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PREFACE

The use of the differential geometry of a Riemannian space
in the mathematical formulation of recent physical theories
led to important developments in the geometry of such spaces.
The concept of parallelism of vectors, as introduced by Levi-
Civita, gave rise to a theory of the affine properties of a
Riemannian space. Covariant differentiation, as developed
by Christoffel and Ricei, is a fundamental process in this
theory. Various writers, notably Eddington, Einstein and
Weyl, in their efforts to formulate a combined theory of
gravitation and electromagnetism, proposed a simultaneous
generalization of this process and of the definition of paral-
lelism. This generalization consisted in using general functions
of the codrdinates in the formulas of covariant differentiation
in place of the Christoffel symbols formed with respect to
the fundamental tensor of a Riemannian space. This has
been the line of approach adopted also by Cartan, Schouten
and others, When such a set of functions iz assigned to a
space it is said to be affinely connected.

From the affine point of view the geodesics of a Riemannian
space are the straight lines, in the sense that the tangents
to a geodesic are parallel with respect to the curve. In
any affinely connected space there are straight lines, which
we call the paths. A .path is uniquely determined by a
point and a direction or by two points within a sufficiently
restricted region. Conversely, a system of curves possessing
this property may be taken as the straight lines of a space
and an affine connection deduced therefrom. This method
of departure was adopted by Veblen and the writer in their
papers dealing with the geometry of paths, the equations of
the paths being a generalization of those of geodesics by
the process described in the first paragraph.
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iv PREFACE

In presenting the development of these ideas we begin
with a definition of covariant differentiation which involves
functions Lj of the codrdinates, the law comnecting the
corresponding functions in any two codrdinate systems being
fundamental. Upon this foundation a general tensor calculus
is built and a theory of parallelism.

Much of the literature on this subject deals with the case
where the connection is symmetric, that is Lj = Li;. When
the paths are taken as fundamental, this is the type of
connection which is derived. This restriction is not made
in the first chapter, which deals accordingly with asymmetric
connections.

Vectors parallel with respect to a curve for an asymmetric
connection retain this property for certain changes of the
connection. This is not true of symmetric connections. How-
ever, it is possible to change a symmetric connection with-
out changing the equations of the paths of the manifold.
Accordingly when the paths are taken as fundamental, the
affine connection is not uniquely defined, and we have a
group of affine connections with the same paths. a situation
analogous to that in the projective geometry of straight
lines. Accordingly there is a projective geometry of paths
dealing with that theory which applies to all affine connec-
tions with the same paths. In the second chapter we
develop the affine theory of symmetric connections and in
the third chapter the projective theory.

For a sub-space of a Riemannian space there is in general
an induced metric and consequently an induced law of
parallelism. There is not a unique induced affine connection
in a sub-space of an affinely connected space. If the latter
is of order m and the sub-space of order =, each choice
at points of the latter of m—n’ independent directions in
the enveloping space but not in the sub-space leads to an
induced affine connection, and to a geometry of the sub-
space in many ways analogous to that for Riemannian
geometry. Under certain conditions there are preferred choices
of these directions, which are .analogous to the normals to
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the sub-space. The fourth chapter of the book deals with
the geometry of sub-spaces.

A generalization of Riemannian spaces other than those
presented in this book consists in assigning to the space a
metric based upon an integral whose integrand is homogeneous
of the first degree in the differentials. Developments of
this theory have been made by Finsler, Berwald, Synge and
J. H. Taylor. In this geometry the paths are the shortest
lines, and in that sense are a generalization of geodesics.
Affine properties of these spaces are obtained from a natural
generalization of the definition of Levi-Civita for Riemannian
spaces. Berwald has also obtained generalizations of the
geometry of paths by taking for the paths the integral
curves of a certain type of differential equations, and Douglas
showed that these are the most general geometries of paths:
he also developed their projective theory. References to
the works of these authors are to be found in the Biblio-
graphy at the end of the book.

This book contains, with subsequent developments. the
material presented in my lectures at the Ithaca Colloquium.
in September 1925. under the title The New Differential
Geometry. I have given the book a more definitive title.

In the preparation of the manuscript I have had the
benefit of suggestions and criticisms by Dr. Harry Levy.
Dr. J. M. Thomas and Mr. M. S. Knebelman, the latter of
whom has also read the proof.

September, 1927.
T.UTHER PFAHLER EISENHART.
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CHAPTER 1

ASYMMETRIC CONNECTIONS

1. Transformation of codrdinates. Any ordered set of n
independent real variables xf, where ¢ takes the values 1, ..., n,
may be thought of as codrdinates of points in an n-dimensional
space V, in the sense that each set of values of the z's defines
a point of V,,. The terms manifold and variety are synonymous
with space as here defined. If ' (z!, ..., 2 fori=1,.--, n
are real functions, whose jacobian is not identically zero, the
equations

(1.1) =@ .., G=1,...,7n)

define a transformation of codrdinates in the space V..
If 2¢ and A’* are functions of the z's and z’’s such that

; dxt
(1.2) l EEa l’u‘—a?’a—
in consequence of (1.1), A¢ and A7 are the components in the
respective codrdinate systems of a contravariant vector. In
(1.2) we make use of the convention that when the same
index appears as a subseript and superscript in a term this
term stands for the sum of the terms obtained by giving the
index each of its »n values; this convention will be used
throughout the book. From (1.2) we have by differentiation

oM o9A’* ax' ox'f %zt aa’f

—_— e ‘e —
(18) 500 = 9af ou® a9 | " 9ar% P )

It is assumed that the reader is familiar with relations con-
necting the components of a tensor in two codrdinate systems.*
* Cf. 1926, 1, pp. 1-12. References are to the Bibliography at the end

of the text.
1 1




2 1. ASYMMETRIC CONNECTIONS

He will observe that, because of the presence of the last
term in the right-hand member of (1.3), the derivatives of A¢
and A are not the components of a tensor.

Consider further a symmetric covariant tensor of the second
order whose components in the two cotrdinate systems are gy
and g, such that the determinant

(1.4) 9 = lgyl

is different from zero. From the equations

, ot 9a/
Jep = 94 Ja 2% @ xlp
we get by differentiation
%ap _ 39y 02 xS da*
ax’? 0% 3x'* 9a'f aa”
44 ( 298 o%a/ daJ ot )
W™ saPoa” | 02P 0d” 0x7
A similar observation applies to these equations. However,
there are n*(n-+1)/2 of these equations, %nd they can be

solved for the n*(n +1)/2 quantities —aaﬁ We obtain
z :
atzt o) oa* [r ! bz‘
1.5 _— —_— = R
(1.5) oa’” oa'f +{ﬂ~} 2’ aa’ l“ﬂ}

where {j k} are the Christoffel symbols of the second kind,
that is,

1.6) {3 = AUk A, Lk b = 5 (32 + 308 20),

where g?* are defined by
AN gPgn=20, & =10r0asi=7joritj.

3
When we eliminate -—% from (1.3) by means of (1.5),
aa'" 92'f

we obtain
* 1926, 1, p. 19,




2. COEFFICIENTS OF CONNECTION 3

i e 0%t 0xf
(1.8) 1’1 = /L '/’W Y
where
i‘__a_l_i I:Ji} e ___31"‘ y al
am By = g+t e =t {7y

From (1.8) we see that li,j and l’“,p are the components of
a tensor in the two codrdinate systems. Thus we have formed
a tensor by suitable combinations of the first derivatives of
the components of a vector and a tensor.

If gy is the fundamental tensor of a Riemannian space,
then li’ j is the covariant derivative of 2'., However, the
theory of covariant differentiation in a Riemannian space has
nothing to do with the fact that the tensor gy is used to
define a metric. Consequently this theory can be applied to
any space, if we make use of any tensor ¢; such that g  0.*

2. Coefficients of connection. We have just seen that
when a symmetric tensor gy is specified for a space we have
an algorithm for obtaining tensors from other tensors by
differentiation. But this process is a special case of a much
more general one. In fact, the fundam:ental element in the

former consisted in the elimination of ———?&% from equations
25

(1.3) by means of (1.5). From this it is evident that if
L}k and L'}; are functions of the a’s and z''s satisfying
the equations _ ) .
@1 b e 82l 9ak o 0af

) o' 0'? T ox'® 9P b aa’?’

the quantities 2’5 and A'*s, where

. a li . a lrl{ ,
@2) ¥y = sor+ 2 Ly, M = A7 LG,
are in the relations
i dat aa’f
2.3 = Y, —
( ) \j I8 2% o

and consequently are components of a tensor.
* Cf. 1926, 1, pp. 26-30.

1*




4 I. ASYMMETRIC CONNECTIONS

Conversely, if equations (2.3) are to hold for any vector, it
follows from (1.3) that we must have

o'x  ag"? I AL ozt 9’ 7
81' ax'ﬂ 31‘7 kJ '“ aan,r 850’

which are equivalent to (2.1), since

22’ Bad ] oxs da’" j
. L =t = — 4§,
(2.4) 8.1;’ ax’“ da ax,ar axk ‘

If we take any set of functions Ljx of the x's, equations
(2.1) determine the corresponding functions in any other
codrdinate system a’* such that equations (2.2) define the
components of the same tensor in the two codrdinate systems.
The particular form of the functions ij in (1.5) arose from
a tensor gy, and there are other ways (cf. § 18) in which
we get functions L,k and LJ; in two coordinate systems
satisfying (2.1). Whenever in any way such a set of functions
is assigned to a manifold we say that the latter is comnected
and that the L’s are the coefficients of the ('ormectzon

From (1.6) it is seen that the symbole{ f are symmetric

in j and k. We remark that from the form of (2. 1) it follows
that, if the L's are symmetric in the subscripts in one cotr-
dinate system, the corresponding coefficients in any codrdinate
system are symmetric. We do not make the restriction that
they be symmetric, and for the present consider the more
general case where the connection is asymmetric. Cartan*
uses the terms with torsion and without torsion for the
asymmetric and symmetric connections respectively.

When we express the conditions of integrability of equa-
tions (2.1), making use of (2.1) in the reduction, we obtain

dad dx* Bxt L. 02
2L’ 02 axt a4’
* 1923, 5, pp. 325, 326.

(2.5) Lja




3. COVARIANT DIFFERENTIATION b

where

‘
©6) Iy — 2Lt 2Lk

aw"—az‘+ thk lel'tL;h

and smllally for L From the form of (2.5) it follows
that Lj; and Ly, are the components of a tensor. Also if
in (2.6) the functions ij are replaced by the Christoffel

symbols {j k} formed with respect to gy, the tensor Lm

becomes the Riemannian curvature tensor of a Riemannian
space w1th the fundamental tensor gy.* Accordingly we
call Ljy the curvature temsor of the space.t

3. Covariant differentiation with respect to the L’s.
Since (2.2) are a generalization of (1.9), we call the tensor
of components A’y the first covariant derivative of ¥ with
respect to the given conmection, or briefly, with respect to the L's.

If A; are the components of a covariant vector-field, it is
readily shown by means of (2.1) that the quantities 24,
given by
(3.1) Ay = 3‘; — W L,
are the components of a tensor of the second order. It is
the first covariant derivative of the vector A; with respect to
the L’s.

In general it can be shown that, if a ,"" are the com-
ponents of a tensor, the quantities

"|

da,
(IR l Sy T TacTasr T T
a,.. = + Z A ~Ly

sii - -8,

_ 1 T k
; e "ﬂ—l k8p+| L’pl’

are the components of a tensor of order m+p+1, the first
covariant derivative of the given tensor. As a consequence
of this definition we have

* 1926, 1, p. 19.
4 Ct. Schouten, 1924, 1, p. 83.

(3.2)




6 I. ASYMMETRIC CONNECTIONS

The first covariant derivative with respect to the L's of the
tensor 0} is zero.

If in (3.2) the L’s are replaced by the corresponding
Christoffel symbols (1.6) of the second kind, we obtain the
formulas for covariant differentiation with respect to the
fundamental tensor of a Riemannian geometry.* As in the
latter we can establish the theorem:

Covariant differentiation of the sum, difference, outer and
inner product of tensors obeys the same rules as ordinary
differentiation.

In order that this theorem may hold for the case of an
invariant obtained by the inner multiplication of a contra-
variant and a covariant vector, it is necessary that we define
the first covariant derivative of an invariant (or secalar) to be
its ordinary derivative.

Since the Christoffel symbols {;k} are symmetric in j and .

equations (3.2) are not the only generalization of covariant
differentiation in Riemannian geometry. Thus if in (3.2) we
replace L;? and pr,- by L:,“ and L{-‘,ﬂ, we again obtain com-
ponents of a tensor, as follows from the following considerations.
When we put

(3.3) Li— LY = 295,

we have from (2.1) that £j; are the components of a tensor.
Consequently the differences between the quantities defined
by (3.2) and those obtained by the change described above
are the components of a tensor.

Still other definitions of covariant differentiation are possible.
Thus recently Einsteint was led to the consideration of the
equations

day b B
Y ag Lxj—anj Lix = 0.

From (3.2) and (3.3) it follows that the left-hand members
of these equations are the components of a tensor. However,

*1926, 1, p. 28.
11925, 11.




4. GENERALIZED IDENTITIES OF RICCI 1

if ay == A;uj, the above theorem as regards products does
not hold,* if we define the left-hand member to be the covariant
derivative of ay.

When dealing with asymmetric connections, we shall ad-
here to (3.2) as the formula for covariant differentiation.
Several subscripts preceded by a solidus (|) indicate repeated
covariant differentiation with respect to the L's.

4. Generalized identities of Ricci. If 0 is an invariant,
its second covariant derivative is given by

o*0

k
b ol LU O

0; =

From this expression it follows that

(4.1) 05— 0 = —20p 2,

where Slf; are defined by (3.3); we recall also that they are
the components of a tensor.

Proceeding in like manner with a contravariant vector A,
a covariant vector 4; and a covariant temnsor ay. we obtain
respectively

42)  Ap—uy = —2" Ly — 22 2k,
(4.3) 7.(| jk—lilkj = )-}. L?}k"“2lilh -j‘k.

44) agu—agm = an; L+ an L}'kz —2aim o

And in general we have
1' ey p
LA LALERE . . { TR W h
(4°5) a‘s: .o .3"kl - as: .o .3l.uk - § as: .e "c—-l'wc-l-l' . .3' Ls“]d
1,....m
yooeorg B, T T8 CPERTY
~ ; OV e RCd PR TN
The foregoing identities are generalizations of the Ricei
identities of Riemannian geometry.t When covariant differen-
tiation is used, it is advantageous to use (4.5) in place of the
* Of. J. M. Thomas, 1926, 13, p. 189.
11926, 1, p. 30; cf. Schouten, 1924, 1, p. 85.




8 I. ASYMMETRIC CONNECTIONS

customary conditions of integrability of ordinary differentiation,

namely aij (::,) = a; (::J), which are used in fact in

the derivation of the generalized identities of Ricci.
5. Other fundamental tensors. If we put

(5.1) ri = %(L}H Liy),

it follows from these equations and (3.3) that

(6.2) Lix = T+ $th.

Thus 1‘}}. and Q}k are the symmetric and skew -symmetric

parts respectively of Lj.. Substituting these expressions in
(2.6), we obtain

(51.13) Lja = Biu+ 2u,

where

- oIy 3 ,'l. P
(5.4) Bl —jk- + Ly hh— Ty
and

63) Y = Yue— Lr + Da Yoo — G Lo — 2 L L.
From equations (2.1) and (5.2) we have

1t . dxioak « 0
5.6 —_— N ——————— 'S, —.
(6.6) axPaa + T ax'Pax’” o™

Since these equations are of the form (2.1), it follows that
Bj,‘; are the components of a tensor. This is evident also
from (5.3), since !z,u are the components of a tensor.

From (5.3), (5.4) and (5.5) it follows that the tensors
Lju, Bju and jq are skew-symmetric in the indices & and I

If Bjx denotes the contracted tensor Bj; and bj and B
denote respectively the symmetric and skew-symmetric parts
of Bjx, we have from (5.4)

67) ba = 5 (30 1 3Tk 0Th | iyt rhr,

ox’
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i} 1 (oY, ork
©8) f = 5 (200 200

We shall show that 8jx is the curl of a vector. In fact,
let gy be any symmetric tensor of the second order and
form the Christoffel symbols of the second kind; if we put

(5.9) '}k = J‘;k} + aj,

it follows from (1.5) and (5.6) that af, are the components
of a tensor symmetric in the indices ) and k. Since

{ZJ} = %ﬁ*,

it follows from (5.8) and (5.9) that

1 (da dax — Ji\
610 a4 = g (5F—5m) 4= =r—{;
If in place of taking the tensor g; we had taken any other
tensor gy, the function ¢/g is a scalar, and consequently
a; in (5.10) would have been replaced by a; plus a gradient.
From (5.4) and (5.8) we obtain

(5.11) 8, = B, = 28,.
1f we put ) )
(5.12) 9 = Q = — %,

we have from (5.5) by contraction for ¢ and ! and for .
and j respectively

(6.13) 2 = Y = — (Ve + L + 2 L+ L )
and

- e i 0%y KM

(5.14) Oy = Y = 55— 57~

As a consequence of (5.8), (5.10), (5.11) and (5.14) we have:
The skew-symmetric tensor LY, is the curl of the vector
—(ai + Ri), where a; i3 determined to within an additive
arbitrary gradient.
* 1926, 1, p. 18.




10 I. ASYMMETRIC CONNECTIONS

When the expressions (5.9) are substituted in (5.4) and we
denote by ]n’jk, the components of the Riemannian curvature
tensor for the tensor g;, we have

= R g P
(6.15)  Bjy = R+ djp— G, + @ dfy—

i
Jk ahl’

where a semi-colon followed by an index indicates covariant
differentiation with respect to the g's. Contracting for 7 and !
and for 7 and 7, we have

= ) — i Ry ok
(5.16) By, == By -+ d;;.— G+ @ 03, — . a4y,

and (5.10), in consequence of (5.11). From (5.16) it follows
that the symmetric part of Bj is

. 1 .,. , .
(417 b, = By + 5} (dj+ 0y ) — @y, + @ @l — ey ay.

If the symmetric tensor by, defined by (5.7), satisfies the
condition that the determinant |b;| is not identically zero,
it may be made to play a role for the manifold analogous
in some respects to that of the fundamental tensor in
Riemannian geometry. It is the tensor which would naturally
be used for the temsor g; in the above equations to give
determinateness to these equations.*

From (5.8), (5.10) and (5.11) we have

ol _ oIm __ 04 _ da:
xt dxs — Bdat  dal’

from which it follows that a function ¢ is defined by the
equations

(5.18)

b'p:,’ =

ologh'y
ot
From the relation (5.6) it follows that between ¢ and the

corresponding function 4’ in another cotrdinate system x" we
have the relation

h
= I'ni— a.

’"

V};___ V;ri ox

o’
* Cf. Eisenhart, 1928, 4, p. 818.
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Consequently we have the invariant integral

1 == J]/!/-l/.r' cosndat = IV-_/_/'—(I.‘L"I eedz't.

o loge
BEY
arbitrary scalar, then 'lfy- is replaced by V'¢g6. Hence for
a given symmetric connection therc is no uniquely defined
fundamental integral like the volume integral of a Riemannian
space. If, however, the tensor Sj; is zero for the connection,
the function g defined by (5.18) with «; = 0 is uniquely defined
and thus we have a volume integral for the space® which
is analogous to that of a Riemannian space.v

6. Covariant differentiation with respect to the /”’s.
Since the I's satisfy (5.6), which are of the form (2.1), it
follows from (3.2) that the quantities

If in (5.18) we replace «, by «; , where # is an

DAL g
FIRERYY 1S, 2 Pooess Sl ’,
1 " = a camme .__l_ 1 a t77a-y " o«
a, ce 8,8 a’sl...sp [};

[ 4
1,000 .
FORERY 3
— a 1 ™ R .
; sy cagakog s, “»*

are the components of a tensor. This may be seen also by
substituting the expressions (5.2) in (3.2) and observing that
the differences between the resulting expressions and (6.1)
are components of a tensor. The process defined by (6.1) we
call covariant differentiation with respect to the I'’'s and use
a comma followed by indices to denote this type of covariant
differentiation.}

In terms of covariant differentiation with rexpect to the I''s
equations (5.5) become

2 on - i i i o b
(6.2) D = B — G+ L Lo — Qi L.

* Cf. Veblen, 1923, 8; Fisenhart, 1928, 9.
+ 1926, p. 18.
1 CE 1926, 1, p. 28.




12 I. ASYMMETRIC CONNECTIONS

If 6 is an invariant, we have
(6.3) 045—0; = 0.

Also we have the following generalized identities of Ricci:

v ]’. WP

P, oo PR (X /3
1m0 E 1 B’
asl...,,,,]a a,‘..-a”,lk asl...‘,“__,hau_‘_l...sﬂ 3qkl

(6.4)

m

o
l'.- n
_ ryerg_hrgy ey 8
; Bs,--s, g nB;’a'

7. Parallelism. Paths. In a general manifold there is
no a prior: basis for the comparison of vectors at different
points. For a Riemannian manifold parallelism of vectors,
as defined by Levi-Civita,* serves as a basis for such com-
parison. This definition may be generalized for a connected
manifold. We say that a curve is the locus of points for
which the coordinates 2 are functions of a parameter ¢.
Let C be any curve and consider the system of differential
equations

dAt i .5 dak
(1.1) L

at =~ O
where the a’s in the L’s are replaced by the functions of ¢
for C. A solution of these equations, that is a set of functions
Al ... A® satisfying them, is determined by arbitrary values
of the A's for a given value of ¢{, in accordance with the
theory of differential equations.

Consider such a solution. Since the A's are functions of ¢
and likewise the 2’s, the 4’s are expressible, in many ways,
as functions of the x's. Assume that the A’s considered as
functions of the 2’s are substituted in 57.1) and that the
o
z'® being the coodrdinates of any other system for the space.
By means of equations obtained from (2.1) by interchanging
the x’s and .x'’s, the resulting equation is reducible to

resulting equations are multiplied by and ¢ is summed,

dl'u Y dx'r _
ot T =0
* 1917, 1.
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where
axm
A = 2T
ot

Consequently a set of functions A¢ satisfying (7.1) are for each
value of ¢ the components of a contravariant vector. We say
that they are parallel to one another with respect to the curve,
and that any one of them may be obtained from any other
by a parallel displacement of the latter along the curve. From
the above remarks it follows that a family of vectors exists
parallel to any given vector at a point of C. Since parallelism
has thus been defined in terms of the connection, we say
that the connection is gffine and that the L’s are the coefficients
of -affine connection.

Two vectors at a point are said to have the same direction,
if corresponding components are proportional. Accordingly,
if a set of functions A° satisfy equations (7.1), the vectors
of components

(1.2) V= ¢,

where ¢ is any function of ¢, should be interpreted as parallel
with respect to the given curve C. From (7.1) and (7.2)
we have

2t
.9) o+ P = 10,
where
(1.4) Fly = 2082

Conversely, if we have any set of functions 1° of ¢ which
satisfy (7.3), they are the components of a family of contra-
variant vectors parallel with respect to C; and by means
of (7.2) and (7.4) we find the vectors A¢ satisfying (7.1).

From (7.3) we have, on eliminating f(¢) and omitting the
bars,

a8 (G 4+ ohy 22 2 (24 v 2) = o




14 I. ASYMMETRIC CONNECTIONS

as the conditions of parellelism which hold for (7.2) what-
ever be ¢.

As a particular example of the foregoing we consider the
curves whose tangents are parallel with respect to the curves.
From (7.5) it follows that the equations of these curves are

at \Tatf TR A ar
doi (d*z/  d2F daty
T Tat (dt’ 0 TJT) =%

M(d’x‘_L i dak dac‘)
(7.6)

and that, conversely, any curve defined by these equations
possesses the above property. We call these curves the paths
of the manifold. They are an evident generalization of the
geodesics of a Riemannian manifold.*

From the form of (7.6) it is evident that all connected
spaces for which the I’s are the same but £j: are arbitrary
have the same paths. TLater (§ 12) it will be shown that
this is not a necessary condition.

8. A theorem on partial differential equations. Con-
sider a system of partial differential equations

06

(8.1) oo

— w;{(o’x) (a= ],...,M;i‘-—‘—- 1.-~~,’Nr),

where the ¢’s are functions of the 8’s and 2’s. The conditions
of integrability of these equations are

oy
dac’

oYy a0 _ oYS Y aer

J
(8.2) 968 ox) —  dxt + a0r dxt’

-+

where 8 and y are summed from 1 to M. If these equations
are satisfied identically, the system (8.1) is completely inte-
grable and the general solution involves M arbitrary constants.
For in this case we can obtain developments in powers of
the z's, with constant coefficients, which satisfy (8.1), the
coefficients being determined by the initial values of the 6’s.

* 1926, 1, p. 50.
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If equations (8.2) are not satisfied identically, we have a
set F, of equations, which establish conditions upon the 6’s
as functions of the a’s. If we differentiate each of these
equations with respect to the 2’s and substitute for —Z—z—j—
from (8.1), either the resulting equations are a consequence
of the set F, or.we get a new set F,. Proceeding in this
way we get a sequence of sets, Fy, Fy...., of equations,
which must be compatible, if equations (8.1) are to have a
solution. If one of these sets is mot a consequence of the
preceding sets, it introduces at least one additional condition.
Consequently, if the equations (8.1) are to admit a solution,
there must be a positive integer N such that the equations
of the (N4-1)th set are satisfied because of the equations of
the preceding N sets; otherwise we should obtain more than
M independent equations which would imply a relation between
the 2's. Moreover, from this argument it follows that N < AL

Conversely, suppose that there is a number N such that
the equations of the sets

(8-3) Fl, 0y EV’

are compatible and each set introduces one or more conditions
independent of the conditions imposed by the equations of
the other sets, and that all of the equations of the set

(8-4) Fxp

are satisfied identically because of the equations of the sets
(8.3). Assume that there are p (<< M) independent conditions
imposed by (8.3), say G, (8,2) = 0. Since the jacobian

3Gy

matrix ” S is of rank p, these equations may be regarded

as solved for p of the 6’s in terms of the remaining 6’s and
the x's, and the equations are then of the form (by suitable
numbering)

(8'5) 0"_9’“ (op-l—l’ tty 0”7 a') = 0 (“= 17 c*ty P)-
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From these equations we have by differentiation

967 dg® 96" 9¢9° e Lo M
07 o8 T g — 0 ¢=ptL. M)

g
Replacing —g—:; by means of (8.1), we have

l”“ —L— —_— 0’

| gp—
20" Vi az‘

which equations are satisfied because of the sets (8.3) and
(8.4), as follows from the method of obtaining the latter.
Accordingly we have by subtraction

(8.6)

80" 06" ,

Far i (e — ) = 0

From these equations it follows that, if the functions
ortl ... @Y are chosen to satisfy the equations

36"

ot = ‘/’: (o711, ..., 8%, ),

8.7
where il_!;' is obtained from ¢ on replacing 6° (¢ =1, ...,p)
by their expressions (8.5), then equations (8.1) fore =1, ..., p
are satisfied by the values (8.5). Since the equations of
the set F| are satisfied identically because of (8.5), it follows
that equations (8.7) are completely integrable; for, the
equations arising from expressing their conditions of inte-
grability are in the set #,. Consequently there is a solution
in this case and it involves M-—p arbitrary constants.

When p = M, we have in place of (8.5) 0 = ¢%(x)
and in place of (8.6) that the functions 6* satisty (8.1). In
this case there are no constants of integration. Hence we
have:

In order that a system of equations (8.1) admit a solution,
it 18 necessary and sufficient that there exist a positive integer
N(L M) such that the equations of the sets Fy, ..., Fy arc
compatible for all values of the x's in a domain, and that
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the equations of the set Fnyy are salisfied because of the former
sets; {f p s the number of independent equations in the first
N sets, the solution involves M—p arbitrary constants.*

It is evident from the above considerations that when an
integer N exists such that the conditions of the theorem are
satisfied, they are satisfied also for any integer larger than N.
However, it is understood in the theorem and in the various
applications of it that NV is the least integer for which the
conditions are satisfied.

The above theorem can be applied also to the case when
there are certain functional relations between the 6's and
z’s which must be satisfied in addition to the differential
equations (8.1). In this case we denote by F, this set of
conditions, and include in the set ¥, of the theorem also
such conditions as arise from #; by differentiation and sub-
stitution from (8.1). Then the theorem proceeds as above
with the understanding that the sets F,, F), .... Fx shall
be compatible, and that the set Fxy;; shall be satisfied
because of the former.

In certain cases (cf. § 36) the equations of the set F)
consist of two sets Fy and FY’, such that, if Y and Fy’ are
those which follow from FY and Fy’ respectively, then the
set FY’' is a consequence of FY. In this case equations
Fy' are a consequence of F3 and so on. Hence we have that
all the solutions of FY, ..., Fyi, satisfy the set Fy,o.
Accordingly in applying the theorem we have only to consider
the sequence Fy, ..., F/, ...

When the functions ¥f in (8.1) are linear and homogeneous
in the #’s, the same is true of the equations of the sets
F,, F, -..; moreover p is at most equal to M—1. From
algebraic considerations it follows that the conditions of the
problem are that there exist a positive integer N such that

* This theorem for the case M = p was used by Christoffel, 1869,
1, p. 60 in the solution of a certain problem (cf. § 28) and was used
for the general case in the same problem by Wyight, 1908, 1, pp. 16, 17;
cf. also, Bianchi, 1918, 1, pp. 9-13; Levi-Civita, 1925, 5, pp. 40-43 and
Veblen and J. M. Thomas, 1926, 6, pp. 288-290.




18 I. ASYMMETRIC CONNECTIONS

the rank of the matrix of the sets F}, ..., Fxis M—p(p=>1)
and that this is also the rank of the matrix of F}, . e Fyya.
When these conditions are satisfied, the solution of the
problem reduces to the integration of a completely integrable
set of equations (8.7), in which now the y’s are linear and
homogeneous. Consequently any solution is expressible as a
linear function with constant coefficients of p particular
solutions, and such an expression with arbitrary constant
coefficients is a solution. Most of the applications of this
theorem which we shall make are to equations of this linear
type. Moreover, these equations are of the form in which
the 6’s are components of a tensor and in place of their
derivatives we have first covariant derivatives.

9. Fields of parallel contravariant vectors. When
we have any contravariant vector-field of components 4%, the
vectors of the field at points of a curve C are parallel, if

9.1) —daa:i (Ah lilk—li lh‘k) = 0,

as follows from (7.5). In order that these equations be
satisfied for the vectors of the field along any curve of the
space it is necessary that

Ar Ay — ¢ lhp; = 0,

from which it follows that
(9.2) My = 2y,

where p) is a cm:r;riant vector. When u; is not a gradient,
the function ’"‘il—t depends upon the curve, so that if the

vector A‘ at a point P is subjected to parallel displacement
around a closed circuit the resulting vector at P will depend
upon the path; this is.shown in § 10. This will not be the
case if p; is a gradient, in which case (9.2) may be written

¢Ologe
(9.3) My = & &
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A field of vectors satisfying equations (9.3) is said to be a
pqrallel Jield. 1f we change the components replacing ¢ by
A, the new components satisfy the equations

9.4) Ay = -5%',-+ Li¥ = 0.

If A% are the components of a parallel field they define a
congruence of curves along any one of which it is possible

i
to choose a parameter { so that A = da’ Then from (9.3)

dt’
or (9.4) and (7.6) we have:
The curves of a congruence of curcves determined by « field
of parallel vectors are paths.
From (4.2) we have that the conditions of integrability of
equations (9.4) are

(9.5) M Lik = 0.
When
(9.6) Lijg = 0.

equations (9.4) are completely integrable, that is, a solution
is uniquely determined by arbitrary values of ¢ at a given
point. Hence we have:

A necessary and suffiicient condition that there exist a field
of contravariant vectors parallel to un arbitrary vector is that
(9.6) be satisfied.

From equations (9.5) we have also:

A necessary and sufficient condition that « 1V, admit n
linearly independent fields of parallel contravariant uvectors
is that the curvatnre tensor Lja be a zero tensor.

If equations (9.6) are not satisfied, on differentiating (9.5)
covariantly, we have in consequence of (9.4)

(9.7) 2 Lije m, = 0.

Proceeding in like manmner with these equations, we obtain
the sequence of equations '

e
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lh L;;jk m m, = 0,
(9.8) lh L;ujk mom,. . m, =0,

Equations (9.4) are of the form (8.1). Hence in consequence
of the results of § 8 we have:

A necessary and sufficient condition for the existence of one
or more fields of parallel contravariant vectors is that there exist
a positive integer N such that the first N sets of equations (9.5),
(9.7) and (9.8) admit r (= 1) fundamental sets of solutions,
which satisfy the (N 1)th set of equations; if these conditions
are satisfied, there are » linearly independent ficlds of parallel
vectors and any linear combination, with constant coefficients,
of these vectors is a parallel field.*

Having thus obtained the conditions for one or more fields of
parallel contravariant vectors in invariantive form, we shall
show how all such fields may be obtained by making a suit-
able choice of codrdinates.

Suppose we have »r fields of parallel vectors of com-
ponents lfa), where «, for e =1, ..., r, denotes the vector and ¢
the component; we use the notation that an index in paren-
theses indicates an entity, one without parentheses a com-
ponent. In another coordinate system z’° we have

oz’

(9.9) My = A 22

Consider the system of differential equations

= 0.

20
(9.10) X (0) = At 5
Since by hypothesis the functions AL, satisty (9.4), the

Poisson operator applied to equations (9.10) gives

* This theorem for the case 2 = 0 was established by Veblen and
T. Y. Thomas, 1928, 1, p. 590.
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O11)  (KaXp—XpXa)0 = 20y Hpy £y gt

We consider first the case when 2§ = 0, that is, when
equations (9.4.) become

9.12) Ay=o0.

In this case equations (9.10) form a complete system, and
thus there are n—r independent solutions 6° (z*, . .., 2*) for
o=17r+1,...,n If we omit any one of equations (9.10),
the remaining ones form a complete system and admit in
addition to the above another independent solution. In
this way we get r other functions 6*(z', ..., 2*) for
«=1,..., r, 6% being the additional solution when X.(6) = 0
is omitted. If we put

(9.13) = 6@, ..., 2,

from (9.9) and (9.10) it follows that in the codrdinate
system a'*, the components A%, are zero unless i = a.

Suppose now that equations (9.12) are expressed in this
coordinate system, which we call 2%; then the components
of the r vectors are of the form

9.14) 1{00 = dfx Ye,
« not being summed. From (9.12) we have

9.15) rh = — & 20

Since the I''s must be symmetric in the lower indices, it is
necessary that ¥, be a function at most of =%, a"+1, ... "
Hence we have the theorem:

The most general space with a symmelric connection
admitting r fields of parallel contravariant vectors is obtained
by choosing arbitrarily the coefficients I'se for ¢ and © equal

* CL. Goursat, 1891, 1, p. 52.
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tor+1, ..., n, and for the others expressions of the form(9.15).
where Yo is a function of 2%, 2", .., a**

When the connection is asymmetric, the quantities (9.14)
satisfy (9.4) if

9.16) D= — 82080 =y,

where « is not summed. Hence we have:

A space with asymmetric connection admitling r fields of
parallel contravariant vectors is defined by (9.16) where Yo
are any functions of the z's and the other L's are arbitrary.

In particular, if » = n, it follows from the above results
that the tensor Ljg is zero. This is readily verified for the
expressions (9.16).

If in equations (2.1) we replace L&’,} by expressions of the
form (9.16) for «, 8,y = 1, ..., n, we have

%zt 9zl ¢ dlog Y« 0a'

i —
8x'“8x’ﬂ+ij ax'® ox'? ax?  aa’® =0,

where @ is not summed in the last term. Since by hypothesis
L, are zero, and L{,,‘;, are zero when ¥, are arbitrary functions
of the «’s, it follows from § 2 that /1e above equations-are
completely integrable. Hence we tuve:

When the curvature tensor of a space with asymmetric
connection 18 zero, a codrdinate system exists for which the
coefficients have the form (9.16), the n functions Yo being
arbitrary.

If the ¥’'s are constants, the coefficients must be zero,
which is possible only in case of a symmetric connection.
as is evident from (2.1) if we take Lj = 0. In this case
we have as a corollary of the above theorem:

When the curvature temsor of a space with a symmetric
connection s zero, a codrdinate system exists for which all of
the coefficients of the conmection are eero.

10. Parallel displacement of a contravariant vector
around an infinitesimal circuit. In order to consider

* Eisenhart, 1922, 1, p. 210.
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the parallel displacement of a vector around an infinitesimal
circuit, we consider a surface, that is a manifold of two
dimensions, defined by equations xf = f#(u,¢), where the
functions / and their derivatives to the third order exist and
are continuous at a point P of the surface. We consider
the circuit comprising the points P(u,v), Q(u+du,v),
Ru+dn.v+dv), S(u,v+dv) and P. We take a vector A¢
at P and find from (7.1) the components of the vector at @
parallel to it. then in the same way the vector at R parallel
to this vector at @ and so on. The components of the
resulting vectors are given by

Yo = (A 44 1 (a2 2
() = (M)p+ (du)Pdu-{- > )p"" L.
s ar WL
== ’i * — 2 e
(A)r = (M) + (dv)qd' +3 (dr’ )de +
(10.1) (W L
@95 = We—(G) dut 5 (o) dt+
1] H —_— d)' _1_ d’li_ 'Y
By = @rs— () de+ 5 (o) 4e"
: LYK
where the quantities such as (‘Z) (‘f—l-:i,-)e, and so forth

are obtained from equations of the form (7.1). When all
of the above equations are added, we obtain

A(W9e = FBp— () = (‘“‘) — (@ ]du

du
(10.2)+[(ﬂ: — (%2) Jau+ 3 [(55),+ (55), ] aw
o {158, 5 oo
At P we have
%), - - @42,

(5= ~ el ) e S5,
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When the functions L,':k and % at Q are replaced by their
expansions about P and use is made of (7.1), we have

Gl B,
ao9) (o (50 —me b 57 S du
(—%)Q= ——{ [ (L}k"?‘wf( LhkL.’;t aa:z" Zf]} 4.
In like manner v've obtain
(Gl (%)
{1;[% L a‘”k) L LY af: aa:;:]} du
ol ) 22 2 s
(%)0_(%)8

= _{),j[aa L a”k)—L,.,. L’};M T:]L du
| 2 (70 0% ) n 9% 8af }
+{1J[8v L”‘ v — L Ljy v 0v pavt e
i i

We .remark also that the expressions for (L’;) and (ﬁi&,-)
du® /g dvl/s

. a2 a2y .
differ from those for ( aunt )P and (7;,—)0 respectively, as
given by (10.3) and (10.4), only in terms of the first and

higher orders of the differentials. When threse expressions
are substituted in (10.2) we have

(105) 4G9r = — (¥ L;,,,-aﬁ"--%—f-) dudot-..

From che considerations of § 9 it follows that A(A)p =
when Lji; = 0. The same is true when 2¢ belongs to a ﬂeld
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of parallel vectors. But in the general case when a vector
undergoes parallel displacement around an infinitesimal circuit
the difference between its final and original position is of
the second order and depends upon the value of the com-
ponents Lj‘m at the starting point.*

Let 2 be the components of n independent contravariant
vectors at P, where «, for « = 1, ..., n, indicates the vector
and ¢, for ¢ = 1,...,n, the component. If these vectors
are displaced about an infinitesimal circuit and we denote
by 2 the determinant |A{y|, then from (10.5) we have

106) AQ)p — —-(1L§m —"5% %’;—‘)P dudot ...,

Hence for this variation to be of the third or higher order
it is necessary that [cf. (2.6)]

oLy 9Lk
oxk oat

From these equations it follows that

Liq = = 0.+

(10.7) . i — 2logy

In another codrdinate system z* we have

w __ Ologg’
Ie = St

and we desire to find the relation between ¢ and ¢'. From
(2.1) we have
w 0
aa*

'8

i 0x)
1084+L0W,

where 4 is the jacobian | :j, . Consequently we have, to

within a negligible constant factor,

* Of. Schouten, 1924, 1, p. 84.
+ Of. Schouten, 1924, 1, p. 89.
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(lo‘s) ‘T" = 9‘4,

that is, ¢ is a scalar density.
If Ay denote the components of the vectors in the co-
ordinates z'* and A’ denotes the determinant |A%, ', we have

A
—1 —-A-—,
that is, 2 is a relative invariant of weight —1. Accordingly
¢ is an invariant (or scalar).

If now we take n linearly independent contravariant vectors
parallel with respect to a curve C' and let ¢ be any scalar
density, we have

d
dt

(10.9) A

— (29 _ i) 8
lq: == l(a;rk .q)Lik)W.

Consequently if the invariant ¢ so formed with respect to
every curve in space is to be constant along the curve, it is
necessary and sufficient that (10.7) hold, the function ¢ being
thus determined.

In particular, if the connection is symmetric, we have in
vlace of (10.7)

(10.10) ri = "—;"f—jl

Then from (5.8) and (5.11) we have that
(10.11) Bjx =0, B; = Bj.

Conversely, when conditions (10.11) are satisfied, we have
(10.10), as follows from (5.8) and (5.11). Hence we have:*

If for a symmetric connection the conmtracted tensor By is
symmetric, the magnitude of the determinant A of n linearly
independent contravariant vectors Ay, is unaltered to within
terms of the third and higher order, when the vectors undergo
parallel displacements about an infinitesimal circust, and
conversely.

* Of. Schouten, 1924, 1, p. 90.
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11. Pseudo-6rthogonal contravariant and covariant
vectors. Parallelism of covariant vectors. If j; are the
components of any covariant vector, there are evidently »—1
linearly independent contravariant vectors 1¢, such that

(11.1) pidey = 0. (e=1,.-., n—1).

We say that each of the vectors Aoy i8 pseudo-orthogonal to
#¢; in Riemannian geometry (11.1) is the definition of ortho-
gonality, when u; are the covariant components of a contra-
variant vector u#‘* Evidently any vector pseudo-orthogonal
to u; is expressible in the form

(11.2) ¥ o= a* 2y, (@=1,....n—1).

where the a’s are invariants; here, and in similar cases later,
« is supposed to be summed for its values 1, ..., n—1.

Consider any curve C of the space and »—1 linearly
independent families of contravariant vectors ).f.o parallel with
respect to C. From (7.3) it follows that we have

PH . : -
B0 4 bl 22 =t o) (@ = L-ve. n—1),

at

(11.3)

« being not summed in the right-hand member. The equations
(11.4) Moy = 0

define, to within a common factor, the components u; of a
family of covariant vectors pseudo-odrthogonal to the given
2%, We say tiat these vectors p; are parallel with respect
to C. Differentiating (11.4) with respect to ¢{ and making
use of (11.3), we obtain

dp; : da*
Koo g — Linws ) =

*1926, 1, p. 38.
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Comparing these equations with (11.4), we find

dpi _ gy dzF
(11.5) ap —Lwmi = pi9(?)

as a necessary condition of parallelism.

In order to show that it is a sufficient condition, we con-
sider »—1 dinearly independent covariant vectors ,uﬁ“’* satis-
fying equations of the form (11.5), that is,

ap® 1w d7*
A Tl g = #0900,

(11.6)

where e is not summed in the right-hand member. Then
the equations

Vuf =0

determine quantities A, to within a common factor, which
are the components of a contravariant vector pseudo-6rtho-
gonal to each of the n—1 vectors u{". Differentiating these
equations, we find that A* satisfies equations of the form
(11.3) and consequently defines a family of contravariant
vectors parallel with respect to C. Suppose now that we
have any family of vectors p; satisfying (11.5) and we
associate with it n—1 vectors satisfying (11.6) all » being
linearly independent. The vector s; and each set of n—2
of the set pi” determine a contravariant vector pseudo-odrtho-
gonal to u,. In this way we obtain n—1 linearly inde-
pendent families of parallel contravariant vectors pseudo-
orthogonal to the vectors u;. Hence.we have:

Any family of covariant vectors whose compoments satisfy
equations of the form (11.5) are parallel with respect to the
given curve, that is, they are pseudo-orthogonal to n—1 linearly
independent families of contravariant vectors parallel with
respect to the curve.

* Here «, where « = 1, ..., n—1, indicates the vector and i the
component.
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Incidentally we have:

Any n —1 linearly independent families of covariant vectors
parallel with respect to a curve are pseudo-orthogonal to a family
of contravariant vectors parallel with respect to the curve.

By processes analogous to those used in § 9 we have that
when the equations

(1L.7) %—Lﬁw; =0

admit a solution, the vector-field u; is parallel. However,
we cannot say that the existence of such a field is equivalent
to the existence of » — 1 linearly independent fields of parallel
contravariant vectors. For on differentiating (11.4) covariantly
and making use of (11.7) we have

pi Maype = 0,
which are equivalent to

; i
Mook = i &),

where for each value of « and # the a's are components of
a covariant vector.

From (11.7) and (4.3) we have:

A necessary and sufficient condition for the existence of n
linearly independent ficlds of parallel covariant vectors is that
the curvature temsor be zero.

When the connection is symmetric, it follows from (11.7)
that uq is the gradient of a function ¢. Since in this case
the covariant vector u; at any point in space is pseudo-
orthogonal to every displacement in the hypersurface ¢ = const.
containing the point, we call it the covariant pseudonormal
to the hypersurface. Hence we have:

When a space with symmelric connection admits a parallel
Jield of covariant vectors, they are the covariant pseudonormals
to a family of hypersurfaces.

12. Changes of connection which preserve parallel-
ism. Let L} and I be the coefficients of two different
connections. We inquire whether it is possible that parallel
directions along every curve in the space are the same for
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the two connections. To this end we make use of the
equations of parallelism in the form (7.5). Subtracting these
equations from the corresponding ones in the L’s, we have
@ ahe— ol o 7 795 — o,

where ‘ _ '
a,’-k == L}k'—L}k.

From (2.1) it is seen that a}k are the components of a tensor.
Since these equations must hold for any curve and for vectors
parallel to any vector with respect to this curve, we must
have )

8} ah+ 0} dhn — 03 afi — O am = 0.

Contracting for 2 and r, we have
ah = 28 ¢,

where v is the vector defined by
2ny, = ak..

Conversely, if we take
(12.1) I = Li+26

where ¥ is an arbitrary vector, the above conditions are
satisfied. Hence we have:

Equations (12.1) in which W; is an arbitrary covariant
vector defines the most gemeral change of commection which
preserves parallelism.*

From the form of equations (12.1) it is seen that both
sets of coefficients cannot be symmetric in the subseripts.
In § 14 we discuss the case where one set does possess this
property. Hence we have:

It is not possible to have two symmetric comnections with
respect to which parallel directions along every curve in the
space are the same for both connections.

When the condition for parallelism is written in the form
(7.3), that is,

* Cf. Friesecke, 1926, 1, p. 106; also J. M. Thomas, 1926, 8, p. 662.
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A da, —
dt +Lﬂ~ T ;"f(t)’

the function f(¢) for the connection (12.1) is given by
(122) F=rtemie
If we have a field of parallel vectors A* defined by
LLANWYS;
" ok =
then for the connection defined by (12.1) we have
s P :
g T L= =24y,

which lS dlscussed in § 9.
If I}k and ij denote the symmetric and skew-symmetric
parts of L,k, as in (3.3) and (5.1), we have

(12.3) I = I+ 6 e+ 0L v,
and
(12.4) B = L+ G o—di Y.

From the definition (§ 7) of the paths of a connected
manifold it follows that the paths are the same for all
connections related as in (12.1). This can be shown directly
by means of (12.3). Conversely, if we apply to equations
(7.6) the same reasoning as was applied to (7.5), we can
show that expressions of the form (12.3) give the most
general relation connecting the I'’'s so that the equations
(7.6) are unaltered. Hence we have: )

Equations (12.3) and an arbitrary choice of S define the
most general change in comnection whiclh preserves the paths.

If Lju: denote the components of the curvature tensor for
the L’s defined by (12.1), from (2.6) we have

(12.5) Ly = Lju+29} (gf; 284,
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In like manner we have from (5.4) and (12.3)

(12.6) Bju = Bju+ 9} (Wu— )+ 6 vu—di vy,
where

a12.79) Yie = Yjx—Y; Y,

¥« being the covariant derivative of ¢; with respect to the
I’s. From equations analogous to (5.3) and from (12.5) and
(12.6) we have

(128) Dju = Yu+ & (Yu—yu) + % vu— & Yi.
From (12.5) by contraction we have

(12.9) L = Ejki = Ljp+2 (a—wl ——M)

ok dx’
and
- - 0 0
(12.10) A = Lf,-k = Ap+2n (_8% —a—ﬁ) .

From this result and the theorem of § 5 we have:
The vector W; can be chosen so that for the mew linear
connection Ly = 0.
From (12.5) we have: _ )
When, and only when, Yy is a gradient, Ljs = Lb,.
Contracting (12.6) for 7 and ? and ¢ and j, we have respec-
tively

(12.11) Bjx = Bj+nyp— iy

and

(12.12) Au = fut 2L (pu— ),

in consequence of (5.11). If in accordance with (5.10) we put
_ 1 (26 2

(12.13) ﬂlk = 2 (axk )’

we have from (12.12) that

(12.14) Bh=A+m+t)Pta,

where ; is the gradient of an arbitrary function .
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Again contracting (12.8) and using the notation of § 5,
we have

(12.15) Qi = Lp+ Q—n) Yi—yy
and
(12.16) Dy = D+ (n—1) (Y — Y.

From (12.4) and (5.12) we have
(12.17) B = B+ m—1) Y

so that (12.16) is consistent with (5.14).

As an example of the second theorem of this section we
consider the asymmetric connection which can be assigned
to' 2 Riemannian space so that the geodesics be the paths,
that there be n» independent vector-fields of parallel unit vectors
and that the angle between two directions at a point and
the parallel directions at any other point be equal.* In order
that the first two conditions be satisfied we must have
respectively

(12.18) L = {;k}+6} W+ Ok W+ Lk,

where the Christoffel symbols are given by (1.6), and Ljz = 0
(§ 9), which in consequence of (5.3) and (6.2) are

(12.19) Rhq+ 9hu— Qi+ @ Qb — 2k 94 = 0,

where covariant differentiation is with respect to the g¢'s
and Rj; are the components of the Riemannian curvature
tensor. The third condition is gy — 0, which are reducible
by means of (12.18) to
(12.20) 2gy Yx+ g Yi+ g Yi + L+ L = 0,
where

Lz = g Uk

Multiplying (12.20) by ¢V and summing for ¢ and j, and by
¢% and summing for ¢ and %, we find that

*Cf. Cartan and Schouten, 1926, 12.
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(12.21) g =0, =0,
and hence from (12.20)
(12.22) Qo+ Qp = 0.

When we take the sum of the three equations obtained from
(12.19) by permuting the suberipts cyclically and make use
of known identities in the R’s, we have

(12.28) Rhx— L1 — Qi+ L L — 9 O

— G Q= 0,
so that (12.19) may be written in the form
(12.24) R+ Qaa,j+ D Qay = 0.

From these equations because of (12.22) and well-known
identities in Ryx* we obtain
Ry = % (2 i i+ Lnire Ly — Ly L)
and hence from (12.24)
(12.25) Qurj = 3 (g Gho— Dus 25+ Ona 9.

From (12.24) we have
Ry = 7 Slf,,-.

With the aid of (12.22) and (12.25) we obtain
(12.26) Rjx,1 == 0.

A solution of these equations is furnished by the Einstein
spaces, that is, spaces for which Ry; = cgy, where ¢ is a
constant. When this condition is not satisfied, it follows
from (12.26) that the spaces are a sub-class of those considered
by the authort (cf. § 29). For further considerations of the
preceding case see the paper by Cartan and Schouten.

*1926, 1, p. 21.
+Ct. 1928, 3.
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13. Tensors independent of the choice of ;. From
(12.5), (12.9), (12.10). (124) and (12.17) it is seen that the
following tensors are independent of the choice of the vector
Yy in (12.1):

(13.1) A,':r.-/ = L;:I;I -+ 6} Ly,

(13.2) L}m—-’l? & A,

(13.3) Ly, + Lsj,

(18.4) Th = .2,;,-1— (d,~ Q-85 ).

From (12.13) and (12.16) we have

1 1
Y == — g [-‘-’jk — 5+ oy (Dj, — mjk)],

Yi—nj = ——7 (Qrj — D).

When these expressions are substituted in (12.8), we find
that the tensor of components

. 1 ; . :
T/’ikl = -‘-’}I-‘l -+ =1 (6;, 2y — o} Q4 — 6} D)
(13.5)

1 i ;
+ =17 (O @j — 0] D)

is independent of the choice of yi.* From (13.5) we have
by contraction

(136) Thi = 0, Thi = o

Other tensors independent of the choice of y; are obtained
in § 32. We close this section by establishing the following
theorem:

A necessary and st{ﬁczent condition that a vector Y¥; can be
chosen 3o that tensor L be zero is that the tensor A be zero.

* These results for (13.2), (13.4) and (13.5) are due to J. M. Thomas,
1926, 8, pp. 667, 668.
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Evidently it is a necessary condition. Conversely, if the
condition is satisfied, we have

(18.7) Liu+ 8Ly = 0.
Contracting for 7 and j, we have, using the notation of (12.10),
Ai+nLy = 0.

From (5.3), (5.11), (5.14) and (12.13) we have
188) Ay = g (Bt 00— (B ).
Hence equations (13.7) become
i 1 4 o 0
Lju + ™ 9 [W (B + ) — Y B+ 3-’1)] = 0.

Comparing these equations with (12.5) we see that Ejm = (),
if we take

2 do
Y = — B+ Q)+ 5%,

where ¢ is any function of the z's.

14. Semi-symmetric connections. In § 12 it was
shown that parallelism with respect to every curve in space
cannot be the same for two symmetric connections. How-
ever, if for an asymmetric connection we have

(14.1) D = o ax— 0 aj, .

where «; are the components of a vector, and we take
Yi = — ai, then .Q}k = (0, as follows from (12.4). Con-
versely, in order that it be possible to choose y¥; so that
.Q}k = 0, it is necessary that S)f-k be of the form (14.1).
Following Schouten* we say that the connection is semi-
symmetric in this case. Hence we have:

* 1924, 1, p. 69.
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A necessary and sufficient condition that parallelism be the
same with respect to every curve for two comnections ome of
which i symmetric is that the other be semi-symmetric.

From (12.4) it follows that, when a connection is semi-
symmetric, the other connections with the same parallelism
are semi-symmetric with the exception of a unique symmetric
connection.

We establish the following theorem due to J. M. Thomas:*

A mecessary and sufficient condition that an asymmetric
connection be semi-symmetric is that there exist a covrdinate
system for each point of space in terms of which any vector
at the point and that arising from it by a parallel displace-
ment to any nearby point are proportional.

If such a coordinate system y° exist and 2° are the com-
ponents of a vector at a point P, then at a nearby point
the components are A°' — Lj # dy*. The conditions of the
theorem are given by

(T8t — L ) ¥ A dy* = 0.

Proceeding with these equations in a manner analogous to
that at the beginning of § 12, we obtain

i
(14.2) i = %Lﬁk.
From these equations we have
28 = (0 The— G I,

Contracting for ¢ and j, we have

(14.3) 2% = ”:1 L

and the preceding equations can be written as
1

n—1

Hence the connection must be semi-symmetric.
* 1926, 3, p. 670.

(14.4) O = (0} B — 05 3)).
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Conversely, if a connection is semi-symmetric and x’ are
a general system of codrdinates and P is the point of co-
ordinates xf, when we effect the transformation

(148) o = gty — 2 T Y F+ s (@)

we have at P

—")—617
[}

(14.6) )
( 9%zt ) — (I3, +o= [6) ($h)y+ 0% ()]

and from the first of these it follows that
(14.7) (2), = (2,
Making use of equations of the form (2.1), we have,
i)y = (g + =7 [4 (), + 0% ()]

Since equations (14.4) hold for any codrdinate system, we
have in consequence of (14.7),

o 2 i~
(Lj)o = = 3} (2o,

from which (14.3) follows by contraction. Hence in the
coordinate system defined by (14.5), the conditions (14.2)
are satisfied.

15. Transversals of parallelism of a given vector-
field and associate vector-fields. If for a given vector-
field 2¢ the determinant | 4% j| is not zero, a necessary and
sufficient condition that the determinant |).| ;| for = gt
be zero, that is, that the determinant

PR )

be zero, is that ¢ be a sblution of the equation*
* Of. Kowalewski, 1909, 2, p. 84; Fine, 1905, 1, p. 605.
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b .. _29
(pl auxt o o™
1 1
(15.2) ‘ LS il —o.
).II ;'nll . lnln

Moreover, the rank of (15.1) is n—1 for each solution.
Hence in considering any vector-field we assume that the
components are changed by a factor ¢ if necessary, so that
|A%;| is at most of rank n—1. We say that then the field
is normal and that ¢ is the normalizing factor. This is a
generalization of a unit, or a null, vector-field in a Riemannian
space. For, in this case we have 2;4°j; = 0, and con-
sequently 1| = 0.

If the rank of |A%;| is n—», there are r independent
vector-fields pfa) (¢ =1, -.-, r) which satisfy

(15.3) wWay; =0
and the general solution of (15.3) is
(15‘4) '“‘i = '/’al‘fa) (“ = l) Tty r))

where the @’s are arbitrary functions of the «’s.
When gf satisfy (15.3), the vectors 4 are parallel with
respect to each curve of the congruence defined by

dz* __ dz
o= =
as follows from (9.1). Moreover, it follows that the vectors A’y
are parallel, whatever be ¢. Accordingly we say that each
solution u* of (15.3) defines a congruence of transversals of
parallelism of the field Ai*
When |2%;| is of rank n—r, we say that the field 2° is
general or special, according as the rank of the matrix of the

* Trangversals of parallelism for a sirface in ordinary space -were con-
sidered by Bianchi, 1923, 6, p. 806.
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last n rows of (15.2) is n— r+1 or n—». When the field
is special, and also when it is general and » > 1, equation
(16.2) is satisfied by every function 9. When r =1 and
the field is general, equation (15.2) reduces to

(15.5) w —2—3 =0

Suppose that the fleld is general and that ¢ is a solution
of (15.5) when r = 1, or any function whatever when » > 1.
The equations

il i i 09\
(15.6) W o2+ 35) = o

are satisfied by all vectors uf defined by (15.4) for which
the functions y* satisfy the equation

¥ oy

o9 __

oud 0.

If there were a solution of (15.6) not expressible in the
form (15.4), then from (15.6) we have equations of the form
2= a’2%;, in which case the rank of the matrix of the last
n rows of (15.2) is n—r. Hence when the field is general,
all the solutions of (15.6) are expressible in the form (15.4),
that is, on replacing A% by A9 no new congruences of trans-
versals of parallelism are obtained.

When the field is special, the determinant (15.1) is of
rank n—r at most and there are at least » independent
solutions of (15.6). Consequently if ¢ is such that not all
of the equations

3
"{w—a%:O (@ =1,...,7)

are satisfied, there is another solution, say p{a +1» Of equations
(16.6). Evidently it.is such that s, +,,—g71=0. If ufis
any other solution of (15.6) not of the form (15.4), on
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eliminating 4!/ from (15.6) and from the similar equations
when p/ is replaced by p/, .., we have

(15.7) (”{a+n w2 laofk? = 8 oy~ ’ laofuq’) ;= 0,
and consequently pt is expressible linearly in terms of ,pm,
@B@=1,.-.,r4+1). Hence for the given function ¢ all
solutions of (15.6) are expressible linearly in terms of these
r-1 vectors. For another function, say ¢,, there is at most
one field uf ., other than u{, (¢ =1,...,7). But in this
case we have the equations obtained from (15.7) on replacing ¢
in the first term of the left-hand member by ¢, and p/ through-
out by g/ .,. Consequently the change of the function ¢
does not yield new congruences of transversals of parallelism.
Gathering these results together, we have: )
When a vector-field i* is normal and the rank of | i%;| s
n—r, there are r independent conmgruences of transversals of
parallelism, unless the rank of the matrixz of the last n rows
of (15.2) is n—r; in the latter case there are r+ 1 independent
congruences of transversals; moreover, in either case any linear
combination of the vectors defining congruences of transversals
also defines such a congruence.
When 2Y; = = g;, where o; is any vector, the vectors %’
are parallel with respect to any curve in the space (cf. §§ 9, 10).
We consider the converse problem: Given a vector-field zf
to determine the vector-fields i¢ for which the former is
a congruence of transversals of parallelism. We assume that
the coordinate system zf is that for which u®=0(¢=2,...,n).*
In this codrdinate system the equations (15.3) for the deter-
mination of the i’s are

i
(15.8) —Z% FVIh =

Any set of functions A¢ satisfying these equations are the
components in the x's of a vector-field with respect to which
the congruence g is the congruence of transversals. A set

*1926, 1, p. 5.
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of solutions is determined by arbitrary values of A¢ for x! =0,
that is, by » arbitrary functlons of % ..., *. In particular,
the n sets of solutions A(,, where a, for « =1, ..., n,
determines the §et and 1 the component, determined by the
initial values (A(y)y == 8. are independent, since the deter-
minant |A{ | is not identically zero, Moreover, from the
form of (15. 8) it follows that ' = ¢ l(a) is also a solution,
where the ¢'s are any functions of x% ..., 2*. Hence we
have:

For Jny comgruence wi there exist m independent vector-
Jields Ay with respect to which the given congruence is the
congruence of transversals of-parallelism; moreover, the field

¥ o= ¢ (@ =1, )

possesses the same property, when the ¢’s are any solutions of
the equation
]
‘n 8:‘: = 0,
the coirdinates x* being any whatever.
When 124;] is of rank n—r, the equations

(15.9) vi A== 0

are satisfied by » independent covariant vector-fields
v® (e =1,..-,7) and the general solution is

(15.10) v = Yo v,

where the y’'s are arbitrary functions of the a’'s. We say
that each such field is associate to the given field 2%* If the
given field is general, there are r —1 fields of independent
vectors given by (156.10) for which »; 4 = 0, and these fields
are associate to the field A9 for every ¢ satisfying (15.2).
If, however, the field is special each of the fields (15.10) is
associate to 2¢¢, whatever be ¢.

* By normalizing the field we have that the rank is at most » — 1 and
consequently there is at least one associate covariant field.
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In like manner the components u; of a covariant field can
be chosen so that the rank of Juy;| is n—r (> 1). Any
solution 2¢ of .

#pap =0

gives the components of a field of contravariant vectors
associate to the given field.*

16. Associate directions. Congider a field of non-parallel
contravariant vectors of components A‘ and a curve (' at
points of which the cootrdinates z# are expressed in terms of
a parameter . A family of contravariant vectors of com-
ponents p' is defined at points of C by the equations

dzi

(16.1) It

1i| j = [li.
If ' = f(t)A% the vectors are parallel with respect to (.
When this condition is not satisfied, we say that g’ are
the components of the associatc direction of A* with respect
to (.

If A¢ are replaced in (16.1) by ¢ ¢, where ¢ is any function
of the x's, and u* are the components of the associate directions
of the latter vectors, we have

— c ;A9
9 = R ——
(16.2) pt = gp+2 5

In this way we get a pencil of associate directions, determined
by the given vector and any one of the associate directions.
Conversely it is possible to choose a function ¢ such that
the associate direction of ¢4¢ is a given one of the pencil
other than the direction A%

When the given vector-field has been normalized (§ 15),
if necessary, and »; are the components of an associate
covariant vector, we have »; ¢ = 0. Hence we have:

For a field of non-parallel contravariant vectors the associate
directions with respect to a curve are pseudo-drthogonal to the
agsoctate covariant veclors of the field.

* Eisenhart, 1926, 14.
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In particular, if C is not a path of the space and ¢ are the
components of the tangent to C, that is, 4 = %, equations
(16.1) become
] dx) dx*

. i

= pd.

If we change the parameter {, we get a pencil of associate
directions as in (16.2). We note that associate directions
of a curve are independent of the tensor 2j. The associate
directions of the tangent are evidently a generalization of
the pencil determined by the tangent and first curvature normal
of a curve in a Riemannian space (cf. § 24).*

In a similar manner, if A; are the components of any field
of non-parallel covariant vectors, the equations

daz/
Aj=gg =

define the associate covariant vector g of 4; with respect to
the curve, unless the vectors i; are parallel with respect to
it, that is, unless u; = 2; £(f). When 4; is replaced by ¢ 4;,
where ¢ is an arbitrary function of the x’s, we get a pencil
of associate covariant vectors determined by the given vector
and any one of them. Moreover, we have:

For a field of non-parallel covariant vectors the associate
covariant vectors with respect to a curve are pseudo-srthogonal
to the associate comtravariant vectors of the field.

17. Determination of a tensor by an ennuple of
vectors and invariants. Let if, denote the componentst
of n linearly independent vectors in a codrdinate system z%
Then the determinant

(11.1) A= |s]

* 1926, 1, pp. 60, 72.

t As formerly the index with parentheses indicates the vector and the
one without parentheses the component. This convention will be followed
hereafter, and unless stated otherwise the indices take the value 1, ..., n;
moreover, the summation convention is used for both sets of indices.
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is not identically zero. We denote by i{” the »*® functions

defined by the equations
(17.2) X Ay = 9;

as thus defined A\ is the cofactor Al in 4 divided by 4.
In any other codrdinate system «'* the functions 2’ defined
by 4’7 Alsy = 05 are such that

o/

nHe) ()
i = 1j o E

Consequently 2{” are the components of # independent
covariant vectors. Furthermore, it follows from (17.2) that

17.3) 20 My = 6.

If we had started with the independent covariant vectors
2®, then equations (17.2) serve to define »n independent
contravariant vectors. Owing to the reciprocal character of
the relations (17.2), we say that either set is conjugate to
the other, and that the two sets constitute an ennuple.
It is evident that an orthogonal ennmuple of contravariant
vectors in a Riemannian space* and the associate covariant
vectors form an ennuple in the above sense.

If a}::::;: are the components of a tensor, then the quantities

37 RN T AT/ 3] ) 2 i
(17.4) Bl = ap ARG A
are invariants. If these expressions are substituted in the
right-hand members of -the equations

g, Y i, q(e) ©,)
(178) el = d;:'"a. My eee A AL,
these equations are identically satisfied because of (17.3).
Hence we have:

*1926, 1, pp. 14, 40, 96.
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The components of any tensor arve erpressible in terms of
invariants and the components of an ennuple*
In particular, we can express !.'"(,- in the form

(17.6) 2 = oy My 2P AP,

where mf;r are skew-symmetric in the subscripts.

We shall apply the preceding results to show that, if
@i is a tensor such that ayx lfi,) May Moy = 0 for o, ¢ and
r not equal to n, then

- On (n) G0y
(17.() ij = l,’ aj;;-{-lj bkg—|—3.;:' Cijy
where «j, by, ¢; are temsors. In fact, if we write ayx in
the form (17.5), that is
w) ()
Wil = Cagy A W,

we have that rgsr = 0. Hence (17.7) follows, where

) -
e = tnag 47 1" and so_on.
Any other ennuple 2y, 1 is given by

ad « 4é () G ale)
(17.8) Ay = Qg ia)- A = Ak .

where the determinant |a¢| is not identically zero, and the
a’s and A’s are invariants in the relations

(17.9) ag dg = 905,

,

as follows from (17.2). 1f ?ﬁ::j:,: are the invariants for the

tensor a,‘::,'::}" with respect to this ennuple, we have
(1T.00) P = QUi AQ o Ag .. dfe.
When for a given coirdinate system we take

(17.11) Ao = 0%,
* Cf. 1926, 1, p. 97.
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then
(17.12) A0 = &,

as follows from (17.2) or (17.3). For this particular ennuple
we have from (17.5)
SR o )

(17.13) ajg =

that is, any component of the tensor in this cotérdinate
system is equal to the invariant with the same indices as
the component. We call the ennuple (17.11) and (17.12)
the fundamental ennuple of the given cotérdinate system.

18. The invariants y,”; of an ennuple. For a given
ennuple the invariants ;",,"a defined by

(18.1) )"u"tr = }"fll) I 15") )"{ﬂ')

are a generalization of the coefficients of rotation of an
orthogonal ennuple in a Riemannian space, as defined by
Ricci and Levi-Civita.*

From (18.1) we have because of (17.3)

. Y [(g
(18.2) A:p)lj - J',u' Moy lfr)'

If equations (18.2) e multiplied by 4{” and summed for
1, the resulting equations are reducible by means of (2.2) to
(18.3) Lij = — a9 9 X Frae M iy 19

o) nohp Ay 4
Conversely, if we have any ennuple and a set of invariants
7o and we define functions Lj; by (18.3) and L'k by
corresponding equations for any other codrdinate system
z'%, we find that equations (2.1) are satisfied. Hence we
have:

An ennuple of vectors and any set of invariants y,'s de-
termine a connection; and any asymmelric connection is so
determined.t

*1901, 1, p. 148; cf. 1926, 1, p. 97.
t Cf. Levy, 1927, 1, p. 307.
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When in particular, we take r,."., == 0, we have from (18.3)

i () 3)-(,,)
(18.4) Ly = —ip 2
and from (18.2)
(18.5) l(a)lj =

Consequently the = fields of vectors I are parallel fields
and hence Lh; = 0 (§ 9). Conversely, if the latter condition
is satisfied, we can choose » linearly independent vector-
fields satisfying (18.5) and consequently we have (18.4).
Hence we have:

A necessary and sufficient condition that the curvature tensor
L,;a of a manifold with asymmetric connection be zero is that
the coefficients of the comnection be expressible in the form
(18.4) in terms of an ennuple.

From the form of equations (2.1) we have:

If ij are the coefﬁczents of a comnection, so also are
L,k-l- ajx, where a;k are the components of an arbitrary tensor.

As a consequence of this theorem we have that for any
ennuple the quantities

= 3
(18.6) Lij = — 4" S
are the coefficients of an asymmetiic connection. For from
(18.4) and (3.3) we have

(18.7) Lh,, - Lh == th+29;:h-

For the connection defined by (18.6) we have from (18.3)

. () /(g Y 31(«))
(18.8) e = A (). A L
from which it follows that .’ is skew-symmetric in # and o.
Equations (18.7) show that for the connections (18.4) and
(18.6) to be the same, it is necessary that Lj; be symmetric
in 2 and y. In this case equations (18.5) become

* Cf. Weitzenbick, 1923, 2, p. 319.
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(18.9) Xy = 0,

where the covariant differentiation is with respect to the I''s.
Then from (9.6) and (5.3) we have B}u = Q. Conversely,
when these conditions are satisfied, equations (18.9) admit
n linearly independent fields of vectors parallel with respect
to the Is.

From (18.3) it follows that a necessary and sufficient con-

dition that y,”¢ be skew-symmetric in the indices » and ¢
is that

i i () alia) (@) 31%«)
L+ Ljp = —(lh ™ + A ax")'

This is the symmetric part of either of the coefficients (18.4)
or (18.6) and consequently satisfies (5.6). In consequence
of this result and the above theorem we have:

A necessary and sufficient condition that the invariants-yu”s
be skew-symmetric in the indices s and o s that

; 1 a il Y H
(18.10) Liy = —5 (z::’" 5o T4 ax‘:’)+ai,~,

where .qu is an arbitrary tensor skew-symmetric in I and j.
If we denote by ).:a”; the covariant derivative of il for

the connection Lj; defined by (12.1), we have

i ¢ .4
21k — i = 2V Ay
from which it follows that

@) ¢4 i
3" Ry 5 — k) = 209,
Consequently the mixed tensor

(18.11) 1fa)lk—"171zx) 11"” l{p)lk

is independent of the choice of the vector ¥;. The same is
true of the tensor
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(3] a . 8
1i|k—— )tfp) W

If equations (18.11) be multiplied by i f, and ¢ and k
be summed, we find that the invariants

(18.12) —— 0 vds

are independent of the choice of the vector ¥; in (12 1).
Conversely, if we have two asymmetric connections ij and
L,k for which the invariants (18.12) are equal for a given
ennuple, it follows from (18.3) that

— , 1 _
Li— L = =6 G —rb) 42,
n 8o

which evidently are of the form (12.1). Hence we have:

A necessary and sufficient condition that parallelism be the
same for two different asymmetric connections is that the
corresponding invariants (18.12) for a given ennuple be equal
Jor these connections.

19. Geometric properties expressed in terms of the
invariants y,’;. In order that the vector-field Aty of an
ennuple at points of each curve of a congruence ).},;, be
parallel with respect to the curve, it is necessary and
sufficient that

1{#) )v(i«)]j == Qlfa)-

By means of (18.2) these equations are equivalent to

()’xrp—("):;) )':y) = 0.
Hence we have: )
A necessary and sufficient condition that the vector-field My
of an ennuple be parallel with respect to the curves of a
congruence My is that

(19.1) rp =10 (@=1,...,n;v%e)
As a corollary we have:
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A necessary and sufficient condition that the curves of the
congruence e of an ennuple be paths is that

(19.2) Yea =0* (v=1,...,n;vF a).
If we use the notation
2 0
(19.3) —a{“— = Ao 8£ .
then
( 8 9 8 @ ) p
otc ats atP ot
) i .
(194) = 8_5 ()-:a) li'p)/i—lfﬁ) l(ja)/i“{‘ 21:«) 45’) -Qtjk)
v 0
= e rap 200" 2L,

in consequence of (18.2) and (17.6). These equations are
generalizations of equations due to Ricci and Levi-Civitat
in Riemannian geometry. As an application of fhese equations
we seek necessary and sufficient conditions that p of the
congruences of an ennuple, say Ai», (6 =1, ..., p), generate
a system of oo®7 varieties V,. In this case the equations

(19.5) l{o’) aa_aj; =0 (=1, RN )

must form a complete system. From (19.4) we have:

A necessary and sufficient condition that the comgruences
Xy for ==1,---, p generate a system of ™2 varieties Vj
is that
(19.6) VeV gt 205 = 0

(ayﬂ= 1, .., p; V=P+1y MRS 'n)'
As a corollary we have:

A necessary and syfficient condition that there exist a
codrdinate system such that the curves of the congruences of

* Cf. 1926, 1, p. 100: also, Levy, 1927, 1, p. 808.

+1901, 1, p. 150: cf. also 1926, 1, p. 99.

‘.
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an ennuple be codrdinate lines is that equations (19.6) hold
Jor all distinct values of @, 8 and v.*
We say that a congruence 2; is pseudonormal to a family
of hypersurfaces f(z. .. -, ) = const., if
2y — w2l
b= psio
From the preceding results we have:
A necessary and sufficient condition that a congruence A
of an ennuple be pseudonormal to a family of hypersurfaces
is that

(19.7) J’a"ﬁ—)’ﬁ”,,-l-?m:ﬁ = 0 (a, A=1.-.. . n_—l).f

* These two theorems for the case of a symmetric connection, in which
case “’:,8 = 0, are due to Levy, 1927, 1, p.308.
+C1. 1926, 1, p. 115.




CHAPTER II

SYMMETRIC CONNECTIONS

20. Geodesic codrdinates. When a codrdinate system can
be chosen for which the coefficients of the connection vanish
at a given point P(xf), the vector at any nearby point
P’ (a8 4 dx*) parallel to a given contravariant vector at P has
the same components as at P to within terms of the second
and higher orders, as follows from (7.1). If in equations (2.1)
we put Lz = 0, we see that a necessary condition is that the
coefficients in any other codrdinate system be symmetric at P.

In order to show that this condition is also sufficient, we
imagine that the space is referred to a general codrdinate
system ' and we consider the transformation of coordinates
defined by

201) & = 2’ +9f w’j—%(l)ﬁﬂo o ot i,

where ¥* are any functions of the 2''s such that they and
their first and second derivatives are zero when the z''s are
zero.* From (20.1) we have at P

aat

(20.2) (a—x'f)o= 3. ( o'af

a7 o™

-)°= — (T.

From these expressions and equations (5.6) we have at P
(20.3) (I'f)o = 0.

Consequently any cotrdinate system defined by (20.1) possesses
the desired property. Hence we have:
When, and only when, at a point the coefficients of a con-
nection are symmelric in the subscripts, codrdinate systems can
* Ct. 1926, 1, p. 56.
58
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be chosen, with the point as origin, such that the coefficients
are zero at the point.

Weyl* calls a connection affine, when at every point a
codrdinate system exists for which the components of a vector
in this codrdinate system remain unaltered by an infinitesimal
displacement, to within terms of the second and higher orders,
but we use the term affine for asymmetric connections as
well (cf. § 7).

Any cobrdinate system for which (20.3) is satisfied has
been called geodesic by Weyl. From the foregoing results it
follows that if the coordinates a* are geodesic for a point P
as origin, other geodesic codrdinate systems with the same
origin are defined by
(20.4) o = of 2’ + ¢,
where the y’'s are of the character appearing in (20.1).

It is evident that at the origin of a geodesic codrdinate
system first covariant derivatives reduce to ordinary derivatives.
Consequently the use of such a system frequently makes for
considerable simplification in any problem involving first co-
variant derivatives. Moreover, when the results of such an
investigation are stated in tensor form, their generality is not
conditioned by the use of the particular codrdinate system.

Symmetric connections are characterized by another property.
Consider a point P(z") and two infinitesimal vectors d,2* and
dya* at P, and denote by P, and P; the points of codrdinates
¥+ dyaf and o+ dy o* respectively. When the vector d,
undergoes a general parallel displacement to P, its components
at P, are dlx‘+d,d,x‘+L}kd1wj d.x", and the coodrdinates
of the point P;, at the extremity of the vector are

&+ dyid' +d &' + dpdy o + Lind, o dy o

In like manner when the vector dya’ undergoes a parallel
displacement to P,, the cotrdinates of the point P,, at the
extremity of the vector are

&+ o'+ dyat + dydy’ + Lidy o’ dy 2.
*1931, 1, p. 112.
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Hence a necessary and sufficient condition that P,y and P,
coincide is that Lj be symmetric in j and k, that is, that
the connection be symmetric.*

21. The curvature tensor and other fundamental
tensors. In § 5 it was seen that the quantities

ar; ar} ; ;
(21.1) B = ax{} — az;"+rj~‘,r;.,,—~ ik The

are the components of a tensor. This tensor arises when
we express the conditions of integrability of equations (5.6).
In fact, these conditions assume the form

ax'®
ot

ax’? ax'? ax'”

dx/ ox* axt

(21.2) By — Bju,
from which equations the tensor character of B}m is apparent.
This tensor is a generalization of the Riemannian curvature
tensor of a Riemannian space and we call it the curvature
tensor of the space with symmetric connection.

From (21.1) it follows that Bjy is skew-symmetric in %
and /, that is, )
(21.3) Bju+ Bju = 0.

Also the components satisfy the identities
(214) Bju+ Biy+ B = 0.

This result js readily proved by choosing a geodesic codrdinate
system at a point P. In this case at P all of the Is are
zero and (21.4) can be shown to hold at P in this cotrdinate
system. Since this is a tensor equation it holds at P in any
codrdinate system. Moreover, as P is any point, it holds
throughout the space.

In like manner at a point P in a geodesic codrdinate
system with P origin, we have

*Of. Weyl, 1921, 1, p. 107; Levi-Civita, 1926, 5, p. 185.
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8’[}‘1 3’]":1‘
B, m = oLk o™ 0 a;:'

as follows from (21.1) and (6.1). Consequently
(21.5) Bhum+ Bjim,x+ Biwk,t = 0.

Since these are tensor equations, they hold throughout space
in any codrdinate system. They are evidently a generalization
of the identities of Bianchi for a Riemannian space, and are
called the identities of Bianchi for a symmetric connection.*

In a similar manner the following identities due to Veblen+
can be established:

Bia,m+ Bijmx+ Boaxj+ Bimji = 0.3

22. Equations of the paths. In § 12 it was shown
that parallelism throughout a space with symmetric connection
is uniquely defined, that is, that it is not possible to have
two symmetric connections with respect to which parallel
directions along every curve in the space are the same for
both connections; thus each symmetric connection is a un-
ique affine connection. However, as a corollary of the third
theorem of § 12 we have: '

The paths are the same for two symmetric connections whose
coefficients are in the relations

(22.1) T = i+ & w0 v,

where Y; is an arbitrary covariant vector.§
The paths are a generalization of the straight lines of
euclidean space. Accordingly the properties of the space

* Ct. Veblen, 1922, 5, p. 197; Schouten, 1928, 7.

tL.c, p. 197

$It is evident that the results of these two sections apply not only
to the case of symmetric connections, but that they apply also to the
symmetric parts of any asymmetric connection.

§ Weyl, 1921, 2, p. 100; cf. also Eisenhart, 1922, 2 and Veblen, 1922, 8.
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which depend upon the paths and not upon a particular affine
connection of the set (22.1) constitute a projective geometry
of paths, whereas those depending upon a particular affine
connection constitute an affine geomelry of paths. In this
chapter we consider the latter and postpone to the next
chapter a study of the former.

If we have a particular path, that is, an integral curve
of equations (7.6), then

N dxf d.lk _ A
LA TERY TR A TI

d’.’]«.
24 — +

where ¢ is a determinate function of 7. If we define a
parameter s by

(22.8) g—: — ¢l

‘where ¢ is an arbitrary constant, equations (22.2) become

&L ; dxd do*

(22.4) W-{_I}kd_s_d; = 0.
Thus the parameter s for a path, which we call an affine
parameter, is the analogue of the arc s of a geodesic in a
Riemannian space.* It is evident from (22.3) or (22.4) that,
if s is any affine parameter, the most general one is given
by as-+b where a and b are arbitrary constants. Further-
more, by means of equations (5.6) we can establish the
theorem (cf. § 38):

When the coirdinates x* undergo a general transformation,
an affine parameter is not allered.

From the form of equations (22.4) it follows that a path
is uniquely determined by a point P, of codrdinates ab and
a direction at P,. In fact, if we put

. ) dzt
(22.5) B = (_dT)o'
where a subscript zero indicates the value at P,, we have
from (22.4)
*1926, 1, p. 50.
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B= B (T, Fe+ .

1 (dr
n! \ ds®

(22.6)

M

the coefficients of s* and higher powers of s being obtained
from the equations which result from (22.4) by differentiation
and reduction by means of (22.4). Thus we have

& | i del Ak dod

G TR e =

d‘w'+ i da/ dot dat da™ 0

PP Pl N Pel P!
where

1 "

Ify= 4P (ax,nk rfkni—t,-‘,rﬁ)

(22.7) .
-3 (ax'rf" 2’}"”{‘)’

and in general

P before an expression indicating the sum of terms obtained
by permuting the subscripts cyclically and N denotes the
number of subscripts. Hence we have in place of (22.6)

(22.9) &f = x}+ Fs— %(I‘f,)o Fighst— %(rf WFEES ..

The domain of convergence of these series depends evidently
upon the expressions for I}k and the values of &. However
for sufficiently small values of s they define a path, that is,
an integral curve of equations (22.4).*
23. Normal codrdinates. In § 20 we saw that for
a given symmetric connection there can be chosen codrdinate
* These results are an immediate generalisation of & similar treatment

for geodesics in Riemannian ge~metry, 1926, 1, p. 62; cf. Veblen and
T. Y. Thomas, 1923, 1, p. 560.
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systems for any point so that at the point the coefficients
I‘fk are zero. In this section we wish to establish the existence
of a class of codrdinate systems possessing this property
which are a generalization of Riemannian codrdinates in
a general Riemannian space.* They were considered first
by Veblen,} who has called them normal coordinates.

Let C be a path through a point P,, and s an affine
parameter of the path which is zero at P,; then the con-
stants & are uniquely defined by (22.5). To each point of C
we assign coordinates y* by the equations

(23.1) yt = s,

Since equations (22.9) define the path in the 2’s, between
the «’s and y's at points of C we have the relations

) . .1 . . 1 -
(28.9) & = af+y'—5 (TP — i Thdw v+ .

If we assign coodrdinates in this manner to the points on all
paths through P, in a domain, such that no two paths meet
again within it, we have a coordinate system # in the domain.
Moreover, equations (23.2) are the same for all paths and
consequently are the equations of the transformation of co-

ordinates, P, being the origin for the y’s. Since the jacobian

%}- of these equations is different from zero at P,, the series

can be inverted, and we have

(233) ¥ =& —a+F@ —a,.-, 2" —ap),
where F* are series in the second and higher powers of
(2/ — ) for j =1, ..., n. Comparing (23.2) with (20.1) we
see that the y's are a particular type of geodesic cotrdinates;
we call them normal coordinates.

From the definition of the y's it follows that (23.1) are
the equations in finite form in the y's of the paths through P,.

* 1926, 1, p. 63.

+1922, 5. p. 198; also Veblen and T.Y. Thomas, 1923, 1, pp. 662-566.
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Consequently the equations of the paths through the origin
of a normal codrdinate system have the same form in these
codrdinates as the equations of straight lines in euclidean
space in cartesian codrdinates.

If we denote by Cj the coefficients of the comnection in
the y's, the equations of the paths in this codrdinate system
are

dtyf dyi d
(23.4) d{, +Ch " dy: = 0.

Since these must be satisfied by (23.1), we must have

(28.5) Ch¥ & =0,
and on multiplication by s*
(23.6) ey = o,

which equations hold throughout the domain. Conversely, if
these conditions are satisfied, equations (23.4) are satisfied
by (23.1) and consequently the y's are normal codrdinates.

When we apply to (23.4) considerations similar to those
applied to (22.4) which led to (22.9), we obtain

( ¥ = §‘8—%(ka)o §j§ksa—-317(63‘u)o FEesd—...
23.1 :
) 1 (C..;), Eh...Erg?
—E J["'Jp)O‘ o gt —

where Qfl...j’ are defined by equations of the form (22.8).
Since these expressions must be equivalent to (23.1), we
must have

(23.8) (Ci)o = 0
and
(23.9) (Cog)e = 0

for all values of p. Equations (23.8) follow also from (23.5),
since the ¥s are arbitrary.

From (23.8) also it follows that normal codrdinates are
a particular class of geodesic codrdinates (§ 20).
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If instead of a general codrdinate system xz! we take any
other codrdinate system «’* and proceed as above and denote
by »"* the normal coordinates thus obtained, we have in place

of (23.1)
i (dw") .
y = ds 0

for the equations of the paths. Since

do*\ (e dady ..
(23.10) (_ds )o = (axf W)o = a; ¥/,

where the a’s are constants, we have

(23.11) ¥'=dy.
Hence we have:

When the cobrdinates x* of a space are subjected to an
arbitrary analytic transformation, the normal cosrdinates
determined by the z's and a point undergo a linear homo-
geneous transformation with constant coefficients.

From the definition (23.10) of the a's it follows that when
a transformation (23.11) of the normal codrdinates is given,
corresponding analytic transformations of the x’s exist but
are not uniquely defined.

From the form of (23.11) it follows tifat normal coordinates
are fundamental in the affine geometry in the neighborhood
of a point.

1f we differentiate equation (23.6) with respect to s along
any path, make use of (23.1) and multiply the resulting
equation by s, we obtain

(28.12) Cay Sy =o,
where ;

; 1 (3G
(23.13) =5 P(3 y';")

P indicating the sum of terms obtained by permuting j, k
and ! cyclically. Proceeding with (23.12) as was done with
(23.6), we get a sequence of identities of the form
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(23.14) Cgy -y =0,
where

\ 1 —_— _L c jr—-l
(23.15) sy = P( L )

As thus defined the C’s are symmetric in the subscripts and
they are the functions in the normal coordinates y for which
the corresponding functions in the 2’s are given by (22.8).
From (23.13) and (23.15) we obtain

¢ 2 a%;i)
Clam = 3~4S(8y‘8y”‘ ’

S indicating the sum of the six terms obtained by the per-
mutations of the subseripts, j, k, I, m, which do not yield
equivalent terms. In general, we have

2 ( " (0}, )
r(r—1) " \ays ... oy’

23.16) (., =

in this case S indicates the sumn of »(r—1)/2 different terms.

If 4 are a system of normal codrdinates with a point P
as origin and y* are the normal codrdinates corresponding
to the y’s with the point P’, of codrdinates dyi, as origin,
we have from (23.2)

1 1. '
v =dy'+yt—5 Ciy'y"
(23.17)
—-*3",' (/li J,k!/'l"l"" )
where Cjk and so forth are the values of the corresponding
C’s Tor the y's at P'. Becanse of (23.8) we have

(" — aol") l ( 3 C.'”‘ ) l »
G = (a SR vrry KULUS R

24. Curvature of a curve. Let C be any curve in
a Vy, not a path, the codrdinates »* being expressed in terms
of a general parameter {. The equations
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I P
ae Ty g =

(24.1)

define a contravariant vector u’. If we change the parameter ¢,
we get in general a new vector, which is of the pencil
determined by ¢ and —da—;—":— We single out one of these
vectors by choosing for the parameter an affine parameter s
of the path tangent to C at a given point and we choose s
so that s = 0 at P. Accordingly we write

dizt ¢ dad da* .
ds® + L ds ds M

which in fact are equivalent to

i dx) dx* .
(24.2) (—d';,—-f' I}ik% s ',

that is, the vector u’ is not affected by the choice of the
tensor 2j. Since s is determined to within a constant factor
(§ 22), the same is true of u'.

If we take for the 2's a set of normal codrdinates with
origin at P, these equations reduce to

At
ds®

These equations are an evident generalization of those in

euclidean three-space which define the first curvature vector

of the curve at P. Accordingly we call ¢ defined by (24.2)

in general cosrdinates the first curvature vector of the curve at P.
From (24.3) we have for C

= Mi

(24.3)

: e (39 oL

(24.4) 2= (ds )os—l- 5 (W s+,

and the equations of the path tangent to C at P are
- dxt
SL“ = (78—)08.
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Consequently the values of x‘ at P determine the departurq
of the curve from the path at a point near P.

It is readily shown that

The surface formed by the paths through a point of a curve
in the pencil of directions determined by the tangent and first
cwrvature vector to the curve at the point osculates the curve*

25. Extension of the theorem of Fermi to symmetric
connections. * The following theorem was proved for Rie-
manpian connections by Fermit and in this section is estab-
lished for symmetric connections:

For a space with a symmelric connection it is possible to
choose a coordinate system with respect to which the coefficients
Tix are zero at all points of a curve, or of a portion of it.

Suppose that the curve C is defined by = = ¢i(f) and
that at a point P, of it we take n—1 independent vectors
).f.,,) for « = 1, ..., n—1, which also are independent of
the tangent to the curve. that is, at F, the determinant

Wy - Ay
(25.1) A= .

Ain—1y* ++ Kn—1)

9" o

is different from zero, primes indicating differentation with
respect to ¢. From these vectors we obtain n—1 families
of vectors Az by parallel displacement along C. It follows
from continuity considerations that there is a portion R of
C about P, for which 4 + 0. At P, the components of any
vector depending upon the given n —1 vectors are of the form

(25.2) F=A42 (@=1,-..., n—1).

If this vector undergoes parallel displacement along C, we
get a family of vectors whose components at each point are
* Cf. 1926, 1, p. 62.

11922, 7; the method followed is an adaptation of a proof of the
theorem for Riemannian connections given by Levi-Civita, 1926, 4.
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given by (25.2) in which the A4’s remain constant. Since
any point can be taken as F,, the components of any vector
at any point in the (n—1)-fold of vectors at the point can
be expressed in the form (25.2).

It we put

(256.3) A = fO° + Xy f2(2)

and express the condjtion that the functions if, are a so-
Iution of (7.1), we have

(25.4) fui+r " T =0,

where uf are defined by (24.1). In the region B functions
a(?) and a*(¢) can be determined such that

(25.5) u' = a¢"+a" U,

since 4 0, and the functions f and /* are determined by the
quadratures

(25.6) f= ce‘f‘"", fo=— ffaaaz+c«;

where the ¢'s are constants. If in particular the given curve
isapatha* =0fore =1, ..., n—1.

Consider at any point P of C the (n—1)-fold of vectors
defined by (25.2) and the paths of the space through P in
these directions. The locus of these paths is a V,—1. The
equations of any one of these paths are

(25.7) x‘ = 9'(’)+Aa l%a) 3“%(r}k)pAat{¢) Apl(kp) 3’+---,

where ¢ is the value at P of the parameter along C, (Ij)r
are evaluated at P and s, the affine parameter of the path,

is chosen (§ 22) so that at P we have Z—f = A% No).

A new set of codrdinates y* is assigned to each point of C
by means of equations

¥ =¥®,
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where the ¥'s are any continuous functions of ¢ In like
manner along each path through P we associate codrdinates
' with each point by means of the equations

(25.8) =+ 4%, y =y,

where the A’s are the constants in (25.2) which determine
the direction of the path at P; thus s = 0 at P. We
assume that ¥ F 0, so that the last of (25.8) can be written

(25.9) = 6(y").

We eliminate the 4’s from (25.7) by means of (25.8) and
replace ¢ by its expression (25.9). This gives equations of
the form

o= Fi(y™) + ley (" — ")

#5.10) — 5 () Ho oy @ — TPV —D + -,
where the i’s, ¥’s and (Ij) are functions of y*. If this
pracess is followed out at each point and for each direction,
we have coordinates ¢* associated with every point of the
family of V,—1’s as defined, and equations (25.10) are of the
same form for all the points. At points of C, that is where
y* = ¢*, the jacobian of (25.10) is reducible to 64 or A/y",
where 4 is given by (25.1). Hence for a domain of the
space in the neighborhood of the portion B of the curve for
which A4 # 0, equations (25.10) define a transformation of
codrdinates. _

If we denote by i the components in the y's of the
vectors A, we have at points of C. by means of (25.10),

- —_ . —- i
Moy = Ay g?i: = b gy + A (%—lfp) M) .

ay*
When these equations are written in the form

- s ' l
e A —0) + T (6" — 2y ¢ )i =0,
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we have that
(25.11) idy = O,

In order that a family of vectors ).f,.) may have the
components

(25.12) iy = 6,

in the y’s, it is necessary that

= 0at o
)-(n) = him 5 8y1 = 8—y"— = (¢* — Uy V)77 ‘/’"'

Comparing this result with (25.3), (25.4) and (25.6), we see
that, if in the above definition of the y's we take

n’=1. r — g
¥ fro ¥ v

where the f's are given by (25.6), then the components in

the »’s of the vectors (25.3) will have the values (25.12),

and will be parallel along the curve becawse of (25.6).
From (25.10) we have at points of C

axt

o = B
9 z* iy j qk da/ dxk
Yoy — (I Koy My = —(Th) 5 2 o

Hence from equations of the form (5.6), we have in the y's
(25.18) Iap =0 (¢,8=1,-..,m—1;i=1,...,m).

Since by hypothesis the vectors of components (25.11) and
(25.12) are parallel along C, we have

d
T} d"t = 0.

Ifj=1i,..., n—l we have in consequence of (25. 13) and
v £ 0, that Tin = 0, and then for j = n that I, = 0.
Consequently we have established the theorem.

6‘
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We observe that only the first three terms of (25.10) have
entered in the above discussion. Consequently, any expressions
differing from (25.10) in terms of the third and higher orders
of (y* — ¢*) define transformations of the desired type.

26. Normal tensors. Because of the conditions (23.8),
when the functions Cjx are developed in powers of the y's,
we have

. l .
Ci = Ay + 5 Aju, 1, it

(26.1) 1.
+ 7!—4})‘1‘...1' yl‘ ves yl'+ e,
where )
; 3" Cjk
26.2 Ajy,..q, = (—————’——) .
( ) ik, R ayl‘ .. 8:(/" 0

From the equations of transformation (23.2) we have

oot i
(W)o= — (T}, 3)e
In consequence of the first set of these equations it follows
that, if at the origin the numbers (26.2) are takenm as the
components of a tensor in the y’s, the components of the
same tensor in the x’s have the same values.

If we take any other codrdinate system x’* and the corre-
sponding normal codrdinates 3" with the same origin as above,
we have a new set of constants defined by

" Cl. )
ay/l, ... ayrl,_ o.

(26.3)

(26.4) b g, = (

We will show that the A’s and 4”s are the components of
the same tensor in the y’s and y"’s respectively, and also in
the 7’s and z’s respectively. From (23.11) it follows that

74 g,/
(26.5) 0 — of oy

oyl = v by oy 0.




26. NORMAL TENSORS 69

Consequently the functions Cjc and Cji satisfy the relations
[ef. (5.6)]

o« 0Y"
(26.6) @k?:%; = Cip—L-

Since aj. in (26.5) are constants, we have from (26.6) by
differentiation
ar Q;’xt 3 yli
ay‘l o ayl" 8;1/'
o CF”; ay'ﬂ aylr ay"" aym’,

— ay,a’l...aylo" ayj ayk ayll oo ay" .

(26.7)

At the origin of the two sets of normal codrdinates

ri P | 17
(26.8) (8"") - (” by Wf) =%
dxd /o ay'® oy* dwl/o oy’

in consequence of (26.3) and similar equations. Consequently
at the origin we have from (26.2), (26.4), (26.7) and (26.8)

axt ax'? 8a” aa° 2a'®
Iv‘ axa Igr”.""’r axj axk axll : axl' *

«
A ikt --

Hence if at each point in space we obtain the numbers
Aja,..q, and A'gq ... by the processes (26.2) and (26.4),
these are the components in the z's and a’s of a tensor.
Being defined at each point of space, the A’s and A”s may
be regarded as functions of the a's and 2”s. In fact, we
shall show presently what the functional forms of certain
of them are. Following Veblen and T. Y. Thomas,* who
have developed this theory, we call them normal tensors.
If we differentiate the equations

« 02

(26.9) o v 0xP dar

E A
ay® dyloy* P oyl oy
* 1923, 1, p. 667.
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with respect to %' and make use of (26.3), we have at the
origin ‘ .

~ 3T , ;
(26.10) Aju = a—xjf— ﬁcz—l,;k rjg —Tjs rf.
Since any point may be taken as the origin, equations (26.10)
define Aj throughout space. If we differentiate (26.9) with
respect to & and y™, and proceed as above, we obtain

9t I} . oIt oI
A = g — Dhim — o Ton = i
a T} a[’ orl: .
(26 ll) 83‘,‘;’:["‘ MF ax;pk rl’r‘n Jhllzm

— L% r,m + Aﬂa Do + Abem Th
+ Ly (T} T+ T ).

By continuing this process the components of a normal tensor
of any order can be obtained.

From equations (26.2) it follows that the components A,u
are symmetric in j and % and in the last r indices. In con-
sequence of (23.6) we have that, if Cj as given by (26.1)
is multiplied by y/4* and ; and % are summed, each term
on the right must be zero, that is

(26.12) P4,...) = 0,

where P indicates the sum of all the terms obtained by
permuting the indices. However, because of the above ob-
servation concerning symmetry, this equation can be replaced by

(26.13) 8 (4u,...1) =0,

where S indicates the sum of the (r+41)(»+42)/2 terms
obtained by the permutations of the subscripts which do not
yield equivalent terms. Thus for r = 1 and » = 2 we have
respectively

(26.14) Al + Aky + A = 0,
(26.15) Abim + Atk + Abmit + Akim + Abmjt + Al = 0.
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Because of (23.9) the functions Cf...; , as defined by (23.15),
are expressible as power series in y’s of the form

(26'16) C';lJr = A:jl"'jr)l yl + 2 Afj:"‘jr)l:‘: yl‘ yl’ + M
where because of (23.16) and (26.2)

( i C}i...j' )
[}

AGy iyt =
Jyedd el ayz,.“‘ayz,

26.17
(26.17) o

= ;‘(7‘——1-)" S (A}l...j’[l...l'),

the functions A‘::!...j'[l. .4, being components of a normal tensor
and § indicating the sum of r(r—1)/2 different terms obtained
by ‘the permutation of the indices ji,--., jo. From these
results it follows that Af,-l... Jj)i,.--1, are components of a tensor
in the 2’s, symmetri¢ in the subscripts j,, .-, 7» and in the
subscripts I,,---,%. When we apply to (26.16) reasoning
similar to that which led to (26.12) from (26.1), we have

(26.18) PG, jyt,1) = 0,

giving identities connecting the components of these tensors.
Since Tji, as defined by (22.7), are symmetric in % and !,

it follows from (5.4) and (26.10) that

(26.19) B — Ajn— Aju.

The identities (21.3) follow directly from this result; and (21.4)
because the A’s are symmetric in the first two indices. From
(26.14) and (26.19) we have

(26.20) 4 = 3 @Biut Ba) = 3 (Biut+ Bla).

From (26.19) by covariant differentiation we obtain

i i i
Bjxim = Ajuc,m— Ajit,m .
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In normal codrdinates y* we have because of (26.10) and (26.17)

Ag,m = A;:klm — Al jinm.
Consequently we have
(26-21) B;:kl. m = Aj’lkm - A}klm

in any codrdinate system.
In like manner we obtain

-

Bht,mm, = Aftem m,— Afutmm, + Afiom, Aﬁm, — Apim, Afkm,
+ Aftm, Aftm, — Aﬁcml Aim, + Am,m, (Ao — Ar)
+ Ajimmy (Al — Ai) + Alim,m, (A — Ajn)
+ A;‘m,m, (Ahn— Al

By this method we are able to express any covariant derivative
of the curvature tensor in terms of normal tensors.*

27. Extensions of a tensor. In this section we define
a process of obtaining tensors of higher order by differentiation,
suggested by the method of obtaining normal tensors

Consider a tensor of components T‘l : j.' and T" r in.
' '
;]

general coordinates ' and 2, and let £y ; and t’ ‘l""l'
denote the components of this tensor i m the norma.l cobrdmates
y* and y", corresponding to z¢ and x’ respectively, for the
same origin P. Accordingly we have

gt — e, 2oyt ot o
j p ﬂo ayat ay“r 3_/ 8y"

ré
Since the quantities %Z“ and ._QL, are constants (§ 23), we
have from the preceding equatlons on differentiating with
respect to y'kl7 M ?/’k’y
* For further developments concerning normal tensors see Veblen and
T. Y. Thomas, 1928, 1, pp. 576-580.
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» ,il...;:’ P 'al...a,
a t.}l"'h — a tl’; "l‘n

@ Yoyt eyl g
9 oy dyfs oy, ayr

3?/“' v a!/j. a?//k, T a:'/I.',, .
If we put
P o0,
(27.2) T _ (___a b, )
Boo By, 6!/rl . a! ' Jo

and similarly for the #’s then at P in consequence of (27.1)
and (26.8), we have

7i i ~ ,
rived — P LEA on ol
. jl "jk:kl'”k/l Ijl “':*.‘)’;"’7’,. 8.:!'“‘ 8.1‘“’ 8.1""' :

Hence at P the numbers so defined are the components of
a tensor in the codrdinate systems =’ and «’*. Since P ix
any point, we have thus at every point the components of
a tensor in the two codrdinate systems, and thus the 7's
and 7"s of (27.2) are functions of the x's and z’s, as in
the case of the normal tensors. Following Veblen and
T. Y. Thomas* we call them exfensions of the pth order,
when there are p additional subscripts as indicated in (27.2),
From (27.2) it is seen that an extension is symmetric in the
subscripts indicating differentiation, whereas this is not the
case for covariant derivatives.

When p = 1, the right-hand member of (27.2) is equal

to the first covariant derivative of :::';: at P and con-

sequently the left-hand member is the first covariant derivative
of T;'i:'.:z: in the s, evaluated at P. However, when p > 1,
the pth extension is not equal to the pth covariant derivative,

since the second and higher covariant derivatives involve
derivatives of the coefficients Cas which are not zero at P

* 1923, 1, p. 672. We use a different notation in that & comma followed
by p subscripts indicates the pth covariant derivative and a semi-colon
followed by p subscripts the pth extension..
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In order to obtain an expression for the second extension
of T;‘l ﬂ', we observe that at P the second covariant

derivative of t“' ' * is given by [f. (6.1)]

] & r o,
tal“.a' - 0 tal + Z o« “‘..‘Hfag-}-l"-ar 80";
ﬂl'“ﬁ'y"a ay}; 8y 1°° ﬂ: ayd
T
L g e, aoﬂlr

- ; U8, Bie1 TBisiBs ayd

From the preceding observation and those of § 26 we have
in the a’s at P

(27.3)
. oy llyp T
; Tﬂr-‘ﬁj—u‘tﬁur"ﬁ- Aﬂlf"’

where the A’s are normal temsors. Since P is any point,
we have thus the general relation connecting ccvanant
derivatives and extensions of the second order. Evidently
this process may be extended to any order. In general, the
difference between a pth covariant derivative and an exten<ion
of the pth order is expressible linearly in covariant derivatives
of orders p—2, p— 3, --.-, 1 and the tensor itself, the coeffi-
cients being normal tensors covariant of orders 3, 4, - -, p-+1
respectively.*

The form of these expressions is not so important as the
fact that there exist tensors whose components reduce to
the derivatives alone at the origin of normal codrdinates, as
in (27.2). Moreover, we remark that both the covariant
derivatives and the extensions are generalizations of ordinary
derivatives in euclidean space referred to cartesian codrdinates,
since both expressions reduce to ordinary derivativesin this case.

28. The equivalence of symmetric connections.
The question of whether a set of functions Iji of coordi-

* Cf. Vedblen and T. Y. Thomas, 1. c., for a number of examples,
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nates o° and a set i of coordinates 2 define the same
symmetric connection reduces to the problem of determining
whether the equations

82 o ; 0xd Ak e 02t
(28.1) 3a'f 32’7 + L 32" ax? Tor ax’”
admit a solution ' = ¢’ (=", - - -, 2’"), such that the jacobian
of the 9's is not zero. The conditions of integrability of
these equations are (cf. § 21)

?

(28.2) Biswh, = Bhaujuk o,
Byd Jkt g Uy He
where we have put
ox' ;
(28.3) —8.’,77 = ll:‘.

When equations (28.2) are differentiated with respect to «'%.
the resulting equations are reducible by means of (28.1) to

(28.4) Biys,e e = Blum up -l

"

Continuing this process, we obtain the infinite sequence of
equations

e t . i J .
Bﬂrv),a.o', e = B?i ,mya, g - uﬁ:,
(28.5)
74 i _ i Jj m
.B (”o-l. .G, lla _— Bl’“s’"—." m, 1‘# o ""_",

. .

By means of (28.3) equations (28.1) can be written as

duh ; ;i ks
These equations and (28.3) constitute a system of the form
(8.1), such that the n® quantities ua and the n quantities a*
are the functions 6% the 2'’s being the independent
variables; consequently M — n®-+-n. The equations (28.2),
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(28.4) and (28.5) are in this case the sets F), Fy, ... of § 8.
Accordingly we have:

4 necessary and sufficient condition that two symmetric
connections of coefficients T, and T} be equivalent is that
there exist a positive integer N such that all sets of solutions
of the equations of the first N sets of equations (28.2), (28.4)
and (28.5) satisfy the (N+ 1)th set of these equations; if the
number of independent equations of the first N sels is n*+n—p
(p = 0), the solution involves p arbitrary constants.

From the considerations of § 8 it follows that, if the
equations (28.2), (28.4) and (28.5) are consistent, then
N<n*+n We shall show that N and p are numerical
invariants for a connected manifold. In fact, denote by
F' (ua, 2%, ') the N sets of equations of the theorem in
consequence of which the (N 1)th set is satisfied and let

d¢i
ax'®
be a solution of the problem. Let 2"’ = ¢!(z"’, --., 2™

define a transformation to a third set of variables x"°.
From these we have the equations

o= ¢i @ ... , ), =

(28.6) ¥ = ¢} @, ..., 2"

defining the relations connecting the z’s and 2"'s. If we
form the equations analogous to (28.2), (28.4) and (28.5) for
the transformation (28.6) and denote by F” (%ig, 2, 2"*) the N
sets of these equations in the z's and z"’s, it follows that
these equations are satisfied by af, given by (28.6) and

9
u';z = uk a—:%, and that the (N 1)th set also is satisfied.

Moreover, the Nth set of these equations is not a consequence
of the others; for, if it were, then by reversing the process
we would have that the Nth set of the original group is a
consequence of its predecessors in the sequence.

By the same argument it follows that the number »* +n—p
is an invariant for the manifold. Hence we have:
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The minimum positive integers N and p which enter in the
determination of whether two given symmetric connections ure
equivalent are mumerical invariants for the manifold.*

We say that a system of invariants is complete, when these
invariants for two symmetric connections are sufficient to
determine whether the two connections are equivalent. From
the above results it follows that at most n*-4»n -1 of the
tensors B}k;, Bli"‘"mn’ ceey Bfk,‘,,,l ooy constitute a complete
system of invariants for an affinely connected manifold; we
have also that there exists a minimum positive integer N
such that N+ 1 of the above tensors form a complete system.
In consequence of the results of § 26 we have that N+1
of the sets of normal tensors A,’:m, ceey A;:klm.-'-mn ... form
a complete system also.

Christoffelt considered the problem of determining the
necessary and sufficient conditions that two sets of functions
gi; and gi; of x* and z'* respectively be the components of
the same tensor. The first condition is

_ , oat da)
(28() Yap == Jij P ax/ﬂ *

When these equations are differentiated with respect to o7, the
resulting equations are equivalent to (1.5). These are of the
form (28.1) and their conditions of integrability are given
by (28.2), (28.4) and (28.5), where now the B’s are the
components of the Riemannian curvature tensor. Equations
(28.7) are of the kind referred to in the latter part of § 8
as forming a set of conditions F,. In this case, however,
on differentiating (28.7), the resulting equations are satisfied
because of (1.5), so that equations (28.2) are the set F; and
so on. Accordingly the solution of the problem reduces to
the consistency of (28.7), (28.2), (28.4) and (28.5) after the
manner of the theorem of § 8, as Christoffel proved.

*Cf. T. Y. Thomas and A. D. Michal, 1927, 8.
+ 1869, 1, p. 60.
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For two asymmetric connections equations (2.1) reduce to
(28.1) and

(28.8) Qeuj wp = Qe

Consequently in considering the question of equivalence of
two such connections, equations (28.8) constitute the set F,
of § 8. Then the set F, consists of equations (28.2) and

: . m .
(28.9) Dhom t0s up up) = Ly g we;

and each other set F, consists of the set in (28.4) or (28.5)
involving the rth covariant derivatives of the B’s and the
equations of the form (28.9) involving the »th covariant
derivatives of the 2's. With this understanding the above
theorem applies to this case.

29. Riemannian spaces. Flat spaces. When a space
is Riemannian and gy are the components of the fundamental
tensor, the Christoffel symbols of the second kind are the
coefficients of a symmetric connection, as seen in § 1. In
this case the following equations are satisfied identically:

9a:
('29.1) Jijk = 3%%“9}0} I’i’;c—gih [,‘},l‘c = 0,

where the s are the Christoffel symbols of the second kind.
Conversely, if equations (29.1) for a given set of I''s
admit a solution gy;(, 7 = 1, ..., n), then we have

Gik,j + Giki— Jij

Agix __ 09y _ ho_
t a2l =0,

(29.2) _ agik
Y

from which it follows that the /s are the Christoffel symbols
of the second kind formed with respect to the g’s (cf. § 1).
Consequently a necessary and sufficient condition that a space
with an assigned symmetric connection be Riemannian is
that equations (29.1) admit a solution.
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From (6.4) we have that the conditions of integrability of
equations (29.1) are

(29.3) Gijja— i = gin Bia + g; B,
which are reducible by means of (29.1) to
(29.4) gin Bl + 15 Bla = 0.

If these equations are not satisfied identically, that is, if
we do not have Bjiy = 0, the solutions of these equations
must satisfy (29.1). Differentiating (29.4) covariantly with
respect to 2™ and expressing the condition that (29.1) be
satisfied, we have

(29.5) gin Bt m + gn; Bliam = 0.

Proceeding in this manner, we get the sequence of equations
gin B’jlkl, mm, + Inj -yt‘kl. mm, =0,

(29.6)
yith"kl,mmln-m,‘*‘ghj -B,i;d.mmlu-m, = 0,

Because of the results of § 8 we have:

A necessary and sufficient condition that equations (29.1)
admit a solution s that there exist a positive integer N such
that the first N sets of the equations (29.4), (29.5) and (29.6)
admil a complete system of r (1) sels of solutions which
salisfy also the (N-+1)th set; them the complete system can
be chosen so that the functions gy of each set satisfy (29.1).

Since equations (29.4), (29.5) and (29.6) are tensor equations,
it follows that the numbers N and », defined in the theorem,
are invariant numbers for the connection.

If =1 and g;; is a solution of the N sets of equations
but not a solution of (29.1), then there exists a function ¢
such that the quantities ¢~? g satisfy equations of the form
(29.1). If the determinant |g;| is not zero, from equations
(29.2) we have
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N, 1 -
(29.7) ¥ = {i‘.}+ 5 Gy 9" 9x—0 9,—9} 9,

where g is defined by

(29.8) g g, = ok,

and {2};} are Christoffel symbols of the second kind formed

with respect to the g's. Consequently when the I'’s are
expressible in the form (29.7), the space is Riemannian.*
In terms of gy, equations (29.1) become

(29.9) Jik == 91 9, k.

When »>>1 and the solutions are gg" for e =1,....7,
then
(29.10) 9 = A, 99,

where the' A’s are arbitrary constants, is a solution. In
general the 4’s can be chosen so that the determinant |gy|
is not zero. When this solution g;; is taken as the fundamental
tensor of the Riemannian space, the tensor Bjx becomes the
Riemannian curvature tensor Rji. For this space the other
r—1 sets of solutions are tensors whose first covariant
derivatives are zero. Hence we have the theorem:

A necessary and sufficient condition that there exist for
a Riemannian space p (1) tensors a, other than the funda-
mental tensor gij, such that their first covariant derivatives be
zero, s that there exist a positive integer N, such that the first
N sels of equations (29.4), (29.5) and (29.6), in which Bsz 18
the Riemannian tensor Rfm, admit a complete set of solutions,
Gijp @5 -+, &P, which also satisfy the (N+1)th set of the
equations.t

A space with a symmetric connection is said to be flat,
or plane, if the curvature tensor Bjy is zero. In this case
equations (29.1) are completely integrable. Hence we have:

* Cf. Eisenhart and Veblen, 1922, 4, pp. 22, 23; also Veblen and T. Y.
Thomas, 1923, 1, pp. 690, 691.

t Ct. Eisenhart, 1928, 3; also, Levy, 1926, 5.
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A flat space is necessarily a Riemannian spuce.
From the last theorem of § 9 it follows that a preferred
codrdinate system exists for a flat space such that the co-
efficients T for this coordinate system are everywhere zero.
In this codrdinate system the solutions g;; of equations (29.1)
are constants. Consequently the preferred codrdinates are
generalized cartesian codrdinates.*

30. Symmetric connections .of Weyl. We consider
the symmetric connections for which there exists a vector ¢;
and a symmetric tensor g; such that

(30.1) ik +2959x = 0,

and the determinant ¢ is not zero. We remark that it follows
from (29.9) that if ¢ is a gradient the space is Riemannian.
We assume that ¢x is not a gradient.
If we substitute in (30.1) the expressions (5.9) for the I'’s,
we obtain
9in .+ 9a, a'jhl'c = 29,9

From these equations we obtain

(30.2) ai = O gut+ ' gi— g o,
where
(30.3) of = gV,
Consequently the coefficients of the connection are
(30.4) T = { ;k‘[ + 0 o+ O 9i—gin .

Symmetric connections of this kind have been proposed by
Weylt as the basis of a combined theory of gravitation and
electro-dynamics. From the remarks at the beginning of this
section we observe that in a sense it is an immediate
generalization of a Riemannian geometry.

If we put

_ _ 20
(30.5) 9i = gy = gi—7o

* Cf. 1926, 1, p. 84.
11921, 1, pp. 125, 296.
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where @ is an arbitrary function of the z's, we have that
gy and ¢; also furnish a solution of (30.1), when g; and
¢; do. We may speak of two Weyl geometries whose
fundamental quantities are in the relations (30.5) as conformal
to one another. Weyl refers to the effect of changing 6
as a change of gauge.

When we express the conditions of integrability of equations
(30.1), we have in consequence of (6.4)

(30.6)  gn; Bl gin Bl + 291 (91— p1.0) = 0.

Multiplying by ¢¥ and summing for : and j, we have

i _ — (2% _ M)
(30.7) B = n (prx—9x) = n (awk Yl

In § 5 it was seen that for any manifold Bl is the curl of a
covariant vector which is determined to within an additive
arbitrary gradient. In consequence of (30.7) we may consider

gk in (30.1) as a definite function of the a’s namely ';;ak,

where ax is a vector whose curl is equal to Bix [cf. (5.10)].
Hence equations (30.1) are of the form (8.1).

By means of (30.7) equations (30.6) may be written in the
form

(30.8) gnj Bla+ g Bl = 0,
where
Bl = Blu——0! Blu.

Equations (30.8) constitute the set F; for the theorem of § 8,
and the sets Fj, Fy, ... are obtained from (29.5) and (29.6)
on replacing the B’s by B’s; we call them (30.8) and (30.8)"
respectively. Hence we have by means of § 8:

A necessary and sufficient condition that equatioms (30.1)
admit a solution s that ¢x be a vector such that Bl is the
curl of the vector no, and that there exist a positive integer
N such that the first N sets of equations (30.8), (30.8)" and
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(80.8)" admit a complete system of r(Z= 1) sels of solutions
which satisfy also the (N4 1)th set; then the complete system
can be chosen so that the funclions gy of each system satisfy
equations (30.1).

When » = 1, we must add the further condition |g4| % 0,
in order that a given connection be that of Weyl. When
r>>1, ordinarily by a suitable choice of the constants 4 in
equations of the form (29.10) we can obtain a solution g;;
for which |gy| + O and thus have a Weyl geometry. When
more than one such solution exist, not conformal to one
another, we have several geometries of Weyl, which have
the same symmetric connection, and consequently the same
paths.

As in § 29 we have that .V and r are invariantive
numbers of Weyl connections.

31. Homogeneous first integrals of the equations
of the paths. If each integral of the equations of the
paths (22.4) satisfies the condition

dgt da’r da’m const
e ds ds ds "

(31.1) ay

the equations (22.4) are said to admit a homogeneous first
integral of the mth degree. From the form of (31.1) it is
seen that there is no loss of generality in assuming that
the tensor ay,..., is symmetric in all subscripts. If we differ-

cntiate (31.1) covariantly with respect to x*, multiply by
'3&:-, sum for & and make use of the equations of the paths
written in the form

(31.2)
we obtain

(31.3) Qryeoor

det () _
ds \ds/x

det Ao’ dak 0
ds ~ ds ds =

Since this equation must be satisfied:-identically (otherwise

we should have all the solutions of (22.4) satisfying a differ-
ential equation of the first order), we must have

0.

k

m
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(31.4) P(ay,...r,,0) = 0,

where P indicates the sum of m -1 terms obtained by per-
muting the subscripts cyclically. Conversely, if equations
(31.4) are satisfied, equations (31.3) are and the left-hand
member of (31.1) is constant along any path. (Cf. § 43).
In particular, if the integral is of the first degree, that is.

da?
ai— == const..
ds

the conditions (31.4) are
%,j+a,i = 0.
The question of linear first integrals is considered in § 44.

We consider the case when the equations of the paths
admit a quadratic integral, namely

. dat dxi
(31.5) %G A const.

In this case the conditions (31.4) are

(31.6) ik + gik,i + gy = 0.

From § 29 it is seen that Riemannian spaces are a sub-class
of spaces with symmetric connection for which a homogeneous
quadratic integral exists.

From (31.6) we have

(31.7) gkt gik, i+ gri g = 0.
Interchanging % and /, we have
(31.8) 9o, + gjt, e+ g e = 0.

It we subtract from the sum of these two equations the sum
of the two equations obtained by interchanging ¢ and ¥ and
J and k in (31.7), the resulting equation is reducible by
means of (6.4), (21.3) and (21.4) to

(31.9) gyu—gu,¢ = 9oj Biki + 9se Bliy— gt Bjoe— gra Bja.
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If & and ! are interchanged and this equation is subtracted
from (81.9), the resulting equation is satisfied because of
(6.4). Thus we are unable to solve equations of the form
(31.7) for each of the quantities g; . However, if (31.7)
be differentiated covariantly, we obtain equations which can
be solved for gij ki» and then the further conditions of in-
tegrability can be obtained with the aid of (6.4); and the
determination of whether a given space admits one or more
quadratic integrals is reducible to an algebraic problem
somewhat after the manner of § 29, as has been shown by
Veblen and T. Y. Thomas.* Instead of developing this
question further we consider the problem of determining
symmetric connections for which there is a given quadratic
integral, such that the determinant g is not zero.

With the aid of the tensor g; we write the I”s in the
form (5.9); then

ik == — Qkij— Qjki,

where

(B1.10) ap; = g aly,  ah = g*ay, g, = O

we remark that afk is symmetric in j and &, as follows from
(5.9). Hence the conditions (31.6) become

(81.11) aijk + ajri + axy = 0.
If cyr is any tensor symmetric in ; and j and we put
(31.12) aiix = 2 cijk— Cikj — Cjki,

the condition (31.11) is satisfied. Hence if we have any
tensor cyx symmetric in ¢ and j, and define aj by (31.10)
and (31.12), then the symmetric connection given by (5.9)
is such that the equations of the paths admit the first
integral (31.5).

Conversely, if (31.5) is satisfied for a given connection
and consequently ajx are given, the tensor cyx is not uniquely
defined by (31.12). In fact, from (31.11) it follows that

* 1928, 1, pp. 699-608.
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a4i = 0 and consequently ci; are arbitrary. When two of
the indices are the same, we have from (31.11) and (31.12)

Gy —Cyji = g iy = — Qiji.

Consequently either one of these ¢'s can be chosen arbitrarily
and the other is then determined; hence there are n(n—1)
arbitrary choices. When all of the indices are different
and have given values, there are two independent equations
(31.12) for the determinination of the ¢’s with these same
indices. Consequently any one may be taken arbitrarily and
the others are uniquely determined. Hence we have:

A tensor gij for which g + 0 and a tensor cij:, symmetric
in i and j determane a symmetric comnection for which the
equations of the paths admit the first integral (31.5); con-
versely, if a geometlry of paths is given whose equations admit
a first integral, n(n+ 1) (n+ 2)/6 of the components cyi are
arbitrary and the others are uniquely determined.*

* Cf. Eisenhart, 1924, 2, p. 384.




CHAPTER III

PROJECTIVE GEOMETRY OF PATHS

32. Projective change of affine connection. The
Weyl tensor. In § 22 it was shown that the paths are
the same for two symmetric connections whose coefficients
are in the relations

(32.1) Tj = Ij+ 8 w4+ ok v,

where w; is an arbitrary covamant vector. We say that the
affine connection of coefficients I jk is obtained from that with
the coefficients Tjk by a projective change of the connection.
If we write the equations of the paths in the form
d* at . dx/ da*
ds? k“ds ds
analogous to (22.4), we have from these equations and (32.1)
that s is given as a function of s along any path by

(82.3) s = cfegj wae g

For the expressions I‘,k the components of the curvature
tensor B,u, analogous to (21.1), are redugible to

(32.4) Blu = Bha+ & (Yu— ) + 8 v — ok v,
where

(32.2)

=0,

(32.5) Yix = Y=Y Y.
Contracting for : and ! and for ¢ and 7, we have (cf. § 5)
(32.6) Bjx = Bji-+nwi— yuy,
, B ntl u—vw
(32.7)
S )
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In § 5 it was shown that 8; is the skew-symmetric part
of B; and that it is the curl of a vector a;/2. Consequently
if we choose

1 oo
(32.8) 1,0;; == —ﬂ——l— ((lk"l‘ 31‘7‘)’

where ¢ is an arbitrary function of the a's, we have Bi; = 0.
Hence we have:

By a suitable projective change of the affine connection the
tensor By for the mew connection is symmelric and the tensor
Bijx is a zero tensor*

From (32.7) we have also:

When the tensor By is symmelric, a necessary and sufficient
condition that the tensor Byj for a projective change of connection
be. symmetric is that Y; be a gradient.

From equations (32.6) and (32.7) we have

Yiw =

B —Bjk)—%(zjk-ﬁjk)’
(32.9)
Yie— P = + 1 (Bix — B)-

When these expressions are substituted in (32.4), the latter
are reducible to
Wha = Wi,
where

Wia = By +—— 1 S5 Bu + ("k Bjy — 0 By)

(32.10) +

+ 7{3—__—1 (8} B — ok By

Hence the tensor Wﬁa is independent of the vector v that
is, it is unaltered by a projective change of affine connection.
It was discovered by Weylt, and was called by him the
projective curvature tensor. 'We shall call it the Weyl tensor.

* Eisenhart, 1922, 2, p. 236.
+1921, 2, p. 101.
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Since
(32.11) Bij— Bj = 28;.

equations (32.10) can be written in the form

. 1 .
Wie = B+ Yy 6; (Biu— Bu)

(32.12) 1 ; .
+ =7 [0k Bu+ By) — di(n B+ By)].

In consequence of the identities (21.3) and (21.4) we have
the identitics .
(32.13) Wia + Wia =0,

(32.14) Wi+ Wi+ Wi = 0.
Also. from (32.10) we have by contraction
(32.15) Wia = Wis = 0.

If we differentiate (32.10) covariantly with respect to the
I's and make use of the identities (21.5), we obtain

Wid,m ~+ Wim, ke + Wiomie,1
= i - [6%(Bjt,m — Bjm,1) + 81(Bjm,k— Bjk,m)
+ 8 (Bjx,i— Bir.x)]
i ;;%1 [0 (Bjm,: — Bt m) + 05 (B, m— Bjm, i)
+ OBtk —Bix.)]

Contracting for : and m, we have in consequence of (32.15),

n_

i
(82.16) Wiay = 2=

1 [Bjk. — B+ ”—_?_—1 B, x— Bjr. z)]

An invariant, such as the Weyl tensor, which is unaltered
by any projective change of the affine connection is called
a projective invariant. By processes analogous to those used
in § 18 we establish the theorem:
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Ir 2wy and 2" are the components of any ennuple, the tensors

1
Krj— ey (M W iy i+ 05 A i Ao, 1)

and the invariants
1

7 Ityc—n—+1 (d;'l 7s + 6: Yo' 1)
are projective invariants.*

A tensor which is not a projective invariant may, however,
be invariant under certain projective changes of the connection.
Thus from (32.4) and (32.5) we derive the theorem:

A mecessary and sufficient condition that the curvature tensor
be unaltered by the projective change defined by a vector ; is
that the latter satisfy the condition

(82.17) Yij— iy = 0.

This is also a necessary and sufficient condition that the
tensor By i8 invariant under the change.t
Equations (32.17) can be written in the form

oY fho_
a—:;}—— I = 0.
where
¥ 3 » 1 h
(32.18) Iy = I+ 5@ y+ 3 g

Hence the space with the affine connection defined by Iy admits
a field of parallel covariant vectors ¥; (§ 11). Consequently
the problem of the theorem and that of spaces admitting
fields of parallel covariant vectors are equivalent.

Similarly from (32.5) and (32.6) we have:

A necessary and sufficient condition that the symmetric part
of the tensor By be unaltered by the projective change defined
by « vector y; is that

(32.19) Y+ ¥i—2¢9iy; = 0%

* Cf. T. Y. Thomas, 1926, 10, p. 319; also Levy, 1927, 1, p. 810.
+ Cf. Schouten, 1925, 6, p. 453; also, .J. M. Thomas, 1926, 8, p. 62.
1 Cf. J. M, Thomas, 1926, 8, p. 62.
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For the affine connection defined by (32.18) equations (32.19)

become
ity =0

that is, the equations of the paths admit the linear first
integral ¢ fl‘? = const., where § is defined by an equation

of the form (32.3) (cf. § 48).

Also we have from (32.7):

A necessary and sufficient condition that the skew-symmetric
part of the temsor By, and comsequently the tensor B;:.;,', be
unaltered by the projective change defined by a vector W; is
that W; be the gradient of an arbitrary function.

The second theorem in this section is a corollary of the
abave theorem.

33. Affine normal codrdinates under a projective
change of connection. If we denote by y' and 4’ the
affine normal coprdinates corresponding to the same codrdinate
system «* for two connections in the relation (32.1), the
equations of the paths through the origin P in these codrdinate
systems are given by (23.1) and

y = (——d§ os.
Since a projective change of connection leaves each path
individually invariant, it follows from the above equations
of the paths that along each path y" is proportional to g¥,
Moreover, throughout the domain under consideration y* is

a function of the y’s. Consequently these functions must be
of the form

i
(33.1) v

= ¥
Sy’

where f(y) is a function of the y’s regular in the neighbor-
hood of the origin and not vanishing at the origin. Similarly
we have

(33.2)

1

b= Y
Y=rey
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where f' is of similar character and f(y) . f' (') = 1, because
of (33.1) and (33.2).

If Cj and Cj are the respective coefficients of connection
in the y's, we have

(33.3) Ch = Ch+ 0 v+ oy,

where y; are the components in the y’s of the vector defining

the projective change. If Cji are the coefficients in the y'’s

of the second connection, we have from equations of the

form (5.6)

(88.4) O — ( 8;3/" Tl ay; oy* ) ay,:
ay'F ay” ay'? ay'7/ dy

Since the y’s are normal cotrdinates, we have Cjy vy =0
(8 23). In consequence of (33.4) these become

— aym_ azyva) 8y-’ ay" Iﬂ o
(335) (Ch AT b e A A

From (33.2) we have
oy 1 (o o 1 0
sy _(%f_yla_f;)’

w?
o b y’ (f_ of’ y,p)
oy”® s ay?” I’

and from (33.1)
* _ 1w o a ?f)
ayi_fs(éif .’/ayi’
O y“[ of L O o, 2(df "]
s Y = (2 v 7 (55 |
. . , ar -
Since the equation /' — ‘5'?{,—,; y'? = 0 does not admit a solution

regular at the origin and not vanishing there, and since
Chky’'v* = 0, the equations (33.5) are reducible to

1 ! 2 ,
0 iy Son) = o)+ =
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Since Y are assumed to be regular at P, we put
1 .
Y = bt by + 570y Y + -y
R D
f=1+tay+5a4yy+ -

where without loss of generality the a’s are symmetric in
the indices and the b's in all but the first. Substituting in
(33.6), we find that a; = —b; and that the other a’s are
uniquely determined. Thus when ;. are given, the function f
is determined.

There is also the converse problem of giving f and finding
the y's from (33.6). We consider in particular the case when

(33.7) S = 1+a:y,

where the a’s are constants, so that the transformation (33.1)
is linear fractional. Now equation (33.6) reduces to

%Y

(33.8) v+ Ty — 0.

Although this equation gives the condition on the ¥’s in
the y's, we are interested in finding their components in a
general coordinate system so that we may have a means
to knowing when the case (33.7) is possible. To this end
we differentiate this equation with respect to 3, multiply
by % and sum for !; then from the resulting equation and
(83.8) we eliminate a; 3. This gives

(33.9) Po (GoE—wew) = o,

which because of the relation Cky/y* = 0 and (23.1) can
be written thus

2 L ri—pw) = 0.

In the general coodrdinate system x* corresponding to the y’s
this equation is
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d2* dz |, v o

Fs “da Wer— ¥y =0,
where i are the components in the z’s of the vector Y in
the y's. If this condition is to be satisfied at each point
in space, it is necessary that

(33.10) Vit Yie— 20k = 0.

Since this is a tensor equation, if it holds in one coordinate
system, it holds in all. Conversely, if there exists a vector
satisfying (33.10) for a given space, and we choose a normal
codrdinate system y* with a given point P for origin, equation
(33.9) holds at P. If we put

(33.11) ykzpk+f—}'l — o,

differentiate with respect to ¢!, multiply by ¢ and sum for J,
we have in consequence of (33.9)

1 of , _
v o (i 'I’t+1)+F W?f = 0.
By means of (33.11) this is reducible to

of 1 _
(33.12) — 51-,»,-1/‘ = 1.
If the function f is regular at P, then f = 1 at P and
the integral of (33.12) satisfying this condition is /=1 +}a; 3.
From these results and the fifth theorem of § 32 we have:
In order that the affine normal coordinates at every point
undergo a linear fractional transformation when the affine
connection undergoes a projective change, it is necessary and
sufficient that the symmetric part of the tensor By be unaltered
by the projective change.®
34. Projectively flat spaces. We may interpret the
results of §32 as giving spaces with corresponding paths.
* The question of this type of projective change was raised by Veblen,

1925, 7, p. 181, and the theorem was established, in a different manner,
by J. M. Thomas, 1926, 8, p. 62.
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Weyl* has called a space V, projectively flat when its paths
have the same equations as the paths of a flat space V,, (§ 29).
This is equivalent to saying that for V, there exists a pre-
ferred coordinate system in terms of which the finite equations
of the paths are linear.

Since for V, we have

(34.1) E:kz =0, By=0, Bg=0,

it is evident that a necessary condition that a space be pro-
jectively flat is that the Weyl tensor be zero. We shall
show that this condition is also sufficient, when n > 2.
From the first of equations (32.9) we have
1 2

(34.2) Yij = ¥ — 7 Bi+ 3y b

The conditions of integrability of these equations, namely

Wi jk— Wiki = ¥n Bl.

are reducible, by means of (32.11) and the expression for
Bju obtained by equating to zero the right-hand member
of (32.10), to

2
(34.8) B, j— Bijx+ ey (Bij,x — B, j) = 0.

From (32.16) it follows that these equations are a consequence.
of the vanishing of the Weyl tensor, when n>2, as was
to be proved.

When n = 2, we have, because of the identities (21.3),

By = Bhe, Bu = Bin, Bs = Bhi, B = Bh.

Hence from (32.12) we find:
The Weyl tensor vanishes identically when n = 2.
Accordingly we have the following theorem of Weyl:+

* 1921, 2, p. 104.
+1921, 2, p. 105.




96 III. PROJECTIVE GEOMETRY OF PATHS

A necessary and sufficient condition that a space V, with
an qffine connection be projectively flat is that the Weyl tensor
vanish when n>2 and that equations (34.3) be satisfied when
n=2.

From (32.1) it follows that, if a space V, is projectively
flat and ¢ are cartesian codrdinates in the projectively related
flat space, the coefficients of the affine connection in V,, are
given by ] )

(34.4) T = — (6 e+ o ¥y).

Conversely, the most general projectively flat space is ob-
tained by taking the I's in the form (34.4), where y; is an
arbitrary vector.

When the expressions (34.4) are substituted in the equations
of the paths (22.4), the latter can be integrated in the form

1__ 41 —_—h
(34.5) fbl—“=..~= - —f‘f% ds,

the integral ftpk dx* being taken along a path, which result

is in keeping with the remark at the beginning of the section.

From (34.2) it follows that a necessary and sufficient con-
dition that V, be a projectively flat space for which the
tensor Bj; is symmetric is that ¥; in (34.4) be a gradient.

If we replace v¥; in (34.4) by :—:}, the components of the
curvature tensor are expressible in the form

_ o 2 h e )
(846) Bix = ¢ ( L o*  F ot oa
Contracting for 2 and %, we have
¥
i= (l—n)e VY ———.
(34.7) By 1—mn)e Ty

From these equations we have

(348)  Blx+—— (% Ba— 3 By) = 0.
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The left-hand member of this equation is the expression for
W,-'}k when Bj is symmetric, as follows from (32.10).

We consider now the question of determining the Riemannian
projectively flat spaces, that is, spaces whose geodesics can
be put into correspondence with the straight lines of a flat
space. In this case By are symmetric and are in fact Ry,
the components of the Ricci tensor.* For n>2 we have
equations (34.8), which are equivalent to

1
1l—n

When in (34.9) we put 2 =/, we find that

(34.9) Buyr =

(90 R — gux Ryj).

(34.10) Ry = Ko(1 — ) gy,

where K, is the factor of proportionality thus obtained. By
reason of (34.10) equations (34.9) are reducible to

(34.11) Bup = Ko (gnj gix — gnk 9ij)-

Consequently V,, for n > 2 is a space of constant Riemannian
curvature K.t
When n = 2, it follows from the definition of Ry that

Ry _ R _ R _ Bun
G e Yas g9

Since R, 2/g is the Gaussian curvature K, of the surface,
it follows that (34.10) holds also when n = 2. When we
apply the conditions (34.3) to (34.10), we find that K, is
a constant. Hence we have:

A mecessary and sufficient condition that a Riemannian
space be projectively flat is that tts Riemannian curvature be
constant.f

From (34.10) we have for all values of n, Ry, = 0.
Conversely, if we have

*1926, 1, p. 21.

+ 1926, 1, p. 83.

1 Weyl, 1921, 2, p. 110.
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(34.12) By = By, Bk =0,

gy defined by (34.10), where K, is an arbitrary constant is
such that gy x = 0. Hence we have:

A necesssary and sufficient condition that a projectively flat
space be Riemannian is that (34.12) be satisfied.

In the codrdinate system for which Ry takes the form
(34.7) we have from .(34.10)

1, ae¥

(34.13) gy = —Eo_ e wmf.

From this expression and (34 4) in which y; = ﬂ it follows
that the conditions g;,x = O are reducible to

i
a0 O
Consequently
(34.14) &Y = aqydai 4 2bat +c,

where the a's, ’s and ¢ are constants.
35. Coefficients of a projective connection. From
equations (32.1) we have

(35.1) Tf = ri+(n+1)
from which and (32.1) we find that the quantities

(35.2) I, = Ij——1— (8 I+ 0. TW)

+l
are independent of a projective change of affine connection.*
We call 17}, the coefficients of a projective connection.

In order to find the relations between the functions ij
and the analogous functions II,’;Z in a coordinate system z”*,
we remark that from equations of the form (5.6) we have

)
(35.3) rj = 1l 2led

*Cf. T. Y. Thomas, 1925, 2, p. 200.
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where 4 is the jacobian of the transformation, that is,

a x’i

(35.4) 4 = 327 |

Then from (35.2) and analogous expression for I],_’;; and
from (5.6) and (35.3) we obtain

oty _ g ax'” e 2?07 az2'" 260

9 o) U~ UPr Tat Tox) ) 0
(35.5) + axra —a—o-
axt oat’

where for the sake of brevity we have put

(35.6) 0 =

1
| log 4.

When we express the conditions of integrability of equations
(35.5), we obtain

P « B2 ax® ax7 8z

35.7 = 1T — M ea+ ke
(88.7) M B0 9 hm oml e WOk
where
n 8 I an{; L
(35.8) Myx = Y + 11l l]c, 7 Iy,
and .
- _ pgh 20 20 20 %6
(85.9) oy = My dah + o ox' dxd atdad”

Contracting (35.7) for % and %, we have

1 ax? ax7 )
(35.10) = L7 (”ii_”;'r 2t o 1’
where by definition

(35.11) my = my,

When the expressions (85.10) are substituted in (35.7),
we have . s
baz" ax” 0927 ax'
wh = w¢
v ré o™ oat dal Bk

70
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where

(35.12)  Wix = nﬁ,‘+ (d" Ma— 8% 1) .
From (35.8) and (35.2) we have

#6.18) M = B+ oy @0 Ax— 0k Ay+ 0 du),

where by definition

Ay = oy _[’kr’+___1__r’.rh.
V= o GO Ty

and from (35.13)

(85.14) Iy = By-—ﬁﬂﬂﬁ-l-(n—l) Ayl

When these expressions are substituted in (35.12), it is found
that Wk so defined are the components of the Weyl tensor
(32.10).*

Substituting the expression (35.10) for ¢;; in (35.9), we obtain

zaee
bx'al_ "'8m‘+

az'? 92" )
(88.15) 5 s oar —1 ( — My S oat ax)
Expressing the condition of integrability of these equations,
we obtain

ax’® ax? ox7

— : 086
(35.16) Iy = g, 5 sl 3 +(1—n) mf"'b;:

where

oI, oll
@6.17) My = =) — 5+ I y— Wi 1.

36. The equivalence of projective connections. If
we put

(L3
(36.1) o0 ¢ 96

I B L el

¢ Ct. J. M. Thomas, 1925, 3, p. 208.
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equations (35.5) and (35.15) become

oug
(36.2) par = M Mg o “5+“7 9t 9,
i
—5%{ = g q,-}-llu 9’l+ ( — I, uf up

These equations together with the functional relatlon (35 6)
must admit a solution for given expressions of II_,k and /7j in
the z's and »"'s respectively, if the two projective connections
s0 defined are to be equivalent. From the preceding results
it follows that the conditions of integrability of these
equations are

(36.3) Wh uy = W;,;J u? W uk
(36.4) o, = ”‘:ﬁr uf uf -+ (1 —n)Wi”.k 9,

If we denote by u” the cofactor of «f in the jacobian |ui|
divided by the jacobian, we have from (35.6)

90 1, ouf
- = 34 -
dx n41 oz’
which is satisfied identically because of (36.1) and (36.2).
If we differentiate equations (86.3) with respect to 2%, the

resulting equations are reducible by means of (36.2) and
(36.3) to

uh (Whhat — 2 Wik o1 — Wi s — Witk 9 — Wi 9x)

(36.5
) +uf Who9), = W;rf’l uf o 7l uf,

where WW denotes the projective derivative of W.,k, that is,
the covariant derivative with respect to the m} %, we remark
that the projective derivative of a tensor is not in general
a tensor. In this notation equations (35.17) may be written
in the form

(36.6) M = My — My ;.

We observe flom (35.12) and (32.10) that W, Wik is of the
same form in M} as it is in I}k, when the temsor Bj; is
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symmetric. Since (32.16) follows formally from (32.10), we
have from (85.12) and (36.6)

(36.7) Ww = +— Mo

If we multiply (36.5) by %} and sum for « and /, we obtain

"’(I}ku + ('n—2) IVzik b = W;é’/ﬂg
When n > 2, these equations are reducible by means of (36.7)
to (36.4). Consequently in applying the results of §8 we denote
by F, equations (36.3) and proceed with these equations to
get the sequence Fj, Fy, ... of derived sets. Hence we have:

A necessary and sufficient condition that two projective con-
nections for m>2 be- equivalent is that there exist a positive
integer N, such that equations (35.6) and the sets of equations
F,, .., Fy are compatible in 0, ui, ='* and ¢; as functions
of the x's, and that the (N + 1)th set is satigfied in consequence
of the preceding ones.*

When n = 2, Wi vanishes identically (§ 34). The above
theorem applies to this case with the understanding that the
sets Fy, ..., 'y consist of (36.4) and the derived equations.

As in §28 it can be shown that N is an invariantive
number for all manifolds with the same projective connection,
and likewise p, where (n +1)®*— p is the number of inde-
pendent equations in the sets Fy, ..., Fi.

When n>>2, the Weyl tensor and its first, ..., Nth
(N Z (n+1)* projective derivatives form a complete system
of projective invariants (§ 28) for the manifold. When n = 2,
the functions /7;; and their first, ..., Nth (V2 9) projective
derivatives form a complete system.

Another interpretation can be given to the preceding results.
Thus let /7. be the coefficients of projective connection of
a manifold ¥, in coordinates 2¢ and similarly ZZj in any
other coordinate system m", the equations of the trans-
formation being
(36.8) o= ¢t (at, ..., 2V).

* Cf. Veblen and J. M. Thomas, 1926, 6, pp. 288, 290.

é
u? u}’ ug .
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We consider an associated manifold *V,;, of codrdinates
2% at, ..., 2" and in the z’s define a set of functions *I,
in *Vy41 by

(36.9) *Ij = My, *Igp=

14n
6#’ *ril n”ﬁ’

+1 1—

where greek indices take the values 0,1,...,n and latin
1,.-.,n. For the transformation in *V,, defined by (36.8)
and

(36.10) 2 = 20+loga,

where A is given by (35.4), we find that the coefficients (36.9)
and similar expressions in the x’s satisfy the relations

Bx* [ %% a2’ ox

*pre *te

@e11) *Ih = 2 (MW+ e W)

In fact, when «, 8, y take the values 1, ..., n, equations

(36.11) reduce to (35.5); when 8 or y = 0, the equations
are satisfied identically; and when « = 0, and # and y take
values 1 to », the equations reduce to (35.15). Thus the
problem of equivalence of projective connections is reducible
to a restricted problem for affine connections, as shown by
T. Y. Thomas.¥
In order to consider the problem more fully from this point
of view, we denote by *Bg, the curvature tensor formed
with respect to the *I'’'s. In consequence of (35.12) and
(35.17) we have
*Bju = Wha, *Bju = :ill

and that all the other *B’s vanish identically. If we take
the functions so defined and apply the reasoning of § 28,
equations of the form (28.2) (interchanging x’s and x’s)
become

(36.12) Whiun+ :—ii Mg o = Wiy ul ufl uf,

/"

11926, 10.
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(86.13) My, 3+ 1:‘—4‘_—:“‘,’%’,:, — Myl v,

(36.14) Whudubut =0, HMuudusut =0,

where one or more of the indices ¢, o, 7z is 0.

For the relations (36.8) and (86.10) between the codrdinates,
equations (36.12) and (36.13) reduce to (36.3) and (36.4)
respectively, and (36.14) are satisfied identically.

37. Normal affine connection. If for a given affine
connection and a given coordinate system we choose for the
components ¥’; of a projective change the values — v/ (n41),
it follows from (35.1) that the coefficients of the new connection
satisfy the conditions T% = 0. We call this uniquely
determined connection the normal affine connection for the
given cotdrdinate system.* Hence we have:

Among all the affine connections with the same projective
connection there is a unique normal affine connection for any
codrdinate system.

From (5.8) it follows that By is symmetric for a normal
connection. Conversely, if By is symmetric for an affine
connection, we have from (5.8) in any codrdinate system

. ark
(37.1 Oy OTm __
) a2k o2
If we put

)

78 = T

these equations are completely integrable in consequence of
(37.1). When we define a coordinate system «’* by the
equations

(37.2) x’l = | 7 dzl’ :1"“ = % (a 4 2’ cony 'n)’
we have for the jacobian of the transformation
3 xri
= | = e?.
a4 ) e

* This definition is equivalent to that adopted by Cartan, 1924, 3.
p. 223, as pointed out by J. M. Thomas, 1926, 3, p. 664.
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Consequently
dlogd _ 09 __
daJ dx/ hj
and from (35.3) we obtain I'; = 0. Hence we have:
A necessary and sufficient condition that there exist for a
given affine comnection a coirdinate system x* with respect to
which the connection is normal, that is

(31.3) rj = o,

is that the tenmsor By be symmetric.*

Furthermore we have from (385.3):

The normal affine connection for a given coirdinate system
s the normal connection for all codrdinate systems obtained
Jrom the given ome by lransformations of constant jacobian
and only for these.

When equations (37.3) hold, we have from (35.2) for the
normal connection ' .
(37.4) M. = .

Then from (36.8) we have M} = BZ;‘ and from (35.14)
ITy = By. Hence the equations (35.12) become

(31.5) Wi = B+ —Ei_l— (8} Bix— 9% By).

Since this is the form which (32.10) assumes for a space
when B;; is symmetric, we have thus another proof that the
tensor defined by (85.12) is the Weyl tensor.

The first theorem of this section is a corollary of the
theorem:

Each of the affine connections with a given projective con-
nection is uniquely determined by the values of I‘f,

In fact, from (35.2) it is seen that the coefficients of
a projective connection must satisfy the conditions

(37.6) mf = 0.
* Ct. Cartan, 1924, 3, p. 226 and J. M. Thomas, 1926, 3, p. 665.
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From (35.2) it is seen also that when I} are given, I are
uniquely determined, and furthermore that the corresponding
functions I‘é are equal to the given values of these functions.

38. Projective parameters of a path. When the ex-
pressions for Ty are obtained from equations of the form
(85.2) and substituted in the equations of the paths (7.6),
the latter become

dad (@2 | ¢ da* drt
3.1 dt (dt’+”'“ dat dt)
(88.1) A (el g d a)
dt \ de A TR T B
Consequently along any path we have
$of | odd* dd dad
(88.2) ae T e oy = Yo

where ¥ is a determinate function of ¢. If we Qdefine
a parameter p, to within an additive constant, by the equation

(38.3) 2 — g foa.

where a is an arbitrary constant, equations (38.2) become

dx’ dx"_o
dp dp

From the form of these equations it follows that the para-
meter p is not altered by a change of projective connection.
It has been called a projective parameter of the path by
T. Y. Thomas who established its existence.*

From equations (38.2) and (22.2) we have for a path in
consequence of (35.2)

d2 i
(38.4) d;, + 1

2 n da’
v=9—Srr W g
Consequently by means of (88.3) and (22.3) we find the
following relation between projective and affine parameters
of a path:
* 1925, 2, p.200; cf. also Veblen and J. M. Thomas, 1925, 4, p. 205.
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~—2_frka’

(38.5) p = [ewfrve
where b is an arbitrary constant; in the integral on the
right it is understood that the x’s are expressed in terms of s.

If we make use of equations (35.3) and denote by p’ the
parameter defined by (38.5) for a coodrdinate system z'® we
obtain the relation i
(38.6) p _ b

7 ]
dp A

where b is a constant. Consequently when we speak of
a projective parameter it is associated with a particular
codrdinate system;* in this respect it is different from the
affine parameter s (§ 22).

From the form of equations (38.5) and the results of § 37
we have:

A projective parameter p for a codrdinate system x* is an
affine parameter of the paths for the normal comnection jfor
the x’s.

When oy in (32.1) are the components of the gradient of
a function ¥, equation (32.3) becomes

s = cfez'/’ds.

In consequence of the results at the close of § 37 the above
results are consistent with equation (38.6).

39. Coefficients of a projective connection as tensors.
It is seen from equations (5.6) that the coefficients of an affine
connection are components of a tensor for affine transformations
of codrdinates, that is,

2t = af 2/ + ¥,
where the a's and b’s are constant, and only for such trans-
formations.
*Ct. T. Y. Thomas, 1925, 2, p. 201.
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We seek the types of transformation for which the co-
efficients of a projective connection are components,of a tensor.
From (35.5) it follows that in this case we must have

' _ ax" 26 n ax" 00
0z dx) dxl ax' oxt dx’

(39.1)

Expressing the conditions of integrability of these equations,
we have

ax"‘( 2°6 20 06
da* \da'dax/ 9af B/
____aJ:""( 3’0 286 ao)_o
dx \oxtdak  Baf Bx¥)

which, since they must hold for « =1, ..., n, are equivalent to

20 00 28 _
dxi dx/  Bat 8 T

The integral of these equations is
(39.2) e = axxt+h,

where /. and the a's are arbitrary constants. When this
expression is substituted in (39.1), the resulting equations
can be written in the form

3 ax'” ax'”
W[(akx"+h) o2 ]+ai 22 = 0,
of which the first integral is

aa’
0

«
.«
o Tar =aq,

(ak ak —I- h)

where the ¢'s are arbitrary constants. Integrating again,
we have

2 ) 4 de
(39.3) o= Gt

ar $k+-’;_’

the d's being arbitrary constants. The jacobian of this
transformation is
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b d* ... m|*

ol )
MG € e o

P
dat

_ 1

(39.4) = Ay

A L., o
an (" (”

This result is in keeping with (39.2) and (35.6), when it
is observed that in (35.6) A may be replaced by ¢4, where ¢
is any constant without altering (35.5). Hence we have:

The coefficients of a projective comnection are components
of a tlensor under linear fractional transformations of the
covrdinates and under these alone.t

If there exists a coirdinate system for a given space for
which the coefficients of the projective connection 77, are
zero, the space is projectively flat, as follows from (35.12).
Conversely, when the codrdinate system of a projectively flat
space is such that the 7"s are given by (34.4), then 77j;, = 0.
Hence we have:

A necessary and sufficient condition that « space aimit a
coiirdinate system for which its coefficients of projective con-
nection are zero s that it be projectively flat.

When the cooérdinate system is such that 77j; = 0, the
most general transformation of coordinates such that /75, = 0
is any which satisfies equations (89.1). Hence we have:

When the cobrdinate system of a projectively flat space is
such that the coefficients of the projective rommection are zero,
the most general transformation of coirdinates preserving this
property is linear fractional.

From (38.4) it follows that in these codrdinate systems
the equations of the paths are

.l" — (6i1)+b', wll - ll"_l" —%_ b,l.

where the a’s and I’s are constants.
When j; = 0, it follows from (35.2) that

(39.5) rj =0 G4J, i1 )

* Ct. Kowalewski, 1909, 2, p. 84; ifine, 1905, 1, p. 505.
+ Cf. Veblen and J. M. Thomas, 1926, 6, p. 284.
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and that

I,f, == I‘;’:.,(l-l-(")

+1

where i is not summed. Hence we have in general

(39.6) ry = ¢;(1 +49)),

where ¢ and j are not summed and ¢; = n—l-l—-—l_ r¥%. Con-

versely, the expressions (39.5) and (39.6), in which ¢; are
arbitrary functions, define the most general coefficients of
affine connection for which 77 — 0.

40. Projective codrdinates. Let P be the point of
codrdinates x, and consider the transformation of codrdinates
defined by

40.1) & = xh+dax“— % (Mig)p2® 2 + ¢,

where ¢' are any functions of the »'’s such that they and
their first and second derivatives are zero when the 2’'s are
zero, and (/I5p)p indicates the value of Mis at P. From
(40.1) we have

(40.2) (::i )P= o, ( — (ha ,,,) = —(1p)p.

3 !

If A denotes the jacobian Pz ', it follows that

2, o
20.3) (alogA) ( ¥ ox'
P

B 02’ 92 o
in consequence of (87.6). Therefore if we substitute these

values in equations obtained from (85.5) by interchanging
the 2’s and z'’s, we obtain

(40.4) : (IT'wg)p = 0.
Hence we have:

When a transformation of cobrdinates of the form (40.1)
is effected, the coefficients of projective commection in the x'’s
are zero at the point P of cobrdinates xi.

) = —(ipp =0,
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We call the codrdinates 2'® projective cobrdinates.

A particular system of projective codrdinates is obtained,
when we proceed with equations (38.4) in a manner analogous
to that which yielded affine normal codrdinates in § 23. In
this case the equations of the paths through the point P of
codrdinates xf are

- P dw‘)
(40.5) Y= (dp e
where p is the projective parameter for the 2’s, and the
equations of transformation of coordinates are

# =ty — g ey’ s
(40.6) L
- é' (,Iilf,i,)py 'y ’?/J8 +eeey

where /7] ...; are the same expressions in the /’s as (22.8)
are in the I's. _

If we denote by 7 the II's in the y's, we have from
(40.5) and the equations of the form (38.1) in the y’s that
the equations

(40.7) Thy —Why) o = 0

must hold throughout the domain for which equations (40.6)
define a transformation of codrdinates.

From the theorem of § 38 it follows that the y's as
defined by (40.5) are the affine normal codrdinates corresponding
to the a’s for the space with normal connection for the x’s.
Moreover, equations (40.7) follow from (23.6) and equations
of the form (35.2) for 77y.

41. Projective normal codrdinates. We have remarked
that p in (40.5) is the projective parameter for the a's and
not for the y's. We seek a system of codrdinates 2¢ such
that the equations of the paths through P (xi) shall be

41.1) 2 = (%—?)j )
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where p is the projective parameter for the £'s. Moreover,
we require that the 2's be projective codrdinates, that is,

412) = b (it

where the terms of order higher than the second are as yet
undetermined. From (40.6) and (41.2) we have

024\ 8y‘) _ (8@/") o
@1.3) (—axj)P_ (-—ax,. = (35 =
When the expressions (41.1) are substituted in equations
of the form (38.4), we have
(41.4) Pl = o,

the P’'s being coefficients of projective connection in the 2’s.
In order that there may exist a transformation of the y’s,
defined by (40.6), into £'s such that (41.4) hold, we must have
=, 02 9 zh o* 20 |, 922 06
sy — 5757 + 537 o7 + 3% o
LI T

020 A
as follows from (35.5), where
1 T 7= |2
(41.5) 0 = n 1 log 4, 4= ik

The above equations may be written in the form

= 0y By¥ 'y’ 20 ay") .
(41.6) (’If"‘ 27 28 T s o T2 27X = O

Since equations (40.5) and (41.1) define the same paths, it
follows that the transformation is of the form (cf. § 33)

#
41.7 =
( ) ?/‘ 9’
where ¢ is a function whose expansion must be of the form

(41.8) 9)=l+aozizj+...,
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in order that (40.6) and (41.2) be consistent. From (41.7)
we have

ayt 1 3
(41.9) ?%- = ? (96-"‘_3‘6_3)’

which are consistent with (41.3), in consequence of (41.8).
Accordingly we have

ay‘z _ ( __0g )
92/ 9? Y
%y .. z‘[ :
ik = L —T i
azfazk”" q)’9azlbzkzzk
29 ,-)3_? ]
+2(q) 0e) © azk‘k
and
- 1 i i 09
o —Z
(41.10) g7 75 5 e
o9 o¢ |*
. ¥ o Ya . )
1 1 1 . 9
At |? o dn gt ( 327 2/
SR S
Consequently
—_ __1 o9 ,)
8 = loge¢ +llog( 22 %)
1 e .
i J 2k
20 o _ 109 . ¥l TEY ik
9" T ¢ 8z _ 9 :
LY

When these expressions are substituted in (41.6), we obtam

azz" l1—n g L
(41.11) Mg (” 527 )+l+n o 0> 2 =0

We remark that from (41.7) it follows that
o _ iy y*
do ¥
*Cf. Kowalewsks, 1909, 2, p. 84; Fine, 1905, 1, p. 608.
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and from (40.7) that the value of the right-hand member is
the same for each ¢, it being understood that ¢ is not summed.
From the form of equation (41.11) it is evident that it admits
a solution of the form (41.8), and thus there exists a pro-
jective codrdinate system 2z associated with a given codrdinate
system af, for which the equations of the paths through
P(x}) are of the.form (41.1), 7 being the projective parameter
for the 2’s. Following Veblen and J. M. Thomas,* who
established their existence in a different manner, we call
them projective normal codrdinates.

If instead of starting with a coordinate system x we had
used another general coordinate system z”, we should have
obtained another projective normal codrdinate system Z°. Then
in place of (41.1) and by means of ¢41.1) we have

=y = (3) 5 = (3, 4 9F) 5
; ap'le 9z dp dp'/e
= a5 P ("—17,)
» ap’'ly’
where p and p’ are projective parameters for the respective
codrdinates z* and 2%, and in consequence of (38.6) we have

(di) 1
AN
Wl

(41.12)

Between the z's and z'’s we have a relation of the form

(41.13) = o 2 .
9 (2)
as follows from (41.12), where
p 9 (2)
= —.
d CHED

Differentiating with respect to » and making use of (41.1b)
we have

* 1925, 4, p. 205.
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9t ap’ ¢
YT T ay T Wzk'
lafl"“ 4
By the method used in (41.10) we find for the jacobian of
the transformation (41.13)

azli
92/

1 oy i
= g (p— g5 /).

Substituting in the preceding equation, we obtain, in conse-
quence of (38.6),

1—a

_29 c‘)”"__
(cp az‘z = 1.

We must find the solution of this equation such that
st .
aai—j—)}, == gj; consequently we must have (¢)r = 1,

(%)P = a@;, where a; are constants. The unique solution
of this equation satisfying these conditions is ¢ (2) = 1+ ai2’.
Hence we have:

When the coordinates = of a space undergo a general trans-
Jormation, the projective mormal covrdinates at a point P
associated with the x’s undergo a linear fractional transformation

i afiizj %
(41.14) z ———l—l—akz" .
From (41.3) and analogous expressions in the primes and
from (41.14) we have

Y 3z Iy 8z'i) i
3 o % \Gdle = Y
and consequently

3 A
(41.15) _a?)l’ = aj'.
¢ This result has been established in a different manner by Veblen and
J. M. Thomas, 1925, 4, p. 206.

8¢
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Also from the law of multiplication of jacobians, from equations
of the form (40.3) for transformations of the form (40.1)
and from (41.13) we have

3 ax"D _( 3 82" ,) .
(41.16) (Wlog W P _az" log' _—azf P —(n-l-l)ak.

Consequently equations (41.15) and (41.16) give the significance
of the constants in (41.14) and the original transformation
in the z’s and «'’s.

42. Significance of a projective change of affine
connection. In consequence of equations (40.2), (40.3)
and (35.3) we have for any system of projective codrdinates
associated with a coordinate system ¢ and with P(xf) for
origin )

(42.1) e = ©Cde,

where C,i are the coefficients of affine connection in these
projective coordinates. Suppose that the latter are the pro-
jective normal coordinates z¢ associated with the x's. If we
introduce homogeneous codrdinates, putting

t
(42.2) # = %
equations (41.14) become
(42.3) 7' = b7,

where
424) b =gaf, =0, =1, b= a.*

If we put
42.5) (CHr=—n+Du;, (CHr=—(n+1)w;, uy=u=1,

from equations of the form (35.3) in the z’s and 2’s we
have, in consequence of (41.16) and (42.3),

-,

a7’ = up.
Hence the w's are transformed contragrediently to the £’s.

* Here it is understood that greek indices take the values 0,1,...,n
and latin 1,..., n.
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Accordingly if at P we look upon the Z’s as homogeneous
codrdinates of a projective space, each choice of an affine
connection singles out a hyperplane, which justifies the use
of the term affine.

In § 37 we saw that among all the spaces with the same
projective connection there is one for which I'j; = 0 in the
given coordinate system xf. From (42.1) and (42.5) it is
seen that at every point in the codrdinate system z' at the
point associated with the x’'s we have ;=0 (j=1,...,n).
Consequently in this codrdinate system the plane at infinity
is 2°=10. Accordingly at each point the z’s are homo-
geneous cartesian codrdinates, defined by (42.2) in which
the 2's are cartesian.*

43. Homogeneous first integrals under a projective
change. If for a given affine connection Iy the equations
of the paths (22.4) admit the homogeneous first integral

it follows from (32.3) that for a projective change of con-
nection defined by (32.1), the equations (32.2) of the paths
admit the first integral

om | dx’ dx'™
anfvat o A&

= const.,

where the integral f Yy dx* is taken along the path in question.

Conversely, if the equations (22.4) of the paths admit
a first integral

@it dz" da'™ _
(43.1) eJ Qr, oy =go= ++ —g=— = const..

then for the affine connection defined by (32.1), in which

(43.2) W= — 2’;;,

* Cf.Veblen and J. M. Thomas, 1926, 6, p. 295.
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the corresponding equations (32.2) admit the first integral

da dz™
(43.3) a,»l...rmw e W == const.
When we express the condition that (43.1) be a first integral

of equations (22.4), we get
(43.4) - P(arl...r”,k‘i' af‘...qu’k) = O,

where P denotes the sum of the terms obtained from those
in parenthesis by cyclic permutation of the indices (cf. § 31).
Hence we have:

A necessary and sufficient condition that a projective change
of affine comnection can be effected so that the corresponding
equations of the paths shall admit a homogeneous first integral
of the mth degree is the existence of a symmetric tensor ay,...r,
and a vector ¢; such that equations (43.4) are satisfied; then
the projective change is defined by (32.1) in which W; = — ¢i/2m
and the first integral is given by (43.3).*

When, and only when, ¢x in (43.1) is a gradient, equation
(43.1) is of the form (43.3) Hence the results of § 31 may
be stated as follows:

A necessary and sufficient condition that the equations of
the paths for a given affine connection admit a homogeneous
integral of the mth degree is that there exist a tensor ay,...r,
and a gradient ¢, i such that the corresponding equations (43.4)
hold; then the first integral is
T ds ' ds

The condition (43.4) is satisfied by the tensor gy and the
vector ; of & Weyl geometry, as follows from (30.1). Conse-
quently the equations of the paths for the given affine con-
nection admit the first integral

ezfqp‘dw* dx‘ dxf .

9ij$ _ds == ¢onst.

e ar,... == const.t

* Ct. Eisenhar ' 1924, 2, p. 881; also J. M. Thomas, 1926, 7, p. 119.
4 Ct. Veblen ana T. Y. Thomas, 1928, 1, p. 588.




44. SPACES WITH LINEAR FIRST INTEGRALS 119

From (43.2) it follows that for the projective change defined
by (82.1) in which ¥, == —¢;/2 the new affine connection
is such that its equations of the paths admit the first integral

dxt dx/

(43.5) Y I

== const. d
If gi;,i denotes the covariant derivative with respect to the
new connection, from (30.1) we have

(43.6) giik+ gix i+ gie Yi— 295 Y. = 0.
From these equations we have

438.7) g7 giji = 2 —1) Y.

and consequently (43.6) can be written as

43.8) 2(n—1) gij,i + 9*1(9jk 9pa, T+ Jit Ipa,7— 2 9ij Gpa, ) = 0.

Conversely, if the equations of the paths of an affine
connection f‘,-'k admit a first integral (43.5) and equations
(43.8) are satisfied, for the vector ¥, defined by (43.7)
equations (43.8) reduce to (43.6) and by means of (32.1)
with ¢; = —2y;, we get (30.1). Hence we have the
following theorem due to J. M. Thomas:*

A necessary and sufficient condition that an affine geometry
whose paths admit a quadratic integral (43.5) have the same
paths as a Weyl geometry is that equations (43.8) be satigfied,
covariant differentiation being with respect to the given connection.

44. Spaces for which the equations of the paths
admit »(n+1)/2 independent homogeneous linear
first integrals. In order that the equations (22.4) of the
paths admit a linear first integral

dat
(44.1) a4~ = const.,
it is necessary that (§ 31)
(44.2) aij+aji = 0.

* 1926, 7, p. 122.
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Differentiating covariantly with respect to 2*, we have

(44.3) aijx -+ aj,ic = 0.

If fromethe sum of this equation and the first of the following
ar,ij + aiy = 0. aj ki + axji = 0

we subtract the second, the resulting equation is reducible
by means of (6.4), (21.3) and (21.4) to

(44.49) A = —aq Big, .
The conditions of integrability of these equations are reducible to

an(Blis,1— Blsr)

+ an,p (87 Biij— of Bltj + 6F Biu—0f Blia) = 0.
If we put

(44.5)

oa;
dx’

= ap I‘g + by,

these equations and (44.4), written as
bijk = —a -B;:ij-

constitute a system of equations of the form (8.1) in the
n quantities «; and the =* quantities b;;. In this case we
have a system Fp of n(n - 1)/2 equations b;; + bj; = 0 which
follow from (44.2). Equations (44.5) are the set F) for this
case. Hence we can apply the results of § 8 to get the
conditions to be satisfied, in order that there be one or more
first integrals.* When (44.5) are satisfied identically in virtue
of (44.2), the solution admits n(n + 1)/2 arbitrary constants;
it is this case we consider in what follows.

From (44.5) we have the following equations of condition:

(44.6) Blji— Bl = 0,
*Ct. Veblen and 7. Y. Thomas, 1928, 1, pp. 591-599.
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9) oF Bly— ¢! BE;— o Bly;-+ ok Bl;+ 6 Bia—d} Bl
N
—0F B+ 0t Bjy = 0.
Contracting (44.7) for p and I, we obtain (cf. § )
(148) By = 1@ Ba—o! B+ 20} 8.

Contracting this equation for A and j, we have

2
_B,'.i"—'B"". T eme
n—I1

Bin.

Since B is the skew-symmetric part of B (§ ), it follows
from these equations that 8; = 0, and consequently Bj; is
symmetric. Hence (44.8) reduce to

1 )
(44.9) Biy = —— (8] Bx— 87 By).

When these expressions are substituted in (44.7), we find
that these conditions are satisfied identically. Again when
they are substituted in (44.6), we obtain

(44.10) Bi,1— B = 0.

Comparing these results with those of § 34, we have:

A necessary and sufficient condition that the equations of
the paths of a space admit homogeneous linear first inteqrals
involving n(n+1)/2 arbitrary constants is that the space be
projectively flat and the tensor DBy be symmetric.

In §34 it was seen that any such space is determined
by taking ‘ ‘ ‘

(44.11) T = — (0 Y.+ 0 9,)),

where y ; is an arbitrary gradient, and that the codrdinate
system o' for which the I”s have this form is cartesian in
the corresponding flat space. In this codrdinate system and
for the I'’s given by (44.11) equations (44.2) become
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where
(44.13) bi = a;e®¥.

Equations (44.12) are the form which (44.2) assume in a flat
space referred to cartesian cooérdinates. In this case
equations (44.4) become

b
(44.149) S — 0.

From (44.12) for { = j it follows that ); is independent of «'.
Then from (44.12) and (44.14) it follows that the general
golution is

(44.15) bi = ¢/ + d;,

where ¢;; and d; are constants, subject only to the condition
that ¢; is skew-symmetric in the indices. Hence there are
n(n -+ 1)/2 arbitrary constants, as desired, and for the given
space a; are given by (44.13) and (44.15).*

45. Transformations of the equations of the paths.
Equations (35.5) may be obtained in another manner. In § 22
it was shown that the affine parameter of a path is not
changed by a general transformation of coo¢rdinates. Con-
versely, if we take the equations of the paths in the form (22.4)
in two coordinate systems zf and 2'° and assume that s is
unaltered by the transformation, we obtain (5.6). We wish
now (o consider the more general case when s is not invariant
under the change of codrdinates. To this end we take the
equations of the paths in the form (7.6), and seek the con-
ditions which the I'’'s and I''’s must satisfy in order that
(7.6) are transformable into

dz'® ((_l_’_:_t"f_ o8 dx'” dx"’)
at \ dé rTar T dt
dz'? (B2 | e dx'T dw"’)
T (dt’ =g —ai

by a change of codrdinates.
* Ct. Eisenhart, 1926, 9, p. 336.

(45.1)
=0
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If we effect the transformation 2’ = ¢*(2!, ..., ") on
(45.1) and express the condition that (7.6) be satisfied, we
obtain

ax’® Y old dai dri da¥

487 @ —

(8.1" A4 EYa A) At At dt 0,
where

« a'® « 00 32 PR ¥ e
U82) Ay = sasar T 1o o 59 — i

Since the above conditions must be satisfied for all the paths,
we must have

ax'® s « 2’

aar i aa’ A'I+

45.3
(403) ax'f e _
Y l.+ 2 n dxd kT 0.

Multiplying by —— xk and summing for % and «, we obtain in

consequence of (45.2)

ox'? (a log 4

e 0 -
(n41) 4 = + 1 8‘, -—rt;\

o ad \ 22
“s4) ax'® (dlog A )
J£ og m 3' k
Ry ( TR AT r"")’
where A is the jacobian
sa’”
(45.5) 4 = 5

When the expressions (45.4) are substituted in (45.3), the
latter are satisfied identically. Hence the conditions are
given by combining (45.2) and (45.4); this gives equations (35.5).

From (22.2) and (22.8) we have

d*s
. o2 I dri dr* dlz da
(45.6) dE R g Tar T Tds - df

dt
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for the determination of the affine parameter s of a path.
By means of (35.5) we obtain from (45.6) and analogous
equations in the I"’s and the affine parameter s’

as d%s
g 4de 2 ( B 8T ;.) dx®
(45.7) (lsl - ds + 'n—l— 1 I}gr ox* — Tk dt
dt dt
2- dlog4
+ n+1 dt

If the affine parameters s and s’ are to be equal, we must have

8 9T
(45.8) k. = Iy 8 8.’1: + 9 log 4

in which case equations (35.5) reduce to equations analogous
to (5.6); we have seen that equations (45.8) are a consequence
of these.

If we consider the most general solution of equations (35.5),
when the coodrdinates are not changed but only the affine
parameter, we have /1)y = I, which shows the invariant
character of the II’'s under a projective change.

46. Collineations in an affinely connected space.
The results of § 40 may be used to define transformations of
points of an affinely connected manifold into points of the
manifold such that paths are transformed into paths. We
call such transformations collineations. The conditions to be
satisfied by a space in order that it may admit one or more
collineations arise from equatlons (35.5) on the assumption
that each pair of coefficients I'j; and I}k with the same indices
are the same functions of 2 and x” respectively. This is a
particular case of the problem considered in § 36 and may
be handled in that manner. However, if the finite equations
of the transformation involve » (= 1) parameters and possess
the group property, they define a finite continuous group
of collineations. In this case the transformations may be
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considered as generated by r infinitesimal transformations.*
Accordingly we consider infinitesimal collineations as the
basis of another method of obtaining affinely connected spaces
which admit collineations.

An infinitesimal transformation is defined by

(46.1) ' = i} Edu.

where & are functions of the »’s and du is an infinitesimal.
Since by hypothesis the I's and I”’s with the same indices
are the same functions of the 2’s and z"’s respectively, the
same is true of the I7’s and /7'’s, as defined by (35.2); hence
by Taylor's expansion we have

(46.2) mi = M+ af; o

neglecting infinitesimals of the second and higher orders; this
will be done in what follows. From (46.1) it follows that
the determinant A of the transformation is given by

agh
4 =1 + —a—a?‘-du,
and consequently

eh
(46.3) ologd = 9%

dxt — axhaxt
When these values are substituted in (35.5), we obtain, on
neglecting the multipler du,

Su.

9 g « a‘~ o« O o, I x 0 &
(46.4) aaioay T ik YA ”"‘ +§ at g
) 1 (o"‘ 9% § +6“ ot Er ) — 0
n+1 83:" ax' 2" 9o )
Because of (35.2) these equations are equivalent to
0%k | e 08 | . 0B 0T L 0F°
(16.5) saowl T g T ligg T8 50 —Figx

= 0j gi+ 0 ¢;,
“The reader is supposed to be conversant with the Lie theory of

groups as contained in the treatise of Lie, 1893, 1 or Bianchi, 1918, 1;
a résumé of thia theory is given by the author, 1926, 1, pp. 221-227.
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where by contraction we have

Ii;
n+l (az"zxf +rh o +Eha k)

Equations (46.5) may be written in the form

(46.7) = B+ git oty

(46.6) ¢; =

Contracting for %2 and 7, we have
(46.8) 5= ES%+0+ny.

In order that the affine parameter s be unaltered by the
infinitesimal transformation (46.1), it follows from (45.8) and
(46.3) that ¢; as defined by (46.6) are zero. In this case
equations (46.7) become

(46.9) i = & Bl

Hence when a set of functions & are a solution of (46.9)
equations (46.1) define an infinitesimal collineation which
preserves the affine properties of the space, and when they are
a solution of (46.7), where ¢; + 0, the collineation preserves
the projective properties. Accordingly we call them infinite-
simal affine and projective collineations respectively.™
Consider the case of a projectively flat space and assume
that the cotrdinates «' are such that /7 = 0 (cf. § 39).
Under these conditions gquations (46.4) may be written

M P
(46.10) s onl — O 9i+ 67 9;.

The conditions of integrability of these equations are

d9; @ 89’ « 39; o 3%

of —Z- 4 07 ’ = Oy

Iy o % o ax "

Contracting for ¢ and 7, we find that ¢; is the gradient of

a function ¢, that is, ¢; = % Substituting in the preceding
3
equations, we have % = (0 and consequently

* Of. Eisenhart and Knebelman, 1927, 2.
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9 =amrt+d,

where the a's and d are arbitrary constants. Then from
(46.10) we have
§ = q,aha b2t

where the 0’s and ¢’s are arbitrary constants. We recognize
these expressions as defining the most general infinitesimal
projective collineation in a projectively flat space.* If, on
the other hand, we consider equations (46.9) f’oraa flat space

referred to cartesian codrdinates, we have ————— = 0 and
oxt 8’
consequently ] ]
§I p— a;,:z"—{—b’.

which define the most general infinitesimal affine collineation.+
Thus as defined affine and projective infinitesimal collineations
are generalizations of these respective collineations of a flat
space.

Suppose that we have a solution & of equations (46.7)
and that the coordinates a® are chosen so that in this
codrdinate system

(46.11) =1, =0 (e=2,...,n.t
In this case equations (46.4) reduce to

9 M),
(46.12) o =

By means of these equations we shall prove the theorem:
When an affinely connected space admils an infinitesimal

projective or affine collineation, the transformations of the

JSinite group G, gemerated by it are collineations.

In fact, for the chosen coodrdinate system the equations of

the finite group are

(46.13) 2t = d4a 2% =2" (¢ =2,..-,m),

* Of. Lie, 1898, 1, p. 24.
+ Cf. Lie, 1. c., p. 85.
$1926, 1, p. 223.
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where a is a parameter. For this transformation equations
(35.5) reduce to Iji = ITj;. In consequence of (46.12) this
condition is satisfied for a projective collineation. For an
affine collineation (46.11) we have from (46.5) that I} is
independent of x', so that the theorem follows in this case
also. Moreover, we have shown incidentally that

The most general affinely connected manifold which admits
a finite group G, of affine collineations is given by taking
Jor Tji. functions of n—1 of the cobrdinates.

In consequence of (39.5) and (39.6), we have that equation:
(46.12) are equivalent to :

oy ..
Sa =0 (4, i 48
and
ol ola;
Tt 2¢i ! i

where ¢ and « are not summed. By means of these equations
we are in a position to choose the coefficients I’ of an
affine connection so that the manifold shall admit a group G,
of projective collineations. This result is seen also from (46.5).

If & is a solution of equations (46.7) for a given connected
manifold, it follows from (46.4) that it defines a collineation
for every manifold in projective correspondence with the given
manifold. If the coefficients of any such manifold are given
by (35.1), we have

(46.14) i = D+ (4 1) g,

and consequently from (46.6) we have that the functions ¥;
in this case are given by

(46.15) 9 = ¢i+ Y

a:ék h awi
ot +¢ axh’

If we denote by .E',‘g_the second covariant derivative of &*
with respect to the I's, we have
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5 = &5+ 08 (k) i+ ) B Y-+ & P )
+E W — ).

In consequence of (32.4) these expressions and (46.15) satisfy
equations of the form (46.7).

From (46.15) it is seen that the collineation determined
by & is projective for the connection of coefficients Ij;; unless
Y; satisfies the conditions

W Wi
rye "

8x‘ + gi = 0.
‘When the cosrdinates z' are chosen so that & have the
values (46.11), these equations become

awt 'I'q’z =

The general solution of these equations involves n arbitrary
functions of x%, ---, +*. Hence we have:

When a projective or affine collineation of an affinely
connected manifold is known, it is an affine collineation of
a sub-group of comnections projectively related to the given
connection; the determination of the sub-group involves n
arbitrary functions whose jacobian is zero.

47. Conditions for the existence of infinitesimal
collineations. If we make use of the Ricci identities (§ 6)

~J

4
uk—~ .w = § .rBr B’.'ih

the conditions of integrability of equations (46.7) are reducible
by means of the Bianchi identities (§ 21) to

EBY + ¥ LEJI g i+ & iB{, —¥, Bi

+9; w.,..—&q»wwi (9 —9xj) = 0.
Contracting for . and ¢, and » and k¥ we have (cf. §5)
respectively

41.2) ¥ S+ ExSi—&; Su+ (+1) (9j,6—9rj) = 0,
9

(47.1)
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¥ Byu+ ¥ ;Bu+ 8B+ 1 —n)gi;
+(?jyi—q)i»j) = 0‘
Interchange ¢ and j in (47.3) and subtract from (47.3); in

consequence of § 5 the resulting equations are of the form
(47.2). From (47.2) and (47.3) we obtain

(47.3)

@4 gy = 1o FE Ot Gt Eiay),
where

(47.5) Cy = By+— + =8

If in (47.1) we substitute for the covariant derivatives of
i their expressions of the form (47.4), the resulting equations
are reducible by means of (32.10) and the results of § 5 to

“7.6) EWh + & wh—E; W+ & Wh—& Wi = 0.

The conditions of integrability of equations (47.4) are ob-
tained from the identities ¢;jx—9ix; = on B:jk In con-
sequence of the results of § 5, they are reducible to

£ (Cy.ik— Ca,i— Cin Bl + Caj Bla—Cix Blj) + & 1(Cy1—Ca,j)
+ & (Cax—Cine,) + E (Cjx—Cue ) + (1 —n) o1 Wi = 0.

Because of the Ricci identities for (. and Ca i and the
identities (21.4), these equations are equivalent to

£ (Cija— Cie o) + ¥ £ (Cit— Ca ) + & j(Cax— Cine1)
+ & (Cyx—Cwj)+ (1 —n) o Wi = 0.
If equations (47 6) are differentiated covarlantly and use

is made of the Ricci identities for Wik, the resulting
equatlons are reducible to

Whon+ ‘l,r Wit + &0 Wh,—§ & ; Wi,
(47.8) + & W — & Wh ot Wi 91— Wity 9
+ Wik gi+2 Wio,— 0 Wi s = 0.

(47.7)
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Contracting for 2 and r, we obtain

)/ ol h )/
& Wi+ &« Wha—E&; Wi

(47.9) ]
+ & i Wi+ (2—n)on W = 0.
If we put
(47.10) o=,
equations (46.7) become
4711 nt; = ¥ Biu+ 9} g+ ;.

These two sets of equations and the set (47.4) are of the
form (8.1) in the functions &, 4" and ¢i. By means of (47.11)
and (21.4) the conditions of integrability of (47.10) are
satisfied identically. The conditions of integrability of (47.11)
and (47.4) are given by (47.6) and (47.7) which together
constitute the set ¥, of the theorem of § 8. However, when
n >~ 2, equations (47.7) and (47.9) are equivalent in consequence
of (32.16), which may be written

; n—2 .
Wik, i = praliy (Cir,i— Cix) -

Hence as observed in § 8 we may apply the theorem to this
case taking (47.6) as the set F), (47.8) as the set F; and
so on. Since all of the equations are linear and homogeneous
in the dependent functions, we have:

A necessary and sufficient condition that an affinely connected
space for n>>2 admit r (2 1) infinitesimal projective colline-
ations i3 that there exist two positive integers N and r such
that the matrices of the equations Fy, - .-, Fxand Fy, - .., Fn41
are of rank n®*+2n—r; when r = 1, the solution involves
a quadrature; when r>>-1, the general solution is a linear
Junction with constant coefficients of r fundamental sets of
solutions.

When n = 2, the Weyl tensor vanishes identically, and
consequently equations (47.6). The above theorem applies
to this case with the understanding that equations (47.7)
with Wl = 0 constitute the set F,, and the other sets are
derived from this one.

[ od
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From the form of equations (47.6) and (47.7) and the
results of § 34 we have:

The maximum number of independent infinitesimal projective
collineations which a space can admit is n® 4 2n; this is the
case when, and only when, the space is projectively flat.

The determination of spaces admitting infinitesimal affine
collineations reduces to the solution of equations (47.10) and
(47.11) in which ¢; == 0. In this case we have a theorem
analogous to the first of the above theorems for which the
sets F; and F; are obtained from (47.1) by putting ¢; = 0
and from (47.8) by replacing Wi by Bl Since there are
n®+ n functions ¥ and 4" in this case, we have:

The maximum number of independent infinitesimal affine
collineations which a space can admit is n®-+ n; this is the
case when, and only when, the space is flat.

The forms of the solutions & for projectively flat and flat
spaces in cartesian codrdinates have been obtained in § 46.

A special type of collineations is that for which the path
curves of the collineations, namely the congruence determined
by &, are paths of the manifold. In this case the functions
& must satisfy the conditions (cf. (7.5))

(47.12) (8, - E ) = 0.

’ Bl

In applying the existence theorem we take these conditions
as the equations F, referred to in § 8. Differentiating (47.12)
and reducing by means of (46.7), we obtain a new set of
conditions which together with (47.1) and (47.4) constitute
the set F, of equations; and so on. Since the equations
(47.12) are homogeneous and of third degree, the existence
theorem assumes the more general form of § 8. and not that
applying to the cases when all the equations are linear and
homogeneous. If the codrdinates are such that the com-
ponents & are of the form (46.11), equations (47.12) reduce
to Ity == 0 (¢ = 2, ..., »). Combining this result with
those of § 46, we have a means of defining the most general
affine connection admitting a group @, of the type under
discussion.
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48. Continuous groups of collineations. If & for
« = 1, ..., r determine infinitesimal ¢ollineations, we call
Xof = St :_i' the generators of the collineations. Further-
more, we denote by (Xe, .Xp)f the Poisson operator, that is,

- . i 0 f.; B . . 9
(48.1) (.A\m Xﬂ).f == Q:m _"x‘f‘ (Q(Jﬂ) f ) —“gfﬁ) (§(a) a—i') .
We establish the following theorem:

) L2
If Xof for e« =1,... r are the generators of infinitesimal
collineations, so also are (Xe, Xg)f for ¢, 8 =1, ..., r(a ¥ 8).
Consider the case when « == 1, 8 = 2. From (48.1) it follows
that

2
ot

r ' 133 a
(X, X)f = 827,

where

ol .l
i 8 &2 < 0&y i wh i
(48.2) & = '5?1) Py ;(‘2)—8—:1‘7 == 5’{1) Eo,n— & Eann.

From these expressions and (46.7) we have in consequence
of the identities (21.3) and (21.4),

i ol wl ol olt ol i
;= &, fa,n— &2.j fon + Eo &2 Bin

i " i ;
+ 8} (& v — & ean) + o 90— & 9w;-

If we differentiate these equations covariantly with respect
to 2* and in the reduction make use of (46.7) and (21.5), we
obtain ‘ ) _ .
¥ = & B+ o+ 0 9;,
where
9 = E,j von— So,; Por + & e@is — & S0,

which establishes the theorem.

Suppose that a given space admits » independent infinites-
imal collineations. From the above theorem and those of
§ 47 it follows that

(X, Xp)f: capr er)




134 III. PROJECTIVE GEOMETRY OF PATHS

where the ¢'s are constants. Hence as a consequence of the
fundamental theorem of the theory of continuous groups*
we have:

When, and only when, equations (46.7) or (46.9) admit r in-
dependent solutions, the space admils an r parameter continuous
group of projective or affine collineations.t

49. Collineations in a Riemannian space. In order
that an infinitesimal transformation (46.1) in a Riemannian
space, with fundamental tensor g;, be a collineation, it is
necessary that

(49.1) gh = gy, ..., 2™) = yv+ -— kAl

and that equations (46.5) be satisfied, when I‘,-'k are replaced
by the Christoffel symbols of the second kind formed with
respect to g;. The latter conditions reduce, as in § 46, to

(49.2) ey =Rnxt+doitoe,,

where Iﬂ;',k are the components of the curvature tensor and
¢,i are the components of a gradient; the latter follows from
(47.2), since Sy = 0 for a Riemannian space; in (49.2) co-
variant differentiation is with respect to the ¢'s.

The quantities g; given by (49.1) are the components in
the z'’s of a tensor whose components gy in the z’s under
the transformation (46.1) are given by

— ax’* 3z’
(49’3) g'J = g;d ax{ ax = gu+ht.i 6“’

where
9
(404) by = #3244, 35 1

T
ox'

and & == gy &¥. From (49.3) follow equations of the form
! ¥
iy lihy %

* Lie, 1893, 1, p. 391; also Bianchi, 1918, 1, p. 97.
1 Cf. Knebelman, 1927, 4.
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where a subscript as in lef indicates the form with respect

to which the symbol is formed, a}; being functions to be
determined. Multiplying by g,,, summmg for ! and using the
expressions (49.3) in the right-hand member of the equation,
we have

g .. l
[éj, Ky = [ij, K, + (ltk, {z’ j}g + 94 af.j) du,

where (27, k]i are Christoffel symbols of the first kind formed
with respect to g;. In accordance with the definition of these
symbols we have from (49.3)

[¢), K; = lij, K, + [, K], du.
Consequently

5 ], = {90

If we add to this equation the one obtained by interchanging ¢
and %, the result may be written

_ 1 1
hy; = 9u Ay +9a gy

Substituting for Ay, ; the expression from (49.4) and making
use of (49.2) in the form

(49.5) g, = & B+ gin 9. + 90 9.5
we obtain
g (@ — & 9,i — 8t 9.5) + gu (alg — &} 9.1 — Sk 9,)) = 0.

When we add to this equation the one obtained from it by
interchanging ¢ and j and subtract the one obtained by
interchanging ; and k we find that

o = Ko+ g,
Consequently we have

n ! .
(49.6) TP PPLY
and
(49.7) hijx = 29596+ g 9,i+ g 9.5-*

* For another method of obtaining equations (49.3) and (49.7) see 1926,
1, p. 228.
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Each solution of (49.5) in which ¢ ; ¥ 0 determines a group Gy
of projective collineations of the Riemannian space. The
results of § 48 can be applied to this case to determine whether
a space admits a group G, of projective collineations. From
(49.5) we have

it & = 299+ 99+ i .0

From these equations we have:

A mecessary and sufficient condition that a collineation of
a Riemannian space be aqffine is that the first covariant
derivative of &n,i+ &in be zero.

When in particular &, ;- &, = 0, then g; = g;; and the
collineation is a motion.*

*1926, 1, p. 234.




CHAPTER 1V

THE GEOMETRY OF SUB-SPACES

s50. Covariant pseudonormal to a hypersurface.
The vector-field »¢. Consider a space V,,1 expressed in
terms of coordinates y*.* A hypersurface V, is defined by
an equation of the form

(50~1) 9’(.'/1’ Tty ?/n-H) == 0,
where ¢ is irreducible. If we put
(50.2) al = @iyl oo, yttY), Tl = g,

where the functions ¢ are arbitrary except that the jacobian
of the n+41 ¢’s is different from zero, then equations (50.2)
define a codrdinate system x* for which the given V, is the
hypersurface a"t! = 0.

For any displacement in 7, at a point P of it we have

. og

(50.3) " dy* = 0,

and consequently the covariant vector »4 at P, defined by
e _8.r“+1

(560.4) Vo = 5 o oy

is pseudo-orthogonal (§ 11) to every contravariant vector
tangential to V,, at P. From (50.2) and (50.4) it is evident
that the vector »4 is independent of the choice of the
functions ¢* in (50.2). We call it the covariant pseudo-
normal to V.

*In this and the following sections greek indices take the values

1,..c.n+41 and latin 1, ..., n.
137
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We define also a contravariant vector »* by the equations

oy*

(50.5) e = —W—H .

As thus defined »* are the components of the vector tangential
to the curves of parameter z*t!, that is, the curves along
which all the 2’s except a"t! are constant; we call them
transversals of the hypersurface. Evidently »* depends upon
the choice of the functions ¢* in (50.2). From (50.4) and (50.5)
we have

(50.6) Ve ¥® = 1
and o

o a —
(50.7) v s 0.

If we change the curves of parameter z*+!, we get a new
vector of the type »*. Calling it »*, we must have

_ 09
(50.8) e = v"‘+a‘7§,
if we require that ¥y*v, = 1.

Suppose that we have a set of functions y*(y!,..., y*t?)
such that 1,0":—;;= 1, that is, y* vy = 1. If we put »* = y~,
the condition (50.6) is satisfied. Moreover, if for the func-
tions ¢ of (50.2) we take »n independent solutions of the
equations .

1 +1
(50.9) .. =

wl “_'Wf

then in the codrdinates 2* the integral curves of (50.9) are
the curves of parameter 2**+%. Thus for a given congruence »*
not tangential to V,, we can define a codrdinate system z*
satisfying the requirements of this section.

When equations (50.2) are solved for the y’s, we have

(50.10) ¥ =S, ..., 2t
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or, as expansions in powers of a1,
(50°ll) y“ = f:(xl’ tt x”)+fla(x17 M a.n)lm+l+ Tt

Consequently V, is defined by the parametric equations

-

(50.12) ¥ =L@, ., a"),
and at points of V, the expressions for »* in the z’s are
(50.13) (%)% = S (@', -+, 2.
If in (50.11) we put
xt' — J"i .7‘”“ — xm+l F(.’E'l .. .’E’”)
? - ? ? ’

then the curves of parameter z'»+! are the same as those
of parameter 2*+!, but in place of (50.13) we have

% = A @, 2"F.

Thus we see in what manner the codrdinate x**+' may be
changed, if the vector »* at points of V, is not to change
in direction.

In order to consider the effect of a change of the vector-
field »*, we consider a transformation of codrdinates of the form

x'i = xi+¢§(x‘y c xn)xn-rl
(50.14) + i@, .., @)+,
2™ = ar L g @, ) )

that is, a transformation such that in the two coordinate
systems the space V, is defined by 2"*' = 2""*' = 0, and
2]

o' =4 at each point of V,. From (50.5) it follows that
in the a’s the components of the flield »* are

(50.15) vi =0, =1,

From (50.14) and (50.15) we have that the components of
this field in the x'’s are
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= yi+2umt4 ..,
l+21l!”+l n+l+

It follows at once that the curves of parameter z"*! and
of parameter «'"' have the same directions at each point
of V,, when, and only when,

(50.17) '1“1 (xl’ ey :L‘") = 0 (‘ = 1’ ceey ”)-

(50.16) o _

It we denote by y* a general cotdrdinate system, we have
from (50.14)

by _ o (d," +-?—i"l?;x"+l+...)

dat aa'’
" 3 1pn+1
+ 3$’”+1 ( Xt (x”+l)’ + .. ‘) 9

= O it 2wt
ax'’

+aa““ (L4 2yptigntl 4 .. ).

wm{'l

The result (50.17) follows also from the last of these expressions.
Also we have

e =Sl B
+PE e £,
GO g gn e 2 (M"fi ™ 4. )
ay" dy" \ ox)
o 2y

From equations (50.18) and (50.19) we have that at points of 17,
0 0 0
oy _ oy S B gy

daxt - axn’ ﬁx"‘H m+1’

ox" _ oat | darht 2™t dantl
3y~ oy~ 2y~ et 3yt By

(50.20)
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Also from (50.18) we have that at points of T,

2yt prye
daida  pyigat’
82 4 %" prye
(50.21) 31.1‘ 9 g1 = _3—.’1'_” 92" P xn' axrk lp’f
dys 0¥
oz’ aat’

If we write the last of equations (50.18) in the form

¢ - a ycl

Lol 4.,
(50.22) L G

R R R AR S PN

then at points of 17,

ave oty

0y* dun , ¥
ori  dataal

GE A I U

(50.23) S

s1. Transversals of a hypersurface which are
paths of the enveloping space. We consider the trans-
formation of codrdinates in the space V,i; defined by

1

== A AT = o T i AT
(51.1) .
— i T g il ST
where f5' and f£i" are functions of +/'. ...../"", 17, are the

coefficients of the affine connection in the y’s in Voyu, Ip...5,

are defined by (22.8), and the zero subscript indicates that

in these functions " have been replaced by f;. From the

considerations of § 22 it follows that these expressions satisfy
formally the equations

o = o yf oyr

Gaﬁg_l?— + 1o 8.1"1'{“'"l 8.1"?{'“

== 0.
Hence when constant values are given to ', ..., »'",
equations (51.1) define a path of V,i,, the parameter being
2/™*'. The hypersurface 2™t = 0 is defined by




142 iv. THE GEOMETRY OF SUB-SPACES

(51'2) yd = ﬁa (xll’ M) wm)’

and the tangent vector »* at a point of this hypersurface
to the path of the above set through the point has the
components

(51.3) " = /@, .-, 2.

When we effect upon the x”’s a transformation of the
form (50.14) in which y¢ = 0, we get.(50.11), in which the
functions f* and f* are of the same form as in (51.1).
Moreover, equations (51.2) and (51.3) are the same as (50.12)
and (50.13) respectively. In what follows we shall use the
equations in the form of § 50, when we are considering
relations between the y's and x’s, and the same notation
with primes when the codrdinates 2'* are under consideration.
Thus in place of (50.2) we have

(51.4) w,i —_ q‘[i(yl’ e, y’li‘l)’ xl”"}-l — q)l (yl’ e, yﬂ+l)‘

In particular, we remark that ¢’ = 0 is the equation of the
hypersurface V,. From the last of (50.14) it is seen that
¢' = o F(y, .., y*t"), where F is of such a form that
F =1 when ¢ = 0.

Differentiating the last of the equations (51.4) with respect
to '™ we have )
(51.5) g:“ »® = 1.

where, in consequence of (51.1)

(51.6) V= =T ST 2™ 4

Differentiating (51.5) with respect to z™**", we have at points
of V,

G1.7) "¢ apdo = 0.

Again differentiating (51.5) with respect to z’‘, we have

¢ oyP o9’ a»'"
1.8 ra ) ( L2 ) =
(5 ) (V ay“ a:’/ﬂ 8.1"1 ° aya a:r,z o 0.
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Proceeding in like manner with the last of equations (50.2),
we have

. %g 9yf 9 9"
o . —— e ==
(51.9) (y dy*ayP axt )o+(3y"‘ 8t /o 0.

Since at points of V, (»'“) = (»*)o and (M) = (9!/“ )
9 x‘ 0 axu °
[ef. (50.20)], we have from the equations (51.5) and

oy T byt o Ty aa”
that ( 29 )o oy o Consequently from (51.8) and (51.9),

we have at points of V,,

(51.10) V“‘—g%f—(?.ap—” 9".aﬁ) = 0.

From this result and (50.3) it follows that
(51.11) (o (9,05 — ¢ epdo = (¥g)o f,
where, in consequence of (51.7) and (50.6)
(51.12) AN @apdo = f.

An application of these results is made in § 56.

52. Tensors in a hypersurface derived from tensors
in the enveloping space. Let & and A, be the components
in the y's and ax’s of a covariant vector-field in Vyuy,; then

RV,
(52.1) b= tdl
and
7
(52.2) I = Bl = Eorm,

At points of V, (a*t! = 0) the functions &, are expressible
as functions of z%, ..., " and for each value of « the
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quantities %"g are the components of a covariant vector

in Va. Hence 2; given by (52.1) are the components of a co-
variant vector in V,, which we say is derived from the given
vector in Vy4a. In particular, the vector ¢»,, where ¢ is
an arbitrary function of the y’s, is the most general covariant
vector whose derived vector in V, is a zero vector. Also
we have at once that all vectors of the pencil £« + ¢ v« have
the same derived vector in ¥V, whatever be ¢.

In like manner, if aq ..., are the components in the y’s
of a tensor in V,4,, then

o

. _ ay 1 ay *
(02.3) bil...f' - aul...“' ‘-a-;il— o e e a'-x-’j

evaluated at points of V), are the components of a tensor
in V, derived from the given tensor in V,;i. From (52.1)
and (562.3) it is evident that the tensor in V, derived from
a covariant tensor in the enveloping V,;: is independent of
the choice of the vector »*. This is readily seen also by
observing that the quantities b;...; possess tensor character
under transformations of the form (50.14) whatever be the
functions ¥4, as follows from (50.20). The same is true for
the general transformations

(52.4) .7j — (Pi(-"'l. -, :rnl—{-l)’ .l'n+1 — .rm-rl F(.’I"l, ey 'r:n-rl)’
where F' and its first derivatives are finite for z’"*' = 0.

Let & and A* be the components in the y's and z's of
a contravariant vector-field in V,.4,; then we have

vo = . e 37
2. Al == (o

(o O) < aya

and

(62.6) mtl — gy

At points of V, the functions &* are expressible as functions
7

of ', ..., 2" and for each value of a the quantities 02

oy
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for / = 1,..., n are components of a contravariant vector
in ¥, under transformations of the form

(62.7) af = Y ., ), gt = g™

We say, that A! defined by (52.5) is the vector in V,, derived
from the given vector £* in Vyi..

A contravariant vector in V, is necessarily one in V,4,.

As a vector in Vay: the vector defined in ¥V, by (52.5) has
the components
= i _ ga0x WAl
(02.8) Lt = _fa-a-?;&'. 2 = (.
Accordingly it follows from (52.6) that when a contravariant
vector in V4, is tangential to V,, it is identical with the
derived vector in V,. If it is not tangential to V. and we
denote by #* the components in the y’s of the vector (52.8),
we have

e Sa G 0Y w0y 0% 0YF g e
(H2.9) && — lﬁm = M P g8 Y & Bg,
where

(52.10) Bg = 6;—1'“ vg.

Following Schouten* we say that the derived vector of
a contravariant vector is the tangential component in V, of
the given vector. From the form of (52.9) and (52.10) it
follows that unless the. given vector is tangential to V, its
tangential component depends upon the choice of the vector »*.

This may be seen also from (52.5). For, Z—;% being the

¥) Iy~
o ozt
it evidently depends upon »*.

When in (52.5) we repace & by »*, we find that the derived
vector is a zero vector, and ¢ »* is the only vector possessing
this properly. Consequently, when a vector »* has been
chosen, in the system so defined its tangential component

*1924, 1, p. 134,

cofactor of

divided by 4,

{4
+ in the determinant 4 = ’

10
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being zero, this vector is analogous to the normal vector to
a hypersurface in a Riemannian space in the sense that the
tangential component is zero. This fact has led certain writers
to refer to »* as a pseudonormal.* We do not use this term
for a general choice of »*, because in a Riemannian geometry
it would be confusing (cf. § 56).

In like manner, if a® "% are the components in the y’s
of a tensor in V,1,, the quantities

H i
ceeq, oxt ox”

3 d '”i" == & cee
(52.11) n at 8y“‘ ay“' ’

evaluated at points of V,, are components of a tensor in V,
under transformations of the type (52.7), that is, general
transformations in V, but which in V4, do not change the
vector »*. We call this tensor the derived tensor in V,. The
tensor in V41 with the components bt 'r and ™ % = 0,
when one or more of the o’s is » 4 1, is called by Schouten
the tangential component with respect to V,. If @™ '* are
its components in the #'s, we have

(52.12) akr o — afpr B;: e B;:,
where the B’s are defined as in (52.10).

Since a covariant vector in V, is equivalent to the bundle
of contravariant vectors in V, pseudodrthogonal to it (§ 11),
it is evident that a covariant vector in V, is not one in an
enveloping Vp4i. If i, are the components in the z's of
a covariant vector in V,4,, the vector of components

(52.13) =2, Ipp1=20

is equivalent to the bundle of contravariant vectors deter-
mined by »* and the contravariant vectors in V, pseudo-
orthogonal to the derived vector of 2, in V, In this sense
the derived vector is the tangential component of the vector

* Of. Weyl, 1922, 6, p. 164 and Schouten, 1924, 1, p. 184.
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(52.13). If &. are the components of the given vector in
the ¢’s, the components of (52.13) in the y’s are

5 Spo

In general, the derived tensor in V, of a tensor ay,...,, in Vata
is the tangential component of the tensor

(52.14) Qg,...q, = s...p, Bf:: ces Bg:,

Again it a,; X ' are the components in the y’s of a mixed
tensor in V,,H, the quantities

52.15) b = g% oa’ ozt o oy
e jl...j. /’l"'i’. ayal . aya,- a:rl‘ axJ,

evalnated at points of V, are the components of a tensor
under general transformations (52.7) and we call it the tensor
derived from the given temsor in V,4,. This derived tensor
is the tangential component of the tensor whose components
in the y’s are

(52.16) 5';: ;' = a’" 7’B“' B;: Bg: Bg-

We call each of the tensors defined by (52.12), (62.14) and
(52.16) the associate of the given tensor with respect to V..
From (52.10), (50.3), (50.6) and (50.7) we have

aat axi dxttl
6217 BﬁW“‘ ay“’ Bg'ﬁp—_()’
: Ba i;ll'i — ay“ ayﬂ = 0.

P o ox Bj 5wt dan
Because of these identities we have from (52.15)

- foudp __ =0, h 3yp
(52.18) bj‘mj. =8 .. .8, T e

10*
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Similar results follow from (52.3) and (52.11). Hence we have:
The derived temsors in V, of a given tensor in Vyy, and
of ils associate with respect to V, are equivalent.
53. Symmetric connectioninducedin ahypersurface.
If I'jy and Tj, are the coefficients of a symmetric connection
in a Va4a in codrdinates x* and y* respectively, we have
from equations of the form (5.6)

(Y e OyP Oy ) Rk
®3.1) I = (57:/ pat T8 57 5| g -
At points of V, (x*t! = 0) the values of Tj depend upon
the choice of the vector » as is evident from (53.1). However

it I, are the coefficients for Va1 in the x'’s defined by
(52.7), from equations analogous to (53.1) we obtain

o2 2" 2 0x? ax'"\ ax
Mo 2st) 0

i
©32)  Tn (awf 2 x* das Pk
Consequently Iy, and Iji are the coefficients of the same
connection in V,; we call it the connection induced in V, by
that in V,, for a giwen choice of the vector »*. This qualifi-
cation is seen to be necessary from (53.2); for, in case of
transformations of the type (52.4) there are in the last member

P g :
of (58.2) the added terms Iyt 2T 255 P
For an asymmetric connection in V,.,, equations (53.1)
hold and the skew-symmetric part of the induced connection
is given by

(53.3) B = 2F,

*

dyf oyr dai
dal odF oy’

that is, the tensor !2,':,: of the induced connection is the
derived tensor of the tensor 25, of the comnection in V1.
Consider, in particular, the case when the affine connection
in Vaq1 is that of a Riemannian space, determined by the
*In § 56 we obtain the relations between the coefficients of two
induced connections for different choices of »“.
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fundamental tensor of components a«s and g.s in the y’s

and ’s respectively. Then we have
oy oy
(53.4) Uep 57 Gk = Gk

From these equations we have* at points of V, (x*t! = 0)

(53.5) tag g?’p,(aa’.-’/“,_ oy Jh}+{7} _?_y_ﬁ_?_z_/:)= 0

¥ \oafaal  aah ligl, vlg 32t 9x

Je

where I V} are formed with respect to the fundamental form

aep in Vyyy and Jllh} with respect to the fundamental form g;;
g
in V,. From equations of the form (5.6) we have

82?/“ {—a—} ay‘"’ ay 1"3 ?/“_I_ nt1 y“

dxtdx/ pvla 3x 8x/ dantl”
Substituting in the preceding equations, we obtain

h
( iy — {U} )yhk—l' genr THTY = 0.

In order that I‘,’} = Z;I[ , it is necessary and sufficient that
g
gkntr = 0 or Iyt = 0. In the former case the curves of
parameter z*™! meet ¥V, orthogonally. In the latter case
we have .
oty {} oty ) oy
dxioas ',W"’Lwaaxf daxs

from which it follows that V. is a totally-geodesic hyper-
surface of V,4+1.t Hence we have:

A necessary and sufficient condition that the coefficients of
the induced connection in a hypersurface of a space with
a Riemannian connection be the Christoffel symbols of the
second kind formed with respect to the derived fundamental

*Ct., 1926, 1, p. 147.
+Ct, 1926, 1, equations (43.4) p. 147 and (54.1) p. 188.
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tensor is that the vector v* be orthogonal to the hypersurface,
or that the latter be totally-geodesic.

We indicate by one or more subscripts preceded by a semi-
colon covariant differentiation with respect to the induced
connection.

From the definition (§ 52) of the associate of a given tensor
in V41 with respect to V, it follows that the components in
the «'s of the associate tensor for which one or more of the
indices are n -1 are zero. Consequently from the general
law of components of a tensor in 4wo codrdinate systems we
have from (52.18)

©3:6) B b — geoe 0ot 02" gt oy oyr
B R T P P

Hence we have:

The first covariant derivative in a hypersurface of the derived
tensor of a given temsor in the enveloping space Vni1 18 the
derived tensor of the covariamt derivative in Va4 of the
associate of the givem tensor with respect to the hypersurface.

It should be remarked that although the derived tensor of
a covariant tensor is independent of the choice of »%, its
covariant derivative in the hypersurface as a derived tensor
does depend upon »*¢*

Equations (53.6) do not hold for derivatives of higher order.
However, the second covariant derivative of b}:,’jj}: is the

derived tensor of ‘“_;:;r Bs) ,+ By continuing this process
we obtain derivatives of any order (cf. § 54).
54. Fundamental derived tensors in a hypersurface.

We denote by oy the tensor in V, derived from the tensor
va,p in Vnpia, that is,

— oyt dyf
(54.1) Wi = Va,p Y] W.
From the form of these expressions it is evident that this
tensor is independent of the choice of »*. In the z's the
components of the vector », are

* Cf. Schouten, 1924, 1, p. 187.
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(54.2) v = 0, Y1 =1,

as follows from (50.4). Consequently in the x’s equations
(64.1) are
(54.3) wy = —I§.
Evidently wy is symmetric.

For a given choice of »* we have the tensor »° 3 and the
vector »* gve. We denote by Jj and I; the components of
their derived tensors in V), that is,

li o« axi i!/_f_

(04.4) ) = V.8 W ) xl
and ,

< oy
(64.5) L = v“,pr“ 2

In the 2’s the components of the vector »* are given by
(50.15) and consequently in the a’s we have

(54.6) lj = I‘n+1j

and

(54.7) L = I'ifie.

Because of (50.6) equations (54.5) can be written as
0

(54.8) li = —ve,pv® 3?;: .

With the aid of the tensor wy we are able to express the
covariant derivative of a derived tensor in terms of the derived
tensor of the covariant derivative of the given tensor and
other derived tensors. Thus if by are the components of the
derived tensor of ass, we have from (53.6)

bysk = (ap B BY), o 2L 297 28

axt 9ad 3Lk
With the aid of (52.17) we obtain
A Ay oyP 2y
byik = Gepo Tor JoT o

g:\: wii: + Vﬂ%%wjk).

— a“ﬂ (,,a
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55. The generalized equations of Gauss and Codazzi.
If I'j, and Tg, are the coefficients of an affine connection
in a Vyp41 in codrdinates o and y“ respectively, we have
from (5.6)

_ 2y Fu 0yP 3gr _ g OY°
(55.1) aw0al T 5 oy I”azﬂ

At points of the V,, (z"+! = 0) these equations can be written,
in consequence of (54.3), in the form

. ByP ayr
(95~2) J U+ ;,;, a.’l’ 8:1‘1 EES —m,-jv“,

the first term being the second covariant derivative of y“
with respect to the induced connection in V7.
When in equations (55.1) we replace ¢z by # 41, we have

oyr e 0Y"
axd MU,

I TG

bzrl

At points of V, these equations become, in consequence of
(54.6) and (54 7),

(55.3) 9-’”

= ay“ +

We desire to find the conditions which the tensors o,
l;' and /; must satisfy in order that equations (55.2) and (55.3)
be consistent. The conditions of integrability of (55.2) are
of the form [cf. (6.4)]

. 0
(55.4) viik—y i = 3‘% B,

\\here Bjji is the curvature tensor of V, formed with respect
to I:,k

When the expressions (55.2) are substituted in (55.4), the
resulting equations are reducible by means of (55.2) and (55.3) to

oy" ayf ayr 8y°
(55.5) 8;"‘ Ge = Dpys aiz a:ﬁj Fra +("’rklm"""’ijlk)°£

— v (wj; — Wit j + 0 le— o 1)),
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where 17;),,, is the curvature tensor of Va1, in the y's evaluated

at points of V,. If these equations be multiplied by 85“

and by »« and « be summed, we have respectively, in con-
sequence of (50.3), (50.6) and (50.7),

ay? ayr oy’ ot
art 3xJ 9ok Py~

(55.8) B = E;r" A o} — o5 1,

o = 0y ayr oy’
%5.7) oy—og.; = B;‘,a 2% 9x) 0a*

Ve + o, Ij — 0y ..

The conditions of integrability of (55.8) are [cf. (6.3)]

({4 €
v ii—v ji =,

2 ’

Substituting from (55.3) in these equations and proceeding
as above, we obtain

- h e h D 5.1/" a.'/d 81}1 —
(65.8) b~ Ui+ LG — il + By’ 55505 e =0,

(05 9) ll 1 bt l;, i +ll "’hi—l,' (27 7) + Bﬂ}/d VY Vp 36,/’: Z;’

Equations (55.2) and (55.3) are generalizations of well-known
equations in the theory of surfaces in euclidean space,* and
of equations in a general Riemannian space.t ;; being the
components of the second fundamental tensor and »* the unit
vector normal to V,. In these cases the processes followed
above lead to the Gauss and Codazzi equations. Equations
(55.7) and (55.8) are equivalent in these cases and (55.9) are
satisfied identically.

Accordingly we call (55.6) the generalized equations of Gauss
and (55.7) and (55.8) the generalized equations of Codazzi}

*1909, 1, p. 154.

+ 1926, 1, pp. 147, 148.

1 Ct. Schouten, 1924, 1, p. 140.
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From the equations of Gauss it is seen that the curvature
tensor of the induced connection is not ordinarily the derived
tensor of the curvature tensor of the enveloping space.
When equations (55.6) are contracted for » and ;, we obtain

- ; = oy’ oy’ ; ;
(55.10) B == Bg)’d (08 — vy »# a—i{: -éyF + op § — a5 I,
By means of (55.9) and the theorem of § 5 these equations
are equivalent to

0@y aE,) ay’ 8y’ L 2b ok
ay A T T T

When the connection is asymmetric, the results of the
preceding sections are essentially unaltered and the corre-
sponding equations are obtained on replacing Iji by Ljx; then
the tensor o is not symmetric in ¢ and ;. The generalized
equations of Gauss for this case are obtained from (55.6) on
replacing Bi and Bgyy by L{x and Lgs. In the right-hand
member of (55.7) there is the added term —2 2 @g; and in
the left-hand members of (55.8) and (55.9) the added terms
295t and 20, 2 respectively.

56. Contravariant pseudonormal. We consider the
effect upon the coefficients of the induced linear conection
and upon the derived tensors /' and % of a change in the
vectors »* at points of Vs, and to this end make use of the
transformation (50.14). For the coordinate system z'’ the
coefficients of the induced connection in V, are given by

atym — 0yP Oy’ ) aa’
-+ 1 -

8.1;’1 ax1h+ Br am” 8x"‘ aya .
In consequence of (50.20) and (50.21), it follows from the
above equations, (63.1) and (54.3) that at points of Vy

(65.11) Bl — (

®6.1) ITh = (

(66.2) I = Th—op i,

It B’J‘k denote the components of the curvature tensor in I‘j;f,
we have
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rh

(56.3) B = B+ W [0g;x— wa i+ ¥ (oa onj— oy oy)]
+ o Y — on 91

From (50.22) and (50.23) we have at points of V',
e O o 0yf oy oy

Yy YV oBRm T aaf oad
< 'y, e 0y ayr) i
(56.4) (ax' oal TTor 5.0 359"
ayP
“ ail wllaf +°’utpl" .

In consequence of these equations, (50.20) and the definition
(54.4) of the tensor I} we have

(56.5) Ui = G—ul 4 Wi+ o yh).

Since vo = »q at points of V,, as follows from (50.20), we
have in like manner from (54.5)

(56.6) U= 1+ oy yi.

It is readily found that equations (55.6), (55.7), (55.8) and
(55.9) and similar ones for the induced comnection Ijii are
consistent in view of the above relations.

As an immediate consequence of (56.6) we have:

When the determinant | wij| is not zero, a vector-field v* at
points of Vy is uniquely determined with respect to which the
vector l; is zero.*

Also we have:

When the determinant | wi;| is of rank n—r (r > 0), a vector-
Jield v* at points of V, with respect to which the vector l; is
zero cannot be obtained unless the malrix

L3V} s hn h

@n) s Lo in

* This theorem is due to Schouten, 1924, 1, p. 143.
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is of vank n—r; in this case the determination of v* involves

r arbitrary functions. )
It is seen from (54.8) that the vector / vanishes at all

points of ¥, when, and only when,
(56.7) v g = frp

at points of V,, where f is a function of the y's which may
be zero. These equations are, in consequence of (50.4)

(56.8) Yoo =[98,
from which it follows that
Wby ap = f.

If the determinant |g¢,qs| is of rank n 41, by a suitable
choice of f a unique vector »* is given by (56.8) so that
» Z:" = 1. 1If we retain this field at points of V,, and
apply the method of § 51 to obtain a cotrdinate system «'”
so that the curves of parameter 2™*' are paths, whose
tangents at points of V, have the direction of »%, it follows
from (51.11) and (51.12) that »* ¢(sg = 0. This is a general-
ization of the situation in a Riemannian space when a family
of hypersurfaces ¥ — const. are geodesically parallel, the

function y being chosen so that*
FPYaypp=1.

From this we have g®® ¢« ¥ 5, = 0. Hence the vector »*
in this case is the normal to the hypersurface. Accordingly
when there is a field »* satisfving the conditions of the first
theorem, we say that the vectors »* are the contravariant
pseudonormals to the hypersurface.

When for a given choice of the field »* the vector I; is
a gradient, and we put
__dlogée dlogd oy~

a3 8y oax’

L=

*1926, 1, p. 57.
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-3

we have from (54.5) at points of V,

(09, g v« g-”f.’ = 0.

Hence, if in accordance with the results of § 50 we take the
field 6»* at points of 17, the corresponding vector /; is zero.
Accordingly we have:

When for a given choice of the field v*, the vector l; is
a gradient, there exists a function 8 such that for the field 6 v«
the vector 1; @8 zero.
Thus the case where /; is zero is equivalent to that where
it is a gradient so far as the direction of the field »* goes.

It ¥/ in (56.6) are chosen so that I} = 0, from (55.11)
we have

i i al; A e Oy 33/J
Bije = Bur— 50 + 550 = Bup 5,7 5%

Consequently if Eﬁr,; = 0, we have Bjx = 0. Conversely,
it Bjx = Bagy = 0, it follows from (55.11) that i is a
gradient. Hence we have:

When for an affinely connected space E‘;,,,, =0, a necessary
and sufficient condition that the directions of a vector-field »*
at points of a hypersurface be such that l; be a zero vector is
that the corresponding tensor Bjy be zero.*

When equations (55.8) are written in the form

8 .
V52l = 3 4y,

the guantities on the left are the components of the associate
direction of the vector »* for a displacement in the direction
of a curve of parameter 2/ in V,. Hence we have:

When a hypersurface admits a contravariant pseudonormal,
the associate direction of this normal in the enveloping space
Jor any displacement in the hypersurface is tangential to the
hypersurface.

* This theorem has been established by Schouten, 1924, 1, p. 142.
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This property of the contravariant pseudonormal is possessed
also by the normal to a hypersurface in a Riemannian space,*
which justifies further the term pseudonormal.

57. Fundamental equations when the determinant o
is not zero. In this section we consider the case when the
determinant @ is not zero at all points of V,, and we under-
stand that the urnique vector »* has been chosen for which

= 0. In this case a.tensor g¥ is defined by the equations

(37.1) 99 o = b

We assume that the determinant

(51.2) 1= |l

is not zero.v Then it follows from (57.1) that the determinant

lg¥| is not zero, and a tensor g;; is uniquely defined by the
equations

(37.3) giigk = o, 9V g = O.

From these equations and (567.1) we have

B74) vy = gi lj‘
If we put
(51.5) dxt ox/

= iy ayp TV

it is evident from the form of these expressions that ass are
the components in the y's of a tensor in Vy+1. From (57.5)
we have, in consequence of (50.4), (50.6) and (50.7),

- ay* @
(57.6) aap—a-";‘—“ 8:‘-: = gii,
; By oy _
(61.7) Up & VW= aeg v - sd = 0
* 1926, 1, p. 148,

T This is an additional assumption. For it follows from (56.5) that
for a transformation (50.14) preserving »* (i. e., i ==0) ¥ are unaltered.
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and
(57.8) g v 1? = 1.

From these equations it is seen that for the determinants

(51.9) a = lagl, g = gyl
we have

. oy” [P __
(57.10) al arf | =9

Consequently a  0in the case under consideration. Accordingly
a tensor a®® is defined by

(57.11) flug = ok, o? g == o,

As a consequence of (57.7), (57.8), (50.3) and (50.6) we have
(57.12) g V¢ = Qg V™ = vg.

Moreover from (57.11) and (57.12) we have

(57.13) Vo= vgabr = y, a8,

These equations are a generalization of the equations of
a Riemannian space connecting the contravariant and covariant
components of the normal to V7.

If equations (55.6) are multiplied by gy and summed for Z,
we obtain, in consequence of (57.12),

= Yt oy’
(671.19) Bup = Buppa ol -+ 3% + o0 one— o 0

where we have put
(57.15) .ank = frh lf?jky -B—a g — Qac E,g)'a'

In the present case equations (55.7) become

—_ ayP 2y’
(57.16) jjk—0icj = Byggv" a!g/ci T aZ" )
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If we substitute in these equations the expressions (57.4)
for w;, we have that equations (55.8) are equivalent to

=a Oy’ oy8 ox”
yir;kl;—yir;lez:B:rd Y ay ( ¥ +yzr3'p :t)

ax) 3ax*
517.17)
— B 220 (2 w ‘)
oxd da* 3x’

the last expression being a consequence of (57.6), (57.7) and
(67.13). To these equations must be added (55.9) which
reduce to
(119) 7 Con o — o 00) + B 74 25

oprd a:l e

In a Riemannian space Vi1 for which aqs is the fundamental
tensor, it and g; are symmetric. Also gy — O and Bap,,,
is skew-symmetric in « and 8. Consequently in this case
equations (57.17) and (57.18) are satisfied identically and
(57.14) and (57.16) assume the form of the Gauss and Codazzi
equations.*

58. Parallelism and associate directions in a hyper-
surface. Let A* be the components in the x’s of a field of
vectors in V, and & the components in the y’s of this vector-
field in V44+1. Then we have

(658.1) g = 32

ax‘

If we differentiate these equations with respect to 2/, we
have, in consequence of (55.2),

(68.2) g 20 O

— .o A8 @
Y dryey Thryey — g A v®,

At points of a curve Cin V,,, whose codrdinates are expressed

in terms of a parameter f, we have

— oyl ddx;

dy? 2 da) ay”
Eoomar = Ygr 3
* 1926, 1, p. 149.

(58.3) v,
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These equations may be written in the form

(58.4) q“ — pi ay“ — Wy At

where 5“ and u! are respectively associate directions (§ 16)
of the vector in V,41 and V, with respect to C.

If the vectors are paralle]l in V,.: with respect to C,
7% = f(t) & (¢f. § ) and from (58.4) and (58.1) it follows that

(38.5) W= 0¥, egii
Hence we have:

When a family of contravariant vectors in a hypersurface
are parallel in the enveloping space with respect to a curve,
they are parallel in the hypersurface with respect to the curve,
Jor every choice of the vector »*.

From (58.4) and (58.5) it follows that a necessary and
sufficient condition that a family of vectors in V), at points
of a curve C be parallel in V,, with respect to C, when they
are not parallel in V,4,, is that there exist a function f(#)
such that

= 0.

J
(58.6) = 8 = — g 2L e
. . dx
Conversely, if a vector field 2/ is such that w;; 2! > T 0

and (58.6) hold along a curve, it follows from (58.1), (58.8),
(58.4) and (58.6) that

d.ri

(KL —r 0 zc‘)%f— = 0.

Since the rank of the matrix "—%1‘;;" is n, we have that

the vectors of the field are parallel in ¥V, with respect to
the curve. N

Two hypersurfaces V), and V, are said to be tangent along
a curve C, if they have the same covariant pseudonormal
(§ 50) at points of C. Since the components of the pseudo-
normal are determined only to within a factor, there is no

n
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loss of generality in assuming that w; and »* are the same
for V, and V, at points of C. Hence from the above results
we have:

When two hypersurfaces are tangent along a curve, contra-
tariant vectors parallel in one with respect to the curve are
parallel in the other.*

59. Curvature of a curve in a hypersurface. When
in equations (58.3) we take for &% the tangent vector to C,

that is, & = %yti, these equations become

Ay
ae

= dyﬁ dyr
+ 1o 3t at

_ (&% | o del dF\ dy*  do da)
= (W*’"‘r”‘ dt dt) Y T4t at

(59.1)

{4

From these equations and (7.6) we have:

When a path of a space lies in a hypersurface, it is a path
of the latter, for an arbitrary choice of v*; and it is a curve
Jor which
(59.2) oj; da:‘ dxf = 0.

This. is a corollary of the first theorem of § 58.

If C is not a path, we choose for the parameter an affine
parameter s of the path tangent to C' at a point P. Then
at P we have
- Pl
(69.3) 7% = 9

—~x

where 9% are the components of the first curvature vector
of C at P for Va4 (§ 24).

. 1 dat dal
(59°4) —E = ; — (—l;— 7—3—
and

- oy” a2 ¢ dol da*
.5) & = gl - = pyf
(595: 'l F’ axg) ds’ +’}k d8 ds ” .

* Cf. 1926, 1, p. 75.
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The vector u’ is in the pencil determined by the tangent to

(" and its first curvature vector in V,. If it is tangent to

C, then C is a path in V, and »* is a vector of the pencil

determined by this tangent and the first curvature vector in
nt-1.

When »“ is the contravariant pseudonormal to V, (§ 56),
we call 1/R the normal curvature of the curve, and 4* the
relative curvature vector of the curve in V. If aap 9 9% and
aeg 7% 4# are not zero (§ 57), we put

1 - 1
3 |aap'l¢,)ﬁ| = 3

59.6 “pf' —
(59.6) | aepy*yP’ 0 @

and call 1/e the first curvature of C in Va1 and 1/o, the
relative curvature of C in V,, as in the case of a Riemannian
space.*

60. Asymptotic lines, conjugate directions and lines
of curvature of a hypersurface. The associate covariant
vector in a space V,,1 (§ 16) of the pseudonormal », of
a V, with respect to a curve C of V, is given by

d
O

From these equations and (54.1) we have:

A mnecessary and sufficient condition that the associate co-
variant vector of the covariant pseudonormal to a hypersurface
with respect to a curve of the latter be pseudodrthogonal to the
curve at a point is that the direction of the curve satisfy the
condition
(60.1) wjdxidx’) = 0.

As this is a property of asymptotic directions of a hyper-
surface of a Riemannian space,i we call the directions defined
by (60.1) the asymptotic directions. A curve whose direction
at every point is asymptotic we call an asymptotic line. We
* Cf. 1926, 1, p. 161.
11926, 1, p. 157.
11¢
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note that asymptotic lines and asymptotic directions are
independent of the choice of the vector »*.*

From (59.1) and (59.3) we have the theorems:

When an asymptotic line is a path of the hypersuiface, it
is a path of the enveloping space and conversely.

The first curvature vector, in a space, of a curve in a hyper-
surface is tangential to the hypersurface at a point, when, and
only when, the direction of the curve at the point is asymplotic.

If Cis a path of V, and s is an affine parameter in ¥,
for the path, equations (59.1) become

Ary* | e dyP dyr dat dri
T2 P as 4 T T g ds

»e,

Hence we have:

A path of a hypersurface in an asymptotic direction at
a point has contact of the second or higher order at the pornt
with the path of the enveloping space through the point in
this direction.

As in Riemannian geometry, we say that two directions
at a point of a hypersurface are conjugate, if

wjdxidx) = 0.

Thus asymptotic directions are self-conjugate. From § 58
we have:

In order that a family of vectors at points of a curve of
a hypersurface be parallel both with respect to the hypersurface
and the enveloping space, it is mecessary that the direction of
the vectors be conjugate to the curve.

If, whenever possible, the vector »“ is chosen in such a
manner that the vector /; is zero, we have along any curve C,
in consequence of (55.3)

dyf 0y da)

BTt T Yeat Tdt
The left-hand member of this equation is the associate direction
in V41 of the vector »® with respect to the curve. In order

* Cf. Schouten, 1924, 1, p. 148.

(60.2) »"
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that this direction may coincide with the tangent to the
curve, we must have
i 8y~ daJ
Yot dt

_ 1 ay
e dt’

Since the rank of the matrix “ gg; “ in n, these equations

are equivalent to )
dx/

(60.3) (oli— & o =0

Conversely for each root of the determinant equation
(60.4) lei—dj| =0

a direction is determined for which the associate direction
of »* in V,4, coincides with this direction. When in particular
the conditions of § 56 are satisfied, »* is the contravariant
pscudonormal and the curves of V, defined by (60.3) are
an evident generalization of the lines of curvature in a
Riemannian space.* Accordingly we call the curves defined
by (60.3) the lines of curvature of V.

If the roots of (60.4) are real and distinct, there are n
uniquely determined families of real lines of curvature. If
¢ i3 a real root of order r, it is possible to find » linearly
independent families of lines of curvature corresponding to
this root; moreover, any family of curves linearly dependent
upon these families also satisfies (60.3). ‘

Each choice of a vector »* determines a tensor /; and con-
sequently leads to equations of the form (60.3). However,
it ; + 0, the associate direction of the vector »* satisfies the

ax
dt
(55.3). We reserve the term lines of curvature for the case
when /; = 0.1

If equations (60.3) are multiplied by gr: (cf. §37) and
summed for /, we have from (57.4)

*1926, 1, p. 157.

+ Cf. Schouten, 1924, 1, p. 148.

above condition only in case /; - = 0, as follows from
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dz
(60.5) (0 e—gk;){t— = 0.

If as in § 59 we use for parameter an affine parameter s

put T -__”si = ¢, then ¢ = R¢. A discussion of

equations (60.5) can be made similar to that of the corre-
sponding equations for a hypersurface of a Riemannian space.*
In particular, if A} and 2; are the directions defined by (60.5)
for two distinct roots of (60.4), we have

gii MM =0 wy M 2 =o.
From the second of these equations it follows that the two
directions are conjugate.
61. Projectively flat spaces for which By is sym-

metric. Consider for a space V, with a symmetric con-
nection the system of equations

(61.1) 0. = a;0.

The conditions of integrability (6.4) of these equations are
reducible by means (61.1) to

0. (Blox + 0 ai— 0% a5) — 0 (@ — aix)) = 0.

In order that equations (61.1) be completely integrable, and
consequently that the general solution admit » - 1 arbitrary
constants, it is necessary that

B+ 0} ax— 0k ay = 0, aij,i — ik, j = 0.
Contracting the first for 2 and %, we have

1
(61.2) ay = ——

Bi.i)
so that the above conditions are
t 1 3 3
(61.3) Bix+ —— @ Bu—8; By) =0, Bijx— Bu,j = 0.

* Cf. 1926, 1, p. 153.
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Hence V, is a projectively flat space (§ 34) and By; is symmetric
as follows from (61.1), (61.2) and (6.3).
Since each solution of (81.1) is determined by initial values

of 6 and 26 there exist # -+ 1 solutions 6%(«!, - .., 2™) for

axt’
which the determinant
_821_ aol 01
! T axn
61.4) A= | . .
aonﬁ‘—l o —a.on+l 0”_“
or b Y

is not identically zero and the matrix of the first n columns
is of rank n. Hence the jacobian of the equations

(61.3) y* = " 0%(a, ..., 2" (@ =1,...,n+1)

is not zero, and these equations define a transformation of

codrdinates in a space Vy4i. We define a connection for this

Vat1 in the codrdinates 2%, by taking for Ik (i, 5,k = 1,---, n)

the expressions for these functions for the given Vy, and in

addition .
n+1

61.6) Iy = m—1

By, r:+lp = (’;, (a, B=1,.., n+1).

If Ts, denote the coefficients of the conmection in the y’s,
it follows from the equations
ot y” —« OyM 3y" . u OY°
dxBdar L oxP dxr Ty dxk
(a,ﬂ,)',ll,” = 1:"”n+l)
and from (61.1), (61.2) and (61.5) that
7o, oyt 8y
* oxB dxr

Consequently Tz, = 0 and V11 is a euclidean, or flat space.
From the definition of the affine connection in V4 it follows
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that the induced connection in the hypersurface 2*t1 =0
is that of the given space V,,. Hence we have:

A projectively flat space of n dimensions for which Bj; is
symmetric can be immersed in a flat space of n+1 dimensions.*

In order to investigate the situation more fully, we observe
that by suitable linear combinations, with real coefficients,
of the 6’s the fundamental form of V., is reducible to
Za:ea(dy“)’, wheré the ¢'s are plus or minus one. If we

denote by a«s the coefficients of this form in the a’s, we have

* « «©
aij = e‘lz"+' 20“ —a—a—_ 06 iy lingr = e‘”ﬁ'Zea [/ &4 9—9 .
" oxt 9/ €« o'
(61.7) :
o Ml
Tntintr = €° 2 Ce (oa)g.
«
If we put
(61.8) 2 ea(89® = 22,
«

the successive covariant derivatives of this equation are
reducible by means of (61.1) and (61.2) to

o A0
Ee“o 0 'i= )'vi’
«

(61.9) 2
LIRS P Y Sy
«

n—1

From the results of § 53 it follows that the coefficients of
the induced connection in the hypersurface +*+! = 0 are the
Christoffel symbols of the second kind formed with respect to

«  au
i = 200, 0",
«

only in case aiyq == 0, that is, when 2 is a constant. In

this case we have
f—n
]},i plagiiy Tg'.i’

and consequently the hyperewrface is of constant Riemannian
curvature.v

* Eigenhart, 1926, 9, p. 388.
11926, 1, pp. 136, 203.
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Consider now any hypersurface of a flat space V,i. for
which the codrdinates y* are cartesian and the fundamental
form is 2 e« (dy®), the equation of the hypersurface being

«

(61.10) F@ ..., 7)) = 0.
This equation may be replaced by
(61.11) Y= 0@, ..., 2"

where the functions 6% are arbitrary, except that (61.10) is
satisfied and the jacobian of any » of them is not zero.
When, and only when, the function ¥ is not homogeneous
in the y's, the determinant 4 defined by (61.4) is different
from zero; that is, when the hypersurface is not a hypercone
with vertex at the origin, or a hyperplane through the origin.
Consequently, with these exceptions, the functions 6% can be
chosen so that equations (61.5) define a transformation of
coordinates in 1,4, such that »*t! = 0 is the equation of
the given hypersurface. The coefficients of thc induced con-
nection in the given hypersurface are given by

y J el
(61.12) ’jk = 1}."[(‘,
where the latter are defined with respect to the «’s given
by (61.7). Since the Christoffel symbols formed with respect
to the y's are zero, we have

{“1 _ 2y
ﬂ)’ra_— a.0P dar 3]/6 ‘
From these equations and (61.12) we have

%y ndY© {n—i— l} “
(61.14) dxtdr’ L axr | 4y 7
which reduce to the form (61.1) because of (61.5). Con-
sequently
41
By — e—nf" T},

(61.13)
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and for the induced conmection the hypersurface is project-
ively flat. Also from (61.5) it follows that

3
awg'{:-l =9

by means of which and (61.14) we get the equations (61.6).

Returning to the consideration of the cases excepted above,
we see that by a suitable change of origin of the y’s, the
hypersurfaces excepted for one codrdinate system are not
excepted for another. Hence we have:

The vector-field v* can be chosen at points of any hyper-
surface of a flat space so that for the induced commection the
hypersurface is projectively flat.

62. Covariant pseudonormals to a sub-space. When
a space V,, is referred to codrdinates y*, a sub-space, or
sub-variety, V, is defined by

(62.1) @', -, y™) = 0 (c=n+1,...,m).
If we put
(62.2) xi = ?i(?/l, M ?/m), .’13‘ = ?“ ’*

where the functions ¢ are arbitrary except that the jacobian
of the m ¢’s is different from zero, equations (62.2) define
a cotrdinate system for which the given V) is defined by the
equations #° =Q (c=n-+1,..., m).

Any displacement in V, satisfies the conditions

09’
oy~

(62.3) dy* = 0,

and consequently the covariant vectors » in V,, defined by

9 9° ox°

62.4 W) = S = ———

( ) ) @ i) y“ 0 y“
* In this and the following sections latin indices take the valuesl, ..., n,

letters at the beginning of the greek alphabet values 1,..., m and those
at the end n41,....m,
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are pseudodrthogonal at any point of V, to any displacement
in the latter. We call them covariant pscudonormals to Vy;
evidently any linear combination of them is the most general
covariant pseudonormal to V,.

If we put

(62.5) e = 2

®) N !

ve,, for a given value of o, at any point are the components
of the contravariant vector tangential to the curve of para-
meter z¢ at the point, that is, the curve along which all the
x’s but z“ are constant. As thus defined the functions »f,
depend upon the choice of the functions ¢* in (62.2), whereas
¥@ do not. From (62.4) and (62.5) we have

(62.6) v, v = 7
and
(62.7) v Z;T = o.
When equations (62.2) are solved for the y’s, we have
(62.8) ye = @t ... 2™

or as power series in a*tl, ..., a™

(62.9) y* =f‘:(xl,...,a-")-’—f:(xl’...,x”)z“-]— eons

Consequently V;, is defined by the parametric equations

(62.10) Y= fr, ..., )
and at points of Vy
(62.11) Vi = Sy (rh oo, "),

63. Derived tensors in a sub-space. Induced affine
connection. For a tensor in V.. the quantities given by
(52.3), (62.11) and (52.15), where greek indices take the
values 1, ..., m, evaluated at points of V, define a derived
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tensor in Vo In particular, the derived vector of any co-
variant pseudonormal is zero, and the derived vector of
any »% is zero.

If we put
(68.1) Bj = 83— vigh,
we have

N T
Boy T oy Doy =0
e 0yf _ oy" a 0y
Bo g ax'’ B o =

Hence with this interpretation of B3 equations (52.12), (52.14)
and (52.16) define tensors in Vi, associate to the given tensors,
such that in the a’s any component involving one or more
indices 41, ..., m is zero and the other components are
those of the derived tensor. Furthermore, the last theorem
of § 52 holds for a V, in a V,,.

If I'sy and I, are the coefficients of an affine connection
in V,, in the z’s and y’s respectively, we have equations of
the form (53.1). If I, are the coefficients in codrdinates
«'", where

ot = (et ..., ), .I"“=£L’¢,

then equations (53.2) hold, and thus the quantities I and
T evaluated at points of V, are the coefficients of the same
connection, which we say is induced in V,. From the form
of equations (53.1) it is seen that this induced connection

varies with the choice of the vectors »(;. In what follows
we indicate by a semi-colon followed by indices covariant
differentation with respect to the induced connection. We
remark that for a V, in a V,, there is a theorem similar
to the last of § 53.

64. Fundamental derived tensors in a sub-space.
We denote by w’ the tensor in V, derived from the tensor

vgp in Vi, that is,
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. 2y oyf
©64.1) wf = L I

In the «'s the components of the vectors » and V) are
(64.2) W = O, Ve = 05,

as follow from (62.4) and (62.5). Consequently in the x's
equations (64.1) are

(64.3) o) = —TIf.

We denote by l(ia)j lfgi the tensors in V) derived from
ving and ¥ ¥5 in Vi, that is,

i oxt oy
(64.4) hoj = Vg Y 'a—i,/,
and
. 0
(64.5) o = 2 2L

In the x's the components of these tensors are
(64.6) loy = 1%, o = 13
In consequence of (62.6) we have from (64.5)

ayf
(64.7) i = — fo,)p Vo) "a“:‘,, .

The geometrical significance of these tensors is pointed out
in the next section.

In order to study the effect of a change of the vectors
¥, we consider a transformation of codrdinates of the form

(64.8) 2 = 24 yiat, 2% = a9,

where the ¥’s are functions of ', ..., 7% At points of 1),
we have




174 IV. THE GEOMETRY OF SUB-SPACES

oy“ 3/“ 3‘1, __ oy*
3:1:i - p 3.1‘ - aa"’

oy By 2 _
3as a.r"‘+ PV ay* a/x +"’“ aw'
00" _ 040 By O
oy oy’ ox' g az'tou"’
Dy 0, a'J ay* i
axtox® 81” W Te a Iz a]/j axt '

(64.9)

From the fourth of these equations we have that o = Vo,

that is, the covariant pseudonormals are unaltered. The
second and last sets of these equations are reducible by means
of the others to

019 .
(64.10) Vo) = Vig) 3% W
and
3”::) _ 81’::;)_ azy“ w,;__a_.yf al[/é
szt 0x  dxoaxl "¢ ) Bat’

From these two sets of equations, (64.9) and (53.1) we have

oy « 8yﬁ_( *y” + T oy 6y2’)

"a —— —
Y@.p Y T T VOB Fowl T B G
dyi
!
64.11) I e
oyP ;i oy
= Vorg oot Vaiigad + Yo v,

If we define I&); and gy by equations analogous to (64.4)
and (64.5), we have

(64.12)  layj = Loy — Yoij+ Yo IS)j + Y5 W 0f
(64.13) U = o+ vl ofi.

There is also another element of indeterminateness due to
the fact that the covariant pseudonormals are not uniquely
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determined. In fact, the sub-space defined by (62.1) is like-
wise defined by the equations §° = 0, where ¢® = A% ¢7,
the A4’s being arbitrary functions of the 3’s subject to the
condition that the determinant |A7| is not zero as a con-
sequence of (62.1). From the above we have

vap = §°qp = ATVap+ AT 500 + AL a v + A% 0p "
From these equations and (64.1) we have at points of V,
(64.14) ) = Aoy,

where now A7 may be interpreted as arbitrary functions of
x', ..., a" such that the determinant |A7| is not zero. An
application of the foregoing results will be made in the next
section.

65. Generalized equations of Gauss and Codazzi.
At points of a sub-space V, of a V., as defined in § 62,
equations (55.1) may be written by means of (64.3)

dyP ayr
(65.1) v+ Ty —5‘:% a;?:-i = —af ¥e.

When in equations (55.1) we replace j by o, the resulting
equations may be written

3”0) a 8 0
a:;.t + ﬂ)”/g’) =rﬁ B

and at points of V, these equations become, in consequence
of (64.6),

< 0% | o 4 Oyl —
(65.2) Py + Iy (o') Py ()i

. t)
Z: + l:")a ”:r)

With the aid of the identities (55.4) for the present case,
we obtain as the conditions of integrability of equations (65.1)
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= oy dyr 0y’
8&"[ (Blw.-{-wu da)l.—"’ﬂc l?ﬂ).l) B;rd az.i aZi a;:k

+ oy (0 — o + off) (B — 0% lp) = 0.

If these equations are multiplied by y‘: and by »® and

« is summed, we have the respective equations

. e 0y ot @
(65.3) i'jk B,g,a ¥ 5—17 J e + "’zk d«m
65.4) 0 @ _ po . 0y @) __ o yo) @ %0)
( ) @ik — O = sré Yy Vu @i Lok + wi T) *

In like manner we find that the conditions of integrability
of (65.2) are

Uoyiss — Uorisi 4 18)i toeyj— Us); l:'m'

(65.5) dyr @ aah
oy 3/
+B;r3"ﬁr) Bt ox) ay* =0,
i — ligyjsi+ Uy oF) — ligys
(65.6) B, ayr 9 y
+ Bg)’f’ yﬁ‘) 0 x’ 0 xj -

These equations are evident generalizations of equations
obtained by Voss and Ricci for a sub-space of a general
Riemannian space*.

From (65.3) we have on contracting for 4 and ¢

5 = o\ 0y 0
S = (Srd_Bgrd”{c) ve') ay: _a—?!x—k-— fti’lm-l-"' (a)j’

which is reducible by means of (65.6) to

s 0y 0y
(65.7) Spe = S)’d a‘/: Fy +l£¢u k— l(o')k.;

From (64.18) it is seen that if the determinant of any one
of the sets of functions wg” is different from zero, or can be

* 1926, 1, p. 163.
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made such by (64.14), the functions ¥, and consequently the
vectors »g, can be chosen so that the sums U are zero.
Consequently we have from (65.7):

In general the vectors vg, can be chosen so that when the
tensor Bap in the enveloping space is symmetric, the tensor Bf,
of the induced connection in the sub-space also is symmetric.*

It is an algebraic problem to determine by means of
equations (64.14) whether m—n independent covariant pseudo-
normals can be chosen so that all of the determinants lmg.”|
are different from zero. When this condition is satisfied,

m—n independent vectors »§, can be determined by (64.13),

so that lf.(,‘{} 0, where ¢ is not summed. In this case, as
follows from (65.2), the associate direction in V, of each
vector v, for a displacement in V,, does not have a component
in the direction »§, (cf. § 56). As this is a property of the
normals to a sub-space of a Riemannian space,i we say that
the corresponding vectors »% ) are contravariant pseudonormals
to the sub-space. The process of determining these pseudo-
normals is not unique since each choice of covariant pseundo-
normals satisfying the desired conditions yields a set of
contravariant pseudonormals.

When the connection is asymmetric (cf. § 55), the equations
analogous to (65.3), (65.4), (66.5) and (65.56) are obtained
from the latter on leplacmg B’,,L and Bﬂr" by L,,,, and Lp,.d,
subtracting the term 2 2 Vit wi from the right-hand member of
(65.4), and adding the respective terms 2 £2; Zisy and 2 25 65y
to the left-hand members of (65.5) and (65.6).

66. Parallelism in a sub-space. Curvature of
a curve in a sub-space. The results of §§ 58, 59 can

be generalized to the case of a general sub-space. In place
of (58.3) we have

.ea (lyp — 2 dxt BJ (6) i daxd «
©6.1) ¥.,-o at Xi gt a0 Mgy Ve

* Cf. Schouten, 1924, 1, p. 162.
11926, 1, p. 161, equations (47.9).
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Consequently we have

When a family of contravariant vectors of a sub-space are
parallel in the enveloping space with respect to a curve, they
are parallel in the sub-space, for every choice of the vectors v(;,.
In particular we have

When a path of a space lies in a sub-space, it is a path
of the sub-space, for every choice of the vectors vgy,; it s
« curve for which

o@dréde) =0  (6=mn+1,...,m).

From this theorem we have also:
A necessary and sufficient condition that every path of
a sub-space be a path of the enveloping space is that

@) =
o 0.

These sub-spaces are the analogues of totally-geodesic sub-
spaces of a Riemannian space.*
ay"

When in (66.1) we replace & by TR

equation obtained from (59.1) on replacing the last term

.J J
by wg" . ‘f;; (f; . Consequently wg’) —‘—flel -%— is the

component of the curvature of the curve in the direction »f,.

we have the

If we multiply (65.2) by Lo for a curve, we have

dt
; dat By~ da?
"Zr)lﬁ = l(’a)i—dt oz’ +i&e v g1 dt *
Hence l{;m il ;- are the tangential components of the associate
direction of the vector »% for the curve and I} are

(o) (0)i dt
the components in the directions vg,).'l‘
67. Projective change of induced connection. In
order to determine the effect upon the induced connection of.
* 1926, 1, p. 184.
+ Cf. Weyl, 1922, 6, p. 156,
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a projective change of connection in the enveloping space,
replace I, in (53.1) by expressions of the form (32.1) and
understand that «, 8, y take the values 1..... m. From the
resulting equations and (53.1) we have

(67.1) Iid = Ih+ 8 g+ 0.
where
. 91
(61.2) 9= vl
Y being the vector in V,, determining the projective change.
Hence we have:

When the connection of a space undergoes a projective
change, the same 18 true of the induced comnection of a sub-
space, and the vector determining the latter is the derived
vector of that determining the former.

From (67.2) it is evident that m — »n independent vectors
P, exist such that there is no change in the induced connection.
It we take Y = ¥4 ¥5. where ¢ is not summed, then
¢; = I3 (cf. § 65). Consequently when the vectors »{, can
be chosen so that l{f,'{,- == 0 (s not summed). there is mno
projective change in the induced connection.
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