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Introduction

In this work about finitely generated abelian groups . before to get define of finitely
generated abelian groups , we must explain some definitions about group , generating
set of group and abelian group with some theorems . We will use an additive notation
for all abelian groups , meaning that the group operation is denoted by + .

We first study in chapter one some theorems related to finitely generated abelian
groups , the group G under additive operation =+ is abelian group if for all a and b
belongto G thena+ b =b+a

In the other chapters we will study what does finitely generated mean as well as
subgroup of finitely generated abelian groups . Finally , we will present for some
important theorems ' Fundamental theorem of finitely generated abelian groups ' , the

type of finitely generated abelian groups and applications with some examples .
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CHAPTER

Group and Torsion Grou,




( 1-1 ) Definition:-
A group is an nonempty set G together with a binary operation
(a,b) > axb;GxG— G satisfying the following :

1- Associativity Va,b,c € G (axb)*c=ax*(bx*c)
2-Identity Vae (G,de€ (G a*xe=e=c¢e*a
3-Inverse Va€ G,3a' €G axa' =e=a"*a

then (G,*) is a group

and (G,*) is an abelian group ( commutative group ) if Va, b € G
a*b=bx*a
( 1-2 ) Examples :-
I- (R,+),(Z,+),({1,-1},) are groups ( all abelian groups )
2- Symetric groups S, ,n € N group of permutations
N = {1,2,...,n} basis set and functions is bijection
fiN—N

g:N—-N

(feg)(n) = f(g(n))

(S, ,°) is a group but non abelian group .

For example: [S3] =31=3x2x1
213.132 = 312
132.213 = 231
(213).(132) # (132).(213)
( 1-3 ) Definition :-

If S is a subset of a group G , then < S > the subgroup generated by S , is the
smallest subgroup of G containing every element of S .If G =< § > then we say S
generates G , and the elements in S are called group generators . If S is the empty set , then
< § > is the trivial group {e}, and if there is only a single elements a in S, in this case ,
<a> is the cyclic subgroup of power of a .

( 1-4) Examples :-

1- Z =<1> (generatedby{1,1-}).
2-nZ =<n>, 22 =<2>.




3- Z/nz =Z, =1{01,..,n— 1} and generated by 1.
( 1I-5 ) Definition:-
G is cyclic group if it can be generated by single element .

Classification of cyclic group
(1-6 ) Theorem :-

Every cyclic group (G, +) is isomorphic either to the additive Z or to additive group
Z, for some positive integer n .

proof

Let g generate G and so G =< g > . Consider 8: Z — G defined 8(m) = mg for all

integer m . Then 6 is Z-linear .

Now @ is surjective (onto) since every element of G is of the form 8(m) for some
m € Z ,thatis im 8 = G meaning that G is the image of 8, the kernel of 8 is

ker@ ={meZ;6(m)=0}={meZ;mg=0}=k
which is the order ideal of g .
There is a non negative integer n (n is smallest positive number in kerf ) with
kerd =<n >.
Suppose n = 0. Then is injective (one to one) because 8(m) = O(m’) , then

B(m—m') = 8(m) — 8(m’) = 0 showing that m —m’ belong to kerf =< 0 > =
{0}.Som —m' = 0 that's m = m'. Therefore is bijective and 6 = Z = G, thatis,
all infinite cyclic groups are isomorphic to additive group Z of integers .

Suppose n > 0. As above we suppose 8(m) = 6(m’) . This mean m —m’ € kerf =
k =<n >andso m—m’is an integer multiple of n , that is, m = m’(mode n) .

The steps can be reversed to show that m = m'(mode n) implies 8(m) = 8(m’) . So 0
has the same effect on integers m and m’ which are congruent (mode n) . In other
word 8 has in the same effect on all integers of each congruence class m , and makes
sense to introduce the mapping 8: Z, = G defineby 8(m) = 6(m) forallm € Z . As 6 is
additive and surjective , the same is true of . As 8 has different effect on different
congrucne classes (mode n) , we see that @ is an injective . Therefore 8: Z,, = G which
shows every cyclic group of finite order n is isomorphic to the additive group Z,, .

( 1-7 ) Definition :-

Let (G, +) be an abelian group and let S = {g;, g», ..., g} be a finite, nonempty subset of G .
If . for any integers a,, ..., a,, the relation




@191 + -+ @r gy =0

Implies that g, = g, = - = g, = 0, then S is said to be independent . If S is independent
and generates G, and if 1 € S, then S is called a basis of G .

(1-8 ) Definition:-

Free abelian group is an abelian group with a basis . That is , every element of G can be
written uniquely as a finite linear combination of elements of the basis , with integer
coeffecients .

( 1-9 ) Definition:-

A finite set [ = {ay, ..., a,} C A abelian group is a set of independent element
(or a,, ..., a, are independent) if for ky, ..., k, € Z

k1a1+...+knan:0 = k1::kn:0

(1-10 ) Examples:-
I- a; =(1,0) , a, = (0,1) are independent .
Because kya, + kya, = (k;,0) + (0, k,) = (0,0)
(ki ky) = (0,0) = ky =k, =0
2- a; = (1,0) , a, = (2,0) are dependent .
Because kqa, + kya, = (k1,0) + (2k,,0) = (0,0)
=k +2k, =0
(1-11 ) Torsion element :-

Let (A,+ ) an abelian group . An element a € 4 is said to be a torsion element if it
has Finite period » , that’'s meanna = 0.

(1-12 ) Torsion subgroup :-
Let G is an abelian group . Then the torsion subgroup of G is
Gr = {geG,ng =0 forsomeneZ} .
(1-13 ) Lemma :-
Let G be an abelian group . The subset of G is subgroup of G .
Proof
Let G be the torsion éubgroup of G

0 € Gy , so Gy isnonempty
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Let a, beGy , 1 must showa — beGy

Find positive integers m,n ,suchthat ma = 0 and nb = 0 then
mn{(a-b) = mna-mnb = 0-0 =20
therefore a-beGy and Gr < G .
(1-14 ) Torsion group :-

G an abelian group and Gy is torsion subgroup . Then G is torsion group if G = Gy
for all elements of G are finite order .

( I-15 ) Torsion free :-
G group is torsion free if the only element of finite order is the identity .
(1-16 ) Examples :-
1: Every finite group is torsion group .
Proof
Let G ={ay,ay, ..., a,} finite and (G, +) is finite group, then
VgeG , {ng|n€Z}c G this subgroup must be finite
Am # k suchthatmg = kg
(m—k)g =0 g has finite order.
2: The group ( Z ,+ ) is torsion free .
3: Q rational numbers are torsion free but not free abelian .
Remark
The finite abelian group is just the torsion subgroup of G.
( 1-17 ) Definition:-

If A is an abelion group and p a prime number , we denote by A(p) the subgroup of
all elements x € A whose period is a power of p . Then

A(p) is a torsion group and is p — group if it is finite .
( 1-18 ) Definition :-

A p aprime number , a p — group is a periodic group in which each element has a
power of p as its order : each element is of prime power order .

( 1-19 ) Definition:




If (G,*) and (H,") are abelian groups, their direct sum is the group
(GOH,%) . GBH = G x H as set

V391,92 €G hy,hy €H (g1, hy) * (g2, h2) = (g1 * g2, hy - hy) and if G, H are finite
then |G| =m ,|H|=n

|GBH| = mn
( 1-20 ) Example :-
LetG = A @ B andlet C,D be subgroups of 4, B respectively . Show that
C+D=CO®D.
Solution:-
As {0} = ANB 2 CND wehave C N D = {0}
ThusC+D=C@D.
(1-21 ) Theorem :-

Let A be a torsion abelion group . Then 4 is the direct sum of its subgroups A(p) for
all primes p such that A(p) # 0.

Proof

There is a homomorphism  @A(p) — A

Which to each elements (x,,) in the direct sum associates elements }, x, in A . We

prove that this homomorphism is both surjective and injective .

Suppose x is in the kernel , so Y, x, = 0. Let q be prime . Then

Xg = ) (=%)

Let m be the least common multiple of periods of elements x,, , with x, # 0 and
p # g . Then

— r - .. .
mxg, = 0.Butalso q" x; = 0 for some positive integer 7 .

If d is the greatest common divisor of m , q" then dx, = 0,butd = 1,50 Xq =
0 . Hence

The kernel is trivial and the homomorphism is injective .

For each positive integer m , denote by 4,, the kernel of multiplication by m , the
subgroup of x € A such that mx = 0 .We prove :




If m = rs with r,s positive relative prime integers , then
Ay = Ay + A
In the fact there exist integers u, v such thatur + vs = 1. Then

x = x(1) = x(ur + vs) = urx + vsx, and urxeA; while vsxec A, .
Repeating this process inductively, we conclude :-

lf m= Hp/m Pe(p) then Am = Zp/m Ape(‘p)
Hence the map @A(p) — A4 is surjective .

(1-22 ) Example :-

Let A = Q/Z . Then Q/Z is torsion abelian group , isomorphic to the direct sum of

its subgroups (Q/Z) (p) . Each (Q/Z) (p) consists of those elements which can be

reperesented by rational number a/pk with a € Z and k some positive integer .

(1-23 ) Remark :-

A finitely generated abelian group is free only if it is torsion free , that is , it contains
no elements of finite order other than the identity ; Suppose G is free finitely
generated , and g,, ..., gy 1S a basis . Let g € G . Then , from definition of basis
g=myg;+ - +mgx.If ng=0,then nm;g, +--+nmpg, =0 so
nm;=--=mmy=0andif n*0 =m=-=m,=0 =g=o0.

(1-24 ) Theorem :-
Let A be finitely generated torsion — free abelian group. Then A4 is free .
Proof

Assume A # 0, let S be finite set of generators , and let xy,....., x, be a maximal
subset of S having the property that whenever vy, ....., v, are integers such that

then v; = 0 forallj. (Note n 2 1 since A # 0).

Let B be the subgroup generated by x4, ....., x,,. Then B is free .
Given y € A there exists integers my, ... ..., My,
m not all zero such that my + myx; + - ...+ mux, = 0,

by assumption of maximality on x4, .....X,,m # 0, because in the other case ,




allm; = 0.Hence my lies in B . This is true for every one of a finite set of
generators y of A . whence there exists on integer m # 0 such that mA € B . The

map
h:x = mx
of A into itself is a homomorphism , having trivial kernel since A is torsion free .
(1-25 ) Example :-
Prove that:-
Every finitely generated torsion group is a finite .

Solution:-

By fundamental theorem of finitely generated abelian groups (which will be stated
and proved later) , if G is finitely generated it is the direct sum of a finite number of
cyclic groups . If G is a torsion group , then it is the direct sum of a finite number of
cyclic groups . Hence G is finite .

( 1-26 ) Definition:-

The free group F; with a basis S is the universal group generated by the set . This can be
formalized by the following universal property given any function f from S to a group G,

there exists a unique homomorphism ¢: Fs = G
That’s , homomorphism F; — G is one to one correspondence with function § — G .
( 1-27 ) Theorem :-

Let A be finitely generated abelion group , and let A7 be the subgroup consisting of all

elements of A having finite period . Then Az is finite , and A/ATis free .

proof

We recall that a finitely generated torsion abelian group is obviously finite .

Let A be finitely generated by n elements , and let F be the free abelian group on n
generators . By universal property ,

there exists a surjective homomorphism F f A of F onto A4 . The subgroup
¢~ (A7) of F is finitely generated , hence Ay itself is finitely generated , hence
finite .

Next , we prove A/AT has no torsion . Let X be an element of A/AT such that

mx = 0 for some integer m # 0 . Then for any representative of x of X in 4 , we




have mx € A , whence g mx = 0 for some integer ¢ # 0.Then x € Ay, so
Xx=0and A /A; istorsion free.

By theorem (1-24) A / Ay is free .

(1-28 ) Corollary of (1-24 ) :-

Let G # {0} be finitely generated torsion free abelian group . Then G is free abelion
group of rank r thatis G = Z .
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( 2-1 ) Definition :-

An abelian group G is finitely generated if there are elements x; , ... ,x, € G such
that every element x € G can be written

X=X+ -+ apx, , a;€Z.
With integers, the set {xy, ..., x,,} is a generating of G or generate G .
( 2-2 ) Definition :-

Let G be finitely generated abelian group . The abelian group rank of G is defined to
be the size of greatest possible independent set of G .

( 2-3 ) Examples :-
1- The integers (Z , +) are finitely generated abelian group (generating set {1}) .
2- The integers modulo n,nZ are finitely generated abelian groups .

3- The group(Q ,+ ) of rational numbers isn't finitely generated: if @y, a,, ... @, are
rational numbers, pick a natural number w coprime to all the denominators of

aq, ..., &n then 1/W can't be generated by a4, ay, .. @y, .

4- The group (Q" /) of non-zero rational numbers is also not finitely generated .

( 2-4 ) Remarks :-
1- Every finite group is obviously finitely generated .

2- Finitely generated group is a group that has a finite generating set .
3- A group that isn't finitely generated is sometimes saied to be infinite
generated .

( 2-5 ) Definition :-

Let G be any group . If a,b € G then commutator of @ and b is the
element aba~'b~%, ofcourse , if a and b commute then aba™'h~! = e . Now
define C to be the set € = {x1, %5, ..., X, |n = 1} each x; is commutator
subgroup .

Remark:-

A finitely generated non abelian group may have subgroups that are not finitely
generated .

for example :- the commutator subgroup of the free group on 2 generators isn't
finitely generated . We begin with lemma (a free group of countably infinite rank isn't
finitely generated) . Now the proof ; let A be a countably infinite set and suppose
F(A) is finitely generated . Say by S . Now only a finite number of elements of A
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appear as letters in the words in S . Thus some words in F(A) isn'tin < S > .
Contradiction

Now , the solution for example : Let F, = F(a, b) be the free group of rank 2 and
LetC = {[x,y]|x,yeF,}be the set of commutatorsin F, ,¢ = xyx~ty™?t,

< ¢ >= F, CF, by the universal property of free groups and using the inclusion

C — F, , there exists a unique group homomorphism ¢ : F(c) — F,

whish surjective by construction . Now w ¢ ker (¢), ¢ (w) = 1 isaword in
F, < F, , since this group is free on a and b . We must have w = 1. Thus ¢ is an
injective and we have F, = F(c) hence

F; is a free group of an infinite rank , by lemma (A=c infinite) .
F; is not finitely generated .
Remark:-

Not every abelian group of finite rank is finitely generated .

for example :- the rank 1 group Q is one counterexample and the rank — 0 group
given by a direct sum of countably infinitely many copies of Z, is another one .

Subgroup of finitely generated abelian groups
(2-6 ) ) Lemma :-

LetG =< a; >@ ... < a, > be the direct sum of infinite cyclic groups . If
b, = a, + ra, + .. + r,a, wherer,,..,1, are integers . Then

G :<b1 >@< a, >®@< an>‘
Proof

As < by, ay, .., a, >=<ay,..,a, >= G, wemustonly show thatif s, , ..., s, are
any integers , then

S1by + sya, +...+spa, = 0 *
implies all s; are 0
Substituting b; = a; + m,a, + -+ 1,4, into () and collecting terms , we obtain
S1a; + (51 +sym)ay + -+ (S + Sptp)a, =0
As G ={a;} D ... ® {an},
S = S; + 511 = .. =S, + 51, =0
Thus s =5, = .. =5, = 0.
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(2-7 ) Lemma:-

Let G be free abelian , the direct sum of n cyclic groups . Let H be a subgroup of G .
Then there exists a basis ¢4, ..., ¢, of G and integers uy, ..., U, such that

H =< u ¢y, ..., UunCp >
Proof

We use a, b, ¢ to denote basis elements of G, h, k,[ to denote elements of H ,
q.7,s,t,u, v to denote integers . We prove the result by inductiononn.For n =1,
G is cyclic . Assume the result is true for free abelian groups of rank less than n where
n > 1.Let G be free abelian of rank n . We assume also that H # {0} . For if

H = {0} . we may take an arbitrary basis c;, ..., ¢, for G. Then H =< uy¢q, ..., UpCp >
where u; = - =u, =0.

To every basis we associate an integer , called its size (with respect to H) . Let
{a,, ..., a,} be a basis for G and let g be the smallest nonnegative integer such that
there exists h € H with

h=gqa,+qa,+ -+ qna,, g, .., qy integers (D
“Then g is termed the size of the basis {a,, a,, ..., a,} .

Assume {a, a,, ..., a,} is a basis of smallest size , if {by, ..., by, } is a basis of G, then
the size of {b4, ..., b, } is not less than q .

Let h be as in equation(1) . We show that g divides q,, ..., q,, . If g; is not divisible
by g, q; =riq + s; where 0 <s; < q.Hence

h =q(a; +ra;) + - +s;a; + -+ qnay

Butif we put by = a;, b, = ay, ..., b; =a, +ra;, ..., by, = a,, we obtain a basis by
lemma ( 2-6 ) . Furthermore this basis is of smaller size than the size of {ay, ..., a,} .
contrary to our assumption . Thus s; = 0 and g divides g; for i = 2,...,n. Let

q; = 1;q . Then

h=gq(a; +ra, + - +ma,)

Let ¢, = a; + rpa, + -+ r,a,, . Then , by lemma ( 2-6 ), {¢y,ay, ..., a,} is a basis
for G . Also

h=qc, (2)

If k=ta,+ - +t,a, €H,itfollows that t; is divisible by q . For if t; = ug +
vwith 0 < v <gq,thenl =k —uh € H has v as its coefficientof a; . As v < q,
by the minimality of ¢, v = o . Therefore

l=k—-uhe<ay,..,a, >
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Hence l €< ay,...,a, > NH = L, say . From this we conclude that if k € H , then
k=uh+1 (3)
Whrer [ € L.

By the inductive hypothesis there exist a basis ¢, ..., ¢, and integers us, ..., u, such
that L is generated by u,c,, ..., u,c, . Hence by (3) every element of H belongs to
< h,uy¢y, ..., U C,y > . On the other hand , H contains h, us 5, ..., Uy ¢y, . Thus

H =< h,uycy, ..., upcy >
Put u; = q.By(2)
H =< U1€q,UsCp, oo, UpCp >
Also, ¢4, ..., ¢, is a basis for G. Hence the result follows .
(2-8 ) Theorem:-

Let G be free abelian of rank » . Then any subgroup H of G is free abelian of rank
less than or equal ton .

Proof

By Lemma ( 2-7 ) there exist a basis ¢4 , ..., ¢, of G and integers uy , ..., U, such that
H =< u¢q,...upcy, > . If uy, ..., u; are nonzero, and
Ujp1 = Ujzz =...= u, = 0 then

< ulcl, ...,unCn >:< u1C1 >@ ren @< ulCl >
See example (1-19 ) , hence the result .
( 2-9 ) Example :-

Let G be a p-group . Suposse G =< a >@ B .Provethat G =< a + b >@ B where
b € B is of order less than or equal to the order of a .

Proof

If xé<a+b>PB ., thenx =r(a+b) = b, where b; € B and r is an integer .
Thusra = by —rb . Since < a >N B = {0} , ra = 0. Then r is divisible by the
power of p which is the order of a . Consequently rb = 0. Hence by = 0and x = 0.
Clearly<a+b>PB=¢(.

(2-10 ) Corollary :-

Every subgroup of finitely generated abelian group is a finitely generated .

Proof




Let 4 is a finitely generated abelian group , it is isomorphic to some factor group of a

finitely generated free abelian group G , say A = G/ N

The subgroups of G/N are of the form H/N where H is a subgroup of G
By theorem ( 2-8 )
H is a finitely generated and therefore , so is H/N , consequently

Every subgroup of A is a finitely generated .
(2-11) Theorem :-

Suppose G is a finitely generated abelian group . Then there are finitely generated free
abelian groups F; and F, and a homomorphism

Y: F, = F, suchthat G = F, /Y(F,) .
Proof
Let xq, ..., X, be generators for G . let F; = Z™ and let

¢ = F, — G be the map that sands ith generator ( 0,0, ...,1,...,0 ) of Z"™ to x; .
Then

¢ is a surjective homomorphism , and by corollary ( 2-10 ) the kernel ker¢ of ¢ isa
finitely generated abelian group .

Let F, = Z™ and fix surjective homomorphism : F, — ker(¢)
Then F,/y(F,) isisomorphicto G

Suppose G is a nonzero finitely generated abelian group . There are free abelian
groups F; and F, and homomorphism

Y =F, — F, SuchthatG = Fl/lp(Fz) .
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Fundamental Theorem of finitely generated abelian
groups

(3-1) Theorem :-
Every finitely generated abelian group is isomorphic to direct sum of cyclic groups .

Proof

G = F/H where F is a finitely generated free abelian group and by Lemma (2-7) F

has basis ¢ , ..., ¢, suchthat H = < uy¢y, ..., u,c, > for some nonnegative integers
Uy s oo, Uy -

Suppose F = A €@ B and A,, B, be subgroups with A; € A.B; S Band H =4, +
By

Let 6=/, ®B/p . Leto=4-4/,
$=8-5/p
There exist 1 homomorphism of F into G . Then
kery 2 kerf = A,
kery 2ker¢ =B, . Thus
kery 2 A; + By .Nowlet xe kery .Thenx =a+b ,acA ,beB.
xp =(a+A,)+(b+B;) and
this is an identity element only if a € 4, ,b € B;
Hence x € A; + By andso kery = A, + By
By homomorphism theorem F/H =G
To complete prove we will need the following Lemma and Corollary .

(3-2) Lenuna :-
Suppose G = ADB , Let A1, B, be subgroups with 4, € 4,B; S Band N = 4, +

By .ThenC/y =4/, @8/p .

Proof

Let K :A/AI@B/Bl ,and letf = A -—>A/A1 and p =B - B/Bl be the natural

homomorphisms . 8,¢ extand to a homomorphism 3 of G into K . Then




kery 2 kerf = A,
kery 2 ker¢p = B;, thus
kery 2 A, +B, =N

Now we prove that keriy ¢ N

Let x € kerip ,thenx=a+b,a €A,b €B.

xp = (a+ A;) + (b + B;) and this identity element only if a € A;and b € B, .
Hence

x€A;+By=N andso kerpy =A;, +B; =N

by the homomorphism theorem G/ N=K

(3 -3) Corollary :-

Let F be free abelian with basis ¢4, ..., ¢, . Let H =< u ¢y, ..., U, ¢, > where
Uy, ..., Uy, are nonnegative integers . Then F/H is the direct sum of cyclic groups of

orders u}, ..., ul, where u; = u; ifu; # O and uj = o ifu; = 0.
This end’s the proof of the Theorem (3-1)
(3-4) Example :-
If |[<Ka>=m,|[<b>=n,(mn)=1,then
G =<a>@<b> iscyclic of order mn.
Solution :-

We show that G =< a+ b > . If his the order of a + b then h(a + b) = ha + hb
implies ha = hb = 0 by the definition of a direct sum

consequently

h is divisible by the order of a and the order of b . Since (m,n) = 1,mn/h and we
conclude mn = h,sothat G =<a+b>.

(3-5) Corollary :-

If G is finitely generated , It is the direct sum of a finite number of infinite cyclic
groups and cyclic groups of prime power order .

Proof

It is only necessary to show that a cyclic group of composite order is the direct sum of
cyclic groups of prime power order .




This can be done using inductionin (3-4) .
(3-6) Corollary :-

If G is a group without non zero elements of finite order and G is finitely generated ,
then G is free abelian .

Proof

G is the direct sum of a finite number of cyclic groups each of which must be infinite
cyclic as G has no elements of finite order .

The type of a finitely generated abelian groups :-

We say that two decompositions are of the same kind if they have the same number of
summands of each order . For example , two decompositions of a group into the direct
sum of three cyclic groups of order 4 and two cyclic groups of infinite order are said
to be of the same kind .

Every finitely generated group can be decomposed into the direct sum of a finite
number of cyclic groups of prime power or else infinite order .

(3-7) Theorem :-

Any two decompositions of a group G into the direct sum of a finite number of cyclic

group which are either of prime power (# 1) or of infinite order , are of the same kind

Proof
We shall separate the proof into four cases :
1- both decompositions involve only infinite cyclic groups .

2- both decompositions involve only cyclic groups of order a power of fixed prime
p.

3- both decompositions involve no infinite cyclic groups .

4- the general case .

Casel.G=1,0..0L=1L&..0]

Where I; D forj=1,..,kandi=1,..,1 respectively, are infinite cyclic groups .

Using the fact (If F is group freely generated by two finite sets X and Y , then
|x| = |y|), we conclude that K = L .




Example:- Prove , by considering the direct sum of cyclic groups of order 2 , that if
G is the direct sum of K infinite cyclic groups and also the direct sum of L infinite
cyclic groups , then K=L .

Solution

LetG =< x; > ...B< x, >. Let H =< 2x4,...,2x, > . Then by corollary (3-3) ,
G/H is direct sum of K cyclic groups of order 2 . Thus |G/H| = 2% Clearly H c 2G .
Alsoifg €G, g =rx, + - +nx, . Then2g =r(2x,) + -+ 1r.(2x,) €H
from which 2G € H. Thus H = 2G .

Now by a similar argument we conclude that if G is direct sum of L infinite cyclic
groups , G/ZG| =2 Thus L=K.

Case 2 . Both decompositions involve only cyclic groups of order a power of a fixed
prime .

We shall write for any integern, nG = {ng|g € G}. If G isa group , nG is a
subgroup ( Example ( 3-9 ) )

To prove case 2 we will need the following lemma
(3-8) Lemma :-

Let G = A®B . If n is any integer , then nG = n4A @ nB.

Proof

As nANnB CAnB = {0}, <nA4,nB >=nA®nB.

If g € nG , there exists h € H such thatnh = g .

Leth=a+b,a€Aandb € B.theng =nh =na+nb

Accordingly nG € nA®nB € nG and so nG = nA®nB .
(3-9 ) Example :-

Prove that nG is a subgroup of G where n is a given integer .

Solution

If h,k enG,h=nf,k =ng where f,g € G.Hence h—k =n(f —g) €nG, and
so nG is a subgroup .

(3-10) Corollary :-
LetG = A, @ ... A, . Let n be an integer , then nG = nd; @ ... D n4, .

Proof




This corollary be generalization to lemma (3 -8 ).

Case 3. G is expressed in two ways as the direct sum of a finite number of cyclic
groups of prime power order .

We have dealt with case where only one prime is involved . We proceed by induction
on the number of primes involved . Let p be one of the primes involved . Let

Ay, ..., A be all the direct summands of order a power of p in the one decomposition
, By, ..., By, the other direct summands involved, so that

(=40 . . QAn DB, D .. DB,
Puttingd = A, @ ...A,,and B=B, @ .. P B, . it followsthat G = A P B.

Let X1, ..., Xj be all the direct summands of order a power of p in the second
decomposition Yi, ..., ¥; the remaining direct summand , so that

=X, 0. 0XP"ND.0Y,

PutX =X, 9. BX, ,Y=YD..BY,. ThenG=XPY.Weclaimthat A =X
and B=Y

Letg € A. Then g = x + y where x € X and y € Y . Now the order of any nonzero
element of Y is coprime to p . As g is of order a power of p ,y = 0. Hence g € X
and so X € A and we conclude that A = X . By the similar argument B =Y.

Thus A, D .. A, =X DP.PXyandB, D ..PB, =Y, P ..PY,. Bythe
induction hypothesis A, @ ... D 4,, and X; @ ... D X on the one hand , and

B, ..PB,andY, @ ... B Y, on the other, are of the same kind . Hence the two
decompositions are of the same kind .

Example:- Let G be an abelian group . G = X @Y .Letx € X,y € Y . Prove that (1)
If x and y are finite orders , then the order of x + y is least common multiple (Lcm)
of the orders of x and y . (2) If x is of infinite order , x + y is of infinite order .

Solution

(1) Let L = Lcm of the orders of x and y . Then L(x + y) = Lx + Ly = 0. Now
if m =order of x + y , then m(x +y) = mx + my = 0 implies mx = 0 and
my = 0. This in turn implies that the order of x divides m and the order of
y divides m .

(2) If x is of infinite order and m(x + y) = 0, then mx + my = 0. But by the
uniqueness of such expressions in direct sums , mx = my = 0. Since x is of
infinite order , m =0 .

Case 4.Let G be expressed as the direct sum of cyclic groups of prime power order or

of infinite order in two ways , say




C=L®.P,OFP . . E=L&.0LOFD. . BF
Where I}, IA] are infinite cyclic groups and F; ,Fj are groups of prime power order .

Let T(G) (the torsion subgroup) be the set of all elements of finite order . Then T'(G)
is the direct sum of the direct summands of finite order in both cases . Thus

Hence by case3 , F, @D ..DE, and F, @ ... E, are of the same kind .

AlsoG/T() =21 @D .OL, =L@ .BI .1, D ... I, is the direct sum of k
infinite cyclic groups . Then k = m by case 1 . Therefore we have proved that

LOL®.®L,BF®. . QFad, L. O BF ® .. .@F, are of the

same kind .

Example:- LetG =1, D ..D L, D F, @ ... ® F, where each [; is torsion free and
each F; finite . Let T(G) be the set of all elements of finite order . Prove that

T(G)=F,® .. BE,.
Solution

ClearlyT(G) 2 F, @ .. ®F, . IfgeT(G), g=iy+ -+ inm+fi ++ f, where
l1, ..., are elements of Iy, ..., I,,, and f1, ..., f,, are elements of £y, ..., F;, respectively
.As g isof finite orderr,sayrg =riy + - +7rip +rfi + -+ 71f, =0 by
definition of direct sum , riy =ri, = - =riy, =71f; = =71f, = 0since I, ..., I,
are torsion free , we have iy =i, =+ =1, =0.Thusge F, ® ..DF, .

If finitely generated group G is the direct sum of cyclic groups of orders p;?, ..., p,*
and s infinite cyclic groups , where pq, ..., py are primes , p; < p, < -+ <

Dx ,T1, ... T positive integers with 7 = 7;,4 if p; = p;4q , then the ordered k + 1 —
tuple (plrl, ...,p,:" ;s) is called the type of G . Usually it applied only to p-groups .

(3 -11) Example:-

If the type of G is (fy, ..., fi ; f) and that of G is (gl, s Ip ;g) where f, = pi* ,f, =
pgz e fr = p,:", g1 =gt g1 = qfl and py < q,, where the p; are primes , find
the type of F @ G .

Solution

Wehavep, <+ <p, < g £+ < q,. Hencethetypeof F @ G is
oS G100 905+ 9D

(3-12 ) Theorem :-




If F and G are two finitely generated group , then they are isomorphic if and only if
they have the same type .

Proof

LetF=A,® .. 8B A,. If¢p =F - ( isanisomorphism,then G = 4,0 D ... D
Axd . As Ajp = A, it follows that F and G have the same type

conversely , if F and G have the same type they are clearly isomorphic .
(3-13) Examples :-

1: Let G = A@®B where A and B are cyclic of order 2 . Find € and D such that
G = COD where C and D are cyclicoforder2and C # Aand C # B .

Solution:-

Let A={0,a},B =1{0,b}.PutC ={0,a + b}.Then C is cyclic of order 2 . Also
put D=B.ThenC+D={0,a+bba+b+b=a}andsoC + D = G also
CnNnD={0}.Thus G = CHD .

2: IF F, G and H are finitely generated abelian groups , show that
F®G = FOH implies G = H .

Solution:-

Express F, G and H as direct sums of cyclic groups of prime power and infinite orders
If the type of F is (fy, ... fi: f) and that of G is (g1, ... gn: g) While that of H

is (hq, ..., i h), then the type of F @ G is (ay, ..., Qgen: f + g) where aq, ..., pyp 1S
fir e fie v 91s -r Gn In some order , while the type of F@H is (by, ..., bgim: [ + h)
where by, ..., bysm 1S f1, oo, fx » R, .., Ry in sOme order .

For two abelian groups to be isomorphic by theorem (3-12) their types are the same .
Accordingly the types of G and H are the same and G = H.

BIF=A4,D..0A,and ¢: F = G is an isomorphism , then G = 4,9 D ... P
A .

Solution:-

We must show that every element of G is uniquely of the form A;¢ + -+ +
Ap® . where a4, ..., a; belong to Ay, ..., A, respectively

Now if g € G, there exists f € Fsuch that f¢) = g.Butf =a; + -+ a; and so
9= @b+t ad. If ad+ot+ap =i+ +ap

then (a; —ayp)p+ -+ (ap—a)p =0




Let h =a; —ay + -+ a, —ay. hbelongsto ker¢ . Since ¢ is an isomorphism ,
h = 0, by the uniqueness of expression of direct sums a; — a; = a, —a, = =+ =
ap —a, = 0sothata, =aj,a, = aj,...,a, = a;, therefore each elements of G is
expressible in the form

a;¢ + -+ ap¢ is one and only one way .

Application and examples
(3-14 ) Theorem :-

Let A be finitely generated abelian group then
~75mZ
A=72"O / aZ ©®

Where s is a nonnegative integer and a; are non zero non units in Z , such that

a1]az| ... lay 5

Further , the decomposition 4 of 4 subject to the condition 5 is unique
(Z° is interpreted as the trivial group (0) )
If A is generated by (x4, ..., %,,) subject to X7 ;a;x = 0,1 < i <mthen

(n—r)copies

A = Zx...xeZ/alzx "'XZ/arZ

Where a,, ..., a, are the invariant factor of the m X n matrix 4 = (aij)
( 3-15 ) Definition:-

Let A, B € F™™ be two matrices of the same size we say that
A 1s left equivalent to B iff there exists Q € GL,,(F) such that A = QB
A is right equivalent to B iff there exists P € GL,(F) such that 4 = BP™1

A is right left equivalent to B iff there exists Q € GL,,(F) and P € GL,,(F) such that
A= QBP™?

Where A = B denote any of these three relations , we have
C, — C; means ; column 2 minus column 1 .

(—=1)R3; means ; multiply row 3 by (-1).

C; © C, means ; interchange of column 1 and 2 .

R; — (3)R, means ; from row 3 subtract row 2 multiplied by 3 .




( 3-16 ) Examples :-

1) The abelian group generated by x;and x, subjectto 2x, = 0,3x, = 0 isan

isomorphic to Z/(6) because the matrix of constraints is ((2) g) which is equivalent
t0 ((1) 2) .
2) Find the abelian group generated by {x;, X, x3}subject to
5x; +9x, + 5x3 =0
2xy +4x, +2x3 =0
X1 +x, —3x3=0

Solution:-

5 9 5
A=12 4 2)
1 1 3-

Perform C2 - C1 , Rl — ZRZ , C3 — C] , R3 - Rl . (—1)R3 , and Cl - Cz in
succession to obtain that 4 is equivalent to

1 0 0
(O 2 0) Hence

0 0 4

The desired abelian group is isomorphic to

21z %2z % ag =2y % Al gy -
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