ¢ such that the second member of (13) shall
be a perfect square.  Set

(14) a®—4b 1 4y, =t*.

The condition for a perfect square requires that

’ lay,—c\?
(15) e+ (Gag,— -yt —d= (3 S )
1yt Yay,—c\*_ (Gay,—c)
T Y A e VRN T
Hence y, must be a root of the cubic, called the resolvent,
(16) ¥ —by*+ (ac—4d)y— a*d +4bd —c*=0.
In view of (13), equation (13) leads to the two quadratic
equations
(17) 2+ (Ja—30a+ by, — (bay, —¢)/1=0,
(18) —!—(%ﬂ—}—-]f\fr.—l_lu 4 (1 ay,— )/i:—_ )

Let x, and x, be the roots of (17), z, annd z, the roots of (18). Then
£U1+m2‘—=—%a+12t, lezzé%m(%ayl“c)/ta
Tyt+x,=—ga—3l, =3y + (day,—e)/L
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By addition and subtraction, we get
(19) Ty Ty — Ty 2= BT T T2 =Y,

In solving (17) and (18), two radicals arc introduced, one equal
to a,--x, and the other equal to ay—a, (sce § 1). Hence all the
irrationalitics entering the expressions for the roots of the general
quartic are rational functions of its roots.

If, instead of y,, another root of the resolvent cubic (16) be
employed, quadratic equations different from (17) and (18) are
obtained, such, however, that their four roots are x,, x,, 2,3, z,
but paired differently. It is therefore natural to expect that the
three roots of (16) are

(20) Y= T2 T T3y Y= X3+ Ty, Ya=X,X,+ T2y,

It is shown in the next section that this inference is correct.

9. Without having rccourse to Ferrari’s device, the two quad-
ratic equations whose roots are the four roots of the general quartic
equation (12) may be obtained by an & prior: study of the rational
functions 2, +a,x, and x,+2,—x,—x,=t. The three quantities
he roots of (y—y )~y )(y—¥ys) =0, or
(21) Y=+ Y)Y+ (Yl s+ YoY)Y — YilkYs=0.

Its coefficients may be expressed * as rational functions of a,b,¢, d:

Yy Y T Y3 =20, + 24T, + T,y + Ty + 2,2+ 2,2, =D,
Y2+ Y Ys Y= — 42 2252,
+ (2, + Xy + Ly + ) (2, 2025 + T, + 2, T, + Xpe2,)
=ac—4d,
Y Yaa= (%, 2oy + 20T+ 2, 2a% +2o242,)°
T2 L2 { (0 T2+ By +2) " — @y 2,2y o 2T ]

252_1_(?(;72__/1%\
I w\w _I.Uj.

* This is due to the fact (shown in § 29, Ex. 2, and § 30) that any per-
mutation of x,, z, ¥ x, merely permutes y,, ¥, ¥, so that anv symmetric
function of yy, ¥», ¥3 is @ symmetric {unction of x,, 2,, ;, x, and hence rationally
expressible in terms of @, b, ¢, d.
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12= () + 2y + T3+ 20)° — 4@, + 2) (X3 + T4)
=a’—4(xx, +x,25+ .. . +a9,) 422, + A,
=a’—4b+4y,.

Again, z, +2,+a,+2,—=—a. Hence
X+ 2=1(t—a), Tytx, =4 —i—a).

To find 2,2, and 2,x,, we note that their sum is y,, while

—t—a l—a
"C:mlxz(ms"l‘xa)+$3x4(m1+$2)2m1x2< 5 )+m3x4(—2—).

x = (c—zay,+ 3y /t,  xgr,=(—c+day,+ 3ty,)/L.
Hence x, and 2, are the roots of (17), x, and 2, are the roots of (18).
6. Lagrange’s & priort solution of the quartic (12) is quite
stmilar to the preceding. A root y,=2x2,+22, of the cubic (16)
is first obtained. Then z2,=2, and 2,x,=2, arc the roots of
2'—ye+d=0.
Then x,+ 2z, ana z,+2, are found from the relations
(&) + (23 + ) = —a,
(X1 +X0) +2,(X3 +2) = TT X, +XB 20 + 22T + X, XpT, = —C.
— @z +C A2, —C

xl""mzz 5 Tyt Xy=

-

Hence z, and z, are glve by uadrdtlc, as also x, and z,.
i Tn anliine tha a1 h cll 1Thio t

g+ 111 JLFLY Jll.b LSF o L) L& ) & W] ( }’

entering (sce § 2) is
4= (y,—y) (Y= Ya) (Y1 —Ya)-

But Y — Y= (X, — ) (T, —2,),
Yo=Ys= (T, = B) (2= ), Yi—Ys= (¥, —23) (B —2)),

in view of (20). Hence

(@) A=( 1) (8 —2) (@ — 2 (@ — ) (@~ 2,) (X —,).

e
+ s
oy |

1l
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By § 2, the reduced form of (16) is »*+Pp+¢=
23) P=ac—4d—}b?
Q= —a*d+jabe + 8bd—c?— 2, b

Applying (8), with a change of sign, we get

(24) 4=6V =3V iQ*+ A P3,



SUBSTITUTIONS; RATIONAL FUNCTIONS.

8. The operation which replaces x, by 4, &, by ,, 2 by 7, . . .

xn by x,, where a, #,..., v form a permutation of 1, 2,..., n,
is called a substitution on =, a,, z,,..., z,. It is usually des-
ignated

(ml Xy Ty ... a:n)_

Xa mﬁ r ... Xy

But the order of the columns is immaterial; the substitution may
also be written

Ty X Xy .. ey g (Th T Xy Xy oL
Tp Ta Ty ... )’ Ty Ta Xy Ty .. )00
The substitution which leaves every letter unaltered,
(2, & Xy ... T
)
\&, T, Ty ... Tn/

is called the identical substitution and is designated I.

9. TurorREM. The number of distinct substitutions on n letters
tsnl=n(n-1)...3.-2.1,

i

For, to every permutation of the n letters therc corresponds a
substitution.

Exampre. The 31=06 substitutions on n =23 letters are:

I = (371 Z; xa) — (171 Ty T3) - (551 Ty xs)
X, X X377 Iy Xy 2] Ty Ty X,/
€ o (x1 &Ly xa) d = (-Tl Ty Ty g (xl Ty Iy
Ty Xy By)7 T3 X 1,)7 Ty Ty Xy
Ann]v‘m(r these substitutions to the funetior Y=, —!—ruwi—!—c-ﬂx_.,, we obtain

LRy Ay UDSTITT10NY,

the followmg six dlstmct functions (ef. § 3):

=T

Jr=r,+or+o’r,=¢, Ja=1r,+or,+ 0% =, b =3+ wx, + W'r, =Wy,
e =2, + 0Ty + 0T, Ja=0;+0r+0r =0, Je=2,+wr + 0= 0de.
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{ e N ae

Ll ™l /et
Gr=ca=¢p=0¢,  Pc=cdda=pe=—.
Hence ¢ remains unaltered by I, a, b, but is changed by ¢, d, e.

10. Product. Apply first a substitution s and afterwards a
substitution ¢, where

S:(ml Xy ... :t:n) tz(x“ Ty ... :1:1,).
a Ty ... Ty)T TS Ty oo By
The resulting permutation ., Ty, ..., & can be obtained directly
from the original permutation z, ,, ..., x, by applying a single
substitution, namely,

(3 v

We say that u is the product of s by ¢ and write u=st.

Similarly, stv denotes the substitution w which arises by apply-
ing first s, then ¢, and finally », so that stv=uv=w. The order
of applying the factors is from left to right.*

ExamrrLes. For the substitutions on three letters (§ 9),

ab=ba=I, ac=d, ca=e ad=e, da=c,
aa=b, bb=a, abc=Ic=c, aca=da=c.

Applying the substitution a¢ Lo the function ¢/, we get ¢u; applying the
substitution ¢ to ¢a, we get ¢q. IHence ¢oc==¢q. Likewise (ab=¢1=¢,
(ba = .

11. Multiplication of substitutions is not commutative in
general.

Thus, in the preceding example, acs#ca, ads#da. But ab=ba,
so that @ and b are said to be commutative.

12. Multiplication of substitutions is associative: st-v=s-{v.

Let s, t, and their product st=wu have the notations of § 10, If

v= ("% "8 * ), thentv=("° <8 Y.
wah mﬂ” . . u mv” ma’ mﬁu . .. mpfr
(2, T o Zp N\ (2T X\ (X .. D

v ot i {1 \/ N\
v SUUEREE Ay NS 2] =\ Ty oo z, J\a o) T

Exampre. TFor 3 letters, ac-a=da=c, a-ca=ae=c,

* This is the modern use. The inverse order ts, vés was used by Cayley
and Serret.
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(25) gmgn=gmitn (m and n positive Integers).

For, by the assoclative law, smsn=gm. ss"“-—sm+1sﬂ“1
14. Pprlod Since there is nn]v a finite number

o 2R3 [NBIS VR L A= S A NN

of r‘] stinct

:_3

substitutions on 7 letters, some of the powers
s, 8%, 8% ... adinfinitum
must be equal, say sm=smTn where m and n are positive integers.
Then sm=smsn, in view of (25). Hence s® leaves unaltered each
of the n letters, so that s»=1.
The least positive integer o such that s°=1 is called the period
of s. It follows that

(26) 8, 8%, ... &7 =]

arc all distinct; while s7+!, s7+2, [ %71 % are repetitions
of the substitutions (26). Hence the first o powers are repeated
periodically in the infinite series of powers.

Examrres. From the example in § 10, we get

a*=b, a’=a’a==ba=1I, whencea is of period 3;
b*=a, b3=b=ab==I, whencebis of period 3;
¢, d, e are of period 2; I is of period 1.

15. Inverse substitution. To every substitution s there corre-
sponds one and only one substitution s’ such that ss'=71. If

o (ml Lo ... a:n), then s — (:ra Ty ... ;t:.,).
ma .’Eﬁ « = a fL'p xl xz a s w xn

Evidently §'s=1. We call &' the inverse of s and denote it hence-
forth by s7%. Hence

ssTl=s"1s=1, (s l=s,
If s is of period o, then s7'=s""" Since s replaces a rational
function f=f(x,, ..., ) by fo=f(%a, ..., ), s7" replaces f, by f.
Exampres Ior the substitutions on 3 letters (§9),
B (:z:1 x, xa) a1 (xz T, x;) - (:rl X, :::3) b
S T A Ty Xy Xy Ty Ty Xy ’

b=l=a, c¢1=c¢, d-'=d, el=¢ ['=I
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These roc ults also follow from those of the exam

l'hese res follow from th 1e examp

functions of § 9 the substitution a replaces ¢ by ¢a; a—
16. TacoreMm. If st=sr, then [=r.
Multiplying st and sr on the left by s71, we get

§Tist=t, sTlsr=r.

17. THEOREM. [If ts=rs, then t=r.
18. Abbreviated notation for substitutions. Substitutions like

_ [T Xy X3 _ (T X3 Ty (X2 Xy Xy Xy
@ = - ) b= ’ q== H
Ty Xy Ty Ty Ty I Ty Ly Ty Xy
which replace the first letter in the upper row by the second letter
in the upper row, the second by the third letter in the upper row,
and so on, finally, the last letter of the upper row by the first letter
of the upper row, are called circular substitutions or cycles, In-

stead of the earlier double-row notation, we employ a single-row
notation for cycles. Thus

a=(Xa,T), b=(2,2%,), q=(TyTs,2,).

=

T, &, by x,, and 23 by x,. A cycle 15 mot altere
tation of s letters.
Any substitution can be expressed as a product of circular

. -y .L-r\“n_ .-.4'—'(" nnnnn /J ‘p‘.q'ﬂqn“'
Supstiturions all LalJJll.b LICICILY

by a cyclic pernu-

T, Ty X Ly Xy By Ty Tg X
( L 3) = (&,)(2y23), (;I:; 332 :I:: xi xi xZ) = (2y2325)(,0) (25).

A cycle of a single letter is usually suppressed, with the under-
standing that a letter not expressed is unaltered by the substitution.
Thus (,)(2,7,) i3 written (2,,).

A circular substitntion of two letters is called a transposition.

19. Tables of all substitutions on n letters, for n=3, 4, 5.

For n==3, the 3!=6 substitutions are (compare § 9):

I=identity, a=(xryry), b=(xxx,),
c=(x,%3), d=(x%5), e=(0,1,).
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identity;

6 transpositions: (12), (13), (14), (23), (24), (34);

8 cycles of 3 letters: (123), (132), (124), (142), (134), (143), (234),
(243);

6 cycles of 4 letters: (1234), (1243), (1324), (1342), (1423), (1432);

3 products of 2 transpositions: (12)(34), (13)(24), (14)(23).

For n=5 the 51=120 substitutions include
I =identity;

5-4
= =10 t,ra,nspOSlthIlS of type (12):

§'§_'3=—_2() cyeles of type (123);

5-4.3-2
4
5.4.3.2-1
5
5.3=15 * products of type (12)(34);
20 1 products of type (123)(45).

=30 cycles of type (1234);

=24 cycles of type (12345);

EXERCISES.

1. The period of (12 3...n) isn; its inverseis (nn—1...32 1),

2. The period of any substitution is the least common multiple of the
periods of its eycles. Thus (123)(45) is of period 6.

3. Give the number of substitutions on 6 letters of each type.

4, Show that the function x,x,+ x5, is unaltered by the substitutions I,

(r2y), (Xax,), (@) (752, (X25)(1,%,), (Xx)(Xa7y), (X23252,), (2,22,%3).

5. Show that x1, + 242, is changed into x,1;+ 22, by (x,2y), (2,2,), (7257,),
(r12,7,), (2 223), (0252, (Tir,2405), (X:2057,2).

£ Writa doan tha aiocht thatitiiti
O. ywrite QOWIL tinic L/].gl-lu SUDSTITUTIONS on fGLLL l tte

4 and 5, and show that each changes xx; 4+ x,x, into xr,+ .2,

. .
RS o Tvan 1n Hoa
U YOIl 111 iAo,

* Since the omitted letter may be any one of five, while one of the four
chosen letters may be associated with any one of the other three letters,
T The same number as of type (123), since (45) =(54).



CHAPTER III.

SUBSTITUTION GROUPS; RATIONAL FUNCTIONS,

20. A set of distinct substitutions s,, s,, ..., $» forms a group
if the product of any two of them (whether equal or different) is a
substitution of the set. The number m of distinct substitutions
in a group is called its order, the number n of letters operated on
by its substitutions is called its degree. The group is designated
aw.

All the n! substitutions on n letters form a group, called the
symmetric group on n letters (%, In fact, the product of any
two substitutions on n letters is a substitution on n letters. The
name of this group is derived from the fact that its substitutions
leave unaltered any rational symmetric function of the letters.

Exampre 1. For the six substitutions on n=3 letters, given in § 9, the
multiplication table is as follows:*

I a b ¢ d e

I | I a b ¢ d e

a |a b I d e c
G b |b I ae cd
¢ |¢c e d I b a

d |{d ¢ e a I b

e le d ¢ b a I

Thus ad =¢ is given in the intersection of row a and column d.
ExaMpLE 2. The substitutions I, a, b form a group with the multiplica-~
tion table

I a b
I I a b
a a b I
b b I a

* Tt was partially established in the example of § 10.
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form a group of order m called a eyclic group.

FExavrLe 3, I, a=(123), b=a?=(132) form

XN AMPLE I 3. b= 132) for: cyelr
o, s R /

J

Exavpre 4, 1) s=(123)(45), s*=(132), s*=(45), s?=(1
form a cyeclic group of order 6 and degree 5.

AR
== (132)(45)

21. FuUNDAMENTAL THEOREM. All the substitutions on x,
Ty, .., Tn Which leave unaltered a rational function G(xy, sy .. ., Tp)
form a group @.

Let ¢y denote the function obtained by applying to ¢ the sub-
stitution s. If @ and b are two substitutions which leave ¢ unaltered,

then ¢g,=¢, dp=¢. Hence
(Pa)o=(Plo=Pp=¢, O ¢Pap=¢.

Henee the product ab is one of the substitutions which leave ¢
unaltered. Hence the set has the group property.

The group @ is called the group of the function ¢, while ¢ is
said to belong to the group G.

Exavrre 1, The only substitutions on 3 letters which leave unaltered
the function (x,—;) (% —;)(x;—x,) are (by § 9) I, a= (25,79, b=(2,2:7,).
Hence they form a group (compare Ex. 2, § 20).  Another function belonging
to this group is

(1, + wr, + 0*x)®, @ an imaginary cube root of unity.

ExamprLE 2. The only substitution on 3 letters which leaves unaltered
Z,+wr,+wrry is the identity I (§9). Thus the substitution I alone forms
a group G, of order 1.

ExanmprLe 3. The rational functions occurring in the solution of the
quartic equation (§4) furnish the following substitution groups on four
letters:

a) The symmetric group G,, of all the substitutions on 4 letters.

b) The group to which the function y, =, +x,r, belongs (Exs. 4-6, p. 14):

Gy=1{1, (12), (31), (12)(34), (13)(24), (14)(23), (1324), (1423)].

c) Since y,=xx;+ 2,2, is derived from y, =2zx,+2z, by interchanging
z, and x, the group of y, is derived from Gy by interchanging x, and z, within
its substitutions. Ience the group of 3, is

=11, (13), (24), (13)(24), (12)(34), (14)(32), (1234), (1432)].



A Tha rraisve b 2 — A e | A A Anmund from - "’\t ;hl-nv-n]’\ﬂhr‘r‘iv‘lrr r_
u) A 11 51. ULLP L ys——-‘tblgb4_,_d.)2w3’ (VLW A R LW LLIVrila UB U‘y 11100l blleLSALLE wy
and z,, is;

Gy =11 (14), (32), (14)(32), (13)(42), (12)(43), (1342), (1243)}.

e) The function r, +x, —x,—x, belongs to the group
o1, (12), (39), (12)(34)}.

Since all the substitutions of II, are contained in the group Gy, H, is called
a subgroup of Gy, But I, is not a subgroup of Gy'.
f) The function ¢=y,+wy,+ v, or

=00, + 2,2, + (2,15 + Ty1,) + 022, + 2,75),
remains unaltered by the substitutions which leave y,, v,, and y; simulta-
neously unaltered and by no other substitutions. Hence the group of ¢ is

composed of the substitutions common to the tliree groups Gy, Gy, Gy”
forming their greatest common subgroup:

G, =1, r=(12)(34), s =(13)(24), t = (14)(23)]

?

That these four substitutions form a group may be verified directly:
ri=I st=I =1,

rs=sr=I, rt=ir=s, st=Is=r,

)

Hence any two of its substitutions are commutative, This commutative
group (, is therefore a subgroup of Gy, Gy, and Gy,

22. Turorem, Fvcry substitution can be expressed as a product
of transpositions wn various ways.

Any anhotitnitian pan 0 nvnrpcand ae a nradiint Af avnloc AN
L3y pUOUWLULIGIL Call Dy VAPICORTU ao a piutiuly Ul Uy Cics Uil
different letters (§ 18). A single cycle on n letters can be expressed

as a product of n—1 transpositions:
(1234 ., .. n)=(12)(13)(14) . .. (1n).

Exanmpres.  (123)(456) =(12)(13)(45)(46),
(132) =(13)(12) = (12)(23) =(12)(23)(45)(45).

23.

co
=3
’H
ﬁ
=
=
o
-ty
-
(-.3
e&
g-a
oo
o
]
o]
3
-
o
o
bl
oo
o]
=
-]
S—
=

tulton s mlo a product 0 ranspositz'ons) all contarn an even number
of transpositions (whence s 18 called an even substitution), or all
contain an odd number of lranspositions (whence s 1s called an odd
substitution),
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A single transposition changes the sign of the alternating
function *
¢ (.’E xz) $3)(.’E1—$4) e (xl"'xn)
( s TN Xy —2y) -+ - (X~ 2p)
. (xn__l _ xn) B

Thus (xz,x,) affects only the terms in the first and second lines of
the product, and replaces them by

(xz"xl)(xzhxa)(xzhxrt) v (mzhmn)
(x,—x)(x,— ) .. (T, —T).
Hence, if s is the product of an even number of transpositions,
it leaves ¢ unaltered ; if s is the product of an odd number of trans-
positions, it changes ¢ into —¢.
CoroLLARY. The totality of even substitutions on n letters
forms a group, called the alternating group on n letters,
Exavpre 1, The alternating group on 3 letters is (§§ 9, 19)
G ={I, (123), (132)}.
ExamprLe 2. The alternating group on 4 letters is (§ 19)
G, =1{I, (12)(34), (13)(24), (14)(23), and the 8 cycles of three letters].
24. TuroreEm. The order of the allernating group on mn letters
s X-n!
Denote the distinet even substitutions by
(e) €1, €3y Cay o v sy Ch
Let ¢ be a transposition. Then the products
(0) e,l, e, ety ..., exl

arc all distinet (§ 17) and being odd are all different from the
5ubbt1tut10n5 (e). Moreover, cvery odd substitution s occurs in

* It may be CXpI'CSSEd as the determmant

T oz, o2 ... 2!
1 x 2% ... x,n !

1 xp 2p® . . xp" !



Hence the 2k substitutions given by (e) and (o) furnish all the n!
substitutions on n letters without repctitions. Henee k=4-n!

25. As shown in § 21, every rational function ¢(z,, ..., z,)
belongs to a certain group G of substitutions on ,,. .., &y, namely,
is unaltered by the substitutions of ¢ and changed by all other
substitutions on 2, . .., z,. We next prove the inverse theorem:

Given a group (G of substitutions on x,, ..., T,, we can construct
a rational function ¢(xy, . . ., x,) belonging lo G.

Let G={a=1I,b,c,...,1} and consider the function

V=ma,+ma,+ ... +muZy,

where m,, m,, ..., m, are all distinct. Then V is an n}Fvalued
function. Applying to V the substitutions of G, we get
(27) V(J,EVJ Vb; cer Vl-

all of which are distinct. Applying to (27) any substitution c
of GG, we get

(28) Vaer Voey o+« . Ve

These values are a permutation of the values (27). since ac, be, ..., lc
all belong to the group G and are all distinet (§ 17). Ience any
symmetric function of V,, V,, ..., V; is unaltered by all the
substitutions of ¢. By suitable choice of the parameter p, the
symmetric function

s = (P v (.0 ~ Vis)(o— VcS) (o= Vi)
is not identical with ¢ since V is different from V, V,, V., ..., V.
Exavmrre 1. For G = !I n...(r’rr\ b=(xmx,x,)}, take

V=x,4 wr,+ o'z,
Then Va=w?V, Vp=wV. Hence
VA Va+Ve=(1+04+A) V=0, VVadt VVe+ VaVp=0, VVaVp=V>
The function 7% belongs to G (see Ex. 1, § 21).
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Ak e A, A a5

xaMrLE 2. For (7 =
&, ror G

———

I c=(xyx,)}, take the V of Ex. 1. Then

3

VVe= (2,4 wr, + 0%y) (x, + 0, + 0’2y) = ¢, —3¢,

is unaltered by all six substitutions on the three letters. DBut
d=(o—V)(o—=Vo)=p'— (22, —2,—23)p +¢,"— 3¢y,

for p>0, is changed by every substitution on the letters not in G. Hence,
for any 00, ¢ belongs to G.

EXERCISES.
Ex, 1, If wis a primitive gth root of unity,
(r,+wry+ 0%+ ...+t l)#
belongs to the eyclic group {1, a, a*, ..., a#—}, wherea=(z,r,...xu).

Ex. 2. Taking V =, +ix,—2;—1x, and s=(zx,)(x;z,), show that
VVe=i(x,—a) % +i(x,—2,)? belongs to Gy of § 21, that V4V belongs to H,
of § 21, while (0 —V)(p— V), for p>0, belongs to the group {I, s}

Ex 3. Taking V=2, +i0,—x,—7x, and {=(2,2;)(xy7,), show that VV,

belongs (o the group {1, ¢}
Ex. 4. If a;, a;, . ., an are any distinct numbers, the function

V=x%2,%.,. 2p%
isnlvalued, and V+Vp+ Ve+ ... +Vibelongsto {1, b,¢,...,1}.
Ex, 5. If ¢ belongs to ¢ and ¢’ belongs to ¢/, constants ¢ and o’ exist
such that a¢+a’¢’ belongs to the greatest common subgroup of ¢ and ¢,

26. TuroreM. The order of a subgroup 1s a divisor of the order
of the group.

Consider a group G of order N and a subgroup I composed of
the substitutions

20} — h
40 ) i

fvy 3 gy fige o o oy T0P

If G contains no further substitutions. N=P, and the theorem
is true. Let next G contain a substitution ¢, not in H. Then
(G contains the products

(30) Jas P, BsGsy « < oy hpGae

The latter are all distinct (§ 17), and all different from the sub-
stitutions (29), since hag,=hs requires that ¢,=h,'hg=2a sub-
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H contrary to hypothesis. Hence the substitutions
(29) and (30) give 2P distinct substitutions of G. If there are
no other substitutions in ¢, N=2F and the theorem is true. Let
next G contain a substitution g, not in one of the sets (29) and (30).

. P - 1 . —~
lrnen & contauls

r1-|'--:+-11
obitll

(31) 3> Poss Pslsy « « -, Py,

As before, the substitutions (31) are all distinet and all different
from the substitutions (29). Moreover, they are all different from
the substitutions (30), since h.g;=hag, requires that g,=ha 'hsg,
shall belong to the set (30), contrary to hypothesis. We now
have 3P distinct substitutions of G. Either N=3P or else G
contains a substitution g, not in one of the sets (29), (30) (31)
In the latter case, ¢ contains the products

(32) 94! },5294’ ]2’3g4? ey }2’1)94;

all of which are distinct and all different from the substitutions
(29), (30), (31), so that we have 4 distinct substitutions. Pro-
cceding in this way, we finally reach a last set of P substitutions

(53\) g“r ;?’ggb‘: h‘:;gl’) st thV:
since the order of H is finite (§ 9). Henee N=uP.

DerintTioN. The number v:% 1s called the index of G

£ |
the subgronp II under G, and the relation is exhibited in ’ ]l{
the adjacent scheme.

CororrLary. The order of any group H of substitutions on n
letters 1s a divisor of n! Indeed H is a subgroup of the symmetric
group (7,, on n letters.

27. THEorEM. The period of any substitution contained in a
group G of order N 18 a divisor of N.

If the group G contains a substitution s of period P, it contains
the cyclic subgroup H of order I:

H=1{s 8 ...,8"71 =1},

Then, by § 26, P is a divisor of N.
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CororrarYy.* If the order N of a group G is a prime number,
@ is a cyclic group composed of the first N powers of a substitution
of period N.

28. As shown in § 26, the N substitutions of a group G can
be arranged in a rectangular array with the substitutions of any
subgroup H in the first row:

he=Ih, hy ... hp

Gy Moo PaGy ... hpg,
gs hoGs  hsgs ... hpg,

g hgy Ry ... hpgy

Here ¢,=1, ¢,, gs, . . ., g» are called the right-hand multipliers.
They may be chosen in various ways: g, is any substitution of @
not in the first row; ¢, any substitution of ¢ not in the first and
second rows; g, any substitution of ¢ not in the first, second, and
third rows; etc.

Similarly, a rectangular array for the substitutions of G may
be formed by employing left-hand multipliers.

29, TueoREM. [f ¢ 1s a rational funclion of x,. ..., x, belonging
to a subgroup H of index v under G, then ¢ 1s v~valued under @.

Apply to ¢ all the N substitutions of G arranged in a rect-
angular array, as in § 28. All the substitutions belonging to a
row give the same value since

Sbhiga = (¢hi )ga - (Sb)ﬂ'a - Sbﬁ'a'
Henee there result at most v values. But, if
¢Ga=¢ﬂﬂ (ﬁ<a)r

then ¢, 051=¢, so that g.gs' 1s a substitution &, leaving ¢

* This result is a special case of the following theorems, proved in any
treatise on groups:

If the order of a group is divisible by a prime number p, the group contains
a subgroup of order p (Cauchy)

If pt is the highest power of the prime number p dividing the order of a
group, the group contains a subgroup of order pt (Sylow).
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unaltered. Hence ga=~h.g, contrary to the assumption made in
forming the rectangular array.

DEeFiNtTION. The v distinet functions ¢, ¢g, &g, ..., ¢,, are
called the conjugate values of ¢ under the group G.

Taking G to be the symmetric group G,:, we obtain Lagrange’s
result:

The number of distinet values which a rational function of n
letters takes when operated on by all n! substitutions is a divisor of n!

ExamrLE 1. To find the distinct conjugate values of the functions
d=(x,—z)(x,~x5) (23 —2), O0=(r+owz,+o';)’

under the symmetric group Gg on 3 letters, we note that they belong to the
subgroup G,={I, a =(xx,x;), b=(x,x4r,)}, as remarked in § 21, Ex, 1. The
rectangular array and the conjugate values are:

I, a=(x,2,7;), b=(xx4r,) l
c=(xry), ac=(zx), be=(xx,)

0
Oc

4
—4

ExampLE 2. To obtain the conjugate values of xx,+x,r, under the
symmetric group Gy on 4 letters, we rearrange the results of Exs. 4, 5, 6,
page 14, and exhibit a rectangular array of the substitutions of @, with
those of G in the first row:

I, (12), (34), (12)(34), (13)(24), (14)(23), (132%), (1423) |2, + 1257,
(234), (1342), (23), (132),  (143),  (124), (14), (1243) |z,2,+x52,
(243), (1432), (24), (142),  (123),  (134), (1234), (13), |2y, + 2.2,

30. TurorEM. The p distinct values which a rational function
d(xy, .. ., x,) takes when operated on by all n! substitutions are the
roots of an equation of degree p whose cocfficients are rational functions
of the elementary symmetric functions

(34) c=x,+2+.. . F%p, =TT+ TEF. T Tn X, ...
Cn=XyTy . .\ Tn.
Let the p distinct values of ¢(z,, . .., x,) be designated
(35) ¢1=¢, by Py -y b

They are the roots of an equation (y—~¢ ) (y—d,) ... (¥—p,)=0
whose coefficients ¢, + ¢, ...+ Ppy - o ., TPy« . . Pp are symmetric
functions of ¢,, ¢,, ..., ¢,. After proving that they are symmetric
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Ly lle.y
are rational functions of the expressions (34) V\ have therefore
only to prove that any substitution s on =z, ..., r, merely

interchanges the functions (35). Let s replace the functions
(35) by respectively
(36) 1 P ba - -, Do

In the first place, each ¢’ is identical with a function (35).
For, there exists a substitution ¢which replaces ¢, by ¢;, and s
replaces ¢; by ¢7, so that ts replaces ¢, by ¢;. Hence there is a
substitution on ..., %, which replaces ¢, by ¢7, so that ¢
occurs in the set (35).

In the second place, the functions (36) are all distinet. Tor,
if ¢,=¢}, we obtain, upon applying the substitution s™!, di=d;
contrary to assumption.

DEerFINITION. The equation having the roots (35) is called the
resolvent equation for .

Compare the solution of the gencral cubic (§ 3) and general quartic (§ 5).

31. L.AGRANGE’s THEOREM. I]a rational function ¢(z,, T,,..., T,
remains unaltered by all the substitutions which leave another rational
function ¢(x,, x,, ..., x,) unaltered, then ¢ 18 a rational function
of pand ¢, ¢y« . ., Cp.

The funetion ¢ belongs to a certain group

H = {hl;:[a hyy b, - -« 5 hp.

Let v be the index of H under the symmetric group G,;. Consider
a rectangular array of the substitutions of G, with those of H

in ]nn firat TOW:
kL

I hy ohe | § =4 | d=d
g: ]"292 ... hpg, Sboz P2 | Pr=,

v hogs - .. hpg, ¢ “sﬁ Pg, = Py
Then ¢, ¢, ..., ¢, are all distinet (§ 29); but ¢, ¢, ..., ¢, need

not be distinet since ¢ belongs to a group G which may be larger
than H. Under any substitution s ont a,, z,, .. ., x,, the functions
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¢, ¢y « -+, ¢ are merely permuted (§ 30). Moreover, if s replaces
¢: by ¢, it replaces ¢; by ¢y  Set
g(t)E(tm¢1)(t_¢2) LI I ] (t'—Sl'b‘),

YR
D=0 =g+t t_¢)

so that A(?) 1s an integral function of degree v—1 in {. Since
A(t) remains unaltered under every substitution s, its coefficients
are rational symmetric functions of z,, x,, ..., 2, and hence are
rational functions of the expressions (34). Taking ¢,=¢ for ¢
we get*

M) == o) (=) - - (Pr—=dw) - b1=9'(¢h) - by,

A(Y)
37 =
5D P y§)
The theorem may be given the convenient symholic form:
G ¢

If |, then p=Rat. Func. (¢; ¢, ..., Cn).
H:¢

Taking first H =G and next H=1, we obtain the corollaries:

CoroLLARY 1. If two ratvonal functions belong to the same group,
exther 1s a rational function of the other and ¢, ¢, - . . , Cn-

CoroLLARY 2. KEvery rational function of =, =, ..., x, is a
rational functron of any nlvalued function (such as V of § 25) and
€y Cay « « - 3 Cn

ExaMPLE 1. The functions 4 and 0 of Ex. 1, § 29, belong to the same

group G( ¥, We may therefore express 4 in terms of . By §§ 2, 3,
(C —3c.)3

3N — 8 d=(x,+wk,+wxr)d— (r,+ wr,+w,)d= vau 4.

The expression for #=¢,* in terms of 4 is given in § 34 below.

* The relation (37) 1s valid aslong as z,, x,, . . ., n denote indeterminate
quantities, since ¢, ..., ¢» are algebraically d]qtmcf so that ¢’(¢) is not
1dent1cally zero. In case special values are asmgned to xy, ..., Za such that
two or more of the functions ¢,, ..., ¢, become numerically equal, then
g’(¢) =0, and ¢ is not a rational function of ¢, ¢, ..., ¢n. In this case, see
Lagrange, (Huwvres, vol. 3, pp. 374-388, Serret, Algébre, 11, pp. 434-441,
But this subject is considered in Part II.
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Exampre 2. The function YI=TTy+ T3, belon ngs to the group GS and
t=x,+2x,—x;—x, belongs to the subgroup H, (§ 21). Hence y, is a rational

funection of t and the cocfficients @, b, ¢, d of the equation whose roots are
Ty, Ty, Ty, T By § 5, y, =2 --a?4-4D).

ExamrLE 3. The function ¢, =2z,+wr,+w’r;, has 31=6 values. Hence
every rational function of x;, x,, z; is a rational function of ¢; and ¢, ¢, ¢.
The expressions for z,, ,, r; themselves follow from the formule (11) of § 3.

Thus
-3
=4 ('31+¢'1 + =2 7 02) .

G:d
32. TuroreM. If v | , then ¢ satisfies an equation of degree v
H:¢
whose coefficients are ratvonal functions of ¢, ¢, ..., Cx.
Asin § 29, we consider the v conjugate values of ¢ under G;

¢ dagy Qo+ v s o,

Under any substitution of the group G, these values are merely
permuted amongst themselves. Hence any symmetric function
of them is unaltered under every substitution of G and therefore,
by Lagrange’s Theorem, is a rational function of ¢, ¢, ..., €.
The same is therefore true of the coeflicients of the equation

(w—@(w—dyg,) - .. (w—¢y,)=0.



CHAPTER 1IV.
THE GENERAL EQUATION FROM THE GROUP STANDPOINT.

33. In the light of the preceding theorems, we now reconsider
Cardan’s solution (§ 2) of the reduced cubic equation ¢*+py+9=0.
The determination of its roots y,, ¥,, ¥, depends upon the chain
of resolvent equations:

p° V-3

E”=~+27, where §= 15 (N —=1) YY) Y1) 5

2= _§+ §, where z=1(y, +wy,+0'y,);

ey P 0y P 2, _“P
ylmz 32 yz wz 3 ’ y3 W'z 32

Initially given are the elementary symmetric functions

N+Y+¥:=0, ¥ty lht¥hys=0 —Uh¥¥=q

belonging to the symmetric group Gy on ¥, ¥, 3. Solving a

quadratic resolvent equation, we find the two-valued function £,
which hp]nnﬂ'q to the qnho'rnnn (1 of P (S 21, Ex. 1) S()l\,ring

next a cubic resolvent equatlon we find the 51x-valued function z,
which belongs to the subgroup @, of G, (§ 21, Ex. 2). Then y,, v,, ¥,
are rational functions of z, p, ¢, since they belong to the respective
groups

G =1{I, (pys)t, G'=1{I, (yy)}, G'"=1{L (yy)i,

each containing @G, (also direct from § 31, Cor. 2). From the
group standpoint, the solution 1s therefore expressed by the scheme:

Ge: D, ¢
2|

] (|}'3: '3 G,y (I;’z”:yz T‘Yzm ‘Y
G,:2 G,:2 G,:2 G2
27



28 GENERAL EQUATION FROM THE GROUP STANDPOINT. [Cu. IV

34.
x®—cx?+ cxr — ¢y =0,
To the symmetric group G, on 2, x,, ¥, belong the functions
XX, =, XXt XXt XL =y, X LT =C
To the subgroup G,={I, (x,22,), (x,x,:%,)} belongs the function
4= (2 —x,) (2, —24) (23— ;).
In view of Ex. 3, page 4, 4 is a root of the binomial resolvent
A2 =c%c,® + 18¢,c,cs—4c,% —4c 3¢, —27¢,%
By § 3 and § 2, we have for ¢, =z, + wx, + w2, =2, + 0, + wiy,
¢2+d3= 2¢°~9c¢.c,+27¢,,
G2 — 3= —3V = 3(x,—z) (X, ~ T) (2 —2,) = —3V — 3 4.
v G B=4(2e2~9c,0,+27c,—3V 3 4),
$3=3(2¢,5~9c,6,4-27¢s+ 3V 3 4).
After determining * ¢, by extracting a cube root, the value of

¢y1s (§ 3)
¢, =(c,*—3c,) + ¢y.

Then, as in § 3, 2, ¥,, , are rationally expressible in terms of ¢/, :
=3 +di+d)s =3+ tad), 2y=3et+wd+a’d,).
35. The solution given in § 5 of the general quartic equation
(12) xtt-axd +bxt +ex+d=0
may be exhibited from the group standpoint by the scheme:

Goyia, b, e, d
|

e 2 __ 2
Gy iy =22y 25, P=(x,+2,— 13— 2,)

/H-:\:t: Ty +Ty, Ty+Ty, TiXy, Loy
/ AN ,
Hy.x,—x, H:23—2,

Here H,= {1, (z2,)}, H,=1{I, (x,x,)}, Gy and H, being given in § 21.

* For another method see Ex. 4, page 41.
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(12) is based upon the direct
computation of the function + T, —Ty—&. Its six conjugate
values under G,, are +1{,, £, 1, where
h=& 42, ==y, L=+ 2%y, L= +2, 2, — X,
The resolvent sextic is therefore
(=47 =) (1 — ") =0.
Its coefficients may be computed * easily by observing that

Li=a?—4b+4y, ti=a’—4b+4y,, tr =a’—4bi+4y,,
as follows from § 5. Using the results there established, we get
tE =30 — 120+ 4(y, + y,+y,) =3a?— 8D,
LA 42 12 = 3(a —4b)* 4 8(a® —4b) (¥, + ¥+ ¥y)

+ 165, Y+ 1.9+ ¥, 9s)
=3at—16a%b+ 16b% 4 16ac — 64d,

b2, = (0 —4D)*4-4(a®— 4b)*(y, + Yo+ ¥,)
+16(a*— 4b)(y1y2+ Y, Y+ yzys) + 64y, 1,5,
= {8c+-a(a?—4b)} =
The resolvent becomes a cubic equation upon setting =0, De-
note its roots by o, =4?% o,=t,% o,=t*. Then
x1+xz“$3_"x4:\/‘;1: xy -+ xa“xz_"xaz\/;;
xl+m4_:r2_m3=\/oza m1+m2+x3+x4:ma’

From these we get

(38) % %:*}('“Jr\/o-d—\/%%/i), xz=‘1‘(—a+\/;7_1“\/gz-"\/ff_3).
| 2= (= 0=V 4V, —V0), 2, =H—a—V5,~V05,1 Va,).

The signs of Vo, and Vo, may be chosen arbitrarily, while that
of Vo, follows from

£ Oy O A 111 ___4:~1__OA.__~3
(39) Vo Vo,Va,=lll,=40—3c—a’,

Indeed, we may determine the sign in
titt,= £ {8c+a(a®—4b)}

* Compare Ex. 5, page 41,
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by taking x, =1, x,=2,=2,=0, whence a= —1, b=c=d=0, {,{,{,=1.

37. The following solution of the quartic s of greater interest
as it leads directly to a 24-valned function V, in terms of which
all the roots are expressed rationally. As in § 5, we determine
¥, and ¢, belonging to G, and I/, respectively, by solving a cubic
and a quadratic equation. To the snbgroup

G,= {1, (z2,)(x,x)}
of H, belongs the function ¢=V?, while to G, belongs V, where

V=(2,~x,)+ 12, ~x,).
Under H,, ¢ takes a second value ¢ = {(x;—x)—e(xs—x)}%

Then
2~ (g+ )t ¢ =
is the resolvent equation for ¢. But

oy = {(@,—2,)’+ (2~ x,)*}* = {a® ~2b—2y,}* =}{3a? - 8b~1*}?,
¢+ Sbl =2 { ($1 “$2)2 - (.763 __x‘)z} 2(3:1 ~&,t+ Xy~ :L")(.’El £, x3+x4)
=2(4ab —8c—a®) +{,

in view of (39). After finding ¢ and ¢,, we get
T T 17 D
V= \/¢ ’\/Sbl - (xl 2) (333 ——334),
(40) =J{30&2 8b—t*) = V.
™Y . : Tr TF J L e 4
Having the four functions ¢, V, V, and 2,4+ x,+ x,4+ 2, = —a, we get

(41) {xl=4(_a’+z+ V+ Vl): :’Ez:i-(__a’"l_t__v—_vl)?
T, ~=1(—a—t—2V+2V), x,=%(—a—t+V—2V)).

oo ora ] i, 78 ,\r.n
he general cubic (§ 34) and the solution of

the general quartic (§ 37) each consists essentially in finding the
value of a function which is altered by every substitution on the
roots and which therefore belongs to the identity group ;. Like-
wise, the general equation of degree n,

(42) Zr—c 2t e an i — L, 4 (= 1), =0,

could be completely solved if we could determine one value of a
function belonging to the group (|; for example,
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(43) V=mx,+m,+ ... +m,x, (m’s all distinct).
In fact, each x; is a rational function of V, ¢, ..., ¢, by § 31. Tor

the cubic and quartic, the scheme for determining such a function
V was as follows:

Gy: €y, €y €y (y:a,b,c,d
2| 3 |
3 (|;3: (2, + 0, + w’xy)* Gy 2,2, + 25T,
G,z +wr,} v, 1‘|L‘:;I:l—]—:cz~zt:_,,~—:1:4
2

Gy (4, — 2y 1y — 12, )
G x, —x,+ 12, —1x,
The same plan of solution applied to (42) gives the following scheme:

Gn!:cl_, CZ)- . N ,Cn

.y
III:E, E 4R, v, 4., =0
7
Ift 7, e+ R(E ey vy C)pE 4L =0
M:¢
e
GV, Vet+R($ ¢y ennyen)Ve™ 4, . .=0,

Such resolvent equations would exist in view of the theorem of
§ 32. In case the resolvent equations were all binomial, the
function V (and hence x,,..., 2,) would be found by the extraction
of roots of known quantities, so that the equation would be solvable
by radicals. We may limit the discussion to binomial equations
of prime degree, since z#¢=A may be replaced by the chain of
equations 22=u, u?=A. The following question therefore arises:
G:d
If vI|1T gb, when will the resolvent equation for ¢ take the form

(44) ¢”=Rat. Func. (¢, ¢, + « « s tn)-
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Since v is assumed to be priine, there exists a primlbi
of unity, namely a number @ having the propertics

P N 4
C wviIl roov

wr=1, wk31 for any positive integer k<.
Hence the roots of (44) may be written

(45) g, wh, &*Q, ..., TN

Let ¢, =¢, ¢, .. ., ¢v denote the conjugate functions to ¢ under @
(their number is v by § 29). Now ¢ belongs to the group H by
hypothesis. Let ¢, belong to the group H,, ¢, to H,, ..., ¢ to H,.
Since the roots (45) differ only by constant factors, they belong
to the same group. Hence a necessary condition is that

H=H,=H,=...=H,.

39. The first problem is to determine the group to which belongs
the function ¢, into which ¢ is changed by a substitution s, when
it 1s given that ¢ belongs to the group

H={h=I hy ..., hp}.
If a substitution ¢ leaves ¢, unaltered, so that ¢,, =¢,, then
Sbws —1= 9533 1= ¢
Hence sos~'=h, where h 1s a substitution of [I. Then
o=8"1hs.
Inversely, every substitution s~'hs leaves ¢, unaltered. Hence
¢ belongs to the group
{s7'hs=I, s hs, ..., s hps},

which will be designated s™'Hs. We may state the theorem:
If ¢ belongs to the subgroup H of index v under G, the conjugates

¢) Sbaz: LELILE Sbgv,

of ¢ under @, belong to the respective groups
i, ¢,7 e, ..., g7 Hy..
DeEFiNiTiONS. The latter groups are said to form a set of con-

jugate subgroups of G. In case they are all identical, H is called
a self-conjugate subgroup of G (or an invariant subgroup of G).
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Hence a necessary condition that the general equation of
degree n shall be solvable by radicals under the plan of solution
proposed in § 38 1s that each group in the series shall be a self-
conjugate subgroup of prime index under the preceding group.

anp ﬂflnf the G‘r‘nllh ﬂ __ffl ‘rc: Qp]f-r\nn1 100t npder every

A b LY § AT J bwuu 1411 ¥ \_/LJ

group G since g~ g=1.

ExamrLE 1. Let G be the symmetric group G, on 3 letters and let H
be the group G,=1{1, (z,2,7,), (r,xx,)}. Let g,=(z,x,). Then
¢=(@ +or,+0'c)°,  dy =2+ 0’0+ 0z’

form a set of conjugate functions under ¢. Now ¢ belongs to H and ¢,
belongs to the group {I, (z,x,), (xix,x5)}, whose substitutions are derived
from those of H by interchanging the letters z, and xz,, since that interchange
replaces ¢ by ¢g,. To proceed by the general method, we would compute

(223) =@ Xy ) (0025) = (2123%5),  (X923) =" (0 X3 (Tp5) = (T2 52,).
By either method we find that the group of ¢ and gbgz are identical, so that

Gy 1s self-conjugate under &y  Also, G, is self-conjugate under ;. Hence
the necessary condition that the general cubic shall be solvable by radicals
is satisfied.

ExampLE 2. Congider the conjugate values x,, x,, x5 of 2, under G,:

)
g, = (x,13), (:1:2:[‘3) g, = (X, 2,2} | 2,
gy = (T3xy), (X,03)g; = (T,240,) | T,

Hence H={I, (x,2,)}} 1s not self-conjugate under G,. Here
g\ Hgy =11, (x\x)} #H, g, Hgy={I, (z,7,) } = H.

1 (292,) K2

40. DEriNITIONS. Two substitutions @ and a’ of a group @
are called conjugate under (7 if there exists a substitution g belong-
ing to G such that g~'ag=d’. Then a’ is called the transform
of a by g.

There is a simple method of finding g~'ag without performing
the actual multiplication. Suppose first that a is a circular sub-
stitution, say a=(afyd), while g is any substitution, say

R £ 40 4 SO M ¢ — By oe ...R’)
o9 (aﬁ;’(?...}{)’ g~'ag = (ﬁ’r@’ae...ﬂ"
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g
tution ¢ to the letters of the cycle a= (af3y9).
Let next a=a,a,a, ..., where q,, a,, ... are circular substitu-
tions. Then

1‘\‘7 nhv-\1 -
Uj al}lJl

gTlag=g"'a,g g7y 97 g . . .
Hence g~'ag is obtained by applying g within the cycles of a.
Thus (123)—1-(12)(34) - (123) = (23)(14).

CorOLLARY. Since any substitution transforms an even sub-
stitution into an even substitution, the alternating group Gy, is a
self-conjugate subgroup of the symmetric group Gp,.

41, TueoreEM. Of the following groups on four letters:

Goy Gry G= {1, (12)(34), (13)(24), (14)(23)},
G2= {I: (12)(34)}1 GIZ II};

each is a sclf-conjugate subgroup of the preceding group.

By the Corollary of § 40, G,, is self-conjugate under G,,. To
show that @, 1s self-conjugate under G, (as well as under G,,),
we observe that G, contains all the substitutions of the type (a8)(74),
while the latter is transformed into a substitution of the form
(a’8)(y'0") by any given substitution on four letters. That G,
is self-conjugate under @, follows from the fact that (12)(34),
(13)(24), (14)(23) all transform (12)(34) into itself*

42. The necessary condition (§ 39) that the general quartic
2 +ard+bxtcx+d=0

shall be solvable by radicals is satisfied In view of the preceding
thecorem. We proceed to determine a chain of donomaal resolvent
equations of prime degree which leads to a 24-valued function

V= —z,+12,~x,,

* This also follows from § 21, Ex. (f), since rs =sr gives s—rs =r.
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(20) Y, =X,&, + 2,2, Y, =X, T3+ 2,2, Yg= T, T+ X,T,,

~ by . a mr. . T £ a1 S | ; . i1 £_11 .
ds 1n § 4. 1hne scnelne 1ol e Solugion 1s e ionowing:

(fz 1A =y (Bt — )

Gy V =2, — 2,41, — 12,

Referring to formule (22), (23), (24) of § 7, and setting P= —41
Q=16J, we get

4=16VTP 272,
vk ¢ ad abe b

=240 g2t aa
I=i=%+73 /=% 6 6" 8® 26

Hence 4 i1s a root of the binomial resolvent 4?=256(1°—27J%).
The resolvent for ¢, is the binomial equation

(6 — ¢ (p—wd)(—w'd) ="~ ¢*=0.

By Lagrange’s Theorem, ¢,® is a rational function of 4, q, b, ¢, d.
To determine this function, set ¢, =y, +w*y,+wy,. Then (§§ 2, 7)

¢~ b0 =3V =3y ~¥) (% —Ys) (s~ ¥) =~ 3V =3 4,
&+ I =2(y.3+1,° + 45 + 120,005+ 3w+ 079,
where O=y, "+ Y1, ¥, Y+ Yi¥s -+ 1, "Ys +Yys" satisfies the rela-
tions
Y1+ Y+ Y)Y, + 91U+ YYs) = 0+ 3Y,YsYs
(Y + Yo tYs) =30 + 6y, 3.y + 42+ 4" + 1>

co P+ D0 =20y, Ty, )~ I+ 1t ) Wil VYt YY)+ 2Ty, Y,
=23 —9b(ac— 4d) + 27(c?+a*d — 4bd) = —432J.
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upon appl
b =313V —-34— 216J.

In view of Lagrange’s Theorem, ¥,, ¥,, and y, are rational functions
of ¢, These functions may be determined as follows:

PP =Y, 2+ ¥y + (0 +©0*) (Y ¥o + Y1 Ys + 1Y)

= (Y, + Y+ Ys)* — (WY, + ¥, Ys +yzy3)
=b*—3ac+12d=H.

H
From y,+1,+9,=b, y+wy,+o%y,=4¢, 3/1+w2yz+wy3=$':
1

w=3(o+ot %), n=3(ore6+l), u-t(brop+l).

Setting t=z,+x,~x,~x, we obtain for A=¢,/t the binomial
resolvent
A=’ +(a® —4b+4y,),

upon replacing t* by its value given in § 5. Next, we have (§ 37)

V= (2, —2;)" — (23— 2,) -+ 20(0y — ;) (%3 —2,)

4ab—8c—a® .
=+ 2i(y, ~ %)
A H
=—1—-(4ab—80—a,3) +%’\/§ (Cf)l —
“1 \ P11/

The values of x,, &,, x,, ¥, are then given by (41) in conneetion
with (40).

SERIES OF COMPOSITION OF THE SYMMETRIC GROUP ON n LETTERS.

43. DEFINITIONS. Let a given group G have a maximal self-
conjugate subgroup H, namely, a self-conjugate subgroup of @
which is not contained in a larger self-conjugate subgroup of G.
Let H have a maximal self-conjugate subgroup K. Such a series
of groups, terminating with the identity group G,

¢, H, K ..., M, G,
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in which each group is a maximal self-conjugate subgroup of the
preceding group, forms a series of compomtmn of @. The num-
bers A (the index of H under @), u (the index of K under H), . ..,
p (the index of Gy under M) are called the factors of composition
of G.

If the series is composed of the groups G and G, alone, the
group @ is called simple. Thus a simple group is one containing
no gelf-conjugate subgroup other than itself and the identity group.
A group which is not simple 1s called a composite group.

ExamvpLE 1. For the symmetric group on 3 letters, a series of composition
i8 Gy, G;, G, (see Ex, 1, § 39). Since the indices 2, 3 are prime numbers, the
self-conjugate subgroups are maximal (see § 26).

ExampLE 2. A series of composition of the symmetric group on 4 letters
18 Gy, Gy, Gi, Gy, Gy (§ 41), the indices being prime numbers,

ExavprLe 3. A cyeclic group of prime order is a simple group (§ 26),

44, TL.EMMA. If a group on n letters coniains all circular sub-
stitutrons on 3 of the m letters, it s either the symmetric group Gp
or else the allernating group Gyn).

It is required to show that every even substitution s can be
expressed as a product of circular substitutions on 3 letters. Let

S=lly . . by —ybays

where ¢,,..., ¢, are transpositions (§§ 22, 23), and ¢,%¢t,. If ¢,
and ¢, have one letter in common, then

tt, = (aB)(ay) =(aBr).
If, however, ¢, and ¢, have no letter in common, then

Lty =(aB)(yd) = (af)(ar)(ya)(yd) = (afy)(yad).

Similarly, ¢, 15 either the 1dentity or else equivalent to one cycle
on 3 letters or to a product of two such cycles.

Hence the group contalns all even substitutions on the n letters.

45. THEOREM. The symmelric group on n>4 lellers contains
no self-conjugate subgroup besides uself, the identity G, and the
alternating group Gyni, so that the latter is the only maxvmal self-
conjugate subgroup of Gnp: (n>4).
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That the alternating group is self-conjugate under the symmetric
group was shown in § 40.

Let G, have a self-conjugate subgroup H which contains a
substitution s not the identity 1.

Suppose first that s contains cycles of more than 2 letters:

s=(abe...d)(ef...)...

Let a, 3, 0 be any three of the n letters and 7,¢,..., ¢,...the
remaining n—3 letters. Then I contains the substitutions

sy=(afy ... edh...) .oy, &G=QBar...Nedp...)...,

the letters indicated by dots in s, being the same as the correspond-
ing letters in s, The fact that s, (and likewise s,) belongs to H

follows since
_fabc... def ...
“\afr. .36(}5..-)

is a substitution on the n letters which transforms s into s, (§ 40),
while any substitution o of G5, transforms a substitution s of the
self-conjugate subgroup H into a substitution belonging to H
(§ 39). Since H is a group, it contains the product s,s,~!, which
reduces to (afd). Hence H contains a circular substitution on

3 letters chosen arbitrarily from the n letters. Hence H is either
(Ty..v or (;Yﬁ.h (S 44\

Suppose next that s contains only transpositions and at least
two transpositions. The case s=(ab)(ac)...=(abc)... has been

treated. Let therefore

s=(ab)(cd)(ef) . . . (Im).

Let a, 3, r, 0 be any four of the n letters, and ¢, ¢, ..., A, p the
others, Then the self-conjugate subgroup I contains the sub-
stitutions

8=(aB) D) (ed) ... (W), 8= (an)(B)(ed) . .. (k)
and therefore also the product s,5,7*, which reduces to (ad)(3y).
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Dince n >4, tnere 18 & letter p aulerent 1roill a, 5, y, 0. r1ience
contains (ae)(fy) and therefore the product

(ad)(Br) - (ao)(By) = (ado).
It follows as before that H is either () or Gya.
Suppose finally that s=(ab). Then the self-conjugate subgroup
H contains every transposition, so that H=G,.
46, TueorReM. The alternating group on n>4 letters s ssmple.
Let Gy, have a self-conjugate subgroup H larger than the
identity group G,. Of the substitutions of H different from the
identical substitution I, consider those which affect the least
nulber of letters. All the cycles of any one of them must contain
the same number of letters; otherwise a suitable power would
affect fewer letters without reducing to the identity I. Again,
none of these substitutions contains more than 3 letters in any
cycle. For, if H contains
s=(12344...0)(...) .. v

then H contains its transform by the even substitution o= (234):
s;=0"tsa=(13422...0)(.. ) ...,

ss, 7 1=(142),
affecting fewer letters than does s. Finally, none of the substi-
tutions in question contaln more than a single cycle. For, if H
contains either ¢ or 8, where
t=(12)(34) ..., s=(123)(456)...,

it would contain the transform of one of them by the even substi-
tution «=(125) and consequently either ¢ -x"'x or s~ ! -« ls«.
The latter leaves 4 unaltered and affects no letter not contained
in §; the former leaves 3 and 4 unaltered and affects but a single
letter 5 not contained in {. In either case, there would be a reduc-
tion in the number of letters affected.

The substitutions, different from 7, which affect the least num-
ber of letters are therefore of one of the types (ab), (abe). The

former is excluded as it is odd. Hence H contains a substitution
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(abc). Let a, 8, y be any three of the n letter vt
others. Then (abc) is transformed into (afy) by either of the
substitutions

o_febede...ny _fabecde...n)
T \afBrde..ov) T\

where the dots in r indicate the same letters as in s. Since r=3(d¢),
one of the substitutions r, s 1s even and hence In G;,:.. Hence,
for n>4, H contains all the circular substitutions on 3 of the n
letters, so that H=Gy,).

47. Tt follows from the two preceding theorems that, for n>4,
there vs a single series of composition of the symmetric group on n
letters : Gpy, Gynyy, Gy The theorem holds also for n=3, since
the only subgroup of G, of order 3 is (,, while the three subgroups
of G, of order 2 are not self-conjugate (§ 39, Ex. 2). The case
n=4 is exceptional, since G,, contains the self-conjugate subgroup
G, (§41).

Except for n=4, the factors of composition of the symmeiric group
on n letters are 2 and inl

48. Tt was proposed in § 38 to solve the general equation of
degree n by means of a chain of binomial resolvent equations of
prime degrees such that a root of each is expressible as a rational
function of the roots z,, ,,..., £, of that general equation. As
shown in §§ 38-39, a necessary condition is the existence of a
series of groups

(46) Gnh Hr K)-- . rM; Gp

each a self-conjugate subgroup of prime index under the preceding
group. In the language of § 43, this condition requires that G,
shall have a series of composition (46) with the factors of com-
position all prime. By § 47, this condition is not satisfied if 35,
since n!is then not prime. But the condition is satisfied if n=3
or if n=4 (§ 39, Ex. 1; § 41). Under the proposed plan of solu-
tion, the general equation of degree n>4 is therefore not solvable
by radicals, whereas the general cubic and general quartic equa-
tions are solvable by radicals under this plan (§ 34, § 42),
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radlcals f th e general equation of degree n>4, it remains to show
that the proposed plan is the only possible method. This* was
done by Abel (@&uvres, vol. 1, page 66) in 1826 by means of the
fieorein ;

Every equation which s solvable by radicals can be reduced to a
chain of binomial equations of prime degrees whose roots are ratvonal
functions of the roots of the given equaition.

As the direct proof of this proposition from our present stand-
point is quite lengthy, it will be deferred to Part II (see § 94),
where a proof is given in connection with the more general theory
due to Galois,

EXERCISES.

1. It H={L, %,,..., &p] is a subgroup of G of index 2, H is self-conjugate
under G.

Hint: The substitutions of & not in H may be written g, gh,, ..., ghp;
or also g, kg, ..., hpg. Hence every kg is some ghq, so that for every kg,
g—‘kﬁg is some fiq.

2. The group Gy of § 21 has the self-conjugate subgroups G,, G,, H,,
C,={I, (1324), (12)(34), (1423)]. The only remaining self-conjugate sub-
groups are G, and G,

3. If a group contains all the circular substitutions on m+2 letters, it
contains all the circular substitutions on m letters. Ilint:
(123...mm+1mi(mm—1...32m+21m+)=(123...m—1m).

4. Compute directly the function ¢,* of § 34 as follows:
¢l =2+ 2 4 2% + 6,5 + (x4 20257 + 2,°75) + Bt (ym,? + xky + xpx,?)
=2,% + 2, +2,° + 620,20, — §(220 + 242y° + 2,70y + 2,87 + 2,70 + 2,7, 7) —%\/ —34,
since

Ty ~TyTy" + X123 % — 2T + T, — 2@y = — (X —2) (X, — 1) (1 —2y) = — 4.
Twice the remaining part of ¢,* equals 2¢,2 —9¢,¢c, +27¢, by § 3.

5. Compute directly the coefficients in § 36 as follows:

i+ =3 02 220 ;=30 —8D,
fyboly = Zx 3 +223:1:::2x3 2':::1(3:22—!—1:3"’—!—:1:4’)

* For the simpler demonstration by Wantzel, see Serret, Algébre, I1, 4th
or 5th Edition, p. 512.



SECOND PART.
GALOIS’ THEORY OF ALGEBRAIC EQUATIONS.

CHAPTER V.
ALGEBRAIC INTRODUCTION TO GALOIS’ THEORY.

49. Differences between Lagrange’s and Galois' Theories. Here-
tofore we have been considering with Lagrange the general equation
of degree n, that is, an equatlon with independent variables as
coefficients and hence (see page 101) with independent quantities
L, LTy,..., , 88 roots. Hence we have called two rational
functions of the roots equal only when they are identical for all
sets of valuesof z,,..., 2.

But for an equation whose roots are definite constants, we
must consider two rational functions of the roots to be equal when
their numerical values are equal, and it may happen that two
functions of different form have the same numerical value.

Thus the roots of 23422+2+1=0 are

Hence the functions x,? x,®, and x, are numerically equal although
of different form. We may not apply to the equation z,’=uz,?
the substitution (2,2,1,), since z,°#2,%. Again, the totality of the
substitutions on the roots which leave the function ,? numerically
unaltered do not form a group, since the substitutions are I, (z,2,),

(T,x,), (2,2,7).
42
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Hence x,’=¢’=v, x2,=¢e*=1. The functions x> and 2z, differ
in form, but are equal numerically. Also, z,® equals x,?, but differs
from x,* and z,>. The 12 substitutions which leave z,* numerically
unaltered are [,(23),(24),(34),(234),(243),(13),(13)(24),(213),(413),
(4213), (4132), the first six leaving x,? formally unaltered and the
last six replacing ;% by 2,>. They do not form a group, since the
product (13)(23) is not one of the set.

There are consequently essential difficulties in passing from
the theory of the gencral equation to that of special equations.
This important step was made by Galois*

In rebuilding our theory, special attention must be given to
the nature of the coefficients of the equation under discussion,

(1) v~ et — L. (= Dne,=0.

Here ¢;,...,c, may be definite constants, or independent
variables, or rational functions of other variables. Whereas, in
the Lagrange theory, roots of unity and other constants were
employed without special notice being taken, in the Galois theory,
particular attention is pald to the nature of all new constants
introduced.

50. Domain of Rationality. To specify accurately what
shall be understood to be a solution to a given problem, we must
state the nature of the quantities to be allowed to appear in the

solutlo For examnple, we mav demand as a solu
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* Fvariste Galois was killed in a duel in 1832 at the age of 21, His chief
memoir was rejected by the French Academy as lacking rigorous proofs.
The night before the duel, he sent to his friend Auguste Chevalier an account
of his work including numerous important theorems without proof. The
sixty pages constituting the collected works of Galois appeared, fifteen years
after they were written, in the Journal de mathématiques (1846), and In
duvres mathématiques D’ EVARISTE GALOIS, avec une introduction par
M. Emile Picard, Paris 1897.
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ber or we may demand a positive nnrnber, for constructions by
elecmentary geometry, we may admit square roots, but not higher

roots of arbitrary positive numbers. In the study of a given
equation we naturally admit into the investigation all the irra-

1i43~ o -y Ita nnaffinain + « £ Avarnnila ASD ‘.|h et s P
u()uauuua app( 0;11115 111 10S CO€el11LCICIL TR 3 107 CAalllpic, V O 111 vull

sidering 2?4+ (2— 5V3)x+2=0. We may agree beforehand to
admit other irrationalities than those appearing in the coefficients.

In a given problem, we are concerned with certain constants
or variables

(2) R, R’ ..., R®

together with all quantities derived from them by a finite number
of additions, subtractions, multiplications, and divisions (the
divisor not being zcro). The resulting system of quantities is
called the domasn of rationality * (R', R”, ..., R").

ExamrLE 1. The totality of rational numbers forms a domain. It is con-
tained in every domain R. For if w be any element =0 of R, then w+w=1
belongs to K£; but from 1 may be derived all integers by addition and sub-
traction, and from these all fractions by division.

ExavpLe 2. The numbers a+bi, where {=V —1 while ¢ and b take

AN RALRARA RPN ARF At 7

all rational values, form a domain (z') But the numbers b where ¢ and
b take only integral values do not form a domain.

DerFINITION. An cquation whose coefficients are expressible
as rational functions with integral coefficients of the quantities
R, R, ..., R® will be said to be algebraically solvable (or solvable
by radicals) with respect to their domain, if its roots can be de-
rived from R’, B”, ... by addition, subtraction, multiplication,
division, and extraction of af root of any index, the operations
being applied a finite number of times.

51. The term rational funetion is used in Galois’ theory only

* Rationalitétsbereich (Kronecker), Korper (Weber), Field (Moore).

T If we adwitted the extraction of all the pth roots, we would admit the
knowledge of all the pth roots of unity. This need not be admitted in Galois’
theory (see § 89, Corollary).
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R of certain quantitics u, », w, . . . Is an expression

(3) 2 Cyp.. uiv’wk ...,

il jl kv s
where 7, J, k, . . . are positive integers, and each coefficient Cyy . . .
is a quantity belonging to B. The quotient of two such functions
(3) is a rational function for R.

Thus, 3u+3/2 is a rational function of » in (v2), but not in (1).

52. Equality. As remarked in § 49, two expressions involving
only constants are regarded as equal when their numerical values
are the same. Consider two rational functions

dlu, v, w,...), ¢lu,z,w,...)

with coefficients in a domain R=(R’, R”,..., R®W), In case R/,
R”,... are all constants, we say that ¢ and ¢ are equal if, for
every set of numerical values u,, »,, w,, ... which u, 2, w, ... can
assuine, the resulting numerical valucs of ¢ and ¢ are equal. In
case R/, R”,..., R® depend upon certain independent variables
v, 1, ..., 7™, we say that ¢ and ¢ are equal if, for every set of
numerical values which u, », w,..., v/, r/,..., r™ may assume,
the resulting numerical values of ¢ and ¢ arc equal. When not
equal in this sense, ¢ and ¢ are said to be distinet or different.

For example, if © and v are the roots of x*42pr+1=0, the functions
u+v and —2puv are rational functions in the domain (p), and these rational

functions are equal.

DeriNtTION. A rational function ¢(z,, ..., x,) is said to be
unaltered by a substitution s on z,..., 2, if the function
Pa(Z,, - .., Tn) 15 equal to ¢ in the sense just explained. For
brevity, we shall often say that ¢ then remains numertcally un-
altered by s. If z,, #,,..., , are Independent variables, as in
Lagrange’s theory, and if ¢, is identically equal to ¢, i.e., for all
values of z,..., z,, we say that ¢ remains formally unaltered
by s. For examples, see § 49.

53. The preceding definitlons are generalizations of those
employed in the Lagrange theory. The so-called general equation
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whose coeflicients ¢, ..., ¢, arc rational functions in the domain
(R, R”,...,R®). In fact, since its coefficicnts arc independent

variables belonging to the domain, they may be taken to rcplace
an oanal numher of H’\n nantitisg }?’ R Hnﬂrﬂ
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main, so that the general equation appears in the form

of degree m may be viewed as an extreme case of the equations (1)

+he dn-
Ul-lu AT

U‘:i

r+ Rt Y+ ReM ... FEW=0.

Its roots are likewise independent variables (p. 101), so that two
rational functions of the rootsare equal only when identically equal.

54. Reducibility and irreducibility. An integral rational func-
tion I'(z) whose coefficients belong to a domain R is said to be
reducible in R if 1t can be decomposed into integral rational factors
of lower degree whose coefficlents likewise belong to E; irreducible
in R if no such decomposition is possible.*

ExampLE 1. The function x?+1 is reducible in the domain (7) since it
has the factors x +7 and x4, rational in (7). But 22+ 1, which is a rational
funetion of x in the domain of rational numbers, is irreducible in that domain.

ExampLE 2. z*+1isreducible in any domain to which either V2 or v —2,
142
V2
linear factors are r+e€, r+ie =x+€’; while every quadratic factor is of the
form x?+1, or 2?+ax+1, a’*=+2,

or i, or €= belongs, but is irreducible in all other domains.  In fact, its

in B O (Y—=0
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equation in R; if F(x) is irreducible in B, I'(x)=0 is sald to be
an irreducible equation in K.
55. THEOREM. Lel the eguation F(x)=0 and G(x)=0 have

thetr coefficients in a domain R and let I'(x) =0 be irreducible in R.
If one root of I'(x) =0 satisfies G(x)=0, then every root of I'(x)=0
salisfies G(x) =0 and I'(x) ©s a dimsor of G(x) wn R.

After dividing out the coefficients of the highest power of z, let
Fle)=(x—&)(x~&) ... (2—&), Gl)=(x—7) ... (T—9m).

radnnihl
F [ER iy ¥y

c

* A method to decompose a given integral function by a finite number
of rational operations has been given by Kronecker, Werke, vol. 2, p. 256.
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At least one § equals an 5. Let £=1,,..., §{,=y,, while the

S Uiy s =3 or

remaining ¢’s differ from cach 5. Then the function

H@)=x—§)...@-&)=@—n) ... (@)

is the highest common factor of F(x) and G(x). But Kuclid’s
process for finding this highest common factor involves only
the operation division, so that the coefficicnts of H(x) are
rational functions of those of I'(x) and G(x) and consequently
belong to the domain R. Hence F(x)=H(x)-Q(x), where H(x)
and Q(x) are integral functions with coefficients in R. Since F(x)
is irreducible In R, Q(x) must be a constant, evidently 1. Hence
F(x)=H(x), so that F(x) is a divisor of G(x) in R.

CoroLrary I. If G(x) is of degree 2n—1, then G(x)=0. A
root of an irreducible equation in R does not satisfy an equation
of lower degree in R.

CororLrAry II. If also G(x)=0 is irreducible, then G(x) is a
divisor of F(x), as well as F'(x) a divisor of G(x). If two irreducible
equations in R have one root in common, they are identical.



CHAPTER VL
THE GROUP OF AN EQUATION,

EXISTENCE OF AN nVALUED FUNCTION; GALOIS' RESOLVENT.

56. Let therc be given a domain R and an equation

(1) f@)y=zr—cx"t+ex" i~ ... +(—1Dre, =0,
whose coefficients belong to K. We assume that its roots z,,
%, ..., T, are all distinet* It is then possible to construct a

rational function V, of the roots with coefficients in R such that
V|, takes n! distinct values under the n! substitutionsonz,, .. ., z,.
Such a functlon is

Vi=mx,+max,+ ... +mp%,,

if m,,...,m, are properly chosen in the domain kK. Indeed,
the two values V, and V), derived from V|, by two distinet sub-
stitutions a and b respectively, are not cqual for all values of
m;,...,My, SInce Z,...,%, arc all distinct. It is therefore
pussible to choose values of m,, ..., m, In B which satisfy none
of the in!(n!—1) relations of the form V,=TV,.

Then from an equation V, =V, will follow a’=a.

As an example, consider the equation 2* + 2?4+ x4+ 1 =0, with the roots
ry=—1, r=4i=a/—1, r=-—1
and let R be the domain of all rational numbers. The six functions
— My + 1My — VMg, My UMy + iy, UM — My — TN,
— My UMy — Mg, — UMy — My + 1My, U — 1My — TN,

* Equal roots of F(x) =0 satisfy also F'(x) =0, whose coefficients likewise
belong to R, and consequently also H(x) =0, where H(x) is the highest com-
mon factor of F(z) and F'(x). If F(x)+H(x) =Q(x), the equation Q(x) =0
has its coefficients in £ and has distinet roots. After solving Q(x) =0, the
roots of F(x)=0 are all known.
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my—my =0, m —my=0m —m;=0,

(i+Dm, —2im, -+ (¢ —1)m; =0, (i —Dmy+ G+ 1)my—2im; =0,

(i =Dm, —=2imy +(i+Dmg =0,  ((+Dmy+(G—Dmy—2im; =0,

—2im, + (T —1)my+ (¢ + 1)my; =0, —2im, + (0 )my 4+ (2 —1)my =0,
of which the last six differ only by permutatious of m,, m, m;. We may,
for example, take m,;=0 and any rational values =0 for m, and m, such
that m, =cm,, where ¢ is 1, +¢, 144, ¥(1+4)., Thus mx,+1r, is a six-valued
function in R if m, is any rational number differcut from 0 and 1.

[In the domain (¢), we may take muz, +x,, where m; =0, 1, +1, 147,

3(1414).]
57. The n! values of the function ¥, are the roots of an cquation
(4) FWVy=(V-=V)(V-V,) ... (V=V,)=0,

whose coefficients are integral rational functions of m,, ..., m,,
¢, - ..,y with integral coefficlents and hence belong to the domain
R (§50). If F(V) is redueible In R, let F(V) be that irreducible
factor for which F (V) =0; if F(V) is irreducible in R, let F (V)
be F(V) itself. Then

(5) F(7)=0
s an trreducible equation called the Galois resolvent of equation (1).

Recurring to the example of the preceding section, take

F1—d2 4y P42 4 Fam &3 g

Then the six values of V), are £V, £V,, £V;, where
Vi=i+l, V,=2i, V,=—itl.
The equation (4) now becomes
(VE=V AV 2=V V=V = (V=2 ( Vi 4) (VI 20)
— VO LAV 4121 16 =0,
The irreducible factors of F(1") in the domain of rational numbers are
Vitd=(V~-V IV +V), VI=2V4+2=(V-V)V~Vy,
VIL2V 4 2=(V VIV + V).
The Galois resolvent (5) is thercfore
Fy(V)=V?-2142=0.
[For the domain (%), the Galois resolvent is V—V, =V —i—1=0.]
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JO. 1HEOREM. A?’b‘?j ralional  juncitor, with cocfiteients  in &
domain K, of the roots of the given equalion (1) s a ralional funciion,
with coefficients in R, of an ntralued function V,:

(6) qs(.xl.’ Ly oo s vmn):(p(-vl)
Let first the coefficients ¢, . . ., ¢, In equation (1) be arbitrary
quantities so that the roots z,, ..., x, are independent variables.

We may then apply the proof in § 31 of Lagrange’s Theorem,
taking for ¢ the function V|, which 1s unaltered by the identical
substitution alone, and obtain a rclation

(6") ¢=AV)+F"(V),
where F’(V) is the derivative of F(V) defined by (4). We next
give to ¢, . . ., ¢, thelr special values in R, so thatx,, . . ., 2, become

the roots of the given equation. Since F7(V))#0, relation (6')
becomes the desired relation (6), expressing ¢ as a rational function
of V, with cocfficients in .

CorOLLARY. Ifs be any substilulion on the letlers x,, . . ., x,, then

(7) Gs(Xy, Ty« - ., Tn) = O(V),
provided no reduction® in the form of @(V,) has Dbeen made by
means of the equation F(V,)=0 of § 57.

As an example, we recur to the equation #®4+2*4+x41=0, and seek an
expression for the function ¢ =z, in terms of V,=z,—2z,. Then

F(V)=V014V444V2 416, F/(V)=6V54+16V*1 8V,

Ny d . %82 4 T &, Xy Ty __351&_%
M) =F Ay I Y o ot v v Vv T
e 2V _4V4 12V 811GV —48,

upon setting r,= —1, z,=1, r,=—4, V,=i4+1, V,=2{ V;=—7{1 1. Hence

) | 2V AV 2RV P10V, 48
~F) GV ST IV 18, =0V

MV ) =AG+1)= —48i—16, F'(V)=16i—48, O(V)=i=x,

* That such a reduction invalidates the result is illustrated in the example
of § 59.
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In view of the corollary, we should have
= & ‘”‘V1), Iy= w(Vz): Ty = w(Va), Iy= (l)( "‘Vz), I = ?( “‘Vs)-
To verify these results, we note that

16i—48 N —80
TrgrpagT b 0= =t AV =g =
while @(V;) and @(V), @(~V,), and &(—V ), x; and x,, are conjugate
imaginaries, and z, is real.

(D( ""V1) =

59. As a special case of the preceding theorem, the roots of the
given equation are rational functions of V|, with coefficients in R .

(8) $1E¢1(V1), m2=¢2(V1), sy mnm%(VJ-

Hence the determination of V) is equivalent to the solution of the
given equation.

Since each V, is a rational function of z;, . . ., x, with cocflicients
in R, it follows that all the roots of the Galois resolvent are rational
functions with coefficients in R of any one root V.

ExamrLE. For the equation x* 4 2?4+ x4+ 1 =0, and V,=x,—2x,, we have
rn=-—1, z,=V, -1, =~V +1, V,=2V,-2, V,=—V 42

Although x, and V|, —1 are numerically cqual, the functions z;and —V, —1,
obtained by applying the substitution (z,z,), are not equal. The relation
x,=V,—1 is a reduced form of x,—@(V,), obtained in virtue of the identity
Vi:—=2V,+2=0 (§ 57). Thus

2V 54V, 412V —8V P —1GV,--48 = —48V, + 32,
6V 5416V, 48V, =16V, —64,
48V, +32 (—3V, +2)(V,+2)  —3V2—4V,+4 —10V,+10

16V, 64 (V,—4)(V,+2) V22V, -8 —‘10 =V-L

It happens, however, that the equality x,=V,--1 leads to an cquality
zy=V,;~1=—V,+1 upon applying the substitution (z,r;). The fact that
the identical substitution and (z,z;), but no other substitutions on z,, x,, 23,
lead to an equality when applied to 2, =V, —1 finds its explanation in the

general theorems next established.
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THE GROUP OF AN EQUATION.
860. Let the roots of Galois’ resolvent (5) be designated

70N 17 17 17 1
\J) Yy Yay Vby-aeg VU

the substitutions by which they arc derived from V| being
(10) I, a b,...,1L

These substitutions form a group @, called the group of the given
equation (1) with respect to the domain of rationality R.

The proof consists in showing that, if r and s are any two of
the substitutions (10), the product rs occurs among thosc substi-
tutions. Let therefore V, and V, be roots of (5). Then

Fy(V,)=0.
Now V. is a rational function of V, with coefficicnts In R:
(11) V.=06(V)),

the function 4 being left in its unreduced form as determined in § 58.

| 0 L rartr s wmnd T7 ALt
rience 1y v V1)J~—U SO buab one rooy v ;1 01 U

ducible in R satisfies the equation
(12) F[6(V)]=0,
with coefficients in . Hence (§ 55) the root Vs of (5) satisfies (12).
L Fl0(V)]=0.
In view of the corollary of § 58, it follows from (11) that
(Vi)s=V,ys=0(V5).
Hence F(V,s) =0, so that V., occurs among the roots (9).

ExampLE. For the equation 2+ 224+ r+ 1 =0 and the domain R of rational
numbers, the Galois resolvent was shown in § 57 to be V?—2V +2=0, having
the roots V, and V;. Since 1"; was derived from V| by the substitution (x,z,),
the group of the equation x° 4 x*+ x4+ 1 =0 with respect to R is {7, (x,x5) .

For the domain (i), the Galois resolvent was shown to be V—V,=0.
Hence the group of the equation with respeet to (¢) is the identity.



Sec. 61] THEORY OF ALGEBRAIC EQUATIONS. 53

61. The group G of order N of the equation (1) with the roots
X, X, . .., T, possesses the following two fundamental properties:

A. Every ratwonal funciion ¢(x,, &y, . . ., T,) 0f the roots which
remains unaltered by all the substitutions of G lies in the domain R.

B. Every rational funchion ¢(x,,x,, ..., %n) 0f the rools which
equals a quantity in R remains unallered by all the substitutions of G.

By a rational function ¢=d(x,, ..., x,) of the roots 1s meant
a rational function with coefficients in . Then by § 58

(13) ¢=¢(V1): ?Sa (D(Va) ¢b—(p(Vb) -y gblx(p(VI)J

where @ is a rational function with coeflicients in R.
Proof of A. If p=chg=pp= ... =¢by, 1t follows from (13) that

=5 {@(V1)+¢(Va)+d’(Vb)+ - +2(V)}.

The second member is a symmetric function of the N roots (9) of
Galois’ resolvent (5) and hence is a rational function of its coeffi-
cients which belong to E. Hence ¢ lies In R.

Proof of B. 1If ¢ equals a quantity r lying in R, we have, In
view of (13), the equality

(14) (V) —r=0.

Since one root V, of the irreducible Galois resolvent equation (5)
satisfies (14), all the roots V,, Vo, ..., Vi of (3) satisfy (14),

in view of § 55. Hence

(V) ~r=0, OV)—r=0, ..., @(V)—r=0.

It therefore follows from (13) that ¢p=¢,=¢p= ... =¢4. Hence
¢ remains unaltered by all the substitutions of G.

62. By arational relation hetween the roots x;, . . ., 2, 1s meant
an equality &(z,, ..., a,)=¢(x, ..., x,) between two rational

functions, with coefficients in R. Then ¢—¢ is a rational function,
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equal to the quantity zcro belonging to R, and therefore (by B)
is unaltered by every substitution s of ¢. Hence ¢y —~¢s=p-¢=0,
so that ¢,=¢s. Hence the result:

Any rational relation belween the roots remains true if both
members be operated upon by any substitution of the group G.

ExampLe. For the domain of rational numbers, it was shown in § 60
that the equation z°4x?+x+1=0 has the group {I, (z,25)}. The rational
relation (§ 59, Example)

:.'Cz“_"‘-Vl--i':-:.’.Cz-—.’.Clﬁl

leads to a true relation z3=x,—x,—1=V,—1 under the substitution (z,z;).
If we apply (x,x,), we obtain a false relation x, =z, —x,— 1,

63. THEOREM. Properties A and B completely define the group @
of the equation : any group having these properties is identical with G.
Suppose first that we know of a group

=, V,... w

that every rational function of the roots z,, . .., x,, which remains
unaltered by all the substitutions of ¢, lics in B. The equation

I’ 17
¥

FI7N e f 7/ N \ I's Y o
\V)=\F¥V¥ —Fi)\¥ —¥ag )LV —FV¥). . ..\V—=VFVyu)=U

has its coeflicients in K since they are symmetric functions of

Vi Va,..., Va and therefore unaltered by the substitutions
of ¢’. Simce F/(V)==0 admits the root V, of the wrreducible Galois

MAih dAa AR ANANCARS AN SoATtwa

resolvent (5), 1t admits all the roots Vi, V,, ..., V; of (5). Hence

I, a,..., [ occur among the substitutions of @/, so that G 1s a
subgroup of ¢,
Su ex

nnHose

t that we know of
¥¥ L AR AANS LFL

GH

AL

f
~
g\
<

oy 77}

that every rational function of x,,..., 2, which lics in R remains
unaltered by all the substitutions of G”.  Then the rational function
Fy(V,), being equal to the quantity zero lying in R, remains un-
altered by a”, b, ..., 7/, so that

OEFO(Vl)mFG(Va”)xFo(Vb"): R =F0(Vr”)-
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Hence V,, V,», ..., Vi occur among the roots Vi, V,, ..., V; of
Fy(V)y=0. Ience G” i1s a subgroup of G.
If both properties hold for a group, G’=G"; then ¢’ contains
G as a subgroup and ¢’ 1s a subgroup of ¢. Hence ¢/=G"=(.
It follows that the group of a given equation for a given domain
s unique. In particular, the group of an equation is independent

of the speeial nl-valued function V, chosen.

ExamrLr. For the equation 2*+ 2?42+ 1=0 and the domain R of all
rational numbers, the functions £V, £V, £V, of § 57 are each 6-valued.
Employing V', we obtain the Galois resolvent

(V=V )V =V)=V?~2V +2=0

and the group {I, x,7;)}. Evidently no change results from the employment
of Vi. If we employ either —V, or —V,, we obtain the Galois resolvent

(V+VO(V+ V)=V +2V+2=0
and the group {1, (x,75)}. If we employ either V,; or —V,, we get
(V"‘T/Tz)(v—i— Vz) =V2+4:O.

Since V,=x,—x; the substitution replacing V, by —V, is (x,x,), so that
the group is again {I, (x,x5)}.

ACTUAL DETERMINATION OF THE GROUP (¢ OF A GIVEN EQUATION.

64. Group of the general equation of degree n. Its coefficients
€y - -+ ;Cn are independent variables, and likewise its roots (p 101)

L
We proce ed to show that, for a domain R containing the coefficients

and any assigned constants, the group of the general equation of
degree n is the symmetric group G,i. It 18 only necessary to show
that the Galos resolvent Fy(V)=0 is of degree nl.  In the relation
ﬂG(VI)-“U we replace V', and the coeflicients ¢,,.... ¢, by their
expressions 1 terms of @, . . ., &, Since the latter are independent,
the resulting relation must be an 1dentity (sce p. 101) and hence
remain true after any permutation of =z,...,x,. By suitable
permutations, ¥, i1s changed into V,, . ... Vi in turn, while ¢, . . ., ¢a,
being svmmetric functions, remain unaltered. Hence F(V,)=0,
.y Fo(Va)=0. Hence F(V)=0 has n! distinet roots.
Another proof follows from § 63 by noting that properties A
and B hold for the symmetric group G, when 2,, ..., &, are inde-
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pendent variables. Thus A states that every symmetric function
of the roots 1s rationally expressible in terms of the coefficients.

65. To determine the group of a special equation, we usually
resort to some device. It is gencrally impracticable to construct
an nl-valued function and then determine the Galos resolvent (5);
or to apply propertics A and B directly, since they relate to an
infinite number of rational functions of the roots. Practical
use may, however, be made of the following lemma, involving a
knowledge of a single rational function:

LemmA. If a rational function ¢(x,, ..., x,) remains formally
unaltered by the substitutions of a group G' and by no other substi-
tutions, and ©f ¢ equals a quaniity lying 'n the domain R, and if the
conjugates of ¢ under Gy are all distinct, then the group of the given
equation for the domain R vs a subgroup of G,

In view of the first part of § 63, it is only necessary to show
that every rational function ¢(z,, ..., 2,), which remams numeri-
cally unaltered by all the substitutions of @, lies m R. If G’ is
of order P, we can set

b=t bt ... T,

so that ¢ can be given a form such that it 1s formally unaltered by
all the substitutions of . Then, by Lagrange’s Theorem (§ 31),
¢ 15 a rational function of ¢ and hence equals a quantity lying

in R.

ExampLE 1, To find the group of 28 —1 =0 for the domain R of all rational
numbers. The roots are

=1, x=3(-14++/-3), z,=3(—-1-4/-3).

Taking ¢ =1,, it follows from the lemma that G'is a subgroup of ¢’ = {I, (x,,) .
Since z, does not lie in &, (¢ is not the identity (property A). Hence G =G,

ExamrLE 2. To find the group G of y*—7y+7=0 for the domain R of
all rational numbers.

For the cubic 4+ py+q=0, we have (§2)
D=y, —y) (Y~ Y9 *(Ys—y)* = —27¢" — 4p".
For p=--7 ¢=7, we get D=7%, Hence the function
¢=1—y (¥ —ya) (Ys— v
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has a value +7 lying in R and its conjugates ¢ and —¢ under G, are distinct.
By the lemma, G is therefore a subgroup of the alternating group ;, and
hence either Gy itself or the identity ;. Now, if the group of the equation
were (0, its roots would lie in B. But * a rational root of an equation of
the form ¢ J — IJ—}— i --—G, ha.‘ﬁr'lﬂg 1uuﬁg1‘&1 coefficients and Luuu_y as the coeflicient
of the highest power, is necessarily an integer. By trial, 1, £7 are not
roots. Hence the roots areall irrational. Ience the group G is G,.

ExampLE 3. Find the group of z*41=0 for the domain of rational
numbers,

We seek a rational function of the roots z;, z,, x5, 2, which equals a rational

number. Let us try the function #,=zx;,4x,x,. Specializing the result
holding for the general quartic equation (§ 4), we find that, for the quartic
x2*+ 1=0, the resolvent equation (16) for y, is

yi—4y=0.
By a suitable choice of notation to distinguish the roots z:;, we may set

Y= -2, Y=0, yz=+2,

Hence 3, equals a rational number and its conjugates under G,, are all distinct.
Hence G is a subgroup of G, the group to which xyx, 4 232, belongs formally
(§ 21). Similarly, by considering the conjugate functions y,=x,x,+ 22,
and y;=x,7,+1,%;, we find that G is a subgroup of G} and 3. Hence @
is 8 subgroup of G, (§ 21). Hence Gis G,, G,

p ST (-’r“l‘ fr-\l v; T f’rﬂ" f-'rfr\l nra”:

Now GG, since no root of z*+4+1=0 is rational,

If G, consider L‘I—E:cl—;—:cz—-xr—x‘. For the general quartic equation
rttLax®+br’fcr+d=0, we have f*=a’—4b4+4y;, by §5. Hence, for
¢4+ 1=0, ;2= 8, Since t; is not rational, &G><G,,

If &7, consider ¢y==x,+x,—x,—x;. In general, {;¥=a?—4b+4y,. Here
{;2= +8. Since ¢ is not rational, GG, .

If ) consider &=z +x;—x,—x, In general, $,’=a*—4b 44y,  Here
£,2=0. Since a con_]ugate —t, of ¢, equals t,, no conclusion may be drawn

frmrn tha vian Af 2 Tt — altarad har ﬂ" N Aovxr
LIUML] LIITD LT UL bz. J_JLIU V"”"‘”l"”ﬂ .bz-(,‘ 1.9 LILIHLUULUU U‘y U AR LUFYY
2 — Y,
P2 = (225 + 4002 — 40,0y, %, =Yt — 4 = —4,

Hence ¢ is not rational, so that GG,
The group of 2*+1==0 for the domain of rational numbers is therefore G

EXERCISES,

Find for the domain of rational numbers the group of
1. 28+ 2242+ 1=0 (using the lemma, § 65).
2. (z—D{x+D(x—2)=0.

* Dickson, College Algebra (John Wiley & Sons), p. 198.
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> SRR

3. 2*-2=0.

Fo o o and (
L1y o2y g UM A

4. 4+ ¥+ 4+ 2+ 1=0 with roots z,=¢, r,=¢% x;=¢% z,=¢%, where
¢ is an imaginary fifth root of unity. Since the resolvent for z,x, +x;z, is
y —y?—3y+2=0 with the roots 2, 3(—1+4/5), G is a subgroup of G,
The latter has the subgroup C,={I, (1234), (13)(24), (1432)}, to which belongs
Oy =120, 4 20w + 2%, +x%x,. Here ¢ =¢'4 84 ¢4 ¢?=—1 isrational. The
six conjugates to ¢, under (,, are distinct; they are obtained from ¢, by
applying I, (12)(34), (12), (14), (23), (34); their values are —1, 4, 1 +2¢+ ¢,
142346t 1426246, 1426*4 e% respectively. Hence G is a subgroup
of C,. To Gy;=1{I, (13)(24)} belongs

—
-
e

(2, — 25+ 32, —i2) = (1 +20) (2 4 €3 — e4— ) = £4/5(1 +21).
Hence G (G,. Evidently G»G,. Hence G¢G=C,.
5. Show that, for the domain (1, 9), the group of 2*+1=0 is (.
6. Show that, for the domain (1, w), v =imaginary cube root of unity,
the group of 2*—2=0is Cy={I, (z1x,), (x,x35) }.
Hint: (x; +wr, + 0?x)® and (x; 4 vz, + wx,)® have distinct rational values,

TRANSITIVITY OF GROUP; IRREDUCIBILITY OF EQUATION.

66. A group of substitutions on n letters is transitive if it
contains a substitution which replaces an arbitrarnly given letter
by another arbitrarily given letter; otherwise the group is intran-
gitive.

Thus the group Gy={I, (z,2)(x37), (rx)(xpxy), (2,2,)(22%) } is transitive;
I replaces x, by x;, (2,2,)(252,) Teplaces z; by x,, (x,2,)(x,z,) replaces x, by s,
(x,x)(x;x3) replaces x; by z,. Having a substitution s which replaces z,
by any given letter x; and a substitution ¢ which replaces x;, by any given
letter zy, the group necessarily contains a substitution which replaces z;
by z;, namely, the produect s—',

The group H,={I, (z,r;), (752)), (2:2;)(252,)] is intransitive.

67. TaroreEM. The order of a transitive group on n lelters is
divistble by n.

Of the substitutions of the given group @, those leaving =z,
unaltered form a subgroup H=1{I, h,,..., h}. Consider a rect-
angular array (§ 28) of the substitutions of ¢ with those of H in
the first row, choosing as g, any substitution replacing z, by .,
as g, any substitution replacing x, by x,, etc. Then all the sub-
stitutions of the second row and no others will replace x, by z,,
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all of the third row and no others will replace x, by x,, etc. Since
(@ is transitive, there are v=n rows. DBut the order of G is

divisible by v (§ 26).
Examples of transitive groups: G,®), Gi®, G,,(, G,(M, G4, GO,

The least order of a transitive group on n letters is therefore n.
A transitive group on n letters of order n is called a regular group.
Thus G4® and G are regular.

68. THEOREM. I an equation 1s wrreducible for the domawn R,
its group for R is transitive; if reducible, the group is intransitive.

First, if f(x)=0 is irreducible in R, its group for R is transitive.
For, if intransitive, ¢ contains substitutions replacing 2, by =z,
Xy o vy T, but Not by Ty, ..., Ty, the notation for the roots
being properly chosen. Hence every substitution of G permutes
X, ..., Ty amongst themselves and therefore leaves unaltered
any symmetric function of them. Hence the function g(x)=
(x—z)(@—x,) ... (x—2,) has its cocfficients in R, so that g(x)
is a rational factor of f(x), contrary to the irreduchility of f(x).

Let next f(x) be reducible in R and let g(z)=(x—2,) . . . (x—2,)
be a rational factor of j(x), m being<n. The rational relation
g(x,)=0 remains true 1f operated upon by any substitution of G
(§ 62). Hence no substitution of ¢ can replace x, by one of the
TOOtS Xpmqss - - -, T f0r, 1T s0, g(x)=0 would have as root one of
the quantities X4y, - . ., Ty, contrary to assumption. Hence G 1s
intransitive.

ExampLE 1. The equation z¥-—1=0 is reducible in the domain R of
rational numbers; its group for R is {7, (x,x)} by § 65, Ex. 1, and is intran-
sitive. A like result holds for 23+ 2+ 2+ 1=0 (§ 60).

Exavmrie 2. The equation 43—7y4+7=0 1is irreducible in the domaln
R of rational numbers, since its left member has no linear factor in R (§ 65,
Ex. 2). Hence its group for R is transitive., DBy § 65, the group is GO,

Exavrie 3. The equation z*4+1=0 is irreducible in the domaln R of
rational numbers (§ 54, Ex. 2). Hcence its group for R is transitive, and
so is of order at least 4. We may therefore greatly sinplify the work in
§ 65, Ex. 3, for the determination of the group G.

ExaMrLE 4. The equation x*+1=0 is reducible in the domain (1, 7).

Its group (7 is intransitive (see Ex. 5, page 58).
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RATIONAL FUNCTIONS BELONGING TO A GROUP.

69. TnroreM. Those substitutions of the group G of an equation
whach leave unallered a rational function ¢ of s roots form a group.

Let I, a, b, ..., k be all the substitutions of G which leave ¢
unaltered (in the numercal sense, § 52). Apply to the rational
relation ¢b=¢, the substitution b of the group G. Then (§ 62)
¢r=chap. Hence ¢pop=¢, so that the product ab is one of the
substitutions leaving ¢ unaltered. Hence the substitutions I,
a, b,...,kforma group H.

No matter what group ¢ helongs to formally (§ 21), we shall
henceforth say that ¢ belongs to the group H, a subgroup of G.

ExaMmrLE. For the domain R of rational numbers the group of z*+1=01s
Gy =, (2 22) (232), (2y73) (22), (2,20) (X229

by § 65, Ex. 3. Of the 12 substitutions which leave x,* numerically unaltered
(§ 49), only I and (z,x)(xyr,) occur in G,. Hence the function x> of the
roots of z*41=0 belongs to the group {7, (x;23)(x,2,)}.

70. TeEorEM. If H s any subgroup of the group G of a given
equation for a domain R, there exists a rattonal function of its roots
with coefficients in B which belongs to H.

Let V; be any n tvalued function of the roots with coefficients
im R (§56). Let V,, V4 ..., Vi be the functions derived from
V. by applying the substitutions of H. Then the product

¢§(P_V1)(P_Va) e (P_Vk)

in which p is a suitably chosen quantity in R, is a rational function
of the roots with coefficicnts in B which belongs to H (compare
§ 25).

71. TurorEM. If a ralional function ¢ of the rools of an equation
belongs to a subgroup H of index v under the group @ of the equation

fm'- a doman P then ¢ takes v distinct values when overated wunon
RS T e v v VAW UAS L VY WAL DS IJUJ v WPU!I’.’

by all the subst@tutums of G; lhey are the rools of a resolvent equation
with coeffictents in R,

(15) g =~y ~¢2) . .. (y—¢.)=0.
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The proof that there are cxactly v distinet values of ¢ under the
substitutions of G 1s the same as in § 29, the term distinct now
having the meaning given in § 52.

Any substitution of the group G merely permutes the functions
&1, &9y - .o, ¢y (compare § 30), so that any symmetric function of
them 1s unaltered by all the substitutions of ¢ and hence equals a
quantity in & (Theorem A, § 61). Hence the cocflicients of (15)
lie in R.

REMARK. The resolvent equation (15) 18 wrreducible in R.

Let y(y) be a rational factor of g(y). Applying to the rational
relation y(¢,)=0 the substitutions of @, we get r(¢,)=0,...,
7(¢»)=0. Hence y(y)==0 admits all the roots of ¢(y)=0, so that

rGn=ag(y).

ExampLE 1. For the domain R of rational numbers, the group @ of
P+ziLr+1=01is {I, (5,x;,)}, by §60. The conjugates to z,~z, under
are ¢, =r, —2, ¢, =7;—x,. They are the roots of

yE =1+ da)y +dudh =y -2y +2=0.
ExaMpLE 2. For the domain (1, %), the groupG&of 2!+ 1=01s {I, (x,75) (z2,) |,

by Ex. 5, page 58, employing the notation of § 49 for the roots. The con-
jugates to z, under G are ¢, =, ¢, =2, They are the roots of

yi—(e—y+e(—e)=y*—i=0,
S T RN TR AT PRES TER R S S S S 2 S N~y
1t 18 ureauable 1n (1, 2), since N/ 1=(141) +A/2,
72. LAGRANGE’S THEOREM GENERALIZED BY GAvois., If a
rational function ¢(x;, &, . .., &,) of the roots of an equation f(x)=0

Anmrain B remaine vvialtored har all thaos carho

. q:; - .
w?/th Coellbl{/vl}ients %n a WALV LIr AV J wWiITnvirvw  Wrnenvvd vuw Uy Wit LFLOU o WU~

stituttons of the group G of f(x)=0 which leave another rational
function (xy, 2y, . . ., x,) unaltered, then ¢ is a rational function of
J with coefficients in .

The function ¢ belongs to a certain subgroup H of G, say of
index v. By means of a rectangular array of the substitutions
of ¢ with those of H in the first row, we obtain the v distinet con-

jugate functions ¢y, ¢, . . ., ¢ and a set of functions ¢;, by, . . ., &,
not necessarily distinet, but such that a substitution of G which
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replaces ¢; by ¢; will replace ¢; by ¢; (compare § 31). If ¢(£)
be defined by (15), then

=g 2t 72

f-—-rf’: iy
T

15 an integral function of ¢ which remains unaltered by all the
substitutions of G, so that its coefficients lie in R (§ 71). Taking

dr=¢ for ¢, we get = A(¢)+ 7 ().

For examples, see § 58. The function V, is unaltered by the identical
substitution only, which leaves unaltered any rational function,

REDUCTION OF THE GROUP BY ADJUNCTION.

78. For the domain R=(1) of all rational numbers, the group of the
equation ri4+x*+x+1=01s Gy={I, (z,xy)}; while its group for the domain
R'=(1, 7) is the identity G, (see §60). In the language of Galois and
Kronecker, we derive the domain I’ =(1, {) from the included domain £ =(1)
by adjoining the quantity ¢ to the domain . DBy this adjunction the group
(, of x3+x?4+x+41 is reduced to the subgroup &,. The adjoined quantity ¢
is here a rational function of the roots, {=x,~= —x,, in the notation of § 49
for the roots. The Galois resolvent V2—2V 4+ 2=0 for R becomes reducible
in R, viz.,, (V—2—=1)(V +2—1)=0.

For the domain R=(1), the group of 2*+1=01s G,; for the domain (1, 7),
its group is the subgroup G;={I, (x;x;)(x,x,)}, by §65. By the adjunc-
tion of 7 to the domain R, the group is reduced to a subgroup Gj. Here
t=t=ayt = —x?= —x, =x7,, In the notation of §49. The subgroup of
¢, to which x,2 belongs is (5. If we afterwards adjoin A/2, the roots will
all belong to the enlarged domain (1, 7, A/2), so that the group reduees to
the identity. For example, x;=(1+7%) +A/2.

For the domain R=(1), the group of 2*~2=0 is G; for the domain
(1, »), w being an Imaginary cube root of unity, the group is the eyelic group
C; (Exercises 3 and 6, page 58). Call the roots

r,=%/2, I,= w\/— wr, T3=0"2=wr,

Then w -—-..l»z/ Ty & rati :
L/x; by z/t,=0w=2x,/2, (:1:1:1:3:1:2) replaces z,/x; by xl/xa—.w—2=cu, whlle
these two substitutions and the identity are the only substitutions leaving
z,/x, unaltered. If we subsequently adjoin /2, the roots all belong to the

enlarged domain (1, w, 4/2), so that the group reduces to the identity.
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74. In general, we are given a domain R=(R’, R’ ...) and
an equation f(z)=0 with cocflicients in that domain. Let G be
its group for R. Adjoin a quantity §. The irreducible Galois

nnnnnnn - . ~ bhan~1mnna
lb‘btjl\/tjiltu Jpo(-{’r)—g fl_]l UhU lllltlal dl_)ll.ld;lll R llla»y lJUb(J].ll.U IUUULIIJIB

in the enlarged domamm R =(¢; R, R”,...). Let AV, & bhe
that factor of Fy(V) which is rational and irreducible in R, and
vanishes for V=V,. If V,, V,, ..., Viare the roots of A(V, £)=0,
then "=1{I, a,...,k} 18 the group of f(2)=01n B, (§ 57). Hence
G’ 1s a subgroup of ¢, including the possibility /=@, which occurs
if Fo(V) remains irreducible after the adjunction of &, so that
AV, &Y=F (V).

THEOREM. By an adjunction, the group G s reduced to a sub-
group (.

79. Suppose that, as in the examples in § 73, the quantity
adjoined to the given domain B 1s a rational function ¢(a,, 2,, . . . ,2,)
of the roots with coefficients in R.

THEOREM. By the adjunction of a rational function ¢(x;, . .., 2z)
belonging lo a subgroup H of G, the group G of the equation vs reduced
precisely to the subgroup H.,

It 1s to be shown that the group H has the two characteristic
properties (§ 61) of the group of the equation for the new domain
R,=(¢; R', R”,...). First, any rational function ¢(z,. .., x,)
which remains unaltered by all the substitutions of H is a rational
function of ¢ with coeffictents in R (§ 72) and hence lies in R,.
Second, any rational function ¢(x, . . ., x,) which equals a quantity
o in B, remains unaltered by all the substitutions of H. For the
relatlon ¢=p may Dbe expressed as a rational relation in B and
hence lea,ds to a true relation when operated upon by any sub-
stitutton of @ (§ 62) and, in particular, by the substitutions of

the subgroup H. The latter leave ¢, and hence also 0, unaltered.
Hence the left member f/] of the relation remains altered hv all

ol N el W -t e W A AL AAMRR ISR AL VAV L & W AJAWJAL J.J.I..U.I. LYLWES S LV B

the substitutions of H.



CHAPTER VIL

SOLUTION BY MEANS OF RESOLVENT EQUATIONS.

76. Before developing the theory further, it is desirable to
obtain a preview of the applications to be made to the solution
of any given equation f(a)=0. Suppose that we are able to solve
the resolvent equation (15), one of whose roots is the rational
function ¢ belonging to the subgroup H of the group G of f(x)=0.
Since ¢ is then known, it may be adjoined to the given domain
of rationality (R’, R"”,...). For the enlarged domain R,=
(¢; R, R’,...), the group of f(x)=0 1s H. Let y(x,...,x,)
be a rational function with coefficients in R, which belongs to a
subgroup K of If. Suppose that we arc able to solve the resolvent
equation one of whose roots 1s 7. Then y may be adjoined to the
domain R,. TFor the enlarged domain R,=(y, ¢; R, R”,...), the
group of f(x)=01s K. Proceeding in this way, we rcach a final
domain Rj, for which the group of f(x)=0 is the identity G,. Then
the roots z;,...,x,, being unaltered by the identity, lie in this
domain Ry (property A, § 61). The solution of f(x) =0 may there-

fore he annmhhthﬂ if all the rr\czn]vr\nf eauations can he eolved

AL S Y Dol ¥ A W A SRS WA MOUUiLAALL vl O ULl Y g,

To apply Galois’ methods to the solution of cach resolvent, the
first step 1s to find its group for the corresponding domain of
rationality.

Tam T A+ 7 Ln
L3 ALA Wi DR § [ ¥ Lo

a given equation
f(x)=0 for a given domamm R. Let ¢(x,...,x,) be a rational
function of its roots with coeflictents in R and let ¢ belong to a

subgroup H of index v under G. Consider a rectangular array
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of the substitutions of ¢ with those of H in the first row, and the
resulting functions conjugate to ¢:

hy=I hy ... hp | ¢=¢
g2 hags «.. hpg, sz Gbaz

v hogs « .. hpg ‘:b (Ibﬂu
Apply any substitution g of the group @ to the v conjugates

(16) ¢y ¢03: ¢031 ooy Doy
The resulting functions
(17) (tbw (tbath ¢ﬂ3w sy (tbgvﬂ

are merely a permutation of the functions (16), as shown in § 29.
Hence to any substitution g of the group G on the letters z,, . . ., 2,
there corresponds one definite substitution

(¢ Gg, o Yy, ) (9[’03 )
Go Vo0 +++ Y0/ \Yy,
on the letters (16). We thercfore obtain * a set I' of substitutions

y, ot all of which are distinct in certain cases (Exs. 2 and 3 below).
TaEorREM. The set I' of substitutions y forms a group.

COTTESnON ﬂ rﬁqnpnﬂ vn]v

y Tuilds N U\LA\JL}I}‘_ IJu\J'UA

r_ Sboz-o ’_ ‘:5'91: )= ’t
4 (Gba@-o-o’)’ T (‘Jbaiag’ I

Hence if I" contains y and ¢/, it contains the product yy’.
Since I' contains a substitution replacing ¢ by ¢,. for any
t=1,..., v, the group I 1s transitive (§ 66).

* For a definition of I” without using the function ¢, see § 104.



66 SOLUTION BY MEANS OF RESOLVENT EQUATIONS. [Cu. VII

DeriNtTIONS.  The group I' is said to be isomorphic to @, since
to every substitution g of G corresponds one substitution y of I,
and to the product g¢’ of any two substitutions of @ corresponds
the product yy” of the two corresponding substitutions of I'. If,
inversely, to every substitution of I' corresponds but one substi-
tution of @, the groups are said to be simply isomorphic;* other-
wise, multiply isomorphic.*

ExampLE 1, Let G=G®), H=G,, ¢ =x, 4wz, + wlx,, Set (compare § 9)
1=¢, ¢2="a, da=db, Ja=de, Ps=dd,  Po=e.

Then a =(x,x,%,) replaces ¢, by ¢, =¥}, and ¢, by ¢ =w¢,. Hence a replaces
g2 by @y =dyg, ¢3 by @°dy=dy, dg by ¥ =4, ¢5 by @Y =¢,. Hence to a
corresponds a= (o) (Pufeds). Similarly, we find that to ¢=(x,x,;) corre-
sponds 7= () (L) (¢fe). Hence to b=a®corresponds §=d?, to d=a~ca
corresponds ¢ =a~'ya, to e=b"'cb corresponds e =8"1y8. We have therefore
the following holoedric isomorphism between G and I':

I I

@ = (X,5%3) a={¢pss) (¢adeds)
b= (x,247,) 8= (1) (a5 e)
€= (T,T3) 7= (100 (aihs) (d2de)
d = ('-51'-‘*3) d = (9’529"’&) (?539”4) (9’51‘}!’5)
e = (x2,) e = (¢as) (P16 (Pl

It may be verified directly that to b, d, e correspond §, 8, ¢, respectively,
Since I, a, 3, 1, 9, e replace ¢, by ¢y, sy sy Pur s ey Tespectively, I7is trane
sitive,
ExamrLE 2. Let G=G,(Y, H=G,, y=(x,—2)(r;—x). Set

h=¢, dp=(;—x)(xi—%p), ¢3=(2;—2)(2—Ty).

We obtain the following meriedrie isomorphism hetween ¢ and I's
1, (xy2)(x5xy), (X42) (Texy), (x2) (L) |1
(2,2452,), (x,24%,), (Ty2475), (x,.7,) (P1¢:¢03)
(z,7425), (242425), (xy575), (xyxex,) (9”1'.535!’2)

The group I' is transitive since it contains substitutions replacing ¢, by
&1y P2 OT .

* Other terms are holoedric and meriedric for simple and multiple
isomorphism,
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78. Order of the group I'. To find the number of distinct
substitutions in I', we seek the conditions under which two sub-
stitutions y and 3’ of I' are identical. Using the notation of § 77,

the conditions are

gbgig:(!bﬂig’ (2:211 2! “ s ey v);

if we set ¢;=1I. Applying to this identity the substitution g—'¢g,*
we get

O=dg.09 19,1

Hence g,9'97*g;~'="h, where £ is some substitution leaving ¢ unal-
tered and hence in the group H. Then

g9 =9.""hg; (t1=1,2,...,v).

But ¢,7'hg; belongs to the group H;=g,7'Hg; of the function ¢g4;
(§ 39). Hence ¢’9~* belongs simultaneously to H,, H,,..., H,,
and therefore to their greatest common subgroup J.

Inversely, any substitution ¢ of J leaves ¢1, oy + o vy ¢y unal-
tarmnd nnd hhanan ann o Ao Fa 4’1’\1\_ ] V\J- - i’ "P 16Ty 7 A A
LeiIveL d, il LICL1LUL LUy J.]_CDLJ\J.U.LLD [FLW S 1Y vl UJ LI.L F - A 1iC11 ‘(j d_, 1L

g =oq corrcspond to substitutions y and y" which are identical.
If (¢ is of order k and +f the greatest common subgroup J of H
H, ..., H, isof order j, then I' vs of order k/j.

ExamrLE 1, For G= Ge, H=G,, the order of " is 6 (§ 77, Ex. 1).

Examrie 2. For G=G{Y, H=@, (§ 77, Ex. 2), we have H, =H,=1I,
since G, is self-conjugate under G, (§ 41). Hence k=12, 7 =4, so that the
order of " is 3.

ExamrrE 3. For G=G’(z?, H, =Gy, ¢=x2,+x2,, We set (§ 29, Ex, 2)

J1=T X+ T3Xy,  Jo =T T3+ X)Ly, Py =TT+ T,0s.

Then H,=G,, H,=G;, H,=G, J=G, (§21). Hence I' is of order 2! =6.
This result may be verified directly, There are only 6 possible suostitutions
on 3 letters ¢y, ¢, ¢  But the substitutions of & which lead to the identical
substitution of /" must leave ¢y, ¢,, ¢5 all unaltered and hence belong to the
greatest common subgroups G, of H,, H,, H;. Hence exactly four substitu-
tions of & correspond to each substitution of /7,s0 that the order of I'is 24 =6.

The four substitutions of any set form one row of the rectangular array for
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first row. As right-hand multiphers we may take

g1=1, gz=(:1:2:1:3:1:l), g3 = (T22), G4=(Txy), ¢5=(T2), Go=(T2%3)-
To the four substitutions of the first row, the four of the second row,..
correspond

*

I: (95’19,}29!’3): (¢'1¢3¢'2): (95'29&3)7 (9’519&3)7 (9”19’52)'

79. Of special importance is the case in which H, H,, ..., H,
are identical, so that H s self-conjugate under G. Then J=1H,
so that the order k/j of I" equals the index v of H under . Hence
the number of distinct substitutions of I' equals the number of
letters ¢y, ..., ¢, upon which its substitutions operate, or the
order and the degree of the group I' are equal. Moreover, I' was
seen to be transitive, Hence I is a reqular group (§ 67).

DeFINTTION*  When H is self-conjugate under G, the group I’
is called the quotient-group of G by H and designated G/H. In
particular, the order of G/H is the quotient of the order of G by
that of H.

ExampLE 1. By Examples 1 and 2 of § 77, the quotient-group G,/G, is
a regular group on six letters; the quotient-group Gy,/G, is the cycle group
H, ($1duls), (P3¢fsf3) }, which is a regular group.

Examrie 2, We may not employ the symbol G, /G, since @, is not
self-conjugate under G,, (§ 78, Ex, 3)

ExamrLE 3. Consider the groups Gy and G; on three letters. To G,
belongs ¢ = (x; —x,)(x, — ;) (x;—x,) ; under Gy it takes a second value ¢, = — ¢,
(§ 9). We obtain the following isomorphism between G5 and I';

I, (242,%5), (4T,)
(z423), (x425), (x42,), (1eh2)
Since Gy is self-conjugate under Gy, we have I'=G,/Gy={I, (¢d,)}.

Y NP

feonjugate subgroup of G of prime
index v, then I' is a cyclec group of order v (§ 27).
Illustrations are afforded by the groups G,,/G, and G,/G; of Exs. 1 and 2.
ReMARK. Any substitution group G is simply isomorphic with
a regular group. In proof, we have merely to take as ¢ any nlk-
valued function V;, whence I" will be of order equal to the order
of G.

C
-~
=
-
e
-
£
-
(-
=
e
o,
e,
-
[
Ll
v/
23
v
™

* Holder, Math. Ann., vol. 24, page 31.



SEo. 80] THEORY OF ALGEBRAIC EQUATIONS. 69

80. Let H be a mazimal self-conjugate subgroup of G (§ 43).
The quotient-group I'=G/H is then simple (§ 43). For if I' has
a self-conjugate subgroup 4 distinet from both I" and the identity
(,, there would exist, in view of the correspondence between @
and I, a sclf-conjugate subgroup D of G, such that D contains
H hut is distinct from both G and . This would contradict the
hypothesis that H was maximal.

For example, if H is a self-conjugate subgroup of G of prime index v,

it is necessarily maximal, Then I' is a cyelic group of prime order » (Cor,,
§ 79) and consequently a simple group.

81. The importance of the preceding investigation of the group

I' of substitutions on the letters ¢, &,, . . ., ¢, lies in the significance
of I in the study of the resolvent equation
(15) N =W~y =) ... (y=¢) =0,

whose coefficients belong to the given domain R. We proceed
to prove the
THEOREM. I'or the domain R, the group of the equation (15) us I,
We show that [" has the charaeteristic propertics A and B of

§ 61. Any rational function p(¢J;, ¢, ..., ¢.) with coeflicients
in R may be expressed as a rational function r(x, ,, ..., 2,)
with coefficients in R:

(18) (@, Doy ooy Y =r(2, Xy o o o, Ty

From this rational relation we obtain a true relation (§ 62) upon
applyinw any substitution g of the group G on a:l, vy X But g

gl‘ves Tise to a aLLbotxtutIOﬂ 7 of thc group I on ‘IUD ey ¢yo Hence
the resulting relation is
(19) T A T € A N B

To prove A, let o(¢y, .. .,¢,) remain unaltered by all the sub-
stitutions of I', so that p,=p, for any y in I". Then, by (18) and
(19), rg==r, for any ¢ in ¢. Hence r lics in the domain R (property
A for the group ). Hence p lies in R.

To prove B, let p lie in the domain R. Then, by (18), r lies
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in B. Hence ry=r, for any g in & (property B for the group G).
Hence, by (18) and (19), o, =p, so that p remains unaltered by all
the substitutions y of I,

Cor. 1. Since I is transitive (§ 77), equation (15) is irreducible
in R (§ 68). This was shown otherwise in § 71.

Cor. 2. If the group H to which ¢ belongs is self-conjugate
under @, the group of the resolvent (15) is regular (§ 79). The
resolvent is then said to be a regular equation.

Cor. 3. If H is a self-conjugate subgroup of ¢ of prime index v,
the group of (15) is cyelic (§ 79, Corollary). The resolvent is then
sald to be a cyclic equation of prime degree v,

Cor. 4. If H is a maximal self-conjugate subgroup of G, the
group of (15) is simple (§ 80). The resolvent 1s then said to be
a regular and simple equation.

82. TaEorEM. The solution of any grven equation can be reduced
to the solution of a chain of stmple regular equations.

Let (' be the group of the given equation for a given domain R,
and let a series of composition (§ 43) of G be

G, HK,. .. MG,

the factors of composition being A (index of H under @), p (index
of K under H),...,p (index of G, under M). Let ¢, ¢,..., 7, V
be rational functions of the roots belonging to H, K, ..., M, G,
respectively (§ 70). Then ¢ is a root of a resolvent equation
of degree A with coefficients in R, which is a simple regular equation
(§ 81, Cor.4). By the adjunction of ¢ to the domain R, the
group (7 of the cquation is reduced to H (§ 75). Then ¢ is a root
of a simple regular cquation of degree p with cocfficients in the
enlarged domain (¢, E). By the adjunction of ¢, the group is
reduced to K. When, in this way, the group has reduced to the
identity @, the roots x,,...,x, lie in the final domain reached
(compare § 76).

In particular, if the factors of composition A g, ..., p are all
prime numbers, the resolvent equations are all regular cyclic equations
of prime degrees (§ 81, Cor. 3).
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83. TaroreEM. A cyclic equation of prime degree p vs solvable
by radicals.

Let R be a given domain to which belong the coefficients of the
given equation f(x)=0 with the roots g, x;,...,z,;, and for
which the group of f(x)=01s the cyclic group G=1{I,s,s* ...,s?7},
where s=(2@,%; . « « ;). Adjoin to the domain R an imaginary
pth root of unity ¥ @ and let the group of f(x)=0 for the enlarged
domain R’ be ’. Consider the rational functions, with coefficients

in R,
(20) 0;=xy+wir, + 0¥z, + ... +0@ Vg, .

Under the substitution s, #; is changed into @™0;. Hence 6;=6;
is unaltered by s and therefore by every substitution of G and of
the subgroup G’ (§ 74). Hence 6; lics in the domain R’ (§ 61),

Extracting the pth root, we have §;=</ ;. Since the function (20)
belongs to the identity group, it must be possible, by Lagrange’s
Theorem (§ 72), to express the roots =z, 2, ...,2,_; rationally
in terms of #;, The actual expressions for the roots were found
in the following elegant way by Lagrange. We have, by (20),

Tyt 2, +z, + oo F T =cC
- Pra
Totwr, +oir, + oo FwPT e, =\/91
P —
x,+ oz, +o', + oo Fe¥eTlr,_ =V6,

— — —1y2 P
Tyt wP 'z, + @ 0n, + L+ r, =0y

where ¢=%/ éu is the negative of the coefficient of zP~! in f(z)=0.,
Multiplying these equations by 1, w™, ™%, ..., 0~ ®"9 respect-
ively, and adding the resulting equations, and then dividing by p,
we get T

[ o 3

1 — —_—
mz.;ﬂ A G S R R Y

* As shown in § 89, w can be determined by a finite number of applications
of the operation extraction of a single root of a known quantity.
T Sinee 1+ wt+wi+ .. +o@ D=0 for {=1,2,...,p-1.
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for »—0 1 m—1  The valiie
I0T v=U, 1,..., p—1i. 10C value o

say V6, may be chosen arbitrarily; but the others are then fully
determined, being rationally expressible in terms of that one,

Indeed,
V6, = (V8,)i=0;+6

becomes w™f;+ (w™*0,)" upon applying the substitution s and
hence is unaltcered by s, and is therefore in the domain R’.

84. From the results of §§ 82-83, we have the following

THEOREM. If the group of an equation has a series of composition
jor which the factors of composition are all prime numbers, the equation
18 solvable by radicals, that 1s, by the extraction of roots of known
quantities.

The group property thus obtained as a sufficient condition for
the algebraic solvahility of a given equation will be shown (§ 92)
to be also a necessary condition.



CHAPTER VIII.
REGULAR CYCLIC EQUATIONS; ABELIAN EQUATIONS.

85. Let f(x)=0 be an cquation whose group ¢ for a domain R
consists of the powers of a circular substitution s=(x2,...2,):

G=1{1l,s,s%...,s"71},

n being any integer. Since the cyclic group @ is transitive and of
order equal to its degree, it is regudar (§ 67). Inversely, the gen-
erator s of a transitive cyclic group is necessarily a circular sub-
stitution on the n letters*

The equation f(x)=0 then has the properties:

(a) It is irreducible, since its group is transitive (§ 68).

”\\ AN the roots are rahnnsl] anr\hnnc unf-}\ nnofhrileante in
ARIL UART [« AL N4 [P SULVR DN 5y, FYiuii U\J’\JLLLUL\,-LLLD 11l iy,

of any one root z;. Indeed, there are only n substitutions in the
transitive group on n letters, and consequently a single substitution
(the identity) leaving x; unaltered. Since x; belongs to the identity

gttt LAl by Tapranan o Mha cpeaen O

:bluup, the result follows DY Lagrange's ineoreil \3 i(Z). Let
=0(x,). To this rational relation we may apply all the substi-
tutions of G (§62). Hence

(21) .’L,—ﬁ(.’l:) CE-;, 0(-’£9) n:ﬁ(mn—l)r "’E}:ﬁ(mn)-

DEFINTTION. An irreducible equat.ion for a domain R between
whose n roots exist relations of the form (21), ¢ being a rational
function with coeflicients in R, is called an Abelian equation.f

* A non-circular substitution, as {=(x,T,x;)(x,xs), generates an intransi-
tive group. Thus the powers of ¢ replace z, by x,, ,, or z; only.

T More explicitly, uniserial Abelian (einfache Abel’sche, Kronecker).
A more general type of ‘“ Abelian equations’’ was studied by Abel, (Fuvres,
I, No. XI, pp. 114-140,

73
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86. THrROREM. T'he group G of an Abelian equation is a reqular
cyclic group.
Denote any substitution of the group G by

= (2 T, Xy .. Xp)
\a:a Ty Ty ... :z:,,}‘
Applying to the rational relations (21) the substitutions g (§ 62),
z,=0(2.), mrzﬁ(xﬂ), cony Ta=0(,).

But, by (21), #(x.)=2a4,, holding also for a=n if we agree to set
;=T n=Tiipn= ... 1t follows that

xﬁ:xa.f_l, mrimﬂ_f_l, L R ] xa:xy+lo

Since the equation is irreducible, its roots are all distinct., Hence,
aside from multiples of =,

f=a+1, y=f+1=a+2, 0=y+1=a+3,...
.= (3:1 x, Xy coe Xy )
Ta Xagy Tajpg »-» Laipn_g
Since g replaces x; by ;.4 it is the power a—1 of the circular
substitution s=(2,2,%, . . . x,) which replaces z; by a,,,. Hence
(7 is a subgroup of G'=1{I, s, §*,..., s""'}. But G is transitive,
since the equation is irreducible. Hence G=G".
5

. 1
ExampLE, The equation 2*+ 2% 42?42+ 1 ELi ={ has the roots

r,=¢, T,=ct, xy=¢' I =6,
where ¢ is an imaginary fifth root of unity. Hence
2 e B — e B —
Ty=12,%, Ty=I,", Ty=15%, x =z,

Moreover, the equation is irreducible in the domain R of all rational numbers
(§ 88). This may be verified directly by observing that the linear factors
are r — ¢* and lietice 1rrational, while

ittty =@ ar+r) (@t 4 br 4-r0)

gives a+b=1, ab+r+r—'=1, ar—'+br=1, so that eithzr
a=31£V5), b=1TFV3H), r=1,
r
or, “=5:4_“1*J b:;:jr—l'; rpri4rt4r41 =0,

Hence the group for ¢ is a cyclic group. Compare Ex. 4, page 58,
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87. Cyclotomic equation for the pth roots of unity, p being
prime,

(22) 2P~ tar~iyp . 42+1=0.
Let ¢ be one root of (22), so that =1, e#21. Then
(23) g, g4, 3, .., &}

are all roots of (22) and arc all distinct. Hence they furnish
all the roots of (22). As shown in the Theory of Numbers, there
exists,* for every prime number p, an integer g such that gm—1 is
divisible by p for m=p—1 but not for a smaller positive intcger m.
Such an integer g is called a primitive root of p. It follows that
the series of integers

L, g, ¢, 9777
when divided by p, yield in some order the remainders

1. 2, 3, ..., p—1.

TTrwnmm Al oy LN o o Loy o S e
rnenee vile roous kéO} llld.y P WIILWCIL
7 =p
X, =€, Ty=2¢0, Xy=¢l", y Tp_1=¢€ .
. __ e IR /)
. 2 xz——ﬂflg, :1:3"—"3:20} s ey mp_l_—mp_z, ml xp —13

the last relation following from the definition of ¢, thus:
(PP Y= P o i tap = g,

ave the property indicated by formule (21). In
view of the next sectlon, we may t herefor tate the

TreoreM. The cyclotomic equation for the tmaginary pth roots
of unity, p being prime, is an Abelian equation with respect to the

domain of all rational numbers.

TThren oo Al e o d L.nd-
Jlence (neé roois n

* For example, if p=5, we may take ¢ =2, since
2l—1=1, 2*—1=3, 2°-1=7, 2¢—1=15

For p=5 the results of this section were found in the example of § 86.
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8. Irreducibility of the cyclotomic equati
all rational numbers* Suppose

t
iz Lt 1= g(x) - P(2),

>
-~
ju¥]

coefficients. Takmg r=1, we get

p=¢(1)-¢(1).
Since p is prime, one of the integral factors, say (1), must be +1.

Since ¢(x)=0 has at least one root in common with (22), whose
roots are (23), at least one of the expressions ¢(e') is zero. Hence

9]

(24) () B(eD) B . . . P(ePH)=0.
For any positive integer s less than p, the series
(25) s, ¢¥, ¥ .., dpTls

is identical, apart from the order of the terms, with the series (23).
For, every number (25) equals a number (23), and the numbers
(25) are all distinct. In fact, if

g9=¢t whence erHs=1, (O§r<p, 0Zt<p

S

l.

,
\J-. IJJ.

eplaced by €. Hence
B(@)-p(?) . . . Plar=")=0
is an equation having all the numbers (23) as roots. Its left mem-
ber is therefore divisible by 2274+ ... +z+1, so that
() -Pp(a?) . .. p(ap ) =Q(x)- (zP 2P ... +xt1),
where Q(x) is an integral function with integral coeflicients. Set-
ting x=1, we get

.I"\Y on+
U -] u

I—-‘l

PP =[x 1P~ =p-Q(1).
Since + 1isnot divisible by p, the assumption that zp=*+ .., +z+1
is reducible in R leads to a eontradiction.

* The proof 1s that by Kronecker, Crelle, vol. 29; other proofs have been
given by Gauss, Fisenstein (Crelle, vol. 39, p. 167), Dedekind (Jordan,
Traité des substitutions, Nos. 413—414),

 If rational, then integral (Weber, Algebra, I, 1895, p. 27).
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89. TunrorEM. Any Abelian equation 1s solvable by radicals.
Let n be the degree of the Abclian cquation. By § 86, its

group G is a regular cyclic group {1, s, s*,..., s~} of order n.
Sa+ N ==1- 1! whoarn mie nrime at o’D-—o’ Mhan +ha ororie
LW V) P o y ¥Y L1 L U t} 4 bt tJl 11LAN:a [ LR P b o Lo ] A LLIC. 11 LLLI 61 Ljulj

H={I, &, & ..., 8"

is a subgroup of G of prime index p. It is self-conjugate, since
s B sl =5~ Bspgh = gep =g’

by § 13. Hence H may be taken as the sccond group of a series
of composition of . Proceeding with H as we did with @, we
finally reach the conclusion:

The factors of composition of a cyclic group of order n are the
prime factors of n each repeated as often as it occurs in n,

In view of the remark at the end of § 82, it now follows that
any Abelian equation of degree n can be reduced to a chain of Abelian
equations whose degrees are the prime factors of n.

We may now show by induction that every Abelian equation
of prime degree p is solvable by radicals. We suppose solvable
all Abelian equations of prime degrees less than a certain prime p.
Among them are the Ahelian equations of prime degrees to which
can be reduced the Abelian equation of degree p—1, giving an
imaginary pth root of unity (§87). The latter being therefore

known, every Abhelian equation of degree P 18 solvable by radicals

ER AT LR ey b A T o Tl LI LS NS L i ma A ay

(§ 83). Now an Abelian equation of degree 21s solvable by radiecals.
Hence the induction is complete.
It follows now that an Abelian equation of any degree is solvable.

(CAenATTADY Tf ;1 ie a IMmae smmhar all +the th rantc Af 111t
VORUDLLARY. A1 P 1o l_uuux, uuuxuuj.? a1 ©iC PUll TOOW O UNIty

can be found by a finite number of applications of the operation
extraction of a single root of a known gquantity, the index of each
radical being a prime divisor of p~1.

90. Lemma. If p be prime, and if A be a quaniity lying in a
domarn R but not the pth power of a quantity in R, then zp—A 18
wrreducible in R.

For, if reducible in R, so that
P~ A=c (2) P, (%) ...,
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degree 1 he onl divisor of p. In the latter case, the roots would
all lie in R, contrary to assumption. Lect then ¢, be of higher de-
gree than ¢, and sct

g (@)=(x—a) ... (x—7 ), p@)=(x—27)...(@—27),
so that n;—~n,>0. The last coefficients m the products are
o, ..o oy, fall.an = + w2,
respectively, since the roots of 27— A4 ==0 are
(26) X, wr, oW, ..., P,

w being an imaginary pth root of unity. But the last coefficients,
and their quotient Fw°x,™, where mz=n,—n,>0,lilein B. Since
p and m are relatively prime, integers g and v exist for which

mp— pyv=1.
o (wr MY = e P T =t AV = AV

where 2’ 1s one of the roots (26). Hence A,2’, and consequently
x’, lies in R. Then A equals the pth power of a quantity 2’ in R,
contrary to assumption. Hence 27— A must be irreducible.
91. THEOREM. A binomual equaiton of prime degree p,
axP—A=0,

can be solved by means of a chain of Abelian equations of prime degree.

Tet R be the given domain to which A4 belongs. Adjoin w
and denote by R’ the enlarged domain. Then the roots (26)
satisfy the relations

Ly =Wy,  Tg=WI,, vy ApTWIp_y, B =WE,

of the type (21) of § 85, 0(x) being here the rational function wz.
The discussion in § 90 shows that 27 — A4 1s either irreducible in the
enlarged domain R’ or else has all its roots in R’. In the former
case, the group of 27— A=0 for R’ is a regular cyclic group (§ 86);
In the latter case, the group for R’ is the identity. But e itself is
determined by an Abelian equation (§ 87). Hence, in cither case,
2p— A =0 1s made to depend upon a chain of Abelian equations,
whose degrees may be supposed to be prime (§ 89).



CHAPTER IX.

CRITERION FOR ALGEBRAIC SOLVABILITY.

92. We are now in a position to complete the theory of the
algebraic solution of an arbitrarily given equation of degree n,

(1) [(x)=0.

A group property expressing a sufficient condition for the algebraic
solvability of (1) was established in § 84. To show that this
property expresses a necessary condition, we begin with a dis-
cussion of equation (1) under the hypothesis that it is solvable
by radicals, namely (§ 50), that its roots x,, ..., x, can be derived
from the initially given quantities R/, R”,... by addition, sub-
traction, multiplication, division, and extraction of a root of any

index. These indices may evidently be assumed to be prime

numbers. If &, 5,..., ¢ denote all the radicals which enter the
expressions for all the roots =z, a,,..., x,, the solution may be

exhibited by a chain of binomial equations of prime degree:

EA=L(R',R”,..), n*=ME R R",..), ...,

F - LAr R

Jo=P(..,n,§ R,R",..)),
-’E;':Rq;((,b,- - 1 £, R,:R”r'-') (?:=1, '-°;n)r

L,M,..., P, R, being rational functions with integral coeflicients,
in which some of the arguments &, %, ... written may be wanting.
By § 91, each of these binomial equations, and therefore also the
complete chain, can be replaced by a chain of Abelian equations
of prime degrees;

79
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@Yy, v, v, .} =Y, Apeilan 1or adiain iv,
. 4 14
Y(z; y, R,R',...)=0, Abelian for (y, R);
6(w; ...,z y, R’ R” . .)=0, Abelian for (. ey 2, Y, R);
- e a D’ D” \ (7 —1 1)
wi_ uai_\w, I,H, .9)1"" ,‘l.l , Y I} \l/ l,l. l;'b}.

We begin by solving the first Abelian equation @(y)=0 and
adjoining one of its roots, say y, to the original domain R; the
group G of (1) then reduces to a certain subgroup, say H,
including the possibility =G (§ 74). Then we solve the second
Abelian equation ¥(2)=0 and adjoin one of its roots, say 2, to the
enlarged domain (y, E); the group H reduces to a certain sub-
group, say J, including the possibility J=H. Proceeding in this
way, until the last equation #(w)=0 has heen solved and one of
its roots, say w, has been adjoined, we finally reach the domain
(w, ..., 2, ¥y, R), with respect to which the group of (1) is the
identity (,, since all the roots x; lie in that domain.

By every one of these successive adjunctions, either the group
of equation (1) is not reduced at all or clse the group is reduced
to a self-conjugate subgroup of prime index. This thcorem, due to
Galots, is established as a corollary in the next section; its impor-
tance is better appreciated if we remark that each adjoined
quantity is not supposed to be a rational function of the roots, in
contrast with § 75, so that we shall be able to draw an important
conclusion, due to Abel, concerning the nature of the irrationalities
occurring in the expressions for the roots of a solvable equation
(§ 94).

From this theorem of Galois, it follows that the different groups
through which we pass in the process of successive adjunction
of a root of each Abelian equation in the chain to which the given
solvable equation was reduced must form a series of composition
of the group G of the given equation having only prime numbers
as factors of composition. Indeed, the series of groups beginning
with G and ending with the identity G, are such that each is a self-
conjugate subgroup of prime index under the preceding. Hence
the sufficient condition (§ 84) for the algebraie solvability of a
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given equation is also a necessary condition, so that we obtain
Galois’ criterion for algebraic solvability:

In order that an equation be solvable by radicals, it is necessary
and sufficrent that ls group have a series of composition in which
the factors of composition are all prime numbers,

93. Theorem of Jordan,* as amplified and proved by Hélder: 4

For a gwen domain R let the group G, of an equaiion F,(x)=0
be reduced to G, by the adjunction of all the roots of a second equation
F,(x)=0, and let the group G, of the second equation be reduced to
G, by the adjunction of all the roots of the first equation F.(x)=0.
Then G/ and @, are self-conjugate subgroups of G, and @, re-
spectively, and the quotient-groups G,/GQ,/ and G,/G, are simply
1somorphic.

Let ¢,(&,, &,..., £a) be a rational function, with coefficients
in R, of the roots of the first equation which belongs to the sub-
group G of the group G, of the first equation (§ 70). By hypothe-
sis, the adjunction of the roots #;, 7,, ..., 7, of the equation
F,(x)=0 reduces the group G, to G,’. Hence ¢, lies in the enlarged
domain, so that

(27) le.(‘?u Ezr sy En)=¢1(7h; N2y« « 5 Tm)s

the coefficients of the rational function ¢, being in R.

Let ¢y, ¢y .., ¢x denote all the numerically distinet values
which ¢, can take under the substitutions (on &,..., &,) of G,.
Then G, is of index £ under G, (§ 71). Let ¢, ¢y, ..., ¢; denote
all the numerically distinct values which ¢, can take under the
substitutions (on 3, ..., 7,) of G,. The k quantitics ¢ are the
roots of an irreducible equation in R (§ 71); likewise for the [
quantities ¢. Since these two irreducible equations have a com-
mon root ¢, = ¢;, they are identical (§ 55, Cor.II). Hence ¢y, ..., ¢
coincide in some order with ¢,, ..., ¢;; in particular, k=1.

If s; is a substitution of G, which replaces ¢, by its conjugate ¢,
then s; transforms G/, the group of ¢, by definition, into the group
of ¢; of the same order as G,/. But ¢,, being equal to a ¢, lies in

* Traité des substitutions, pp. 269, 270. t Math. Annalern, vol. 34,
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i e D/ and hence is unaltered bv the
the domain R *—\u Ty » .+ -5 Gm), ald Derce is unal tered by the

substitutions of the group G’ of the equation F,(a)=0 for that
domain R’ (§ 61, property B). Hence the group of ¢, contains
all the substitutions of G/; being of the same order, the group
of ¢; is identical with G/. Hence G, 1s self-conjugate under G,.
The group of the irreducible cquation satisfied by ¢, is therefore
the quotient-group G./G, (§ 79).

Let H, be the subgroup of G, to which belongs ¢, (%, 7, - - ., Tm).
Since ¢, is a root of an irreducible equation in R of degree I=k,
the group H, is of index &k under G, (§ 71). By the adjunction of
¢, (or, what amounts to the same thing in view of (27), by the
adjunction of ¢,), the group @G, of equation F,(x) =0 for R is reduced
to H, (§ 75). If not merely ¢,(&, ..., &), but all the &’s them-
selves be adjoined, the group @, reduces perhaps further to a
subgroup of H,. Hence @, is contained in H,. We thus have
the preliminary result: If the group of F,(x)=0 reduces to a
subgroup of index %k on adjoining all the roots of F,(x)=0, then
the group of I,(x)=0 reduces to a subgroup of index k,, k, Ik,
on adjoining all the roots of I,(x)=0.

Interchanging I, and F, in the preceding statement we obtain
the result: If the group of I,(2)=0 reduces to a subgroup of
index k, on adjoining all the roots of F,(x)=0, then the group of
Fi(x)=0 reduces to a subgroup of index k,, k,3 k,, on adjoining
all the roots of I,(x)=0. Since the hypothesis for the second
statement Is 1dentlcal with the conclusion for the first statement,
it follows that

k2=k: k1§k; kz§k1:

so that k,=k. Hence the group G, of the theorem is identical
with the group H, of all the substitutions in @, which leave ¢,
unaltered. It follows that G,” is self-conjugate under G, (for the
same reason that G/ is sclf-conjugate under G,). The irreducible
cquation in R satisfied by ¢, has for its group the quotient-group
G,/ G, .

But the two irreducible equations for R satisfied by ¢, and ¢,
respectively, were shown to be identical. Hence the groups
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G/G,/ and G,/G, differ only in the notations employed for the
letters on which they operate, and hence are simply isomorphic,
CoroLLARY. For the particular case in which the second equa-

+1hﬂ 1r.1 an Ahphnﬂ prﬂlnﬁﬁﬂ nF nrlmﬁ deorce . all Af e rantce arn
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rational functions in R of any onc root, so that by adjoining one
we adjoin all its roots. By the adjunction of any one root of an
Abelian equation of prime degree p, the group of the given equation
F(x)=0 either 1s not reduced at all or else is reduced to a self-
conjugate subgroup of index p.

894. If @, is simple and if the adjunction causes a reduction,
then G, is reduced to the identity. Hence the group G,/ =H,, to
which belongs ¢,, is the identity. Hence the roots 5, 7, - .., 7m
of F,(x)=0 are rational functions in R of ¢, (§ 72) and therefore,
i view of (27), of the roots &, ..., &, of F (x)=0.

If the group of an equation I',(2)=0 for a domain R vs reduced
by the adjunction of all the roots of an equation F,(x)=0 whose group
for R 1s simple, then all the roots of I'y(x)=0 are rational functions
in R of the roots of F,(x)=0.

Since the group of a solvable equation f(x)=0 has a series of
composition in which the factors of composition are all prime num-
bers, the equation can he replaced by a chain of resolvent equations
each an Abelian equation of prime degree (end of § 82, §85).
The adjunction of a root of each resolvent reduces the group of the
equation and the group of the resolvent is simple, being cyclic of
prime order. Hence the roots of cach Abelian resolvent equation
are all rational functions of the roots of f(x)=0. But the radicals
entering the solution of an Abelian cquation of prime degree are
rationally cxpressible in terms of its roots and an imaginary pth
root of unity (§ 83),

VO, =2, +wx,+ 0T+ ... FWP T,y . ..

and hence are rationally expressible in terms of the roots of f(x)=0
and pth roots of unity. We therefore state Abel’s Theorem:

The solution of an algebraically solvable equation can always
be performed by a charn of binomial equations of prime degrees whose
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roots are rationally expressible in terms of the roots of the given equaiion
and of certain roots of unity.

The roots of an algebraically solvable equation can therefore
be given a form such that all the radicals entering them are
rationally expressible in terms of the roots of the equation and of
certain roots of unity. This result was first shown empirically by
Lagrange for the general quadratic, cubic, and quartic equations
(see Chapter I).

The Theorem of Abel supplies the step needed to complete the
proof of the impossibility of the algebraic solution of the general
equation of degree n>4 (§ 48).

95. By way of illustrating Galois’ theory, we proceed to give
algebraic solutions of the general equations of the third and fourth
degrees by chains of Abelian equations.

For the cubic 23— ca® +c¢,x—c,=0, let the domain of rationality
be R=(c,, ¢, ¢;). The group of the cubic for R is the symmetric
group G, (§ 64). To the subgroup G, belongs

A = (2= 2,) (2, = ) (2 — 2,).

Tﬂ 'v‘:f\“v h‘p T:‘U Q PO M A /{ a a Tt h‘p + FARF.Wa'R b Kb +:hﬂ
411 1T Ul LA !), J: aéc _-[, PO PR VRN B W LN VR W 5 By V) N B o Cl{ualblull
(28) At=cc,? + 18¢,c,05~4¢,% —4e3c, — 27 ¢,

Its second root —4 is rationally expressible in terms of the first
root 4, and (28) is irreducible since 4 is not in R for general ¢, ¢,, ¢,.
Hence (28) is Abelian (§ 85). By adjoining 4 to R, the group
reduces to G, (§ 75). Solve the Abelian equation w?+w+1=0
(§ 87) and adjoin w to the domain (4, R). To the enlarged domain
R’ =(w, 4, ¢, ¢, ¢;) belong the coefficients of the function

=2, +wr,+ 0,
By § 34, ¢,2 has a value lying in R/, namely,
d3=H2¢,3— 9¢,6,+ 27¢, — 3(w — wH) A].

This binomial is an Abelian equation for the domain R’ (§ 91).
By the adjunction of ¢,, the group of the cubic reduces to the
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identity. Hence #,, ,, ¥, lie in the domain (¢, v, 4, ¢, &, ¢).

Thus, by § 34,
(Cz‘l“:bz ) x2=1}(cl—l—w2¢1—l—w —
/ \ Y1 /

We may, however, solve the cubic without adjoining w. In
the domain (4, ¢, ¢, ¢;), the cubic itself is an Abelian equation,
since its group G, is cyclic (§ 85). By the adjunction of a root z,
of this Abelian equation, the group reduces to the identity, so that
z, and z; must lie in the domain (z,, 4, ¢, ¢, ¢). The explicit
expressions for x, and z, are given by Serret, Algébre supérieure,
vol. 2, No. 511:

3Cz (c ”—302))_

“5121 {(6c,—2¢, )2 *+ (93 —Tecp+2¢,° — A, +4cyr — ¢ Pc,— 3c,c,+ ¢, 4},

the value of z, being obtained by changing the sign of 4 throughout.
96. For the general quartic 2*+ax®+bx?+cx+d=0, the group
for the domain R=(a, b, ¢, d) is G,,. To the subgroup G,, belongs
4= (2, %) (xf" xs)(% o 334) (x:a o x3)(:1:2—— x;) (23— x4) .
Since 4% is an integral function of a, b, ¢, d with rational coefficients
(§ 42), we obtain 4 by solving an equation which is Abelian for R,
After the adjunction of 4, the group is G,. To the subgroup G,

of G, belongs the function y,=x,x,+a,x,. It satisfies the cubic
resolvent equation (§ 4)

(16) 3 —by?+(ac—4d)y—atd +-4bd —c*=0.

The group of this resolvent for the domain (4, a, b, ¢, d) is a cyclic
group of order 3 (§ 79, Cor.), so that the resolvent is Abelian., By
the adjunction of y,, the group of the quartic reduces to G,. To
the subgroup @, of G, belongs the function t=x +2,—2,—x,. It
is determined by the Abelian equation (§ 5)

(29) t*=a?*—4b+4y,.

By the adjunction of ¢, the group reduces to G,. To the identity
subgroup G, of G, belongs z,; it is a root of (17), § 4:

24§ (a— x4y, — (3ay,—c)/t=0.



86 CRITERION FOR ALGEBRAIC SOLVABILITY. [Crm IX

r] h +': b e} h‘p s} 'rlh(\“' s . h'p L‘I o AL\‘-\] T Fava ki n"- L Vet 2Y -‘-LA
L] Ul a 10UV &) Ul ULuo LapJCLIalL Lquauuu, LIlg

group Is t he identity ;.  Hence (§ 72) all the roots lie in the domain
(x, ¢, 4, 4,a,b,c,d). Thisis evident for z,, since x, + z,= —4(a—1).
For z, and z,, we have

Tyt 2, =0+ 2,— 8, T3~ 2= Y~ Yy) +(2,~7,),

while y, and y, are rationally expressible in terms of y,, 4, and
the cocfficients of (16), as shown at the end of §95. In fact,
(y1"'y2)(y2"'y3)(y1‘—y3) has the value 4 by § 7.

97. Another method of solving the general quartic was given
in § 42, Tor the domain R=(w, a, b, ¢, d), where w is an imaginary
cube root of unity, the group is G,, (§ 64). After the adjunction
of 4, the group is ,,. To the self-conjugate subgroup G, belongs
b, =Y, +wy, +w'y,, where y,=z,x, + x,x,, etc., so that ¢, is a rational
function of z,, z,, z,, z,, with cocfficients in R. By § 42,

b= Hw—w)d—216J,

so that ¢, 1s determined by an equation which 1s Abelian for the
domain (4, w, a, b, ¢, d). Then, by § 42, y,, ¥,, ¥; bclong to the
enlarged domam (¢,, 4, w, a, b, ¢, d).

By the adjunction of ¢, a root of the binomial Abelian equa-
tion (29), the group reduces to G,. By the adjunction* of hoth
t=V'—1 and V=zx,~z,+ix,~ix,, which is a root of a hinomial
quadratic cquation (§42), the group reduces to the identity G,.
The expressions for xz,, «,, %, x, In terms of ¢, V, 3, and a, are
given by formula (41), in connection with (40), of § 37.

* Without adjoining ¢ and V, we may determine t,=z, 41, —x,—2, from
t,’=a®—4b+44y,. Then {,=x,4x,—x,~x,; is known, since i,i,t,=4ab—8c—a®
by formula (39) of § 36, where ¢, ={. Then

r=3(—a+ti+h+t), =1 —a+t,—t;—13),ete
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98, Analytic representation of substitutions. Given any sub-
stitution
(T X T . Ty
$ Tg Xp Xe ... 2 J°

so that a,b, ..., k form a permutation of 0,1,...,n~1,it is pos-
sible to construct a function ¢(2z) of one variable z such that

H(0)=a, H(1)=b, $(2)=¢, ..., ¢n—1)=k.

Indeed, such a function is given by Lagrange’s Interpolation-
Formulia,
al’ (z) bF(z) kF(z)
PO =y TR T T e D=1

2
iy
D
-
P
hxy
N
2
-

il

zr\z l)('y._‘)\ (a-...’n_ll_ ) and p’(o‘\ 1 'I"nx:. r'lnrnra_
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1
j A
tive Of F(z) Then the substitution s is represented analytically
as follows:

We confine our attention to the case in which n is a prime num-
ber p, and agree to take &,=,4p=%z49p= .... Then (asin § 86)
the circular substitution ¢=(z, 2, %,...p_,) May be represented
in the form

Let G be the largest group of substitutions on zy, 2,,..., Zp—y
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under which the evelic oroun H= {7t 12 =1 g qalf-coninoate
uncer wilc CyCHC grolp (49t eydt Ty 1o SEU-COIURAK
The general substitutions ¢ of G and 2 of H may be written

By hypothesis, g~ g belongs to H and hence is of the form #°.

~1 (T4 —1pe (:c¢(,)) —1y =($¢(z> )
g (xz )’ g zop)? I Tglz+1)

But * replaces T4y by Tg)+a- Hence must
Loz +0= To(z)-+a-

Taking in turn 2=0, 1, 2, .. ., and writing ¢(0)=b, we get

L) = To+ar T2 = Tp()+a = To+2ar L)) = Lg2)4+a=Tbizar » « o

By simple induction, we get 4z =2p4za fOr any integer z. Hence

(30) 9=(% )-

Taz+b
Here a and b=¢(0) are integers. Also a is not divisible by p, since
g~ g is not the identity, The distinct substitutions * ¢ are obtained
by taking the values

a=1,2,...,p—1; b=0,1,2,...,p—1.

The resulting p(p—1) substitutions form a group called the meta-
cyclic group of degree p. This follows from its origin or from

(o) G ) = Crnrne ) = G )
Taz+b/ \Laz+ 8 Talaz+t+8/) \Teaz+@d+p) /)’

REMARK. The only circular substitutions of period p in the
metacyclic group are the powers of t. For a=1, (30) becomes #;
for a1, (30) leaves one root unaltered, namely, that one whose
index z makes az+b and z differ by a multiple of p.

™ an - A
1L ULl dgy gy ¢ » sy K1y

-

(x .
Tb xa+b xza+b
since b, a+b, 2a+b,..., (p—1)a+Dd give the remainders 0,12 ..,p—1,
in some order, when divided by p. 1In proof, the remainders are all different.
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for a domain F is the metacyclic group of degree p. It is irre-
ducible sinee G is transitive, its cyclic subgroup /1 being transitive.
Again, all its roots are rational functions of two of the roots with
coefficients in E. For, by the adjunction of two roots, say zu
and z,, the group reduces to the identity. Indeed, if ¢ leaves
zy and z, unaltered, then

(aut+b)—u, (av+b)—v

are multiples of p, so that their difference (a—1)(u—v) is a multi-
ple of p, whence a=1, and therefore b=0. Hence the identity
alone leaves zu and x, unaltered.

DeriniTioN, Fora domamm R, an irreducible equation of prime
degree whose roots are all rational functions of two of the roots is
called a Galoisian equation,

Hence a metacyclic equation is a Galoisian equaiion.

100. Given, inversely, a Galoisian equation of prime degree p,
we can readily determine its group @ for a domain E. The equa-
tion being irreducible, its group is transitive, so that the order
of (0 is divisible by » (§ 67). Henee @ contains a evelie suberoun

AR Wl YV IPLPIY IJJ’ P \\8 i !- ALI0 LI U LAl L Uil b‘y Ll Dul)%lk}ul}

H of order p (see foot-note to § 27). Let x, and z, denote the two
roots in terms of which all the roots are supposed to be rationally
expressible. Among the powers of any circular substitution of
period P, there is one which I‘C'pla,ttb Ly Uy Lys l_LCilbL, uy suitable
choice of notation for the remaming roots, we may assume that

H contains the substitution
E=(Ly 2, Xy o o o Xpy)-
To show that H is self-conjugate under G, it suffices to prove
that any circular substitution, contained in @,
= (x; 1; @

L )

f.'l.'lf==i'ﬂ:‘i: s
0 1 "2 D1

is a power of ¢; for, the transform of ¢ by any substitution of G will
then belong to H (§ 40). Since every two adjacent letters in r
are different, ¢,,,—1, is never a multiple of p and hence, for at
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least two values g and v of 2 chosen from the series 0,1,.. ., p—1

3= - 7

gives the same remainder when divided by p. Henee

J

— -y

cit A st e e emTET e
OINCE T IS 4 pouwer o

c—f-

C stitution replacing z, by x,, we
may assume that ¢,=0, t,=1. The hypothesis then gives

xiazaﬂ(xio,v xil) (CI?'—O, I..., phl),

where #, is a rational function with coefficients in E. Applying

to these rational relations the substitutions 4 % and r*t~ % of the
group G, we obtain, by § 62,

xia_‘_#—-i#: 0 a(xo,- xk); xia_‘_y—“?:y = 00(:50: xk)'
Hence the subseripts in the left members are equal, so that
7:0-6-#"7;04-”:1:#”2:”:6 (e=0,1,..., p—1),

omitting multiples of p. Hence every subseript in r excceds by ¢
the (u—v)th subscript preceding it.  Hence r is a power of ¢.
Since (7 has a self-conjugate cyclic subgroup H, it is contained

in +tha me tarvelie oronn of (]nn-'r-nn m (& ORY
Lriy.. 11l \JU(.U\JJ A" R W bL\_JuF AL ubblb P \a‘ UU/

The group of a Galoisian equation of prime degree p is a subgroup
of the metacyclic group of degree p.
101. A metacyclic equation 1s readily solved by means of a
D

£ dvirn Al oalioc s mmi11e 43w o TQJ- ,’.;z fM o~ ~ AN P S,
J1L LYY AUCU(LU (_,qud;{,l\_}llb 1.0 SU'—' .l].x\.{/o .bl’ s vy .bp__lj l)Ul(Jllg

-

au(‘

o the subgroup H of ¢. Then

¢1=¢; Sl’z:R(xm Ty Tyy veey Typ_s) oy oy = BTy Tp gy Top oy sy Tip_py?)

¢ undc ; O ¢z by
the substitution which replaces x, by xp,. It f llows that the
p—1 values of ¢ arc permuted cyclically under the p(p—1) sub-

stitutions of G. The group of the resolvent equation

(w—=¢)(w—=¢s) ... (w—¢p_)=0

is therefore a cyclic group of order p—1, so that the resolvent
is an Abelian equation (§ 85). By the adjunction of ¢, the group

1 nee m+
inie
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of the original equation reduces to the eyclic group H, so that it
is Abelian in the enlarged domain.

The method applies also to any Galolsian equation, Its group
(G 1s a subgroup of the metacyclic group and yet contains H as a
subgroup. The order of (7 is thercfore pd, wherc d is a divisor
of p—1. The two auxiliary Abelian equations are then of degrees
d and p respectively. Applying § 89, we have the results:

A Galosian equation ean be solved by a chain of Abclian equations
of prime degree and hence is solvable by radicals.

ExamprLe 1. Let A be a quantity lying in a given domain R but not
the pth power of a quantity \n £, Then the equation

p—A =0
1s irreducible in R (§ 90). Its roots are
Loy Ti=0T,, Ty=w'Z,

— 1
Ip__l == P~ xo.

*

All the roots are rationally expressible in terms of x, and z;:

Ti= (-’1_‘})1'% (v=0,1,..., p—1).
Xy

The equation is therefore a Galoisian equation. For the function ¢ belonging
to the cyclic subgroup H we may take

S Yo

T, x, T Tpoy
The resolvent equation «P~'4 ... +w+1=0 1is indecd Abelian (§ 87).
After the adjunction of w, 22— A =0 becomes an Abelian equation (§ 91).

ExamrLE 2. To solve the quintic equation *

:ﬁ')e

~~

a
L

S

"!!5._1.-’1’1?13-.1.-41-’?’)2?1 Lo =0
4 [ offv ) [ -3 i )

get y=z— 5% Then (compare the solution of the cubie, § 2)
5
25— E—g;s 4r=0,

e _r f_) y
s 2'= 2 +‘\/@_} Q - 4 + 5 .
If ¢ is an imaginary fifth root of unity, the roots of (e) are

Yyi=A+B, y=ed+e'B, y;=e?d 4B, y,;=A 4B, y=e'Ad 6B,
where

A=d—;+¢@ B=ja;—va

* Compare Dickson's College Algebra, pages 189 and 193,
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as linear func
Ys, Ya, Y5 are rational funetions of ¥, and g, with coefficients in the domain
R —(¢ p, ). Ior general p and r, equation (e) is irreducible in R, since no
one of its roots lies in R and sinee it has no quadratic factor in £ (as may be
shown from the form of the roots). Hence (€) is a Galoislan equation,

l-:nna Af ar and ar nnhng
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102. Tumna. If L s a self-conjugate subgroup of K of prime
index v and 1f k 1s any substitution of K not contained in L, then k¥,
and no lower power of k, belongs to L, and the period of k is divisible
by v.

By the Corollary of § 79, the quotient-group K/L is a cyelic
group

(0 or s 71

Hence to k& corresponds a power of y, say y<, where « is not divisible
by v. Then to k” corresponds (7%)»=1, so that £ belongs to L.
If 0<m< v, k™ does not belong to L, since (7)™ =1 requires that
xm be divisible by the prime number v.

Let the perlod u of k be written in the form

U=qu+7 (02 T< ).

Since k*=~h, a substitution of L, we get I=F~k*=h%". Hence
k"=h"9, so that t=0, mm view of the earlier result concerning
powers of k. Hence x 1s divisible by v.

103. Turorem(Galois). Every irreductble equation of prime degree
p which s solvable by radicals is a Galoisian equation,

Let G be the group of the equation for a domain R and let

(31) GH,..., ,K,L...,G,

he a series of composition of G.  Since the equation is solvable by
radicals, the factors of composition are all prime numbers (§ 92).
Since the equation 1s irreducible in R, G is transitive (§ 68), so that
its order is divisible by p (§ 67). Hence (foot-note to § 27), @
contains a circular substitution of period p, say t=(z, z, . .. z,_,).
Let K denote the last group in the series (31) which contains .
Then the group L, immediately following K, and of prime index v
under K, does not contain . Since £ =TI bhelongs to L, while no
lower power of ¢ belongs to L, it follows from § 102 that v=p.
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To show that L is the identity G, suppose that L contains a
substitution s replacing z. by a different letter x5 Then w=ste~8
leaves x. unaltered and belongs to K. Since a—§ is not divisible
by p and since ¢ does not belong to L, it follows that u does not
belong to L. By the Lemma of § 102, the period of u is divisible
by v=p. This is impossible since u is a substitution on p letters,
one of wlich remains unaltered.

Since L=, and the index of L under K is p, the group K is
the cyclic group of order p formed by the powers of t. Smce the
group J immediately preceding K in the series (31) contains the
cyclic group K as a sclf-conjugate subgroup, J 1s contained in
the mctacyclic group of degree p (§ 98). By the remark at the
end of § 98, J contains no circular substitutions of period p other
than the powers of £, If J’ be the group immediately preceding
J in the series (31), so that J is self-conjugate under J’, the trans-
form of ¢ by any substitution of J’ belongs to J and is a circular
substitution of period p, and therefore is a power of £. Hence the
eyclic group K 1s self-conjugate under J’, as well as under J.
Hence J’ is contained in the metacyclic group (§ 98). Proceeding
In this way until we reach the group @, we find that G is contained
n the metacyclic group. The theorem therefore follows from § 101.



CHAPTER XI.
AN ACCOUNT OF MORE TECHNICAL RESULTS,

104. Second definition of the group I" of §77. To show that
I' is completely defined by the given groups G and H and is entirely
independent of the function ¢ used in defining 1t, we define a group
I'; independently of functions bhelonging to H and prove that
r=r.

Consider a rectangular array of the substitutions of ¢ with
those of the subgroup H in the first row:

rilg, =1 hy ... M
(32) 21 4 Rolly + v« Puga
Tp gy h2gp [ htgy

where r; denotes the jth row of the array. Let g be any substitu-
tion of G. Since g,9, ..., ¢.g lie in the array (32), we may write

(33) g 9=hw9as, G9=hggs, ..., G.9=hog.

Hence the products of the substitutions in the array (32) by ¢
on the right-hand may be written (retaining the same order):

Ta

(34) '

Now b, hhd, ..

hafga (hgh a’)ga (hih a')gd
hggs (hhglgs (hehg)g s
heGe  (hohu)ge s (hihw)ge

, hha form a permutation of A=1I, h,, ..

e

Hence the substitutions in the first row of (34) arc identical, apart

from their order, with those of the ath row of (32).

Similarly
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for the other rows. Hence the multiplication of (32) on the right
by ¢ gives risc to the following permutation of the rows:

Ty Ty e T
\Talg. v T/’

To identify the group I'; of these substitutions y with the group
I' given by the earlier definition, we note that to g corresponds,
under the earlier definition,

(o e )= G 00

since, by (33), ¢4 0=¢h yg,=Po, ctc. But this substitution differs
from y only in notation. Hence I',=1T".

2":

ExampLe 1. Let G be the cyclic group {I, ¢, ¢, ¢2, ¢4, ¢3}, where ¢®=1,
and let I be the subgroup {I, ¢*}. The array is

|1 ¢
r, e ¢t
T, | ¢* ¢f

To ¢ corresponds (r,7,7). Hence I' = {I, (rr,ry), () 1.

ExampLe 2. Let G be the alternating group G2 and let H be the com-
mutative subgroup G, (§ 21, Ex. /). The rectangular array for G is given
in § 77, Ex. 2. Multiplying its substitutions on the right by (xr,)(x57),
we obtain the array

(zx) (x50, 1, (331334) (2,25 ’ (zzy) (220
(x,2,%,), (x,2,%,), (2252,), (252,)
(x2,25), (x,25%,), (2,,23), (xx1y)

Hence each row as a whole remains unaltered, so that to (x,)(x;2,) corre-
sponds the identity. A like result follows for (z,z;)(x,r,) and for the product
(xe)(xxy) of the two. But (rxgr,) applied as a right-hand multiplier
gives rise to the permutation (rr,r;) of the rows, as follows immediately from

the formation of the rectangular array by means of the right-hand multipliers

(r.2.x) and {r.pry Hencee P_ST ('r*r'*r'\ ('r'r/r\l
Lebgirgirg) vl A S i bl W AR A A AL F)y NLPATES Y

105. Constancy of the factors of composition. By the criterion
of § 92, an equation 1s solvable by radicals if, and only if, the
group G of the equation has a series of composition in which the
factors of composition are all prime numbers. In applying the
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, 1t might 1
positions of @ to decide whether or not there is onc series with
the factors of composition all prime, The practical value of the
criterion is greatly enhanced by the theorem of C. Jordan:*

If a group has two different scries of composition, the factors of
composition for one series are the same, apart from their order, as
the factors of composition for the other series.

Examrre 1. Let Gy, G, H,be defined asin § 21; G,, G;, G as in Example
3 of § 65; and let
Co={I, (zer,ry), (xpr)(xxy), (raay)), Hy={I, (2}, Hy=1{], (z32,) ).
Then G, has the following series of compositions:

Gy Gy, Gy, Gy Gy Gy 0o, Gy Gy Gy, G, G
Gy, C, Gy, Gy Gg, Hy Gy, Gy Gy Hyy Hy,y Gy Gy, Hyy H G,
In each case the factors of composition are 2, 2, 2.

ExamprLe 2. Let Cy; be the cyclic group formed by the powers of the
circular substitution ¢ =(rx,2,...2y). Its subgroups are

1. "o rtm 1Imxra
1Jo U

FaVatalanl il oy ': n+1ﬁ‘n+.ﬂ [n]
1o ronal .y LJolll VCDUI&GUL (¢ D

W

uJ-r\mnv\ T4
viiycriinai, Iu

Ce= 11, ‘12: a",a“, a?, am}’ C4={I: a’, ‘IG: a®},

Cy= {1, a*, a’}, C;=41,a%, C,={I}.
The only series of composition of C, are the following: }
Cu, Co Cy, €15 Cu, Gy, €, €y Cpp,y €y Gy, C
The factors of composition are respectively 2, 2, 3; 2, 3, 2; 3, 2, 2.
106. Constancy of the factor-groups. In a series of composi-
tion of G,
G, ¢, G,..., G,

each group is a maximal self-conjugate subgroup of the preceding

group (§ 43). The succession of quotient-groups
I

G/G}, GI/GH, GH/G!H’ .

forms a series of factor-groups of G. Each factor-group is simple
(§ 80). The theorem of Jordan on the constancy of the numerical

* Traité des substitutions, pp. 4248, For a shorter proof, sec Netto-Cole,
Theory of Substitutions, pp. 97-100,
T Every subgroup is self-conjugate since a—ia/al—af (§13).
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factors of composition is included in the following theorem of
Holder: *

For two series of composition of a group, the factor-groups of one
sertes are vdentical, apart from their order, with the factor-groups of
the other series.

Thus, in Example 1 of § 105, the factor-groups are all cyclic groups of
order 2. In Example 2, the factor-groups for the respective series are

Kz: Kz: Ka; Kz; Ks: Kz; Ka: Kz; K:;

where K, and K, are cyclic groups of orders 2 and 3 respectively, That
Cs/C, is the cyclic group K; follows from § 104, Ex. 1, by setting a®=c,
That C,/C, is K, follows readily from § 104,

107. Holder’s investigation T on the reduction of an arbitrary
equation to a chain of auxiliary equations is one of the most im-
portant of the recent contributions to Galois’ theory. The earlier
restriction to algebraically solvable equations is now removed.
As shown in § 82, the solution of a given equation can be reduced
to the solution of a chain of simple regular equations by emploving

nf tho rantc ~f +}‘|e g. nn MThao oralinho

ions of the roots of th ion. The groups
of the auxiliary equations are the simple factor-groups G of the
given equation. Can any one of these simple groups be avoided
by employing accessory wrrationalities, namely, quantities not
rational functions of the roots of the given equation? That this
question is to be answercd in the negative is shown by Holder’s
result that the factor-groups of ¢ must occur among the groups
of the auxiliary simple equations however the latter be chosen.
Any auxiliary compound may first be replaced by a chain of
equivalent simiple equations. The number of factor-groups of @
therefore gives the minimum number of necessary auxiliary simple
equations. If this niinimum number is not exceeded, then Holder’s
theorem states that all the roots of all the auxihiary equations are

* Holder, Matk. Ann,, vol. 34, p. 37; Burnside, The Theory of Groups,
p. 118; Pierpont, Galois’ Theory of Algebraic Equations, Annals of Math.,
1900, p. 51,

t Mathematische Annalen, vol, 34, p. 26; Pierpont, l. ¢., p. 52,
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Holder’s proof of these results, depending of course upon the
constancy of the factor-groups of G, is based upon the fundamental
theorem of § 93.

The special importance thus attached to simple groups has
led to numerous investigations of them. Several infinite systems
of simple groups have becn found and a table of the known simple
groups of composite orders less than one million has been prepared.*

For full references and for further developments of Galois’
theory, the reader may consult Encyklopadie der Mathematischen
Wissenschaften, 1, pp. 480-520.

* Dickson, Linear Groups, pp. 307-310, Leipzig, 1901.



APPENDIX.

RELATIONS BETWEEN THE ROOTS AND COEFFICIENTS OF AN
EQUATION.

Let «,, x,, ..., x, denote the roots of an equation f(z)=0 in
which the coefficient of x» has been made unity by division. Then

f(@)=(x—a)(x—2,) ... (x~x),

as shown in elementary algebra by means of the factor theorem.
Writing f(z) in full, and expanding the second member, we get

ar—cx? el — L (= Drep=anr— (2 24 . Fxp)an?
+ (2@, 4 XX+ X+ s Ty )X TR
— e H(=Drx, . .. 2.

Equating coefficients of like powers of x, we get

(v) i+t oo FTn=c, T2+ o F X X =Chyanny ... Xn=Cp.

These combinations of «,,...,z, are called the elementary sym-
metric functions of the roots. Compare Exs. 5 and 6 of page 4.

FUNDAMENTAL THEOREM ON SYMMETRIC FUNCTIONS,*

Any wntegral symmetric function of x,,z,, ..., &, can be expressed
in one and only one way as an integral funclion of the elementary
symmetric functions ¢,, Coy + . ., Cy.

A term x,™ux,mx,ma. .. 1s called higher than amxmams. .,
if the first one of the differences m,—n,, m,—n,, my—n,, ..., which

* The proof is that by Gauss, Gesammelte Werke, 111, pp. 37, 38.
99
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does not vanish, is positize. Then ¢, ¢,, ¢,, ..., ¢; have for their
e Wiy Am pekil 17 Y2y V3 g’ * i
highest terms a,, 22, 2®%;, ..., @, ...2%; respeetively. In

general, the function ¢,%c,fe,” . .. has for its highest term

mla +B+‘Y+-.n mgﬁ+7+-.. xa?’"{-. e

Hence it has the same highest term as ¢,”¢,f'¢,Y. .. i, and only if,
at+fB8+r+ .o =d++7+ . L 8 =+
r+...=rY+...,

which require that a=da’, =0, r=¢,...
Let S be a given symmetric function. Let its highest term be

h=azxtaxfayal...x ... (a3BSrsd...5V).

We build the symmetric function

o=ac Pl Ver 0 L et
In its expansion in terms of x,,..., 2, by means of formule (7),
its terms are all of the same degree and the highest term is evi-

dently A. The difference
S, =8—o0

is a symmetric function simpler than S, since the highest term A
has been cancelled. Let the highest term of S, be
h=axz4xfhxzhal ...
A symmetric function with a still lower highest term is given by
S,=8,—a, ¢ Fichirmeh ...

Since the degrees of S, and §, are not greater than the degree of S,
and since there is only a finite number of terms ™z, max,ms. ..
of a given degree which are lower than the term h, we must ulti-
mately obtain, by a repetition of the process, the symmetric
function 0:

O0=8p—ar ;% Brcr e cge %% o u

We therefore reach the desired result

S=a,c*fcf ... ¥+, P o oL o b ape a Bk L.
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To show that the expression of a symmetric function S in terms
of ¢,..., ¢, is unique, suppose that S can be reduced to hoth
b(ey, €y o .oy Ca) and P(ey, €, oo\, ¢,), where ¢ and ¢ are different
integral functions of ¢;,..., ¢, Then ¢—¢, considered as a func-
tion of ¢,,..., ¢n, 1s not identically zero. After collecting like
terms in ¢—¢, let bele,fey ... be a term with 0. When ex-
pressed in 2y, ..., Zn, it has for its highest term

b m1ﬂ+ﬁ+7+uo x,p TYToen anJr--u .

As shown above, a different term ¥e,*c,fc,Y’ ... has a different
highest term. Hence of these highest terms one must be higher
than the others. Since the coefficient of this term is not zero,
the function ¢—¢ cannot be identically zero in z,,..., x,. This
contradicts the assumption that S=¢, S=¢, for all values of
Lyys ooy Tn

COROLLARY. Any wnlegral symmetric function of x,, ..., x, with
tntegral coefficients can be expressed as an integral function of ¢, . .., Ca
with integral coefficients.

Examples showing the practical value of the process for the
computation of symmetric functions are given in Serret, Algébre
supérieure, fourth or fifth edition, vol. 1, pp. 389-395.

ON THE GENERAL EQUATION.

Let the coefficients ¢, c,, . .., ¢, be indeterminate quantities,
The roots x, x,,..., 2, are functions of ¢, ..., ¢,; the notation
Zy, ..., X, is definite for each set of values of ¢;,.. ., cp. We
proceed to prove the theorem:*

If a rational, wntegral function of x,,...,x, with constant
coeffictents equals zero, it 1s identically zero.

Let J[x,, ..., x,]=0. Let &,..., & denote indeterminates
and oy, . .., o, thelr elementary symmetric functions & +. ..+ &y,
vy 608,...6, Then

* This proof by Moore is more explicit than that by Weber, Algebra, 11
(1900), § 566.




102 APPENDIX,

the product extending over the n! permutations s, ..., s, of
1,...,n, and ¥ denoting a rational, integral function. Hence
TT Il As

) fa sl 1_ r1 i .'_
LIP[Zg 5 + o vy Ly |= T'[C15 0 v+, Cp]=Y,

since one factor J[x,,...,2,] is zero. Since ¢, ..., c, are
indeterminates, Y[e,, ..., ¢,] must be identically zero, i.e.,
formally in ¢, ..., ¢, Consider ¢, ..., ¢, to be functions of
new indetermmates ¥, ..., ¥». Lhen

YTe, Y v o vs Yndy o ooy En(Ypy oo+, Y)]=0

formally in %, ..., y». Hence, by a change of notation,
'p[al(Ev cos En)y i, 0p(Ey, .-l ER)]=0
formally in &, ..., &. Hence, for some factor,

¢[531: 2 eay gsn]EO

formally in &, ..., £n.  As a mere change of notation,
(‘!’[51, ew oy gn]":_O.

As an application, we may make a determination of the group
of the general equation more in the spirit of the theory of Galos
than that of § 64. If, in the domain R=(c,, ..., ¢,), a rational
function ¢z, ..., x,) with coefficients in E has a value lying
in R, there results a relation

¢[$€1, Y xn]zo!

upon replacing c,,. .., ¢, by the elementary symmetric functions
of &, ..., Tr. By the theorem above, J[%, ..., %, ]=0, so that

(}5(3331, vy, xsn)=¢($1; ‘s vy -'En).
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Conjugate, 23 32, 33

Cube root of unity, 2

Cubie, 1, 27, 84

Cycle, 13

Cyclic group, 16, 68, 70, 74
Cyclotomie, 75

Degree of group, 15
Discriminant, 4, 9
Distinet, 45
Domain, 43

quwl 45
Even substitution, 17, 37

Factor-group, 96

Factors of composition, 37, 40, 70,

77, 93, 96

Galois’ resolvent, 49, 51
Galoisian equation, 89, 92

General equation, 30, 40, 55, 101

Group, 15
— of equation, 52, 69, 102

Holoedrie, 66

Identical substitution, 10
Index, 21

Intransitive, 58

Invariant, 32

Inverse Suumuuuon 12
Irrationality, 1, 4, 8, 84, 97
Irreducible, 46, 59, 61, 76, 92
Isornorphlsm 64, 94

Jordan’s Theorem, 8]
Lagrange’s Theorem, 24, 61

Mdmmil 36, 69
Mcrlcdrlc, G6
Metacyclic, 88, 89

Multiplier, 22

Odd substitution, 17
Order of group, 15, 20, 58

Period, 12, 21
Primitive, root, 75
Product, 11
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Quartic, 6, 28, 35, 85 Simple group, 37, 39, 69, 98
Quintie, 91 Solution by radicals, 40, 64, 70, 77,
Quotient-group, 68 81, 91, 92

Subgroup, 17, 22 (note)
Rationality, 43 Substitution, 10, 87
Rational function, 45 Symmetric function, 23, 99
— relation, 53 — group, 15, 37, 40, 55
Rectangular array, 22
Reducible, 46, 59 Transform, 33
Regular, 59, 68, 70, 73 Transitive, 58
Resolvent, 5, 24, 49, 60, 64 Transposition, 13
Self-conjugate, 32 Unaltered, 16, 45, 56, 60
Series of composition, 57, 40, 97 Uniserial, 73 (note)




