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PLAN OF THE PRESENTATION

Continuum mechanical setup

T he heavy top

Affine semidirect product Lagrangian reduction

Body and spatial equations for the heavy top
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Reference configuration: (B,G) oriented Riemannian manifold
Usually BC R3 = {X = (X1, X2, X3)}: E;,E5, E3 orthonormal

Spatial configuration: (S, g) oriented Riemannian manifold
Usually S = R3 = {x = (z!,22,23)}; ey, es, e3 orthonormal

Configuration: orientation preserving embedding ¢ : B —+ &, so the
configuration space is Emb_ (B, S)

Motion: ¢+(X) = x(X,t) time dependent family of configurations
Time dependent basis anchored in the body moving together with

it: & = p(E;), i = 1,2,3. Body or convected coordinates:
coordinates relative to &1,&5,&3.
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The material or Lagrangian velocity is defined by

VX, 1) = ax(;f’t) — gt%(X).

The spatial or Eulerian velocity is defined by

v(x,t) := V(X,t) <= v o ps = Vy.
The body or convective velocity is defined by

8X(X, t) o, -1 -1

5 = gt ()= Ve =Tep o Ve=gpve
The particle relabeling group Diff(B) acts on the right on
Emb_ (B,S). The material frame indifference group Diff(S)

acts on the /eft on Emb4 (B, S).

V(X,t) = —
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Material or Lagrangian description: B C R3 compact region with
non-empty interior, G;; = ¢;;. Relative to an orthonormal basis
E.,E>,E3 we get material/Lagrangian coordinates X1, X2 X3

Spatial or Eulerian description: S = R3, gij = 0;;. Relative to an
orthonormal basis eq,es,e3 we get spatial/Eulerian coordinates

2l 22 23

Body: Time dependent orthonormal basis anchored in the body
moving together with it: &, := AW®)E;, i = 1,2,3. Relative to the
orthonormal basis £1,&-,E3 we get the body/convected coordi-
nates x1, x2 x3

Components of a vector U in the basis Eq, E>, E3 are the same as
the components of the vector A(¢)U in the basis £1,&5, E3.

Note that the body coordinates of x(X,t) = A(t)X are X1 X2 Xx3.
ICIAM Vancouver, July 2011
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Passage from orthonormal spatial basis eq,ep,e3 to orthonormal
basis in the body &£1,&-,&3 by three consecutive counterclockwise
rotations (specific order): first rotate around the axis ez by the an-
gle ¢ and denote the resulting position of e; by ON (line of nodes),
then rotate about ON by the angle 8 and denote the resulting po-
sition of e3 by £3, finally rotate about £€3 by the angle .

By construction: 0 < p, ¢ < 2w, 0 <60 <m. Get a bijection between
{(p,v,0)} and SO(3). It is a chart: its differential vanishes at
p=1v=0=0. But for 0 < p,y < 2m, 0 <0 <x the Euler angles
(p,1,0) do form a chart.

The resulting linear map has matrix relative to the bases £1,&,,&3
and ey, eo,e3 equal to

A=
COS 1 COS p — COSASinpsiny cosysinp 4+ cosfcospsiny  sin@siny
—SinY CoOSp — COsHSsinpCcosy —sinising 4+ cosHCcospCcosy sinbcosy
sin@sin ¢ —sinf@cos cos 6
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For the rigid body moving about a fixed point, the motions are
rotations: x(X,t) := A(¢t)X, where A(t) € SO(3).

The material or Lagrangian velocity
ox(X,t)

V(X,t) := = A(t)X.

The spatial or Eulerian velocity
v(x,t) = V(X,t) = A®)X = AR) A1) 1x.

The body or convective velocity

V(X,t) = _axg, t_ AW TTAMAR®) Ix = A@)"TA@®X

= A" IV(X,t) = A@t) " Iv(x, ).

ICIAM Vancouver, July 2011



VX, ) =RO~wix,t) = R X

A X

€1
| DN V(X, 1) = v(x, )

Material velocity V, spatial velocity v, and body velocity V.

po density in the reference configuration. The Kkinetic energy at
time ¢t in material, spatial, and convective representation:
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1
K() = /B 00X IV(X, £)[|2d3X material

=/, 1 POAD Ve, )] P spatial
= > [ oIV, IS, body
Define o) = A@®)A@R) L, Q) = A@)TA®), then
vix, ) =w(t) xx,  V(X,t) = Q) x X,

w and Q are spatial and body angular velocities; w(t) = A(t)Q(t).
: (R3, x) — (s0(3),[,]) is the Lie algebra isomorphism v = u x v.
Useful formula: AGA~! = Au. Inverse: s0(3) 3 € — £V € R3.

)

1 1
So K1) =3 [ po(X)IQ0) x XX =: J(Q1), 20))
which is the quadratic form of the bilinear symmetric map on R3

(a, b)) 1= /BpO(X)(a «X)-(bxX)d3X =1Ia-b,
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where I : R3 — R3 is the symmetric isomorphism (relative to the
dot product) whose components are I;; :=IE; - E; = (E;, E;)), i.e.,

I = — /B po(X)XIXId3X  if i

Li = [ po(X) (IXI? - (x?) X

So [ is the moment of inertia tensor. Principal axis body frame:
basis in which I is diagonal; diagonal elements Iy, I>,13 of I are the
principal moments of inertia of the top. From now on, choose
Eq,E>, E3 to be a principal axis body frame.

(Q,-) € (R3* is identified with the angular momentum in the
body frame II := I € R3, so

K(H)zll'[-]l_ll'[ or K(Q):lﬂ-m
2 2

where [ = diag([l, 1o, [3).
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So
K(A,A) — %]I (A_]'A)v ) (A—lA)V _ %(A]IA_:l)A (A—1A>\/ - A <A_1A)\/
— %(A]IA_l) (AA—l)V - (AA_l)v — %(A]IA_l)w W

is left invariant (action is B - (A, A) := (BA,BA)). It is the kinetic
energy of the left invariant Riemannian metric on SO(3) obtained
by left translating the inner product (-, ).

Define the spatial moment of inertia tensorlg(t) == A(t)IA(t) L.
Since Q = A~ lw it follows that the spatial angular momentum is
7 = [gw = AlI, so

1
K(w,lg) = Ew gw
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The potential energy U is determined by the height of the center
of mass over the horizontal plane in the spatial representation.

e / length of segment from fixed point to center of mass

e Y unit vector from origin on this segment

e M = [5po(X)d3X total mass of the body

e g magnitude of gravitational acceleration

o I'(t) := MgtA(t) les, spatial Oz unit vector viewed in body de-
scription

e \(t) := MglA(t)x, unit vector on the line connecting the origin
with the center of mass viewed in the spatial description

U= Mgles - A(t)Xx material
=e3- A spatial
=I-x body
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AFFINE SEMIDIRECT PRODUCT
LAGRANGIAN REDUCTION

Give the general theory on the right because it is useful for fluids.
For heavy top, everything is on the left, so there are sign changes.

p .G — Aut(V) right Lie group representation. Form S =GQ®V

(91,v1)(g92,v2) = (9192, v2 + pgo(v1))-
The Lie algebra s = g®V of S has bracket

ad (¢, vp) (62, v2) = [(€1,v1), (§2,v2)] = ([€1,82], v1€o — v2é1),

where v¢€ denotes the induced action of g on V, that is,
d

’U€ . — a =0

If (£,v) € s and (u,a) € s* we have

pexp(tf) (U) cV.

ad{ oy (1:0) = (adi p+ v o a, a),
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where aé € V* and voa € g* are given by

d ES .
CL€ = a 1—0 pexp(_tg) (CL) and <U < a, €>g = _<a’€7 U>V7

(-, ->g g*xg—Rand () : V*xV —= R are the duality parings.

c € F(G,V*) a right one-cocycle: ¢(fg) = p;_1(c(f)) +c(g), Vf,g €
V*. So c(e) = 0 and c(g~ 1) = —p}(c(g)). Form the affine right
representation

0y(a) = p’-1(a) + c(g).

Note that
d

Gl feroteey(@) = a€ + de(e),

and

(ag + de(€),v)y = (dc' (v) —voa, ),

where dc : g — V* is defined by dc(¢) := Tuc(€), and de! 1 V — g* is
defined by

(de' (v),€)g == (de(§), v)y-
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L : TG x V* — R right G-invariant under the affine action
(vn, a) = (ThRg(vp),09(a)) = (ThRg(vp), p -1(a) + c(9)).

Then Lg, is right invariant under the lift to T'G of the right
action of Gg  on G, where Gg = {g € G | 04(ag) = ap}-

Right G-invariance of L permits us to definel:gx V* - R by

l(TgRg_l (vg), 99_1 (ag)) = L(vg,ag).

For a curve g(t) € G, let £&(t) .= TR 9(1) _1(g(t)) and define the
curve a(t) as the unique solution of the following affine differ-
ential equation with time dependent coefficients

a(t) = —a(t)&(t) — de(€(2)),
with initial condition a(0) = ag. The solution can be written as
&(t) — eg(t)_l(a{)).

ICIAM Vancouver, July 2011
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I With ag held fixed, Hamilton’s variational principle

5 [ Laola(®),5(0)dt = 0,
holds, for variations dg(t) of g(t) vanishing at the endpoints.
il g(t) satisfies the Euler-Lagrange equations for Ly, on G.
il The constrained variational principle

to
5Al@@ﬂﬁwﬁ:Q

holds on g x V*, upon using variations of the form

9,
5@—77[5m Sa = —an — de(n),

where n(t) € g vanlshes at the endpoints.

iv The affine Euler-Poincaré equations hold on g x V*:

ol
Qﬂ gél-l—ﬂOa—dcT(—).
ot o€ 0& da
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QUESTION: The parameters are e3,x € R3, I € Sym,, Mgl € R.
This is the representation space V*. There is no cocycle, so ¢= 0
in theorem.

L(A A e3,1,x) = %]1 (A_lA)v : (A_lA)v — Mgles - Ax

Left SO(3)-representation: B - (e3,],x) := (Bes,, x). Note
L(BA,BA, Be3, I, x) = L(A, A, e3,1,x)

So, general theory says that we have Euler-Poincaré equations and
associated variational principles for the body Lagrangian

. 1
Lp(Q.T,Lx) = L(I,A™ A, A e3,I,x) = 2212 —T - x

Since %L—QB = [Q2 = 1I and 55L—FB = —x, we get the equations

[I=IIxQ+Txy, I'=I'xQ, 1=0 x=0

ICIAM Vancouver, July 2011
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Right SO(3)-representation: (es3,1,x) - B := (e3, B~11B, B~ 1y).
L(AB,AB,e3, BB, B 'x) = L(4, 4, e3,1, x)

So, general theory says that we have Euler-Poincaré equations and
associated variational principles for the spatial Lagrangian

: 1
Lg(w,e3, g, ) := L(I,AA_l,eg,,A]IA_l, Ax) = Ew Togw —e3- A

: oLg __ _ oLg __ 0Lg __
Since BSw HS(.U == TT, S\ —e3, m = w R w, wWe get (HOIm,

Marsden, TR 1986, CRM Montreal Volume):
7i'=e3><)\, é3:O, HS:[HSa‘D]v }\:wx)\

Remark: In body representation, we have equations on se(3)* =
R3 x R3. Four dimensional generic orbits; Casimirs are IT-T', ||T||2.

In spatial representation, equations are on the dual of the semidi-
rect product s0(3)® (Sym? xR3). This is 12 dimensional. It has 6
Casimirs: the three invariants of Ig, ||A||?, (IgA) - A, |[IgA]|2. The
coadjoint orbit is symplectomorphic to (T*SO(3),can). One more

integral; 7 -e3. Reduce and get to 4 dimensions (T'S?, magnetic).
ICIAM Vancouver, July 2011
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¢ =0, so L(A,A) = K(A,A) = %(I[A‘Ul) : (A—1A>, i.e., we study
geodesic motion on SO(3) for the left invariant metric whose value
at I is ((a,b)) =1Ia-b. The equations in body representation decou-

ple:
I[I=IIxQ TI=0,

Geodesic equations on SO(3) x R3 = 7SO(3) (left trivialized) are
IMI=IIxQ A= AQ

The left action induces a momentum map J; : TSO(3) — R3 which
is conserved. Recall Jp(ay) = TfR4(ay) which after the identifi-
cations becomes J; (A,II) = AIIL. Direct verification:

F=AIl+ ATl = AQII 4+ A(II x Q) = A(Q xII+II x Q) =0

We shall see a similar phenomenon for fluids.
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group = Diff(D), V* = |Q"(D)| x So(D), Riemannian metrics G = g
on B=S§

L(g,9) (Vi) = 2/ g(n(X)) (Vy(X), V(X)) a(X)

~ | B(@X),9(n(X)), Txm)a(x), material
pat(¥,5,9) = 5 [ 9@ @), V@A) — [ elp@)at@),  spatial
leonv(V, 0,C) = %/D C(V,V)o — /DS(E, C)o, convective
o 2(X) = o)X = (D)), @) = p@)u(9) ()

mass density
o C := n*g Cauchy-Green tensor

o B(3(X),9(n(X)), Txn) := e (23 y) = e (:85%y) = £@(X), C(X))
internal energy density

ICIAM Vancouver, July 2011
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L is right-invariant under the action of ¢ € Diff(D) given by

(Vip,0,9) — (Vi o, 070, g)
and the reduction map

(V777 57 g) > (Vaﬁa g) L= (Vn 077_1777*57 g)
induces the spatial Lagrangian £g,.:(v, p,g) because
E(0,g0n,Tn) = E(p 0,gonop,TnoTy) = E(g,gon,Tn) oy

when (n, ) — (noy,p*p). g is not acted on by Diff(D).
L is left-invariant under the action of ¢ € Diff(D) given by

(Vna 57 g) = (T¢ O VU? Q_7 w*g)
and the reduction map

(Vi 8.9) = (V,8,C) := (T "o Vi, 2,m" ),
induces the convective Lagrangian feony(V, 0,C) because

E(0,90n,Tn) — E(o,Yxgo (3pon), TpoTn) = E(o,gon,Tn)
when (n,g) — (v on,1«g). 0 is not acted on by Diff(D).
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General semidirect product reduction gives spatial equations

1 Oe
Ov + Vyv = —=gradgp, p=p°_
p dp

Op + divg(pv) =0, (0D,
and convective equations
3 (8;V + VyV) = 2 Divg, (g—gg)
oC — £C =0, V|08,
right hand side is related to the spatial pressure p by the formula

20" 5= ~(pomu(C)C:, so 2Dive (505) = —grada(po mu(O)

C* € 52(D) is the cometric, grad is the gradient relative to C.

Group

is Diff,(g) := {n € DIff(D) | n*u(g) = u(g)}, V* = S>(D).
Lagrangian in spatial and convective rep. (suppose Hl(D,R) = 0):
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Lopat(¥,9) = 5 [ 9@)(v(@), v(@)n(9) ()

beom(V,5,C) = [ COOM0,VEO))0) ()
In spatial representation: if Xy, |(D)* = Xy, |(D) =
ov + Vyv = —gradp Fuler equations
i X g0, (D)" = dQ(%,H(D) = {dv’ | v € Xg;, (D)} = Q2,(D) =

oiw + £vw = 0, where w := dv’9 vorticity advection

In convective representation: if BEde(D)* = Q%H(D) —

O P (Vbc) =0 and o6,C—- £yC =0.
P:QL(D) — Q§7||(D) orthogonal Hodge projector for the metric g
if X5 |(D)* = Q2,(D) =
2=0 and 0;C—- £yC =0.

where Q := dV"C is the convective vorticity.
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ELASTICITY

Euler-Poincaré theory does not apply; do by hand with EP as guide.
BC: Displacement (n given on part of 9B); traction (P-N¢lgg = 7).
Configuration space Emb(B,S). Material Lagrangian:

L(Vi,3.9,6) = 5 [ a0V (X), Vy(X))3(X)

— [, Wg@n(X)), Txn, GEX))EX).

Material frame indifference: the material stored energy function W
IS invariant under the transformations

(n,9) — (Y on,«g), Y € DIiff(S), i.e.,

W (g (@ (n(X))), Ty xyw © Txn, G(X)) = W (g(n(X)), Txn, G(X)).
Vn € Emb(B,S), V¢ :n(B) - B

So can define the convective stored energy VYV by

W(C(X),G(X)) =W (n"g(X), L G(X)) =W (g(n(X)), Txn, G(X)) .
ICIAM Vancouver, July 2011
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Convective quantities: C := n*g Cauchy-Green tensor,

(V,5,C,G) := (Tn 1 o Vi, 5,n"9, G) € X(B) x |2"(B)| x S2(B) x S2(B),

1
gconv(v, 0, C, G) = 5 /B O(Va V)Q — /B W(C, G)Q-

Compute the
variations by hand: n. € Emb(B,S) deformation of the embedding
o :=1n == oV € TV%bdry(B) IS

d

oY = —

1 . _d _ —F
| Tne one=—(F+TVo(—-TCoV=( [V, <l

e=0
where ¢ :=Tn~1 o én € Xpg, (B). The variation 6C is

d b S *k b S
oC = del.—o Ned =N Lspon-19 = Lpp-106,1" 9 = £¢C.
Variational principle for f.ony = convective equations of motion:

9
W), 9,C — £,C = 0.

8,V + V) = 2 Di <—
o (OtV + VyV) Ve (550
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Spatial rep.?

Isotropy: Need invariance under the right action of Diff(B):

(Vip,0,9,G) = (Vnow, 0 0,9,0°G), ¢ € Diff(B)
Kinetic energy is right-invariant. So sufficient condition is

W (g(n(e(X))), Tx (now), *G(X)) = (W(g(m(-)), T 1, G(-))ow)(X),
for all o € DIff(B). This is equivalent to
W(p*C,0*G) = W(C,G) o o, Vo € Diff(B)

This is material covariance which implies isotropy.

Spatial quantities: ¢ := n«G € S>(Ds) Finger deformation tensor

ui=ron '€ X(Dxg), pi=mde QD)
> = n(dB) boundary of current configuration Dy = n(B) C S,

ws (¢, g) ;= W(n*g,n*c) on~ 1

spatial stored energy function. ws-, VW, and W are related by
ICIAM Vancouver, July 2011
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(wy(c,g) on) (X) =W(n"g(X),n"c(X)) =W (g(n(X)), Txn,n"c(X)) .

Doyle-Ericksen formula for the Cauchy stress tensor
o=2p—=¢ SQ(DZ)
Reduced Lagrangian

1
I4 2.V,p,g,cC =—/ Vv,V _—/ ws- (c, 0,
spat ( 0,9, C) 5 ng( )P Dy > (¢, 9)p

variables defined on current configuration Ds; note > is a variable.

d o - -
oV = — Meon T =€+ TEov—Tvo&=¢E+ [v,¢&],
dS e=0
d ~1
5T = g(@) (| _ meonting) = g(6imy)
_d _d _d e _
Spi=—| (o= (e)sn'mio=-—| (nonz1)'p=—Lep
dele=0 dele=0 dele=0
oc = — (ne)«G = — (Me)s«n NG = — (nomnz ")exz = —£ec
dele=0 dele=0 dele=0
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where £ = 577077—1 € X(Ds ) is an arbitrary curve with vanishing end-
points, ng is the outward-pointing unit normal vector field relative
to g. Constrained variational principle

t
5/ 1£Spat(zavaﬁagac)dt =0
to

for the variations give above yield the spatial equations of motion:
(BC) vz, =0, o -nglrs, =0

P (@tV —|— VVV) = Dng (0‘) ; (9,5(3 —I— .£VC = O, 8tﬁ—|— £V,5 = O,
atz — g(Vang)

First Piola-Kirchhoff tensor: two-point tensor over n defined by
P(ay,Bz) := Jn(X)o(n(XN(T*n Hax), Br), z=n(X),

ax € T*B, B, € T*S, Jy Jacobian of n relative to the metrics g and
G, i.e., n*u(g) = Jyou(G). We thus have the relations

P(ax, B2)(G) = o(n(X)) (T*n (ax), Bz) n(C)

OW >ﬁ9

= 3(X) (ax, T n(Bz)) u(C) = 20 (8(T77)

(Doyle-Ericksen), #4 is g-index raising operator.



Configuration space Emb(B,S). Material Lagrangian:

Ligay (Vi) = 5 [V, Vi)a— [ BGE(X), g, Txn)a—7 [ +Gr").

E internal energy density related to the spatial energy e as before, 7
a constant. Third term proportional to area of current configuration
and represents the potential energy associated with surface tension;
~v(n*g) boundary volume form of Riemannian volume form for n*g.

Convective representation: L left Diff(S)-invariant, so produces

ooV, 3,0) =5 [ CO.W5~ [ @57 [ ~(O),

Convective equations of motion

o0&
8,V + Vi,V = 2 Di (—>
0 (O0Y + VyV) Ve (540
c‘?tC—,EVC:O,

(BC) ponlgg = Tko, ko Mean curvature of 0B relative to C' and
p Is the spatial pressure. In terms of p, the right hand side of the
motion equation reads —gradqa(pon)u(C).
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Spatial representation: L right Diff(B)-invariant: (Vn,0,9) — (V5o
v, 0*0,9), Vo € DIiff(B). This leads to the spatial Lagrangian:

14 2.V, p, =—/ Vv,V _—/ e _—T/
spat( 0,9) > Ips g(v,v)p Dy (p)p Z'y(g)
and the spatial equations of motion

{ p(0yv + Vyv) = —grad,p
Op+ £vp=0
with the boundary condition and boundary movement

on 2>

p‘Z — Thyg, atz :g(Vang)-
Can generalize to a large class of continua that include both elas-
ticity and free boundary fluids:

L(Vi,3.9,6) = 5 [ a(nCO)V(X), Vy(X))a(X)

— [ UCan(x)), Txn, G(X),2(X)) =7 || 2(n*9),

U density on B. This form is more general than the Lagrangian for

free boundary fluids and for elastic materials considered before.
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