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Abstract

In this paper we propose an extension of the Cahn method [1] to binary mixtures and study
the problem of wetting near a two-phase critical point without any assumption on the form of
intermolecular potentials. A comparison between Cahn’s method and later works by Sullivan
[2,3], Evans et al. [4,5] is made. By using an expression of the energy of interaction between
solid surface and liquids proposed recently by Gouin [6], we obtain the equations of density
pro�les and the boundary conditions on a solid surface. In the case of a convex free-energy, a
one-dimensional solution of a linear problem is proposed for the density pro�les between a bulk
and a solid wall. A non-linear model of binary mixtures [7] extending Cahn’s results for simple

uids is also studied. For the case of a purely attractive wall we have established a criterion of
a �rst-order transition in terms of the structure of the level set of the homogeneous part of the
free energy. Additively, explicit expressions of density pro�les near the wall are proposed. They
allow one to consider the adsorption of mixture components by a solid wall. c© 1999 Elsevier
Science B.V. All rights reserved.

PACS: 68.45.G
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1. Introduction

In 1977, Cahn [1] gave simple illuminating arguments to describe the interaction
between solids and liquids. His model was based on a generalized van der Waals
theory of 
uids treated as attracting hard spheres [7]. It entailed assigning to the solid
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surface an energy that was a functional of the liquid density “at the surface”. Three
hypotheses are implicit in Cahn’s picture for simple 
uids:
(i) In order for the liquid density to be a smooth function of the distance from the

solid surface, that surface is assumed to be 
at on the scale of molecular sizes and
the correlation length is assumed to be greater than intermolecular distances (this is
the case, for example, when the temperature T is not far from the critical temperature
Tc).
(ii) The forces between solid and liquid are of short range and can be described

simply by adding a special energy at the solid surface.
(iii) The 
uid is considered in the framework of a mean �eld theory. This means,

in particular that the free energy of the 
uid is a classical so-called “square-gradient
functional”.
After Cahn, the problem of adsorption and wetting was studied by a statistical method
by Sullivan [2,3], Evans et al. [4,5], respectively, for gas and binary 
uid mixtures.
From the point of view of Sullivan and Evans et al. one may view Cahn’s approach
as open to criticism for several reasons:
(a) Cahn’s treatment is based on phenomenological “square-gradient” version of

van der Waals theory, which in contrast to the approach initiated by van Kampen
[8] does not attempt to relate directly the properties of the non-uniform 
uid to the
interactions occurring on a molecular level.
(b) The density adjacent to the wall varies strongly over the range of intermolec-

ular forces, consequently the gradient expansion approximation used in deriving the
square-gradient theory is no longer valid.
(c) Cahn’s theory leaves unspeci�ed a contribution due to the 
uid–solid interfacial

free energy.
Evans et al. [4,5] following Sullivan’s approach [2,3] for simple 
uids consider the

special case of a contact between a two-component mixture near “the critical end point”
and a wall. They used Sullivan’s grand potential to describe the solid–
uid and 
uid–

uid interactions and tried to solve directly the problem of repartition of densities in
a liquid (gas).
Evans et al. obtain a coupled system of integral equations for chemical potentials

(cf. Eq. (6) in [4]). Then, to solve the system, it is necessary to know the interaction
potentials between components and between solid wall and components: Evans et al.
assume an exponential interaction both for component–component and solid–components
(as in [2,3]). Only such a hypothesis allows one to obtain two di�erential equations
instead of the two integral equations (Eq. (10) in [4]). This assumption cannot be obvi-
ously valid for large classes of mixtures. Moreover, a special hypothesis (mixing rule)
concerning interactions between components is assumed. Then, the mixing rule and
exponential dependence allow one to obtain both the linear relation between potentials
and boundary conditions and the problem is reduced to the problem of the contact of
one-component 
uid with a wall.
The phenomenological “square-gradient” model is proposed in case of an in�nite

non-homogeneous 
uid or a 
uid mixture as a small-gradient approximation by Widom
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[9] and Fleming et al. [10]. The method is extended in mean-�eld theory for semi-
in�nite media in contact with a wall: as proved in [6], the fact that the densities are
discontinuous at the solid wall does not disqualify the procedure used by Widom and
Fleming et al. and Cahn’s treatment is valid for 
uids and 
uid mixtures near a critical
point in contact with a wall.
In this paper, we use the expression of a surface energy. The surface is assumed

to be solid and interactions between solid and 
uids are su�ciently short range. The
contribution of 
uids is represented by a surface free energy with a density of the form
ES(�1S ; �2S), where �1S and �2S are the limiting densities of the 
uid components at
the surface. The expression of the surface energy obtained in [6] is in the form:

ES =−
11�1S − 
21�2S + 1
2(
12�

2
1S + 
22�

2
2S + 2
32�1S�2S) : (1)

This expression represents �rst terms of a more complex expansion. It is an extension
with explicit calculations of the widely known expression due to Nakanishi and Fisher
[11] and examined in a review paper by de Gennes [12]. All the coe�cients 
ij can
be calculated explicitly after the particular form of interaction potentials was chosen.
For example, in the case of London forces, the values of coe�cients related to the
densities of the two 
uids at the surface are [6]


11 =
�1�
12�21

�3; 
21 =
�2�
12�22

�3 ;


12 =
k1�
12�21

; 
22 =
k2�
12�22

;


32 =
k3�
24

(
1
�21
+
1
�22

)
; (2)

where �3 is the density of the solid, �i; i∈{1; 2} are the coe�cients associated with in-
termolecular potentials of interaction between the 
uids and the solid wall, ki; i∈{1; 2; 3}
are intermolecular potentials of interaction between the molecules of 
uid i and them-
selves or between the two 
uids and �i= 1

2(�i+ �); i∈{1; 2} are the minimal distances
between the solid and molecules of the two species of the mixture, where �i; i∈{1; 2}
is the diameter of molecule of 
uid i and � for the solid. Expression (1) allows us to
estimate the in
uence of a solid wall on each component of a 
uid mixture. Depending
on the values of coe�cients 
ij, one can estimate the magnitude of the attraction or
repulsion e�ects due to the wall.
As our approach is also based on a mean-�eld approximation, we assume that vari-

ations of densities near the wall take into account several molecular ranges. Hence,
it is possible to present the total free energy of the system “
uids-wall” as the sum
of a bulk free energy and a surface energy which is an additional contribution arising
from the non-uniformity of the 
uid near the wall. By using an extended variational
principle, we obtain two boundary conditions at the wall and two partial di�erential
equations for the density pro�les of the components between a solid wall and a bulk.
The complete set of boundary conditions and equations for densities allow us to obtain
the pro�les of densities in the following physical situations. The �rst is the study of the
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linear problem associated with the equilibrium of a two-component one-phase mixture
near a critical point with a solid wall. The second is the study of the non-linear prob-
lem of the contact between a two-component two-phase mixture near a critical point
and a wall. We get a condition of wetting and a �rst-order wetting transition in terms
of the level set of the homogeneous part of the free energy.
To clarify the presentation some calculations are situated in appendices. In Appendix

A, we present general calculations by using an extended variational principle applied
to multi-component mixtures. In Appendix B we give an analytical representation of
the pro�les of densities connecting bulk and solid wall for a general form of the free
energy of a two-component mixture near any critical point. These representations may
be used to investigate the adsorption of 
uid components of a mixture by a solid wall.

2. Equations of density pro�les and boundary conditions: general results

The general form of the free energy per unit volume of the mixture is proposed in
the form [7,10,13]

E = E(�1; �2;∇�1;∇�2) ; (3)

where ∇ notes the gradient operator in the physical space D. The associated total free
energy is

ED =
∫ ∫ ∫

D

E dD :

The wall boundary S of D is endowed with a surface energy per unit area. The surface
is solid and sharp on an atomic scale and the interactions between surface and 
uids
are su�ciently short range; the general form of the surface free energy per unit area
used is

ES = ES(�1S ; �2S) : (4)

Consequently, the free energy of S is

ES =
∫ ∫

S

ES dS:

Then, the grand potential of the system “
uid mixture-wall” is

E=
∫ ∫ ∫

D

E dD+
∫ ∫

S

ES dS :

The condition of extremum of the energy E based on hypotheses (3) and (4) yields
(see for details Appendix A):

• Equations of two pro�les of component densities:

∇
(
@E
@��

− div
(

@E
@(∇��)

))
= 0; �= 1; 2 ; (5)

where @E=@(∇��) is the vector whose components are the partial derivatives of E
with respect to the components of ∇�� and div is the divergence operator.
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• Two boundary conditions at the solid wall:

n
@E

@(∇��) +
@ES
@��

= 0; �= 1; 2 ; (6)

where n is the external unit normal vector to D.
Equations of equilibrium (5) are the same as in [7] given for the one-dimensional

case. Conditions (6) generalize those proposed in [1].

3. The dynamical system associated with one-dimensional density pro�les

In the simplest case, the surface energy per unit area is given by (1) where the
coe�cients 
ij are expressed by means of a mean-�eld approximation through the
potentials of the intermolecular interactions (see for example (2)) and the free energy
per unit volume is of the form

E = U (�1; �2) + 1
2 (C1(∇�1)2 + 2D∇�1∇�2 + C2(∇�2)2) ; (7)

where U (�1; �2) is the homogeneous free energy per unit volume and C1; C2; D are
constants such that the corresponding quadratic form is positive de�nite (we denote
the free energy by U corresponding in [7] to −W ).
Let us consider the case of a 
at plate wall de�ned by equation z = 0 (see Fig. 1),

where z denotes the one-dimensional coordinate orthogonal to the wall. The equations
of equilibrium (6) associated with (7) are

C1
d2�1
dz2

+ D
d2�2
dz2

=
@U
@�1

(�1; �2) + e1 ;

D
d2�1
dz2

+ C2
d2�2
dz2

=
@U
@�2

(�1; �2) + e2 ; (8)

where e1 and e2 are two constants of integration.
These equations are complemented by the boundary conditions (6) at z=0. By using

expression (1) of the surface energy, we get

C1
d�1
dz

+ D
d�2
dz

=−
11 + 
12�1 + 
32�2 ;

D
d�1
dz

+ C2
d�2
dz

=−
21 + 
32�1 + 
22�2 : (9)

We have to add the condition in the bulk (at z =+∞):
�1 = �1∞; �2 = �2∞ : (10)

4. Linear wetting problem

We consider the case of a one-phase mixture (liquid or gas) in contact with a solid
wall. The densities of the two-components and the temperature are close to critical
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Fig. 1. One-dimensional contact of a 
uid with a wall.

conditions. Moreover, we assume that density variations are small enough with respect
to bulk densities, i.e.

�i − �i∞
�i∞

.1; i = 1; 2

such that we can consider a linearized problem associated with Eqs. (8). Let us denote

r=
(
�1 − �1∞
�2 − �2∞

)
; q =−

(

11

21

)
+ �

(
�1∞
�2∞

)
≡ −
 + ��∞ ;

� =
(

12 
32

32 
22

)
;

A=
(
C1 D
D C2

)
; B=




@2U
@�21

@2U
@�1@�2

@2U
@�1@�2

@2U
@�22


 : (11)

The matrix B is calculated in the bulk (�1∞; �2∞). Taking into account the de�nitions
(11), we get the linearized problem associated with Eqs. (8)–(10) in the form

A
d2r
dz2

= Br ; (12)

A
dr
dz
= q + �r at z = 0 ; (13)

r= 0 at z =+∞ : (14)

The stability of the thermodynamic state of the bulk requires that the symmetric matrix
B is also positive de�nite.
Let �2i ; hi be the eigenvalues and the eigenvectors of the equation

(B− �2i A)hi = 0 :
Since B and A are symmetric and positive de�nite, �2i are positive. We can always
suppose that

hiAhj = 0; i 6= j :
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The solution of (12) satisfying condition (14) is in the form

r=
2∑
i=1

bihi exp(−�iz) where �i ¿ 0 : (15)

Substituting expression (15) into condition (13), we get a linear system of algebraic
equations for the unknown coe�cients bi

2∑
i=1

bi(� + �iA)hi =−q

which de�nes a unique solution bi if det(hi�hj + �ihiAhj) 6= 0. In particular, if � is
negligible (we assume that the wall is purely attractive), we get q=−
 (see (11)) and

bi =

hi

�i(hiAhi)
:

In such a case, the solutions satisfy conditions (13) and the density pro�les ful�l
the solution of linearized problem. Eqs. (15) yield di�erent forms of density pro�les.
Depending on wall conditions, we may obtain both monotonic and non-monotonic
pro�les. This is similar to results of [7] in the non-linear case without a solid wall. In
Fig. 2, we represent the di�erent density pro�les for each component of the mixture.
We note that only one extremum point may appear for each density pro�le. This result
is essentially di�erent from the results of Evans et al. where all density pro�les are
monotonic.

5. Wetting problem near a critical point for a two-component mixture

5.1. The dynamical system

In a two-phase region near a critical point at a given temperature T , the expression
of the free energy per unit volume U associated with a phase equilibrium is of the
form [7]

U = a20((b
2
0x
2 + y)2 + (y + t)2) : (16)

The parameter t is an independently varied �eld characterizing the “distance” from the
critical point (�1c; �2c); a0 and b0 are functions of the temperature. The variables x
and y are de�ned through the transformation

r=�R; R =
(
x
y

)
; �=

(
a b
c d

)
; r= �− �c ;

�=
(
�1
�2

)
; �c =

(
�1c
�2c

)
: (17)

The scalars a; b; c; d associated with the physical properties of the mixture near the
critical point depend on the temperature T . The constants of integration e1 = 0 and
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Fig. 2. In (a) and (b) the pro�les of densities for a component are monotonic. In (c) and (d) the pro�les
admit an extremum of density for a component. The extremum is not on the wall but at some distance into
the bulk measured on a molecular scale.

e2 = t are already incorporated in U . With (17), the system (8) can be rewritten in the
form

�∗A�
d2R
dz2

=∇RU ; (18)

where �∗ denotes the transpose matrix and ∇RU means the gradient with respect to R.
Following Rowlinson and Widom [7] we denote by

M =�∗A�=
(
mxx mxy
mxy myy

)
: (19)

Obviously, if A is positive de�nite, M is also positive de�nite, i.e. mxx ¿ 0; mxxmyy −
m2xy ¿ 0. The boundary conditions (9) at the wall are

M
dR
dz
= g+ GR; where g=�∗(−
 + ��c) and G =�∗�� : (20)

In the following, we choose in (16) a0 = 1=
√
2 and b0 = 1 (to do this, we have

only to change the values of coe�cients of the matrix � de�ned by (17)). Hence,
U = 1

2((x
2 + y)2 + (y + t)2).
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The system (18)–(19) yields

mxx
d2x
dz2

+ mxy
d2y
dz2

= 2x(x2 + y) ;

mxy
d2x
dz2

+ myy
d2y
dz2

= x2 + 2y + t : (21)

System (21) admits the �rst integral

1
2
mxx

(
dx
dz

)2
+ mxy

(
dx
dz

)(
dy
dz

)
+
1
2
myy

(
dy
dz

)2
− U (x; y) = 0 : (22)

This integral is similar to the integral of energy for mechanical problems.
Substitution of boundary conditions (20) into the relation (22) yields necessary con-

ditions for x; y at the solid wall. For simplicity, we consider only the case of an
attractive wall (G is then negligible). Conditions (20) yield

M
dR
dz
= g : (23)

In fact, it is natural to expect that the results we obtain in the case of an attractive
wall are closely similar to the results associated with the most general case. Relations
(22) and (23) yield

U (x; y) = k2 ;

where k2 = gM−1g. Then, discussion of the wetting of a 
uid mixture with a solid
wall arises naturally from the drawing of the level curves of U (x; y) as a function of
the parameter t.

5.2. Connection between the dynamical system and Young’s conditions

For a solid wall in contact with phases � and �, the contact angle � is de�ned with
the help of surface free energies � along the solid surface (Young’s conditions)

��� cos �= ��S − ��S (24)

where the di�erent subscripts designate phases adjoining the surface or interface. No
value of � satis�es Eq. (24) unless

��� ¿ |��S − ��S | : (25)

If inequality (25) is not satis�ed, one of the 
uid phases completely wets the solid and
there is no contact between solid and other 
uid phase. In fact, the forbidden surface
is replaced by a layer of the wetting phase and the surface free energy becomes the
sum of two surfaces’ free energies of the layer

��S = ��� + ��S : (26)

Condition (26) corresponds to the perfect wetting with the solid. The surface energies
can be calculated by the formulas

��� =
∫ +∞

−∞
(K + U ) dz; ��S =

∫ +∞

0
(K + U ) dz; ��S =

∫ +∞

0
(K + U ) dz;



300 H. Gouin, S. Gavrilyuk / Physica A 268 (1999) 291–308

where K= 1
2mxx(dx=dz)

2+mxy(dx=dz) (dy=dz)+ 1
2myy(dy=dz)

2 and integrals are taken
on di�erent paths connecting phase � and phase � or a phase and the wall [7].
Let us note (ds)2 = 1

2mxx(dx)
2 + mxy dx dy + 1

2myy(dy)
2.

From the �rst integral (22), we get

��� =
∫ (x�;y�)

(x�;y�)
(2U (x; y))1=2 ds; ��S =

∫ (x�;y�)

(xM� ;yM� )
(2U (x; y))1=2 ds;

��S =
∫ (x�;y�)

(xM� ;yM� )
(2U (x; y))1=2 ds: (27)

The integrals (27) are calculated on the paths associated with system (21) and the
boundary conditions on the wall

x = xM� ; y = yM� or x = xM� ; y = yM� ;

and in the bulks

x = x�; y = y� or x = x�; y = y� :

5.3. Discussion of the wetting

For a solid wall the value of k2 is given. Hence, the discussion depends on the
relative value of parameter t.
(a) t ¿ 0 and large enough.
In this case we are far enough from the critical conditions. In Fig. 3a the phases

are in points A(x�; y�) and B(x�; y�). One obtains easily that x� =−√
t; y� =−t; x� =√

t; y� =−t. The points M� and M� belong to two di�erent connected components of
the level set U = k2. In the vicinity of A (or B), the energy U is a convex function
of x; y and as in Section 4, it is possible to �nd the pro�les of densities connecting
A and M� or B and M�, respectively. The integrals (27) are positive and ��;� is large
with respect to ��; S and ��; S . Then the relations

��; S6��; � + ��; S and ��; S6��; � + ��; S (28)

hold and we are in the case of partial wetting with � 6= 0.
(b) t ¿ 0 and small enough.
This case corresponds to phases close enough to the critical point (see Fig. 3b). The

level set U = k2 consists only of one connected component containing the points M�
and M�. The phases are at the points A(x�; y�) and B(x�; y�). They are very close with
respect to the distance to the level curve. The super�cial tension ��;� is small with
respect to the free energies ��; S and ��; S . The values of ��; S and ��; S are in general
di�erent and one of two relations (28) is not satis�ed. We are in the case where one
of the two phases wets completely the solid wall. No contact appears between the
other phase and the solid. For example, if relation (26) is satis�ed, the phase � wets
completely the wall.
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Fig. 3. Drawing of level curves for the free energy U for di�erent values of t. Points A (and B) correspond
to the bulks. The bold curves are paths connecting a phase and the solid wall or two phases. The interfacial
tension is calculated along these paths. (a) is the case of partial wetting with a non-zero Young angle. The
other �gures are associated with di�erent cases of total wetting of one phase: in (b) with two phases and
in (c) and (d) with one phase.

(c) t ¡ 0
The mixture has only one phase at the point A(0;−t=2), which is the only singular

point of system (21). The energy U attains a minimum at the point A (we note that
for t ¿ 0 this point corresponds to a saddle point, which is not associated with a bulk
phase). The free energy U of the mixture is convex at the vicinity of A (Figs. 3c and
3d). If t is small enough, the linear solution for the pro�les of densities obtained in
Section 4 can be used. When t is large enough, the solution for the pro�les of densities
can be calculated analogously as in Appendix B.
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5.4. Some remarks on the pro�les of densities

System (21) yields

M
d2R
dz2

=
(
2x(x2 + y)
x2 + 2y + t

)
(29)

and admits �rst integral (22):

dR
dz
M
dR
dz

− (x2 + y)2 − (y + t)2 = 0 : (30)

When the densities x; y are far from critical conditions, t is negligible with respect to
x and y and (30) reads

dR
dz
M
dR
dz

− (x2 + y)2 − y2 = 0 : (31)

Let us denote V (z) = RMR. Then, by using (29) and (31), we get d2V=dz2 = 3x4 +
5x2y + 3y2. The right-hand side is a positive de�nite quadratic form, which implies
that

d2V
dz2

¿ 0 :

Hence,

V (z)¿V (0) + V ′(0)z :

If (dV=dz)|z=0¿ 0, it follows from here that V → ∞ as z → ∞. The level curves
of V are represented in Fig. 4a. Hence, x or y must be an increasing function of z
near the solid wall. For example, let x be an increasing function of z when z is small
enough. Due to the fact that x → ±√

t as z → +∞ and t is small with respect to x(0),
the representation of x as a function of z has the form shown in Fig. 4b. Hence, the
function x(z) is non-monotonic. In this case we may have also non-monotonic pro�les
of densities unlike in the treatment of Evans et al. Then, construction of an analytical
solution may be done according to the algorithm proposed in Appendix B.

6. Conclusion

Near critical conditions, by using a variational approach, we have obtained for an
isothermal binary mixture in contact with a solid wall equations of equilibrium and
boundary conditions which generalize those obtained by Cahn. With limit conditions
in the bulk, they form a closed boundary value problem. When the free energy of
the mixture is a quadratic form with respect to the densities of components and their
gradients, we get explicit pro�les of the densities in the one-dimensional case.
In the case of a purely attractive wall we have also established a criterion of a

�rst-order transition, when a contact angle against a solid wall becomes zero. This
criterion is formulated in terms of the level set of the function U (x; y): U (x; y) = k2,
where k2 depends on the boundary conditions. If the level set is a connected set, two
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Fig. 4. (a) represents level sets of V . Since x or y must be an increasing function of z near the wall, due
to the limit conditions at in�nity, x or y is a non-monotonic function of z. (b) is a representation of such
a function.

multi-component layers exist: one layer with ordinary adsorption and the second one in
contact with the wetting layer. If the level set is disconnected we have partial wetting.
We have also shown that the pro�les of density are typically non-monotonic. This is
in agreement with Rowlinson and Widom [7] where in�nite two-phase two-component
mixtures where considered.

Acknowledgements

We have greatly bene�ted from comments and advises of Professor Benjamin Widom.

Appendix A. Calculus of variations for 
uid mixtures

We study a two-
uid equilibrium, but the method can be extended to any number
of components. The position of a two-
uid mixture is associated with two applications

x = ��(X�); �= 1; 2 ;

where X� denote the Lagrangian coordinates belonging to a reference space D� asso-
ciated with the �th component and x denotes the Eulerian coordinates in the physical
space D [13]. The virtual motions of particles are deduced from the relation

x =��(X�; ��); ��(X�; 0) = ��(X�) :

Here ��; � = 1; 2 are small parameters de�ned in a neighborhood of zero. Virtual
displacement �� are de�ned by [13,14]

�� =
@��
@��

(X�; ��)|��=0 ; �= 1; 2 : (A.1)

At the solid boundary, the virtual displacement �� is subject to the conditions

n�� = 0; �= 1; 2 ; (A.2)

where n is the unit normal vector to the boundary.
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Eulerian variations of densities are de�ned by

���� =
d
d��
��(x; ��)|��=0 and ���� = 0; � 6= �; �; � = 1; 2 : (A.3)

The variations (A.3) are related to the virtual displacements (A.1) by the formulae
[14,15]

���� =− div(����); �= 1; 2 : (A.4)

The variations of the volume free energy are

��ED =
∫ ∫ ∫

D

��E dD ;

where

��E =
@E
@��

���� + f���∇�� with f� =
@E

@(∇��) :

Since

��∇�� =∇(����)
we get

��ED =
∫ ∫ ∫

D

(
�E
���

���� + div(f�����)
)
dD ; (A.5)

where the variational derivative (�E=���) is de�ned by

�E
���

≡ @E
@��

− div f� :

From relations (A.2), (A.4) and (A.5) we obtain

��ED =
∫ ∫ ∫

D

(
��∇

(
�E
���

)
�� − div

(
��
�E
���

�� + f� div(����)
))

dD

=
∫ ∫ ∫

D

��∇
(
�E
���

)
�� dD−

∫ ∫
S

nf� div(����) dS :

The variations of the surface free energy are

��ES =
∫ ∫

S

@ES
@��

���� dS=−
∫ ∫

S

@ES
@��

div(����) dS :

The grand potential of the system is E = ED + ES and its �th variation is given by
the formula

��E=
∫ ∫ ∫

D

��∇
(
�E
���

)
�� dD−

∫ ∫
S

(
nf� +

@ES
@��

)
div(����) dS :

Denoting c� = nf� + @ES=@��, we obtain∫ ∫
S

c� div(����) dS=
∫ ∫

S

(
c� divS(����) + c�

(
n
@(����)
@x

n
))

dS ;
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where divS denotes the surface divergence. Denoting by ∇S the tangential gradient
to S, we get �nally

��E=
∫ ∫ ∫

D

��∇
(
�E
���

)
�� dD+

∫ ∫
S

(
��∇S(c�)�� − c���

(
n
@��
@x
n
))

dS :

Consequently, the equations of equilibrium are

∇
(
�E
���

)
= 0; �= 1; 2 (A.7)

or

∇
(
@E
@��

− div
(

@E
@(∇��)

))
= 0 �= 1; 2

and the boundary conditions are

c� = 0 and ∇S(c�) = 0; �= 1; 2 :

Due to the fact that ∇S(c�) = 0 is a direct consequence of relation c� = 0 on the
surface, the only e�ective boundary conditions are c� = 0, i.e.

n
@E

@(∇��) +
@ES
@��

= 0; �= 1; 2 :

Appendix B. Analytical representation of the pro�les of densities of a two-component
mixture for the wetting problem near a critical point

Our purpose is to express analytically the pro�les of densities of a two-phase mixture
in contact with a solid wall. The free energy is given by (16) and the dynamical system
for the pro�les is given by

mxx
d2x
dz2

+ mxy
d2y
dz2

= 2x(x2 + y) ;

mxy
d2x
dz2

+ myy
d2y
dz2

= x2 + 2y + t :

(B.1)

We notice that the matrix

@2U
@R2

=
(
6x2 + 2y 2x
2x 2

)

is positive de�nite in the bulk phases (±x00; y00) where y00 = −x200 and t = x200 6= 0.
As in the Section 4, we can determine the positive eigenvalues �2 de�ned from the
equation

det
(
@2U
@R2

− �2M
)
= 0 ;

where all the matrix coe�cients are calculated in the bulk. We obtain

�4(mxxmyy − m2xy) + �2(4x00mxy − 4x200myy − 2mxx) + 4x200 = 0:
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For |x00| small enough, we get the two eigenvalues in the form

�2 ≡ �21 =
2x200
mxx

+ O(|x00|3) (B.2)

and

�2 ≡ �22 = �20 −
4mxy
D2

x00 + O(|x00|2); where �20 = 2mxx=D
2;

D2 = mxxmyy − m2xy: (B.3)

We are looking for the solution of the system (B.1) which goes to the equilibrium
states (±√

t;−t); t ¿ 0 at z =+∞ in the following form

x =
∑
k;m¿0

xkm exp(−(�k + �m)z) ;

y =
∑
k;m¿0

ykm exp(−(�k + �m)z) :
(B.4)

We assume that this expansion is valid for all positive values of z. We will show
that this solution represents a two-parameter family. The values of the parameters will
come from the boundary conditions (20). Substituting relations (B.4) into (B.1) and
denoting �= exp(−�z) and �= exp(−�z), we get∑

k;m¿0

(�k + �m)2�k�m(mxxxkm + mxyykm)

=2
∑

k;m;l;p;q;r¿0

xkmxlpxqr�k+l+q�m+p+r + 2
∑

k;m;l;p¿0

xkmylp�k+l�m+p

and ∑
k;m¿0

(�k + �m)2�k�m(mxyxkm + myyykm)

=
∑

k;m;l;p¿0

xkmxlp�k+l�m+p + 2
∑
k;m¿0

ykm�k�m + t :

The identi�cation of terms �j�k yields

�0�0:
(
x00
y00

)
=
(±√

t
−t

)
;

�1�0:
(
x10
y10

)
= c10h10 with h10 =

(
1
0

)
+ O(|x00|) ;

�0�1:
(
x01
y01

)
= c01h01 with h01 =

(−mxy
mxx

)
+ O(|x00|) :

The vectors h10 and h01 are eigenvectors corresponding to eigenvalues �2 and �2 de-
�ned by (B.2) and (B.3), respectively. The constants c10 and c01 are multipliers to be
determined.
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In the same way, the terms associated with �1�1; �0�2 and �2�0 are(
x11
y11

)
= c01c10h11 with h11 =− mxy

D|x00|h01 + O(1) ;

(
x02
y02

)
= c201h02 with h02 =

mxy
2


 −(mxxmyy + m2xy)

2mxx
mxy


+ O(|x00|) ;

(
x20
y20

)
= c210h20 with h20 =

(
O(|x00|−1)

O(1)

)
:

The expansion of R truncated to the second order with respect to c10 and c01 is

R=R00 + c10h10 exp(−�z) + c01h01 exp(−�z) + c01c10h11 exp(−(�+ �)z)
+ c201h02 exp(−2�z) + c210h20 exp(−2�z) + : : : : (B.5)

Because the solution R must be bounded as |x00| goes to zero for all positive values of
z; c10 is at least of order |x00|. Then, we may introduce a constant c̃10 by the formula

c10 = D|x00|c̃10; D2 = mxxmyy − m2xy :
Since the terms R00 and c10h10 are of the order of O(|x00|), we get in the vicinity of
z = 0.

R = a01h01exp(−�z) + c210h02exp(−2�z) + O(|x00|) ; (B.6)

where all the coe�cients are �nite as |x00| goes to zero and a01 = c01 − mxyc01c̃10. In
fact, the term R00 is negligible at the vicinity of the wall, but not in the bulk.
For the sake of simplicity, we exhibit the boundary conditions only in the case of a

purely attractive wall (when � is negligible). Then p=−
 and the condition (20) on
the wall reads

M
dR
dz
=−�∗
 at z = 0 :

Or, by using (B.6), we get

�0M (a01h01 + 2c210h02) = �
∗
 : (B.7)

By multiplying (B.7) by h10 and h01, we get a system of two scalar equations. By
taking into account the equality h10Mh01 = 0, the vector equation (B.7) is equivalent
to the system of two scalar equations

2�0c210h10Mh02 = h10�
∗
 ; (B.8)

�0(a01h01Mh01 + 2c210h01Mh02) = h01�
∗
 : (B.9)

Eq. (B.8) de�nes c210 and then, Eq. (B.9) de�nes a01. Hence the solution near the wall
(B.6) is completely determined. Consequently, we are able to determine the e�ect of
the solid wall on the adsorption of each component. Due to the fact that the expansion
(B.6) depends only on c201 and not c01, in this approximation we do not need to satisfy
the inequality c201¿ 0.
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