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Abstract 

A mesh enrichment procedure is developed to capture the shear band for strain localization in elasto-(visco)-plastic solids. The 
enriched mesh comprises four and five noded quadrilateral elements which can be adaptively refined in the localized zone. The 
criterion for mesh adaption combines three well-known localization characteristics to predict the onset of localization in individual 
elements. A modified procedure for transferring state variables between two successive refined meshes is proposed. The 
procedure is tested by solving several sample problems. Consistent and stable solutions are obtained. In particular, shear band 
widths and plastic strains are found to converge to stable values. The results are compared with solutions using the enriched 
displacement procedure defined in [l]. The efficiency of the global adaptive scheme is tested on initial- and boundary-value 
problems that involve different material properties and geometries. 

1. Introduction 

The numerical simulation of strain localization has to face two important difficulties. The first 
difficulty is related to the loss of hyperbolicity of the dynamical equations of motion and the resulting 
ill-posedness of the problem. This is usually alleviated by having recourse to various regularization 
procedures [2-71. Though involving radically different mechanisms, each of the aforementioned works 
aims at restoring hyperbolicity by incorporating a characteristic length scale in the governing equations. 

The other difficulty of the problem is the multi-scale nature of the strain-localization phenomenon. 
Shear bands in metals are typically of the order of microns while the macro-specimen may be several 
meters in dimension. Hence, any meaningful discretization scheme, namely one which can accurately 
resolve the deformation field inside the shear band, must involve a huge amount of computational effort 
(e.g. [S])-the scale of which may exceed presently available resources for realistic engineering 
problems. 

In the past [6], we have attempted to tackle the first of the above-mentioned problems by introducing 
viscosity in the constitutive equations. The resulting rate-dependent problem has a unique solution and 
yields mesh-invariant results provided the shear band be spanned by at least two elements. The width of 
the shear band is found to be approximatively equal to 10 CT, with c a representative elastic wave speed 
and 77 the relaxation time. Once the problem is rendered well-posed, we are however, still left with 
devising methods which can capture the structure of the strain field inside the shear band. In a second 
step, motivated by the work of Belytschko and co-workers [9-111, we proposed an enriched 
displacement procedure which attempts to incorporate additional degrees of freedom in patches 
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covering the shear band inside selected elements [l]. This enables the element to resolve the shear band 
when the latter is several orders of magnitude smaller in dimension as compared to the characteristic 
size h of the macro-element. The procedure was shown to be effective for elements whose characteristic 
size is more than 10 times the bandwidth 10~7. 

Another way to attempt to capture the details of the shear band is to refine the mesh at appropriate 
locations, so-called adaption procedure. For example, Ortiz and Quigley [12] and Belytschko and 
Tabarra [13] use refinement procedures while Peric et al. [14] and Zienkiewicz et al. [15] remesh the 
entire domain but increase the nodal density in a neighborhood of the band. There are qualitative 
arguments that support mesh refinement over remeshing for the simulation of strain-localization; in 
particular, the latter is more prone to smear the strongly localized mechanical information that 
characterizes shear-banding. While as stated earlier, adaption may prove to be stupendous for 
real-world problems, its usefulness in validating and comparing results from the enriched displacement 
procedure makes it worth pursuing. Further, it is possible that for practical engineering problems the 
method of choice will involve a combination of both procedures, namely adaption followed by 
displacement enrichment. 

The paper is organized as follows. In Section 2, the governing equations and finite element 
formulation are briefly recalled. In Section 3, we explain the criteria used to select elements to be 
enriched. Section 4 describes briefly the mesh enrichment procedure. Section 5 deals with the various 
schemes to transfer the internal variables. The problems associated with selecting the appropriate time 
step for integrating the dynamical equations of motion are discussed in Section 6. Finite element 
analyses using the above ingredients are presented in Section 7 for several sample problems that involve 
different material properties and geometries. Comparisons between results obtained by adaption and 
enriched element procedures are presented and discussed. 

2. Governing equations and FEM discretization 

The strong form of the initial- and boundary-value problem is to obtain a displacement field which is 
continuous at each point x of the body R and at any time t within the considered time interval [0, T] 
and that satisfies: 

u;,~, + p(b, - ii,) = 0 in 0 

(1) 
u,(x, t = 0) = U,,,(X) in R 

ti,(x, t = 0) = U,,,(x) in 0 

where G!,,, and X&-, constitute a partition of the boundary dR, the lower indices i and j vary between 1 
and n,,, = 2, summation over repeated indices is assumed, the lower symbol ‘j’ denotes partial derivative 
with respect to the space variable X, and a superposed dot ( ’ ) denotes material time derivative. Also, p 
is the mass density, b the body force per unit mass, ud and Td are the given displacement and traction, 
respectively, n is the unit outward normal to a0 and u,) and U,, are the given initial displacement and 
velocity. Implicit in the above is the fact that the stress u = (rlj) is obtained from the displacement and 
velocity by the constitutive equations. 

In order to introduce the weak form associated with the strong form Eq. (l), let us define the space 
of admissible displacements V as 

Y: (8~ E [H’(n)], 6~ = 0 on K$} 

The weak form is obtained by a componentwise multiplication of Eq. (l), by an admissible but 
otherwise arbitrary displacement 6~ and integration by parts: 
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I Su, pii; dR + ‘UC;,,) q, da - 6u, pb, do - 6u; T:‘dS=O 
I1 

where ~LL,,.~, denotes the symmetric part of the gradient of the displacement 6~. 
Within each element the displacement field is interpolated through the bilinear interpolation matrix 

N: 

u=Nd (3) 

where d = (d,) denotes the nodal displacement vector. The displacement variation 6~ is interpolated 
through the same approximation functions as the trial displacement field u. Thus 

&J=N6d (4) 

using similar notations for the trial displacement and displacement variation fields. The strain-vector 

.f = [&,I, El?, %3r YIZ = 2&,JT expressed componentwise in the Cartesian axes (e,, ez, e3) can be obtained 
through the B-matrix associated with the regular interpolation of the quadrilateral, or through the B-bar 
modification of Hughes [16]: 

e=Bd (5) 

with a similar expression for the strain variation vector Sr due to Eq. (4). 
Insertion of the discretization equations (Eqs. (3)-(j)) in the weak form Eq. (2) yields, due to the 

arbitrariness of the displacement variations 6d and on assembling the element contributions: 

M&f’“‘=f=f 
(6) 

where, a superposed e denoting a quantity attached to element e, e = 1 to N,, 

fint = A;zJ=‘:f’.‘“‘, f’.‘“’ = 1 BT,, da 

R’ 

f’“’ = A;:; f“‘“‘, f“‘“’ = 

(7) 

Actually, for efficiency, a diagonal mass matrix M is obtained through the row-sum technique (e.g. 116, 
p. 4441). 

3. Enrichment criteria 

Adaption schemes aim at defining an optimized mesh that minimizes a certain scalar quantity 
representative of the error between the exact and computed solutions. They require several ingredients, 
among which criteria to define locations where the mesh needs to refined and unrefined. Many error 
measures use elliptic estimates, as for example the strain-energy criterion of Zienkiewicz-Zhu [17]. 
However, such measures do not apply to strain-localization where the elliptic nature of the governing 
equations tends to be lost. Also, since a shear-band is a zone of intense plastic straining, the stress field 
is bound to be more or less uniform there; thus a criterion based on stress only is unlikely to be able to 
capture localization zones. These observations have prompted modifications of the Zienkiewicz-Zhu 
criterion. Peric et al. [14] use a criterion based on the rate of plastic work. Belytschko and Tabbara [13] 
suggest an error measure in terms of strains only: the idea being that the error will be large where the 
gradient of strain is large, which is indeed a mechanical manifestation of strain-localization. Other 
criteria use interpolation errors. The criterion of Diaz et al. [18] uses the second derivative of the 
displacement and so should be valuable to detect zones of high strain gradient; however it requires to 
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define the second derivative by interpolation over elements. Ortiz and Quigley [12] propose a resolution 
driven method where enrichment is performed for those elements which have a large velocity variation. 

In our approach, we use three criteria to select the elements to be enriched. Two of them are 
resolution driven while the third criterion is directly related to the underlying material instability and 
uses the acoustic tensor. The three criteria selected as representative localization characteristics are 
assigned to the element center and they measure, respectively 

- the velocity variations in the element [12]: 

I& =max@x Iv,, - GI} (8) 

where u,, are the nodal components of the velocity vector u; a and b range over the nodes of the 
element and i ranges over the degrees of freedom, 

- the equivalent plastic strains: 

where Gp is the plastic strain rate tensor, 
- the trend to strain-localization through the ratio of the elastic and elastic-plastic acoustic tensors, B” 

and Bep, respectively: 

r = min det BeP(4 
n,~ln~~=~ det B” (10) 

Thus, r is equal to one for elastic unloading and zero at strain-localization. 
It is argued in [19] that none of the above criteria can individually be taken as a sufficiently robust 

indicator for refinement. For example, the interpretation of contours of acoustic tensor ratio requires 
some care because this ratio depends on the plastic modulus which, in the numerical computations to be 
presented hereafter, is not varying monotonically. Besides, a criterion based only on the velocity 
variation criterion may not be satisfactory for the following qualitative reasons. Consider two elements, 
one small and the other much larger. It may happen that the velocity variation criterion be violated for 
the large element and not for the small one simply due to the geometry and irrespective of the loading 
content, e.g. for the same strain-rate. An additional problem with this criterion is its sensitivity to 
fluctuations in loading rate, especially under dynamic loading conditions. On the other hand, a criterion 
relying only on strains as in [15] or on plastic strains will certainly capture the shear-bands but our 
experience has shown that it is difficult to make it sufficiently sharp in order not to delay too much the 
refinement process. 

The actual criterion adopted in this study is a combination of all of the above indicators. At the 
conclusion of every time step, the velocity variation ]u],, and plastic strain x for every element in the 
mesh are catenated and stored in separate vectors. Next, an elementary statistical analysis is performed. 
It involves sorting the components of the (u],, and x vectors and computing their respective upper 
quartile values. The upper quartile value is that member of a set of real numbers, arranged in ascending 
order, which is exceeded in magnitude by only 25% of the members of the set. The upper quartile 
values of the lulBV and x vectors, namely ]v”lev and i, are then used as localization delimiters. All 
elements whose ]I&,, and x values exceed ]u”]BV and i and whose r values lie below a prescribed 
minimum ratio, r”, are assumed to be potential candidates for refinement. The value of ? is set at 0.01. 
A parameter analysis is presented in [19] to justify the definitions of the localization delimiters ]u”IBV, x” 
and 7. Next, the set of candidate elements are grouped into clusters out of which bounded segments, the 
shear bands, are extracted through a least-squares analysis. The procedure is detailed in the above 
reference. 

4. The enrichment procedure 

In order to accurately resolve the structure of the shear band, it is essential that the level of 
discretization be such that the width of the band be spanned by at least two to three elements such that 
h/10 cn <0.5. In order to achieve this goal, we implement an adaptive refinement scheme which, 
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starting with an initial prescribed mesh, successively refines in sub-domains of interest. The procedure 
therefore belongs to the class of adaptive methods which rely on ‘enrichment’ to enhance resolution, 
rather than successive remeshings of the entire domain. 

This approach is ideally suited to the localization phenomenon, because the interest is on the shear 
band which occupies a small fraction of the entire domain. Also, ‘enrichment’ as opposed to 
‘remeshing’ has an extra advantage which makes it desirable for applications of this nature. In the 
quasi-static case, localization is triggered by material imperfections and occurs in those locations where 
imperfections exist. In dynamic problems, localization can initiate also in the absence of imperfections 
due to the boundary conditions and wave reflections. Now experiments suggest that subsequent 
material softening in the shear band may occur [20]. This necessitates that material properties be 
different in parts of the mesh-in particular, the band may have a different value of hardening modulus 
as compared to the surrounding back-bone material. Procedures which rely on splitting existing 
elements can easily incorporate this, since the material properties of the parent element are passed on 
to the successor elements. In case of remeshing however, it is not improbable that a refined element 
may comprise parts of two or more parent elements with different material properties. In that case 
assigning material properties to the refined element involves a measure ambiguity which is entirely 
avoided in the enrichment approach. 

The enrichment approach used in this paper results in refined meshes consisting of four- and 
five-noded quadrilaterals. The advantage of using quadrilateral elements is that they can handle 
isochoric plastic deformations without the volumetric locking noticed in, for instance, three-noded 
triangular elements. Five-noded quadrilaterals act as transition elements and help in restricting mesh 
enrichment to the localization zone and its immediate neighborhood. In addition, the use of five-noded 
elements is necessitated on another count, since there exist domains which cannot be filled solely by 
four-noded quadrilaterals, for instance, domains having boundaries composed of an odd number of 
edges (cf. [21]). 

The enrichment procedure is as follows. The elements to be enriched in the first place are those that 
are crossed by the shear bands, they will be referred to, by abuse of language, as ‘localized’ elements. 
They are divided into four successor elements. New nodes are added at the centroid and at the centers 
of all four sides. This allows for the Laplacian smoothing discussed in [22]. Thus, elements which are 
neighbours to the localized elements become five- and six-noded elements. Six-noded elements are 
transformed into 4 four-noded quadrilaterals or into transition macro-elements that contain 3 four- 
noded quadrilaterals. Some five-noded elements are transformed into 2 four-noded quadrilaterals. The 
key operations defining the procedure are displayed in Fig. 1. 

In summary, four-noded quadrilaterals of the initial mesh are transformed into 2, 3 or 4 four-noded 
quadrilaterals or into five-noded quadrilaterals. In this way, the band and its immediate neighborhood 
are described by four-noded quadrilaterals only, five-noded elements which are thought to be less 
accurate are situated at some distance from the band and the transition macro-elements avoids 
unnecessary spreading of the refinement in the elastic unloading domain. This procedure is at variance 
with that of Belytschko and Tabarra [13] where both five- and six-noded elements are used. 

The five-noded elements are used to ensure continuity of displacements and velocities across their 
boundaries. However, nodal values at the fifth node, say C, are not solved for; they are obtained by 
interpolation, using the bilinear shape functions, from the nodal values of the corner nodes along the 
corresponding side, say A and B. Since for the present algorithm, the fifth node C is always located at 
the mid-point of the line joining the corner nodes A and B, this process is simplified and for a 
representative nodal variable 4: 

4, = (+,/I + &9)‘2 (11) 
For elements whose C is a corner node, this also necessitates that their contributions to internal forces 

f i"t computed at node C be added to the internal force contributions at nodes A and B, respectively: 

fa"t=fy +f:'/2 (12) 
f;'=f;' +f;'/2 

(13) 
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A c B 

Fig. 1. Schematic of the enrichment procedure. ‘Localized’ four-noded splitted into 4 four-noded elements (a). Neighbors become 

five or six nodes which are processed as shown in (b) and (c). 

Notice that the five-noded elements retain the characteristics of the four-noded bilinear quadrilateral, 
for example the estimates for the eigen-value bounds are the same as for the four-noded quadrilateral. 
The above procedure is suggested by Devloo et al. [23] for explicit computations. 

Fig. 2 depicts an example of an original mesh and of the corresponding enriched mesh. Elements of 
divided into 4 four-noded quadrilaterals. The the original mesh that are crossed by the shear band are 

a)Initial Mesh b)Refined Mesh 

\ 

Shear Band 

Fig. 2. A typical instance of the outcome of the refinement procedure illustrating the splittings shown in Figs. l(a) and jb). Notice 
that the ‘spill-over’ is reduced to one row on each side of the ‘localized’ elements. 
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spill-over gives rise to six-noded elements which are all converted to transition macro-elements. This 
particular mesh does not give rise to any five-noded elements; examples of five-noded elements can be 
found in the meshes shown in Section 7. 

5. Transfer of variables 

5.1. A brief review 

Formulating adaptive finite element solutions for history-dependent materials involve several 
complexities. Unlike the elastic case, where the displacements and hence the stresses can be readily 
calculated on the refined mesh, the elasto-visco-plastic constitutive equations involve history-dependent 
variables which have to be appropriately transferred to the elements of the new mesh. This process is 
complicated by itself; in the case of localization, it is rendered more difficult owing to the need to 
preserve the localized character of the solution. During the process of transfer, the diffusion of internal 
variables, e.g. the plastic strains, should be limited; correlatively the velocity gradients must, as far as 
practicable, not get smeared over a part of the mesh exceeding the shear band. As we shall see, many 
of the proposed stress recovery schemes suffer from this defect which make them unsuitable for 
localization type applications. 

In almost all recovery procedures, the internal variables of the pre-existing mesh are first subjected to 
a ‘smoothing’ operation before being transferred to the new mesh. This smoothing operation typically 
involves a nodal projection. For example, in global L2 projection procedures, the internal variables 
stored at the element stress points of the parent mesh are transferred to the nodes of the parent mesh 
by means of a least-squares minimization ([16, p. 2271). 

After the internal variables have been transferred to the nodes of the parent mesh, using either the 
L2 projection procedure, or any of the alternatives mentioned in the next paragraph, the internal 
variables have to be recovered at the stress points of the refined mesh. To do this, every stress point of 
each element of the refined mesh has to be located in the parent mesh, that is, given the coordinates of 
a particular stress point, the element of the parent mesh in which it lies has to be identified. Once this is 
done, the state variables at the stress point can be obtained by interpolation, using the bilinear nodal 
shape functions, of the projected state variables stored at the nodes of the parent element. The process 
of identifying the element of the parent mesh, in which a particular stress point of the refined mesh lies, 
can be done by a sequential search through each element of the parent mesh until the appropriate 
parent element is identified, or alternatively, by using the Bucket Algorithm [29]. The Bucket 
Algorithm leads to a faster search, since it restricts the search to a smaller sub-domain of the parent 
mesh, identified through a prior pre-processing procedure. The above search, while inescapable during 
a remeshing procedure, may be avoided for a refinement procedure by storing an array containing the 
parents of newly created elements. 

As an alternative to the L2 projection approach, Zienkiewicz and Zhu [17] develop a patch recovery 
procedure in which a single and continuous polynomial expansion of the function describing the internal 
variables is used on element patches surrounding the nodes at which recovery is desired. The expansion 
is made to fit locally the superconvergent points for the internal variables in a least-squares manner. 
Boundary nodes require special treatment. The procedure was subsequently modified by Wiberg et al. 
[24] and Blacker and Belytschko [25] to incorporate the equilibrium residual and the residual of the 
natural boundary conditions in the least-squares minimization functional. Blacker and Belytschko 
propose, in addition, a conjoint polynomial recovery procedure which is expected to improve the 
accuracy of the method. 

As opposed to the above-mentioned smoothing procedures, Ortiz and Quigley [12] use a different 
approach. According to their procedure, the initial state fields are transferred to the quadrature points 
of the refined mesh by using an interpolation function which fits the values of the state variables at the 
quadrature points (stress points) of the parent mesh. This direct sampling procedure does not require 
nodal projection and therefore does not ensure continuity of the internal variables across the element 
boundaries. The authors report that they obtain convergent solutions with the six-noded triangular 
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element with three quadrature points per element. However, for four-noded bilinear quadrilaterals, 
extrapolation from the quadrature points gives rise to a jagged variation of the state fields across the 
elements, the refined mesh picks up the noise and the solution becomes corrupted. Since four-noded 
quadrilaterals are the elements of choice for the present procedure, the Ortiz-Quigley approach does 
not appear to be feasible for the purpose of this study. 

We have implemented both the global L2-projection procedure as well as the patch recovery 
procedure of Zienkiewicz-Zhu both in its original and modified forms. Neither of the two procedures 
seem to be particularly effective. The global L2 projection and subsequent stress recovery, while they 
preserved the shear band in the refined mesh, were found to result in excessive smearing of the 
localized deformation. The Z-Z procedure however, even it its modified form, had a far more negative 
effect. The extent of the smearing was so severe that it was impossible to recover the shear band at its 
prior location before enrichment. The difficulties in devising a robust procedure to transfer the state 
variables during remeshing or refinement processes are indirectly illustrated in the papers by Peric et al. 
[14] and Zienkiewicz et al. [15]: in these two papers, computations are restarted from scratch at each 
adaption, thus avoiding totally the need for transfer. 

5.2. Modified L2 projection procedure 

As mentioned earlier, neither the L2 projection nor the Z-Z procedure seem to be particularly 
effective for localization calculations. Of the two, the L2 projection procedure appears more promising. 
In order to enhance its effectiveness, we propose some modifications. All the modifications are driven 
by the need to limit diffusion of localization characteristics into the non-localized region. 

Thus, for all elements of the enriched mesh which do not map onto enriched elements in the parent 
mesh, the internal variables are directly transferred to the stress points of the enriched elements without 
performing the intermediate projection operations. For elements of the parent mesh which were not 
affected during the enrichment process, this is a natural choice. On the other hand, the successors of 
elements, which were not part of the shear band but still underwent some refinement due to the 
‘spill-over’ effect, inherit exactly the state of their parent element: this is because the state variables are 
stored at a single stress point. 

However, for all elements of the enriched mesh which are descendants of localized elements, the 
state variables are obtained through a least-squares procedure that involve all the elements of the 
parent mesh. 

The above approach allows for the benefits of ‘smoothing’ for the localized elements thereby 
preventing the occurrence of the problems encountered by Ortiz and Quigley, namely those of ‘noise’ 
and consequent corruption of the localized solution. However, the state variables for elements outside 
the shear band are not subjected to ‘smoothing’. This helps in preserving the localized character of the 
solution by limiting diffusion of shear band information. 

5.3. Transfer of primary variables 

The transfer of the primary variables-displacements, velocities and accelerations-present no 
difficulties. The nodal values of the parent mesh are transferred to the nodes of the new mesh using the 
nodal interpolation functions: 

u 1u,n+l = T %,n%n(X,,,+l) 

where u = (ui) is a typical primary variable, b denotes a node of the parent mesh n and a is a node of 
refined mesh n + 1. 

6. Variable time stepping procedure 

The global equations of motion (Eq. (6)) are integrated using an explicit predictor corrector scheme. 
Hence, the time step has to satisfy certain bounds in order to meet the stability conditions. For the 
trapezoidal integration used in this paper, the time step At has to satisfy an inequality of the form 
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where o,,, is the maximum eigenvalue of the generalized eigenproblem: 

(K-oM)$=O 

where K and M are the tangent stiffness and mass matrices, respectively. Also, as mentioned in Section 
2, for numerical efficiency a lumped mass matrix is used. It is known that the maximum eigenvalue of 
the entire mesh cannot exceed the maximum eigenvalue of any of its elements. Thus, w,,, is chosen to 
be the maximum among all the eigenvalues of each of the individual elements. Following the 
enrichment procedure described in Section 4, it is expected that the mesh will comprise quadrilaterals 
which may not necessarily be rectangular in shape. While the expression for the eigenvalue bounds for 
rectangular elements is well known, for quadrilaterals with arbitrary geometric configurations, bounds 
have been obtained only for four-noded elements [26]. In addition, these bounds are limited to one 
point quadrature and a lumped mass matrix. The bound on w,,, is given by 

w max 4 c&y 

where c is the elastic longitudinal speed and 

g =s $ $ Bi,B;, > 
I la I 

[ 

(Y, -Y,) (Y, -Y1) (Y, -Y*) (Y1 -Y3) 
BilJ = (x, -x2) (x1 -x3) (x2 -x4) (x3 -x1) I 

(14) 

where x, and y, are the coordinates of node a and A is the area of the element. In the present work, 
though uniform reduced one point quadrature was not used in the calculation of internal forces, the 
above estimate of the bound was not observed to give rise to instability even after a large time interval 
(see Section 7.3). 

7. Numerical examples 

In order to illustrate the computational procedure described in the preceding sections, the simplest 
elastic-plastic solid is chosen, namely a von Mises associative material with isotropic hardening. The 
details of the yield function and hardening rule used have been described in [6]. The size k of the yield 
surface in deviatoric stress-space is a function of the equivalent plastic strain x. In the applications to 
be presented hereafter, k is taken to be a piecewise-linear function of x: 

k(x) = 
k,, + H,x if x s XI 

k( xl) if x 5 x1 (15) 

where k,, H, and x, are material parameters constrained to satisfy the condition k(x,) > 0. Therefore, 
the plastic modulus is equal to H, for x c x, and is zero for x > x,. Values for the material parameters 
have been included in Table 1 except for the plastic modulus and the relaxation time which will be 
specified for each problem analyzed. 

Visco-plasticity is introduced as a regularization procedure (see e.g. [6]). The regularization makes 
use of a new parameter n > 0 called relaxation time. The equations of motion remain hyperbolic and it 
is possible to simulate numerically the development of shear-bands with finite thickness: indeed, the 

Table 1 

Standard material oarameters 

Mass density p = 2000 kg/m’ 

Lam6 coefficient A = 0 

Elastic shear modulus p = 320 MPa 

Initial yield strength k, = fi MPa 

Reference plastic strain x, = 2% 
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governing equations involve the product cn of the elastic wave-speed by the relaxation time which acts 
as a length-scale. 

The typical initial- and boundary-value problems analyzed are as follows. A homogeneous elasto- 
visco-plastic rectangular specimen with sides 2L, and 2L, is subjected along its top and bottom 
boundaries to a uniform axial tensile velocity jump Au H(t), H(t) being the Heaviside step function, 
while the lateral sides remain traction-free. The solid is initially stress-free and the magnitude of the 
velocity jump Au = 1.4 m/s is chosen to ensure that plastic loading initiates along the symmetry line 
when the elastic waves coming from the top and bottom boundaries collide, i.e. +Au, < Au < Au, with 
Au, = ~/&,lpc, ([27, Eq. (21)]). B ecause of the symmetry conditions, only the upper right quarter of 
the specimen is considered. Actually, most of problems analyzed are for a square specimen of side 
2L = 0.12 m. The effects of geometry on the shear band pattern will be studied on specimens of aspect 
ratios 2 and 4. 

The strain-localization scenario for the plastic moduli used in this paper starts as follows (see however 
[19] for the effects of the plastic modulus on the shear band pattern). Strains begin to concentrate at the 
free boundary on the symmetry line just after the arrival of the elastic waves coming from the top and 
bottom horizontal sides of the specimen. Then the strain concentration moves upwards almost along the 
diagonal of the specimen while the shear-band develops behind. 

7.1. Validation of the adaptive meshing procedure 

The first set of results are for hardening modulus H, = -60 MPa and relaxation time n = 6.25 x 

10e7 s. The initial mesh comprises 36 equal-sized square elements spanning a quarter of the problem 
domain. For this mesh, h/10 CT = 4, where n is the characteristic size of the element. The mesh is 
successively refined, thereby yielding smaller values of h/10 cr). The transition from one stage of 
refinement to the next is made once there are a sufficient number of elements satisfying the combined 
localization criterion described in [19]. For the number of elements to be sufficient, the shear band must 
be fully formed; tests to ascertain this were implemented and have been presented in the above 
reference. In order to check that the transfer procedure described earlier in Section 5 is satisfactory, we 
examine the transition for the mesh with h/10 cn = 1 to a mesh with a higher level of discretization 
(h/10 cv = 0.5). Comparison of the deformed shape and velocity fields shown in Fig. 3 at steps 44 and 
45 corresponding to axial strains equal to 1.325% and 1.3285%, respectively, indicates that the nodal 
variables have been correctly transferred between the two meshes; the same observation holds for the 
equivalent plastic strains shown in Fig. 4. 

The computed results for the same final axial strain of 5% at the same time T are shown in Figs. 6-9. 
Fig. 6 shows the deformed meshes and velocity fields. Fig. 7(a) shows the shear band width for several 
mesh refinements including each of the 4 meshes of Fig. 6 and Fig. 7(b) the maximum plastic strains in 
the shear band. The plastic strain profiles across the shear band are shown in Fig. 8 and Fig. 9 shows the 
corresponding force measured on the upper platens versus displacement curves. 

As mentioned in Section 4, experimental results suggest that differences in material properties are 
likely to grow between the shear band and the surrounding material: the large strains that develop in 
the band may trigger various physical phenomena that imply degradation of the mechanical properties. 
Here, we account for that observation in a rather crude way by assigning additional softening to the 
‘localized’ elements of size smaller than 10 cn. For illustration, the elements with reduced hardening 
modulus have been marked in Fig. 5 for the refined mesh with h/l0 q = 1. It is important to emphasize 
that the change of material properties is done only after the localization pattern has clearly emerged in 
the enriched mesh and only in elements which belong to the putative band. For the present problem, in 
all such elements H, is reduced to -70 MPa. Comparing the deformed mesh for h/l0 cn = 2 (Fig. 6(a)) 
with the deformed mesh for h/l0 cn = 1 (Fig. 6(b)), it is clear that in this case mesh refinement leads to 
narrowing of the shear band as depicted in the convergence plot shown in Fig. 7(a): while the shearing 
in Fig. 6(a) is concentrated over one element of the h = 20 cn mesh, in Fig. 6(b) it is still over one 
element of the h = 10 cn mesh. Two further refinements are performed corresponding to h/10 cn = 0.5 
and h/lOcv = 0.25. Now in both cases, the shear band is spread over 10 cn. This behavior is in 
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Step 44 before refinement Step 45 after refinement 

Deformation MagniScation Victor = 1.0 

h/lOcq = 1 

-- 

Fig. 3. Transfer of nodal variables. [a) Deformed mesh; (b) velocity field for mesh with h/l0 q = 1 at step 44 before refinement; 

(c) deformed mesh; (d) velocity field for mesh with h/lOq = 0.5 at step 45 after refinement (H, = -60 MPa, q = 6.25 X lo-’ s). 

remarkable contrast to the transition from the h/10 CT = 2 to the h/10 CT = 1 meshes, when mesh 
refinement led to a clear sharpening. 

To clearly depict the convergence of the solution with refinement, the shear band widths and 
maximum plastic strains are plotted for the successive refines meshes in Fig. 7. To avoid ambiguity, the 
shear band width for a particular mesh is defined as the width of the plastic strain profile at the location 
at which 15% of the maximum value of the plastic strain for that mesh is attained. For instance, for the 
mesh with h/10 cq = 1, since the maximum plastic shear strain at time T is 57% the shear band is 
measured at the location where the plastic strain is 8.5%. Fig. 7(a) clearly shows that the shear band 
width narrows with refinement and ultimately converges. The curves for the maximum plastic strain in 
Fig. 7(b) and the strain profiles in Fig. 8 also replicate this convergence behavior. The converged band 
thickness is found to be about 15 q, which closely approximates the expected value of 10 cv. The 
convergence plots confirm our previous remarks that the details of the shear band characteristics are 
captured with sufficient accuracy as soon as the band spans over two elements. 

Also, the force versus displacement curves are compared for the enriched meshes (Fig. 9). 
Comparing the curves for the various levels of enrichment leads us to conclude that the effect of the 
additional softening predominates. For higher values of h/lOq, the additional softening, since it is 
spread over a distance h, has a more marked effect. Hence, higher values of h/10 cq correspond to 
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Plastic Strains 

.08 

Plastic strain before refinement 
(Step 44, h/(lOq) = 1) 

Plastic strain after refinement 
(Step 45, h/(lOq) = 4 

Fig. 4. Transfer of internal variables. (a) Plastic strains for mesh with h/l0 cq = 1 at step 44 before refinement; (b) plastic strains 

for mesh with hi10 q = 0.5 at step 45 after refinement (H, = -60 MPa, q = 6.25 x lo-’ s). 

force-displacement curves with deeper troughs. It is noted however that as the mesh is refined, the 
force-displacement curves approach each other, thereby exhibiting convergence of the shear band 
solution. For instance, the troughs for h/l0 cq = 0.5 and h/l0 cq = 0.25 are practically the same. From 
Fig. 9, it seems that the force-displacement curves are not sensitive to the micro-structural details of 
the strain localization phenomena; they appear to be more responsive to changes in properties in the 
macro-level constitutive equations. 
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Fig. 5. Changes in material properties after localization: the plastic modulus in ‘localized’ elements is assumed to simulate 
mechanical degradation. 

a) h/lOcq = 2 b) h/lOcq = 1 

\\\ \\\ \ \ \ .\\\ \\\ \ \ .\\\ III,i \\\ \ \\\ \ ‘\ \ 
\\\ 

\\ 
\ 

, 
T 
\ 

Deformahn Magnification hctor = 1.0 

d) h/lOq = .25 

Fig. 6. Deformed meshes and velocity fields at the same axial strain of 5% for various meshes: hilOcq = 2, 1, 0.5, 0.25 
(H, = -60 MPa, -70 MPa, 7) = 6.25 X lo-’ s). 

7.2. Comparison with enriched displacement procedure 

7.2.1. Influence of the constitutive equations 
Reducing the value of the relaxation time 77 results in the regularized elasto-(visco)-plastic solid 

approximating the elasto-plastic backbone material more closely. Thus, reducing 7) leads to narrowing 
of the shear band, and allows us to compare the results of the adaptive meshing procedure with 
solutions obtained using the enriched displacement approach (cf. discussion at the end of Section 7.2.2). 
We solve the same problem as in the last example with H, = -40 MPa and the relaxation coefficient is 
reduced to nearly one fifth of its previous value, namely 77 = 1.5 x lo-' s. The problem is solved for 
seven meshes, h/lOq = 16.7, 8.35, 4.18, 2.09, 1.05, 0.525, 0.263. The enriched meshes are depicted in 
Fig. 10. Additional softening of H, = -50 MPa is introduced in all successors of the localized elements 
over the width 10 CT when h/l0 cr) G 1. Variations of the shear band width and maximum plastic strain 
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Fig. 7. Convergence of shear band widths (a) and maximum plastic strains (b) with refinement for an axial strain equal to 5% 

(H, = -60 MPa, -70 MPa, JI = 6.25 x lo-‘s). 

0 
I I I I I 
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n.x/lOC?j U/L 

Fig. 8. Plastic strain profiles at the same axial strain of 5% for various meshes: h/lOcn =2, 1, 0.5 and 0.25 (H, = -6OMPa, 

-70 MPa, r) = 6.25 x lo-' s). 

Fig. 9. Normalized force-displacement curves for various meshes: h/lOcn = 2, 1, 0.5 and 0.25. F,, is the impact force 

(H, = -60 MPa, -70 MPa, n = 6.25 x lo-’ s). 

with increasing refinement are depicted in Fig. 11(a) and (b). Again, the plastic strains increase and 
shear bands narrow as the mesh is refined. Both shear band width and plastic strain converge with 
refinement. In order to compare the adaptive meshing solutions with the results of the enriched 
displacement procedure, we solve, using the enriched displacement procedure, the same problem for 
the 6 x 6 mesh; for n = 1.5 x 10 -’ s this results in h/l0 cn = 16.67. Comparing the adaptive meshing 

solutions with the plastic strain profile obtained from the enriched displacement procedure, we note 
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h/lOq = 8.4 

Initial Mesh h/lOq = 16.8 

h/loq = 4.2 

h/lOq = 1.05 h/lOq = .525 h/lOq = .2625 

Fig. 10. Undeformed enriched meshes for h/lOq = 16.8, 8.4, 4.2, 2.1, 1.05, 0.525, 0.2625 (H, = 
10~‘s). 

-4OMPa, -5OMPa, q = 1.5 x 

that, while the width of the band for the highest level of mesh refinement (h/l0 cq = 0.263) is about 
12cq the enriched displacement solution predicts a bandwidth of 9~77 (Fig. 11(a)). The magnitude of 
the plastic strain in the patch is also comparable to that obtained from adaptive meshing (Fig. 11(b)). 

To verify the above conclusions, we solve the problem for the same value of relaxation time but with 
hardening modulus H, = -60 MPa. The problem is again solved for seven meshes, with h/10 cq = 16.7, 
8.35, 4.18, 2.09, 1.05, 0.525, 0.263 as before. Additional softening (H, = -7OMPa) in the putative 
localized elements enhances the localization pattern. The variations of the band thickness and 
maximum plastic strain with increasing refinement are again depicted in Fig. 11(a) and (b). As in the 
last example both shear bands and plastic strains converge with refinement. The band width at the 
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Fig. 11. Convergence of shear band widths (a) and maximum plastic strains (b) with refinement for two hardening moduli and for 
both adaptive meshing and enriched displacement procedures. Axial strain = 50/o, TJ = 1.5 X IO-’ S. 

highest level of refinement is found to be 13 cn. In this case also the patch resolves the band width to 
the neighborhood of its expected value, around 9 CT, while the maximum plastic strain is of the same 
order as that obtained from the adaptive meshing procedure. 

7.2.2. Influence of the ratio element sizelbandwidth 
To test the bounds of the domain in which both procedures are effective, we solve three more 

problems with relaxation times n = 1.25 x 10m7 s, n = 1.75 x lo-’ s and n = 2.5 x lo-’ s. All three 
problems have H, = -60 MPa for the underlying material and H, = -70 MPa in the shear band and are 
each solved for six levels of mesh refinement. For the problem with n = 1.25 X 10e7 s, the meshes vary 
from h/lOcq=20.0 to h/lOcn=0.31, while, for 7=1.75X10 -’ s, the meshes vary from h/10 cn = 
14.29 to hi 10 cn = 0.22, and for the problem with 77 = 2.5 x lo-’ s, the meshes range between h/l0 cn = 
10 to h/10 cn = 0.156. The enriched displacement solution in all cases is for the 6 X 6 mesh; for 
n = 1.25 X lo-’ s this results in h/lOcq = 20, for q = 1.75 X 10e7 s, h/10 cn = 14.29 while for n = 2.5 X 
lo-’ s the corresponding value of h/10 CVJ is 10. The variations of maximum plastic strain and band 
thickness with increasing refinement are depicted in Fig. 12. Both shear bands and plastic strains 
converge with refinement. The results from mesh refinement and enriched displacement procedures are 
quite similar. However, for n = 2.5 X 10 -’ s, while the maximum plastic strain is of the same order for 
both procedures, the enriched displacement solution yields a much smaller value of the band width: 
approximately 6 CT. This is because we have now entered the region where the enriched displacement 
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Fig. 12. Convergence of shear band widths (a) and maximum plastic strains (b) with refinement for three relaxation times and for 

both adaptive meshing and enriched displacement procedures. Axial strain = 5%. H = -60 MPa, -70 MPa. 

procedure starts losing its validity. For h/lOcn larger than 10, i.e. for cases where the putative shear 
band width is at least one order of magnitude smaller than the characteristic size of the element, the 
enriched displacement procedure is found to perform well. However, for h/10 q equal to and smaller 
than this value, we have conjectured that the range in which it can be safely used has been exceeded as 
explained in [l], Section 3.8; in such cases, the adaptive meshing procedure should be used to resolve 
the structure of the shear band. 

7.3. Temporal stability 

To test whether the shear band widths differ significantly from the converged solution at time T 
corresponding to an axial strain of 5%, the same problem as in Section 7.1 was solved for times greater 
than T for the mesh with h = 2.5 CT. As mentioned in Section 7.1, the converged shear band width at 
time T for this problem was found to be about 15 CT, hence we expect the band to be spanned by more 
than six elements. The loading process is continued up to time 2.25 T. Time 2.25 T corresponds to 25 to 
and fro traversals of the problem domain by the impacting wave. As Fig. 13(a) shows, the shear band 
widths vary little with time, the minor fluctuations in their values can be attributed to measurement 
errors: this is expected since, due to the visco-plastic regularization [6], the shear band width is set by 
the internal length scale parameter cn. The same conclusion can be drawn from the strain profiles 
shown in Fig. 13(c). The plot of the maximum plastic strains in Fig. 13(b) shows an almost linear 
variation with time: this behavior is to be contrasted with the results reported in [28], wherein the 
plastic strains in the band are found to increase exponentially with time. 
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Fig. 13. During the deformation process, the shear band width (a) keeps a constant value while (b) plastic strain increases 
linearly; (c) plastic strain profiles at various times (h/l0 cq = 0.25, H, = -60 MPa, -70 MPa, 7 = 6.25 X lo-' s). 

7.4. Examples with more than one band 

The next two sets of results are for problem geometries which give rise to more than one shear band. 
For both sets of results H, = -30 MPa and n = 6.25 x lo-’ s. Degradation of material properties is 
simulated by a plastic modulus H, = -45 MPa in the localized elements. 

For the first specimen with sides 2L, = 0.12 m and 2L, = 0.24 m, the first shear band is initiated at the 
free boundary on the symmetry line, just after the arrival of the elastic waves coming from the top and 
bottom horizontal sides. Once this shear band reaches the center line, it is reflected and gives rise to 
another band at approximately right angle to it. The deformed meshes and velocity fields for two 
successive refined meshes are shown in Fig. 14, along with those for the initial mesh. Starting with 
h/10 q = 2 successive refinements yield h/10 CT = 1 and h/10 CT = 0.5, respectively. 

The second specimen is thin and wide with sides 2L, = 0.48 m and 2L, = 0.12 m. The first shear band 
is again initiated on the symmetry line on the bottom right-hand corner of the free boundary. On 
propagation it is reflected at the top boundary and gives rise to a second band approximately at right 
angle to the first band. This process continues along the entire width of the specimen ultimately giving 
rise to four shear bands. Deformed meshes and velocity fields for the initial mesh as well as for two 
successive refinements are shown in Fig. 15. Mesh refinement helps resolve the shear bands. This is 
found to be particularly true for the third and fourth bands in the specimen. This same problem has 
been solved for the mesh h/l0 cn = 2 with the enriched displacement procedure (Fig. 10 in [19]): all 
four bands formed at the same location as in adaptive meshing here but the localization pattern is more 
diffuse for the third and fourth bands. 
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h/lOq = 2 

Fig. 14. In a slender specimen, the II 3C In pattern exhibits two bands: the ,er 
one along the vertical symmetry axis. Deformed meshes and velocity fields for h/l0 CTJ = 2, 1 and 0.5 and an axial strain equal to 
3.08% (H, = -30 MPa, -45 MPa, 7 = 6.25 x IO-' s). 
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h/lOcrj = 2 

h/lOq = .5 h/lOq = .5 

Fig. 15. For a thin and wide specimen, the band pattern progresses towards the interior of the solid by successive reflections, on 
the upper boundary and horizontal symmetry axis, of the right shear band emanating from the free boundary. Deformed meshes 
and velocity fields for hi10 cn = 2, 1 and 0.5 and an axial strain equal to 6.57% (H, = -30 MPa, -45 MPa, 7) = 6.25 X 10. ’ s). 

8. Concluding remarks 

The dynamic strain localization problem is solved using a mesh enrichment approach. The aim is to 
resolve the shear band structure through successive refinements of the finite element mesh. A 
refinement criterion using three localization characteristics is employed. Elements used are four- and 
five-noded quadrilaterals. A modified procedure for transferring internal variables is implemented. The 
results yield consistent and stable solutions. In particular, the shear band width and maximum plastic 
strain in the band are found to converge to stable values with refinement. 

It should be emphasized that localization in the above problems is not triggered by the presence of an 
imperfection. In a crude attempt to simulate material degradation in the band, additional softening is 
assigned to the localized elements only after the shear band has formed. The effect of the additional 
softening is to sharpen the shear banding and enhance the localization pattern. 

In contrast to the aforementioned results, in the paper by Belytschko et al. [8], the authors report 
that the initial bandwidth is set by the size of the imperfection, even in the dynamic case (in case of 
more than one band, in addition to the bandwidth, the shear band pattern varies with the size of the 
imperfection, i.e. the number of bands and their orientation change with the size of the imperfection). 
They also find that the shear band narrows with time. The continuing narrowing of the shear band gives 
rise to mesh dependent solutions, since ultimately even the finest possible mesh fails to resolve the 
band. The difference between the results reported in this paper and those due to Belytschko et al. [S] 
can be attributed to the fact that the visco-plastic constitutive relations of the power law type used by 
the latter lead to explosion of imperfections. Comparison of the adaptive meshing approach used in this 
paper with the enriched displacement procedure of Loret et al. [l] leads to interesting conclusions. It is 
found that the adaptive meshing and enriched displacement procedures yield consistent solutions. The 
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enriched displacement procedure requires that the characteristic size of the element in which the patch 
solution is performed, be at least one order of magnitude larger than the size of the putative band, 
h/10 CT > 10. For smaller values of hi10 cq, the adaptive meshing procedure is preferable. For 10 CT 
several orders of magnitude smaller than h, the computational cost of adaptive meshing and stable time 
integration would render this approach extremely expensive: in such cases the enriched displacement 
procedure should be used. More usually, to resolve the structure of actual shear bands, we would 
expect a combination of both approaches to be particularly effective: several levels of adaptive mesh 
refinement followed by use of the enriched displacement procedure in the localized elements comprise a 
plausible scenario for tackling real-world problems. 

While the adaptive meshing procedure yields consistent results, its capacity to resolve the structure of 
the shear band, in particular to give the correct band width, is hampered by the limitations associated 
with the need to transfer the state variables between successive meshes in all calculations involving 
history-dependent constitutive relations. As discussed in the above examples, the adaptive meshing 
procedure tends to predict values of the bandwidth somewhat larger than the expected value of 10 cq. 
While the procedure for transferring the state variables suggested in Section 5.2 was found to be more 
efficient than many of the methods currently in practice, there are undoubtedly limitations associated 
with it. The ‘smoothing’ process inevitably involves loss of information and smearing, thereby limiting 
the finite element’s capacity to resolve the shear band. However, ‘smoothing’ cannot be entirely 
avoided, as otherwise the discontinuity at element boundaries results in ‘noise’ and corrupts the 
solutions. 

Improved and more accurate stress recovery procedures appear to be the need of the hour. The 
further success of adaptive meshing schemes for strain localization type problems hinges on develop- 
ments in this area. 
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