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A constitutive model for fibrous tissues considering collagen fiber crimp
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Abstract

A micromechanically based constitutive model for fibrous tissues is presented. The model considers the randomly crimped morphology of
individual collagen fibers, a morphology typically seen in photomicrographs of tissue samples. It describes the relationship between the fiber
endpoints and its arc-length in terms of a measurable quantity, which can be estimated from image data. The collective mechanical behavior
of collagen fibers is presented in terms of an explicit expression for the strain-energy function, where a fiber-specific random variable is
approximated by a Beta distribution. The model-related stress and elasticity tensors are provided. Two representative numerical examples are
analyzed with the aim of demonstrating the peculiar mechanism of the constitutive model and quantifying the effect of parameter changes on
the mechanical response. In particular, a fibrous tissue, assumed to be (nearly) incompressible, is subject to a uniaxial extension along the fiber
direction, and, separately, to pure shear. It is shown that the fiber crimp model can reproduce several of the expected characteristics of fibrous
tissues.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The central role of collagen as the major structural protein
of mammalian tissue, comprising approximately one-third of
the total protein in mammalian organisms, has motivated a sig-
nificant effort towards determining its mechanical properties at
all levels, ranging from single monomers [1,2] and long-chain
polymers [3,4] to a structural element within a (macroscopic)
biological tissue [5–8].

On the basis of the mechanical properties, a number of con-
stitutive models have been developed in the past in attempts to
describe the experimental data. While at the microscopic level,
chain models such as the (Kratky–Porod) worm-like model are
popular [9–11], at the macroscopic level the continuum theory
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of finite elastic deformations of solids reinforced with fibers is
frequently the constitutive theory of choice. The basic ideas of
the theory are contained in [12], with further developments on
strongly anisotropic solids in [13], and applications to model,
e.g., arterial walls in [14,15]; see also the recent volume [16]. In
such macroscopic models the collagen fibers are assumed to be
continuously arranged in the matrix material, as utilized in [17],
and the characteristic non-linear stiffening is best represented
by means of an exponential function. Effective alternatives are
based on limiting chain models, see, for example, [18], and
references therein.

The pioneering work by Lanir [19,20] on the mechanics of
fibrous (connective) tissues as a consequence of its microstruc-
ture has influenced much of the works on microstructural
constitutive models. Essentially, the works [19,20] postulate
that the fibers are crimped and that they have different lengths
so that for a given macroscopic deformation in the material
each individual fiber is stretched differently. There is, thus, a
distribution in either the stretch of the fibers or their lengths.
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This idea has also been adopted subsequently by means of con-
stitutive models to describe the mechanical response of, e.g.,
arterial walls ([21] with ideas from [22,14]) or tendons and
ligaments [23], just to name a few. All these constitutive mod-
els, however, assume unbounded statistical distributions for the
fiber length (or stretch), which is a bounded quantity. In addi-
tion, in these models no attempt has been made to correlate the
fiber morphology (crimp) with the associated mechanical re-
sponse in the form of stress–stretch relationships. It was Lanir
who considered the possibility that the stretch could be non-
uniform due to crimping, with a generic distribution along the
fiber axis, which he assumed to be Gaussian. Recently, Freed
and Doehring [24] have proposed a model where crimped fib-
rils in a fascicle are approximated as a helical spring. Thereby,
the collagen fiber waveforms have a pre-defined arrangement;
no statistical distribution is used. In different works, such as
[25–27], the distribution of the fiber orientations has been ad-
dressed; however, therein, the mechanical properties of the col-
lagen fibers within the tissue were considered to be independent
of the degree of crimping.

In this paper a new constitutive model for the macroscopic
behavior of fibrous tissues is presented. It takes the randomly
crimped morphology of the individual collagen fibers into ac-
count. In Section 2 a statistical description of the fiber crimp
is developed, which is used in Section 3 to model the collec-
tive behavior of fibers. In Section 4 the mechanical behavior
of a fibrous tissue, assumed to be (nearly) incompressible, is
analyzed in detail. The tissue is subject to a stretch-controlled
uniaxial extension along the fiber direction, and, separately,
to pure shear. In particular, the effect of the different model
parameters on the mechanical response is studied. The final
section contains a brief discussion together with a description
of some limitations of the proposed constitutive model.

2. Statistical and constitutive description of a single
collagen fiber

In unloaded tissue samples collagen fibers show a wavy struc-
ture. In this section we develop a model that incorporates the
random crimp of collagen fibers to be characterized.

2.1. Random crimp of a single fiber

We start by considering a set of randomly generated data in
an interval of length L0 + w on the X-axis such that at any
point x within that interval the associated coordinates y and
z are independent and normally distributed random variables
with zero mean. Under this condition the data generated can
be regarded as white Gaussian noise, and characterized by the
variance �2. In the following it is assumed that the variances
in the Y- and Z-directions are equal, in other words the fiber
undulates with equal characteristics in all directions orthogonal
to the X-axis.

The randomness of the data generated may be larger than that
of an actual fiber. By applying a smoothing function or filter h,

X

Y

Z

l

dl = (dx2 + dy2 + dz2)1/2

L0

Pf

max

Fig. 1. (a) Schematic representation of a single fiber; (b) stress–stretch be-
havior of a single fiber (see Eq. (6)).

which averages the coordinates of the points in a neighborhood
[−w/2, w/2] of each point, a derived set of data in the interval
[0, L0] is obtained. It is implicitly assumed that h and its first
derivative has compact support in [−w/2, w/2]. The resulting
data are also random and normally distributed with zero mean
since the filtering operation does not affect the Gaussian nature
of the distribution. As a consequence, the variance of the new
random variable is unequivocally related to that of the white
Gaussian noise through the filter.

The infinitesimal arc-length dl of the fiber is then (see
Fig. 1(a))

dl = (dx2 + dy2 + dz2)1/2, (1)

where dy and dz are related to dx through the derivative of the
filter. Thus, we can write d =dy/dx =dz/dx, where d is a zero
mean, normally distributed random variable whose variance �2

d

can be directly related to �2. Therefore, it follows that

dl =
√

2d2 + 1 dx = � dx, (2)

where � is a random variable, which is neither zero mean nor
normally distributed, and whose probability density function,
subsequently abbreviated as P, is (see Appendix A.1)

P = �

�2
d

exp

(
−�2 − 1

2�2
d

)
, ��1. (3)

Relation (2) describes the arc-length at infinitesimal scale
within a single fiber. Our interest is, however, the establishment
of (2) at the fiber level, i.e.

l =
∫ L0

x=0
� dx ≈ �̄L0, (4)
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Fig. 2. (a) P versus � for different values of �2
d

according to (3); (b)

dependence of �̄ on �2
d

according to (5).

where �̄ is a fiber-specific quantity that denotes the mean (or
expected value) of �, i.e. (see Appendix A.2)

�̄ =
√

2�2
d exp(1/�2

d)�

(
3

2
,

1

2�2
d

)
, (5)

where �(•, •) is the upper incomplete Gamma function [28].
As L0 increases with respect to the fiber wavelength, approx-
imation (4)2 improves so that we can assume that the linear
relationship l = �̄L0 holds for (very) long fibers like those in
fibrous tissues (see, e.g., [29]).

At this point it is important to note that the probability density
function P and the mean �̄ depend only on the variance �2

d ,
which is a (measurable) quantity that can be obtained from
the fiber morphology typically seen in micrographs [30]. This
quantity is determined by the frequency content of the fiber. The
question therefore arises as to what the range of �2

d should be
since it is clear that the higher its value the more is the waviness.
A comparison of computer-generated curves with typical fibers,
as can be seen in images taken through a microscope of, e.g.,
the outermost artery layer, motivates a restriction of the values
of �2

d to the interval [0, 2.25]. Curves that are generated within
this interval look very similar to those seen in micrographs of
real samples [30].

The dependence of P and �̄ on �2
d has been plotted in Fig. 2.

2.2. Constitutive model of a single fiber

The long and thin collagen fibers are essentially one-
dimensional entities. Their wavy appearance in the reference
configuration motivates the assumption that they are unable
to sustain compressive loads. For the modeling of the tensile
behavior, we follow the work of others and consider that a
given fiber carries load only after unfolding, assuming that the
force necessary to perform this is negligible [22,23]. Once the

fiber starts to bear load, it is assumed that it follows Hooke’s
law until rupture [31].

The parameter �̄, thus, enters the constitutive model as the
stretch at which the fiber becomes mechanically active, and,
subsequently, it will be called (zero force) ‘stretchability’. In
terms of the engineering stress Pf in a single collagen fiber, the
constitutive model may be written piece-wise as

Pf =

⎧⎪⎪⎨
⎪⎪⎩

0, �� �̄,

k(� − �̄), �̄ < �� �̄ + �max,

0, � > �̄ + �max,

(6)

where the subindex f emphasizes the fact that this relationship
applies to a single fiber, k denotes the elastic modulus of the
fiber, � is the fiber stretch, and �max is the maximum stretch
the fiber can undergo after unfolding (before failure). For an
illustration of (6) see Fig. 1(b). Note that, while �̄ is a fiber-
specific (geometric) quantity, �max and k may be considered as
material constants with physical meaning. The symbol � is used
here to denote finite (unidimensional) stretch.

As Pf and � are work conjugates, the associated elastic strain
energy �f stored in a single fiber with stretch � is

�f(�, �̄) = k

2
(� − �̄)2, �̄ < �� �̄ + �max. (7)

Hence, the energy needed to rupture a fiber equals the elastic
energy stored at maximum stretch, i.e.

�max = k

2
�2

max, (8)

which is independent of the fiber-specific (geometric)
morphology.

3. Mechanical behavior of fibrous tissues

3.1. General mechanical behavior

The higher-order structure of fibrous tissues is formed by
fiber bundles, which are groups of fibers that share a common
orientation, subsequently called fiber families. Different fiber
families may have different orientations such as is the case in
the outermost layer (the adventitia) of a human artery. In the
following developments we neglect the statistical distribution
of fiber orientations and consider that within a fiber family the
fibers have the same mean orientation. We may describe the
macroscopic mechanical behavior of a collagen fiber family
by means of a continuum formulation, which also simplifies
numerical implementations.

We consider a representative volume element within the
fibrous tissue and assume that the fibers and the matrix material
do not interact mechanically, but undergo affine deformations
described by the right Cauchy–Green tensor C. Under these
conditions, the strain energy �tissue stored in the tissue may be
written as

�tissue = �matrix(C) +
N∑

i=1

�fibers(C, Ai ), (9)
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applying an additive split, as first proposed in [32]. This equa-
tion considers N distinct fiber families with specific orienta-
tions, each of which is described by means of a unit vector ai0

in the reference configuration, with the resulting dyadic prod-
uct Ai = ai0 ⊗ ai0 . The quantity Ai denotes the structure tensor
associated with family i so that the corresponding stretch �i of
the fiber family i is

�i = (C : Ai )
1/2. (10)

In a general situation, ai0 is a three-dimensional vector. Note
that according to the continuum theory of finite elastic defor-
mations of solids reinforced with fibers, the fibers are assumed
to be infinitesimally thin [12].

In Eq. (9), the term �matrix represents the behavior of the
aqueous, gel-like matrix material in which the fiber families
are embedded. This substance is usually considered to behave
isotropically. Although several models capable of describing
large deformations are suitable for �matrix [33], it is common
to apply the neo-Hookean model because of its simplicity (see,
e.g., [17, Chapter 6]). For the fibers, we assume that the mor-
phology is independent of the orientation. It is clear, however,
that each fiber can have a different waviness due to the intrin-
sic randomness of the fiber assembly process. This leads to the
realization that the stretchability �̄ is a statistically distributed
variable in the tissue (across the fibers), with distribution P(�̄).

In the subsequent development, without loss of generality,
we consider a fibrous tissue with only one family of collagen
fibers (N =1). At a given stretch � some fibers in the tissue may
still be slack, if �̄ is greater than the stretch � (see Fig. 1(b)).
Therefore, only those fibers that have been already unfolded
can contribute to �fibers according to

�fibers =
∫ �

�̄=1
�f(�, �̄)P(�̄) d�̄. (11)

Subsequently, we use the symbol � instead of �fibers for sim-
plicity.

According to (5), �̄ depends non-linearly on �2
d , which has

a limited range, as discussed in Section 2.1. Numerical tests
suggest thatP(�̄) can be approximated satisfactorily by the Beta
function, which has lower and upper limits and can represent
symmetric and non-symmetric datasets [34]. In what follows,
the lower limit is denoted by a, i.e. the value of �̄ when �2

d

takes on its smallest value, while the upper limit is denoted by
a + m, i.e. the value of �̄ at which �2

d is a maximum. Hence,
m is the range of �̄ describing the fiber morphology across the
tissue. According to [28] the (symmetric) Beta function is

�(�, 	) = �(�)�(	)

�(� + 	)
, (12)

where � and 	 are called shape parameters, and �(•) denotes
the Gamma function with argument •.

3.2. Tissue behavior during monotonic loading

For subsequent developments it is convenient to introduce
the modified parameters �̄=�−a and �̃= �̄−a, where �̃ is then

within the range [0, m]. With these variable changes and the
introduction of a as the lower limit, Eq. (11) can be rewritten as

� =
∫ �̄

�̃=0
�f(�, �̃)�m

0 (�, 	; �̃) d�̃, (13)

where

�m
0 (�, 	; �̃) = 1

m

1

�(�, 	)

(
�̃

m

)	−1(
1 − �̃

m

)�−1

(14)

represents the two-parameter Beta distribution of �̃ ∈ [0, m].
Consequently, by introducing the hypergeometric function 2F1,
[28], the integral in (13) can be written as

� = 2B

(
�̄

m

)	+2

2F1

(
1 − �, 	, 	 + 3,

�̄

m

)
,

B = k

2

1

�(�, 	)

m2

	(	 + 1)(	 + 2)
, (15)

with 0� �̄� min(m, �max), and � given by (12). Note that, al-
though the behavior of a single fiber is considered to be lin-
ear, the tissue as a whole behaves non-linearly, as described
in (15).

When a fibrous tissue is subject to tensile loading in the
direction of the fiber orientation, we then distinguish between
two cases for the proposed model (see also Fig. 3):

(i) m��max: in this case the fibers are gradually recruited, as
the tissue is stretched. At a certain point, all fibers are then
unfolded and the stiffness due to the fibers is constant.
Hence, a fully recruited elastic phase is reached before
tissue failure.

(ii) m > �max: in this case the fibers start to fail when the
maximum stretch �max is reached, while other fibers are
still slack. This is a phase we call ‘mixed recruitment/
failure’.

For case (i), Eq. (15) can be simplified to

� = k

2

[
�̄

2 − 2m	�̄

� + 	
+ 	(	 + 1)m2

(� + 	)(� + 	 + 1)

]
,

m < �̄��max, (16)

while, for case (ii), integration of (13) gives the strain energy

� = 2B

(
�̄

m

)	+2

2F1

(
1 − �, 	, 	 + 3,

�̄

m

)
+ �̂,

�max < �̄�m, (17)
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Fig. 3. Schematic representation of two possible loading phases distinguished by m, the range of the fiber-specific quantity �̄: m� �max in which fully recruited
fibers are reached before tissue failure, and m > �max in which the fibers start to fail before the maximum stretch is reached. The bell-shaped curves show
the Beta distribution (both sketches are based on the same parameters, only m is different), while the other non-linear curves represent the stiffening of the
tissue up to failure. The parameters a and �max denote the value of the stretchability �̄ at minimum �2

d
, and the maximum stretch a fiber can undergo after

unfolding, respectively. The parameter b refers to the unloading/reloading behavior (see Section 3.3).

where the notations

�̂ = − B

(
�̂

m

)	+1
�̄ + �max

m
(	 + 1)(	 + 2)2F1

×
(

1 − �, 	, 	 + 1,
�̂

m

)

+ 2B

(
�̂

m

)	+1
�̄

m
	(	 + 2)2F1

(
1 − �, 	 + 1, 	 + 2,

�̂

m

)

− B

(
�̂

m

)	+2

	(	 + 1)2F1

(
1 − �, 	 + 2, 	 + 3,

�̂

m

)
,

(18)

and �̂ = �̄ − �max have been used.
If �̄ increases beyond max(m, �max) (beyond either full

recruitment or mixed recruitment/failure) the strain energy
required to stretch the tissue until complete failure (i.e. at
�̄ = m + �max) is

� = k

2

[
�̄

2 − 2m	�̄

� + 	
+ 	(	 + 1)m2

(� + 	)(� + 	 + 1)

]
+ �̂,

max(m, �max) < �̄�m + �max. (19)

Eqs. (15)–(19) define the various energies required to stretch
the (fibrous part of the) tissue monotonically along the fiber
orientation. For m��max we then have

� =

⎧⎪⎪⎨
⎪⎪⎩

Eq. (15), 0� �̄�m,

Eq. (16), m < �̄��max,

Eq. (19), �max < �̄�m + �max,

(20)

while the equations summarize for m > �max according to

� =

⎧⎪⎪⎨
⎪⎪⎩

Eq. (15), 0� �̄��max,

Eq. (17), �max < �̄�m,

Eq. (19), m < �̄�m + �max.

(21)

Note that the first and third rows in (20) and (21) involve the
same equations, however, the range of �̄ is different; depending
on the relative values of m and �max.

3.3. Tissue behavior during unloading/reloading

We assume that reloading follows the last unloading path,
and neglect viscous effects. Similar to Section 3.2, for the un-
loading/reloading process we may also distinguish two cases:
(i) elastic unloading/reloading, where the fibers are unfolded
(gradually recruited) as before; (ii) tissue damage occurs due to
individual fiber failure upon further stretching (mixed recruit-
ment/failure phase).

The energy required for elastic unloading/reloading is

� = 2B

(
�̄

m

)	+2

2F1

(
1 − �, 	, 	 + 3,

�̄

m

)
+ �b,

b� �̄� min(m, �max). (22)

Here the notations

�b = − B
�̄

2

m2

(
b

m

)	

(	 + 1)(	 + 2)2F1

(
1 − �, 	, 	 + 1,

b

m

)

+ 2B
�̄

m

(
b

m

)	+1

	(	 + 2)2F1

(
1 − �, 	 + 1, 	 + 2,

b

m

)

− B

(
b

m

)	+2

	(	 + 1)2F1

(
1 − �, 	 + 2, 	 + 3,

b

m

)
,

(23)
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and b = �max − a − �max (see Fig. 3) have been used, where
�max denotes the maximum stretch reached during the loading
history.

For m��max all non-failed fibers can be stretched in the
unloading/reloading path, and the above expression turns into

� = k

2

[
�̄

2 − 2m	�̄

� + 	
+ 	(	 + 1)m2

(� + 	)(� + 	 + 1)

]
+ �b,

m < �̄�b + �max. (24)

Expressions (20)–(24) can now be reconciled, and written
for general loading conditions as

� =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

if �̄ = �̄max and 
�̄�0, Eq. (20) for m��max,

Eq. (21) for m > �max,

else if b� �̄� min(m, �max), Eq. (22),

else if m < �̄�b + �max, Eq. (24),

else if b < �̄, 0,

(25)

where 
�̄ represents an admissible variation of �̄.

4. Numerical examples

In this section we provide the stress and elasticity tensors
for the considered constitutive model proposed in Section 3
and two representative numerical examples that demonstrate
the applicability of the model. The parameters used for the
constitutive model are chosen arbitrarily, and are summarized
in Table 1.

4.1. Stress and elasticity tensors

For both examples the fibrous tissue is assumed to be (nearly)
incompressible. The mechanical behavior of the matrix material
is assumed to follow the neo-Hookean model. Thus,

�matrix = c

2
(I1 − 3), I1 = C : I, (26)

where I is the identity tensor. The stresses are derived from the
strain-energy function according to, [17],

Stissue = − JpC−1 + 2
��tissue

�C

= − JpC−1 + Smatrix + Sfibers, (27)

where J = (det C)1/2 denotes the volume ratio, with J = 1 for
the incompressible limit, and p is the hydrostatic pressure. The
tensor Stissue is the second Piola–Kirchhoff stress tensor, and
Smatrix and Sfibers are the contributions to it from the matrix and
fibers, respectively. By means of Eqs. (26), (10) and the chain

Table 1
Parameter values used for the numerical examples

Parameter Symbol Value Dimension

Elastic modulus of the fiber k 400 MPa
Maximum fiber stretch �max 0.2 –
Shape parameters � 4.5 –

	 2.8 –
Range of �̄ m 0.15, 0.25 –
Range of damaged fibers b 0.05 –

rule, we find the explicit expressions

Smatrix = 2
��matrix(C)

�C
= cI, (28)

Sfibers = 2
N∑

i=1

��fibers(C, Ai )

�C
=

N∑
i=1

1

�i

��i
Ai , (29)

where the abbreviation��i
= ��fibers(�i )/��i has been intro-

duced, with the individual strain energies �fibers summarized
in (25). Note that ��fibers/��i = ��fibers/��̄i , as �i and �̄i only
differ by the constant a. The derivative ��i

may be obtained
explicitly by applying the following property of the hypergeo-
metric function 2F1, [28]:

�2F1(a, b, c, z)

�z
= ab

c 2F1(a + 1, b + 1, c + 1, z). (30)

The material elasticity tensor Ctissue associated with Stissue is
given by

Ctissue = 2
�Stissue

�C
= Cvol + Cmatrix + Cfibers, (31)

with

Cfibers = 2
N∑

i=1

�Sfibers

�C
=

N∑
i=1

(
��i�i

�2
i

− ��i

�3
i

)
Ai ⊗ Ai , (32)

where ��i�i
=�2�fibers(�i )/��2

i . The tensor Cvol in (31) is given
in [17, p. 254], and Cmatrix reduces to the (fourth-order) zero
tensor for the neo-Hookean model. Note the explicit appearance
of the structure tensor Ai associated with each fiber family i in
the expressions for the stress and elasticity tensors.

The engineering (first Piola–Kirchhoff) stress tensor P then
follows from S through the relation P = FS.

4.2. Uniaxial extension test with loading along the fiber
direction

We consider now a fibrous tissue with only one collagen
fiber family (N = 1) subject to stretch-controlled uniaxial ex-
tension along the fiber direction, as shown in Fig. 4(a). The
tissue is stretched until individual collagen fibers fail, then it
is unloaded and reloaded until complete tissue failure. In or-
der to focus just on the fibers, in this example we omit the
contribution due to the matrix material so that the parameter c
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Fig. 4. (a) Schematic representation of the uniaxial extension test along the fiber direction; (b), (c) engineering stress P (in MPa) versus stretch �̄ for loading
and unloading/reloading paths for m� �max and m > �max, respectively. Solid curves corresponds to the elastic collagen recruitment phase; dotted curves relate
to the phase in which all collagen fibers are fully recruited, i.e. (b), and to the mixed recruitment/failure phase, i.e. (c); dashed curves correspond to the failure
phase and dash-dotted curves to the recruitment phase in the unloading/reloading paths.

in (26)1 is zero. In several fibrous tissues the matrix material is
essentially an aqueous substance with negligible tensile stiff-
ness in comparison with the collagen fibers, which explains the
high compliance of these tissues in the low-stretch domain and
justifies the above assumption.

The resulting relations between the engineering stress P
and the stretch �̄ for m��max and m > �max are plotted in
Figs. 4(b) and (c), respectively. These plots are independent of
the parameter a, i.e. the value of �̄ when �2

d takes on its smallest
value. The different m values do not affect the shape of the Beta
distribution or the cumulative strain energy required to stretch
the tissue until complete failure. However, as can be seen by
comparing the two plots in Fig. 4, the fibers are recruited more
rapidly and may sustain higher stresses for m��max, although
they fail more abruptly; total fiber failure is reached at a smaller
stretch value �̄ for the case m��max. In addition, when full
recruitment is achieved the linear stress–stretch relationship
that describes the behavior of a single fiber is recovered, while
this is not the case for m > �max.

Although �fibers, and hence its derivatives, are defined piece-
wise, see (25), Figs. 4(b) and (c) feature smooth curves. In fact,
�fibers is twice differentiable in the whole domain of the mono-
tonically increasing loading paths, and also for the unload-
ing/reloading paths except for the stretch �̄ at b + �max = 0.25.
This is due to the smoothness of the Beta distribution that de-
scribes the fiber morphology at the tissue level. Note, however,
that special methods such as the arc-length method must be ap-
plied in a numerical simulation in order to handle the softening
effect induced by the progressive failure of the fibers, which
results in a negative definite tangent matrix.

4.2.1. Effect of the shape parameters � and 	 on the
stress–stretch behavior

We consider the same loading protocol as above to study the
effect of the shape parameters � and 	 on the Beta distribution,

and, therefore, on the final form of the strain energy �fibers and
the resulting stress–stretch behavior.

Depending on the values of m and �max, there are basically
two different stress–stretch behaviors for each pair of (�, 	).
Here we restrict our analysis to bell-shaped Beta distributions
(	 > 1 and � > 1), and investigate two cases with equal shape
parameters (	 = � = 2 and 	 = � = 8), which lead to symmetric
Beta distributions, and two additional cases with 	 = 2, � = 8
and 	 = 8, � = 2. The results are plotted in Fig. 5 and orga-
nized as follows: the first column shows the Beta distribution
over the normalized domain �̄/m for the given values of the
shape parameters; the second and third columns show the re-
lated stress–stretch relations in terms of engineering stress P
and stretch �̄ for m��max and m > �max, respectively, where
the unloading curves have been omitted. The patterns for the
individual curves are as shown in Fig. 4. Except for 	 and � all
material parameters are taken from Table 1.

As expected, for the case m��max the linear stress–stretch
relationship is recovered for the phase in which all fibers are
recruited. For all displayed curves for m��max the maximum
stress value is higher than for m > �max. Higher values for �
and 	 tend to make the bell of the Beta distribution narrower
and higher, and to increase the maximum stress value (compare
the first two rows in Fig. 5). For non-symmetric Beta distribu-
tions, i.e. the third and fourth rows in Fig. 5, the final shapes of
the stress–stretch curves depend strongly on whether the dis-
tribution of �̄ is shifted towards a lower or a higher value, i.e.
whether or not 	 is lower or larger than �. For example, for 	 < �,
third row in Fig. 5, the Beta distribution is shifted towards the
left, and the stress that the fibers can sustain decreases abruptly
as soon as the first fiber fails (for �̄ > �max). For 	 > �, how-
ever, the Beta distribution is shifted towards the right, and the
stress in the fibers is small when the (elastic) recruitment phase
ends, but the stress continues to increase after the fibers start
to fail.
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4.3. Pure shear test

In this example we consider a fibrous tissue with two colla-
gen fiber families (N = 2) subject to pure shear, as shown in

Fig. 6. The fiber families are located in the X–Y plane, and
are symmetrically disposed with respect to the X-axis and de-
scribed in terms of the angle �. The tissue is stretched in the
Y-direction, while the length in the X-direction is kept con-
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X

Y

Fig. 6. Schematic representation of the pure shear test.

stant. For that kinematics the matrix representation of the right
Cauchy–Green tensor C has the form

[C] =

⎡
⎢⎢⎣

1 0 0

0 �2 0

0 0 �−2

⎤
⎥⎥⎦ , (33)

where � denotes the stretch in the Y-direction. According to the
material and load symmetries, the stretch in the fibers is the
same for both families. Thus, from (10) we find that

�i=(C : ai0 ⊗ ai0)
1/2=(cos2�+�2sin2�)1/2, i=1, 2, (34)

where �1 =�2. The material parameters are taken from Table 1.
For the matrix material a (neo-Hookean) parameter with value
c = 15 kPa was chosen for the model (26).

In Fig. 7 the engineering stress components Px and Py in the
X- and Y-directions are plotted versus the stretch � for differ-
ent fiber orientations � (90◦, 60◦, 50◦, 40◦, 30◦, 15◦), and for
monotonic loading up to � = 1.75. Plots are shown for the two
cases m��max and m > �max. No unloading paths are presented
for clarity.

The case for which the fibers are located at � = 0◦ (in the
X-direction) is considered to be special because, according to
(34), because the stretch �1 = �2 = 1 in the fiber families is
independent of the applied stretch �. Hence, the stress contri-
bution due to the fibers is zero. In the case of � = 90◦, for
which the fibers are located along the Y-direction, the stretch
�1 = �2 in the fiber families is equal to the applied stretch �.
Hence, the corresponding component of the structure tensor is
zero and the stress contribution of the fibers in the X-direction
vanishes. These apparently counterintuitive results are a conse-
quence of the consideration that the collagen fibers are parallel
and decoupled from the matrix material.

For all fiber orientations higher stresses are reached for the
case m��max. The stress–stretch relationship is also linear in
the fully recruited phase. As the fibers are increasingly aligned

with the loading direction, the maximum stress Pymax in the
Y-direction increases, while complete tissue failure happens at
smaller stretch values. Naturally, for the engineering stress in
the X-direction, the maximum value Pxmax decreases with in-
creasing alignment of the fiber family with the loading direc-
tion. This is due to the more progressive fiber recruitment at
lower fiber angles.

For low values of � complete tissue failure is not reached
within the studied stretch range, as can be seen in the plots of
Fig. 7. From the modeling point of view higher � values are
not realistic since the matrix material would also be damaged.
Finally, is worth noting that the slopes of the stress–stretch
curves change with the fiber orientation. For the X-direction, the
slope increases with increasing � until it reaches a maximum
at about 45◦, and then it decrease again. For the Y-direction,
the slopes of the stress–stretch curves decreases monotonically
with �.

5. Discussion

In this paper a new constitutive model for fibrous tissues that
considers the randomly crimped morphology of the individual
collagen fibers has been presented. On the basis of continuum
mechanics the (macroscopic) constitutive model is formulated
in terms of a few parameters, and it can capture material soften-
ing due to fiber failure. The collagen fiber is allowed to undulate
randomly and its morphology may be described by a single pa-
rameter, which is measurable through micrographs using signal
processing techniques. Although in the present model we have
assumed that a single fiber may fail abruptly, the fibrous tissue
fails progressively due to the different waviness of the fibers.
This reflects our experimental observation when a fibrous tis-
sue is stretched until rupture. This is also an important aspect
for the numerical implementation in an implicit finite element
code.

The proposed constitutive model is based on the idea that the
energy required to move the fiber from the initially, crimped
state to its fully extended state, is negligible in comparison
with the energy required to stretch the fiber. Such an approach
is relatively common in the literature and can be traced back
to the work [35]. The linear stress–stretch relationship for the
fiber was verified experimentally in [31], and also adopted
here.

The basic approach proposed in this work is similar to that
of others; see, e.g., [19,23,21,36]. However, the underlying tis-
sue characterization is different since the statistical distribution
can be measured [30]. This provides an ‘objective’ approach
in the sense that the structure of different fibrous tissues, or
regions within tissues, can be compared with each other
without making assumptions about the collagen fiber length
distribution. In the proposed approach the fibers must only
be long enough with respect to their (random) wavelengths,
which is the case for fibrous tissues. In addition, the pro-
posed model enables the derivation of analytical expressions
while capturing the complexity of the tissue behavior. For the
implementation in a general code, it must be noted that the
fibers remain one-dimensional entities irrespective of their
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spatial orientation. Therefore, according to Eq. (34)1, their
stress–stretch behavior is controlled by the scalar �. The only
difficulty is the implementation of the hypergeometric func-
tion. Although programming 2F1(a, b, c, z) for general cases
is not trivial, in our particular case (constant a, b, c and real
z > 1) 2F1 is a single-valued function with no singularities. The
hypergeometric function can either be applied directly from
existing mathematical libraries, e.g. [37], or approximated by
a quickly convergent series of exponential terms [28].

In the literature there are several other constitutive mod-
els for fibrous tissues available. Among these, a number of
structural models have been proposed that characterize the
fiber recruitment process by assuming that either the fiber
length, [19,38,39,22,36], or the stretch at which the fibers
engage [23,21] are statistically distributed. These models use
unbounded distributions, which seem non-physiological for
quantities such as the fiber length and the stretch. The choice
of the Beta distribution overcomes this limitation. Fiber mor-
phologies have also been incorporated into other constitutive
models such as [40–42,24], although the characteristic wavi-
ness of the collagen fibers given therein has a pre-defined
arrangement.

The proposed constitutive model assumes that the fibers
are infinitesimally thin. It does not consider the volumetric
fractions of collagenous and non-collagenous components.
This fraction could essentially be considered by scaling the
fiber elastic modulus k and the neo-Hookean parameter c.
The extent to which the fiber–matrix interaction contributes
to the overall tissue stiffness is not known and, therefore, has
not been considered. Similarly, the matrix is assumed to un-
dergo finite deformations without damage. In addition, it has
been assumed that the fibers do not interact with each other,
which essentially implies that there is no fiber cross-linking.
Moreover, the fibers do not interact with the matrix material.
Images of human blood vessel samples obtained from, e.g.,
the outermost collagen-rich layer, taken through a microscope,
reveal that collagen fibers are arranged very much in parallel,
at least locally. This motivated the consideration of paral-
lel fiber arrangement in the present approach. At other lo-
cations in a tissue region, however, the collagen fibers are
aligned in a different direction. Hence, more globally, col-
lagen fibers have distributed orientations which, in addition,
need to be incorporated in a model, a step to be addressed in
future.
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Appendix A. Probability density function and mean of �

A.1. Probability density function P of �

From Eq. (2) we know that � = √
2d2 + 1. Define now

r = 2d2, which is a random variable whose distribution is �2

with �d , and thus

P(r) = 1

2�2
d

exp

(
− r

2�2
d

)
, r ∈ [0, ∞). (A.1)

From the definitions of � and r it follows that r = �2 − 1. Now
for ��1 we may derive the probability density function, and
from (A.1) we find that

P(�) = P[r(�)]
∣∣∣∣�r(�)

��

∣∣∣∣= 1

2�2
d

exp

(
−�2 − 1

2�2
d

)
|2�|, (A.2)

which is Eq. (3), because � is always positive.

A.2. Mean �̄ of �

The mean �̄ of � is

�̄ =
∫ ∞

�=1

�2

�2
d

exp

(
−�2 − 1

2�2
d

)
d�

= �d

√
2 exp(1/�2

d)

∫ ∞

t=1/(2�2
d )

t1/2 exp(−t) dt

=
√

2�2
d exp(1/�2

d)�

(
3

2
,

1

2�2
d

)
, (A.3)

which is the desired result (5). In this derivation the variable
change t=�2/(2�2

d) has been used, and the last equality follows
from the definition of the incomplete Gamma function [28].
The same procedure can be used to calculate the variance of �.
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