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PLAN OF THE PRESENTATION

• Continuum mechanical setup

• The heavy top

• Affine semidirect product Lagrangian reduction

• Body and spatial equations for the heavy top

• Fixed boundary barotropic fluids

• Elasticity

• Free boundary fluids
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Continuum mechanical setup

Reference configuration: (B,G) oriented Riemannian manifold
Usually B ⊂ R3 = {X = (X1, X2, X3)}; E1,E2,E3 orthonormal

Spatial configuration: (S, g) oriented Riemannian manifold
Usually S = R3 = {x = (x1, x2, x3)}; e1, e2, e3 orthonormal

Configuration: orientation preserving embedding ϕ : B → S, so the
configuration space is Emb+(B,S)

Motion: ϕt(X) = x(X, t) time dependent family of configurations

Time dependent basis anchored in the body moving together with
it: ξi := ϕt(Ei), i = 1,2,3. Body or convected coordinates:
coordinates relative to ξ1, ξ2, ξ3.
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The material or Lagrangian velocity is defined by

V(X, t) :=
∂x(X, t)

∂t
=

∂

∂t
ϕt(X).

The spatial or Eulerian velocity is defined by

v(x, t) := V(X, t) ⇐⇒ vt ◦ ϕt = Vt.

The body or convective velocity is defined by

V(X, t) := −
∂X(x, t)

∂t
= −

∂

∂t
ϕ−1
t (x) ⇐⇒ Vt = Tϕ−1

t ◦Vt = ϕ∗
tvt

The particle relabeling group Diff(B) acts on the right on
Emb+(B,S). The material frame indifference group Diff(S)
acts on the left on Emb+(B,S).

In continuum mechanics it is important to keep all options open and
always have three descriptions available. They serve different pur-
poses and the interactions between them gives interesting physical
insight.
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HEAVY TOP

Material or Lagrangian description: B ⊂ R3 compact region with
non-empty interior, Gij = δij. Relative to an orthonormal basis
E1,E2,E3 we get material/Lagrangian coordinates X1, X2, X3

Spatial or Eulerian description: S = R3, gij = δij. Relative to an
orthonormal basis e1, e2, e3 we get spatial/Eulerian coordinates
x1, x2, x3

Body: Time dependent orthonormal basis anchored in the body
moving together with it: Ei := A(t)Ei, i = 1,2,3. Relative to the
orthonormal basis E1,E2,E3 we get the body/convected coordi-
nates X1,X2,X3

Components of a vector U in the basis E1,E2,E3 are the same as
the components of the vector A(t)U in the basis E1,E2,E3.
Note that the body coordinates of x(X, t) = A(t)X are X1, X2, X3.
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Euler angles

Passage from orthonormal spatial basis e1, e2, e3 to orthonormal
basis in the body E1,E2,E3 by three consecutive counterclockwise
rotations (specific order): first rotate around the axis e3 by the an-
gle ϕ and denote the resulting position of e1 by ON (line of nodes),
then rotate about ON by the angle θ and denote the resulting po-
sition of e3 by E3, finally rotate about E3 by the angle ψ.

By construction: 0 ≤ ϕ,ψ < 2π, 0 ≤ θ < π. Get a bijection between
{(ϕ,ψ, θ)} and SO(3). It is not a chart: its differential vanishes at
ϕ = ψ = θ = 0. But for 0 < ϕ,ψ < 2π, 0 < θ < π the Euler angles
(ϕ,ψ, θ) do form a chart.

The resulting linear map has matrix relative to the bases E1,E2,E3

and e1, e2, e3 equal to

A =


cosψ cosϕ− cos θ sinϕ sinψ cosψ sinϕ+ cos θ cosϕ sinψ sin θ sinψ

− sinψ cosϕ− cos θ sinϕ cosψ − sinψ sinϕ+ cos θ cosϕ cosψ sin θ cosψ
sin θ sinϕ − sin θ cosϕ cos θ




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For the rigid body moving about a fixed point, the motions are
rotations: x(X, t) := A(t)X, where A(t) ∈ SO(3).

The material or Lagrangian velocity

V(X, t) :=
∂x(X, t)

∂t
= Ȧ(t)X.

The spatial or Eulerian velocity

v(x, t) := V(X, t) = Ȧ(t)X = Ȧ(t)A(t)−1x.

The body or convective velocity

V(X, t) : = −
∂X(x, t)

∂t
= A(t)−1Ȧ(t)A(t)−1x = A(t)−1Ȧ(t)X

= A(t)−1V(X, t) = A(t)−1v(x, t).
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Material velocity V, spatial velocity v, and body velocity V.

Kinetic energy

ρ0 density in the reference configuration. The kinetic energy at
time t in material, spatial, and convective representation:
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K(t) =
1

2

�

B
ρ0(X)�V(X, t)�2d3X material

=
1

2

�

A(t)B
ρ0(A(t)−1x)�v(x, t)�2d3x spatial

=
1

2

�

B
ρ0(X)�V(X, t)�2d3X. body

Define �ω(t) := Ȧ(t)A(t)−1, �Ω(t) := A(t)−1Ȧ(t), then

v(x, t) = ω(t)× x, V(X, t) = Ω(t)×X,

ω and Ω are spatial and body angular velocities; ω(t) = A(t)Ω(t).
�: (R3,×) → (so(3), [ , ]) is the Lie algebra isomorphism �uv = u × v.
Useful formula: A�uA−1 = �Au. Inverse: so(3) � ξ �→ ξ∨ ∈ R3.

So K(t) =
1

2

�

B
ρ0(X)�Ω(t)×X�2d3X =:

1

2
��Ω(t),Ω(t)��

which is the quadratic form of the bilinear symmetric map on R3

��a,b�� :=
�

B
ρ0(X)(a×X) · (b×X)d3X = Ia · b,
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where I : R3 → R3 is the symmetric isomorphism (relative to the
dot product) whose components are Iij := IEj · Ei = ��Ej,Ei��, i.e.,

Iij = −
�

B
ρ0(X)XiXjd3X if i �= j

Iii =
�

B
ρ0(X)

�
�X�2 − (Xi

)
2
�
d3X.

So I is the moment of inertia tensor. Principal axis body frame:
basis in which I is diagonal; diagonal elements I1, I2, I3 of I are the
principal moments of inertia of the top. From now on, choose
E1,E2,E3 to be a principal axis body frame.

��Ω, ·�� ∈ (R3)∗ is identified with the angular momentum in the
body frame Π := IΩ ∈ R3, so

K(Π) =
1

2
Π · I−1Π or K(Ω) =

1

2
Ω · IΩ

where I = diag(I1, I2, I3).

This is the expression of the kinetic energy in the body representa-
tion, either as a function of Ω or Π.
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So the kinetic energy K : T SO(3) → R in material representation

K(A, Ȧ) =
1

2
I
�
A−1Ȧ

�∨
·
�
A−1Ȧ

�∨
=

1

2
(AIA−1

)A
�
A−1Ȧ

�∨
·A

�
A−1Ȧ

�∨

=
1

2
(AIA−1

)

�
ȦA−1

�∨
·
�
ȦA−1

�∨
=

1

2
(AIA−1

)ω · ω

is left invariant (action is B · (A, Ȧ) := (BA,BȦ)). It is the kinetic
energy of the left invariant Riemannian metric on SO(3) obtained
by left translating the inner product ��·, ·��.

Define the spatial moment of inertia tensor IS(t) := A(t)IA(t)−1.
Since Ω = A−1ω it follows that the spatial angular momentum is
π := ISω = AΠ, so

K(ω, IS) =
1

2
ω · ISω

This is the expression of the kinetic energy in the spatial represen-
tation.

Note that a major complication has arisen: the new dynamic vari-
able IS has been introduced.
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Potential energy

The potential energy U is determined by the height of the center
of mass over the horizontal plane in the spatial representation.
• � length of segment from fixed point to center of mass
• χ unit vector from origin on this segment
• M =

�
B ρ0(X)d3X total mass of the body

• g magnitude of gravitational acceleration
• Γ(t) := Mg�A(t)−1e3, spatial Oz unit vector viewed in body de-
scription
• λ(t) := Mg�A(t)χ, unit vector on the line connecting the origin
with the center of mass viewed in the spatial description

U = Mg�e3 ·A(t)χ material

= e3 · λ spatial

= Γ · χ body

New complications appear: There are new variables, depending
on the representation; λ in the spatial and Γ in the body
representation
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AFFINE SEMIDIRECT PRODUCT
LAGRANGIAN REDUCTION

Give the general theory on the right because it is useful for fluids.
For heavy top, everything is on the left, so there are sign changes.

ρ : G → Aut(V ) right Lie group representation. Form S = G�V

(g1, v1)(g2, v2) = (g1g2, v2 + ρg2(v1)).

The Lie algebra s = g�V of S has bracket

ad(ξ1,v1)
(ξ2, v2) = [(ξ1, v1), (ξ2, v2)] = ([ξ1, ξ2], v1ξ2 − v2ξ1),

where vξ denotes the induced action of g on V , that is,

vξ :=
d

dt

����
t=0

ρexp(tξ)(v) ∈ V.

If (ξ, v) ∈ s and (µ, a) ∈ s∗ we have

ad
∗
(ξ,v)(µ, a) = (ad

∗
ξ µ+ v � a, aξ),
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where aξ ∈ V ∗ and v � a ∈ g∗ are given by

aξ :=
d

dt

����
t=0

ρ∗
exp(−tξ)(a) and �v � a, ξ�g := −�aξ, v�V ,

�·, ·�g : g∗ × g → R and �·, ·�V : V ∗ × V → R are the duality parings.

c ∈ F(G, V ∗) a right one-cocycle: c(fg) = ρ∗
g−1(c(f)) + c(g), ∀f, g ∈

V ∗. So c(e) = 0 and c(g−1) = −ρ∗g(c(g)). Form the affine right

representation

θg(a) = ρ∗g−1(a) + c(g).

Note that
d

dt

����
t=0

θexp(tξ)(a) = aξ + dc(ξ).

and

�aξ + dc(ξ), v�V = �dcT(v)− v � a, ξ�g,
where dc : g → V ∗ is defined by dc(ξ) := Tec(ξ), and dcT : V → g∗ is
defined by

�dcT(v), ξ�g := �dc(ξ), v�V .
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• L : TG × V ∗ → R right G-invariant under the affine action
(vh, a) �→ (ThRg(vh), θg(a)) = (ThRg(vh), ρ

∗
g−1(a) + c(g)).

• So, if a0 ∈ V ∗, define La0 : TG → R by La0(vg) := L(vg, a0).
Then La0 is right invariant under the lift to TG of the right
action of Gc

a0 on G, where Gc
a0 := {g ∈ G | θg(a0) = a0}.

• Right G-invariance of L permits us to define l : g× V ∗ → R by

l(TgRg−1(vg), θg−1(a0)) = L(vg, a0).

• For a curve g(t) ∈ G, let ξ(t) := TRg(t)−1(ġ(t)) and define the
curve a(t) as the unique solution of the following affine differ-
ential equation with time dependent coefficients

ȧ(t) = −a(t)ξ(t)− dc(ξ(t)),

with initial condition a(0) = a0. The solution can be written as
a(t) = θg(t)−1(a0).
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i With a0 held fixed, Hamilton’s variational principle

δ
� t2

t1
La0(g(t), ġ(t))dt = 0,

holds, for variations δg(t) of g(t) vanishing at the endpoints.

ii g(t) satisfies the Euler-Lagrange equations for La0 on G.

iii The constrained variational principle

δ
� t2

t1
l(ξ(t), a(t))dt = 0,

holds on g× V ∗, upon using variations of the form

δξ =
∂η

∂t
− [ξ, η], δa = −aη − dc(η),

where η(t) ∈ g vanishes at the endpoints.

iv The affine Euler-Poincaré equations hold on g× V ∗:
∂

∂t

δl

δξ
= − ad

∗
ξ
δl

δξ
+

δl

δa
� a− dcT

�
δl

δa

�
.
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HEAVY TOP

QUESTION: The parameters are e3,χ ∈ R3, I ∈ Sym2, Mg� ∈ R.
This is the representation space V ∗. There is no cocycle, so c = 0

in theorem.

L(A, Ȧ, e3, I,χ) =
1

2
I
�
A−1Ȧ

�∨
·
�
A−1Ȧ

�∨
−Mg�e3 ·Aχ

Left SO(3)-representation: B · (e3, I,χ) := (Be3, I,χ). Note

L(BA,BȦ,Be3, I,χ) = L(A, Ȧ, e3, I,χ)

So, general theory says that we have Euler-Poincaré equations and
associated variational principles for the body Lagrangian

LB(Ω,Γ, I,χ) := L(I, A−1Ȧ, A−1e3, I,χ) =
1

2
Ω · IΩ− Γ · χ

Since δLB
δΩ = IΩ = Π and δLB

δΓ = −χ, we get the equations

Π̇ = Π×Ω+ Γ× χ, Γ̇ = Γ×Ω, İ = 0, χ̇ = 0
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Right SO(3)-representation: (e3, I,χ) ·B := (e3, B
−1IB,B−1χ).

L(AB, ȦB, e3, B
−1IB,B−1χ) = L(A, Ȧ, e3, I,χ)

So, general theory says that we have Euler-Poincaré equations and
associated variational principles for the spatial Lagrangian

LS(ω, e3, IS,λ) := L(I, ȦA−1, e3, AIA−1, Aχ) =
1

2
ω · ISω − e3 · λ

Since δLS
δω = ISω = π, δLS

δλ = −e3,
δLS
δIS = ω ⊗ ω, we get (Holm,

Marsden, TR 1986, CRM Montreal Volume):

π̇ = e3 × λ, ė3 = 0, İS = [IS, �ω] , λ̇ = ω × λ

Remark: In body representation, we have equations on se(3)∗ =

R3 × R3. Four dimensional generic orbits; Casimirs are Π · Γ, �Γ�2.

In spatial representation, equations are on the dual of the semidi-
rect product so(3)� (Sym2×R3). This is 12 dimensional. It has 6
Casimirs: the three invariants of IS, �λ�2, (ISλ) · λ, �ISλ�2. The
coadjoint orbit is symplectomorphic to (T ∗SO(3), can). One more
integral: π · e3. Reduce and get to 4 dimensions (TS2,magnetic).
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Special case: Free or Euler top

� = 0, so L(A, Ȧ) = K(A, Ȧ) =
1

2

�
IA−1Ȧ

�
·
�
A−1Ȧ

�
, i.e., we study

geodesic motion on SO(3) for the left invariant metric whose value
at I is ��a,b�� = Ia ·b. The equations in body representation decou-
ple:

Π̇ = Π×Ω, Γ = 0,

Geodesic equations on SO(3)× R3 ∼
= T SO(3) (left trivialized) are

Π̇ = Π×Ω, Ȧ = A �Ω

The left action induces a momentum map JL : T SO(3) → R3 which
is conserved. Recall JL(αA) = T ∗

I RA(αA) which after the identifi-
cations becomes JL(A,Π) = AΠ. Direct verification:

π̇ = ȦΠ+AΠ̇ = A �ΩΠ+A(Π×Ω) = A(Ω×Π+Π×Ω) = 0

We shall see a similar phenomenon for fluids.
Momentum map of SU(2)-action on C2

, the Cayley-Klein parame-

ters, the Kustaanheimo-Stiefel coordinates, and the family of Hopf

fibrations on concentric three-spheres in C2
are the same map.
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FIXED BOUNDARY BAROTROPIC FLUIDS

group = Diff(D), V ∗ = |Ωn(D)|×S2(D), Riemannian metrics G = g

on B = S

L(�̄,g)(Vη) =
1

2

�

D
g(η(X))(Vη(X), Vη(X))�̄(X)

−
�

D
E(�̄(X), g(η(X)), TXη)�̄(X), material

�spat(v, ρ̄, g) =
1

2

�

D
g(x)(v(x),v(x))ρ̄(x)−

�

D
e(ρ(x))ρ̄(x), spatial

�conv(V, �̄, C) =
1

2

�

D
C(V,V)�̄−

�

D
E(�̄, C)�̄, convective

• �̄(X) =: �(X)µ(g)(X) := (η∗ρ̄) (X), ρ̄(x) := ρ(x)µ(g)(x)

mass density
• C := η∗g Cauchy-Green tensor
• E(�̄(X), g(η(X)), TXη) := e

�
�̄(X)

µ(η∗g)(X)

�
= e

�
�̄(X)

µ(C)(X)

�
=: E(�̄(X), C(X))

internal energy density
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L is right-invariant under the action of ϕ ∈ Diff(D) given by

(Vη, �̄, g) �→ (Vη ◦ ϕ,ϕ∗�̄, g)

and the reduction map

(Vη, �̄, g) �→ (v, ρ̄, g) := (Vη ◦ η−1, η∗�̄, g)

induces the spatial Lagrangian �spat(v, ρ, g) because

E(�̄, g ◦ η, Tη) �→ E(ϕ∗�̄, g ◦ η ◦ ϕ, Tη ◦ Tϕ) = E(�̄, g ◦ η, Tη) ◦ ϕ

when (η, �̄) �→ (η ◦ ϕ,ϕ∗�̄). g is not acted on by Diff(D).
L is left-invariant under the action of ψ ∈ Diff(D) given by

(Vη, �̄, g) �→ (Tψ ◦ Vη, �̄,ψ∗g).

and the reduction map

(Vη, �̄, g) �→ (V, �̄, C) := (Tη−1 ◦ Vη, �̄, η
∗g),

induces the convective Lagrangian �conv(V, �̄, C) because

E(�̄, g ◦ η, Tη) �→ E(�̄,ψ∗g ◦ (ψ ◦ η), Tψ ◦ Tη) = E(�̄, g ◦ η, Tη)

when (η, g) �→ (ψ ◦ η,ψ∗g). �̄ is not acted on by Diff(D).
ICIAM Vancouver, July 2011
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General semidirect product reduction gives spatial equations





∂tv+∇vv = −
1

ρ
gradg p, p = ρ2

∂e

∂ρ

∂tρ+divg(ρv) = 0, v�∂D,

and convective equations




�̄ (∂tV +∇VV) = 2DivC

�
∂E
∂C

�̄
�

∂tC −£VC = 0, V�∂B,
right hand side is related to the spatial pressure p by the formula

2
∂E
∂C

�̄ = −(p ◦ η)µ(C)C�, so 2DivC

�
∂E
∂C

�̄
�
= −gradC(p ◦ η)µ(C),

C� ∈ S2(D) is the cometric, gradC is the gradient relative to C.

Special case: ideal homogeneous incompressible fluid. Group
is Diffµ(g) := {η ∈ Diff(D) | η∗µ(g) = µ(g)}, V ∗ = S2(D).
Lagrangian in spatial and convective rep. (suppose H1(D,R) = 0):
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�spat(v, g) =
1

2

�

D
g(x)(v(x),v(x))µ(g)(x)

�conv(V, �̄, C) =
1

2

�

D
C(X)(V(X),V(X))µ(g)(X)

In spatial representation: if Xdiv,�(D)∗ = Xdiv,�(D) =⇒

∂tv+∇vv = −grad p Euler equations

if Xdiv,�(D)∗ = dΩ1

δ,�(D) := {dv�g | v ∈ Xdiv,�(D)} = Ω2
ex(D) =⇒

∂tω +£vω = 0, where ω := dv�g vorticity advection

In convective representation: if Xdiv,�(D)∗ = Ω1

δ,�(D) =⇒

∂tP
�
V�C

�
= 0 and ∂tC −£VC = 0.

P : Ω1(D) → Ω1

δ,�(D) orthogonal Hodge projector for the metric g

if Xdiv,�(D)∗ = Ω2
ex(D) =⇒

∂tΩ = 0 and ∂tC −£VC = 0.

where Ω := dV�C is the convective vorticity.
ICIAM Vancouver, July 2011
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ELASTICITY
Euler-Poincaré theory does not apply; do by hand with EP as guide.
BC: Displacement (η given on part of ∂B); traction (P ·NC|∂B = τ̃).
Configuration space Emb(B,S). Material Lagrangian:

L(Vη, �̄, g, G) =
1

2

�

B
g(η(X))(Vη(X), Vη(X))�̄(X)

−
�

B
W (g(η(X)), TXη, G(X))�̄(X).

Material frame indifference: the material stored energy function W
is invariant under the transformations

(η, g) �→ (ψ ◦ η,ψ∗g), ψ ∈ Diff(S), i.e.,

W
�
ψ∗g(ψ(η(X))), Tη(X)ψ ◦ TXη, G(X)

�
= W (g(η(X)), TXη, G(X)) .

∀η ∈ Emb(B,S), ∀ψ : η(B) → B

So can define the convective stored energy W by

W(C(X), G(X)) := W
�
η∗g(X), I, G(X)

�
= W (g(η(X)), TXη, G(X)) .
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Convective quantities: C := η∗g Cauchy-Green tensor,

(V, �̄, C,G) :=

�
Tη−1 ◦ Vη, �̄, η

∗g,G
�
∈ X(B)× |Ωn

(B)|×S2(B)×S2(B),

�conv(V, �, C,G) =
1

2

�

B
C(V,V)�−

�

B
W(C,G)�.

Cannot apply Euler-Poincaré reduction since the Lagrangian is not
defined on the tangent bundle of the symmetry group. Compute the
variations by hand: ηε ∈ Emb(B,S) deformation of the embedding
η0 := η =⇒ δV ∈ TVXbdry(B) is

δV =
d

dε

����
ε=0

Tη−1
ε ◦ η̇ε =

d

dt
ζ + TV ◦ ζ − T ζ ◦ V = ζ̇ − [V, ζ],

where ζ := Tη−1 ◦ δη ∈ Xbdry(B). The variation δC is

δC =
d

dε

����
ε=0

η∗εg = η∗£δη◦η−1g = £Tη−1◦δηη
∗g = £ζC.

Variational principle for �conv ⇒ convective equations of motion:

� (∂tV +∇VV) = 2DivC

�
∂W
∂C

�
�
, ∂tC −£VC = 0.
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So, elasticity has always a convective representation. Spatial rep.?

Isotropy: Need invariance under the right action of Diff(B):

(Vη, �, g, G) �→ (Vη ◦ ϕ,ϕ∗�, g,ϕ∗G), ϕ ∈ Diff(B)
Kinetic energy is right-invariant. So sufficient condition is

W
�
g(η(ϕ(X))), TX(η◦ϕ),ϕ∗G(X)

�
=

�
W (g(η( )), T η, G( ))◦ϕ

�
(X),

for all ϕ ∈ Diff(B). This is equivalent to

W(ϕ∗C,ϕ∗G) = W(C,G) ◦ ϕ, ∀ϕ ∈ Diff(B)
This is material covariance which implies isotropy.

Spatial quantities: c := η∗G ∈ S2(DΣ) Finger deformation tensor

u := η̇ ◦ η−1 ∈ X(DΣ), ρ̄ := η∗�̄ ∈ |Ωn
(DΣ)|,

Σ = η(∂B) boundary of current configuration DΣ := η(B) ⊂ S,

wΣ(c, g) := W(η∗g, η∗c) ◦ η−1

spatial stored energy function. wΣ, W, and W are related by
ICIAM Vancouver, July 2011
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(wΣ(c, g) ◦ η) (X) = W(η∗g(X), η∗c(X)) = W
�
g(η(X)), TXη, η∗c(X)

�
.

Doyle-Ericksen formula for the Cauchy stress tensor

σ = 2ρ
∂wΣ

∂g
∈ S2

(DΣ)

Reduced Lagrangian

�spat(Σ,v, ρ̄, g, c) =
1

2

�

DΣ

g(v,v)ρ̄−
�

DΣ

wΣ (c, g) ρ̄,

variables defined on current configuration DΣ; note Σ is a variable.

δv :=
d

dε

����
ε=0

η̇ε ◦ η−1
ε = ξ̇ + T ξ ◦ v − Tv ◦ ξ = ξ̇ + [v, ξ],

δΣ := g(x)
�

d

dε

����
ε=0

ηε ◦ η−1,ng

�
= g(ξ,ng)

δρ̄ :=
d

dε

����
ε=0

(ηε)∗�̄ =
d

dε

����
ε=0

(ηε)∗η∗η∗�̄ =
d

dε

����
ε=0

(η ◦ η−1
ε )

∗ρ̄ = −£ξρ̄

δc :=
d

dε

����
ε=0

(ηε)∗G =
d

dε

����
ε=0

(ηε)∗η∗η∗G =
d

dε

����
ε=0

(η ◦ η−1
ε )

∗cΣ = −£ξc

28



where ξ := δη◦η−1 ∈ X(DΣ) is an arbitrary curve with vanishing end-
points, ng is the outward-pointing unit normal vector field relative
to g. Constrained variational principle

δ
� t1

t0
�spat(Σ,v, ρ̄, g, c)dt = 0

for the variations give above yield the spatial equations of motion:
(BC) v|Σd

= 0, σ · ng|TΣτ = 0

ρ (∂tv+∇vv) = Divg (σ) , ∂tc+£vc = 0, ∂tρ̄+£vρ̄ = 0,

∂tΣ = g(v,ng)

First Piola-Kirchhoff tensor: two-point tensor over η defined by

P(αX,βx) := Jη(X)σ(η(X))(T ∗η−1
(αX),βx), x = η(X),

αX ∈ T ∗B, βx ∈ T ∗S, Jη Jacobian of η relative to the metrics g and
G, i.e., η∗µ(g) = Jηµ(G). We thus have the relations

P(αX,βx)µ(G) = σ(η(X))

�
T ∗η−1

(αX),βx
�
µ(C)

= Σ(X)
�
αX, T ∗η(βx)

�
µ(C) = 2�

�
∂W

∂(Tη)

��g

(Doyle-Ericksen), �g is g-index raising operator.



FREE BOUNDARY FLUIDS
Configuration space Emb(B,S). Material Lagrangian:

L(�̄,g)(Vη) =
1

2

�

B
g(Vη, Vη)�̄−

�

B
E(�̄(X), g(η(X)), TXη)�̄−τ

�

∂B
γ(η∗g),

E internal energy density related to the spatial energy e as before, τ
a constant. Third term proportional to area of current configuration
and represents the potential energy associated with surface tension;
γ(η∗g) boundary volume form of Riemannian volume form for η∗g.

Convective representation: L left Diff(S)-invariant, so produces

�conv(V, �̄, C) =
1

2

�

B
C(V,V)�̄−

�

B
E(�̄, C)�̄− τ

�

∂B
γ(C).

Convective equations of motion




�̄ (∂tV +∇VV) = 2DivC

�
∂E
∂C

�̄
�

∂tC −£VC = 0,

(BC) p ◦ η|∂B = τκC, κC mean curvature of ∂B relative to C and
p is the spatial pressure. In terms of p, the right hand side of the
motion equation reads −gradC(p ◦ η)µ(C).
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Spatial representation: L right Diff(B)-invariant: (Vη, �̄, g) �→ (Vη ◦
ϕ,ϕ∗�̄, g), ∀ϕ ∈ Diff(B). This leads to the spatial Lagrangian:

�spat(Σ,v, ρ̄, g) =
1

2

�

DΣ

g(v,v)ρ̄−
�

DΣ

e(ρ)ρ̄− τ
�

Σ

γ(g)

and the spatial equations of motion
�

ρ (∂tv+∇vv) = −gradg p

∂tρ̄+£vρ̄ = 0
on Σ

with the boundary condition and boundary movement

p|Σ = τκg, ∂tΣ = g(v,ng).

Can generalize to a large class of continua that include both elas-
ticity and free boundary fluids:

L(Vη, �̄, g, G) =
1

2

�

B
g(η(X))(Vη(X), Vη(X))�̄(X)

−
�

B
U(g(η(X)), TXη, G(X), �̄(X))− τ

�

∂B
γ(η∗g),

U density on B. This form is more general than the Lagrangian for
free boundary fluids and for elastic materials considered before.
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