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Abstract--The aim is to model some basic aspects of the yielding and plastic flow of textured sheet, 
especially a specific combination of properties which is relatively common but not covered by 
existing theories. In constructing a new yield criterion the over-riding considerations here are 
flexibility and manipulative convenience. The numerical parameters are kept to a minimum and 
must be determinable readily from data given by standard tests. It is shown that these requirements 
are met by adding a particular pair of cubic terms to the author's 1948 quadratic. 

0.b 

(70, 0.90 

flu 

ro, rgo 

r 

~o, ~o 
0.1, 0.2 

~I ,  g2 

a,  b, c 

f,g,h 
k,l,m 

P, q 
~(cr~, 0.2) 

N O T A T I O N  

yield stress of a thin sheet under in-plane equibiaxial tension 
yield stresses under uniaxial tension at 0 ° and 90 ° to the direction of rolling 
common symbol for 0.0 and 0.90 when equal 
ratios of transverse to through-thickness increments of logarithmic strain under 0.o and 090 
common symbol for ro and r9o when equal 
angles at which a yield locus intersects the coordinate axes in stress space 
stress components parallel and perpendicular to the direction of rolling 
components of logarithmic strain parallel and perpendicular to the direction of rolling 

non-dimensional parameters in some existing yield functions 

non-dimensional parameters in the newly proposed yield function 
any function whose contours represent yield loci in stress space 

I N T R O D U C T I O N  

The analysis is relevant to rolled sheets of polycrystalline metal where the texture is 
fine-grained and each macro-element of material can be treated as if it were homogeneous 
and structurally orthotropic. The plastic behaviour of such elements is likewise orthotropic, 
with one axis of symmetry normal to the sheet, a second in the direction of rolling, and the 
third perpendicular to both. Test specimens in the form of rectangular strips with edges 
parallel to these axes are considered to be loaded uniformly by in-plane normal stresses 
(al, a2), respectively in the rolling and transverse directions. It is assumed, as usual, that an 
all-round pressure or tension can be superimposed on the system without effect; con- 
versely, any triaxial loading of a strip, say (0-1,0-2, 0"3), has a plane-stress equivalent 
(0-1 - -  0"3,  0"2 - -  0"3)" 

As necessary background, the historical progression of orthotropic yield functions for 
textured sheet will first be reviewed briefly. The 1948 prototype [1] was a quadratic form: 

g0"2 + f0"~ + h(0"1 - -  0"2) 2 - ~ "  0"2 (1) 

where 0"b is the yield stress under in-plane equibiaxial tension, f, g and h are non- 
dimensional numerical parameters and f +  g = 1 for consistency with al  = tr2 = trb. The 
corresponding locus in (0"1,0"2) space is convex (an ellipse) if, and only if, fo + h > 0, as 
becomes evident when Eqn (1) is arranged as a sum of squares: 

(g0"1 +f0"2) 2 + (fg + h)(0"1 - 0"2) 2 = 0"~. 
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Optimal values of the parameters in any particular case are readily determined, so this 
simple quadratic has proved helpful in a variety of technological applications. Inevitable 
limitations were to be expected but did not become apparent for some considerable time, 
and then only gradually through a succession of well-conceived experiments. However, it 
was not subsequently found straightforward to devise an improved criterion whose extra 
flexibility was not outweighed by computational and experimental complexities. 

In 1977, for example, a fourth-degree polynomial in at and tr2 was tried by Gotoh [2]. 
This has multiple coefficients but is nevertheless unsuited to representing important types of 
orthotropic response. In 1979, Hosford [3] advocated a quite different function whose form 
was more appealing, namely 

glal l  m + f l t r 2 l  m + hltrl  - tr21 m = ~ (2) 

where f + g = 1 with f, g, h all positive and m = 6 or 8 according to whether the crystal 
grains are body-centred or face-centred cubic. In the same year, Hill [4, p. 187] inde- 
pendently suggested a function identical in form, but with arbi trary  m > 1 (integer or 
non-integer). It was noted, though, that this criterion does not admit so-called "anomalous 
behaviour" often seen in sheet with planar isotropy (just as Gotoh's does not). A more 
flexible function was therefore also suggested [4, p. 188], namely 

gltrxl m +f la21 m + hlal - tr21 m + a l 2 a l  - o"21 m + bl2tr2 - trll m + cirri + o'21 m -- tr~ (3) 

where 

f + o + a + b + 2 m c =  1. 

Further restrictions to ensure convexity have not been thoroughly investigated when f # # 
and a ~ b (in-plane anisotropy). Anomalous response can be modelled comfortably by this 
expression so long as the values m = 2 or a = b = c or f = g = h = 0 are avoided. 

More recently, some rather speculative criteria have been proposed when the tensions are 
inclined to the axes of orthotropy. This configuration will not be considered here; the criteria 
are quoted only in the versions to which they reduce when the tensions are parallel  to the 
axes of orthotropy. Thus, as an alternative to Eqn (3), Hill [5] has suggested a function of 
type 

[½(0" 1 "1"- 0"2)1 m "[- hltrl - 0"21 m + (0 -2 + 0"22 ) (m-2 ) /2 (0"1  - -  tr2)(ktr 1 - 1o"2) = o'~ (4) 

where m > 1 is arbitrary and h, k, l are disposable (subject, as always, to convexity 
requirements). When m = 2 the expression is a rearrangement of Eqn (1) in different 
notation. In fact, it was this particular variant that prompted the generalization Eqn (4) 
(and, likewise, its extension when trl and o2 are not coaxial with the orthotropy). When 
there is in-plane isotropy, Eqn (4) simplifies to the frequently used function 

1½(trl + o"2)1" + h Io'1 - a21" = tr'~, (5) 

which is Eqn (3) with f, g, a, b all zero. This was an additional motivation, ensuring that Eqn 
(4) encompassed isotropic anomalous response. Weixian's function [6], on the other hand, 
merely reproduces Eqn (2) with an arbitrary exponent, and so offers nothing further of 
interest in the present context. Lastly, MontheiUet et al. [7] have recommended a function 
which can be written as 

laal + btr2l m + hlal - o"21 m = 0"~ (6) 

where m > 1, h > 0 and a + b = 1, necessarily. When m = 2, this is a sum of squares which 
is equivalent to Eqn (1), as already mentioned. The expression in Eqn (6) was adopted in 
relation to a particular material whose response to loading coaxial witk the orthotropy 
could be modelled in first approximation by Eqn (5) but not by Eqn (2). The in-plane 
anisotropy was rather weak and could be represented in second approximation with the 
help of the additional parameters a and b. 
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OBJECTIVES 

Before coming to a new model of orthotropic plastic response, the flexibility of the 
functions just reviewed will be assessed in one further regard. The question is whether or not 
they can adequately represent a rather common type of behaviour which, for the most part, 
has been passed over by theoreticians. 

More notation is needed at this point. Let 0.0 and 0.90 denote the yield stresses in uniaxial 
tension at 0 ° and 90 °, respectively, to the direction of rolling, and let ro and rgo denote the 
corresponding ratios of the transverse to through-thickness increments of logarithmic 
strain. The behaviour in question may be characterized in an extreme form by the properties 
0.o = 0.90 together with ro ~ r90, or by ro = r90 together with 0.0 # 0.90- More generally, 
either 0.0/0.90 or ro/r9o is close to unity while the other is relatively distant. A good example 
was reported by Stout and Hecker [8] where, in 70-30 brass, the as-received values were 
0.0 = 126 MPa, 0.90 = 125 MPa, ro = 1.51, r9o -- 0.37. 

With the function in Eqn (2), and its special case (1), it is found that 

0.b = g + h, 0.b = f +  h, ro = - ,  r9o (7) 
\0.0// \0.90,/ g = f "  

With a view to later comparisons, it may be noted that 

ro ( ahem = h =  r9o ( 0.b "~" 
(1 + ro) troy (1 + rgo)\a~9o,/ (8) 

independently of f and g. From Eqn (7) it is seen that 0.0 =0.90 ~ f =  g ~ ro = r9o (and 
conversely). Alternatively from (8) t ro= a9o '--' ro = r9o at once. 

With function (3), on the other hand, one can show that ro °. } 
(1 +~- )o ) \~oo , /  = h + + 2b - c ,  

(9) 
r9o (tr---Eb) m ---- h + 2a + 2ra-lb - c, 

(1 + r90) \ 0"90 / 

again independently of f and g. These expressions are equal if, and only if, a = b; in that 
event, ao = 0.90 *-~ ro = rgo and moreover, by Eqn (3) itself, ao = a90 ~ f  = g when a = b. 
On the other hand, if a # b, there may be scope to model the behaviour in question 
(provided that the function can be made satisfactory in other respects by simultaneous 
choice of f, g, h and c). 

With function (4) it is evident that ao = 0.90 ~ k = 1, whence ro = r90 necessarily follows 
by symmetry with respect to interchange of al and a2. A detailed calculation gives 

( ~ o )  m k + l  l r9o (O'b y n (10) 
ro 0.b = h + - -  2 " - ( 1  + r 9 o ) k a 9 o /  (1 + ro) m 

from which it is apparent at sight that 0.0 = 0.90 ~ ro = r9o. 
Turning finally to function (6), one finds 

0.b m= h + am' h + b m, 

(11) 
r o = h / a  m - l - b ,  r 9 o = h / b  - 1 - a .  J 

Equivalent formulae can be extracted from [7] in other notation. It follows that 
t ro= 0.90 ~ a = b ~ ro = r9o (and conversely). 

The conclusion is that no existing yield criterion, with the possible exception of Eqn (3), is 
capable of representing any response where 0.0 is near o90 but ro is far from r90. This 
suggests that a new function should be sought which is different in kind from any devised 
previously. In so doing, a sensible balance should be struck between flexibility and 
convenience. 
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A N E W  T H E O R Y  

Attention is first directed towards textures where t~o --- t~9o precisely; for convenience this 
common uniaxial value will be denoted by a single symbol ~u. According to the normality 
flow-rule, the logarithmic strain increment associated with a general biaxial state is 
represented by a vector (de1, de2) with the direction and sense of the local outward normal 
at (Grl, a2) to the current yield locus. In other words, the ratio of the incremental strain 
components conforms to 

/ a~b dtT2/dr71 (12) d*l/d~2 = ~ Oa2- 

where, (da~, d~2) is locally tangential to the contour $(al ,  t~2) = constant. Under uniaxial 
tension, in particular, we have 

ro/(1 + ro) = - de2/del = dt~l/da2 at (au, 0),'( 
(13) 

r90/(1 + r90) = - del/de2 = da2/d*l at (0, a~) .~ 
£ 

since ro = de2/de3 and rgo = del/de3 with de~ + de2 + de3 = 0. The tensions quadrant of 
a yield locus in the (t~, ~2) plane is depicted schematically in Fig. 1. The orientation of the 
local tangent and normal in each uniaxial state is defined by an acute angle $0 or 
~bgo relatively to the coordinate axes as shown. Evidently 

tan $0 = ro/(1 + ro) = dtT1/da2 at (au, 0), 
(14) 

tan $90 = r90/(1 + rgo) = dt~2/dal at (0, au). 

These are explicit formulae by which ro, r90, $0 and $90 can be calculated directly from any 
~(~, ~). 

A simple yield function is now proposed which can model arbitrary values of ~u, ab, ro 
and rgo. With applications to thin sheet mainly in mind, the proposal is restricted in the first 
instance to the tensions quadrant of the ( ~ ,  ~2) plane. After trials with several candidate 
functions the choice fell on a polynomial with just quadratic and cubic terms, and moreover 
with only specific powers and products of t~ and t~2 present. This is 

a ~ -  2 -  t ~ x a 2 + a 2 +  ( p + q )  (pa~ +qa2)  t~lt~2=a~ 
t~ b 

where p and q are non-dimensional parameters, positive or negative. Regardless of their 
values, the equation is seen to be satisfied identically when the stress is uniaxial or 

ob" / ao 

F~G. 1 
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equibiaxial. Significantly, there is no cubic term in al or a2 alone; consequently, when one is 
given, the other is obtained by solving only a quadratic. The yield locus in the tensions 
quadrant can thereby be mapped by taking closely-spaced traverses at constant 0"2 over 
a certain range; the required intersections are given by positive roots 0"1 of the associated 
quadratics in turn. It should be noted that Eqn (15), being a cubic, generally has another 
branch that would be disclosed by traverses beyond the inner oval; this has no physical 
significance and is disregarded. 

Given any measured values of ro and r9o, we find from Eqn (14) that 

2ro ( 2  _ 0-]" ~ t 
P0"u (p + q) = _ _  _ 

0"b l + r o  \ 0"~,J' 

2r9o (2 q0"u (p + q) = _ _  

0"b 1 "~ r9o ~x 0"2 } '  

(16) 

when do-1/d0-2 is calculated from Eqn (15) in each uniaxial state. These are linear equations 
for p and q jointly, and a solution always exists since the determinant of coefficients never 
vanishes when the locus is strictly convex (which requires 0-u < 20"b). In particular, the 
solution is immediate when ro and r9o are equal (to r, say). It is 

P = q =  - ~ b J /  2 - - - -  ,0"b  (17) 

for any r and any 0"./0"b < 2; correspondingly, the locus is symmetric about the ray 0"1 = 0"2 
(mirror reflection). As p and q in Eqn (17) have the sign of the numerator, they are positive 
when 2 2 0"b/0"u > I(1 + r); this includes the anomalous regime 0-b/0"u > 1 with r < 1. They are 

0"b/0-~ < I( 1 + r); this includes the anomalous regime negative, on the other hand, when 2 2 
I < 0"b/0-u < 1 with r > 1. Both p and q are zero when 2 2 ab/0-~ = I(1 + r), which is the familiar 
inflexible relationship predicted by Eqn (1) for a sheet with planar isotropy ( f =  #). More 
generally, when 0-0 = 0"90 but ro ~ r90, the solution of Eqn (16) is 

Equivalently 

(2  o)p 2 +/ 2 _2 <1 
0"b / 1 + ro \ 1 +-r9o 1 + ro / 0"u ab 

f 3 _ ÷ ( 2 _  On 
0"b/ 1 + r90 \ 1 + ro 1 + r90} 0-u 0"2" 

I(P + q) = ~ + 1 + rgo o.2 f / 2 -- au 0"b / 

( 1  1  0-b 
- -  q )  = . . . .  , 

1(p 1+r9o l+roJ0"u 

which further exemplifies the roles of the two parameters. 

to 

(18) 

(19) 

Finally, when 0"0 and 0"90 are distinct, the yield function is extended in an obvious manner 

0-~ ¢0-10-2 0-~0 { (P0-1 -]- qo'2 I 0-10-2 + - - +  ( p + q )  - -  = 1 (20) 
0"02 0"00"90 0-b 0"00"90 

where p and q are disposable parameters as before and 

c 1 1 1 

0-00-90 - 0-o ~ + 0-9:0 0-~" 
R$ 35:1-£ 

(21) 
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The criterion is satisfied identically when the stress is uniaxial or equibiaxial. From Eqn 
(14) applied at (000, 0) and (0, 0"90 ) it is found that 

2ro009o t pao (p + q) = c, 
00b (1 + ro)00o 

qa9o (p + q ) _  2r9oao 
00b (1 "4- r90)0090 c ,  

by substituting the respective 

(22) 

values of d001/d002 given by Eqn (20). These are linear 
equations for p and q when 000, 0090, ro, r9o and 00b are all given. The equations are 
compatible unless the uniaxial and equibiaxial yield-points in the stress plane are collinear; 
this configuration, however, is excluded by strict convexity. The solution is 

1 1 1 ) p  2ro(00b- 0"90 ) 

~oo-I- - _-- 0090 t~b (1 + ro)00 2 
2r9o 00b C | 

(1 + r90)0020 + 600' 

2ro ab C 
(1 + ro)00o 2 + --'O"9o 

(23) 
1 1 1 ) q  2r90(00b- 000) ~+ = 

0"90 gb (1 A- r9o)002o 

The common coefficient on the left is necessarily positive and approaches zero only in the 
collinear limit. The strain-increment ratio del/de2 in any state (al, 002) is obtained from 
Eqns (12) and (20) as 

2009o00x/ao + (p + q -- C)002 -- (2pal + q002)0.2/00b 
(24) 

20"00"2/0090 4" (p  "4- q -- c)001 -- (P0.1 + 2q002)001/00b' 

Under equibiaxial tension, for example, it is 

de1 2009o/00o-c -p  

de2 2 a o / 0 0 9 o - c - q  
(25) 

which generally differs from unity unless the yield locus is symmetric about the ray 001 = 002. 
A possible analytic continuation of Eqn (20) is perhaps worth mentioning. This extends 

the yield criterion to negative values of 001 and 002 and is, accordingly, directed towards thick 
plates capable of sustaining in-plane compressive loads. The complete locus is assumed to 
be centred on the stress origin, which is to say that ~b(001,002) must be an even function. In 
this respect, the terms of second order in Eqn (20) are acceptable as they stand, but not those 
of third order. It is proposed, therefore, to replace (pal + q002)0.1 002 by 

(Plall + q10021)001002, (26) 

keeping everything else the same. The first partial derivatives of this expression are 
continuous throughout the entire (al, 002) space. The extended locus is thus a centrosym- 
metric oval with a smoothly turning tangent. On the other hand, when p and q are non-zero, 
the local curvature changes discontinuously as the locus crosses the coordinate axes. This 
can be seen more clearly when Eqn (26) is re-written as four separate polynomials, one for 
each quadrant: 

(i) (P001 "4- q002)001 0"2 when O" 1 >t O, 0°2 /> O; 1 

(ii) (Pax -- q002)001 002 w hen  0"1.~ O, 002 ~ O; I (27) 
(iii) ( - p001 + q002)0.1 o'2 when 001 ~ 0, 0"2 ~ 0; 

(iv) - (P001 + q002)0010.2 when 001 ~< 0, a2 ~< 0. 

Such discontinuities in curvature are entirely acceptable when modelling experimental data 
subject to normal scatter. 
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C O N C L U S I O N S  

The present aim is to model some basic aspects of the yielding and plastic flow of textured 
sheet: namely, those observed when combined loads are applied along the in-plane axes of 
orthotropy. Distinct types of behaviour are known, and no single theory has been found 
appropriate over the whole range. One behaviour in particular is relatively common but is 
not predicted by any theory at all. It is characterized by effectively equal yield-points under 
tension in the rolling and transverse directions, allied to markedly different strain-ratios. 

In the paper, attention is initially focussed on modelling this special combination of 
properties. The main requirements in representing them are considered to be that (i) the 
yield function and its derivatives should be easy to manipulate algebraically; (ii) no more 
parameters should be admitted than are strictly necessary in technological applications; (iii) 
all parameters should be determinable by straightforward tests and, moreover, without 
excessive computation. This quite demanding prescription is satisfied here by a specific 
polynomial of third degree, valid in the quadrant of stress space relevant to thin sheet. 

The polynomial is then extended to a wide range of behaviours, not just the particular 
one that prompted its construction in the first place. In brief, it can accommodate any 
measured values of Go, 0.90, ro, r90 and 0.b. In terms of this data, the parameters are given by 
explicit formulae (an extra bonus). It is a reasonable expectation that the entire yield locus 
will then be reliably predicted, provided its shape is broadly oval. 

Lastly, supposing Bauschinger effects to be absent, it is shown how the polynomial can be 
continued analytically over the whole of the stress space. It is only necessary to change the 
sign of a term of third degree in passing from one quadrant to another. The composite yield 
function so generated should be appropriate for thick plates under combined loads of either 
sign. 

It is important to be clear about the physical significance of a locus generated in the way 
described from the observed values of 0.0, 0"90, ro, r90 and 0"b. These are preferably obtained 
by back-extrapolation from data collected over the small range of strain needed to establish 
their values reliably. The locus then characterizes the as-received state, since any changes in 
texture during the tests themselves will be imperceptible. Specifically, where a ray at 
constant 0"1/0"2 intersects the theoretical locus, the values of 0"x and 0"2 should be close to 
those that would be obtained by back-extrapolation if the same loading path were to be 
followed experimentally. The interpretation is not so clear-cut, on the other hand, when 
values of 0.0, 0.90, ro, r90 and 0.b are determined at strains sufficient to change the initial 
texture and, especially, when these changes are noticeably path-dependent. In that case, it is 
suggested that the five quantities should be measured after the same expenditure of work 
per unit volume in the uniaxial and equibiaxial tests. Then, considered objectively, the 
theoretical locus represents a work contour: it delivers approximate values of 0.1 and 0 2 after 
equal expenditures of work per unit volume on conceptual paths at any constant 0"1/0"z. In 
principle, it cannot be a yield locus when it connects states with different textures, because 
they cannot possibly lie on a path of neutral loading. The precise relationship between work 
contours and yield loci is for future experiments to elucidate. 
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