The last Fermat's theorem

Slaviša B · Prešić

Abstract. In this paper we in a simple way prove the last Fermat's theorem.

The last Fermat's theorem says that there are no $a, b, c \in N$ such that the equality

(Fermat)
$$a^n + b^n = c^n$$
, where $n > 2$

is satisfied.

We can write (Fermat) in the following way

$$(*_1)$$
 $a^n + (a + \alpha)^n = (a + \alpha + \beta)^n$, where $n > 2$

where α , $\beta > 1$ are some integers. To prove that $(*_1)$ is impossible we shall use the following polynomial Φ_n :

$$\Phi_n(x) = (x + \alpha + \beta)^n - (x + \alpha)^n - x^n$$

where n denotes its degreee. For the first derivative we have

$$\Phi'_n(x) = n(x + \alpha + \beta)^{(n-1)} - n(x + \alpha)^{n-1} - nx^{n-1}$$

The polynomials $\Phi_n(x)$, $\Phi'_n(x)$ are relatively prime. In the contrary case for some $c \in N$ we must have the equality $\Phi'_n(c) = 0$. Continuing such reasoning we can conclude that the polynomials

$$(3-2)$$
 $(x+\alpha+\beta)^3-(x+\alpha)^3-x^3, (x+\alpha+\beta)^2-(x+\alpha)^2-x^2$

have the factor x-c. In an elementar way we can see that it is impossible. So, we have proved that polynomials $\Phi_n(x)$, $\Phi'_n(x)$ are relatively prime.

Consequently for some polynomials P(x), Q(x), whose degrees are less than n, we have the following equality

$$(*_2)$$
 $P(x)\Phi_n(x) + Q(x) \Phi'_n(x) = 1$

Suppose that $(*_1)$ has at least one solution, and that x obtains some value c. We may suppose that the degrees of polynomials $P(x)\Phi(x)$, $Q(x)\Phi'(x)$ are less than n-1. Then from $(*_2)$ we obtain the following equality

$$(*_3) Q(c) \Phi'_n(c) = 1$$

Denote by $\Phi_{n-1}(x)$ the polynomial Q(x) $\Phi'_n(x) - 1$. So we have the following step:

(Step from n to n-1) If c satisfies the equation $\Phi_n(c) = 0$, then c satisfies the equation $\Phi_{n-1}(c) = 0$.

In this step we passed from $\Phi_n(c) = 0$ to $\Phi_{n-1}(c) = 0$.

Of course, in a similar way we can introduce polynomials $\Phi_{n-1}(x)$, $\Phi_{n-2}(x)$, \cdots , $\Phi_3(x)$ such that the following equalities

$$\Phi_{n-1}(c) = 0, \quad \Phi_{n-1}(c) = 0, \quad \cdots, \quad \Phi_3(c) = 0$$

are satisfied. But the equality $\Phi_3(c) = 0$ is impossible. That means that we have obtained a contradiction. Thus, the equation $(*_1)$, i. e. (k'ermat) is impossible. The last Fermat's theorem is proved.