Separation and Data Refinement

Ivana Mijajlovi¢

Submitted for the degree of Doctor of Philosophy
Queen Mary, University of London
2007

Declaration

I'hereby declare that this thesis

¢ is my own work and contains nothing which is the outcome of work done in col-

laboration with others, except as specified in the text;

o the work in this thesis is not substantially the same as any that I have submitted

for a degree or diploma or other qualification at any other university.

Ivana Mijajlovi¢

22 October 2007

Author: Ivana Mijajlovi¢ (1975-)

Title of the PhD Thesis: Separation and Data Refinement

Keywords: data refinement, semantics of programming languages, separation logic,
separation context, forward simulation, lifting theorem, data abstraction, power simu-

lation

Area: data refinement, formal methods, separation logic

Advisor: Peter O'Hearn

PhD Committee: Uday Reddy, Ilan Mackie

Faculty: Queen Mary, University of London

Date: June 8 2007
Language: English
References: 81

Pages: 157

Abstract

The thesis develops two sound methods for proving data refinement in the presence
of the low level pointer operations. Central to the methods is a notion of a separation
context, which ensures that a simulation between two modules can be lifted to the whole
programming language. Such a “lifting theorem” is not true for arbitrary programming
language contexts, in the presence of pointers.

Separation contexts are based on a demand that a client program in an interaction
with a module, while respecting constraints imposed by its precondition, also complies
with the requirement not to interfere with the module’s internal representation directly,
but only through the provided module interface. The concept of a separation context
is introduced semantically, but a more pragmatic way of checking whether a certain
program is a separation context is also provided. Namely, from the fact that a program
satisfies certain specification in an environment which contains a module, it can be in-
ferred that the program is then a separation context for the relevant precondition and
assumed module. The proof that a program meets given specification can be conducted
in Separation logic.

The forward simulation method requires fixing a binary relation between the states
of concrete and abstract modules and proving that the relation is preserved by the cor-
responding pairs of abstract and concrete operations. The lifting and the soundness
results depend on a restriction on binary relations to be only the growing ones, where
the abstract state is in a certain sense smaller than the concrete one.

The power simulation method is a more general method than forward simulation. It
works in a similar fashion to forward simulation, but involves power relations, relations
between a state and a state set, rather than the ordinary relations between pairs of states.
The lifting and the soundness theorems for the method are the ultimate results, which
we achieve by setting a requirement that all the involved power relations are admissible,
in a sense to be defined.

In some special, but still very important cases, the power simulation method has
a state-based representation. The thesis also explores this aspect of power simulation

method and its relation to the forward simulation method.

Acknowledgements

I owe a great debt of gratitude to many people who have helped me complete the re-
search for my thesis. Above all, I am deeply grateful to my supervisor and friend Peter
O’Hearn, who has given me the right guidance throughout the course of my studies.
His kindness and patience encouraged me greatly in going through this difficult task.
Peter is a genuinely gifted scientist and a wise teacher, and it is very difficult to stay
unaffected by his infectious enthusiasm. I just hope I have learned from him enough to
become a better person and a good scientist.

I would like to express my gratitude to Noah Torp-Smith and Hongseok Yang who,
apart from Peter, I have worked with on some of the research presented in this thesis
[52, 53]. They have been great collaborators and friends and I hope I will have a chance
to work with them in the future.

This research was financially supported by Queen Mary, University of London, and
I am very grateful for that.

I owe special thanks to my chums Josh Berdine and Dino Distefano. They have been
there for me in the best and the worst, giving me support both as colleagues and as
friends. I am very proud to have a privilege to work with them and to be their friend.

My studies would not have been as exciting and enlightening without the remain-
ing members of the East London Massive: Richard Bornat who is always full of ideas
and equally excited about each one of them, Cristiano Calcagno with his quiet sharp-
ness, Matthew Parkinson with the true talent and Aziem Chawdhary, a promising fu-
ture computer scientist. The East London Massive has provided many, many inspiring
and stimulating discussions on our regular weekly meetings.

Among others, I owe a very special thanks to John Reynolds, Uday Reddy, Nick
Benton, Philippa Gardner, Uri Zarfaty, Lars Birkedal and Jeff Sanders for providing in-
spirational discussions, giving invaluable advice and letting me learn from them.

I would like to thank Max Kanovich and Gianluigi Bellin who have shown a lot of

good will and patience for us, PhD students at Queen Mary, in an effort to broaden our
general computer science knowledge in the reading group meetings they regularly held.
I am also grateful to my fellow PhD students, especially Corrado Biasi, Kurt Renelter,
Mike Samuels, Olga Lightfoot, Alessio Del Bue and Jose Galan and all the staff at the
Department of Computer Science of Queen Mary, who have made my studies enjoyable
and amusing.

I am in great debt to all of my friends here in UK and in my homeland Serbia, es-
pecially Vesna Damnjanovi¢ who has proved to be as good friend as one can get, many
times during the long course of (almost) twenty years.

I am deeply grateful to my parents Svetlana and Zarko who, working in related
fields and being great parents, gave me exactly the right support and believed in me
from the very beginning. I am equally grateful to my brother Aleksandar and his family
for all the love and support.

Finally, there are no words to express how grateful I am to my husband and my best

friend Zlatko Filipovi¢, for giving all it takes in showing his love, care and support.

Contents

1 The Introduction

1.1

1.2

1.3
14

1.5

The Traditional Method
Pointer Problems
121 InformationLeaking
122 Ownership Transfer
123 Allocation-statustesting
124 Summaryofproblems
Contributions of the thesis
Related Work

Overview of the Thesis s

2 The Classical Theory of Data Refinement

2.1
2.2
2.3
24

The programming language
The Simulation Method
Failure of Lifting without Variable Separation

UnscopedData

3 Separation Contexts

3.1
3.2

3.3

An Inkling of Separation Contexts
Setting theStage L
321 TheStorageModel
3.2.2 The assertion language of Separation logic
323 Preciserelations. L
The programming language
3.3.1 The programming language syntax

332 Local Actions

13
14
17
18
22
26
27
28
32
38

333 Modules L
3.34 The semantics of the programming language
3.4 SeparationContexts. L L.

3.4.1 Separation Context Examples

Forward Simulation and Data Refinement

41 An Informal Account of Simulation, Lifting and Data Refinement
42 Datarefinement
43 Binaryrelations
4.4 Forward simulation and Simulation theorem
45 Soundness of the forward simulation method
46 Examples

4.7 DISCUSSION v v v v e e e e e e e e e e e

Proving Separation Contexts

5.1 More about Separation Logic
5.2 Connection Between Separation Logic and Separation Contexts
53 Examples

5.4 Smallfoot and separation contexts

Power Simulation

6.1 Motivation

6.2 Background
6.2.1 Storage Model and Finite Local Action
6.2.2 Finitelocalactions

6.3 Programming Language

6.4 PowerSimulation L Lo
641 Thepsimoperator.
642 Admissibility o oo o
6.4.3 Theexpansionoperator
6.44 Thereasoning principle

6.5 Soundness of the Power Simulationmethod

65
66
71
74

78
78
80
81
83
91
93
96

98
98
100
108
110

6.6 Example 142
6.7 Discussion 145

7 State based representation of the Power Simulation 146
7.1 State-based Representation of the Power Simulation Method 147
71.1 Growing Relation between States 147

71.2 Power relationinducedbyper 151

72 Example 157

7.2.1 Power-simulation of doubly-linked list module by the XOR-list
module. 159
7.2.2 Power simulation of XOR-linked list module by the doubly-linked

listmodule. 164
8 Conclusion and Future Work 167
Index 171

Bibliography 173

11

List of Figures

1.1 Informationleaking 21
12 Ownershiptransfer 23
31 Circularlist. 61
3.2 Client dereferencing module’sstate 71

6.1 Powersimulation 118

12

List of Tables

1.1
1.2
1.3
14
1.5
1.6
1.7
1.8

2.1
2.2
2.3

3.1
3.2
3.3
34
3.5

51

6.1
6.2

Concrete implementation of the data typeSet 15
Abstract specification of the data typeSet 17
Stack — sequence (left) and linked list (right) representations 19
The bad operation 20
Client using bad() method 20
Memory manager 24
Allocation-status testing examples 26
Doubly-linked list and XOR-linked list implementations 40
The semantics of thelanguage 43
New client of the datatypeSet 49
Oneplacebuffer 51
The user language uninstantiated 63
Aninstance ofauserlanguage 64
Semantics of the concrete basic operations 67
The language semantics 68
Memory Manager Module, 76
Contents of file stack_sum module.sf 114
Semantics of the Language 127
Definition of Module (p,n)and (g,€) 143

13

The Introduction

A computer program often implements an abstract idea. For example, searching and
sorting algorithms originate from operations on sequences and sets — mathematical ob-
jects, which are conveniently represented as arrays or lists for the manipulation by a
computer. Graph algorithms, used for solving a diversity of problems, from finding the
shortest path from place A to place B to problems of scheduling or security — execute
on some representation of a mathematical graph. A variety of such examples can be
found in any book on data structures and algorithms, for instance [50, 28]. Data refine-
ment examines the relationship between the abstract, mathematical objects and their
representations. In particular, using the techniques of data refinement, one can derive a
concrete representation of an abstract data type, or prove that a given concrete object is
indeed a representation of some abstract object. For the pairs of objects for which a re-
finement relationship is established, the concrete object always behaves at least as well
as the abstract one, and it can replace it in any computation.

The early ideas of data refinement come from Wirth [79] and Hoare in his paper
on the correctness of data representations [35], where also an early suggestion for the
method for proving data refinement was illustrated. The method was then used and
developed in the VDM technique of data refinement [42] and generalized in a paper by
Hoare et al [33]. While it has become very influential, certain limitations to the “tradi-
tional” method have been recognized. In this introductory chapter we shed some light

on the problems with the traditional method and give an overview of what we have

1.1. The Traditional Method 14

done in order to solve them. We then discuss work related to ours and finally give an

outline of the rest of the thesis.

1.1 The Traditional Method

In his paper on proving correctness of data representations [35], Hoare gave the first
ideas of data refinement and an informal account of how to prove it. The gist of the
method is defining the “abstract space” on which the abstract program operates, and
the “concrete space” on which the concrete program executes, and finding a suitable
relationship between the two. This relationship is usually accompanied by an invariant
condition, which must be respected by the operations; i.e., having that the condition
holds before the execution of the operation, it also holds upon its completion. In the
original paper [35], the method is illustrated by an example, which we revisit here. The
example examines the relationship between the mathematical representation of a set of
at most hundred integers and its more concrete representation — an array also declared
to have at most a hundred elements. The abstract specification provides operations for
insertion, removal and testing whether a particular element is in the set. The concrete
representation needs to supply the client program with the same services, so it needs to
have the same operations, only implemented to work on an array instead of a set. The
concrete implementation is given in Table 1.1. We can view the array together with the
operations as one entity, and call it a module. To change a value of the set, the client pro-
gram interacting with the module should do so only through the operations provided
by the module. For instance, if the client program interacts with the concrete implemen-
tation, then it is allowed to read and change the values in the array only through the
operations that the concrete module provides.

We now prove, somewhat informally, that the array representation simulates the
abstract specification of data type Set given in Table 1.2, by defining a relation between
the two and showing that each of the concrete operations mimics the behavior of the
corresponding abstract one. The abstract specification can be given using mathematical
language. The definition of the abstract data structure assumes that the current value of
the set is held in a set-variable s. The parameter of the operations, n, denotes an integer.

First, we define a refinement relation between the two representations. The relation

1.1. The Traditional Method 15

Table 1.1: Concrete implementation of the data type Set

int a[100]; int m; /% m denotes the actual size of the array* /

void remove(int i);
void insert(int i);
{int j;
{int j;
for (j=0;j <m&&a[j]!=i;j++);
for (j=0;j <m&&a[j]!=i;j++);
if (j < m) then
if (j == m) then
{for (int k =j+1;k < m;k++)
{a[m]=iim=m+1
alk—1] =alk]l;m=m—1}
else skip}
else skip}

int has(int i);
{for (int j=0;j < m && a[j]! =i;j++;);

if (j <m) then return 1

else return 0}

between two different implementations connects pairs of program states, the concrete
state and the abstract state. A state assigns values to variables. We designate state by o.
We say that two states 61 and o, are related if the abstract one contains a set s and the
concrete one contains an array «a, such that they hold exactly the same elements, while

imposing on all other variables to have identical values.
o1[R]oy <= {01(a[i]) | 0 <i<m} = 0s(s) and for all other variables x o} (x) = 02(x).

For each concrete operation we need to prove that when we run the operation on a state
o1 that contains an array a which is related to some state o, that contains set s, it pro-
duces an output state which is related to the output state of the corresponding abstract
operation when executed on state 6. So, if we have 01[R]|0,, and run the insert(n) oper-
ation on o7, there are two possible outcomes. One possibility is that n is already in the
array. In that case we get the same array with which we started. Since the initial states
are related by R, n is in the set s too, and so the s-insert(n) returns the state containing
the initial set s, just as in the concrete case. Therefore the output states are related as re-

quired. The other possibility is that n is not already in the array; it is not in the set s either

1.1. The Traditional Method 16

because the states containing them are related by R. After running insert(n) on the array,
the set of values held in the output array is going to be {ali]) | 0 <i < m}U{a[m]|a[m] = n}.
This is exactly the value of the set s in the output state of s- insert(n), and therefore the
output states are again related by relation R, bearing in mind that no other variables
have been changed. We can similarly argue that the operations remove(n) and has(n)
satisfy the relation preservation requirements.

The traditional method presupposes a static separation between the variables of the
module and the variables of the client — a program that initiates the calls to the oper-
ations of the module. It can be easily seen that a client program is allowed to make
changes to the module representing a set only through the provided operations. All the
variables involved in the representation of the data type Set are local to this represen-
tation and the client has no knowledge of them. Consequently, the client cannot access
the internal representation of the module directly, through variables, but only through
the module operations. It is very important for this requirement to be met, because
otherwise the client program might change directly the representation of the module,
not respecting the conditions necessary for module’s proper functioning. If we allow
the client to access the module’s part of the state directly, it becomes sensitive to the
changes in the representation of the abstract specification. For instance, if there was
no separation between the client program variables and the module variables, in our
example of data type Set and its array representation, the client could access directly
the internal representation of the module; it could directly read from or write to the in-
dividual elements of the array which represents the set. One possible consequence of
that would be, if the client program changed the contents of one of the elements of the
array, the array would no longer be a representation of the intended abstract set. Or,
if the client program reads directly the value of an element of the array expecting one
representation of the data type set, its behavior might be completely different if another
representation was supplied; for instance, if an ascending ordered array was supplied

instead of a descending ordered array.

1.2. Pointer Problems 17

Table 1.2: Abstract specification of the data type Set

s-insert(n) =if n ¢ s thens =sU{n} else skip.
s-remove(n) =if n €sthens=s)\ {n} else skip.

s-has(n) = if n € s then return true else return false.

1.2 Pointer Problems

The major assumption of the traditional method for proving data refinement, as we
have explained above, is the ability to divide the client variables from the module vari-
ables. Then, the client program can access the internal representation of the module only
through the provided operations; it cannot directly access the internal representation of
the module because it does not have a direct access to the module variables, i.e. it has no
knowledge of their existence. However, a broad range of programs make extensive use
of pointers. For instance, infrastructure code such as operating systems kernel routines,
device drivers, database servers — they all manipulate pointers. Unfortunately, the mere
presence of pointers violates the assumption that a program state can be divided stati-
cally. With variables only, the separation is easy — one can simply say variables x,y,z, ...
are to be visible only to the client program, and variables m,n, p, ... are to be local to the
module. Then, simple static checking can enforce the required separation. This is not
the case in presence of pointers. Because, with pointers there are locations not named
by variables, so simple scoping constraints do not ensure separation.

In what follows, we describe the three most common problems which arise in the
presence of pointers and explain the effect they have on data refinement. As we will
see, the problem is not to find a relation between the abstract and concrete modules,
when considering them in isolation. Often, that can be done without difficulties. The
problems arise when we want to “lift” this relation to the whole language. In many cases
the lifting part does not work, but without lifting, simulation between the modules is

useless.

1.2. Pointer Problems 18

1.2.1 Information Leaking

A common problem that arises in presence of pointers in a setting of data refinement is
information leaking. In an environment where a client program interacts with a module,
this happens when the internal representation of the module is unintentionally (or even
intentionally) exposed to the client program. To understand the problem better and
to shed some light on what consequences it has for data refinement, we consider the
following example. We give the abstract specification of a LIFO Stack. The stack is
represented as a sequence of integers, and operations push and pop which, respectively,
add an integer to the beginning of the sequence and take an integer off the beginning
of the sequence. For its concrete implementation we choose a linked-list representation,
where the push operation adds a new element holding an integer value to the beginning
of the list, and the pop operation takes an element from the beginning of the list, reads
the integer kept in it and passes it over to the client. The abstract specification and its
concrete implementation are given in Table 1.3. Symbol € represents the empty sequence
and - denotes the concatenation operation.

We first informally “prove” that the linked list representation simulates the sequence
representation of the Stack. Note that here we have pointers. This means that, apart
from assigning values to variables, a program state also assigns values to (unnamed)
memory locations. We assume this for the rest of this chapter and denote state with .
Relation between two implementations of the Stack can be given as a relation between
the concrete and abstract states.

oi[Rjoy, <= o©oa(a)=q,
in state o variable / points to a list that holds sequence o and
for all other variables and locations, o7 and o, have the same values.

Suppose that we are given R-related states 6, containing sequence « and &7 con-
taining a list pointed to by /. We need to prove that after running push(i) on the state
o1, the newly obtained state is related by R to the output state of the abstract operation
push(i) when run on the state ;. Since o) and o, are related, ! points to a list which
holds sequence «, and after a call to push(i) it points to the sequence i- o in the output
state. Note that this sequence is exactly the one that is obtained after running abstract

operation push(i) on state 0. To argue that the concrete pop() operation simulates the

1.2. Pointer Problems 19

Table 1.3: Stack — sequence (left) and linked list (right) representations

intsequence «;
Link I;
void push(int i);
void push(int i);

{a=i-a}
{Link t;
t=1;
| = malloc(sizeof (Element));
| — data =i;| — next =t}
int pop();
int pop();
if (o # €) then
{Link t;

{return car(a)}
if (11 = NULL) then;

else
freturm -1} {t=1; 1 =1— next;
return t — data}
else
return —1}

abstract one, we need to inspect two cases. The first case is when the sequence in the
abstract state o, is empty. Then, the variable / is a null pointer in state o; and the list
holds the empty sequence. In this case both the abstract and concrete operations return
—1. The other possibility is that the sequence is not empty and then we can represent
it as i- . The linked list in the related state then holds this abstract sequence and the
variable / points to such list. When we run operation pop() on the concrete state contain-
ing the linked list, the resulting list holds the sequence «. On the other hand, the state
containing the sequence « is exactly the one obtained as the output of the abstract op-
eration pop(). Note that these operations do not change the value of any other variables
or memory locations. Hence, the output states are in both cases related.

We argued using the simulation method that the operations of the linked list rep-
resentation simulate the corresponding operations of the abstract one, and that should
imply, by the soundness of the method, that the concrete representation can replace the
abstract one in any computation. Now suppose that there is an additional operation

called bad(), which as a result returns a pointer. In the abstract representation it returns

1.2. Pointer Problems 20

Table 1.4: The bad operation

Abstract Concrete
void bad(Element *x); void bad(Element *x);
{x = malloc(sizeof (Element)); } {x=1}

Table 1.5: Client using bad() method
main(){

Element *x;

push(17); push(2); push(42);
bad(x);

X — next =x; }

just any old pointer, as we assume a completely nondeterministic allocator, while in the
linked list representation it returns the pointer to the first element of the linked list. The
code is given in Table 1.4.

Using the refinement relation R defined above, we contend that the operation bad()
in the linked list representation simulates the abstract bad() operation. Suppose we
have a state 0> containing a sequence ¢ and a state o7 containing a list which holds
sequence « pointed to by /, which are related by the relation R. If we run the concrete
operation on state oy, the resulting list still holds the initial sequence, but we have a
client variable x pointing to the beginning of the list. On the other hand, running the
abstract implementation on the state o, leaves us also with the initial sequence and an
extra location with a client variable x pointing to it. Relation R requires that the linked
list holds the corresponding sequence in order for states holding them to be related, and
this is indeed the case. In both concrete and abstract output states, variable x points to a
pointer. In fact, since the initial states are related by R, all other variables and memory
locations have identical values. This implies that the address of the pointer / is available
in the abstract state (it can be easily be seen that it is not allocated in state 0») and can
be allocated during the execution of bad(), so the identity can be reestablished on the
remaining (client) part of the state.

However, if we look at the code in Table 1.5, we can see that in this case the concrete

1.2. Pointer Problems 21

representation cannot replace the abstract one.

If we run this program with the linked list representation, after the third call to the
push() operation, the linked list holds a sequence which contains elements 17, 2 and 42.
The statement bad(x) places a pointer to the first element of the linked list into the vari-
able x, and the final statement ties a knot in the linked list, which has as a consequence
that the resulting linked list no longer holds the intended sequence. On the other hand,
if we run the program presuming the abstract representation, the returned pointer after
the bad(x) statement is a newly allocated one and the last statement is harmless for the
internal representation of the module resources, and so after its execution we still have

the same sequence, unlike in the concrete case.

Figure 1.1: Information leaking

Abstract
5 A 31/
] o/

Concrete y

Abstract Concrete

X
\
2}z]

Even though our example relies on the fact that a nondeterministic allocator is used,
and that it might not work for some other allocators, it shows the point of information
leakage. For instance, instead of a nondeterministic allocator, we could have used a
nondeterministic assignment operator in the code for the abstract bad operation, and
still would have gained the same effect.

This shows that, even though the linked list representation of Stack simulates the

1.2. Pointer Problems 22

sequence representation, they cannot be interchanged in all computations. This example
discloses the inadequacy of the traditional method for proving data refinement. A more

formal account of the breakdown of the traditional method will be given in Chapter 2.

1.2.2 Ownership Transfer

An inevitable issue that emerges in presence of pointers, where an environment in
which client program is interacting with a module is considered, is the so-called “own-
ership transfer”. Unlike in cases where only variables are used in the computation,
when heap memory is manipulated, it is impossible to divide the resources between the
client and the module once and for all in the beginning of the computation. Throughout
the process of computation, memory locations are “transferred” back and forth between
a client and a module, and so, any initial division would be violated. A consequence
of ownership transfer is exposing the internal data representation of the module. So,
it is technically the same phenomenon as information leakage. However, it is concep-
tually different as information leakage is unintentional and is a result of a bug, while
ownership transfer is intentional and is not a bug.

To understand the issue better, we consider a toy Memory Manager. The memory
manager maintains a list of locations available for allocation — the “free list”. The free
list is manipulated through the operations for allocation and deallocation. The code for
these operations is given in Table 1.6, and the free list is declared to be pointed to by a
variable fI, visible only to the mentioned operations.

Operation alloc() works by taking the first element off the free list and returning it
to the client program. In case the free list is empty, the operation calls cons, an idealized
version of the Unix system routine sbrk that never runs out of the memory. Operation
free puts a disposed location on the front of the free list. Note that the free operation does
not break any existing links to the disposed location. For example, if a client variable
holds a pointer to the location that is to be disposed, it will still point to it after the
disposal.

The Toy memory manager is a concrete implementation of the Magical memory
manager, described also in Table 1.6. The Magical memory manager does not own any

memory, but instead when the alloc() operation is called, the system routine cons() is

1.2. Pointer Problems 23

Figure 1.2: Ownership transfer

- ﬂg/\o
0q © % 0q ©

O A O

free(x);

OO0~

initiated to provide a new location. Similarly, when the free(x) operation is called, the
location pointed to by x is returned to the system.
To show that the toy memory manager is an implementation of the Magical one, we

employ the following relation between concrete and abstract states:

01|R]o» <= fl points to a non-circular linked list and

the rest of the state o7 is identical to whole of o,

This relation reflects the fact that the internal representation of the abstract memory
manager owns no memory, and imposes the requirement that “client” parts of the ab-
stract and concrete states are equal.

We now argue that the concrete alloc() simulates the abstract one. Starting from the
concrete and abstract states o7 and o, respectively, when the concrete alloc() is called,
the first element in the list is taken and returned to the client, if the list is non-empty in
state 01. Then, we are left with the list which has one element less then the initial list in
the output state. If the list is initially empty, then the system routine is called to provide
a new location. In both cases we are left with either fI being a null pointer, in which
instance the list is empty, or pointing to some non empty list in the concrete output
state. In the abstract execution the magical alloc() is executed on state o, and only the
value of variable x is changed, now holding the address of the newly allocated memory
location. We now need to prove that the value of all variables and memory locations in
the abstract output state are identical to their values in the concrete output state. Since
the value of all “client” variables (all the variables except from f1) in the initial related
states are identical and the abstract module has no heap nor variables playing part in

its representation, the location that is taken from the list and given to the client must

1.2. Pointer Problems 24

Table 1.6: Memory manager

Magical Linked-list

xint alloc(){ static Link fl;
return(cons()); } Link alloc();

void free(int *x){ {Link res;
dispose(x); } if (fl = NULL) then

{res = cons(sizeof (Element));

User return res}
main(){ else
int *x; {res = fl; fl = fl — next;
x = alloc(); return res}}
x — data = 5; void free(Link x);
free(x); {Link t;
free(x)} t =fl;fl = x;x — next =t}

be unallocated in the abstract state, and so, available for allocation. This means that
there exists an execution of the abstract operation which would maintain the identity
between the values of variable x in abstract and concrete client states. Note that values
of all other variables and memory locations stay unchanged after the execution of the
allocation operations. Hence, the discussed output states are related by relation R.

To argue that the concrete free() simulates the magical one, note that after calling the
concrete operation to dispose a location pointed to by the client variable, the free list
grows by one element, and retains the structure of the linked list. Again, the “client”
states stay identical, since the same location is deallocated and values of all other vari-
ables and memory locations in both concrete and abstract states remain the same.

Now, consider the client program of the memory manager module, given in Table
1.6.

The client program allocates a new location, dereferences it and then deallocates it.
Initially, the client knows only about the declared pointer variable x. If the client inter-
acts with the toy memory manager, before the allocation, the module variable fI points

to the free list. After the allocation, the first element is taken off the linked list and a

1.2. Pointer Problems 25

pointer to it returned to the client. After manipulating the newly allocated memory and
freeing it, the location is handed back to the free list, but the client variable x still points
to it. When the client frees the pointer in the variable x for the second time, it ties a knot
in the free list of the memory manager, and the memory manager variable fI/ no longer
points to a non-circular linked list, but rather a circular one with only one element. Now,
the resource no longer satisfies the invariant, and since the refinement relation imposes
the same invariant condition, the refinement is also broken. The interesting point here
is that the module invariant is broken and so, the problem exists prior to the refinement,
but this is also reflected in the refinement reasoning.

We suggest that it is helpful to think of this problem in terms of “ownership”. The
allocated location is initially in the free list of the memory manager, that is, it is initially
owned by the module — it belongs to it. After the allocation, the ownership of the location
is transferred to the client program, and the client program is now entitled to use it as
it likes, until it deallocates it, when the ownership of the location is transferred back to
the free list of the memory manager. Since the deallocated location is now owned by the
module, the client should not manipulate it whatsoever; as a matter of fact, if it does, the
program might crash and the data abstraction is violated. The concept of “ownership”
here is simple: at any program point we regard the state as being separated into two
parts, and ownership is just membership in one or the other component of the separated
states.

As we have already mentioned, even though they both lead to exposing the inter-
nal data representation and potential violation of encapsulation, information leaking
and ownership transfer are different in their nature. While ownership transfer can of-
ten be useful, information leaking is normally considered an undesirable phenomenon.
Ownership transfer gives means for moving data between client and module, or even
between modules. In our example, the location is transfered between a client and the
memory manager module; this is necessary for good memory management. On the
other hand, unless malicious, the client does not benefit from information leaking. It
gains access to the internal representation of the module which should not be used in
any circumstances. Ownership transfer is a way to conceptualize how exposing internal

representation in certain circumstances is actually not a bug.

1.2. Pointer Problems 26

Table 1.7: Allocation-status testing examples

module counterl { module counter2{ module counter3{
init(){ init(){ init(){
x1=allocCell2(); *+x1=0; } *x1=0; } x1=alloc();*x1=0; }
inc(){ inc(f inc(){
wkl=(xx1)+1;} x«1=(x1)+1;} wkl=(xx1)+1; }
read(){ read(){ read(){
3= (x+1);} 3=(+1);} 3= (x+1);}
final(){ final(){ final(){
free(x1);*1=0; } x1=0; } } free(x1);*1=0; } }

check2 = z=alloc();if (z==2) thenv=1elsev=2.

Interestingly enough, apart from corroborating that pointers wreak havoc with data
abstraction, the memory manager is a canonical and natural example, and very often
a stumbling point for many proposed solutions to the problem that pointers cause for

data abstraction.

1.2.3 Allocation-status testing

We have so far explored the difficulties which arise from the use of pointers, which can
be easily understood and demonstrated. Still, there are other, more subtle accessing
mechanisms, which are not so apparent. One such known mechanism is allocation-status
testing. This mechanism uses the memory allocator and pointer comparison (with spe-
cific integers) to find out which cells are used internally by a module. We again illustrate
the problem with an example.

In Table 1.7 there are three different implementations of a Counter module, with
operations for initializing and finalizing the module, and operations for incrementing
the counter and reading from it. Module counterl initialization is done in couple of
steps. Firstly, the location 2 is allocated. This is done by calling the operation allocCell2()

which returns location 2 if it is available and it diverges otherwise. The address of

1.2. Pointer Problems 27

the newly allocated location, namely 2, is kept in location 1, which is assumed to be
part of the module prior to initialization. Secondly, the value of the counter is then
initialized to zero and stored in the allocated location 2. Module counter2 uses only one
location — location 1, to store the value of the counter. The main difference between
counterl and counter2 modules is that the second module uses less space than the first
module. The third implementation of the counter, namely counter3, uses two locations
and, unlike counterl, picks nondeterministically the location in which the value of the
counter is actually kept.

Program check? is also given in Table 1.7. It “observes” the allocation-status of loca-
tion 2 by changing its nondeterministic behavior. Suppose that we run program check2,
together with the module counterl. Then, upon execution of check2, variable v always
has value 2. This is the case because prior to the execution of check2, the module is ini-
tialized and, as we have already explained, location 2 is allocated. Then location 2 is no
longer available for allocation in the client program check2, and so the test of the client
program always fails, and therefore the v is always assigned value 2. On the other hand,
if we run check2 together with the module counter2, variable v can have either value 1
or value 2 in the end. Notice that in counter2, initialization does not allocate location 2,
and so when allocation is initiated by the client program, it is available. This means that
the address in variable z might be either 2 or something else, and so the test in the client
program might fail or succeed, which as a consequence has that the variable v might
have one or the other value. This implies that the optimized module introduces new
behavior to the client check2, which is unacceptable for sound method for proving data

refinement.

1.2.4 Summary of problems
In this section, we have described the following phenomena which contribute to the

unsoundness of the existing method for proving data refinement:

¢ information leaking —a module leaks information about its internal representation

to a client,

e ownership transfer — in the interaction of a module and a client the internal repre-

sentation of the module is exposed to the client, and

1.3. Contributions of the thesis 28

e allocation-status testing — using dirty techniques, a client may discover informa-

tion about the module’s internal representation.

All these concepts make reasoning about data refinement difficult. The examples
that we presented show how easy it is to “prove wrongly” data refinement between
two implementations. By “prove wrongly” we mean that the simulation between the
modules can be easily proved, but because of the failure of lifting theorem, it does not
lead to data refinement. In fact, the first requirement of data refinement, that there is no
client program which can observe the difference when the abstract module is replaced
by the concrete one, is not met.

Our solution to the problems that arise when data abstraction is faced with pointers

focuses on those client programs that behave “well”.

1.3 Contributions of the thesis

The main aim of the thesis is to develop sound methods for proving data refinement and
to ensure that in spite of problems raised by pointers, which are thoroughly described
in Section 1.2, the abstraction results can be achieved.

We present the list of the contributions of the thesis in what follows.

e Separation contexts

— One of the main assumptions of the traditional method is that the resources
of a module and a client program are separate. Unfortunately, when pointers
are considered it is impossible to separate these resources once and for all be-
fore running the program. However, as all the considered examples suggest,
tracking in each step of the computation which resources belong to whom
is realistic. We use this knowledge to semantically impose such tracking. In
our approach to the problems illustrated in previous sections, we identify
the class of “well behaved” client programs, separation contexts. A separation
context is a program which respects the internal representation of a module
with which it interacts. It never reads or writes any memory that “belongs”

to the module directly, but only through the operations provided by the mod-

1.3. Contributions of the thesis 29

ule. To illustrate the idea, we revisit the example of a Toy memory manager

given in Table 1.6.

— In our theory, we consider only separation contexts. They are defined seman-
tically, but we also provide a more practical way of checking whether a given
program is a separation context for a specific module. Namely, proving a cer-
tain specification of a client program using separation logic ensures that the

program is a separation context for the module assumed in the proof.

Example. To begin with, we regard the program state as being separated into two parts,
one of which belongs to a client, and the other which belongs to the module. The mod-
ule’s part always contains a free list, whether it be an empty list or a list with a certain
number of available locations. When a new location is allocated, it is taken off the free
list and put into a client variable. At this point we regard a boundary between the client
and the module states as shifting: the ownership of the location has transferred from the
module to the client, so that the separation between client and module states is dynamic
rather than determined once-and-for-all before a program runs. Similarly, when a client
disposes a location we regard the ownership of that location as transferring from the
client to the module.

Now, the program in Table 1.6, as we have shown, tramples on the free list of the
memory manager, and so contradicts our assumption of separation: the second free(x)
statement accesses a cell which the client does not own, since it was previously trans-
ferred to the module. In fact, any attempt to use the location after first free() will contra-
dict separation, say, if we replace the second free() by a statement x — link := x. But, for

instance, the following program is a separation context.

main(){
int *x;
x = alloc();
x — data = 5;
free(x); }
If we consider client programs which are not necessarily separation contexts, we get

into a situation where the programs contradict abstraction. For instance, if the memory

1.3. Contributions of the thesis 30

manager uses the x — link field as a pointer to the next node in the free list, then in the

following code

main(){

int *x;

x = alloc();

x — data = 5;

free(x);

x — link = x}
the execution of the x — link := x will corrupt the free list. However, if the memory man-
ager uses a different representation of the free list, corruption might not occur: client
becomes representation-dependent. This shows the importance of separation contexts

with regards to data abstraction.
e Data refinement

— In our approach to data refinement, we disregard “badly behaved” client pro-
grams, we consider only separation contexts. In other words, in computa-
tions generated by non-separation contexts, we do not require that the con-
crete representation of the module can replace the abstract one, even when
the simulation between the different implementations of the module exists.
One of the conditions for our methods for proving data refinement to be

sound is considering only separation contexts.

— The forward simulation method involves refinement relation between the
states of an abstract module and the states of a concrete module. In order
to prove that one operation forward simulates another, one must ensure that
starting from related states, whatever step the concrete operation makes, the
abstract one is able to perform the same step in such a manner that the refine-
ment relation between the output states still holds. The refinement relations
have to be restricted in a certain way in order for the method to be sound.
This requirement narrows a range of the examples that can be tackled with
forward simulation method. However, it can be used to prove the refinement

for most of the canonical examples.

1.3. Contributions of the thesis 31

- We introduce a power simulation method which is more general method
for proving data refinement. As described in Section 1.2.3, there are certain
client programs which can detect space-optimizations, and forward simula-
tion method is not strong enough to deal with such problems. This also has
an impact on proving the equivalence between two different implementa-
tions of some abstract specification. A good example where one would like
to prove the equivalence is the two implementations of the doubly ended
queues: one with doubly-linked lists, and the other one with the space-saving
XOR-linked lists. The code for these two implementations is given in Table
1.8. In most cases, we will be able to prove data refinement in one direction
— as we can prove that doubly-linked lists forward-simulate the XOR-linked
list representation — but for the equivalence we need the other direction, too.
The problems may arise if the other implementation is a space optimization
of the first one. Power simulation method successfully deals with space-
optimizing problems. Power simulation method allows only space optimiza-
tions of the nondeterministically allocated memory. That way, the identity
of the memory space to be optimized is hidden from a client program, and
all the allocation-status testing fails to give any useful information. For in-
stance, the power-simulation method allows counter3 in Table 1.7 to be op-
timized by counter2 from Table 1.7, because the internal cell in counter3 is
allocated nondeterministically. Note that even with check2 given in the same
table, a client cannot detect this optimization, e.g. when cell 2 is free ini-
tially, counter3.init();check2 nondeterministically assigns 1 or 2 to v, just as

counter2.init(); check2 does.

— As already mentioned, the power-simulation method is more general then
the forward simulation method. In fact, in certain circumstances power-

simulation can be reduced to forward-simulation, which is easier to use.

It may seem that our solution is narrow and targets only C-like programming lan-
guages. We would like to emphasize here that the issue raised by the pointers when

considering data abstraction is not exclusive to the low-level programming languages.

1.4. Related Work 32

For example, in a garbage collected languages thread and connection pools are some-
times used to avoid the overhead of creating and destroying threads and database con-
nections (such as in a web server). Then, a thread or connection id should not be used

after it has been returned to a pool, until it has been doled out again.

1.4 Related Work

The initial work on data refinement dates back to early 1970s. Wirth first introduced
the idea of gradual refinement of programs and data specifications in parallel in his pa-
per on stepwise refinement [79]. Hoare expressed, in an informal way, his suggestion
of how to prove a connection between two different implementations of a data type in
order to ensure the correctness of the more concrete one with respect to the abstract
one, in his 1972 paper [35]. This suggestion was embraced and developed in the VDM
model based formal method for description and development of computer systems [42].
A more formal account of data refinement was presented in paper by Hoare et al. [33].
The operations of the data type were allowed to be total relations and the connection
between the abstract and concrete data types no longer had to be functional. They intro-
duced two kinds of simulation: upward and downward, which were together necessary
and sufficient for sound and complete data refinement. Hoare and He generalized Dijk-
stra’s weakest precondition [30] introducing the notion of the weakest prespecification
in [37]. They showed how it can be used in the VDM framework for derivation using the
simulation method. In their technical monograph [38], Hoare and He gave an account
of data refinement in a categorical setting, where they explicitly state the assumption
that there is a static separation between the client and the module. They also consider
lifting of data refinement from module to the whole language. All the work mentioned
so far, considers data abstraction and data refinement with regard to languages which
do not utilize pointers.

A systematic study of model-oriented proof methods of data refinement can be
found in De Roever’s et al. book [29]. Nancy Lynch et al. also studied simulation
techniques, for instance in [48, 49, 47].

Pointers wreak havoc with data abstraction and module encapsulation. There are a

number of early documents which confirm and try to resolve this problem. One of them

1.4. Related Work 33

is the Geneva convention on aliasing problems [40]. The document defines and explains
aliasing in the object-oriented context and gives a categorization of the approaches to
the problem. In his paper [39], Hogg introduced a concept of islands which prevent
problems caused by aliasing. Islands are used to isolate a group of related objects. An
island is a completely encapsulated unit, within which any system of aliasing control
can be used. Capsules are another idea introduced by Wills [77]. The system Fresco
based on capsules is used for program verification in Smalltalk. Systems are built by
composing capsules, which contain both code and specification, including the assertions
about aliasing. Similar concepts are confined types [76] and balloons [4].

Another approach to encapsulation of data representation is work on ownership
types. Ownership types impose an ownership hierarchy on objects — an object can own
other objects which are involved in its internal representation. References into a certain
object are allowed only through the owner of the object and so, no internal represen-
tation objects are accessible directly from the outside. Ownership types were first pro-
posed by Clarke et al. [26] and they formalized this idea in their later work [25]. Here,
they enforce strict encapsulation but on account of expressiveness. In work by Boyapati
et al. [17, 19] and Clarke et al. [24] ownership types were extended to support a natural
form of subtyping, but to allow iterators and similar constructs the encapsulation was
allowed to be temporarily broken, and hence local reasoning was not supported. In [18]
the ownership types system was proposed which is both expressive and supports local
reasoning. There is a lot of research done in the area of ownership and encapsulation,
and here we mention only some of them [43, 66, 65].

Work of Banerjee and Naumann on confinement [10] also imposes typing restric-
tions to ensure representation independence. Namely, they introduce a notion of “con-
finement” which requires a heap to consist of three parts: client, class interface and its
internal representation. Only links between a client and a class interface, and between
the class interface and its internal representation may exist. All other references are for-
bidden. In their following paper [8], Banerjee and Naumann remove the restriction that
pointers from data representation to outside of it may not exist; these pointers may now
be fully used. They also prove generalized abstraction theorem and identity-extension

lemma. In their work on ownership [9], they use assertions and auxiliary fields to en-

1.4. Related Work 34

force ownership relations, heap encapsulation and control of reentrant callbacks.

Reddy and Yang, in their paper [67], consider correctness of data representations
that involve heap data structures. Unlike Naumann et al., they do not base their work
on explicit confinement conditions. Instead, their semantics reveals the breach in data
encapsulation in cases such as information leaking. The semantics is founded on reach-
ability and information hiding of the module’s internal state is captured only if it is
not reachable from client variables. Their notion of parametricity does not view pro-
grams with different internal representations as being equivalent, when there are cross-
boundary pointers. In fact, such programs are not equivalent in all program contexts.
By focussing on fewer contexts, just the separation contexts, we are able to reason about
such data abstractions. A representative example is a memory manager with malloc()
and free() operations.

Verification methodology for model fields [44], based on the Boogie Methodology
for object invariants [12, 45], uses specification only fields to enable the abstraction of
the concrete state of a data structure. This work addresses the problems caused by
the mutable objects and aliasing when dealing with modularity and data abstraction.
Parkinson’s abstract predicates [61] present another approach to dealing with frame
properties and abstraction.

Back is one of the first promoters of the weakest precondition predicate transformer
semantics in program development and data refinement [6]. Recently, he has addressed
the problems that arise from pointers [7], by converting all the pointer operations into
assignment statement and then applying the rules of refinement calculus to construct
programs. Butler also used techniques of refinement to focus on the derivation of tree-
based pointer algorithms [20]. These approaches, however, aim at the program devel-
opment problems rather than those of data refinement. Influenced by predicate trans-
former semantics [31], Morgan et al. introduced a single complete rule for data refine-
ment [32]. This is similar to our notion of power simulations. However, this work, as
their other work on data refinement [54], does not address problems raised by pointers.
Power simulation is also closely related to Reddy’s method for data refinement [68]. In
order to have a single complete data-refinement method for a language, again without

pointers, he lifted forward simulation such that all the components of the simulation

1.4. Related Work 35

become about state sets, instead of states.

Work of Abrial on the event based sequential program development [3], gives means
for constructing a program from its abstract specification. His approach, based on the
B method [2], allows refinement of pointer programs, but is concerned with program
development rather then data refinement. However, the importance of the B method is
huge, as there is a lot of research based around the B method, for instance [21, 5], as well
as the fascinating industrial applications [63].

What sets our work apart from all this other work? First of all, there are two separate
issues regarding data abstraction. One of them focuses on mechanisms for checking data
abstraction, and the second one on what is its meaning. In the thesis we are concerned
with the second issue, the meaning of data abstraction, which we try to get at by defining
the notion of separation context. The reason abstraction is broken by using pointers is
that pointers are, among other things, used to dereference the internal representation
of a module from the outside. Now, islands, balloons, confined types, ownership types
and heap confinement all provide mechanisms for checking data abstraction based on
restricting cross-boundary pointers. However, they are not very clear on what do these
mechanisms achieve or imply. In our opinion, they achieve that pointers into module
internals will not be dereferenced; this implies that you can refine one module with
another, without having to re-check the clients. Banerjee et al. explicitly consider this
aspect, too. We wanted to understand the reasons for why language restrictions might
work when approaching data abstraction for pointers. Our suggestion is that separation
between a module’s internal representation and a client’s state is the key idea. By taking
this perspective, new possibilities open up, as we show in this thesis, with regard to
ownership transfer and embracement of low-level features.

Although work in the thesis presents a semantic advance, separation contexts are
a semantic concept, and consequently, they are harder to check then whether imposed
language restrictions are respected. Our results on the connection between separation
contexts and logic give some useful information and possibilities, but we have taken
semantics, rather than static checkability, as our main aim.

The work of Leino et al. is much more flexible and closer to ideas in this thesis.

They use abstract variables for specifying modules and develop “modular soundness”

1.4. Related Work 36

to establish in which circumstances clients cannot access the internal representation of
a module. Hence, they do not experience problems with cross-boundary pointers and
modular reasoning about frame properties. However, they enforce their modules to pre-
serve data abstraction in order to be able to verify them and use them in larger systems;
they do not present results on a question of when can one representation be replaced by
another.

Parkinson’s abstract predicates are also tailored to deal well with modularity and
abstraction, but his work does not consider data refinement. Work of O’Hearn et al. [58]
on information hiding, where modules are represented using internal resource invari-
ants, was our main inspiration. The resource invariants fit naturally with refinement.
Parkinson does not have internal invariants. Instead, the resource of a module is ex-
plicitly exposed but the way it is manipulated is constrained. It would be interesting to
work out an alternative refinement theory based on it.

A lot of the work on program development in presence of pointers, like that of Abrial
and Back, as explained earlier, focuses on program refinement rather than data refine-
ment. The majority of program refinement techniques do not support local reasoning
about pointers and often, certain properties of a data structure (that corresponds to a
module in our setting) once proved in the development of one program, must be re-
proved if they are to be used in the development of another. Our approach supports
local reasoning about pointers and once data refinement is proved between two mod-
ules, the more concrete one can replace the more abstract one in all separation contexts.
Some of the program refinement techniques provide theories for a particular data struc-
ture (like those of Butler), such as a list theory, or a tree theory, but once a new data
structure is introduced, a new theory has to be built. Our precise predicates ensure that
we can deal with virtually any data structure.

Finally, since the work in this thesis has advanced reasoning about ownership trans-
fer, we discuss this issue in the light of related work. Ownership transfer is one of the
stumbling points of the work on reasoning about programs with pointers. Some ap-
proaches simply cannot handle ownership transfer [39, 4, 10], while admitting that this
is a limitation. However, some solutions have been presented in order to solve this is-

sue. Work of Clarke et al. [23] proposes a concept of external uniqueness, while that of

1.4. Related Work 37

Naumann et al. [11] builds on it. External uniqueness requires that there is a unique
reference from the outside to the aggregate, while there can be many from the inside.
Naumann et al., apart from requiring that there is a unique pointer from the sending
owner to the object o which is to be transfered, demand that either there are no refer-
ences back from the object o to the owner, or all reachable objects from o are transfered
together with it. They cannot ensure that imposed uniqueness conditions are satisfied,
but rather assume they are. On the other hand, our work does not suffer from such
restrictions, i.e. we do not need to impose external uniqueness conditions. Our notion
of separation context is defined semantically, and however many aliases might be intro-
duced by transfering a location from client to a module, if any of them is dereferenced,
the semantics will detect that. There is also an ongoing work on ownership transfer
based on universe types, by Miiller [55].

The Boogie methodology can deal with ownership transfer in a more flexible way
than the type-based approaches. In comparison to the work here, Boogie does not en-
compass low-level features such as address arithmetic (like one might find in a memory
manager), and they have not proven an analogue of the lifting theorem for data refine-
ment as far as we are aware. But, we acknowledge that the Boogie approach is powerful,
and promising. Also, we emphasize that the ideas in that work were arrived at inde-
pendently of, and virtually concurrently to, the approach here.

Parkinson can successfully deal with ownership transfer, but as we already pointed
out, our main goals somewhat differ.

We found great motivation for our work on data refinement in Hoare’s work [35].
However, the intuitive and technical inspiration comes from ideas in Separation logic
[72, 41]. Namely, in their work on information hiding, O’Hearn et al. consider mod-
ules that are represented by their resource invariants and a set of module operations.
They use separating conjunction to provide separation between the internal states of
the modules and the client.

Our approach to data refinement is modular in the following sense. We allow for
simulation to be proved independently of any external users or other modules. Then,
by lifting the simulation to the whole language, we enable our module to be incorpo-

rated into a bigger system. In our work, we also consider behaviors that are present

1.5. Owerview of the Thesis 38

in “dirty”, low-level programming, such as cross-boundary pointers and ownership
transfer, which are not manageable by linguistic restrictions, in particular, by any of

the mentioned theories.

1.5 Overview of the Thesis

The thesis proposes a theory which gives rise to a sound method of data refinement in
presence of low-level pointer operations.

We give a detailed discussion of the classical theory of data refinement and a more
formal account of the shortcomings of the method in Chapter 2. We first show how the
method works in a setting in which it is sound, and then gradually introduce conditions
inspired by the real-world programming techniques which invalidate the traditional
method.

The notion of a separation context is central to our theory of data refinement. The
most intuitive explanation of a separation context is that it is a well-behaved client pro-
gram that does not interfere with the internal representation of a module with which
it interacts. We introduce separation contexts in Chapter 3 and prove some important
properties of them. We also illustrate separation contexts with several examples and
non-examples.

In Chapter 4, we present the technical core of our method. We introduce our forward
simulation method and prove the “abstraction” or “simulation” theorems, which also
imply the soundness of the method. The simulation theorem states that a simulation
relation between two modules can be lifted to all separation contexts. This is particu-
larly important feature, as otherwise an existence of a simulation between two modules
is useless. We also illustrate the method with two examples. We formally prove suc-
cessive refinements between linked-list and set representations, and set and “magical”
representations of a memory manager module.

Separation contexts are defined semantically in Chapter 4. Chapter 5 gives a more
practical way of deciding whether a certain program is a separation context. Namely,
using the forward simulation method, we show that it is enough to prove that a program
meets a certain specification in separation logic.

In order to prove soundness of the forward simulation method, we had to impose

1.5. Owerview of the Thesis 39

certain restrictions to the refinement relations to be allowed in the method. This leads to
the narrowing of the range of the problems that forward simulation can solve. A more
general method for proving data refinement is a power simulation method, which we
present in Chapter 6. We also prove the “abstraction” theorem and soundness of the
power simulation method. This method enables us to handle more demanding exam-
ples, such as equivalence between the doubly-linked list and XOR-linked list represen-
tations of queues.

Power-simulation method is more general then the forward-simulation method and
can be reduced to it in certain circumstances. In Chapter 7 we give conditions under
which this can be done. In this chapter, we also illustrate the power simulation method
with a detailed example, the equivalence of the doubly-linked and the XOR-linked list
representation of the doubly-ended queues.

We conclude and give the directions for future work in Chapter 8.

1.5. Owerview of the Thesis

Table 1.8: Doubly-linked list and XOR-linked list implementations

40

struct dnode{

int data;

struct dnode x* left

struct dnode xright}
typedef struct dnode Delement;
typedef Delement x Dlink;

static Dlink f,b;

void insert(int i; Dlink m,n,k;);

{Dlink t1;

t1 = malloc(sizeof (Delement));

tl — data=1i;

tl — left = m;tl — right = n;
if (m = NULL) then f =k
else m — right = k;

if (n =NULL) then b =k

else n — left =k; }

void delete(Dlinkk;);
m =k — left;
n = k — right;free(k);
if (m = NULL) then f = n
else m — right = n;
if (n =NULL) then b=m

else n — left =m}

static Link fl, bl;

void insert(int i; Link m,n;);
{Link t1,t2;
t1 = malloc(sizeof (Element));
tl —data=i;
tl - next=m"n;
if (m = NULL) then f =t1
else

{t2 = m — next;

m — next =t2"n"tl};
if (n = NULL) then b =t1
else

{t2 =n — tail;

n — tail =t2"m"tl}}.

void delete(Link k,m;);
{Link n,t2;
n = (k — next)"m;
free(k);
if (m = NULL) thenf =n
else

{t2 = m — next;

m — next =t2"n"k; };
if (n =NULL) then b =m
else

{t2 =n — tail;

n — tail =t2"m"k; } }.

41

2

The Classical Theory of Data Refinement

Central to the classical theory of data refinement is the simulation method and the “lift-
ing theorem” [29, 33, 38]. The lifting theorem ensures a sound way of extending a simu-
lation between modules to a simulation between client programs which interact with the
modules; the relation preservation property then lifts from the operations of the mod-
ules to the whole language. Without this property, simulation between just the modules
is useless. The client language for which the lifting theorem can be proved is the simple
while language, which uses only variables to store values. The problems arise when the
memory model is extended or new features, such as direct memory access, added to the
programming language.

In this chapter we give a formal account of the simulation method and prove the
lifting theorem in a classical setting. We then introduce the extensions to the memory
model and the programming language and provide simple examples which expose the

failure of the lifting theorem.

21 The programming language

The underlying assumption which we will carry throughout the thesis, as already sug-
gested in the Introduction, is that the environment in which our programs are executed
consists of a module (one, if not stated differently) and a client program. We can see the
client as a program that uses the services of the module.

For the memory model, we assume that a set of variables Var is given, and moreover,

2.1. The programming language 42

that this set consists of two disjoint parts: module variables Var,, and client variables
Var.. In accordance with the splitting of the set of variables, in any state of execution
there are two substates — the module and the client (sub)states. The states assign values

to the variables, so we have

S, = Var,, — Val, S. = Var. — Val, S={smWUsc|sm€Sm A sc €S}

Val=...,—1,0,1,...

A module is a collection of operations, together with a set of declared module vari-
ables. We denote a module by M = (V, fi, ..., f,). Module operations fi,..., f, are defined
as relations on states, i.e. f; C S x S. We can view a client program as using the services
of the module, so the module operations must be able to change the client state. For
example, client may call an operation of the module giving a variable as a parameter.
Because of this, we let the module operation execute on the whole state (i.e. combined
module and client state).

The client programming language is a standard while language with assignment
and module operations as basic commands. Note that the client may use (read or write

directly) only client variables.

const = 1|2|3]...

vary = Xp | Ym | Zm| -

vare = Xe | el ze | .-

e = const |var.|ete|e—el|e-el|e/e

c n=varc=el f;,i=1,...,n|c;c|if e then c else ¢ | while e do ¢

The semantics of the language is standard. When a module is defined, the meaning of
its operations is provided and given as relations. Then, the module operations execute
in agreement with this meaning. The other commands have the standard meaning.

In work on refinement, the client language is often left implicit. We are being clear
about it because we want to highlight problems with lifting simulation relations, this
being the area where pointer problems surface.

In Table 2.1, s[fi]s’ denotes two states which are related by relation f;. Recall that the

module operations f; are defined as relations f; C S x S.

Notation remark. We will use the notation a[r]b for any two objects related by some

2.2. The Simulation Method 43

Table 2.1: The semantics of the language

slfils' — , c1,5~ 8" ¢y, 8"~ s
x=e,s~ s[x— [le|s] fiys~> s T

€1;¢2,8 ~ s’

[lells # 0 c1,5 ~ s’ ells =0 ca,s~ [lells =0

if e then c; else ¢y, 5 ~ 5/ if e then ¢ else ¢y, 5 ~ 5 while e do ¢, s ~ s

le]ls #0 c¢,s ~ s while e do ¢,s” ~~ s’

while e do ¢, s ~ s

[|[—[ls € Int

relation r throughout the thesis. Also, for any function s, by s[x — ¢] we denote the same

function as s except that it maps x to e.

2.2 The Simulation Method

The simulation method is means of proving data refinement. Intuitively, operation a
simulates operation b if whatever step operation a can make in its execution, operation
b can perform the same step. This method is also known in literature as the downward
simulation [33, 36]. The method is based on the preservation of the “refinement relation”
between the operations involved in the simulation. In this section, we first introduce the
refinement relation and then formally define the simulation method. We also prove the
lifting theorem and illustrate it with an example.

A refinement relation R C S, x S, is a binary relation defined between the abstract
and concrete modules. A client program uses services of a module by executing in
an environment in which the module is defined and calling operations of the module.
This can be regarded as the module interacting with a client program. This suggests
that it is not sufficient to observe relation between the modules in isolation, but we
also need to reason about the behavior of the modules when they are interacting with
a client program. In order to do that we have to extend the refinement relation to also
encompass the client states. In fact, we are interested in a situation where there is one

client program; we compare its behavior when it is using abstract module to its behavior

2.2. The Simulation Method 44

when it is using the concrete one, and we expect these behaviors to be identical. Hence,
we extend the module refinement relation with the identity relation. If we denote by
R C S, X S,y the module refinement relation and by Id C S, x S, the identity relation, then
the overall refinement relation is R x Id C § x S, where S = §,,, X S..

We now define the simulation method.

Definition 1. Let f C Sx S and g C S xS be operations and let Z C S x S be a refinement
relation. Then f simulates g with respect to Z if and only if for all states s, s, and s, such that

$1|Z)sy and sy f]sh, there exists a state s such that s)[g|s| and s|[Z]s}.

The simulation method describes the requirements for the behavior of two opera-
tions in order to have one simulating the other. Having two states — the concrete and the
abstract, related by some relation Z, we have to make sure that the abstract operation
g, executing on the abstract state, can do whatever the concrete one, f, can do when
executed on the concrete state, up to the relation Z.

The method, in this set-up, allows for a command which always diverges to simulate
any abstract command. This is because, if the semantics of the commands is given by
partial relations, the condition of the method is vacuously true. But even if we restrict
the relations that play a role in the semantics of the commands to be total (which was
done in [33]) , the situation does not change, because an empty relation simulates all
abstract operations. This problem is discussed in [36], and a suggestion for a possible
solution is given. However, in our work we only consider data refinement in a partial
correctness setting and hence, we do not have to face this problem.

Having defined what means for an operation to simulate another, we now define

what it means for a module to simulate another module.

Definition 2. Let R C S,, X S,, be a relation. Module M = (V, fi,..., fn) simulates module
N=(U,gi,...,8n) with respect to the relation R x Id if and only if forall i=1,...,n f; simulates

gi with respect to R x Id.

In order to have simulation between two modules, we instantiate the refinement
relation to R x Id. Then if each operation of the concrete module simulates the corre-
sponding operation of the abstract module, we say that the concrete module simulates

the abstract one. Here, we require that apart from preserving the module refinement

2.2. The Simulation Method 45

relation R, module operations either do not touch the rest of the state, or if they do, they
change it in the same way; this is imposed by the Id part.

The lifting theorem is expressing abstraction. It connects the meanings of different
representations of the same data type, reminiscent of Reynolds” Abstraction theorem
[69] and Plotkin’s Lemma of logical relations [64]. Having simulation between the ab-
stract data structure and its concrete representation, the lifting theorem ensures that the
client program using the concrete representation simulates the same program when us-
ing the abstract data structure. If the lifting theorem did not hold, that would mean
that there are commands in the client programming language which can differentiate
between the two representations of the abstract specification of the data type.

We can view a client as a context c[] with holes, into which the appropriate operations
of some module can be plugged in. Once the client is linked with a module, in place of
a hole, the appropriate implementation of a function for which that hole stands is filled.
So, for example, if we have a client interacting with a linked list memory manager, then
in place of alloc(), the linked list implementation of this operation will be called, while
if the same client interacts with the magical implementation of memory manager, then

the implementation which works on sets will be placed in a hole.

Theorem 1 (Lifting theorem). Let R C S,, X S, be a relation. Let module M = (V, fi,.... f)
simulate module N = (U, g1, ...,8,) with respect to the relation R x Id, and let c[] be a client

program. Then c[f,..., f,] simulates c|gi,...,g,] with respect to R x Id.

Proof. The proof is by induction on the structure of a client program c. Let s1,s2,55 be
states such that s;[R x Id]s; and c[fi,..., fu],52 ~ .

Let ¢ = x. = e. By the semantics of the command x. = ¢, we have that s, = s;[x. — e].
If we run x. = e[gy, ..., gn) in state s;, the output state is s} = s;[x. —], and it is related to
s5 by R x Id, because s5;[R x Id]s, and in both states s; and s, after running the command,
client variable x is set to value e, which maintains the identity relation for the client
parts. The module parts are unchanged. So, s|[R x Id]s,.

If ¢ = f;, then by the assumption of the theorem, there exists a state s}, such that
fis1~ s and s} [R x Id]s},.

Let ¢ = ¢;;¢2. By the semantics of a command c;;c2[f1,. .., f,] there exists a state s’z’

2.2. The Simulation Method 46

such that ¢ [f1,..., fu],52 ~ 55 and c2[f1,..., fu],s5 ~ 5. Then, by the induction hypoth-
esis, we have that there exists a state s| such that c|[gi,...,8x),s1 ~ s and s/ [R x Id]s}.
Applying the induction hypothesis once again, we have that there exists a state s} such
that c2[g1, ..., 8n), 87 ~> 5| and s} [R x Id]s,.

Let c =if e then ¢; else c;. Depending on the value of e in states s; and s, (the value of e
is the same in these two states because the client parts on which the expression depends
are related by the identity relation), the theorem follows by the induction hypothesis for
ci,1.e. c.

Let ¢ = while e do c. We do the inner induction on the length of the computation. If

s2(e) =0, then also s (e) = 0 and by the semantics of the while-statement, we have that
while e do c[gy,...,gn],s1 ~> 51 and while e do ¢[f,..., fu],52 ~ 52

and they are related by R x Id. Now suppose that the theorem is true for all the compu-
tations of length n, and let while e do c[f7, ..., fu], 52 ~ 55 be a computation of length n+ 1.
Then, by the semantics of the while-loop, we have that there exists a state s’2’ such that
clfis--- o fuls52 ~» 55 and while e do ¢[fi,..., f,],55 ~~ s5,. By the outer induction hypoth-
esis, there exists a state s, such that c[g,...,gs],s1 ~ 5| and s{[R x Id]s. By the inner
induction hypothesis, since the remaining computation is of length n, we have that there

exists a state s}, such that while e do ¢[g1, ..., g,],s] ~ 5] and s/ [R x Id]s}. O

We now illustrate the simulation method with the example we already looked at in
the Introduction — the example of a data type Set, implemented by an array. Recall that
the data type set has operations for insertion, removal and testing whether a particular
element is in the set. For simplicity, it is assumed that the set has at most hundred
elements. The concrete implementation is given in Table 1.1 and the abstract one in
Table 1.2.

We now formally prove that the concrete array representation simulates the abstract

specification of Set.

Lemma 1. Array representation of Set, given in Table 1.1, simulates the abstract specification

given in Table 1.2.

Proof. First, we give a refinement relation. We say that two states s; and s, are related

2.2. The Simulation Method 47

by refinement relation R

s1[R]sy <= {s2(ali]) |0 < i< sa(m)} =s1(s).

We need to prove that each concrete operation simulates the corresponding abstract one,

i.e. for instance,

S]———— = > E|s'1
A
Rx1d | Rx1d
A
oy
insert(n)

For the insert() operation, if s;[R x Id]s2, and we execute insert(n) on state s,, there are
two possible outcomes. One possibility is to get the same state with which we started —
if n is already in the array, in which case because the initial states are related by R x Id,
n is also in s, and so the insert(n) also returns the initial state s;. Therefore the output
states are related as required. If on the other hand, n is not already in the array in state
57 (it is not in the set s in state s; either), the set of values held in the array in output
state is going to be {sz(ali]) | 0 <i < sp(m)}U{n} and that is equal to s;(s) U{n}, which is
exactly the output set of insert(n) when run on state s;.

For the remove() operation, if we have s{[R X Id]s;, and run remove(n) operation on
57, there are again two possible outcomes. One possibility is to get the same state with
which we started — if n is not in the array, in which case because the initial states are
related by R x Id, it is neither in set s, and so the remove(n) also returns the initial state
s1. Therefore the output states are related as required. If on the other hand, n is in the
array in state s, (it is also in the set s in s7), the set of values held in the array in output
state is going to be {s>(afi]) | 0 <i < sa(m)} \ {n} and that is equal to s;(s) \ {n}, which is
exactly the output set of remove(n) when run on state s;.

For the has() operation, note that the state is unchanged after running the operation,
in both the abstract and concrete implementations of the set, and so, since the initial

states are related, the output states have to be related, too. O

We have proved that the concrete array representation of Set simulates the abstract

specification, and therefore we can apply the simulation theorem. We illustrate the sim-

2.3. Failure of Lifting without Variable Separation 48

ulation theorem with the following program.

main()

{inti=0,sum =0;

insert(2);

insert(5);

insert(14);

while i < 10 do

if has(i) then
sum =sum-+i; }
Suppose that both the set and the array are initially empty. Then if we denote by

x — a a function which maps variable x into value a, then we have [s — (][R x Id][a — []],
where [| denotes an empty array. After the three insert() commands the abstract state
is s; = [i +— 0,sum — 0,5 — {2,5,14}], and the concrete state is s, = [i — 0,sum — 0,a —
[2,5,14]] and clearly s;[R x Id]s,. In concrete case, the state obtained by running a while
statement is s,[i — 10, sum — 7], and in the abstract case it is s [i — 10, sum — 7], so clearly,

these two states are related by R x Id.

2.3 Failure of Lifting without Variable Separation

The “lifting theorem” is an essential result for data refinement and holds for a simple
while-language, as we have shown. The main assumption for the Lifting theorem to
work is that the module variables are not directly visible to the client program and
that the module state can only be changed through the provided module operations.
However, if we slightly change the setting, the Lifting theorem fails. Namely, if we let
the client assign also to the module variables, then the Lifting theorem no longer holds.

Let the client language be slightly different from the one given in Section 2.2, in that

now the client may also assign to the module variables.

c i=varc=e|varp=ce| fi,i=1,...,n|c;c|if e then c else c | while ¢ do ¢

The semantics of the language remains the same.
In Section 2.2 we have shown that the array representation of the data type Set simu-

lates the abstract specification. We now construct a simple client program which shows

2.4. Unscoped Data 49

Table 2.2: New client of the data type Set

void main();
insert(2);
insert(17);
insert(21);

al0] = 42;

that the Lifting theorem does not hold in the new setting.

Assuming that the set is initially empty, the refinement relation R x Id is satisfied
before the execution of the program. If we run the client program with the concrete
implementation of the data type Set, then after insert(21), the array contains elements
2,17,21. If we run the program with the abstract implementation after these three state-
ments the set also contains values 2,17,21. These two output states are clearly related
by R x Id. However, after the statement a[0] = 42, the array contains elements 42,1721,
while the set in the abstract implementation still contains values 2,17,21. Evidently, the
concrete and the abstract implementations no longer represent the same set, and hence
the Lifting theorem fails for this client program. The manifest failure of the Lifting the-
orem is a consequence of the client’s ability to access directly the internal representation
of the module. Of course, it is easy to rule out this problem with static checking. The
point of this section, though, was to illustrate the technical reliance of lifting on separa-

tion, in a simple way.

24 Unscoped Data

We have described so far the problems that arise with the lifting theorem when the
client program can directly access the variables of a module. It may seem that keeping
the variables of the client and the module separate and not allowing the client to access
the variables of the module is a good enough solution. But what about the unscoped
data? Even if we limit the programming language in a way that it disallows allocation,

deallocation and address arithmetic, there are certain problems that are triggered by

2.4. Unscoped Data 50

the mere presence of unscoped data. As we will see, scoping is not a solution to these
problems.

We illustrate the problems caused by unscoped data with a simple example. We as-
sume a very simple memory model, which besides a stack contains exactly one memory
location I. The stack part consists of a client stack and a module stack as in Section 2.2.
The heap part assigns a value to the only location. We denote the set of all states by

¥ = § x H, and individual elements of this set by (s,%).

S. = Var. — Val, S,» = Var,, — Val Val=...,—1,0,1,...
H=1— Val,

The programming language is slightly changed compared to the one in Section 2.2.
It now allows direct reading from memory with a lookup command x, = *y. and di-
rect writing to a memory with an update command #x, = e. The other commands are
unchanged.

cu=xe=el|xxc=e|x.=xy.| fi,i=1,....n|cc
| if e then c else ¢ | while e do ¢

The refinement relation is a relation between the abstract module state and the con-

crete module state, just like before. However, to extend the refinement relation to the

client state, the extension needs to encompass both the heap and the stack.

R®Id = {((soWs1,l— —),(soWs2,l— —)) | (s1,l — —)[R](s2,]— —)V

(s1[R]s2 A Fv.l—v)}

The extension of a refinement relation with identity relation ensures that the client parts
of the states are identical. Then, one possibility is that location / is in both concrete and
abstract client states and in both states has the same value. The other possibility is that
location / is in both concrete and abstract module states, and then the values location /
has in these two states have to conform to the relation R.

Let us now consider a “one-place buffer”. The abstract implementation has variable
b for keeping the current value of the buffer, and variable full that indicates whether
the buffer is full or empty. It also has a variable junk which points to a location / in

which some unimportant or junk data is kept. The concrete implementation has only

2.4. Unscoped Data 51

Table 2.3: One place buffer

Abstract buffer Concrete buffer
int full, b, xprev; int full, xb;
int get(); int get();
{if full then {if full then
full = 0;return b; full = 0;return * b;
else abort. } else abort. }
void put(int v); void put(int v);
{if —full then {if —full then
b=v; full=1; xb =v; full=1;
else abort. else abort.
«int bad(); «int bad();
{return junk.} {return b.}

two variables full and b. Variable b points to a location which holds the value of the

buffer. There are three operations:
o get() — for retrieving the value from the buffer,
e put() — for placing a value into the buffer and
e bad() which returns a pointer to the client.

The definitions are given in Table 2.3.

We define the refinement relation for these two implementations.
(51,1 = v1)[R](s2,] = v2) <= s1(full) = so(full) N (si(full) =1=s51(b) =)

The refinement relation requires that the values of the abstract (variable b) and the con-
crete (location /) buffers are the same.
Now we prove that all the concrete operations simulate the corresponding abstract

ones. Let (s1,/ — vi),(s2,/ +— v2) and (s},] — v}) be states such that (s;,/ — v|)[R®

2.4. Unscoped Data 52

Id](s2,1 — vp) and (52,1 — v2)[op](s2, 1+ V).

(51,0 1)
R®Id$
(52,1 — v2) — (82,1 —))

Letop = get(). If s1(full) = false then also s, (full) = false and both the abstract and the
concrete operations abort. If, on the other hand, s; (full) = s2(full) = true then s;(b) = v,
and so they return the same value to the client and both set the variable full to false,
leaving all the other variables and locations unchanged. Therefore, the output states are
related by R x Id.

Let op = put(v). If s1(full) = true then also s>(full) = true and so, both the abstract
and the concrete operation abort. If, on the other hand, s;(full) = sy(full) = 0 then
sh = sa[full — 1] and [— v. If we run the abstract program the output state is s} = s;[b —
v, full — 1]. Clearly, these two states are related by R x Id if 5; and s, are (and they are).

Let op = bad(). Remark that the states are unchanged in both the abstract and con-

crete case, so they are related by R® Id.

Now consider the following client program.

main(){

int *x;

put(3);

x = bad();

*x =5}
This program, after putting the value 3 into the buffer, calls method bad() and places
the pointer returned by it into the variable x. It then assigns value 5 to the contents of
the pointer variable x. In the abstract case this will have no effect on the buffer while in
the concrete case it affects the internal representation of the buffer, and this imbalance
reflects on the (non) preservation of the refinement relation. After a call to bad() and
assigning 5 to the returned pointer, the concrete variable b points to a location / which
now holds value 5, while the abstract variable b still holds value 3. But the relation R
requires that these values be the same whenever the variable full has value true.

With this simple example we have given a clear picture of how unscoped data

messes up abstraction and we have intentionally chosen an uncluttered setting in order

2.4. Unscoped Data 53

to do that. One can immediately think of real-life examples, which would certainly be
harder to present but still would exhibit the same nuisance. The first thing that comes to
mind is the infrastructure code — operating systems, database servers, network servers;
these unavoidably utilize unscoped data. Another point we would like to make here
is that the example shows that difficulties arise with unscoped data even when there is
no allocation, deallocation and address arithmetic. These further features indisputably

make scoping harder, but they are not the primary problem.

54

3

Separation Contexts

The traditional method for proving data refinement fails when certain real-world re-
quirements are imposed on the programming language. For instance, the mere in-
troduction of pointers to the programming language wreaks havoc [40]. Things like
allocation, deallocation and address arithmetic make the situation even worse. Cross-
boundary pointers, pointers held by client and which point into the internal state of the
module, cause the main difficulty. With malicious use they may disclose the internal
representation of the module, and that is unacceptable.

Separation logic [72, 41] enables us to check code of a client for safety, even if there
are cross-boundary pointers. It ensures that pointers are not dereferenced at the wrong
time and without permission. We take the first step towards bringing the ideas from
separation logic into the filed of data refinement, by defining a notion of a separation
context. A separation context is a client program that does not interfere with the mod-
ule’s internal representation. The notion of a separation context is semantic and not
logical, although later in the thesis we make a connection to the logic. We also present
the idea of ownership — program state can always be divided into two parts such that the
module owns one part and the client owns the other. The ownership here is dynamic

and changes from one step of program execution to another.

3.1. An Inkling of Separation Contexts 55

3.1 An Inkling of Separation Contexts

To present the reader with the basic intuition behind separation contexts, we give a de-
tailed discussion based on examples. We consider two different client programs which
interact with a memory manager module through the module operations. There are
two module operations alloc() — for allocating new memory, and free() — for disposing
allocated memory. The memory manager module maintains a list of locations available
for allocation, where the disposed locations are also returned. One possible implemen-
tation, which we will assume here, is the linked-list representation given in Table 1.6.

The program state may be viewed as consisting of two parts — the client part and
the module part. The module part of the state contains a free list, and the client part en-
compasses the remaining part of the program state. One might think then that module
operations change only the module part of the state and client operations change only
the client part of the state. Neither of these two things is true in general. A module op-
eration changes the whole program state, but in a way that will preserve the structure
of the module’s internal representation, in this case the free list, and that will satisfy
the specification of the operation with respect to the client. For example, the operation
alloc(x) takes a location from the free list and places it into variable x. This way both the
module part and the client part of the state (the free list and the value of the variable x)
are changed. In fact, client operations can also change both the module and the client
part of the state. This is exactly the point where we want to focus our attention.

Consider the following client program which interacts with the memory manager
module:

alloc(x); [x] := 15;y := [x];free(x); [x] := 1.

This simple program allocates a new location and saves its address in variable x. After
manipulating and deallocating it, command [x] := 1 dereferences the variable. This last
statement will actually change the module part of the state, because after disposing the
location pointed to by x, variable x still holds the address of the location, except that
the location again becomes part of the free list, i.e. module part of the state, when it is
disposed. The aspect of being in the “client” part or in the “module” part of the state,

we call ownership, and dragging locations from one part to another ownership transfer.

3.1. An Inkling of Separation Contexts 56

Depending on the implementation of the memory manager module, dereferencing the
location that is in the free list may lead to destruction of the internal structure of the free
list and consequently crashing of the program.

Ownership transfer may be seen as shifting the boundary between the client and
module parts of the state. This concept is of dynamic nature, rather than static. Clearly,
the partition between the module and the client cannot be made in advance, before
executing the program; it changes from state to state throughout the execution of the
program. At any point of execution, the program state is being partitioned into two
parts, and ownership is just membership in one or the other component of the separated
states.

As we have seen in the above example, the given client program does not respect the
separation between the client and the module; it illegally changes the module state, and
potentially causes problems. Client operations, in a client program which respects the
separation between the client and the module, should only access the client part of the
state. We call such programs separation contexts. The above example is not a separation
context. Note also that the client program can use the module operations in a wrong
way.

alloc(x); [x] := 15;y := [x]; free(x); free(x).

This client program disposes twice location held in variable x, and this will have a simi-
lar effect on the execution of the program as in the above example.
In contrast, the following code obeys separation: the client code reads and writes to

its own part, and disposes a location which belongs to it.
alloc(x); [x] := 15;y := [x]; free(x)

The last remaining question is: how do we split the state? To describe the internal
representation of the module we use a special kind of relations, the so called precise
predicates [58, 73]. They give us means to delineate the portion of the state that is owned
by the module, and hence they induce the unique splitting between the client’s and the
module’s parts of the state. As already mentioned, this splitting changes throughout
the execution of the program, new locations are allocated and some are disposed. Using

precise predicates, we can track all of these changes in each step of the execution.

3.2. Setting the Stage 57

3.2 Setting the Stage

This section provides the foundations on which our theory is based. We introduce the
storage model and present some basic assertions of separation logic which will be used
in the development of our theory, but mainly in our examples. We formalize the notion
of a module using precise relations and general local actions, which also play an important

role in defining the meaning of the client language.

3.2.1 The Storage Model

Our storage model extends the one used in the traditional setting, where the variables
are explicitely divided into module variables and client variables. The state is enriched
with the heap component, which represents the memory that can be directly accessed
(pointers).

We consider a general storage model which we employ to conduct the results of our
theory. Its instantiation, a concrete storage model, will be assumed in our examples,

unless stated differently.

General storage model.
We define the storage model in an abstract way, which will allow various realizations
of a program state. We assume that we are given two disjoint countably infinite sets
of variables — client variables Var. and module variables Var,,. Let S. denote a set of
all maps from client variables to values, and similary let S,, denote a set of all maps
from module variables to values. Then the set of all stacks S is defined to be a set of all
combinations of module and client stacks.

S. = Var, — Val S,» = Var,, — Val

S={scWsp |5 €Sec A s €Sp}-

We denote the individual elements of set S by s.

Let H be a set of heaps which is a set equipped with a structure of a partial commu-
tative monoid (H,-,e). In effect, our development is on the level of the abstract model
theory of BI [57], rather than the single model used in separation logic [41, 72]. The unit
e denotes the empty heap and for any heap # satisfies the laws of a neutral element with
respect to the operation -. We will usually refer to e as an empty heap. Partial operation

- C H x H— H is associative and commutative.

3.2. Setting the Stage 58

1. eh=h-e=h (unit)
2. hy-(hy-h3)=(hi-hy)-h3 (associativity)
3. hi-hha=hy I (commutativity)

Here, the equality means that both sides are either undefined, or they are both defined
and equal.

We assume that the operation - is injective in the sense that for each heap £, partial
function h- —: H — H is injective. The injectiveness of the - is an important requirement
and the consequences that it has for our theory will be explained later on.

The subheap order C is induced by - in the following way
hi Chy <= 3h3.hy-h3 | N hy = hy-h;3.

Here | denotes the fact that the composition #; - k3 is defined. Two heaps /; and h, are

called disjoint, denoted h;#h,, if h; - h, is defined.

The RAM Model

The Random Access Memory model can be obtained by instantiating the general storage
model in the following way. Let H be the set of finite partial functions from the set of
addresses Ptr to the set of values Val. The set of addresses is a subset of the set of positive

integers; this allows address arithmetic.
H = Ptr —, Val, where Ptr C {0,1,2,...} and ValC{...,—1,0,1,...}.

We now define the operation -, making sure that all the requirements of the general
storage model are respected. We say that two heaps are disjoint A#h’ if their domains are
disjoint, i.e. dom(h) Ndom(#') = (). The combination 4 - /4" of two heaps is defined only

when they have disjoint domains

h(a), a € dom(h),
h-H(a)= 14 W(a), a € dom(n’').
undefined, otherwise

When h#h' fails, we stipulate that - 4’ is undefined.
It can be easily seen that the RAM model is a partial commutative monoid with the

injective operation.

3.2. Setting the Stage 59

Note. For proving our formal results, we will assume that the underlying storage model
is the general one. Then all the results also apply to the RAM model, and since it is much
closer to intuition, for most of our examples we will assume it as the underlying storage

model.

In general model (and hence also in RAM model), we denote by X the set of all states,
i.e. a set of all pairs of stacks and heaps X = S x H. Then, elements of set X are pairs (s,h)
which consist of the stack and the heap component. If we want to be explicit about the
module and client parts of the stack, we will use s, or s, for client and module part of
the stack, instead of s.
Remark. There are other ways in which we could have set up our storage model. One
possible way would be not to divide the client and module variables, but to define stack
as partial map and extend operation - from heap to the whole state, treating the stack
in a similar way as a heap. But this is unnecessary and introduces a problem known
as “variables as resources”, which was recently resolved in [62]. We chose our model
because, apart from being simple enough, it is also a natural extension with heaps of the

storage model used in traditional setting.

3.2.2 The assertion language of Separation logic

Separation logic [41, 72] is a model of Logic of Bunched Implications [56], designed with
an assumption that RAM is the underlying storage model. It is an extension of Hoare
logic [34], whose description can be found in any of the textbooks [70, 78, 75] and so
we assume the reader is familiar with it. The usual assertion language of Hoare logic is

extended with assertions that express properties about heaps.

PQ,R::= B|E — E; Atomic formulae
|false | P= Q|Vx.P Classical Logic
|emp | Px Q| true Spatial assertions.

Assuming

IE||s €Int [B|)s € {true,false},

where

[|7|]S:SHV3|7 Val:{"”7170717-.«}7

3.2. Setting the Stage 60

the semantics of the assertion language is given bellow.

(s,h) E B i [|B]], = true

(sh)EEw—F iff [E],=dom(k) and h([E],) =],

(s,h) = false never

(s,h) =P =0Q iff i (s,h) = P then (s,h) = O

(5,h) = Vx.P iff Wvelnt. (slve v],h) =P

(s,h) = emp iff = eis the empty heap

(s,h) EP*Q iff Thg,hy. hothy, h=ho-hy, (s,ho) = Pand (s,h) = Q

Here, s[x — v] denotes the same stack as s, except that it assigns value v to variable x.
We will write similarly for any function f[/ — v] to denote the fact that it is the same as
f, except that it assigns value v to /.

The interpretation of assertion E — F asserts that the heap component of the state
contains exactly one location with address E and the contents of that location is F. The
assertion emp says that the heap component of the state is empty, while P x Q asserts
that the state can be split into two disjoint parts, such that in one part P holds and in the
other Q holds. This assertion is called the separating conjunction. Other assertions have

standard interpretation.

3.2.3 Precise relations

In developing our theory, we will make extensive use of a special kind of unary rela-
tions defined on states — precise relations. A precise relation unambiguously determines
a portion of the state described by the relation — it gives a way to “pick out the relevant

locations” [58, 73].

Definition 3 (Precise relation). A relation M C X is precise if for any state (s,h) there is at

most one subheap hy T h, such that (s,hy) € M.

Predicates used to describe data structures are usually precise. Richard Bornat’s
approach to detecting the locations associated with a data structure by writing a formula
or running a program which would pick out only those location, can be formalized by
precise predicates. Bornat used this idea to provide spatial separation in traditional

Hoare logic [16].

3.2. Setting the Stage 61

listseg(x,x) % true listseg(x,x) s true

Figure 3.1: Circular list

We give several examples of precise predicates. Predicates emp, E — E’, E — — are
precise, p * g is precise when both p and ¢ are precise.

Consider the following predicate.
listseg (x,y) &L (x=y A emp) V (3z. x— zxlistseg (z,y))

It is understood that this specifies the least predicate satisfying the recurrence. This
is the only imprecise invariant that has been used in separation logic. This predicate
allows existence of a cycle in a linked list segment from x to y. It is true in a heap which
contains a non-empty circular list from x to x and nothing else, and it is also true of an
empty heap, a proper subheap. However, even this predicate can be made precise, if it

is restricted to forbid a cycle in the list segment [58].
Iseg(x,y) <L (x=y A emp) V (x#y Az x+— zxlseg(z,y))

By adding the inequality x # y in the second disjunct, the predicate listseg(x,y) now
requires that if x and y have the same value in the state, then the heap must be empty, and
so the ambiguities introduced by allowing the cycles are prevented. Another commonly
used imprecise predicate is true, and we usually use it to describe storage in which shape
we are not particularly interested.

We define the separating conjunction of unary relations M,M’ C X by
Mx«M = {(S,/’l) ‘ dho,hy. hotthy A h=hg-h; N (S,h()) eEM N (S,hl) GM’}.

Taking into account that - is injective, if M is a precise relation, then it induces a unique
splitting of the state.
Notation. For a precise relation M C X, we define /y to be the unique subheap of a heap

h, such that hy, € M.

3.3. The programming language 62

The uniqueness of the splitting induced by a precise relation is particularly impor-
tant, since the nondeterminism of * interacts badly with modularity, as already demon-
strated in work with separation logic [58, 59]. For example, there are two possible split-
tings of the heap according to the predicate listseg(x,x) x true. The splitting in the first
picture in Figure 3.1 is possible because this splitting makes the second conjunct of the
predicate listseg(x,x) true. The second picture shows splitting which makes the first
conjunct of the definition of the predicate liszseg(x,x) true.

However, this is not the case with the precise predicates. Given a precise predicate

there is a unique splitting of the state.

3.3 The programming language

We introduce the programming language for the client programs and formally define
the notion of a module. We also establish some basic facts about the denotations of the
basic operations of the language and supply the semantics of the client programming

language, which is, as the reader will see, parameterized by a given module.

3.3.1 The programming language syntax

Our model will use a simple language with two kinds of atomic operations: the client
operations and the module operations.

The programming language is an extension of the simple while-language with a
finite set of atomic client operations a; (j € J) and a finite set of module operations f;,
i € I. The syntax of the user language is given in Table 3.1.

We do not specify all the details of the language. For instance, we just say that ex-
pressions take values from the set Val, but we do not define what Val is in the abstract
language. When the concrete implementation of the abstract language is decided, all
the domains and the commands are appropriately instantiated. For example, we can
instantiate the user language as in Table 3.2. The set Val is instantiated to be a subset
of the integer values, and the atomic client operations can be set to be the standard
commands for manipulating the state. Here, x := E is standard assignment, command
[E1] := E, denotes a heap update, command x := [E] denotes a heap lookup, and alloc()

and dispose() are the operations for allocating and disposing memory, respectively. The

3.3. The programming language 63

Table 3.1: The user language uninstantiated

E = wvar| ... [|E|]s € Val,var € Var,,
B = false| B=B|E=F|... [|B]]s € {true,false}
Cuser == aj, jE€J
|fi,iel

’ Cusers Cuser
| if B then ¢, else ¢,
| while B do c¢;ers,

Var = {x,y,...}, I,J — finite indexing sets.

module operations are instantiated when the module is defined. Note that this instanti-
ation allows address arithmetic. In our examples we will use a concrete client language
given in Table 3.2.

The language expressions do not access heap storage, i.e. they depend only upon

the stack component of the state.

3.3.2 Local Actions

Before we introduce the semantics of our language, we present relations which have
some special properties. In defining the semantics of the language we will require that
the meaning of our commands satisfies these properties.

The commands of the programming language, apart from producing normal states
in (s,h), are also able to produce a special state wrong. Intuitively, state wrong is produced
when a command attempts to dereference a location that is not in the current state.

We now specify actions on states that access resources in a local way. A relation

r CX x W {wrong} is local [58] if it satisfies the following properties [81, 58]

e Safety Monotonicity: For all stacks s and heaps / and £, such that h#h,, if —h[r|wrong,

then —h - hy[r]lwrong.

e Frame Property: For all stacks s,s’ and heaps hy, h; and i’ with ho#h,, if —(s, ho) [r]wrong

and (s,h-hy)[r](s',h') then there is a heap hj, T i’ such that hy#h,, hj- hy = h' and

(5,70)[r] (s, 1p)-

3.3. The programming language 64

Table 3.2: An instance of a user language

E.F == ... |int|E4+F|EXF|E—F, int€lnt,
B = ...|ELF
a = x:=F
| [E\] == E>
| x:= [E]
| alloc()
| dispose(x)
| fi, i€l

Int={...—1,0,1,...}, Val C Int

These two properties ensure that if heap /# contains all the memory necessary for
safe execution of the “command” r, then every computation from a bigger heap /-5 is
also safe. Moreover, such computation can be tracked from some computation from the
smaller heap /. These properties ensure the soundness of the Frame rule from separation
logic. All the commands that can be generated by the language given in Table 3.2 satisfy
safety monotonicity and frame property. This is proved by O’Hearn and Yang in their
paper on local reasoning [81].

In addition to safety monotonicity and frame property, we need our local actions to

satisfy another property.
¢ General Contents Independence: For all stacks s,s’ and heaps hg, hi, hj, if
hi#thy N —(s,ho)[rlwrong A (s,ho-hy)[r](s' iy - hy)
then we have that for all 4, such that 4, C iy

(s,ho - ho)[r] (s’,h6 -hy)

The contents independence property expresses that if command r is safe if exe-
cuted from heap 5y, i.e. it does not go wrong, the execution of r from a bigger heap
ho - hy does not look at the contents of heap 4;; it can only use the information that

the heap memory in £, is allocated initially, and so heap /; can be replaced by any

3.3. The programming language 65

heap h; which contains at most all the heap memory of #;. The contents indepen-
dence, which is new, is necessary for the lifting theorem. At first glance, it may seem
that contents independence follows from the frame property, but the following exam-
ple suggests otherwise. Let [] be the empty state, and let r be an action defined by
hirfv e h=v A (h=][V (1€dom(h) Ah(1)=2)). This “command” r satisfies both the
safety monotonicity and the frame property, but not the contents independence. Note
that safe(r,[]) and 1 ¢ dom([]). When we run “command” r in a state [1 — 2] the out-
put state is [1 — 2]. The contents independence property then insures that if we replace
[1 — 2] by another heap with the domain which is the subset of dom([1 — 2]) = {1}, for
instance [1 — 3], the output state should be [1 — 3], which is here not the case. The

command r behaves differently depending on the contents of location 1.

Definition 4 (General Local Action). A General local action, in short GLAct, is an action

that satisfies safety monotonicity, frame property and general contents independence.

3.3.3 Modules
Here, we give a formal account of a module. Module comprises of a predicate that

describes its resources and a collection of operations that preserve the predicate.

Definition 5 (Predicate preservation). The predicate p C X is preserved by a command r C
Y x X, if for all states (s,h) and (s',h’) such that (s,h) satisfies predicate p, i.e. (s,h) € p, and

= (s,h)[rlwrong and (s,h)[r](s',}) then (s',") € p.

We denote by MOp the set of all module operations names. Let init and final be

identifiers which are not in MOp.

Definition 6 (Module). A module is a pair (p,n), where p C X is a precise predicate and

n : MOp U {init, final} — GLAct, such that for all f € MOp
1. Y(s,h),(s',1'). ((—(s,h)[n(init)]wrong A (s,h)[n(init)](s',1")) = (s',h’) € pxtrue)

2. Y(s,h),(s',1'). ((=(s,h)[n(f)]wrong A (s,h) € pxtrue A (s,h)[n(f)](s', /) = (s, 1) €

p*true).

Here, p denotes a predicate which describes a resource invariant of the module.

Function 71 gives meaning to each module operation by assigning it a general local ac-

3.3. The programming language 66

tion, so it can be regarded as a module environment. In the two conditions of the def-
inition, we allow the input and output states of operations to contain data other then
the resource invariant of the module (xtrue part). The first condition then states that ini-
tialization operation builds an initial state of the module and the finalization operation
gets rid of it. The second condition expresses that all operations of the module must
preserve the module’s resource invariant p.

The predicate p precisely describes the internal resources of the module; it mentions
all the variables used by the module and outlines the shape of the data structure im-
plemented by the module. Given a particular state, using precise relation p one can
determine what portion of the state “belongs” to the module. This portion is unique,
since only the module variables figure in p and the preciseness of the predicate ensures
that there are no ambiguities as far as the heap is concerned. This means that in every
step of computation, we can determine exactly which piece of the state is owned by
the module; the remaining part of the state is owned by the user. Even if we had sev-
eral modules interacting with the user program, the splitting of the state would still be

unique, since each of the resource invariants of the modules is precise.

3.3.4 The semantics of the programming language

The denotation of both client and module commands will be given by binary relations
r: X x Xw{wrong}.

For the semantics of all the operations in the client language as well as the mod-
ules operations we will consider only general local actions. In the uninitialized user
programming language, we will assume that all the basic operations are general local
actions. For the concrete commands we need to prove that. We give their semantics in

Table 3.3.

Lemma 2. All the operations of the concrete user programming language given in Table 3.2 are

general local actions.

Proof. All the commands satisfy safety monotonicity and frame property; the proof can
be found in [81]. We only need to prove that all of them also satisfy general content

independence.

3.3. The programming language 67

Table 3.3: Semantics of the concrete basic operations

(s.h)c:=Ely = v=(s,h) A5 =s[x— [E]]
(s,))[[E1]:=E]v <= if [E1[]s ¢ dom(h) then v = wrong else v = (s,h") A
W = |\l — [|E2]]
(s.h)x:=[E]ly <= if[[E[ls ¢ dom(h) then v = wrong else
v={(s',h) A s'=slx— h([E],)]
(s.h)fallocx)]y <= In¢dom(h). i =h-nrs— A s =slxn] Av=(sK)
(s,h)[dispose(x)]y <= let n=s(x) in if n & dom(h) then v = wrong else

v=_(s,/) Nh=H -n— —

Consider the update command r = [E| := E, stacks s,s' and heaps ho,h{ and h;,
such that —(s,hg)[rlwrong and (s,hg - hy)[r](s',h(- h1). Then by the frame property and
injectiveness of -, it follows that (s, o)[r] (s, hj)). The definition of command r then implies

that iy = ho[[|E1[] — [|E2[]]. Let k2 be any heap such that h, C h;. Then,
ho - hy = ho[[[Ex [= [1E2[]] - 2 = (ho - o) [[1EA [| = [| Ex]]

and so, by the definition of command [E;| := E», (s,ho - h2)[[E1] := E2|(s, by, - ha).
It can be proved in a similar fashion that all the other basic operations of the concrete

language satisfy general content independence. O

Let (p,n) be a module. We give the operational semantics of a client programming
language which interacts with the module (p,n). The ~»,C (cuser X X) X (X {wrong})
is the standard operational semantics and it is given in Table 3.4. When the client pro-
gramming language is initialized, the meaning of the atomic client operation a; is given
using relation a;. The meaning of the module operations f; is provided by the mod-
ule environment 7. The operational semantics of all the compound statements is the
standard big-step operational semantics.

The semantics ~(,, 7)€ (cuser X L) X (ZW {wrong,av}) is the semantics parameterized
by the module. Here, av denotes an access violation. A client program communicates
with a module through the provided module operations and this is the only accepted

manner in which they can exchange information. An access violation is encountered

3.3. The programming language 68

Table 3.4: The language semantics

(S,h) [aj] (S/,h/) (S,h) [71 (fi)](s,ah,) Cl’(s)h) ~a (Slvh/) €2, (S/7h/) o K
aj, (s,h) ~q (s, 1) fi, (s,h) ~q (8", 1) c1;¢2,(8,h) ~q K
(s,h)[ajlwrong (s,h)[n(f;)]wrong [|B]]s = true c1,(s,h) ~¢ K
aj, (s,h) ~q wrong fi, (s,h) ~>q wrong if B then ¢ else ¢, (s,h) ~>q K
c1,(s,h) ~q wrong [|B]]s = false c2,(s,h) ~>q K
c1;¢2,(8,h) ~>q wrong if B then ¢ else ¢, (s,h) ~q K
[|B]]s = true c;while Bdo c,(s,h) ~q K [|B]]s = false
while B do ¢, (s,h) ~¢ K while B do ¢, (s,h) ~¢q (s,h)

K € Xu{wrong}, iel,jel, f; € MOp ac{n,(p,n)}

when a client program improperly reads from or writes to a module part of the state.

Semantics ~,) has all the rules given in Table 3.4 and one new rule

—(s,h)[ajlwrong h=hy-h, (s,h,)[ajlwrong

aj,(s,h) ~(p) AV

There are several additional rules that emerge when we allow K in Table 3.4 to also take
value av, that is, when K € X {wrong} & {av}.

The only difference between the standard semantics and the semantics parametrized
by a module is that the standard one cannot detect that the client program has illegally
accessed the internals of the module, while the other one can.

State (s,h,) € p in the new rule of the parameterized semantics denotes the substate
of (s,h) uniquely determined by predicate p and (s,h4,) denotes the rest of the state. The
uniqueness of this splitting follows from the fact that p is precise and this enables us
to determine which portion of the state belongs to whom. The stack part of the state is
determined by s,,, that is the module part of the stack. We stress here the importance
of the resource invariant of the module being precise. It enables us to correctly detect
access violation. Suppose that the module resource invariant p is not necessarily pre-
cise. Then there would be ambiguities in splitting the state according to p, as shown in
Section 3.2.3 and hence in determining which part of the state belongs to the module.

That would unavoidably lead to many inconsistencies in meaning of the program. For

3.3. The programming language 69

instance, the semantics might report a faulty execution when there really isn’t one, or
conversely, the program might terminate properly, even if the execution is faulty.

Since we are dealing only with general local actions, we need to prove for the gen-
eral language that all the commands that can be obtained in the general programming

language are indeed general local actions.

Lemma 3. All the commands that can be generated by the grammar of the general programming

language are general local actions, provided that the atomic client and module operations are.

Proof. The proof is conducted by induction on the structure of the command c.

If ¢ is a client atomic operation or a module operation, then c is a general local action
by the assumption of the lemma. Otherwise, let s,s' and hy, h, and h; be such that
=(s,ho)[c]wrong and (s, hg - by) [c](s', hy - hy).

For all other commands it is enough to prove that they preserve content indepen-
dence, since its already known that they preserve frame property and safety mono-
tonicity.

If ¢ is a sequential composition of commands ¢; and ¢, then from —(s,hg)[c1;c2]

wrong, we have that

=(s,ho)[c1]wrong A (3.1)
(Vs", hg. (s,ho)[e1](s”, k) = —(s", g) [c2]wrong). (3.2)

From the definition of a sequential composition and the assumption (s,hg - h1)[c](s', A, -

hy), we have that there exists a state (s”,4”), such that

(s,ho-hy)[er](s”, 1" A (3.3)
(S”, h”) [Cz] (S,, h6 . hl). (34)

Using the fact that ¢; satisfies frame property and 3.1 and 3.3, we conclude that there

exists a heap A such that

(S,ho)[C]](S”,/’lg) ANH = hg -hy, i.e.(s,ho -h1)[C1](S”,h6’ “hy). (3.5)

From 3.2 and 3.5 we get that —(s”, i) [c2]wrong. So far we have:

ﬁ(s,ho)[cl}wrong A (S,ho-hl)[cl](s//,hg'hl) (36)
and —(s” kg [c2]wrong A (s kg - hy)[ca] (57, G - hy). (3.7)

3.3. The programming language 70

We now exploit the fact that each of the commands ¢; and ¢, satisfy content indepen-
dence. Let /i, be any heap such that 4, C k. Then from 3.6 and 3.7, respectively, we have
that

(S,h() .]/lz) [C]](S”,hg . hz) and (S//,hg . hz) [62] (S/,h6 . hz),

which by the definition of the sequential composition gives us
(s,ho - hy)[c1;ca](s' by - o).
Let ¢ be if b then c; else c3, and let 5,5’ and hg,h{ and h; be such that
=(s,ho)[c]wrong and (s,ho - hy)[c](s' 1y - y).
Suppose that ||b|]; = true. Then, by the definition of the if-then-else statement,
=(s,ho)[c1]wrong and (s,ho - hy)[c1] (s’ hg - hy).
Similarly, when [|b[]; = false, we get that
—(s,ho)[ca]wrong and (s,ho - hy)[ca] (s’ by - y).

Let &, be an arbitrary state such that /; T &;. Then, since ¢; and ¢; both obey the content

independence property, we have

(16]]s = true = (s,ho - h2)[c1](s, hfy - ha)

[\b|]5:fa|se - (S,ho-hz)[(‘z](sl,hé)'hz)

Since hy T hy was an arbitrary state, this is true for all such states, and hence, our com-
mand c satisfies the content independence property.

We leave out the while-case as it can be reasoned about in a similar fashion. O

We also owe an explanation for why we differentiate between the faulty states av
and wrong. First reason is intuitive in nature. State wrong denotes a different kind of
erroneous state in comparison to av. While using wrong we detect the dereferencing
of unallocated memory, with av we detect illegal dereferencing of allocated memory.
The other reason is more technical. Namely, if we had only one erroneous state, safety
monotonicity property would fail for the most basic heap-manipulating operations. To

see that, consider the following example. Suppose that the resource invariant of the

3.4. Separation Contexts 71

module is given by a heap [1 — 2-2 — 3], and suppose that the current heap is h = [1 — 2].
Then the resource invariant is not satisfied in the current state, so the whole heap, #,
must belong to the client and it is safe to perform a command [1] := 42, i.e. command
[1] := 42 does not fault in state . If we extend the current heap with a disjoint heap
[2 — 3], the resource invariant becomes satisfied and command [1] := 42 now faults,
which means that the heap-update command does not satisfy the safety monotonicity.
Therefore, in accordance with the intuitive understanding, we keep av and wrong as two

separate erroneous states.

3.4 Separation Contexts

An essential point in the parameterized semantics is the way in which module state
is subtracted when client operations a; are performed. As explained earlier, there are
two kinds of faulty states: av and wrong. If a client program dereferences some location
which is not allocated in the current state, then it will end up in a faulty state; this is
reflected in the relation which provides the meaning of the client program. But even
if the meaning of the client program does not relate the initial global (module + client)
state to wrong, the faulty execution can still occur. In fact, the client may terminate
normally when run in a global state, but go wrong when the module state is subtracted;
in that case the client program also terminates in a faulty state, this time in av, because
it attempted to access the module’s state. A separation context is then a program (with
a precondition) that does not lead to a faulty state.

Module state Client state Client state

%\@ N .

Figure 3.2: Client dereferencing module’s state

For instance, Figure 3.2 gives a concrete picture of what happens if we run a com-
mand y := [z] for heap lookup in an environment where a module, which maintains a
list, is defined. Since variable z points inside the list, when we execute the command,

the list-part of the state is subtracted, and in the user state variable z becomes a dangling

3.4. Separation Contexts 72

pointer. When we try to read a dangling pointer, a fault is generated.

Note 1. We denote by c[] a program context. If (p,n) is a module, then c[(p,n)] is a program
obtained by filling the holes by the corresponding operations of the module, whose meaning is
determined by function 1. The meaning of program c[(p,n| is then calculated in the semantics

~(

p.n)*

Definition 7. Let (po,n) be a module and let p C ¥ be a unary predicate on states. A program
c[(po,m)] is a separation context for module (py,n) and precondition p if for all executions

and all states (s,h) € px po, ¢, (s,h) > wrong and c, (s, h) + av.

A separation context is a client program with a precondition, obtained by filling the
holes of the context with the corresponding operations of the module with which the
program interacts, which never terminates in a faulty state. Precise unary relation py
describes the storage owned by the module — it is the resource invariant of the module.
The semantics from which the meaning of the client program is obtained is parame-
terized by the module (p,n) and this enables us to observe the behavior of the client
program with respect to the module. Another interesting aspect of separation contexts
is that the behavior of the client program is observed only with respect to a certain, given
precondition. We do not want to burden ourselves with an obligation to unnecessarily
scrutinize all the behaviors of the client program from any possible state. We want to
consider only those behaviors of a client program which are possible with respect to a
given precondition, in the spirit of Hoare triples. A separation context is a client pro-
gram which for a given set of states, i.e. a precondition, never accesses either the storage
beyond the current state nor the storage of the module described by its resource invari-
ant p. In particular, we want to explore the connection between the separation contexts
and Hoare triples. We present the results regarding this matter in Chapter 5.

We now prove that given a module and a program, if a program is a separation con-

text with respect to the module, then it must preserve the module’s resource invariant.

Theorem 2. Let (po,n) be a module, let p C X be a unary predicate on states and let ¢ be a
separation context for (po,m) and p. Then for all such p and all states (s,h) and (s',h'), if

(s,h) € pxpo, and c,(s,h) ~ (s',1'), then (s',h") € (po * true).

3.4. Separation Contexts 73

Proof. The proof is by induction on the structure of the command c.

Let p satisfy the conditions of the theorem, and let (s, %) satisfy p * po.

Let ¢ = aj. Suppose that aj,(s,h) ~+ (s',/'), then we want to prove that (s',/') €
po * true. Relation pg is precise, which means that there is at most one %,, C & such
that (s,hp,) € po. Then there exists i, such that i = h,, - h, and (s,h,) € p. Since aj is
a separation context for (p,,n) and p, then aj, (s,h) + wrong and aj, (s, 1) ~ av, which
means —(s,h,)[a;]wrong. By the assumption a;, (s,h) ~ (s',h), i.e. aj, (s,hp, - hy) ~> (s, 1').
Then, by the frame property which a; obeys, there exists h, C i’ and i’ = hy, - b}, and
(s,hy)[a;](s',h,). This means that h,, C k' and since h,, € py, it follows that hy, - i, €
po * true.

Consider the case when ¢ = n(f), for some f € MOp. Then, as we assumed (s,h) €
po * p, and by the definition of the module n(f) preserves py, i.e. (s',h") € po*true.

Suppose ¢ = cy;¢;. From assumption that ¢ is a separation context for (pg,n) and p,
we conclude that ¢; is also a separation context for (pg,n) and p. Therefore, command
c1 satisfies the condition of the theorem and we can apply induction hypothesis to c;.
Let sp(c, p) denote the strongest postcondition of a command c for the precondition p. If
command c¢; produces a state (s, /') starting from (s,), then (s, ") € sp(ci, po * p). From
induction hypothesis, we know that (s',#’) also satisfies pg * true. This holds for all states
(s,h) € poxpand (s',1') € sp(c1, po* p), and so, it follows that sp(cy, po * p) can be written
as po*q for some predicate g. Command c; is a separation context for module (po,n) and
precondition ¢q. Suppose c; is not a separation context for (po,n) and g = sp(c1, po * p).
Then, c is not a separation context for (po,n) and p, and that contradicts assumption.
We can apply the induction hypothesis again to ¢; and (py,n) and ¢, and conclude that
the resulting state of ¢,, which is also the resulting state of ¢, satisfies pg * true.

Let ¢ = if B then c; else c». This case follows directly from induction hypothesis; we
just need to notice that, since c is a separation context for module (po,n) and precondi-
tion p, then ¢; must also be a separation context for (pg,n) and (p A B = true). Dually,
c2 must be a separation context for (pg,n) and (p A B = false).

For the while loop, we do an inner induction on the smallest derivation of while Bdo ¢/,

(s,h) ~> (s',1"). Suppose that for all derivations of length n if (s, 1) € po*true and c, (s, h) ~~

3.4. Separation Contexts 74

(s',1) then (s',1") € po*true. For n = 0, we have the inference rule

[|B]]s = false
while B do ¢’ (s,h) ~ (s,h)

and as we know (s,h) € po*p,i.e. (s,h) € po *true.
Now suppose that the length of the smallest derivation is n+ 1. Then the inference

rule used is

[|B]]s = true ¢, (s,h) ~ (s",h") while Bdo ¢’,(s",h") ~ (s',)
while B do ¢/, (s,h) ~ (s, 1)

By the outer induction hypothesis ¢’ preserves the relation pg. By the inner induction

hypothesis (s, 7’) € po *true, which completes the proof. O

A separation context with respect to the module (po,n) and the precondition p has
a nice property that all its subcommands are separation contexts with respect to the
corresponding preconditions. For example, if cy;c; is a separation context for module
(po,m) and precondition p, then so is ¢;; subcommand c; is then a separation context for
the same module and a precondition which is obtained as the strongest postcondition
of ¢ for p. This observation was crucial in proving the compound statement cases of

Theorem 2.

3.4.1 Separation Context Examples

We now revisit the ideas discussed in Section 3.1 in our more formal setting.

Greatest relation

In order to specify the operations of the memory manager module, we make use of the
“greatest relation”, for the specification {p}f{q}[X], which is the largest local relation
satisfying a triple {p} — {¢} and changing only the variables in the set X. It is similar to
the “generic commands” introduced by Schwarz [74] and the “specification statements”
studied in the refinement literature [54], but adapted to work with locality conditions

in [58].

3.4. Separation Contexts 75

More formally, for each specification {p} — {¢}[X], we define great(p,q,X)

(s,h)[great(p,q,X)]wrong

N (s,h) ¢ pxtrue

(s,h)[great(p,q,X)](s", 1)

(1) s(y) = s'(y) for all variables y ¢ X and
<L () Vhp by =h A (5,hy) € p= 30, WA A Kby =R A
(s',hy) €q

The first equivalence ensures that great(p,¢,X) will run safely in a state (s, %) just when
predicate p holds in some substate (s,%,) of (s,h). The second equivalence defines how
the greatest relation changes the state. The condition (1) makes sure that great(p,q,X)
can modify only variables listed in X. Condition (2) defines great(p,q,X) to demonically

dispose of the initial heap /&, which satisfies p and then, to angelically choose a heap ;

from g and combine it with the remaining initial heap A, in order to get the final heap /'

We define the predicate list(et,ls). Let o be a sequence of integers. The predicate

list(c,x) is defined inductively on the sequence o by

list(€,x) def = nil Aemp, list(a- a,x) L = an Jy. x— yxlist(a,y)

where € represents the empty sequence and - conses an element a onto the front of a
sequence o. This predicate says that x points to a non-circular singly-linked list whose
addresses are the the elements of the sequence « (this is called a “Bornat list” in [72]).
We use Bornat lists to define a memory manager module with resource invariant
Jda. list(e,1s) which denotes the free list and the operations new(x) and dispose(x). The
operations new(x) and dispose(x) are defined as greatest relations satisfying the specifi-
cations given in Table 3.5. Operation new(x) takes the first element of the free list and
assigns it to client variable x. If the free list is empty, the operation cons() is called which
provides a fresh memory location. Operation cons() is the same as malloc(), except that
it never fails, i.e. it always returns a location. Operation dispose(x) takes a location from
the client variable x and returns it to the free list. The value of the client variable x stays
unchanged, i.e. even though the location is now in the free list, variable x still points to

it.

3.4. Separation Contexts 76

Table 3.5: Memory Manager Module

(Ja. list(a,ls), new(x), dispose(x))

newc(x) : {list(a- a,ls)} — {list(o,Is) xx — a}[x,s]
{list(g,1s)} — {list(g,ls) xx — —}[x,ls]

disposeq(x) : {list(a,ls) xx — a} —{list(a- a,ls) }[Is]

newc(x) = disposeq(x) =
if Is # nil then if Is = nil then
x:=ls;ls :=Is.next Is:=x
else else
x:=cons() t:=ls;ls:=x;x. ;=1

For future reference, we will call this the concrete interpretation of the memory man-
ager module. With these definitions we can judge whether a program (together with a
precondition) is a separation context.

Consider the following three programs

program, : program, : programs :
new(x); dispose(x); [81] :=42
[x] :=47; [x] :=47;
dispose(x);

We indicate whether a program, together with a precondition, is a separation context

in the following table.
Context Separation context?
{emp} program; V
{x+ —} program, X
{emp} program, X
{81 — —} program; v
{emp} program; X

Most of the entries are easy to explain, and correspond to our informal discussion from

3.4. Separation Contexts 77

earlier. The two separation contexts both access locations that are visible to them. For
example, in the second-last entry the precondition 81 — — ensures that 81 is in the cur-
rent client state. It cannot be in the free list, because of the use of * to separate the
module and client states. The last one, [81] := 42, is not a separation context because it
either interferes with the free list or it dereferences a location beyond the current heap,
but we do not know which of the two. It might (or might not) be the case that location
81 is in the free list, at any given point in time. We can easily construct an example state

where 81 is indeed in the free list.

78

4

Forward Simulation and Data Refinement

Our main interest is proving data refinement between modules, i.e. showing that a cer-
tain implementation of some abstract data type is indeed its representation. We also
need to assess modules” behavior in presence of the programs that are using their ser-
vices, i.e. client programs. Once data refinement between two modules is proved, the
behavior of the more concrete representation has to be at least as good as the behavior of
the more abstract representation of the abstract data type. That allows client programs
to use safely the concrete representation instead of the abstract one.

Forward simulation is one method for proving data refinement which we are going
to study here. As we have argued and shown by examples so far, the traditional sim-
ulation method becomes unsound when pointers and manipulations with pointers are
introduced into the programming language. We propose a new formal approach to the

forward simulation method, which ensures its soundness even in presence of pointers.

4.1 An Informal Account of Simulation, Lifting and Data Refinement

Central aspects of data refinement are:

1. Small local relations connecting abstract and concrete modules representing the

abstract data type.

2. Lifting small local relations from relating only modules to the whole programming

language, i.e. the relations are extended to include a client program as well.

4.1. An Informal Account of Simulation, Lifting and Data Refinement 79

3. Soundness of the method.

The first of these three aspects of data refinement gives means for expressing the
direct relationship between different representations of a certain abstract data type. Re-
call that the simulation method requires the abstract operation to be able to track the

behavior of the concrete operation up to the refinement relation.

(s1,h1) — — = = 3(sh, 1)
A

R*IdI | Rxld
Y

(S27 hz) Cconcrete (S,2 ’ hlz)

Usually this relationship can be established easily. The involved relation can always be
made weak enough, so that the operations of the abstract and concrete modules preserve
it. Even when the relation seems to be right and strong enough, it is not always clear
that the lifting of the relation to the whole language can be performed. This presents the
main difficulty with the simulation method. Having the relationship between different
implementations of the abstract data type is useless without lifting. Lifting gives mean-
ing to the simulation method; it expresses that the relationship between the pairs of the
corresponding operations of the abstract and concrete modules, and hence the modules
themselves, is maintained when they are actually being used in some computation.

In Chapter 2, we discussed the traditional simulation method and its shortcomings,
how lifting fails when the pointers are introduced. Cross-boundary pointers cause the
main difficulty because, when illegally dereferenced, they allow a client program to
spot the difference between different implementations of the module and that breaks
the abstraction.

In this chapter we give a new approach to the simulation method. The method is
designed to take care only of the non-faulting executions of the program, where among
the faulting executions is also illegal dereferencing of the cross-boundary pointers from
the client to the module. This also gives rise to the correctness of the lifting theorem.

Here, we give an informal statement of the lifting theorem.

Theorem 3 (Simulation theorem). If concrete module simulates the abstract one,

then the simulation lifts to all separation contexts.

4.2. Data refinement 80

The crucial assumption here is that the client program is a separation context. Recall that
a separation context is a client program which neither dereferences the internals of the
module, nor it dereferences memory that is not guaranteed to exist by the precondition.
The lifting theorem is correct only for separation contexts. It fails for arbitrary contexts.
To state more formally the theorem, we first need to define the simulation method, and
introduce some additional notation and terminology.

We define a concrete module to be a data refinement of an abstract module, if none
of the non-faulting executions of all programs can distinguish between them. The lifting

theorem is also a first step in proving the soundness of the simulation method.

Theorem 4 (Soundness). If a module forward simulates another module, it data

refines it.

In this chapter, we build our theory of data refinement. We prove the lifting theorem

and the soundness of the forward simulation method.

4.2 Data refinement

So far, we have only intuitively described data refinement. We say that one module
data refines another if in all computations the abstract module can be replaced by the
concrete one. Here, we give a formal account of data refinement.

To define data refinement, we need to be able to compare behavior of the programs
when they execute on the same state. To be able to do that, we wrap around each pro-
gram the initialization and finalization operations of the module with which it interacts,
to make it a complete program. We use the initialization operation of the module to build,
starting from the initial client state, a state which also encompasses a module state. Sim-
ilarly, we use the finalization operation to get rid of the module’s sub-state and to enable

the computation of a program to finish in a client state.

Definition 8 (Complete command). For a given command ¢ and module (p,n), a complete

command c.((p,n)) is init(, p); c;final(,).

To conclude that one module data refines another, we need to check that for all com-

plete commands, its execution in the concrete module environment can be mimicked

4.3. Binary relations 81

by its execution in the abstract module environment. In other words, everything the
concrete program can do, the abstract program can do as well, as long as it does not

fault.

Definition 9 (Data refinement). A module (q, 1) data-refines another module (p,n) iff for

all complete commands c and all states (s,h), if c((p,n)) does not generate an error from (s,h)
(ie., c,(s,h) #(p) aVAC, (s,h) /5 (pn) wrong), then

(c, (s,h) P gu) AV A ¢ (s,h) 7 (g.€) Wrong) A
(V(s',1). ¢, (5,h) ~=(g) (5, B)) = ¢, (5,h) ~>pm) (s, 1)).

4.3 Binary relations

The simulation method requires use of binary relations. In order for the simulation
method to be sound, we need to narrow down the set of the binary relations to be used
in the method.

We introduce a special kind of binary relations — coupling relations, which connect

the internals of two different modules.

Definition 10. A coupling relation R C X x ¥ between modules (p,n) and (q,€) is a binary
relation such that

(s1,h1)[R](s2,h2) = (s1,h1) € p A (s2,h2) € q.
We can lift the notion of preciseness from unary to binary relations.

Definition 11. For a binary relation R C ¥ x X, we say that it is precise, if each of its two

projections is a precise unary relation.

Note that the coupling relation is always precise since both its projections, the re-
source invariants of the modules in question, are precise by the definition of a module.
We illustrate coupling relations with an example. Suppose we have two different
implementations of a memory manager module. In the first implementation we assume
that f is a set variable, which keeps track of all owned locations. In the second imple-
mentation, we let this information be kept in a list. We use the list predicate list(«, Is),

defined in Section 3.2.3. Now, a precise binary relation

R=1{ ((s;h), (s, 1)) ((s,h) =Vsp € f. allocated(p) A ((s', /) = list(a,ls)) A |
set(a) = s(f)

4.3. Binary relations 82

where set(e) is defined as the set of pointers in the sequence o, is a coupling relation
between these two implementations. Here, V.p € f. allocated(p) denotes a predicate
allocated(p) * ...« allocated(py), where f = {pi,...,p,}, and allocated(p) asserts that p
is allocated in the current heap. Relation R relates pairs of states, such that the first
state in the pair can be described as a set of different pointers, and the other state is
determined by the list of exactly the pointers that appear in the mentioned set.

Coupling relation expresses a relationship between the “abstract” and the “concrete”
module without regard for any external users of the module. As well as examining the
internal behavior of the modules and preserving the relationship between the mod-
ules themselves, it is also important to observe their external behavior. Our refinement
theory assumes an environment in which both module and client program figure, and
hence, we also need to give means by which the relation between the client and the
module in the process of refinement is expressed. The separating conjunction of binary
relations enables us to move from reasoning about internals of the module to reasoning
which also includes the externals of the module, whether it be a client program or even
other modules participating in a computation.

For two binary relations R,S C X x X on states, we define their separating conjunc-

tion [67] as

3K W R B by = BB Ay = Ry A

(Sl 7h/1)[R] (s27h/2) A (Sl 7h/1/) [S] (SZ’ h/zl)

R+S=2< ((s1,h1),(s2,h2))

The separating conjunction of binary relations empowers us to expand a coupling re-
lation between two modules. For instance, for two modules (p,n) and (g, €), we expand
relation R between them to a relation RxId, where Id C ¥ x ¥ denotes the identity relation
on states. The R part of the relation R * Id, which we will extensively use, imposes on
modules’ internals to be related by R. On the other hand, the Id part of it requires that
the client program that is using the modules is the same. This means that the state of
the client program does not change when we replace one module by another. We also
use widely relation A, , where p € L is a unary predicate on states. Relation A, denotes

the identity relation restricted to states satisfying predicate p, A, =IdNp x p.

4.4. Forward simulation and Simulation theorem 83

4.4 Forward simulation and Simulation theorem

To prove that a concrete program simulates the abstract one, forward simulation works
by ensuring that what ever step of computation the concrete program makes starting
from some state, then starting from a related state the abstract program can perform the

same step (up to the simulation relation).

Notation. We use the notation c(a) to specify that the execution of program c is evalu-
ated in semantics ~~. For instance, ¢((p,n)) denotes a program ¢ which is evaluated in
a semantics determined by the module (p,n). We use ~~ to specify that the computation

is evaluated in standard semantics.

Definition 12 (Forward simulation). Operation b simulates another operation a, denoted by

b(B)[fsim(Ro,R:)]a(a) iff for all states (s1,h1) and (s2,h2),

1. Z.f((sl,/’ll)[R()} (s2,m2) N (b, (s2,h2) ~>pg wrong V b, (s2,h2) ~B av)), then a,(s1,hy) ~¢q

wrong V a,(sy,h) ~q av, and

2. Zf((Shhl)[Ro](Sz,hz) N a, (sbhl) 7‘906 wrong A a, (slahl) 7L>OC av A b?(s27h2) ~B (S/Zahlz))

then there exists (s, h') such that

a, (Slahl) o (sllvhll) A (Sllvh/1>[R1](sl27h/2)7

where ~~q and ~g determine either standard or parameterized semantics and can be the same.

The following diagrams can help when thinking of the two conditions of the defini-

tion 12.
(s1,) = ———- -~ e = wrong (av) (s1,h1) === - -~ e = (s1,7)
| |
Ro :R1 Ro :R1
| |
% %
(s2,h2) p ﬁwrong (av) (s2,h2) 2 ﬁ(s’z,h’z)

If Ry = Ry = R, we write fsim(R).
Remark. In our method we specify the semantics on each level of simulation. This
is due to the fact that we usually deal with two different semantics on two different

levels of abstraction. Actually, the semantics is the same, it is only parameterized in two

4.4. Forward simulation and Simulation theorem 84

different ways. The semantics can either be standard or it can be parameterized by a
module. If we want to consider simulation between two different modules (p,n) and

(¢, 1), then we need to allow for a program to be executed in semantics ~~(,) on one

pn
level (say abstract) and in semantics ~»(, ;) on the other (say concrete).
Now that simulation between two operations is defined, we can state the conditions

under which one module is considered to be simulated by another.

Definition 13. Module (g, 1) simulates module (p,n) if and only if there exists a relation

R C p x q, such that for all f € MOpU {init}U{final}, f{(g,u))[fsim(R=1d)]f((p,n)).

Note that to have a concrete module simulate the abstract one, they need to have the
same set of operations and in each pair of corresponding operations, the concrete oper-
ation has to simulate the abstract one. Important here is also that, apart from preserving
the module simulation relation, the module operations need to preserve the identity
relation on the external part of the state — the client state.

One of the causes of unsoundness of the traditional forward simulation method is
that for some client operations we have the situation where an operation fails to simu-
late itself. Namely, if we run the client operation in two different module environments,
even when the modules simulate one another, the client operation does not preserve the
refinement relation. This is especially true for allocation. Refinement relation preser-
vation by all the client operations is crucial for lifting. To prevent this complication
we need to impose certain restrictions on the simulation relation. In order for forward
simulation to be sound with respect to data refinement, we have to make sure that for
the related pairs of states, the abstract state is “smaller” then the concrete one. To see
why a bigger abstract state in a pair of related states might cause problems, consider the
following example.

Let simulation relation R contain a pair ([2 — 3], []). Here, for simplicity, we assume
that the states consist only of heaps. The abstract state contains exactly one location
with address 2 and contents 3, and the concrete state is empty. Suppose now that we

have two states related by RId, h; = [1 — 2,2 — 3] and h; = [1 — 2], and we run the alloc

4.4. Forward simulation and Simulation theorem 85

operation on the concrete state.

RxId

hy

alloc
The operation alloc executed on state 4, might return location 2, as it is available in the
state ;. However, there is no such location that can be returned by alloc when executed
in state /; and relation R * Id be reestablished at the same time. This example justifies
our need to restrict the set of simulation relations to only growing relations.

Now we define more formally what it means for a relation to be growing.
Definition 14. A relation R C ¥ x X is growing if and only if for all states (s,h) and (s',h’)
(s,)[R](s', 1) = (Vh". h'#K = W'#h).

Intuitively, R relates the internal states of two modules, and the above condition
means that one module uses more memory than the other. For example, in RAM model,

the condition for growing relations boils down to
(s,h)[R](s",h") = dom(h) C dom(h').

Note that when the identity relation Id is composed by separating conjunction with

a growing relation R, the resulting relation R * Id is also growing.

Having put the restrictions on the simulation relation, every client operation now

simulates itself.

Lemma 4. Let R be a coupling, growing relation between the modules (p,n) and (q,). Then,

for all client operations a, we have that

a((g, w))[fsim(Rx1d)]a((p,n))-

Proof. Let (s1,h1) and (s2,h2) be two arbitrary states such that (s, /1) [R*d](s2,h2). States

(s1,h1) and (s2,hy) can be written as (s1,51) = (scWsim, he - hp) L and (s2,/h2) = (sc W52, hy -

Recall that the stacks consist of two parts: the client part s, and the module part s,

4.4. Forward simulation and Simulation theorem 86

h.), for some heaps hy, hy, he such that (sim,h,)[R](s2m, hq). We prove that the two condi-
tions from the definition of simulation are satisfied.

To prove the first condition, suppose that a, (s2,h2) ~ (4) Wrong or a, (s2,h2) ~~ (4) av-
We show that then a, (s, hc) ~ 4) wrong, which will give us the desired result by the
following reasoning. By the rules of semantics ~,), the derivation a, (s¢,hic) ~ (4)
wrong is possible only when (s, /.)[a]wrong. But then, rules of semantics ~~(,) also

yield a, (s,) ~(p.n) Wrong, and hence
a,(si,hy) ~ (p.) Wrong or a,(si,hy) ~(p) AV,

and that is exactly what we want to show. To get there, note that derivation a, (s2,12) ~ (4)
wrong is possible only when (s;,h,)[a]wrong, and then by the safety monotonicity for
a, (s2,h¢)[a]wrong, and since the client operations are accessing only client variables,

(S, he)[alwrong. If a, (s2,h2) ~ (4) @V, we have that (s, hc)[a]wrong immediately.

q,1

For the second condition, suppose that

a, (Sl,hl) %(p’n) wrong A a,(sl,hl) %(PJ]) av A a, (Sz,hz) (gl (Slz,hlz)

Then, by what we have just shown,

a,(s2,h2) /> (gu) Wrong A a, (s2,h2) /(g) av,

i.e.
a,(sc,he) 4 (qu) Wrong.

We can apply the frame property for a, and so there exists a heap /;. such that 4, = k.- h,
and a, (s¢,he) ~ (g) (St he), where s, is the client part of the stack s5.

Let (s},h)) = (s.WSim, k.. - hy). We claim this is the state we are looking for in order
for the second condition of simulation to be fulfilled. Firstly, state (s},4]) is defined. R
is growing, so for all heaps h, if h#h, then h#h, and since we already know that A/#h,,
it follows that A, - h, is defined. Secondly, states (s},4}) and (s,h}) are related by R xId.
Finally, we need to show that a, (s1,/1) ~(,) (s7,h]). The following things hold, by

what we have proved so far.

1. (s¢,he)la](s.,hL)

cr'rc

2. =(s¢,he)[a]wrong

4.4. Forward simulation and Simulation theorem 87
3. (Sg,]’lc ’ hq)[a] (Sl27h/c ' hq)
4. Yh. h#thy = h#h),

By the general contents independence property of a, from 2, 3 and 4 and by the fact that

client operations may mention only client variables, it follows that (s, A - hp)[a](s.., .. -

cr e

hp), and hence a, (s1,h1) ~ () (s7,h7)- O

Lemma 4 gives a basis for the simulation (or lifting) theorem. The following lemma

ensures that the sequential composition of commands also respects forward simulation.

Lemma 5. For all relations Ry, Ry and Ry and operations a,a’,band b, if a’(B)[fsim(Ro,R;)]a{a)

and b'(B)[fsim(R1,R2)]|b(c), then
(@'sb')(B)[fsim(R1, R2)](a;b) ().
Proof. Let a,d’,b and b’ be such that
a) d{B)[fsim(Ro,R)]a{ct) and b) b (B)[fsim(R,Ry)]b{cx). 4.1)
Let (s1,h1) and (s2,h,) be Ry related states, such that
dib',(s2,hy) ~pgav V d';b',(s2,ha) ~p wrong. 4.2)

We prove that then a;b also produces a faulty state. From 4.2, by the definition of se-
quential composition we have that either o', (s2,h2) ~pg av V d', (s2,h2) ~~g wrong, or there
exists a state (s,/)) such that @', (s2,h2) ~~pg (s5,15) A (U, (s5,h5) ~gav vV b',(sy,h)) ~p

wrong). Since 4.1a) holds, we have that then either
a,(s1,h1) ~a av V a,(s1,h1) ~q wrong (4.3)

in which case the first condition of the simulation is proved, or again by the definition

of sequential composition, there exists a state (s},/4) such that
a,(s1,1) ~a (5,1) A (55 BRI (53 5) A (B, (55, 15) =g av V' B, (sh,) ~= wrong).
Then, because 4.1b) holds, we have that

@, (s1,h1) v (51, 0) A (b,(5}. 1)) v av V' b, (s}, h}) v wrong). (44)

4.4. Forward simulation and Simulation theorem 88

From 4.3 and 4.4, we conclude
ab,(s1,h1) ~qav V a;b,(s1,h)) ~q wrong

which we wanted to prove.

Now suppose that a;b, (s1,h1) ¥q av A a;b,(s1,h1) ¥~¢ wrong. Then d’;b’ does not
produce a faulty state from (s,,h,) either by what we have just shown. Let (s5,/4}) be a
state such that a';/, (s2,h2) ~p (s5,h). By the definition of sequential composition, this
means that there exists a state (s,/)) such that @', (s2,h2) ~p (s5,h5) and &', (s5,h)) ~~p

(s5,h5). From 4.1a) it follows that there exists a state (s},/4}) such that
a,(s1,h0) ~a (s1,10) A (1) [Ri)(s2,h0) A B (5, 15) ~p (57,52).
Using the assumption in 4.1b) this can be further transformed into
a, (s1,h) ~a (1, 00) A A b, (s1,57) ~a (s7,h7) A (s7,57)[Ra] (s, 57)

ie.

a;b, (s1,hn) ~o (s7,) A (7, R [Ra) (2, H3).
which completes the proof of the second condition. O

Given abstract data type and its concrete representation, having a simulation be-
tween them when they are regarded as isolated objects is practically useless. Simula-
tion theorem provides conditions under which this simulation can be extended to the
whole language. This is important, as it gives a connection between the different rep-
resentations of the same data type in broader contexts. When concrete representation
simulates the abstract data type, the simulation theorem ensures that every computa-
tion which uses the concrete representation simulates the corresponding computation

which instead uses the abstract data type, respecting the simulation relation R * Id.

Theorem 5 (Simulation theorem). Let module (q,) simulate module (p,n) by a growing
relation R. Then for all commands c and all predicates py, if ¢ is a separation context for precon-

dition po and module (p,n), then we have

{(p,m))[fsim(RxApy, Rx1d)]c{(g, 1))

4.4. Forward simulation and Simulation theorem 89

Proof. We prove the theorem by the induction on the structure of command ¢. When ¢
is a module operation, the theorem follows from the assumption that (¢,) simulates
(p,m). When c is an atomic client operation, the theorem holds because of Lemma 4.
When c is a sequential composition, the induction step goes through because of lemma
5.

Let ¢ = if B then c| else c;. We only need to prove that the second condition of the
forward simulation holds, because our program is a separation context for the abstract
module and a precondition py. But we first need to prove that it is a separation context
for the concrete module and the same precondition, too. Let states (s1,4;) and (s2,/2)
be such that (s1,h1)[R*Ap,](s2,h2) and suppose program c is not a separation context for

the concrete module, i.e.

¢, (52,h2) ~ (g) Wrong V ¢, (s2,h2) ~ (g u) AV

= ('." definition of the if-then-else statement)

([IBlls, = true A (c1, (s2,h2) ~ (g Wrong V ¢, (s2,h2) ~(g.u) aV)) V

([|Bl]s, = false A (c2,(s2,h2) ~ (g,u) Wrong 2, (s2,h2) ~ (got) av))

= ("."induction hypothesis and (s;,A;)[R *d](s2,h2) and laws of classical logic)
([IBlls; = true A (c1,(s1,1) ~(pn) Wrong V ¢, (s1,h1) ~p) av)) V

([IBlls, = false A (c2,(s1,h1) ~(p.q) Wrong V c2,(s1,h1) ~ () aV))

= (. definition of the if-then-else statement)

c, (Sl,hl) ~(pm) wrong V c, (S],h]) ~(pm) av.

This contradicts the assumption that ¢ is a separation context for py and (p,n).
Now we prove the second condition of the forward simulation. Let states (s,4;),

(s2,h2) and (s, h)) be such that (si,/1)[R*Ap,](s2,h2) and

c, (S],h]) 7/_)(17771) wrong A c, (S],h]) 7/_)(17771) av A ¢, (Sz,hz) M (gul) (S/z,h/2>
= (.’ definition of if-then-else statement)
(IBls, =true A c1,(s2,h2) ~ gy (52,15)) V ([[Blls, = false A c2,(s52,h2) ~ (g) (53.53))
= ("."induction hypothesis and (s;,A;)[R *1d](s2,/12))
(a(s,lﬂhll) [|B|]Sl = true A Cla(shhl) ~(p,m) (Sllahll) N (Sllvhll)[R*ld](séahé)) \
(3(sy,70)- [Blls, = false A ca, (s1,71) ~ () (51,77) A (s, 10) [R*1d](s5,15))

<= (" rules of classical logic)

4.4. Forward simulation and Simulation theorem 90

(st). (([Blls, = true A cr, (s1,h1) ~=(pn) (s1,71) A (s7,10)[R+1d](s5, 1)) v
(IBlls, = false A e, (s1,51) () (5}:H0) A (B[Rl (55, 15))
= (. definition of if-then-else statement)

s (S],h]) ~(p.n) (sllah/l) N (sllvhll)[R* Id](s/th/Z)

Let ¢ = while B do c;. In this case we do an inner induction on the length of the
derivation for the while-loop. Suppose the theorem is true for all the derivations of
length n.

For the derivations of length 0 we have that [|B||;, = false, and since (s1, /)[R *1d](s2,h2),
then also [|B]];, = false. In both semantics ~,) and ~, ;) the initial states are un-
changed by the execution, and so the theorem holds in this case.

Let the length of the derivation be n+ 1. To obtain this derivation, we must use the rule

[|B[]s = true ci;while B do cy, (s2,h2) ~ (g) K

while B do C1, (Sz,hz) ~(g.) K

where K is wrong, av or a state (s5,/4,). We apply the similar reasoning as in case of
sequential composition to ci;while B do c¢;. We apply the outer induction hypothesis to
ci and the inner induction hypothesis to while B do ¢ since this is now a derivation of

length n. O

The reader will have noticed that our forward simulation method is tailored to dis-
tinguish between well-behaved programs and faulty ones. This is also reflected in the
Simulation theorem. The theorem guarantees that having a concrete module simulate
the abstract one, then the client program which is executed together with the concrete
module will simulate the same client program when executed with abstract module,
only when the mentioned client program is a separation context. In other words, the
Simulation theorem does not say anything about the programs that are not separation
contexts, and fails without this restriction.

One consequence of the Simulation theorem is that it is sufficient to prove that a
client program is a separation context with respect to the abstract data type and a pre-
condition once and for all; from that fact, it will follow that it is also a separation context

for all legitimate implementations of the abstract data type.

4.5. Soundness of the forward simulation method 91

Corollary 1. Let module (q,u) simulate module (p,n) by a growing relation R and let ¢ be a
client program. For all preconditions po C X, if ¢((p, eta)) is a separation context for (p,n) and

po, then ¢((q, 1)) is a separation context for (q,) and po.

This result, even though it comes out as a corollary is very useful for practical pur-
poses. It relieves us of a burden of checking whether a client program is a separation
context for each possible representation of the abstract data type. We get this for free by

just proving once that it is a separation context for the most abstract representation.

4,5 Soundness of the forward simulation method

The traditional forward simulation method is unsound in presence of the low level
pointer operations, as we have discussed and explained on several occasions. How-
ever, the modified forward simulation method, which considers only non-faulting exe-
cutions and uses only growing relations is a sound method for proving data refinement.
We prove the soundness of the forward simulation method with respect to the defined
notion of data refinement.

We first prove a lemma which we use later in the proof of the soundness of the
forward simulation method. The lemma gives an initial link between data refinement
and forward simulation requiring that, in order to prove that a concrete module data
refines the abstract one, it is necessary and sufficient to have a simulation between the

two modules with respect to the identity relation.

Lemma 6. A module (q,€) data-refines another module (p,n) iff for all complete commands c,

we have that ¢((g,¢€))[fsim(ld,1d)]c{(p,n)).

Proof. We prove this lemma by unrolling fsim(ld,Id). By the definition of fsim, we have

that for all states (s,h)

1. if (¢, (s,h) ~(g,u) Wrong V ¢, (s,h) ~ 4) av), then ¢, (s, 1) ~, ny wrong V ¢, (s, 1) ~ ()

p:n

av, and

2. if (¢, (s,h) 4 (pg) Wrong A ¢, (8,1) #(p) @V A €, (8,h) ~ (g) (s”,1")) then there exists
(s',h") such that
¢, (s,h) ~ (p) (s", WYy A (s", 1) 1] (s 1",

4.5. Soundness of the forward simulation method 92

i.e., for all states (s,h), if ¢, (s,/) /() aV A ¢, (5,h) % (p.q) Wrong, then

(c, (s,h) %*(q,u) av A c,(s,h) %»(qjg) wrong) A

V(s',1). ¢, (8,h) ~(qe) (8 0) = ¢, (s,h) ~ o) (5, 1)

and this is exactly the definition of data refinement.
O

Finally, we state and prove soundness of the forward simulation method with re-

spect to data refinement.

Theorem 6 (Soundness). If a module (g,€) forward-simulates another module (p,m) by a

growing simulation relation R C p x q, then (q,€) data-refines (p,n).

Proof. Suppose that a module (g, €) simulates another module (p,n) by a growing re-
lation R C p x g. We will show that for all complete commands ¢, ¢{(g,€)) [fsim(ld,Id)]
c((p,m)), and then by Lemma 22, module (g, ¢) data-refines (p,n). Let ¢ be an arbitrary

(not complete) program. Then by the Simulation theorem,

c((g,€))[fsim(RId)]e((p,n))-

Also, since (¢, €) simulates (p,n) by R, we have

init(y) [fsim(Id, R Id)init,), and

final() [fsim(R* Id, Id)]final(,).

Then, by Lemma 5

init g u);c{(q, 1t))s final g) [fsim(1d, 1d)init ,)3 ¢((p,)3 final).

The definition of a complete program then yields

ce((g,€))[fsim(ld; Id)jcc((p,m))-

4.6. Examples 93

4.6 Examples

To illustrate the forward simulation method, we thoroughly examine the relationship
between different implementations of a memory manager data type, which has opera-
tions for allocating fresh memory and disposing used memory.

In this example, we assume that the underlying storage model is similar to the RAM
model, and it differs from it in that variables can hold both values and sets of values, i.e.
s : Var — ValUP(Val).

For the abstract version of the memory manager we will consider the”magical malloc
module”. It is magical in that the module does not own any locations at all, producing
them as if out of thin air. (In implementation terms, the thin air is like a call to a system
routine such as sbrk.) Therefore, the resource invariant of the module, p in our formal
setup, is the predicate emp, and so we denote the abstract module by (emp,n), where 1
provides the meaning of the operations. Module environment 1 maps the operations

newy (x) and dispose, (x) to the greatest relations satisfying the following specifications.

newy (x) : {emp} —{x— —}[x], dispose,(x):{x+— —} —{emp}[].

This is the meaning of allocation and disposal that is usually presumed in separation
logic.

On the intermediate level, the intention is to keep locations owned by the module in
a set. The resource invariant of the module is then the value of the set variable, which
we will denote by f. The operations of the intermediate interpretation are mapped by
the environment u to the greatest relations satisfying the following specifications.

new;(x): {f=Y#0} —{(f =Y\ {x}xx— —)}x.f]

{f=0}—{f=0xx— —}[x]
dispose; (x) :{f =Y *x—= =} —{f =Y U{x}}[f]

Set Y is used to keep track of the initial contents of f. Note that it is not altered
because it is not in the modifies set, a set of actual locations owned by the module.
We intend that new;(x) is the greatest relation satisfying both stated specifications. We
assume that if the set of owned locations becomes empty, we call a “system routine”
(like sbrk) to get a new location.

Now we prove the simulation between these two implementations. First, we define

4.6. Examples 94

the simulation relation

Rar = {((Sl,h1>,(S2,h2)) ‘ (S],/’l]) cemp A Sz(f) :dom(hz))}.

Finally, we can state a lemma, which gives a relationship between the abstract and the

concrete implementations.
Lemma 7. The module (f, 1) simulates module (emp,n) with respect to the relation Ru;.

Proof. To prove that one module simulates another, we need to prove for each pair of op-
erations that the concrete operation simulates the corresponding abstract one. Consider
states (s1,h1) and (s2,h2) such that (s1,h1)[Ras*1d](s2,h2).

We first argue that the intermediate alloc simulates the abstract one. Note that
alloc(x) does not produce a faulty state either in the ~>empy Or in ~+ 7, semantics (the
module invariants hold in both states), and so we only need to prove that the second
condition of the forward simulation is satisfied. To do that, suppose that (s5, %) is such
that alloc(x), (s2,h2) ~(f,u) (85,53). Then sj = sa[x + [], where [is the newly allocated lo-
cation. If the value of f in state (s2,/2) is the empty set, then location / in state (s5,4}) is
disjoint from heap h, i.e. hy = hy - [l — —]. This location is not in heap #; either (since

dom(h;) € emp), and so it can be returned by alloc(x) in ~ semantics. The output

emp,1)
state on the abstract level then is (s;[x — [],h; - [— —]).The output states are related by
Rx1d: the module parts are unchanged and the client parts are changed in the same way,
so they remain identical. Similarly, if the value of f is a non-empty set in (s2,%,), then an
element from that set is returned by alloc on the concrete level. Since the abstract mod-
ule state is empty and the abstract and concrete client states are the same, it must be that
the location returned by the concrete alloc is available in the abstract state. Then, the
abstract alloc can return the same location as the concrete one in a way that the output
states remain related by R Id.

Now, we prove that the intermediate dispose simulates the abstract one. Let dispose(x),
(s2,h2) ~(ru) wrong. This can happen only when x holds a dangling pointer, and as x
is a client variable and the concrete and abstract client states are identical, it must be
that dispose(x), (s1,/11) ~*(emp,n) Wrong. Now, suppose that dispose does not output any
faulty states and let (s3,/)) be such that dispose(x), (s2,h2) ~= (s u) (s5,4)). Then, (s, /)

is such that x has value [both in s, and s5 and h, = I, - [l — —]. By the specification of

4.6. Examples 95

7 (dispose(x)), state (s},/45) such that iy = k) - [l — —] is the output state of dispose(x) in

~(pn) S€Mantics, and it is easy to see that (s}, /)[R Id](s5, h5). O

Now, we consider even more concrete implementation of the memory manager
module. It is the concrete implementation defined in the Section 3.4.1 in Table 3.5, which
we will denote by (p, V), where p = 3a. list(¢t,ls). Function v maps the operations of
the module to the greatest relations satisfying the specifications given in Table 3.5. We
examine the relationship between the intermediate and the concrete implementations

because it involves a more subtle simulation relation. The simulation relation is given

by

Ric = {((s1,h1),(s2,h2)) | s1(f) =dom(hy) A (s2,h2) € list(ex,ls) A s1(f) = set(a)}.
Here, set(a) denotes a set which consists of the individual elements of the sequence c.
Lemma 8. The module (list(a,ls),v) simulates module (f, i) with respect to the relation Rjc.

Proof. Again, we prove for each pair of operations, that the concrete operation simulates
the corresponding abstract one. Let states (s1,41) and (s2,h,) be such that (si,/)[Rc *
Id](s2,h2).

We first consider the operation alloc. Neither concrete nor abstract interpretation
of alloc(x) output a faulty state when executed in (s2,%) and (s1,h;), respectively, be-
cause in each of the states the corresponding module invariant holds and the opera-
tions do not require any additional resources to run safely. Let (s5,45) be such that
alloc(x), (s2,h2) ~(p,v) (53, #5) and let x — [in state (s5,h)), where [is either in the free list
(i.e. in the sequence «) in state (s2,/42) or it is not in the current state at all. If / is in the
free list, then s}, = s;[x+— [] and) = hy[ls — list a'], where ot =1- o’ (Is+— list oe denotes the
fact that the free list contains locations given by sequence). Since (s1,A1) [Ric *1d](s2,5h2),
location [is also in the free set in state (s1,4;), and is available for allocation. Let (s}, %))
be a state such that s} = si[x+ /] and (h] = h1[Y — Y \ {{}]. Then, it can be easily seen that
alloc(x), (s1,h1) ~ (7 (s7,/y) and (s}, 7)) [Ric *1d](s5, 15). If, on the other hand, [is not in
state (s2,h,), then i, = hy -1 — —. Because (s;,h) is related to (s2,/42) by R Id, location /
is not in the state (s1,/;) either, and so 4| = h; -1 — —. Then again (s},4}) is the output

state of alloc(x), according to u, and it is also related to (s},/5) by Ry *Id.

4.7. Discussion 96

Finally, we consider the operation dispose(). If variable x points to a location which
is not in the client part of the state (s,/,) then it is not in the client part of the state
(s1,h1) either, and so the execution of dispose(x) in both states (s1,41) and (s2,h2) (in
corresponding semantics) leads to a faulty state. Suppose now that dispose(x) does not
produce a faulty state and state (s, /) is such that dispose(x), (s2,/2) ~(p,v) (s5,h5). Let
client variable x point to a location / (i.e. x — [) and let free list hold sequence « in state
(s2,h2). Then s, = s, and I, = hy|ls — list o], where @’ =[- . Then state (s;,h[Y —
Y U{l}] is the output state of dispose(x) according to u, and it is such that (s}, %})[Rc *
d] (s5,h5). O

We have examined the relationship between three different implementations of the
memory manager module. We have chosen the memory manager because, apart from
being a canonical example, it is often a stumbling point for the theories that deal with
abstraction. Firstly, it deals with pointers and secondly, it illustrates the concept of own-
ership transfer between the module and the client program. The latter usually presents
problems which cannot be easily solved by imposing certain language mechanisms,
such as types, and if they can be solved, the solutions tend to be complex and unnatu-
ral.

The relationship between the three implementations of the memory manager mod-
ule shows a hierarchy and so we have named them accordingly. Our results, the sound-
ness and simulation theorems, ensure that this hierarchy is preserved in terms of data
refinement and that each more abstract implementation of the memory manager can be

replaced by any more concrete implementation in all well-behaving computations.

4.7 Discussion

Some of the work in chapters 3 and 4 is joint work with Noah Torp-Smith and Peter
O’Hearn and was presented at the workshop SPACE [51] and at the conference FSTTCS
[52]. However, material presented in the thesis somewhat improves on that work.

In the paper [52], client primitive operations are required to be deterministic, which
is forced by setting them to be functions. One effect of this is that, when frame con-

ditions are imposed, the client operations are unable to do any allocation. Allocation

4.7. Discussion 97

could be viewed only as a module operation. Technically, the determinism restriction
was necessary for simple simulation theorem to be true. Our operations were assumed
to be local actions, that is, they had to satisfy well known locality properties: safety
monotonicity and frame property. It turned out that, even though these two properties
are fundamental in work with separation logic, they are not sufficient, at least not in the
area of application of the ideas from separation logic to data refinement.

In the thesis, we introduce a new property, called content independence, which says
that if a command has a safe, non-faulting execution starting from some state, then it
does not care about the contents of any extra memory. The only thing that matters is
that the command “knows” of this extra part, but not its contents. All the standard
operations including allocation and deallocation satisfy this property. Now, allocation
and deallocation are the part of the language and thanks to content independence the
Simulation theorem holds for a language that contains these two client operations. Of
course, one could implement his own memory manager as a module.

Another interesting point is that while in work presented in [52] the client program
is limited to the usage of only one module, content independence also opens up a way
to handling multiple modules. We do not give a solution to that in the thesis, but leave
it for future work, as there are other subtleties.

While in our previous work we only considered lifting of simulation, i.e. Simula-
tion theorem, in the thesis we also prove soundness results for the forward simulation

method with respect to data refinement.

98

5

Proving Separation Contexts

So far, we have introduced separation contexts, a class of client programs which, in-
teracting with a certain module, access the internals of the module only through the
provided module operations and do not interfere with the module otherwise. Separa-
tion contexts are an important concept when considering data abstraction in presence of
pointers, in a modular way. The Simulation theorem ensures that a relationship between
different implementations of an abstract data type can be lifted to separation contexts. If
we do not put any restrictions on the client programs, that is if we allow non-separation
contexts, the Simulation theorem fails. This fact stresses the importance of separation
contexts.

But, separation contexts were introduced semantically, and no method was given to
check or prove them. In this chapter we show that it is enough to prove that a program
satisfies a certain specification in separation logic to make sure that we are dealing with
a separation context. Moreover, now that there exist tools based on separation logic,
such as Smallfoot [13, 14, 15], this implies that some amount of automatic checking of

separation contexts can be done. We illustrate this latter point by example.

5.1 More about Separation Logic

In Chapter 3 we have introduced the assertion language of separation logic. This chapter
studies the relationship between separation contexts and logic, that is, how can one

prove that a certain program is a separation context in logic. We will illustrate this

5.1. More about Separation Logic 99

point with several examples, which require acquaintance with some axioms and rules
of separation logic [72].

We first introduce the tight interpretation [60] of triples.

Definition 15 (Tight interpretation). For predicates p and g and a command ¢, we say that a

specification {p}c{q} holds if and only if for all states (s, h) which satisfy p,
1. =(s,h)[c]wrong, and
2. if (s,h)[c|(s',}), then state (s, 1) satisfies q.

The tight interpretation of triples ensures that the command does not touch any
storage that is not described by the precondition. The command faults as soon as it
dereferences memory beyond what is guaranteed to exist in the current state by the pre-
condition. However, if the command touches only what is provided by the precondition
and it produces an output state, then the output state needs to satisfy the postcondition.
Tight interpretation of triples is assumed in all work on Separation logic and plays an
important role in the proof of the soundness of the frame rule, to be introduced bellow.

We now introduce the so called “small axioms” [60].

{E = —}{E):= F{E — F}

{x+— —}dispose(x){emp}

{emp}x:=alloc(){x — —}
{x=n}x:=E{x=E[n/x|}

{E—n A x=m}x:=[E|{x=n A Elm/x] — n}

Small axioms are used to reason locally. Namely, each of these axioms specifies
the corresponding command in terms of storage necessary for it to run faultlessly. For
instance, the first axiom says that in order to assign to a memory location, the location
has to be allocated, i.e., it exists in the current heap. The second axiom says that after
disposing the only location in the heap there is no starage left. After allocation of one
location, the location becomes available in the current heap. In order to read the value
saved on a certain memory location, the location has to exist in the current heap.

Small axioms give us the basis for reasoning about programs. Frame rule [60] then

gives means to moving from local to global reasoning.

5.2. Connection Between Separation Logic and Separation Contexts 100

Frame rule
{Prc{o}
{P+R}C{Q*R}

Modifies(C) NFree(R) = {}

Here, the idea is that a precondition P also specifies the storage sufficient for the safe
execution of a program C, which if terminates ends up in a state satisfying Q. Then if
we run program C in a state that has additional memory, beyond that described by P,
then that extra memory will remain unchanged, under the condition that the variables
changed by the program C are not free in predicate describing that extra memory. De-
tailed proof of the soundness of the frame rule is given in Yang’s thesis [80]. The proof
is based on the locality properties: safety monotonicity and frame property introduced

in Section 3.3.4 and the tight interpretation of triples.

5.2 Connection Between Separation Logic and Separation Contexts

The main result of this chapter is a theorem which gives conditions under which sepa-
ration contexts can be proved in logic. We first need to prove few smaller results, which

are then used in the proof of the main theorem.

Let p be a precise predicate and let r be a general local action such that

1. r never generates av with respect to p, i.e. for all states (s,4), such that h = hg -,
where (s,h,) € p

(s,ho)[r]lwrong = (s,h)[r]wrong
2. rpreserves p: for all (s,h) and (s, 1)
(s,h) € pxtrue A = (s,h)[rlwrong A (s,h)[r](s',h') = (s', ') € px*true.

Here, we denote by (p,n) a module with a resource invariant p and operations defined
by 1. Operation r is any action satisfying the above conditions. It may be defined by 7,
as the above conditions coincide with the definition of a module. In that case, there is

some r such that n(r) =r.

5.2. Connection Between Separation Logic and Separation Contexts 101

Definition 16 (Hiding). The hiding of r by p, denoted hide(r, p), is an action defined as follows:

(s,h)[hide(r, p)lwrong <= 3h,. (s,hy) € p A hy#th A (s,h-hp)[r]wrong
(s,h)hide(r, p)](s", 1) <= 3hy,h,. (s,hy), (5", 1) € p A hp#h A B #H A
(s,hp - H)[F](s" 1, - 1.

The definition specifies an action hide(r, p) which “hides” the p-satisfying piece of the
input and output states, where p is a precise predicate. Action hide(r, p) is defined just
when original action r requires that parts of its input and output states satisfy predicate
p. Also, hide(r,p) goes wrong on a state, whenever original action r generates wrong
starting from the same state extended by some disjoint state that satisfies p.

In the proofs of the lemmas that follow and the main theorem, we use the results
from the previous chapter — the simulation method and the lifting theorem. These re-
quire that all actions that are involved need to be local actions, i.e. actions which satisfy
safety monotonicity, frame property and general content independence. The following

lemma makes sure that this is the case for action hide(r, p).
Lemma 9. Action hide(r, p) is a general local action.

Proof. We need to prove that hide(r, p) satisfies all three properties of the general local
actions: safety monotonicity, frame property and general content independence.

For safety monotonicity, consider s and heaps hy and &; such that ho#h; and (s, ho -
hi)[hide(r, p)lwrong. Then, by the definition of hide(r, p) there is a heap £, satisfying the
following conditions:

(ho-h1)#h, N (s,ho-hy-hy)[rlwrong.

Since r satisfies safety monotonicity, the second conjunct implies that (s, i - 4,)[r]wrong.
This faulting computation of r from (s, kg - h,) proves the required (s, ko) [hide(r, p)|wrong.

For the frame property, suppose that s,s" and hg, k1,4’ are such that
(s,ho-hy)[hide(r, p)](s', ') A = (s, ho)[hide(r, p)]wrong.

If we unroll the definition of hide(r, p), from the first condition we get heaps),), that

satisfy predicate p such that

/’lp#(ho~h1) N h;,#h/ A (s,hp-ho-hl)[r](s',h;,~h’),

5.2. Connection Between Separation Logic and Separation Contexts 102

and from the second condition we have that
—(s,ho - hp)[r]wrong.
We now apply the frame property for r, and obtain a heap m’ such that
m'#hy N B K, =m'-hy N (s,ho-hy)[r](s',m').

We now show that the heap m’ can be split into /), and some heap /. Note that since /),
satisfies predicate p, this splitting strategy of m’ gives (s, ho)[hide(r, p)|(s’, i) and hfy - hy =
', as required. The main strategy for obtaining the desired splitting of m’ is to use the
assumptions about r and p: r preserves p, r never generates av, and p is precise. Since
state (s,ho - h)) satisfies p x true and from this state r generates neither av nor wrong, the
final state (s',m") of execution (s,hg - hp)[r](s’,m’) also satisfies p * true. Thus, there is a

splitting m;, -m(, of m’ such that (s’ ,m;,) € p.Sincem’ -hy =h - h;,, we have
m;,~m6-h1 :h’-h;,.

Predicate p is precise, so p-satisfying heaps m, and k), must be the same. This shows
that m), - my, is the required splitting of .
To prove that general content independence holds for hide(r, p), assume that s,s" and

h,l , hgy are such that
hithy A h'#hog A —(s,h)[hide(r, p)lwrong A (s,h-ho)[hide(r, p)](s', A" - ho).
Then, by the definition of hide(r, p), there exist heaps £, 4, that satisfy p such that
(h-ho)#hy, N (H'-ho)#h), A (s,h-ho-hp)[r](s', k' -ho-h,) A =(s,h-hp)[rlwrong.

For all h; such that for all states m, if m#hy then mi#h;, by the general content inde-
pendence for r, we have that (s, -hy - h,)[r](s', 1 - hy - k), which is equivalent to (s, /-
hy)[hide(r, p)](s’,h - hy) by the definition of hide(r, p). Thus, the general content indepen-

dence property also holds for hide(r, p). O

Action hide(r, p) is defined in terms of action r. The connection between the two ac-
tions is also reflected in the relationship between the specifications of the two actions,
i.e. the Hoare-triples which they satisfy. In accordance with its definition, the specifi-
cation of hide(r, p) hides the p-part in the pre and post conditions which appear in the

specification of r.

5.2. Connection Between Separation Logic and Separation Contexts 103

Lemma 10. For all predicates q,q' if {q* p}r{q' * p}, then {q}hide(r,p){q'}.

Proof. Let (s,h) be a state satisfying the precondition ¢. First, we show that hide(r, p)
does not fault from (s,4). To obtain a contradiction, suppose (s,)[hide(r, p)|wrong. Then,
there exists a heap &, satisfying p such that h,#h and (s, - h,)[r|wrong. But & - h, satisfies
g*p, so (s,h-hp)[rlwrong contradicts the assumption that {¢g * p}r{q’ * p} holds. Next,
we prove that all the outputs of hide(r, p) from (s, k) satisfy ¢’. Let (s, ") be an arbitrary
state such that (s,)[hide(r, p)](s',’). Then, by the definition of hide(r, p), there exist i, k),

satisfying p such that
lithy, A\ WKL A (s.h-hp)[F)(s' B - 1)

Since (s,h-h,) € p*q and the triple {g * p}r{q’ * p} holds, state (s',/"-h},) has to be in
q'* p. This implies that (s, #") must satisfy ¢/, because /), is the unique subheap of " -),

that satisfies p. O

In Chapter 3 we have introduced the semantics ~(,, ;) which is parameterized by a

X))
module (p,n). It differs from the standard semantics ~», only in that the parameterized
one can detect an access violation — an attempt of the client program to dereference
storage owned by the module. The resources of the module are described by a precise
predicate and that makes it possible to determine which part of the state belongs to
the client and which to the module. The standard semantics has no knowledge of this
partitioning of the state and module’s resources, and hence does not produce an error
when something that belongs to the module is read from or written to. However, if
we consider a module with no resources, i.e. a module with resources which can be

described by a precise predicate emp, then a semantics parameterized by such module

is identical to the standard semantics. The following lemma states that more formally.

Lemma 11. For all n, ~~y is the same as ~(emp n)-

Proof. We prove the lemma by induction on the structure of c. When c is a module
operation, since in both semantics the execution of ¢ is determined by its definition

given by 17, it is easy to see that in this case ~», and ~~ are the same. Similarly,

emp,n)

when c is a basic command g, the cases

1. a,(s,h) ~q (s',1') <= a,(s,h) ~) (s,4"), and

emp,n

5.2. Connection Between Separation Logic and Separation Contexts 104

2. a,(s,h) ~y wrong <= a,(s,h) ~(empn) Wrong

are straightforward. The only case that differs these two semantics is when a command

produces an av. Suppose now that (s,) is such state that a, (s,h) ~() av (note that

emp,n

there is no rule in ~-;, for this). Then, by the corresponding rule, we have that
h = hemp-hy A —(s,h)[alwrong A (s,hy)[a]wrong
which is equivalent to
h=hy N —=(s,h)[a]wrong A (s,h)[a]wrong

and this is equivalent to contradiction. Thus, this is an impossible case, and hence, the
semantics ~~y for the basic client operations is equivalent to the semantics ~ (emp,5)-
When ¢ is a composition of ¢; and ¢;, by the induction hypothesis, the semantics ~,

and ~ will yield the same executions for c¢; and ¢;, and for example, if we apply

emP,TI)

the rule
C],(S,h) ~ (S//7/’l”) CQ,(SH,h”) ~ (S/,h/)

C15C2, (S,h) ~ (S/,]’l/)

in both semantics, we will get the same results. The reasoning is similar for the remain-
ing two rules, bearing in mind that the rule for av in ~+; is impossible.

The remaining cases are proved similarly, using the induction hypothesis. O

Before we go on and prove the main result of this chapter we need to introduce
some additional notation. To specify that a certain module is defined and assumed to
exist in the environment, we use environment specification. An environment specifica-
tion I' : MOp — ¢, Pred x Pred assigns a specification to each module operation. We say
that a module environment 7 satisfies an environment specification I', denoted n =T,
just when meaning of each of the module operations in the environment 7 satisfies the

intended specification given by I'. More formally,

Definition 17. A module environment 1 satisfies an environment specification I, denoted by
n =T, if and only if
vf € MOp.¥(p,q) =T(f)- {pin(f)iq}-

We express the fact that a client program is executed in an environment in which a

certain module is defined, by using sequents. A sequent I' - {p}c{q} says that if every

5.2. Connection Between Separation Logic and Separation Contexts 105

specification in I is true of some module environment, then so is a specification of a

client program ¢, {p}c{q}. More formally,

Definition 18. A program c satisfies a specification {p} —{q} in an environment I, denoted by
' {p}ciq}, if and only if
vn. (n == {piciq}).

We define an expansion of an environment specification I by a predicate py.

Definition 19. An expansion of an environment specification I' by a predicate py is the envi-

ronment specification I" = T« pg such that the following holds:

dom(I') =dom(I") A Vf € MOp. ¥(p,q) =T(f). I'(f) = (p* po,q* po)-

The first conjunct ensures that environments I" and I talk about the modules with
the same set of operations. The second conjunct defines I to be an environment in
which each specification given by I'" is “expanded” by tacking on a predicate py to the
pre and post conditions. One can think of I' as of an environment which hides the
resources described by a predicate py, which are explicit in the environment I".

Let 1o be a module environment defined by:

Vf € MOp.no(f) = hide(n(f),p)-

Actions r and hide(r, p) have a special relationship. This is also reflected in the fact
that next lemma proves. Namely, there can always be found a growing relation R,
by which action r simulates action hide(r, p). In fact, module (p,n) simulates module

(emp,mno) that hides its resources.

Lemma 12. Module (p,n) simulates module (emp, o), i.e. for all actions r defined by n, r

simulates hide(r, p) by some growing relation R', i.e.

r((p,m))[fsim(R A)Jhide(r, p)((emp, no))

Proof. Let R be a relation between states defined by

(s,h)[R](s,) <= 3h, € p. (h#h, A h-h, =)

Recall that r(c) denotes the fact that action r is evaluated in semantics a.

5.2. Connection Between Separation Logic and Separation Contexts 106

It is easy to see that the relation R is growing. Let (s,h) and (s,/’) be states related by

R xA. Then, by the definition of %, A and R, there exist heaps ho, s, such that
hot#thy A (h() ~h1)#hp VAN (ho 'hl) =hA (ho - 'hp) =

Suppose that

r (S,h,) ~(pn) Wrong Vo, (S7h/) ~(pm) AV

Since r does not generate av, the first disjunct, r, (s, /') ~(p) Wrong, must hold. This
is possible only when (s,/’)[r]wrong. Then, by the definition of hide(r, p), we have that
(s,ho - h1)[hide(r, p)]wrong, and hence hide(r, p), (s,/) ~*(emp,n,) Wrong. Thus, the first con-

dition of the simulation holds. For the second condition, suppose that

hide(r,p), (S7h) %_)(emp,no) wrong A hide(}’,p), (Sah) %”(emp,no) av.

Consider a final state (s;,m;) of r from the initial state (s, /'), i.e. 7, (s,") ~,) (s1,m1). By
what we have just shown, neither 7, (s, ') ~(,,) wrong nor 7, (s, ') ~+(,, n) av is a possible
computation. Since r preserves p and (s,4’) is in p x true, this safety of r at (s,4’) implies
that the final state (s;,m) is also in p xtrue. That is, there is a splitting m,, - my of m; such
that m, € p. We will show that the state mj is required state in the second condition.

Since (s,ho - hy - hy)[r](s1,mo-mp) and h,,m, satisfy p, we have that
(s,ho - hy)[hide(r, p)](s1,mo),
and by the definitions of *, A and R,
(s1,mo)[R*A](s1,mo - mp).
These two properties of mg show that my is the required state. O

Finally, we state the main result, the theorem which gives a connection between the

separation contexts and the logic.

Theorem 7. Suppose I' - {p}c{q}. For all modules (po,n), if n |=T * po, then we have that

V(s,h) € p* po. (¢,(s,h) /> (pom) AV A ¢, (8,h) (o) Wrong).

5.2. Connection Between Separation Logic and Separation Contexts 107

The theorem says that if a program c satisfies a triple {p} — {¢} whenever the spec-
ifications given by the environment I" are true, and given a module which satisfies the
environment I" expanded by the predicate which describes its resource invariant, then
program c is a separation context for that module and a precondition p. In other words,
to prove that a client program is a separation context for a module and a precondition, it
is enough to prove that it meets a corresponding specification assuming an environment

in which the module is defined.

Proof. Let ng be a module environment defined by:

Vf € MOp.no(f) = hide(n(f), o).

Let R = {((s,]]),(s,hp,)) | (5,hp,) € Po} be a growing simulation relation. By lemma
12, module (po,n) simulates module (emp, 19) by R. By the corollary 1 of the simulation

theorem, we have that if the (abstract) execution of ¢ in semantics ~ does not

emPaTIO)
produce either av or wrong in some state, then starting from the related state, the (con-

crete) execution of ¢ in semantics ~~(,,) does not either. We will use this fact to prove

po,M
the theorem. Let (s,/) be a state in p * pg. Heap & can be split uniquely into some heaps
hy, - hy,, where h, € p and h,, € po. The substate (s,h),) is related to the state (s,#) itself,

by the relation R * A. Thus, by the simulation theorem, to show that ¢ produces neither

wrong nor av in ~»(,, »y semantics starting from state (s, /), we only need to prove that

c, (Sahp) %(emp,no) wrong A c, (sahp) %(emp,no) av.

By lemma 11, the above is equivalent to

¢, (8,hp) Fong wrong A ¢, (s,hp,) /o, av.

Since ¢ never generates av in semantics ~+y,, we only need to prove the first conjunct.
We prove it using the assumption of the theorem and lemma 10. Since 1 =TI "* p, by

lemma 10,

no =T
This implies that the triple {p}c{q} holds, because I" |= {p}c{q} by the assumption. The
truth of the triple ensures the required conjunct, which says that ¢ does not fault from
(s,hp) in the semantics ~-,, because the initial state (s,/,,) satisfies the precondition p of

the triple. O

5.3. Examples 108

5.3 Examples

In Chapter 3 we introduced the concept of a separation context and illustrated it with
several examples in Section 3.4.1. Here, we revisit those examples and give a proof in
Separation logic or a counter example, for each of these examples.

We first consider a program

dispose(x)

and prove that it satisfies a specification {emp} — {emp} in an environment in which a
memory manager with the free list resource environment is defined. By the frame rule
it follows that for any predicate p, the program also satisfies specification {p} — {p}. In
fact, from the frame rule follows that the program satisfies the most general specification
{true} — {true}. Theorem 7 then ensures that program prog, is a separation context for
memory manager module and the precondition of the specification, which is in this case
true and means for any precondition.

We first give a proof of the program.

prog: :
{emp}
new (x);
{x——}
[x] := 47;
{x 47}
dispose(x)
{emp}

We assumed a specification environment
I' = {emp} new(x) {x+— —}[x], {x— —} dispose(x) {emp}

and a module environment 11 which maps new() and dispose() to the greatest relations

satisfying

5.3. Examples 109

new(x) : {list(a- a,ls)} — {list(ct,Is) xx — a}[x,ls]
{list(g,ls)} — {list(g,ls) *x — —}[x,ls]

dispose(x) : {list(e,ls) xx — a} —{list(a- a,ls) }[ls].

If we denote by pg the predicate Ja. list (a, ls), then the specifications can be rewritten

as

new(x) : {po+xemp} — {po *x+— a}|x,ls]
{po+emp)} —{po*x+— —}[x,ls]

dispose(x) : {po*x > a}—{po*emp)}ls].

This shows that the module environment 7 satisfies the specification environment
I'xlist (a,ls) as required by Theorem 7. We will also use this fact in the examples that
follow.

Lets consider now the following program

progs .
dispose(x);

[x] :=47;

and its specification {x — —} — {true}. We argue that this specification is incorrect, and

in fact, no specification with precondition x — — is correct.

progs .
{x——}
dispose(x);
{emp}

] := 47;

M

The command [x] := 47 requires variable x to point to an allocated memory location in
order not to fault. Since the precondition is emp, this is not the case and the command
faults, meaning that the given specification cannot be proved. Actually, the specification
is incorrect. By the similar reasoning we show that the program faults also for the pre-
condition emp. In fact, there is no precondition for which this program does not fault,

so it is never a separation context.

5.4. Smallfoot and separation contexts 110

Finally, we consider program

progs
[81] :=42.
The proof that it satisfies the specification {81 — —} — {81 — 42} is straightforward,
and hence the program is a separation context for the memory manager module and
precondition {81 — —}. However, by the reasoning similar as for prog, it follows that
starting from a state satisfying precondition emp, the program progs always faults, and

hence it is not a separation context for that precondition.

5.4 Smallfoot and separation contexts

Smallfoot [22] is an automatic verification tool based on Separation logic. It is designed
to check certain separation logic specifications of sequential and concurrent programs
that manipulate recursive dynamically-allocated linked data structures.

As we have already mentioned, Smallfoot can be used to determine whether a given
client program is a separation context or not. In this chapter we have presented a result
which ensures that once we prove a certain specification of a program in an environ-
ment in which a module is assumed, then the program is a separation context. We use
Smallfoot to automatically prove that a program meets given specification. We stress
here that it is not us who developed Smallfoot nor it is a contribution of this thesis in
any way, but because we find Smallfoot practically useful for our theory, we illustrate
its usage here.

First, we give a Smallfoot implementation of a stack, given in Table 5.1. The stack
is implemented by a linked list, with usual operations push() and pop() and operation
bad() which returns to a client a pointer to the top of the stack. The parameters of
the push() and pop() operations are values, while the parameter of the operation bad()
is a reference. We assume that a list has two fields, hd for keeping data, in this case
an integer value, and tl for keeping the pointer to the next node in the list. Stack is
initially set to the empty stack, that is, pointer top is initially NULL. Operation push
allocates a new node, saves into it a value kept in the parameter and links the node to
the list. Operation pop returns to the client data kept in the top element of the stack

and deallocates the node that kept that value. This is all done in an environment where

5.4. Smallfoot and separation contexts 111

stack with pointer top to its top is assumed to be a “protected” resource, which together
with its operations forms a module and can be used by other programs. We achieve
this by declaring a resource called stack and enclosing the body of each of the module
operations, in our case bodies of operations pop(), push() and bad(), with the conditional
critical region (with statement). Leaving out the pre and post conditions of the module
operations means that we do not assume any extra memory apart from the resource
invariant which must be preserved by the operations.

To consider a client of the module, one need to write a code of the client in the
function main(). This code contains calls to the operations of the module. Then, the
verification proceeds by verifying all the operations and checking the validity of the
composition that consists of the operation init() and program given in main().

We now consider one client of the stack module. We add the following code to the

file stack_sum_module.sf.

main()emp]{

local x,sum,y;
push(5); push(42); push(17);
sum = 0;
pop(x);
while(x! = NULL){
sum = sum 4+ x;
pop(x); }
push(sum);
}Hlemp]

The program main() first pushes three elements onto the stack which is initially
empty and then it sums all the values kept in the stack by popping the values from
the stack. Finally, the sum is put back onto the stack. The program uses only operations
push() and pop() to handle the stack. When we run Smallfoot on the file stack_sum_

module.sf, we get the following output.

ivanam: /Smallfoot/smallfoot ivanam$ bin/smallfoot-0.1_Darwin_8.3.0_

5.4. Smallfoot and separation contexts 112

powerpc EXAMPLES/stack_sum.module.sf
Function pop
Function push
Function bad
Function main
Function init
Function compose_init main

Valid

This tells us that the all the module operations are correct, they respect the resource
invariant. Program main() is also correct, it properly uses the module. According to our
result, program main() is a separation context for the stack module, given in Table 5.1
and a precondition emp. Moreover, using the frame rule, we can conclude that it is a
separation context for stack module and any precondition r which describes storage dis-
joint from the resource invariant of the stack module and in which variables x and sum
do not figure. Namely, Smallfoot would validate program main() for any precondition
that describes some storage disjoint from the resource invariant of the stack module.

Let us now consider the following code and add it to the file stack_sum_module.sf

instead of the code for clientl.

main () emp]{

local x,sum, z;

push(5); push(42);push(17);

sum = 0;

bad(z;);

if (z! =NULL)
X =z — hd;

while (x! = NULL){
sum = sum +Xx;
pop(x); }

push(sum);

}emp]

5.4. Smallfoot and separation contexts 113

The program main() is similar to the previous program, except that it takes the first
element off the stack using the bad(x). The top of the stack is placed into the variable x
and the client then dereferences x, i.e. the top of the stack, to fetch the data kept in it.

This is what Smallfoot outputs.

ivanam: /Smallfoot/smallfoot ivanam$ bin/smallfoot-0.1 Darwin 8.3.0_
powerpc EXAMPLES/stack_sum.module.sf

Function pop

Function push

Function bad

Function main File "EXAMPLES/stack_sum.module.sf", line 47,
characters 26-36: ERROR: lookup z->hd in 0!=z

Function init

Function compose_init_main

NOT Valid

Smallfoot validates all the operations of the module again, but this time there is a
problem with the client program. Namely, Smallfoot cannot validate the dereferencing
of the variable z, which points to the top of the stack. The program is clearly not a
separation context, as it tampers with the memory that “belongs” to the module.

These examples with Smallfoot have been given just to underline the main point of
this chapter: Theorem 7, which establishes a connection between separation contexts
and logic, furnishes us with a method whereby we can use proof tools to, in some cases,

automatically check for separation contexts.

5.4. Smallfoot and separation contexts 114

Table 5.1: Contents of fil m le.sf
tl, hd;
init() {
top = NULL;
¥
resource stack (top) [list(top)]
pop(x){
local t;
with stack when (true){
t = top;
if (top!'= NULL){
X =top — hd;

top = top — tl;

dispose t;
}
else
x = NULL;
3
push(y){
local t;

with stack when (true){
t = new();
t—hd=y;
t — tl = top;
top=t;
1
bad(x;){
with stack when (true){
x = top;

H

115

6

Power Simulation

Proving data refinement in a low-level programming setting is particularly difficult.
Swinging pointers between a module and a client program results in existence of cross-
boundary pointers and dereferencing cross-boundary pointers results in exposure of
the internal state of a module; that leads to broken abstraction. This can be worked
out using a forward simulation method which is modified so that it only cares about
programs which do not dereference cross-boundary pointers. However, the forward
simulation method cannot deal with space optimizing refinements. This can be seen in
our restriction to growing relations (Definition 14).

The power simulation method that we introduce in this chapter is a general and
powerful method for proving data refinement. It enables proving space optimizing
refinements by disallowing mechanisms by which the space optimizations can be de-
tected. For instance, the equivalence of the doubly-linked and XOR-linked list represen-
tations of doubly-ended queues can be proved using power-simulation method, while

forward simulation method cannot deal with this problem.

6.1 Motivation

So far, we have built a theory which gives us a sound forward simulation method for
proving data refinement, even with memory manipulating constructs in the program-
ming language. Tackling cross-boundary pointers, pointers from a client to the internal

state of a module, became easy once we defined our method to ensure simulation only

6.1. Motivation 116

for non-faulting programes, i.e. separation contexts. Ownership transfer and similar im-
portant concepts in low-level programming, raised by the existence of cross-boundary
pointers, are no longer a problem. Still, our forward simulation method falls short of
handling space-optimizing refinements. This prevents us from proving, for instance,
the equivalence of the doubly-linked list and XOR-linked list representations of the
doubly ended queues which by intuition, should be the same. The problem arises
when we want to prove that the XOR-linked list representation data refines and is a
space-optimization of the doubly-linked list one. There are client programs, even sep-
aration contexts, which can detect the difference between the two representations and
that breaks data refinement. To disallow such things, in our forward simulation method
we restricted refinement relations only to the “growing” ones. In practice, that prevents
us from even considering simulation for space-optimizing refinements.

We now examine what happens if we remove the restriction that our refinement re-
lations have to be growing, and in that way allow reasoning about space-optimizing
refinements. We illustrate the problem with a simple example, rather than with some-
what complex doubly-linked and XOR-linked lists.

We assume that program states consist only of heaps; this does not affect the point
that we want to demonstrate here. Suppose that the module interface MOp is {init, final, f}.

Let (p,n), (g, €) be semantic modules for MOp defined as follows:

(p,m): hep 4 h=[1-2]
hn(nit)y & 1¢dom(h) A v="h-[1-2]
My S v=h
h[n(final)]v i (1 & h) then (v = wrong) else (Fi€lnt.v-[1—i] = h)

(g.8): heq & n=]
he(ini)y & 1¢dom(h) A v=h
he(H)ly & v=h
hle(final)]v & v=n
Module (g, €) does not data-refine (p,n). To see the reason, consider a complete com-
mand that consists of a single atomic operation cons(2,1), i.e. ¢ = init;cons(2,1);final.

Command cons(2,1) allocates one new location initialized to 0 and assigns its address

6.1. Motivation 117

to location 2; in case that location 2 is not allocated initially, cons(2, 1) generates wrong.
cons(2,1),h~>v Hifog dom(h) then v=wrong else In.v=h[2—n] - [n—0]

When the complete command ¢ is run with module (g, €) from [2-0], it can output
[1—>0,2—>1}

C, [2—>O] W(qﬁ) [1—>0,2—>1]

However, if the command is executed with the other module (p,n) from [2—0], it cannot
produce the same output state; all of its output states have the form of [2—n’,n'-0] for
some n’ different from 1 and 2, because the initialization 7 (init) takes location 1 before
cons(2,1). Since the command with (p,n) does not generate an error from the input
[2—0], this failure of producing the same output shows that module (¢, €) does not data-
refine (p,n).

However, if we used forward simulation to prove this, the abstraction would be

broken as this example suggests. It is because, when R is a relation defined by
HRIK & n=[1-2) A W =]

module (g, €) forward-simulates (p,n) by R.

We develop a method for proving data refinement that handles both cross-boundary
pointers and space-optimizing refinements at the same time, a power simulation method.
A client program can detect the difference between the abstract module and its op-
timization by identifying which memory locations are allocated in the abstract mod-
ule’s internal state and not in the concrete module’s one. This can be done using the
allocation-status testing mechanism, explained in the introduction of the thesis. The key
idea of a power simulation method is to allow the concrete module to space optimize
only nondeterministically allocated memory in the abstract module. That makes it im-
possible for a client program to determine which locations are used, i.e. to successfully
perform allocation status testing.

Power-simulation method works by ensuring relation preservation between a state
and a set of states, see Figure 6.1. It is exactly this state set in the abstract program
execution that enables us express the nondeterminism in memory allocation. Recall

that forward simulation involves relations between pairs of states, unlike here.

6.2. Background 118

Figure 6.1: Power simulation

6.2 Background

In this section we introduce the storage model which we will assume in the develop-
ment of the power simulation method. In the first part of the thesis, in work with
forward simulation, we assumed the underlying storage model was the most general
one, a partial commutative monoid with injective operation. However, our work on
power simulations is specific to a more concrete storage model, as it is addressing the
problems that arise in this model. We also revisit the notion of a local action and add a
new requirements for the actions (commands) to be considered in the power simulation

method.

6.2.1 Storage Model and Finite Local Action

We take RAM for the storage model, which is an instance of the general (partial com-

mutative monoid) model.

Loc = {1,2,...} Int = {...,—-2,—-1,0,1,...} State = Loc —¢ Int

For simplicity, and without any loss of generality, we assume that state has only the
heap component, i.e. that there is no stack. However, stack can be viewed as a preallo-
cated part of the heap. Just as before, a state i € State in the model is a finite mapping
from locations to integer values; the domain of / denotes the set of currently allocated
memory locations, and the “action” of i the contents of those allocated locations. The
addresses are positive natural numbers, and so, they can be manipulated by arithmetic
operations.

Recall that (H,-,[]), with - defined as in Chapter 3 and [| being empty heap, is a
partial commutative monoid, and so all the properties introduced in Chapter 3 hold

for this model, too. Here, we also use a resource preorder C; parameterized by finite

6.2. Background 119

location set L: h Ty i’ iff h' has at least as many allocated locations as & as far as L is
concerned, i.e.

hCph' <= dom(h)NL C dom(h")NL.
We specify a property of storage, using subsets of State directly, instead of syntactic
formulas. We call such subsets of State predicates, and use semantic versions of separat-
ing conjunction * from separation logic:

p,q € Pred def f(State) p*q def {hp-hq|h, € pAhg € q} true % State.

6.2.2 Finite local actions

We return to the notion of a local action. Recall that an action r is a relation from State
to StateU {wrong}; action r outputs an error (wrong), if it accesses memory beyond the
current state. Then, if —A[r]wrong, state i contains all the locations that r dereferences,
except the newly allocated locations. As in separation logic, we write safe(r, i) to indicate
this (i.e., =h[r]wrong).

We have assumed in work with forward simulations, that all the commands that
we are dealing with are General local actions, i.e. actions satisfying safety monotonic-
ity, frame property and contents independence. Here, we introduce a finite local action,
which in addition to these three properties also needs to satisfy finite access property.
Intuitively, these four properties mean that each execution of the action accesses only
finitely many heap locations. Some of the locations are accessed directly by pointer
dereferencing, so that the contents of the locations affects the execution, while the other
remaining locations are accessed only indirectly by the allocation-status testing, so that
the execution only depends on the allocation status of the memory locations, not their

contents. The only new property here is the finite access property.

e Finite Access Property: For all iy and hy, if safe(r,hg) and ho[r|hj, then

JLC¢,Loc. Vhy. (hl#h() AN hl#h6 VAN (dom(hl) NL= @)) = hy -hl[r]h6 “hy.

We again give the other three properties, but now formulated in the memory model

assumed in this chapter.

6.2. Background 120

e Safety Monotonicity: For all states 4 and &, such that h#h, if —h[r]jwrong, then

—h - hy[rlwrong.

e Frame Property: For all states i/’ and hy with h#h,, if —h[rlwrong and & - hy[r]i’

then there is a substate hj C i’ such that hg#hy, hj - hy = i’ and h[r]hj,.
¢ General Contents Independence For all states hg, 1y, hy, if
hittho N —ho[rlwrong A (ho-h)[r](ho -)

then we have

VhyeH.) Ch — (ho-hz)[r](hé-hz).

The finite access property expresses the converse of the frame property; every com-
putation from the smaller state /2y can be extended to a computation from the bigger
state hg - h1, as long as the extended part #; does not include directly accessed loca-
tions, expressed by the condition & #hy A hl#h{), or indirectly accessed locations, i.e.
dom(h;) NL = . Note that the finite set L here denotes the set of locations indirectly
accessed by the computation kg [r|hy,.

The used-location set L in the definition of the finite access property plays a crucial
role in the semantics of programs; it lets us interpret sequential composition of com-
mands, by making finite access property preserved by the sequential composition. We

explain this role of L by comparing the property with the following stronger version:

e Stronger Finite Access Property: For all i and hy,, if safe(r, ko) and ho[r]hj, then

Vhy. (hi#ho N hy#hl) = ho-hy[r]hl - hy.

Note that this new definition does not use the set L of indirectly accessed locations, and
expresses more directly that all computations from smaller states can be extended. The
problem is that the new property is not preserved by the sequential composition. For

local actions r and 1/, let seq(r,7’) be an action defined as follows:
hlseq(r,')]v 4 (3K’ h[rlh' A W[F]v) V (h[r]lwrong A v=wrong).

It is straightforward to check that the action seq(r, ') is also local. However, seq does not

preserve the stronger finite access property. To see this, consider the following two local

6.2. Background 121

actions r and #':

hirlv <= 2¢&dom(h) N v=h-[2— 0]
W'y < ((3ho.h=ho-[2—0]) = hp=v) A

(=(3ho. h=hy - [2 — 0]) = v = wrong)

The first local relation allocates location 2; if 2 is already in the initial state, the relation
diverges. The second relation ' disposes location 2. Both r and 7’ satisfy the above
stronger finite access property, but their sequential composition seq(r,7’) does not. To
understand why, consider the execution [1 — 0]seq(r,7’)[1 — 0]. Since executing seq(r,’")
from [I — 0] is safe, by the stronger finite access property we can tack on any state
disjoint from the input and output states of the command. However, it is not the case
that [1 — 0,2 — OJseq(r,7)[1 — 0,2 — 0], because the first command in the sequential
composition requires location 2 not to be allocated. On the other hand, the original finite
access property is preserved by the sequential composition. In the considered example,
location / would be a member of L — a set of indirectly accessed locations, and the heap

[2 — —] does not fulfill the requirement that its domain is disjoint from L.

Definition 20 (Finite Local Action). A finite local action, in short FLA, is an action that

satisfies safety monotonicity, frame property, finite access property and contents independence.

We denote by F the poset of FLAs ordered by the “graph-subset” relation C. Let

r,r’ : Statew {wrong}. Then,
rC v <= Vh € State.Vv € StateU {wrong}. h[r]v = h[¥]v.

In order to be able to interpret all the possible behaviors of the actions, including the
“access-violation” which, as the reader will recall, happens when a client program ac-
cesses the internal state of a module with which it interacts, we need to broaden our

domain. Let ' be defined as
F'=FU{r|r:State — Statew {av,wrong} is FLA}.
The order in F’ is then

rC ¥ <= Vh € State.Vv € StateU {wrong,av}.h[r]v = h[r]v.

6.2. Background 122

For each precise predicate p, we define a p-protected execution , a method for con-
structing new finite local actions. For each r in F, the p-protected execution of r, is a

function prot(—, p) : F — F’ defined as follows :

hlprot(r,p)lav. <= —h[rjwrong A 3ho,h,. h=ho-h, N
h, € p A ho[rlwrong
hlprot(r,p)|i <= h[r]K

hlprot(r,p)lwrong <= h[rJwrong.

Intuitively, prot(r, p) behaves the same as r, except that whenever r accesses the p-part of
the input state, prot(r, p) generates av, thus indicating that there is an “access violation.”
That way; if p is the resource invariant of the module, prot(r, p) notifies all illegal accesses

to the module internals, by generating av.

Lemma 13. For every finite local action r € F and every precise predicate p, action prot(r, p) is

a finite local action.

Proof. Action prot(r, p) is identical to r when both are restricted to State x (StateU{wrong}).
Note that all of the safety monotonicity, frame property, finite access property and con-
tents independence only concern the state or wrong outputs, and that those properties

are satisfied by r. Thus, they are also satisfied by prot(r, p). O

The function prot(—, p) is not monotone. To see that, suppose we have two opera-
tions r and 1’ such that » C ' and let A[prot(r, p)]av. Then, by the definition of prot(r, p),
we know that —A[rJwrong and there exists a splitting of the state i, h = hg - h,, where
h, € p, such that hg[rjwrong. Then, because r C ¥/, we also have h[r']wrong, but to have
hlprot(+', p)]av, we also need to know that —A[r'|wrong, which we do not. This actually
means that 7 might fault more often than r and this causes trouble. However, this does
not affect the semantics of our language.

We redefine seq(r,) to be a function from F' x ' — F’
hlseq(r,”)lv & (3. h[r]W AR [F]v)V
(h[r]wrong A v=wrong) V (h[r]av A v=av).

We have shown that seq(r,r’) does not preserve the Stronger finite access property. Nev-

ertheless, it preserves the Finite access property. Moreover, it is a finite local action.

6.2. Background 123

Lemma 14. Function seq is a continuous map from F' x F' to F'.

Proof. Let r,r’ be FLAs. We first prove that seq(r,7’) is a FLA. Since it is well known that
seq(r,’') satisfies the safety monotonicity and frame property [80], we focus on the finite
access property and contents independence. To show that seq(r,) satisfies the finite
access property, consider states fg,h(such that —ho[seq(r,r’)]wrong and hg[seq(r,r’)]hy,.

Then, there exists an intermediate state mg such that
holrlmo A mo|[r'|h,.
Since —hg[seq(r,r’)]wrong, by the definition of seq, we have that
(=ho[rjwrong) A (—mo[r']wrong).

Thus, we can use the finite access property of r and r’ for hy[r]mo and mq[r']hj. Let L,L’' be
the finite sets of indirectly accessed locations for hg[rlmg and mg[r'|h, respectively. We
will show that the required set L” for hg[seq(r,r’)|hj is LUL Udom(my). For all states A
such that

dom(f;) N (dom () Udom (hy) ULUL' Udom(myg)) = 0,

dom(hy) is disjoint from dom(hg) Udom(mg) UL and dom(mg) Udom(hy) UL'. Thus,
ho - hy [r]mo “hy A mg-h [r']h6 “hy.

This implies hg - by [seq(r,r’)]hy - hy, as required.
We now show that seq(r,7’) satisfies the contents independence. Consider states

ho,h{y, h1,hy such that
hi#hy N hi#h(N\ —ho[seq(r,r")]wrong A hq-hy[seq(r,r')]hi-h1 A dom(hy) C dom(hy).
Then, there exists an intermediate state m such that
ho - hy[rjm A m[r'|hy - hy.
Since —hg[seq(r,r’)]wrong, by the definition of seq, we have that

—hg|[rlwrong.

6.2. Background 124

Thus, we can apply the frame property of r to hg - by [r|m. If we apply the frame property,

then we get a substate m(of m such that
m=mgy-hi A ho[?’]mo.

Since —hg[seq(r,7’)]wrong, this substate mg should be a safe input for r': —my[r']wrong. We
now use the contents independence of r and /. We replace h; by h, in the computation

ho - hi[rlmg - hy and mg - hi [k - by, and obtain the following new computations:
ho - hy [r]mo “hy A\ mg-hy [r']h6 “hy.

The obtained computations show that h - hy[seq(r,)|k, - ha.
Next, we prove that seq is continuous. Consider a chain {(r;,7})}ic of FLA pairs.

Then,

hlsea(Uico i, Uico 7)Y
=

(hUicorilv A (v=wrong V v=av)) V (3. hlUice il N W [Uicor/]v)
< (" {(ri,r}) }ico is a chain)

(Ji. hlrilv A (v=wrong V v=av)) V (3i. 3. hlr]' A K'[r]v)
<~

3i. ((h[ri]v A (v=wrong V v=av)) V (3. hlr]i’ A h'[r;]v))
<~

3i. h[seq(ri,)]V
<

hUjeosea(ri,ri)]v

O]

The poset F has a structure rich enough to interpret programs with low-level pointer
operations. Particularly interesting are the low-level pointer operations, such as the
memory update, allocation and deallocation of a location defined in Table 3.3 in Chapter

3, and a test operation:

hltest(l,1)]v “ if1¢ dom(h) then v=wrong else (v=h A h(l)€I).

6.2. Background 125

The operation tests for a location / and integer set / whether [is allocated and it contains
a value in [; in that case the test skips. If, on the other hand / is allocated but its value
is not in I, the test blocks. In all other cases (i.e., if [is not allocated), the test outputs

wrong.

Lemma 15. The poset F contains all the concrete low-level operations, i.e. operations defined

in Table 3.3 and operation test().

Proof. It suffices to show that the operations obey all four properties of finite local ac-
tions. We have already proved for all operations in Table 3.3, that they satisfy safety
monotonicity, frame property and content independence. It remains to prove that all
of them also satisfy finite access property and that the operation test() satisfies all four
properties. We only prove that [/] := i, where / denotes an address and i denotes an
integer, satisfies the finite access property; it is straightforward to prove the remaining
cases. Suppose that —A[[l] := ilwrong and A[[l] := i]i'. Then, [is allocated in both 4 and #/,
and dom(h) = dom(#'). Thus, for all states h; such that i;#h and h#h, location / is allo-
cated in both - hy and /' - hy and its value in /' - hy is I/ (I) = i. Hence, h-h[[I] :=i]W' - hy.
Thus, the required set L of indirectly accessed locations in the finite access property is

the empty set. O

Lemma 16. Both F and F' are complete lattices that have the set union as their join operator:

for every family {r;}ics in the poset, | |ic;ri is Uier Fi-

Proof. Since both F and F’ are ordered by the graph-subset relation, we only need to
show that they are closed under arbitrary union. Note that for every family {r;},i € I
in 7', if each r; is av-free, then | J;; r; is av-free as well. Thus, it suffices to show only
that 7' is closed. It is well-known that the set of local actions are closed under union
[80]. Thus, we focus on the finite access property and contents independence. Let {r;}ic;
be a family of FLAs, and let r be its graph union (J;; ;. We first show that r satisfies
the finite access property. Suppose that —hg[rJwrong and ho[r]hj. By the definition of r,
there is some r; such that —/g[rjlwrong and ho[r;]h,. Since r; satisfies the finite access
property, there exists a finite set L of indirectly accessed locations for h|[r;]hj. We claim

that L is the required set. To see why, consider a state i; such that h;#hg, hi#hj and

6.3. Programming Language 126

dom(h;) NL = (). By the finite access property of r;, we have that hg - by [rj]hj - hi. Since r
includes r;, we also have hq - hy[r]hf - hy.

For the contents independence, consider states hy, i, h, h> such that
hi#hy A h]#h6 A ﬂho[r]wrong A hg -hl[r]h6 “hy A dom(hl) = dom(hg).

Then, there exists r; such that —ho[r;Jwrong and hg - hy [rj]h - hi. By the contents indepen-
dence of r;, we have that hg - hs[rj|hj - hy. Since r includes rj, we also have hg - ha[r]hj - ha,

as required.]

6.3 Programming Language

For the programming language, we choose Dijkstra’s language of guarded commands
[30], extended with low-level pointer operations and module operations. The syntax of

the language is given by the grammar:
C == fla|CC|C[C|P|fixP.C

where f,a, P are, respectively, chosen from three disjoint sets aop, MOp, pid of identifiers.
Set aop denotes a set of all client operations identifiers, set MOp denotes the set of all
module operations identifiers and pid is a set of all program identifiers. The first con-
struct f is a module operation declared in the “interface specification” MOp. Before a
command gets executed, it is first “linked” to a specific module that implements the
interface MOp. This linked module provides the meaning of command f. The second
construct a is an atomic operation, which a client can execute without using module op-
erations. Usually, a denotes a low-level pointer operation. Note that the language does
not provide a syntax for building specific pointer operations. Instead, we assume that
the interpretation [, of these atomic client operations as FLAs is given along with
aop, and that under this interpretation, aop includes at least all the pointer operations in
Lemma 15. The remaining four constructs of the language are the usual compound com-
mands from Dijkstra’s language: sequential composition C;C, nondeterministic choice
CJ]C, the call of parameterless procedure P, and the recursive definition fixP.C of a pa-
rameterless procedure. As in Dijkstra’s language, the construct fix P.C not only defines
a parameterless recursive procedure P, but also calls the defined procedure. We express

that a command C does not have free procedure names, by calling C a complete command.

6.3. Programming Language 127

Table 6.1: Semantics of the Language

] (o 1t 2 prot([alla, p) [CNC Tyt TN oy U ICT (1

D pmtt En () [P] (po it 2 u(P)
[C5CT] oyt 2 5eq([CT (o 1 [C"T (o 8) [Fix P Cl 2 ix Ar. [CT) (e x—1])

[CT,) = sea(seq(n(init), [Cll(p.n)L),n (final)) ~ (for complete C)

where seq and prot are defined as follows: for all & € State and v € StateU {wrong,av},
h(seq(r,r’)]v 4 (3K . h[r]W AR [Fv) vV (h[r]lwrong A v=wrong) V (h[r]av A v=av)

h[prot(r, p)]v 4 hlrlv vV (v=av A —h[rlwrong A 3h,,ho.h=h, - ho Ah, € p A ho[r]wrong)

Note that all the usual constructs of the while language can be expressed in this
language, and in particular all the commands of the language defined in Chapter 3. For
example, conditional statement if («/ € I) then C else C' can be expressed as (test(/,1);C)
[] (test(1,1);C"), where I is the complement Int—I of I. And, the allocation-status testing

check2 ! can be expressed as:

cons(3,1); ((test(3, {2});update(3,1))[] (test(3, Int—{2}); update(3, 2))) .

We interpret commands using an instrumented denotational semantics; besides com-
puting the usual state transformation, the semantics also checks whether each atomic
client operation accesses the internals of a module, and for such illegal accesses, the se-
mantics generates access violation av. To implement the instrumentation, similarly as in
Chapter 3, we parameterize the semantics by a module.

Let £ be the poset of all functions from pid to F ordered pointwise. Given semantic
module (p,n), we interpret command as a continuous function [—]],,) from £ to '. For
complete commands C, we consider an additional interpretation [[_”?p,n) that uses the
least environment | = AP.(), and runs the initialization and finalization of the module
(p,n) before and after ([C](, ;)L). The details of these two interpretations are shown in

Table 6.1.

The most interesting part of the semantics lies in the interpretation of the atomic

1Code for check? is given in Section 1.2.3. Recall that check2 implements the allocation status
testing mechanism, which can detect space optimizing refinements.

6.3. Programming Language 128

client operations. For each atomic operation g, its interpretation first looks up the origi-
nal meaning [a], € F, which is given when the syntax of the language is defined. Then,
the interpretation transforms the meaning into prot([[a]l,, p) € F', the p-protected execu-

tion of [[a],.
Lemma 17. The interpretation in Table 6.1 is well-defined.

Proof. We use the induction on the structure of C. When C is either an atomic client oper-

ation a or a module operation f, [[C](, ») is a constant function from & to 7’ (Lemma 13),

pn
and so, it is continuous. When C is a procedure name P, [C](,) is a projection map,
and so, it is continuous as well. The cases of the sequential composition C;;C, and the
choice operator C[|C; follow from the fact that U and seq are continuous operators from

F'x F' to F' (Lemma 14). In both cases, the semantics of C is given by the composition

of some continuous function k: 7' x F' — F’ with

K= A[Cl i [C] () 1 € — F < F.

By the induction hypothesis, £’ is continuous, and so, the semantics [C](, 5, given by
kok',is continuous as well. The final case is when C is fixx.C. In this case, [C](,) is the
composition of the continuous least-fixed-point operator fix: [F' — F'] — F’ with the

following function k’:
K'=2Aue& dreF . [Cllpm(ppx—r]).

We will show that k" is a continuous function from & to [F' — F']. For all environments
i, and for all chains {r;}ice of finite local actions, {u[x—ri]}ice is a chain whose least
upper bound is [x— ;e 7i]- So, by the induction hypothesis,
(€T .y (el 7i]) = (€T gy (| (tle=ri])) = U ICT iy (e x—ri]).
ico icw icw
Thus, k" is a well-defined function from £ to [F/ — F']. We now show that £’ is indeed
continuous. Let {;}ice be a chain of environments. Then, for all r in 77,
[€T .y (L) be—=r1) = [CT .y (L (ilx=rD)) = U (€T gy (il—11)).
icw €0 i€w

Thus, k' is continuous. O

6.4. Power Simulation 129

6.4 Power Simulation

We now present the main result of this chapter: a new method for proving data refine-
ment, called power simulation, and its soundness proof.

The key idea of power simulation is to use the state-set lifting Ift(r) of a FLA:

Ift(r) : go(State) < (@(State) U{wrong,av})
H[Ift(r)]V £ (VCState AVH'EV. 3heH . h[rH)V

((V=avVV=wrong) A3heH.h[r]V).

Given an input state set H, the “lifted command” Ift(r) runs r for all states in H, chooses
some states among the results, and returns the set V of the chosen states. Note that V
might not contain some possible outputs from H; so, Ift(r) is different from the usual di-
rect image map of r, and in general, it is a relation rather than a function. For each mod-
ule (p,n), we write Ift(n) for the lifting of all module operations (i.e., Vf € MOp. Ift(n)(f) =
Ift(n(f))), and call (p,Ift(n)) the lifting of (p,n).

The power simulation is the usual forward simulation of a lifted “abstract” module
by a normal “concrete” module. Suppose that we want to show that a concrete module
(g,€) data-refines an abstract module (p,n). For that purpose we define a power relation

to be a relation between states and state sets.
R C (Statew {wrong,av}) x (#(State) W {{wrong},{av}}).

Intuitively, the power simulation method requires that, to prove this data refinement,
we only need to find a “good” power relation R. The power relation R then must be
such that every concrete-module operation &(k) “forward-simulates” the corresponding
lifted abstract-module operation Ift(n(k)) by R. The formal definition of power simula-

tion formalizes this intuition by specifying

1. which power relation should be considered good for given modules (¢,€) and

(p,m), and

2. what it means for a normal command to “forward-simulate” a lifted command.

To give an answer to the first question we have to define the expansion operator which

expands the power relation so that it also takes care of the externals of the module, and

6.4. Power Simulation 130

admissibility condition for power relations which allows that the internal representation
of the module does not depend on the identities of the locations in its build-up. For
the second requirement, we use the operator psim that maps a power-relation pair to a
relation on FLAs. We define these sub-components of power simulation, and use them

to give the formal definition of power simulation.

6.4.1 The psim operator

The psim operator is similar to the fsim operator given in Definition 12, but it involves
power relations instead of ordinary relations. We explain the operator psim. For power
relations Ry and Ry, psim(Ro, R1) relates a “concrete” FLA ' with an “abstract” r iff for
every Ro-related input state ' and state set H, if Ift(r) does not generate an error from
H, then all the outputs of +' from /' should be possible outcomes of Ift(r) from H up to

Ri.
Definition 21 (Power simulation). Action r’ power simulates another action r, denoted by
¥ [psim(Ro, R1)]r
iff for all states h' and state sets H,
1. if W[Ro]H N —H[Ift(r)]wrong A —H[Ift(r)]av, then =h'[r'lwrong A —h'[r'|av, and
2. if '[Ro]JH N —H|[rlwrong A —H[r|av then Vh|.N'[f'|h} = 3H,.H|Ift(r)|H, AW\ [R\|H;.

Similarly as for the forward simulation, these two conditions can be depicted by the

following diagrams, for easier understanding.

If If
H——————t(r—)————>wrong(av) H——————t(r—)————>H1
A A
\ !
Ro R Ro Ry
\ !
v v
W , wrong (av) 4 r/ M

The first condition ensures that Ift(r) faults more often than . The second condition
establishes that if the abstract operation Ift(r) does not fault, then the concrete one r/

does not fault either and every computation of /' corresponds to some computation of

Ift(r).

6.4. Power Simulation 131

Note that this definition is the lifted version of fsim in Sec. 4.4; except that it considers
the lifted computation Ift(r) instead of the usual computation r, it coincides with the
definition of fsim. In the definition of power simulation, we use psim to express the

“forward-simulation” of a lifted command by a normal command.

6.4.2 Admissibility

An important subcomponent of the power simulation method is the admissibility con-
dition for power relations. It ensures that the simulation between two modules does not
fail only because of the identities of the locations in their representation. In some sense,

it allows us to neglect those identities up to a certain point.

Definition 22. A power relation R is admissible iff for every R-related state h and state set H

(i.e., h[R|H), we have that?
H?é(b A (VLgﬁnLOC. HngH. (H] 75(2) VAN //l[R]Hl A Vhl EH].h] EL h))

The first conjunct in the admissibility condition means that all related state sets must
contain at least one state. The second conjunct is about the “free locations” in these
related state sets. It means that if 4[R|H, state set H collectively has at least as many
free locations as h: for every finite collection L of free locations in /, set H contains states
that do not have any of the locations in L, and, moreover, the set H; of such states itself
collectively has as many free locations as #. To understand the second conjunct more

clearly, consider the following power relation R
h[RolH & h=[3-1] AH={[3-5]}.

Relation Ry is admissible, because set {[3—5]} has only one state [3—5] that has the ex-
actly same free locations, namely all locations other than 3, as state [3—1]. On the other
hand, R defined by

h[RiJH & h=[3-1] AH={[3-5,4-5]}

is not admissible. The unique state in {[3—5,4—5]} has an active location 4 that is not

free in [3—1]. Now, lets have a look at a little bit trickier relation R,

h[RoJH & h=[3-1] AILCgnLoc. H={[3-5,n-5] |n ¢ LU{3}}.

ZRecall that hy Ty, hiff (dom(h;)NL) C (dom(h)NL).

6.4. Power Simulation 132

Relation R, is admissible, even though for all R,-related 4 and H, every state in H has
more active locations than 4. The intuitive reason for this is that for every free location
in [3—1], set H contains a state that does not contain the location, and so, it collectively
has as many free locations as [3—1]. In a sense, by having sufficiently many states, H

hides the identity of the additional location n.

6.4.3 The expansion operator

Similarly to the forward simulation method where we extended each relation between
two modules with the identity relation to take into account the externals of the module,

we extend the relevant power relations, using the —®A operator.

Definition 23. The expansion R®A of a power relation R is a power relation defined as follows:
hROAH & 3hy ho, Hy.(h=hy-ho A h[RIH, A H = H,* {ho}).

Intuitively, the definition means that # and H are obtained by extending R-related
state i, and state sets H, by the same state #y. We refer to R as a “coupling” power
relation. It connects the internals of two modules, and R®A expands this coupling rela-
tion to the relation for the entire memory, by asking that the added client parts must be

identical.
Lemma 18. The expansion R ® A of an admissible power relation R is admissible.

Proof. Suppose that H[R ® A]h. Then, there exist a splitting A, * hy of h and a state set H,
such that H,[R|h, and H = H, x {hyo}. We first show that H cannot be empty. Let G be

dom(hg). Then, there exists a subset H; of H, such that
H, CH, N H{[R]h, A Yhy € Hi.dom(h;)NG C dom(h,)NG.
Since G = dom(hg) and ho#h,, the second conjunct of H; can be simplified as follows:
Vh, € Hy. hi#hy.

Thus, it suffices to show that H; is not empty. For this, we use the admissibility of R.

Since H, [R]h,, by the admissibility of R, set H; cannot be empty.

6.4. Power Simulation 133

Next, we will prove that for any given finite set G of locations, there is a subset H, of

H such that
H, CH N H)[R®AJh A Vhy € Hy. dom(hy) NG C dom(h) NG.

Suppose that we are given a finite set G of locations. Since H,[R]h,, there exists a state

set H; such that
H, CH, N H [R]hr A Vhy € Hy. d0m<h1) NG C dom(hr)ﬂG.

We will show that H; * {h} is the state set that we are looking for. Since H is a subset of
H,,

Hy«{ho} CH,x{ho} =H,
and since H;[R]h, and h = h, x hy, by the definition of R ® A,
Hi x{ho}[R® Alh, - hy.
Thus, we only need to show that
Vhy € Hy x{hp}. dom(h,) NG C dom(h)NG.

We show that the required formula holds as follows:

hy € Hy % {ho}
—

Jhy.hp =hy-hg N hy € Hy
—

Shy. o = hy -ho A dom(hi) NG C dom(h,) NG
— (. ha=hi-hg A h=h,ho)

3hy. hy =hy-hog N dom(hy)NG Cdom(h)NG
—

dom(hy) NG C dom(h)NG.

6.4.4 The reasoning principle

We have introduced all the components of the power simulation: admissibility con-

dition, expansion operator and the psim operator. Using the expansion operator and

6.4. Power Simulation 134

admissibility condition, we can now define the criterion for deciding which power rela-
tions should be considered “good” for given modules (¢, €) and (p,n). The criterion is: a
power relation should be the expansion R®A of an admissible coupling power relation
R (R C g x g(p)). The following lemma, which we will prove later in Sec. 6.5, provides

the justification of this criteria:

LEMMA 19: For all precise predicates ¢, p, and all power relations R C g x

#(p), if R is admissible, then VreF,,... prot(r,q)[psim(R®A, RQA)]|prot(r, p).

To see the significance of this lemma, recall that the forward simulation without re-
striction to only growing relations fails to be sound mainly because some atomic client
operations are not related to themselves by fsim. However, once we have agreed to con-
sider only growing relations with forward simulation, the problem was resolved. The
lemma suggests that when using admissible power relation R, we do not have such a
problem for psim either: if R is admissible, then for all atomic client operations a and
all environment pairs (', i) with psim(R®A, R@A)-related procedures, we have that a
command executed in the concrete module environment power simulates itself when
executed in the abstract module environment.

We now define the power simulation of an abstract module (p,n) by a concrete mod-
ule (g,€). Let R be an admissible power relation such that R C g x @(p), and let ID be

the “identity” power relation defined by: i[ID]H LH= {h}.

Definition 24 (Power Simulation). Module (g,¢) power-simulates (p,n) by R iff
1. g(init)[psim(ID, R®A)|n (init) and &(final)[psim(R®A,ID)]n (final);
2. Vf € MOp. &(f)[psim(R®A, R2A) ().

The definition states that, in order to have one module power simulate another, all
the operations of the concrete module need to power simulate the corresponding lifted
operations of the abstract module. The init operations need to establish power relation
R ® A starting from “identical” “states”, the final operations need to establish “identical”

“states” from R ® A and all other operations need to preserve the R ® A power relation.

6.5. Soundness of the Power Simulation method 135

6.5 Soundness of the Power Simulation method

In this section we prove the soundness of the power simulation method. The sound-
ness result ensures that if we prove that one module simulates another using the power
simulation method, then we indeed have data refinement between the two modules.
We first need to prove several lemmas, which will be then all tied together in the
proof of the soundness. We start with the lemma that guarantees that every atomic client
operation is related to itself by psim with respect to some admissible power relation.
This will ensure that, having two modules simulate one another, the client operation
executed together with the concrete module will behave at least as good as when it is

executed with the abstract one.

Lemma 19. For all precise predicates q, p, and all power relations R C q x (p), if R is admis-

sible, then VreF, . prot(r,q)[psim(R®A, R&A)]prot(r, p).

Proof. Let us denote prot(r, p) by r, and prot(r,q) by r,. We pick arbitrary [R®A]-related
h and H such that Ift(r,) does not generate an error from H. Since they are R®A related,
state /1 and state set H can, respectively, be split into &, -hy = h and H = H, * {ho} for
some hg, ho,H, such that h,[R|H,. We note two facts about these splittings. First, set H,
contains a state that is disjoint from h¢. Since h, and H, are related by the admissible
relation R, set H), contains a state h), such that 4, Cyom(s,) hg- This condition on £, ensures
the disjointness of 4, and hy, because dom(hg) Ndom(h,) = 0. Second, the state &, in H,,
and the part &, of the splitting of 4, respectively, belong to p and ¢g. This second fact
follows since ,[R|H, and R C g x g(p). We sum up the obtained properties about

Hp, ho,hy,h), below:
H=H,*{ho} N h=hg-ho N hy[R|H, N\ hy#hg N\ h, € p N hy € q.

We now prove that r, does not generate an error from A. Since the lifted command
Ift(r,) does not generate an error from H and state &, - hg is in this input state set H, we
have that —h), - ho[r,]wrong A —h), - hy[r,]av. This absence of errors of r, ensures one im-
portant property of r: r cannot generate wrong from /. To see the reason, note that #,, is
in p, and that —h, - ho[r]wrong since —h,, - hg[r,]wrong. So, if hg[r]wrong, then by the defi-

nition of prot, we have that &, - h[r,]av, which contradicts =k, - h[r,]av. We will use this

6.5. Soundness of the Power Simulation method 136

property of r to show —h[r,|wrong and —h[r,lav. Since h = hq - hy and —hg[rlwrong, by the
safety monotonicity of r, we have that —i[r]wrong. Thus, —h[r,|wrong by the definition of

prot. For —h[r,]av, we have to show that
—h[rJav A (h[rlwrong V (Vmg,my € State. (my - mo=h Amy € q) = —mg|[rjwrong)).

Since r is av-free, it does not output av for any input states. For the second conjunct,
consider a splitting m, - mo of h such that m, € q. Then, since h = hy - hy, hy € q and ¢
is precise, we should have that m, = h, and mg = hg. Since —ho[r]wrong, it follows that
—mg[r]wrong.

Finally, we prove that every output state of r, from / is R®@A-related to some output
state set of Ift(r,) from H. In the proof, we will use —hg[rJwrong, which we have shown
in the previous paragraph. Consider a state 4’ such that h[r,]i’. Since h = hy - hy, by the
definition of prot(r,q), we have that hg - hy[r]i’. Since —ho[r]wrong, we can apply the frame
property of r to this computation, and obtain a substate i of ' such that /' = h{ - h,. Let
Ly be the finite set of indirectly accessed locations by the “computation” hg - hy[r|hj - hy,
which is guaranteed to exist by the finite access property of r. Let L be the location set
LoUdom(ho) Udom(hg) Udom(hy). Since hy[R|H, and R is admissible, there is a subset H;
of H, such that

H; QHP A Hl[R]hq AN Yhi € H.h Cf hq.

We note that since dom(h,) C L, the last conjunct in the above formula is equivalent to
Vhy € Hy. dom(h;)NL C dom(h,). We will show that H; « {h{} is the required output state
set. Since h, and H; are R-related, their hy-extensions, h, - hj and H; * {h;}, have to be
R®A-related. Thus, it remains to show that H = H), « {ho}[Ift(r,)|H * {h}. Instead of

proving this relationship directly, we will prove that
Hy x« {ho}[Ift(r,)|Hy * {h6}.

Because, then, the definition of Ift(r,) will ensure that we also have the required com-
putation. For every m in H; x {hj}, there is a state m; € H, such that m = m; - hj. By
the choice of H;, we have m; € H, Adom(m;) "L C dom(h,). Then, there exist splitting
ni -ny =my of my and splitting 0, - 03 = h, of h, with the property that dom(n;) L = () and

dom(ny) = dom(0;). From this property, we obtain a new computation of r, as follows:

6.5. Soundness of the Power Simulation method 137

hy-ho[rlhg-hly = ny-hy-holrlny - hy - R, (.- r has FAP? property)
= ny-02-03-holrln; -0z 03 - hj, (" hyg=02-03)
= ni-ny-03-ho[rjni-na-03-hy (" rhas CI* property)
= ny-ny-ho[rjny -ny - hj ; (. r has FP° property)
= my -ho[rjm (my=ny-ny Amy -hyy =m)
= my - ho[rp|m (. definition of prot(r, p))

Note that the input m; - by of the obtained computation belongs to the state set Hy{ho}.

We just have shown H;x{ho}(Ift(r,)|Hi*{hj}. O

Now, we need to make sure that all compound commands preserve the property
that the atomic operations have. Next lemma guarantees that sequential composition

also has this property, i. e., that it preserves psim.

Lemma 20. For all power relations Ro, R1, R, and all FLAs ro,r(, 1,7}, if rj[psim(Ro, R1)]ro

and r[psim(R1,R2)]r1, then seq(ry,r})[psim(Ro, R2)]seq(ro, r1).

Proof. Let ro,ry,r(,r; be FLAs such that r([psim(Ro,R1)]ro and r{[psim(Ri,R2)|r;. Con-
sider Ry-related state / and state set H such that Ift(seq(ro, 7)) does not generate an error

from H. We first prove that seq(r{,r;) does not generate an error from A:

—H[Ift(seq(ro,))Jwrong A ~H[Ift(seq(ro,1))]av
—. (- the definition of Ift(seq(ro,)))
—H|Ift(ro)]wrong A =H|Ift(rp)]av
A (VH' . H[Ift(ro)|H' = —~H'[Ift(r1)]wrong A —H'[Ift(r1)]av)
= (. h[RolH A rg[psim(Ro, Ri1)]ro)
—h[rjlwrong A —h[rjlav A (VA .hr)|W = 3H'.W'[R\|H' NH|Ift(ro)|H’)
A (VH'. H|Ift(ro)|H' = —H'Ift(r)]wrong A —=H'[Ift(r)]av)
—
[wrong A —h[r)av
A (VI R = 3H W [RAH A —H[Ift(r)Jwrong A ~H'[Ift(r1)]av)

= (. H[RiH Arilpsim(Ri, Ra)]r1)

3Finite Access Property
*Content Independence
S5Frame Property

6.5. Soundness of the Power Simulation method 138

—h[rjlwrong A —h[rjlav A (VA . hr|h = =K [r]]wrong A —=H'[r]]av)
—

—h[seq(ry,r})wrong A —h[seq(r(, r})]av

Next we prove that all the output states of seq(r(,r]) from h are R-related to some

output state sets of Ift(seq(rp,r1)) from H:

—H |Ift(seq(ro,r1))wrong A —H |Ift(seq(ro, r1))]av A hlseq(r), r})"
— ("." the definition of seq(ro,r1))

—H(Ift(seq(ro,r1))]wrong A —H|Ift(seq(ro,r1))]av A (3K hlrg)W A K [ri]R")
= (. the definition of Ift(seq(ro,r1)))

—H Ift(ro)]wrong A =H|Ift(rp)]av A —=H|Ift(seq(ro, r1))]wrong

N —H(Ift(seq(ro,r1))]av A (3K h[rjlH A B [r{]h")
= (" rlpsim(Ro, R1)]ro Ah[RolH)

JH' I . H[Ift(ro)|H' AW [R1|H' A —H|Ift(seq(ro,r1))]wrong

N—H|Ift(seq(ro,r1))]av AR [r]]H"

= (. the definition of Ift(seq(ro,r1)))

3JH' K. H(Ift(ro)[H' AW [RAJH' A —H'[Ift(r1)]wrong A ~H'[Ift(r1)]av AR [F} |0
= (. ri[psim(R1,Ra)|ri AW [Ry|H')

JH' H". H|Ift(ro)|H' NH'[Ift(r1)|H" AW [RyJH”
= (. the definition of Ift(seq(ro,r1)))

IH" . H]Ift(seq(ro, r1)| H" AR [Ro)H".

O]

The following lemma ensures that the union of psim-preserving commands also pre-
serve psim. This fact then implies that the nondeterministic choice and the recursive call
will have “better” behavior when executed in an environment that contains the concrete
module instead of the one that contains the abstract one, when we have simulation be-

tween the two modules.

Lemma 21. For all power relations Ro, R1, sets I and I-indexed families {r.}ics, {ri}icr of FLAs,
if Viel.rl[psim(Ro, R1)|ri, then U, ri[psim(Ro, R1)| Uics 1i-

6.5. Soundness of the Power Simulation method 139

Proof. Let {r;}ic; and {r!};cs be (possibly empty) families of FLAs such that r/[psim (R, R1)]r;
for all indices i in /. We need to show that

(UrDlpsim(Ro, R)I(Jr)-

i€l icl
Consider Ry-related state 4 and state set H such that Ift(lJ;c; ;) does not generate an

error from H. We first show that [J,c; 7/ does not generate an error from :

=H Ift(U;e; ri)]wrong A —H(Ift(U;e; ri)]av
= (VjeLlft(Uigr) 2 Ift(r))

Vi e I. ~H|Ift(r;)]wrong A —H[Ift(r;)]av
= (" h[Ro]H AVi € I.7)[psim(Ro, R1)]r:)

Vi€ 1. —h[ri]lwrong A —h[r/]av
—

—h|U;e; ri]wrong A =h|U;c; rl]av

Next, we prove that all the output states of | J;c; } from h are R-related to some output

state sets of Ift(|J;c; i) from H:

hUierrilh" N —H[Ift(Uig; ri)lwrong A —~H Ift(Uie; ri)]av
= (- VjeLlft(Uigr) 2 Ift(r))

WUie, P A (Vi € I ~H[Ife(r:)]wrong A —H[Ift(r;)]av)
—

Ji € 1 W[i A —~H(Ift(r)]wrong A —~H[Ift(r;)]av
o (- h[Ro]H AVi € L7 [psim(Ro, R1)]r)

i€ 1. 3H'. H[Ift(r)|H' A K [Ri)H'
= (Ve LIft(Uie ri) 2 Ift(r)))

IH'. H]Ift(Use, r)]H' A HRIH.
O

We now consider the simulation theorem. As discussed before, the simulation the-
orem provides that the simulation between the modules can be lifted to the whole lan-

guage. To prove the simulation theorem, we link the facts that we have proved so far.

6.5. Soundness of the Power Simulation method 140

Theorem 8 (Simulation theorem). Let (q,€),(p,n) be semantic modules, and R be an ad-
missible power relation s.t. R C g x @(p). If (¢,€) power-simulates (p,n) by R, then for all

commands C and all environments u, ', we have that
(VP ' (P)[psim(R@A, ROA)|1(P)) = [Cll(g.e) 1’ [pSim(RDA, RDA)][CI (p,n) -

Proof. We use induction on the structure of C. When C is a module operation f or a pro-
cedure name P, the theorem follows from the assumption: (g,€) power-simulates (p,n)
by R, and for all P, p/(P)[psim(RQA, RQA)|u(P). When C is an atomic client operation
a, the theorem should hold because of Lemma 19. The remaining three cases follow
from the property of psim(R®A, R®A) of being closed in Lemma 20 and 21. Namely,
psim(R®A, R®A) is closed under arbitrary union and seq. This property directly im-
plies that the induction step goes through for the cases of C,[|C; and C;;C,. For fixx.C’/,
we note that satisfying the property of being closed under arbitrary union implies that
psim(R®A, R®A) is complete,® and that this completeness is what we need to prove the

induction step for fixx.C'. O

We now have almost everything we need to prove the soundness of the power sim-
ulation method. However, the following lemma provides us with one missing link in
the proof. Namely, it states that to prove data refinement, it is enough to make sure that

all the complete commands are psim-related with respect to the relation ID.

Lemma 22. A module (q,¢€) data-refines another module (p,n) iff for all complete commands

C, we have that [C]|{, [psim(ID, ID)][C]{, -

Proof. We prove this lemma by transforming psim(ID,ID) to an equivalent simpler as-
sertion. Unrolling psim(ID,ID) in the lemma by this assertion then gives the claimed
equivalence. Power relation ID relates state & and state set H iff H = {h}. Therefore,
psim(ID,ID) can be simplified as follows: r'[psim(ID, ID)]r iff for all states , if Ift(r) does

not generate an error from {4}, then
(—h[r'lwrong A =h[r'lav) A (VR .h[r' | = {h}[Ift(r)]{K'}).

Note that in this simplified assertion, the lifted command Ift(r) is run only for a singleton

input set {h}. For such special inputs, Ift(r) behaves the same as r. More specifically,

®psim(R,Ry) relates the least FLA to itself, and is chain-complete.

6.5. Soundness of the Power Simulation method 141

Ift(r) does not generate an error from {Ai} iff r does not generate an error from 4 and
Ift(r) can produce {#'} from {h} iff r can produce i’ from h. Thus, the definition of

r'[psim(ID,1D)]r can be further simplified to the following assertion.

For all states £, if r does not generate an error from £, then ’ neither generates

an error and all the output states of 1’ are also possible outcomes of r.

Now, using this assertion, we unroll psim(ID, D) in the lemma.

~H[CTE, Jwrong A —h[[CE, . Jav —>

~H[[CT, o Jwrong A —h{ICIE, o Jav A (Vi KICIE, o ' = AIICI,).
The resulting unrolled statement proves the lemma, because both sides of “iff” in the

statement are the same.]

Finally, we present the proof of the soundness of the power simulation method. It

relies on the results we have proved so far.

Theorem 9 (Soundness). If a module (gq,€) power-simulates another module (p,n) by an ad-

missible power relation R C g x (p), then (q, €) data-refines (p,n).

Proof. Suppose that a module (g, €) power-simulates another module (p,n) by an ad-
missible power relation R C g x (p). We will show that for all complete commands
C, [Cll(q.e) [psim(ID,ID)][C] (,.n), because, then, module (g, €) should data-refine (p,n) by
Lemma 22.

We pick an arbitrary complete program C. Let u be an environment that maps all
program identifiers to the empty relation. Since the empty relation is a FLA, u is a well-
defined environment. By Lemma 21, u(P)[psim(R®A, R®A)|u(P) for all P in pid. From

this, we derive the required relationship as follows:

VP € pid. u(P)[psim(R®A, RRA)|u(P)

= (. Theorem 8)

[C] g 1 pSIm(REA, REA)][C]) 1

= (" Lemma 20)

seq(seq(&(init), [[Cl(q.¢ 1), €(final))[psim(ID, D) seq(seq(n (init), [C], n)), N (final))
= (. the definition of [—])

[C];, o lpsim(D, ID)I[CIE,

6.6. Example 142

This complete the soundness proof by the remark we made in the beginning of the

proof. O

6.6 Example

We demonstrate power simulation using the semantic modules (¢,€) and (p,n) that,
respectively, correspond to counter2 and counter3 in Table 1.7. Recall that both counter2
and counter3 implement a counter “object” with two operations, inc for incrementing
the counter and read for reading the value of the counter; the main difference is that
counter3 uses two locations, namely location 1 and a newly allocated one, to track the
value of the counter, while counter2 uses only location 1 for the same purpose. The
corresponding semantic modules, (g, €) for counter2 and (p,n) for counter3, are defined
in Table 6.2. Note that the resource invariant p indicates that counter3 uses two locations
1 and n internally, and the invariant ¢ shows that counter2 uses only one location, and
that is 1, internally. We will show that the space saving in counter2 is correct, by proving
that (¢, &) power-simulates (p,n).

We first need to make sure that we are dealing only with finite local actions. For that

we prove the following theorem.
Theorem 10. All the operations defined in Table 6.2 are finite local actions.

Proof. We only prove that 1 (inc) satisfies finite access property, one of the more complex
cases. It can be similarly proved that the other operations also satisfy the finite access
property. We leave out the other properties, as they should be easier to prove.

Let hp be a state such that safe(n(inc). The definition of n(inc) then tells us that
1 € dom(hg) and ho(1) € dom(hy). Let ho be such that ho[n (inc)]hy, i.e., let hy = hol[ho(1) —
(ho(ho(1)) + 1)].

Allow L, the set from the finite access property, to be an empty set, L = (. Let i,
satisfy the condition of the finite access property, i.e. hi#ho A hi#hj. Clearly, hi#L, as L
is the empty set.

Now, by the definition of 1 (inc), since 1 € dom(hg) and hy(1) € dom(hy), safe(n(inc), ho-

h; is true and

ho ~h1[n(inc)]/’l0 'hl[h() ~h1(1) — (/’l() 'hl(l/lo-hl(l)) + 1)]

6.6. Example 143

hep & G n £1An>0ARh=[1-n,n'—n]
A (init)y - £ if (1¢dom(h)) then v=wrong else 3n.n¢dom(h) Av=h[1-n] - [n—-0]
hn(inc)lv & if (1¢dom(h) v h(1)gdom(h)) then v=wrong else v=h[h(1)—(h(h(1))+1)])
h[n(read)ly £ if (1¢dom(h)V h(1)@dom(h) v 3¢dom(h)) then v=wrong else v=h[3—h(h(1))]
hn(final)ly & if (1¢dom(h) v h(1)

else 3hg.v=ho[1-0] Ah=hq - [h(1)—h(h(1))]

(1)¢dom(h)) then v=wrong

hegq 4 dn.n>0Ah=[1-n]
he(init)]v i 1¢dom(h)) then v=wrong else v=h[1-0)]

(
hle(inc)]v & i (1 & dom(h)) then v=wrong else v=h[1—(h(1)+1)]
h[e(read)]v “ if (1¢dom(h) v 3¢dom(h)) then v=wrong else v=h[3—h(1)]
(

hle(final)]v “ ifq ¢ dom(h)) then v=wrong else v=h[1-0]

Table 6.2: Definition of Module (p,n) and (g, €)
Because both 1 and A(1) are in the &g part of the heap, this is equivalent to
ho - [n(inc)lholho(1) — (ho(ho(1)) +1)] - hy.
which is hg - by [1(inc)]hf - h1 and that is exactly what we wanted to prove. O

The first step of the power simulation method is to find an admissible power relation

that couples the internals of (¢, €) and (p,n). For this, we use the following R:
hRIH & 3L,n. LgnLoc A n>0 A h=[1-n] A H={[1-n',n'—n] | n’ ¢ LU{1}}.

Intuitively, h[R]H means that all the states in H and state i represent the same counter

having the same value. Before we can go on, we need to prove that R is admissible.
Lemma 23. Power relation R defined as above is admissible.

Proof. Let h and H be related by R. Then there exist a finite set L and an integer n > 0
such that h=[1-n] and H={[1-n',n'=n] | n’ ¢ LU{1}. Firstly, H is not empty, as the set L
is finite.

Secondly, let G be any finite set of locations. Then, set of heaps

Hy={(1—nn—njn ¢ LUGU{1}}.

6.6. Example 144

is a subset of H such that H, # (), h[R]H, and for all h; € H it is true that dom(h;) NG C

dom(h)NG. O

The next step is to show that all the corresponding module operations of (¢,€) and

(p,n) are related by psim.
Lemma 24. Module (q,€) power simulates module (p,n).

Proof. Here we only show that £(init) and n(init) are psim(ID, R®A)-related. The other
operations can be examined in a similar fashion.

Consider i and H related by the “identity relation” ID. Then, by the definition of
ID, set H must be the singleton set containing the heap 4. Thus, it suffices to show that
if Ift(n(init)) does not generate an error from {4}, all the outputs of £(init) from & are
R®A-related to some output state sets of Ift(n(init)) from {A}. Suppose that Ift(n(init))
does not generate an error from {A}. Then, 7 (init) cannot output wrong from 4, and so,
location 1 should be in dom(#). From this, it follows that the concrete initialization €(init)
does not generate an error from % either. We now check the non-error outputs of €(init).
When started from A, the concrete initialization €(init) has only one non-error output,
namely state i[1-0]. We split this output state 4[1-0] into [1-0] and the remainder hy.
Let L be dom(hy). It is easy to check, using the definition of R, that the first part [1-0] of
the splitting is R-related to H, = {[1—-n',n’ 0] | n’ & L}. Thus, extending [1-0] and H, by
the remainder &g gives R®A-related state [1-0] - hp = h[1-0] and state set H, * {ho }. Note
here that both these compositions are defined, as we made sure that there are no states
in H, that contain locations from hy.

Now, the state set H, x {ho} is equal to {h[1-n]-[n'=0] | n’ & dom(h)}, and so, it is
a possible output of Ift(n(init)) from {h} by the definition of Ift(n(init)). We have just
shown that the output /[1-0] is R®A-related to some output of Ift(n(init)), as required.

O

The nondeterministic allocation in the abstract initialization 7 (init) is crucial for the
correctness of data refinement. Suppose that we change the initialization of the abstract

module such that it allocates a specific location 2:

h[n (init)]v i (1 & dom(h)) then (v=wrong) else (2 & dom(h) A v=h[1-2]-[2-0])

6.7. Discussion 145

Then, (g,€) no longer data-refines (p,1n);’ by testing the allocation status of location
2 using memory allocation and pointer comparison, a client command can detect the
replacement of (p,n) by (¢,€), and exhibit a behavior that is only possible with (g, €),
but not with (p,n). Power simulation correctly captures this failure of data refinement.
More specifically, for all power relations R C g x g(p) if &(init)[psim(ID, R®A)|n (init),
then R cannot be admissible. To see the reason, suppose that £(init) [psim(ID, R®A)|n (init).
When &(init) and Ift(n(init)) are run from ID-related [1-0] and {[1-0]}, £(init) outputs
[1-0] and Ift(n (init)) outputs {[1-2,2-0]} or (. Thus, by the definition of psim(ID, R®A),
[1-0] should be R®A-related to {[1-2,2—0]} or (). Then, by the definition of R®A, state
[1-0] is R-related to {[1-2,2-0]} or (0. In either case, R is not admissible; the first case
violates the second conjunct about the free locations in the admissibility condition, and

the second case violates the first conjunct about the non-emptiness.

6.7 Discussion

The work in this chapter is joint work with Hongseok Yang and was presented at the
conference APLAS [53]. The material presented in the following chapter is also a part of
this joint work.

Work on power simulations assumes a concrete RAM memory model, rather the
general memory model used in work on forward simulations. One reason for that is
that work on power simulations was inspired by the problems that arise exclusively
from the features of the low-level programming languages. For example, the notion of
a finite local action would be very tricky to formulate. Namely, the finite access prop-
erty heavily relies on the assumptions of the RAM model. We suspect that it would be
possible to carry the results in this, low-level model to the general memory model, but

we leave this generalization as a possible future direction.

7Even when we replace p by a more precise invariant {[1-2,2-n] | n > 0}, module (g, €) does
not data-refine (p,n).

146

7

State-based representation of the Power

Simulation Method

We have introduced so far two methods for proving data refinement that are sound even
in presence of pointers: forward simulation and power simulation. Even though power
simulation is a more general method which enables us to prove data refinement for a
broader range of data structures, the forward simulation method is more intuitive and
easier to use. As the methods are based on similar principles, the question of whether
there is some connection between them poses itself. Indeed, in certain circumstances
power simulation can be reduced to the simple forward simulation, and in some other,
to forward simulation with “backtracking”.

The goal of this chapter is to introduce an important connection between forward
simulation and power simulation methods and to give a state based representation of
the power simulation method. In Chapter 1 we discussed the pitfalls of the forward sim-
ulation method and illustrated them with inability of the forward simulation method to
deal with the equivalence of the doubly-linked list and XOR-linked list representations
of doubly-ended queues. Here, we prove this equivalence using the power simulation

method and its state-based representation.

7.1. State-based Representation of the Power Simulation Method 147

7.1 State-based Representation of the Power Simulation Method

The soundness result for power simulation method is rather technical, and does not
provide a computational intuition about why power simulation is sound. Giving one
such intuition is the goal of this section. We consider two special cases of power sim-
ulation. In the first case, a coupling power relation is built from the growing relation
between the states. In the second case a coupling power relation arises from a standard
coupling relation on states and, we show that in such a case the power simulation is
forward simulation modified with backtracking; thus, it is this backtracking that makes
power simulation sound. Throughout the section, we assume fixed modules (p,n) and

(q,€), and consider the power simulation of (p,n) by (g, €).

7.1.1 Growing Relation between States

In the first case the coupling power relation is built from a growing relation between
states. An important fact of this construction is that for such coupling relations, the
power simulation collapses to the usual forward simulation on states. Then, the sound-
ness of the power simulation method also indirectly implies the soundness of the usual
forward simulation for the growing refinement relation.

Recall that relation S C State x State between states is growing if and only if
h[S]h' = dom(h) C dom(H').

An interesting feature of growing relations is that they give rise to admissible power

relations. Let S be a growing relation. We define a power relation Ift(S) as follows:
H[|ft(S)]h <— dhy € State. H = {ho} A ho[S]h.

The lifted relation Ift(S) is admissible. Intuitively, the unique state i in H uses so little
memory, that it allows all the possible allocations from the other state 4. We formally

prove this property below:
Lemma 25. The power relation Ift(S) is admissible.

Proof. In order to prove that Ift(S) is admissible, we need to prove that Ift(S) satisfies the

following two conditions: for all H € @(State) and all & € State such that H[Ift(S)]A,

7.1. State-based Representation of the Power Simulation Method 148

e H #(); and
e for all L Cg, Loc, there exists a subset H; of H such that

H, %@ N Hi [lft(S)]h A Yhy € Hi.hy Cp h.

Let set H and heap h be related by Ift(S). Then, by the definition of Ift(S), there
exists hy € State such that H = {ho} and hy[S]h, and hence H # (), which makes the first
condition of admissibility true. To prove the second condition of admissibility, note
that since ho[S]h and S is growing, we have dom(hy) C dom(h). Therefore, for every set
L Cpn Loc, we have dom(hg) "L C dom(h) NL. Hence, the set H itself is the required

non-empty subset H; in the second condition.]

The main result in this case is that for each growing relation S, the power simulation
for Ift(S) can equivalently be formulated as a usual forward simulation for S. Let (p,n)
and (¢, €) be two modules, and let S be a growing relation such that S C p x ¢q. Let SxA

be a relation between states such that
S+ AW <= 3ho,hy, h). (ho shi=h A Byxhy=H A ho[S]hg)
We give the precise statement of the result as follows:

Proposition 1. For all finite local actions r and r’, the action r' simulates r by Ift(S) if and only
if
1. for all states h,l, if

h[S*Alh" A (K [f]wrong Vv K'[F]av)
then (h[rlwrongV hlr]av); and
2. for all states h,h',m’, if
h[S*Alh' A —h[r]wrong A —h[rlav A K'[r/]m’
then there exists a state m such that

hlrlm A m[S*Alm'.

For simplicity we will refer to the first condition as FS;, and to the second as FS,.

7.1. State-based Representation of the Power Simulation Method 149

Proof. We prove that for the coupling relation Ift(S), the conditions PS; and PS; of the
corresponding power-simulation, are equivalent to FS; and FS;, respectively.
Before proving the equivalence, we note one important property of power relation

Ift(S) ® A: for all state sets H and all states #’,
H[Ift(S) @Al <= 3h.H = {h} N h[SxAJK.

This property gives a simple characterization of Ift(S) ® A: it is the “lifting” of SxA. We
will use this characterization extensively in the proof of this proposition. The proof
of this property itself is straightforward, mainly done by unrolling the definitions and

using the assumption that S is growing. We give the detailed proofs below:
HIIft(S) @ AW
<= (. the definition of S® A)
3Hy, ho, hy. (H = Hg{ho} N\ h' =hxhy A H[Ift(S)]h)
<= (. the definition of Ift(S))
3Hy, ho, hy, hy. (H = Hyx {ho} A B =h,xho A Hy = {hs} A hg[S]h))
<= (. the rules from classical logic)
Sho, Wy, hs. (H = {hs}*{ho} N h =Hhyxhy A h[S]h)
<= (. S is growing, so h,[S|h, \ W#h = hg#th)
Jho, h, hy. (hettho A H = {h} x{ho} A W' =h}xhg A h[S)h)
<= (. the definition of Hy x H})
Sho, Wy, hg,h. (h=hyxho N H={h} N h' =h,xho A h[S]h})
<= (. the definition of Sx A)
3h. (H ={h} A h[SxAJK’)
Using the above property of Ift(S) ® A, we first prove the equivalence between PS;
and FS;:
VH I . (H[Ift(S) @Al A (W[]wrong V F'[F']av))

= (H[Ift(r)]wrong V H[Ift(r)]av)

7.1. State-based Representation of the Power Simulation Method 150

<= (. the shown property of Ift(S) ® A)

VH,I'. (3h.H = {h} A h[SxAJK" A (K'[F']wrong V I'[F']av))

= (H[lft(r)Jwrong V H|[Ift(r)]av)
<= (. the rules from classical logic)

VH,h,l'. (H={h} A h[SxAJl' A (K'[F]wrong V I'[r']av))

= (H[lft(r))wrong V H|[Ift(r)]av)
<= (. the rules from classical logic)

Vh,H'. (h[S* AR A (K'[F]wrong V I'[r']av))
= ({n}[Ift(r)]wrong v {h}[Ift(r)]av)

<= (. the definition of Ift(r))
Vh,H'. (R[S AR A (K'[rlwrong V I'[r']av)) = (h[r]wrong V h[r]av)
Next we prove the equivalence between PS; and FS;:
VH, K ,m'. (H[Ift(S) @Al A —H[Ift(r)]wrong A =H[Ift(r)]av A I'[F]m’)
= IM. (M[Ift(S) @ Alm" A HI[Ift(r)]M)
<= (. the shown property of Ift(S) ® A)
VH I ,m'. (3h. H = {h} A h[S*Alh' A—H[Ift(r)lwrong A —H|Ift(r)]av AR [r']m’)
= IM,m. (M = {m} Am[S«Alm’ NH[Ift(r)|M)
<= ("." the rules from classical logic)
VH,h,i',m'. (H = {h} A h[S*AJW' A=H|lft(r)]wrong A —H[Ift(r)]av A K/ [F']m)
— IM,m. (M = {m} Am[S«Alm’ NH|Ift(r)]M)
<= (. the rules from classical logic)
Vh,h m' . (R[S * AJh' A—{h}[Ift(r)]wrong A ~{h}[Ift(r)]av A K/ [r]m’)
= Im. (m[S*Alm' A{h}[Ift(r)]{m})
<= (. the definition of Ift(r))
Vh,h',m'. (h[S* AJh' A=h[rlwrong A —h[rlav AR'[r]m’)

= Im. (m[S*Alm' Ah[r]m)

7.1. State-based Representation of the Power Simulation Method 151

7.1.2 Power relation induced by per

The previous case is based on the assumption that the standard coupling relation R C
gxp is growing. However, any standard coupling relation R C gxp can generate an
admissible power relation R C gx #(p), when it is given two additional data: a partial
equivalence relation E on p, and an operator rs, which imposes certain restrictions on
relations defined on states.

Partial equivalence relation E denotes which “abstract” states can be considered the
same and satisfies the property

R;E =R.

The other data, rs, sets a restriction on a relation E, using pre-given finite location set
L and state 4. More formally, for a given set L and state 4, we define rs(E,L,h) to be a
relation defined as

H[rs(E,L,h)|hy £ W[E]Ky A ByCoh.
Note that rs(E, L, h) then satisfies
(VL .rs(E,LUL';h) C rs(E,L,h))
since L _is anti-monotone with respect to its subscript.

Definition 25. The pair (R,E) is a coupling pair if and only if for all R-related states h and i’

and all finite sets L of locations, there exists a state ho such that ho[E]h and ho Cp K.
From a coupling pair (R,E) and restriction rs, we define a power relation as follows:
Hpw(R,E,rs)|H £ 3heState.3ILCnLoc. i[RIk A H={ho | h[rs(E,L, 1)]ho}.

This definition means that H is obtained from #’ in three steps: firstly, some A such that
' [R]h is found; secondly, all the states that are E-equivalent to % are collected into a set;
and finally, the states among the collected ones that “satisfy” the additional requirement
in rs(E,L,}") are extracted. The last extracting step is crucial in this construction — it

ensures that the constructed relation is admissible.
Lemma 26. Power relation pw(R, E,rs) is admissible.

Proof. In order to prove that pw(R,E, rs) is admissible, we need to prove that for all states

i’ and state sets H such that #'[pw(R, E, rs)|H, the following two conditions hold:

7.1. State-based Representation of the Power Simulation Method 152

e H #(); and
e for all finite sets L of locations, there exists a subset H; of H such that

Hi #0 A W [pw(R,E,rs)|H; A Yhy € Hi.hy T K.

Consider pw(R, E,rs)-related state /' and state set H. By the definition of pw(R, E,rs),

there exist L Cg, Loc and & € State such that
W(Rlh N H = {ho|h[rs(E,L,h")|ho}.

The first condition of the admissibility follows from the fact that the (R,E) is a coupling
pair. To prove the second condition of the admissibility, consider a finite set L; of lo-
cations. The second condition requires a subset of H with certain properties. We show

that the following H, is such a subset.
H = {h] | h[rS(E,LULl,h/)}hl}.

Set H, is included in H, because rs(E,—, k") relates more states as its second parameter
gets smaller. Moreover, by the definition of pw, state /' is pw(R, E, rs)-related to set H;.
Note that by the assumption of the lemma, this relationship also ensures that H; is not
empty. Finally, for every state ; in H;, we have h[rs(E,LUL;,h)]h;, and so, h Crop, hy.

Since C_ is anti-monotone with respect to its subscript, it follows that 7 Ty, h;. O

Before we present the main result of this section, we need to prove the following

important property of pw(R,E,rs).

Lemma 27. A state set H and a state h' are related by pw(R,E,rs) ® A if and only if they are

related by pw(R* A, E % A,rs).

Proof. Let H be a state set and /' a state. We first unroll the definition of #'[pw(R,E,rs) ®

AJH and simplify the result using the rules from classical logic:

W [pw(R,E,rs) @ A|H
e
IHg, ho, Iy, <H:HR*{h0} A=y hg A h;e[pw(R,E,rs)]HR)

—

7.1. State-based Representation of the Power Simulation Method 153

SHg, ho, Ky, L, Iiz.
(H = Hp+{ho} A W =Hyxhy A hg[Rlie A Hg = {mg | mg|E)hg Amg Ty h;q})
e

Tho, e, L, hg. (H = {mp xho | mp#ho Amg|Elhg Amg Ty By} AW = Hyxhg A hR[R]hje)

We designate this last formula with ¢. Now, we need to show that ¢ is equivalent to

Hpw(R+AE«A,rs)|H, i.e.,
Sh,L. K [R+Alh A H = {ho | HlE % Alhg A ho Ty 'Y

which we designate by y.
The proof about the equivalence uses one important fact about state sets that are

constructed in a specific way:

FACT 1: for all heaps hg, ho, hy, if hg#ho N hy#ho, then

{mR*hQ ’ mR#ho/\mR[E]hR/\mR Cr h;?} = {m ’ m[E *A]hR*ho/\m Cr h;e*ho}

The proof of this fact involves unfolding the definition of E x A and exploiting the pre-
ciseness of E, as E C p x p and p is precise. We omit the details of the proof.
Now, we prove the equivalence between the formulas ¢ and y. To show the right

implication, let g, i, hg be states and L a finite set of locations such that
H = {mg +ho | mg#ho Amg|Elhg Amg T e} A B = Hysho A hg[R|Hp.
Since (R,E) is a coupling pair and hg[R]hj, there exists ng such that
nr[Elhg A ng Egom(ny) hiz-

Since R;E = R, state ny is related to iy by R, and since h} is disjoint from hy, state ng is

also disjoint from hg. Thus, we have
ng * ho[R * Al hg * hy. (7.1)
Moreover, since E is per and ng[E|hg,

H= {mR *h() | mR#h() /\mR[E]nR /\mR EL hﬁg}

7.1. State-based Representation of the Power Simulation Method 154

By Fact 1, this implies that
H = {m | m|E *Alngxho Am Cp hp xho}. (7.2)

Formula y follows from 7.1 and 7.2.

For the other implication, consider a state /2 and a finite set L of locations such that
H={m|mE*xAh AN hTph} A h[RxAJR.

By the definition of R* A, there exist splitting hg * hg = h of h and hj « hjy = i’ of i’ such
that
hr[RHy A ho[AlH).
By the definition of A, hy = hj. We now apply Fact 1 to hg, ho,hy, and get the following
equality:
H = {mgxho | mg#hr N mg[Elhg A hg Cp hy}.

This equality together with /' = hj x hy and hg[R]h} implies the formula ¢. O

Finally, we prove the main result of this section, that is, that the power relation has

a state-based characterization.

Proposition 2. We have that r'[psim(pw(R,E,rs)QA, pw(R,E,rs)QA)]r, iff for all k' h, Ly, if

I [RxAlh N (Vho. h(rs(E, Lo, h")|ho = —ho[r]av A =ho[r]wrong), then
1. =K' [r'lwrong A =H'[r'|av, and
2. for all output states m' of ' from h' (i.e., W'[r'Im’), there exist m,L; s.t.

m' [RxAlm A (VYmg.m[rs(ExA,Ly,m")mo = 3ho. hrs(ExA, Lo, k') ho A ho[rlmo).

The main message of the state-based characterization lies in the second condition,
which is about the output states of the concrete “command” r’. The condition states that
every such output state m’ from the given concrete input /' should be RxA-related to
some “backtrack-able output” m of the abstract r from h: for some L, abstract command
r can backtrack every rs(ExA,L;,m’)-equivalent state my of m, to some rs(ExA,Ly,h)-
equivalent state A of h. Thus, the condition mimics the usual tracking requirement in
forward simulation, but it requires that every normal concrete computation should be
tracked by some imaginary “backtrack-able abstract computation,” instead of a normal

abstract computation.

7.1. State-based Representation of the Power Simulation Method 155

Proof. We will prove two facts about r and r/, which together imply the proposition.
Note that, when both the definition ¥ of psim and its new characterization y; given
here are viewed syntactically, they are universally quantified formulas whose bodies
are @o = Yo Ay, and @; = y; Ay, respectively. Consider the splittings of % into o; =
V...¢i=vy; and B; = V...¢;=y/ where the universal quantifications are precisely the ones
in the original formulas . Then, the original formula is equivalent to the conjunction
of the split pieces. The first fact about r and /, which we will prove shortly, expresses
the equivalence between the first pieces o, o of the two splittings, and the second fact
the equivalence between the second parts f, B of the splittings. Thus, these two facts
together give the equivalence between yy and ¥, as required. We prove the first fact

below:

VR H. (W' [pw(R,E,rs)QAJH A —H|Ift(r)]av A =H[Ift(r)]wrong)
= (=h'[r']av A =H'[r|wrong)
< (. pw(R,E,rs)®@A = pw(R*A,ExA,rs))
VA H. (h'[pw(R*A, ExA,rs)|H A —H|Ift(r)]av A —=HIft(r)]wrong)
= (=l [r']av A =1/ [r']wrong)
<= (. the definition of pw(R*A, ExA,rs))
Vh' H.
(3h, Lo. W' [RxAJh NH={ho | h[rs(ExA,Lo,h’)|ho} A —H|Ift(r)]av A —=H[Ift(r)]wrong)
= (=h'[r']av A —H'[r |wrong)
<~
VI H. h, L.
(W' [RxAJh NH={hg | h[rs(ExA,Lo,h")|ho} A —H|Ift(r)]av A —=H[Ift(r)]wrong)
= (—h'[F']av A=l [F']wrong)
<~
VI, h, L.
I [RxAJh A —{hq | h[rs(ExA, Lo, h')|ho }[Ift(r)]av L (Sl [lav A I [Jwrong)
A={ho | h[rs(E*A, Lo, i) |ho }[ft(r)|wrong

<= ("." the definition of Ift(r))

7.1. State-based Representation of the Power Simulation Method 156

VI, L.
(W' [RxAJh A (Vho. h[rs(ExA, Lo, h')]ho = —ho[r]av A =ho[r]wrong))
= (=h'[r']av A=l [F'lwrong)
The second fact can be proved as follows:
Vi . H,m'. (W [pw(R,E,rs)®AIH A —H Ift(r)]av A ~H[Ift(r)]wrong A R'[r']m’)
= (IM. m'[pw(R,E,rs)QAIM NH|Ift(r)|M)
< (. pw(R,E,rs)@A = pw(R*A,ExA,rs))
Vi . H,m'. (K [pw(R*A, ExA,rs)]H A —H Ift(r)]av A ~H Ift(r)lwrong A W' [r/|m)
= (3IM. m' [pw(R+A,ExA,rs)|M N H|Ift(r)|M)
<= (. the definition of pw(R*A, ExA,rs))
Vi H,m.
3h, L. W' [RxAJh NH={hg | hrs(E*A, Ly,)]|ho}
A—H(Ift(r)]av A —H|Ift(r)]wrong AW [|m’
= (3M,m,L,. m'[RxAlm AM={mq | m[rs(ExA,Ly,m")|mo} N H|Ift(r)|M)
<~
Vi H,m' b, L.
W [RxAJh NH={hy | h[rs(ExA,Lo,h")]ho}
A-H[Ift(r)]av A =H[Ift(r)]wrong AR [r']m’
= (IM,m,Ly. m'[RxAlm NA\M={mq | m[rs(ExA,Ly,m")|mo} A H|Ift(r)|M)
<~
VH' ,m' h,Ly.
W [RxAlh AN [lm’ N—={hq | h[rs(ExA,Ly,h")|h}[Ift(r)]av
A={ho | hrs(ExA, Ly, h")]h}[Ift(r)]av
Am,Ly. {hg | h[rs(ExA, Ly, h")]ho }HIft(r)|{mo | m[rs(E*A, Ly, m")|mo}
Am'[RxAlm
<= ("." the definition of Ift(r))
VH ,m',h, L.
(h’ [RxAJR AR [P'1m A (Vho. h[rs(ExA, Lo, h')|ho = —ho[r]av A —hg [r]wrong))
dm,Ly. m'[RxAlm

=
/\Vmo.m[rs(E*A,Ll,m’)]mo = dhg. h[rS(E*A,Lo, h/)]ho VAN ho[l’}mo

7.2. Example 157

<~
VI, Lo.
(h’ [RxAJh A (Vho. hlrs(E*A, Lo, h')]hg = —ho[r]lav A —hg [r]wrong))
=
V! W[|m’ =
dm, L.
m'[RxAlm

AVmg.m[rs(ExA,Ly,m’)lmo = 3ho. h[rs(ExA, Lo, h')|ho A ho[rlmo

7.2 Example

In this section, we show that the XOR-linked list representation of the doubly ended
queues is equivalent to its doubly-linked list representation. First we give the definition

of equivalence between two modules.

Definition 26 (Equivalence). Two modules (p,n) and (g, €) are equivalent if and only if they

data refine each other.

We formally define predicates xlist and dlist. Let & be a sequence. Predicates xlist and
dlist are defined inductively on the sequence . Empty sequence is denoted by ¢, and -

conses an element to the front of the sequence. The definitions are taken from [71]

dlist €(i,7, j, j) emp Ai=jAi'=]

dlista-a(i,i,k,k') = 3Fj.ira,ji'*dlist o(j,i,k,k')

xliste(i,i',j,j)) = empAhi=jAi=]

xlista-o(i,i',k,k') = 3Fjira,(jei)«xlist a(j,i,k,k')

7.2. Example 158

We define the dlist module (p, n) with the following.

hep <= he Ja.dlist oo(i,nil,nil,m)

hn(insert(a))lv < @, j,a,B.a¢ a-B A dlist o(i,nil,l, j)*dlist (I, j,nil,m)x
true A Fk,k+1,k+2 ¢ dom(h). v=h[j+ 1+ k,1+2 K-
k—a,l j)V (a€a-B N v=wrong)

h[n(delete(a))lv < (3l j,k,a,b,B.b=a N hedlist a(i,nil,k,j)«k+— b,l, j*
dlist B(,k,nil,m)xtrue A . h=V kb1, jA
v=V[j+1l—=LI+2—j]) V (ag a-b-B N v=wrong)

Similarly, we define the xlist module — (g, €).

hegqg <= heJa.xlist a(i,nil,nil,m)

hle(insert(a))lv <— (3l j,a,B.a¢ o-B A xlist a(i,nil,l, j)«xlist B(I, j,nil,m)x
true A Jk,k+1¢dom(h).v=h[j+1—kDIDh(j+1),
I+1—k®jdh(l+1)]-k—al®j)V (@aca-B A
v = wrong)

hle(delete(a))lv < (3L, j,k,o,b,B.b=a N h e xlist o(i,nil,k, j)xk — b, D jx

xlist B(1,k,nil,m)xtrue A . h=Vxk—b,l&jA
v=V[j+1l—=k®ldV({(j+1),l+1—kdjdV(I+1)])
V(a¢ a-b-B N v=wrong)

We can assume for i,m — the delimiters of the lists, that they are some fixed locations
and for simplicity that they are always in the domain of the heap. We leave out initial-
ization and finalization operations (we can always impose that they are empty relations,
and that lists are always constructed by the client using the insert() operation). All of

these operations are finite local actions.
Lemma 28. All the operations of the both modules (p,n) and (q, €) are finite local actions.

The proof is based on routine checking that all four properties: safety monotonicity,
frame property, finite access property and content independence hold.

The proof of equivalence of the XOR-linked and doubly-linked modules is some-
what complex and therefore for the sake of better organization and understanding we
divide it into two parts. We separately prove the two directions of data refinement be-

tween the modules, from which it will result their equivalence.

7.2. Example 159

7.2.1 Power-simulation of doubly-linked list module by the XOR-list module

We now prove that the XOR-linked list module data refines the doubly-linked list one.
To do that we need to provide the refinement (power) relation and prove for both insert ()
and delete() operations of the XOR-linked list module that they power simulate the cor-
responding operations of the doubly-linked list module.

We define the refinement relation R to be

h[RIH <= 3L,a. h € xlist a(i,nil,nil,m) N

H = {K| I €dlist a(i,nil,nilm) A k' T, h}

It is easy to check that R : ¢ <> P(p). We need to make sure that R is admissible.
Lemma 29. R, defined as above, is admissible.

Proof. let h and H be such that h[R]H. Then there exist a finite set of locations L and a
sequence o such that i € xlist a(i,nil,nil,m) and H = {l' | i € dlist ot(i,nil,nil,m) N ' Cp,
h}. We first prove that H # (), by constructing a heap /' such that # € H. Let n be a
length of sequence ¢, i.e. there exist ay,...,a, such that « =a;-...-a,. Let ;4 j € Loc
be any locations such that /; + j # Iy + j and [;+ j ¢ dom(h) UL, for i,i’ = 1,....n, i # 17
J,J'=0,...,2. Such locations exist, since Loc is infinite and dom(k) and L are finite. We
construct 4’ by setting its domain to dom(#') ={;+j|i=1,...,n, j=0,1,2}, setting

W (i) =1, i'(m) = I, and letting i’ : Loc — Loc to be the map defined by:

a;, I=1,i=1,...,n

Li+1, I=L+1,i=1,....n—1
Wi — nil, I=1,+1

-1, I=1042,i=2,....n

nil, [=1+2

undefined, otherwise.

Then, i’ € dlist o(i,nil,nil,m). Since dom(h’) N (dom(h) UL) =0, i.e. dom(K')NL =0, it
follows that dom(#') N L C dom(h)NL, i.e. k' T h. Therefore, ' € H and H # ().

We now check the other condition of admissibility. Let L; be any finite set of loca-
tions. Then,

Hy = {h' | W' edlist a(i,nil,nil,m) A h' T, h}

7.2. Example 160

is a subset of H, as L _ is anti-monotone. H; is not empty, as we can always construct a
heap £, that belongs to H, in a similar manner as above. Since L, is an arbitrary finite set
of locations, this is true for any such set. Heap / is power-related to H; by the definition

of R. We have proved
H#@ A VL Cgn Loc.3H,; QH(HI #@ A h[R]Hl A Yhy € Hi.h Cp h)
i.e., relation R is admissible. O

We now prove that the insert() operation of the XOR-linked list module power simu-
lates the insert() operations of the doubly-linked list module, with respect to the power

relation RQ A.

Lemma 30. The following holds:
g(insert(a))[psim(R®A,R® A)|n(insert(a)).

Proof. Let h and H be such that h[R® AJH. Let —=H[Ift(n (insert(a)))]wrong. We first show
that —h[e(insert(a))]wrong. From h[R ® A]H, it follows that there exist H;,h; and hg such
that

hl[R]Hl and H = H1 * {ho} and h = hl -ho and hl#ho.
Let a and L be such that &, € xlist o(i,nil, nil,m) and

Hy = {hy | hy € dlist ot(i,nil,nil,m) A hy Edom(hg) hi},

H = {h2 | hy € dlist Ot(i,nil,nil,m) A hy Cp hl}.

Then, because h #hy and h, Cdom(hg) 11, H can be written as
H = {/’lQ * hg ’ hotthy N hy € dlist Ot(i,nil,nil,m) A hy Cfp /’l]}.

Since the lifted execution of n(insert(a)) does not go wrong from set H, this means
that for all A3 in H, hs € dlist a(i,nil,nil,m) * true and a ¢ o. On the other hand h €
xlist ou(i,nil,nil,m) * true and since a ¢ o the execution of €(insert(a)) does not go wrong
on h either.

Now, we prove that the second condition of the power simulation method holds.
Let g be an output state of €(insert(a)) from h. Then, since & satisfies xlist &t (i,nil, nil, m) *

true then there exist B and y (possibly empty) such that & = -7, and [, j such that

7.2. Example 161

h € xlist B(i,nil,1, j) = xlist y(I, j,nil,m) « true. State g is the output state, and so there exist

k,k+1 ¢ dom(h) such that
g=hlj+1—k®l®h(j+1),l+1—k®jOh(l+1)] k—a,lj.

We have that & = h; - hy (recall that h; € xlist a(i,nil,nil,m)) and —h;[€(insert(a))]wrong
and since h[€(insert(a))|g, then by the frame property there exists a state g;, such that

hi[e(insert(a)|g1, and gi#ho and g = g - ho. Then g; € xlist B - a- y(i,nil,nil,m), i.e.
gi=mlj+1—k®ldh(j+1),l+1—k®jOh(l+1)] -k—a,ld].

Now, we construct the set G such that H|Ift(n(insert(a)))]G and g[R * A]G. We know

that
H = {h]| hottho A hy € dlist au(i,nil,nil,m) A hy Ty by}
= {hy| 3n. hatthy A hy € dlist B(i,nil,n,m) *dlist y(i,n,nil,m) A
hhCrhy AN a=p-v}.
Now, let

Gi={g-k—alj| g=hlj+1—kl+2—kl A hy€H A githy A
k,k+1 ¢ dom(hy) Udom(h) UL}

Then, for all g, € G, since hy T hy and k,k+ 1 ¢ dom(h) and h;#ho, we have that G| = {ho}
is defined. Set G = G * {ho } is the one we are looking for. By construction, G is a possible

output of Ift(n(insert(a))) from H:

=m[j+1—kl+2—kl-k—a,,j N gthy A
G = (& hol

hy € H N kk—+1 §édom(h)UL

L ‘ gzzhz[j+1i—>k,l—|—2i—>k]'k'—>a,l,j A hy Cp hy N gotthy A
= 82-Mo
hy € dlist B - y(i,nil,nil,m) A k,k+1 ¢ dom(h) UL

| g=hlj+1—kl+2—k|-k—a,l jA
= 8

heH A k,k+1¢dom(h)UL

It is easy to see that for all states g in G there exists a state 4 in H, such that A[n (insert(a))]g,
i.e. H[Ift(n(insert(a))]G.

Finally, we prove g[R®A]G. We already know g = g xho, and g; € xlist B-a- (i, nil, nil,m)

7.2. Example 162

and G = G| x{hp} and

g =m[j+1—kl+2— k] A k,k+1¢ dom(h)UL
G = g2'k'_>a7laj|

A hy €dlist B - y(i,nil,nil,m) N hy Cp hy

{g3| g3 €dlist B-a-y(i,nil,nil,m) N\ g3 Cp hy A gs#ho}
Hence, there exist L and o’ such that g € xlist &' (i,nil,nil, m) and
G1 = {g> | g» € dlist &' (i,nil,nil,m) N g2 Cp g1 N gatho}.
Therefore, g1[R]G}, and so g[R® A]G. O

We now prove that the delete() operation of the XOR-linked list module power sim-
ulates the delete() operation of the doubly-linked list module, with respect to the power

relation R Q A.

Lemma 31. The following holds:
€(delete(a))[psim(R® A,R® A)n(delete(a)).

Proof. Let h and H be such that /[R® A]H. From this assumption we have that there exist

ho,h1 and H;, oc and L such that
hi[RJHy and h = hy -hp and H = H; % {hy},
where hy € xlist (i, nil,nil,m) and
H, = {hy | hy € dlist a(i,nil,nil,m) N hy Cp hy A ho#ho}.
i.e.
H = {hy-hy | hy € dlist ot(i,nil,nil,m) N\ hy Ty hy A hotthy}.

We first show that the first condition of the power simulation holds. Suppose —H
[Ift(n (delete(a)))] wrong. Then, for all 4’ € H, it is true that —/'[n(delete(a))]wrong and
hence, there exist [, j,k, 3,7, such that &« = B -a-y, i.e. K’ = hy-hy and h, € H;. On the
other hand, h = h; - hy, and h;[R]H], so h; € xlist a(i,nil,nil,m), and since a € o, we have

—hle(delete(a))]wrong.

7.2. Example 163

Now, we prove that the second condition of the power simulation holds. Let g be an
output state of £(delete(a)) when run in state &, i.e. h[e(delete(a))]g. Then, let [, j ki, B,y

and g’ besuchthata =f-a-v, i.e.
h € xlist B(i,nil,ky, j) x ki — a,l ® j*xlist y(I,ky,nil,m) * true

and

g=glj+t1—kalegd(j+1)l+l—kejog (1+1)],

where h =g’ -kj — a,l® j (g is a heap obtained from h by taking away the element that
points to a and in which all the pointers are set correctly to form a list again). From
h = hy - hy and —h;[€(delete(a))|wrong, it follows by the frame property that there exists a
state g; such that g = g; xho and h; [e(delete(a))]g1, i.e. g1 € xlist B - ¥(i,nil,nil,m). We now

construct G. State set H can be represented as H = H * {hy}, where

Hy={hy| hyedlist B(i,nil,k,j)*k— a,l,jxdlist y(I,k,nil,m) A
hotthy N\ hy T, hl}.

We define G, to be
Gi={g|3g|- 2=\l +t1—=kl+2—k A hy=g\xk—a,l,j N hy € Hl N hy#hg}.

Then, since for all g; € Gy , there exists hy € H}, such that dom(g,) C dom(h;) and since
for all h, € H, it is true that hy#hy, then g #hg also, i.e. set G = G x{hy} is defined and
non-empty (because by the admissibility condition H; must be non-empty). We claim
that G is the set we are looking for.

By construction, G is a possible output state set from H:
G={gho| Hgll.gzzgll[j+ll—>k,l+2l—>k] ANh=g\-k—al,jANhy-hycH A hottho}.

For all ¢’ € G, there exists i’ € H such that g'[n(delete(a))]h’. We know that hy#hy and
hy Cr hy. Let Ly be equal to L\ {k;,k; + 1} (locations that were deleted from 4 by running
€(delete(a))). Let A’ be any state in H, then i’ Ty h, i.e. dom(h')NL C hNL, and for any
I,1+ 1,142 € dom(K'),we have that dom(®')\ {l,/+ 1,1+2}NL; Ch\{k,k+1}NL,ie,
g Cy, g Since g € xlist B - y(i,nil,nil,m) xtrue, i.e., g = g’ xhy and g’ € xlist B - y(i, nil,nil, m),
and also for all g» € G, g2 = g1 *hp and g; € dlist B - y(i,nil,nil,m) and g, Ty, g, we have

g[R®A]G. O

7.2. Example 164

Finally, we can conclude by what we have proved so far and by the soundness result
for power simulation method that the XOR-linked list module data refines the doubly-

linked list module.
Theorem 11. Module (p,n) data refines module (g, €).

Proof. The proof follows from lemma 30 and lemma 31 and the soundness theorem 9.

O]

7.2.2 Power simulation of XOR-linked list module by the

doubly-linked list module

Finally we prove that doubly-linked list module also simulates the XOR-linked list one.
It can be easily noticed that a XOR-linked list takes less space than a doubly-linked list to
represent the same sequence. This indicates that it might be possible to find a growing
refinement relation and instead of proving the power simulation between the modules,
to prove their forward simulation.

We give the refinement relation

hi[Rlh, <= 3a. h; €xlist o(i,nil,nil,m) A hy € dlist o(i,nil,nil,m) A
dom(h;) € dom(hy)

We now prove that the insert() operation of the doubly-linked list module power

simulates the insert() operation of the XOR-linked list module, with respect to the power

relation R Id.
Lemma 32. The following holds:
n(insert(a))[fsim(R Id, R« Id)]e(insert(a)).

Proof. Let h[Rx1d]h,. Then there exist states i, and hg such that h; = h} - hp and h, =
, - ho and K [R]K). That means that 4| € xlist a(i,nil,nil,m) and k) € dlist o(i,nil, nil,m).
We first prove the first condition of forward simulation, so let =4 [€(insert(a))]wrong.
Then, a is not in the sequence « already, so neither 1 (insert(a)) goes wrong on state 5.
Now we prove that the second condition of the forward simulation holds. Let g; be
such that hy[n(insert(a)]g> and let —h;[€(insert(a))]wrong. Then by the definition of the
operation,

L=m[j+1—kl+2—k|-k—a,l,j

7.2. Example 165

for some k,k+ 1,k+2 ¢ dom(h,) and [, j € dom(h;). Then [and j are the delimiters of the

two sublists of sequences 8 and y such that @ =3 - 7. Let
g1 :hl[jl—i-l Hn@ll@h(j—i-l),ll—i-lHn@jl@h(ll+l)]-nl—>a,ll@j

where {n,n+1} C{k,k+1,k+2}and [}, j; € dom(h;), such that/; and j; are the delimiters
of the sublists that represent sequences 8 and y. Then we claim that g; is the state we
are looking for. Firstly, i [n(insert(a))]g: follows from the construction of g;. Secondly,
g1[R +1d]g2 because, in both states g; and g, the same sequence f3 -a- v is represented, and
by the construction of g, we also have that dom(g;) C dom(g2). The Id part follows from

the frame property. O

We now prove that the delete() operation of the doubly-linked list module simulates
the delete() operation of the XOR-linked list module, with respect to the refinement

relation R * Id.

Lemma 33. The following holds:
1n(delete(a))[fsim(R*1d,R x|d)]e(delete(a)).

Proof. Let hi[R]h;. Then there exist states A}, 1} and hg such that iy = k) - hg and hy = I, - hg
and A} [R]l,. That means that) € xlist o(i,nil,nil,m) and K, € dlist a(i,nil,nil,m).
We first prove the first condition of forward simulation, so let =/, [e(delete(a))]wrong.
Then, a is already in the sequence ¢, so neither 1 (delete(a)) goes wrong on state &;.
Now we prove that the second condition of the forward simulation holds. Let g, be
such that h;[n(delete(a)]g and let —h;[e(delete(a))]wrong. Then by the definition of the
operation,

g =hj+ 1= 1L1+2+]

where /) is such that hp = 1)) -k+— a,l, j. Then [and j are the delimiters of the two sublists

of sequences 3 and 7, such that the original sequence was & = f3-a- 7. Let
gi=hh+1=0h+1 ji]

where hf is such that h; = h{ -n+— a,l; & j; and, [; and j; are the delimiters of the sublists

that represent sequences 8 and y. Then we claim that g is the state that we are looking

7.2. Example 166

for. Firstly, hj[n(insert(a))]g: follows from the construction of g;. Secondly, g;[R = Id]g>
because, in both states g; and g, the same sequence f - 7 is represented, and by the
construction of g,, we also have that dom(g;) € dom(gz). The Id part follows from the

frame property. O

Similarly as in the previous case, we can now conclude according to the previous
two lemmas and soundness of the forward simulation with growing relations, that the

doubly-linked list module data refines the XOR-linked list one.
Theorem 12. Module (q, €) data refines module (p,n).

Proof. The proof follows from lemma 32 and lemma 33 and soundness result for the

forward simulation, Theorem 6.]

Finally, we can prove the equivalence of the doubly-linked and XOR-linked repre-

sentations of the doubly-ended queues, using the results we have shown so far.
Theorem 13. Modules (p,n) and (g, €) are equivalent.

Proof. The proof follows from Theorem 11 and Theorem 12. O

167

8

Conclusion and Future Work

It has long been known that pointers cause great difficulties in the treatment of data
abstraction [40, 39, 10, 20]. This has lead on to a non-trivial body of research. The focus
of our work on problems caused by low-level pointer operations, sets it apart from all
this other research.

In order to be able to consider different data representations of an abstract data struc-
ture and allow pointers and their manipulations, we defined a class of programs which
are guaranteed to have a “nice” behavior. Namely, separation contexts are client pro-
grams which, using the services of a certain module, change or read the state of a mod-
ule only indirectly, that is through the operations that module provides through its in-
terface. We introduced a concept of a separation context semantically. We tweaked the
standard semantics of a small while-language by parameterizing it by a module and
by adding additional rules which can detect any illegal attempts of a client to deref-
erence module’s part of the state. Then, it can be checked in the semantics whether a
certain client program is a separation contexts. However, there is a more practical way
of checking if a program is a separation context. That can be done using a program
logic, in particular separation logic. As we showed, by proving that a program satis-
fies certain specification in an environment which contains a module, we obtain that
the program then also has to be a separation context for the relevant precondition and
assumed module. Our hopes are that, as static checking tools like Smallfoot develop,

this can give rise to static checking methods for imperative modularity.

168

We have introduced two methods for proving data refinement: forward simulation
method and power simulation method. Once simulation is proved between two mod-
ules, we are interested in ability to lift the simulation to the whole language. Both lift-
ing and soundness largely depend on whether the programs in question are separation
contexts for given modules. In fact, neither of the methods put any requirements on
programs that are not separation contexts.

The forward simulation method employs a binary relation between the states of the
abstract program and its concrete counterpart. It is based on a requirement that the
refinement relation is preserved by the operations of the module. In order to prove that
one operation forward simulates another, one must ensure that starting from related
states, what ever step the concrete operation makes, the abstract one is able to perform
the same step in such a manner that the refinement relation between the output states
still holds. For lifting and soundness results, we had to restrict refinement relations only
to the growing ones, i.e. where the abstract state is in a certain sense smaller than the
concrete one. This is the crucial restriction which ensures the soundness of the method.
The downfall of this restriction is that certain examples, such as the equivalence of the
doubly-linked and XOR-linked list representations of the doubly ended queues, cannot
be tackled using the forward simulation method.

For more advanced applications, we introduced a more general method, a power
simulation method. The method is based on using the so called power relations, rela-
tions between a concrete state and a set of abstract states. The principle on which it is
based is the same as in the forward simulation method, except that here instead of the
ordinary execution of the abstract program on a single state, we have its lifted execution
on a set of states. An important presumption for the power simulation method and its
soundness is that all the involved power relations are admissible. While the admissi-
bility condition ensures the soundness of the method, it removes the restriction that the
state has to grow as it gets more concrete. This allows us to consider a great deal of
examples that the forward simulation method could not handle.

The difficulty with the power simulation method is that it consists of complex ob-
jects, such as power relations, sets of states, etc., which are harder to deal with than

the simpler data of forward simulation method. The lucky circumstance is that in some

169

special cases, which are of great importance, the power simulation method has a state
based representation which is by far easier to manipulate.

Now, it may seem that the problems that we target here arise only because of lan-
guage bugs. Indeed, previous work has relied strongly on protection mechanisms of
high-level, garbage collected languages. However, we would counter that a compre-
hensive approach to abstraction cannot be based on linguistic restrictions, particularly
on limiting cross-boundary pointers. For, the fact of the existence of significant suites
of infrastructure code — operating systems, database servers, network servers — argues
against it. The architecture of this code is not enforced by linguistic mechanisms, and it
is hard to see how it could be. Low-level code naturally uses cross-boundary pointers
and address arithmetic. But it is a mistake to think that infrastructure code is unstruc-
tured; it often exhibits a large degree of pre-formal modularity. There is no inherent
reason why the idea of refinement of modules should not be applicable to it, as demon-
strated in this work.

There are several directions in which our work on data refinement could expand.

Completeness. We introduced a power simulation method in the thesis and proved
its soundness. We suspect that the power simulation method is also complete, but to

prove that is far more challenging. We leave that for future work.

General theory of data refinement. It would be useful to produce a general theory of
data refinement which would give us a way to connect two heap models, each a partial
commutative monoid. This would allow us to refine the heap and hence the resources,
in stages. To illustrate, one might start with a sequence-based representation of a queue
data type, refine it with a linked-list representation in a heap where pointer identities
are opaque (like in ML), and then refine again to a heap where the addresses are integers

(like in C or assembly).

Unconstrained multiple modules. We have considered a setting in which a client pro-
gram interacts with only one module. A possible future direction could be to extend our
setting so that a client may interact with several modules. We suspect that the extension
where modules are completely independent would be straightforward. However, more

interesting situation is where modules might share resources. For example, if one mod-

170

ule “owns” a tree and another “owns” a list, it is possible that the list itself consists of

the leaves of the tree of the tree-module.

Multiple-instance classes. In our work we considered only single-instance classes and
we do not examine inheritance and behavioral subtyping, concepts of importance for
the object-oriented programming. It would be worthwhile to extend our setting to in-

clude some of the features of the object-oriented approach.

Concurrency. Our work on data refinement relies heavily on Separation logic. There
has been a significant progress in Separation logic in work on concurrency [59], in partic-
ular, shared-memory programs. One possible direction for future work is to use ideas
from concurrent separation logic and apply them in the field of data refinement in a

concurrent setting.

Refinement calculus. Our work is still in a conceptual stage, analogous to earlier
Hoare’s work [35], which set down a conceptual framework, but which came before
the refinement calculus. One future direction that imposes itself is a development of a

refinement calculus, which would give a more practical approach to data refinement.

Tool. Finally, in today’s world where automatic and semi-automatic tools are mush-
rooming, it is impossible not to think of developing a tool as a possible future direc-
tion. In fact, there are several refinement tools that are used for development of (safety-

critical) software [27, 46, 1], and that adds to the motivation.

Index
H,57

S¢, 57

Sm, 57

A,, 82

z, 59

aop, 126

%, 59, 82

av, 67

£,127
116,y 127
[=1p.my, 127
F, 121

F', 121
fsim, 83
GLAct, 65
~_, 67
Ift(r), 129
MOp, 65
pid, 126
prot, 122
Cy, 118
wrong, 63
cl], 72

p-protected execution, 122

access violation, 67
admissible power relation, 131

allocation-status testing, 26

complete command, 80
coupling

pair, 151

power relation, 132

relation, 81
data refinement, 81

environment specification
definition, 104
expansion of, 105

expansion operator, 132

finite access property, 119

finite local action, 121

FLA, 121

forward simulation
forward simulation method, 83
of modules, 84

frame property, 63

frame rule, 100

general content independence, 64
general local action, 65
greatest relation, 75

growing relation, 85
hiding, 100
information leaking, 18

lifting of FLA, 129

171

lifting theorem
traditional, 45

local action, 63

module, 65

module equivalence, 157

ownership , 55

transfer, 22, 55

power relation, 129

power simulation method, 134

precise

binary relation, 81
RAM model, 58

safety monotonicity, 63
separating conjunction
logical connective, 60
of binary relations, 82
separation context, 72
Separation logic, 59
simulation method
traditional, 44

simulation theorem

forward simulation method
informal statement, 79

forward simulation method

formal statement, 88

power simulation method, 139

traditional , see lifting theorem45

soundness

forward simulation method

172

informal statement, 80
forward simulation method
formal statement, 92

power simulation method, 141

tight interpretation of triples, 99

173

Bibliography

[1]

(2]

3]

[4]

[5]

[6]

[7]

[8]

[9]

http://www.vdmbook.com/tools.php.

J. R. Abrial. The B-Book: Assigning Programs to Meanings. Cambridge University
Press, 1996.

J. R. Abrial. Event based sequential program development: application to con-

structing a pointer program. In FME 2003, pages 51 — 74. Springer, 2003.

PS. Almeida. Balloon types: Controlling sharing of state in data types. In
ECOOP970bject-Oriented Programming, 11th European Conference, volume 1241 of
LNCS, pages 32-59. Springer-Verlag: Jyvéaskyld, Finland, 1997.

A.Rezazadeh and M. Butler. Some guidelines for formal development of web-
based applications in B-method. In Helen Treharne, Steve King, Martin C. Hen-
son, and Steve Schneider, editors, ZB05, volume 3455 of Lecture Notes in Computer

Science, pages 472-492. Springer, 2005.

R. J. Back. On the correctness of refinement steps in program development. Tech-
nical Report A-1978-4, Department of Computer Science, University of Helsinki,
1978.

R. J. Back, X. Fan, and V. Preoteasa. Reasoning about pointers in refinement
calculus. In Proceedings of the Tenth Asia-Pacific Software Engineering Conference

(APSEC’03), 2003.

A. Banerjee and D. Naumann. Ownership confinement ensures representation
independence in object-oriented programs. Journal of the ACM, 52(6):894 — 960,
November 2005.

A. Banerjee and D. Naumann. State based ownership, reentrance and encapsula-

174

tion. In Proceedings of the Nineteenth European Conference on Object-oriented Program-

ming (ECOOP), volume 3586 of LNCS, pages 387 — 411. Springer-Verlag, July 2005.

[10] A. Banerjee and D. A. Naumann. Representation independence, confinement and
access control [extended abstract]. In Proceedings of 29th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages (POPL02), pages 166-177. ACM
Press, 2002.

[11] Anindya Banerjee and David A. Naumann. Ownership: Transfer, sharing, and

encapsulation.

[12] M. Barnett, R. DeLine, M. Fahndrich, K. Rustan M. Leino, and Wolfram Schulte.

Verification of object-oriented programs with invariants. JOT, 3(6), 2004.

[13] J. Berdine, C. Calcagno, and P. W. O'Hearn. A decidable fragment of separation
logic. In K. Lodaya and M. Mahajan, editors, FSTTCS 2004, volume LNCS 3328,
pages 97-109, December 2004.

[14]]J. Berdine, C. Calcagno, and P. W. O’Hearn. Symbolic execution with separation
logic. In K. Yi, editor, APLAS 2005, volume LNCS 3780, pages 52-68, November
2005.

[15] J. Berdine, C. Calcagno, and P. W. O’Hearn. Smallfoot: Modular automatic assertion
checking with separation logic. In FMCO 2006, November 2006.

[16] R. Bornat. Proving pointer programs in Hoare logic. In Mathematics of Program

Construction, 2000.

[17] C. Boyapati, R. Lee, and M. Rinard. Ownership types for safe programming: Pre-
venting data races and deadlocks. In Proceedings of Object-Oriented Programming,

Systems, Languages, and Applications (OOPSLA), November 2002.

[18] C. Boyapati, B. Liskov, and L. Shrira. Ownership types for object encapsulation. In
POPL’03, 2003.

[19] C. Boyapati and M. Rinard. A parameterized type system for race-free java pro-
grams. In Object-Oriented Programming, Systems, Languages, and Applications (OOP-
SLA), October 2001.

175

[20] M. Butler. Calculational derivation of pointer algorithms from tree operations. Sci-

ence of Computer Programming, 33:221-260, 1999.

[21] M.]. Butler and M. M. R. Meagher. Performing algorithmic refinement before data
refinement in B. In Proceedings of Proc. ZB2000: Formal Specification and Development

in Z and B, pages 324-343, 2000.

[22] C. Calcagno, J. Berdine, and P. W. O’'Hearn. http://www.dcs.gmul.ac.uk/

research/logic/theory/projects/smallfoot/index.html.
[23] D. Clarke and T. Wrigstad. External uniqueness is unique enough, 2003.

[24] D. G. Clarke and S. Drossopoulou. Ownership, encapsulation and disjointness of

type and effect. In OOPSLA 2002, November 2002.

[25] D. G. Clarke,] Noble, and J. M. Potter. Simple ownership types for object contain-

ment. In Proc. European Conference on Object-Oriented Programming, June 2001.

[26] D. G. Clarke, J. M. Potter, and]J. Noble. Ownership types for flexible alias protec-
tion. In Object-Oriented Programming, Systems, Languages, and Applications (OOP-
SLA), October 1998.

[27] ClearSy. http://www.atelierb.societe.com/index_uk.html.

[28] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms.

MIT Press, second edition, January 2001.

[29] Willem-Paul de Roever and Kai Engelhardt. Data Refinement: Model-Oriented Proof
Methods and their Comparison. Number 47 in Cambridge Tracts in Theoretical Com-

puter Science. Cambridge University Press, Cambridge, UK, November 1998.
[30] E. Dijkstra. Discipline of Programming. Prentice-Hall, 1976.

[31] P. H. Gardiner and C. C. Morgan. Data refinement of predicate transformers. The-

oretical Computer Science, 87:143-162, 1991.

[32] P.H.B. Gardiner and C. Morgan. A single complete rule for data refinement. Formal
Aspects of Computing, 5:367 — 382, 1993.

176

[33] J. He, C. A. R. Hoare, and J. W. Sanders. Data refinement refined (resume). In
B. Robinet and R. Wilhelm, editors, ESOP 86, European Symposium on Programming,

volume 213 of Lecture Notes in Computer Science, pages 187 — 196. Springer Verlag,
1986.

[34] C. A.R. Hoare. An axiomatic approach to computer programming. Communications

of the ACM, 12(583):576 — 580, 1969.

[35] C. A.R. Hoare. Proof of correctness of data representations. Acta Informatica, 1:271

—281,1972.

[36] C. A.R. Hoare, J. He, and J. W. Sanders. Prespecification in data refinement. Infor-

mation Processing Letters, 25(2):71 — 76, May 1987.

[37] CAR Hoare and J. He. The weakest prespecification. Technical Report PRG-44,

Oxford University Computing Laboratory, June 1985.

[38] CAR Hoare and]J. He. Data refinement in a categorical setting. Technical Report

PRG-90, Oxford University Computing Laboratory, November 1990.

[39] J. Hogg. Islands: Aliasing protection in object-oriented languages. In OOPSLA'91,
1991.

[40] J. Hogg, D. Lea, A. Wills, D. deChampeaux, and R. Holt. The geneva convention

on the treatment of object aliasing. OOPS Messenger, 1992.

[41] S. Ishtiaq and P. W. O'Hearn. BI as an assertion language for mutable data struc-
tures. In Principles of Programming Languages, volume 28, London, 2001. ACM -
SIGPLAN.

[42] C.B.Jones. Software development: a rigorous approach. Prentice-Hall, 1980.

[43] N.Krishnaswami and J. Aldrich. Permission-based ownership: encapsulating state
in higher-order typed languages. In Proceedings of the 2005 ACM SIGPLAN confer-

ence on Programming language design and implementation, pages 96 — 106, 2005.

[44] K. Rustan M. Leino and Peter Miiler. A verification methodology for model fields.
In ESOP, pages 115 - 130, 2006.

[45]

[46]

[50]

[51]

[52]

[53]

[54]

177

K. Rustan M. Leino and Peter Miiller. Object invariants in dynamic contexts. In
Marting Odersky, editor, Proceedings of ECOOP, volume 3086 of LNCS, pages 491 —
516. Springer-Verlag, 2004.

M. Leuschel and M. Butler. ProB: A model checker for B. In Keijiro Araki, Stefania
Gnesi, and Dino Mandrioli, editors, FME 2003: Formal Methods, LNCS 2805, pages
855-874. Springer-Verlag, 2003.

N. Lynch. Simulation techniques for proving properties of real-time systems. Tech-
nical Report MIT/LCS/TM-494, Laboratory for Computer Science, Massachusetts

Institute of Technology, Cambridge, MA, 1993.

N. Lynch and F. Vaandrager. Forward and backward simulations — part i: Un-
timed systems. Technical Report MIT/LCS/TM-486, Laboratory for Computer Sci-

ence, Massachusetts Institute of Technology, Cambridge, MA, 1993.

N. Lynch and F. Vaandrager. Forward and backward simulations — part ii: Timing-
based systems. Technical Report MIT/LCS/TM-487b, Laboratory for Computer

Science, Massachusetts Institute of Technology, Cambridge, MA, 1993.

U. Manber. Introduction to Algorithms: A Creative Approach. Addison-Wesley Pub-

lishing Company, 1989.

I. Mijajlovic and N. Torp-Smith. Refinement in a separation context. In SPACE,
2004.

I. Mijajlovic, N. Torp-Smith, and P. O'Hearn. Refinement and separation contexts.
In K. Lodaya and M. Mahajan, editors, FSTTCS, volume LNCS 3328, pages 421-
433, 2004.

I. Mijajlovic and H. Yang. Data refinement with low-level pointer operations. In
Kwangkeun Yi, editor, Programming Languages and Systems, volume LNCS 3780,
pages 19-36, November 2005.

C. Morgan, K. Robinson, and P. Gardiner. On the refinement calculus. Technical

Report PRG-70, Oxford University Computing Laboratory, October 1988.

178

[55] P.Miiller and A. Rudich. Ownership transfer in Universe Types. In Object-Oriented
Programming, Systems, Languages and Applications (OOPSLA), 2007. To appear.

[56] P. O'Hearn and D. J. Pym. The logic of bunched implications. Bulletin of Symbolic
Logic, 5(2), June 1999.

[57] P. O'Hearn, D. J. Pym, and H. Yang. Possible worlds and resources: The semantics

of BL. Theoretical Computer Science, 315(1):257-305, 2003.

[58] P. O'Hearn, H. Yang, and J. C. Reynolds. Separation and information hiding. In
POPL’04, 2004.

[59] P. W. O’Hearn. Resources, concurrency and local reasoning. In Proceedings of CON-

CUR’04, volume 3170, pages 49 — 67. LNCS, 2004.

[60] P. W. O'Hearn,]. C. Reynolds, and H. Yang. Local reasoning about programs that
alter data structures. In Proceedings of 15th Annual Conference of the European As-
sociation for Computer Science Logic: CSL 2001, Lecture Notes in Computer Science,

Berlin, 2001. Springer-Verlag.
[61] M. Parkinson. Local reasoning for Java. PhD thesis, University of Cambridge, 2005.

[62] M. Parkinson, R. Bornat, and C. Calcagno. Variables as resource in hoare logic. In

Proceedings of LICS, 2006.

[63] P.Behm, P.Benoit, A. Faivre, and J.-M. Meynadier. Mtor: A successful application
of b in a large project. In FM'99 - Formal Methods: World Congress on Formal Methods
in the Development of Computing Systems, volume 1708 of Lecture Notes in Computer

Science. Springer Berlin / Heidelberg, 1999.

[64] G.D. Plotkin. Lambda definability and logical relations. Technical Report SAI-RM-

4, School of Artificial Intelligence, University of Edinburgh, 1973.
[65] A.Potanin and J. Noble. Checking ownership and confinement properties, 2002.

[66] A.Potanin, J. Noble, D. Clarke, and R. Biddle. Generic ownership for generic java.
In Proceedings of the 2006 OOPSLA Conference, volume 41, 2006.

179

[67] U.S.Reddy and H. Yang. Correctness of data representations involving heap data
structures. In P. Degano, editor, Proc. of the 12th European Symposium on Program-

ming, ESOP 2003, pages 223 — 237. Springer Verlag, 2003.
[68] Uday S Reddy. Talk at MFPS, 2000.

[69] J. C. Reynolds. Types, Abstraction and Parametric Polymorphism, pages 513 — 523.

Elsevier Science Publishers, 1983.

[70] J. C. Reynolds. Theories of Programming Languages. Cambridge University Press,
1998.

[71]]J. C. Reynolds. Lists and arrays, 2002. Slides from the Course Reasoning about
Low-Level Programming Languages held at Carnegie Mellon University, Spring

2002. Available from the course’s home page.

[72] J. C. Reynolds. Separation logic: A logic for shared mutable data structures. In
Proceedings of Logic in Computer Science, volume 17, pages 55 — 74, Copenhagen,
July 2002. IEEE.

[73] J. C. Reynolds. Precise, intuitionistic, and supported assertions in separation logic,
May 2005. Slides from the invited talk given at the MFPS XXI Available at authors

home page: http://www.cs.cmu.edu/ Jjcr/.

[74]]J. Schwarz. Generic commands - a tool for partial correctness formalisms. Computer

Journal, 10(2):151 — 155, 1977.

[75] R. D. Tennent. Semantics of Programming Languages. Prentice-Hall International

(UK) Ltd., 1991.

[76] J. Vitek and B. Bokowski. Confined types. In OOPSLA "99: Proceedings of the 14th
ACM SIGPLAN conference on Object-oriented programming, systems, languages, and
applications, pages 82-96. ACM Press, 1999.

[77] Alan Wills. Capsules and types in fresco: Program verification in smalltalk. In

ECOOP 1991, volume LNCS 512, pages 313-323. Springer-Verlag, July 1991.

180

[78] G. Winskel. The Formal Semantics of Programming Languages: An Introduction. Foun-
dations of Computing. MIT Press, 4th edition, 1997.

[79] N. Wirth. Program development by stepwise refinement. Communications of the

ACM, 14(4):221-227, April 1971.

[80] H. Yang. Local Reasoning for Stateful Programs. PhD thesis, University of Illinois,
2001.

[81] H. Yang and P. O'Hearn. A semantic basis for local reasoning. In Proceedings of

FOSSACS 2002, 2002.

