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Abstract

This study develops a general consistent and systematic framework for the analysis of

heterogeneous media that assesses a strong coupling between rate-dependent plasticity and
anisotropic rate-dependent damage for dynamic problems within the framework of thermo-
dynamic laws and gradient theories. The proposed formulation includes thermo-elasto-visco-
plasticity (rate-dependent plasticity) with anisotropic thermo-viscodamage (rate-dependent

damage); a dynamic yield criterion of a von Mises type and a dynamic damage growth cri-
terion; the associated flow rules; thermal softening; non-linear strain hardening; strain-rate
hardening; strain hardening gradients; and strain-rate hardening gradients. Since the material

macroscopic thermomechanical response under dynamic loading is governed by different
physical mechanisms on the meso- and macroscale levels, the proposed three-dimensional
kinematical model is introduced with manifold structure accounting for discontinuous fields

of dislocation interactions (plastic flow) and crack and void interactions (damage growth).
The gradient theory of rate-independent plasticity and rate-independent damage that incor-
porates macroscale interstate variables and their higher-order gradients is generalized here

for rate-dependent plasticity and rate-dependent damage to properly describe the change in
the internal structure and in order to investigate the size effect of statistical inhomogeneity of
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the evolution-related rate- and temperature dependent materials. The idea of bridging

length-scales is made more general and complete by introducing spatial higher-order gradients
in the temporal evolution equations of the internal state variables that describe hardening in
coupled viscoplasticity and viscodamage models, which are considered here physically and

mathematically related to their local counterparts. Furthermore, the constitutive equations
for the damaged material are written according to the principle of strain energy equivalence
between the virgin material and the damaged material; that is, the damaged material is mod-
eled using the constitutive laws of the effective undamaged material in which the nominal

stresses and strains are replaced by their effective ones. In addition, computational issues
concerned with the current gradient-dependent formulation of initial-boundary value pro-
blems are introduced in a finite element context. A weak (virtual work) formulation of the

non-local dynamic viscoplastic and viscodamage conditions is derived, which can serve as a
basis for the numerical solution of initial boundary value problems in the sense of the finite
element method. Explicit expressions for the generalized tangent stiffness matrix and the

generalized nodal forces are given. The model presented in this paper can be considered as a
feasible thermodynamic approach that enables one to derive various coupled gradient visco-
plasticity and viscodamage theories by introducing simplifying assumptions.
# 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Experimental observations indicated that in general the processes of cold-working,
forming, machining of mechanical parts, etc. can cause an initial evolution of defects
in the virgin material state in the form of localized zones, such as the nucleation of
certain amount of cracks, voids, dislocations, and shear bands. Those localized
defects of plasticity and damage induced in the material structure along with the
subsequent defects that occur during deformation process leads to a heterogeneous
(non-uniform) material behavior. Further loading of materials of this type will cause
failure mechanisms to occur at localized zones of plasticity and damage. In those
localized zones, many defects may undergo irreversible growth; coalescence of pre-
existing cracks and voids may occur; propagation of dislocations may proceed; and
new defects may nucleate and their ultimate coalescence results in failure. Moreover,
intensive interaction mechanisms of the evolved defects may take place at those
localized zones; such as dislocation-dislocation interaction, microdamage-micro-
damage interaction, crack dominated-dislocation interaction, dislocation domi-
nated-crack interaction, dislocation/crack-grain boundary interaction, etc.
As the plasticity and damage defects localize over narrow regions of the con-

tinuum, the characteristic length-scale governing the variations of those defects and
their average interactions over multiple length-scales falls far below the scale of the
local state variables of classical plasticity and damage theories used to describe
the response of the continuum. This leads to the loss of the statistical homogeneity
in the representative volume element (RVE) and causes strong scale effects; in such a
way that all the macroscopic response functions of interest (e.g. the Helmholtz free
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energy, W; the dissipation potential, P; the Cauchy stress tensor, �; the small strain
tensor, "; the stiffness tensor; E; etc.) are sensitive to the distribution, size, and
orientation of the micro-, meso- and macrostructural defects within the RVE.
The plasticity and damage evolution processes are, therefore, statistically inhomo-
geneous at the macroscale level (at the RVE scale). This suggests that the macro-
scopic inelastic deformations and failure are governed by mechanisms at different
scale levels (non-locality) which gives rise to the gradient effects. Thus, the gradient
effect is important when the characteristic dimension of the plastic and/or damage
deformation zone is of the same order as the material intrinsic length-scale, which is
in the order of microns for commonly used materials (Gao et al., 1999a,b). For
example dislocation interactions are observed on a mesolevel with length-scale
� 0:1� 10 mm affecting strongly the material behavior on the macrolevel with
length-scale 4 100 mm. Therefore, different methodologies rather than the local
theories are necessary to adequately capture the decrease in the length-scale from the
macroscale to the mesoscale level. The use of the non-local theories is increasing
steadily in order to appropriately overcome this problem, which takes into account
the influence of the nth nearest neighbor of the material points or the long-range
microstructural interaction.
The motivation for introducing the non-local or gradient theory stems from the

well-known fact that the use of classical rate-independent plasticity theory or local
theory to solve both static and dynamic problems do not possess an intrinsic length-
scale. This leads to numerical stability problems, such as mesh size and mesh align-
ment sensitivities (e.g. Bammann et al., 1999; Glema et al., 2000; Li et al., 2002),
particularly, in problems exhibiting strain localization phenomena. However, several
regularization approaches have been proposed in the constitutive modeling to
accommodate this problem. They include: viscoplastic models (e.g. Perzyna, 1963,
1966, 1971, 1986, 1988; Needleman, 1988; Wang et al., 1996; Dornowski and
Perzyna, 2000; Glema et al., 2000) thermal dissipation models (e.g. LeMonds and
Needleman, 1986a,b); non-local models (e.g. Aifantis, 1984; Pijaudier-Cabot
and Bazant, 1987; Bazant and Pijaudier-Cabot, 1988; Bammann et al., 1999;
Voyiadjis and Deliktas, 2000a; Voyiadjis et al., 2001; Voyiadjis and Dorgan, 2001);
and strain-gradient models (e.g. Aifantis, 1992; Zbib and Aifantis, 1992; de Borst
and Mühlhaus, 1992; de Borst et al., 1993; Fleck and Hutchinson, 1997, 2001,
Hwang et al., 2003; Wang et al., 2003).
In the literature, many non-local plasticity and damage models were proposed to

introduce intrinsic length-scale measures in the constitutive equations, which can be
grouped into two classes: integral models and gradient models.
Kroner (1967) and Eringen and Edelen (1972) incorporated non-local terms

through integral equations of elasticity. Pijaudier-Cabot and Bazant (1987) extended
this concept to continuum damage mechanics. Bazant and Ozbolt (1990) also
addressed non-local anisotropic damage formulation, which are based on non-local
tensorial variables. However, integration in the non-local integral models requires a
global averaging procedure with resulting equations that cannot be easily linearized
(de Borst and Pamin, 1996). This makes the non-local integral models computa-
tionally inefficient.
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However, the integral approach generally involves an infinitely extended zone of
non-local action which may be approximated by truncated Taylor series expansion,
giving rise to the so-called gradient theories. Gradient approaches typically retain
terms in the constitutive equations of higher-order gradients with coefficients that
represent length-scale measures of the deformation microstructure associated with
the non-local continuum. Aifantis (1984) was one of the first to study the gradient
regularization in solid mechanics. The gradient methods suggested by Lasry and
Belytschko (1988) and Mühlhaus and Aifantis (1991) provide an alternative
approach to the non-local integral equations. The gradient terms in plasticity models
are introduced through the yield function (e.g. Mühlhaus and Aifantis, 1991; de
Borst and Pamin, 1996; Fleck and Hutchinson, 2001; Chen and Wang, 2002). The
gradient damage theory has been developed for isotropic damage (e.g. Pijaudier-
Cabot and Bazant, 1987; Peerlings et al., 1996) and for anisotropic damage (e.g.
Voyiadjis and Deliktas, 2000a; Kuhl et al., 2000; Voyiadjis and Dorgan, 2001). This
is not a review paper and therefore the above list of authors represents a sample
rather than a comprehensive list. However, a fairly complete review of this type of
modeling has been given by Aifantis (1995) and Bammann et al. (1999).
Gao et al. (1999a,b) proposed by the analysis of indentation experiments that the

intrinsic material length parameter of strain gradient plasticity decreases as the
plastic flow stress increases. However, for most metals, the flow stress increases with
the strain rate and decreases with temperature increase. This causes the intrinsic
material length-scale to decrease with increasing strain-rates, but to increase with
temperature decrease. For example, the plastic zone ahead of the crack tip will
decrease with increasing yield stress, which for small scale yielding is of the order of
microns. Therefore, the consideration of strain-rate effect and temperature variation
on gradient plasticity and damage, particularly in dynamic problems, becomes more
necessary. Existing theories of gradient plasticity and damage, however, have failed
to explain such behavior. Moreover, although it has been shown that the viscoplas-
ticity theory regularizes the solution by introducing implicitly length-scale through
the viscous parameter, the numerical results still show a mesh dependency (Wang et
al., 1996; Wang and Sluys, 2000; Glema et al., 2000). This serves as our first moti-
vation for this study. Very limited work has been carried out to investigate the
influence of strain-rate effect and temperature variation on the gradient-enhanced
plasticity and/or damage. In fact very few viscoplastic and/or viscodamage gradient-
enhanced models have been proposed until now. Fremond and Nedjar (1996) pro-
posed a combined gradient- and rate-dependent damage model for quasi-brittle
materials and performed also two-dimensional analysis. Wang et al. (1998) proposed
a gradient viscoplasticity model used to analyze stationary and propagative
instabilities. Aifantis et al. (1999) and Oka et al. (2000) proposed a gradient-depen-
dent viscoplastic constitutive model for water-saturated clay, where gradients of the
volumetric viscoplastic strain were introduced into the constitutive equations. Di
Prisco et al. (2002) modified a pre-existing elasto-viscoplastic constitutive model
for granular soils according to gradient and non-local approaches. Gurtin (2002) gen-
eralized a rate-independent constitutive theory that includes dependences on a ten-
sorial measure of geometrically necessary dislocations to single-crystal viscoplasticity
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using the gradient theory. Moreover, Gurtin (2003) developed a throritical concept
for small-deformation viscoplasticity that allows for dependences on plastic strain-
gradients. His theory accounts for microstuctural behavior on two length-scale
levels through microstresses whose working accompanies flow. In the same frame-
work of Gurtin (2003) theory, Saczuk et al. (2003) proposed a theoretical concept
for the analysis of large-deformation viscoinelasticity evolution in heterogeneous
media depending on macro- and micro-deformation gradients in plasticity and
damage. Taylor et al. (2002) have used the gradient-dependent theory of plasticity to
study the effect of void distribution on the ductility and flow stress of viscoplastic
materials.
Often, ductile materials undergo a strong plastic deformation, which has a major

influence on the damage evolution and vice versa. Thus, our second motivation for
this study evolves from the fact that no consistent model realizing a strong coupling
between plasticity/viscoplasticity and damage/viscodamage has been published yet.
However, there are many models with weak coupling. The models that adopt two
separate uncoupled damage and plastic loading surfaces with two independent
associated flow rules present a week coupling between plasticity and damage. Those
models are being extensively used by many authors (e.g. Chow and Wang, 1987;
Simo and Ju, 1989; Lemaitre and Chaboche, 1990; Hansen and Schreyer, 1994; Zhu
and Cescetto, 1995; Murakami et al., 1998; etc.). However, relatively strong cou-
pling between plasticity and damage can be achieved by using one single smooth
generalized yield surface and an associated flow rule for the plasticity and damage
evolutions (e.g. Gurson, 1977; Tvergaard, 1982; Tvergaard and Needleman, 1984;
Rousselier, 1987; Ehlers, 1995; Hesebeck, 2001; Mahnken, 2002). Those models
obviously cannot describe all loadings correctly since a hydrostatic stress will cer-
tainly cause damage before any plastic deformation can be noticed. In addition most
of those models are restricted to low damage levels or dilute distribution of defects
and therefore they fail to account for the interaction of the defects adequately.
Another approach to achieve this strong coupling is by using separate plasticity and
damage surfaces with separate non-associated flow rules in such a way that both
damage and plasticity flow rules are dependent on both the plastic and damage
potentials. Voyiadjis and Deliktas (2000b) introduced a formulation for such an
approach for a local based theory and Voyiadjis et al. (2001) extended it to a gra-
dient based formulation. The later approach is adopted in this work, where the
strong coupling between plasticity and damage is implemented by using two damage
mechanisms. One mechanism is coupled with plasticity, while the other one occurs
independent of plastic deformation. The dissipation function of the latter occurs in
both the elastic and plastic domains. Abu Al-Rub and Voyiadjis (2003) introduced a
formulism for such an approach for a local based theory.
To mention some of the important contributions to phenomenological damage

modeling, we start with the effective stress concept of Kachanov (1958), who was the
first to introduce for the isotropic case a one-dimensional variable, which may be
interpreted as the effective surface density of microdamages per unit volume
(Voyiadjis and Venson, 1995). Following Kachanov’s pioneered work researchers in
different fields applied continuum damage mechanics to their areas in fields like
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brittle materials (Krajcinovic and Foneska, 1981; Krajcinovic, 1983, 1996) and
ductile materials (Lemaitre and Chaboche, 1990; Lemaitre, 1992; Kachanov, 1986;
Murakami et al., 1998). In the 19900s coupling of continuum damage mechanics to
plasticity have appeared (e.g. Voyiadjis and Kattan, 1992a,b, 1999; Lubarda and
Krajcinovic, 1995; Voyiadjis and Abu-Lebdeh, 1993; Zhu and Cescetto, 1995;
Voyiadjis and Deliktas, 2000b; Armero and Oller, 2000; Menzel et al., 2002; Nesnas
and Saanouni, 2002).
The first objective of the present paper is to develop a consistent and systematic

gradient-enhanced model in order to study the influence of strain-rate and tem-
perature variation on the material intrinsic length-scales. We introduce a dipolar
(i.e. strain-rate-gradient) material model that gives implicit and explicit length-scale
measures in the governing equations through the use of coupled viscoplasticity–vis-
codamage theory and gradient theory, respectively. The second objective of this
paper is to derive a general thermodynamic framework for the modeling of hetero-
geneous media that assesses a strong coupling between viscoplasticity and visco-
damage evolution for dynamic problems with consideration of the discontinuities on
the macroscale level.
This can be effectively achieved through a thermodynamic framework for the

development of a continuum thermo-elasto-viscoplastic and thermo-viscodamage
based model. The constitutive equations are derived from the first and second laws
of thermodynamics, the expression of Helmholtz free energy, the Clausius–Duhem
inequality, the maximum dissipation principle, generalized normality, and the
thermomechanical heat balance equation. The non-locality is introduced here
through the damage variable and the viscoplasticity and viscodamage hardening
variables. The first-order gradients in the gradient-dependent theory are disregarded
and the second-order gradients are mainly considered in this work. The local visco-
plasticity and viscodamage hardening variables and their corresponding second-order
gradients are considered mathematically dependent on each other, but each gives
different physical interpretations that guide one to different evolution equations
allowing one to computationally introduce independently the macroscale and
mesoscale levels influence.
The outline of this paper is as follows: in Section 2, the effective configuration

concept in damage theory as proposed by Kachanov (1958) is recalled. In Section 3,
we outline a general thermodynamic framework for the non-local elasto-viscoplastic
and viscodamage material behavior with thermal effects using the gradient-depen-
dent theory. In Sections 4 and 5 the rate-type constitutive stress-strain relation and
the thermomechanical heat balance equation are derived, respectively. Finally, in
Section 6 computational aspects of the current gradient-dependent formulation are
introduced in a finite element context.
2. Effective configuration

Continuum damage models based on the effective stress space were introduced by
Kachanov (1958) and later by Rabotnov (1968) who were the first to introduce for
986 G.Z. Voyiadjis et al. / International Journal of Plasticity 20 (2004) 981–1038



the isotropic case a one-dimensional variable, which may be interpreted as the
effective surface density of microdamage per unit volume (Voyiadjis and Venson,
1995). To illustrate the Kachanov’s concept, consider a uniform bar subjected to a
uniaxial tensile stress, �, as shown in Fig. 1. The cross-sectional area of the bar in
the stressed damaged configuration is A and it is assumed that both voids and cracks
appear as damage in the bar. The uniaxial tensile force, T, acting on the bar is easily
expressed using the formula T ¼ �A. In order to use the principles of continuum
damage mechanics, we consider a fictitious undamaged configuration (effective
configuration) of the bar as shown in Fig. 1(b). In this configuration all types of
damage, including both voids and cracks, are removed from the bar. The effective
stressed cross-sectional area of the bar in this configuration is denoted by A� and
the effective uniaxial stress is �. The bars in both the damaged and the effective
undamaged configurations are subjected to the same tensile force T. Therefore,
considering the effective undamaged configuration, we obtain T ¼ ��A� . Equating the
two expressions of T obtained from both configurations, one obtains the following
expression for the effective uniaxial stress �� (Kachanov, 1958; Rabotnov, 1968):
�� ¼
�

1� �
where � ¼

A� A�

A
ð1Þ
However, Eq. (1) is a mathematical definition of the effective stress although it
may be interpreted as the average stress acting on an effective area of the material
(Kachanov, 1986; Lemaitre and Chaboche, 1990; Lemaitre, 1992). In order to give it
a general physical meaning, it is necessary to use the corresponding damage-free
material (i.e. virgin material) in the mesoscale to represent the ‘effective’ concept of
Eq. (1) for a macroscopically damaged material. Thus, a proper correlating
hypothesis between two material scale levels can be obtained through using the non-
local damage variable �

_

. It is then important to emphasize that Kachanov’s defini-
tion given by Eq. (1) can be generalized to a non-local one, for the case of isotropic
Fig. 1. A cylindrical bar subjected to uniaxial tension: both voids and cracks are removed simultaneously

(Voyiadjis and Kattan, 1999; Kattan and Voyiadjis, 2001).
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damage and under a general state of stress, as follows:
�� ij ¼
�ij

1� �
_ ð2Þ
where the possible approaches in interpreting the non-local quantity �
_

will be
discussed thoroughly later in this paper.
Many researchers tend to adopt the traditional simple isotropic scalar damage

variable, ‘‘(1� �)’’, which is generalized here as 1� �
_

Þ
�

where �
_

is a non-local
quantity, to model the material micro-damage mechanism, in which all components
of the material stiffness are degraded by the same scalar damage parameter, � (or �

_

in this work). However, to ensure a more general formulation of the principles of
damage mechanics, the case of anisotropic damage will be assumed in this work. In
this case different levels of damage are related to the principal directions, and thus a
simple scalar damage parameter is no longer sufficient to quantify damage in all
directions. Instead, the anisotropic phenomenon of the microdamage (i.e. micro-
cracks and microvoids) distribution in the material is interpreted using a non-local
symmetric second-order damage tensor, �

_

.
The linear elastic constitutive equations for the damaged material are expressed by

Eq. (1). That is, the damaged material is modeled using the constitutive laws of the
effective undamaged material in which the Cauchy stress tensor, �, can then be
replaced by the effective stress tensor, � (Murakami and Ohno, 1981) as follows:
�� ij ¼ M
_

ikjl�kl ð3Þ
where M
_

is the fourth-order damage-effect tensor. M
_

which is then expressed in
terms of �

_

characterizes the notion of non-uniform distribution and interaction of
microdamage (microcracks and microvoids) over multiple length-scales at which
first and second nearest neighbor effects of non-local character are significant, simi-
lar to the homogenization theory.
Many different expressions for M

_

have been proposed in the literature in order to
symmetrize the effective stress tensor, �. A comprehensive review of the most widely
used expressions are presented by Voyiadjis and Park (1997). The following expres-
sion for M

_

, which is proposed by Cordebois and Sidoroff (1979) for the local
concept of damage, is used here due to its attractiveness in the mathematical
formulation, such that:
M
_

ikjl ¼ 2 �ik � �
_

ikÞ�jl þ �ik �jl � �
_

jlÞ�
�1

��h
ð4Þ
where �
_

is the non-local damage variable whose evolution will be defined later and
�ij is the Kronecker delta. Note that the fourth-order tensor M

_

exhibits the major
symmetries only (i.e. M

_

ikjl ¼ M
_

jlik).
The elastic-damage stiffness, E, is given by Voyiadjis and Park (1999) as follows:
Eijkl ¼ M
_
�1
imjnE

�
mnpqM

_
�1
pkql ð5Þ
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where ��h

M
_
�1
ikjl ¼

1

2
�ik � �

_

ikÞ�jl þ �ik �jl � �
_

jlÞ� ð6Þ

-

and E is the fourth-order elastic moduli tensor given by:
E� ijkl ¼ Ke�ij�kl þ 2Ge �ik�jl �
1

3
�ij�kl

� �
ð7Þ

e e
where K is the bulk-modulus and G is the shear-modulus. It is noteworthy that the
elastic-damage stiffness, E

-
, exhibits the major and minor symmetries similar to the

elastic stiffness, E
-
.

In order to derive the transformation relations between the damaged and the
hypothetical undamaged (effective configuration) states of the material, the elastic
energy equivalence hypothesis (Sidoroff, 1981) is utilized here. This hypothesis
assumes that each of the elastic energy density in terms of effective and nominal
stress and corresponding strain quantities must be equal. Thus, the elastic strain
energy is equated to the effective elastic strain energy such that:
"�eij ¼M
_

�1
ikjl"

e
kl ð8Þ
where e�e is the effective elastic strain.
For small strain problems an additive decomposition of the rate of the total strain

tensor, "
:
, can be assumed with "

: e
being the elastic component and "

: vi
being the

corresponding viscoinelastic component such that:
"
:
ij ¼ "

:e
ij þ "

:vi
ij ð9Þ
The elastic strain, "e, is the reversible part of the total strain which is attributed to
the elastic distortions, cracks closure, and voids contraction upon unloading (but
not healing), while the viscoinelastic strain, "vi, designates the irreversible part of the
total strain which is attributed to viscoplastic distortions and viscodamage strains
characterized by the lack of cracks closure and voids contraction which cause per-
manent deformations. The lack of cracks closure and voids contraction can be due
to the constraints set up by the interacting (micro)-cracks, (micro)-voids, dislocation
movements, and external/ internal interfaces.
3. Non-local constitutive modeling for dynamic loading

3.1. Internal state variables

In this work, thermal, elastic, viscoplastic (rate-dependent plasticity), and visco-
damage (rate-dependent damage or creep damage) material behavior is considered.
This means that the stress path, strain rate, temperature material dependence, and
the nonlinear material response are all considered in this work. Thus the dependent
constitutive variables are functions of the elastic strain tensor, "e, the absolute
G.Z. Voyiadjis et al. / International Journal of Plasticity 20 (2004) 981–1038 989



temperature, T, the temperature gradient vector, riT, and nint- of phenomenological
internal state variables, @k (k ¼ 1; :::; nint; nint5 1). Hence, within the thermo-
dynamic framework and considering the assumption of infinitesimal displacements/
strain relationships, the Helmholtz free energy density function can be written as
(Coleman and Gurtin, 1967; Lubliner, 1990; Lemaitre and Chaboche, 1990; Doghri,
2000):
W ¼ W~ "eij;T;riT;@k

� �
ð10Þ
Since the main objective is to develop the rate type constitutive equations for a
thermoviscoplastic and thermoviscodamage material, the effects of strain rate, vis-
coplastic strain hardening/ softening, viscodamage strain hardening/ softening,
micro-damage mechanisms, and thermomechanical coupling have to be considered.
In order to describe such mechanisms, a finite set of internal state variables, @k,
representing either a scalar or a tensorial variable are assumed, such that:
@k ¼ @~ k �n;r
2�n

� �
ð11Þ
where �n is a set of viscoplasticity and viscodamage hardening internal state vari-
ables, and r2�n is the corresponding second-order gradient (Laplacian) of �n. The
state variables in this gradient-enhanced approach are no longer independent;
therefore, special care must be taken to properly account for state variable coupling
between �n and r2�n (Lacey et al., 2000). Moreover, setting �n and r2�n as
dependent internal state variables allows one to computationally introduce the
effects of the material defects in the mesoscale on the macroscale response. Also,
introducing those higher-order variables in the Helmholtz free energy allows the two
different physical phenomena in the meso- and macroscales to be identified sepa-
rately with different evolution equations. This approach is considered in this work.
We make use here of the postulate of the isotropic influence (de Borst et al., 1993;

Askes et al., 2000) of the averaging of the evolution equations of the assumed
internal state variables, �n, over a representative volume element (RVE), which will
be discussed thoroughly in the subsequent sections. Thus, the first-order gradients
are disregarded and the second-order gradients (Laplacian) are mainly considered in
this work. The set of the macro internal state variables, �n, is postulated as follows:
�n ¼ �~ n p; �ij; r;Gij; �ij

� �
ð12Þ
where p denotes the accumulative equivalent viscoplastic strain and � denotes the
flux of the residual stress (backstress). p Is associated with the isotropic hardening
and � with the kinematic hardening in the viscoplastic flow process. Similarly, r
denotes the accumulative viscodamage and � denotes the flux of the residual stress
(kinematic hardening) in the viscodamage growth process. These viscoplasticity and
viscodamage hardening variables are introduced in the Helmholtz free energy den-
sity in order to provide sufficient details of the deformation defects (cracks, voids,
mobile and immobile dislocation densities) and their interactions, and to properly
990 G.Z. Voyiadjis et al. / International Journal of Plasticity 20 (2004) 981–1038



(i.e. physically) characterize the material microstructural behavior. Those variables
will provide an adequate characterization of these defects in terms of size, orienta-
tion, distribution, spacing, interaction among defects, and so forth. Moreover, in
order to be able to achieve this, the macroscale discontinuities influence needs to be
addressed and implemented properly in the modeling of the material behavior.
For the strain-softening regime of the material behavior, the non-homogenous

states of deformation can appear as localized regions. A suitable description of the
evolution of such zones can be obtained with the use of a non-local or gradient
theory, of which examples are given by Aifantis (1984); Mühlhaus and Aifantis
(1991); Bazant et al. (1984); and Voyiadjis et al. (2001). The gradient theory intro-
duces in the material constitutive equations higher-order deformation gradients with
coefficients that represent length-scale measures that characterize microstructural
links with the non-local continuum. An attempt is made here to account for the non-
uniform macroscale viscoplastic and viscodamage distribution on the overall mac-
roscale response by assuming the thermoelastic Helmholtz free energy density W to
depend not only on the macroscopic response associated with the internal variables
�n, but also on its macroscopic spatial higher-order gradients r2�n. Both �n and
r2�n are considered dependent on each other. However, each gives different physi-
cal interpretations that guide one to different evolution equations for �n and r2�n.
This postulate is motivated through the fact that certain internal state variables such
as the statistically-stored dislocation and geometrically-necessary dislocation den-
sities do not necessarily have the same evolution equations, but they are dependent
on each other. They affect each other such that this interaction is introduced in their
evolution equations. The set of internal state variables r2�n is postulated as follows:
r2�n ¼ r2�~ n r2p;r2�ij;r
2r;r2Gij;r

2�ij

� �
ð13Þ
where r2 �ð Þ denotes the second-order gradient or Laplacian of �ð Þ. The assumed
dependence of the Helmholtz free energy on the distinct variables r2�n is also
motivated by the necessity to include length-scale measures into the equations of
state that link the mesoscale interactions to the macroscale viscoplasticity and
viscodamage, which can not be captured by �n variables alone.
Material deformation in metals enhances dislocation formation, dislocation

motion, and dislocation storage. Dislocation storage causes material hardening.
Stored dislocations generated by trapping each other in a random way are referred
to as statistically-stored dislocations (SSD), while the stored dislocations required
for compatible deformation within the polycrystal are called geometrically-necessary
dislocations (GND), which their presence causes additional storage of defects and
increases the deformation resistance by acting as obstacles to the SSD (Gao et al.,
1999a,b). The viscoplasticity internal variables r2p and r2� are related to the total
dislocation density and the microdamages (i.e. microcracks and microvoids) evolu-
tion, which introduces the viscoplasticity long-range microstructural interaction
between SSD and GND, dislocations and microdamages, and dislocations and
external/ internal interfaces. An example of r2p is the forest hardening mechanism
arising from the dislocations themselves or the presence of GNDs that are necessary
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for maintaining the deformation compatibility (Ashby, 1970). The presence of
microcracks/microvoids as lattice defects, which impedes the movement of disloca-
tions, is an example of r2� (Acharya and Bassani, 2000; Bassani, 2001). Both r2p
and r2� play as an explicit link between the viscoplasticity hardening at the
mesoscale and the behavior of the homogenous equivalent material at the macro-
scale. The use of the gradient theory is made to achieve this bridging.
On the other hand, the viscodamage hardening presented by the internal state

variables r2r and r2C accounts for the incompatibility of the microcrack and
microvoid nucleation, growth, and coalescence at high strain rates resulting from
microcrack and microvoid growth arrested by other microdefects. The damage
variable r2� reflects the long-range microstructural deterioration due to nucleation,
growth, and coalescence of voids, cavities, and microcracks. It may also account for
internal embedded crack-tip stress variations introduced by crack pile-ups and,
moreover, for the lack of a proper statistical distribution of microcracks and
microvoids due to viscodamage localization.
The determination of the evolution of the assumed internal state variables is the

main challenge of the modern constitutive modeling. This can be effectively
achieved, so far, through the thermodynamic principles for the development of a
continuum thermo-elasto-viscoplastic and thermo- viscodamage based model. That
is, use is made of the balancing laws, the conservation of mass, linear and angular
momenta, and the first and second laws of thermodynamics. Those fundamental
laws of continuum mechanics can be written as follows (Coleman and Gurtin, 1967;
Lubliner, 1990; Lemaitre and Chaboche, 1990; Doghri, 2000):

(i) Conservation of mass
	
:
þ 	
i;i ¼ 0 ð14Þ
(ii) Balance of linear momentum
�ij;j þ 	bi ¼ 	

:
i ð15Þ
(iii) Balance of moment of momentum
�ij ¼ �ji ð16Þ
(iv) Conservation of energy (first law of the thermodynamics)
	e
:
¼ �ij"

:
ij þ 	rext � qi;i ð17Þ
(v) and the Clausius-Duhem inequality
�ij"
:
ij � 	 �

:
þ �T

:� �
�

1

T
qiriT5 0 ð18Þ
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e 	, �, b, e, rext, �, and q are the mass density, the velocity vector, the body
wher
force vector, the internal energy density, the density of external heat, the specific
entropy, and the heat flux vector, respectively. Meanwhile, e, C, T, and � are related
by:
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C ¼ e� T� ð19Þ
For the purpose of describing the viscoinelastic behavior of the materials involved
in the dynamic loading, an additive decomposition of the specific free energy func-
tion, �, into thermoelastic, thermoviscoplastic, and thermoviscodamage parts is
assumed here, such that:
�~ "eij;T;riT;@k

� �
¼ �~ te "e;T;riT; �ij;r

2�ij

� �
þ�~ tvp

� T;riT; p;r
2p; �ij;r

2�ij

� �
þ�~ tvd

� T;riT; r;r
2r;Gij;r

2Gij; �ij;r
2�ij

� �
ð20Þ
where �te is the thermoelastic stored energy, while �tvpand �tvd are the energies
stored due to material hardening in viscoplasticity and viscodamage deformation
mechanisms, respectively. The decomposition of � into �te and �tvp is presently
considered well established (e.g. Lubliner, 1990; Lemaitre and Chaboche, 1990;
Voyiadjis and Kattan, 1999; Doghri, 2000). The addion of �tvd, as proposed by
some authors (e.g. Voyiadjis and Park, 1999; Voyiadjis and Kattan, 1999) for sim-
pler models than the one presented here, is an assumption based on the fact that
damage has a distinct morphology that is different from the other deformation
mechanisms. Furthermore, it should be noted that Eq. (20) is a partially decoupled
form of the specific free energy �. There is no state coupling between viscoplasticity
and elasticity, but the state coupling of viscodamage with the thermoelastic and
thermoviscoplastic stored energies strongly appears in the above decomposition. In
particular, the damage variables � and r2� appear in all portions of � and the
other internal state variables are expressed in the current, deformed, and damaged
configurations. � and r2� appear implicitly in Ctvp through the evolution of its set
of internal state variables as will be shown in Section 3.6.
Although the boundary conditions have not been explicitly stated here, they will

be discussed in the thermomechanical finite element formulation of Section 6. Fur-
ther, with the present definition of � the state laws and the internal viscoinelastic
dissipation are given below.

3.2. General thermodynamic formulation

According to the definition given above for �, the time derivative of Eq. (10) with
respect to its internal state variables is given by:
�
:
¼
@�

@"eij
"
:e
ij þ

@�

@T
T
:
þ

@�

@riT
riT
:
þ
@�

@@k
@
:
k ð21Þ



e from Eqs. (11–13) one can consider the following:
wher
@�

@@k
@
:
k ¼

@�

@�n
�
:
n þ

@�

@r2�n
r2�

:
n ð22Þ
with
@�

@�n
�
:
n ¼

@�

@p
p
:
þ
@�

@�ij
�
:
ij þ

@�

@r
r
:
þ
@�

@Gij
G
:
ij þ

@�

@�ij
�
:
ij ð23Þ
and
@�

@r2�n
r2�

:
n ¼

@�

@r2p
r2p
:
þ

@�

@r2�ij
r2�
:
ij þ

@�

@r2r
r2r
:
þ

@�

@r2Gij
r2G
:
ij

þ
@�

@r2�ij
r2�
:
ij ð24Þ
Substituting the rate of the Helmholtz free energy density, Eq. (21), into the
Clausius–Duhem inequality, Eq. (18) along with Eq. (9), one obtains the following
thermodynamic constraint:
�ij � 	
@�

@"eij

 !
"
:e
ij þ �ij"

:vi
ij � 	

@�

@T
þ �

� �
T
:
� 	

@ 

@riT
riT
:
� 	

@�

@@k
@
:
k

�
qi

T
rT5 0 ð25Þ
Assuming that the axiom of entropy production holds, then the above inequality
equation results in the following thermodynamic state laws:
�ij ¼ 	
@�

@"eij
; � ¼ �

@�

@T
;

qi

T
: ¼ 	

@ 

@riT
;

X
k

¼ 	
@�

@@k
k ¼ 1; :::; 10ð Þ ð26Þ
The above equations describe the relations between the state variables (observable
and internal) and their associated thermodynamic conjugate forces. These thermo-
dynamic forces conjugate to their state variables are listed in Table 1, where Sk ¼{Y,
Yg, R, Rg, X, Xg, K, Kg, H, Hg} (k ¼ 1; :::; 10) are the conjugate forces corre-
sponding to the viscoplastic and viscodamage internal state variables @k ¼{�, r2�,
p, r2p, �, r2�, r, r2r, �, r2C } (k ¼ 1; :::; 10), respectively. The stress � is a
measure of the elastic changes in the internal structure, while Y and Yg are measures
of the elastic-damage changes in the internal structure resulting from crack closure
and voids contraction during the unloading process. The conjugate forces R, Rg, X
and Xg are measures of viscoplastic changes in the internal structure, while K, Kg, H
and Hg are measures of the viscodamage changes in the internal structure.
The state laws of the assumed internal state variables, Eq. (26)4, are obtained from

Table 1 and are expressed in Table 2 in terms of their associated internal state vari-
ables. The superscript ‘g’ in Tables 1 and 2 indicates the thermodynamic conjugate
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force corresponding to the second-order gradient or Laplacian of the assumed
internal state variables.
Substituting Eqs. (26) into relation (25), one reduces the Clausius–Duhem

inequality in order to express the fact that the dissipation energy, �, is necessarily
positive as follows:
� ¼ �ij"
:vi
ij ��int � qi

riT

T
þ
riT
:

T
:

 !
5 0 ð27Þ
where the internal viscoinelastic dissipation energy, �int, can be written as:
�int ¼
X10
k¼1

X
k

@
:
k

¼ Rp
:
þ Rgr2p

:
þ Xij�

:
ij þ Xg

ijr
2�
:
ij þ Kr

:
þ Kgr2r

:
þHijG

:
ij þHg

ijr
2G
:
ij

� Yij�
:
ij � Yg

ijr
2�
:
ij 5 0 ð28Þ
Table 1

Thermodynamic state variables and their corresponding conjugate forces
State variables
 Associated conjugates
Observable
 Internal
"
 �
T
 �
"e
 �
"vi
 ��
rT
 q
@1¼ �, @2¼r2�
  1 ¼ �Y,  2 ¼ �Yg
@3¼p, @7¼r2p
  3 ¼ R,  7 ¼ Rg
@4¼ �, @8¼r2�
  4 ¼ X,  8 ¼ X
g

@5¼r, @9¼r2r
  5 ¼ K,  9 ¼ Kg
@6¼ �, @10¼r2�
  6 ¼ H,  10 ¼ H
g

Table 2

The thermodynamic state laws
Plasticity
 Isotropic hardening
 R ¼ 	
@�tvp

@p

Rg ¼ 	

@�tvp

@r2p
Kinematic hardening
 Xij ¼ 	
@�tvp

@�ij

Xg

ij ¼ 	
@�tvp

@r2�ij
Damage
 Isotropic hardening
 K ¼ 	
@�tvd

@r

Kg ¼ 	

@�tvd

@r2r
Kinematic hardening
 Hij ¼ 	
@�tvd

@Gij

Hg

ij ¼ 	
@�tvd

@r2Gij
Damage force
 � Yij ¼ 	
@�te

@�ij

� Yg

ij ¼ 	
@�te

@r2�ij
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To this end, the following split is proposed: nint ¼ n
vp
int þ nvd

int, where n
vp
int and nvd

int refer
to the number of internal state variables related to viscoplastic and viscodamage
(irreversible that may occur in every material) effects, respectively. In this context,
this assumption leads to rewriting the dissipation energy, �, as the summation of
dissipations due to mechanical (viscoplasticity and viscodamage) and thermal (heat
conduction) effects as (e.g. Coleman and Gurtin, 1967):
� ¼ �vp þ�vd þ�th 5 0; ð29Þ
where
�vp ¼ �ij"
:vi
ij � Rp

:
� Rgr2p

:
� Xij�

:
ij � Xg

ijr
2�
:
ij 5 0; ð30Þ
�vd ¼ �Kr
:
� Kgr2r

:
�HijG

:
ij �Hg

ijr
2G
:
ij þ Yij�

:
ij þ Yg

ijr
2�
:
ij 5 0; ð31Þ
�th ¼ �qi
riT

T
þ
riT
:

T
:

 !
5 0 ð32Þ
This result requires all viscoinelastic work to dissipate away as heat, except for
that energy which is stored because of the rearrangement of the material internal
structure. Although, we write the thermoviscoinelastic dissipation function P in the
decoupled form as shown by Eq. (29); however, this does not imply that the corre-
sponding physical mechanisms are decoupled. Strong coupling does occur in the
viscoplastic potential given by Eq. (30) between viscoplasticity and viscodamage
since the conjugate forces and their associated fluxes are expressed in the current,
deformed, and damaged configuration of the material. Hence, two additive damage
mechanisms are introduced in the dissipation function, Eq. (29); one mechanism is
coupled with viscoplasticity and the other occurs independent of viscoplastic defor-
mation.
Complementary laws can be related to the dissipation processes given by Eqs. (30–

32), which implies the existence of the dissipation potential expressed as a con-
tinuous and convex scalar valued function of the flux variables as shown below:
! "
:vi
ij ;@
:
k; qi=T

� �
¼ !I "

:vi
ij ;@
:
k

� �
þ!th T;riTð Þ ð33Þ
The superscript ‘I’ designates the inelastic deformation attributed to the visco-
plasticity and viscodamage deformation processes. The complementary laws are
then expressed by the normality property as follows:
�ij ¼
@!I

@"
:vi
ij

;
X
k

¼ �
@!I

@@
:
k

;
qi

T
: ¼ �

@!th

@ riTð Þ
ð34Þ
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By using the Legendre–Fenchel transformation of the dissipation potential, !,
one can define the corresponding dual potential with respect to force variables as:
!
 �ij;
X
k

;riT

 !
¼ � �ij;

X
k

; qi; "
:vi
ij ;@
:
k;T;riT

 !
�! "

:vi
ij ;@
:
k;T;riT

� �

¼ !
I �ij;
X
k

 !
þ!
th T;riTð Þ ð35Þ
from which the complementary laws in the form of the evolution laws of flux vari-
ables as function of the dual variables can then be written as follows:
"
:vi
ij ¼

@!
I

@�ij
;�@

:
k ¼

@!
I

@
P

k

;�
riT

T
: ¼

@!
th

@qi
ð36Þ
The intrinsic dissipation, !
I, is attributed to two distinct mechanical processes:
viscoplasticity and viscodamage.
It is clearly seen that the definition of �, !*I, and consequently of @

:
k

(k ¼ 1; :::; 10) are essential features of the formulation in order to describe the ther-
momechanical/microstructural behavior of the material involved in the deformation
process. The associative evolution laws of "vi and � can be obtained by utilizing the
calculus of several variables with Lagrange multipliers l

:
vp and l

:
vd. The inelastic

dissipation function �I=�vp+�vd [Eq. (29)] is subjected to the two constraints,
namely f ¼ 0 and g ¼ 0 (e.g. Voyiadjis and Kattan, 1992a,b; 1999), such that:
" ¼ �vp þ�vd � l
:
vpf� l

:
vdg ð37Þ
One now makes use of the maximum viscoinelastic dissipation principle (e.g. Simo
and Honein, 1990; Simo and Hughes, 1998), which states that the actual state of the
thermodynamic forces (�, Y) is that which maximizes the inelastic dissipation func-
tion over all other possible admissible states. Therefore, we maximize the objective
function O by using the necessary conditions as follows:
@O
@�ij

¼ 0 and
@"

@Yij
¼ 0 ð38Þ
Substitution of Eq. (37) into Eq. (38) along with Eqs. (30) and (31) yields the
thermodynamic laws corresponding to the evolution of the viscoinelastic strain rate
("
: vi
) and the viscodamage variable (�

:
), where Eq. (38)1 gives the viscoinelastic strain

rate as follows:
"
:vi
ij ¼

1ð Þ"
:vi
ij þ

2ð Þ"
:vi
ij ð39Þ
G.Z. Voyiadjis et al. / International Journal of Plasticity 20 (2004) 981–1038 997



where
1ð Þ"
:vi
ij ¼ l

:
vp @f

@�ij
; 2ð Þ"
:vi
ij ¼ l

:
vd @g

@�ij
ð40Þ
Similarly, Eq. (38)2 gives the viscodamage evolution law as follows:
�
:
ij ¼

1ð Þ�
:
ij þ

2ð Þ�
:
ij ð41Þ
where
1ð Þ�
:
ij ¼ l

:
vp @f

@Yij
; 2ð Þ�

:
ij ¼ l

:
vd @g

@Yij
ð42Þ
where f and g are the dynamic viscoplastic and viscodamage loading surfaces that
will be defined in Sections 3.6 and 3.7, respectively.
Eqs. (39–42) suggest that microdamage (i.e. microcracks and microvoids) growth

enhances dislocation evolution as the dislocation movement enhances microdamage
evolution. Eq. (40)1 is the conventional associated flow rule that is widely used in
classical plasticity theories, which describes the formation of ‘‘statistically stored
dislocations’’, while Eq. (40)2 describes the irreversible strain rate due to micro-
damage growth and plastic flow at the tip of the crack. Similarly, Eq. (42)1 indicates
that dislocation movement is responsible for microdamage growth, and Eq. (42)2
describes the microdamage evolution due to hydrostatic stresses. Thus, if the mate-
rial is damage-free, only 1ð Þ"

: vi
is used to describe the irreversible thermodynamic

process evolving in time. On the other hand, if the material is dislocation-free, only
2ð Þ�
:
is used to describe the irreversible thermodynamics. As a result one can define,

respectively, the conventional equivalent viscoplastic strain rate, p
:
, and the accu-

mulative viscodamage rate, r
:
, as follows (Voyiadjis and Deliktas, 2000b):
p
:
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2

3
"
:vi
ij "
:vi
ij

r
; r

:
¼

ffiffiffiffiffiffiffiffiffiffi
�
:
ij�
:
ij

q
ð43Þ
Next in order to obtain non-associative rules for the viscoplasticity and visco-
damage local hardening variables (p, �, r, �), one can assume the existence of a
viscoplastic potential F and a viscodamage potential G such that they are, respec-
tively, not equal to f and g. This postulate is essential in order to obtain nonlinear
evolutions of the viscoplastic and viscodamage hardening rules, which gives a more
realistic characterization of the material response in the deformation process. The
complementary laws for the evolution of the local internal state variables (�n,
n ¼ 1; . . . ; 5) can then be obtained directly from the generalized normality rules,
which are summarized in Table 3. On the other hand, by adopting the assumption of
isotropic influence, the complementary laws for the evolution of the second-order
gradients of the assumed local internal state variables (r2�n, n ¼ 1; . . . ; 5) can be
directly obtained by operating on the local equations of Table 3 with the Laplacian.
Similarly, r2�

:
can be obtained from Eq. (42). The resulting evolution laws are listed

in Table 3. By doing this we enhance the coupling between the evolutions of �n and
r2�n which will be thoroughly demonstrated in the subsequent sections.
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3.3. Specific free energy function

As it is clearly seen in the previous section, the complexity of a model is directly
determined by the form of the Helmholtz free energy C and by the number of con-
jugate pairs of variables. Therefore the definition of C constitutes a crucial point of
the formulation since it is the basis for the derivation of all the constitutive equa-
tions to be described in what follows. It is possible to decouple the Helmholtz free
energy into a potential function for each of the internal state variable in such a way
that an analytical expression for the thermodynamic potential is given as a quadratic
form of its internal state variables. However, coupling is possible in the viscoplastic
potential or the viscodamage potential if they depend on more than one variable
(Henry and Haslach, 2002), which makes the evolution equations more complex.
Moreover, Chaboche (1991) indicated that an energy � with non-quadratic kine-
matic hardening variables leads to abnormal results; however, coupling with tem-
perature was not discussed there. As a matter of fact under high strain rate loading a
significant temperature rise is produced due to adiabatic heating, which should be
considered in the constitutive modeling. Experimental results also indicate that
plastic deformation is not the dominating source of heat generation during dynamic
deformation, but thermodamage coupling must be considered in the simulation for
more accurate comparisons with experiments (Bjerke et al., 2002). Thus, a necessary
multiplicative temperature coupling term can be introduced in the viscoplasticity
and viscodamage hardening state variables for more realistic description of their
evolution. The thermoelastic energy, �te, can then be postulated as follows:
�te ¼
1

2	
"eijEijkl �;r

2�
� �

"ekl �
1

	
�ij"

e
ij T-Trð Þ � �r T-Trð Þ �

1

2
c

� T-Trð Þ
2
�

1

2	T
: kijriTrjT ð44Þ
On the other hand, the thermoviscoplastic and thermoviscodamage energies, �tvp

and �tvd, on the long-term manifold (neglecting the short-term manifolds) are
assumed as follows:
Table 3

The thermodynamic laws for the evolution of the internal state variables
Plasticity
 Isotropic hardening
 p
:
¼ �l

:
vp @F

@R

r2p
:
¼ �r2l

:
vp@RF� l

:
vpr2@RF
Kinematic hardening
 �
:
ij ¼ �l

:
vp @F

@Xij

r2�
:
ij ¼ �r2l

:
vp@XF� l

:
vpr2@XF
Damage
 Isotropic hardening
 r
:
¼ �l

:
vd @G

@K

r2r
:
¼ �r2l

:
vd@KG� l

:
vdr2@KG
Kinematic hardening
 G
:
ij ¼ �l

:
vd @G

@Hij

r2G
:
ij ¼ �r2l

:
vd@HG� l

:
vdr2@HG
Damage variable
 r2�
:
ij ¼ r2ð1Þ�

:
ij þr2ð2Þ�

:
ij: : :
r2ð1Þ�ij ¼ r2lvp@Yfþ lvpr2@Yf: : :

r2ð2Þ�ij ¼ r2lvd@Ygþ lvdr2@Yg
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	�tvp ¼
1

2
a1p

2#þ
1

2
b1 r2p
� �2

#þ
1

2
a2�ij�ij#þ

1

2
b2r

2�ijr
2�ij# ð45Þ

	�tvd ¼
1

2
a3r

2#þ
1

2
b3 r2r
� �2

#þ
1

2
a4GijGij#þ

1

2
b4r

2Gijr
2Gij# ð46Þ
where E(�,r2�) is the fourth-order damage elastic tensor, � is the second-order
tensor of the thermo-mechanical coefficients or sometimes referred to as the tangent
conjugate of thermal dilatation (see e.g. Lubliner, 1990), c is the coefficient of ther-
mal expansion, �r is the reference entropy, ak and bk k ¼ 1; . . . ; 4ð Þ are the material-
dependent constants which are considered independent of temperature, Tr is the
reference temperature, k=k� is the heat conductivity second-rank tensor (k being
the conductivity coefficient and � is the Kronecker delta), and # is the homologous
temperature defined as # ¼ 1� T=Tmð Þ

n, where Tm is the melting temperature. n is
the temperature softening component, which might be assumed different for each
hardening mechanism.
The proposed definition of C allows the derivation of the constitutive equations

and the internal dissipation described next. The constitutive equations for stress, Eq.
(26)1, can be written from the thermodynamic potential Eq. (44) as follows:
�ij ¼ Eijkl "kl � "
vi
kl

� �
� �ij T� Trð Þ ð47Þ
where it can be directly concluded that
Eijkl ¼ 	
@2�

@"eij@"
e
kl

; �ij ¼ �	
@2�

@"eij@T
ð48Þ
Furthermore, by using Eqs. (3),(5) and (8), the nominal stress relation Eq. (47) can
be written in the effective configuration as follows:
�� ij ¼ E� ijkl"�
e
kl � �

�
ij T-Trð Þ ð49Þ
such that b� is defined as:
�� ij ¼ M
_

ikjl�kl ð50Þ
The constitutive equation for entropy, Eq. (26)2, can be written from the thermo-
dynamic potential, Eqs. (44–46), assuming the decoupling between the thermal
effects induced through elasticity, viscoplasticity, and viscodamage such that:
� ¼ �te þ �tvp þ �tvd ð51Þ
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where
�te ¼ �r þ c T� Trð Þ þ
1

	
�ij "ij � "

vi
ij

� �
ð52Þ

�tvp ¼
1

2	
a1p

2 þ b1 r2p
� �2

þa2�ij�ij þ b2r
2�ijr

2�ij

h i
Z ð53Þ

�tvd ¼
1

2	
a3r

2 þ b3 r2r
� �2

þa4GijGij þ b4r
2Gijr

2Gij

h i
Z ð54Þ
In the above equations Z is given as:
Z ¼ �
@#

@T
¼

n

Tm

T

Tm

� �n�1

ð55Þ
The constitutive equation for the heat flux vector q can be obtained from Eq. (26)3
as follows:
qi ¼ �kijrjT ð56Þ
which is the well-known Fourier heat conduction law. The negative sign indicates
the heat flow is opposite to the direction of temperature increase.
The state laws of the assumed internal state variables, Eq. (26)4, are obtained

using the equations outlined in Table 2 along with the thermodynamic potentials,
Eqs. (44–46), and are listed in Table 4. Those conjugates are linear relations in terms
of their associated internal state variables due to the particular definition of �tvp and
Ctvd given by Eqs. (45) and (46), respectively. Furthermore, the specific internal
energy e can be found by substituting the specific free energy potentials given by
Eqs. (44–46), and the specific entropy given by Eqs. (51–54) into Eq. (19). It should
be noted that the specific entropy and the specific internal energy functions preserve
the additive decomposition previously assumed for �.
A systematic way to show the dependency between the derived local state laws and

the state laws associated with their Laplacian is outlined in the subsequent section.

3.4. Weak non-local formulation using the gradient approach

As we mentioned in Section 3.1, the assumed internal state variables in the current
work are no longer independent and special care must be taken to properly account
Table 4

The thermodynamic conjugate forces expressions derived from specific free energy function
Plasticity
 Isotropic hardening
 R ¼ a1p#
 R g ¼ b1 r2p
� �

#� �

Kinematic hardening
 Xij ¼ a2�ij#
 X g

ij ¼ b2 r2�ij #� �

Damage
 Isotropic hardening
 K ¼ a3r#
 K g ¼ b3 r2r #� �
Kinematic hardening
 Hij ¼ a4Gij#0 1 0 1
 Hg
ij ¼ b4 r2Gij #
@
"emnEmnpq"

e
pq @

"emnEmnpq"
e
pq
Damage force
 � Yij ¼
@�ij ��mn"

e
mn T� Trð Þ

@ A� Y g
ij ¼ @r2�ij ��mn"

e
mn T� Trð Þ

@ A
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for state variable coupling between �n and r2�n. In order to enhance this coupling,
one can start by defining the evolution of the pure non-local variable �

_

n at position
x as the weighted average of its local counterpart �

:
n over a surrounding volume V

at a small distance j�j4 lC from the considered point (Kroner, 1967; Pijaudier-
Cabot and Bazant, 1987), such that:
�
_
:
n xð Þ ¼

1

Vr xð Þ

ð
V

h �ð Þ�
:
n x þ �ð Þ dV ð57Þ
in which
Vr xð Þ ¼

ð
V

h �ð Þ dV ð58Þ
Superimposed hat denotes the spatial non-local operator, lc is an intrinsic char-
acteristic length and h �ð Þ is a weight function that decays smoothly with distance
and in this work is given by h �ð Þ ¼ I h �ð Þ, where I is an identity tensor. However, the
identity tensor I may be suitably substituted by another tensor in order to induce
further anisotropic behavior of the material (Voyiadjis and Dorgan, 2001). The
evolution of the local variable �n in Eq. (57) can be approximated by a Taylor
expansion at � ¼ 0, such that:
�
:
n x þ �ð Þj �¼0¼ �

:
n xð Þ þ r�

:
n xð Þ� þ

1

2
r2�

:
n xð Þ�� þ

1

3!
r3�

:
n xð Þ��� þ � � � ð59Þ
where ri denotes the i-th order gradient operator. Assuming only an isotropic
influence of the averaging equation (i.e. the non-local weighting function h is iso-
tropic), as we stated previously, the integrals of the odd terms in Eq. (59) vanish.
Moreover, Fleck and Hutchinson (2001) showed that the inclusion of the odd gra-
dient terms in the plastic yield function is not physically sound since a term of this
type could not arise from a variational principle and, fundamentally, is inherently
inconsistent with the boundary condition requirements for solid bodies. If one
assumes a more general tensorial character for h not necessarily confined to the
expression in terms of an identity tensor, then one obtains a different weighting of
the individual coefficients.
Furthermore, making use of Eqs. (57) and (59) and truncating the Taylor series after

the quadratic term leads to the following expression for the non-local variable �
_
:
n:
�
_
:
n ¼

1

Vr

ð
V

h �ð Þ�
:
n xð Þ dVþ

1

2Vr

ð
V

h �ð Þr2�
:
n xð Þ�� dV ð60Þ
This relation can be expressed as a partial differential equation such that:
�
_
:
n ¼ �

:
n þ

1

2Vr

ð
V

h �ð Þ½ ��� dV

� �
r2�

:
n ð61Þ

ð

However, setting

1

Vr V
½h �ð Þ dV ¼ 1, gives the weak form of the non-local evolution

of �
_

n as compared to the corresponding strong form presented in Eq. (57) as follows
(note that in all equations that follow there is no sum in n index when n is repeated):
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�
_
:
n ¼ �

:
n þ

1

2
l2nr

2�
:
n; n ¼ 1; . . . ; 4ð Þ ð62Þ
such that:
p
_
:
¼ p
:
þ
1

2
l21 r

2p
:

ð63Þ

a
_
:
ij ¼ �

:
ij þ

1

2
l22 r

2�
:
ij ð64Þ

r
_
:
¼ r
:
þ
1

2
l23 r

2r
:

ð65Þ

G
_
:
ij ¼ G

:
ij þ

1

2
l24 r

2G
:
ij ð66Þ
In Eqs. (62–66), the gradient parameters ln (n ¼ 1; :::; 4) are length parameters
required for dimensional consistency and they set the scales at which the gradients
become important. They give rise to explicit length-scale measures. Those length
measures are treated as constants in this study. However, those length measures can
be functions of temperature and strain rate, which is not the subject of this study.
Fleck and Hutchinson (2001) showed that the variety of plasticity phenomena at
small-scale levels dictates the necessity of more than one length parameter in the
gradient description. Hence, different length-scales that characterize the plasticity
and damage mechanisms are presented in this work. The evolution laws of �

:
n

(n ¼ 1; :::; 4) and coresponding Laplacian r2�
:
n are given in Table 3.

Note that the following equality holds (Ganghoffer et al., 1999):
�
:_
n ¼ �

:_
n ð67Þ
that is the rate of any non-local quantity is equal to its non-local rate. This Lemma
is imperative for the subsequent derivations.
Following the equations listed in Table 4 for the viscoplasticity and viscodamage

hardening conjugate forces, one can write the evolution equations of the corre-
sponding non-local conjugate forces at a given temperature as follows:
 
_
:
n ¼ cn�

_
:
n# n ¼ 1; :::; 4ð Þ ð68Þ

e c (n ¼ 1; :::; 4) are material parameters that are characterized as hardening
wher n

moduli. Moreover,  
_
:
n is additively decomposed into two parts: one corresponding

to the local counterpart of �
_
:
n and the other is corresponding to the Laplacian

counterpart, r2�
:
n, such that (see Table 4):
 
_
:
n ¼  

:
n þ 

:
g
n n ¼ 1; . . . ; 4ð Þ ð69Þ
 
:
n and  

:
g
n (n ¼ 1; :::; 4) are given at constant temperature as follows (see Table 4):
 
:
n ¼ an�

:
n# n ¼ 1; . . . ; 4ð Þ ð70Þ
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:
g
n ¼ bnr

2�
:
n# n ¼ 1; . . . ; 4ð Þ ð71Þ
However, substituting Eq. (62) into Eq. (68) yields:
 
_
:
n ¼ cn�

:
n#þ

1

2
cnl

2
nr

2�
:
n# n ¼ 1; . . . ; 4ð Þ ð72Þ
Comparing Eq. (72) with Eqs. (69–71) yields:
ln ¼

ffiffiffiffiffiffiffi
2bn

an

s
where cn ¼ an n ¼ 1; . . . ; 4ð Þ ð73Þ
Taking the Laplacian of Eq. (70) and neglecting temperature gradients one
obtains:
r2 
:
n ¼ anr

2�
:
n# n ¼ 1; . . . ; 4ð Þ ð74Þ
Comparing the above equation with Eq. (71) yields
 
:
g
n ¼

bn

an
r2 

:
n n ¼ 1; . . . ; 4ð Þ ð75Þ
Hence, Eq. (69) can be rewritten as follows:
 
:
n ¼  

:
n þ

bn

an
r2 

:
n n ¼ 1; . . . ; 4ð Þ ð76Þ
or substituting for bn=an from Eq. (73) one can rewrite the above equation as
follows:
 
_
:
n ¼  

:
n þ

1

2
l2nr

2 
:
n n ¼ 1; . . . ; 4ð Þ ð77Þ
which shows a similar relation to that of their corresponding fluxes given by Eq.
(62). The above results are summarized in Table 5.
The non-local evolution equation of the damage variable � can also be written as

follows:
�
_
:
ij ¼ �

:
ij þ ar2�

:
ij ð78Þ
where a ¼
1

2
l25 and the evolution equations of � and r2� are given in Table 3. Using

Eq. (6) one can then write:
M
_
�1
ikjl ¼ M�1

ikjl þ ar2M�1
ikjl ð79Þ
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e
wher
M�1
ikjl ¼

1

2
�ik � �ikð Þ�jl þ �ik �jl � �jl

� �� �
ð80Þ
and
r2M�1
ikjl ¼ �

1

2
r2�ik�jl þ �ikr

2�jl

� �
ð81Þ
Table 5 shows that the variety of plasticity and damage phenomena dictates the
necessity of more than one length parameter in the gradient description. However,
the full utility of the proposed gradient-type theory hinges on one’s ability to
determine the constitutive length-scale parameters ‘n (n ¼ 1; . . . ; 5) that scale the
gradient effects. We tend to express these material length-scales in terms of
macroscopic measurable material parameters, Eq. (73). Tsagrakis et al. (in press)
have done similar work, where they tend to express the plasticity isotropic hard-
ening length parameter as l1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2b1=�

p
where � is the shear modulus which is on

the order of the hardening coefficient a1. However, the material parameters bn must
be calibrated from micromechanical tests where size effects and plastic and damage
heterogeneity are encountered. Examples of such tests are micro- and/or nano-
indentation tests (Stelmashenko et al., 1993), micro-bending tests (Stolken and
Evans, 1998), and micro-torsion tests (Fleck et al., 1994). Whereas the hardening
parameters an can be identified from macroscopic tests such as the typical tension
test.
Based on the Taylor dislocation model, Nix and Gao (1998) have identified the

plasticity isotropic hardening intrinsic length-scale parameter (l1) as the square of
dislocation spacing over the Burgers vector, i.e. ‘1 ¼ l2=b. In terms of the macro-
scopic quantities, this length is given as l1 ¼ b �=�y

� �2
where �y is the flow stress

which can be a function of strain rate and temperature (see Eq. (106)). In a recent
work by the authors (Abu Al-Rub and Voyiadjis, 2003, in press; Voyiadjis and
Abu Al-Rub, 2002), a micromechanical model that nonlinearly couples statistically
stored dislocations (SSDs) and geometrically necessary dislocations (GNDs) is used
to derive an analytical form for the length-scale parameter l1 in terms of measurable
Table 5

The non-local thermodynamic laws and the corresponding length parameters at a given temperature
Local
 Gradient
 Non-local
 Length paramaeter
Plasticity
 Isotropic

hardening
R
:
¼ a1p

:
#
 R

:
g ¼ b1r

2p
:
#
 R

_
:
¼ R
:
þ

b1
a1

r2R
:

l1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2b1=a1

p

Kinematic

hardening
X
:
ij ¼ a2�

:
ij#
 X

: g
ij ¼ b2r

2�
:
ij#
 X

_
:
ij ¼ X

:
ij þ

b2
a2

r2X
:
ij
 l2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2b2=a2

p

Damage
 Isotropic

hardening
K
:
¼ a3r

:
#
 K

:
g ¼ b3r

2r
:
#
 K

_
:
¼ K
:
þ

b3
a3

r2K
:

l3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2b3=a3

p

Kinematic

hardening
H
:
ij ¼ a4G

:
ij#
 H

: g
ij ¼ b4r

2G
:
ij#
 H

_
:
ij ¼ H

:
ij þ

b4
a4

r2H
:
ij
 l4 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2b4=a4

p
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microstructural physical parameters. It was shown that l1 is proportional to the
mean free-path distance between dislocations. Abu Al-Rub and Voyiadjis (2003, in
press), and Voyiadjis and Abu Al-Rub (2002) also presented a method for identify-
ing l1 from micro- and nano-indentation experiments. That work, therefore, pro-
vides an initial effort for identification of the current material intrinsic length
parameters from micro or nano experiments.
Moreover, many authors tend to use a constant value for the length-scale para-

meter and neglecting its variation with the state of loading. For example, the
damage zone ahead of the crack tip or the mean dislocation spacing will decrease
with increasing strain rate and increase with decreasing temperature, which for small
scale yielding is of the order of microns. This causes the intrinsic material length-
scale to decrease with increasing strain-rates and to increase with temperature
decrease. However, opposite behavior is anticipated for the gradient term; that is,
gradients are inversely proportional to the length scale over which plastic and/or
damage deformations occur. Therefore, the strain-rate effect and temperature var-
iation are crucial to the reliability of the proposed length-scale parameters. Particu-
larly, in dynamic problems their inclusion becomes more necessary. To the authors’
best knowledge, very limited numerical investigations and experimental studies have
been carried out that incorporate the influence of strain-rate and temperature var-
iation on the gradient plasticity and damage, or more specifically, on the size effect.
Motivated by this crucial observation, Abu Al-Rub and Voyiadjis (2003, in press)
proposed the following evolution of the length scale associated with plasticity hard-
ening, such that:
‘
:
1 ¼ ‘1�oexp � Uo=kTð Þf1� �
=�
o

� �p
gq

� �
ð82Þ
where ‘1 as given by Nix and Gao (1998) or equivalently by ‘1 ¼ Al (Abu Al-Rub
and Voyiadjis, 2003, in press), where A is a material constant and l is the mean free
path distance between dislocations. �o is the fundamental vibrational frequency of
the dislocation, p and q are material constants, k is the Boltzmann’s constant, Uo is
the referential activation energy, �
 is the thermal stress, and �
o is the reference
thermal stress.
Similar correlation of the other material length parameters with measurable

physical parameters is under investigation. Models that are based on fundamental
physical laws that govern dislocation motion, micro-cracks propagation, and voids
growth, nucleation, and coalescence and their interaction with various defects and
interfaces could be used to shed some ensight on how the evolution of the damage
and plasticity length-scales may look like. The work of Zbib and his co-authors falls
within these desired models (e.g. Zbib and Diaz de la Rubia, 2002; Taylor et al.,
2002; and the references quoted therein).

3.5. Viscoplasticity and viscodamage potentials

The next important step is the selection of the appropriate form of the viscoplastic
potential function F and the viscodamage potential function G in order to establish
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the desired constitutive equations that describe the mechanical behavior of the
material. It is clearly seen in the previous part of this work that the viscodamage
evolution laws are strongly coupled with viscoplasticity. To maintain this strong
coupling, two independent damage mechanisms are distinguished. One mechanism is
coupled with viscoplasticity, while the other occurs independent of viscoplastic
deformation. The first mechanism is dominant in the case of shear stresses and the
second is due to hydrostatic stresses. In order to be consistent and satisfy the gen-
eralized normality rule of thermodynamics, a proper analytical form for the visco-
plastic and the viscodamage potentials need to be postulated in order to obtain the
evolution equations of the assumed flux variables, such that:
F ¼ fþ
1

2
k1R

_� 2 þ
1

2
k2X

_�
ijX

_�
ij ð83Þ

G ¼ gþ
1

2
h1K

_
2 þ

1

2
h2H

_

ijH
_

ij ð84Þ
where ki and hi (i ¼ 1; 2) are material constants used to adjust the units of the terms
comprising the above equations. X ¼ X� þX� g is the non-local effective backstress
tensor associated with the kinematic hardening and is expressed as follows:
X
_�
ij ¼ M

_

ikjlX
_

kl ð85Þ
where the evolution of X
_

is given by Eq. (69) (see Table 5), from which one can write
the following relations:
X� ij ¼ M
_

ikjlXkl and X� gij ¼ M
_

ikjlX
g
kl ð86Þ
M
_

is the non-local fourth-order damage tensor and is given in terms of the non-
local damage variable �

_

(Eq. (78)) as shown in Eq. (4).
The isotropic hardening represents a global expansion in the size of the yield

surface with no change in shape. Thus for a given yield criterion and flow rule,
isotropic hardening in any process can be predicted from the knowledge of the
function R

_� ¼ R� þ R� g and this function may, in principle, be determined from a
single test (e.g. the tension test). Therefore, the effective isotropic hardening
functions R �, R� , and R

_� g are related to the nominal isotropic hardening functions R
_

,
R, and Rg, respectively, as follows:
R
_�
¼

R
_

1� r
_ ð87Þ
or from Eq. (69)
R� ¼
R

1� r
; R� g ¼

Rg

1� r
ð88Þ
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where r
_

is defined as the non-local accumulative viscodamage with r
:
given by Eq.

(43)2, such that one can write:
r
_

¼

ðt
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
_
:
ij�
_
:
ij dt

q
ð89Þ
Note that if A� is a quantity in the effective configuration, the following equality
holds true:
A�
_

¼ A
_�

ð90Þ
This Lemma simply implies that the non-local of any quantity in the effective
configuration is equal to its effective non-local quantity, thus we get:
R�
_

¼ R
_�
; X�

_

ij ¼ X
_�

ij ð91Þ
The assumed potential functions, F and G, indicate the need for two loading surfaces
f and g, one for viscoplasticity and another for viscodamage, respectively. Thus, the
coupled anisotropic viscodamage and viscoplasticity formulation is a two-surface
model whereby anisotropic viscodamage is formulated in the spirit of viscoplasticity,
complete with a viscodamage criterion and flow rules. However, it is possible to
activate one or both of the surfaces depending on the corresponding criteria for
viscoplasticity and viscodamage.

3.6. Viscoplasticity surface and corresponding hardening rules

3.6.1. Viscoplasticity surface
Once a material is damaged, further loading can only affect the undamaged region.

Thus, the damage function g is defined in terms of the effective stresses and strains. By
combining viscoplasticity with damage, it seems natural that viscoplasticity can only
affect the undamaged material skeleton. Therefore, the yield function f is also defined
in terms of the effective stresses and strains. For the classical J2 rate-independent
plasticity, the static yield surface (at negligible plastic strain rate) fs is assumed to be of
a von Mises type with isotropic and kinematic hardening, which is defined as follows:
fs ¼
ffiffiffiffiffiffiffi
3J2

p
� ��yp Tð Þ � R

_�
p�;r2p�;T
� �

4 0 ð92Þ
where J2 ¼ 1=2ð	� �X
_�
Þ : ð	� �X

_�
Þ is the second invariant of the resultant deviatoric

stress tensor ð	� �X
_

Þ, ��yp is the initial yield strength (note that the subscript ‘yp’ does
not indicate tensorial indices), p� is the effective accumulative viscoplastic strain, and
	� is the effective deviatoric stress tensor and is expressed in terms of the damage
tensor M

_

(given by Eq. (4)) and the corresponding damage state as follows
(Voyiadjis and Kattan, 1999):
��ij ¼ M0
ikjl�kl and M0

ikjl ¼ M
_

ikjl �
1

3
M
_

rkrl�ij ð93Þ
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e can define the initial yield strength ��yp as a function of temperature as
On
follows:
��yp Tð Þ ¼ Y� o# ð94Þ
where # ¼ 1� T=Tmð Þ
n and Y� o is the initial yield stress in the undamaged state at

zero absolute temperature, zero viscoplastic strain, and static strain rate.
The extension of Eq. (92) to include the rate-dependent plasticity (viscoplasticity)

implies that the stress state is no longer constrained to remain on the yield surface
but one can havefs 5 0. Therefore, we define the overstress as:
��v ¼ h
ffiffiffiffiffiffiffi
3J2

p
� ��yp þ R

_�
� �

i ð95Þ
where ��v is the viscous stress in the effective configuration (or the overstress, i.e. the
difference between the dynamic stress and its static counterpart) and hi denotes the
MacAuley brackets defined by hxi ¼ ðxþ jxjÞ=2. �� v is the common notion of visco-
plasticity (Perzyna, 1966), which implies that an inelastic process can only take place
if, and only if, �� v is positive. In that case, fs 5 0. Therefore, we define the dynamic
yield surface, f, as follows:
f ¼
ffiffiffiffiffiffiffi
3J2

p
� ��yp Tð Þ � R

_�
p�;r2p�;T
� �

� ��v p�
:
;r2p�

:
; p�;r2p�;T

� �
� 0 ð96Þ

:

The effective rate of the accumulative viscoplastic strain, p� , is defined by:
p�
:
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

3
"�
:
vp
ij "�
:
vp
ij

r
ð97Þ
where "�
:
vp is the viscoplastic strain rate in the effective configuration. Moreover, one

can adopt the energy-correlating hypothesis; each type of energy process in the
damaged state is equal to the corresponding in the effective configuration. Thus, "�

:
vp

can be related to "
: vp ¼ ð1Þ"

: vi [Eq. (40)1] through the use of the viscoplastic strain
energy equivalence hypothesis (e.g. Lee et al., 1985; Voyiadjis and Thiagarajan,
1997; Voyiadjis and Deliktas, 2000b), which states that the viscoplastic energy in
terms of the effective and nominal stress and strain quantities must be equal. This
gives the following relation, such that:
"�
:
vp
ij ¼ M

_
�1
ikjl

ð1Þ"
:vi
kl ð98Þ
where M
_
�1 is the inverse of the fourth-order damage tensor given by Eq. (6).

Substituting Eq. (40)1 into Eq. (98) and by making use of the effective stress defi-
nition [Eq. (3)] and the chain rule, we can write the viscoplastic strain rate in the
effective configuration, "�

:
vp, as follows:
"�
:
vp
ij ¼ l

:
vp @f

@�� ij
ð99Þ
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ce @f=@� : @f=@� ¼ 1:5, it can be easily shown that p�
:
defined by Eq. (97) is
Sin

related to l
:
vp by:
p�
:
¼ l
:
vp ð100Þ
Substituting Eq. (83) into the evolution law of p
:
from Table 3, making use of the

chain rule with Eq. (88)1, and finally comparing the result with Eq. (100) yields the
following expression:
p
:
¼

p�
:

1� r
1� k1R

_�
� �

ð101Þ
Note that in obtaining the above equation we set @f=@R ¼ �1 since the evolution
of R is independent of the overstress function ��v, where R characterizes the radius of
the yield surface in the absence of the strain rate effect. Making use of the assump-
tion of isotropy (i.e. neglecting the odd gradient terms) and neglecting higher-order
terms, one obtains the following relation by either substituting Eq. (88)1 and l

:
vp

from Eq. (100) into the definition of r2p
:
outlined in Table 3 or by simply taking the

Laplacian of Eq. (101), such that:
r2p
:
¼

r2p�
:

1� r
_ þ

r2r

1� r
_

ð Þ
2
p�
:

 !
1� k1R

_�
� �

�
p�
:

1� r
_ k1r

2R� ð102Þ
r2R� is obtained by substituting Eq. (88)1 into Eq. (75) and making use of the
Lemma presented in Eq. (67), such that:
r2R� ¼
a1
b1

R� g þ
r2r

1� r
_ R� ð103Þ
In classical viscoplastic models of the Perzyna-type (Perzyna, 1963, 1966), which
are considered as penalty regularization of rate-dependent plasticity (viscoplasti-
city), the non-local consistency parameter l :vp ¼ l

:
vp þ 1

2 l
2
1 r

2l
:
vp (note that the

associated length parameter is the same as for p
:
since Eq. (100) holds true) in the

effective configuration can be replaced by an increasing function of the overstress.
For example:
l
_
:
vp ¼

1

�vp

*
�� v

��yp þ R
_�

+m1

ð104Þ
where m1 is the viscoplastic rate sensitivity parameter and �vp is the viscosity or
fluidity parameter, which is referred to as the relaxation time according to the
notation given by Perzyna (1988).
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By making use of Eqs. (104), (100), and (63), one can write an expression for the
overstress function �� v as follows::
��v ¼ ½�vpp
_� �1=m1 ½��yp þ R

_�
� ð105Þ
Substituting ��v into Eq. (96) gives the following expression for the dynamic yield
surface f in the effective configuration:
f ¼
ffiffiffiffiffiffiffi
3J2

p
� ½��yp þ R

_�
�½1þ ð�vpp

_�
:
Þ
1=m1 � � 0 ð106Þ
This criterion is a generalization of the classical von-Mises yield criterion fs ¼ 0,
Eq. (92), for rate-dependent materials. The latter can be simply recovered by
imposing �vp ¼ 0(no viscosity effect), so that one has the plasticity case f ¼ fs 4 0. In
the elastic domain, both fs and f are equivalent since, in that case, p�

:
¼ 0. Therefore,

the admissible stress states are constrained to remain on or within the elastic
domain, so that one has similar to rate-independent plasticity f4 0. However, dur-
ing the unloading process for rate dependent behavior, f < 0 and for a particular
strain-rate does not imply that the material is in the elastic domain, but it may also
be in a viscoplastic state with a smaller strain-rate. Moreover, the well-known fact
that, from the relation in Eq. (104), it can be noted that as the viscosity parameter
�vp goes to zero (rate-independent case), the consistency parameter l

_
:
vp remains

finite and positive (though indeterminate) since �� v also goes to zero. The extended
criterion given by Eq. (106) will play a crucial rule in the dynamic finite element
formulation described hereafter. It also allows a generalization of the standard
Kuhn–Tucker loading/unloading conditions:
f4 0; l
:
vp 5 0; l

:
vpf ¼ 0 ð107Þ
Thus, f still satisfies the constraint equation, Eq. (37), and the maximum dissipa-
tion principle, Eq. (38)1. For this reason, the dynamic yield surface can expand and
shrink not only by softening or hardening effects, but also due to softening/ hard-
ening rate effects.
Furthermore, it is noteworthy that ��yp increases with strain-rate increase, Eq.

(106), and decreases with temperature increase, Eq. (94). This agrees well with the
experimental observations that show that the onset of yielding depends on both
strain-rate and temperature (see e.g. Johnson and Cook, 1985; Zerilli and Arm-
strong, 1987). Thus, the assumed expression in Eq. (94) is valid for different types of
loading rates. Moreover, the right-hand-side of Eq. (106) defines the flow stress as a
function of strain, strain-rate, and temperature and then converges to a great extent
to the constitutive laws of Johnson and Cook (1985) and Zerilli and Armstrong
(1987).

3.6.2. Viscoplasticity hardening rules
The evolution of the viscoplasticity driving forces associated with their corre-

sponding internal state variables chosen for the description of isotropic and kine-
matic hardening are derived next. The evolution equations are derived in the
effective configuration to be directly substituted in the viscoplasticity surface func-
tion f, Eq. (106).
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Making use ofR
:
andR

:
g relations in Table 5 and the time derivative of Eq. (88) for a

given temperature while maintaining the damage history constant (i.e. the damage
internal state variable � and temperature T are kept constant) and substituting p�

:
for

p
:
from Eq. (101) and r2p�

:
for r2p

:
from Eq. (102) along with Eq. (103), one can write

the following evolution equations for R� and R� g, respectively, as follows:
R�
:
¼

a1#

1� r
_

ð Þ
2

1� k1R
_�

� �
p�
:

ð108Þ

R�
:
g ¼ SR

1 p�
:
þ SR

2 r
2p�
:

ð109Þ
where
SR
1 ¼

#

1� r
_

ð Þ
3

b1 1� 2k1R� � k1R�
g

� �
r2r� k1a1 1� r

_
ð ÞR� g

h i
ð110Þ

SR
2 ¼

b1#

1� r
_

ð Þ
2

1� k1R
_�

� �
ð111Þ
The non-local evolution equation for the isotropic hardening in the effective con-

figuration, R
_�
:

, can then be written according to Eq. (69) or from Table 5 as follows:
R
_�
:

¼ R�
:
þ R�
:
g ð112Þ
It is worthy to mention that when the rate and temperature independent response
of a material is assumed, the micro-damage effects are neglected, and an associative
hardening rule is used then the isotropic hardening law given by Eq. (111) reduces to
that proposed by Mühlhaus and Aifantis (1991) and de Borst and Mühlhaus (1992).
In order to derive the non-local kinematic hardening evolution equation asso-

ciated with viscoplasticity, we first make use of the �
:
law in Table 3 along with the

chain rule and Eq. (86)1, such that we can write the following relation:
�
:
ij ¼ �l

:
vpM

_

minj
@F

@X� mn

ð113Þ
Substituting Eq. (83) into the above equation yields:
�
:
ij ¼ �l

:
vpM

_

minj
@f

@X� mn

þ k2X
_�

mnÞ

�
ð114Þ
Since @f=@X� ¼ �@f=@	� ¼ �@f=@�� as it is clear from Eq. (106), it can be easily
shown by using Eq. (99) and (100) that Eq. (114) can be rewritten as follows:
�
:
ij ¼ M

_

minj "�
:
vp
mn � k2X

_�
mnp�
:
Þ

�
ð115Þ
1012 G.Z. Voyiadjis et al. / International Journal of Plasticity 20 (2004) 981–1038



wever, using the X
:
relation in Table 5 and operating on the X� relation of
Ho

Eq. (86)1 with the time derivative for a given temperature and keeping the
damage history constant (i.e. the viscodamage effective tensor M

_

and the tem-
perature T are kept constant), we can write the following evolution equation for
X� as follows:
X�
:
ij ¼ M

_

ikjlM
_

mknl a2"�
:
vp
mn � k2a2p�

:
X
_�

mn

� �
# ð116Þ
When the rate and temperature independent response of a material is assumed and
the micro-damage and non-local effects are neglected then the kinematic hardening
law given by Eq. (116) reduces to that proposed by Armstrong and Frederick (1966).
Again, with the assumption of isotropy (i.e. neglecting the odd gradient terms)

and neglecting higher-order terms, either by utilizing Eqs. (83), (99), and (100) into
the evolution law of r2�

:
from Table 3 or by taking the Laplacian of Eq. (115), the

following expression can be obtained:
r2�
:
ij ¼ M

_

minj r2"�
:
vp
mn � k2 X

_�
mnr

2p�
:
þ p�
:
r2X�mn

� �h i
þ r2M

_

minj "�
:
vp
mn � k2X

_�
mnp�
:� �
ð117Þ
r2X� is obtained by substituting Eqs. (86) into Eq. (75) with consideration of the
Lemma presented by Eq. (67) such that:
r2X� ij ¼
a2
b2

X� gij �M
_

kiljr
2M�1

krls X
�
rs ð118Þ
where M
_

and r2M�1are given by Eqs. (4) and (81), respectively.
Making use of Eq. (117) into the X

:
g relation from Table 5 along with Eq. (118)

and the time derivative of X� g relation of Eq. (86)2 for a given temperature and
keeping the damage history constant, one can then write the gradient-dependent
evolution equation of viscoplasticity kinematic hardening in the effective configur-
ation, X

- g, as follows:
X�
:
g
ij ¼

ð1ÞX�
:
g
ij þ

ð2ÞX�
:
g
ij ð119Þ
with
ð1ÞX�
:
g
ij¼M

_

ikjlM
_

mknl b2r
2"�
:
vp
mn�k2b2X

_�
mnr

2p�
:
�k2 a2X�

g
mn� b2M

_

pmqnr
2M�1

prqsX
�
rs

� �
p�
:h i
#

ð120Þ

ð2ÞX�
:
g
ij ¼ M

_

ikjlr
2M

_

mknl b2"�
:
vp
mn � k2b2X

_�
mnp�
:� �
# ð121Þ
where
r2"�
:
vp
ij ¼ r2p�

: @f

@�� ij
ð122Þ
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te that since f ¼ 0, Eqs. (119)–(122) are obtained by assuming that
No
r2 @�� fð Þ=@�� r2f

� �
=0. This assumption implies that the considered point has yielded

as well as the surrounding volume of a sphere of diameter lc (i.e. the length para-
meter) and there is no change in the flow direction with position within lc.
By taking the Laplacian of the identity M

_

:M
_
�1 ¼ I, one can write the following

relation:
r2M
_

ikjl ¼ �M
_

kmlnM
_

irjsr
2M�1

rmsn ð123Þ
where r2M�1, M
_

, and M
_
�1 are given by Eqs. (81), (4), and (6), respectively.

The non-local evolution equation for the kinematic hardening in the effective

configuration, X
_�
:

, can now be expressed according to Eq. (69) or from Table 5 as
follows:
X
_�
:

ij ¼ X�
:
ij þ X�

:
g
ij ð124Þ
It is worthy to point out here that the derived evolution equations of the non-local

viscoplasticity hardening laws (R
_�
:

and X
_�
:

) contain both hardening terms that repre-
sent the strengthening mechanism and recovery terms that represent the softening
mechanism. Both the hardening and recovery terms are affected by the static (thermal)
recovery term # in such a way that the functional dependence of the hardening of
materials could be multiplicatively decomposed into two functions, thermal (static)
and stress (dynamic). Therefore, those evolution equations characterize the time and
thermal effects due to the rate and temperature dependency. Freed and his co-authors
(1990, 1991, 1993) showed that, at elevated temperature, thermal recovery of materials
usually plays an important rule in the deformation process. In impact dynamic related
problems, the thermomechanical response of the assumed internal state variables is
strongly dependent on the temperature history. This requires existence of thermal
recovery (softening) terms in the evolution equations of the internal state variables.

3.7. Damage evolution criterion and corresponding hardening rules

3.7.1. Damage evolution criterion
The anisotropic viscodamage governing equations are viscoplasticity-like; analo-

gous to the dynamic viscoplastic surface presented in the previous section. The
dynamic viscodamage surface g is postulated as follows:
g ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
Y
_

ij �H
_

ij
��
Y
_

ij �H
_

ij
�q
� l� K

_

� L ¼ 0 ð125Þ
where the non-local damage forces Y
_

and H
_

are, respectively, characterizing the
viscodamage evolution and the viscodamage kinematic hardening laws, l is the initial
damage threshold as a function of temperature, which can have a form similar to
1014 G.Z. Voyiadjis et al. / International Journal of Plasticity 20 (2004) 981–1038



Eq. (94) (i.e. l ¼ lo#, where lo is the initial damage threshold at zero absolute tem-
perature, zero damage strain, and static strain rate), K

_

is the non-local damage iso-
tropic hardening function, and L is the viscoplasticity overstress-like function which
will be referred to as the overforce damage function in the following.
At negligible strain rates, one retains the rate-independent case with gs defined as

the static damage surface, such that:
gs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y
_

ij �H
_

ij

� �
Y
_

ij �H
_

ij

� �q
� l� K

_

4 0 ð126Þ
Moreover, analogous to the expression for l
_
:
vp [Eq. (104)], one can postulate

l
_
:
vd ¼ l

:
vd þ ar2l

:
vd to have the following form:
l
_
:
vd ¼

1

�vd

�
L

lþ K
_

�m2

ð127Þ
where m2 is the viscodamage rate sensitivity parameter and �vd is the relaxation time
that corresponds to the damage growth. For generality, we assume here that the
time-dependent behavior of both viscoplasticity and viscodamage mechanisms are
controlled by different relaxation times associated with l

_
:
vp and l

_
:
vd, which may not

generally be the case. This is suggested to occur only for material behavior above a
certain material threshold of wave speed. This is not the subject of the present work,
but it will be discussed thoroughly in a forthcoming paper.
By making use of Eq. (127), one can write an expression for the overforce damage

function L as follows:
L ¼ �vdl
_
:
vdÞ

1=m2 lþ K
_

Þ

��
ð128Þ
Substituting L into Eq. (125) gives the following expression for the dynamic
damage surface g:
g ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y
_

ij �H
_

ij

� �
Y
_

ij �H
_

ij

� �q
� ½lþ K

_

�½1þ ð�vdl
_
:
vdÞ

1=m2 � � 0 ð129Þ
The above postulated dynamic viscodamage function g ¼ 0 is a generalization of
the static damage surface gs 4 0, Eq. (126), for rate-dependent materials. In the
undamaged domain, both gs and g are equivalent since, in that case, l

:
vd ¼ 0.

Therefore, the admissible damage forces are constrained to remain on or within the
undamaged domain g4 0ð Þ. Similar to the viscoplastic surface, the static damage
surface can be simply recovered by imposing �vd ¼ 0 (no viscous effect), so that one
has the rate-independent damage case g4 0. The model response in the visco-
damage domain is then characterized by the Kuhn-Tucker complementary condi-
tions as follows:
g4 0; l
:
vd 5 0; l

:
vdg ¼ 0 ð130Þ
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. Damage Hardening Rules
3.7.2
In order to derive the hardening evolution equations associated with the visco-

damage process, we follow the same procedure presented in the former section for
viscoplasticity. By substituting Eq. (84) into the evolution law of r

:
form Table 3, the

following relation is obtained:
r
:
¼ l
:
vd 1� h1K

_

Þ

�
ð131Þ
Note that analogous to the derivation of Eq. (101) for the viscoplasticity case, one
can set @g=@K ¼ �1 since the evolution of K is independent of the overforce damage
function L. K characterizes the radius of the damage surface in absence of the strain
rate effect. Making use of the assumption of isotropy and by either taking the
Laplacian of Eq. (131) or substituting Eq. (84) into the definition of r2r

:
from

Table 3 and realizing that r2@Kg ¼ 0 with neglecting higher-order terms, one
obtains:
r2r
:
¼ r2l

:
vd 1� h1K

_

Þ � h1l
:
vdr2K

�
ð132Þ
where r2K is obtained from Eq. (75) with consideration of the Lemma presented by
Eq. (67) as follows:
r2K ¼
a3
b3

Kg ð133Þ
The evolution equations for the non-local viscodamage isotropic hardening func-
tion K

_

can be obtained by first making use of Eqs. (131) and (132) into K
:
and K

:
g

relations in Table 5 for a given temperature, such that the following expressions are
obtained:
K
:
¼ a3 1� h1K

_

Þl
:
vd#

�
ð134Þ

K
:
g ¼ b3 1� h1K

_

Þr2l
:
vd � h1a3K

gl
:
vd�#

�h
ð135Þ

_
:

The non-local evolution equation for the viscodamage isotropic hardening law, K ,
can then be written according to Eq. (69) or from Table 5 as follows:
K
_
:
¼ K
:
þ K
:
g ð136Þ
Furthermore, the evolution equation for the non-local viscodamage kinematic
hardening can be obtained by utilizing Eq. (84) into �

:
and r2�

:
relations from

Table 3, realizing that @g=@H ¼ @g=@Hg ¼ �@g=@Y as it is clear from Eq. (129), and
along with Eq. (42)2, such that:
G
:
ij ¼

ð2Þ�
:
ij � h2l

:
vdH

_

ij ð137Þ
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r2G
:
ij ¼ r2ð2Þ�

:
ij � h2 H

_

ijr
2l
:
vd þ l

:
vdr2Hij

� �
ð138Þ
where r2H is obtained from Eq. (75) with consideration of the Lemma presented by
Eq. (67) as follows:
r2Hij ¼
a4
b4

Hg
ij ð139Þ

:

It can then be easily shown by utilizing, respectively, Eqs. (137) and (138) into H

and H
:
g laws from Table 5 for a given temperature that the following evolution

equations are obtained:
H
:
ij ¼ a4

ð2Þ�
:
ij � h2a4l

:
vdH

_

ij

� �
# ð140Þ

H
: g
ij ¼ b4r

2ð2Þ�
:
ij � h2b4H

_

ijr
2l
:
vd � h2a4H

g
ijl
:
vd

h i
# ð141Þ

2ð2Þ
where r � is given by:
r2ð2Þ�
:
ij ¼ r2l

:
vd @g

@Yij
ð142Þ
The non-local evolution equation for the viscodamage kinematic hardening law,
H
_
:
, can then be written according to Eq. (69) or from Table 5 as follows:
H
_
:

ij ¼ H
:
ij þH

: g
ij ð143Þ
It is noteworthy to mention again that since g ¼ 0, Eqs. (140)–(142) are obtained
by assuming that r2 @Ygð Þ=@Y r2g

� �
=0. As was previously pointed out for the vis-

coplasticity case that this assumption implies that the considered point is damaged
as well as the surrounding volume of a sphere of diameter lc (i.e. the length para-
meter) and the damage flow direction does not change with position within lc.
Similar to the viscoplastic hardening evolution equations, the derived visco-

damage evolution equations consider the dynamic recovery as well as the static
recovery (thermal recovery). Besides, the static recovery occurs in both the hard-
ening and the dynamic recovery terms. The hardening term in each of the assumed
internal state variable accounts for strengthening mechanisms, while the recovery
term accounts for softening mechanisms.
Finally in order to obtain the non-local viscodamage force, first one expands the

state laws Y and Yg from Table 4 such that the following expressions are obtained
after some algebra:
Yij ¼ �
1

2
"ersEmnkl"

e
kl � "

e
rs�mn T� Trð Þ

� �
M
_

manbJarbsij ð144Þ
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Yg
ij ¼ �a

1

2
"ersEmnkl"

e
kl � "

e
rs�mn T� Trð Þ

� �
M
_

manbJarbsij ð145Þ
where J is a sixth-order constant tensor and is given by:
Jarbsij ¼ �
@M

_�1

arbs

@�
_

ij
¼

1

2
�ar�bi�sj þ �ai�rj�bs
� �

ð146Þ
Hence the non-local viscodamage force is obtained as the sum of Eqs. (144) and
(145), such that:
Y
_

ij ¼ � 1þ að Þ
1

2
"ersEmnkl"

e
kl � "

e
rs�mn T� Trð Þ

� �
M
_

manbJarbsij ð147Þ
It is worthy to emphasize that the assumed constitutive nature of the viscoplastic
and viscodamage surfaces, f and g, and their dependence on the internal variables
and the second-order gradients of the internal variables is imperative, since they
dictate, among other things, the length-scale of the problem and the phenomena that
can be predicted by the proposed model.
4. Rate-type constitutive relation

Operating on the stress relation Eq. (47) with the time derivative yields:
�
:
ij ¼ Eijkl "

:
kl � "

:vi
kl

� �
þ E
:
ijkl"

e
kl � �ijT

:
� �
:
ij T� Trð Þ ð148Þ
where E
:
and �

:
are given by:
E
:
ijkl ¼

@Eijkl

@M
_�1
abuv

M
_
:
�1
abuv ¼

@Eijkl

@M
_�1
abuv

@M
_
�1
abuv

@�
_

mn
�
_
:
mn ð149Þ

�
:
ij ¼

@�ij

@M
_�1
abuv

M
_
:
�1
abuv ¼

@�ij

@M
_�1
abuv

@M
_
�1
abuv

@�
_

mn
�
_
:
mn ð150Þ
Making use of Eqs. (5), (9), (49), (50), and (146), one can then obtain, after some
lengthy manipulations, for a general themo- elasto- viscoplastic and viscodamage
flow processes the following relation:
�
:
ij ¼ Eijkl "

:
kl � "

:vi
kl

� �
� Aijkl�

_
:
kl � �ijT

:
ð151Þ
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e
wher
Aijkl ¼ �
@Eijmn

@M
_�1
abuv

"emn þ
@�ij

@M
_�1
abuv

T� Trð Þ j

� �
@M

_
�1
abuv

@�
_

kl

¼ Jibjvkl��bv þM
_
�1
ipjqE
�
pqau"

e
bvJabuvkl ð152Þ
It in noteworthy that the above incremental stress–strain relation can be found
similarly using the stress–strain relation in the effective configuration (Eq. (49)).
Furthermore, substituting into Eq. (151) the evolution equations of "vi given by Eqs.
(39) and (40) and the evolution equations of �

_

given by Eq. (78) along with Eqs.
(41), (42), and the relations from Table 3 yields the following incremental relation:
�
:
ij ¼ Eijkl "

:
kl � l

:
vp @f

@�kl
� l
:
vd @g

@�kl

� �
� Aijkl l�

:
vp @f

@Ykl
þ l�
:
vd @g

@Ykl

� �
� �ijT

:
ð153Þ

:
vp

:
vd
where l� and l� are given as:
l�
:
vp ¼ l

:
vp þ ar2l

:
vp; l�
:
vd ¼ l

:
vd þ ar2l

:
vd ð154Þ
5. Thermomechanical coupling

A local increase in temperature may influence the material behavior during
deformation; necessitating the inclusion of temperature in the constitutive modeling
of the material. Substituting the internal energy density, e, from Eq. (19) into the
first law of thermodynamics, Eq. (17), yields the following energy balance equation:
	 �
:
þ �T

:
þ �
:
T

� �
� �ij"

:
ij � 	rext þ qi;i ¼ 0 ð155Þ
Substituting �
:
from Eq. (21) into the above equality and taking into account the

results presented by Eqs. (26), (28), and (56) yields the following:
	�
:
T ¼ �ij"

:vi
ij ��int þ 	rext þ kijriTrjTþ

1

T
: kijriT

:
rjT ð156Þ
According to the definition given in Section 3.3 for the specific entropy � ¼
�~ "e;T;@kð Þ (k ¼ 1; :::; 10); operating on the entropy relation, Eq. (26)2, with the time
derivative and substituting the result into Eq. (156) gives the thermomechanical heat
balance equation as follows:
	cpT
:
¼ -�ij"

:vi
ij þ

X10
k¼3

@ k

@T
T� k

� �
@
:
k � �ij"

:e
ijTþ 	rext þ kijriTrjT ð157Þ
where cp ¼ T@�=@T is the tangent specific heat capacity at constant pressure used to
approximate the specific heat capacity at constant stress (which an expression can be
found for it by using the specific entropy expression outlined in Section 3.3), and -
is the fraction of the viscoinelastic work rate converted to heat which is incorporated
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into the heat balance equation for more accurate comparisons with experiments.
Furthermore, the internal dissipation terms due to � ¼ �~ �;r2�

� �
, i.e.

T@Y=@T� Yð Þ�
:
and T@Yg=@T� Ygð Þr2�

:
are implicitly included in the definition of

entropy given in Section 3.3. Therefore, it can be demonstrated that these terms
should not be considered in Eq. (157).
The left-hand side of Eq. (157) represents the total thermal dissipation. The first

term on the right-hand side represents the rate of viscoinelastic work converted to
heat; the second term represents the rate of internal heat generation that encom-
passes all dissipative processes excluding the gross viscoinelastic deformation that is
present during viscoplastic and viscodamage deformation; the third term is the
reversible thermoelastic effect; the fourth term represents an external heat source;
and the last term is due to the parabolic heat conduction. If the duration of the event
is sufficiently short, the thermal conduction term becomes negligible, i.e. adiabatic
conditions prevail.
The rate type-equations, Eq. (153) and (157), take into account effects of the vis-

coplastic and viscodamage strain-induced anisotropy (i.e. kinematic hardening),
flow stress (i.e. isotropic hardening), temperature and strain-rate sensitivity, aniso-
tropic damage (i.e. softening generated by damage defects nucleation and growth
mechanisms), thermomechanical coupling (i.e. thermal viscoplastic softening and
thermal expansion), strong viscoplasticity and viscodamage coupling, and hetero-
geneity in the material behavior (i.e. the non-local influence).
6. Computational issues of the gradient approach

Let to, t1, . . ., tn, tnþ1 ¼ tn þ Dt, . . . be convenient time instances along the time
interval over which the dynamic response of the body is sought. Consider the time
step Dt ¼ tnþ1 � tn: at t ¼ tn where all quantities are known, which are the converged
values of the previous step, and the solution must be computed at tnþ1 for a given
body load increment, Db, and surface load increment, D t.
Let the dynamic evolution of an elasto-viscoplastic damaged body of volume V

and surface S be governed at time step nþ 1, in the small strain range, by the above
derived constitutive relations and by the following momentum, initial, and linear
compatibility relations:
CT�nþ1 þ 	bnþ1 ¼ 	u€nþ1 in V; tnþ1 ¼ �nþ1n on St ð158Þ

u ¼ uo; u
:
¼ u
:
o at t ¼ to ð159Þ

"nþ1 ¼ Cunþ1 in V; unþ1 ¼ Unþ1 on Su ð160Þ
where, for algorithmic convenience, we have shifted to matrix vector notation. Eqs.
(158) express the discrete dynamic motion in the volume V and equilibrium on the
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free part of the boundary St at time step nþ 1. The superscript T denotes the
transpose symbol. Viscoelasticity is not considered in this study; viscous damping
effects are neglected. CT is the differential operator, b and t are the body force and
the surface traction vectors, respectively, 	 is the mass density, u is the three-com-
ponent displacement vector, a superimposed dot implies the derivative with respect
to time t, and n denotes the outward normal to the surface S. The initial conditions
on displacements and velocities are given by Eqs. (159). Linear compatibility in
volume V and on the constrained part of the boundary Su is described by Eqs. (160),
where U being the assigned displacement vector, such that St

S
Su ¼ S and

St

T
Su ¼ 0.

Moreover, in order to devise a proper algorithm at the end of time step nþ 1, we
require that the viscoplasticity condition:
f �nþ1; pnþ1;r
2pnþ1; p

:
nþ1;r

2p
:
nþ1;�nþ1;r

2�nþ1;� nþ1;r
2� nþ1;Tnþ1

� �
¼ 0 ð161Þ
and the viscodamage growth condition
g
�
Ynþ1;Y

g
nþ1; rnþ1;r

2rnþ1; l
:
vd
nþ1;r

2l
:
vd
nþ1;�nþ1;r

2�nþ1;� nþ1;r
2� nþ1;Tnþ1

�
¼ 0

ð162Þ
are satisfied (e.g. de Borst and Mühlhaus, 1992; de Borst et al., 1999, Voyiadjis et al.,
2001).
In the context of the finite element method, the discrete problem can be obtained

via a spatial Galerkin projection of the simidiscrete (i.e. discrete in space and con-
tinuous in time) problem into a finite dimensional subspace of admissible con-
tinuous shape functions. Consequently, in the following sections we outline the
procedure for solving the derived set of governing equations using the finite element
method.

6.1. Discretization of the motion equation

6.1.1. Backward-difference time discretization
In the proposed formulation the update of rate-dependent constitutive equations

largely follows the time integration algorithm proposed by Peirce et al. (1984), which
has been used in the context of viscoplasticity by LeMonds and Needleman (1986a,
b) and Voyiadjis and Mohammad (1988, 1991). The essence of the rate tangent
modulus method is to approximate a function of time in the interval, tnþ� 2 tn; tnþ1½ �

where � 2 0; 1½ � as follows:
Znþ� ¼ 1� �ð ÞZn þ �Znþ1 ð163Þ
In the above equation, setting � ¼ 0 one obtains the fully explicit Euler scheme,
whereas setting � ¼ 1 one gets the fully implicit scheme. The trapezoidal method is
obtained by setting � ¼ 1=2. Then it follows that at tnþ� ¼ ðnþ �ÞDt the velocity and
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the acceleration, u
:
and u€, respectively, can be written as:
u
:
nþ� ¼ 1� �ð Þu

:
n þ �u

:
nþ1; u€nþ� ¼ 1� �ð Þu€n þ �u€nþ1 ð164Þ
By integrating according to the backward difference scheme and solving for u€nþ1

in Eqs. (164), one obtains:
u€nþ1 ¼
1

�2Dt2
unþ1 � unð Þ �

1

�2Dt
u
:
n �

1� �

�
u€n ð165Þ
Substituting u€nþ1 into the momentum equation, Eq. (158)1, one obtains:
CT�nþ1 þ 	b


nþ1 ¼ 	
unþ1 ð166Þ
having set
	



¼
	

�2Dt2
; b




nþ1 ¼ bnþ1 þ
1� �

�
u€n þ

1

�2Dt
u
:
n þ

1

�2Dt2
un

� �
ð167Þ
The above integration algorithm belongs to the popular class of time integrators
termed the Newmark b-method using the generalized mid-point rule algorithm (e.g.
Houghs, 1987; Zienkiewicz and Taylor, 1989).

6.1.2. Weak form for the momentum equation
The non-linear initial boundary value problem concerning the finite step Dt must

be solved with an iterative scheme. For simplicity in the notation, in what follows
the index nþ 1 of the time step has been omitted and the subscripts i and iþ 1 refer
to the iteration. Eqs. (166), (160), and (153) can be written at the iþ 1 iteration of
the current time step as follows:
CT�iþ1 þ 	b


iþ1 ¼ 	
uiþ1 in V; tiþ1 ¼ �iþ1n on St ð168Þ

"iþ1 ¼ Cuiþ1 in V; uiþ1 ¼ U on Su ð169Þ

D� ¼ Ei D" � Dlvp
@f

@�

!!!!
i

� Dlvd
@g

@�

!!!!
i

� �
� A i Dl�vp

@f

@Y
jiþDl�vd

@g

@Y
ji

� �

� � i DT ð170Þ
where the D-symbol indicates the difference between the values of a variable at the
end of iþ 1 iteration and i iteration, e.g. D� ¼ �iþ1 � �i. It has been assumed that
the viscoplastic flow direction and the viscodamage growth direction is determined
from the previous i iteration. Moreover, the degraded elastic-damage moduli, E, and
thermo-mechanical second-order tensor, �, are assumed to equal their values at the
end of the previous iteration; i.e. at � ¼ � i.
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A weak form of the equation of motion, Eq. (168)1, is obtained by setting:
ð
V

�uT CT�iþ1 þ 	b


iþ1 � 	


uiþ1

� �
dV ¼ 0 ð171Þ
where �-symbol denotes the variation of a quantity.
Making use of integration by parts, the divergence theorem, and the substitution

of the natural boundary conditions [Eq. (168)2], the linear compatibility relation
[Eq. (169)1], along with the decomposition �iþ1 ¼ �i þ D� and uiþ1 ¼ ui þ Du, Eq.
(171)can be expressed as follows:
ð

V

�"T D� dVþ

ð
V

�uT 	



Du dV ¼

ð
St

�uT tiþ1 dSþ

ð
V

�uT	b



iþ1 dV

�

ð
V

�"T�i dV�

ð
V

�uT 	



ui dV ð172Þ
Substituting the incremental form of � from Eq. (170) into Eq. (172), one obtains
the following relation:
ð

V

�"T Ei D" � Dlvp
@f

@�

!!!!
i

� Dlvd
@g

@�

!!!!
i

� �
dV�

ð
V

A i

� Dl�vp
@f

@Y

!!!!
i

þ Dl�vd
@g

@Y

!!!!
i

� �
dVþ

ð
V

�uT 	



Du dV�

ð
V

�uT � i DT dV

¼

ð
St

�uT tiþ1 dSþ

ð
V

�uT	b



iþ1 dV�

ð
V

�"T�i dV�

ð
V

�uT 	



ui dV ð173Þ
One can then proceed as in the classical finite element method discretizing the dis-
placement field u and the temperature field T as follows:
u ¼ Na;T ¼ WT Te ð174Þ
where N=½N1; :::;Nnnode
� andW=½W1; :::;Wnnode � are both for k ¼ 1; :::; nnode and e ¼

1; :::; nelem.
In the above, N and W are the displacement and temperature shape functions,

respectively, and contain continuous interpolation functions of order Co. a is the
nodal displacement vector and Te is the nodal temperature vector (the superscript e
denotes element values). Consequently, one obtains from the linear kinematic rela-
tion, Eq. (169)1, the discretized form for the strains ":
" ¼ Ba; ð175Þ
B ¼ CN
where B is the strain-displacement matrix.
In a similar fashion the viscoplastic and viscodamage multipliers, lvp and lvd, can

be discretized following de Borst approach for gradient-dependent models (cf. de
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Borst and Mühlhaus, 1992; de Borst et al., 1993, 1999), where lvp and lvd are taken
as independent variables. However, the discretization of lvp and lvd requires C1

continuous interpolation functions contained in h ¼ ½h1; :::; hnnode � since the Laplacian
of lvp and lvd should be computed, such that:
lvp ¼ hT�vp;r2lvp ¼ qT�vp ð176Þ

lvp ¼ hT�vp;r2lvd ¼ qT�vd ð177Þ
where qT ¼ r2h, and �vp and �vd denote the additional nodal degrees of freedom
associated with the viscoplastic and viscodamage multipliers, respectively.
To the authors’ best knowledge, no attempt has been made until now to use the de

Borst approach to discretize rate-dependent problems. Furthermore, a combined
gradient- and rate- dependent plasticity and damage model has not been proposed in
the literature sofar. Failure to do so is due to the difficulty in enforcing the con-
sistency condition for rate-dependent problems. The rate relation for the viscoplastic
and viscodamage multipliers for rate-dependent problems can be expressed as an
increment by:
Dlvp ¼ hTD�vp;r2Dlvp ¼ qTD�vp ð178Þ

Dlvd ¼ hTD�vd;r2Dlvd ¼ qTD�vd ð179Þ
Using Eqs. (174)–(179) in Eq. (173) and requiring that the result is valid for any
admissible variation �a yields the following relation:
ð

V

BTEiB � 	
NTN
� �

Da dV�

ð
V

BT Eih
T @f

@�

!!!!
i

þA ih
_
T @f

@Y

!!!!
i

x

� �
D�vp dV

�

ð
V

BT Eih
T @g

@�

!!!!
i

þA ih
_
T @g

@Y

!!!!
i

� �
D�vddV�

ð
V

NT� iW
TDTedV ð180Þ

¼

ð
St

NT tiþ1dSþ

ð
V

	NTb



iþ1dV�

ð
V

BT�idV�

ð
V

	



NTNaidV
where h
_

is given by:
h
_

¼ hþ aq ð181Þ
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6.2. Discretization of the viscoplastic condition

In the same way as in the proceeding section we shall formulate the weak form of
the viscoplasticity surface function, Eq. (161), at iþ 1 iteration such that the visco-
plasticity condition is satisfied in a distributed sense. However, the test function used
in discretizing the viscoplastic surface function is �lvp (e.g. de Borst and Mühlhaus,
1992), such that:
ð

V

�lvpf
�
�iþ1; piþ1;r

2piþ1; p
:
iþ1;r

2p
:
iþ1;�iþ1;r

2�iþ1;� iþ1;r
2� iþ1;Tiþ1

�
dV

¼ 0

ð182Þ

e �ð Þ ¼ �ð Þ þD �ð Þ is the additive decomposition of each of the internal
wher iþ1 i

variables.
Furthermore, the yield function fiþ1 can be approximated in (�i, pi, r

2pi, p
:
i, r

2p
:
i,

�i, r
2�i, � i, r

2� i, Ti) using the first order Taylor expansion series, such that:
fiþ1 � fi þ
@f

@�

!!!!
T

i

D�þ
@f

@p

!!!!
i

Dpþ
@f

@r2p

!!!!
i

r2Dpþ
@f

@p
:

!!!!
i

Dp
:
þ

@f

@r2p
:

!!!!
i

r2Dp
:

@f

@�

!!!!
T

i

D� þ
@f

@r2�

!!!!
T

i

r2D� þ
@f

@�

!!!!
T

i

D� þ
@f

@r2�

!!!!
T

i

r2D� þ
@f

@T

!!!!
i

DT ¼ 0 ð183Þ
where fi is the i-th residual of the viscoplastic function. However, emphasizing that
we are applying the local iteration process within the time step tþ Dt (i.e. at step
n+1), one can then write Dp and r2Dp as follows:
Dp ¼ Dp
: Dt; r2Dp ¼ r2Dp

: Dt ð184Þ

: 2 :

Substituting for Dp and r Dp from the above equations into Eq. (183) yields:
fiþ1 � fi þ
@f

@�

!!!!
T

i

D�þ
@f

@p

!!!!
i

þ
1

Dt

@f

@p
:

!!!!
i

� �
Dpþ

@f

@r2p

!!!!
i

þ
1

Dt

@f

@r2p
:

!!!!
i

� �
r2Dp

þ
@f

@�

!!!!
T

i

D� þ
@f

@r2�

!!!!
T

i

r2D� þ
@f

@�

!!!!
T

i

D� þ
@f

@r2�

!!!!
T

i

r2D� þ
@f

@T

!!!!
i

DT ¼ 0

ð185Þ
The evolution equations of the isotropic and kinematic hardening fluxes and their
corresponding gradients given by Eqs. (101), (102), (115) and (117) are then sub-
stituted into Eq. (183), such that fiþ1 is reduced as follows:
fiþ1 ¼ fi þ
@f

@�

!!!!
T

i

EiD" þQ
p
1Dl

vp
þQ

p
2r

2Dlvp þQ
p
3Dl

vd
þQ

p
4r

2Dlvd

þ
@f

@T

!!!!
i

�
@f

@�

!!!!
T

i

� i

 !
DT

¼ 0 ð186Þ
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e Q
p
(k ¼ 1; :::; 4) are obtained from the previous i iteration and are given as
wher k

follows:
Q
p
1 ¼ �

@f

@�

!!!!
T

E
@f

@�
þ A

@f

@Y

� �
þ

@f

@p
þ

1

Dt

@f

@p
:

� � 1� k1R
_�

� �
1� r

_

þ
@f

@r2p
þ

1

Dt

@f

@r2p
:

� �
�

r2r

1� r
_

ð Þ
2

1� k1R
_�

� �
�

k1
1� r

_ r2R�

" #

�
@f

@�

!!!!
T

M
_ @f

@X
þ k2X

_

!
�

@f

@r2�

!!!!
T

r2M
_ @f

@X
þ k2X

_

!
þ k2M

_

r2X

#
þ
@f

@�

!!!!
T
@f

@Y

 " 

ð187Þ

Q
p
2 ¼ �a

@f

@�

!!!!
T

A
@f

@Y
þ

@f

@r2p
þ

1

Dt

@f

@r2p
:

� � 1� k1R
_�

� �
1� r

_

�
@f

@r2�
M
_ @f

@X
þ k2X

_

Þ þ
@f

@r2�

!!!!
T
@f

@Y

 
ð188Þ

Q
p
3 ¼ �

@f

@�

!!!!
T

E
@g

@�
þ A

@g

@Y

� �
þ
@f

@�

!!!!
T
@g

@Y
ð189Þ

Q
p
4 ¼ �a

@f

@�

!!!!
T

A
@g

@Y
þ

@f

@r2�

!!!!
T
@g

@Y
ð190Þ
Upon substitution of Eq. (186) along with the finite element discretization equa-
tions of Du, DT, Dlvp, and Dlvd, Eqs. (174)–(179), into Eq. (182) and requiring that
the result is valid for any admissible variation ��vp, one can obtain:
ð

V

h
@f

@�

!!!!
T

i

EiBDa dVþ

ð
V

h Q
p
1 h

T þQ
p
2 q

T
� �

D�vp dV

þ

ð
V

h Q
p
3 h

T þQ
p
4 q

T
� �

D�vd dVþ

ð
V

h
@f

@T

!!!!
i

�
@f

@�

!!!!
T

i

� i

 !
WT DTe dV

¼ �

ð
V

h fi dV ð191Þ
It is noteworthy that the current formulation does not satisfy the viscoplastic
condition f ¼ 0 in a point wise manner, but merely in a distributed sense (de Borst
and Mühlhaus, 1992). Therefore, the later condition

Ð
Vh fi dV ¼ 0 is not satisfied at

each iteration, but only until convergence is achieved at the end of the loading step.
However, this approach is inevitably required in the gradient-enhanced models since
the difficulty in calculating the Laplacian using the conventional return-mapping
algorithms which are probably as good as the current formulation. Moreover, the
1026 G.Z. Voyiadjis et al. / International Journal of Plasticity 20 (2004) 981–1038



non-standard boundary conditions at the elasto-viscoplastic boundary Slvp : l
:
vp ¼ 0

or
�
rl
:
vp
�T
nlvp ¼ 0, where nlvp is the outward normal at Slvp . These results can also be

derived directly from a variational principle (e.g. Mühlhaus and Aifantis, 1991; de
Borst and Mühlhaus, 1992).

6.3. Discretization of the damage condition

Analogous to the discretization of the yield function, the finite element imple-
mentation of the viscodamage criterion is based on the following weak-form gov-
erning the generalized viscodamage consistency, Eq. (130), where the test function
used is �lvd, such that:
ð

V

�lvdg
�
Yiþ1;Y

g
iþ1; riþ1;r

2riþ1;l
:
vd
iþ1;r

2l
:
vd
iþ1;�iþ1;r

2�iþ1;� iþ1;r
2� iþ1;Tiþ1

�
dV

¼ 0

ð192Þ
where �ð Þiþ1¼ �ð ÞiþD �ð Þ is the additive decomposition of each of the internal vari-
ables. Since the viscodamage driving forces Y is a function of � and � [see Eq.
(147)], one can expand the viscodamage condition giþ1 around (Yi, ri, r

2ri, l
:
vd
i ,

r2l
:
vd
i , �i, r

2�i, � i, r
2� i, Ti) using the Taylor series as follows:
giþ1 � gi þ
@g

@�

!!!!
T

i

D� þ
@g

@r

!!!!
i

Drþ
@g

@r2r

!!!!
i

r2Drþ
@g

@l
:
vd

!!!!
i

Dl
:
vd þ

@g

@r2l
:
vd

!!!!
i

r2Dl
:
vd

þ
@g

@�

!!!!
T

i

D�þ
@g

@r2�

!!!!
T

i

r2D� þ
@g

@�

!!!!
T

i

D�þ
@g

@r2�

!!!!
T

i

r2D�þ
@g

@T

!!!!
i

DT ¼ 0 ð193Þ
where gi is the i-th residual of the viscodamage function. We emphasizing again
that we are applying the local iteration process within the time step tþ Dt (i.e. at
step n+1). One can then write Dl

:
vd and r2Dl

:
vd as follows:
Dlvd ¼ Dl
:
vd Dt; r2Dlvd ¼ r2Dl

:
vd Dt ð194Þ
Substituting for Dl
:
vd and r2Dl

:
vd from the above equation into Eq. (193) yields:
giþ1 � gi þ
@g

@�

!!!!
T

i

D� þ
@g

@r

!!!!
i

Drþ
@g

@r2r

!!!!
i

r2Drþ
1

Dt

@g

@l
:
vd

!!!!
i

Dlvd þ
1

Dt

@g

@r2l
:
vd

!!!!
i

r2Dlvd

þ
@g

@�

!!!!
T

i

D�þ
@g

@r2�

!!!!
T

i

r2D�þ
@g

@�

!!!!
T

i

D�þ
@g

@r2�

!!!!
T

i

r2D�þ
@g

@T

!!!!
i

DT ¼ 0 ð195Þ
The evolution equations of the isotropic and kinematic hardening associated with
the viscodamage fluxes and their corresponding gradients given by Eqs. (131), (132),
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(137), and (138) along with Eqs. (41) and (25) from Table 3 are then substituted into
Eq. (193), such that giþ1 is reduced to:
giþ1 ¼ gi þ
@g

@�

!!!!
T

i

EiD" þQd
1 vpþQd

2 r
2vpþQd

3Dl
vd þQd

4 r
2Dlvd

þ
@g

@T

!!!!
i

�
@g

@�

!!!!
T

i

�i

 !
DT ¼ 0 ð196Þ
where Qd
k (k ¼ 1; . . . ; 4) are obtained from the previous i iteration and are given as

follows:
Qd
1 ¼ �

@g

@�

!!!!
T

E
@f

@�
þ A

@f

@Y

� �
þ
@g

@�

!!!!
T
@f

@Y
ð197Þ

Qd
2 ¼ �a

@g

@�

!!!!
T

A
@f

@Y
þ

@g

@r2�

!!!!
T
@f

@Y
ð198Þ

Qd
3 ¼ �

@g

@�

!!!!
T

E
@g

@�
þ A

@g

@Y

� �
þ
@g

@r
1� h1K

_
� �

� h1
@g

@r2r
r2K þ

1

Dt

@g

@l
:
vd

�
@g

@�

!!!!
T
@g

@H
þ h2H

_

� �
� h2

@g

@r2�

!!!!
T

r2H þ
@g

@�

!!!!
T
@g

@Y
ð199Þ
Qd
4 ¼ �a

@g

@�

!!!!
T

A
@g

@Y
þ

@g

@r2r
1� h1K

_
� �

þ
1

Dt

@g

@r2l
:
vd
�

@g

@r2�

@g

@H
þ h2H

_

� �

þ
@g

@r2�

!!!!
T
@g

@Y
ð200Þ
Upon substitution of Eq. (196) along with the finite element discretization equa-
tions of Du, DT, Dlvp, and Dlvd [Eqs. (174)–(179)] into Eq. (192) and requiring that
the result is valid for any admissible variation ��vd, one obtains:
ð

V

h
@g

@�

!!!!
T

i

EiBDa dVþ

ð
V

h Qd
1 h

T þQd
2 q

T
� �

D�vp dV

þ

ð
V

h Qd
3 h

T þQd
4 q

T
� �

D�vd dVþ

ð
V

h
@g

@T

!!!!
i

�
@g

@�

!!!!
T

i

�i

 !
WT DTe dV

¼ �

ð
V

h gi dV ð201Þ
Analogous to the yield condition, the viscodamage condition g ¼ 0 is not satisfied
in a point wise manner, but merely in a distributed sense. Therefore, the later
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condition
Ð
Vh gi dV ¼ 0 is not satisfied at each iteration, but only at the end of the

loading step. Moreover, the non-standard boundary conditions at the viscodamage
boundary Slvd : l

:
vd ¼ 0 or

�
rl
:
vd
�T
nlvd ¼ 0, where nlvd is the outward normal at Slvd .

However, more detailed explanation for the non-standard boundary conditions of
viscoplasticity and viscodamage will be the subject of a forthcoming paper.

6.4. Discretization of the heat equation

To establish the actual heat generation that occurs during the highly transient
dynamic events of the thermomechanically coupled finite element, discretization of
the heat equation, Eq. (157), is imperative. The heat balance equation, Eq. (157),
can then be discretized following the standard procedure as follows:
-�iD"vi þ
X10
k¼3

Vk

!!!!
i

D@k � �D"eTi þ 	rext þ krTi rTi � 	cpDT ¼ 0 ð202Þ
where Vk ¼ T@ k=@T� k (k ¼ 3; . . . ; 10) and their expressions are similar to those
outlined in Table 4, but instead of # we substitute � ¼ T @#=@Tð Þ � #, and their
magnitudes are obtained from the previous iteration i.
Substituting the strain rate decomposition relation, Eq. (9), for D"e into Eq. (202)

yields the following expression:
-�i þ �Tið ÞD"vi � �TiD" þ
X10
k¼3

Vk

!!!!
i

D@k þ 	rext þ krTi rTi � 	cpDT

¼ 0 ð203Þ
A finite element formulation can then be developed from the following functional:
ð
V

�T

�
-�i þ �Tið ÞD"vi��TiD" þ

X10
k¼3

Vk

!!!!
i

D@k þ 	rext þ krTi rTi � 	cpDT

�
dV

¼ 0

ð204Þ
By making use of the evolution equation of "vi given by Eqs. (30) and (40), and the
evolution equations of @k (k ¼ 3; . . . ; 10) given in Sections 3.6 and 3.7, (i.e. p

:
, r2p

:
,

�
:
, r2�

:
, r
:
, r2r

:
, �
:
, and r2�

:
), Eq. (204) reduces to:
ð
V

�T ��iTiD" þQ
tp
1

vp þQ
tp
2 r2vpþQtd

1 Dlvd þQtd
2 r2Dlvd � 	cpDT

� �
dV

¼ �

ð
V

�T 	rext þ krTi rTið ÞdV ð205Þ
where Q
tp
k and Qtd

k (k ¼ 1; 2) are obtained from the previous iteration i and are
given as follows:
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Q
tp
1 ¼ -�þ �Tð Þ

@f

@�
þ

V3

1� r
_ þ

V7r
2r

1� r
_

ð Þ
2

 !
1� k1R

_�
� �

�
k1V7

1� r
_ r2R�

�

�
V4M

_

þ V8r
2M
_
� @f

@X
þ k2X

_

�
� k2V8M

_

r2X

�
ð206Þ
Q
tp
2 ¼

V7

1� r
_ 1� k1R

_�
� �

� V8M
_ @f

@X�
þ k2X

_�
��

ð207Þ

Qtd
1 ¼ -�þ �Tð Þ

@g

@�
þ V5

ð1� h1K
_

Þ � h1V9r
2K � V6

@g

@H
þ h2H

_

�
� h2V10r

2H

� ð208Þ

Qtd
2 ¼ V9

�
1� h1K

_ �
� V10

@g

@H
þ h2H

_

��
ð209Þ
Upon substitution the finite element discretization equations of DT, Dlvp, and
Dlvd [Eqs. (174) and (179)] into Eq. (205) and requiring that the result is valid for
any admissible variation �Te, one obtains:
�

ð
V

W�i Ti BDa dVþ
ð
V

W Q
tp
1 h

T þQ
tp
2 q

T
� �

D�vpdV

þ

ð
V

W Qtd
1 h

T þQtd
2 q

T
� �

D�vddV �

ð
V

W	cph
TDTe dV

¼ �

ð
V

W	rext dV�

ð
V

rWkrWT Te
i dV

ð210Þ
6.5. Combined discretization equations

Combining the discretized equations of linear momentum [Eq. (180)], viscoplasti-
city condition [Eq. (191)], viscodamage condition [Eq. (201)], and thermomechanical
coupling equation[Eq. (210)] augments us with a set of linear algebraic equations in
terms of the variations Da, D�vp, D�vd, and DTe, such that:
Kaa �M

 Kalvp Kalvd KaT

Klvpa Klvplvp Klvplvd KlvpT
Klvda Klvdlvp Klvdlvd KlvdT
KTa KTlvp KTlvd KTT

2
664

3
775

Da
D�vp

D�vd

DTe

8>><
>>:

9>>=
>>; ¼

f ext þ f int

flvp

flvd

fT

8>><
>>:

9>>=
>>; ð211Þ
where the diagonal matrices are defined as follows:
Kaa ¼

ð
V

BTEB dV ð212Þ
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 is the modified consistent mass matrix given as
M
M
 ¼

ð
V

	
NTN dV ð213Þ
while,
Klvplvp ¼

ð
V

h Q
p
1 h

T þQ
p
2 q

T
� �

dV; Klvdlvd ¼

ð
V

h Qd
3 h

T þQd
4 q

T
� �

dV ð214Þ

KTT ¼ �

ð
V

h	cph
T dV ð215Þ
and the off diagonal matrices are given by:
Kalvp ¼ �

ð
V

BT EhT
@f

@�
þ Ah

_
T @f

@Y
ÞdV; Klvpa ¼

ð
V

h
@f

@�

!!!!
T

EB dV

 
ð216Þ

Kalvd ¼ �

ð
V

BT EhT
@g

@�
þ Ah

_
T @g

@Y
ÞdV; Klvda ¼

ð
V

h
@g

@�

!!!!
T

EB dV

 
ð217Þ

Klvplvd ¼

ð
V

h Q
p
3 h

T þQ
p
4 q

T
� �

dV; Klvdlvp ¼

ð
V

h Qd
1 h

T þQd
2 q

T
� �

dV ð218Þ

KlvpT ¼

ð
V

h
@f

@T
�
@f

@�

!!!!
T

�

 !
WT dV; KTlvp ¼

ð
V

W Q
tp
1 h

T þQ
tp
2 q

T
� �

dV ð219Þ

KlvdT ¼

ð
V

h
@g

@T
�
@g

@�

!!!!
T

�

 !
WT dV; KTlvd ¼

ð
V

W Qtd
1 h

T þQtd
2 q

T
� �

dV ð220Þ

KaT ¼ �

ð
V

NT �WT dV; KTa ¼ �

ð
V

W�Ti B dV ð221Þ
The external force and internal force vectors appear on the right-hand side of Eq.
(211) are defined as follows:
f ext ¼

ð
St

NT tiþ1 dSþ

ð
V

	NTb
iþ1 dV; f int ¼ �

ð
V

BT�i dV�M
ai ð222Þ

flvp ¼ �

ð
V

h fi dV; flvd ¼ �

ð
V

h gi dV ð223Þ
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fT ¼ �

ð
V

W	rext dV�

ð
V

rWkrWT Te
i dV ð224Þ
As usual, all vectors and matrices are assembled from the element contributions in
the standard manner. A detailed description of ways of solving the present coupled
system of equations with different implementations is presented by de Borst and
Mühlhaus (1992), de Borst and Pamin (1996), de Borst et al. (1999), and Bammann
et al. (1999).
7. Conclusions

In the current paper the systematic construction of a thermodynamic consistent
gradient-enhanced framework for heterogeneous materials, which provides a strong
coupling between viscoplasticity and anisotropic viscodamage, is presented for
dynamic problems. Thermodynamic consistency is restored through the derived
constitutive equations in order to introduce and address issues such as the statistical
inhomogeneity in the evolution related viscoinelasticity macroscopic variables, and
temperature and strain-rate sensitivity. This framework is general enough to
describe the evolution of viscoinelasticity in a material body accounting for physical
discontinuities through the use of a non-local approach based on the gradient-
dependent theory of viscoplasticity and viscodamage. The interaction of the length-
scales is a crucial factor in understanding and controlling the distribution and size of
the material defects such as statistically stored and geometrically necessary disloca-
tions, voids, and cracks influence on the macroscopic response. The behavior of
these defects is captured not only individually, but also the enhanced strong cou-
pling between the two dissipative processes takes into account the interaction
between these defects and their ability to create spatial-temporal patterns under
different loading conditions.
The proposed gradient approach introduces second-order gradients in the hard-

ening variables (isotropic and kinematic) and in the damage variable. These higher-
order gradients are considered physically and mathematically related to their local
counterparts. Special care is used to properly account for the coupling between the
state variable and its corresponding higher-order gradient.
Length-scale parameters are implicitly and explicitly introduced into the present

dynamical formulism. Implicit length-scale measure is introduced through the use of
the rate-dependent theory, while explicit length-scale measures are introduced
through the use of the gradient-dependent theory.
A strong coupling between the two dissipative processes, viscoplasticity and

viscodamage, is implemented. This strong coupling is assessed by using two
separate viscoplasticity and viscodamage surfaces with coupled non-associated
flow rules in such a way that both viscoplastic and viscodamage rules are
dependent on the viscoplastic and viscodamage potentials. Two viscodamage
mechanisms have been considered, one mechanism is coupled with viscoplasti-
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city, and while the other occurs independent of viscoplastic deformation. The dis-
sipation function of the latter occurs in both the elastic and viscoplastic domains.
The constitutive equations for the damaged material are written according to the
principle of strain energy equivalence between the virgin material and the damaged
material.
Computational issues of the current gradient-dependent formulation are intro-

duced in a finite element context. A weak (virtual work) formulation of the non-
local dynamic viscoplastic and viscodamage conditions is derived, which can serve
as a basis for the numerical solution of initial boundary value problems in the sense
of the finite element method. Explicit expressions for the generalized tangent stiff-
ness matrix and the generalized nodal forces are given. In addition, issues concerned
with the formulation of initial-boundary value problems by the finite element ana-
lysis in relation to the formulation and the non-standard boundary conditions are
presented.
Although there has been a tremendous work to understand the physical role of the

gradient theory, this research area is still in a critical state with controversy. This is
to some extent due to the difficulty in calibration of the different material properties
associated with the gradient-dependent models, which are impossible to obtain for
certain cases. But more important have been the difficulty of carrying out truly
definitive experiments on critical aspects of the evolution of the dislocation, crack,
and void structures. However, the proposed framework is generalized to that of
viscoplasticity coupled with viscodamage, and one needs more studies to be per-
formed in order to effectively assess the potential applications for this framework.
Furthermore, it is believed that the calibration of a gradient-dependent model of
viscoplasticity and viscodamage should not only be based on stress-strain behavior
obtained from macroscopic mechanical tests, but should also draw information
from micromechanical, gradient-dominant tests such as micro-indentation and/or
nano-indentation tests, micro-bending tests, mirco-torsion tests, accompained by
metallographic studies and stereology based quantification methods using tomo-
graphy images.
Additional aspects for future studies is the consideration of the dependency of the

intrinsic material length-scale on the strain-rate and temperature variation, testing
the viscoplasticity and viscodamage consistency conditions, and detailed description
of solving the present coupled system of equations.
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