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Abstract 

Paper is an orthotropic, rate sensitive material which makes modelling its stress-strain behaviour a difficult task. Classical 
methods are inadequate behaviour of paper and comparisons are made with previous experimental work for a particular paper. 
Comparisons between the two models are also made. 0 1998 Published by Elsevier Science Ltd. All rights reserved. 

Introduction 

With the advent of more powerful computers and 
new finite element methodologies, the amount of detail 
that can be included in a stress analysis is now much 
greater than ever before. The modelling of plastic 
deformations is almost a routine activity for some 
industries. However, to get realistic results, it is neces- 
sary to have a model which accurately reflects the 
structural behaviour of the material being modelled. 
Unfortunately, many of the standard material models 
are not really at the same level of sophistication as the 
finite elements methods themselves. A few finite 
element codes allow the user to define their own 
material models. 

Current trends in paper modelling 

Many material models have been suggested for the 
description of the structural response of paper. They 
fall into roughly three categories: network models 
[l, 21, laminate models [3,4], and power law models [5]. 
The first two have some limited micro-mechanical 
basis. 

Perkins & Sinha [2] described a micro-mechanically 
based network model. This model was based on 
monotonic data and was not tested for cyclic loading. It 
focused on the prediction of the rejsponse of a 
particular paper based on the fibre properties and the 
manufacturing processes that they have undergone 
rather than actually modelling the response of a paper 
structure. A randomly oriented fibre structure was 

generated and analysed, given certain fibre properties. 
This then allowed the effect of fibre properties to be 
analysed. However, fibre-to-fibre bonding also needs to 
be modelled. This was not very well understood at the 
time and, in our opinion, the overall usefulness of this 
kind of model is, as a result, limited. Network models 
generally focus on producing a model based on a 
network of fibres. At present, such approaches are 
generally confined to predicting the response in the 
elastic region. 

Laminate models [3,4] are similar to network models 
but, starting with the properties of crystalline and 
amorphous cellulose, they try to predict the behaviour 
of paper based on classical laminate theory. Generlaly 
the results from this kind of model are also only good 
for predicting the elastic response. 

There are also a number of models which use simple 
exponential rules to predict the behaviour under 
monotonic loading. One of these models is detailed in 
Barnes et al. [5] In this case [5] proposed a stress- 
strain relationship of the form 

O(E) = AE + B( 1 - emar) (1) 

This work also contained relationships for A, B and CI 
which were based on the strain rate. However, these 
equations have not been experimentally validated. 

None of these models were considered to be 
extremely useful in the structural modelling of the 
inelastic behaviour of paper structures. It was decided 
to evaluate the use of a ‘unified constitutive theory’ 
approach. The first model investigated arose out of 
work by Stouffer and co-workers [6]. 
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If paper behaved like most other materials, and 
showed little or no early reverse yielding, then there 
would be little difficulty in modifying such models to 
include the necessary elastic and plastic anisotropic 
effects. Unfortunately, as can be seen in Sawyer et al. 
[7], paper exhibits significant reverse yielding early in 
the unloading cycle. As a result, another model was 
developed based upon the results of creep presented 
by Padanyi [S]. This model was derived from a model 
designed specifically to exhibit this reverse yielding 

behaviour developed by M&inlay at AMCOR 
Research and Technology Centre. His original model is 
discussed in [9]. These material models were subse- 
quently implemented into the finite element program 
ABAQUS, thereby enabling the applicability of the two 
models to be evaluated. 

Unified constitutive modelling 

In the classical approaches to plasticity it is useful to 

separate the strain tensor into elastic, plastic, creep 
and other inelastic components. However, in ‘unified 
constitutive’ approaches the strain is simply divided 
into elastic strain and inelastic strain components. 
Elastic strain is reversible and the inelastic strain is the 
irreversible strain. The elastic strain can be determined 
from the stress state by using Hooke’s Law, and the 
inelastic strain is the remainder. This can, of course, be 
accomplished in the opposite manner using the strain 
and the inelastic strain to calculate the stress state. 

In these approaches the inelastic strain is often 
modelled using an appropriate flow law together with 
various state variables. The flow law generally 
expresses the inelastic strain rate in terms of stress and 
these state variables, with the state variables being 
commonly evaluated via a set of evolution equations. 

These state variables represent, in some way, the 
state of the microstructure of the material. In isotropic 
metals two state variables are frequently used, namely 
the ‘drag stress’ and the ‘back stress’. The ‘drag stress’ 
is a scalar, and represents the piling up of dislocations 

around grain boundaries and imperfections. This 
results from the idea that the ‘over stress’, i.e. the 
difference between the deviatoric stress and the ‘back 
stress’, is believed to be the driving force of the defor- 
mation process. ‘Drag stress’, therefore, represents an 
isotropic hardening term and the ‘back stress’ an aniso- 
tropic hardening term. See Dame & Stouffer [6]. 

One particular model presented in Dame & Stouffer 
[6] can be expressed as 

z=z, -(Z, -z(yWr (4) 

S,,=c,,- y 6,, 

J 2 
&* = 

.I :I - E,$,, 
3 

(6) 

where $ is the inelastic strain rate, S,, is the deviatoric 
stress, Z is the ‘drag stress’, Z,, Z2 are the initial and 
saturated values of Z, R,, is the ‘back stress’, R,, is the 
saturated ‘back stress’ &r is the effective inelastic strain 
rate, IV” is the inelastic work, fi and fi are hardening 
parameters, D is a scaling parameter (and is usually 
lo”), y1 is the strain rate sensitivity parameter and m is 
a parameter controlling work hardening. 

Equation (2) represents the flow equation and eqns 
(3) and (4) are the evolution equations. K2 is the 
second invariant of ‘over stress’ and was defined as 

K?= t (az,-Q,)(gi,-Ri,) (7) 

The modified Ramaswamy-Stouffer (MRS) model 

An important factor in the previous model is the deviatoric stress S,,, which is defined as the total stress tensor 
minus the hydrostatic stress. For isotropic materials the stress state is described by two quantities, viz. the hydro- 
static stress (or pressure) which only induces a change of scale, and the deviatoric stress, which only induces a 
change of shape. 

It is obvious that, for an orthotropic materials, this approach needs to be generalised, because a hydrostatic 
pressure applied to an anisotropic brick would result in different strains in each direction. This loading will not 
result in a change of scale only, as required by our generalised definition of ‘pressure’. 

Returning to the definition, and as a result of stating that the ‘pressure’ term should only produce a change of 
scale, then the strains in each direction must be the same. In turn, this should allow the calculation of the direct 
stress ratios that will produce only a change of scale. This now defines the ‘direction’ in stress space in which the 



J. l? G. Sawyer; R. Jones, P R. McKinlaylComposite Structures 42 (1998) 93-100 95 

pressure vector in stress space lies. Let us define a,- such that the trace terms define the unit vector in this direction 
and the cross-terms are zero. 

Now define the ‘pressure’ P as a constant times the unit vector in its direction 

P = A. a,, (8) 

Then expressing the requirement that the deviatoric stress vector is independent of the ‘pressure’ term, i.e. their dot 
product is zero, gives 

P.S=O (9) 
Equations (9) and (8) now yield the requirement that 

U,j.Sij=O 

Then, following the traditional formulation, S, is defined as the stress minus the ‘pressure’ 

S, = U,j - A . CI,, 

(10) 

(11) 

Consequently, from eqns (10) and (11) we require that 

0 = Clij.(Olj - A~x,,) 

and because sl,, is a unit vector and Q,c(~ = 1 we obtain 

A = a,,d,j 

(12) 

(13) 

and finally 

(14) 

Having adopted the concept as outlined above it is now necessary to determine the values for al,. If it is assumed 
that ‘pressure’ does not induce inelastic flow, then IX,, can be determined from Hooke’s Law. To do this we calculate 
the stress induced by applying the same elastic strain E in each direction. The unit vector of pressure is then the unit 
vector along the direction of the stress vector found. ffll 
[I [ 022 = L 

Ex(l - v,;vz,> UVy + ~?XV,J Er(vzx + VW%) E 
c33 

B 

E,(vxy + vxzvz,) Jw - v,zv:J Ey(v:, + %V.rJ E 

Ei(V,z + v,yv,:) Ez(v,Z + v,;v,,) II E,( 1 - v,,v,,,) E 

where 

(15) 
P = 1 - vxyvy, - v,,v,, - v,,>v,;vz, - v,,v,vzy - v),;vz, 

Hence 

(16) 

gil Ex(l - vyzvn + v,, + vzxv,, + v,, + V&J -_= 
022 qv.r, + vxzvi,, + 1 - vx;v&r + v,, + vz,v,,) 

and 

011 Ex( 1 - v,zv,y + VW + v,xv,, + vzx + y&J,,) -_= 
033 J%v,; + vx,vyz + v,; + vxzvy, + 1 - vqvvx) 

(17) 

If we now define 

gll 1 
-=- 

022 2, 

011 1 
-=- 
033 A2 
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The unit vector in the direction, described by the ratios above, and hence x,, the unit pressure is as follows: 

(21) 

The orthotropic generalisation of the deviatoric stress is now completely defined. In an isotropic material 
2, = 2: = 1 and the proposed generalisation returns to the traditional isotropic case. As a note, it may seem that this 
cannot hc correct as this allows the material to he inelastically compressible. This is perfectly allowable, however, 
because paper contains a large number of voids which can, of course, be permanently changed in volume. 

Deviatoric stress is not the only concept that needs to be generalised. In the Ramaswamy-Stouffer formulation 

[6] the equations for the state variables have an isotropic form in that they have the same constants regardless of 
direction of flow. In this formulation the ‘drag stress’ was a scalar quantity, so only the ‘back stress’ equation 
detailed in cqn (3) needs to be generalised. This results in 

(22) 

where the tract clcments of g,,,, are of the form ,f,/Q. This formulation has been previously suggested by Dame & 

Stouffer [6]. 
The experience gained in this work has shown that this level of generality may not be required. In this work it has 

been found that, in eqn (3) it was sufficient to have a different constant for each direction. As a result, this can be 
represcntcd mathematically by using a vector representation, instcad of the previous tensor representation, of the 
various stresses, strains and state variables. All this does is express the equations without some of the terms, which 
are zero due to a lack of cross-coupling of terms, of the flow law and state variable evolution equations. Of course 
these vectors, i.e. a,, etc., only have six terms owing to the symmetric nature of the stress and strain tensors. 

With formulation we obtain 

(23) 

where the translation from tensor to vector notation is as below 

and, similarly, for all other variables that were expressed in tensorial form. 
In a two-dimensional case, whcrc there are of course, only three terms in the strain or stress vector, the hardening 

constant can be expressed as 

.fl = /, 1 . gi,,= 
R mdx, 

0 

0 

(25) 

The cffcctive inelastic strain-rate defined in eqn (6) is only valid when isotropic assumptions are used. Therefore, 
it is also necessary to use a more general form for the inelastic effective strain rate &, see Tay [lo] (p. 94). To wit: 
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where 

S= J 5 SipSi, 

This has now completely defined a potential MRS. 

A general unified viscosity (GUV) model 

The next model to be considered was based on similar 
principals to those discussed above, with a flow law, 
‘back stress’ and some evolution equations for the state 
variables. The governing equations for this model are 

“Ig, = Dexp( eK,]sinh( EK2) 
(Sij - Qjl 

ii; 

Rtj = Fij + gijE:ff 

F,, = ktjdE’kl_ X/c,) 

ill = Aijexp 1 b+Fkl I sinh { Cij/crFk, ) 

(28) 

(29) 

(30) 

(31) 

K2= J i (st,-Qzlj)(sij-szij) (32) 

.I 
E'ijS, ; 

Gff = s 

(33) 

where exp(A,) exp(&) . . . exp(A,) = q(&d exp(A22) . . . 
[ f 1 (35) 

. . . 

Here D, E, E, Gilt k,jk,, A,,, brlkl and c,,k/ are material 
constants and R, S, S, ..z’ and I 

Gff 

are the back stress, the effective deviatoric stress, the 
inelastic strain rate and the inelastic strain respectively. 

F and x are additional state variables. 
Again, experience has shown that this level of 

complexity was not required. The equations could be 
simplified by reducing the tensor forms down to equiv- 
alent vector terminology as follows: 

(S; - Q,> 
E’i=Dexp(eK,)sinh{EK,} _ 

\lK2 

Q = Fj + g;eLff 

(27) 

(37) 

F, = L,,(E’/ - x,) (38) 

.&=&exp{6,,Fj)sinh(5-,,F,) (39) 

where 

exp(A) = [exp(A,) exp(A2) . . .I (40) 

Even in this case the material constant tensors ki, 6,,, 
&, are such that they only have trace elements. The 
vector gj is also a material constant. Of course the 
effecvtive terms K2 and Eiff are still calculated as before. 

This formulation arose from an investigation of 
distributed viscosity and has therefore been termed a 
GUV model. The exponential multiplied the hyper- 
bolic sine flow law, eqn (28), is similar to that 
presented in [ll]. 

Finite element implementation 

These models were subsequently implemented into the 
. 

ABAQUS finite element code using the ‘user material 
subroutine’ facility. The rate equations presented 
above can be solved by writing them in the correct 
order and using the powerful LSODE package avail- 
able from the Lawrence Livermore Laboratory and is 
documented in Hindmarsh [12]. To validate these 
material models, their predicted uniaxial stress-strain 
behaviour was compared with the results in Sawyer et 

al. [7]. 
To provide a computationally efficient solution 

ABAQUS requires that a consistent Jacobean be 
provided. This is defined as 

J;,= 
+ 

GAEL 
(41) 

and is the change in the resulting stress increments 
given a change to one of the elements of the input 
strain increment vector. This was calculated using the 
perturbation method outlined in Trippit & Jones [13]. 

The major difficulty in this approach is the calcula- 
tion of the size of the perturbation. If it is too small 
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70 

60 

- I I I I I I I 
“1 .outpun” 0 
“2.output2; + 
“+$;z” 0 

X 
“5.output” A 
“6.output” * 
“e,-J6%~” 

“cd6O%.txt” --- --~ 
“d6e_, .&# 
“md6%.txt” - 

Fig. 1. The comparison of experimental machine direction and cross-direction stress-strain response with the predictions of the MRS model. 

then the round-off errors tend to dominate. If it is too 
large then the detail can be lost. In Trippit & Jones 
[13] the equation 

AEpert,, = lO”I(Lziativr&‘i; + ~absolute)lsignl AEiil 

(42) + Atiii 

x x sxp 0.005/s 
+ + Exp 0.001/s 

. . Exp 0.00011s 

- NUrn o.oas/s 

XMIN O.OOOE+OO 
xmx 2.000E-02 

YMIN O.OOOE+OO 
YMBX 3.5418+01 

es22b 
es22c 

was presented for determining the perturbation size, 

where Aaprrt,, is the new strain increment for this per- 
turbation in direction ij, Aaij is the strain increment for 
the step in direction ij, ~~~~~~~~~ is the relative tolerance 
of the solver for silj, ~~~~~~~~~ is the absolute tolerance of 
the solver for E’;,, y1 is the number of significant figure 
required in the solution and sign(x) is given as b]/x 

End of input file 
* 

Fig. 2. The comparison of experimental response for samples cut at 32” from the machine direction with the predictions from the MRS model 
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Fig. 3. The comparison of experimental machine direction and cross-direction stress-strain response with the predictions of the GUV model. 
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except when x is zero then sign(O) = 0. This formula 
was based on an error analysis of the problem. The 
work of Trippit & Jones [13] suggested that n should 
be approximately 3. 

Comparison with experimental results 

The experimental results presented in Sawyer et al. [7] 
were used in conjunction with some off-axis test data 

ABAW 
I 

45. - 

t mp 0.001/s 
b Fzxp 0.0001/s 40. - 

- N"rn 0.005/s 

--- N"rn 0.001/s 35. - 

e 30. - 

: 
: 25. - 

A 
: 20. - 

15. - 

XMIN 0.000B+00 
xmx 2.000E-02 

YMIN O.OOOE+OO 
~max 4.979B+ol 0.. I I I 

0. 5. 10. 15. 20. 

strain [xlo-3] 

es22b 
es22c 

F$l,of input file. 
I 

Fig. 4. The comparison of experimental response for samples cut at 32” from the machine direction with the predictions of the GUV model. 
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to deduce acceptable constants for this particular 
paper. The first was used to determine the constants 
necessary to model direct stresses and the off-axis tests 
were used to extract constants for the shear behaviour. 
The off-axis tests were performed using the test 
methodology described in Sawyer et al, [7], with the 
samples cut at 32” from the machine direction. 

The results for the machine directions and the cross- 
direction for the first model can be seen in Fig. 1. The 
results for the off-axis test can be seen in Fig. 2. A 
similar set of results for the second model can be seen 
in Figs 3 and 4. 

The results for the MRS model were not as good as 
for the machine direction, but the accuracy of this 
model for the cross-direction and off-axis tests were 
very good. 

The predictions of the GUV model described above 
were excellent in both the machine direction and cross- 
direction the off-axis response was not as good. 
However, this model is believed to be the more appro- 

priate approach. 

Conclusions 

This paper has presented two potential constitutive 
models for the structural response of paper. Both 
approaches arc capable of accurately representing the 
monotonic response of paper. Work on the cyclic 
response, stress relaxation and environmental effects is 
continuing and will be reported in a subsequent paper. 
This latter work suggests that the ‘unified viscosity’ 
model may be a more appropriate approach. 
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