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. Introductivn.

0, <) or simply O, like (01, <j), (Og <¢) will denote sets
0, Oy, Oy, ordered (totally or partially) by means of <, <{;, <g,...
respectively.

0.1 If (01, <<3) and (O <<p) are (partially or totally) ordered
sets, a mapping f from O; to Og is said to be increasing (isotone,
order preserving) or a member of

P- (01, <y), (02, <g)) = {f; ® < Oy =) fax; < Og},
provided

{z,y SCOLN2<sy=) foe<sfys;
if moreover x <1y = fx <pfy, f is said to be strongly or strictly
increasing. '
0.2. The set of all increasing functions from (0,, <)) to (0., <,)
is ‘'denoted by
T = ((Ola <]), (02’ <2)) (1)
or shorter by 4 = (O1, Oy).

0.3. The set of all strongly increasing functions from (Oi, <i)
to (Oe, <o) is denoted by

T ((01; <1); (Oza <2)) or T (017 02) . (1)

An important problem is to determine the last set, for given Oy, Oa.

' 0.4. Varying the sets (01, <y), (O2, <<g), one is varying conside-
rably the sets 0.2(1).and 0.3(1). In particular, the problem arises
to determine the existence of some member of the set (1) having
a certain given property. Among the ordered sets some are quite
characteristic, like (P .S, C), 7., lattices, etc.

Ovaj rad je financirao Savezni fond za naudéni rad i Republi¢ki fond 2za
nauéni rad SRH.
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0.5. Partitive sets P S, P'S, P, S efc.

For any set S one defines PS={X; X C S}, PS={X;0C
CXcS), PhS={X;XCSAKkX<a}; o is a given cardinal
number.

0.6. Left ideals of (O, <). Operator 10.

I0 or I(0, <) consists of all the initial section or left ideals
of (0, <); in other words

XSO, QHXECONEX=0VxsX — 0(,2] EX),
where
O(,x]={y;y<OANy<Lx}.
Then one has the graphs or diagrams (I(0, <), ©) and (I (0, <), 2).

0.7. The set w(0, <) (resp. w' (0, <) or w(0, <)) consists of
all the well-ordered subsets of (O, <), the empty set @ being
included (being not included).

08. Wo=0(0,<)={x;r<w(, <) A\ x3F O, is bounded in
©, <}

0.9. wy(0,<) = {x; x is a well-ordered bounded subset of
(0, Q}.

0.10. The operators L, Ly, L', L.

L (O, <) consists of all the chains of (O, <),

L’ consists of all the non empty members of L (0, <),

Ly consists of all the bounded members of L (O, <),

L'y consists of all the non empty bounded members of L (0, <).

0.11. Operators —L, ~Ly, —L, ~L'p (anti L, anti L/, etc.).

The definition is obtained from Section 0.10 by replacing
chains by antichains. ‘

0.12. Relations —|, |—. Relations =], |= .

For sequences or ordered sets A, B the relation A—| B or
B|l—A means that A is a proper initial section of B; we set

A—=|B(=)A=B A A—|B.
Thus, for a given (O, <), we have the ordered sets (X (0, <), —|),
for the operators X < {w, wy, w’, w", L, Lo, L', L’p}.

Instead of w’, we wrote previously o. All these sets are trees.

0.13. Left ideal closure. Right ideal closure.

For X C (0, <), let

0X=110( 2], @<X);, 08=49,
x

1X=UO[x, ), £ X);18=8.
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Consequently, 0X (resp. 1X) is the minimal initial (terminal)
section of (O, <} containing the set X.

0.14. For any family F of sets © (O, <) we put
0F={0X; X<F), |
1F={1X; X<F).
In particular we havé the diagrams
Ow (0, <), ©), (0L (0, <), C), (06(0, <), ©),(04(0, <), C), ete.

0.15. Stellarity nuraber (0, <<) = inf {kF;F being composed
of chains © (0,<0) and U X= 0}.
XEF .
0.16. Antistellarity number —5(0,<)=¢a(0,<)=inf {kF;F C
CAO,<YNUF=0}.

0.17. Number I' (O, <.

. The first ordinal number, which is mot imbeddable in (O, <),
is denoted by I' (0O, <) or I'O.

0.18. The consideration of the sets (wO,—), 1 ((w O, =) (0, <))
was initiated by the present author who proved in particular that
A (0X,X)= @, for R< {Ra, Re}; the topic was then studied by
S. Ginsburg [1] (Theorem 10) who proved in particular that
14(0, —), (0,<) = @, for every infinite totally ordered group (O, <)
and for i = w; if moreover (0, <<) is a totally ordered field, then
one could write also i =o.

An ordered set (O, <) is called by Ginsburg a k-set or a k'-set
according as to Whether the set

t(wo,—,0,<) (1)

is empty or non-empty; every member of the set (1) is called by
Ginsberg a k-function on O2,

1. Some theorems on strictly increasing functions.

1.1. Theorem. 4 ((w (0, <),—|, (0, <)) = @, for every ordered
set (cf. 0.1, 0.5.2, 0.5.6). There exists no strictly increasing mapping
of the set (w (0, <), —|) into ithe set (0, <); in other words, for any
non-empty ordered set (O,<) and increasing mapping f from
(w O, —]) into (0, <) there exists ¢ well-ordered subset W of (0, <)

* yQuestion. Do there exist two k'-sets E and F such that EXF
is a k-set?« ([1], p. 588.) (if E,F are both simply ordered k-sets, so is
also E X F, this set being ordered by the method of the last differences
([11, p. 587, Theorem 8).
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on which the function § is constant and kW > 1. Symbolically,
A (wO,0)= @, for every (0,<). (. Kurepa [11], théoréme 1)%

Proof. Suppose, on the contrary, that there exists a mapping
f:(wO,—|)— (0, <) such that x—| 2 in wO =) fx<jfx"

Since the void set ¢ is a member of wO satisfying ¢ —|z, for
every non empty set £ < wE, one should have

FO <fx(x<wkE, x5 Q).
Let
x1=f{feo}; then xo <ay; if x2=f{fer},

eo= @, et =ey U {feo} = {Feo}, e2=e; L {fe1} = {f?o-, fei};

assume that 0 <<a<yE and that for every ap << a one has defined
the well-ordered sets e,, and that these sets form an a-chain in
the tree (wO,—), i. e. that £ <<y <<ay=) es—| e,; let us define
eq as €,-1 U {fea—1} or as the union of all the sets e, where (oo <<
<Ca), according as to whether a is of the first kind or of the second
kind. The set e, should be a member of w E; therefore fe, would
be a member of (O, <<). Consequently, for every a<<I'O (for I'O
see. 0.10) one would have the well-ordered set e, such that

a<ﬂ<y0:)ea—[e/;;
therefore, by hypothesis,
a< B <yO =) fe<feg

and the elements
fea (a < 4 O)

would constitute a well-ordered subset of (O, <) of order type y O,
contradicting the definition of I'O as the first ordinal not imbed-
dable into (O, <).

12, Theorem. t (PO, ©), (O,<)) =, (1)
(PO, D), (0, <) =D (cf. 0.1, 0.5). (2)

Proof. As a matter of fact, if f were a member of the set (1),
then the restriction fy of f in the set w O would yield (contrary to
1.1.) a member of }w((O, <), (0, <)), because for sets X, Y <P O,
the relation X —|Y implies X C V.

2 In Mathematical Reviews 17 (1956), 1065, reviewing this paper,
S. Ginsburg writes: »Three results are stated, the first being incorrect
[counterexample: Let E be the negative integers. For each subset S of E
let f(S) = max {x|x in E} —1]«. This example is inadequate for the
situation, because the void set which is a member of w E is omitted; this
example shows that A{(w E,—|), (E <)) &= @ ; here (E, <) may stay for
any inversely ordered set (S. Ginsburg [1], p. 586, Corollary).
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The second part of the theorem is a consequence of the first
part of the theorem and of the fact that every partitive set (PSS, C)
is isomorphic to its dual (P S, D).

1.3. Theorem. If f € 4 (10, O) (where i = w or o), then f{x}>
> x, for no x € O; in particular, if (O, <) is a chain, then J‘{x} <,
for every x < O.

Proof. Suppose on the contrary that f be a strictly increasing
mapping of (w O, —/) into (0, <) and that for some 2y < O one has
xg <f{xg}. Let xy =Ffxy and f{xy, x} = xy, f {x), 21, 2o} = x4, ete.
As in 1.1. one would define, for 0 <o <I'(0, <), the point x,=
=f{x,*,..., %oy ...} 0y <o, which yields the strictly increasing
y-sequence
' 20, X1y - ..y Loy e v (a<<yO),
contradicting the definition of yO.

1.4. Analogously, one proves the following

Theorem. If i< {w,o} and f<4(0,0), then

FY>X3 forno X<10.

The proof is analogous to the proof of Theorem 1.1. (replacing
® by any X €i0O satisfying fX>X. 7

1.5. Theorem. If f<4(wO) and if (O, <) is a left complete
chain and the function fox = f{x} is increasing in (O, <), then the
fixpoints of the function f, constitute a mon empty left complete
ordered set.

The theorem is a consequence of Theorem 1.3. and of the
theorem 1 in D. Kurepa [12].

- 1.6. Theorem. If 'O>w (cf. 0.18), thenT((PgOO ), (0, <) F
+ Q.

Proof It 1s sufficient to consider any 1nf1n1te well- ordered

subset {c,<{¢; <C...} and, for any X & O satisfying

kX <¥,, to put fX— CLX .

1.7. Lemma. If kX <<kO, for every X < wO, then M(Px0 O, <)

As a matter of fact, in this case w (O, <) & Pjo O; consequently,
if f were a strictly increasing mapping of (Pro O, &) into (O, <),
then the restriction of the same mapping on w (0, <) would yield
a member of 4 (w (O, <), (0, <)) contrary to Theorem 1.1.

18. Theorem.
(P (0, <), &), (0, YD UL (PO, <), 2,0, =27. (1)

3 For ordered sets A, B one defines
A<B(=)A<B
A<B{(=)A<B,
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The first summand in (1) is empty because of Theorem 1.1. and
of the inclusion w(0, <) € P(0,<). The second summand in (i}
is empty because the ordered sets (PO, C), (FO, D) are isomorphic
and moreover one has the following:

i81. Lemma. If i is an isomorphism from (O, <) onte
(0,, <)), then

_ (0, <, (0, <) F O (=) $ (0, <), Oy, < NF O
In particular, f < 4 (0, <), (0,, <,)) = fi—1< 4(0,,0,).

. 19. Theorem. Let O be any subset of the set R of real
numbers such that 'O = w, and let O be conditionally complete
(i. e. contains sup X of every bounded subset X of O); then
4(60,0) = Q. In particular, 4 (oR,—]), (R, <)) = O.

The proof is based on the fact that the tree (¢ Re,—|) is not
a union of < %, of its antichains (cf. Kurepa [10?] [9] p. 37, Theorem
2.1) the last proposition is implied by the equality 4 (6Ra, Ra)= @ ;
the last formula was proved in Kurepa [10] p. 89, Theorem 3.1.
and [10%] p. 40, Theorem 3.1; another proof was given by S
Ginsburg ([1], p. 588) . '

- 1.9.1. Now, let us suppose that there exists g strictly increasing
mapping f of ¢ O into O ‘
f<4(c0,0). m

 1.9.2. For any X € 60, let X be the closure of the set X in the
ordered space (0,<)). Then z<00 = zc( 00 and {x,y} © 00

and X —|Y yield X ==| Y, the equality x = y holding if and only
if the point sup X is the last point in the well-ordered set Y; then,
yX is of the second kind.

Flrstly, since X is a non empty well-ordered bounded set, so is
also X: therefore, x - 6O, the set O being, by assumption, condi-
tionally right complete. Furthermore if x —]|y, then sup x ExCy;
if 2 {supzx}= k2 then x=2 U {supa} =y, i. e. =19

Conversely, x = y and x—] y imply that the set y contains no

point > sup x; and since y \x == @ {(because of x—|y), one has
necessarily sup x < y and sup x is the last point in y.

1.9.3. Function g.
For x < 00, let
g(x) = fx, provided I'x is of the first kind, and let

g(x)=Ffxr\ {sup x}, provided I'x is of the second kind
(cf. 0.17; for well-ordered sets W the number I' W coincides with
the order type of W).

One Qhould have g €14(60,0), i e. x,y S w0 Az—|y=
= fe<fy and {fz,fy} T OC.
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Case 5—] y. U Fe, ’'y<1, then g(x) =f@x) <f(y)=gy). It
I' X is of the first kind and I'y of the second kind, then

gr=fz<<f(y\{sup y})=9vy;

here occurs the sign because 5—15 N\ {sup ¥} (2 consequence of
the relations x —]y,—I'x+ I'y > w,). The remaining two cases:
sl NI'y<I I'<II \ I'y<II are discussed in an analogous
way. B :

Case = y. Since x—| y, one has y=x U {sup x}, Fe<1l;
hence, g = f(x N {sup x}) = fly N {sup x}) <f) =g

Consequently, fx <gy.

1.94. If 1 <060 and 'z is of the second kind, then every
immediate successor xt of x is of the form 2 {b} with b <
< OJsup x,-) and g(£+)2g(x U {sup x}) > g ().

Firstly, 7 =2 U {b} secondly,

grt=g@U{d)=fz U P =flx U (P} >fr=gz.

~1.9.5. Now let us conclude and show that there would be a
strictly increasing function from o Ra to Ra, contrarily to Theorem
3.1 in P. Kurepa [10].

For € R, 00 = {y;y< d0 with 6O(-,9) = Q}, let r,(x) be
such that r (¥) €Ra and r,(x) <g(x). For every y<oO with
I'y< I denote by y— the immediate predecessor of y; i. e. for
every such y the point y— is the last one in the set 6 O(-,y); let
0 < a<w, and suppose that on the set 6O (-,0) =1 R0 (§<q)
a strictly increasing function 7, be defined such that it takes values
in the set (O, <) and that

re|60(, &) ((<q) (1)

be an a-sequence of the more and more extending functions; let us
define also functions r,(cO(-, a], extending the functions (1), by
setting, for every x < R,(c0), any member of (O, <) such that

7o -1 {27) < 7o (x} < g (), provided a < (),
g(x) <4 r(x)<<g(x ) {sup x}), provided a< II.

The definition should be possible for every a << w, (= yO); putting
then r(x)}=1rq(x), for every *<R,00 and every a<yoO, one
should have r < 4 (¢(0, <) —|), (Ra, <)).

1.8.6. Let E=100,; then the set 6O would be the union of
the —|-antichains ~ra (X €0); since O € Ra, this would mean
that the set (6 0,—|) is a union of <{w, antichains, thus, the anti-
stellarity of (6 O, —|) would be <¥&,,

—5(00,—|) < %, . (1)
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And this very relation is impossible, the implied relation (1) contra-
dicting Theorem 1.10 which follows. This completes the proof of
Theorem 1.9.

110. Theorem. Let O be a’hy subset of ;70(= Ra= Re) such
that I'O = w,. Then the antistellarity number of the tree (6 C, —|}
is W, , ' '

—5{0 0, —|) = %, (cf. 0.16, 0.12) .

Proof. 1.10.1. At first, the ordered set of rationals is imbed-
dable into (O <) i e.

brder type 7 < order type (0, <) . | (L
We have two cases: '

1.10.2.1. First case kO = w,. Then (1) was proved in D. Kurepa
[8] (p. 146, Theorem 1).

1.10.1.2. Second caszse: kO > N,. In this case
—$00 =¥, (cf. Theorem 1.19).

As a matter of fact, the set Ra (or ifs type %) is similar to a
subset of (O, <), i. e. » is imbeddable into O. In other words, let
O, be the set of all the points x, of (O, <) which are not points of
bilateral accumulation of (O, <); the set O, is countable because
every x, is an extremal point of an interval I (x,) of the set # (=R ¢2j
and such that I(x) (O = {xo}; consequently, the sets Int I(x,)
(x, < O,) are pairwise disjoint; therefore, kO, < ¥N,; this and kO >
>N, 1mp1y that the set O, =0\O0, is of a cardinality > %, and
has no consecutive points. Accordmg to a well-known theorem of
Cantor, this implies that », is imbeddable in O, and a fortiori in O.
Thus, formula (1) is completely proved.

1.10.2. Any isomorphic imbedding of 7, into O implies an
isomorphic imbedding of the tree (67, —|) into the tree (¢ O,—');
therefore, one has

order type (o7, —|) < order type (s O,—|)
and hence, for the antistellarity numbers one has. '
1.10.3. Lemma. —s(on,—|) < s(0 0, —).

1.10.4. Now, in D. Kurepa [10], p. 87, Theorem 2.1 and [11]
p. 37, Theorem 2.1 it was proved that —s (o, —|) = %;. This for-
mula and Lemma 1.10.3. yield. :

Lemma. ~s(cO0—|)>x,.

1.10.5. The antistellartiy number of the tree (s O, ———\) is <§,.
For abreviation, put T = (¢ O, —|) Then, denoting by R, X the set
of all the initial elements of X, one has the followmo* disjoint
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partition of T into antichains R T: -

T=R,T' R, T\ ...=1IRT,
e
where R, T = R, (T \\ U Rt T), for every ordinal O <a.
E<a

Now, certainly R,, = ¢ ; otherwise, if a <R, T, then the
union of the well-ordered subsets X< T(,a) would yield a non-
countable well-ordered set - 17, contradicting a well-known theo-
rem of Cantor.

The two Lemmas 1.10.4, 1.10.5 yield the requested Theorem
1.10. ‘ : :

1.11. On the existence of strlctly increasing functions and
ewerywhere dense subsets.

If there exists a strictly increasing function from (O, <) to
{O0,, <)) and if X, is an everywhere dense subset of (O, <,), does
there exist also a strictly 1ncreasmg function  from (0, <) to
(X,, <,)? Not, necessarily! :

Theorem. There exist ordered sets (O, <), (O, <<,) such
that 1 ((0, <), (0Oy;, <<)))F @ and that for some everywhere dense
part X, of (0,, <)) one has 4 ((0, <), (X;, <)) = @ ; in particular,

t(wRae,—|),R)F @ and {(w (Ra,—]), (Re,<)=0¢. (1)

The last equality being a special case of Theorem 1.1, let us
prove (1); even. a stronger result holds:

1.12. $((PRa, <), (Re, <)) =F O (Sierpinski [13], p. 240)

In fact, let r,, 7,,... be a normal well-ordering of the set Ra;
for xr < Ra, put for = Zr,—2, n satisfying r, <<k; put also f ® =90;
then f is a member of the set in 1.12.

2. Intervention of the antistellarity number —s O (cf. 0.186).

The question of the existence of a strictly increasing mapping
on any (O, <) into 75, or in general into 7, is the subject of the
following theorem.

21. Theorem. For any regular number %, one has
—5(0, <) <=4 (S, <D ;00 ;

in other words, if an ordered set (O, <) is the union of < ¥,
antichains, then there exists a stricly increasing mapping of (O, <)
to (ns, <) (the case 0=0 was proved in D. Kurepa [7], p. 837,
Theorem 1).

2.2. Proof.

2.2.1. Let
A (¢ <a< w,) (1
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be a sequence of pairwise disjoint antichains exhausting the set
(0, <). The case a << w, offering no difficulty, let us consider that
in (1) we have a= w,. Set, for every 0 <» < w,,

F, = ) Ar’; (V’ < 7") ) (2)

we shall define a sequence of one-valued functions f, on F, (v < a)
such that f, be an extension of f,,, for every » <w.

2.2.2. Let W, be any normal well-ordering of 7, ; consequently,
the order type y W», is an initial ordinal > w,. To start with, let
fiF1 =Ry W, (the set formed by the first member of W,). Let
1 <<y <{a and suppose that, for 1 <»<w, and every » <<w, the
following condition K (») holds:

2.2.3. Condition K(#):I' fF,, I fF§ <w, where I'(X,<) is
the first ordinal which is not imbeddable into (X, <)). Let us define
f, on F,. If » is of the second kind, we put, for every ¢ <F,,
fr (@) = f,» (@), where »' <» such that f,(a) be defined. The number
w, being regular, one is aware that the condition K (») holds.

 2.24. If the number » is of the first kind, the function f, shall
extend the function f,-; and coincide in F,_; with f,_1; for a <
< F,\F,_y, let us consider the sets .

fv‘va—l('9a)’fV“1Fv—1 (a‘y')Fv‘i- | A (1)

The condition K (»—1) implies that the first set in (1) is empty
or cofinal to an ordinal number << w,, and that the second set in
(2) is empty or coinitial to the inverse of, an ordinal number < @,;
by the property of 7, one concludes that there exists some member
of 7, located between the two sets (1); the first such point occur-
ring in the well-order W, shall be denoted by f,(a). This means
that the function f,|F, is defined.

2.2.5. Let us prove that the condition K(») holds. But this is
implied by the fact that every non-empty open interval of the
ordered set f, F, contains a point of f,.; F,-1, this resulting from
the definition of f,(e¢) as the first element in the well-ordering
W 5, located between the two sets (1).

2.2.6. By transfinite induction, f, | F, is defined for every
v < w,; putting '

f=supf|F, (<o, (1)

one obtains a requested member of the set 1 (0 ;#,). Of course, the
formula (1) means that Dom f=!{J Dom f,(» <w, and that, for
every x << Dom f, one has fx=f, x, for every » satisfying x < Dom f.

2.277. Now, we have the relation

ke =¢ Y2%7 = n,,
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for o of the first kind, and
2% <, (£ <o),

for o of the second kind (cf. F. Hausdorff [2], p. 180).
Consequently, one has the following.

238. Theorem.
[75(0, Y <X PO, <)y ma) F DY () E <o (=) 2 <y,
for every Ijegular Ns .

2.4. The converse of Theorem 2.1, One might wonder whether
the converse of Theorem 2.1 holds. It is so, provided k 7, = ¥,. As
a matter of fact, it f is a strictly increasing function of (O, <) to
Ms, one has

O=i{)flx (3367]0)‘.

Everyone of these summands being an antichain, the formula yields
that the antistellarity of (O, <) is <%, (it is to be noted that for
every chain L one has 4(0,L) 4= 0 =s0 <kL).

Institute of Mathematics
University of Zagreb
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MONOTONA PRESLIKAVANJA MEDU NEKIM VRSTAMA
UREDENIH SKUPOVA

Puro Kurepa, Zagreb
Sadrzaj

0.2. Skup svih uzlaznih (odnosno strogo uzlaznih) preslikavanja
uredena skupa (O,, <<,) u ureden skup (O,, <<,} oznaluje se sa (1).

0.3. Anélogn_o vrijedi i za strogo uzlazna preslikavanja.

0.6. IO oznacéuje skup svih podéetnih ‘komada uredena skupa
0, <.

0.7."w O (odnosno w’O ili wO) oznaéuje skup svih dobro urede-
nih podskupova od (C, <) pri éemu prazni skup ukljudujemo (isklju-
¢ujemo). w, O (odnosno w', O) dobije se promatrajuéi samo omedene
¢lanove.

0.13. Definicija od 0X,1X je dana odgovaraju¢im formulama
u 0.13.

0.14. Definicija od 0F, 1F, za svaku obitelj F skupova, razabire
se iz formula u 0.14,

12. Teorem. Ne postoji d¢isto uzlazrno preslikavanje od
(w (07 <), —‘I) w (Oa <) .

1.9. Teorem. Neka je O proizvoljan skup realnih brojeva sa
svojstvom I' O = w, i koji sadrZi sup X, za svako omedeno X & O;
tada je $(00,0)= Q.

L10. Teorem. Ako je O podskup skupe R realnih brojeva sa
svojstvom I'O = w, tada vrijedi (1). _

2.1. Tecrem. Svaki regularni broj N, zadovoljava (1); drugim
rije¢ima, ako je ureden skup (O, <) unija od <N, antilanace, toda
postoji Ciste uzlazna funkciju od (O, <) ka (0, <).

(Primljenc 1. I 1964)



