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Abstract. We investigate the elastic properties of model composites, consisting in a dispersion of nonlinear
(spherical or cylindrical) inhomogeneities into a linear solid matrix. Both phases are considered isotropic.
Under the simplifying hypotheses of small deformation for the material body and of small volume fraction
of the embedded phase, we develop a homogenization procedure based on the Eshelby theory, aimed at
describing nonlinear features. We obtain the bulk and shear moduli and Landau coefficients of the overall
material in terms of the elastic behavior of the constituents and of their volume fractions. The mixing
laws for the nonlinear properties describe a complex scenario where possible strong amplifications of the
nonlinearities may arise in some given conditions.

PACS. 62.25.-g Mechanical properties of nanoscale systems – 62.23.Pq Composites – 81.40.Jj Elasticity
and anelasticity, stress-strain relations

1 Introduction

In recent years the characterization of linear and nonlin-
ear heterogeneous materials (i.e. materials formed by in-
clusions dispersed into a matrix) has attracted an ever
increasing interest. The central problem of considerable
technological importance is to evaluate the effective phys-
ical properties governing the behavior of such composite
materials on the macroscopic scale, taking into account
the actual microscale features [1]. At present, we do not
benefit of a general procedure providing effective prop-
erties by averaging the local ones. In fact, the details of
the morphology (or micro-geometry) play a central role
in determining the overall features, particularly when the
inclusions have highly anysotropic or nonlinear behavior
or when there is a large difference in the properties of the
constituents. In this context, the primary goal is to un-
derstand and classify the relationship between the inter-
nal micro-structure and the observed physical properties.
Such a relationship may be used for designing and improv-
ing materials or, conversely, for interpreting experimental
data.

A huge number of theoretical investigations have been
developed so far to describe the behavior of composites,
when a specific micro-structure is considered. Alterna-
tively, different theories were addressed to the search of
general results of broad applicability, without any guess
on the actual micro-structure. Among them we quote
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the classical Hashin-Shtrikman variational bounds the-
ory [2,3], which provides an upper and lower bound for the
properties of composites, and the expansion of Brown [4]
and Torquato [5,6] which takes into account the spatial
correlation function of the constituents.

Dispersions (or suspensions) of inclusions in a ma-
trix are examples of widely studied heterogeneous mate-
rials: these media have been extensively analyzed both
from the electrical [7,8] and the elastic [9,10] point of
view. In particular, the homogenization procedure has
been developed for a very dilute concentration of linear
elastic spherical inclusions dispersed into a linear solid
matrix [11]. In order to extend this approach to arbi-
trarily large concentrations, the differential method has
been applied for spherical [12], cylindrical [13] and ellip-
soidal inclusions [14]. Recent works focus on continuous
matrices containing inclusions of diverse shapes, proper-
ties and orientations [15,16]. The evaluation of the effec-
tive elastic properties of a body containing a given dis-
tribution of cracks belongs to the field of homogenization
techniques as well [17]. Finally, recent investigations con-
sider the effects of the orientational statistical distribution
of cracks [18,19].

In heterogeneous materials the nonlinear elastic regime
has been investigated under specific conditions [20–22].
For example, the effective energy of nonlinear elastic and
conducting composites has been evaluated [23,24] for in-
compressible dispersions with rigid or liquid inclusions and
for particles with a power-law-type shear energy. In this
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case the energy density depends only on the Von Mises
equivalent stress, being appropriate for the plasticity the-
ory and for high-temperature creep of metal [24]. In this
work we elaborate a more general framework based on a
homogenizing procedure and we apply it to two nonlin-
ear composite materials that paradigmatically represent
most features of many real systems. Firstly, we consider
a dispersion of nonlinear (but isotropic, i.e. amorphous or
polycrystalline) spherical inclusions embedded into a lin-
ear homogeneous and isotropic matrix. The nonlinearity
of the spherical inclusions can be described, at most, by
four parameters (the so-called Landau coefficients) mea-
suring the deviation from the linearity. Since the overall
behavior of the heterogeneous structure will be elastically
nonlinear, the key point is the evaluation of the effective
nonlinear properties of the composite material. Secondly,
we investigate a distribution of parallel (nonlinear) cylin-
drical inclusions embedded into a (linear) matrix, a sit-
uation mimicking the fiber reinforcement of composites.
In both geometries, the most important methodological
aspect is given by a useful generalization of the Eshelby
theory [25] to nonlinear inhomogeneities.

The layout of the present work is as follows. In Sec-
tion 2 we introduce the nonlinear constitutive equations
adopted to model the embedded inclusions and the non-
linear generalization of the Eshelby theory. In Sections
3 and 4 we develop and discuss our new framework for
spherical and cylindrical inclusions, respectively. Finally,
in Appendix A we prove a theorem of existence and unic-
ity for a nonlinear Eshelby problem.

2 Formalism

It is known that a nonlinear elastic theory can be devel-
oped in two different ways [26]. Nonlinearity can be taken
into account by means of the exact relation for the strain
(not limited for small deformation) and the exact equilib-
rium equations for a volume element of the body; this first
approach is referred to as geometrical nonlinearity [27].
Alternatively, nonlinear effects can be considered through
the arbitrarieness of the (generically not Hookean) stress-
strain constitutive relation; this approach is referred to as
physical nonlinearity [27]. In this work, we only consider
a situation characterized by physical nonlinearity, but ge-
ometrically linear. Accordingly, the angles of rotation can
be neglected in determining changes of dimension for the
line elements and in formulating the equilibrium condi-
tions of a volume element. Therefore, the balance equa-
tions are based on the standard small-strain tensor and
on the Cauchy stress tensor [26]. However, since we will
treat deformations exceeding the Hookean regime, a non-
linear stress-strain constitutive equation will be assumed.
This conceptual framework is sometimes referred to as
hypoelasticity: it is intended to model perfectly reversible
nonlinear stress-strain behavior, in the regime of infinites-
imal strains. Such a description has been already adopted
in the past in order to model nonlinear cubic polycrystals
with perturbative and self consistent methods [28].

Following the Cauchy formulation of elasticity, we base
our formal device on the existence of a constitutive stress-
strain relation T̂ = f (ε̂) [29,30]. For the following pur-
poses, we are interested in an isotropic nonlinear consti-
tutive equation, expanded up to the second order in the
strain components. In order to develop our formalism un-
der the further hypothesis of isotropy, we need to better
specify the mechanical behavior under rigid-body rota-
tion. In particular, we remark that the function f (ε̂) must
satisfy the identity [26]

R̂T f (ε̂) R̂ = f
(
R̂T ε̂R̂

)
(1)

for all proper orthogonal tensor R̂ representing a rotation.
A function satisfying the previous identity is known as an
isotropic tensor function, and it can be represented in the
form [26]

T̂ = f (ε̂) = q1Î + q2ε̂+ q3ε̂
2 (2)

where Î is the identity operator and q1, q2 and q3 are
scalar functions of the invariants Tr(ε̂), Tr(ε̂2) e Tr(ε̂3) of
the strain tensor ε̂. The development of equation (2), up to
the second order in ε̂, provides the following constitutive
equation

T̂ = 2με̂+ λTr (ε̂) Î +Aε̂2 + BTr
(
ε̂2

)
Î

+C [Tr (ε̂)]2 Î +Dε̂Tr (ε̂) (3)

where μ and λ are the standard linear Lamè moduli and
A,B,C and D are the so-called Landau coefficients de-
scribing the nonlinear behavior of the material. We remark
that by following the Green formulation of the elastic-
ity theory [30,31], we could obtain a constitutive rela-
tion similar to equation (3) where D = 2B. Therefore,
four independent parameters (A,B,C and D) are used in
the Cauchy elasticity, while three independent parameters
(A,B and C) are used in the Green elasticity.

The Cauchy nonlinear contitutive equation will be
used to model the elastic behavior of the inclusions em-
bedded into the linear matrix. In this context, the elastic
fields in such inclusions are found by means of a nonlinear
generalization of the Eshelby theory [32–36]. A nonlin-
ear isotropic and homogenous ellipsoid can be generically
described by the relation T̂ = Ĉ(2) (ε̂) ε̂ where Ĉ(2) (ε̂) is
an arbitrary nonlinear strain dependent stiffness tensor.
Let the embedding matrix be characterized by a stiffness
tensor Ĉ(1) and let us calculate the strain field inside the
inclusion when a uniform field T̂∞ = Ĉ(1)ε̂∞ is remotely
applied to the system. We have recently proved [31] that
the internal uniform field satisfy the following equation

ε̂s =
[
Î − Ŝ

(
Î −

(
Ĉ(1)

)−1

Ĉ(2) (ε̂s)
)]−1

ε̂∞ (4)

where the Eshelby tensor Ŝ was introduced, depending
only on the geometry of the ellipsoid (i.e. the semi-axes
length) and on the Poisson ratio of the host matrix [25].
If a solution ε̂s∗ exists for a given ε̂∞, it means that the
nonlinear inclusion could be replaced by a linear one with
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Fig. 1. (Color online) Scheme of a dispersion of nonlinear
spheres embedded into a linear matrix.

constant stiffness Ĉ(2) = Ĉ(2) (ε̂s∗). The calculation of the
internal strain field from equation (4) is very complicated
and it strongly depends on the actual nonlinear constitu-
tive equation for the inclusion. This task will be accom-
plished in the following Sections.

To conclude, we have verified the following general
statement: if the linear elastic matrix containing an in-
clusion of ellipsoidal shape is subjected to remote uniform
loading, then the stress field inside the inclusion will be
uniform independently of the constitutive law for the in-
clusion, provided that both the matrix and the inclusion
are homogeneous bodies.

When the Green approach is adopted it is also possible
to verify the existence and the unicity for the solution
of equation (4). The proof of this remarkably important
result is rather complex; it is given in Appendix A.

3 Dispersion of spherical inclusions

The paradigmatic model of dispersions of nonlinear spher-
ical inclusions is relevant for several applications, rang-
ing from biophysics to advanced technology. For example,
the transient elastography has shown its efficiency to map
the nonlinear properties of soft tissues or as diagnostic
technique [37,38]. In fact, it has been verified that ma-
lignant lesions tend to exhibit nonlinear elastic behavior
contrary to normal tissues. Another example is given by
the self-assembling of semiconductor quantum dots, em-
bedded into a solid matrix. The spherical quantum dots
growth, ordering and orientation (occuring during process-
ing) are largely affected by elastic phenomena, even be-
yond the linear regime [39,40]. Finally, many problems of
fracture mechanics in composite materials do contain non-
linear features like, e.g., the interaction between a moving
crack and a given inclusion [41].

We consider an assembly of spherical inclusions (see
Fig. 1) made by a material described by equation (3) with
ε̂ = ε̂s, T̂ = T̂ s and characterized by moduli μ2 and λ2.
They are randomly embedded into a linear matrix with
stiffness tensor Ĉ(1) (moduli λ1 and μ1). We also intro-
duce the bulk moduli K1 = λ1 + 2

3μ1 and K2 = λ2 + 2
3μ2.

We suppose that the volume fraction c of the embedded
phase is small (corresponding to a regime of dilute disper-
sions). Since the elastic interactions among inclusions can
be neglected, each sphere behaves like an isolated one un-
der the effect of a remote load T̂∞ = Ĉ(1)ε̂∞. The starting
point for the evaluation of the induced internal strain ε̂s is
equation (4), which can be usefully rearranged as follows

ε̂s − Ŝ ε̂s + Ŝ
(
Ĉ(1)

)−1

T̂ s = ε̂∞. (5)

Here, we have introduced the internal stress given by the
relation T̂ s = Ĉ(2) (ε̂s) ε̂s. We easily obtain that

(
Ĉ(1)

)−1

T̂ s =
1

2μ1
T̂ s − λ1

2μ1 (2μ1 + 3λ1)
Tr

(
T̂ s

)
Î (6)

while the explicit expression of the Eshelby tensor for this
geometry is reported in literature [9,25]

Sijkh =
1

15(1 − ν1)
[(δikδjh + δihδjk) (4 − 5ν1)

+ δkhδij(5ν1 − 1)]. (7)

By means of equation (7), we get

Sijkhε
s
kh =

2(4 − 5ν1)
15(1 − ν1)

εsij +
5ν1 − 1

15(1 − ν1)
εskkδij (8)

or, equivalently

Ŝ ε̂s =
6
5
K1 + 2μ1

3K1 + 4μ1
ε̂s +

1
5

3K1 − 4μ1

3K1 + 4μ1
Tr (ε̂s) Î (9)

by taking profit from the standard relation ν1 =
3K1−2μ1

2(3K1+μ1) . By inserting equations (3), (6) and (9) into
equation (5) we finally obtain the following important re-
sult

Lε̂s +MTr (ε̂s) Î +N (ε̂s)2 +Oε̂sTr (ε̂s)

+ PTr
[
(ε̂s)2

]
Î +Q [Tr (ε̂s)]2 Î = ε̂∞ (10)

which completely defines the internal strain. The parame-
ters L,M,N,O, P and Q are written in terms of the shear
moduli, bulk moduli and nonlinear coefficients as follows

L = 1 +
6
5
K1 + 2μ1

3K1 + 4μ1

(
μ2

μ1
− 1

)
(11)

M =
1

5 (3K1 + 4μ1)
(12)

×
[
5K2 −K1

(
3 + 2

μ2

μ1

)
− 4 (μ2 − μ1)

]

N =
3
5
A

μ1

K1 + 2μ1

3K1 + 4μ1
(13)

O =
3
5
D

μ1

K1 + 2μ1

3K1 + 4μ1
(14)

P =
1

15 (3K1 + 4μ1)

[
15B −A

(
1 + 3

K1

μ1

)]
(15)

Q =
1

15 (3K1 + 4μ1)

[
15C −D

(
1 + 3

K1

μ1

)]
. (16)



92 The European Physical Journal B

We now explicitely take into consideration the dispersion.
We define V as the total volume of the composite material,
Ve as the volume corresponding to the spheres and Vo as
the volume of the matrix (V = Vo ∪ Ve, see Fig. 1). Since
we are working under the hypothesis of small volume frac-
tion c, we can consider the average value of the strain in
the matrix to be equal to the externally applied strain
ε̂∞. Therefore, the average strain in the overall system is
given by

〈ε̂〉 = cε̂s + (1 − c)ε̂∞. (17)

On the other hand, the average value of the stress can be
calculated as follows

〈T̂ 〉 =
1
V

∫

V

T̂ dv =
1
V
Ĉ(1)

∫

Vo

ε̂dv +
1
V

∫

Ve

T̂ dv

=
1
V
Ĉ(1)

∫

Vo

ε̂dv +
1
V

∫

Ve

T̂ dv

+
1
V
Ĉ(1)

∫

Ve

ε̂dv − 1
V
Ĉ(1)

∫

Ve

ε̂dv

= Ĉ(1) 〈ε̂〉 + c
[
T̂ s − Ĉ(1)ε̂s

]
. (18)

By substituting equation (10) into equation (17), we ob-
tain the average strain 〈ε̂〉 in terms of the internal strain ε̂s

〈ε̂〉 = [c+ (1 − c)L] ε̂s

+ (1−c)
{
MTr (ε̂s) Î+N (ε̂s)2

+ Oε̂sTr (ε̂s)+PTr
[
(ε̂s)2

]
Î+Q [Tr (ε̂s)]2 Î

}
. (19)

Similarly, by substituting the constitutive relations into
equation (18), we obtain the average stress 〈T̂ 〉 in terms
of ε̂s

〈T̂ 〉 = 2μ1〈ε̂〉 +
(
K1 − 2

3
μ1

)
Tr〈ε̂〉Î

+c {2 (μ2 − μ1) ε̂s

+
[
K2 −K1 − 2

3
(μ2 − μ1)

]
Tr (ε̂s) Î

+A (ε̂s)2 +BTr
[
(ε̂s)2

]
Î

+ C [Tr (ε̂s)]2 Î +Dε̂sTr (ε̂s)
}
. (20)

We remark that equations (19) and (20) implicitely de-
fine the macroscopic contitutive equation for the compos-
ite system. In order to explicitate such an equation, we
rewrite equation (19) in a simpler form

〈ε̂〉 =L′ε̂s +M ′Tr (ε̂s) Î +N ′ (ε̂s)2

+O′ε̂sTr (ε̂s)+P ′Tr
[
(ε̂s)2

]
Î+Q′ [Tr (ε̂s)]2 Î (21)

where we have used the definitions L′ = c + (1 − c)L,
M ′ = (1 − c)M , N ′ = (1 − c)N , O′ = (1 − c)O, P ′ =
(1 − c)P and Q′ = (1 − c)Q. By means of equation (21),
we can straightforwardly calculate all the key quantities

Tr 〈ε̂〉, 〈ε̂〉2, 〈ε̂〉Tr 〈ε̂〉, Tr
(
〈ε̂〉2

)
and [Tr 〈ε̂〉]2 in terms of

the internal strain ε̂s

Tr 〈ε̂〉 = (L′ + 3M ′)Tr (ε̂s) + (N ′ + 3P ′)Tr
[
(ε̂s)2

]

+(O′ + 3Q′) [Tr (ε̂s)]2

〈ε̂〉2 = L′2 (ε̂s)2 + 2L′M ′ε̂sTr (ε̂s) +M ′2 [Tr (ε̂s)]2 Î
〈ε̂〉Tr〈ε̂〉 = L′(L′ + 3M ′)ε̂sTr (ε̂s)

+M ′(L′ + 3M ′) [Tr (ε̂s)]2 Î

Tr
[
〈ε̂〉2

]
= L′2Tr

[
(ε̂s)2

]
+M ′(2L′ + 3M ′) [Tr (ε̂s)]2

[Tr 〈ε̂〉]2 = (L′ + 3M ′)2 [Tr (ε̂s)]2 . (22)

We remark that equation (22) is valid up to the second
order in ε̂s.

3.1 Results

By using equation (20) and by inverting equation (22), we
obtain the final form of the constitutive relation for the
composite system

〈T̂ 〉 = 2μeff 〈ε̂〉 +
(
Keff − 2

3
μeff

)
Tr〈ε̂〉Î

+Aeff 〈ε̂〉2 +Beff Tr
[〈ε̂〉2] Î

+Ceff [Tr〈ε̂〉]2 Î +Deff 〈ε̂〉Tr〈ε̂〉 (23)

where

μeff = μ1 + c
μ2 − μ1

L′ (24)

Keff = K1 + c
K2 −K1

L′ + 3M ′ (25)

and

Aeff = c
A

L′2 − 2c
N ′ (μ2 − μ1)

L′3 (26)

Beff =2c
(N ′M ′ − L′P ′) (μ2 − μ1)

L′3 (L′ + 3M ′)
+

− c
(N ′ + 3P ′)

[
K2 −K1 − 2

3 (μ2 − μ1)
]

L′2 (L′ + 3M ′)
+ c

B

L′2

(27)

Ceff =
1
9
c (9C + 3B + 3D +A)

(L′ + 3M ′)2
+

1
9
c (A− 3B)

L′2

−4
9
N ′ (μ2 − μ1) c

L′3 − 1
9
c (3D + 2A)
L′ (L′ + 3M ′)

+
1
9
c(4N ′ + 6O′)(μ2 − μ1)

L′2 (L′ + 3M ′)

+
1
9
c(3N ′ + 9P ′)(K2 −K1)

L′2 (L′ + 3M ′)

−1
3
c(9Q′ + 3O′ + 3P ′ +N ′)(K2 −K1)

(L′ + 3M ′)3
(28)
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Deff = 2c
(2N ′M ′ − L′O′) (μ2 − μ1)

L′3 (L′ + 3M ′)

−2c
M ′A

L′2 (L′ + 3M ′)
+ c

D

L′ (L′ + 3M ′)
. (29)

If we use the definitions of the parameters L′ and M ′, we
also get

μeff = μ1 + c
μ2 − μ1

c+ (1 − c)
[
1 + 6

5

(
μ2
μ1

− 1
)

K1+2μ1
3K1+4μ1

] (30)

Keff = K1 +
(3K1 + 4μ1) (K2 −K1) c
3K2 + 4μ1 − 3c(K2 −K1)

. (31)

These expressions hold in linear regime, as well [11].
Nevertheless, equations (26)–(29) offer a useful general-
ization of previous results obtained within the framework
of the Green elasticity [31].

The general picture outlined above fulfils a series of
important universal properties:

1. Equations (26)–(31) are valid also for c = 1; it means
that if c = 1, then μeff = μ2, Keff = K2, Aeff = A,
Beff = B, Ceff = C, Deff = D, as expected.

2. The nonlinear elastic moduli A, B, C and D affect
the effective nonlinear moduli of the composite mate-
rial following the universal scheme showed in Figure 2.
Therefore, there is a complicated mixing of the nonlin-
ear elastic modes induced by the heterogeneity of the
structure.

3. If the linear elastic moduli of the matrix and of the
spheres are the very same (K1 = K2 and μ1 = μ2), we
simply obtain Keff = K1, μeff = μ1 and the following
special set of results for the nonlinear components

Aeff = cA (32)
Beff = cB (33)
Ceff = cC (34)
Deff = cD (35)

equations (32)–(35) imply that the nonlinearity of the
overall system is simply proportional to the nonlinear-
ity of the spherical inclusions.

4. If we let D = 2B, we move from the Cauchy elas-
ticity to the Green elasticity formalism, assuming the
existence of a strain energy function for the inho-
mogeneities. It is important to remark that the fol-
lowing property holds: if D = 2B then the relation
Deff = 2Beff is true for the effective nonlinear moduli.

It can be verified by direct calculation and it means
that our approach is perfectly consistent with the en-
ergy balance of the composite material. In other words,
we have verified that if a strain energy function exists
for the embedded spherical inclusions, then an overall
strain energy function exists for the whole composite
structure.

5. If we consider the special value of the Poisson ratio
ν1 = ν2 = 1/5 (both for the matrix and the spheres)
and different values for the Young moduli E1 �= E2, we
obtain another interesting result: the effective Poisson
ratio assume the same value νeff = 1/5, the effective
Young modulus Eeff assumes the value

Eeff =
E1 (1 − c) + E2 (1 + c)
E1 (1 + c) + E2 (1 − c)

E1 (36)

and the effective nonlinear elastic moduli can be cal-
culated as follows

Xeff =
8E3

1c

[E1 (1 + c) + E2 (1 − c)]3
X (37)

where the symbol X represents any modulus A, B, C
or D (the four effective parameters exhibit the same
behavior). Therefore, we can say that the special value
ν1 = ν2 = 1/5 uncouples the behavior of the non-
linear elastic modes (described above), generating a
direct correspondence among the nonlinear moduli of
the spheres and the effective nonlinear moduli. Fur-
thermore, if we add the condition E1 = E2, we re-
cover equations (32)–(35). The special value 1/5 for
the Poisson ratio comes out in several issues consider-
ing a dispersion of spherical inclusions. For example,
for linear porous materials (with spherical pores) and
for linear dispersions of rigid spheres the value 1/5 is a
fixed points for the Poisson ratio: if ν1 = 1/5, then we
have νeff = 1/5 for all spheres concentrations [14,42].
Moreover, there is another interesting behaviour of the
effective Poisson ratio for high volume fraction of pores
or rigid spheres: in both cases for c → 1 the effective
Poisson ratio converges to the fixed value νeff = 1/5,
irrespective of the matrix Poisson ratio [14,42–44].

6. Finally, we analyze the properties of the dispersion
when the embedded spherical inclusions are made of
an incompressible material: the constitutive relation
equation (3) describes an incompressible medium in
the limit λ2 → ∞ (or, equivalently, K2 → ∞ since
K2 = λ2 + 2μ2/3); by inverting equation (3), writ-
ing the strain tensor in terms of the stress tensor and
performing such a limit, we obtain (up to the second
order)

ε̂s =
1

2μ2
T̂ s − 1

6μ2
Tr

(
T̂ s

)
Î − A

8μ3
2

(
T̂ s

)2

+
A

24μ3
2

Tr
[(
T̂ s

)2
]
Î − A

36μ3
2

[
Tr

(
T̂ s

)]2

Î

+
A

12μ3
2

T̂ sTr
(
T̂ s

)
(38)
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1, A = 2, B = 3, C = 5, D = 2B in arbitrary units.

which describes a nonlinear isotropic and incompress-
ible material. We remark that only the nonlinear mod-
ulus A appears in such a constitutive equation and that
equation (38) imposes Tr (ε̂s) = 0, as requested by the
incompressibility. In this limiting condition, as for the
effective linear moduli, we observe that equation (30)
for μeff remains unchanged and equation (31) leads to

Keff = K1 +
(
K1 +

4
3
μ1

)
c

1 − c
. (39)

On the other hand, the nonlinear elastic moduli have
been eventually found as

Aeff = 125Aθ (40)

Beff = −125
3
Aθ (41)

Ceff =
250
9
Aθ (42)

Deff = −250
3
Aθ (43)

where

θ =
c (3K1 + 4μ1)

3
μ3

1

ψ3
(44)

ψ = 6 (K1 + 2μ1) [cμ1 + (1 − c)μ2]
+μ1 (9K1 + 8μ1). (45)

One can observe that, as expected, the effective non-
linear elastic moduli depend only on the modulus A
describing the nonlinearity of the spheres, as shown
in equation (38). Moreover, we remark that a single
modulus A for the spheres can generate four different
effective nonlinear moduli, as predicted by the scheme
in Figure 2.

To conclude we present some numerical results obtained
by the implementation of equations (26)–(31). They are
reported in Figures 3 and 4 where the Green and Cauchy
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Fig. 4. (Color online) Linear and nonlinear effective elastic
moduli of a dispersion of spheres in terms of the volume frac-
tion c. We have used the values µ1 = 1, µ2 = 4, K1 = 10, K2 =
1, A = 2, B = −3, C = −5, D = 4 in arbitrary units.

elasticity cases are investigated, respectively. The effec-
tive elastic moduli are reported as function of the volume
fraction c of the spherical inclusions. In both Green and
Cauchy cases we observe a consistent amplification (in ab-
solute value) of the nonlinear effective modulus Ceff . We
have verified that such a phenomenon is always exhibited
when K1 � K2 (i.e. when the matrix is much more in-
compressible than the spheres) and that the higher values
of Ceff appear for small values of the volume fraction c,
belonging to the range of applicability of the present the-
ory.

As it is well known, simple bounds for the linear effec-
tive moduli exist

1
1−c
K1

+ c
K2

≤ Keff ≤ (1 − c)K1 + cK2 (46)

1
1−c
μ1

+ c
μ2

≤ μeff ≤ (1 − c)μ1 + cμ2. (47)

The lower bounds in equations (46) and (47) are referred
to as the Voigt bounds, and the upper bounds are desig-
nated as the Reuss bounds [10]. More refined limitations
have been derived by Hashin and Shtrikman [3]. From our
numerical results, we observe that the nonlinear proper-
ties, contrarily to the linear ones, are not bounded. Rather,
they show a strong amplification under suitable condi-
tions, leading to nonlinear effective moduli much greater
than those ones of the constituent materials. This point is
important in the topic of designing materials with desired
properties and functions.

4 Dispersion of parallel cylindrical inclusions

The nonlinear elastic features of fiber-reinforced media are
relevant in many materials science problems. Recently, ar-
rays of parallel carbon nanotubes were produced and em-
bedded into a homogeneous matrix [45]. The high level
of ordering and uniformity in these arrays is useful for
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applications in reinforcing techniques and sensors design-
ing. Composite films with homogeneously dispersed sin-
gle wall nanotubes showed an extraordinary reinforcing
effect: the addition of 1.0% of fibers tripled the tensile
strength of the original tapes [46]. Moreover, an effec-
tive functionalization method was investigated to take full
advantage of the exceptional performance of both car-
bon nanotubes and epoxy polymer for composite appli-
cation. The elastic modulus of the nanocomposite was en-
hanced 24.6% with only 0.5% loading of functionalized
carbon nanotubes, in contrast to the 3.2% increase of un-
functionalized carbon nanotube reinforced composite [47].
Alternatively, the mechanical reinforcement of optically
functional materials is of significant interest because of
the rapid expansion of active displays. Finally, transpar-
ent polymeric composites with enhanced properties have
been developed by using cellulose nanofibers as mechani-
cal reinforcing agents [48,49].

In earlier works the linear analysis for a parallel
distribution of fibres has been developed by means of
the Eshelby methodology and of the differential effec-
tive medium theory [13,50]. Moreover, the mechanical re-
sponse of elastic and inelastic fibre-strengthened materi-
als has been investigated, also with self-consistent models
[51–53]. Here we take into consideration an assembly of
parallel cylinders, as represented in Figure 5, described
by an arbitrary Cauchy constitutive relation. The cylin-
drical inclusions are randomly embedded into a linear ma-
trix with elastic moduli K1 and μ1. This is a simple but
meaningful model of a nonlinear fibrous material. As in the
previous Section, we suppose that the volume fraction c of
the embedded phase is small (dilute dispersion). By con-
sidering that the system shows a transverse isotropic sym-
metry (uniaxial symmetry), we assume the plane strain
condition on an arbitrary plane π (see Fig. 5) orthogonal
to the cylinders. We therefore can elaborate our problem
by two-dimensional elasticity. Moreover, in plane strain
condition, it is a common choice to introduce the two di-
mensional elastic moduli μ2D = μ and K2D = K + μ/3,
whereK and μ are the customarily used three-dimensional
moduli [50]. For sake of simplicity, throughout this section
we rename K2D = K and μ2D = μ. The linear matrix is
described by

T̂ = 2μ1ε̂+ (K1 − μ1)Tr (ε̂) Î (48)

while the cylindrical inclusions are described by the
Cauchy constitutive relation

T̂ s =2μ2ε̂
s + (K2 − μ2) Tr (ε̂s) Î +A (ε̂s)2

+BTr
[
(ε̂s)2

]
Î + C [Tr (ε̂s)]2 Î +Dε̂sTr (ε̂s) (49)

where any strain or stress tensor is now represented by a
square matrix of order two. We remark that equation (4)
or, equivalently, equation (5) are correct for any geometry.
Therefore, they can be directly used in the present analy-
sis. Nevertheless, in order to use equation (5) we need to
recall that

(
Ĉ(1)

)−1

T̂ s =
1

2μ1
T̂ s − K1 − μ1

4μ1K1
Tr

(
T̂ s

)
Î (50)

K2, μ2

K1, μ1
1 − c

c

V

Ve

Vo

Keff , μeff , Aeff , Beff , Ceff , Deff

K2, μ2 A, B, C,D

K2, μ2 A, B, C,D

A, B, C,D

K2, μ2 A, B, C,D

π

Fig. 5. (Color online) Scheme of a dispersion of nonlinear
parallel cylinders embedded into a linear matrix.

and

Ŝ ε̂s =
1
2
K1 + 2μ1

K1 + μ1
ε̂s +

1
4
K1 − 2μ1

K1 + μ1
Tr (ε̂s) Î (51)

where Ŝ is the Eshelby tensor for the cylindrical in-
clusion [25]. By inserting equations (49)–(51) into equa-
tion (5), a tedious calculation leads to

Lε̂s +MTr (ε̂s) Î +N (ε̂s)2 +Oε̂sTr (ε̂s)

+ PTr
[
(ε̂s)2

]
Î +Q [Tr (ε̂s)]2 Î = ε̂∞ (52)

which fully characterizes the internal strain induced in a
nonlinear cylindrical inclusion by the uniform externally
applied deformation ε̂∞. The parameters L,M,N,O, P
and Q have been calculated as

L = 1 +
1
2
K1 + 2μ1

K1 + μ1

(
μ2

μ1
− 1

)
(53)

M =
1

4 (K1 + μ1)

×
[
2K2 −K1

(
1 +

μ2

μ1

)
− 2 (μ2 − μ1)

]
(54)

N =
A

4μ1

K1 + 2μ1

K1 + μ1
(55)

O =
D

4μ1

K1 + 2μ1

K1 + μ1
(56)

P =
1

8 (K1 + μ1)

(
4B −A

K1

μ1

)
(57)

Q =
1

8 (K1 + μ1)

(
4C −D

K1

μ1

)
. (58)

To further proceed, we follow once again a procedure sim-
ilar to that described in the previous section: we make use
of equations (17) and (18) for the average values of stress
and strain in the composite structure; then, we use the
constitutive equations of the materials and we derive the
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following relations

Tr 〈ε̂〉 = (L′ + 2M ′)Tr (ε̂s) + (N ′ + 2P ′)Tr
[
(ε̂s)2

]

+(O′ + 2Q′) [Tr (ε̂s)]2

〈ε̂〉2 = L′2 (ε̂s)2 + 2L′M ′ε̂sTr (ε̂s) +M ′2 [Tr (ε̂s)]2 Î
〈ε̂〉Tr〈ε̂〉 = L′(L′ + 2M ′)ε̂sTr (ε̂s)

+M ′(L′ + 2M ′) [Tr (ε̂s)]2 Î

Tr
[
〈ε̂〉2

]
= L′2Tr

[
(ε̂s)2

]
+ 2M ′(L′ +M ′) [Tr (ε̂s)]2

[Tr 〈ε̂〉]2 = (L′ + 2M ′)2 [Tr (ε̂s)]2 (59)

in order to obtain the constitutive equation of the fibrous
system. Here we have used again the definitions L′ = c+
(1 − c)L, M ′ = (1 − c)M , N ′ = (1 − c)N , O′ = (1 − c)O,
P ′ = (1 − c)P and Q′ = (1 − c)Q.

4.1 Results

The constitutive equation is expressed in terms of the ef-
fective linear and nonlinear elastic moduli as follows

〈T̂ 〉 = 2μeff 〈ε̂〉 + (Keff − μeff )Tr〈ε̂〉Î
+Aeff 〈ε̂〉2 +Beff Tr

[〈ε̂〉2] Î
+Ceff [Tr〈ε̂〉]2 Î +Deff 〈ε̂〉Tr〈ε̂〉 (60)

where

μeff = μ1 + c
μ2 − μ1

L′

= μ1+c
μ2 − μ1

c+(1 − c)
[
1 + 1

2

(
μ2
μ1

− 1
)

K1+2μ1
K1+μ1

] (61)

Keff = K1 + c
K2 −K1

L′ + 2M ′

= K1 + c
K2 −K1

c+ (1 − c)μ1+K2
μ1+K1

. (62)

We remark that both μeff and Keff are consistent with
results published elsewhere [54]. As for the effective non-
linear elastic moduli, we get

Aeff =
Ac

L′2 − 2c
N ′ (μ2 − μ1)

L′3 (63)

Beff =
c [N ′ (μ2 − μ1) +BL′]

L′3

−c (2P ′ +N ′) (K2 −K1)
L′2 (L′ + 2M ′)

(64)

Ceff = c
4C + 2B + 2D +A

4 (L′ + 2M ′)2
+ c

A− 2B
4L′2

+c
2 (O′ +N ′) (μ2 − μ1) + (2P ′ +N ′) (K2 −K1)

2L′2 (L′ + 2M ′)

−c (2P ′ +N ′ + 4Q′ + 2O′) (K2 −K1)

2 (L′ + 2M ′)3

−cN
′ (μ2 − μ1)
L′3 − c

A+D

2L′ (L′ + 2M ′)
(65)

Deff = 2
(2N ′M ′ − L′O′) (μ2 − μ1) c

L′3 (L′ + 2M ′)

−2c
M ′A

L′2 (L′ + 2M ′)
+

cD

L′ (L′ + 2M ′)
. (66)

They represent the thorough nonlinear characterization of
the random dispersion of parallel cylindrical inclusions. It
is interesting to observe that all the properties described
in the previous section for the dispersion of spherical in-
clusions can be easily verified also for the present case.
In particular, the scheme represented in Figure 2 remains
valid.

We analyze in more detail the special case with ν1 =
ν2 = 1/4 (corresponding to the two-dimensional Poisson
ratio ν2D = ν3D/(1 − ν3D) = 1/3 [50]) and E1 �= E2. In
this case, the effective Poisson ratio is νeff = 1/4 and the
effective Young modulus Eeff is given by

Eeff =
E1 (1 − c) + E2 (2 + c)
E1 (1 + 2c) + 2E2 (1 − c)

E1 (67)

while the effective nonlinear elastic moduli are calculated
as follows

Xeff =
27E3

1c

[E1 (1 + 2c) + 2E2 (1 − c)]3
X (68)

where the symbolX represents any modulus A, B, C or D
(the four effective parameters exhibit the same behavior).
Therefore, as before, we can say that for the special value
ν1 = ν2 = 1/4 the nonlinear elastic modes are decoupled,
generating a direct correspondence among the nonlinear
moduli of the spheres and the effective nonlinear moduli.

Finally, we have numerically implemented equa-
tions (61)–(66) in order to shown some explicit results
for both Green (see Fig. 6) and Cauchy (see Fig. 7) elas-
ticity. As in the previous section, we observe a consistent
amplification (in absolute value) of the nonlinear effec-
tive modulus Ceff . We have also verified that such a phe-
nomenon is exhibited when K1 � K2 (i.e. when the ma-
trix is much more incompressible than the spheres) and
that the higher values of Ceff appear for small values of
the volume fraction c, belonging to the range of applica-
bility of the present theory. The enhancement of Ceff rep-
resents therefore a general feature of nonlinear composite
systems.

5 Conclusions

In this work we have considered the linear and nonlinear
elastic behavior of a composite material. In particular, we
have taken into account a dispersion of isotropic nonlinear
inclusions (spherical or cylindrical) embedded into a linear
isotropic host matrix.

We have obtained the expressions of the four non-
linear effective elastic moduli of the composite medium
with inclusions described by Cauchy constitutive equa-
tions. Then, as a particular case, we have considered the
Green elasticity to describe the nonlinear behavior of the
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Fig. 6. (Color online) Linear and nonlinear effective elastic
moduli for a dispersion of cylinders in terms of the volume
fraction c. We have used the values µ1 = 1, µ2 = 5, K1 =
10, K2 = 1, A = −8, B = −2, C = −1, D = 2B in arbitrary
units
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Fig. 7. (Color online) Linear and nonlinear effective elastic
moduli for a dispersion of cylinders in terms of the volume
fraction c. We have used the values µ1 = 1, µ2 = 5, K1 =
10, K2 = 1, A = 8, B = −2, C = −1, D = 6 in arbitrary units.

inclusions. In this case we have verified that if a strain en-
ergy function exists for the inhomogeneities, then an over-
all strain energy function exists for the whole composite
structure.

Moreover, we have observed that the nonlinear effec-
tive elastic moduli, contrarily to the linear ones, are not
subjected to any bound limiting their values. We have
indeed found some large amplifications of the nonlinear
behavior in certain given conditions.

We acknowledge financial support by MUR under the project
PON – ‘CyberSar’ (OR 7).

Appendix A: Nonlinear Eshelby theory
within Green elasticity

In this Appendix we provide the complete proof of the ex-
istence and unicity of the solution of equation (4) (within
Green elasticity). This is a key result, underlying all the
formal developments described in this paper. At first, we
briefly outline the concepts of eigenstrain and inclusion in
order to introduce the adopted notation and to recall the
most important equations of the Eshelby theory [25,32,33].

We suppose to consider an infinite medium with stiff-
ness tensor Ĉ(1); moreover, we consider an embedded el-
lipsoidal inclusion V described by the constitutive equa-
tion T̂ = Ĉ(1) (ε̂− ε̂∗). The strain ε̂∗ is called eigenstrain
(or stress-free strain). In these conditions the following
relations describe the strain inside and outside the re-
gion V [25]

ε̂ (x) =
{ Ŝ ε̂∗ if x ∈ V
Ŝ∞ (x) ε̂∗ if x /∈ V

(A.1)

where Ŝ is the internal Eshelby tensor and Ŝ∞ is the ex-
ternal Eshelby tensor.

We suppose now to consider an infinite medium with
stiffness tensor Ĉ(1) in �3�V (matrix) and Ĉ(2) in the ellip-
soidal region V (inclusion). We remotely load the system
with a uniform strain ε̂∞ or, equivalently, with the uniform
stress T̂∞. Of course we have T̂∞ = Ĉ(1)ε̂∞. This config-
uration can be analyzed by means of the Eshelby equiv-
alence principle [32]: the system can be described by the
superimposition of two simpler cases (see Fig. 8) [25]. The
first situation A concerns a homogeneous medium with
stiffness Ĉ(1) uniformly deformed by means of the remote
loads ε̂∞ or T∞. The second situation B, without remote
loads, is represented by an eigenstrain ε̂∗ embedded into
a medium, characterized everywhere by Ĉ(1). The eigen-
strain must be imposed searching for the equivalence be-
tween the original problem and the superimpositionA+B.
The following relation hold on inside the region V (smeans
inside V)

ε̂s = ε̂A,s + ε̂B,s = ε̂∞ + Ŝ ε̂∗
T̂ s = T̂A,s + T̂B,s = Ĉ(1)ε̂∞ + Ĉ(1)

(
ε̂B,s − ε̂∗

)

= Ĉ(1)ε̂∞ + Ĉ(1)
(
Ŝ ε̂∗ − ε̂∗

)
. (A.2)

In the inclusion we have T̂ s = Ĉ(2)ε̂s and therefore

Ĉ(1)ε̂∞ + Ĉ(1)
(
Ŝ ε̂∗ − ε̂∗

)
︸ ︷︷ ︸

T s

= Ĉ(2)
(
ε̂∞ + Ŝ ε̂∗

)
︸ ︷︷ ︸

ε̂s

. (A.3)
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Fig. 8. Scheme of an ellipsoidal inclusion and the Eshelby
equivalence principle.

The following relations can be finally obtained for the
eigenstrain and for the actual strain in V

ε̂∗ =

[(
Î −

(
Ĉ(1)

)−1

Ĉ(2)

)−1

− Ŝ
]−1

ε̂∞ (A.4)

ε̂s =
(
Î −

(
Ĉ(1)

)−1

Ĉ(2)

)−1

ε̂∗ (A.5)

ε̂s =
[
Î − Ŝ

(
Î −

(
Ĉ(1)

)−1

Ĉ(2)

)]−1

ε̂∞ (A.6)

if Ĉ(2) = 0 (void) we obtain

ε̂∗ = ε̂s =
[
Î − Ŝ

]−1

ε̂∞. (A.7)

We now move towards the demonstration of the exis-
tence and unicity for the nonlinear Eshelby problem. To
this aim, it is convenient to adopt the Green formulation
of the elasticity theory where a strain energy function U(ε̂)
defines the constitutive equation T̂ (ε̂) = ∂U(ε̂)

∂ε̂ of the inclu-
sion, and it drives to T̂ (ε̂) = Ĉ(2) (ε̂) ε̂. In these conditions,
the existence and unicity of a solution for equation (4) can
be exactly proved under the sole hypotesis of convexity for
the strain energy function U(ε̂). To prove this statement,
we rearrange equation (4) as follows

{
Î − Ŝ

[
Î −

(
Ĉ(1)

)−1

Ĉ(2) (ε̂s)
]}

ε̂s = ε̂∞

[
Î − Ŝ

]
ε̂s + Ŝ

(
Ĉ(1)

)−1 ∂U(ε̂s)
∂ε̂s

= ε̂∞

Ĉ(1)
[
Ŝ−1 − Î

]
ε̂s − Ĉ(1)Ŝ−1ε̂∞ +

∂U(ε̂s)
∂ε̂s

= 0. (A.8)

The first linear term can be converted to the gradient of
a quadratic form and the second constant term can be
converted to the gradient of a linear form. We therefore
observe that the internal strain field must satisfy the fol-
lowing relation

∂

∂ε̂

{
1
2
ε̂Ĉ(1)

[
Ŝ−1 − Î

]
ε̂− ε̂Ĉ(1)Ŝ−1ε̂∞ + U(ε̂)

}
= 0

(A.9)
which is equivalent to equation (4). The first term repre-
sents a symmetric and positive definite quadratic form in
ε̂ (see below) while the second term is a linear function of
ε̂. Therefore, the sum of these two terms is a convex func-
tional with relative minimum at

[
Î − Ŝ

]
ε̂∞. This value

represents the strain field in a void (Ĉ(2) (ε̂) = 0 in equa-
tion (4) or U(ε̂) = 0 in equation (A.9)) embedded into the
matrix with stiffness Ĉ(1). If U(ε̂) is a convex functional
(with U(0) = 0) the brackets in equation (A.9) contain the
sum of two convex terms: they result in an overall convex
functional with a unique minimal extremum at ε̂s.

The next step consists in proving that the tensor given
by Ĉ(1)

[
Ŝ−1 − Î

]
is symmetric. We consider the same re-

gion V with two different values for the eigenstrain ε̂∗ and
ε̂∗∗ embedded into the material defined by Ĉ(1). The sym-
metry of the tensor can be established by means of a re-
vised version of the Betti’s reciprocal theorem [29]. We
define T̂ ∗ = Ĉ(1)ε̂∗ and T̂ ∗∗ = Ĉ(1)ε̂∗∗. The first situation
is described by the fields T̂ ′, ε̂′,u′ and the second one by
T̂ ′′, ε̂′′,u′′ everywhere in the space. The preliminary sym-

metry of the tensor Ŝ
[
Ĉ(1)

]−1

is proved. We begin by
considering the following relation (Σ is the boundary of V
and n is the external normal unit vector)

VT̂ ∗Ŝ
[
Ĉ(1)

]−1

T̂ ∗∗ = VT̂ ∗Ŝ ε̂∗∗ = VT̂ ∗ε̂′′ = T̂ ∗
∫

V

ε̂′′dv

= T̂ ∗
∫

V

∂u′′

∂x
dv = T̂ ∗

∫

Σ

u′′ndS = Ĉ(1)ε̂∗
∫

Σ

u′′ndS.

(A.10)

At the interfaceΣ we have T̂ ′n|Σ− = T̂ ′n|Σ+ (sign + indi-
cates the external side of Σ and sign − indicates its inter-
nal side). Recalling the definition of eigenstrain we sim-
ply obtain Ĉ(1) (ε̂′ − ε̂∗) n|Σ− = Ĉ(1)ε̂′n|Σ+ and, finally,
we get Ĉ(1)ε̂′n|Σ− − Ĉ(1)ε̂′n|Σ+ = Ĉ(1)ε̂∗n. We use it in
equation (A.10), obtaining

VT̂ ∗Ŝ
[
Ĉ(1)

]−1

T̂ ∗∗ =
∫

Σ

[
Ĉ(1)ε̂′n|Σ− − Ĉ(1)ε̂′n|Σ+

]
u′′dS.

(A.11)
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On Σ− we have T̂ ′ = Ĉ(1) (ε̂′ − ε̂∗) and on Σ+ we have
T̂ ′ = Ĉ(1)ε̂′, therefore

VT̂ ∗Ŝ
[
Ĉ(1)

]−1

T̂ ∗∗

=
∫

Σ−

(
T̂ ′ + T̂ ∗

)
nu′′dS −

∫

Σ+
T̂ ′nu′′dS

=
∫

V

∂

∂x

[(
T̂ ′ + T̂ ∗

)
u′′

]
dv +

∫

�3\V

∂

∂x

[
T̂ ′u′′

]
dv

=
∫

V

(
T̂ ′ + T̂ ∗

)
ε̂′′dv +

∫

�3\V
T̂ ′ε̂′′dv

=
∫

V

[
Ĉ(1) (ε̂′ − ε̂∗) + T̂ ∗

]
ε̂′′dv +

∫

�3\V
T̂ ′ε̂′′dv

=
∫

V

ε̂′Ĉ(1)ε̂′′dv +
∫

�3\V
ε̂′Ĉ(1)ε̂′′dv

=
∫

�3
ε̂′Ĉ(1)ε̂′′dv. (A.12)

We have thus obtained a symmetric form (since Ĉ(1) is
symmetric). Therefore, the following dual relation is valid
and it can be verified as above

VT̂ ∗∗Ŝ
[
Ĉ(1)

]−1

T̂ ∗ =
∫

�3
ε̂′Ĉ(1)ε̂′′dv. (A.13)

By comparison of equations (A.12) and (A.13) we obtain

VT̂ ∗Ŝ
[
Ĉ(1)

]−1

T̂ ∗∗ = VT̂ ∗∗Ŝ
[
Ĉ(1)

]−1

T̂ ∗ (A.14)

which establishes the symmetry of Ŝ
[
Ĉ(1)

]−1

. The in-

verse tensor
{
Ŝ

[
Ĉ(1)

]−1
}−1

= Ĉ(1)Ŝ−1 is again symmet-

ric and, finally, the quantity Ĉ(1)
[
Ŝ−1 − Î

]
is symmetric

since it is a sum of symmetric tensors.
We further proceed by demonstrating that the tensor

Ĉ(1)
[
Ŝ−1 − Î

]
is positive definite. We consider two similar

situations as described in Figure 9. The first corresponds
to a homogeneous medium with displacement prescribed
on the boundary, while the second case considers the ad-
dition of an inclusion without changing the fixed displace-
ments on the external surface. No body forces are present
in both schemes. We begin searching for the difference
between the elastic energy stored in the two cases

ΔE =
1
2

∫

Ω

(
ε̂bT̂b − ε̂aT̂a

)
dv. (A.15)

It is easy to prove that
∫

Ω

ε̂aT̂adv =
∫

Ω

ε̂bT̂adv (A.16)
∫

Ω

ε̂aT̂bdv =
∫

Ω

ε̂bT̂bdv. (A.17)

In order to verify equation (A.16) we write the relation
∫

Ω

(ε̂a − ε̂b) T̂adv =
∫

Ω

(
∂ua

∂x
T̂a− ∂ub

∂x
T̂a

)
dv (A.18)

Σ Σ

Ω Ω

Ĉ(1)Ĉ(1)

Ĉ(2)

n nua = ub = u fixed on Σ

ua, T̂a, ε̂a
ub, T̂b, ε̂b

V

Fig. 9. Schemes of a homogeneous region and a heterogeneous
one with an inclusion V. The boundary conditions prescribe the
same displacement on the external surface.

where ∂ua

∂x T̂a = ∂uaT̂a

∂x since ∂T̂a

∂x = 0 at equilibrium and

similarly ∂ub

∂x T̂a = ∂ubT̂a

∂x . Therefore, we obtain

∫

Ω

(ε̂a − ε̂b) T̂adv =
∫

Ω

(
∂uaT̂a

∂x
− ∂ubT̂a

∂x

)
dv

=
∫

Σ

(
uaT̂a − ubT̂a

)
ndS = 0 (A.19)

since ua = ub on Σ. The dual relation given in equa-
tion (A.17) can be verified with the same method.
By inserting equations (A.16) and (A.17) into equa-
tion (A.15) we obtain

2ΔE =
∫

Ω

(
ε̂bT̂b − ε̂aT̂a

)
dv =

∫

Ω

(
ε̂aT̂b − ε̂bT̂a

)
dv

=
∫

Ω�V

(
ε̂aT̂b − ε̂bT̂a

)
dv +

∫

V

(
ε̂aT̂b − ε̂bT̂a

)
dv

=
∫

Ω�V

(
ε̂aĈ(1)ε̂b − ε̂bĈ(1)ε̂a

)
dv +

∫

V

(
ε̂aT̂b − ε̂bT̂a

)
dv.

(A.20)

Since the stiffness tensor Ĉ(1) is symmetric, we obtain the
following general expression for the energy difference

ΔE =
1
2

∫

V

(
ε̂aT̂b − ε̂bT̂a

)
dv. (A.21)

We now suppose that the prescribed displacement on
Σ imposes a uniform strain in the first case of Figure 9;
therefore, the second situation can be described by the
Eshelby solution. With this additional hypothesis the en-
ergy difference can be rearranged as follows

ΔE = −1
2

∫

V

(
T̂aε̂b − ε̂aT̂b

)
dv

= −1
2

∫

V

(
T̂aε̂b − T̂a

(
Ĉ(1)

)−1

Ĉ(2)ε̂b

)
dv

= −1
2

∫

V

T̂a

(
Î −

(
Ĉ(1)

)−1

Ĉ(2)

)
ε̂bdv

= −1
2

∫

V

T̂aε̂
∗dv (A.22)
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having used equation (A.5). Utilizing equation (A.4) we
obtain

ΔE = −1
2

∫

V

ε̂aĈ(1)

[(
Î −

(
Ĉ(1)

)−1

Ĉ(2)

)−1

− Ŝ
]−1

ε̂adv.

(A.23)
From now on we suppose that the embedded inclusion is
a void (Ĉ(2) = 0). Accordingly, we obtain

ΔE = Eb (ε̂b) − Ea (ε̂a) = −1
2

∫

V

ε̂aĈ(1)
[
Î − Ŝ

]−1

ε̂adv.

(A.24)
If we take into account a body without body forces and
with prescribed displacements on the whole external sur-
face, then the variational formulation of the elasticity
theory leads to the minimum potential energy princi-
ple [29,30]. We apply this principle to the second case
of Figure 9 (with a void). If the fields ub, ε̂b, T̂b corre-
spond of the actual elastic fields in such a case, we have
Eb

(
ub, ε̂b, T̂b

)
� Eb

(
u, ε̂, T̂

)
where the fields u, ε̂, T̂ cor-

respond to any displacement u matching the prescribed
boundary. In particular, we have Eb (ε̂b) � Eb (ε̂a), where
ε̂a is the strain in the first case of Figure 9. Moreover, we
write

Eb (ε̂a) =
1
2

∫

Ω�V

ε̂aĈ(1)ε̂adv +
1
2

∫

V

ε̂aĈ(2)ε̂adv

=
1
2

∫

Ω�V

ε̂aĈ(1)ε̂adv = Ea (ε̂a) − 1
2

∫

V

ε̂aĈ(1)ε̂adv

(A.25)

so that

Eb (ε̂b) � Eb (ε̂a)

Eb (ε̂b) � Ea (ε̂a) − 1
2

∫

V

ε̂aĈ(1)ε̂adv

Eb (ε̂b) − Ea (ε̂a) � −1
2

∫

V

ε̂aĈ(1)ε̂adv. (A.26)

Since ε̂a is uniform, combining equations (A.24) and
(A.26), we obtain

ε̂aĈ(1)
[
Î − Ŝ

]−1

ε̂a − ε̂aĈ(1)ε̂a � 0. (A.27)

or

T̂a

[
Î − Ŝ

]−1 [
Ĉ(1)

]−1

T̂a−T̂a

[
Ĉ(1)

]−1

T̂a � 0. (A.28)

So, the tensor
[
Î − Ŝ

]−1 [
Ĉ(1)

]−1

−
[
Ĉ(1)

]−1

is positive
definite.

For any tensor it is true that [I −A]−1 = I +[
A−1 − I

]−1 and therefore we obtain

[
Î − Ŝ

]−1 [
Ĉ(1)

]−1

−
[
Ĉ(1)

]−1

=
[
Ŝ−1 − Î

]−1 [
Ĉ(1)

]−1

.

(A.29)

Finally, the tensor
[
Ŝ−1 − Î

]−1 [
Ĉ(1)

]−1

and its inverse

Ĉ(1)
[
Ŝ−1 − Î

]
are symmetric and positive definite.

It is interesting to observe that all the results given
in Appendix A and in Section 2 exactly apply also for an
anisotropic and homogeneous ellipsoidal inclusion embed-
ded into an anisotropic and homogeneous matrix [31]. In
this case, the Eshelby tensor Ŝ depends on the geometry
and on Ĉ(1) [25].
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39. V. Holỳ, G. Springholz, M. Pinczolits, G. Bauer, Phys.

Rev. Lett. 83, 356 (1999)
40. M. Schmidbauer, S. Seydmohamadi, D. Grigoriev, Z.M.
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