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We establish transport relations for integrals over evolving fluid interfaces. These
relations make it possible to localize integral balance laws over non-material interfaces
separating fluid phases and, therefore, obtain associated interface conditions in
differential form.

1. Introduction
In formulating integral balance laws for a non-material evolving interface S(t)

separating two fluid phases, one often encounters terms of the form

d

dt

∫
A(t)

ϕ(x, t) da, (1.1)

with ϕ(x, t) a surface field on S(t), and A(t) an arbitrary evolving subsurface of S(t).
To obtain the local differential consequences of such laws necessitates an appropriate
transport relation. We here establish such relations.

In applications of our results, the surface field under consideration would generally –
but not always – represent a surface excess field associated with a bulk quantity such
as internal energy, entropy, or concentration. There is a large literature on limiting
processes leading from bulk fields to surface excess fields (see, e.g. Slattery 1990;
Edwards, Brenner & Wasan 1991). Our results are independent of such limiting
processes.

To see the difficulties involved in deriving transport relations for (1.1) it is useful
to consider the analogous problem associated with the integral

d

dt

∫
R(t)

Φ(x, t) dv (1.2)

of a bulk scalar-field Φ(x, t) over a time-dependent region R(t) migrating through
a fluid. Specifically, assume that the boundary ∂R(t) moves with (scalar) normal
velocity V∂R(x, t) in the direction of its outward unit normal m(x, t) and write
V

mig
∂R = V∂R − u · m for the normal velocity of ∂R relative to the fluid. Two well-known

generalizations of the Reynolds (1903) transport relation (cf. Gurtin 1981, p. 78) then



340 P. Cermelli, E. Fried and M. E. Gurtin

zn(t)

zn(t + τ)

�(t)

x

�(t + τ)

Figure 1. Two-dimensional schematic illustrating why a point x lying on an interface S at
time t need not lie on the interface at a subsequent time t + τ and, thus, why the partial time
derivative of a surface field ϕ is generally undefined. Also shown is a normal trajectory passing
through the points zn(t) and zn(t + τ ) on S(t) and S(t + τ ).

read

d

dt

∫
R

Φdv =

∫
R

{
∂Φ

∂t
+ div(Φu)

}
dv +

∫
∂R

ΦV
mig
∂R da, (1.3a)

d

dt

∫
R

Φdv =

∫
R

{Φ̇ + Φdivu}dv +

∫
∂R

ΦV
mig
∂R da. (1.3b)

Here, Φ̇ (often written DΦ/Dt) denotes the material time derivative of Φ , and (1.3b)
follows from (1.3a) using the standard identity

Φ̇ =
∂Φ

∂t
+ u · gradΦ. (1.4)

A difficulty in deriving counterparts for surfaces of the bulk relations (1.3) is
associated with determining appropriate superficial analogues of the time derivatives
Φ̇ and ∂Φ/∂t . In this regard, bear in mind that, for ϕ a surface field, if the surface is
not material, then ϕ̇ is not well-defined: since material points flow across S(t), it is
not generally possible to compute a time derivative holding material points fixed.

Further, while one finds in the literature time derivatives of surface fields ϕ expressed
as conventional partial derivatives ∂ϕ/∂t , such partial derivatives, without explanation,
are meaningless: difference quotients of the

ϕ(x, t + τ ) − ϕ(x, t)

τ
(1.5)

are generally undefined because there is no assurance that x lies on S(t + τ ) when x
lies on S(t), even for sufficiently small τ (figure 1). This observation holds even when
S(t) is material. Of course, ∂ϕ/∂t may be defined using an extension of ϕ(x, t), at
each t , to a three-dimensional region containing the surface; unfortunately, ∂ϕ/∂t so
defined generally depends on the particular extension used.

The main results of this study are surface counterparts of the transport relations
(1.3a, b) for the integral (1.1). In particular, the counterpart of (1.3b) requires finding
an analogue – for a field ϕ defnined on a surface S(t) migrating with respect to the
material – of the material time derivative Φ̇ of a bulk field Φ . This analogue, which
we write as

◦
ϕ, turns out to be a time derivative following the evolution of the surface

S(t), a time derivative that accounts for the migration of S(t) through the fluid. To
the best of our knowledge this notion is new; we have already found it useful in
developing thermodynamically consistent evolution equations for a fluid–fluid phase
interface (Anderson et al. 2005).
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2. Surfaces
2.1. Gradient and divergence on a surface

Let S be a surface oriented by a unit-normal field n(x). A surface field is a field
defined on S. A tangential vector field is a surface vector field f (x) that satisfies
f · n = 0. We write gradS and divS for the surface gradient and surface divergence on
S. (We omit smoothness assumptions associated with surfaces, evolving surfaces and
surface fields. See McConnell (1957) for definitions of gradS and divS. See, also, Aris
(1962).) For ϕ a scalar surface field.

gradSϕ is a tangential vector field. (2.1)

The field defined by

K = −divSn (2.2)

is the total (i.e. twice the mean) curvature.

2.2. Surface fields determined by limits of bulk fields

For a bulk field that is well-defined and smooth up to the surface from one or
both sides, the surface gradient is simply the tangential component of the standard
gradient; e.g. for such a bulk field Φ ,

gradSΦ = gradΦ − (n · gradΦ)n. (2.3)

(If a bulk field Φ is smooth up to the interface from each side, but not across the
interface, then we would have two surface gradients gradSΦ±, one for each of the
limiting values Φ± of Φ .)

3. Evolving surfaces
3.1. Local parameterization. Normal velocity

We now consider an evolving surface S(t) oriented by a unit-normal field n(x, t). S(t)
may be parameterized locally – that is, near any time t0 and point x0 on S(t0) – by
a mapping

x = x̂(ξ1, ξ2, t) (3.1)

that, at each time t , establishes a one-to-one correspondence between points (ξ1, ξ2) –
in an open set in a two-dimensional parameter space – and points x on S(t). Writing

(ξ1, ξ2) = ξ̂ (x, t) for the corresponding inverse map at fixed time, the function

v(x, t) =
∂ x̂
∂t

∣∣∣
(ξ1,ξ2) = ξ̂ (x,t)

(3.2)

represents a local velocity field for S(t). This velocity field depends on the choice of
parameterization: specifically, the normal component of v, the scalar normal-velocity

V = v · n, (3.3)

is independent of the parameterization, but the tangential velocity is not.
The vectorial counterpart of V is the vector normal-velocity

vn = V n. (3.4)

3.2. Velocity fields. Trajectories

Given any tangential vector-field t(x, t), consider the surface vector field

v
def
= V n + t.
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Any such v represents a velocity field for S in the sense that there exists a local
parameterization (3.1) such that (3.2) holds. Fix x0 ∈ S(t0) and write x0 = x̂(ξ 0

1 , ξ 0
2 , t0):

the curve

z(t) = x̂
(
ξ 0
1 , ξ 0

2 , t
)

(3.5)

is referred to as a trajectory corresponding to the velocity field v, since

dz(t)
dt

= v(z(t), t), z(t0) = x0. (3.6)

Trajectories corresponding to the vector normal-velocity vn are called normal tra-
jectories (figure 1).

3.3. Time derivatives following S(t)

What we require is a time derivative of a surface scalar field ϕ following the
evolution of the surface S(t). The simplest such time derivative makes use of the
parameterization x = x̂(ξ1, ξ2, t) of S(t) and may be defined as follows

δϕ

δt
(x, t) =

[
d

dt
ϕ(x̂(ξ1, ξ2, t), t)

]
(ξ1,ξ2)= ξ̂ (x,t).

(3.7)

We refer to δϕ/δt as the parameter-dependent time derivative following S(t). The
drawback of this time derivative is its dependence on the choice of parameterization.

A time derivative that is independent of the choice of parameterization is the
normal time derivative

�
ϕ of ϕ following S (Hayes 1957; Thomas 1957). The field

�
ϕ

may be defined as follows: choose, arbitrarily, a time t0 and a point x0 on S(t0), and
let zn(t) denote the normal trajectory through x0 at t0; then

�
ϕ(x0, t0) =

[
d

dt
ϕ(zn(t), t)

]
t = t0

. (3.8)

3.4. Normally constant extension of a surface field

We can also compute the time derivative of a surface field using an extension of the
field to a three-dimensional neighbourhood of the surface, but such a time derivative
depends on the extension used. A geometrically natural method of smoothly extending
a surface field ϕ(x, t), at each time, to a three-dimensional region containing the
surface is obtained by requiring that ϕ be constant on normal lines, where a normal
line at time t is a line through a point x on S(t) parallel to n(x, t). The extension ϕ̂

obtained in this manner is referred to as a normally constant extension of ϕ. (Since
normal lines may cross, such an extension is generally valid, at each t , at most in a
neighbourhood of S(t).)

We now relate the partial time derivative of the field ϕ̂ to the normal time derivative
of ϕ. Bearing in mind the right-hand side of (3.8), the chain rule yields

d

dt
ϕ(zn(t), t) =

d

dt
ϕ̂(zn(t), t) =

[
∂ϕ̂(x, t)

∂t
+ vn(x, t) · grad ϕ̂(x, t)

]
x = zn(t)

. (3.9)

Next, since ϕ̂ is constant on normal lines, for points on the surface,

n · grad ϕ̂ = 0,

so that, by (2.3),

gradSϕ = grad ϕ̂. (3.10)
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Further, vn · gradSϕ = V n · gradSϕ = 0, so that, by (3.8), (3.9) and (3.10),

�
ϕ =

∂ϕ̂

∂t
. (3.11)

Thus the normal time derivative is the conventional partial time derivative of ϕ when
ϕ is extended to be constant on normal lines.

Our next step is to determine the relation of ∂ϕ̂/∂t to the time derivative δϕ/δt

defined using the parameterization x = x̂(ξ1, ξ2, t). Let v be the velocity (3.2) associated
with this parameterization. Then, focusing on the right-hand side of (3.7) we find,
using the chain rule, that

d

dt
ϕ(x̂(ξ1, ξ2, t), t) =

[
∂ϕ̂(x, t)

∂t
+ v(x, t) · grad ϕ̂(x, t)

]
x = x̂(ξ1,ξ2,t)

.

But, by (3.10), for x = x̂(ξ1, ξ2, t),

v(x, t) · grad ϕ̂(x, t) = v(x, t) · gradSϕ(x, t) = vtan(x, t) · gradSϕ(x, t).

Thus, by (3.7) and (3.11), we obtain a simple relation,

�
ϕ =

δϕ

δt
− vtan · gradSϕ, (3.12)

that allows us to calculate the normal time derivative, given the parameter-dependent
time derivative.

3.5. Basic transport relation for a surface integrals

Consider an arbitrary evolving subsurface A(t) of S(t) with boundary curve ∂A(t)
oriented by its exterior unit-normal field ν(x, t); ν is normal to ∂A, but tangent to
S. The curve ∂A(t) evolves through space, and its motion is described by a velocity
field v∂A(x, t) with x on ∂A(t). Only the component v∂A · ν of v∂A normal to ∂A is
independent of the parameterization of ∂A and, hence, intrinsic to the motion. On the
other hand, since ∂A(t) is a subset of S(t) for all t , v∂A · n = V . Writing V∂A = v∂A · ν,
we may therefore express the intrinsic component of every velocity field for ∂A in
the form

V n + V∂Aν. (3.13)

We refer to V∂A(x, t) as the scalar normal-velocity of ∂A(t); the field V∂A(x, t) describes
the intrinsic instantaneous motion of ∂A(t) on the tangent plane to S(t) at x.

As a starting point in developing counterparts, for surfaces, of the Reynolds
relations (1.3), we state the following result: given any scalar surface field ϕ(x, t) and
any evolving subsurface A(t) of S(t),

d

dt

∫
A

ϕ da =

∫
A

{�
ϕ − ϕKV } da +

∫
∂A

ϕV∂A ds, (3.14)

with
�
ϕ the normal time derivative of ϕ following S. (This result was established

independently by Petryk & Mroz (1986) and Gurtin, Struthers & Williams (1989); see
also Estrada & Kanwal (1991). A simple derivation of (3.14) for curves evolving in a
planar domain is given by Angenent & Gurtin (1991).)

Using the identity (3.12), this transport relation can be expressed in terms of the
parameter-dependent time derivative.
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4. Migrating surfaces in fluids
While valid for a surface migrating through a fluid, the transport relation (3.14)

is peculiar in that it exhibits no influence of the flow field. We turn now to deriving
alternative versions of (3.14) that account for that influence. In this regard, bear in
mind that, as noted in § 1, for ϕ a surface field, if the surface is not material, then
neither the material time derivative ϕ̇ nor the partial derivative ∂ϕ/∂t is well-defined.

4.1. Fluid velocity. Migrational velocities

We now suppose that the evolving surface S(t) is migrating through a fluid. We write
u(x, t) for the velocity of the fluid and assume that this velocity has limiting values
u+(x, t) and u−(x, t) on each side of S(t), where u+ denotes the limiting value from
that side of S into which n points. We assume also that the tangential component
utan of u is continuous across S, so that

u+ − u− = (u+ · n − u− · n)n. (4.1)

We continue to write V (x, t) and vn(x, t) for the scalar and vector normal-velocities
for S(t). In addition, we let v(x, t) denote a (for now arbitrary) velocity field for S(t).
Then the fields

v − u± (4.2)

represent migrational velocites of S relative to the fluid material on each of its sides.
Consider an arbitrary migrating subsurface A(t) of S(t). The scalar normal velocity

V∂A of ∂A in the direction of its unit normal ν is as discussed in the paragraph
containing (3.13). Bearing in mind that ν is tangential to S,

u+ · ν = u− · ν = utan · ν, (4.3)

and hence

V mig
∂A

def
= V∂A − u± · ν = V∂A − utan · ν (4.4)

represents the normal migrational velocity of ∂A; that is, the normal velocity of ∂A
relative to the fluid.

4.2. The MB transport relation for a surface migrating through a fluid

A transport relation for a scalar surface field ϕ(x, t) that accounts for the fluid may
be derived from (3.14). Using the surface divergence theorem,∫

∂A
(ϕutan) · ν ds =

∫
A

divS(ϕutan) da, (4.5)

and this relation, (3.14), and (4.4) together yield the MB transport relation:

d

dt

∫
A

ϕ da =

∫
A

{�
ϕ + divS(ϕutan) − ϕKV } da +

∫
∂A

ϕV mig
∂A ds. (4.6)

(This result is based on ideas of Mavrovouniotis & Brenner (1993), whose derivation
of an integral balance for a surface excess field contains the essence of (4.6) (cf.
Mavrovouniotis 1989; Edwards et al. 1991).)

The time derivative
�
ϕ used in the MB transport relation is the time derivative

following the surface S(t) as it evolves through Euclidean space; as such,
�
ϕ does

not account for the actual migration of S(t) through the fluid. In this regard,
�
ϕ is

analogous to the spatial time derivative ∂Φ(x, t)/∂t of a field defined in the bulk fluid
(cf. (1.4)).

In the next section we introduce a time derivative that accounts explicitly for the
migration of S(t) through the fluid.
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4.3. Migrationally normal time derivative following S(t)

Our first step is to find a velocity field v for S that accounts for the migration of S
through the fluid. Bearing in mind that there are two migrational velocities v − u±, we
now show that we can find a velocity field v for S that renders each of the velocities
v − u± normal. In this regard, note that

v − u± = v − (u± · n)n − utan = (V − u± · n)n + (vtan − utan),

so that, taking vtan, which is arbitrary, equal to utan, we arrive at a choice v = v∗ of
velocity field for S with each of its migrational velocities v∗ − u± normal:

v∗ − u± = (V − u± · n)n. (4.7)

The resulting velocity field v∗, called the migrationally normal velocity field for S,
has the specific form

v∗ = V n + utan (4.8)

and is important because it is normal when computed relative to the material on
either side of S(t).

The migrationally normal time derivative of ϕ(x, t) following S(t) is defined – at
an arbitrary time t0 and point x0 on S(t0) – as follows:

◦
ϕ(x0, t0) =

[
d

dt
ϕ(z∗(t), t)

]
t=t0

, (4.9)

where z∗(t) is the trajectory through x0 at time t0 corresponding to the migrationally
normal velocity-field v∗ = V n + utan (cf. the paragraph containing (3.6)).

4.4. Transport relation based on the migrationally normal time derivative

In this section, we derive a transport relation for a scalar surface-field ϕ(x, t) that
accounts explicitly for the migration of S through the field.

Let ϕ̂ denote the normally constant extension of ϕ as defined in § 3.4. Since
the velocity field underlying the definition of

◦
ϕ is the migrationally normal field

v∗ = V n + utan, we find, using (3.10), (4.9), and the chain rule, that

◦
ϕ = v∗

tan · gradSϕ +
∂ϕ̂

∂t
. (4.10)

Thus, by (3.11), the time derivatives
◦
ϕ and

�
ϕ are related through the important identity

◦
ϕ =

�
ϕ + utan · gradSϕ. (4.11)

By (4.8) and (4.11),

�
ϕ + divS(ϕutan) =

◦
ϕ − utan · gradSϕ + divS(ϕutan) =

◦
ϕ + ϕdivSutan,

and this result together with (4.6) yields our main result, the transport relation

d

dt

∫
A

ϕ da =

∫
A

{◦
ϕ + ϕdivSutan − ϕKV } da +

∫
∂A

ϕV mig
∂A ds. (4.12)

5. Material surfaces
5.1. Kinematical relations

Assume that S(t) is a material surface so that, necessarily, the fluid velocity is
continuous across S(t). Assume further that A(t) is a material subsurface of S(t),
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so that the boundary curve ∂A(t) is a material curve (stated differently: S, A, and
∂A convect with the fluid). Then:

(i) The fluid velocity u is a velocity field for S; hence the normal velocity of S
and the normal fluid-velocity coincide,

V = u · n. (5.1)

(ii) The migrationally normal velocity field for S coincides with the fluid velocity,

u = V n + utan. (5.2)

(iii) The material time derivative ϕ̇ coincides with the time derivative
◦
ϕ following

the surface as described by the migrationally normal velocity field (4.8),

ϕ̇ =
◦
ϕ. (5.3)

(iv) The normal migrational velocity V
mig

∂A vanishes.
Assertion (i) is immediate, as is the relation

V∂A = u · ν, (5.4)

which implies (iv). By (i),

v = V n + utan = (u · n)n + utan = u,

which is (ii). Finally, by (ii) and (3.6), the trajectories used to compute (4.9) satisfy

dz(t)
dt

= u(z(t), t),

and hence represent trajectories of material points. Thus, (iii) is satisfied.

5.2. Transport relations for material surfaces

The following transport relations follow as consequences of (4.12): if S(t) is a material
surface and A(t) a material subsurface of S(t), with boundary curve ∂A(t) a material
curve, then given any scalar surface field ϕ(x, t),

d

dt

∫
A

ϕ da =

∫
A

{ϕ̇ + ϕdivSutan − ϕ (u · n)K} da, (5.5a)

d

dt

∫
A

ϕ da =

∫
A

{ϕ̇ + ϕdivSu} da. (5.5b)

Equation (5.5a) follows directly upon using (5.1) and (5.3) in (4.12); this equation
was previously established by Slattery (1972) (cf. Slattery 1990, equation (3–6)). To
establish (5.5b), note that, by (2.2),

−(u · n)K = (u · n)divSn = divS

(
(u · n)n

)
− n · gradS(u · n)︸ ︷︷ ︸

=0

,

so that

−(u · n)K + divSutan = divSu,

and (5.5a) reduces to (5.5b).
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Transport relations similar to (5.5), but somewhat more general, hold when S(t) is
material, but A(t) is non-material, so that V

mig
∂A �= 0. These relations have the form

d

dt

∫
A

ϕ da =

∫
A

{ϕ̇ + ϕdivSutan − ϕ (u · n)K} da +

∫
∂A

ϕV mig
∂A ds,

d

dt

∫
A

ϕ da =

∫
A

{ϕ̇ + ϕdivSu} da +

∫
∂A

ϕV mig
∂A ds.


 (5.6)

6. Comparisons
It is interesting to compare the transport relations of Reynolds for a region R(t)

evolving through a fluid to those relations derived here for a surface S(t) evolving
through a fluid. In particular, the Reynolds relation (1.3a) should be compared to the
MB relation (4.6),

d

dt

∫
R

Φdv =

∫
R

{
∂Φ

∂t
+ div(Φu)

}
dv +

∫
∂R

ΦV mig
∂R da,

d

dt

∫
A

ϕ da =

∫
A

{�
ϕ + divS(ϕutan) − ϕKV } da +

∫
∂A

ϕV mig
∂A ds,

while the Reynolds relation (1.3b) should be compared to the relation (4.12),

d

dt

∫
R

Φ dv =

∫
R

{Φ̇ + Φ divu}dv +

∫
∂R

ΦV mig
∂R da,

d

dt

∫
A

ϕ da =

∫
A

{◦
ϕ + ϕdivSutan − ϕKV } da +

∫
∂A

ϕV mig
∂A ds.

On using an arrow → to indicate the relation ‘is analogous to’, these comparisons
would seem to suggest that

∂Φ

∂t
→ �

ϕ, Φ̇ → ◦
ϕ, u → utan. (6.1)

These analogies are consistent with the identity ϕ̇ =
◦
ϕ for a material surface (cf. (5.3))

and with a comparison between the relations (1.4) and (4.11):

Φ̇ =
∂Φ

∂t
+ u · gradΦ,

◦
ϕ =

�
ϕ + utan· gradSϕ.

When discussing the bulk motion of a fluid, the material time derivative Φ̇ of
a bulk field Φ embodies more of the physics associated with the actual motion
of material particles than does ∂Φ/∂t . Analogously, when discussing an interface
migrating through a fluid, the migrationally normal time derivative

◦
ϕ of an interfacial

field ϕ embodies more of the physics associated with the motion of the interface
relative to the fluid than does the normal time derivative

�
ϕ. We therefore expect

the migrationally normal time derivative to be particularly valuable in the study
of theoretical issues, such as the derivation of interface conditions from general
thermomechanical principles (cf. Anderson et al. (2005), who develop interface
conditions for phase transformations in viscous heat-conducting fluids; there, the
underlying physics leads naturally to interfacial expressions of the first two laws of
thermodynamics in terms of migrationally normal time derivatives). On the other
hand, for numerical investigations, the normal time derivative might be more directly
implemented (much as the partial time derivative is more directly implemented than
the material time derivative in simulations of bulk fluid flow).
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n

�(t)

m

v
� + (t)

�– (t)

∂�

v

Figure 2. Two-dimensional schematic illsustrating a control volume R divided by a portion
A(t) of the interface S(t) into time-dependent subsets R+(t) and R−(t). Whereas m is the unit
normal on ∂R, directed outward from R, n is the unit normal on S, directed into R+ and ν
is the unit normal on ∂A, directed outward from A.

7. Application to solute transport
Consider the flow of a two-phase binary solution with phases separated by the

interface S(t). Label the phases ± with the (+) phase the phase into which n points.
Let c and j denote the concentration and flux of the solute in bulk, Γ and h the
surface excess concentration and flux of the solute on S. Assume that the bulk fields
c and j are smooth up to the interface from either side, but suffer jump discontinuities
across the interface and let [[c]] = c+ − c− and [[ j ]] = j+ − j −.

Let R denote a fixed control volume through which the fluid flows and assume that
R intersects the interface in a smooth subsurface A(t). Let m denote the outward
unit normal to ∂R and ν the outward unit normal to ∂A. Then, balance of solute
mass in R requires that, at each time t ,

d

dt

{∫
R

c dv +

∫
A

Γ da

}
= −

∫
∂R

{ j · m + cu · m} da −
∫

∂A

{
h · ν − Γ V mig

∂A

}
ds. (7.1)

We now localize (7.1) to the interface. Note first that, letting R± and (∂R)± denote
the portions of R and ∂R in the (±) phase (so that neither of (∂R)± contains interior
points of A), we may use a standard transport theorem to verify that, since R is a
fixed region,

d

dt

∫
R+

c dv =

∫
R+

∂c

∂t
dv −

∫
A

cV da,
d

dt

∫
R−

c dv =

∫
R−

∂c

∂t
dv +

∫
A

cV da.

Thus, bearing in mind figure 2, we find that, in the limit as R shrinks to the interface,∫
R±

∂c

∂t
dv → 0,

∫
(∂R)±

j · m da → ±
∫

A
j ± · n da

∫
(∂R)±

cu · m da → ±
∫

A
c±u± · n da,

and (7.1) yields

d

dt

∫
A

Γ da = −
∫

∂A
{h · ν − Γ V mig

∂A } ds −
∫

A
{[[ j ]] · n − [[c(V − u · n)]]} da. (7.2)
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Thus, applying the surface divergence theorem to the term involving h, using the
transport relation (4.12), and dividing by the area of A, we arrive at

1

area(A)

∫
A

{
◦

Γ +Γ divSutan −Γ KV +divSh+[[ j ]] · n−[[c(V −u · n)]]} da = 0. (7.3)

Since the region R containing A was arbitrarily chosen, we may assume that,
given an arbitrary time t0 and an arbitrary point x0 that lies on S(t0), the
subsurface A(t0) contains x0 and has area arbitrarily small. Thus, passing to the limit
as area(A(t0)) → 0 – and using the fact that t0 and x0 on S(t0) were arbitrarily
chosen – we arrive at the relation

◦
Γ + Γ divSutan − Γ KV + divSh = −[[ j ]] · n + [[c(V − u · n)]], (7.4)

valid pointwise on the interface. Equivalently, using (4.11), we arrive at a balance

�

Γ + divS(Γ utan) − Γ KV + divSh = −[[ j ]] · n + [[c(V − u · n)]] (7.5)

due to Mavrovouniotis & Brenner (1993).
When S is a material surface, then

◦
Γ = Γ̇ , V = u · n, and the balance (7.4) becomes

Γ̇ + Γ divSutan − Γ Ku · n + divSh = −[[ j ]] · n, (7.6)

which is consistent with equations presented by Scriven (1960), Aris (1962), Slattery
(1972), Waxman (1984), and Stone (1989) provided, as noted by Edwards et al. (1991),
one considers ∂Γ/∂t as given by

∂Γ

∂t
= Γ̇ − utan · gradSΓ, (7.7)

a relation that holds automatically when ∂Γ/∂t is defined as the normal time
derivative. (Cf. Wong, Rumschitzki & Maldarelli (1996), who use the normally
constant extension to define the partial time derivative of this extension on the
interface, as well as the numerical schemes of Stone & Leal (1990), Borhan & Mao
(1992), and Milliken, Stone & Leal (1993), which make tacit use of the normally
constant extension.)

Next, we apply the general balance (7.4) to the topic of evaporating surfactant
solutions assuming, as do Danov et el. (1998), that surfactant evaporation is negligible.
Then on letting the (+) phase denote the vapour, both c+ and j+ vanish and (7.4)
becomes

◦
Γ + Γ divSutan − Γ KV + divSh = j − · n − c−(V − u− · n). (7.8)

Here, we note that previous statements of the surfactant balance on the solution
surface have been in error. In particular, consider equation (3b) of Danov et al.
(1998) To clarify the comparison between (7.8) and that equation, suppose that the
bulk and surface fluxes are given by j = −Dgradc and h = −DSgradSΓ , in which
case, (7.8) specializes to

◦
Γ + Γ divSutan − Γ KV = divS(DSgradSΓ ) − n · (Dgradc)− − c−(V − u− · n). (7.9)

In place of the left-hand side of (7.9), Danov et al. (1998) write

∂Γ

∂t
+ divS(Γ utan), (7.10)
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without specifying the meaning of the partial time derivative ∂Γ/∂t . If we use the
normally constant extension of Γ , then

∂Γ

∂t
=

◦
Γ − utan · gradSΓ, (7.11)

and (7.10) coincides with the first two terms on the left-hand side of (7.9). Even then,
however, equation (3b) of Danov et al. (1998) is missing the term −Γ KV on its
left-hand side. Moreover, whereas the definition (7.7) arising for a material surface
can be deduced without recourse to the notion of the normal time derivative, (7.11)
requires consideration of that derivative (or the migrationally normal time derivative)
and is therefore non-trivial.
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