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PREFACE

The aim of this monograph is to develop the theory of elastic-plastic flow in solids,
with application to a particular class of processes, namely those in which the
dissipation of plastic work cannot be neglected. Examples of such processes are high-
speed impact phenomena and cratering, shock compression, often shock release as
well, and explosive deformation and welding. An important part of the development is
to include the anisotropic elastic properties of a solid, and for this reason the theory
applies to solids in general. On the other hand, the prototype solid which the author
has specifically in mind is metals, and so it is possible that some of the results will have
limited validity for nonmetals. The theory is valid in principle for complex flow,
compression and/or tension, and unstable flow as well, although the presence and
growth of cracks and voids is not explicitly included. A notational conflict arose,
because in continuum mechanics the extensive quantities are taken per unit mass,
while in thermodynamics they are usually per unit volume. The continuum mechanics
normalization is used throughout, with the result that uncommon factors of density
show up in the thermodynamic equations.

There is nothing particularly new or profound about the present work. However,
there is a need to write it down in something like the present form, because it crosses
such a broad range of disciplines. In certain areas of this study, the author encountered
substantial difficulties in drawing a clear understanding from references in the field.
The material is therefore presented in a tutorial fashion, with the intention of helping
the student, or the interested reader, to comprehend the principles easily. All of the
important results are derived from basic principles. Certain conceptual errors which
appear in the literature are quoted without giving references, on the grounds that
clarifying the issue is the only thing to be accomplished. The exercises are an integral
part of the logical development, and they should at least be read; solving the exercises
is guaranteed to be educational.

This work was started in January of 1977. Along the way, a great many people have
taken the time to help the author with a great many details. Those who have made a
substantial contribution to this work, through years of collaboration and encourage-
ment, are James N. Johnson, Galen Straub, Paul Follansbee. and Davis Tonks. The
author is happy to commend Barbara Forrest for generous assistance in all phases of
the manuscript preparation, including expert word processing.

Duane C. Wallace
Los Alamos
February 1984

v/

Vi




CONTENTS

PREFACE . iiivo v v vovanvns o © sy & % st s 9 @0emsodin § wooains 5 6 o & @ o vases vii

CHAPTER I

MATERIAL RESPONSE. . . . . . ittt it et et et e e et et e e e e e e e e et 1
1. Equilibrium and Nonequilibrium . . . . . . . ... ... ... .. . ... ... .. ..., 1
2. ElasticResponscand PlasticResponse . . . . .. ... ... ...ttt .nn 2
20 71T TS S S S R SRS S R (A Sup s SO 4

CHAPTER I

CONTINUUM MECHANICS.: © « cuom o v olini s & viaiva 5 % sves 5 v v s 5 5 aes 5
4 DEfOEEHON . -« oocomn & v avviins w © aarei s 4 eREREE B B STk R R SRSEeG w R st 5
B 1 T T . R e GO very R g ) 7}
B BEIRY oo o soennsian o0 i EpamnEers 5 SRS N SRS e 3 SRRt e e . s 8

CHAPTER 111

THERMOELASTICITY . . . .. ittt it e it ettt et a s et te et 11
7. Isotropic-Pressure Thermodynamics . . . . . . . . . ... it ittt ittt ne e 11
8. ANISOtrOPIC SIreSSeS. . . . . . . it i e e e e e e 12
9. Approximation of Small AniSotIopPY. . . . . . . i it it ittt e e e e 15

CHAPTER IV

PLASTIC FLOW AND IRREVERSIBLE THERMODYNAMICS .................. 19
10, PIASHE YICIA: .« - coovvivs & 0 wioonis 5 9 ol & 5 Shiasieds & & sssiels 5 © S0 £ 4 o g 19
LE SPIRSHEEIOW. oo ovcvnsr womvionhon s & vrosaia § F SNSRI S Y SRS S s STty S a 20
12. Constitutive Equation TorHeat THRRSPOT. ... « « sivvosis 5 8 steione 5 % & sismesss & v & 22
13 Irveversible TRETMOBVHATIICT. .o ci v v cvvins % 5 summniie & & Eivimiis 5 o SOWANER & v &8 23

CHAPTER V

APPLICATION TOUNIAXIALCOMPRESSION . . . . . . . i i ittt it s st e tstnaen 25
14, Uniaxial CompressioninanlsotropicSolid. . . . . . ... ... ... ... .. ... 25
15, Stress-Strain EXpansions . . . . . . . vttt ittt ittt e n st s et ae et 27
16. Steady Shock inanlsotropicSolid . . ... .. ... ...ttt 30
| G T 7T e e I T v B R R e 32

REEERENCES: @ oo v 5 ovioias 5 ¢ vl & & S0Siih » wrdaisn 4 5 U0oarels 5 © oiami v % 3 35



CHAPTER1

MATERIAL RESPONSE

In this chapter, the basic material-response concepts
underlying the entire theory are described in words. In
the next three chapters, the corresponding system of
equations is constructed. Any individual who makes it
through the whole monograph will find it worthwhile to
read this first chapter again. Some of the observations
on time-rate effects, and in support of lecal
thermodynamic equilibrium during plastic flow, were
originally published in Physical Review.'

1. Equilibrium and Nonequilibrium

A system is a quantity of material whose behavior we
want to study, e.g. a cubic centimeter of gold, or a beaker
of water. An isolated system is one for which nothing
flows in or out of the system. If a system remains
isolated. it will presumably reach a state which remains
constant in all its macroscopic properties. This is an
equilibrium state. Let us for the moment consider only
states for which the forces applied to the system are
isotropic, and make a partial list of the macroscopic
rroperties of the equilibrium state;

YV = volume,

P = pressure,

U = internal energy,

T = temperature,

S = cntropy. (1.1)

Equilibrium thermodynamics is the study of
processes by which a material (or severz! materials
simulizneously) can pass from one equilibrium state to
another, along paths which are constrained to pass only
through equilibrium states. The primary physical laws
invoked are conservation of energy, and the existence of
an exact differential dS; thc rest of equilibrium
thermodynamics is (almost entirely) mathematics.
When the stress is isotropic pressure, there are only two
independent variables, which means two variables com-
pletely specify an equilibrium state of a given material.
These variables can be any two from the above list, or
1wo combinations of them, or other extensions. Take for
example V and T as the independent variables. Then for
all possible equilibrium states of a material, relations of
the following form hold:

P = PV,
U = UWV,D),
S = §V,T). (1.2)

The term *“equation of state” is sometimes used to
denote the above equation for the pressure. A more

general usage of the term, and that which will be fol-
lowed in the present work, is to denote any or all of the
information contained in the set of equations (1.2).

To enter the realm of nonequilibrium states and
processes, it is helpful to think in terms of statistical
mechanics. Consider a monatomic nearly-ideal gas;
mentally subdivide the space occupied by the gas into a
large number of volume elements, each with the same
volume. Each element contains a large number of
atoms, and can be treated as a statistical subsystem. The
important statistical measure of a subsystem is the
distribution f(p) of the atomic momenta p. The equi-
librium distribution is Maxwellian. with a temperature
T:

f(p) x e ~Bo7™ (1.3)
where i = 1/kT, k is Boltizmann's constant. and M is
the atomic mass. When the gas is in equilibrium, the
mass and temperature are the same for each element.
When the gas is not in equilibrium, the momentum
distribution can be anything. If the distribution is not at
least approximately Maxwellian, then the temperature
cannot be defined. However, even when equilibrium-
thermodynamic quantities such as temperature are not
definied, mechanical quantities are afways defined. The
most important macroscopic mechanical quantities
representing each volume element, which in fact are just
the zeroth, first, and second moments of f(p), are the
total mass, 1otal linear momentum, and total energy. If
the gas is thought of as a continuum, these quantities
translate into local fields representing density, fluid
velocity, and energy density.

We can now define nonequilibrium states which are
*close to equilibrium.” Any element of the gas is close 10
equilibrium if its momentum distribution is close 10
that given by (1.3); specifically this means

f(p) « e MM + 5f(p) | (1.4)
where the only restriction on 8f(p) is that it is small
enough to be treated as a perturbation. But this will be
the case only if the spatial and temporal variations of the
mechanical quantities, the density, fluid velocity, and
encrgy density, are sufficiently small. It is important
always to differentiate between mechanical and
thermodynamic quantities, and to remember that equi-
librium thermodynamic quantities can be defined only
for states which are close to equilibrium.



Irreversible thermodynamics 1s the study of processes
which pass through nonequilibrium states, but only
those which are close enough to equilibrium states so
that the equilibrium-thermodynamic quantities can be
meaningfully defined. Irreversible-thermodynamic
processes are characterized by the following properties.

(a) A driving force is present, which causes a flow that
tries to cancel the driving force. The force-flow relation
is called the constitutive relation, and the material
properties which enter this relation are called con-
stitutive properties. The constitutive relation couples
to, and alters parts of, the equation of state.

(b) Dissipation is present (generation of entropy). The
work done by the driving force against the flow is always
at least partially dissipated, and usually it is totally
dissipated.

Consider a material in which there is a local tempera-
ture gradient; heat flows, in an attempt to cancel out the
temperature gradient. A common constitutive relation
sets the heat current proportional to the temperature
gradient. The coefficient of proportionality, the thermal
conductivity, is a constitutive property of the material.
Consider a beaker of water, stirred gently with a stirring
rod, and then isolated. Viscous stresses are present,
working against the velocity gradients, and the macro-
scopic mechanical motion of the water gradually dies
away, as it is turned into heat. The linear relation
between viscous stresses and velocity gradients is the
constitutive relation, and the viscosity coefficients are
constitutive properties of the water.

In the literature, the term “constitutive” is sometimes
used to include equation-of-state information. Here, the
term is restricted to nonequilibrium properties, because
we want to emphasize that these properties are separate
from equilibrium properties. It is important to re-
member that equation-of-state data does not contain
arv information about constitutive behavior of a mate-
rial.

The present work is concerned only with processes in
the irreversible-thermodynamic regime: equilibrium-

thermodynamic quantities can always be defined, at
least approximately. A point of usage needs to be ad-
dressed. It seems that physicists are raised to think of
adiabatic, when used in the thermodynamic sense, as
meaning isentropic. Engineers generally use adiabatic to
mean “without heat flow.” We could simply abandon
this word in the present work, except that we will have
much need for the adiabatic elastic moduli, which of
course are isentropic elastic moduli. The following de-
finition will therefore be followed.

2. Elastic Response and Plastic Response

The significant property of condensed matter, which
makes it condensed, is the dominance of forces within
the material. For an ordinary solid or fluid composed of
atoms, or more accurately, composed of ions and elec-
trons, the forces derive from effective potentials be-
tween the ions. These forces are elastic forces. Since the
effective ion-ion potentials operate through the elec-
trons, they are “instantaneous” potentials, as far as the
present work is concerned. There are also forces arising
from thermal energy in a material, e.g. the thermal
excitations of electrons and phonons. Thermal forces
can remain close to equilibrium as long as their spatial
and temporal variations are slow compared to relaxa-
tion lengths and times within the electron-phonon sys-
tem. Such relaxation lengths and times are quite short,
being measured in terms of lattice spacings and
picoseconds, respectively. The elastic forces and
thermal forces taken together are called thermoelastic
forces, and for solids we have the following conclusion.

When an anisotropic stress is applied to a solid mate-
rial, a multitude of processses begin, all of them acting to
reduce the stress. Some of these processes can be effec-
tive only on geological time scales; others are important
in minutes or days. In the present work, we are inter-
ested in rather fast processes, say things which happen in
one second or less. We will not be concerned with any
stress relaxation mechanism which operates on a slower
timescale. Further, in solids, whatever stress relaxation
mechanism is important on our timescales will be called
plastic flow. Plastic flow does not have to be due to



dislocations; however, it usually is, and we will often use
dislocation concepts in examining the nature of plastic
flow.

Consider a small region of a solid material, and
suppose there is an anisotropic stress in the region,
which results from forces applied by the surrounding
material. There may be a dislocatiun in the region, or
one might be generated; in any case the dislocation
moves in such a way as 10 reduce the local anisotropic
stress. Transforming this picture to the language of
irreversible thermodynamics, we say that the stress
drives plastic flow, and that for a given material in a
given state, the material constitutive equation specifies
the plastic response to any applied stress. We have thus
arrived at the most important point of logic in the
present theoretical construction, stated as follows.

There is a subtle discord between the nature of plastic
flow and the customary “textbook picture” of ir-
reversible processes. This can be illustrated with a sim-
ple example. Suppose a shear stress 7 is applied 10 a
solid. and the solid deforms elastically for t < 1y, and at
1, the solid begins 1o flow plastically. The irreversible-
thermodynamic driving force is 1, This constitutive
behavior cannot be represented by a linear phenomeno-
logical law, according to which the driving force is zero
in equilibrium, and is a linear function of some measure
of the departure from equilibrium. The essential
nonlinearity of plastic constitutive behavior has led to
the statement that “plastic flow cannot be treated by
irreversible thermodynamics.” This statement can
safely be ignored. But let us continue with the example,
and ask about the connection between time-rates and
reversibility. The customary picture is that if you make
a process slow enough, it will be arbitrarily close to
equilibrium; that slow is reversible. Is this really true? In
an ordinary solid, adiabatic elastic waves can be trans-
mitted at very high frequencies. under near-equilibrium
conditions. On the other hand, in driving plastic flow,
the shear stress can be adjusted so that the plastic
strainrate is arbitrarily small, yet the process is still
irreversible: the driving force 1, is finite for an
arbitrarily slow process. This result allows the following
important conclusion to be made.

So far, we have ignored the heterogeneous nature of
plastic flow. In fact, plastic flow is intrinsically hetero-
geneous, and what is worse, it is heterogeneous on
several different length and time scales. The finest scale
of heterogeneity is that of a single dislocation. A disloca-
tion is a line defect, surrounded by a nonuniform elastic
strain field. When a dislocation moves, it presumably
acts as a source of mechanical excitations, and with the
appropriate relaxation time, this mechanical energy be-
comes thermalized to heat. Larger scales of heter-
ogeneity are associated with dislocation substructure,
the networks and cells and so on. On this large scale,
plastic instabilities may develop during the course of a
process. For example, shear bands may form, within
which the plastic flow may tend to become localized.
The question arises, how is the heterogeneous nature of
plastic flow to be addressed by irreversible
thermodynamics?

First we will simply assume that the finest scale of
heterogeneity can be ignored; that single-dislocation
effects can be averaged for any mass element, whether
the mass element contains only a few dislocations, or is
located within an active shear band. There are twc ways
in which larger scale inhomogeneities can be treated.
The first way is simply to resolve the inhomogeneities
which occur in a given flow process. After all, the
continuum-mechanic and irreversible-thermodynamic
theory is a local field theory, and applies in principle to
spatially and temporally inhomogeneous processes. The
study of inhomogeneous and unstable flow in fluids is
currently quiic popular, and there is no doubt that
similar problems in elastic-plastic flow will be studied in
the fi.ture.

An alternate procedure, which entails a sacrifice of
resolution on a certain scale, is 1o replace a certain type
of inhomogeneity by a homogeneous model. In this
way, an additional field variable, or parameter, is in-
troduced into the continuum theory, and the modeled
inhomogeneity formally disappears. It should always be
remembered, however, that the model has to be consis-
tent with the basic thermoelastic properties of the solid.
For example, consider a single crystal with a single
straight dislocation; apply a shear stress to the crystal
and the dislocation moves. Now replace the whole slip
plane of the dislocation by a shear band, and apply the
same shear stress. The stress is supported elastically,
with the same elastic stress-strain relation in both cases;




the only difference in the two cases is the plastic con-
stitutive relation. Hence, the appearance and growth of
shear bands can be modeled homogeneously, by using a
combination of plastic constitutive relations, together
with a local field variable denoting what part of the total
plastic flow is due to the shear bands. Another example
is the growth of voids in a metal under tension. A single
void contributes tc the flow problem in the following
way: plastic flow proceeds around the void’s surface, as
the void grows, and the cross section of the void does
not support stress. These effects have been modeled in a
manner consistent with the thermoelastic properties of a
metal, in a calculation of necking and ductile fracture.’

3. Fluids

All fluids are presumably viscoelastic. This means the
fluid response is viscous at low and moderate
strainrates, but the response is elastic at high strainrates.
For a simple monatomic flaid, the elastic regime begins
at strainrates around the inverse mean-atomic-vibra-
tion time, or 10" s7' at ordinary temperatures and
pressures. The elastic response in a fluid is due to the
interatomic potentials, and does not occur in a gas,
where all interactions are represented simply by two-
particle elastic collisions. That a fluid and a gas are
essentially different is demonstrated by the behavio. of
the viscosity, which decreases witn temperature for a
fluid, and increases with temperature for a gas. The
onset of elastic response in a fluid at high strainrates
suggests that viscous stresses cannot be arbitrarily large;
this is certainly the case in the shock process, as will be
discussed in Section 17.

When we speak of a viscous fluid, we mean a real
fluid (a viscoelastic fluid) which is operating in the

viscous regime. The most universally popular myth in
high-strainrate materials response today is that an
elastic-plastic solid is equivalent to, or approximately
equivalent to, a viscous fluid. The myth is more than
popular; it is believed with dedication and with fervor.

There exists in the literature a “‘proof” that the con-
stitutive equation for an elastic-plastic solid is the same
as that for a viscous fluid. The proof is false. The
difference in constitutive behavior between an elastic-
plastic solid and a viscous fluid is not trivial, it is vital.
The following statement is quantitatively accurate.

Experiments have been done to measure the viscosity of
a solid. Any experiment performed on a solid, and
interpreted with viscous fluid theory, will indicate an
enormous ‘‘viscosity,” and one which depends in-
timately on the experiment itself. To add to the con-
fusion, there is also the popular *viscoelastic solid.” Just
because this term is contained in a textbook, in a list of
constitutive models, does not mean that any solid on
earth behaves that way.



CHAPTERII
CONTINUUM MECHANICS

Continuum mechanics is a standard engineering dis-
cipline, and only the merest introduction is given in the
present chapter. An extended material is considered,
which is continuous, and which has continuously vary-
ing densities and currents. The content of the theery is
to relate the local variations in densities and currents
through the laws of mechanics, namely conservation of
mass, momentum. and energy. There 1s no
thermodynamics in continuum mechanics. A treatise
on continuum mechanics which the present author has
found very helpful is that of Prager.’

4. Deformation

The material is divided into infinitesimal mass ele-
ments, sometimes called matenal particles. There are no
cracks or voids between the mass elements, each mass
element contains a fixed arnount of mass for all time,
and exchange of matter between mass elements is al-
iowed but need not be explicitly considered. At any time
1, the location of a given mass element is x(1) in labora-
tory coordinates. An initial, or reference, configuration
is denoted by subscript a. The location of a given mass
element at t, is X, = x(t,) = X, so that X is the La-
grangian coordinate of the mass element. The La-
grangian coordinate provides a label for each and every
mass element in the material. At any time 1, the mass
element x is located at x(1), and has velocity

&x)
N.= =
ot X

The equations of continuum mechanics are local, which
means they hold for all locations and times. Quantities
defined locally for the material are fields. The independ-
ent variables for the fields can be taken as the set {x,t], or
the set {X,t}. The velocity field, for example, can be
expressed in “Eulerian form™ as v(xt), or in “La-
grangian form™ as v(X,t). Finally, we will also use X or x
as symbolic designations for an entire configuration, e.g.
“the configuration X.”

A muititude of different strain measures are com-
monly used, but here we will define only two. The first is
the matrix a, which is the transformation from the
initial configuration X to any other configuration x.
This may be written a(X—x), or a(x) for short, or just a.
If we introduce a Cartesian coordinate system, with
indices i, j, k, 1 standing for Cartesian coordinates, then

(4.1

ax;
%'Rl 4.2)

Obviously a;(X) = §;. Differentiating (4.2) with re-
spect to time gives

aai,-) . av-.)
i)y aX),
Because the material is continuous, the differentals
defining a always exist; @ is a continuous point trans-
formation. a defines the transformation of vectors: an

incremental vector dX, between two material particles
at t,, becomes dx at 1, where

(4.3)

dx; = a;dX; . (4.4)
Note repeated indices i, j, k, I, m, n are always summed.
The vector transformation is used in differential form
because, in general, a varies over space at any given
time. If o. were constant over the whole system al any
given time, but still a function of time, (4.4) could be
integrated over space to X; = g;X;, which is the trans-
formation for a homogeneous deformation.

The second strain measure we will use is the displace-
ment. Let us name two configurations in a suggestive
manner:

X = current configuration,
y = next configuration.

The displacement field is u = u(x.t), where for a given
mass element,

=YX, (4.5)
The displacement gradients are

_ oy _ 0y
uj Eﬁl 5%)t 8 (4.6)

The displacement gradients are not in general sym-
metric. The symmetric part of u;; is g;, sometimes cal!_d
pure strain:

1
& = E(““ + uy) 4.7

The antisymmetric part of uy is o, ofien called pure
rotation:



1

05 = 3 (U — ;) (4.8)

In order to relate the different strain measures, it is
necessary to consider the two transformations a(X—x)
and a(X—y), and the displacement u(x—y). It then
follows, from the definitions,
ai(y) — o5(x) = up(x)my(x) (4.9)
If the displacement is incremental, i.e. ify = x + dx,
then the displacement gradients are incremental,
u; = duy, and (4.9) becomes
d(lij - duikuh- {4.10]
Finally, this can be inverted with the aid of the inverse
matrix a':
du; = dau(a™ )y (4.11)
Note that a is in general nonsymmetric. Even if du is
symmetric for all dt, it still does not follow that da is
symmetric for all dt, unless a and du commute. If a and
du commute for all times, then they are simultaneously
diagonal in a fixed coordinate system, and the descrip-

tion of strain is simplified. An example of this simplifi-
cation is uniaxial flow, which is discussed in Chapter V.

One more bit of algebra is nceded before getting on
with the physics, and that is relating Eulerian and
Lagrangian derivatives. Let g be any field, expressible as
g(x,t) or as g (X,t). Chain rule differentiation gives

ag) . ag) o
S - Sl (4.12)
Gxi t 8X, :

where we used (a™'); = (8X;/dx;),, which follows from
(4.2). To relate Eulerian and Lagrangian time de-
rivatives, write

3
= bws Wb
6tx 6xit

‘?) dt+§)dxi
t/x i/t

Take dX; = 0and divide by dt to get the result

D) i)
=) =2} +v2 (4.13)

To derive the equation for conservation of mass, we
simply have to calculate the volume of a mass element
in configurations X and x. Because the mass element is
infinitesimal, the transformation o can be taken as
constant over the volume, and the shape of the mass
element is a parallelopiped in all configurations. Let dL;
and dl;; be the j Cartesian component of the i edge of the
mass element in configurations X and x, respectively.
Then denoting the volume dV, and using the notation
la] or [lo;l for the determinant of a,

dv(x) = lldil = leadLyl = laldV(X)

This relation is a statement of conservation of mass. In
continuum mechanics, it is convenient to work inter-
changeably with two fields representing mass, namely
the local density p and the local volume V:

= mass density,

p
\'2 p~! = volume per unit mass. (4.19)

The conservation of mass can then be expressed in the

vV _pa

;" el (4.15)
The differential form of this is

denV = dg; , (4.16)

where the repeated index is to be summed. In deriving
this last equation, we made use of Jacobi’s identity,

dllal

Py @) el (4.17)

The customary continuum-mechanic expression for
conservation of mass is obtained by differentiating
(4.15). Holding the mass element fixed gives the La-
grangian form,

d =) a\'",
Ei)x p(u )Jlﬁ'j)t

Transforming with the aid of (4.12) and (4.13) gives the
Eulerian form,

(4.18)




(4.19)

5. Stresses

Stress, like strain, is a local field; it is a point property
of a medium. Stresses are surface forces: at any point in
the material draw a surface element with normal in the
+i direction; the material on the +i side of the surface
exerts a force on the material on the —i side, the force
per unit area being the vector t,. The j component of t;
is 7,. Here it appears that the order of the subscripts is
significant, but in fact it is not, because 1 is a symmetric
tensor, as will be shown below. The material on the —i
side exerts an equal and opposite force across the surface
on the material on the +i side. The forces at any point
within the material are completely specified by the stress
vectors T; on each of three mutually orthogonal planes;
that is, by the stress-tensor components T; = T;(x,t).
Note body forces are neglected here, and throughout this
work.

We now have to clarify a subtle point. First note that
the same word stress is used to mean either mechanical
forces or thermodynamic forces, depending on whether
or not the material state is close to equilibrium. The
word pressure, however, will be used only for a
thermodynamic force. When a system is in
thermodynamic equilibrium, in the presence of an ex-
ternally applied pressure P, the stress tensor is constant
throughout the system, and is
T = = P&j (Sl)
In the case of local thermodynamic equilibrium, (5.1)
holds locally wherever the stress is isotropic. The minus
sign is present because stresses are outward forces, while
pressure is a force inward on a body. The mean com-
pressive stress P is defined without regard to equi-
librium:

(5.2)

The important point is that P is not “the pressure,” not
even when the material is locally, or globally, in
thermodynamic equilibrium. The pressure is uniquely
determined by the independent thermodynamic

variables, which means, for example, that P(V,T) is
single valued, while the mean compressive stress is nota
single-valued function of V and T, but can be made to
take on a continuous range of values at fixed Vand T, by
varying components of the stress tensor. Hence, when
the stress tensor is not isotropic, the pressure is not
defined.

The anisotropic stress components, or stress de-
viators s;;, are

S = Tjj + Pﬁij (5-3)
Obviously, s; = 0, because of (5.2). The set of compo-
nents P and s; is equivalent to the original set of
components ;.

To derive the equation for conservation of linear
momentum, consider a mass element of fixed mass m,
whose volume w is enclosed by the surface s. A surface
element is ds, and the force acting across ds, exerted on
the material inside the surface, is df = tds;. The total
force acting on the material inside the surface is f,
where

f,= J:df‘,- = [tudsi 5.9
Gauss’ theorem is

J;g-.(x)ds-. = L%) dw (5.5)
so we have

f = J; g—::l dw (5.6)

Since the volume is infinitesimal, the integrand can be
taken constant. Then eliminating f with Newton’s
law, f = m(dv/dt)x, and using p = m/w, gives the ex-
pression of conservation of linear momentum,

6Vj £ -(11';,;'
B 2




This is a mixed Eulerian-Lagrangian form, which is
useful for some computer calculations. Transformation
with the aid of equations (4.12) and (4.13) gives the
Lagrangian form

a\"] =iR 61‘;,-
P a‘ )x (a )h axk)t L] (5-8)
ur the Eulerian form

— +‘ §e— = ___..I.J
P at )x pvi %, )t oX; )1 (5.9)

To examine the consequence of conservation of
angular momentum, we introduce the Levi-Civita anti-
symmetric symbol g, which is +1(—1) if i, j, k is an
even (odd) permutation of 1,2,3, and which is zero
otherwise. Important properties of g are, for any vec-
tors a and b, (a X b), = gjab,, and for a tensor
c, excx = 0 if and only if ¢ is symmetric. Consider
again the mass element with mass m, whose volume w is
enclosed by the surface s. With respect to the (arbitrary)
origin of coordinates, the angular momentum M of the
mass element has components

M = f (x X pv)dw = J gpxpvidw (5.10)

and the torque L applied to the mass element has
components

ax;T
5= J.(" X df);, = Jsijk : l?k) dw
5 Xe 1

where df in (5.11) is the same as in (5.4). Since the
volume is infinitesimal, the integrands can be taken
outside the integrals. Then the law of conservation of
angular momentum, (dM;/d1)_ = L, gives the equa-
tion X

(5.11)

sl m Y . R o (5.12)
at X %g t

With conservation of linear momentum, equation (5.7),
this reduces to

= Tjk} = ( (5]3)

Ei(pvivi

The first term vanishes because v;v, is symmetric, and
the resulting equation requires t to be symmetric for al!
times and locations:

Ti = Ti (5.‘4)

Since t is a real-symmetric matrix, it can be
diagonalized by an orthogonal transformation (a rota-

tion). This defines prinicpal axes, or principal
directions:

Since 1 is diagonal in principal axes, it has only three
nonzero elements, namely 1,,, T2, and 13; (note repeated
number indices are never summed). These are the prin-
cipal stresses. They are the components of a vector in
the principal axis system. Hence, while specification of
stress at a given point requires by definition the specifi-
cation of force vectors acting on each of three mutually
orthogonal planes, it can also be done by specifying the
principal axes and only one vector. In general, of course,
the principal axes vary with location and time.

6. Energy

The energy belonging to each mass element is divided
into two parts:

(a) Translational kinetic energy, ' v* per unit mass;

(b) Center-of-mass energy, E per unit mass.

To calculate the translational kinetic energy. take the
mass element to be rigid. The net force on it is f, in a
time dt the mass element moves dx, so the translational
work done is
f-dx = fydt (6.1)
The increase in translational kinetic energy of the mass
clement is

d(2mv?) = mv,-%) dt (6.2)
t/x




These two expressions must be equal, and in fact they
are because of conservation of linear momentum, or
what is equivalent, by Newton's law.

The center-of-mass energy is again divided into two
parts, work done and heat transported. These will be
calculated in incremental form. Define W as the work
done on the material. per unit mass, in the center-of-
mass frame. In configuration x, a mass element has
mass m. and volume w enclosed in a surface s, We carry
out a homogeneous deformation of the mass element,
1.e. a deformation with spatially constant strains, in
which the point x moves to y, where

Sy e

U Xy (6-3}
This is obtained by integrating (4.6), with the uy, being
constants. The work done on the mass element is

mW(x—y).

mW(x—y) = Idf,{y,—-x,) : (6.4)
and with df, from (5.4) this is
mW(x—y) = J' T,u,.Xids, (6.5)

With 1, and u, constants, this is transformed 10 a
volume integral by Gauss' theorem, and vyields
mW(x—y) = tu,w (6.6)
Finally, e let the deformation x—y be infinitesimal, to
transform (6.6) to a differential form. Because t; is
symmetric, only the symmetric part g; of u;; contributes
to the sum in (6.6), and we have
pdW = 1,de, (6.7)

Let us take a brief aside to examine some aspects of
rotational motion. In the last section, and the present
one, forces arising from rotation, and rotational energy,
have not been explicitly recognized. It is well known,
however, that in a high-speed flywheel the centrifugal
force can reach the ultimate tensile strength of a solid
material. Further, in turbulent fluid motion, the rota-
tional energy can be significant.

In order to provide a mental picture for heat trans-
port, it is useful to establish a conceptual definition of
“heat.” as follows. Heat is the excitation of a system, or
a mass element, at fixed configuration. For an atomic
solid or fluid, it is the motional energy of the atoms in
the center-of-mass frame; in a metal, the excitation of
conduction electrens is also included. Heat is defined
without regard to thermodynamic equilibrium. Also,
there is no (significant) transport of mass or momentum
associated with heat transport. It should be recognized,
however, that the real operational definition of heat is
not contained in these words, but is contained in the
constitutive equation for heat transport which one uses
in any given calculation. Some common forms for this
equation are discussed in Section 12.

Q is the quantity of heat per unit mass, and J is the
heat flux. For a mass element with mass m, the rate of
increase of heat is

aQ

This must be equal to the rate at which heat flows into
the mass element through its surface, which is

al,
- j.l.ds. = — I——) dw
: ax, t

Taking the integrand constant over the volume w, and
equating the two expressions, gives the continuity equa-
tion for heat transport,

. aQ) i aJ.)
N )y ),

It is ofien convenient to write this in the incremental
form, for a given mass element,

(6.8)

pdQ = — V- Jdt (6.9)
The operator V always signifies Eulerian differentiation.

In differential form, for a given mass element, conser-
vation of center-of-mass energy is

dE = dW + dQ (6.10)




Converting this to Lagrangian time derivatives, and
using (6.7) and (6.8), gives the usual continuum-mech-
anic form,

— T-- a_alJ — -—annj-l
at X ax; 1

An important point about the energy equatiun needs to
be emphasized. First, recall the meaning of the in-
cremental work dW: this is work done on a mass
element, by its surroundings, through the action of
stresses. Nothing was said about dW being conservative,
or reversible, and in fact it generally is not. The applied
stresses can drive plastic flow in a solid, or viscous flow
in a fluid, and these are both dissipative processes.

(6.11)

Because of this, it is not possible to keep track of the heat
content of a given mass element by simply integrating
the term dQ; dQ represents the net heat transported into
the mass element, but dW acts partially or totally as a
source term for heat as well.

The continuum-mechanic conservation equations are
often called the equations of motion. Sometimes the
term “‘equation-of-motion™ means only the equation for
conservation of momentum. The equations derived in
the present chapter are valid for any continuum mate-
rial. However, the student should be warned that, in
many texts on fluid mechanics, the procedure for con-
structing equations of motivn. and sometimes for inter-
preting them as well, is often different from the present
approach. That procedure is to first write down the
equations for an ideal fluid. for which the stress tensor is
defined to be isotropic pressure, and then try to “‘correct
the equations of motion,” to account for nonideal
behavior. For example, conservation of lincar momen-
tum for an ideal fluid is Euler's equation. Starting with
Euler’s equation, it is necessary 1o add a correction 10
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account for viscous stresses, and in that way the Navier-
Stokes equation is obtained. The situation is still more
confusing with regard to energy. To explain this, we
neglect heat transport, so dQ = 0 in (6.10), then take
processes close 10 equilibrium, so the center-of-mass
energy E is to be identified with the thermodynamic
internal energy U. Conservation of energy then reads
dU = dW (6.12)
This particular equation startles many people, but it is
correct for the stated conditions. However, if the sttess
is isotropic pressure P, then dW = —PdV, and then
(6.12) implies dS = 0. This result has led 1o the state-
ment, “the equations of motion are valid only for
isentropic flow.” In the study of shocks, the further
argument has been made, “since the equations of mo-
tion are valid only for isentropic flow, and since a shock
is known to be dissipative, then a shock must be a real
mathematical discontinuity.”

In the present approach, the equations of motion will
never nesd to be “corrected.” Further, since entropy isa
thermodynamic quantity, it has nothing to do with the
equations of motion. To make certain there is no gues-
tion about these and related points, we will summarize
the most important facts, which hold within the as-
sumption of a continuous material and the laws of
mechanics.

Finally, note that we have made it all the way through
the foundations of continuum mechanics without
having tc worry about strain compatibility conditions.
This is not to be taken as evidence that the siudent can
ignore strain compatibility at will, in any future
endeavor.




CHAPTER IlI
THERMOELASTICITY

The physical content of thermoelasticity is the equi-
librium thermodynamics of a solid of arbitrary crystal
symmetry in the presence of anisotropic stresses. In
contrast to continuum mechanics, this subject is not so
widely known; the elasticity part is well known, but the
coupling to thermodynamics is not, The present chapter
is a separate part of the overall theory, entirely separate
from continuum mechanics or plastic flow. Recom-
mended references for thermoelasticity are a review
article,” and Chapter | of the book.’

7. Isotropic-Pressure Thermodynamics

To illustrate the basic idea, we will take the simple

case where the stress is isotropic (hydrostatic) pressure
B:
L= — PG-.J- {?]}
We think of an equilibrium-thermodynamic process,
and we want to integrate the appropriate differential
equations to calculate the thermodynamic quantities of
interest throughout the process. The process will thus be
represented by a sequence of equilibrium states. While
time may be thought of as an implicit variable of the
process, time does not explicitly enter the equations,
because equilibrium thermodynamics has no de-
pendence on rates. Also, equilibrium thermodynamics
customarily applies to a macroscopic system which is
homogeneous, i.e. one in which thermodynamic
variables are constant throughout. Alternatively, we can
use the concept of local thermodynamic equilibrium, in
which the thermodynamic variables are fields, but all
the equilibrium relations hold locally. The equations of
the present chapter can be viewed in either way: as
global or local. Also, note that thermodynamics operates
entirely in the rest frame of the material, globally or
locally. And finally, so as not to leave the reader with the
wrong idea, we recall from Chapter I that when ir-
reversible thermodynamics is coupled into the system
of equations, one or more of the equilibium relations
will be altered.

To proceed, we assume that all thermodynamic quan-
tities of interest are known in the “current state.” Since
the stress is pressure, only two thermodynamic
variables are needed to specify a state, and these will be
taken as V and S. At each current state, we are given the
proper dV and dS to increment to the next state. With
this information, and the thermodynamic differential
equations, it is possible to integrate to find all the
thermodynamic quantities of interest in the next state.
The source of information for the increments dV and dS

will in fact be the equations of motion and the ir-
reversible thermodynamics, but this point is not rele-
vant in setting up the thermoelastic theory. The easiest
way to construct the thermodynamic equations is to
start with a state function, from which all quantities can
be derived. When V and S are the independent
variables, the state function is the internal energy. We
write

U=UVS) | 12

and the pressure and temperature are first derivatives,

au
o e —) ‘ (7.3)
av S
BU)
== (7.4)
S Jy
Second derivatives of U produce the quantities
B = adiabatic bulk modulus,
vy = Griineisen parameter,
C = constant-volume heat capacity. (73
These quantities are defined by the relations
3 aP
w) = _V) = pB (7.6)
aVv S d S
4 =—pT . (1.7)
avas Jgy
fFU) a5 aT) = 7.8)
as? v s Jy & :

Now the differentials of the dependent vanables can be
constructed. For the internal energy, we write

8
dU=-—¥)dV+-a—U) ds
av )g s Jy

and with (7.3) and (7.4) this is

dU = — PdV + TdS (7.9)
In the same way dP and dT are expressed as
dP = — pBdV + pyTdS , (7.10)
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aT = — pyTav + Zg-s

(7.11)
This procedure can be continued to higher orders; ob-
viously the dependent variables will continue to be
coupled from one order to the next.

Let us consider how these equations can be used to
integrate the equilibrium-thermodynamic process
under study. First. dV and dS are given for every current
state, henc~ V and S are always available, by integration
from the initial state. U is obtained by integrating dU;
dU is calculated from (7.9) if P and T are known: P and
T are obtained by integrating dP and dT; these are
calculated from (7.10) and (7.11) if B, v, and C are
known; and so on. The hierarchy has to be broken in
order to do any real calculation. It can be broken at the
level of (7.10) and (7.11), if B, y, and C are regarded as
known functions of V and S. This is generally the
approach taken in the present work. On the other hand,
the hierarchy can be broken one level earlier, namely at
the level of (7.9), if P and T are regarded as known
functions of V and S.

The independent variables do not have tobe V and S.
When thermodynamics is coupled to continuum me-
chanics, it is often convenient to choose V and U as
independent variables. However, it should be rec-
ognized that whatever the independent variables, the
hierarchic nature of the thermodynamic equations is
still present. It will always be necessary to break the
hierarchy, by using equation-of-state information, or by
introducing an approximation. A simple example,
which represents common practice in hydrodynamic
computer codes, is as follows. The independent
variables are V and U. In (7.9), TdS is approximated by
—qdV, where q is the artificial viscosity:
dU = — (P + q)dV. (7.12)
The increment dV is supplied from the equations of
motion, P is a known function of V and U (the equation
of state), and q is a known function of V, V, and U,
where V is the Lagrangian time derivative of V. Hence,
dU can be calculated, and the system of equations is
closed.

Incidentally, another useful form of (7.7) is the com-
mon expression for ¥,

aP)
T (7.13)
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This and all the other thermodynamic relations of the
present section can be found in Chapter 1 of Reference
5.

8. Anisotropic Stresses

The concepts here, and the procedure, will be essen-
tially the same as in the last section. With anisotropic
stresses, an equilibrium thermodynamic state can be
specified by the elastic configuration, or by the stress
tensor, plus one more variable such as entropy or tem-
perature. The different sets of independent variables
have different advantages, and for any given problem,
the practicing theorist should be able to transform from
one set to another. Here the independent variables will
be taken to be the elastic configuration and the entropy.
Since it will eventually be necessary to differentiate
between elastic and plastic strains, we will use a super-
script e to denote elastic strains. The incremental elastic
strain gradients du§ carry the current configuration x
into the next configuration x + dx. The incremental
entropy dS represents entropy from all sources. Thus,
the independent incremental variables, which are
presumed given for each current state, are the set
{dus, dS}. The sy:nmetric elastic strains de§j are

def = = (dug + duf) (8.1)

(8]

The rotations are 1o be thought of as rigid, hence rota-
tion increments are denoted simply by dw;;, where

doy; = El (dujj — duf) (8.2)

Also, with (8.1) and (8.2), the set of independent
variables can be taken as defj, dw;;, and dS:

dus,dS} = (de5, deoy;, dS) (8.3)

In order to simplify the notation, we will adopt the
practice of omitting the indication, in partial de-
rivatives, of which variables are to be held constant.
This can be done because, once the set of independent
variables is specified, any partial dzrivative is to be
carried out with all the remaining independent variables
held constant. For example, for any function f, 3f/aS
means all &f and w; are held constant. Also, 3f/dsf;
means S, all w;, and all other &§ are held constant. A
subtle point regards the enumeration of independent
variables. All nine &, and all nine w;;, are regarded as
independent variables, and all sums over i contain three
terms, all sums over both i and j contain nine terms, and




so on. The symmetry relations among the &f and the w;
are regarded as constraints. This is how the algebra is
done. Returning to the matter of notation, the practice
of omitting the indication of which variables are held
constant is common in calculus, but it is not common in
thermodynamics. Obviously, it will not work when one
is trying to calculate a change from one set of indepen-
dent variables to another. The practice will be followed,
when possible, for the remainder of this work.

The combined first- and second-laws of
thermodynamics is
dU = dW¢ + TdS (8.4)
The work done on a material by stresses is given by
{6.7), and this is elastic work dW* when the strains are
elastic. Hence (8.4) is
pdU = tde§ + pTdS (8.5)
The customary expressions for stresses and tempera-
ture, as energy derivatives, follow directly from (8.5):

U
Iij = p maae 5 (8.6)
oU
- 8.7
T = (8.7)

Also (8.5) implies that 1J is invariant under rigid rota-
tions:

U
g-?.;); =0 . (8.8)

The next step is to construct thermoelastic equations for
increments in the dependent variables which appear in
the equation for dU, namely t;and T.

Another subtle point arises. It goes without saying
that both sides of any thermodynamic equation are
evaluated at the same state. In the case of (8.7), the
equation is valid for any configuration, and hence it can
be differentiated with respect to strain. Equation (8.6) is
also valid for any configuration, but the equation has
already been evaluated at & = w; = 0. This means
that (8.6) cannot be differentiated with respect to strain.
Alternatively, if you calculate dt;;/def,, or d1;/9wy,. by
differentiating (8.6), vou will get the wrong answer.

To calculate correct strain derivatives of the stress
tensor is merely a matter of algebra, It is done in
Reference 4, equations (6.9) and (6.11), and the result is

a1

g, = B - (8.9)
a1 1

tﬁg = 5 (Tinajk = Tikﬁjg o T’-gﬁik -_ le;sji'). (8.10}

where B, is an adiabatic stress-strain coefficient. The.
letter B is in respect of F. Birch. Since we want to
establish, within this monograph, the foundations for
the most important parts of the theory, we wil! justify
the above two equations. The first one is to be con-
sidered a definition of the stress-strain coefficients, If
from any equilibrium state one changes the stress by
dt;, at constant §, and the elastic strain def; results, the
incremental stress-strain relation constitutes a defini-
tion of By

dt; = Bjdel;

To relate this definition to the case of isotropic pressure,
by analogy, it is the same as introducing the adiabatic
bulk modulus by means of its stress-strain definition,
namely

B = — V(aP/aV)s

instead of as a second derivative of the energy |see
equation (..6)].

The significance of (8.10) is as follows. When an
element of mass undergoes pure elastic strain dej, the
corresponding drt; is given by (8.9). This thermoelastic
relation is rotationally invariant, i.e. it does not know
whether or not the mass element has rotated. If the mass
element has in fact rotated, then the stress has rotated
with it. Hence, compcnents of stress in the laboratory
system are changed. and 1t is this change which equation
(8.10) gives. In detail, assume that a mass element
rotates by dw;;, and the stress tensor rotates with it. Then
T, in the laboratory system is given by (RtR™);, where
R = 1 + do, to order dw. Let us denote the change in
the stress components, in the laboratory system, due to
the rotation, as dti:

dtij = (RtRll)i] g t|j (8.11)
Straightforward evaluation of this gives
dt} = — (nudwy, + tdey) (8.12)

But this is precisely the result obtained from (8.10),
when dt}} is calculated from the expression
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6‘1'.-,-
d‘ﬂf (ﬁ):. diﬂk[ (8.1 3)

This justifies (8.10).

Let us continue the program of calculating de-
rivatives required to construct equations for dt; and dT.
The anisotropic Griineisen parameters y; are defined by

=2 = — pTy; (8.14)

They are expressed as energy derivatives by differentiat-
ing (8.6):

o (8.15)

The y; represent the thermal energy contribution, or
heat contribution, to the stresses, as can be seen by
rewriting (8.14) in the form

(8.16)

The subscript 1 means at constant elastic configuration;
its use is historical.” The heat capacity at constant elastic
configuration is C,, defined by

(8.17)

and with (8.7), this is expressed as an energy derivative,

T U

L 8.18)
G, :

Finally, from (8.7), and with (8.8) and (8.15), the strain
derivatives of the temperature are

aT
3E;

- T (8.19)
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aT
Y

= (8.20)

Equations for dt;; and dT can at last be written down,

with the help of various preceding equations. The re-
sults are:

dt; = Bydefy + dtff — pY;TdS (8.21)
TdS

dT = — Tyde + TS (8.22)
G

This is the second level of the thermoelastic hierarchy,
following equation (8.5), which is the first level. We
break the hierarchy at this level, by assuming the coeffi-
cients C,, 74 and By, are known functions of the
independent variables.

For abbreviation, it is often convenient to use Voigt
notation, in which one Greek-letter index replaces a pair
ij, according to the following scheme:

11 22 3332o0r23 31 or13 21 or 12
1 2 3 4 5 6
(8.23)

ij

=
I

Obviously, this replacement is allowed whenever a coef-
ficient is symmetric in ij, as are t; and y;;: each of these
matrices has only six independent components. From
the definition (8.9), the By, are symmetric in ij, and also
in k& so they can be written in Voigt notation:
Bjww — Bg. Complete Voigt symmetry, or simply
Voigt symmetry, means a set of coefficients is sym-
metric in Voigt indices. The B,g do not have Voigt
symmetry in general, since in general B, # Bg,. The
use of Voigt notation introduces some tricky counting
problems; sums on repeated indices, or tensor contrac-
tions, acquire counting factors when expressed in Voigt
notation. We will not use Voigl notation in algebraic
manipulations, but only in expressing the results.

The student should be aware of the fact that there are
different sets of *“‘elastic coefficients,” with different



properties. Three sets in particular are important. The
elastic constants Cyy, are symmetric-strain derivatives
of a state function, of the internal energy for the
adiabatic constants, and of the Helmholtz free energy
for the isothermal constants. The Cj, always have Voigt
symmetry. The coefficients A;;, are nonsymmetric de-
rivatives, whose physical significance is that they govern
small-amplitude wave propagation in solids, for exam-
ple, ultrasonic waves. The A, never have Voigt sym-
metry, unless the stresses are zero. Finally, the B, are
the coefficients in stress-strain relations, and they have
Voigt symmetry when the stress is isotropic pressure.
These three sets of coefficients differ from one another
by terms linear in stresses. The three sets are the same at
zero stress, but their stress derivatives are never the
same.

A common circumstance in treatises on elastic-plastic
strain is that “equation number one™ is Hooke’s law. In
the present work, the first term on the right of (8.21) is
Hooke’s law, in differential form. Omitting considera-
tion of the rotation term, there is still another contribu-
tion to (8.21), and that is the term in TdS. That term is
necessary for the specification of dt;. Even if one
changes variables, the equivalent of the TdS term will
always be present on the right side of (8.21). In other
words, stress can never be expressed in terms of strain
alone.

To complete the present discussion, we will write the
equation for the adiabatic stress-strain coefficients, as
strain derivatives of the internal energy.

U
3850k

Bukf b P

|
+ p (tade + Tl + T + Tedw — 4 10u)

(8.24)

9. Approximation of Small Anisotropy

Thermoelasticity was developed in the first place to
describe experiments, especially stress-strain experi-

ments and wave-propagation experiments, on single
crystals in the presence of applied stresses. Applications
of thermoelasticity can become quite complicated,
especially for crystals of low symmetry. On the other
hand, in plastic flow experiments, it is often possible to
consider the solid under study as nearly isotropic. A
polycrystalline aggregate, for example, is approximately
isotropic for many purposes. It is therefore useful to
simplify the thermoelastic equations for the case of an
isotropic solid.

Of course, as soon as an anisotropic stress is applied, the
solid undergoes anisotropic elastic strain, and in this
state the solid is not isotropic. But if the anisotropy of
the elastic strain is small, then the material anisotropy
will be small, and this will be the basis of our approx-
imation. Ultimately, we rely on plastic flow to keen the
anisotropy of elastic strains small, or equivalently, to
keep the stress deviators small. There will always be
some solids for which the approximation is not accep-
table.

Let us begin by making a formal expansion of
thermodynamic functions in anisotropic elastic strains.
The initial isotropic state {V,S] of a solid goes at con-
stant entropy and at constant volume to the anisotropic
state (xS}, by the elastic strains &f. Then for any
thermodynamic function f,

af

‘{xas) . RV\S) + S [':1‘:1 i 3 (9.1)
des

where + .- represents terms of second and higher

order in the &, and where

Vix) =V (9.2)
Obviously, (9.1) cannot be applied across a phase
boundary. Otherwise, however, (9.1) is not an approx-
imation, and it gives a way to calculate thermodynamic
functions in anisotropic states. This expansion will be
used in Chapter V to calculate stress-strain coefficients
in biaxially strained states. For the present purpose,
(9.1) allows us to make a precise definition of the small-
anisotropy approximation.
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The approximation is easily visualized in terms of the
equilibrium thermodynamic process of the preceding
section. While the process goes along a line in
anisotropic-state space, having volume V(x) and en-
tropy S at any point, a unigue image point moves alonga
line in isotropic-state space, always having the same V
and S. The second-order coefficients are evaluated at the
image point.

The approximation of small anisotropy leads to the
following replacements:

G, (9.3)

Y — W 9

and the By, are replaced by the isotropic-solid Bgg.
which have the following symmetry:

B, B Bp
Bi: B, B 0
B Bi: By
(9.5)
By O 0
0 0 By; O
0 0 By

There are only two independent B,s, because of the
additional relation

By = ';: (B, — Bpo) (9.6)

An equivalent pair of stress-strain coefficients are the
adiabatic bulk and shear modul:, B and G respectively,
related to the B, according to

4
B||=B+§G ’ (9.7)

Bu=0G (9.8)
Still another equivalent pair are the Lamé coefficients A
and p, which are not stress-strain coefficients, but are
elastic constants:

B“ = l o 2[1 — P ’ {9-9)
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Ba=np—FPF 4 (9.10)
where P is the pressure of the isotropic state:
P = P(V.S). It is also useful to relate the B to wave-
propagation velocities. If ¢, and c, are, respectively, the
velocities of longitudinal and transverse adiabatic
waves, then

3

By = pcy , (9.11)

By = pci (9.12)
It is common practice to define a “*bulk scund velocity™
cg, according to the relation

(9.13)

However, no elastic wave actually travels at this veloc-
ity in an isotropic solid.

The approximation of small anisotropy is to be used
in the equations for dU, dt;;, and dT, which are (8.5),
(8.21), and (8.22). It will be convenient to change stress
variables, from T; 10 the set P,s;, defined in (5.2) and
(5.3). We will also use conservation of mass, equation
(4.16), for the elastic strains,
denV = ds§, + dei + desa (9.14)
This equation introduces a new notation, ir which
Cartesian indices are written as numbers 1,2,3, and
repeated numbers are not summed. There are times
when the algebra is simplified by enumerating the
Cartesian indices, and explicitly writing out all the terms
in a calculation. Results for the thermoelastic equations
in the small-anisotropy approximation are as follows:

dU = —PdV + TdS + Vsde§ , (9.15)
dP = — BdenV + pyTdS , (9.16)
dT = — yTd¢nV + 'E‘:_S . 9.17)
ds;; = 2G(de§, — El denV) + dsf, (9.18)
ds;; = Gdef; + dsp» , (9.19)

where the remaining diagonal and off-diagonal stress
deviators are given by obvious relabeling of (9.18) and
(9.19), respectively. The rotation terms are

dsfy = 2(s;2dwx: + sico;) (9.20)



dsty = (s — spldwix + sndwy; + sppdes , (9.21)
and the remaining rotation terms are given by cyclic

permutation of indices in (9.20) and (9.21).

Once again, consider the equilibrium thermodynamic
process, in which the solid moves along a line whose
points are specified by (x,S], while its image moves
along a corresponding line specified by {V,S}. The image
is undergoing a process in isotropic-state space, and
hence is governed by the equations of Section 7. Let us
use the subscript I, for isotropic, to denote variables
belonging to the image. Then comparison of the small-
anisotropy equations (9.15) through (9.17) with the
isotropic equations (7.9) through (7.11), and remember-
ing that V(x) = V, gives the results

P(x.S) = Pi(V.S) . (9.22)
T(x,S) = T«(V.S) . (9.23)
Ux.S) = U(V.S) + Us(x.S) (9.29)

where U, is the anisotropic elastic energy of the solid,
and is given by

Unx.S) = j Vs, de; (9.25)

The integral is along the path of the process, from the
initial state to the current state. The above equations
show that the approximation of small anisotropy re-
duces the thermoelastic process to a ‘“minimally
anisotropic” one: the mean compressive stress and the
temperature can be obtained from isotropic equation-
of-state data, and the presence of anisotropy is con-
tained only in the existence of nonzero stress deviators,
and of the anisotropic elastic energy. Of course, when
thermoelasticity is coupled to continuum mechanics,
the presence of these anisotropic terms will affect the
course of the process, at each timestep.

Just how good the approximation of small anisotropy
is wid depend largely on your point of view. From the
solid state physics point of view, where elastic coeffi-
cients are standard precision tools of the trade, the
approximation is not acceptable. In calculating
processes in the explosive deformation of metals, the
small-anisotropy approximation may very well be the
best one can do.
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CHAPTER 1V

PLASTIC FLOW AND IRREVERSIBLE
THERMODYNAMICS

The first-two sections of this chapter describe the
simplest theory of plastic flow for an isotropic solid,
namely the Prandtl-Reuss-von Mises theory. Some stan-
dard textbooks on this subject are Hill,® Mendelson,’
and Kachanov.* Techniques for computer calculation of
elastic-plastic flow problems in one and two dimensions
are discussed by Wilkins.” The constitutive equaticn for
heat transport is discussed in the third section. In the
last section, the entropy production is specified, and the
complete irreversible-thermodynamic theory of elastic-
plastic flow is summarized.

10. Plastic Yield

To fully appreciate the criterion for plastic yielding, it
is helpful to take a brief look at the kinematics of stress
in an isotropic solid. Under rotation R, 1 transforms as
RTR"'. A real-symmetric 3 X 3 matrix has three rota-
tional invariants, and for the stress tensor they are
denoted T,. T>, and Ty

T[ = Trt = Ty + T + Tas (10.1)
T.= uw+wm+ 1

= (BT *+ Tata + Tati) . (10.2)
T:= [t = thtotn + 210151y

— (T + Tt oTaTh) (10.3)

The rotational invariants of the real-symmetric matrix
of stress deviators are denoted S,. S;, and S;, and with
the above three equations, they can be expressed as

S$s=Trs=0 , (10.4)
S, = Ts + El . (10.5)
S, = T: + _I T.T: + _2'1‘.‘ (10.6)
3 3 3 it 27 1 .

S, is an important measure of the stress anisotropy, and
itis useful to express S, in alternate forms. A commonly
appearing form is

1 ’ . =
§; = g[(l'n"f::)‘ + (=) + ()

+ (it . (10.7)

In terms of the stress deviators, S; is simply

5 - 3 SiSi (10.8)

In principal axes, both t and s are diagonal, and (10.8)
reduces to

l bl ) b
S = fsh + % + sh) . (9

Given a plane, the stress acting on it can be resolved
into a normal component and a tangential component.
For the plane 1. for example. the normal stress is t,,, and
components of the tangential stress are 1> and 1;:. We
will consider normal and tangential stresses in the prin-
cipal axis system. The tangential stresses have local
minima. with the value zero, on the principal planes.
They have local maxima on planes which bisect the
principal axes. and the maximum values are
£ 5 =Tl Btw—tu)- Ya(t::—1;). These are
called the principal tangential stresses. In principal axes.
the spherical stress line (also called the hydrostatic line)
is the octahedral line t,;=1,;=11;. Planes perpendicular
to this line (octahedral planes) are planes of constant
spherical stress. which is constant mean compressive
stress in our notation. Recall that an arbitrary stress is
represented by a vector in principal axes. Hence. an
arbitrary stress is decomposable into a projection onto
the sphorical stress line. and a projection onto the
octahedral plane. In our notation. these projections are
proportional to the mean compressive stress. and the
shear stress. Specifically, the stress vector in principal
axes has the following properties:

V 1 +1i+1i; = length of stress vector,
— /3 P = length of spherical stress projection.

V28 = length of octahedral-plane projection.
(10.10)
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The concept of yield is as follows. If the stresses
applied to an elastic-plastic solid are increased from
zero, the response of the solid is initially elastic, and
when the anisotropic stresses reach a certain “point,”
plastic flow begins. The point reached is a point on the
yield surface. The yield surface depends on the state of
the solid when the experiment is performed; it depends,
fsr example, on the temperature, the pressure, and the
dislocation density. For the moment, let us consider
merely the stress dependence: the yield surface is given
by an expression of the form f{t;) = 0. For an isotropic
solid, the yield surface should depend on the stress only
through the rotational invariants, which means
f{T,,T>T3) = 0. Changing variables with the aid of
(10.4) through (10.6) gives f{P.S.,S;) = 0. But from the
decomposition of the stress in principal axes, and argu-
ing that the yield surface should not depend on P,
because it is the anisotropic part of the stress that drives
plastic flow, one expects the yield surface to depend only
on S,. This is the approximation of von Mises:'? yield
occurs when the component of tangential stress on the
octahedral plane reaches a fixed value. von Mises in-
troduced the constant K, and wrote the yield condition
in principal axes as

1 ) 1 ] 1 ] 2
Z{TI —t2) + E(Tn"t.u)' + Z{T.u""fn)‘ = JK*

(10.11)

This is the same as

& _;Kz (10.12)

In the present work, we define a rotationally invariant
effective shear stress 1, according to

: 3 3
r= ghs -

t=0 (10.13)
The von Mises yield condition is then t = K. In the
next section, we will generalize this to a flow rule.
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It is worthwhile to compare our notation with that of
the textbooks. Hill® defines a generalized stress, or effec-
tive stress, or equivalent stress, which he calls &, and
whick i3 2t. Mendelson’ defines an octahedral shear
Stress To, Which is 1/8/9t1. Kachanov® defines a tangen-
tial stress intensity T, which is \/4/3t. Wilkins® writes
the yield condition in principal axes as

(tn—t2) + (t—13) + (=)} = 2(Y?)?

Y? is the yield in simple tension, because for simple
tension T;; = T;; = 0, and the yield condition is then
133 = Yo. Mendelson’ and Kachanov® use the same
condition as Wilkins, but with Y replaced by o, and o,
respectively.

11. Plastic Flow

The plastic strain (or flow) will be denoted by a
superscript p, as def. For a process in which elastic and
plastic strains are going on simultaneously, it is possible
to add the two kinds of strain in infinitesimal form. Thc
total strain de;; is then
de; = dejj + def (1.1
Since the rotation is rigid. involving neither elastic nor
plastic strain, increments of the displacement gradients
are
dl.'lij " dﬁfl + dEE + d(ﬂij (112)

Now a problem arises. Consider the transformation a,
which transforms the initial configuration ¥ to the
current configuration x. Increments da; of the total «
are defined by (4.10). together with (11.2), and these
increments can be integrated along the process to give
a(X—x) for any configuration x. Thus, the toral con-
figuration is known, for every mass element and for
every time. Furthermore, it is possible to write equa-
tions for daf, and daf separately, under the condition
that a; = ofafj. The total a has the same meaning as
before, but the component matrices o and a have no
meaning, because they do not commute. In other words:




The problem is resoived as follows. First, the in-
cremental strains defj and def are perfectly good dif-
ferential variables for the coupled differential equations
of a flow process; these equations can still be integrated
step by step. However, we do not have the elastic
configuration available as an integrated state variable.
But the integrated stresses T;; can serve as state variables
for thermoelasticity. These and one other variable, say
S, completely specify a thermoelastic state, including the
elastic configuration. For the plastic strain, we will
introduce a non-negative scalar measure of the total
plastic strain increment, and the integral of this will
provide a measure of the total plastic strain which has
occurred in the material.

The simplification of plastic strain is accomplished
by the Prandtl-Reuss approximation: it is assumed that
plastic strain increments are proportional to the cor-
responding stress deviators.''''? That is,
def = s;dA, where dA is some scalar infinitesimal. To
identify an effective plastic strain in dA, we divide by the
effective shear stress 1. and write the Prandtl-Reuss
appproximation as

3s;
dep = {t—’ dy . (11.3)

where dy is the effective plastic strain increment. With
the Prandtl-Reuss approximation, therc is no volume
change due to plastic strain, i.e.

denV® = def = 0 (11.4)

because s, = 0. This property is in accord with the
experimental observation that plastic strain is volume
conserving.

Another property of the effective plastic strain results
from the physical nature of the process, namely that
plastic strain is a stress-relaxing process. For any in-
cremental process which occurs at constant total con-
figuration, i.e. de,, = 0, the set of plastic increments def}
must be such as to reduce the magnitude of each and
every s;. With the Prandtl-Reuss approximation, this
will be the case if and only if dy > 0. The simplest way
to show this is to calculate the incremental plastic work
done on a mass element. This is given by equation (6.7),
with the total strains replaced by plastic strains:

pdW?P = tdef} . (11.5)

Thus, the plastic work is work done by the stresses
against the plastic strains (there is no restriction on the
total de;; here). With t; replaced by s; — P§;;, and with
the Prandtl-Reuss approximation (11.3), the plastic
work is

pdW? = ‘% (s—P8j)sydy . (11.6)

From this it is seen that the mean compressive stress
does no work in plastic strain, because s; = 0. With the
definition of 1, equation (10.13), the plastic work be-
comes

pdWP = 2tdy . (11.7)

Now in any mass element, plastic strain cannot proceed
in such a way as to do work on the surroundings.
Therefore, we must have dW? = (,andsincet = 0,

dy = 0 . (11.8)

This condition is not to be regarded as a constraint,
because it should be automatically satisfied in any cor-
rect calculation. As a result of (11.8), for any mass
element, the integrated plastic strain y is a nondecreas-
ing function of time.

With the Prandtl-Reuss approximation, the con-
stitutive behavior of a solid is almost completely speci-
fied. It remains only to specify the behavior of the
effective shear stress 1. This alone is an extremely
difficult undertaking, because of the complications of
plastic flow behavior in real solids. We will merely try to
list the variables which control the behavior of t, and
that for an isotropic solid enly. The von Mises constant
K is generalized to a fiow surface, such that t = K when
plastic flow is going on. K should depend on the
thermoelastic state, which for an isotropic solid is speci-
fied by V and S. A dependence on pressure is implied
here. In contrast to von Mises™ original point of view,
which neglects the dependence of K on P, because P
does not drive plastic flow, we may want to apply the
theory at pressures high cnough to alter the material
properties. Hence the dependence on pressure is kept.
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The effect of work hardening is represented by a de-
pendence of K on the plastic strain y, and also K should
depend on the plastic strainrate , which is the La-
grangian time derivative of y,

. oy
X

Hence, in the plastic flow regime, i.e. when §y > 0,

(11.9)

1 = K(y.y.V.S) (11.10)
When the effective shear stress is inside the flow surface,
the plastic flow ceases and the solid is in the elastic
regime, with § = O
T < K(y,0,V.S) (11.11)
These two equations represent a common way of ex-
pressing the plastic constitutive behavior of an isotropic
solid. However, the relations are presumably unigue,
which means invertible, and it is logically simpler to
think of the plastic strainrate as the dependent variable.
This approach also has better stability properties for
numerical calculations. Hence, (11.10) and -{1L.11)
together are written
v = y(ny.V.S) (11.12)
This is the plastic constitutive equation.

In recent years, Los Alamos has undertaken signifi-
ca. work to extend our understanding of plastic con-
stitutive behavior of metals. A great amount of ex-
perimental work on plastic response to biaxial loading
was reviewed by Hecker.'* Extensive experimental
studies have been done on very large deformations at
low strainrates.'*'® A new gencration of high-strainrate
experiments, with s in the range 107 1o 107 s, has been
undertaken.'® Effort is also being directed at the prob-
lem of rationalizing experimental data. A method is
being developed, based on Taylor factors,” to account
for slip on single-crystal planes in a polycrystalline
aggregate.”' A case has been made for the importance of
dislocation drag at high strainrates.”> And finally, fol-
lowing the argument of Fred Kocks, one will eventually
want to replace y in the plastic constitutive equation by
a parameter which more accurately represents the inter-
nal plastic state of a solid.****

12. Constitutive Equation for Heat Transport
The continuity equation (6.9) for heat transport is

pdQ = — V-Jdt (12.1)
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To obtain a closed system of equations for heat trans-
port alone, it is customary to eliminate Q in favor of T.
Let us assume, for the sake of discussion, that the
process considered is at constant pressure. Then
dQ = CpdT, where Cpis the heat capacity per unit mass
at constant pressure, and (12.1) reads

pCP%;l-+V-J=0 (12.2)

This is to be coupled 10 a constitutive equation for the
heat current J. An equation which includes the rate-
dependence of J is

BaJ+J— vT
at i :

(12.3)
where 0 is a relaxation time and x is the thermal
conductivity. The meaning of 6 is as follows: if VT is
suddenly changed. J changes in response. with a relaxa-
tion time 0. With the relaxation equation for J, the
temperature obeys a dissipative wave equation,

a'T 1 aT K
i B BN B
at- * 0 a ey

.
8pCe e

This equation describes the propagation of thermal
signals. The maximum propagation velocity which can
be achieved. according to (12.4). is

v m N e
m epCl' .

For a metal, 8 should be roughly the electron-phonon
relaxation time, say about 10" s, and v,, should be
several cm/ps.

For most problems of thermoelastic-plastic flow in
solids. the propagation of thermal energy is not impor-
tant. Heat is generated locally, by plastic dissipation,
and the important process of heat transport is heat
conduction. In other words, the relaxation termin (12.3)
should be negligible for most problems. The condition
that this term is negligible is simply

(12.5)

dJ << Jinatime®. (12.6)
With this approximation, the constitutive equation for
heat transport reduces to Fourier's law of heat conduc-
tion:

J=—xVT (12.7)



When this is coupled to the continuity equation (12.2),
the result is a diffusion equation for the temperature:

e A wir =

= 7 (12.8)

The diffusion equation will not describe propagation of
a thermal signal. It is consistent only with an infinite
velocity of propagation. The reason for this is in the
approximation (12.6), which will always fail when J is
sufficiently close to zero. If this defect in the theory does
not cause a problem in an actual computation, then one
can usually justify use of the conduction equation
(12.7).

13. Irreversible Thermodynamics

Consider processes which are sufficiently close to
equilibrium so that the total center-of-mass energy can
be identified as the thermodynamic internal energy.
Then dE = dU in the continuum-mechanic equation
for conservation of energy, (5.10) or (6.11). Writing dW
as the sum of elastic and plastic contributions then puts
the energy equation in the form
dU = dw*® + dWP + dQ (13.1)
The key step in completing the irreversible
thermodynamic description is the identification of the
ertropy production. Heat transport produces entropy
dS¥, according to the usual relation
TdsS* = dQ (13.2)
Also, the plastic work is assumed to be totally
dissipated:
Tdsy = dwr (13.3)
The total dS is dS* + dSY, and the energy equation
(13.1) reads
pdU = t;def + pTdS (13.9)
Equation (13.4) is now identical to the thermoelastic
energy equation (8.5). This identity is a necessary con-
dition for a consistent theory, With (11.7) for the plastic
work dWP, the total entropy increment is given by
pTdS = pdQ + 2tdy . (13.5)
At this point, it is useful to make a list of the complete

set of equations which describe the irreversibie-
thermodynamic elastic-plastic flow process in a solid.

For most problems, this system can be simplified
considerably. Further, it is always possible to eliminate
the elastic strains de§, in favor of the total strains de;
and the plastic strain dy, This is done merely by writing
de§ = de; — def, and then using the Prandtl-Reuss
approximation to replace def with dy. This is a useful
step, because the rquations of motion determine the
total de;. Let us make a sketch of how the system of
equations works in a numerical calculation. Suppose
that all the field functions are known in the cu:rent state
(x.S}. Given a time increment ¢t, we want to evaluate
the functions at the next state {x+dx, S+dS}. The equa-
tions of motion (conservation of mass and momentum)
give the increments dg; and dt. The plastic constitutive
equation gives dy = ydt. Then the heat transport
equations and the entropy production equation give the
total dS. With these increments, the changes in the
internal energy, the stresses, and the temperature can be
calculated, and all the functions are then determined in
tne next state.

It should be emphasized that the present theory can
also be used to advantage in analyzing experiments. For
most experimental conditions, all the material
properties in the theery are reasonably well known,
except for the plastic constitutive behavior. Hence, the
complete set of equations, together with a well-designed
set of experimental measurements, will determine the
plastic constitutive behavior of a given solid. This pro-
cedure was used in analyzing nonsteady shock profiles,
to determine the plastic behavior of an aluminum alloy,
foi plastic strains up to 5%, and for plastic strainrates up
to107s.

In assigning the entropy production, it was assumed
that the plastic work is totally dissipated. Experimental
support for this in metals goes back to the work of
Farren and Taylor,” and of Taylor and Quinney,?® who
found that approximately 90% of the plastic work is
dissipated, for strains greater than a few percent. Subse-
quent research on the energy stored in cold working was
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reviewed by Tichener and Bever.”” This stored energy
goes into the defect structure of the solid, most notably
the dislocation structure, and the energy is in fact re-
coverable. However, this energy is not included in or-
dinary thermoelastic theory, and an explicit accounting
of it would require a redefinition of the thermoelastic
quantities. For example, the presence of stored energy
will give rise to a negative contribution to the heat
capacity, which is strongly dependent on the heating
rate, because of annealing. Hence, the assumption of
total plastic dissipation, besides being a good approx-
imation as far as the total plastic work is concerned, also
simplifies the complete theory. In the same vein, the
remaining thermoelastic coefficients, namely the
anisotropic Griineisen parameters and the stress-strain
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coefficients, are presumed to be independent of the
defect structure introduced by plastic flow. To the extent
of the author’s knowledge, this is in accord with ex-
perimental observation. On the other hand, the signifi-
cant effect of the stored part of the plastic work, namely
work hardening, is contained in the theory, through the
presence of the plastic strain y in the plastic constitutive
equation. Finally, an observation can be made regarding
experiments designed to increase our understanding of
high-strainrate processes in solids. If one is studying a
process in which the temperature rise due to dissipation
is important, then a measurement of the temperature
can be helpful in extracting plastic contitutive behavior
from the experiment.



CHAPTER V
APPLICATION TO UNIAXIAL COMPRESSION

The purpose of this chapter is to further illustrate the
general theory. The example of uniaxial flow is chosen
because of its geometrical simplicity, and also because it
includes planar wave processes. The restriction to com-
pression is done merely to avoid worrying about the sign
of the shear stress: it is always positive in compression.
The case of rarefaction, or tension, requires changing a
few signs in the equations of the first two sections of this
chapter. That the general theoretical construction in-
cludes any kind of material in a natural way is illustrated
for the case of a viscous fluid in the last section. While
the theory of the shock process is beyond the scope of
this monograph, the basic equations underlying recent
progress in shock theory are constructed, both for solids
and for viscous fluids.

14. Uniaxial Compression in an Isotropic Selid

In a Cartesian coordinate system, material motion is
in the x-direction only. For a given mass element, the
transverse surfaces do not move. A subtle point arises
immediately. For uniaxial compression, when plastic
flow occurs, atoms actually move in transverse dirce-
tions. But this transverse motion of atoms does not give
rise 1o a net transport of mass, or a net momentum, so
the transverse motion is not seen in the continuum-
mechanic equations for conservation of mass and
momentum. The occurrence of plastic flow is accounted
for by the continuum variable y; the boundary condi-
tions on the material motion, i the present case that
transverse surfaces do not move, are instrumental in
controlling the amount of plastic flow which takes place.
The same observations apply 1o continuum elastic-
plastic flow in other geometries as well.

x = laboratory coordinate,

X = x, = Lagrangian coordinate,
ax :
Y= a) = material or particle velocity. (14.1)
X
The transformation matrix is
rh) Pa
Qs =y R .
X/, p
u'_V}' = u?! = l *
= Ofori # j (14.2)

No summation is implied by repeated indices x, y, or z.
The second equality for a,, follows because [all = p./p.
from {(4.15). The symmetric infinitesimal strains are

de,, = d¢nV
all otherde; = 0 (14.3)
The stress tensor has only two independeni compo-

nents, the normal compressive stress o, and the shear
stress T, where

0™ = 5
{U_'ZT) _— T!y == Ry
= Ofori # j (14.49)

The components ¢ and t are both positive in com-
pression. Also note there is no rotation in the case of
uniaxial flow.

Exercise Is the. encrgv mvo]vcd in transverse motion of
atoms during plasuc flow contained in the continuum-
mechamc equation’ for conservatlon of energy?

Exercise Prove that t defined in equation (14.4) agrees
with the dr.ﬁm!mn (10.13) for the effective shear stress
which drives plastic flow.

For uniaxial flow, the first step is to write down the
simplified list of continuum-mechanic variables. The
student should verify that these results follow from the
definitions of Chapter 1I. and the condition of uniaxial
flow.

The Lagrangian equation (4.18) for conservation of
mass reduces to

(14.5)

a av
ggp) +a-‘)=0 .
Py X/




Conservation of lin,ar momentum in Lagrangian form,
equation (5.8), becomes

av ao
pa"") + .—) =0
at X dX‘

To proceed to the thermoelastic equations, we need to
find expressions for the elastic and plastic components
of strain. We will make repeated use of the symmetry in
y and z. The stress deviators follow from (14.4),

(14.6)

w| n
]

(14.7)

[
W o
-

Syy

and the Prandtl-Reuss approximation (11.3) gives

da‘l’l == de 1
1
dep, = - dy (14.8)

Then, solving the total strain increments (14.3) for the
elastic parts gives

def, = dnV + dy ,

(14.9)

Hence, in uniaxial compression with plastic flow, there
are only two independent strain measures, which we will
take to be d2nV and dy. The energy equation (13.4) now
reduces to

pdU = — od®nV — 21dy + pTdS , (14.10)
and the entropy production is
al e
pTdS = — —-)dl + Zudy (14.11)
ax t

The heat current J is in the x-direction. The quantity of
heat Q has been eliminated in favor of J, since this
generally simplifies computations. A tricky point should
be noted and remembered: elastic strain and piastic
strain are not separately apparent in our equations,
because they have been coupled through the boundary
condition. In (14.10), for example, the first two terms on
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the right, involving both d@nV and dy, are just the
elastic work 7,de.

An isotropic solid under biaxial elastic strain has
tetragonal symmetry. The adiabatic stress-strain coeffi-
cients By have the following symmetry:

By Bp Bp
By Bxn By 0
By By B
(14.12)
By O 0
0 0 By O
0 0 Bes

The coefficients By; and By, do not enter the equations
for the stresses and temperature, because def = 0 for
i # j. Voigt notation will also be used for the
anisotropic Grilneisen parameters: y; = yp. The
tetragonal symmetry is accounted for by writing

o= T o

Ty = Yu = T2 (14.13)

With these symmetries, the equations (8.21) for the
stresses, and (8.22) for the temperature, are evaluated to

give
do = p'¥|TdS = B][dinv = (B” = B]_‘g)dl}l ' {14.14)

1 1
dt = sp(y; — y)TdS — E(B” — By)dfnV

1 1 |
e ‘2“(511 * 3 Ba + EBB = Bix — Ba)dy ,
(14.15)
TdS
dT = — 7, TdnV = (v, — 7)Tdy + N .(14.16)
n

The complete set of equations for uniaxial com-
pression of an isotropic solid has now been constructed.
The set consists of conservation of mass and momen-
tum, (14.5) and (14.6); the energy and entropy equa-
tions, (14.10) and (14.11); equations for the stresses and
temperature, (14.14) through (14.16); and the con-
stitutive equations for the heat current and the plastic




strainrale, The energy equation is uncoupled from the
rest, and can be discarded. Further, whenever the trans-
port of heat can be neglected, then pTdS = 21dy, and
dS can be eliminated from the set of equations. It was
this latter set of equations, with J = 0, which was used
to extract plastic constitutive data from weak-shock
profiles for an aluminum alloy.*® Following that, it was
possible to calculate equation-of-state data from the
shock measurements, explicitly accounting for the
nonsteady nature of the shock profiles.?® This procedure
gives more accurate equation-of-state information than
does the customary method of using Hugoniot jump
conditions for the shock analysis, since the jump condi-
jons hold only for steady waves (see Section 16).

15. Stress-Strain Expansions

The expansions to be constructed will be helpful in
evaluating stress-strain coefficients in uniaxial flow
problems. We will have to introduce the elastic con-
stants, because the key equation, namely the elastic-
strain expansion of second-order elastic coefficients, has
been derived specifically for the elastic constants. The
general relation between stress-strain coefficients Bije
and elastic constants Cjj, is equation (6.10) of Reference
4:

1
Bije = Cije + 3 (tadp + Tedi + Tidi

= Tjgsik = ZTijﬁu) (15.1)

Let us begin with an isotropic solid in the presence of
an arbitrary pressure P, in the state {V,S]. Elastic cons-
tants and stress-strain coefficients in this state will be
denoted by overhead bars, as Cy3 and By, There are two
independent second-order elastic constants, given in
terms of the Lamé constants A and p [Reference 4,
equation (14.13)}:

Ch=rA+2n ,
Cl! - ?L (15.2)
There are three independent third-order elastic con-
stants, given in terms of the Murnaghan constants §, &,
and v [Reference 4, equation (14. 14)]:

Cn=2+4 ,

Cnn= 28

Cin=20— 2 + v (15.3)

Note for a polycrystalline aggregate, these are
polycrystal, not single-crystal, third-order elastic con-
stants. The two independent stress-strain coefficients
follow from (15.1) and (15.2), and they were already
used in Section 9:

B]|=7u+2p._P “

Bp=A+P (15.4)

In making elastic strain expansions, it is convenient
to change the concept from differential relations, in-
volving the strain differentials dej, to power-series ex-
pansions in the small but not infinitesimal strains &j.
One can then work to first order in the strains €f, or to
second order, or higher. From the isotropic state {V,S},
we carry out an adiabatic elastic strain to the state
{V + &f,S]. The strain has the biaxial symmetry of the
elastic strain wkich occurs in uniaxial flow, namely the
symmetry given by equation (14.9). There are only two
independent nonzero strain components, which are &5,
and &y = g},. The adiabatic strain expansion of the
second-order elastic constants (from an arbitrary initial
configuration) is given by equation (8.20) of Reference
4, and in the present notation this is

Cie = Cike + [Cikm€im + Cijmegfm + Cimiem

-+ ijktafm = Ciueim T CipamaBin)] (15.5)
Here, Cjjy is evaluated at the state {V + €5,S}, and the
expansion is correct only to first order in the elastic
strains. Evaluating (15.5) with the elastic constants in
(15.2) and (15.3) tells us that there are four independent
second-order elastic constants in the state [V + &S},
and that they have the following values to first order in
elastic strains:

Ci = (A + 2p) + 3A +6p + 2L + 4E)e5,
+(—2 — 4 + Dy,

Cia=A+ (A +20e5, + (40 — 2 + vy ,

g
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Ca=(+ 20+ (— A — 2pn + e
+ (20 + 4p + 4L +4E)es,

Cay=A+(—A+ 20— 28 + v,

+ (2h + 40)el, (15.6)

Exercise Derive the equations (15.6).

Equations (15.6) will be used as the basis for two
different expansions. In the first case, the elastic strain is
taken at constant volume. Then gy, = — 2 &,, and the
equations (15.6) reduce 1o

It

1
C.:=l+(l+€“5v)&% .

o
Il

A4 2p — (28 + du + 2B)et,

Cyu = A — (2M + 28 — Vg, (15.7)
Now to evaluate the B,g, from equation (15.1), we need
10 construct the stress tensor in the state [V + &,S).
From the definition of the stress-strain coefficients.
equation (8.9), and since the stiess tensor is —P§; in the
state |V.S), we can write
T, = = PO+ E.jkeﬁie s (15.5)
to first order in the elastic strains. For the volume-
(_:onserving elastic strain under consideration, and with
B, from (15.4), the result is

== P+ Ap — PEs
= = = P == Py

1; = Ofori # j (15.9)
The stress-strain coefficients can now be evaluated at
iV+ei,S), with the elastic constants (15.7) and the
stresses (15.9). In doing this, it is useful to change the
expansion variable, from the elastic strain &5, to the
ratio t/G, where 1 is shear stress in the elastically-
strained state, and G is the adiabatic shear modulus in
the state {V.S}. G is given by [see equations (9.8) and
(9.10))

G=p-P (15.10)
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Then from the definition of 1, equation (14.4), and from
equations (15.9), we have

1 < [
= ==

¢ - (i3.11)

Finally, the particular combinations of By which appear
in the uniaxial flow equations (14.14) through (14.16)
are evaluated, and the results are:

& T
Y I = Py
3(27L+Su+..§ P)

1
*Z'(Bll_Blz)={l»1"‘P}
1 4 T
{l+4p+§+g\;——§P)F
1
5(B|1—le)={u—9)

! 1
— (A + + Sy = ot
A+t + v £ 0

Ol a

I

1 i
;(BH = 5 By + 5 Bx — B — By)

1

1
—(u—P)—Z(u+gv—§P)

Ql A

(15.12)

These relations are an extension of the approximation of
small anisotropy. They give the adiabatic stress-strain
coefficients in the anisotropic state {x.,S}. in terms of
coefficients evaluated in the isotropic state {V.S|, where
Vix) = V.Equations(15.12)are correct to first order in
t/G, and are equivalent to the general expansion (9.1),
to first order. A result of (15.12) is the first-order relation

1

'5(312_ By) =1 (15.13)

Equations (15.12) and (15.13) were first published in
Reference 1.

Exercise Derive equations (159) and (15.12). -~

We now want to make another expansion, which is
useful for analyzing weak shock profiles. The expansion




will be made at constant S, from the initial state ahead of
the shock, which has volume V,, and P, = 0. In other
words, we are expanding on the initial-state adiabat,
S = §,. The small but not infinitesimal plastic strain is
y, and the elastic strains are obtained from (14.9),

& = 2 (V/VJ) + v

v . (15.14)

b2 —

By = —

The variable commonly used in shock theory to rep-
resent compression is not 2n (V/V,), but is €, given by

e=1— y 15.15
v, (15.15)
Expansion of €n (V/V,) for small & gives
1
BN =G & F ) (15.16)

Correct to first order in € and v, tne expansions (15.6)
are

Cu=(h+ 2u) - 3\ + 6p + 20 + 4E)e
+ (4\ + 8u + 4E)y

Co=A—-A+2De+ A +E— = vy ,

[ 8]

Cg: i (l oy 2}1) + (l + 2[]. i 208
— (A + 4p + By

Cas

A+ -2+ 22— vE

- (2A + 26 — vy (15.17)

As usual, the stresses at constant S are obtained from the
definition of the stress-strain coefficients. With the coef-
ficients (15.4), and noting P, = 0, and with the strains
(15.14), the stresses to first order in € and y are

w=— @A + 2p)k + ny
Try=tu=_h_uw,
7; = 0 fori # j (15.18)

The B, are then calculated from (15.1), with (15.17) and
(15.18):

+ (4L + 10n + 4By

Bu=21+ (2t — 20e
+(7L—2u+§-51v)\v ;

1
Bzz=1—2§3+(1+ll+§_5\’)‘~|’ ;

Bp =@+ 2p) + (2p — 20k
= (A + 50 + )y,

By =A+ (A — 20+ 26 — v

=i2h- = * 25 — VW (15.19)

Equations (15.19), which are at constant S, can be
used to calculate the normal stress o, and the shear stress
T, to second order in strains at constant S. This is done
simply by omitting the TdS terms from equations
(14.14) and (14.15) for do and dr, respectively, and by
putting in the expansions (15.19), and integrating on de
and dy. The initial conditions are ¢, = y, = 0. The
calculation gives

o= (A + 2pk — 2ny

—(gu I+ ¢ + 2506 + (4 + 10p + 4E)ey

3 3 e
(GA+6u+ S8+ v (15.20)

T ™ Ug — 3
He — Sny

3
—(?L+5p+§]83

3 9 3 1
= ST gl U -t + —
(21 skt 38+ 7 View

9 3
— Gt (15.21)

Once again, these equations hold on the adiabat at
S = §,. The physical path of the weak shock process lies
“above™ the adiabat, since entropy is generated during
the shock process. If we neglect heat transport in the
weak shock process, (14.11) gives for the entropy

pTdS = 21dy (15.22)
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This together with (15.21) shows that the entropy
change is of second order in the strains., Hence, to
calculate entropy contributions to the stresses, working
to the same order as (15.20) and (15.21), we only need to
know the coefficients of TdS to zeroth order, in the
equations for do and dt. Those coefficients are the
anisotropic Griineisen parameters, and to zeroth order
they simply have to be evaluated in state a:

T ™Y 5
1—1=0 (15.23)
Therefore, along the physical path of the weak shock

process, the entropy contribution to o, correct to second
order in the strains, is from (14.14)

ey
Zyaf tdy
0

(15.24)

The integral has to be evaluated along the physical path.
Also, from (14.15), the entropy contribution to T is
formally of third order in the strains. These results were
first published in Reference 28.

Having don i, you ate e
constitutive data from weak shock pr

16. Steady Shock in an Isotropic Solid

The risetime of weak shocks in metals is long, and the
nonsteady wave profile can be observed in detail with
VISAR techniques.’® As the shock strength increases,
the risetime decreases, until at a hundred kbar or so, the
risetime can no longer be resolved. However, as far as it
is known experimentally, a planar shock always travels
at a constant velocity. Hence, for moderately strong
shocks, specifically for overdriven shocks, one expects a
shock to propagate as a steady wave. The steady-wave
condition allows the equations of motion to be inte-
grated, which profoundly simplifies the complete set of
equations for the flow process.

The symmetry is that of uniaxial compression, as
described in Section 14. For any function g(x,t), or
g(X.,t), the relations between Lagrangian and Eulerian
derivatives, equations (4.12) and (4.13), reduce to

%) - & )
X/, p oxj

30

(16.1)

dg 3 b
a‘;) ~ a_‘g) + v ;) (16.2)
X X X/t

A steady wave i3 a wave which travels at constant
velocity without changing its shape. By this we mean
that for any maierial property g(x.t), the graph of g vs t
through the wave profile is the same for ail x. Hence
g(x,t) depends on only a single variable z, the “labora-
tory steady-wave variable,”
Z=Xx= Dt . (16.3)

where D is the wave velocity. The steady-wave con-
dition is

g(x,t) = g(2) (16.4)
Partial differentiation yields

) . %

n) & (5
ag) _ dg

% )x D & (16.6)

With (16.1) and (16.2), the Lagrangian derivatives are
found to be

ag = Ea 'd_g

9 S 4 (16.7)
B dg\ i dg

g= é_‘)x v-D) £ (16.8)

The state ahead of the shock is assumed to be a
thermodynamic equilibrium state, characterized by zero
particle velocity v, zero normal stress @, and zero heat
current J:

va=6,=J,=0 (16.9)



The state behind the shock is the Hugoniot state, de-
noted by subscript H, and it is also assumed to be a
thermodynamic equilibrium state:
=0 (16.10)
In the steady-wave analysis, it is convenient to use the

compression variable &, defined by (15.15). In terms of
&, equation (14.5) for conservation of mass is

ae) av)
at X X t

With (16.7) and (16.8), and noting that g, = 0, this
integrates to

(16.11)

(16.12)

Ol <«

In the same way, equation (14.6) for conservation of
linear momentum integrates to
¢ = p,Dv (16.13)
The curve of normal stress vs compression through the
shock process is called the Rayleigh line, and from the
last two equations this curve is a straight line:
6 = p,D% (16.14)
It is important to recognize that the Rayleigh line is a
straight line as a result of conservation of mass, conser-

vation of momentum, and the steady-wave condition;
no more and no less.

The energy and entropy equations (14.10) and (14.11)
are already in total differential form, except for the heat
current term. With (16.3), (16.5), and (16.12), this term
can be written, for a steady wave,

(16.15)

y b

Then the energy and entropy equations become

dil =i

, 16.16
) (16.16)

dJ

(16.17)

With o replaced by (16.14), and with the initial condi-
tions (16.9), the integral of dU is

B J
5 Det + 5.0 (16.18)
The Hugoniot is the locus of equilibrium states be-
hind shocks of varying strengths; the Hugoniot exists for
steady or nonsteady waves. The shock velocity D serves
as a parameter specifying the shock strength. The
Hugoniot jump conditions are the statements of conser-
vation of mass, momentum, and energy, across a
steady-wave shock. From the preceding integrals of the
equations of motion, the Hugoniot jump conditions for
a given shock velocity D are

Yu = DE]-[ N (1619)
oy — PHDVH - (16.20}
Ug = U, = % D%} (16.21)

It is important to remember that these conditions hold
only for a steady wave. Since Yy = 0, the shear stress
1y is presumably on the (static) yield surface. If one scts
1y = 0, as an approximation, then 6y becomes the
pressure Py, and the equations (16.19) through (16.21)
become the Hugoniot jump conditions for a fluid. For a
fluid, the steady-wave Hugoniot can be constructed
from the jump conditions together with the equation of
state.

As a result of the steady-wave condition, space and
time dependence has been eliminated from the equa-
tions of motion. This cannot be done for the con-
stitutive equations, in general, but the dependence can
be reduced to the single variable z. The heat conduction
equation (12.7) becomes

dT
J='_K—""'

= (16.22)
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and the plastic constitutive equation (11.12) becomes

d 2
(v — D) d—:' = YEy.V.S) . (16.23)

We can now make a list of the complete set of equations,
called the Rayleigh-line equations, which govern the
steady shock process.

In these equations, one can think of £ as the independ-
ent variable, and of course V is equivalent to €. The
equations listed are seven equations in the seven depen-
dent variables o, 1, S, T, J, y, and z. Hence, for any given
D, the steady shock process can be calculated from the
sevin equations. In fact, the set of equations can be
reduced algebraically. With the equation for the Ray-
leigh line itself, o is trivially eliminated from the set.
Also, one can use the energy equation to replace S by U,
if this change of variables is desired. The real space and
time dependence of the process can be calculated from
z(e). For example, at a constant x, say x = 0,

z(€)

PR 16.
i(€) D (16.24)
and ataconstantt, sayt = 0,

x(e) = z(g) . (16.25)

Note that there are two rate-dependent processes
going on simultaneously in the shock, namely the trans-
port of heat, and plastic flow. At any point in the shock,
the time dependence of the profile must be simultane-
ously consistent with both of the dissipativ: processes.
In other words, the shock risetime is consistent with
both processes at once.
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The above list of Rayleigh-line equations was used for
a detailed analysis of the process of overdriven shocks in
solids.?? In doing this, the plastic constitutive equation
was purposefully removed from the set, on the grounds
that it is a totally unknown quantity under such shock
conditions, With one equation removed from the set, it
is still possible to learn a great deal about the steady
shock process, and to establish several theorems regard-
ing the existence of solutions. For metals, the theory
predicts that the shock risetime will decrease to around
10" s, and will not decrease further, as the shock
strength increases.® It is hoped that this prediction can
be checked by experiment within the lifetime of the
present author. Finally, note that for shocks stronger
than a few Mbar in metals, irreversible thermodynamics
breaks down, and a new theory has to be constructed.

17. Viscous Fluids

We will treat a compressible viscous fluid; a standard
reference for this subject is Landau and Lifshitz.>* The
stress tensor is taken to be the fluid equilibrium pressure
P = P(V,S), plus the nonequilibrium viscous stress t:
A== PB,'J' + Ti‘j (l?])
The argument for constructing the form of t is as
foliows. tjj depends on the relative motion between
various parts of the fluid, so it depends on the velocity
gradients u;;, which are

- L a\’i
s

7} vanishes when the velocity gradients vanish, and so
for small velocity gradients it should be linear in them.
T; cannot depend on pure rotation, so it depends only
on the symmetric parts €; The most general second-
rank tensor of the form prescribed has a term in €;, and
oneirn €4d;. By convention, this is written in the for.n

(17.2)

. 2 .
TE a 2“s:[':ij + (ﬂ\r & Ens)skkaij (]?3)

Here 1, = n(V.,S) is the shear viscosity, n, = ny(V.S)
is the bulk viscosity, and n, and 7, are never negative.
From (17.1) and (17.3), it is seen that the mean com-
pressive stress is P — 1,€,. The Navier-Stokes equa-
tion is conservation of linear momentum for a viscous
fluid, and it follows at once from (5.7) or (5.9), together
with the stress tensor (17.1). Finally, to complete the
specification of the irreversible behavior, we assume
that the viscous work dW", which is the work done by




viscous stresses against total strains, is completely dis-
sipated:

pdW" = 1dg, = TdS' . (17.4)

To construct the Rayleigh-line equations for a viscous
fluid shock, we first have to specialize the strains and
stresses to the geometry of uniaxial compression. The
strains are given by (14.3), which may be expressed as
Lagrangian time derivatives:

allother €5 = 0 . (17:5)
The stress tensor (17.1), with the viscous part (17.3), is
now evaluated with the above components of strainrate.
The stress reduces to the symmetry (14.4), with the
normal compressive stress o, and the shear stress T,
given by

4 n
= —_ =f 17.6
c=P+ (3 + “5)1 i (17.6)
v
=g 7.7

For a steady wave, the equations of motion are the
same as in Section 16, because continuum mechanics is
not concerned with whether a material is solid or fluid.
In the steady-wave entropy equation (16.17), the heat
current contribution remains the same, and the plastic
dissipation is to be replaced by the viscous dissipation,
giving

s B 4 (‘—4 » “")v,zda

- (17.8
Rl o :

In the shear stress, the Lagrangian time derivative V
can be reduced to a z derivative, by (16.8), to give

; dV
r..—---(v—-D)E d

Y (17.9)

Finelly, the pressure and temperature on the Rayleigh
line are presumed to be given Ly the equilibrium
thermodynamic relations for an isotropic material,
equations (7.10) and (7.11), respectively. The complete
set of equations which governs the steady shock process
is given by the following list.

As usual, g is the independent variable, and V is
equivalent to €. The Rayleigh-line equations consist of
seven equations in the seven dependent variables o, 1, J,
S, P, T, and z. The set of equations can be reduced
algebraically. First of all, the variable z can be
eliminated by combining the equations for heat conduc-
tion and for the shear stress, to obtain

1:DJ(g)

W)~ e

(17.10)

where the derivative dT/de is on the Rayleigh line.
Secondly, o and S can be eliminated quite simply, to
leave four equations in the variables 7, J, P, and T. At
this point, the equation for dP can be solved for dJ, and
dJ can be integrated on the Rayleigh line. Or else P can
be eliminated, leaving only three equations in 1, J, and
T-

We now want to introduce the property of rate-
dependent response of a fluid. This will generalize a
viscous fluid to a viscoelastic fluid. The important
physical concept is that viscous flow is driven by applied
forces, and hence it must proceed in such a way as to
reduce the applied forces. With this concept, we can
construct a quantitatively correct description of the
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constitutive behavior of a fluid, for a geometrically
simple example. To an element of mass inside a fluid
with zero initial stresses, apply a small (infinitesimal)
planar compressive stress ¢ in a time At, such that the
rate ¢ = o/At is constant throughout At. Impose the
boundary condition of uniaxial flow, so there is no
motion of the transverse surfaces of the mass element.
This experiment is to be done repeatedly, with ¢ con-
stant, but with variable At, We will inquire about the
compression g, and the shear stress 1, at the end of the
time At. To order &, the compression is adiabatic. The
fluid response is governed by the frequency-dependent
adiabatic elastic moduli B, and G, where Gy = 0, and
by the transport coefficients, of which we will keep only
7, and neglect x and 7). Finally, there is a shear relaxa-
tion time 8, which is not independent of 1, as will be
shown. If G is very high, i.e. if At < 6, there is not time
for viscous flow to begin, so the fluid response is elastic
and ¢ is given by

4
c= (B, + = G.e .

3 (17.11)

The corresponding shear stress is

t= G, (17.12)
If now At is increased, the elastic equations hold and & is
constantuntil At = 0. Atthis point, shear viscous flow
becomes noticeable and & begins to increase, while 1
begins to decrease. As At is further increas:d, through
the ranges At > 6, and At > 8, viscous flow is fully
operative and the elastic moduli have reached their
o = 0 limits:

4
c=Beg+ -1 ,

3 (17.13)

T=1q€ ., (17.14)

where € = g/At. The limiting (largest) value of € results

when At — o, which gives the thermodynamic equi-

librium process
g e e (17.15)

Since € is a continuous function of At, the change from
elastic to viscous behavior at At = 6, implies

4
(B,+;G.)s=BeE+§-n,e' , atAl = 6,
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Consistent with neglecting the bulk viscosity, we set
B, = B, and the crossover condition tells us

(17.16)

Reviewing the above discussion, it is seen that the
shear stress at the end of At is not constant, and reflects
the nature of the response. The maximum 7 is the
elastically supported T of (17.12). The viscous 1is always
less than the elastic 1T, because ths viscous relation
(17.14) holds only for At > n/G..

The complete viscoelastic constitutive equation is
given by Litovitz and Davis.*® With this constitutive
equation, the process of steady shocks in dense fluids
was studied in detail, and several theorems were estab-
lished regarding the existence of solutions.? In fact, one
of these theorems becomes obvious from the preceding
results. The normal stress is given by two equations,
namely the Rayleigh line, 6 = p,D?g, and as the sum of
pressure and viscous terms in (17.6). For a fixed small g,
o(g) increases as D increases. But 1(g) is limited to the
elastic-response limit, equation (17.12), so P(g) has to
increase as D increases. Again, P has elastic and entropy
contributions, according to (7.10), and the only mecha-
nism for increasing P(€) at a fixed ¢ is by increasing the
entropy. Hence the theorem: For an overdriven shock in
a fluid, no solution is possible without heat transport.3¢
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