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Some Applications of the Method of Forcing. Durin
Semester of 1991 Stevo Todorchevich (Todor(':evic')gga.vl:a. gCOZ}}Zngﬁ
applications of the method of forcing at the Mathematical Institute in
Belgrade. This text contains material presented in the course, as well
a5 some additional closely related results included for compl’eteness.
The method of forcing, i.e. the method of adding a generic object to
& given structure, is frequently used to get independent results, that
1s, result.s showing that certain statements cannot be proved (o’r dis-
proved) in ZFC or some other similar theory. The main purpose of
these notes is to present to a general mathematical audience a number
of applications of the method of forcing to other branches of mathe-
matics, such as general topology and measure theory. Most of the pre-
sented results do not require any additional axioms of set theory, but
use standard set-theoretical and forcing constructions, such as Suslin
tree, generic models, Cohen and random reals, etc. ,Among to;;ics
1r}11cluded are Borel Equivaience Relatiens, Halpern-Laiichl; Theorem
the Open Coloring Axiom and the Proper Forcing Axiom. For more
ambitious readers there are a few exercises scattered throughout the
text, and a list of yet unsolved problems is included.,
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Dedicated to Professor Duro Kurepa

0. INTRODUCTION

The method of forcing, i.e. the method of adding a generic object to a given struc-
ture, is frequently used to get independence resulls, that is, results showing that
certain statemeats cannot be proved {or disproved) in ZFC or some other simi-
lar theory. In these notes we shall be concerned mostly with the use of forcing
in proving theorems of ordinary mathemalics, i.e. results that do not require any
additional axioms. Sections are independent of each olher and can be read in any
order, with the following exceptions: §1 and §2 should be read first, §8 depends on
§7, and §11 depends on §10. Here is a short survey of the presented material.

1. The notion of the generic set is introduced, as well as some examples showing
how the existence of certain generic objects effects the additivily of measure and
category, and the continuily of functions. Posets for adding Cohen and randem
reals are defined. It is also proved that all presented posets satisfy the countable
chain condition.

2. We define the forcing relation “f-”, giving its basic properties. We consider
models of ZFC, specifically the way in which a generic object can be used to extend
the model. The description of Cohen and random reals over a fixed model without
mention of any forcing is given. Finally, the properties of the forcing relation are
employed to prove that the additivity of the Mokobodzki ideal is nathing more than
.

3. We define a mapping from R into the set of all w)-trees, showing that every
Cohen generic real maps to a Suslin tree. This is the proof that the existence of a
Suslin tree is consistent with ZFC, but it is also a ZFC construction of an object
that under certain circumstances becomes very special. (Compare this with the
standard proof thal Con(ZFC + -SH), e.g. in [Kunen]).- We also sketch there a
way of how this object can be used in finding a set of reals that does not have the
property of Baire (of course, under some additional set—theorelic assumptions).

4. Likein §3, to every real r we adjoin a Lopological space ¥, such that the cellularity
of ¥2 is uncountable, and show thal if the real r is random then the cellularity of
Yr is countable. However, this time we go one step further then in the previous
chapter, showing that an additional sel-Lheoretic assumption {RVM} implies the
existence of such & real in the ground model. The presented absoluteness argument
is interesting for its own sake. Using the same ideas, we show how the cellularities
of the topolagical powers Y* (& < w) of some compact space ¥ can essentially be
made arbitrary modulo the obvious monotonicity requirement.
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5. We show how certain properties of the forcing velation can be used in proving
the well-known theorem of Silver that the number of equivalence classes of a Borel
equivalence relalion is either countable or of size continuum. Similar proof is used
to show that if the equivalence relation is analytic then the number of equivalence
classes can in addition be R; and nothing else.

6. The Halpern-Laiichli Theorem (HL), a deep combinalorial theorem dealing
with partitions of products of perfect trees, is introduced; because of its length,
this section is divided into three subsections. In the first one, by viewing the order
type of rationals, 1, a3 a perfect tre¢, we nse HL to obtain some partition relations
for n. In the second subsection we apply the properlies of the poset for adding many
Cohen reals to prove HL. The third subsection is devoted Lo applications of HL to
perfect sels of reals. These applications can be considered as reformulations of HL
into the language of Real Analysis perhaps making it closer to a wider mathematical
audience.

The text in §7-§13 partly overlaps with Lhe Lext of [Yodoréevic 1989]. It is given
here not only for the sake of completeness, but also because the proofs are adapled
for the wider mathematical audience.

7. The notion of a Suslin partition is defined, as well as Lhe associated cardinal
invariant m. Roughly speaking, cardinals less than m in many ways behave like Rq.
This facl is demonstrated by using partitions of §1; e.g. it is shown that additivities
of measure and category are at least m. 1t is also shown that the assumption m > wy
(zls0 known as MA(R;)) decides some questions in General Topclogy independent of
ZFC. This is an example of a forcing aziom: an assertion that assures the existence
of a generic object. Remaining seclions also deal with assumptions of this kind. Al
the end of §7 we present a theorem that, in some sense, parallels to constructions in
§3 and §4: in connection with m > w| it gives us interesting consistency results, but
it also gives us a better insight into the behavior of cardinal funclions on topological
spaces.

8. Continuing in the direction of the previous section, the inequality m > w, is
applied Lo solve a problem from the Topelogical Measure Theory,

9. The notion of a gap in {[w]*,C"), needed in later sections is introduced. A
Suslin pre-gap is defined, and it is shown how this kind of object gives us a Suslin
partition with an unusual property. Using a construction that parallels the one of
§3, a sel of reals without the property of Baire is oblained.

10. A Ramsey-type statement for sets of reals, OCA, is introduced. It is shown
that various generalizations of tts present formulation are false. This interesting
statement has found and is likely to find many applications in problems dealing
with structures in close relationship with the set of reals. Tor example, we shall
show that it essentially determines the structure of gaps in {w*,<"). We also
introduce a version of OCA more suilable for dealing with the definable sets of
reals and give some of its applications.

11. OCA is applied to give a partial solution to a problem in Topology.

12. PFA, a forcing axiom with some large cardinal strength and a few of its conse-
quences are presented-—all Ry -dense sets of reals are semorphic, OCA, Automatic
Continuity in Banach Algebras, . ..

INTRODUCTION ki

13. A combinatorial coneepl of a groupwise dense sel in [w]* _a.nd the related
cardinal g are introduced. The assumption that there is a cardinal suCh_thaL
the ioterseetion of k groupwise dense sets i5 always nonemply .and H"IEFE is an
ultrafilter hage (on w) of size «, shartly u < g, is a powerful forcing axiom. This
axtom: has a strong influence on the structures of filters on . We:, prove son:n:;-. of
its consequences, particulatly that u <g implies “Filter Dichotomy" implies Near
Coherence of Filtvrs”.
14. A short lisl of open problems is given. .
“The five sections of the Appendix may provide the necessary background for Lhis

text.

Throughout the text there are few scattered exercises, but every sen’t,.ence begin-
ning with “It is trivial (evident, obvious, casily seen, ete). that ... 7 defines an
exercise. Needles to say, frequently a nontrivial one.

The main purpose of this text is to present a number of applications of f._he
method of Forcing to other branches of mathematics rather than to rea.ch a frantier
of mathernatical research. Although there are few previously unp_ubhshed result:s
of the first author, the texi consists mainly of the known material. We_haven t
always tried to identily the authors of the presented results ot proofs. But, in every
instance, we have included a reference where the (frequently lengthy) diseussion on
the authorship is presented.



1. SOME EXAMPLES OF GENERIC OBJECTS

Consider a partially ordered set {poset} P with the retation <. The set P is said
to be a set of condiltens, and for p <p g we also say that p bears meore informalion
than g, ar thal p is an cztension of ¢. Usually we shall omit the subsesipt 7 and
write € for <p. Two elements p and g of the poset P are incemparable iff neither
p < gnor g £ p. They are incompatible (p L g¢) Uff Lhere is no r € P such that
r < pand r < q. Observe that "compatible” is weaker than “comparable”.

If P and € are posets, the product P x Q is a poset {{p,q}:p € P,q € Q}
ordered as follows: {p, ¢} < {r,s) iff p<prandg<gs.

DEFINITION 1.1 A set G is said {o be a fillter I

(1) Foranype G and ¢ > p we have g € (7, and
(2) for all p and ¢ from G there is anr € & such that r < pand r < q.

DEFINITION 1.2 a) A set O C P is dense iff for every p € P theicisa g in D
that bears more information than p, i.e. (Vp € P)(3g € D)g < p. Similarly, D is
dense below p HF it is dense fn the poset (g€ P g < p).

b) If D is a family of dense sets and G Js a filter that inlersects every D in D we
say that G js D-generic. A fiter js simply generic iff it intersects all dense sets.

Qbserve that for a countable D a D-generic filter always exists; it can be con-
structed by an easy induction.

EXERCISE An afom is an element p of a poset P such that thesel {g € P: g < p}
is lingarly ordered by <. Prove that there is a generic filter (5 intersecting all dense
sets in P iff there is an atem in P. (Hint: consider theset {g € P: (3p € G)p L ¢}).

EXAMPLE 1.1 (The poset for adding a single Cohen real) From now on, we
shall frequently use the Cantor cube {the set {0,1}* with the product tepology)
as our working copy of the set of reals, [2. The fact that the first space is zero-
dimensional and the second is connected will never be essenlial for what we are
doing (see Appendix C). Let €, denote the set of all finite partial functions from w
into {0, 1}, with the ordering p < ¢ iff p 2 ¢. Let n be a natural number, consider
the following subset of Cu:

D, = {p € C,:n & dom{p)}.
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This set 1s dense, because for every function p € €, we have cither p € D, or
puU {{n,0)} € C,. Notice that every {D, : n € w]-generic filter gives us a total
function from w into {0, 1}. We shall only deal with families of dense subsets of C,,
which contain this basic family {D, : n € w} of dense sels. In this way the union of
a generic filter will be a member of the Cantor set which will be called a C'ohen real.
For every p € U we say that [p] = {f € {0,1}¥: f 2 p} is an interval determined
by p. Mote that all such intervals form a base for the Cantor cube {0, 1}*.

The following easy facl gives us the correspondence between dense subsets of O,
and dense open subsets of the Canlor cube.

LEMMA 1.1 A subset F of the Cantor cube i5s nowhere dense iff the set Dp =
{pelu:(pINF=0}isdense in€,. O

Hence, il F is a family of nowhere dense subsets of the Cantor cube then a

{Dg: F € F)-gencric filter of C, gives us a Cohen real which avoids every element
of F.

EXAMPLE 1.2 . {The poset for adding a random real) Consider the Cantor space
{0, 1}¥ with the Haar mneasure (hence, pi(IR) = 1; see Appendix C.3) Let R, denote
a set of all measurable sets of a positive measure. Order R, by the inclusion
relation; hence, the smaller set bears more information than the bigger one. Let D
be a family of dense sets which, in particular, contains each of the following dense
selg:

Dn={peR.:piscompact aud u(p) < 1/(n+ 1)}, (n€w)

If 7 is a D-generic filter, then [ G contains exactly one peint. Let r be its unique
element. We say that ris a random real

We say that a set of reals is nuil iff it has measure zero. For a null set N, let
Dy ={peR,:pn N = B}. Then Dy is dense in Ry,; s0if F is & family of null
sets of reals, then every ({D,:n < w} U {Dy: N € F})-generic filter gives us a
random real which avoids every clement of F.

EXAMPLE 1.3 {The Additivity of Measure) Let P53 = 4, be a set of all open
subsels of & of measure strictly smaller than ¢, and for 4 and B in A4, let A < B
if AD B. For any null set &V let

Dy ={A€ A NCA).

Notice that every Dy is deuse in A,. So if F is a family of null sets and if &7
is & {Dn}ner-generic filter, then |JF C UG and p(lJG) < ¢ it follows that
#{lUJF) < e. So il we can obtain such a filler in A, for every ¢ > 0 this would give
us that x (| JF) = 0.

DEFINITION 1.3 A set of reals is meager, or of first calegery iff it is a countable
union of nowlere dense sets.

EXAMPLE 1.4 (The Additivity of Category) A posel Py is defined as the set
of all p = {f,, F5), where
(1} fuin, — C,, (here n, € w is identified with the ==t {0,1,...,n, — 1}}),

(2) dom(fp(i)) Ndom(f(5)) =B lor all 1 £ j, and
(3) F3 is a finite family of nowhere dense subsets of [0, 1}“.
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The ordering < of Py is defined by p < ¢ ifl:

4) fp 2 1o

(5) 7, 2

(5) (¥ € dam(fy) \ dom(f,)) (¥F € F,) ([ N F = 0. |
For a nowhere dense set £ define Dp = (p€Pa: F € F,}. Then Dp is dense in
P,, because for & given p € Py the condition ¢ = {fp, Fp Uy is_in Drand g < p-
Now define D; = {p € Ps: 1 € dom{[,)} for i € w. Then we claim that eact} Di is
dense in P,. To see this Ax p € Py. Without loss of generality suppose that { = np.
Define ¢ < p by ¢ = {fp U {{i,5)}, Fp), where s is an elemenl of €, such that

(1) dom{s) Mdom{fp(n)) =@ for all m <4,

(D [EINF=0forall FeF,
The proaf that such an s ¢xists is left to the reader as an exercise, Nov{ suppose t.h:::n.
we have a family F of nowhere dense sets snd a {Dp: Fe FJU{Di i€ w}-generic
filter G in Ps. The set G intersects every D;, so it defines a total funclion

fo = Ufp, foiw —C,

PEC
such that
®) N U sty | n{Jr) =4,
n<wm>n

{in other words, we have produced a dense G, set digjoint from all members of F).
To see Lhis choose an F € F. Then &GN Dg # @, so we can fix an element p from
this intersection. Now (¥) follows from the fellowing fact.

CLAIM  For every n > n, we have [fo{n)]NF = 9, thus Unz",[fc(n)]ﬁ F=0

PROOF For a given n choose ¢ € G N D,. Then there is an r € G such .Ll.lat
r < pand r < ¢; hence, n € dom(f, ) and fe(n) = fe(n). Since r € p the condition
(6) gives us that [fg(n)}N F =0, since F is an element of Fp. O

EXAMPLE 1.5 (Continuity of functions) Recall the wel]kknowtnl result of Luzin
thal every measurable real function is continuous on a set of positive measure, OF
the well-known fact that every Borel funclion is continuous on a dense Gs-subsel
of [k (see also Appendix, Theorem C.2.2). We shall now consider this phenomenon
without any assumption on the given real function f.

For any iwo distinct elements z and y of the Cantor cube, set

Alz,y) = min{i: 2{i} # ¥()). (cf. Fig. 1}

Nolice that this mapping A determines the metric by d(z,v) = Va{z,y) + 1)
and that the topology induced by this metric coincides wilh t.'ne. standard product
topology. Also, the lertcographical ordering of the Cantor cube is defined via A as
foltows: 2 < e y iff 2(A(z, 1)) < w(A(z, ¥))-

Recall that for a given set X by [X]" we denote the set of all subsets of X c-:f
cardinality n, while by [X]< we denole the set of all finite subsets of X. (This
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AN (3]

O (xy)

Fig. 1

d.eﬁuition naturatly extends to infinite cardinals; see also Appendix D). Now for a
given subset X C {0,1}< and f: X — {0, 1}* define a parlition [X]3 = Ko U K/ as
follows: {z,y, 2} € Ky o

(1) (Va.be€ {z.y.2}) Ala,c) # Al c) — A(f(a), f()) # AU), F(c)).

Let the poset P5 be the set of all finite subsets F of X homegeneous for Ky (or
0-homogeneous)—i e., finite subsets F of X sueh that [F|* C Kp. We order Ps by
letting F < F* iff F D F.

CLAIM Ifaset ¥ is Ko-homogeneous, then f [ ¥ is continuous (cf. Fig. 2).

~ . ® [0} f{x)
z 1(z)

¥ Iy}

Fig. 2

PROOF If f ] Y is nob continuous at some a € ¥ then we can find a sequence a,
(n < w) of elements of ¥ converging Lo a such that flaq) (n < w) doesn’t converge fo
f(u). Hence one of thesets A, = (i Cw: A(f(a), f(a;}) = n) is infinite and we can
find an n < m such that Ala,a,) < Ala, am) but A f(a), flan)) = Alf(a), flam)).
Then {a,an,am} is a triple of [¥]* which doesn’t satisfy the condition (1) of being
a member of Ky, a contradiction. OO
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It follows that cvery filter of our poset Py would give us a subset ¥ C X such
that f [ ¥ is continuous, i.e. that our poset Py forces large continuous restrictions
of the given function f.

The ¢lements of a given poset P can be considered as approximations to the
“generic” object which we hope to introduce using P. [t is Lherefore not surprising
that the properties of the generic object are very dependent of the set P of its
approximations. The following property of a partizlly ordered set P is shared by
all the posets introduced so far. 1t is one of the mosl important and most frequently
used restrictions on P.

DEFINITION 1.4  An anfichein of P is & sct of mutually incompatible elements
of P. The poset P has the Suslin properly (or P is cce, or P satisfies the Countable
Chain Condition)} iff every antichain of P is countable. In generzl, for a cardinal
0 a poset P has a 0-cc iff every family of mutually incompatible elements is of
cardinality less than 8 (so ccc is the same as the ®y-cc).

FACT Every countable posel is ccc. So, in particular, £, is ccc. O

Very frequently we shall need to show that some poset is cec. This is usually
accomplished by slarting with some uncountable family of its elements and then
successively refining it, by usually using one of the following Llwo means:

{1) Counting arguments, through pariitioning an uncountable set into count-

ably many subsets and than choosing one of them (an urcountable one).

(2) The A-system Lemma (Lemma 1.2).

DEFINITION 1.5 Apn uncountable family of sets F forms a A-system with rool
r iff for every two distinct 2, y € F we havex Ny =r.

LEMMA 1.2 (A-sYsTEM LEMMA) For every uncountable family of finite sets
there is an uncountable subfamily forming a A-system.

PROOF We may suppose that all sets are of the same size n and proceed by
induction on n. For n = | the staternent is trivial. Suppose that it is true for
some n, and that we have a family F = {F; 1 £ < w} of sets of size n + L. If there
is an z and an uncountable F; C F such that = € F for all F € F,, apply the
induction hypothesis to ¥, = {F\ {2}: F € 7.}). Otherwise, F; is countable for
any z € | J#, and we shall construct a disjoint subfamity ' inductively on £ < w,.
We sel Fy = Fo, and Fy = F\|J{F::z € Fg}. Take F| 1o be the first element
(the element with the least index) of 7, and continue in this way w; steps. O

We shall frequently skip these refinements when proving thal a given poset is
cee by simply saying “we may without loss of generality suppose that the family A
is such and such”.

LeMMa 1.3 The poset {R,,,C) is ccc.

PRoOOF Suppose thal there is an uncountable family F of sets of pasitive measure
such that for alt A, B € F we have u(AnN B) = 0. Then we can find an a € w such
that the set {A € F: u(A) > 1/n} is infinite, but this contradicts the additivity of
the measure . O

LEMMA 1.4 The poset A, is cce.
2 ax. 2290
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PROOF Let F be an uncountable family of elemeuts of A,. Then u(A) < ¢ for
all A in F so there is an uncountable 7' C F and n < w such that

Fig. 3

p(A) < ¢~1fn forall Ain F.

For each A in F choose an open subset I, C A which can be written as a disjoint
union of intervals with rational endpoints such that g (4 \ [4) < 1/{2n). Since the
family of finite unions of rational intervals is countable there exists an uncountable
F* C F' such that for some [ and all 4 in 77, [, = [. It follows thal lor every A
and B in F¥

1 1
H(AUB) () +u(AND +p(BNT) <« +ﬂ+5= €
ie, AUB ig an eleruent o[ 4,. O
LEMMA 1.5 The poset Py is ccc.

PROOF Notice thet in a typical element p = (f,, Fp} there exist only counlably
many possibilities for the finite function fp. On the other hand, if p and g are such
that f, = f; then {f,, F,UF,) is their common extension. So 'Pq has a strong form
of cce property. O

LEMMA 1.6 The posel Py is cce.
PROOF HRecall that
Py = {F € [X]™: [F}® C Ky},
ordered by 2. For every F in Py, let np be the minimal integer n such thal
(WY Alz,y)<nforallz# yin F,
(2) A{f(z), f¥)) < nfor x,y € F with f(z] # [(y).
CLAIM  If F and F' ate (wo elements of Ps such that np =npr =n, F[n=F']|

nand f [ (F 1 n)y=f](F [n), then they are compatible in P;, or equivalently
(FuUF)?C K,

[Here # [ n={z |n:z€ F}and f|(F [ n)is the function which maps z [ n
te f(z) | n]
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PROOF We need to check the condition (2) for Fu f* {cf. Fig. 3). For suppose
there exist {a,b,¢} € [F U F’] such that Afa,b) # A{a,¢) but A(f(a}, f(B)} =
A(f(a), f(c)) = m. From Fig. 3 it should be clear that m < n. Moreover, we may
assume thal two elements of the triple, say a and b, are in Lhe same set, say F. We
know that ¢ € F'\ F and that there is a d € F such that

cfn=d[n and f(c)[n=f(d){n

Note that the assumpiion d ¢ {a, b} would contradict the condition (2) for F since
we would have

Afa, by = Ala, ¢} = A(r,d) and
A(S(a}, f(8)) = A(f{e), f(c)) = A(f(e), f{d)).

Notice that d # b since otherwise we would have A(a, ¥) = A(a, c}. So we must have
that d = a. But in this case we would have A(f{a), f(c)) > n, a contradiction. 0O

Since there exist only countably many possibilities for {ng, F § np, f [ (F [ ne))
the Claim shows that Ps salisfies a strong form of the ccc property. O

REMARK The reader might have already noticed that the posets Cu, Ru, A, Pa
and Ps have the cce property of “different strengths”. Being able to nolice these
differences is frequently a crucial step in many foreing arguments. Proving that a
given poset is ccc can sometime involve quite deep combinatorial arguments as will
be seen in later chapters of this text.

2*



2. THE FORCING RELATION

The forcing relation is a very useful tool in applications of the method of fore-
ing. It relates the elements of the poset P (approximations to the generic abject)
with various staternenls about the generic object. In this section we give a {formal
definition of this relation relativized to any given structure A, but we shall not
rely on reader’s full understanding of this matter. All we expect from the reader is
to get the intuitive idea about this relation and to learn few of its basic properties
exposed in some of the examples.

We shall work with a transitive models of a sufficiently large fragment of ZFC,
and M will usually denote such a madel (for more details on models of ZFC see
Appendix B). If we have a poset P € Af and a filter & in P that intersects all sets
dense in P which belong to the model M, we say that G is M-generic.

EXERCISE Prove that a filter G is M-generic iff it intersects all maximal an-
tichains in P ifl it intersccts all dense open sets in P. (A set D C P is open iff
p €D and g < pimplies g € D for all p,g € P).

[t turns out that there exists the minimal transitive extension of M which con-
tains G, and we denote it by M[G]. We say that M is the ground model, while
M[G] is the generic model. To describe M[G] more precisely, we introduce the set
of aames for elements of M[G]. Note that the following description is “inner”—it
takes place in the model M.

First fix a poset P, and describe a sel of P-namnes {denoted by VF) regardless
of a model M.

DEFINITION 2.1 A set 7is a P-name il

() ocvxP,
{2) For every {o,p) € r set 0 is a P-pame.

The P-names are usually marked by a dot, like 7. For a model M containing

P put MT = MO VF. If we have M-generic G, an mlerpretalion of a P-name 7,
" denoted by intg(7), is defined by the recursion (see Appendix, Theorern A.2.2) on
the rank of 7

mntg(7) = {intgz(o): (3p € G){o,p} € T}



10 SOME APPLICATIONS OF THE METHOD OF FORCING

‘The domain of a model M[(7] is the set of all intg(7) fer 7 € A7 To see that the
generie set G is in M[G] nolice tiint we have a P-name for il:

G={{p.o}: pEP},

and for any z € M we have a P-name £ = {{y,p): ¥ € z,p € P}. (Observe that
P-names in general arc marked with the dot (') and that the names for the objects
of V are marked with the check (). IL can be proved Lhat A[G] satisfies & large
part of the ZFC axioms which depends on the fragiment of ZFC which M satisfies
(see [Kunen, VIL2]}. For example, if © aud y are elements of M[G] aud o and 7
are their P-names, then {{o,p),{r,p}: p € P} is & P-name for the unordered pair
{2,9).

REMARK (See Appendix, Definition 8.2.1} Assuming that the formula “x € P”
is absolute, one can prove that the forrnula “r is a P-name” is also absolute.

Now we define the forcing relaticn I

DEFINITION 2.2 For p € P, formula ¢, and P-names m, ..., Tu—1 we say thal
p forces ¢(ra, ..., Tao)) (in symbols p | w(7o, ..., ™no1)) i for every generic G
containing p the following is irue:

fl'f[G] l= é(i]llc(n’o), - ,inLG(Tn_] ))

If every p € P forces ¢irg, ..., Taz1), we omnit p and write Ik (76, ..., Ta-1).
FaACT  if p does nol force ¢, then there is a ¢ < p such that ¢I- -, O

REMARK Suppose that conditions in P are sels of reals, and the intersection of
a generic filter containg a single generic real. Then for ail « € 7 and a formula
a{z): ¢(r) for all v € a ifl a IF ¢(c) (¢ stands for a name for Lhe generic reat),

The forcing relation can be internally defined, without mentioning the model
Af[G] or & generic set (7 (sze [Kunen VI1.3], the relation iF*. We will nat make the
distinciion between relations “IF” and “IF"). Far cxample, p IF 7 = 7 ifl for ail
{og,po) from fp theset {gEP:1g<Lpo— 3o, puy €n (0 < & gt oy = 7y)}
is dense below p. The relation P I+ 7y € 7 is defined in a similar manner, and
the recursion continues on the complexity of ¢. The importance of the internal

dgefiniiion is seen in the following Lemmas.

EElma 21 With the notation from the previous paragraph, the sel
{ipeEP:pibgim, .., Taur))

isinthe model M. O

LEMEEA 2.2 (Truth Lemmea of forcing extensions, for proof see {Kunen VIL.3.5]).
With the nolnbon from the previens paragranh

MG E dlinte{m), L intg(ra)) 8 {IpEG)pik d(r. .., Tay). L
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Let us now retura Lo the Example 1.1, the poset C,. Notice that if A is a tran-
sitive model for 2 sufficiently large fragment of ZFC, then C, € M (sce Appendix
B.3). Suppoese that & s a M-pgenerie filter on €. Then

ciw— 2, where c¢= UG

since the dense sets [, = {p € (. : » € dom(p)} are all members of M. The real
¢ 15 called a Cohen real over M. Notite that & can be reconstructed from ¢ as
follows:

G=(pel,:pCe}

The generic extension M [G] is frequently also denoted by M |c|. To give an analysis
of the sel of resls in this extension we need a notion of a code for 2 set of reals.
Let s; (i < w) be a recursive crumeration of €. (Thus {s5;:7 < w) will be in
any transitive model of a large enough fragment of ZFC). A code for an open set
U C{0,1}3 is the real x € {0,1}* such that for n < w

z(n) =1 iff [sn] C U.

We shall say that z codes (/. Notice that if a code of U/ is in M then for all
practical reasons M “knows” [/ eves though ¢ may not be an element of M,
although U™ = U1 M is an element of 4. Simple facts about &/ are “absolute”.
For example, if M thinks U* is dense open thea ¢ itself must be dense in ®. This
is so because the denseness of U really depends on the relationship between U and
the Lastc open-sets which M knows. Similarly, M correctly comnputes the measure
of U, in symbols p(U) = ¢ il M | p(UM) = ¢. Clearly, il we know I/ then we
know its complement, so we take z to be also the code of the closed set R\ U/, A
code for @ Gy-set U is a sequence of reals {2, : » < w} such that each z,, codes an

apen set Uy, and
U= Un

LR

+

So similar “absoluteness” works for (Gs-sets, ... etc. We have already meuntioned
that every Borel function f:IR — B (& = {0, 1}*)} is continuous on a dense Gs-sel
Uy. Then we lel the code of f be a pair of sequences {{z, : # < W), {UYm : M < w)}
where {z,, : 1 < w) codes Uy while for each m < w, ym codes an open set ¥, such
that

f_i([Sm])ﬂUj = Vin nU;.

Thus {xn], {4 }) determines f (up to the dense (ig-set Uy ) in any transitive madel
1f containing the code. We shall frequently abuse the notation and write f € Af
when we really mean {{2,}, {ym}} € M. Thus lor every z in (£}, the model M
wan correctly compute the value f{z) by letting it Lo be the unique y such that for
all i < w,

smCy T ze (VM.

Going to complements, al this can be used to define a code for an F,-sel and a
coatinuous map defined on an F,-set. Here is a typical application of these idcas.
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THEOREM 2.1 A real ¢ is Cohen over M iff ¢ (s an elewient of every dense open
set with code in Af.

PROOF (=) If U is a densc open seb of reals with code in M, then
Dy ={peC,:[p)CV}

is 2 dense open subset of C, which is a member of M. So there is a p € Dy such
that p C ¢, so ¢ in an element of /.

{+=) Let D be a dense open subset of €, such that D€ M. Then U = |, plplis a
dense open seb of reals with code in M. [To see this define 2 € {0, 1} by: z(n) =1
iff s, € D.] S0 cis a member of / so there exist p € O such that p C ¢, t.e. the
generic filter determined by c intersects 0. 0O

A completely analogous argument gives the follewing fact for the random real
poset R, where we say that r is random ever M if {r} = (| for some M -generic
filter & of R,

THEOREM 2.2 A real ris random over A ifl r is a2 member of every F,-set of
measure | coded iIn M, O

The lollowing fact shows that reals of the Cohen-real generic extension A [c) can
be named by Borel functions from M.

THEOREM 2.3 Let ¢ be a Cohen real of M. Then for every real 2 of M[c] there
ts a Barel map f € M such that f(c) = =.

PROOF  Choose a name 7 € M% such that = = inlg(r), where G is the M-
generic filler determined by ¢. For n < w and i < 2 let

Dl ={peCu:plt r(&) =i).

Notice that every D, = D2 U DL is dense apen in , and that (D% :n < w,
i<2}eM. Foru<wandi<?set

ui= 1 lp)

pED)

Then each {/, = UJ U U} is dense open in B and therefore =1, ,, /s 1s dense
Cs. Define fiIR — R by letling f Lo be equal to 0 outside {/ while for y in I/ and
n < w set ]

) =i I vel

{notice that UZNU} = @, so this is well-defined). Clearly f is a Boret map coded in
M since a code can be casily constructed from {D}). By Theorem 2.1 the Cohen
r¢al ¢ is a member of U su the noutrivial definition of f{c) applies. We claim that,
in fact, f{¢) = z. For suppose that z(n) =1 for some n and {. Then by the Truth
Lemma of farcing exlensions Lhere exist p € G (i.e. p € ) such Lhat plF 7(R) =1
This means that p € D and therefore that ¢ € U5 which by the definition of f
means that f{c)(z) =:1. O
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Again a completely analogous argument gives the following fact about the ran-
dom real.

THEOREM 2.4 Let r be a random real over M. Then for every real = of M([r]
there is & Borel map f € M such that f(r}y=z. O

Notice that different functions f and g may denote Lhe samc real in Mc], re-
spectively M[r]. This will be always true if the set

X = {zER:](:):y(z)}

is comeager (= contains a dense open set) respectively, has measure 1. This gives
us a quile convenient way of translating facts about reals true in the forcing ex-
tension M (c], respectively Mr], into facts about Borel maps in M, and conversely.
Remarkably, many classical results of Real Analysis and Measure Theory translate
into interesting properties of M[c] or M(r], and conversely, the analysis of Mlc]
and M([r] has produced meaningful resulls in these two fields of mathematics. To
present, one such resull we need a definition.

DEFINITION 2.3 Let Ty be the ideal of subsets A C IB? such that for every
¢ > ( there is an open set U of the plane containing A such that all vertical sections
of U have measure < ¢. (Vertical sections of U are sets of the form

U ={yeR:(z,3) € U},

where z € R).

The ideal Zp; was introduced in [Mokobodzki] in the course of studying versions
of the meager or the measure-2¢ero ideal in the plane. We shall sce later {§7) that
additivities of Lehesgue measure and Baire category can be quite large so il is
natural to ask whether the same is true about the Mokobodzki ideal. We shall now
see that the answer to this question is negative and that it comes out of an analysis
of Lhe forcing extension M [c].

THEOREM 2.5 There exists R; many elements of 4y whose union is not in Zay.

PrOOF The “plane” for our purpose here will be the product of the irrationals
and the unit intecval £ = [0,1], and the irrationals will be naturally identified with
the Baire space which we denote by B, and which itself will be considered as =
set of all mappings z: {#,1}<* — w rather than the mappings x:w — w. This
leads us Lo look at the Cohen posel €, as a sct of all finite maps p such that
dom(p) C {0,1}°% and range(p) C w. Clearly, in all these identifications we are
only ignoring the nature of the index sel or ignoring countably many reals which
obviously cannot be cructal in any of the properties of Zps.
Forn < wand k < 27+ ey

P ={re(01]: /2 <z < (k+ 1)/2°"').

For k » 27+ let If = 1§, Forr € {(,1}* and ¢ € IR, let 75w — w be determined
by
re(n)y=a(r[a(r [ n)) (n <w).
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Finally, for every r € {0, 1}* we can define

Bl ={{a,celxtizell )

A-={{a,z) €Rx Trx €], forinfinitely many n < w}
N Ue
m<wazm

[Notice that B] is open and A, is Gs).
CLAIM 1 A, € T for every r & {0, 1},
PROOF  Given ¢ > 0 pick m such that 1/2™ < ¢ Lel

U={{e,z):z €], forsomen>mj}
= |J Br.
nEm

Then U/ iz an open subset of the plane which covers A, such that for every a € [,

oo ax

1 1
Uy 2 5wl = 3, 5m = gm <G 0

n=m+i n=m+1
The following claim finishes the proof of Theorem 2.5.
CLAIM 2 Ax ={J,cx Ar & Zar for every unccuntable X € {0, 1}*.

PROOF  Every A, is a (G5 subsel of Lthe plane so we may consider it in any medel
containing its code (=the above description). So, in particular, we can consider
these sets or (heir vertical sections in the forcing extension of C,,.
Let U7 be an open subset of the plane which contains A x. It is enough to show
that
B={aeR:p(l.) > 1/2}

is nonemptly. In fact, we shall show thal its complemenl F' = nowhare denae.
suppose that F is not nowhere dense; then, since it is closed, 1t contaius a
open set [p] for some p £ C,,. 1t follows that

{1 plFp(le) £ 1/2.

(Here & is the canonical name for the Cohen real). To got a contradiction it suffices
te show that {remember that | ), .o A- CU):

(2) piH[0,INGC | ) (An) € U:
reX
if (2) fails then there is 2 name £ for a real in [0, 1] 0 and an extension »° <f p

such that forall rin X

(3) pribE g a7, for ail but finitely many n.
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Therelore, for every r € X we can find a condilion ¢, < p* and an m, < w such
that for all n > m,,

4) g b & @ Lony

Since C,, is countable there is an uncountable Y € X such Lthal for some ¢ < p°
and m < w, ¢ =g and m, = m for all r € Y. Choose n > m such that dom(g) C
{0, 1}%" (remeriber that the elements of £, are now finite partial functions fram

{0,1}°% into w). Let ¥ (k < 2°*!) be a [-1 sequence of eleinents of ¥ such that
for some { € {0, 1}"

(5) Fln=t foral k<2,
and pick an € > n such that
{6) A, Py <t forall i< j<2mt
Extend ¢ to g4° with the domain
domig)u {t}u{r | £: k < 2"+!}
such that
(7) g O=¢ and o {r* B =k for k<2F,
Then

¢ ) M2 N2 0g gy

kcantt
contradicting (3). This finishes the proof. O

REMARK For more about subsets of the plane with similar properties the reader
is referred to [Pawlikowski).



3. THE SUSLIN HYPOTHESIS

In this section we make a connection between Cohen reals and the Suslin Hy-
pothesis. Let us first recall the basic definitions about trees which are relevant to
the Suslin Hypothesis (for more about this see Appendix D).

DEFINITION 3.1 A iree is a pactially ordered set T such that for every z €T
the set {y € T:y < z} fs well-ordered. A maximal linearly ordered subset of
T is called a branck, The heipht of some £ € T (denoted by ht(z)} is the order
type of the set {y € T: y < z}. The keight (or length) of a branch B C T is the
ordinal {ht{z): z € B}. The height of o tree is defined in the same way. For an
ordinal o the ath level of T is the set T(a) = {z € T': ht(z) = &v}. An wy-tree is
a tree of height w, having countable levels. A tree is an Aronszajn tree iff it is an
wy-tree without uncountable branches. An antichain in a tree is the set of mutually
incomparable elements. A tree is Suslin {f it is an w;-tree without uncountable
chains or antichains. A tree is special iff it is representalble as a countable union
of its antichains. The Suslin Hypothesis (SH) is the statement that every lincarly
ordered continuum satisfying the Suslin condition is isomorphic to R.

It is well-known (Kurepa) that this statement js equivalent to the statement that
there arc no Suslin trees.

LEMMA 3.1 There is a function py:[wi]* — w such that for all @ < # < w, and
n < w

(1) Fala) ={€ < a: p1(£,a) € n} is finite,

(2) D(e,B) ={€ < a: pi{€, ) # p1(€,8)) s finite.

PROOF For o < w; fix an unbounded set C, C o such that &, = {€}ifa = £+
" and Lp(Cy) = w for limit ¢. Recursively define py:[w]? — w by

o, ) = max{|Cp N, pr(e, min(Cp \ a))},
where we put p(a, @) = 0. Let us induclively check the conditions {1} and (2).

(Proor oF 1) Suppose that F,(5) is infinite and let § be its first limit point.
Let ¥y = min(Cp \ 6}. Notice that (because of the first factor in the definition of
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1), we musl have that § <  and therefore that v < #. Notice also that by the
definition of g

(3) i€, B) = p1(€,7) for every £ in the interval (max(Cg N &}, 8} such that
pi(€7) > .

{Since CgN ¥ is finite and & is a limit ordinal, the interval (max(Cgné), §) is infinite.]

It follows that F, (v} musl also be infinite, contradicting the inductive assumption.

(PRoOF OF 2) Suppose now that D(a, B) is infinite and let § be ils first limit
point. Let

n = |Cp 18}, 7 =max(Capné) and = min(Cy\ )

{max® = 0). Then v < 3, and

(4) 2y} = po(E,B) for all £ € (7, 8) such that g1(&, ) > n.
It follows that
(Diee, BYN Fal)} N (n, 8} € D(ex, v)-

Since () is finite, this means that D{c, ) must be infinite contradicting the
inductive hypothesis. O

LEMMA 3.2 There is a function e:[w]? — w such that forall < f < v < wy:

(a) eler, v} # e(B,7), and
(b) {€ < a:efé, o) 5 e(s,B8)} is finite.

PROOF  The function p; does not necessarily satisly the condition {a}, so we
need 1o stretch it up as follows:

e, ) = 24O ENUF, o (03] + 1),

Then it is easily seen thal the conditions (a) and {b) are satisfied. O

Now we show how Lo construct an w)-tree using the funclion ¢ of Lemma 3.2
DEFINITION 3.2 For a given function a: [w]? — w and i < w let ag denote Lthe
function af-, 8), and set

T(a) = {as Ta: a € f <un ).
This T{a) is a tree under the inclusion ordering.
EXERCISE Prove that cvery w)-tree is of this kind for some function a.
DEFINITION 3.3 For a real r € w” define ¢, fu]? — w by the formula
er(a, B) = r(e{er, 3)).
Notice that this gives us an wy-tree T'(c,) for every real r. This correspondence

has the following extreme cases:

(1) ¥ r is a constant funclion, then T(e;) = (wy, <).
(2) 1f 7 is an identity function, then 7(e,) = T(¢); hence in particular il is an
Aronszajn tree.
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For the purpose of this section let the Baire spece w™ play Lhe role of Lhe reals
and let now C,, be the poset of ail finite partial functions mapping w inte w (rather
than into {0,1} as in Example 1.1). Clearly, this is an uncsscatial change (sce
Appendix C) and a Cohen real is row a member of the Baire space rather than the
Cantor cube.

THEOREM 3.1 Il cis a Cohen real, then T'(e.) is 2 Suslin tree.

PROOF To prove that T(e.) has the Suslin property, we have to prove that in
every uncauntable set A C w, there are @ < 8 € A such that (e.), and {e)p are
comnparable in T(e,), i.e. thal () C {€.)g. It suffices to prove thal the set

Dia={peC.: (B, B A)pl(eda Cle)s}

is dense in Co. Notice that for oo < 8 and p € C,, pIF (ec)a € (ec)p if

() (vE<aYe(f a) £elE,B)

— (e, 0) € dom(p) & €(, 8) € dom{p) & p{e(£, &) = p(e(, H))))-
Fix some p € C,. We may suppose that dom{p) = {0,1,...,n}. For o € A set

Folo) = {€ < a:elé, o) < n).

Apply the A-system Lemma on the set {Fa(a): o € A} and get an uncountable
set A’ C A such that {Fa{e): & € A"} forins a A-system with the root F. We may
choose o < 3 from A’ so that for all £ € £ we have e(£, ) = ¢(£,5). Nowfixq 2 p
so that dom(g) includes al) £ < « such that (¢, a) # (€, ) (remember Lhat this
set is finite) and such that it corrects the finite disagreenent of ¢(-, o) and e+, 5)
i.e. satisfies (*). O

Recall that a set of reals A has the Property of Baire iff there is an open set U
such that AAU is meager (see also Appendix C.2).

EXERCISES Let

A= {r&uw’: T(e)is an Aronszajn lree}
S ={rew”: T(e) is a special Aronszajn bree}
B = {r € w”: T{e,} has an uncountable chain}.

Clearly, §C 4, AUB=w”, and AN B =4.

(1) What are the complexities of A, B and § relstive Lo the complexity of the
funciion ¢?

(2) Show that if w is not inaccessible in the constructible universe then one can
choose ¢ in such a way that 5 and B are I} sels of reals and that A is T1} set of
reals. Thus, if moreover every Aronszajn tree is special then A = .5 and B are al
sets of teals, ([l is known that every Aronszajn tree is special if for example we
assume MA(R,); for the definition of MA(R, ) see §7 of this text).

{3) Notice that Theorem 3.1 and (2) together show that MA(N,) implies that
every nonmeager set with the property of Baire intersects both A and B. [t follows
that in this case the sets A and B8 do nol have the property of Baire. Find a minimal
assumnption which implies that A and B do not have the property of Baire.



4. RVM AND RANDOM REALS

In this section we shall use an additional axiom to prove that there is a compact
space X of countable cellularity whose square does not have this property.

DEFINITION 4.1 Let RVM (Real-Valued Mcasure) denote the hypothesis that
thece is a o-additive extension of the Lebesgue measure te all seis of reals.

RVM has its origin in Banach’s reformulation of a problem posed by Lebesgue
garly in this century afler Vitaly proved that no such extension can be translation
invariant. It is known (see [Jech]) that this axiom is relatively consistent with the
usnal axioms of Set Theory.

DEFINITION 4.2 The cellularily, o(X), of a topological space X is the supremum
of cardinalities of all disfoint families of open sets of X. A topological space is Suslin
{or cce) iff it has countable celluiarity. Thus, a space is Susiin iff the poset of its
open sets ordered by C is Suslin.

EXAMPLE 4.1 Let T be a tree without terminal nodes and let X be the set of all
maxtmal chaing of T. For z € T define Uy = {¢ € X : x € b}. Let the Lopalogy of X
he generated by the sets Uy for z € T. Every antichain in T naturally corresponds
to a family of disjoint open sets of X and conversely. It follows that if there is a
Suslin tree then there is a cee space X such that X? is not cec. To see this, for
every in T choose two incomparable successors zg and z; and consider the family
U:sn b Ux, (I = T).

If 7 is a real, then for X S B = {0,1}* define a partition [X]? = Kj UK by
{z,y}e KI i #{Aa(zy))=i (=01
The sets K§ and K7 are both open, and thus clopen. We say that a set A 1s
0-r-homogeneous ifl [4)* € K§. Now for a set of reals X define another set of reals

Fx = {r € B:there is a partition X = U Xn
new
and every X, is closed and 0-r-homogeneous.}
REMARK (A digression) It is interesting Lhat this ohject can also be used in
proving the following three weli-known results of [Shelah]. Their proafs can he
found e.g. in [Bekkali].

3 3ax. 2290
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THEOREM 4.1 [ X is well-orderable and uncountable, then Fx is not measur-
able. O

Thus, the existence of a well-orderable uncountable set of reals is the only-form
of AC needed to obtain a nonmeasurable set of reals.

THEOREM 4.2 [f X = LNR (X is the set of all conslructible reals) Lhen either

(1} There is a £ nonmeasurable set of reals, or
(2) The set Fx Is nonmeasurable. O

The set Fx is obviously £, so we have:

COROLLARY [fevery £ set of reals is measurable, then wy is inaccessible in the
construclible universe. O (End of digression).

Returning to the partition [X]? = K5 U KT, we define
THX)={ACX:[AFCK} (i=01)

Now TT(X) € {0,1}%, and in the product topology induced from {0,1}% both
T7(X) are closed and therefore compact spaces. We shall prove that they are
Suslin spaces, too, if r is a random real {Lemra 4.2). On the other hand we have
that

LEMMA 4.1 For T5(X) and T7(X) as defined, the space 75 (X) x 77 (X) is never
Suslin. Moreover, cellularity of this space equals | X].

PROOF The only assumption on Af and K] that we shall use is that they are
disjaint. Define

fhisfACX:ze A APCKIY (i=0,1).

Now natice that for any two distinct reals = and y a pair {z,y} is either in K7
or in KJ. So either [z]o 71 (y)o is empty or {z]) O [yl1 is empty and

(Vz,y € B) [zlo x {z)i 0 o x (v = &

henece the family {[z]o % [z]): = € X} is a family of disjoint clopen scts of cardi-
nality [X{. We have proved that «(T7(X) x 77 (X)) = |X|. But the weight of the
space 2% is equal to |.X|, consequently c(TZ(X) x TT(X)) < |X|. O

It is consistent with ZFC that the product of two cce spaces is always cec (see
Corollary to Theorem 7.2). Alsa there is a bound for Lhe cellularity of a product of
two ccc spaces (see [Kurepal):

THEOQOREM 4.3 The product of two cce spaces has cellularity of at most ¢ (the
cardinality of the conlinunm).

[Thus setting | X| = ¢ we get the maximal possible cellularity.]
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PROOF  Suppose that there is a family F of ¢t mutually noniutersecting basic
open sets in X x Y. By taking subsets, we may assume that F = {X¢ % Yoo,
where each X; (Y¢) is open in X (in V). Define a partition p:[F]* — {0, [} by

p(XEXYE,X.,XYn)=U iff anX,,;'G.

Now by the parlition theorem ¢* — ()3 (see Definition 6.2 and Theorem 6.5)
there is an uncountable homogeneous set U for ¢. It is easy Lo check thal if p”[U]? =
{0} then ¥ is not cec, and that in the other case X isnot ccc. O

REMARK [t is known that in general the cellularity is not preserved in products
of topelogical spaces (see [Todoréevié 1986]).

LEMMaA 4.2 If 7 is a random real, then the spaces T7(X) (i = 0,1) are Suslin.

REMAREK Notice that this is not true for every r—{or example, it is easy to see
that if r i3 rational, then one of the spaces T7 (X'} is Suslin while the other is not.

PROOF  The base of a space T7{ X) is the set of intervals {(p]: {p]> € K7, {p| < w};
hence 77 (X) is Suslin ifl a poset

Pl ={ACX:[A]* C K[ & A is finite)

is Suslin. Therefore we have to prove thal {or every uncountable family F C P
there are £, G € F such that [F U G]? € KT. By applying A-system Lernma and
throwing out the roct, we see that it is encugh to prove that this holds for every
digjoint family F. After translating this fact to the language of forcing (R, is the
family of Lebesgue-measurable sets of reals of a positive measure), we get:

CLAIM For every a € R, and for every R, -name F for an uncountable family
of finite {-homogenous subsets of X (i = 0, 1) there are b < a, F and & such that

bk F,GeF and F#G and [FUGP C K.

PROOF  Fixi = 0 to simplify the notation. First notice that we may fird a finite
sel F' of elements of X and a set ar C a of positive measure such that ap I+ FerF.
To see this, consider any extension M{C] and the interpretation of some 7 € F;
then apply Lemma 2.2, Moreover, we may inductively construct an uncountable
disjoinl family Fo of finite sets F C X and sets of positive measure ar C o such
that ap IF £ € F for each F € Fy. Using the counting arguments, we may suppose
that every F € Fp is of the same size, say m. Thus we may represent a typical F
as F = (af: 7 < m). Weneed to find F and G in Fp such that the measure of the
set
b=arpNagN{zre {0,1}*: (v € F)(¥y € G) z(A(z,p)) = 0}

is positive.

LEMMA 4.3 Let P be a separable metric space (in our case a subspace of some
B™), If a family {a,: £ € P} of sets in R, is uncountable then there is a Cauchy

sequence {Zn}aew in P such that the set [, @z, isin R,
3
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PROOF (Sketeh) Use the fact that the metric space of Lebesgue measurable sets
module the ideal of null sets is separable {where rf(A,.B) = u(AAB)), look at its
product with P and find there « converging sequence inside {{as,z}:z € P}. O

Use the Lemius 1o get a sequence {Falagw af elements of Fo such that by =
Nnew @F, has positive measure and

lim (ag“, . ..,C\-f;‘_,) = {0, .., Om-1)
n—o0

for some fixed {ap, ..., &m-1) [rom R Remernber that Fy is a disjoinl.. family,
and we may suppose that crf" # o for all j < m and all n < w. We consider the
following Lwo cases:

19 If we suppose Lhat all eq's are different, then there is an N € w such that

A(af* af) = Alag,aq)  for all k0> ¥ and all distinct 4,5 < m.

{Take N large enough to assure thal Aol o) > maXjgjen Blo, o) for all
k> N sce also Fig 4] [t is sufficient to find k.8 > N and b € Ry, such thal

bir MA@ &) =0 forallj<m.
Moreover, it is sufficient o finda k> N andab e TR, such that

b F(A(é;“, @))=0 for all j < m;
this is becanse there always exists an € > & such that

A(o::_-p‘,crj) > A(af“, wj) - A(af‘,nf‘) for all 7 < m; see Fig. 4.
Define S, Cw by . )
Sn = {A(of™, 0500 § < m}.

By convergence we have that lim, oo min{S,) = co; 50 we may assume thal Sp's
are actually disjoint. Far each =, let p,, he the element of €, such that dom{pn) = Sa
and pa(j) = 0 for all j € Sa. Let [pa] be the corresponding basic open se‘t.. Then
w{[pa]) = 1/2™ for every n < w, Moreover, (pn]’s are mdependent (i.e. for every
finite sequence ng < -+ < NE_y < W,

i (hLDn']) = 2.—}.;; = ﬁfl([pni]))'

By the Borel-Cantelli lemma it (ollows that the set ;2o Uz [pa] has measure 1.
[n particular, Lhiere exist acbitrarily large n such that [p.,]m?g has_ posiLiv-_‘. measure,
It is now clear that for every such a, [p,] N bg forces that [Fn N Fr] C K§ for every
large enough k. This finishes the discussion of this case.

9% The second case, when there are equal numbers among «;’s (say, Lwo equal
numbers), is proved analogously to the first case. O {Claim)
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a9

Fig. 4

Lemma 4.2 immediately follows. 0O

REMARX Note thal the same proof gives us that the space {I7(X))" is Suslin
for 21l n € w. Note also that the disjoint sum of spaces TF(X) and T7 (X} is Suslin,
while ils square 1s not.

We have two Suslin spaces T(X) and T7(X) whose product is not Suslin, but
this lakes place in a forcing extension. Now we show how Lhis can be pulled down
to ground model, using the assumptior RVM. So, let u be a o-additive extension
of the usual probability measure of B = {0, 1]* to all sets of reals. Let

]: ={ACR:u(A)>0}
We consider [‘T as a partially ordered set ordered by Lhe inclusion. It is clear that
this is a cce poset and using a rather deep result of Measure Theory {Maharam’s
Theorem, see {Freralin 89]) it can be shown that the forcing with 7} is in fact the
same as the forcing with the measure algebra of some Cantor cube {0, 1}? equipped
with its Haar measure. We shall not use this facl here.

DEFINITION 4.3 Let 7 be the It-name for the element of {0, 1} such that for
every n Cw, m<2and Be I},
Bi+ f‘(i’t) =M iff i ({z cf: z{n) # m}) =10.
Since u extends the usual measure of [ it 1s easily seen that every condition of
I‘T forces that r avoids every G measure zero set coded in the ground model, ie.
that # is a random real. In fact, by essentially rewriting the proof of Leimma 4.2 we

get the following fact about any forcing extension of the posel [7 and any ground
raodel set of reals X.

LEMMA 4.2° The poset I forces thal spaces 7§ (X) and T7{X) are Suslm. 0O

THEOREM 4.4 (RVM) H X is of size sraller than (he first weakly innccessible
cardinal, then there is a real r such that both spaces 77 and 77 are Suslin.

COROLLARY RVM 1mplies that the countable cellularily is not invariant un-
der products of topological spaces. In fact, nat even the first weally inaccessible
cardinal can bound the cellularity of the product of any two Suslin spuce= 0O

PROOF Supnosc that such » does nol exisl for some “small” uncountable X € 1.
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Let @ be a large enough cardinal number such that the structure H; (see Def-
imition B.1.1) is correct aboul all statements of our interest here. (For example,
8 = (2% works). We shall actually consider the extended slructure (Mg, €. <u),
where <. is 8 well-ordering of Hs. (This well-ordering will enable us to take the
“Skolern hull”, Hull(A), of a given subset containing A in the sense that every exis-
tential statement is witnessed by a <y -minimal element of He which must be put
inside Hull( A} whenever its parameters are there; see Appendix B.2).

Let Mo = Hull(X u{X,u}), where it is a fixed measure defined on all sets of
reals and extending the usual probability measure on R = {0,1}¥. Then the size
of Mo is equal to |X |+ Ro (see Lemma B.2.4) and the smallness of X is chosen to
mean in particular that the additivity of p is much bigger than the size of X, So
the intersection

* (MACR: A€ Mo & pld)=1)
is nonempty and we can fix a real rin it. Let

G={Aell AeMobler €A}
Clearly, G is a filter of Lthe poset T N Mg,

FACT 1 If D & My is & dense open subset of I;,“ then &GND £ 8.

PROOF Note that I} is a ccc posel so there is {A,:n < w) € Mo such that
[An: n < w} is a maximal antichain of ]:‘ which is included in D. Let

B=Rk\ | A

ngw

Then B € My and u(B) = 0; hence r ¢ B and therefore therc is an n such that
re A,. It follows that A, e NG, O

Mo —2— N,

lg j; ~NE

M, — M, —gt NulHl

Fig. 5

Let No be a transitive collapse of Mg (see Theorem A.4.2) and et wo: Mo — No be
the collapsing map (see Fig. 5). By Fact I,

H = {ro(A): A € G)
is a Ng-generic filter of Lhe poset mo(JT). hence, we can form the generic extension
NO[H] = {int;;[ﬂ: Tisa wu(IJ)-name in Ng.}

Fact 2 (With 7 from Definition 4.3 and r from the set (*))  intg{mo(r)) = .
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PROOF Lets= inl,x-fv (_Tro(r")) and suppose that for some n < w (say} s(n) = U but
r(n) = 1. By the definition of the name 7 and Lhe fact that 7y is an isomorphism,
it follows that

B ={zen(B®): z(r) =0}

is an el_emeni. of H, so ils preimage A = m; '{B) is an elerent of G, which means
that r is an element of A. Bul notice thal {since 7y is an isomorphism)

A={re®:z(n) =0},

a contradiction. O

Natice that m{X) = X, s0 by Lemma 4.2" (applied to Ny as the ground madel
and the poset mo{f}) = J:’D[u]), we have that

No[H} = “T7{X) and T7 (X) are Suslin.”
Consider now the following submodel of H;:
My = Hubl{Mq U {r})

Let 7yt M) — N, be its transitive collapse.
CrLamm Ny € Ny[H].

FPrROOF By Lemma B.2.4, far every element z of M, there is a formula ¢ and a
sequence & of elements of Mo such that ¢(z,r, @) holds and 2 is the unique ¢lement
satisfying this. Let f; be the function mapping B to My defined by

fe(s)=y iff ¢y, 5.a).

RQMARK Notice that ¢ and @ are not unique; on the other hand, we need an
uniform way of defining f; for each z € M,. But formulas can be coded by elements
of V,, (see e.g. [Kunen]) and we can always take the <, -least pair {¢,a} in M.

Then f; is clearly an element of Mg since its defining parameters @ also are from
M. Mote that for any z and y in M), the following four (also another four in
parentheses) conditions are equivalent:

a. T € y (respectively z = y),

b. fo(r) € fy(r) (respectively fo(r) = fo(r}),

c. {seR: f:(s) € fy(s)} € G {respectively, {s €R: fr(s) = f(s)} € G), and

d. {s € 7o(R): mo(f:)(s) € mlf,)(s)} € H

{respectively, {s € 7p(R): 70(fr)(8) = 7o{fy )(5)} € H).
{To prove b. & c. notice that the set in c. is, by RVM, measurable; also consider
the remark after Definition 2.2.]

This rneans that (M, €} is isomorphic to some structure {I/, E} where I/ C Np
and E € Ny{H], which is (at least), locally definable in Np[H]; so its transitive
collapse, and therefore the transitive collapse of {M), €} must be inctuded in No[H]
(see Theorern A4.3). ) O
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Note that m(r) = r (= inty(7a(r))), and that 7, (X) = 7e(X) = X, so the
pariition
[X)? = K§uU K]
is an element of ¥;. Since Np[H] is a cec forcing extension of Ny, it follows that
wi(= Wiy = w;\"[”](z wy), so both pieces of this partition must be Suslin also
in the smaller inodel N, So

Ny E CTE(X)Y and T (X)) are Susfin”

and, therefore

M, E “T5(X) and T (X) are Suslin”,
contradicting the fact that M, is an elementary submodel of (Hg, €, <.,) which
thinks that there is no real r such that 77(X) and T7 (X} are both Suslin, This
finishes the proof. O

Here is another consequence of RYM relaled to Theorem 4.4:

THEOREM 4.5 (RVM) There exists a compact Suslin space Y such that the
cellularity of the space ¥7+! is i, for all nt & w.

The proof is very similar to the proof of Theorem 4.4. Tirstly we praove the
following Lemma:

LEMMA 4.4 {In lhe presence of a random real r)  For every natural number
n there exists a compact space Y such that Y¥ is Suslin for all & € =, while
(Y1) = R,. ’

PROOF (Lemma) Naw we identify R with the set (n+ 1)¥. Using the fact thal if
RV M holds then the continuum is quite large (e.g. by Ularm’s Theorem the additivity
ol the extension measurc is a weakly inaccessible cardinal), we choose for A, a set
of reals of cardinality ®,.. We define the following partition (r is the random real):

(A=) KF with
i<n

{zo,z),...,za) € K] it r{A{x, ¥)) # 1.

[Notice that K] N KT need nol be empty even for distinct i and 7] Define an
i-r-homogeneous sct in the obvious way, and let 77 {for i = 0,1,...,») be a set of
all -r-homogeneous subsets of A, .

CLA™ 1 The produet [, 77, (4 € »for all j) is Suslin if there i3 0 < n such
that m # ¢; for all § < k. Specifically, it is Suslin if k£ < n.

PROOF (Skeich) The proof of Lemma 4.2 warks here with some minor modifica-
tions—for example, Lemma 4.3 is applied with M = R¥*, while all Lthe refinements
of a family F are done in the sarme way. Use the fact that there is an m < n such
that m # i; for all 7 < k: Define an analogue of the set S, and find a sufficiently
large n to make the sel

(2 €bo: (¥ € 5,) #{f) = m)

ol positive measure. The rest of the proof is Lthe same as the proof of Lemma 4.2. O
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CraiM 2 The product [;., 77 is of cellularity ®,.

PROOF (cof Lernma 4.1) For every 2 € A, and i < n define the following
subsel, of [];., T¥:

(2l ={AC Az €A, [AC KT},
These sets are open, and the family
{{zJo x - % {z]a: 2 € An}

is disjoint and has cargdinality ®,. 0

Take far ¥, the disjoint sum of spaces T7 (i = 0,1,...,n). The space Y,f' i
the disjoint finite union of spaces of the form ['L-“T{I, (; < n, with possible
repelitions). By Claims 1 and 2, ¥, satisfies the stalemnent of the lemma. O
PROOF (Theorem 4.5) Now we need Ry many randon reals, {r;: § € w). Consider

the space {0,1}*“ with the Haar measure. Define reals r, in the following way
(fc denotes generic function}):

ra(k) = felw - n+k), fork<w

or, in other words, r, is the isomorphic copy of fo [ [w-n,w- (n+ 1)},

REMARK (A digression) The sequence {r;: 7 €w) consists of independen! ran-
dom reals ifl each ry is a random real over M[rg][r]...[ri1]. It is not difficult
to prove that the sequence just defined has the required property. Notice that the
space {0,1}** is isomorphic Lo {0, 1}*; thus in any generic extension generated by
adding a random real there are countably many independent random reals.

Define Y, as in Lemma 4.4, taking care that all A, be disjoint. Take for ¥ the
disjoint sur of spaces ¥, n € w. We already know that Y is Suslin and by Claim 2
the cellularity of Y7 F! is at teast ®,,. To see thal il is not greater than R, it suffices
Lo check that each product of the kind

HT;F” j€w and rj€{r,:ncw} is
F<k

(1} Suslin, if there is no n € w suck that all 77~ (i = 0,1,.. ., n) cccur in the
product, and
(2) of cellularity Ry, if & is the greatest n such that all 77> (i = 0,1,...,n)
occur in the product.
But this is just another variant of the Lemma 4.2 with no new ideas involved.
So we have shown that the spaces TP exist in any generic extension of If. It
remains Lo consider the sentence
“There exists @ real v that encodes a sequence of reals (72 n € w) such that for
every k € w the cellularity of o product []; ., T,';’ is delermined by (1) and (2)”,
and proceed as in the proof of Theorem 4.4, O
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REMA.RK The reader has certainly noticed that we have proved more than was
stated in Theorem 4.6: For every nondecreasing function f:w — w there is a Suslin
space ¥ such that o(Y"*7) = Ry, for every positive integer n.

REMARK fn the light of Example 4.1 presented above it is interesting that RVM
does not imply that there is a Suslin Lree, s¢ the examples of this section had to
come from a combinatorially quite different source.

5. BOREL EQUIVALENCE RELATIONS

In this section we give an application of forcing to an area of Descriptive Set-
theory which has some interesting inlerpretations in other mathematical disciplines
such as Ergodic Theory and Operator Algebra (see [Kechris)).

DEFINITION 5.1 A relation B on R is Borel (analytic, coanalytic, ele). Borel
(analytic, coanalytic, ... } ifit is a Borel (analytic, ecanalytic, ... ) subset of R.

A typical example of a Borel equivalence relation on the Cantor set {0,1}* is
the following:
zEqy it (@Am)(¥n > m)z(n) = y(n).

Another natural way to generate a Borel equivalence relation is to take an arbitrary
sequence {Bn} of Borel subsets of R and define

=By ift ¥a(z € B, — y € Bn).

How typical are these lwo examples can be seen from the following dichotomy
result which says that every other Borel equivalence relation is “in between” these
two (see [Harrington-Kechris—Louveau]).

THEOREM 5.1 If B is a Borel equivalence relation on B then either

(1) there is a sequence {B,} of Borel sets such that for every z and y in R, zE¥
iff¥a{z € B, — y € By), or

(2) there is a continuous I-1 function f from the Cantor set into R such that
for every = and y in {0,1}¥, tEoy — f(z)E f{y). O

[n this section we shall prove the following famous corollary of this result origi-
nally due to J. Silver (see [Kechris)).

THEQREM 5.2 Every Borel equivalence relation on [ either has countably many
equivalence classes or there is a perfect set of pairwise noneguivalent elements.

To see that Theorem 5.1 is stronger than Theorem 5.2, notice that the alternative
5.1(2) gives us a perfect set of nonequivalent elements since it is easy Lo see that
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{0,1)* conlains a perfect set of pairwise non-E g-cquivalent elesnents. 1f 5.1(1)
holds, constder the map H:1R — {0, 1}* defined by

H(z)Y(n) =1 W r € H,.

Clearly, H is a Dorel map. I[n §10, Theorem 10.2, we siall sce that every such
map either has a countable range in which case E has countably many equivalence
classes, or there is a perfect set of reals on which H is 1-1, which gives us the second
alternative of Theorem 5.2.

The proof of Theorem 5.2 reyuires a nice representation of analylic subsets on B
and =2 It will also be convenient if we take the Baire spnce w™ to be our copy of
. (It shauld be clear that Theorem 5.2 doesn't depend on which of the standard
Polish spaces L%, [0,1], {0, 1}* or w* we take as our copy of “the reals”).

Lel w* 23 w<* be the set

{(s, 1) € S 5w 5] = 1]},

i.e. the set of all puirs of finite sequences of integers having equal lengths. Notice
that w<¥3w=* is a tree under the ordering of coordinatewise inclusions. Of course,
the higher products w<% @w<* @w<“ &. .. are define¢l analogously. By a “subtres”
of W= ©w<¥ or of any of the higher powers we consider 2 downward closed subset
of the corresponding power. To such a tree T C w<¥ (5w we associate the set

Xr={zecw”: (Qyew’')¥n)z (n,yln) T}
In othier words, X+ is the set of all z 1n w* for which the tree
Te={tew™: (] |il,t}eT}

has an infinite branch. The set X7 is usually denoted by p[7], the projection of T.
This is the free representation of analytic sets.

The clags of subsels of 12 which can be represenled in this way coincides with
the class of analytic sets. For example, take the classical fact (see [Kuratowski-
Mostowski]) that every analytic set X C K is a resull of the A-operafion applied
to a family B = {B,: s € w*} of closed sets with the property that B, € B, if

1 Cs,ie.
X=AB)= ] (] B

yEwr ndw

To see that the second represenlation gives Lhe first, lel
Tx ={{z [ Jtl.) €w™ @w™: BN [z | ]| # 0).

(For 5 € w=, [s] is the basic clopen set {y € w*: 5 € y}). To see thal the tree
represeniation of analytic seis gives the classical one, for s € w< set

B.={yew: {sy| ) 1)

5 BOREL EQUIVALENCE RELATIONS a2

Since every Borel sel is analytic (check this!) it follows that every Borel set allows
a tree representation.
A subset ¥ of B is coanalytic il its complement K\ Y is analytic. So fix atree
T Cw @w<* such that
R\Y =p[T].

Thus we have
EX-D 4 if s gR\Y i T, is well-founded

of coanalytic sebs {i.c. T has no infinite branches). This is the free representalion
of coanalytic sets. Since the class of Borel sets is closed under the complementation,
it follows that every Barel set of reals also has such representation. At this point
it seems also appropriate to give a more useful form of the statement “Te is well-
founded” . Suppose that T is a “weli-founded subtree” of w<¥. This means that the
poset (T, D) is well-founded in the vsual sense, i.e. that it has no infinite decreasing
sequences. So there is a uniquely inductively defined rank function tk: 7" — Ord:

rk(1) = {rk(s) +1: 5 2t}

which is order—reversing, i.e. it has the property that rk(t) < rk(s) whenever s it
are in T. Thus a ferminal node (i.€. 8 maximal element in (T, £}) gets rank O, ...
ete.

OF course, it makes sense talking about tree-representation of Borel, analylic, or
coanalytic relations of R with the obvious adjustments {especiaily because (W) =
w*). Thus, for example, every coanalytic relation E € B? has a subtree T C
W< @ ws® @w< such that for every z and y in R

zEy iff Tyy i well-founded,
where (as expected)
Ty = {uew™: (e ju,y[iu,ujeT}

{See Fig. 6. The “real” picture should be four-dimensional, but = and y are repre-
sented in the same dimension).

Another technical fact about subtrees T of w< one frequently needs is the
notion of “the lezicographically least infinite branch” of T (if there is one at all).
This branch b is defined as follows: Let

T* = {t € T: ¢ is a contained in an infinite branch of T}.

The branch b will be a subset of 7, and it will be equal to {tn: n < w}, where
Jtal = n for all n < w. Set lg = D and suppose that we know £,. Let k be the

minimal inleger such that
taU {{n,k}} €T,

and set tnyy = £, U {{n, k}}. The branch &, or for that matter any other hranch,
will be identificd with the element of w* it determines.
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/n-lh level
of the ree

Fig. 6

ProoOF (Thef::rem 5.2) Suppase that E is a Dorel cquivalence relation and that
the set of equivalence classes is uncountable. Fix an uncountable set A C B such
t.};at. z £ y for every pair z # y of clements of A. Let T" be a Lree representation
of E.

Nov-_' we are ready to define our poset P as as the sel of all uncouatable subsets
of 4 with the inclusion ordering. To a generic filter & on P we assign a generic real
rg in the following way:

rg(m) =n iff {re A z(m)=n}cCC.
The real rg is well-defined, for the set
Do ={X C A X[ 2 & (Yo, y € X)a{m) = y(m)}
is dense for every m € w., We say that a real correspouding to a generic filter

is generic. Now Theorem 5.2 reduces to the following Lernma about the forcing
relation It of the poset P = P.

LEMMA 5.1  For every two uncountable subsets X, Y of A we have that
(X.¥Ylrrg B re,

(Here Gl_) x_G; _is a genefic filter of P x P containing (X, ¥}. The dats above 7y
and Gl_ indicating that, in fact, we are dealing with the names for these abjects,
are omitied to keep the notation simple, as there is no danger of confusion).
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PROOF  Suppose that there are uncountable X and Y in P such that {X,Y) IF
rG Erg, (& the tree Trg o, is well-founded). We fix a bijection f: X — X such
that z # f(z) for all # € X. This funclion naturally defines a real ry(z,) defined
by

Frigey(m) =n it {z: 7 x)(m) = n) € G
CLat™ 1 (ryay).7¢,) is generic.
PROOF  Function f*:Pcx x Pcv — Pcx x Pgy defined by f*{({U/, V) =

{f“U,V) is an isomorphism; hence Og x G, is generic iff f(Cq) x G is generic,
and the conclusion follows {where f{Gy} = {f/“D: D€ Ga}). O

From the Claim 1 it follows that rjg\Erg,.
CLAIM 2 {X,Y) it Féio E T{Cy)-

PROOF Otherwise we can find Xo C X, Y5 C Y, an ordinal 8 and a name H for
a function such that ] )
(KXo, Yol b H: Mg iryign — B

and H is decreasing, namely
V5,0 € Trg,rp 000 (5 C L — H(s) > H(1)).

Notice that for every x € Xg we have z £ f(z), i.e. the tree Toyir) is not well-
founded; hence we have the lexicographically least branch b y¢.y of this tree. Thus,
we can build recursively (Xo. Yo} 2 (X1, Y1) 2 ..., 50 C 5 C ... and ag, e, - --
< @ such that ]

(X, Yip) B Hisi) = ay

and
(Vz & Xipt)bopioy) [ (14 1) = 51

This is clearly a contradiction, since we must have a; > a4y (a5 {Xig2, Yigs) forces
i) foralli cw. 0O

Thus we have produced three P x P names rg,, re, and ryg,) such thal (X, Y)
farces rg,Erg,, rreaBra, but 7o, K rycy). Fix names Hy and Hy for decreasing
functions such that

{(X,Y) Ik Ho:Trg ro, — Ord,  and
(XYY H Ty ira, — Ord

Starting with {X, ¥}, we build recursively (X,¥) = {Xo. Yo} 2 {X,¥1} 2 ...
determining more and more of Gg, Gy and r(g,,, and more and more of A and M,
and (as in the previous proof) for some sy C oy C ... we have by [ (F4 1) = &
for all x € X;4,. Eventually we get three reals rg, r| and ry such that T, and
I, r, are both well-founded bul 77, ., is not, since it contains the infinite branch
determined by the s;i's. In other words, rgE v\, ryEry and rq £ ry, conlradicting
the transitivity of E. O (Lemma 5.1)
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REMARK Note that we have just proved the slightly more general fact: thal Lhe
Borel equivalence relations remain transitive in forcing extensions. This could have
also been deduced from a rather deep fact, known under the name of Shoenfield's
Absoluleness Theorem, bul we have decided for the more direct way ia order to
make this section as seli-contained as possible.

We return to the proof of Theorem 5.2. Remember thai x £ y iff Try has an
infinite branch. For every pair r,y € A denote by by the lexicographically least
infinite branch of 73,. Now we construct a farnily of unccuntable subsels of A,

{X,:a¢c{0,1}*)}

such that for all ¢ and 7 in {0, 1}

HeCr—X,2X,,

(2) for each o of length n there is 5, € w™ such thal z [ n = s, forall z in Xy,

(3) If o # 7 and [o] = || = n then 5, # 5., and

(4) if ¢ # v and |¢| = |7] = n then there exists t,; € w" snch that bry [ 1 = lor

forallz € X, and y € X;.

To see how the construction goes on, suppose that all these objecls have been
determined up to sone level n. For each ¢ € {0, 1} pick uncountalile X4, X, C
X, such that for some distinct £,0 and s,y in w™! we have that X7g C [s00]
and X!; € [so:). Now shrink each X[ (¢ € {0,1}"1!) successively 1o abtain
uncountable X, € X/ (¢ € {0, 1}"*)) such that for every ¢ # 7 in {0, 1}*+! there
is £5- inw™T! such that

(Koo Xyl begrg, [ (n+ 1) = tor.

(These sets can be found since by the key Lemma 5.1, [or every such two o and 7,
(X2, Xt} forces thal rg, E re,; so, in particular, it forces Lhat the infinile branch

brgora, of Tragra, exists). Nolice also that

(Xo, X)W rg, [(n+ 1) =5, and rg, [(n+1)= s

so the condition {4) remains satisfied.
For f e {0, 1}¥, set
Ij = U S“n.

n<w

Notice that by (1), {2) and (4}, P = {z;: f € {0,1}*} is a perfect set isomorphic
with the Cantor set via f —r ;. By the construction, for every f # ¢ in {0, [}

brg = 1J tringtn

ndw

is an element of w* which is, moreover, an infinite branch of T - . Hence z; E x4
far every f # g in {0,1}*, so we ate done. O

The reader must have already noticed that we have proved Theorem 5.2 for the
wider class of (coanalytic) equivalence relations than claimed. The restriction to
coanalytic or Borel equivalence relations in Theorem 5.2 is essential, which is seen
from the following classical example (see [Kuratowski-Mostowski]).
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EXAMPLE 5.1 (Lebesgue) There is an analytic equivalence rclation with ex-
actly ¥, equivalence classes. Canonically enumerate ©@ as {r,:n € w}, and let
zEy iff

(1) Qr={ru:z(n) =1} or @, = {r,: y(n} = 1} is vol well-ordered in {{, <),
or

{2) Q. and @, are well-ordered and isomorphic as ordered sets.
Since both conditions (1) and (2) involve one exislential guantifier over subsets
of Q, E; is an analytic subset of IR?. Notice that there are X, many equivalence
classes, far the equivalence classes are in I-1 correspondence 1o Che set of countable
ordinals.

The following result tells us that this must be the case with any other analytic
equivalence relation.

THEOREM 5.3 Lel E be an analytic equivalence relation; then either R/E is of
cardipalily at most ¥y or there is a perfect set of mutually nonequivalent elements.

PROOF  This proof is very similar to the proof of Theorem 5.1, with al} main
lemnmas being Lhe same, but with somewhat different proofs. We suppose that there
is a set A of mutually nonequivalent elemants of size ¥, Let

P={Y CA:|V]|=%:)}.
If &7 is a genetic filter on P then we define a real rg by:

re(n)=m T {z€A:z(n)=m}ed.

By using the fact that £ is analytic we find a tree T C "% x w % x w<* such that

xRy iff Tzy is not well~founded.

LEMMA 5.2 For every pair X, Y € P we have that {X,¥}IF r¢, E re, -

PrROOF Suppose that some {X,Y) forces rg,Erg,. Fixa l-1 function f1 X — X
such that f(z) # = for all x € X, For all £ € X the tree Ty is well-founded, so
we fix an ordinal ar < wy and & strictly decreasing function H;: 7, yz) — a;. By
shrinking X assume further thal for some ¢ and 2ll z in X, a; = a.

CLAIM 1 {rji6,),7G,) is generic.
PROOF Same as the proof of a similar Claim in the proof of Theorem 5.1. O
CLAIM 2 {X, Y) Frao, B T(Go)

PROOQF  Note that since the real ryeg,) is determined by using only Gg and f, this
is really a statemnent about the forcing extension by Gy, i.e. the Claim is equivalent
to showing that X IF rg, B rrig,;- So suppose that this is false, and fix a P-name
b for the lexicographically least infinite branch of T'UU’.'(ODJ‘ Fix some positive
integer 1 and an uncountable subset of X, which we call again X. Then we can
always refine X to decide what & [ (i+ 1) is. Moreover, we have R; elements in any

4 Jax. 2290
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such refinement, but only countably many possibilities below o for H,(f) f(+13).
Hence we can find an ¥ C X of size ¥; and g < a such that

Ho(b[(i+1))=p, forallzeY.

It follows that, by a successive application of this refining procedure, we can con-
strucl an infinite decreasing chain of sets X 2 X, J--- D Xi D ... such that

(1) | X;| = Ry, X; determines b [ i, and

(2) Hy(b i) = ey for all z € X; and some ordinal ay.
But then the sequence of ordinals o (f < w} would be strictly decreasing - a
contradiction. O

The reals ro, r; and r; are constructed and used in finishing the proof similarly
as in Lemmma 5.1. O3

The construction of a family {X,: ¢ € {0,1}<*} is the same as in the proof of
Theorem 5.1. O

Theorems 5.2 and 5.3 state that:
(1) Every Tl-definable equivalence relation has either € Ry or 2%° equivalence
classes.
(2) Every I}-definable equivalence relation has either < ¥, or 2% equivalence
classes.
Much of the further research has been concentrated in extending this list to the
higher levels of the projective hierarchy. In particular, there is much research on
the following hypothesis which indicates what should be the behavior of the next
level of the projective hierarchy.

HYPOTHESIS Every L}-delinable equivalence relation has either < Ry or 2o
equivalence clasges.

A variation of the presented method is used to prove following results from the
Borel Combinalorics (see [Harrington~Marker-Shelah]).

THEOREM 5.4 If X is a Borel subset of R linearly ordered by some Borel relatian
£, then there is a strictly increasing Borel function f: (X, p) — ({0, 1}, <} for some
countable ordinal . O

Thus the sets {0, 1}¢, {0, 1})¥*!, ... {0, 1}° (a < w,) are not only typical, but in
some sense universal Bore] lincarly ordered sets. Of course, there is a considerable
structure {still unkaown) of Borel linearly ordered sets which are embeddable into
some {0,1}°.

THEOREM 5.5 If (X, p) is a Borel poset (i.e. X and p are Borel and p partially
orders X} then either X may be covered by counlably many chains that are Borel
sets or there i & perfect antichain in X, 0

The last Theorer may be viewed as a generalization of the well-known result of
[Dilworth]:

THEOREM 5.8 If n is a positive integer then every partially ordered set which
has no antichain of size n + 1 can be decomposed into € n of its chains. [I
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Recently the following Borel version of Dilworth’s Theorem has been proved by
a student of the University of Paris:

'I.‘HE.OREM 5.7 If n is a positive integer then every Borel poset X wilh no an-
tichain of size n + 1 can be decompased into < = of its chains whick are, moreover,
Borel subsets of X. O

Fi



6. THE HALPERN-LAUCHLI THEOREM

The Halpern—Laichli Theorem (HL) is a deep combinatorial fact obtained as a
by-product of the proof of Con(ZF+-AC+BP), (BP is the statement that there
exists a prime ideal in every Boolean algebra, a consequence of the Axiom of Choice
equivalent to Compactness Theorem for the First—-Order Predicate Caleufus). 1t
has been noticed since then that the lemma of the proof might be of independent
interest; it is interesting that the story of the Ramsey's Thearem is quite similar.
We shall give a number of applications of the HL Theorem, as well as a proof of
the theorem using the method of forcing.

DEFINITION 6.1 a) For trees T and T' lel
TeT = {{{,YeT xT i) = (")}

with the ordering < defined by {s,s") < (,t") iff s <t and & < U'. We similasly
define @), ., Ti for a given sequence of trees Ty, T, ... Tu_y.
b) If T is a tree of height w and A € [w]*, let

TiA= {i e ht(i) & A},

with the ordering inherited from T,

c) A tree is perfect iff every of its elements has at least two incomparable successors.
For = <7 y € T we say that y is an immediale successor of z iff £ and y belong
to consecutive levels of T. A node is splitting iff it has two dislinct immediate
successors. A sublree is & substructure of a tree that is closed downwards.

Now we are ready to formulate the HL theorem.

THEOREM 6.1 (HLJ4) Lel d be a natural number, let T; be a perfect tree of
height w for every i < d, and let k be a natural number. For every function
[i@eq Tt — K there is an A € W] and a perfect subtree Uy C T} for every i < d

such that the function
£l (@(U‘ IA))

e

ig constant, or in other words, @, 4(Ui | A) is homogencous for f.

41
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This interesting result has found many applications in & rather wide range of
problems. For example, one of the first applications of HLs was in Model Theory,
where it was used to prove the Lwo-cardinal theorem (Mo, No) = (2%¢,3%) (see
{Shelah]). In Model Theory the HL Theorem is frequently used in order to set the
so—called tree indiscernibles. It is also quite useful in proving partition relations for
ordered sels, resulis about continuous functions on the Hilbert cube, elc.

6.4. PARTITION RELATIONS FOR ORDERED SETS.

DEFINITION 6.2 The order type tp(X} of a linearly ordered set X is the class
of all scts order-isomorphic lo X. The symbol n stands for the order type of the
set of rational numbers, tp(Q} = n. We do not make difference between ordinals
and their order types.

If X and Y are ordered sets, then tp(X) < tp(Y') means “X is order-isomaorphic
to a subset of ¥”, If £ and y are order types, then z + y is the type that we
get when we paste y at the end of z; formally it is the type of {0} x zU {1} x g
ordered lexicographicaily. (The < relation is a quasi—ordering (i.e. it is reflexive and
transitive) on the ¢lass of linearly ordered sels. To see that it is not antisymmetric,
consider e.g. types 5 and 5 + 1).

DERINITION 6.3 [foa and 8 are order types and m,n are natural numbers then

o= (B

means “for every X such that ip{X) = & and a coloring f:[X|* — m there is an
Y C X such thattp(Y) = 8 and ¥ is homogencous for f (f | [Y]™ is constant). *
If o« and B are order types, then

o — (B)um

means “for every coloring of the set []™ into finitely many colors there Js a subset
X of o with tp{X) = § and |f7[X)™| = n". If e = [ and the last sentence applies
to a given coloring then we say that f is reducible to n colors.

THEOREM 6.2 Let f:Q" — k be a coloring into finitely many colors. There are
subsets X; (i < n) of  such that tp(X;) = n for all i < nand |f/*[];c, Xi| < nl.

This is the best possibte bound for the nuwmber of colors, as the following example
shows.

EXAMPLE 6.1 There is a function f: (" — n! such that for every sequence Xo,
Xy, .. Xn.1 of infinite subsets of Q, the function f takes all its values on the
product X x X x -+ x X,_. Fix a well-ordering <o, of ©¥ in order type w. The
function f is defined by (see Fig. 7):

Zp,.. ., Lno1 is the k-th permutation
f(zo, .. zay) = & T of the strictly <, -increasing

reenumeralion of (zg,...,%n1).
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x, X
: ,\ % X
X
xﬂ L] x‘ X}
QD QI QI Qn—l
Fig. 7

We shall prove a Lemma that immediately implies the Theorem 6.2. In the
followmg pFoof, “for almost every” means “for all but finitely many”. Notice that
in the previous example, X;'s may be chosen so that for a fixed color k, we have

for almost every zq € X,
for almost every 7, € X,

(i’**)
for almost every z,,_; € X,,_q,
flzo, 21, .., zas)) = £
(Notice that (***} is muck weaker than “For almast every {zo,...,Zn_1) € Xp X

% Xny”). We denote the i-th copy of ) in the product 7 by Q; and we assurme
that il is \.vell—orde'red in type w by the relation <. Notice that this enables us to
define an dnereasing n-fuple (zo, . .. »Zn_1} in Qg % - x Qp_y with respect to this
ardering in the obvious way (see Fig. 7).

.LEMMA 6.1 For every f:Q™ — k there are X; € Q such that tp(X;) = n for all
i< nand a color r < k such that for aimost every 1o € Xo, ..., for almost every
Ta-y € Xn_y we have f(zg,...,2,-y) = 1.

PROQF (Th.&'orem 6.2)  Apply the Lemma r! times Lo every partition induced by
f by permuting the copies of @ in the product © x -- - % Q. O
PROOF {Lemma 6.1) First identify @ with the set

oo
{0,1}%¥ = U {0,1}", with the lexicographical ordering, <[e.

Aa<dw

Denote the tree {0, 1J<* corresponding to Q; by P;. Notice that for every perfect
subtree P of P and every infinite A Cw, P | A has order Lype > 5 (and also < x)
with respect to the ordering inherited from . The proof of the Lemma now goes
by induction on n:
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n = | - easy, by HL,.
Suppose that the Lemma is true forn~ 1. To any s = {59, .-.,8n-1) € @iun Fi
we assign n — 1 sets X!, C P (i = 1,...,n) defined by

X:;:{Q:EP;':S.'SI},

and a function

g:X," x)(fQ x ---xXJ"_'_lI -k
defined by
g(zy, .. a1} = f(s0, 21, ... Tn).
Applying the induction hypathesis on g we get Zf, C X! fori=1,...,n— 1 and
a color A(se, ..., s0_1) such thal for almost every x, € Z} , ..., for almost every
Tn-1 E Z‘"“__I'l. ’

flso.z1,... a1} = A(s0,.. .1 8n-1).
By HL, applied to ®‘.<ﬂ P; and h we gel n perfect subtrees U; C F; (i < n),
an infinite sel A C w and a color » < n such that A(sp,...,8,_1) = 7 for all
(50, 2 5n-1) € (@, Us) 1 A Finally, let Xo = Ug | Aand X; = ming, {Z¢ s €
Ui [ A} for 1 €1 < re. For every X; we have that tp(X;) > 7, and this completes
the proof of the Lemma. O

What happens if we are coloring unordered pairs of elements of @7 The following
result gives the oplimal answer in the two-dimensional case.
THEOREM 6.3 (y — (n)iu”) For every f:(Q]* — &k (k is finile) there are
X € Q with tp{X) = n and 1,1, < & such that f[X]? = {14,1,)}.
PROOF  Again we identily @ and {0,1}<% and fix a well-ordering <, on Q@
such that Q is of type w with the respect to <,. For s € 2% by 570 (571} we
denate £ € 2"+ such that ¢t [ n = 5 and #{r} = 0 ({{n) = 1). To every s € 2"
assign the set X, C {0,1}%* with X, = {¢{: s C t}. We shall construct a subsel
A={a,:s€{0,1}", n €w}ol{0,1}%“ such that a; < a, iff { C 5. 1t i easy tosce
that sueh A forms a perfect tree with respect to the order inherited from {0, 1} <~
{notice that A ueed not be a subtree of {0, 1}<* in the sense of Definition 6.1). The
construction goes by induction as follows:

Set Ag = {0,1}<%, and ay = @. In the nth step we choose a, € An for all
s € {0,1}"*! and define a set Apyy C© A, taking care that A,y has perfect
intersections with both X, o (a,70, not a,-g) and X.,-, for every s € 2" {cf.
Fig. 8). For every a, € A, apply Theorem 5.2 to sels Xa, -0 N An and Xq,-1 N A,
and get sets Z, C Xg, 0NA,, Y, C Xa, 1A, and natural numbers 4, i < k such

that . ¢
i, iy <z,
Iz} = { i, itz <y
Choose for a,-g (2,~1) the minimal element of Z, (¥,). Let A,y be the union of
YU Z, (s {0,1}%)

When A is constructed, consider a function g:{0,1}* — k x k defined by
g(s) = {i3, i1} and apply HL, to get a perfect subtree ¥ C {0, 1}, infinite D C w,
and g, 7} < k such that i = ig and ¢ = s, for all s € U [ D. Obvicusly, the set
{a,~0,n,-1: s €U | D} verifies the Theorem. O
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Fig. 8

To see that this is an optimal result, consider an enumeration {ga}3%, of Q@
and define [Q]* = So US1 by {gn,qm)} € So iff n < 0 is equivalent Lo ga < gm-
This is so-called Sierpirski’s partition associated to the enumeration (well-ordering)
{¢n}5%q of Q. Clearly, [X]* N S: # @ for every i < 2 and every X C @ order-
isomorphic to . Note that Theorem 6.3 is saying that for any other partition
[QI2 = KoU K, witnessing 5 /& ()% there is an X C Q order-isomorphic to @ such
thal the partition agrees with Sierpifiski’s partition on [X)? modulo only a possible
interchange of indexes 0 and 1. To see this, apply Theorem 6.3 to the partilion

@¥= | Kins;,
Vi<2
and find an X € Q order-isomoetphic Lo @ whose square intersects at most iwoe

of the four classes. A similar comparison argument can be used in the following
exercise.

EXERCISE Use Theorem 6.3 to show that for ¢very one-to -one f:() — R there
is an X C @Q of order type 7 such that ¢ither f is monotonic on X, or f”X has
order type w or w®,

Theorem 8.3 admits the following generalization to higher dimensions. A gener-
glization of the preceding result is in arder.

THEOREM 6.4 (5 — (’?):‘:u,lanm—u(o)) For every colering of [Q]* in finitely
many colors there is an X € @ with tp(X) = 5 and |f“[X]"] < tanf®-")(0). O

Joint genetalization of Theorems 6.2 and 6.4 as well as the proof of the former
can be found in [Devlin]. The bound given for a number of colors is the best possible
one, as Example 6.2 shows. We shall not prove Theorem 6.4, although an interested
reader may guess that the main idea in the proof is borrowed from the Theorem 6.3
and uses a generalization of patlerns from Exarnple 6.2. The proof itself is long
and tedious.

EXAMPLE6.2 Thesequeace {tant*"~')}0)} of tangent numbers starts as follows:
T [ 0] 2 3{ 4] 5 ] 6 | T
Ttanl™DOY] 1] 2| 16| 272] 7936 | 353792 22368256 |
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We have already remarked that tan{®"~7)(0) is the smallest number satisfying
Theorem 6.4, To see Lhis in cases n = 2 and n = 3 we shell take {0,1}<¥ with
the lexicographical ordering as our copy of Q. (The length of some s € {0,1}<%
is denoted by }s|. This length coincides with the cardinality of the set s, hence no
confusion may arise). Define f2:[{0,1}%%]? — 2 by letting f2{{5,£}) = 0iff & <yex ¢
implies |s| < Jt|. The claim is that bot) palterns:

L s

Fig. 9

occur in any X C {0,1}%% of order type 7. The checking that this is indeed so
is left to the reader as an easy exercise. [Hint: Every X C {0, 1} of order type
2 1 contains a subset Y which forms a perfect tree with the inclusion ordering
induced from {0, 1}<*] The sixteen patierns in the case n = 3 are obtained by
taking patterns represented in Fig. 10 and their mirror images from Fig. 11 . In
other words, for £ <Lex Y <vex 2, fa{{z, ¥, z}) codes the way the numbers

{A(=z, 9), My, 2), Az, 2). =], lal, |<])

R
AR
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VEVANAN]
VNN

Fig. 11

are related to each other (ignoring the possibilities A(z,y) = A(y, z) = Az, 2),
or |z| = |y, or |z| = |z}, or |y} = |z[. or the possibility that one of the firsl
three aumbers is equal to one of the last three). It should be clear that for every
X C 40,1} of order type 5 all of the sixteen patterns are realized in [X]. We also
hope that starting from this case the reader will not have much difficulty in showing
that Lhe following recursive formula counts the number of patterns in general case

nzl
n—1
2n -2
th= ) (21._ 1):,- tais

with the initial value ¢y = 1.

6.B. THE PROOF,
Before we start proving HL, let us give a variant of Definition 6.3 which will be
needed in the proof.

DEFINITION 6.4 Ifx and X are cardinals and m, n are natural rumbers, then
& — (A}, means “for every X of size x and a coloring f:[X}® — m there is an
Y C X of size A such that Y is homogeneous for f.”

We shall give a proof of HLy using forcing. Our forcing is the same one from
Cohen’s original construclion, so we will use this opportunity to present Cohen’s
proof that ZF4+~CH is consistent. Define Cs Lo be the poset of all finite partial
functions from # into 2, ordered by C.

CLATM  (y is cce.

PROOF Two ¢lements p,¢ € Uy are compatible iff they coincide on dom(p) N
dom(g). Let F be an uncountable subset of C5. Applying A-systern Lemma on the
set {dom(p): p € Cg}, we refine F so that dom(p)ndom(g) =r forall p,g € F and
some fixed finite r C 0. There are only finitely many functions from r io {0, 1}, so
there must be two different members of F with the same restriction to r. O
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For every ordinal o < 8 lel ry be a Cg-name for a real such that
plbr.(m)="n it wa+medom(p) and plwa +mj=n.

(Of course, both multiplication and addition in the formula wo+m are ordinal mul-
tiplication and addition}. Let fp be the name for | (s, where U is the canonical
name for the generic filter of Cy.

LEMMa 6.2 k¢, “7y is 2 Cohen’s real number”.

PROOF Let D be a given dense open subset of C.,. Let D = {p” € Cp: there is
a p € D such that for every n,m < w,

me&domp& p(m) =n implies we+m € dom{p’) & p*(wa + m) = a}.

Then D° is dense open in Cp. So fg extends a member of D7 which implies that
rq extends a mernber of D. O

LEMMA 6.3 For o # f < @ we have that Ibg, 7y # rg. Thus we are adding at
least @ reals.

PROOF  We prove that the set of all ¢'s {rom s such that ¢ b ry # rp is dense
in £s. Let p be in Cp; we shall construct ¢ O p as required. Remember that p is
finite, so there is an n € w such that neither wee +n nor wf + a is in dom(p). Now
we simiply set

¢ = pU {{we +n,0), {wf+n,1}}),

bence ¢ Ik rp () = 0 and ¢ I fg(R) = | and we are done. O

This still does not mean that CH is faise in a generic model. We have just
added & many reals. We still must prove that there is no bijection between ¢ and
wy in a model V€, There are posels forcing the existence of such functions—e.g.
P = {p: pis a countable partial funclion mapping 8 to wy}, ordered by C. We
say that a cardinal x is preserved by P ifl forcing by P does not add a function
mapping an ordinal strictly less than x onto .

DEFINITION 6.5 Leat By be the smallest g-algebra of subsets of {0,1)% which
includes the basic clopen sets. The algehra B; is usually called the algebra of Baire
sels subsels of (0,1},

Of course, I 8 is countalble then B, is just the algebra of Borel subsets of {0, 1}°.
If @ > wy this is no longer true, since far example the points of {0,1}? arc not in
B

LEMMA 6.4 For every Cy-name ¥ for a Cohen real there is 2 Baire funclion
H: {01} — R (i.e. H~Y(I) € By for every open | C IB) such that Ik, = H(fs).

PROOF Similar to the proof of Lemma 2.3. O

Notice that every Baire subset B of {0,1}® depends only on countably many
coordinates in 6, i.e. there is 4 countable set A C @ such Lhal for every z,y € {0,1}¢
withzf A=y A € Bifye B. Call such A a support of B. Notice that fer
a countable A C # there exist only continuum many Baire subscts of {0,1} with
their support iociuded in A. So the following Lemma gives Lhe bhound on the size
of the continuum in VCr
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LEMMA 6.5 Let #:{0,1}* — R be a Baire function; then there is & countable
A C § and 3 function Ha: {0, 1}* — B such that for all z and y from {0, 1}°

z[A=yl[ A iff .H(I)=H(y)=HA(r)

PROOF  Fix some cnumeration of open rational intervals (I, :n € w). The
function H is determined by the sets B, = H~1(J;). These sets are elements of
Bs, so for each B, there is a countable A,, € @ such that z { A, decides whether z
isin B,. Set A=1J Ajand Hy=H [ A O

nEw

According to preceding lemmas, Ik, [ < &, where x = 8%, We want to prove,
if & > N, that CH does not hold in a generic model. 'We do have at least # many
reals in a generic model, but this stil! does pot mean that CH does not hold in &
generic model.

LEMMA 6.6 The cardinals and cofinalities are preserved in any generic extension
of Cg.

FROOF  Let us illustrate this by showing enly that w; remains uncountable.
Suppose the contrary, namely that there is a p € Cp and a name f for a function

such that pl- f-:tb-o—m?wl. Let A, be the zet
{o: (3g < plg I f(7) = &)

For each o in A, choose g, forcing f(ﬁ) = &). Then g5 L ¢p for &« # f in A,
Hence each A, is countable by the ccc property of Cy. The cofinality of w, is grealer
than w; so there is a £ < wy such that £ is greater than any ordinal from the union
of An’s. But then p Il range(f) C £, a contradiction. O

COROLLARY If & = §%° then Ik¢, |R| = & so, in particalar, if § 2 wy then ¢,
-~CH. O

We shall prove a reformutation of HLy (see Theorem 6.5) that allows a direct
finitization (see Theorem 6.6) after two more definitions.

DEFINITION 6.6 Let T be a tree. A set A C T is n-dense iff there isanm > n
such that A C T(m) and for every s € T(m) there exists a t € A gsuch that { > s.
Similacly, if Ty, ..., Ta_( are trees and A; C Ti(m) for alli = 0,...,d — 1, then the
sequence {Ayg,..., Ad_1) is n-dense in (Ty, ..., Tacy) ift for every i < d the set A;
is n-dense in T;.

DEFINITION 6.7 If T is a tree and t € T, then T[] denotes a subtree of all
3 €T comparable with L, Tt} = (s€T:s<torl <s).

THEOREM 6.5 (THE Dense SeT VERsion oF HLj; THeoreM) For every
function f: €9, ., Tt — {0, 1} we have one of the following two possibilities:
(1) For every n € w there is an n-dense set (Ag,...,Ag. 1) in {To, ..., Tu-1}
such that f7Aq x - - x Ay_y = {0} (cf. Fig. 12), or
(2) Thereisal € Ty x - x Ty_| such that for all n € w there is an n-dense set
{Bo,..., Ba_r} in {Tolto), ... Tu_1[ta_1]} such that f*Bg x - x By—r = {1}
(<f. Fig. 13).
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Fig. 13

The first version of HL Theorem is easily proved by induction from the dense set
reformaulation. We have also this finite version that can be formalized and proved
within PA.

THEOREM 6.6 {HL THEOREM, FINITE veasion) For every pair don € w
there is 8 £ € w such that for every n-ary tree T of height k and every color-
ing f:@,.qT — {0, 1} there is a f € &y T of height { and a (I + i)-dense set
(Aai:-l- o Agea) in {Tolto], .. . Ty-i[ta—i]) such that f [ Ag x --- % Ag., is constan-
£.

Tt might be of interest Lo find a stronger version of the finite form of HL, strong
enough to give the full result of HL; for some metamathematicat aspects of what
may happen when some partition slatements get finitized, see [Paris].

PROOF (Theorem 6.5) We start with few simple facls about the compatibility
relation of the poset Cp. Two elements p and ¢ of Cg are said to be isomorphic il
there is an order-preserving map e frorn dom{p) ta dom(g) such that p{€) = 7{e(£))
for all £ in dom(p}). Clearly, this is an equivalence relation on Cp and the class of
an element p of C; will be called the isomorphism type of p. We shall identify the
isomorphism type of p with the {unique) element of {0, 1}%* isomarphic to p.
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LEMMA 6.7 1 m = 2" + 1 then for every sequence py, ..., Pm.1 of elements of
Cg of size n (i.e. of some type in {0, 1}7) there exist k < £ < m such that py end pe
are compatible in Cp (i.e. pr Upe € Co)-

PROOF  Let p be the product measure of {0, 1}? (see Appendix C). Then
#([pe)) = 27" for every £ < m.

Since pe .L ps iff [pe] N[pg] = @, the conclusion follows [rom the additivity of p. O
REMARK Notice thal m = 2% + 1 is the minimal integer satisfying Lemnma 6.7.
LEMMA 6.8 Forevery type ! in {0, 1} and integers m and d there is an integer
M = M(t,m,d) such that for every sequence pz (£ € M%) of elements of Cp of type
t there exists H; € M (i < d) all of size m such that all pz (£ € @), ., H;i) are
pairwise compatible.

PROOF  We shall prove this by induction on d (for all m and t). Clearly, the

case d = | is contained in the previous Lemma modulo an application of (finite)
Ramsey’ Theorem. So suppose d > 1. Let

E=2 s m, D+ 1,

where 5 is any element of {0, l}"l"""_l (notice that M(t, m, d) depends only on the
tength || of t). Let Frw — w be defined by

F(8) = M(t,6,d — 1).

Let F® be the k-th iterate of 7 and M = F¥(m). We claim that this M works. Se
let pz (£ € M?) be a given sequence of elements of Cy of Lype ¢. By the choice of
M there exists H? (1 < i < d) all of the size £4~'(m) such that

po-7 are pairwise compatible for ¥ € ® HP.
i<d

For the same reason there exists H} C H? (1 < i < d) of size F¥~2(m) such that

pi-z are pairwise compatible for § & ® H].
i<d
Proceeding in this way we construct H; = HF~1 (1 €4 < d) of size m such that for
all £ < k
Pz are paitwise compatible for £ € ® HE.
i<d
Let p; be the union of p;-x for £ € ®..<JH,-. Then by the choice of & there exists
I C kof size H(s,m, 1) such that p; (£ € I) all have the same type s for some 5 of
tength at most |Jm?~*. So applying the one-dimensional case, there exists Ho C [
of size m such that p, (£ € H) are compatible. It is easily checked that

pz are pairwise compatible for all £ & ® H;.
i<d

This finishes the proof.
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Mow we are ready Lo start the proof of the dense sel version of HL. So let
1 < d < w be a fixed dunension and let 84 be the minimal cardinal & such that for
every f:69 — w there exists an infinite H; C 8 (7 < d) such thal f s constant on
the product Ho x -+ - x Hy_;.

REMARK Notice that, by the partition relation J3_, — (¥o)3 (see [Kunen] or
[Erdds-Hajnal-Maté—Rado]), we have 84 < a3, for ali d; bul the function 84 in
general might behave differently then the exponentiation function. For example,
it can be shown that the statement @3 = w2 is independent of the Continuum
Hypothesis.

Let
QUT: = Ko U I
i<d
be a given parlition. For the sake of the simplicity of the notation only we shall
consider the special case when T} is equal Lo the complete hinary tree {0, 1)< for
all i. It will be obvious from the proof that this restriction is unessential.

The poset €y for 8 = 04 adds & many Cohen reals 1, (& < 8} which we consider
to be branches of {0,1}%% in the natural way. Lel & be a fixed Ce-name for a
nonprincipal ultrafilter on w (i.¢. ultrafilter containing only infinite sets). Then for
every & € 0F either

(1) every condition of Cy forces that Xs=[n:irz|ne Kol e, or
(2) there is a ps in Cs forcing that Yz = {n:iq in€ K1) €U.
(Here rg [ n denotes {fo, | n,7q, [ 1,0 Taus, | u)). For £ < & let I¢ be the
interval [wé, w{¢ + 1)). If the second alternative happens extend pg (if necessary)
80 that pg [ 1o, (5 < d) have all the same size, say £(q).
By the choice of # there exist infinite H; C 8 {i < d) such that either
{L) the first alternative happens for all & in ;4 Hi, or
(2) there exist £ in {0,1}%%, £ € w, and & (i < d) in {0, 1}! such that for all
& in @;cq Hi, Lhe second alternative happens; morcover, ps has type ¢,
£ = f(&), and pg | [o, has type ¢; for all £ < d.
Since the eonsideration of (2) includes all the arguments needed for the first alter-
native, we shall deal only with (2). For i < d let

U= (s € {0,1}**:5Ct; or ;Cs) (i.e. U: = T[s]).

We need to show that for every n < w there is an n-dense set in @, ,U; whose
product is included in K. Let

a=|Uin{0,1}%, forsome {ie all)i<d.

By Lemma 6.8 choose disjoint H; C H; (i < d) of size o such that

Pss 56@]7;

i<d

6 THE HALPERN-LAUCHLI THEQREM 52

are pairwise compatible. For 7 < d, let o Ui(n) - H: be a fixed bijection, where
Ui(n) = Ui {0,1}" Lel o @, oy Uiln) — [[icq Hi be defined by

0(5) = (no(so),...,ad_,(sd_:}}, if §= (Su,...,sd_l).

Assuming without loss of generality thal n > [t;] (i < d), extend each p,n (for
FE ®icqViln)) to the element qo(s of Cs such that gagy | faiyy has type s for
all i < d. Natice that all
Jo(n) for 5€ ®U,-(n)
i<d

are still pairwise compalible, 0 we can let ¢ be their union. Then g forees that

[ Yerny: §€ R Ui(n)} € td

i<d

so we can find an extension r of g and m > n such that r forces that m is an element
of this intersection. Extending r if necessary, assume that for all g in ;.4 H:

{wB+£: ¢ < m} C dom{r)
Let tg € {0,1}™ be the type of r | {wA + &: < m}. Fori< dlet
Ar={tg: e Hl}

Then {A;:{ < d) is n-dense in (I/;:i < d). (For s € Ui(n) let # = o;(s); then
tg > s). We claim that
on "'xAd—l g]\}]

which will finish the proof. To see this, pick a 4 in ®ica Hi and let s; = o7 ' (6:)

for i < d. Then aff) = ﬁso ¢ (and therefore r) forces that m is an element of )-’,-,
i.e. that

(Fpo [y Fpay | M) = (g, - dpan )

and we are done. O

In the general case we replace Co by the poset Pp of all finite functions p such
that

(1) dom(p) C 8 xd,

{(2) pla,ye Tiforall i < d.
The ordering of Py is defined by letting p < ¢ iff

{3) dom{p) 2 dom(q),

(4) qler,?) <7; plax, 1) for all (o, 1) € dom(g).
Thus P¢ adds & many generic branches 10 each T}, so the proof of the general case

is only notationally different. For example, notice that P, and Cp have isomorphic
regular open algebras (see e.g. [Jech]) so they give us the same forcing extension.

5 3Jax. 2290
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6.C. HL AND PERFECT SETS OF REALS. . )
We now return to applications of HI,, and also presenl some asserlions equivalent
to HL. If T is a subsel of {0, }}<* {not necessarily closed downwards) then define

{f={ze€{01}¥: (W)Bs€T)s [ nCs}

In some sense, this is the set of all reals that are in the closure of T considered as
the set of rationals.

FAGT If P is any set’of reals and T = {s: {3z € P)s C =} then [T] is the closure
of theset P. O

FACT T isa perfect tree iff the set [T] is perfect. O

DEFINITION 6.8 A family of nonempty perfect sets P = {P,: s € {0,1}<%} is
& fusion sequence Iff it satisfies the following conditions:

(1) ifsCt then P, 2 Py,

(2) for all s # ¢ of the same length, sets P, and Py are disjoint, m‘rd _

(3) the diameter of P, converges to 0 as the length of s tends to infinity.

The set
U Nem=nu»

!E{u'”unew NEw1E2n
is called the fusion of the family P.
FACT {Fusion Lemma) Pusion is always a perfect set.

Notice that by (1) the family P forms a perfect tree, and that the fusion of every
its perfect subtree is also a perfect set.

Let & denote the set of all perfect (nonempty) subsets of It ordered by C. Then
& is the Perfeci-set Forcing and if ¢ € S is a sufficiently generic filter t.l:len the
unique element of its intersection is called Sacks real. The Fusion Lemma is quite
instrurnental in proving properties af the forcing S. For example, one ‘may prove
thal for every subset X ofw in the forcing extension by § there is an infinite A in the
ground model such that either AC X or ANX = @. In fact, (hisis true about,.any
product 8¢ (d < w) of the Perfect-set Forcing (with the coordinatewise m_‘dermg)
but it is a much deeper fact essentially equivalent to HLg. To see the equivalence
one needs Lo extend the notion of a fusion sequence to higher dimensions as follows.

DEFINITION 6.9 A family P! (s € {0,1}%%,i < d} is & fusion sequence in Sf' iff
for every i < d, Pi (s € {0,1)%) is a fusion sequence in the sense of the previous
definition except that P! have the constant value Pg when s has length < i The
sequence {P': i < d) of perfect sets defined by

Pr= J P

fe{o, 1} n<w

is called the fusion of the sequence {P:}.
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Now, if we have an S%-name 7 for a subsel of w we first construct a fusion
sequence P! (5 € {0,1}°%, { < d) such that for every n < w and every sequence
{si : 1 < d) from {{0, 1}")4,

(Pliicdlbaer o (Plii<d)lFagr

By HLy4, there exist perfect trees T3 € {0,1}1%% (i € w) and an infinite 4 C w such
that for every
(siii<d)e T[4
icd

one of Lhe two alternatives holds. Let

P= U N B ti<d.

JE(T;]r<w

Then each P is a perfect set of reals and (P : ¢ < &) forces that either A C intg(7)
or ANintg(r) =0

To deduee HLg from the forcing stalement, look at the natural S%name 7 asso-
ciated Lo a given coloring f: {0, 1}5“ @ {0,1}%“ & - = {0,1) (ie. (P, ;i< d} ¥
rerTifl fl{si:i<diy=1for{s;:i<dye{0,1}* x{0,1}" x ... and n < w).

There is even a finer preservation result for the forcing extension of $9 (d < w).
It involves the following notion.

DEFINITION 6.10 A nonprincipal ultrafilter if vn w is seleclive if for every se-
quence Ay (n < w) of elements of U there is an A fn U such that A\ n C A, for
every n € A, Such A is said to be a diagenahzation of the sequence A, (n < w)

Selective ultrafilters are quite useful objecls in Analysis even though their exis-
tence requires some additional set-theoretical assumptions such as CH. This is so
because mosl of the stalements from Analysis invelve only reals and therefore are
absolute with respect to any forcing extension which do not add new reals, 1t is
clear that CH can be made Lrue in such an extension (lock at the forcing notion of
all counlable partial mappings from countable ardinals into [B; see the beginning of
§12). In the rest of this section we consider the statements that involve only reals,
or can be coded in such a way; e.g. statements involving continuous Functions from
R into R. Therefore, without loss of generality we may assume the existence of a
selective ultrafilter Uf. Selective ultrafilters are somctimes called Ramsey ullrafillers
because of the following straightforward fact.

FACT A nonprincipal nltrafilter if on w is selective iff for every partition p: [w]? —
{0, 1] there exists { < 2 and A € such that p”[4)* = {i}. O

in fact, many Ramsey-theoretic staimnents involving w have their “selective
analogues”, not just the Ramsey Theorem. For example, the well-known combina-
torial theorems of Nash-Williams, Galvin-Prikry, Silver and others about “Ramsey
suhsets” of [w]* have their seleclive analogues such as the following (see [Mathias)).

THEOREM 6.7 If L is a selective ultrafilier on w and if A4 is an analytic subset
of [w]* then there is an A € & such that [A]* C Aor[A*NA=0. O
SI



56 SOME APPLICATIONS OF THE METHOD OF FORCING

What is interesting is that Theorem 6.7 and other “selective anzlugues” can, in
fact, be rather easily deduced from original theoremns (which state the same thing
except that X is only an infinite subset of w rather than member of some sclective
ultrafilter) using a forcing argument.

DEFINITION 6.11 If U is an wltrafilter on w let HLy{l') be HLy with the re-
quirement that the set A be 2 member of .

THEOREM 6.8 For every d < w and every selective ultrafilter & on w, HL4(l/)
is true.

PROOF One may go either through the above proof for d < w or the proof in
[Laver] for d = w to gel the conclusion. But we may also prove HLg{if) using the
following general reasoning. Let T; (i < d) be a given sequence of perfect trees (say,
subtrees of {0,1}%“) and let

2 (T — {0,1}

i<d

be a given coloring. If d = w, we further assume, without loss of generality, that if
5; is Lhe rinimal splitting node of 7; for i << w, then the length of 5; increases with
i. Let

A={A€ W) (¥ < d)(Iperfect U; € T)(I < Dp" QU [ A= {e}}.
i<d

Then A is clearly an analytic subset of [w]” 50 by Theorem 6.7 there exists A € 4
such that either
[AY CA or [ANA=0.

Note thal by HLg the second alternative does not happen, so the Theorem fol-
lows. O

It should be clear that the argument presented just before the Definition 6.10
shows that Theorem 6.8 has the follawing equivalent formulation.

THEOREM 6.8" Every seleclive ultrafilter &/ generates a selective ultrafilter &4*
in the forcing extension of $*.

PROOF The only thing left is to show that
" = {intg(7) Cw: (A € U)A Cintg({r)}

1s selective, i.e. that every sequence (A,, in < w) of elements of &° {which can
actually be taken from & itself) has a diagonalization in 4. (This is not immediate
since even though cach member of the sequence (A, :n < w) is from the ground
model, the sequence itself is not). But this is also easy to show considering a fusion
sequence P} (s € {0, 1}<~, { < w) such that for every n < w and = {s;: { <w) in
({0, 4}")* the condition (P! :i < w) forces that A, is equal to some clement By
of t. Let {P;: ¢ < w) be the fusion of this sequence and let B € & be such that
B\nC B; forevery n € B and 5 € ({0,1}") (nole thal for a given n < w the set
{B7: 5 [{0, 1))} is of the size at most 2"). This finishes the proof. O
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As an illustration we give the following application of these ideas to a problem
from Real Analysis.

THEOREM 6.9 For every sequence {fn} of continuous functions from the Hilbert
cube [0, 1]“ into the interval [0, 1] there is a subsequence {£i} of {f.} and a se-
quence {F,} of perfect subsets of {0, 1] such that {1} monotonically {and therefore
uniformly) converges Lo a continuous funclion on the product Py x Py x Pox....

PROOF  In the forcing extension of $* lock at the sequence of reals
fal{$i: i <w)),
where (§;:1 < w) is the canonical name for the generic sequence of Sacks reals.

Since U* is a selective (Ramsey) ultrafilter apply the above facl to the partition,
P [w]? — {0, 1} defined by

p({m,n}) =0 W fa((Sii<w)) € fml(di i< w))
and get 2 member A4 of #* (actually of &) such that
(N ful{(siii<w)) (ng A)

is monotonic. Fix (Fi:f < w} € 8§ deciding the set 4 and the fact Lhal the
sequence is, say, increasing. Let

F={lzicw)e [[P:(vm<ne A fnllz:ic W) € fallzr i <)}
i<W
Noti(.:e that F is a cl.osed subset of [, Pi. Since every nonempty open subset
of this product contains a product of a sequence {F{:] < w) of perfect sets which

must also force that the sequence {1) is increasing, the set F must be equal to the
product [T, Fi. Let

' H =0 1)
VW
be the limil of_fn_ (1 € A}. Since g is of Baire class one, by shrinking P;'s we may
assurne that g is in fact continuous. This finishes Lhe proof. O

For | < d < w we gel the following form of Theorem 6.9,

THEOREM 6.10 f‘gr every finite d and a sequence {fa} of continuous functions
from the cube [0, [)? into [0, 1] there is a single perfect set P C [0,1] and a subse-
quence {fi} of {f,} which uniformly canverges on P9,

PROOF  Set P will be the result of a fusion saquence £ (s € {0, 1}<%) con-
strueted together with a decreasing sequence of sets A, (n < w) such that for every

n < w and every sequence s, {1 < d} of distinet elements of {0, 1}" the subsequencs
{fi: k€ Ao} when restricted to the product

.

i<d
maonatoaically (and therefore uniformiy) converges Lo a confinuous function. Clear-
ly, there is no problem in constructing this fusion using the previous resull. It shoule
also be clear that if {Fnuew is a sirictly Increasing sequence such that k, € A, for

every n < w then {fr },.cw and the set P satisly the conclusion of the theorem.
This finishes the proof. 0O
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Anothar equivalent refermulation of L is the following partition property of
perfect sets ol reals resembling to Theorem 6.4. Symbol {zo,z1,..., %01} <.,
denotes an n-tuple such that g <p¢x Ty <lex ** - <lLex Ta-1. ¥e shall need Lhe
following lemma.

LEMMA 6.9 For every meager M C [R|" there is a perfect set 7 C R such
that {P]"NM = 9.

PROOF  Write M as an increasing union of nowhere dense sets F; (i < w). The
set P is constructed as a fusion (Veo 1 )ieqoajn Pry Where

(1) every P, is a nontrivial closed inlerval,
(2) for all7 € w and all 5,2 € {0,1}" if s <pex ¢ then P; < P (this means that
r<yforallz e P, andallye P,
(3) Py O P: whenever s C {,
(4) &jcp Po.NFL = B for every k and every <pe,-increasing n-tuple {s;: 7 < n)
of elements af {0, 1}*.
The condition (4) is easily arranged using the fact that each £y is nowhere dense, O

THEOREM 6.11  For every finite n, perfect P C [0, 1) and Berel ¢: [P]” — w with
finite range there is a perfect P* C P such that [¢“[P]"] < {n — 1)\

PROGF  Since for every i € range(e) the set ¢~ (i) is Borel and therefore has the
property of Baire, by Lemma 6.9 we may shrink P to a perfect set P’ such that the
mapping ¢ is continuous on [P']*. So, we may assume that ¢ is in fact continuous.
Let T be a perfect subtree of {0,1}<% such that (T] = P. Refining T to a perlect
sublres, we may assume that each level of 7 conlains at most one splitling node.

CLAT™M  There is a perfect 77 C 7" such that for every n-tuple (= {to, ... tnoy)
of distinet elements of the same level of T the function ¢ is constant on the set

*) [T} = [T10]) % < - [Tltn-A]]-

PROOF  We construct a decreasing sequence of trees T =Tg 2171 2T 2 ...
such that for some increasing sequence of integers &; (i < w) the following holds:

(1) T 0 {0, 1} =T {0, 1},

(2) Ti41 has exactly one splitting node vy, such that |vig,] € [k, kig1),

(3) for each node y € Ty N {0, 1}* there is a j € w such thal the splitting node

v; is above g,

(1) Foraili€w and all £ & T ({0,1}*)" the mapping ¢ is constant on [¢].
It is clear that conditions (1)-(3) assure that the tree (¢, 75 is perfect, and that it
naturally corresponds to a fusion as defined in Definition 6.11. In order to settle (3),
enumerate 7" as t; (¥ < w} and Lake care aboul ¢; at the i-Lth stage of the fusion
argument. To deal with (4), note that since ¢ is continuous, fer every & € {T]” there
is at € b such that ¢“[t] = ¢(b). O

DEFINITION 6.12  Let {zo,&1,...,Zn-1}c.,. be a given element of [T]". The
patiern of {20, 71,. .., Tu1}<,.. iS5 @ permutation ¢ of {0, 1,..., 1 — 2} determined
by

1< I Afry, zi) < Alsg, 240).
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Notice that the set of ail n-tuples with patiern ¢ is open in (71", because the
pattern of an n-tuple is determined by its restriction to some large enough integer k.
Two patterns for n = 3 and six patterns for n = 4 are displayed on Fig. t4 (the
corresponding permutation is written underneath the pattern):

% 9 o 1 2 3

VYV Y

2 182
Azl Aleraf)=t
0 1 2 3 o L z a o 1 2 a L] 1 2 3
120 10z 261 210
Fig. 14

It is clear that Theorem 6.11 follows the following lemma:

LEMMA 6.10 For every perfect T, continuous ¢ [T]" — some_finite_space, and
every pattern o € (n ~ L} there is perfect ¥/ C T such that every {zp,z1,..., 201}
in (U]™ of pattern o gels the same value under c.

PRO'OF. Induction an n. Let I be the last element of {0,1,...,n — 2} in the
ordering induced by o. We construct a tree {/ as an intersection of a fusion sequence
of trees T=7y2T 27T 2 ... salisfying conditions ()-(3). Fix a well-
ordering <y, of T of order type w. Suppose that we have k; and T;. We shalj first
co{;_r)st.ruct. a finite decreasing chain of trees T; = 7% 0 M. o T}(m) such that
T lk=Tilkforalj<m FixseTin {0,1}*. Clioose an (n — 1)-tuple
Lo, ..., ¢ = 5,043, .. -, {n_1 of distincl elements of Ti1{0, 1}% such that the pattern
of any n-tuple xq,..., 7,1 of elements of [T3]” such that (see Fig. 15):

1 Coay fori<n~1,andig{1+1

LS znzig

**)

is equal to . We say that the [-pattern of such an (n — I)-tuple is @,

Forj < nandj # 141 let P; = T[t;] and define a coloring f1® jen P; — finite
J#+

in the following way: Choose an (n — 1)-tuple {ug,...,u, s, ..., un—) of the

product ®';e<;:1 £ such thal all w’s have the same height m. Let & < m be
- ? . -

the maximal integer such that w, | & is a splitting node of 77, If & > =, let

Flug, ... s upga, ... Un—1) be Lhe constant value of ¢ on

(Tluo 1 (k4 1) [T{Cur £ 8)70)) ¢ [T{Caty [EY U] 5 - - ¢ (Plunes [ (k + V)]
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X % X K Kot

R

Fig. 15

otherwise, let f{ua, ..., u/, Urez, ..., unoy) be an arbitrary value of c.
By HL._1 we choose a perfect P{ C P (forj < n, j #I+1) and aninfinite A Cw

such that f is constant on (@ j<n Pj) [ A. What this does is that we get a tree 77
F#l4L

that is slightly smaller than 7} {and still has the same intersection with {0, 1}¥4) such

that for every n-tuple zq, ..., za—q in {T]" satisfying (**} the colar e{#q, ..., Ta_1)
does nol depend on x,,; in other words, for any £{,, 2 s distinct from z; we have
that c(zo, ..., &, 1415+ > Tao1) = o(T0, . -2 T, Eigy o1 By )

Now apply the described procedure to every choice of s and n—1-tuple y, ..., 6 =
§,ti42, .- ., fn—1 having the [-pattern o, and get the corresponding chain T; = T,(e >
Tl-(n 2D ?:-(m) of refinements. Set T4y = TI(""), then for every {zp,..-, Zn-1} €
[Ti41]" of patiern & such that

**%) Az, zjp) < ki for all 7 #{, and
AfzTi) 2 ke
the value c(zq,...,zn_1) does not depend on the choice of 2,4y, For the next
element ¢; = s of 7: N {0, 1}*' with no splitting node in T3 N {0, 1}*' extending it
find a splitling node w4y of Tiqy such thal vy > 5, sel by = [vig | + 1 and
refline Tiqy to salisfy {2). This describes the construction of Ty,

Let U = (Y, Ti- Then for every n-tuple {zo,...,zn_1} <., of elements of [U/]
of pattern o the value ¢{zp, ..., €n-1) does nol depend on x4, s¢ we are done by
the induction hypothesis. This finishes the proof. O O

Again the number (n — 1) is the siallest integer with this property. By Theo-
rem 6.11 for n = 2 we have the ordinary Ramsey property, i.e. ¢ is constant on {P]?
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while for n = 3 this cannot be always achieved as the two patterns and the mapping
¢a defined on Fig. 15 show. What Theorem 6.11 is saying in case n = 3 is that for
an arbitrary Borel mapping ¢: [{0, 1}¥]® — some_finite_space Lhere is a perfect set
P C {0,1}* such that ¢ [ [P]* is either constant or isomorphic to ¢ [ [P Thus
Thecrern 6.11 is in some sense a reduclion principle i.e. for every n > 1 there is a
finite canonical Yist Cq of partitions of [{0, 1}*]" into at most (n ~ 1)! Borel pieces
such that for an arbitrary e:[{0,1}*]" — somedinite_space there is a perfect set
P C{0,1}* and a ¢ € Ca such that ¢ [ [P/]" is isomorphic te ¢ [ [P1]". That is,
there is a bijection b of their ranges making the diagram

[P1 —— Py
N Ta
GOl Vadic

commute. The set €, can naturally be considered as the set of ail equivalence
relations defined on a set of size (n — 1)I. For example, if p is an equivalence
relation on {0,1,...,(n ~ I} = I} the member ¢, of ¢, that we associate to p is
ohtained from the partition ¢, (see Fig. 15 for the definition in case n = 3) by
Joining the pieces if their indexes are p-equivalent. This gives us a way to compute
the size of C,, [or small n. For example, |C3] = 1, |Ca] = 2, |C4f = 203, ... .

REMARK It has been already mentioned that the infinitary version, HL,, of
Halpern—Lauchli Theorem is a more recent resnlt of Laver. However, the infinilary
form of the dense—set version of HL is still an open problem (see [Laver]). This
entire section is largely based on this paper of Laver where the reader can find
more infermations as well as the references and historical remarks concerning this
interesting subject.



7. INTERNAL FORCING--SUSLIN PARTITIONS

In this section we present some forcing azioms—axioms that postulate the exis-
tence of generic ohjects with some reduced degree of genericity. This is the method
of trternal forcing.

DEFINITION 7.1 A partition [S|** = Ko U K is a Suslin parlitien (or a ccc
partition) iff the following is true:

(1) {z} € Ko, forevery z € 5.

(2) Forall F.GC S, if FCGe Ky then Fg Ky,

(3) For every uncountable F C Ky there are F # G in ¥ such that FUG € Ko.
If m is finite, a partition [S]™ = Ko U K| is ccc iff it satisfies (1), (2) and

(4) For every uncountable family F of finite 0-homogeneous sels there are F

and G in F such that F UG is 0-hemogeneous.

DEFINITION 7.2 Let mg be the least cardinal @ such that there is a cec partition
(8)%¥ = Ko\ K, such that & is not the unian of countably many 0-homogeneous
sets.

PROPOSITION 7.1 w <cfmgand mg < ¢

PROOF Suppose that cf mg = w, i.e. that mg = sup;,, & for some sequence
#; (i < w) of smaller cardinals. [f [mg]<¥ = Ky U K, is ccc, then [#:]<* = Ko |
[0:]5% W Ky | [8:]=“ is also coe. It follows that each #; can be writien as a countable
union of 0-homogeneous sets. Hence, # can also be represented as such a unien, a
contradiction.

For the other inequality we shall need to consider only the three-dimensional
cee-partitions. (In fact, with a more subtle reasoning il suffices to consider only
two—dimensional partitions to prave that ¢ > mp; see Lemma 10.3). We first
identify B with w*, then define a partition [R]® = Ko U K, by letting {x, ¥, z} in
Ko iff z, y and z do not branch at the same place, or more formally,

{z,y,2} € K it [{A(z, ), 8w, 1), Az, )} > 1.

To prove that this partition is cce, notice that for every F € [Ko}<* there is a
kr € w such that A(z,y) < kp for all ,y € F. If F is uncountable family of finite

63
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0-homogeneous sets, we may assume that there is a finite k£ such that £r < k for all
F € F. We can also assumne that F [k is the same for all F £ F. 1L follows that if
z and y ate two distinct elemeants of | JF then A{x,y) > k£ can happen ounly when
x and y are nol elements of a single F in F. So the union of every iwo elements of
F is 0-homogeneous.

Clearly, every interval in R coutains three reals z,y, 2 such that A(z,y) =
Ay, &) = Az, z); therefore every 0-homogeneous sel is nowhere dense, so B iz
not equal 1o & countable union of 0-homogeneous sets. O

REMARK [t is known that the following facls are {separately) consistent with
ZECit=mg > w,mpg > cfmp=w, mg=uy <c,and mg = ¢ = w,.

Let us return to the question of finding, for a given real function f, a “large” sei
X C IR such that f is continuous on X.

PROPOSITION 7.2 For every real function f and every cardinal # < mp there
is a set X C R of power @ such that f | X is confinuous.

PROOF  [dentify B with 2* and define a partition [R]® = Ko U K, so that
{z, 9,2} € Ko iff

(Va,b,c € {z,y.2}) Ala,c) # Alb,c) — A(f(a), f(e)) # AS(B), f(<))

Then f is continuos on every 0-homogeneous set (cf. Example 1.5). The partition
is cee; this may be proved using the argument similar to the one in the proof of
the Proposition 7.1. By the definition of mg there is a O-homogeneous set X of
cardinality 8 if the cofinality of ¢ is > «w. [ ef§ = w, split X into intervals of
large-cnough cardinalities and apply the previous argument to each of them. O

PROPOSITION 7.3 (cf. Example 1.3) ‘I'he Lebesgue measure is mg-additive.

PROOF Let {Ag: £ < 8} be a sequence of null subsets of [0, 1) of length 8 < mg.
We shall prove that the union of {A¢: £ < 8} is of measure zero. So, without foss
of generality suppose that A C A, forall £ < 5 < 8. Fix ¢ > 0, and for gvery
£ < 8 choose a compact Cg C [0, 1] such that C; N Ay =8 and p{C¢) > 1 — «. Now
define [#]<% = Ky U K by:

Feko Mt ul[)Ce|>1-c
feF

CLAIM This is a cce parlilion.

PROOF For any F € K define Cp = ﬂsEF‘Cf‘ Fix an uncountable 7 € K.
We may assume that there is 2 § > 0 such that j({(Cr) > 1 —¢ + 6 for all F ¢ F.
Remember that the metric space of the algebra of Lebesgue-measurable subsets of
[0, 1] modulo the ideal of measure zero scts with the metric d(A4, B) = p(AAB) is
separable since the finite unions of disjoiut rational intervals form a countable dense
set. So shrinking F to an uncountable subfamily, we may assume that there is a
finite wnion [ of rational intervals such that for all Fin F we have p[CrAl) < 6/2.
1t follows that ((CrNCg) > 1 — ¢ for every Fand G rom F. O
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By the definition of mg there is a set of indexes H C & of size mg and such
thal {C¢leenm is O-homogeneous. Let C be [\, Cr. By compactness we have
#(C) = 1—e and A;NC = B for all § < & This shows that | J; 4 Ag can be covered
by an open set of measure < ¢. Since ¢ can be an arbitrary number > 0, we are
done. O

EXERCISE Prove that the ideal of meager sets of reals is mp-additive (see also
Example 1.4).

DEFINITION 7.3 The cardinal m Js defined to be equal to min{#: there is a
cee poset P with & family {D¢lece of dense subsets of P such that there is ne
{D¢: & < B)-generic filter G C P}.

MA(x) is the assumption that m > &. Marlin's Axiom {MA) is the assumption
that m = ¢. This is weaker than the Cortinuum Hypothesis.

DEFPINITION 7.3 (Topological version) m = min{#: there is a ccc compact
space X with the family {Ug}ecs of open dense sets such that e, Ug = 8}, (In
other words, m is the least cardinal s such that the k-variant of the Baire Category
Theorem fails),

For the proof that these two definitions are equivalent see e.g. [Kunen, Theorem I-
1.3.4]. This proof uses the third version of Definition 7.3—the Boolean-algebraic
version. The next result shows that Martin’s Axiomn is a Ramsey-type statement.

THEOREM 7.1 The cardinals m and mpg are equal. O

DEFINITION 7.4 A family of sets {li¢}¢ce 15 cenlered iff for every F € [0]°% the
set [Nee p Ug is not empty.
DEFINITION 7.5 Let 8 be a cardinal. A topological space X has ¢ as a precaltber

(caliber) ifl for every family {Ug }eco of open sets in X there is 2 A € {8]° such that
{Ue¢: € € A} is centered (has nonempty intersection).

An analogous definition can be provided for poseis, Boolean algebras, ete. The
reader may exarnine which ccc posets that we had encountered so far have precal-
ibet Ry. (See proofs in the secand part of §1).

FAaCT X isseparable = X has ¥ as a caliber = X has ¥, as a precaliber = X
is cce, and no implication is reversible. O

Now we shall see that these properties are equivalent under some additional
set-Lheoretical assumptions.
THEOREM 7.2 (m>w)

(1) Every cce space X has precaliber ®;.
{2) Every compact cce space X has caliber ¥,.

PROOF (1) Let {Ui}ecw, be a family of open sets in X. Define a partition
fun ] = Ko U K, by

FeKg iff (U #6
LEF
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“To see that this partition is ccc fix an uncountable F C K. To every F € F we
associate the open set Up = [y p Ug. Then there are F,G € F such Lhat Uplg #
, since X is ccc. Then FUG € Ky. A family of open sets is (-homogeneous iff it has
a finite intersection property, and by the definition of mg, there is an uncountable
0-homaogeneous set. To prove {2) apply the previous argument 1o a family {Ve)ecuw,
such that Ve C Uy for all £, and apply the compactness of X. O

COROLLARY (m > w) A product of Lwo ccc spaces is ccc.
(The reader may compare this Corollary with the results in §4).

PROOF Let X and ¥ be two ccc spaces, and let {U; % V¢ }¢cw, be an uncountable
family of disjoint open sets. By the Theorem 7.2 there is an uncountable set of
indexes 4 € [w]®" such that U N/, # D for all £,7 € A. There is also an
uncountable set of indexes B € [A]** such that VNV, g8 forall{,n € B. It
follows that (U x V)N (U, = V) # @ for every £ and 7 in B. This contradicts Lhe
assumption that {{g x Ve}eco, s an antichain. O

COROLLARY If m > w; then SH holds.

PrROOF H the Suslin Hypothesis fails, the cce property is not produclive (see
Example 4.1). O

REMARK Theorems of this kind (that is, with some additional assumptions, like
m > w,) may not be always widely appreciated among mathematicians. So we shall
give & generalization of Theorem 7.2 (s¢e Theorem 7.4 and Theorem 7.5}, which
doesn’l use any such assumptlion but which have been discovered (and perhaps
could only have been discovered) through the lengthy detour involving the cardinal
m.

DEFINITION 7.6 A topological space X has countable tightness (or X is count-
ably tight) iff for all = in X, for every A € X \ {2} such thai z € A there is a
countable B C A such that x € B.

The following is a version of Theorem 7.2 {2) where the additional axiomalic
assumption is replaced Lo a restriction on the compact space X.

THEOREM 7.3 Let X be a compacl countably tight topological space; then X
is separable iff X has caliber #,.

PROOF This follows irnmediately from Theorem 7.4 below. O

DEFINITION 7.7 A family 3 of nonempty open subsets of X forms a n-base for
X iff for every nonempty open U C X there exists a B € B such that 8 C U, The
minimal cardinality of & w-base in X is called a w-weighl and denoted by mw(X).

THEOREM 7.4 Every countably tight compact space has a potnt-counfable -

base, i.e. a w-base B such that B, = {B € fi: = € B} is countable for every z in
X.

PROOF  This Theotern itsell will immediately foltow from Theorem 7.5 and
Proposition 7.4 below. [
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A nice example of a space with easily “readable” cardinal functions is that of a
linearly erdered continuum. (A continuum is a topalogical space that is connected,
cornpact and Hausdorff, an example of a linearly ordered continnum is [0, 1]): .To
“read” cardina! functions of X one nseds to consider only an arbitrary partition
trec T of intervals of X (splitting intervals in two in an inductive procedure unti)
we reach the singletons). The interiors of clements of T will then be a w-base of T
Lhus we are left with the problem of computing the size of 7. To this end, we need
to know Lhe width and the Leight of T The former is bounded by the cellularity
of X and Lhe lalter is determined by Lhe sizes of the chains of T. To generalize
this Lo arbitrary compact space Y one encounters several substantial difficulties.
For example, what should play the role of the “partition tree” of ¥, and even if
we know this, what is the analogug of a “chain” of the partition tree? We shall
now show how 1o overcome these difficulties. To this end, we firstly introduce the
following notion which substitutes the notion of a clopen set in & situation where
such sets don’t necessarily exisl.

DEFINITION 7.8 A pair {F,G) is a regular pair iff G is open, F closed and
FCG.

Thus, the intention is that in a non-G-dimensional space, a regular pair is 3
“substitute” for a clopen set. The next definition gives us the desired analog—the
notion of a free sequence af regular pairs—that should play the role of a chain in a
pariition tree.

DEFINITION 7.9 A free sequence of regular pairs is a family {{F¢, Gglecs suc.h
thal for every K,L € [01%%, if K < L, then the set [N Fe N cer (X \Ge) is
nonempty.

We are now ready to state and prove the promised theorem which does not use
auy additional set-theoretical assumptions but whiclh has Theorems 7.2-7.4 as its
coroliaries.

THEOREM 7.5 Lel X be a topological space and let 7 be the minimal cardinality
of a m-base for X then there is a sequence {{F¢, Ge)}eer of regular pairs such that
{int Fy: £ < =} forms a w-base and for every A C = if a family {F;: £ € A} is
centered, then {{F¢, Ged: € € A} is a free sequence of regular pairs.

REMARK To prove Theorems 7.3 and 7.4 by using Theorem 7.5, we need the
following fact whose proof gives us some explanation of the notion of free sequence.

PROPOSITION 7.4 A compact countably Light space X cannot have uncountable
free sequence of regular pairs.

PROOF Suppose that { g, G} (£ < w)) is an uncountable free sequence of regular
pairs of a compact space X. Then for each o < w) the family

Fo={F:fcalu{X\Gragf<w}

of closed subsets of X has the finite intersection properly. So, by compactness,
MNFa # 0 and we can fix a point 24 in this intersection. Let z be a complete
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accumulation point {see Appendix E) of A = {z,: @ <w} in X. Thenz € A but
z & B for every countable B C A. To see this, notice that for every £ < wy:

{re:a < E}CX\Gy and {za:f<a<w])CF

Thus, in particular, G¢ is a neighborhood of £ which does not intersect the initial
part of the sequence A. it follows that X is not a countably tight space. O

PROOY (Theorem 7.5) Let m = ww{X). We shall assume that X is “wuw-
homogeneous™, i.e. that ww(U) = = for every nonempty open set I/ € X. This
agsumption ¢an be made since the following construction can be done separately
below each member of a maximal disjoint family of mw-homogeneous open subsets
of X. The family of regular pairs will be constructed recursively on £, with ev-
ery F; being closed &4 with the nonempty interior and every Gy being open F,.
Fix a n-base {U¢: € < n} of X. Suppose that we have construcied a sequence
{{Fe.Ge)}e<a for some a < w. Consider the family

Fa={[] Fen [ J(X\Ce): K < L are finite subsets of a}.
{34 el

Note that the family 7, is of cardinality at most |o| + Re < «. Note that F, s a
family of closed (s subsets of X, and so by compaciness and our assumption that
aw(l/a) = « there must be nonempty open G, C U, which includes no nonempty
member of F,,. Clearly, we can take G, to be also an F,-subsel of X. For F, choose
any closed Gy-subset of G, having nonempty interior. The family constructed in
this way bas the required properties; the only nontrivial thing to check is that if
F (€ € A) is a centered family for some A C 7, then (Ve Fe N[ (X \Ce) £ 0
for all finite subsets K < L of A. This is an easy induction on the size of L and is
left to the reader. O

REMARK For more applications of Thearem 7.5 and for other historical remarks
about this interesting subject the reader is referred to [Todor&evié 1990].

8. REGULAR RADON MEASURES

In this section we shall epply the inequality m > w) to solve a problem from the
Topological Measure Theory (see [Schwarlz]). We shall prove that if m > w; then
every regular Radon measure is o-finite.

DEFINITION 8.1 Let (X, p, Borel{X)) Le a given topologic.ﬂ meAsure space
(Borel(X) is ihe family of all Borel subsets of X). The measure y is called a
regular Radon mensure iff

(N p (TI—}) =0 forevery =z € X,
(2) For every z in X there is an open U such that x € U and p (/) < co,
(3) #(B) =inf{p(U): B CU and U is open} for every Borel subset B of X
{the outer regularity of p),
(d) p(B) =sup{u(K): K C B and K is compact and Borel} for every Borel
subset B of X (the inner regulacity of p1).
Such a measure is o-finite il ihere is a family of Borel sels {X,}ne, such that
X = Unew Ko and i (Xa) < oo foralln € w.

LEMMA 8.1 Let B be a Boolean algebra with a strictly posilive measure y such
that (1) is finite; then for every sequence {u,: a < wy} C B there is an un-
countable set J C w, such that p{ns Nag) > 0 for every o and Fin [

PROOF  Without loss of generality we could assume that u(1g) = 1 and that
there is an ¢ > 0 such that for every a, plas) > e Fix M such that N -¢ >
1 and define a partition [wi])* = Ko U K, by {a,8} € Ko il g{a, Nag) > 0.
By the partition relation wy —r (wy, N)? (for cvery finite ¥; see Appendix D—
Theorem D.2.1 has this as a corellary), it is suflicient to show that there is no
1-homogeneous J of cardinality N; olherwise we would have:

]:j’i{lﬁ))_ﬂUb:Zﬂb)N-()l. [m]
bed beJ .

In this seclion we assurne that {X, i, Borel(X)) is a given topological space with a
regutar Radon measure u defined on the family of Borel subsels of X. By K C, #
we denote the fact that K is a subset of A in the sense of the measure g, i.e
p(K\VH)=0.

6 3ax, 2290 6o
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LEMMA 8.2 There is a C-rnaximal disjoint family £ of compact subsets of X of
posilive measure such that for every I € K every open sel U is either disjoint from
i or its intersection with K has posilive measure. {Sets with this properly will be

called p-supporting).
PROOF Lel Ko be any C-maximal disjoint fainily of compact subsets of X. For
every K in K let

K=K ‘\U{U: {J is open and u(U N KYy= 0}.

and let Lg = K\ K.
CLAIM Every compact H C Ly has measure zero.
PROOF (Claim) The family (HnU: U/ 0O K) = 0} forms an open cover of H,
50 it has a fnite subcover. O

Thus, by the inner regularity of the measure y, we have that u(Lg) = 0. The
required family £ is {K': K € Kp}. O
REMATRK Notice Lhat if X is the family of Lemma 8.2 then every openset I © X
of finite measure intersecls at most countably many elements of K. So the above

proof cannot be used to deduce that K is, in Tach, countable, the conclusion which
we are really interested in here.

The next lemma give us a characterization of the a-finiteness of the measure .

LEMMA 8.3 The measure u is o-finite iff K is countable.
PROOF  (=)We assurne that there is a family of Borel sets { X, : n € w) of finite
seasure such that X = | g, An. We may alsa assume Lhat cvery X, is open and
Xn € Xny forall n. Forevery K € K there is an n € w such that & C X, because
K is compact. BEvery X, s of finite measure, s theset Kx, = {K e K1 K C Xn}
is at most countable for every n. [This is easily seen by noticing that the set
(K € Kx,: p(K) > 1/k} (for k,n < w) is of the cardinality less than n - p(X),
and thus finite.] Hence, K is countable as & countable union of finile sets.

{«) By the maximality of £ we have (XY\yUKy=0 0
LEMMA 84 Let £ be a family of compact j-supporting sels and suppose that
for every J in K we have picked an open sel U of finite measure containing K. If
K is uncountable, then we cannot choose 2 point zx in K for each K in X in such
a way that mx @ Ugr for K # K" in K.

PROOF Suppose that the choice is possible and let ¥ = {zx: K €K} and
B=Yn U Upgr.
KeK
Then B is & Borel subset of X, so p5 is defined.
FACT The inner measure of B is equal to 0.

PROOF  Suppose that C C B is compact. Then C is discrete, and therefore
finite; hence (C) =0 O
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FACT The outer measure of B is co.

PROOF Suppose that € D H is open. We have u(U N K) > 0 for every K € K,
so by the above remark p(l/) =00, O

These two facts, of course, contradict our assumption that g is a regular Radon
measure. O

WiLho.ut the assum]?tion that m > w) one cannot prove that K is countable—the
best passible bound without any additional assumiptions is given by the following
Lemma (cf. remark after the proof of Lemma §.4).

LEMMA 8.5 Suppose K is a disjoint family of cornpact subsets of X of positive
measure. Then K has cardinality < ®y.

PROOF  As in the proof of Lemma 8.2, by shrinking every element of K if neces-
sary, we may assume that every K in X is g-supporling. For every K in £ choose
an open /g of finite measure such that Uy 2 K. Now define F: K — [K]* by

‘ PK)={HEK:H#K HnUx #£8)

Noty: that F{K) is countable for every K in K, so if [K| > ®; then there is an
uncountable set K € K- such that K’ is free for F—that is, # & F(K) for all
H K € X' (see [Erdos-Hajnai-Matlé-Rado), Theorem 44.1). For every K € K
choose any zgx € K and notice that this family ¢contradicts Lemma §.4. O
REMARK Note that there is an Fiw) — [w,]“ without uncountable free sets. For
examplfa, ttake Fla) = {f: 8 < a}. So the abave proof canncl be used to deduce
that K is, in fact, countable — the conclusion which we are really interested in here.

THEOREM 8.1 (m > w) Every regutar Radon measure is o-finite.

PROOF Suppose that |X] = Ry, Define Uk for X € K as bef F K<
and for K € X define " 2s before. Forp & 1K)

Up= | Uk, and I = K\Ungy.
Kep

The key pa.rtiLiun [K]%% = Po UP; can now be defined by letting p into Pp iff K,
has a positive measure for every K € p. g

CLATM [K]¥ =Py U P, is a Suslin partition.
PROOF _ Fix {Pa}ecw, © Po. By the A-systemn Lemma we may assume that
{Pato<w, is a A-system with root ¢; hence p, = gUr, with the ro’s being disjoint.
SUBCLAIM  Without loss of generality we may assume that the root ¢ is emply.
PROOF Fixa K in g and coasider the family

{Kp, - €y}

of subsets of K of positive measure. By Lemma 8.1 there is an uncountable fg C w)
such that K, 0 [(,, has positive measure for all a and Fin fo. Thus, reﬁ;ing
the sequence {pglace, successively for every element of the root ¢ we can find
uncountable / C w such that g (K, 01 Kp,) > 0 for all K ingand & and g in 1.

IL is clear now that for aand Fin I, po Upg € Po il rqUrg e Pp. O
&
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Remember thai every open I/ of finite measure intersecls at most counta'l::ly many
K's [rom K; hence we may assume without loss of generality that Ug N K’ = @ for

all K € pa, K' €pgand o < 3 <wn. )
We may further assume that there are ¢ > 0 and an integer M such that

(Va)(YK € pa) p(Kp,) > ¢ and U Uy | < M.
Hép.

Now define & function Jiw) — [w]<%° by

18)={a<f: (A epa)K Cu |J Un
Heps

(Recallthat AC, BiT A\ Bisof measure'zero.} If n is such that = e > M, then
we have |I(8)| < n for all §. Hence, there isan A € [un]® suc_h that for all a ¢ 8
in A the set J(3) does not contain o. Therefore, for any &, 3 in A the set pe U ps
is in Py, and the partition is ccc. [ {Claim)

By the Claim and the assumption that w; < m there is an uncountable 0-homo-
genous K' C K. For all K € X' define
Fr= [K\ Uk KT €K' K # K}

This is a family of closed subsets of K with the finite intersection pro[IJerty.. The're-
forc we can choose an g in [} Fk for every K in K'. So we are againin a situation
which contradicts Lemms 8.4. O (Theorem}

9. SOME FACTS ABOUT GAPS IN [w]*

When studying the power-set algebra of the iritegers modulo the ideal of finite
sets, i.e. when studying various compactifications of the integers, one frequently
needs Lo consider “the gaps”, or the discontinuities of this structure, To inlroduce
these objects, we need few definitions.

For two infinite subsets @ and b of w define the relations

al" b iff a\ bs finite.
a="5% AT aC'b and b6C"a,

and say thal a and b are almest disjoin! if the set aNb is finite.

DEFRINITION 9.1 If & and A be two regular cardinals, then {a;: £ < x} and
{6y : 1 < A} form a gap in (w}* iff
(1) The sequence a,, is C* increasing, while the sequeuce b, is C* decreasing,
(2) ag C" by for all £ <k and 4 < A, and
(3) Thereis no ¢ Cw such thata; C* cand ¢ €™ by, for alf £ < x and 5 < A,

{Sequences a; and b; satisfying (1) and (2) form a so—called pre-gap. If there is
acas in (3), it is said that such ¢ fills {or splits) the pre-gap, and the pre-gap is
thus fillable (or splittable). We say that (x, A7) is the fype of this gap.

Remember that if {a, <} is an ordered sct, then by a” we denote the order Lype
of {or, >}. So saying that the type of & gap is (&, A"} instead of (x, A) suggests a
way of visualizing Lhe gap as set linearly ordered by C° in order type « + A", There
is still anather way to look at a given gap—-if we consider the sets w \ b, instead
of by (n < A), then the new gap consists of two C*-increasing families such that
no upper bound of the first one is almost disjoint with all sets of the second. We
shall use both variants interchangeably. The gap poinfs to a missing element in
[«]”, so the existence of gaps might be interpreled as "]* is not continuous” (oz
“is not saturated”). In many cases the conditions asserting the existence and the
nonexistence of forcing notions which add the missing elernent (1.e. fill the gap)
turn out 1o be rather natural conditicns that can be put on a given gap. This
explains why the knowtedge about gaps in (w]* is useful in applications of Forcing,
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and conversely, why the Method of Forcing can help us to discover a great deal
about the “discontinuities” in [w]*. This will become more clear in latler sections.

Recall that in a partially ordered set (X, <) a set A C X is cofinal (coinifial) in
aset BG X if forevery b € B there is an a € 4 such that a > b (o < 5).

DEFINITION 9.2  Let (ag,bydecn,gcr and (g, dylecncr be two pre-gaps of the
same type. The first pre-gap is gofinal in the second il {ag: & < &k} is cofinal in
{ee: & < k) and {bg: £ < A} iscoinitial in {dg: £ < A}. Two pre-gaps are equivalent
iff they are cofinal in each other.

It is easy to check that the property of being fillable is invariant under the
equivalence of pre-gaps. For functions f, g € w* define

<y T {i€w: f(i) > g(i)} is finite.

A gap in w* is defined analogously to a gap in [w]“ as the subset {a,: & < K} U
{ba: o < A} of w*” such that tp({{us: & < &}, <*) = &, tp({{bo: & < A}, <) = A7,
and there is no ¢ € w"* such that a, <" ¢ <" by for all @ < x and § < A. The proof
of the following fact is left to the reader as an exercise:

FACT For every pair of cardinals &, A, a gap of type (%, A"} exists in w® iff it
exists in [w]¥. O

We shall use this fact and deal always with the structure that is easier Lo handle
in a given context. The existence and nonexistence of various types of gaps have
proved to be very interesting questions relevant to a wide variety of problems some
of which will be mentioned below.

THEOREM 9.1 There is an (w,w]} gap in |o]*.
PrOOF  See e.g. [Bekkali; p. 96]. O

The (@), w})-gaps are usually called Hausdorff gapsin honor of a mathematician
who first constructed them (see [Hausdorff]). The follawing cardinal is connected
with the gaps in w*:

b=min{|F]: F Cw* and F is <* unbounded}.

It is easy to prove that b > w using ordinary diagonalization. Tt is also not
diffienlt to prove that b > m.

THEOREM 9.2 There ate (b,w) and (w,b™) gaps in [w]“. O

The following proposition shows that b is, in fact, the minimal cardinal x for
which there is & (x,w") gap in [w]~.

PROPOSITION 9.1 There is no [w,w")-gap in [w]“. In fact, there are neither
{#,w*} nor {w,x*) gaps in [w]“ for any « < b.

PROOF Fix a pre-gap (a;,bi)ice and define a poset P as the set of all p =
{sp, 1y, Ap) such that:

(1) s, and A, are finite subsets of w, and
{2) npis inw and 5, C np.
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Ordering is defined by: p < g iff

(3 2 Ny = 5,

{4) mp 2 ny and A, D A,

(5) & N [rg,n,) € 5, Nny,n,) C by Ning, n,) for all i € A,.
Sets Dn = {pePines,}and & = {peP ne Ap) are dense in P, and if G is
{Di,£4: n < w]-generic, then ¢ = UpEG s, fills the pre-gap.

To prove the general statement consider, far example, & (x, w")-pre-gap a; (€ <
g), bn {n < w}), where « < b. For a given £ < &, let f¢ be the eiement of w* defined
v

fe(n) = min{m: a; C b, Um]).

Pick an increasing mapping ¢ in w* such that Je <" g for all € and set

e= [ (ba Gg(n)).

<
Then it is easily checked thal ¢ splits the pre-gap. 0O
This combinatorial characterization of gaps in w* will be needed later:
LEMMA 9.3.l The following conditions are equivalent for every (w),w])-pre-gap
{ag. bedecu inw:

(1) {ag, be)e oy, is a gap.
(2) For every pair X, Y of uncountable subsets of wy and for every ii € w Lhere
are { € X, 7 €Y and n > i such that mg(n) > bofn)

PROOF  —(2) — =(1) Fix X, ¥ and # such that ag(n) < by(n) for all £ € X,
B €Y and n > fi; then the function ¢ € w* defined by

e(n) = { 0 for n < i
supeex {ae(n)},  forn > A, and

fills the gap.

S(1) = =(2) Suppase that ¢ € w™ fills the gap; then for every ¢ there is an
1, € w such that

(¥ 2 1) aa{n) < ¢(n) < bo(n). (cf. Fig. 16)

Hence, there is an i € w such that the set X = {€ <wi:ng = A} is uncountable.
Sel Y = X and check that =(2) helds. (1

COROLLARY 9.1 Suppose that the pre-gap {ag. be)e .., has the property that
ag(n) < be(n) for alk ¢ < wy and n < w. Then if for all £ < 1) € w there exisls an

n € w such that ag(n) > b,(n), then the pair {ag.bede.,, forms a gap. O
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Fig. 16

Let us call a gap (ﬂg,b{)€<wl with the property stated in the Corollary a special
gap. We shall sec later (Theorem 12.6) that for every (v, w?)-gap (“Erbf)(<u. in
w* the poset of all finite p C w, such that for all £ < % in p there is an n such that
ag(n) > be(n) is cec. Thus, assuming m > w), every gap in w* can be refined to
(and thus is equivatenl Lo) a special gap.

To avaid a Lrivial discussion, we shall always implicitly assume that a¢ C b¢ for
all £ in the case when we are dealing with gaps in [w]*, or that ag(n) € b¢(n) for
all £ and n when dealing with (wi,w])-gaps in w~.

DEFINITION 9.3  Let {ag, be)e,,, be a given gap in [w]”. Forareal e Cw lot
(u?,bé)f{w: denole the pre-gap {a¢ Ne by Ne},

DEFINITION 9.4 Call a pre-gap {a¢,bel, .., & Sushn pre-gap Iff the partition
[w1]? = Ko U K, defined by {a, 8} € Ko iff an C by and ag C b, is Suslin.

It is easy Lo see thal the property of being Suslin is not invariant under the
equivalence of pre-gaps.

FACT FEvery fillable pre-gap is equivalent to a Suslin pre-gap.

PROOF By going to an equivalent pre-gap, we may assume that a¢ C b for all
¢ < w;y. Suppose that ¢ C w fills the pre-gap {or.be)eey, Let F = {Fr: & <}
be a family of finite 0-homageneous sels. We may suppose thal all F € F are of
the same length n, and so for every £ we can fix an enumeration Fy = {£': 1< n}.
Let agi N e = sp and e\ b = £, Set kg = max|J; ., 5 ULy, We may suppose
without lass of generality that for some k € w, some u;, v4, 8;,4 C & (for i < n) and
all £ < wy:

(L) kg =k,

(2) Fe | k= {u,vw:i<n) (this means that ag. Mk = u; and be. Nk = ;) for

all 1 < n, and

(3) s =5 and £ = ¢, for alli < n.
Notice'thal the following is true for all £,n < w and all 1,7 < n:

(4) s Ct; (because ag G bes),

(5) agr\e=s:Ck,
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(6) €\ byi =L C k; hence
(7) ag \k Ce\EC b, \ k. .
It follows now that for all £, 5 < w and all-i, j < u we have that

g Ny = ((ap N b5 ) ME) U ({age \ bpi) \ F)
= (5 VGV ((ag VE) \ (Bys V&)
=49.

Therefore F, U F¢ is homogeneous for all 7, € < w), and this ends the proof. O

The converse is not always true as wc shall see soon. The following Lemma
is of the independent interest—the property of being Suslin depends only on the
behavior of singletons, which is a very unusual phenomenon in the realm of Suslin
partitions.

LEMMA 9.2 Let {ag,bg)
equivalent:

<o, D& @ pre-gap; then the following two conditions are

(1} (a(,bf)fqul is equivalent to a Sushin pre-gap,

{2) {ag,be)e o, I5 equivalent to a pre-gap (u;,b%)“w
countable X € w, there exist £ < » in X such that ¢} C b} and a, C b.

such thal for every un-
1

PROOF  We prove only the nontrivial direction. Suppose that (2) is true and, to
simplify the notation, assume that, in fact, the pre-gap {ac, bf)fﬁn has the property
stated in (2). [Recall that we are also implicitly assuming that ag C b for all €]
Fix an uncountable family F = {F,: p < w,} of 0-homogeneous sets. We may
assume Lhat for some n, |Fy| = n for all 9 < w, 50 we can increasingly enumerate
each I, as {p°: i < n}. Refining F, we may assume to have a k € w such thal for
all n, € < wy:

(3) Fy [ k= F¢ | k (this means that there are s*, £ C k for all i < n such that

age Nk = 5" and by: Nk = £ for all i < n),

() ap \ECap\kand b, \kCh\kforalli<j<n
Remember that also ag C b, for all 1,7 < n, by the 0-homogeneity of the set
F¢. Now applying (2) on the set {3"~!: 7 < w;} we get an # and a £ such that
ﬂﬂn—l (_: bfn-—l and dga=t C_Z bnn—l-

CraiM  The set Fyy U Fy is O-homogencous.
PROOF We have to prove that ag C b,y for all ¢, 7 < n. But
ap \ by = ({ae \ by ) VB U ((ag Vb ) \ &)
= (ﬂf‘ \b,,i) \k
C (agnt \byn-s}\ &
=0. O
This ends the proof of Lemma 8.2. O

The following Theorem is an analogue of Theorem 3.1.
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THEOREM 9.3 Let {ag,b¢), ., be a Hsusdorfl gap in {w]“ such that a, € &,
for all . If ¢ is 2 Cohen real, then (ug,bg}le is & Suslin gap. Therefare it is
consistent that there is a Suslin gap.

PrOOF Let p & {0,1}<“ be a given condition and let X be a Cohen name for
an uncountable subset of w;. Since X is & name for an uncountable set, we can find
an uncountable set ¥ C w and for each £ € Y » condition g; < p forcing £ € X,
By shrinking ¥ we may assume that ¢; = ¢ for some ¢ and alt £ € ¥, and that
dom(g) = a for some n € w. Shrinking further we assume that for some $,t C n
and all£ € Y we have ag Nn = s and by N'n = ¢ (note that s C ¢).

Pick € < n from Y arbitrarily and let u = ag \ &, U g, \ b¢; then « is a finite
set disjoint from n; thus we can find a § £ ¢ including u in its domain such that
q(i) = O.for all i € u. Hence, ¢IF af C & and aj C b7 and s0 we are done by
Lemma 9.2. Similarly one proves that (af, & is & gap by invoking Lemma 9.1
instead of Lemma 9.2. O

EXERCISES (1) Let (ﬂc,bc)gw, be a fixed Hausdorff gap. Set

)(<w.

A= {eCw: (af,bg), ., isstill a Havsdorff gap)

Looking at A as a set of reals (i.e. a subset of {0, 1}*), analyze whether A has the
Property of Baire. For example, show that if m > w, then A does not have the
Property of Baire.

(2) Is Theorem 9.3 also true for the random real?

(3) What is the complexity of A relative to {ag, bedecun T

10. THE OPEN COLORING AXIOM, OCA

In this section we introduce a Ramsey—type hypolhesis about sets of real numbers
which can be considered as a two-dimensional perfect-set properly and which is
likely to have influence on any structure in close relationship with the set of reals.
DEFINITION 10.1 Let X be a topological space. Wesay that theset K C [X)?is
open iff the set {{z,y}: {z,y} € K,z # y} is open in X2, A partition [X]? = KUL
such that K /s open is called an open pertition,

For a given topological space X, consider the following “Open Coloring Axiom”
about partitions of [X}?:

DEFINITION 10.2 OCA(X): For every partition [X)? = Ko U Ky, if K¢ is an
open subset of [X)? then either

(1) There exists an uncountable 0-homogeneous Y, or
(2) There is a family of sets X; for i € w such that X =
is 1-homogeneous.

icw At and every X
For which spaces X the statement QCA(X) is true? This is still a widely open
problemn. But consider the following restrictions on X:

a. The space X does not have uncountably many isolated points.
b. The space X is sccond counifable, i.e. 1l has a countable basis.

Fact OCA(X) implies that the set of isolated points of X is at most countable.

PROOF  Suppose that X has an uncountable set D of isolated points. Assume
further thal I} has the size of at most continuum. Let <, be a well-ardering of D,
and Jet <, be a linear ordering of D such that {2, <} is isomorphic with a set of
reals. Let
Ke={{z,p) €[X]*: s,y e D& (2 <py = = < y}).

Sinte points of D are isolated in X, this is an open subset of [X]2. Note that if there
i5 an uncountable 0-homogeneous set the orderings <,, and <, would agree on an
uncountable subset of D which is impossible. To see that the second alternative
also fails assume X = |J, ., Xn such that [X,)? C K, for all ». Since D is
unconntable, there musl be n such that 0, = D N X, is uncountable. 1t follows
that [Dn]? € K\, so Dn is an uncountabie conversely wet-ordered subset of (D, <.},
a contradiction. O
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It follows that the restriction a. must be assumed in any form of the Open
Colering Axiom about topological spaces. OF course, the restriction b. is much
stronger. We shall now see thal, in fact, it is the samne restriction as the assumption
that X is a set of reals.

LEMMA 10.1 Let X and Y be topological spaces such thal Y is Tp and there is

a continuous function f: X225y then QCA(X) implies OCA(Y).
PROOF  For an open partition [Y]? = Lo U L, define a partition [X)! = KoU K,
by .

* {z.v}e Ko iff f(z)# f(y) and {f(z).f(¥)} €Ly

It is clear that this is an open partition of [X]? and that the image of a 0- (1-)
homogeneous set is a 0- (1-) homogeneous set. O

Hecall that every T second countable space is a I-1 continuous lmage of a set
of reals (i.e. a subset of {0,1}*). It follows that OCA for sets of reals implies OCA
for second countable spaces. 14 is known Lhat OCA for sets of reals is a consistent
statement and also that it follows from the Proper Forcing Axiom which will be
considered later (see also corollary to Theorem 12.4 and [Todoréevié 1989)).

We now give & variant of QCA(X') which is more relevant to the study of definable
sets of reals. Recall that a family F of sets of reals has the Perfect Set Property
(PSP) ifl for every X € F either

(1) X contains a perfect set, or

(2) X is countable.

DEFINITION £10.3 OCA"(X) is the following statement: Let X be a subset of B
with the induced topology. For every partition [X]? = Ko U K such that Ky is an
apen subset of [ X2, either
{1) there is a perfect (i.e. a nonempty compact subset without isolated points)
0-homogeneous Y C X, or
(2) X is the union of countably many I-homogeneous sets.

Thus, OCA" can be considered as a Lwo—dimensional version of the PSP. It is
interesting that the obvious generalizations of OCA or OCA" to higher dimenstons
are false, as the next example shows. OF course, this should not prevent us from
looking for a version of QCA which makes sense in all finite dimensions.

FACT The three—dimensional version of QCA” {and also the three-dimensional
version of QCA) is false.

PROOF  Notice that for any z,y,z € 2* the set {A(z, p), Ay, 2), A(x,2)} has
exactly two members (cf. Fig. | or Fig. 17). Now define a partilion of {2«]" into
Ko and K; by {z,v,2} € Ko iff the set

{z(8z,v) = 1) WDy, 2) = 1), 2(Alz, 2) = 1))

has exaclly lwo members (we accepl Lhe convention that z(—1) = 0}. This partition
is open.

1 THE OPEN COLORING AXI0OM, OCA 81

CLAIM 1 There is no infinite G-hotogrivous set.

PrOOF Suppose that f is 0-komogencous and infinite, Let y be an accumulaLio_n
point of H in {0,1}¥. Then we can choose =g, 2,22 and 73 in A such that il
ni = Alzi, v} ([ €3) then ng < »y < na < ng. Nole thal (see Fig. 17k

np = Afze,x), foralll €13,
ny = Afzy, 1), forall2<:<3, and
ny = A(xa, z3).

Choose i < j < 3 such that y(n; — 1) = y(n; — 1). [t follows that {z;,z;,zs} € Ky,
a contradiction. O

> x * X

I

Fig. 17

CrLAIM 2 Every l-homogeneous subset H is nowhere dense in {0, 1}%.

PROOF Fix ¢ € {0,1)¥. We have 1o find ¢ D 5 such that [t]N A = §. Choose
zp, 71 and z in {s) such that {zo,z(,72} € Kq. Lel n < w be such that Az, #;) €
nforalli < j <3 Lets; =z nfori< 3 Ttfollows that there must be some
i < 3 such that {s;jN H = 8, and so we are done. O

The fact that {0,1}* is not the union of countably many 1-homogeneous sels
follows now from Claim 2 and the Baire Category Theorem, O

Notice that Lemma 10.1 is true also for OCA®, and recall that z set of reals is
analytic iff it is a conlinuous image of w*. Thus we have:

COROLLARY QCA'(w¥) implies OCA™(analytic sets). 0O
THEOREM 10.1 QCA~(X) is true for every analytic set of reals X.

PrROOF By the Carollary it suilices to prove QCA™(w*). Let us fix an open
partition [c;.-“]2 = Ko U K| such that w* can’t be covered Ly countably many }-
homogeneous sets. Recursively on o € {0, 1}<" construct a perfect subtree {t,: o €
{0,1}=%} C w= such that:

Nt Sty foralle C

{2) ty-0 and tp-) are two incomparable successars of £,.

(3) If o and T are two different sequences of Lhe same length then (1,]x[t,] € Ke.

(4) No interval {t,) can be covered by countably many l-homogeneous sets.
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(OF course, this subtree need not be downward closed). To take care of (3} and (4)
in the induction step, we need

CraIlM If I is en interval such that /2 is not covered by countably many homo-
gencous sets, then there are clopen intervals Jo, I) € [ such that Jg x I; € Ky and
L (i =10,1) can not be covered by countably many 1-homogensous sets.

Proor If F is the family of all basic clopen subintervals of I which can be
covered by countably many 1-homogeneous sets then A = I\ {JF is nonempty.
This set is not 1-hoinogeneous (for F is countable), so fix {z,y} € [A]? such that
{z,y} € Kq. The partition is open; hence there is a 0-homogeneous clopen base
sel Jo x 1) containing this point. Note that the intervals fy and I| are not in F, so
this completes the proof. O

Let £ = Nacw Usegony-fte)i then P is a perfect set and [PI2C Ky O
FacT If X CR, then OCA™(X) implies PSP(X).

PROOF  Consider the partition [X]? = Ko U K such that K¢ = [X]® and K, =
b, -

COROLLARY Every analytic set of reals is either countable or it contains a
nonempty perfect subset. [

Here is a typical application of (QCA® for analytic sets proved above.

THEQREM 10.2 If f: — B i5 a Borel map then either f has a countable range
or else there is a perfect P C B such that f [ P is 1-1 (continucus and strictly
increasing or strictly decreasing).

PROOF  Let

X ={{z, flz)}: s e R}.
Then X is a Borel subset of B2 (see Appendix, Theorem C.1.1), so OCA" (analylic)
applies to X. Consider the partition [X]? = Ko U K defined by

{n. = v)ieke it y#v¢.

It is clear that Kp is open. If the first allernative of OCA™(X) holds, i.¢. if there
is a perfect seb P C X such that [P]® € Kq, let Py be the projection bf P to the
first coordinale, Then f [ Py is 1-1. Shrinking P further we may assume that
the restriction is continuous (strictly increasing or strictly decreasing). Suppose
now that the second alternative of OCA"(X) holds, i.e. thal X can be covered by
countably many sets {X,} such that [X,]* € K; for all n. Then for every n, the
projection of X, to the second coordinale is a singleton, and so f has a countable
range. O

In fact, the proof of Theorem 10.2 gives that following higher dimensional version
of this result.

THEOREM 10.2° If A is an analytic subsel of some finite power [R" of R, then

either:

{a) there is a perfect set P C A such that oy # yy forallz # yin Pand i, j < n,
or

(b) A can be covered by a sequence A; (i < n} of sets such that for every i < n,
the i-th projection of A; is at most countable.
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PROOF Define [A]7 = KoU K\, by {z,y)} € Ko il z¢ # yj for all i,7 # =, and
consider the alternatives given by OCA*®. Thus a perfect 0-homogeneous set gives
the aiternative {a). So suppose A can be covered by a sequence Br (k < w) of
I-homogeneous sets. For each k < w fix an arbitrary by = {bg; 1 £ < n) in By and
sel C = {bui: k < w,i< n}. Then for every = in A, one of its projections must be
in C,ie . 77 C covers A, O

1
REMARK The canclusion of Theorem 10.2° is also true for analytic subsets of
the infinite power E* with essentially the same application of OCA*. For more
about this type of problems as well as for some historical remarks and references
the reader is referred to [Hohii].

It is inleresting that the dual of OCA does not bold, as the following propesition
shows.

PROPOSITION 10.1  There i5 an open partition [R]? = KU K| such that there is
ne uncountable 1-homogeneous set and R is nat a countable union of 0-homogeneous
sels.

PROOF We identify B with the sel w*. For cach f € B define a sequence of
reals {fi}igw such that limi—g fi = f in the following way:
(1} Let ng < ny < ... be the {finite or infinite) sequence of all n € w such that
frn+ 1} #0
(2) Let k;(F) = min{k: f{2no+ 1)+ f(2m + 1)+ -+ f(2n + 1) > 4},
(3) Define a sequence {fi}icw of elements of B as follows:
If k:(f) exisls Lhen
(4) £l regpn = f 1 ey, and
(8) filnrqpy +7) = FE2F 20y + 27 4+ 1))
otherwise sel f; = f.
A partition [RB]? = KouU K, is defined by:

{(fla}eKo T Vi{f#Eglag#fi)

CLAIM 1 This partition is open.

PROCF By definition, if f # g; and g # f; for every I € w for some reals f. g,
then the reason for that is captured on some finite level n—that is, any pair of reals
that extends {f | »,g | n) is also in Kg. This n defines a clopen neighborhood of
{f, g} that lies in K (cf. Fig. 18). O

CLAIM 2 There is no uncountiable 1-homogenecus set Y.
PROOF  Suppose that there is an uncountable 1-homogeneous set Y. Then we
can find uncountable ¥y, ¥y € Y such that for some n < w,

(6) Alf,y)=nforall feYyand y €Y.

Since for every f, the set {f;: ¢ < w} is either finite or a sequence converging Lo f,
we have thal for every ¢ < 2,

() {fi: i <wyn¥i_, isfinite for every f € Y,.
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So for every f in Yp there is a basic open interval [y such thal ¥y NI; is uncountable
and digjoint from {f;: f < w)}. So there is uncountable Zo € Y5 such that for some
fixed I we have {; = J for all f in Zg. Similarly we can gel an interval J such that
JNZy is uncountable and disjoinl from {g; : 7 < w} for every g in some uncountable
subset Z, of ¥, NI Take an f in J N Zg and a y in Z,. Then {f,g} € Ko
contradicling the initial assumption that the set ¥ is I-homogeneons. O

CLAIM 3 [ can’t be covered by a countable family {Xi}iew of 0-hamogeneous
sets.

FROOF Let X; (i < w) be a given sequence of O-homogeneaus sets. We shall
define (by a sequence of partial approximations) an element f of R avoiding all
Xi’s. Pick f° € X, acbitrarily and sel:

Foy =720, f)=1t 1 =s(+1, and
S22 0+254 1) =720+ ) (j<w)

Let tp = f [ 3. If X, niite] # 0, choose 1 in the intersection and set:

fBy=1 f@=5+1, and
P2 1+25+ 1)) = f{1+35), (J<w).

I X, 01 [te) = B, chaose f* in [to] arbitrarily and use it to partially determine J
as above. Let &) = f | § and ask if X A [ty] # @ ornot, ... elc. Clearly this
procedure will determine an element f of R such that fi = f* for all &,

SuncLAiM  f ¢ X; for all i,

PROGF  Suppose that fis an element of X; for somei. (Notice that since f* € Xp
and f% # f our § must be > 0}. Al the i-Lk stage of the construction the answer
to the question whether X; N [t;=;] # @ or not was positive, 50 i was chosen in
this iniersection. Moreover, at that stage of Lhe consiruction we have made sure
that f differs from f' at some coordinate. It follows that {f, f°} is an element of
[X:]* N Ky, a contradiction, O
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This conciudes the proof of the Claim and the proof of Propesition 10.1. O O

REMARK It is interesting that by a well-known sel-mapping theorem (see e.g.
in [Erdés-Hajnal-Maté-Rado, Thearem 44.i]) applied to the set mapping f
{fi:i < w} defined in the proof of Proposition 10.1, it follows that & can be
represented as the union of ®; 0-homogeneous sets.

Now we give an application of OCA. Anideal T C P(N}is a F-ideal 1T for every
countable set {an}ngw C I there is a b € T such that a,, C* b for all n € w, For
some ideal T C P(N) the family of functions F = {[,:a — N}, ez is frivial iff there
is g: M — B such that fo =* g [ a. Il iz said that such ¢ {rivializes F.

THEOREM 10.3 (OCA) It F = {fs:a — M}.es 15 a family indexed by some
P-ideal T then F s trivial iff every sublamily of  of power B is trivial.

PROOF (<, the other direclion is trivial) First identify every a in Z with the
graph of Lhe function f, that is, the set {{i, fa(i}): { € a}. Thus we may assume
that 7 is a subspace of {0, 1}"*". Define s partition [T]? = Ko U K| by:

(") {a, b} € Ky iff (i€ anbd) fo (i} £ foli).

To wverify that the partition is open, for a pair {a,b} € Ko cousider the basic open
set U € Ko of all pairs {f,g] in F such that f(i) = fa{i) but g(i) £ fa(i).

By the OCA, we have the following alternatives:

1% There is a 0-homogeneous family K of cardinality ¥;. Suppose Lhal {fa:a €
K} is trivial, i.e. that we have g: B — N such that f, =* g for alla € K. Use the
counting argument to get a £/ C K of power #; and n € N such that £, [ (e\n) =
gh(a\n)and fo in=fi[nforall a,be K’ U follows that f, and f, agree on
anb for all a and & in £ contradicting the fact that & is 0-homogeneous.

2% There is a family {Z,: n € ©} such that T = |, Z. and [Z.)* € K. for all
7 inw. There is an n € N such that for every a € T there is a b € T, such that
a C* b (ie In is C-cofinal in I), for T is a P-ideal. In this case g = |J,ez, fo
trivializes . O

Theorem 10.3 allows another formulation in the theory of chain conditions of
partially ordered sels. To state this resull, let us say thal a poset P is a posel
of partial functions from N inte N if every element § of P is a funclion such that
dom{f) C M and range(f) C M and the ordering of P is 2. For example, the Cohen
poset C, considered in previous sections is such a poset with all elements having
finite domains. The poset C, is cec for the trivial reasons that it is countable.
Finding a nontrivial class of ccc posets of possibly infinite partial functions is a
rather difficult matter. The following two variants of Theorem 10.3 explains why
this is so.

THEOREM 10.3° {OCA) Let P be a poset of partial funclions from M into M.
Then P is ccc Il P 15 o-centered. [

THECREM 10.3*" The following are equivalent for every analytic poset of partial
functions from N intg N:

(1) P is cee,

(2) P is o-centered,

(3) P contains no perfect set of pairwise incompatible elements. O

7 3ax. 2290
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{Here, “analytic” means Lhat if we identify P with a set of reals as in the proof
of Theorer: 10.3 then P becomes an analytic set of reals).

We shall naw give an application of Thearem 10.3 which shows thal OCA has a
strong influence on gaps in {w]*. Comparing it with the resulls cited in §9, we see
that the set of types of gaps in w*® is very restricted under OCA.

THEOREM 10.4 (PFA, almost OQCA) Every gap in (w®, <"} is either of type
(u}:w;): or (w2sw-)' or (wsw;)‘

Theorern 10.4 follows from the following Lemina and Theorern 10.5; recall that
(%, A"} exists in w* iff it exists in {w]¥.
LEMMA 10.2 (OCA) Every (x,A") gap in {[w]”, C") where both x and A have
uncountable cofinalities, is of type {wi,w]).

PrOOF Let {ag: € < &}, {by: 7 < A} be a given gap in [w]”, Le:

(1) the sequence of a’s is € increasing, ag C" a, for all { < 7 < &,

(2) the sequence of b's is C~ increasing, be C° b, for all { < 5 < A,

(3) ag and b, are almost disjoint, Jag Né,| < w forall{ < x and 7 < A

(4) there is no ¢ € w such that ag C* cand [byNe| <w forall{ <« and n < A

Let T be an ideal in P(w) generated by the family ¥ = {agUbp: { < #,5 < A}.
For ag Ubg in V¥, lel fa,us,:{ag Ub,) — {0,1) be such that F7H0) = a¢ and
f£~1(1) =* &,. By our assaraptions thal cf(«) > w and cf(A} > w, the ideal T is =
P-ideal. Note thal F = (f,: y € ¥} is coherent but it is not trivial, because il ¢
were a trivializing funclion on F, the set ¢ = g~'(0} would fill the gap.

CLAIM Suppose that there are A € [«]* and 8 € (AJ¥e such that the family
Fo = {falug,q : £ € A€ B} is notl trivial; then A is cofinal in x and B is cofinal
in A,

PROOF Suppose that 4 is not cofinal in «; then there is a {g such that ag, 27 a;
for all £ € A. Then the characteristic funciion of w \ ag, would trivialize Fp. O

By the Claim, our gap is of type (wy,wi).. O

REMARK Nate that the above proof shows that Theorern 10.3°" can be used to
considerahly determine the structure of Berel gaps in fw]* or w®.

THEOREM 10.5 I b > wy, then there is a (wy, A")-gap for some X such that
ef(A) > w.

PROOF Fix A = {a;: £ < ws)}, a < -strictly increasing family of elements of w",
Let F be a maximal farily that is Jinearly ordered by < and extends A, and let
F* be the set {h & F: (Y€ < blag <" b}. Pick a coinitial subset 5 nf}‘"f’ of order
type A" for some regular cardinal A. Then {A, B} forms a gap, and A canhot be 0,1
or w by the Proposition 9.1 (see also {Rothberger]). O

LEMMA 10.3 Let A = {f;: £ < b} be a < -increasing <"-unbounded sequence
of increasing mappings from «*. Then there is an open partition [4)* = Ko U Ky
without a homogeneous set of size b.
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PROOF Put {f, g} in Ko il f{z} > g() and f(5) < ¢{J) for some &,j < w.
Cleatiy, Ko is open in [4]2, The fact that there are no omogeneous sels of size b
follows from Lemma 0.7 of [Todoréevié 1989]. O

COROLLARY OCA implies that b = w;.

PROOF By Theorem 10.5 and Lenuma 10.2 we have that & < wy. The inequality
b » wy follows from Lemma 10.3. O

PROOF {Theorem 10.4) By Lemma 10.2 we have to take care only of the faps
of type (x,w*). By Proposition 10.} the gaps of type (wy,w") do nol exist since
& > w; while the gaps of type (x,w") for some k > w, do not exist simply because
PFA implies that ¢ = R (see [Bekkali]). O

REMARK 1t is not known whether Theorern 10.4 can be proved using OCa alone.
The reader may investigate the connection between Theorem 10.3 ard Theorem 8.7
in [Todoréevié 1989]—these two theorems are instances of a more general stalement.
He may also compare the proof of Theorem 104 (more precisely, the proof of
Lemma 10.2) with the proof of Thecrem 8.7 there.

There is another version of Theorem 10.3 which might be worth pointing out. It
deals with the distance between two partial functions f and g from w into R:

If ~gli= sup [f(n) = g(n)l,

where a = dom{f), # = dam(g), and where we let ||[f —gjl = CGifanb=0. Let a
ball of partial functions with center & and radius 0 < ¢ < oo be the set

Bh)={£: 11/ - bl < ).

This set will also be called an ¢-bali around h. Note that if f and g are two partial
functions whose domains are included in a domain of a third partial function & then

1F =gl <1F = &l + 11— gl].

Thus, if 7 is a family of partial functions such that F C B,(h} for some total
hiw wRand 0 < ¢ € oo then ||f — g|| < co for all f and g in . The following
result gives a necessary and sufficient condition for the existence of a total function
h and 0 < ¢ € oo such that # C B.(h).

THEOREM 10.6 (OCA) Let F = {fara — B}agz be a family indexed by a
P-ideal 7. Then F is included in a ball around a Lotal function iff this is true for
every Fp C F of size at most X

PROOF (<=, the other direction is trivial) Clearly, we ray assume that Z is not
of the form {o:a C” b} for some b € w, since in this case the result is trivial.
Define the partition [7)% = Kp U Ky by

{a, 0} e Ka T lfa— £l > 8{a,b)
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{here, A{a,b) = min(alsb)). As in the proof of Theorem 10.3, there is a separable
metric Lopalogy on T for which Ko is an open subset of [Z)%. Thus, by OCA we
may consider the two alternatives:

1° There is an A’ C T of size Ry such that [X]* € Ko. By the assumption, pick
k:w — R such that for some § < ¢ < oo, .

{fo:a € X} C Bh).

Thus, in particular ||fa — Al < oo JTor all a € X', So there s an M < oo and an
uncountable Ag © X such that {|fo — &|| < M for all & in . It follows that

Ifa — full = 20 for all a,b & A%

Choose a and b in g such thal A{w, b} » 2M . [The set {a ﬁ"ZM: e € g} is finite,
hence the required a and b do exist.) Then {a,b} € K¢ implies

e = fll > Afa, b) > 2M,

a contradiction.

297 = {J, <o In such that [Z-]* C K, for all # < w. Then, since T is a P-ideal,
one of the T,.'s (say Zg) must be G -cofinal in I. For the same reasons, for each
k < w there is an 5 C & such that

Ii={aeTo:ank=s}

is colinal in Z.

CLATM There is a £ < w and distinct 5,£ € & such that both Zj and I} arc
cofinal in Z.

ProOOF  If not, then for every k there is the unique sp © k for which Z3* is
cofinal. So for every ¢ C k distinct from s we can choose an a(t, k) € T such that
alt, k) € a for every a € I§. Choose b € Zq such that

a{t, k) C" & for all £ < w and ¢ C & such that ! £ sk,

Then for every £ < w we must have that &Nk = 5. Choose a ¢ € Iy such that
bC* cand e # . Let k£ besuch that cvk =t # bk = 5. Then ¢ € I and
a(t, k) C* ¢ conlradicting the choice of a(t, k). DO

Fix k, s and t as obtained by Claim, and let hiw — R be defined by
A(n) = min{f,(n): a € I3, 1 € a}
{imin® = 0). We claim that F € By (h), i.c. that [[fa— &} < cofor all a € T. Since

7} is cofinal, it suffices to check this for a in Z3. Suppose that this is not ere and
pick an a € I3 such that for eacli i < w there is an n; € & such that

Falne) = hfm) > .
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Choose b € I such that o C* &. Then, since n;'s must converge to co, we can find
an i > 2k such that n; is also an element of b. Then, by {a,8} € K, we have that
[1fa = foll £ Afa,b) <k, 50

2k < fa(r:) ~ h(n:) < Hfalne) = fums)] + Lfa(ne) = R(madl,
and so we must have that
[fol(ni} — A(n:}] > k.

By the definition of A(n;), there is a ¢ € Z§ such that h(n;} = fo(mi}. (The set from
the definition of (»;) is not empty as, for example, a belongs to it). It follows that

lifo = felf = £

On the other hand, {b,¢} € K, so we alsc have that

Bfs = fell € A(b.c) < &,
a contradiction. O

Now we turn to another application of OCA in the field of Boolean algebras.

THECREM 10.7 (OCA) Every uncountable Boolean algebra contains an un-
countable subset of pairwise incomparable elements.

REMARK We shall construct a set of incomparable, not ivcompatible ele-
ments. Sometimes a former is called an antichain in 2 Boolean algebra.

LEMMA 10.4 Let X and Y be two uncountable linearly ordered sets and consider
X x Y ordered coordinatewise: {z, ) < (2, /) ifr <z'andy<y. fFX xY is
the union of countably many chains, then both X and ¥ must have uncountable
families of disjoint nontrivial intervals.

PROOF Suppose that X x Y = Uncw Cn- Let 21X — Y be such that F =
range(f} is uncountable and f~'(y) is uncountable for every y € F. Using the
simple counting arguments find n € w and an uncountable F* C F such that
for all y € F' the set (f~'(y) x {y}) O Ca is uncountable. Consider the function
I/ = fnC,. Forevery y € F' choose z§ and z,, from £~ ) such that z$ < g and

the interval (:1:3,::;, ig nontrivial. It is enough to prove that for all y # z € F' the

intervals (zy, 20} and (2%, z}) are disjoint. Suppose the contrary, that 28 < =} < z}.
Remember that C, is a chain, so we have that {2,3), (=} 2) and {=},y) are

comparable; thus ¥ < z < y—a contradiction. O

It follows that if X and ¥ are two uncountable sets of reals then X x ¥ is nol
the union of Ry chains.

If B is a Boolean algebra, then B* is the set of al! its nonzcro clements. For an
element o of B the symbol B [ a denotes the sel of all z € B such that z < a. We
want to embed 8 into P{w); hence we need the following Lemma,

LEMMA 10.5 Let 5 be a Boolean algebra with no uncountable antichain; then
there is a countable D C B such that for every ¢ € Bt there is 2 & € D such that
b C a—or in other words, there is a countable dense set in Bt.
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PROOF Suppose that for any two disjoint elements a and b of 5 at least one
of algebras B [  and B [ b has a countable dense sel; then we may inductively
consbruct 2 maximal antichain Dy C B such that for any d € Do the algebra 3 [ d
has a countalble dense set. By the assumption, Dy must be countable. For every d
in g choose a countable dense Ag € {8 [ d)* and seL D = |y, Aa. Then Ais

the required countable dense set in B*.

Now suppose that there are disjoint up and bg such that neither B | ag nor & [ by
has a countable dense set. Then we can inductively choose sequences as (o < wn)
and by (v < wy) of elements of B | ag and B [ by respectively, such that:

(1) as € ap for & > B, and
(2) be € bg for o = 3.
Then it is easily checked that

{aa U (bo Y\ bo):a <}

is an uncountable set of pairwise incomparable elements. O

PRrOOF (Theorem 10.7) Suppese that £ has no uncountable antichain. By Lem-
ma 10.4, we have a countable dense set in 8 and thus we may suppose that 7 is
an uncountable subalgebra of P(w}. Coasider the partition [B)? = KoUK, defined
by:

{x,y} € Ko iy ¢y and yg€=z

With the topotogy on B induced from 2¢ this is an open partition. Let ws check
the alternatives given by QCA:

12 An uncountable 0-homogeneous set is an uncountable antichain, and it con-
cludes the proof

29 Suppose that B = Uncw Bn,andevery B, is i-homogeneous—that is, a chain.
In particular, one of the B,'s is uncountable. Notice thal the subalgebra of B
generated Ly B, is isomorphic to an intervel algebra Int{L) for some uncountable
linearly ordered set L. (Int(L) is a Boclean algebra generated by the family of
intervals [, = {z:2 < a) for all @ € L}. Therefore, we may now assumne that
B = Int{L) for some L of this kind.

If pussible, divide L into two uncounlalle components Ly and Ly such that
Lo < L1. (Notice that if such Lg and L; cannot be found, then il is easy lo
find an uncountable family of pairwise digjoint intervals of L). Let L] be the
converse of Ly and consider the product ordering on Lg % L], as in Lemma 10.3:
{zo,v0) < {z1,1) iff 3¢ < yo and zy < y1. Every clement of this posel corresponds
to an element of Int{ L) in such a way that two elements of Lg% [} are comparable ift
the corresponding intervals of lul(L) are comparalile. By the assumplion, Lox L] is
representable as the union of countably many chains. By Lenima 10.3, Ly contains
an uncouatable family of disjoint intervals, so we are done. L)

Recall that Ramsey’s Theorem implies that every infinite sequence of reals has
an infinite monotonic subsequence. - following two facls show that OCA gives
us rauch stronger verstons of this phenomena.
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THEOREM 10.8 (OCA) Let f be a real function on the uncountable set of
reals £, then there exists an uncountable £ C E such thal f | £ is monotone. I
the function f is one-to-one, the restriction f | F.can be chosen to be, morecver, a
homeomorphism.

Proo¥  Define a partition [E]* = Kpu K, by
{zr. v} € Ko T flz) < f(y) and z<y

We idenlify z € E with {z, f(z)}. In the topology induced from R? this is an
cpen partition, We have either an uncountable 1-homogeneous or an uncountable
0-homogeneous subset F of £, and f | F is monotone in both cases. O

THEOREM 10.9 (QOCA) Let X and ¥ be two uncountable sets of reals. There
is an uncountable Xo € X and strictly increasing f: Xo — Y.

PROOF Look at the partition X x ¥ = Ky U K defined by
{{z, 9} (=", 40} € o i z<z’'—y<y

The partition is evidently open in the producl topology, so we can consider the two
alternatives:

1% There is an uncountable §-homegenecus set . Set Xo = {z € X : 3y{r, v} €
U}, and for every « € Xy choose for f(x) some y € V" such that (z,y) € U; then f
is strictly increasing.

2% The set X x Y is a union of countably many -homogeneous sets. This defines
a partition of the set X x Y* into counlably many chains. By Lernma 10.3 the set
X contains an unconntable family of disjoint intervals, and this is impossible. O



11. A BASE FOR THE CLASS
OF COMETRIZABLE SPACES

In this section we give an application of OCA to obtain a partial solution of
an open problem in topology—a problem of finding & base for the class of reg-
ular spaces. For more details on this and some relaled problems consult §3 of
[Todorzevié 1989].

DEFINITION 11.1 Let % be a class of regular (T5) topological spaces. If B is a
subclass of spaces in T such that for any space X in T tiere js a space Y € B thal
is topologically embeddable in X, we say that B is a base for 3.

DEFINITION 11.2 [In a topological space X a set N of subsets of X is & network
iff for every = € X and every apen B containing x there is some C € N such that
reCCB.

FACT Every T)-topological space that is a continuous image of a separable metric
space M has a countable network, and conversely. (For the proof see Appendix
E.0.1).

DEFINITION 11.3  The Sorgenfry line (or the arrow-space) is a tapological space
that we get from R by refining its topology by the intervals [a, b} for aff a, b ER.

ExXAMPLE 11.1 Consider a Ty space X. Define Tx C X x Open{X) to be the
set of all pairs (z, B) such that x € B (Open(X} is the family of all open subsets of
X; stmitarly, Closed(X) is the family of all closed subsets of X) and consider the
following partition {Tx]? = Ko U K;:

{(IJB)J<y)C)}E‘KO lﬂ‘ Iec or yQ‘B

It is easy to see that X has a countable nelwork iff Tx is the upion of countably
many l-homogenecus sets. So it is natural to consider the Ramsey-type state-
ment saying that either Tx is a countable union of }-homogeneous sets or there
15 an uncountable 0-homogeneous set. Here is a topological translation of the two
alternatives:

19 Suppose that we have a partition Ty = Une. T such that every T, is I-
homogeneous. Set C, = {y: 3C{y,C) € Tn} and A _ {Cn}new. Then every pair
{z, B) from X % Opea(X} is in some Cy; hence z € O € F and thus M forms 2
countable network of X.

a3
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2% Suppose that there is an uncountable 0-lomogeneous set U C Tx. Then we

consider the set
{v: 3By, B} e U}

Then ¥ is an uncountable weakly separafed subspace of X, L.e. for every ¥ in¥Y we
can associate a neighborhood U, such that for every = ZyinY ethgr z g U, or
y @ Uz. Note that the arrow-space itsell is weakly separaled as the neighborhoods
[z,c0) (z € B} witness.

AL Lhis leads ta the following hypothesis about a possible lasis for the class of
all regular spaces.
HYPOTHESIS For every regular space X one of the following conditions helds:

{13 X has a countable netwark,

{2) X contains an uncountable subspace of the arrow-space,
{3) There is an uncountable discrete subspace in X.

The solution of this Hypothesis requires a rather strong Ramsey—-type result.
Using QCA we shall now show Lhat the Hypotliesis holds for a wide class of Ltopo-
logical spaces described in the following definition, which covers most of the known
exarnpies of regular spaces.

DEFINITION 11.4 A set of real numnbers X with the topology v forms a cometriz-
able topological space iff there is a family F of closed subsets of T suci that for every
x € X, for every set U apen in X there is an F € F such thatz € int,(F)yC FCU,
where int, (F) dewotes the interior of F with respect to the topology .

To apply OCA to partitions like the one in Example 11.1 we need a topology on
the set P(X), ar some subset thereof.

DEFINITION 11.5 An exponenlial space, exp(X), is defined on the set Closed(X)
with the ezponential for Victoris) lopology given by its subbase, that consists of all
the sels of the following two kinds:

(1) {F: F U # 0}, for some fixed open U, and

(2) {F: F € U}, for some fixed open U,

FaACT If X is compact metric then exp(X) is also compact metric (see Appendix,
Theorem E.0.3). O

THEOREM 11.1 (OCA) ket X be a Ty cometrizable space. Then one of the
following conditiens holds:

(1} X is a continuous image of a separable metric space,

(2) X contains an uncountable snbspace of the arrow-space,

(3) X contains an uncountable discrete subspace.

PROGCF In what fullows it is convenient to take K 1o be equal to the Cantor
cube {0, 1) with the (usual) lexicagraphical ordering. Lel X, 7 and F be as in the
delinition of a cornetrizable space. Defineaset TC X xFby T = {z, Fy:z €
inl; (F)}, and twe partitions of [T]7: the first, [T)? = &g U KT, by:

{{z, F}, {y,C)} € K§ W z<y and yEF

L. A BASE FOR THE CLASS OF COMETRIZABLE SFACES )

and the second [T = I§ U K| by:
=, FY, {y,GY) € K} i z<y and €6

Sohions like 07 hmn.ogcneous, {"-homogeneous, etc. have the obvious meanings.
[t is casy to see _Lliat in the product topology of & x exp(F) both pertitions are
open. Now exarnine the alternatives given by the OCA:

[ Ye o yarlibl oo

1° There is a parlition X = Uneu T, where each T, is boll 17- and 1'- homo-

geneous; then we have a countable netwark

N={{ze X:3F {z, FY e T, }: n <w}
as in Example 11.1.

2% There is an uncountable 0/- (or 07-) homogeneous set . By the symunelry
we may suppose thal U is 0'-homogeneous. Set ¥ = {y: 3F) {y, Fj} € U}, and
consider the restriction of the second parlition on the set

Ty ={{z.Fl:yeY FerF}
Again applying OCA we get the alternatives:
2.1° There is an uncountable 0"-homogengous set. ¥ C U/. Consider the sel
Z={zeY :3F (,FYeV}.
For any 7 € Z there is an open (in 7) set O, = int, F’ fint, F! such that 0, NZ =
{z}; hence Z is discrele.
2207y = Usew Tn, and every T, is 1-homogeneous. Set
Co={zeY:3F (z,F}eT.} for n € w.,
For every T € ¥ apd [or every I/ € 7, if € U/ then there exisls F' € F such that
€t (F)C F C U and for some n we have that (z, F} € T,,.

To prove that ¥ is a right-facing arrow-space, we need lo find an open C; for
every I in Y such that x € C: C [«, +o0). Having this goal in mind, we first note
the following fact which immediately follows from the definitions.

CLA.IM 1 Suppose that z € Y N for some {f € r. Choose F € F such that
z €inl,(F)C F CU and let n be such that {z, F) € T,,. Then

z€{C,N(z,400)) CFC U 0
If the sets Cn are clopen rejative Lo ¥ then every z € Y has an open neighborhood
Cu N[z, +e0), and so ¥ is homeomorphic ta an uncountable subspace of a arrow-

space. While this may nat be true in general, the nexl fact shows thal we can
always find an uncauntable sabsel of Y haviag this property.

CLaIlM 2 There is an uncountable Z C Y such that for every n the set 2N Cy is
clopen in Lthe Lopology induced from R.

PROOF  We may suppose that Cn’s are closed by taking their closures {for XJ
i3 closed). Let & be 4 topology induced on ¥ from B and refined by extending the
topology in such a way that every C, is clopen. This topology is zero-dimensional
wilh countable weight, so by Thearem 10.7 there is an uncountable Z € ¥ such
that o and 1 coincide on Z, and we are done. €

By the two last Claims we have that (Z, 7} is homeomcrphic to an uncountable
subspace of the arrow-space. [



12. THE PROPER FORCING AXIOM, PFA

Let P be a poset, and let @ be a P-name for a poset. Define a poset P « 0=
{{p. ¢} : pF ¢ € Q} ordered by

{pa, o) < (P1.G1) iff o< p1 & polkdo < gi.

A natural poset for collapsing the continuum, Coil (2“"), is the poset of all countable
partial functions from wy ta R with the ordering given by p < ¢ iff p 2 ¢. Forcing
with Coll (2““) coliapses the continuum to ®y. A paset P is o-clesed iff for every
countable decreasing sequence po = py > ..., 2 pr 2 ... there exists an element ¢
of P such that p; > ¢ for all i € w. It is known that forcing with a o-closed poset
preserves counlable sels of ordinals—this means that the family of countable sets of
ordinals in the generic model is exactly the same Lo the family of countable sets of
ordinals in the ground model (exercise). The poset Coll (2%} is evidently o-closed.
Now we give a forcing axiom stronger than QCA (see for example [Baumgartner|,
[Shelah 1977], [Todoréevié 19891).

DEFINITION 12.1 The Proper Forcing Aziem {PFA). If a poset P is preper
and {Pu}ecw, is a family of cpen dense subsets of P, then there exists a filter
G CPsuch that G Dy #£ 0 for all & < wy.

Notice that we have not defined a proper partial ordering, for all we shall need

in this section i3 the fact that
If @ is a Coll (2%)-name for a cce poset, then Coll (2%} + Q is proper.

Thus, PFA is a considerable strengthening of MA{w)) bLecause every ¢ce poset is
proper. ILis frequently used to oblain some results that do not follow fram MA (w1}
itself. It turns out that PFA is very strong indeed, in particular, it has a large car-
dinal strength. The large cardinal strength of PFA, a definite sign of its power,
sometimes adds a bit of a confusion (frequently misplaced) among those mathe-
maticians interested in exacl independence results. This is one of the reasons why
we introduce weaker forcing axiorns (like OCA), which are free of large cardinals.

THEOREM 12.1 Tor every Lwo sets of reals of power of the conlinuum, X and
Y, there is a function f: X12¥ such that the poset P =Py of all finite increasing
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subfunctions of f has the following properties:
(1) for every disjoint K € 7 of power continuum there are p # ¢ € K such that
pUgisin P, and
(2} let P*v = (p & P“:p; # O for finitely many ¢ € w}. Then for every
K Q P<w of cardinality ¢ there are p # ¢ € K such that p; Ug & P for
every 1€ w.
PROOQF  Enumerate X 35 {w,)oe,. We shall use the fact that for any function
f:R" — K the set of all points x € R™ such that f is continuous in z is G,. Let
{#a}ace be the set of all continuous functions ¢ such that
{3} dom(g) is a G5 subset of B" for some 1 € w, and
{4) range(g) is a subset of B.
We define f inductively so that

flza)eY \{f(z): & <o}, and  fza) & {nelp za): £ < ),

where p ranges over the set of all finite sequences of elements of {2::& < a} U
{f(z¢): € < a} of appropriate length. Fix a family K as in (1). We may suppose
that for some n € w every s in K is of length n. So

K= {5£}E<r> and st = {(xf:f(ff'))}i(n

The ptoof of (1) now procesds by induclion on u. Define a partial function
F:R™-=! . R in the following way: For any st € K, set

8 = (b, f(=8), .., Feh_ e} and g(56) = f(=5_).

By the constructions of f and g, any continuous partial function it from B2} to
R coincides with g in less than ¢ points. Define Ky as the set of all 5 € K such that
7 is not ¢conlinuous in the point § (notice that |Kp) = ¢). We may assume that
(1) There is a set of rational intervals fg, /1,. .., fzn—) that separates each s —
that is, :r:f- € I; iff i = 7 for every pair {,j < n,
(2) For every st in Kp Lhere is a sequence s% of elements of X such that
lim s& =% and  lim 3(s8) # 3(sH)
= =00
By symmelry, we may assume that lim;—q, §{s5') < §(s%) for every £, and moreaver
that
(3) limiceo 3(s5) < d < §(s%) for some rational number d and every ¢ € Kq.
By the induction hypothesis there are different ¢ and 7 in Kg such that the
first n — | pairs in s* together with the first s — 1 pairs in s? form an increasing
function. Assume that zf < z? and fix intervals Jy, Jy, ..., Jono) 50 that J:f aJ;
and z] € J; foralli =0, 1,...2n— 1. By the construction, cvery element of g is an
accumnulation point of K, so we can find s¢ € K such that 2% € J; forall i < 2n—1
and §(s*) > d. Evidently sf U s% is increasing. The proof of (2) is essentially the
same but a little bit longer, so we shall skip it. O
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THEOREM 12.2 (PFA) Let X and ¥ be sels of reals of power Ry. There is
a function f:Xl;LY such thal f is the union of countably many partial sbrictly
increasing functions, f = J;., fi.

PROOF  First apply Theorem 12.] in the forcing extension of Coll {24} and get
2 name f for a 1-1 function from X into ¥ such that the corresponding poset Pj(“
is cec. Now apply PFA to the compositiou Coll (2%+) *'PJ}"‘ and the follewing Family
of R, dense sets:

D; = {{p, ) € Coll (2%°) *Pf” ;= € dom(g;) for some i <w}, (x € X). O

DEFINITION 12.2 A set of reals X is N-dense iff for all x# < y In X the set
(z,9) N X is of size ;.

THEOREM 12.3 (PFA) Every two R,-dense sets of reals are isomorphic. (See
{Baumngartner 1973]).

PROOF Let X and ¥ be s given two N, -dense sets of reals. Without loss of gen-
erality, we may assume that X and ¥ are actually dense in R. Using Theorem 12.2,
for every pair of rational intervals 7 and J we fix two bijections

frnXni-=YnJd fr.1 =U,-e¢,,ff.,_r
YT =X0l gy =Ue,di s

in such a way that all f} , and g} ; are strictly increasing. Let ? be a set of all
finite increasing functions p from X to ¥ with the properly:

(0} For every = € dom(p) there are iy, I and J; such that p(=) = f;:_J_ (x) or
z = g7 1, (p(2)).
CLAIM P is ccc.
PRrROOF  Fix an uncountable family {p¢: € < wi} € P. We may suppose without
loss of generality Lhat
(1) All p¢’s are of the same cardinality u and pe = {{z{,p(mg]) ij<n—1},
(2) There are #, I and JJ for every § € n - 1 such that:
for every J:'g we have i‘i‘. =4, Iz{ =/ and J’i = J7,
(3) V< U+ and JF < JiF for all j < n— | (for every pg is increasing), and
(4) For every j < n, either f,_.-';,-(ré) = pf(ré) for all £ < w; or g;,-’J,(p(zé)) =
a:ér for all £ < wq.
Now it is easily seen thai in such a subfamily the union of any two pe’sisin ®. O
REMARK Notice that in (1)-(4) we have only used the counting arguments;

hence P is not only cce, but it is in fact o-centered (a posel is a-centered iff it is a
couniable union of centered sets).

Now notice thai thesets D, = {p€ P: z € dom(p)} {forz € X) and £, = {p €
Py € range(p)} (for y € ¥) are dense in P, so by PFA there is a filter G C P
intersecting them. Let f = |J('. Then f is an isornorphiso between X and Y. 0O
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REMARK The analogue theorem is not true for c-dense sels of reals; thus the
conclusion of Theorem 12.3 contradicts CH. The construction of ngmisomorphic ¢
dense sets of reals is a classica) result proved by using a diagonalization similar to
the construction of g in Theorem 12.1 {with X =¥ and n =1).

Proof of the following Theorem goes alang similar lines as the proof of Theo-
rem 12.1 {see |Todoréevié 1989, Theorern 4.4]).
THEOREM 12.4 For X C R iet [X]? = KpU K; be an open partition such thal
X is not decomposable into less than ¢ }-homogeneous subiscls; then there exists an
Y C X of the cardinalily ¢ such that aset P = {p € [¥]<~. pis 0-homogenecus}
has the following property: [f K is a sef of disjoirt elemenis of P of size of the
cantinuum, then there are p,g € K such that puge?P. O
COROLLARY PFA implies OCA for second countabie spaccs.

PROOF Let X be aset of reals and let [X]? = KoUK, be the given open partition
such that X is not the union of countably many l-homogeneous sets. Nolice that
the forcing with Coll (2%¢) does not introduce any new closed sets. [It does not
intraoduce new reals because it is o-closed, and closed seis are coded by reals—see
§1 or Appendix C.] The clogsure of a l-homogeneous set is also l-hornogencous,
so X is not the union of countably many l-homogeneous sets even wn Lhe forcing
extension by Coll (2%°). The forcing with Coll (2%°) makes the continuum equal Lo
w1, 5o by Theorem 12.4 there is a Coll (2¥°)-name ¥ for an uncountable subsel of
X such that the poset Q_of all finite 0-homogenmous subsets of Y is ccc. Forcing
internally by Coll (2“") * () gives us an uncountable U-homogeneous subset of X. 0O

It is inleresting thal the following Theorem has found its application in solving
an automatic continuity problem of Banach algebras (see [Dales}).
THEOREM 12.5 (PFA)

e ({0, 1}, Cprex) is not embeddable in {(w®, <"},

b. P(w:) is not embeddable into P({w)/Fin.
PROOF The proofs of a. and b. are similar; hence we shall prove only a. Sup-
pose the contrary, that there is an embedding ¢:{0,1}*" — (v, <*}. Let f be a
function f:ewy — {0,1} such that f~1(0) and f~!(1) are uncountable. Consider the
following sequences of elements of (™, <"} (here 0 and 1 denate constant functions
in {0, 1}“1}:

a =o(f 1o VO fagw)),  oe=min{f 2 €: /() = 1)
b = o(f 1 B VLT [Bwn)). B =min{f 2 €: f(B) = 0}.

Naow a = {nj}““" (6= {bi}le) forms an increasing (decreasing) sequence and
0'5 < P{f) < 65 for all £ < w,. By making finile changes of uf, 's assume that
af,(u) < 55.(?1) for all n and £. We have constructed 2%t such pairs, while Lliere are

H

2% elements of w®” to fill these pre-gaps. Note also thal this association can be
done in any Coll {(2¥°)-gereric model V[G], where we have that 280 > 2% = ;.
Therelore, we can find a name f for a function such that the pair (a‘,-, bf) s a gap in
V[G]. We want to use PFA to find the interpretation of the name f in the ground
model.
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THEQOREM 12.8 ket {ng,be: £ < w1} Cw™ be a (w,,wi)gap in (™, <*). Let
Q={gcfw]": (VE<npeg)Inc whag(n) > by{n)},
and let @ be ordered by: p< ¢ iff p 2 ¢. Then Q is cec.

PROOF Let K = {g::& < wi} be a given uncountable subset of Q2. We may
suppose that all the g s are disjoint and that g < gy for al & < p. Now set
ag = minge and f; = maxge. For each g¢ € K there is e € w such that

(1) aa(n} < bp(n) for all n > mg and o, f € g
Refining K we may assutne that there exists m < w such that for all £ < wy:

(2) mg =m
The pair {aa,,bg, }r <o, also forms a {w),w])-gap; hence there exist 5 < £ < w, and
n > m such that ag, (1} > bg,(n). Then g¢ Ug,, is (-homogeneous. [

R,EL:IARK Thearem 12.6 helds also with wy replaced by any regular uncountable
cardinat «. For such gap the curresponding poset Q is «-cc and the proof remains
unchanged.

Returning to the proof of Theorem 12.5, associate & to Lhe gap (a),-,bj) defined
above and force internally by Coll (2%)+ Q. In this way, we get an f € {0, 1)*1 such
that the pre-gap {af,,b; € < w ) contains a cofinal special gap (see Lemma 9.1 and

Cprol]ary 9.1). This means thal ¢(f) can’t be defined, and this is in conteadiction
with the assumption that ¢ is an embedding. £

LEMMA 121 {m > w} The structure {{0,1}*", <.} is embedded into the
structure (W™ /U, <) for every nonprincipal ultrafilter & on w.

PROOQF  Recall that the elements of {w™ /U, <y} are lhe equivalence classes
[ale = {t €w”: {n € w:a(n) = b{n)} € I/}, and the ardering <y is defined by
[elu Zie [bl 3T {n € w: aln) < b(u)} €.

. Consider sequences ag and b, (& < wy) in w* such that a, is < -increasing, be
13 <*-decreasing and for all n € w and all o < wy holds au{n) < b,(n). We shali
prove that in ™ /I this set (more precisely, {{ashs, [bole}) is not a gap. Define a
partition of [en]? into K¢ and K by {a, 8,7} € Ky iff for every n € w al least two
intervals from the set

{lac(n), ba(n)], [an(n), b5(n)), {as(n}, b5 (m)]}

have nonempty intersection.
CLATM  This partition is cce.

PROOF  Fixafamily {F¢: £ <uw ) of finite D-homogeneous sels. We may suppose
that #¢'s are of the same size, k. So set Fe = (aé,bé}k,, We may refine this family
to get an integer m such that
(1) Foralln>m, allf <oy andalla < A & Fi we have that a;(n) < a,{n) <
by (n) < be(n), and
(2) All F¢'s coincide below m—thal is, there are s; and ¢, for all i < £ such
that a;. [ m = s; and bé Im=1{.

After this refining is done, the union of any two F;'s is 0-homegeneous. O
§ Jax. 2290
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Use m > w, Lo find an uncountable 0-homogeneous sel X. Notice that X is
cofinal in wy; thus, it is enough to fill Lhe pre-gap {ag, bo)aex Consider 2 family
of intervals T = {[ta(n), ba(n)]: o € X). Choose an interval [aa(n), ba{n)] that
is antilexicographically minimal in In and danate it by f. (max /s is the simallest
among max ] for [ €1, and minl, € minf forall in I, with max{ = max/,).
Now we partition I, inlo two sets:

Iz {lel,: Il £0) and  Il={/€Z.:inl, =0}

The set [}{IJ) is not empty (it contains at least bo{n)). Also, any two intervals
in Z)! have a nonempty intersection, for X is homogeneous. By Helly’s Theorem
aboul convex sets, Z! has the finite inlersection property, and so by compactness it
also has a nanempty intersection. Thus we may define functions ¢ and d from w®
by (setting min® = 0):

e{n) = m'\nmIﬂ and d(n) = minﬂl’r“.

Fix o« € X. Then for every n we have either aq(n) < e(n) € baln) or as{n) <
d(n} € baln), and i decides for one of these possibilit.ie::-—narneiy. there is a sel
A € U such that for all n € A the same possibility holds. In other words, we have
that either [ag)y <u v Su [beelee or laajs Su [dler <u [bulee. So, there is an
uncountable set ¥ € X such thal one of these Lwo alternatives, say the first, holds
for every o in Y. Tt fellows that in this case, [¢]u splils the gap in w¥ U

Our next step 15 to embed the structure {2591, <oy} intO {w¥/ Fin, <"}, pre-
serving order. This is easily accomplished by induction. Then for every f € 29 we
have associated a pre-gap {8710 Of1atacw, - Denote by ¢; the element of w® [id ihal
fills Lhis pre-gap in w* /2 and check thal f s ¢y is the required e¢mbedding. O

It is interesting that Theorem 12.5 and Lemma 12.1 have the following applica-
tion in the seeningly quite distant theory of Banach algebras.

GOROLLARY (PFA) Let X be a compact topological space and let C{X) de-
note the algebra of all conlinuous real functions with domain X. Then for every
commutative Banach algebra A, every haemormorphism H: C(X) — Als continuous.

PROOF Suppose that there is such a discontinuous hornomorphism. [t is known
(see [Dales] and [Dales—Waadin]) that the existence of a discontinuous homomor-
phism H from G{X) into A implies ihe sxistence of an utteafilter & on w sush
that the ultrapower (w* /i, <y} embeds inlo {w¥,<"). By Lemma 12.1, it fol-
lows that ({0, 1}, <Lex) also embeds inte {”, <), But this would contradict
Theorem 12.5. O

REMARK It is known that the existence of a discontinuous homomorphism fol-
lows from CH, so the use of the additional axiom PFA above is in some sense
necessary. The CH-construction of a discontinucus homomarphism between corn-
mutative Banach algebras is a quite deep recult of Dales and Esterle. The consis-
tency of the statement thal every homomorphism from C{X) inte a cotnmutative
Banach algebra must be continuous was first proved by Solovay. We refer the reader
to [Dales] and [Dales-Woodin] for & survey of this inleresting subject.

13. SOME CARDINAL INVARIJANTS
OF THE CONTINUUM

. In this sectlt?n we will deal with the following five cardinal invariants associated
in some way with the set of natural numbers.

m= inf@: e 1 y I 3
Er}\]ler:éej.s L:;ar;;)s a;ci p;}set P with a farmily {D;}ics of dense sets such that
c -generic filter}, i.e. the least cardinal
M.A(fc) fails (see also §10). erdual s such that
;: mmH}};} : ; Cuw* and F is < -unbounded} (see also §9).
= min CFCwand (Vgew)(3feF)g < i ini i
‘ c , et -
ity of a deminaling subset of w*. ? ).t the mimimal cardina!
u=

min{|B8|: 8 C {w]* and B generates an ultrafilter}.

To describe the remaining cardinal g we need some additional definitions.
DEFINITION 13.1 A family D C jw]” is groupwise dense iff
(1) P is closed vuder C* (in s g
C symbals, (X € DHVY € [w]“ -
D) o ( WY e W)Y ¢ X =Y &

(2) .F'or every iﬂﬁui.te disjeint family 11 of nonemply intervals of w there Is an
infinite subfamily 1" C 11 such that {JII' = X {or some X inD.

[ E\;.ery groupwise dense set D is, evidently, dense in a poset {(w]*, C7). An exam-
ple of a dense, but not groupwise dense family is the sct of all A C w which contain

nly liny Gl}' Y p 3 SeC num 4 ¥
only f L man amrs of con ufive Jers. A A ormulation of
) equivalen refl

(2) If fiw — w s a one-to-one function i

e , then set {4 . f) i
dense in poset {[w]*, C). (el i e v
Also, in (2} we may replace “infinite disjoint family of nonempty intervals” with

« -
a partilion of w into finite intervals™ or * iti indini
. a partitio 4 L
finite sels™. partition of an inlinite set X C w inlo

EXAMI_’LE 13.1  An example of a groupwise dense set is any ideal in [w]* of a

cefluferity n < w, Le. the ideal T such that for every partitionw =1, ., X; therc is

asel X; 7. To see why every idea) of a finile cellularity satisfies (‘2)‘<snup]:lvo<eltha;.

@ = { g, A; is & disjomnl partition of w into finite sets, and let X; o Uje ‘Aj,,+,‘
1 Ew
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for all i < n. Then sets {X:i1i < n} form a disjoint partition of w into n sets, and

there 3s an X, € L.
inal invariant.
: we are ready to define our fifth cardina |
g8 Eo::lin{x' some farnily of x groupwise dense subsets of [w]® has the empty
interseciion}.

All cardinals defined in this section are between _and c; .h«.ance.it \5; c_onS\f}t;enz
that they are all equal (to ). Various equalities {or mequil}lltle._s) lqn:? Vlg}g{) ;Zr
i i i H (or strengthenings of ~CH).

1s may be considered as weakenings of_ C _ : ;
:21;:117: n §3”:’ we have seen that the assumption m > w113 a quite ;.)oweréu:l i'fmfmgt
axiom w'hich decides many problems about the continuum ff'r Whm(}:] ;Whi:; J:;n
i i i ider the assumption u
Loo weak to decide. In this section we conside s hcan
bc;oconsidered as another powerful forcing axiom glving us a fine s?rtu]:t.uri\;na?er
connections to several areas of mathematics. Here s a l.|st of somehod'mceuiiesp
relations between these numberz which can be proved with no much i .
FacT m<b<ub<cl(@and gs?d
PROOF (Sketches) (m<b) Let w <m and {fe: € < &} is asubset Fl;:'ue.[giﬁvn}e
a posel P = {{s,F}:sisa function mapping some 1 € w Lo w, amv. £l \
Anp ordering is defined by: {p, Fy < {¢,GYillp 2 9 and (V€ ;C](e zF} N den;;e.
domq)p(s) > fe(i}. This posel is cce, and every Dg = l{(p. FleP:g ) is dens
(b < u) To every increasing f € w“ we associate 5;, an infinite subset of &, DY
L Zagy, f2FN0)). If X Qwis infinite, let fx € w* be the enumeration
S el n . e i in the increasing order) of X.
of X, the function mapping i Lo the i-th elesnent (in the mc gt'1 %
Prove that if f is strictly increasing and eveniually dominates fx, then Jy
and §; N X is infinite. o o .

o (b i ALt F=4{fi:§< b} bea dominating family 10 W su;,h that fy gf afﬁ
forall€ < p <@ Let {fa:or < cf{)} be a cofinal sebset of 0; then § f¢, : o < «f( 3}
is unbaunded in ¥, and hence in w, .

(p<®) Toevery f € ¥ associate a groupwise dense set

Dy = {X € w]”: fx isnot deminated Ly f}. a

More interesting and difficult is the following theorem, most of which will be
proved here after some preliminary resujts:

THEOREM 13.1 Ifu < g then h=u<Lpg=0=1¢

Hence, u < g appears to be quite influential even L.o the properties of the c;n-
tingum \\"hich do not play any direct role in the defining of the numbers u and @
This suggests the following questicon:

PROBLEM 13.1 Docsu < gimply u =uw?

DEFINITION 13.2  For a function frw —w and an ultrafilter ¥ onw define f(F}
to be the filter (A: fT{A) € F.

We assume that all the filters we deal with are nontrivial—lhat is, they are
proper and contain the filter of cofinite sets (Frechet filter).
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THEOREM 13.2 The inequality u < ¢ implies the following Filler Dichelomy,
FD: For every nontrivial filter F on w there is 2 finite—to-one Tunction fiw — w
such that f(F) is either a filter of cofinile sets or an ultrafilter.

PROOF Let B be a base of an ultralilter #f on w of size u. For 8 € B define a
set Dpg as the set of all X C w such Lhat there is an A € F such that every inlerval
with both ends lylug in X inlersects A only if it inlersects A; in symbols

Dg=4XeEW (FAe NN Yz <ye X)z,)NA#D — [z,y) B £0).

CLAIM I f(F) is not contained in a Frechet filter for any finite-to-one f then
the sel Dp is groupwise dense in {w]*.

PROOF  We shall check (1) and (2) from Definition 13.1.
{1) Trivial.

(2) Let T1 be a partition of w into intervals. By making it coarser suppose that
Bni#0foral el Enumerate [1 as {[;i}ic., and suppose that for every
A€ Ftheset {i €w: AN = 8) is finite. For frw — w defined by f7[; = {i} we
have that f is finite—to~one and that f(F) consiais of colinite sets, a contradiclion.
Hence there is an A € F such that thesel N = {f; € T: An{; = ) is infinite.
The set X = [JII" is in Dg.

Ta check this, notice that for any pair ¢ < y € X either [2,y) is the subset of
U, thus {z,7) N A is empty, or [z, y) contains a whole inlerval from 1Y [V, and
thus has a nonempty intersection with 8. This proves the Claim. O

A family {Pp: B € B} of groupwise deuse sets is of size u (and u < g); thus
it has a nonempty intersection. So let ¥ be a fixed element of this intersection;
enumerate ¥ increasingly as {1 }iw and define a partition Ny = {[y, vig1))iew of
w into finite intervals. Define a function fiw —w by f’J; = {i}.

CLamt  f(i) C f{F).

PrROOCF Forany Bin Bthereisan A€ Fsuch thatforall s < vy ¥
Anfz, ) #9—Bn(z.y) £9

thus we have i € f"A — i€ "B, and so f*A € f”B. On the other hand, the set

{f"B: B € B} generates f(I4), the set {fA: A € F} is a subset of f{F}, and so
we are done. [

Il remnains Lo say that f(i) is an vltrafilier and f(F) is a proper filter; hence
S(F) is an ultrafilter, too. O

We shall need the following result in the prool of Theoramn 13.1. A family F is
almost disjoint iff all 2 ¥ y € F, the intersection z Ny is finile.

LEMMA 13.1 There is an almost disjoint family A € [w]* of size contionum.

PrOOF 1t suffices to construct such family of subsets of some countable set, w.g.
the sel [w]<¥. To every X C w we associate Ax = {X Nn:n €w). Notice that
Ax C [2]%¢ is infinite for an mfisite X, and thal for different X and ¥ the set
Ax 7 Ay 13 linite. Hence {Ax: X € lw]*) is the desired faraily: O
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PROOCF (of Theorem 13.1) (b = u) Choose an <*-increasing <'-unb0ﬁpd<.:d se-
quence {fi)eep of increasing functions in w®. Since b < u < g < 3 L lsa:ls )‘1}”j
a dominating family and there is a g € w* not e.vc.nluallyi dominate g th )f:m{,
without loss of generality we may assumne that g is increasing. Let F be the filter
on w generated by sels

A ={r:g(n) > felm)} (E<b)

and all cofinite sels, I is easy to prove Lhal this filter contains anly 'mﬁnibte seBts
{use the fact that the set {n: fe(n) < f,,(r_l)} is cofinite for all £ < rzf](s )e.ilhe);
Theorem 13.2 there is a finite—to—one Tunction frw — w such that F(F) 18 it
an ultrafilter or the Frechet filter.

CLAIM The filter £{F) is nol equal to the Frechet fitter; Lience it is an ultrafilter.

PROGF Let kg < ky < ... be the increasing ennmerafion of the range ofj:f.
Define A:w — w by &(n) = g{max(f~ ' (ki41))), where ki = f(n) for n E w. If f(F)
were Lhe Frechet filker Lhen the image of every Ag woul'd be co_ﬁmLe, tins meais
Lhat for every € there is a Mg € w such that for all ki > N Lheie!: i5 a‘n n ; 1;(5,1) €
FU(k) satisfying g(n) > fe(n). But Lhen for all 2 > max(F= {ki: ki < Ne}) we
would have that:

h(n) = g(max(f~" (ki51))) 2 a(n{&i+ 1)
> fe(n(€, i+ 1) = ki > ki = fe(n),

where ki = fe(n). This means that A eventually dominales every fe (£ < 9); a
contradiction. O (Claim)

The vltrafileer f(F) is generated by b sets {f"A¢: § < b}; hence we hiave e £ b,
and therefore u = 9. .

(o = ¢) Fix a dominating famnily D CwY, withqut loss of gen'cralaty wevm]ay
suppose that il cousists of strictly incressing functions. For a g}ven fje ell.l
0=k < k] < ... be asequence of natural numnbers such that f(k} < ki, fora

t € w. Let
: Ap =1 i klp] and By = U[ki:wzak:{wa]-
TCw idw .
The point of this construction is thal no interval of the forr}': .[n,f(n)] mter;e::BLs
both Ay and By. Lel &, and V; be arbitrary ulhtraﬁlters containing sels Ay a;: 1
respectively. Set F = [y en{tiy N Vy); it contains all cofinite sets. By FD there is
a finite—to-one g:w — w such that g{F) is either an ultrafilter or the Frechet filler.

CLAIM 1 g(F) is not an vltrafilter.

PROOF  Suppose that it is. Natice thal in this case we have g{idy) = g(le)g:'
g(F) for all f € D, therecfore glAg),g(8)) € 9(F), and the sel glA) N g .f)
is infinite for all f & D. We shall show LbLat this is iinpossible. The function
o max(y~ {g(n})) i< demninated by some [ ¢ D, e for some Ny(f} 7w we have

0> Mol F)yg~ " (3) C [, flm)),  where o nrin{g ™ (7))
CLAIM 2 Forevery £ € wsuch that min(g™" (£)) > Ne(f) theset ¢~ 1(£) intersects

at most two inlervals [kf, }:!H‘}, which moreaver rnust be consvcutive.
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PROOF Let n = min{g~1(¢)) € [k]_,, /) for some i &€ w; Lhen

=1
max(g™ (g(n))) < f(u) 2 FRLY < £,
hence ¢~ HE) C [kioy, kixa). O

From Claim 2 and definitions of Ay and By it follows that g{A[)Ng{B;) € Ma(f),
and this proves Claim 1. O

Now we know that g{F) is the Frechet filter; hence for every infinite € C w
there is an ultrafilter We from our family {if;, Vs : f € D} containing the preimage
F7YC) (if C is cofinite, this is clear; if it is not and there is no such Wg, then
the set w\ Cis in f(F)). Nolice also that if the set € N D is finite, so is the set
F-UCINf~H{D); hence the ubirafilters We and Wp are different. By Lemma 13.1,
it follows that o = c.

The proof of g = ¥ uses similar ideas, although it is slightly more involved and
it depends an Theorem 13.6 below which will not be proved here (see [Blass 1990]
and [Laflamme]). O

DEFINITION 13.3 A filter 7 on w has cellulerity n iff for every partition of w
into n sets, w =1 ), X; there is an i < n such thatw\ X; ¢ F.

Notice that ultrafilters are filters with cellularity 2, an intersection of two ulira-
filters has cellularity 3, and so on.

THEOREM 13.3 (FD) For every pair of ultrafiliers &/ and V on w there is a
finite-to—one functivn frw — w sueh that f(#) = f(V}. The conclusion of this
Theorem is called Near Coherence of Filiers, shortly NCF.

PROOF Let F Le a filter 4NV, By Theorem 13.2 Lhere is 2 finite—to—one funclion
fiw — wsuch that f(F) is the Frechet filter or an ultrafilter. For ¢ € {0, 1,2} define
aset X(e) = Uien /7 (3i+¢). The filter F is of cellularity 2 and so there is ¢, say 1,
such that X (¢} isin F. Thus we have that the non-cofinite set {3i4+1}ieo isin f(F);
hence f(F) is not the Frechet filter, and so it is an ultrafilter. But f(&4) 2 f(F)
and f(¥) 2 f{F), which means that we must have that f{¢) = f(V) = f(¥). O

The following Theorem illustrates the influence of NCF on some relatively distant
fields of mathematies; for its proof and cther applications of NCF see [Blass 1987).
We need some additional definitions.

DEFINITION 13.4 A topolegical space X is a conltnuum iff it is connected,
compact and Hausdorfl. A continuum js drcomposable if it is a sum of two proper
subcontinuums. It is knawn that SRY js indecomposable. In an indecomposabie
continwum X a relation ~ defined by: “r ~ y iff there is a proper subcontinuum

Y C X such that z and y are in ¥ 7 Js an equivalence refation. Equivalence classes
for ~ are called composanis.

DEFINITION 13.5  Let H De annfinite-dimensional, separable, complex Hilbert
space. Corsider the algebra C{HY of ail bounded linear operators an H (i.e. ail
linear Lt H — H such that L{z) < Mi|={| for some Al € R* and all 2 € H). An
operator L on I is compact iff Lhe image of the unjt ball U = {z:||z|| = 1) is a

compact set. The set of all comnpact operatars on H forms a {two-sided) ideal of
L(H), and it is denoted by K(H).
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THEOREM 13.4 The following statements are equivaleni:

(1) For an infinite-dimensional, separable Hilbert space H over €, the ideal
K(H) is not the sum of two proper subideals.
(2) pHE* \EY has only one composant.

(3) NCF. O
Theorem 13.4 shows us that the resnlts involving cardinal invariants can (and
should) sometimes be formulated without mentioning any cardinals at all. Here
is anaother example of such a phenomenon which is based on the proof that the

additivity of Lebesgue measure is less than the additivity of a Baire category (see
e.g. [Bekkali], [Fremlin 1985}, ... }

THEOREM 13.5 There is an operator T: N — M such that

(1) T is monotone—T(A) C T(B) for all A C B in N, and

(2) For every meager set M there is a null set N such that T{V} 2 M.
(Here, A is the ideal of subsets of B of Lehesgue measure zero and A is the ideal
of first category subsets of R). O

We also have the following strengthening of Theorem 13.2 proved recenlly by
Laflarnme (see {Laflamme] and [Blass 1990]} which gives another reformulation of
u < g not involving the cardinal numbers:

THEOREM 13.6 The incquality u < g i3 equivalent to the following statement:
For every nonempty family A of infinite subsets of w there is a finite—to-one
Jrw — w such that
{1} f”Ais dense in {w]*, or
(2) f".A geuerates an ultrafilter, or
(3) f"A contains only cofinite sets. O

For more of cardinal characteristics of the continuumn see [Blass 1987, 1990},
[Fremlin 1985], or the references therein.

14. SOME OPEN PROBLEMS

Here we give a list of open mathematical problems which may or may not be
related to forcing, but in many cases the forcing method might provide at leasl a
better understanding of the problem in question.

The parlition symbel £ =5 (A)™ asserts the same thing as & — (3)7, bul

restricted to cce partitions. It is known thal MA{w;) is equivalent to the assumption
that every Suslin partition of [w,]<* has an uncountable homogeneous set.

PROBLEM 14.1 [s MA(w,) equivalent to the partition relation wy =5 (w))3?

The partition relation in the following problem s a relation for ordered sets; thus
o — (B, 7)" means “For every ordered set of type e and every f:[a]” — 2 there is
either a 0-homeogenecus set. for f of type F or a 1-homogenecus set for f of type 7.”

PROBLEM 14.2 Is wy — (&, n)? Lrue for every countable ordinal « and every
positive integer n?

REMARK This would be a considerable strengthening of the partition refation

wy — (@)? (Baumgartner—Hajnal). The best result ta date about this problem is
given in [Milner-Prikry].

PROBLEM 14.3 Prove the following dense—set version of HL for infinitely many
Lrees:

For every sequence {Ti)ico of finilely branching frees of height w and for every
partilion ;. T; = (g UGy there ezists ¢ € {0,1} and &; €T3 (i < w} such that
for every n < w there is an n-dense sequence (A;: i < w) for {Ti{t:): 1§ < w) such
that Ag = A, x -..C G,.

REMARK Notice that it is not required thal {§; i < w) € @, Ti: this would
be a too strong requirement. For more information about this prablem see [Laver].

PROBLEM 14.4 Prove that for every parlition of [% into three parts ¢ : [R]2 — 3
there is an X € 7 homeomorphic to § sucl that [¢"[X)?| £ 2.

REMARK In the forcing extension V310 the answer is posilive, The solution of
the problem might involve an extension of the HL Theorem.
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PROBLEM 14.5 Prove that for every sequence {8;}ic. of Borel linearty ordered
sels (i.e. sets of reals thal are Borel and Linearly ordered by a Borel relation) there
are i < § € w such that By < B;. In the other words, prove thal the quasi-
ordering of Borel linearly ordered sels ordered by the reletion “is embeddable in”
is well-quasi-ordered.

REMAREK This is true for countable linearly ordered sets (Laver).

DEFINITION 14.1 A submeasure on a Boolean algebra B s a fusction u: B —
B* such that

(4} pla) =0if a=0, and

(%) plaVb) < p(e) + p(b) for all @ and & such that a N& = 0.
A submeasure p is exhaustive iff for every ¢ > 0 there is no infiuite disjoint sequence
{ai}icw such that p{a;) > ¢ for every 1 € w. A submeasure is uniformly exhaustive
iff for every € > 0 there is an n, € w such that there is no disjoint sequence {a;}icu,
of length n, such that p{a;} 2 ¢ for every { < n,.

PROBLEM 14.6 ({The Control Measure Problem) Is every exhaustive submea-
sure on an infinite Boolean algebra uniformly exhaustive?

REMARK For more details on this problem and some af its variants see [Frem-
lin 1989].

PROBLEM 14.7 Lel 7 Le a poset such Lhat P = UKu 7 and P; does not contain

an infinite antickain far any i € w. Is there a partition P = U, P} such that for

every { there is an n; € w such that P does not contain an antichain of cardinality
.7

n;’

REMARK This is the only yet unsolved problem from the list given by [Horn-
Tarski] in 1948.

PROBLEM 14.8 Is P(w)/ Fin isomorphic to £(w;)/ Fin?

REMARK The negative answer is trivially a consequence of CH, but are there
some real (i.e. ZFC) combinatorial reazons making the dislinction belween these
two algebras?

PrOBLEM 14.9 Prove Lthal for every melric space M there is a decompesition
M = Mg U M, such that every P C M homeomorphic to the Cantor sel intersects
bolth Mg and M,.

REMARK This is true for M = R (Bernstein} and also for any M assuming
V = L (Weiss).

PROBLEM 14.10 (The Invariant Subspace Problein)  Does every linear operator
T 1n a separable Hilbert space have a nontrivial closed invariant subspace?

REMATRK This does not hold for Banach spaces in general (Eufle, Read). On the
other hand, il T is polynemially compact (there exists a polynomial P(z) such that
P(T) is compact), then the answer is positive. This is proved using the melheds of
Non-standard Analysis (Dernstein-Robinson Theorerm?,

APPENDIX: A. AXIOMATIC SET THEORY

In this Appendix we shall describe a mathematical theory called the Zermelo-
Fraenkel Set Theory, shorlly ZF, and its extension ZFG, i.e. ZF plus the Axiom of
Cheice added. The material presented here is intended to be a logical background
for the preceding chapters. Every of the cited texthooks in set theory gives more
details if Lhe reader wishes them. We assurne some basic knowledge of Mathemalical
Logic (see [Mendelson]). By z.v,2,{,u,v we denote variables, while a,b,¢ cllcnote
constants. Capitals X, Y, ... stand for proper classes, @ is Lhe n-tuple of variables,
and Len(#) is its length, The same notation applies Lo n-tuples of constants. If
# = {ug,...,un-1} 15 an n-tuple, then a’a is the (n 4 I)-tuple {uo,...,un-1, aj.

A.1 ZFC The language of this theoty has only one non-logical symbol, “€",
and the formula = € y is interpreted as "z is 2 tnember of ¥°.

AXIOM 1 Eriensionality: Voy(Ve(z € s — s € ) — 2 = y).
This axiom says that each sel is entirely determined by its clements—two sets

with the same elements are equal. From now on we shall not formulate axioms in
a formal fanguage, leaving Lhis us an exercise for the reader.

AXIOM 2 Pairing Aziom: For every iwo sets = and y there exists a set {z, v}
whese elements are only = and y.

For every = and y we define the ordered pair {x,y} to be the set {x, {x,y}}.
This set exists by Pairing, and by the Exlensionality (z,y)={z,t) iff = = z and
y = {. We may then define the nation of an n-tuple recursively using the notion
of ordered pair, but we shall later take a different approach. Until then we use the
term “n-tuple” in an usuval, intuitive way.

AXIOM 3 Union Avzion: Theset [Jz = ([[{y:y ez} ={: (v ez)r € v}
exists for every set x.

For every £ and v define £ Uy to be {J{z,y}. Also, we deline tle velation C I_Jy:
£ Cyifivz{z € £ — z € y). We shall freely use this symbol in our formulas having
in mind Lhai for every formula containing “C" there 13 an equivalent formula of
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the language of ZF. For exaruple, the formula {(y C » — y € z) is equivalent to
(Wil € y =t € z) — y € z). We can define other relalions by formulas in the
language {€}. E.g. the relation “z is a sel” is defined by £ = z. This relation is
unary; thus it defines a subcollection of our universe. A collection of all x satisfying
ceriain formula ¢(z) need not be a set {by Russel’s Paradox), and il this is the
case Chen we say that it is a proper cless. When we say that “X is a class”, this
means that X is a proper class or a set. The relation “z is & set” is an example
of & proper class—it coincides with the universe. If X is a proper class, then we
shall write X{xz) inslead of € X, Lecause “€” denotes a relation between sets.
Anocther important class is defined by:

“z is a sel of ordered pairs, and (for all v, v, w) il {v, v} € % and {u,w} € = then
v = w”‘
This class is the class of all functions. If f is a [unclion and z is a subset of dom(f),
then the resiriclion of f to z (f | =) is the sel {{u,v}: (u,v} € f & u € z}.
The reader may try to write down the defining lorinulas for “z is a function and
y = domn{z} (or y = range(z))” and “z is an equivalence (partial ordering) relation”.

AXIOM 4 Power Sef Ariom: For every set z Lhere exists a scl P{z) the eleients
of which are all y such that y C 2.

If (), 22,. .., 2.} is the formula with » variables 2; (1 < € n) we shall write
@(#). If the formula ¢(x, y, ) and the n-tuple @ are such that

Vol ((¢(z, 1, &) & ¢(z, L, @)} =y =1),

then we say that #(z,y, @) is funcfion-defining. We implicitly assume that every
function is a set, but the collection of all {x, y} such that ¢(z, y, &) may be a proper
class; hence we shall use the term functional relation defined by $(2, ¥, @).

If f s a function, then by f“z we denote the image of z, Le. the set {f(u): u € 2},

AXIOM 5 Replacewment Scheme: For every sel x and every functional relation f,
the set "z exists.

(Notice that & need not be contained in the domainof f). The lolowing Corollary
is olten called the Comprehension Scheme:

COROLLARY For every set =, formula &(w,#), and a Len(¥)-tuple &, the set
{uez: ¢(u,d)} exists.

PROOF  Let flu) = u iff ¢(u, &), undefined otherwise. O

So Replacement Scheme asserts the existence of a definable subsel of a given set.
Now we may define zNy={u€z:ucy), and Nz {u€Jr: (VI Exjuet}
We also define the cmpty sel, 0, as {u € = u # u}. By last Corollary and Exten-
sionality, this definition is valid if there exists some set =, but axioms mentioned so
far still do noi guarantee even Lhe existence of the empty set; but this {ellows from
the usual axiorns for the First-order Predicate Calculus.

DEFINITION A.1.1 For all = and y the direct product z x y of © and y is the set
{{u,v):veEz,vE Y}
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To see Lhat = x y exists for all z and y notice that Lthis set is a definable subset
of P(P(z uy)). Similarly, the sel of all functions mapping z to y (denoted L\_y
zy) exists as a definable subset of PRPE VYN I I. an.c] A are sels and 1!1;5
4 1-1 function mmapping [ to A, then the set {z € A: 3i f(i) = z} is denole by
(z;;iel)andis called the family of sets indezed by I. The reader can now easily
prove the existence of sets | ;¢ 25 and MNier -

A.2 ORDINALS

DEFINITION A.2.1 A binary relation p on the given set x is the partial on.-ctcnfug
T it is reflezive (i.c. apa for every a € ), antisymmelric (i.e. aph and bpa implies
a =k foralla, b€ =z}, and transilive (i.c. apb and bpe implies upc for aJ'.f ab,c E z).
If p satisfes these conditions, then we say that the structure {z,p) is 2 _pr.rt_mfu'y
ordeved scl, or a poset. Two elements a and b of a poset are comparablc il either
apb or bpa. A partial ordering is total (or linear) iff every two clements of x are

cornparable.

DEFINITION A.2.2 If p is a partial ordering on & set A, then we say Lh{—l&_the
structure {A, p) is well-founded iff every monemply subset B of A has a mm.rm:d
element witl respect to p—an element = € B with the properly r,h.af. there is no
v € B\{z}such that ypz. Ifpisa linear ordering, then we say that A is well-ordered

by the relation p.

DEFINITION A.2.3 A sei M is (rausitive iff every element of M is also a subset
of M; or in olher words, M is closed under the unary operation T = | Ju.

DEFINITION A.2.4 A sel is an ordinal (T it Js transitive and well-crdered by
the relation €. We always assume that the letters at the beginning af the C_-reek
alphabet (like o, 8,7 . .. ) denate ordinals. Let Ord denote the class of all acdinals.

LEMMA A.2.1 Every initial segment of an ordinal is an ordinal. Every proper
initial segment of Ord is an ordinal. O

THEOREM A.2.1 The class Ord is well-ordered by the relation “€”. O

We shall write o < 8 iff @ € #. Far every o the set S(a) = aU {o} s an ordinal,
and it is the least ordinal greater than . Ordinals Lhat are equal Lo S(e) for some
o are said Lo be successor ordinals. An ordinal that is nul a successor ordinal is a
{imit ordinal. Notice that Ord is not a set, otherwise it woukl be an ordinal—the
greatest one. But every ordinal has a successor, ele.

DEFINITION A.2.5 We define the natural numbers as ordinals: 0is 0, an({ n+1
is §(n) for every n. Hence, all natural numbers (except D) are successor ordinals.

DEFINITION A.2.6 If the relation p defined on the class C is such that for every
2 € C the clags “of ally in C such that ypz" is a sel, then we say that the relation
g is set-ltke on C.

LEMMA A.2.2
(1) If f is an ordermorphism (isomorphism with respert to the relation <)
belween o and B, then f is the identity map; thus a = .
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(2) If the sel x is well-ordered by some relation p, then there is an ordermor-
phism between x and an ordinal, unique by {1). We say Lhat this ordinal is
the order type of = (compare with the definition of the order type in §6).

(3} If the relation pis a set-like well-ordering on the proper class C, then C is
orderrmorphic to Crd.

ProoF (i) Consider the least £ such that f(£) # €. (2} Let y be the set of all
initial segnients of x that are crdermorphic to some ordinal. y is itself an initial
segment of z, and for any u,v € y the corresponding ordermorphisins f, and f,
coincide on the set u Mp. (Otherwise, fix the least z such that fu,(2) # fu(2) ... )
Hence, theset ¥ = |JyU{min,(x\|Jv)} is isomorphic to an erdinal (siinply extend
Uuey fu). This is Ll contradiction becanse ¥ € y. (3) is proved like (2). O

THEOREM A.2.2 (DeFINITIGNS BY RECURSioN oN ThE OQrDINALS) Let M
be a class of functions f such that dom(f} is an ordinal and let H be a function
with dornain M. There is an unique function F defined on Ocd such thal F(F) =
H(F | 8) for all 3.

PRrOOF  See Theorem A.3.3 below. O

Similarly, we have the foltowing schema of proef by induction on the ordinals:
VH[(Ye < f)ble) — $(B)] — Vyd(v).

Actually there is nothing special about ordinals used in these two schemas. One
can have also definition by p-recursion or the proof by p-inducfien for every well-
founded relation p. The most frequenlty used p is the g-relation restricted to some
set z (or uncestricted). Thus, for example, the sehema of proef by €-induction has
the form

Yul(Yv € u)d(v) — ¢(u)] — Ywe(w).

Of course, we have Lo assume in this case that € is indeed a well-founded relation
which is not autormatic. One needs a special axiom (Axiom of Foundation, Axiom
8 in our A.4) to postulate this. We shall later need Lhe following version of the
definition by recursion, and in order to state it we need a new definition.

DEFINITION A.2.7 An increasing family of sets (W) is continuous if W, =
Upca Wo for all limit «. For such family define a class W = Uoragsy Wp, and for
every z € W let p(z) be the least o such that z € W,.

Facr (With the notation from Definition A.2.7) If W is a proper class and
# C W is a sel, then there is o such that z C W,. O

THEOREM A.2.3 Let W, and p be as in the Definition A.2.7. Let F be some
family of functions such that (Vf € F){3er)dam(f) = W,. Then for every func-
tional relation H with Lhe domain W x F there is lhe unique functional relation F
with the domain W such that F{z)= H(x, F [ {y e W: p{y) < p(z)}). O

PROOF  Simtlar to the proof of Theorern A.2.2, but this time we fix = € W sucl

that pz is minimal and x is not in the domain of any partial function approximat-
ing . O
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AXIOM 6 Aziom of Choice {or AC): For every farnily F of nonempty sets there
is a function f:F — [JF such that f{F) € F far every FeF.

The funclion f whose existence is asserted by this axiom is called the Cheice
Function for the family F.

THEOREM A.2.4 (Zermelo; compare with the more general Th.eorcm A.j.ﬁ)
Every set can be well-ordered; more precisely, an every set 1 there is an ordering
< such that {z, <) is isomorphic Lo some {x, E).

PROOF Fix a set z and a choice function f for lhe fawnily P(z). Definea funlc—
Lional relation H: Ord — = by H(a) = fl\UL{H(B}: B < &1). By Theorem A.2.2,
such # exists. Lel o be the least ordinal such that UIH(E) A <al=x= 1 such
ordinal does not exist, then H is a bijection betwern Ord and x, hence (by Replace-
ment), Ord would be a set. Then H | « is & bijcction belween « andz. O

DEFINITION A.2.8 For lwo ordinals o and § we define the ordival a + 3 {the
ordinaf a - B} as the order type of the sct {0} x aU {1} x @ (sl f = a) ordered
lexicographically.

Notice thateg. 2w zw, bul w2 =W +w # w. Also notice that Sy =+ 1.
Definition A.2.8 applies alse to other order Lypes.

A.3 CARDINALS

DEFINITION A.3.1 Twosels ¢ and y are equipoieni (denoted by x ~ y) ff there
is a bijective mapping frz — y. An ordinal is a cardinal {10 is not equipotent to
any smaller ordinal. The linear ordering on Card is inhsrited froms Ord. We usually
dewote cardinals by letlers «, A, 4.

As a caroilary Lo the Theorern A2 overy s¢t @ is equipolent to a (uuiqm?)
cardinal. This is the cardinalily of the set &, denaled by |z]. We also say tha_t EAL
of power & or of size k. Withaut the AC, the situation s much more coinplicated
{see [Kuratowski-Mostowski]).

THEOREM A.3.1 For every two sets © and y the [ollowing are equivalent:

(1) There is a L-i mapping from = to y.

(2) Ther: is an onto mapping frem y to =.

(3) l=] < -
PROOF Fasy, using AC. O
COROLLARY (Cantor-Beristein) T there is a - mapping from X te Y and
a 1-1 mapping from ¥ Lo X then X ~Y. O
EXERCISE Prave the Cuntor-Bernstein theorem without usmg AC
THEOREM A.3.2 (Cantor) For any sel 7 thers is no bijection batween = and
P(x).

PROQF  Pix a function f:z — P(x). Define y = {z €z 2 ¢ f(2)} and arzue by
contradiction ta prove thal there is no z € 7 such that f(z) = v; consequently, f1s
nol onte. O
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[u facl, there is another proof of Cantor’s thearem whirh uses another principle
and which at the same time gives Zermelo’s theoremn. Tao state this proof, for a set
z let W{z} be the set of all well-orderable subsets of 5, i.e. subsels y of = for which
there is a relation p C y? such that {y, p) is well-ordered.

THEOREM A.3.3 For cvery function F:W(x) — =z there exist y C z in"W(z)
such that F{y) = F(z) € z\ ».

PROOF Suppose that such y and z in W(x) cannot be found and define C: Ord — z
recursively by G(o) = F(G"a). This is well-defined because the G« is clearly an
element of W(z). The fact thal there are no y C z such that F(y) = F(z) € z\ y
is used to inductively show that & must be a 1-1 map, a contradiction. O

DEFINITION A.3.2 For two cardinals i and A we define cardinals £ + &, & - A
and &*;

(1) k+A=pex (0 UAx (1)1,

(2y k- X = | x A, and

(3) &= (S FA = k.

(4) k%Y = supy k7.

All natural numbers are cardinals, and the addition, multiplication and expo-
nentiation defined in Definition A.3.2 coineide wilh Lthe ordinary arithmelic for
natural numbers. Functions 4+ anel + are increasing, but not strictly increasing (see
Thearem A.3.4).

AXIOM 7T  Aszfom of Infinily: There is a set z such that @ € x and forevery y€ z
also S(y) € =.

It is easy (o sec that an ordinal satisfies this Axiond if and only if it is a limit
ordinal. 5o the least ordinal satisfying this Axiom is the least ordinal containing all
natural numbers, and we denote it by w. The cardinal || is denoted by Ry and R,
1s the ath cardinal greater than Re. The order type of ¥, is denoted by w,. Thus,
Rs and w, denote the same object, but they will be used in order to distinguish
whether we are teferring to a cardinal or to an ordinal. The least cardinal greater
than the cardinal 5 is dencted x1, and such cardinals are called suceessar cardinals.
Non-successor cardinals are timil. Thus R, is limit iff @ is limit. (Note that there
is always a cardinal greater than &, This follows [rom Cantor’s Theorem using AC,
but it can be proved directly without using AC. For example, let x* bo the set of
all ordinals o for which there is a I-1 function fro — &),

DEFINITION A.3.3 The set z is infinite il there is a 1-]1 function frw — z.
Otlierwise, it is finite, The set is conntable if its cardinality is ¥y.

DEFINITION A.3.4 For n € w an ordered n-tuple is the function f such that
dom{f) = n. Instrad of “an u-tuple @ of elements of the sel " we shortly say "an
n-tuple & inx’

By Thearem A.3.3, the refation 2% > «7% is true for every cardinal . The
Continuwm Hypothesis for CH) is the statement that 2% = Ry, The Generafized
Continuum Hypolhesis (GCH) is the statement that 2% = &% for all cardinals &,
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There is enother Merarchy of cardinal numbers worth mentioning, J,, defined
in the following way:
Ro, ifa=20
O, = ¢ 27e, fa=a+1,
Supge, g, il ais a limit ordinal.
Henece CH is the statement that ¥ = 3y, while GCH is the statement that "R, =
g for all ordinals o,

THEOREM A.3.4 «" = & for every infinite cardinal « and a positive integer n.
In patticular, the set of ail finite sequences of ordinals from x has cardinality &, i.e.
KSR = 5

On the other hand, £* need nol be equal Lo &; e.g. il K = Rg. But there exist
arbitrarily large cardinals & such that &% = &, e.g. & = J,, whenever cf o > w.
ProOF  Notice that it is enough to prove the statement for n = 2. Let <z be an
ardering of Ord x Qrd defined hy: (o, B} << (€, p) iff (see Fig. 19)

(1) mux(e, ) <2 max(&,y). or

(2) max(er. 8) .= mnax(€, u) and {ee, B} <pov (.6}

padrs less

e |}

Fig. 19

This relation is a set- like weil-ordering on Ord?, so there is an isomarphism
[:{Ocd?, <) — (Ord, <.

Notice that |k%| = x follows from ["{x % &) € . So we shall prove the latter
staletnent by induction on & For & = w, the resiriction 7 [ w¥ can be explicitly

defined as (ollows: 1
= ("2

So, suppose that & > w and that 1”22 C A for all cardinals A < &, M & &5 a limit
carclinal then [7&? = |J{/*A%: Card(A) & A < &)} which gives the conclusion. So
assume that x = At for some A. Notice that the diagonal A of x* is unbounded in
(x%, <), so it suffices to show that 1”4 ¢ s But if J{({,7)) = « for some ¥ < &,
the set v° would have the cardinality &, cuntradicting the fact that |v?| = [A*} and
that, the Theorem holds for A. O

9 Rak. 2260
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COROLLARY For all infinite « and A:
(1) Operations + and - coincidle for infinite cardinals, x4+ A = x- 2 = max(x, A}.
(2) Forany z of power & there are exactly « distinct finite sequences of elements
of z.
(3) The anion of al most & sets each of cardinality at yost x las the cardinality
al most K.
(1) 2% = x*. {Because 2% < k™ < (2°)° = 2= =), O

DEFINITION A.3.5 The cofinality of an ordinal «, in symbols cf(a), is the least
ordinal B such that there is a cofinal mapping f:8 — «, i.e. 8 mapping with the
property that for every £ < a Lhere exists y < [ sueh that £ € f(n).

LEMMA A.3.1 (Sec [Kunen, Lemma 10.31]) ‘Uhere is a strictly increasing cofi-
nal mapping g:ef(er) —» «. O

LEMMA A.3.2 (See {(Kunen, Lemma 10.32]}  [f there is a cofinal strictly increas-
ing map fra — B, then cf{a) = of{B). So for every § we have cf (¢f(#)) = <I(8). O

We say thal a limit ordinal & is regular iff cf(c) = o
LEMMA A.3.3 Every regular ordinal 15 a cardinal. O

Cardinals that are nol cegular are said to be singular.
LEMMA A.3.4 Every successor cardinal is regular.

TROOF  Suppose that fio — k%t is cofinal for some & < x¥. Then for cvery
£ < o the ordinal f(£) is of cardinality at inost &, and there is |o| £ & such ordinals.

So gt = lUHa f(ﬁ}' < K, a ¢ontradiction. O

All limit cardinals one can imagine are singular—take R, or ®,, for example.
But there seems to be nothing which prevenls the exisleuce of limit regular cardinals
grealer than w, sg-called weakly inaccessibfe cardinals. For a limit ordinal o we have
that ef(Ro) = cf(a), thus a cardinal Ry is weakly inaccessible iff ¥q = a = cf(«).
A weakly inaccessible cardinal x 15 strongly fnaccessible Uff it 1s also greater than
2% for all A < «. If GCH is true then these Lwo notions coincide. When we say
“inaccessible” we rocan “strongly inaccessible”.

A4 THE AXIOM OF FOUNDATION

AXIOM 8 Axiom of Foundation: For every sel z there is a y € £ such that
yNz =19

It follows that = (v {=} = @ for every set =, and, therefore, £ & z for avery
set z. In a similar way we prove Lhaf there is no infinite &-decreasing sequence
Tp I 11 3 ... (consider the set {z;: i € w}), so Foundalion states that the relation
€ is well-founded. Therefore we can define an ordinal as a transitive set that is
linearly orderad by €
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. Now we define The Cumulative Hierarchy, V', by recursion on Ord in the lollow-
ing way (see Fig. 20):
Vo=0 Vauu=P(Va) Ve= (] Vs, ifaisalimisordinal.
A<a .
and fnatly, V= [ ] v,
Ocd{a)

\ ORD / = 43
Vtxﬂ - = _. -

Q“ . ] x Msel!

elements of x

™M
- tr el(M)

Fig. 20

For a set z in l_/, the rank of x (denoted rank(z)) is the least ordinal @ such thal
z E.Va. Rank. is always a successor ardinal. A set z is in V iff all of its elements
are in V, and its rank is sup{rank(y): y € z} + 1. So each ¥, is transitive.

LEMMA A.4.1 Every ordinal o is in V, and its rank is e + 1

.PROOF (rank{a) < o + 1) Fix the least ordinal o & Voii. Every 0 < v is
in Vgprr € Vo, soa € V,y,. (rank{a) > a + 1) Fix the first @ € Va. We have
@ € Uy, Vi, thus for some # < & we have o € Vs, and hence §& V. O

F‘ou.- a given set M define its transitive closure tr cl(M) as the least transilive set
containing M (see Fig. 20). It can he explicitly defined by

ch](M):U{UnM;new}l where U")w:U...UM

THEOREM A.4.1 Axiom of Foundation is equival
: guivalent lo the stat L (¥
V,ie that (¥z)(Fe)z e V,. O sement (¥2)z €

9=
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Thus, the Axioin of Foundation tells us that our universe is restricted to V. Nc?te
that almost every mathematical abject can be defined inside V', and that a major

pact. of mathematics is placed already in Vioyw.

DEFINITION A.4.1  For a set z we say thal il is exlensional iff for ally tr€Ez
the sets yNx and z N x are distinct.

THEGREM A.4.2 (Mosrowskl’s CoLvLarsing THEozem) Tor every exten-
sional sel  there is & unigue transitive set M and a unique jsomorphism

wi{z, €) — (M, €).
ProOF The isonorphism 7 is defined by an €-recursion as follows:
w(y) = {=(e): s €y} (WE).

Let M = (m(y): v € =}. Then M is iransitive and ai{r, €) ~— {M &} is an

isomorphism. Uniqueness is proved using the €-induction. 0O

REMARK Note thal ify € 7 is a Lransitive set then =(y) = y, i.e. the fixed points
of the collapsing isomorphism are precisely the transitive sets.

One often needs also the following version of Theorem A.4.2 which is proved
similarly.
THEOREM A.4.3 Let U be a set and let E be a binary relation on U such that

(1} {U,E)} is well-founded,
(2) Vz,u € Ulz # y — (32 € U)(zEx — 2Ey)).

Then Lhere is a unique transitive set M and a unique isomorphism m (U/,E} —

{M,€). O

e —

APPENDIX: B. THE MODEL THEORY OF V

B.1 RELATIVIZATION Let X Le a class, (£} a formuia of the lunguage
{€}, and let & be an u-tuple in X. We say that $(d) is the fermula with parometers
from X. We definc the relativization, ¢% (&), of the formula ¢(&) to X inductively
in the following way (we shall nol write down the parameters in {ormulas to save
space):
(1} I ¢ is atumic {i.e. ¢ is ¢ € yor £ = y for some variables or constants » and
y), then ¢% is 6.
(2) If ¢ is 4 for same formula ¥ then % is =%,
(3) If ¢ is ¥y & ¥y for some formulas ¥, and 1, then ¢¥ is ¥ & :j;g(.
(4) 1 is (3z)4b for some variable z and formula ¥, then 6% is (3x)(X(x) & ¥¥)
{here X(z) is the defiaing formula of the class X).
{Recall that all logical connectives can be expressed by using only — and & ).
So, we get the formula ¢ by restrieting all quantifiers occurring in ¢ to X. It is
easy to see that the sel X is exiensional iff (Extensionality Axiom)X is true. More
generally,

FACT Formula ¢¥ is true (in the universe} iff the forinula ¢ is true in X. O

If the formula ¢% is true then we say thal X s a model for ¢, or that X is
correct for ¢. We denole this fact by x = 4 (“z models ¢").

THEOREM B.1.1 All axioms of ZFC are true in V.

PrOOF We give two saruple prools.

Ezlensionality. Il z,y € V, then all elements of = and y are in V. Thus if
NV = yNV then (by the Extensionality) = = y.

Union. H = € V45 then (by transitivity) |z C V,, hence |z € Vi y,.

Ete. D

Thereupen V is a model for ZFC, but it 1s a proper class and we would like o
prove that there is a model for ZFC that is a set. This happens to be tinpossible {hy
Gadel’s Incompleteness Theorem; of course, if we assume that ZFC is consistent),
but we will produce a gnnd enough approximation.

121
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DEFINITION B.1.1 For every cardinal x by H,. we denole the set of alf sets ¢
such that Jtrel{z)] < &, The sets in Hy, (= V,,) are said to be hereditarily finite,
while the sets in Hy, are hereditarily counlable.

THEOREM B.1.2 For any cardinal &:
(1) He C Vs
(2) H, is transilive.
(D Uy¢ =€ H,, then y € He.
{4} If & is regular then z € Hs iff 2 C H. and |x] < &.
{5) If x is regular and vncountable then H, is a model for ZEC—P (i.e. theory
ZFC minus the Power Sel Axiom).

PROOF (1) For z € H, we have rank(z) = {renk(u}+1: ¢ € z}, and this set is
an ordinal < x| < x.

(2), (8), (4) Easy.

(5) Extensionality follows from {2), Unicn from () and (3), Replacement framn
(2), (3}, the regularity of «, and the fact that the union of < & sels of cardinality
« 1 is of cardinalily < ~. Infinity foliows from w < x and the fact that (= = wif=
iff « = w; for the proof of the latter fact see subsection B2 O

The major part of mathematics is placed in Hee. Usually #, is much smaller
than Vi; for example, notice that already V42 is nota subsct of H..

THEOREM B.1.3 Foraregular e > w, Hy = Vi ifinis strongly inaccessible.

PROOF Il & is not strongly inaccessible fix a2 A < & such that 2* > &; then
P(AY € Viga\ He C Vi \ Ho. Otherwise for any A < & we have thal tVi| < &, hence
Vi € He, and any 2 € V; isin V3 for some A < x. O

THEOREM B.1.4 If « is strongly inaccessible, then V. is a model for ZFC.

PROOF By Theorern B.1.2 (5) and Theorem B.L1.3, we only have to prove that
V. satisfies the Power Set Axiom. But V; satisfies it for any fimit £ if 7 € Vo then
all subsets of = are in V41, and P(z) isin Voyz. O

For a given theory T by Con(T} we denote the statemenl “T is consistent”. If
a theory is rich enough (like ZFC or even Peano Arithmetic) this statement can
be expressed as a statement in its own language, and by Gidel's Incompleteness
Theorem it is nol a consequence of T, unless T is inconsistent. So, we have the
following

COROLLARY The consistency of ZEC does not imply the consistency of IFC+
“There is an inaccessible cardinal™. L

The existence of an inaccessible cardinal is one of the weakest axioms of the
long list of large cardinal axioms. A statement & is 2 large cardingi aziom, or
more precisely, an aziem with a large candinel strength, if Con(ZFC) does not
imply Con(ZFC+4). Such statements usually state the existence af a cardinal with

some property, but there are certain large cardinal axioms that do not mention such
properties; one of them is PFA. In fact, there is a numbes of elassical problems with
a large cardinal hidden in them. There are even nalural propositions involving oaly

(hereditarily) finite seis and having large cardinal strength.
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.B.Z REFLECTION In this subsection we shal} use the word “induction” in
its usual meaning—induction on the set of natural numbers.

DEFINITION B.2.1 If X is a class and $(F) is a formula then we say that ¢ is
absolute for X iff for any valuation & € X" we have that $(&) is true iff $*(d) is
true. A formula is absolute iff it is absolute for any X. If X is a class and ¥ s its
subclass, then $(I) is absolute for X and Y iff for any valuation & € Y'* we have
#7 (@) iff $% ().

LEmMMA B.2.1 Every formula without quanlifiers is absolute, [f ¢ and ¢ are
absolute, then ¢ & ¥ and —¢ are absolute. O

A formula is in the prenez normtal form (PNFY IV it is (Qiz)) ... (Qaza)(£),
where eacl Q; is either ¥ ar 3, end ¢ is without quanlifiers. A basic result of the
predicate caleulus says Lhal every formula is equivalent to some formula in PNT,
s0 we shall restrict our attention to PNF-formulas.

LEMMA B.2.2 Let ¥ be a subclass of X, and let ¢(v, £} be absolute for X and
Y. The formula dud(v, £) is absolule for X and Y iff for every Len(f)-tuple @ in
Y such that 3vé(v, ) is brue in X exisls b € ¥ such that $(b, &) is true in V.
PROOF  We have two cases (fix a Len{Z)-tuple d@ in ¥):
(1} If Jve(v, &) is troe in X, then there is a b € Y such that &Y (b, &) is true,
hence eﬁx(b,&') is true.
(2) Jvd(v,d) is false in X. Suppose that it is true in ¥ thea thereisa be ¥V

§uch that ¢7 (5, &) is true. But ¢(v, T) is absolute for X aud ¥, and 4% {6, &)
is lrue; a contradiction. O

LEMMA.A B.2.3 Let (z::1 € w} be the increasing family of sets. If & formula ¢
and all itz subformmlas are absclute for each z;, then 9 is absolute for = = | J;¢,, Z¢:

Proor We may assume that ¢ is ((Qv)).. . (Qav,.)¢(H, ¥} (where Len(¥) = n)
for some formula ¢ without quantifiers. The proof goes by induction on the length of
the string of quantifiers. Firstly we subslitute every accurrence of Yy; with =Jy;—, s0
_(hy Lernma B.2.1) we need to check the induction step only for Jv;. Formula $(%, ¥)
iz, being without quantifiers, absolute. Suppose thal (Qeqives1). .. (@nva )bl %)
is absolute for =, and denote it by ¢i(d, v,,...,uz). Proof that this formula is
absolute for z is just like that of Lemma B.2.2, where in the analogue of Lthe case
(1) we use the fact that the valuation for ¢, in z lies in some ;. O

THEORI_-:M B.2.1 ‘ (REFLECTION TugorEmM) For any farmula ¢{%}), increasing
and continuous family {W,}, and any ordinal 2 there is a £ > B such that ¢(%) is
absolule for W, and W.

PROOF  We suppose that &(Z) is in the PNF, and proceed by induction on the
length of the string of quantifiers, like in the Lemuna B.2.3. We have to check only
the case when @4 (F) is Jui (v, ). By the inductive hypothesis there is a fo > 8
such that Wy, is absolute for ¥; and alt its subforrnulas. We define a luncticnal
relation g: Ord — Ord in the following way:

For every formula 30d(z, 7) define fz: V20 - v by

-:r ir, 'j-':ll S H‘-.:._‘.I 'I;IJ :) & (V}B < “'.)(V" € ”"!)_Hﬁ(v'ﬁ}
L0 =(@u)a(, @),

fol@) =
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Notice that f} [Wd]]"""(g) is a set for any §, and let g(8) be the leasl 7 such that
W, includes this set. Define a sequence of ordinals f; (i € w) as {ollows:

(1) fo is the least ordinal > o« such that ¢ is absolute for Wy,
(2) Pursr = 9(Par), and
(3) Bzx is the least ordinal greater than far_; such that ¢ and alf its subfor-
mulas are absolute for Wg,, .
Let £ be the supremum of this sequence. By Lemma B.2.3, W, is absolute for vy,
while by Lemma B.2.2 it is absolute for Juth (v, §}, and this ends the proof. O

Concerning possible applications of Theorem B.2.1, notice Lhai the family (¥}
is continuous. Although the family {Hy,} is not continuocus, we still have Theo-
remm 3.2.2 (5). Recali that by the Axiom of Foundalion every set lies in V, so we
have

COROLLARY For any formula #(Z} and any / there are @, & > £ such that $(F)
iz absolute for V, and for H.. O

if we have any finite subtheory of ZF or ZFC, we can put it intc one formula
and apply Theorem B.2.1. By the Compactness Theorem of Predicate Caleulus,
every theorem of ZFC is a consequence of a finite hist of axioms, therefore we can
always construcl a model satisfying all relevant statements, i.e. a large enouvgh part
of ZFC.
THEOREM B.2.2  Any finite subtheory of ZFC has a madel. O

Alsa, again by Godel’s Incompleteness Theorem,
THEOREM B.2.3 ZFC is not finitely axiomalizable. O

We now have a model for any finite part of ZFC, and we may also construct
this model sa that it conlains any object of interest Lo us—all we need is 1o start
with the large eaough V,; (or /). This model is even transitive, bul we wanted
cur models also to be countable (for a good enough reason see ¢.g. Corollary to
Theorem 2.1), and V,, is uncountable for any a > w. Rut once we have a model we
may use some Madel Theory io shrink it.

DEFINITION B.2.2 If M C N and all formulas are absolute for M and N, then
we say that M is an elemenlary submodel of N.

The following resull asserts the existence of a small clementary submodel of Hy
containing some prescribed set. Beginning with some Hs and its well-ordering,
<w {whose existence is guaranteed by Theorem A.2.4), let us define a function
Far [Hp)8) o Hy for every $(v,ad) by

“The <, -least & € Hs such that Hy = ¢(b,a)", if such & exists,
0, otherwise.

fela} = {

This function is called a Skelem funcfion for the formula d. For z & Hy, define
F Hg — He b}'

Flw) = U{fg[w]"‘“(‘”: $(x,v) is a formula of the language of ZFC}.
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(The forimal definition of this function requires encoding formulas by elements. of
V,, and we are complelely omitting this technical part). Notice that, by putiing
u = v for ¢(u,v), we have F{w) 3 w. The closure of a set z under the function
F' is called Skolem hull of the sel 2, and denoled by Hully,(x). Notlice that we
can define Skolem functions on any well-ordered set, hence we can speak about
e.g. Hully, (). The following Lemma needed in Chapter 4 shows that we can build
Hullg, (¥} in a single step.
LEMMA B.2.4 Hullg, {y) is equal to Lhe set of all x € Hy such that x is the unique
clement of Hy such that Hy = ¢(=, &) for some formula ¢ and sarne sequence of
parameters & in y. (Hence | Hully, (y)] = |v[ + Ro).
PROOF It is enough to prove that for every = € Hully, (y) there are ¢ and @ as
required, and this is easily done by inductionon . O

Motice that in Theorem B.2.1 there is oo bound on the size of a model W¢. The
following Theorem gives us a small transitive moedel.
THEOREM B.2.4 For every transitive set y and every finite fragment of ZFC
there is a model M of this (ragment containing y such that {M| < {y]+ Ry, moreover,
M may be chosen to be transitive.
PROOF By the Reflection, take ¥, containing y and satisfying the required
fragment of ZFC. Take M = Hully,(y). Take transitive collapse of M for the
desired transitive model. O

B.3 MORE ABSOLUTENESS Certain formulas are not absolute for all
models, but are absolute {or all transitive models. By the Mostowski's Collapsing
Theorern, this is all we need.

DEFINITION B.3.1 A formulad is Ay it is

(1} without quantifiers,

(2) (3= € y)¢, for some Aq formula ¢, or

(3) ¢ & ¥ or ~p for some Ay formulas ¢ and .
LEMMA B.3.1 All &g formulas are absolute [or transitive models.
PROOF By induction on the length of a fermula. The only nontrivial part,
when ¢ is (3z € y) and ¢ is absoluie, follows directly from the Lemma B.3.2 and
transitivity. O
COROLLARY The lollowing properties are equivalent to &g formulas, thus ab-
solute for transitive models:

“z is transitive”, as {vy € 2)[Vz € y)(z € 7}

Ord(z}, as Y,z €x)y€zvz€yvz=y) & “zis transilive”

“z 15 a limit ordinal”, as Ord(z) & (Vy € r)(y U {y} € =}
“r = w”, as “zr is the least limit ordinal” O

The same applies to the properties “z is an ordered pair”, “x is an r-tuple”,
“f is a function”, “function f is 1-1", & € w*, etc. If X is a class, then XM =
{z: XM(2)). A classis absolute for M il XM = X A M, ie if X(z} is absolute
for M. This definition applies also to sets; for example, the symbol (w) }¥ denotes
the set thal is (“the least uncountable ordinal*)*.
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COROLLAXY If M is a transitive model for ZFC, then
(N wM =w,
() B¥M =MnP. O

DEFINITION B.3.2 A formula is £, (11;) iff it 15 equivalent to Iz¢ (Vrg) for
some Ag formula ¢. A formulais Ay iff it is both I, and I1;.

LEMMA B.3.2 A, formulas are abscluie for transitive models.

PROOF Qne part is proved in (2} of the proof of Lemma B.3.2; the other is
dual. C

If we suppose that M is a model for ZFC then we have absoluteness of formulas
equivalent to A, formulas in ZFC. OFf course, this equivalence is always a conse-
quence of some finite fragment of ZFC, and it is enough to take a model of this
fragment.

COROLLARY “r is infinite” is absolute for transitive models.

PROOF  This is equivalent to “Hf(f‘.wlrr_ﬂlr)" and lo ¥{f,n)(fiz — n) =“[ is
not onto”. (The reader should write down the laiter formula correctly to see why
il is given by this irregular quantification). LI

On the other hand, the formula “z is uncountable” is nok absolute—for example,
for a countable iransitive model A the ordinal (wl)’“ is always countable.

THEOREM B.3.1 Let M be a countable transitive model for a large enough part
of ZFC. If z € M, then (|=]<)™ = |z]<x.

PROOF  Fimslly, y € [z]<* is equivalent to the Ag forinula {3n € w)(y:n — 2}
So it remains to prove that every n-tuple in 2 is in M. Suppose the coutrary, find
v € {=]<9 \ {{=)<)™ of minimal length; then y = 2" u for some z € (z]*% and u € z,
bul this sel exists by ZFC; hence ye M. O

COROLLARY For any countable transitive model M for a large enough fragment
of ZFC (remember that elements of @ are finite sequences of natural numbers):
DéeMandCM=0,, (DQeMad@¥=0 O

By Theorem B.3.1, if M is a transitive model of ZFC and r € M, then all finite

subsets of = are in M. For infinite subsets this is not true; all we can say is that
(P)M =P(z)n M.

THEOREM B.3.2 Relalion “R well orders £” is absolute for transitive models of
ZFC.

PROOF  This is cquivalent to these two formulas:
M)y Cr— Bz ex){Viey)(zRD) (Definition A.2.4) and

(S, eN({Ord(a) & fro — = & fis an iscrnorphism)  (Lemma A.2.2, (2)),
and the resull follows by Lemma B.3.2. O

APPENDIX: C. DESCRIPTIVE SET THEORY

Descriptive set theory is a study of “definable” seis of reals, or more gel'lerally,
of subsets of any given complete separable metric space (or “Polish space”, as 1
is frequently called). ln most of the results the reericLlc.)n to one of the stanc;l'ard
spaces I, {0, 1], {0,1}*, or w”{or their finite products) is not a loss of generality.

C.1 BOREL AND ANALYTIC SETS The elements of any of standard
spaces are called “reals”. The Borel sets of reals are the elements of the s_ma!lfst
o-algebra which contains the open sets. Analylic scts of reals are the projections
of Borel sets, i.e. sets of the form

{z: (Jy € R){z,y) € B}

for some Borel set B C R* Their complements are Lhe coaralytic sets of reals.
Clearly, every Borel set is both analytic and coana_lyti.c. A rather dee'p result (due
to M. Suslin) says that the converse of this is true, 1.e. 1(a set of reals is at the same
time analytic and coanalytic, then it must be Borel. It is also known that t_here are
sets of reals which are analylic but not Borel (and therefore not coanalytic). Thg
algebra of Borel sets of a space X is generated in w; many sleps as f(zl!ows: Let 'Eo
be a basis of the tapology of X. E? is the family of open sets and Ty is the family
of closed sets. For 2 < a < wy, B% is the family of all subsets of X of the form

A_—' U An
n<w

where A,'s belong o ;<4 Hg, while T2 is the callection of complements of sets
from £2. Thus, £ are the Fo-subsets of X and T} are the Gg-subsets of X. 1t

follows that
Uzt=1Jm
ey aguy

is the o-algebra of Borel subscts of X. o ) ‘
A funclion f: X — ¥ is Borel (or Borel measurable) il £~ (UY is a Borel subset

of X for every open set J C Y.
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THEOREM C.1.1 If J: X — B is Borel measuralle, then its graph

Gy = {(z,f(.'c)): z € X}
is a Borel subzel of X xR,

PROOF Let [, (n < w) be an enumeration of all open intervals of R with rational
endpoints. Then

Gy= [V[(X x L) U (/7 (R L) x B)). g

hCw

REMARK The converse of this result is true when X is a Polish space.

THEOREM C.1.2 If X C R, then the follawing statements are equivalent:
(1} X is analytic.
{2) X s a continuous irnage of w*.
(3) There is a family X, {6 € {0,1}¥%) of closed (or Borel) sets such thai
= Useqoaye Nage Xsine O

(In {3) we say that X is a result of the A-operation applied to a sequence X,
(s €wee)).

C.2 BAIRE SPACES AND THE BAIRE PROPERTY A space X is
Baire if the intersection of any countable sequence of dense open subsets of X is
dense in X.

THEOREM C.2.1 (Baire CaTEGORY THEOREM) Every complele metric space
(and every compact Havsdorff space) is Baire. O

A subset N C X is nowhere dense if for every nonempty open U C X there is a
nonemply open G C U such that G NN = @ Countable unions of nowhere dense
sets are called meager subsets of X, Their complements are the comeager subsets
of X. A set A C X has the Baire property if there is an open set I/ C X such
that AAU is meager. The family of sets with the Baire property is a a-algebra of
subsels of X which contains all Rorel sets. A function f: X — ¥ is Baire if f~1(U)
has the Baire property for every open set I/ C Y. Clearly, every Borel map is Baire.

THEOREM C.2.2 If f is a Baire map from X into 2 second countable space ¥
then f is continuous on a comeager subset of X.

PROOF Let I, {(n < w) be a basis of ¥ and for each n fix an open G, such that
Gad f~H{/n) is meager. Then f is continuous on

X\ J(Gatstwad). 0
now

C.3 MEASURE THEORY OF THE STANDARD SPACES The mea-
sure of ™ and {0, 1] is the usual Lebesque measure A. The measure of the Cantor
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cabe {0, 1}* is the product measure {or the Haar neasure) gfnerated by its values
on the basic apen sets 5] = {f € {0,1}*: s € f} (s € {0, P}y

ulls]) = 172,

t i {ing measure v ON
The measure of the Baire space w™ is alse the product of the coun
w where v({n}) = 1/2°%! (ie. #(4) = Lnca 1/2°H for A C w). Thus, for every

S E w{ul
V(o)) = 1/ @ bsll=t),

where as before [s] = {f €w¥: 5 C f}.

©.4 THE STANDARD INJECTION [ OF w* INTO {0,1}* is defined
by:
1(f) = /@1 /M1 0!

where 0™ denotes the m-tuple of 0’s.

Then { is a harneomorphism between the Baire space and Li}e set of all non-
eventually O elements of the Cantor cube. The countable set§ of points of the Cantor
cube are clearly unimportant in any translation of the Baire category argt_smests
between the spaces w* and {0,1). Also, a subset A Cw is w-measurable if 174
is p-measurable in which case we have p(1”4) = v{A).

C.5 THE STANDARD SURJECTION J OF {0,1}* ONTO {0,1] isde-

fined by: -
=35
n=0

This map is also 1-1 except on the countable set of all eventually constant }-nem'u.ers
of the Cantor cube which clearly do not make difference in any arguments invelving
Baire categary or measure theory of these two spaces. For exaraple, note that for
every s € {0,1}%, J”[s] is an interval of [0, 1] of the same measure. More glenerul_ly]'_l,
a subset 4 C {0,1} is Haar measurable iff J"A js Lehesgue mea.surabl.e in whic
case AMJ"A) = p(A). This explains why In many arguments, especially those
involving measurabilily of sets ot the additivity of the Lebesgue measure, one rmay
choose any of the standard spaces in the role of the set of reals in order Lo avoid
unessential technical difficuities.

C.6 BOREL SETS IN MODELS OF ZFC [[Misa countable lral:lsi'tive
model then any set of reals from M is countable and therefore F,. But it s a
consequence of ZFC that not every set of zeals is Borel, so there are sets of {eals.ln
M thal arc not {as seen from M) Borel. So we neod 2 subiler ragans to pinpoint
Borel sets in M. In §2 we had already defined codes for some simpler Borel sets
(up to G and Fo), now we shall use the same idea to code all Borel scts, using
reals (i.e. elements of w*) as codes.
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DEFINITION C.6.1 We enumerate all open intervals with rational endpoints
in a canonical way as I; for i € w. For c € w" and { € w define ¢; € o by
ei{n) = ¢{2(2n + 1) — 1). A Borel set A, for ¢ € w* js defined recursively as
follows:

(1) ifc(0) > 1 then Ae = | Jing Tetiys

(2} ifc(0) = I then A; = ;e A, provided A, lhas been defined for every

i< w,

(3) ife=0"d then A. =R\ Aq, provided Ay has been defined.
The set BC C w* of codes for Borel sets is the set of all reals ¢ for which the set
A, has been defined.

H I

So a code ¢ € BC gives us a not only a Borel sct 4., but also a method to
construct it. Notice that a code for a fixed Borel set is nol unique.

FACT A Dorel sct is open ifT it has a code ¢ such that ¢(0) > 1, while it is closed
iff it has a code ¢ such that ¢{0) = 0 and ¢(1) > 1. The former codes are called E,,
while the latter are called M. O

LEMMA C.6.1 Relalions “=” and “C”", and functions “U”, *N", and “\”, when
naturally defined on BC, are absolute. O

LEMMA C.6.2 If {6':{ € w) is the sequence of elements of BC that is in M, then
Uigw Ase is absolute for M.

PROOF Define ¢ such that ¢(0) = | and ¢ = & for ali ¢ € w; then ¢ is in
BC, therefore (A = U, Ap:)", and by the absoluteness of *=" the assumption
follows. 0O

FEw

THEOREM C.6.1 The property “A. is null” 1s absolute [or Lransitive models of
VALOR

PROOF 1feis £y, then p{A) =3 72 p (lc(,—) A\ L_J;_:‘i lc(,-)), and this formula is
absolute. Sumilarly, the measure of sets with [;-codes is absolute, If A, is null in
M then (for every ¢ > 0)™ there is a e € ()Y such that (p(A:,) < ¥ and
(4e € A)M. So A. C A, and by the absoluteness of used predicates, A, is null.
If A, is not nuil in M, then there is a d € (I1))™ such that (u(A4} > 0)* and
(A4 C A)M, and this is absolute. O

One similarly proves (see also §2):

THEOREM C.6.2 “The properties “A, is nowhere dense” and “4. is meager” are
absolute for transilive models of ZFC. O

A cananical coding for analytic sets is obtained using subtrees of w<* x w<¥ as
codes (see §5). There is also a coding of T} sets of reals (i.e. the prajections of
coanalytic sels), using subtrees of w< x w¥. Alihough ihey are too Jarge to fit
imto a countable transitive model, there is a number of applications of such tree
representations of I} sots of reals.

APPENDIX: D. COMBINATORIAL SET THEORY

Let X be a set and 8 a cardinal. Then

(X} = {Y € X:|Y| =10}
XY ={ycXx:|r|<8}

Thus [X}*¥e is the collection of all finite subsets of X and [X]* is the set of all
unordered pairs {z,y} of elements of X such that =z # v.

D1 ARROW NOTATION For cardinals (or ordinals) e and f; (i < k) and
an integer r > 0, the formula

o — (Bilick
denotes the statement: “For every partition f:[a]” — & there exist i < kand B C o
of cardinalily (or arder type) fi such that f”(B]" = {i}.
THEOREM D.1.1 (RaMSEY’s THEOREM) w — (w)j for 1 < Tk <w
PROOF See (Erdés-Hajnal-Maté-Rado 11.10.2]. O

THEOREM D.1.2 (FNiTE VERSION OF RamsEY's THEOREM) For every m,7
and k in o there exists n in w sach that 7 — (m)%.

ProoF Follows from Ramsey's Theorem using compactness. d

D.2 STATIONARY SETS Let A > 0 be alimit ordinal. A subset C C Ais
closed if sup A € € for every norempty A C C with supremum < X A d"“jd and
unbounded seb in X is a closed sel which is cofinal in A. A subset § C Ais statiorary
in X if it meets every closed and unbounded subset of Al

LEMMA D.2.1 (THE PRESSING-DownN Lemma) Hf S s a statignary subset of
w; and il ;S — wy is such that f(£) < £ for every ¢ in S, then [ is constanl on a
stationary subset of 5.

PROOF  See [Kunen, IL6.13]. O
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THEOREM D.2.1 w| — (wy,w + )%

PROOF  Lel p:[w]? — {0, 1} be a given partition. For every limit ordinal § < w;,
let As be a maximal subset of & such that p"(As U{6}])? = {1}. If for some § the
set Aj is infinite, then we are done. So assume that Ay is finile for every & and let
F{&) = max A;. By the Pressing-Down Leinma choose a stationary set S such thal
'S = {€} for some £ < wy. Since there exist only countably maay finile subsets
of £ + 1 there exists an uncountable T C S and A C £+ 1 such that Ay = A for all
8 € T. Now it is easily checked that p[T)* = {0}. O

THEOREM 10.2,2 2% .4 (R, 1)

PROOF Let <, be a well-ordering of R and define a partilion JR]? = K, U K,
by

{z,y) € Kq iff r < yisequivalentto z <y ¥ 0
THEOREM D.2.3 I, — (Ro)g, forevery 1 <r <w.
PROOF See [Erdos~Hajnal-Maté-Rade]. O

LEMMA D.2.2 {A-3sYsTEM LEMMA) For every uncountable family F of infiuite
sets there exist a set D and an uncouniable F' C F such that ENF = D for every
two distinct elements £ and £ of F’. The family 7' is called a2 A-systew with
root D.

PROOF  See [Kuuen, [1.1.5], or Lemma 1.2 of this text. O

THEOREM D.2.4 Let n be a positive integer and let F; (i < w) be a family
of n-element sets. Then there is an infinite I C w such that F; {{ € [) forms a
A-system.

PROOF Clearly, we may assume F; € w for every {. For k < n and 1 < w, let
Fi{k) denote kLl element of F; in its increasing ennmeration. Shrinkiag the family
we may assume that for every & < n the sequence of integers F; (k) (i < w) is either
constant or increasing. {To see this apply Ramsey's Thearem to py: fun]* — {0,1}
defined by pp({4,7}} = 0iff i < § — Fi(k) < F3{k}.] Define now p:[w]®* = nxn
by letting p{{7,7}) be the lexicographically minimal pair (k,8) (k # £) with the
property Fi(k) = F3(€) if there is any, otherwise leb p({1,7}} = (0,0). Apply now
Ramsey’s Theorem and show that the constant value must be (0,0}. O

REMARK The proof of the A-systern Lemma ean also be given using the above
proof of Theorem D.2.4. Namely, we may assume thal F is of the form F,, (o < w)
and that for some integer n > 0, |F,! = n for all @. Apply now the proof of
Theorem D.2.4 and notice that the relation wy — {(wy,3,..., 3)% is all that is needed.
Notice that this relation itseif is an immediale coroilary of Theorem D.2.1 and
Ramsey’s Theorem.

The idea of using a Ramsey—-iype result in proving a A-system Lemma is quite
flexible indeed. For example, a similar proof gives the following A-systern Lemina
for Boret families F; (z € R) of finile sets of reals, i.c. families for which z — Fy is
a Borel map from B into ils exponential space.

THEOREM D.2.5 For every Borel family F; (z € R) of finite sets of reals there
is & perfect set of reals P such thal F: {z € P) forms a A-system.
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PROOF To prove this result, first find a perfect Po € IR‘and an integer icl su;h
that z — F; is continuous on Py aad |Fzl = Kk for all z in Po_. Now apyp ¥ t_ e
proof of Theorem D.2.5 where Rarmisey’s theorem is replaced by either OCA" orils
consequence, the case n = 2 of Theorem 611, O

D.2 TREES A bree is a partially ordered set such lha.L {s€ T": s <t} is well-
ordered for every £ in T'. The order typeof {s €T : s < t} is the hs:g{hi of the node
¢ of T, denoted by hi(t). The height of T, ht(T), is egual Lo the ordinal

{ht(t): t € T}.
The levels of T are the sets of the form
To = {te T hi(f) = o}

A branchk of T is its maximal chain. _ -

A Sushin [ree is an uncountable tree T with no uncountable chain or arlnl.sc 1ain.
The following fact shows that in many instances of checking that a tree 1" is Suslin
it, suffices to show that T has no uncountable antichains.

LeMuA D.3.1 Let T be an uncountable tree such that every node t of T has
two incomparable successors fo and {;. Then T is Suslin il ¥ has ne uncountable

antichains.

PROOF Let b be a branch of T and for each t € b pick s¢ € {to, 41} such that
s &b Then {s;:t € b} is an antichain of T a

A tree T is Aronszajn if T has the height equal 1o w) and. every llevel of T is
countable, but T has no uncountable chains. A tree T is special if it is the union
of countably many antichaing. Clearly, every Suslin tree is also A\:Onsza_]n‘ but I:lOL
conversely. The following resulis (of Arenszajn and Kurepa) explain the connection
between these notions.

LEMMA D.3.2 A tree T is special if the set Tim of all limit nades of T is special.

PROOF To prove the nontrivial direction, fix some a.mt_ichain dec?mposmon
a: Tjim — w. For every ¢ in T let 5, denote the maximal limit node of T bellow t,.
and let ny be the number of elements in the interva_l .[.s,,t). Define b2 T — w X w by
{1} = {a(s:), ney- Then ¥ is an antichain decomposition of T, T

THEOREM D.3.1 A tree T is special i there is a strictly increasing mayp {rom
T into the rationals.

PROOF  We prove only the nontrivial direction. Let a:T — w be such thia;.r
a~1{n) is an antichain for each n, and define f: 7' — {O,IL}“’ .by: j.’(t)(n).= 1 1d
o{ty 2 nand there isan s <t such that a(s) = ». Then f1s st.ru:tly increasing an
its values ate the “diadic rationals” of the Cantor cube (i.c. its elements that are
cventually zero). O

THEOREM DD.3.2 There is a special Aronszajn tree.

10 3ak. 2290
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PROO Le 120 e the set all fini sgquenc Al
F 1 be t of L. es of ¢ 1 \
- : € quen: natura numbers with t][e

5 <ot 521 or s(n)< fn) for n=min{i: s(i) £ (i),

;I;Ih's 15 a;‘nothcr natu.ral. copy of the rationals. (Tts order type is equal to n+ |
Suzsirtngy s;:que?cedis its top element). For every limit countable ordinal o ﬁxa:
o Ol o ol order type w with supremum o in such a w
_ ! t ay that eve
of C,,.Ls a successor ordinal. Let Cy = § and Caty = {a}. Define py: o S]ement
recursively Dy: . pocten)? ~ %

polex, B) = (tp(Cp N )} po(a, min(Cy \ @)}

;i_t,h the convention that pofor, &) is the empty sequence for every o. Show that
every 3 the naturally defined function go(-, 3) mapping & into (b is strict]
, Y

ncreasmg and that fOl every o t.he sel, of all restnictions of L]iESC ‘llll 0,
clions to [ g8 11

T(ro) = {po{ B} [a: a LB <o}

is 2 . L .
an Aronszajn tree. To see that it 1s special, note that the function which maps

2ol B) | & to pola, BY is a strictly i i imi
o) e D( ] rictly tncreasing map from the sel of limit nodes of

APPENDIX: E. TOPOLOGY

A topological space X is Tp iff for every pair of its points, one of the points has
a neighborhood which does not contain the another. A topological space X is T1
iff for every pair of its points, each one has a neighborhood which does not contain
the another. A topological space X is HausdorH {or T%) iff for every pair of points
x,y of X has a pair of disjoint open neighborhoods. Space X is regular {or T3) i
for every closed F € X and every point z of X that is not in F there are disjoint
open neighborhoods of = and £

The weight of a topological space X, denoted by w( X}, is the minimal cardinality
of a base of X. A w-basc of X is a collection B of nonemptly open subsels of X
such that every nonemptly open subset of X includes a member of 8. The »-weight,
aw(X), is the minimat cardinality of a w-base of X. A typical example of a space
X for which weight and 7-weight are diferent is the arrou~space (or Sorgenfry line)
on & generated by the hall-open intervals [z,y) of B, and denoted (R, —).

EXERCISE Use the Exercise of Section 6.A to show that the topolagy of the
arrow space cannot be induced by any lincar ordering of R, i.e. that (B, —) is not
a linearly ordered topological space.
PROPOSITION E.0.1  w((R, —}) = 2% and nw((R,—=)) =8y, O

An interesling property of the arrow-space is that it is scparafed. More precisely,
we say that a subset Y of a topological space X is scparafed (o1, weakly separated,
as they are frequently called) if for every y € ¥ we can assign a neighborhood U,
such that for every = # yin Y either z € Uy or y & U, Thus, the assignment

r.—-[x,oo) (IER)

is a separation of the arrow-space. Notice thal every discrete subspace ¥ of X is
separated since if Uy, (v € ) is a sequence of open sets wilnessing the discreteness
of ¥ (1.e. U, NY = {y)} for all y € Y), then il also separates ¥. The arrow space
is an example of a space which 1s separated bul it has no uncountable discrete
subspace. A family A of subsets of X is a network if for every # € X and every
cpen sel {/ containing = there is an ¥ € A such that

z€NCU.

13%
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THEOREM E.0.1 A Ty-space X has a countable netwark iff it is a conlinuous
image of a separable metric space Af.

PROOF («=) Suppose /i M — X is conlinuous and anto, where M is a separable
metric space. Let B; (i < w) be a basis of M and sel

Ny =f"B; (i<w)

Then N; {i < w) is a network of X. (=) Assume that X has a countable nelwork
AN and lel T be the topology on X generated by

(N, X\N:N €N}

as subbasis. Then X is second countable (and therefore separable metric) and the
identity map is conlinvous. O

REMARK Note that if X has a countable network Lthen the metric space M of
Theoreen E.0.1 can, in fact, be a subspace of the Cantor cube, i.e. a set of reals. In
the other words, every Ty space X willt countable network is a continuous image
of a set of reals. This explains why QCA for second countable spaces (or, in fact,
for spaces with a countable network) is equivalent to OCA for the sets of reals (sec
£10).

The fightiness of a space X, denoted by {{X), is (he minimal cardinal & such that
whenever x of X is in the closure of some A € X then there is a subset 8 of 4 of
size ab most @ suck that = is in the closure of B. If the tightness of X is countable,
then X is called a countably tight space. The following result of Shapiravskil gives
an unexpected connection between two quite diverse notions.

THEOREM E.0.2 Every compact Hausdorfl space without uncountable diserete
subspaces is countably tight.

PROOF  Suppose thal z is in the closure of A4, bul not in the closure of any
countable subset of A. Clearly we may increase A and assumne that the closure of
every countable subset of A is in fact included in A, since this bigger set has the
same property as A with respect to . Recursively choose ¢ (£ < wy) in A and
neighborhoeds Uy of z; as follaws: Tf for some n < w, {z¢: € < n} € A has been
determined then (since it can’t accumulate to z) we can choose a neighborhood
Uy of z such that (remember thal cur space is, being cumpact and Hausdorfl, also
regular)
G, n{ze: €<y} =8

Note that A is a counlabdly compact (i.e. every countable open covering has a finite
subcovering) subspace of X, s0 we can choose =, from the intersection

An() 7.
{<n

This gives us z¢ (£ < wy} which iz a discrete subspace of X, a contradiction. In
fact, z¢ (£ < wy) is more than discrete—it is a free sequence in X, i.e. for every
7 < w; Lhe closures of the two sets

{ze:€<n} and f{er:n<E<w}
are digjeint. O

APPENDIX: & TOFOLOCY 137
" Lel X be a Hausdorff space and let exp(X) denote the set of all nanempty closed
subsels of X. The Vieloris {or ezponential) topology of exp(X) is the topology
generated by the sets of the form

{Feexp(X): FCU} (U is open in X},
{Feexp{X): FOV £ 8} (Visopenin X).

THEOREM E.0.3 [f X is corhpact metric, then exp(X) is also compact metric.

PROOF  Since £ — {=} is an isomorphical embedding of X into a closed sub-
space of exp(X), one direclion is trivial. To see Lthe other direction, we define the
Hausdorff metric g an exp(X) using the melric d of X as fellows (here d(z, F) =
infyer d{z, u}):
pE, F) = max{sup d(=z, F),sup d(y, £)}
el yeF
We leave to the reader to check that this metric indeed generates the Vieloris
topology on exp(X). To see Lhal exp(X) is compact, let Fi (i < w) be a given
sequence of elements of this space. For every n < w, lel F, be a finite cover of
X by closed balls of diameter al most 1/(n + 1). Cheose recursively a decreasing
sequence Ag 2 A; 2 ... of infinite subsets of w and G, € F, such that for ali
1€ An,
Gan={FEF,  FOFi£0})

Let 4, = min(A4, \ n) for n < w. Then F;  (n < w) converges to

F= s :

<

Poinl z is a complele avewrmulalion point of a set A iff cardinalities of sets UNA
and A are same for every open neighborhood U of =.

PROPOSITION E.0.2 A space X is compact if aad only if every infinite A € X
has a complete accumulation point.

PROOF  We prove only the direct implication, leaving the converse to the inter-
ested reader. Suppose that A has no complete accumulation point. Then for every
z in X we can find an open set {/; containing = such that |U. N Al < j4[. Since
{U;}sex is an open cover of X, there exist finitely many elements £, ..., 2, in X
such that X = [JT_, Xz, Then

A:O(U,‘ﬂfl)

So the infinite set A is covered by finitely many sets U, N4 {0 €7 € n) of smaller
sizes than A, & contradiction, £]

REMARK If the space X is metric then the set A of Propusition E.0.2 can be
assumed (without loss of generality} to be conntably infinite, i.e, a melric space X
is compact iff every sequence {2, 19 of elements of X has an accumulation point.
Notice thal we have usail this characterization in the proof of Thearem E.0.3.
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A-operation, 32, 128
absolute class, 125
algebra of Baire sets, 48
almost disjoint subsets of w, 73
antichain (io a poset), 4
sntichain in a tree, 17
arrow-space, 93, 135
automatic conlinnity problem,
100
Axiom,
Comprehension Scheme, 112
Extensionality, [1§
foreing axiom, -2
forcing axioms, 63
large cardinal axiom, 122
Martin’s Axiom (MA}, 65
of Choice, 114
of Foundalion, 118
of lofinity, 116
Open Coloring Axiom {QCA),
79
Pairing, 111
Power Set, 112
Proper Forcing Axiom (PFA}, 97
Replacement Scheme, 112
Union, 111
Baire property, 128
Baire space, 18
ball of partial functions, 87
base for a class of topological spa-
ces, 93
BP Boolean Prime Ideal, 41
branch {of a tree), I7
caliber (of a topological space),
65
Cantor cube, |
cardinal, 115
limit, 116
preserved by P, 48
regular, 118
singular, 118
strongly inaccessible, 118
successor, 116
weakly inaccessible, 118

cardinality, 115
cellularity,
of a filter, 107
of a lopolegical space, 21
of an ideal, 103
centered (family of sets), 65
closed and unbounded subset of an
ordinal, 131
closed subset of an ordinal, 131
code,
for a Gg-set, 11
for an open set, 1
codes for Borel sets, 130
1, 130
i, 130
cofinal, 73
cofinality, 118
Cohen real, 1
aver M, 10
coinitial, 73
comparable, 113
complete accumulation point, 137
composant, 107
continuous family of sets, 114
Continuum Hypothesis (or CH),
116
continnum, G686, 107
decomposable, 107
linearly ordered, 66
Control Measure Problem, 110
correct for some formula, 121
Curnulative Hicrarchy, 118
A-systern, 5, 132
definition by p-recursion, 114
dense below p, 1
diadic rationals, 133
diagonalization of the sequence of
sets, 55
direct produet;, 112
discrete subspace, 135
daminating subset of w*, 103
¢-ball around A, 87
elementary submodel, 124
equipotent sets, 113
exponcntial topology, 136
cxtension of a condition, 1
[amnily of functions,
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trivial, 85
fills the pre-gap, 73
Filter Dichotomy, 104
filter, 1
M-generic, 9
D-generic, 1
Frechet, 104
generic, 1
forces, 10
forrmula,
Ag, 125
Sy, 126
absolute for X', 123
absolute, 123
atomie, 121
function—-defining, 112
free sequence, 136
of regular pairs, 67
function,
Baire, 48, 128
Borel, 127
Choice, 114
order—reversing, 33
Skolern, 124
fusion (of the family of sets), 54
fusion sequence, 54
gap (see also pre-gap), 73
Borel, 86
Hausdorft, 74
in (W], 73
inw®, 74
special, 75
type, 73
Generalized Continuum Hypothesis
(GCH), 116
" groupwise dense subset of [w]”,
103
Hausdorff metric, 137
height (of 2 node in a tree), 17
immediale successor in a tree, 4]
incomparable, 1
incompatible, |
induction (on the ordinals), 114
inner regularity (of a measure),
69
uterpretation (of a P-name), 9
interval algebra, 90

interval determined by p, L
Invariant Subspace Problem, 110
isomorphic elements of Cg, 50
isomorphism type of p, 50
large enough part of ZFC, 124
Lemma,

A-system, 5, 132

Fusion Lermma, 54

Pressing-Down Lemma, 131

Truth Lemma of forcing exten-

sions, 10
level (of a tree), 17
texicographical ordering, 3
lexicographically least infinite branch,
33

MA(x), 65
measure,

a-finite, GO

counting, 128

Haar, 128

Lebesgue, 128

product, 128

regular Radon, 69
model, 121

generic, 9

ground, 9
models (a relation), 121
Mokabodzki ideal, 13
NCF (Near Coherence of Filters),

107
network, 93, 135
network, 93
OCA(X), 79
OCA*, 80
operator,

compact, 107
order type, 42,113
ordering,

linear, 113

partial, 113

total, 113
ordinal, i3

limit, 113

successor, 113
outer regularity (of a measure),

69
P-ideal, 85

P-rame, %
partition,
open, 79
Sierpiniski’s, 44
Suslin (or ecc}, 63
pattern,
of elernents of {0, 1}¥, 58
of elements of {0,1) <<, 46
Perfect Set Property. (PSP), 80
Perfect—set Forcing, 54
w-weight, 66, 135
#u-homogeneous, 68
n-base, 66, 135
point-countable 66
Polish space, 127
poset, 1,113
o-centered, 99
o-closed, 97
cee, B
of partial functions, 85
proper (see [Baumgartner 1984],
[Shetah 1877) or [Todoréevit
19891), 97
pre-gap, T3
cofinal, 74
equivalent, 74
fillable (or splitlable), 73
Suslin pre-gap, 76
precaliber {of a Ltopological space),
i)
prenex normal form (PNF), 123
producl of posets, 1
projeclion of a iree, 32
proof by p-induction, 114
proper class, 111
Property of Baire, 19
quasi-ordering, 42
random real, 2

over M, 12
rank, 119
reals, 127

Recursion {on ordinals etc)., 114
reducible coloring,
regular pair, 67
relation,
antisymmetric, 13
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Borel {analytic, coanalytic, ete).,

31
functional, 112
reflexive, 113
set-like, 113
transitive, 113

relativization (of the formula),

121
restriction, 112
root {of a A-system), §
RVM, 21i
Sacks real, 54
separated, 139
separates, 98
set,
F,, Gs, M2, B9, 127
n-dense, 49
3, -dense, 99
g-supporting, 69
L, 130
0-homogeneous, 4
Analytic, 127
Borel, 127
coanalytic, 32, 127
comeager, 13, 128
comeager, 128
countable, 116
dense, 1
empty, 112
extensicnal, 120
free for #, 71

hereditarily countable, 121

hereditarily finite, 121
homogeneous for f, 41
homegeneous, 42
infinite, 116
meager, 2, 128 -
nowhere dense, 128
null, 2
of conditions, 1
of Arst category, 2
open (in a poset}, §
pattially ordered, 113
stationary, 131
transitive, 13
Skolem hull, 124
Sorgenfry line, 93, 135
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splits the pre-gap, 73
splitting node in a tree, 41
submeasure, 110
exhanstive, 110
subtree, 41
of W @ w37
support of a Baire set, 48
Suslin Hypothesis (5H), 17
Suslin property, §
terminal node of a tree, 33
Theorern,
Baire Category, 128
Bernstein-Robinson, 110
Caunlor, 115
Cantor-Bernstein, 115
Compactness Theorem of Predi-
cate Calculus, 124
Dense Set Version of HL,, 49
Dilworth's, 38
Godel’s Incompleteness, 12]
Helly’s, 102
RHL (Ha]pernfLaiichli), 41
HL, finile version, 49
Maharam’s, 25
Mostowski’s Collapsing, 120
Ransey’s, 131
Refleclion, 123
Shoenfield’s Absoluteness, 35
Ulam’s, 28
Zermelo, 115
tightness, 136
tightness, 68
topological space,
To, 135
T, 135
Baire, 128
cee, 21
cometrizable, 94
countably compact, 136
countably tight, 66, 136
expanential, 94
Hausdorff (or 73}, 135
regutar (or 73), 135
second countable, 79
Suslin, 21
transitive closure, 119
tree representation,

of analytic sets, 32
of coanalytic sets, 32
tree, 17
wy-lree, 17
Aronszajn, L7
perfect, 4]
Suslin, 17
well-founded, 32
ultrafilter,
nonprincipal, 52
Ramsey, 55
selective, 55
Vertical seclions, 13
Vietoris topology, 136
weakly separated, 94
weight, 135
well-founded, 113
well-ordered, 113
Zermelo-Fraenkel Set Theory (2F)
111
ZFC-P, 122
EFC, 111

SPECIAL SYMBOLS

pl g, pand ¢ are incompatible, 1

{0,1}*, Cantorcube, ........... t
R, o e 1
C,,, 2 poset of finile partial func-
Hons, ... 1
[#]. interval determined by p, ... 1
Alz,g), oo 3
S .3
(X]?, the sct of all n-clement sub-
setsof X, oo i 3
[x]<“, the set of ali finile subsets
of X, oo 3
M[G], generic madel, ... ..., 9
VP, sel of P-names, ............9
7, aP-name, ..., 9
M7T, set of P-namesin M, ...... g
int.c(r), ....................... 9
%, a caponical name for z, ..... 10
Ik, forcing relation, ............ 10
UM an interpretation of U in M,
11
Ins, Mokobodzkiideal, .. ..... 13
ht(z), height of = in a tree, .... 17
Tla), a-thlevelin a treg, ...... 17
T(a), oo 18
w*, the Baire space, ........... 18
(X)), cellularity of a space X, .21
TT{X), 22
¢, conbinuum, .................. 22
I L 24
Eo.Bry oo 3
W W, 32
Xr, o p[T), e 32
A 32
A(B), o 32
rk, rank function, ......... ... .. 32
Tags e 33
T .33
T®T, product of trees, ....... 41
PicaTin o 41
TIA, o 41
HLg, o 41
tp(X), order type, ............. 42
7, order type of rationals, ... ... 42

o — (ﬂ]?w/" e e e 42
{0,1}<%, the set of rationals, .. 43

s, 44
-2 R 44
|s], for s in a Cantor cube, ..... 45

Cs, poset for adding § Cohen real-

Alagk), 87
BY, 89
Bila, oo 89
Int(L), interval algebra, ....... 80

exp{X), exponentia! space of &,
94

Pedy g7
Coll (28}, ..., 97
WYILEL 101
LU 10
[E]H, ......................... [01
0, dominaling number, ....... 103
W, 103
g, groupwise density, ......... 104
fAFY, 104
K(HY, ideal of compact operators,
107

I, 109
a— (8,7, ... e 109
Len(u}, lengthof @, .......... i1l
T 111
flz, o 112
P(z), partitiveset of X, ...... 112
B 12
[z, the iinage of z under f, . 112
B 112
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7 2R 112
QOrd, (the class of ordinals), ... 113
|z], cardinality of =, .......... 115
w, = {0,012, 116
Pars  oreremma i 116
Wiy e 116
kY, 118
T 116
cf{a), the cofinality of @, ..... 118
U ) ¢ -
Ve 118
renk(z), rankaofz, ........... 1i9
trcl{M), transitive closure of M,
119
% (&), relativization of ¢ to X,
121
zhE¢, amodels g, ........... 121
Her 121

Con(T), “T is consiglent”, ... 122
Hully, (=), Skolemn hull of z, .. 124
XM, relativization of a class X to

M, 125
A, Lebesgue measure, ......... 128
p, Haar measure, ............. 128
v, counting measure, ......... 128
Aoy 129
BC, the set of codes for Borel sels,

130
(X, 131
X8, 131
o= {131
TRy coemem e 133
w{X), weightof X, ........... 135
sw(X), m-weight of X, ......, 135
{[&,~+), arrow-space, .......... 135
t(X), tightnessof X, ......... 136
exp(X), exponential space of X,
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