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Summary--It is shown from various view points that many of the disadvantages of the 
conventional theory based on a quadratic yield function can be satisfactorily removed by the 
us__e of a yield function of fourth order. Incremental equivalent strain de,~ is defined by 
d~,q = ~l~ dEdO~q, and cannot generally be expressed simply by the strain increment com- 
ponents de~ I. In contrast with the conventional theory, coefficients in the yield function f 
cannot be determined from the r-values only in uniaxial tensile tests, but yield stresses in 
these testsand for example in an equi-biaxial tension for the same E-~ are also required. This 
fact ensures that the c~,q-~,q curve for arbitrary loading is uniquely determined by the 
uniaxial tension curve in the rolling direction (R.D.), and thus such an intrinsic difficulty of the 
conventional theory as dependence of the 0,~ -8 ,q  curve on types of loading does not arise. 
Some formulae for the determination of the coefficients in f are given. Relationships between 
types of earing in axi-symmetrical deep-drawing and the coefficients of f are examined in 
detail and it is emphasized that only very special cases are included in the conventional yield 
function and thus use of it~i~ very limited. 

I N T R O D U C T I O N  

FOR describing the aniso~opic plasticity of sheet metal, Hill's quadratic yield function 
g~ is commonly used for conciseness. However,  many disadvantages of this con- 
ventional theory have been pointed out. For example; (1) it can only be applied to 
those materials which form four (or two) ears in an axisymmetrical deep-drawing 
operation; ~ (2) equivalent stress ~,~ vs equivalent strain ~ curves of various materials 
by this theory are dependent on the types of loading, though the curves should be 
intrinsically unique for a given material; z~J (3) in uniaxial tensile tests, the depen- 
dence of uniaxial yield stresses on the tensile directions is little predicted by the 
theory, 6 though that of r-values is well predicted; 5~ (4) there exist many sheet metals 
whose deep-drawability are not well expressed by their r-values (e.g. Ref. 3), and so 
forth. (2)-(4) are interpreted as being due to the change in the anisotropic coefficients 
in g owing to deformation. However,  formulation of the change is impossible at 
present and thus such an interpretation seems rather impractical. Furthermore, the 
difficulties mentioned above do not all seem to be of secondary importance, but their 
source may be attributed to intrinsic disadvantages of the quadratic yield function. 

In this and the following papers the usefulness of a yield function of fourth order 
(instead of a quadratic one) for roiled sheet metals with orthotropy is clearly proved. 
The difficulties of the conventional theory (1)-(4) mentioned above are almost com- 
pletely removed. The problem of the change of ardsotropic coefficients due to 
deformation can be thought to be a secondary one. 

In this paper, derivation of a yield function of fourth order, relations between 
stresses and strain increments, the definition of the equivalent stress ~ and the 
equivalent strain increment de~, the ~q vs ~eq curve, the relationship between the 
coefficients in f (the yield function), the types of ear-formation in an axisymmetrical 
deep-drawing operation, and the experimental methods of determining the coefficients 
and so on are presented. "Strain" used in this and the following papers should be 
understood to be plastic only because of the rigid-plastic idealization. 

With regard to a higher order polynomial yield function, Bourne and Hill 7 has 
already treated a third-degree one (g', say), specifically in connexion with the r-value 
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relationship for a material (brass) that shows 6 ears in axisymmetrical cupping tests, 
and reported difficulties in the equivalent stress-strain notion, g' contains 5 anisotropic 
coefficients to be determined and predicts rather well the r-value distribution in a 
plane, but it is not verified that it also predicts satisfactorily the uniaxial yield stress 
distribution in experiments. Actually their theory reports that g' fails to predict the 
directions of ears and hollows. They determined the coefficients in g' by the r-values 
in uniaxial tensile tests, co-axiality between stress and strain in a tension test at 30 
degrees to the rolling direction (R.D.), and the ratio of the strain in R.D. to that in T.D. 
(the transverse direction) in a compression test normal to the sheet plane, and they did 
not make any use of the yield stresses. Thus it seems rather doubtful that g' 
determined by them expresses well the actual distribution of yield stresses. We will 
use the yield stresses in uniaxial tensile tests and that in an equi-biaxial in plane 
tension to determine the 8 coefficients contained in the fourth-order polynomial yield 
function f. As seen later, if we do not avoid a little effort to make a compression test 
normal to the sheet plane (or a test equivalent to it, e.g. a hydraulic bulging test of a 
circular blank) added to some uniaxial tensile tests, there does not exist much 
difference between the efforts in determining the coefficients in g' and in f due to 
recent development of handy-type electronic computers, if the formulae for that 
purpose are well established. And when the third-degree polynomial g' is used, we 
must understand the plastic potential and the yield function to be Ig'[, not g' itself, 
because it is an odd function. Moreover, g' does not reduce to the Mises function for 
isotropy and the conventional quadratic yield function g by Hill for orthotropy as 
special cases and thus g' cannot be considered to be a direct extension of them to 
higher-order representations. It seems rather unreasonable from the point of logical 
consistency. Furthermore, g' does not represent the eight-ears-materials to which 
annealed commercial pure aluminium and others commonly belong. 

D E R I V A T I O N  OF AN A N I S O T R O P I C  Y I E L D  
F U N C T I O N  OF F O U R T H  O R D E R  

1. Derivation o f  the yield function f 
Let f be written as below, as in Hill's general theory: t 

f~Z | J 2k Aijttr~ ~y ~xy, i + j + 2 k ~ 4 ,  (1) 
IJ,k 

where x and y axes are taken to be coincident with the R.D. and T.D. respectively (i.e. the principal axes of 
orthotropy), and A~ are constant coefficients. 

The conditions of orthotropy and ear- and hollow-formation in an axisymmetrical deep-drawing due to 
HilP would require f in (1) to take the following form: 

• f ---- Ao(o'x -4- tyy) 2 4- [Alo 'x '  4- A20"x30"y 4- A30rx20r,2 4- A40"xtyy 3 4- Aso-y 4 4- (A60"x 2 4- A70"xO-y 4- Aaory2)Tx 2 4- A9¢x4y]. 
(2) 

The first term on the right hand side in (2) may be considered to be a term dependent on the hydrostatic 
stress and thus can be removed when we assume incompressibility of the material, namely A0 = 0 hereafter. 

The condition of ear- and hollow-formation yields the following equations: 

c o s  a • s in  a • F ( c )  = 0, c = cos 2 a, (3) 
and 

F(c )  = 4Ac~ + 3Bc 2 + 2Cc + D, (4) 

where a (in degree) indicates the direction of the tensile axis to the R.D. and the coefficients A to D are 
expressed in terms of the coefficients A~ to A9 of f in (2) (see equation 24). As Hill remarks, an ear or a 
hollow will be formed in the direction a '  = 90 - a to the R.D., where a satisfies equation (3), i.e. 

F(c) = O ,  c = c o s  2 a ,  (5)  

as w e l l  as ,~ = 0 ° a n d  9 0  °. 

2. F o r m u l a e  o f  r - va lue  a n d  uniax ia l  y ield s t res s  
The r-value for the a-direction (r.) due to the yield function f in (2) reduces to 

ro = derider = R,(c)/R2(c),  (6) 
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R~( c ) : 4AC 4 + CI c3 @ C2 c2 @ C3c - A4 ! 

and (7) 

R2(c ) = C4 C3 + C5 c2 "~- C6c "4" 4A5 + A, J 

where c : cos 2 a and 

C, = - 4 - 12A5 + 6(A2 + At) - 8(A3 + A7 + Ag) + 10(A4 + As), 

C2 = 12A5 - 3A2 - 2A6 - 9A4 - 8A8 + 6A3 + 5A7 + 4A9, 

C3 = - 4A5 - 2A3 - A7 + 4A4 + 2As, 

C4 = 4 - 4A5 - 2(A2 + At) + 2(A4 + As), 

C5 : 3A2 - 2A3 - 3A4 + 12A5 + 2A6 - A7 - 4As, 

C6 = 2A3 - 12A5 + A7 + 2As, A = (see equation 24). 

deb and det are breadth and thickness strain increments,  respectively. 
Next ,  the uniaxial yield stress cr~ for the a-direct ion to the R.D. i np lane  at a certain equivalent strain 

(which will be defined later) is given from equation (2) as follows: 

~o : ~d{a(c )} '~" ] 

and l , (8) 
G(c) = Ac4 + Be3+ Cc2 + Dc + a5 

where ¢rV.D is the uniaxial yield stress in the R.D. and A to D are given in equation (24). 
It is noted that ro due to equation (6) is constant  (that is, independent  of  strain level). And one of  the 

nine coefficients At to A9 is arbitrary and thus we can put A] = 1, say, which means f : ~ for any strain 
level. 

S T R E S S - I N C R E M E N T A L  S T R A I N  R E L A T I O N  A N D  S T R E S S - S T R A I N  C U R V E  
Incremental  strains are given by use of the function f as the plastic potential as follows: 

dex = dA [4¢r 2 + 3A20"x20"y -4- 2A3o'~o', 2 + A4ffy 3 + (2A6ff  x + ATory)'l'2y], 

de,  = dA [A2o'~ 3 + 2A3o'x2o ", + 3A4o'xo'y 2 + 4A5o', 3 + (ATcr~ + 2Ascr,)~2,], 

d~A, = dA [2(A6~rx 2 + A T ~ "  , + Aso'y2)'rxy + 4AgT3,], 
(9) 

where dA is a positive constant  dependent  on the work-hardening level, d~/:, is the engineering shearing 
strain. 

The equivalent stress 0,¢ is defined as 

O,q : (f)l/,, (10) 

and the equivalent strain increment  de,¢ is defined as 

d W p = O,q de~ -- ~j  d %  (summed over i and i), (11} 

where d W  ~ is the plastic work increment  per unit volume. And thus we have 

de~ ffi (crx dex + ~r, de ,  + % d~x,)/[~, 

and 

(12) 

~ : f ~ , q .  (13) 

From equations (10), (12) and (13) we obtain 

dA = deeJ4~3¢. (14) 

de~ for the conventional  quadratic yield function is expressed by the strain increments d %  by 
eliminating dA and ~ from the  equa___fions corresponding to equations (9), (10) and (12). I In case of  the yield 
function of fourth order,  however,  de,q is not  generally expressed by d q .  Namely,  if we put 

(~e~q) 4 = El d e / +  E2 dex 3 de,  + .  • • + E9 d~/~, 

= (4 dX)4(6~)t2, (15) 

where the last equation is derived f rom equation (14), we find that, by substituting equations (9) and (10) 
into (15) and equating individually the coefficients of the same order  terms of  ¢r,j on both  sides, far more 
equations than nine with respect  to the nine coefficients~E~ to E9 to be expressed by AI to A9 are obtained. 
We can determine them only for the special case where f is equivalent to the square of  the conventional 
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quadratic yield function. Thus we should say the conventional theory is restricted to this very special case. 
Here we adopt equation (12) as the definin_ng equation for d ~ .  

Now we show several examples of de~ given by equation (12) which are expressed in terms of the 
components d~ .  

(i) Uniaxial tension in a direction to R.D. 
From equations (10) and (12) we have 

d~,,~ = o" d~t/Ft,q = d~l l {  G (  c )}  '~4, 

where d~ is the longitudinal strain increment and G(c) is given in equation (8). 
For example, for uniaxial tension in the R.D. we have 

(16) 

crx = O'y ~ orb, Txy = O. 

#,q = (Cb)'l'cYb, d-~,q = (C~)-"'ldE,I, (18) 

Cb = AI + A2 + A3 + A4 + A~. 

(iii) Biaxial normal stress state in x - y  directions 
By putting ~x/cry = m, we have 

~,. = I c . l ' " '  Icr, I, d-/., = I f . F ' "  Im de, + de , l ,  ] 
C,. = A~m 4 + A2m 3 + A3m z + A4m + As. ~ (19) 

(iv) Pure shear in x - y  direction 

cr, = cry = O, l",y = "t, d%y = d% 

~,q = (Ag)"q" I~l, d'-~,q = ( A 0 - ' " "  Id~l.J (20) 

Now let us illustrate a method of determining the yield stress cr for an arbitrary loading system 
associated with a certain equivalent strain e0 (-- In 1.15, say), which is obtained directly f rom equation (12). 
First we illustrate the stress-strain curve for the loading system wi th the stress and strain axes chosen in 
such a manner that the area below the curve represents the current plastic work per unit volume (e.g. 
tensile stress and longitudinal strain for uniaxial tension, the stress an in-plane one and the absolute value 
of thickness strain for the E.B. tension and so on). cr and the corresponding strain ¢ are determined in such 
a manner as is illustrated in Fig. 1 where the Oeq- ~,q curve of the material is referred to and the shaded 
areas A and A'  are made equal to each other. Conversely, O,q and ~ corresponding to the point (cr, ~) are 
given by • ° and ¢0, respectively, where ~q-0 is the value of O~ = e0; they necessarily lie on the ~ -  ~,q 
curve. (Of course, we could determine them directly from equations (10), (12) and (13) without any 
reference to the Oeq - ~,q curve.) Thus we note that the O,q - #~ curve should be quite uniquely determined 
by a representative stress-strain curve (here the tz - et curve in the R.D.) of course the choice of the curve 
is dependent on convenience and the accuracy of its determination. We can adopt, e.g. the E.B. tension 
curve instead of the R.D. curve. (Then, generally A~ # 1 and all other coefficients are multiplied by a certain 
constant and A, + A2+A3+ A4+ As---1.) However, as is well known, the ~ - ~  curves of various 
materials by conventional theory show evident dependence on the type of loading and, further, those of 

t 
0 E ~o ~eq or E 

Fl(;. 1. Correspondence of  an arbitrary (~ - ¢) curve to the (#,~ - [,q) curve. 

The stress-longitudinal strain curve for the R.D. is the ~ - g,q curve of the material, which is due to taking 
A , = I .  

(ii) Equi-biaxial (E.B.) tension 

~eq = o', d~eq = d~l. (17) 
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some materials show stronger dependence  than those made under the assumption of isotropy, t-3 This seems 
one of the intrinsic disadvantages of  the conventional  quadratic yield function,  the reason for which is 
rather simple. All coefficients of  the conventional  yield function are determined by use of r-values only 
from a few uniaxial tensile tests and none of the information from equation (11) is used. This is a practical 
advantage for determinating the coefficients but it conceals unreasonableness in that no reference to 
equation (11) is made. On the other  hand, use of equation (11) is made through the use of  yield stresses 
when the yield function of fourth order  f is adopted,  because as will he seen later, we cannot  determine all 
of them from the r-values only, and uniaxial yield stresses and another yield stress other than them are also 
needed. The procedure for the determination of  the coefficients of f itself would ensure the uniqueness of 
the # ~ - ~  curve. 

When we adopt  a plastic potential different f rom the yield function, different conclusions would be 
reached. However ,  we do not  take such a line here, because another problem arises with respect  to the 
choice of the potential function. 

R E L A T I O N S H I P  B E T W E E N  T H E  C O E F F I C I E N T S  O F  f A N D  
T H E  T Y P E S  O F  E A R - F O R M A T I O N  

1. Description of the relationship 
Examinations of equation (6) leads us to the following relations. Of course these are mathematical 

classifications and thus there may exist such cases that 4-ear-materials identified by the naked eye should be 
classified as 6- or 8-ear-materials in the following due to ambiguity of ear-formation. We will show such an 
example for a commercial  copper-( l /4)H in Part  II. 

First, we introduce the following constants  where AI = 1. 

A = (AI + A3 + As + A7 + A9)-(A2 + A4 + A~ + As) 

B = (A 2 + 3A4 + A6 + 3As) - 2(A3 + 2A5 + A7 + A9) 

C = (A3 + 6A5 + A7 + Ag) - 3(A4 + As) 

D = A4 + As - 4As (24) 

E = 32AC 3 + 108AZD 2 + 27B3D - 9BC(12AD + BC) 

F=B3+8A2D-4ABC,  G = 4 A + 3 B + 2 C + D  

A*=2A+C/3,  A**=(4A+2C+D)/3,  B*=3B3-8AC.  

In general it is verified that a hollow forms at a = 0  ° and 90 ° corresponding to F ( 0 ) > 0  and F ( 1 ) > 0 ,  
respectively,  where the function F(c) is given in equation (4). In the following semi-colons (i.e. ;) should be 
understood as "and-s"  (i.e. "logical products") .  

(i) Cases where 8-ears form 

(a) E _-__ 0, A, C > 0; B, D < 0; X/(8AC/3) < - B < min [4A, A*, A**]. (25) 

(h) E < 0, A, C < 0; B, D > 0; ~/(8AC/3) < B < min [ -  4A, - A*, - A**]. (26) 

(E = 0 denotes  special cases where equation (5) has a double root. Then apparently only four ears form.) 

(ii) Cases where 

(a) 

(b) 

(c) 

6-ears form 

E_-<0; A , D  > 0 ;  B > 0 ;  C < 0 ;  B > m a x [ - A * , - A * * ] .  

E < 0 ;  A , D > 0 ;  B-<0 ;  B2>8AC/3; - B < m i n [ 4 A ,  A*,A**]. 

E <_- 0; A, C > 0; B, D < 0; 4A ~ - B > max [x/(SACI3), A**], "[ 
or - B > 4A and - B > max [X/(8AC/3), A*, A**]. J 

(d) E < 0 ;  A , D < 0 ;  B2>8AC]3; O < B < m i n [ - 4 A , - A * , - A * * ] .  

(e) E _-< 0; A,  D < 0; B --< 0; C > 0; B < min [ -  A*, - A**].  

(f) E - < 0 ;  A , C < 0 ;  B , D > 0 ;  -4A>B>max[~,/(8ACI3),-A**],)  
or B = -  > 4A and B > max [X/(8AC/3), - A*, - A**]. f 

(g) A =O; B , D > 0 ;  ~/(3BD)<--C <min[3B,(3B + D)I2]. 

(h) A = 0; B, D < 0; ~/(3BD) < C < min [ -  3B, - (3B + D)/2]. 

(27) 

(28) 

(29) 

(30) 

(31) 

(32) 

(33) 

(34) 

(In (a) to (f) E = 0 represents  cases where equation (5) has a double root and then apparently weak 6 ears or 
only two ears may form. Also when equality holds in the last relations of (g) and (h), ears may form in the 
same manner as above. These are all special cases like those of  A = 0.) 

(iii) Cases where four ears form 

(a) 3BZ=8AC; B 3= 16A2D; A > 0  and 0 < - B  < 4 A , ~  (35) 
or A < 0  and 0 < B  < - 4 A .  J 

(This is a very special case where equation (5) has a triple root. Then apparently only four ears may form.) 

(b) A D < 0 ;  AG>O; B*<=O, or B*>Oand E>O. (36) 
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(c) A > 0 ;  D < 0 ;  B * > 0 ,  G > 0 ;  B > O ' ° r B < O a n d C < O ;  } (37) 
F=>0 and E < 0 ,  or F_-<0 and E < 0 .  

(d) A > 0 ;  D < 0 ;  B * > 0 ;  G > 0 ;  B < - 4 A ,  o r - 4 A < B < - A * ; I  
F _-> 0 and E ~ 0, or F <_- 0 and E < 0. = J (38) 

(e) A < 0 ;  D > 0 ;  B * > 0 ;  G < 0 ;  B<=O, orB>=OandC>O; (39) 
F_->0 and E-<_0, or F_-<0 and E <0. 

) 
3 

(f) A < 0 ;  D > 0 ;  B * > 0 ;  G < 0 ;  B > - 4 A ,  o r - A * < B < - - 4 A ; ~  (40) 
F_->0 and E < 0 ,  or F-<_0 and E <_-0. J 

(g) B* > 0; E < 0; AD > 0; AG < 0. (41) 

(h) A=O; C2-3BD>O; B # 0 ;  D G < 0 .  (42) 

(i) A = B = 0; CD < 0; C(2C + D) > 0. (43) 

(iv) The earless case 

A = B = C = D =0. (44) 

Then we have the following relations with respect to the coefficients: 

Aj =As;  Bi = B3=4AI;  B2=6A~; / 
(45) 

J BI = A2 + A6, B2 = A3 + A~ + A9, B3 = A4 + As. 

This earless condition is a necessary but not sufficient condition for planar isotropy, see equation (58). 

(v) Cases where two ears form 
Remainders of (i) to (iv) belong to them, though detail is omitted here. 

2. Cases expressed by the quadratic yield function 
Denoting the conventional quadratic yield function by g, we have 

r 2 g = 0rx 2 -- F 'o ' x t ry  + G'ory2 d - N "rxy, (46) 

where F ' ,  G'  and N '  are the coefficients expressed by r-values. The function F(c) for g is obtained as 
follows: 

F(c) =C'c +D'= O, (47) 

where C' and D'  are constants. If we adopt ge instead of g corresponding to f, F(c) is given by that in (47) 
multiplied by g (> 0) and thus we obtain a condition equivalent to (47). 

According to equation (47), we find that the quadratic yield function can express only four ears for the 
case (iii)-(i), a few cases of two ears and the earless case of the previous article. The conventional theory 
can include only very limited and special cases of four and two ears. Thus our ordinary recognition that the 
anisotropy of four-ear-materials can be expressed by the quadratic yield function may be thought to be 
optimistic. When we refer to the apparent ambiguity of ear shapes written in the previous section, such a 
view-point should be further emphasized. 

D E T E R M I N A T I O N  O F  T H E  C O E F F I C I E N T S  O F  f 
1. Are only uniaxiai tensile tests suDicient for the purpose7 

As is well known, the three coefficients F ' ,  G'  and N '  in the quadratic yield function g (equation 46), are 
determined by the r-values for a = 0 °, 45 o and 90 °, namely, 

F'=21(l+llro), G'=(l+llrgo)l(l+llro),} 

N'  = (1 + 2r45)(llro + llrgo)l(1 + l/r0). 
(48) 

However, the eight coefficients A2 to A9 in f cannot be determined by only the r-values, because equation 
(7) for re yields relations dependent on each other with respect to A3, A7 and A9 for an arbitrary number of 
combinations of a. Thus we must use yield stresses ¢~ given by equation (8) as well. However, arbitrary 
combinations of equations (7) and (8) also yield non-independent relations between A3, A7 and Ag. That is 
to say, we cannot determine two of the three by uniaxial tensile tests of many arbitrary directions alone. If 
the directions of ears or hollows are known, we can make use of equation (5). However, the function F(c) 
also contains A3, AT and A9 in the form (A3 + A7 + Ag) and thus a similar inconvenience arises. We should 
note that certain information on through thickness property must be added in order to eliminate such an 
inconvenience. Here we adopt the yield stress from one of the following tests: equi-biaxial (E.B.), tensile 
test (by the circular hydraulic bul~ing test--which gives an equi-biaxial stress state to a good approximation 
even for anisotropic sheet metals'), a compression through-thickness test (with several test pieces made to 
adhere to each other by using some adhesive) or a plane strain compression test of strip, (which we shall 
call the X-test  hereafter). 

2. Determination of yield stresses 
Yield stresses era (uniaxial), orb (E.B.-axial) or ~a (plane strain compression) are determined as described 

in an earlier part by reference to Fig. 1. For convenience, let us assume an nth  power law for the 
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~RD = C0e0" (49)  

is the  ~ - ~ curve  of  the material.  We note  that  the ratio of  the  yield s t resses  for  arbitrary loading and 
erR o for the same  ~ is a s s u m e d  cons tan t  and independent  of  ~,, when  we adopt  f as the yield function.  
(This s t a tement  is also true for the  convent ional  quadrat ic  yield function).  Thus  the  exponen t  n is also 
a s s u m e d  cons tan t  and  it appears  more  reasonable  than  that  n in equat ion (49) should be taken as 6, i.e. the 
average of  n in the  shee t  plane,  instead of n ~ .  Actual ly,  as is well known,  dependence  of  n on  the tensile 
direction a is usual ly  very  weak. It  is the area below the curve  which is in ques t ion  and thus  the  s t r ic tness  
of  express ions  such  as equat ion (49) is not  so severely required.  Similar to equat ion (49) we put  

~ro = caeo", ~rb = chic,  l" and I~'pl = cole, l', (50)  

where  e ,  is the longitudinal s train in the , ,-direction. According to the method  ment ioned  earlier, we have  

fo ' °Cr~de~=c~.2+' / (n+l)=f:°~ .Dd.o=Coeo"+' / (n+ 1), (51) 

and thus  

Ea = (colca) '/'"*''' ~o, ~ = co(colc~) "l`"+'" Co". (52) 

Formulae  similar to equat ion (52) will be obtained with respect  to ¢rh and ~p. 

3. Formulae for  the .determination of  the coefficients 
To determine the coefficients of  f,  uniaxial tensile tes ts  for a = 0", 22-5 °, 45* and 90* and the X- t e s t  are 

required,  a =22-5* can  be replaced by 67.5°; r0, rn.s, r45, rgo, ¢lmhrTD, o'vmlcr22.5, ¢rm)hrb (or 
crRD/~p) give all the  informat ion required.  In the following equat ions  c, = cos  z a t  and a ,  is equal  to either 
22.5 or 67.5, though  the numerical  equat ions  are given for a~ = 22.5. Equat ions  are arranged in the order  of  
calculation. First ,  A2 to A5 are easily found f rom 

A2 = - 4% A~ = (O'RD/0rTD) 4, A4 = - 4JgA~, ] 

y = ro/(l + ro), fl = rgol(l + rgo). / (53) 

X *  = O%/O'RD, X *  = o'./o'Ro. (54)  

or A 3 =  I / ( X * ) 4 - ( A t + A 2 + A 3 + A 4 + A 5 ) '  ~ (55) 

A3 = 4/(X~) 4 -  (4Aj + 2A2 + 0"5A4 + 0"25A5). J 

A6 to A9 are calculated by the following equat ions:  

A g = ( 1 6 b ) 8 + I + A 2 + A 3 + A 4 + A  ~ , b = (O'RD~O'45) 4 , 

= r45/(I + r45), c, = cos 2 a ,  = 0.85356, 

B8 = - [ro,{4cl 3 + 4(! - c l ) 3 A 5  + c i2 (3  - 2cl)A2 + (I - c l )2 (2Ct  + I ) A 4 }  

+ 4cl3(1 - Cl) + 4cj( l  - Cl )3A5 + c t 2 ( 4 c l  2 - 6 c  I + 3 ) A  2 

+ (1 -- CI)2(4Cl 2 -- 2c, + I)A4]/{c](I - cl)} - 2(ro, + 2c, 2 - 2c.t + I)A3 + 4c,(I - cl)Ag. 

= - 8[r.,{2.4875 + 0.012561A5 + 0.9419A2 + 0.05805A4} 

+ 0.36427 + 0.010722A5 + 0.57768A2 + 0.047331A4] 

- 2(r~, + 0 ' 7 5 ) A 3  + 0 . 5 A 9 .  

B7 = (O 'RD/O 'a l )4  - -  {C14 J¢" el3(! -- Cl)A2 + Cl2(i - Cl)2(A3 + A9) 

+ CI(I -- ¢l)3A4 + (1 -- cl)4As}. 

= (O'RD~O'22.5) 4 -- {0.53081 -- 0"09107A 2 + 0"015625(A3 + Ag) 

+ 0"00268A4 + 0"000460A5}. 

B~ = (16b)(1 + 8) - 2A9. 

B5 = {B8 - (ro, + 4c 2 _ 4c~ + I)B~}/(2c, - 1) = X/2{Bs - (ro, + 0-5)B~}. 

B4 = {B7-  ct2(l - ct)2B~}/{c,(l - c2) (2c t -  1)} = 8%/2(B7- 0-015625B~). 

Dt = ( 2 c t -  l)(ro, + 1) = 0.7071 l(r~,+ I). 

A~ = {(ro, + 4c, - 3)B4 - (1 - cOB~}/D,. 

A~ = {(r~, - 4c, + 1)B4 - c~B~}/Dt. 

A7 = B6 - (A,  + As). 

Suffix a l means  a t .  

(56) 
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For six-ear-materials it would be better to select 0, 30, 45, 67.5 and 90 as a-s, where 67.5 is adopted 
instead of 60, because the combination of 30 and 60 is verified to yield a similar inconvenience to that 
described in Art. 1 of this section. The formulae are then somewhat modified, though we do not present 
them here. 

When the a ' s  directions of the ears and hollows are known, we can make use of equation (5) for 
ai = 90 - a~. Especially for eight-ear-materials, there exist three a~'s (i = 1, 2, 3) and thus we can calculate 
all the coefficients of f by use of them and r0, r4~, r90, ~RD]¢~ and X* (or X*), except for the special case 
where at = 90 -a3  and a2 = 45. For six- (and eight-) ear-materials there exist two a~'s (i = 1, 2; or two of 
three for eight-ears). Then ai and r0, r4~, rgo, tTR~J~TD, ~RD]O45 and X* (or X*) suffice to determine A2 to A9. 
For four-ear-materials there exists only one a'~ (i = 1). Then a,, r0, r22.5, r45, rgo, ~RD/t~TD, trRaltr45 and X* (or 
Xp*) are required. All formulae for all these cases are omitted here. 

4. Planar isotropy and isotropy 
The condition of planar isotropy (i.e. no in-plane directionality) is equivalent to independence of t~ in 

equation (8) and strain increments d~, deb and d~f (two of them because of incompressibility) on a in 
uniaxial tension. (In the case of the quadratic yield function the latter suffices to fix the condition.) The 
former requires A - - B  = C = D = 0 which is equivalent to equation (45), i.e. the earless condition. The 
latter yeilds 

A2=A4, 4AI+2A2=2A3+AT. (57) 

Combining equations (45) and (57), we obtain the following relations for plana~ isotropy: 

As=A1, A4= A2, As = A6, A2+A6=4AI,)  

A3+A~+Ag=6A~, 4At+2A2=2A3+A~ • ~ (58) 

Next, the condition of isotropy is obtained from equation (58) and the additional conditions imposed in 
the thickness direction--i.e, cr b = tr, (the uniaxial in-plane yield stress) and d~ b = dE t = - det/2 irrespective of 
the value of t~ for uniaxial tension. Finally, we obtain the following relations for isotropy: 

A2=A4=-2AI ,  A3=3AI, A s = A ,  A 6 = A a = - A 7 = 6 A , , )  

A9 = 9A,  A0 = 0. ~ (59) 

When we put A~ = 1 in (59), the yield function f reduces to the square of the Mises yield function. 

C O N C L U S I O N S  

1. W h e n  we  p u t  A i  = 1 w h i c h  is t h e  coe f f i c i en t  o f  t he  t e r m  cr 4 in  t he  y ie ld  f u n c t i o n  
of  f o u r t h  o r d e r  f ,  t h e  e q u i v a l e n t  s t r e s s - e q u i v a l e n t  s t r a i n  ( # ~ q -  ~q )  c u r v e  o f  the  
m a t e r i a l  is u n i q u e l y  d e t e r m i n e d  b y  the  u n i a x i a l  s t r e s s - l o n g i t u d i n a l  s t r a i n  c u r v e  fo r  the  
ro l l i ng  d i r e c t i o n  a n d  t h u s  i ts  d e p e n d e n c e  o n  t y p e s  o f  l o a d i n g ,  w h i c h  is o n e  o f  the  
i n t r i n s i c  d i s a d v a n t a g e s  of  the  c o n v e n t i o n a l  q u a d r a t i c  y ie ld  f u n c t i o n  g, is r e m o v e d .  

2. T h e  e q u i v a l e n t  s t r a i n  i n c r e m e n t  de~q is n o t  g e n e r a l l y  f o r m u l a t e d  b y  the  t e r m s  of  
i n c r e m e n t a l  s t r a i n  c o m p o n e n t s  dE~ i e x c p e t  fo r  t he  v e r y  spec i a l  c a s e  w h e r e  f is t he  
s q u a r e  of  g. T h u s  it  is n o t e d  t h a t  t h e  c o n v e n t i o n a l  t h e o r y  is v e r y  l imi t ed .  T h e  
d e f i n i t i o n  d e ~  = tr~ d ~ J # ~  wi l l  b e  s a t i s f a c t o r y  in  gene ra l .  

3. R e l a t i o n s h i p s  b e t w e e n  t y p e s  o f  e a r - f o r m a t i o n  in  a x i - s y m m e t r i c a l  d e e p - d r a w i n g  
o p e r a t i o n s  a n d  t he  coe f f i c i en t s  o f  f a re  e x a m i n e d  in  de ta i l .  I t  is e m p h a s i z e d  t h a t  g c a n  
e x p r e s s  o n l y  a f e w  t y p e s  o f  f o u r -  a n d  t w o - e a r - m a t e r i a l s .  

4. F o r m u l a e  fo r  d e t e r m i n a t i o n  of  the  coe f f i c i en t s  i n  f a re  g iven .  B e s i d e s  r - v a l u e s ,  

y i e ld  s t r e s s e s  f o r  u n i a x i a l  a n d  (e.g.) e q u i - b i a x i a l  t e n s i o n s  a re  r e q u i r e d ,  w h e r e  t h e s e  
y i e ld  s t r e s s e s  a r e  fo r  t h e  s a m e  ~ a n d  d e t e r m i n e d  b y  v i r t u e  o f  t he  d e f i n i t i o n  f o r m u l a  
f o r  d~eq. T h e  p r o c e d u r e  fo r  th i s  d e t e r m i n a t i o n  e n s u r e s  t he  u n i q u e n e s s  of  the  # ~  - ~ q  

c u r v e  s t a t e d  in  2. 
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