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By assuming from the outset hyperelastic constitutive behavior, an alternative approach to finite 
deformation plasticity and viscoplasticity is proposed whereby the need for integration of spatial rate 
constitutive equations is entirely bypassed. To enhance the applicability of the method, reference is 

made to a general formulation of plasticity and viscoplasticity which embodies both the multiplicative 
and additive theories. A new return mapping algorithm capable of accommodating general yield 
conditions, arbitrary flow and hardening rules and non-constant tangent elasticities is proposed. Finally, 
a numerical example is presented which illustrates the excellent performance of the method for very 
large time steps. 

1. Introduction 

In the finite deformation literature it is often found that the elastic response of the material 
is spatially formulated in rate form, i.e., as an incremental relation between objective rates of 
stress and spatial deformation. If special care is not exercised, such incremental relations may 
not be integrable and thus inconsistent with the notion of hyperelasticity, in the sense that a 
stored energy potential does not exist. This situation may result in aberrant behavior such as 
hysteretic dissipation inappropriate for an elastic model [l, 21. A familiar example is furnished 
by the assumption frequently made for computational purposes that the spatial tangent 
elasticity tensor is constant and isotropic. It has been shown in [3] that this widely employed 
constitutive model is not only incompatible with the notion of hyperelasticity but even fails to 
define an elastic (non-dissipative) material in the nonlinear range. 

As noted in [4], from an algorithmic standpoint special care must be exercised in the 
integration of spatial rate constitutive equations if the fundamental principle of objectivity is 
to be preserved. This leads to the notion of incrementally objective integration algorithms 
[4,5], and often results in schemes which may add significantly to the computational cost of 
the analyses [6]. One of the aims of the present paper is to show that this added expense is 
entirely superfluous. The key fact to be realized is that, even for an inelastic material, the 
elastic response can be spatially formulated in primitive or non-rate form as a functional 
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relation between stresses and suitable strain measures. This point appears to have passed 
largely unnoticed in the computational literature. A notable exception is found in Argyris and 
Doltsinis [44,45]. There, the notion of incremental elastic potential employed in [42,43] is 
replaced by a hyperelastic characterization of the elastic response relative to the intermediate 
configuration, formulated in the context of the so-called natural approach. For this purpose, a 
second-order expansion of the free energy in terms of natural strains is considered. These authors, 
however, seem to favour an algorithm treatment based on rate formulations as outlined in [46]. 
Here, in a different context, a general hyperelastic characterization is considered formulated 
relative to either the intermediate, spatial or material configurations. As a result of this 
formulation, the need for integration of spatial rate constitutive equations is entirely bypassed, even 
in the inelastic case. Furthermore, truly hyperelastic behavior is obtained and the principle of 
objectivity is trivially satisfied. 

To emphasize the applicability of the method to problems involving inelastic behavior, finite 
deformation elastoplasticity is considered in detail. In this case, stresses are updated in two 
steps: the spatial elastic stress-strain relations are first evaluated to produce an elastic stress 
predictor, which is subsequently mapped onto a suitably updated yield surface. Following the 
pioneering work of Wilkins [7], similar return-mapping notions have been extensively used in 
the past [8-12, 411 although the scope of such formulations has been by and large restricted to 
simple plasticity models such as linearly hardening von Mises and to constant elastic moduli. 
The problem of extending these schemes to the case of nonlinear elasticity with non-constant 
tangent elasticity tensors is not a trivial one and has not been heretofore considered in the 
literature. It is shown in Section 3 how the operator splitting methodology can be used to 
define computationally efficient return mapping algorithms which are applicable to very 
general materials exhibiting non-associated plasticity, arbitrary yield criteria and hardening 
laws and variable elastic moduli. This latter aspect is of particular relevance since, as 
mentioned above, a formulation of the elastic response consistent with the principles of 
hyperelasticity cannot possibly result in a constant tangent elasticity tensor. 

Finally, in Section 4 a numerical example is presented which demonstrates the excellent 
performance of the method for very large values of the time step. Further numerical examples 
are given in [38]. 

2. Summary of constitutive theory for finite deformation plasticity 

The proper formulation of elastoplastic constitutive laws in the finite deformation range has 
been the subject of considerable conjecture. Differences of opinion have been voiced 
concerning elastoplastic kinematics and the formulation of flow rules. Lee [13,14] and others, 
for instance, have proposed a theory based on a multiplicative decomposition of the defor- 
mation gradient, 

F = FeFP , (2.1) 

where the elastic part of the deformation F’ is obtained by unloading all infinitesimal 
neighborhoods of the body. This has the effect of introducing ‘a new configuration into the 
formulation, commonly termed the intermediate configuration, defined as the collection of all 
unloaded local neighborhoods. This situation is graphically shown in Fig. 1. An account of the 
geometric concepts underlying the multiplicative decomposition can be found in [15,47]. For 
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Fig. 1. Schematic representation of material, intermediate and spatial configurations. 

polyc~sta~line solids, such as metals, multiplicative theories are amenabte to an elegant physical 
interpretation based on dislocation mechanics [16]. 

The multiplicative relation (2.1) does not exhaust, however, all the possibilities concerning 
an elastic-plastic decomposition of deformation. Green and Naghdi [17] have advocated an 
additive decomposition of Lagrangian strain, 

E= E”+EP, (2.2) 

in terms of elastic and plastic components E” and EP, respectively. Such an additive decom- 
position rule has been conclusively shown to enjoy a solid thermodynamic foundation 
[18, 19]. On the other hand, in the computational literature an additive decomposition of the 
spatial rate of deformation tensor, 

d= d”+&, 

has been frequently postulated (e.g. [20-24, 411). 

(2.3) 

In view of this lack of a standard and generally accepted theoretical framework, this section 
is devoted to a brief account of a constitutive theory for finite deformation elastopiasticity 
which will be taken as a basis for subsequent discussions. The multiplicative decomposition 
(2.1) is adopted as the basic kinematic assumption. However, purely geometric arguments 
together with the concept of covariance’ show that within the multiplicative framework material 
and spatial formulations can be derived in which strains decompose additively into elastic and 
plastic parts. The main geometric relations involved are summarized in Table 4. The cor- 
respondence between additive and multiplicative theories has also been investigated by Green 
and Naghdi [27] and Nemat-Nasser 1287, among others, in a different context. 

For simplicity, attention is confined throughout to the isothermal case. Tables 1, 2 and 3 
summarize the relevant relations pertaining to the constitutive framework adopted herein. It 
should be emphasized, however, that the numerical techniques proposed in this paper are not 
dependent upon this particular set of constitutive assumptions and can be extended to other 
models without conceptual changes. 

‘The notion of covariance expresses the idea of form invariance of the basic field equations with respect to 
arbitrary superposed diffeomorphisms (see [29] and [31, Section 2.41). This notion, central to other branches of 
mechanics such as general relativity, also plays an important role in continuum mechanics (see [2S, 261). 
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Table 1 
Material formulation of etastoplastic constitutive relations 

Elastic-plastic decomposition of Lagrangian strain 

E”=E-EP 

Stress-strain relations 

S = PO g (E', E", Q) 

Flow rule 

Lip = jR(S, C, Q) 

Hardening laws 

Q = ?H(S, C, Q) 

Yield criterion 

W, C, Q) = 0 

In the material description, Table 1, the local plastic state of the material is assumed to be 
characterized by the Lagrangian strain tensor E, the plastic Lagrangian strain EP = 4(Cp - 1) 
and the plastic internal variables Q. IIere, Cp is the plastic right Cauchy-Green tensor defined 
as C’= FPthP, and c is the metric tensor in the intermediate configuration. Typically, one 
chooses (? = I; i.e., the standard metric in R3. In the present context, the elastic Lagrangian 
strain E;” is formally defined as the difference E’ = E - EP. The nature of the plastic variables 
depends on the particular plastic model under consideration. For instance, for isotropic 
hardening, von Mises yield criterion and associative flow rule; the vector of internal plastic 
variables Q reduces to the yield stress. For isotropic-kinematic hardening, Q includes both the 
yield stress and the back-stress tensor defining the location of the elastic domain. 

The stress-strain relations may be expressed in terms of a free-energy potential 
P(Ee, EP, Q). It should be noted that this form of free-energy potential coincides with the one 
first proposed by Green and Naghdi [17]. 

Genera1 non-associated flow rules and hardening laws governing the evolution of EP and Q 
can be formulated in terms of a plastic flow direction R(S, C, Q) and plastic moduli 
H(S, C, Q). Yielding of the material is expressed in terms of a yield function @(S, C, Q). For 
instance, in the particular case of an associated flow rule one has R = %D/&S. Note that the 
dependence on C of R, H and rf, need to be included to account for effects such as pressure 
dependence of the plastic response. 
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Table 2 
Multiplicative formulation of elastoplastic constitutive relations 

Elastic-plastic decomposition of deformation gradient 

F = FeFP 

Stress-strain relations 

Flow rule 

Hardening laws 

Yield criterion 

Table 3 
Spatial formulation of eiastoplastic constitutive relations 

Elastic-plastic decomposition of Almansi strain 

Stress-strain relations 

Flow rule 

L,eP = dP = jr(T, g, q) 

Hardening laws 

Yield criterion 

22.5 
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2.2. Multiplicative theory 

Relative to the intermediate configuration, Table 2, the @al plastic state is characterized by 
the Lagrangian strain ten_sors 3 = f(@ - G) and EP = +(G - bp-l), and some suitable set of 
plastic internal variables Q. Here, (? = F”gF” is the elastic right Cauchy-Green relative to the 
intermediate configuration, bp-l = FP-‘G-‘FP-’ is the plastic Finger deformation tensor, and G 
stands for the metric tensor in the reference configuration. Finally, g denotes the spatial metric 
tensor. Although in the context of R3 one typically makes the identification G = G =g with 
the standard euclidean metric in R3, for conceptual clarity it proves convenient here to 
maintain the notational distinction between these three metric tensors. The relationship 
between the material tensors C, Cp, EP and E”, and the tensors Ce, G, EP and ge defined on 
the intermediate configuration, has been summarized for convenience in Table 4, columns 1 
and 2. These tensors play an identical role in different configurations. The relationship 
between these tensors is one of tensorial nature which is defined in the only possible way that 
geometrically makes sense. In the context of analysis in manifolds (e.g., see [29] or [31, 
Chapter 11) the terminology pull-back/push-forward is often employed. We shall use this 
‘descriptive’ terminology in the sequel. 

The relation between E” and the second Piola-Kirchhoff stress tensor relative to the 
intermediate configuration, s, can be expressed with the aid of an objective free energy potential 
@(J!?, @‘, Q, FP). Note that this choice of arguments is entirely consistent with the one made in 
the material formulation, and simply follows from the latter by push-forward with FP. This 
accounts for including FP in the list of arguments of @. 

The plastic response in the intermediate configuration may be characterized by means of a - - 
plastic flow direction R(S, Ce, Q), plastic moduli a($ C”, 6) and a yield function s(s, e, Q). 
Consistent with the dependence in the material description of the plastic response functions on 
C, the dependence of R, a and 6 on the elastic right Cauchy-Green tensor Ce needs to be 
included to obtain a fully covariant formulation. 

It may be noted from Table 2 that rates of tensors defined in the intermediate configuration 
are taken relative to the plastic flow, which immediately leads to the notion of plastic Lie 
derivative. This concept, proposed in [26] in the context of elasticity, is the natural extension of the 
notion of Lie derivative (e.g., [31]), to the present description relative to the intermediate 
configuration. In a more classical terminology, it may be defined simply as the convected 
derivative relative to the intermediate configuration. As an example, the plastic Lie derivative of 
Ce is computed by first pulling Ce back to the material configuration to obtain C, taking the time 
derivative C and finally pushing it forward into the intermediate configuration according to the 
expression Lip = Fp-tt?Fp-l. Similar definitions apply to any other tensorial object, in 
particular to the internal variables Q as recorded in Table 2. 

2.3. Spatial formulation 

By way of background, it may be recalled that in the context of elasticity the stored energy 
potential in the spatial description is an objective function of the_ form $(g, F) [25, 29, 311, 
where g is the spatial metric tensor. The tensorial dependence of + on g was first pointed out 
by Doyle and Ericksen [30] who derived the formula 7 = 2p0d$/8g, where T is the Kirchhoff 
stress tensor. Since the Almansi strain tensor e is given by e = $(g - b-l), with b-’ = F-‘F-l, we 
have the equivalent form $(e, F) of the stored energy potential, which in turn leads to the 
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alternative expression T = ~~~~/~e for the Doyle-Ericksen formula. This formula follows from 
the fact that L,b = 0, [25]. 

In the present context, similar arguments lead to a spatial elastic potential of the_form +(e”, 
ep, q, F), where ee = $(g - P-l) is the elastic Almansi strain tensor, and be-’ = Fe-tGFe-l is the 
elastic Finger deformation tensor. Note that plastic strains may be defined by means of the 
difference eP = e - ee. AlternativeIy, the relation ee = e - ep follows from its material counter- 
part E’ = E - EP simply by push-forward operation. We refer again to Table 4 for an explicit 
expression of the relations between spatial and material tensors, and tensors defined relative 
to the intermediate configuration. Note that these are simply pull-back/push-forward type of 
(tensorial) relations. It should be emphasized that, contrary to common practice in the 
computational literature, the elastic response of the material is thus formulated as a non-rate 
functional relation between spatial stresses and elastic strains. 

By covariance, the flow rule, hardening laws and yield criterion take the form expressed in 
Table 3, in terms of T, the spatial plastic variables, q, and g. This latter quantity is the spatial 
counterpart of C and is needed in general to obtain scalars from r and q and formulate 
tensorially meaningful plastic relations. 

Finally, the Lie derivative leP is defined as the push-forward into the current configuration 
of tip, which takes the form L,eP = F-‘&‘E‘-‘. Similarly, L,q is defined as the push-forward of 
0 into the current configuration. The specific component form of L,q depends on the 
tensorial nature of the plastic variables q under consideration. The reader unfamiliar with 
geometric notions such as the push-forward and pull-back operations and the Lie derivative 
may wish to consult reference [31, Chapter l] for an excellent review. 

REMARK 2.1. In the context of elasticity, one also have (at least) three possible alternative 
descriptions, namely, the material and spatial descriptions and the rotated description [25, 261. 
The latter is obtained from the spatial description by pull-back with the rotation tensor arising 
from the polar decomposition of deformation gradient. ~quivaIently, the rotated and material 

Table 4 
Basic definition of kinematical and stress variables 

B = material 

Configurations 

8, = intermediate B, = spatial 

Basic 
kinematic 
tensors 

Rate of 
deformation 
tensors 

Basic stress 
tensors 

C = F’gF; (JQ -_ FQ’&i’Q 

E=:(C- G) 
E” = &I?’ - G) 
E” = ;(C - Cp) 
E=F+EP 

ce = Fe’@; 6 
g = $(ce- FP-‘G#‘P-‘) 

g, b e-1 = F-t&-’ 

e = ;(g - F-‘GF-‘) 
jjP = $(c _ FP-‘GF”‘) eP = &-I _ F-t@‘-‘) 

tic;{@-@ & = ;(g - ,,-I) 

E=&+@ e = ee + ep 

DZL;E d=L,,e 
dp = L,ep 
d” = Lyee 

d=de-tdP 

r = FSF’ 
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descriptions are related by pull-back/push-forward with the stretching tensor. In plasticity, the 
description relative to the intermediate configuration is the counterpart of the rotated 
description. 

REMARK 2.2. The multiplicative decomposition (2.1) as it stands, is only defined modulo 
rigid body motions superimposed on FP. Attempts to uniquely orient the intermediate 
configuration have been made by Mandel (e.g. [32, 331) and others. In view of the in- 
determinacy underlying (2.1) some authors have advocated flow rules for the plastic spin in the 
intermediate con~guration f34] or for tip [16]. 

REMARK 2.3. A general loading/unloading criterion for the elastoplastic problem can be 
expressed in standard Kuhn-Tucker form as 

cp<O, X20, ipx = 0. (2.4) 

These conditions must hold simultaneously along any possible process. For p < 0, (2.4)3 yields 
h’ = 0, i.e. elastic behavior, while plastic flow is characterized by h’ > 0 which, as a result of 
(2.4),, implies satisfaction of the yield criterion 9 = 0. h’ is determined during loading by 
enforcing the so-called consistency condition 4 = 0. A convenient characterization of elas- 
tic/plastic processes, clearly inspired in the algorithmic concept of elastic predictor, has been 
recently discussed at length in [41]. This characterization is based on the use of the so-called 
‘rate of elastic trial stress’ to sense loading/unloading, and arises naturally in the algorithmic 
framework discussed below. We refer to [41] for further details. 

2.4. Model problem 

Specific examples of simple constitutive models of the form summarized in Table 3 are the 
following. 

(1) ~ypereZ~s~~c response. This is an example describing a class of hyperelastic constitutive 
models proposed in [3] which proves convenient in numerical applications. In a spatial 
description, the-model is defined by 

~=AA(J’)+$_de-p IogJ”, 

r= AJ” !!Eg2 g-1 + /@e - g-l), 

.dU(J”) g-~Bg-~+2 dJe 
I 

(2.5) 

where J” = det(F”), J = det(F), I” is the first invariant of b”, and 1’ is the fourth-order symmetric 
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unit tensor with components $f(g-‘)‘k(g-f)if + (g-‘>“(g-I)‘“]. The fourth-order tensor ce is the 
spatial elasticity tensor of the material which is often defined indirectly by push-forward of the 
material elasticity tensor po8S/dE” (e.g., see [2, p. 131, equation (45.2)]). The parameters A and 
p are Lame type material constants. 

The form of the stored energy function (2.5), corresponds to a neo-Hookean material which 
is extended into the compressible range by adding the extra function U(J”). This is in fact a 
particular case of a Hadamard material. A simple choice of U(J’) is given by 

U(J”) = $(log Je)2 ) (2.6) 

which has proven effective in the context of the penalty method applied to incompressible 
materials such as the Mooney-Rivlin model [35]. Model (2.5) defines the simplest possible 
hyperelastic material whose tangent elasticity tensor is isotropic. Further motivation is 
provided by the fact that the Mooney-Rivlin model is a first approximation to the constitutive 
behavior of any nonlinear incompressible elastic isotropic material. 

(2) Plastic response rno~e~. An example of a plasticity mode1 widely used in computation is 
furnished by the von Mises yield criterion with isotropic hardening. To illustrate the role 
played by the spatial metric tensor g and the right Cauchy-Green tensor C in a covariant 
formulation of plasticity, material and spatial versions of the von Mises model are given next. 
In a spatial setting, the von Mises yield function reads 

(2.7a) 

where the components of the deviatoric Kirchhoff stress tensor T’ are given by 

7 
dj -_ ,pj _ $(7k~gkj)(g-*)B , (22.7b) 

and K is the yield stress in shear. An alternative material formulation involves the yield 
function 

@(s, c, K) = &‘rJs’KLc,,cJL - K2 , 

where the stress deviator consistent with (2.7b) is defined as 

s’” = s” - f( sKL cKL)( c- ‘)” . (2.8b) 

Note that the hydrostatic pressure p is given by the equivalent expressions 3Jp = r”g, = s”crJ 

which are utilized in spatial and material de~nitions, (2.7b) and (2.8b), of the stress deviator. 
Thus, it is apparent that g and C need to be included in the formulation of the plastic 
response. Note further that an identical role is played by e in the intermediate configuration. 

3. Numerical formulation 

In this section, a number of numerical techniques is proposed that allow a systematic 
treatment of constitutive models of the genera1 type discussed above within the context of 
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finite element analysis. The stress update algorithm herein proposed falls within the category 
of elastic predictor-return mapping algorithms widely used in computational plasticity. 
However, our formulation departs from currently employed procedures in that: 

(i) The need for integration algorithms for elastic rate constitutive relations is entirely 
bypassed by formulating the elastic relations in non-rate form. 

(ii) General hyperelastic models are considered and the definition of the return mapping is 
capable of accommodating non-constant elastic moduli. 

(iii) The algorithm is applicable to completely general plasticity models including non- 
associated flow rules and arbitrary yield criteria. 

(iv) Although the spatial formulation is herein emphasized, the proposed algorithm equally 
applies in a material setting. 

In particular, our formulation of the elastic response is truly hyperelastic and does not 
involve objective stress rates. Thus, the elastic predictor is reduced to a mere function 
evaluation. Algorithmic requirements pertaining to integration of spatial rate constitutive 
equations such as incremental objectivity [4, 51 are not an issue here owing to the inherently 
objective nature of the hyperelastic constitutive relations. In addition, the elastic predictor is 
infinitely accurate since no algorithmic approximations are involved. 

3.1. Elastic-plastic operator split 

In any numerical scheme employed for the analysis of elastoplastic problems it eventually 
becomes necessary to update state variables such as stresses, strains and plastic parameters. In 
the context of finite element analysis using isoparametric elements, stress updates take place at 
the Gauss points and are performed for a given incremental deformation, The problem to be 
addressed, therefore, is that of updating the known state variables F,, FP,, qn and 7” associated 
with a contrerged configuration B, into their corresponding updated values F,,+l, FP,+,, qn+l and 
T,+~ on the updated configuration B n+l in a manner consistent with the constitutive assump- 
tions expressed in Table 3. In this process, the incremental displacements, U, defining the 
geometry update B, + B,+, are assumed given. 

A number of authors has advocated the use of so-called return mapping algorithms for 
integration of elastoplastic constitutive relations [7-123. The applicability of such algorithms 
has been for the most part restricted to simple plasticity models such as linearly hardening von 
Mises model with constant elastic moduli. However, many materials of engineering interest 
such as concrete and soils exhibit nonlinear elastic response, non-associated plasticity and 
complex yield criteria, flow rules and hardening laws. Furthermore, it has been shown in [3] 
that an elastic material cannot possibly have constant and isotropic tangent elasticities in the 
finite deformation range. Therefore, an integration scheme for elastoplastic constitutive 
relations should be able to accommodate general non-constant tangent stiffness compliances. 

We show next how an operator splitting methodology proposed in [36, Chapter 31 in the 
context of linearized kinematics can be conveniently extended to define efficient return 
mapping procedures which are capable of dealing with fully nonlinear elastic response and 
complex plastic models. 

For the purpose of this discussion, the deformation gradients are taken to be prescribed 
functions of time 



J.C. Simo, M. Ortiz, 

F = k(t) . 

Finite deformation elastoplastic analysis 231 

(3.1) 

shall ignore the possibility of a dependence of the For simplicity, in what follows we 
potential 9 on the plastic variables 4. Let us start by rephrasing 
relations in Table 3 as a set of equations of evolution of the following 

d=d’+dP=&t), 

the spatial constitutive 
form : 

L,T = Jc’ : d’ + Jcp : dP , (3.2) 

L,eP = dP = jr(~, g, q) , L,q = jh(T g, 4) 3 

where d^(t) = (k(t)iF’-l(t))” ’ g’ 1s Iven. The elastic constitutive equations have been formulated in 

rate form simply by taking the Lie derivative of stress-strain relations T = poi)$/ae’. To this 
end. one defines 

(3.3) 

where ,cr is the spatial tangent elasticity tensor. In addition the fact has been used that 

L,e’ = d’ , L,eP = dP . (3.4) 

The plastic rate parameter + is determined from the requirement that the yield condition, 

be identically satisfied during plastic loading. Note that any other objective stress rate can be 
used in (3.2), by suitably adjusting the right-hand side. In particular, if an ‘elastic’ Lie 
derivative relative to the intermediate configuration is employed, the term in (3.2), involving 
dp no longer appears explicitly. 

3.1.2. Elastic-plastic operator split 
As first noted in [36], return mapping algorithms are a natural consequence of the fact that 

constitutive relations (3.2) can be ‘split’ into elastic and plastic parts. The former is deformation 
driven and is given by 

d = d” + dP = d(t), 

(3.6) 
L,T = Jc’ : d, L,eP=dP=O, L,q = 0 . 

On the other hand, the plastic part of the constitutive relations reduces to 

d=d’+dP=O, 

; T = -J(c’ - cp) : dP , 
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(3.7) 

It should be noted that (3.6) and (3.7) do indeed add up to the total rate constitutive relations 
(3.2) consistent with the notion of operator split. 

The decoupled equations (3.6) and (3.7) are amenable to the following interpretation. 
Elastic part of the constitutive equations. In the elastic equations (3.6) the plastic response of 

the material is ‘frozen’, so that plastic strains and plastic variables are merely pushed forward 
into subsequent configurations. Furthermore, since dP = 0 = FP-‘@‘FP-l, it follows that ep = 0 
and hence fi = 0. Consequently, the evolution of the state variables introduced by the elastic 
equations takes place for a fixed intermediate configuration, and all of the prescribed defor- 
mation d(t) goes into elastically straining the material. Thus, the elastic deformation gradients 
F” = %(t)FP-’ = k=(t) b ecome themselves given functions of time. Finally, since our for- 
mulation is hyperelastic, the elastic equations (3.6) are directly integrable and stresses are 
simply given by the elastic relations 

(3.8) 

Plastic part of the constitutive equations. In the plastic equations, on the other hand, one has 
d = 0 and hence the spatial configuration remains fixed. Under these conditions, the Lie 
derivative simply reduces to partial differentiation with respect to time and, in particular, 
8eP/dt = dP. Thus, the plastic equations (3.7) may be recast as 

~T=-$J(ce-ep): r@,g,q), 

(3.9) 

or, dividing through by y, 

g = -J(c” - CP) : r(7, g, q) ) 

(3.10) 

These equations define a relaxation of the stresses T towards a suitably updated elastic 
domain. Such a plastic relaxation process is completed as soon as the yield condition (3.5) is 
satisfied. 

3.1.3. Material formulation 
The elastic-plastic splitting methodology defined above can be alternatively formulated in a 

material setting. In this case, entirely analogous arguments point to the following choice of 
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decoupled equations (elastic and plastic, respectively): 

s = k(t), L?=o, 

3 = A'(E", EP) : It’, s = -[A”(E”, EP) - AP(E", EP)] : fi , 

P=o, A!? = ja(S, c, Q) , 
(3.11) 

d=o, d = jH(S C, Q) 7 

where i(t) is again a given function of time, A”=p0J2!P/aE”8E’ is the material tangent 
elasticity tensor, and AP= p,J2!P/dE”d@. As before, the elastic part of the constitutive 
relations defines a process of elastic straining in which the plastic deformations EP remain 
unchanged while the stresses S are evaluated through the elastic relations from the known elastic 
strains k(t) = E(t) - EP. On the other hand, the plastic equations define a relaxation process for 
stresses and plastic variables which continues until the yield criterion 

@(S, C, Q> = 0 (3.12) 

is satisfied. 

REMARK 3.1. The material tensors A’ and AP defined above are related to the spatial 
tensors Jc’ and Jcp given by (3.3) through push-forward with F. 

3.2. Stress update: General return mapping algorithm 

Based on the elastic-plastic split (3.6) (3.7) a return algorithm can be conveniently defined 
by first solving the elastic equations (3.6) to obtain an elastic predictor, which is then taken as 
an initial condition for the plastic relaxation equations (3.7). The resulting procedure is 
graphically shown in Fig. 4. For associated perfect plasticity, for instance, it is seen that the 
plastic equations define a return path for the stresses which runs along the steepest descents of 
the yield function, Fig. 2. It should be noted, however, that the steepest descent direction in 
stress space is determined based on the tensor (c’ - cp). 

For the perfectly plastic von Mises model with infinitesimal isotropic elasticity, the return 
path for stresses is clearly radial. In general, however, the return path defined by (3.7) is not 
known in advance nor can it be determined analytically. It becomes therefore necessary to 
compute the return path for the stresses numerically. An efficient algorithm for this purpose is 
listed in Table 5, together with the remaining steps in the update procedure. As may be seen, 
the return mapping is defined iteratively. At every iteration the yield function cp is linearized 
about the current values T(,i!lq%l and ~pz!~. Such a linearized yield function defines a straight 
intersection or ‘cut’ on the plane q = 0 onto which T:!~ and qEil are projected to obtain the 
next iteration r$Z:) and q:I:‘. It should be noted that such projection involves the current 
elastic moduli &jr. The initial conditions for the return procedure r?$r and q$‘il are taken to 
coincide with the elastic predictor. 
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ELASTIC DOMAIN 

Fig. 2. Geometric interpretation for the case of perfect plasticity of a general return mapping algorithm based on 
an elastic-plastic split of the constitutive equations. The elastic relations define an elastic predictor @*+r which is 
subsequently returned to the yield surface along the steepest descent path of the yield function 4. The steepest 
direction is determined in terms of the local metric defined by the elastic taI~gent moduli. 

3.21. Geometric interpretation 
A geometric interpretation of the proposed algorithm is given in Fig. 3. As we may see, the 

elastic predictor is returned to the yield surface in successive steps. Each one of these steps 
involves a projection of the stresses onto a straight (linear) appruximatiun to the yield surface 
or ‘cut’. In the limit, such cuts become tangent to the yield surface and plastic consistency is 
restored at a quadratic convergence rate. For an associated flow rule, the computed return 
path is indeed an approximation to the steepest descent path as defined by the tensor (ee - cP). 

From general results concerning the operator splitting methodology (e.g., see [36, Chapter 
31 for a review) it immediately follows that the proposed algorithm is consistent with the 
constitutive relations in Table 3. Furthermore, unconditional stability follows automatically 
provided that both the elastic predictor and the plastic corrector are separately unconditionally 
stable. As for the former, unconditiunal stability is trivially achieved due to the exact nature of the 
algorithm. On the other hand, the equations (3.10) defining the return path are clearly dissipative 
and the corresponding trajectories contractive provided the yield function is convex and the 
plastic flow direction r derives from a convex potential or loading function 136, Chapter 31. Under 
these conditions, the return algorithm is unconditionally stable and so is the overah update 
procedure. 

REMARK 3.2. It should be noted that the proposed return algorithm does not require 
explicit knowledge of the derivatives of the elasticity tensor ce, the plastic flow direction r or 
the plastic hardening mod& Ir. Nevertheless quadratic convergence of the stress iterates 
towards the elastic domain is achieved. 
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Table 5 
Stress update algorithm 

Step 1. Geometric update 

&+I = (pn + u 

F,,=Z+Vu 

F a+, = Ft,Fn 

Step 2. Eiastic predictor 

F!.$‘j = FP, 

F;% = F,,+,FKI 

9$‘1, = push-forward of qn by F. 

Step 3. Check for yielding 

l&l = P(P$?l, q%) s 0 ? 

YES FP,+z = Fp’O’- n+l, qm+1= 9%; Tn+l = 7%; EXIT 
NO i=O 

Step 4. Plastic correctors 

Ay= (8 
. kc!, 

“+I 

Step 5. Convergence check 

YES Compute F’,+, from T!$:) (see Remark 3.3 on isotropy) 
FP,+, = F,+IFZ:, qn+l= q!::‘, T~+I = &:); EXIT 

NO i+i+l;GOTOStep4 
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ELASTIC DOMAIN 

tangent (limiting) cut 

r$ - 0 (yield surface) 

Fig. 3. Numerical implementation of the return mapping algorithm shown in Fig. 2. The elastic predictor &“+I is 
returned to the yield surface in successive steps. At every step, the updated stresses a$::) are computed by 
projecting the previous iteration &!I onto the trace on the plane &J = 0 of a linear approximation to the yield 
function at a(.‘!, or ‘cut’. In the limit, such cuts become tangent to the yield surface and plastic consistency is, 
recovered at a quadratic convergence rate. 

REMARK 3.3. If the elastic response is isotropic a standard argument reveals that the elastic 
potential $ in the spatial description depends on F’ through the elastic left Cauchy-Green 
tensor b’. Thus, knowledge of r at a given configuration only determines uniquely b’ or, 
equivalently, the left stretch tensor V” = be”* is an unloading process. In the isotropic case we may 

set, following Lee [13], 

Fe= V”, FP = #‘Fe-‘. (3.13) 

This is the procedure herein adopted in the finite element implementation of the isotropic 
elastic finite deformation model (2.5). Further computational details may be found in [38]. 

REMARK 3.4. The stress update algorithm proposed above is amenable to an entirely 
equivalent formulation in the material setting, based on the elastic-plastic split (3.11). Some 
features of such material implementation are noteworthy. For instance, the plastic strains EP 
are seen to remain constant during the elastic predictor and thus play the role of fixed 
parameters in the computation of the elastic tangent moduli Ce(Ee, EP). On the other hand, 
the plastic relaxation takes places under constant deformations C which thus behave as fixed 
parameters in the definition of the plastic flow direction R(S, C, Q), plastic moduli H(S, C, Q) 
and yield function @(S, C, Q). 

3.3. Extension to viscoplasticity 

The formulation heretofore presented 
Assuming for simplicity linear viscosity, the 

readily extends to the case of viscoplasticity. 
flow rule and hardening laws take the same form 
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\ \ 
-b-H 

/’ 
(a) Elastic prediclor 

I 

B”,+l 
\ 

(b) Plastic corrector 
f f 
\ I 
\ I 
\ / 

.___’ 

Fig. 4. Geometric aspects of the elastic-plastic splitting methodology. (a) The elastic predictor takes place under 
constant intermediate configuration and the incremental deformations F. strain the body elastically. (b) The plastic 
corrector leaves the updated spatial configuration invariant while the intermediate configuration relaxes plastically. 

as in Table 3 with h being replaced by cpf~, where q is the viscosity coefficient. Accordingly, 
an analogous operator split Low applies in which (3.6) remains unaltered and the plastic 
relaxation equations (3.9) are replaced by 

-j+ -;J(c’-cp): r(qg,q), 

(3.14) 

where plastic loading (up > 0) is assumed. The rate of change of 9 is governed by the following 
equation: 
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dtp dT dcp aq ifQ $p -::+_.__-_ dT. 
dT at dq at [ 

*.J(ce-CP): p?g.+ (3.15) 

which is the viscous counterpart of the consistency condition of inviscid plasticity. Defining an 
j~st~ntu~eous relaxation time by the expression 

(3.15) may rephrased as 

a9 cp -= -- 
at t* 

(3.16) 

(3.17) 

In view of (3.14) and (3.17) the following conclusions may be drawn: 
(i) The return path defined by (3.14) coincides with the return path corresponding to 

inviscid plasticity. 
(ii) As the plastic relaxation proceeds, the location of the stress point in the return path 

defined by (3.14) is governed by (3.17). 
These results enable one to formulate an algorithm for the numerical integration of the 

elasto-viscoplastic constitutive relations based upon the following notions. The elastic 
predictor and return path are computed as in the inviscid case. In particular the return path 
comprises a sequence of straight segments in stress space directed towards the yield surface. 
The difference, however, is that only partial relaxation now takes place; thus the stress point 
does not reach the yield surface. To compute the final location of the stress point in the return 
path, one may proceed as follows. 

(a) Within a generic straight segment (i) in the return path, the relaxation time is taken to 
be constant and equal to a value ?” computed according to (3.16) from the initial conditions 
for the segment 7(,ii1, and q$k,. 

(b) Thus, within a typical straight segment the variation of the yield function value is given 
by the exponential relation 

cp * qp’,i!r exp(-At/ii’)), (3.18) 

where At is the time elapsed since the entrance of the stress point into segment (i). 
(c) The total time At(‘) spent by the stress point in segment (i) is therefore given by 

At(i) = $9 log & . (3.19) 

(d) The end of the relaxation process is characterized by the condition that Ci At”’ = h, 

where h is the time step size and the sum extends to all traversed segments. 
The resulting algorithm is summarized in Table 6. The simplicity and generality of the 

algorithm should be noted. The same general results mentioned above regarding ~u~~~s~e~cy 
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Table 6 
Stress update algorithm: Viscoplasticity 

Step 1. Geometric update 
Step 2. Elastic predictor 

Step 3. Check for yielding 

VIP!, = (P(TIP!I, 49,) so ? 

YES F,P+~ = F!$‘j; q”+l = q$‘ll; T,+I = d?p!1; EXIT 

NO i = 0, 6’) = 0 
Step 4. Plastic correctors 

. h:!, 

(9 7) cp”+lt 
AY=~ 

~‘n’Zi’= 72!1- AyJ.+l(c’- @!I : r’.i!, 

q,+l = qn+, + Ayh% (i+l) W 

At(i) = i(i) log(cp (i) n+, cpw I ) 

t(‘+‘) = t(i) + A,(‘) 

Step 5. Check for end of relaxation process 

t(i+U 2 h 

yJ22 At(i) = h _ t(i) 

(0 70 

Ay=- cpn+lt [1 _ exp(_At(i)/$i)] 
rl 

T”+I = ~$1, - AyJn+l(ce- cp)$!I : r$l 

qn+l = q:!, + Ayh% 

Compute FF,+IT$Z? (see Remark 3.3. on isotropy) 

FE+1 = F,+,F:;‘,, EXIT 

NO i+i+l;GOTOStep4 

and stability of the algorithm apply in the present context. We finally note that as 77 +O the 
integration scheme for inviscid plasticity is recovered. This is consistent with well-known 
results concerning the inviscid limit of viscoplasticity (e.g., see [36, Chapter 31 for a review). 

3.4. Boundary value problem : Consistent tangent operator 

In order to formulate a well-defined problem, in addition to the constitutive relations we 
need to consider the momentum balance equation and suitable boundary and initial 
conditions. A weak formulation of the resulting boundary value problem can be given as 
follows. Let b(x) be the body force, a(x) the spatial acceleration field and F(X) the traction 
vector specified on the Neumann boundary &B,,. Furthermore, let the deformation mapping q 
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be prescribed on the Dirichlet boundary && as qjir,80 = cij, As usual we require that 
&EL i? a,& = 0 and &B, U &B, = a&, where one has c?,& = ~((a,&). Then, the weak form 
of the momentum balance equation at time t, reads 

for any admissible variation n such that q Ir)us. = 0. Since the treatment of the transient 
dynamic problem plays no role in the present discussion, we shall ignore inertia effects and 
confine our attention to the static case. 

Within the context of finite element analysis, the solution of problem (3.20) is accomplished 
by an iterative scheme such as Newton’s method. Typically, one solves a sequence of 
linearized problems defined as 

DG((p’,‘!,, n)- z&r = f tr(VqrVu) + Vq : (c$!, : VU:!~) dB 1 
= -G(cp% r,), (3.21) 

until the residual G(qz!,, 7) vanishes to within a prescribed tolerance. 
The convergence rate of iterative scheme (3.4) is essentially governed by the choice of 

tangent moduli c’,‘!* which, as recently noted in [37], depends in turn on the iteration scheme 
adopted. In a typical iteration i + I within a time step [b,, &+,], the variables (- )zT:’ may be 
obtained by means of the algorithm in Table 5 and from either 

(a) the values ( - )$!, corresponding to the previous ~~~-c~~~e~ge~ iteration, or 
(b) the converged values (a),, from the previous time step. 

Both procedures define algorithms which are consistent with the field equations. However, 
scheme (a) introduces a ‘history dependence’ of the converged values on intermediate 
non-converged iterates, This may pose difficulties due to the strong path dependence of 
plasticity models. Spurious unloadings at some Gauss points may also occur as a result of this 
procedure. By contrast, history dependence on intermediate non-converged values is 
eliminated with the use of scheme (b), and ‘fictitious’ numerical unloading is therefore 
prevented. The undesirable features arising from the use of scheme (a) and the convenience of 
using an approach analogous to scheme (b) advocated here, have been also noted by Argyris, 
Doltsinis and Kleiber [43]. 

For a stress update algorithm such as the one proposed in Section 3.1, the updated stresses 
r$Z:) becomes a function of the incremental displacements Vu, as well as of suitable initial 
conditions consistent with the update strategy (a) or (b). The essential point emphasized in [37] 
is that the tangent moduli appearing in (3.4) should be derived by consistent linearization of 
the update procedure, in order to achieve the asymptotic rate of quadratic convergence 
characteristic of Newton’s method. If scheme (a) is adopted, the consistent tangent moduli 
coincide with the classical elastoplastic ones obtained by enforcing the consistency condition. On 
the other hand, if update scheme (b) is adopted, the consistent tangent moduli are no longer the 
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classical elastoplastic moduli. In fact, use of these moduli may result in a loss of the quadratic rate 
of asymptotic convergence, as shown in [37]. 

Explicit expressions for the tangent moduli consistent with the update strategy (b) and 
associated with several widely used plastic models are given in [37]. These expressions are 
developed in the context of return mapping algorithms and for linearized kinematics. For 
simple yield conditions such as von Mises, and nonlinear isotropic and kinematic hardening 
rules, the results in 1371 may be extended to the present setting. In general, however, the task 
of evaluating the consistent tangent moduli in closed form may prove exceedingly laborious, It 
would appear, therefore, that a general purpose implementation of the physically more 
compelling algorithm based on the updating procedure (b), may require the use of quasi- 
Newton or secant-Newton methods 1391 for the solution of resulting nonlinear algebraic 
problem. 

4. A numerical example 

There is a number of important issues involved in the finite element implementation of the 
formulations and corresponding stress update algorithms discussed in the previous sections. 
Among them should be mentioned: 

(i) The treatment of constraints in the finite deformation range such as incompressibility of 
the plastic flow. In the context of the linear theory, the importance of a proper treatment of 
this constraint was first emphasized by Nagtegaal, Parks and Rice [40]. 

(ii) The use of consistent linearization procedures, as discussed in [31, Chapter 41, to obtain 
elastoplastic tangent moduli consistent with the stress update algorithm for specific models. 

These and related computational issues are treated in [38] together with the discussion of 
several numerical experiments. 

Our intention here is simply to illustrate the formulation heretofore discussed by means of a 
classical example: the thick wall cylinder under internal pressure. For this purpose we consider 
perfect plastic behavior with a von Mises yield condition, and elastic response governed by the 
hyperelastic constitutive equations (2.3, (2.6). 

The results of the numerical experiment are shown in Fig. 5 and Fig. 6, together with the 
exact solution for the case of a rigid plastic material. In this figure, (Y designates the inner 
radius in the current configuration. The following features pertaining to these results are 
noteworthy: 

(i) The final configuration of the cylinder, with inner radius CY = 85.10 and an outer radius 
of 88.8, is attained in 15 time steps. Note that the initial values of the inner and outer radius 
are 10 and 20, respectively. 

(ii) Within each time step, convergence with the classical Newton’s method, in the energy 
norm and to a tolerance of TOL = lo-‘*, is achieved in 4-5 iterations. 

(iii) For the purpose of comparison with the rigid plastic solution the material properties 
are chosen as to obtain ~~~~~~e~~~u~ elastic deformations. In spite of the extremely large 
loading step employed, excellent agreement between the asymptotically exact analytic solution 
and the computed results is found. 

The reason for the excellent rate of convergence exhibited by the solution process may be 
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Fig. 5. Thick wall cylinder under internal pressure. 

0 2 4 6 8 IO 
THICKNESS IN CURRENT CONFIGURATION 

Fig. 6. Thick wall cylinder under internal pressure. 
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found in the use of tangent moduli consistent with the stress update algorithm. These tangent 
moduli are obtained from the stress update algorithm by a consistent linearization procedure. 

5. Summary and conclusions 

A unified approach to finite deformation elastoplasticity which embodies both additive and 
multiplicative theories has been presented. Taking the multiplicative decomposition of the 
deformation gradient as a point of departure, an additive decomposition of Lagrangian and 
Almansi strains follows. Such an additive de~ompositiou carries over to the corresponding 
material and spatial rates of deformation. 

From a numerical standpoint, the proposed formulation has several far-reaching 
consequences. First, the use of hyperelastic constitutive models entirely avoids the need for 
integration of rate constitutive relations. In particular, so called incrementally objective 
integration algorithms are no longer needed, even in the context of rate-dependent viscoplastic 
models. Second, an operator-splitting methodology can be used to exploit the additive 
decomposition of the deformation rates. On this basis, a general class of return-mapping 
algorithms capable of accommodating arbitrary yield criteria, flow rules, hardening laws and 
variable tangent elastic compliances has been derived. It should be emphasized that the elastic 
predictor in the stress update procedure reduces to a mere function evaluation. The return 
mapping takes an iterative form whereby stresses converge towards a suitably updated yield 
surface at a quadratic rate. Accuracy and unconditional stability are guaranteed by general 
resuits pertaining to the operator-splitting methodology. The proposed numerical schemes 
apply to both rate-dependent and rate-independent plastic models. 

Owing to the covariant character of the theoretical framework and of the proposed 
algorithms adopted, selection of the material, intermediate or spatial descriptions as a basis for 
numerical computations is a simple matter of choice. In fact, the results obtained from any one 
of the descriptions should be identical. 

The accuracy of the method, even for very large time steps has been illustrated by 
means of an numerical experiment. It is also noted that use of consistent tangent moduli 
results in excellent rates of convergence. 
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