
5 Some Aspects of Objectivity 

If laws of nature discovered at different places and times were not the same, scientific 
work would have to be redone at every new place and at each time. We know that the 
laws of nature we discover have to take the same form, however we are oriented or 
we set our clock; there is no difference whether we measure distances relative to, for 
example, east or west, or we date events from, for example, the birth of Christ or the 
death of Newton. Qualitative and quantitative descriptions of physical phenomena have 
to remain unchanged even if we make any changes in the point of view from which we 
observe them. Thus, physical processes do not depend on the change of observer. To 
ancient natural philosophers this was not so obvious. The mathematical representation 
of physical phenomena must reflect this invariance. 

The following chapter has the task to express this fundamental finding with the 
concept of objectivity, or frame-indifference, which constitutes an essential part in non- 
linear continuum mechanics. We introduce the terminology of an observer, consider 
changes of observers and apply the concept of objectivity to tensor fields. Transfor- 
mation rules for various kinematical, stress and stress rate quantities under changes of 
observers are also derived. 

It is obvious to claim that material properties must be invariant under changes of 
observers. This fundamental requirement is expressed through the principle of material -__ 
frame-indifference. To show how this objectivity requirement restricts elastic material 
response is the aim of the last section. 

Additional information is found in the same monographs which have already been 
suggested for Chapter 2 (see the reference list on p. 56). Of course, the short list does 
not contain a comprehensive review of the large number of papers and books available 
on this subject. 

5.1 Change of Observer, and Objective Tensor Fields 

Before examining specific constitutive equations for some elastic materials it is first 
necessary to present a mathematical foundation for the change of an observer and to 
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introduce the concept of objectivity for tensor fields. We study further how velocity 
and acceleration fields behave under changes of observers. 

Observer and Euclidean transformation. The description of a physical process 

is related directly to the choice of an observer, which we denote subsequently by 0. 
An arbitrarily chosen observer in the three-dimensional Euclidean space and in time is 
equipped to measure 

(i) relative positions of points in space (with a ruler), and 

(ii) instants of time (with a clock). 

An event is noticed by an observer in terms of position (place x) and time t. 
Consider two arbitrary events in the Euclidean space characterized by the pairs 

(xo, to)  and (x,  t )  (compare with OGDEN 119971). We assume that (xo, to)  is 'frozen' 
as long as the event (x, t) occurs. An observer records that the pair of points in space is 
separated by the distance Ix - xo 1, and that the time interval (lapse) between the events 
under observation is t  - to. In the following we let the pairs (xo, to)  and (x, t )  map to 
(x:, t$) and (x+, t f )  so that both the distance Ix - xol and the time interval t  - to are 
preserved (see Figure 5.1). 

Q 
Distance: Ix - xo I Ixf -x$I  = I x - X O (  

Time interval: t - to 

Figure 5.1 Map of two points preserving distance and time interval. 

A spatial mapping which satisfies the requirements above may be represented by 
the time-dependent transformation 

5.1 Change of Observer, and Objective Tensor Fields 181 

The point differences x+ - x t  and x - xo can be interpreted as vectors which are related 
through the orthogonal tensor Qjt), with the well-known property Q-'(t) = Q(t)T 
(compare with Section 1.2, p. 16). In order to maintain orientations we admit only 

1 
rotation, consequently, Q is assumed to be proper orthogonal (detQ = +I). Hence, 
with (5.1), we may write the following mathematical expression 

where in regard to x+ and x we think of position vectors characterizing two points. For 
eq. (5.2) we have introduced a vector c( t ) ,  and a real number CY denoting the time-shift, 
which are defined to be 

Note that both c and Q are continuous functions of time which, for convenience, are 
assumed to be continuously differentiable. The one-to-one mapping of the form (5.2) 
connecting the pair (x: t )  with its corresponding pair (x+: t') is frequently referred to 
as a Euclidean transformation. 

Change of observer. We assert, for example, that macroscopic properties of mate- 
rials are not affected by the choice of an observer, a fundamental principle of physics. 
However, the general aim is to ensure that the stress state in a body and any physical 
quanhty with an intrinsic feature must be invariant relative to a particular change of 
observer. Therefore, we expect from a change of observer that distances between arbi- 
trary pairs of points in space and tlme ~ntervals between events are preserved. In other 
words, we require that a different observer 0+ monitors the same relative distances of 
points and the same time intervals between events under observation 

We can show that the spatial transformation (5.1) or (5.2)1, combined with the time- 
shift (5.2)2, denote the most general time-dependent change of observer from 0 to O+.  
The event at place x and at time t  recorded by observer 0 is the same event as that 
recorded by a different observer O+ at x+ and t+. Note that we are now considering 
one event recorded by two (different) observers 0 and 0+ who are moving relative to 
each other. 

In order to describe a physlcal process in the (three-dimensional) Euclidean space 
and on the real time axis we assign to each of the observers a rectangular Cartesian 
coordinate system, which we characterize by a set of $xed basis vectors, i.e. {e,) 
and {e:} relative to 0 and Oi ,  respectively. We call them reference frames of the 
observers. Hence, any points x and xf may be represented by the position vectors 
x = z,e, and x+ = x:e:, with x, and x: denoting rectangular Cartesian coordinates, 
as usual. The shift in the time scale between the observer 0 and 0+ is t+ = t + 0. 

In order to formulate the change of observer in index notation, we identify Q ( t )  
as the relative rotahon of the reference frames of the observers. Hence, e$ = Q(t)e, 
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(compare with eq. (1.182)1). Multiplying eqs. (5.2)1 and (5.3)1 by e: and using identi- 
ties (1.81), QTQ = I and the relation according to (1.23)3, we find that 

x: = x f  . ez  = C: ( t )  + xa : c: ( t )  = c(t) - e;t = xia - x0, . (5.4) 

The mathematical expression (5.4)1 states that the observers 0 and 0+ assign, with the 
exception of the shift c;, the same coordinates to the corresponding points x and xi. 

The reader should be aware that the introduced mapping, i.e. a change of observer, 
affects the points in space-time and not the coordinates of points. However, a kliange 
of reference frame changes the coordinates of points (and not the points themselves) 
and is simply governed by a coordinate transformation, as introduced in Section 1.5. 

EXAMPLE 5.1 Consider two arbitrary points of a continuum body identified by 
their position vectors x and y at time t. The events (x: t )  and (y,  t )  are recorded by 
an observer 0 with the reference frame e,. A second observer Of with the reference 
frame e; records the same events at the associated points x+ and y+ at time t+. 

Compute the transformation of the spatial vector field u = y - x = u,e, into its 
counterpart u+ = y+ - x+ = uze; and determine the components u, (of U) and u: 
(of u+), recorded by the two (different) observers 0 and O+, respectively. 

Solution. Using (5.2), u transforms according to 

With reference to eqs. (1.23)3 and (1.21), the components of the spatial vector fields 
ui and u relative to one and to the other reference frames of the observers read 

By means of (5.4)l we deduce from (5.6)3 that 

With (5.7)3 this shows that ui = u,, signifying .that both observers measure the same 
distance. H 

Any spatial vector field u that transforms according to eq. (5.5)3, i.e. 

is said to be objective or equivalently frame-indifferent. According to Example 5.1, 
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transformation (5.9) implies that two observers 0+ and 0, moving relative to each 
other, record the same coordinates, u; = u,, which is the meaning of an objective 
spatial vector field. In general, if a physical quantity is objective then it is independent 
of an observer. 

Consider now a motion x = x(X, t )  of a continuum body as seen by an arbitrary 
observer 0 in space. The motion specifies the place x at current time t of a certain 
material point inihally at X. A second observer O+ monitors the same motion at the 
place x+ and at current time t+, we write x+ = xf (X; t+) .  Note that the reference 
configuration (and any referential position X) is fixed and therefore independent of the 
change of observer. 

Hence, the motion x+ = xi (X: t+) is related to x = x ( X ,  t )  by the Euclidean 
transformation (5.2), i.e. 

for each point X and time t .  

Velocity and acceleration fields under changes of observers. In general, observers 
are located at different places in space and move relative to each other, as implied by 
the time-dependence of c(t) and Q(t) .  Therefore, the descriptions of motions depend 
on the observers and, consequently, the velocity and acceleration of motion are, in 
general, not objective (frame-indifferent), as shown in the following. 

To begin with, we introduce 

axf (X ,  t T )  v+ (x' , ti) = jl+(X, t i )  = ar , 

~ v ( x ,  t )  a(x, t )  = v(x ,  t )  = --- 
a t '  

which are the spatial velocities and accelerations of a certain point as observed by 
0 and Ot, respectively. Before examining the transformation rules for the velocity 
and acceleration fields under changes of observers it is first necessary to formulate the 
inverse relahon of (5.2)l and its material time derivative. Hence, with ~ ( t ) ~ Q ( t )  = I, 
we deduce from (5.2)1 

and using (2.28)1, the product rule of differentiation and (5.1 we find that 
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The overbar covers the quantity to which the time differentiation is applied. Further, 
we define the skew tensor 

with the property 

n 2 ( t )  = - ~ ( t ) ~ ( t ) ~ [ Q ( t ) ~ ( t ) ~ ] '  = - ~ ( t ) m  . 
(5.16) 

\ \ _  

The tensor Cl represents the spin of the reference frame of observer 0 relative to the 
reference frame of observer 0'. 

Hence, material time differentiation of the spatial part of (5.10) gives, using (5.1 1) 
and the product rule, 

From (5.17) we find, with the aid of (5.13) and (5.15),, the transformation law for the 
spatial velocity field, namely 

(suppressing the arguments of functions). 
We deduce from relation (5.18) that the spatial velocity field v is not objective 

under changes of observers following the arbitrary transformation X+ = ~ ( t )  + Q(t)x. 
Since the extra terms c and n(x+ - c) are present, the requirement for objectivity, i.e. 
eq. (5.9), is not satisfied. Hence, the velocity field v is only objective if 

implying a change of observer according to the following time-independent transfor- 
mation 

referred to as a time-independent rigid transformation. Therein, the vector c, and 
the orthogonal tensor Q, are assumed to be time-independent (constant) quantities. For 
a time-independent rigid transformation the magnitudes of v and v+ are equal, so that 
v+ = Qv, as would be required for an objective vector field. 

The material time differentiation of (5.18) gives, by means of the product rule and 
eqs. (5.12) and (5.11)2, 

(suppressing the arguments of functions). 
Finally, by means of (5.14) and eqs. (5.15h, (5.16)2, we obtain from (5.21) the 
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transformation 

for the spatial acceleration field a. Like for the spatial velocity field, the acceleration 
field is not objective for a general change of o b s e r v ~  The terms h ( ~ +  - c) and 
-n2(x+ - c) are called the Euler acceleration and centrifugal acceleration, while 
the last term in eq. (5.22), i.e. 2n(v+ - c), represents the Coriolis acceleration. 

An acceleration field is objective under all changes of observer if and only @ the 
lengths of a+ and a are equal, i.e. a+(x+, t+) = Q(t)a(x, t), requiring that 

Consequently, this implies that c is constant and that the orthogonal tensor Q is 
also constant. A change of observer from 0 to O+ of this type, for which the spatial 
acceleration is objective, is called a Galilean transformation, and is governed by 

x+ = c(t) + Q,x with c(t) = o , Q, = 0 

for all times t. Here, Qo denotes the time-independent orthogonal tensor, and c(t) = 
vot + co, with the initial (constant) quantities for co and the velocity vo. 

Objective higher-order tensor fields. A spatial tensor field of order n, n = 1,2, . . ., 
i.e. u l @ .  - .@ u,, is called objective or equivalently frame-indifferent, if, during any 
change of observer, u1 €4 . - . @ u, transforms according to 

which holds for every tensor Q and every vector u,. 
By introducing a spatial second-order tensor field A(x, t) to be ul (x, t)  @ u ~ ( x ,  t )  

(n = 2), we find, using (5.9), the important relation 

For any spatial vector field u (n = I), eq. (5.25) reduces to u+ (x+, t+) = Q(t)u(x, t), 
which we found through eq. (5.9). 

In particular, for n = 0 we have a scalar field. It is obvious that any spatial scalar 
field @ ( x , t ) ,  recorded by 0, is unaffected by a change of observer. Hence. a spatial 
scalar field is objective if, under all Euclidean transformations (5.2), G? transforms 
according to 



186 5 Some Aspects of Objectivity 

where @+ is the corresponding scalar field recorded by observer O+. 
In summary: the requirement of objectivity means that tensor, vector and scalar 

fields transform under changes of observers according to the laws 

A+(x+,t+) = Q ( ~ ) A ( x , ~ ) Q ( ~ ) ~  , 

u+(xt,tT) = Q(t)u(x, t )  , 1 (5.28) 

cp+(xf,t') = @(x, t )  , 

where x+ and x are related by the Euclidean transformation (5.2). 

EXAMPLE 5.2 Show that the spatial gradient of an objective vector field u = u(x, t )  
transforms according to 

where (gradu)+ = &+/ax+ denotes the spatial gradient of the vector u+ recorded 
by an observer O+. Note that in view of (5.28)1 the second-order tensor field gradu 
retains the objectivity property. 

Solution. A vector field u remains unchanged during any change of observer if 

u + ( x f ,  t + )  = ' ~ ( t ) u ( x ,  t ) .  Hence, by the chain rule, 

(the arguments of the functions have been omitted). With the aid of transformation 
(5.10)1 we obtain the desired result. Note that, in general, the gradient of an objective 
tensor field of order n is also objective. M 

1. Consider objective scalar, vector and tensor fields @ ( x ,  t ) ,  u(x, t )  and A(x, t ) ,  
r6spectively. 

(a) Show that gradQ, divu and divA are objective fields during any change of 
observer. 

(b) Show that the Lie time derivative of a contravariant spatial vector field u, 
as determined in eq. (2.194). is objective. 
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2. Using eqs. (5.13)-(5.15) obtain the alternative relation for the spatial acceleration 
field (5.21) in terms of x, v and a in the form 

and show that its gradient is given by 

where 1 = gradv denotes the spatial velocity gradient. 

3 .  Assume an objective transformation of the body force (per unit volume), i.e. 
b+(x+: t i )  = Q(t)b(x: t ) .  Show that the local form of Cauchy's f i s t  equation of 
motion in the spatial description, i.e. (4.53), is only objective under a Galilean 
transformation. 

5.2 Superimposed Rigid-body Motions 

In the following section we show that a change of observer may equivalently be viewed 
as certain rigid-body motions superimposed on the current configuration. We apply this 
concept to various lunematical quantities and to some stress tensors of importance. 

Rigid-body motion. As noted, the fundamental relationship (5.2) describes a change 
of observer, preserving both the distances between arbitrary pairs of points in space, 
and time intervals between events under observation. 

It is essential to introduce an important equivalent mechanical statement of the 
specification (5.2): for this purpose we consider a motion xf = x i (X;  t+)  of a con- 
tinuum body which differs from another motion x = x(X; t )  of the same body by a 
superimposed (possibly time-dependent) rigid-body motion and by a time-shifi, as de- 
picted in Figure 5.2. We emphasize that, in contrast to the considerations of the last 
section, x f  = x+(X, t') and x = x(X, t )  are motions of two events recorded by a 
single observer 0. The rigid-body motion moves the region 0 in space occupied by 
the body at time t ,  defined by the motion x = x ( X ,  t ) ,  to a new region R+ occupied by 
the same body at t i ,  which is given by x+ = x+(X,  t+). Here and elsewhere we will 
employ the symbol (a)+ to designate quantities associated with the new region a+. 

According to the principle of relativity, the description of a single motion moni- 
tored by two (different) observers, as described in the last section, is equivalent to the 
description of two (different) motions monitored by a single observer. Hence, the pairs 
(x: t )  and (x+; t i ) ,  which are defined on regions 0 and 0+, are precisely related by the 
Euclidean transformation (5.2), i.e. x+ = c(t)  + Q(t)x and tt = t + a. 
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Figure 5.2 Two motions X+ and x of a body (monitored by a single observer) which differ by 
a superimposed rigid-body motion and by a time-shift. A spatial vector field u transforms into 
u+ = Qu, with length lu+l = IuI. 

Within this context the vector c describes a superimposed (time-dependent, pure) 
rigid-body translation for which any material point moves an identical distance, with 
the same magnitude and direction at time t. Since Q is a proper orthogonal tensor 
(detQ = +I), the orientation is preserved and Q describes a superimposed (time- 
dependent, pure) rigid-body rotation. For a pure rigid-body rotation, transformation 
(5.2) reduces to x+ = Q(t)x. 

Hence, at each instant of time a rigid-body motion is the composition of a rigid- 
body translation c and a rigid-body rotation Q about an axis of rotation, combined with 
a time-shift a = t' - t. The material points occupy the same relative position in each 
motion (the angle between two arbitrary vectors and their lengths remain constant). 

We now recall Example 5.1 and apply the described concept to the spatial vector 
field u = y - x located at region fi (see Figure 5.2). Hence, a rigid-body motion 
maps the points x: y to the associated points x+. y+ located in fl+ and the spaoal vector 
u = y  - x t o u + = y +  -x+. 

With (5.2) we may conclude that the distance between the two points y+ and x+ 
remain unchanged. Namely, y+ - x' = Q(t)(y - x) (compare with eq. (5.1)), which 
immediately implies, on use of definition (1.15), identity (1.81) and the orthogonality 
condition ~ ( t ) ~ ~ ( t )  = I, that (y' - x+I = ly - xi. Consequently the lengths of the 
vectors u+ and u are equal, i.e. lu+l = I u I .  We say that the spatial vector field u is 
objective during the rigid-body motion. 
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It is trivial but worthy of mention that any material field 3 ( X ,  t) of some physical 
scalar, vector or tensor quantity, which is characterized as a function of the referential 
position X  and time t, is unaffected by a rigid-body motion superimposed on a. Hence, 
3- (X, t+) = ?(X, t) .  

Euclidean transformation of various kinematical quantities. The following dis- 
cussion is concerned with the behavior of various kinematical quantities during a su- 
perimposed rigid-body motion. 

To begin with, we consider the deformation gradient at. the point x E fl and its 
associated point x+ E R+, i.e. 

Differentiating (5.2) with respect to X gives the transformation rule 

ax+ ax F + = - = Q - = Q P  dx + dx 
ax ax or F A = > = &  ax, Obax, >=Q ab F bA (5.33) 

for the deformation gradient (for convenience, we will not indicate subsequently the 
dependence for the above functions on position and time). Note that the second-order 
tensor F is objective even though (5.33) does not coincide with the fundamental (ob- 
jectivity) requirement (5.28)]. However, recall that the deformation gradient F is a 
two-point tensor field, in which one index describes material coordinates XA which 
are intrinsically independent of the observer. That is why the deformation gradient 
transforms like a vector according to (5.28)2 and why F is regarded as objective. 

Moreover, let J = detF and J f  = detF+. Since the tensor Q is proper orthogonal 
(detQ = +I), eq. (5.33)3 implies, through the property (1.101), that 

Hence, the scalar field J remains unaltered by a superimposed rigid-body motion. Also 
the sign of the volume ratio J is preserved, since detQ = f l .  

Next, we recall the unique polar decomposition of the deformation gradient at x E 

R and x+ E R+, i.e. 

Applying (5.33)3 to (5.35), we arrive at the representations 

Since the tensor QR is orthogonal it follows from (5.313)~ that the transformation rules 
for the rotation tensor R and the right stretch tensor U are 
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By analogy with the deformation gradient, R is an objective two-point tensor field. 
The right stretch tensor is defined with respect to the reference configuration. Hence, 
U remains unaltered by a superimposed rigid-body motion and U is therefore also 
objective. 

From eq. (5.36)2, we obtain, using result (5.37)' and the orthogonality condition 
R ~ R  = I, the transformation rule . 

Clearly, the left stretch tensor v is objective. 
Next, we discuss the,spatial velocity gradient according to (2.141)4, i.e. 1 = *-I. 

In an analogous manner, the spatial velocity gradient generated by the motion X+ reads 

1+ = (&I?-')+ = & + ( ~ + ) - 1  . (5.39) 

By deriving eq. (5.33)3 with respect to time, using the product rule, i.e. k+ = Q F + Q ~ ,  
and the inverse relation of (5.33)3, i.e. (Fi)-' = F-'QT, the spatial velocity gradient 
follows from (5.39)2 as 

if = (QF + QF)(F-'Q~) = 52 + Q~Q* , (5.40) 

with the skew tensor f2 = Q Q ~ .  Since f2 is present, the spatial velocity gradient 
I fails to satisfy the objectivity requirement (lf # QIQT). Hence, the kinematical 
quantity 1 is not a suitable candidate for formulating constitutive equations, which must 
be objective. 

Euclidean transformation of stress tensors. Let dynamical processes be given by 

the pairs (u+, x') and (u, x), where X+ and x are related through (5 .lo). We now 
want to show how the Cauchy saess tensors a' and a are related. 

We recall the Cauchy traction vector t = a n  with the unit vector n at point x 
directed along the outward normal to the boundary surface aQ of an arbitrary region R 
at time t. A superimposed rigid-body motion transforms reglon R to a new region Qt 
which is bounded by the associated boundary surface aQ* at a later time ti = t + a. 
The Cauch51 traction vector transforms to t+ = u f n f  with the u n ~ t  vector n+ at point 
x+ normal to Xit. By taking note that the vectors t and n transform accord~ng to 
the objectivity requirement (5.28)2, we obtain that Qt = uTQn. A companson with 
t = unagives the fundamental transformation rule 

for the stress tensor. This means that the Cauchy stress tensor is objective. 
In order to descnbe the first Piola-Kirchhoff stress tensor which is generated by the 

motion x+ = $(X, t+), we may write the Piola transformation (3.8) as P+(F-)T = 

5.3 Objective Rates 

J+u+.  Knowing that the scalar J is objective according to eq. (5.34), and using (5.33)3 
and (5.41), we find, with the help of (3.8), that 

Since the two-point stress tensor field P transforms like a vector field according to 
the objectivity requirement (5.28)2, P is objective. The second Piola-Kirchhoff stress 
tensor S is parameterized by material coordinates only. Therefore, the material tensor 
field does not depend on any superimposed rigid-body motion, and hence S = S+. 

Note that all the stress tensors u ,  P and S discussed are suitable candidates for the 
description of material response, which fundamentally is required to be independent of 
the observer. 

1 Recall the kinematic relations (2.65), (2.69) and (2.79), (2.83). Using the trans- 
formation rule F+ = QF, show that the material strain tensors C and E are 
unaffected by any possible rigid-body motion, i.e. 

and that the spatial strain tensors b and e transform according to the rules 

Note that all these kinematical quantities are objective, since C and E are defined 
with respect to the reference configuration and the second-order tensor fields b 
and e conform with the requirement of objectivity given in eq. (5.28)1. 

2. By eqs. (2.148) and (2.149), the spatial velocity gradient 1 = *F-' is recalled 
to be the sum of the rate of deformation tensor d = dT and the spin tensor 
W = -wT. 

Show that rigid-body motions involve the transformations 

where d is objective. Note that w, which is expressed through the skew tens01 
R, is affected by rigid-body motions, and hence w is not objective. 
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5.3 Objective Rates 

One aim of this section is to perform objective time derivatives, which are essential in 
order to formulate constitutive equations in the rate form. We focus attention on some 
important objective stress rates associated with the names Oldroyd, Green, Naghdi, 
Jaumann, Zuremba or Truesdell. 

Objective rates. The matenal time derivatives of the objective vector field u = 

u(x, t )  and the objectwe second-order tensor field A = A(x, t ) ,  which transformdc- 
cording to eqs. (5.2& and (5.28)2, are given by means of the product rule of differen- 
tiation as 

G+ = Q I ~  + o u  , A+ = Q A Q ~  + Q A Q ~  + Q A ~  (5.46) 

Clearly, neither u nor A retains the objectivity requirements (5.28) (u+ # Qu and 
A+ # Q A Q ~ ) .  Note that matenal time derivatives of objective spatla1 tensor fields 
will not, in general, be objective and they are not, therefore, suitable quantities for 
formulating constitutive equations in the rate form. 

This motivates the introduction of objective time derivatives called objective rates, 
which are basically modified material time derivatives. Before proceeding to examine 
objective rate forms it is first necessary to express the material time derivatives of Q 
and Q~ from relation (5.45)2. With definition (5.15)1 and property w = -wT for the 
spin tensor we find that 

- 
Q =  W + Q - Q W  , Q~ = - Q ~ w + + w Q ~  . (5.47) 

Hence, substituting (5.47)1 into (5.46)1, we find immediately, by analogy with the 
transformation rule (5.28)z, that 

(G - wu)' = Q(u - wu) , (5.48) 

where we have introduced the definition for the co-rotational rate of the objective 
vector field u: i.e. 

U = U - w u  . (5.50) 

In general, we denote co-rotational rates with the accent (0). 

By analogy with the above we introduce the co-rotational rate of the objective 
second-order tensor field A. With the help of eqs. (5.47) and (5.2Q1 we find from 
(5 .46)2 after some straightforward recasting that 

(A - WA + AW)+ = Q(A - WA + A W ) Q ~  , (5.51) 
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where we have introduced the definition 

known as the Jaumann-Zaremba rate, which is often used in plasticity theory. Obvi- 
ously, in regard to eqs. (5.49) and (5.52), the co-rotational rates of u and A are indeed 
objective. 

If A is a symmetric tensor we can easily show an interesting property connecting 
the Jaumann-Zaremba rate and the material time derivative of A. Using (5.53) and the 
property of double contraction according to (1.95), i.e. A : wA = A : Aw, we obtain 

Finally we define the convected rates of u and A. These are the objective fields 

a A 

where the accent (a) indicates convected rates. The rate A is also called the Cotter- 
Rivlin rate. 

Objective stress rates. We now focus attention on some of the infinitely many pos- 
sible objective stress rates that may be defined. The choice of suitable, i.e. objective, 
stress rates is essential in the formulation of constitutive rate equations, which must be 
objective. 

The Oldroyd stress rate of a spatial stress field is defined to be the Lie time deriva- 
tive of that field. We shall indicate Oldroyd stress rates by the abbreviation Oldr. 
By recalling the concept of Lie time derivatives from Section 2.8, in particular, rule 
(2. 188)1, the Lie time derivative of the contravariant Cauchy stress tensor a is given by 

where the transformations (2.87) and the product rule of differentiation are to be used. 
Hence, using the identities (2.145)~ and (2.146)2, we conclude that the Oldroyd stress 
rate of the Cauchy stress u is 

where u denotes the material time derivative of the Cauchy stress tensor. 
We now show how the Oldroyd stress rate, Oldr(a), generated by the motion X, 

is related to its counterpart 0ldr(a)+,  generated by xf. Considering Oldr(u)+ = 
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b+ -If rf - and using transformations (5.41) and (5.40)2 in combination with 
eqs. (5.15) and (5.57), we obtain 

Hence, the Oldroyd stress rate is objective. In general, we can prove that Lie time 
derivatives of objective spatial tensor fields yield objective spatial tensor fields. .I 

By analogy with (5.57), the Oldroyd stress rate of the Kirchhoff stress T is 

Adopting rule (2.188) for the contravariant Kirchhoff stress tensor T and using 
relation (3.63)1, we obtain the important equation 

relating the Lie time derivative of T, i.e. 0 l d r  (T), and the material time derivative s of 
the second Piola-Kirchhoff stress S according to the push-forward operation (2.87)1. 

EXAMPLE 5.3 Consider the definitions 

of objective stress rates, where is called the Green-Naghdi stress rate and & the 
Jaumann-Zaremba stress rate (compare with the Jaumann-Zaremba rate (5.53) for 
any objective second-order tensor field). The spin tensor w is given by definition 
(2.149). 

Show that both and B are special cases of the Oldroyd stress rate of u in the 
sense that G corresponds to the Lie time derivatixe (5.56), with F replaced by the 
rotation tensor R, and & is the Lie time derivative (5.56), with the rate of deformation 
tensor d set to zero. Discuss the case in which the Green-Naghdi stress rate and the 
Jaumann-Zaremba stress rate coincide. 

Solution. Setting F' = R in relation (5.56) and employing identities (2.145)1 and 
(2.146)1 (change F to R) with the orthogonality condition RTR = I, we obtain 

where R R ~  is a skew tensor according to (2.160). 
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I However, setting d = 0 in the Lie time derivative (5.56), which equivalently means 
that I = w, we deduce from (5.57) that 

.Ey(ug)ld,~ = u - wu + a w  : (5.63) 

with the skew tensor w = -wT. 
The Green-Naghdi stress rate and the Jaumann-Zaremba stress rate clearly coin- 

cide for w = R R ~ .  This is the case for a rigid-body rotation (recall Example 2.12, 
eq.(2.162)). 

The Truesdell stress rate of the Cauchy stress, denoted by Trues(u), is defined 
as the Piola transformation of S.  Thus, 

Trues(u) = J - ~ F S F ~  : (5 64) 

that is the push-fonvard of s scaled by the inverse of the volume ratio, J-I = (detF)-l . 
Hence, using the Piola transformation (3.65)1 and the product rule of differentiation we 
find from (5.64) that 

I Using relations (2.17832 and (2.14512, (2.146)2 we deduce from (5.65)~ that 

I Trues(a)  = u - l a  - ulT + a t r d  . (5.66) 

By comparing eqs. (5.57) and (5.59) with (5.66) we may easily deduce the relation- 
ships 

Oldr(u) = ~ r u e s ( u )  - a t r d  : (5.67) 

0ldr(r) = JTrues(a)  

between the Oldroyd stress rate and the Truesdell stress rate. 

EXAMPLE 5.4 Suppose that the transformation (5.68) is given. Express u as J-lr 
I and derive the relation (5.67) by simply applying the product rule of differentiation to 

the Oldroyd stress rate. 

Solution. With u = J - I 7  and the fact that the directional derivative (in our case 
the Lie time derivative) satisfies the common rules of differentiation, for example, the 

I 
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product rule, we may write 

Oldr(u) = i , (J- ' r )  = J-'£,(r) + £,(JF1)r . (5.69) 

According to considerations of Section 2.8, the Lie time derivative of a scalar field is 
equal to the material time derivative of that scalar field, and hence £,(J-l) = m. 
Therefore, with the chain rule and eqs. (2.178)~ and (5.68), relation (5.69)2 leads to the 
desired result, 

I 
Oldr(u) = J- 'Oldr(r) + J-'r = ~ - ' O l d r ( r )  - ~ - ' r t ~ d  

= Trues(u) - ut rd  : (5.70) 

where the relation a = J-'r is to be used again. 

A 

1. Consider the Cotter-Rivlin rate A defined by (5.55)2. 

A 
(a) Show that A is the Lie time derivative of a covariant tensor field A. 

(b) With (5.53) and 1 = d + w show that the connection between the Cotter- 
Rivlin and Jaumann-Zaremba rates is 

A 

2. Recall the convected rates and A, as defined in eq. (5.55). Using eqs. (5.40)2, 
(5.15) and (5.46), (5.28), show that they are objective according to 

5.4 Invariance of Elastic Material Response 

In this section we introduce the principle of material frame-indifference whlch states 
basically that material properties do not depend on the change of observer. In partic- 
ular, we show how it restricts the response of elastic materials and derive objective 
constitutive equations which are defined to be invariant for all changes of observer. 
This principle is cmcial when constitutive theories such as the theory of elasticity or 
plasticity are considered. 
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In the following we consider only the isothermal case for which the absolute tem- 
perature @ remains constant during the process. 

Cauchy-elastic materials. A material is called Cauchy-elastic or elastic if the 
stress field at time t depends only on the state of deformation (and the state of tem- 
perature) at this time t and not on the deformation history (and temperature history). 
Hence, the stress field of a Cauchy-elastic material is independent of the deformation 
path (independent of the time). However, note that the actual work done by the stress 
field on a Cauchy-elastic material does, in general, depend on the deformation path. 

A constitutive equation (or equation of state) represents the intrinsic physical 
properties of a continuum body. It determines generally the state of stress at any point 
of that body to any arbitrary motion at time t. A constitutive equation is either re- 
garded as mathematically generalized (axiomatic) or is based upon experimental data 
(empirical). 

The constitutive equation of an isothermal elastic body relates the Cauchy stress 
tensor cr = U(X, t )  at each place x = X(X, t )  with the deformation gradient F = 

F(X. t ) .  We may express the constitutive equation in the general form 

where g is referred to as the response function associated with the Cauchy stress 
tensor u. 

In equation (5.71), u was allowed to depend upon the referential position X E Ro 
in addition to F. Hence, the stress response varies from one particle to the other. How- 
ever, for subsequent introductory treatments, it is convenient to restrict our attention 
on continuum bodies, in which both the Cauchy stress tensor u and the reference mass 
density p, are independent of the position X; such bodies are called homogeneous. 

Hence, instead of (5.71), we write the constitutive equation in the form 

which determines the stresses u from the given deformation gradient F. From the me- 

chanical point of view g characterizes the material properties of a (isothermal) Cauchy- 
elastic material, while from the mathematical point of view g is a tensor-valued func- 
tion of one tensor variable F. The concept of tensor functions, as we will use it here, is 
explained in Section 1.7.. A constitutive equation of the type of (5.72) is often referred 
to as a stress relation. 

Note that for homogeneous deformations the corresponding stresses are constant 
(since F has the same value at every point of the body) and, interestingly enough, 
Cauchy's equation of equilibrium (4.54) trivially reduces to diva = o. For this case 
the body force b is zero, which means that a homogeneous deformation of a continuum 
body occurs without body force. 
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Principle of material frame-indifference, As already mentioned in previous sec- 
tions, constitutive equations must be objective (frame-indifferent) with respect to the 
Euclidean transformation (5.2). In other words, if a constitutive equation is satisfied 
for a dynamical process (u; X) then it must also be satisfied for any associated (equiv- 
alent) dynamical process (a+, x+) which is generated by the transformations (5.41) 
and (5.10). This is a fundamental axiom of mechanics which is known as the principle 
of material frame-indifference or the principle of material objectivity or simply as 
objectivity (see TRUESDELL and NOLL [1992, Sections 19, 19AI). If this principle is 
violated, the constitutive equations are affected by rigid-body motions and meaningless 
results are obtained. 

To begin with, the material frame-indifference of the stress relation (5.72) imposes 
certain restrictions on the response function g .  We consider a motion X+ which differs 
from x by a rigid-body motion superimposed on the current configuration (compare 
with Figure 5.2). The rigid-body motion maps the region R to a new region Of and 
the stress relation (5.72) to u+ = g(F+). We demand that both regions, namely 0 and 
R+, are associated with the same function g because it is for the same elastic material. 
Hence, using (5.33)3 on the one hand and (5.41), (5.72) on the other hand, we arrive at 

Combining (5.73), and (5.73)*, we find the restriction 

on g for every nonsingular F and orthogonal Q. In other words, constitutive equation 
(5.72) is independent of the observer if the response function g satisfies the invariance 
relation (5.74). 

Employing the right polar decomposition F = RU on the right-hand side of (5.74), 
we may write Q ~ ( F ) Q '  = g(QRU), where R is the orthogonal rotation tensor and 
U the right stretch tensor. Since the latter relation holds for all proper orthogonal 
tensors Q, it also holds for the special choice Q = R ~ .  Hence, using the orthogonality 
condition R'R = I, we obtain a corresponding reduced form of eq. (5.74), i.e. 

g (F) = Rg(u)RT , (5.75) 

for the function g and for every F and R. Therefore, the associated stress relation reads 

which shows that the properties of an elastic material are independent of the rotational 
part of F = RU, characterized by R. Note that the reduced constitutive equation (5.76) 
is compatible with the prjnciple of material frame-indifference which can be shown 
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as follows. By analogy with (5.76), let a+ = Rtg(u+)(Rt)' and use eq. (5.37) in 
order to obtain ut = QR~(u)R'Q~.  Hence, by use of (5.76), we obtain once more 
u+ = Q U Q ~  (compare with (5.41)). 

An alternative form of constitutive equation (5.72) follows from Piola transforma- 
tion (3.8). With (5.72) and the volume ratio J = detF, we obtain 

where we have defined the tensor-valued tensor function 6 associated with the first 
Piola-Kirchhoff stress tensor P. 

By analogy with the above we may now show the material frame-indifference of 
the stress relation (5.77)3. Considering P+ = O(F+) and, using (5.33)3 on the one 
hand and (5.42) and (5.77)3 on the other hand, we find that 

Equating (5.78)l and (5.78)2, we find the invariant relation 

for the function 6 and for every F and Q. Relations (5.74) and (5.79) are necessary 
and sufficient conditions for the constitutive equations (5.72) and (5.77)3 to satisfy the 
principle of material frame-indifference. 

A reduced form of constitutive equation (5.77)3 is obtained from restriction (5.79). 
Setting Q = RT and replacing F by its right polar decomposition RU on the right-hand 
side of (5.79), we obtain, using RTR = I, 

6 (F) = R 6  (U) . (5.80) 

The restriction on 6 expressed through eqs. (5.79) and (5.80) are equivalent to the 
restriction on g ,  as given in eqs. (5.74) and (5.75). 

Another alternative form of the constitutive equation which turns out to be very 
useful in the theory of elasticity follows from relation ( 3 ~ 5 5 ) ~ .  With the volume ratio 
J = detU, i.e. (2.96)2, the polar decomposition F = RU, the stress relation (5.76), 
and the fact that the right stretch tensor U is symmetric, we obtain 

By recalling that U is the unique square root of the right Cauchy-Green tensor C, we 
may write c"' in the place of U. Defining a tensor-valued tensor function Zj we may 
introduce finally the second Piola-Kirchhoff stress tensor S in the form 
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Since the reference configuration is unaffected by superimposed rigid-body mo- 
tions, we know that the second Piola-Kirchhoff stress tensor and the right Cauchy- 
Green tensor simply transform according to S+ = S and C+ = C. We conclude that 
the stress relation (5.82) is independent of the observer. 

EXAMPLE 5.5 Investigate if the elastic material given by 

a = J(E) , (5 83) 

associated with motion X, satisfies the principle of material frame-indifference. . 

Solution. For another motion X+ (recorded by a single observer 0), assumption 
(5.83) implies u+ = 3(E+). By recalling the transformations for the Cauchy stress 
tensor u and the Green-Lagrange strain tensor E, which satisfy eqs. (5.41) and (5.43)', 
and knowing that J is the same function for the two (different) motions x and X+ (it 
is for the same elastic material), we conclude that 

QuQT = J(E) . (5.84) 

Note that this relation is only true for Q = I; thus, constitutive equation (5.83) does 
not satisfy the principle of material frame-indifference. . 
Isotropic Cauchy-elastic materials. We assume that the Cauchy stress tensor u 
depends on the left Cauchy-Green tensor b = F F ~ .  The constitutive equation (5.72) 
may then be written in the alternative form 

u = b ( b )  , (5 35)  

where Ij is a tensor-valued function of the symmetric second-order tensor b associated 
with the Cauchy stress tensor u. 

In order to find the restriction imposed on the response function fj by the assump- 
tion of material frame-indifference, let u+ = lj(b+), where the response function lj 
is the same for the two motions x and x+. We now use (5.44)1 on the one hand and 
(5.41), (5.85) on the other hand in order to obtain 

'u+ = b(b+) = $ ( Q ~ Q ~ )  , U+ = Q U Q ~  = Q B ( ~ ) Q ~  . (5.86) 

Combining eqs. (5.86)1 and (5.86)2 we find the fundamental invariance relation 

ab(b)aT = b(QbaT) (5.87) 

for the function $ and for every tensor b and orthogonal tensor Q. Hence, constitutive 
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equation (5.85) is independent of the observer if b satisfies restriction (5.87). 
A specific elastic material which may be described by the constitutive equation in 

the form (5.85), with property (5.87), is said to be isotropic. A tensor-valued function 
such as b(b) is said to be isotropic if it satisfies relations of type (5.87). Hence, we 
refer to b (b) as a tensor-valued isotropic tensor function of one variable b. 

From the physical point of view the condition of isotropy is expressed by the prop- 
erty that the material exhibits no preferred directions. In fact, the stress response of an 
isotropic elastic material is not affected by the choice of the reference configuration. 
For a piece of wood, for example, which is of cellular structure, the properties in the 
direction of the grain differ from those in other directions, so the material certainly is 
not isotropic. 

The isotropic tensor function b (b), which satisfies (5.87), may be represented in 
the explicit form 

for each b, which is known as the Rivlin-Ericksen representation theorem. For 
a proof of this crucial relation see RIVLIN and ERICKSEN [1955], TRUESDELL and 
NOLL [1992, Section 121, SPENCER [1980, Appendix] and GURTIN [1981a, pp. 233- 
2351. Note that the representation theorem (5.88) represents a fundamental requirement 
for the mathematical form of the stress relation. 

Here, a,, a = 0: 1: 2, are three scalar functions called response coefficients or 
material functions. Hence, in general, for an isotropic material only three parameters 
are needed in order to describe the stress state. The scalar functions a, depend on 
the three invariants of tensor b and therefore on the current deformation state. The 
invariants are defined with respect to eqs. (1.170)-(1.172) as 

1 
Iz(b) = - 2 [(trb)' - tr(b2)] = trb-'detb = X:X~ + $12, + X:X~ : (5.90) 

&(b) = detb = J2 = X:A;X; , (5.91) 

where X i  are the three eigenvalues of the symmetric spatial tensor b, see eq. (2.119). 
In eq. (5.91), relation (2.81)2 was used. 

Representation (5.88) is the most general form of a constitutive equation for iso- 
tropic elastic materials also known as the first representation theorem for isotropic 
tensor functions. From the constitutive equation (5.88) we deduce that the principal 
directions of the Cauchy stress tensor a and the left Cauchy-Green tensor b coincide. 
Hence, for isotropic elastic materials the two symmetric tensors a and b are said to be 
.coaxial in every configuration. 
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By analogy with (5.88), the constitutive equation 

characterizes the behavior of a viscous fluid, in particular, of a soxalled Reiner-Rivlin 
fluid. Therein, p and d are the spatial mass density and the rate of deformation tensor, 
while Z,, a = 0: 1.2, are scalar functions of the invariants I,, a = 1: 2: 3, given in 
(5.89)-(5.91) with d replacing b. 

In order to find an alternative explicit representation for (5.88), we recall the Cayley- 
Hamilton equation (1.174). Since any tensor satisfies its own characteristic equation, 
we may write (1.174) as b3 - Ilb2 + I2b - 131 = 0 and find, by multiplying this 
equation with b-', that 

Eliminating b2 from (5.88) in favor of b-' we obtain an alternative representation of a 
constitutive equation for isotropic elastic materials, i.e. 

where Pa, a = 0: 1: 1 ,  are three scalar functions (response coefficients) which, in 
terms of the three invariants of b, are expressed as 

Representation (5.94) is also known as the second representation theorem for 
isotropic tensor functions, see, for example, GURTIN [1981a, p. 2351. 

Incompressible Cauchy-elastic materials. If the Cauchy-elastic material is incom- 
pressible, then the stress relation is determined only up to an arbitrary scalar p which 
can be identified as a pressure-like quantity. The constitutive equations (5.72), (5.76) 
and (5.82) are then replaced by 

s = -PC-' + 4 (C) ; (5.97) 

where the' tensor-valued tensor functions g (F) : g (U) and 4 (C) need only be defined 
for the kinematic constraints detF = 1: detU = 1 and detC = 1, respectively. The 
indeterminate terms -pI and are known as reaction stresses, which do no 
work in any motion compatible with above constraints. For incompressible materials 
the (indeterminate) scalar p required to maintain incompressibility may only be found 
by means of the equilibrium conditions and the boundary conditions and is not specified 
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by a constitutive equation. Note that the scalar p must always be included in a stress 
relation of an incompressible material. 

In an incompressible and isotropic Cauchy-elastic material we replace constitutive 
equations (5.88)1 and (5.94)1 by 

respectively, where the response coefficients al,  cu2 and PI. ,R-l depend now only on 
the two scalar invariants Il and Iz (since I3 = detb = 1). Note that the scalars p in 
eqs. (5.98) differ by the term a212. For an incompressible and isotropic Cauchy-elastic 
material the stresses given in (5.98) are determined only up to p. The scalar functions 
a0 and ,Do multiplying I in (5.88)1 and (5.94)1 are absorbed into the reaction stresses. 
The response coefficients in (5.98) are related by 

Two special cases result directly from (5.98)2, i.e. the so-called Mooney-Rivlin 
model for incompressible materials, for which P1 and P-l are constants, and the neo- 
Hookean model for incompressible materials, for which P1 is constant and 0-1 = 0. 
For a study of these types of material see more in Section 6.5. 

1. Consider the classical Newtonian fluid, for which the viscous stress depends 
linearly on the rate of deformation tensor d.  It is the simplest model for a viscous 
fluid and is given by the constitutive equation 

characterizing (low molecular weight) liquids and gases such as water, oil or air. 
Therein, the function p(p)  depends on the spatial mass density p, and X and 7 are 
two parameters characterizing the viscosity of the Newtonian fluid. 

(a) Show that the response of this type of fluid conforms to the principle of 
material frame-indifference. 

(b) Apply the Newtonian constitutive equation to a motion which causes simple 
shear deformation (see eq. (2.3)). Take a constant viscosity q and show that 
the only non-vanishing shear stress ~ 1 2  is 

with the shear rate i: (compare with Exercise 4(a),(b) on p. 105). 
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Note that the Newtonian viscous fluid is simply a special case of the Reiner- 
Rivlin fluid (5.92) obtained by choosing the response coefficients E,, a = 0 , l :  2: 

as ZO = -p(p)  + X(p)trd, = 2v(p) and 52 = 0, respectively. However, 
by setting Eo = -p(p)  and = 5 2  = 0 we obtain the constitutive equation 
a = -p(p)I  characterizing the material properties of an elastic fluid. 

2. By recalling the transformation rules (5.41), (5.31) and (5.40);, (5.45)l (from 
Sections 5.1 and 5.2), show that the constitutive equations 

u = grada + gradTa + 21Tl ; & = la + ulT + a d  

are acceptable forms which conform to the principle of material frame-indiffer- 
ence, where a: is a material parameter and a ,  1 and d denote the spatial accel- 
eration field, the spatial velocity gradient and the rate of deformation tensor? 
respectively. 

3. Consider a material which is isotropic and Cauchy-elastic. Let a uniform exten- 
sion (or compression) in all three directions according to relation (2.13 l), which 
corresponds to a triaxial stress state, be given. 

By determining the deformation gradient F and the left Cauchy-Green tensor b 
(with respect to a set of some orthonomal basis vectors e,) find the most general 
representation for the Cauchy stress tensor a. 

4. By means of a pull-back of (5.88) to the reference configuration and a scaling 
with the inverse volume ratio Jpl, show that for isotropic elastic materials the 
second Piola-Kirchhoff stress tensor S is coaxial with the right Cauchy-stress 
tensor C ifand only if u is coaxial with b. 

The fundamental equations introduced in Chapters 2-4 are essential to characterize 
kinematics, stresses and balance principles, and hold for any continuum body for all 
times. However, they do not distinguish one material from another and remain valid in 
all branches of continuum mechanics. 

For the case of deformable bodies the equations mentioned are certainly not suf- 
ficient on their own to determine the material response. Hence, we must establish 
additional equations in the form of appropriate constitutive laws which are furnished 
to specify the ideal material in question. A constitutive law should approximate the 
observed physical behavior of a real material under specific conditions of interest. 

Generally we use a functional relationship as a constitutive equation and this en- 
ables us to specify the stress components in terms of other field functions such as strain 
and temperature. A constitutive equation determines the state of stress at any point x of 
a continuum body at time t and is necessarily different for different types of continuous 
bodies. 

Each field of continuum mechanics deals with certain continuous media including 
fluids, which are liquids or gases (such as water, oil, air etc.) and solids (such as 
rubber, metal, ceramics, wood, living tissue etc.). If the constitutive equations are 
valid for physical objects such as fluids we call the field of continuum mechanics fluid 
mechanics. Another important field in which constitutive equations are valid for solids 
is known as solid mechanics. Note that fluid and solid mechanics differ only with 
respect to constitutive equations, but they share the same set of field equations. 

The main goal of the next two chapters is to study various constitutive equations 
within the field of solid mechanics appropriate for approximation techniques such as 
the finite element method. For the most part we follow the so-called phenomeno- 
logical approach, describing the macroscopic nature of materials as continua. The 
phenomenological approach is mainly concerned with fitting mathematical equations 
to experimental data and is particularly successful in solidmechanics (such as classical 
elastoplasticity). However, phenomenological modeling is not capable of relating the 
mechanism of deformation to the underlying physical (microscopic) structure of the 
material. 
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In Chapter 6 we discuss phenomenological constitutive equations which interrelate 
the stress components and the strain components within a nonlinear regime. Since we 
are studying so-called purely mechanical theories, thermodynamic variables such as 
the entropy and the temperature are ignored. However, they are taken into account 
and elaborated on within Chapter 7. No attempt is made to present a comprehensive 
list of the various important contributions on constitutive modeling to date. This text 
discusses some selected material models essential in science, industrial engineering 
practice and in the field of biomechanics, where structures exlubit large strain behavior, 
very often within the coupled thermodynamic regime. 1 

Sections 6.1-6.8 consider hyperelastic materials in general, and cover a wide range 
of important types of material such as isotropic and transversely isotropic materials, in- 
compressible and compressible hyperelastic materials and composite materials, in par- 
ticular. Some important specifications for rubber-like (or other) materials are also pre- 
sented. The remaining Sections 6.9-6.1 1 focus attention on inelastic materials. Based 
on the concept of internal variables, viscoelastic materials and isotropic hyperelastic 
materials with damage at finite strains are introduced. Plastic and viscoplastic mate- 
rials which have the ability to undergo irreversible or permanent deformations are not 
considerd in t h s  text. 

6.1 General Remarks on Constitutive Equations 

It is the aim of constitutive theories to develop mathematical models for representing 
the real behavior of matter. Constitutive theories of materials are very important but 
they are a difficult subject in modem nonlinear continuum mechanics. We make no 
attempt to conduct a comprehensive review of the large number of constitutive theories. 
For more on formulating nonlinear constitutive theories see, for example, TRUESDELL 
and NOLL [I9921 and the excellent contributions by Rivlin in the 1940s and 1950s 
collected by BARENBLATT and JOSEPH [1997]. 

In particular, we present a nonlinear constitutive theory suitable to describe a wide 
variety of physical phenomena in which the strains may be large, i.e. finite. For the 
case of a (hyper)elastic material the resulting theory is called finite (hyper)elasticity 
theory or just finite (hyper)elasticity for which nonlinear continuum mechanics is the 
fundamental basis (see GREEN and ADKINS [I9701 for an analytical treatment and 
inter alia LE TALLEC [I9941 for numerical solution techniques). 

Constitutive equations for hyperelastic materials. A so-called hyperelastic mate- 
rial (or in the literature often called a Green-elastic material) postulates the existence 
of a Helmholtz free-energy function Q, which is defined per unit reference volume 
rather than per unit mass. 
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For the case in which W = 9 ( F )  is solely a function of F or some strain tensor, 
as introduced in Section 2.4, the Helmholtz free-energy function is referred to as the 
strain-energy function or stored-energy function (see Section 4.4, p. 159). Subse- 
quently, we often use the common terminology strain energy or stored energy. The 
strain-energy function Q = 9 ( F )  is a typical example of a scalar-valued function of 
one tensor variable F, which we assume to be continuous. 

A concept of importance in elasticity is polyconvexity of strain-energy functions. 
The global existence theory of solutions, for example, is based on the condition of 
polyconvexity of strain-energy functions. For an extensive discussion on the underlying 
issue, see BALL [1977], CIARLET [l988, Chapters 4, 71, MARSDEN and HUGHES 
[1994, Section 6.41 and S ILHAV~~ [1997, Sections 17.5, 18.51. 

We now restrict attention to homogeneous materials in which the distributions of 
the internal constituents are assumed to be uniform on the continuum scale. For this 
type of ideal material the strain-energy function 9 depends only upon the deformation 
gradient F. Of course, for so-called heterogeneous materials (a material that is not 
homogeneous) 9 will depend additionally upon the position of a point in the medium. 

A hyperelastic material is defined as a subclass of an elastic material, as given in 
eqs. (5.77)3 and (5.72), whose response functions ef, and g have physical expressions 
of the form 

and by use of relation (3.9) for the symmetric Cauchy stress tensor, i.e. cr = J - ~ P F ~  = 

These types of equation we already know as (purely mechanical) constitutive equations 
(or equations of state). They establish an axiomatic or empirical model as the basis for 
approximating the behavior of a real material. Such a model we call a material model 
or a constitutive model. As is clear from the constitutive equations (6.1) and (6.2) the 
stress response of hyperelastic materials is derived from a given scalar-valued energy 
function, which implies that hyperelasticity has a conservative structure. 

The derivative of the scalar-valued function \I, with respect to the tensor variable F 
determines the gradient of Q and is understood according to the definition introduced 
in (1.239). It is a second-order tensor which we know as the first Piola-Kirchhoff stress 
tensor P. The derivation requires that the component function 9(Fa.4) is differentiable 
with respect to all components FaA. 
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A so-called perfectly elastic material is by definition a material which produces 
locally no entropy (see TRUESDELL and NOLL [1992, Section 801). In other words, 
we use subsequently the term 'perfectly' for a certain class of materials which has the 
special merits that for every admissible process the internal dissipation Dint is zero 
(naturally, damage, viscous mechanisms and plastic deformations are excluded). We 
will consider perfectly elastic materials up to Section 6.9. 

We may derive the constitutive equation (6.1) directly from the Clausius-Planck 
form of the second law of thermodynamics (4.154) which degenerates to an equality 
for the class of perfectly elastic materials. With the expression (4.154) for Did the time 
differentiation of the strain-energy function, i.e. $(F) = dQ(F)/dF : F, gives 

at every point of the continuum body and for all times during the process. 
As F and hence l? can be chosen arbitrarily, the expressions in parentheses must be 

zero. Therefore, as a consequence of the second law of thermodynamics, the physical 
i 

expression (6.1) holds. We often say that P is the thermodynamic force work conju- 
gate to F. This procedure goes back to COLEMAN and NOLL [I9631 and COLEMAN 
and GURTIN [1967], and in the literature is sometimes referred to as the Coleman-No11 
procedure. 

For convenience, throughout this text we require that the strain-energy function 
vanishes in the reference configuration, i.e. where F = I. We express this assumption 
by the normalization condition 

From the physical observation we know that the strain-energy function Q increases 
with deformation. In addition to (6.4), we therefore require that 

which restricts the ranges of admissible functions occurring in expressions for the strain 
energy. 

The strain-energy function !P attains its global minimum for F = I at thermody- 
namic equilibrium (in fact, from (6.4), Q(1) is zero). We assume that Q has no other 
stationary points in the strain space. Relations (6.4) and (6.5) ensure that the stress in 
the reference configuration, which we call the residual stress, is zero. We say that the 
reference configuration is stress-free. 

For the behavior at finite strains we require additionally that the scalar-valued func- 
tion Q must satisfy so-called growth conditions. This implies that \II tends to +a if 
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either J = detF approaches +oo or O+, i.e. 

Q(F) + +a as detF + +m , 

'P(F) + +oo as detF -+ 0+ . 
Physically, that means that we would require an infinite amount of strain energy in 
order to expand a continuum body to the infinite range or to compress it to a point with 
vanishing volume. 

For further discussions see the books by, for example, CIARLET [I9881 and OGDEN 
[1997]. 

Equivalent forms of the strain-energy function. In order to illustrate !P we imag- 
ine a stretched (rubber) band with a certain amount of energy stored. The strain energy 
Q(F) generated by the motion x = x(X, t )  is assumed to be objective. This means, af- 
ter a (possibly time-dependent) translation and rotation of the stretched (rubber) band 
in space, that the amount of energy stored is unchanged. 

Hence, the strain energy Q(F) must be equal to the strain energy Q(FC) gener- 
ated by a second motion xt = x+(X, t+) which differs from x by a superimposed 
ngid-body motion (recall Sechon 5.2). Employing the transformation rule for the de- 
formation gradient (5.33)3, we see that \II cannot be an arbitrary function of F. In 
particular, it must obey the restriction 

'P (F) = Q (F') = Q (QF) (6.7) 

for all tensors F, with detF > 0, and for all orthogonal tensors Q, since F transforms 
into QF, i.e. F A  = QabFbA 

In order to obtain equivalent formulations of (6.7) we take a special choice for 
Q, namely the transpose of the proper orthogonal rotation tensor, RT, and use the 
right polar decomposition (2.93)1. Then, from (6.7), we find that Q (F) = \II ( R ~ F )  = 

Q (RTRU) , and finally, 

which holds for arbitrary I?. 
From (6.8) we learn that Q is independent of the rotational part of F = RU. We 

conclude that a hyperelastic material depends only on the stretching part of F, i.e. the 
symmetric right stretch tensor U. It is important to note that the relation Q(F) = Q(U) 
specifies the necessary and sufficient condition for the strain energy to be objective 
during superimposed rigid-body motions. 

Since the right Cauchy-Green tensor and the Green-Lagrange strain tensor are given 
by C = u2 and E = (u2 - 1)/2, we may express Q as a function of the six components 
CAB, EAB of the symmetric material tensors C ,  E, respectively. Hence, we may write 

Q(F) = Q(C) = @(E) . (6.9) 
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For notational simplicity, here and elsewhere we will use the same Greek letter @ for 
different strain-energy functions. 

Reduced forms of constitutive equations. In the following we present some re- 
duced forms of constitutive equations for hyperelastic materials at finite strains. 

Consider the derivative of the strain-energy function Q (F) = Q ( C )  with respect to 
time t .  By means of the chain rule of differentiation, property (1.93)1 and the combi- 
nation of (2.168)1 and (2.165)1, we obtain the expressions 

which must be valid for arbitraty tensors F. Since C is a symmetric second-order 
tensor, the gradient of the scalar-valued tensor function Q(C), used in (6.10), is also 
symmetric. From (6.10) we deduce immediately that 

which, when substituted back into (6.2)3, gives an important reduced form of the con- 
stitutive equation for hyperelastic materials, namely 

Alternative expressions may be obtained for the Piola-Kirchhoff stress tensors P 
(which is non-symmetric) and S (which is symmetric). From (3.8) and (3.65)1 we find, 
by means of the stress relation (6.12)2, the chain rule and 2E = C - I, that 

Note that the response function occurring in the general constitutive equation (5.82) 
is with reference to (6.13)2 determined by A(C) = 2dQ(C)/aC. 
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The Eshelby tensor and the tensor of chemical potential. The Eshelby tensor (or 
the (elastic) energy-momentum tensor) is a crucial quantity infracture mechanics and 
the continuum theory of dislocations (which are not discussed in this text). However, 
for completeness we present the (isothermal) referential Eshelby tensor G, which is, 
in general, non-symmetric and is defined as 

(see ESHELBY [I9751 and CHADWICK [1975]), where J = detF denotes the volume 
ratio. The physical dimension of the Eshelby tensor is the same as that of the strain 
energy. 

The symmetric tensor of chemical potential k is related to G according to 

see, for example, BOWEN [1976a]. 
The spatial tensor of chemical potential is required in the theory of diffusing mix- 

tures (see TRUESDELL [I9841 which contains more details). 

Work done on hyperelastic materials. We consider a dynamical process within 
some closed time interval denoted by [ t l ,  t2] in which the two arbitrary instants t l  and 
tz are elements of the interval. The dynamical process is given by a motion x = x(X, t )  
and the stress a with the corresponding Cauchy traction vector t and the body force b. 
During the process the body deforms according to the deformation gradient F = F ( t ) ,  
with t E [tl, tz].  

We say that a dynamical process is closed if F1 = F 2 .  We introduce the definitions 
F ,  = F ( t l )  and F2 = F ( t z )  of the deformation gradients in the initial configuration 
and the final configuration of the dynamical process, respectively. 

Our next step is to determine the work done by the stress field on a continuum body 
of unit volume during a certain time interval [tl, t2]. Consider a body whose material 
properties are hyperelastic according to the general constitutive equation given in (6.1). 
Hence, from (4.101)1 and the above definitions we find by means of the chain rule that 

which, for a closed dynamical process with F1 = F2,  reduces' to 
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Thus, as distinct from Cauchy-elastic materials (see Section 5.4), the actual work 
done by the stress field on a hyperelastic material during a certain (closed) time inter- 
val depends only on the initial andjnal configurations (path independent). In fact, the 
work is zero in closed dynamical processes. This important result also holds for contin- 
uum bodies which may undergo inhomogeneous deformations, in which Q = Q(F, X) 
andpo = po(X), withF = F(X,t). 

1. Expand the strain-energy function Q(F) in the form of tensorial polynomials in 
the vicinity of the reference configuration, i.e. for F = I, 

for all F - I. Using relations (6.4) and (6.5) show that the stress in the reference 
configuration is zero. 

2. Recall the definitions of the referential Eshelby tensor G and the tensor of chem- 
ical potential k. 

(a) Show that the forms 

G = Q ( F ) I - J F ~ ~ F - ~  , k = Q ( F ) I - r  (6.18) 

are equivalent to those given in (6.14) and (6.15), where T is the Kirchhoff 
stress tensor, as defined in eq. (3.62). 

(b) By applying requirement (3.10), show with (6.18)1 that 

GC = C G ~  , 

with the right Cauchy-Green tensor C = F T ~ ,  as defined in eq. (2.66). 

6.2 Isotropic Hyperelastic Materials 

We now restrict the strain-energy function by a particular property that the material 
may posiess, namely isotropy. This property is based on the physical idea that the 
response of the material, when studied in a stress-strain experiment, is the same in all 
directions. One example of an (approximately) isotropic material with a wide range of 
applications is rubber. 

In this section we are concerned with the mathematical formulation of isotropy 
within the context of hyperelasticity. 
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Scalar-valued isotropic tensor function. We consider an arbitrary point X of 
an elashc continuum body occupying the region Qo (reference configuration) at tlme 
t = 0. A motion x may carry this point X E Ro to a place x = x ( X ,  t) specifying a 
location in the region R (current configuration) at time t. 

We now study the effect of a rigid-body motion superimposed on the reference 
conjguration. We postulate that the body occupying the region Ro is translated by the 
vector c and rotated by the orthogonal tensor Q according to 

which moves Ro to a new region C$, (new reference configuration), and the arbitrary 
point with position vector X to a new location identified by the position vector X* E 0; 
(see Figure 6.1). 

Figure 6.1 Rigid-body motion superimposed on the reference configuration. 

We now demand that a different motion x = x*(X*, t) moves 0; to the current 
configuration R so that 

x = x(X,t) = x*(X*,t) : (6.20) 

mapping X* to place x. By the chain rule and relation (6.19) the deformation gradient 
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F may be expressed as 

where F* = ax/aX* is defined to be the deformation gradient relative to the region a;. 
From (6.21)3 we find the important transformation, namely 

Hence, we say that a hyperelastic material is isotropic relative to the reference con- 
figuration Ro if the values of the strain energy Q(F) and Q(F*) are the same for all 
orthogonal tensors Q. With (6.22) we may write 

In other words, if we can s1:ow that a motion of an elastic body superimposed 
on any particularly translated andfor rotated reference configuration leads to the same 
strain-energy function at time t ,  then the material is said to be isotropic. However, 
if a superimposed rigid-body motion changes the strain-energy function in the sense 
that (6.23) is not satisfied (Q(F) # Q(F*)) the hyperelastic material is said to be 
anisotropic (see, for example, TRUESDELL and NOLL [1992, Section 331 and OG- 
DEN [1997, Section 4.2.51). 

It is important to mention that relation (6.23) is fundamentally distinct from re- 
quirement (6.71, which says that the strain energy must be objective during rigid-body 
motions, i.e. independent of an observer. The later condition holds for all materials 
(it is a fundamental physical requirement and must be satisfied) while the condition 
of isotropic response (6.23) holds only for some materials (it is a material-dependent 
requirement and may or may not be satisfied), namely for isotropic materials, which 
makes a crucial difference. 

In addition, it is important to note that for the material-dependent requirements 
(6.22) and (6.23) it is the reference configuration that has been translated and rotated. 
For that case the deformation gradient F is multiplied on the rlght by QT, whereby Q 
acts with material coordinates, i.e. QAB. However, for the objectivity requirements 
(5.33)3 and (6.7), it is the current configuration that has been translated and rotated, 
and F is multiplied on the left by Q, acting with spatial coordinates, i.e. Qab 

We nbw suppose that during motion x = x ( X ,  t )  the strain-energy function may 
adopt the form Q(F)  = Q ( C ) ;  recall eq. (6.9)1. If we restrict the hyperelastic material 
to isotropic hyperelastic response we require that Q ( C )  = Q(C*), with C* = F * ~ F * .  
With reference to (6.22) we conclude that 
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implying with the right Cauchy-Green tensor C = FTF, that 

If the requirement for isotropy (6.25) holds for all symmetric tensors C and or- 
thogonal tensors Q, we say that the strain-energy function Q(C) is a scalar-valued 
isotropic tensor function of one variable C or simply an invariant of the symmetric 
tensor C .  We can show, if the strain-energy function is an invariant, then its gradient is 
a tensor-valued isotropic tensor function. 

EXAMPLE 6.1 Assume that the hyperelastic material is restricted to isotropic re- 
sponse. Show that the strain energy may be expressed by the identity 

where Q ( b )  characterizes an isotropic function of the (spatial) left Cauchy-Green ten- 
sor b  = FFT. 

Solution. We substitute for Q in condition (6.25) the proper orthogonal rotation ten- 
sor R. Then, kinematic relation (2.109)3 implies (6.26), which holds for any isotropic 
deformation. . 
Constitutive equations in terms of invariants. If a scalar-valued tensor function is 
an invariant under a rotation, according to (6.25), it may be expressed in terms of the 
pnncipal invariants of its argument (for example, C orb), which is a fundamental result 
for isotropic scalar functions, known as the representation theorem for invariants 
(for a proof see, for example, GURTIN [1981a, p. 2311 or TRUESDELL and NOLL 
[1992, Section 101). 

Having this in mind, the strain energies, as established in eq. (6.26), may be ex- 
pressed as a set of independent strain invariants of the symmetric Cauchy-Green ten- 
sors C and b ,  namely, through la = Ia ( C )  and I, = I, ( b ) ,  a = 1; 2; 3, respectively. 
With reference to (6.26), we may write equivalently 

Q = Q 111 ( C )  : 12 ( C ) :  &(C) ]  = Q [Ii ( b ) :  Iz ( b ) :  I3 ( b ) ]  . (6.27) 

Again, (6.27) is exclusively valid for isotropic hyperelastic materials satisfying con- 
dition (6.25) for all orthogonal tensors Q. Since C and b  have the same eigenvalues, 
which are the squares of the principal stretches A:, a = 1: 2; 3, we conclude that 

I  ( C )  = I  ( b )  I2 ( C )  = Iz(b)  ; 13(C) = I , (b)  : (6.28) 

where the three principal invariants are explicitly given in accordance with eqs. (5.89)- 
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(5.91). Note that for the stress-free reference configuration, the strain-energy functions 
(6.27), with (5.89)-(5.91), must satisfy the normalization condition (6.4), i.e. Q = 

0, for Il = Iz  = 3 and I3 = 1. The representation in the form of invariants was 
established in the classical work of RIVLIN [1948]. 

In order to determine constitutive equations for isotropic hyperelastic materials in 
terms of strain invariants, consider a differentiation of Q (C) = Q (Il : Iz .  13) with re- 
spect to tensor C. We assume that Q(C) has continuous derivatives with respect to the 
principal invariants I,, a = 1: 2: 3. By means of the chain rule of differentiation we 
find 

The derivative of the first invariant Il with respect to C, as needed for (6.29), gives 
with (6.28h, (5.89)l and the property (1.94) of double contraction 

The derivatives of the remaining two invariants with respect to C follow from 
eqs. and (5.91)1, by means of (6.28), (6.30)3, the chain rule and relations 
(1.25'&, (1.241) (use the symmetric tensor C in the place of A), and have the forms 

Substituting (6.29)-(6.3 1) into constitutive equation (6.13)2 gives the most general 
form of a stress relation in terms of the three strain invariants, which characterizes 
isotropic hyperelastic materials at finite strains, i.e. 

The gradient of the invariant Q(C) = @(Il: T2; 13) has the simple representation 
(6.32), which is a fundamental relationship in the theory of finite hyperelasticity. Note 
that (6.32) is a general representation for three dimensions, in which @ may adopt any 
scalar-valued isotropic function of one symmetric second-order tensor variable. 

Multiplication of (6.32), by tensor C from the right-hand side or from the left-hand 
side leads to the same result. We say that du(C) /aC commutes (or, is coaxial) with 
C in the sense that 

which is an essential consequence of isotropy. 
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Next, we present the spatial counterpart of constitutive equation (6.32). According 
to relation (3.66), the Cauchy stress u follows from the second Piola-Kirchhoff stress 
S by the Piola transformation a = J-'FSFT. By multiplying the tensor variables 
I, C ,  C-' with F from the left-hand side and with FT from the right-hand side, we may 
write by means of the left Cauchy-Green tensor b = FFT, that FIFT = FFT = b, 
F C F ~  = (Fl?T)2 = b2, Fc-lFT = ( F F - ~ ) ( F - ~ P )  = I.  With (6.32) we deduce from 
u = J-IFSF* that 

Following arguments analogous to those which led from (5.88) to (5.94), we find an 
alternative form to (6.34), namely 

By comparing (6.34) and (6.35) with (5.88) a d  (5.94) we may derive the response 
coefficients a,, a = 0,1,2,  and pa, a = 0,1, -1, in terms of the strain-energy function 
(6.27). We obtain the forms 

which specify the f is t  and the second representation theorem for isotropic tensor func- 
tions, i.e. (5.88) and (5.94), respectively. 

Note that in order to formulate constitutive equations which are not restricted to 
isotropic response and which satisfy the objectivity requirement, it is appropriate to 
use quantities which are referred to the reference configuration. Within the context 
of hyperelasticity it is obvious to use the right Cauchy-stress tensor C and its work 
conjugate stress field, i.e. the second Piola-Kirchhoff stress tensor S. 

Constitutive equations derived from Q(b) and P(v). If the strain-energy function 

depends on the (symmetric) left Cauchy-Green tensor b, then the isotropic hyperelastic 
response is 
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(see also TRUESDELL and NOLL [1992, Section 85, p. 313]), where *(b) is a scalar- 
valued isotropic function of the tensor variable b = FFT. This constitutive equation 
plays an essential part in isotropic finite hyperelasticity. On comparison with eq. (5.85) 
we deduce that the right-hand side of eq. (6.38) corresponds to the response function 

Ij (b). 

Pro05 In order to obtain the constitutive equation (6.38), we start by differentiating 
the postulated skain-energy function Q(b) with respect to time t. Considering sym- 
metries, a straightforward algebraic manipulation gives, by means of the chain rule, 
relation (2.171) and the property (1.95) of double contraction, 

where 1 is the spatial velocity gradient, in general a non-symmetric tensor. 
With respect to eqs. (6.32) and (6.33), taking b in place of C ,  we deduce that 

d@(b)/db commutes with the symmetric second-order tensor b, in the sense that 

implying the symmetry of tensor (dQ(b)/db)b. 
However, from (4.154), we know that for perfectly elastic materials (for which 

Via = 0) the stress power wint per unit reference volume equals $. The combination 
of identity (4.113)1, i.e. wi, = JCT : d, and eq. (6.39)4 with the requirement (6.40) for 
isotropy implies 

where the rate of deformation tensor d is the symmetric part of 1. For this relation we 
used the fact that the double contraction of a symmetric tensor and a skew tensor is 
zero. 

Simple arguments reduce relation (6.41) to the desired fundamental constitutive 
equation (6.38) for isotropic response. W 

Since th'e left stretch tensor v = b1J2 is the unique square root of b, the strain 
energy may also be expressed as an isotropic function of v; thus, relation (6.26) may 
be extended to Q? (C) = Q? (b) = (v). Note that for notational convenience, we do not 
distinguish between different strain-energy functions 9. 

With respect to constitutive equation (6.38) we derive an equivalent form in terms 
of the left stretch tensor v. Analogous to the procedure which was used to establish 
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eq. (6.1 1) we find that 

so that (6.38) reads 

which is another important stress relation characterizing the behavior of isotropic hy- 
perelastic materials at finite strains. Note that, since v is the unique square root of b, 
a*/db also commutes with v. 

Constitutive equations in terms of principal stretches. If the strain-energy func- 
tion Q is an invariant, we may regard !P as a function of the principal stretches A,, 
a = 1: 2 ,3 .  In the place of (6.27), we may represent Q in the form 

For the stress-free reference configuration the normalization condition (6.4) takes on 
the form *(I: 1: 1) = 0. 

Consider the left stretch tensor v = b'I2 describing the deformed state of an 
isotropic hyperelastic material. From the eigenvalue problem (2.1 18)3 we know that 
A, denote the three principal stretches (the real eigenvalues) of v. Since the princi- 
pal directions of v coincide with those of b (compare with eqs. (2.1 18)3 and (2.1 19)2) 
they also coincide with the principal directions of the Cauchy stress tensor a (recall 
representation (5.8 8)). 

Consequently, with respect to (6.43) the principal Cauchy stresses a,, a = 1: 2: 3, 
simply result in 

with the volume ratio 

according to (5.91)3. 
In addition to (6.45), we introduce equivalent relations for the three principal Piola- 

Kirchhoff stresses Pa and S,, namely 

dQ 1 d* 
P -- S : a = l ; 2 ; 3  

a - a ~ ,  - A, ax, 
(compare with the following Example 6.2), which may be expressed in terms of the 
Cauchy stresses (6.45) as 
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Constitutive relations (6.45) and (6.47) show that principal stresses in an isotropic 
hyperelastic material depend only upon the principal stretches. They are simply ob- 
tained by differentiating the strain-energy function with respect to the corresponding 
pnncipal stretches. 

EXAMPLE 6.2 Consider the strain energy s ( C )  = e(X1: A2, A3). Obtain the con- 
stitutive equations in the spectral forms 

where a, and Pa, S,, a = 1: 2,3, are the principal values of the Cauchy stress tensor a 
and the two Piola-Kirchhoff stress tensors P, S according to the expressions (6.45) and 
(6.47), respectively. The orthonormal vectors N, and n, = d a ,  a = 1: 2: 3, denote 
the principal referential and spatial directions (axes of stretch), respectively. 

These constitutive equations describe isotropic response of hyperelastic materials 
and hold ifand only i f  XI # Xz # A3 f XI. 

Solution. We start with constitutive equation (6.50)2 which is expressed in terms 
of second Piola-Kirchhoff stresses S,, a = 1: 2: 3. We compute the derivative of the 
isotropic function @(C) with respect to the symmetric tensor C. By means of the chain 
rule and kinematic relation (2.125), we obtain for the general case X1 # X2 + X3 # XI, 

3 

-- a s  ax: a* - C -- = C-Aa @ I;I, 
dC a=l 

ax; ac a= 1 
3x2 

In (6.51)2, X? are the eigenvalues (the squares of the principal stretches) and fia the 
corresponding eigenvectors (principal referential directions) of C (compare with the 
eigenvalue problem (2.1 17)). With (6.51)2 and the chain wle we find from (6.13)2 that 

which gives the desired results (6.47), and (6.50)2. 
By the use of (6.52)2, the relation according to (1.58) and eq. (2.134),, i.e. F N ,  = 

Xana, a = 1: 2,3, the spectral form of the first Piola-Kirchhoff stress tensor P may be 
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found from transformation (3.67) as 

pa 

Similarly, having in mind the results (6.53)4 and (2.134)1, transformation (3.9) 
gives, using (3.101, the spectral form 

urn 

of the Cauchy stress tensor, where the property F(na = (FN,) @nar a = 1 ,2 ,3 ,  
was used (compare with relations which are analogous to (1 35)  and (1.58)). 

1. By analogy with the procedure which led to (6.11), obtain the eq. (6.42) and 
relation 

2. Rewrite the spectral representations of constitutive equations (6.49) and (6.50) 
for a given strain-energy function of the particular form Q = Q (lnX1, 1nX2, lnX3). 
Consider the general case A1 # Xz # AXg # XI. 

3. Take the strain energy as a function of the principal stretches characterizing 
the behavior of isotropic hyperelastic materials. Let at least one principal stretch 
be equal to the other. 

(a) For the case in which we have two equal principal stretches, namely X1 = 

A2 # X3, obtain the constitutive equations 

a* 
a = J-lXl- nl a s ,  

(' 8 a, + fi2 s n,) + J-'h-n3 % , 
3x3 
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(b) Using the property (1.65)~ for the second-order unit tensor I and relation 
(2.124)3 for the rotation tensor R, show that for X1 = Xz = As = X 

with the scalar-valued scalar functions a = J-lXdm/dX and with P = 

amlax,  s = A-lamlax. 

6.3 Incompressible Hyperelastic Materials 

Numerous polymeric materials can sustain finite strains without noticeable volume 
changes. Such types of material may be regarded as incompressible so that only iso- 
choric motions are possible. For many cases, this is a common idealization and ac- 
cepted assumption often invoked in continuum and computational mechanics. In this 
section we present the constitutive foundation of incompressible hyperelastic materials. 

Incompressible hyperelasticity. Materials which keep the volume constant through- 
out a motion are characterized by the incompressibility constraint 

or by some ~ t h e r  equivalent expressions according to (2.179) (recall the expression 
(2.52) for the volume ratio J). In general, a material which is subjected to an internal 
constraint, of which incompressibility is the most common, is referred to as a con- 
strained material. 

In order to derive general constitutive equations for incompressible hyperelastic 
materials, we may postulate the strain-energy function 

where the strain energy 9 is defined for J = detF = 1. The scalar p introduced in 
(6.57) serves as an indeterminate Lagrange multiplier, which can be identified as a 
hydrostatic pressure. Note that the scalar p may only be determined from the equi- 
librium equations and the boundary conditions. It represents a workless reaction to the 
kinematic constraint on the deformation field. 
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. Differentiating eq. (6.57) with respect to the deformation gradient F and using iden- 
tity (2.176), we anive at a general constitutive equation for the first Piola-Kirchhoff 
stress tensor P. Hence, eq. (6.1) may be adopted in the form 

An alternative derivation of (6.58) is obtained by reference to the expression (6.3)2. 
For incompressible hyperelasticity, F is not arbitrary anymore and the expressions in 
parentheses of (6.3)~ need not be zero. However, (6.3)2 must be satisfied for every F 
which is governed by the incompressibility constraint in the form of J = F-T : * = 0 
(recall (2.179)d). Consequently, adding the zero term to (6.3)2, we find that 

With standard arguments, the Coleman-No11 procedure implies physical expression 
(6.58). 

hlultiplying eq. (6.58) by F-I from the left-hand side, we conclude from (3.65)2 
that the second Piola-Kirchhoff stress tensor S takes on the form 

where the inverse of relation (2.65), i.e. C-' = F - ~ F - ~ ,  and identity (6.1 1) are to be 
used. 

However, multiplying eq. (6.58) by FT from the right-hand side, we conclude from 
(3.9) that the symmetric Cauchy stress tensor a may be expressed as 

The fundamental constitutive equations (6.58), (6.60) and (6.61) are the most gen- 
eral forms used to define incompressible hyperelastic materials at finite strains. Equa- 
tions (6.60)~ and (6.61) are associated with (5.97) and (5.96). Note that the response 
functions 5 ( C )  and g(F)  occurring in (5.97) and (5.96)1 are identified by 5 (C) = 

2 N ( C ) / a C  andg(F) = (dP(F)/aF)FT = F(dQ(F)/dF)T, i.e. constitutive equation 
(6.2)2 for J = 1. 

Incompressible isotropic hyperelasticity. For the case of isotropy we have already 
pointed out that the dependence of 9 on the Cauchy-Green tensors C or b may be ex- 
pressed by their three strain invariants (see eq. (6.27)). However, for the incompressible 
case we consider the kinematic constraint, namely I3 = detC = detb = 1. Therefore, 
the two principal invariants II and I2 are the only independent deformation variables. 
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For a review on the theory of incompressible isotropic hyperelasticity see, for example, 
OGDEN [1982,1986]. 

A suitable strain-energy function for incompressible isotropic hyperelastic materi- 
als is, in view of (6.27), given by 

where p/2 serves as an indeterminate Lagrange multiplier. 
In order to examine the associated constitutive equation in terms of the two prin- 

cipal strain invariants 11, 12, we proceed by deriving (6.62)1 with respect to tensor 
C. Analogous to the procedure which led to (6.32) we find, using the chain rule, 
eqs. (6.30)3, (6.31) and the constraint I3 = 1, that 

which is basically constitutive equation (6.32), in which the term 13(a@/a13) is sub- 
stituted by -p /2 .  

A push-fonvard operation of (6.63)2 and an elimination of b2 in favor of b-I (see 
relation (5.93)) yields two alternative forms of u, corresponding to eqs. (6.34) and 
(6.35), namely 

Note that the scalars p in eqs. (6.64) and (6.65) differ by the term 212(dQ/dI2). By 
comparing (6.64) and (6.65) with (5.98) we obtain explicitly the response coefficients 
cul,a:! andDl,D-I as 

In order to find a constitutive equation for incompressible materials which is associ- 
ated with (6.38), we recall the transformation (6.55). Then, (6.61) gives the constitutive 
equation 
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in terms of the spatial strain variable b. This is only valid for incompressible isotropic 
hyperelastic materials. 

If we express Q as a function of the three principal stretches Xa we write Q = 
@(XI; Xz, XB) - p(J - 1) in the place of (6.57), with the indeterminate Lagrange mul- 
tiplier p. Using aJ/S)X, = JAl1, a = l: 2; 3, which is relation (2.176) expressed in 
principal stretches, eqs. (6.45) and (6.47) are then replaced by 

with the three principal Cauchy stresses a, and the Piola-Kirchhoff stresses Pa, S,. 
These stress relations incorporate the unknown scalar p, which must be determined 
from the equilibrium equations and the boundary conditions. The incompressibility 
constraint J = 1 takes on the form 

leaving two independent stretches as the deformation measures. Expressing the first 
and second Piola-Kirchhoff stresses in terms of the Cauchy stresses (6.69), we obtain, 
by analogy with (6.48), Pa = A;la, and Sa = Al2a,, a = 1: 2: 3. 

EXAMPLE 6.3 Consider a thin sheet of incompressible hyperelastic material which 
is embedded in a reference frame of (right-handed) coordinate axes with a fixed set of 
orthonormal basis vectors e,, a = 1: 2: 3. Suppose that the axes are aligned with the 
major faces of the sheet. 

A deformation created by the stretch ratios X1: X2 along the directions el; e2 results 
in a (homogeneous) bimial deformation with the kinematic relation (2.132). The asso- 
ciated stress state is assumed to be plane throughout the sheet so that the Cauchy stress 
components a13. 023: 033 are equal to zero which is in accordance with (3.59). 

Show that the biaxial stress state of the homogeneous problem is of the form 

(see RIVLIN 11948, eq. (6.5)]), with the principal invariants Il = A: + X i  + XT~X,~, 
I2 = A: A; + ATz  + and I3 = 1. 
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Solution. Since the tensors u and b are coaxial for isotropic elastic materials (recall 
p. 201). the principal stresses follow from (6.65), 

where X: are the three eigenvalues of the left Cauchy-Green tensor b (see the eigen- 
value problem (2.119)~). This relation was first presented by RIVLIN [1948]. 

With the condition of incompressibility (6.71) in the form of X 3  = ( X 1 X 2 ) - l  and 
the boundary condition a3 = 0 we may determine p explicitly. For a = 3, we deduce 
from (6.74) that 

This result substituted back into eq. (6.74) leads to the nonzero stress components al 

and a2. W 

1. Consider a thin sheet of incompressible hyperelastic material ( I 3  = 1) with the 
same setting as formulated in Example 6.3. 

(a) Consider a simple tension for which X1 = A .  Then, obeying incompress- 
ibility constraint X 1 X 2 X 3  = 1, the equal stretch ratios in the transverse di- 
rections are, by symmetry, X 2  = X 3  = Show that for this mode of 
deformation the homogeneous stress state reduces to a1 = a: az = u3 = 0, 
with 

where the invariants are I]  = 2 X - I  + X2,  I2 = + 2 X .  

As a special case of the biaxial deformation, as discussed in Example 6.3, 
consider an equibiaxial deformation for which X I  = X2 = X; X3 = and 
01 = 0 2  = a, a3 = 0. Show that 

with Il = 2 X 2  + I2 = X 4  + 2 X - 2 .  

(b) Consider a homogeneous pure shear deformation with the kinematic rela- 
tion A 1  = X :  A2 = 1: = l / X  (compare with eq. (2.133)). Show that the 
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nonzero Cauchy stress components are 

evaluated for Il = I2 = X2 + A-2 + 1. 

2. Consider a thin sheet of incompressible hyperelastic material with the same set- 
ting as formulated in Example 6.3 but subjected to a homogeneous simple shear 
deformation which is caused by a motion in the form of (2.3) (compare also with 
Exercise 2 on p. 93). 

(a) Show that the associated stress state is completely defined by 

(with Il = I2 = 3 + c 2 ) ,  where p > 0, called the shear modulus, is a 
measure of resistance to distortion and p is a scalar to be determined from 
the boundary conditions. 

In addition, show that the angle 8 of the two principal directions acting in 
the plane normal to n3 is given by t a n 2 8  = 2 / c .  

(b) Consider aplane stress state throughout the sheet in the sense that the face 
of the body normal to the direction e3 is free of surface tractions, i.e. u13 = 

023  = u33 -- 0. Show that the nonzero Cauchy stress components are 

6.4 Compressible Hyperelastic Materials 

A material which can undergo changes of volume is said to be compressible. Foamed 
elastomers, for example, are able to sustain finite strains with volume changes. The 
only restriction on this class of materials is that the volume ratio J must be positive. 
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In this section we introduce suitable constitutive equations in order to characterize 
compressible hyperelastic materials, and we discuss isotropy as a special case. 

Compressible hyperelasticity. Since some materials behave quite differently in 
bulk and shear it is most beneficial to split the deformation locally into a so-called 
volumetricpart and an isochoricpart, originally proposed by FLORY [1961] and suc- 
cessfully applied within the context of isothermal finite strain elasticity by, for example, 
LUBLINER [1985], SIMO and TAYLOR [1991al, OGDEN 119971 and within the context 
of finite strain elastoplasticity by, for example, SIMO et al. [I9851 among many others. 

In particular, we consider the deformation gradient F and the corresponding strain 
measure C = F ~ F .  Rather than dealing directly with P and C we perform a multi- 
plicative decomposition of F into volume-changing (dilational) and volume-preserving 
(distortional) parts, often used in elastoplasticity (see, for example, LEE [1969]). We 
wnte 

F = ( J I / ~ I ) F  = J lI3F . C = ( J ' / ~ I ) ~  = ~ ~ / ~ c  . (6.79) 

The terms J1/31 and J2I31 are associated with volume-changing deformations, while - - 
F and c = F ~ F  are associated with volume-preserving deformations of the material, 
with 

- - -  
detF = X I &  = 1 and d e t c  = (detF)* = 1 : (6.80) 

where 
- 
A, = J - ' / ~ x ,  : a = 1: 2: 3 (6.81) 

characterize the so-called modified principal stretches. We call P and C the modified 
deformation gradient and the modified right Cauchy-Green tensor, respectively. A 
material for which dilational changes require a much higher exterior work than volume- 
preserving changes is called a nearly incompressible (or slightly compressible) ma- 
terial, for which the compressibility effects are small. 

The concept of the multiplicative decomposition of F is supported additionally by 
the field of computational mechanics. For example, to avoid numerical complications 
in the finite element analysis of slightly compressible materials it is often advantageous 
to separate numerical treatments of the volumetric and isochoric parts of the deforma- 
tion gradient F; this will be discussed in Sections 8.5 and 8.6. 

Before proceeding to examine constitutive equations for compressible hyperelastic 
materials it is first necessary to stick to lunematics and to compute the derivative of the 
modified right Cauchy-Green tensor relative to the symmetric tensor C. By means 
of (5.91)2, we obtain from (6.31)2, dJ2 /dC = J2C-I. Using the chain rule we arrive 
at 
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Finally, according to the inverse of relation (6.79j2, property (1.256) and relation (6.82)', 
we obtain the fourth-order tensor 

I? 
in which IPT defines the transpose of the fourth-order tensor P governed by the identity 
(1.157). We call P the projection tensor with respect to the reference configuration, 
therefore expressed through C. With the associated property (1.159), the relation for 
the projection tensor P reads, with reference to (6.83)3, as 

where 1 denotes the fourth-order unit tensor, as defined in eq. (1.160j1, with represen- 
tation (1.161). 

Earlier we agreed to study the purely mechanical theory. To characterize processes 
within an isothermal situation at constant temperature, we postulate a unique decoupled 
representation of the strain-energy function 9 = Q(C)  (per unit reference volume). It 
is based on kinematic assumption (6.79)2 and of the specific form 

e(c) = *,I ( J )  + Qim(C) , (6.85) 

where *,,(J) and qi,(C) are given scalar-valued functions of J and C which are as- 
sumed to be objective. They describe the so-called volumetric (or dilational) elastic 
response and the isochoric (or distortional) elastic response of the material, respec- 
tively. 

Additionally, we require that Q,, is a strictly convex function taking on its unique 
minimum at J = 1 (for formal definitions of strictly convex functions see, for example, 
OGDEN [1997, Appendix 11). With reference to normalization condition (6.4) we claim 
that Q,,(J) = 0 and ~;,,(c) = 0 hold ifand only if J = 1 and c = I, respectively. 

We now determine constitutive equations for compressible hyperelastic materials. 
In order to particularize the second law of thermodynamics through the Clausius- 
Planck inequality (4.154) to the specific strain energy (6.85) at hand we determine 
the derivative of Q with respect to time t first. By means of the chain rule we obtain 
from (6.85) 

Hence. we need to compute J and 6, which, with eq~.(6.82)~ and (6.83)4, simply 
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results in J = dJ /dC : c = Jc-I : ~ / 2  and C = 2 ( a c / d ~ )  : ~ / 2  = ~ J - ~ / ~ P ~  : 

~ / 2 .  Having this in mind, with the stress power wint = S : ~ / 2  per unit reference 
volume and relation (6.86), we may deduce from (4.154) that 

where the identity (1.157) is to be used. Since we consider perfectly elastic materials 
the internal dissipation Vi, must vanish. 

The standard Coleman-Noll procedure leads to constitutive equations for compress- 
ible hyperelastic materials, in which the stress response constitutes an additive split of 
(6.13)2, i.e. S = 2dQ(C)/dC.  In particular, the second Piola-Kirchhoff stress S con- 
sists of a purely volumetric contribution and a purely isochoric contribution, i.e. 
Svol and Si,,, respectively. We write 

This split is based on the definitions 

with the constitutive equations for the hydrostatic pressure p and the fictitious second 
Piola-Kirchhoff stress S defined by 

dQ"Ol(J) p=- - a@iso(c) 
d J  

and S=2- ac 
It is important to note that in contrast to incompressible materials, the scalar func- 

tionp is specified by a constitutiveequation. The projection tensor P = I- :c-' @C in 
(6.90) furnishes the physically correct deviatoric operator in the Lagrangian descrip- 
tion, i.e. Dev(o) = (a) - (1/3)[(0) : C]C-',  so that 

The characterization of the stress response in the material description in terms of the 
projection tensor P leads to a convenient short-hand notation (see also, for example, 
HOLZAPFEL [1996a]). 
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EXAMPLE 6.4 Consider the decoupled strain-energy function (6.85) with the as- 
sociated stress relation (6.88). Perform a Piola transformation according to (3 66) and 
obtain the additive decomposition 

Q = UVOI + ~ I S O  (6.93) 

of the Cauchy stress tensor u, where the purely volumetric and isochoric stress contri- 
butions are defined by 

UVOI = PI , uiso = J-'P(P : s)p , (6.94) 

- 
F being the modified deformation gradient. The constitutive equations for the hydro- 
static pressure p and the fictitious second Piola-Kirchhoff stress $ are given by (6.91). 

Solution. A push-forward operation on the second Piola-Kirchhoff stress tensor S to 
the current configuration and a scaling with the inverse of the volume ratio transforms 
(6.88), to 

where the decoupled form (6.85) is to be used. Hence, considering the first term on the 
right-hand side, we obtain, using (6.89)2 and C-' = F - ~ F - ~ ,  

which is the volumetric Cauchy stress contribution u , ~  defining a hydrostatic stress 
state, as discussed on p. 125. 

Considering the second term on the right-hand side of eq. (6.95h we obtain, using 
(6.90)4 and the kinematic assumption (6.79)1, 

which is the isochoric Cauchy stress contribution ui,,. 

Compressible isotropic hyperelasticity. A suitable decoupled representation of the 

strain-energy function for compressible isotropic hyperelastic materials is, by analogy 
with assumption (6.85), given by 

Q(b) = QvO1 ( J )  + qIso(b) . (6.98) 
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with the multiplicative split of the left Cauchy-Green tensor b = FFT in the form 

(compare with eq. (6.79)~). The terms P131 and 6 = pp represent the volume- 
changing (dilational) and volume-preserving contributions to the deformation. We call 
- 
b the modified left Cauchy-Green tensor, with det6 = 1. 

The derivative of the volume ratio J = (detb)ll2 and the modified left Cauchy- 
Green tensor 6 relative to b is given by (6.82)1 and (6.83)3 (with C replaced by b). We 
obtain 

Following arguments analogous to those which led to eqs. (6.88)-(6.91), we obtain 
from (6.98) the spatial version of constitutive equations which are expressed in terms 
of J and 6. Given entirely in the spatial description and characterizing the isotropic 
behavior of compressible hyperelastic materials, we have \ 

where the stress contributions are defined by 

Use has been made of eqs. (6.99) and (6.100) and properties (1.95) and (1.155). 
The constitutive equation for the hydrostatic pressure p is given in (6.91)1 and the 

fictitious Cauchy stress tensor 5 is defined to be 

In (6.103)d we have introduced, additionally, the projection tensor 
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which furnishes the physically correct deviatoric operator in the Eulerian description, 
i.e. dev(a) = (a) - (1/3)[(a) : 111, so that 1 

For the characterization of the stress response in the spatial description in terms of the 
projection tensor P see also, for example, the work of MIEHE 119941. 

Note the similar structure of the stress relations in the Lagrangian description 

'I 
(6.88)-(6.91) to those presented in (6.101)-(6.104). 

Compressible isotropic hyperelasticity in terms of invariants. We now introduce 

a strain-energy function for compressible isotropic hyperelastic materids in terms of 
strain invariants. By analogy with the decoupled representation (6.85), or (6.98), we 
write 

= Q w ~ ( J )  + Wiso[Jl(C); Jz(C)] = gvol ( J )  + ~ i ~ ~ [ J l ( 6 ) :  72(6)] ; (6.107) 

with the first two strain invariants 1, and & of the symmetric modified Cauchy-Green 
tensors. Since and 6 have the same eigenvalues, we deduce that 

I 
The strain invariants Ja, a = 1: 2: 3, are referred to as the modified invariants and 

are defined by 

With the kinematic assumption (6.79)2, or (6.99), and properties (1.92) and (1.101), we 
conclude from (6.109)-(6.111) with reference to (5.89)-(5.91) that 

Finally, we formulate the associated constitutive equation in terms of the volume 
ratio J and the modified invariants Fl: y2, which reads in the material description as 

with the volumetric contribution SVo1 to the second Piola-I(lrchhoff stress, i.e. (6.891, 
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and the isochoric contribution Siso, defined by 

The isochoric second Piola-Kirchhoff stress tensor Sis0 is J-'I3 multiplied by the dou- 
ble contraction of the fourth-order projection tensor P, see eq.(6.84), with the fictitious 
second Piola-Kirchhoff stress tensor S, which is here defined as 

with the two response coefficients given by 

The details are left to be supplied as an exercise by the reader. 
\ 

For the stress response of compressible isotropic hyperelastic materials in terms 
of the volume ratio J and two of the modified principal stretches xa as independent 
variables, see the study by OGDEN [1997, Section 7.2.31. 

1. Consider the modified right Cauchy-Green tensor C according to (6.79)2 and 
properties (1.159), (1.134). For the fourth-order projection tensor P obtain the 
identities 

where n is a positive integer. 

2. Show that the properties (6.92) and (6.106) hold. 

- -  - -  
3. Consider the strain-energy function Qiso[Il (Cj  : I2 (C)] in terms of the modified 

invariants Fl = J-21311 and I2 = J - 4 / 3 ~ 2 .  

(a) Show that the derivatives of 71 and 7 2  with respect to tensor ?? are 

(b) Use the chain rule and the results (6.117) and (6.83)4 in order to obtain the 
constitutive equation (6.114)~ (with eqs. (6.1 15) and (6.1 16)) in the material 
description. 
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4. Consider the strain-energy function @ = @,,(J) + Qiso[J1(6), 12(b)] with the 
associated constitutive equation for compressible isotropic hyperelastic materials 
in the spatial description, i.e. a = a,, + cis,. 

(a) By analogy with the above Exercise 3(b), obtain the constitutive equation 
for the isochoric (Cauchy) stress contribution aiso = P : (T, where P is the 
fourth-order projection tensor, i.e. eq.(6.105), and 5 the fictitious Cauchy 
stress tensor, defined as 

The response coefficients TI, T2 are equivalent to those given in (6.116). 

(b) Eliminate b2 from (6.118) in favor of F1 and derive the equivalent form 

8 = ~ - l ( % 5 ;  + @F1 asis0 (J l ,  1 2 )  with = 2 at 

for the fictitious Cauchy stress tensor, which is responsible for volume- 
preserving deformations. The response coefficient % is given by (6.1 16)2. 

Hint; Recall identity (5.93). 

6.5 Some Forms of Strain-energy Functions 

From previous sections we have learnt that the stress response of hyperelastic ma- 
terials is derived from the given strain-energy function 9. Numerous specijic forms 
of strain-energy functions to describe the elastic properties of inco~lipressible as well 
compressible materials have been proposed in the literature and more or less efficient 
new specific forms are published on a daily basis. 

The aim of this section is to specify some forms of strain-energy functions which 
are well tried within the constitutive theory of finite elasticity and frequently employed 
in the literature. In particular, we present a selection of representative examples of 
V! known from rubber elasticity describing isotropic hyperelastic materials within the 
isothermal regime (for a collection of constitutive models for rubber see the book edited 
by DORFMANN and MUHR [1999]). We start by presenting suitable strain-energy 
functions for incompressible materials and continue with some particular forms which 
are able to describe compressibility. 

Ogden model for incompressible (rubber-like) materials. The only materials 

undergoing finite strains relative to an equilibrium state are biomaterials such as bio- 
logical soft tissues and solid polymers such as rubber-like materials. On the latter we 
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will focus subsequently. If we subject vulcanized rubber to very high hydrostatic pres- 
sures, we observe that it undergoes very small volume changes. To change the shape 
of a piece of rubber is very much easier than to change its volume. For the purpose of 
computational analyses, rubber is often regarded as incompressible with the constraint 
condition J = h1h2h3 = 1. 

A very sophisticated development for simulating incompressible (rubber-like) ma- 
terials in the phenomenological context is due to OGDEN [1972a, 19821 and [1997, 
Chapter 71. The postulated strain energy is a function of the principal stretches A,, 
a = 1,2,3,  is computationally simple, and plays a crucial role in the theory of finite 
elasticity. It describes the changes of the principal stretches from the reference to the 
current configuration and has the form 

On comparison with the lineartheory we obtain the (consistency) condition 
N 

2 p  = ppap with ppaP > 0 , p = 1 .  V , (6.120) 
p=l 

where the parameter p denotes the classical shear modulus in the reference configu- 
ration, known from the linear theory. 

In equation (6.1 191, N is a positive integer which determines the number of terms 
in the strain-energy function, pp are (constant) shear moduli and ol, are dimensionless 
constants, p = 1.. . . , N. It emerges that only three pairs of constants ( N  = 3) are 
required to give an excellent correlation with experimental stress-deformation data (see 
TRELOAR [I9441 and TRELOAR [1975]) for simple tension, equibiaxial tension and 
pure shear of vulcanized rubber over a very large strain range. Many scientists consider 
the experimental data of TRELOAR [I9441 to be the essential rubber data. For a more 
detailed discussion of the correlation with the experimental data and for additional 
sources, see the works by, for example, OGDEN [1972a, 1986, 1987, 1992a, 19971, 
TRELOAR [1975, Section 11.21, TWIZELL and OGDEN [I9831 and BEATTY [1987, 
Sections 8-11]. 

Typical values of the constants g ,  p,, p = 1,2,3, are 

which determine the shear modulus p = 4.225 . 105N/m2 according to (6.120)1. 
VALANIS and LANDEL [I9671 have postulated the hypothesis that the strain energy 

Q = @ ( X I ,  X 2 ,  hB)  may be written as the sum of three separate functions w(X,), a = 

6.5 Some Forms of Strain-energy Functions 237 

1, 2,3,  which depend on the principal stretches, we write q = w(X1) + w(h2) + u(X3) .  

This additive decomposition of the strain energy is known as the Valanis-Landel h y  
pothesis. 

Hence, in view of the Valanis-Landel hypothesis the strain-energy function due to 
Ogden may be written in the equivalent form 

'Y(h1, b, hp) = w(Xa) with w ( h )  = x &(A? - 1) . (6.122) 
a=l p= 1 ~ I P  

According to OGDEN [1986, 19971, separation (6.122) may also be motivated by data 
obtained from biaxial experiments of JONES and TRELOAR [1975]. 

EXAMPLE 6.5 Consider an incompressible hyperelastic membrane under binr- 

ial deformation with kinematic assumption (2.132). In particular, the two principal 
stretches X 1  and Xz are given. According to the membrane theory assume a plane stress 
state and specify the Cauchy stresses in the plane of the membrane by applying Ogden's 
strain-energy function. 

Solution. The three principal values ua of the Cauchy stresses are given according 
to relation (6.69). Using (6.1 19) we find, after differentiation, that 

where p is a scalar not specified by a constitutive equation. It is determined from a 
boundary condition, namely by the requirement that us = 0 which allows p to be 
expressed explicitly from (6.123), setting a = 3, as 

Combining (6.124) and (6.123) we obtain the two nonzero stress components 

where the incompressibility constraint hg = (h1X~)-l  has been used. 
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Mooney-Rivlin, neo-Hookean, Varga model for incompressible (rubber-like) ma- 
terials. As a special case we obtain from eq. (6.1 19) the Mooney-Rivlin model, 
the neo-Hookean model and the Varga model (see MOONEY [1940], RIVLIN [1948, 
1949a, b], TRELOAR [1943a, b] and VARGA [1966], respectively). 

For example, the very useful Mooney-Rivlin model results from (6.119) by setting 
N = 2 ,a1  = 2, cuz = -2. Using the strain invariants 11: I2 as presented by (5.89)2 and 
(5.90)3, with the constraint condition 1 3  = X:XzX: = 1, we find from (6.119) that 

with the constants cl = p1/2 and cz = -p&. Adopting (6.120)1 the shear modulus 
p has the value p1 - p ~ .  

The classical strain energy 9 = Q(I1: 12) of the Mooney-Rivlin form is often em- 
ployed in the description of the behavior of isotropic rubber-like materials. Moonq 
derived it on the basis of mathematical arguments employing considerations of sym- 
metry. \ 

The neo-Hookean model results from (6.119) by setting ~"1' = 1, crl = 2. Using the 
first principal invariant 11, see eq. (5.89)2, we find from (6.1 19) that 

with the constant cl = p1/2 and the shear modulus p = p1 according to (6.120),. 
This strain-energy function involves a single parameter only and provides a mathe- 

matically simple and reliable constitutive model for the nonlinear deformation behavior 
of isotropic rubber-like materials. It relies on phenomenological considerations and in- 
cludes typical effects known from nonlinear elasticity within the small strain domain. 
However, the important strain-energy function (6.128) may also be motivated from the 
statistical theory in which vulcanized rubber is regarded as a three-dimensional net- 
work of long-chain molecules that are connected at a few points. A brief discussion is 
given in Section 7.2 on p. 318. 

Constitutive relations for the Mooney-Rivlin and the neo-Hookean model follow 
from (6.65) by means of (6.127)2 and (6.128)2. Derivatives of with respect to the 
strain invariants Il and 4 give the simple associated stress relations a = -pI + 2clb - 
2 ~ ~ b - l  and a = -pI + 2clb, respectively. Compare also the considerations on p. 203. 

As the lait special case of Ogden's model we introduce the model by Varga. It 
results from (6.119) by setting N = 1: oil = 1, i.e. 

with the constant cl = p1 and the shear modulus p = p1/2 according to (6.120)1. 
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Note that of all constitutive approaches given, the Ogden model with N = 3 ex- 
cellently replicates the finite strain behavior of rubber-like materials; see, for example, 
OGDEN [1972a] for an analytical treatment or DUFFETT and REDDY [1983], Suss- 
MAN and BATHE [1987], SIMO and TAYLOR [1991a] and MIEHE [I9941 for a numer- 
ical simulation, among many others. The assumptions made in the Varga model, the 
neo-Hookean model (obeying (Gaussian) statistical theory) or in the Mooney-Rivlin 
model are rather simple. Consequently, these types of conshtutive model are not able 
to capture the finite extensibility domain of polymer chains (see TRELOAR [1976]). 

EXAMPLE 6.6 This example has the aim of investigating the inflation of a spherical 
(incompressible rubber) balloon with different material models. Analyses of balloon 
inflations have some applications in producing, for example, meteorological balloons 
for high-altitude measurements or balloon-tipped catheters for clinical treatments. In- 
flation experiments of spherical neoprene balloons were carried out by ALEXANDER 
[1971]. 

In particular, compute the inflation pressure pi, i.e. the internal pressure in the 
balloon, and the circumferential Cauchy stress a as a function of the circumferential 
stretch X of the balloon. Let the initial (zero-pressure) radius of the rubber balloon be 
R = 10.0 and the initial thickness of the wall be H = 0.1. For the geometrical situation 
of the spherical balloon in the reference and current configuration see Figure 6.2. 

On the basis of the described four prototypes of constitutive models, that are the 
Ogden, Mooney-Rivlin, neo-Hookean and Varga models, study the different mechanical 
behavior and compare the solutions, drawn in a diagram. Do not consider aspherical 
modes which clearly develop during the inflation process. 

The material properties for the Ogden model are given according to (6.121), with 
the shear modulus p = 4.225 - 105N/m2 in the reference configuration. For the 

Mooney-Rivlin model take cl = 0.4375~; c2 = 0 .0625~ (cl/cz = 7), as suggested 
by ANAND [1986], for the neo-Hookean model cl = p/2, and for the Varga model 
take cl = 2p. 

Solution. We know from a perfect sphere under inflation pressure pi that every 
direction in the plane of the sphere is a principal direction. Hence, the stretch ratio 
is X = X1 = X2 which characterizes an equibiaxial deformation. The associated cir- 
cumferential Cauchy stress is a = a1 = a2 (while 03 = 0 by the assumption of plane 
stress). Hence, constitutive equations (6.125) and (6.126) reduce to a single relation, 
namely 
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Balloon 

Figure 6.2 Geometry of a spherical balloon in the reference and the current configuration, 
showing only one hemisphere. 

which is plotted in Figure 6.3 for different material parameters. The figure illustrates 
the relationships between the Cauchy stress u and the circumferential stretch X of any 
point of the rubber balloon for various constitutive models. 

By equilibrium we find from Figure 6.2 (free-body diagram) that r2rpi = 2rnha, 
where r and h denote the radius and the wall thickness of the rubber balloon in the 
current configuration. According to this condition we find that 

In view of the kinematical situation of the inflated balloon (see Figure 6.2) the 
stretch X at a certain point of the balloon is r/R.  Incompressibility requires that the 
wall volume is conserved, which means that 4nr2h = 4nR2H. With this condition we 
find that X 3  = h/H = l/X2 which denotes the stretch in the direction perpendicular to 
the surface of the sphere, indeed X1X2X3 = X2X3 = 1. 

Us~ng these relations and constitutive equation (6.130) we may find from (6.131) 
the analytical expression 
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Figure 6.3 Geomeq and Cauchy stress a versus stretch X of any point of the balloon. 

.... ...."" Mooney-Rivlin model 

10 4 Varga model - . ' -1 
0 '  I I 

1 2  3 4 1 5  6 7 8 9 10 
1.38 

4.32 Stretch X 

Figure 6.4 Infiation pressure pi versus stretch X of any point of the balloon 
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for the inflation pressure pi,  which is plotted in Figure 6.4, for ,Ir = 1,2,3, and with 
material parameters as given above. 

The analytical solutions of the six parameter matenal model proposed by Ogden are 
in excellent agreement with experimental data by TRELOAR [I9441 (see also NEEDLE- 
MAN [1977]) who solved the problem on the basis of the Ritz-Galerkin method. Ex- 
perimental data show a very stiff initial stage (as seen with any party balloon) in which 
the inflation pressure p, rises steeply with the circumferential stretch. After the pres- 
sure has reached a maximum the rubber balloon will suddenly 'snap through', and a 
release of the pressure will allow it to 'snap back' (see Figure 6.4, see also the stud- 
ies by OGDEN [1972a] and BEATTY [I9871 among others). This effect is caused by 
the deformation dependent pressure load, is dynamic in character and known as snap 
buckling. The pressure-stretch path clearly shows the existence of a local maximum 
and minimum, the maximum and minimum pressures are at X = 7lI6 = 1.38 and 
X = 4.32, respectively. 

The curve for the Mooney-Rivlin model, with CI/CZ = 7, shows the characteristic 
behavior of a spherical rubber balloon, but, however, the results based on Ogden's mo- 

\ 
del (and Treloar's experimental data on vulcanized rubber) are significantly different. 

The neo-Hookean and Varga form of the strain energy reproduces more or less 
the real behavior of the balloon for small strain ranges. Reasonable correlations for 
all material models are obtained at the low strain level. However, for finite strains 
the typical characteristic of the load-deflection curve cannot be reproduced with the 
simplified neo-Hookean and Varga model. 

Experimental investigations show that the balloon develops a bulge on one side and 
becomes aspherical (compare with NEEDLEMAN [1977]). The bifurcations of pressur- 
ized elastic spherical shells from an analytical point of view are studied by HAUGHTON 
and OGDEN [1978], HAUGHTON [I9801 and ERICKSEN 11998, Chapter 51. Compress- 
ibility effects are considered by HAUGHTON [1987]. W 

Yeoh, Arruda and Boyce model for incompressible (rubber-like) materials. Nearly 
all practical engineering elastomers contain reinforcing fillers such as carbon black (in 
natural rubber vulcanizate) or silica (in silicone rubber). These finely distributed fillers, 
which have typical dimensions of the order of 1.0 - 2 0 . 10-12m, form physical and 
chernica1,bonds with the polymer chains. The fine filler particles are added to the 
elastomers in order to improve their physical properties which are mainly tensile and 
tear strength. or abrasion resistance. The associated stress-strain behavior is observed 
to be highly nonlinear (see, for example, GENT [1962]). Carbon-black filled rubbers 
have important applications in the manufacture of automotive tyres and many other 
engineering components. 
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It turns out that for carbon-black filled rubbers the strain-energy functions described 
hitherto in this section are not adequate to approximate the observed physical behavior. 
For example, consider a simple shear deformation of a filler-loaded rubber. Physical 
observations show that the shear modulus p of the material varies with deformation 
in a significant way. To be more specific, p decreases with increasing deformation 
initially and then rises again at large deformations (see YEOH [1990, Figure 21). The 
associated relation for the shear stress is clearly nonlinear. Now, taking, for example, 
the Mooney-Rivlin model according to strain-energy function (6.127)2, then, from the 
explicit expression (6.78)~ we may specify a shear modulus 

The relation for the shear stress is, however, linear with the constant slope 2(cl + c2), 
i.e. the shear modulus. Apparently the Mooney-Rivlin (and its neo-Hookean spe- 
cialization) model is too simple for the characterization of the elastic properties of 
carbon-black filled rubber vulcanizates. 

The phenomenological material model by YEOH [I9901 is motivated in order to 
simulate the mechanical behavior of carbon-black filled rubber vulcanizates with the 
typical stiffening effect in the large strain domain. Published data for filled rubbers 
(see KAW.4BATA and KAWAI [I9771 and SEKI et al. [1987]) suggest that 6'Q/d12 is 
numerically close to zero. Yeoh made a simplifying assumption that dQl6'12 is equal to 
zero and proposed a three-tern strain-energy function where the second strain invariant 
does not appear. It has the specific form 

where cl, c2, c3 are material constants which must satisfy certain restrictions. 
Since by (6.5) the strain-energy function Q is either zero (in which case @ has 

only one real root, corresponding to Il = 3) or positive, we must have Il > 3 (note 
that for an incompressible material Il 2 3 with the equality only in the reference 
configuration). Hence, the (convex) strain-energy function increases monotonically 
with Il and dQ/dIl = 0 has no real roots. From the discriminants of the respective 
cubic and quadratic equations in (Il - 3) the appropriate restrictions on the values for 
cl, c2, c3 may be determined. 

Recall the simple shear deformation example of a filled rubber from above once 
more. With the strain energy (6.134) we now conclude from eq. (6.133)l that 

The shear modulus p involves first-order and second-order terms in (I1 -3) and approx- 
imates the observed nonlinear physical behavior with satisfying accuracy (provided 
cz < 0 and cl > 0, CQ > 0). 
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I 
Another material model for the response of rubber which has a similar structure 

to (6.134) is due to ARRUDA and BOYCE [1993]. It is, however, a statistical model 
where the parameters are physically linked to the chain orientations involved in the 

I 

deformation of the three-dimensional network structure of the rubber. The molecular 
network structure is represented by an eight-chain model which replaces classical three 
and four-cham models. The individual polymer chans in the network are described 

I 

by the non-Gaussian statistical theory and are able to capture the finlte extenslbllity 
domain. The physically based constitutive model possesses symmetry with respect to 
the principal stretch space. 

I The strain-energy function is derived from the inverse Langevin function (see, for 
example. TRELOAR [1975, Chapter 61) by means of Taylor's expansion (compare with 

i 
I TRELOAR [1954]). Here we present the first three terms for the strain energy, 1.e. 
I 

where p denotes the shear modulus and n is the number of segments (each of the 
\ 

same length) in a chain, freely jointed together at chermcal cross-links. For a more 
detailed explanation of the underlying concept of stabstlcal thermodynarmcs the reader 
is referred to Section 7.2 of this text. 

In this two parameter model the first strain invariant I1 may be linked to the stretch 
in a chain, Xchaln. by the expression fi = &Xchain. The chain stretch Xchaln is defined 
to be the current chain length divided by the initial cham length. An advantageous 
feature of the eight-chain model (6.136) is that all chains stretch equally under uniform 
extension and biaxial extension. 

For further network models which consider chain interactions see, for example, the 
book by TRELOAR [1975, Chapter 61 and the articles by FLORY and ERMAN [I9821 
and ANAND [1996]. 

I 

Ogden model for compressible (rnbber-like) materials. Rubber-like materials 

in the 'rubbery' state used in engineering are often slightly compressible and associ- 
ated with minor dilatational deformations. Compressibility is accounted for by the 
addition of a strain energy qlvOl, describing the purely volumetric elastic response 
(see the framework of compressible hyperelasticity, Section 6.4). For our consider- 
ations, in particular, we use the decoupled representation of the strain-energy function - - - 
Q(X1, X z Z  X B )  = avo, ( J )  + Qis,(X1, X2. X 3 )  expressed in terms of principal stretches. 

For rubber-like materials, OGDEN [1972b] proposed a volumetric response func- 
tion in terms of the volume ratio J of the following form 

Q,,(J) = & ( J )  with B = F 2 ( P l n J  + J-' - 1) , (6.137) 

for > 0. The scalar-valued scalar function B characterizes a strictly convex function, 
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and K and p denote the constant bulk modulus in the reference configuration and an 
(empirical) coefficient, respectively. The strain energy (6.137) satisfies the normal- 
ization condition, q,1(1) = 0. Note that this empirical function meets experimental 
results with excellent accuracy (see OGDEN [1972b, Figure I]), indicating that rubber- 
like materials are (slightly) compressible. In particular, for P = 9, the distribution of 
the hydrostatic pressure is in good agreement with experimental data of ADAMS and 
GIBSON [I9301 and BRIDGMAN [1945]. 

An alternative version of (6.137)2, due to SIMO and MIEHE [1992], is obtained by 
setting p = -2 to give 

- - -  
The second part of the decoupled strain energy, i.e. Qi,,(X1: X q :  X 3 ) .  describes 

the purely isochoric elastic response in terms of modified principal stretches & = 
J-1/3X,, a = 1: 2: 3. We have 

i s (  with E ( ~ ~ ) = ~ ~ ( x ~ - ~ )  ; (6.139) 
a=l p=l 

and with the condition (6.120). 

EXAMPLE 6.7 Consider the decomposed structure (6.137) and (6.139) of the strain 
energy and the additive split of the second Piola-Kirchhoff stress tensor (6.88)2. With 
specifications (6.137)~ and (6.138) find the purely volumetric contribution S,, of the 
stress response in the explicit form. In addition, with (6.139)2, find the spectral decom- 
position of S,,,, i.e. the purely isochoric contribution. 

Solution. In order to particularize the volumetric stress S,1 it is only necessary to 
derive the term dQ,l(J)/dJ (see eq. (6.91)]). From eq. (6.89) we find, using (6.91)1 
and the relation for the purely volumetric elastic response in the form of (6 137)i, that 

vol - aq ( J )  J d B ( J )  s - ~ L = J ~ c - ~  ; p = - = n -  
d J  

(6.140) ac d J 

in which, with the strain-energy functions (6.137)2 and (6.138), we obtain the specifi- 
cation 

As a second step we particularize the isochoric stress Sis0 in respect of the strain 
energy (6.139). Before proceeding it is first necessary to provide the relation a X , / d ~ ~ .  
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- 
Recall (6.81), i.e. X a  = J-'f3Aa, a = 1; 2: 3, and relation (6.82)1 which, when formu- 
lated in principal stretches, reads dJ/aX, = JAl1.  Thus, we have 

which is relation (6.83) expressed through the modified principal stretches xa. 
Hence, by analogy with (6.52), we obtain the isochoric stress response in terns of 

principal values for the general case X1 # X 2  # Xg # XI, namely 

where S,,, ,, a = 1 .2 ,3 ,  are the principal values of the second Piola-Kirchhoff stress 
tensor Sis, and N,, a = 1: 2: 3, denote the principal referential directions. 

By use of the chain rule and relation (6.142)3, a straightforward computation from' 
(6.143)? gives the explicit expressions 

for the principal isochoric stress values (compare with OGDEN [1997, Section 7.2.31). 
The summation symbol (which could be omitted) emphasizes that the index b is re- 
peated, meaning summation over 1: 2: 3. However, there is no summation over the 
index a. Using the relation for the purely isochoric elastic response in the form of 
(6.139): we achieve finally the term aQiso/axa, a = 1: 2,3, in the specific form 

(see also the derivation by SIMO and TAYLOR [1991a]). 
m m p l e t e  stress response, as given through (6.140), (6.141) and the spectral 

decomposition (6.143)-(6.145), serves as a meaningful basis for finite elemenf analyses 
of constitutive models for isotropic hyperelastic materials at finite strains. W 

Similarly to the compressible version of Ogden's model we can reformulate the 
Moonq-Rtvlin, neo-Hookean, Varga, Yeoh, Arruda and Boyce models, i.e. (6.127)- 
(6.129), (6.134), (6.136), as decoupled representations. We have just to replace A,: Ia 
by the modified quantities 5,: fa, as defined in (6.81), (6.109)-(6.111) and to add a 
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suitable volumetric response function Q,,, for example, (6.137)2 or (6.138). 
For example, the decoupled strain-energy function for the Mooney-Rivlin model 

has the form 

However, material models are often presented in a coupled form. The compressible 
Mooney-Rivlin model, for example, may be given as 

where c is a material constant and d defines a (dependent) parameter with certain re- 
strictions. By recalling the assumption that the reference configuration is stress-free 
we may deduce from (6.147) that d = 2(cl + 2 4 .  The first two terms in (6.147) were 
proposed by CIARLET and GEYMONAT [I9821 in a slightly different form (see also 
CIARLET [1988, Section 4.101). 

Another example is the coupled form of the compressible neo-Hookean model 
given by the strain-energy function 

(see, for example, BLATZ [1971]), with the constants cl = p / 2  and P. The material 
parameters p and v denote the shear modulus and Poisson's ratio, respectively. 

Blatz and KO model. For foamed elastomers which cannot be regarded as in- 
compressible BLATZ and KO [I9621 and OGDEN [1972b] proposed a strain-energy 
function which combines theoretical arguments and experimental data (performed on 
certain solid polyurethane rubbers and foamed polyurethane elastomers). It is based on 
a coupled function of volumetric and isochoric parts according to 

in which p and u denote the shear modulus and Poisson's ratio, and f E [O: 11 is 
an interpolation parameter. By means of the incompressibility constraint I3 = 1, 
eq. (6.149) reduces to the Mooney-Rivlin form introduced in eq. (6.127) (with the 
constants cl = fp /2  and c:! = (1 - f),u/2). 

Another special case of the strain energy (6.149) may be found by taking f = 1, 
leading to the compressible neo-Hookean model introduced in eq. (6.148) (with I3 = 

J2 and the constant 4 2  = cl). An interesting description of the Blatz and KO model 
was presented by BEATTY and STALNAKER [I9861 and BEATTY [1987]. 
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1. For the description of isotropic hyperelastic materials at finite strains we recall 
the important class of strain-energy functions Q in terms of principal invariants. 
Study some models suitable to describe compressible materials and particularize 
the associated stress relations. 

(a) Firstly, we consider the coupled form of the compressible Mooney-Rivlin, 
neo-Hookean, Blatz and KO models according to the given strain energies 
(6.147)-(6.149), respectively. By means of (6.32) deduce the stress relation 

S = 2  "('1; '23 ' 3 )  = 71r + nC + 7 3 C - ~  ac 
with the three response coefficients yl = 2(dQ/d11 + I ldQ/a12) ,  7 9  = 

-2dQld12, 7 3  = 2I3dQ/dI3 for the second Piola-Kirchhoff stress tensor 
S as specified in Table 6.1. 

\ 

Table 6.1 Specified coefficients for the constitutive equations of some ma- 
terials in the coupled form. 

For notational simplicity we have introduced the non-negative parameter 
( = 2p(1- f)/13. Note that the response coefficients yl, y3 for the neo- 

Hookean model may be found as a special case of the Blatz and KO model 
by taking [ = 0 (with the constant p j  = 2cl). 

(b) Secondly, we consider the decoupled form of the compressible Mooney- 
Rivlin model (6.146) and the compressible neo-Hookean model (obtained 
by setting c2 = 0 in the Mooney-Rivlin model). In addition, we consider 
the decoupled versions of the Yeoh model and the Arruda and Boyce model, 

(just replace Il in eqs. (6.134), (6.136) by the modified first invariant I,). 
Derive the associated stress relations 

for the fictitious second Piola-Kirchhoff stress tensor, with the specified 
response coefficients T2 (see eq. (6.1 16)) according to Table 6.2. 

Table 6.2 Specified coefficients for the constitutive equations of some ma- 
terials in the decoupled form. 

7 

- 
Y2 

2. Consider a spherical balloon of incompressible hyperelastic material ( X 1 X 2 X 3  = 

1). The material is characterized by a strain-energy function in terms of principal 
stretches according to 

with material constants p and a. For a = 2 we obtain the classical neo-Hookean 
model. 

Mooney-Rivlin 
mode1 (6.146) 

~ ( C I  + czL) 

-2cz 

(a) Determine the inflation pressure pi as a function of the circumferential 
stretch X in the form 

H pi = 2p-(~"-3  - A- 20 -7  , 
R 

where H and R are the initial (zero-pressure) thickness and radius of the 
spherical balloon, respectively. 

neo-Hookean 
model 

2cl 

0 

(b) Show that the function pi = pi(X) has a relative maximum if 0 < a < 3 

and a relative minimum if -3/2 < a < 0 (see OGDEN [1972a]). 

Consequently, balloons made of materials which are described by the strain- 
energy function (6.150) will not 'snap through' for a >> 3. Typical ex- 
amples for this type of (stable) material behavior are biomaterials such as 
an artery (for the mechanics of the arterial wall see the excellent survey 
text by HUMPHREY [1995], and the papers by HOLZAPFEL et al. [2000] 
and HOLZAPFEL [2001]) or a ventricle (see NEEDLEMAN et al. [1983]). 
Specific results on membrane biomechanics including illustrative examples 
from the literature are reviewed in the article by HUMPHREY [1998]. 

~ e o h  
mode1 (6.134) 

2 s  + 4cz (11 - 3)  
+6~3(& - 3)2 

0 

Arruda and Boyce 
model (6.136) 

p [ l +  (l/5n)jI 
+(11/175n2)f;  + . . .] 

0 
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3. Consider a thin sheet of incompressible hyperelastic material with the same set- 
ting as formulated in Example 6.3. The homogeneous stress response of the 
material is assumed to be isotropic and based on Ogden's model. Discuss the 
stress states (which are plane throughout the sheet) for the following two modes 
of deformations (for the associated kinematic relations, compare with Exercise 1 
on p. 226): 

(a) Consider a simple tension for which XI = A (A2 = A3). Show that the only 
nonzero Cauchy stress a,  in the direction of the applied stretch A, is 

In addition, find the stress required to produce a final extended length of 
X = 2 for each of the Mooney-Rivlin and the neo-Hookean models. 

(b) Consider a homogeneous pure shear deformation and show that the biaxial , 
stress state (a3 = 0) of the problem is of the form 

(c) Compute the associated constitutive equations given in (a) and (b) for the 
Mooney-Rivlin, neo-Hookean and Varga models and compare the results 
with Ogden's model (plot the relation between the Cauchy stress and the 
associated stretch ratio for each material model). 

4. The so-called Saint-Lrenant Kirchhoff model is characterized by the strain- 
energy function 

(see, for example, CIARLET [1988, p. I%]), in which y > 0 and ,u > 0 are the 
two constants of Lamt. The Lam6 constant 7 is usually denoted in the literature 
by the symbol A. However, in order to avoid confusion with the stretch ratio X 
we u"se a different symbol for it. The Saint-Venant Kirchhoff model is a classical 
nonlinear model for compressible hyperelastic materials often used for metals. 
Note that the volume ratio J does not appear explicitly in this material model. 

(a) From the given strain energy Q(E) derive the second Piola-Kirchhoff stress 
S,  which linearly depends on the Green-Lagrange strain E. 
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(b) Consider the one-dimensional case of the constitutive equation derived in 
(a). For a uniform deformation of a rod (with uniform cross-section), i.e. 
x = AX, derive the relation between the nominal stress P and the associ- 
ated stretch ratio A (which is a cubic equation in A) and plot the function 
P = P(X). 

Show that P(A) is not monotonic in compression and derive the critical 
stretch value A,,, = (1 /3 ) ' f2  at which the Saint-Venant Kirchhoff model 
fails (zero stiffness, the tangent of P(X) at XCnt is horizontal). This failure 
is not influenced by the material constants y and p. 

In addition show that the material model does not satisfy the growth condi- 
tion (6.6)2 (in fact for X + 0+ the stress tends to zero which is physically 
unrealistic). CIARLET [I9881 showed, with the proof by RAOULT [1986], 
that the Saint-Venant Kirchhoff model does not satisfy the requirement of 
polyconvexity either. 

Note that this material model is suitable for large displacements but it is not 
recommended to use it for large compressive strains. 

5. In the first term in eq. (6.151) replace trE by 1nJ and 7 by n > 0 in order to 
obtain a modified Saint-Venant Kirchhoff model of the form 

where J = detF denotes the volume ratio. The proposed material model (6.152) 
circumvents the serious drawbacks of the classical Saint-Venant Kirchhoff model 
(see Exercise 4) when used for large compressive strains. 

(a) From the strain energy (6.152) derive the second Piola-Kirchhoff stress S = 

S(C) as a function of the right Cauchy-Green tensor C. The result is similar 
to a stress relation proposed by CURNIER [1994, eq. (6.1 13)] which also 
has the aim of avoiding the defects of the classical Saint-Venant Kirchhoff 
model occurring at large compressive strains. 

(b) Consider a one-dimensional problem as described in Exercise 4(b) and ob- 
tain the nominal stress P as a function of A. Discuss the function P(X) for 
the two regions X > 1, X < 1 and show that the modified Saint-Venant 
Kirchhoff model satisfies the growth condition in the sense that the stress 
tends to (minus) infinity for X 4 0+. 
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6.6 Elasticity Tensors 

In order to obtain solutions of nonlinear (initial boundary-value) problems in compu- 
tational finite elasticity and inelasticity so-called incrementditerative solution tech- 
niques of Newton's type are frequently applied to solve a sequence of linearized prob- 
lems. 

This strategy requires knowledge of the linearized constitutive equation, here pre- 
sented in both the material and spatial descriptions. The underlying technique was first 
introduced in the mechanics of solids and structures by HUGHES and PISTER [1978]. 
The process of linearizing constitutive equations is a very important task in computa- 
tional mechanics and the main objective of this section. For more on the concept of 
linearization, which is basically differentiation, see Section 8.4. 

Material and spatial representations of the elasticity tensor. Consider the non- 

linear second Piola-Kirchhoff stress tensor S of a point at a certain time t. We look at 
S as a nonlinear tensor-valued tensor function of one variable. We assume this variable \ 
to be the right Cauchy-Green tensor C. 

First of all we do not assume that the stress tensor is derived from a strain-energy 
function P. According to considerations (1.247) and (1.248) we are now in a position 
to determine the total differential 

in which we have introduced the definition 

which, by means of the chain rule, reads, in terms of the Green-Lagrange strain tensor 
E = (C - I)/2, 

The quantity C characterizes the gradient of function S tmd relates the work conjugate 
pairs of stress and strain tensors. It measures the change in stress which results from a 
change in strain and is referred to as the elasticity tensor in the material description 
or the referential tensor of elasticities. It is a tensor of rank four with the four indices 
A, B, C, D. 

The elasticity tensor C is always symmetric in its first and second slots, i.e. AB, 
and in its third and fourth slots, i.e. CD, 

(we have, jn general, 36 independent components at each strain state). 
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We say C possesses the minor symmetries. The symmetry condition (6.156) is 
independent of the existence of a strain-energy function P and holds for all elastic 
materials. Note that the minor symmetry of @. follows from the symmetries of the right 
Cauchy-Green tensor C (or equivalently from the Green-Lagrange strain tensor E) and 
the second Piola-Kuchhoff stress tensor S. 

If we assume the existence of a scalar-valued energy function 8 (hyperelasticity), 
then S may be derived from P according to S = 2aQ(C)/dC (see (6.13)~). Hence, 
using (6.154), we arrive at the crucial relation 

d2*(C) 
C = 4------ OT CABCD = 4  a2Q 

acac (6.157) 
~ C A B ~ ~ C D  

for the elasticities in the material description, with the symmetries 

We say Q1 possesses the major symmetries. Thus, tensor has only 21 indepen- 
dent components at each strain state. The condition (6.158) is a necessary and sufficient 
condition for a material to be hyperelastic. The symmem condition CABCD = CCDAB 
is often referred to as the definition of hyperelasticity. Hence, the major symmetry of 
@. is basically equivalent to the existence of a strain-energy function. Note that the ma- 
jor symmetry of the elasticity tensor is associated with the symmetry of the (tangent) 
sts'fness matrix arising in a finite element discretization procedure. 

The elasticity tensor in the spatial description or the spatial tensor of elasticities, 
denoted by c, is defined as the push-forward operation of C times a factor of J-I 
(sea MARSDEN and HCGHES 11994, Section 3.4]), in other texts the definition of a: 
frequently excludes the factor J-I. It is the Plola transformation of C on each large 
index so that 

with the minor symmetries 

and additionally for hyperelasticity we have the major symmetries c = cT or c,bcd = 

cCdab The fourth-order tensors @. and a: are crucial within the concept of linearization, 
as will become apparent in Chapter 8, particularly in Section 8.4. 

The spatial representation of eq. (6.153) can be shown to be 

(for a proof see Section 8.4, p. 398), in which X, ( r f l ) ,  d and c denote the objective 
Oldroyd stress rate (5.59) of the contravariant Kirchhoff stress tensor T ,  the rate of 
deformation tensor (2.1481, and the spatial elasticity tensor, as defined in eq. (6.159), 
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respectively. A material is said to be hypoelastic if the associated rate equations of 
the form (6.161) are not obtained from a (scalar-valued) energy function. For more on 
hypoelastic materials see the classical and detailed account by TRUESDELL and NOLL 
[1992, Sections 99-1031. 

Systematic treatments of the elasticity tensors have been given by, for example, 
TRUESDELL and TOUPIN [1960, Sections 246-2491, CHADWICK and OGDEN [1971a, 
b], HILL [1981], TRUESDELL and NOLL [1992, Sections 45,821 and OGDEN [1997, 
Chapter 61. 

Decoupled representation of the elasticity tensor. Based on the kinematic assump- 
tion (6.79j2 and the decoupled structure of the strain-energy function (6.85) we derive 
the associated elasticity tensor. We focus attention solely on the material description of 
the elasticity tensor. 

The elasticity tensor (6.154) may be written in the decoupled form 

which represents the completion of the additive split of the stress response (6.88). 
In relation (6.162) we introduced the definitions 

of the purely volumetric contribution Cvol and the purely isochoric contribution Cis,. 
By analogy with eq. (6.157) we express the two contributions CW1 and Cis, in terms 

of the strain-energy function q. Before this exploitation we introduce the definition 

of the fourth-order tensor aC-' /aC,  for convenience (recall Example 1.1 1, p. 43, and 
take A = C in relation (1.249)), where the symbol a has been introduced to denote 
the tensor product according to the rule 

Starting with (6.163)1, a straightforward computation yields, with definition (6.89j2, 
property (1.256), the derivative of J and C-I with respect to C, i.e. eqs. (6.82)1 and 
(6.164), and the product rule of differentiation, 
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For convenience, we have introduced the scalar function $, defined by 

with the constitutive equation for p given in (6.91)1. Note that the only values which 
must be specified for a given material are p and$. 

The following example shows a lengthy but representative derivation of an elastic- 
ity tensor. 

EXAMPLE 6.8 Show the following explicit expression for the second contribution 
to the elasticity tensor, i.e. the isochoric part Cis,, as defined in eq. (6.163)2, 

(compare also with HOLZAPFEL [1996a]), which is based on the definitions 

of the fourth-order fictitious elasticity tensor in the material description, the trace 
Tr(o) and the modified projection tensor $' of fourth-order. 

Solution. Starting from the definition of Cis,, i.e. (6.163)2, we find, using (6.90)4 
and property (1.256), that 

The first term in this equation yields, through property (6.82)2 and definition (6.90)4, 

which gives the last expression of (6.168) we show. 
Hence, in the following we analyze exclusively the second term in (6.171). With 

the definition of the projection tensor (6.84), identities (1.160)1, (1.152) and the chain 
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rule, we have 

and finally, using the definition of the fourth-order tensor d c / d ~ ,  i.e. (6.83)4, defini- 
tion (6.169)1 and property (1.256), 

in which the definitions 

a ( s  : C) 
A1 = 2 J - ~ / ~ c - '  @ - ac A2 = 25-'13(5 : C) (6.175, ac 

are to be used. 
In order to study (6.175) in more detail we apply property (1.255), the chain rule, 

identity (1. 160)1, definition (6. 169)l of (6.175)1 and definition (6.164) of (6. 175)2 to 
give 

hl = C-' @ (C : c f 2 ~ ~ ~ 1 ~ s )  = C-' @ C : : + 2C-I @ ~ - ~ / ~ s  , (6.176) 

Eqs. (6.176) and (6.177) substituted back into (6.174) yield, using identity (1.160)1 and 
definition (6.169)2, 

With the definition of the projection tensor (6.84), then with definition (6.90)4, accord- 
ing to identity (1.157), and by means of (6.164) with rule (1.254) and (6.170) we find 
finally 

which is identical to.the remaining terms in (6.168). 
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The two tensor expressions (6.166)4 and (6.168) in the material description rep- 
resent explicit forms which are generally applicable to any compressible hyperelastic 
material of interest. Since we have already computed the stress relation S = S,, + Si,,, 
with the terms S,, = J~c-' and S,,, = J - 2 / 3 ~  : S, it is a straightforward task to 
set up the associated elasticity tensor @. = C,, + Cis,. All that remains is to deter- 
mine p, c and @ from relations (6.167), (6.169)' and (6.170), respectively. Since the 
nonlinear functions p and S, Si,, occurring in (6. 166)4 and (6.168), are already known 
from the stress relation, a different material model only affects the elasticity tensor @ 
through the scalar function @ = $(QVol) and the fourth-order fictitious elasticity tensor - c = C(QlS0). 

Expressions (6.166)4 and (6.168) exhibit a clear structure and are fundamental 
withiin the finite element method in preserving quadratic rate of convergence near the 
solution point, when Newton's method is used as the associated solution technique. 

The two explicit relations (6.16614 and (6.168) were specified within a so-called 
consistent linearization process of the associated stress tensor. The notion 'consistent 
linearization' means a linearization of all quantities which are related to the nonlinear 
problem. In the community of computational mechanics the elasticity tensors (6.166)4 
and (6.168) are frequently referred to as algorithmic or consistent linearized tangent 
moduli in the material and spatial descriptions. 

For some complex problems the set up of the analytical tangent moduli is a dif- 
ficult and time-consuming task. This is why the tangent moduli are also computed 
on a numerical basis, which turns out to be a straightforward and convenient tech- 
nique in order to linearize sophisticated stress relations such as, for example, the stress 
response of materials associated with anisotropic damage at finite strains. For a nu- 
merical computation of consistent tangent moduli in large-strain inelasticity see, for 
example, MIEHE [1996], which contains more details and references on the underly- 
ing concept of approximation. However, manipulations which have led to (6.166)4 and 
(6.168) may also be carried out with some of the commercially available mathematical 
software-packages having the feature of symbolic computation. 

Elasticity tensor in terms of principal stretches. Consider an isotropic hypere- 
lastic material characterized by the strain-energy function Q = Q(X1; X2, As). with the 
principal stretches XI: Xz. .Ag. 

The aim is now to derive the spectral form of the elasticity tensor C. in the material 
description, namely 
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with the principal second Piola-Kirchhoff stresses 
'I' 1 a'I' s a = 2 -  = -- . a = 1 , 2 , 3  : ax: A, ax, . 

and the set {N,), a = 1; 2,3,  of orthonormal eigenvectors of the right Cauchy-Green 
tensor C. They define principal referential directions at a point X, with the conditions 

A A 

 IN,^ = 1 and N, . Nb = bab. 
The important fourth-order tensor C in a more general setting was given by OGDEN 

[1997, Section 6.1.41. Compare also the work of CHADWICK and OGDEN [1971a, b] 
with some differences in notation. 

The proof of representation (6.180) is as follows: 

Pro05 In order to prove relation (6.180) we follow an approach which takes advan- 
tage of isotropy. We know from Chapter 5 that for isotropic elastic materials the second 
Piola-Kirchhoff stress tensor S is coaxial with the right Cauchy-Green tensor C, so that 
S has the same principal directions as C. 

For notational convenience we use henceforth a rate formulation rather than an 
\ 

infinitesimal formulation. In particular, we now compute the material time derivatives 
of the stress and strain tensors S and C, and compare them with the rate form of relation 
(6.153), i.e. s = C : ~ / 2 ,  in order to obtain the elasticity tensor @, as defined in (6.154) 
and specified in (6.180). 

To begin with, consider a set of orthonormal basis vectors ea, a = 1: 2: 3, fixed in 
space. Consequently, the set {N,), a = 1: 2: 3, of orthonormal eigenvectors may be 
governed by the transformation law 

(compare with eq. (1.182), Section 1.5), where Q denotes an orthogonal tensor with 
components Q,b = e, . ~ b  = cosO(e,: ~ b ) ,  representing the cosine of the angle between 
the fixed basis vectors e, and the orthonormal eigenvectors Nb (principal referential 
directions). Tensor Q is characterized by the orthogonality condition, i.e. Q ~ Q  = 
Q Q ~  = I. 

Next, we compute the material time derivative of the principal referential directions 
N,. Since the basis vectors are assumed to be fixed in space (& = o), we may write 

N, = ~ e , ,  a = 1.2: 3. By expanding this equation with the orthogonality condition 
and by means of the skew tensor 0, as introducedin (5.15), and transformation (6.182), 
we may elidnate the basis {e,) and find that 

Note that the components of the skew tensor C2 = -nT with respect to the basis {e,) 
are obtained from (6.183)? in the form 
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with fi,, = 0. By means of identity (1.65)2, we may deduce from (6.183)2 the repre- 
sentation O = C:=, N, 8 N,. 

Knowing N,, we now can determine the material time derivative of the spectral 
representation of C. Converting eq. (2.128) to the rate form, we obtain, by means 
of eq. (6.183)~ and the spectral decomposition of the right Cauchy-Green tensor, i.e. 
c = C:=, XXN, @ R a ,  

From (6.185)2 using (6.184) we deduce that 
3 3 

c = ) :PX,~,N, 8 N, + Oab(Xi - X;)N, @ Nb . (6.186) 
a=1 a,b=l 

a# b 

where 2XaXa = N,.CN, = c,,, a = 1.2.3 (compare with A eq. . -  (2.129)), denote nonnal 
components (diagonal elements) and SZ,b(A; - A:) = N, . CNb = cab. a # b, denote 
shear components of c (off-diagonal elements) with respect to the basis {N,). 

By isotropy, S has the same principal directions as C. Hence, recall (6.52)2, i.e. 
3 S = C,=, S,N, €3 N,, with S, = l/X,(B'I'/aX,), a = 1; 2 :  3, we obtain, by analogy 

with (6.186) 
3 ? 

in which the material time derivative of the principal second Piola-Kirchhoff stresses 
is defined to be 

By expanding the numerator and denominator of the second term in (6.187) with 
X i  - A: and by means of (6.1 88)2, eq. (6.187) can be rephrased as 

afb 

On comparing the derived eqs. (6.189) and (6.186) with (6.153) in the rate form, 
i.e. s = C : ~ / 2 ,  we find by inspection that the elasticity tensor C emerges, as given 
by eq. (6.180). . 
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For the case in which two or even all three eigenvalues of C (and aiso of b) are 
equal, the associated two or three stresses Sa are also equal, by isotropy. Hence, the 
divided difference (Sb- Sa)/ ( X i  -Xi) in expression (6.180) represents an indeterminate 
form of type 8. However, it can be shown that the divided difference is well-defined as 
Ab approaches A,. Namely, applying 1'H8pita11s rule, we see simply that 

Sb - Sa aSb dSa lim -=--- 
A,+L A; - A; ax; a ~ ;  

(compare also with the work of CHADWICK and OGDEN [1971b]). Consequently, the 
elasticity tensor, as defined in eq. (6.180), is valid for the three cases: X1 # X 2  # ,A3 # 
A1, X1 = X2 # A3 and X1 = X2 = X3.  

Finally, in order to set up the spectral form of the elasticity tensor c in the spatial 
description we use the Piola transformation of C! for principal values. According to 
(6.159), this gives cab,d = J-'X,XbA,Ad Cabcd. with the principal stretches A1. ,A2; X3 
and the volume ratio J = X1X2X3. A straightforward computation leads to 

with the principal Cauchy stresses a, = J-lA;S,, a = 1: 2: 3 (see the inverse of 
eq. (6.48)2), and the principal spatial directions n,, a = 1: 2: 3, which are the orthonor- 
ma1 eigenvectors of v (and also of b), with In, = 1 and na-nb = bab. From the property 
(2.120) we know that the two-point tensor R rotates the principal referential directions 
N, into the principal spatial directions &. 

If A, = X b  we may conclude that a, = ab, by isotropy. Hence, the divided differ- 
ence (abA: - u,A~) / (X~  - A;) in expression (6.191) gives us ! and must therefore be 
determined applying I'H6pital's rule. Differentiating the numerator and denominator 
by X b  and taking the limits X b  -+ A,, the divided difference becomes 

An alternative version of solution (6. 192)2 in terms of the principal second Piola-Kirch- 
hoff stresses, frequently used in other texts, is left as an exercise. 
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1. For the description of isotropic hyperelastic materials at finite strains consider the 
strain-energy function @ = * ( I l ,  12, 13) in the coupled form, with the principal 
invariants I,, a = l ,2 ,3 .  

(a) Use the stress relation (6.32)2, the chain rule and the derivatives of the in- 
variants with respect to C, i.e. eqs. (6.30)3 and (6.31), in order to obtain the 
most generalform of the elasticity tensor @. in terms of the three principal 
invariants 

as a2Q(Il,12,13) g : = 2 - = 4  ac acac 

with the coefficients 61,. . . , defined by 

The fourth-order tensors C-'a C-I and 1 in eq. (6.193)3 are defined ac- 
cording to (6.164) and (1.160), respectively. 

(b) Particularize the coefficients ha, a = 1, . . . ,8, (6.194), for the compress- 
ible Mooney-Rivlin, neo-Hookean, Blatz and KO models, i e. eqs (6 147)- 
(6.149). For convenience, summarize the (nonzero) coefficients for the 
three matenal models to form the entries of Table 6.3. 

For notational simplicity we have introduced the abbreviation E = Z p ( 1  - 

f) / I3 with ( > C. Note that the coefficients 6,, a = 1. . . . .8, for the neo- 
Hookean model are simple those of the Blatz and KO model obtained by 
setting E = 0 and p f = 2cl. 

Compare the corresponding constitutive equations of the three material 
models of Exercise l(a) on p. 248, with the specified coefficients surnrna- 
rized in Table 6.1. 
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Table 6.3 Specified coefficients for the elasticity tensors of some materials 
in the coupled fom. 

61 

63 

65 

b6 

J7 

68 

2. The strain-energy function 9 (J,11, .12) = Qvol ( J )  + *is,, (TI, 72) is given in terms 
of the volume ratio J and the two modified principal stretches TI, 1 2 .  This type 
of strain energy in decoupled representation is suitable for the characterization ,, 
of compressible isotropic materials at finite strains. 

(a) The associated decoupled elasticity tensor C is given by (6.162), with the 
volumetric and isochoric parts (6.166)4 and (6.168), respectively. Partic- 
ularize the fictitious elasticity tensor in the material description, i.e. 
eq. (6.169)1, to the specific strain energy at hand. 

Start with the constitutive equation for the fictitious second Piola-Kirchhoff 
stress S, as defined in eq. (6.115), and use the derivatives of I1, Iz with 
respect to tensor C, i.e. (6.117), in order to obtain the most general form of 
- 
C in terms of Tl and & in the form 

Mooney-Rivlin model 
(6.147) 

4cz 

2cJ(2J - 1) 

-2[2cJ(J - 1) - d] 

-4c2 

with the fourth-order unit tensor It defined py (1.160) and the coefficients 
- 
6 , ,u=1;  . . . ,  4,by 
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neo-Hookean model 
(6.148) 

4pcl I;@ 

4cl 

(b) To be specific, take the decoupled form of the compressible Moonq-Rivlin 
model (6.146) and the compressible neo-Hookean model (set c2 = 0). Ad- 
ditionally. take the Yeoh model and the Arruda and Boyce model of the 
forms 

s = a,, +c1(11 - 3) + cz(L - 3)2 + cg(71 - 3)3 , 

Blatz and KO model 
(6.149) 

J t 
-[I1 

t 
2pf PI;' + <(I2 + PI!") 

2pf1~@ + ((I2 - 

-< 
corresponding to eqs. (6.134) and (6.136), respectively. 

Specify the coefficients za, a = 1 , .  . . ,4,  (6.195), for the four material 
models in question and summarize the result in the form of a table. 

Table 6.4 Specified coefficients for the elasticity tensors of some materials 
in the decoupled form. 

- 
61 

- 
64  

Note that the associated constitutive equations, with the specified coeffi- 
cients as summarized in Table 6.2, are presented in Exercise l(b) on p. 248. 

3. Consider a compressible isotropic material characterized by the strain-energy - - -  

function in the decoupled form of *(A1, A2, X3) = \IrWl(J) + Qiso(X1, X2, X3), 
with the volume ratio J = A1X2X3 and the modified principal stretches Xa = 
J - ~ / ~ x , ,  u = 1,2,3.  The associated decoupled structure of the elasticity tensor 
C in the material description is given as @(XI, X2, AS) = Cvol + Ciso. with the 
volumetric contribution CYo1 specified by the expression (6. 166)4. 

Moonq-Rivlin 
mode1 (6.146) 

4 ~ 2  

-4c2 

(a) Show that the spectral form of the isochoric contribution Cis, may be given 

by 
3 

1 asis,, A 

cis0 = C %-Na B A. 8 N* 8 Nb 
a.b=l 

a#b +Aa CZ N* 8 N~ @ A,) , (6.196) 

neo-Hookean 
model 

0 

O 

where SiS,. = (a~iso/dAa)/Aa, a = 1,2,3, denote the principal values of 
the second Piola-Kirchhoff stress tensor Si,,. 

Yeoh 
model (6.134) 

~ [ C Z  + 3c3 (11 - 3)] 

O 

Arruda and Boyce 
model (6.136) 

~ [ 2 / 5 n  
+(44/175n2)J1 + . . .] 

O 
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(b) In order to specify the elasticity tensor (6.196), take Ogden's mode1 (6.139) 
and recall the isochoric hyperelastic stress response in terms of the three 
principal stresses Sisoa, a = 1> 2,3,  determined by the closed form expres- 
sion (6.144)2 using (6.145) (compare with Example 6.7). 

For this important class of material models particularize the coefficients of 
the first part of the elasticity tensor (6.196) by means of the given strain- 

- - - 
energy function (6.1391, i.e. e i s o ( A , ,  X 2 ,  A s )  = x:=l ( p p / ~ p )  ( 1 2  - 
1). Show that 

N 

for a = b , 
c= 1 

1 -  1 r ; 2 ~ ; 2 ~ ( - 5 1 2 - - ~ ~  +-EX: 
3 9 

c=l 
\ 

This representation was given by SIMO and TAYLOR [1991a, Example 2.21, 
with some differences in notation. 

4. Consider a strain-energy function in terms of principal stretches A,, a = 1,2,3, 
and principal invariants I,, a = 1,2,3,  according to Q = Q ( A 1 , A 2 , X 3 )  = 

W l ,  12 ,131 .  

Write down the associated constitutive equation for the principal second Piola- 
I(lrchhoff stresses S,, a = 1,2,3, in terms of the three principal invariants (com- 
pare with eq. (6.3212). By use of this result show that the divided difference 
( S b  - S a ) / ( X z  - A:) is well-defined as A b  approaches X a  and yields 

5. By means of l'H6pital's rule derive the alternative version of (6.192) in terms of 
the principal second Piola-Kirchhoff stresses S,, i.e. 

lim 

6. Consider the constitutive equation (6.38) in terms of the (spatial) left Cauchy- 
Green tensor b representing isotropic hyperelastic response. Deduce from the 
constitutive rate equation (6.161) that the associated elasticity tensor a: in the 
spatial description has the explicit form 
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Hint: Recall relation (3.62), the Oldroyd stress rate (5.59) of the Kirchhoff 
stress, kinematic relation (2.171) and use the chain rule. 

Representation (6.198) was given by MIEHE and STEIN [1992]. In their work the 
definition of the elasticity tensor c = x,(C) in the spatial description excludes 
the factor J-l .  

I 7. Consider the additive split of the Cauchy stress (6.101)-(6.104) in terms of J and 
- 
b, based on the strain-energy function of the form (6.98). Show that the associ- 
ated elasticity tensor c in the spatial description may be written in the decoupled 
form 

with the definitions 

of the purely volumetric contribution cml and the purely isochoric contribution 
a:;,,, the latter being based on the spatial projection tensor B = It - $1 @ I and on 
the definitions V = JF, T;,, = JuisO, with a;,, = P : F ,  as given in (6.103) and 
(6.104). 

In addition, we introduced the definitions of the fourth-order fictitious elasticity 
tensor @ in the spatial description and the trace tr(o) according to 

- -a2 e i s 0 ( b )  - 
c = 4b- b : tr(o) = (m) : I . 

a@b 
For an explicit derivation, see MIEHE [1994, Appendix A]. 

6.7 Transversely Isotropic Materials 

Numerous materials are composed of a matrix material (or in the literature often 
called ground substance) and one or more families of fibers. This type of material, 
which we call a composite material or fiber-reinforced composite, is heterogeneous 

' in the sense that it has different compositions throughout the body. We consider only 
composite materials in which the fibers are continuously arranged in the matrix mate- 
rial. These types of composites have strong directional properties and their mechanical 
responses are regarded as anisotropic. 
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/ 
The challenge in the design of fiber-reinforced composites is to combine the matrix 

material and the fibers in such a way that the resulting material is most efficient for the 
desired application. For engineering applications composite materials provide many 
advantages over monolithic materials such as high stiffness and strength, low weight 
and thermal expansion and corrosion resistance. However, the drawbacks in using 
composite materials seem to be the high costs when compared with those of monolithc 
(more classical) materials and, from the practical point of view, limited knowledge of 
how to combine these types of material. 

A material which is reinforced by only one family of fibers has a single preferred 
direction. The stiffness of this type of composite material in the fiber direction is typi- 
cally much greater than in the directions orthogonal to the fibers. It is the simplest rep- 
resentation of material anisotropy, which we call transversely isotropic with respect 
to this preferred direction. The material response along directions orthogonal to this 
preferred direction is isotropic. These composite materials are employed in a variety of 
applications in industrial engineering and medicine. For manufacturing and fabrication 
processes and for typical features and properties of transversely isotropic materials the ,, 
reader should consult, for example, the textbook by HERAKOVICH [1998]. 

The aim of the following section is to investigate transversely isotropic materials 
capable of supportingfinite elastic strains. As mentioned above, all fibers have a sin- 
gle preferred direction. However, the fibers are assumed to be continuously distributed 
throughout the material. We derive appropriate constitutive equations which are based 
solely on a continuum approach (excluding micromechanical considerations). Con- 
stitutive equations which model transversely isotropic materials in the small elastic 
strain regime are well established and may be found, for example, in the textbooks by 
TsAI and HAHN [l980], DANIEL and ISHAI [1?94], HERAKOVICH [I9981 and JONES 
[19??]. 

Kinematic relation and structure of the free energy. We consider a continuum 
body B which initially occupies a typical region f10 at a fixed reference time t = 0; The 
region is known as a fixed reference configuration of that body B. A point in Ro may 
be characterized by the position vector X (with material coordinates XA,  A = 1; 2; 3) 
related to a fixed set of axes. At a subsequent time t > 0 the continuum body is in a de- 
formed conjguration occupying a region 0. The associated point in R is characterized 
by the position vector x (with spatial coordinates x,, a = 1: 2: 3) related to the same 
fixed set opaxes. For more details about the relevant notation recall Section 2.1. 

We suppose that the only anisotropic property of the solid comes from the presence 
of the fibers. To start with, for a material which is reinforced by only one family of 
fibers, the stress at a material point depends not only on the deformation gradient F but 
also on that single preferred direction, which we call the fiber direction. The direction 
of a fiber at point X E Ro is defined by a unit vector field ao(X), lao[ = 1, with material 
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coordinates a o ~ .  The fiber under a deformation moves with the material points of the 
continuum body and arrives at the deformed configuration S1. Hence, the new fiber 
direction at the associated point x E S1 is defined by a unit vector field a(x, t ) ,  la1 = 1, 
with spatial coordinates a,. For subsequent use it is beneficial to review the section on 
material and spatial strain tensors introduced on pp. 76-81. 

Allowing length changes of the fibers, we must determine the stretch X of the fiber 
along its direction %. It is defined as the ratio between the length of a fiber element 
in the deformed and reference configuration. By combining eq. (2.62) with (2.73) we 
find that 

A& t )  = F(X, t)ao (X) , (6.199) 

which relates the fiber directions in the reference and the deformed configurations. 
Consequently, since la1 = 1, we find the square of stretch X following the symmetry 

which we already have introduced in relation (2.64). This means, that the fiber stretch 
depends on the fiber direction of the undeformed configuration, i.e, the unit vector field 
ao, and the strain measure, i.e. the right Cauchy-Green tensor C. 

We now assume the transversely isotropic material to be hyperelastic, characterized 
by a Helmholtz free-energy function Q per unit reference volume. Because of the 
directional dependence on the deformation, expressed by the unit vector field ao, we 
require that the free energy depends explicitly on both the right Cauchy-Green tensor 
C and the fiber direction a. in the reference configuration. 

Since the sense of a. is immaterial, P is taken as an even function of ao. Hence, by 
introducing the tensor product a. 8 ao, may be expressed as a function of the two 
arguments C and a. @ ao. The tensor a. @ a. (with Cartesian components a0 ~ a o  B )  is 
of order two. For the Helmholtz free-energy function we may therefore write 

From previous sections we know that the free energy must be independent of the 
coordinate system; hence Q(C, a0 8 ao) must be objective. Since C and a. @ a. are 
defined with respect to the reference configuration (which is fixed), they are unaffected 
by a rigid-body motion superimposed on the current configuration. Consequently, the 
principle of material frame-indifference of the postulated free energy P(C,  a. @ ao) is 
satisfied trivially. 

EXAMPLE 6.9 The free energy P(C,  a. @ ao) must be unchanged if both the ma- 
trix material and thefibers in the reference configuration undergo a rotation around a 
certain axis described by the proper orthogonal tensor Q. 
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/ Show that the requirement for transversely isotropic hyperelastic materials formally 
reads 

Q(C, a. 8 ao) = Q ( Q C Q ~ ,  Q ~ O  8 a o ~ T )  , (6.202) 

I which holds for all proper orthogonal tensors Q. 
I 

Solutiol~. For the solution it is beneficial to review eqs. (6.19)-(6.25) of Section 6.2. 
A rotation of the reference configuration by tensor Q transforms a typical point X 

into position X* = QX. Consequently, fiber direction a. transforms into the new fiber 
direction a(: = Qao so that a; €3 a; becomes Qao @ aoQT. Now, after a subsequent 
motion of the rotated reference configuration, X* maps into position x. Thus, the defor- 
mation gradient F* and the strain measure C* = FITFI relahve to the rotated reference 
configuration are F* = F Q ~  (compare with (6.22)) and C* = PTFt = Q F T ~ Q T  = 

Q C Q ~ ,  respectively. 
We say that a hyperelastic material is transversely isotropic relative to a reference 

configuration if the identity Q(C, ao @ ao) = Q(C*, at 8 a;) is satisfied for all proper 
orthogonal tensors Q. Hence, restriction (6.202) follows directly. Note that in view of , 
(6.202), Q may be seen as a scalar-valued isotropic tensor function of the two tensor 
variables C and ao @ ao. W 

According to (6.27). an isotropic hyperelastic material may be represented by the 
first three invariants 11, Iz, I3 of either C or b, characterized in (5.89)-(5.91). These 

11 invariants can be used to fulfil requirement (6.25), i.e. Q(C) = !P(QcQ~) for all 
(Q, C). Following SPENCER [1971, 19841, two additional (new) scalars, I4 and I., are 
necessary to form the integrity bases of the tensors C and a0 @ a. and to satisfy relation 
(6.202). They are the so-called pseudo-invariants of C and a. @ ao, which are given 

by 

The two pseudo-invariants 14, I5 arise directly from the anisotropy and contribute 
to the free energy. They describe the properties of the fiber family and its interaction 
with the other material constituents. Note that invariant I4 is equal to the square of the 
stretch X in the fiber direction a. (compare with eq. (6.200)). 

For the definition of the integrity bases and the related t h e o ~  of invariants see the 
lecture notes by SCHUR [1968], the articles by SPENCER [I9711 and ZHENG [1994, 
and references therein]. For applications in continuum mechanics the reader is referred 
to the works by RIVLIN [1970], BETTEN [1987a, Chapter D and 1987b1, TRUESDELL 
and NOLL [I9921 among others. A brief review of the theory of invariants may also be 
found in SCHRODER [1996]. 
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For a transversely isotropic material, the free energy can finally be written in terms 
of the five independent scalar invariants, and eq. (6.27)1, valid for isotropic material 
response, and may consequently be expanded according to 

The free energy (6.204) provides a fundamental basis for deriving the associated con- 
stitutive equations. 

Constitutive equations in terms of invariants. In order to derive the constitutive 
equations we apply (6.13)~. Then, by use of the chain rule, the second Piola-Kirchhoff 
stress tensor S is given as a function of the five scalar invariants, i.e. 

in which aIl/dC and dIz/dC, a13/dC are given by (6.30) and (6.31), respectively. 
The remaining derivatives follow from (6.203) and have the forms 

-- 'I5 - a~ Cao + aoC @ a. 
dC (6.207) 

31, or -- - a o ~ c ~ c a o c  + a o ~ c ~ c a o c  . 
 CAB 

Finally, (6.205) reads, with eqs. (6.30), (6.31), (6.206) and (6.207), 

which extends the constitutive equation (6.32) by the addition of the last two terms. 
Using arguments similar to those used for the derivation of the spatial version of 

the stress relation (6.34), namely a push-forward operation on the material stress tensor 
S by the motion X, we arrive, using (6.199) and (6.203)1, at 

Recall that the unit vector a(x, t )  denotes the fiber direction in the deformed con- 
figuration while b = FFT is the (second-order) left Cauchy-Green tensor. Observe the 
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similar structure of the last two terms in the stress relation (6.209) to that presented in 
(6.208). 

The associated elasticity tensors in the material and spatial descriptions follow by 
means of expressions (6.154) and (6.159), respectively (for an expliclt derivation com- 7 pare with the work of WEISS et al. [1996]). For implementations of large strain 
transversely isotropic models in a finite element program see WEISS et al. [1996], 
SCHRODER 119961, BONET and BURTON [I9981 among others. 

Incompressible transversely isotropic materials. We now consider transversely 
isotropic materials with an incompressible isotropic matrix material. 

Firstly, we study the case in which the embedded fibers are extensible. Since we 
assume incompressibility of the isotropic matrix material, i.e. I3 = 1, we are able to 
postulate a free energy in terms of the remaining four inbependent invariants. Because 
of the incompressibility constraint I3 = I the free energy Q is enhanced by an indeter- 
minate Lagrange multiplier p/2 which is identified as a reaction pressure. In view of 
(6.62) we have the assumption 

The associated stress relations given in the reference and current configurations are 
basically those presented by (6.63) and (6.64) supplemented by the fourth and fifth 
term in eqs. (6.208) and (6.209), respectively. 

Secondly, we study an incompressible isotropic matrix material which is continu- 
ously reinforced throughout by inextensible fibers. This means that X = 1 and, in view 
of (6.203)1, the fourth invariant is equal to one. With this additional internal constraint, 
the free energy Q is a function only of I*, 12, which are responsible for the hyperelastic 
isotropic matrix material, and 15, which is responsible for the fibers. By adding the 
term q(14 - 1)/2 to the free energy Q we obtain the function 

where q / 2  is an additional indeterminate Lugrange multiplier. 
The associated stress relations in the Lagrangian and Eulerian descriptions for the 

transversely isotropic materials with an incompressible isotropic matrix material and 
inextensibleafibers (with direction ao) are the extended constitutive equations (6.63) 
and (6.65), i.e. 
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Note that the indeterminate terms - q q  8 q and -qa €3 a are identified as fiber 
reaction stresses which respond to the inextensibility constraint I4 = 1. 

EXERCISES 

1. Starting from the pseudo-invariants I* and 15, i.e. eqs. (6.203), show their deriva- 
tive with respect to C, eqs. (6.206) and (6.207). 

2. We characterize a transversely isotropic material by the decoupled free energy in 
the form 

where QVoI and Qiso are the volumetric and isochoric contributions to the hy- 
perelastic response (recall Section 6.4). The modified invariants are given 
according to eqs. (6.109) and (6.1 lo), while f3 = d e t e  = 1 (note that TI: T2, & 
are the modified principal invariants of the modified tensor e = JP2l3c). The 
remaining modified pseudo-invariants are expressed by 1 4  = J-2/314 and 15  = 

J-4/3 I ~ .  

(a) Having in mind the free energy (6.214) and the derivatives (6.206) and - 
(6.207), show that the constitutive equation S = JpCT1 + J-'I3P' : S 
specializes to 

with the response coefficients 

for the fictitious second Piola-Kirchhoff stress S. Note that the coefficients 
- y, and T2 reflect the isotropic stress response, as given in eqs. (6.1 16). 

(b) By recalling Section 6.6, a closed form expression for the elasticity tensor 
@in the material description is given by relation (6.162), with contributions 
rCYo1, i.e. (6.166)4, and Cis,, i.e. (6.168). 
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By use of the important property (1.256) and the constitutive equation for 
the fictitious second Piola-Kirchhoff stress (6.215)3, show that the fictitious 
elasticity tensor in the material description takes on the form 

as 8 * 1 s o ( 1 1 . 1 2 ; 1 4 $ f 5 )  j413C = 2= = 4 

- 
ac acac 

= b , I @ I $ & ( I @ c  - k c @ I )  +a3c@c $a4][ 
+ & ( I @ ~ o  @a0 + a0 @ a o  @ I )  

+$6 ( C @ a o @ a o + a o @ a o  @C) 
- 

81, ai5 -) (-q a f 5 )  +& C@-=+=@C +dlo ( ac ac ac 3E 
ar, af5 - a21, +xl1 ( a o @ a ~ @ = = + - B a ~ @ a ~  ac ac 

+h12- acac ; , 
with the fourth-order unit tensor I1 defined by (1.160) and the coefficients - 
b , ,a=5  ,...: 12,by 

, 

- a2*i,o - a2Qiso 
b9 = -4- blo = 4- : a~,ar, ' a~,ar, 
- 8'Q,so - a a i s o  
JI1 = 4- , 6i2 = 4- . ar4ar5 81, 

Note that the coefficients a,, a = 1:. . . : 4, were given previously in rela- 
tions (6.195) and reflect the isotropic contributions. 

6.8 Composite Materials with Two Families of Fibers 

In the following we discuss appropriate constitutive equations for the finite elastic re- 
sponse of fiber-reinforced composites in which the matrix material is reinforced by zwo 
families of fibers. We assume that the fibers are continuously distributed throughout the 
material so that the continuum theory of fiber-reinforced composites is the constitutive 
theory of choice. 
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There are many different fibers and matrix materials now in use for composite ma- 
terials. Examples of specific fibers for structural applications are boron and glass. The 
latter is an important engineering fiber with high strength and low cost. Further ex- 
amples are carbon and graphite (the difference is in the carbon content), the organic 
fiber aramid and the ceramic fibers silicon carbide and alumina among others. Many 
specific matrix materials are available for the use in composites; for example, thernio- 
plasticpolymers, thermosetpolyiqers, metals (such as aluminum, titanium and copper) 
and ceramics. 

Vast numbers of applications in industry are concerned with composite materials, 
such as the finite elastic response of belts and high pressure tubes, steel reinforced rub- 
ber used in tyres, and integrated circuits used in electronic computing devices. Typical 
medical applications are lightweight wheelchairs and implant devices such as hip joints 
(see also the textbook by HERAKOVICH [1998, Chapter 11). The five-volume encyclo- 
pedia of composites edited by LEE [1990, 19911 includes a detailed account of special 
types of fiber, matrix materials and composites as engineering materials. Typical engi- 
neering properties, manufacturing and fabrication processes and details on how to use 
composite materials for different applications are also provided. 

However, it is important to note that numerous organisms such as the human body, 
animals and plants are heterogeneous systems of various composite biomaterials. The 
textbooks by FUNG [1990, 1993, 19971 are concerned with the biomechanics of vari- 
ous biomaterials, soft tissues and organs of the human body. One important example of 
a fibre-reinforced biomaterial is the artery. The layers of the arterial wall are composed 
mainly of an isotropic matrix material (associated with the elastin) and two families of 
fibers (associated with the collagen) which are arranged in symmetrical spirals (for ar- 
terial histology see RHODIN [1980j). For mechanical properties and constitutive equa- 
tions of arterial walls, see the reviews by, for example, HAYASHI [1993], HUMPHREY 
119951 and the data book edited by Ask et al. [1996, Chapter 21. A simple finite 
element simulation of the orthotropic biomechanical behavior of the arterial wall is 
provided by HOLZAPFEL et al. [1996d, 1996el and HOLZAPFEL and WEIZSACKER 
[1998]. For a review of finite element models for arterial wall mechanics, see the article 
by SIMON et al. [1993]. 

Free energy and constitutive equations. We may now consider a body built up 
of a matrix material with two families of fibers each of which is unidirectional with 
preferred direction. The matrix material is assumed to be hyperelastic. The preferential 
fiber directions in the reference and the current configuration are denoted by the unit 
vector fields ao, go and a ,  g, respectively. By analogy with relation (6.201) we may 
postulate the free energy 

'J? = Q(C, Ao, Go) (6.216) 

per unit reference volume. For notational simplicity we have introduced the abbrevia- 
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tions A. = a. 18 ao and G O  = go @ go, frequently referred to as structural tensors. 
The free energy must be unchanged if the fiber-reinforced composite (i.e. a hy- 

perelastic (matrix) material with two families of fibers) in the reference configuration 
undergoes a rotation described by the proper orthogonal tensor Q. Using arguments 
similar to those used for a single fiber family (see the previous Section 6.7), the re- 
quirement for this type of composite is, in view of (6.202), given by 

which holds for all tensors Q (recall Example 6.9). Here, Q is a scalar-valued isotropic 
tensor function of the three tensor variables C, A. and Go. 

According to SPENCER [1971, 19841, requirement (6.217) is satisfied if I is a 
function of the set of invariants 

The three invariants 11, 1 2 ,  I3 are identical to those from the isotropic theory presented 
in eqs. (5.89)-(5.91). The pseudo-invariants Id ,  I5 are given by eq. (6.203) and char- 
acterize one family of fibers with direction ao. The pseudo-'nvariants I d ,  . . . , Ig are 
associated with the anisotropy generated by the two families 5% of ers. The dot product 
a. . go is a geometrical constant determining the cosine of the angle between the two 
fiber directions in the reference configuration. Therefore, the invariant I9 does not de- 
pend on the deformation and is subsequently no longer considered. Note that I4 and I6 
are equal to the squares of the stretch in the fiber directions a. and go, respectively. 

The constitutive equation for the second Piola-Kirchhoff stress S follows from the 
postulated free energy (6.216) by differentiation with respect to C .  By means of the 
chain ruie, S is given as a function of the remaining eight scalar invariants in the form 

in which d I l / d C , .  . . , dI3/dC and dI4 /dC ,  d I s /dC  are given by eqs. (6.30), (6.31) 
and (6.206), (6.207), respectively. 

The remaining derivatives of the invariants follow from (6.218)6-(6.218)8 and have 
the forms 
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Using arguments similar to those used for deriving the stress relation (6.208), we 
obtain the explicit expressions I I ,  

The anisotropic stress response (6.223) extends relation (6.208) by the addition of the 
last three terms. Note that (dQ/a14)Ao and (aQ/d I s )Go  characterize the (decoupled) 
stress contributions arising only from the fibers. 

Orthotropic hyperelastic materials. If a,, - go = 0 ,  the two families of fibers have 

orthogonal directions. Then, the material is said to be orthotropic in the reference 
configuration with respect to the planes normal to the fibers and the surface in which 
the fibers lie. Since now two directions in space (ao,  a) are preferred with respect 
to the mechanical response of the composite, the remaining third direction orthogonal 
to the fiber plane is also a preferred direction. The mechanical response in the third 
direction is governed by the matrix material. The list of invariants (6.218) reduces to 
the first seven and the free energy has the form I = G(I1,. . . ,h). 

A further special case may be found under the assumption that the isotropic matrix 
material is incompressible, i.e. I3 = 1. Additionally, the families of fibers may also be 
inextensible in the two fiber directions a0 and go, consequently 1 4  = 1 and Is = 1. For 
this case a suitable Helmholtz free-energy function is given by 

with the indeterminate Lagrange multipliers ~ / 2 ,  q / 2 ,  r /2 .  
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The constitutive equations for an orthotropic material composed of an incompress- 
ible isotropic matrix material and inextensible fibers (with directions a. and go) depend 
only on the invariants 11, I2 and 15, 17. The constitutive equations in the Lagrangian 
and Eulerian descriptions, extending eqs. (6.212) and (6.213), follow from (6.224) and 
are 

respectively. Herein, the indeterminate terms -qAo, -rGo (and -PI, -qA, 
-rG) are identified as reaction stresses associated with the constraints I3 = 1, I4 = 1, 
Is = 1, with the pressure-like quantity p and the fiber tensions q, r, respectively. In 
eq. (6.226)2 we have introduced the definitions A = a @ a and G = g €4 g of the 
structural tensors A and G. Recall that a(x, t), g(x, t) denote the fiber directions in the 
deformed configuration while b = F F ~  is the spatial strain tensor of second-order. 

However, if the two families of fibers are mechanically equivalent - and not neces- 
sarily orthogonal - then the material is said to be locally orthotropic in the reference 
configuration with respect to the mutually orthogonal planes which bisect the two f@eq 
families (with directions a0 and go) and the surface in which the fibers lie. Then, 9 is' 
a function of the first eight invariants listed in (6.218) and is symmetric with respect to 
interchanges of Q and go. 

It can finally be shown that for a locally orthotropic material 'J' can be expressed as 
a function of the seven invariants 

(see SPEXCER [1984]), with 11, Iz, l3 and I8 given by eqs. (5.89)-(5.91) and (6.218)8, 
and the definitions 

for the remaining three pseudo-invariants. 

Consider a locally orthotropic material with the free energy 9 expressed as a 
function of the invariants presented by (6.227) using (6.228). Assume an incom- 
pressible isotropic matrix material and two families of inextensible fibers. 

Show that the constitutive equation for the Cauchy stress tensor u is given by 

where the first three terms characterize reaction stresses. 

We characterize a compressible composite with two families of fibers by the 
decoupled representation of the free energy 

Q = * ( C ;  Ao: Go) = S,,(J) + 'J'i,,(ll: 1,: J . : .  . . ;fa) (6.229) 

(compare also with Exercise 2 on p. 27 I), with the volumetric and isochoric parts 
Q,,1 and Qi,,, and the modified invariants 1,; given by eqs. (6.109) and (6.110) 
(13 = detC = 1). The remaining modified pseudo-invariants are I, = J - 2 / 3 ~ 0 ,  
a = 4,6,8, and fa = J-4/31a, a = 5: 7. 

Use the free energy (6.229) to particularize the fictitious second Piola-Kirchhoff 
stress S which appears in the constitutive equation for S = J ~ C - ~  + J-'I3P : S. 
Show that 

a f 3  

with the explicit expressions 
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6.9 Constitutive Models with Internal Variables 

Many materials used in the fields of engineering and physics are inelastic. It turns out 
that the constitutive models introduced hitherto are not adequate to describe this class 
of materials, for which every admissible process is dissipative. Within the remaining 
sections of this chapter we study inelastic materials and, based on the concept of inter- 
nal variables, we derive constitutive models for viscoelastic materials and hyperelastic 
materials with isotropic damage. 

Concept of internal variables. The current thermodynamic state of thermoelastic 
materials can be determined solely by the current values of the deformation gradient 
F and the temperature Q. Variables such as F or Q are measurable and controllable 
quantities and are accessible to direct observation. In practice these type of variables 
are usually called external variables. 

The current thermodynamic state of materials that involve dissipation can be deter- 
mined by a finite number of so-called internal variables, or in the literature sometimes 
called hidden variables (hidden to the eyes of external observers). These additional 
thermodynamic state variables, which we denote collectively by <, are supposed to 
describe aspects of the internal structure of materials associated with irreversible (dis- 
sipative) effects. Note that strain (stress) and temperature (entropy) depend on these 
internal variables. The evolution of internal variables replicates indirectly the history 
of the deformation, and hence they are often also termed history variables. Materials 
that involve dissipative effects we refer to as dissipative materials or materials with 
dissipation. 

Hence, the concept of internal variables postulates that the current thermody- 
namic state at a point of a dissipative material is specified by the triple (P: O: E A (the current thermodynamic state may be imagined as aficritious state of thermo y- 
namic equilibrium). Then, the current thermodynamic state is represented in a finite- 
dimensional state space and described by the current values (and not by their past 
history) of the deformation gradient, the temperature and the finite number of internal 
variables. 

The nature of internal variables may be physical, describing the physical structure 
of materials. In the course of phenomenological experiments one may be able to iden- 
ti$y internal variables; however, they are certainly not controllable or observable. 

We dse the internal variables as phenomenological variables which are constructed 
mathematically. They are mechanical (or thermal, or even chemical or electrical . . .) 
state variables describing structural properties within a macroscopic framework, such 
as the 'dashpot displacements' in viscoelastic models, damage, inelastic strains, dis- 
location densities, point-defects and so on. Hence, here we introduce both external 
and internal variables as macroscopic quantities without referring to the internal mi- 
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crostructure of the material. 
The concept of internal variables serves as a profound basis for the development of 

constitutive equations for dissipative materials studied in the following section. 

Constitutive equations and internal dissipation. The existence of non-equilibrium 
states that do evolve with time is an essential feature of inelastic materials. 

Two typical examples of irreversible processes known from classical mechanics 
which govern non-equilibrium states are relaxation and creep. Relaxation (and creep) 
is the time-dependent return to the (new) equilibrium state after a disturbance. In gen- 
eral, stress will decrease with time at afued (constant) strain, which is referred to as 
relaxation, while during a creeping process strain will increase with time at a jixed 
(constant) stress. For an illustration of these two simple processes, see Figure 6.5. The 
(strain or stress) response of removing a strain or stress is called recovery. A viscoelas- 
tic behavior of a material is characterized by hysteresis. The term 'hysteresis' means 
that the loading and unloading curves do not coincide. It represents the non-recoverable 
energy when a material is loaded to a point and then unloaded. 

I 

T Time T Time 

Relaxation time Retardation time 

Maxwell model Kelvin-Voigt model 

Figure 6.5 Maxwell and Kelvin-Voigt models associated with relaxation and creep behavior. 

The Maxwell model (a dashpot is arranged in senes with a spring) and the Kelvin- 
Voigt model (a dashpot IS arranged in parallel with a spring), two mechanical models 
known from linear viscoelasticity, are frequently used to discuss relaxation and creep 
behavior. These models combine 'viscous' (or fluid-like) with 'elastic' (or solid-like) 
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behavior. Under the action of a constant deformation (strain), the Maxwell model is 
supposed to produce instantaneously a stress response by the spring which is followed 
by an exponential stress relaxation due to the dashpot. On the other hand, the Kelvin- 
Voigt model is supposed to produce no immediate deformation for a constant load 
(stress). However, in a Kelvin-Voigt model a deformation (strain) will be created with 
time according to an exponential function. Within the realm of non-equilibrium ther- 
modynamics the viscoelastic deformation mechanisms of these material models are not 
reversible. 

The rate of decay of the stress and strain in a viscoelastic process is characterized by 
the so-called relaxation time r E (0: m), with dimension of time, known from linear 
viscoelasticity. The parameter .T associated with a creeping process is often referred to 
as the retardation time. 

The constitutive equations introduced hitherto are no longer sufficient to describe 
dissipative materials. The vast majority of constitutive models that are used to approx- 
imate the physical behavior of real nonlinear inelastic materials are developed on the 
basis of internal variables. , , 

In this chapter we remain within an isothermal frameu~ork, in which the temperature 
is assumed to be constant (O = O o )  Hence, we postulate a Helmholtz free-energy 
function Q which defines the thermodynamic state by the observable variable F and 
a set of additional internal history variables E,, cu = 1; . . . : m, to be specified for the 
particular problem. We write 

where the second-order tensors eff, a = 1:. . . ; m, represent the dissipation mech- 
anism of the material. They are linked to the irreversible relative movement of the 
material inside the system and describe the deviations from equilibrium (see, for 0 
ample, VALANIS [1972]). An assumption of the form (6.230) can easily be adjusted to 
describe a rich variety of porous, viscous or plastic materials. The actual number of the 
phenomenological internal variables needs to be chosen for each different material and 
may vary from one theory and (boundary) condition to another; for example,.the size 
of the specimen under observation. However, the definition of internal variables should 
be chosen so that they somehow replicate the underlying internal microstructure of the 
material (even though they are introduced as macroscopic quantities). 

In general, the internal variables may take on scalal; vector or tensor values. Here 
the internal variables are all denoted by second-order tensors. 

In order to particularize the Clausius-Planck inequality of the form (4.154) to the 
free energy Q at hand, we must differentiate (6.230) with respect to time. By means of 
the chain rule we obtain ~ ( F ,  . . . : 5,) = aQ/dF : I? t C z = l  LW/d[, : i,, and 
finally, with the expression for the stress power wid = P : I? per unit reference volume, 
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i we find from (4.154) that 

In order to satisfy Dint 2 0 we apply the Coleman-Noll procedure. For arbitrary 
choices of the tensor variable F, we deduce a physical expression for the first Piola- 
Kirchhoff stress P and a remainder inequality governing the non-negativeness of the 
internal dissipation Dint (required by the second law of thermodynamics). We have 

which must hold at every point of the continuum body and for all times during a ther- 
modynamic process. In (6.232)2 we have defined the internal (second-order) tensor 
variables E,, a = 1, . . . , m, which are related (conjugate) to [, through the internal 
constitutive equations 

The additional constitutive equations (6.233) restrict the free energy 9 and relate 
the gradient of the free energy Q with respect to the internal variables 6, to the associ- 
ated internal variables S,, a = 1, . . . , m. Note that the presence of additional variables 
in the free energy (6.230) justifies additional constitutive equations. A physical motiva- 
tion of restriction (6.233) may be given by several examples, one of which, stemming 
from linear viscoelasticity, is presented on p. 286; in particular, see eq. (6.251). 

In constitutive equations (6.232)1 and (6.233) the tensor variables F and 6, are 
associated with the thermodynamic forces P and E,, respectively. A constitutive model 
which is characterized by the set of equations (6.231)-(6.233) is called an internal 
variable model. 

For the case in which the internal variables 6, are not needed to characterize the 
thermodynamic state of a system, then, the internal dissipation Dint in (6.232J2 is zero 
(the material is considered to be perfectly elastic) and all relations from previous sec- 
tions of this chapter may be applied. In order to describe materials without dissipative 
character, the set of equations (6.231)-(6.233) simply reduces to (6.3) and (6.l)l. 

Evolution equations and thermodynamic equilibrium. The derived set of equa- 
tions (6.232) and (6.233) must be complemented by a kinetic relation, which describes 
the evolution of the involved internal variable 6, and the associated dissipation mech- 
anism. Consequently, suitable equations of evolution (rate equations) are required in 
order to describe the way an irreversible process evolves. 

The only restriction on these equations is thermodynamic admissibility, i.e. the 
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satisfaction of the fundamental inequality (6.232)2 characterizing local entropy pro- 
duction. The missing equations for the evolution of the internal variables [, may be 
written, for example, as 

, ( ) ( m )  a = l , . - . , m .  (6.234) 

The evolution of the system is described by A, cu = 1, . . . , m, which are tensor-valued 
functions of 1 + m tensor variables. 

Every system will tend towards a state of thermodynamic equilibrium, which 
implies that the observable and internal variables reach equilibrium under a prescribed 
stress or strain; they remain constant at any particle of the system with time. Hence, 
the behavior at the equilibrium state may be considered as a limiting case and does not 
depend upon time. 

In view of eq. (6.234), the definition of an equilibrium state now requires the addi- 
tional conditions 

Hence, i, may be seen as the rate of change with which &(t)  tends toward its equilib- 
rium. 

In an elastic continuum, every state is an equilibrium state. The internal dissipa- 
tion Dint at equilibrium is zero, which characterizes, for instance, a perfectly elastic 
material. as pointed out in Section 6.1. 

6.10 Viscoelastic Materials at Large Strains 

Many materials of practical interest appear to behave in a markedly viscoelastic man- 
ner over a certain range of stresses and times. The mechanical behavior of, for ex- ?' 
ample, thermoplastic elastomers (actually rubber-like materials) or some other types 
of natural and synthetic polymers are associated with relaxation andfor creep phenom- 
ena, which are important design factors (see, for example, M c C ~ u n l  et al. [1997], 
SPERLING [I9921 and WARD and HADLEY [1993]). Problems that involve relaxation 
andlor creep effects determine irreversible processes and belong to the realm of non- 
equllzbri~~m thermodynamics. For a detailed introduction of the linear and nonlinear 
theory of viscoelasticity the reader is referred to the book by CHRISTENSEN [1982]. 
Experimental investigations are documented by, for example, SULLIVAN [1986], LION 
119961 and MIEHE and KECK [2000]. 

In the following we characterize the thermodynamic state of such problems explic- 
itly by means of an internal variable model as introduced in the previous section. A 
description solely via external variables is also possible, but it emerges that such types 
of formulation are not preferred for numerical realizations using the finite element 
method. 
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Numerous viscoelastic matenals can often not be modeled adequately within limits 
by means of a h e a r  theory. Here we postulate a three-dimensional viscoelastic model 
suitable for finite strmns and small perturbations away from the equilibrium state. In 
contrast to several theories of viscoelasticity (see, for example, the pioneering paper 
by GREEN and TOBOLSKY 119461) the present phenomenological approach is not re- 
stricted to isotropy. For theories that account for finite perturbations away from the 
equilibrium state, the reader is referred to, for example, KoH and ERINGEN [1963], 
HAUPT [1993a, b] and REESE and GOVINDJEE [1998a]. 

Additionally we follow a phenomenological approach that does not consider the 
underlying molecular structure of the physical object. 

Structure of the free energy with internal variables. In particular, we choose an 
approach which applies the concept of internal variables motivated by SIMO [I9871 
and followed by, for example, GOVINDJEE and SIMO [1992b, 19931, HOLZAPFEL 
[1996a], KALISKE and ROTHERT [1997], SIMO and HUGHES [1998, Chapter 101 and 
HOLZAPFEL and GASSER [2001]. 

Our study is based on the theory of compressible hyperelasticity within the isother- 
mal regime, as discussed in Section 6.4. We postulate a decoupled representation of 
the Helmholtz free-energy function Q. The free energy uses the multiplicative decom- 
position of the deformation gradient into dilational and volume-preserving parts. Our 
present approach is in contrast to that which uses the multiplicative decomposition of 
the deformation gradient into elastic (rate-independent) and permanent (viscous) parts 
(see SIDOROFF [I9741 and LUBLINER [I9851 among others). 

The change of CP within an isothermal viscoelastic process from the reference to 
the current configuration is given as 

m 

*(c:rl>. . . rm) = *;,(J) + *g(C) + E T ~ ( E & )  (6.236) 
,=l 

valid for some closed time interval t E [O;  TI of interest. We assume that each contri- 
bution to the free energy Q must satisfy the normalization condition (6.4), i.e. 

m 

( 1 )  = 0 ( I )  = 0 ( I  I) = 0 . (6.237) 
a=l 

A material which is characterized by the free energy (6.236) for any point and time we 
call a viscoelastic material. 

The first two terms in (6.236), i.e. Q E , ( J )  and ag(F), are strain-energy functions 
per unit reference volume and characterize the equilibrium state of the solid. They 
can be identified as the terms presented by eq. (6.85) describing the volumetric elas- 
tic response and the isochoric elastic response as t  -+ oo, respectively. In fact, the 
superscript characterizes functions which represent the hyperelastic behavior of 
sufficiently slow processes. 
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The additional third term in (6.236), i.e. the 'dissipative' potential x z = l  T,, is 
responsible for the viscoelastic contribution and extends the decoupled strain-energy 
function (6.85) to the viscoelastic regime. The scalar-valued functions T,, a = 1:. . . : 
m, represent the so-called configurational free energy of the viscoelastic solid and 
characterize the non-equilibrium state, i.e. the behavior of relaxation and creep. 

Motivated by experimental data we assume a time-dependent change of the system 
caused purely by isochoric deformations. Hence, the volumetric response remains 
fully elastic and the configurational free energy is a function of the modified right 
Cauchy-Green tensor C and a set of strain-like intemal variables (history variables) 
not accessible to direct observation, here denoted by I?,, a = 1;. . . : m. Each hidden 
tensor variable I?, characterizes the relaxation andlor creep behavior of the material. 
They are considered to be (inelastic) strains akin to the strain measurk c, with I?, = I, 
a = 1: . . . ; m, at the (stress-free) reference configuration. The viscoelastic behavior 
is, in particular, modeled by a = I:. . . : m viscoelastic processes with corresponding 
relaxation times (or retardation times) 7, E (0: m), a! = 1:. . . : m. 

Note that the set of l+m tensor variables (C: I'l: . . . ; I?,) completely characterizes \ 
the isothermal viscoelastic state. 

Decoupled volumetric-isochoric stress response. In order to obtain the associ- 
ated constitutive equations describing viscoelastic behavior at finite strains we specify 
postulate (6.236). 

Following arguments analogous to those which led from (6.230) to eqs. (6.232) and 
(6.233), we obtain physical expressions for the (symmetric) second Piola-Kirchhoff 
stress S and the non-negative internal dissipation (local entropy production) Dint in the 
forms 

Stadng from the decoupled free energy (6.2361, a straightforward computation 
leads to an additive split of S, as already derived for purely elastic compressible hyper- 
elastic materials (see Section 6.4). We have 

with the definition 

of the isochoric contributions. In eqs. (6.239)2 and (6.240) the quantities 

6.10 Viscoelastic Materials at Large Strains 285 

determine volumetric and isochoric contributions, which we take to be fully elastic. In 
relation (6.241)2 the (fourth-order) projection tensor P = I[ - $C-l 8 C furnishes the 
deviatoric operator in the Lagrangian description. Note that for these elastic contribu- 
tions we may apply the framework of compressible hyperelasticity and adopt relations 
(6.88)-(6.91) by using q:, and Qz instead of q,, and Qiso. 

In (6.240) we have introduced additional intemal tensor variables Q,, a = 1: . . . , m, 

which may be interpreted as non-equilibrium stresses in the sense of non-equilibrium 
thermodynamics. Note that the symbol Q has already been used and must not be con- 
fused with the orthogonal tensor. As can be seen from (6.240) the isochoric second 
Piola-Kirchhoff stress is decomposed into an equilibrium part and a non-equilibrium 
part characterized by the elastic response of the system Sro  and the viscoelastic re- 
sponse C:=, Q,, respectively. 

By analogy with (6.90) we have defined the relationship 

for the second-order tensors Q,, with the definition 

of the so-called fictitious non-equilibrium stresses E. As can be seen from (6.2421, 
Q, is the deviatoric projection of 0, times J - ~ / ~ ,  with projection tensor P. 

Motivated by the (mechanical) equilibrium equations for the linear viscoelastic 
solid (see the following Example 6.10, in particular, eq. (6.251)), we conclude fur- 
ther that Q, are variables related (conjugate) to l?,, a = l , .  . . , m, with the internal 
constitutive equations 

These conditions restrict the configurational free energy Cr='=, T, in view of (6.242)l. 
Hence, the internal dissipation Dint in eq. (6.238)2 equivalently reads Dint = zE=l Q,  : 
r,/2 2 0. 

The condition for thermodynamic equilibrium (compare with eq. (6.235)) implies 
that for t + oo the stresses in eq. (6.240) reach equilibrium, which means that Q, = 

-2aT,/dI?,lt,, = 0, a = I , .  . . ,m, and hence, Q, characterize the current 'dis- 
tance from equilibrium'. Consequently, the dissipation at equilibrium is zero as seen 
from (6.238)2 and (6.244). In other words, at thermodynamic equilibrium the material 
responds as perfectly elastic; general finite elasticity is recovered. 
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EXAMPLE 6.10 By using a simple spring-and-dashpot model find a meaningful rhe- 
ological interpretation for the phenomenological viscoelastic constitutive model pre- 
sented. Start with a one-dimensional and Linear approach. Derive physically motivated 
evolution equations for the internal variables. 

Solution. To begin with linear geometry consider a rheological model, as illustrated 
in Figure 6.6. It is a one-dimensional generalized Maxwell model with a free spring 
on one end and an arbitrary number m of Maxwell elements arranged in parallel. 

Figure 6.6 Rheological model. 
c? 

The viscoelastic model in Figure 6.6, which we call temporarily a mechanical 
device, displays both relaxation and creep behavior. It is a suitable simple model to 
represent quantitatively the mechanical behavior of real viscoelastic materials. The 
mechanical device is assumed to have unit area and unit length so that stresses and 
strains are to be interpreted as forces and extensions (contrachons), respectively. 

We assume that the solid behavior is modeled by a set of springs responding linear 
elastieally according to Hooke's law. The stiffnesses of the free spring on one end and 
the spring for the so-called a-Maxwell element are determined by Young's moduli 
Em > 0 and E, > 0, Q = 1,. . . , m, respectively. The flow behavior is modeled 
by a Newtonian viscous fluid responding like a dashpot. The viscous fluid of the 
a-Maxwell element is specified adequately by the material constant 77, > 0, called the 
viscosity. Based on physics all these parameters are positive. 
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Let a be the total stress applied to the generalized Maxwell model and E be an ex- 
ternal variable which measures the total linear strain due to the stress. By equilibrium, 
the total stress applied to the device is found to be 

(see Figure 6.6), where the definition of the stress at equilibrium, i.e. a, = E,E, is to 
be used. The internal variables q,, cu = 1, . . . , m, are the non-equilibrium stresses in 
the dashpot of the a-Maxwell element characterizing the dissipation mechanism of the 
viscoelastic model. 

The stresses q,, cu = 1, .  . . , m, acting on each dashpot are related to the associated 

internal variables y,, which we interpret as (inelastic) strains on each dashpot. In 
particular, for a Newtonian viscous fluid, q, are set to be proportional to the current 
'distance from equilibrium', i.e. the strain rates j,. We adopt the linear constitutive 
equation by Newton, i.e. q, = q,ja, Q = 1,. . . , m. On the other hand, the stress in the 
spring of the a-Maxwell element is determined by q, = Em(& - y,) (see Figure 6.6). 
Consequently, the stresses (not necessarily at equilibrium) acting on each dashpot is 

Hence, time differentiation of (6.246)2, i.e. q, = E,(i - j,), implies by means of 
(6.246)1 the important evolution equations 

for the internal variables within the one-dimensional and linear regime, where the def- 
inition of the relaxation time (or retardation time) T~ = qa/E,  > 0, a = 1, . . . , m., is 
to be used. 

Since q, and j, are the stresses and the strain rates acting on each dashpot, we are 
in the position to define the rate of work dissipated within the considered device. By 
means of (6.246)1, the internal dissipation takes on the form 

which is always non-negative, since q, > 0. It disappears at equilibrium. 
We now define the strain energy $ ( E ;  yl . .  . . . %) = ?Loo(&) + Cz=l v,(E, x),  

with the quadratic forms $, ( E )  = $ and u,(E, 7,) = $E, ( E  - and the 
normalization conditions $, (0) = 0 and v, (0,O) = 0, o = 1, . . . , m. The physically 
motivated strain energy .J: determines the energy stored elastically in the springs of the 
device, as illustrated in Figure 6.6. The strain energy v, = v,(E, 7,) is responsible 
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for the viscoelastic contribution and is related to the a-relaxation (retardation) process 
with relaxation (retardation) time .r, E (0, m) . 

Differentiation of with respect to the total strain E gives the total stress a applied 
to the device. On comparison with (6.245) we conclude that 

where the physical expressions 

for the stress at equilibrium a,(&) and the non-equilibrium stresses q,(~,  y,), a = 

1 , .  . . , m, are to be used. 
Finally, the derivative of + with respect to the internal variables y, gives with 

(6.250)2 (or (6.246)) the associated non-equilibrium stresses q, in the dashpots. The 
resulting internal constitutive equations read \ 

which, when substituted into (6.248)1, gives the internal dissipation Di, expressed 
through the strain energy, i.e. Dint = - ~ ~ = l ( a v a / a r , ) ~ .  

Note that the general stress relation (6.239) with definition (6.240) may be iden- 
tified as the three-dimensional and nonlinear version of the linear rheological model 
(6.249), which, in view of Figure 6.6, decomposes the stresses in equilibrium and non- 
equilibrium parts. In addition. the internal constitutive equations (6.244) and defini- 
tion (6.242)] may be considered as the three-dimensional generalization of (6.25 1) and 
(6.250)2 and also its extension to the finite strain regime. W rl 

Evolution equations and their solutions. In order to describe the way a viscoelastic 
process evolves it is necessary to specify complementary equations of evolution so that 
the local entropy production, i.e. the inequality (6.238)2, is satisfied. In particular, 
we look for a law which governs the internal variables Q,, a! = 1,. . . , m, introduced 
as isochoric non-equilibrium stresses. We require that the evolution equations have a 
physical basis and provide a good approximation to the observed physical behavior of 
real materials ~n the large strain regime. In addition, we require that they are suitable for 
efficient time integration algorithms that are accessible for use within a finite element 
procedure. 

We motivate the evolution equations for the three-dimensional and nonlinear defor- 
mation regime by reference to the relationship (6.247). Having this in mind, an obvious 
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choice of appropriate (linear) evolution equations for each of the internal variables has 
the form 

where (6.252) is valid for some semi-open time interval t E (0: TI, in which the value 
0 is not included in the interval. Here we employ a superposed dot to designate the 
material time derivative as usual. The values Q,lt=o = 0, a = 1:. . . : m, for the 
internal variables at initial time t = 0 are assumed to be zero, since we agreed to start 
from a stress-free reference configuration. 

In the linear differential equations (6.252), the tensors Siso, characterize isochoric 
second Piola-Kirchhoff stresses corresponding to the strain energies 9iso,(C) of the 
system (with Q,,, , (I) = 0 in the reference configuration) responsible for the ol-relaxa- 
tion (retardation) process with relaxation (retardation) time r, E (0; m), a = 1: . . . : m. 

The definition of the material variables Siso, is based on structure (6.90) and has the 
form 

where (6.253)2 define the constitutive equations for the fictitious second Piola-Kirch- 
hoff stresses S,. A particular stress S,,,, depends only on the external variable c, i.e. 
the modified right Cauchy-Green tensor introduced in (6.79)2. 

The linear equations (6.252) are straightforward generalizations of eqs. (6.247), 
which are physically based. Both tensor quantities Q,  and Siso, contribute to the iso- 
choric response of the system. It emerges that the structure (6.252) introduced here is 
suitable for efficient time integration algorithms as we discuss later in this section. 

For the case of non-constant relaxahon times r,, the convenient concept of 'mod- 
ified' time is used in order to obtain linear evolution equations of the type (6.252). 
Within this concept, 7, is kept fixed during the process; for more details see, for exam- 
ple, KNAUSS and EMRI [I9811 and GOVINDJEE and SIMO [1993]. 

Fairly simple closed form solutions of the linear evolution equations (6.252), 
which are val~d for some semi-open time interval t E (0, TI, are given by the con- 
volution integrals 

Qo = ex~(-T/~a)Q,o+ 

+ I  exp[-(T - t)/r,]~i,,,(t)dt : o? = 1: . . . : m (6.254) 

t=o+ 

(the proof is omitted). The instantaneous response Qa,+ (set of initial conditions) is 
given by 
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(compare with eqs. (6.242)4, (6.243)), with Jo+, eo+ ,  J?, ,+, Po+ = 1 - $2 8 Co+ 
defining, respectively, the volume ratio, the modified ri 
internal variables and the projection 

The evolution of the internal 
tions Qisoa via relation (6.253). However, if a 
plastic elastomer is composed of identical 
tion that Qisoa is replaceable by the strain-energy function Q z ,  which is responsible 
for the isochoric elastic response as t t x. We adopt the expression 

(which is due to GOVINDJEE and SIMO [1992b]), where /3,M 6 [O; m) are given non- 
dimensional strain-energy factors associated with 7, E (0: a), cu = 1: . . . : m. Con- 
sequently, the stresses Si ,,., cu = 1;. . . ; m, as introduced in (6.253), may be replaced 
by means of (6.256) and (6.241)2. We write 

Hence, the material time derivativeof the stress tensors, s;,,,, which govern evolution 
equations (6.252), are replaced by P ~ S ; ~ .  

In summary: the phenomenological viscoelastic model valid over any range of 
strains is described by constitutive equations (6.239)-(6.243), evolution equations 
(6.252) with solutions (6.254) and replacements (6.257). Note that with reference to 
assumption (6.256) the model problem is completely determined by the specification 
of only two scalar-valued functions, namely q Z I ( J )  and q g ( C ) ,  a crucial advantage 
of the introduced finite strain viscoelastic model. c? 

It is important to emphasize that the described constitutive model fits within the 
framework of so-called simple materials with memory, which are expressed in the 
general form by S(t) = Sg,+[C(t - s): C(t)] (see, for example, MALVERN [1969, 
p. 400, eq. (6.7.62)]), with T = t - s, where 8 is a (response) functional depending 
on the history of C from T = -00 to T = t .  For further discussion of this issue the 
interested reader is referred to MALVERN [1969, Section 6.7, and references therein]. 

Time integration algorithm. The total second Piola-Kirchhoff stress tensor S is 
computed according to relations (6.239)-(6.241) with the volumetric and isochoric 
(elastic) response S:, and S g  and the contribution due to the non-equilibrium stresses 
Cr=;n=l Qa as given by the convolution integrals in the form of (6.254). 

For the solutions of the crucial Cauchy 's equations of motion (see the local forms 
(4.53) and (4.68)) the stress tensor is required. The main goal of the following is to out- 
line an appropriate update algorithm for the total stresses suitable for implementation 

in a finite element program. The update procedure is realized in the reference config- 
uration, and hence the objectivity requirement based on a Euclidean transformation is 
trivially satisfied (see Chapter 5). The key of the update algorithm is the numerical 
integration of the convolution integrals (6.254). 

In order to obtain the algorithmic update of the second Piola-Kirchhoff stress S 
we consider a partition (time discretization) uz0[t , :  tnil] of the closed time interval 
t E [Oi.T] of interest, where O+ = to < . . . < tM+, = T. We now concentrate 
attention on a typical closed time sub-interval [t,: t,,,], with 

At = t,+, - t, (6.258) 

characterizing the associated time increment. 
Assume now that up to a certain time t, the stress S, satisfies the equilibrium 

equation and that the displacement field u,, the tensor variables 

(see (2.45),, (2.521, (2.66)1, (6.79)2), and the stress S, (determined via the associated 
constitutive equation) are specified uniquely by the given motion X, at time t,. 

Within a strain-driven type of numerical procedure, the aim is now to advance the 
solution to time t,+l = At + t ,  and update all relevant quantities. At first we make 
an initial guess for x,,,, known as a trial solution, and update the prescribed loads. 
Within a classical solution technique, such as Newton's method, the new motion x,,, 
at time t,+, is corrected iteratively until the balance principles are satisfied within a 
given tolerance of accuracy. To check equilibrium at time t,+, the tensor variables 

have to be computed. This process is straightforward since the new motion xnil with 
' the updated displacement field unil is considered to be given. The remaining second 

Piola-Kirchhoff stress at time t,+l is again determined uniquely via the associated 
constitutive equation. In particular, the so-called algorithmic stress at time tnil reads 
as 

rn 

Sn+l = (S$I+ S g  $. Q ~ )  ~ n + l  . (6.261) 
a=l 

Since all required strain measures at tn.+l are known, the first two stress contributions, 
i.e. Sv~ln+, and SZ,,,, are determined via (6.241), which, in the present notation, 
reads as 
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The third term in (6.261), which is the viscoelastic stress contribution Cz=l Q, ,+, 
based on (6.254), remains to be evaluated. 

The following derivation is related to the approach by SIMO 119871, which bypasses 
the need for incremental objectivity as proposed by HUGHES and WINGET [1980]. 
Incremental objectivity requires that the algorithmic constitutive equations must be ob- 
jective (frame-indifferent) during a superimposed (time-dependent) rigid-body motion. 
Incremental objectivity represents the numerical version of the principle of material 
frame-indifference, as introduced in Section 5.4. 

We now split the convolution integral (6.254) into the form of 

Hence, the internal variables Q,, a = 1: . . . : m, at tn+l are given by 

In order to simplify (6.264) we apply relation (6.258) to all three terns. For the first 
two terms we use the standard property 

expi- (At + P)/T,] = ex~(-Lt/~,)ex~(-P/.ro?) (6.265) 

for the exponential function, for any constants At, 7, and parameter /? which takes on 
values t ,  and t, - t. In addition to (6.265) we use the second-order accurate mid-point 
rule on the third term S:'' (.)dt of eq. (6.264), which means that the time variable t 
is approximated by ( t ,+l  $ tn)/2. We deduce from (6.264) that 

Note that the terms within the brackets are Q, at time tn (compare with eq. (6.254)). 
By solving the last term in (6.266) and by means of assumption (6.257), we may write 
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f o r a  = 1,. ..,m. 
After rearranging eqs. (6.267)1 we arrive finally at a second-order accurate recur- 

rence update formula for the internal stresses in a simple format, namely 

and with definition (6.267)2 of the dimensionless parameters E,. In recurrence relation 
(6.268) we have introduced the (algorithmic) history term %,,, a = 1, .  . . , m. This 
term is determined by the internal history variables Q,, and S g n ,  which are known 
from the previous step serving as an 'initial' data base. 

The recurrence update formula of the type (6.268) was proposed by TAYLOR et al. 
[1970, and references therein]. Instead of the time integration algorithm outlined above 
we may use other algorithmic updates for the total stresses. For a slightly different 
structure see, for example, SIMO [I9871 and co-workers, and HOLZAPFEL [1996a]. 
For an application of the described viscoelastic model to fiber-reinforced composites 
at finite strains see the recent paper by HOLZAPFEL and GASSER [2001]. 

Elasticity tensor in material description. The importance of consistent linearized 
tangent moduli in the solution of nonlinear problems by incrementaviterative tech- 
niques of Newton's type was emphasized in Section 6.6. 

We now deterrmne the consistent linearization of the constitutive model presented 
above, noting the algorithmic stress (6.261) with relations (6.262), (6.268), (6.269). 
In view of definition (6.154) and the decoupled stress relation (6.261), the associated 
algorithmic elasticity tensor in the material description at time tn+l may be written in 
the form 

m 

en+, = (e:, + @= + x @:ls)In+~ 7 (6 270) 
,=l 

where the first two contributions to are given by (6.163), which, in the present 
notation, reads as 

Explicit expressions for (6.271) are found in (6.166) and (6 168). 
The third (viscoelastic) contribution to i.e. C:=, C!:,, at t,+l, is derived 

using the expression for the internal stresses (6.268). Note that the derivative of the 
(algorithmic) history term %,,, a = 1,. . . , m, (which defines quantities at t,) with 
respect to CnT1 is zero. Hence, the third contribution to the elasticity tensor is 
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Remarkably, the viscoelastic contribution to the algorithmic elasticity tensor may be 
expressed as the viscoelastic factors 6,: a = 1 , .  . . , m, governing the time-dependent 
part, and by Gg ,+,, which is associated with the isochoric elastic response as t 4 oo. 

Hence, relation (6.270) may be rewritten by means of (6.272) as 

If 6 = C:=, Prexp(&) tends to zero, the algorithmic elasticity tensor reduces to 
(6.271) and compressible finite hyperelasticity is recovered. 

The implementation of the viscoelastic model described above into a finite element 
program is based on the derived algorithmic stress (6.261) and the associated algorith- 
mic elasticity tensor (6.273). The algorithmic update is canied out at each Gauss point 
of a finite element. The presented formulation only needs a particularization of the 
two strain-energy functions V?zI(J) and V?z(C). If we use a strain energy which is 
expressed in principal stretches, then the algorithmic update is actually performed on 
the principal values. 

For an efficient computational application of the iterative process, see the works by 
SIMO [1987], GOVINDJEE and SIMO [1992b], HOLZAPFEL [1996a] and HOLZAPFEL 
and GASSER [2001]. 

EXERCISES 

1. Using the relations 

and integration over time interval t E (0, T] obtain the convolution integrals 
(6.254), which are the closed form solutions of the linear differential equations 
(6.252). 

2. Relaxation test. Assume a thin sheet of incompressible material in the unde- 
formed configuration which may undergo viscoelastic deformations in the large 
strain domain. The sheet is stretched to X1 = X (Az = X3 = x- ' /~)  in one 
direction (slmple tension) and is f i ed  subsequently at this elongation. The de- 
formation is assumed to be homogeneous. 

The viscoelastic behavior of the material is based on a phenomenological Max- 
well-type model with a free spring at one end and one Maxwell element arranged 
in parallel (m = 1). The underlying strain energy is due to Ogden, as introduced 
in Section 6.5. We assume the six-parameter model and use the typical values 
according to (6.12 1). 

(a) For a certain closed time interval t E [0, TI compute an explicit expres- 
sion for the evolution of the remaining non-vanishing internal stress Q = 

&(A, t )  and the Cauchy stress u = a(X,t) (the stresses in the transverse 
directions are zero). Discuss the internal dissipation Dint along the time 
interval and determine thermodynamic equilibrium. 

(b) For t f [O; T] plot the stress decay (Q, a) at a stretch ratio X = 5 ,  with 
the strain-energy factor ,By = 1 and the relaxation time T = 10s. Give a 
physical interpretation of the relaxation time 7. 

3 .  Creep test. Consider the specimen and the viscoelastic constitutive model as 
described in the previous exercise, but now let a Cauchy stress a be applied in 
one direction up to a certain value uo and then be held constant. The stress 
causes a homogeneous deformation characterized by the stretch ratios XI = A, 
Xz = X3 = (simple tension). The underlying strain energy is of neo- 
Hookean type. 

(a) Derive the stress relation in the form of a nonlinear differential equation of 
first-order. 

(b) Solve the differential equation by means of Newton's method and use the 
derived recurrence update formula, or alternatively solve it with the Runge- 
Kutta method. For this purpose write a computer program or simply use 
some commercially available mathematical software-package. For a certain 
time domain t E [0, TI plot the stress evolution (Q; a) ,  and the stretch 
evolution X (for a fixed uo), Py = 1 and T = 10s. 

' 1 6.11 Hyperelastic Materials with Isotropic Damage 

Continuum damage theories are either micromechanical or phenomenological in 
nature. Microscopic approaches are certainly the best, but necessitate a strong physical 
background, and models are mathematically complex and often difficult to identify. 

The aim of this sectlon is to formulate a three-dimensional and rate-independent 
isotropic damage model for the large strain domain describing the Mullins effect. 
We employ continuum damage mechanics (often abbreviated as CDM) and follow 
a purely phenomenological approach, which leads to damage models describing the 
macroscopic constitutive behavior of matenals containing distributed microcracks. The 
material model introduced is suitable for numerical procedures. 

For additional information on the subject of constitutive models within the context 
of continuum damage mechanics, see the monographs by, for example, KACHANOV 
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[1986], LEMAITRE [I9961 and KRAJCINOVIC [1996, Chapter 41 and the review article 
by DE SOUZA NETO et al. [1998], which also describes techniques for the numerical 
simulation of (isotropic) internal damage in finitely deformed solids. 

Mullins effect. Many rubber-like materials consist of a cross-linked elastomer 
substance with a distnbution of small carbon particles as fillers (see the account of 
filled elastomers in MARK and ERMAN [1988, Chapter 201). A piece of filler-loaded 
rubber subjected to a series of loadings typically displays pronounced (strain-induced) 
stress softening associated with damage, known as the Mullins effect (this effect was 
pointed out in the early pioneering work of MULLINS [1947]; for a detailed description 
see, for example, JOHNSON and BEATTY [1993a, b]). Nearly all practical engineering 
rubbers contain carbon particles as fillers and exhibit a certain degree of Mullins effect, 
which is regarded as essentially being caused by the fillers. 

In order to explain the man features of this stress softening phenomenon we con- 
sider a strain-controlled cyclic tension test of a piece of filled rubber with two different 
strain amplitudes and neglect viscoelastic effects (slow strain rates). The cyclic load- ,, 
ing and unloading process starts from its unstressed (initial) virgin state 0 and follows 
a path A, which we call the primary loading path (see Figure 6.7). After subsequent 
unloading initiated from any point 1 on the primary loading path the piece of rubber 
follows path B and completely returns to the unstressed state 0 (for real rubber this 
will hardly ever occur) Note that after the test piece has been subjected to a load up 
to the point 1 the initial properties of the virgin material containing fillers are changed 
permanently (see MULLINS [1947]). The first loading and unloading cycle involves 
dissipation which is represented by the area between the curves A and B (hysteresis 
behavior). The area is a measure for non-recoverable energy. 

When the material is re-loaded the stress-strain behavior follows the path B again 
and if a strain beyond the point 1 (at which unloading began) is applied, the path D iscr\ 
activated. It is a continuation of the primary loading path A. For additional unloading 
which begins at any point 2 of the primary loading path the rubber is retraced back to 
the unstressed state 0 along the path C. Note that the shape of the second stress-strain 
cycle differs significantly from the first one. Path C retraces the piece of rubber back 
to 2 on re-loading and the primary loading path is activated again. 

In summary: the stiffness of rubbers containing reinforcing fillers such as carbon 
black decreases as a result of extensional loading and unloading. The material proper- 
ties ass6ciated with the initial extension of rubber compounds may differ significantly 
from those associated urith successive deformation. With reference to Figure 6.7 we 
recognize that for a given strain level the stress required on the first unloading and re- 
loading path B (and also on the second unloading and re-loading path C) is less than 
that on the primary loading path A, and is the essential feature of the Mullins effect. 

There are a few theories in the literature aimed at explaining the microscopic dam- 
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Strain 

Figure 6.7 Cyclic tension test displaying Mullins effect. 

age mechanism. One class of theory is based on the idea that the internal damage is 
caused by debonding of rubber molecular chains attached between the filler particles 
(see BUECHE [1960, 19611). The higher the (macroscopic) deformation of the rubber 
the higher the strain-induced damage. Based on statistical arguments the stress soften- 
ing effect may be predicted for a fixed level of strain due to previous higher strains in 
the material. 

The other class of theory for explaining the microscopic damage mechanism goes 
back to MULLINS and TOBIN [I9571 and MULLINS [1969]. They proposed that ini- 
tially the filler-loaded rubber exists in a so-called hardphase which degrades into a so$ 

phase with increasing strain. The transition between the two phases is characterized by 
a damage parameter which is associated with a strain-amplification function. JOHN- 
SON and BEATTY [1993a, b] have adopted the two-phase approach, which shows good 
agreement with experimental data in simple tension. 

The Mullins effect was observed experimentally in uniaxial cyclic extension tests 
' 

performed by, for example, MULLINS [1947], MULLINS and TOBIN [I9571 (who pro- 
vided experimental data for loading), BUECHE [1961], MULLINS and TOBIN [I9651 
(experimental data obtained from the elastic and swelling behavior of filler-loaded mb- 
bers), HARLVOOD et al. [1965], HARWOOD and PAYNE [1966a, b], STERN [I9671 and 
MULLINS [1969]. 

It is important to emphasize that in practice several other (inelastic) effects anse 
under extensional loading and unloading and we address these in brief. From the exper- 
imental observation it is known that, besides the Mullins effect (which is an idealized 
phenomenon), the shape of the stress-strain curves is essentially rate and temperature 
dependent. In addition, the shape of a piece of carbon-black filled rubber after un- 
loading differs significantly from its virgin shape. This interesting effect caused by 
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reinforcement leads to residual strains, which are responsible for the change of shape 
(in the rubber industry also called permanent set). For suitable constitutive models in- 
corporating residual strains see HOLZAPFEL et al. [I9991 and OGDEN and ROXBURGH 
[1999b]. Additional inelastic effects such as relaxation andlor creep depend strongly 
on the content of solid fillers (see, for example, SO and CHEN [1991, and references 
therein]). 

An experimental investigation of the large strain time-dependent behavior of carbon- 
black filled Chloroprene rubber subjected to different loading conditions and a consti- 
tutive model based on micromechanical considerations is presented by BERGSTROM 
and BOYCE [1998]. A series of uniaxial strain-controlled cyclic experiments on cylin- 
drical specimens of carbon-black filled rubbers between 100% in tension and 30% in 
compression, including inelastic effects at room temperature, is presented by LION 
[1996] and MIEHE and KECK [2000]. Phenomenological material models for filled 
rubbery polymers are also proposed therein. A cyclic tension process with three differ- 
ent strain amplitudes and 12 loading cycles were performed on a virgin specimen. The 
process shows clearly that the magnitude of the resulting stress softening depends on 
the number of loading cycles and the strain amplitude. The experimental studies also 
consider relaxation periods in tension and compression at constant strain. The work 
of MIEHE and KECK [2000] also provides experimental stress-deformation curves of 
pre-damaged specimens under monotonous tension and compression and cyclic ten- 
sion/compression. For an experimental investigation of a filler-loaded tread compound 
at different temperature levels see LION [1997a]. 

Damage model in coupled material description. Now we are concerned with the 
continuum formulation of the (ideal) Mullins effect and neglect rate and temperature 
dependency as well as residual strains. Additionally, in the phenomenological model 
we do not consider the presence of carbon-black fillers. We choose a Lagrangian de- 
scription and express the relevant equations in terms of the right Cauchy-Green tensor. 

Consider an isothermal elastic process, and postulate a Helmholtz free-energy func- 
tion Q in the coupled form 

where is the effective strain-energy function of the hypothetical undamaged ma- 
terial, with the normalization condition \Tro(I) = 0 and the restriction Po(C) > 0. The 
factor (1 - <) is known as the reduction factor, first proposed by KACHANOV [I9581 
who modeled the creep rupture of metals as a uniaxial problem (Kachanov actually in- 
troduced (1 - <) as the 'integrity' parameter). Here the internal variable < E [O;  11 is a 
scalar, referred to as the damage variable. The damage variable describes an (ideally) 
isotropic damage process and is related to the ultimate failure of the material. Note that 
the strain energy qo is assumed to be objective as usual. 
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Of course this simple type of damage model has limited use in practice, but de- 
scribes both the dissipation mechanisms and the irreversible rearrangements of the 
structure. To refine the model more general (tensorial) forms are needed, especially to 
describe anisotropic damage. 

In order to obtain the stress relation we differentiate first (6.274) with respect to 
time. Using the chain rule we find that 

with the rate of change of the right Cauchy-Green tensor and the damage variable, i.e. 
C, (2.168), and 1, respectively. 

As a particularization of the Clausius-Planck inequality, as given in (4.154), we 
obtain, by means of (6.275), 

and therefore the second Piola-Kirchoff stress tensor S and the non-negative internal 
dissipation are 

~ Q o  (C) S = (1 - <)So with So = 2- ac ' 

Dint = .ft 2 0 with f = Qo(C) > 0 . (6.278) 

In constitutive equation (6.277) the quantity So denotes the effective second Piola- 
Kirchhoff stress tensor. The dissipation inequality (6.278) clearly shows that damage 
is a dissipative process, the quantity f therein denotes the thermodynamic force which 
governs the damage evolution. In continuum damage mechanics the thermodynainic 
quantity f has the meaning of the effective strain energy $0 released per unit reference 
volume. 

The thermodynamic force f is related (conjugate) to the internal variable C accord- 
ing to 

see relation (6.274). Therefore, instead of controlling the damage process by the inter- 
nal variable [ we can equivalently use its conjugate quantity, i.e. the effective strain 
energy Po. 

The evolution of f is given by 

recognizing that f characterizes the effective stress power per unit reference volume 



300 6 Hyperelastic Materials 

according to (4.11 3). 
As noted above we assume that the total damage accumulation is based on Mullins 

type (stress) softening of the material. For a strain-controlled cyclic loading process 
with a fixed strain amplitude this type of phenomenological damage occurs only within 
the first cycle. We adopt the smooth function C = ( ( a )  as the damage variable, with 
conditions ( ( 0 )  = 0 and ((cc) E [ O , l ] .  The phenomenological variable a describes 
the discontinuous damage. A constitutive particularization of the damage variable ( 
may, according to MIEHE [1995a], be given by 

where <, describes the dimensionless maximum (possible) damage and L is referred 
to as the damage saturation parameter. 

We now aim to determine the discontinuous damage variable a over the past history 
up to the current time, i.e. the history time interval [0, t]. To control a discontinuous 
damage process we use the evolution of the effective strain-energy function QO. Within 
the closed time interval [0, t] we take the phenomenological variable a to be related to 
the maximum value of Q0 and write 

a ( t )  = max Qo(s) , 
sE[O,tl 

where s E [0, t]  denotes the history variable. Thus, it emerges that a is the maxi- 
mum thermodynamic force with the same dimension as the effective strain energy 
per unit reference volume. Definition (6.282) was employed by, for example, DE 

S o u z ~  NETO et al. [I9941 and by MIEHE [1995a], while the rate-independent dam- 
age model of S I M ~  [I9871 invoked the principle of strain-equivalence (see the chapter 
on damage mechanics in the book by LEMAITRE and CHABOCHE (1990, Chapter 71). 
Other strain-based models for the finite strain domain are due to GOVINDJEE and SIMO 
[1991, 1992a, b], JOHNSON and BEATTY [1993a, b] among others. 

Relation (6.282) generalizes the one-dimensional damage model (for small strains) 
proposed by GURTIN and FRANCIS [1981b]. It uses the hypothesis that the current 
state of damage is characterized by the maximum axial strain attained in the history 
of deformation. Here we do not recall the many important works in the area of small 
strain damage mechanics. 

A straightforward refinement of the isotropic damage model may be obtained by 
including damage effects governed by continuous damage accumulation. In particular, 
the work of MIEHE [1995a], which is exclusively presented in an Eulerian setting, de- 
scribes continuous damage accumulation. It is based on the arc-length of the effective 
strain-energy function. 

A fairly simple and efficient energy-based damage model to describe the main fea- 
tures of the Mullins effect in filled rubber was proposed by OGDEN and ROXBURGH 
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[1999al. The material model is composed of a (classical) strain-energy function de- 
scribing the primary loading path from the unstressed virgin state and an additive dam- 
age function responsible for the unloading path which is initiated from any point on the 
primary loading path. The formulation is based on the concept of pseudo-elasticity 
in which the material is treated as one elastic material in loading and another elastic 
material in unloading. This idea was used by, for example, FUNG et al. [I9791 within 
the context of modelling arterial walls. It has the significant advantage of convenient 
and simple description of the stress-strain relationships in cyclic loading and their nu- 
merical (finite element) realization. 

Damage criterion and damage evolution. We now define a damage criterion in 
the strain space at any time of the loading process in the form 

with the damage function b. For q5 < 0 no evolution of damage occurs. The second 
possible situation is q5 = 0 which characterizes the so-called damage surface with 
normal 

For a fixed a ,  the damage surface delimits the strain space in which the behavior of 
the material is considered to be fully elastic (no damage accumulation occurs). A 
representation of the damage surface with the associated normal in the principal strain 
space is shown in Figure 6.8. 

Figure 6.8 Illustration of the damage criterion in the principal strain space. 

Hence, a double contraction of the two tensors N and c gives, using (6.284)2, the 
scalar N : C = d f (C) /dC : c = f (c). Borrowing the terminology from strain space 
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plasticily (see NAGHDI and TRAPP [I9751 and SIMO and HUGHES [1998, p. 84j), at 
4 = 0 we must distinguish between 

q5 = 0 and (6.285) 

f > 0  ; 

describing unloading, neutral loading and loading, respectively. 
Finally, the evolution of the maximum thermodynamic force a,  i.e. (6.282), is 

given, with (6.280)2, by 

' i f q 5 = 0  and f > 0 ,  & =  ( f 3  (6.286) 

0 otherwise . 

Advancement of damage only occurs for the case of loading, and the initial condition 
for cu is zero. The evolution equation (6.286), which clearly shows the discontinuous 
property of this damage model, corresponds to those given in GURTIN and FRANCIS 
[1981b], SIMO [I9871 and MIEHE [1995a]. 

Coupled representation of the elasticity tensor. According to relations (6.153) 
and (6.154) we derive the symmetric fourth-order elasticity tensor @ in the material 
description. Starting with the constitutive equation (6.277): we have 

as, I . . s = (1 - 02- : C - s,,c ; dC 2 

where the rate of damage t takes on the form 

Substituting (6.288) into (6.287), we obtain, using (6.286), the evolution of the stress 
tensor in the form 

c 
[(I - <)Co - i 1 ( ~ ) S O  @So] : if 4 = 0 and j > 0 , 

(6.289) 

otherwise , 

with the effective elasticity tensor Co in the material description. For an undamaged 
material, Co is defined to be 

By comparing (6.289)1 with (6: 153) we find that the terms within the bracket char- 
acterize the elasticity tensor C in the material description. The second term in the rate 
equation (6.289)1 governs the damage that causes stress softening of the material. 

Damage model in decoupled material description. To complete our consid- 
erations of finite strain elasticity with isotropic damage in the sense of decoupled 
volumetric-isochoGc response (introduced due to a multiplicative split of the deforma- 
tion gradient (6.79)), we postulate finally a decoupled representation of a = Q(C; <) 
in accordance with (6.85) in the form 

Here, Q,, is a strictly convex function (with the minimum at J = 1) which describes 
the volumetric elastic response. The second function Qols, denotes the isochoric ef- 
fective strain energy of the undamaged material, which describes the isochoric elastic 
response. Hence, the damage phenomenon is assumed to affect only the isochoric 
part of the deformahon, as proposed by, for example, SIMO [1987]. We require that 
Qvol(J) = 0 and T?o.,(e) = 0 hold ifand only i f  J = 1 and = I, respectively. 

Consider the stmcture (6.291), the purely volumetric contribution to the stress and 
the elasticity tensor are presented by eqs. (6.89) and (6.166), respectively. The iso- 
choric contribution to the stress is, by analogy with (6.277), given by 

Siso = (1 - ()Sois0 with Sois, = 2 ~ Q O  iisa(C) 
ac . 

The isochoric contribution to the elasticity tensor includes damage and is, by anal- 
ogy with (6.289), given by 

c 
- OCoiso - C1(~)Soiso @ Sois,] : - if 9 = 0 and f > 0 

Siso = ,-. 2 (i.293) 
L 

otherwise , 

with the isochoric part Co is, of the efSective elasticiry tensor in the material description. 
For an undamaged material, CoiS, is defined to be 

Explicit forms of (6.292)2 and (6.294) are given by (6.90) and (6.168), respectively. 
By analogy with eq. (6.27Q2 the thermodynamic force f has here the meaning of 

the isochoric effective strain energy Qoi , , (~ )  of the undamaged material. Within the 
decoupled framework of volumetric-isochoric response, eqs. (6.278)2 and (6.280)2 take 
on the forms 

c 
f = 'J'~iso(c) 2 0 and f = So : - . 2 

(6.295) 
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The applicability of the constitutive damage model thus described is limited to suf- 
ficiently slow processes (viscous effects are not considered). However, the damage 
model may easily be combined with the viscoelastic model as proposed in the last 
section. A suitable decoupled free energy for characterizing finite-strain viscoelas- 
tic damage mechanisms might be given, with reference to (6.236) and (6.291), as 

I ( C ,  C: rl: . . . : r,) = ~~, (J )+(~-c ) [Qz , , (C)+C~=~ T,o(C: pa)]. Here, I E , , ( ~ )  
and C:=Jao(C: Pa) denote, respectively, the strain energy and the configurational 
free energy (per unit reference volume) for the hyperelastic undamaged material. Both 
functions are associated with the isochoric response. 

EXERCISES 

1. Pure shear with isotropic damage. Consider a thin sheet of (incompressible) hy- 
perelastic material which is subjected to a homogeneous pure shear deformation 
with the kinematic relation XI = X: A2 = 1; X3 = 1 / X  (compare with Exer- 
cise l(b) on p. 226). The stress state of this mode of deformation is characterized 
by al,  02 and 0 3  = 0 (recall eqs. (6.76), (6.77)). The material is supposed to 
undergo stress softening of Mullins type. 

(a) Based on the isotropic damage model introduced, compute the loading 
path up to X = 2 followed by the unloading path back to X = 1. Apply 
the constitutive particularization of the phenomenological damage variable 
C = <(a), as given in eq. (6.281), and use the strain-energy function of the 
Mooney-Rivlin f ~ r m ,  i.e. I = cl(I l  - 3) + c2(Iz - 3), with the ratio of the 
material constants c1/c2 = 7. 

(b) Plot the loading and unloading path in the form of the two functions a1 = 

ul(X) and 0 2  = m(X) with the Mooney-Rivlin parameters cl = 0.4375p, 
cz = 0 .0625~ and the shear modulus in the reference configuartion, i.e. 
P = 4.225. 1 0 5 ~ / m 2 .  In addition, take C, = 0.8 for the maximum damage 
and L = 0.3 . 1 0 6 ~ / m 2  for the damage saturation parameter. 

2. Equibiaxial deformation with isotropic damage. Consider an equibiaxial de- 

formation of an incompressible material, which may be modeled by the strain 
energy due to Ogden. Recall the stress strain relation derived in Example 6.6 on 

N p. 239, i.e. a = C,=, pP(Aap - During a load cycle X = 1 + 3 + 1 + 
5 + 1 the material accumulates damage of Mullins type. 

Plot the load cycle 5 = a(X) with the typical values of the constants ol,, pp; p = 
1: . . . : 3, for Ogden's model given by (6.121). Assume the maximum damage 
[, = 0.8 and the damage saturation parameter L = 1.0 . 10"/m2. 

7 Thermodynamics of Materials 

Thermodynamics is the science of energy, which studies processes in systems outside 
the thermodynamic equilibrium state. The term 'thermodynamics' comes from the 
Greek words 8~)prj and bCvap~c meaning 'heat' and 'force' (or 'power'), respectively. 
Thermodynamics has long been a fundamental part of engineering. It constitutes a 
concept of great generality which is based on a few, simple hypotheses. Today the 
name 'thermodynamics' is interpreted as including all aspects of energy. 

There are two principle ways of dealing with thermodynamics: long ago it was 
recognized that in the real world physical objects are compositions of molecules which 
are formed by atoms and even smaller subatomic particles. The special field in which 
the laws of classical mechanics (or quantum mechanics) are applied to large groups 
of individual particles (molecules, atoms) is called statistical thermodynamics. This 
approach investigates the correlation between the average behavior of particles and the 
macroscopic properties of a system on a statistical basis. The traditional classical, or 
phenomenological, approach to the study of thermodynamics, in which the molecular 
structure of a physical object is disregarded (the object is considered as continuous mat- 
ter with no microscopic holes) is called classical thermodynamics or (phenomeno- 
logical) continuum thermodynamics. It may be viewed as a unified field theory of 
mechanics and thermodynamics in which all thermodynamic state variables depend on 
position and time. 

The essential feature of continuum thermodynamics is the derivation of constitutive 
equations (for the stress tensor, the entropy, the heatjux vector) from the basic physi- 
cal principles of thermodynamics representing the individual (mechanical and thermo- 
dynamic) material properties of matter. However, for the formulation of constitutive 
equations we have several possible choices of independent and dependent variables. 
In this chapter the list of independent variables is supplemented by non-mechanical 
variables such as temperature, entropy and their gradients. We shall combine the 
(isothermal) constitutive theory ofjni te  (visco)elasticity, as introduced in Chapter 6, 
with the theory of heat conduction under transient conditions. Solutions of the result- 
ing coupled thermomechanical problem are able to describe the interaction between 
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the mechanicalfield and the thermalfield. In this chapter we study the thermodynam- 
ics of continuous media and, in particular, two different classes of constitutive models 
within the nonlinear constitutive theory of f i ~ t e  thennoelasticity and finite thermo- 
viscoelasticity. 

The only materials undergoing finite strains and temperature changes relative to an 
equilibrium state are biological soft tissues and rubber-like materials. As known from 
statistical thermodynamics of rubber elasticity, extended rubber chains tend to return 
to a less-ordered curled up-state which is characterized by a higher conformation en- 
tropy. The thermomechanical behavior of solid polymers is almost entirely based on 
an entropy concept. Therefore, in this chapter we start out with the aim of reviewing 
the crucial difference between rubber and metal within a thermodynamic context. In 
order to describe the three-dimensional network of rubber by means of the Helmholtz 
free-energy function, some insights in the statistical thermodynamics of rubber and the 
(molecular) network theory are presented briefly. We restrict attention to the Gaus- 
sian statistical theory, which enables us to characterize the thermoelastic behavior of a 
(molecular) network within small strains. 

Within this statistical context, the neo-Hookean model, as derived in Section 6.5, 
is motivated. In the subsequent sections, quite independently of the network theory, 
we follow an approach to a macroscopic continuum formulation of thermoelastic and 
thermoviscoelastic materials by making use of continuum particles. We introduce a 
constitutive model for the thermoelastic behavior of materials and present a thermody- 
namic extension of the classical strain-energy function originally proposed by Ogden. 
The material model is set up in order to reproduce the realistic physical stress-strain- 
temperature response of rubber-like materials. 

Moreover, a study of one-dimensional problems of finite thermoelasticity is pre- 
sented. Distinctive attention is paid to the so-called thermoelastic inversion phenom- 
ena, a remarkable property of rubber-like materials. 

The last section in this chapter is concerned with the study of thermodynamics in 
terms of internal vafiables. A constitutive model for highly deformable media that 
accounts for several thermomechanical coupling effects is examined. The proposed 
phenomenological model is capable of describing relaxation andor creep phenomena 
within the thermomechanical regime. 

7.1 . Physical Preliminaries 

As a basis for our next studies we present an introductory review of some of the in- 
teresting physical aspects of the thermoelastic behavior of amorphous solid polymers, 
that are chemically cross-linked, for example, by sulphur bridges. 

7.1 Physical Preliminaries 

Figure 7.1 Single polymer chain lying between two tie points with various distances r.  Two 
possible conformations are shown in (a). The number of possible conformations decreases with 
increasing end-to-end distance (b). Fully extended chain showing the limiting case with only 
one possible conformation (c). 

Statistical concept. Based on several physical techniques we know that amorphous 
polymers are composed of bundles of long-chain molecules (which may be imagined 
as smngs) having a high degree of flexibility. Figure 7.1 shows a model for a sin- 
gle polymer chain lying between successive points of cross-linkage, which we call tie 
points. The single polymer chain forms a typical segment in the coherent and three- 
dimens~onal network of rubber. This model is due to GUTH and MARK [I9351 and 
KUHN [1938, 19461. The distance between the tie points of the chain molecule, de- 
noted by r, we call subsequently end-to-end distance (or separation). The distance 
r is a parameter that characterizes a molecular conformation. The name conforma- 
tion comes from chemistry and refers to different shapes (arrangements) of a chain 
molecule. The most powerful physical technique now available for determining con- 
formations of chain molecules is small-angle neutron scattering (for more details see, 
for example, SPERLING [1992, Section 5.21). 
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Figure 7.l(a) shows a polymer chain with the end-to-end distance rl of the tie 
points, which are assumed to be fixed in space. The distance r l  is much smaller than 
the contour length L which is the length of the fully extended chain. Consequently, 
the chain may take on an enormous range of possible conformations, two of which are 
shown in Figure 7.l(a). Obviously, the number of possible conformations decreases 
for a larger end-to-end distance, and in the limit the number of possible conformations 
diminishes to only one if the chain is in its most extended state, as illustrated in Fig- 
ure 7.l(c). Then the value of the end-to-end distance reaches its maximum, i.e. r3.  and 
equals the contour length L, and the chain is straight. The most crumpled conforma- 
tion occurs when r tends to zero, and the tie points coincide. Clearly the end-to-end 
distance r of a chain characterizes the molecular conformation. 

The statistical theovy of rubber elasticity (see, for example, the notable works by 
TRELOAR [1943a, b], JAMES and GUTH [1943, 19491 and FLORY [1953, Section XI- 
3, and references therein]), which is basically set up on these concepts makes use of 
the idea to express the number of conformations that a chain molecule can assume 
as an 'entropic effect'. The chains occur in randomly coiled conformations in the 
unstretched state, as seen in Figure 7.l(a), and as the chains are extended the number 
of conformations and the entropy decrease. 

We proceed now to model this characteristic behavior and to analyze the confor- 
mations of a chain molecule. However, just for clarity, consider first the problem in 
one dimension and project the conformation on one coordinate axis, say the xl-axis 
(the chain may be imagined as being constrained artificially so that the tie points lie on 
the xl-axis). The conformations of the individual chains are distributed in a random 
manner. The probability p(xl)dxl that the end-to-end distance of a chain lies in the 
interval. between x1 and XI. + dz, is expressed by the Gaussian distribution function 

where p(xl) is the probability density (per unit length) and b is a parameter of the 
model. This parameter is a measure of a representative length, as we see later in Ex- 
ample 7.1, p. 3 13. For an explicit derivation of the Gaussian distribution function (7.1) 
for a chain in one dimension the interested reader is referred to the classical book by 
FLoRY [1953, Appendix A of Chapter XI. 

The Gaussian function is a bell-shaped curve, which provides numerous applica- 
tions in engineering practice and statistics. The most probable value of XI, i.e. the 
maximum of the Gaussian function, may be found by differentiating eq. (7.1) with 
respect to zl and occurs at X I  = 0. The probability decreases monotonically as x: 
increases. Note that the entropy may be interpreted as a quantitative measure of proba- 
bility (microscopic randomness and disorder) by using a fundamental finding which is 
due to Boltzmann and Planck. This will be made clear in Section 7.2. 
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For a more comprehensive survey of the general concepts of statistical mechanics, 
a terminology which was introduced by Gibbs, the reader may be referred to the books 
by FLORY [1969], TRELOAR [1975], WEINER [1983], CALLEN [1985, Part 111 and 
MARK and ERMAN [1988]; see also the review paper by GUTH [1966]. 

Rubber versus 'hard' solids. One of the remarkable differences between rubber 
and 'hard' solids, such as metals, glasses, ceramics, crystals, etc. lies in the effect of 

temperature. The following crucial physical properties, explored and auantified in a set 
of experiments by Joule, exhibit the distinctivebehavior of rubber (see JOULE [1859, 
p. 1051): 

(i) a piece of vulcanized rubber subjected to a weight produces a slight cooling 
effect in the very low strain range and changes to a heating effect by increasing 
the weight, and 

(ii) rubber will contract its length under tension when its temperature is raised (it is 
not very known that healthy human and animal arteries also shrink upon heating, 
a phenomenon that was pointed out in the early work of ROY [1880-18821 for 
the first time). 

These results are based on a (previous) simple qualitative observation by GOUGH 
[I8051 that a rapidly stretched rubber band (adiabatic straining) brought into slight 
contact with the lips as a sensitive detector feels warm. On the other hand a stretched 
rubber band in thermodynamic equilibrium feels cold after releasing the tension. This 
(thermoelastic) coupling phenomenon entered the literature as the so-called Gough- 
Joule effect. Note that the behavior of a metallic spring is in striking contrast to a 
rubber band. A metallic spring cools continuously on elastic stretching. This is the 
opposite behavior of a rubber band which warms on stretching, a remarkable experi- 
mental observation (see Box 1). 

The properties of mbber are well-known above the glass transition temperature 
(see, for example, CYR [1988], WARD and HADLEY [1993]), and are characterized by 

(i) extremely long-range extensibility, typically 300-500% extension for vulcanized 
natural rubber (i.e., without carbon black or other reinforcing fillers) and even 
more for synthetic rubber (generating low mechanical stresses), accompanied by 

(ii) full recovery to the initial dimensions without mechanical and thermal hysteresis 
within the lower temperature domain of the 'rubbery' region. 

Below the glass transition temperature, flexibility and mobility of the chains are so 
reduced that rubber behaves like a brittle glass (the material consists of rigid crystals). 
The glass transition temperature, for example, for natural rubber and butyl rubber is 
-73°C (see MARK and ERMAN [1988, Chapter 21). 
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Based on experimental observations by ANTHONY et al. 119421 (see also TRELOAR 
[1975, Chapters 2,131) the retractive force in a real rubber is approximately 90% based 
on entropy (for additional information the reader is referred to the papers by SHEN and 
CROUCHER 119751 and CHADWICK and C R E A ~ Y  119841). 

Polymers Metals 

Entropic elasticity 

+ Total stress is entirely caused by 
a change in entropy with deforma- 
tion. 

+ Internal energy does not change 
with deformation at all. 

+ Elasticity arises through entropic 
straightening of a polymer chain, 
followed by recoiling into a con- 
formation of maximum entropy, see 
Figure 7.1 (iso-volumetric phenom- 
ena). 

'Polymers are entropic' I 

Energetic elasticity 

+ Entropy does not change with de- 
formation at all. 

+ Total stress is internal energy 
driven, which changes rapidly with 
deformation. 

=. Elasticity arises through energetic 
increases due to distance changes 
between atoms against atomic at- 
tractive forces, followed by rernov- 
ing the interatomic forces back to 
its initial dimensions (in general, 
substantial volume changes accom- 
pany deformation). 

'Metals are energetic' n 
+ A piece of rubber w m s  on stretch- + An elastic metallic spring cools on 

ing. stretching. 

+ A rubber band under constant ten- + An elastic metallic spring under 
sile force substantially will shrink constant tensile force will expand 
upon heating and expand upon upon heating and shrink upon cool- 

From a thermodynamic point of view, the work done in elongating a 
" rubber band is unlike the work produced by stretching a coiled elastic 

metallic spring. 

Box 1 Composition of the concepts in polymers (ideal rubbers) and 'hard' solids (metals. 
glasses; ceramics, crystals, etc.) in the elastic range. 
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For an ideal rubber, for which by dehition one property is lncompressibllity (the 
volume remains constant (locally and globally) during a mechanical process), the re- 

; tractive force is, however, purely detennined by changes in entropy and the internal 
! energy does not change with deformation at all, i.e. a significant characteristic of rub- 
i. ber elasticity. We term this type of rubber-like material 'entropic elastic'. 
X 
i However, elasticity of metals, glasses, ceramics or cqstals arises basically through 

removing atoms from then equilibnum positions, accompanied by rapid internal en- 
ergy changes, whlle the entropy does not change at all (see, for example, HILL [I9751 
and ERICKSEN [1977]). These materials with a regular atomic structure and usually 
with high strength are typically called 'energetic elastic'. They exhibit, in general, 
substantial volume changes on deformations and stand in sharp contrast to rubber-llke 
solids. For a general overview, the corresponding concepts in polymers d deal rubber) 
and 'hard' solids (metals) are summarized in Box 1. 

Natural rubber (cis-polyisoprene) does not recover completely. In order to achieve 
dimensional stability and deformations which are completely reversible in the 'rub- 
bery' state, vulcanization of the rubber (typically done for commercial products) is 
required Within a vulcanization process polymer chains are chemically connected to 
other chains at different locations to produce a cross-linked monolithic three-dimenslo- 
nal network (see SPERLING [1992]). On the other hand crystallization occurring in the 
highly stretched rubber 1s influenced by vulcanization. Crystallization is lower for a 
higher concentration of sulfur used in the vulcanization process (see TRELOAR [1975, 
pp. 16-23]). 

It is important to note that the material properties of highly stretched crystallme 
rubber become anisotropic and that the heat of crystallization is much larger than pro- 
duced by the mentioned thermoelastic Gough-Joule effect. Moreover, due to frictional 
losses during the deformation process an additional heat is generated. In addition. 
it is mentioned that real networks contain defects (see, for example, MULLINS and 
THOMAS [1960] and SCANLAN [1960]). Crystallinity effects and network imperfec- 
tions lie cutside the scope of thls text. 

7.2 Thermoelasticity of Macroscopic Networks 

A typical vulcanized rubber may be considered as the assembly of long-chain mole- 
cules. Each chain is attached at both ends and thus produces one giant molecule, which 
we call the (molecular) network. From the irregular three-dimensional network we 
draw conclusions regarding its material properties. In the following, motivated by 
statistical thermodynamics, we describe the material properties of rubber through the 
Helmholtz free-energy function %. 
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The freely jointed chain in three dimensions. We assume that the molecular 

network contains IV chains per unit volume which is often referred to as the network 
density. 

We consider first a representative single polymer chain in space detached from 
the network, which means that the chain is taken out of the network. Ow aim is to 
compute the entropy of this chain and to study its thermodynamic behavior. The chain 
with contour length L is cross-linked at the tie points 0 and P of the network (see 
Figure 7.2). One end of the chain is attached to the fixed origin 0 of the XI;  x2; 2 3 -  

coordinate system. The other end is given by the end-to-end vector r = xlel + x2e2 + 
x3e3, pointing to P and characterizing a certain number of different shapes. 

Figure 7.2 A representative single polymer chain OP detached from the network. 

Further, we assume a so-called Gaussian chain which is defined so that the distance 
between the tie points (chain ends) 0 and P, i.e. r = Irl, is considerably less than the 
contour length L, i.e. 

r < L  . (7.2) 

Hence, we follow the context of the Gaussian statistical theory of elasticity which is 
validior problems where only small strains are involved. 

The contour length L of a single chain is commonly considered to be an assembly 
of n (statistical) segments joined together, each of length 1 so that L = nl. We suppose 
that there is no correlation between the directions of the successive segments. Based 
on this simple mechanical model we may determine the so-called mean vaIue 5 of the 
end-to-end distance r for this freely jointed chain obsewed at one instant of time. This 
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is given by 

where the mean-square value 7 denotes the average over r2. For a more detailed 
explanation the interested reader is referred to the textbooks by, for example, MCCRUM 
et al. [1997, Section 2.81 or WARD and HADLEY [1993, Section 3.33 and left to study 
Exercise 1 on p. 320. 

We wish to calculate the probability that the tie point P lies within the infinitesi- 
mal volume element of size du = dxldxzdx3 at P (see Figure 7.2). By analogy with 
eq. (7.1) we may introduce the probability densities p(x2) and p(x3) which are associ- 
ated with the x2-axis and the xs-axis, respectively. In addition, it is possible to show 
that p(x1) depends only on xl (p(x2) only on 2 2  andp(x3) only on x3) provided that n 
is large and XI, XZ, 23  are much smaller than the contour length L of the chain. 

Generalizing the relation (7 1) to three dimensions we may find the probability 
density p(x1, $2, x Z ) ,  now per unit volume, that the tie point P of the freely jointed chain 
occurs in the infinitesimal volume element du (see Figure 7.2). Under the restrictions 
considered it is the product of the independent probability densities according to 

where r2 = x: +xi + xi is the square of the distance between the tie points 0 and P 
for this detached Gaussian chain and parameter b denotes a measure of a representative 
length. As for the one-dimensional case the maximum of the Gaussian funct~on (7.4) 
occurs at T = 0. The Gaussian distribution function, as given in ( 7 4 ,  represents a 
sufficiently accurate solution to the stochastic problem in question. 

EXAMPLE 7.1 In this example consider a freely jointed Gaussian chain with tie 
points 0 and P and calculate all possible conformations of the chain at any given value 
of the end-to-end distance r = Irl, irrespective of direction. Furthermore, show that 
the measure of the representahve length b controls the mean-square value 7 according 
to 

(compare also with FLORY [1956, Section X-lb]). The mean-square value 7 is defined 
to be r2p(r)du/ 5: p(r)du, with the probability density p given by eq. (7.4)~. 
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Spherical shell 
dv = 4?rr2dr 

Figure 7.3 Spherical shell which defines all possible conformations of a representative Gaus- 
sian chain OP irrespective of direction. 

Solution. The restriction to a particular direction in space as considered in the 
previous analysis is not appropriate anymore, so we take into account all directions of 
the vector r equally. Doing so, the tie point P does not move within the infinitesimal 
rectangular block, rather within an infinitesimal volume dv of a spherical shell which 
is 

The infinitesimal volume is defined between the inner radius r and the outer radius 
T + dr from the other tie point, which is fixed at the origin 0 of the coordinate sys- 
tem (see Figure 7.3). The required probability p(r)dr  that the chain length lies in the 
interval between r and r + d r ,  is, by means of (7.4)2, 

The function (7.7) represents the Gaussian distribution of the distance r for a set of free 
chains. In the r-distribution function, no restriction on the direction of the vector r is 
involved. The maximum of function (7.7), i.e. the most probable value of r ,  is obtained 
by differentiation of p( r )  with respect to r .  This maximum occurs at r = 1 /b .  

In order to compute the important mean-square value of r ,  i.e. ?, we find after 
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some manipulations the analytical solution 
00 OC 

- S r2p(r)47rr2dr S r4exp(-  b2r2)dr 
r2 = 0 - - 

w cc 
J p ( r ) 4 ~ r 2 d r  r2exp(-b2r2)dr 
0 0 

which proves (7.5). We know from eq. (7.3) that the mean-square value 7 depends on 
the (statistical) segments n and their lengths 1 (recall that nl is the contour length L of 
the chains). Hence, we conclude that b is a measure of a representative length. . 
The entropy of a single chain. On the basis of the statistical concept of thermo- 
dynamics we now determine the entropy qi of a representative single Gaussian chain i 
whose ends are located at specified points in space. The chain is assumed to be taken 
out (detached) from the network. We apply Boltzmann's equation (or what Einstein 
called the Boltzmann principle) relating thermodynamic entropy and the probability 
of a thermodynamic state (molecular conformations). Hence, from the statistical point 
of view, the entropy of a single chain is defined to be proportional to the logarithm 
of the probability density p( r )  and varies with the end-to-end distance r according to 
Boltzmann's equation, which is given in the form 

where a denotes a constant entropy with respect to a reference level, which need not 
be specified here in more detail. The universal constant of proportionality k = 1.38 . 
10-23Nm/K denotes Boltzmann's constant. 

The famous relation between entropy and probability was published by the Aus- 
trian physicist Boltzmann in 1877 (at this time he worked as a professor for physics 
in Graz). The term 'Boltzmann's constant' for k and the mathematical formulation of 
the principle in the form of S = klogW due to to Planck. This form was carved on 
Boltzmann's gravestone at the 'Zentralfriedhof' in Vienna in 1933. 

Substituting (7.7)~ into (7.9) we obtain finally 

where the constant c = a + kln(b3/n3I2) incorporates the constant entropy a. The mea- 
sure of the representative length b for this Gaussian chain detached from the network 
is given by 
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(see eq. (731 ,  where Feu, denotes the mean-square value of the end-to-end distance of 
this un-cross-linked free chain out of the network. It is an intrinsic property of the chain 
molecule and is independent of volume changes. As can be seen from expression (7.10) 
the entropy tends to its largest value for r t 0, as expected (see the considerations in 
the previous section). 

The elasticity of a molecular network. In order to determine the elasticity of a 
molecular network, we choose, without loss of generality, the case of a homogeneous 
deformation state of a rubber block given by the principal stretches A,, a = 1: 2: 3. 
Further, we introduce two crucial assumptions: 

(i) there is no change in volume on deformation, the material is idealized as totally 
incompressible (incompressibility assumption), i.e. X1A2A3 = 1, 

(ii) changes in the length and orientation of lines marked on chains in a network 
are identical to changes in lines marked on the corresponding dimensions of the 
macroscopic rubber sample (afJine motion assumption). 

Thus, we refer to Figure 7.4, which shows the affine motion of a representative 
Gaussian chain with one end at the origin. 

Figure 

x1: x1 

Undeformed and deformed configurations of a representative Gaussian chain. 

In the undeformed configuration of a network the end-to-end distance of the chain 
OPo is characterized by the vector ro, with material coordinates X A ,  A = 1: 2,3 ,  
and length ro = (ro(. Since we consider the affine motion assumption all i\- chains 
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deform like the representative chain shown in Figure 7.4 and vector ro becomes r after 
deformation, with spatial coordinates x,, a = 1,2,3 ,  and length r = (r / .  In the course 
of the motion the tie point Po is displaced to P. Because of the affine motion assumption 
we may write 

The change in the end-to-end distance of the chain due to the deformation produces 
a difference of entropy between the state before deformation (with A, = 1, a = 1,2,3),  
i.e, c - kbZ(X:  + X; + X:) (see eq. (7.10)), and the state after deformation, i.e. 
c - kb2(AfX: + X;X; + AiX;). Hence, the entropy change in the chain caused by the 
deformation of that individual chain i, denoted by Arli, is therefore 

A n  = [C - kb2 ( AfX; + X:X: + X:X$)] - [C - kb2(X: + X: + Xi)] 

The constant c has no physical relevance since we are only concerned with the change 
of entropy. 

In order to reform a network all the detached chains are transferred back into the 
rubber specimen and cross-linked. Of course, the end-to-end distances of (detached) 
chains out of the network are not the same as the end-to-end distances of (cross-linked) 
chains in the network. Therefore, we introduce the mean-square value of the end-to- 
end distance r for the whole assembly of chains in the specimen, denoted by s,. In 
contrast to the mean-square value Fout, Fin is not an intrinsic property of the chain 
molecule. Since some constraints must be applied to the detached chains in order to 
reform a network, the mean-square value Fin differs from Fout. In particular, the value - 
rZi, depends on the volume of the rubber and changes by heating (or cooling) (compare 
also with MCCRUM et al. [1997, Chapter 31). 

Our next aim is to compute the entropy change of a network of such chains gen- 
erated by the macroscopic deformation state. It is the sum of the entropy changes 
of all ,Yr chains in a unit volume in the network, which we denote by A v  Since we 
have assumed affine motion, all the chains have the same given intrinsic property b and 
imposed A,, a = 1,2,3. With eq. (7.13) we may write 

N 

AV = AV, 

We claim that 
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- 
holds, where T:, is the mean-square value of the end-to-end distance rain of the as- 
sembled chains in the specimen in the undefomed state. 

Since the vector ro has no preferred direction in the undeformed state (which is 
isotropic), we may write Cy Xf = C: X; = CT X32. But since  hi X?+C: X;+ 
C: Xi = C: riin we deduce that C? X; = C: Xg = C; x~~ = 113 C; riin, 
and finally, from (7.15) 

Combining (7.16) and (7.11) with (7.14) we find the entropy change of the network 
independent of the parameter b, i.e. 

- - 
The term r~i,/r20,t accounts for the different end-to-end distances of chains in the 
network and detached from the network. 

We have learnt in the previous section that for an ideal rubber the internal energy 
e does not change with deformation at all. Hence, from the Legendre transformation 
(4.152) it follows that for an isothermal process the change in the Helmholtz free- 
energy function * is A* = -OAq. As a consequence of the Gaussian statistical 
theory of a molecular network, using the fundamental expression eq. (7.17), we find 
finally that 

According to (6.4) we have assumed that the free energy is zero in the undeformed con- 
figuration. This important result shows that, within the scope of the Gaussian statistical 
theory, the only quantities pertaining to the molecular network are the total number of - - 
chains N contained in the network (per unit volume) and ~ ~ ~ ~ / r ~ ~ ~ ~ .  

On comparison with relation (6.128) it emerges that (7.18) represents the simple 
neo-Hookean model with the physical parameter p, known as the shear modulus, which 
is proportional to the concentration of network chains ,Yr, given as 

- 

(see, in addition, FLORY [I9561 or TRELOAR [1975, p. 1141). A simple method for 
determining the number of chains N per unit volume is to measure the shear modulus 
p for rubber. 

For high chain extensions the end-to-end distance r is close to or equal to the con- 
tour length L. Therefore, condition (7.2) cannot be satisfied anymore and the Gaus- 
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sian statistical theory becomes increasingly inadequate for the finite strain domain. 
In order to account for the finite extensibility of chains some significant refinements 
must be taken into account (SPERLING [1992, Section 9.101). The more accurate non- 
Gaussian statistical theory is required (see, for example, TRELOAR [1975, Chapter 61 
and MARK and ERMAN 11988, Chapter 131). Within the non-Gaussian statistical the- 
ory the finite extensibility of chains is considered in the form of correction terns lead- 
ing to a more realistic form of the distribution function which is valid over the whole 
range of r-values up to the maximum or fully extended length. 

One example of such a refined theory is based on the Langevin distribution func- 
tion. The exact treatment of the freely jointed chain is considered by KUHN and GRUN 
[1942], JAMES and GUTH [1943], and summarized by FLORY [1953, Appendix B of 
Chapter XI. In this type of refined theory the Gaussian distribution function is included 
as a special case. 

Other examples are phenomenologically motivated and based on mathematical ar- 
guments (see the material models introduced in Section 6.5). 

EXAMPLE 7.2 At a given temperature O we consider a thermodynamic process in 
a closed system within some closed time interval t E [O, TI, in which the values 0 and 
T denote the initial (reference) and the final time, respectively. Assume that the closed 
system is thermally isolated and conservative. During the thermodynamic process a 
unit cube of ideal (incompressible) rubber deforms homogeneously to a parallelepiped 
with sides of length XI, X2 and X3 = (X1X2)-l, i.e. the principal stretches. The cross- 
linked network of the rubber cube consists of lYr Gaussian chains per unit volume. 

Based on the Gaussian statistical theory find the heat generated (or destroyed) and 
the induced total entropy change of the rubber block due to the homogeneous de- 
formation. Specify the problem with the values XI = 2, Xz = 3, X3 = 116 and 
N = 3.0 . 10'lrn-~. The temperature is assumed to be @ = 293.15K (= 20°C), 
where K denotes the 'Kelvin temperature' and "C the 'Celsius temperature '. The term - 
r,2in/FOut is equal to 1. 

Solution. Since rubber is incompressible, the change in internal energy, i.e. &, 
du.ring deformation is zero. Hence, the first law of thermodynamics (4.122) reads 

The expressions for the thermal power Q(t) = Jao RdTf (the system is thermally 
isolated, i.e. thermal energy can not enter or leave the boundary (QN = O), no heat 
transfer) and the stress power Pin, = D/Dt Jao PdV (the system is conservative) are 
adopted from (4.118) and (4.1 16), respectively. After integration over time interval 
t c [0, T] we find from the last equation (7.20), by means of (7.18), the particularized 
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first law of thermodynamics, i.e. 
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length of 61 and fixed at this position. By assuming that the rubber band A is at 
temperature OA, and the rubber band B at ElB, find the disp1acement:of the knot 
at which the two bands are tied together. 

We used the fact that according to assumption (6.4) the strain-energy function Qf for the 
unit cube of rubber vanishes in the reference configuration (normalization condition). 
The term Rdt in relation (7.21) represents the heat per unit reference volume 
within the closed time interval t E [0, TI (thermal work). All work done which appears 
as the strain energy is transformed to heat. 

The total entropy change of the network AQ induced by the thermodynamic process 
is, in accord with (7.17), given by 

By substituting the given values into (7.21) and (7.22) we find using Boltzmann's 
constant k = 1.38.10-23Nm/K that j- Rdt = -13.0 - loz1 1.38 - 293.15 (4 + 9 + 
1/36 - 3)]/2 = - 6 0 . 8 5 ~ 1 r n ~ .  The negative sign means that energy in the form of heat 
is destroyed within the solid body. The entropy change gives A7 = -60.85/293.15 = 

- 0 . 2 0 8 ~ / m ~ ~  which shows clearly that entropy is decreasing as the rubber block is 
deformed. 

1 A drunken man starts to walk on a flat field at a starting point 0. He makes one 
step per second each step of length 0.5 m The path of the walk of course me- 
anders randomly (the man is drunken), which means that there is no correlation 
between the directions of successive steps. 

By applying relation (7.3) compute the average distance F from point 0 he has 
moved after three minutes. 

2. A rubber band of initial cross-sectional area A. is applied to a mass m At a 
certain temperature Q the mass causes a 200% increase in length. 

Compute the number of chains N per unit volume for the assumption that the - - 
material is modeled as neo-Hookean and ri, ,  = r2,,t (Boltzmann's constant 
k = 1.38 . 10-~~Nrn/K). 

3. Two rubber bands, A and B, with identical material compositjons and length I 
are tied together at their ends. Then the assembled band is stretched up to a total 

7.3 Thermodynamic Potentials 

To characterize continuous media within the context of thermodynamics we need to 
define two material functions, namely 

(i) the thermodynamic potential characterizing all thermodynamic properties of a 
system, and 

(ii) the heat f lu vector describing heat transfer. 

A thermodynamic potential is a function from which we may derive state variables 
characterizing a certain thermodynamic state of a system. In the following we define 
four common thermodynamic potentials. All of them are scalar-valued functions and 
assumed to be objective. In addition, the potentials are supposed to be at least twice 
differentiable with respect to all associated components. 

For a supplementary account of the relevant topic see the classical work of TRUES- 

DELL and TOUPIN [1960]; see also the texts by, for example, MALVERN [1969], 
ZIEGLER [I9831 and HAUPT [1993b]. 

Associated thermodynamic potentials. One example of a thermodynamic potential 
is the uniquely defined Helrnholtzfree-energy function Q = Qf (I?: O), measured per unit 
reference volume (in thermodynamics the Helmholtz free-energy function is frequently 
denoted by f or F). The value of the free energy is determined by the changes of two 
independent variables, i.e. the deformation gradient F and a non-mechanical vmable 
given by the temperature 0. 

In the following we consider homogeneous materials, which means that the as- 
sociated functions are independent of position in the medium. With the free energy 
which describes here non-isothermal thermoelastic processes, we may deduce directly 
physical expressions from the Clausius-Planck form of the second law of thermody- 
namics (4.153). For all admissible thermoelastic processes the identity Dint = P : 

F - 6 - r l ~  = 0 holds, which means the internal dissipation D,nt is zero. By applying 
the chain rule, time differentiation of the free energy a (F: Q) gives the hypothetical 
change of the thermodynamic state. We obtain 
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which holds at every point of the continuum body and for all times. As usual, the 
subscripts in (7.23) indicate variables that are being held constant during the partial 
differentiation of Q. For convenience, in the following we will sometimes omit the 
subscripts. The coupled equation (7.23)~ is known as the Gibbs relation for elastic 
solids (Gibbs postulated the equation only for the case of a fluid). 

By comparing terms, we may evaluate physical expressions imposed on require- 
ment (7.23) which must hold for any given (F: 0). Since F and 6 can be chosen 
arbitrarily 

which are the general forms of constitutive equations for the first Piola-Kirchhoff stress 
P and the entropy describing thermoelastic materials. Note that for the case of any 
isothermal process (O = const) the free-energy function Q is identified with the 
isothermal strain-energy function (compare with eq. (6.1)). Consequently, Q(F) = 
rlr(F: 0 )  By (7.24), the stress and the entropy are determined by the free energy 
Qlr; which has the status of a potential for the stress, the entropy and their respective 
conjugate thermodynamic variables. 

From physical expressions (7.24) we deduce the stress and entropy functions de- 
pending on the deformation gradient F  and the temperature O,  i.e. 

Eqs. (7.24) and (7.25), also known as thermal equations of state, are crucial in spec- 
ifying material behavior and are completely determined once the free energy $ = 

Q (F: O )  is given. 
Alternative constitutive equations for the stress and the entropy may be found by 

analogy with the treatment carried out in Section 6.1. The second Piola-Kirchhoff 
stress S follows from relation (3.65j2, by means of (7.24), and the analogue of (6.11), 
as 

where dQ(C,  O ) / d C  is a symmetric tensor. From (7.24),, using the relation (6.9),, we 
obtain the alternative constitutive equation for the entropy, i.e. 

In order to describe the thermodynamic state of a system by an alternative thermo- 
dynamic potential we require that the entropy function (7.25), is uniquely invertible 
with respect to O for each fixed F, so that we have locally the conditibn 8 7 / 8 0  # 0. 
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We assume that the inversion of eq. (7.25)2 is given by Q = O(F: q )  and we postu- 
late an associated thermodynamic potential e, which is the zntemal-energyfunction per 
unit reference volume introduced on p. 157. Knowing that the internal energy is re- 
lated to the free energy Q  through the Legendre transformation (4.152), we have the 
(canonical) representation 

e  = e(F: 7 )  = $(F, O(F,  q ) )  + O(F: 7 ) ~  : (7.28) 

also known as the caloric equation of state. It is an equation that determines the inter- 
nal energy as a function of the deformation gradient F  and a non-mechanical variable, 
i.e. the entropy q. 

With potential (7 28) we may deduce fundamental physical expressions from the 
entropy principle based on the Clausius-Planck inequality (4.141). For all admissi- 
ble thermoelastic processes the second law of thermodynamics reduces to the identity 
Did = P : fi - e + Olj = 0. Hence, the Gibbs relation is obtained by determining the 
total rate of change of e  = e(F, 7 )  and by use of the chain rule. Thus, 

whence, for arbitrary choices of k and q, we have the physical expressions 

77) and @ =  (T)  (7.30) 
F 

for the first Piola-Kirchhoff stress P and the temperature O. Note that for the case of an 
isentropicprocess (7 = const) there exists a state function e, whose partial derivative 
with respect to F gives the corresponding first Piola-Kirchhoff stress P. 

Comparing the physical expression (6.1), i.e. P = dQ(F)/dF,  with eqs. (7.24)1 
and (7.30), we recognize that the strain energy Q  = Q(F)  serves as the free energy 

rlr(F) = q ( F :  Q )  or as the Internal energy e(F) = e(F, q) depending on 
the process considered, lsothemzal or zsentropic. 

Knowing that e = e(F. q), we deduce from (7.30) the stress and temperaturefunc- 
tions which depend on E and q. We obtain the thermal equations of state in the form 

The two thermodynamic potentials @ and e  introduced are commonly applied in solid 
mechanics. They are suitable for modeling so-called thermoelastic materials (no 
'memory effects' occur). 

For the sake of completeness two additional potentials are reviewed briefly. These 
are the Gibbs free energy (or in the literature sometimes called the Gibbs function 
or chemical potential), denoted by g (or sometimes in the literature by G), and the 
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enthalpy, denoted by h (or sometimes by H). The two thermodynamic potentials g 

and h are used frequently inguid dynamics. 
We postulate that the Gibbsfiee energy g  = g(P, O )  is a function of the first Piola- 

Kirchhoff stress P and the temperature O.  Performing a Legendre transformation by 
analogy with (7.28) we may express the enthalpy h by means of the thermal equation 
of state (7.31)2 as 

h = h(P: q )  = g(P, O(F:  7 ) )  + O(F,  q ) ~  : (7.32) 

which is a function of the first Piola-Kirchhoff stress P and the entropy v.  Here, we 
have used two definitions of g and h which are associated with the free energy and 

the internal energy e by the transformations 

g = g ( P , O )  = Q - P : F  : h =  h(P:q)  = e - P : F  . (7.33) 

In order to find the Gibbs relations we determine the total rates of change of these 
two thermodynamic potentials by applying the chain rule, i.e. 

Using the second law of thermodynamics in the forms of (4.153) and (4.141) (with 
'Dint = 0) and the material time derivatives of transformations (7.33) we arrive simply 
at 4 = g(P; O )  = -P : F  - and h = h ( ~ .  q )  = -P : F + Qrj. Hence, by compar- 

ing with Gibbs relations (7.34) and (7.35) we obtain expressions for the deformation 
gradient F: the entropy q and the temperature 0. Thus, 

ag(P; 0)  ag(P: 0)  
F = -  Q and q = -  (T) P : (7.36) 

The Gibbs free energy g and the enthalpy h have the status of a potential from which 
we may derive F, 17 and F, 0, respectively. 

In order to characterize the properties of a thermoelastic material, the considered 
thermodynamic potential must be supplemented by a suitable constitutive equation for 
the Piola-Kirchhoff heat flux Q, necessary to determine heat transfer. It may be intro- 
duced as a function of the deformation gradient, temperature and temperature gradient, 

satisfying the classical heat conduction inequality (see relation (4.140), i.e. the version 

7.4 Calorimetry 

in the material description). For a more specific constitutive assertion see, for example, 
the phenomenological Duhamel's law of heat conduction (4.144) on p. 169 (given in 
terms of material coordinates). A material for which the heat flux Q = o and the heat 
source R = 0 vanish for any point and time is known as an adiabatic material. 

EXERCISES 

I. Using constitutive equations (7.24), (7.30) and (7.36), (7.37) obtain four relations 
combining P, 7,  F, Q in the forms 

( )  = - ( )  and (Elp = ($ ) . (7.40) 9 0 

These identities are known as the thermodynamic Maxwell (or reciprocal) re- 
lations and are very valuable in thermodynamic analysis. 

2. Each of the four (most common) thermodynamic potentials introduced, i.e. q, e, 
g, h, is related to any other by a Legendre transformation. Show that the identity 

is satisfied. 

7.4 Calorimetry 

Two centuries ago calorimetry became a branch of experimental physics. In the 
present day calorimetry deals with both the measurement of the amount of heat gener- 
ated (or destroyed) within a given body during a change of state, and with its fomzula- 
tion within the theory of continuum thermodynamics. 

Specific heat capacity and latent heat. Firstly, we introduce the specific heat 
capacity at constant deformation (F = const) per unit reference volume, which 
is usually denoted by q. It is the energy required to produce unit increase in the 
temperature of a unit volume of the body keeping the deformationjixed 

The specific heat capacity CF = Q(F, O )  > 0 for all (F,  O )  is, in general, defined 
to be a positive function of the form 

It is proportional to the second derivative of the free energy Q. For a general compress- 
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ible material cF depends on the deformation gradient F as well as on the temperature 0 
The positiveness of c~ may be related to the stability of the material (see. for example, 
SILHAVP [1997, Section 17.31). 

Using (7.24)2 and the Legendre transformation V2 = e - 7 0 ,  the specific heat 
capacity may be represented by the alternative convenient form 

Hence, the specific heat capacity at constant deformation c ~ .  may also be expressed 
through the internal energy e which, in general, depends on F and 0 .  

Secondly, we introduce the latent heat which 1s denoted by the symmetric tensor 
v .  It IS a spatialfield defined to be 

a2 Q 
or uab = -OFaA- . aFbAdO 

Note that the latent heat v is proportional to the mixed second derivative of the free 
energy 4. 

Structural thermoelastic heating (or cooling). We define the general relation for 

the structural thermoelastic heating (or cooling) Xe as the double contraction of the 
latent heat, as given in (7.43)1, and the symmetric part of the spatial velocity gradient 
1 = I?F-'. i.e. the rate of deformation tensor d. Thus, with property (1.95) 

- .- - 

The scalar quantity Xe represents the thermoelastic coupling effect. This so-called 
Gouglz-Joule effect occurs, for example, during an adiabatic stretching of a rubber band 
which typically changes its temperature. as pointed out in section 7.1. In some prob- 
lems the thermoelastic coupling effect is neglected due to the fact that this change of 
temperature is small. 

For a thermoelastic process (Dint = 0) the rate of change of the entropy, as derived 
in (4.142), may be written by means of (7.25)2 and (7.24)2 and the chain rule as 

h 

6 
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' wlth DivQ and R denoting the material divergence of the Piola-Kirchhoff heat flux Q 
and the heat source per unit time and per unit reference volume, respectively. Hence, 
from (7.45) we obtain finally the (coupled) energy balance equation in temperature 

' 
form (the local evoluhon of the temperature O appears explicitly) Using definitions 

' (7.41)2 and (7.44)3 we have 

On comparison with the associated energy balance equation in entropy form, that is 
eq. (4.142), we recognize that the structural thermoelastic heating (or cooling) Xe ap- 
pears only explicitly in the temperature form (7.46). 

Consider the case of a process during which DivQ vanishes. We deduce from (7.46) 
that the heat source R per unit time and per unit reference volume is given by 

which we may regard as defining the theory of calorimetry. For a historical study see 
TRUESDELL [l980, Chapter 2C]. 

Within the theory offinite thennoelasticity, in general, we observe three different 
types of thermomechanical coupling effects, namely 

(i) the influence of a change in temperature on the stress (thermal stress), 

(li) structural thermoelastic heating (or cooling) - Gough-Joule effect, eq. (7.44), 
and 

(iii) geometric coupling (influence of a change in deformation on heat conduction) 
(see, for example, eq. (4.144)) 

1. By means of physical expression (7.36)2, show an alternative version of the en- 
ergy balance equation in temperature form (7.46), i.e. 

where cp = cp(P, 0) > 0 denotes the specific heat capacity a t  constant stress 
(P = const), defined to be cp(P, O) = -O(dZg (P; %)/dOd@) I p .  In words: cp is 
the energy required to produce unit increase in the temperature of a unit volume 
of the body keeping the stressfied. Alternatively to eq. (7.44)3 the tern1 Xep 
represents the structural thermoelastic heating (or cooling) which is defined to be 
XeP = -0(d2g(P, O)/dPdO) : P. 
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7.5 Isothermal, Isentropic Elasticity Tensors 

The following presentation of the isothermal and isentropic elasticity tensors is based 
on the concept introduced in Section 6.6 It is an extension of the purely mechanical 
framework to thermodynamics by one thermal vanable, 1.e. the temperature @ or ~ t s  
conjugate quantity, the entropy 7 .  

Isothermal elasticity tensor and stress-temperature tensor. Suppose that a body 

admits the right Cauchy-Green tensor C  = FTF and the temperature 0 as independent 
mechanical and thermal variables and suppose the existence of the Helmholtz free- 
energy function in the form of Q = Q(C, 0) (and equivalently Q. = Q(F, @)). 

Then, according to relatibn (7.26)3, we can find the second Piola-Kirchhoff stress 
tensor S of a point at a certain time t ,  which may be seen as a nonlinear tensor-valued 
tensor function of the two vyiables C  and 0. By analogy with Section 6.6, we now 
compute the change in S. According to considerations (1.247) and (1.248), we obtain 
the total differential 

1 
d S = @ : - d C + T d 0  , (7.48) 

2 - 
which gives expressions for a purely mechanical part, C, and a (mixed) mechanical- 
thermal part, T, in the material description. In the first term in (7.48) we have intro- 
duced the definition of thefourth-order tensor @, which is proportional to the second 
partial derivative of Q with respect to C. By analogy with eqs. (6.154) and (6.157) we 
write 

evaluated at (C; 0),  with the major symmetries C = CT or CABCo = CCDAB. Here 
we call C the isothermal elasticity tensor in the material description or the refer- 
ential tensor of isothermal elasticities, which is defined by keeping the temperature 
jtxed during the process. The isothermal elasticity tensor in the spatial description 
c = J-'x*(C), (or the spatial tensor of isothermal elasticities) is defined as a push- 
forward (and Piola) transformation of @, on each large index by analogy with relation 
(6.159). 

The second term in eq. (7.48) is the referential stress-temperature tensor or the 
referential thermal coefficient of stress, denoted by T, which is proportional to the 
mixed second partial derivative of 9 with respect to C and 0. It is a symmetric second- 
order tensor defined as 

The spatial counterpart, denoted by t, results via a standard push-forward (and Piola) 
transformation t = J-IX,(TL) of the (contravariant) referential stress-temperature 

7.5 Isothermal, Isentropic Elasticity Tensors 

6 tensor TI = dsr/80 by the motion X. By analogy with relation (3.66) we find, by 

.* means of eq. (7.50)2, that 

Note that the symbols T and t have already been used and must not be confused with 
the traction vectors. 

We now express the symmetric spatial stress-temperature tensor t in terms of the 
latent heat v, as defined in eq. (7.43). Knowing the transformation (aB(F; O)/dF)T = 
2(dB(C: 0)/ ~ c ) F ~ ,  which is in accord with eq. (6.1 I), we find from (7.51)2 that 

Both tensor quantities T and t measure the change of the stress in a process in which 
the temperature is raised by one unit keeping the deformationfied. 

Finally we compute the change in the function for the entropy 77 = q ( C ,  0). With 
constitutive equation (7.24)~ and the equivalence Q(F: 0) = Q(C: 0), we obtain 

By applying the definitions of the referential stress-temperature tensor T and the spe- 
cific heat capacity at constant deformation c ~ ,  the entropy change may be expressed 
as 

1 cF dq = -T : -dC + -dO : 2 GI 
(7.54) 

where the relations (7.50)2 and (7.41)2 are to be used. 

Isentropic elasticity tensor and stress-entropy tensor. Consider a body which 
admits the right Cauchy-Green tensor C = FTF and the entropy q as independent 
mechanical and thermal variables and consider the existence of the internal-energy 
function per unit reference volume in the form of e = e(C, q) (and equivalently e = 

e(F: 77)). 
The isentropic elasticity tensor in the material description or the referential ten- 

sor of isentropic elasticities, denoted by elSe, is derived from the internal energy e in 
the same way that the isothermal elasticity tensor is derived from the free energy Q. 
Hence, by analogy with the above, the change in S is given by 
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in which we have introduced the definition of the fourth-order tensor 

evaluated at (C: 17). The isentroplc elasticity tensor @ I S e  is defined by keeping the en- 
tropyfuced during the process. 

The second term in eq. (7.55) denotes the referential stress-entropy tensor T " ~ ,  
which is proportional to the mixed second partial derivative of e with respect to C and 

I 
17. It is a symmetric second-olrder tensor defined as 

The isentropic elasticity tensor in the spatial description ciSe = J - ~ ~ ~ ( @ ~ ~ ~ )  (or the 
spatial tensor of isentropic klasticities) and the (contravariant) spatial stress-entropy 
tensor tise = J - ' ~ , ( T ' ~ ~ ~ )  are derived from ciSe and VSe by analogy with the above. 
In the above expressions, CSe ,  TISe and tise are the isentropic quantities analogous to 

the isothermal quantities @, T and t. 

EXAMPLE 1.3 Obtain d e  fundamental relationship 

betueen the referential tensors of lsentroplc and zsothermal elasticities, with the spe- 
cific heat c a p a c i ~  at constant deformation w and the referential stress-temperature 
tensor T ,  as defined in eqs. (7.41)2 I and (7.50)2, respectively 

Solution. If we postulate the existence of the Helmholtz free-energy function Q = 
Q(C: O )  we may derive the second Piola-Kirchhoff stress tensor S in the differential 
form according to (7.48). As can be seen from relation (7.48), changes in stress, dS, 
are associated with change{ in both the deformation and the temperature. 

A thermodynamic process in which the entropy q = q(C; 0)  is constant (fixed), 
dn = 0, necessarily implies a change in temperature An explicit expression may be 
deduced from (7.54) in the form 

0 1 
dO = -T :  -dC . (7.59) 

CF 2 

This result substituted back into eq. (7.48) leads to 

which furnishes the desired expression for the isentropic elasticity tensor in the material 
description for which the entropy is held constant during the thermodynamic process. 

This important relation expresses the isentropic elasticity tensor Ciae in the material 
description as a function of the free energy Q = *(C, 0) (compare with eqs. (7.49)2, 
(7.50)~). Note that in terms of the internal-energy function e = e(C, q),  relation (7.60) 
reduces to (7.56)~. . 
Some numerical aspects. The distinction between isothermal and isentropic elas- 
ticities plays a crucial role in the analysis of nonlinear numerical stability. 

Coupled thermomechanical problems in solid mechanics may be solved numeri- 
cally within one time step leading to simultaneous (monolithic) solutions of all the 
fields involved in the problem which have the feature of a good stability characteris- 
tic. However, this approach leads to large non-symmetric systems which are inefficient 
to solve and are associated with high computational cost. This type of fundamental 
numerical solution strategy goes back to NICKELL and SACKMAN [I9681 and ODEN 
[1969, 19721. 

Alternatively, the coupled system of nonlinear differential equations is often solved 
using the classical staggered solution technique (or also known as the fractional- 
step method or staggered method) (see, for example, YANENKO [1971], MARCHUK 
[1982, and references therein]). In this method, the key idea is to partition the mono- 
lithic system of equations into smaller (symmetric) sub-systems by making use of the 
physical meaning of the problem considered. Within the concept of a staggered solu- 
tion technique the system can be solved sequentially with much lower computational 
cost. For each sub-system we can apply existing algorithms and solution strategies. 

The classical (merely standard) staggered solution technique for a coupled ther- 
momechanical problem in solid mechanics is based on the solution of a mechanical 
(isothermal) problem at afied temperature of the system (elastodynamic phase), which 
involves the isothermal elasticity tensor (7.49), followed by the solution of a heat con- 
duction problem at a&ed configuration in the temperature form (7.46). This classi- 
cal partition is referred to as the isothermal operator split, which was used within 
the context of coupled thermomechanical problems (see, for example, ARGYRIS et al. 
[1979,1981, 19821, MIEHE [I9881 and S I M ~  and MIEHE [1992]). However, this type 
of staggered solution technique is associated with the crucial restriction of conditional 
stability (see ARMERO and SIMO [1992, 19931). 

It emerges that an alternative partition of a strongly coupled thennomechanical 
problem leads to a so-caIled unconditionally stable (time-stepping) solution tech- 
nique, characterized as independent from the chosen time step. This technique allows 
solutions in an efficient numerically accurate way. The analysis is based on the solu- 
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tion of a mechanical problem at afuced entropy of the system (elastodynamic phase), 
which involves the isentropih elasticity tensor (7.56), followed by the solution of a 
heat conduction problem at a@ed configuration (thermal phase) in the entropy form 

I 

(4.142). I 

This alternative methodology is referred to as the isentropic operator split when 
dissipative materials are involved (damage, viscous or plastic effects may occur). Like- 
wise for perfectly themtoelastic materials the split is referred to as the adiabatic oper- 
ator split. Within this solutidn technique it is possible to show that a defined Lyapunov 
functional for the coupled system of evolution equations - regarded as the canoni- 
cal free-energy function for hemnoelasticity, first introduced by DUHEM [I91 1, Vo1.2, 
pp. 220-2311, is decreasing dong the flows for each of the two sub-problems involved. 
This approach was proposed by ARMERO and SIMO [I9921 for linear and nonlinear 
thermoelasticity and by A R M E R ~  and SIMO I19931 for finite thermoplasticity. For a 
successful application to rubber thermoelasticity see the papers by MIEHE [1995b] and 
HOLZAPFEL and SIMO [1996b]. 

It must be emphasized that this class of staggered solution technique can be applied 
not only to coupled thermomkchanical problems in solid mechanics but also to coupled 
problems of, for example, fluid flow in a porous medium, magnetohydrodynamics in 
fluid mechanics or to stressjdiffusion problems. All that must be done is to replace 
the temperature O and the entropy q by the associated field variables of the coupled 
problem considered. 

EXERCISES 
I 

1. Recall the spatial stresi-temperature tensor (7.51). By means of eq. (3.66) derive 
the alternative expression 

where u denotes the symmetric Cauchy stress tensor. In addition, derive the 
spatial stress-entropy t:nsor which has the form ti'' = a u ( C ,  p ) / a n .  

2. Suppose that a body admits the (spatial) leji Cauchy-Green tensor b  = FFT and 
the temperature O as independent variables and consider a free-energy function 
in the form of 9 = P ( b ,  Q ) .  By analogy with (6.38) we may find the associated 
constitutive equation ib the form of T = 2 b ( 3 9 ( b ,  @ ) l a b ) ,  where r denotes the 
symmetric Kirchhoff stress tensor (note that this type of constitutive equation 
represents isotropic thhnoelastic response only) 

Recall the kmematic belation (2.171) and obtain from the heldroyd stress rate 
(5.59) of the Kirchhoff stress, using the chain rule, 

I 
I a , (~ f l )  = J ( C  : CI + t 6 )  , (7.61) 
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with the definitions 

of the (fourth-order) isothermal elasticity tensor c in the spatial description and 
the (second-order) spatial stress-temperature tensor t. 

For explicit derivations of eqs. (7.61) and (7.62) see the work of MIEHE [1995b]. 
Therein, the definitions of the tensor variables c and t exclude the factor J .  

7.6 Entropic Elastic Materials 

We consider so-called entropic elastic materials, which have the property that the 
change in internal energy with deformation is small or even zero (recall Section 7.1). 
The underlying concept of entropic elasticity is used particularly for the thenno- 
mechalucal description of rubber-like mater~als such as elastomers (see, for exam- 
ple, FLORY [19611, CHADWICK [19741, CHADWICK and CREASY [19841, MULLER 
[1985], KRAWITZ [19861, HADDOW and OGDEN [I9901 and OGDEN [1992b]). 

From experimental observations it is known that the bulk modulus for rubber-like 
materials considerably exceeds the shear modulus. For an ideal rubber the internal 
energy e  is assumed to be a function of the temperature O alone, e = e (O) ,  which 
is a typical characteristic of incompressible materials (see, for example, TRELOAR 
[1975, p. 341 and ANTHONY et al. [I9421 for more details). This assumption leads to 
the purely (or strictly) entropic theory of rubber thermoelasticity (for a theoretical 
treatment see the work of CHADWICK [1974]). Consequently, the change in internal 
energy with deformation at a given reference temperature OG is constant. We assume 
that 

eo(F) = 0 . (7 63) 

Here and elsewhere the subscript ( a ) ,  characterizes quantities at a reference tempera- 
ture Oo so that, for example, eo(F) = e(F, @,). 

Alternatively. a thermoelastic material obeys the modified entropic theory if its 
internal energy e  is expressible as the sum of e(O) ,  already known from the purely 
entropic theory, and the intemal energy eo (J) = e( J. Q o )  The additional contribution 
eo ( J )  to the intemal energy depends on the deformation only through the volume ratio 
J  at a given reference temperature Oo (for a theoretical treatment see the work of 
CHADWICK [I9741 and CHADWICK and CREASY [1984]). Consequently, we conclude 
that 

For notational simplicity we often use the same letter for different functions. 
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Change in temperature, internal energy, entropy. For both the purely and the 
mod$ed entropic theories of rubber thermoelasticity we may conclude from eq. (7.42)4 
that the specific heat capacity cp is a function of the temperature Q only. Thus, we write 

Having this in mind we assume a temperature change 

between a selected reference state with reference temperature Q0 (the choice is quite 
arbitrary) and the current state with absolute temperature 0 .  Hence, by means of (7.65) 
the change in internal energy fo; a process is determined by integrating eq. (7.42)4 with 

respect to the temperature, i.e. ~ 

Recall from eqs. (7.64) and (7.63) that eo(F) = eo(J)  for the modified entropic theory 
while eo (F)  is assumed to be zero for the purely entropic theory. 

Similarly, by means of (7.65), the entropy change simply results from (7 42)2 by 
the integration I 

I 

q(F, Q)  - 77o(P) = (7 68) 
I O=Oa 

where qo(F) = v(F,  Oo) denotes the entropy at a reference temperature Oo. 

General structure of the thermodynamic potential. Using eqs. (7.67) and (7.68) 
and the Legendre transformatio; q ( F .  0)  = e(F, O )  - Qq(F, Q) ,  the thermodynamic 
potential in the form of the unquely defined free energy may be expressed In terms 
of the internal energy eo, the entropy q0 and an additional function T for the purely 
thermal contribution. Thus, I 

Another commonly used alternative form of the thermodynamic potential may be 
found by considering only state functions which are assumed to characterize the ref- 
erence state at a given reference temperature Oo. These functions are interrelated by 
means of the Legendre transforthation according to 

7.6 Entropic Elastic Materials 

$9 Consider the thermodynamic potential (7.69) and substitute for the entropy vo (at a 
given temperature 0 0 )  the expression which follows from transformation (7.71). Then, 

it by means of the temperature change (7.661, we arrive, after some simple algebra, at the 
expression 

which is due to CHADWICK [1974]. Instead of the entropy n ( F )  this alternative form 
uses the isothermal free energy Qo(F), which is the change in strain energy for a de- 
formation from the reference configuration to the current configuration at a fixed (con- 
stant) reference temperature Oo. The purely thermal contribution T ( Q )  is given by 
eq. (7.70). 

Note that for a thermoelastic material that obeys the modified entropic theory we 
require eo(F) = eo(J) in eqs. (7.69) and (7.72). However, within the purely entropic 
theory the characterization of a specific thermoelastic material is given basically by the 
entropy 770 (or the isothermal free energy Po) only; since eo(F) = 0. 

The structure of the free-energy function 9 ( F j  O )  introduced in (7.69) and (7.72) 
is general in the sense that it may be used for the description of any entropic elastic 
material. A specification is accomplished with the choice of particular functions for the 
internal energy eo and the entropy qo (or the isothermal free energy QO) at a reference 
temperature Oo. 

In order to perform the integration (7.70) we need an expression for the specific 
heat capacity as a function of the temperature. However, for some cases the specific 
heat capacity is assumed to be a positive constant over a given temperature range, and 
we write this as co > 0. Then, the integrations in eqs. (7.67), (7.68) and (7.70) can be 
performed explicitly. The purely thermal contribution (7.70), for example, takes on the 
standard form 

which will enable us to determine the thermal contribution T(0) for incompressible 
materials with sufficient accuracy. 

EXERCISES 

1. An incompressible material with a certain volume, constant specific heat capac- 
ity co and with temperature O is thrown into a very large lake with reference 
temperature Oo. After some time thermodynamic equilibrium is reached. As- 
sume that the lake will absorb all the heat rejected by the material without any 
change in its temperature. 
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Determine the change in entropy for the material which changes its temperature 
by19 = O- 0 0 .  I 

2. Assume that a thermoelastic material obeys the purely entropic theory (eo(F) = 

0). The change in the strkn energy from the reference to the current configuration 
at a given (constant) tedperature Oo is given by Qo(F). 

(a) Recall eq. (7.44)3 and show that for this type of thermoelastic material the 
structural thermoelLstic heating (or cooling) X, is governed by the relation 

(b) By adopting the ehergy balance equation (7.46) and eq. (7.74) show that 
for every adiabatjc process (in which the heat flux Qy = -Q . N and 
the heat source R b e  zero for all points of the material and for all times) 
the temperature evolution from the reference to the current configuration is 
given explicitly byl 

where the strain energy vanishes in the reference configuration according 
to agreement (6.4); For convenience assume that the specific heat capacity 
is a constant ca. ' 

3. Consider a thermoelasti'c material with a given isothermal free energy Qo (F) and 
a constant specific heat' capacity co. Assume that the material obeys the purely 
entropic theory. I 

~ 
(a) Recall the expression (7.24)2 and show that the evolution (change) 

of the entropy q is given by 

(b) Consider an i s e n t b i c  process in which the entropy possessed by the given 
thermoelastic matkrial remains constant. Deduce that 

which gives the sime temperature evolution as in (7.75). Interpret this re- 
sult. 
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7.7 Thermodynamic Extension of Ogden's Material 
Model 

In this section we particularize the general structure of the thermodynamic potential 
(7.69) (or its equivalent form (7.72)) introduced previously. Since the bulk modulus 
for rubber-like materials greatly exceeds the shear modulus it is most advantageous 
to employ the concept of decoupled (volumetric-isochoric) finite (hyper)elasticity, al- 
ready introduced within the context of isothermal compressible hyperelasticity (see 
Section 6.4). This concept is based on a multiplicative split of the deformation gradi- 
ent (or the corresponding right Cauchy-Green tensor) defined in eq. (6.79). 

Our approach is purely phenomenological, providing a set of constitutive equa- 
tions appropriate for numerical realization using the finite element method. The basic 
idea of the constitutive model presented for the isotropic thermoelastic behavior of 
elastomeric (rubber-lie) materials incorporating large strains is due to CHADWICK 
[1974], ahile aspects for its computational implementation are addressed by MIEHE 
[1995b], HOLZAPFEL and SIMO [1996b] and REESE and GOVINDJEE [1998b]. 

Structure of the Helmholtz free-energy function. A useful constitutive model for 
the isothermal and isotropic behavior of compressible (rubber-like) materials proposed 
by OGDEN [1972b] was presented in Section 6.5 on p. 244. 

Very briefly we recall Ogden's strain-energy function expressed in terms of the 
volume ratio J, the modified principal stretches 1, = J-'/~X,, a = 1,2,3, and a 
given (fixed) reference temperature O0 (typically room temperature). The decoupled 
representation of the strain-energy function Qo = @(A1, Xz,  X 3 , 0 0 )  reads 

- - -  
where awl = QWI(J ,  00) and QiSoo = Qi,, ( A 1 ,  Xz> X g ,  eO) are assumed to be ob- 
jective scalar-valued functions characterizing the volumetric elastic response and the 
isochoric elastic response of the hyperelastic material. 

By recalling (6.137)1 and (6.139) we may specify the two response functions *,,I 0 

and PiSoo. Having in mind the notation introduced, we write 
3 

P,l(J; Qo) = &(Oo)G(J) , ~ i , , ( X 1 ,  %,%, 00) = C=(Xa: QO) , (7.77) 

In addition, we must satisfy the (consistency) condition 
N 

2po = ) : C l p ( ~ O ) ~ p  with p p ( O O ) ~ p  > 0 , p = 1> . . . , N , (7.79) 



338 7 '~hermod~namics of Materials 

where the parameter po denotes, the shear modulus in the reference configuration at OO. 
The strain energy $voi(J, 0 0 )  is associated with the volumetric elastic response and 

is, in general. decomposed into a bulk modulus ~ ( 8 ~ )  at a fixed reference temperature 
Oo and a scalar-valued scalar function - - -  G(J). One example for G was introduced in 
eq. (6.137)2. The strain energy Qis0(X1, XZ, X3, QO), however, is associated with the 
isochoric elastic behavior in the space of principal directions of C, i.e. the Valanis- 
Landel hypothesis (see VALAN~S and LANDEL [1967]). The parameters I - L ~ ( @ ~ )  denote 
the (constant) shear moduli at Q0 and ol, are dimensionless constants, p = 1,. . . , N. 

Next, we derive a relatively simple but very efficient thermodynamic potential for 
rubber-like materials which is kasically a thermodynamic extension of Ogden's model. 
We employ the modified entropic theory with assumption (7.64). Applying the thermo- 
dynamic potential in the form df (7.72) and using the strain energy (7.76) together with 
relations (7.77) and (7.78), w; obtain the non-isothermal free energy m for isotropic 
thermoelastic material response, i.e. 

This decoupled structure is based on the definitions 

and on the condition (7.79) In I (7.81)1 the purely thermal contribution T(O) is given 
in eq. (7.70). I 

The first contribution m,,,(J, O) to the thermoelastic response defined by (7.81)1 is 
due to volume changes and purely thermal causes. The bulk modulus ~ ( 0 )  in (7.81)1 
depends linearly on the absolhe temperature Q (see e q  (7.83)). Note that the energetic 
contribution eo(J) to the function Qvol(J, O) occurs only within a modified entropic 
theory. An empirical expression was proposed by CHADWICK [I9741 and has the form 

eO(J) - s ~ ~ ~ ( @ ~ ) G ~  J) with G(J) = 7-'(J7 - 1) -- 
00 

This relationship is based upon experimental considerations, where y > 0 is a pos- 
itive non-dimensional parameter and the quantlty a. = a(Oo) denotes the so-called 

d 
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linear expansion coefficient relative to a selected reference state with reference tem- 
perature 0 0 .  The empirical response function G(J), which is extensively studied by 
WOOD [I9641 and CHADWICK [1974], is able to fit experimental data which are ob- 
tained from isothermal compression tests performed with different temperature values. 
For an instructive example on the basis of y = 1 and the neo-Hookean model the 
reader is referred to the paper by OGDEN [1992b, Example 11 in which the symbol a. 
is used for the volume coefficient of thermal expansion. Observe that within a purely 
entropic theory the energetic contribution eo(J)  vanishes (recall Section 7.6). Con- 
sequently, for this case the stress is proportional to the absolute temperature @, since 
m = * o ( ~ / ~ o )  + T. - - -  

The second contribuhon Q,,,(Xl, X2, X3, Q) to the thermoelastic response defined 
by (7.81)~ is due to isochonc deformations. Here, we consider a representation of Q,,, 
in terms of the modified principal stretches X,, a = 1,2,3. The shear moduli p p ( 0 ) ,  
p = 1,. . . , N, in (7.82) depend linearly on the absolute temperature O (see eq. (7.84)). 
A physical interpretation of this fact was presented within the context of Gaussian 
statistical theory of molecular networks which is valid for the region of small strains 
(compare with relation (7.19)). 

The thermodynamic potential (7.80) describes the stress-strain-temperature behav- 
ior of rubber-like materials within the finite strain domain. As for the isothermal case, 
the thermodynamic extension of the Mooney-Rivlin model and the neo-Hookean model 
results from (7.82) by setting N = 2. al = 2, a 2  = 2 and 1V = 1, crl = 2, respec- 
tively. Observe that for an isothermal deformation process (O = QO) the second and 
third term in (7.81)1 vanish, the material parameters (7.83) and (7.84) change into con- 
stants, and consequently the free-energy function 9 = @(XI, &, X3, 0)  changes into 
the strain-energy function Po = Q(XI, X q ,  X3, 00). 2s presented by eqs. (7.76), (7.77) 
and (7.78). 

Consistent linearization. Subsequently, we point out the consistent linearization 
process of the thermodynamic potential given by (7.80). In particular, as a first step, we 
compute the thermoelastic stress response, characterized by the second Piola-Kirchhoff 
stress tensor S, followed by a second step which determines the isothermal elasticity 
tensor (C in the material description and the referential stress-temperature tensor T .  
The formulation is presented exclusively within the concept of spectral decomposition 
and is characterized by a geometric setting relative to the reference configuration. 

In order to deduce the stress tensor S = 2dQ(X1, X2, Xg, O)/dC we follow the 
procedure as shown in Example 6.7 on p. 245. By means of the decomposed structure 
(7.80) we may find the purely volumetric and purely zsochoric stress contributions 
S(X1, Xz, XB, 0 )  = Svol f Slso, which are defined to be 
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I s,,, ". 

for the general case X1 # # X3 # XI (see the analogues of eqs. (6.140)1, (6.143)). 

The constitutive equation for the hydrostatic pressurep, essential for relation (7.86)2, 
may be specified in terms of the free energy (7.81)1 as 

where the term dG(J) /dJ  was particularized in eq. (6.141)1 or (6.141)2 depending on 
whether the scalar-valued f?nctlon (6.137)2 or (6 138) is used. 

In addition, with free energy (7.81)~ (and (7.82)) we may compute the three princi- 
pal isochoric stress functions Sisoa. a = 1,2,3,  in the form 

I 

Sisoa = - ax, 
b=l  

I 

which are needed for (7.87)2 (compare with the derivation which led to eqs. (6.1M)2 
and (6.145)). 

The derived set of exdressions (7.86)-(7.89) completely defines the constitutive 
model for rubber-like matekals, allowing thermoelastic deformations with strain chan- 
ges unrestricted in magnitdde. It is a straightforward thermodynamic extension of Og- 
den's model known from the isothermal regime, i.e. (6.140), (6.141) and (6.143)- 
(6.145). 

1 .  

Alternative stress meaiures follow directly from eqs. (7.86) and (7.87) by means 
of suitable transformation; For example, the stress response expressed by the Cauchy 
stress tensor u simply results from a push-forward (and Piola) transformation u = 
~- l~*(s f l )  = J - ~ F S F ~  ofis. 

As a second step in thk consistent linearization process, we compute the change in 
the stress tensor S, i.e. dSi = @ : dC/2 + TdO, with the definitions of the isothermal 
elasticity tensor @ in the material description, i.e. (7.49), and the referential stress- 
temperature tensor T, i.e. (7.50). Based on the decomposed structure of the derived 
stress response (7.86) and (7.87), we may obtain the decoupled representation 

@ = @J?I + Cis0 and T = Tvol + T,,, (7.90) 

for the tensors @ and T, w'here the first expression represents the familiar additive split 
I 
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of the fourth-order (isothermal) elasticity tensor C! (compare with the considerations 
on p. 254 and subsequently). The second expression consists of second-order tensors 
only. Analogously to (7.90),, it is composed of a purely volumetric contribution TvoI 
and a purely isochoric contribution Ti,,. 

The explicit forms of the isothermal elasticity tensors Cvol and Cis, are adopted 
from isothermal finite elasticity and are based on eqs. (6.166)4 and (6.196), respec- 
tively. We bear in mind that the underlying free energies Qvol and Qiso depend on both 
the three principal stretches Xa = J ' / ~ J ~ ,  a = 1: 2: 3, and the temperature O. 

The isothermal elasticity tensor C,,, as given by eq. (6.166)4, requires the consti- 
tutive equation for the hydrostatic pressure p (which is given in (7.88)) and the scalar 
function j5. With reference to specification (7.881, we obtain finally from (6.167) the 
explicit form 

d2G(J) i = (F + J-) d J d J  (y + JW) -!? (7.91) 
d J d J  o,, ' 

Considering the isothermal elasticity tensor Cis, in the spectral form, as given by 
eq. (6.196), we have just to take care of the coefficients 

1 a s i s o  a -- and Siso b - Siso a 

X~ axb A; - xi 
which depend on the material model in question. The three values SisOa, a = 1; 2; 3, 
denote the principal values of the second Piola-Kirchhoff stress tensor Siso and are 
given by eq. (7.89)2. Hence, the second term in (7.92) is already determined. In order 
to determine the first term recall the closed form solution (6.197) and just consider that 
the shear moduli pp, p = 1;. . . : N, are temperature dependent according to relation 
(7.84). 

Finally we compute the referential stress-temperature tensor T defined by (7.50)1. 
By recalling the constitutive equations (7.86)2 and (7.87)2 we may compute the purely 
volumetric and purely isochoric contributions to the referential stress-temperature ten- 
sor. They are defined in the sense that 

for A1 # A2 # X3 # A1. where the values p' and S;s,,, a = 1:2,3, depend on the 
material model in question. They are the derivatives of the hydrostatic pressure p and 
the three principal isochoric stress functions Sisoa, a = 1: 2; 3, with respect to the 
temperature O. 
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From (7.88)2 and (7.89)3 we find, using the relations for the bulk modulus (7.83) 
and the shear moduli (7.84), which are temperature dependent quantities, that 

I 

Observe the similar structure of the referential stress-temperature tensors (7.93) 
and (7.94) to the volumetric-isochoric stress response, as defined in relations (7.86) 
and (7.87). The spatial counterparts c and t of the tensors defined in (7.90) result via a 
standard push-fonvard (and Piola) transformation. 

Heat conduction. The considered thermoelastic problem, for which (D,,+, = O), 
is go~erned essentially by Cauchq 's first equation of motion (see, for example, the 
local forms (4.53) or (4.63)) and by the balance of (mechanical and thermal) energy in 
entropy or temperature form (see eq. (7.45)1 or (7.46)). Hence, in regard to the energy 
balance equation we need an additional constitutive equation for the heat flux ~ec tor  
governing heat transfer One example which satisfies the heat conduction inequality is 
Duhamel's law of heat conduction (see the considerations on p. 170). For the class of 
thermally isotropic materials we may express the constitutive equation as 

(i.e. Fourier's law of heat conduction, which should be compared with eq. (4.148)), 
where Q is the Piola-Kirchhoff heat flux and ko >_ 0 denotes the coefficient of thermal 
conductivity associated with the reference configuration. Note that this coefficient is, 
in general, not a constant. In fact, for vulcanized elastomers, ko decreases linearly with 
increasing temperature (see SIRCAR and WELLS [1981]) according to 

ko (0) = ko ( O Q )  [I - <(O - Oo)] : (7.98) 

where ko (OQ)  denotes the coefficient of thermal conductivity at the reference temper- 
ature @,, and < is a softening parameter. 

The solution of the coupled thermomechanical problem may be performed by adopt- 
ing the staggered solution technique. Within a time step this technique leads to a de- 
composition of the coupled problem (compare with the statements on p. 331). As a 
result we must solve two smaller, in general. symmetric decoupled sub-problems on a 
staggered basis. For algorithmic aspects of the entropic theory of rubber thermoelas- 
ticity see, for example, MrEHE [1995b] and HOLZAPFEL and SIMO [1996b]. 

7.8 Simple Tension of Entropic Elastic Materials 

1. Consider the scalar-valued function B ( J )  = ,V2 (PlnJ + J-fi - 1) accord- 
ing to eq. (6.137)~ (due to Ogden) and the energetic contribution eo(J)/Qo = 
3ao~(@0)yp1(J7  - I), with y > 0, according to eq. (7.85) (due to Chadwick). 

Use (7.88)2, (7.91) and the relation for the bulk modulus (7.83) in order to obtain 
the constitutive equations 

which completely determine the isothermal elasticity tensor C,,, in the material 
description. . 

2. Consider the extension of the isothermal Ogden material to the non-isothermal 
domain (7.80)-(7.84) (including the quantity eo (J) which represents an ener- 
getic (volumetric) contribution to the free energy). Recall the definition of the 
structural thermoelastic heating (or cooling) X,, i.e. eq. (7.44)3, and show that 
X, may be written in the decoupled structure of the form %, = %el,,l + 'Ueis0, 
with the definitions 

- - -  
The response functions Qvol = Qvol(J; eO). Qiso = Qiso ( X I  : X2 : X3 : 00) are 
given by (7.77) with (7.78). 

The analogue of the decoupled structure of X, was derived by MIEHE [1995b]. 
In his work the structural thermoelastic heating 31, is, however, based on the 
multiplicative split of the (spatial) left Cauchy-Green tensor b = F F ~  and is 
defined with the opposite sign. 

7.8 Simple Tension of Entropic Elastic Materials 

The aim of this section is to illustrate the abil~ty and performance of Ogden's model for 
the non-isothermal domain as outlined in the last section. We set up the basic equations 
required to describe the reallst~c physical stress-strain-temperature response of rubber- 
l k e  materials. In pmcular, here we consider the simple tension of an entropic elastic 
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material, a class of material defined in Section 7.6. A representative example concerned 
with the adiabatic stretching of a rubber band will contribute to a deeper insight in the 
coupled thermomechanical phenomena. 

Thermoelastic deformation. Before we start our studies with the simple tension of 
entropic elastic materials it is most beneficial to point out briefly some aspects of the 
thermoelastic deformation of a continuum body. 

Consider a fixed reference configuration of a body with the geometrical region Ro 
corresponding to a fixed reference time t = 0. The position of a typical point may be 
identified by the position vector X (with material coordinates (XI: X2 ,  X 3 ) )  relative to 
a fixed origin 0 (see Figure 7.5). The reference configuration is assumed to be stress- 
free and possesses a homogeneous (uniform) reference temperature value Oo(> 0). A 
map of the reference configuration Qo to a current configuration (with the new region) 
R is characterized by the macroscopic motion x = x(X,t) for all X E no and for 
all times t .  The motion carries a typical point X E Go to a point x E 0 which is 
characterized by the spatial coordinates (xl: 5 2 :  x3). 

As a measure of the thermoelastic deformation we use the deformation gradient 
F(X: t )  and the volume ratio J ( X ,  t )  = detF(X, t )  > 0. Very often it is convenient 
to decompose the (local) motion x ( X ,  t )  = x M [ x o ( X :  t ) ]  into two successive motions 
xM and xo according to 

with the definitions 

and 

The multiplicative decomposition (7.99) separates the total thermoelastic deformation 
into a purely mechanical contribution FM, JM and a purely thermal contribution Fo, 
J o ,  which represents the DuhameE-Neurnann hypothesis for the nonlinear theory (see, 
for example, CARLSON [1972, p. 3101). 

The two successive motions establish a new intermediate (imagined) configura- 
tion with geometrical region Go, as illustrated in Figure 7.5. The new configuration is 
assumed to be isolated from the body so that a thermal stressyree deformation may OC- 

cur. Hence, a relative temperature field 6 = O - e0 causes a (free) thermal expansion 
(or contraction) about the reference configuration Ro characterized by the associated 
variables Fo and Jo. The intermediate configuration with the region no is given by 
the macroscopic motion Xo = X, (X: t )  which cames points X located at to points 
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configuration - / ~ e , ~ o  

time t 

Figure 7.5 Multiplicative decomposition of the thermoelastic deformation into a purely me- 
chanical contribution FM; JM = detFw and a purely thermal contribution Fo, Jo = detFo. 

Xe in the intermediate configuration Re.  A typical point XQ is characterized by the 
coordinates ( X o  1 ,  Xo 2 ,  X0 3) .  

According to the multiplicative split (7.99) we have defined, additionally, a macro- 
scopic motion x = xhl (Xo, t )  at a constant (fixed) temperature O along with the stress- 

, producing deformation gradient FM and the volume change JM. A so-called mechani- 
cally incompressible material for which JM = detFhf = 1, keeps the volume constant 
during a motion x,. 

EXAMPLE 7.4 Consider a mechanically incompressible and thermoelastic material 
under a non-isothermal deformation process. The thermoelastic material is assumed to 
be thermally isotropic so that the deformation gradient Fo may be given by an isotropic 
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tensor according to 

FQ = F ( O ) I  , F ( O )  = exp[ a ( 8 ) d 6 ]  > 0 , i: (7.102) 

0 0  

where F ( O )  is a scalar-valued scalar function determining the volume change relative 
to the reference configuration. In eq.(7.102)2 we have assumed a particularization of 
F ( O ) ,  where a = a ( @ )  denotes the temperature dependent expansion coefficient. 

Determine an expression for the total volume change J of the material due to the 
non-isothermal deformation process. Linearize the result by assuming a constant value 
a. = a(Oo)  for the expansion coefficient at a reference temperature Oo 

Solution. Since the considered thermoelastic material is mechanically incompress- 
ible (no volume change during an isothermal process) we introduce the constraint con- 
dition through JM = 1. Thus, the total volume change J within a non-isothermal 
deformation process from region Ro to f2 is characterized by eq. (7.9!& which degen- 
erates, using eqs. (7.101)~ and (7.102), to 

J = JQ(Q)  = detFe = exp[ 3 a ( 8 ) d 6 ]  > 0 . j: (7.103) 

0 0  

With the linear expansion coefficient ao,  relation (7.10?& gives 

and linearization leads to the approximate solution 

It defines the total volume change J of a mechanically incompressible and thermally 
isotropic material within the infinitesimal strain theory. The approximate solution 
(7.105) is a well-known relation in linear continuum mechanics. It may be viewed 
as the volume of a unit cube at temperature Q with values c u ~  and Qa which correspond 
to a reference state. I 

Entropic elasticity for a stretched piece of rubber. In the.following, attention will 

be confined to the thermoelastic description of isotropic and entropic elastic materials 
(such as elastomers) at finite strains. The stress-deformation-temperature response of 
a piece of rubber under simple tension, in particular, is examined. We assume that 
the material under consideration obeys the modified entropic theory of rubber ther- 
moelasticity. Furthermore, the material is assumed to be mechanically incompressible, 
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which motwates the use of a multiplicative split of the thermoelastic deformation, as 
introduced above. Consequently, the total volume change is given in (7 103)1, i e. 

4 J = J Q ( 0 )  ( d e t F ~  = 1). 
Now we consider a thin sheet of rubber stretched in one direction from the reference 

I, (undeformed) state to X I  = A (simple tension). Then, obeying condition J = J o ( 0 )  = 

X1X2X3, we deduce by symmetry that X 2  = Xg = (J /X)l I2 .  Hence, the Helmholtz 
free-energy function per unit reference volume 

is given in terms of one independent mechanical variable and one thermal variable, i.e. 
the stretch ratio X and the temperature 0 .  For notational convenience we use the same 
Greek letter Q for different free-energy functions. 

Since the material is isotropic it is appropriate to use the thermodynamic extension 
of Ogclen's model, as discussed in Section 7.7 (see eqs. (7.80)-(7.84)). Recall that, 
in general, one contribution to the free energy is due to volume changes and purely 
thermal causes (compare with relation (7.81),). Since we study a mechanically incom- 
pressible material we need only to consider the purely thermal contribution. We use, 
without loss of generality, the standard form (7.73). i.e. T ( 0 )  = co[0 - Oln(Q/Oo)], 
where the specific heat capacity > 0 is a positive constant. 

Hence, the free energy relative to the reference configuration, which is stress-free 
and free of thermal expansion (or contraction), results from eqs. (7.80)-(7.82) and 
(7.84), using the temperature change 8 = Q - Q0 and the specified kinematic relations, 
in the form 

where the additional condition (7.79) must be enforced. Note that the volume change 
due to thermal expansion governed by J = JQ (0 )  is of considerable importance, which 
will be pointed out in more detail withii the Example 7.5 below. 

Next, we derive the associated thermal equations of state, namely the stress and 
entropy functions, as given in eqs. (7.24) and (7.25). For simple tension we may write 

a q x ,  e) p=- a q x :  0) 
8X and q=--  dO 

with given free energy Q substituted from (7.107), 
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Relations (7.109) and (7.110) specify the (non-zero) nominal stress Pl = P (also called 
the first Piola-Kirchhoff stress) P2 = P3 = 0, and the entropy g which are generated 
by the stretch ratio X and the temperature Q. 

In order to describe the coupled thermomechanical problem of the piece of stretched 
rubber completely we must add a constitutive equation for the heat flux vector govern- 
ing heat transfer. For the class of thermally isotropic materials we may adopt Fourier's 
law of heat conduction and refer to eq. (7.97). Having in mind the specified kinematic 
relations, the inverse of the right Cauchy-Green tensor, C-I, as needed in eq. (7.97), 
may be given in the form of its matrix representation 

where the diagonal elements are the eigenvalues of C-l.  

EXAMPLE 7.5 Consider the stretching of a mechanically incompressible piece of 
rubber, for example a rubber band, obeying the modified entropic theory of rubber 
thermoelasticity. The rubber band is elongated rapidly so that no time remains for 
isothermal removal of heat. Hence, the homogeneous deformation process is viewed 
as an adiabatic process for which the heat flux on the boundary surface is zero and, in 
addition, heat sources are zero (thermal energy cannot be generated or destroyed within 
the material). The non-isothermal deformation process is assumed to be reversible. 

In the present example attention is paid to the effects of structural thewnoelastic 
heating (or cooling) and to the stress-strain-temperature response of the rubber band. 
In particular, show how the nominal stress P depends on the temperature change 8 = 

0 - Oo at a fixed elongation, i.e. a fixed stretch A, and derive the temperature evolution 
of the rubber band with stretch. Finally, discuss the results of this classical example 
of rubber thermoelasticity, which demonstrates one of the great differences between 
rubber and 'hard' solids, namely the distinctive effects of temperature. 

AS known from Section 6.5 the Ogden model excellently replicates the finite exten- 
sibility domain of rubber-like materials. Hence, as a basis for the constitutive model 
take the thermodynamic extension of Ogden's model with three pairs of constants 
(N = 3) characterized by the Helmholtz free-energy function (7.107). The constants 
n,, , ! L~ (O~) ,  p = 1: 2; 3, at the reference temperature Oo are those given by OCDEN 
[1972a], listed in eq. (6.121) of this text. The volume change due to thermal expansion 
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(or contraction) J = Jo(@) is assumed to be governed by relation (7.104). The specific 
heat capacity and the linear expansion coefficient are given by c,, = 1.83 . 103Nm/kgK 
and ole = 22.333 . 10-'K-' (see CYR [1988]), respectively. We assume that for the 
rcference state the specimen and its environment constitute a system, which is in ther- 
modynamic equilibrium. The homogeneous temperature field is given by the value 
Oo = 293.15K (= 20°C). 

Solution. The relationship between the nominal stress P and the temperature change 
14 = C3 - O0 is given explicitly by the theoretical solution (7.109), with volume change 
(7.104), and by experimental results due to ANTHONY et al. [1942]. The respective 
diagram for various fixed values of X is depicted in Figure 7.6. 

The figure is supplemented by a curve indicating the evolution of the temperature 
change t9 with respect to the stretch ratio A. Since the adiabatic process is assumed to 
be reversible the energy balance equation (4.142) reduces to Qlj  = 0. Consequently, 
the entropy (g = const) possessed by the material remains constant, which indicates 
that the deformation process is also isentropic. The condition 7 = const gives the 
relation between the temperature change 19 and the stretch A, which is based upon the 
constitutive equation for the entropy, as derived in eq. (7.110), with eq. (7.104). The 
analytical solution is completed by experimental data due to JOULE [1859]. 

The qualitative fit to the experimental data given by JOULE [I8591 and ANTHONY 
et al. [I9421 is satisfying; nevertheless, the physical properties of the vulcanized rubber 
strip used in Joule's and Anthony's experiments are only partly documented and may 
differ from those given above. 

One of the very first works reporting simple observations regarding thermal ef- 
fects due to deflections of vulcanized rubber bands was published by GOUGH [1805]. 
The first work which explored experimentally the crucial physical properties of elastic 
india-rubber was presented by JOULE [1859]. The phenomena of structural thermo- 
elastic heating (or cooling) of stressed rubber-like materials is called the Gough-Joule 
effect. A wide range of publications followed over more than one century, which mostly 
deal with theoretical formulations of more or less approximate theories. The history of 
these investigations is discussed in the classical book by FLORY [1953, Section XI.la], 
an overview is given-by TRELOAR [1975, Chapters 2, 51, CHADWICK [I9741 and 
PRICE [1976, and references therein]. For a detailed account of the relevant results 
see also OCDEN [1992b]. 

Numerical analyses for this type of adiabatic (isentropic) simple tension test within 
the finite element context were given by MIEHE [1995b] and HOLZAPFEL and SIMO 
[1996b]. The algorithmic solution procedure reduces merely to one step, which is 
concerned with solving a mechanical problem with isentropic elasticities as indicated 
explicitly through expression (7.58). During the solution process the entropy constraint 
condition Qfi  = 0 must be enforced, which means that the entropy at each time-step 
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Theorehcal solution, see 
eq. (7 109) wlth (7 104) 

- - Experimental data by 
Anthony et al. 

_---- 
4 

Xi,, = 1.0616 

0 
0 30 60 

Temperature change 29 = O - @a (K) 

-0.01 I I 

1.0 1 1.1 1.2 1.3 1.4 1.5 1.6 
Thermoelastic inversion 
point at Xi,, = 1.0616 Stretch A 

Figure 7.6 Temperature rise of a rubber band due to adiabatic stretching - showing the ther- 
moelastic inversion point - and nominal stress P versus temperature change 19 = O - Oo for 
various stretch ratios X for a three-tern Ogden elastic material 
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is unchanged. As a direct result the temperature and the displacement field follow 
[ according to Figure 7.6. 

Thermoelastic inversion point. For a small stretch ratio X the rubber band indi- 
cates an initial cooling effect (see Figure 7.6), which increases first with deformation 
and changes to a heating effect at a certain minimum point, which entered into the 
literature as the so-called thermoelastic inversion point. The associated extension, 
labeled as Xi,,, characterizes a configuration of the sample in which the acting force is 
independent of the temperature 

To gain more insight in the interesting thermoelasQc inversion phenomena the fol- 
lowing observations are emphasized: 

(i) An analytical investigation of the reversible adiabatic (isentropic) process - char- 
acterized by constitutive relation (7.110), with 77 = const - leads, within an 
adequate linearization process, to an explicit expression for the stretch at the in- 
version point, denoted by Xi,,. Specifically, from dQ/dX = 0 we obtain the 
approximate solution 

A;, % 1 + 3cuoQo (7.112) 

(see JAMES and GUTH [I9431 among many others). With given data thermo- 
elastic inversion takes place for an extension of about Xi, = 1.0616 at which the 
maximum temperature drop occurs (see Figure 7.6). 

A second point of interest is at r9 = 0, where a heating process takes place. Note 
that this behavior is contrary to that for a metallic spring, which cools continu- 
ously on stretching within the elastic domain. An approximate solution for X at 
6 = 0 may be derived from eq. (7.110) using an adequate linearizaaon process. 
We obtain a quadratic equation in A, i.e. X2 + X - 2XL e 0 (see also JAMES and 
GUTH [1943]). Remarkably, the stretch ratio at 6 = 0 is only influenced by the 
location of the thermoelastic inversion point; with the given data the numerical 
value is X = 1.1257 (see Figure 7.6). 

(ii) In view of eq. (7.109) it is crucial to remark that for a fixed X the stress is a non- 
linear function with respect to the temperature. The nonlinearity is clearly caused 
by the volume thermal expansion term J = J Q ( 0 )  charactenzed by eq. (7.104). 

AS a direct consequence the term JQ governs the change in the slope dP/dO of 
the stress-temperature curves, as seen in Figure 7.6. If the elongation is small the 
slope is negative and the deformation behavior is dominated by thermal expan- 
sion (energetic contribution). For larger strain ranges the slope aP/dO becomes 
positive. It emerges that the reversal in the slope of the weak nonlinear stress- 
temperature plot is indicated at X = Xi,, which can be shown using eq. (7.109) 
along with condition dP/aO = 0. 
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At the thermoelastic inversion point thermal expansion and entropy contraction 
balance. Hence, thermoelastic inversion is governed clearly by thermal expan- 
sion, which is expressed by relation (7.104), i.e. J = exp[3ao(@ - %)I. As 
can be seen from (7.112), thermoelastic inversion depends basically on the linear 
expansion coefficient a. # 0 Alternati~ely, it is interesting to note that the inver- 
sion point also occurs at the same value of extension by fixing the load of a strip 
of rubber and Increasing the temperature A connection of the mentioned obser- 
vations may be found within the context of the thermodynamic Maxwell relations 
(7.39) and (7.40), which motivates the inclusion of the two diagrams within one 
figure (Figure 7.6) (see also the theoretical study by OGDEN [1992b]). 

By setting a 0  = 0 (which gives eo(J) = 0) we may recover the purely entropic 
theory of rubber thermoelasticity as a special case. With the assumed constant 
specific heat capacity co the temperature evolution is then given by an explicit 
function, i.e. Q = Ooexp[Q~,/(Ooco)] (compare with Exercise 2 on p. 336). 
Here, Qo = @(A, 0,) denotes the strain energy for the deformation at a fixed 
reference temperature Oo, i.e. eq. (7.107) with O = eO. 

One-dimensional finite thermoelasticity. We consider here the one-dimensional 
case of finite thermoelasticity. A rod (with uniform cross-section) is imagined as being 
stretched to X in the direction of its (2-)axis, with the associated kinematic relation 
x = XX (uniform non-isothermal defqnnation). The rod capable of supporting finite 
thermoelastic deformations admits the stretch ratio X and the temperature 0 as inde- 
pendent mechanical and thermal variables. 

From the Helmholtz free-energy function Q = Q(X; Q) (measured per unit refer- 
ence volume), which is assumed to exist, we are able to deduce the stress and entropy 
functions P = P(X, 0) and = q(X, 0 ) ,  respectively. They are nonlinear scalar- 
valued functions which depend on the two scalar variables X and O and have the same 
form as (7.108). Note that the constitutive relation (7.108)1 determines the nominal 
stress P by keeping the temperature @ fixed while (7.108)2 determines the entropy 17 

at a fixed stretch A. 
For a more profound understanding of the constitutive relations it is beneficial to 

note, the differential mathematical relationship between the nominal stress P and the 
entropy q. For the continuous function Q the well-known property 

holds. Using eqs. (7.108)1 and (7.108)2, (7.1 13) can be rewritten in an expression 
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which relates the stress and the entropy function according to 

(g)A=-($) Q . (7.114) 

This identity shows that'the change in stress P with the temperature O of, for example, 
a rod at fixed stretch X is equal to the negative value of the change in entropy q with 
the stretch ratio X of that rod at fixed temperature @. Relation (7.1 14) characterizes the 
thermodynamic Maxwell relation for the one-dimensional case, fundamental in rub- 
ber thermoelasticity (see WALL [1965, p. 3141, TRELOAR [1975, p. 301 and CARLSON 
[1972, p. 3041). Compare also the identities (7.39) and (7.40), valid for the three- 
dimensional case. 

Furthermore, it is important to note that for polymers in the 'rubbery' state the 
term on the left-hand side of eq. (7.114) is found to be positive at large extensions A, 
and negative at small extensions, as seen clearly in Figure 7.6 (recall Example 7.5 on 
p. 348). 

All that remains is the computation of the isothermal elasticity tensor in the material 
description (consistent 'linearized tangent moduli) and the referential stress-temperature 
tensor. With this aim in view we derive the change in the second Piola-hrchhoff stress 
S = S(X, Q), defined as S = A-'P = A-l(a*(A: O)/aX) (compare with relations 
(6.50), with (6.47), valid for three dimensions). Gowing that the Green-Lagrange 
strain, denoted by E, is (A2 - 1)/2 (compare with relation (2.69), valid for three di- 
mensions), we may find 

= CdE f TdO : (7.1 15) 

where dE = XdX. Here we have introduced the definitions 

a s ( x ,  o )  C = A-1- a s ( x ,  o )  
ax and T = - ao 

of the isothemzal elasticity tensor C in the material description (fixed temperature dur- 
ing the process) and the referential stress-temperature tensor T .  

The scalar-valued functions (7.1 15)2 and (7.116) are the one-dimensional counter- 
parts of the tensor-valued functions (7.48) and (7.49)1, (7.50)1, respectively. Observe 
that by means of S = A-lP and the thermodynamic Maxwell relation (7.114) we may 
find an equivalent of the referential stress-temperature tensor (7.1 1 6 ) ~  in the form 

In order to complete our presentation of one-dimensional finite thermoelasticity we 
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have to add a constitutive equation for the heat flux. For one dimension, Fourier's lam! 
of heat conduction in a coupled thermomechanical regime reads 

The temperature gradient along the axis of the considered rod is denoted by O' while Q 
denotes the Piola-Kirchhoff heat flux, which is, in the one-dimensional case, a scalar- 
valued function. 

1. Consider the Helmholtz free-energy function Q = Q(X. 0 )  in terms of the 
stretch ratio X and the temperature 0 characterizing a one-dimeizional consti- 
tutive problem of finite thermoelasticity. According to relations (7.108) we may 
derive constitutive equations for the nominal stress P = P(X, 0)  and the entropy 
q = q ( X ,  (3). Assume that the specific heat capacity is a positive constant co > 0. 

(a) Using the chain rule, show that the change in entropy may be expressed as 

where dE = XdX. The referential stress-temperature tensor T is given in 
eq. (7.1 16)2 (or by the equivalent of eq. (7.117)). 

(b) Using eqs. (7.115)2 and (7.119) show that the isentropic elasticity tensor 
CiSe in the material description (for a fixed entropy 77 during a process) is 
governed by the relationship 

Note that relations (7.1 19), (7.120) are the one-dimenional counterparts of rela- 
tions (7.54), (7.58). 

2. Suppose that a rod (considered as a one-dimensional structure) admits the stretch 
ratio A and the entropy 77 as independent variables and consider the existence of 
the internal-energy function per unit reference volume in the form of e = e(X, 7) .  

Derive the second Piola-Kirchhoff stress S = S(X, 11) and show that its change 
is d S  = CSedE + Tisedq, with the definitions 

of the isentropic elasticity tensor Cise,in the material description and the referen- 
tial stress-entropy tensor TiSe, evaluated at ( A ,  7) (compare with Section 7.5 for 
the three-dimensional case, in particular, with relations (7.56)1 and (7.57)1). 
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3. Consider an adiabatic (isentropic) stretching of a mechanically incompressible 
rubber band and study the homogeneous deformation process in the large strain 
domain up to a stretch ratio X = 8. Take the material properties and assumptions 
according to Example 7.5 (see p. 348). As a basis for the constitutive model take 
the thermodynamic extension of Ogden's model, with N = 3, and compare with 
the coupled thermomechanical Mooney-Rivlin model, by setting N = 2, and the 
neo-Hookean and Varga models, by setting N = 1. 

- Ogden model 
...... ........ Mooney-Rivlin model 

neo-Hookean model 

1 2 3 4 5 6 7 8  

Stretch X 

Figure 7.7 Temperature rise d of a mbber band due to adiabatic stretching for the large strain 
domain. Comparison between four different therrnoelastic models. 

Stretch X 

Figure 7.8 Nomnal stress P versus stretch ratio A. Comparison between a coupled thermo. 
mecha~ucal (non-isothermal) and a decoupled (isothermal) deformation process. 
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In particular, for N = 2, assume cul = 2, a 2  = -2 and pl(Qo) = 0.87Spo, 
p2(O0) = -0.125p0, SO that p1(@0)/p2(@0) = -7 (see ANAND [1986]), with 
the shear modulus po = 4.225 . 105N/m2 in the reference configuration. For the 
neo-Hookean model (N = 1) assume al = 2 and p1 (eO) = p0 and for the Varga 
model (N = I),  a] = 1 and PI(%) = 2p0. 

(a) Based on the Ogden, Mooney-Rivlin, neo-Hookean and Varga material 
models derive the temperature evolution 8 = O - Oo of the rubber band 
due to the stretch ratio A. 

(b) Derive a relationship between the nominal stress P and the stretch ratio X 
for a non-isothermal deformation process. Show the difference compared 
with the (classical) solution, which is based on the isothermal theory (set 
@ = Qo). Note that for an isothermal deformation process the free energy 
\T! reduces to the strain energy, as given in (6.1 19) and eqs. (6.127)-(6.129). 

Figures 7.7 and 7.8 show a comparison between the thermoelastic Ogden, Moo- 
ney-Rivlin, neo-Hookean and Varga material models. Observe the sharp upturn 
in the stress at high elongations (A 2 6 )  for the Ogden material model as indi- 
cated in Figure 7.8. This fact may partly be explained physically within more 
advanced theories obeying Langevin distribution function (non-Gaussian statis- 
tical theory), as discussed by, for example, TRELOAR [1975, Chapter 61. The 
observed rise of stress is mainly caused by limited extensibility of the polymer 
chains themselves and by strain-induced crysta!lization (see FLORY [I9761 for 
further insight). 

4. A bicycle wheel with spokes made of rubber bands is mounted with the axle 
horizontal. The spokes are in tension so that the rim is kept in place. An electric 
heat plate is placed on the right-hand side of the wheel (see Figure 7.9) so that 
the spokes on one side of the wheel are heated. As a consequence, the bicycle 
wheel starts to rotate counterclockwise, as long as heat is induced. Explain this 
effect 

This amusing device may be viewed as a Carnot thermal engine, in mhich 
rubber alone constitutes the working substance. The Carnot thermal engine 1s 
alternately subjected to two adiabatic and two isothermal processes. Investigate 
a hypothetical thermodynamic Carnot cycle for rubber-like materials. In partic- 
ular, discuss the temperature change 8 of a rubber band which occurs during the 
four processes as a function of the stretch X and the entropy q. For a detatled ex- 
position of the relevant results the reader is referred to the paper by HOLZAPFEL 
and SIMO [1996b]. 
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I 

Wheel - 

Spokes made 
of rubber 

Figure 7.9 A wheel with rubber spokes starts to rotate'counterclockwise when heated on one 
side. 

7.9 Thermodynamics with Internal Variables 

In this section we link together finite e las t ic i~ and non-equilibrium thermodynamics. 
We consider the thermodynamics of continuous media within the large strain regime 
and apply the theoly of finite thermoviscoelasticity. 

We use a thermodynamic approach with internal variables which leads to a very 
general description of materials involving irreversible (dissipative) effects, such as 
damage, relaxation andlor creep and plastic deformations. It generalizes finite ther- 
moelasticity, as outlined in Section 7.3, in the sense that additional thermodynamic 
variables (known as internal variables) are incorporated with the aim of representing 
the irreversible mechanism of the (inelashc) structural material behavior. A general dis- 
cussion of constitutive models with internal variables was emphasized in Section 6.9. 

A fully coupled three-dimensional thermomechanical model for viscous materials 
is examined. It is particularly suited for the thermoviscoelastic behavior of dissipative 
elastomeric (rubber-like) materials under varying temperatures at finite strains. Con- 
stitutive equations for the stress, the entropy and the internal variables are specified. 

Finite thermoviscoelasticity. We define a Helmholtz free-energy function (mea- 
sured per unit reference volume) as 

The thermodynamic state is completely characterized through the set of independent 
variables (F, 0, . . . , t,), i.e. the deformation gradient F, the absolute temperature 
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Q and m additional internal variables E,, a = 1,. . . , m. For the case of thermovis- 
coelasticity the tensor variables E a  represent the thermoviscoelastic contribution to the 
material response. Note that the variables E,  may also represent damage andlor plastic 
mechanisms. 

A material which is characterized by the free energy (7.121) for any point and time 
we call a thermoviscoelastic material. The behavior of a thermoviscoelastic material 
is assumed to be govemed by a = 1, . . . , m relaxation (retardation) processes with 
given relaxation (retardation) times r,(@) E (0, m), a = 1,. . . , m, which are, in 
general, temperature dependent. 

The next aim is to derive the complete set of the constitutive equations for the 
first Piola-Kirchhoff stress tensor P and the entropy 17 (per unit reference volume) in 
the general form. For that purpose we follow the standard methods presented in Sec- 
tions 6.9, 7.3 and use the Clausius-Planck form of the second law of thermodynamics 
(4.153), i.e. the internal dissipation inequality Dint = P : F - $ - ri6 2 0 (the 
Clausius-Planck form assumes non-negative entropy production due to conduction of 
heat, i.e. - ( l / O ) Q .  GradO 1 0 (compare with Section 4.6)). By means of the chain 
rule, time differentiation of the free energy Q(F, 0 ,  t,, . . . , t,) gives the hypothetical 
change in the thermodynamic state, that is the Gibbs relation for thermoviscoelastic 
materials, namely 

" 
( a q ( F )  0, E l , .  . . Em) ) +C ~a : C a  , 

a=l F,O 

where E,, a = 1, . . . , m, denote the internal strain rates. 
Since the rates I? and 8 can be chosen arbitrarily we find the constitutive equations 

for the first Piola-Kirchhoff stress P and the entropy q, and we deduce a remainder 
inequality 

The inequality Dint > 0 characterizes the internal dissipation in the viscous material 
which generates heat in an irreversible manner. 

The defined tensor variables E D ,  a = 1, . . . , m, correspond to the internal tensor 
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vanables (, according to the mternal constitutive equations (i'.124)2, wh~ch is the ther- 1 modynamic extension of relation (6.233) (or (6.244)). By analogy with alinear solid, 
E,, a = 1, . . . , m, are to be interpreted as (internal) non-equilibrium stresses (compare 

i I with Section 6.10). 

1 From physical expressions (7.123) and (7.124)2 we deduce functions for the first 
i Piola-Kirchhoff stress P, the entropy and the internal (stress-like) variables E, which 
, depend on F, Q,(,. . .Em.  Thus, 

The fundamental inequality (7. 124),, which characterizes internal dissipation, must 
be satisfied by a suitable set of evolution equations for the internal strain rates i,, 
a = 1 ,  . . . : m, described generally in the form 

The equations of evolution (rate equations) (7.127) describe theway in which an irre- 
versible process evolves. 

Note that the non-equilibrium stresses characterize the current 'distance from equi- 
librium' and vanish at the state of thermodynamic equilibrium. In view of (7.127) we 
may write the equations &(F! @, (,, . . . ,Ern) = 0, a = 1). . . , m, as time t goes to 
infinity; further, 3, = -dS/d(,lt,, = 0, a = 1, . . . , m. This implies that with 
reference to (7.124)1 the internal dissipation vanishes (Din, = 0). Then equilibrium is 
reached and the values for stress and entropy remain constant. They are govemed by 
the potential relations as derived in Section 7.3 (see eqs. (7.24)). 

The limiting case of thermodynamic equilibrium states that the thermodynamic 
process is reversible and the continuum respondsfilly thermoelastically'. All associated 
thermodynamic potentials, as outlined in Section 7.3 for finite thermoelasticity, are 
approximated asymptotically. 

In summary: the response of a thermoviscoelastic material is defined through the 
constitutive equations (7.123) and (7.124)2 (or (7.125) and (7.126)), the internal dis- 
sipation (7.124)1 and the evolution equations as outlined generally in (7.127). In ad- 
dition, these equations are supplemented by a suitable constitutive equation for the 
heat flux vector, necessary to determine heat transfer. The Piola-Kirchhoff heat flux Q 
may be introduced as a function of the deformation gradient, temperature. temperature 
gradient and internal variables, i.e. 

and must satisfy the inequality Q - GradO 5 0. 
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Structural thermoviscoelastic heating (or cooling). The specific heat capacity 
CF at constant deformation per unit reference volume was introduced and discussed in 
Section 7.4. Within the theory of thermodynamics with internal variables we define 
the specific heat capacity to have a positive value which depends on the deformation 
gradient F, the temperature field O and, additionally, on the internal variables E,, ct. = 
1.. . . , m. Thus, we write 

for all (F, Q, E , ,  . . . , 6,). Here the specific heat capacity is the energy required to 
produce unit increase in the temperature of a unit volume of the body keeping the 
deformation and the internal variablesfuced. For notational convenience we shall use 
the same symbol c~ for the specific heat capacity introduced in Section 7.4. 

Recall that within the theory of finite thermoelastic~ty we observe, in general, three 
different thermomechanical coupling effects (see p. 327). In addition, finite thermo- 
viscoelasticity incorporates viscous dissipation according to (7.124)1 and structural 
thermoviscoelastic heating (or cooling), denoted Xi, and defined as 

For the case in which the quantities E,, a = 1 , .  . . , m, represent plastic contributions, 
eq. (7.130) defines structural inelastic (plastic) heating (or cooling). 

By analogy with the derivation which led to the energy balance equation in tem- 
perature form (7.46) we proceed now by determining the change in entropy. With the 
equations of state (7.125)2 and (7.123)2 and by means of the chain rule we deduce that 

(the arguments of the functions have been omitted for simplicity). By multiplying this 
equation with the temperature 8 and using eqs. (7.44)3, (7.129)2 and (7.130), we find 
that 

On comparison with relation (4.142) we obtain finally the energy balance equation in 
temperature form, i.e. 

From the energy balance equation (7.46) we know that, within the theory of finite 
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therrnoelasticity, the evolution of the temperature Q is influenced by the material diver- 
gence DivQ of the Piola-Kircbhoff heat flux Q, the structural thermoelastic heating %, 
and the heat source R. However, relation (7.133) indicates that due to viscous effects 
the quantity cp6 depends additionally on the internal dissipation Dint and the struc- 
tural thermoviscoelastic heating 3ti,, as defined in eqs. (7.124) and (7.130), and this is 
particularly important to the thermomechanical behavior of viscous materials. 

A constitutive model for finite thermoviscoelasticity. Many materials which be- 
have elastically at ordinary (room) temperatures display pronounced inelastic char- 
acteristics at elevated temperatures, solid polymers being important examples. The 
molecular network of vulcanized rubber exhibits (nearly) no stress relaxation in the 
low temperature range of the 'rubbery' state. However, in the temperature range of 100 
to 150°C stress relaxation-experiments of vulcanized rubber at constant deformation 
(see TOBOLSKY et al. [1944]) indicate a rapid stress-decay which may be explained 
by chemical rupture of the three-dimensional network. The phenomenon of stress re- 
laxation of rubber is strongly influenced by temperature changes but is independent of 
both the deformed state of the network and the absence or presence of carbon-black 
fillers in the rubber (see TOBOLSKY et al. [1944], TOBOLSKY [1960, Chapter 51 and 
LEE et al. [1966]). 

In the remaining part of this chapter we consider a three-dimensional constitu- 
tive model for dissipative continuous media capable of accommodating thermovis- 
coelastic changes at finite strains. The model is considered to be an extension of the 
three-dimensional viscoelastic model (proposed in Section 6.10) to the theimodynamic 
regime satisfying the entropy inequality principle. The mathematical structure of the 
thermo\~iscoelastic material model is based on the concept of internal state variables 
and is well-suited for numerical realization using the finite element method. The ma- 
terial model is based on a common assumption for viscous materials, namely that the 
evolution equations for the internal variables are linear. This simplification enables 
us to characterize states close to thermodynamic equilibrium. For thermoviscoelastic 
models that account for finite perturbations away from thermodynamic equilibrium the 
reader is referred to LION [1997b] and REESE and GOVINDJEE [1998b]. 

We choose a geometric setting relative to the reference configuration and postulate 
for non-isothermal processes a Helmholtz-free energy function XP (measured per unit 
reference volume) in the form 

a=1 

valid for some closed time interval t E [O: TI of interest. We require that 
m 

Qm(I, @a) = 0 : ~ T , ( I .  @,:I) = 0 : (7.135) 
a=l 
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where Oo (> 0) is a given homogeneous reference temperature relative to a selected 
stress-free reference configuration. The set of independent variables (C: O; I?]: . . . : 
rm); i.e. the (symmetric) right Cauchy-Green tensor C, the absolute temperature 
and the (symmetric) internal variables I?,, cu = 1:. . . : m (not accessible to direct ob- 
servation), completely characterizes the thermodynamic state. The internal variables 
r, are considered as inelastic (viscous) strains akin to the strain measure C. 

The first term Q,(C: O )  in (7.134) characterizes the equilibrium state of the solid. 
We employ the subscript (o), to designate functions which represent the hyperelas- 
tic behavior of sufficiently slow processes. An efficient free energy Q, describing 
the stress-strain-temperature response of rubber-like materials at finite strains, which 
is based on the concept of entropic elasticity, may be adopted from Section 7.7 (see 
eq. (7.80)). 

The second term Cz="=,,(C: O: I?,) in (7.134) represents the configurational free 
energy ('dissipative' potential) and characterizes the non-equilibrium state of the solid 
(relaxation andfor creep behavior). The potential T, has to satisfy the thermody- 
namic restrictions imposed on the second law of thermodynamics (namely the non- 
negativeness of the internal dissipation) for any thermodynamic process. For a general 
form of T, and a detailed discussion of this issue the reader is referred to HOLZAPFEL 
and SIMO [1996c]. 

Following arguments analogous to those which led from (7.12 1) to relations (7.123) 
and (7.124) we find, using the property (6.1 1) and S = F-'P, physical expressions for 
the (symmetric) second Piola-Kirchhoff stress tensor S and the entropy 7 (per unit 
reference volume) in the forms 

and a remainder inequality 

where r,, a = 1:. . . : m, denote the lnternal strain rates. The inequality governs the 
non-negativeness of the internal dissipation Dint in the thermov~scoelastic material. 

We have introduced the definitions 
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of the contributions to the stress and the entropy, with cu = 1,. . . , m. 

As a result of the mathematical structure given in (7.134) the second Piola-Kirchhoff 
stress S and the entropy 17 are decomposed into equilibrium and non-equrlibriumparts ' 
according to eqs. (7.136) and (7.1371, respectively. The stress contribution S, and 
the entropy contribution 7, are associated with the fully thermoelastx response which 
we describe w~thin the framework of finite thermolasticity introduced in Section 7.3. 
In partxular, we may adopt the relations (7.26)3 and (7.27) by using q, instead of 
P. According to definitions (7.140) the second terms in eqs. (7.136) and (7.137), i.e. 
Cz=l Q, and Cz="=,,, contribute to the stresses and the entropy and are responsible 
for the viscous response of the material. 

The variables Q,, cu = 1 , .  . . , m, denote non-equilibrium stresses and are related 
(conjugate) to the (right Cauchy-Green) strain-like variables I?, Hence, Q, are inter- 
nal tensor variables with the internal constitutive equations 

which restrict the configurational free energy T, in view of eq. (7.140)1 (compare also 
with the discussion in Section 6.10, in particular, eq. (6.244)). Hence, considering 
(7.138), the internal dissipation takes on the form Dint = CzE1 Q, : r,/2 > 0, and 
vanishes at the state of thermodynamic equilibrium, since Q, = -2dT,/dr, It+, = 
O , a = l ,  ..., m. 

In order to describe thermoviscoelastic processes the proposed constitutive model 
must be complemented by suitable equations of evolution (rate equations). In particu- 
lar, we want to specify the evolution of the non-equilibrium stresses Q,, cu = 1, . . . , m, 
involved. A simple set of linear evolution equations for Q,  is assumed to have the form 

where (7.142) is valid for some semi-open time interval t E (0, TI and for small per- 
turbations away from the equilibrium state (for small strain rates). As usual, we start 
from a stress-free reference configuration which requires the values Q,/t=o = 0 for the 
internal variables to be zero at initial time t = 0. The first-order differential equations 
(7.142) require additional data in the form of initial conditions Q, o+ at time t = 0+. 

The term QaCp,, cu = 1, . . . , m, represents thermomechanical coupling effects which 
come from temperature dependent material parameters. Note that this term vanishes 
for purely mechanically based theories (see eq. (6.252)). The second-order tensors 
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QaCp, have to be determined such that evolution equations (7.142) are dissipative and 
compatible with the internal constitutive equations (7.141). 

The second Piola-Kirchhoff stresses S,, a = 1,. . . , m, in evolution equations 
(7.142) correspond to the free energies Q,(C, 0 )  (with Q,(I, 9,) = 0 at the reference 
configuration). They are responsible for the viscoelastic contribution and are related to 
the a-relaxation (retardation) process. We characterize the material variables S, by the 
constitutive equations 

The stresses S, only depend on the external variables C and 0 .  For the case of solid 
polymers that are composed of identical polymer chains we may replace a, by the 
free energy @, and adopt a relation similar to that given by eq. (6.256), namely 
@,(C, @) = &'@,(C, @), where P,M E [O, m) are given non-dimensional free- 
energy factors. Note that 9, must be related to the configurational free energy T, in 
such a way that the second law of thermodynamics is satisfied for any thermodynamic 
process (see HOLZAPFEL and SIMO [1996c]). 

The a-relaxation process is associated with the relaxation time .r, E (0, oo), which, 
in general, depends on the absolute temperature O (see TOBOLSKY et al. [1944]). The 
temperature dependence on the relaxation time may be related to the activation energy 
E, of the relaxation process and expressed according to the Arrhenius equation, 

where 4 represents a constant for the reacting substance and R = 8.31Nm/Kmol 
denotes the gas constant (or universal gas constant). For an explicit derivation of 
the empirical exponential function (7.144) the reader is referred to SPERLING [1992, 
Appendix 10.11. The form of the functional dependence of the relaxation time on 
temperature predicts the physical observation that viscoelastic effects occur faster as 
temperature increases. The Arrhenius equation in the form of (7.144) is representative 
of most polymer relaxations (LEE et al. [I9661 and TOBOLSKY et al. [1944]). 

EXAMPLE 7.6 The purpose of this example is to illustrate the introduced phe- 
nomenological constitutive model for thermoviscoelastic materials by means of simple 
particularizations. The free-energy functions T, and Q, are considered to be of the 
quadratic forms 

T, = p,(O?tr[(E - A,)'] , *, = ~ , ( @ ) t r ( E ~ )  , (7.145) 

(with a = 1,. . . , m), where p, > 0 is a temperature dependent (Lame-type) shear 
modulus characterizing the thermoviscoelastic behavior of the a-relaxahon process 

A 
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X ' with given relaxation time 7, > 0. The functions (7.145) are of Saint-Venont Kirchhof- 

rype (compare with eq. (6.151)), in which, for simplicity, only the shear moduli are 
I attached to the functions. The elastic strains are described by the (symmetric) Green- 

Lagrange strain tensor E defined by (2.69), while 

1 
A,=Z(l?,-I) . a = 1  . . . . .  m (7.146) 

denote the inelastic (viscous) strain measures expressed by the (symmetric) second- 
order tensors A,. 

Consider a coupling term Q ,cD,, a = 1:. . . . m, and a viscous dissipation D,,, of 
the forms 

1 
Qo,,, = 2ba (@)Ao : Dint = 7 I Q, l 2  1 0 : (7.147) 

,=I% 

with the relationship fj, = 2p,r,, motivated by the linear theory of viscoelasticity. 
The parameter fj, > 0 characterizes the viscosity of the a-relaxation process (usually 
denoted in the literature by the symbol 7, but to avoid confusion with the entropy 7 we 
place an accent over the symbol), while JQ,I = (Q, : Q,)li2 denotes the norm of the 
tensor Q,, which is a non-negative real number. Hence, the non-equilibrium stresses 
generate a non-negative dissipation such that the inequality is satisfied. 

Obtain all the relevant thermodynamic relations, in particular the constitutive equa- 
tions for the stress and the entropy. Specify the evolution equations introduced in 
(7.142) and discuss the state of thermodynamic equilibrium. For a nice rheological 
interpretation of this type of thermoviscoelastic model, given by the thermomechanical 
description (7.145)-(7 147), the reader is referred to the exercises below in this section. 

Solution. By adopting (7.140)1 and particularization (7.145)1 we may derive the 
non-equilibrium stresses Q,, which characterize the current 'distance from equilib- 
rium'. By means of property (1.252)', relation (2.69) and the chain rule we obtain 

It is important to note that a straightfonvard differentiation of T, with respect to I?, 
gives the same result as for Q,, as can be seen by recalling (7.141) and using property 
(1 .252)2, the relation (7.146) and the chain rule. 

In order to compute the entropy generated by the relaxation process, we use (7.140)~ 
and particularization (7.145)1. Thus, we obtain 

( C  @, , dp,(O)[tr(E - A,)'] - 
Va = - - - ao ao 
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with the common notation = dp,(O)/dO. 
Hence, the stress and entropy response at time t follow from eqs. (7.136) and 

(7.137) as 
m 

s = s , + C 2 p a ( 0 ) ( E - ~ , )  : (7.150) 
u=l 

m 

17 = vrn - x p k ( O ) t r [ ( ~  - A,)'] . (7.151) 
a=l 

Before proceeding to examine the evolution equations it is first necessary to deter- 
mine the second Piola-Kirchhoff stresses s,. From (7.143) and (7.145)2 we find, by 
means of property (1.252)2, relation (2.69) and the chain rule, that 

with a = 1:. . . : m. Hence, from (7.142) and with help of the product rule and assump- 
tion (7.147)] we obtain finally the evolution equations for the non-equilibrium stresses, 
namely 

which are valid for some semi-open time interval t E (0, TI. 
On comparing the given viscous dissipation (7.147)2 with (7.138) (by means of 

(7.141)), we conclude that Q, : (Q,/fj, - l?,/2) = 0. Hence, for the case in which 
Q, is different from zero we find that the expressions in parentheses must vanish. Thus, 
using (7.146), we obtain 

which is viewed as the classical Newtonian constitutive equation for the shear stress 
applied to simple shear (see eq. (5.100)). In eq. (7.154), Q, may be interpreted as 
the non-equilibrium shear stress, A, as the shear rate (of a dashpot) and 17, has the 
characteristic of the Newtonian shear viscosity. 

The state of thermodynamic equilibrium requires that Q, = 0 for t + oo, and that 
the internal dissipation 'D,,t vanishes (see eq. (7. 147)2). In view of (7.154) this implies 
that halt,, = 0. For this limiting case the thermodynamic process is reversible and 
the material response is fully thermoelastic. . 

Note that the vast majority of polymers exhibit the well-known Newtonian shear 
thinning phenomenon (pseudoplasticity) which means that with respect to Newtonian 
characteristics the shear rate i. increases faster than the shear stress alz increases (see, 
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for example, BARNES et al. [1989, Chapter 21). A model for both Newtonian and 
non-Newtonian materials is the extensively used power law model (see, for example, 
ROSEN [1979, and references therein]). This empirical model is frequently written in 
the form 

which, in this form, is only valid for simple shear. Here, n is the power law factor 
(or the flow behavior index) and m is a (temperature dependent) parameter called the 
viscosity index. Shear thinning occurs if n < 1. 

This model is used for a large number of engineering applications because it can be 
fitted to experimental results for various materials and reduces to a Newtonian fluid for 
n equal to 1, in which case rn is known as the viscosity of the Newtonian fluid (compare 
with eqs. (7.154) or (5.100)). For typical parameter values see BARNES et al. [1989, 
p. 221. For an overview of different types of rheological models the reader is referred 

. to, for example, ROSEN [I9791 and SCHOFF [l988, p. 4551. 

I. The rheological model as illustrated in Figure 7.10 (referred to briefly as a ther- 
momechanical device) is a suitable spring-and-dashpot model representing quan- 
titatively the mechanical behavior of real thermoviscoelastic materials. 

Figure 7.10 Rheological model with temperature dependent moduli. 

For simplicity the thermomechanical device is assumed to have unit area and unit 
length so that stresses and strains are to be interpreted as forces and extensions 
(contractions), respectively. 
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It is considered to be a one-dimensional generalized Maxwell model with springs 
of Hookean type and dashpots of Newtonian type. The temperature dependent 
Young's moduli and the Newtonian shear viscosities are given by Em(@) . 0, 
E,(@) > 0 and q, > 0, a = 1:. . . : m, respectively. We now define the free 
energy $ ( E :  @: y;, . . . : ym) = & ( E :  0 )  +xz=l v,(&; Q: 7,); with the quadratic 
f o m s  

and the requirements +,(O: 00) = 0 and v,(O, eO, 0) = 0, CY = 1:. . . : m. 
The energy function @ depends on the external variable E (measuring the total 
linear strain), the absolute temperature O and the inelastic (viscous) strains y,, 
CY = 1: . . . : m. The free energy v, is responsible for the a-relaxation process of 
the a-Maxwell element with given relaxation time T,, > 0. 

(a) Based on assumptions (7.156) and (7.157) obtain the explicit constitutive 
equations for the total linear stress a = &)/a& and the total entropy 7 = 
-a$/a@ in the forms 

with the common notation EA ( B )  = dE, (@)/do, a = 1: . . . : rn, and 
the physical expressions for the equilibrium parts a, = Em(@)&, 7, = 

- E ; ( @ ) E ~ / ~ .  

The non-equilibrium stresses q, act on each dashpot of the a-Maxwell 
element and are related to the associated inelastic (viscous) strains y,. 
Compute the internal constitutive equations q, = -&,(E, B,y,)/dy,, 
a = 1:. . . ; m, and obtain the current 'distance from equilibrium' q, as 
specified in eq. (7.158). 

(b) From Figure 7.10 using equilibrium derive the total linear stress o and es- 
tablish eq. (7.158). Interpret the result as a superposition of the equilibrium 
stress a, and the non-equilibrium stresses q,, a: = 1: . . . : m. 

The considered thermoviscoelastic model presents a thermodynamic extension of 
the viscoelastic constitutive model introduced in Example 6.10 (see p. 286). Re- 
markably, the equilibrium equation (7.158) and the constitutive equation for the 
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entropy (7.159) constitute the one-dimensional linear counterparts of eqs. (7.150) 
and (7.15 I), respectively. Hence, the purely phenomenological thermoviscoelas- 
tic model presented in Example 7.6 can be viewed as a nonlinear multi-dimensio- 
nal generalization of the linear rheological model, as illustrated in Figure 7.10. 

2. Reed the proposed one-dimensional themoviscoelastic model from the previ- 
ous exercise. The dashpots in the rheological model (Figure 7.10) characterize 
the dissipation mechanism. According to a Newtonian viscous fluid we may 
relate q, to the strain rates j, by the linear constitutive equations q, = 9, j,, 
a = l ,  . . . ,  m. 

(a) Consider the time derivative of the non-equilibrium stresses q, = E,(Q) 
(E -7,) and obtain the physically based evolution kquations for the internal 
variables, namely 

where the relations 7,, = rj,/E,, a = 1, .  . . , m, should be used. 

(b) Knowing that q, and j, are the stresses and the strain rates acting on each 
dashpot, derive the rate of work dissipated within the considered thermo- 
mechanical device and derive the non-negative expression 

Discuss the thermostatic limit and, in particular, specify in which parts of 
the device the stresses and the entropy remain. 

Note that the evolution equations (7.160) and the internal dissipation (7.16 1) 
constitute the one-dimensional linear counterparts of eqs. (7.153) and (7.147)~. 
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The last chapter deals with the formulation of the field equations in the form of varia- 
tional principles and methods. 

The variahonal approach in various forms is often taken as the cornerstone for 
the development of discretization techniques such as the well established finite ele- 
ment methodology. The finite element method is today becoming widely used in in- 
dustrial applications because of its predictive capability and general effectiveness in 
providing approximate solutions for the underlying initial boundary-value problems. 
On the finite element method, which is one of the most powerful numerical tech- 
niques, a large amount of literature is available. See, for example, the books by ODEN 
[1972], STRANG and FIX [1988b], ZIENKIEWICZ and TAYLOR [1989,1991], BREZZI 
and FORTIT\' [1991], REDDY [1993], BATHE [1996], CRISF'IELD [1991, 19971, BE- 
LYTSCHKO et a1 [2000], HUGHES [2000], and WRIGGERS [2001]. For a description 
of a finite element program solving problems of continua in the nonlinear context (with 
available computer software) the reader is referred to, for example, ZIENKIEWICZ and 
TAYLOR [1991], CRISFIELD [I9971 and BONET and WOOD [1997]. It is pointed out, 
however, that this reference list is by no means complete on this subject. 

Variational principles are particularly powerful tools for the evaluation of continu- 
ous bodies and belong to the fundamental principles in mathematics and mechanics. It 
is important to note that the finite element method need not necessarily depend upon 
the existence of a variational principle. However, good approximate solutions are often 
related to the weak forms of field equations, which are consequences of the stationarity 
condition of a functional. 

In thls chapter we discuss (and compare) the most important variational principles 
leading to the finits element method. We focus attention solely on isothermal processes, 
for which the temperature remains constant. Coupling between mechanical and thermal 
quantities is not considered; hence, only the mechanical balance principles enter the 
variational formulations. 

We start by explaining the notion of virtual displacements and variations and con- 
tinue with the principle of virtual work, which is fundamental for a large number of 
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efficient finite element formulations. The powerful concept of linearization is reviewed 
briefly and the principle of virtual work in both the material and spatial descriptions is 
linearized explicitly. We present some of the basic ideas of two and three-field varia- 
tional principles particularly designed to capture kinematic constraints such as incom- 
pressibility. 

The reader who wishes for additional information on the rich area of variational 
principles should consult the books by TRUESDELL and TOUPIN [1960], VAINBERG 
[1964], DUVAUT and LIONS [1972], ODEN and REDDY [I9761 and WASHIZU [1982]. 

8.1 Virtual Displacements, Variations 

Consider a continuum body B with a typical particle P E B at a given instant of time t .  
As usual, points X E fiO and x E fi characterize the positions X and x of that particle 
in the reference configuration Q0 at time t = 0 and the current configuration S1 at a 
subsequent time t > 0. In the following we indicate the displacement vector field of P 
as u, pointing from the reference configuration of the continuum body into the current 
configuration, i.e. from X to x (see Figure 8.1). 

time t = 0 

J e2 
time t 

X 1 , ~ l  / el 

Figure 8.1 Virtual configuration in the neighborhood of u, given by ii = u + ew. 

~ e x t ,  consider some arbitrary and entirely new vector field w at point x which 
yields a virtual, slightly modified deformed configuration in the neighborhood of U. 
The virtual configuration is characterized by the modified displacement vector field ii 
according to 

- 
u = u + E W ,  (8.1) 
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where E is a scalar parameter. 
The displacement vector field is regarded as a continuous and differentiable func- 

tion of space and time. It may be written in the spatial or material form, i.e. u(x, t), 
U(X; t ) ,  as introduced in Section 2.2. In order to keep the notation as simple as pos- 
sible, we agree not to use this distinction any longer, we write subsequently u(x: t)  = 

u(X: t ) .  It will be clear from the text if the displacement field actually depends on 
spatial or material coordinates. In addition, within this chapter, the position and time 
arguments will often be omitted, for convenience. 

Virtual displacement field. Following Lagrange we know that the difference be- 
tween two neighboring displacement fields, i.e. ii and u, is called the (first) variation 
of the displacement field u, denoted by 6u. We write 

In mechanics bu is also known as the virtual displacement field. The variation of u is 
assumed to be an arbitrary, infinitesimal (since c -+ 0) and a virtual change, i.e. an 
imaginary (not a 'real') change. Note that du also characterizes an infinitesimal change 
of u. However, du refers to an actual change. The variation of the time-dependent 
displacement vector field u is performed atfixed instant of time. 

The virtual displacement field bu is totally independent of the actual displacement 
field u and may be expressed in terms of spatial coordinates or material coordinates. 
Omitting the time argument t, we have 

For simplicity, we agree, by analogy with the relevant notation introduced above, to 
write bu(x) = bu(X) for the virtual displacement field bu. 

We discuss briefly the two fundamental commutative of the 6-process. 
For the gradient of Su we find by means of relation (8.2), that 

grad(du) = gradii - gradu : (8.4) 

while, on the other hand, the variation of gradu = du/ax yields by analogy with (8.Z)1 

b(gradu) = gradii - gradu . (8.5) 

On comparing eq. (8.4) with (8.5) we find finally the commutative property 

6(gradu) = grad(&) ; (8.6) 

which shows that the variation of the derivative of a function (m) is equal to the deriva- 
tive of the variation of that function (m). In an analogous manner we may derive the 
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second characteristic commutative property of the 6-process, namely, that the order of 
variation and definite integral is interchangeable. 

By analogy with the transformation (2.48) we may relate the gradient with respect 
to the current position of a particle to the material gradient, defined on region Ro. For 
subsequent use we note the relation 

dbu, abu, 
gradbu = GradbuF-I or - - - -FA: . 

d ~ b  dXA 
For more details on the variation see COURANT and HILBERT [1968a, 1968bJ. A 

clearly arranged summary of the calculus of variations may also be found in the book 
by FUKG [1965, Chapter 101. 

First variation of a function in material description. In the following let 3 = 
3 ( u )  be a smooth (possibly time-dependent) vector function. The single argument of 
3 is the displacement vector variable u given in the material description. We agree that 
the value of F, which characterizes some physical quantity, is either a scalar, vector 
or tensor. (Note the abuse of notation in regard to Section 2.3 where 3 = 3(X: t )  
characterizes a smooth material field). 

In order to obtain the first variation of the vector function 3 we must evaluate 
simply the directional derivative (or Glteaux derivative) of 3 ( u )  at any fixed u in 
the direction of bu, which we denote as Da,F(u) (recall the concept introduced in 
Section 1.8). We may consider the definition 

d 
63(u :  bu) = Ds,F(u) = - 3 ( u  + E ~ U )  

d& (8.8) 

and say that 6 3 ( u ,  6u) is the first variation of the function 3 ( u )  in the direction of 
the virtual displacement field bu. It is the ordinary differentiation of F ( u  + € 6 ~ )  with 
respect to the scalar parameter F .  

Note that the variational operator b(e) and the GLteaux operator D ( e )  are linear. 
The usual properties of differentiation are valid, i.e. the chain rule, product rule and so 
forth. 

EXAMPLE 8.1 Show that the first variation 6F of the deformation gradient F may 
be expressed as 

In addition, verify that the first variation bF-I of the inverse of the deformation gradient 
F-' is given by 

a s u  = -F-Igradbu or SF-' - -F-~L = -F-1 
Aa - gradza&* . (8.10) ax, 
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Solution. With the definition (2.39) of the deformation gradient and rule (8 .Q we 
may compute the directional derivative of F in the direction of the virtual displacement 
field 6u at the position u(x) of the current configuration, i.e. 

d 
bF = DsuF = -F(u + E ~ U )  la=O 

de 
d 

= -(F + ~GradGu) jEZo = Gradbu . (8.1 1) 
d& 

Alternatively, knowing that the operators 6(0) and d ( r )  commute we obtain simply 
result (8.9) by thinking of b(r) as a linear operator. Applying relation (2.45)~ we 
conclude that 

6F = b(Gradu + I) = 6(Gradu) = Gradbu . (8.12) 

In order to show eq. (8.10) we start with the variation of the identity F-IF = I 
which gives 6 ~ - '  = -F-'~FF-' (compare with eq. (2.145)1). Substituting (8.9) and 
using transformation (8.7) we find that 

b ~ - '  = -F-l(GradbuF-l) = -F-lgradbu : (8.13) 

which is the desired expression (8.10). . 
Finally we establish the variation of the Green-Lagrange strain tensor E. By recall- 

ing the definition (2.69) of E, we obtain with the product rule that dE = [ ~ ( F ~ ) F  + 
FTb~] /2 .  With relation (8.9) and property (1.84) we arrive at 

1 
bE = - [ ( ~ ~ G r a d b u ) ~  + ~ ~ G r a d b u ]  = s p ( ~ ~ ~ r a d b u )  ; (8.14) 

2 

or, in index notation, 

which is an important relation used in subsequent studies. The notation sym(r) is 
used to indicate the symmetric part of a tensor (compare with eq. (1.1 12h). Since 
E = (C - I)/2, we find additionally that bE = (6C)/2. 

First variation of a function in spatial description. Let f = f (u) be a smooth 

(possibly time-dependent) vector function in the spatial description. Note that the value 
of the function f (u) = x,(F(u)), which we consider as the push-forward of F, is 
either a scalar, vector or tensor. 

In order to obtain the first variation of f we formally apply the important concept 
of pull-back andpush-forward operations introduced in Section 2.5. The variation of 
f is obtained by the following three steps: 
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(i) compute the pull-back of f to the reference configuration, which results in the 
associated function 3 ( u )  = x;' (f (u)); 

(ii) apply the concept of variation to 3, as introduced in eq. (8.8), and 

(iii) carry out the push-forward of the result to the current configuration. 

This concept is actually the same as for the computation of the Lie time derivative 
introduced in Section 2.8. Instead of the direction v used for the Lie time derivative we 
take here the virtual displacement field bu. 

Consequently, for the first variation of a vector function f given in the spatial de- 
scription we merely write, with reference to eq. (2.189), 

Since DaUF(u) = 6F(u, du) according to (8,8),, we obtain 

6 f (u: bu) = X, (63(u: du)) . (8.17) 

Therefore, the first variation of function f = f (u) is the push-forward of the first 
variation of the associated function F ( u )  = xi1( f (u)) in the direction of the virtual 
displacement field bu. If f = f (u) is a scalar-valued function, then f = f (u) = 3 ( u )  
and the variation of f coincides with the variation of its associated function 3 ;  thus, 
bf = 6 3 .  

Note that in our terminology the introduced operator b is used for the variation of a 
function in both the material and spatial descriptions. 

EXAMPLE 8.2 Show that the first variation 6e of the Euler-Almansi strain tensor e 
may be expressed as 

1 
6e = (,qradT6u + gradbu) = sym(gradbu) 

2 
(8.18) 

or, in index notation, as 

Solution. Compare Example 2.15 on p. 107. From rule (8.16) we obtain the varia- 
tion of the spatial tensor e, i.e. 
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whlch is the push-forward of the directional derivative of the associated Green-Lagrange 
strain tensor E = x;l(e) in the direction of du. 

By means of rule (8.811, relation (8.14)' and transformation (8.7) we find from 
Ir 

[ that 

f 1 
be = F - ~ ~ E  F-' = - ( ~ - ~ ~ r a d ~ 6 u  + Gradbu F-') 

2 

According to eq. (1.112) the variation of the spatial tensor e is the symmetric part of 
the tensor gradbu, which gives the desired result . 

1. Show that the first variations of the volume ratio J and the inverse right Cauchy- 
Green tensor C-' are 

6J  = JdivGu , bc-I = - ~ - l ( ~ r a d ~ b u  + gradbu) F - ~  . 

2. Show that the first variations of the spatial line, surface and volume elements are 

b(dx) = gradbudx , 

bids) = (divbuI - gradT6u)ds , 
b(dv) = divbudv , 

where I denotes the second-order unit tensor. Compare eqs. (2.175)3, (2.180)3 
and (2.182)2. 

8.2 Principle of Virtual Work 

In the following two sections we study variational principles with only one field of 
unknowns. called single-field variational principles. In particular, we introduce work 
and stationary principles in which the displacement vector u is the only unknown field. 

These principles are fundamental and will become essential in establishing finite 
element formulations. 

Initial boundary-value problem. The finite element method requires the formula- 
tion of the balance laws in the form of variational principles. 
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As one of the most fundamental balance laws we recall Cauchy's first equation of 
motion (i.e. balance of mechanical energy) discussed in Section 4.3. Knowing that the 
spatial velocity field v may be expressed as the time rate of change of the displacement 
field u, we may write Cauchy's first equation of motion, i.e. (4.53), as 

diva + b = pii . (8.22) 

From the fundamental standpoint adopted in Section 4.3, the Cauchy stress tensor is 
governed by the symmetry condition a = aT deriving from the balance of angular 
momentum. The spatial mass density of the material is p = J-'po, which describes 
continuity of mass. The body force b per unit current volume which acts on a particle in 
region is considered to be a prescribed (given) force while the term pii characterizes 
the inertia force per unit current volume. Note that when we write eq. (8.22) we mean 
divu(x, t) + b(x, t) = p(x, t)ii(x, t) at every point x E Cl and for all times t. 

In the following we consider boundary conditions and initial conditions for the mo- 
tion x = X(X, t) required to satisfy the second-order differential equation (8.22). We 
assume subsequently that the boundary surface dS2 of a continuum body B occupying 
region R is decomposed into disjoint parts so that 

aR = an, u aR, with an, n an, = @ . (8.23) 

Figure 8.2 illustrates the decomposition of the boundary surface an in a two-dimensio- 
nal space at time t. 

Figure 8.2 Partition of a boundary surface 80. 

We distinguish two classes of boundary conditions, namely the Dirichlet bound- 
ary conditions. which correspond to a displacement field u = u(x, t ) ,  and the von 
Neumann boundary conditions, which are identified physically with the surface trac- 
tion t = t ( ~ ,  t, n). 
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where the overbars (5) denote prescribed (given) functions on the boundaries aR(.) c 
B 

dR of a continuum body occupying the region R. The unit exterior vector normal to the 
boundary surface 80, is characterized by n. The prescribed displacement field ii and 
the prescribed Cauchy traction vector i (force measured per unit current surface area) 
are specified on a poaon da, C dR and on the remamder dam, respectively. Note that 
in the prevlous section the symbol u also stands for the mohfied displacement field. 

We call the prescribed body force b and surface traction f loads. We say that 
the continuum body is subjected to holonomic external constraints if u = ii on the 
boundary surface 80,. External constraints are nonholonomic if they are given by an 
inequality. 

The second-order differential equations (8.22) themselves require additional data 
in the form of initial conditions. The displacement field ultZo and the velocity field 
ult,o at initial time t = 0 are specified as 

where ( o ) ~  denotes a prescribed function in SZo. Since we agreed to consider a stress- 
free reference configuration at t = 0, the initial values are assumed to be zero in 
our case. However, in dynamics the configuration at t = 0 is sometimes not chosen as 
a reference configuration. 

In order to achieve compatibility of the boundary and initial conditions we require 
additionally on dR, that 

- 
U(X: 0) = u0 (X) : $(x: 0) = uo (X) . (8.26) 

Now, the problem is to find a motion that satisfies eq. (8.22) with the prescribed 
boundary and initial conditions (8.24), (8.25) and compatibility conditions (8.26). 

This leads to the formulation in the strong form (or classical form) of the ini- 
tial boundary-value problem (IBVP). Given the body force, and the boundary and 
initial conditions, find the displacement field u so that (considering only mechanical 
variables) 

diva + b = pii , 

u = U  on 

t = u n = t  on 

u(x:t)It=o=uo(X) > 

U(x: t) It=o = UO (X) . 
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Note that the set (8.27) of equations generally defines a nonlinear initial boundary- 
value problem for the unknown d~splacement field u. In addition, we need a constitutive 
equation for the stress a which is, in general, a nonlinear function of the displacement 
field u. 

If data depend on time and the acceleration is assumed to vanish, i.e. ii = o, 
the considered problem is called quasi-static. For this case the Cauchy's equation 
of equilibrium is subjected to the conditions (8.24), (8.25)1, and the requirement that 
eq. (8.26)1 holds for compatibility. 

If the data are independent of time the problem is referred to as static. For this case 
we consider a body in static equilibrium for which the set (8.27) of equations reduces 
to the associated nonlinear boundary-value problem (BVP) of elastostatics, i.e. 

d i v a + b = o  , 

u = B  on (8.28) 
- 

t = a n = t  on an, . 

Thus, the solution of a static problem at a point of a continuum body depends only 
on the data of the boundary and not on initial conditions (there is no need for initial 
conditions). 

Principle of virtual work in spatial description. An analytical solution of the 
nonlinear initial boundary-value problem described is only possible for some special 
cases. Therefore, on the basis of variational principles, solution strategies such as the 
finite element method are often used in order to achieve approximate solutions. 

In order to develop the principle of virtual work we start with Cauchy's first equa- 
tion of motion (4.53) which we multiply with an arbitrary vector-valued function q = 
q(x), defined on the current configuration Sl of the body. Integration over the region 0 
of the body yields the scalar-valued function 

f (u: q )  = (-diva - b + pii) . qdv = 0 . 1 (8.29) 

n 

For the first argument of function f we conveniently introduce the displacement vector 
field u rather then the motion x for a given time t.  The second argument of f is a 
function q = q(x) = q(x(X: t ) )  (at afuled instant of time t), called a test function (or 
weighting function). It is a smooth function with Q = o on the boundary surface an,. 
Eq. (8.29) is known as the weak form of the equation of motion with respect to the 
spatial configuration. Equations in the weak form often remain valid for discontinuous 
problems such as shocks where most of the variables undergo a discontinuous variation. 
For this type of problem differential equations are not necessarily appropriate. 
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Since 71 is arbitrary, the vector equation diva + b = pii on i2 is equivalent to the 
weak form (8.29). The method used to prove this important property goes along with 
the fundamental lemma of the calculus of variations. The solution of the problem in 
the strong form is identical to the solution in the weak form. For further details see the 
books by HUGHES [2000] and MARSDEN and HUGHES [1994]. 

Subsequently, applying the product rule (1.290) to the term diva . q ,  i.e. 

divu . q = div(aq) - u : gradq , (8.30) 

and using the divergence theorem in the form of (1.301), eq. (8.29) may be written as 

f (u,q) = [a : gradq - (b - pii) . q]dv - a q  . nds = 0 . (8.31) / n an I 
Since q vanishes on the part of the boundary surface 80, where ii is prescribed, 

the surface integral only needs to be integrated over the portion an, c 80. By use 
of boundary conditions (8.24) and by formulating the initial conditions (8.25) in the 
weak form, we obtain the following set of scalar equations known as the variational 
problem: 

f (u, q )  = [a :  grad^ - (b - S 
an, 

(8.32) 

This set of equations characterizes the weak form (or variational form) of the 
initial boundary-value problem. It is the equivalent counterpart in the strong form 
(8.27) which is satisfied when (8.32) is satisfied. Note that the stress boundary condi- 
tions on the portion do, are part in the weak form (8.32)1, so they are often referred 
to as natural boundary conditions. However, the conditions u = ii which are pre- 
scribed over the boundary surface 80, are called essential boundary conditions of the 
variational problem 

Hence, variational problems are related to initial boundary-value problems which 
are described through differential equations and initial and boundary conditions. The 
differential equation is usually called the Euler-Lagrange equation in the weak for- 
mulation which 1n our case is Cauchy's first equation of motion (8.27)1. Formulations 
in the weak form are mathematically helpful for investigations of existence, unique- 
ness or stability of solutions (see, for example, MARSDEN and HUGHES [1994, Sec- 
tions 6.1-6.51). 

Note that the test function q in (8.32) is arbitrary. If we look upon 71 as the vir- 
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tual displacement field bu, defined on the current configuration, then the formulation 
in the weak form of the initial boundary-value problem (8.32) leads to the fundamen- 
tal principle of virtual work (or principle of virtual displacement). Considering 
the symmetry of a and the vanation of the Euler-Almansi strain tensor be, as derived 
in eq. (8.18)2, we arrive at the principle of virtual work in the spatial description ex- 
pressed in terms of the virtual displacement, i.e. 

f (u, 6u) = [a : be - (b - pii) . bu]dv - i .  buds = 0 , (8.33) S n 
an, 

with the additional initial conditions J, u(x, t)lt,o . budv = S, uo(X) . budv and 
J, "(x, t)l,=o - budv = S, uo(X) . budv. An equation of type (8.33) is typically called 
a variational equation. 

The smooth virtual displacement field 6u is arbitrary over the region W and over 
the boundary surface aR, where the traction vector f is prescribed. We require that 
6u vanishes on do,, where the displacement field ii is prescribed (see the boundary 
conditions (8.24)1). The virtual displacement field is assumed to be injinitesimal, which 
is not a requirement for an arbitrary test function. It is an imaginary (not a 'real') 
change of the continuum which is subjected to the loadings. 

The principle of virtual work is the simplest variational principle and it states: the 
virtual stress work u : be at fixed a is equal to the work done by the'body force b 
and inertia force pii per unit current volume and the surface traction i per unit current 
surface along bu removed from the current configuration. 

The functions 

bWi,,(u, 6u) = a : bedv , [ ' (8.34) 

6WeXt (u, bu) = b . budv + t . buds , J i -  (8.35) 

n an, 

are known as internal (mechanical) virtual work bbVint and external (mechanical) 
virtual work 6WeXt. 

In the first case the stress a does internal work along the virtual strains be. In the 
second case external work is done by the loads, which are the body force b and the 
surface traction i, along the virtual displacement bu about region R and its boundary 
surface 30, respectively. For vanishing accelerations ii, the internal virtual work equals 
the external virtual work, i.e. 6TVi, = bWext. 

It is important to emphasize that the principle of virtual work does not necessitate 
the existence of a potential. No statement in regard to a particular material is invoked. 
Therefore, the principle of virtual work is general in the sense that it is applicable to 
any material including inelastic materials. 
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Pressure boundary loading. In the following we are concerned with an important 
load case, the pressure boundary loading, which is caused by liquids or gases, for ex- 
ample, water or wind. Pressure loads are deformation dependent and of crucial interest 
for finite deformation problems. 

We consider a pressure boundary condition on the current boundaty surface an, C 

dR. In particular, we consider a traction vector i = a n  = pn  per unit current surface 
acting in the direction of the (pointwise) outward unit vector n = n(x). The unit normal 
vector is perpendicular to the pressure loaded surface aa, of the body with region 0. 
Further, we assume that the normal pressure p is a given constant. An example in 
which a pressure boundary condition typically exists is inflation of a balloon. 

The external virtual work done by the constant pressure p along the virtual dis- 
placement bu is then defined by 

bWeXt(u, 6u) = p n . buds , I (8.36) 

80, 

where ds  denotes an infinitesimal surface element in the current configuration. 
The external virtual work of the pressure boundary condition is discussed in more 

detail by SCHWEIZERHOF and RAMM [1984], BUFLER [1984], BONET and WOOD 
[1997, Section 6.51 and SIMO et al. [1991b] describing applications to axisymmetric 
problems. 

In the following we introduce briefly a parametrization of the current boundary 
surface dR, which is very useful for implementation in a finite element program. 
The parameter plane with region RE is characterized by El and €2 (see Figure 8.3). 
The parametrization of the surface on which p is prescribed is given in the form x = 

6, t )  c dR, (2, = b, t ) )  at fixed time t. Hence, the outward unit vector n 
may be expressed as the cross product of the displacement dependent vectors a-f/acl 
and ay/d&. The infinitesimal surface element ds  follows from eq. (1.32) and the use 
of the chain rule We write 

These relations enable the external virtual work (8.36) to be expressed as 

which is appropriate for finite element approximations. 
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Figure 8.3 Constant pressure boundary loading and parametrization of the pressure loaded 
surface 80,. 

Principle of virtual work in material description. Now we are in a position to 
express the principle of virtual work in terms of material variables. 

We assume a region Ro of the continuum body which is bounded by a reference 
boundary surface dRo. This boundary surface is partitioned into disjoint parts (compare 
with the associated partition (8.23)) so that 

~ ~ o = ~ ~ o u U ~ ~ o u  with aRo,naRa,=O . (8.39) 

As a point of departure we recall the equation of motion in the material description 
(4.63). We use the form 

corresponding to (8.22). Here, P, B and poii denote the first Piola-Kirchhoff stress 
tensor, the reference body force and the inertia force per unit reference volume, respec- 
tively. 

For the Dirichlet and von Neumann boundary conditions, i.e. u = u(X, t )  and 
T = T(X, t ,  N), we write, by analogy with (8.24), 
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where the unit exterior vector normal to the boundary surface do0 ,, is characterized by 
1 N. The prescribed displacement field I and the prescribed first Piola-Kirchhofftraction 

' vector or (force measured per umt reference surface area) are specified on the disjoint 
parts aOo and df10 ,,, respectively. The second-order differential equation (8.40) must 
be supplemented by initial conditions for the displacement field and the velocity field 
at the instant of time t = 0 (see eq. (8.25)). 

Using the above concept, we may show the principle of virtual work m the material 
description expressed in terms of the virtual displacement, i.e. 

[P : Gradbu - (B - ,o0ii) . bu]dV - T - buds  = 0 : (8.42) 

no 
J - 

ano, 

with the virtual displacement field 6u (here defined on the reference con$guration) 
satisfying the condition 6u = o on the part of the boundary surface dOou where the 
displacement field ii is prescribed. The surface traction T acts on the portion ailo , C 

doo. According to relation (3.1), T has the same direction as t, but T # t. It is 
important to note that the description of the variational equation (8.42) is equivalent 
to that of (8.33). 

EXAMPLE 8.3 Show that the material form of the principle of virtual work, as given 
in (8.42), can be obtained alternatively by a pull-back operation of relation (8.31) to 
the reference configuration. 

Solution. In order to show (8.42) we must express the internal and external virtual 
work 6Wint and 6Wea in eqs. (8.34) and (8.35) and the contribution Jn pii . 6udu in 
terms of material variables. 

We begin by considering the internal virtual work (8.34). With the help of identities 
(8.18)~. (2.5 1) and transformation (8.7) we obtain 

S a : bedv = a : gradbudu = Ja : Grad6uF-ldV ; J S (8.43) 

n n a, 

where the symmetry of the Cauchy stress tensor a is to be used. 
Applying property (1.95) and Piola transformation (3.8) we obtain the canonical 

representation of the material verslon, 1.e. 

The external virtual work 6We* in the form of eq. (8 35) may be transformed by 
means of the relation for the body force b, i.e. b = JP1B, and the change in wolume 
which is glven by dv = JdV. In addition, we must show the equivalence of the 
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prescribed traction vectors. With relation (3.1) and boundary conditions (8.24)2 and 
(8.41)2 we deduce that ids = TdS. Hence, 

6 ~ , ( ~ , 6 u ) = / b . d ~ d ~ +  / i - b u d s = / ~ . b u d v +  J T . d u d s  . (8.45) 

n an, no ano, 

The remaining term in eq. (8.42), i.e. the inertia force poii per unit reference volume 
over the region 00, may simply be established from the third term in the associated 
eq. (8.31) by means of podV = pdv,  i.e. conservation of mass in the local form (4.6). 
This result together with (8.44) and (8.45) leads to the desired relation (8.42). 

1. Starting at eq. (8.44)2, show that the internal virtual work bK7int may also be ex- 
pressed as the contraction of the symmetric second Piola-Kirchhoff stress tensor 
S and the virtual Green-Lagrange strain tensor 6E defined in eq. (8.14). 

In addition, show that bW;,t may also be given in terms of the Mandel stress 
tensor C = CS and the variation of the symmetric Green-Lagrange strain tensor, 
i.e. bC = 26E, by using eq. (3.67) as 

8.3 Principle of Stationary Potential Energy 

In the principle of virtual work, as derived in the last section, the stresses are considered 
without their connections to the strains. We have not taken into account a particular 
material. 

In this section we assume a conservative mechanical system (compare with p. 159) 
requiring the existence of an energy functional H for both the stresses and the loads. 
The assumption of the existence of TI is common in many fields in solid mechanics. 
The loads may depend on the motion, but they must emanate from a functional. A for- 
mulation based on energy functionals is very useful, for example, for the development 
of robust numerical algorithms that are based on optirliization techniques. 

In the following we introduce a stationary energy principle in which the displace- 
ment vector field u is taken to be the only fundamental unknown. 
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6 
1 

Stationary energy principle. From now on we assume that the loads do not depend 
i on the motion of the body, which is usually the case, for example, for body forces. 

It means that the directions of the loads remain parallel and their values unchanged 
throughout the deformation of the body. We say that such loads are 'dead'. 

Instead of a vibrating body we consider a body m static equihbrium under the action 
of specified 'dead' loadings and boundary conditions on r3flou and XlO, ,  according to 
eq. (8.41). Then the total potential energy TI of the system is given as the sum of the 
internal and external potential energy, and IT,, i.e. 

n ( ~ )  = Hint (u) + next (u) : (8.47) 

where Q = Q(F) denotes the strain-energy function per unit reference volume, as 
introduced in Section 6.1. 

Since the deformation gradient F depends on the displacement vector field u by 
the relation according to eq. (2.45)2, i.e. F = Gradu + I, we indicate explicitly the 
dependence of F on u and write F = F(u). For ITint and next we will also indicate 
subsequently the dependence on u. Note that for a rigid body the term ITint is zero. The 
'dead' loadings, given by the external forces B and T, are distributed over the volume 
of the continuum body and its von Neumann boundary, respectively. 

One main objective of common engineering interests is to find the state of equilib- 
rium (the deformed configuration) for which the potential is stationary. The stationary 
position of the total potential energy IT is obtained by requiring the directional deriva- 
tive with respect to the displacements u to vanish in all directions bu. Compute 

which is known as the principle of stationary potential energy, another fundamental 
variational principle in mechanics. In other words, we require that the first variation of 
the total potential energy, denoted 6II, vanishes. The variation of n clearly is a function 
of both u and bu. The arbitrary vector field 6u is consistent with the conditions imposed 
on the continuum body. Thus, 6u = o over aR,, where boundary displacements are 
prescribed. 

In order to decide if the solution corresponds to a maximum, a minimum or a saddle 
point we must determine the second variation of the total potential energy II, denoted 
by J21T(u, du, Au) = Diu,A,II(u). Here, Au is the increment of the displacement field 
u which will be discussed later in Section 8.4. The quantity Diu,A,ll(u) is obtained 
from the directional derivative of variational equation (8.49) with respect to u in the 
direction Au (i.e. the second directional derivative of Il with respect to u): which is 
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either a maximum (D~u,A,II(u) < 0), a minimum (DiU,,,II(u) > 0), or a saddle point 

(Diu,auntu) = 0). 

EXAMPLE 8.4 Show that the directional derivative of the total potential energy n, 
as given by (8.47), (8.48), with respect to u in the arbitrary direction 6u leads to 

The internal virtual work BWint and the external virtual work 6Wm are given through 
eqs. (8.44) and (8.45), respectively. 

Furthermore, show that the stationary position of the total potential energy ll gives 
the principle of virtual work for a body m static equilibrium, as given in eq. (8.42). 

Solution. Since the loads B and T do not depend on the deformation of the body, 
they do not contribute to the directional derivative. Hence, from (8.49)1, we find, with 
use of expressions (8.47) and (8.48), that 

= d[/ Q(F(U + E6u))dv - B - (u + &Bu)dY 
d~ 1 

no 

- 7 T.(u+&bu)dS]iC=o . (8.52) 

ano 

Interchanging differentiation and integration and applying the chain rule, we obtain 

where DaF denotes the directional derivative of the deformation gradient F at u in the 
direction of bu, derived in eq. (8.1 1). 

In order to specify the first integral in eq. (8.53) we recall the physical expression 
(6.1)] and use result (8.11)4 to obtain 
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By recalling definitions (8.44)2 and (8.45)2 and combining (8.53) with (8.54)2 we find 
the desired results (8.50) and (8.5 1). Hence, stationary condition (8.49) yields precisely 
the principle of virtual work (8.42) for a configuration in static equilibrium which ren- 
ders stationary the functional n. 

We conclude that the total potential energy II is stationary for arbitrary variations 
6u, which means evaluating GIT(u, 6u) = 0 with respect to the displacements, if and 
only ij the nonlinear variational equation (8.42) (for ii = o) is satisfied (equilibrium 
state). 

Finally, note that for the purpose of computing the stationary position of II the 
magnitude of the virtual displacements need not be small, as is sometimes stated in the 
literature. However, in order to achieve a first-order approximation the magnitude of 
the virtual displacements must be small. 

Penalty method for incompressibility. The principle of virtual work is not the 
appropriate variational approach to invoke kinematic constraint conditions such as in- 
compressibility, contact boundary conditions or Kirchhoff-Love (kinematic) conditions 
on plates and shells often occurring in engineering applications. 

A numerical analysis of nearly incompressible and incompressible materials ne- 
cessitates so-called multi-field variational principles in which additional variables 
are incorporated. Multi-field variational principles, dealt with in more detail in Sec- 
tions 8.5 and 8.6, lead to mixed or hybrid methods for finite elements. 

Nevertheless, a single-field variational approach with the displacement u as the only 
field variable is very often used in order to approximate, for example, incompressible 
materials. This leads to the so-called penalty method, which is based on the simple 
(physical) idea of modeling an incompressible material as slightly compressible by us- 
ing a large value of the bulk modulus. Of course, following this idea, an incompressible 
material can be obtained by taking the limit infinity for the bulk modulus. However, 
the result of this idea from the numerical point of view is that we always work with a 
slightly compressible material since the incompressible limit can never be achieved. 

To be more precise, rather than employing the strain-energy function in the form 
of T! = Q (F), it is standard to use the unique decoupled representation of the strain- 
energy function in the form 

( )  = ( )  + ( )  with QV,,(J) = n4(J) , (8.55) 

so that energy functional (8.47) takes on the penalty form 

npM = /\Q',(J(u)) + Q,,(~(u))ldv + L(.) , (8.56) 

no 

with the external potential energy II,,, given by eq. (8.48)2. 
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Here, J = J(u)  = (detc)'i2 defines the volume ratio and C = C(u) = J-'/~c the 
corresponding modified nght Cauchy-Green tensor, as introduced in eq. (6.79)2. The 
strictly convex function QvO1 describes the volumetric elastic response while Qiso is 
associated with the isochoric elastic response of the hyperelastic material. We require 
Qvol(J) and Qi,,(C) to be zero if and only if J = 1 and F = I, ensuring that the 
reference configuration is stress-free. 

According to eq. (8.55)2 the volumetric contribution is characterized by a (pos- 
itive) penalty parameter n > 0 which is independent of the deformation. The parame- 
ter K may be viewed as the bulk modulus. The function G is motivated mathematically 
It is known as the penalty function and may adopt the simple form 

often used in numerical computations. Consequently, the meaning of the function QVol 
as used in eq. (8.55)1 differs significantly from its meaning in eq. (6.85), in which QVo1 
is of physical relevance. 

We now derive the stationary position of II, with respect to the displacement field, 
which is basically a procedure according to Example 8.4. Starting with the fundamental 
condition (8.49) and following the steps which have led to eq. (8.54) we find, using 
decomposition (8.55), that 

where Ds,C denotes the directional derivative of the right Cauchy-Green tensor C at u 
in the direction of bu, which is 26E (see Section 8.1). 

A specification of the integral in eq. (8.58) implies, by means of the chain rule and 
relation (6.82),, that 

(the arguments of the functions have been omitted for simplicity). 
With reference to eq. (6.91)l the term d9,lldJ defines the hydrostatic pressure p. 

Hence, recalling definitions (6.89)~ and (6.90)1, we conclude that the terms in paren- 
theses of (8.59)~ are associated with the volumetric and isochoric stress contributions 
Srol  and Si,,, respectively. 

Using the second Piola-Kirchhoff stress tensor S, which is based on the additive 
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f 
i , decomposition (6.88)2, we achieve finally the principle of virtual work (for a configu 

r a ~ o n  in static equilibrium) in the form 

DJUnp (u) = / S : 6EdV + D J ~ I I , ~  (u) = 0 . (8.60) 

Note that the integral in eq. (8.60), i.e. the directional derivative of the internal 
potential energy with respect to u in the arbitrary direction 6u, precisely gives the 
internal virtual work c~W,,~ (see eq. (8.46)& The second term in eq. (8.60) is related to 
the external virtual work according to (8.51)2. 

A parametrization of the hydrostatic pressure p is simply obtained from eq. (8.55)~ 
by means of assumption (8.57), i.e. 

In contrast to eqs. (6.140)2 and (6.141), this is an artificial constitutive equation for p 
designed to prevent a significant volumetric response, as already pointed out. 

The user-specified penalty parameter n is merely an adjustable numerical parameter 
which is often chosen through numerical experiments. Clearly, with increasing K the 
violation of the constraint is reduced. If we take the restriction on the value n -t m, 

the constraint condition is exactly enforced, and then eq. (8.56) represents a functional 
for an incompressible material with J = 1. 

Unfortunately, for an approximation technique such as the finite element method, 
the stiffness matrix becomes increasingly ill-conditioned for increasing K (see, for ex- 
ample, BERTSEKAS [I9821 and LUENBERGER [I9841 for detailed studies). For that 
case the reduced integration method, and the later proposed selective-reduced inte- 
gration method (which are equivalent to certain types of mixed finite element meth- 
ods, as discussed in MALKUS and HUGHES [I9781 and HUGHES [2000]) is often used 
to underintegrate (weaken) the penalty function. 

However, penalty methods are attractive because they are based on a simple varia- 
tional principle with all its computational advantages and are very effective to imple- 
ment in a finite element program. 

1. The classical Hamilton's variational principle represents a generalization of 
the principle of stationary potential energy (8.49) to continuum dynamics. It is 
presented by the stationary condition 

6 t o  1 L ( u , u ) d t Z D ~ ,  t o  1 L(u,u)dt=O where L ( u , u ) = n ( u ) - K ( u )  , 
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with bu denoting the variation of the displacement vector field, which is a func- 
tion of position and time. The functional L (in the literature spmetimes intro- 
duced as -L) is integrated with respect to time t over the closed time interval 
t E [to, t l ]  (to and tl are two arbitrary instants of time). We now assume the 
restriction that at the times t o  and tl, the variation du of the displacement vector 
field vanishes at all points of the continuum body, i.e. 

bult=to = bult=t, = o . (8.62) 

The scalar-valued functionals II and K denote the total potential energy (4.114) 
and the kinetic energy (4.83) of the moving body, as usual. The potential energy 
of the loads exists and is given by eq. (8.48)2. 

Show that the vanishing variation of the functional L with the imposed restric- 
tions (8.62) gives the principle of virtual work (8.42) for all Su which are zero 
on aR, throughout the entire closed time interval t E [to, tl]. 

2. Consider a constant normal pressure p applied to a boundary surface enclosing a 
certain region. Show that there exists the associated potential 

whose variation gives the external virtual work bWeXt, as defined in eq. (8.36), 
i.e. DauIIext (u) = GWeh (u, bu) = p Sanr n . Guds. 

8.4 Linearization of the Principle of Virtual Work 

Variational principles such as the principle of virtual work in the forms of (8.33) or 
(8.42) are generally nonlinear in the unknown displacement vector field u. Typically, 
the nonlinearities are due to geometric and material contributions, i.e. the kinematics 
of the body and the constitutive equation of the material, respectively. 

As mentioned above, one main objective of engineering analysis is to find the un- 
known field u which is the solution of the associated nonlinear boundary-value prob- 
lem. Usually, (exact) closed-form mathematical solutions of a set of nonlinear partial 
differential equations are only available for some special engineering problems; they 
are rather complicated and often unusable. 

In order to keep the complexities of engineering problems intact, approximate nu- 
merical solutions; based on, for example, the finite element method, are required. A 
very common and simple numerical technique to solve nonlinear equations is to employ 
the reliable incremental/iterative solution technique of Newton's type. It is an efficient 
method with the feature of a quadratic convergence rate near the solution point. Thls 
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technique requires a consistent linearization of all the quantities associated with the 
considered nonlinear problem generating efficient recurrence update formulas. The 
nonlinear problem then is replaced by a sequence of linear problems which are easy to 
solve at each iteration. 

Linearization is a systematic process which is based on the concept of directional 
derivatives, see the pioneering work of HUGHES and PISTER [1978]; for the more 
generalized concept see the book by MARSDEN and HUGHES [1994, Chapter 41, and 
for an application to rods and plates the work of WRIGGERS [I9881 among others. 
For the concepts of linearization and directional derivative and their applications in 
nonlinear continuum mechanics see also the textbook by BONET and WOOD [1997]. 

Concept of linearization. The following part of this section deals with the lin- 
earization of a nonlinear and smooth (possibly time-dependent) function F = F(u )  in 
the material description which is either scalar-valued, vector-valued or tensor-valued. 
The single argument of F is the displacement vector variable u. 

Consider u, then the fundamental relationship for the linearization of the nonlinear 
function 3 is based on the first-order (Taylor's) expansion, which is expressed as 

3 ( u .  Au) = 3 ( u )  + AF(u: Au) + o(Au) (8.63) 

where A(.) denotes the linearization operator similar to b(.). The operator A(.) 
is also linear and the usual properties of differentiation are valid. The quantity Au 
denotes the increment of the displacement field u, here expressed in the reference 
configuration. 

The remainder o(Au), characterized by the Landau order symbol o(.); is a small 
error that tends to zero faster than Au 4 o, i.e. limn,,, o(Au)/(Au = 0. 

Within the classical solution technique of Newton's method, Taylor's expansion is 
truncated after the first derivative of F. Hence, the first term in (8.63) is a constant 
part, i.e. an approximate solution for a given state u. The second term A F  is the linear 
change in 3 due to Au at u. It is the directional derivative of 3 at given u (fixed) in 
the direction of the incremental displacement field Au, i.e. 

where the linear Gdteaux operator D(8)  is withrespect to the incremental displacement 
field Au. We say that AF(u:  Au) is the linearization (or linear approximation) of 
F at u. 

Note that in regard to eq. (8.8) the first variation DaU3(u) of a vector function 
F (u )  and the linearization Da,F(u) of that vector function are based on the same 
concept of directional derivatives. By taking notice of this equivalence of variation and 
linearization, all relations derived in the previous Section 8.1 can be adopted here; we 
just use the symbol A(.) instead of b(m). 
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For example, relation (8.6) and transformation (8.7) read 

A(gradu) = grad(Au) (8.65) 

aa~,  aa~, -- gradnu = GradAu F-' or - - . . (8.66) arc* d X A  

In addition, the linearizations of tensors F, F-l, E are 

A F  = DAuF = GradAu : (8.67) 

AF-I = DaUF-l = -F-lgradAu : (8.68) 

which are analogous to eqs. (8.9), (8.10), (8.14). 

EXAMPLE 8.5 Show that the linearization 46E of the virtual Green-Lagrange 
strain tensor 6E = sym(FTGradbu), as derived in eq. (8.14)2, may be expressed as 

AbE = s y m ( ~ r a d T A u  Gradbu) . (8.70) 

Solution. According to the rule (8.64), we compute the directional derivative of 6E 
in the direction of Au at u, i.e. 

Since the virtual displacement field 6u is independent of the displacement, the term 
Grad6u is not affected by the linearization. Knowing that d/ds F(u + EAU) = 
GradAu (see eq. (8.67)), we find the desired result (8.70). 

In order to linearize a nonlinear smooth vector function f = f (u) in the spatial 
description we adopt the concept for the first variation of f introduced on p. 375. By 
analogy with relation (8.16), we may write 

A.f(u: Au) = x*(Dnu~; ' ( f  ))  = x,(DauF) (8.72) 

for the linearization (or linear approximation) of f .  Since Dau3(u)  = A 3 ( u ;  Au) 
according to (8.64) we obtain 

n f ( u ,  n u )  = X*(AF(U: AU)) (8.73) 

which is analogous to eq.(8.17). For notational simplicity, the linearization operator A 
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is not particularly marked when applied to a function in the spatial description, as for 
the 8-process. 

Note that the operators required for the Lie time derivatives, the variations and 
linearizations of spatial tensor variables are formally the same. They are based on the 
concept of directional derivative. For the Lie time derivative the considered direction of 
the derivative is v, while for the variation and linearization it is the virtual displacement 
field bu and the incremental displacement field Au, respectively. Compare relations 
(2.189), (8.16) and (8.72). 

EXAMPLE 8.6 Show that the linearization A6e of the virtual Euler-Almansi strain 
tensor de, which is a spatial tensor field according to eq. (8.18), may be expressed as 

Solution. Since we apply the systematic technique of linearization to material quan- 
tities, as a first step we pull-back the variation of the Euler-Almansi strain tensor be, 
that is the inversion of eq. (8.2Q2, which yields the variation 6E of the associated 
Green-Lagrange strain tensor E. The linearization of 6E is carried out by analogy with 
Example 8.5. In the last step the push-forward operation on ASE, as given in (8.70), is 

where the relations (8.66) and (8.7) should be used. H 

Linearization of the principle of virtual work in material description. In order to 
linearize the principle of virtual work in the material description we recall the nonlinear 
variational equation (8.42). For simplicity we consider a purely static problem, so that 
ii = o. In addition, we assume the loads B and T to be 'dead' (independent of the 
deformation of the body), so that the corresponding linearization of the external virtual 
work (8.45) vanishes, i.e. DaubWext(~,  bu) = 0. This is certainly not the case for some 
other types of loads, like the pressure loads discussed on p. 383 and subsequently. 

Hence, the linearization of the variational equation (8.42) only affects the internal 
virtual work bWint, on which we will focus subsequently. For our purpose we take the 
material (or Lagrangian) form (8.46)2, i.e. 

Note that the Green-Lagrange strain tensor E depends on the displacement field u 
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through the relationship. (2.91). 
Now we may adopt rule (8.64) in order to compute the linearization of (8.76), i.e. 

= "[j 
d& S(E(u + EAu)) : dE(u + ~ 4 u ) d V ] . = ~  . (8.77) 

no 
Interchanging differentiation and integration and using the product rule results in 

D~.bWi.t(u, h) = / [s(E(~))  : Da.bE(u) + 6E(u) : Dn.S(E(u))]dV , (8.78) 

no 

where Dau6E characterizes the directional derivative of bE at u in the direction of Au, 
i.e. the linearization of bE according to eq. (8.70). 

In order to specify the linearization Da,S of the (symmetric) second Piola-Kirchhoff 
stress tensor S in eq. (8.78), use the chain rule to obtain 

with DauE denoting the linearization of the Green-Lagrange strain tensor E (see re- 
lations (8.69)). It is important to emphasize that the term BS(E)/BE is precisely the 
elasticity tensor C in the material description, as defined in eq. (6.155). It is a fourth- 
order tensor which possesses the minor symmetries CABCD = CBACD = CABDC. 

Hence, eq. (8.78) may be re-expressed as 

DAu6Winz(u,b~) = [S(E(u)) : DAubE(u) + bE(u) : @(u) : DAUE(u)]dV . (8.80) 1 
a0 

Finally, we use the explicit expression (8.70) and property (1.95) for the first term 
of the integral in eq. (8.80) and relations (8.14) and (8.69) for the second term. Since 
the stress tensor S is symmetric and the elasticity tensor @ has minor symmetries, the 
linearization of the internal virtual work in the material description leads to the set of 
linear increments 

D ~ ~ 6 M f i ~ ~  (u, 6u) = (Gradbu : GradAu S / 
no 
+FTGrad6u : @ : ~ ~ ~ r a d ~ u ) d V  , (8.81) 

or, in index notation, 
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which describes the fully nonlinear (finite) deformation case. The terms babSBD and 
FaAFbCCABC~ represent the effective elasticity tensor, which has the nature of the 
(tangent) stifiess matrix. 

Relations (8.81) and (8.82) are linear with respect to bu and Au depending on X. 
These relations show a clear mathematical structure in the sense that bu and Au can 
be interchanged without altering the result of the integral; thus DAubWint (u, bu) = 

Da,,bWint(u, nu).  Relations (8.81) and (8.82) lead to a symmetric (tangent) stiffness 
matrix upon discretization. Note that, for example, the set of nonlinear equations as- 
sociated with nonlinear heat conduction results in a different mathematical structure 
leading to a non-symmetric stiffness matrix. 

The first term in eq. (8.81) comes from the current state of stress and represents the 
so-called geometrical stress contribution (in the literature sometimes called the ini- 
tial stress contribution) to the linearization. Since SAB is not the initial stress (it is in 
fact the current stress), the terminology is misleading. Within an incrementaUiterative 
solution technique we can think of Sas as the initial stress at every increment, so the 
term initial stress contribution has some meaning. The second term in eq. (8.81) repre- 
sents the so-called material contribution to the linearization. 

The linearized principle of virtual work (8.81) constitutes the starting point for 
approximation techniques such as the finite element method, typically leading to the 
geometrical (or initial stress) stiffness matrix and to the material stiffness matrix. 

Note that for some cases it is more convenient to discretize the nonlinear variational 
equation as a first step and to linearize the result with respect to the positions of the 
nodal points as a second step. 

Linearization of the principle of virtual work in spatial description. In order to 

linearize the principle of virtual work in the spatial description we recall the nonlinear 
variational equation (8.33). 

As above we consider the static case (ii = o) and assume the loads b and i to be in- 
dependent of the motion of the body. Only the linearization of the internal virtual work 
bWint in the spatial description remains. We adopt bWint in the spatial (or Eulerian) 
form (8.34). The idea is first to pull-back the spatial quantities to the reference config- 
uration, so they correspond with the internal virtual work in the material description. 
Then they are linearized, as above, and as a last step it is necessary to push-forward the 
linearized terms. 

Starting with the equivalence 

we consider the linerization of the internal virtual work in the material description 
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which we have derived in (8.78), i.e. 

D,.bW, = / ( s  : D.,,6E + bE : DnuS)dV (8.84) 
no 

(the arguments have been omitted). 
Hence, the push-forward operation on the second Piola-Kirchhoff stress tensor S 

yields, according to (3.64), the Kirchhoff-stress tensor r, which is related to the Cauchy 
stress tensor by r = Jm. Pushing forward the linearized variation of the Green- 
Lagrange strain tensor, A6E, yields the linearized variation of the Euler-Almansi strain 
tensor, Abe, as discussed in Example 8.6. Computing the push-forward of bE results 
in be, as introduced in Section 8.1. 

Finally, we derive the push-forward of the linearized second Piola-Kirchhoff stress 
tensor, i.e. the last term in (8.84), which will yield the linearized Kxchhoff stress tensor 
AT. We write 

with DauS given by (8.79), i.e. DaUS = @ : DauE. By use of (8.69) and (8.66), the 
term F(DA,s)F~ in eq. (8.85)~ may be written as 

where we have also employed the minor symmetries of @. In order to proceed it is 
more instructive to employ index notation. With the definition (6.159) of the spatial 
elasticity tensor (c),bcd = c,bcd, eq. (8.86) is equivalent to 

Hence, the linearization of the spatial Kirchhoff stress tensor, i.e. (8.85), gives the 
useful relation 

Note that the increment AT denotes the linearized tensor-valued function r ac- 
cording to the concept of directional derivative introduced in (8.72). Replacing the 
associated direction Au, used in the directional derivative, by the velocity vector v, 
AT and gradAu result in the Lie time derivative £,(r) of r and the spatial velocity 
gradient 1 (defined by (2.141)4), respectively. By uslng the symmetries of c relation 
(8.88) reads bl,(r) = Jc : d, which proves (6.161). 
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Considering the push-forward operations derived we obtain finally, from (8.84) 
with relation dv = J d V  and some rearranging, the linearized internal virtual work 
in the spatial description, i.e. 

Dau6Wint(u, bu) = (grad6u : gradAu u + gradbu : c : gradAu)dv : (8.89) S n 

or, in index notation, 

where dacabd + cabcd represents the effective elasticity tensor in the spatial descrip- 
tion. Relations (8.89) and (8.90) are linear with respect to the terms 6u and Au. They 
describe the fully nonlinear (finite) deformation case and have a similar symmetric 
structure to the linearized eqs. (8.81) and (8.82). 

Formulations according to (8.81) and (8.89) are in the literature sometimes called 
total-Lagrangian and updated-Lagrangian, respectively. This really means that inte- 
grals are calculated over the respective regions of the reference and the current configu- 
ration. However, it is important to emphasize that the derived material representations 
(8.81) and (8.82) of the linearized virtual internal work are equivalent to the spatial 
versions (8.89) and (8.90). The two representations are based on the use of change of 
variables, and the results are the same in both cases. 

In order to recapture the small deformation (but nonlinear elastic) case (in the lit- 
erature often called the materially nonlinear case) we fix the geometry, i.e. we do not 
distinguish between initial and current geometry. Further, we do not account for the 
initial stress contribution daCgbd and ignore the quadratic terms in the Green-Lagrange 
strain tensor. In addition, for the fully linear case, the coefficients of the elasticity 
tensor are given and are not functions of strains anymore. 

EXAMPLE 8.7 An alternative approach to derive the linearized internal virtual 
work (8.89) in the spatial description is to use the formal equivalence of the material 
time derivative of scalar-valued functions in the spatial description with the directional 
derivative of these functions in the direction Au (compare with Section 2.8). 

Carry out the material time derivative of the internal virtual work L~W,,~ in the spa- 
tial description and use this property to obtain its linearization. This approach circum- 
vents the extensive pull-back and push-forward operations. 
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Solution. We again start with bWint in the spatial form (8.34) and change the domain 
of integration with dv = J d V  so that 

6Wi, (u: 6u) = u (u) : de(u)dv = J u  (u) : be(u)dV : J (8.91) 
n no 

where the Euler-Alrnansi strain tensor e depends on the displacement field u through 
the relationship (2.92). The Cauchy stress tensor u also depends on u, here a function 
of the current position x. 

Employing material time derivatives and the product rule we find from (8.91)2 that 

where additionally the relationship between the symmetric Kirchhoff-stress tensor T 

and a, i.e. r = J a ,  is to be used. Recall that the superposed dot denotes the material 
time derivative, as usual. 

Firstly, we derive the material time derivative of the virtual Euler-Almansi strain 
tensor be. By means of (8.7) and (2.145)2, we find from that 

with the spatial velocity gradient I = gradv (recall definition (2.137)). 
Secondly, we focus attention on the crucial material time derivative of the Kirchhoff 

stress tensor r. We start with the relation for the (objective) Oldroyd stress rate of 
the spatial stress field r .  Recall the Oldroyd stress rate of T which is identical to 
the Lie time derivative of 7, and with reference to eq. (5.59) expressed as £,(T) = 
i - IT - rlT. By means of £,(T) = J c  : d, i.e. eq. (6.161), we conclude that 

where c and d = sym(1) are the spatial elasticity tensor and the rate of deformation 
tensor (compare with definitions (6.159) and (2.148), respectively). 

Substituting relations (8.93)5, (8.18) and (8.94) into (8.92) and using the symmetry 
of r and the minor symmetries of c, i.e. cabcd = cbacd = cabdcr we obtain 

blqnt (u: bu) = [T : (-gradbu I) + grad611 : Ja: : d J 
no 
+ gradbu : l r  + gradbu : rlT]dV . (8.95) 
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By use of property (1.95) the sum of the first and last terms in eq. (8.95) vanishes and 
we obtain 

P 

bW,,,t(u, bu) = (gradbu : J c  : d + grad611 : 1 ~ ) d V  . I (8.96) 

no 

Applying now the formal equivalence of the material time derivatives and the di- 
rectional derivatives, and replacing the spatial velocity field v by the linear increment 
Au, we may rewrite (8.96) as 

DAubWint(u, bu) = (gradbu : J c  : gradAu + gradsu : gradAur)dV . (8.97) / 
no 

Changing the domain of integration back and using the stress transformation T = J a  
again we arrive finally at the linearized internal virtual work in the spatial description, 
i.e. (8.89). . 

EXERCISES 

1. Take the part &,,abd of the effective elasticity tensor due to the current stresses in 
the spatial description. 

(a) Show that this term possesses the major symmetry, that means that nothing 
changes by the manipulation 

(b) Further, show that it does not possess the minor symmetry, i.e 

However, for the case in which the term ba,abd is absent, under the assump- 
tion of a hyperelastic material the minor and the major symmetry of c0bcd 
hold. Discuss the consequences in regard to finite element discretizations. 

2. Show that the linearization of the internal virtual work b'CVi, may also be written 
as 

DaubWint(u, bu) = Gradbu . A : GradAudV , / 
no 

where A is a (mixed) fourth-order tensor useful in numerical implementations. It 
is known as the (first) elasticity tensor with the definition 
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where P denotes the first Piola-Kirchhoff stress tensor depending on the defor- 
mation gradient F: 

Note that the linearization of 6Wnt contains one term only (compare with rela- 
tion (8.81)). 

3. Carry out the linearization of the external virtual work bWeXt, assuming pressure 
boundary loading, as derived in eq. (8.38). Consider a constant pressure load p 
and show by means of the product rule and relation (2.5) that 

Note that the two terms in eq. (8.98) are not symmetric in bu and Au. In fi- 
nite element discretizations the associated tangent stiffness matrix is also not, in 
general, symmetric. 

8.5 Two-field Variational Principles 

So far we have considered single-field variational principles such as the principle of 
virtual work. It is not always the best principle to choose, particularly when constraint 
conditions are imposed on the deformation. In finite element analyses of problems 
which are associated with constraint conditions, significant numerical difficulties must 
be expected within the context of a Galerkin method, i.e. a standard displacement- 
based method in which only the displacement field is discretized. This method exhbits 
rather poor numerical performances such as penalty sensitivity and ill-conditioning of 
the stiffness matrix, as is well-known from 

(i) the numerical analysis of rubber, which is frequently modeled as a nearly incom- 
pressible or incompressible material, 

(ii) bending dominated (plate and shell) problems, 

(iii) elastoplastic problems that are based on J2-Bow theory (the plastic flow is iso- 
choric), and 

(ivy Stokes' flow, which mathematically yields a problem identical to that for isotropic 
incompressible elasticity. 

In the computational literature these devastating numerical difficulties are referred 
to as locking phenomena. Essentially, these locking difficulties arise from the over- 
stiffening of the system and are associated with a significant loss of accuracy observed, 
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in particular, with low-order finite elements (for fundamental studies and for more 
references see the books by ZIENKIEWICZ and TAYLOR [1989, 19911 and HUGHES 
[2000]). 

To eliminate these difficulties inherent in the conventional single-field variational 
approach a great deal of research effort by engineers and mathematicians has been de- 
voted to the developments of efficient so-called mixed finite element methods (see 
HUGHES [2000, and references therein]). For a more mathematically oriented presen- 
tation see the work of BREZZI and FORTIN [1991]. 

For these types of methods the constraints imposed on the deformation are dealt 
with within a variational sense resulting in effective multi-field variational principles. 
This approach has attracted considerable attention in the computational mechanics lit- 
erature. Besides the usual displacement field, a mixed (finite element) method incorpo- 
rates one or more additional fields (typically the internal pressure field, the volume ratio 
field . . .) which are treated as independent variables. The basic idea within the mixed 
finite element method is to discretize these additional variables independently with the 
aim of achieving nonlocking and stable numerical solutions in the incompressible limit. 

Lagrange-multiplier method. In the subsequent part we focus attention on a suit- 
able variational approach which captures nearly incompressible and incompressible 
hyperelastic material response. 

Rubber or rubber-like materials may show a very high resistance to volumetric 
changes compared with that to lsochoric changes. Typically, the ratio of the bulk mod- 
ulus to the shear modulus is roughly of four orders of magnitude (exhibihng an almost 
incompressible response), and a very careful numerical treatment is needed. A standard 
displacement-based method cannot be applied directly to these types of problems, be- 
cause locking or instabilities will occur. Hence, almost all hyperelastic materials which 
show a nearly incompressible or incompressible deformation behavior are treated with 
a mixed finite element formulation. 

The Lagrange-multiplier method, in which a constraint is introduced using a 
scalar parameter called the Lagrange multiplier, is often used to prevent volumet- 
ric locking. Utilizing p as the Lagrange multiplier to enforce the incompressibility 
constraint J = 1, we may formulate a functional IIL in the decoupled representation 

n in t (u :~)  = I [p(J(u) - 1) + '@,so(c(u))ldV : (8.100) 

where the termp(J(u) - 1) denotes the Lagrange-multiplier term, with the volume ratio 
J = J (u)  = ( d e t ~ ) l / ~ .  The function ai,, = '@i,o(C) characterizes the isochoric elastic 
response of the hyperelastic material with the corresponding modified right Cauchy- 
Green tensor C = C(u) = J - ~ ~ ~ c .  The loads do not depend on the motion of the body, 
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so that the external potential energy next is given by the standard relation (8.48)2. 
Note that the Lagrange-multiplier term vanishes for the case of incompressible 

finite elasticity. In addition, it is important to emphasize that the solution of the 
Lagrange-multiplier method can be recovered from the penalty method just by talung 
the restriction on the value K + 00 (compare with the outline given on p. 389). Hence, 
the penalty method may also be seen as an approximation to the Lagrange-multiplier 
method. 

The Lagrange multiplierp plays the role of the (physical) hydrostaticpressure. The 
described formulation gives rise to a two-field mixed finite element implementation 
involving u and p as the independent field variables. Since we consider extra numbers 
of unknowns this technique requires additional computational effort. 

The main objective is now to derive a two-field variational principle for finite elas- 
ticity by finding the stationary point of functional lIL. In other words, we must compute 
and set to zero the directional derivatives of IIL with respect to both the displacement 
field u and the hydrostatic pressure field p. 

In addition to the virtual displacement field bu we need an arbitrary smooth scalar 
function bp(x) = bp(x(X)) = bp(X), which is interpreted as the virtual pressure 
field, here defined in the reference configuration. We find the stationary conditions 
with respect to u and p as 

for all bu satisfying du = o on the boundary surface aRou and all bp. 
Firstly, we compute the directional derivative of (8.99) in the direction of an ar- 

bitrary virtual displacement bu. By means of the chain rule and the relations derived 
in Section 8.1, i.e. D6,J = b J  = Jdivbu and DsUC = bC = 2bE, we obtain, with 
reference to (8.101)1, the weak form 

(the arguments have been omitted). The contribution due to the loads is given by 
eq. (8.51)2 as DsuIT,, = - 6 K t ,  with the external virtual work bW,.,, i.e. (8.45). 

In order to rewrite the term Jpdiv6u of (8. 102)2 we use the analogue of eq. (1.279)2 
and invoke relation (8.7) and property (1.95) to obtain 

divbu = I : paddu  = I : GradbuF-' 

= F - ~  : Gradbu = F-'F-= : FTGraddu 

= C-' : ~ ~ G r a d b u  ; (8.103) 
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with the inverse right Cauchy-Green tensor C-' = F- 'F-~  . Since C-' is symmetric 
we find finally, by analogy with property (1.1 15) and with (8.14)2, that 

divbu = C-I : 6E . (8.104) 

This result substituted back into (8. 102)2 gives 

By recalling the unique additive decomposition for the stress, i.e. eq. (6.8812 with 
definitions (6.89)~ and (6.90)1, we recognize that the two terms in parentheses of the 
variational equation (8.105) give precisely the second Piola-Kirchhoff stress tensor S = 

S (E(u) ) . Hence, the integral in (8.105) characterizes the volumetric and isochoric 
contributions to the internal virtual work 6W,,t (see eq. (8.46)2). 

Relation (8.105) is identified as the standard principle of virtual work expressed 
in the reference configuration (for a configuration in static equilibrium), i.e. 6W,,t - 
bW,, = 0. The associated Euler-Lagrange equation is Cauchy's equation of equilib- 
rium. 

Secondly, we compute the directional derivative of (8.99) in the direction of an 
arbitrary virtual pressure 6p. With reference to (8.101)2, we obtain the weak form 

As can be seen, the pressure variable p maintains the incompressibility constraint and 
we find the associated Euler-Lagrange equation to be J = 1 (see also the study by LE 
TALLEC [1994]). 

The variational equations (8.105) and (8.106) provide the fundamental basis for a 
finite element implementation. 

Linearization of the Lagrange-multiplier method. In order to solve the nonlinear 
equations (8.105) and (8.106) for the two independent variables u and p on an incre- 
mentauiterative basis, a Newton type method is usually employed (recall Section 8.4). 
In preparation for an incrementalliterative solution technique a systematic lineariza- 
tion of (8.105) and (8.106) with respect to u and p, essentially the second variation of 
(8.99), is required. 

In order to linearize variational equation (8.106) in the directions of the increments 
Au and A p  we recall that DauJ  = J d i ~  Au. Employing the concept of directional 
derivative we obtain 
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The linearization of the principle of virtual work (8.105) in the direction of the incre- 
ment A p  gives 

while a linearization process in the direction of Au was already carried out in detail 
within the last section, leading to 

D~,,,,11~(u,p) = (Gradbu : GradAu S I 
00 

f ~ ~ G r a d d u  : (@,,I + @iso) : ~ ~ G r a d ~ u ) d ~  . (8.109) 

Since (8.105) is based on the additive decomposition of the stresses S, we obtain the 
decoupled representation of the elasticity tensor C = CVo1 + Ciso, with the definitions 

a c a c  . (8.110) 

For an explicit treatment of these expressions recall Section 6.6, in particular relations 
(6.166)4 and (6.168). Note that for the considered case the scalar quantity @ must be 
replaced by p in eq. (6.166)4. 

Since the structure of the linearized principle of virtual work is symmetric and 
because of the symmetry between eqs. (8.107)1 and (8.108) a finite element implemen- 
tation of this set of equations will lead to a symmetric (tangent) stiffness matrix. 

In order to use these equations within a finite element regime so-called interpola- 
tion functions must be invoked separately for the displacement field u, the pressure 
field p and their variations bu and bp, respectively (see SUSSMAN and BATHE [1987], 
ZIENKIEWICZ and TAYLOR [I9891 among others). A well-considered choice of these 
functions is a crucial task in order to alleviate volumetric locking. It was observed that 
a discontinuous (constant) pressure and a continuous displacement interpolation over a 
typical finite element domain is computationally more efficient than with the choice of 
functions of the same order for u and p. 

Perturbed Lagrange-multiplier method. The Lagrange-multiplier method results 
in a stiffness matrix which is not positive definite for incompressible materials. In 
order to overcome the numerical difficulties associated with this fact and to avoid ill- 
conditioning of the stiffness matrix associated with the penalty approach, regularization 
procedures such as the so-called perturbed Lagrange-multiplier method have been 
introduced successfully (see, for example, GLOWINsKr and LE TALLEC [1982, 19841). 

It may be viewed as a two-field variational principle in which the functional (8.99) 

8.5 Two-field Variational Principles 

isperturbed by a penalty term. Thus, 

- Lp2dv + n., (u) (8.111) 
2 Ic 

no 

(see the work of CHANG et al. [1991]), where the third (penalty) term in functional 
(8.11 1) regularizes (relaxes) the incompressibility constraint J = 1 involved in the 
first term of the integral. The Lagrange multiplier p which enforces the constraint no 
longer has the meaning of a pressure, in contrast to the Lagrange-multiplier method. 

The positive penalty parameter K may be viewed as a (constant) bulk modulus. 
Incompressible materials can be treated by replacing l / ~  with zero, so the first and 
the third terms in (8.1 11) vanish. For this incompressible limit the penalty method, 
the Lagrange-multiplier method and the perturbed Lagrange-multiplier method lead to 
identical equations. 

By taking for the term (J(u)  - 1) a more general, sufficiently smooth and strictly 
convex function E(J (u) )  (so that B(J(u)) = 0 $and only if J = 1) the functional 
(8.1 11) is identical to that proposed by BRINK and STEIN 119961. Functional (8.111) 
may also be identified with a special form of the two-field variational principle given 
by ATLURI and REISSNER [1989]. This work deals with a general framework for in- 
corporating volume constraints into multi-field variational principles. In addition, note 
that the formulation (8.111) also reduces from a mixed (finite element) formulation 
proposed by SUSSMAN and BATHE [1987]. 

1. Consider the decoupled strain energy formulation proposed in (8.55), i.e. \k(C) = 

QvoI ( J )  + li,, (c), with lvoI ( J )  = KG (J), and treat the displacement u and the 
hydrostatic pressure p as independent field variables (~ennitted to be varied). 
Require that d 4  ( J )  /d J = 0 $and only if J = 1. 

(a) Derive the stationary condition with respect to u and incorporate the defini- 
tion of the volumetric stress contribution, i.e. (6.89), with the constitutive 
equation for the hydrostatic pressure p according to (6.91)'. Show that the 
resulting variational equation is, in accordance with the principle of virtual 
work, in the form (8.105). 

(b) Obtain the additional variational equation in the form 
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which is relation (8.61) enforced in a weak sense. Interpret the result for 
the case n -t x. 

Note that variational equation (8.1 12) cannot simply be obtatned by taking 
the first variation of the energy functional. 

This type of two-field variational principle was proposed by DE BORST et al. 
[I9881 and VAN DEN BOGERT et al. [1991]. 

2. Consider the augmented functional (8.1 11). 

(a) Derive the stationary conditions with respect to u andp, i.e. DSuI IpL(~:  p) = 

0 and DSpllPL(u; p) = 0, for arbitrary variations bu and bp, respectively. 
Show that the Euler-Lagrange equations are Cauchy's equation of equilib- 
rium and the artificial constitutive equation p = n(J(u) - 1). 

(b) Show that the linearization of the Euler-Lagrange equations in the weak 
forms gives 

D ~ ~ , ~ ~ ~ P L ( u ;  P )  = - -$phpdTi i '  
no 

and three further equations which are in accord with (8.107)1, (8.108) and 
the linearized principle of virtual work, which has basically the form of 
eq. (8.109). Note that, thereby, the elasticity tensor @ = @,,I + CIS, is 
given explicitly by eqs. (6.166)* and (6.168). 

3. Study a two-field variational principle which involves displacements and stresses 
as independent field variables. A formulation of this type leads to the classical 
Hellinger-Reissner variational principle, widely used in, for example, nonlin- 
ear theories of plates and shells (see HELLINGER [I9141 and REISSNER [1950]). 

Assume that the constitutive relation P(F) = B@(F)/BF, as introduced in (6.1)1, 
is invertible, which is not a valid assumption, in general. (It is important to 
emphasize that, in general, there does not exist a unique deformation gradient F 
corresponding to a given first Piola-Kirchhoff stress tensor P (see OGDEN 11977, 
1997, Section 6.2.21). Define a complementary strain-energy function I ,(P) 
so that a Legendre transformation gives 

where P apd F are the first Piola-Kirchhoff stress tensor and the deformation 
gradient, respectively. Hence, the functional 
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which is valid for large strains, is referred to as the Hellinger-Reissner func- 
tional. Here, the prescribed loads are B on Ro and T on ailo ,, and are assumed 
to be independent of the motion of the body. The third quantity prescribed is 
the displacement field ii acting on the boundary surface ailou. Note the relation 
T = PN introduced in (3.3)2. 

(a) Invoke the stationarity of rIHR and determine the weak form of the elas- 
tic equilibrium equation. Since the principle is based on treating the dis- 
placement u and the stress P as independent field variables (permitted to be 
varied), evaluate separately 

The first variations of u and P are arbitrary vector-valued and tensor-valued 
functions for which the restriction bu = o over the boundary surface dSlou 
holds. 

(b) Show that the associated Euler-Lagrange equations for the volume of the 
body and the (Dirichlet and von Neumann) boundary conditions are 

The first relation represents Cauchy's equation of equilibrium in the mate- 
rial description, while the second relation denotes the inverse form of the 
constitutive equation for a hyperelastic material (in some cases not avail- 
able). 

(c) Alternatively to the functional stated above find TIHR for which displace- 
ments and strains are the independent variables (instead of u and P). 

8.6 Three-field Variational Principles 

We are interested in a suitable variational approach in order to capture nearly incorn- 
pressible and incompressible materials. It is recognized that a constant pressure inter- 
polation over the finite element within the framework of two-field variational princi- 
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ples leads to unpleasant pressure oscillation. There are some remedies for this prob- 
lem in the computational literature, for example, the pressure smoothing technique by 
HUGHES et al. [1979]. However, a certain improvement is based on the idea of in- 
troducing additional independent field variables such as the volume ratio, leading to a 
more efficient three-field variational principle. 

Simo-Taylor-Pister variational principle. A very efficient variational principle that 
takes account of nearly incompressible response was originally proposed by SIMO et 
al. [I9851 and is known as the mixed Jacobian-pressure formulation (for relevant ap- 
plications to elastomers see SIMO [I9871 and SIMO and TAYLOR [1991a]). It emanates 
from a three-field variational principle of HU [I9551 and WASHIZU [1955]. Thereby, 
besides the hsplacement and pressure fields u and p, a third additional kinematic field 
variable, which we denote by j ,  is treated independently within finite element dis- 
cretization~. The principle is decomposed into volumetric, isochoric and external parts 
and is defined by the expression 

Following Simo-Taylor-Pister the first two terms in the three-field variational principle 
are responsible for the nearly incompressible behavior of the material. They describe 
volume-changing (dilational) deformations and are expressed by J:  p and the new vari- 
able j. The kinematic variable j enters the functional as a constraint which is enforced 
by the Lagrange multiplier p. The Lagrange multiplier is an independent field variable 
which may be identified as the hydrostatic pressure. 

In addition to the virtual displacement and pressure fields bu and bp, we introduce 
an arbitrary smooth (vector) function 6J(x) = C ~ J ( ~ ( X ) )  = ~ J ( x )  for the constraint, 
which we call the virtual volume change (here defined on the reference configuration). 
In equilibrium, functional (8.1 13) must be stationary. The necessary conditions for the 
stationarity of functional nsTp with respect to the three field variables (u, p, 5) are 
evaluated separately. We require 

for all bu satisfying 6u = o on the part of the boundary surface dRo, where displace- 
ments ii are prescribed and all 6p,  6 j .  

Differentiating functional IISTP with respect to changes in u gives the weak form 
of the elastic equilibrium, i.e. the principle of virtual work in the form of (8.105). For 
an explicit derivation recall the manipulations of the last section. 

A straightforward differentiation of nsTP with respect to changes in the field vari- 
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ables p, j gives the weak enforcement of the equivalence between J and J ,  and the 
constitutive equation for the volumetric changes, i.e. 

For arbitrary bp, the variational equation (8.115) results in the Euler-Lagrange 
equation J - J = 0. It implies that the additional independent variable j equals 
J = (detC(u))'I2, i.e. the kinematic constraint associated with the volumetric behav- 
ior. For arbitrary b j ,  eq. (8.1 16) results in the second constraint condition in the local 
form, that is the Euler-Lagrange equation d ~ , , , ~ / d j  - p = 0. This is the standard 
constitutive equation implying the volumetric stresses to be equal to the hydrostatic 
pressure. 

A finite element procedure in which the dilatation and the pressure variables p are 
discretized by the same local interpolations as for the displacement field u would not 
give any advantage. To prevent volumetric locking an appropriate choice of the interpo- 
lation functions for the volumetric variables p, J and their variations bp: 6 j  is crucial. 
A simple formulation arises by discretizing the dilatation and pressure variables over 
a typical finite element domain with the same discontinuous (constant) function which 
need not be continuous across the finite element boundaries. This approach is known 
as the mean dilatation method and is proposed in the notable work of NAGTEGAAL 
et al. [I9741 who recognized the effect of volumetric locking in elastoplastic J2-flow 
theory. 

Since the interpolation functions are discontinuous, the volumetric variables p,  j 
can be eliminated on the finite element level, a process known as static condensa- 
tion in the computational mechanics literature. Therefore, the variational equations 
(8.115) and (8.116) need not be solved on the global level leading back to a reduced 
displacement-based method. 

The work of BRINK and STEIN [I9961 is a comparative study of various multi- 
field variational principles. It emerges that under certain conditions the above three- 
field variational principle and some two-field principles yield the same discrete result 
in each step of the Newton method. 

1. Consider the functional (8.1 13) with the three independent field variables ( u ,  p, j )  
and the associated variationequations (8.1 15). (8.1 16), (8.105), and show that for 
each step of the Newton type method the problem is completely described by the 
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set of linearized equations 

D i p , A , I T ~ ~ p  (u, p, 5) = J(u)divAu bpdV , I 
no 

and the linearized principle of virtual work, which has the form of eqs. (8.109) 
and (8.108). 

2. The described functional n s ~ p ( u , p ,  j) takes into account only the volumetric 
strain and stress components. Study a more general and very powerful type of a 
Hu-Washizu variational principle fundamental for various finite element meth- 
ods, i.e. 

lIHW (u, F, P)  = (Q(F) - P : F - B . u - DivP . u)dV S 
no 

with the three independent variables u, F, P and the prescribed quantities B on 
Ro, 'Ton 8Ro rn and ii on 8Ro .. The loads B and T are assumed to be conservative 
and the first Piola-Kirchhoff traction vector T is given in eq. (3.3)2. 

(a) With identity (1.290) show that the Hu-Washizu variational principle can 
be posed as a generalization of the principle of virtual work, i.e. 

I I H W ( ~ , F , P )  = ll - P : (F - Gradu)dV - T . (U - ii)dS . J 
00 

J 
anoY 

where the total potential energy IT is given in (8.47) and (8.48). 

(b) Invoke the stationarity of IIHlv with respect to u,F and P. The vector- 
valued and tensor-valusd functions bu and bF, 6P are arbitrary with the 
conditions bu = o over the boundary surface 8Rou and bP = 0 on 8Ro .. 
Show that the associated Euler-Lagrange equations for the functional lIHW 

8.6 Three-field Variational Principles 

are 

8WF) D i v P + B = o :  P = -  aF ; F = Gradu ; 

with the (Dirichlet and von Neumann) boundary conditions 

u = i i  on aCiOu: T = P N = T  on bRou 

for the body under consideration. 
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Index 

absolute temperature, 168; see also temperature 
acceleration 

centrifugal, 185 
Coriolis, 185 
Euler, 185 
gravitational, 142 
local, 67 

acceleration field, 62-65,67.97,98, 142,149 
convective, 67 
under changes of observers, 183-185 

activation energy, 364 
adiabatic materid, 325 
adiabatic operator split, 332 
adiabatic process, 172,173,336,356 

reversible, 172,173,348-351 
afIine motion, 71,316 
algorithmic elasticity tensor, 293,294 
algorithmic stress, 291,293,294 
alternating symbol, 6 
anglebetweenvectors,2,5,16,28,33,i88,258 

angular momentum, 141,142 
balanceof, 142, 144, 147, 149, 150, 175, 

378 
angular velocity, 59 
angular velocity vector, 98-100 
an~sotropic material, 214 
Arrhenius equation, 364 
Anuda and Boyce model, 244,248,249,263 
arrery. 249,273 
atomistic theory, 56,57 

1 augmented Lagrange-multiplier method, 406 
I axial vector, 17,20,48, 98, 100, 105 

'back-cab' rule, 9 
balance of 

angular momentum, 142, 144, 147, 149, 
150,175,378 

energy 
incontinuum thermodynamics, 161-166; 

see also first law of thermodynamics 
in entropy form, 170, 172,327 
in material description, 164, 165 
in spatial description, 164 
in temperature form, 327,342,360 

linear momentum, 141-144,149,150,175 
mass; see conservation of mass 
mechanical energy, 152-160 

in material description, 155-157 
in spatial description, 153-1 55 

moment of momentum, 141,142 
rotational momentum, 141,142 
thermal energy, 164 

balance principle, master, 174-177 
in global form, 174-176 
in local form, 176 

basis 
Cartesian, 3, 10,34 
change of, 28 
dual, 32,35 
general, 32-37 
orthonormal, 6, 12-14,25,26,88,91 
reciprocal, 32,35,37 

basis vectors, 3-5,22,28-32,40,82,181 
contravariant, 32-34 . 
covariant, 32-34 
general, 32-34 

angle between, 33 
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basis vectors, general (contd.) 
length of, 33 

orthonormal, 10, 11-,26,57, 114,225,258 
reciprocal, 32 

Beltrarni vorticity equation, 137 
biological soft tissue, 235,273,306 
biomaterial, 235,249,273 
biomechanics, 249,273 
Biot strain tensor, 88 
Biot stress tensor, 128, 158 
Biot traction vector. 128 
Blatz and KO model, 247,248,261,262 
body 

deformable, 59 
free, 1 10 
homogeneous, 197 
incompressible, 103, 136 
uniform dilation of, 92 

body force, 142, 147, 148, 197, 378, 382, 385, 
387 

prescribed, 379 
reference, 144, 384 

Boltzmann's constant, 315,320 
Boltzmann's equation, 315 
Boltzmann's principle, 315 
boundary conditions 

Dirichlet, 378,384,409 
essential, 381 
natural, 381 
pressure, 383 
von Neumann, 378,384; 387,409 

boundary and initial conditions, 378, 379, 381 
compatibility of, 379 

boundary loading, pressure, 383, 384,402 
boundary surface 52.131 

decomposition of, 378,384 
insulated, 132 
parametrization of, 383 

boundary-value problem, 380 
box product, 8 
bulk modujus, 245,337,338,389,390,407 

calculus of variations, fundamental lemma of, 
381 

caloric equation of state, 323 
calorimetry, 325-327 
carbon-black filled rubber, 242,243,297,298 

carbon-blackfillers, 298,361 
Camot thermal engine, 356 
Cartesian components 

for a tensor, 11,12,23,29,49 
for a vector, 4,29 

Cartesian coordinate system, 28, 124, 125, 181 
Cartesian tensor, 10 
Cauchy-elastic material, 197 

incompressible, 202,203 
isotropic, 200-202 

Cauchy-Green tensor 
Euclidean transformation of, 191 
left, 81, 88 

modified, 232 
right, 78,88 

modified, 228 
spectral decomposition of, 90 
time derivative of, 101,102 

Cauchy stress, 11 1 
Cauchy stress tensor, 1 11-1 15,123-127 

additive decomposition of, 23 1, 232 
corofated, 128 
Euclidean transformation of, 190 
fictitious, 232 
Lie time derivative of, 193; see also 01- 

droyd stress rate 
spectral decomposition of, 120 
symmetry of, 147 

Cauchy traction vector, 11 1,113-120,142,147, . 
148 

Cauchy's equation of equilibrium, 145,197,405 
Cauchy's first equationof motion, 144-146,148, 

176,342,378-381 
Cauchy's law, 11 1 
Cauchy's postulate, 11 1 
Cauchy's second equation of motion, 147 
Cauchy's stress theorem, 11 1-1 14, 147, 148, 

150,154,175 
Cayley-Hamilton equation, 25,27,44,89,202 
chain, 239,242,244,290,307-31 1,356,364 

contour length of, 308,312,313,315,318 
entropy change of, 317 
Gaussian, 312-316,319 
in the network, 317-318 
out of (detached from) the network, 312- 

318 
characteristic equation, 25,89,202 
characteristic polynomial, 25 

Index 

chemical potential, 323 
tensorof, 211,212 

circulation of a vector field, 53 
Clausius-Duhem inequality, 168-170, 172 
Clausius-Planck inequality, 170, 173,208,229, 

280,299,321,323,358 
closed system, 131-133,141,319 
coaxial tensors, 201,204,216,226,258 
coefficient of thermal conductivity, 171,342 
Coleman-Noll procedure, 208,223,230,28 1 
collagen, 273 
complementary strain-energy function, 408 
components 

acceleration, 63 
Cartesian, 4, 11, 12,23,29,49 
contravariant, 34-39 
covariant, 34-39 
mixed, 36-39 
rectangular, 4; see also Cartesian compo- 

nents 
stress, 114-1 16 
of a tensor, 11,20-22 
of a vector, 4 
velocity, 63 

composite material. 265,266,273 
with two families of fibers, 272-277 

compressible hyperelasticity, 228-231 
compressible isotropic hyperelasticity, 23 1-234 

in terns of invariants, 233, 234 
compression 

pure, 124 
uniform (uniaxial), 92, 124 

compressive stresses, 117 
concept of 

directional derivative, 46-48 
entropic elasticity, 333 
internal variables, 278, 279, 283, 361 
linearization, 393-395 

condition of a system, 161 
configuration of a continuum body 

current (deformed), 58,59 
final, 211,212 
homogeneous, 133 
initial, 58,62, 211,212 
intermediate, 128,344,345 
reference (undeformed), 58, 59 
stress-free, 208,247,362,363: 379,390 
thermal stress-free, 344 

virtual, 372 
conformationof molecules, 307,308,310,313- 

3 15 
conjugate pair, work, 159; see also workconju- 

gate 
conservation of mass 

for a closed system, 132-134 
for an open system, 136 

conservative system, 159, 160,319,386 
conservative vector field, 48 
conservedquantity, 132,142, 154,160 
consistency condition, 60,64,75, 236, 337 
consistent linearization process, 257. 339-342; 

393; see also linearization 
constitutive equations, 161, 197, 358 

derived from 'Z(b), 217,218 
derivedfrom Q(v), 218,219 
general forms of, 197,201,216,223,322. 

358 
internal, 281,285,288,359,363,368 
reduced forns of, 198,199,210 
in spectral forms, 220-222,246,340, 341 
in terms of principal invariants, 215-217. 

224, 233, 234, 248, 249, 269, 270, 
274-277 

constitutive model, 207; see also model 
constitutive theory, 206 

of finite elasticity, 235 
of finite thermo(visco)elasticity, 306 

constrained material, 222 
constraints 

auxiliary, 1 19 
external, 379 
incompressibility, 103,222,223,225,237, 

247,270,403,405,407 
internal, 103,202,222,223,270,389,411 
internal kinematic, 103; see also constraints, 

internal 
continu~ty mass equation, 134-136 

rate formof, 135, 136 
continuum, 57 

non-polar, 144 
polar, 144,147,152 

continuum approach, 56,266 , 

continuum body, 57; see also body 
continuum damage mechanics, 295,299 
continuum damage theory, 295 
continuum mechanics, 55 



continuum particle, 56 
continuum theory, 56 
contraction of tensors, 14,15,21-23 
contravariantbasis vectors, 32,34,35 
contravariant components, 34-39 
contravariant tensor, 36,83,127,193,194,253 
contravariantvector, 35,83, 163,186 
controllable quantities. 278 
control mass, 131 
control surface, 132,136, 149, 150 
control volume, 132,136,149, 150 
convected rate 

of a tensor field, 193,196 
of a vector field, 193,196 

convective rate of change, 67 
convolution integral, 289-292.294 

numerical integration of, 291 
coordinate (component) expression, 3 
coordinates 

material (referential), 58, 60, 62, 71, 78, 
111,127 

spatial (current), 58, 60, 62, 71, 81, 111, 
127 

co-rotational rate 
of a tensor field, 192,196 
of a vector field, 192 

Cotter-Rivlin rate, 193, 196 
couple 

body, 143 
resultant, 110, 143,144, 147, 152 

couple stress tensor, 152 
covariant basis vectors, 32-34 
covariant components, 34-39 
covariant tensor, 36,83 
covariant vector, 35, 83 
creep, 279,286 
creep test, 295 
cross product, 5-7 
crystall~zation, strain-induced, 31 1, 356 
curl 

material, 66 
spati81,66 
of a vector field, 48.49 

curve 
closed, 53 
material (undeformed), 70 
spatial (deformed), 70 

cycle, 161, 168 

Index 

damage, isotropic 
discontinuous, 300,302 
maximum, 300 
saturation parameter, 300,304 

damage accumulation, 300,301 
damage criterion, 301 
damage model 

in coupledmaterial description, 298-301 
in decoupledmaterial description, 303,304 

damage surface, 301 
damage variable, 298-300,304 
dashpot, 279,280; 286288,366-369 
deformation, 59,70-73 

biaxial, 92.93, 124,225,237 
equibiaxial, 92,124,226 

with isotropic damage, 304 
homogeneous, 71,316,319,348 
inhomogeneous, 71,212 
inverse, 59 
plane, 92 
pure shear, 92,93,226,250,304 
simple shear, 93,94,227,243,366,367 
thermoelastic, 344-346,352 
uniform, 92,251,352 
volume-changing (dilational), 228,232,410 
volume-preserving (distortional), 228,232 

deformation gradient, 70-73,82,83,85,90 
determinant of, 74; see also volume ratio 
Euclidean transformation of, 189,209 
first variation of, 374,375 
inverse of, 71 

first variation of, 374,375 
linearization of, 394 
time derivative of, 96 

linearization of, 394 
modified, 228 
time derivative of, 95,96 
volume-changing (dilational) part of, 228 
volume-presewing (distortional)part of, 228 

deformation tensor 
Finger, 8 1 
Green, 78 
Piola, 79 
rate of; see rate of deformation tensor 
rotated rate of, 101, 158 

density, 133 
network, 3 12 
reference mass, 133-135,197 

Index 

spatial mass, 133-136,141,142,148,149, 
202 

surface, 174176 
volume, 175 

density in the motion, 133; see also density, 
spatial mass 

derivative 
directional; see directional derivative 
Giteaux, 46 
Lie time, 106-108,193-196,376,400 
normal, 46 
of a scalar field. 45 
of a scalar function, 40 
of a tensor field, 50 
of a tensor function 

scalar-valued, 4 1 4 2  
tensor-valued, 42-44 

of a vector field, 49 
description 

Eulerian (spatial), 60,61 
Lagrangian (material; referential), 60, 61 

determinant, Jacobian, 74; see also volume ratio 
determinant of a matrix, 7 
determinant of a tensor, 15 

derivative of, 4 1,42 
deviator, 19 
deviatoric operator, 19, 230,233,285 
deviatoric tensor, 19 
direct product, 10 
directional derivative, 46-48,65,95, 101, 106, 

107,374-401,404,405 
of a vector function, 374-376,393 

Dirichlet boundaq condition, 378, 384,409 
displacement field, 61.62 

actual change of, 373 
increment of, 393-395 
prescribed, 379,382,385,409 
virtual, 373-376,382,385, 394,404 

d~splacement gradient tensor, 73,85 
dissipation, internal, 170, 173, 281-288, 299, 

358-363.369 
dissipative material, 278-280.332 
distribution function 

Gaussian, 308,313,314,319 
inverse Langevin, 244 
Langevin, 319,356 

divergence 
mater~al, 66,74 

spatial, 66.74 
of a tensor field, 49,50 
of a vector field, 48 

divergence theorem, Gauss', 52 
dot product 

of tensors, 12, 13 
of vectors, 2.3,s 

Duhamel-Neumann hypothesis, 344 
Duhamel's law of heat conduction, 170, 171, 

325,342 
dummy index, 4,12-14,35 
dyad, 10 
dyadic, 10 
dynamical process, 148, 153, 159, 160, 190, 

198 
closed, 211,212 

eigenvalues of a tensor, 24-26 
eigenvectors of a tensor, 24-26 
elastic fluid, 125, 126,204 
elastic material, 197; see also Cauchy-elastic 

material; hyperelastic material; ther- 
mo(visco)elastic material 

elastic potential; see model 
elastic solid; see material 
elasticities; see also elasticity tensor 

isentropic 
referential tensor of, 329,330 
spatial tensor of, 330 

isothermal 
refereutial tensor of, 328,330 
spatial tensor of, 328 

refereutial tensor of, 252 
spatial tensor of, 253 

elasticity; see hyperelasticity; thermoelaslicily; 
thermoviscoelasticity 

elasticity tensor, 252-265,328-333,401 
algorithmic, 293,294 
components of, 252,253 
decoupled representation of, 254-257,265, 

303,340-342,406 
effective, 302,303 
fictitious 

in material description, 255-257, 262, 
272 

in spatial description, 265 
isentropic, 329-331,354 



Index 

elasticity tensor (contd.) 
isothermal, 328,330-333,353 
major symmetries, 253,328,401 
in material description, 252, 253 
minor symmetries, 253,396,398,400,401 
numerical aspects, 331,332 
in spatial description, 253 
spectral form of 

in material description, 257-260, 263, 
264 

in spatial description, 260 
end-to-enddistance of tie points, 307,308,3 12- 

318 
mean value of, 3 12 

end-to-end vector, 3 12 
'energetic elastic' material, 31 1 
energy, 131. 132 

activation, 364 
balance of; see balance of energy 
conserved, 160 
free: 173; see also Helmholtz free-energy 

function 
internal, 155,157,164, 173,323-326,329 

change in, 311,319,334 
kinetic, 153-157,160,392 
mechanical, 152-155,166 
non-recoverable, 279,296 
potential; see potential energy 
strain (stored), 160; see also strain-energy 

function 
thermal, 161,172 
total, 155, 157, 164. 165 

energy flux vector, 165 
energy functional, 159,386,389,408 

penalty form of, 389 
energy-momentum tensor, 21 1 
enthalpy, 324 
'entropic elastic' matenal, 31 1, 333-336 

simple tension of, 343-356 
entropic elasticity 

concept of, 333 
for a stretched piece of rubber, 346-35 1 

entropic theory 
modified, 333-335,338,346,348 
purely (strictly), 333-336,339,352 

entropy, 166-168,315-319,328,329,358-363 
change in, 310,319,329,334,353 
equilibrium part, 362, 363 

non-equilibrium part, 362,363 
of a single chain, 315,316 
total production of, 167 

entropy flux 
Cauchy (true), 167 
Piola-Kirchhoff (nominal), 167 

entropy function, 322,347,359 
entropy inequality principle, 167, 361 
entropy input, rate of, 167, 168, 172 
entropy production, 167,168,282,358; seealso 

dissipation, internal 
by conduction of heat, 169 

entropy source, 167,168 
equation 

global (integral) form of, 134 
local (differential) form of, 134 

equation of equilibrium, Cauchy's, 145, 197, 
405 

equation of evolution; see evoluhon equation 
equation of motion, 144-146 

Cauchy's first. 144-146, 148, 176, 342, 
378-381 

Cauchy's second, 147 
weak form of, 380 

equation of state, 161, 197 
caloric, 323 
thermal, 322-324,347 

equilibrium, thermodynamic (thermal), 16 1,208, 
282,285,359,363,365,366 

equilibrium state, 161, 282, 283, 359, 362,363 
equilibrium thermodynamics, 168 
Eshelby tensor, 21 1,212 
Euclidean space, 4,57,59, 180, 181 
Euclidean transformation, 181 

of stress tensors, 190, 191 
of various kinematical quantities, 189, 190 

Euler-Almansi strain tensor, 82,88 
Euclidean transformation of, 19 1 
first variation of, 376,377, 382 

linearization of, 395,398 
material time derivative of, 400 

Lie time derivative of, 107 
material time derivative of, 102 

Euler-Lagrange equation, 381, 405, 408, 409, 
411,412 

Eulerian (spatial) description, 60,61 
Eulerian form, 60 
evenf 180-182,187 

Index 

evolution equation, 281,282,286-290,302,359, 
363,366,369 

expansion coefficient, linear, 339,346,349,352 
extension 

strip-biaxial, 93 
uniform (uniaxial), 92, 124 

external constraints 
holonomic, 379 
nonholonomic, 379 

external variables, 278,282,287,289,364,368 

fiber, 77-79,267,273 
direction, 84,96,266-269,273-276, 
extensible, 270 
inextensible, 270,275-277 

fiber-reinforced composite, 265,266,272, 274 
fibers, families of, 265,273-276 
field 

harmonic, 50,52, 68, 69, 137 
material, 64,65 
mechanical, 306 
scalar; see scalar field 
spatial, 64-67 
tensor; see tensor field 
thermal, 306 
vector; see vector field 

Finger deformation tensor, 81 
finite element method 

displacement-based, 402,403,411 
hybrid, 389 
Jacobian-pressure formulation, 410 
mixed 389,391,403,404 

first law of thermodynamics, 164-166,175,319 
first Piola-Kirchhoff stress tensor, 11 1-1 14, 127, 

128,199,207 
Euclidean transformation of, 190, 191 

first Piola-Kirchhoff traction vector, 1 11, 113, 
114,144 

in material description, 165 
in spatial description, 163 

first variation of a funchon 
in material description, 374,375 
in spatial description, 375-377 

flow 
inotational, 149 
steady, 149 

flow behavior index, 367 

fluid, 205 
elastic, 125, 126, 204 
Reiner-Rivlii, 202,204 
viscous, 202, 203 

Newtonian, 203,204,286,287,367,369 
fluid mechanics, 205 
flux 52,136,139,176,150 

entropy; see entropy flux 
heat; see heat flux 

force 
body; see body force 
contact, 11 1 
external, 110, 387 
inertia, 142,378,382,384, 386 
internal, 110 
resultant, 110,128,142 
retractive. 3 10,3 1 1 
thermodynamic; see thermodynamic force 

forces, system of, 147-149, 153 
Fourier's law of heat conduction, 171,342,348, 

354 
fourth-order tensor, 22-24 

transpose of, 23 
fractional-step method, 331 
frame-indifferent spatial fields, 182, 185, 186; 

see also objectivity 
free energy, 173,206,267-270,273-275,280, 

298,321-326,328-335,347,357,361, 
364; see also Helmholtz free-energy 
function 

configurational, 284,285,304,362,364 
Gibbs, 323,324 

free-energy factor, 364 
free index, 4,18, 34,43 
free vibration, 154 
freely jointed chain, 312-3 15,3 19 
friction, 160, 166, 31 1 
function 

convex, strictly, 229,244,303,390,407 
linear, 32,41, 162 
nonlinear, 41,351,380, 393 
penalty, 390,391 
scalar, 40,43 
tensor, 40-43 
test, 380-382 
vector, 40 
weighting, 380 



functional, 119,290,391,392 
energy, 159,386,389,408 
Hellinger-Reissner, 408,409 
Lyapunov, 332 
perturbed, 406 
stationary position of, 119 

Galerkin method, 402 
Galilean transformation, 185 
gas constant, 364 
GPteaux derivative, 46; see also directional deri- 

vative 
GPteaux operator, 47,374,393 
Gauss' divergence theorem, 52 
Gaussian chain, 312-316,319; see also chain 
Gaussian distribution function, 308, 313, 314, 

319 
Gaussian statistical theory, 3 12,3 18.3 19, 339 
Gibbs free energy, 323.324 
Gibbs function, 323 
Gibbs relation, 322-324,358 
glass transition temperature, 309 
global (integral) form of an equation, 134 
Gough-Joule effect, 309,311,326, 327, 349 
Gradient 

material, 65, 66.74 
of a scalar field, 45 
spatial, 66,74 
of a (second-order) tensor field, 50 
of a tensor function 

scalar-valued, 4 1 4 2  
tensor-valued, 4 2 4 4  

transposed, 49 
of a vector field, 49 

Green deformation tensor, 78 
Green-elastic material, 206; see also hyperelas- 

tic material 
  re en-~auss-~stro~radskiy theorem, 53 
Green-Lagrange strain tensor, 79, 82, 83, 88, 

209,252,253,353,365,366 
Eucfidean transformation of, 191 
first variation of, 375 
linearization of, 394 
time derivative of, 100,101, 107,158 

Green-Naghdi stress rate, 194,195 
ground substance, 265 
growth conditions, 208,251 

Hamilton's variational principle, 391, 392 
harmonic field, 50: 52,68,69, 137 
heat, 162 
heat capacity, specific; see specific heat capacity 
heat conduction 

Duhamel's law of, 170, 171,325,342 
Fourier's law of, 171,342,348,354 

heat conduction inequality, 170,324,342 
heat flux 

Cauchy (true), 162, 163, 170 
Piola-Kirchhoff (nominal), 162, 163,324, 

342,354,359 
heat flux theorem, Stokes', 162-164 
heating (cooling), suuctural; see inelastic heat- 

ing; thennoelastic heating; themovis- 
coelastic heating ' 

heat source, 162-164,168 
heat transfer; see heat 
Hellinger-Reissner functional, 409 
Hellinger-Reissner variational principle, 408,409 
Helmholtz free-energy function, 173, 206; see 

also free energy 
decoupled representation of, 27 1,277,283, 

303,304 
Hencky straln tensor, 88 
Hessian operator, 50 
heterogeneous material, 207 
hidden variables, 278; see also internal variables 
higher-order tensor, 20-24,37 
history term, 293 
history variables, 278, 300; see also internal 

variables 
homogeneous material. 207,321 
Hooke's law, 286 
Hu-Washizu variational principle, 412 
hydrostatic pressure, 125, 222, 245, 390, 391, 

404,410,411 
hydrostatic stress, state of, 125, 126,231 
hyperelastic material, 205-304, 

anisotropic, 214 
compressible, 227-235 
constitutive equations for, 206-208 
incompressible, 222-227 
isocho~ic (distortional) elastic response of, 

229, 245, 246, 283, 290, 294, 303, 
337,338,390,403 

isotropic, 212-222 
locally orthotropic, 276. 277 

Index 

orthotropic, 275,276 
transversely isotropic, 265-272 
volumetric (dilational) elastic response of, 

229, 244, 245, 283, 290, 303, 337, 
338,390 

with isotropic damage, 295-304 
with two families of fibers, 273-275 
workdoneon, 211,212 

hyperelasticity, 206 
compressible, 228-234 
incompressible, 222-226 

hypoelastic material, 254 
hysteresis, 279,296, 309 

ideal rubber, 311,318,333 
identity tensor, 10; see also unit tensor 
impenetrability of matter, 74 
incompressibility constraints, 103,222,223,225, 

237,247,270,403,405,407 
incompressible hyperelasticity, 222,223 
incompressible isotropic hyperelasticity, 223-226 
incompressiblematerial, 202,203,222-227,333, 

389,391,402 
mechanically, 345-348,355 
nearly, 228,389,402,403,409 

incrementaliiterative solution techniques, 252, 
293,392,397,405 

incremental objectivity, 292 
index 

dummy, 4,12-14,35 
free, 4, 18,34,43 
live, 4 
summation, 4 

index notation, 3-5 
lnelashc (plastic) heating (cooling), structural, 

360 
inertia force, 142.378,382,384,386 
inertia tensor, 160 
initial boundary-value problem, 377-382 

strong (classical) form of, 379 
weak (variational) form of, 381 

initial conditions, 289,302,363,379-382 
integral theorems, 52-54 
integration method, (selective-)reduced, 391 
~ntegrlty bases, 268 

- internal constramts, 103, 202, 222, 223, 270, 
389,411 

internal energy, 155, 157, 164, 173, 323-326, 
329 

internal-energy function, 323,329,331,354 
internal variable model, 28 1,282 
internal variables, 278,280-284,287-290,292, 

293,298,299,358 
concept of, 278,279,283,361 

interpolation functions, 406,411 
intrinsic angular momentum, 143 
invariants, 25,89,201-203.268-270.274-276 

modified, 233 
principal, 25 
pseudo-, 268,276 
representation theorem for, 215 
strain, 215,216,223,224,233,238,243 
stress, 120,122 
theory of, 268 

inverse Langevin function, 244 
inverse square law, 51 
inverse stretch ratio, 81 
irreversible process, 168, 170,279,281, 282 
irrotational flow. 149 
irrotational motion, 69,98 
irrotational vector fdd ,  48,50 
isentropic elasticity tensor 

in material description, 329-331,354 
in spatial description, 330 

isentropic operator split, 332 
isentropic process, 172, 173,323 

reversible, 172 
isochoric motion, 75, 103,136 
isothermal elasticity tensor 

in material description, 328,330,331,353 
in spatial description, 328,332,333 

isothermal operator split, 331 
isothermal process, 172, 322,323,346,356 
isotropic material, 120, 201, 214 

thermally, 171,342,345,346,348 
transversely, 265-272 

isotropic tensor, 30-32 
isotropic tensor function, 201, 213-218, 220, 

268,274 
first representation theorem for, 201, 217 
second representation theorem for, 202,217 

Jacobian determinant, 74; see also volume ratio 
Jaumann-Zarembarate, 193,196 



Jaumann-Zaremba stress rate, 194, 195 

Kelvin-Voigt model, 279, 280 
kinetic energy, 153-157,160,392 
Kirchhoff stress tensor, 127,147, 158, 159 

Lie time derivative of, 194; see also 01- 
droyd stress rate 

linearization of, 398 
material time derivative of, 400 

Kronecker delta, 5, 7 
mixed, 33,35 

Lagrange multiplier, 119, 222, 224, 225, 270, 
275,403,407,410 

Lagrange-multiplier method, 119,403407 
augmented, 406 
linearization of, 405,406 
perturbed, 406,407 

Lagrangian (material, referential) description, 60. 
61 

Lagrangian form, 60 
Lam6 constants, 250 
Landau order symbol, 41,78,393 
Langevin distribution function, 319, 356 
Laplace's equation, 50 
Laplacian operator, 50 
latent heat, 326,329 
left Cauchy-Green tensor; see Cauchy-Green ten- 

sor, left 
left stretch tensor; see stretch tensor, left 
Legendre transformation, 173, 318, 323, 324, 

326,334,408 
length of a vector, 2,5, 35, 188 
level surface, 46.5 1 
Levi-Civita symbol, 6 
l3H8pital's rule, 260,264 
Lie time derivative, 106-108,193-196,376,400 
linear approximation of a function, 393, 394 
linear momentum, 141, 142 

balance of, 141-144,149,150,175 
linear operator, 9, 152, 175 
linear transformation, 9, 12, 16,71, 100 
linearization, concept of, 393-395 
linearization of a function 

in material description, 393 
in spatial description, 394,395 

Index 

linearization operator, 393, 394 
linearization process, consistent, 257, 339-342, 

393 
line element 

compressed, 78 
extended, 78 
material (undeformed), 71-73,75-78,86 
spatial (deformed), 71-73,86 

' first variation of, 377 
time derivative of, 102 

unstretched, 78 
loads, 11 1,379,386-388,397,409,412 

'dead', 387,395 
pressure, 242,395,402 

local (differential) form of an equation, 134 
local time derivative, 66 
locking phenomena, 402 

volumetric, 403,406,411 
Lyapunov functional, 332 

macroscopic approach, 56 
macroscopic quantities, 57, 161,278,280 
macroscopic system, 55,56 
Mandel stress tensor, 128,158,386 
mass, 56, 131-136,139, 140,320 

concentrated, 13 1, 151 
conservation of, 132-134,136 
time denvative of, 133, 134,136 
total, 134 

mass center, 150, 151 
motion of, 151 

mass density; see density 
mass element, infinitesimal, 133, 140 
mass sink, 132 
mass source, 132 
master balance principle, 174-177 

m global form, 174-176 
in local form, 176 

master field equation, 176 
master inequality principle, 175, 176 
material 

adiabatic, 325 
Cauchy-elastic; see Cauchy-elastic material 
composite, 272-277 
constrained, 222 
dissipative, 278-280,332 
elastic, 197; see also Cauchy-elastic material 

Index 

'energetic elastic', 31 1 
'entropic elastic', 311,333-336 
heterogeneous, 207 
homogeneous, 207,321 
hyperelastic; see hyperelastic material 
hypoelastic, 254 
incompressible; see incompressible matenal 
inelastic, 278-281 
isotropic; see isotropic material 
matrix; see matrix material 
orthotropic, 275-277 
perfectly elastic, 208 
~ b b e r - l i e ,  235; see also rubber-like ma- 

terial 
simple, 290 
themoelastic, 323 
thermoviscoelastic, 358 
transversely isotropic, 265 
viscoelastic, 283 

material frame-indifference, principle of, 198- 
200,267,292 

material function, 201 
material model, 207; see also model 
material objectivity, principle of, 198 
material point, 56 
material strain rate tensor, 101, 107, 158 
material strain tensor, 76-79 
material time denbatme, 64-68,95,96,99-108, 

133-141,192-196,258,259,399401 
of a material field, 64,65 
of a spatial field, 66-68 

matenal velocity gradient, 95,96 
matrix 

column 12 
diagonal, 26 
inverse of, 34 
orthogonal, 29 
row, 12 
square, 12 
stress, 112, 117, 120 

matnx material, 265-267,272-275 
incompressible isotropic, 270,275-277 

matnx notation, 11, 12 
matrlx product, 10 
Maxwell element, 286,287,368 
MaxueLl model, 279 

! generalized, 286,287,368 
Maxwellrelat~on, thermodynamic, 325,352 353 

mean dilatation method, 41 1 
measurable quantities, 278 
mechanical device, 286 
mechanical energy, 152-160 

balance of, in material description, 155- 
157 

balance of, in spatial description, 153-155 
mechanical field, 306 
mechanical power, extemal, 153-156,159, 160, 

164,165 
mechanical theory, purely, 173,206 
mechanical work, rate of, 153; see also external 

mechanical power; stress power 
metric coefficients, 33, 36-38 
metric tensor, 37,39 
microscopic approach, 55,56,295 
microscopic system. 55 
nud-point rule, 292 
mixed components, 36-39 
mixed tensor, 36 
model 

Arruda and Boyce, 244,248,249,263 
Blatz and KO, 247 248,261,262 
damage, 298-301,303,304 
Maxwell; see Maxwell model 
Mooney-Rivlin, see Mooney-Rivhn model 
neo-Hookean; see neo-Hookean model 
Ogden, see Ogden model 
rheological, 286-288,367-369 
Saint-Venant Kirchhoff, 250,25 1,365 
spring-and-dashpot, 286,367 
thermoviscoelast~c, 36 1-364 
Varga, 238-242,239,356 
viscoelastic, 283-290 
with internal variables, 278-282 
Yeoh, 243 

molecular network, see network 
molecule, 55 

long-cham, 307,311 
moment of momentum, balance of, 141, 142 
moment, resultant, 142 
momentum 

angular (moment of; rotational), 141, 142 
linear (translational), 141, 142 
spln angular, 143, 152 

momentum balance principles, 141-152 
for a closed system, 141-149 
for an open system. 149-150 



Mooney-Rivlin model, 203,339 
for compressible materials. 247 
for incompressible materials, 238-243 

motion, 59,60 
affine, 71,316 
equation of, 144-146 
inverse, 59,71,80, 163 
irrotational, 69,- 98 
isochoric, 75, 103,136 
plane, 69,106,137 
rigid-body; see rigid-body motion 
steady, 68 
uniform, 69 
volume-preserving, 75 

Mullins effect, 296-298 

Nabla operator, 45 
Nanson's formula, 75,104, 113, 114, 146, 163 
neo-Hookean model, 203,3 18,339 

for compressible materials, 247 
for incompressible materials, 238-243 

network, 238,244,307.31 1,312, 361 
elasticity of, 316-320 
entropy change of, 317-320 

network density, 3 12 
neutron scattering, 307 
Newtonian fluid, 203 
Newtonian shear thinning phenomenon, 366 
Newtonian viscous fluid, 203, 204, 286, 287, 

367,369 
Newton's law of action and reaction, 112 
Newton's method, 257,291,295,393 
nominal stress tensor, 11 1; see also first Piola- 

Kirchhoff stress tensor 
nominal traction vector, 11 1; see also first Piola- 

Kirchhoff traction vector 
non-equilibrium state, 161,279,284,362 
non-eguilibrium stresses, 285, 287-290, 359, 

363,365,366,368 
non-equilibrium thermodynamics, 168,280,282, 

285 
non-Gaussian statistical theory, 244, 319, 356 
non-polar continuum, 144 
norm of a tensor, 15,365 
norm of a vector, 2 
normal derivative, 46 
normal stresses, 116, 117 

maximium and minimum, 119,120 

Index 

normalization condition, 208, 216, 219, 229, 
245,283,287,298 

notation 
absolute, 3 
direct, 3 
index, 3-5 
matrix, 1 1, 12 
subscript, 4 
suffix, 4 
symbolic, 3,5 
used in thermodynamics, 161,162 

numerical solution, 331, 392,403 
numerical stability, 33 1 

objective rate, 192, 193 
objective spatial field, 182-194 
objective stress rate, 193-196 
objectivity 

incremental, 292 
pnnciple of material, 198 
of a scalar field, 185, 186 
of a tensor field, 185,186, 190-194 
Of a two-point tensor field, 189-191 
of a vector field, 182-186,188, 192 

objectiyity, requirement of, 186, 189-192,214, 
217,291 

observer, 180-189,198,200 
change of, 181-183 

octahedral plane, 123 
Ogden model 

for compressib!e materials, 244-246 
for incompressible materials, 235-242 
thermodynamic extension of, 337-343, 

347-351 
Oldroyd stress rate. 193-196,253,332,400 
open system, 132,136, 149 
operator split 

adiabatic, 332 
isentropic, 332 
isothermal, 331 

origin, 28,57,58,344 
orthogonal matrix, 29 
orthogonal tensor, I6 
orthogonality condition, 29 
orthogonality of vectors, 3 
orthotropic material, 275-277 

Index 

parallelogram law, 2 
particle, 56 
path line, 59 
penalty function, 390,391 
penalty method, 389,391: 404,407 

for incompressibility. 389-391 
penalty parameter, 390, 391,407 
perfectly elastic material, 208 
permutation, even; odd, 6 
permutation symbol, 6,7, 17.21 
permutation tensor, 21,22,31,54, 147 
perturbed functional, 406 
perturbedlagrange-multiplier method, 406,407 
phenomenological approach, 205,283,295 
phenomenological variable, 278,300 
Piola deformation tensor, 79 
Piola identity, 146, 151 
Piola-Kirchhoff stress tensor 

first, 111-114,127,128,199,207 
Euclidean transformation of, 190, 191 

second, 127,199,210; see also second Pio- 
la-Kirchhoff stress tensor 

Piola stress, 11 1 
Piola transformation, 83,84,113,127,163,190, 

195,253 
place, 58 
plane motion, 69,106,137 
plane strain, state of, 84, 92 
plane stress, state of, 126, 225,227,237 
point source, 51,68 
points, 58, 74 

material, 56 
neighboring, 76,77 

distance between, 77,78, 82 
relative position of, 180,188 

Poisson's equation, 50 
Poisson's ratio, 247 
polar continuum, 144,147,152 
polar decomposition, 85-88.90, 128 

left, 86 
right, 86 

polyconvexity, 207,251 
polymer chain; see chain 
polymer network: see network 
position, current, 58 
position, referential, 58 
position vector, 58.60. 141, 181,182,266,344 
potential, 'dissipative', 284,362 

potential energy 
external, 159,387,389,404 
of external loading, 159 
internal, 159,387 
total, 159,160,387-389,392,412 

first variation of, 387 
second variation of, 387 
stationary position of, 387-389 

potential flow, 149 
potential of a vector field, 48 
potentials, thermodyktmic, 321-325,338,339, 

359 
power 

mechanical, external, 153-156, 159, 160, 
164,165 

stress; see stress power 
thermal, 162,164, 165, 172, 175,319 

power expended, theorem of, 153 
power law model, 367 
pressure 

hydrostatic; see hydrostatic pressure 
mean, 126 

pressure boundary loading, 383,384,402 
primary loading path, 296, 301 
principal axes of a tensor, 24 
principal directions, 24 

referential, 89,90 
spatial, 90 
of strain, 89,90, 201, 219, 258,259 
of stress, 120-126,201,219,220 

principal invariants, 25,215,216,223-225 
principal planes, 12G122 
principal stresses, 120-122,219,220,225,226, 

237,246,258-260,341 
principal stretches, 89-94, 219-222, 225-227, 

236-242,257-260.3 16-3 19 
modified, 228,245,246,337-340 

principal values of a tensor, 24,25 
principle of material frame-indifference, 198- 

200,267,292 
principle of material objectivity, 198 
principle of stationary potential energy, 386- 

392 
principle of strain-equivalence, 300 
principle of virtual displacement, 382; see also 

principle of virtual work 
principle of virtual work, 377-386,388-392 



448 Index 

principle of virtual work (contd.) 
linearization of, 392402 

in material description, 395-397 
in spatial description, 397-401 

in material description, 384-386 
in spatial description, 380-382 

probability, 308,313-315 
probability density, 308,313,315 
process, 148 

adiabatic, 172, 173,336,356 
reversible, 172, 173, 348-351 

dynamical, 148,153,159,160,190, 198 
closed, 211,212 

irreversible, 168, 170,279,281,282 
isentropic, 172,173,323 

reversible, 172 
isothermal, 172,322,323,346,356 
quasi-equilibrium, 162 
quasi-static, 162 
reversible, 168, 170, 172, 173, 348-351, 

359,366 
thermodynamic, 161, 164, 166-168, 172, 

319,330 
production of entropy, local, 170; see also dis- 

sipation, internal 
projection tensor 

fourth-order, 24, 229-234.255, 256, 285, 
?On 
z.7" 

modified, 255 
second-ordec 18, 26, 117 

projection of a vector, 3 
pseudo-elasticity, 301 
pull-back operation, 82-84, 106, 107, 127, 163, 

375-377,385,395,397,399 
pure rotation, 85, 86 
pure shear, 92,93,226,250,304 

with isotropic damage, 304 
pure stretch, 85-87 
pure tensjon, 124 
push-forward operation, 82-84, 106, 107, 127, 

195,253,375-377,395,397-399 

quasi-equilibrium process, 162 
quasi-static problem, 154, 380 
quasi-static process, 162 

rate 
convected, 193,196 
co-rotational, 192, 196 
objective, 192, 193 

rate of 
deformation tensor, 97,99, 101-107,194, 

202,218 
Euclidean transfonnation of, 191 
rotated, 101, 158 
physical interpretation of, 104 
spectral decomposition of, 105 

entropy input, 167,168,172 
external mechanical work, 153; see also 

external mechanical power 
internal mechanical work, 153; see also 

stress power 
rotation tensor, 97 
strain tensor, 97; see also rate of deforma- 

tion tensor 
thermal work, 162; see also thermal power 
transport, 139 

reaction stresses, 202,271,276 
reciprocal basis, 32, 35, 37 
reciprocal basis vector, 32 
recovery, 279 
recurrence update formula, 293,295,393 
reduction factor, 298 
reference body force, 144,384 
reference frame, 57 

of observers, 18 1,182, 184 
spin of, 184 

reference mass density, 133-135,197 
reference temperature, 333-339,342,344-348 
reference time, 58, 110,266,344 
referential stress-entropy tensor, 330, 354 
referential stress-temperature tensor, 328-330, 

339-342,353,354 
decoupled representation of, 340-342 

referential thermal coefficients of stress, 328 
reflection, 16,20,28,31 
region, 52,58-60 
Reiner-Rivlin fluid, 202,204 
relaxation, 279,280,286,361,364 
relaxation time, 280,284, 287-289,358 
relaxation (retardation) process, 288, 358, 364, 

365,368 
relaxation test, 294 
replacement operator, 5 

Index 

representation theorem for invariants, 2 15 
representation theorem for isotropic tensor func- 

tions, 201,202,217 
resldual stram, 298 
residual stress, 208 
response coefficients, 201-204,217,224,234 
response function, 197-200,207,210,218,223 
retardation time, 280,284,287-289,358 
reversible process, 168, 170, 172, 173, 348- 

351,359,366 
Reynolds' transport theorem, 138-140 
rheological model, 286288,367-369 
right Cauchy-Green tensor; see Cauchy-Green 

tensor, right 
right stretch tensor; see stretch tensor, right 
rigid-body, 82,99, 100 
rigid-body motion, 82,153 

superimposed, 187-191, 198, 200, 209, 
213,214 

rigid-body rotation, 86, 99, 100, 188, 195 
rigid-body translation, 6571,  188 
rigid transformation, time-independent, 184 
Rivlin-Ericksen representation theorem, 94,201 
rotated rate of deformation tensor, 101,158 
rotation, 16,20,28-31,87,99, 100,209,267 

pure, 85,86 
rigid-body, 86.99.100, 188, 195 

rotation tensor, 86-88.99-101,128, 194,209 
Euclidean transformation of, 189 
rate of, 97 

rotational momentum, balance of, 141, 142 
rubber, 309-31 1,317-320,34&349,356,357, 

361 
carbon-black filled, 242,243,297,298 
ideal, 311,333 
natural, 3 1 1 
real, 310 

rubber balloon, 239-242 
'snap back' of, 242 
'snap through' of, 242,249 

rubberband, 309,310,326,348-351,355,356 
cooling effect, 309, 351 
heating effect, 309, 351 

rubber-like material, 235, 296, 311, 333, 337- 
340,357,403 

compressible, 244-247 
incompressible, 235-244 

stress-strain-temperature response of, 339, 
343,362 

Saint-Venant Kirchhoff model, 250, 251, 365 
modified, 25 1 

scalar, 1 
scalarfield, 4548,50,66,68,69,98, 106, 138- 

140,149 
objective, 185, 186 

scalar function, 40 
scalar multiplication, 2,10 
scalar product, 2,32 

triple, 8 
second law of thermodynamics, 166-168, 170, 

172,175,208 
second Piola-Kirchhoff stress tensor, 127, 199, 

210 
effective, 299 
equilibrium part, 285,362,363 
Euclidean transfonnation of, 19 1 
fictitious, 230,231,234,289 
isochoric contribution, 230,234,245,246, 

303,339 
non-equilibrium part, 285,362,363 
volumemc contribution, 230,233,245,303, 

339 
second-order tensor, 9-20,36,37 

transpose, 13, 14 
self-equilibrated stress field, 145 
separation of tie points, 307; see also end-to- 

end distance of tie points 
shear 

pure, 92,93,226,250,304 
simple, 93, 94, 227, 243, 366, 367 
uniform, 93 

shear direction. 93 
shear modulus, 227,236,247 

temperature dependent, 364 
shear planes, 93 
shear rate, 105,203,366 
shear stresses, 116, 117 

maxirnium and minimum, 120-122 
Simo-Taylor-Pister variational principle, 410,411 
simple material, 290 
simple shear, 93,94,227,243,366,367 
simple tension, 226,250,294,295,343-352 
single-field variational principle, 377-391,395- 

40 1 



snap buckling, 242 
softening parameter, 342 
solenoidal vector field, 48,50 
solid, 205,309-31 1 
solid mechanics, 205 
solution technique 

in~rement~terat ive,  252, 293, 392, 397, 
405 

staggered, 331, 332,342 
unconditionally stable, 331 

source 
entropy, 167,168 154,155 
heat, 162-164,168 
mass, 132 
point, 5 1,68 

spatial mass density, 133-136, 141, 142, 148, 
149,202 

spatial strain tensor, 79-82 
spatial stress-entropy tensor, 330,332 
spatial stress-temperature tensor, 328,329,332, 

333 
spatial time derivative, 66-68,98 
spatial velocity gradient, 95-97, 99 

Euclidean transformation of, 190 
specific heat capacity, 325-327 

constant, 335, 347-349 
at constant deformation, 325-327,329,330, 

334,360 
at constant stress, 327 

spectral decomposition of a tensor, 25,26 
spherical tensor, 19,3 1 
spin, 98 
spin angular momentum, 143, 152 
spin tensor, 97-100,154, 156,192-195 

Euclidean transformation of, 191 
physical inteqretation of, 105 

spring, 279,280,286-288,309,310,351,368 
spring-and-dashpot model, 286,367 
square-root theorem, 86 
staggered method, 331 
staggered solution technique, 331,332,342 
state function, thermodynamic, 161 
state of plane strain, 84,92 
state of plane stress, 126,225,227,237 
state of stress, 123-126; see also stress state 
state variables, thermodynamic, 161, 278, 305, 

321 
static condensation, 41 1 

Index 

static problem, 380,395 
stationary potential energy, principle of, 386- 

392 
statistical concept, 306-309 
statistical theory, 238,239, 308 

Gaussian, 312,318,319,339 
non-Gaussian, 244,319,356 

statistical thermodynamics, 305 
steady flow, 149 
steady motion, 68 
stiffness matrix, 253,397,406 

geometrical (initial stress), 397 
ill-conditioned, 391,402,406 
material, 397 

Stokes' heat flux theorem, 162-164 
Stokes' theorem, 53 
stored energy, 207; see also strain-energy func- 

tion 
stored-energy function, 207; see also strain-ener- 

gy function 
strain 

plain, 84 
principal directions of, 89, 90, 201, 219, 

258,259 
residual. 298 

straih energy, 160,207-21 1,214-222,233-238, 
242-247,252-254,283,320-339; see 
also strain-energy function 

total, 159 
strain-energy factor, 290 
strain-energy function, 160,207 

complementary, 408 
decoupled represenrationof, 229.23 1,233, 

244,245,337,389 
effective, 298-300 

isochoric, 303 
forms of, 209,210,235-251 
global minimum of, 208 
time derivative of, 208,210,218.229 

strain-equivalence, principle of, 300 
strain invan'ants, 215, 216, 223, 224, 233, 238, 

243 
strain rate, 287,358,359,362,369 
strain rate tensor, material, 101, 107, 158 
strain space plasticity, 301 
strain tensor, 76-85 

Biot, 88 
Cauchy-Green; see Cauchy-Green tensor 

Index 

eigenvalues of, 89-92 
eigenvectors of, 89-92 
Euler-Almansi; see Euler-Almansi strain ten- 

sor 
Green-Lagrange; see Green-Lagrange strain 

tensor 
Hencky, 88 
material, 76-79 
rate of, 97 
spatial, 79-82 

stress; see.also stresses 
algorithmic, 291,293,294 
Cauchy, 111 
Piola, 1 11 
residual, 2q8 
state of, 123-126 

stress-entropy tensor 
referential, 330,354 
spatial, 330,332 

stress-free configuration, 208, 247, 362, 363, 
379,390 

stress function, 322,323,347 
stress matrix, 112,117,120 
stress planes, 121 
stress power, 153-159,164,170,173,218,230, 

280,319 
effectwe, 299 

stress rate, 107 
Green-Naghdi, 194,195 
Jaumann-Zaremba, 194,195 
objective, 193-1 96 
Oldroyd, 193-196,253,332,400 
Truesdell, 195 

stress relation, 197-202, see also constitutive 
equations 

stress softening, 29&298,303,304 
stress state, 123-126 

biaxial,124,126 
equibiaxial, 124 
homogeneous, 123 
hydrostatic, 125,126,231 
plane, 126,225,227,237 
pure normal, 123,124 
pure shear, 124 
pure tangential, 124 
triaxial, 124 
uniform shear, 124 

stress-temperature tensor 
referential, 328-330,339-342,353,354 

decoupled representation of, 340-342 
spatial, 328,329,332,333 
uniaxial tension, 124 

stress tensor, 111-115,119,120, 123-129 
alternative, 127-129 
Biot, 128,158 
Cauchy; see Cauchy stress tensor 

corotated, 128 
eigenvalues of, 119, 120 
eigenvectors of, 119 
first Piola-Kirchhoff; see first Piola-Kirch- 

hoff stress tensor 
Kirchhoff; see Kirchhoff stress tensor 
Mandel, 128,158,386 
nominal, 1 11 
second Piola-Kirchhoff; see second Piola- 

Kirchhoff stress tensor 
true, 1 11 

stress theorem, Cauchy's, 11 1-1 14, 147, 148, 
150,154,175 

stress vector, 11 1 
stresses; see also stress 

compressive, 11 7 
maximum and minimum, 126 
non-equilibrium, 285, 287-290, 359, 363, 

365,366,368 
normal, 116.117 

maxirnium and minimum, 119,120 
reaction, 202,271,276 
shear; see shear stresses 
sign convention for, 115 
tangential, 117 
tensile, 117 

stretch, 78 
principal; see principal stretches 
pure, 85-87 

stretch ratio, 78; see also stretch 
stretch tensor, 85 

Euclidean transformation of, 189,190 
left (spatial), 85-88,218, 219 
right (material), 85-88,128,198,199,209 

time derivative of, 99, 158 
spectral decomposition of, 90 

stretch vector, 78,8 1,87 
inverse, 81 

structural tensors, 274 



subscript comma, 45 
summation convention, 4 
surface 

boundary; see boundary surface 
closed, 52,53 
control, 132, 136, 149, 150 
open, 53 

surface density, 174-176 
surface element, 52,74,110-117,119,162,383 

material (undeformed), 74 
spatial (deformed), 74 

first variation of, 377 
time derivative of, 104 

surface traction, 109-1 11,160 
surroundings, 131, 161,162,175 
symbolic notation, 3 ,5 
symmetries 

major, 253,328,401 
minor, 253,396,398,400,401 

symmetry of Cauchy stress tensor, 147 
system, 131, 132 

boundary of, 131 
closed, 131-133,141,319 
condition of, 161 
conservative, 159, 160, 319,386 
isolated, 132,319 
macroscopic, 55,56 
microscopic, 55 
open, 132,136,149 
orthononnal, 3 
right-handed, 3 
wall of, 131 

system of forces, 147-149,153 

tangent moduli; see also elasticity tensor 
algorithmic, 257 
consistent linearized, 257,293 

tangent stiffness matrix, see stiffness matrix 
tangent vector, 53,70,71,74 

material, 70, 7 1 
spahal, 70,71 

Taylor's expansion, 41,42,45,77 80,244,393 
temperature, 168-173.319-369 

absolute, 168 
change in, 334 
Celsius, 168,319 
Fahrenheit, 168 
Kelvin, 168, 319 

Index 

reference, 333-339,342,344-348 
temperature function, 323 
temperature gradient 176, 171,324,354,359 
tensile stresbes, 117 
tension 

pure, 124 
simple, 226,250,294,295,343-352 
uniform (uniaxial), 124 

tensor, 9 
antisymmetric, 16 
Cartesian, 10 
of chemical potential, 21 1,212 
contravariant, 36,83, 127, 193, 194; 253 
covarianf 36,83 
deviatoric, 19 
eigenvalues of, 2 6 2 6  
eigenvectors of, 24-26 
fourth-order, 22-24 
higher-order, 20-24,37 
inertia, 160 
inverse of, 15, 16 
isotropic, 30-32 
metric, 37,39 
mixed, 36 
negative definite, 11 
negative semi-definite, 1 1 
nonsingular, 15 
norm of, 15,365 
order (rank) of, 20 
orthogonal, 16 
positive definite, 11, 25,78, 81, 85, 87 
positive semi-definite, 11,170,17 1 

' projection; see projection tensor 
second-order, 9-20,36,37 
singular. 15 
skew, 16,17,98-100 
spectral decomposihon of, 25.26 
sphencal, 19,31 
spm; see spin tensor 
symmetric, 16, 17 
third-order, 20-22 
trace of, 14 
two-point, 71, 82, 86, 90, 11 1, 189-191 

tensor field, 45.49-52 
comected rate of, 193, 196 
co-rotational rate of, 192, 196 
frame-mdifferent, 185 
objective, 185, 186, 190-194 

Index 

tensor function, 4 M 3  
tensor product, 10-12 
test function, 380-382 
thermal conductivity, coefficient of, 17 1,342 
thermal conductivity tensor 

material, 171 
spatial, 170 

thermal energy, 161,172 
thermal energy, balance of, 164 
thermal equation of state, 322-324,347 
thermal equilibrium, 161; see also thermody- 

namic equilibrium 
thermal expansion, 344,347,348,351,352 
thermal field, 306 
thermal power, 162,164,165, 172,175,319 
thermal work, rate of, 162; see also thermal 

power 
thermally isotropicmaterial, 171,342,345,346, 

348 
thermodynamic continuum, 161 
thermodynamic equilibrium, 161,208,282,285, 

359,363,365,366 
thermodynamic force, 208, 281,299,303 

maximum, 300,302 
thermodynamic Maxwell relation, 325,352,353 
thermodynamic potentials, 321-325,338, 339, 

359 
general structure of, 334,335 

thermodynamic process, 161, 164, 166-168, 
172,319,330 

irreversibility of, 167 
thermodynamic reciprocal relation, 325 
thermodynamics 

classical, 305 
continuum, 131,161,305,325 
equilibrium, 168 
irreversible, 168 
of materials, 305-369 
non-equilibrium, 168,280,282,285 
notation used in, 161, 162 
reversible, 168 
statistical, 305 
with internal variables, 357-369 

thermodynamic state, 161, 278, 280-282. 321, 
322,357,362 

thermodynamic state function, 161 
thermodynamic state variables, 161, 278, 305, 

321 

thermoelastic heating (cooling), structural, 326, 
327,336,348,349,361 

decoupled representation of, 343 
thermoelastic inversion point, 350-352 
thermoelastic material, 323 
thermoelasticity, finite, 306, 327, 332 

of macroscopic networks, 31 1-321 
one-dimensional, 352-354 

thermomechanical coupling effects, 327, 360, 
363 

thermomechanical device, 367 
thermomechanical problem, coupled, 305,33 1, 

332,342,344,348 
thermostatics, 161, 168 
thermoviscoelastic heating (cooling), structural, 

360,361 
thermoviscoelastic material, 358 
thermoviscoelastic model, 361-364 
therknovisc~elasticit~, finite, 306,357-360 
third-order tensor, 20-22 
three-field variational principle; 409413 
tie point, 307,308,312-314,317 
time 

final, 3 19 
initial, 58,289,363,379 
instant of, 57-59,180,188,372, 385 
'modified', 289 
reference, 58,110,266,344 
relaxation (retardation), 280,284,287-289, 

358 
time derivative 

Lie, 106-108,193-196,376,400 
local, 66 
material; see material time derivative 
spatial, 66-68,98 
substantial, 64 
total, 64 

time increment, 291 
time integration algorithm, 290-293 
time interval, 180,181 

closed, 211,212,283, 291, 300, 319,320, 
361,392 

semi-open, 289,363,366 
time-shift, 181, 187, 188 
torque 

body, 143 
pure, 110 . 
resultant, 142 



454 Index 

total differential, 41,42,45,91,252,328 
total-Lagrangian formulation, 399 
trace of a tensor, 14 
traction vector, 109-1 18 

Biot, 128 
Cauchy (hue), 111,113-120,142,147,148 
coupled, 143 
first Piola-Kirchhoff (nominal), 11 1, 113, 

114,144 
prescribed, 379,385,412 

trajectory, 59 
transformation law 

for basis vectors, 28.29 
tensorial, 29, 30 
vectorial, 29 

transformation matrix, 29 
translahon, 28.62.209 

rigid-body, 62,71, 188 
transport theorem, Reynolds', 138-140 
transversely isotropic material, 265-272 
triadic product of vectors, 21 
trial solution, 291 
triple scalar product, 8 
triple vector product, 8,9, 19 
Truesdell stress rate, 195 
true stress tensor, 11 1; see also Cauchy stress 

tensor 
true traction vector, 11 1; see also Cauchy trac- 

tion vector 
two-field variational principle, 402-409 
two-pointtensor, 71,82,86,90,111,189-191 

uniform compression. 92. 124 
uniform deformation, 92,251,352 
uniform extension, 92, 124 
uniform motion, 69 
uniform tension, 124 
unit tensor 

of fourth-order, 23,3 1,42 
of second-order, 10,11,30,31,37 

unit vector, 3 
update algorithm, 290,291 
updated-Lagrangian formulation, 399 

Valanis-Landel hypothesis, 237,338 
Varga model, 238-242,239,356 

variational equation, 382, 385. 387, 389, 397, 
405,411 

variational operator, 374 
variational principle, 37 1-4 13 

Hamilton's, 391,392 
Hellinger-Reissner, 408,409 
HU-~ashizu, 412 
multi-field, 389,403,407,411 
Simo-Taylor-Pister, 410.41 1 
single-field, 377-391,395401 
three-field, 409-413 
two-field, 402-409 

variational problem, 381 
variation of a function, first, 374-377 
vector, 1; see also vectors 

axial. 17,20,48,98,100,105 
basis; see basis vectors 
conmavariant, 35,83,163, 186 
covariant, 35, 83 
dual, 17 
length of, 2,5,35, 188 
magnitude of, 2 
norm of, 2 
projection of, 3 

vector field, 45,48-54,61,68,83,98, 106 
conservative, 48 
convected rate of, 193,196 
co-rotational rate of, 192 
curl-free, 48 
divergence-free. 48 
frame-indifferent, 182 
irrotational, 48.50 
objective, 182-186,188,192 
solenoidal, 48, 50 

vector function, 40 
vector operator, 45,48-50 
vector product, 5 

triple, 8,9, 19 
vectors, 1: see also vector 

angle between, 2,5, 16,28,33, 188,258 
equal, 2 
orthogonality of, 3 
parallel, 6 
triadic product of, 21 

velocity, angular. 59 
velocity field, 62-65, 67, 68, 139, 141, 149, 

378,379 
under changes of observers, 183-185 

Index 455 

velocity gradient 
material, 9 5 9 6  
spatial, 95-97, 99 

Euclidean transformation of, 190 
velocity potential, 69,98 
vibration, free, 154 
virtual displacement field, 373-376, 382, 385, 

394,404 
virtual pressure field, 404 
virtual work 

external (mechanical), 382,385,388,391, 
404 

work conjugate, 159,170,208,217,252 
work conjugate pair, 159; see also work conju- 

gate 
work rate; see externalmechanical power; stress 

power; thermal power 

Yeoh model, 243 
Young's moduli, 286,368 

zero tensor, 10,43 

done by constant pressure, 383,392 zero vector, 2 

linearization of, 395,402 
internal (mechanical), 382,385, 386, 388, 

391,395-397,405 
linearization of, 396-401 

principle of; see principle of virtual work 
viscoelastic factor, 294 
viscoelastic material, 283 
viscoelastic model, 283-290 
viscosity, 203, 286,365-367 
viscosity index, 367 
viscous fluid, 202,203; see also fluid 
volume, 56 

control, 132,136, 149,150 
volume change, 227,236,3 10, 31 1, 316,317, 

345-347 
virtual, 410 

volume-changing deformation, 228,232,410 
volume density, 175 
volume element, 52, 74,3 13 

incremental, 133 
material (undeformed), 74 
spatial (deformed), 74 

first variation of, 377 
time derivative of, 104 

volume-preserving deformation, 228,232 
volume-preserving motion, 75 
volume ratio, 74 

Euclidean transformation of, 189 
first variation of, 377 
time derivative of, 103 

volumetric locking phenomena, 403,406,411 
von Neumann boundary condition, 378, 384, 

387,409 
vorticity tensor, 97 
vorticity vector, 98 


