GLASNIK MATEMATIČKO - FIZIČKI I ASTRONOMSKI PERIODICUM MATHEMATICO - PHYSICUM ET ASTRONOMICUM

Đuro Kurepa, Zagreb

Monotone mappings between some kinds of ordered sets

Monotona preslikavanja među nekim vrstama uređenih skupova

Zagreb 1964

MONOTONE MAPPINGS BETWEEN SOME KINDS OF ORDERED SETS

Đuro Kurepa, Zagreb

Dedicated to Professor A. D. Wallace for his 60th birthday

- 0. Introduction.
- (O, <) or simply O, like $(O_1, <_1)$, $(O_2, <_2)$ will denote sets O, O_1, O_2 , ordered (totally or partially) by means of $<, <_1, <_2, \ldots$ respectively.
- **0.1.** If (O_1, \leq_1) and (O_2, \leq_2) are (partially or totally) ordered sets, a mapping f from O_1 to O_2 is said to be increasing (isotone, order preserving) or a member of

$$\uparrow = ((O_1, <_1), (O_2, <_2)) = \{f ; x \in O_1 \Longrightarrow f x_1 \in O_2\},$$

provided

$$\{x,y\}\subseteq O_1 \wedge x \leq_1 y \Longrightarrow fx \leq_2 fy_2;$$

if moreover $x \le_1 y \Rightarrow fx \le_2 fy$, f is said to be strongly or strictly increasing.

0.2. The set of all increasing functions from $(O_1, <_1)$ to $(O_2, <_2)$ is denoted by

$$\uparrow = ((O_1, <_1), (O_2, <_2)) \tag{1}$$

or shorter by $\uparrow = (O_1, O_2)$.

0.3. The set of all strongly increasing functions from $(O_1, <_1)$ to $(O_2, <_2)$ is denoted by

$$\uparrow ((O_1, <_1), (O_2, <_2)) \text{ or } \uparrow (O_1, O_2).$$
 (1)

An important problem is to determine the last set, for given O_1 , O_2 .

0.4. Varying the sets $(O_1, <_1)$, $(O_2, <_2)$, one is varying considerably the sets **0.2**(1) and **0.3**(1). In particular, the problem arises to determine the existence of some member of the set (1) having a certain given property. Among the ordered sets some are quite characteristic, like (PS, \subseteq) , η_{α} , lattices, etc.

Ovaj rad je financirao Savezni fond za naučni rad i Republički fond za naučni rad SRH.

0.5. Partitive sets PS, P'S, P_aS etc.

For any set S one defines $PS = \{X : X \subseteq S\}$, $PS = \{X : O \subseteq X \subseteq S\}$, $PaS = \{X : X \subseteq S \land k : X < a\}$; a is a given cardinal number.

0.6. Left ideals of (O, <). Operator IO.

IO or I(O, <) consists of all the initial section or left ideals of (O, <); in other words

$$X \leq I(O, \leq) \langle = \rangle X \subseteq O \land (X = \emptyset \lor x \leq X \Longrightarrow) O(\cdot, x) \subseteq X),$$

where

$$O(\cdot,x] = \{y ; y \in O \land y \leq x\}.$$

Then one has the graphs or diagrams $(I(O, <), \subseteq)$ and $(I(O, <), \supseteq)$.

0.7. The set w(O, <) (resp. w'(O, <) or $\omega(O, <)$) consists of all the well-ordered subsets of (O, <), the empty set ϕ being included (being not included).

0.8. $w'_0 = \sigma(O, <) = \{x \; ; \; x \leq w \; (O, <) \land x \neq \emptyset, x \text{ is bounded in } (O, <)\}.$

0.9. $w_0(O, <) = \{x ; x \text{ is a well-ordered bounded subset of } (O, <)\}.$

0.10. The operators L, L_0, L', L'_0 .

L(O, <) consists of all the chains of (O, <),

L' consists of all the non empty members of L(O,<),

 L_b consists of all the bounded members of L(O,<),

 L_b consists of all the non empty bounded members of L(O, <).

0.11. Operators -L, $-L_b$, -L', $-L'_b$ (anti L, anti L', etc.).

The definition is obtained from Section 0.10 by replacing chains by antichains.

0.12. Relations —, —. Relations —, —.

For sequences or ordered sets A, B the relation A - B or B - A means that A is a proper initial section of B; we set

$$A = |B \langle = \rangle A = B \wedge A - |B|$$

Thus, for a given (O, <), we have the ordered sets (X(O, <), -|), for the operators $X \in \{w, w_0, w', w'_0, L, L_0, L', L'_0\}$.

Instead of w'_0 , we wrote previously σ . All these sets are trees.

0.13. Left ideal closure. Right ideal closure.

For $X \subseteq (0, <)$, let

$$0 X = \bigcup_{x} O(\cdot, x], (x \leqslant X); 0 \emptyset = \emptyset,$$

 $1 X = \bigcup_{x} O[x, \cdot), (x \leqslant X); 1 \emptyset = \emptyset.$

Consequently, 0X (resp. 1X) is the minimal initial (terminal) section of (O, \leq) containing the set X.

0.14. For any family F of sets \subseteq (0, <) we put

$$0F = \{0X; X \le F\},\$$

 $1F = \{1X; X \le F\}.$

In particular we have the diagrams

$$(0 \ w \ (O, <), \subseteq), (0 \ L \ (O, <), \subseteq), (0 \ \sigma \ (O, <), \subseteq), (0 \ A \ (O, <), \subseteq), \text{ etc.}$$

- **0.15.** Stellarity number $s(O, <) = \inf\{kF; F \text{ being composed of chains } \subseteq (O, <) \text{ and } \bigcup_{X \in F} X = O\}.$
- **0.16.** Antistellarity number $\neg s(O, <) = a(O, <) = \inf\{k F; F \subseteq A(O, <) \land \bigcup F = O\}.$
 - **0.17.** Number $\Gamma(O, \leq)$.

The first ordinal number, which is not imbeddable in (O, \leq) , is denoted by $\Gamma(O, \leq)$ or $\Gamma(O, \leq)$

0.18. The consideration of the sets $(wO, -|), \uparrow ((wO, \rightarrow)(O, <))$ was initiated by the present author who proved in particular that $\uparrow (\sigma X, X) = \emptyset$, for $R \in \{Ra, Re\}$; the topic was then studied by S. Ginsburg [1] (Theorem 10) who proved in particular that $\uparrow i(O, \rightarrow), (O, <) = \emptyset$, for every infinite totally ordered group (O, <) and for $i = \omega$; if moreover (O, <) is a totally ordered field, then one could write also $i = \sigma$.

An ordered set (O, <) is called by Ginsburg a k-set or a k'-set according as to whether the set

$$\uparrow ((w O, -|, (O, <)) \tag{1}$$

is empty or non-empty; every member of the set (1) is called by Ginsberg a k-function on O^1 .

- 1. Some theorems on strictly increasing functions.
- 1.1. Theorem. \uparrow ((w (O, <), —|, (O, <)) = \emptyset , for every ordered set (cf. 0.1, 0.5.2, 0.5.6). There exists no strictly increasing mapping of the set (w (O, <), —|) into the set (O, <); in other words, for any non-empty ordered set (O, <) and increasing mapping f from (w O, —|) into (O, <) there exists a well-ordered subset W of (O, <)

¹ »Question. Do there exist two k'-sets E and F such that $E \times F$ is a k-set?« ([1], p. 588.) (if E, F are both simply ordered k-sets, so is also $E \times F$, this set being ordered by the method of the last differences ([1], p. 587, Theorem 8).

on which the function f is constant and kW > 1. Symbolically, $\uparrow(wO, O) = \emptyset$, for every (O, <). (D. Kurepa [11], théorème 1)².

Proof. Suppose, on the contrary, that there exists a mapping $f:(wO,-|) \to (O,<)$ such that x-|x'| in wO=> fx < fx'.

Since the void set ϕ is a member of wO satisfying $\phi - |x$, for every non empty set $x \leq wE$, one should have

$$f \phi < f x (x \leq w E, x \neq \phi)$$
.

Let

$$x_1 = f\{fe_0\}$$
; then $x_0 < x_1$; if $x_2 = f\{fe_1\}$, $e_0 = \emptyset$, $e_1 = e_0 \cup \{fe_0\} = \{fe_0\}$, $e_2 = e_1 \cup \{fe_1\} = \{fe_0, fe_1\}$;

assume that $0 < \alpha < \gamma E$ and that for every $\alpha_0 < \alpha$ one has defined the well-ordered sets e_{α_0} and that these sets form an α -chain in the tree $(w \, O, -|)$, i. e. that $\xi < \eta < \alpha_0 \Longrightarrow e_{\xi} -|e_{\eta}$; let us define e_{α} as $e_{\alpha-1} \cup \{fe_{\alpha-1}\}$ or as the union of all the sets e_{α_0} , where $(\alpha_0 < < \alpha)$, according as to whether α is of the first kind or of the second kind. The set e_{α} should be a member of $w \, E$; therefore fe_{α} would be a member of (O, <). Consequently, for every $\alpha < \Gamma O$ (for ΓO see. 0.10) one would have the well-ordered set e_{α} such that

$$\alpha < \beta < \gamma O \Longrightarrow e_{\alpha} - |e_{\beta};$$

therefore, by hypothesis,

$$\alpha < \beta < \gamma O \Longrightarrow fe < fe_{\beta}$$

and the elements

$$fe_{\alpha} \quad (\alpha < \gamma O)$$

would constitute a well-ordered subset of (O, <) of order type γO , contradicting the definition of ΓO as the first ordinal not imbeddable into (O, <).

1.2. Theorem.
$$\uparrow ((PO, \subseteq), (O, \leq)) = \emptyset$$
, (1)

↑ (PO,
$$\supset$$
), (O, $<$)) = ϕ (cf. **0.1, 0.5**). (2)

Proof. As a matter of fact, if f were a member of the set (1), then the restriction f_0 of f in the set w O would yield (contrary to 1.1.) a member of $\uparrow w$ ((0, <), (0, <)), because for sets $X, Y \in P$ O, the relation $X \longrightarrow Y$ implies $X \subseteq Y$.

² In Mathematical Reviews 17 (1956), 1065, reviewing this paper, S. Ginsburg writes: "Three results are stated, the first being incorrect [counterexample: Let E be the negative integers. For each subset S of E let $f(S) = \max\{x \mid x \text{ in } E\} - 1$]". This example is inadequate for the situation, because the void set which is a member of ωE is omitted; this example shows that $\uparrow((\omega E, -|), (E <)) \neq \emptyset$; here (E, <) may stay for any inversely ordered set (S. Ginsburg [1], p. 586, Corollary).

The second part of the theorem is a consequence of the first part of the theorem and of the fact that every partitive set (PS, \subseteq) is isomorphic to its dual (PS, \supseteq) .

1.3. Theorem. If $f \in \uparrow$ (iO, O) (where $i = \omega$ or o), then $f\{x\} > x$, for no $x \in O$; in particular, if (O, <) is a chain, then $f\{x\} \leq x$, for every $x \in O$.

Proof. Suppose on the contrary that f be a strictly increasing mapping of $(\omega O, -|)$ into (O, <) and that for some $x_0 \le O$ one has $x_0 \le f\{x_0\}$. Let $x_1 = fx_0$ and $f\{x_0, x_1\} = x_2$, $f\{x_0, x_1, x_2\} = x_3$, etc. As in 1.1. one would define, for $0 \le \alpha \le \Gamma(O, <)$, the point $x_\alpha = f\{x_0, x_1, \ldots, x_{\alpha_0} \ldots\}$ $\alpha_0 \le \alpha$, which yields the strictly increasing γ -sequence

$$x_0, x_1, \ldots, x_{\alpha}, \ldots \quad (\alpha < \gamma O)$$

contradicting the definition of γO .

1.4. Analogously, one proves the following Theorem. If $i \in \{w, \sigma\}$ and $f \in \uparrow (iO, O)$, then

$$fY > X^3$$
 for no $X \le iO$.

The proof is analogous to the proof of Theorem 1.1. (replacing ϕ by any $X \le i O$ satisfying fX > X.

1.5. Theorem. If $f \in \uparrow (\omega O)$ and if (O, <) is a left complete chain and the function $f_0 x = f\{x\}$ is increasing in (O, <), then the fixpoints of the function f_0 constitute a non empty left complete ordered set.

The theorem is a consequence of Theorem 1.3. and of the theorem 1 in D. Kurepa [12].

1.6. Theorem. If $\Gamma O > \omega$ (cf. 0.18), then $\uparrow ((P_{\aleph 0} O, \subseteq), (O, <)) \neq \emptyset$.

Proof. It is sufficient to consider any infinite well-ordered subset $\{c_0 < c_1 < \ldots\}$ and, for any $X \subseteq O$ satisfying

$$kX < \aleph_0$$
, to put $fX = c_{kX}$.

1.7. Lemma. If kX < kO, for every $X \le wO$, then $\uparrow ((P_{kO}O, \subseteq) (O, \le)) = \emptyset$.

As a matter of fact, in this case $w(O, \leq) \subseteq P_{kO}O$; consequently, if f were a strictly increasing mapping of $(P_{kO}O, \subseteq)$ into (O, <), then the restriction of the same mapping on w(O, <) would yield a member of $\uparrow (w(O, <), (O, <))$ contrary to Theorem 1.1.

1.8. Theorem.

$$\uparrow ((P(O, <), \subseteq), (O, <)) \cup \uparrow ((P(O, <), \supseteq), (O, <))) = \emptyset. \tag{1}$$

$$A < B \iff \dot{A} \leq \dot{B}$$

 $A < B \iff \dot{A} \leq \dot{B}$.

³ For ordered sets A, B one defines

The first summand in (1) is empty because of Theorem 1.1. and of the inclusion $w(O, <) \subseteq P(O, <)$. The second summand in (1) is empty because the ordered sets (PO, \subseteq) , (PO, \supseteq) are isomorphic and moreover one has the following:

1.8.1. Lemma. If i is an isomorphism from (O, <) onto $(O_1, <_1)$, then

$$\uparrow ((O, <), (O_2, <_2)) \neq \emptyset \langle = \rangle \uparrow ((O, <), (O_2, <_2)) \neq \emptyset.$$

In particular, $f \in \uparrow ((O, <), (O_2, <_2)) \Rightarrow fi^{-1} \in \uparrow (O_1, O_2)$.

1.9. Theorem. Let O be any subset of the set R of real numbers such that $\Gamma O = \omega_1$ and let O be conditionally complete (i. e. contains sup X of every bounded subset X of O); then $\uparrow (\sigma O, O) = \emptyset$. In particular, $\uparrow ((\sigma R, -|), (R, <)) = \emptyset$.

The proof is based on the fact that the tree $(\sigma Ra, -|)$ is not a union of $\leq \aleph_0$ of its antichains (cf. Kurepa [10^a] [9] p. 37, Theorem **2.1**) the last proposition is implied by the equality $\uparrow (\sigma Ra, Ra) = \emptyset$; the last formula was proved in Kurepa [10] p. 89, Theorem **3.1**. and [10^a] p. 40, Theorem **3.1**; another proof was given by S. Ginsburg ([1], p. 588)

1.9.1. Now, let us suppose that there exists a strictly increasing mapping f of σO into O

$$f \leqslant \uparrow (\sigma O, O)$$
. (1)

1.9.2. For any $X \in \sigma O$, let \overline{X} be the closure of the set X in the ordered space (O, \leq) . Then $x \in O O \Rightarrow \overline{x} \in \sigma O$ and $\{x, y\} \subseteq \sigma O$ and X = |Y| yield $\overline{X} = |\overline{Y}|$, the equality $\overline{x} = \overline{y}$ holding if and only if the point sup X is the last point in the well-ordered set Y; then, γX is of the second kind.

Firstly, since X is a non empty well-ordered bounded set, so is also \overline{X} ; therefore, $\overline{x} \subseteq \sigma O$, the set O being, by assumption, conditionally right complete. Furthermore, if x = |y|, then $\sup x \leq \overline{x} \subseteq \overline{y}$; if $x \cup \{\sup x\} = y$, then $\overline{x} = \overline{x} \cup \{\sup x\} = \overline{y}$, i. e. $\overline{x} = \overline{y}$.

Conversely, $\overline{x} = \overline{y}$ and x - |y| imply that the set y contains no point $> \sup x$; and since $y \setminus x \neq \phi$ (because of x - |y|), one has necessarily $\sup x \leq y$ and $\sup x$ is the last point in y.

1.9.3. Function g.

For $x \leqslant \sigma O$, let

g(x) = fx, provided Γx is of the first kind, and let

 $g(x) = fx \setminus \{\sup x\}$, provided Γx is of the second kind (cf. 0.17; for well-ordered sets W the number ΓW coincides with the order type of W).

One should have
$$g \in \uparrow (\sigma O, O)$$
, i. e. $x, y \in w O \land x - | y \Rightarrow fx < fy$ and $\{fx, fy\} \subseteq O$.

Case $\overline{x} - |\overline{y}$. If Γx , $\Gamma y \in I$, then $g(x) = f(\overline{x}) < f(\overline{y}) = g(y)$. If ΓX is of the first kind and Γy of the second kind, then

$$gx = f\overline{x} < f(\overline{y} \setminus \{\sup y\}) = gy;$$

here occurs the sign because $x-|y| < \sup y$ (a consequence of the relations $x-|y,-\Gamma x+\Gamma y \ge \omega_0$). The remaining two cases: $\Gamma x \in II \land \Gamma y \in I$, $\Gamma x \in II \land \Gamma y \in II$ are discussed in an analogous way.

Case x = y. Since x - | y, one has $y = x \cup \{\sup x\}$, $\Gamma x \in H$; hence, $gx = f(x \setminus \{\sup x\}) = f(y \setminus \{\sup x\}) < f(y) = g(y)$.

Consequently, fx < gy.

1.9.4. If $x \in \sigma O$ and Γx is of the second kind, then every immediate successor x^+ of x is of the form $x \cup \{b\}$ with $b \in O[\sup x, \cdot)$ and $g(x^+) \ge g(x \cup \{\sup x\}) > g(x)$.

Firstly, $x^+ = x \cup \{b\}$; secondly,

$$gx^+ = g(x \cup \{b\}) = f\overline{x \cup \{b\}}) = f(\overline{x} \cup \{b\}) > f\overline{x} = gx$$
.

1.9.5. Now let us conclude and show that there would be a strictly increasing function from $\sigma R a$ to R a, contrarily to Theorem 3.1 in D. Kurepa [10].

For $x \in R_0$ $\sigma O = \{y \, ; \, y \in \sigma O \text{ with } \sigma O(\cdot \, , \, y) = \emptyset \}$, let $r_0(x)$ be such that $r_0(x) \in Ra$ and $r_0(x) < g(x)$. For every $y \in \sigma O$ with $\Gamma y \in I$ denote by y^- the immediate predecessor of y; i. e. for every such y the point y^- is the last one in the set $\sigma O(\cdot \, , \, y)$; let $0 < \alpha < \omega_1$ and suppose that on the set $\sigma O(\cdot \, , \, \alpha) = \bigcup R_\xi \sigma O(\xi < \alpha)$ a strictly increasing function r_α be defined such that it takes values in the set (O, <) and that

$$r_{\xi} \mid \sigma O(\cdot, \xi) \quad (\xi < \alpha)$$
 (1)

be an α -sequence of the more and more extending functions; let us define also functions $r_{\alpha}(\sigma O(\cdot, \alpha])$, extending the functions (1), by setting, for every $x \in R_{\alpha}(\sigma O)$, any member of (O, <) such that

$$r_{\alpha-1}(x^-) < r_{\alpha}(x) < g(x)$$
, provided $\alpha \in (I)$, $g(x) < \uparrow r_{\alpha}(x) < g(x) \cup \{\sup x\}$, provided $\alpha \in II$.

The definition should be possible for every $\alpha < \omega_1 (= \gamma O)$; putting then $r(x) = r_\alpha(x)$, for every $x \in R_\alpha \sigma O$ and every $\alpha < \gamma \sigma O$, one should have $r \in \uparrow (\sigma(O, <) - |), (R \alpha, <))$.

1.9.6. Let $E = r \circ O$; then the set σO would be the union of the —|-antichains $\neg rx$ $(X \leqslant O)$; since $O \subseteq Ra$, this would mean that the set $(\sigma O, -|)$ is a union of $\leq \aleph_0$ antichains, thus, the antistellarity of $(\sigma O, -|)$ would be $\leq \aleph_0$,

$$\neg s (\sigma O, -|) \leq \aleph_0. \tag{1}$$

And this very relation is impossible, the implied relation (1) contradicting Theorem 1.10 which follows. This completes the proof of Theorem 1.9.

1.10. Theorem. Let O be any subset of $\overline{\eta}_0$ (= $\overline{R}a = Re$) such that $\Gamma O = \omega_1$. Then the antistellarity number of the tree (σO , —) is \aleph_1 ,

 $-s(\sigma O, -1) = \aleph_1(\text{cf. 0.16}, 0.12)$.

Proof. 1.10.1. At first, the ordered set of rationals is imbeddable into (O, \leq) i. e.

order type
$$\eta \leq$$
 order type $(O, <)$. (1)

We have two cases:

1.10.1.1. First case: $kO = \aleph_0$. Then (1) was proved in D. Kurepa [8] (p. 146, Theorem 1).

1.10.1.2. Second case: $kO > \aleph_0$. In this case

$$-s \sigma O = \aleph_1$$
 (cf. Theorem 1.10).

As a matter of fact, the set Ra (or its type η) is similar to a subset of (O, <), i. e. η is imbeddable into O. In other words, let O_0 be the set of all the points x_0 of (O, <) which are not points of bilateral accumulation of (O, <); the set O_0 is countable because every x_0 is an extremal point of an interval $I(x_0)$ of the set $\overline{\eta}$ (= Re) and such that $I(x_0) \cap O = \{x_0\}$; consequently, the sets Int $I(x_0)$ ($x_0 < O_0$) are pairwise disjoint; therefore, $k O_0 \leq x_0$; this and $k O > x_0$ imply that the set $O_1 = O \setminus O_0$ is of a cardinality $\geq x_1$ and has no consecutive points. According to a well-known theorem of Cantor, this implies that η_0 is imbeddable in O_1 and a fortiori in O. Thus, formula (1) is completely proved.

1.10.2. Any isomorphic imbedding of η_0 into O implies an isomorphic imbedding of the tree $(\sigma \eta, -|)$ into the tree $(\sigma O, -|)$; therefore, one has

order type
$$(\sigma \eta, -|) \leq \text{order type } (\sigma O, -|)$$

and hence, for the antistellarity numbers one has.

1.10.3. Lemma.
$$-s(\sigma \eta, -|) \le -s(\sigma O, -|)$$
.

1.10.4. Now, in D. Kurepa [10], p. 87, Theorem 2.1 and [11] p. 37, Theorem 2.1 it was proved that $\neg s(\sigma \eta, -|) = \aleph_1$. This formula and Lemma 1.10.3. yield.

Lemma.
$$\neg s(\sigma O - |) \ge \aleph_1$$
.

1.10.5. The antistellartiy number of the tree $(\sigma O, -|)$ is $\leq x_1$. For abreviation, put $T = (\sigma O, -|)$. Then, denoting by $R_0 X$ the set of all the initial elements of X, one has the following disjoint

partition of T into antichains $R_{\xi} T$:

$$T = R_0 T \cup R_1 T \cup \ldots = \bigcup_{\xi} R_{\xi} T$$
,

where $R_{\alpha}T = R_0 (T \setminus \bigcup_{\xi < \alpha} R_{\xi} T)$, for every ordinal $O < \alpha$.

Now, certainly $R_{\omega_1}=\emptyset$; otherwise, if $a\leqslant R_{\omega_1}T$, then the union of the well-ordered subsets $X\leqslant T(\cdot,a)$ would yield a non-countable well-ordered set $\subseteq\overline{\eta}$, contradicting a well-known theorem of Cantor.

The two Lemmas 1.10.4, 1.10.5 yield the requested Theorem 1.10.

1.11. On the existence of strictly increasing functions and ewerywhere dense subsets.

If there exists a strictly increasing function from (O, <) to $(O_1, <_1)$ and if X_1 is an everywhere dense subset of $(O_1, <_1)$, does there exist also a strictly increasing function from (O, <) to $(X_1, <_1)$? Not, necessarily!

Theorem. There exist ordered sets (O, <), $(O_1, <_1)$ such that $\uparrow ((O, <), (O_1, <_1)) \neq \emptyset$ and that for some everywhere dense part X_1 of $(O_1, <_1)$ one has $\uparrow ((O, <), (X_1, <_1)) = \emptyset$; in particular,

$$\uparrow ((w R a, -|), R e) \neq \emptyset \quad and \quad \uparrow ((w (R a, -|), (R a, <)) = \emptyset . \tag{1}$$

The last equality being a special case of Theorem 1.1, let us prove (1); even a stronger result holds:

1.12.
$$\uparrow$$
 ((PRa , \subseteq), (Re , $<$)) $\neq \phi$ (Sierpiński [13], p. 240).

In fact, let r_1, r_2, \ldots be a normal well-ordering of the set Ra; for $x_k \leq Ra$, put $fx_k = \sum r_n^{-2}$, n satisfying $r_n < k$; put also $f \phi = 0$; then f is a member of the set in 1.12.

2. Intervention of the antistellarity number -s O(cf. 0.16).

The question of the existence of a strictly increasing mapping on any (O, <) into η_0 or in general into η_σ is the subject of the following theorem.

2.1. Theorem. For any regular number \aleph_{σ} one has

$$\neg s (O, <) \leq \aleph_{\sigma} \Rightarrow \uparrow ((S, <); \eta_{\sigma});$$

in other words, if an ordered set (O, <) is the union of $\leq \aleph_{\sigma}$ antichains, then there exists a strictly increasing mapping of (O, <) to $(\eta_{\sigma}, <)$ (the case $\sigma = O$ was proved in D. Kurepa [7], p. 837, Theorem 1).

2.2. Proof.

2.2.1. Let

$$A_{\xi} (\xi < \alpha \leq \omega_{\sigma}) \tag{1}$$

be a sequence of pairwise disjoint antichains exhausting the set (O, <). The case $\alpha < \omega_{\sigma}$ offering no difficulty, let us consider that in (1) we have $\alpha = \omega_{\sigma}$. Set, for every $0 < \nu < \omega_{\sigma}$,

$$F_{\nu} = \bigcup A_{\nu'}, (\nu' < \nu); \tag{2}$$

we shall define a sequence of one-valued functions f_{ν} on $F_{\nu}(\nu < a)$ such that f_{ν} be an extension of f_{ν} , for every $\nu' < \nu$.

- **2.2.2.** Let $W\eta_{\sigma}$ be any normal well-ordering of η_{σ} ; consequently, the order type $\gamma W\eta_{\sigma}$ is an initial ordinal $\geq \omega_{\sigma}$. To start with, let $f_1 F_1 = R_0 W \eta_{\sigma}$ (the set formed by the first member of $W\eta_{\sigma}$). Let $1 < \nu < \alpha$ and suppose that, for $1 < \nu < \omega_{\sigma}$ and every $\nu' < \nu$, the following condition $K(\nu')$ holds:
- **2.2.3.** Condition $K(\nu'): \Gamma f F_{\nu'}, \Gamma f F_{\nu'}^*, < \omega_o$, where $\Gamma(X, <)$ is the first ordinal which is not imbeddable into (X, <). Let us define f_{ν} on F_{ν} . If ν is of the second kind, we put, for every $a \leq F_{\nu}$, $f_{\nu}(a) = f_{\nu'}(a)$, where $\nu' < \nu$ such that $f_{\nu}(a)$ be defined. The number ω_o being regular, one is aware that the condition $K(\nu)$ holds.
- 2.2.4. If the number ν is of the first kind, the function f_{ν} shall extend the function $f_{\nu-1}$ and coincide in $F_{\nu-1}$ with $f_{\nu-1}$; for $a \in F_{\nu} \setminus F_{\nu-1}$, let us consider the sets

$$f_{\nu-1} F_{\nu-1} (\cdot, a), f_{\nu-1} F_{\nu-1} (a, \cdot) F_{\nu-1}.$$
 (1)

The condition $K(\nu-1)$ implies that the first set in (1) is empty or cofinal to an ordinal number $<\omega_{\sigma}$, and that the second set in (2) is empty or coinitial to the inverse of an ordinal number $<\omega_{\sigma}$; by the property of η_{σ} one concludes that there exists some member of η_{σ} located between the two sets (1); the first such point occurring in the well-order $W\eta_{\sigma}$ shall be denoted by $f_{\nu}(a)$. This means that the function $f_{\nu} \mid F_{\nu}$ is defined.

- 2.2.5. Let us prove that the condition $K(\nu)$ holds. But this is implied by the fact that every non-empty open interval of the ordered set f_{ν} F_{ν} contains a point of $f_{\nu-1}$ $F_{\nu-1}$, this resulting from the definition of $f_{\nu}(a)$ as the first element in the well-ordering $W \eta_{\sigma}$ located between the two sets (1).
- 2.2.6. By transfinite induction, $f_r \mid F_r$ is defined for every $\nu < \omega_1$; putting

$$f = \sup f_{\nu} \mid F_{\nu} \quad (\nu < \omega_{\sigma}), \qquad (1)$$

one obtains a requested member of the set \uparrow $(O; \eta_o)$. Of course, the formula (1) means that Dom $f = \bigcup$ Dom f_v $(v < \omega_o)$ and that, for every $x \in$ Dom f, one has $fx = f_v x$, for every v satisfying $x \in$ Dom f.

2.2.7. Now, we have the relation

$$k \eta_{\sigma} = \aleph_{\sigma} \langle \rangle 2^{\aleph \sigma - 1} = \aleph_{\sigma},$$

for σ of the first kind, and

$$2^{\aleph\xi} \leq \aleph_{\sigma}(\xi < \sigma),$$

for σ of the second kind (cf. F. Hausdorff [2], p. 180).

Consequently, one has the following.

2.3.8. Theorem.

$$[\neg s(O, <) \le \aleph_{\sigma} (=) \uparrow ((O, <), \eta_{\sigma}) \neq \emptyset] (=) \xi < \sigma (=) 2\aleph_{\xi} \le \aleph_{\sigma},$$

for every regular \aleph_{σ} .

2.4. The converse of Theorem 2.1. One might wonder whether the converse of Theorem 2.1 holds. It is so, provided $k \eta_{\sigma} = \aleph_{\sigma}$. As a matter of fact, it f is a strictly increasing function of (O, <) to η_{σ} , one has

$$O = \bigcup_{x} f^{-1} x \qquad (x \leqslant \eta \ \sigma) \ .$$

Everyone of these summands being an antichain, the formula yields that the antistellarity of (O, <) is $\leq \aleph_a$ (it is to be noted that for every chain L one has $\uparrow (O, L) \neq \emptyset \Rightarrow s O \leq k L$).

Institute of Mathematics University of Zagreb

BIBLIOGRAPHY:

- [1] S. Ginsburg, On mapping from the family of well ordered subsets of a set, Pacific. J. Math. 6 (1956), 583—589,
- [2] F. Hausdorff, Grundzüge der Mengenlehre, 1914, VI + 476,
- [3] D. Kurepa, Ensembles ordonnés et ramifiés, Thèse, Paris, 1935; Publ. math. Belgrade 4 (1935), 1—138,
- [4] D. Kurepa, O poredbenim relacijama, Rad Jugosl. Akad. Znan. Umjetn. 201 (81) (1938), 187—219,
- [5] D. Kurepa, Sur les relations d'ordre, Bull. Internat. Acad. Zagreb, 32 (1939), 66-76,
- [6] D. Kurepa, Transformations monotones des ensembles partiellement ordonnés, Comptes rendus, Paris, 205 (1937), 1033—1035,
- [7] D. Kurepa, Transformations monotones des ensembles partiellement ordonnés, Revista da Ciencias, № 434, 42 (1940), 827—846; № 437, 43 (1941), 483—500,
- [8] D. Kurepa, Sur les ensembles ordonnés dénombrables, Glasnik Mat.-Fiz. Astr. 3 (1948), 145—151,
- [9] D. Kurepa, Ensembles partiellement ordonnés et ensembles partiellement bien ordonnés, Publ. Inst. Math. Acad. Sci. Belgrade, 3 (1950), 119—125,
- [10] D. Kurepa, O realnim funkcijama u obitelji uređenih skupova racionalnih brojeva, Rad Jugosl. Akad. Znan. Umjetn. 296 (1953), 85—93,
- [10^a] D. Kurepa, Sur les fonctions réelles dans la famille des ensembles bien ordonnés de nombres rationells, Bull. Int. Acad. Sci. Yougoslave, Zagreb, 4 (1954), 35—42,

- [11] D. Kurepa, Fonctions croissantes dans la famille des ensembles bien ordonnés linéaires, Bulletin Scientifique, Yougoslavie, 2 (1954), No. 1, p. 9,
- [12] D. Kurepa, Fixpoints of monotone mappings of ordered sets, Glasnik Mat.-Fiz. Astr. 19 (1964), 167—173,
- [13] W. Sierpiński, Sous-ensembles d'un ensemble dénombrable, Enseignement Mathématique 30 (1931), 240—242.

MONOTONA PRESLIKAVANJA MEĐU NEKIM VRSTAMA UREĐENIH SKUPOVA

Đuro Kurepa, Zagreb

Sadržaj

- 0.2. Skup svih uzlaznih (odnosno strogo uzlaznih) preslikavanja uređena skupa $(O_1, <_1)$ u uređen skup $(O_2, <_2)$ označuje se sa (1).
 - 0.3. Analogno vrijedi i za strogo uzlazna preslikavanja.
- **0.6.** IO označuje skup svih početnih komada uređena skupa (O, <).
- 0.7. wO (odnosno w'O ili ωO) označuje skup svih dobro uređenih podskupova od (O, <) pri čemu prazni skup uključujemo (isključujemo). w_0O (odnosno w'_0O) dobije se promatrajući samo omeđene članove.
- **0.13.** Definicija od 0X, 1X je dana odgovarajućim formulama u **0.13**.
- **0.14.** Definicija od 0F, 1F, za svaku obitelj F skupova, razabire se iz formula u **0.14.**
- 1.1. Teorem. Ne postoji čisto uzlazno preslikavanje od (w(O, <), -|) u(O, <).
- 1.9. Teorem. Neka je O proizvoljan skup realnih brojeva sa svojstvom $\Gamma O = \omega_1$ i koji sadrži sup X, za svako omeđeno $X \subseteq O$; tada je $\uparrow (\sigma O, O) = \emptyset$.
- 1.10. Teorem. Ako je O podskup skupa R realnih brojeva sa svojstvom $\Gamma O = \omega_1$ tada vrijedi (1).
- **2.1.** Teorem. Svaki regularni broj \aleph_{σ} zadovoljava (1); drugim riječima, ako je uređen skup (O, <) unija od $\leq \aleph_{\sigma}$ antilanaca, tada postoji čisto uzlazna funkcija od (O, <) ka $(\eta_{\sigma}, <)$.

(Primljeno 1. II 1964.)