Eur. Phys. J. H 87, 139-236 (2012) '
DO 10,1140 /epjh/62012-20029-1 THE EUROPEAN
PHYSICAL JOURNAL H

Thermodynamics of irreversible
processes — past and present

Ingo Miiller!:® and Wolf Weiss! 2:?

! Thermodynamik und Thermische Verfahrenstechnik Technische Umversn;at Berlin,
Strafie des 17. Juni 135, 10623 Berlin, Germany

2 Weierstrass Institute for Applied Analysis and Stochastics, Mohrenstr. 39, 10117 Berlin,
Germany

Received 25 July 2011 / Received in final form 19 December 2011
Published online 30 May 2012
© EDP Sciences, Springer-Verlag 2012

Tensor notation
Throughout this report we use index notation for vectors and tensors. Summation
over repeated indices is understood so that, for instance, %’é‘; denotes the divergence
of the velocity v, and g;n; is the component of the heat flux q in the direction of the
unit vector n.

Indices enclosed by round brackets indicate symmetrisation so that

1
Q(irig...in) = mp(ame...z’n),

where P is the permutation operator. In particular we have

v _ L (0ui , Bv;
ij) - 6.’1:]' 63:1 )

Triangular and square brackets represent symmetric, traceless tensors and anti-
symmetric tensors respectively, for instance

oz dz;  Oz; 30z, 7
Bu _ Ov;  0Ov;
6:031 2 (6_:1:, B 6_%)

Preview

Irreversibility is the phenomenon that makes a thermodynamic body tend to equilib-
rium, a state of stationary and homogeneous fields of chemical potentials, velocity,
and temperature, albeit in lively fluctuating thermal molecular motion, unnoticed by
the naked eye. The random character of the fluctuations is maintained by contact with
the boundary. 19th century physics assumed equal probability for all manifestations
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of the thermal motion and succeeded to relate irreversibility to entropy, a quantity
with a strong probability — albeit no certainty — of growth. Thus irreversibility was
identified as a probabilistic phenomenon in which bodies progress from fields of low
probability to fields of high probability. Such is the meaning of irreversibility in natu-
ral philosophy. We explain this in some detail in Sectlon 2. and show that an isolated
body has no real irreversibility. :

In a more practical sense irreversible, or dissipative phenomena like diffusion, fric-
tion and heat conduction — created by gradients of chemical potentials, velocity and
temperature, respectively, — were successfully described by parabolic differential equa-
tions, read off from observations: the laws of Fick, Navier-Stokes, and Fourier. These
laws serve engineers well and will continue to do so in the future. The laws were
formulated in the 19th century and later — in the 20th century — they were incorpo-
rated into Eckart’s theory, usually dubbed TIP, for thermodynamics of irreversible
processes. This theory is described in Section 4. It might also be called the doctrine of
forces and fluxes, because it provides linear relations between thermodynamic forces,
like the gradients of velocity and temperature, and thermodynamic fluzes, like the
deviatoric stress and the heat flux.

An interesting feature of the theory lies in the possibility of cross effects between
heat conduction and diffusion, a phenomenon which doés indéed: oecur: Thus a heat
flux may be created by a gradient of chemical potentials, or a diffusion flux may
be influenced by a temperature gradient. Such cross effects are also allowed between
chemical reaction rates and dynamical pressure. For instance, a chemical affinity may
affect the non-equilibrium pressure. The cross effects are limited by the linear repre-
sentation theory of tensorial functions of tensors of different ranks, a limitation which
in the parlance of TIP is given the status of a principle called the Curie principle.

Eckart’s theory is highly successful in fluid mechanics, gas dynamics and ther-
modynamics. It can cope analytically with calm or smooth irreversible processes.
However it is true that there used to be cases, before the advent of the computer and
of finite element methods, in which the equations could not be solved, such as the
sudden expansion of a gas into a low-pressure chamber, where turbulent motion and
highly non-homogeneous temperature fields occur. Nowadays even such precipitous
irreversible processes may be followed in detail and with good results by numerical
methods applied to Eckart’s theory, albeit with considerable effort. In earlier times
this was impossible. And yet, even then, even without numerical means, for some
cases the eventual equilibrium after a sudden irreversible expansion or compression
could be predicted. In other precipitous cases, indeed in most of them, nothing could
be done. Section 1.4 gives examples.

TIP does not stop at transport phenomena like heat conduction, viscous friction
and diffusion. It incorporates chemical reactions into the linear force-flux scheme by
setting reaction rates proportional to chemical affinities. The affinities are combina-
tions of chemical potentials of the constituents of a mixture and those in turn are
often strongly non-linear functions of the concentrations. Thus Eckart’s theory - a
linear theory of irreversible thermodynamics, valid close to chemical equilibrium -
gives rise to non-linear differential equations for the concentrations. And those equa-
tions exhibit all the rich mathematical properties of non-linear ordinary and partial
differential equations like limit cycles, pattern formation, and — sometimes — chaos.

However, the laws of Fick, Fourier, and Navier-Stokes have one common drawback:
they lead to parabolic field equations, which means that they predict infinite speeds
of propagation of disturbances in chemical potentials, temperature and shear stress.
Engineers do not care, but the phenomenon is anathema for physicists; they called it
a paradox, e.g. the paradozx of heat conduction. Physicists prefer hyperbolic equations
which account properly for inertia, stability, and finite speeds of propagation. And
yet, for more than a century the flaw of infinite speeds in the classical theories was
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passed over in scientific papers and textbooks — with some glib remark or other -
until a resolution was proposed. That might have happened for diffusion, or viscous
friction but, as it was, it happened for heat conduction at the hands of Cattaneo,
a mathematical physicist. Thus a reformulation of Fourier’s law became the pivotal
point in the transition of thermodynamics from parabolicity to hyperbolicity. Let us
consider Cattaneo’s argument right here among these introductory remarks, so as
to be able to refer back to it on the numerous occasions when the subject of finite
speeds and stability arises. Most often — but not always — that happens in rarefied
gases where steep gradients can occur in the thermodynamic fields, or rapid rates of
change.

Cattaneo argued that in a gas the heat flux ¢; at some time ¢ should not only

depend on the gradient of temperature g,% at that time — as Fourier had had it — but
on the history of that gradient. This implies a functional relation between g;(t) and
the history g_:%(t —7) of %, where t — 7 is some time in the past, so that 7 must be
positive. Cattaneo further assumed that the gas has fading memory so that, perhaps,
the remembered part of the history can be represented by a short Taylor expansion

of g—g:(t — 7) into the past at the present time, viz.

oT oT 0T
B:c,- (t B T) - 6_112,(t) B Tataw,- (t)
Thus the modified form of Fourier’s law would read?!
a\ oT ) 1 - oTr
¢ =—K (1 - 'ra) e or equivalently @qi = —na—mi. (P.1)

If that equation is used to eliminate the heat flux from the energy equation of a body
at rest we obtain the equation?

T _ (9T OT
Pt = "\ bz,0z, ' 0t0z,0z, )

(P.2)

Now, ironically, that equation is still parabolic, and it still predicts infinite speed of
propagation. Thus Cattaneo’s argument defeated his purpose. However, a good physi-
cist does not let himself be bogged down by mere mathematics. Thus the physicist in
Cattaneo got the better of the mathematician and he wrote

1 0

~l+7—
l-TBa_t + ot

on the basis that 7 is small. Thus equation (P.1)2 becomes

0g; oT
§G+ T =K
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(P.3)

This is the Cattaneo equation which extends the Fourier law, the underlined part
of the equation. Cattaneo’s equation created some attention, because elimination
of g; between it and the energy equation provides a hyperbolic equation, namely the
telegraph equation equation, the prototype of all hyperbolic differential equations of

second order.
62_T T k 8°T

iy + ot p_caa:iasci'

(P.4)

! k is the thermal conductivity.
2 p is the mass density and c is the specific heat at constant volume.
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That equation implies a finite speed of propagation, which is what Cattaneo wanted,
and what physicists at large want.

Now, finite speeds are largely equivalent to stability. Let us consider this in a
rough-and-ready but still potent manner — at the Cattaneo level of reasoning.

Equation (P.1) implies that, if the heat flux is zero at some point, the temper-
ature gradient grows to infinity which is obviously nonsense. On the other hand,
equation (P.3) implies that, if the temperature gradient vanishes at some point, the
heat flux relaxes to zero at that point, which makes sense. Therefore the Cattaneo
equation (P.3) is superior to equation (P.1) as regards to stability as well as finite
speeds. Consequently we must reject the idea to approximate the history of the tem-
perature gradient by a short Taylor series despite its inherent plausibility.

The paradox of heat conduction is not alone; it is the tip of an iceberg. There
are analogous paradoxes for viscous friction and diffusion in gases. In addition the
grade theories of visco-elastic fluids exhibit a very similar paradox when the history
of deformation is replaced by a Taylor series with Rivlin-Ericksen tensors as expansion
coefficients. In the kinetic theory of gases the approximation schemes of Maxwell and
Enskog are similarly flawed; they ought to be discarded.

All of this is explained in the appropriate places in this report. Section 5 deals with
rational thermodynamics, a theory which was effectively brought down by its failure
to produce stable solutions in visco-elasticity. Section 6 considers mixtures. Actually
mixtures represent a special case: they do not need a Cattaneo-type argument for the
improvement of Fick’s law. Indeed, as soon as Fick’s law is recognised as a mutilated
form of the equations of balance of momenta, a physicist will easily improve the theory
by taking account of the inertia of the diffusive motion of the constituents. This is
equivalent to Cattaneo’s reasoning but more plausible and, indeed, physically nearly
trivial.

Extended thermodynamics offers a way out of the dilemma represented by in-
finite speeds and failing stability. Extended thermodynamics of gases has profited
much from the knowledge of the kinetic theory of gases. Therefore a chapter has
been included in this report about Boltzmann’s kinetic theory which in itself, and in
conjunction with Grad’s iterative scheme, avoids all paradoxes, or at least those that
occur in gases.

After that, Sections 8 and 9 give an account of extended thermodynamics. Sec-
tion 8.2 describes the heuristic beginnings, Section 8.3 exhibits the close relationship
between the theory and the kinetic theory of gases, and Section 8.4 represents the cul-
mination of extended thermodynamics: the emergence of symmetric hyperbolic field
equations — to replace the old parabolic equations — at the dictate of a fully general
entropy principle. Section 9 applies extended thermodynamics to light scattering. It
provides the ultimate proof of the applicability and practicality of the theory.

Irreversible thermodynamics has not entirely escaped the attention of the Swedish
Nobel committee. Onsager was honoured in 1968, and Prigogine in 1977, both for
chemistry. The work of both was never quite undisputed, particularly not before the
prizes were awarded.

Onsager’s work is discussed in Section 3. Its decisive assumption concerns thermal
molecular fluctuations. Onsager states that, in the mean, these fluctuations behave like
macroscopic fields in relaxation toward equilibrium. That hypothesis — along with the
whole thesis — was rejected by the doctoral committee in Onsager’s home university,
and it was never proven to this day; the hypothesis is most unlikely to be true and the
best one can say about it is that it is not altogether unreasonable. This faint praise
was issued by de Groot and Mazur, the authors of the most influential monograph
on irreversible thermodynamics. And yet! And yet, light scattering spectra could not
be successfully evaluated — as they are — unless Onsager’s mean-regression hypothesis
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were true. So we may say — reluctantly — that the hypothesis is a stroke of genius,
unproven but true, perhaps.

With Prigogine it is different. His main pronouncement is the principle of minimal
entropy production. That principle states that under given boundary condition, a
body will tend to a state, in the eventual stationary process, that has a minimum
of entropy production. The assertion can be disproved in two lines, see Section 4.2.4.
Apart from that, however, Prigogine deserves recognition, because among chemists he
popularised the rich mathematical properties of the solutions of non-linear differential
equations in coupled chemical reactions. In addition, he invented the Brusselator in
order to illustrate that cyclic chemical processes can occur in a homogeneous body
under a constant in- and efflux of chemical constituents.

It is often the case in thermodynamics that a complex mathematical argument is
required to express a simple physical idea. On such occasions, in this report, we shall
consistently prefer plausibility over rigour and present the easy suggestive argument
rather than the mathematically sophisticated one. This is done in order to accommo-
date the non-expert reader. Unfortunately such simplification is not always possible,
it is most often impossible for non-linear phenomena in irreversible thermodynamics,
notably for the results of Boltzmann’s formal kinetic theory of gases. Therefore we
must urgently recommend that researchers - physicists and historians — apply them-
selves to a profound study of molecular theories. We dare say that successful research
in non-linear irreversible thermodynamics is impossible without that background.

Finally, a remark in our own cause: we, the authors of this report, have been
blamed by the reviewers of a previous draught, that we give too much weight to
our personal opinions about the development of irreversible thermodynamics. That
reproof is misplaced! We present nothing else but demonstrable historical facts, and
back them up with the appropriate references. However, it is true that we refuse
to spread the charitable veil of goodwill and kind feelings over fallacies and false
conclusions. A soft exculpatory attitude like that would only serve to perpetuate past
misconceptions and to misguide future scientists.

This report ends with an outlook to further studies in thermodynamics of irre-
versible processes, where a systematic extension of the conventional theory is envis-
aged, e.g. for a phonon “gas” in crystalline solids. And there is a brief mention of
liquid crystals and, — particularly —, of non-Newtonian, rheological fluids which are
still in need of a thermodynamic treatment.

1 Irreversible thermodynamics before thermodynamics
of irreversible processes '

1.1 Abstract

Thermodynamics of irreversible processes is sometimes considered as a late arrival
in the field of thermodynamics, and its emergence is dated back to the 1930’s or,
specifically, to the works of Onsager in 1931 and Eckart in 1939. And, indeed, those
years and those scientists are important for the development of the theory as we
shall see. However it is also true that irreversible thermodynamic processes have been
treated — successfully treated — long before the word thermodynamics was even coined,
which happened in or about 1850.

1.2 Phenomenological equations

Joseph Fourier’s youthful ambition was to become an artillery man. That seemed to
be an impossible dream at first, because Fourier’s parents were poor. But then the
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French revolution happened, and in the new age of fraternité and égalité Fourier was
permitted to enter a military school, the later Ecole Polytechnique. The artillery at
the time had problems with the heating-up of their cannon barrels and so naturally,
perhaps, Fourier studied heat conduction. He pronounced the law

gi=—kK (,>0) (1.1)

61‘,’
between the heat flux ¢; and the temperature gradient -g?Ti in 1808 [Fourier 1808]. The
law implies that the heat flux is opposite to the temperature gradient, or that heat
flows from hot to cold, never in the opposite direction. It forms, of course, part of
Fourier’s great monograph “Théorie analytique de la chaleur” [Fourier 1822, which
appeared in 1822, and to this day the law is called Fourier’s law.

Napoléon Bonaparte was Fourier’s mentor. He took Fourier along on his disastrous
Egyptian campaign and later made him a baron in recognition of his great mathe-
matical discoveries. The greatest discovery was, of course, the method of harmonic
decomposition of functions, which places Fourier firmly among the greatest math-
ematicians of all times. That method was developed in the course of his efforts to
solve the heat equation (1.2). The first to be thoroughly impressed by this powerful
mathematical tool was Fourier himself, who talks about it as if he could not believe
in his own ingenuity.

In addition to (1.1), Fourier derived - in a deft manner - the heat equation

_ a_T _ 0T
ot 0z;0x;

the prototype of all parabolic equations in mathematical physms He solved the equa-
tion for a large variety of initial and boundary conditions®, and so it happened that
complex problems of heat conduction and temperature dlstrlbutlon were routinely
solved by engineers before anybody knew for certain what heat actually was*. Fourier
refuses to speculate about the question: says he; one can only form hypotheses on
the inner nature of heat, but the knowledge of the mathematical laws that governs its
effects is independent of all hypotheses.

Among Fourier’s solutions there is the elegant calculation of the damped temper-
ature wave moving into the soil when its surface is subject to a periodic — daily or
yearly — oscillation of temperature due to solar radiation: at a certain depth winters
are warmer than summers. The impact of the Théorie Analytique was enormous; it
was read everywhere, and Lord Kelvin used the results when he estimated the age
of the earth from the time it should have taken the initial liquid sphere to cool to
present conditions [Thomson 1862]°.

Another law for an irreversible process, — somewhat less obviously connected with
thermodynamics than Fourier’s law —, is the law of Navier, Poisson, and Stokes for
viscous friction between the stress ¢;; and the velocity gradlent6 3

(A>0), (1.2)

a 61‘7 + 2 a ]>

x and X were called internal and external conductivities, respectively, by Fourier. Nowa-
days they are called the thermal conductivity and the thermal diffusivity.

4 That knowledge came in the 1840’s with the discovery of the first law of thermodynamlcs
E.g. [Miiller 2007].

5 That estimate was erroneous, because Kelvin was unaware of the fact that the earth is
continuously heated by radioactive decomposition of constituent elements.

6 Poisson is rarely mentioned in this context nowadays, even though his expression — with
two viscosities — was more complete than Navier’s and Stokes’s who had only the shear
viscosity.

tyj = —plij +v— (v > 0,7 >0). (1.3) "

3
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where p is the pressure and v and 7 are bulk- and shear viscosities, respectively.
[Navier 1822; Poisson 1829; 1831; Stokes 1845).

Like Fourier, Navier and Poisson came from the Ecole Polytechnique in Paris, a
hotbed of great discoveries in mathematical physics between its foundation in 1794
and 1840. Stokes was a little later; he was the founder and first eminent representative
of the English school of applied mathematics which remained influential for a century;
Stokes solved the momentum balance in fairly complex circumstances, using (1.3) and
the method of decomposition of functions into spherical harmonics, an extension or
variant of Fourier’s harmonic analysis.

Stokes was very interested in the motion of the pendulum, and in 1851 he wrote
a long article on the question [Stokes 1851]. Section 2 of that article is entitled:
Solutions of the equations in the case of a sphere oscillating in a mass of fluid either
unlimited, or confined by a spherical envelope concentric with the sphere in its position
of equilibrium.

The result could be specialised to the case of a sphere in an infinitely extended
fluid. If the radius of the sphere is r and its constant velocity is v, the force needed
to maintain the motion comes out as

F = 6mro, (1.4)

a formula that is universally known as Stokes’s law of friction.

The solution of boundary value problems for the Navier-Stokes fluid required more
than an able mathematician. A boundary value for the tangential velocity on the
sphere (say) is needed. And, hesitantly, Stokes proposes what is now-a-days called
the no-slip condition: the condition which first occurred to me to assume ...was that
the film of fluid immediately in contact with the solid did not move relatively to the
surface of the solid [Stokes 1851, p. 312].

Stokes tends to consider this assumption as valid when the mean velocity of the
flow is small. He was aware of the difficulties that turbulence might raise. But he was
blissfully unaware, of course, of the problems that may arise in rarefied gases; these
are problems that haunt the present-day researchers concerned with re-entering space
vehicles.

Fluids which obey the Navier-Stokes equations (1.3) are often called Newtonian.
And there are many of them, ranging from highly viscous honey, or asphalt, over
water to rarefied ideal gases. Newton discovered a special case of the equations in
the course of his study of the question whether, perhaps, the speed of the moon was
affected by friction with the ether. However, of course, he did not find evidence for
such an effect. :

Along with Fourier’s and Navier-Stokes’s equations there is a third phenomenolog-
ical equation” which was pronounced in the 19th century, and that concerns diffusion.
It can be attributed to Adolf Fick who tried to derive the governing equation from
the notion that there is gravitational (!) attraction between the molecules of a mixture
[Fick 1855]. When that idea did not work particularly well, Fick had the good sense
to refer to Fourier and conclude: indeed, one will have to admit that nothing be more
probable than this: the diffusion of a solute in a solvent ... follows the same rule which
Fourier has pronounced for the distribution of heat in a conductor. Thus he came to
pronounce Fick’s law for a binary mixture

oc .
Ji = _Da_x,-’ (1.5)

7 So called, we believe, because the laws were read off — after a fashion — from the phe-
nomena of heat conduction, internal friction and diffusion.
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Fig. 1. Evolution of temperature between two half-spaces with initially different tempera-
tures.

where J; is the diffusion flux of constituent 1 and c is its concentration. D is called
the diffusion coefficient. The law was quickly — and rather obviously — extended by
Stefan to a mixture of v constituents a (@ = 1,2,...v) [Stefan 1871).

v

o ‘ oc
Jo = — Z;Daﬁa—w‘:. (1.6)

The three laws, those of Fourier, Navier-Stokes, and Fick have persisted for. nearly
two centuries with only minor modifications. To this day they prove their practical
validity every day in the hands of engineers who construct heat exchangers, airplanes
and centrifuges for the separation of constituents in gas mixtures. And yet, those
phenomenological equations are not perfect from a mathematical point of view. In-
deed, all three of them lead to parabolic differential equations of the type (1.2) for
temperature, shear velocity®, and concentration, respectively. That is bad, because
parabolic equations imply infinite speeds of propagation.

For illustration let us consider an initial temperature field of the type shown in
Figure 1a which is constant in the half spaces z < 0 and z > 0, but with unequal
values. The solution of (1.2), arrived at by Fourier’s methods, reads

x

2Vt
T +Tym T — Ty 2 2
T(z,t) = — / e * dz. (1.7)
2 2 T
VT )

Graphs of this function are shown for different times in Figure 1b. Inspection shows
that for all ¢ > 0 the temperature is affected at all points with a finite |z|. In a manner
of speaking the initial temperature jump at £ = 0 has made itself felt everywhere im-
mediately, as if it had propagated to both sides with infinite speed. This phenomenon
has been called the paradoz of heat conduction and it has served as the main moti-
vation for the formulation of extended thermodynamics, a recently developed theory
governed by hyperbolic laws, cf. Sections 8, and 9. '

The figure suggests that the temperature field is smoothed out in time and, indeed,
by (1.2) the temperature rises, where the field is convex and it drops where the field is
concave. It follows that the temperature field tends to become homogeneous in time,
provided the boundary conditions permit that. This is the prototype of an irreversible
process, because the opposite behaviour is never observed nor, indeed, can it happen
in a process governed by the heat equation. Mutatis mutandis the same holds for
shear velocity and concentration so that there are paradoxes connected with those
fields as well.

8 A typical shear velocity field is of the type v = (v1(z2),0,0).
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Fig. 2. On the atomistic interpretation of Fourier’s law.

1.3 Atomistic interpretation of heat flux in a gas and of viscous friction

The laws of Fourier, Navier-Stokes and Fick, being motivated by observations, needed
an atomistic interpretation in order to be properly understood. Such an interpreta-
tion — a particularly instructive one — was furnished by Maxwell in his first paper on
the kinetic theory of gases [Maxwell 1860]. In order to indicate the essential features
of Maxwell’s derivation for the validity of Fourier’s law, we consider a gas between two
co-axial cylinders which are kept at different temperatures so that a radially outward
temperature gradient is created. We focus the attention on a small element of the
gas of the order of magnitude of a mean free path of the atoms, see Figure 2. The
atoms flying inwards from the hot outer boundary of the element carry more energy
in the mean than the atoms that fly outwards from the cold inner boundary. Thus,
when a pair of atoms has passed the middle plane H-H - one flying inwards and one
outwards — an amount of energy has also passed, and that amount is proportional to
the gradient of T' and opposite to it. This is just as Fourier’s law predicts it.

A very similar argument can be constructed for the atomic interpretation of the
viscous frictional force between two layers of a gas which move with different speeds in
the same direction. In that case it is the transport of momentum — not energy — that
matters. A caricature of the situation, popular with students, envisages two trains
passing each other on parallel tracks. Passengers change the momenta of the trains
by stepping from one to the other. Upon arrival in the new train they must support
themselves against either the forward or the backward wall in order to stay on their
feet. Thereby they accelerate or brake the new train depending on whether the old
one was faster or slower. In the end the trains assume the same speed and we may
say that: momentum exchange or friction has equalised the speeds.

Needless to say that the kinetic theory of gases, and Maxwell himself, have more
formal arguments than these to explain both heat conduction and viscous friction,
though we stick to suggestive arguments, at least for the time being, and as much as
that is possible.

1.4 Irreversible processes between equilibria

Gay-Lussac was a chemist who performed a simple experiment which may be used
to show that the specific internal energy u of ideal gases — which a priori might
depend on density p and temperature T - is independent of density. The set-up and
the execution of the experiment are illustrated in Figure 3: a slide-valve is opened
so as to allow a compressed ideal gas to expand and flow into an initially evacuated
chamber. The whole system is adiabatically isolated: the wall allows no heat flux,
and it is kept at rest. The transition of the gas is a precipitous process, strongly
turbulent, very inhomogeneous, and certainly — obviously — non-reversible. The details
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Fig. 3. Experiment of Gay-Lussac. Initial and final states.
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Fig. 4. On the “paradox” of the adiabatic plug. The final pressures are equal in the two
compartments.

of the process cannot be followed, let alone calculated; except, perhaps, by elaborate
numerical means, if the pull-out of the valve and the boundary values on valve and
wall were exactly prescribed However, the eventual equilibrium is simple: the gas
tends to a homogeneous state and Gay-Lussac observed that its final temperature has
the same value as the initial temperature.

Several decades after Gay-Lussac, James Prescott Joule and William Thomson
(Lord Kelvin) repeated the experiment with initially strongly compressed air and
with Joule’s superior thermometers. They found a slight cooling after the process.
The cooling is due to the work done to separate the air molecules and it occurs to
the extent that air is not really an ideal gas. The effect is called the Joule-Thomson
effect, or Joule-Kelvin effect.

The point in mentioning these historical experiments in the present article is, of
course, that they deal with irreversible processes — strongly irreversible ones — which
were successfully treated by the pioneers without any help of any theory of irreversible
thermodynamics, simply by comparing the initial and final equilibria. Thus, when a
large number of Joule-Kelvin experiments have led to a reliable caloric equation of
state u = u(p,T"), we may predict the state of the gas at the end of the precipitous
flow, i.e. in the final equilibrium.

This simple method, however, does not always work. There is the case of the adi-
abatic plug, illustrated in Figure 4, a variant of Gay-Lussac’s experiment: an initially
locked piston separates two parts of the same ideal gas in given volumes and with
initial temperatures 7} = T7; (say), but under different pressures. The piston, or plug,
is supposed to have an adiabatic surface, i.e. it does not permit heat transfer, nor does
it change temperature itself. When it is unlocked, an irreversible process occurs in
both compartments. Eventually, and after possible oscillations the plug comes to rest
and a new homogeneous equilibrium occurs, with equal pressures in both compart-
ments. In this case the final temperatures it : T{, cannot be predicted, because the
work on the plug during the irreversible transition from the initial to the final equi-
librium is unknown; it depends on the unknown and effectively unknowable details
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Fig. 5. Another problem with an adiabatic plug. (a) The plug falls into a gas-filled cylinder.
(b) The plug is eased into the cylinder.

of the irreversible process which will generally differ between two experiments of this
type. Callen calls this phenomenon a uniquely delicate problem [Callen 1960], whilst
others — more bluntly — speak of the paradoz of the adiabatic plug. In actual fact it is a
true problem of irreversible thermodynamics and no theory ever developed is capable
of solving it; except, perhaps, by numerical means.

Another interesting problem with an adiabatic plug, which can be solved by con-
sidering the initial and final equilibria, is when the plug falls into a gas-filled cylinder
which is adiabatically isolated, see Figure 5a. The gravitational potential energy of
the plug is then converted into internal energy and the gas heats up. Given the initial
volume of the cylinder and the initial values of the temperature of the gas, one may
use the known equations of state for a monatomic gas to calculate the final values of
those quantities [Miiller 2009, pp. 38/39].

3 3170"""1—‘,‘;‘1 _2 3 Di
Tf—gTz (1+'5'T ) Vf—g‘/z 1 5@ . (18)

A is the cross-sectional area of cylinder and plug and mp is the mass of the plug.
p; is the initial pressure in the cylinder. Of course, the fall of the plug induces a
strongly irreversible process inside the air of the cylinder and no theory of irreversible
thermodynamics is adequate to calculate the details of the process. Nor do they matter
as long as we are only interested in the final state. A surprising aspect, perhaps, of the
problem occurs in the limiting case of an infinitely heavy plug: the final temperature
is infinite in that case while, however, the volume remains finite, i.e. non-zero.

In the case of the falling plug, see Figure 5, we can make the process reversible by
controlling the fall so as to make it very slow. In that case the gas remains virtually
homogeneous, no turbulence, internal friction and heat conduction of any significance
occur, and the state of the gas changes adiabatically and reversibly. That is to say
that, upon subsequently pulling out the plug slowly, we let the process in the gas run
through its former states in the reverse direction. The control of the motion of the
plug may be achieved by applying an appropriate force F(t) which keeps the plug
and the gas nearly in equilibrium during the fall or ascent (see Fig. 5b). The volume,
pressure, and temperature of the gas during the reversible process are then related
by what thermodynamicists call the adiabatic equations of state

ol

VB =pv? o =P o yrt-vri
T;

1

(1.9)

Njen]
wje
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If the plug is infinitely heavy — making the final pressure infinite - the final volume
of the gas now obviously tends to zero, while the temperature tends to infinity as
before.

The notion of easing the falling plug so slowly into the cylinder, that the state
of the gas changes reversibly, may seem like an improbable artifice. And yet, that
artifice has proved to be immensely practical and heuristically useful, because a large
part of engineering thermodynamics relies on that notion. The question is: how slow
is slow? And it turns out that even the processes in the engine of a Formula I racing
car, with 18000 revoliutions per minute, are slow enough for reversibility, at least
in a good approximation. Indeed, the large speeds of the pistons in such a car are
still much slower than the speed of sound, and that speed of sound determines the
homogenisation process of the gas in the working cylinder®.

Thus, when books on technical thermodynamics report efficiencies of engines like!®

_ QCondenser -1 1 _ TCooler

€Steam engine = L ——>————, €0tto engine = —~h-1’ CECarnot engine = 1- Te
QBoiler £ B(oile'r )

1.10

the shortfall of the efficiency from the value 1 is not due to irreversibility; indeed, all
of the efficiencies (1.10) refer to reversible processes. The ubiquitous unpreventable
irreversibility — due to turbulent flow, internal friction and heat losses by conduction -
has been neglected in the derivation of (1.10). Its effect practically cannot be calculated,
except numerically, but we do know that it decreases the efficiencies to values below
those given in (1.10).

2 Entropy and the nature of entropic growth in irreversible processes

2.1 Abstract

The mid-19th century saw the discovery of the equations of balance of energy and
entropy, the so-called first and second laws of thermodynamics. The former is a con-
servation law for all processes in a body and the latter is an inequality to the extent
that the process under consideration is irreversible. The history of the discovery of
those two laws has been thoroughly investigated, and described in many places, e.g.
see [Miiller 2007}, and will therefore not be part of the present article which is focussed
on irreversibility. Suffice it to say that Clausius’s discovery of the entropy balance was
based on the axiom

heat cannot pass by itself from a colder to a warmer body,

which was extrapolated from observations about heat conduction, see Section 1. That
fairly loose statement was ingeniously exploited by Clausius. Thus he obtained the -
specific expression (1.10)3 for the efficiency of a reversible Carnot engine, which Carnot
himself, and Clapeyron, and Kelvin had sought in vain. And he arrived at the concept
of entropy.

Boltzmann, through his work on the kinetic theory of gases, see Section 7, was able
to define entropy in terms of the probability of the distribution of atoms in random

9 The slowness of the moving parts in an internal combustion engine compared to the
speed of sound is not the only reason for the applicability of reversible thermodynamics in
such engines. Another one is the supply of a fresh, undisturbed gas mixture during every
stroke. We do not discuss that aspect.
10°Q is the heat exchanged, and € — in the case of the four-stroke Otto engine — is the
compression ratio. & is the ratio of specific heats at constant pressure and constant volume.
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thermal motion. The definition is such that it can easily be extrapolated away from
ideal gases. Thus an entropic growth was linked to the probability of a distribution in
any random process, not necessarily the homogenisation of a gas when it approaches
equilibrium irreversibly. Indeed, we may now speak of the increase of entropy of a
polymer chain as it contracts under thermal motion, or of the increase of entropy in
the adjustment of a species to the environment in an evolutionary process subject to
random mutation.

Boltzmann’s probabilistic interpretation of entropy and entropy growth met with
strong opposition and Boltzmann’s defense did not satisfy everybody. Nor has it con-
vinced all physicists to this day. They have, however, blanked out the objections.
Simple mechanical models, however, keep the questions open; notably the consid-
eration of mass-spring chains for which reversibility and an apparent approach to
equilibrium can be discussed in an explicit manner.

2.2 The two laws of thermodynamics. Entropy and energy

Thermodynamics is based on the First and Second Laws. The first law is the conserva-
tion law of energy — internal energy U, potential energy E,,;, and kinetic energy K —
and it states that the rate of change of energy of a body in the volume V' equals the
sum of heating Q and working W on the surface 8V of the body!!

d(U + Epot + K)
dt

= Q + W, where Q = — /q,-nidA and W= /tijvinjdA.
av av
(2.1)
The second law is an inequality about the rate of change of entropy S, and it states
dsS _ / q,nsz

—_— = = > 0. .
i T + X, where Y>0 (2.2)

v

X is the entropy production; it vanishes when the process in the body is reversible.
The second law in the form (2.2) is called the Clausius-Duhem inequality; Clausius
had considered a special case only, for which the temperature is homogeneous on 9V,
or on the part of 0V where heat exchange occurs. Duhem generalised the law to
arbitrary temperature fields on dV; thus providing the possibility of converting the
entropy balance into a local equation.

Since the inequality (2.2) holds for an irreversible process, we may say that the
entropy production measures the irreversibility. In an adiabatic body, where ¢; = 0
holds on 0V, the entropy production is equal to the rate of change of entropy. Thus
the entropy of an adiabatic body tends to a maximum in an irreversible process. The
maximum is reached at equilibrium, when the irreversible “mechanisms” heat conduc-
tion, internal friction and diffusion have led to homogeneous fields of temperature,
and chemical potentials, and to vanishing velocity; and when chemical reactions have
come to an end.

This observation was the motivation for Clausius’s doctrine of the heat death. Says
he: it is often said that the world goes in a circle... such that the same states are
always reproduced. Therefore the world could exist forever. The second law of thermo-
dynamics contradicts this idea most resolutely ... The entropy tends to a mazimum.
The more closely that mazimum is approached, the less cause for change erists. And
when the mazimum is reached, no further changes can occur; the world is then in a
dead stagnant state [Clausius 1867].

11

n; is the outer unit normal on the surface of V. t;; and q; are stress and heat flux, as
before, while v; is the velocity.
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That idea was much discussed in the 19th and early 20th century. One of the more
colourful comments was the one by Oswald Spengler, philosopher and historian, and
author of the book “The Decline of the West”: the end of the world as the completion
of an inevitable evolution - that is the twilight of the gods [of Germanic mythology].
Thus the doctrine of entropy is the last, irreligious version of the myth [Spengler
1917].

The physicist Josef Loschmidt deplored ... the terroristic nimbus of the second
law ..., which lets it appear as a destructive principle of all life in the universe
[Loschmldt 1876; 1877; 1878].

Loschmidt was a keen observer of the developing thermodynamics of his time. As
a scientist he is credited with finding an approximate value of the Avogadro number
[Loschmidt 1865]. And indeed, in Germany and Austria, where Loschmidt lived, that
number is often called the Loschmidt number.

Although (2.2) does not define entropy, the law may be used to calculate the
entropy S of a body in equilibrium. Thus for a reversible process in a fluid, i.e. a
sequence of equilibria, where W = —pd¥ It Y holds, provided that Ejyot is zero or constant,

we may eliminate Q between (2.1) and (2.2) and obtain the Gibbs equation'?

dSE 1 /dU dv
W = T (E +pﬁ). (2.3)

So, if the caloric equation of state U = U(V,T) and the thermal equation of state
p = p(V,T) are known, we may calculate Sg = Sg(V,T) by integration of the Gibbs
equation to within an additive constant. In particular, for a monatomic ideal gas we
obtain

 8g(V,T) = Nk [1n (VT3/2) + const.]. (2.4)

N is the number of atoms and k is the Boltzmann constant.

2.3 Auvailable free energy

If a body is not adiabatic, but rather subject to other boundary conditions, there is
in general not any quantity that approaches an extremum, because the irreversible
processes do not come to an end under the new boundary conditions. However, there
are special boundary conditions for which this is the case. The best-known one -
and most important one, perhaps — occurs when the boundary dV is at rest and
the temperature on the boundary is homogeneous and constant in time; we denote it
by To. In that case W vanishes, and we may then eliminate Q between (2.1) and (2.2)
to come up with the new mequahty

d(U + Epot + K — ToS)
dt

We express this by saying that the available free energy, or availability A, tends to a
minimum under those isothermal conditions

= -ToZ <0. (2.5)

A=U+ Epot + K — TS — minimum. (2.6)

Physicists like to say that A decreases, when the body is immersed in a heat bath.
We conclude from (2.6) that a decrease of energy is conducive to an equilibrium
and so is an increase of entropy: if Ty — the temperature of the heat bath is small,

12 The index E on S stands for equilibrium. The equation was first derived and exploited
by Clausius. But Gibbs extended it to mixtures of fluids and exploited it fully.
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the availability decreases, because the energy U + E,,; + K tends to a minimum. But
if Ty is large, the availability decreases, because the entropy tends to a maximum.
In general, i.e. for intermediate values of Ty, it is neither the energy which becomes
minimal, nor the entropy which becomes maximal. The two tendencies compromise
and thus equilibrium is characterised by a minimal availability.

All this is crystal-clear, and the mathematics leading to (2.6) is trivial, but it
did not seem so to scientists of the 19th century, even eminent ones. There were the
energeticists, led by Friedrich Wilhelm Ostwald, who maintained that the entropy is
not needed and that equilibrium is characterised by a minimum of energy. Boltzmann
fought them with Planck as an unappreciated ally [Planck 1970], and in the end, — after
the main contenders were dead — the entropic contribution was universally recognised.

In order to anticipate a misunderstanding we stress that the availability in (2.5),
(2.6) is not the Helmholtz free energy, since the temperature field inside the body
may not be homogeneous and hence may not be equal to Tg.

However, the availability is indeed equal to the free energy of Helmholtz when the
transition to equilibrium has proceeded so far in a body that temperature is already
homogeneous, while other fields have not yet reached their equilibrium values. Alter-
natively, if one disturbs an equilibrium maintaining homogeneous temperature, the
free energy must necessarily increase. Minimal free energy thus characterises a stable
equilibrium and that requirement leads to all the conventional stability conditions
like positive specific heats, positive compressibilities, etc.

Now, leaving this subject, and without wishing to belittle Clausius’s contribution
to thermodynamics, we dare say — somewhat provocatively — that Clausius did not
know what entropy was. Indeed, the second law in the form (2.2) represents a property
of entropy, not a definition. Such a definition in terms of atoms or molecules was found
by Boltzmann not long after Clausius’s discoveries.

2.4 Statistical definition of entropy
Boltzmann’s definition of entropy is now uSua,lly written in the form
S=klnW, (2.7

where W is the number of possibilities to realise a distribution of atoms or molecules.
We proceed to illustrate that definition in the simplest possible manner which we
have found useful for explaining the definition of entropy to students. Thus we con-
sider a monatomic gas with N atoms of mass p sitting on the P occupiable points in
a volume V13, The distribution of atoms is then given by {Ny, Na, ... Np}, where N;
(¢=1,2,...P) is the number of atoms on point i. The surface V has the tempera-
ture T kept constant by a heat bath.
By the rules of combinatorics the number of realisations of that distribution is
given by
N! N!

5 hence S=kln 5

i=1 i=1

In order to motivate and interpret this definition of entropy we must ask whether it
implies the properties of Clausius’s entropy. In particular, does it have the growth
property? And does its maximum, the equilibrium value, depend on V and T as in

W=

(2.8)

13 We take the points as discrete and discuss that assumption in a short while. Also: the
velocities of the atoms play no role in the distribution. Sometimes in statistical mechanics
the entropy based on that simplified distribution is called the configurational entropy. This
serves us well, at least for the present arguments.
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equation (2.4)7 Indeed, it does and, in order to see this we must make one observation
and two reasonable assumptions [Boltzmann 1886; Broda 1979).

The observation concerns thermal motion. We know that the atoms of the gas
move — on average over time or over many atoms — with a kinetic energy %52 of
the order of magnitude %kT so that, for T as room temperature, the mean speed ¢
amounts to several hundred meters per second. Consequently the realisations of a
distribution and — generally - a distribution itself change very quickly. We assume
that each and every realisation of N atoms on the P points in V' occurs just as often
as any other one. For instance the case when all N atoms are on a single point occurs
just as often as the case when the first N /P atoms lie on point 1, the next N /P ones
lie on point 2, . ... and the last N /P atoms lie on point P. That seems to be the only
reasonable unbiased assumption given the random character of the thermal motion,
and it is known as the a priori assumption of equal probability for the realisations.
It means, of course, that a distribution with many realisations is more likely to occur
than a distribution with fewer realisations, and the most probable distribution is
that with the most realisations which, by (2.8), is the homogeneous equi-distribution
N;=N/P (i=1,2,...P). :

So, what about growth? Suppose that initially all N atoms lie on a single given
point. That distribution can only be realised in one manner, so that W = 1 holds
and S = 0. The thermal motion, however, will quickly mess up that orderly distribu-
tion and, in all probability, lead to distributions with more realisations, i.e. positive
entropies and, eventually, to the equi-distribution with most realisations, i.e. maxi-
mal entropy. Such is the nature of the entropic growth toward equilibrium! Obviously
that kind of growth is probabilistic and not necessarily irreversible, but the reverse
process — leading from more probable distributions back to less probable ones — is
extremely unlikely. It becomes more and more unlikely when more and more atoms
are involved. Thus for N =~ 10?3 atoms in one litre — a common gas density — the
irreversible growth of entropy is virtually certain. Other than Boltzmann, Gibbs was

one of the first scientists to understand this and he says: ... the impossibility of an
uncompensated decrease of entropy seems to be reduced to an improbability [Gibbs
1876, p. 229].

This is not to say that momentarily the entropy cannot decrease for a short while.
The overall approach to a maximal entropy may well be briefly interrupted by a fluctu-
ation. And even in equilibrium - the eventual equi-distribution of maximal entropy -
there may be fluctuations toward less probable distributions. Thus equilibrium is not
really a “dead stagnant state” as Clausius had thought when he considered the heat
death. ' .

In equilibrium with the equi-distribution N; = N/P (i =1,2,...P), and close to
equilibrium with N; ~ N/P, we obtain from (2.8),14

P1<& N\?2
Sg(P)=NklnP and S(P,N;)=k|NIhP-—= N-=1) )| (29
N2 & P

So, in order to know the entropy, we have to determine P, the number of occupiable
points in V. We assume, or take it for granted, that P is proportional to V' and write
P=aqaV (2.10)

so that 1/c represents the volume which can accommodate one point. We may say
that 1/a quantises the volume and, again, it was Boltzmann who introduced that

" 14 Here and elsewhere below we adopt the Stirling formula Inn! = nlnn — n to replace
the factorial expressions in (2.8). This represents the classical approach. For alternatives see
[Schrédinger 1948], or also [Miiller 2007].
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notion. However, he dismisses it as a mathematical trick. He considers it needless
to emphasise that (in writing P = aV') we are not concerned with a real physical
problem, ... the assumption is nothing more than an auziliary tool [Boltzmann 1872).

Thus Boltzmann narrowly missed opening up a possible access to quantum me-
chanics. He was too timid. Later Planck made quantisation acceptable and de Broglie
discovered that atoms could be considered as waves which — roughly — need a volume
proportional to the cube of the wave length A = %, the de Broglie wave length!5. In

equilibrium the mean speed of an atom in a gas of temperature T' is ¢ = ,/3%T SO
that — in the mean — an atom needs at least a cubic box of dimension

3 —— 3
l = (——h ) hence P=VvT%? (—713’6) and

a Vi 3kT
3
Sg = Nk (m VT%? —In (W%) ) (2.11)

This form of Sg compares well with (2.4) thus confirming that Boltzmann’s definition
of entropy coincides with Clausius’s entropy: it has the growth property and the
equilibrium values agree. The indeterminate additive constant in Clausius’s entropy
is now seen to depend on the Planck constant!. Also we see that the number P
of points in V does not change in a reversible adiabatic process, according to the
adiabatic equation of state, see (1.9)3.

Boltzmann’s formula S = kln W may be extrapolated away from gases to any
other system consisting of many identical elements subject to the random thermal
motion. It may even be applied to economic and ecological systems which exhibit
some randomness not due to thermal motion. Thus for instance random mutations
in a population of cells may be shown to produce an irreversible evolution toward
proper adjustment to an environment, e.g. see [Miiller 2010].

2.5 Controversies

Boltzmann’s atomistic and probabilistic interpretation of the growth of entropy did
not go unopposed. Rather it started a long-lasting controversy which, if the truth were

- known, has never been concluded. There were two major objections: the recurrence
argument and the reversibility argument.

The recurrence argument was presented by Zermelo, a student of Max Planck’s,
who involved Boltzmann in an acrimonious public debate [Zermelo 1896a; 1896b;
Boltzmann 1896a; 1896b]. The argument relied on a theorem of analytical mechan-
ics, proved by Poincaré, according to which a finite system of atoms must perform a
quasi-periodic motion which recurs arbitrarily close to its initial state arbitrarily often
[Poincaré 1890]. Rather obviously this prediction contradicted a monotonic growth of
entropy which, after all, is determined by the atomic positions. Boltzmann answered
by pointing out, that the expected recurrence time was nearly infinitely large — much,
much larger than the age of the universe. Zermelo was unimpressed, but most physi-
cists to this day are resigned to the argument. See also the argument in Section 2.6
below.

15 h is the Planck constant, and y and ¢ are mass and mean speed of the atoms as before.
16 Although (2.11) takes the quantum mechanical nature of the atoms into account by as-
signing them a de Broglie wave length, it ignores another aspect of quantum mechanics,
namely the indistinguishability of atoms. Therefore the equation implies a non-additive en-
tropy. We leave it at that for the time being. The correct formula will be given in Section 7,
see (7.19).
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The reversibility argument was raised by Josef Loschmidt, the person who coined
the phrase about the terroristic nimbus of entropy [Loschmidt 1876]. He argued that
the motion of atoms is reversible. They may just as well run forward and backwards
according to Newton’s laws. And, if the entropy increased in one direction, it should
decrease in the other direction. Thus Loschmidt concluded that the entropy should
equally frequently increase and decrease. Boltzmann responded that there are many,
many more disordered distributions of atoms than ordered ones. Thus when we start
in an ordered distribution, the entropy-increasing transition order — disorder should
nearly always occur.

That reply never convinced anybody, not even Boltzmann himself. It seems like
a reformulation of the assumption of a priori equal probability. Indeed, the question
remained why there should be more initial conditions leading to growth than the
other type. And so, eventually Boltzmann came up with a suggestion which is either
science-fiction or far ahead of his — and our - time. Says he: ... in the universe which
is nearly everywhere in equilibrium, and therefore dead, there must be small regions of
the size of our stellar space which, during the relatively short period of eons, deviate
from equilibrium and among these equally many in which the probability of states
increases and decreases. ... A creature that lives in such a period and in such a world
will denote the direction of time toward less probable states as the past, the opposite
direction as the future [Boltzmann 1896b).

Thus the growth of entropy in a decaying fluctuation was linked to the inexorable
progress of time and so was the subsequent decrease of entropy in the build-up of a
new fluctuation: the apparent contradiction was resolved by Boltzmann - in a manner
of speaking — by considering the direction of time as a psychological delusion. In this
view time objectively runs forward and backwards equally often, while subjectively,
in our brains, it runs always in the direction of entropic growth.

Boltzmann was quick to take the sting out of this mind-boggling idea about time
in the fluctuations of the universe: Surely nobody will consider a speculation of that
sort as an important discovery or - as the old philosophers did - as the highest aim
of science. It is, however, the question whether it is justified to scorn it as something
entirely futile.

Still, we may suspect that Boltzmann was not entirely sincere when he made
that disclaimer. Indeed, over the years he repeated this interpretation of time and
fluctuations of the universe several times. After having invented it in the discussion
with Zermelo, he repeats it, and expands on it in his book on the kinetic theory
[Boltzmann 1895) and, again, in his lecture at the World Fair in St. Louis [Boltzmann
1904]. So we may conclude that he trusted the idea at least to the extent that he was
sure that nobody could expose it as stupid, — at least not quickly!?.

2.6 The one-dimensional linear mass-spring chain as a mechanical paradigm
for recurrence, reversibility and - irreversibility of a sort

The one-dimensional chain of N masses m and N — 1 springs with stiffness 1/X shown
in Figure 6 may serve as an illustrative purely mechanical example for recurrence and
reversibility in a system of many particles. Ironically the system can also be seen as
exhibiting irreversibility and damping. The advantage of the chain over gases is that
all calculations can be done explicitly and analytically.

17 Boltzmann attempts to make the suggestion more acceptable by drawing an analogy to
the subjective notions of “up” and “down” on the earth, where two persons in antipodes
both think that they stand right-side-up, while objectively one of them is upside-down.
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Fig. 6. The lmear chain of masses m and springs with stiffness 1/\.

Let ug(t) be the displacement of mass (8 = -8, -N=8  _10,1,.
+231) from its original value shown in the figure!®. Thus there is a central mass

w1th the displacement ug(t). The equations of motion read

2

. A

ig(t) = E agyug, where apy=—| - = - ’
__N—

and, of course, they are coupled because of next-neighbour interaction. Uncoupling
by an orthogonal transformation

N-1 Ni1
upt) =3, Ohets & @=D .7 ., Ocpus

is possible. It leads to N — 1 harmonic eigen-vibrations plus a translation, viz. go(t) =
q0(0) + go(0)t and

1
gs(t) = ¢s(0) coswst + L—u-q’s(O) sin w;t, (s=1...N-1).
S

Thus the solutions u.(t) for the initial value problem {up(0)|%s(0)} read

uy (t) = qy@ q\'/(O_t + Z O ( 0) coswst + iqs (0) smwst)

1 T, .
ut)=5% D, (w0 +is(0)¢)
p=-5!
5 ON-1 1
+ Z 0’;"80“, (ug (0) coswst + ZJ—"&ﬂ (0) sinwst). (2.12)
—_N-1 g=1 8

The frequencies ws; = 2\/%sin§s% s = 0,1,2,...,N — 1) are the eigen values of

the matrix ag, and 0%, = \/ 5 cos(N — 2B) 5% by = {; for s = {glse are the

corresponding eigen-vectors of that matrix.
Obviously the vibrational motion ug(t) cannot be periodic if all eigen vibra-
tions s # 0 are present, since many frequencies are irrational numbers!®. However,

18 N needs to be an odd number in that nomenclature.
19 Even for N = 3, where we have only two eigen-vibrations with w; = 4/ % and we = \/3%,

periodicity is impossible, since the numbers 1 and /3 are non-commensurable.
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quasi-periodicity is possible and, indeed, unavoidable. A quasi-period, or recurrence
occurs at a time ¢ when all {gs(t)|¢s(t)} are in a close neighbourhood of their initial
values {g5(0)|ds(0)}. Thus ug(t) will be close to ug(0) for all B, and that might be
good enough to consider the original state reproduced, a circumstance which Claudius
most resolutely said was impossible, see Section 2.2.

An estimate of the recurrence tlme has been presented by Hemmer [Hemmer 1959].
He let gs(t) and —qs (t) (s=1,2,. — 1) span a vector space so that the position
and velocity of an eigen v1brat10n may be represented by the circular rotation of the
tip of an arrow v, = (gs, — o gs) — with angular frequency w,. If the arrows initially
point into the directions s, a recurrence time Tg of the chain is defined as the time
when all the rotating arrows vs(Tgr) (s = 1,2,... N — 1) point into the angle element
between ¢, and ¢; + Ay for some small Ap. By an ingenious argument Hemmer
shows that — on average over many recurrences — the recurrence time is equal to

T (2 )” 2 1 ™ (%)N 2 g2
R=| — N | —
A letg- 2 —1 ~~\ A
¥ 2Ct83N A ¥ 2N/2

If we take 4 / 2 = 1013 L as a typical atomic vibrational frequency in a metallic lattice,

and choose Acp 155, We obtain very large numbers for N = 21 and N = 101
respectively, namely 73" = 3.98 x 1022a and T = 9.83 x 102°%a. In both cases -
even for such relatively few masses — the recurrence times are many times longer
than the estimated age of the universe; in the second case, for N = 101, they are
unimaginably longer! So we may say that, for practical purposes the motion of the
chain is not reversible; instead, it seems irreversible for a long, long time, because it
does not come back during that time.

However irreversibility usually means more to us than non-recurrence. Indeed,
the notion of irreversibility is connected in our minds with the decay of a system to
a homogeneous state, e.g. the damping of differences in temperature, velocity and
chemical potentials. And, indeed, the chain exhibits damping of sorts too; at least it
exhibits a phenomenon that seems like damping. In order to see that, we consider the
special case in which only the central mass § = 0 has an initial displacement — uo(0)
and all masses are initially at rest. In that case, by (2.12) we have

t)—( Z socoswst) g (0). (2.13)

=1

Figure 7 shows a plot of this solution for N = 201 and for the central mass v = 0.
At first that mass appears to experience a damped oscillation which comes to an
end when reflections from the ends of the chain interfere, which happens at time

\/2t ~ 200. After that the values of uo(t) seem to fluctuate randomly and the
seemingly random nature becomes more pronounced for larger-time intervals, e.g. for

2000 < \/ﬁt < 2200, as indicated in the figure. It can be established by numerical

calculations that for those large-time intervals the mean potential and kinetic energies
of the masses fluctuate around equal shares of the initial energy. That observation
suggests equipartition of energy, a well-known property of equilibrium in statistical
thermodynamics. This behaviour might well be misinterpreted as the result of irre-
versible dissipation of the initial energy. As it is, however, we do know that eventually
the apparent irregular fluctuation reorganises itself and re-establishes the initial state
of the chain as closely as we wish, albeit after a long - very long(!) - time.
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Fig. 7. Apparent approach of the central mass to a seemingly random fluctuation for the
initial value problem {u-(0)|uy(0)} = {0,0,...,0,%0(0),0,0...0|0,0,0...0}.

The situation is different, of course, for N — oo: For infinitely many chain links
the recurrence time is obviously infinite and the solutions (2.13) can easily be shown
to tend to

uy (t) = [% /0% €os 2z cos (2\/gt sin:c) da:] ug (0) = Joy (2\/%t) uo (0).

(2.14)

Joy(24/ ﬁt) are Bessel functions which are well known to decay to zero for t — oo in

an orderly oscillatory — non-fluctuating — manner. Obviously there are no reflections
at the ends either. ,

To those for whom damping means ezponential decay we may say that even that
behaviour may be had in the chain, albeit after a slight modification: if the chain
is given a central mass M > m, and if it has infinitely many links, the initial
displacement uo(0) decays exponentially. For reference we cite Magalinskij, Turner,
Rubin and Miiller’s review of those research works, which was conducted in an ef-
fort to understand irreversibility [Magalinskij 1959; Turner 1960; Rubin 1960; Miiller
1962).

Everything is explicit in the chain and fully deterministic. And we can confirm
that Loschmidt was right: if at some time 7', even a large time, the values u.(T)
are registered as new “initial” conditions and the velocities i, (T") are changed into
—1~(T'), the graph of Figure 7 is travelled through backwards for ¢ > T; i.e. in partic-
ular it proceeds from the small-amplitude fluctuations of ug(t) to larger amplitudes,
and the value uo(0) is reached at ¢ = 2T. This behaviour can easily be confirmed on
the computer.

2.7 Still a dilemma???

For one and a half centuries much has been said about the controversies between
Boltzmann, Zermelo and Loschmidt, and we are sure that we cannot contribute to
the subject in an essential and original manner. Still, we wish to say this, a remark that
has probably been made by others before: on the foregoing pages we have identified

20 Quantum mechanical considerations are not part of this report. They may or may not
help with the dilemma, if there is a dilemma.
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two conceivable interpretations of irreversibility, namely

e a gas in a heat bath — i.e. with an isothermal boundary — experiences an irregular
thermal motion of the atoms which makes it assume new distributions with many
different realisations every split second. We assumed equal probability for all real-
isations, and thus came to the concept of a probable growth of entropy S = kInW.
Recurrence of an initial state is possible, since the initial realisation of the initial
distribution has a non-zero probability, albeit a small one, — the same probability

~ as any other realisation.

e the chain of springs and masses, on the other hand, experiences a fully deter-
ministic motion of all oscillators once given the initial condition {u.(0)|u,(0)} =
{0,0,...,0,u40(0),0,0...,0,]0,0,0...,0}; there is no real random motion in this
completely isolated system. The initial condition can only be realised in one man-
ner, so that W = 1 and S = 0 hold. The entropy is zero and it remains zero,
because the number of realisations of subsequent states is again one; after all,
there is a one-to-one relation between the initial values and later ones. Therefore,
whatever approach to apparent randomness in Figure 7 we may feel occurs in the
chain, it is not accompanied by a growth of entropy. And if near-infinite recur-
rence times of the chain are interpreted as effective irreversibility, that type of
irreversibility is not accompanied by entropic growth.

So, what about the universe, whose entropy Clausius so confidently predicted was
growing because it was subject neither to heating nor to working, and therefore grow-
ing in entropy at constant energy? If indeed the universe was isolated in that manner,
it would be like our chain, — without heat bath and true random thermal motion —,
and its motion would be deterministic and the entropy would be constant and equal
to zero. The heat death is then not a viable proposition and recurrence is certain,
albeit in a very distant future. :

2.8 Entropies galore

Some specific differential equations studied by mathematicians exhibit a growth prop-
erty that is faintly reminiscent of entropic growth and has therefore led to a plethora
of “entropies”, all unrelated to heating and working or to any probabilistic interpre-
tations.

An easy example is the motion of the central mass of the linear chain when it has
infinitely many links. By (2.14), and for the proper initial conditions of the chain,
its motion wug(t) is represented by the Bessel function Jy(t), so that it must satisfy
Bessel’s differential equation?!

N
u+?u+u=0. (2.15)
This equation does not suggest irreversibility in any way?? and yet we know that u(t)
is some kind of damped oscillation, namely the Bessel function of zeroth order. And

indeed, multiplication of the equation by % and some juggling provides an inequality
for the quantity

. 1 1. 12
n (u, ) = n(0,0) — —2-u2 - §u2, namely 7= uT > 0. (2.16)

So, if growth were all that counted, we might be tempted to call  an entropy.

21 The index zero on u is now dropped.
22 In particular, the inversion of time ¢ — —t leaves the equation unchanged.
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Another instructive example is provided by the Burgers equation with a damping
term on the right hand side, the prototype of a hyperbolic equation of first order, viz.

Ou Ou ‘
U— = — . 2.1
S tuz=—Bu (8>0) (2.17)
Multiplication by u and, again, some easy juggling of terms gives
u2 u3
a(_—f) +a(_T) =pu*>0 (2.18)
ot oz - )

This equation has the form of an equation of balance, complete with a density ——1‘23,

a flux —‘g—a, and a non-negative production Bu?, like the thermodynamic entropy.

Of course, we may ask whether there is any good reason to consider such “en
tropies”. The answer is: yes, there is, because mathematicians find them useful in
order to prove asymptotic results concerning the solution of their equations for large
times.

Take the one-dimensional heat equation, for instance, with boundary and initial
conditions:

or —/\a r with g—Z(x=:I:L,t)=0 and T (z,t=0)="Ty(z).

ot~ "\ oa?
(2.19)

The stationary solution is obviously

1 +L
T°°=-2—L-/To(a:)dm
-L

and now the question might be asked whether the solution of (2.19) tends to T, in
time for all To(x). This is indeed the case, and it is proved by the observation that
the rate of change of the “entropy”

+L
H= / F (T T Too ) Toodz for any convex function F (2.20)
—L o

has a sign; it is negative. Take for instance F(x) = x?. It is then easy to show that

6H ox 10T —To)\?
oH (g) dz <0

T, oz

holds?3. Hence follows by Poincaré’s inequality?

< ——/(T Too) dz = —2\cH.

23 Quantities like this, — with a rate of a definite sign —, are sometimes called H-functions,
because Boltzmann gave his entropy the Greek letter eta, whose capital form is H.

24 Poincaré’s inequality reads f (%ﬁ)zda: > c [ f?dz for a function f with J fdz = 0; the
constant ¢ depends on L.
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Thus it turns out, albeit not trivially, that we have H(t) < H(0) exp(—2Act), so that
H(t — 00) = 0, hence T'(t — 00) = To; this completes the proof.

“Entropies” like (2.20) are sometimes called Kullback entropies [Kullback 1951].
They were introduced in the context of information theory. And they have nothing at
all to do with the physical entropy, neither the one of Clausius nor Boltzmann’s. One
cannot help wishing that a different term — rather than entropy — had been chosen.
That might have helped to avoid unfounded analogies which lead to confusion.

3 Fluctuations and Onsager relations
3.1 Abstract

This report moves forward roughly chronologically, so that Onsager is next. His reci-
procity relations gained him the Nobel prize, although they are based on a most
daring hypothesis about the mean regression of fluctuations. Also, in the pertinent
literature after Onsager, the reciprocity relations were extrapolated far beyond the
point where even that daring hypothesis can be applied.

If Onsager’s reciprocity relations are true, there are two attractive corollaries:
the orthogonality condition, by which the entropy production determines the rate of
change of the non-equilibrium variables, and the principle of least energy dissipation.

Let the historians of science be warned: this is not an account of what Onsager
wrote, because what Onsager wrote is unpalatable and largely indigestible. It is not for
nothing that his papers [Onsager 1931a; 1931b] were refused when he offered them as a
doctoral thesis to his home university in Trondheim, Norway. Even his otherwise fairly
obsequious biographers Longuet-Higgins and Fisher have to report that [Longuet-
Higgins 1991]. So what we present here is largely due to the careful interpretation
of Onsager’s works by de Groot and Mazur, slightly modified by ourselves [de Groot
1962]. We dare say, however, that the reader — whether physicist or historian — can
learn more here about Onsager’s arguments than he could from Onsager’s works
themselves.

3.2 Macroscopic relaxation laws

We consider a model for a gas in the state N; (i = 1,2,...P), i.e. with N; atoms
on P points. The gas is in a heat bath which keeps the temperature of the boundary
constant and homogeneous. That model was used in Section 2.4 to explain the con-
figurational entropy and the growth of entropy during the process leading from an
initial distribution {N?, Na,... Np} to the equi-distribution N; = N/P. Actually the
model may not be the best one physically to demonstrate a relaxation process toward
equilibrium, but heuristically it is useful for us, because it may serve as a paradigm
for the exhibition of an irreversible process — and we already know it. In particular we
know its entropy close to equilibrium, cf. (2.9),. The rate of change of entropy follows

by differentiation
ds P& N\ dN;
— = k% ; (N,- — $> - (3.1)

The right hand side is the entropy production X and, by (2.2), it must be non-negative.
We satisfy this requirement by assuming a relaxation law of the form

dN; z N N .
- =" Z Ry | Ni, — 7 ) where R, is positive definite. (3.2)
k=1
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Fig. 8. (a) Fluctuation of Ni(t). (b) Mean regression of a fluctuation N{ of Ni.

The formal solution reads

P
N;(t) — % = Zexp(—R;kt) (N,? - %) (t=1,2,...P). (3.3)
k=1

We may consider (3.2) as a phenomenological law abstracted from the observation of a
relaxation process in a gas by a macroscopic observer and consistent with the second
law. The macroscopic observer sees no fluctuations and he perceives the eventual
equi-distribution as constant, or as stagnant to use Clausius’s formulation.

3.3 Fluctuations

In reality, however, there are fluctuations, both during the relaxation process and
in the eventual equilibrium, and we could see them, if we were equipped with a
sufficiently powerful microscope, and if we were able to resolve the rapid rates of
change of the fluctuating N;’s. Onsager has considered fluctuations in equilibrium
and he used a chain of arguments about those fluctuations in order to suggest that
the relaxation matrix R; in (3.2) is symmetric [Onsager 1931a; 1931b]. We proceed
to explain these arguments and to assess them.

3.3.1 Gaussian character of fluctuations

First of all, there is a profound difference between a macroscopic relaxation toward
equilibrium and a fluctuation around equilibrium: the former is irreversible and makes
the N;'s tend to constant values, while the latter never comes to rest and seems to be
reversible in its gross features. Figure 8a shows a graph for a single fluctuating N; —
for i = 1 (say) — as a function of time in some interval. This fluctuation continues
forever and remains unchanged in its practically non-smooth and rapidly changing
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random character. To be sure, the details of the fluctuating curve are different over
previous and subsequent time intervals so that predictions can only be probabilistic.

It stands to reason that the probability of a distribution {Ny, Na,...Np} is pro-
portional to the number of possibilities to realise that distribution which, by (2.7), is
given by

W =exp %, hence, by (2.9),

p(Nl,...Np)=

1 P1& N\?
N (_WE; (Ni B 7) ) (34)

provided that N; is close to N/P which we confidently expect for a microscopic
fluctuation near equilibrium. Thus the probability p(Ni, N2,... Np) is a Gaussian,
and we may use it to calculate mean values or expectation values

N N N N
i= 5 and (Ni - F) (Nk - '1—3‘) = plik (3.5)

2|

3.3.2 Microscopic reversibility

Reversibility for the fluctuation means that we see another realistic fluctuation when
we look at the mirror image of the graph of Figure 8a, if the mirror is held per-
pendicular to the time axis. That reversibility is a consequence of the reversibility
of the thermal motion which makes the atoms fly in any direction and the opposite
one equally often, and which causes the fluctuation of the distribution. From this it
follows that

the probability of seeing {N?,..., N3} at some time and {Ny,...,Np} at a
time 7 later is equal to the probability of seeing {N1,...,Np} at some time
and {N?,..., N3} at a time 7 later.

Formally we may write this in the form
p(N?,...,NE)P(N?D,...,N}|Ny,...,Np,7) =p(Ny,...,Np)

x P(MNy,...,Np|N?,...,Np,7),
(3.6)

where P(Ny,...,Np|N?,...,N%,7) is a conditional probability. It is the probability
to see the distribution {N?,..., N3} at some time provided that the distribution was
{N1,...,Np} at a time 7 earlier. Unlike p(Ny, ..., Np) the conditional probability is
unknown.

Equation (3.6) is the requirement of reversibility of fluctuations. Onsager places a
strong emphasis upon this assumption and he discusses it at length. Upon reflection,
the assumption seems to be a safe conclusion - hardly worthy of so much emphasis.
It is an inescapable consequence of the never-ending and reversible random character
of the thermal motion of the atoms which causes the fluctuations.

3.3.3 Mean regression

In contrast to this, Onsager’s main assumption, — the assumption about the mean
regression of a fluctuation - is barely mentioned by him, and certainly not critically
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assessed, although the assumption is a steep one, and difficult to accept. Let us con-
sider this now. :

We repeat that there is no sign of irreversibility in fluctuations. They continue
forever, and remain unchanged in their random character; and certainly they show
no decay. And yet, it is possible to detect an element of smoothness and decay within
the fluctuations, if one constructs the mean regression of a given fluctuation of size
{N?,..., N3} averaged over many occurrences. This is a function of 7 defined in
terms of the conditional probability as

I {ND..ND} N N N
(N"(T)'F) = Z Z (N,-—F)P(N{),...N,O;|N1,...Np,r).
N;=0 Np=0
(3.7)

Since an assumption about mean regression is a crucial point in Onsager’s argument,
we define the function again — in a more suggestive and less formal manner than
by (3.7) - by constructing it from Figure 8a, albeit for a single fluctuating variable N,
(say): we consider v times t, (o = 1,2,...v) for which N; has a given fixed value N
and register the values Nj (¢, +7) at a time 7 after ¢,. Then we form the average over
those later occurrences

Nl(T)N? = % i N (ta + 7). (3.8)
a=1

This is the mean regression function of a fluctuation N?; it is called a regression be-
cause, whenever the construction is carried out for any observed fluctuating quantity,
the resulting curve is decaying as shown qualitatively in Figure 8b.

Onsager’s hypothesis is that the mean regression of a fluctuation is equal to the
relaxation of a macroscopic deviation {N?, N2,... N3} from the equi-distribution.
Thus, by (3.7) and (3.3) he postulates

{N0..N2} P N

(mer)-5) = e (- (w2-F) (39)

Now, that hypothesis deserves a comment and it has received many. Let us be brief
and quote only S.R. de Groot and P. Mazur, two authors sympathetic to Onsager, who
wrote the most-often-cited textbook on non-equilibrium thermodynamics [de Groot
1962). They say on p. 102 of the book with regard to Onsager’s hypothesis (3.9):
the hypothesis that the equation ... is correct for small values [of (N; — N/P)] does
not seem altogether unreasonable... Well, that is faint praise indeed. It seems hard
to think of a more damaging comment and still remain within the confines of the
soft-spoken politeness expected from a scientific evaluation.

Anyway, whether the hypothesis (3.9) is valid or not, one thing is clear. It applies
to rate laws and relaxation processes, not to transport equations like Fourier’s law for
the heat flux. We shall comment on that point below, in Sections 3.5 and 4.

Let us add just one more point. The hypothesis (3.9) is quite obviously wrong for
small times 7, since the macroscopic relaxation is exponential, — starting out at 7 = 0
with a negative slope, while the mean regression function must be even in 7 with a
vanishing derivative at 7 = 0. This must be so, because the fluctuations at the times
ta (@ =1,2,...v) go up and down equally often, if v is large enough. Onsager himself
recognises that and he attempts to anticipate criticism on that point in a page-long
discussion in which, interestingly, there are overtones of extended thermodynamics,
cf. Sections 8 and 9. However the discussion is not specific and remains inconclusive.
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Physicists and chemists passionately believe in Onsager’s arguments, all the more
so, the less they understand them. And we, the authors of this article, are ambivalent.
We believe — indeed, it comes down to beliefs (!) — that Onsager’s hypothesis on mean
regression is true, despite its daring character and despite the non-existent proof.
The basis for our confidence is experimental evidence gathered in the field of light
scattering, which is due to density fluctuations, see Section 9.

3.3.4 Symmetry relation

The final argument is simple now and above reproach, if the hypothesis on mean
regression is accepted. As a starting point we combine (3.7) and (3.9) to obtain

Zexp( R,k'r)(Nk——) Z Z(N——)P(Nl, .N3|Ny,...Np,T).

k=0 N,=0 Np=0

N N
We multiply both sides by (N?—N/P)p(N?,...N2) and form thesums > ... > .

N9=0 N9%=0
This provides us with the possibility to employ the requirement of reversibility (3.6)
and to use the specific mean values (3.5)2. Despite their formal complexity we write
the four lines of intermediate calculation down in a frame, so as to give the interested
reader the possibility to follow the argument, and the not so interested one to skip it
and to proceed to (3.10).

P

Sew(-Rar) 3 3 (NE- ) (0 - H)p (¥ 9) -

N?=0 N?,1=0
N N N N

X n n o n (Ni=-F) (M- F)

Ni=0 Np=0N?=0 NO=0

xp(NY...N2)P(N)...N}|Ny...Np,7)

N N

Nexp(—Rar) = 5 ... > 5 .. 5 (N0 =) (N - X)

N;=0 Np=0 N{=0 N%=0

x?(Nl...Np)P(Nl...Np|N{’...N1°>,’r)

p(N?...N?,)P(N;.Ng|N1...Np,1')

P N N
= §exp(—RugT) Yo 2 (NP-E)YNR-E)p(ND...NY)

It follows that we must have
Ry = Ri. (3.10)

This symmetry relation is called Onsager’s reciprocity relation. It implies that the rate
of change of N; caused by a non-equilibrium value of N} is equal to the rate of Ny
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due to a deviation of N; from its equilibrium value. Notabene: R;; are macroscopic
coefficients. Primarily, i.e. as introduced in (3.2), they have nothing at all to do with
fluctuations. That is what makes Onsager’s hypothesis so spectacular.

Microscopic reversibility, i.e. reversibility of the atomic motion in a body must
be qualified when the body is subject to a magnetic field, or when it rests in a non-
inertial frame so that either the Lorentz force or the Coriolis force — or both — affect
the motion of the atoms. It is then possible that the relaxation matrix R;; depends
on the magnetic flux density B and on the angular velocity w of the frame. We do
not go into detail; suffice it to say that in such cases the symmetry condition (3.10)
must be replaced by the relation R;x(B,w) = Ryi(—B, —w). That qualification is part
of Onsager’s papers of 1931.

3.4 Two corollaries of Onsager relations. Dissipation potentlal and principle
of least energy dissipation

The reciprocity relation (3.10) has two easy corollaries which, to some people,
suggest an extrapolation away from the model of the gas with the distribution
{N1,Na,...Np} and toward an arbitrary body whose non-equilibrium variables may
generically be called a; (1 =1,2,...P).

3.4.1 First corollary. Dissipation potential, entropy production, and orthogonality
condition

The entropy production X may be written as a function of N;25.. Thus, by (3.1), (3.2)

we have
r= k— Z R,k( 1;) (Nk— %) (3.11)

zkl

Differentiation with respect to N; and the use of (3.2) gives

oxr P dN;

_ i ox
N __%ﬁ e hence 2X = Z(N - )aN (3.12)

if and only if R;; is symmetric. Indeed, note that only the symmetric part of R
affects the entropy production X, so that the rate law, or relaxation law (3.12); does
not contain the anti-symmetric part either. Equation (3.12)s represents Euler’s law
for a homogeneous function of grade 2.

The extrapolation to an arbitrary body with non-equilibrium variables o; (i =
1,2,...P) - instead of (IV; — N/P) - is now obvious:

There ezists a positive valued entropy production X(a;), homogeneous of grade 2,

da,- _ 1 62

P
Homogeneity of the entropy production means ¥ = ) L;ta;ox so that, by (3.13),
i,k=1

the rate law id‘%‘- = — Z L;koy holds with a symmetric and positive definite ma-
i=1

such that the relazation rates % are given by

trix Lig.

25 Onsager and much of the literature following him prefer to speak of the dissipation
potential ¢ which is essentially equal to the entropy production X': we have X = 2.
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The entropy production is a popular concept among applie(.i.mz.xthen.latimans an§1
mechanicians when they are interested in unspecified non-equilibrium internal vari-
ables ;. They like to foreshorten thermodynamics by saying that the.propertles of
a body are dictated by two scalar functions: the free energy for reyersxble processes
and the entropy production — or dissipation potential — for irreversible ones.

A sometimes helpful visualisation of the formulae involving the entropy produc-
tion, particularly (3.13), is the orthogonality condition to which Ziegler 'has c.alled
attention [Ziegler 1977; 1983). Let us consider that proposition: in the P—dn.nepsmpa.l
space spanned by the variables o; the entropy production X(a;) — or the dissipation
potential — has fixed values on a hypersurface, actually a hyperellipsoid. By (3.13) -
when the o;’s are given — the corresponding rates of change %’L are orthogonal to
that surface. Ziegler and the members of his group, e.g. Wehrli, have considered cases
in which the entropy production is akin - in simple cases even equal - to the yield
function of a plastic body [Ziegler 1987]. In that case the variables are the principal
strains, at most three of them. And Ziegler’s orthogonality condition may then imply
the normality rule which is often used by plasticians to determine the plastic strain
under complex two- or three-dimensional loading conditions. We are not aware though
that such ideas have helped much in the complex field of plasticity, nor do they seem

to be generally accepted. However, research in this field is on-going, e.g. see some
recent work by Hackl [Hackl 2008].

3.4.2 Second corollary. Principle of least dissipation of energy, or least entropy production

The second corollary of Onsager’s reciprocity relations concerns the entropy produc-
tion X' again. In order to explain we stick to the “internal” variables a; — whatever
they are — and write

P P
Y=Y Lyaar  so that, by (3.13), % =—Y Ly (3.14)
ik=1 =1

holds. It is easy to see that X has a minimum under the constraint that the rates ‘%’L
are fized. Indeed, we use Lagrange multipliers \; to take care of the constraint and

differentiate the function

P dai P P P dou: P
X - Z/\i (d_t + Z Likak) = z Liro;op — ;/\i (d—tz + ;Likak) (3.15)

i,k=1

with respect to o; without constraint. The first derivative vanishes because of the
constraint and the second derivative is equal to L; which is positive definite. Onsager
calls this the principle of least dissipation of energy?.

The principle is often dubbed PME - principle of minimal entropy production —
and under that name it is frequently seriously abused in modern thermodynamics.
Indeed, most authors neglect the constraint which makes it valid — and makes it
'fairly trivial to boot. Prigogine in particular has vastly extrapolated the idea of min-
Imum entropy production by postulating its validity for stationary processes, and he
has popularised it in his books for the general public, where the PME is embedded
somewhere between Anaxagoras and Lenin [Prigogine 1983]. We shall come back to
Prigogine’s axiom later — in order to disprove it, see Section 4.2.4.

26 . . . .
, Ip the older literature the entropy production is quite often called energy dissipation. We
consider both expressions as synonymous.



Ingo Miiller and Wolf Weiss: Thermodynamics of irreversible processes... 169

3.5 Onsager relations for heat conduction

The model of a gas with the distribution {Ny,... N p} has serve(.i us well for the expla-
nation of Onsager relations for rate laws and relaxation equations of tpe type (3.2),
and (3.3). And indeed — apart from the precarious Qnsager hypothesis 1t§elf - tbe
physics and mathematics seem sound. However, this is not what Onsa,ger C!ld. In his
papers he considered a transport phenomenon, namely heat conduction in a non-
isotropic body, where the thermal conductivity is a tensor, and where the Fourier law
is generalized to the form

g = —nikgﬁ with Kir — positive definite. (3.16)
Tk

Onsager set out to show that the tensor x; is symmetric and so he arrived somehow
at the primordial reciprocity relation x;; = k.

The derivation is hard to follow and we believe that the implied assumptions and
suggestions are impossible to evaluate critically and render them convincing. Here
again, de Groot and Mazur have made a heroic effort to clarify ideas and to prove
what is provable [deGroot 1962]. Their reasoning is ingenious and it culminates in the
conclusion that the divergence of the anti-symmetric part of x;; must vanish

0 (Kik — Kki)

=0, (3.17)

Thus, no conclusion about the anti-symmetric part is reached when r;;, is independent
of z;, although that is the most usual case considered by irreversible thermodynamic;
it is in fact the only case considered in linear irreversible thermodynamics. Anyway,
certainly (3.17) does not mean that ;;, is symmetric.

4 Thermodynamics of irreversible processes, the doctrine of forces
and fluxes |

4.1 Abstract

Until about 1940 the phenomenological equations of Fourier, Fick and Navier-Stokes
were disjoint pieces of knowledge, apparently unrelated. It was Eckart who joined
them in a systematic and - to some extent — harmonious thermodynamic theory.
That theory might be called the doctrine of forces and fluxes. It is quite simple and it
refers to single fluids as well as to mixtures of fluids. Therefore it has become popular
with physicists and chemists all over the world. The theory is taught everywhere
where irreversible thermodynamics is on the curriculum, and it is generally known by
the acronym TIP, for thermodynamics of irreversible processes.

4.2 Single fluids

Slowly in the first half of the 20th century it was recognised that thermodynamics
could be interpreted as a field theory for the determination of the fields of mass
density p(z;,t), velocity v;(x;,t), and temperature T(z;,t) in a body. Jaumann and
Lohr advertised that view [Jaumann 1911; Lohr 1926], and Eckart brought it to a

conclusion of sorts [Eckart 1940a). We proceed to describe Eckart’s theory for single
fluids in this section.
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4.2.1 Equations of balance

For the determination of the fields p(x;,t), vi(zi,t), and T(z;,t) we need field equa-
tions and these are based on the equations of balance of mechanics and thermody-
namics, viz. the conservation laws of mass, momentum and energy

dp, Ow v Ot v da_, Bw o,
%—*-p%;_o dat Bxi_o 73 Be; Y0x; ®1)
These laws are also known as the continuity equation, Newton’s equation of motion,
and the first law of thermodynamics, respectively. They are not — in this form - field
equations for p(z;,t), vi(z;,t), and T'(x;,t), because of the occurrence of the specific
internal energy u, the heat flux g;, and the stress ¢;;. Therefore those latter quantities
must be related to the fields p(x;,t), vi(xi,t), and T(x;,t) and — upon reflection — it
is clear that the relations depend on the constitution of the material of the body; we
call them constitutive relations or — sometimes — phenomenological equations.

4.2.2 Balance of entropy

Eckart motivated the form of the constitutive equations from the Gibbs equation (2.3)
for a reversible process, applied to an infinitesimal mass element

ds 1 (du pdp)
dt T \dt p2dt)

He assumed that s, u, and p are functions of p and T and, in fact, the same functions
as in equilibrium. This is known as the assumption of local equilibrium. It means
that locally ~ and instantaneously — in an irreversible process the mass elements
are in equilibrium. Rather obviously, if this were true at all, it can only be true,
or nearly true, if the process is close to equilibrium, i.e. if the rates of change are
slow and the gradients are small?”. And so, Eckart’s theory is sometimes called linear
irreversible thermodynamics: the constitutive functions can at most be linear in rates
and gradients, and the theory is therefore not expected to be valid for rapid rates and
steep gradients.

Elimination of the rates of u and p between (4.1); 3 and (4.2) gives after some
rearrangement

ds 3 g o) 1, vy 11, Ovg
0%+ o (1) =% +Tt<‘f>%)+f(§t” P) Fra )

(4.2)

= -7
, ileﬁned by the brace in (4.3), is the dynamic pressure, the non-equilibrium part
of sty
3

Equation (4.3) has the form of an equation of balance of entropy. Therefore we
interpret

i = % as the entropy flux, and
o) (1, Buy  1(1 dux
=¢—Ll b Sty == vk : -
=9 oz; + T (i) bz, + T ( 3tll +P) By as the density of entropy production

(4.4)

%7 Otherwise s, u, and p may be expected to depend on (say) gradients and rates of tem-
perature and/or velocity.
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We may express (4.4)2 by saying that there are three mechanisms of dissipation - or
entropy production — in a single fluid, namely heat conduction and internal friction.
The latter consists of two parts: friction by shearing and friction by isotropic expansion
or compression.

By the second law the entropy production density is expected to be non-negative,
since the entropy must grow in an adiabatic process.

4.2.3 Thermodynamic forces and fluxes

Inspection shows that the entropy production density is a sum of products of ther-
modynamic fluzes and thermodynamic forces, so called by Eckart. They are

thermodynamic fluzes and thermodynamic forces
. or
heat flux g; temperature gradient D5,
i
. . . . O0v<i
deviatoric stress £y deviatoric velocity gradient 6:«
3>
: , ... Oy
dynamic pressure m divergence of velocity e
l

It is obvious that the inequality o > 0 can be satisfied by letting fluxes be proportional
to forces with factors of proportionality of specific signs. Hence

oL
gi=1L BT L>0  Fourier® (4.5)
Xi -
tajy =21 gvd 7.>0  Navier-Stokes for shear (4.6)
(Ej>
= ——u% v >0  Navier-Stokes for expansion and compression. (4.7)
!

This is what we meant earlier when we said that in Eckart’s theory the phenomeno-
logical laws of Fourier and Navier-Stokes both result from a single and simple thermo-
dynamic argument rather than being separately abstracted from the observed phe-
nomena, of heat conduction and internal friction.

Upon close scrutiny of the argument questions do arise about Eckart’s simple
reasoning. Thus, while it is clear that equations (4.5) through (4.7) are sufficient to
guarantee o > 0, they are not necessary, of course. Few people are worried though.
Eckart’s simple derivation of the laws of Fourier and Navier-Stokes is too suggestive
to be questioned much, and the doctrine of proportional fluxes and forces is widely
accepted.

With thermal and caloric equations of state p = p(p, T') and u = u(p, T'), and with
the constitutive — or phenomenological — equations (4.5) through (4.7) equations of
balance (4.1) represent a system of field equations for the determination of p(z;,t),
vi(zi,t), and T'(x;, t) from initial and boundary values. Every solution is called a ther-
modynamic process. The field equations — being non-linear coupled partial differential
equations — are too complicated to be solved analytically in any generality, but solu-
tions for special simple cases fill the textbooks. Usually the problems are made simple
by concentrating on one field and assuming that the others are zero or constant,
whatever the initial and boundary values permit or suggest.

28 I/T? corresponds to the thermal conductivity & in (1.1).
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4.2.4 Principle of minimal entropy production — a counter example

A particular extremely simple case is stationary one-dimensional heat conduction
between two large plates at £ = =L in a body at rest. That case is really too simple
to be considered as such in this report; and yet, just because it is so simple we may use
it to exhibit a counter-example to Prigogine’s principle of minimal entropy production
in a few lines [Barbera 1999]. The energy balance reduces to 32 = 0 in this case and
the Fourier law reads ¢ = --K,(T) ; we allow the thermal conductivity to depend

on T for generality?®. For the present sxmple case we may thus write the only relevant
field equation for T'(z) in the form

2
d*T dlnk (dT) —o. (4.8)

3=t ar \az

When the two plates are kept at different temperatures, the temperature field can
be obtained from this equation — provided that x(T) is given — and all is done: the
temperature field is determined by the first law, i.e. the energy equation and no other
criterion is needed.

And yet, this simple case is the paradigm for the principle of minimal entropy pro-
duction. I quote Prigogine and Stengers: the theorem of minimal entropy production
shows that a system... tends to a stationary state which is characterised by minimal
entropy production, compatible with the boundary constraints, ... for instance when
two points are kept at different temperatures [Prigogine 1983].

This is not so! There is no such theorem! For proof let us consider the entropy
production X' which, in the case under consideration, has the density o = q%(;}—-),

cf. (4.4), and, with ¢ = ——n(T)-‘% as before, we obtain

2= /"(T)( )da:.

Under the stipulated boundary conditions the field T'(z), which minimizes X, must
satisfy the Euler-Lagrange equation

d?T  dln. /% (EY _o

iz T T ar  \dz

(4.9)

Comparison with the energy equation (4.8) shows that the equations are different
unless & is proportional to 1/7'2, which is not a realistic proposition for any material.
Even in the case of the linear Fourier law — with a constant x — the two equations (4.8)
and (4.9) are different3°.

It follows that the principle of minimal entropy production as formulated by
Prigogine and Stengers®! contradicts the first law of thermodynamics! So, the principle
is not true. However, to many people, it seems to have a certain plausibility, — some

2 In the properly linear case, where « is independent of T, or if the dependence can be
neglected, a special case results, but the main argument and the conclusion of this paragraph
are unchanged.

30 The contradiction was demonstrated by Barbera, who also considered viscous friction
with an analogous result [Barbera 1999].

31 See also [Glansdorff 1971]. That book muddles the issue further by minimizing a weighed

entropy production which, if the truth were known, is quite different from the entropy pro-
duction itself.
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feeling along the line that the earth is flat — and this will guarantee its survival.
And Prigogine, its author? Well, one of the authors of this report (I.M.) has heard
Prigogine say in 1973 at a professional meeting that the principle of minimal entropy
production was an error. This moment of truth, however, was short-lived and it did
not prevent him and Ms. Stengers from advertising the principle in 1983.

Whatever the future of the principle of minimal entropy production may be, — if it
has a future —, it is certain that the Prigogine-Stengers version of it is wrong. There are
those who think the principle could perhaps identify uncontrollable boundary data, or
other parameters of thermodynamic solutions which cannot otherwise be determined.
This may be so; however, proof and demonstrations are needed.

4.3 Mixtures of fluids

Eckart’s theory of mixtures of fluids proceeds along the same lines as for single fluids
but, of course, there are significant differences in detail, because of the greater com-
plexity of mixtures [Eckart 1940b]. In particular the masses of the constituents are no
longer conserved, at least not, if chemical reactions occur.

4.3.1 Equations of balance

The relevant equations of balance for a mixture of v constituents (a = 1,2, .. .V) are
the equations of balance of masses of the constituents and of momentum and energy
of the mixture

dp Bvi :

0 0pa V¥ dt ¥ p% =
_pg_*_ﬁ_i_ = Ta (a=1,...1/)
o~ Omi dea OJ __ o 1o 1
—dt—-l--aTi—Ta(a— 2.V )
&
dpv; | 9(pvjvi —tj) _ | dv; _ Btji _
ot + oz; =0 p dt Oz;
ap(ut+iv?)  B(p(u+3v?) vi—t;iv;+4) du 8q; _, Ov;
+ =0  po+ - =tig -
ot . 6113; . dt 6$Bi 6mi

(4.10)
where ¢, are the concentrations of the constituents, 7o the mass productions, and J
are the diffusion fluxes. The 7,’s are not all independent, because in a chemical re-
action the number of atoms of the constituents are conserved; the atoms are just
redistributed among the constituents as dictated by the stoichiometric equations.
Thus, if 7% are the stoichiometric coefficients of constituent o in reaction a, we have

n
Ta = Z'Ygl—l'a)\a- (411)
a=1

n is the number of (independent) reactions, o the molecular mass and \* is the
reaction rate density.
Equations (4.10);, or (4.10)2 must be supplemented by constitutive relations for

o the diffusion fluxes J* (@ =1,2,...v —1);

) 4.12
e the reaction rate densities A% (a = 1,2...,n); ( )
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e the symmetric tensor £;;;
e the flux of internal energy g;;
e and the specific internal energy u.

4.3.2 Balance of entropy

Again, as in a single fluid, the form of the constitutive relations is motivated by the
Gibbs equation. For mixtures this equation, applied to an infinitesimal mass element

. reads
ds 1 (d’u p dp dea )

= ml T mg (4.13)

it pdt d
where s, u, and p, as well as the chemica.l potentials g, are supposed to be func-
tions of p, T, and c,, known from equilibrium thermodynamics. This represents the
assumption of local equilibrium in the present case of mixtures.

Elimination of the time derivatives of s, u, and ¢, between (4.10) and (4.13) and
some rearrangement provides an equation of balance which reads

Ot = o0% 1 vy  1/1 Oux,
+q, —ZJ —+ t(,_,,)-(%--l-i;(—tii'Fp) b?k (4.14)

The equation may be 1nterpreted as an equation of balance of entropy, if we identify

v
- 2 9o
";1 as the entropy flux, and
1' e 1(1 Ovy,
- —;(‘;gavaﬂa) A“+%—-ZJ°‘ Tl e TT (3‘” ) Bk

as the density of entropy production. (4.15)

Inspection shows that the entropy production density is a sum of products, whose
factors we may interpret as thermodynamic fluxes and forces as follows

thermodynamic fluzes and thermodynamic forces
. 32 . OT
flux of internal energy g; temperature gradient P2
o . o 0(— )
diffusion fluxes J* chemical potential gradients B
i
deviatoric stress ;) deviatoric velocity gradient 8:1,'(1
3>
1
dynamic pressure T = —p — =t;; divergence of velocity %
3 Oz
14
reaction rate densities \® chemical affinities ) ga72pa-
a=1
(4.16)

32 1t is for a good reason that g; is not called the heat flux at this point, because it contains
several additional terms, — additional to the heat flux — which are due to the diffusive motion.
We shall come back to this point-in Section 5.
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4.3.3 Constitutive equations for mixtures

By the second law the entropy production should be non-negative. And this require-

ment'may be satisfied in a linear theory by making the fluxes linear homogeneous
functions of the forces.

.n v
. 0
X==% Lap [ Y ottt | + Laps

Lab La tive defi
- — non- i
i, A n-negative definite

1 n N v av
§tii +p=- Z Ly (E ga’)’gzl‘a) +va—
b=1 a=1

a.’l)k

L ov-l §— (M)

29T B T
qi T + ;;1 <] or;

I‘&T2 Bﬁ
- — non-negative definite
Ba Baﬂ

This is a remarkable set of equations. It incorporates all that is known and expected
from irreversible thermodynamics of heat conduction, internal friction, diffusion, and
chemical reaction, albeit for the linear regime. The discussion of the scalar equa-
tions (4.17)1,2 which involve chemistry will be postponed to Section 4.3.5. But let
us consider some of the attractive features represented by the vectorial constitutive
equations.

First of all, the terms in (4.17) with &, 7, and v are already known from single
fluids, where they are the only ones, and they represent the laws of Fourier and Navier-
Stokes of old. Diffusion and the possibility of chemical reactions change the situation
and make the equations more complex. \

From (4.17)3,4 we may conclude that it is primarily the gradients of the chemical
potentials — not the concentration gradients — that drive diffusion. This observation
fits well to the pivotal position of chemical potentials which, like temperature, tend
to become homogeneous fields in equilibrium. Of course, since the chemical potentials
are functions of T', p, and the c,’s, Fick’s law (1.6) is not invalidated; it turns out
to represent the special case of isothermal and isobaric diffusion, which is the most
common case.

Moreover, by (4.17)34, the chemical potential gradients may affect the flux of
internal energy and the temperature gradient may affect the diffusion fluxes. Those
effects are known as the diffusion-thermo effect and thermal diffusion, respectively, and
both are observed, and they are also confirmed by the kinetic theory of gas mixtures.
Thermal diffusion plays a role in the separation of isotopes like U238 and U%%; it is
routinely relied upon to enhance the separation process in centrifuges.
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There are numerous special examples for the usefulness of Eckart’s theory. A neat
instructive one concerns heat conduction between two parallel plates. The plates are
kept at different temperatures and between them we have a mixture of ideal gases, for
instance molecular and atomic hydrogen, H, and H. By mass action the constituent H
will then have a higher concentration near the hot plate than near the cold one.
And that difference of concentration and temperature sets up a gradient of chemical
potentials which leads to diffusion. de Groot and Mazur include the stationary solution
of that process of coupled heat conduction, diffusion and chemical reaction among
their exercises [de Groot 1974], see also [Miiller 2009)].

All of this is good and one might say that Eckart’s theory has made irreversible
thermodynamics of mixtures accessible to chemists and physicists. It is a popular
theory — and not a bad one either — but it is not perfect.

The root cause of the deficiencies lies in the fact that the inertia of the diffusive
motion, and hence the kinetic energy of the diffusive motion, are neglected by Eckart.
In other words: a proper thermodynamic theory of mixtures should be based on the
equations of motion of momenta for all constituents, rather than only on the balance
of momentum for the mixture as a whole. We shall come back to this point in the
discussion of extended thermodynamics of mixtures (see Sect. 5) which does better
in this respect.

Having given Eckart’s two articles on irreversible thermodynamics the emphasis
which they deserve, we should like to end this section by mentioning that Eckart
wrote a third paper in the same year 1940 [Eckart 1940c]. In that paper he derived
the relativistic generalisation of Fourier’s law

q‘! - axz 62 2

Thus in relativity the heat flux depends on the acceleration 7;, e.g. the gravitational
acceleration, so that the temperature field in a gravitational field is not homogeneous
in equilibrium. But there is no room in this report for relativistic irreversible thermo-
dynamics.

4.3.4 Onsager relations for TIP?

We have discussed Onsager relations in Section 3 and we have seen that given the va-
lidity of the mean-regression hypothesis (see Sects. 3.2.3 and 3.2.4) such relations can
be proved for ordinary differential equations, i.e. rate-type equations of the form (3.2),
with relaxation processes of the form (3.3) as solutions. In TIP, however, we deal with
transport processes which are governed by partial differential equations. Nothing can
be proved concerning Onsager relations in this case, or, if we try, we run into in-
conclusive results of the type (3.17) discussed in Section 3.5. Nevertheless Meixner
has postulated symmetry of the matrices listed in (4.17) and, since they were pro-
nounced authoritatively as Onsager relations, they are eagerly accepted by physicists
and chemists, whose theories suffer from an overabundance of phenomenological co-
efficients which are difficult to measure [Meixner 1941; 1943].

However, forces and fluxes are not uniquely defined: if either set is replaced by
linear combinations of the forces and fluxes defined in (4.16), the entropy produc-
tion remains a sum of products but Onsager relations do not in general survive this
transformation, even if they have held for the original set. And who is to say that our
set (4.16) is the preferred one for which the symmetries do hold? Another subtlety
was pointed out by Casimir [Casimir 1945]. He noticed that if some variable is odd
under time reversal, for instance the diffusion flux, the symmetry relations involving
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that variable become anti-symmetry relations. Both these aspects — transformation
of forces and fluxes and odd variables — are discussed at length in the literature, and
the book by de Groot and Mazur reflects the discussions in a somewhat confusing
manner.

However, in some instances the kinetic theory of gases confirms symmetry relations
for diffusion and thermal diffusion. Truesdell has also proved the symmetry of the
matrix Bqg, see (4.17), from momentum conservation under the — perhaps — plausible
assumption of binary action by which the interaction force between two constituents
is unaffected by the presence of other constituents, see Section 5 [Truesdell 1968].
In both cases, the kinetic arguments and the concept of binary action, the proofs of
symmetry make no use of Onsager’s hypothesis of mean regression of fluctuations.
This means that there are alternative reasons, valid in specific cases, for a matrix to
be symmetric. Most recently Wen-An Yong has discovered a proof of symmetry of
force-flux relations in extended thermodynamics of moments which we shall describe
in Section 9 [Wen-An Yong 2007].

And what about experimental confirmation? A naive reader might ask that ques-
tion, because he does not know that theoreticians seldom dabble in experiments. Ex-
perimentation is too difficult for them! However, there is a notable exception: Miller
has investigated the validity of Onsager relations experimentally and, in particular,
the symmetry of the diffusion matrix in ten ternary mixtures, the simplest conceiv-
able case33. He came to the conclusion that in eight out of ten mixtures the symmetry
was confirmed - to within experimental error — and in two of them it was not [Miller
1960]. Now, does that mean that Onsager relations are confirmed or refuted? Or does
it mean that Truesdell’s binary-action-assumption does not hold in the divergent two
mixtures? We do not know the answer and we suggest that a researcher is well-advised
not to assume Onsager relations for transport phenomena, at least not, if he wishes
to stay on safe ground with his arguments.

4.3.5 Oscillatory reactions and dissipative structures

Let us now discuss the equations (4.17); 2 which involve chemical reaction densities
and affinities. In fact (4.17); generalises the phenomenological equations proposed by
de Donder for chemical reactions [de Donder 1927): according to these the rates of
reaction are determined by the affinities34. However, here there is the possibility that
an expansive or compressive motion may lead to chemical reactions even when the
affinities vanish. Also, by (4.17); chemical affinities may affect the dynamic pressure,
even when there is no motion. We do not know whether such effects have ever been
observed and we rather think not.

If there is no motion and no chemical reaction, equation (4.17); implies the laws
of mass action for chemical equilibrium, by which the affinities of all reactions vanish

Zgﬂ’Ygﬂﬁ =0 (a=1,2...n). (4.18)
p=1

Otherwise, i.e. if there are reactions, the affinity of reaction a may affect the rate of
reaction b and vice versa.

33 Binary mixtures are uninteresting with regard to Onsager symmetry of the matrix Bag
of diffusion coefficients, since there is only one diffusion coefficient.

34 de Donder thus gave a modern interpretation of chemical affinities which clarified — and
superseded — the old quasi-alchemistic notion conceived by early chemists like Torbern Olof
Bergman (1735-1784) or Claude Louis Comte de Berthollet (1748-1822).
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theilrt :1?111-1:13[’)1:: ?fi)l; Sth'er El::rlnnl‘s,g lto find out which are the independent reactions and what
; - Th ves complex chemical analysis: even the most common
overall cherplcal reactions, such as the formation of water by 2Hs + O — 2H,0 or
t.he ammonia s.yn.thesis 3Hs + N2 — 2NHj3 — need catalysts for intermediate reactions
}Ll;s :2; dissociation of Hy, 02., or Na. Otherwise they are frozen, i.e. suppressed at
perat}lre, or the reactions proceed only at high pressures. Sometimes more
than one chain of reactions may lead to the same results, albeit at different rates.
The task of the chemist is not an easy one, and the phenomenological law (4.17);,
while correct, has a very restricted usefulness as a contribution to chemical kinetics.
It is deceptive in its simplicity. Feinberg discusses in a fairly mathematical form what
is involved and his analysis makes stoichiometry an interesting application of linear
algebra [Feinberg 1979].

Another difficulty with the phenomenological equation (4.17); — apart from the
identification of independent reactions - is the occurrence of the chemical potentials.
Even if their dependence on T, p, and c” is known for all constituents @ = 1,2,...v~1
in all occurring phases h = 1,2,...f — which is seldom the case — the dependence
on c! is very often, or really always, non-linear. Therefore without diffusion the rate
laws (4.10); provide non-linear ordinary differential equations with an interesting
wealth of possible solutions: Apart from innocuous - and expected — simple relaxations
to chemical equilibrium there may be chemical oscillations like those observed in the
Belousov-Zhapotinsky reaction [Belousov 1958; Zhapotinsky 1964].

The Belousov-Zhapotinsky reaction was the first example for a homogeneous chem-
ical oscillation. Belousov observed an oscillatory colour change during an oxidation of
citric acid with a bromate solution and cerium as a catalysts. After initial scepticism
the chemical community studied the process intensively and came up with up to 20
independent intermediate reactions3®. We cannot go into such detail in this report.

Anyway, the effect of intermediate catalytic constituents in reactions like the
Belousov-Zhapotinsky reaction are too complex to be interpreted in simple words and
to be grasped intuitively. Therefore we often fall back on model reactions. Prigogine
et al. have invented a fairly simple reaction between two constituents z and y which
models an oscillatory reaction like the Belousov-Zhapotinsky one; they call their sys-
tem of equations the Brusselator [Prigogine 1977)36.

@ _, + 22y — TYsT — T
pri () sYs
(x5,ys) is a stationary composition. (4.19)
dy a: 2
q sYsT — T7Y

Figure 9 exhibits the graph of a solution for a particular choice of parameters and for
particular initial conditions. The solution approaches a limit cycle so that the densities
of both constituents = and y oscillate. A phenomenon like this may be interpreted as
a case where continual dissipation in a body is offset by stationary in- and effluxes of
constituents so that stable oscillations may occur in the body indefinitely.
Prigogine’s work could take advantage of the earlier work by chemists, in par-
ticular Lotka and of the theory of non-linear ordinary differential equations which
had been developed by mathematicians like Volterra. Both became famous for their
socio-biological model of a predator-prey society [Lotka 1910; Volterra 1931].

35 For a simplified model reaction and some history see Wikipedia: Belousov-Zhapotinsky

reaction.
3 g and y in the equations and in the figure stand for the densities of the constituents.
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Fig. 9. Limit cycle of the Brusselator®” z, = 1, y, = 2.5, z(0) = 1, y(0) = 0.

Prigogine advertised this line of research and made chemists aware of the rich prop-
erties of the non-linear differential equations in the field of chemical thermodynamics.
His work became quite popular, because it is great fun to plot the solutions-graphs of
non-linear systems upon changes of parameters and initial conditions. Thus Prigogine
was awarded the Nobel prize for chemistry in 1977.

In order to anticipate a common misunderstanding of the significance of the non-
linear differential equations for the constituent densities in a mixture we like to say
this: these processes are not far from equilibrium. They are all covered by. Eckart’s
equations which are linear relations for the chemical potentials. The non-linearity
of the differential equations results from the non-linearity of the relations between
the chemical potentials and the concentrations®®. The misunderstanding may be ex-
cused, perhaps, because we cannot observe, — i.e. see, hear or smell —, the chemical
potentials, and how close they are to equilibrium, while we may be able to determine
concentrations by sight through colour changes (say).

If there is diffusion in addition to chemical reactions, equations (4.10); remain
partial differential equations instead of being reduced to ordinary ones. The solutions
may exhibit striped patterns in such cases, or rings, or hexagons. Actually we do not
necessarily need chemistry to observe such pattern formation. Even in a layer of a
single fluid heated from below we commonly observe convection patterns due to the
interaction of thermal conduction and gravity [Bénard 1900]; there are also regular
Taylor vortices in a fluid between rotating cylinders due to shearing and inertial forces.
Prigogine has introduced the term dissipative structures for such phenomena. Each
one requires its own physical interpretation and a mathematical analysis of its own.

37 The graph of the figure is taken from Wikipedia: Brusselator.
38 Even in equilibrium most relations between the concentrations in a reacting mixture are
non-linear, of course, according to the law of mass action.
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5 Rational thermodynamics

5.1 Abstract

In the 1960’s TIP was briefly pushed into second place when a more systematic theory
was proposed: Rational thermodynamics. But in the end that theory failed in its

l§1in.1cll)l<-ast applications when it turned out that it led to instability for non-Newtonian
uids.

5.2 Clausius-Duhem inequality and material frame indifference

Despite the suggestive character of Eckart’s doctrine of forces and fluxes there was
room for improvement. Eckart’s theory glosses over the question for which fields
p(z;,t), vi(z;,t), T(z;,t) the entropy inequality must hold; also it clearly presents
itself as a somewhat naive extrapolation of relations from equilibrium thermodynam-
ics, the Gibbs equation (4.2), for instance, or the assumption of local equilibrium, or
the relation (4.4); between the fluxes of entropy and internal energy.

Therefore the new rational thermodynamics — formulated in the 1960’s — came
up with the requirement that the Clausius-Duhem inequality (2.2) must hold for all
solutions of the field equations, which are composed of the conservation laws of mass,
momentum and energy and supplemented by constitutive equations. In this manner
the Clausius-Duhem inequality could serve as a constraint on the generality of the
constitutive functions, and local equilibrium was no longer needed as an a priori
assumption; in some cases it came out as a result. Coleman and Mizel stress that
latter point [Coleman 1964].

For reasons to be discussed below the Clausius-Duhem inequality is given an extra
term which makes the radiative heating explicit. In local form it reads

ds 0(%) pr
P + B2, T >0, (5.1)
where pr is the density of radiative heating, or cooling. The additional radiative term
makes sense in terms of Clausius’s formulation of the second law, see Section 2.2, and
it is needed for the mathematical consistency of rational thermodynamics.

In order to avoid misunderstanding we must say, that the Clausius-Duhem inequal-
ity (5.1) does not account for the physics of the interaction of matter and radiation,
because s is the entropy of the matter only and g;/T is the entropy flux of the matter.
Entropy and entropy flux of radiation are not considered here. We do not elaborate
this point; the interested reader is referred to some articles by Weiss on the entropy
of the earth [Weiss 1996a; 1998]. '

Rational thermodynamics made full use of the principle of material frame indif-
ference of continuum mechanics, by which the constitutive functions must be free of
inertial terms due to Coriolis forces, or centrifugal forces and such like [Noll 1958].
Much of Eckart’s linear force-flux relations are implied by that principle alone, and all
that remains for thermodynamics to do is confirmation of the inequalities for transport
coefficients, like the viscosities, or the thermal conductivity.

Both are attractive — and welcome — features in thermodynamics, and so Truesdell
advertised rational thermodynamics with some verve, hailing the theory as the true
beginning of non-equilibrium thermodynamics [Truesdell 1966; 1969]. It was he who
dubbed the theory rational thermodynamics; the implied derogatory slant on earlier
theories was fully intended, although never openly admitted.
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5.3 The roles of radiation and gravitation

Naturally, such exaggerated praise provoked a reaction among the people who had
laboured in the field all their lives. Meixner tried to be conciliatory in his paper TIP
has many faces [Meixner 1968]; to no avail, because to Truesdell TIP was a dirty word.
And then there was Woods, Leslie Colin Woods of Oxford, applied mathematician
and former fighter pilot — according to his vita in the Internet. In the true spirit of
combat he published a provocative paper entitled The bogus azioms of continuum me-
chanics [Woods 1981]. Woods had many complaints about rational thermodynamics
and continuum mechanics — eight of them, some quite justified — but what infuriated
him most was the role of radiation r and gravitation f; in the exploitation of the
Clausius-Duhem inequality (5.1). That feature deserves a comment.

Coleman and Noll, the main proponents of rational thermodynamics wrote the
equations of balance of momentum and internal energy in the forms [Coleman 1963;
1964]

d’Uj 6tji _ du aq,- _ %
P at dx; pf;  and Pt + ozr; i Oz; |
They considered the gravitational body force f; and the radiation supply r as po-
tentially arbitrarily adjustable fields so that the solutions p(z;,t), vi(z;,t), T(z;,t)
of the field equations are not restricted by the balance equations (5.2) when the
Clausius-Duhem inequality is exploited. This stratagem may have been acceptable
to mathematicians, but to physicists it was absurd. Woods called it the phlogis-
ton principle3® and had his fun with it. The title of Woods’s bogus-paper and its
style is typical for the tone of the argument that was carried on about rational ther-
modynamics. Rivlin happily joined the fray with sarcastic lectures to a world-wide
audience: On red herrings and other sundry unidentified fish in modern continuum
mechanics.

+ pr. (5.2)

5.4 Improvements

All the polemics, however, did not do any damage to the popularity of rational ther-
modynamics. Quite the contrary: the theory thrived and grew and dominated the
thermodynamic literature for a decade after it was conceived. It was improved too:
thus Miiller avoided Woods’s phlogiston-objection by taking the balance equations of
momentum and energy into account explicitly in the evaluation of the entropy inequal-
ity — without radiative and gravitational terms [Miiller 1970]. Liu then streamlined
that approach by the introduction of Lagrange multipliers [Liu 1972a; 1972b]. Again
Miiller allowed the entropy flux to be a constitutive quantity in its own right, a priori
unrelated to the heat flux [Miiller 1967a; 1967b]. Such improvements were later made
essential parts of extended thermodynamics, see Sections 8 and 9.

5.5 Instability

Despite such efforts rational thermodynamics failed in the end when it turned out that
for non-Newtonian fluids it leads to instability. Let us explain that aspect suggestively,
cutting away unessential formalism and superficial complication.

3% The phlogiston was the hypothetical weightless substance, which scientists up to the
late 18th century believed was responsible for heating and corrosion. It is difficult to see a
connection to Woods’s objection.
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Rheology had made impressive i

‘ - ve progress in the 1950’s in treating visco-elastic flu-

;(z:, so-tcg.lled ngn—Newtoman fluids. Those fluids have a memory angd their ?izfr;;;cflrlilc
ess 1(;;) at time ¢ depends on the present value and the past history of the shear

Qe
r K . .
?,te —&ax,)' In a simple case, using a Taylor expansion of the history at the present
time, one may be tempted to write

tiij) =2 L0
(ij) = <N (ij> T 8235 (5.3)
lel::::s,hréﬁtl_lralily, T 1s positive, since it characterises a time in the past. That is - in
5 putshe what rational thermodynamics starts with*?. But the equation (5.3) is

eeply awed: Indeed, for (;;y = 0 it predicts an exponential growth of the shear rate
Wh?i‘liﬁms:ead’ vci_e confidently expect the shear rate to decay?!.

- s type o instability was discovered in rational i
Newtonian fluids by Dunn and Fosdick [Dunn 1974]%2, Totgzrglggyﬁﬁglgcsa()fernv(;;
encumbered with c?nsiderable formalism, and was therefore not ea,\sily ap%rgciated.
In. fact, at the beg{nning the disaster was considered as an isolated incidence that
ml.gh.t not really bring the theory down. But then came Joseph who drove the final
nail into the coffin with his paper: Instability of the rest state of fluids of arbitrary
grade greater than one [Joseph 1981]. He showed that non-stationary solutions of the
field equations based on (5.3) — or on more elaborate expansions — all blow up.

After that rational thermodynamics faded away. The burial was not greeted with
the same fanfare that had hailed its emergence, not even by Woods. The occasion was
not advertised, and so we may assume that Woods never heard about it. Rather the
main contributors went off to investigate other subjects and it became still around
rational thermodynamics. Quietly most people returned to Eckart’s theory with all its
limitations and resigned themselves to the impression that non-Newtonian fluids will
forever remain outside the realm of thermodynamics. And indeed, to this day there is
no convincing systematic thermodynamic theory of non-Newtonian fluids, although
extended thermodynamics seems to point in the right direction, see Sections 8 and 9,
and the Outlook in Section 10.

5.6 Lessons

Rational thermodynamics had enriched thermodynamics with some good arguments
and a clarification of the underlying principles. Above all there was the proper em-
phasis on the restrictive role that the entropy inequality plays on the form of the
constitutive functions. And there was the clear statement that the entropy inequality
has to hold for all thermodynamic processes, i.e. solutions of the field equations. In
addition, rational thermodynamics provided the motivation for the modification of
the Clausius-Duhem inequality into a true entropy inequality by making the entropy

40 T4 be sure the principle of material frame indifference does not allow %g—;ﬁ to be an

additive term in the stress. It requires a properly objective tensor in that place to represent
the history of the deformation gradient. An attractive choice for that tensor is the Rivlin-
Ericksen tensor of grade 2. And that is what Dunn and Fosdick chose. For the present
simplified argument the difference is unessential.

41 prutatis mutandis this is the same argument which Cattaneo first used for the heat flux
and the temperature gradient, see equations (P.1), (P.2) in the Preview.

42 Ipn the paper of Dunn and Fosdick the instability exhibits itself as a free energy func-
tion which has a maximum in equilibrium, when everybody knows that it ought to have a
minimum, see Section 2. The wrong behaviour is a direct consequence of the expansion (5.3).
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Fig. 10. On heat conduction in a non-inertial frame.

flux a constitutive quantity in its own right, a priori unrelated to the heat flux. And

then there were Lagrange multipliers for the exploitation of the entropy inequality.
It had not been the entropy principle that failed. Rather it was the constitutive

theory with it’s claim to represent the past history of —g%jf by time-derivatives of

g;’é;, or by Rivlin-Ericksen tensors at the present time, much as that claim seems
J

plausible. Once this was recognised, the way was free for extended thermodynamics,
cf. Sections 8 and 9. That theory was strongly motivated by the kinetic theory of
monatomic ideal gases and — in a manner of speaking — it addresses the non-Newtonian
character of ideal gases. Also, extended thermodynamics lifts Lagrange multipliers up
from merely auxiliary fields to an important privileged choice of fields for which the
field equations are symmetric hyperbolic. More about this later.

5.7 Limitations of material frame indifference

Whereas the implied instability of non-Newtonian fluids was fatal for rational thermo-
dynamics, the theory had been shaken before, when it turned out that the principle of
material frame indifference was wrong [Miiller 1972]. Let us consider that argument:
Material frame indifference under Euclidean transformations?*3 is important for ratio-
nal thermodynamics, because it forces constitutive functions to be isotropic, and thus
it replaces the force-flux strategy of Eckart’s theory, cf. Sections 4.2 and 4.3. The prin-
ciple is therefore an important ingredient of elasticity, rheology, and thermodynamics.
But frame indifference is not strictly true; it fails for rarefied gases.

A good simple argument for illustrating this fact starts with the atomistic inter-
pretation of heat conduction which was presented in Section 1.3.

We must first recall the argument around Figure 2, where we showed - on the
basis of the atomistic motion in a gas with a temperature gradient — that the flux is
proportional to the temperature gradient and opposite to it. Thus Fourier’s law was
confirmed. The tacit assumption on that previous occasion was that the gas is at rest
in an inertial frame. Now we modify the argument by placing the cylinders of Figure 2
on a carrousel which rotates with the angular velocity w; with respect to an inertial
frame around the axes of the cylinders. In that case the atoms flying inwards and
outwards are both forced on circular paths by the Coriolis force, cf. Figure 10. A pair
of atoms - one flying inwards and one outwards - will now still carry energy through

43 Euclidean transformation are time-dependent rotations and translations.
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the horizontal plane H-H, but there will also be an energy transport through the

vert:iiFal plane V-V, perpendicular to both the angular velocity and the temperature
graailent

_ oT oT
g =— 3_2:, + Té‘ijkwjgx—k . (5.4)

Thus Fourier’s law acquires an additional term which is orthogonal to the temperature
gradient and depends on w;, the angular velocity of the frame. Thus frame indifference
is violated.

The formal kinetic theory based on the Boltzmann equation makes this illustrative
argument more complex and more convincing. What is more: it is not only the heat
flux — as in (5.4) — whose relation to the temperature gradient depends on the frame.
The stress too, in its relation to the velocity gradient depends on the frame.

It must be admitted, however, that the effect is quite small in most circumstances,
because it depends on the extent to which the Coriolis force is able to impart a
curvature on the mean free path of the atoms. Another way of saying this is that the
frame- dependent term is of the order of magnitude of the mean time of free flight of
an atom divided by the period of rotation of the frame. For practical purposes that
period cannot be made arbitrarily small.

So, we may say that the principle of material frame indifference is nearly correct
under all but the most extraordinary circumstances. But this was not good enough
for Truesdell. Approximate principles did not exist for him and he responded with
a polemic and provocative paper: Correction of two errors* in the kinetic theory
that have been used to cast unfounded doubt upon the principle of material frame
indifference [Truesdell 1976). So great were Truesdell’s powers of persuasion that it
took 30 years until the truth about frame indifference was accepted. The truth is that
material frame indifference does hold for Galilean transformations, where w; = 0 holds,
and it is approximately true for Euclidean transformations to the extent described
above.

6 Extended thermodynamics of mixtures of fluids

6.1 Abstract

Eckart’s theory of mixtures, described in Section 4 is flawed by the neglect of the ac-
celeration of the diffusive motion. Truesdell has corrected the theory in a systematic
manner. His arguments provide explicit information about the contributions of diffu-
sion to the stress, the internal energy and the flux of internal energy of the mixture.
The latter is split - in a plausible manner — into a heat flux and a flux of internal
energy due to the diffusive motion. On this basis an extended theory of mixtures was
developed which provides each constituent with its own momentum balance, complete
~with accelerations, partial stresses, and interaction forces.

Due to the inertia of the diffusive motion there are two longitudinal sound modes
in extended thermodynamics of binary mixtures. In general these modes are coupled
but for particular mixtures they uncouple. If they do, the first sound propagates
as a density wave, and the second sound propagates as a concentration wave. The
latter is strongly damped and therefore it is never seen, — or heard (!) — under normal
circumstances. In liquid helium, however, a mizture of a normal fluid and a superfluid,
the sounds are uncoupled, and both may be observed, but the second sound can still

44 One of the errors in Truesdell’s opinion was supposed to occur in Miiller’s argument
[Miiller 1972], see above. The other one was suspected by Truesdell to be contained in a
paper by Edelen and McLennan [Edelen 1973].
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not be heard, because it degenerates into a temperature wave due to the special low-
temperature properties of helium.

Flames and detonations provide a non-trivial application for Eckart’s theory and
extended thermodynamics of mixtures and allow us to compare their predictions. They
are close for the two theories, at least under normal pressures and temperatures.

6.2 Metaphysical principles

Truesdell considers homogeneous mixtures of v constituents & = 1,2,...v such that
all points of the mixture are occupied by molecules of all constituents [Truesdell 1968).
At the outset he postulates equations of balance for the masses, momenta and energies
of the constituents of the form

0po | Opav§ _
5t | om @

0pav§ 4 0pav§v§ — g

— _
T 52, =m; (a=1,2,...v)
Opa (€a +102)  0(pa(ea+ Fv2) vF — v + )
+ = €q- (61)
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These equations have the same forms as the conservation laws of a single body except
for the production terms 74, m{, e, on the right hand sides which represent the
productions of mass, momentum, and energy of the constituents due to their chemical,
dynamic, and energetic interactions respectively. In order for mass, momentum and
energy of the mizture to be conserved, we must require

a=1 a=1

a=1

Furthermore Truesdell postulates that the mixture as a whole has conservation laws
of the same form as a single body, viz.

9p , dpui _
ot " oz
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ot + ox; =0
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+ = 0. (6.3)
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Rather obviously then, p, v;, t;;, € and g; of the mixture must be defined in terms of
the partial quantities by the sums
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where u = v — v; is the diffusion velocity, the excess of the velocity of constituent o
over the velocity of the mixture.

It follows that the stress of the mixture is not just the sum of the stresses of the
constituents; in addition it contains the momentum flux of the diffusive motion. Also
the density of internal energy of the mixture is the sum of the partial internal energy
densities plus the density of the kinetic energy of the diffusive motion. And finally, the
flux of internal energy of the mixture is the sum of the heat fluxes ¢{* of the constituents
and, in addition, it contains the convective flux — with the diffusive motion — of
the partial internal and kinetic energies, and the power of the partial stresses on
the diffusive motion. Such decompositions of the mixture quantities are conceptually
important when problems of heat conduction are accompanied by diffusion as is the
case in the propagation of detonations and flames.

Truesdell has stirred up the field of irreversible thermodynamics in the 1960’s
and, generally, the clarity of his contributions, expressed in a flamboyant style, has
stimulated the work of his contemporaries. So also in the field of mixtures. He called
the assumptions (6.1) through (6.3), that underlie his mixture theory, metaphysical
principles.

6.3 Balance equations of extended thermodynamics of mixtures of fluids

From equations (6.1) and (6.3) we choose the equations of balance of masses and
momenta of the constituents and the energy conservation law of the mixture as the
bases for extended thermodynamics of mixtures. Supplemented by appropriate con-
stitutive relations these balance equations provide field equations for p,, v§, and for
the temperature T of the mixture?®.
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Comparison with (4.10) shows that extended thermodynamics of mixtures has ex-
tended (sic) the list of Eckart’s balance equations by taking the momenta of all con-
stituents into account. This is tantamount to a proper recognition of the inertia of
the diffusive motion.

=0. (6.5)

45 Tt is possible — and sometimes appropriate — to introduce a separate temperature for all
constituents; but this is seldom done because of the difficulty to assign and control partial
temperatures



Ingo Miiller and Wolf Weiss: Thermodynamics of irreversible processes... 187

The framed equations in (6.5) represent-the conservation laws of mass and momen-
tum of a binary mixture and the balance equations of the partial mass and momentum
of constituent 1 in a binary mixture. J; = pyu;j is the diffusion flux of constituent 1.
The equations are put here to make us appreciate that the partial momentum bal-
ance, if properly mutilated, represents Fick’s law: indeed, the right hand side of the
partial momentum balance represents the drag force on constituent 1 and, if that is
taken to be proportional to J;, we recognize Fick’s law in the underlined terms. All
the other terms — particularly the acceleration of the diffusive motion - are ignored
by Fick’s theory of diffusion. . '

The thermodynamic constitutive theory of mixtures of fluids on the basis of the
balance equations (6.5) has been worked out by Miiller [Miiller 1968] and, in a more
modern fashion, by Liu and Miiller, who use Lagrange multipliers [Liu 1984]. To
interested readers a study of the latter article is recommended; it contains the special
case of superfluid helium. The article cannot be replayed in the present report, because
the arguments are too complex and long. Let it be said, however, that the momentum
productions m¢ contain the drag forces M on constituent o exerted by the other
constituents. We have

o [+ 4 (a7
m; _Mi +Tq,'l),i.

The drag forces M are primarily due to relative velocities of the constituents so that
the leading term of their constitutive relations may be written as

174
M? = ZM‘?B ('vf‘ —vf).
B=1

Truesdell has proved that for binary drags, i.e. when the force between constituents o
and S is not affected by the presence of a third constituent, momentum conservation
implies a symmetric matrix of coefficients [Truesdell 1968]. In order to appreciate
that result we need to know that Eckart’s diffusion law (4.17)4 comes out from (6.5)
as a mutilated form of the balance equation (6.5); of momenta, namely when the

acceleration of the diffusive motion is ignored. And the symmetry of Mﬁﬁ implies the
symmetry of Eckart’s coefficient matrix Bap which had previously been assumed as
an Onsager relation, see Section 4.3.4. So, here we have an occasion where a symmetry
of constitutive coefficients may not be due to Onsager’s mean regression hypothesis.
Miiller has strengthened Truesdell’s result by showing that Eckart’s coefficients Bg
and Bs of thermal diffusion and the diffusion-thermo effect are equal, if there is
no thermal drag, i.e. if a temperature gradient does not affect the drag forces M}
[Miiller 1973]. That plausible assumption renders an Onsager relation superfluous in
the present case.

6.4 First and second sound

From particle mechanics we all know that inertia and elasticity between them lead
to oscillation, and that an excess of damping, over-damping, may disguise the effect
of inertia and lead to a simple relaxation. In continuum mechanics this is the same
with waves, namely sound waves. Now, in extended thermodynamics of mixtures
of v constituents we have v accelerations, and that means v inertial contributions;
accordingly we have v modes of propagation or, in a manner of speaking, v sounds.

~ Take a binary mixture of two inviscid and non-reacting simple fluids. Miiller
and Villaggio have arranged the field equations so as to obtain coupled linear wave
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equations for the density p and the concentration ¢ [Miiller.1976]. They read

2
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where the coupling term W is given by W = p, — % (%:1 - %iﬂ). The letter g

denotes the chemical potential difference of the constituents, and p%(a = 1,2) stands
for 2= 3T the derivative of the partial pressure p* with respect to T'. Other terms in
the coefficients are analogously defined.

In order to interpret these equations in terms of undergraduate physics we look
at the case when W = 0 holds?®. In that case the first equation becomes an ordinary
wave equation for the density p with a propagation speed V,, the well-known sound
speed

Tp2.

er’ (6.7)

Vo=14/90+

and the second equation becomes a telegraph equation describing the propagation of
a damped wave for the concentration ¢ with the speed

T 1 2\ 2
oo | [gc+_(&_&)}, (6.8)
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We call these modes of propagation the first and second sound, respectively. Both
waves are accompanied by a temperature wave.
The second sound is damped by the occurrence of the coefficient M{! which is

usually so big that the first term, viz. g—f in (6.6)2 can be neglected; thus we obtain
the ordinary parabolic diffusion equation,

dc .
E - B;—gzwvac = (69)

just as if we had adopted Fick’s law. That case may be called over-damped, and over-
damping is what usually happens, — in air (say) which, after all, is essentially a binary
mixture. Thus — fortunately (!) — we hear only one sound.

The parabolic equation (6.9) is mathematically identical to Fourier’s heat con-
duction equation (1.2). And since that earlier equation implied infinite speeds — the
paradox of heat conduction, see Section 1.2 — the present one implies infinite speeds
as well and we might speak of the paradoz of diffusion. However, the situation is
easy to interpret now, easier than in the case of heat conduction: indeed, the para-
dox is immediately resolved, because the parabolic equation (6.9) is a limiting case
of the perfectly hyperbolic system (6.6) with a finite speed for the propagation of
disturbances in concentrations namely (6.8).

46 This is not an altogether impractical assumption. Indeed, W = 0 holds in a mixture of
ideal gases which have equal mol masses. However, here we take W = 0 for simplicity; if we
did not do so, the argument would be slightly more complex, but we should still have two
speeds.
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Fig. 11. Schematic view of a flame*®.

The effect of damping diminishes when we go to temperatures close to absolute zero
due to quantum mechanical reasons and therefore we can observe both sounds in liquid
helium below 2.2 K. That remarkable liquid behaves as if it were composed of two
constituents, the normal fluid and the super-fluid. If their properties are introduced
into the wave equations (6.6) along with M{}! = 0, we obtain Landau’s equations
for liquid helium [Landau 1941], see also [Lifschitz 1944]. They become uncoupled
by virtue of incompressibility in that case, i.e. the first sound is not accompanied
by a temperature wave, while the second sound is only a temperature wave. For a
closer description of the case of helium see the article by Liu and Miiller cited above.
Actually to most physicists the notion of first and second sound refers to liquid helium
exclusively. They do not know that both sounds occur in all binary mixtures and that
the second sound is merely disguised by damping.

6.5 Detonations and flames. Chapman-Jouguet theory

Non-trivial applications of the theory of mixtures concern detonations and flames.
These phenomena exhibit some similarity with shock waves — e.g. sonic booms —,
because changes of the thermodynamic fields are confined to a narrow layer. But
detonations and flames are richer than shocks, since a chemical reaction occurs inside
the layer. We consider a situation in which the reaction zone is stationary, at rest*’,
and orthogonal to the z-direction, cf. Figure 11. The onrushing fuel ignites at some
temperature and burns in the reaction zone so that the temperature rises there, and
the fuel concentration tends to zero. Forward heat conduction into the pre-heating
zone ensures continued ignition of the newly arriving fuel.

The conservation laws of mass, momentum and energy reduce to the simple form

d(p(h+3v*)v+4q)

dev _ d(pv +p)
dt

dt ’ dt

=0, =0,  (6.10)

47 Actually we consider a flame (say) which moves uniformly, i.e. with a constant speed.
And then we simplify the mathematics by moving with the flame, so that the fuel comes
rushing in from the left- hand-side in the figure.

48 The figure is taken from [Torrilhon 1999].
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Fig. 12. Hugoniot diagram (for interpretation see text).

when we ignore viscous stresses and introduce the specific enthalpy h = e + %. Also

for simplicity we consider the fuel F and the combustion product P as ideal gases
with the same mol masses M and specific heats c, so that A = h® +¢,(T — T®) holds
with a different h® for F and P; the difference determines the heat of reaction Q
in the reference state R. Equations (6.10) show that the fluxes of mass, momentum
and energy are constant throughout the reaction zone. Integration between the initial
state ¢ and the final state f — both have ¢ = 0, since there is neither heat conduction
nor diffusion at those ends — provides two relations for %f as a function of ':_; with

the heat of reaction Q and the initial Mach number M; as parameters, viz.

: ; -1/ p; :
££=1+7M3<1—£’-), 31”-=1+Q+7——<ﬁ+1) (p—f—1>. (6.11)
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These are known as the Chapman-Jouguet relations*®. Their useful feature lies in
the fact that the first one depends only on M; and the second one on @*°. This fact
provides us with the possibility of a graphical solution in the Hugoniot diagram of
Figure 12 which we proceed to discuss. Instructive representations of the field may be
found in [Bartlmé 1975], see also [Hirschfelder 1953].

The initial point is given by ({,’—;, L;f) = (1,1) and the solution of (6.11); must lie
on a straight line through that point, the so-called Rayleigh line. This line is flat for
M; < 1 and steep for M; > 1; one each is drawn in the figure. Solutions of (6.11)2 -
must lie on hyperbolae, so-called Hugoniot curves of which five are drawn in the figure
which differ in the heat of reaction Q, including @ = 0 which represents the adiabatic
shock.

Both equations (6.11) must be satisfied so that py and py can be determined as
the coordinates of the points of intersection of the appropriate Rayleigh line and the
appropriate Hugoniot curve. Generally there are two points of intersection.

49 The presence of the Q-term, the heat of reaction, distinguishes these equations from the
Rankine-Hugoniot relations of gas dynamics of shock waves.
50 + is the ratio of specific heats, assumed common to both constituents for simplicity.
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For the supersonic influx, the case M; > 1, - the steep Rayleigh line —, we speak of
a detonation. The density grows and the velocity decreases. In Figure 12 possible end-
states are denoted by B and C. Note that, as @ tends to zero, the point B eventually
coincides with the initial state A, while point C approaches D on the Hugoniot line
corresponding to @ = 0. This limit state characterises the Rankine-Hugoniot solution
behind a shock wave in an inert gas. The shock wave is thus seen as the limiting
case of a detonation when no combustion is involved. Here we shall not pursue the
case of detonations any further. It is much more difficult than the case of flames. For
instance for detonations — as for ordinary shock waves — it is imperative to include
the viscosities into the equations. We have never seen that case being developed
mathematically.

Therefore we focus on flames. These occur for subsonic flow M; < 1, i.e. for the flat
Raleigh line. The velocity grows and the density decreases. In the figure the points
and F' characterise possible end-states behind the reaction zone.

The natural question whether the flame leads to point E or F' does not seem to
have a convincing answer in the Chapman-Jouguet theory. People are content with
the observation that the flame hardly lowers the pressure and therefore they favour
point E. Obviously the entropies ought to differ between the states F and F'; so maybe
there is room for the principle of minimal entropy production, if anybody could make
sense out of that proposition.

6.6 Flame structure

It remains to determine the fields of concentration ¢, diffusion flux, temperature T etc.
inside the reaction zone rather than only their final values. For that purpose we need
to integrate the balance equations for the partial masses and partial momenta — as well
as the conservation laws for the total mass, momentum and energy, — and that requires

the knowledge of the chemical mass consumption 71, of the drag force mjl- —T1vj, and

of the flux of internal energy Zf:: r do- Reasonable constitutive assumptions for those
quantities in the case of a flame are given by

E 1 P dT
T1 = —acexp (_k—T)’ m! —nv= —p-D-J, Za___p Ga=—K= (6.12)

a is a material parameter representing the speed of reaction per unit length and F is
the activation energy, i.e. the energy needed to ignite the fuel. For the small temper-
atures in front of the flame the ansatz for 7, ensures that 7 is very small so that the
fuel is in a frozen equilibrium. D in (6.12); is the diffusion coefficient and & in (6.12)3
is the thermal conductivity.

Numerical integration of the equations of balance of the partial mass and partial
momentum provides the plots of Figure 13 for a reasonable choice of coefficients.
The solid curves represent the results of Eckart’s theory, while the dashed ones refer
to extended thermodynamics of mixtures. For the coefficients chosen here the two
theories differ only little. In both cases we observe smooth but steep transitions of c,
v, T, and p through the reaction zone, while J has a peak in that zone and is otherwise
equal to zero, because two constituents exist only inside the reaction zone.

The numerical integration uses a shooting method from behind the flame to the
front, so as to ensure that ¢; = 1 holds®!. The shooting parameter is the dimensionless

flame eigenvalue
a kK

e=—

6.13
Pivi CpPivi’ (6.13)

51 Au obtains very similar graphs by use of a finite difference scheme [Au 1997].
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Fig. 13. Flame structure.

whose variation in a very narrow region decides about the existence of a proper
solution, i.e. a solution for ¢ that runs from ¢ ~ 1 down to ¢ = 0. By its definition the
flame eigenvalue represents the product of the quotients

e reaction rate over the incoming fuel mass ;,f‘—vi; and
1

e thermal conductivity over the heat capacity of the incoming fuel =

CpPiVi

The sensitivity of the solutions to the eigenvalue e reflects the precariousness of a
flame as a physical phenomenon. If e is too large, the flame will be starved of fuel
and, if e is too small, the flame will be snuffed out. Also, if & is small, or if the heat
capacity of the incoming fuel is large, the preheating is insufficient for ignition. All
these features are combined in the flame eigenvalue.

7 A modicum of the kinetic theory of monatomic gases
7.1 Abstract

Extrapolation is a precarious method of scientific reasoning, and never more so than
when we attempt to develop non-equilibrium thermodynamics and have nothing to go
by apart from equilibrium thermodynamics. However, we are lucky in thermodynam-
ics, because there is an alternative theory, at least for monatomic gases, that allows
us to confirm, or reject, the ad hoc assumptions that have been made in irreversible
thermodynamics on the basis of plausibility; a dangerous ground.

Actually the kinetic theory has led to the atomic — or probabilistic — interpretation
of entropy that was discussed in Section 2. This constituted enormous progress in
natural philosophy, particularly since the interpretation could be extrapolated away
from ideal gases; it led to the recognition of the decisive role of stochasticity in nature
and of the nature of irreversibility.

Apart from that, the kinetic theory has provided an understanding of the sta-
tus of material frame indifference, cf. Section 5.7. For that earlier argument a trivial
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caricature of the kinetic theory sufficed. This, however, is no longer so when we ask
whether or not the kinetic theory confirms Eckart’s principle of local equilibrium and
the Clausius-Duhem expression for the entropy flux. It does not! Also, what does the
kinetic theory have to say about the paradox of heat conduction, see Section 1.27
There is no such paradox in the theory! And what about the classical phenomeno-
logical equation, for instance Fourier’s law (1.1)? Are they confirmed by the kinetic
theory? They are not! Rather they come out as approximations for dense gases.

In order to see all this we need a short account of the formal kinetic theory, based
on the Boltzmann equation. Indeed, we dare say that the necessary modifications
are such that no amount of creative thinking would have obtained them without the
guidance of the kinetic theory. ,

It turns out that the kinetic theory suggests the balance form for all underlying
differential equations, and it provides local and instantaneous constitutive relations.
It restricts material frame indifference to Galilean frames and thus has suggested the
basic formal structure for extended thermodynamics, which will be the subject of
Sections 8 and 9.

7.2 Distribution function, Boltzmann equation, and moments

The kinetic theory of gases describes the state of a gas by the distribution function
f(z;, ¢, t) such that
f (wia Ci,t) de (71)

is the number density of the atoms at position z; and time ¢ which have veloci-
ties between ¢; and ¢; + dc;. The distribution function obeys the Boltzmann equa-
tion [Boltzmann 1872], which is a balance equation for the number of atoms in the
6-dimensional phase space spanned by the coordinates x; and velocities ¢;. In modern
form this equation reads

of of oy Of / ( 11’ 1) . 1

-+ i) =— = - TV sin ©dOdedc" . 7.2

o o @i g = [ (£ 11 (72)
where g; and i¢ are the gravitational and inertial accelerations of an atom with ve-
locity ¢;. Thus

i = 2Wik (c’c - bk) — Wi (zx = bi) + Wi (@e —be) + b (7.3)
) Co;olis g cent;&ugal Elﬁer translation

where W;y, is the matrix of angular velocity of the frame. The right hand side of the
Boltzmann equation represents the effect of collisions between the atoms and f, f',
f1, f¥' are the values of the distribution function for the velocities ¢, ¢, ct, ¢!’ of two
atoms before and after colliding®2. V is the relative speed of the colliding atoms, 7 is
the cross section for a collision with the parameters € and ©.

Most macroscopic thermodynamic quantities in monatomic gases are tensors rep-

resenting moments of the distribution function, viz®3.

-F:il i2...‘iN = /#Cilcig LA CiNfdc' (7'4)

52 The form of the collision term on the right hand side of the Boltzmann equation is univer-
sally known as the StoBzahlansatz. The German word has defied translation and is therefore
routinely used in English-language texts as well. For its derivation and interpretation one
may consult either Boltzmann’s article or any book on the kinetic theory, e.g. [Waldmann
1958], or [Chapman 1961].

53 As always p is the atomic mass.
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Thus, in particular we have

mass density F=p
momentum density ~ F; = pv;. (7.5)

By use of the velocity v; of the gas we may form the relative — or peculiar — velocity
C; = ¢; — v; of an atom and thus define internal moments

Piyig..in = /[J.Cil Cig .. 'C'iN fdc (76)

Note that p; is equal to zero. The first few moments and internal moments have a
canonical notation and are named suggestively

Fij — momentum flux —pi; = ti; — stress tensor

1 | : 1 : :
§Fii = pe — energy density -2-p,~,- = pu — internal energy density

';‘Fiij = J; — energy flux %pﬁj = g; — heat flux. (7.7

In general, i.e. for any tensorial rank, there is a one-to-one relation between the
moments and the internal moments of the form

N N N
Fi1 i2...AN — ( 0 ) Piyig..in + ( 1 ) p('il 2. iN—1 viN) + ( 2 ) P(il 12...iN -2 v‘iN_lv‘iN)
N
+...+ (N) PV, Viy -+ - Uiy (7.8)

so that in particular we have

F=p
F; = pv;
Fij = pij + pviv;
Fijk = pijk + 3p(i;Vk) + pUiv;Vk
Fijr = pijrt + 4pjxvry + 605Uk + pUiv; V0. (7.9)

In a monatomic gas there is no dynamic pressure. Therefore —-;—pﬁ is equal to the

equilibrium pressure p and, by (7.7), we have p = %pu Thus the thermal or caloric
equations of state of a monatomic ideal gas may be used to define temperature

— _k-T = =P = ——T = e — 7.10
P=1 P Of U P (7.10)

The so-defined temperature may be called the kinetic temperature because it measures
the mean kinetic energy of the atoms.
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7.3 Equations of balance for moments

Multiplication of the Boltzmann equation by a generic function ¥(z;, ¢;,t) and inte-
gration over all velocities provides a generic equation of balance of the form

opb  Opc; oY (O Oy 1 1_ g0 1
—a’:—+6—m--l)(9i+zi)5&:—ﬂ(a+czaxi)+4/(¢+¢ ( ¢)

X (f’fll - ffl) rV sin OdOdedc! de, (7.11)

where ¢ = % J ¢fdc defines a mean value. The third term on the left-hand-side

represents a supply due to a gravitational force and to inertial forces on atoms with
velocity ¢;. The integral on the right hand side represents the effect of collisions.

' Particularly for ¢ = c;, ¢, ... ci, (p =0,1,2,... N) we obtain balance equations for

moments in which the supply term is split into two terms; one due to gravitational

forces and inertial forces on the gas with velocity v; and the other one due to the

angular velocity matrix W of the frame

OF, .., A OF;. . ,
alt ip + gwn'tpn - pF(il---’l:p—l (g’bp) +pr)) —pFn(il...i,,_IQWi,,)n = Hil...’i,,

(p=0,1,2...N). (7.12)

The production term on the right hand side of (7.11) is abbreviated by II;, .. ;, here. '
Its explicit form makes sure that the first five productions, namely II, IT;, IT;;, vanish,
because the mass, momentum, and energy of the colliding atoms are conserved.

Thus, in particular, the balance equations for the first 20 moments — F' = p,
F; = pv;, Fyj, Fij, — read

R L
% + ?9?: = p(gi+4) = 200 Wi = 0
% + %La;:l - 2pv(; (gj) + z;’)) — AF, Wy, = I,
agzjk + 35;1'::" — 3Fy; (gk) + Z';é)) — 6F (i Wiy = .. (7.13)

In this explicit form it is obvious that the first two equations represent the conser-
vation laws of mass and momentum. The trace of the third equation represents the
conservation law of energy and the remaining 15 equations are equations of balance
for the deviatoric momentum flux and for the flux of the momentum flux, both with
production terms, viz. II(;; and II;;; respectively. In passing we note that all equa-
tions, except for the mass balance, contain contributions due to the specific inertial
force f;:; on the fluid, end additional inertial contributions due to the rotation of the
frame®*.

For some - hypothetical — atoms the dynamics of binary collisions are so simple
that the productions can be related to the internal moments explicitly. Thus for

%4 The inertial contributions to the conservation laws of momentum and energy are ingre-
dients of all classical continuum theories since Euler.
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Maxwellian atoms®® one obtains

1
II;; = —;P(ij),

Mo — 1/3 1
gk ="\ gPuk"g (Puidjk + puidir + pudis) +vip ky +v; P(iky +v{cp(,-j)>. (7.14)

Rather obviously 7 is a relaxation time for the deviatoric stress and the analysis shows
that it is of the order of magnitude of the mean time of free flight of the atoms.

The system (7.13) is typical for the balance laws of a monatomic gas, and the
decompositions (7.8), or (7.9) of the moments Fj, ;,.. ;, into internal moments p;, 4,...,
(n < 1) turns out to be necessary and sufficient for the balance laws to be valid in
all Euclidean frames, inertial or non-inertial [Miiller 1993 Chap. 2; 1998 Chap. 4]. In
particular, of course, the system is then valid in all Galilean frames, where ¢} and W;;
vanish.

Note that upon first sight the system (7.13) with the productions (7.14) appears to
be a system of equations for the 20 moments p, v;, F;j, Fyx. However the system is not
closed, because of the appearance of the higher moment Fij, in (7.13)4, the last flux.
Nor does it help to proceed to an equation for the higher moment, because its flux
term will bring a moment of the next higher order into the system. This observation
represents the closure problem of the kinetic theory, and we shall come back to it, cf.
Section 7.7.

7.4 Balance of entropy

If we insert

b=k (1n£ - 1) | (7.15)

into the generic equation of balance (7.11), we obtain the equation

6(—kf(lna-§—1) fdc) +6(—kf0i((;l;§'—l)fd6) =§/ln%(flfll_ff1)

x TV sin ©dOdedc de,
(7.16)

whose right hand side is obviously non-negative. That observation suggests that we
may interpret the equation as an entropy balance with

specific entropy s§= —; (ln£ - 1) fdc
non-convective entropy flux®® pi=—k / Ci (l % - ) fdc

k Y , ,
density of entropy production 1 In %T ( frr-ff 1) rV sin ©dOdedc de.

(7.17)

% These are atoms with a hypothetical repulsive power potential that falls off with the
inverse fourth power of the distance of the atoms. It is thought that such an interaction
model, while not perfect, is not bad for rarefied monatomic gases.

5 The total entropy flux is equal to psvi + @i.
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This suggestion is confirmed by the observation that the production term vanishes
for the Maxwellian distribution function - the equilibrium distribution of statistical
mechanics - 0
1 c—v
fe=f— _exp (—H(——)) (7.18)
B JonkT 2kT
M

Indeed, for that equilibrium distribution (7.17); assumes the form

s _k lni/z——ln —I—(L ’ +5 (7.19
P o 1\ V2rkp 2 ) 19)

which represents the specific entropy®”.

Historically the expression (7.17); was the first interpretation of the entropy in
term of the distribution of atoms. It was only later — even much later — that the
statistical definition (2.7), (2.8) of entropy was arrived at by several ingenious steps
of extrapolation including the quantisation of space by de Broglie-type boxes, cf.%8
Section 2. The statistical definition (2.7) has the big advantage, of course, that it
is not restricted to monatomic gases. It is true that we have exploited (2.7) only for
gases in this article, but the scope of that formula is much wider. It extends to liquids,
solids, and polymers, and even to populations of cells and animals, e.g. see [Miiller
2010).

7.5 Grad distributions

Harold Grad has proposed to expand the distribution function into a series of Hermite
polynomials in terms of the relative velocities C; [Grad 1949; 1958]. His ansatz reads

f=fela- aiTI—C'i + a,-j—l—z (C-iCj - Zc-T(S,'j)
= (&) s
o

1 k |
(CiCjCk - ;T (03Ck + 01 C; + 6iij)) +...1]. (7.20)

The coefficients a;;..; determine to what extent non-equilibrium prevails and, ob-
viously, all coefficients are related to relative moments of the distribution function.
We have :

1 1 1
a=1, a;=0, a3= %p(ij), Qijk = —— (P(ijk) + = (piu5jk+Pju5ik+Pku5ij))-

6p )
(7.21)

—Qijk

57 There are subtle differences in the additive constants between this expression for the
entropy and previous ones of Section 2. See the footnote in Section 2 concerning (2.11).
The present form is the correct one; it represents the classical limit of a proper quantum
mechanical calculation of entropy.

58 When Boltzmann identified the entropy in terms of the distribution function by the
expression (7.17)1, it was not done in a systematic manner. Rather in the literature of the
time — and in Boltzmann’s own writings — the impression is forced upon us that the discovery
was a piece of luck, originally not fully understood, or at least not correctly. Afterwards, of
course, the kinetic entropy definition was extrapolated into the probabilistic interpretation
of the entropy and the lucky find was thus converted into one of the most important and
most subtle concepts of physics. The extrapolatory steps are explained in detail and their
limitations are pointed out by Miiller [Miiller 2007].
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These are 20 coefficients and, accordingly, the distribution function (7.20) — without
higher terms like those with aiji, Gijuim etc. - is called the 20-moment Grad distribu-
tion. It contains p(iy, an internal moment without a suggestive physical interpreta-
tion, and therefore Grad has focused his attention on only 13 moments, setting p(i;
equal to zero.

We recall (7.7) and arrive at

| 1 CiC' lqui 1 02
fP=fe (1 — 5yt (k_J - 5z‘j) — =T (1 - ‘r)) (7.22)

which is known as the 13-moment Grad distribution. It is popular, because all eight
coefficients have a suggestive interpretation, namely as deviatoric stress and as heat
flux.

7.6 Remark on Chapman-Enskog approximation

More popular — to this day — than the Grad approximation is an earlier attempt
by Enskog to approximate the distribution function [Enskog 1917]. This is generally
known as the Chapman-Enskog method. In the first iterative step the method re-
covers the laws of Fourier and Navier-Stokes and it permits the calculation of the
transport coefficients, i.e. thermal conductivity and viscosity from an assumed atomic
interaction potential. That is good! Further iterative steps in the Enskog scheme are
known as Burnett approximation and super Burnett, see [Chapman 1936; 1961}, and
those are deeply flawed, because they imply instability of non-stationary solutions.

Indeed, if we drop all non-essential terms from the second iterate of the heat flux
in the Enskog scheme, we obtain

(9T _ 40T
="F ox; dt Ox;

) with  k,7>0. (7.23)

Therefore the temperature gradient grows exponentially when ¢; vanishes, which
makes no sense. This is the same type of instability that has already brought
down rational thermodynamics — see Section 5.5 — and it is just as deadly for the
Chapman-Enskog method which, however, enjoys great popularity to this day. Also
we recall that Cattaneo’s argument for the resolution of the paradox of heat conduc-
tion touched on equation (7.23); see equation (P.1) in the Preview.

Struchtrup has clearly pointed out the instability of the Chapman-Enskog scheme
for the case of sound propagation when all terms in g; are considered, rather than only
the essential ones which we preserved in (7.23) in order to abbreviate the argument
[Struchtrup 2005].

The Grad approximation does better with respect to stability; therefore it is to
be preferred.

7.7 Field equations for 20 moments and subsystems

The field equations for the first 20 moments F' = p, F; = pv;, Fij, Fyji, are given by the
system (7.13). The system may be closed by insertion of II(;; and II;j from (7.14) -
valid for Maxwellian atoms — and by replacing Fjjn by its value calculated from the
20-moment Grad distribution, so that the internal moment p;jk, reads

k k. \° |
Pijkt = 6;Tp(ij5kl) -3p (;T) 8(i30tk)- (7.24)
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Fig. 14. Field equations for the 20-moment theory with mutilated cases in boxes: upper
left: Euler fluid. Upper right: Navier-Stokes-Fourier fluid. Lower left: Cattaneo. Lower right:
13-moment theory.

In order to interpret the equations and relate them to the thermodynamic equations
of balance and to the phenomenological equations we abandon the synthetic nota-
tion (7.13) and introduce the suggestive notation (7.7). Also we write the equations
in the rest frame and linearize, meaning that we drop all products of linear terms.
This has been done in Figure 14 which shows the field equations of the 20-moment
theory four times in order to exhibit special cases: upper left through lower right. The
frames indicate the forms of the field equations as specified in the legend of the figure:
Euler, Navier-Stokes, Cattaneo®®, and 13 moments. We shall presently consider this.
Note first, however, that the system is entirely specific: g, 7; = 0, and T are the con-
stant and time-independent values of density, velocity and temperature on which p,
v;, and T are superposed, and 7 is the only parameter in the system. This parameter
will shortly be related to the shear viscosity of the gas so that it may be considered
as known.

The Euler fluid has no dissipative terms. Heat flux and deviatoric stress are ig-
nored, and we know that this model is good enough for the calculation of the speed

%9 Cf. Section 8.
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of low-frequency sound and for the gross aspects of flow around obstacles. We also
know its limitations: no dispersion, nor absorption of sound, and no boundary layers
at obstacles.

The Navier-Stokes theory — upper right in Figure 14 — is more interesting for us.
In the fourth and fifth equation we recognise the laws of Navier-Stokes and Fourier
in the forms

4 _ 8’0(,;
tin= 37 3
~~ 7

shear viscosity

k
BET
Oz;

)
and ¢ = —3 TP (7.25)

Thus the relaxation time 7 determines the shear viscosity of the gas as indicated®°.

Note that the Navier-Stokes-Fourier theory requires the neglect of the gradients
and rates of ¢(;;, and g; from the 4th and 5th equation. Thus it may be a proper and
valid approximation, if gradients and rates are small. For processes with steep gradi-
ents and rapid rates, however, we must not ignore the derivatives of ¢(;;, and ¢; and
so the laws of Navier-Stokes and Fourier become invalid. In that case the 13-moment
theory provides the natural equations to fall back on. Since rates and gradients are
measured in terms of mean times of free flight and mean free paths in gases, we come
to the conclusion that 13 moments — and possibly more — are needed in rarefied gases,
where collisions are rare and far-between.

We repeat that the systems of Figure 14 are fully explicit. This is also true for
the 20-moment set which contains p(;y in addition to the 13 variables p, v;, t(;j),
g;- p(ix) does not have a distinctive name, other than 3rd moment but it must obey
‘an explicit set of equations. An essential dlﬂiculty is foreshadowed here because, in
order to solve the — admittedly — specific system, we need boundary and initial values
of the fields. And how would we adjust and control those values for the components
of p(ixy? We shall come back to that point later, see Section 9.8.

7.8 The 13-moment system

That problem with boundary values is minimised when we stick to the 13 moments p,
v;, T, t35), and g;, because all of those do have a suggestive meaning and - to some
extent — we know how to adjust initial and boundary values for them. Therefore we
summarise the above results for 13 moments and write — in an inertial frame -

gi’ + %’:’: -0 mass conservation
aP’Uz " OFin -0 momentum conservation
Bt axn
(9;1-1' n aan 1:7' =0 energy conservation
BF(”) 6F(z_7)n
= I,
Bt + Bz, (24)
OF: ) OF, jin
OFy  OFyjn _ 7.26).
ot + oz, ifj ( )

80 The linear dependence of the shear viscosity on temperature through p = p’“T is an
artifact caused by the assumption of Maxwellian atoms.
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The decomposition (7.9) is understood and so is the closure by — according to (7.14),
and (7.24) -

1 1/4
I = ;t(ij), Iy = 7 (g%‘ - 2”jt(ij))’

k. \? k
Pk =0, Pijik = 9P (;T) dik — 7;Tt<,-k). (7.27)

Therefore the system (7.26), (7.27) represents an explicit set of field equations.

7.9 Modification of Fourier's law in the 13-moment theory [Miiller 2004]

Fo(u‘ier’s law has had a long life. Conceived in or about 1800, — as mentioned in
Section 1 —, it formed an integral part of both Eckart’s theory and of rational ther-
modynamics. Engineers are perfectly happy with it and there can be no doubt, that
the law is correct for a wide range of circumstances. However it must be modified
in rarefied gases, at least, if the kinetic theory of gases is to be believed. Let us
consider this.

On the basis of the arguments of Section 7.7 we assume that the rarefied gas
may satisfy the equations of the 13-moment theory. For illustration of its results we
consider a situation as shown in Figures 2 and 10: stationary heat conduction in a gas
at rest between two co-axial cylinders. The heating ¢ is applied to the inner cylinder
while the outer one is kept at the temperature T.;;. The mass balance is identically
satisfied in this case and the other 12 equations of balance read, by (7.26) and (7.27)%!

pik;k=0
ik, _ 31 g ik _ 2 i ik ok il
Pk =—5-p where  p 5(qg +¢g"* + ¢*g7)
2
ik, g _ 2§ ik _ e (K ik _ ko ik
pUt k= | where p'I** =5p #T g 7NTt . (7.28)

We look for solutions in which all fields depend on the radial variable only and in which
the heat flux has only a radial component. Under the assumption of a constant 7 the
solution is analytic®2, the pressure p = pr is homogeneous, all shear stresses vanish,
but the normal components of the deviatoric stress do not. We obtain

p(ll) = iﬁr%gl’ p(22) = —ET-—I— 1 p(33> = O, and

15 15 3
5k 7 {1\ dT
1———— —
q = 2Mm<1+5 » )dr’ (7.29)

This solution is essentially different from a Navier-Stokes-Fourier fluid, because there
are no deviatoric stresses in a gas at rest according to the Navier-Stokes equations,

61 1¢ lS appropriate in this case of cylindrical symmetry to chose cylindrical coordinates
(z!,2%,2%) = (r,0,2) and co- or contravanant components of the tensors. A semicolon de-
notes covariant derivatives and g is the metric tensor. The Christoffel symbols are given
by['lz——'r,l"lz—l"m—l/r k—Oelse V

7 depends on the density of course and, if we take that fact into account, we have to use
numerical means to solve the equations. Quantitatively that numerical solution is similar to
the analytic solution calculated here and represented in Figure 15.
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Fig. 15. Comparison of temperature fields according to Fourier’s solution and the 13-moment
solution. Parameters: p = 102 N/m?, 7 = 107° s. (a) Boundary values: ¢ = 10* W/m?
at Tine = 1073 m, T = 300 K at rexx = 1072 m. (b) Boundary values: T = 350 K at
Tint = 2.5 x 107® m, T = 300 K at rexe = 1072 m.

and in the Fourier theory the heat flux is unaffected by the stress. The Fourier law is
recovered from (7.29), when we neglect terms with 72.

Insertion of (7.29) into the energy balance %91,1 + %ql = 0 provides an explicit
differential equation for T with the solution

I 2, 967
T =co 5 1n(r + 75pc1). (7.30)

E

m
Obviously the second term in the argument of the logarithm makes this equation
different from Fourier’s solution. ¢; and ¢; are constants of integration that depend
on boundary conditions. Figure 15a shows solutions for the case that the gas is kept
at a fixed temperature at the outer cylinder, while at the inner cylinder it is heated.
Inspection shows, as expected, that the 13-moment theory differs from Fourier’s where
the temperature field is steep. Actually the difference is not only quantitative, because
for a given heating, i.e. given ¢;, Fourier’s solution has a logarithmic singularity when
the inner radius tends to zero. The 13-moment solution, on the other hand, has no
such singularity.

Figure 15b again compares the solution (7.30) and the Fourier solution, but it
refers to the case that the temperatures are prescribed on both boundaries. Moreover
the inner cylinder is very thin in Figure 15b namely 2.5 x 10~® m, — appropriate for
a hot wire anemometer. The discrepancy is now very drastic indeed: the temperature
graph is not even convex anymore for the 13-moment solution.

A caution is appropriate concerning the validity of the 13-moment theory in the
case of Figure 15b, because we do not know a priori how far that theory can be relied
upon. The gradient of the Fourier solution is very steep close to the hot wire and it
may well be that we need more than 13-moments to deal with the case. That can be
checked, of course, namely by solving the equations for 20, or 35 moments. If they
differ, — and if they differ from the 13-moment case —, we must conclude that we
need 56 moments, or even 84 of them, or more®. Eventually we expect convergence
and when that happens we may read off the proper number of moments for a given
physical situation. Such a strategy is carried out in Section 9 for light scattering, but
not here in the present case.

63 The numbers are those for all components of moments of rank 3, 4, and 5, and 6. In
general, i.e. for rank N, we have 1/6(N + 1)(N + 2)(N + 3) moments.
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There is a potentially interesting corollary concerning the 13-moment non-
convective entropy flux between the two cylinders. Its radial component comes out as

L 200
=7 (1-35)7

so that at a wall, which is free of dissipation, i.e. entropy production, the quantity

T

1— 2287
5 p

is continuous. We may be tempted to call this quantity € the thermodynamic tem-
perature®?. Clearly it is different from the previously defined kinetic temperature T,
see Section 7.2 above. For a discussion of this aspect and for the size of the differ-
ence between 6 and T see [Miiller 2003]. For data like those in Figure 15 the difference
between the kinetic and the thermodynamic temperature amounts to a few degree °C.

Another interesting — qualitatively interesting — consequence of the 13-moment
theory concerning heat conduction in a gas between co-axial cylinders is this: the gas
cannot rotate rigidly on account of the Coriolis force on the molecular motion. Indeed,
in a non-inertial frame there is no solution with v; = 0, if heat is being conducted. To
be sure, the radial velocity may be zero, but the azimuthal one cannot be zero. See
[Barbera 2006).

7.10 Finite speeds of propagation

Now, since we have a modified Fourier law, it is possible to ask whether or not the new
theory still implies the paradoz of heat conduction, i.e. an infinite speed of propagation
(see Sect. 1.2). It does not! The easiest way to see this is the calculation of the possible
phase speeds of plane harmonic waves with small amplitudes. Such waves are best
represented by an exponential ansatz in which the fields p, vy, T, #(11), q1 are all
proportional to exp[i(wt — kx)] with complex amplitudes®®. The wave propagates in
the z-direction, w is its frequency, and k is the complex wave number, whose real part
is the actual wave number, while the imaginary part represents the attenuation of the
wave. The phase speed is given by

=Y
UPh = Re(k)’

It depends on w and in general there is more than one mode of propagation. It can
be shown, e.g. see [Miiller 1998], that the fastest speed vB;™ of each mode is equal to
vpr(w — 00).

When the exponential ansatz is introduced into the 13-moment system of Fig-
ure 14, one obtains a linear harmonic system of equations. For the existence of a
non-trivial solution the determinant must vanish and that requirement leads to the
dispersion relation

B0 N (BN (B e 26, Y () (B2 5, o
2 5 Lo 2wt 5 Yoo 2wr 6 3 N
4 (7.31)

64 Recall that in thermodynamics the temperature is defined as the quantity that is contin-
uous at a thermometric (sic) wall. In non-equilibrium the so-defined temperature may well
be different from T'.

65 The actual fields are given by either the real or the imaginary parts of the ansatz.
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which provides k as a function of% w. We obtain four solutions - two each in the plus
direction and the minus direction — and their phase speeds read in the high-frequency
limit

vg,z =165v  and vg,z = 0.63vp. (7.32)

Thus no paradox occurs. The highest speed of propagation is vg,zmx. We call it

the pulse speed. And that pulse speed, far from being infinite, is not much larger
than the ordinary sound speed v,.

Once again, like in mixtures and - in fact - like in a Navier-Stokes-Fourier single
gas, there are two modes of propagation, or two sounds. However, only one, the one
starting with v, at w — 0 and ending with vg,zmax at w — o0, is ever heard, because
the other one is strongly damped. More about pulse speeds in Sections 8 and 9.

7.11 Entropy and entropy flux for 13 moments
Given the 13-moment distribution f!3 we may calculate explicit expressions for

the specific entropy and the non-convective entropy flux from (7.17);2. If the log-
arithm is expanded — assuming the non-equilibrium part of f3 as small ~ we obtain

_ k(Ltapte) | 1 ¢° @i, 2tang;

Thus the kinetic theory contradicts Eckart’s principle of local equilibrium, because the
entropy depends on non-equilibrium variables, viz. ¢;;y and g;. Similarly the entropy
flux is not equal to the Clausius-Duhem expression ¢;/T, as it is in Eckart’s theory.
This latter result has provided the motivation for considering the entropy flux as a
constitutive quantity in its own right, a priori unrelated to the heat flux, see Sections 5
and 8.

It is true that the non-conventional terms in (7.33) are non-linear; that fact does
make them small, if we are close to equilibrium, but not negligible, because the en-
tropy balance contains non-linear terms routinely. Without such terms the inequality
becomes trivial: it is reduced to an equality and no irreversibility occurs.

8 Extended thermodynamics
8.1 Abstract

Extended thermodynamics of a single gas was developed in the past 60 years in three
stages of increasing mathematical sophistication and significance.

In 1948 Cattaneo’s early effort to resolve the paradox of heat conduction has called
attention to an elementary form of the kinetic theory of gases from which an improved
form of the Fourier law could be derived, a rate law for the heat flux [Cattaneo 1948].
Cattaneo’s success created an interest among thermodynamicists in the formal kinetic
theory based on 13 moments. This is vastly more intricate than Cattaneo’s original
equation, but it contains that equation when properly mutilated. Thus in a heuristic
manner irreversible thermodynamics was joined to the kinetic theory.

Afterwards it was recognised by Liu and Miiller that Grad’s 13-moment theory —
based on full moments rather than internal ones — provides a simple scheme of balance
equations for whose constitutive equations the entropy inequality could be exploited

86 o = ,/%ﬁT is the speed of the low-frequency sound, the one we actually hear.
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systematically with the use of Lagrange multipliers [Liu 1983]. The results of this type
of extended thermodynamics were much like those of the kinetic theory itself.

That systematic theory prepared extended thermodynamics for a merger with the
theory of symmetric hyperbolic systems which mathematicians had become interested
in when the Burgers equation — the simple prototype of hyperbolic equations, see
Sect. 2.8 — was fully exploited. The close relation of the two theories was recognised
by Ruggeri and Strumia. Thus they were able to make extended thermodynamics a
fully legitimate part of mathematical physics [Ruggeri 1981]. The formal structure of
that theory exhibits a decisive role for the Lagrange multipliers [Boillat 1974].

8.2 Heuristic beginnings. Resolution of paradoxes

The original, in retrospect rather naive motive for the development of extended ther-
modynamics was the paradox of heat conduction, so called by Cattaneo in 1948 (see
Preview and Sect. 1.1). The paradox results from the parabolic character of the heat
equation (1.2) which implies an infinite propagation speed of temperature changes.
This was discussed in Section 1.

Upon reflection it was clear to Cattaneo that Fourier’s law (1.1) was to blame,
and that the law had to be modified. We best understand his argument by referring
to Section 1.3, and Figure 2 within that section, which provides an atomistic inter-
pretation of the Fourier law. That interpretation is valid provided that the situation
is stationary. If it is not stationary, the energy transfer of the two atoms crossing
the plane H-H is no longer proportional to the temperature gradient at the time of
passage through H-H; rather it is proportional to the gradient at a slightly earlier
time, namely when the atoms started out from the top and bottom of the small ele-
ment shown in Figure 2. Using a Taylor expansion for the history of the temperature
gradient we might therefore expect that the heat flux should be given by

i = —K or T 0 (T or equivalentl 1 = —K,a—T (8.1)
%= ox; ot \ Oz; d Y 1- T%qi - oz;’ '
where obviously 7 must be positive, since ¢t — 7 is a time in the past. This seems like
a plausible argument. And yet, when the relation (8.1) is used in the energy equation

oT , 9¢: _ i
pcsr + 5= =0, we obtain

O wrd ( &PT \_r &T _
ot  pc Ot \ 9z;0z; pcOr;0z;

an equation which — ironically — is still parabolic and predicts infinite speed.
Cattaneo does not comment on the calamity. He must have noticed it, however,

because he proceeds with a bit of creative mathematics involving an approximation
of the operator in (8.1); like this

0,

1 0
=l4+7—. 8.2
1-12 5t (8.2)

Thus (8.1) turns into what is now known as the Cattaneo equation, a rate law for the
energy flux
6q,~ oT

TE + g = —ﬁ‘,-é;i-, (8.3)

When ¢; is now eliminated between the energy equation and the Cattaneo equation,
we obtain
7_82T LT _ K T
ot2 = 8t pcdzilz;

(8.4)
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and this is the telegraph equation, a prototypical hyperbolic equation of second order
in mathematical physics. It predicts the propagation of damped temperature waves
and - for normal conditions in a gas — it implies a speed of propagation

V=2 ~102-10% 2.
pcT s

Thus for Cattaneo the paradox was resolved and this was as far as he went. Even now
many people consider the Cattaneo equation as the ultimate achievement of extended
thermodynamics, a goal reached, and a problem satisfactorily solved®”.

However, this was just the beginning of proper extended thermodynamics, because
there are a number of subtle aspects to be considered. First of all, the paradox of
heat conduction is not alone: there are analogous paradoxes of diffusion and of the
propagation of shear waves, and these are due to the laws of Fick®® and Navier-Stokes,
respectively. Indeed, the law of Navier-Stokes, viz.

Ovc;
6$j>

bigy = 2n

between stress and shear rate is quite analogous in its structure and atomistic in-
terpretation to Fourier’s law. For a non-stationary shear rate we might therefore be
tempted to repeat Cattaneo’s reasoning and write the equations

(v 8 (v Ot (ij) _ 9p0V<i,
o= (go ~ 751 (o)) mdthen TGt =2t (09

the latter by the creative trick indicated in (8.2).

Equation (8.5); may create a feeling of déja vu in the attentive reader. Indeed, we
have seen that equation before®®, - see Sect. 5.5, Eq. (5.3) — and we have dismissed
it, along with rational thermodynamics of non-Newtonian fluids, on the grounds of
stability. In the same manner Cattaneo’s first equation (8.1) predicts instability: for
¢; = 0 the temperature gradient rises exponentially! Cattaneo’s second equation (8.3)
on the other hand does not show this type of instability: for gxli = 0 the heat flux
decays exponentially as is to be expected. Therefore we conclude that rate laws of the

67 The careful reader will have noticed that the present argument differs slightly from the
previous one in the Preview, cf. (P.1) through (P.4), although the formulae are the same ones.
In the present case the previously essential Taylor expansion arises naturally and there is not
really any mention of the history of the temperature gradient. The two approaches represent
two aspects of the same phenomenon, although the present one — Cattaneo’s original one - is
more intuitively plausible, perhaps, because it is based on a suggestive molecular argument.
On the other hand, the Cattaneo equation may be integrated to give

t
K _t=t'\ 0T (z;,t) .,
q(t) = T/eXP( - ) . dt’,

—O00

and that formula emphasizes the history-aspect discussed before [Grioli 1979].

68 Extended thermodynamics of mixtures — see Section 6 — has resolved the paradox of
diffusion by adding the acceleration of the diffusive motion to Fick’s law. That theory seems
satisfactory as far as it goes. It concentrates on diffusion; heat conduction and viscous stresses
are ignored, so that nothing is said in it about the paradoxa of heat conduction and shear
rates.

69 Actually we have also seen Cattaneo’s first equation (8.1) before, namely when we con-
sidered the Chapman-Enskog approximation in Section 7.6 and its inherent instability.
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types (8.3) and (8.5) for heat flux and stress are good, while differential laws of the
types (8.1) and (8.5); are bad. The differential laws lead to instability and infinite
speeds.

It is not immediately clear why one type of law should be preferred over the other,
at least not within a macroscopic theory. The reason lies in the more basic microscopic
description of continuous bodies. Indeed, all microscopic theories of continua are based
on transport equations, like the Boltzmann equation for a gas, and they invariably
exhibit a time derivative and a gradient of a distribution function, and a production.
The time derivative leads to rate laws and, under many circumstances, it gives a small
contribution to the macroscopic equations and is therefore neglected; however, it is
there and it determines stability and propagation.

We observe that the modified laws of Fourier and Navier-Stokes — equations (8.3)
and (8.5) — are uncoupled. This, however, is an artefact of an oversimplified deriva-
tion. In reality there are coupling terms, but they are too complex to be derivable by
elementary kinetic reasoning like those of the Cattaneo argument. In order to derive
the proper equations we need the full complexity of the Boltzmann equation, or of the
moment equations (7.13) based on it. If these equations are closed by use of Grad’s
13-moment distribution, some rearrangement leads to equations for the heat flux and
the stress of the form

15k or 21 0v; 2T3t(m)
Qi———— {6a:,+ E [Qz+(1na—%-2¢1nW ]+ oz, }

3 (7 ov, 4 8’0(, 7 k 8t(,m) 1t Op )

~37\5%8a, V5% 0z, 25" Bz, T 5 % Bas
8v<- 1 . 6'0 > 2 1 6q<1
1 8'01;
—_——T s = | 8.6
,rt(v) oz, (86)

In the underlined terms we recognise the Cattaneo equation and the previously dis-
cussed extended Navier-Stokes law. However the equations are a lot more complex, so
much so that not all terms can be given suggestive interpretations. The framed terms
are non-linear and, even if we ignore those, the heat flux and stress are now coupled.

Moreover, the simple partial time derivatives %t and a—t('—’l in (8.3) and (8.5)2 are
now replaced by the Euclidean tensors

Ov; . Jvy
[Qz + Q'na 2QnW ] and [t(ij) + 2t<n(z) a ) 4t<n(z)vv_7>n:|7 (87)

n

which involve the angular velocity Wi; of the frame. Those are vectors and tensors,

respectively, which %‘Iti and 2 , or even ¢; and t(“) the material time derivatives —
alone are not.
It may be worthwhile to mention here that the expressions

. dv; Ay
[ i — dn a_’l,‘n] and , [t(”) 2t<n(z) a () ] (8.8)

also represent an Euclidean vector and tensor, respectively. They provide the rates of
change of ¢; and #;;y in the co-rotational frame of the gas, and they might be the first

choice of a scientist to replace %‘%’ and ﬁg%l in the Cattaneo equation, or in (8.5)q, if



208 The European Physical Journal H

he wishes to convert those relations into a proper tensorial form. However, that would
run against the dictate of the kinetic theory of gases.

As was explained before, equations (8.6) were first found in the kinetic theory of
gases as parts of Grad’s 13-moment theory. Miiller succeeded to derive them from
TIP — Eckart’s theory — albeit without the non-linear terms and with arbitrary co-
efficients instead of %ﬁ, %%, etc. [Miiller 1966]. He achieved that by giving up the
principle of local equilibrium and without the a priori assumption that the entropy
flux is given by heat flux over temperature. Thus Miiller demonstrated that the doc-
trine of forces and fluxes could be used to obtain specific results that had formerly
seemed to require the knowledge of the distribution function of the kinetic theory.
Miiller dubbed his extension of Eckart’s arguments extended thermodynamics™.

Yet, the complexity of equations (8.6) is such that no system of field equations, of
which they are a part, can be characterised as parabolic or hyperbolic, at least not
without considerable effort. Therefore extended thermodynamics could only take off
as a reasonable branch of mathematical physics after a more concise formulation was
found. Such a formulation appeared with the work of Liu and Miiller [Liu 1983]. They
cast equations (8.6) into an elegant balance form, see Section 8.3 below, and they
employed Lagrange multipliers and Galilean invariance, so that the doctrine of forces
and fluxes was no longer needed. We proceed to look at this in the next section.

The heuristic version of extended thermodynamics was adopted by a group of
mostly Spanish physicists and it gained some popularity by their book, entitled Ex-
tended Irreversible Thermodynamics [Jou 1993]. The authors follow the line of giving
up the principle of local equilibrium and the restrictive relation between the fluxes of
entropy and heat. A possibly pregnant trait of that theory is the application to non-
Newtonian fluids where the time derivatives in (8.3) and (8.5); are replaced by the
co-rotational derivatives (8.8). The kinetic theory of polymer solutions shows that this
is the proper choice for rheological fluids, just like the choice (8.7) is proper for gases
according to the kinetic theory of gases. Extended thermodynamics may well turn out
in the future to be an innovative theory for non-Newtonian fluids. A pre-condition
for that to happen seems to be a close study and extrapolation of existing kinetic
theories of macro-molecular solutions, see [Bird 1971; Curtis 1976; Miiller 1979]. The
theory may then achieve a satisfactory mathematical structure which, so far, it does
not have. The task is a lot more difficult than for gases and Newtonian fluids, where
it has already reached a conclusion of sorts, see Section 8.4 below.

8.3 Extended thermodynamics of 13 moments

Starting point is the set of the 13 balance equations (7.26)

% + 66‘.:) : =0 mass conservation
Opui + OFin _ 0 momentum conservation
ot 0z,
% + %%;ﬂ =0 energy conservation
OFu; |, OFj)n
= IT,:;
ot + Ozn tid)
OFy;  OFyjn
b’/ LIy S0 8.9
3t ' s o (59)

7 QOr, actually, in German: Erweiterte Thermodynamik. The Gibbs equation was general-
ized - or ertended — because the entropy was supposed to depend on the heat flux and the
deviatoric stress.
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which are supplemented by constitutive equations of the form
Fiijyn = Fiijyn (0,91, T, Fipgy, Fup)
Fijjn = Figin (9,3, T, Fipg), Fup)
Mgy = Mgy (0,6, T, Fipg) Fup)

Hi]j = fI‘ijj (p7 vi, T, F(pq) ) Fllp) (810)

in order to obtain field equations for the 13 fields p, Vi, T, Fijy, Fus.

The constitutive functions F' and IT in (8.10) are assumed to be invariant under
Galilean transformations and the solutions of the system of equations (8.9), (8.10) are
called thermodynamic processes.

The entropy inequality has the generic form

dh  Oh;
— >
5 * 50 20 (8.11)

where h is the entropy density and h; the entropy flux — convective and non-convective.
Both are given by constitutive relations

h=h (P, v, T, F(pq)’ F”P)

h; = il, (p, v;, T, F<pq),Fzzp). ‘ (8.12)

The inequality is assumed to hold for all thermodynamic processes. This latter qual-
ification, i.e. the restriction to thermodynamic processes, may be eliminated by the
use of Lagrange multipliers. Indeed, Liu has shown that the larger inequality

Oh + Oh; A (2& n ?ﬂz_) _ A (3Pvi + 3Fin) _ A <5Fu + 3Fnu)

ot 8z | \ot Oz a9t | Oz, ot | Oz,
OF 5 | OFjn OFinn =~ OFjun
_ A(i.j) ( atj + 31:1) — H(ij)) — A ( Bt + Bz, - ill) >0 (8.13)

must hold for all fields p, vi, T, Fiijy, Fig; [Liu 1972a; 1972b]. The auxiliary Lagrange
multipliers A are functions of the variables listed in (8.10) or (8.12), and those func-
tions are to be determined — or eliminated - in the process of the exploitation of the
inequality (8.13).

The exploitation leads to specific forms of all constitutive functions. Within a
linearised theory the results read

k_\? k
peky =0, pigik =5p | =T | dix — T=Tl(iky,
© I
1 2 1
Oy = ;j(z‘j) and Iy = T + -T:taj)'vj, (8.14)

just like in (7.24) and (7.14) in the kinetic theory.
Moreover, the specific entropy and the entropy flux come out as

kE [1tuptasy 1 ¢ ¢ | 2464
h=psg——p| - + - and h; = phv; + = + - ——— 8.15

just like in (7.33).
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These results, viz. (8.14) and (8.15), derived by the exploitation of the inequal-
ity (8.13), required extensive calculations, mostly for the elimination of the auxil-
iary Lagrange multipliers. The theory was applied to classical as well as degenerate
monatomic gases’! [Liu 1983]. That paper was greeted with some surprise, because it
recovered so many of the explicit results of the kinetic theory. Thus it showed to what
extent some specific assumptions of that theory were not needed in thermodynamics,
particularly the moment-character of the F’s, and the specific form of the 13-moment
distribution function.

What was needed was a lot less specific, viz.

e the balance structure of the field equations;

e local and instantaneous dependence of the constitutive quantities upon the vari-
ables; and :

o the Galilean invariance of the system of field equations which guarantees the de-
composition of the F’s into the p’s.

In order to avoid repetition we do not go any deeper into this approach. Indeed, in the
next section we proceed to formulate the fully formal theory of extended thermody-
namics, which was largely motivated by the observations just indicated here. In fact,
extended thermodynamics was now prepared to be joined to the mathematical theory
of hyperbolic systems that had grown out of the study of the Burgers equation. Both
theories inspired and stimulated each other and the Lagrange multipliers — originally
introduced as purely auxiliary quantities — turned out to constitute a privileged field
for which the field equations are symmetric hyperbolic. Such a property provides a
number of benefits of which finite speeds are only one.

Let us proceed to consider that formal theory which we regard as the summary -
and generalisation — of all that has been said and done on extended thermodynamics
before.

8.4 Formal structure of extended thermbdynamics
8.4.1 Thermodynamic précesses

Let uq(x;,t) (¢ =0,1,...n—1) denote n fields that we wish to determine and let the
necessary field equations have balance form

%' + OF4a
ot 0zq

We call u,, densities. Fyo and Il are fluzes and productions respectively, and we con-
sider them as constitutive quantities which depend on the material of the body under
consideration. Extended thermodynamics assumes that the constitutive relations are
local and instantaneous so that Fy, and II, at one point and time depend on the
densities u,, at that point and time only

= I, (@=0,1,...n—1). (8.16)

Fio = Fyo(ug) and I, = I, (up). (8.17)

In particular, no gradients and rates of change occur among the independent variables.

If the constitutive functions Fy, and IT, are known explicitly, we may elimi-
nate Fy, and II, between (8.16) and (8.17) and arrive at an explicit set of field
equations. Every solution of those is called a thermodynamic process.

™ To be sure, Liu and Miiller do not get I1(;; and ITy; with one single relaxation time 7 as
does the kinetic theory. Rather they have two relaxation times, one each for the stress and
the heat flux.
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Thus, in effect we have reduced extended thermodynamics to the two lines (8.16),
(8.17). And that is all there is to it, if indeed, we do know the constitutive functions.
In reality, however, those functions are unknown and we must attempt to determine
them, or at least restrict them in their generality and, perhaps, reduce them to a few
coefficients which may then be measured. This is the task of the constitutive theory
and most thermodynamicists work on that task.

Note that the field equations form a system of n quasilinear partial differential
equations of first order. This is the structure suggested by the moment equations of
the kinetic theory of gases, cf. (7.12), (7.13). To be sure, the moment equations (7.12),
(7.13) are simpler than the present equations (8.16), because in the kinetic theory —
of monatomic gases — the flux in one equation doubles as the density in the following
equation so that only one flux, namely F;, . ;yq — the last one — needs to be given for
the closure of the system. '

The quasi-linear system of equations composed of (8.16), (8.17) has caught the
attention of mathematicians. It is the natural extension of the Burgers equation,
see equation (2.17). Friedrichs and Lax have shown that the multiplication of (8.16)

2
by a positive definite Hessian matrix %&—: leads to a symmetric hyperbolic sys-
tem of equations. Such systems are attractive to mathematicians because of the

well-posedness of initial value problems and, in particular, finite speeds, see below
[Friedrichs 1971]. A drawback of the Friedrichs and Lax-approach is that multipli-

cation by %5”1: destroys the balance character of the equations and therefore the

possibility to deal with shock waves. Extended thermodynamics avoids that drawback,
because it produces symmetric hyperbolic systems by a transformation of variables
as we shall see; the discovery of that transformation is due to Boillat [Boillat 1974].

The synthetic notation in (8.16), (8.17) may be confusing to a thermodynamicist
brought up in (p, V, T')-thermodynamics. So, let it be said that the first five among
equations (8.16) are invariably the conservation laws of mass, momentum and energy
and their productions are zero. They read

Op , Opvi _
ot * dzi 0
Opv; | 0(pvjui —ty5)
5 " Oz; =°
Op(utgv?) dlp(utyv’)wi—tiwita) (8.18)

ot 6:1,',

The productions IT,(a = 0,1...4) vanish, because mass, momentum and energy are
conserved. The other productions IT,(a = 5,6,...n — 1) vanish in equilibrium. That
property defines the equilibrium state. Further equations - for n > 4 — may have
the heat flux and the stress as densities, or higher moments, or additional internal
variables whatever they may be; and their productions do generally not vanish.

8.4.2 Constitutive theory. Symmetric hyperbolic systems

The most important tool of the constitutive theory is the entropy principle, believed
in because of the arguments of Clausius and Boltzmann, see Section 2. The entropy
principle of extended thermodynamics has two parts. The first one is the entropy
inequality

8h  Ohg

— 4 —=X2>0 for all thermodynamic processes. (8.19)
ot  Ozgq
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The entropy density h, entropy flux hy and entropy production X' are constitutive
quantities of the type (8.17), i.e. local and instantaneous ones’

h=h(u,), h=hi,), Z=2(,). (8.20)

The second part of the entropy principle is the requirement of concavity of the entropy
density

d%h
Ou,Oug

— negative definite. . (8.21)

This property allows the entropy to reach a maximum in equilibrium.

Another important ingredient of the constitutive theory is the frame indifference
of the field equations under Galilean transformations. Its exploitation requires the
knowledge of the tensorial character of the variables u,, and, since we have not specified
that, frame indifference cannot be exploited here, at least not in the present synthetic
scheme™.

The key to the exploitation of the inequality (8.19) is the observation that the
inequality must hold for all thermodynamic processes, i.e. solutions of the field equa-
tions. Thus, in a manner of speaking the field equations provide constraints on the
fields for which the inequality must hold. It can be shown [Liu 1972a; 1972b] that we
may get rid of those constraints with the use of Lagrange multipliers A,. Indeed, the
new inequality

.a_h % — % + 0Fua
ot Oxzq *\ ot dzg

must hold for all fields uqa(2i,t). The As’s may be functions of the fields u,. Insertion
of the constitutive relations for h, hy and Fy, and the application of the chain rule

provides
= _ Lo L [ _ g =2 ) £ > 0. X
(a’ua Aa) ot + (611,[3 Aa Oug ) O0zq +4alla 20 (8.23)

- Ha) >0 (8.22)

The left hand side is linear in the derivatives of u,, and since the inequality must
hold for all fields, it must hold in particular for arbitrary values of the derivatives %"g

and -g—:j at one point and time. Hence follows
dh = Asdug, dhg = AadFy4q, and Y =AdI, >0, (8.24)

lest the inequality should be violated.

These are the results of the entropy inequality and all of them contain the Lagrange
multipliers which are auxiliary quantities. Even the entropic quantities h and hq
are auxiliary quantities in a manner of speaking because, after all, the constitutive
theory has set out to find restrictions on the constitutive functions in (8.17) and h
and hy are supposed to help in that effort. Really useful results for our purpose should
not contain the auxiliary quantities. But still, let us continue, because there will be
some definite results without a specific characterisation of the densities, and without
the knowledge of the Lagrange multipliers.

Differentiation of (8.24); with respect to ug shows that g—ﬁ; is negative definite

because of the assumed concavity of the entropy density h. Therefore, the Lagrange

72 We are by now far beyond the heuristic theory which had to grapple with the hypothesis

of local equilibrium and with an a priori relation between the fluxes of entropy and energy.
73 For moments as variables frame indifference is equivalent to the decomposition (7.8),
(7.9) of the moments Fi,,.. i, into the internal moments pi,s,...i, (I < 7).
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multipliers A, may serve as variables instead of u,. If we introduce the scalar potential
h' = Aquq — h as the Legendre transform of h associated with the map u, < A, and
the vector potential A, = AqFyo — ha, we obtain from (8.24)

dh' = uadA,, dhl, = FjodA,, and X = A I, > 0 as before, (8.25)

so that the densities and fluxes are seen to be derivatives of the potentials with respect
to A,. Note that A’ is concave in the Lagrange multipliers, since A is concave in the
densities, because a Legendre transformation does not affect the concavity.

Thus the field equations (8.16) may be expressed as

O%h 8As  O%h., OAs
+ =II,.
0A,0A5 0t ' 0A.0A5 04

(8.26)

A system of differential equations like this — with symmetric matrices and a definite

matrix for the temporal derivative ‘%ﬂ — is called a symmetric hyperbolic system.
Thus we conclude that the entropy principle guarantees that the field equations are
symmetric hyperbolic when the Lagrange multipliers are used as the fields. Boillat
has tiherefore called the Lagrange multipliers privileged fields, or main fields [Boillat
1974].

It is clear that Boillat did not know about Lagrange multipliers in 1974. However,
he found the privileged fields and later Ruggeri and Strumia identified those fields
with the Lagrange multipliers of extended thermodynamics. This was the moment
when the mathematical theory of hyperbolic systems was joined to thermodynamics,
or vice versa [Ruggeri 1981].

The fields A, are called privileged, because symmetric hyperbolic systems have
convenient and desirable properties, namely the well-posedness of initial value prob-
lems, i.e. existence and uniqueness of solutions and continuous dependence of solutions
on the data, e.g. see [Godunov 1961]™ and [Fisher 1972]. Also symmetric hyperbolic
systems imply finite speeds.

The ingredients of the formal structure of extended thermodynamics are not only
mathematically desirable, they also please the physicist. The attractive features in-
clude

¢ field equations of balance type;

¢ local and instantaneous constitutive relations;

e existence of a non-equilibrium entropy density;

e general constitutive entropy flux;

o thermodynamic stability, well-posedness of initial value problems; and
e finite speeds.

If we assume that thermodynamics eventually should represent an integral part of
mathematical physics, the foregoing analysis represents a large step forward: the en-
tropy principle has led to symmetric hyperbolic field equations. We are tempted to
postulate that all valid thermodynamic field theories ought to be of that type.

It remains to exploit the residual inequality (8.24)3 for the entropy production
density X, which is assumed non-negative and is obviously minimal, namely zero, in
equilibrium, where all productions I1, vanish. We may write

=" AL,

™ Godunov found the proper variables for symmetric hyperbolicity of the field equations
of Euler fluids.



214 The European Physical Journal H

since IT, (o = 0,1,...4) are always zero, equilibrium or not”. Thus of necessity we

have’® o5
i E=Aa|E=0 (a=5,6...n—1). (8.27)
We conclude that the Lagrange multipliers A, (@ = 5,6...n—1) vanish in equilibrium.

If the productions II, are assumed to be linear functions of A4 (& = 5,6...n—1),
we may write

n—1
Mo =) Lapds (2=56...n—1) (8.28)

. B=5
and, obviously, the matrix Lag (o, 8 = 5,6...n—1) must be positive definite, because
of the inequality (8.24)3, but it is not necessarily symmetric. We shall discuss the sym-

metry of Lop in Section 9.5, where we consider the special case that the densities u,
are moments.

8.4.3 Wave speeds. Growth and decay of acceleration waves

A wave is defined as a propagating surface and mathematically it is represented by
the equation ¢(z;,t) = 0. Its normal n; and normal speed V are given by

g‘ﬂ 9
n = —a— and V=-—92_,
* 7 grad ¢ |grad ¢

Here we are interested in weak waves’’, surfaces across which the fields u,, or Ag,
are continuous although their gradients are not. Obviously the jump of the gradient
of A, must then point in the normal direction which we may take to be the 1-direction.

Therefore we have
0As] 0Aq] .
[_{m] — 4, and [ - ] - VA (8.29)

square brackets indicate differences between the two sides of the wave. Thus from the
field equations (8.26) we obtain a linear homogeneous algebraic system for the Aa’s,
viz.

n, W
04,045 04,045

V) Ay =0 or, equivalently

62hl -1 62’1,’1 ’
((6/1,,6/1.,) oA,04; ~ V5aﬁ) Ao =0. (8.30)

It follows that the jumps of the gradients are proportional to the right eigenvalues dy
of the matrix in (8.30);. We may then write Ay = Adq, and call A the amplitude
of the wave. Therefore the possible speeds - called characteristic speeds — are the

5 Normally the summation over the repeated index a is understood. But here we write the
sum explicitly so as to be able to indicate that it extends over « = 5,6...7n — 1 only rather
than over all o from 0 through n — 1. :

76 For once we take the productions as the variables, — instead of the densities or Lagrange
multpliers — under the weak assumption that this is possible.

77 Also called acceleration waves — mostly in fluid mechanics — because the velocity is
continuous, but the acceleration is not.
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roots of an nth order algebraic system that results from setting the determinant of
the system equal to zero :

o%r \7' &%
det((aAaaA.,) oA,0d;  V0as | =0 (8:31)

There are n such speeds, in other words we have n sounds. But, of course, we cannot
calculate any of them before knowing i’ and h} as functions of A,; see Section 9. We
only know that the V’s following from (8.31) are real and finite; we know that from
the symmetric hyperbolic character of the field equations.

The amplitude may decay or it may grow depending on its initial value and on the
size of the production terms I1,, that represent dissipation, and on the non-linearity,
i.e. the dependence of V on the fields. In the case of propagation into an unperturbed
state of equilibrium the governing equation for the rate of change of the amplitude A
is a Bernoulli equation

0A OV all,
htalag d A2 _ o — . .
ot Oun P B lo ou, dyA=0 with the solution
e, e’ N, e’
a-nonlinearity pB-dissipation

_ A(0) exp [-/31]
Alt) =1 A(0)F (exp[-pt] — 1)

(8.32)

d, and l, are the right and left eigenvectors of the matrix in (8.30)2.

It seems that the first person to calculate the rate of change of the amplitude of an
acceleration wave was Green [Green 1964]. The elegant form (8.32); of the Bernoulli
equation is due to Boillat again, the discoverer of the privileged fields [Boillat 1965).
An instructive review on waves — in particular acceleration waves — is given by Chen
[Chen 1973].

The non-linearity in (8.32) occurs, if the wave velocity depends on the value of
the fields ug, — as it does for a breaking water wave. Inspection of (8.32) shows that
without the non-linearity, i.e. for a = 0, the amplitudes decay exponentially. On the
other hand, if we have a # 0 and if 3 is sufficiently small and the amplitude A(0)
sufficiently large, there may be a blow-up: at time

ter = L In

gin— (8.33)

1

A(0)

Q@ ==

the amplitude of the acceleration wave becomes infinite and that means that the
velocity has a jump; we may say that the acceleration wave has then grown into a

shock wave. We see from (8.33) that this can only happen for |A(0)| > g, meaning
that the initial amplitude is too big to be damped in the course of time.

8.4.4 Natura non fecit saltus™®

Nature does not admit jumps. Indeed, experiments show that shocks as discontinuities
of the velocity field do not exist; rather shock waves represent smooth albeit steep

78 Aristoteles said it in Greek, of course, and in his “History of animals”, which means that
he was not speaking of shocks. However, the familiar quote is often used in connection with
shocks and shock structures.
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decreases of velocity, so-called shock structures. Therefore, if a symmetric hyperbolic
system predicts a singular amplitude of an acceleration wave, as explained in Sec-
tion 8.4.3, we know that the system is inappropriate to describe nature. Usually in
that situation we must extend the theory by taking additional variables into account,
and thus adding more dissipation. In the next chapter we shall encounter examples.
Extended thermodynamics of moments is well-equipped for dealing with the situation,
because extension is its raison d’étre.

Also, in the next chapter we shall explain why — under the right set of circum-
stances — it may be useful to simulate a continuous but steep field as an actual jump,
even though jumps are unphysical, see Section 9.6.

9 Extended thermodynamics of moments

9.1 Abstract

The foregoing synthetic formal structure of extended thermodynamics describes a gen-
eral framework to be supplemented by a specific choice of variables 4. In the present
chapter we let us be guided by the kinetic theory of gases and choose moments of
‘the distribution function as variables. Indeed, the kinetic theory of monatomic gases
provides a structure that fits perfectly well into the structure of extended thermody-
namics; it represents a special case.

For that special case we obtain specific results: the speeds of propagation may be
calculated explicitly, and they turn out to be finite, of course, and growing with the
tensorial rank of the moments which are drawn into the theory. Experimental results
on light scattering in a rarefied gas can be verified in a most satisfactory manner.
The calculation of shock structures reveals an interesting role played by the pulse
speeds of the governing symmetric hyperbolic system. Also there is an interesting
symmetry relation between productions and Lagrange multipliers which provides a
possible reinterpretation of Onsager’s symmetry relation.

9.2 Moments as variables

The kinetic theory of gases suggests a particularly simple special case for which the
tenets of extended thermodynamics are satisfied. Thus the kinetic theory with its
balance equations (7.12) for moments provides an example for the generic system

Ouq + O0Fiq

ot ox;

which we have assumed as the basis of extended thermodynamics. Comparison leads
us to set

= II,, (9.1)

ua=u/cafdc ~ where ca=1 fora=0
Ciy
Ci, Ciy
F; =u/qcafdc Coa=|® fora=1,2,...n—-1
[ J
CiyCiy - - - Ciy

o= [ caS (e | 9.2)
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so that the densities and fluxes are both moments of the distribution function and the
productions are moments of the collision term in the Boltzmann equation”®. What
makes the case special is the fact that the densities in one equation are equal to the
fluxes in the foregoing equation. In this manner only one flux of rank N + 1, namely
F}iyiy...in s needed for closure and, in addition, the productions for n > 4. We assume
that all of those are functions of the densities uo (@ =0,1,2...n — 1) as they would
be if we used Grad’s closure, see Section 7. Also, according to Section 7.4 the kinetic
theory provides an entropy inequality with a concave entropy density. Thus all the
basic ingredients of extended thermodynamics are available in the theory of moments,
and therefore we may transfer the results of extended thermodynamics to the moment
theory.

In particular, the results (8.25) concerning the scalar and vector potential now
read

dh! = undA, = / fd(Agcq)dec = / dF (Aqce)dec =d ( / F (Aaca) dc)

dh = FiadAy = u/cifd (Agca) dc = u/c,-dF (AaCe)dc=d (u/c,F (Aaca) dc).
(9.3)

By the second and third step in those two strings of equations f and F' are functions
of the single variable x = A,c, and the distribution function f is the derivative of F’
with respect to that variable.

It follows that we have — to within constants that we may ignore —

b= u/F(x) de k. =,u/ciF (x) de, where F'=f (9.4)

so that the symmetric hyperbolic system (8.26) reads

oA oA 4
7 / Cacpfde—=L + M/CiCaCﬂf’dC_ﬁ' = II,. (9.5)
ot Oz;
In extended thermodynamlcs of moments the distribution function can be determined

from the knowledge of the entropy density (7.17);: in order to see that we recall the
definitions of the potentials

h = Ague — h and hi = AaFio — h; (9.6)
and obtain the entropy density and entropy flux from (94)

h=p / (XF' — F)de and hi=p / o (xF' - F)de. (9.7)

Comparison of (9.7); with the kinetic definition (7.17); of the entropy density iden-
tifies the distribution function as an exponential function

f=1yexp [— aca] , hence f'=-— ! (9.8)

A

*u ™
™ Among the densities we include moments up to tensorial rank N with all their compo-
nents. In that case the symmetry of the moments implies that we have n = 1/6(N + 1)(N +
2)(N + 3) densities and the field equations are 1, 4, 10, 20, 35, 56, ... in number. Note that
the otherwise attractive 13-moments theory is not in this hierarchy, because it accepts the
trace of the third moments Fy; among the variables and ignores its traceless part Fy.
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Thus, in a manner of speaking the system is now closed, because from the knowledge
of f the flux F;; i,..i, and the productions IT, — see (7.11) — can be determined in
terms of the A,’s, at least in principle

Agc
Fiiyig.in = Ny/cicil -+« Ciy €XP [— ﬁ] dc  and
m
1 1
_1 o 1_ Aﬁ(c’5+cﬁ) Ap (cﬁ_cﬂ)
II, = M /(ca+ca—ca—ca) exp _—k/u— —exp _T

x 1V sin ©dOde dcdc! . (9.9)

There is a catch though, because the variables here are the Lagrange multipliers A,
and not the densities u,. It is true, in principle we may calculate the Lagrange mul-
tipliers from the densities by

A
Ug = p/cay exp [—#cadc], (9.10)
v p

but this cannot be done analytically, or only in an approximate manner, and exactly
only in equilibrium.

Indeed, in equilibrium we have A,|g = 0 for (@ = 5,6,...n — 1), see (8.27), and
the first five moments are p, pv;, 2p(u + $v?) so that (9.10) implies

v¥  gle v; 1
= — . —_ —=t A = — e——— .
Aole oT T 44le T’ |z 2T’ (9.11)

where u has been replaced by 3 *%/,T, see (7.10). Also g|g = u+ & — T's|g is the
specific Gibbs free energy, often called chemical potential. Thus in equilibrium the
distribution function is reduced to the Maxwell distribution (7.18) which may also be
written as

_ 98 + 3 (ci —vi)?
fE =yexp [ BT (9.12)
As a corollary of (9.4) and (9.8) we obtain A’ = —¥/,p and h] = —*/,pv; so that we
have :
04, 0Ay

This equation is equivalent to the conservation law of mass written here in terms of
the Lagrange multipliers. In order to identify the status of the equation we calculate
it for the special case of an Euler fluid, see Figure 14, where the deviatoric stress and
the heat flux are ignored so that the fluid is always locally and instantaneously in
equilibrium. In that case equation (9.13) reduces to the Gibbs equation which may
be written as

%) 4, ,90)

7 p =0 or m

d (—J—gq? ) d(B) _d(%)
T T/ _
otV U=~ =0 (9.14)

Thus (9.13) may be called the extension of the Gibbs equation appropriate for non-
equilibrium and, of course discussed here for moments only. It is not surprising,
perhaps, that this is a partial differential equation rather than the ordinary differen-
tial equation valid in equilibrium. One might be tempted to extrapolate (9.13) away

P
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from monatomic ideal gases but that would be no more than speculation, tempting
but precarious, although permissible — perhaps — as a heuristic measure.

One more observation concerning (9.14),: it is often said that the Gibbs equation, —
particularly in its form (9.14)2 - provides a relation between eztensive variables,
viz. m, V, U and their conjugate intensive variables, viz. g, p, and T'. Personally,
we have never found that classification useful for anything. However, maybe in the
extension (9.13) of the Gibbs equation it may help to interpret the privileged field:
we might, perhaps, be motivated by the distinction to call the densities u, extensive
and the corresponding Lagrange multipliers A, intensive. The latter’s rates of change
and gradients are orthogonal to the 4n-vector {uq, Fio} in the vector space spanned
by the densities and their fluxes.

9.3 Speeds of characteristic waves

Conceptually it is now nearly trivial — for a properly programmed computer — to
calculate the characteristic speeds of the multifarious modes of sound in a monatomic
gas, at least, if the sound propagates into a region of undisturbed equilibrium. In
that case the matrices of the symmetric hyperbolic system (8.26) or (9.5) may be
calculated from the Maxwell distribution; its elements are Gauss integrals of the type
[ z™ exp[—z?|dz. Therefore the algebraic equation (8.31) can be solved to provide
the characteristic speeds V. Weiss has focused the attention on longitudinal waves
and has calculated their speeds for many values of N [Weiss 1990]. His results are
summarised in Figure 16. In diagram (a) of the figure we see all speeds V up to

N = 43; some are smaller than the ordinary low-frequency sound speed vy = 4 /%%T,

but most are bigger. The largest characteristic speed, the pulse speed V™2* | is listed
in the table of Figure 16. It grows with N, the highest tensorial rank of the moments
in the theory and that growth may be read off from the crosses in diagram (b). The
table also shows the number of longitudinal waves corresponding to N: for N = 10
there are 286 speeds and 36 of them are longitudinal; for N = 30 those numbers
rise to 5456 and 256 respectively. Only one of all those waves can actually be heard,
since all others are strongly damped. The one mode that can be heard is the one
whose low-frequency phase speed is vg, our usual sound speed. The situation is akin
. to the two sound modes in a mixture, see Section 6.4, where the second sound was
strongly damped under normal conditions; in that case there were only two sounds.

Clearly from Figure 16 the suspicion arises that for NV — oo the pulse speed grows
indefinitely and that was indeed proved by Boillat and Ruggeri [Boillat 1997], see also
[Miiller 1998]. In an ingenious estimate the authors found a lower bound of V™max
namely

6 1
ymax 5 [- et .
24/z (N + 2), (9.15)

so that for N — oo the pulse speed V™2* indeed tends to infinity. In diagram (b) of
Figure 16 the dots represent the lower bound.

This result seems to represent some kind of anticlimax for a theory which originally
had set out to calculate finite speeds and thus avoid paradoxes. However, we consider

yymax ~oo © as an artifact created by the definition of the moments in which
—00

the distribution function represents atoms of speeds of any size. Anyway, for finitely
many equations all moment theories of extended thermodynamics have finite speeds.
Incidentally, in a relativistic theory of many moments the limiting speed is ¢, the speed
of light, rather than infinity, which is as it should be [Boillat 1997; Miiller 1999).
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Fig. 16. Characteristic speeds. Table: pulse speed as function of n and N. (a) Characteristic
speeds for a chosen N. (b) Pulse speed as function of N. Crosses: calculation. Circles: lower
bound. '

9.4 Light scattering

Light scattering is a paradigm for the usefulness and practicality of extended thermo-
dynamics and, in particular, of extended thermodynamics of moments. Let us consider
this.

Incoming laser light, i.e. light of a single frequency w;, — most often green light with
the wave length \; =~ 0.4 x 107 m - is scattered on the density fluctuations of a gas in
equilibrium, see Figure 17a. While most of the scattered light has the same frequency
as the incoming light, the scattering spectrum also contains neighbouring frequencies.
For a dense gas — typically a gas under a pressure of 4 bar - the spectrum has
three well-pronounced peaks, like the uppermost curve in Figure 17b. When that gas
pressure is lowered, the peaks become less pronounced; they degenerate into shoulders,
until eventually - for pressures much less than 1 bar — there is a single bump in the
middle.

As long as there are peaks, i.e. for dense gases, the distance of the central and
lateral peaks determines the sound speed of the gas, or its temperature. From the half-
width of the peaks and their relative height we may read off the viscosity and thermal
conductivity of the gas. That should come as a surprise! Indeed, we may well ask a
question: How, if the scattering spectrum represents properties of density fluctuations
in equilibrium, can it carry information about macroscopic transport coefficients like
the viscosity n? '
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Fig. 17. Light Scattering and scattering spectrum. (a) Schematic experimental set-up. (b)
Experimental curves [Au 1997).

For an answer, it is not unimportant to know what the scattering spectrum consists
of. The scattered light reaching the detector is an amplitude-modulated oscillation
with the basic frequency w;. The amplitude modulation is provided by the density
fluctuation 6p(r,,t) in all points 7, € V, but only through its spatial Fourier harmonic
0p(gn,t) with the wave number g, = k%, — &—'L (see the vector triangle in the inset of
Fig. 17a) so that forward scattering, w1th 9 << m, represents large-scale density fluc-
tuations and backward scattering with ¢ < 7 is created by small-scale fluctuations. It
is a considerable achievement of experimental optics that a Fabry-Perot interferom-
eter detects the mean regression of the fluctuating amplitude modulation, or rather
its auto-correlation function, which is the mean value of mean regressions, averaged
over all fluctuation sizes. More precisely, the Fabry-Perot interferometer registers the
temporal Fourier component of the auto-correlation function®. This is a function of w
which we have loosely called scattering spectrum in describing Figure 17b, and we
shall continue to do so8!.

The proper measure for the degree of rarefaction is given by the dimensionless
quantity y = p(£ "T) /2 so that the same scattering spectrum is expected for large
scattering angle and low pressure p, or for forward scattering and high pressure. It
is easier to change the pressure in the scattering chamber than the position of the
detector. Therefore experimental data, like those of Figure 17b are usually acquired
by varying the pressure of the gas.

Now, we recall that we have met mean regression functions before, namely in
Section 3, where we have discussed the Onsager theory. According to Onsager’s hy-
pothesis the mean regression of a fluctuation — here the fluctuation of the spatial
Fourier harmonic of the density fluctuation — behaves like a macroscopic relaxation, —
here the relaxation of the spatial Fourier harmonic of a density disturbance. The latter
may be calculated by a macroscopic theory, e.g. the Navier-Stokes theory or extended
thermodynamics.

Thus we may calculate scattering spectra in a dense gas by a simple recipe as
follows:

e write the Navier-Stokes equations;

e make a spatial Fourier transformation;

e solve the resulting system of rate laws — i.e. ordinary differential equations in
time — for the density harmonic by use of a Laplace transformation; and

e average over initial conditions.

80 A detailed description of the Fabry-Perot interferometer may be found in the paper by
Simonsohn [Simonsohn 1972). A shorter version, appropriate to the present application, may
be found in [Weiss 1995b).

81 The proper name in the light-scattering literature is dynamic form factor.
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Fig. 18. Graphs: predicted scattering spectrum in a dense gas and a rarefied gas according
to the Navier-Stokes-Fourier theory. Dots: measurements by Clark in rarefied xenon.

It is after the second step in this sequence where the Onsager hypothesis makes
the connection between fluctuations and macroscopic relaxations. The fluctuating
quantity is the spatial Fourier harmonic of a fluctuation.

So, if Onsager’s hypothesis is correct, the analysis should provide the same scat-
tering spectrum which is produced by the detector. ‘

If we compare the experimental results for a dense gas with the result of this
mathematical analysis of the Navier-Stokes-Fourier equations we obtain excellent
agreement. Moreover, the transport coefficients so determined agree well with the
values of viscosity and thermal conductivity measured by different means, or calcu-
lated from the kinetic theory of gases. This, of course, means no more and no less
than that the Onsager hypothesis on mean regression is supported by light scattering
experiments.

However, for a rarefied gas the agreement is not good, if we still use the Navier-
Stokes equations. It is true that the expected gross features do appear: for a stronger
degree of rarefaction the three peaks of the spectrum degenerate into shoulders and,
eventually, into a bump, in the manner of Figure 17b. But the finer details are all
wrong. The graphs in Figure 18 show the predictions of the mathematical analysis for
dense xenon at 4 bar and for the same gas at 1 bar. The former graph, the one with the
well pronounced peaks, fits observations perfectly well, but the graph for the rarefied
gas obviously does not, because the dots represent observations made by Clark in
xenon at one bar [Clark 1975]. Inspection shows considerable disagreement between
experiment and calculation. We conclude from this observation that the Navier-Stokes
theory is not valid in the rarefied gas. We consider this as an opportunity to check
out the validity of the equations of extended thermodynamics of moments.

A prototypical case for the linearised equations of extended thermodynamics
is the 20-moment system shown in Figure 14 and used there illustratively for the
identification of various special cases. Weiss has the corresponding equations for any
number of moments ready in the computer at the touch of a button and he has used
them for the calculation of scattering spectra for n = 20, 35, 56, 84 in xenon for the
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Fig. 19. Scattering spectra for xenon in extended thermodynamics. Dots represent mea-
surements by Clark. (a) Spectra for 20, 35, 56, 84 moments. (b) Spectra for 120, 165, 220,
286 moments. All coincide to the naked eye.

rarefied conditions under which Clark’s measurements were made. The results are
shown in Figure 19a: Not two of them agree and none of them agrees with Clark’s
measured dots.

Ordinarily a situation like this calls for an adjustment of parameters, but that is
impossible in the present case, because extended thermodynamics of moments is free
of parameters. Indeed, in a manner of speaking extended thermodynamics is a theory
of theories with only one parameter: the number of equations. So, Weiss has pushed
that number to n = 120, 165, 220, and 286 and he obtained convergence of results
at n = 120 in the sense that more moments do not change the scattering spectrum
significantly and — what is more — they all agree with Clark’s measured data, see
Figure 19b for 1 bar. The same type of convergence happens at other pressures albeit,
of course, for a different value of n. )

In other words, for a given pressure our theory of theories provides the possibility
to determine its own range of validity, something that is usually said a theory cannot
possibly do. Here, if we have two successive theories which provide the same result,
the lower one is good enough; and we may say this without conducting a single
experiment!

All of this is most satisfactory, but there is also disappointment. Indeed, one might
have hoped that 13 or 14 moments might bring about a great improvement over the
Navier-Stokes-Fourier solution, and a good representation of experimental results.
Instead we need hundreds of moments for even moderately rarefied gases. Although
this may be disappointing, it is what nature requires.

For lower pressures we need even more moments. Indeed in a strongly rarefied gas
even 210, or 256-moment theories still disagree, although their disagreement is kept
to a narrow band (see Fig. 20). Inside this band runs a Gaussian distribution which
is the ultimate scattering spectrum for the case p — 0 and it reflects the Maxwellian
distribution of the gas. This can be proved analytically, e.g. see [Weiss 1995b].

9.5 Shock waves

The best known phenomenon among all processes with steep gradients and rapid
rates of change are shock structures, smooth but steep fields of density, velocity, and
temperature (say). Observations show that the thickness § of shock structures is not
well represented by the Navier-Stokes-Fourier theory, see [Gilbarg 1953]. § comes out
too small compared to experiments by Alsmeyer, particularly at intermediate Mach
numbers My [Alsmeyer 1976], see Figure 21. Therefore, it is natural to try extended
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Fig. 20. Scattering spectra at very low pressure. Calculations from moment theories between
n = 210 through 256.
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Fig. 21. Shock wave thickness § in argon as a function of Mach number Mp. Ap is the mean
free path.

thermodynamics; after all, we have argued that extended thermodynamics is indicated
for steep and fast processes.

The treatment of shock structures, however, is substantially more difficult with
extended thermodynamics than the treatment of light scattering, because linearisation
is impossible. Therefore to this day the discrepancy between theory and observation,
put in evidence by Figure 21, has not been resolved; and not for lack of trying.
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Fig. 22. (a) Smooth shock structure for Mp = 1.5 in 13-moment theory. (b) Sub-shock for
My = 2.0.

Grad was well aware of the discrepancy, and when he invented the 13-moment
theory (see Sect. 7) one of the first things he thought of for application was shocks
[Grad 1957]. Maybe, he must have thought, he could do better than Navier-Stokes-
Fourier. As it was, however, he came out worse, much worse! Let us consider the
problem.

When Grad calculated the shock structure for My = 1.5, — specifically the fields
of velocity and temperature —, he obtained a perfectly reasonable result: smooth
but steep shock structures (see Fig. 22a). That Mach number, i.e. My = 1.5, was too
small, however, to allow a definite conclusion about the shock thickness in comparison
with the Navier-Stokes Fourier theory. Therefore Grad proceeded to My = 2.0 and
came up with a surprise: a sub-shock had appeared in both fields - see Fig. 22b - in
stark contrast to experiments, which show smooth structures for all Mach numbers.
That sub-shock in Grad’s calculations starts out small at My = 1.65 and grows with
increasing Mach number. It is uncertain whether Grad recognised the significance of
the number 1.65, — he does not say —, but the careful reader of this report will recall
that in the 13-moment theory the pulse speed, — the greatest characteristic speed —,
lies at My = 1.65 (see Sect. 7.10). Therefore the reason for the appearance of the
sub-shock is obvious: When the gas rushes toward the shock with a velocity greater
than the pulse speed, there is nothing to prepare it, because the information about
the approaching shock cannot reach the upstream region of the gas. In a manner of
speaking only flows with Mp > 1.65 are truely supersonic according to the 13-moment
theory. ’

Once this was recognised it became clear that we must proceed to more moments,
if we wish to avoid sub-shocks. After all, we have seen that the pulse speed increases
with the number of moments (see the table in Fig. 16). And indeed, Weiss showed
that in a 20-moment theory the subshock at My > 1.65 has vanished only to reappear
at Mp = 1.808, the pulse speed for 20 moments; see table again [Weiss 1995a).

This is now understood. However, in order to push the incipient sub-shock as far
as Mo = 9 (say), we need a 12.341-moment theory according to the table in Figure 16,
and that system of non-linear equations is so complex that no shock thickness could
be calculated so far. Nor is the incentive very great, because in the meantime Bird
has used molecular dynamics via Monte Carlo calculations to obtain perfectly realistic
shock structures [Bird 1970].

A bizarre event happened at the time when Grad was stymied by sub-shocks:
Holway published a paper in which he believed that he proved that the moment
method could never allow smooth structures beyond Mp = 1.851 [Holway 1964]. This
was nonsense. At some point in his calculations Holway had confused the upstream

and the downstream region of the shock. Weiss found and corrected the mistake [Weiss
1996b).



226 The European Physical Journal H

9.6 Jumps as a useful recipe

It is true that there are no jumps in nature nor any sub-shocks of the type shown in
Figure 22b. Careful experimentation, as in the work reported by Alsmeyer confirms
this statement [Alsmeyer 1976]. Extended thermodynamics of many moments - very
many moments — or Monte Carlo calculations allow us to calculate the properties of
the shock structure, like its width or its asymmetry. However, the shock structure
is usually very thin, and the temptation is great to approximate it by an actual
discontinuity separating the upstream equilibrium, characterised by p;, v;, and T;,
from the downstream equilibrium, characterised by py, vy, Ty. In that case, if the
shock occurs in an ideal gas, the equations of balance of mass, momentum and energy
imply the Rankine-Hugoniot conditions3?

, i -1 ,
&=1+7M3( _&) and Iﬁ£_=7_(&+1)(&_1),
pi Pf pips 27 \py pi

which determines py and py in terms of p; and p; and of the Mach number M; before
the shock. 7 is the ratio of specific heats.

There is a price to be paid for the approximation. Indeed, the Rankine-Hugoniot
conditions permit both: compression shocks for supersonic velocities M; > 1 and rar-
efaction shocks for subsonic velocities M; < 1. In reality, however, subsonic shocks do
not occur, nor are subsonic shock structures permitted by extended thermodynamics
on account of dissipation represented by positive values of thermal conductivity £ and
viscosity 7. So, since k¥ and 7 do not occur in the Rankine-Hugoniot theory, dissipa-
tion must be imposed, as it were, by the requirement that the entropy grow across the
shock. That additional requirement forbids rarefaction shocks.

In engineering applications the thickness of the shock structure is often - or
mostly — negligibly small in comparison with the dimensions of an airfoil (say), or a
diffuser which is a jet with an increasing cross-section. The engineers are well-satisfied
with the Rankine-Hugoniot theory. It is only in rarefied gases that this approxima-
tion becomes unsatisfactory, because the thickness of the shock structure becomes
comparable with the dimensions of the aerodynamic components. In such cases ex-
tended thermodynamics or molecular dynamics is called upon to make the correct
predictions.

9.7 Symmetry of production coefficients

We recall the form (9.9)2 of the production terms appropriate to extended ther-
modynamics of moments. Since the Lagrange multipliers Ag (8 = 4,5...n — 1)
vanish in equilibrium, we may easily find the linear relation between II, and Ag
(0,=4,5...n—1). It reads

I, =

n—1
Y %M% /(ca+c},—c;—c;')(cﬁ+c},—c;3-c},') Fe(c)fe(cy)rV sin ©dOdedede; | Ap.
B=51 ,

v

Lag

(9.16)

82 Cf. the Chapman-Jouguet conditions of Section 6.5.
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Obviously the matrix of coefficients L, is symmetric. This result was discovered
by Wen-An Yong in a paper in which he advertised hyperbolic systems with entropy
inequalities [Yong 2007]83. To give Yong proper credit it must be said, that he did not
restrict the attention to linear relations for II,. The analysis for the general case is too
intricate to be presented here; in fact it is quite ingenious. Wen-An Yong considers
his result as a non-linearisation of the celebrated Onsager reciprocity relations on
modern thermodynamics. And maybe he is right, maybe the Onsager relations should
be formulated for productions rather than rate laws or fluxes.

We recall from our earlier discussion of Onsager relations that there is some uncer-
tainty as to the proper choice of forces and fluxes that are to be related by a symmetric
matrix. Indeed, if the relations hold for one such choice, they will generally not hold
for another one. Yong’s analysis suggests that the proper choice is productions and
Lagrange multipliers. This indicates yet another attractive trait of the privileged field,
the field of Lagrange multipliers. ‘

9.8 Extended thermodynamics consistent in order of magnitude. Boundary
conditions for large-rank moments

In the consideration of light scattering and shock structures the increase of the tenso-
rial rank of moments has been an efficient manner to proceed from theories of dense
gases to those of rarefied ones. Plausible as this might be, it seems desirable to have
a less arbitrary, and more physical criterion for choosing the proper extension for the
extant degree of rarefaction. And indeed, all moments can be characterised as being
of zeroth, first, second, third, ... order of magnitude in terms of powers of the mean
free path or the mean time between collisions of the atoms3.

Such a classification of moments is already indicated in Grad’s work [Grad 1949,
and it is systematically exploited in a theory dubbed Consistent-Order Extended
Thermodynamics [Miiller 2002]. The classification scheme is too complex to be de-
scribed here in detail. However let it be said

e that zeroth and first order theories in the new scheme correspond to the Euler
fluid and the 13-moment approximation, respectively;

e that grosso modo increasing the orders of magnitude is tantamount to increasing
the tensorial rank of moments and;

e that closure is an automatic consequence of the assignment of the necessary order.

The consistent scheme has been summarised and further developed by Reitebuch
[Reitebuch 2005). It turns out that the lowest order in the consistent scheme that
leads to a linear modification of Fourier’s law is order 4(!). Thus moments of up to
a tensorial rank of 7 need to be considered. The governing equations are linear and
so they may easily be solved. The problem is the formulation of boundary and initial
conditions, e.g. for an internal moment of the type pir. In the stationary case, the
task of prescribing and maintaining the boundary conditions remains.

A possible solution to that problem has been indicated by Reitebuch for the case
of stationary one-dimensional heat conduction in a gas at rest between two plates.
Since obviously psi;r cannot be assigned on the boundary by the experimenter, the
gas must choose a suitable value by itself, so to speak. One may conceive the idea, -
see [Barbera 2004] —, that the uncontrollable boundary values fluctuate along with the

83 The title of the paper is obviously styled after Godunov’s important paper which first
called attention to symmetric hyperbolic systems, see Section 8.

8 In a non-dimensionalized theory the moments are said to be of different powers in
Knudsen number. That positive number measures the rarefaction of a gas: the smaller it
is the denser is the gas.
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Fig. 23. Temperature field in a rarefied gas between parallel plates for increasing Knudsen
numbers. (The straight dashed line represents Fourier’s solution).

rapid thermal motion, and that the gas responds to the mean values of the fluctuating
moments. According to Boltzmann’s definition (2.7), (2.8) of entropy, the probability
of the fluctuating boundary values may then be determined from the entropy. On this
basis one can calculate the temperature field between the plates and it turns out that
there are exponential boundary layers in temperature near the plates, while otherwise
the field of temperature is pretty much linear as in Fourier’s theory. See Figure 23.

Similar boundary layer solutions have been calculated by the numerical solution
of the Boltzmann equation, see [Ohwada 1996], and this lends some support to the
fluctuation theory for boundary values. Of course, people like Ohwada, working with
the Boltzmann equation have their own problems with boundary values for the distri-
bution function. If anything, these problems are more severe than those of consistent-
order extended thermodynamics.

10 Outlook

As this report on irreversible thermodynamics has been developed in Sections 1
through 9 it has concentrated more and more on ideal gases, even monatomic ideal
gases. Such concentration on an extremely special case was forced upon us, because
extrapolation of Eckart’s theory into the non-linear regime requires a guideline and
the kinetic theory of gases provides such a guideline. Thus, we were able to formulate
explicit non-linear corrections of the classical laws of Navier-Stokes and Fourier in
rarefied gases and to incorporate those in extended thermodynamics.

It is our confident hope that eventually all of irreversible thermodynamics can be
formulated such as to conform to the elegant formal structure presented in Section 8.4
with symmetric hyperbolic field equations in the appropriate variables. Essentially this
will require the identification of the densities uo (@ =0,1,...7n) and the formulation
of constitutive equations for fluxes and productions of the form (8.17) — a formidable
task. We cannot hope, perhaps, that in all cases the densities are moments of some
distribution function which is governed by a Boltzmann-type transport equation.

And yet, there are several cases where we do have kinetic theories and a distribu-
tion function for the constituent particles. Common to all of them is the observation
that the particles have large mean free paths and large mean times of free flight, so
that transport equations of Boltzmann-type can be formulated, albeit with different
production terms, usually simpler ones than Boltzmann’s non-linear Stosszahlansatz.
The corresponding moment equations offer a heuristic guideline for the formulation
of irreversible thermodynamics. Theories of that type describe

e relativistic thermodynamics of very hot gases [Liu 1986);

e electrons in a metal [Sommerfeld 1956);

e photons in a scattering medium [Struchtrup 1996; 1997; 1998a;
e phonons in crystalline solids [Struchtrup 1991; 1998b]

e phonons in semiconductors [Anile 1996].
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The basic tenets and results of these theories of somewhat esoteric particles are re-
viewed in the book by Miiller and Ruggeri [Miiller 1998].

Non-Newtonian fluids, so-called rheological fluids, deserve a special mention in this
context and some comment, because we recall from Section 5 that a naive attempt to
describe non-Newtonian behaviour failed in rational thermodynamics and it helped to
bring down claims that the theory could deal with such visco-elastic fluids. Therefore
there is the pressing need for new ideas in that field, and here is one for future
development:

It so happens that for rheological fluids a well-developed kinetic theory is avail-
able. Often such fluids are solutions of a Newtonian solvent and a polymeric solute.
On account of the large size of the polymer molecules the solute suffers a non-local
interaction with the solvent by virtue of Stokes’s law of friction, see (1.4), because
the ends of the molecules feel solvent velocities at different points. In the rheological
literature that mechanism has served as the basis for a kinetic theory to which Bird
is one of the most prominent contributors [Bird 1971; Curtiss 1976]. See also the less
comprehensive attempt by Miiller to derive the governing equations for stress and
heat flux in a dumbbell solution [Miiller 1979].

Within the kinetic theory of dumbbell solutions it is possible to develop a moment
theory very similar in spirit to the moment theory in the kinetic theory of gases, or
the moment theory of phonons. Closure may be achieved by a Grad-type expansion
for the distribution of dumbbells. Such a systematic approach toward extended ther-
modynamics of rheological fluids has not yet been followed through, although some
tentative first steps in the right direction were made by Giesekus as early as 1956
[Giesekus 1956).

It is natural, perhaps, that the non-Newtonian contributions to the stress have
received more attention than the non-Fourierian contributions to the heat flux. Both
theory and experiment concentrate on the stress. Thus, in a shear flow between parallel
plates of distance h and relative velocity V the shear stress 7 is no longer proportional
to V/h with the viscosity 7 as a constant of proportionality. It turns out that a
rheological fluid exhibits an apparent viscosity

T
TNapp = VIR (10.1)

which itself depends on V/h so that a viscometer provides the same viscosity when V'
and h are changed by the same factor. A more prominent phenomenon, perhaps, is
due to the fact that the stress in a rheological fluid has unequal normal components.
These components make it impossible for the fluid to move parallel to the walls
in a flow through a pipe with non-circular cross section. Inside the pipe there are
secondary flows with velocity components orthogonal to the walls. That phenomenon
was predicted by Ericksen [Ericksen 1956], and experimentally confirmed by Giesekus.

All this is not to say that it is only rarefaction or large mean free paths of con-
stituent particles that requires a reformulation — an extension, as it were — of con-
ventional thermodynamic theories like TIP. It can happen that a new phenomenon
requires a new thermodynamic field and therefore a new field equation, but otherwise
fits well into the conventional scheme. A case in point is liquid crystals.

The most evident observation in liquid crystals is that they are opaque at low
temperature and transparent at high temperature. In the opaque phase the liquids
exhibit flow properties which are incompatible with the properties of Navier-Stokes
fluids. Such properties have suggested a microscopic anisotropy, to wit, a preferred
direction characterising a fluid particle along with — and in addition to — its density,
velocity and temperature.

There are two ways to characterise the anisotropy: (1) by a director field d; with
d;d; = const. and (2) by an alignment tensor M;; = sn;n; + 3(1 — 5)d; with n;n; =1 5
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and with a temperature-dependent degree of orientation s, (0 < s < 1). Ericksen,
following the early research work by Oseen, 1921 and Frank, 1958, adopted the di-
rector approach, while de Gennes preferred the alignment tensor. The latter has the
advantage that it can incorporate the transition to isotropy at high temperature, if s
is properly adjusted as a function of temperature [Ericksen 1976; deGennes 1974]. See
also the instructive book by Virga which includes references to the pertinent literature
and the characterisation of different types of liquid crystals: nematic, cholesteric, and
smectic ones [Virga 1994].

Ericksen’s theory was developed into a proper branch of irreversible thermody-
namics by Leslie [Leslie 1968]. In some sense the Ericksen-Leslie theory of nematic
liquid crystals may be interpreted as a branch of extended thermodynamics, because
it extends the list of variables of ordinary thermodynamics, — viz. p, v;, T — by the
director d;. It also extends the classical conservation laws for mass, momentum, and
energy by the conservation law of angular momentum, consisting of moment of mo-
mentum and spin. Consequently the theory allows the stress to be non-symmetric;
recall that all through this report we have — tacitly — assumed that the stress tensor
is symmetric. That assumption is well justified for all non-polar fluids, but not for
bodies with an intrinsic spin.

The Ericksen-Leslie theory provides a full set of field equations for the variables p,
v;, T and d;.. The well-known dissipative mechanisms of friction and heat conduc-
tion are present in the theory, and there is one more mechanism due to the rate of
reorientation of the directors. As always in extended thermodynamics boundary val-
ues are a problem, but it turns out — fortunately (!) - that walls can be prepared so
that either d; is orthogonal to a wall, or parallel in given direction. Leslie presents
the solution of a problem that is particularly well-suited to .illustrate the difference
between a liquid crystal and a rheological fluid: the isothermal shear flow, between
two plates, the paradigm of non-Newtonian flow properties. Leslie assumes no-slip
conditions for the velocity and forces the directors at the plates to be aligned in the
flow direction. Away from the boundaries he calculates a non-parallel orientation field
of the directors. Also, the velocity field is not linear between the plates as it would
be in a Newtonian fluid. It turned out that the liquid crystal exhibits an apparent
viscosity of the type (10.1), but with 7 a function of the product V' h rather than the
quotient V/h. Thus the same viscosity is measured in a viscometer for a situation
with an increase V and an h decreased by the same factor. One often expresses this
by saying that rheological fluids scale differently from liquid crystals. Anyway, the
phenomenon shows that the flow field is affected by the director and that the director
affects the flow.

Of course, we all know that the technological significance of liquid crystals is
due to their interaction with electro-magnetic fields and not due to the interaction
with the flow field. That aspect is not considered here. But let it be said, that the
Ericksen-Leslie theory can be used to describe the electro-magnetic effects as well.

Finally a remark on solids. The irreversible thermodynamics of solids is not well de-
veloped. Solids have no viscosity to speak of, at least none due to momentum exchange
as in fluids and gases. Heat conduction is present, of course, and it is satisfactorily
described by Fourier’s law under all ordinary circumstances.

However, the most important phenomena in thermodynamics of solids are phase
transitions: solid-solid phase transitions between different lattice structures, or be-
tween a lattice phase and an amorphous phase. This is an equilibrium phenomenon,
except that as a rule in solids such a transition is accompanied by hysteresis. A hys-
teretic transition proceeds slowly — quasistatically — and yet it is irreversible and far
from equilibrium. The nature of the meta-stable states in a hysteretic transition is
not fully understood — at least not fully described — and therefore solid-solid-phase
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transitions have not been incorporated satisfactorily into irreversible thermodynam-
- ics. See, however, [Ericksen 1991; Fu 1993].
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