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A NUMERICAL PROCEDURE FOR COEFFICIENTS IN
GENERALIZED GAUSS-TURAN QUADRATURES

Gradimir V. Milovanovi¢* and Miodrag M. Spalevi¢

ABSTRACT. A numerical procedure for the coefficients in the generalized Gauss-Turdn
quadrature formulas is presented. The corresponding nodes as the zeros of s-orthogonal
polynomials can be determined by a stable algorithm given in [10]. A numerical example
i3 included.

1. Introduction

We consider the generalized Gauss-Turdn quadrature formula (see [17])

25 n

(L1) [ 10030 = ¥ 3 At + 1)

i=0 v=1

where dA(t) is a nonnegative measure on the real line R, with compact or
infinite support, for which all moments

m :/tkd/\(t), k=0,1, ...,
R

exist and are finite, and pg > 0. The formula (1.1) is exact for all polynomials
of degree at most 2(s + 1)n — 1, i.e.,

Rn(f) =0 for fe P2(3+1)n,—1-

The knots 7, (¥ = 1,...,n) in (1.1) are the zeros of the monic polynomial
75(t), which minimizes the following integral

/ ()22 dA(1),
R
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2 G. V. Milovanovié¢ and M. M. Spalevi¢

where 7,(¢) = t" +a,_1t" "' +-- -4 ayt+ag. This polynomial 75 is known as
s-orthogonal (or s-self associated) polynomial with respect to the measure
dA(t) (for some details see [2-T], [11-13]). For s = 0, we have the standard
case of orthogonal polynomials, and (1.1) then becomes well-known Gauss-
Christoftel formula.

In [10] one of us gave a stable method for numerical constructing s-ortho-
gonal polynomials and obtaining the nodes of the generalized Gauss-Turan
quadrature formula (1.1). It was an iterative method with quadratic conver-
gence based on a discretized Stieltjes procedure and the Newton-Kantorovi¢
method.

In this paper, in Section 2, we give a numerical procedure for finding the
coefficients A; , in (1.1). An alternative method was given by Stroud and
Stancu [16] (see also [15]). A numerical example is given in Section 3.

2. The Coefficients in the Generalized
Gauss-Turan Quadrature

Let 7, = 1,(s,n), ¥ = 1,...,n, be the zeros of the s-orthogonal polyno-
mial m,.(t) (= pi(1)). If we define w, by

then the coefficients A;, in the generalized Gauss-Turdn quadrature (1.1)
can be expressed in the form (see [15])

. )2s+1 _ Lt 2541
/"li = ] l . [)25—2 ! / Tr'n(ﬂ) al l( ) (i)\(r) )

. il(2s —1)! w, (1) Jr z—1 -
where D is the standard differentiation operator. Especially, for ¢ = 2s, we
have 1 2ebs

Ass = = Y / ﬂ'n(l') d/\(.’l?).
’ (28) (7! (1,))25t Jp t—T,
i.e.,
B, ()
Agsp = - 7 —T 1 R ;1

(25)!(m,(7))2e”
where 1,(%) are the Christoffel numbers of the following Gaussian quadrature
(with respect to the measure du(t) = 72%(t)dA(t)),

n

/ -rj{.f) ('r‘}“'(t) = Z BLS}Q(TU) i Rn(g)s R?i(‘P?n—I) =0.

v=1
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Since BE,S) > 0, we conclude that Ass, > 0. The expressions for the other
coefficients (i < 2s) become very complicated. For the numerical calculation
we can use a tringular system of linear equations obtained from the formula
(1.1) by replacing f with the Newton polynomials: 1,t—7, ..., (t—7 Rt
(£ = T (= 72), ooy (= TP HI(E = BT (£ = )20

Here, we give a method for the numerical calculation of coefficients of
the generalized Gauss-Turdn quadrature formula (1.1), starting from the
Hermite interpolation problem

A9,y = (7)),

wherev=1,....,n; i=0,L,...,aq, - l,0n ++:--+a, =m+ L.

Taking a; = 2s 4+ 1, i = 1,... ,n and integrating f(1) — Hp, (1) = iy £
we obtain

(2:1) /Rf(t d,\u)_ZZﬂ (r,,)/ Li(DdA) + Rl f),

i=0 v=1

where

2s5—i 14_ Ty )23-—{-] (k) (
V'i‘ "L;Z[|\:_ﬁ Z) ] (i—Ty)“)SL"‘J"I’

k=0 i
Q(t) = [(t - m)(t =)o (¢ = )T
s Bl fR r(f;1)dA(t) is the corresponding remainder term.

Hence, (2.1) becomes the generalized Gauss-Turdn quadrature formula
(1.1), where A; , are the Cotes numbers of higher order and given by

P ] La(tdA(L),
"

l.e.,
Boi |y gyt )
— | — 9 It
Pl Tl M ASCED
where i = 0,1,...,2s; v = 1,...,n and
| Ot ) i
(2.2) (L i{E)= i = (1 —n) [[¢ -

i#v



4 Gi. V. Milovanovi¢ and M. M. Spalevi¢
For i + k < 25, we can see that 0, ;1(t) is a polynomial of degree at most
(n=1)2s+1)+2s=(2s+1)n—-1<2(s+1)n—1=2N -1,

where N = (s + 1)n.

Hence, the problem of determining of the coefficients of the Gauss-Turan
quadrature formula (1.1) is reduced to determination of integrals in (2.2).
All of the above integrals in can be found exactly, except for rounding errors,
by using a Gauss-Christoffel quadrature formula with respect to the measure

dA(t),

N
(2.3 [owaxe = Y- 40 ) + Ruto),
k=1

taking N = (s + 1)n knots. This formula is exact for all polynomials of
degree at most 2N — 1 = 2(s+ 1)n—1.

In order to calculate the derivatives

2 (k)

(t —7,)%sH?

(2.4) [—— (ki O, Lyun. o 285 wi=1,. .. ,m),
Q(t) =1,

we need the following auxiliary result:

Lemma 2.1. Ifg€ C™)(E), m € Ny, E CR, then

P
(e9)®) = ¢, (69)(1’) - Z (5) l)g“}(eg)(”_”, =i Lo s 5 00

=1 .
Proof. Since (e?)" = ¢'e?, applying the Leibnitz’s formula for the derivative
of the product of functions, we have
p=1

9YP) — (e (P=1) — P—l) 1Y) (g Y(P—i=1)
(@) = (g'en)rt = 3 (P71 g0 e

(Tl’ - Il)g(f)(eg)(p—u‘

i=0

P
i=

1

where p=1,...,m. O
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Leta=1p< 1 <+ <7, < Tyup1 = b, where [a, b] is the smallest closed
interval containing supp(dA), or ¢ = —o0, b = +00. Fort € (1,-1,7,41) We
define u, by

() = H(t - T,,)_(23+” =(=-1)"7" exp[—(Qs + I)Zlogh — 1-1-|],

[F 37 17y

ie., u,(t) = (=1)"Ve™ () where

ho(t) = =25+ 1)) gi(t),  gilt) =log |t — 7il.
t# v

Since gm(n) = (=115 - D)7, = 1)7%, j > 1, we have

B (r,) = —(2s + (=171 G = )Y (7, — 7).
£
It is clear that the derivatives in (2.4) are exactly the derivatives of u,(t) in
the point t = 7,,. Thus, using Lemma 2.1, we can express they in terms of
hg,”(r,,).
This numerical method for calculating the coefficients A; , can be sum-

marized in the following form:

Proposition 2.2. Lett,, v = 1,....n, be zeros of the s-orthogonal polynom
mi(t), with respect to the measure dA(t) on R. Then, coefficients of the
generalized Gauss-Turdn quadrature formula,

8

/f rM(r)—ZiAwf”(n +R(S

i=0 v=1

can be expressed in the form

25—1 N
1 - 1o w1k (N) N
A= (=" 3 2, AT (™),

k=0 1= 1

where AgN} and T}N} are weights and nodes of the Gauss-Christoffel quad-

rature formula (2.3) in N = (s + 1)n points, the polynomial Q, ;(t) is given
by (2.2), and [ holt ](i)T is determined by Lemma 2.1.

To conclude this section we mention a particulary interesting case of the
Chebyshev mesure dA(t) = (1 — t2)~1/2dt. In 1930, S. Bernstein [1] showed
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that the monic Chebyshev polynomial ’f“ﬂ(t) = T,(t)/2"! minimizes all
integrals of the form

1 k+1
|mn(t)]*F .
L k2o

Thus, the Chebyshev-Turan formula

(2.5) f /) dt:iiz‘l- fO(1.) + Ra(f)
_1\/1—-1',_2 i 1,0 v n ’

with 7, = cos (ZL.,_,:—)E, v =1,...,nis exact for all polynomials of degree at

most 2(s + 1)n — 1. Turn has stated a problem of explicit determination
of A;, and its behavior as n — +oo (see Problem XXVI in [18]). Some
characterizations and solution for s = 2 were obtained by Micchelli and
Rivlin [9], Riess [14], and Varma [19]. One simple answer to Turdn question
was given by Kis [9].

3. Numerical Example

In this section we give an example when is preferable to use a formula of
Turan type instead of the standard Gaussian formula

(3.1) [ 1000 =3 aste) + R,
v=1

for which R, (R2,—1) = 0. All computations were done on the MICROVAX
3400 computer in Q-arithmetic (machine precision = 1.93 x 10734).

Consider the following simple numerical example
1
I'= / e'V 1 — 2 dt = 1.7754996892121809468785765372 . . . .
-

Here we have f(t) = €' and dA(t) = VI — #2dt on [-1,1] (the Chebyshev
measure of the second kind). Notice that f()(¢) = f(t) for every i > 0.

The Gaussian formula (3.1) and the corresponding Gauss-Turan formula
(1.1) give

(3.2) Prif= N A"
r=1
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and

1
(3.3) Iy, =% Cllem,

v=1

2s
respectively, where C,(,S) = T T
i=0

Table 3.1 shows the relative errors |(IT, — I)/IT | for n = 1(1)5 and

n,s n,8
s = 0(1)5. (Numbers in parentheses indicate decimal exponents and m.p. is
the machine precision.)

TABLE 3.1
Relative errors in quadrature sums 1‘,{."

n s=10 s=1 $=12 §=3 s=4 s=5
T | 1.15(=1)  4.71(—=3) 9.72(-5)  1.21(—=6)  1.01(=8)  5.98(—11)
2 | 2.38(=3)  2.05(=7)  3.06(—12) 1.36(—17) 2.40(—23) 1.88(—29)
3 | 1.97(-5) 1.15(—12) 4.02(-21) 9.26(-31) m.p. m.p.
4 | 8.76(—8) 1.71(—18)  4.68(—31) m.p. m.p. m.p.
5 | 2.43(=10) 9.40(—25) nm.p. m.p. m.p. m.p.

For s = 0 the quadrature formula (3.3) reduces to (3.2), i.e., [T,

Il

IS, Notice that Turdn formula (3.3) with n nodes has the same degree of
exactness as (iaussian formula with (s 4 1)n nodes.
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PAWLEY MULTIPLE ANTISYMMETRY THREE-
DIMENSIONAL SPACE GROUPS .7
I. SYMMORPHIC GROUPS

Slavik V. Jablan

ABSTRACT. By use of antisymmetric characteristic method, Pawley multiple antisymme-
try three-dimensional space groups G_f;'p (p = 3,4,6), are derived.

Crystallographic (p')-symmetry three-dimensional space groups (or Paw-

ley colored antisymmetry groups) G% (p = 3,4,6) are derived by A. F.
Palistrant [1,2,3,4]. From 73 symmorphic space groups (v3 are derived 670
junior Ggl (96 G3' + 266 (i1 + 308 G5 ), from 54 hemisymmorphic (i3 are
derived 562 junior G'gl (75 G3' + 252 G4 4 235 (7§'), and from 103 asym-
morphic (i are derived 980 junior G (138 G3' + 432 G4 + 410 G5 ); this
means, the category (,'1"“3" (p = 3,4,6) consists of 2212 junior groups (309 G5
+ 950 G + 953 GS ).

By the use of the generalized anti:ymmetric characteristic method (AC'-
method) [5,6,7], we will derive all crystallographic (p,2')-symmetry three-
dimensional space groups (;f;’" (p=8,4,6)

1. Some General Remarks on (p')- and (p',2')-symmetry

Pawley (p')-symmetry is a particular case of the gemeral P- symmetry
with P = Dp(z,), where D5, is the regular dihedral permutation group,
generated by the permutations €3 = (1..p)(2p..p+ 1) and ez = (1 p +
1)(2 p+2)...(p 2p), (p > 2) satisfying the relations:

ef = e = (e1e2)* = E.

For every p the group D, is irreducible.
Received 5.10.1994

1991 Mathematics Subject Classification: 20H15
Supported by Grant 0401A of RFNS through Math. Inst. SANU



10 S. Jablan

By introducing [ antiidentity transformations es,...,e;4o [8,9] (I € N)
commuting between themeselves and with e, e, we have (p’,2')-symmetry,
with the group P = Djyp) X .

In this work only junior groups of complete (p’, 2')-symmetry will be con-
sidered. Every junior (p’)-symmetry group GP' is derived from certain gen-
erating symmetry group (7, as well as every junior (p',2')-symmetry group
GYP' s derived from certain junior (p')-symmetry group [1,2,8].

Theorem 1. a) A (p',2')-symmetry group G’ is the junior (p', 2! )-sym-
metry group if all relations given in the presentation of its generating sym-
metry group (i remain satisfied after replacing the generators of the group G;
by the corresponding (p',2')-symmetry group generators;

b) a junior (p',2!)-symmetry group is called the M™-type (p',2')- sym-
metry group, if it is a M™-type group regarded as a l- multiple antisymmetry
group;

¢) a junior M™-type (p',2')-symmetry group GY?' is a group of the com-
plete (p', 2! )-symmetry, if for every i (i = 1,...,1 +2) e;-transformation can
be obtained in the group G'*' as an independent (p',2!)-symmetry transfor-
mation.

If only the condition c) it is not satisfied, such a group G'“?" is the un-
complete junior (p',2!)-symmetry group of the M™ -type.

Because the derivation of (3/,2')-symmetry groups coincides to the deriva-
tion of (32,2')-symmetry groups [10], as the basis for the derivation of
all crystallographic (p',2!)-symmetry groups (p = 3,4,6), (4’)- and (6’)-
symmetry groups will be sufficient. The derivation will be realised by the
use of generalized AC":

Definition 1. Let all the products of (p')-symmetry generators of a group
G?', within which every generator participales once at the most, be formed,
and then subsets of transformations equivalent with regard to (p')-symmetry,
be separated. The resulting system is called the antisymmetric characteristic
of the group G and denoted by AC(GP') [5,6,7,10].

Theorem 2. Two (p',2!)-symmetry groups of the M™-type derived from
the same (p')-symmetry group for m fized (m = 1,...,1) are equal iff they
posscss equal antisymmetric characteristics.

The problem of differing between complete and uncomplete (p',2')-sym-
metry junior M™-type groups can be solved by the use of the homomorphism
of the subgroup €}, = {e;} of the group D3, to the group C; at p = 0(mod
2):

' —e, G E (1<k<(p+1)/2) [5,10]



Pawley multiple antisymmetry three... 11

2. Symmorphic (p',2)-symmetry
Three-dimensional Space Groups G} (p = 3.4,6)

For denoting space symmetry groups the original Fedorov symbols [1,2,8],
Zamorzaev notation and International symbols [11] are used, where p'-sym-
metry transformations e], ey, e1ez (p = 3,4, 6; q|p) and ef/ze-g (p=4,6) are
denoted by (p/g,’),”) and (2’ respectively.

The application of the theoretical assumptions given above will be illus-
trated by example of complete (p',2')-symmetry junior three-dimensional
space groups of the M™-type (p = 3,4,6) derived in the family with the
common generating symmetry group ¢ =7s (P2/m), {a,b,c}(2 : m) with
the AC: {m,em}{2,2a,2b,2ab} belonging to the AC- equivalency class VII
[6, Tab.1]. At p =3 we have two junior (3’)-symmetry groups:

1) {a,b,cB}(2:m"),

2) {a®,b,¢e}(2) 1 m).

Because of the ¢;-transformation m), the AC' of the first group is of the
form {ey, e }{E, E, E, E} and of the type (2)(5)!, and the AC' of the second
is of the form {E, E}{e3,€2,¢2,€2} and of the same type (3)(5)'. Hence, for
the both of them Ny = 7, N, = 64, N3 = 700, Ny = 6720 [6,10].

So, we have the following complete (3’,2)-symmetry groups:

{*a,b,e®H2 - m.‘]), fa,b,* 32 : m)), {a,b,3}(*2 : m')),
{*a,b,*cB}2:m"), {=a,b.cBH2:* m"), {a,b,"cB}(*2: m)),
{a,b,cB3}(*2 = m')), {=a®,b,c}(2) : m), {a®,b,"€}(2) : m),
{a(S,b,c}('z') *m), {*a(a,b,'t}("z') 1m), {*aw,b,c}('z') i,

{aB,b,*c}(*2) : m) and {aB,b,e}(*2) :* m),
where the antisymmetries are denoted by an asterisk.

At p = O(mod 2), the form and, consequently, the type of AC’((}'?") is
obtained by the use of the homomorphism mentioned in Chapter 1. By
treating in this way the six (4’)-symmetry groups belonging to this fam-
ily, we have the following results: the three of them, {u(“,b,c}("z‘) Do),
{at*,b,c}(27 : m®) and {a',b, ¢2}(2) : m), possess the AC' of the form
{E, E}{e,€2,€1€3,€1€2} and of the type (3)(9), where by (9) is denoted the
type of the term {ez,€3,€1¢2,¢1€2} which contains e;- and e;ez-transform-
ations. These transformations are nonequivalent in the sense multiple anti-
symmetry, so according to the multiple antisymmetry the type of the term
mentioned is (9). Contrariwise, they are equivalent in the sense of (p')-
symmetry, so the type of this term is denoted by (9). This is the reason
why the derivation of multiple antisymmetry groups from the (p')- sym-
metry groups with such antisy mmetric cha racteristics cannot be simply
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reduced on the theory of multiple antisymmetry, this means, on the deriva-
tion of multiple antisymmetry groups of the M™+2-type from the M?-type
groups, as it has been done in the case of (p2,2')-symmetry groups. From
the first group {a(®, b,¢}(27 : m) we derive Ni({a'*,b,¢}(2? : m)) = 9 junior
complete (47,2)-symmetry groups of the type M!:

{a,b,e}(2) = m) with the AC: {ea,es}{ea, €2, 6162, €162} of the type
(3)(9)%

{a“,b.c}(""z') :* m) with the AC": {63,63}{8263,6263,616263,6‘16’363} of the
type (3)(9)%;

{*a'4,b,c}(2" :* m) with the AC: {e3, e3}{es, €2, €1€5€3, ¢1€9€3} of the type
(3)(9)%;

{a",b,*c}(2) : m) with the AC': {E,e3}{es,e3,€162,€1€3} of the type
(4)(9)%

{a b, c}("2) : m) with the AC: {E,e3}{eze3,eze3, 16263, 10063} of the
type (4)(9)%;

{*a*, b,*c}(2) : m) with the AC:{E,e3}{es, €5, €1€2e3,€1€9€3} of the type
(4) (9)%;

{a' * b, ¢}(2) : m) with the AC" {es,es}{er, €162, €2e3, €1€2€3} of the type
(3)(16);

{a* b, c}(2) i m) with the AC": {e3, e3}{es, e1€2, €23, e1e9€3) of the type
(3)

(16)*;

{a""*b,e}(2) : m) with the AC: {E,ea}{e2, €169, €1€9€3, €2e3} of the type
(4)(16)>.

From the groups with the AC of the type (3)(9)® can be derived the 6
M?*-type groups: 2 of the type (4)(9)*, 1 of the type (4)(9)4, 2 of the type
(3)(16)* and 1 of the type (4)(16)*; from the group with the AC' of the type
(3)(9)? the 7 M?-type groups: 4 of the type (4)(9)*, 2 of the type (3)(16)*
and 1 of the type (4)(16)*; from the groups with the AC' of the type (4)(9)*
the 10 M?-type groups: 4 of the type (4)(9)*, 2 of the type (4)(9)* and 4
of the type (4)(16)*; from the group with the AC' of the type (4)(9)% the
12 M*-type groups: 8 of the type (4)(9)* and 4 of the type (4)(16)*; from
the group with the AC of the type (3)(16)* the 12 M?*-type groups: 4 of
the type (3)(16)*, 2 of the type (3)(16)%, 4 of the type (4)(16)* and 2 of
the type (4)(16)%; from the group with the AC of t he type (4)(16)* the 18
M?-type groups: 12 of the type (4)(16)* and 6 of the type (4)(16)*. Hence,
Ny({a',b,c}(27 : m)) = 93. Because from the groups of the types (4)(9)
and (4)(9)* can be derived 4 M3-type groups, from the groups of the type
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(3)(16)* 6, from the groups of the type (3)(16)° 8, from the groups of the
type (4)(16)* 12 and from the groups of the type (3)(16)* 16 M>-type groups,
N3({a'®,b,c}(2) : m)) = 840.

The remaining three (4°)-symmetry groups {a,b,c*}(2 : m"), {a,b,c}
(22 : m") and {a(?,b, (2 : m')) possess the AC' of the form {es,ejes}
{E,E,E,E} and of the type (4)(5)*, where by (4) is denoted the type of the
term {ez,erea}. In the case of ( p’) -symmetry groups with the AC' in which
the term {e,, e1€2} occurs once and only once, the series of the numbers N}j’:
can be simply computed using the following theorem:

Theorem 3. Let in lhe A(.'((_r'f") the term {e3,e1€2} occurs once and only
once. If by N,, is denoted the number of the junior M™% %-type multiple
antisymmetry groups derived from the AC(GP') treated as the AC of a 2-
multiple antisymmetry group, then N,,(GP) = (2™ + 1)N,, /2™ (m =

Lond).

Proof: Because the term {e;,ejea} occurs once and only once in the
AC-'(G"") it is independent from the other part of the AC. For m = 1
it is transformed into the four terms different in the sense of 3-multiple
antisymmetry: {es,e1e2}, {e2e3,€162}, {e2,€1e0e3}, {€re3,€1€2€3}, result-
ing in the three terms different in the sense of (p',2)-symmetry: {e2,€1€2},
{eses,e1e2} = {€2,€162e3}, {e2€3,€1€2e3}. Hence, Nl((}’f") = 3N;/4. Pro-
ceeding in the same way, for every m (m = 2,...,1) it is transformed into
the 2+1 terms different in the sense of (m + 2)-multiple antisymmetry, re-
sulting in the 2™ 4 1 terms different in the sense of (p’ ,2))-symmetry, so
Np(GP') = (2™ + 1) Ny 21,

Treated as the AC' of a 2-multiple autisymmetry group, the AC' of the
form {es,e1e2 H{E, E, E, E} and of the type (4 (5)* gives Ny = 8, Ny = 64,
N3 = 448, so for the (4’)- symmetry group G* {a b,c*}(2:m )) with the
same AC of the type (4)(5)%, Ni( ) = 6, Ny(GH ) = 40, N3(G*Y') = 252.
The same holds for the other two (4')-symmetry groups {a'*, b, e} (2 m').
{a®,b,c1}(2: m')) with the identical AC'. Hence, for the symmetry group
7s (P2/m), N¥'(Ts) = 45, N (Ts) = 399, Ni (7s) = 3276.

From the ten (6’)- -symulf'trv groups of the same family, the two of them,
{a,b,cB3} (222 : m")) and {a“ b, c}(2) - m(2?) possess the AC' of the type
(3)(5)? giving N&' =5, N§' = 34, N§' = 234; the one of them, {a(?,b, ¢ }(2
m')) the AC of the type (3)(9)* giving N,ﬁ' = T1, N{” = 132, N;?' = 1344;
the one of them, {a®b A"}(z’ : m) the AC of the type (4)(5)* giving

Ve = 8, N§' = 64, N.3 — 448; the two of them, {a(®,b,c}(2) : m) and
{u(ﬁ,b,c}(l) : m2) the AC' of the type (3)(9)* giving N6 =9, N6 = 93,
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N§' = 840; the three of them, {a,b,¢®}(2: m?), {a,b c“;}(z(" :m’)) and
{a(2 b,cl®}(2:117)) the AC of the type (4)(9)? giving N¥' = 12, N§' = 150,
Ng’ 1512; and the one of them, {a (6 p, ('(2}(2) : m) the AC of the type
(4)(9)* giving N§' = 13, N§' = 168, N$ = 1680. Hence, N§'(7s) = 84,
NE'(Ts) = 848, N__Sj'(?s) = 7616.

The possible applications of the generalized colored symmetry groups are
considered by V.A.Koptsik [12].

3. Partial Catalogue of Symmorphic (p',2)-symmetry
Three-dimensional Space Groups G} (p = 3,4,6)

In the same manner, the partial catalogue of all complete (p',2")-sym-
metry junior symmorphic three-dimensional space groups of the M™-type
(:” (p = 3,4,6), is realized. According to the work [6], this partial cata-
logtl( gives the possibility for their complete cataloguation.

The complete results are given only for the first ten symmetry groups
ls—10s. The remaining tables of this partial catalogue can be ordered from

the author,
2s (P1) {a,b,c}(2), AC :{2,2a,2b,2¢, 2ab, 2ac, 2be, 2abe}, 11

1) {a® b, c}(2)), 9, N1I=1N2=1 N3=1
2) {al*, b, c}(2"), (25)), N1=1N2=1
3 {a(”,b,c}(:z’)), (25)2, N1=1N2=1

(P2), {a,b,c}(2), AC : {c}{2,2a,2b,2ab}, III

1) {ﬂ(3,b,c}(2 N, (2)(5)!, N1 =4 Ny =16 N3 =56
2) {a™, b, c}(2)), (2)(9)%, Ny =5 Na =18

3) {a', b, ¢(2}(2") (2)(9)?, N1 =5 Ny = 18

1) {a'® b, c}(2), (2)(9)%, Ny =5 Ny =18

5) {al3 b, e(2}(2), (2)(5)%, My =2 Ny =4

6) {a(“ b, e(2}(27), (2)(9)'3. Ny=5 Ny=18

(B2) {a,b,(a +¢)/2}(2), AC : {2,2b}{2(a + ¢)/2,2b(a + ¢)/2}, IV

1) {a, b({'(uﬁ—()/Z}Z) (i)(i)l,leli Ny =6

2) {al?,b,(a+ ) /2)1(2"), (3)(3)%, M =1

3) {a, 6 (a+0)/2}2)),  (4)(4)?, Ny =3

4) {a.\" b (a+ ) /2}(27), (3)(3)%, Ny =1

5) {0, 6% (a4 0)/2}27), ()4, M =3

6) {a®, b, (a + )€ /2}(2)), (3)(3)%, My =1

5s (Pm) {a,b,e}(m), AC : {a,b,ab}{m,me}, V



Pawley multiple antisymmetry

three...

15

1) {a,b,c3}(m") (4)(3), Ny =4 Nay =22 N3 =112
{a b, ('(“}(m 3) (1) (4)%, Ny =3 N2 =10
3) {a® b f«“}(m (4)(4)2, N1 =3 Ny =10
4) {a,b,c®}(m"), (4)(4)%, N1 =3 N2 =10
5) {a2, b, 3} (m)), (6)(3)%, Ny =5 Ny =24
6) {a('2 b, cl6 H m‘) (6)(4)*, Ny =6 N2 =30
6s (Bm) {a,b, (a+c)/2}(m), AC: {m}{(a +)/2,b(a +¢)/2}, VI
1) {a,b ,(a-{-r‘“/Z}(m (2)(3)', Ny =4 Ny =12
2) {a'?, b, r1+c )/2) }(m ) (2)(3), My =2
3) {a,b, (¢ + )42} m),  (2)(3)% M =2
4) {a, b, (a+ )M /2)( m ), (2)(3)%, Ny =2
5) {a,b,(a+¢) (6/2} m ), (2)(3)%, Ny =2
6) {a,b(z,(a -}—c)(a/‘l} m")), (2)(4)%, Ny =4
7s (P2/m) {a,b,c}(2 : m), AC : {m,em}{2,2a,2b,2ab}, VII
1) {a,b,c®}2:m)), (3)(5)!, N1=T7 Ny =64 N3=700
Ni = 6720
2) {a®,b,c}(2) :m), (3)(5)", Ny =7 Ny=64 Nz=700
Ny = 6720
3) {a,b,cAPy2:m'), (4)(5)* Ni=6 Ny=40 N3 =252
4) {a,b, 22 m)), (4)(5)%, Ni=6 Ny=40 N3=252
5) {n“ b} z) m) (3)(9)%, Ni=9 Ny=93 N3=840
6) {a*,b,c}(2” :m?), (3)(9)%, Ni=9 Nop=93 N3 =840
7) {a'?,b r‘“} m)), (4)(5)°, Ni=6 Ny=40 N3=252
8) {al* b, }(2) m) (3)(9)%, Ni=9 Np=93 N3=840
9) {a,b, 322 :m)), (3)(5)%, Ny=5 Ny=34 Nz=224
10) {a®,b,e}(2) : m?), (3)(5)2, Ni=5 Ny=34 N3=224
11) {a,b, J"}(z;m"), (4)(5)%, Ni=6 N»=40 N3=252
12) {a, b, 6322 : m7), (4)(5)%, Ni=6 Ny=40 Nj=252
13) {al® b, c}(2) s m), (3)(9)?, Ni=9 Ny=93 Ny=3840
11) (a8, b, c}(2) - m), (3)(9)%, Ni=9 Ny=93 N3=840
15) {u“ b, r(l}{‘z’) D), (4}(5)2. Ni=8 Ny=64 Ny=448
16) {a2,b,e3}(2 :m)), (3)(9)%, Ny =11 Ny = 132 N3 = 1344
17) {a'® b (“3}(2 cm)), (4)(9)%, Ny =12 Ny = 150 N3 = 1512
18) {a®, b, 2327 m), (4)(9)? Ny =13 Ny = 168 N3 = 1680
8s (B2/m) {a,b,(a +c) /2}(2 m), AC : {m}{2,20}{(a +¢)/2,b(a+c)/2}, VIII
1) {a, b, (a+e)3/2)(2: (2)(3)(B)', N1 =8 Na2=60 Ns=336
{a, b8 (a+0)/2}(2) :m),  (B)B)!, Ny =8 Na=60 N3=336
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3) {a® b, (a+ /212" :m"), (2)(3)(3)2, Ni=6 Ny =24

4) {a,b(a+c)4/2}2:m)),  @(BG)?, Ni=6 No=2

5) {a,b,(a+)*/2}22 :m"), (2)3)(3):, N =6 Np=24

6) {a, 0 (a+0)/2}2) :m), (2)@)4)?, M=9 N =60

7) {a, b (a+¢)/2}2) :m®), ()@@, N =9 Ny=60

8) {a, b (a+o)/2}2:m)), (2)B)3)}, N =6 Ny =24

9) {a®,b,(a+0)4/2}2) :m), (2B3)3):, N =6 Ny=24

10) {a®,b, (a 4+ )4 /2}2) : m®), (2)(3)(3)2, N1 =6 Ny =24

1) {a,b,(a +¢)3/2}22 :m)), (2)(3)3)?, N =6 Np=24

12) {a, 6@, (a +¢)/2}(2) : m?), (2)B)B)E, N =6 No=2

13) {a,b,(a +¢)®/2}(2 : mJ)), (2)3)(3)>, N1 =6 Ny=24

14) {a,b,(a +0)®/2)2C : m)), (2)(3)3)2, Ni=6 Ny =24

15) {a,b2 (a +)3/2}(2:m)), (2)@)4)?, N =12 N, =96

16) {a,b® (e +¢)/2}(2) :m),  (2)@)@)?, Ni=9 N =60

17) {a,bC, (a + )/2}(2) : m®), (2)@)(4)%, N =9 N, =60

18) {a® b, (a +¢)¢/2}2) :m), (2)(3)3), N =6 Ny =24

19) {aB,b,(a + )6 /232" : m(?), 2)(3)(3)2, Ni=6 Ny =24

9s (P222) a,b,c(2:2'), AC : {{c}{2,2a,2b,2ab}, {b}{2',2'a,2'c,2'ac}, {a}
{22',22'0,22'¢, 22'bc} } {{2, 2/, 22'}, {24, 2'a,22'}, {2',2b, 22D}, {2"a, 2ab, 22'b},
{2,2'¢c,22"¢}, {2a,2'ac, 22'c}, {2b,2'c, 22"bc}, {2ab, 2'ac, 22'bc}}, IX

1) {a,b,e(3}(2:2), (4)(5,(5,5))', Nt =8 Ny =96 N3 =1516
Ny = 20160
2) {a,b,c*}2:2"), (6)(5,(9,9))>, Ny =7 Ny =88 N3 =840
3) {a,b,c4}22 2, (6)(5,(9,9))>, N1 =7 Ny =88 N3 =840
4) {a? b,ci}2:27), (6)(5,(9,9)%, N1 =7 Ny =88 N3 =840
5) {a®, 6@ 322N, (6)(5,(9,9)%, N1 =7 Ny =88 N3 =840
6) {a,b,cB®}(22:2)), (4)(5,(5,5))%, Ny =7 No =88 N = 840
7) {a,b,d®}2:27), (6)(5,(9,9))%, Ny =7 No =88 N =840
8) {a,b,c(®}22 : 2y, (6)(5,(9,9)%, N1 =7 Ny =88 N3 =840
9) {a®b,c6}(2:2)), (6)(9,9,9)%, Ny =20 Ny =384 N3 = 5376
10) {aC b2 6}(2: 2"y, (4)(9,(9,9))%, N1 =9 N =156 N3 = 1680
1) {a® 5,32 :2)), (6)(5,9,9)%, N1 =13 Ny = 196 N3 = 1680
12) {a®, 62 B}2:2Y), (6)(9,(9,9))%, Ny = 11 Ny = 172 N3 = 1680

105 (€222) {a,(a +b)/2,c}(2:2"), AC: {(a +b)/2}{(2',22"),(2'c,22'c)}, VIII

1) {a.(a+b6)3/2,e}27:2)), (2)4,4)', Ny =14 N> = 168 N3 = 1344
2) {a,(a+5)/2,cB}2:27),  (2)(3,3)', Ny =8 Ny =60 N3 =336
3) {a® (a+0)/2),e}(2:2"), (2)(3,3)%, N1 =6 Ny =24
4) {a, (@ +0)'/2),c2}2:27)), (2)(3,3)>, N1 =6 Ny =24
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5) {a,(a+b)/2,*)(2: 2y,

) {a,(a+6)2/2,4)2:2)), (2)3,

3)2,

3)7,

(2)(3,3)%, M =
6) {a,(a+b)/2,d1}2 :2)), (),

Ny
Ny

) {a, (a+b)3/2,4} (22 - 27), (2)(3,3)°, M

(
9) {a,(a+b)4/2,e}2):27),  (2)(4,
10) {a, (a+b)4/2,e}(27 1 2%), (2)(4,
11) {a, (a + b)4 /2,227 : z)) (

13) {a, (a +5)3/2,e}(2) : 27,
14) {a, (a + b)/2, 6}(2: 2)),

(4,

18) {a, (a + b)?/2,cl6}(2 : 270), (2)(3,
19) {a, (a + )2 /2,632 : z)) (2)(4,
20) {a, (a +0)(®/2,c}(2) :2)), (24,

21) {a, (a + b)©¢/2,c}(27 : 2%), (2)(4,
99) {a, (a + 0)?/2, c('*’}(z) 2)), (2)4,
23) {a, (a +b)¢/2,42}(27 : 2)), (2)(4,

4y,
4)?,

4)%,

4)?,
3)%,
1),

N]

)
2)(4,4)%, N1
12) {a, (a + b)/2, 3}(2C : 2 )) (2)(4, 4)" N]
(2)

(2)(3,3)%, N1
15) {a, (a + b)/2, B} (2% : 2 )) (2)(4,
16) {a, (a + b)?/2,CH2 - 20y, (2)(3,
17) {a, (a + )2 /2,63 )22 : 2)), (2)(4,

Ny
Ny
Ny

.ﬂo

4
4)
1
4)%,
4)%,

Af

N1

|
~

|| Il H o
-1 =1 =~

i Il Il
-1 =1 oo =1 oo oo O

1]

o

II
o oo oo G =1 =1 =1 &

The complete results are given in Table 1.

Table L.
(3) @) (6)

2s 1 1 1 24s 3

3s 1 2 3 25s 7

4s 1 3 2 26s 1 4 3
hs 1 2 3 27s 1 2 1
Gs 1 3 2 2851 6 5
7s 2 6 10 29s1 7 3
8s 2 8 9 30s1 13 5
9s 1 4 7 31s1 10 3
10s 2 9 12 3251 10 5
11s 1 3 3 33s1 11 5
12s 1 3 4 s T T 3
135 1 6 1! sl T 3
14s 1 6 f 365 1 18 11
158 2 10 12 IMs1 16 7
16s 1 4 3 40s 2 2
17s 1 4 g 41s 1 1
185 1 6 11 42s 1 1
19s 2 15 22 43s1 | 1

48s 3
49s 1
H0s 2
51s 3
H2s 1
53s 2
H4s 5
555 3
H6s 4
h7s 2
58s 3
635
655 1
66s 1
67s 1
68s 1
69s 1
1

2

B =

T

— b b

—
-] B T = L S = =]

- —
-] 1

[ErR—

—

Il

I

Il

[ B |
Y &Y S &

[y B |
(1]
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20s
21s
22s
23s

2s

3s

4s

Hs

6s

Ts

8s

Os

10s
11s
125
13s
14s
155
16s
17s
18s
195
20s
21s
22s
24s
25s
2065
278
28s
29s
30s
31s
32s
33s
34s
35s
36s
3Ts
40s
41s
42s
43s

Oy

(4

on

44s 4
4Hs 6
46s 4
47s 2

1
1
1
2

S. Jablan

4 Tls 1

6 7251 2
4 T73s 1

5

(3',2) (4',2) (6',2) (3',22) (4',2%) (6',27)

38
10
18

16
14

—_— b B

1
10
5
6

6
45
54
28
64
6
17
90
64
84
12
48
90
252
44
168
8
80
28
10

42
28
80
40
69
70
28
22
294
192

1
12
4
14
6
84
66
81
88
8
23
184
34
108
12
84
274
420
48
228

34
12
34
12
34
34
12

202
84

1
16
6
22
12
128
120
96
228
12
42
300
168
192
24
168
450
804
96
432

54
24
o4
24
60
54
24
12
300
168

1
36

20

399
264
352
360

108
1440
480
528

384
2340
4392

256
4032

=

576

234
420
372

378

5040
1536

1
40

64

848

360
1260

520

156
3216
672
720

672
9636
8016

336
5376

192
192
168

192

3720
672

2

3

1



445
45s
46s
47s
48s
49s
50s
5ls
52s
93s
Hds
Hhs
Hbs
57s
H8s
65s
66s
68s
69s
Tls
T2s
T3s

3s

bs

Ts

8s

9s

10s
125
13s
14s
15s
17s
18s
19s
20s
21s
28s
30s
32s
33s
36s

B Sy B B = B b

6

[=2]
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13
20

24

14
38
19
29
13
160

12

24
36

48

24
60
36
43
24

2388

24

240

1104

(3',2%) (4", 2°) (6',2%) (3',2%) (4',24)

1

56
112
1400
672
1516
1680
336
5712
1344
2688
1344
17220
16464
672
10080
336
336
336
336
5712

3276

3360

18144

7616

13776

43008

13440

20160

80640

(6',2%)

(3!,2%)

77112 364224 685440 2056320 10321920 19998720
49392 106848 241920

$4512 86016 161280

57456 45024 80640
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37s 1344
58s 2016

For the complete (p',2!)-symmetry junior symmorphic three-dimensional

space groups of the M™-type the numbers NP’ (p = 3, 4,6) are the following:

N§ = 96G3 + 266G4 + 308GS = 670

NP = 496GYY + 217163 + 264461 = 5311

NP = 4709G3% + 240882 + 3813362 = 66030

N} = 171365 + 27325263 + 666512G3° = 1011477

NP = 1283520647 + 205632064 + 1032192060° = 13661760
N! = 19998720G5% = 19998720

Il
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THE GENERAL CONCEPT OF
CLEAVABILITY OF MAPPINGS

M. Bonanzinga

ABSTRACT. The aim of the paper is to give some answers to the following general ques-
tion: “If X and Y are topological spaces and f : X — Y s a continuous mapping cleavable
over the class P of topological spaces, 1s it true that f is a P-mapping? ”. Answers are
given for some classes of topological spaces.

Introduction and preliminary. In 1985 Arhangel’skii ([1], [2]), intro-
duced the notion of cleavability for topological spaces. Following a general
idea ([22]) to investigate mappings instead of spaces, in this paper we want
to introduce the notion of cleavability for mappings. So, the concept of P-
mapping ([14]) is a basic notion. Let P be a topological property; a contin-
uous mapping is called a P-mapping if it satisfies a property Gp depending
on P and every continuous mapping on a P-space has the property G'p. We
want to study the P-mappings when the property P is the cleavability over
a class of topological spaces; in this way we want to obtain a more general
notion of cleavability of mappings over a class of spaces as a generalization
of the notion of cleavability of a space over the same class of spaces.

In particular we are interested in answering the following question: “If
f: X — Y is a continuous mapping cleavable over a class P of topological
spaces, is it true that f is a P-mapping?”In this paper we shall use the
following notations: (X,7) or simply X means a topological space; A, A°
are the closure and the interior of A respectively, where A is a subset of X;
ifA° = A (A° = A) we say that A is a regular open (regular closed) subset
of X; C(X,Y)is the set of all continuous mappings from X to Y, where Y is
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a topological space. For notations not explicitly mentioned here, the reader
is referred to [6], [15] and [19].

Let P be a class of topological spaces and M a class of continuous map-
pings. We recall the following

Definition 1. [1]. A space X is M-cleavable over P if for every A C X
there exist Y € P and f € M, f : X = Y, such that A = f~1f(A) (or
equivalently f(A)N f(X - A)=@).

If M is the class of all continuous mappings, we shall just say that X

is cleavable over P. If M is the class of all open, closed, perfect, quotient
mappings, we shall say that X is respectively open, closed, perfect, quotient
cleavable over P,
Remark 1 Let f be a one-to-one continous mapping of a space X into a
space Y € P. Then obviously X is cleavable over P. Note, that in the
definition of cleavability the mapping f depends on the subset A of X. Thus
we might say that a space X is said to be absolutely cleavable over P if there
exists a one-to-one continuous mapping of X into some space ¥ € P ([5]).
Then cleavability over P may be regarded as a generalization of continuous
bijections (onto some Y € P). '

Definition 2. [6]. A space X is M-pointwise cleavable over P if for every
point x € X, there exist Y € P and f e M, f: X — Y, where such that
{a} = f11(z).

Definition 3. [6]. A space X is M-double cleavable over P if for any
subsets A and B of X, there ezistY € P and f € M, f: X — Y, such that
A= f71f(A) and B = f~1 f(B).

Remark 2 If X is absolutely cleavable over P, then X is double cleavable
over P;if X is double cleavable over P, then X is cleavable over P; moreover,
if a space X is cleavable over P, then X is pointwise cleavable over P.

Then we can give the following definitions for the cleavability of a map-
ping.

Definition 4. A continuous mapping f : X — Y is M-cleavable over P if
Jor cveryy € Y and A C f~'(y) there exist ZEP andge M, g: X — Z,
such that A = g~ 'g(A).

Remark 3 The previous definition is not trivial if f is onto.

If M is the class of all continuous mappings, we shall just say that f
is cleavable over P. If M is the class of all open, closed, perfect, quotient
mappings, we shall say that f is respectively open, closed, perfect, quotient
cleavable over P.
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Further f is said to be absolutely cleavable over P if the mapping g is
one-to-one.

Definition 5. A continuous mapping f : X — Y is M-pointwise cleavable
over P if for every y € Y and {2} C f~(y), there exist Z € P and g € M,
g:X — Z such that {z} = g 'g(z).

Remark 4 The previous definition is equivalent to the definition of pointwise
cleavability of X over P.

Definition 6. A continuous mapping [ : X — Y is M-double cleavable over
P if for every y € Y and for every subset A and B of f~(y), there exist
ZePandge M, g: X — Z such that A = g7'g(A) and B = g~ 'g(B).

Remark 5 If f: X — Y is absolutely cleavable over P, then f is double
cleavable over P; if f is double cleavable over P, then f is cleavable over P;
moreover, if f is cleavable over P, then f is pointwise cleavable over P.

We have

Proposition 1. A space X is M-cleavable {M-pointwise cleavable, ... )
over P iff every continuous mapping f : X — Y is M-cleavable (M-pontwise
cleavable, ... ) over P.

Proof. (=) Let f: X — Y be a continuous mapping, y € Y and A C f~!(y).
As X is M-cleavable over PP, then thereexist Z € Pandge M, g: X — Z
such that g='g(A) = A; this proves that f is M-cleavable over P. (<)
Now suppose that every continuous mapping with domain X is M-cleavable
over P. Let A C X and let Y = (Y, 7) be Sierpinski’s 2-point space (i.e.,
Y = {0,1} and 7 = {@,Y.{1}}. Define f : X — Y by f(A) = {0},
f(X — A) = {1}; then f is continuous. Since A C f~1(0) and f is a M-
cleavable mapping, there exist Z € P and ¢ € M, g : X — Z such that
97 '9(A) = A. Thus X is M-cleavable over P. 0O

So we have the following natural question

Question - A. Does there exist a continuous mapping f that is M-cleavable
over P such that its domain X is not M-cleavable over P ¢

We have the following

Proposition 2. A space X is M-pointwise cleavable over P iff every con-
tinuous one-to-one mapping f : X — Y is M-cleavable over P.

Proof. (=) Let f : X — Y be a continuous one-to-one mapping. Then,
for every y € Y the fiber f~!(y) is a single point of X. So, if X is M-
pointwise cleavable over P we have that f is M-cleavable over P. (<) Now
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suppose that every continuous one-to-one continuous mapping with domain
X is M-cleavable over P. Let x € X. By hypothesis, the identity mapping
on X, idx, is M-cleavable over P; since {2} = id3!(z), X is M-pointwise
cleavable over P. O

Note that if a space X is M-pointwise cleavable but not M-cleavable
over P, then the identity mapping on X, idx, is M-cleavable over P; this
shows that the notion of cleavability of a mapping is more general than the
notion of cleavability of a space, in fact there exist mappings f : X — V
M-cleavable over P such that X is not M-cleavable over P. Then we have
an affirmative answer to the question A as the following example show

Example 1. If P = {R}, the circumference S is not cleavable over P ([f])
while the mapping id : S1 — 8! is cleavable over P. 0O

Now we have the following natural question

Question - B. Does there exist a continuous mapping f that is M -pointwise
cleavable over P such that its domain is not M-pointwise cleavable over P?

By the definitions, the answer to the previous question is the following:
"A continuous mapping f: X — Y is M-pointwise cleavable over P iff X is
pointwise cleavable over P”.

Some particular forms of cleavability of mappings imply particular forms
of cleavability of spaces, as show the following four results

Proposition 3. A constant mapping f : X — Y is M-cleavable (M-
pointwise cleavable, ...) over P iff X is M-cleavable (M -pointwise cleav-
able, ... ) over P.

Proposition 4. If f: X — Y is cleavable over P, where P is a card(Y)-
productive class of spaces, then X is cleavable over P.

Proof. Let A C X and y € f(A). By hypothesis, there exist a space Zy,€P
and a continuous mapping g, : X — Z, such that _qy‘lgy(A NfYy))=A4n
YW y). Let Z= ] Zy; then, by hypothesis, Z € P. Define a mapping
yef(A)
9:X — Z, by g(z) = {94(z)}yep(ay, for all z € X. We will show that
97 9(ANf~1(y)) = ANf~1(y). Only need to show that g lg(ANfY(y)) C
ANf=Y(y). Let z € g7'g(AN f~1(y); s0, g(z) € g(AN f~! (y)). Then, there
exists a € AN f~1(y) such that 9(z) = g(a); in particular, f(a) = y. Then,
for every =z € f(A), we have that g,(z) = g.(a). So z = 9:1g-(a), for all
z € f(A), and then, by hypothesis, z € AN f~'(y). Thus g7 g(A)=A. O

Remark 6 In the case in which P is a card(Y )-productive class of spaces,
the previous property gives a negative answer to the question A.
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Definition 7. If f is a mapping from the space X to a space Y, the cardi-
nality of f is defined as the number

card(f) = card(f(X)) x Sup{card(f~'(y)):y € Y}.

Proposition 5. If f : X — YV is pointwise cleavable over P, where P is a
card( f)-productive class of spaces, then X is absolutely cleavable over P.

Proof. Let y € Y and = € f~1(y); then there exist a space Z, € P and

a continuous mapping g, : X — Z, such that {z} = ¢g7'g.(z). Let
Zy= Il  Zu; by hypothesis, Z, € P. Define the mapping g, : X — Ly
€ f~1(y)

by g4(z) = {gr(f?)}xef—l(y) for all z € X. The mapping g, is continuous:
recall that g, is continuous iff p,g, is continuous, for s € f~!(y), where
ps: Il Zs— Z,is the s'" projection mapping; since p,g,(t) = g,(t) for
zef~1(y)
all t € X, we have that p,g, is a continuous mapping. Further g,|f~!(y) :
f~Yy) — Z, is one-to-one: let s,t € f~'(y) such that s # t. By hypothe-
sis, g5(t) # gs(s); then {g.(5)}oer—1(y) # {92(1)}zes-1(y)» OF equivalentely,
gyl f7H(s) # gyl f7H(t). Let Z = [ Z,; by hypothesis, Z € P. Define
yeES(X)
the mapping g : X — Z, by g(2) = {{92(2)}zres-1() }yes(x)- The mapping
g is continuous: let p, :  [[ Z, — Z; the t** projection mapping (recall
vesS(X)
that Z; = [[ Z.); since pyg(s) = gu(s), for all s € X and we have
T€fT(t)

proved that g; is continuous for all ¢t € Y, we have that p,g is continuous
for all £ € f(X ) and then g is continuous. Since g,|f~(y): f~'(y) — Z, is
one-to-one, for all y € Y, we have that g is one-to-one. Then X is absolutely
cleavable over P. 0O

Remark 7 In the case in which P is a card(f)-productive class of spaces,
the previous property gives a negative answer to the question A.

Proposition 6. If f: X — YV is closed pointwise cleavable over P, where P
is a card( f)-productive class of spaces, then X can be embedded as subspace
tnto some space of P.

Proof. The proof is similar to the proof of Proposition 5 noting that, by
hypothesis, every continuous mapping g, : X — Z, is closed and then
9:X — g(X)is a closed mapping. Now we prove this fact. Let A C X
be closed. We want to prove that g(A) = ] I g.(A) Ng(X),
yES(X) ze [~ y)
where ] II  9z(A) is a closed subset of Z. The inclusion g(A) C
yef(X) ref-1y)
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I [I g9z(A)N g(X) is obvious. Let t € [] I gz(4)n
YyES(X) zef~y) yef(X) zef~1(y)
g(X) and s € X such that g(s) = t. Then gy(s) = {g:()}ses1(s) €
I[I  9z(A), forall y € f(X). Let § = f(s). Then g.(s) € g.(A), for all
r€f~y)
z € [~1(y). Since s € f~1(¥), we have that g,(s) € g;(A); so, there exists
a € A such that g5(s) = gs(a). Then, by hypothesis, s € A and the proof is
complete. O

Remark 9 If P is a card(f)-productive and hereditary class of spaces, the
previous property is equivalent to say that if X is pointwise cleavable over
P. then X is closed absolutely cleavable over P.

Remark 10 In the following we will use the terms e-cleavable mapping or
e-cleavable space over P to indicate that cleavability, pointwise cleavability,
double cleavability and absolute cleavability of a mapping or of a space over
P are equivalent.

By Propositions 5 and 6 we have the following:

Theorem 1. Let f : X — Y be a continuous mapping and let P be a
card( f)-productive class of spaces. The following conditions are equivalent:
(i) [ is e-cleavable over P;
(ii) X is e-cleavable over P;

Theorem 2. Let f : X — Y be a continuous mapping and lel P be a
card( f)-productive and hereditary class of spaces. The following conditions
are equivalent:

(1) f is closed e-cleavable over P;

(ii) X is closed e-cleavable over P.

1. Cleavability over Ty, Ty, T3, functionally
Hausdorff and Urysohn spaces.

Note that, by the previous results, in the case in which P is a productive
class of spaces, we have that the classic problem on cleavability: “If X is
(closed) e-cleavable over the class P, is it true that X belongs to P?”, can
be reformulated in the following way:“If f : X — Y is (closed) e-cleavable
over P, is it true that X € P ?”. Further, in the case in which the answer is
affirmative, the mapping f is a P-mapping.

Following [15], we give
Definition 1.1. A class P of topological spaces is said to be expansive if the

ezistence of a continuous bijection f : Y — X from a space Y onto a space
X € P implies Y € P.
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By Corollary 1.1 in [10] in the case in which P is a productive, hereditary
and expansive class of spaces, we have that if f: X — Y is e-cleavable over
P, then X € P, and f is a P-mappings. In particular, the previous result
is true for the classes P of Ty. Ty, T4, functionally Hausdorff or Urysohn
spaces. Recall the definitions of P-mapping in these cases.

Definition 1.2 [14].

- feC(X,Y) is Ty if for every pair of distinct points z,y € X such thal
f(x) = f(y), there exists some neighbourhood U of x which not contains
y or some neighborhood V' of y which not contains x;

- f € C(X,Y) is Ty if Jor every pair of distinct points z,y € X such
that f(z) = f(y), there cxist two neighbourhoods U and V' of x and y
respectively, such that U does not contains y and V. does not contains x;

- feC(X,Y) is Ty if for every pair of distinct points x,y € X such that
f(z) = f(y), there exist two disjoint open neighbourhoods U and V' of ©
and y respectively;

- fe C(X,Y) is Urysohn if for every pair of distinct points x,y such that
f(z) = f(y), there ezist a neighbourhood W of f(z) and two open subsels
U,V of f=YW) such that x € U, y € V and UNV = @, where the
closures are in f~H(W).

Further we give the following;:

Definition 1.3.

- fe C(X,Y) is functionally Hausdorff if for every pair of distinct points
z,y € X such that f(z) = f(y), there exists a continuous mapping ¢ :
X — [0,1] such that g(z) =0 and g(y) = 1;

2. Cleavability over regular, completely regular,
semiregular and almost regular spaces.

Now we consider the classes of reqular and completely reqular spaces.

Definition 2.1 [14].

- f e C(X,Y) is reqular if for every point x € X and every closed C' C X
such that = ¢ C there exist an open neighbourhood W of f(z) and two
open subsets U,V of f~1(W) such that x € U, C'N fYW)cCV and
vnv =a.

Further we give the following

Definition 2.2.

- f € C(X,Y) is completely regular if for every point x € X and every
closed C C X such that z ¢ ' and f(z) € f(C'), there caists a continuous
mapping g : X — [0, 1] such that g(z) = 0 and g(C) = {1}.
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Note that we can not consider the previous remarks for the classes of
regular and completely regular spaces because they are not expansive. How-
ever, e-cleavability of a mapping f : X — Y over the class P of regular
or completely regular spaces does not imply that X belongs to P, and, in
particular, that f is a P-mapping; in fact there exists the following

Example 2. Let 7* be a topology on R generated by adding to the natural
topology ™ on the real line the set of rational numbers. (R,7) is regular
(completely regular) while (R,7*) is not regular (completely regular). Since
id : (R, 77) — (R, 7) is a continuous bijection, (R,7*) is absolutely cleavable
over the class P of regular (completely regular) spaces; so id is absolutely
cleavable over P. However id is not reqular (completely reqular); in fact
if id would be regular (completely regular), then (R, 7*) would be regular
(completely regular), a contadiction. 0O

By Corollary 1.3 in [10] in the case in which P is a productive and hered-
itary class of spaces, we have that if f : X — Y is closed e-cleavable over
P, then X € P, and f is a P-mapping. In particular, the previous result is
true for the classes P of regular or completely regular spaces.

Now we consider the classes of semiregular ([23]) and almost regular ([24])
spaces.

Definition 2.3 [14].

- [ € C(X,Y) is semireqular if for every open A C X and every point
x € A there exist an open neighbourhood W of f(z) and a regular open
subset R of f~Y (W) such that x € R C (A nf=1y(w)).

- [ € C(X,Y) is almost regular if for every point x € X and every regular
closed ' C X such that ¢ C and f(z) € f(C'), there exist an open
neighbourhood W of f(x) and two disjoint open subsets U,V of f~YW)
such thatz e U, C C V.,

Since every space can be embedded as a closed subspace into a semiregular
space ([16]), every space is e-cleavable over the class of semiregular spaces
and then every continuous mapping is e-cleavable over that class of spaces.
Note that the classes of semiregular and almost regular space are productive
but not hereditary, so we can not consider the previous remarks for these
classes of spaces. However, the closed e-cleavability of a mapping f: X — Y
over the classes P of semiregular or almost regular spaces does not imply
that X € P and, in particular, that f is a P-mapping. In fact for the class
of semiregular spaces we can consider Example 2 noting that the mapping
id is closed, while for the class of almost regular we have the following

Example 3. Let 7% be a topology on R generated by adding to the natural
topology T on the real line the sets Q and Q4 such that {Q1,Q2} is a par-
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tition of Q. By Ezample 4 in [10], we have that (R,7**) is absolutely closed
cleavable over the class P of almost regular spaces, but it does not belongs to
P. Then every constant mapping f on (R, 7**) is absolutely closed cleavable
over the class P but it is net almost regular; in fact if f would be almost
reqular then (R, 7**) would be almost reqular, a contradiction. 0O

3. Cleavability over f-closed spaces.
Now we consider the class of H-closed spaces (see [23],[15]).

Definition 3.1 [12].

- Let X,Y,Z,W be spaces and f : X — Y and g : Z — W be continuous
mappings. f is said to be embedded in g if Y = W, X is a subspace of Z
and the restriction g|X is cqual to f.

- A mapping f : X — Y is called I -closed if it is a Hausdorff mapping
and for every embedding of [ into a Hausdorff mapping g : Z — Y., X is
closed in Z.

We will need the following known result

Proposition 3.1. Every Hausdorff space can be embedded as a closed sub-
space into a H-closed space.

Theorem 3.1. Let H be the class of H-closed spaces and let f: X — Y be
a contonuous mapping. The following conditions are equivalent
(1) X is e-cleavable over H;
(2) f is e-cleavable over H;
(3) X s Hausdorff;
(4) X is closed absolutely cleavable over H;
(5) X is closed double cleavable over H;
(6) X is closed cleavable over 'H;
(7) X 1is closed pointwise cleavable over 'H;
(8) [ is closed absolutely cleavable over 'H;
(9) f is closed double cleavable over H;
(10) [ is closed cleavable over H:
(11) f is closed pointwise cleavable over H.,

Proof. The equivalence (1)<+(2) follows by Theorem 1. Now we prove that
(1)&(3). Let P the class of Hausdorfl spaces and suppose that X is e-
cleavable over H. Since H C P, X is e-cleavable over P; then, by Corollary
.2 in [10], X € P. Now suppose that X is Hausdorff; then , by Proposition
3.1, X can be embedded as a closed subspace into a H-closed space, that is X
1s closed absolutely cleavable over H and then X is absolutely cleavable over
H. Now we prove the equicalences (3)-(6). By Proposition 3.1, (3)=(4);
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the implications (4)=(5)=(6)=(7) are obvious. Further, (7) implies that
X is pointwise cleavable over H and then, by the equivalence (1)<(3), X is
Hausdorff. Now we prove the equivalences (7)-(11). We know that (7)< (4)
and the implications (4)=-(9)=-(10)=-(11) are obvious. But (11) implies that
X is closed pointwise cleavable over H, so the proof is complete. O

Note that the class H is productive but not hereditary, so we can not
consider the previous remarks for that class of spaces. However, the closed
e-cleavability of a mapping f: X — Y over the class H does not imply that
X € 'H and, in particular, that f is a H-mapping. In fact there exists the
following

Example 4. Let X be an Hausdorff but not an H-closed space. Then X
can be embedded as a closed subspace into a H-closed space, that is X is
closed absolutely cleavable over H. So by Proposition 3, every continuous and
constant mapping f on X is closed absolutely cleavable over H. However, f
is not an H-closed mapping, because otherwise we would have that X € H,
a contradiction. O

4. Open questions. -
Note that all the classes of spaces we have considered are productive.

Question - 1. Do there exrist not-productive classes P of spaces such that the
cleavability of a mapping f : X — Y over P is equivalent to the cleavability
of the space X over P¥.

Note that a metrizable separable space need not be cleavable over P =
{R}: so we have the following natural question:“Does there exist a space Y
and a continuous mapping f : X — Y such that X is a metrizable separable
space and [ is cleavable over P?”. However it is known that every metrizable
space X is pointwise cleavable over {R} or, equivalently, if X is a metrizable
space, then the mapping #dx is cleavable over {R}.

Question - 2. What classic results about cleavability of spaces can be gen-
eralized to cleavability of mapping?
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A SUFFICIENT UNIVALENCE CONDITION

N. N. Pascu, M. Obradovié¢- and D. Raducanu

ABsTRACT. This paper is concerned with a sufficient univalence condition for analytic
functions in the unit disc. This condition generalizes some well-known univalence crite-
ria.

1. Introduction and preliminaries

Let U, denote the disc {z € C:|z| < r}, 7 € (0,1] and let A denote the
class of functions f which are analytic in the unit disc U = {z € C: |z < 1}
and f(0) = f'(0)—1=0.

Definition 1. Let f,g: U ~ C be analytic function in U. The function f
is subordinate to the function g (f < g) if there is an analytic function ¢ in
U, which satisfies the conditions ¢(0) =0, |¢(z)| < 1,z € U, and [ = go .

Definition 2. The function L : U x I — C, I = [0,00) is a Loewner
chain if the function L(z,t) is analytic and univalent in U for all t € I and
L(z,8) < L(z,t) forall 0 < s < t.

Definition 3 [5]. The function F : U, X C— C, F = F(u,v) satisfies the
Pommerenke’s conditions in U, if:
i) the function L{z,t) = F(e™ 'z, etz) is analytic in U,, for all t € I, locally
absolutely continuous in I, locally uniform with respect to Uy.
i . aF ,0F . -
ii) the function G(e™'z,e'z), where G(u,v) = :L—,-d-; Fl analytic in U,
du' v
for all t € I and has an analytic extension in U = {z € C:|z| < 1} for
allt > 0 and in U for t = 0. The analytic extension of the function (v

is denoted by H = H(e™'z,€'z) and is called the associate function of
oF aF aF

sy W Ir ar oo —11.

iii) 90 (0,0) # 0 and 3 (0,0)/ 5o (0,0) ¢ (—o0, —1]
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34 N. Pascu, M. Obradovi¢ and D. Riaducanu

iv) the family of functions {F(E'tz e z)/[ —t—(0,0)+¢" -—(0 0)]}

tel
forms a normal family in U,.

We shall need the following theorem to prove our results:

Theorem 1 [5]. Let F : U, x C — C, F = F(u,v) be a function which
satisfies Pommerenke’s conditions in U, and let H be the associate function
of F. If

|H(z,2)l<1, z€U and

(1) |H(z,1/2)| <1, 2€U\{0},

then the function F(e 'z,ez) for all t € I, has an analytic and univalent
extension in U.

2. Main results
Theorem 2. Let f,h € A and a € C. If Rec > 1/2 and

[1—al, . — |2]* zh"'(2) 1-|2|* 2h"(2)
|_&""[IZ|2 2 W(z) [I "+ =%
) - - )[z,ﬁ(fj) e

(1= |22)? 2h"(2) 2f"(2)  (1—=|21*)? ,.
2 W(z) [z 2 25u(2)

< |z)?

for all z € U, then f is an univalent function in U.

Remark: We denote by S,(2) the Schwarz’s derivative of the function

h, i.e.
§,i(5) = h'(z)] 11h"(2) ’
Slz) = h'(z) 21h(z)]
Proof: Let F': U x C— C be the function

4 e =l
(3) Fw,'v}:[f(’tf)]l““[f(“)Jr('”—“)f'(“)(i+U; ?;f((:f))) ] '

(u.v) € I x C, and let L :U x I — C be the function

. —t - 2 e~tzf'(e™*z)
Liz, 1) =F(e z’erg):f(c‘ t:.“)l:l“i“(ﬁ [_1)~WV

2t — Letzh"(et2)\ 1"
z,1 i S F

(4)
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Since, there is ' € (0, 1) such that f(z) # 0 for all z € Uy \ {0}, the
e tzfl(etz)
7

The function fp(z,t) = W = be~tz 4+ --- is analytic in U.

Then, there exists r € (0,7') such that the function f3(z,t) = 1 +

(e** = 1) fi(2,1)
L+271(e2 = 1) fo(z,1)
all 2 € U, and t € I. Hence, for the function fs(z,t) = [f%(’ t)]
e*@t 4 ... we can choose an ana,lyt]c braunch in U, and the function L(z, ) =
f(e"z)fd(z,t) = e(2a=1t; 1 ... is analytic in U,.

Using (4) we obtain

function f1(z,t) = =14 -+ is analytic in U,.

= et 4+ ... is analytic in U, and f3(z,1) # 0 for

OL(z,t oF C
((; ) = —e_‘:—au (etz,et2) + etz—af(e—‘z,etz)
AL(z,
and we observe that | 9 | is bounded on [0,T], for any T > 0 fixed

and for all z € U,. Therefore, the function L(z,t) = F(e™!z,e'z) is locally
absolutely continuous in 7, locally uniform with respect to U;.

Since
dF 5
a(t) = 'j (0,0) + ¢ ——(0 0) = el2a—1)t
we obtain aq(t) # 0 and lim aa eyl = lim ghedesl) . o,

It is easy to prove thdt i]mlc- exists £ > 0 such that |F(e~tz,e'z)[fay (1)
< kforall z € Uy and t € I. Hence {F(e™'z,€e'z)/ai(t)}ser is a 1101mal
family in U,.

Using (3) we obtain

74 _udF 9F l-au o v —uh"(u) 14+ v —uh(u)
UV = vou' v a v 2 NW(u) 2 h(u)
o PW] ) 1)
+ (v —u) ) + U(u ) i) 7 = Tw)

U (‘U — ;;)L’ r“f-:r(u) h”(u) o
v 2 [ f’(“‘) h’(“l.} - bh(u}}.

It tesults that the function (/(e *z,e'z) has an analytic extension
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H(e 'z, e'z), where

— 2t _ =t prf . —t
H(e=z,ets) = 1 ae‘”[l % le~tzh"(e z)j,

2 2 h'(e—tz)
e*t — letzh"(e z) a -'-zf e tzf'(e t2)
[I & 2 h'(e—tz) (e i (e—tz) ]
—=2t7 9 C'_ch"((?_lz) _tzf"(e_!z)
+e (e t _ 1)[ h(e-t7) + e ]

_ar (et —e7')? L[RM(e7t2) f(e72) —t,

e 2 z [h'(e—‘z) feT*z) ~ ile b)]
We han!:

| H{z, 2} =| —a| < lforall z€ U and a € C with Rear > 1/2 and
T ! 2 — |z|? zh"(2 1-|z? zh"(2)
(7, 1/3)| = I a |z|2 [' "+ 2 h'(z) ] [] |2 2 h'(z)

f( )] [211"(2) f"(z)]
1 — _

b

z (1 -] [h"(Z) ["(z)

T2 |We) o) “S"(z)]

for all z € U\ {0}.

Therefore we can conclude, using Theorem 1, that the function F(e~!z,
¢'z), t € I has an analytic and univalent extension Fj(e~!z,¢e'z) in U for
all t € I. In particular, the function f(z) = Fy(z,z2), z € U, is an univalent
function in U.

3. Remarks
1. For &« = 1 we obtain the following sufficient univalence condition:

Corollary 1. If f,h € A and

X S — 1212)2 2p" " o
- |5t ]+ SRR S

_ 0= Py < 5P,
; <

(5)
2284(2)

for all z € U, then the function f is univalent in U.

2. For @ — oo we obtain an another sufficient univalence condition:
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Corollary 2. If f,h € A and

1 = |2)2)? 2h"(2) 2f"(=2 1 —|z|?)?
Q=LY M) ) __||)z25h(z)
2 h(z) f'(z) 2
2 ~h"’( — 2| zh"(2) zf'(z)
6 2 | | ]I: 2 = A .
0 - [+ o+ AL ey LD
’ zh f"'(z)] 5
+ |213(1 - [ < zl5,
201 = 1) | G + S| < b
for all z € U, then the function f is univalent in U.
3. If ' = 1/f" we obtain the following univalence criterion which

generalize the generalize the criterion due to Nehari:

Theorem 3 [7). Let f€ A and a € C. IfRea > 1/2 and
(7)

l-a L2 —|2|? 2f"(z ][ 5 (zf’(z)_lzf”(z))]
et - S e - (- 5

+z-Lfg|—).9,(z)

then f is a univalent function in U.

<|zl*, zel,

« = | in Theorem 3 gives us the Nehari’s sufficient univalence condition:
Theorem 4 [4]. If f € A and
|Sp(2)| <201 - |2*)7%, z €U,
then f is univalent in U.

4. If ' = ¢"-(f")~! we obtain an univalence condition which generalize
the criterion due to Epstein:

Theorem 5 [8]. Lel f,ge A and a € C. IfRea > 1/2 and
1—a[|,|2 SEREACREC)
a |7 2 f'(z) g'(2)
{ —121%) Z )][~3_ 1_|3|2( zf"(z) ”(3))]
® +U-EDEF I -2 e e
z)

9 12) | U=l 16,02y - 5,(2)]

2 |
i) T 2

then f is a univalent function in U.

+ 221 = |21*)

a = 1 in Theorem 4 gives us the Epstein’s sufficient univalence condi-
tion:



38 N. Pascu, M. Obradovi¢ and D. Riducanun )

Theorem 6 [2]. If f,g € A and

FI—RFV (2)
B

9
(9) (

<1, zel,

550 - 5,2)] + (1 - e
then f is a univalent function in U.

5. If h(z) = z we obtain the following univalence criterion which gen-
eralize the criterion due to Becker:
Theorem 7 [3]. Let f€ Aanda € C. IfRea > 1/2 and

(10) \1—;3[|zr='+( -1 4 ra-EtF <z e,

then the function f is univalent in U.

a = 1in Theorem 7 gives us the Becker’s sufficient univalence condition:
Theorem 8 [1]. If f € A and

2"(2)
(11) A-P) 552 <1, zeU
f(z) ’
then the function f is univalent in U.
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ON APPROXIMATION BY ANGLE
FOR 27 PERIODIC FUNCTIONS

Milos Tomié

ABSTRACT. Approzimations by angle from singular integrals of functions belonging to
the space L,, 1 < p < oo are estimated using best aaprorimations by angle from the
trigonometric polynomials. The applications to Riesz’s singular integrals are given.

1. Introduction

It is well known that integrable 2r periodic functions can be obtained
by different means of summation of their Fourier series. Approximations by
sums of Fourier series can be compared with the best approximations as in
paper [3] and [4]. In the paper 3] for function of one variable several inequal-
ities are established by which the approximations are compared depending
on whether p > 1 or p = 1. Those inequalities allow to compare classes of
functions which are defined by approximations. Those are classes of Nikolski
and saturation classes.

In the paper [4] we proved inequality concerning the approximation by
angle for 1 < p < oo. The aim in this paper is to prove the inequality
concerning also the approximation by angle but which concerns the space
Ly (the case p=1).

To realize this aim we use one theorem of Timan of [3] (Theorem I,
inequality (3.11)) and one equality of [4] which in this paper we give as
Lemma 2.

The difference between the quoted result of Timan and the results of this
paper is following;:

1) We generalise the result of Timan so that we consider an n-dimensional
case of approximation by angle.

2) We give a theorem in a form which is more suitable for application in
order to compare Nikolski’s classes with saturation classes.

Received 02.03.1995; Revised 28.06.1995
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2. Auxiliary results

We say that f € Ly([o,27]") if f = f(z1,...,2,) is measurable on A,
and is a 27 periodic function with respect to every variable zq,...,z, for
which || f|]| < oo, where

171 = 151, = ( /A ., If(wl,---,zn)l’”)w, 1<p< oo,

I Fllco = sup vrai|f(z)],
Au={z = (21,0 425), 0< 2; 27,4 = 1,...,0}.

We will use the set of all sets of indices 7y,...,4,, such that 1 Sl L
1<j<m<n.

Let T}, (ml, ..y&y) € L, be a trigonometrical polynomial of order li;
with respect to va,nable Ty but with respect to all other variables T, is a
arbitrary function.

The best approximation by m-dimensional angle for the function f to
variables z;,,...,z;_ is the quantity (see [2]):

m

(2.1) Viiy ot (Np = inf || f ZT, s b B 0,1,8,0

Lei Yfi (t),7=1,...,n,1; = 1,2,... be the kernels such that X(-t) =
AX(t), and

2w 2
(2.2) ] X(t)dt = 2, / |X(t)|dt < M, lim / |, (1)] =0,
0 0 <6<t

fj—*(xi 0

where the constant M does not depend on I3
A Fourier series of the kernel A} (¢) can be stated in the form
2

(2.3) X (W) =14 1i(kj)coskst, (5=1,...,n).

For the function f € L, by these kernels we can define singular integrals

l 2

(2.4) Bf=o | f(@1yee,2j—tj,...,z.) X (1;)dt;,
7 2T 0 ]
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By these singular integrals we can determine all m-dimensional angles (1 <
i ;<n,1<753<m< n);

A{ f = [li.]1 f i o Ifii’:. f - Ir"l"af - Ir‘ﬂ=—1l"" f

$oo b (=)™ S

l

i menbiyy,

(2.5)

Without loss of generality, in order to simplify the exposition, we will give

a proof for the case n = 2, i.e. for a function of two variables. In that case
we have three angles

Anf=1Lf Apf=ILJ, Auf= I+ I f =L f.

two one-dimensional angles and one two-dimensional angle.
For a function f(x1,24) € L, we will use singular integrals

, 1 [*"
Sglf = S{lfx,f -2 ; f(:I.‘l == t],.’I??)Dh(t] )df.l
0
L =" .
Si,f = St f = = f(@1,22 = t2) Dy, (t2)dty, Sy, f = S5,(5,f).
0
. Nt
where D,(t) = gdi + 1/9)8 is the Dirichlet’s kernel.

2sint/2
In order to prove our main result, we need the singular integrals of de
la Vallee-Poussin (see [2]) Vi, f = Viyoof, Viof = Veolo fs Viuio f = Vi,(Vi, f),

The functions Vi, f, j = 1,2, are trigonometrical polynomials of degree
21; — 1 with respect to z; and satisfies |V, f|| < B|[f]|, 1 < p < oo, where B
is an absolute constant.

Lemma 1 ([2], lemma 3). Let f(xy,22) € Ly, 1 <p < oo Then
(2.6) |f = Wi fll, € CYin(Nps £ =V £ll, € CYy(f)ps 1 = 0,12,

where C' is an absolute constant.

The most important tool in the proof will be the following lemma:
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Lemma 2. Fora fe L,, 1 <p<ooandljs;=1,2,... the equalities

9
(2.7) f-An,f=)_B;
i=1
hold, where

By = f—Wynsef, By=-I By, Bs=-I By, By=1I,,B,
Bs = Voo (f - [:llf" Vz'zf‘l'fll, Vasaf), Bs = —112235,

B: = Vya (f = I} f = Vass f+ ILVani f), Bs = —I By,

By = Vasigea (f — Ayt f).

Proof.. The equality in the lemma is obtained by using the theorem of Fu-
bini. O

We note that similar equalities were established in the paper [4] in which
de la Vallee-Poussin sums are replaced by Dirichlet’s sums.
Now we will use the function F/(m,8) which is defined in [3]:

m—1

Ff(m,ﬂ) -y,(m + Z[l - '(m — k)] cos k6
(29) m—1
'y,(m + Z[l - (k cos(m — k)8,
k=1

form=2,3,... and

: 1 =~ ) )
Ff(l,ﬂ):+(l), 0, 0) = 1 —5i(1), |7= 1:25::05m
Lemma 3. If

Talt) = Z a, cos vt + 3, sin vi
v=0

is a trigonometrical polynomial of order m in one variable t, and if the
function F; is defined by (2.9), then the following equalities hold
(2.10)

m 2 2T

Z[l — vi(k)])(ey cos kx + By sin kz) = - / Fi(m,0)T,,(z + @) cos mb d

k=1 0
(2.11)

2m 2

/ Fi(v,0)T,,(t+0)cosvldf = Fi(m,0)T,,(t+8)cosmb df, v > m.

0 0

Proof. Equality (2.10) is proved in [3] (the equality (3.11)). Equality (2.11)
can be proved in the same way. 0O
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3. The main result

For every kernel A’;::(t), j = 1,...,n we can identify the quantities ¢ =
¢i(lj) > 0, ¥ = 9] (kj), K = K;(44,1;,k;), using equalities

(3.1) L= i (ks) = di(L)9] (ky)s kinlj = 1,250
gkj—2 j s
_ | ;[)f(?“‘f - 1-vj)
q SR " N L S T J e
(3.2) K = K;(¥/, 1. k) = 5 + UZ::I P T cos vif; .

For a fixed number ; we choose the number s; such that 2% < [; < ekl
We will say that the quantities ¢, ¢, K satisfy conditions (c),(B),(7),(8)if

(a) [vi (k)] < Ol (K], 0< kS kY <2
W< o (610 0

(8) |91 (2k5)| < Calw] (kj)],  2k; <29

() 0 < Cy < ¢;(1)|%1 (2%9));

(6) K15,k < Cs,

where the constants C1,...,Cs don’t depend on k; and I;.
We will use symbol the [ | such that [2'“"1] =2%1fork > 1and [‘20‘1] =
0.
By a << b, a > 0,b > 0, we will denote the inequality ¢ < C'b, where C
is some positive constant.
The following theorem gives the estimation of the approximation “ f-
Ay

Theorem 1. Let the quantities ¢, 1, K satisfy the conditions (e), (3), (7),
(6) and let f € L, 1 < p < 0. Then for all natural numbers i; and m such
that 1 <ij<m, 1<j<m=<n the following incqualities hold

f|| by the best approximation by angle.

-

m li
1 - Au,a £l <CT1 <,f>,-,u,-,)[ >
j=1 k.‘]=0

(3.3) "
b m ”’r/}':“'j (kij )"

Vi ]

k.‘m =0 j=1
with constant C' independent on f and [; =1,2,....

To prove this theorem we need
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Theorem 2. Let the singular integrals J’j (1), 7 = 1,2 satisfy the condition

(2.2) and let the function f(z,,z,) € L,,([O 21]*), 1 < p < 00. Then for
approzimation by angle the following inequalities hold

IU—mJMSC{nwnP

(3.4) 35 2r
ky=0
1= Auiatl, < o Yoz (1t
51 2T
# 30 Yo (M [ 1R = 160]as |+
ky =0
(3.5) ‘
+ [Z Y;_sl[qkl 1](f / ’FI ok2 _ l,ﬂg)ldgg:l-]-
ka=0
51 89 27
+ Cgl:z Z Y[gkl—luzkg—-l] H/ ]F'? )Idﬂ]
k1=0k;=0

where the constants C'y, Cy do not depend on fands;,l; =1,2,... (j =1,2).
Proof of Theorem 2. We have

1F = Ag 7l = NF = £ = 1f = Vs £+ Vaos £ = I Viss £ + I Vori f = 1 f|
and therefore
(3.6) If = A5 7ll, < Ca¥os (N + |[Vars £ = i Vasi ],

where the constant C's does not depend on f31j,8; and the numbers /; and
s; are arbitrary.
We consider

2% —1

Vari f = I} Viss f = Gy (£,2% ,2) = Z 577 A,

2% 1

- ¥ -y;’;(k)ﬁizj)Ak: Z (1= (k)67 A,

k=0 k=1
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where Ay is the term of the Fourier series of f as a function with respect to
the variable z; and &; is a factor of a product which is determined by the
sum of Vallee-Poussin.

For (¢ we will use the expression

(3.8)  Gi(f,2%,z)= Z[(_;,,.(f,zk,x) - Bl 525 ] + Gl L)

k=1

In view of (3.7) the function Gy (f, 2% z) is a trigonometrical polynomial
with respect to ;. Therefore, using Lemma 3, (2.10), we have

Giy(f,2%,2) =
39) ¢ 2w
( = % F,ll (28 —1,00)Var, f(z1 + Bl,mg)cos(‘zk‘H — 1)6,db,.
0

Gy(f,20702) =
(3.10) 92 2

= ;_/- Fllu(zkl = 1,00)Vars -2 fl2 + 91,372)(‘.05(‘2"1 - 1)6,d6,.
0

and similar equalities with respect to the variable ;.
It follows by Lemma 3, (2.11), that holds

Gy, (f, 2%, x)

3.11) 9 qo7 , :
( = %/ F,ll(‘zk‘ = ‘,Bl)vzklf(.’hl + 91,2:2)(05(2" e l)gldgl
0

The equalities (3.10) and (3.11) give

2 7 .
Gy (£,24,2) = G, (£,257,2) = ;/ Fi,(2" = 1,61)
0

[Vzkl f(:L‘l + 0},;52) - Vzkl-lf(ilf] + 9],1:2)] COS(‘Z"' = 1)91d9]

(3.12)

Since by Lemma 1
(3.13) [|[Vars £ = Vasami S| < |[Vasa f = Sl + 1] = Varr=a f]] << 2pra—yy(S)
we conclude from (3.12) that

|Gy (f,25,2) — G (], 2k =1 )|l

(3‘14) 2 -
<< Y[Ekl_q(f)[ |F} (2% = 1,01)|db
0
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holds.
For the quantity G/, (f,1,2) we have

Gy(f,Lbe)=Vf-ILVif = $if = I} 5:f
= Aif =y (DA = 1= ()] A f
= [1=7, (D] [51f = Sofl = [1 =9, (D] Vi f = Vo ]

because Vi f = S1f, Vof = Sof. Therefore

G, (f, L)l < Yo () |1 =41 (1)

hence, using the definition for F,ll((], #) we obtain

(3.15) |Gy (f, 1, 2)]], < Yu(f)P/ |F}.(0,61)| db;.
0

Now, in view of (3.7), (3.8), (3.14) and (3.15) , we obtain

51 2
(3.06) [V f = Vo fl < 3 yph_ll(f)/o |F} (2% —1,6)| dby.
k1=0

From (3.6) using (3.16) it follows the inequality (3.4) for j = 1. In the
same way we establish the inequality (3.16) for j = 2. Thus, the inequality
(3.4) is proved. :

To establish the inequality (3.5) concerning the approximation by two-
dimensional angle we use Lemma 2.

It is clear that

(3'7) ”37H << Ygslzu (f_)p, j' =1,2.3.4,

holds.
To estimate the quantity Bs we will write

(3.18) Bs = Vya @ — f,‘l Vys @

where

= f — Vasu

We consider the function By as a function of the variable 2; and apply
the metod by which we estimated the expression Gy, (f, 2%, z). So we derive
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(3.8 Bs = Bs(2) =) [Bs (2") - Bs (27")] + Bs(1),
k=i

B; (2) - Bs (2M71) =
‘ 2
(3.12") = 5/ Fiy (24 = 1,6)) [Vara @ (1 + 61,22) =
T Jo

— Vory 1@ (2 + 6'1.3;2)] cos (2"‘ — 1) 61dby,

[Vakr @ — Vs, | < [[Vaey @ — @) 4+ [|@ = Vary- &

Since

Vzk] (I‘ = @ = — [f = (V2k1f + ‘/Czlgf - ‘fzkl-‘!;g f)]

we obtain
“Vz"l P - (I)”p < Yzh 2’2(.”7):

“(I) == I"'r-_).kl—iq)”p << },2,‘1_]2’2(-’(‘)]9'
Thus

(3-19) “‘/2)&1 (b e ""21-1—1(13||p << },-2,&‘—125-2(]-)1].
For B;(1) we have
Bs(1)=Vi®o — 1} & = [1 -9} ()] A41® = [1 -7, ()] [V1 @ - Vp2].

Since

[Vi® — Vol < [[Vi® — || + [|@ — Vo,
Vid — @) = |If = (Vif 4+ Vasza f = Viaee f)]| < Yia:2 (f),
[ — Vool = [If = (VoS + Vaso f = Voasa )|l << Yoa:2 (f),
L=, (1)] = [ £, (0,6)]

we derive

2
(3.20) I1B5(1)]] << };}_,,z{f)[ | £ (0,01)] dby.
J0

47
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In view of (3.18) , (3.8), (3.12") , (3.19) , (3.20) it follows that
51 2T
(3:21) | Bs|| < Z Y[zk,_lp,z(f)/ |FL (2% —1,6,)| d6;.
ky=0 0

It is clear that

(3.22) [ Bsll << || Bs]| -
In the same way we obtain
(3.23)
52 27
1B << 3 Yampuean(1) [ 1P (24 = 1, o

ko=0
(3.24)
I Bsll << || Bz]|.
To estimate By we use the equality
By = Vyr P—Vau I} P, P = Voo f — I} Visa f.
In the same way as we obtained the expression for B; we derive

Bo = 35 [Ba (P24) = By (P [271)]

k=0

31 2 2w
=D, ;/ {Vars P (21 + 01, 22) = Vigra - P (21 + 01, 22) } -
ky=0 0

(3:25)

& Ffll (2kl - 1,91) cos (le = 1) 0]([01.
We consider the function P as a function with respect to z, and obtain

P(xy + 0y, 25) = Vaoo f(y + 01, 23) — Voo I} f(y + 01, 2,) =

8

> {Br (£,.2%) - Br (£, [27"])} =
326)
> o) (eS8 +0:)-

m
ko=0

Vigka=1) f (21 + 01,22 + 82) } - FL, (2% = 1,6,) cos (252 — 1) 8,d6,.
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Using (3.25) and (3.26) we get

b= 3 3 [ s V-

Ll_ﬂ kg_o
(3-27) = V[g-*]—l]gl‘gf + V[zlq—l][zl:g—l]f}'
2
H ki —1,0;) cos (2% — 1) 8,d6;.
Since

Q= Vykyou f = ng,[.lkz_l]f - V[2k1—1]2k2f+ ‘/{zklul][zkg—l]f

3.28

( ) = W;klgkg,f = Wtzk]['zlg—l]f = W[zk,—l]zsz + W[2k1-1][2g2-1}f
we obtain

(3.29) | 1l << Yjgus-)paea=1)(S)-

From (3.27) , in view of (3.28) and (3.29) it follows that

(3.30) ||Boll < Y i Vptam) 2*2-1](f)1_[/

k1 =0 ko=0

Fi (29 - 1,6;) ‘d&.

Finally, using Lemma 2 and the inequalities (3.17), (3.2), (3.22), (3.23),
(3.24), (3.30) we obtain the inequality (3.5). The proof of Theorem 2 is
complete .

Proof of Theorem 1. First we establish the inequality (3.3) for m = 1,
n = 2. We will use the inequality (3.4), (Theorem 2), and the conditions of
Theorem 1.

In view of (3.1) and (3.2) we derive

(3.31) FL (25 = 1,8)) = du(h)of, (2% = 1) Ky (9,0, ka)
hence, using the condition (4), it follows that

(3.32) | FL (2% — 1,81)]| << ¢alla) |9, (2% = 1)].
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From (3.4) by (3.32) we obtain
(3:33)  If = AuSll < Yanr () + () D |y, (2% 1) Yigr1-2)(f)-
k1=0

Now, from (3.33) using the condition (7) it follows that
If = Aufll << () { |9, (2°1)] Yans ()
+ 30 |9k (257 YD}

k'[:D

(3.34)

hence by the conditions () and (3) we derive

31+l

(3.35) I = A Sl < 1) 3 [, (1257 D) Vigua-1) ().

k1=0

We conclude, using the conditions (), (a) that ( see [4]):
; o~ ()]
'(3.36) >l (2] Y < 3 '—V—Y,,.
k=1 v=2

Finally, from (3.35) by (3.36) we obtain the inequality (3.3) for the case
n=2,m =1 (with respect to the variable zy).

[n the same way using the inequality {3.5) of Theorem 2 and the conditions
of Theorem 1 (see the proof of the corresponding theorem in [4]), we obtain
the inequality (3.3) for m = n = 2.

The proof of Theorem 1 is complete .

4. Applications

The obtained result (Theorem 1) we apply to Riesz’s singular integrals.
Riesz’s singular integral is given by the kernel ( see [1] )

!
Aj
(4.1) ;y%“(t}:l+2(l— L )cosjt
i=1

At
where the sequence A, I = 1,2,... satisfies following conditions: (i) 0 <
AL < Apga, (i) Ap = 00, I — 00, (iii) AgA < 0 or AyA > 0, (iv) Ay = O(A))

if AqA; > 0.



On Approximation by Angle for 27 Periodic Functions 51

For this singular integral ( this method of summation of Fourier series of
functions ) we have

Aip1]

A \ 5 .
7¥M0) = 1,7VG) =1 $= L nnil

YNNG =0, j= 4 1LI+2,.
The quantities ¢, ¥, K" are
35 :
P NG = Ay T = 1,201
3 ’ 1
PG = g, 2141 ¢ = —, [=1,2,...
(4.3) A
kK 9
+2
v=1
We will prove that the quantities ¢, 1, K satisfyl the conditions (a),l (9),

(7), (8) of Theorem 1.
Since (i) and (4.3) the condition (a) holds for 1.
To prove that the condition (3) is satisfied we use the inequality

(-]

2k _1—
2212V cos 0.

A
AZ"—I

3=

©

K=K (1,/3('\),13,6') -

S

A
Aeg1 — Ak £ C.'Tji, (C' = constant),

which is proved in the paper [1] of Aljancic (if Ay > 0 the condition (3) is
obviously satisfied, the condition (iv)). From this inequality it follows that
Akt £

< =,
_,1+C]‘

k

Putting k,k+ 1,...,2k — Lin this inequality, by multiplication we derive

ok . CY

g P (L (BTl

Ak _( * k) ’
and then Agp = O(Ax).

The condition () is equivalent to the condition

_\___—<_ch 25 £l<2‘3+1-

We have X y -
S =50,
'3!

Dae



52 M. Tomié

that means that condition (7) is satisfied.
Now we will prove that the function K satisfies the condition (4).
By applying Abel’s identity we have

gkig

> Al Dy(8) + 2 Dok _(8)
v=0 /\")'k_l

(4.4) K (?,/)(”,k,ﬂ) -
2 -1

where D) is Dirichlet’s kernel.
To estimate the free term in (4.4) we introduce the new condition

(4.5) o < C (C = constant),
!

independent on /.
In view of (4.5) we have

2k -3
1
(46) K (¥N,k0) = =3 Ay, Du(0) +0(1).
=1 u=o

If we apply Abel’s identity again, from (4.6) we obtain

K (,;;(f\),k,a) e Z BTt 5 ‘,ZDJ((J)

(47) v=0 ;
—Ak, Z D;(6) + O(1).
2k =0
Since

Y Di(8) = (v + 1)F,(6)

=0

where F, is Fejer’s kernel , it follows that

2% 4

1
K (u,t\) 2 9) DF,(8)AsAgk_1_p+
Agk 1

1
Agk_l

(4.8)

+ AX; (28 = 2) Fr(8) + 0(1).
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The equality (4.8) implies

k

(4.9) HI\’ (,/,()‘),k,ﬂ)“] = 1 Z_:d(”-’_ D A2 1y
4.9 =70 v=0

|AA|

L (9% Y S OfT).
/\2&_]( )+ ()

Using (4.5) from (4.9) we obtain

2% _4
1

(0] a
(4.10) ”1\ (11; ,k,ﬂ) e ;(u +1)[Agdgr 1| + O(1)
where AX, = A, — Auq1, A2A = A(AX).

Since

J

(4.11) Z(V + 1A, = 200 = 1+ (42 — pj+1) G+ 1) = Bit
v=0

then, putting g, = Agk_1_,, J = 2k — 4 we derive

2 —4q
(4.12) Y (1) [Apdge gy = 20 = Apep + (A1 — o) (2% - 3) - A,.
v=0
Finally, from (4.10) in view of (4.12) we obtain that ||K|l; < €. This
means that the function K" of Riesz’s singular integrals satisfies the condition

(8).

In this way we prove the following

Theorem 3. Let the sequences /\sk}, k=1,...,n, | = 1,2,..., salisfy
the conditions (i) - (iv) and (v) I = O(X\), | — oo. Let AS;\I)__._‘h"'f be
m-dimensional angles which are obtained from singular integrals which are
associated with the given sequences .

Then, for f € L,, 1 < p < oo, and all natural numbers 1; and m such
that 1 < i; < m, 1 < j<m < n, the following inequalities hold

-1
m liy

T B 11 £ I RS
j=1

ki] =0

(4.13)
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where the constant C' does not depend on f and l; = 1,2,....

Particularly we consider the sequences
(4.14) A= A0 = Aj(r,8) = T log* (G4 2), 5= 1,2,...

where the real numbers r and s satisfy » > 0, s > 0.

Conditions (i) - (iv) of Theorem 3 are satisfied. Condition (iii) is satisfied
because the function A(z) = z"log® z has derivative A"(z) > 0 for r > 1
s> 0,z > b where b is the base of the logarithm.

Thus, we can apply Theorem 3 and obtain

N

Theorem 4. Let A(’ s) f be an m-dimensional angle from singular in-
1 m

tegrals which are detrnnmed by the sequences Xj(r,s) = j"log®(j + 2),
J=L2,... forr > 1,3 > 0. Then for f € Lp([0,27r]“), 1 <p< oo,
the following inequalitics hold

|lr- A2, s < lL[ (7 log ™ (I, +2)
i=1

(4.15) " e
3 ST T (ks 1) T 0™ (ki 4 2) Vi, ke, ()
k.‘l=0 ki,, =0j=1

where the constant C' does not depend on f and l; = 1,2,..., 1 < i; < n,

1 <7< m<n.

Puting s; = 0, j = 1,...n we obtain from (4.15) the following inequalities

m liy
“f - A}:)__hmf”p < O.H 57 3 b
(4.16) - e
i m
S T ks +1)™ ™ Vi, ok (1)
ki, =0i=1

fin

where f € L, ([0,27]"),1<p<oo,r; 2 1,1<i;<n,1<j<m< n.
For n = 1 we have the case of a function of one variable. Then ¥ = F
and from (4.16) we obtain

(4.17) |- Ay

!
1
L, <CR Y (k+ 1) Ex(f),
k=0
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where 1 <p<oo,r>1,l=1,2,... and

]
(n;_ % __K , o %
Ay = : -}-;[1 (l-i-l)r] (ak cos kz + by sin kz) ,

ay, by are the Fourier coeficients of the function f.

The theorem proved above make it possible to compare the classes of func-
tions which are defined by the approximations. We will show that comparing
the following classes.

Let the numbers rq,...7,.7; > 1,j = 1,...,n, be given. We identify the
classes

SEH =1 F€ Ly Yy, oot (o= o(]’[:;’"‘f),
Jj=1

li=12..; Leysm l€ijsmEn

ViR={fely:|r-47 , 1| = O(ﬁ l:’m’)’

= 1,2 0005 L8 A& LS J S MEM

where A(") are angles which are determined by the sequances Aj(ry) = j™,
k= Ly 0= 1 2 w00 s
Then in view of the inequalities (4.16) we conclude that

T4 rr sl
SyTH CV/RC S;H, 1<p< oo,

where r + ¢ is determined by numbers r; +¢;,7; > 1,6; >0,7=1,...,n.
The classes S H are the classes of Nikolski which are defined by the mixed
dominated modulus of smoothness (see [2]).

REFERENCES

[1] Aviancic S., Classe de saturation du procede de moyennes typiques de Riesz, Publ.
de l'inst. math. ¢ XIII (1959), 113-122.

[2] Potarov M. K., O priblizenii uglom,, russian, Conference o Constructive Theory of
Functions, Academiai Kiado, Budapest, (1969), 371-399.

[3] Tmman M. F., Nailucsee priblizenie funkcij i linejnye metody summirovanija rjadov
Fur’e, russian, IANSSSR, ser. mat. 29 (1965), 587-604.

[4] Tomic M., Priblizenie 27 periodiceskih funkeij iz singularnyh integralov, russian,
Publ.de I'inst. math. n. s., 26(40) (1979), 297-305.

FACULTY OF MECHANICAL ENGINEERING, DEPARTMENT OF MATHEMATICS, UNIVER-
SITY OF PRISTINA, 38 000 PRISTINA, YUGOSLAVIA



s1oe6q jrewAriqie
ape.bpg Jo A1seAIUN -SoITewayle |\ Jo A1nded Jo AreiqiT [eniiiA



FILOMAT (Nis) 9:1(1995), 5762

POWER SEMIGROUPS THAT ARE ARCHIMEDEAN

Stojan Bogdanovi¢ and Miroslav Cirié

ABSTRACT. Power semigroups of various semigroups were studied by a number of au-
thors. Here we give structural characterizations for semigroups whose power semigroups
are Archimedean and we generalize some results from [1], [8], [10] and [11].

Throughout this paper, Z* will denote the set of all positive integers. For
an element a of a semigroup 5, {a) wil denote the cyclic subsemigroup of §
generated by a. For a semigroup 5, let P(S) = {A| @ # A C S}. If the
multiplication on P(S) is defined by AB = {ab|a € A, b € B}, then P(5)
is a semigroup which will be called the power semigroup of S, [11].

A semigroup S is intra-r-regular if for each @ € § there exists n € z+
such that a® € Sa®"S. A semigroup S is left w-reqular if for each a € §
there exists n € Z% such that a® € Se™*!, and it is left regular if for any
a € S, a € Sa®. Right m-regular and right reqular semigroups are defined
dually.

A semigroup S is Archimedean if for any a,b € S there exists n € Z* such
that a® € §bS. A semigroup 5 is left Archimedean (weakly left Archimedean)
if for any a,b € S there exists n € Z* such that a™ € Sb (@™ € Sba ), [4].
Right Archimedean and weakly right Archimedean semigroups are defined
dually. A semigroup § is t- Archimedean (weakly t-Archimedean) if it is both
left and right Archimedean (weakly left and weakly right Archimedean). A
semigroup S is power joined if for any a,b € § there exists m,n € Zt
such that a™ = b". A semigroup S is left completely Archimedean if it is
Archimedean and left w-regular. Right completely Archimedean semigroups
are defined dually. A semigroup S is completely Archimedean if it is both
left and right completely Archimedean. A semigroup S is left completely
simple if it is simple and left regular. Right completely simple semigroups
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are defined dually. A semigroup S is completely simple if it is both left and
right completely simple.

Further, § = S will means that § is a semigroup with zero 0. A semi-
group 5 = §° is a nil-semigroup if for any a € S there exists n € Z+ such
that a™ = 0. For n € Z%, a semigroup S = S° is n-nilpotent if S = {0},
and S = 5% is nilpotent if it is n-nilpotent, for some n € Z*. An ideal
extension .5 of a semigroup T' will be called a nil-eztension (nilpotent ezten-
sion, n-nilpotent extension) if §/T is a nil-semigroup (nilpotent semigroup,
n-nilpotent semigroup).

Let T' be a subsemigroup of a semigroup S. A mapping ¢ of S onto T will
be called a right retraction if ap = a, for each a € S, and (ab)y = a(by), for
all a,b € 5. Left retractions are defined dually. A mapping ¢ of S onto T
is a retraction if it is a homomorphism and a@ = a, for ecach a € T. If T' is
an ideal of , then ¢ is a retraction of S onto 7" if and only if it is both left
and right retraction of 5 onto T'. An ideal extension S of a semigroup 7 is a
(left, right) retractive extension of T if there exists a (left, right) retraction
of 5 onto T. A (left, right) retractive extension by an n-nilpotent semigroup
will be called a (left, right) n-inflation, 2-inflations will be called simply
inflations, and (left, right) retractive extensions by nilpotent semigroups
will be called (left, right) inflationary extensions.

A semigroup S is a singular band if it is either a left zero band or a right
zero band.

For undefined notions and notations we refer to [2], [3] and [7].

Theorem 1. The following conditions on a semigroup S are equivalent:

(i) P(S) is Archimedean;
(ii) P(5) is a nil-extension of a simple semigroup;
(iii) P(S5) is Archimedean with an idempotent.

Proof. (i) = (iii). Asumme a € §. For {a}, (a) € P(S) there exists
B, € € P(5) and n € Z* such that {a}" = B(a)C,soforbe B, ce C
and a®" € (a) we have

a" = ba*"c € §a*"S.

Therefore, 5 is intra-m-regular semigroup. Since S is also Archimedean, then
by Theorem VI1.1 [2], § is a nil-extension of a simple semigroup K. Thus,
P(5) is an Archimedean semigroup with an idempotent I .

(iii) = (ii). This follows by Theorem 3.2 [6].

(ii) = (i). This follows by Theorem VI1.1 [2]. O

Corollary 1. If P(S) is Archimedean, then S is a nilpotent extension of a
simple semigroup.
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Proof. By the proof of (i) = (iii) in Theorem 1, § is a nil-extension of
a simple semigroup K. Since P(S) is Archimedean, there exists n € Z7,
A, B € P(S) such that §" = AK B, whence 5" = AKB C K = K" C §".
Therefore, S™ = K, so S is a nilpotent extension of a simple semigroup. 0O

Theorem 2. The following conditions on a semigroup S are equivalent:
(i) P(S5) is left completely Archimedean;
(ii) P(5) is completely Archimedean;

(iii) P(S) is a nil-extension of a rectangular band;
(iv) S is a nilpotent extension of a rectangular band.

Proof. (i) = (ii). By Theorem 1, P(S§) has an idempotent, so by Corollary
4 [4], P(S) is completely Archimedean.

(i) = (iv). Let @ € S. By Theorem 1, §™ = K is a simple semigroup, for
some n € Z+. Also, by Theorem VI2.2.1 [2], there exists m € Z*, C € P(5)
such that {a}™ = {a}™ (a) C{a}™. Now, for any ¢ € C' we have

L/

a n —_ a"iacaﬂl — (L“l

a*ca™ = aa™aca™ = aa™ = a™*!,
and by this it follows that A is a rectangular band.

(iv) = (iii). Let S™ = A be a rectangular band, for some n € ZT.
By Lemma 4 [8], P(K) is an ideal of P(.5), and by Theorem 4 [10], P(K')
is an inflation of a rectangular band 7. Since T? = T, T is an ideal of
P(K) and P(K) is an ideal of P(S5), then T is an ideal of P(5). Also, for
A€ P(S5), A" C S" = K,s0 A" € P(K), whence A* e T. Thus, P(S)is a
nil-extension of a rectangular band T'. '

(iii) = (i). This follows immediately. O

Corollary 1. The following conditions on a semigroup 5 are equivalent:
(i) P(S) is an inflation of a rectangular band;
(ii) S is an inflation of a rectangular band;
(iii) (Vz,y,z € 5)zz=wy=.

Proof. (i) « (iii). This follows by Corollary 3.5 [5].

(iii) = (i). For A, B,C € P(S5), by (iii) we obtain that AC = ABC, so
by (ii) ¢ (iii) we obtain (i).

(i) = (ii). This follows immediately. 0O

Theorem 3. The following conditions on a semigroup S are equivalent:

(i) P(S) is weakly left Archimedean;
(ii) P(S) is a right zero band of nil-extensions of left zero bands;
(iii) S is a right inflationary extension of a rectangular band.
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Proof. (i) = (ii). By Theorem 1, P(S) has an idempotent, so by Theorem
7 [4] we obtain (ii).

(ii) = (i). This follows immediately.

(i) = (iii). By Theorem 2, S is a nilpotent extension of a rectangular
band K. On the other hand, it is not hard to check that S is weakly left
Archimedean, so by Theorem 7 [4], § is a right retractive nil-extension of a
rectangular band T. Clearly, K = T, so (iii) holds.

(iii) = (i). Let S be a right inflationary extension of a rectangular band
K and let ¢ be a right retraction of S onto K. By the proof of Theorem 2,
P(5) is a nil-extension of P(K) and P(K) is an inflation of a rectangular
band T'. Further, T is a right zero band Y of left zero bands Ty, a €Y,
so P(K) is a right zero band Y of semigroups P,, a € Y, where for each
a €Y, P, is an inflation of T,. Assume A, B € P(S). Then A", B" € T, for
some n € Z*, and A" € T,,, B™ € Ty, for some a, 3 € Y. Now, Ap € P(K)
i.e. Ap € P,, for somey €Y, so

?

A" = AnH = J‘J_ln+l‘?,-J = (A“A)(P — Au(A(p) € PaP",' C P’Y?
and by A" € T, we obtain ¥ = a, i.e. Ap € P,, whence
B"A = (B"A)p = B*(Ap) € TgP, CTN P, =T,.

Therefore, A", B*A € T, whence A™ = A™B" A, since T, is a left zero band.
Hence, P(5) is weakly left Archimedean. 0O

Corollary 3. The following conditions on a semigroup S are equivalent:
(i) P(S) is weakly t-Archimedean;
(i) P(5) is a matriz of nil-semigroups;
(iii) S is an inflationary extension of a rectangular band.

Proof. This follows by Theorems 1 and 3 and Corollary 5 [4]. O

Theorem 4. The following conditions on a semigroup S are equivalent:
(i) P(S5) is left Archimedean;
(ii) P(S) is a nil-extension of a left zero band;
(iii) 5 is a nilpotent extension of a left zero band.

Proof. (i) = (ii). By Theorem 1, P(S) has an idempotent, so by Theorem
VI 3.2.1 2], P(S) is a nil-extension of a left group. On the other hand, by
Theorem 2, P(.5) is a nil-extension of a rectangular band, and so P(S) is a
nil-extension of a left zero band.

(ii) = (iii). Let P(S5)be a nil-extension of a left zero band T'. By Theorem
2, 5 is an n-nilpotent extension of a rectangular band K, for some n € Z+.
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For a,b € K, {a},{b} € T, whence {a} - {b} = {a}, i.e. ab = a. Thus, K is
a left zero band.

(iii) = (ii). Let S be an n-nilpotent extension of a left zero band K,
for some n € Zt. By Theorem 2, P(S) is a nil-extension of a rectangular
band T. Let A,B € T. Then A = A® C §* = K and also B C K, whence
AB = A. Therefore, T is a left zero band.

(ii) = (i). This follows immediately. O

Corollary 4. The following conditions on a semigroup S are equivalent:

(i) P(S) is left completely simple;
(ii) P(5) is completely simple;
(iii) P(.5) is a rectangular band;
(iv) P(5) is a singular band;

(v) S is a singular band.

Proof. (i) = (ii) = (iii). This follows by Theorem 2.

(iii) = (v). By (iii), each subset of .5 is its subsemigroup, so by the
well-known result of L. Rédei [9], S is an ordinal sum of singular bands (for
the definition of an ordinal sum see [7]). By Theorem 2, § is semilattice
indecomposable, whence 5 is a singular band.

(v) = (iv) and (iv) = (i). This follows immediately. O

Corollary 5. The following conditions on a semigroup S are equivalent:

(i) P(S) is t-Archimedean;
(ii) P(S) is power joined;
(iii) P(5) is a nil-cxtension of a group;
(iv) P(5) is a nil-semigroup;
(v) P(S5) is nilpotent;
(vi) S is nilpotent.

Proof. The equivalences (i) < (ii) ¢ (iv) ¢ (v) was proved by S. Bog-
danovi¢ [1], and in the commutative case, (i) « (vi) was proved by M.S.
Putcha [8]. O
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SOME CARDINAL FUNCTIONS ON
URYSOHN SPACES

Ljubisa D. Kocinac

ABSTRACT. We give some results on the cardinality of Urysohn H-closed topological
spaces involving a new cardinal function denoted by sqLg(X).

1. Introduction

In (7], the following cardinal function was introduced. For a space X,
sqL(X) is the smallest infinite cardinal 7 such that there exists a subset A
in X of cardinality < 27 satisfying: for every family U of open subsets of
X there exist a subfamily V of & and a subset B of A such that [V| < 7,
|B| < 7 and UY C BU(UV). In [10], this cardinal function was studied
in some details. In a similar way we define here another cardinal function,
denoted by sqLg(X), and prove some results on the cardinality of Urysohn
spaces involving this function. These results improve some results from [6]

and [10].

2. Notation and terminology. Definitions

Notations and terminology in this paper are standard as in (2], (4], [5).
Unless otherwise indicated, all spaces are assumed to be at least Ty and
infinite. a, 3, v, 6 are ordinal numbers, while 7, ) denote infinite cardinals;
7+ is the successor cardinal of 7. As usual, cardinals are assumed to be
initial ordinals. If § is a set, then [§]S7 denote the collection of all subsets
of X having cardinality < 7.

We recall some definitions that we need.

2.1. A space X is Urysohn if for every two distinct points = and y in
X there are open sets [/ and V such that 2 € U, y € Vand UnV =0.

2.2. If X is a space and A a subset of X, then we put
Received 20.04.1995
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ClsgA = {z € X : UN A # 0 for every neighbourhood U of z}.
The set C'lgA is called the 8-closure of A. A is 8-closed if ClyA = A.

2.3. A Hausdorff space X is called H -closed if every open cover U of
X has a finite subcollection ¥V whose union is dense in X.

2.4. ([1]) The 6-bitightness of a space X, denoted by bte( X ), is the
smallest cardinal 7 such that for each non-8-closed set A C X there exist a
point 2 € X \ A and a collection § € [[A]S7]S™ such that {z} = N{C,S :
Ses}).

2.5. ([6]) Call a subset A of a space X f-dense in X if ClyA = X, ie.
if for every open set U C X, UN A # 0. The f-density of X is
dg(X) = w-min{|A| : A is a 6-dense subset of X}.
Clearly, for every space X, dg(X) < d(X). There are spaces X for which
dg(X) < d(X) holds.

2.6. ([9]) The B-spread s¢(X) of a space X is the supremum of the
cardinalities of subsets D of X such that for every z € D there exists a
neighbourhood U of 2 with U N D = {z}. The inequality sg(X) < s(X) is
possible.

2.7. A Hausdorff space X is said to be of closed pseudocharacter T,
denoted by 1.(X) = 7, if 7 is the smallest cardinal such that for each point
r € X there exists a family {U, : @ € 7} of neighbourhoods of z with

{z}=n{T4:a €T}

3. Results

In [9], the following lemma is proved.

Lemma 3.1. Let X be a topological space and s¢(X) = 7. If U is a family
of open subsets of X, then there exist A € [UU]S™ and V € [U]ST such that
U CClybAuu{V:V eV} DO

After this lemma and the definition of s¢L(X) it is reasonable to intro-
duce:

Definition 3.2. Let X be a space. Then sqLg(X) is defined to be the small-
est cardinal T such that there ezists a subset A in X of cardinality < 27
satisfying: for every family U of open subsets of X there exist V € [U]S7
and B € [A]S7 such that UU C ClgBU (UV). O

Fact 1. sqLg(X) < sqL(X) < d(X).

Fact 2. sqLg(X) < do(X).

We shall also need the following lemma which is a version of the fun-
damental result on spread due to Shapirovskii (see [8;T.3]).
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Lemma. 3.3 ([6;Prop. 3.3]). Let X be a Urysohn space with hsg(X) < 7.
Then there is a subset A of X such that |A| < 27 and U{ClyB : B € [A]S7} =
X

Proposition 3.4. For every Urysohn H-closed space X, we have

sqLg(X) £ hsg(X).

Proof. Let hsg(X) = 7. By Lemma 3.3 there exists a set A C X
with |A] < 27 such that X = U{Cl4(B) : B € [A]S"}. Let us show that
A witnesses sqLg(X) < 7. Take a collection ¥/ of open subsets of X. By
Lemma 3.1 there exist V € [I{]S7 and M € [UU]S7 such that Ul C ClyM U
(UV). For every p € M there exists some S, € [A]S7 with p € Cl4S5,. Put
S =U{S, :p€ M}. Then S € [A]S" and M C U{ClsS, : p € M} C
Clo(U{S, : p € M}) = ClyS. As the 6-closure operator is idempotent
in Urysohn H-closed spaces we have C'lgM C Clg(ClyS) = ClyS. Hence,
UU C ClgS U (UV) and the proposition is proved. 0O

Example. Let X be the Niemytzki plane T equipped with the topology
T ={U\C : Uisopenin T and C C T is countable}. Then hsy(X) =
s(T)=2% and sqLg(X) =s¢qL(T)=w. O

Theorem 3.5. For cvery Urysohn H -closed space X, we have
(X)) < 9s9Ls(X)

Proof. Let sqLg(X) =7 and let A C X be a set witnessing this fact.
Fix a point x € X. Since X is Urysohn, for every y € X \ {z} there are
neighbourhoods U, of z and V, of y with U, n Vy = 0. Applying the
definition of sqLg(X) to the family V = {V,, : y € X \ {2}} (and A) one
can find sets Y = {y, : « € 7} € [X \ {}]5” and B € [A]S7 such that

X\{z}cClBU(U{V,, :a€T}).

Put U, = {X\ClWC :C C B,z ¢ ClyC}yu{U,, : a € 7}. Then |U,| < 27
so that we need to check {x} = N{U : U € U,}.

Let p € X\ {z} C ClyBU(U{Vy, : a € 7}). Consider two possibilities:
(i) p € ClyB. Take neighbourhoods U, of p and V,, of z such that U, NV, =
0. It is easy to see that p € Cle(BNV,) C ClyV, = V, (in Urysohn H-
closed spaces it holds ClyGG = (i for each open set (). Therefore, C = B nV,,
provides a subset of B with U/, N ClyC = 0, hence U, C X \ Cl4C = § and
thus U, C X \ ClaC which gives {z} = n{U : U € U, }.
(iypeu{V, :aer} Thenzen{U,, :a€r}, butpgn{l,, :ac
r}. O

The following theorem is an improvement of Lemma 3.3.
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Theorem 3.6. Let X be a Urysohn H -closed space with sqLg(X) < 7. Then
there is a subset A of X such that |A] < 27 and U{ClyB : B € [A]S"} = X.

Proof. Let S be a set in X witnessing sqLg(X) < 7. According to
Theorem 3.5, for every € X one can choose a collection I, of neighbour-
hoods of « such that |i;| < 27 and N{U : U € U,} = {x}. By transfinite
induction we shall construct a sequence {M, : @ < 7t} of subsets of X and
a sequence {dy : @ < 77} of families of open subsets of X satisfying the
following conditions:

(a) [Ma] <27, & < 7%
(b) Uy = U{UUy 2 € U{Mp: B < a}} (so |Us| £ 27), a < 77F;
(c) UT € [S]57,V € [Us)S" and CI6TU UV # X, then M, \(ClyTUUY) #

0. '

Suppose we have already defined all Mg and U for # < a. Let us
define M, and U,. For every T € [S]S7 and every V € [Us]S™ choose a point
z(T,V) € X \ (ClyT U UV) whenever the last set is not empty (otherwise
the construction has been finished). Let

My ={z(T,V): T € [S]57 and V € [Up]="}
Uy = U{Uy 1w € U{My : B < a}}.

It is easy to check that M, and U, satisfy (a), (b) and (c). Put M =
U{M, :a < 7%}, A= MUS and prove that A is the set we are looking
for. First of all |[A] < 27. Let z € X. If # € A there is nothing to prove.
Let z € X \ A. Then = ¢ M so that for every y € M one can find a
neighbourhood V, € U, of y such that @ ¢ V,. So, = ¢ U{V, : y € M}.
By the properties of S one can choose B € [S]S7 and {y, :y € 7} € [M]="
such that M C U{V, : y € M} C ClyBU (U{V,, : 7 € 7}). Let us prove
x € ClgB. Suppose not. Then ClygBU (U{V,, : v € 7}) # X. Since 7+
is regular, there exists some § < 7t such that {y, : v € 7} C M;. Then
{V,, 17 €1} € [Us]S7. By (c), Msy1 \ (ClaBU (U{V, 1y €7T})) # 0.
But this contradicts the fact ClgB U (U{V,. 1y € 7}) D M D Msyy. The
theorem is proved. 0O

The next two theorems improve Theorems 3.4 and 3.5, respectively,
from [6]. The first of them is an immediate corollary of the previous theorem.

Theorem 3.7. For cvery Urysohn H -closed space X we have
dg(X) < 259Le(X) O

Theorem 3.8. For cvery Urysohn H-closed space X we have
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|X| < 95qLa(X)bta(X)

Proof. Theorem 2.3 in [6] states that for every Urysohn space X,
|X| < [de( X)]P*X). Using now Theorem 3.7 we have | X| < (dg(X))Pte(X) <
(25(][19(,\'))“9("\-) — 254)Lg(_\'}!313(x)' O

The famous theorem of Hajnal-Juh’asz says: if X is a Hausdorff space,

= LGOI v .
then | X| < 2° (3], [4], [5). In [9], it was shown that for a Urysohn space
X this inequality can be improved to |X| < 22 Our next result is an

improvement of the last estimation for Urysohn H-closed spaces.

Theorem 3.9. For every [/rysohn H-closed space X we have
l \,l & Q.Z.HILH(.X)

Proof. By Theorem 2.6 in [6], | X| < 24(X)¥(X) 50 that, by Theo-
rems 3.5 and 3.7, one obtains |X| < 246(X)¥(X) < 92000 HsqLe(X)
2.2.-qu(_\'} -
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A NOTE ON CERTAIN CLASSES OF
UNIVALENT FUNCTIONS

Ivan Jovanovié¢ and Milutin Obradovié

ABSTRACT. We give some results on f'(z), f(z)/z and zf'(z)/f(z) for certain classes of
univalent functions in the unit disc |z| < 1.

1. Introduction and preliminaries

Let A denote the class of functions f analytic in the unit disc U = {z:
|z| < 1} with f(0) = f'(0)—1=0.

Ozaki [4] proved that if f € A and

| ~M} 3 el

(1) Re{1+,f,(z) <5, z€U,
then f is univalent in U/. Later, Umezawa [7] showed that if f € A satisfies
the condition (1), then f is univalent and convex in one direction. Sakaguchi
[5] proved that if f € A satisfies (1), then |arg f'(z)| < 7/2,z € U,le. fis
close-to-convex function. Finally, R. Singh and S. Singh [6] proved that the
same class is the subclass of starlike functions in U.

In his paper [3] Nunokawa considered the class of functions f € A such
that '
__ f"(2)
(2) R.e{l +~f’(z)

o
l1+—,z€U,
P

for some 0 < o < 1.
He proved that for such class

zf'(z)
f(z)

It is evident that for o = 1 in (2) we have class defined by (1) and the
classes defined by (2) are the subclasses of the class defined by (1).

T
< —a,zeU.
2l

arg
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In this note we consider the values zf'(z)/f(z), f'(z) and f(z)/z for
the classes defined by (2).

We need the following definition and lemmas.

Let f and ¢ be analytic in the unit disc /. We say that f is subordinate
to g, written f < g, or f(z) < g(z), if there exists an analytic function w in
U satisfying w(0) = 0, |w(2)| < 1, z € U, and f(2) = g(w(z)). In patrticular,
if ¢ is univalent in U, then f is subordinate to g if and only if f(0) = g(0)
and f(U) C g(U).

Lemma A ([2]). Let w be nonconstant and analytic in U with w(0) = 0.
If |w| attains its mazimum value on the circle |z| = r < 1 at z, we have
zpw'(z0) = kw(z0), k 2 1.

Lemma B ([1]). Let g be a convez function in U and let ¥ be a complex
number with Re{y} > 0. If f is analytic in U and f < g, then

-

z"’/f(w)w“’_ldw = z"'*/g(w)w"’_ldw.
0

0
We note the that we can find more details of the classes of the functions

we mentioned above in any standard book on univalent functions

2. Results and consequences

We start with the following

Theorem 1. Let [ satisfy the condition (2). Then

f'(z) 1 \=1
™ ]. -z 1 - z .
) <=9 )
Proof. Let’s put a = 1/(a+ 1) and
TG) _ 1-u(2)
flz)  1-aw(z)
Evidently w(0) = 0. We want to prove that |w(z)| < 1, z € U. From (4),
after taking logarithmical differentiation, we get
e _ s i B 5
(5) 1+zf (2) _ 1-w(z)  =w'(2) azw'( 1 .
fi(z)  l-aw(z) 1-w(z) 1-aw(z)

If it is not |w(z)| < 1, then by Lemma A, there exists a 2o, |z0| < 1. such
that zow'(z0) = kw(zo) and |w(z)| = 1, k > L. If we put w(z) = €', then

(3) z

(4)
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for such 2z from (5) we have

. a2V,
Re{l+zf (z) }:l+a+ (1 —a*){(2a—1)
() |z, 2a 2a(1 — 2a cos @ + a?)
1 —a? l+a
k-1 >
1 ]2(1—2ac056+a2)_ 2a
(1—a%)(2a-1) a ol -a) o
2a(1 + a)? +2+2(2+a)" +2’

which is a contradiction to (2). Therefore, |w(z)| < 1, z € U, and from (4)
we finally get the relation (3).

We note that the function on the right side of (3) is univalent and
maps the unit disc {/ onto the disc with the diameter end points 0 and
2a+1)/(a+2).

Remark 1. For a = 1 in Theorem [ and the previously ciled result of
Nunokawa we have that the image of U under zf'(2)/f(z), where f € A
satisfies (2), lics in the intersection of the angle {w : |argw| < an/2} and the
disc which is the image of U/ under the function w = (1 — z)/(l —z/(a+1)).

Also we have

Theorem 2. Let f € A satisfy the condition (2). Then

(6) a) f}'((z)H ((11 + :l)“ i 1
z 4+ z)*T —
L z = (4 1)z .

Proof. a) From the condition (2) we conclude that f" has no zero in U. Lel’s
put

(7) (S )" =1+w(2)
(where we take the principal value). Evidently w(0) = 0. We want to prove
that |w(z)| < 1, z € U. ¥From (7) after some transformations, we have

f"(z) 2w'(z)
(8) 142 g T il W
f'(z) L+ w(z)
If it is not |w(z)| < 1, z € [/, then by Lemma A there exists a 29, |29| < 1,

such that zgw'(z0) = kw(zp) and |w(zp)| = 1, k > 1. If we plit w(z) = ¢'?,

from (8), we get
f”{:)’ } ak o
Red 1 + z2— =i+—=—2>214 -,
{ (2} .—zy g = 2
which is a contradiction to (2). Therefore, lw(z)| < 1, z € U, and from (7)
we conclude that the relation (6) is true.
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b) Since the function (14 2)%, 0 < a < 1, is convex, then the result

follows directly from the result of Lemma B, fory=1. O

From Theorem 2, for a = 1, we easily obtain

Corollary 1. If f € A satisfies (1), then

a)

Re{f'(2)} >0, z€ U,

(which is the earlier result given in [5]);

b)

(1]
(2]

(3]
[4]

f is bounded in U and |f(z)| < 3|2|/2, z€ U.
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SOME THEOREMS ABOUT PRIMARY COIDEALS

Daniel A. Romano

ABSTRACT. In this short note we give some theorems about primary coideals of commau-
tative ring with an apartness.

Throughout this paper R will denote a commutative ring with an apart-
ness in sense of the book [1] and paper [2]. A subset S of R is a coideal ([2])
of Rif @#5, —a € § = a€ S, a+tbesS = a€ SVbeld,
abe § = a€ SAbeS. The coideal S of R is a strongly extensional
subset of R and S # @ = 1 € 5 holds. The coideal 5 of R is a prime
coideal iff e € SAb € S = ab € S. If §is a coideal of R, then the
set ¢(S) = {b€ R: (Vn € N)(b* € S} is a coideal of R under 5, called
coradical of S. The coideal ) of R is a primary coideal of R iff ¢(Q)C Q. If
Q) is a primary coideal of R, the the coradical ¢(Q) of @ is a prime coideal.
In this case, we say that the primary coideal @ belonging to the prime
coideal ¢(Q). Let S be a coideal of R and let X be a subset of R. Then
the set [§ : X] = {b € R : (3z € X)(bz € S} is a coideal of R called
quotient coideal of Q by the subset X. It is clear that [S : X] C S and
XnS=a = [§:X]=@.

First, we shall give a description of irreducibility of a primary coideal
() as the union of the coradical ¢(Q) and of one coideal S under Q).

Theorem 1. Let Q be a primary coideal of R.
(1) If ¢(Q) g Q, then it does not exist a coideal S of R under Q) such that
Q=cQ)US.
(2) If Q = ¢(Q)U S, where S is a coideal of R under Q such that 5 S Q,
then Q = ¢(@Q).

Proof. (1) There exists an elemenat b in () such that b#¢c(Q). Suppose that
S is a coideal of R under () such that Q@ = ¢(Q)U S. Let z be an arbitrary

Received 03.05.1995
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element of ). Then z € ¢(Q)orz € 5. If z € ¢(Q), then zb € ¢(Q) C Q =
(@)U S, and

z€[(QIUS:b]=[c(Q):bJU[S:b]=0U[S:b]CS.
Therefore ¢ C 5. It is a contradiction.

(2) Suppose that there is a coideal S of R under @ such that § & @
and @ = ¢(Q)US. Then there exists an element b in () such that b#.5. Thus
be @ =c(Q)US and b# S implies that b € ¢(Q). Therefore

2€Q = 2beQcQ)CQ=c(Q)US
5 2 €[e(QUS 8] = [«(@):US 8] = [e(Q) : ] C (Q). O

Let 5 be a subset of R. We say that S is a stable subset of R iff
(Ve € R)(-~(z € §) = z€8). If §is a stable coideal of R and if X is
a multiplicative subset of R, then the set (§: X)={be R:bX C S}isa
coideal of R. (§: X) C 5. In the next theorem we shall give a construction
of a primary coideal (@ : ¢(Q)), where @ is a stable coideal of R such that
c(() is a prime coideal of R.

Theorem 2. Let Q be a stable coideal of R such that ¢(Q) is a prime coideal
of R. Then the set (Q : ¢(Q)) is a primary coideal of R belonging to ¢(Q).

Proof. Let () be a stable coideal of R such that ¢(@Q) is a prime coideal of
R. Then the set (Q) : ¢(Q)) is a coideal of R and it holds
(@) C@ = «(Q)=(c(Q):¢(Q)) C(Q:c(Q))CQ
= Q) = ¢(c(Q)) C c({Q : ¢(@))) C «(Q)

Further, we have

a€{Q:c(Q)) & bec(Q)=(c(Q):c(Q)) =
ac(Q)CQ & be(Q) Ce(Q) =
abe(Q)CacQ)CQ »

ab € (Q:¢(Q)). O

Let 7 = (Pj)jes be a family of coideals of a ring R. We say that a
coideal P of R is an isolated coideal from the family F iff (Ip € P)(p# U P;).
Let 5 be a stable coideal of R. If ¢(.5) is the union of prime coideals under
S ¢(S) = Ujes Pj, where J is a discrete set, and if P; is an isolated coideal
from the family F = (P;);en (i}, then the set Q; = (5 : P;) is a primary
coideal of I belonging to P;. Therefore, the stable coideal S of R such that
¢(S) = UjesP; contains an union of primary coideals ); = (5 : P;) where
P; are isolated prime coideals of R under 5.
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Theorem 3. Let S be a stable coideal of R such that ¢(S) = Ujes P;, where
the P; ’s are prime coideals of R under S, and the set J is discrete. If
P; is an isolated prime coideal from the family (P;)jes\{i}, then the coideal
Q; = {5 : ;) is a primary coideal of R beloning to P;.

Proof. Without difficultes one can verify that the set @; is a coideal of R
under 5. On the other hand, we have ¢(Q;) = ({5 : Pi)) = {c(9): Pi) =
(UjesPj : P;). Suppose that b is an arbitrary element of ¢(Q;). Then b P; C

Ujes Pj. As P;is an isolated prime coideal from the family (P;);je\ (i}, there

exists an element p; in P; such that p;#U{P;:j€J & j#i}. Now, we
have

be (Uje_;Pj : Pg) <= bP; CUjeqP; = Uj_¢ipj U P
< (Vp € P;)(bpU;%i P; U F;)
= bp; Ui Pj L F;
= be [UjiP; U Pipi] = [UjiPs ] U [P pi]
= beoUP
< be P,

Therefore ¢(Q;) = F;. Thus

c€Qi=(S:P) & be Pi=(Pi:p) =
eb;,c S & WP C P =

abP; CaFP; C 5 =

abe (§:P)=Q;. O
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ON M-HARMONIC SPACE D;

Miroljub Jevtié

ABSTRACT. We show that the M-harmonic Dirichlet space D; s equal to the weighted
Bergman space A; for 0 < p <1 and s> n.

1. Introduction

In [6, chapter 10] author considered the relationship between the weigh-
ted Bergman spaces A; of M-harmonic functions in the open unit ball B in
C" and the Dirichlet spaces D;. He showed that if s > n and 1 < p < o0,
then A7 = D,. In this note we show that also A; = D; in the case s > n,
O<p<l1.

Let B be the open unit ball in C* and S = 9B the unit sphere in
C". We denote by » the normalized Lebesgue measure on B and by o the
rotation invariant probability mesure on 5.

Let A be the invariant Laplacian on B. That is, Z—Sf(:;) = A(f o
©:)(0), f € C*(B), where A is the ordinary Laplacian and ¢, the standard
automorphism of B, ¢. € Aut(B), taking 0 to z (see [5]). The C*-functions
f that are anihilated by A are called M-harmonic (f e M).

Definition 1.1. For 0 < p < oc, and s € R, the weighted Bergman space
A3 is defined as the space of M-harmonic functions f on B for which

1/p

1fla; = [ [a=LPrliepae| <.

Here, dA(z) = (1 = |z|*)"""'du(2) is the measure on B that is invariant
under the group Aut(B).

For f € CY(B), Vf = (ghvmek)s 2 = @akoy + dwai, k =
1,2,...,n, denotes the real gradient of f and let €7f(z) = V(f o ¢.)(0),
z € B, be the invariant real gradient of f.
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Definition 1.2. For 0 < p < oo, and s € R, the M-harmonic Dirichlet
space Dy is defined as the space of M-harmonic functions f on B for which

fB B F()P(1 = |22 dA(2) < oo,

For f € D;, set

_ 1/p
111l = 1F(O)] + ( [ Frera- |z|2)wz)) |

For the proof of our main result the following Theorem will be needed.

Theorem 1.3 ([4]). Let 0 < p < o0, s > n—p/2 and f € M. Then
following statements are equivalent:

(i) feDs,
i) [ VAP = sRy*ParE) < o,
B

(i) [ (1= P (RIG+ ) dAG) < .
B
As usual, Rf(z) = ;zj% is the radial derivative of f.

Theorem 1.4. Let h be M-harmonic on B.

(i) Forallp, 0 < p < o0, and s € R, there exists a constant C', independent
of I, such that

/_ (1= |2*)°|Vh(z)[PdA(z) < (/ (1= |2[*)*|h(2)|PdA(=).
JB B

(i1) For all p, 0 < p < o0, and s > n, there exists a positive constant C,
independent of v, such that
(1.1)

/(1.—|z|3)3|h(z)|pd)\(z) £ C(|h(0)|”+f (l—|z|2)5+p|Vh(z)i?’d)\(z}>.
B B

Item (i) was proved in [6], Theorem 10.10. If 1 < p < oc, then the
second part follows from Theorem 1.3 and Theorem 10.10 [6]. So it remains
to show that (1.1) holds for 0 < p < 1. The proof will be given in section 2.
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Corollary 1.5. Forall p, 0 < p < oo, and s > n, we have A; =D,.

Next, we consider the relationship between the M-harmonic Hardy
space H? and the spaces D). For 0 < p < oo, HP denotes the set of M-
harmonic functions f on # for which

NAUE = /[M'nf(f.”pd(f(ﬁ) < 00, for some (any) o > 1.
J S

Here M, f(£) = SuPze[I!',[g)U(-’f“a £ €S, where Do(€) = {2z € B: |1~
{(z,€)| < §(1 = [2/*)}, @ > 1, denotes the Koranyi admissible approach
regions.

By Theorem 6.18 ([6]) for 1 < p < oc, f € HP if and only if
[ =P AR < .

Thus when p = 2, H*> = D}.
For all p, 2 < p < oo, HP C DI, with |[|f]lllpm £ Cupllfllps for all
f € HP, where (), is a constant depending only on n and p (see [3], [6]).
Forall p, 0 < p <2,D} C HP.
Fora>1,£ €5, let

2

- 1/2
Suf(E) = ( / } |Vf(z)|‘3d/\(z))

denote the area integral of f. In [1] it is shown that if f € M then f € HP,
0 < p<oo,if and only if S, f € LP(e). From this and the inequality

][,s;,f(g)]f"dn(g)g (/ (1= |w>)*|V f(w)|PdMw),
s B
where f € M and 0 < p < 2 (see [6]), it follows that Dy C HP, 0 < p < 2.
We note that this inclusion was proved in [6] for 1 < p < 2.

In this note we follow the custom of using the letter C' to stand for a
positive constant which changes its value from one appearance to another
while remaining independent of the important variables.

2. Proof of (1.1), case 0 < p < 1

fOo<r<l,weset E.(z)={w€ B:|p:(w)| < r}=p.(rB). E.2)
T.'.’.n(‘-l _ |Z|2)n+l
is an ellipsoid and its volume is given by v(£.(z)) = 0 = o
(5], p-30).
For the proof of (1.1), 0 < p < 1, the following lemmas will be needed.

(see
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Lemma 2.1. Ifs > 1, then

/ < G z,weE B
o M—t{z,w)|]* = |1 ={z,w)|s-1" )

Lemma 2.2 ([4]). Let0 < r < 1 and 0 < p < o0o. There is a constant
C' > 0 such that if f € M then

(Ill_?(:%) =€ o (lllY_ﬂT)pdf\(f), 2 we B.

Lemma 2.3 ([2]). For 1l < p<r < o0, 0 < ¢ < 00 and a measurable
Fe Lt (s = [ VP = s du() < o) we have

(/( 4 w"(l_lwlz)q v (w))r(l —Izlz)’"(“—;‘i—%)—ldu(z))w

11— (z,w)|"+e
<C ”f“;uq—l'

Lemma 2.4 ([5], p.17). Ifa > 0, then

(tO’(E) _ ( 1 )
[. 1= (€, z) |t — 0 TSETA z€ B.

Lemma 2.5. For 0 < s <t we have

1 1 = 7)1y
/(—“usc'(l—p)"‘, 0<p<l.
0

(1-rp)t
Assume now that s > n,0 < p < 1 and / 22)*FP|Vh(2)|PdA(z) < .
Since |Vh(z)| has M-subharmonic behavior, i.e. '
|Vh(w)] < C.'/ |Vh(z)|dA(z), w € B, for some 0 < r < 1, we have for
r(w)
any a >0

1 P
2)|P ; w
e <c(mor+ ([ [ T ixw)i) )
. UL IR = Jw?)® ’
<c(mor+ ([ [ i) )
v 2\a 7] y ! dt =
=C (“’*(O)llp + (/B [VR(w)|(1 = |w|*)"dv(u )]0 1=t (z,w) 'n+a+1) )

1= (z, wy |+
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by Lemma 2.1.

Applying Lemma 2.3 to the function
F(w) = (|Vh(w)||1 = (z,w) I"‘_“)pn, w € B (z € B-fixed) and replacing
p,7,q by 2,2/p,p(a+ n + 1) — n respectively and using Lemma 2.2 we find
that

[Vh(w)|(1 = |w]?)*
B |1={z,w)|"te

_ (atn+1)-n-14, 2/
<cf ( [ st ©) " (1= ) du(w)
E (w)

|1 - (w )|P(u+n+1)
F 1 = P(ﬂ+ﬂ+1)—n 1 2/p .
(./ ( (€|§ - jfl £) [platnt1) d”(E)) (1 = Jw|*)"dv(w)

IVh(w |P 1 — I'ur|-)71(u+n+1)‘ﬂ_1 | 1/p
( |I - (3.11;) |p(u+u) dl/( w) ,

dv(w)

we may assume that a > ;—j - n.
Thus, by using Fubini’s theorem, Lemma 2.4 and Lemma 2.5 we obtain

/(1 — |z]*)*|R(2)|PdA(z) < C[IIE(O)F' ./B (1 =[] Vdu(z)x

Vh(w)|P(1 - |lw|* p(u+n+]) n=i
e ):l(— (zl u!)|mn+«) d"(W)] = C[lh(o)l”

_ 2ys—n—1 &
+/ IVh(.w)lP(l_ lwfﬂ)p(u-l-n-i-l)—n—ldu(m)] (1 Izi ) d’/("’)]
B

5 11— (z,w) et

<cmor+ [ 1P - o)==t
B

This finishes the proof of Theorem 1.4.
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ITERATION METHOD FOR THE EQUATIONS
OF I. N. VECUA TYPE OF HIGHER ORDER
WITH ANALYTICAL COEFFICIENTS

Miloje Rajovié

ABSTRACT. We use two methods for the integration of Vecua equations: 1. the method
of the areolar serties, 2. the method of the iterations.

We solve the following I. N. Vecua equation

W o
(1) %;:AW+BW+F,

where A(z,%), B(z,%Z) and F(z,%Z) are given analytical coefficients of two
variables. We use two methods:

1° By the method of areolar series (used by B. Ilievski [1]).

00 00 o0
‘ § : L=l - z : i=j = E : i=j
(2) A= a;;z 72, B= b‘-jz Z‘?, = f,-jz ZJ.,
i,j=0 i,7=0 i,j=0
0
) " e ;o
(3) W= E ciiz'#,
1,j=0

we have a solution in the form of series of coefficients and of the integra-
tion element ®(z) - an arbitrary analytic function in the role of integration
» - ”

constant™ :

Received 20.07.1995
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W(z,—z-)=¢+/A<bdf+/Adz+jAdz/A¢dz

+/Ad§/ AdE/A@dE+/B$dz+deE/F§dE
+/Bdf/mz/mdz+---+/Adf/BEdﬂfBrzz/EEdz
+/Adz//1dz/33dz+/de/ﬁdzfA_cbdﬂ---
+/Fdz+/AdzjFdz+/de/Fdz+/Ad3/Adz/Fd§
+/Bds/§dz/Fdz+--~

The series (4) is convergent in a finite closed domain G of the complex
plane z = z + iy and the coefficients are analytic functions of z and 7.

2° By the method of the Vecua integral equation (see [2,3]). With applica-
tions in the theory of iteration, we get the solution in the form

(2,3) = //( A(y)W(yHB(y)W(y)dEd"
(5) .
/ F(C)dEdnH,( :)
or for ' =0,
(6) W = &(z)ev?,

where @ is an analytic C' function of z, and

M w)= 1 [[ [0+ BOp @] £, ¢ grine

In what follows we consider the problem to apply a similar procedure for the
Vecua equations with conjugations of higher order.
We start with the equation

02
a—::) +AG)W =0

which is an ordinary areolar equation of the second order and is analogous
to an ordinary differential equation

y'+ Ay =0
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with constant coefficients.

The equation

9?
Tf;- + AW =0
gz

is a complex analogy of the real equations of Hill, Lame and Mathie. Both
of them are not Vecua equations of higher order.

The first equation which could be named a Vecua equation of higher
order is

(8) %'_—“;-4-;1(.2,5)?1/‘:0

and that contains the conjugation of a unknown function. Since

W = p€i¢, W = We 2% — Wy p—2iarctg((W-W)/(i(W+W))

we have that equation (8) is not linear but trancendental, because the op-
eration (the rotation of an argument while the modul remains the same) is
such operation. Because of this, here we have an essential difference between
areolar equations wich are alinost completly analogie to ordinary differential
equations and Vecua type equations, wich are specific in some sense.

Denote by [ the inverse operator of % Then we have:

If we define the operator
(9) T'W = &,(2) —/Aer?,
then it is easy to prove that this is a contraction operator for every analytic

coeflicient A(z,3).
Next, we have

- [ ] [q)g —/AW(JE]
=®,(2) + / dz—/[/Ams]dE

It easy to check:

(10)
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Theorem. The operator
(11) Tsz<I>1+'1)23—/./;il(z,'f)_I/Vd,E2

is a contraction operator for every analytical choise ®1(2), ®3(2), A(2.Z). If
we substitute W by (10) in (11) we can define the sequence w,...,T*"W
and than prove that T"W is a contraction operator.

Since, by the Cauchy theorem, the analytic equation has an analytic
solution, the right side in T"W is always continuous so the iteration method
is valid for (8). Puting W; = T®*W we have

I’Vz = '3[)] +¢2:— /‘/Aﬁ +¢2-27_— ]/ AVV_d“Ez]d'Ez
:(I’l +¢2E-//A$1d'.f—-/./fl$gzd52+//Ad?z //EWle

The last member has a role a remainder. Its estimation is of the order
112 5
AP IW][2] /5.

Next, we have

Wy = &, + &7 — //,ﬁldz—// A, 2d7*
d // AdZ /f’ﬁqwldzu///sdz?j Adydz?
—//Ad?fz/ Adz? //AEldz-//Adzz //Edz‘zf A®,d7 + Rs,

where the remainder Rj3 is given by

Ry = / / Adz* / j Adz* / Adz? / AWdz.

In the next step we give th 4t approximation
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(;i)—_v W(;,z):¢1(z)+¢2(3)z—//,421?1ﬁ2 —]/ A®y zd7

+/fAdE2 /fﬁ¢1d3+[/u¥f Ady7ds’
—f/Adz?f/mz-szﬁ.ﬂ? —ffAdffdezZ//A%zzdz?

+f[ Adz* f/idz'z // Adz? ff Adyd:?

+f/ Ad7* /fﬁdﬁf/ Ad?’f Ady7d:?

—ff Adfzf Zd,:?ff Ad7 ]fﬁdﬁ/f A®, d7

—f/Adzzf Xdz"‘ff AdZ ff?i'dz?//AEzdzz
+f/Ad32ffEdzszAd?3 ffﬁdzE/[AdEz []Z@ldzz

+f/ArEz'2 jjﬁdﬁf/mf’f "/_ldzsz AdZ f]]cbﬁdzz

w/fAdfzj Ed:Q//Ad?EfjXdzgffAdEsz.ZrEQ‘/fﬁdndfz
—//Adfsz?fdzz/fmifg ffﬁdz‘*f[mizz f] Zdz‘zf_/ A®szdz® + Ry,

where the remainder Ry is

Ry :/j Adz? /]-m // Adz? //Zd“ // AdZ? //m // Adz?
/ / AW (z,7)dz"

and can be easily estimated. We may be satisfied by the second, third and
if it is necessary by the fourth approximation.

Consequences. Definitions of new special functions. Conjugate exponent
of the Vecua equation

defines a new exponent “¢, as it was showed by Vecua. The Polozij [4] has
tried to introduce p-exponential function denoted by Pe®. A similar exponent
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can be defined by the equation

aw s
el W =
5y T AW =0,
where A(z) is an analytic function of z. We will denote this exponent by
57, the equation
da—‘;f + A(z,Z2 W =0

defines some other kinds of functions.

Conjugate areolar cosinus and sinus. If in (8) we take A(z,%) = 1, then
the equation
P*w
(-)-22
in a natural way defines sinZ and cosZz. For ¢&; = 1, ¢, = 0 we have by the
definition:

+W=0

22 32
cosAI."El——E-}-EET_...
Similarly, for ®; = 0, ®3 = 1 we have
; =
smAEEz—-zg-f---

Conjugate hyperbolic functions. If A(z,Z) =1, &; = 1, &, = 0, we
have
5,-2 ':.,:'2 2'2
chyz= 1+2—!+ 72—'-2-?_}.

and for A(2,Z) =1, &, =0, &, = 1, we have

This suggests the following definition (loke the Euler - formula)

j:e =chyZ—-5sh,yz.

Conjugate Bessel’s cylindrical and other functions. If we take A(z,%)
= 7 then by using the equation

I*wW

ay+ﬁhm
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and its solution (12) we can introduce variations of Bessel’s functions. We
also can make this if we choose A(z,Z) = z, where now A has a role a
constant with respect to operators % and [dz: %%3“1 +:W =0.
In this way we will have Bessel’s functions and the corresponding functions
of different classes and of different categories of transcendentality.

The same we can do for the general "constant” coeflicient A(z):

3w
072

+ AW =0

and hence we can have a new complex trigonometry.
If this way, the equation
*w : —
=2 + B(Z)A(z)W =0
can be regarded as a generatrise of some conjugate functions of Hille, Lame
and Mathie of two complex variables z and Z.
So we can extend the spaces of elementary transcendental functions in
the complex plane.

The Vecua equation of the second order with analytic coefficients.
Consider the equation
P*W
97

(13) = A(z,Z2)W + B(z2,2)W + F(z,%)

with analytic coeflicients

00 00 00
A= E (Ll‘jzz?", = E bijz’?fj, = E f»ijZ!EJ-

1,j=0 1,7=0 1,7=0

By the method of areolar series

or by the method of analytic change (in fact, by iterations) one get approx-
imations of an analytic solution.
From
oW

5¥:/MW+BW+F}
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one obtains the first integral
%—‘;’ = /(AW + BW + F)dz* + @,(2),
and also the second integral
W = //(AW + BW + F)dz* 4 &,(2)7 + ®2(2);

using now iteration method we have a solution

W=¢2+f[A¢ngZ+//B$2dE2
+/fAdzszA¢gdf2+//Adsl+/ B®,dz*
+//Bd,?2f/:ﬁzdz2+f/8d22ffﬁ@zdzz
+¢1E+ffEA¢1d22+f/zB$1dfz

(14) +/fAd52/ EA@]dE2+f]AdEfozB¢1rﬁz
+[de32 f/:ﬁ1dz2+[fBrE? ff‘i%.zdz"
+/deEzf/AdEz/ Fd'f2+fde'Zeijdz2
+f/mtfzjf,1ﬁ'zf/m€-’+ffActfszde?f/mz2
+//Bd'z‘2/-fﬁdz2/f?dzz+fde?2ff§d:2+‘/:/.Fd?q+Rg‘

where the remainder R, has a similar form as R4 for the solution (12).

Possibilities. Without diffculties this method can be extended to any linear
(pseudolinear) equation of Vecua type of the order n with the conjugation
of function

P 92 an
F(z,?, W(z,%),W(z,3%), dap_:, (;g,..., aag) =0

which has anallytic coefficients.
The consequences are general solutions in the form of series of coeffi-
cients of systems of real partial equations.
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INEQUALITIES FOR COEFFICIENTS OF
ALGEBRAIC POLYNOMIALS

I. Z. Milovanovié, L. Z. Ranéi¢ and R. 7. Pordevié

ABSTRACT. Let Py, be the class of algebraic polynomials P(r) = Y0_ a,z” of degree
at most n and ||Pllas = ([g |P(x)|*da(z)) /2, where da(z) is a nonnegative measure on
R. We consider the best constant in the inequality |a,| < Chnv(do)||P|lae, when P € P,
and such that P(£) =0 (k = 1,2,... sm). The cases C,, ,,(de) and Chn-1(da) were
studied by Milovanovi¢ and Guessab [2] and for an arbitrary v by Milovanovié and Ranéié
[5], where they gave explicit expressions for some classical measures. In this paper we
determine the best constants Ch,v for the generalized Gegenbauer measure on (=1,1) and
for the generalized Hermite measure on (—o0, +00).

1. Introduction

Let P, be the class of algebraic polynimials P(z)=3"_,a,a" of degree
of most n. Denote by

(L.1) 1Plae = VPP = ([ [P(a)Pof2) "

the norm of a polynomial P € P,, where do(zx) is a given nonnegative
measure on the real line R, with compact or infinite support, for which all
moments u; = le‘k da(z), k = 0,1,..., exist and are finite, and o > 0.
We will consider the problem of determining the best possible constants
Cn(de) such that the following inequalities

(12) Iau] < C"u.u(da) ”P”ria (0 <v < n),

are valid.

Polynomials in (1.2) belong to the restrictive class of polynomials

Pu(&r,€25..-1€n) = {P € P, | P(&) = 0, £ € C, k=1,2,...,m).
Received 22.07.1995
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Let

m

]__[('T - 61) =2 - Slmm-l sid i (—l)m_-lsﬂt—lz + (_l)msmv

i=1

where s denotes the elementary symmetric functions of &;,&2,...,&m, ie.,

(1.3) se=3 b&&  (k=1,2,...,m).

For k = 0 we have sgp = 1 and s = 0 for k > m.

For the measure do there exists an unique set of orthonormal polynomials
Tn(-) = 7a(+; do), n=0,1,..., defined by

ro(2) = b (do)z™ + b (do)z™ ! + -+ B (do) (b (do) > 0)

and
(7!',“‘.'1'.,“) = 6nm (ns m 2> 0)1
where

(1.9)= [ (@a@dox)  (f.9€ (R))
R
Denote by da(t) the weight
(1.4) do(z) = ﬁlm—ﬁﬂz do(z).
k=1

The problem (1.2) was considered in [2] by Milovanovi¢ and Guessab (see
also [4]). They have proved the following result:

Theorem A. If P € Py(€1,E2,- .. &n) and B = b (d5), then inequali-

ties
(1.5) lan] < 85 1 Pllas
and

y ) 2 ; o\ 1/2°
(1.6)  lano] < ((bS;i:;::i—sl B +(h£::::::“)) 1Pllc

/

hold.
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Inequality in (1.5) and (1.6) are attained if and only if P(z) is a constant
maultiple of

m

ﬁ'n-m(x ) d&) H |1" - €k|
k=1

and

m
i(n—r1 -7 n—m—1) .
((55:11,:1_)1 -5 551" ::Lt))ﬂ'n—m(“*) T bs; ml—-l )“n-m—l (1')) H lt— &,

k=1
respectively.

Milovanovi¢ and Ran¢ic in [5] considered the corresponding problem for
arbitrary k& and proved the following inequality

1/2
(17) |an—k' S (Z (Z( )k :‘L ‘bS:i n’:‘-_!.?)) ) ”PHdG”

=1

with extremal polynomial

k m
(Zﬂ'n —m— J Z 1)'k l —lbxl—r:l:”) H(‘E—E’»)

i=3 k=1

In the above mentioned papers the authors have determined explicit con-
stants C, ,(de) for some weights corresponding to the classical orthogonal
polynomials. In this paper we are going to determine explicit constants
C.,v(da) for weights that correspond to the generalized Gegenbauer and the
generalized Hermite polynomials. This is significant because of the grow-
ing importance of these polynomials in many applications, particulary in
numerical approximation (see for example [3]).

2. The Generalized Gegenbauer Case

At first we observe the generalized GGegenbauer case
do(z) = |z|*(1 — 2*)*da (g, 0 > —1).

Let 3 = (p - 1)/2 and let {W,;" Ij)(;:.‘)} be a sequence of the generali-
zed (xegenbduer monic polynomials orthogonal with respect to the measure
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do(x) on (=1,1) (which was introduced by Lascenov in [1]). For such poly-
nomials we have the following recurrence relation

@21)  wSP@) = awled awld@),  a=o,1,...,
with W " (2) =0 and Wé“'m(a:) = 1, where

n(n+ a)

A = 2n+a+p)2n+a+ 3+ 1)

and

(n+8)(n+a+pj)
2nt+a+pf-1)2n+a+ )

for n=0,1,..., except when a + 3 = —1; then Ay = (f+ 1)(a + [ + 2).
Using the norm of W,(ln'm(m),

’\211+1 = (

(B2 _ n!

'
Wl B _ n! - L o s,
IWanir |l mta+it2. (n+a+l,n+p8+2)

where B is the beta function, we can obtain the loading coefficients
b ) = b (do)

in the corresponding orthonormal polynomials W,(,,“'m(x)

(et )m (n = 2%)
b(“:“'"j) _ k!B(’ﬁ:+ﬂ+l,k+ﬂ+ 1) ’
n (k+a+ﬂ+2)k )1/2
= 2% +1).
(Mﬂw+a+hk+ﬁ+ﬂ (n=2k+1)

Using Theorem A and (1.7) we obtain:

Theorem 2.1. Under restriction P(0) = 0 (i = 0,1,...,k — 1) and
PO (-1) = PO(1) = 0 (i = 0,1,...,8— 1), where s = (m — k)/2 € N
Jorl =0 andl =1, we have that

|“n*‘| S b(n—!—m;m—k+a,ﬁ+k) ”PHria

n—{i—m
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The equality is attained if and only if

P(z) = Aw"'(:ﬁ2 -1)* W(m_k-"“‘ﬁ"'k)(m) (A = const).

n—Il—m

Proof. Since restrictions on polynomials are given only in the points £ =

2= =L=0 b =bipr= =& =-1and &1 = Eoqp = -+ =
€m = 1, the new measure dé(z) is again the generalized Gegenbauer measure

do(z) = |z o1 - 22y *tedy  (p+ 2k, m—-k+a> -1).

Since the weight function is even, then according to (2.1) it is not difficult

to prove that 6% *® = 0 when n—v = 2r + 1 (reN,»=0,1,...,n). The
required result can be directly obtained from Theorem A and (1.7), where,
in our case, sy = 0. O

3. The Generalized Hermite Case

= . . . op g2
Consider now the generalized Hermite measure do(z) = |z|**e =" dz (k >

-1/2) on (—o0,+o¢). With H,(Lk](m) we denote the generalized Hermite
monic polynomial. For such polynomials the following differential equation
is satisfied

{3:1) zy" + 2k — 2¥)y + (2nx — ez ")y = 0,

where ¢ = 0, for n is even, and ¢ = 2k, for n is odd.
Using (3.1) we can obtain:

1° If n is even then

(¥

r

and {
2PN = (5)1(k+ 5+ 5)-

2° If n is odd, then

. (n—-1)/2 n-—1 RI7E S|

R n— -1 3 o) €I

HP@) = () F (k= +3) Y (—1)"( - )—("—
. e
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and . .
1O = (B32) (k4 25 1 3)-

n) in the coresponding orthonor-

The coefficients I;S,")(d(r) s ¢ S L
mal polynomials fL(f)(r:c) are given by:

1° If n is even then

2
| (L r(e+5+3)
bg}n)(dU) — (_1)11/2+u

(e gy

if v is even, and ()Ln)(da') =0if v is odd.

2° If n is odd then

o (s 5+ 1)

r(s+ 51y (550)

E)S,n)(d(f) = (_1)(11—1)/2+u (

if v is odd, and B (de) = 0 if v is even.
Similarly, as in the previous section, we can prove the following theorem

Theorem 3.1. Let PO0) =0 (i = 0,1,...,m — 1) and let the measure
da(z) = z*™do(x) and the norm ||P||4o be given by (1.1). Then

(3.2) lan—1] < v/ Ant ||P|lde [h="10,1)... .,8);

where A, | =0 for n — 1 — m < 0, and otherwise

R UES — L 14 . —l—p :

b Buibm L4 g Rl 1 g _
: '_ \ ( 3 o J)( L J) (n— 11— mis even),
A% N 7 d

1=

v — L = n—14m |
e i \I' 'k <+ _.____j... ‘ 1 - ) ‘
K ' 2 )

]

aned

I4m o\ gmeml=m=1 g o\
; T ) { 3 tJ j (n—1—m is odd),
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where Ky = (n—_l—;ﬂ-_—l)!F(k+ i + I).

2
The inequality (3.2) reduces to an equality if and only if

[1/2) _
P(z)= Az™ Y B EmH AT 0 (A= const).
=0
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ON PROPERTIES OF SOME NONCLASSICAL
ORTHOGONAL POLYNOMIALS

G. V. Milovanovi¢, P. M. Rajkovié¢ and Z. M. Marjanovié

ABSTRACT. [In this paper we consider some sequences of nonclassical orthogonal poly-
nomials which were studied in the papers [3], [4] and [6]. We find some new relations
which they satisfy and discuss their zeros.

1. Polynomials of the Laguerre type

We consider the generalized Laguerre functional
+o0
1} p) :/ P(z)z*e ™" dx, s€ Ny, I =T,
0

and the monic generalized Laguerre polynomials {ng)(m)}, which satisfy
the following three-term recurrence relation

(1.1} Esls_i)_,(:c) =(z—2n—-s- I)ESf’)(r) —n(n + S)Esﬂl(m),
=) =0, LP(=)=1.
These polynomials can be expressed in the form

n

(1.2) ES:')(:L) = Z(-l)"_k(;:) (k+ s+ 1),_p2*,

k=0

where
(m)s=m(m+1)---(m+s-1), (m)o = 1.

We introduce the functional A, by
A!‘l(f) = f(a_)a
Received 22.07.1995
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and define the functional I by
IL =I+cAy, c€eR.

By {Ln(z;c)} we denote the corresponding sequence of orthogonal polyno-
mials of the Laguerre type. Such polynomials were expressed as a linear
combination of LY )(.1:) and zL (m) (see [6]). In the same paper, it was
proved that the n-th polynomial of this sequence can be expressed in the
form

mn

g zie) = (=1Yn! _ k1+k(1+c(n+l)) n Tk.
(13)  Lu(zie)=(-1) .;}( 1) T (L)

In this section we prove some properties of these polynomials.

Denoting the monic polynomials of the Laguerre type by E,l(:::;c), we
yield

~ 1
(1.3 La(z;¢)= (1 4+ ne)ly(z;c), ¢#—-——, neN.
n
From (1.3) we see that
deg Ly(z;—1/n)=n—1 and Ly(z;—1/n) = —nl,_1(x;—1/n).

Hence, for each n € N, the sequences {Lu(:c —1/n) } _p are quasi-orthogonal
of the order one with respect to I, with ¢ = —1/n, and the next reccurence
relations are not valid for L,(z;—1/n) and its neighbours.

Theorem 1.1. The polynomial En(a:;c) can be expressed in the form

(1.4) La(z;¢) = () + AL (),
where
I+ (n+ 1)
An == -
: 1+ ne

€., {Eu(m; ¢)} is quasi-orthogonal of the order one with respect to the func-
tional IV,

Proof. Suppose that X, exists such that (1.4) is true. Using (1.2) and (1.3)—

(1.3"), for the coefficient of the term z* we yield
L+k(l4+en+1)) n  n(n+l) \
1 4+ ne n—k n-k "

After some computation we find A, which does not depend on k. O

Using the previous relations we can prove the three-term recurrence rela-
tion for polynomials L,(z;¢):
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Theorem 1.2. The sequence {E,i( a c)} satisfies the three-term recurrence
relation

E'u+1(-17; C) = (z — ﬂ’n)zn(x; C) - ﬁnin—l (.’.C; C),

where

2n4+ 1+4n(n+ e+ n(n+ 1)(2n+ 1)e?

B 5 (14 ne)(1+(n+ 1)) '
L= D)1+ (n+ 1))
b =m (14 nc)? ’

The norm of E,L(;r; c) is given by

a1+ (n+1)e

LGz )l = oy -~ = (1) =

Theorem 1.3. The zeros of L,(2;¢) are real, simple and positive, ercept
for ¢ < —1/n when one of them is negative. Denoting these zeros by

Cul < Cu'l AR Cmu
we have, for ¢ < —=2/(n+ 1), that the lowest zero (, satisfies

CT‘L?L

n—1

(1.5)

< (:nl <0 A ICnll < |C?12|-

Proof. Let (., 7 =k,...,n, be positive zeros of odd multiplicity. Defining
n

q(z) = [ (x — Cnj), we see that the polynomial .‘J.'r](:l.')zn(:l.';(?) does not
=k
change sign for z > 0. Hence

L(zq(z)Ly(z;c)) = / zg(z)L,(z;e)e”™" dx # 0.
0

Since {En(;r:;c)} is quasi-orthogonal of the order one, with respect to the
functional I, it follows deg q(z) > n — 1.

From (1.3) we have that L.(0;¢) = (=1)*2!/(1 + ne). Hence

(—-1)", for ¢ > —1/n,

sign L, (0;¢) = { (=1)**, fore< —1/n.
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—~ n ~ n
Since Ly (x;¢) = [ (2 = ¢ni) and L, (0;¢) = (=1)" [] (i, we conclude that
i=1 . i=1

=
all zeros are positive for ¢ > —1/n, and only one of them is negative for
¢ < —1/n. Also, differentiating (1.3) with respect to x, we find

)u+1 nln 2 +e(n+1)

Thus, for ¢ < =2/(n = 1), it is E:I(O;c)/in(ﬂ;c) > 0. Because of

L' (;¢) B i 1
Eﬂ(az; C) L= Cni :

i=1

we have ) (—1/Cni) > 0. Then, from —1/(p1 > 3 (1/Cni), we yield
i=t i=2

1 -1 1 1
K and

> > =
"'Cnl Cnn —Cul Cn2 '

from which follows (1.5). O

ExXAMPLE 1.1. The polynomial Eg(:c; 1) = 29 = ” B2y T:r— *r, has posltwe ZEeros:
z1 = 0.119747, 29 =~ 2.06541, z3 =~ 6.06483, but the polynomial LJ(.B,—Z) =
23 — —’5213 B 5'5‘11:-{— %, has one negative zero: z1 &~ —0.103301, 22 ~ 1.95187, a3 =
5.95143.

Theorem 1.4. The zeros of i.‘,f (z) and 1
polynomial L, (z;c).

,1_1(3") interlace the zeros of the

Proof. Let 2 = 1,...,m, be the zeros of L\ )( :). Then from (1.4), we

m 1’
1 1 1
have Ly (z!] t,c-) = /\"L( )1(1-( ]) and L"(.r:ﬂ ,_H;c) = AL ),(m“ i+1)- Since
between :;S1 : and :z'n ,+1 there exists an unique zero of Lu-1(°’") we conclude

that LS]‘( g:) and LEJ}I(T,I si+1) must have the opposite signs. Hence, a

zero of L (z; ¢) exists in the interval (;r:n vy 5;12-}-1) fori=1,...,n— 1.

In the same way, we can conclude that Lu(ﬂ:; ¢) has a zero in the interval
1 1
(@i 2 1540) (=1, m=2). O

Remark. In [8] it was proved that En(z) and En_l{r) interlace the zeros of
Zn(;rr;c).
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2. Polynomials of the Jacobi type

In this section we consider the functional

1
‘P py = / (1 - 2)* P(2) da, Bas—1,
0

and the monic Jacobi polynomials {@Sfi"")(m)} orthogonal with respect to
the functional I'¥%)  Such polynomials can be expressed by the sum

n

~ ; (=1)"n!
(8,a) _ ;
Q. (m)_(n+a+ﬂ+l Zk' “l (n+a+3+1)

(B + l)uTk
B4+ 1)

and they satisfy the three-term recurrence relation

QLT (@) = (2= a)QP N (2) = 5,0 D(w), QV(2) =0, QP (z) =1,

where
_ o n(n+ /)
Ay = Y41 Tns In = In+at ﬁ )
_fr=1)(B+n-1) (B +n)
o= { 22n+a+3-1) a"} "2t a+p+ 1) gL

Let I, = I%9) L ¢A,. c € R, be a new functional and let {P(U o) (z;¢]0) }
be the corresponding monic orthogonal polynomials of the Jacobi type. In
[6] it was proved that the n-th polynomial can be expressed by

]+L(1+c(n+1)(n+a))( ) k
(0.0) (.. )in! k
P (z5¢|0) = T Z( . ¥ Dintatk+ 1)y \k)"

Denoting the monic polynomials of the Jacobi type by {ﬁ,(lo’“)(ar;cw)},
we have

P (2;¢]0) = (1 + n(n + a)e) PO (z;¢]0), ¢ # - b

n(n+a)’

Hence it is deg P “)(.L n(n+ﬂ) |0) = n — 1 and the next reccurence
relations are not valid for that polynomial and its neighbours.

Like in Section 1 we can prove the following results:
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Theorem 2.1. The polynomial P( ’ ) (2;¢|0) can be expressed in the form
= = 1,
PO (wie]0) = Q) + M@ (@),

where

n(n + a) . 1+ (n+1)(n+a+1)c
(2n+a)(2n+a+1) 1+ n(n+ a)c '

W —

Theorem 2.2. The sequence { n ’a)(;r c|0)} satisfies the three-term re-
currence relation

P (25¢]0) = (2 — @) PO (w1¢]0) = Bu 2T (25¢ | 0),

where

An

a, = ay + /\n.+1 = Any ﬂn = by-1 :\_'_1

Theorem 2.3. All zeros of PO (25¢|0) are real, simple and positive, with
exception one of them for ¢ < —1/(n(n+a)). Furthermore, forc < -2/((n+
1)(n+ a)) the inequalities (1.5) hold.

EXAMPLE 2.1. The polyuomidl f’;o‘o)(m;l [0) = & — %—g-rz + %tlj‘r - 2—6-0-, has

all zeros in (0,1): &1 =~ 0.0123940, z, ~ 0.459337, z3 = 0.878268, but the

o pl00), . a3 A5 % . 33 i ' : .
polynomial P "' (z;-2]0) = 2° — 372" + §5* + 337, has one negative zero:
1~ —0.103301, zo = 1.95187, z3 =~ 9-)14'3

Theorem 2.4. The zeros on ’a)(.n) and Q! 'a)( ) interlace the zeros ofthe

n-—1

polynomial PO (z:c)0).
( r )

Remark. It was proved the interlacing property for @g?’ﬂ)(r) and Q'

respect to P (z;¢]0) (see [8]).

(z) with

3. Polynomials of the Legendre type

The sequence of Legendre polynomials {Pﬂ(:r: )} is orthogonal with respect
to the functional

L(P) = /_] P(z)dz.

This sequence satisfies the three-term recurrence relation

(n 4 1) Poy1(z) = (2n + 1)z Pu(z) — 0Py (2),
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with initial values P_q(z) = 0 and Fy(z) = 1. The polynomial P,(z) can be
expressed in the form

5 [n/2] s
1 dfm\ (2 — 20\ . 4
e = g S0 () ()
=0

n

Let
Li:L+C(A—1+A1)1 ceR,
be a new functional, and {P,(z;c|— 1,1)} the corresponding orthogonal

polynomials of the Legendre type. Then the moments i, = I3(x™) are given
by

0 for odd =,
%, = 5
H + 2¢ for even n.
n+ 1
The polynomial P, (z;c|— 1,1) can be expressed in a determinant form,
ﬁ() ﬁ] s ﬁn—t
o fi fln
Pp(z;e|=1,1) = det
-1 fin Han—1
1 x o

Using a method as in Gautschi and Milovanovi¢ [5], we determine

A, = det[fit ;)i j=o0,... n-1-

It is known that for determinants

n

1
H?tz‘k’“[m]w’:w He = 1;
holds
2 — 2112
Hyo= 5 (20 2) v z Hypeqy 1= 3y oo .
(2n —1)2---(4n — 5)*(4n — 3)
Introducing
1 n
H?L(C] = [m + C]i,j:l ?
we obtain
| 1 1 1
i L 1? 2111—1
1 1 1
H"(C) —= 3 5 2n41
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Lemma 3.1. We have
2
Hu(e)= (14 ¢ 2")) H,.

Proof. For H,(e) we have

H"(C) = Hy +eDy,

where
0 1 1 1 7
1 1

e 1 3 2n—1
4 1 1 1

D, = 3 5 I+l
] el = i
b 2n—1 2n+1 4n-3 -

We can prove that D, = (22")11',” n € N. Subtracting the last row in D,

from all others, except the first one, we obtain

0 2n—-1 2n+1 --- 4n -3
0 1 1 i
(2n — 2)! o ! i e
n — K 2n
2n—1)---(4n-3) *
—1 1 1 i

Also, subtracting the last column from all others, except the first one, we
obtain

B (2n — 2)!1? .
D= (2n—1)%---(4n — 5)*(4n — 3){(41; = 3)Ha1 + Dos },

from which, by induction, we finish the proof. O

Lemma 3.2. If

H(c) = det [zmy=r +e]i,_,,  Hy = Hy(0),
then
Hife) = [1¥c("H)] B n=12 ... .
Thus, i
An =0, 1+ () [1+(*F)],
where

A, = det[L(:EiJrj)]i,j:D,... =1+



On properties of some nonclassical orthogonal polynomials 109

Theorem 3.3. The polynomials P,(z;¢|— 1,1) satisfy the following three-
term recurrence relation

(n+1) (1 + ( )e ¢) Pupr(z;e|-1,1) = (2n+1) (1 + (“;1)0) wP(m e]= 1,1)
—n (1 + (";2)(:) P q(x;e| = 1,1).

Proof. By {ﬁn(a:; ¢|—1,1)} we denote the sequence of monic polynomials of
the Legendre type. According to the property (zf,g) = (f,zg) of the inner
product defined by the functional I3: (f,g) = I5(fg), we conclude (cf. [2]
and [9]) that this sequence satisfies a three-term reccurence relation of the
form

ﬁn+1(m;c| -1,1)= :rl’;n(a:;cl -1,1)- ﬁnﬁ,l_l(:u; c|-1,1),
where (see [3])
Ay Ay
Az
Knowing a relation for the monic Legendre polynomials and the determinant
Ay, we yield

ﬂn =

ﬁnﬂ(m;cl -1,1)= a:ﬁn(.r;ci -1,1)
n? (1+ (n 1) )(1+ (n+;)c)

- 2 n n “ 1(1" f’l 1)
it =1 (14 (3ot +("F)e)
Putting
2
Po(z;e| -1 ‘(!nn',Pn(sr cl-1,1),

we finish the proof. O
By induction and using the three-term recurrence relation, we obtain:

Theorem 3.4. The polynomial P, (z;c|—1,1) can be expressed in the form

i S () () )

where n=2,3,....
Remark. This formula was derived in [6] with a mistake.

The last formula shows that the sequence {Pﬂ(:a:; e|l—1, 1)} has a degen-
erated property in the sence that is

ﬁn(:x:; —(T;)_l |-1,1)= ﬁn_z(ll?:'—(;)_l | = 1,1).
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Theorem 3.5. The polynomials P,(z;c|—1,1) are quasi-orthogonal of the
second order with respect to the functional

JOD(P) = /1 P(z)(1 — %) dz.

The polynomial Py(z;¢| — 1,1) has at least n — 2 different zeros with odd
multiplicity in (—1,1).

Proof. Because of the orthogonality, we have for any polynomial p(z) of
degree k (k < n —3) that
Iy(Pa(z;c| = 1, D)p(e)(1 - 2*)) = 0,

ie.,
/ Pu(z;e] — 1,1)p(z)(1 - 2*) dz = 0.

So, we yield quasi-orthogonality of the order 2. Finally, let 21,202, .+ 5 Tnk
be all distinct zeros of Py(z;¢|—1,1) with odd multiplicity and which are in
(—1,1). If we introduce the node polynomial p(z) = (z—xm )(z—Tpn2) -+ (-
T,k ), then the polynomial Py (z;¢|—1,1)p(z)(1 - x?) does not change sign
in (=1,1). Therefore,

1
/ Po(z;¢| =1, 1)p(z)(1 — z%) dz £ 0.
~1
Because of that, we conclude that degp(z) >n—2. O
ExAMPLE 3.2. The polynomial

Piy(z;c|—1,1) = )(l-}—‘}(‘):: 3(1 + be)z,
has the zeros

5(1 4+ 3¢)

All zeros of Py(z;e|—1,1) are in (=1,1) if ¢ > —1/3. For ¢ < —1/3, two of them
are out of (—=1,1).

z1 =0, za==

Remark. According to Favard’s theorem (see [2]) there are exist the weight distri-
butions w;(z), i = 1,2,3, corresponding to the previous func tionals J;:

+ o<
T P) = [ P(z)dw;(2), 1= 1,2.3.

['hese distributions are (see {5])
wi(ry=¢ “eb(r), walax) = (1—2)" +cb(r), wa(z)= L+e(ofe—11+6{x+ i),

where &{x) is the Dirac’s delta function.
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16:00 - 16:30 V. Gutev: On set-valued selections for lsc mappings

Chairman: Doitchin Doitchinov

17:00 - 17:30 1. Gotchev | H. Mintchev: On sequential properties of Noe-
therian topological spaces
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Liyperspaces

June 28, 1995
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