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Implicit function theorem 
 

The reader knows that the equation of a curve in the xy - plane can be expressed  
either in an “explicit” form, such as ( )y f x= , or in an “implicit”  form, such as ( ), 0F x y = . 

However, if we are given an equation of the form ( ), 0F x y = , this does not necessarily 
represent a function. Take, for example  

( ) 2 5, 2 0F x y y xy x= − − = .    (1) 

 The equation ( ), 0F x y =  does always represent a relation, namely, that set of all pairs 

( ),x y which satisfy the equation. The following question therefore presents itself quite 
naturally:  

When is the relation defined by ( ), 0F x y =  also a function? In other words, when 

can the equation ( ), 0F x y =  be solved explicitly for y  in terms of x , yielding a unique 
solution.  

In the above example we can solve the quadratic for y  and obtain  

( ) ( )1/ 221y f x x x x= = ± + ;    (2) 
here a certain care is needed,  since we really have two explicit functions, corresponding to 
the positive and negative signs, from the one implicit relation. Accordingly we have to 
restrict attention to the vicinity of a particular point. For example, the values 2x = , 8y =  
satisfy the relation ( ), 0F x y =  but only one of the explicit formulas. Generally,  what is 

needed is the assertion that there exists a function ( )y f x= , which satisfies ( )( ), 0F x f x =  

and for which ( )2 8f = , even though we could not obtain the expression  

( ) ( )1/ 221f x x x x= + + .    (3) 

This is useful if we want to treat x  as a function of y , say ( )g y , for here no explicit 
formula exists. At the point 1x = − , 1y = − ( or 0x = , 0y = ) we run into trouble for here 
both formulas are valid. We shall obtain criteria for such points.  
For that purpose we shall prove several general theorems that are required. The proof of the 
simplest theorem will be given in detail.  
 
The implicit function theorem 1. 
Let 0x x= , 0y y=  be a pair of values satisfying ( ), 0F x y =  and let F  and its first 
derivatives be continuous in the neighborhood of this point. Then, if yF does not vanish at 

0x x= , 0y y=  there exists one and only one continuous function ( )y f x= such that  

( )( ), 0F x f x =  and  ( )0 0y f x= .    (4) 



Proof.  By the hypothesis,  ( )0 0, 0yF x y ≠ .  Then we can assume without loss of 

generality that yF  at 0x x= , 0y y=  is positive, i.e. ( )0 0, 0yF x y > . ( If ( )0 0,yF x y  were  

negative we could consider ( ) ( ), ,G x y F x y= −  instead, and yG  at 0x x= , 0y y=  would be 
positive.)  
Moreover, since F , xF , yF  are continuous we can find a box about point ( )0 0,x y  

0x x δ− ≤ ,   0y y δ− ≤      (5) 

within which ( ),F x y , ( ),xF x y , ( ),yF x y  are continuous and ( ), 0yF x y > . Then ( )0 ,F x y , 

considered as a function of y , is an increasing function for 0y y δ− ≤ . 

But ( )0 0, 0F x y = , by hypothesis, and so it must be that ( )0 , 0F x y <  for 0 0y y yδ− ≤ < , 

and that ( )0 , 0F x y > for 0 0y y y δ< ≤ + . In particular, ( )0 0, 0F x y δ− <  and 

( )0 0, 0F x y δ+ > . Further, by hypothesis , ( ),F x y is continuous at points ( )0 0,x y δ−  and 

( )0 0,x y δ+ . Hence, ( )0, 0F x y δ− < and ( )0, 0F x y δ+ >  for every x  sufficiently close to 

0x , i.e. for every 0x x l− ≤ , where 0l >  is sufficiently small number. Let η  be the smaller 

of two numbers l  and δ , i.e. ( )min ,lη δ= . Then,  

( ), 0yF x y > ,    ( )0, 0F x y δ− < ,   ( )0, 0F x y δ+ >   (6) 
for every x  and y  within intervals  

0x x η− ≤ ,    0y y δ− ≤ .    (7) 

Now, for any x  from the interval 0x x η− ≤  function ( ),F x y , as a function of y , will be 

increasing function for any y  from the interval 0y y δ− ≤ , since then ( ), 0yF x y > . Thus, 
by the Intermediate value theorem for continuous functions, there must be a unique y  in the 
interval 0y y δ− ≤  for which ( ), 0F x y = . Also when  0x x→ then  0y y→ .  

To summarize,  for each x  in the interval 0x x η− ≤ we have shown that there is one 

and only one y  in the interval 0y y δ− ≤  such that ( ), 0F x y = ; this association of y ’s 

with x ’s is a function ( )y f x= with the domain 0x x η− ≤  such that ( )( ), 0F x f x = . 

Moreover, As 0x x→   ( )0 0y y f x→ = so that the function is continuous at 0x .  
Note that we have only gotten an element and perhaps only a small element of the 

function, namely, the part within 0x x η− ≤ . Therefore, the implicit function theorem deals 
the question locally . However, we notice that the condition of the theorem are satisfied for 
any point 1x  within this interval. We can therefore begin again to construct the function 

( )y f x= from the point ( )1 1,x y  and hope to extend the interval. In fact, we shall always be 
able to extend the interval until we reach a point where 0yF =  and then there is no unique 
solution to be found.  

Finally, since the function ( ),F x y  is continuously differentiable so is the 

function ( )y f x= . In order to show this we start from the identity      



( ) ( ) ( ) ( ) ( )0 0 0 0, , , , ,F x y F x y F x y F x y F x y= − + − ,  (8) 

since ( )0 0, 0F x y = .Then applying the first mean value theorem to each of these differences , 

within the intervals 0x x η− ≤  and 0y y δ− ≤ , we have 

( ) ( ) ( ) ( ) ( )0 0 0 0 0 0, , ,x y oF x y x x F x x x y y y F x y y yθ θ= − + − + − + −       ,  0 1θ≤ ≤ . 

But ( )( ), 0F x f x =  for  ( )y f x=  so that  

( ) ( ) ( ) ( )( ) ( )( )0 0 0 0 0 00 , ,x y ox x F x x x f x f x y F x y f x yθ θ = − + − + − + −     . 
If we write x x x= +0 ∆  , y y y= +0 ∆  for any x  and y  in the above intervals , we get  
( ) ( )F x x y x F x y y yx y0 0 0 0+ + + =θ∆ θ∆, ,∆ ∆ . 

Now 0y y→  and 0y∆ →  as 0x∆ → , because ( )y f x= is continuous ; also ( )0 0, 0yF x y ≠ . 
Then the following limit exists 

( ) ( )
( )

dy
dx

f x y
x

F x y
F x yx

x

y

= = = −
→

' lim
,
,∆

∆
∆0

0 0

0 0

.     (9) 

The theorem may be extended in a number of ways. For example the same technique 
can be applied to solving  ( )f x y z, , = 0  for one of variables in terms of the others.  Now we 
proceed in solving two simultaneous equations 

( )ϕ x y z, , = 0  , ( )ψ x y z, , = 0              (10) 
Theorem 2. Let ( )ϕ x y z0 0 0 0, , = and  ( )ψ x y z0 0 0 0, , = . Let ( )ϕ x y z, ,  and ( )ψ x y z, ,    be     
differentiable in a neighborhood R  of  the point ( )x y z0 0 0, ,   and let the Jacobian  

( )
( )

∂ ϕ ψ
∂

∂ϕ
∂

∂ϕ
∂

∂ψ
∂

∂ψ
∂

,
,y z

y z

y z

=             (11) 

be nonsingular there. Then, there is one and only one set of solutions  
( )y y x= ,    ( )z z x=  

which are continuous, satisfy the equations ( )ϕ x y z, , = 0 , ( )ψ x y z, , = 0  and for which  
( )y y x0 0= , ( )z z x0 0= . Furthermore, ( )y y x= , ( )z z x=  are differentiable.  

` Proof.  Since The Jacobian (11) does not vanish at ( )x y z0 0 0, ,  then at least one of 

partial derivatives ∂ψ
∂y

 or ∂ψ
∂z

 must not vanish there. Let us assume that ∂ψ
∂z

 does not 

vanish  at ( )x y z0 0 0, , . Then according to the Theorem 1 ( )ψ x y z, , = 0 defines a unique 
differentiable function ( )z x y=φ , . Now if we substitute this function into (10)1 we  
obtain ( ) ( )( )F x y x y x y, , , ,= =ϕ φ 0 . 

 Now, in order to prove the theorem 2 it is sufficient to show that   

0F
y y z y

∂ ∂ϕ ∂ϕ ∂φ
∂ ∂ ∂ ∂

= + ≠             (12) 



at ( )x y0 0, . To do this we eliminate ∂φ
∂y

from this expression by making use of the identity 

( )( )ψ φx y x y, , , = 0 .Then 
∂ψ
∂

∂ψ
∂

∂φ
∂y z y

+ = 0 .             (13) 

which can be solved for ∂φ
∂y

 in the neighborhood of the point ( )x y z0 0 0, , . In fact, from (12) 

and (13) we have  
( )
( )

∂
∂

∂ ϕ ψ
∂

∂ψ
∂

F
y y z z
=

,
,

/ .          (14) 

But ( )
( )

∂ ϕ ψ
∂

,
,y z

 and ∂ψ
∂z

 at ( )x y z0 0 0, ,  do not vanish by hypothesis and our assumption,  

respectively. Therefore, the same holds for ∂
∂
F
y

. Hence (12) defines a unique function 

( )y y x= . Then, substituting this function into ( )z x y=φ ,  we obtain ( )( )z x y x=φ , , i.e. 

( )z z x= .  
 A more general theorem follows. 
Theorem 3. Let  

( )F x x y yi m n1 1,...., , ,...., ,         i n= 1,....,  

be differentiable in a neighborhood of the point ( )x , y0 0 = ( )x x y ym n1
0 0

1
0 0,...., , ,...., , . Further, let 

Fi x, y
0 0

0
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
 =  and let the Jacobian  
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be nonsingular at ( )x , y0 0 . Then there exists neighborhood   ℜ  of ( )x , y0 0   and a unique 
set of solutions  

       ( )y f x xi i m= 1 ,....,           (16) 
of  the equations  

( )F x x y yi m n1 1 0,...., , ,...., = .         (17) 
 
Furthermore, fi  are differentiable. 

Proof. If we assume the theorem true for ( )n −1 equations and prove its truth for n  
equations, then by induction we can rise to the general case from n = 12,  (already proved  by 



the theorem 1 and theorem 2). Since the Jacobian does  not vanish at least one of cofactors 
of its last row must not vanish and for convenience we may take this to be  

( )
( )

∂
∂

F F
y y

n

n

1 1

1 1

0
,....,
,....,

−

−

≠ . 

Then since the theorem is assumed for the case ( )n −1 , we can solve the first 
( )n −1 equations in the form  

( )y x x ym nα αϕ= 1 ,...., ; ,      α = −1 1,....,n , 
and the ϕα  are differentiable. Then substituting in the last equation we have  

( ) ( )Φ x x y F x x ym n n m n n1 1 1 2 0,...., ; ,...., , ,...., ;= =−ϕ ϕ . 

If the derivative ∂Φ
∂yn

 does not vanish, then this can be solved to give ( )y x xn n m= ϕ 1 ,....,  and 

then substitution gives  
( ) ( )y f x x x xm m nα α αϕ ϕ= =1 1,...., ,...., ; ,        α = −1 1,....,n , 
( ) ( )y f x x x xn n m n m= ≡1 1,...., ,....,ϕ .    (18) 

However,  
n n

n n n

F F
y y y y

α

α

∂ ∂ ∂ϕ ∂
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Φ

= + . 

The ∂ϕ
∂

α

yn

 are calculated from the first ( )n −1  of (17): 

∂
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β
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+ =0 ,          α β, ,.....,= −1 1n . 

From this  
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so that 

( ) ( )
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Finally,  

( )
( )

( )
( )

1 1 1

1 1 1
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,....., ,....,
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F F F F
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and since neither term on the right-hand side is zero, 0
ny

∂
∂
Φ

≠ .  

The particular form in which the theorem  is most needed is the inversion of a 
functional transformation. If m n=  and Fi  has the form  

( )F g y y xi i n i= −1 ,........, , 
where gi  are continuous differentiable functions then the theorem 3 takes the following 
form. 
Theorem 4. If  

( )x g y yi i n= 1 ,........, ,       i n= 1,...., ,      (20) 
 are n continuous functions of the variables y yn1 ,........,  with continuous first partial 
derivatives, and if the Jacobian  

( )
( )

1

1

,........,
,........,

n

n

x x
J

y y
∂
∂

=                            (21) 

does not vanish, then the transformation from y  to x  can be uniquely inverted to give  
( )y f x xi i n= 1 ,........, .        (22)  

Proof. We simply apply the teorem 3. But now the Jacobian (15) reads   
( )
( )

1

1

,........,
,........,

n

n

g g
J

y y
∂
∂

=  

because of the form of functions iF . Then (21) follows from (20).  
 
 
 

References 

[1] Tom M. Apostol, Mathematical Analysis, Second edition, Addison-Wesley                            
Publishing Company, Reading, Massachusetts, Amsterdam, London, Manila, Singapore,   
Sydney,   Tokyo, pp. 373, 1974 
[2] Howard Anton, Calculus, Second edition, John Wiley & Sons& Sons,  
New York, Chichester, Brisbane, Toronto, Singapore , pp. 177, 1984 
[3] Abraham Schwartz, Calculus and Analytic Geometry, Third edition, pp. 828-831 1974 
[4] Rutherford Aris, Vectors, Tensors and the Basic Equations of Fluid Mechanics,  
Dover Publication. Inc. New York, 1989 
 


