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FILOMAT (Nis) 9:1 (1995), 1-8 

A NUMERICAL PROCEDURE FOR COEFFICIENTS IN 
GENERALIZED GAUSS-TURAN QUADRATURES 

Gradimir V. Milovanovie* and Miodrag M. Spalevie 

ABSTRACT. A numerical procedure for the coe fficients in the generalized Gauss-Turdn 
quadrature formulas is presented. The corresponding nodes as the zeros of s-orthogonal 
polynomials can be determined by  a  stable algorithm given in [10]. A numerical example 
is included. 

1. Introduction 

We consider the generalized Gauss-Turin quadrature formula (see [11) 

2s 	71 

f ( 1 )(1 A(t)  =  EE A,,,f(i)(Tv) + R n( 
i=0 v=1 

where dA(t) is a nonnegative measure on the real line It, with compact or 
infinite support, for which all moments 

ick = I  t k  dA(t), k = 0 , 1 , . . . , 

exist and are finite, and /to >  0.  The formula (1.1) is exact for all polynomials 
of degree at most 2(s + 1)n -  1,  i.e., 

R n( f) =  0 	for f E P2(s+1)n-1 • 

The knots 7-, (v = 1, 	, n)  in  (1.1) are the zeros of the monic polynomial 
(t) , which minimizes the following integral 

fit 

 rn (028+2 dA(t), 

Received 11.11.1993; Revised February 15.02.1994 
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7rn (t)  ) 23+1  
cz,,,(t) 

t — r„ 
v = 1, 	, n, 

2 	 G. V. MilovanoviC and M. M. Spalevi6 

where ir,i (t) = tn an_i  tn-1  + • • •  +  ai t+ ao . This polynomial 7rns is known as 
s-orthogonal (or s-self associated) polynomial with respect to the measure 
dA(t) (for some details see [2-7], [11-13]). For s = 0, we have the standard 
case of orthogonal polynomials, and (1.1) then becomes well-known Gauss-
Christoffel formula. 

In [10] one of us gave a stable method for numerical constructing s-ortho-
gonal polynomials and obtaining the nodes of the generalized Gauss-Turin 
quadrature formula (1.1). It was an iterative method with quadratic conver-
gence based on a discretized Stieltjes procedure and the Newton-KantoroviC" 
method. 

In this paper, in Section 2, we give a numerical procedure for finding the 
coefficients A2,,, in (1.1). An alternative method was given by Stroud and 
Stancu [16] (see also [15]). A numerical example is given in Section 3. 

2. The Coefficients in the Generalized 
Gauss-Turin Quadrature 

Let 7„ = 	n), v = 1, . . . , n, be the zeros of the s-orthogonal polyno- 
mial ir,,(t) (a-  pan(t)). If we define co,/  by 

then the coefficients Ai,,, in the generalized Gauss-Turin quadrature (1.1) 
can be expressed in the form (see [15]) 

1
[D2 3—i  

i 	
1 	

f .( x )2 8+1 _ n (02.5+1 

A i = !(2s — i)! 	 JR 	X — t= Ty, 

where D is the standard differentiation operator. Especially, for i = 2s, we 
have 

A23v = 
(2.9)!(7:,(7v))28 	

v = 1, . . . , 7/, 

where B u (s )  are the Christoffel numbers of the following Gaussian quadrature 
(with respect to the measure 4(0 = irT,2 -9 (t)dA(t)), 

g(t) dp(t) = E 13(,$)  g(rv ) R,,(g), 	R„(P2n _ 1 ) = 0. 
v.1 

1 	f rn ( x )2 8+1 
A23 ,„ =   	dA(x), (2, ) , (7,47.0)23+1 	t  _ 

B,( 8)  
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A Numerical Procedure for Coefficients ... 	 3 

Since X s)  > 0, we conclude that A2 3 , 1, > 0. The expressions for the other 
coefficients (i < 2s) become  very  complicated. For the numerical calculation 
we can use a tringular system  of  linear equations obtained from the formula 
(1.1) by replacing f with the  Newton  polynomials: 1, t - r1, (t  _ )28+1 ,  

(t - 7.023+1 (t - 	(t 	71 )231-1(t 	72 )28+1 ...(t 	T.n )2s .  

Here, we give a method  for  the numerical calculation of coefficients of 
the generalized Gauss-Turin quadrature formula (1.1), starting from the 
Hermite interpolation problem 

14!) ( 7, )  =  fi at (r,. ) , 

where = 1, ... ,n; i = 0,1, ... , 	- I, 	+ ••• + an = m + 1. 

Taking ai  = 2s + 1, i = 1, 	, n and integrating f (t) - 11 m (t) = r( f; t), 
we obtain 

(2.1) 

where 

2s n 

f(t)da(t) = EEpi)(7-0 1,,i(t)dA(t) R„(f), 
0  v=1 	IR 

2s—i_  1 	— T„) 2S+1 1 (k)  
1 	

[(i 
 = E 

k ! 

	

11(t) 	j L=T,  (t - r ,,) 2 s-i - k+1 
k=0 

11(t) = Kt 	Ti)(t 	72) • •  (t 	17/1)] 2s+1  

and R„( = fR  r( f ; 0(1)40  is  the corresponding remainder term. 

Hence, (2.1) becomes the generalized .Gauss-Turin quadrature formula 
(1.1), where A io, are the Cotes numbers of higher order and given by 

=  f 1 1,,i(t)dA(t), 

	

1
2s—i 	 23+11( k ) 

= TIE k! 

	

[ 	Tv) 	

nv,i+k(t)dA(i), 

	

k=0 	 t=r,, Ifft 

where i = 0, 1, 	, 2s; v = 1, 	,  n  and 

1/(t
2
)  

	

( t) = (t 70s  -J-1-1  = 	- 	11(t - T .3  )2s+1 . 

JO 11 

(2.2) 
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4 	 G. V. MilovanoviC and M. M. Spalevie 

For i + k < 2s, we can see that 12„,i +k(t) is a polynomial of degree at most 

(n — 1)(2s + 1) + 2s = (2s + 1)n — 1 < 2(s + 1)n — 1 = 2N — 1, 

where N = (s + 1)n. 

Hence, the problem of determining of the coefficients of the Gauss-Turin 
quadrature formula (1.1) is reduced to determination of integrals in (2.2). 
All of the above integrals in can be found exactly, except for rounding errors, 
by using a Gauss-Christoffel quadrature formula with respect to the measure 
dA(t), 

N 

g(t) dA(t) = E Arg(Tr))+ RN(g), 
k=1 

taking N = (s + 1)n knots. This formula is exact for all polynomials of 
degree at most 2N — 1 = 2(s + 1)n — 1. 

In order to calculate the derivatives 

(2.3) 
	

L 

(2.4) I. (t_ 	) 2s+1 (k) 

1/(0 L=T„ 
(k  = 0, 1, 	, 2s; v= 1,... 01), 

we need the following auxiliary result: 

Lemma 2.1. If g E C( m ) (E), m E No, E C R, then 

 (e9 )(°)  = eg 	WY ")  = E 	
1\
og(1)(eg)(P - i). p= 1, 	, 171 

Proof. Since (e9 )` = gieg, applying the Leibnitz's formula for the derivative 
of the product of functions, we have 

(eg)( ,)  = (g ieg
)(p, = E  (7)— 1),

9
, )(J )(eg )(p_i_1 )  

J=0 

(

Pi  — ii) 9(/) (e g ) (,-0, 
— 

where p = 1,... ,in. ❑ 
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A Numerical Procedure for Coefficients  ... 	 -5 

Let a = TO < Tl  < • • • < r„  <  r„+1  =  b, where [a, b]  is the smallest closed 
interval containing supp(a),  or  a  = —oo, b = -Poo. For t E (7,-1,rp+i) we 
define u,, by 

uv (t) = rpt_r,,,--(2s+1)= ( _ 0—exp[— ( 2s  -I-  1) E 	log It — 	, 
i yfv 	 Joy 

i.e., u,(t)  = (-1)n — ve liv( t) ,  where 

h,(t) =  —(2s  +  1)  E gi(t), 	gi(t)  =  log It — 

Since  gP)  (7,) =  (-1)3-1 (j  — 1)!(T„ — rir  ,  j  >  1, we have 

hP(7,)  =  —(2s  -I-  1)(-1)3-1 (j — 1)! 
	

(7, — 

It is clear that the derivatives in (2.4) are exactly the derivatives of  up(t) in 
the point t  =  7,. Thus, using Lemma 2.1, we can express they in terms of 
MP (70. 

This numerical method for calculating the coefficients Ai,„ can be sum-
marized in the following form: 

Proposition 2.2.  Let  7,, i,  =  1, 	,  n, be  zeros  of the s-orthogonal  polynom 
rrn(t), with  respect to  the  measure dA(t) on R. Then,  coefficients  of  the 
generalized  Gauss-Turcin quadrature formula, 

L 
2s  n 

f  (t)  dA(t)  =  E E 	R(f), 
i.o  v=1 

can be expressed in the  form 

2  s 
1 1 

= 	h.(  or )  
k=0 

N E  A (N)r, v,i+k(N)\ 
aZ0-j 	11 

j=1 

where A( N)  and  TC N)  are  weights and  nodes  of the  Gauss-Christoffel quad- 
rature formula  (2.3)  in  N = (s  1)n points,  the polynomial  SI,, i (t) is given 

by (2.2), and [e4 ( 0 1 (1 k),  is determined by Lemma  2.1. 

To conclude this section  we  mention a particulary interesting case of the 
Chebyshev mesure dA(t)  =  (1  — t2 ) -1 /2 dt. In 1930, S. Bernstein [1] showed 
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6 	 G. V. MilovanoviC and M. M. Spalevi6 

that the monic Chebyshev polynomial i'n (t) = T,,,(0/2n -1  minimizes all 
integrals of the form 

Irn(t)lk+1 

 
dt , 

	 k > 0. 

Thus, the Chebyshev-Turin formula 

2s n 

(2.5) 	1  f(t)   dt = E E Aidi.f(i) (Tv) Rn(i), I-1 -VITT 	i=0 

with Tv. = cos121"--71)1 / v = 1, ... ,n is exact for all polynomials of degree at 2n  
most 2(s + 1)n — 1. Turin has stated a problem of explicit determination 
of A i ,, and its behavior as n -Foo (see Problem XXVI in [18]). Some 
characterizations and solution for s = 2 were obtained by Micchelli and 
Rivlin [9], Riess [14], and Varma [19]. One simple answer to Turin question 
was given by Kis [9]. 

3. Numerical Example 

In this section we give an example when is preferable to use a formula of 
Turin type instead of the standard Gaussian formula 

(3.1) 
	

LAO dA(t) = 
v= 1 

,f(t,)+ R„(f), 

for which R,1 (7 2,L_1) = 0. All computations were done on the MICROVAX 
3400 computer in Q-arithmetic (machine precision A:: 1.93 x 10 -34 ) . 

Consider the following simple numerical example 

I 
 = J

e t 	— t 2  dt = 1.7754996892121809468785765372... . 
—1 

Here we have f(t) = et and dA(t) = 1/7—t2 dt on [-1, 1] (the Chebyshev 
measure of the second kind). Notice that /OM = f(t) for every i > 0. 

The Gaussian formula (3.1) and the corresponding Gauss-Turin formula 
(1.1) give 

(3.2) 	 I 	= 	A,,etv 
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A Numerical Procedure for Coefficients ... 	 7 

and 

(3.3) 
	

I 	7T, s = 
v=1. 

respectively, where d, $)  

Table 3.1 shows the 
s = 0(1)5. (Numbers in 
the machine precision.) 

2s 
E Ai ,„. 
i=o 

relative errors 1(/,T, 3  - /)//,T,, s 1 for n = 1(1)5 and 
parentheses indicate decimal exponents and m.p. is 

TABLE 3.1 
Relative errors in quadrature sums /I, 

I n s = 0 s = 1 s = 2 s = 3 s = 4 s = 5 

C
si
 4, 1

 <
1t,  Lr.,. I  

1.15(-1) 4.71(-3) 9.72(-5) 1.21(-6) 1.01(-8) 5.98(-11) 

2.38(-3) 2.05(-7) 3.06(-12) 1.36(-17) 2.40(-23) 1.88(-29) 

1.97(-5) 1.15(-12) 4.02(-21) 9.26(-31) m.p. m.p. 

8.76(-8) 1.71(-18) 4.68(-31) m.p. m.p. m.p. 

2.43(-10) 9.40(-25) m.p. m.p. m.p. m.p. 

For s = 0 the quadrature formula (3.3) reduces to (3.2), i.e., /Z o  

I . Notice that Turin formula (3.3) with n nodes has the same degree of 
exactness as Gaussian formula with (s + 1)n nodes. 
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PAWLEY MULTIPLE ANTISYMMETRY THREE- 
DIMENSIONAL SPACE GROUPS G I3'P 

I. SYMMORPHIC GROUPS 

Slavik V. Jablan 

ABSTRACT. By use of antisymmetric characteristic method, Pawley multiple antisymme-

try three-dimensional space groups G ps  i (p = 3, 4, 6), are derived. 

Crystallographic (p')-symmestry three-dimensional space groups (or Paw- 

ley colored antisymmetry groups) G3 (p = 3,4,6) are derived by A. F. 
Palistrant[1,2,3,4 From 73 symmorphic space groups G3 are derived 670 

junior 
G3, 

 (96 G3' + 266 G:1' + 308 CM, from 54 hemisymmorphic G3 are 

derived 562 junior G3 (75 G3' + 252 , G1' + 235 Gl'), and from 103 asym- 

morphic G3 are derived 980 junior G3 (138 	+ 432 G1' + 410 Gg'); this 

means, the category G133  (p = 3,4,6) consists of 2212 junior groups (309 G3' 

+ 950 G1' + 953 4). 
By the use of the generalized anti ymmetric characteristic method (AC-

method) [5,6,7], we will deriveall crystallographic (p' ,2 I )-symmetry three- 

dimensional space groups G 3I 'P' (p = 3,4,6). 

1. Some General Remarks on (p')- and (p',2')-symmetry 

Pawley (p')-symmetry is a particular case of the general P- symmetry 
with P = Dpop), where Dp( 2 ) is the regular dihedral permutation group, 
generated by the permutations el = (1...p)(2p...p + 1) and e2  = (1 p 
1)(2 p 2)...(p 2p), (p > 2) satisfying the relations: 

e T; = e2 = (eie2) 2  = E. 

For every p the group D p( 2p) is irreducible. 

Received 5.10.1994 
1991 Mathematics Subject Classification: 20H15 
Supported by Grant 0401A of RFNS through Math. Inst. SANU 
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10 	 S. Jablan 

By introducing 1 antiidentity transformations e3, 	et+2  [8,9] (1 E N) 
commuting between themeselves and with e l , e2  , we have (p' ,2 1 )-symmetry, 
with the group P = D k2 p) x C. 

In this work only junior groups of complete (p' ,2')-symmetry will be con-
sidered. Every junior (p')-symmetry group GP' is derived from certain gen-
erating symmetry group G, as well as every junior (p' ,21 )-symmetry group 
G 1 ' 13'  is derived from certain junior (p')-symmetry group [1,2,8]. 

Theorem 1. a) A (p' ,2 1)-symmetry group G 1,P' is the junior (p', 29-sym-
metry group if all relations given in the presentation of its generating sym-
metry group G remain satisfied after replacing the generators of the group G 
by the corresponding (p',29-symmetry group generators; 

b) a junior (p' ,29-symmetry group is called the Mm-type (p`, 2 1)- sym-
metry group, if it is a Mm-type group regarded as a 1- multiple antisymmetry 
group; 

c) a junior Mm-type (p' ,29-symmetry group G I,P' is a group of the com-
plete (p' ,29-symmetry, if for every i (i = 1, ...,1 + 2) ei-transformation can 
be obtained in the group GI,P' as an independent (p', 2')-symmetry transfor-
mation. 

If only the condition c) it is not satisfied, such a group GI ,P' is the un-
complete junior (p' ,29-symmetry group of the Mm-type. 

Because the derivation of (3', 2 1 )-symmetry groups coincides to the deriva-
tion of (32, 2 1 )-symmetry groups [10], as the basis for the derivation of 
all crystallographic (p', 2 1 )-symmetry groups (p = 3, 4,6), (4')- and (6')-
symmetry groups will be sufficient. The derivation will be realised by the 
use of generalized AC: 

Definition 1. Let all the products of (p')-symmetry generators of a group 
GP', within which every generator participates once at the most, be formed, 
and then subsets of transformations equivalent with regard to (p')-symmetry, 
be separated. The resulting system is called the antisymmetric characteristic 
of the group GP' and denoted by AC(GP 1 ) [5,6,7,10]. 

Theorem 2. Two (p' ,29-symmetry groups of the Mm  -type -type derived from 
the same (p`)-symmetry group for m fixed = 1, ...,1) are equal if they 
possess equal antisymmetric characteristics. 

The problem of differing between complete and uncomplete (p', 2')-sym-
metry junior Arm-type groups can be solved by the use of the homomorphism 
of the subgroup C = {el } of the group Dr(2r)  to the group C2 at p = 0(mod 
2): 

evc-1 __+ 	elk _+ E (1 < k < (p + 1)/2) [5,10]. 
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Pawley multiple  antisymmetry three... 	 11 

2. Symmorphic (71,29-symmetry 
Three-dimensional Space Groups  G3'Pi  (p =  3,4,6) 

For denoting space symmetry groups the original Fedorov symbols [1,2,8], 
Zamorzaev notation and International symbols [11] are used, where p'-sym-

metry transformations  el, e2 , e 1 e2  (p =  3,4,6; qlp) and ere 2  (p =  4,6) are 
denoted by (plq,'),")  and (2' respectively. 

The application of the theoretical assumptions given above will be illus-
trated by example of complete (p', 2 1 )-symmetry junior three-dimensional 
space groups of the Mm-type (p = 3,4,6) derived in the family with the 
common generating symmetry group G =7s (P2/m), {a, 6, c}(2 : m) with 
the AC: {in, em}{2,2a,2b,2ab} belonging to the AC- equivalency class VII 
[6, Tab.1]. At p =  3 we have two junior (3')-symmetry groups: 

1) {a, b, c( 3 1(2 : ins )), 
2) {a( 3 ,b,c}(2i)  : in). 
Because of the e 2 -transformation m i ), the AC of the first group is of the 

form {e 2 , e 2 }{E, E, E, El and of the type (2)(5) 1 , and the AC of the second 
is of the form {E, E} {e2 ,  e 2 , e2, e2}  and of the same type (3)(5) 1 . Hence, for 
the both of them Ni  = 7, N2 = 64, N3  = 700, N4 = 6720 [6,10]. 

So, we have the following complete (3', 2)-symmetry groups: 

{*a, b, (4 3 1(2 : m')), {a, b,* c( 3 }(2 : 	{a, b, c( 3 }(*2 : m i )), 

{*a, b,*  e(3 }(2 : m')),  f*a,b,c( 3 }(2  :* in')),  {a, b,* c( 3 }(*2 : TO), 

{a, b, c( 3 }(*2 :* in')), * a( 3  , b,  c}(2` )  :  7n), 	b,* c} (2' : in), 

{a( 3 , b, 0(2') :* 	{*a( 3 , b,*  c}(2')  :  in),  {*a( 3 , b, c}(2' )  :* in), 

{a 13 , b,* c}(*2') : in) and {a( 3 ,  b,  c}(*2' )  :* 
where the antisymmetries are denoted  by  an asterisk. 

At p =  0(mod 2), the form and, consequently, the type of AC(GP')  is 
obtained by the use of the homomorphism mentioned in Chapter 1. By 
treating in this way the six  (4')-symmetry  groups belonging to this fam-
ily, we have the following results: the three of them, {a( 4 , b, e1(2 .1  : in), 

{a( 4 ,b,c}(2') : in( 2 ) and ael  r') : in), possess the  AC of the form 
{E, E}{e 2 ,e2 ,eie2,eie2}  and  of  the type (3)(9), where by (9) is denoted the 
type of the term {e2 , e2  , eie2,  el  e2} which contains e 2 - and e l  e2 -transform-
ations. These transformations  are  nonequivalent in the sense multiple anti-
symmetry, so according to the multiple antisymmetry the type of the term 
mentioned is (9).  Contrariwise,  they are equivalent in the sense of (p')- 
symmetry, so the type of this term  is  denoted by (9). This is the reason 
why the derivation of multiple antisymmetry groups from the (p')- sym-
metry groups with such antisy mmetric cha racteristics cannot be simply 
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12 	 S. Jablan 

reduced on the theory of multiple antisymmetry, this means, on the deriva- 
tion of multiple antisymmetry groups of the Mm+ 2 -type from the M2 -type 
groups, as it has been done in the case of (p2,2')-symmetry groups. From 
the first group {a( 4 , b, c}(2') : m) we derive Ni(fa( 4 , b, c}(2') : m)) = 9 junior 
complete (4',2)-symmetry groups of the type M': 

fa(4 ,b,c}(2 1 ) :* m) with the AC: {e3,e3}{e2,e2,elie2me2} of the type 
( 3 )(2)3 ; 
{ a( 4 , b, c}(*2') :* in) with the AC: {e3, e3}{e2e37e2e3, eie2e3, ele2e3} of the 
type (3)(9) 3 ; 

f*a( 4 , b, c}(2 1 ) :* in) with the AC: { e3, ea }{e2, 	ei e2 ea , ei e2e3} of the type 
( 3 )(9)3 ; 
fa( 4 , b,* c}(2') : in) with the AC: {E,e3}{e2,e2,eie2,eie2} of the type 
(4 )(2)3 ; 
{ a (4 , b,* c}(*2' )  : in) with the AC: {E7e3}{€2e3, e2e3, eie2e3, eie2e3} of the 
type (4)(9) 3 ; 

f*a(4 ,b,*c}(21 : m) with the AC:{E,e3}{e2,e2,eie2e3,eie2e3} of the type 
(4) (9)3 ; 

fa,(4 ,*b,c}(2`) : in) with the AC: {e3,e3}{e2,e1€2,e2e3,e i e2 e3 } of the type 
( 3)(h)3 ; 

fa( 4 ,* b, c}(2 1 ) :* in) with the AC: {e3, e3}{e2,  e l e2 , e2 e3 , e2e3 } of the type 
( 3 ) 
(11) 3 ; 
{a (4 ,*b,c}(2') : in) with the AC: {E,e3}{e2,ele2,e1c2e3,e2e3} of the type 
( 4)(h)3 . 

From the groups with the AC of the type (3)(9) 3  can be derived the 6 
M2 -type groups: 2 of the type (4)(9) 4 , 1 of the type (4)(9) 4 , 2 of the type 
(3)(16) 4  and 1 of the type (4)(16) 4 ; from the group with the AC of the type 
(3)(9)3  the 7 M 2 -type groups: 4 of the type (4)(9) 4 , 2 of the type (3)(16) 4 

 and 1 of the type (4)(16)4 ; from the groups with the AC of the type (4)(9) 3 
 the 10 M2 -type groups: 4 of the type (4)(9) 4 , 2 of the type (4)(9) 4  and 4 

of the type (4)(16) 4 ; from the group with the AC of the type (4)(9) 3  the 
12 M 2 -type groups: 8 of the type (4)(9) 4  and 4 of the type (4)(16) 4 ; from 
the group with the AC of the type (3)(16) 3  the 12 M 2 -type groups: 4 of 
the type (3)(16) 4 , 2 of the type (3)(16) 4 , 4 of the type (4)(16) 4  and 2 of 
the type (4)(16) 4 ; from the group with the AC, of t he type (4)(16) 3  the 18 
M2 -type groups: 12 of the type (4)(16) 4  and 6 of the type (4)(16) 4 . Hence, 
N2 ({a( 4 , b, 4(2' )  : m)) = 93. Because from the groups of the types (4)(9) 4 

 and (4)(9)4  can be derived 4 M 3-type groups, from the groups of the type 
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Pawley multiple antisymmetry three... 	 13 

(3)(16)4  6, from the groups of the type (3)(16) 5  8, from the groups of the 
type (4)(16) 4  12 and from the groups of the type (3)(16) 4  16 M3 -type groups, 
N3 ({a( 4 ,b,c}(2') : m)) = 840. 

The remaining three (4')-symmetry groups {a, b, c( 4 } (2 : 	)), {a, b, c( 4 } 
(2( 2  : in')) and {a( 2 ,b,c(4 }(2 : /0) possess the AC of the form le2,eie21 
{E, E, E, E} and of the type (4)(5) 2 , where by (4) is denoted the type of the 
term {e2, el e2 }. In the case of (p')-symmetry groups with the AC in which 
the term {e2, eie2} occurs once and only once, the series of the numbers 1Vfn  
can be simply computed using the following theorem: 

Theorem 3. Let in the AC(GP') the term {e2 ,ei e2 } occurs once and only 
once. If by N„, is denoted the number of the junior M"`+2 -type multiple 
antisymmetry groups derived from the AC(GP) treated as the AC of a 2-

multiple antisymmetry group, then N,,1(G P') = (2m + 1)N„,12m+1  (m = 

Proof: Because the term {e2 ,ei e2) occurs once and only once in the 
AC(GP) it . is independent from the other part of the AC. For in = 1 
it is transformed into the four terms different in the sense of 3-multiple 
antisymmetry: {e2, ele2}, {e2e3, e2} {e2, evezea}, { e2e3, ei e2e3}, result-
ing in the three terms different in the sense of (p',2)-symmetry: {e2,e1e2}, 

(€2e3,e1e2) = {ex, €1€2€3}, {c2e3,e1e2e3}. Hence, N 1 (GP') = 3N1 /4. Pro-
ceeding in the same way, for every in (in = 2,...,1) it is transformed into 
the 2m+ 1  terms different in the sense of (In + 2)-multiple antisymmetry, re-
sulting in the 2m + 1 terms different in the sense of (p',2 1 )-symmetry, so 

N„..,(GPs ) = (2' + 1)N,„/2m+ 1 . 
Treated as the AC of a 2-multiple antisymmetry group, the AC of the 

form {e2,e1e2}{E,E,E,E} and of the type (4)(5) 2  gives N1  = 8, N2 = 64, 

N3 = 448, so for the (4')- symmetry group G4' = {a, b,c( 4 }(2 : )) with the 

same AC of the type (4)(5) 2 , N1 (G4') = 6, N2(G4') = 40, N3(G4') = 252. 

The same holds for the other two (4')-symmetry groups 1(0, b, (2(2  : 	) , 
fao 	}( 2)

) with the identical AC. Hence, for the symmetry group 
7s (P2/m), Nt I (7s) = 45, 4(7s) = 399, N4' (7s) = 3276. 

From the ten (6')-symmetry groups of the same family, the two of them, 
{a, b, c( 3 } (2( 2  : m')) and {a( 3 ,b,e}(2)  :  711(2 ) possess the AC of the type 

(3)(5) 2  giving Nr = 5, =  34,  Ng'  =  234; the one of them, {a( 2 , b, (4 3 1(2 : 

ms )) the AC of the type (3)(9) 2  giving Nr = 11, NV = 132, Ng' = 1344; 

the one of them, {a (3 ,b,e(2 }(2' )  : in) the AC of the type (4)(5) 2  giving 

= 8, Nr = 64, 1V3` =  448; the two of them, {a( 6 ,b,c)(2' )  : m) and 

la(6 ,b,c}(2 )  : m( 2 ) the AC of the type (3)(9) 2  giving Ns' = 9, Nr = 93, 

V
ir

tu
al

 L
ib

ra
ry

 o
f 

F
ac

ul
ty

 o
f 

M
at

he
m

at
ic

s 
- 

U
ni

ve
rs

it
y 

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs



14 	 S. Jablan 

N( = 840; the three of them, {a, b, c( 6 }(2 : 	)), {a, b, c( 6 }(2( 2  : 70) and 
0( 2 , b, c( 6 } (2 : 70) the AC, of the type (4)(9) 2  giving NV = 12, N2 = 150, 

= 1512; and the one of them, 0( 6 , b, c(2 }(2') : in) the AC of the type 
(4)(9) 2  giving NV = 13, Nr = 168, Ng' = 1680. Hence, NV (7s) = 84, 
Nr(7s) = 848, (7s) = 7616. 

The possible applications of the generalized colored symmetry groups are 
considered by V.A.Koptsik [12]. 

3. Partial Catalogue of Symmorphic (p', 29-symmetry 
Three-dimensional Space Groups G 31 'P'  (p = 3,4,6) 

In the same manner, the partial catalogue of all complete (p',2 1 )-sym-
metry junior symmorphic three-dimensional space groups of the Arn-type 
G3I 'P' (p = 3,4,6), is realized. According to the work [6], this partial cata-
logue gives the possibility for their complete cataloguation. 

The complete results are given only for the first ten symmetry groups 
ls - 10s. The remaining tables of this partial catalogue can be ordered from 
the author. 
2s (P1) {a, b, c}(2), AC : {2,2a, 2b, 2c, 2ab,2ac,2bc,2abc}, II. 

1) {a (3 , b, c}(2')), 	 (9) 1 , 	N1 =1 N2 = 1 N3 = 1 
2) {a (4 , b, c}(2')), 	 (25) 2 , N1 = 1 N2= 1 
3) {P, b, c} (2' )) , 	(25) 2 , N1 = 1 N2 = 1 

3s (P2), {a, b, c}(2), AC : {c}{2, 2a, 2b, tab}, III 

1) {a (3 ,b,c}(2' ) ), 	 (2)(5) 1 , N, = 4 N2 = 16 N3 = 56 
2) {P, b, c}(2' ) ), 	 (2)(9) 2 , N, = 5 N2 = 18 
3) {a (4 , h, c(21(2' ) ), 	( 2)(9) 2 , N, = 5 N2 = 18 
4) {a (6 , b, c}(2' ) ), 	(2)(9) 2 , N, = 5 N2 = 18 
5) {a (3 ,b,c(2)(2' ) ), 	(2)(5) 2 , N, = 2 N2 = 4 
6) {a( 6 , b, c(2}(2' ) ), 	(2)(9) 2 , N, = 5 N2 = 18 

4s (B2) {a, b, (a + c)/2}(2), AC : {2, 2b}{2(a + c)/2, 2b(a + c)/2), IV 

1) {a, b( 3 , (a + c)/2 )(2 ') ), 	( 3)( 3) 1 , N, = 3 N2 = 6 
2) {a (2 , b, (a + c)' ) /2))(2" ) ), (3)(3) 2 , N, = 1 
3) {a, b( 4 , (a + c)/2)(2')), 	(4)(4) 2 , N1 = 3 
4) b, (a + c)(4  12} (2 ') ), (3)(3) 2 , N, = 1 
5) {a ,b(6  , (a + c) 12} (2' )  ) , 	(4)(4) 2 , Arl = 3 
6) {a(3 , b, (a + c) (6 /2}(2' ) ), (3)(3) 2 , Arl = 1 

5s (Pm) {a, b, c}(rn), AC : {a, b, ab}{m, me} , V 
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1) (a ,b , (7(3  )(ni t  )), 

2) {a, b , eel  }(m' )), 

3) {a (2 , b, c(4 )(na' ) ), 

4) fa,b, c(6 }(rn' ) ), 

5) {a (2 , b , c(3 	(m' )) , 

6) 0(2 , b, c(6 	(riz i  )) , 

Pawley multiple antisymmetry three... 

(4)(3) 1 , N1 = 4 N2 = 22 N3 = 

(4)(4) 2 , N1 = 3 N2 = 10 

(4)(4) 2 , N1 = 3 N2 = 10 

(4)(4) 2 , N1 = 3 N2 = 10 

(6)(3) 2 , N1  =  5 N2 = 24 

(6)(4) 2 , N1 = 6 N2 = 30 

15 

112 

6s (Bin) 	b, (a + c)/2}(m), AC : {rn}{(a + c)/2, b(a + c)/2}, VI 

1) {a, b, (a + c) (3  I 2)(70), 	(2)(3) 1 , N1 = 4 N2 = 12 

2) fa (2 ,b, (a + 	) I 2))(tn" )), (2)(3) 2 , N1 =2 

3) {a, b, (a + c) (4 /2}(rn' ) ), (2)(3) 2 , N1 = 2 

4) {a, b(2 , (a + c) (4  I 2} (rn t) ) , (2)(3) 2 , N1 = 2 

5) {a, b, (a + c) (6 /2}00), (2)(3) 2 , N1 = 2 

6) la, b(2 , (a + c) (3 /2}(rn')), (2)(4) 2 , N1  =  4 

7s (P2/ m) {a, b, c}(2 : in), AC : {nz, cm} {2, 2a, 2b, 2ab}, VII 

1) 	{a, b, c(3  } (2 : in )) , 

N4 = 6720 
( 3) (5) 1 , N1 = 7 N2 = 64 N3 = 700 

2) 	fa(3 ,b,c)(2 )  : in), ( 3 ) ( 5 ) 1 , 
= 7 N2 = 64 N3 = 700 

N4 = 6720 
3) 	{a, b, c(4  }(2 :70), 

(4 ) (5 ) 2, 
 = 6 N2 = 40 N3 = 252 

4) 	{a, b, C(4 1(2(2 : mi) ), (4)(5) 2 , N1 = 6 N2 = 40 N3 = 252 

5) 	fa(4 , b, c} (2 1  ) : rn), ( 3 )( 9 ) 2 , = 9 N2 = 93 N3 = 840 

6) 	{a°, b, c} (2' ) : m (2 ), ( 3 )( 9 ) 2,  = 9 N2 = 93 N3 = 840 

7) 	la(2 ,b,c(4 )(2 : 	 s  in )), (4)(5) 2 , N1= 6 N2 = 40 N3 = 252 

8) 	fa(4 , b, c(2  1(2' ) : ( 3 )( 9 ) 2 , N1 = 9 N2 = 93 N3 = 840 

9) 	{a, b, c(3  } (2 (2  : n0), ( 3 )( 5) 2 , = 5 N2 = 34 N3 = 224 

10) IP, b , c} (2' ) : m (2 ), ( 3 )( 5 ) 2 , N1 = 5 N2 = 34 N3 = 224 

11) {a, b, 	} (2 : 1n )) (4)(5) 2 , N1 = 6 N2 = 40 N3 = 252 

12) {a, b, c(6  } (2 (2  : m ) ) , (4)(5) 2 , = 6 N2 = 40 N3 = 252 

13) {a(6 ,b,c}(2' )  : rn), ( 3 )( 9 ) 2,  = 9 N2 = 93 N3 = 840 

14) (a (6 , b, (1(2' )  : rn (2 ), ( 3 )( 9 ) 2 , N1 = 9 N2 = 93 N3 = 840 

15) {a (3 ,b,c(2 }(2' )  : ni), (4)(5) 2 , N1 = 8 N2 = 64 N3 = 448 

16) IP, b, c(3  } (2 : ( 3)( 9 ) 2,  N1 = 11 N2 = 132 N3 = 1344 

17) {a (2 , b, c(6  }(2 : rn s) ), (4)(9) 2 , N1 = 12 N2 = 150 N3 = 1512 

18) 0(6 , b, c(2  }(2' ) : m), (4)(9) 2 , N1 = 13 N2 = 168 N3 =1680 

8s (B2/rn) {a, b, (a + c)/2}(2 : in), AC : {nz}{2, 2b}{(a + c)/2, b(a + c)/2}, VIII 

1) {a, b, (a + c) (3 /2}(2 : (2)(3)(3) 1 , N1 = 8 N2 = 60 N3 = 336 

2) (a, b{3 , (a + c)/2}(2' )  : in), (2)(3)(3) 1 , = 8 N2 = 60 N3 = 336 
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16 	 S. Jablan 

3) {a(2 , b, (a + c)'/2)}(2" )  : m" ) ), (2)(3)(3) 2 , 	N1 = 6 N2 = 24 
4) {a, b, (a + c)(4 /2}(2 : 	), 	(2)(3)(3) 2 , 	N1 = 6 N2 = 24 
5) {a, b, (a + c) (4 /2}(2 (2  : ms) ), (2)(3)(3) 2 , 	N1 = 6 N2 = 24 
6) {a, b(  4  , (a + c)/2}(2' )  : rn), 	(2)(4)(4) 2 , 	N1 = 9 N2 = 60 
7) {a, b(4 , (a + c)/2}(2 1)  : m(2 ), (2)(4)(4) 2 , 	N1 = 9 N2 = 60 
8) {a, b(2 , (a + c) (4 /2}(2 : m') ), (2)(3)(3) 2 , 	N1 = 6 N2 = 24 
9) {a(2 , b, (a + c)(4 /2}(2' )  : m) , (2)(3)(3) 2 , 	N, = 6 N2 = 24 
10) {a(2 , b, (a + c)(4 /2}(2' )  : m(2 ) , (2)(3)(3) 2 , 	N1 = 6 N2 = 24 
11) {a, b, (a + c) (3  / 2} (2 (2  : m' ) ), (2)(3)(3) 2 , 	N1 = 6 N2 = 24 
12) {a, 6(3 , (a + c)/2}(2' )  : m(2 ), (2)(3)(3) 2 , 	N1 = 6 N2 = 24 
13) {a, b, (a + c) (6 /2}(2 : mi) ), 	(2)(3)(3) 2 , 	N1 = 6 N2 = 24 
14) {a, b, (a + c)(6 /21(2(2  m' ) ), (2)(3)(3) 2 , 	N1 = 6 N2 = 24 
15) 0,0 , (a + c) (3 /2}(2 ra ') ), (2)(4)(4) 2 , 	N1 = 12 N2 = 96 
16) {a, b(6 , (a + c)/2)(2 1)  : m), 	(2)(4)(4) 2 , 	N1 = 9 N2 = 60 
17) {a, b(  6  , (a + 0/21(2' )  : m(2 ), (2)(4)(4) 2 , 	N1 = 9 N2 = 60 
18) {a(3 , b, (a + c)(6 /2}(2' )  : m), (2)(3)(3) 2 , 	N1 = 6 N2 = 24 
19) {a(3 , b, (a + c)(6 12}(2' )  : m(2), ( 2)(3)(3)2 , 	N1 = 6 N2 = 24 

9s (P222) a, b, c(2 : 21, AC : {{c} {2, 2a, 2b, 2ab}, {b}{2', 2 1a, 2/c, 2'ac}, {a} 
{22', 22' b , 22' c , 22' bc}}{{2, 2', 221, {2a, 2'a, 22'}, {2 1 , 2b, 22'b}, {2'a, 2ab, 22'b}, 
{2, 2'c, 22'c}, {2a, 2'ac, 22'c), {2b, 2'c, 22'bc}, {'lab, 2'ac, 22'bc}}, IX 

1) fa, b, c(3}(2 : 2')), 
N4 = 20160 

2) {a, b, c(4 1(2 : )), 
3) {a, b, c(4 }(2(2  : 21) ), 
4) {P, b, c(4 } (2 : 2' ) ), 
5) {a(2 , b(2 , (44 )(2 : 2' 1 ), 
6) la, b, c(3 } (2 (2  : 2') ), 
7) fa, b, (.0 1(2 : ) ) , 
8) {a, b, c(6 }(2 (2  : 2' ) ), 
9) {a(2 , b, c(6 }(2 : 2 ) ), 
10) fa(2 , b(2 , c(6 )(2  :  2' ) ), 
11) {a(2 , b, c(3 }(2 : 2' ) ), 
12) {a(2 , b(2 , c(3 }(2  :  2' ) ),  

(4)(5, (5 ,5)) 1  , N, = 8 N2 = 96 N3 = 1516 

(6)(5, (9, 9)) 2 , N, = 7 N2 = 88 N3 = 840 
(6)(6, (6, 9)) 2 , N1 = 7 N2 = 88 N3 = 840 
(6)(5, (9, 9)) 2 , N, = 7 N2 = 88 N3 = 840 
(6)(5, (9, 9)) 2 , N1 = 7 N2 = 88 N3 = 840 
W(5, (5, 5)) 2  , N, = 7 N2 = 88 N3 = 840 
(6)(6, (9, 6)) 2 , N1 = 7 N2 = 88 N3 = 840 
(6)(5, (9, 9)) 2 , N1 = 7 N2 = 88 N3 = 840 
(6)(9, 9, 9) 2 , N1 = 20 N2 = 384 N3 = 5376 
(4)(9, (9, 9)) 2 , N, = 9 N2 = 156 N3 = 1680 
(6)(5, 9, 9) 2 , N1 = 13 N2 = 196 N3 = 1680 
(6)(9, (9, 9)) 2 , N1 = 11 N2 = 172 N3 = 1680 

10.6 (C222) {a, (a b)/2, c}(2 : 2'), AC : {(a + b)/2}{(2', 22'), (2'c, 22'c)}, VIII 

1) la, (a + 6) (3 /2, 4(28)  : 2' 1 ), (2)(4, 4) 1 , N1 = 14 N2 = 168 N3 = 1344 
2) {a, (a + b)/2, c(3 }(2 : 2 '1 ), 	(2)(3, 3) 1 , N1 = 8 N2 = 60 N3 = 336 
3) {a(2 , (a + b)'/2),  c)(2  2") ), (2)(3, 3) 2 , N1 = 6 N2 = 24 
4) {a(2 , (a + b)'/2), c(2 }(2 : 2" ) ), (2)(3, 3) 2 , N1 = 6 N2 = 24 
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Pawley multiple antisymmetry three... 	 17 

5) la, (a + b)/2 , c(4 )(2  : 21 ), 	(2)(3, 3) 2 , N1 = 7 N2 = 36 

6) (a, (a + b)/2, c (4 }(2(2  : 21 ), (2)(3,3)2 , N1 = 7 N2 = 36 

7) la, (a + b)(2 /2 , c(4 1(2  : 21 ), (2)(3, 3) 2 , N1 = 7 N2 = 36 

8) {a, (a + b) (2 /2, c(4 }(2(2  :211 ), (2)(3,3) 2 , Ni =7 N2 = 36 

9) (a, (a b)(4 /2, c}(21  : 21) ), (2)(4, 4) 2 , N1 = 8 N2 = 56 

10) {a, (a + b) (4 /2, c}(21  : 2 (21 ), (2)(4,4) 2 , N1 = 8 N2 = 56 

11) {a, (a + b) (4 /2, c(2 )(21  : 21 ), (2)(4, 4 )2,  N1 = 8 N2 = 56 

12) {a, (a b)/2, c(3 )(2(2  : 21) ), (2)(4,4) 2 , N1 = 7 N2 = 36 

13) {a, (a + b) (3 /2, c}( 2')  2(2'  ), (2)(4, 4) 2 , N1 = 8 N2 = 56 

14) {a, (a + b)/2, e (6 }(2 : 21 ), 	(2)(3, 3) 2 , N1 = 7 N2 = 36 

15) {a, (a + b)/2, c(6 )(2(2  : i ) ), (2)(4,4) 2 , N1 = 7 N2 = 36 

16) {a, (a + 6)0 /2, c(3 )(2 : 21 ), (2)(3,3) 2 , N1 = 6 N2 = 24 

17) {a, (a + 0(2 /2, c(3 )(2(2  : 21 ), (2)(4,4) 2 , N1 = 7 N2 = 36 

18) {a, (a 4- b) (2  /2, c(6 )(2 : 2 1) ), (2)(3,3) 2 , N1 = 7 N2 = 36 

19) {a, (a + b) (2 /2, c(6 )(2(2  : 21 ), (2)(4,4) 2 , N1 = 7 N2 = 36 

20) fa, (a + b) (6 /2, 0(21  : 21), (2)(4 , 4 ) 2 , N1 = 8 N2 = 56 

21) (a, (a + b) (6 /2, c)(21  : 201 ), (2)(4,4) 2 , N1 = 8 N2 = 56 

22) {a, (a + b) (3  /2, c(2 )(2 )  : 21) ), (2)(4,4) 2 , Nt = 8 N2 = 56 

23) {a, (a + b) (6 /2, c(2 )(21)  : 21 ), (2)(4, 4) 2 , N1 = 8 N2 = 56 

The complete results are given in Table 1. 

Table 1. 

(3') (4') (6') 
2s 	1 	1 	1 	24s 	8 	48s 3 2 7 

3s 	1 	2 	3 	25s 	7 	49s 1 	1 

4s 	1 	3 	2 	26s 1 4 3 	50s 2 	6 

5s 	1 	2 	3 	27s 1 2 1 	51s 3 1 3 

6s 	1 	3 	2 	28s 1 6 5 	52s 1 1 1 

7s 	2 	6 10 	29s 1 7 3 	53s 2 2 5 

8s 	2 	8 	9 	30s 1 13 5 	54s 5 2 14 

9s 	1 	4 	7 	31s 1 10 3 	55s 3 2 7 

lOs 2 	9 12 	32s 1 10 5 	56s 4 2 11 

1 ls 	1 	3 	3 	:33s 1 11 5 	57s 2 2 5 

12s 1 	3 	4 	34s 1 7 3 	58s 3 4 17 

13s 	1 	6 11 	35s 1 7 3 	63s 	1 

14s 	1 	6 	7 	36s 1 18 11 	65s 1 	1 

15s 	2 10 12 	:37s 1 16 7 	66s 1 	1 

16s 1 	4 	3 	40s 2 	2 	67s 1 

17s 	1 	4 	7 	41s 1 	1 	68s 1 	1 

18s 	1 	6 11 	42s 1 	1 	69s 1 1 1 

19s 2 15 22 	43s 1 1 1 	70s 1 
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20s 
21s 
22s 
23s 

1 
1 

6 	5 
6 	9 
2 
3 

44s 4 
45s 6 
46s 4 
47s 2 

S. Jablan 

1 	4 	71s 1 	2 
1 	6 	72s 1 	2 	3 
1 	4 	73s 1 	1 
2 	5 

(3 1 ,2) (4/ ,2) (6 / ,2) (3 1 ,22 ) (41 ,22 ) (6 1 ,22 ) 
2s 1 1 1 1 1 1 
3s 4 10 12 16 36 40 
4s 3 5 4 6 
5s 4 6 14 22 20 64 
6s 4 6 6 12 
7s 14 45 84 128 399 848 
8s 16 54 66 120 264 360 
9s 8 28 81 96 352 1260 
lOs 
lls 

22 
4 

64 
6 

88 
8 

228 
12 

360 520 , 

12s 5 17 23 42 108 156 
13s 16 90 184 300 1440 3216 
14s 14 64 84 168 480 672 
15s 20 84 108 192 528 720 
16s 6 12 12 24 
17s 14 48 84 168 384 672 
18s 16 90 274 450 2340 9636 
19s 38 252 420 804 4392 8016 
20s 10 44 48 96 256 336 
21s 18 168 228 432 4032 5376 
22s 8 
24s 80 576 
25s 28 
26s 3 10 7 6 
27s 1 
28s 7 42 34 54 234 192 
29s 6 28 12 24 
30.9 7 80 34 54 420 192 
31s 6 40 12 24 
32s 8 69 34 60 372 168 
33s 7 70 34 54 378 192 
34s 6 28 12 24 
35s 4 22 8 12 
36s 16 294 202 300 5040 3720 
37s 14 192 84 168 1536 672 
40s 4 
41$ 2 
42s 2 
43s 1 
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44s 
45s 
46s 
47s 
48s 
49s 
50s 
51s 
52s 
53s 
54s 
55s 
56s 
57s 
58s 
65s 
66s 
68s 
69s 
71s 
72s 
73s 

4 
6 
4 
8 

12 
2 

12 
3 
1 
8 

20 
12 
16 
8 

30 
2 
2 
1 
2 
4 
6 
2 

6 
6 

6 
6 
6 
6 
6 

36 

8 

Pawley multiple antisymmetry three... 

13 	24 
20 	36 

24 	48 

14 	24 
38 	60 
19 	36 
29 	48 
13 	24 

160 	288 	240 	1104 

12 	24 

(3',23 ) (4',23 ) (6',23)(3',24 ) 

2s 	1 
3s 	56 
5s 	112 
7s 	1400 	3276 	7616 	13440 

8s 	672 
9s 	1516 	3360 	13776 	20160 

lOs 	1680 
12s 	336 
13s 	5712 	18144 	43008 	80640 
14s 	1344 
15s 	2688 
17s 	1344 
18s 	17220 	77112 364224 685440 
19s 	16464 	49392 106848 241920 
20s 	672 
21s 	10080 	64512 	86016 161280 
28s 	336 
30s. 	336 
32s 	336 
33s 	336 
36s 	5712 	57456 	45024 	80640 

(4',24 ) 

2056320 

(6',24 ) 

10321920 

(3',2 5 ) 

19998720 
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20 	 S. JabIan 

37s 1344 
58s 2016 

For the complete (p1,2 1 )-symmetry junior symmorphic three-dimensional 
space groups of the Mm-type the numbers Ne, (p = 3,4,6) are the following: 

No = 	+ 266(4 + 3084 = 670 
Ni = 496GV 2171q4' 2644G13 '6' = 5311 
Nt = 4709q3' 24088q4' + 38133(4'6' = 66930 
Nt = 71713(4'3' + 273252Ce 666512 6' = 1011477 
N4' = 1283520(4' 3' + 2056320W 10321920q6' = 13661760 

= 19998720 3' = 19998720 
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THE GENERAL CONCEPT OF 

CLEAVABILITY OF MAPPINGS 

M.  Bonanzinga 

ABSTRACT. The aim of the paper is to give some answers to the following general ques-
tion: "If X and Y are topological spaces and f : X Y is a continuous mapping cleavable 
over the class P of topological spaces, is  it  true that f is a P-mapping? ". Answers are 
given for some classes of topological spaces. 

Introduction and preliminary. In 1985 Arhangel'skii ([1], [2]), intro-
duced the notion of cleavability for topological spaces. Following a general 
idea ([22]) to investigate mappings instead of spaces, in this paper we want 
to introduce the notion of cleavability for mappings. So, the concept of P-
mapping ([14]) is a basic notion. Let P be a topological property; a contin-
uous mapping is called a P-mapping if it satisfies a property Gr depending 
on P and every continuous mapping on a P-space has the property GT,. We 
want to study the P-mappings when the property P is the cleavability over 
a class of topological spaces; in this way we want to obtain a more general 
notion of cleavability of mappings over a class of spaces as a generalization 
of the notion of cleavability of a space over the same class of spaces. 

In particular we are interested in answering the following question: "If 
f : X Y is a continuous mapping cleavable over a class P of topological 
spaces, is it true that f is a P-mapping?"In this paper we shall use the 
following notations: (X, r) or simply X means a topological space; A, A° 
are the closure and the interior of A respectively, where A is a subset of X; 
if A°  = A (A° = A) we say that A is a regular open (regular closed) subset 
of X; C(X, Y) is the set of all continuous mappings from X to Y, where Y is 

Received 03.12.1994; Revised 02.05.1995 
1991 Mathematics Subject Classification. 54A20, 54A25, 54CO5, 54E18, 54E30. 
Key words and phrases. cleavable space, cleavable mapping, P-mapping.. 
This paper was presented to the XII National Conference on Topology at Perugia 

University, May 1994. 
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22 	 M. Bonanzinga 

a topological space. For notations not explicitly mentioned here, the reader 
is referred to [6], [15] and [19]. 

Let P be a class of topological spaces and M a class of continuous map-
pings. We recall the following 

Definition 1. [1]. A space X is M-cleavable over P if for every A C X 
there exist Y E P and f E M, f : X -> Y, such that A = f -1  f(A) (or 
equivalently f(A)11 f(X - A) = 0). 

If M is the class of all continuous mappings, we shall just say that X 
is cleavable over P. If M is the class of all open, closed, perfect, quotient 
mappings, we shall say that X is respectively open, closed, perfect, quotient 
cleavable over P. 
Remark 1 Let f be a one-to-one continous mapping of a space X into a 
space Y E P. Then obviously X is cleavable over P. Note, that in the 
definition of cleavability the mapping f depends on the subset A of X . Thus 
we might say that a space X is said to be absolutely cleavable over P if there 
exists a one-to-one continuous mapping of X into some space Y E P ([5]). 
Then cleavability over P may be regarded as a generalization of continuous 
bijections (onto some Y E P). 

Definition 2. [6]. A space X is M-pointwise cleavable over P if for every 
point x E X , there exist Y E P and f E M, f : X Y, where such that 
{x} = f -1  f(x). 

Definition 3. [6]. A space X is M-double cleavable over P if for any 
subsets A and B of X, there exist Y E P and f E M, f : X -4 Y, such that 
A = f -1  f(A) and B = f(B). 

Remark 2 If X is absolutely cleavable over P, then X is double cleavable 
over P; if X is double cleavable over P, then X is cleavable over P; moreover, 
if a space X is cleavable over P, then X is pointwise cleavable over P. 

Then we can give the following definitions for the cleavability of a map-
ping. 

Definition 4. A continuous mapping f : X -> Y is M-cleavable over P if 
for every y E Y and A C f -1 (y) there exist Z E P and g E M, g: X Z, 
such that A = g-1  g(A). 

Remark 3 The previous definition is not trivial if f is onto. 

If M is the class of all continuous mappings, we shall just say that f 
is cleavable over P. If M is the class of all open, closed, perfect, quotient 
mappings, we shall say that f is respectively open, closed, perfect, quotient 
cleavable over P. 
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The general concept of cleavability of mappings 	 23 

Further f is said to be absolutely cleavable over P if the mapping g is 
one-to-one. 

Definition 5. A continuous mapping f : X 	is M-pointwise cleavable 
over P if for every y E Y and {x} C f -1 (y), there exist Z E P and g E M, 
g : X -> Z such that {x} = g -1  g(x). 

Remark 4 The previous definition is equivalent to the definition of pointwise 
cleavability of X over P. 

Definition 6. A continuous mapping f : X ' > Y is M-double cleavable over 
P if for every y E Y and for every subset A and B of f -1 (y), there exist 
Z EP and g EM, g: X -> Z such that A= g - 1 9(A) and B = g -1  g(B). 

Remark 5 If f : X -> Y is absolutely cleavable over P, then f is double 
cleavable over P; if f is double cleavable over P, then f is cleavable over P; 
moreover, if f is cleavable over P, then f is pointwise cleavable over P. 

We have 

Proposition 1. A space X is M -cleavable (l4 -pointwise cleavable, . . . ) 
over P if every continuous mapping f : X -> Y is M-cleavable (M-pontwise 
cleavable, . . . ) over P. 

Proof. () Let f : X Y be a continuous mapping, y E Y and A C f -1 (y). 
As X is M-cleavable over P, then there exist Z E P and g E M, g : X Z 
such that g -1  g(A) = A; this proves that f is M-cleavable over P. () 
Now suppose that every continuous mapping with domain X is M-cleavable 
over P. Let A C X and let Y = (Y, 7) be Sierpinski's 2-point space (i.e., 
Y = {0,1} and 7 = {0, Y, {1}}. Define f : X -+ Y by f (A) = {0}, 
f (X - A) = {1}; then f is continuous. Since A C f -1 (0) and f is a M-
cleavable mapping, there exist Z E P and g E M, g : X : Z such that 
g -1  g(A) = A. Thus X is M-cleavable over P. ❑ 

So we have the following natural question 

Question - A. Does there exist a continuous mapping f that is M-cleavable 
over P such that its domain X is not M-cleavable over P? 

We have the following 

Proposition 2. A space X is M -pointwise cleavable over P if every con-
tinuous one-to-one mapping f  :  X Y is M-cleavable over P. 

Proof. (= ) Let f : X -> if be a continuous one-to-one mapping. Then, 
for every y E Y the fiber f -1 (y) is a single point of X . So, if X is M- 
pointwise cleavable over P we have that f is M-cleavable over P. 	Now 
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24 	 M. Bonanzinga 

suppose that every continuous one-to-one continuous mapping with domain 
X is .M-cleavable over P. Let x E X . By hypothesis, the identity mapping 
on X, idx, is M-cleavable over P; since {x} = idx-1 (x), X is M-pointwise 
cleavable over P. ❑ 

Note that if a space X is M-pointwise cleavable but not .M-cleavable 
over P, then the identity mapping on X, idx, is M-cleavable over P; this 
shows that the notion of cleavability of a mapping is more general than the 
notion of cleavability of a space, in fact there exist mappings f : X -4- Y 
M-cleavable over P such that X is not M-cleavable over P. Then we have 
an affirmative answer to the question A as the following example show 

Example 1. If P = {R}, the circumference S 1  is not cleavable over P ([4]) 
while the mapping id : 5 1 	S 1  is cleavable over P. ❑ 

Now we have the following natural question 

Question - B. Does there exist a continuous mapping f that is M-pointwise 
cleavable over P such that its domain is not M-pointwise cleavable over 'P? 

By the definitions, the answer to the previous question is the following: 
"A continuous mapping f : X Y is M-pointwise cleavable over P iff X is 
pointwise cleavable over P". 

Some particular forms of cleavability of mappings imply particular forms 
of cleavability of spaces, as show the following four results 

Proposition 3. A constant mapping f : X -4 Y is M-cleavable (M-
pointwise cleavable, ... ) over P if X is M-cleavable (M-pointwise cleav-
able, ... ) over P. 

Proposition 4. If f : X -4 Y is cleavable over P, where P is a card(Y)-
productive class of spaces, then X is cleavable over P. 

Proof. Let A C X and y E f(A). By hypothesis, there exist a space Z y  E P 
and a continuous mapping gy  : X Zy  such that g;-1 gy (A n f-1 (y)) = A n 
f-1 (y). Let Z = fJ Zy ; then, by hypothesis, Z E P. Define a mapping 

yEf(A) 
g : X 	Z, by g(x) = {gy (x)} yEf(A) , for all x E X . We will show that 

g(A n f -1 (y)) = A n f (y). Only need to show that g -1  g(A n f -1 (y)) C 
A n f -1  (y). Let x E g(An f (y); so, g(x) E g(An f (y)). Then, there 
exists a E A n f -1 (y) such that g(x) = g(a); in particular, f(a) = y. Then, 
for every z E f(A), we have that gz (x) = gz (a). So x = g;'1  gz (a), for all 
z E f(A), and then, by hypothesis, xE A n f -1 (y). Thus g -1  g(A) = A. ❑ 

Remark 6 In the case in which P is a card(Y)-productive class of spaces, 
the previous property gives a negative answer to the question A. 
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The general concept of cleavability of mappings 	 25 

Definition 7. If f is a mapping from the space X to a space Y, the cardi-
nality of f is defined as the number 

card(f) = card(f(X))x Sup{card(f"(y)): y E Y}. 

Proposition 5. If f : X 	Y .  is pointwise cleavable over P, where P is a 
card(f)-productive class of spaces, then X is absolutely cleavable over P. 

Proof. Let y E Y and  x E f-1 (y); then there exist a space Zx  E P and 
a continuous mapping  gx  :  X 	Zx  such that {x} =  g;1 gx (x).  Let 
Zy 	Zs;  by hypothesis, Zy  E P. Define the mapping g y  : X 	Zy , 

xE.f -1 (y) 
by gy (z) = {gx(z)}x€f-i( y ) for all z E X .  The mapping gy  is continuous: 
recall that gy  is continuous  if  my  is continuous, for  s  E  f (y),  where 
ps  : 	fl 	Zx  —> Zs  is the sth  projection mapping; since  psgs (t) = gs(t)  for 

xEf-1 (y) 
all  t  E  X,  we have that  m y  is a continuous mapping. Further g y lf-1 (y) : 
f-1 (y) 	Zy  is one-to-one: let s,t  E f-1 (y) such that  s # t. By hypothe- 
sis, gs (t) 	Ms); then {gx(s)} xEf-1 (y)  # {g x (t)}, Ef --1 (y) , or equivalentely, 
gy lf-l( s ) t) Let  Z = II  Zy ; by hypothesis,  Z  E  P. Define 

yE1(X) 
the mapping g : X —> Z,  by g(z) = I{y,(z)}, Ef -1 (y) } yEf ( x) .  The mapping 
y is continuous: let p t  : H Zy 	z,  the t ill  projection mapping (recall 

yEj(X) 
that  Z t  = 	H Zr) ;  since pig(s) =  gi(s), for all  s  E  X and we have 

xEj -1 (t) 
proved that  gi  is continuous for all I E Y, we have that pi g  is continuous 
for all t  E f (X) and then g is continuous. Since gy lf-1 (y) : f (y) —> Z y  is 
one-to-one, for all y E Y, we have that g is one-to-one. Then  X is absolutely 
cleavable over P. 0 

Remark 7 In the case in which P is a card(f)-productive class of spaces, 
the previous property gives a negative answer to the question A. 

Proposition 6. If f : X Y is closed pointwise cleavable over 2, where P 
is a card(f)-productive class of spaces, then X can be embedded as subspace 
into some space of P. 

Proof.  The proof is similar to the proof of Proposition 5 noting that, by 
hypothesis, every continuous mapping g„ : X —> Zy  is closed and then 
g : X —> g(X)  is a closed mapping. Now we prove this fact. Let A C X 
be closed. We want to prove that g(A) = n gx (A) fl g(X), 

vgax)xE.f -1 (Y) 
where fl 	fl gx (A) is  a  closed subset of Z. The inclusion g(A) C 

yEf(X)sEf-1(y) 
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26 	 M. Bonanzinga 

H 	fl MA) fl g(X) is obvious. Let t E H 	fi gx (A) fl 
f(X) xEf -1 (Y) 	 yEf(X) xE.f - '(Y) 

g(X) and s E X such that g(s) 	t. Then gy (s) = {gx(s)}:cEi -1 (y) E H gr(A), for all y E f (X). Let y = f(s). Then Ms) E gx (A), for all 
zE.f -1 (v) 
x E ['CM. Since s E f -1  (y), we have that gs (s) E gs (A); so, there exists 
a E A such that g s (s) = Ma). Then, by hypothesis, s E A and the proof is 
complete. ❑ 

Remark 9 If P is a card( f)-productive and hereditary class of spaces, the 
previous property is equivalent to say that if X is pointwise cleavable over 
P, then X is closed absolutely cleavable over P. 

Remark 10 In the following we will use the terms e-cleavable mapping or 
e-cleavable space over P to indicate that cleavability, pointwise cleavability, 
double cleavability and absolute cleavability of a mapping or of a space over 
P are equivalent. 

By Propositions 5 and 6 we have the following: 

Theorem 1. Let f : X 	Y be a continuous mapping and let P be a 
card(f)-productive class of spaces. The following conditions are equivalent: 

(i) f is e-cleavable over P; 
(ii) X is e-cleavable over?; 

Theorem 2. Let f : X -4 Y be a continuous mapping and let P be a 
card(f)-productive and hereditary class of spaces. The following conditions 
are equivalent: 

(i) f is closed e-cleavable over P; 
(ii) X is closed e-cleavable over P. 

1. Cleavability over To , T1, T2, functionally 
Hausdorff and Urysohn spaces. 

Note that, by the previous results, in the case in which P is a productive 
class of spaces, we have that the classic problem on cleavability: "If X is 
(closed) e-cleavable over the class P, is it true that X belongs to P?", can 
be reformulated in the following way:"If f : X Y is (closed) e-cleavable 
over P, is it true that X E P ?". Further, in the case in which the answer is 
affirmative, the mapping f is a P-mapping. 

Following [15], we give 

Definition 1.1. A class P of topological spaces is said to be expansive if the 
existence of a continuous bijection f : Y -4 X from a space Y onto a space 
X E P implies Y E P. 
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The general concept of cleavability of mappings 	 27 

By Corollary 1.1 in [10] in the case in which P is a productive, hereditary 
and expansive class of spaces, we have that if f : X Y is e-cleavable over 
2, then X E 2, and f is a P-mappings. In particular, the previous result 
is true for the classes P of To , T1 , T2 , functionally Hausdorff or Urysohn 
spaces. Recall the definitions of P-mapping in these cases. 

Definition 1.2 [14]. 
- f E C(X, Y) is To  if for every pair of distinct points x, y E X such that 

f(x) = f(y), there exists some neighbourhood U of x which not contains 
y or some neighborhood V of y which not contains x; 

- f E C(X, Y) is T1 if for every pair of distinct points x, y E X such 
that f(x) = f(y), there exist two neighbourhoods U and V of x and y 
respectively, such that U does not contains y and V does not contains x; 

- f E C(X,Y) is T2 if for every pair of distinct points x, y E X such that 
f(x) = f(y), there exist two disjoint open neighbourhoods U and V of x 
and y respectively; 

- f E C(X,Y) is Urysohn if for every pair of distinct points x, y such that 
f(x) = f(y), there exist a neighbourhood W of f(x) and two open subsets 
U, V of f -1 (W) such that x E U, y E V and U n V= 0, where the 

closures are in f-1 (W). 

Further we give the following: 

Definition 1.3. 
- f E C(X, Y) is functionally Hausdorff if for every pair of distinct points 

x, y E X such that f(x) = f(y), there exists a continuous mapping g : 
X —> [0,1] such that g(x) = 0 and g(y) = 1; 

2. Cleavability over regular, completely regular, 
semiregular and almost regular spaces. 

Now we consider the classes of regular and completely regular spaces. 

Definition 2.1 [14]. 
- f E C(X,Y) is regular if for every point x E X and every closed C C X 

such that x C there exist an open neighbourhood W of f(x) and two 
open subsets U,V of f -1 (W) such that x E U, C n f -1 (W) C V and 

U nV= O.  

Further we give the following 

Definition 2.2. 
- f E C( X, Y) is completely regular if for every point x E X and every 

closed C C X such that x C and f(x) E f(C), there exists a continuous 

mapping g : X 	[0, 1] such that g(x) = 0 and g(C) = {1}. 
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28 	 M. Bonanzinga 

Note that we can not consider the previous remarks for the classes of 
regular and completely regular spaces because they are not expansive. How-
ever, e-cleavability of a mapping f : X -- Y over the class P of regular 
or completely regular spaces does not imply that X belongs to P, and, in 
particular, that f is a P-mapping; in fact there exists the following 

Example 2. Let r* be a topology on R generated by adding to the natural 
topology r on the real line the set of rational numbers. (R, r) is regular 
(completely regular) while (R, r*) is not regular (completely regular). Since 
id : (R, r*) (R, r) is a continuous bijection, ( ,r*) is absolutely cleavable 
over the class P of regular (completely regular) spaces; so id is absolutely 
cleavable over P. However id is not regular (completely regular); in fact 
if id would be regular (completely regular), then (R, r*) would be regular 
(completely regular), a contadiction. 0 

By Corollary 1.3 in [10] in the case in which P is a productive and hered-
itary class of spaces, we have that if f : X Y.  is closed e-cleavable over 
P, then X E P, and f is a P-mapping. In particular, the previous result is 
true for the classes P of regular or completely regular spaces. 

Now we consider the classes of semiregular ([23]) and almost regular ([24]) 
spaces. 

Definition 2.3 [14]. 
- f E C(X, Y) is semiregular if for every open A C X and every point 

x E A there exist an open neighbourhood W of f(x) and a regular open 
subset R of f -1 (W) such that x E RC (A n f-1 (47)). 

- f E C(X, Y) is almost regular if for every point x E X and every regular 
closed C C X such that x C and f(x) E f(C), there exist an open 
neighbourhood W of f(x) and two disjoint open subsets U, V of f -1 (W) 
such that x E U, C C V. 

Since every space can be embedded as a closed subspace into a semiregular 
space ([16]), every space is e-cleavable over the class of semiregular spaces 
and then every continuous mapping is e-cleavable over that class of spaces. 
Note that the classes of semiregular and almost regular space are productive 
but not hereditary, so we can not consider the previous remarks for these 
classes of spaces. However, the closed e-cleavability of a mapping f : X —› Y 
over the classes P of semiregular or almost regular spaces does not imply 
that X E P and, in particular, that f is a P-mapping. In fact for the class 
of semiregular spaces we can consider Example 2 noting that the mapping 
id is closed, while for the class of almost regular we have the following 

Example 3. Let r** be a topology on R generated by adding to the natural 
topology 7 on the real line the sets Q i  and Q2 such that {Qi, Q21 is a par- 
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The general concept of cleavability of mappings 	 29 

tition of Q. By Example 4 in [10], we have that (R, r**) is absolutely closed 
cleavable over the class P of almost regular spaces, but it does not belongs to 
P. Then every constant mapping f on (R, r**) is absolutely closed cleavable 
over the class P but it is not almost regular; in fact if f would be almost 
regular then (IR, r**) would be almost regula•, a contradiction. ❑ 

3. Cleavability over H -closed spaces. 
Now we consider the class of H -closed spaces (see [23],[15]). 

Definition 3.1 [12]. 
- Let X,Y,Z,W be spaces and  f  : X Y and g : Z 	W be continuous 

mappings. f is said to be embedded in g if Y = W, X is a subspace of Z 
and the restriction glX is equal to f. 

- A mapping f : X 	Y .  is called H -closed if it is a Hausdorff mapping 
and for every embedding off into a Hausdorff mapping g : Z Y , X is 
closed in Z. 

We will need the following known result 

Proposition 3.1. Every Hausdorff space can be embedded as a closed sub-
space into a H-closed space. 

Theorem 3.1. Let 7-1 be the class of H-closed spaces and let f : X –4 ,  Y .  be 
a contonuous mapping. The following conditions are equivalent 

(1) X is e-cleavable over H; 
(2) f is e-cleavable over 7-(; 
(3) X is Hausdorff; 
(4) X is closed absolutely cleavable over 11; 
(5) X is closed double cleavable over 1-1; 
(6) X is closed cleavable over 71; 
(7) X is closed pointwise cleavable over H; 
(8) f is closed absolutely cleavable over H; 
(9) f is closed double cleavable over 

(10) f is closed cleavable over H; 
(11) f is closed pointwise cleavable overI.. 

Proof. The equivalence (1) .(2) follows by Theorem 1 . Now we prove that 
(1).#(3). Let P the class of Hausdorff spaces and suppose that X is e-
cleavable over H. Since C P, X is e-cleavable over P; then, by Corollary 
1.2 in [10], X E P. Now suppose that X is Hausdorff; then , by Proposition 
3.1, X can be embedded as a closed subspace into a H-closed space, that is X 
is closed absolutely cleavable over 7-1 and then X is absolutely cleavable over 
H. Now we prove the equicalences (3)-(6). By Proposition 3.1, (3)-(4); 
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30 	 M. Bonanzinga 

the implications (4)(5)(6)(7) are obvious. Further, (7) implies that 
X is pointwise cleavable over 1-1 and then, by the equivalence (1).#>(3), X is 
Hausdorff. Now we prove the equivalences (7)-(11). We know that (7).#(4) 
and the implications (4)(9)-(10)*(11) are obvious. But (11) implies that 
X is closed pointwise cleavable over it, so the proof is complete. ❑ 

Note that the class 11 is productive but not hereditary, so we can not 
consider the previous remarks for that class of spaces. However, the closed 
e-cleavability of a mapping f : X —> Y over the class 7-t does not imply that 
X E 71 and, in particular, that f is a 71-mapping. In fact there exists the 
following 

Example 4. Let X be an Hausdorff but not an H -closed space. Then X 
can be embedded as a closed subspace into a H -closed space, that is X is 
closed absolutely cleavable over H. So by Proposition 3, every continuous and 
constant mapping f on X is closed absolutely cleavable over 7 -1. However, f 
is not an H -closed mapping, because otherwise we would have that X E 
a contradiction. ❑ 

4. Open questions. 

Note that all the classes of spaces we have considered are productive. 

Question - 1. Do there exist not-productive classes P of spaces such that the 
cleavability of a mapping f : X —> Y over P is equivalent to the cleavability 
of the space X over P ?. 

Note that a metrizable separable space need not be cleavable over P = 
{R}; so we have the following natural question:"Does there exist a space Y 
and a continuous mapping f : X —› Y such that X is a metrizable separable 
space and f is cleavable over P?". However it is known that every metrizable 
space X is pointwise cleavable over {R} or, equivalently, if X is a metrizable 
space, then the mapping id x is cleavable over {R}. 

Question - 2. What classic results about cleavability of spaces can be gen-
eralized to cleavability of mapping? 
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A SUFFICIEN1 ITNIVALENCE CONDITION 

N. N. Pascu, M. Obradovie* and D. Itaducanu 

ABSTRACT. This paper is concerned with a sufficient univalence condition for analytic 
functions in the unit disc. This condition generalizes some well-known univalence crite-
ria. 

1. Introduction and preliminaries 

Let Ur  denote the disc {z  E C : Izi < r}, r E (0, 1] and let A denote the 
class of functions f which are analytic in the unit disc U = {z E C : Izi < 1} 
and f(0) = fi(0) - 1 = 0. 

Definition 1. Let f,g : U 1-o C be analytic function in U. The function f 
is subordinate to the function g (f g) if there is an analytic function („.o in 
U, which satisfies the conditions 4,40) = 0, Iv(z), < 1, z E U, and f = g o 

Definition 2. The function L: U x I 	C, I = [0,c.o) is a Loewner 
chain if the function L(z, t) is analytic and univalent in U for all t E I and 
L(z,$) L(z,t) for all 0 < s < 1. 

Definition 3 [5]. The function F : U r  x C i-+ C, F = F(u, v) satisfies the 
Pommerenke's conditions in U,. if: 

	

1) the function L(z, t) = 	etz) is analytic in U r , for all t E I, locally 
absolutely continuous in I, locally uniform with respect to U,.. 

u OF OF 
ii) the function G(e -t z,c t z), where G(u,v) =

u
/ —

0v 
is analytic in U r 

 for all t E I and has an analytic extension in 11 = {z E C : Izi < 1} for 
all t > 0 and in U for I = 0. The analytic extension of the function G 
is denoted by H = H(c -t z,e t z) and is called the associate function of 

iii)
OF 	/ 

—
OF 

(0,0) 0 0 and —(0,0) OF —(0,0) (-oo, -1]. 
Ov 	 au 	Ov 
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iv) the family of functions IF(e -tz,etz) [e - i 79-8 Fu  (0, 0)-1- et -rnly  (0,0)}} 
tEl 

forms a normal family in Ur . 

We shall need the following theorem to prove our results: 

Theorem 1 [5]. Let F:Ur xC H C, F = F(u, v) be a function which 
satisfies Pommerenke's conditions in U r  and let H be the associate function 
of F. If 

(1) 
IH(z,z)I < 1, z E U and 

IH(z,110 < 1, z E U \ {0}, 

then the function F(e - tz,etz) for all t E I, has an analytic and univalent 
extension in U. 

2. Main results 

Theorem 2. Let f, h E A and a E C. if Rea > 1/2 and 

1 a ki2  + 1 1z1 2  zh"(z)1 61 2 + 1 --)z1 2  zhin(z)  
a 	2 	le(z) 	 2 	h'(z) 

(2) + (1  - izi ) 221 +1z12 ( 1  f(z) 

(1 - 1z1 2 ) 2  zh"(z) z f"(z)  
2 	h'(z) f'(z) 

	

z12)[

zh"(z) 	zf"(z)1  

	

h'(z) 	l(z) 
(1 - izi2)2  z 2 Sh(z)1 < izi2 2 

Sh{z) = 	z , 
[11"(z)1 	1 [h"(z)1  2 .  

	

) 	 2 	(z) 

Proof: Let F: U x C H C be the function 

(3) F(u, v) = [f(u)]1- '[1(u)+ (v - u) (u)(1 	; u  ii::((u u?) li c  , 

(u, v) E U x C, and let L : U x I I C be the function 

L(z , 1) = F(e -  z, e t  z) = f (e -t  z)[1 	(e2t 	1)  e-t zf'(e-tz)  
f (e-tz) 

-1  ( 1+  e2t 
2 
 -1  e-

la "(ez) 
-tz))] , (z, t) E U x I. 

W(t 

for all z E U, then f is an univalent function in U. 

Remark: We denote by Sh(z) the Schwarz's derivative of the function 
h, i.e. 

(4) 
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Since, there is r' E (0,1) such that f(z) # 0 for all z E 	\ 101, the 

function fi (z, t) = 
e-tzre-tz)

= 1 + • • • is analytic in U,.' . f ( e -t  z ) 

""(" ) 
The function f2 (z,t)= 	 = 

	

e  zh e z 
	bl e -t z 	is analytic in U. 

h/(e- t z) 
Then, there exists r  E  (0,r') such that the function f3 (z,t) = 1 + 

(e2 '  	1)f1  (z,  t) 
= 	+  • • •  is analytic in Ur  and f3(z,t) 	0 for 

1 + 2 -1 (ot _1 )f2(z, t)  

all z E Ur  and t E I. , Hence, for the function f4 (z,t) = [f3(z, 	= 
e2at +... we can choose an analytic branch in U,- and the function L(z, t) = 

f(e - i z)f4(z,t) = e( 2 a-1 )t  z +  •  •  • is analytic in Ur  • 
Using (4) we obtain 

L(z ,t) OF 
z  F  (e"  z ,  e t  z) e

t 
 z —

Ov
(e_ t  z , e t  z) 

Ot 	Ou 

and we observe that I 
 L(z ,t) 

 Ot  I 
 is bounded on [0, 7], for any T > 0 fixed 

and for all z E U,.. Therefore, the function L(z,t) = F(e' z , e t  z) is locally 

absolutely continuous in I, locally uniform with respect to U,.. 

Since 

ai (t) = e -t —
OF

(0,0) + e t — 
F

(0,0) = e(2a-1)t 
821 	OV 

n  e tRe(2cv -1) = 00.  
we obtain ai (t) 0 and lim lai  _7  

t-oo 	t
ih
-oo 

It is easy to prove that there exists k > 0 such that 1F(e-  z , e t  z) I (1 1 (01 

< k for all z E UT  and  t E I.  Hence {F(e - tz,etz)lai(t)}t E i is a normal 

family in Ur . 
Using (3) we obtain 

u OF OF  1  - a u[ +  v  - u h"(u)1  1 1  + v - u h"(u)  I G(u,  v) = -- —  =  -- 1 
v au Ov 	a v 	2 hi (u) i L 	2 h' (u) 

h"(u) 	f"
' (

( u)1 

	

+ (v - u) f  '  eul  4-  U  (1)  1.1)  [ 	+ 
1  (u) 	v 	Wu) 	Jru)  j 

u (v -  u)2  1 f"(u)  h"(u) 	_ 
5 'head. + -v 2  L ru)  Wu) 

It results that the function G( - tz,e t z) has an analytic extension 
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36 	 N. Pascu, M. ObradoviC and D. Raducann 

H(e -t z,e tz), where 

H(e-t z,e t z)  = 1-  41e-2t 1  + e2t — I e- t zh"(e -t  z)  
2 	l 	2 	hi(e- tz) 
e2t — 1 e-t  zh"(e - t  z) 	-exfr(e-ez)i [ 

1  +    + (e2t 	
, 

1 )- 
2 	W(e - tz) 	 ' f(e - tz)  

+ e-2t(e2t _ 1)[e-t  zh"(e -t z) e -t  z f"(e - t z)  
le (e- t z) 	+ 	► e- t) 

+ e-2t 
(et 
	

I 

(A _ e—t)2 
Z.1 

_ htt( e—t z ) ftt( e —t z ) 

	

2 	hi(e- tz) ne - tz) 

We have: r_  
IH(z,z)i = 	1 < 1 for all z E U and a E C with Re a > 1/2 and 

1 - a 1 r , 12 	1 — IZI 2  Zh"(Z)1  r , 12  1 - 	zh"(z) 
a izi2 iz' + 	2 	h►(z) Liz ' 	2 	10(z) 

+ (1-  1z12)ei +(1_,z,2) { ze +zff,"( (zz) ) ]  

iz (1 - 21ZI2)2  [ 11:111 .ZZ  ffili ZZ 	4(2)11 5. 1, 

for all z E U\ {0}. 
Therefore we can conclude, using Theorem 1, that the function F(e-t z, 

e t z), t E I has an analytic and univalent extension Fi(e- tz,etz) in U for 
all t E I. In particular, the function f(z) = Fi(z,z), z E U, is an univalent 
function in U. 

3. Remarks 

1. For a = 1 we obtain the following sufficient univalence condition: 

Corollary 1. If f, h E A and 

zh"(z)  zr(z)1 	(1 - 1z1 2 )2  zh"(z) z f"(z)  1Z1 2 (1 — IZ1 2 )[ hqz) 	f(z)  
2 	ht(z) fi(z) (5) 	(1 _ 1z1 2 )2  z2 sh(z) 	Iz12' 2 

for all z E U, then the function f is univalent in U. 

2. For a -4. oo we obtain an another sufficient univalence condition: 

Sh( e - t z) I. 

ll(z, 1 / 	= 
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A sufficient univalence condition 	 37 

Corollary 2. If f,h E A and 

I 1  — 1z1 2  ) 2  zh"(z) z fqz)  z) 	(1 	21 2. 1 2  ) 2   z2sh ( z ) 2 	i  

(6) - [1z1 2  + 
1 - 1z1 2  zh

)
it (Z)1  ri z i2 + 1  jz12  Zhh,"( (zZ) )  

+ (1 	1Z12)Z1f(lz(;)] 2 	hi(z 	' 

	

zh"z 	zfz 

	

+ 1Z1 2 (1 - 1z12) 
r  hr(( )) 

	
r

"
(
(

)
)1  I 

, 1zi 2 

for all z E U, then tl e function f is univalent in U. 

3. If It' = 1/f' we obtain the following univalence criterion which 
generalize the generalize the criterion due to Nehari: 

Theorem 3 [7]. Let f E A and a E C. If Rea > 1/2 and 

( 7 ) 
1- a h z12  1 - 1z1 2  zr(z)] 	2  [ izi + (1 

1z12)(z1(z) 1 z f"(z)) -1 
a 	u 2 	f'(z) f(z) 2 f'(z) A 

z 2 ( 1  -  1z12)2  S f(z) <1z1 2 , z E U, 
2 

then f is a univalent function in U. 

a = 1 in Theorem 3 gives us the Nehari's sufficient univalence condition: 

Theorem 4 [4]. If f E A and 

IS f(z)1 < 2(1 - 1z1 2 ) -2 , z E U, 

then f is univalent in U. 

4. If h' = g' • (f)-1  we obtain an univalence condition which generalize 
the criterion due to Epstein: 

Theorem 5 [8]. Let f,g E A and a E C. If Rea > 1/2 and 

11 -a  a  [Izi2 	1 --jz1 2  (zff ('(zz) ) 	zgg :(z)  '(.z)) 

(8) -1- (1.- 
1z12) zfr(

(z

) )1 [iz12 	-21z12  Z  ff  11( 	Z gg 

( 

1Z1 2 ( 1 	1Z1 2 ) Zgg: 
/( (zZ) ) 	z2  (1 -21Z12)2 

 [Sf(z) 	Sq(z)] 

then f is a univalent function in U. 

a = 1 in Theorem 4 gives us .  the Epstein's sufficient univalence condi- 

< 1z1 2 , z E U, 

tion: 
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z f "(z) 
f'(z) 

then the function f is univalent in U. 

< 1, z E U, ( 1  — 1z1 2 ) 

38 	 N. Pascu, M. Obradovk and D. Riducanu 

Theorem 6 [2]. If f,g E A and 

(9)
(1 — IzI 2 ) 2  

2 	St(z) Sg(z)] + ( 1 	izi 2 ) 2911(2)  g'(z) 
<1, z E U, 

then f is a univalent function in U. 

5. If h(z) = z we obtain the following univalence criterion which gen-
eralize the criterion due to Becker: 

Theorem 7 [3]. Let f E A and a E C. If Re a> 1/2 and 

zfl() ] + ( 1 	1z1 2 ) zfp"  (10) 	((z)) —  a  {iz1 2  + (1 	Iz12)  f(z) 	
z 	

< 1, z E U, 

then the function f is univalent in U. 

a = 1 in Theorem 7 gives us the Becker's sufficient univalence condition: 

Theorem 8 [1]. If f E A and 
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FILOMAT (Nis) 9:1 (1995), 39 -55 

ON APPROXIMATION BY ANGLE 

FOR 27r PERIODIC FUNCTIONS 

Milog To miC 

ABSTRACT. Approximations by angle from singular integrals of functions belonging to 
the space L p , 1 < p < oo are estimated using best aaproximations by angle from the 
trigonometric polynomials. The applications to Riesz's singular integrals are given. 

1. Introduction 

It is well known that integrable 27r periodic functions can be obtained 
by different means of summation of their Fourier series. Approximations by 
sums of Fourier series can be compared with the best approximations as in 
paper [3] and [4]. In the paper [3] for function of one variable several inequal-
ities are established by which the approximations are compared depending 
on whether p > 1 or p = 1. Those inequalities allow to compare classes of 
functions which are defined by approximations. Those are classes of Nikolski 
and saturation classes. 

In the paper [4] we proved inequality concerning the approximation by 
angle for 1 < p < oo. The aim in this paper is to prove the inequality 
concerning also the approximation by angle but which concerns the space 

L1  (the case p = 1). 
To realize this aim we use one theorem of Timan of [3] (Theorem 1, 

inequality (3.11)) and one equality of [4] which in this paper we give as 

Lemma 2. 
The difference between the quoted result of Timan and the results of this 

paper is following: 
1) We generalise the result of Timan so that we consider an n-dimensional 

case of approximation by angle. 
2) We give a theorem in a form which is more suitable for application in 

order to compare Nikolski's classes with saturation classes. 

Received 02.03.1995; Revised 28.06.1995 
1991 Mathematics Subject Classification. 42A10. 
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40 	 M. TomiC 

2. Auxiliary results 
We say that f E Lp([0,2r]n) if f = f(xl, . ,x„) is measurable on A n  

and is a 2r periodic function with respect to every variable x1,...,x n  for 
which 11111 < oo, where 

II/II = IlfIlp = ( .1 If(xi,•• • , xn)r) 

1/p 	

1<p< 00, 

II f II. = sup vrai I f (x)I, 

ZI„ = {x = (xi,...,x n), 0 < xi < 2r, i = 1,...,n}. 

We will use the set of all sets of indices 	such that 1 < i j  < n, 
1 < j < m < n. 

Let T11,  (x 1 , . , x n ) E LP  be a trigonometrical polynomial of order lis 
with respect to variable x ii  but with respect to all other variables Ti ii  is a 
arbitrary function. 

The best approximation by m-dimensional angle for the function f to 
variables xi,,..., xi,, is the quantity (see [2]): 

f — 
	 " s '  I , 	= 0,1,2,... 
j=.1 	P 

Let 	(t), j = 1,...,n, 	= 1,2,... be the kernels such that X(—t) = 
X(t), and 

2ir 

(2.2) j.  X(t)dt = 2r, 1.  IX(t)Idt < M, 	lim 	'Xi, (01 = 0, 
4—.00 0<6<lt1 

where the constant M does not depend on 
A Fourier series of the kernel XI. (t) can be stated in the form 

00 
(2.3) 	 (t) -.-E 1+ E 71j  (ki ) cos kit, (j = 1, . . . , n). 

k; =1 

For the function f E L P  by these kernels we can define singular integrals 

1 	2r (2.4) 	f = —
2r 0 

f (x i  , 	, xi — t i  , 	, x„)Xiii(ti)dti, 

(2.1) 	 = 
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On  Approximation by  Angle  for  2w  Periodic Functions 	 41 

	

ii o ij  f  =  11,14  f, .  , 14,...,1.  f  =  14 	f. 

By these singular integrals we can determine all rn-dimensional angles (1 < 
ij  < n, 1 < j < m < n); 

(2.5) 
f  = Iri f  +  • • • + 	f — 14142  f — • • • — 	f 

( - 1)11 -1 	f.  

Without loss of generality, in order to simplify the exposition, we will give 
a proof for the case n = 2, i.e. for a function of two variables. In that case 
we have three angles 

	

A1] =  f, Al 2 1  = 	 =  f + '72  f —  -11 1 1 2  f. 

two one-dimensional angles and one two-dimensional angle. 
For a function f(x i ,  x 2 ) E Li, we will use singular integrals 

1 / 
J

t21r  f  
Sii f  = 	

t 
 = 	 1,X1 — 	X2) 1) 1 1 (t1)dti 

7r 0  

1  1 r  27r  , 
812 1 = Scot,

t 
 =  — 	VI, X2 —  t2)Dt2 (t2)di2 7  

7  0 
St,t 2 f = Sli (S12 f). 

sin(/ 	1/2)t 
where Di(t)  = 	 is  the Dirichlet's kernel. 

2 sin t/2 
In order to prove our main result, we need the singular integrals of de 

la Vallee-Poussin (see [2]) V1 1  f = V4c,o f  , 1/12 f = Voo t,f, Vi , 12  f  =  Vii (Vi2 f), 

W1,1 2 f = Vi2  f  — V1 1 12 f,  = 0,1,2,.... 

The functions Vls  f  , j = 1,2, are trigonometrical polynomials of degree 
21i  — 1 with respect to  x i  and satisfies < Blifii, 1 < p < co, where B 
is an absolute constant. 

Lemma 1 ([2], lemma  3).  Let (xi,  x2) E L p , 1 < p < oo. Then 

(2.6) 111  — 	f  li p 	CYllt2(i)p, 	Vi i  fli p 	CY -1;  (.f )p,  lj  =  0,1,2,... 

where  C is  an absolute  constant. 

The most important tool in the proof will be the following lemma: 
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42 	 M. TomiC 

Lemma 2. For a f E L p , 1 < p < oo and h, s j = 1, 2, ... the equalities 
9 

(2.7) 	 f — Ar 1 r2 f = E Bi  
i=1 

hold, where 

B 1  = f - W2.12.2 f , B2 = 	BlI B3 = — //22  B 	B4 = 

B5 = V2si (f — 11, f - V2.2 f + 	f), B6 = —12 B51 

B7 = V2 1 2 Cf.  1122 f - 1/2 5 1 f + 1?2  112'1 f 	B8 = ,01  B7 , 

B9 = V231282 (f Ai212 f) • 

Proof.. The equality in the lemma is obtained by using the theorem of Fu-
bini. ❑ 

We note that similar equalities were established in the paper [4] in which 
de la Vallee-Poussin sums are replaced by Dirichlet's sums. 

Now we will use the function Fii(m, 0) which is defined in [3]: 
1  7  ,7n1  

	

i (m,0)= 	 
1  

2 	
+ 	[1 - 71(m - k)] cos k0 

k=1 

1  — 71(m) m-1 
2 	E [1 _ 71(k)] cos(rn - k)9, 

for m = 2,3, ... and 

1 — (1) 	3 	0) _ 1 _ 73 (1) (1,0) = 	2  	, 	(0, — 	, j =  
Lemma 3. If 

m 

T„,(t) = E a, cos vt /3, sin vt 
p=o 

is a trigonometrical polynomial of order m in one variable t, and if the 
function Fi  is defined by (2.9), then the following equalities hold 
(2.10) 

2' 
E[1 - 71 (k)](ak  cos kx /3k sin kx) = -

2 1 
Fi(m,0)T„,,(x -I- 0) cos me de 

k=1 	 o 

(2.11) 
2r 	 2ir /0  

I)(v, 0)T„,(t + 0) cos v0 d0 = J Fi(in,O)T„,(t 0) cos me dB, v > in. 

Proof. Equality (2.10) is proved in [3] (the equality (3.11)). Equality (2.11) 
can be proved in the same way. ❑ 

(2.8) 

(2.9) 

k=1 
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3. The main result 

	

For every kernel Xi: (t), j 	n  we can identify the quantities d)= 

> 0,  ►/) = 	(kj), K = K 	,1j, kJ ),  using equalities 

(3.1) 	1 - 	=  c.7(1j)1Pl(ki),  ki, di  =  1,2,..., 

1 	25i-2  Oti- ( 2ki  - 1  -  vi) 
(3.2) 	K = K j (ipj  ,  1 

 3
• , k . 	- 	

3 
. 	  ) 	

2 	, 	tp,  (2ki - 1) 	
cos y .0 -  

vi  =1 	.; 

For a fixed number l  j  we choose the number  sj  such that 2 3i  < di < 28.1+1 . 

We will say that the quantities  0,0,  K satisfy conditions (a), (0),(7),(15) if 

(a) 1 01;  (ki)1 5-  C1104(k7)1 , 0 	< ky <28 

	

lik1; (1)1<c2, 	=  04(0)), 

cot  j (ki )i,  2kj  28i 

0. 
By a << b, a > 0, b > 0, we will denote the inequality a < Cb, where  C 

is some positive constant. 
The following theorem gives the estimation of the approximation II f 

ill by the best approximation by angle. 

Theorem 1. Let the quantities  0,117,  K satisfy the conditions (a),  (/3),  (7), 

(b) and let f E L p , 1 < p < oo. Then for all natural numbers ij  and m such 

that 1 <  ij  < n, 1 < j  <  m <  n  the following inequalities hold 

In 	 1. 1  

II f 	1 ...ii m  fli p  <  C 	E 
i.1 

(3.3) 

	

(f)dE H 	ki ; + 1  
k;,,,  =0  j=1 

with constant C independent on f and Ii = 1,2,.... 

To prove this theorem  we  need 

(/3) 

(y) 	 0 < C4 	(I)  j(1  j)104(2301, 

(6) 	IIK 	,1j,ki)111 5.  C5,  

where the constants 	C5 don't depend on ki and 

We will use symbol the [  such  that [2"1 = 2k-1 for k > 1 and [201 
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44 	 M. Tomi 

Theorem 2. Let the singular integrals Xf (t), j = 1,2 satisfy the condition 
(2.2) and let the function f(xi,x2) E Lp ([0,27] 2 ), 1 < p < oo. Then for 
approximation by angle the following inequalities hold 

Il — A li flip < C1 {172 31 (f)r 
(3.4) 	 si  2ir 

+ E YE2,,(f)pf 
0 	, ki =0 

Ilf — Aio2 fil p  C2 [Y2 8 12 3 2 (f )p+ 

2ir 
+ E Yi2k i  —92a 2  ( f) p 	(2 k1  — 1,0 1 )1d01 1+ 

k, .o 

0 
1F122(2k2 — 1, 02)16'2] + 

[ s1 	82 	 2 
+ C2 E E y 	

2ir 
i2k,_ 9,2 k2 _ 9 (f )p 	I I 	( 2 ki - 1, Oi  )1 ded , 

ki =0 k i  =0 	 j=1 ° 

where the constants C1 , C2 do not depend on f and si,l i  = 1, 2, 	(j = 1, 2). 
Proof of Theorem 2. We have 

lif 	fil = Ilf 	fll = 	— 1/2 3 ; f V2si f — 141 72.j f + 	f - 	fii 

and therefore 

(3.6) 	II f — A1, fli p  G. C3Y25; (f), 	f .14V2 3;  fli p  

where the constant C3 does not depend on f,li,s j  and the numbers lj and 
si are arbitrary. 

We consider 

(3.5) 32  

+ C2 [ Y2 3 1 [2k1-9 (f)P 
k2 =0 

(3.7) 

V2si f — V2 °, f = 	(f, 	, ) 
2's i —1 

= E 42s)  ) Ak 
k=0 

E 	(k)b kej  ) Ak = E 
k=0 	 k=1 

[1 — y%(k)]423')Ak 
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where Ak is the term of the Fourier series of f as a function with respect to 

the variable  xi  and Si is a factor of a product which is determined by the 
sum of Vallee-Poussin. 

For G we will use the expression 

3, 

(3.8) 	GI  (f,2 8,  , x) = E[G,,(f,2k,x)- 	, x)] G ( f , 1, X). 

k=1 

In view of (3.7) the function G1,(f,2 k , x) is a trigonometrical polynomial 

with respect to  xi.  Therefore, using Lemma 3, (2.10), we have 

(f, 2 k1  X) = 
2ir 

(3-9) 	= 	F11 (2k1+1 — 01)1(2ki f(X1 01,  X2) COS(2 k1+1  — 1)01d01. 
7  0 

G ii (f,2 k1-1  , x) = 

( 	2 

	

3.10) 	27r 
=  — I 11,(2k1  - 1,01)1i2k,-if(xi 01,x2)cos(2 1" - 1)6 1  d01 . 

o 

and similar equalities with respect to the variable x 2 . 
It follows by Lemma 3, (2.11), that holds 

G11 (f,2 k',x) 
3.11) 

= 
j2ir ( 	

Fil  (2 ki -  1,  01 )V2 A., f (x + 9 1 , x 2 ) cos(2 k1  - 1)9 1 c10 1 . 
o 

The equalities (3.10) and (3.11) give 

2 I" 

	

Gij 	2k1 x) -2 k'-1 	= _ 	(2_, - oi)  Fil
(3.12) 	 7r  0 

tV2k i  f (Xi + 01, X2) — V2 k i -1 f (x i  -I- 	x 2 )] cos(2k1  - 1)01d91. 

Since by Lemma 1 

(3 . 13) I1V2k f — v 2 k,—i f II 5_  IIV2 k,  f - 	V2L1 -1  fll << 2112k ,-11(f) 

we conclude from (3.12) that 

II  Gs .,(f ,2 k,  ,  x)  —  ch i (  f , 2 k1 ' , 1)11 

	

(3.14) 	 27r 

<< Y12k i  - 	 (2ki  — 1, 01 )1d01 
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96 	 M. Tomi6 

holds. 
For the quantity Gi,(f, 1, x) we have 

G ( f, 1,x) = Vi.f — 	f = S1.f — Ii , Si f 
= A i  f — 71,(1)Ai f = [1 — 71,(1)] Alf 
= [l - 711 (1A [Sif — Sof] = [ 1  — 71,0)][Vi f—Vo f]  

because Vi f = f , Vof = Sof. Therefore 

11G/I(L 1 ,x)11<< Yo(i)1 1 	71,( 1 )1 

hence, using the definition for Fi1(0,9) we obtain 

2ir 
(3.15) 	11G1 1 (1,1,x)11 p  < Yo(f) p  f 1/y1 (0,01)1,mi. 

Now, in view of (3.7), (3.8), (3.14) and (3.15) , we obtain 

(3.16) 111/2.1 f — 14V2si f II << E y2 ki_1
1
(f)1 27  I Fill  (2 k1  — 1 91)1 del 

0 lc' =0 

From (3.6) using (3.16) it follows the inequality (3.4) for j = 1. In the 
same way we establish the inequality (3.16) for j = 2. Thus, the inequality 
(3.4) is proved. 

To establish the inequality (3.5) concerning the approximation by two-
dimensional angle we use Lemma 2. 

It is clear that 

(3.17) 	 IIB.iII< Y2.1202 (f)p, j = 1,2,3,4, 

holds. 
To estimate the quantity B5 we will write 

(3.18) 	 B5 = V2 1 — ;11  V2 s 4)  

where 
(I) = f — Vv2 f. 

We consider the function B5 as a function of the variable x 1  and apply 
the metod by which we estimated the expression' G1, ( f , 2 51, x). So we derive 
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s, 

(3.8') 	Bs = Bs (2 51 ) = E [B5 (2 k1 ) — Bs (2 k1 —1 )1 + Bs (1), 
k, = 1 

Bs (2 k1 ) — Bs (2k1-1 ) = 

21' _ _ (3.12') 	
2 1 F?. (-2 ,  — k 	1, 00 [V2k1 (I)  (X1 + 01,x2) — 
7r 0 	-11  ‘ 

— V2 k 1 -1(1) (xi + 91, x2)1 cos (2 k1  — 1) 91d01, 

11v2k, - v2k1 4)11 < 11v2k1 	- 4)11 + 11 4) - v2k1-1 4)11 

Since 

we obtain 

Thus 

(3.19) 

V2 k , — = — [f — (V 2k, f + V2 , f — v2k, f)] 

I11/2k,4) — 4)11 p  << Y2ki 2.2 (i)p, 

112k1-1 4) 11 p  « Y2k1-12.2(f )p. 

I1 V2k, — V2k1 —143 11p « Y2k1 -1 2'2 (DP• 

For Bs ( 1) we have 

B5 (1) = 	— / /li g) = [1 — 71,( 1 )] A14) = [1 — 71,( 1 )] [V1 4' — 1701)] • 

Since 

IIVI ~ — 170 4)11 W' — 	+ Ii(1)  — 

IIVI ~ — 4)11 = 	- (vif + v2.2f - virJ)11 « Y12.2(1), 

III — 17011 = ilf — (Vol + Vv“ — Vo2.21)11 « YO2 32  (f) , 

 /1(1 )1 = 1F4 (0,81)1 

we derive 

(3.20) 
2/r 

11B5( 1 )11 	Y02'2(f) ( 13,001 
0 

V
ir

tu
al

 L
ib

ra
ry

 o
f 

F
ac

ul
ty

 o
f 

M
at

he
m

at
ic

s 
- 

U
ni

ve
rs

it
y 

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs
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In view of (3.18) , (3.8') , (3.12') , (3.19) , (3.20) it follows that 

5 1 	 21r 
(3.21) 	1lB5II << E Y[2.1- 92.2(pj 	(2k1 	1, 01)1 a l . 

kJ  =0 

It is clear that 

(3.22) 
	

11B611« 

In the same way we obtain 

(3.23) 
s2 	 27r 

II 117 1I 	Y2'112 k 2 -11(f)/ 	I F12
2 
 (2

k2 	1,02)1 d02 
k2=0 

(3.24) 

PAM < 11B70. 

To estimate B9 we use the equality 

B9 = V29 P — V2., 11,P, P = V2 .2  f — 1122  V2s2 f. 

In the same way as we obtained the expression for B5 we derive 

B9 = E [B9  (p,2k1) — B9 (P, [2 k1 -1 ])] 
k1 =0 

(3.25) 	sl  2 127 	rh , 
= E — 	v2k,,,,x, +

A 	
— 	 + oi,x2)} • 

0 k, =0 

• 	(2k1  — 1,01) cos (2 k1  — 1) alai. 

We consider the function P as a function with respect to x 2  and obtain 

(3.26) 

P(xl + et, x2) = V2.2 f (xi + 81,x2) — V2.2 1 122  f (xi + et, x2) = 
.2 
E (87 (f ,2k2 ) — B7 (f, [2k2

-1J)} = 
k 2 =o 

	

.2 2 	27  

	

— 	{v1k2f(s, +01,x2 +02)— 
/ 

E  
k2 = 0 

f (xi + 	x2 + 02)1 Fl; (2 k2  - 1, 92) COS (2 k2  - 1)02d02. 
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B9  = E 
Si .2 A  1  2/r j2w 

{V2 k, 2k 2  f — I/2k [2k 2 —1 1 —  
7 	o k i =o k2 =o 
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Using (3.25) and (3.26) we get 

(3.27) — V[ 2 k i _1i 2 k 2 f  +  VE2k
1
-ill2k 2 -1]f 1. 

2 

• HF,J, (2k1 — Lei ) cos (21,1 — eidei . 
J=1 

Since 

(3.28) 
Q =V'1k 12 ' 2 f - 2 k l - vpk1--12k2 f + 

= YV1k12k21 - w2 k1[2k3-1]f - w[2k1-i]2k2 f + 

we obtain 

	

(3.29) 	 11(211 « Y[ 2k 1 _i][2 k 2 -1](f)• 

From (3.27) , in view of (3.28) and (3.29) it follows that 

$1 	$2 	 _r_r2  f2Ir 

	

(3.30) 11 8911 	E E Yp ki_1 1[2k.,_ 1(f)ll 	IF! (2k1  — 1, gi) d6 
k,=o k2 =0 	 j=1 ° 

Finally, using Lemma 2 and the inequalities (3.17), (3.2),. (3.22), (3.23), 
(3.24), (3.30) we obtain the inequality (3.5). The proof of Theorem 2 is 
complete . 

Proof of Theorem 1. First we establish the inequality (3.3) for in = 1, 
n = 2. We will use the inequality (3.4), (Theorem 2), and the conditions of 
Theorem 1. 

In view of (3.1) and (3.2)  we  derive 

	

(3.31) 	Fl, (2k1 _ 1,90 = 6(11)011 (2k1 - 1) K1 

hence, using the condition (s), it follows that 

	

(3.32) 	11F; (2 k1  — 1,0011 « 01( 11)101, (2k1  — 1)1. 
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50 	 M. Toinii: 

From (3.4) by (3.32) we obtain 

sl  

(3.33) 	Ill - A11 fjI << 172 , , (1) + OA) E 	(2ki — 1)1 Y[2,,, ] (f)• 
k1 =0 

Now, from (3.33) using the condition (7) it follows that 

Ilf — A1 , fII « 01(4)f 	(23911.7231(f) 
(3.34) 

+ E 14, Y[2k,-i](f)}. 
k,=0 

hence by the conditions (a) and (/3) we derive 

31+1 
(3.35) 	 - Atli' «01(l1) E 	([2k1 -1 ])1 

ki=o 

We conclude, using the conditions ( /(3), (a) that ( see [4]): 

' 

V-• 100)1  '(3.36) 	 1 01  (2k)1 y2, « 2_, 	Y„• 
k=1 	 v=2 

Finally, from (3.35) by (3.36) we obtain the inequality (3.3) for the case 
n = 2, m = 1 (with respect to the variable x1). 

In the same way using the inequality (3.5) of Theorem 2 and the conditions 
of Theorem 1 (see the proof of the , corresponding theorem in [4]), we obtain 
the inequality (3.3) for m = n = 2. 

The proof of Theorem 1 is complete . 

4. Applications 

The obtained result (Theorem 1) we apply to Riesz's singular integrals. 
Riesz's singular integral is given by the kernel ( see [1] ) 

(4.1) x i A)  (t) = 1 + ( — 1  1 — Aj  ) cos jt 
A/+1 

where the sequence A i , 1 = 1,2, ... satisfies following conditions: (1) 0 < 
Al < A 1+1 , (ii) A i  oo, oo, (iii) 02A < 0 or A 2 A > 0, (iv) A2/ = 0(A1) 
if A2 A /  > 0. 
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For this singular integral ( this method of summation of Fourier series of 

functions ) we have 

	

l'i A) ( 0 )= 	'4 A) (1). 1 — , Aj  ,  j = 1,...,1, 
A1 4.1 

71 A) (j) = 0, j = 1 + 1,14 2, .... 

The quantities (/), •/), K are 

	

Oi A) (j)= )j, 	= 1,2,..., 1  
1 

= 	j > 1+ 1, ONO 
Ai+1 

— 	1 = 1,2,... 

2 k  -2 , 

K = K (00) ,k,O) = —
1 

v=1 
+ E 	-1-- cos vo. 

2 	

/19k 

A 2 k  -1 

We will prove that the quantities 0, 	K satisfy the conditions (a), (0), 
(7), (6) of Theorem 1. 

Since (i) and (4.3) the condition (a) holds for . 
To prove that the condition (0) is satisfied we use the inequality 

Ak 

	

Ak+1 	
, 

k 
< 	(ij constant), 

which is proved in the paper [1] of Aljancic ( if A 2 A > 0 the condition (0) is 

obviously satisfied, the condition (iv)). From this inequality it follows that 

A < 1 + C-
1 k+1 
k .  A k   

Putting k, k +1,...,2k — 1 in this inequality, by multiplication we derive 

k 
2k (

1+  ) A2k 

and then A2k = 0(4)• 
The condition (•y) is equivalent to the condition 

—
Ai 

< C, 2 8  < 1 < 2 8+1  
A2' 

We have MP 

Ai 	 c  

A2 ,  --- 

(4.3) 
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52 	 M. TomiC 

that means that condition (y) is satisfied. 
Now we will prove that the function K satisfies the condition (6). 
By applying Abel's identity we have 

2 k -3 

(4.4) 	K (1 
1 	 A

1) (A) ,k,O) 	 AA2k_i_,Dv( 9 ) -F , 	_2
in\  
kui A2k_ 	 A 2 k 

1 n  

v=o 

where D is Dirichlet's kernel. 
To estimate the free term in (4.4) we introduce the new condition 

(4.5) 	5_ C (C = constant), 

independent on 1. 
In view of (4.5) we have 

2k 
 - 

(4.6) 	K (11,(A) ,kO) 	 AA 2 k_ 1 _,D,(0) + 0(1). 
A2k - 

If we apply Abel's identity again, from (4.6) we obtain 

2 k  -4 

K (11,(A) ,k,0) = E A2A,k_,_, Epic()) 
A2k—i ,,=0 	 i=0 

A2k_, 	

2 k  -3 

	AA2  E Di ( o) + 0(1). 

D•(9) = (I/ 	1)F,(9) 
j=0 

where F,, is Fejer's kernel , it follows that 

1 	2k-4  
K (1) (A) ,k,0) = 	E + 

(4.8) ',2k-1 v=0 

1 
	AA2 (2k  — 2) Fk(9)-F 0(1). 
A2k—i 

v=0 

(4.7) 

Since 
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The equality  (4.8) implies 

II K  (1PM ' k7  °) 	
A k  « 	( Z1il 	+ ILIA  	

2 -4 k

/ 	1)16,2A2k—l—i/1 

(4.9) 	

2 2   

• 	(2k  — 2) + 
.42k 

Using (4.5)  from (4.9)  we  obtain 

 

K 	k,0) 
2 k  -4 1 

<< 	 E(v+1)1A,A2k_i_vi+0(1) 
=0  

(4.10) 

  

where AA, = A, — Ap +i , A 2 A  =  A(AA). 
Since 

(4.11) 	E( v 1)02p v  =  2ito  — 	(I,3+2 — iti+1 ) (i +  1)  — 
v=o 

then, putting 	=  A2k -i-v, =  2k -  4  we derive 

2k-4 
(4.12) E(v+1)1A2A2._,_„1.2A,k_,-A2k_2+(A1-A2)(2k-3)-A2. 

v=0 

Finally, from (4.10)  in  view  of (4.12) we obtain that Illfili  < C.  This 

means that the function  K  of  Riesz's singular integrals satisfies the condition 

M. 
In this way we prove  the  following 

Theorem 3. Let the  sequences  A (i k) , k = 1, . ,.,n,  1  = 	, ..., satisfysfy 

the conditions (i) -  (iv)  and  (v) 1  =  0(AI), 1  -4  oo. Let  ill:'),...,ii,  f be 

m-dimensional angles  which  are obtained from singular integrals which  are 

associated with the given sequences . 
Then, for f E L p , 1 <  p  < oo, and all natural numbers  ii  and in such 

that 1  < ii  <  n, 1  <  j  <  7/t,  < n, the following inequalities hold 

11  f - il (1. )  , ... ,i  , m  f  II  < ,  H A(,:i.)  -1  E:- ••. [ 	

1 , m 	. 

(4.13) 
k =0 

,imm 	A(ii) 
E  n  ki i yk. ..k.  

) 11  ki  + 1  
k,„• =0 j=i 
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where the constant C does not depend on f and 1 1  = 1, 2, .... 

Particularly we consider the sequences 

(4.14) 	Ai  = • (jr's)  = Ai(r, s) = j r  logs( j -I- 2), j = 1, 2, ... 

where the real numbers r and s satisfy r > 0, s > 0. 
Conditions (i) - (iv) of Theorem 3 are satisfied. Condition (iii) is satisfied 

because the function A(x) = xr logs x has derivative A"(x) > 0 for r > 1, 
is > 0, x > b where b is the base of the logarithm. 

Thus, we can apply Theorem 3 and obtain 

Theorem 4. Let A (r's)  f be an in-dimensional angle from singular in- 
tegrals which are determined by the sequences Ai(r, s) = jr 1ogs (j + 2), 
j = 1, 2, ... for r > 1, is > 0. Then for f E Lp ([0,27]"), 1 < p < oo, 
the following inequalities hold 

(4.15) 

71L 

f — 	f < C 	 (ti  + 2) 
J=! 

• E ••• E H (kii  + lri logsji (k ii  + 2) Ykii 	(f) 
=0 k m  =0 j=1 

where the constant C does not depend on f and 1 1  = 1,2,..., 1 < ij < n. 
1 < < m < n. 

Puting sj = 0, j = 1, ... 71 we obtain from (4.15) the following inequalities 

(4.16) 
I lf - -Ti,  

; i 
j=1 	k1 1 =0 

to m m 

E ll(ki, + 	Ykii 	(f) 
ki n. =0 i=1 

where f E L p  ([0,27]'L), 1 < p < oo, ri > 1, 1 < i1 < n, 1 < j < ma < n. 
For n = 1 we have the case of a function of one variable. Then Y = E 

and from (4.16) we obtain 

/ 
(4.17) 	

i Alrp 	

v_, 

Cdr 2.,(k + 1 r i  Ek(f) p  
k=0 
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where 1 < p < oo , r  > 1, 1 =  1,  2, ... and 

f 	
2 

= 	-FE  [I. 
(11)* 

kr 	 (ak cos kx  bk  sin  kx), 
k=0 

ak, bk are the Fourier coeficients of the function f. 
The theorem proved above make it possible to compare the classes of func-

tions which are defined by the approximations. We will show that comparing 
the following classes. 

Let the numbers II, r„,  rj  > 1,  j  = 1, 	n, be given. We identify the 
classes 

M 

{ ST,H = f  E L p  :114,...1,,„(  f) p  =  0 11 1 ii ' ) , 

( 

-Ti . 

j=1 

1 li = 1,2,...,1<ij<n,1<j<m<n 

m 
R =If E  Lp f  4r? • 	= ° 01 1::‘1 )' 

i= 1  

lj  = 1,2, ...  ,  1 <  ij  < n, 1 <  j  <  m < n 

where A(r)  are angles which are determined by the sequances Aj(rk) = j rk 

k = 1,...,n, j = 1,2,.... 
Then in view of the inequalities (4.16) we conclude that 

Sr+e  H  C  V r  R  C  Sr H  1<  p<  oo P 	P 	— — 7  

where r  E is determined by numbers rj E j, rj > 1, ej > 0,  j  = 1, 	n. 
The classes .5';H are the classes of Nikolski which are defined by the mixed 

dominated modulus of smoothness (see [2]). 
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POWER SEMIGROUPS THAT ARE ARCHIMEDEAN 

Stojan Bogdanovie and Miroslav 6irie 

ABSTRACT. Power semigroups of various semigroups were studied by a number of au-
thors. Here we give structural characterizations for semigroups whose power semigroups 
are Archimedean and we generalize some results from [1], [8], [10] and [11]. 

Throughout this paper, Z+ will denote the set of all positive integers. For 
an element a of a semigroup S , (a) wil denote the cyclic subsemigroup of S 
generated by a. For a semigroup , let P(S) = {A I 0 # A C 5). If the 

multiplication on P(S) is defined by AB = {ab I a E A, b E B), then P(5') 
is a semigroup which will be called the power semigroup of S, [11]. 

A semigroup S is intra-ir -regular if for each a E S there exists n E Z+ 

such that an E Sa2 " S . A semigroup S is left 7r-regular if for each a E S 

there exists n E Z+ such that an E Sa"+ 1 , and it is left regular if for any 

aES,aESa2  . Right 7r-regular and right regular semigroups are defined 

dually. 
A semigroup S is Archimedean if for any a, b E S there exists n E Z+ such 

that a" E SbS . A semigroup S  is  left Archimedean (weakly left Archimedean) 

if for any a, b E S there exists n  E Z+ such that a" E Sb ( a" E Sba ), [4]. 

Right Archimedean and weakly right Archimedean semigroups are defined 

dually. A semigroup S is t- Archimedean (weakly t-Archimedean) if it is both 
left and right Archimedean (weakly left and weakly right Archimedean). A 
semigroup S is power joined  if  for any a, b E S there exists in, n E Z+  

such that am = bn . A semigroup S is left completely Archimedean if it is 

Archimedean and left ir-regular. Right completely Archimedean semigroups 

are defined dually. A semigroup S is completely Archimedean if it is both 

left and right completely Archimedean. A semigroup S is left completely 

simple if it is simple and left regular. Right completely simple semigroups 
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58 	 S. Bogdanovi6 and M. 6iriC 

are defined dually. A semigroup S is completely simple if it is both left and 
right completely simple. 

Further, S = S° will means that S is a semigroup with zero 0. A semi-
group S = S° is a nil-semigroup if for any a E S there exists n E Z+ such 
that an = 0. For n E Z+, a semigroup S = S°  is n-nilpotent if S" = {0}, 
and S = 5° is nilpotent if it is n-nilpotent, for some IL E Z+. An ideal 
extension S of a semigroup T will be called a nil-extension (nilpotent exten-
sion, n-nilpotent extension) if S/T is a nil-semigroup (nilpotent semigroup, 
n-nilpotent semigroup). 

Let T be a subsemigroup of a semigroup S. A mapping 'p of S onto T will 
be called a right retraction if cup = a, for each a E S, and (ab)'p = a(b'p), for 
all a, b E S. Left retractions are defined dually. A mapping w of S onto T 
is a retraction if it is a homomorphism and wp = a, for each a E T. If T is 
an ideal of S, then w is a retraction of S onto T if and only if it is both left 
and right retraction of S onto T. An ideal extension S of a semigroup T is a 
(left, right) retractive extension of T if there exists a (left, right) retraction 
of S onto T. A (left, right) retractive extension by an n-nilpotent semigroup 
will be called a (left, right) n-inflation, 2-inflations will be called simply 
inflations, and (left, right) retractive extensions by nilpotent semigroups 
will be called (left, right) inflationary extensions. 

A semigroup S is a singular band if it is either a left zero band or a right 
zero band. 

For undefined notions and notations we refer to [2], [3] and [7]. 

Theorem 1. The following conditions on a semigroup S are equivalent: 

(i) P(S) is Archimedean; 
(ii) P(S) is a nil-extension of a simple semigroup; 

(iii) P(S) is Archimedean with an idempotent. 

Proof. (i) 	(iii). Asumme a E S. For {a}, (a) E P(S) there exists 
B, C E P(S) and n E Z+ such that {a}" = B (a) C, so for b E B, c. E C 
and a2 " E (a) we have 

a" = ba2 "c E S a2 n S. 

Therefore, S is infra-r-regular semigroup. Since S is also Archimedean, then 
by Theorem VI 1.1 [2], S is a nil-extension of a simple semigroup K. Thus, 
P(S) is an Archimedean semigroup with an idempotent K. 

(iii) 	(ii). This follows by Theorem 3.2 [6]. 
(ii) 	(i). This follows by Theorem VI 1.1 [2]. ❑ 

Corollary 1. If P(S) is Archimedean, then S is a nilpotent extension of a 
simple semigroup. 
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Power semigroups that are Archimedean 	 59 

Proof. By the proof of  (i) =  (iii) in Theorem 1,.  S is a nil-extension of 

a simple semigroup  K.  Since  P(S) is Archimedean, there exists 71 E  Z+, 

A, B  E  P(S) such that  S" = AKB,  whence Sn  =  AKB C K = Kfl  C Sn. 
Therefore, 5n =  K,  so  S  is  a nilpotent extension of a simple semigroup. ❑ 

Theorem 2.  The following conditions on a semigroup S are equivalent: 

(i) P(S) is left completely Architnedean; 
P(S) is  completely Archimedean; 

(iii) P(S)  is a nil-extension of a rectangular band; 
(iv) S is a nilpotent extension of a rectangular band. 

Proof. (1) 	(ii). By Theorem 1, P(S) has an idempotent, so by Corollary 
4 [4], P(S) is completely Archimedean. 

(ii) 	(iv). Let a  E S. By Theorem 1,  Sn =  K is  a simple semigroup, for 

some n E  Z. Also, by Theorem VI 2.2.1 [2], there exists m  E Z+,  C E  P(S) 

such that faYin = {a}m  (a)Cialm.  Now, for any c E C  we have 

am =  a"' ace'.  = an  a2  cam  =  aamacam = aam = am+1, 

and by this it follows that  K  is  a rectangular band. 
(iv) 	(iii). Let Sn =  K  be a rectangular band, for some it E  Z+. 

By Lemma 4 [8], P(K)  is an  ideal of P(S), and by Theorem 4 [10], P(K) 
is an inflation of a rectangular band  T.  Since T2  =  T, T is an ideal  of 

P(K) and P(K) is an ideal  of  P(S), then T is an ideal of P(S). Also, for 

A E P(S), A n  C  Sn  =  K,  so  A n  E P(K), whence A2n  E  T. Thus, P(S) is a 

nil-extension of a rectangular band T. 
(i). This follows immediately. ❑ 

Corollary 1. The following conditions on a semigroup S are equivalent: 

(i) P(S) is an inflation  of a rectangular band; 
(ii) S  is an inflation  of a rectangular band; 	• 

(Vr, y,z E 5) xz  = xyz. 

Proof.  (ii) q (iii). This follows by Corollary 3.5 [5]. 
(iii) (i). For A, B, C  E  P(S), by (iii) we obtain that AC = ABC,  so 

by (ii) q (iii) we obtain (i). 
(i) = (ii). This follows immediately. ❑ 

Theorem 3. The following conditions on a semigroup S are equivalent: 

(i) P(S) is weakly left Archimedean; 
P(S) is a right zero band of nil-extensions of left zero bands; 

(iii) S is a right inflationary extension of a rectangular band. 
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60 	 S. BogdanoviC and M. eiriC 

Proof. (i) 	(ii). By Theorem 1, P(S) has an idempotent, so by Theorem 
7 [4] we obtain (ii). 

(ii) = (i). This follows immediately. 
(i) 	(iii). By Theorem 2, S is a nilpotent extension of a rectangular 

band K. On the other hand, it is not hard to check that S is weakly left 
Archimedean, so by Theorem 7 [4], S is a right retractive nil-extension of a 
rectangular band T. Clearly, K = T, so (iii) holds. 

(iii) 	(i). Let S be a right inflationary extension of a rectangular band 
K and let (to be a right retraction of S onto K. By the proof of Theorem 2, 
P(S) is a nil-extension of P(K) and P(K) is an inflation of a rectangular 
band T. Further, T is a right zero band Y of left zero bands Ta, a E Y, 
so P(K) is a right zero band Y of semigroups P a , a E Y, where for each 
a E Y, Pa  is an inflation of Ta . Assume A, B E P(S). Then A", B" E T, for 
some n E Z+, and A" E Ta , B" E To, for some a, /3 E 1'. Now, Aw E P(K), 
i.e. A(to E P.v , for some -y E Y, so 

A" = A" 4-1  = A"+1  = (A" A)( 1.9 = A"(Aw) E Pa P. y  C 

and by A" E Ta  we obtain 7 = a, i.e. A'p E Pa , whence 

B"A = (B"A)co = B"(Av) E ToPa. C T n Pa  = Ta . 

Therefore, A", B"A E T, whence A" = A"B"A, since Ta  is a left zero band. 
Hence, P(S) is weakly left Archimedean. ❑ 

Corollary 3. The following conditions on a semigroup S are equivalent: 
(i) P(S) is weakly t-Archimedean; 

(ii) P(S) is a matrix of nil-semigroups; 
(iii) S is an inflationary extension of a rectangular band. 

Proof. This follows by Theorems 1 and 3 and Corollary 5 [4]. ❑ 

Theorem 4. The following conditions on a semigroup S are equivalent: 
(i) P(S) is left Archimedean; 

(ii) P(S) is a nil-extension of a left zero band; 
(iii) S is a nilpotent extension of a left zero band. 

Proof. (i) = (ii). By Theorem 1, P(S) has an idempotent, so by Theorem 
VI 3.2.1 [2], P(S) is a nil-extension of a left group. On the other hand, by 
Theorem 2, P(S) is a nil-extension of a rectangular band, and so P(S) is a 
nil-extension of a left zero band. 

(ii) 	(iii). Let P(S) be a nil-extension of a left zero band T. By Theorem 
2, S is an n-nilpotent extension of a rectangular band K, for some n E Z+. 
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Power  semigroups  that  are Archimedean 	 61 

For a, b  E  K, {a}, {b} E T, whence {a} • {b} = {a}, i.e. ab = a. Thus,  K  is 

a left zero band. 
(iii) 	(ii). Let  S  be an n-nilpotent extension of a left zero band K, 

for some n  E  Z+. By Theorem 2, P(S) is a nil-extension of a rectangular 
band  T.  Let A,B  E T.  Then  A  =  An  C  S" = K and also  B C K, whence 

AB =  A. Therefore, T is a left zero band. 
(ii) 	(i). This follows immediately. ❑ 

Corollary 4. The following conditions on a semigroup S are equivalent: 

(i) P(S) is left  completely  simple; 
(ii) P(S)  is completely  simple; 

(iii) P(S)  is a rectangular band; 
(iv) P(S)  is a singular  band; 
(v) S  is  a singular band. 

Proof. (i) 	(ii) 	(iii). This follows by Theorem 2. 
(iii) 	(v). By (iii), each subset of S is its subsemigroup, so by the 

well-known result of L. Redei [9], S  is  an ordinal sum of singular bands (for 
the definition of an ordinal sum  see [7]). By Theorem 2,  S is semilattice 

indecomposable, whence S  is a singular band. 
(v) 	(iv) and (iv) 	(i). This follows immediately.  ❑ 

Corollary 5.  The following conditions on a semigroup S are equivalent: 

(i) P(S) is  t-Archimedean; 
(ii) P(S) is power  joined; 

(iii) P(S) is a  nil-extension  of a group; 
(iv) P(S)  is a  nil-semigroup; 
(v) P(S) is nilpotent; 

(vi) S is  nilpotent. 

Proof. The equivalences (i)  <z>  (ii) •#- (iv) .1=> (v) was proved by S. Bog-
danovi6 [1], and in the commutative case, (i) <#. (vi) was proved by M.S. 
Putcha [8]. ❑ 
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SOME CARDINAL FUNCTIONS ON 
URYSOHN SPACES 

LjubiAa. D. Koeinac 

ABSTRACT. We give some results on the cardinality of Urysohn H -closed topological 
spaces involving a new cardinal function denoted by sgLe(X). 

1. Introduction 

In [7], the following cardinal function was introduced. For a space X, 

sqL(X) is the smallest infinite cardinal T such that there exists a subset A 

in X of cardinality < 2' satisfying: for every family U of open subsets of 

X there exist a subfamily V of U and a subset B of A such that < T, 

IBI < r and UU C B U (U V). In [10], this cardinal function was studied 
in some details. In a similar way we define here another cardinal function, 

denoted by sqLe(X), and prove some results on the cardinality of Urysohn 
spaces involving this function. These results improve some results frorn.[6] 

and [10]. 

2. Notation and terminology. Definitions 

Notations and terminology in this paper are standard as in [2], [4], [5]. 
Unless otherwise indicated, all spaces are assumed to be at least T 1  and 

infinite. a, -y, (5 are ordinal numbers, while T y  A denote infinite cardinals; 

7+ is the successor cardinal of r. As usual, cardinals are assumed to be 

initial ordinals. If S is a set, then [S]rT denote the collection of all subsets 

of X having cardinality < r. 
We recall some definitions that we need. 

2.1. A space X is Urysohn if for every two distinct points x and y in 

X there are open sets U and V such that x E U, y E V and U n V= 0. 

2.2. If X is a space and A a subset of X , then we put 
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1991 Mathematics Subject Classification: 54A25 
Supported by Grant 0401A of RFNS through Math. Inst. SAND 

63 

V
ir

tu
al

 L
ib

ra
ry

 o
f 

F
ac

ul
ty

 o
f 

M
at

he
m

at
ic

s 
- 

U
ni

ve
rs

it
y 

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs



64 	 Lj. KoZinac 

CloA = E X : Tin A 0 for every neighbourhood U of x}. 
The set C10A is called the 0-closure of A. A is 0-closed if C/6 A = A. 

2.3. A Hausdorff space X is called H -closed if every open cover U of 
X has a finite subcollection V whose union is dense in X. 

2.4. ([1]) The 0-bitightness of a space X, denoted by bto(X), is the 
smallest cardinal r such that for each non-0-closed set A C X there exist a 
point x EX \A and a collection S E 1[A]- 11-5.' such that {x} = n{C19.5 : 
S E 5}. 

2.5. ([6]) Call a subset A of a space X 0-dense in X if Cl6A = X, i.e. 
if for every open set U C X, U fl A # 0. The 0-density of X is 

do(X) = w • min{lAI : A is a 0-dense subset of X} . 
Clearly, for every space X, do(X) < d(X). There are spaces X for which 
de(X) < d(X) holds. 

2.6. ([9]) The 0-spread so(X) of a space X is the supremum of the 
cardinalities of subsets D of _X such that for every x E D there exists a 
neighbourhood U of x with U fl D = {x}. The inequality 89(X) < s(X) is 
possible. 

2.7. A Hausdorff space X is said to be of closed pseudocharacter r, 
denoted by Oc (X) = r, if r is the smallest cardinal such that for each point 
x E X there exists a family {11,, : o E r} of neighbourhoods of x with 
{x} = roc,: a E r}. 

3. Results 

In [9], the following lemma is proved. 

Lemma 3.1. Let X be a topological space and so(X) = r. If U is a family 
of open subsets of X , then there exist A E PUP' and V E [U].' such that 
UU CCloAU U{V :V E V}. ❑ 

After this lemma and the definition of sqL(X) it is reasonable to intro- 
duce: 

Definition 3.2. Let X be a space. Then sqL0(X) is defined to be the small-
est cardinal r such that there exists a subset A in X of cardinality < 2T 
satisfying: for every family U of open subsets of X there exist V E 
and B E [AP.  such that UU C CloB U (U 	❑ 

Fact 1. sqL0(X)< sqL(X) < d(X). 
Fact 2. sqL0(X) < do(X). 

We shall also need the following lemma which is a version of the fun-
damental result on spread due to Shapirovskii (see [8;T.3]). 
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Some cardinal functions on urysohn spaces 	 65 

Lemma. 3.3 ([6;Prop.  3.3]).  Let X be a Urysohn space with hse(X) < r. 
Then there is a subset A of X such that IA1 <  2T and UIC/9B  :  B  E rAr r} = 
X. 

Proposition 3.4. For every Urysohn H-closed space X, we have 

sqL8(X)< hse(X ). 

Proof. Let hse(X) = r. By Lemma 3.3 there exists a set A C X 
with IA) < 2T such that X  =  U{Cle(B)  :  B  E [45-1. Let us show that 
A witnesses sqL8(X) <  r. Take a collection U of open subsets of X. By 
Lemma 3.1 there exist V E  [Urr and M  E Ellti1 5- r  such that UU C C19MU 
(UV). For every p  E  M  there exists some Sp E [A] 5 r with p  E CieSp .  Put 
S = U{Sp  : p E M}. Then  S  E  [A]:51.  and M  C U{C/9,5p  : p E  M} C 
C/o(U{Sp  : p E 	= C18.5. As the 0-closure operator is idempotent 
in Urysohn H-closed spaces  we  have C18M  C C10(C19S) = C/0 5'. Hence, 
U U  C C18.5 U (U V) and the proposition is proved. ❑ 

Example. Let X be the Niemytzki plane T equipped with the topology 
T = {U \ C : U is  open in  T  and C C T is countable). Then hse (X) = 
s(T) =  2'' and sqL 8 (X)= sqL(T) = w.  ❑ 

Theorem 3.5. For every  Urysohn  H-closed space X, we have 
oc(x) <  280.,8 (x) .  

Proof. Let sqL9(X) = r and let  A C X be a set witnessing this fact. 
Fix a point x E X . Since X  is  Urysohn, for every y E  X \ {x}  there are 
neighbourhoods  Ify  of x and Vp  of y with Up  fl  Vy  = 0. Applying the 
definition of sqL 8 (X) to the family V =  {Vp  : y E X \ {x)} (and A) one 
can find sets Y = {ye, : a  E r}  E  [X \ {x}]-CT and  B  E [A] 5' such that 

X \{x}CCIBB U(U{V ya :a Er}).  
Put Ux  = {X \ C/ eC  : C C  B,x  Glee} U {U ya  : a  E  r}. Then px 1  <  2T 
so that we need to check 4x}  =  n{U : U  E  /4). 

Let p E X \{x}  C  CleBU(Urily.  :  a  E  r}).  Consider two possibilities: 

p E CleB. Take neighbourhoods Up  of p and Vp  of x such that Up fl  Vp = 
0. It is easy to see that  p  E Cle(B fl V p ) C CioVp  = Vp  (in Urysohn H-
closed spaces it holds CV; =  G  for each open set  G). Therefore, C =  Bnv p  
provides a subset of B  with  Ti,,  fl CV'  =  0, hence  Up C  X \  CieC  0 and 

thus Up  C X \ CleC which gives {x} =  ri{F : U E  14}. 

(ii) p E 	:  a E r}. Then x E 	:  a  E  r}, but p fl{U ya  : a E 
r} .  ❑ 

The following theorem  is  an improvement of Lemma 3.3. 
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66 	 Lj. Kotinac 

Theorem 3.6. Let X be a Urysohn H -closed space with sqL e (X) < T. Then 
there is a subset A of X such that IAI < 2' and U{Cl e B : B E [A] 5.7. } = X. 

Proof. Let S be a set in X witnessing sqL e (X) < T. According to 
Theorem 3.5, for every x E X one can choose a collection 1.1s  of neighbour-
hoods of x such that 114J < 2' and NT/ : U = {x}. By transfinite 
induction we shall construct a sequence {Ma  : a < r+} of subsets of X and 
a sequence {14 : a < 7+} of families of open subsets of X satisfying the 
following conditions: 

(a) 'Ma l < 2T, a < T + ; 
(b) 16 = 	: x E U{Me :13 < an (so 116I < 27 ), a < r+; 
(c) If T E [5] 5- 1", V E [U,,]-Cr  and C1OTU U V # X, then AL VC/oTU Uli) 

0. 
Suppose we have already defined all Mo and 1,10 for /3 < a. Let us 

define Ma  and /Ia . For every T E [5] 5." and every V E [Up]S T  choose a point 
x(T, V) E X \(CleT U UV) whenever the last set is not empty (otherwise 
the construction has been finished). Let 

Ma  = {x(T,V) : T E [S] l-  and V E [Up]S T } 

1.6 = " : x E U{Me < a}}. 

It is easy to check that Ma  and 16 satisfy (a), (b) and (c). Put M = 
U{Ma  : a < r+}, A = M U S and prove that A is the set we are looking 
for. First of all lAl < 2T. Let x E X. If x E A there is nothing to prove. 
Let x E X A. Then x M so that for every y E M one can find .a 
neighbourhood Vy  E N of y such that x V. So, x Ufl : y E MI. 
By the properties of S one can choose B E ESP and {y. y  : y E r} E [MP 
such that M C U{Vy  : y E M} C C18.6 U (U{Vy, : y E r}). Let us prove 
x E C/9/3. Suppose not. Then C/eB U (U{Vy, : y E r}) # X. Since 7+ 
is regular, there exists some (5 < 7+  such that {y1, : y E 7} C M5. Then 
{Vy, : y E E [/./6]-T. By (c), M5+1\ (CieB U (U{V y, : y E T})) $ 0. 
But this contradicts the fact C10B U (U{V y„ : y E .7}) D M D.M54.1. The 
theorem is proved. ❑ 

The next two theorems improve Theorems 3.4 and 3.5, respectively, 
from [6]. The first of them is an immediate corollary of the previous theorem. 

Theorem 3.7. For every Urysohn H -closed space X we have 
de (X) < 280-6(x). ❑ 

Theorem 3.8. For every Urysohn H -closed space X we have 
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Some cardinal functions on urysohn spaces 	 67 

<2sqL9(X)bte(X). 

Proof. Theorem 2.3 in [6] states that for every Urysohn space X, 
IXI<Ede(X)i bte (x) . Using now Theorem 3.7 we have IXI < (do(X)) bte (X ) 
(2 sqL0(x))  bt,(x)  = 2sqL8(x)149(x). 

❑ 

The famous theorem of Hajnal-Juh'asz says: if X is a Hausdorff space, 

then IXI < 228(x)  [3], [4], [5]. In [9], it was shown that for a Urysohn space 

X this inequality can be improved to  IXI < 2289(x) . Our next result is an 
improvement of the last estimation for Urysohn H-closed spaces. 

Theorem 3.9.  For  every Urysohn  H  -closed space X  we  have 

iXl< 22""(x)  

Proof. By Theorem 2.6 in [6], IXI < 2d9(x) 11). ( x )  so that, by Theo- 
<  2d,(x)0,(x)  < ,, zsgio(x)  2 sq L e (x) rems 3.5 and 3.7, one obtains  IXI 

2284L9(x) . ❑ 
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A NOTE ON CERTAIN CLASSES OF 
UNIVALENT FUNCTIONS 

Ivan Jovanovie and Milutin ObradoviC 

ABSTRACT. We give some results  on  f t  (z), f(z)/z and z f i (z)/ f(z) for certain classes of 
univalent functions in the unit disc IzI < 1. 

1. Introduction and preliminaries 

Let A denote the class  of  functions f analytic in the unit disc U = {z : 
IzI < 1} with f(0) =1(0) — 1 = 0. 

Ozaki [4] proved that if  f  E A and 

(1) 	 Ref), + z ful < 3  z E U 
l(z) 

then f is univalent in U. Later, Umezawa [7] showed that if f E A satisfies 
the condition (1), then f is univalent and convex in one direction. Sakaguchi 
[5] proved that if f E A satisfies (1), then largl(z)1 < r/2, z E U, i.e. f is 
close-to-convex function. Finally, R. Singh and S. Singh [6] proved that the 
same class is the subclass of starlike functions in U. 

In his paper [3] Nunokawa considered the class of functions f E A such 
that 

Ref + 21. ' 1(1 < 1+ 2  z E 11 (z) 2 
(2) 

for some 0 < a < 1. 
He proved that for such class 

arg 
z f(z) 
f(z) 

<
2 
 z E U. 

It is evident that for a  =  1 in (2) we have class defined by (1) and the 
classes defined by (2) are the subclasses of the class defined by (1). 

Received 25.04.1995 
1991 Mathematics Subject Classification: 30C45 
Supported by Grant 0401A of RFNS through Math. Inst. SAND 

69 

V
ir

tu
al

 L
ib

ra
ry

 o
f 

F
ac

ul
ty

 o
f 

M
at

he
m

at
ic

s 
- 

U
ni

ve
rs

it
y 

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs



70 	 I. Jovanovi6 and M. Obradovi6 

In this note we consider the values z f(z)/ f(z), fl(z) and f(z)/z for 

the classes defined by (2). 
We need the follOwing definition and lemmas. 
Let f and g be analytic in the unit disc IL We say that f is subordinate 

to g, written f g, or f(z).-‹ g(z), if there exists an analytic function w in 

U satisfying w(0) = 0, Ico(z)1 < 1, z E U, and f(z) = g(w(z)). In patrticular, 

if g is univalent in • U, then f is subordinate to g if and only if f(0) = g(0) 

and f(U) C g(U). 

Lemma A ([2]). Let w be nonconstant and analytic in U with w(0) = 0. 
If lwl attains its maximum value on the circle Izi = r < 1 at zo , we have 

zow'(zo ) = kw(zo), k > 1. 

Lemma B ([1]). Let g be a convex function in U and let -y be a complex 
number with Re{-y} > 0. If f is analytic in U and f g, then 

z -1  f(w)wl —l dw z — "Y g(w)wl —l dw. 

We not the that we can find more details of the classes of the functions 
we mentioned above in any standard book on univalent functions 

2. Results and consequences 

We start with the following 

Theorem 1. Let f satisfy the condition (2). Then 

f(z) 	 1  
(3) z i 	(1 - z)(1 	+ i z) 

Proof. Let's put a = 1/(a + 1) and 

11 (z) 1 — w(z)  
(4) 

z  f(z) — 1 — ak.;(z) •  

Evidently w(0) = 0. We want to prove that kw(z)1 < 1, z E U. From (4), 
after taking logarithmical differentiation, we get 

	

f"(z) 	1 — w(z) 	zw'(z) 	azw'(z) 
(5) 1 + z 

f(z) 	1 — ar.o(z) 	1 — w(z) 	1 — aw(z) .  

If it is not lo.)(z)l < 1, then by Lemma A, there exists a z 0 , 	< 1. such 

that zoc,i(zo ) = kw(z o ) and P(z0 )1 = 1, k > 1. If we put w(zo) = ei 9 , then 
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A note on certain classes of univalent functions 	 71 

for such zo  from (5) we have 

+ (1 — a2 )(2a — 1)  
Rell + z f.;:  zz ?L=7,0 1 = 1 24-a a  

2a( 1 — 2a cos 0 + a 2  ) 

1 — a2 	1+a 
+ (k 1)

2(1 — 2a cos 9 + a2  ) 	2a 

(1 — a 2 )(2a — 1) = 1 + a a(1 — a) > 1  + 
2a(1+ a) 2 	2 2(2 + a) — 	2 

which is a contradiction to (2). Therefore, lw(z)I < 1, z E U, and from (4) 
we finally get the relation (3). 

We note that the function on the right side of (3) is univalent and 
maps the unit disc U onto the disc with the diameter end points 0 and 
2(a + 1)/(a + 2). 

Remark 1. For a = 1 in Theorem 1 and the previously cited result of 
Nunokawa we have that the image of U under z f' (z)/ f (z), where f E A 
satisfies 09, lies in the intersection of the angle {w : I argwl < ar/2} and the 
disc which is the image of U under the function w = (1— z)/ (1 — z I (a +1)). 

Also we have 

Theorem 2. Let f E A satisfy the condition (2). Then 

(6) a) 	f' (z) -{  (1 + z) x̀  ; 

b) 	
f (z) (1 + z)"+1  — 1 

z 	(a  +  1)z 

Proof. a) From the condition (2) we conclude that J. ,  has no zero in U. Let's 
put 

(7) (f(z)) 1 /a = 1 + w(z) 
(where we take the principal value). Evidently w(0) = 0. We want to prove 
that lw(z)I < 1, z E 11. From (7) after some transformations, we have 

(8) 1+ z fii(z)  = 1 + a 
zw'(z) 

1(z) 	1+ w(z) •  
If it is not lw(z)I < 1, z E U , then by Lemma A there exists a z o , Izol < 1, 

such that zow'(zo ) = kw(zo) and lw(z 0 )1 = 1, k > 1. If we pt it w(zo ) = eie, 
from (8), we get 

Re { 1 + z 
f"(z)  

} =i+ — > 1 + —
2 t(z) 	 2 

ak 

which is a contradiction to (2). Therefore, tw(z)1 < 1, z E U, and from (7) 
we conclude that the relation (6) is true. 
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72 	 I. Jovanovi6 and M. ObradoviC 

b) Since the function (1 z)", 0 < a < 1, is convex, then the result 
follows directly from the result of Lemma B, for y = 1. ❑ 

From Theorem 2, for a = 1, we easily obtain 

Corollary 1. If f E A satisfies (1), then 

a) Re{f(z)} > 0, z E U, 

(which is the earlier result given in [5]); 

b) f is bounded in U and 1f (z)1 < 31z1/2, z E U. 
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SOME THEOREMS ABOUT PRIMARY COIDEALS 

Daniel A. Romano 

ABSTRACT. In this short note we give some theorems about primary coideals of commu-

tative ring with an apartness. 

Throughout this paper  R  will denote a commutative ring with an apart-
ness in sense of the book [1] and paper [2]. A subset S of R is a coideal ([2]) 
ofRiffo#S,—aES aES,a-l-bES aESVbES, 
ab E S a E S A b E S. The coideal S -ofRisastrongly extensional 
subset of R and S # 0 = 1 E S holds. The coideal S of R is a prime 
coideal iff a E SAb E S ab E S. If S is a coideal of R, then the 
set c(S) = {b E R : (Vn E  N)  (bn E 5} is a coideal of It under S, called 

coradical of S. The coideal Q of R is a primary coideal of It if c(Q) C Q. If 

Q is a primary coideal of R, the the coradical c(Q) of Q is a prime coideal. 
In this case, we say that the primary coideal Q belonging to the prime 

coideal c(Q). Let S be a coideal of R and let X be a subset of R. Then 

the set [S : X] = E R : (3x E X)(bx E S} is a coideal of R called 

quotient coideal of Q by the subset X. It is clear that [S : X] C S and 

X n S = [S : X] = 0. 
First, we shall give a description of irreducibility of a primary coideal 

Q as the union of the coradical c(Q) and of one coideal S under Q. 

Theorem 1. Let Q be a primary coideal of R. 

( I) If c(Q) Q, then it does not exist a coideal S of R under Q such that 
Q = c(Q)U S 

(2) If Q = c(Q) U S, where S is a coideal of R under Q such that S Q, 
then Q = c(Q). 

Proof. (1) There exists an eleinenat b in Q such that b#c(Q). Suppose that 

S is a coideal of R under Q such that Q = c(Q) U S. Let z be an arbitrary 

Received 03.05.1995 
1991 Mathematics Subject Classification. 03F65, 13A99. 
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74 	 D. Romano 

element of Q. Then z E c(Q) or z E S. If z E c(Q), then zb E c(Q) C Q = 
c(Q)U S, and 

z E [c(Q)U S : b] [c(Q) : b] u [S : b] = U [S : b] C S. 

Therefore Q C S. It is a contradiction. 

(2) Suppose that there is a :  coideal S of R under Q such that S C Q 

and Q = c(Q) U S. Then there exists an element b in Q such that b#S . Thus 
b E Q= c(Q) U S and b# S implies that b E c(Q). Therefore 

z E Q 	zb Q c(Q) C Q = c(Q)U S 

z E [c(Q)U S : b] = [c(Q) : b] U [S : b] = [c(Q) : b] c c(Q). ❑ 

Let S be a subset of R. We say that S is a stable subset of R iff 
(Vx E R)(-1-1(x E S) = x E S). If S is a stable coideal of R and if X is 
a multiplicative subset of R, then the set (S  :  X) = {b E R : bX C S} is a 
coideal of R. (S : X) C S. In the next theorem we shall give a construction 
of a primary coideal (Q : c(Q)), where Q is a stable coideal of R such that 
c(Q) is a prime coideal of R. 

Theorem 2. Let Q be a stable coideal of R such that c(Q) is a prime coideal 
of R. Then the set (Q : c(Q)) is a primary coideal of R belonging to c(Q). 

Proof. Let Q be a stable coideal of R such that c(Q) is a prime coideal of 
R. Then the set (Q : c(Q)) is a coideal of R and it holds 

c(Q) c Q 	c(Q) = (c(Q) : c(Q)) C (Q : c(Q)) C Q 

c(Q) = c(c(Q)) C c((Q : c(Q))) C c(Q) 

Further, we have 

a E(Q : c(Q)) & b c(Q) = (c(Q) : c(Q)) 

a c(Q) c Q & b c(Q) C o(Q) 

ab c(Q) C a c(Q) C Q 

ab E (Q : c(Q)) . ❑ 

Let F = (pi)j Ej be a family of coideals of a ring R. We say that a 
coideal P of R is an isolated coideal from the family Y iff (3p E P)(p# U Pi). 
Let S be a stable coideal of R. If c(S) is the union of prime coideals under 
S c(S) = Uj E JPj, where J is a discrete set, and if Pi is an isolated coideal 
from the family .7-  = (Pj)jEJ\{i}, then the set Qi = (S : Pi) is a primary 
coideal of R belonging to Pi . Therefore, the stable coideal S of R such that 
c(S) = Uj Ejpi contains an union of primary coideals Q i  = (S : Pi) where 
Pi  are isolated prime coideals of R under S. 

V
ir

tu
al

 L
ib

ra
ry

 o
f 

F
ac

ul
ty

 o
f 

M
at

he
m

at
ic

s 
- 

U
ni

ve
rs

it
y 

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs



Some theorems about primary coideals 	 75 

Theorem 3. Let S be a stable coideal of R such that c(S) = Uj E JPj, where 

the Pj 's are prime coideals  of R  under 5, and the set J is discrete. If 
Pi is an isolated prime coideal from the family (1 3i)iE jvil, then the coideal 
Qi = (S : Pi ) is a primary coideal of R beloning to Pi . 

Proof. Without difficultes one can verify that the set Qi is a coideal of R 

under S. On the other hand, we have c(Qi) = c((S : Pi )) = (c(S) : Pi) = 

(Uj E JPj : Suppose that b  is an arbitrary element of c(Qi). Then bPi C 

UjEJPj . As Pi is an isolated prhne coideal from the family (Pi)JE J\{0., there 

exists an element p i  in Pi  such that pi# U {Pi : j E J & jOi}. Now, we 

have 

b E (U .  JPJ : Pi) 	 bPi  C  UjEJPj = UjoiPi U  Pi 

	 

- 

(Vp  E  Pi )(bpUjoi Pj U Pi) 

~ bpiUjoiPiU Pi  

- b E [UjoiPj U Pi :pi] = [UjoiPi : pi] U [Pi : pi] 

<=:.bEOUPi 

b E 

Therefore c(Qi) = Pi. Thus 

a E Q i  = (.5  :  Pi) & b E 	= (Pi : pi) -4=:- 

aPi C S &  bPi  c 

abPi c aPi C  S 

ab (S : Pi)  =  Qi. 0 
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ON N1-HARMONIC SPACE Di', 

Miroljub Jevtie 

ABSTRACT. We show that the M-harmonic Dirichlet space D; is equal to the weighted 
Bergman space ../A; )  for 0 < p < 1 and  s > n. 

1. Introduction 

In [6, chapter 10] author considered the relationship between the weigh-
ted Bergman spaces .4; of M-harmonic functions in the open unit ball B in 
C" and the Dirichlet spaces  D.  He showed that if s > n and 1 < p < oo, 
then A; = D. In this note we show that also A;, = 1); in the case s > n, 
0 < p < 1. 

Let B be the open unit ball in Cn and S = OB the unit sphere in 
C". We denote by v the normalized Lebesgue measure on B and by o the 
rotation invariant probability mesure on S. 

Let A be the invariant Laplacian on B. That is, af(z) = A(f 
(PZ )( 0 ), E C2 (B), where A is the ordinary Laplacian and co, the standard 
automorphism of B, cp w  E Aut(B), taking 0 to z (see [5]). The C 2 -functions 
f that are anihilated by A are called M-harmonic (f E Jt4). 

Definition 1.1. For 0 < p  <  oo, and s E R, the weighted Bergman space 
Asp  is defined as the space of M-harmonic functions f on B for which 

lip 

MIA; 	[1B ( 1  IzI2 ) 8 1.f(z)1 PdA(z)J 	< 00 . 

Here, dA(z) = (1 - 1z1 2 )-"-1  dri(z) is the measure on B that is invariant 
under the group Aut(B). 

For I E CI (B), Df = (A, • • • ,e), zk = X2k-1 iX2k, k = 

1,2,...,n, denotes the real gradient of f and let tf(z) = V(f o so z )(0), 
z E B, be the invariant real gradient of f . 

Received 24.06.1995 
1991 Mathematics Subject Classification: 32A37 
Supported by Grant 0401A of RFNS through Math. Inst. SAND 
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78 	 M. Jevtie 

Definition 1.2. For 0 < p < oo, and s E it, the M-harmonic Dirichlet 
spacer); is defined as the space of M-harmonic functions f on B for which 

L rk,f( z) ,p( 1_,z,2 > sdA (z) <00. 

For f E Di:, set 

1 /P 

H If I Hp,s = If(0)1+ (L  rt.f(z)1P0 — iznsdA(z)) 

For the proof of our main result the following Theorem will be needed. 

Theorem 1.3 ([4]). Let 0 < p < oo, s > n — p/2 and f E M. Then 
following statements are equivalent: 
(i) f E 74, 

(ii) f  IV f(z)1P(1 — jzi 2 )s+PdA(z) < oo, 

(iii) L(1 — iz1 2 ) 3+P (IR f (z)I IR7(z)l) P  dA(z) < 

As usual, Rf(z) = 	zi —!f  is the radial derivative of f . 
j=1 

Theorem 1.4. Let h, be M-harmonic on B. 
(i) For all p, 0 < p < oo, and s E R, there exists a constant C, independent 

of h, such that 

IB (1 — 1 z1 2 )sith(z )I PdA(z) < C IB (1— IzI 2 )1h(z )I PdA(z). 

(ii) For all p, 0 < p < oo, and s > n, there exists a positive constant C, 
independent of 4, such that 
(1.1) 

1B (1-1z1 2 ) 3 1h(z)IPdA(z) < C(1h(0)r.+ 	1 2 ) 8÷PiVh(z)1 PdA(z)). 

Item (i) was proved in [6], Theorem 10.10. If 1 < p < oo, then the 
second part follows from Theorem 1.3 and Theorem 10.10 [6]. So it remains 
to show that (1.1) holds for 0 < p < 1. The proof will be given in section 2. 
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On M-harmonic space D; 	 79 

Corollary 1.5. For all p, 0 < p < oo, and s > n, we have .A; = D. 

Next, we consider the relationship between the M-harmonic Hardy 
space HP and the spaces V. For 0 < p < oo, Hp denotes the set of M-
harmonic functions f on B for which 

11/11;), = 	[mol(0] Pdcf(e) < oo, for some (any) 	> 1. 

Here Mn  M) = sup zeD ,. (0  1 f(z)I, E S, where D 	= {z E B : 11 - 
(z , 4)1 < -1(1 - Iz1 2 )}, a > 1, denotes the Koranyi admissible approach 
regions. 

By Theorem 6.18 ([6]) for 1 < p < oo, f E 1-iP if and only if 

( 1 - 1z1 2 ) n i.f(z)i P-2 1f(z)1 2 dA(z) < 0c). 

Thus when p = 2, 1-12  = V. 
For all p, 2< p< oo, HP C Dp", with Illfl Ilpo, 	for all 

f E HP, where C., p  is a constant depending only on n and p (see [3], [6]). 
For all p, 0 < p < 2, D'7,' C HP.  
For a > 1, E S, let 

.24 	2 
Sck/(4. ) = (f 	I V f(z)I dA(z)Y 

D.(0 

denote the area integral of f. In [1] it is shown that if f E M then f E HP, 
0 < p < oo, if and only if 5,f E LP(er). From this and the inequality 

l[sr,f( f)1 Pda(f) < c L(I — 1w1 2 )

71 1f(w)1PdA(w), 

where f E M and 0 < p < 2 (see, [6]), it follows that Dpn C HP, 0 < p < 2. 
We note that this inclusion was proved in [6] for 1 < p < 2. 

In this note we follow the custom of using the letter C to stand for a 
positive constant which changes its value from one appearance to another 
while remaining independent of the important variables. 

2 

2. Proof of (1.1), case 0 < p < 1 

If 0 < r < 1, we set Er(z)= fw E B : ko z (w)1 < 7-1 = 
r"(1  

(1 - 
[5], p.30). 

For the proof of (1.1), 0 < p < 1, the following lemmas 

is an ellipsoid and its volume is given by v(Er(z)) = 

yo z (rB). Er(z) 
Iz1 2 )"+1 

 rizir+1 (see 

will be needed. 
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80 	 M. Jevtii'. 

Lemma 2.1. Ifs > 1, then 
[ 	 dt  

Jp I1 - t (z, w) Is 5" I1 - (z, w) IS - 1  
z,w E B. 

Lemma 2.2 ([4]). Let 0 < r < 1 and 0 < p < oo. There is a constant 
C > 0 such that if f E .M then 

IV.f( W )I  I V/(01  ) P  < C 
— (Z, W) I) — fE,.(w)kll (z,011 dA(°--; ' 11)  

Lemma 2.3 ([2]). For 1 < p < r < oo, 0 < q < oo and a incasumbk 

f c L P  'q-1  (iif li r p4.-1 = fB  if(z)fpo - izry-id,(z) < oo) we have 

(./ 	'f (I'i" ) ' ((l - !)tvg -1  dv(w)i( — izi 2 r( "i4L -,-- "dv(z) 

) 1 / r 

Lemma 2.4 ([5], p.17). If a > 0, then 

da(0 	0 ( 	1  
z E B. 

Lemma 2.5. For 0 < s < t we have 

j
1  (1 - r)s-1  dr 

o 	7.p)t 	C(1- p)8- t, 0 < p < 1. 

Assume now that s > n, 0 < p < 1 and 	(1 --1z1 2 )s+PIVh(z)1PdA(z) < oo. 

Since IV/t(z)1 has M-subharmonic behavior, i.e. 

IVh(w)I 5_ C' IVh(z)IdA(z), w E B, for some 0 < r < 1, we have for 
. E r (w) 

any a > 0 

111( z)1 P < C (1h(0)1 P  (.1 I 	IV 41101dA(W)dt)) 
0 	Er (tz) 

< c(1,,,(0),p (LfiL ivholoo
t11) 

 - 1  kw -F ):  dv(w) dt) 
 

1 1 — 	, 11 a+ 

C(111(011P 	IVI(20)1(1 — 1011 2 r dV(0)) 
1) 11 — t (z, 20) In+ a-1-1 

< C  (1h( 0 )1 P ( I IV 144(1  — 1
" 

 W12)(1  d„ (111)) P) 
B 	1— 	 - (2 t12  )1 4  a 
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by Lemma 2.1. 
Applying Lemma 2.3 to the function 

F(w) = (IVh(t0111 - (z, w) 1 -n-a) P/2 , to E B (z E B-fixed) and replacing 
p, r, q by 2, 21p,p(a n + 1) - n respectively and using Lemma 2.2 we find 
that 

f Ivit(w)1(1-1w12)a  dv(w) 
B 1 1  (Z 00 i n+ a  

< C 
IB ECI,(w) 

F(0(1 - le12
)p(a+n+1)-n-1 dv(0)2//)

(1 - 1w1 2 ) adv(w) 
(w,0 I ka+n+1)  

C 	
f 	 -  le1 2  )/0-f-ni-1)-n-1 	)2/p 

	

B -113 	- (w,0113(a+n+1) 	
dv(0 	(1 - Iv71 2 )adv(w) 

IVIOAP(1 - 1w12)p(a+n-F1)-n-1 1/p 

dv(w )) , 

- (z, W) IP( n+a ) 

we may assume that a > - n. 
Thus, by using Fubini's theorem, Lemma 2.4 and Lemma 2.5 we obtain 

IB ( 1 - T Z I 2 ) 8 lh(z)1Pda(z )  <  C[Ih(0)I P  I(1 — IZI 2 ) 3—n-1  dV(z)X 

Ivh(w)1 P( 1- 1w1 2 )ka+n+1)-n-1  
 JB 	
dtqwd. c{111(0)1P - (z, 	fp(n+a) 

+ ivhooni - i torro+n+i)_„_, dv(w) 
13 	

1 2 1 2 )8—n-1  dl,(1 
13 1 1 	(Z, 	Ika+n) 

5_ C [1/1(0)I P  + 	rgh(117 )1 P(1 1W1 2 )s+P-n-i d/l(W)] 

This finishes the proof of Theorem 1.4. 
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ITERATION METHOD FOR THE EQUATIONS 
OF I. N. VECUA. TYPE OF HIGHER ORDER 

WITH ANALYTICAL COEFFICIENTS 

Milo je Rajovi6 

ABSTRACT. We use two methods for the integration of Vecua equations: 1. the method 
of the areolar series, 2. the method of the iterations. 

We solve the following I. N. Vecua equation 

(1) 
	 OW 

AW BW F F, 

where A(z,7), B(z,I) and F(z,T) are given analytical coefficients of two 
variables. We use two methods: 

1° By the method of areolar series (used by B. llievski [1]). 

	

00 	 00 	 0 

	

A = E 	, B = E bij z iTi , F _ = > fi;  
i,j=O 	 i,j=0 	 i,j=0 

w = E 

we have a solution in the form of series of coefficients and of the integra-
tion element cl)(z) - an arbitrary analytic function in the role of integration 
"constant" : 

Received 20.07.1995 
1991 Mathematics Subject Classification: 35A20 

(2) 

(3)  
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84 	 M . Rajovie 

W(Z,T) = + ASCZ +I Adz + AdTI Aclid -z- 

+ I Adz Actif A4id7-1- Bidz 	Bd71 

-}- I Bd7z Igdz J44)dz + • • • + - Adz 13 711;d7 + I Bd7z f A4dz 

+ Adz Adz f B(Tocri + I &re gdz J A(1)(1. + • 

+I Fd7+ Adi Fdl I &IT irdz + Adz Ad:if Fd7z 

+ f .13d7z I T3dz Fdl+ • • • 

The series (4) is convergent in a finite closed domain G of the complex 
plane z = x iy and the coefficients are analytic functions of z and T. 

2° By the method of the Vecua integral equation (see [2,3]). With applica-
tions in the theory of iteration, we get the solution in the form 

W( z, = 
	A(y)W(y)i- B(y)TV(y)  (on  
r J JG 	-z 
i 1 Mdedll  

7r LIG (—Z 

or for F = 0, 

(6) W = 4)(z)ew ( z ) , 

where (1) is an analytic C function of z, and 

(7) w ( z ) = 	[A(0+ 
G 	

W(()idecin 

W(() — z 

, 	1 

In what follows we consider the problem to apply a similar procedure for the 
Vecua equations with conjugations of higher order. 

We start with the equation 

2  CO 
2  

A(z)W = 0 
07 

which is an ordinary areolar equation of the second order and is analogous 
to an ordinary differential equation 

(4) 

(5) 

(( = (+ 171 C G ). 

y" + Ay = 0 
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Iteration method for the equations of I.N. Vecua type of higher order... 	85 

with constant coefficients. 
The equation 

0,2-2 A(z,T)W = 0 

is a complex analogy of the real equations of Hill, Lame 
of them are not Vecua equations of higher order. 

The first equation which could be named a Vecua 
order is 

02w 

and Mathie. Both 

equation of higher 

tru., 
(8 ) 	 A(z, 	= 0 

and that contains the conjugation of a unknown function. Since 

W = pe '~' , T47 = We-ltd) = w e -2iarctow-WV(i(w+W)) 

we have that equation (8) is not linear but trancendental, because the op-
eration (the rotation of an argument while the modul remains the same) is 
such operation. Because of this, here we have an essential difference between 
areolar equations wich are almost completly analogie to ordinary differential 
equations and Vecua type equations, wich are specific in some sense. 

Denote by f the inverse operator of A.- . Then we have: 

0 OW ih(7ri) = 

047 
= —f AW = — AlTdT + 4)2(z). 

If we define the operator 

( 9 ) 
	

T I W = 4) 2 ( ) 	AWd7, 

then it is easy to prove that this is a contraction operator for every analytic 
coefficient A(z, -2). 

Next, we have 

(10) 
	 W = 1[—fAT -4-71= f [ 	I A d 

= 	z ) f (1)2(z)d7 — J I AWd—zi  dz 

It easy to check: 
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Theorem. The operator 

	

(11) 	 T2 W = (1)1 + +2T — 	A(z,T)Wd -22  

is a contraction operator for every analytical choise $1 (z), 42(z), A(z.7). If 
we substitute W by (10) in (11) we can define the sequence T 3 W, ,TnW 
and than prove that TnW is a contraction operator. 

Since, by the Cauchy theorem, the analytic equation has an analytic 
solution, the right side in T"W is always continuous so the iteration method 
is valid for (8). Puting W1  = T2 W we have 

W2 = 4) 1 + + 2 — 	A 14,1 + 4, 2 72-  — 	A147(1T1 dT2  

= 410 1  + 4)27 — JJ 	— 	Ail) 2 zdT2  + f f Ad.' fi-A-wdz2. 

The last member has a role a remainder. Its estimation is of the order 

1Al 2 1Wilzi 5 /5!. 
Next, we have 

14/3 = (b i  (1) 2 T — jjA4ldu _ I J A4)2zd-z2 

	

+ 	Ad-,-,2 JfA ?idz2 	Adze  if 714►2dz2  

	

— 

	 Ad„.2 fJ -Adze ft 	II Ad7z2 gAdz2 JJ A472.2 + R3, 

where the remainder R3 is given by 

R3  = if Ad72 	Adz' jj Ad,z-2 if A Wd71.2 . 

In the next step we give th 4th  approximation 
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Iteration method for the equations of I.N. Vecua type of higher order... 	87 

(12) 
	 rr 

W4 =L.' W(Z,T)  =  4)1(z)  4)2(Z)-27  - ff AiFle - 	AT2Ze 

± AdT 2 	-A-(1)1dz 	I Adz  JJ  A4)21-dz2 

- JJ 
 Adz e -Ade  ACd72  - Jf Adz ff-A.dz2 JJ  AT2z-z-dz2 

▪J / Ad:U f Adz 2  J f  AdI 2  Jf  A4'1dz 2  

+ if AdY 2  f f Adz 2  Aa72 -A-4)27dz 2
JJ 

- if Acre  if Adz 2  Adz  JJ Adz2 A.id-z2 

_ if Adz2 - Adz2 	Ad-z2 	Adz2 	Aii--)2z2 

+ if A.2 if Adz2 J
J

Ad-z2  JJ  Adz2' JfAdIf k(1d:72 

+ if Ad12 	Adz2 J r  Adz rr  Adz 2  jJ Ad:7:2  f J -A-4)21-11z 2  

- f f Adz 2  l r Adz 2  Ad.T2  Adz2 
JI  

-if At& 	Adz 2  r f  Adz2  rf  Adz 2  JJ Ad72  J  Adz2 	A42zdz 2  + 114, 

where the remainder R4  is 

R4  = 	Adz2 	Adz2  ff  Ad-z-2 ifAd-272 g 	 Ad-z-2 

ll-Aw(z,-2)dz2 

and can be easily estimated. We may be satisfied by the second, third and 
if it is necessary by the fourth approximation. 

Consequences. Definitions of new special functions. Conjugate exponent 
of the Vecua equation 

ow + 1 = 0 

Adz2 if 7de 	A4.1d7z2 

defines a new exponent  Te, as it was showed by Vecua. The Polozij [41 has 
tried to introduce p-exponential function denoted by  Pez.  A similar exponent 
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SS 	 M. RajoviC 

can be defined by the equation 

OW 
A(z)1717  = 0, 

where A(z) is an analytic function of z. We will denote this exponent by 
5iez, the equation 

Conjugate areolar cosinus and sinus. If in (8) we take A(z, z) = 1, then 
the equation 

02w 
W = 0 

072  

	

in a natural way defines sin te and cos z. For 4 , 1 	1, 4 ) 2 E 0 we have by the 
definition: 

72 	z2 
COSA Z.  -E 1 – — 

2 1 	2! 2! — • • 
Similarly, for 4) 1  0, (D2 E 1 we have 

Sill A 7 E. Z - Z - + • • • 

2! 

Conjugate hyperbolic functions. If A(z, z) = 1, 4) 1  -a 1, 41 2 E 0, we 
have 

2 -2 2 Z 	Z Z 
chA -:-= 1 + 	+ 7-27 	- • 

and for A(z,7) = 1, (1) i  E. 0, 4) 2  E 1, we have 

3 -2 -3 Z 	Z Z 
ShATET -FZ :7 -F -gy -F••• 

This suggests the following definition (loke the Euler - formula) 

Ae=chAZ–shAZ.  

Conjugate Bessel's cylindrical and other functions. If we take A(z, z) 
= T then by using the equation 

02w 
= 0 

072 

OW 
A(z,l)W = 0 

07 
defines some other kinds of functions. 
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Iteration method for the equations of I.N. Vecua type of higher order... 	89 

and its solution (12) we can introduce variations of Bessel's functions. We 
also can make this if we choose A(z, z) E z, where now A has a role a 
constant with respect to operators 	and f dz : 	+ zW = 0. 
In this way we will have Bessel's functions and the corresponding functions 
of different classes and of different categories of transcendentality. 
The same we can do for the general "constant" coefficient A(z): 

2 A(z)IT = 0 07. 

and hence we can have a new complex trigonometry. 
If this way, the equation 

02w  
B(T)A(z)W = 0 07-z2 

can be regarded as a generatrise of some conjugate functions of Hille, Lame 
and Mathie of two complex variables z and z. 

So we can extend the spaces of elementary transcendental functions in 
the complex plane. 

The Vecua equation of the second order with analytic coefficients. 
Consider the equation 

2w 
(13) 	 2 	 = A(z,T)W B(z,7z)IT F(z,7) 

with analytic coefficients 

	

00 	 00 	 00 

	

A= E 	B= E , F= E 
i,J=0 	 =,J=0 

By the method of areolar series 

OC 

W(z, T) = 
i=0 

or by the method of analytic. change (in fact, by iterations) one get approx-
imations of an analytic solution. 

From 
ow 

 = (AW BW F) 
8z f 

02w 
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90 	 M. Rajovi 

one obtains the first integral 

OW 
az  f(AW + BW + F)d—zi 	(z), 

and also the second integral 

W = f (AW + BW+ F)c/72  + 4' 1 (z)T+ $2(z); 

using now iteration method we have a solution 

W = 4)2 ± if A (1)2dT2  

+ if AdT2  if A4,2 d7i2  + Add + if BT2d5.2  

ji /3(172:, J f A4,2dz2 	BdT2  g 134, 2 dz 2  
+ + if TA4),.(11-2 ilzB4)1(iT2 

(14) 4- if Adze  f f TA4F1(172 	Adz4 	zBSId7z 2  

▪ BdT 2  if z ktidz 2  jf 13d.72  ff t3(1)Ced2 .2  

▪ F cr.: 2  f f Act
2 
 f f (17 171„2 f Thrz2 f f Fdz 2  

4- ff Adf2  if Ate' FdT 2  4- if AdT2 ffBd72 Tdz2 

+ Be if Tidz 2  if Fdz 2  fl mrz-2  ff adze + J f FdT2  + R2) 

where the remainder R2 has a similar form as R4 for the solution (12). 

Possibilities. Without diffculties this method can be extended to any linear 
(pseudolinear) equation of Vecua type of the order n with the conjugation 
of function 

	OW 02W °"W )  = F(z, T, W(Z,T), 	
, 	

, 072 	0-57i 

which has anallytic coefficients. 
The consequences are general solutions in the form of series of coeffi-

cients of systems of real partial equations. 
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FILOMAT (Nis) 9:1(1995),  93-99 

INEQUALITIES FOR COEFFICIENTS OF 
ALGEBRAIC POLYNOMIALS 

I. Z. Milovanovi6, L. Z. RaneiC and R. 2. DordeviC 

ABSTRACT. Let P n  be the class of algebraic polynomials P(x) = E: a y x" of degree 
at most n and 11Plithr = URIP( 1 )1 2 (hY(x)) 112  , where do(x) is a nonnegative measure on 
R. We consider the best constant in the inequality ja v j < Cn , u (da)11 Piide I, when P E 
and such that P(ek) = 0 (k = 1, 2, ... , m). The cases C',,,,, (do) and C7,, , n _t  (der) were 
studied by Milovanovie and Guessab  [2]  and for an arbitrary v by Milovanovic and Raneie 
[5], where they gave explicit expressions for some classical measures. In this paper we 
determine the best constants C,,,,, for the generalized Gegenbauer measure on (-1, 1) and 
for the generalized Hermite measure on (—oo,+co). 

1. Introduction 
Let P,, be the class of algebraic polynimials P(x) = E:;=o  ft,e of degree 

of most n. Denote by 

(1.1) 	 = v/(P, P) = (IR IP(x)1 2 dry(x)) 112  

the norm of a polynomial P  E  P,,, where dcr(x) is a given nonnegative 
measure on the real line R, with compact or infinite support, for which all 
moments 1.4 = fR X k  dcr(x), k  =  0, 1, ..., exist and are finite, and /20  > 0. 
We will consider the problem of determining the best possible constants 
C„,„(dcr) such that the following inequalities 

(1.2) 	 lavl 5_ Cn,u(da)11111d,, 	(0 < v < n). 

are valid. 

Polynomials in (1.2) belong  to  the restrictive class of polynomials 

Pn(6,6, • • • , en) = {P E Pn  I  P(ek) = 0, ek E C, k= 1,2,...,m}. 

Received 22.07.1995 
1991 Mathematics Subject Classification: Primary 26CO5, 26D05, 33C45, 91A44 
Supported by Grant 0401A of RFNS through Math. Inst. SAM' 
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94 	 1.2. IvlilovanoviC, L. Z. Ran6("_: and R. 2. DordeviC 

Let 

/11 

H (X — 	X in  — 4iX
m-1 	• • + ( — 1)" ' 1 	x ( —1)m sn„ 

i=1 

where sk denotes the elementary symmetric functions of -05 ,2 • • • I GI, i.e., 

(1.3) 	 Sk = Ee16•••k 	(k = 1,2, • • • Tri)• 

For k = 0 we have so = 1 and s k  = 0 for k > m. 

For the measure da there exists an unique set of orthonormal polynomials 
= irn (• ; dcr), n = 0, 1, 	, defined by 

7,,(x) = b(nn) (dcr)xn b(:)  i(da)xn-1 + • • • + b(on) (da) 	(11 (:) (da) > 0) 

and 
(1rn,rm) = bn,n 	m > 0), 

where 

(f, g) = I f(x)g(x)da(x) 
	

(f, g E L2 (R ) )• 

Denote by dii(t) the weight 

111 

(1.4) 	 = HIx — Fkj2 da(x). 
k=1 

The problem (1.2) was considered in [2] by Milovanovii.. and Guessab (see 
also [4]). They have proved the following result: 

Theorem A. If P E 	ez, • • • 'GO and b(n)  = b(vn)  (der), then inequali- 
ties 

(1.5) 
	

lanl < 1)(nn=„7) 11P Ild, 

and 

(1.6) 	la n-11 5- (( b(n—ni) 	in-2 	C( 	

2  1/2 • 

n—m-1 Slbn—mm)) 	b nu--n--1 1)  ) J 	11Plida 

hold. 
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Inequality in  (1.5)  and (1.6) are attained if  and only if  P(x) is  a constant 
multiple of 

?? 

irn_,n(x;  deo  H  Ix  _ GI  
k=1 

and 

((.6(7:1:777 2 1  — 1  i)(n In)  n-  ) 11'n  _  m  x +  i(nn  -  m  -  1) 
n-ni -1(X)) int 

 I X  — 
k=1 

respectively. 

Milovanovie and RanEie in [5] considered the corresponding problem for 
arbitrary k  and proved the following inequality 

	

k (k 	 2)112 
(1.7) 	Ian—ki (E 	 -6(n_Z=ii)) 

i.o i=i 

with extremal polynomial 

(

k 	 k 	 m 

Eitn_m_i(x)E(_ok-i 8k-i.Ln-0,----- m-i
i)  ri(x —  ek). 

j=0 	 i=.7 	 k=1 

In the above mentioned papers the authors have determined explicit con-
stants C„,p(dcr)  for some weights corresponding to the classical orthogonal 
polynomials. In this paper we are going to determine explicit constants 
C„,,(da) for weights that correspond to the generalized Gegenbauer and the 
generalized Hermite polynomials. This is significant because of the grow-
ing importance of these polynomials in many applications, particulary in 
numerical approximation (see for example [3]). 

2. The Generalized  Gegenbauer Case 

At first we observe the generalized Gegenbauer case 

da(x) = 1411 — x 2 )"dx 	> —1). 

Let 0 = 	— 1)/2 and let {1477,"'°) (x)} be a sequence of the generali- 
zed Gegenbauer manic polynomials orthogonal with respect to the measure 
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96 	I. 2. Milovanovie, L. Z. Rani and R. Z. Dordevic 

da(x) on (-1,1) (which was introduced by Lascenov in [1]). For such poly-
nomials we have the following recurrence relation 

(2.1) 
	

wn(  c'+f)  x = xW i« .Q) — 	w,(4a )(x ), 	n=0,1,..., 

with W( 1'°) (x) = 0 and W,1"' °) (x) = 1, where 

n(n + a) 
.N2n = (2n+a-1-0)(2n+a+#+1) 

and 

A2n+1 = (2n+a+0-1)(2n+a+O)' 

for n = 0, 1,..., except when a + = -1; then Al = (0 + 1)(a + l3  + 2). 

Using the norm of 144,' °) (x), 

Il W2: "(3) 11 2  = 	 B(n+a+1,n+a+1), 
(n+a+0-1-1)n 

n.  
liWi4131 )  II = (n + a + p + 2), 	

B(71
. 
+ a + 1, n + # + 2), 

where B is the beta function, we can obtain the loading coefficients 

14,n; *"6/)  = b(:) (da) 

in the corresponding orthonormal polynomials 1,14' 3) (x) 

(k 4. a  + 0  + 0, 	N I/2 

bt„; a,/3) = 	(k!B(k + a+  1,k + /3 + 1)) 

;!B( 	 0 + 

2))1/2 

k + a +1,k + 
( 	(k + ce + # + 2)k  

Using Theorem A and (1.7) we obtain: 

	

Theorem 2.1. Under restriction P()(0) = 0 (i = 0, 	k - 1) and 
P( z)(-1) = P(t) (1) = 0 (i = 0,1,...,s - 1), where s = (m - k)/2 E N 
for 1 = 0 and 1 = 1, we have that 

m-ki-a, 0+0 U . ■ 

an-11 < - n-l-m ndo. 

(n+0)(n+a+P) 

(n = 2k), 

(n = 2k + 1). 
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Inequali ties  for  Coefficients of algebraic Polynomials 

The equality is attained  if and only if 

P(x)  =  Ax k (x 2  —  1)S  W (m—k+a ' °+k)(x) 	(A  =  const). nl-m. 

97 

Proof. Since restrictions on polynomials are given only in the points Si = 
=  • • • =  ek = 0 1 ek+1 = ek+2  = • •  • = 	= -1 and 	= 6+2 =  • •  • = 
= 1, the new measure  der(x)  is again the generalized Gegenbauer measure 

d'er(x) = ixi2k+p( -  x 2 )"""I'dx 
	

(114-2k,m-k-l-a>-1). 

Since the weight function is even, then according to (2.1) it is not difficult 
to prove that bi(,n; cro5) = 0 when n - v = 2r + 1 (r E N, v = 0, 1, ... ,n). The 
required result can be directly obtained from Theorem A and (1.7), where, 
in our case, s i  = 0. ❑ 

3. The Generalized Hermite Case 

Consider now the generalized Herinite measure do.(x)=Ixi 2 ke -x 2  dx (k > 
-1/2) on (-co, +oo). With He) (x) we denote the generalized Hermite 
monic polynomial. For such polynomials the following differential equation 
is satisfied 

(3.1) 	 xy" + 2(k - x 2 )y' (2nx - ex -1 )y  =  0, 

where  E  = 0, for n is even, and e  =  2k, for n is odd. 

Using (3.1) we can obtain: 

1° If n is even then 

n/2 
X 21/  

He) (X) = (- 	(k  -1L  --) E(_ir (n/2) 	  

2  2 v=o 
2 

and 

ivie ) 11 2  =  G) !F(k 	D- 
2° If it is odd, then 

(n 	 n-1  -11/2 	 x2 v+1 
fie ) (X) =  (--1) !42 r(k n 	1  + `') E 	(  2  ) 	  

2 	2 

	

v=o 	 r(k+v-F 
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98 	 I. 2. Milovanovi6, L. Z. Rancid and R. 2. Dord evi6 

and 

= 
(n- 1\1 r(k n-1 + 
k 2 l • 	2 	2• 

The coefficients i;(,7)  (do.) 	= 0,1,... , n) in the coresponding orthonor- 

mal polynomials ile) (s) are given by: 

1° If n is even then 

(4p1/92) Alr(k+ + 

r(k+-4-)1.1( 2 )! 

if v is even, and a ) (dcr)= 0 if v is odd. 

2° If n is odd then 

((n - 1)/2\ 1.1.,( k  n 

1) ( n ) (da) = (_0(n-1)/24-1,  k(11  1 )/2)V 	l)  
( n 

1)! r(k+ 
2 	k 2 ) 

if v is odd, and ie(da)= 0 if v is even. 

Similarly, as in the previous section, we can prove the following theorem: 

Theorem 3.1. Let P( ') (0) = 0 (i = 0,1,... ,m - 1) and let the measure 
d&(x) = x 2 mdcr(x) and the norm IIP11,1a  be given by (1.1). Then 

(3.2) 	lan _il 	Vika 	(1 = 0,1,... ,n), 

where A n , 1  = 0 for n - 1 - m < 0, and otherwise 

1 1 / 2 ] I 	(k 	"- I  2 2_, 
3=0 

+ 	 + - 1 - m is even), 

WI), 1 

	 ( 74. - - 	( 	11 - + lit 

k 	9 
	- ) 'P ( 
	

2 	
+ -

2
) , and 

[! ■ 21 It -i±ja 	„ 	-- 1-7t1 -1 

r` 	2 	-T..  j 	j) 

j-o 
(n - 1 - in is odd), 
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Inequalities for Coefficients of algebraic Polynomials 	 99 

( n  1
2

m  — 1 ) ! 	n 	1  + m  where K2 = 
2 	

+ 1). 

The inequality (3.2) reduces to an equality if and only if 

1 1/ 2 1 
P(x) Axm E b("-1-7r1+2j) ft(k-Ftn) 

7L-1-711 	 n-1-m-1-2j 

j=0 

(A = const). 
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FILOMAT (Nis) 9:1 (1995), 101-111 

ON PROPERTIES OF SOME NONCLASSICAL 
ORTHOGONAL POLYNOMIALS 

G. V. Milovanovie,  P.  M. RajkoviC and Z. M. MarjanoviC 

ABSTRACT. In this paper  we consider some sequences of nonclassical orthogonal poly-
nomials which were studied in  the  papers  [3],  [4] and [6]. We find some new relations 
which they satisfy and discuss  their  zeros. 

1. Polynomials of the Laguerre type 

We consider the  generalized  Laguerre functional 

+co 

1(8) (P) = j. 	P(x)xse — '  dx, S E No, 	= 

and the monic generalized  Laguerre  polynomials {V,: ) (x)}, which satisfy 
the following three-term recurrence relation 

(1.1) 	L(.:}"(x)  =  (x —  2n  —  s  — 1)L;:) (x)— n(n s)1(S) ,(x), 

Vi(x)  =  0,  LI,$) (x)  =  1. 

These polynomials can be expressed  in  the form 

(1.2) 	I; (: ) (x)  =  E(-1)"-k (70 ( k s +1)n —kx k  , 
k=0 

where 
(m),  = an(nt +  1) 	(in s — 1), 	(m) c, = 1. 

We introduce the functional Zi a  by 

Aa(f) = f(a), 
Received 22.07.1995 
1991 Mathematics Subject Classification: 33C45 
Supported by Grant 0401A  of  RFNS through Math. Inst. SANU 
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102 	G. V. Milovanovk, P. M. Rajkovk and Z. M. Marjanovi 

and define the functional Il by 

= / + cAo, • c E R. 

By {L n (x; c)} we denote the corresponding sequence of orthogonal polyno-
mials of the Laguerre type. Such polynomials were expressed as a linear 

combination of LT ) (x) and x/4,21 (x) (see [6]). In the same paper, it was 
proved that the n-th polynomial of this sequence can be expressed in the 
form 

71 

(1.3) 	L „(x; c) = ( 
c(n + 1 ))  () x i 

(k 	1)! 	k 

In this section we prove some properties of these polynomials. 

Denoting the monic polynomials of the Laguerre type by l,„(x; c), we 

yield 

(1.3') 
1 

L n (x; c) (1 nc)L„(x; c), c # — , n E N. 

From (1.3) we see that 

deg L„(x; —1/n) = n — 1 	and 	L„(x;-11n)= —nL„_1 (x; — 1/n). 

Hence, for each n E N, the sequences { ip(x; —1/n)}2 0  are quasi-orthogonal 
of the order one .with respect to h, with c = —1/n, and the next reccurence 
relations are not valid for L n (x; —1/n) and its neighbours. 

Theorem 1.1. The polynomial 1,„(x; c) can be expressed in the form 

(1.4) 	 Z„(x;c) = .11,1) W+ A„Vni) 1 (x), 

where 
1 + (n +1)c 

A n  n 
1 + nc 

i.e., {L n (x;c)} is quasi-orthogonal of the order one with respect to the func-

tional 111) . 

Proof. Suppose that A„ exists such that (1.4) is true. Using (1.2) and (1.3)-
(1.3'), for the coefficient of the term x k  we yield 

	

1 + k(1 + c(n + 1)) 	n 	n(n + 1)  
1 + 71C 	n — k 	n — k 	

A„ 
 

After some computation we find A„ which does not depend on k. 0 

Using the previous relations we can prove the three-term recurrence rela-
tion for polynomials L n(x; c): 

k=0 
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Theorem 1.2. The sequence {Z„(x; c)} satisfies the three-term recurrence 
relation 

Zn+i (x; c) = (x — an)Zn(x; c) — On Zn-1( 7 c) , 

where 

2n+ 1 +  4n(n + 1)c + n(n + 1)(2n + 1)c 2  

(1 + nc)(1 + (n + 1)c)) 

i3„ —n2 ( 1  + (n — 1)c)(1 + (n + 1)c)  

(1 + nc) 2  

The norm of 1„(x; c) is given by 

11 1-in(x;c)11 2 = NO1 -.g„ = 
(n!)2 1 + (n + 1)c 

	

1 + 7IC 	• 

Theorem 1.3. The zeros of Z„(x;c) are real, simple and positive, except 
for e < — 1 /n  when  one of them is negative. Denoting these zeros by 

(n1 < (n2 < • • ' < (nn 

we have, for c <  —2/(n + 1), that the lowest zero („1 satisfies 

(1.5) 	 (nn
< (n1 < 0 A 	< Knzi. n — 1 

Proof. Let (ni, j = k, 	,n, be positive zeros of odd multiplicity. Defining 

q(x) = ft (x — (nj ), we see that the polynomial xq(x)i,„(x;c) does not 
..7=k 

change sign for x > 0. Hence 

+00 
li (xg(x)i,„(x; c))  = 	xq(x)Z„(x; c)e' dx  0. 

J 

Since { i,,,(x;c)} is quasi-orthogonal of the order one, with respect to the 

functional 1( 1) , it follows deg q(x) > n — 1. 

From (1.3) we have that L„(0; c) = (- 1)"n!I(1 + ne). Hence 

	

(-1)", 	for e > — 1/n, 
sign L„(0; c)= jl 

(-1)"+1 , for c < —11 n. 

an = 
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104 	G. V. Milovanovit", P. M. Rajkovie and Z. M. Marjanovie 

72 

Since in (x; c) = fl (x - Cni) and i ► (0; c) = (-1)n fl („ i , we conclude that 
i=i 	 i=i 

all zeros are positive for c > —1/n, and only one of them is negative for 
c < —1/n. Also, differentiating (1.3) with respect to x, we find 

L'„(0; c) = 
n!n 2 + c(n + 1)  

1 + nc • 2  

Thus, for e < —2/(n = 1), it is V„(0; e)/i„(0;e) > O. Because of 

Zi„( X; C)  

z n (x ; 	i=1  x — 

71 

we have E(-1/(„,) > 0. Then, from —1/(0  > E(1/(„ i ), we yield 
i=1 	 i=2 

1 	n — 1 
> 

211 	.1 nn 
and 

1 	1 
	 > 
—(n i 	(n2 

from which follows (1.5). ❑ 

EXAMPLE 1.1. The polynomial Z3(x; 1) = x3  - 
xi 	0.119747, x2 Ps 2.06541, x3P..... 6.06483, 
x3  - "4x2  3x+ 41, has one negative zero: xi 
5.95143. 

112 + -2-27 x - I3 , has positive zeros: 
but the polynomial L3(x; -2) 

-0.103301, x2 ^e.. 1.95187, x3 A.-. 

Theorem 1.4. The zeros of :02 ) (x) and 412 1 (x) interlace the zeros of the 
polynomial i,„(x; c). 

Proof. Let 41)i , i = 1,... ,m, be the zeros of LL1) (x). Then from (1.4), we 

have in  (49;e) = A„ -.41) 1 (49) and Zn(x(: )i -Fi;c) = AnZ(2,1) 1 (44 1 ). Since 
(I) between x (:)  and 41 41  there exists an unique zero of L;,_ 1 (x), we conclude 

that 441  1) ,() and Vni) 1 (414 1 ) must have the opposite signs. Hence, a 

zero of Z n (x;e) exists in the interval (41)  , 4141 ) for i = 1, ... ,n — 1. 

In the same way, we can conclude that 1:„(x; c) has a zero in the interval 
(x (n1. ) 	, x (n1) 1,i+1) (i = 1,... ,n — 2). ❑ 

Remark. In [8] it was proved that Z n (x) and Ln-i(x) interlace the zeros of 
L n (x; c). 
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2. Polynomials of the Jacobi type 
In this section we consider the functional 

.1"" ) (P) = 	x° 3  (1 — 	P(x) dx , 	/3, a > — 1, 

and the monic Jacobi polynomials { V M(x)1 orthogonal with respect to 
the functional /(0,"). Such polynomials can be expressed by the sum 

(i3 + 1 )n x k effa) (X) = 	(— On"!  	 'I"`   ( - 1) k  
(n + a + + 1 	k! - k) ! 

(it + a + + 1) k 
(i3 + 1) k 

, 
k=0 

and they satisfy the three-term recurrence relation 

&'f-f: c; ) (x)= (x — a,t)ir' a) (s) — bne („13 7) (x), -(1c31 ) (x) = 0, (2VM(x) = 1, 

where 

an = 7n+1 — 7n, 	7n  = 2n + a + /3 

	

(n —  1)(f.3 n —  1) 	1l  	 n(fi + n) 
bn  = l 2(2n + a + f3 — 1) an 	2(2n ++13+1) 71) .  

Let 12 = I(° ' cv)  C0o, c E  it,  be a new functional and let {Pe'" ) (x; c 0)} 
be the corresponding monk orthogonal polynomials of the Jacobi type. In 
[6] it was proved that the n-th polynomial can be expressed by 

k  1 + k(1 + c(n + 1)(n + a))  ( x k ") ( X ; C 1 0) = — on n!  Ec  l)  + lAn+ a 	1) n _k 
k=0 

^( 0,a) Denoting the monic polynomials of the Jacobi type by {P,, (x;  Cl  0)1 , 
we have 

Pl(") (x; c I 0) = (1 + n(n a)c)ift") (x;  Cl 0), c # 	1 	
, n E N. 

n(n + a) 

Hence it is deg P,(,° '") (x; — n1+0, I 0) = n — I and the next reccurence 
relations are not valid for that polynomial and its neighbours. 

Like in Section 1 we can prove the following results: 

n(n + 13) 
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Theorem 2.1. The polynomial 131 )̀," (x ;  c 1 0) can be expressed in the form 

131, 	(x; c I 0) = C2(7,'`v) (x) + An -eai ) (x) ,  

n(n + a) 	1 + (n + 1)(n + a +  1)c 

— (2n + a)(2n + a + 1) 	1 + n(n a)c 	• 

Theorem 2.2. The sequence {Pe" ) ( ; c10)1 satisfies the three-term re-
currence relation 

k+1) (x; c I 0) = (x — a n).[1")  (x; c I 0) — 0,,,,P,(,°T) ( x; c 0), 

where 
L 	An 

an  = an  + 	- An) fin = un-1 	• 
An-1 

Theorem 2.3. All zeros of 13e.'")  ( x ;  c10) are real, simple and positive, 'with 
exception one of them for c < — 1/(n(n+a)). Furthermore, for c < —2/((n+ 

1)(n + a)) the inequalities (L.5) hold. 

EXAMPLE 2.1. The polynomial P3° '0)  (x; 110) = x3  — gx2 	— yku, has 

all zeros in (0,1): xi 	0.0123940, x2 s 0.459337, x3 	0.878268, but the 

polynomial P°'° (x; —210) = z3  - 454-X2  + fix + Ai, has one negative zero: 

—0.103301, x2 	1.95187, x3 ^4 5.95143. 

Theorem 2.4. The zeros of al  '") (x) and & (:11) (x) interlace the zeros ofthe 

polynomial Pe" )  (x; c 10). 

Remark. It was proved the interlacing property for i.5;?'") (x) and er1) (x) with 

respect to Pe'" ) (x; c10) (see [8]). 

3. Polynomials of the Legendre type 

The sequence of Legendre polynomials IP„(x)1 is orthogonal with respect 
to the functional 

L(P) = J P(x) dx . 

This sequence satisfies the three - term recurrence relation 

(n + 1)Pn+1(x) = (2n + 1)x Pn(x) — 71.P„_1 (x), 

where 

••••••••■■ 
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with initial values P_1 (x) =  0  and Po(x) = 1. The polynomial PP (x) can be 
expressed in the form 

In/21 

	

pn(  )  = 	E( ___
I)
„ i (n\ /2n— 2i) xn-22 . 

i=0 

Let 

	

/3 = 	C(A-1 + Al), 	C E R, 

be a new functional, and  IP„(x;c1  — 1,1)1 the corresponding orthogonal 
polynomials of the Legendre  type.  Then the moments µ n  =  13 (xn) are given 
by 

0 	 for odd n, 

	

fin = 	2 
n  I 1 + 2c 
	for even n. 

The polynomial P„(x;  c  — 1,1) can be expressed in a determinant form, 

Po 	f2 1 	• •  • 	fin-1 
kin 

P„(x; el — 1,  1)  =  det 

Tin-1  fin 
1 	x 	x” 

Using a method as in  Gautschi  and Milovanovi6  [5],  we determine 

It  is known that 

holds 

„  = 

Introducing 

we obtain 

for determinants 

H,,  = 

= 

i  n =  1, 

n = 

1 
1 

3,4,.... 
(2n 

det 	 1-10 [  2i+2j-3 [ 

— 2)!! 2  
(2n — 1) 2  • 

H „(e) = 

Hn—i 
 -  -(4n  — 5) 2 (4n — 3) 

r 	 i n 
lin(e) —  L  2i+2 j -3  + c li,j=1 

	

1 	1 	1 

	

—C 	1 	
1 
3 ,  

	

—e 	
1 	1  
3 	5 

2n-1 

270-1 

C 
-  — 2n-1 	2n+1 4n-3 
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Lemma 3.1. We have 

H„(c) =- (1 + c(2,7)) H. 

Proof. For H„(c) we have 

H,(c) = H,, + cD,1, 

where 

	

" 0 	1 	1 	1 - 

—1 	1 	1 	 1 
3 	 2n-1 

	

D„ = -1 	3 	5 
1 1 1 

27,-4-1 

- 1 	1 	1 	 I  
- 	2n-1 	2n-4-1 	9n-3 

We can prove that D„ = (22) H„, n E N. Subtracting the last row in D„ 
from all others, except the first one, we obtain 

D„ 
(2n - 2)!! 

0 
0 

—1 

2n - 1 
1 
1 
3 

1 

2n + 1 
1 
3 
I 
5 

1 

4n - 3 
1 

2n-1 
I 

(2n — 1) 	• (4n — 3) 
2n+1 

1 

Also, subtracting the last column from all others, except the first one, we 
obtain 

(2n  - 2)!!2  
D„= 

(2n - 1) 2  • • (4n - 5) 2 (4n - 3) 
{ (4n - 3)Hn-1 Dn-11, 

from which, by induction, we finish the proof. 0 

Lemma 3.2. If 

(c) = (let [ 2 ,4_1 	c]:',3=1  , 	H:, = 11:,(0), 

then 
Hni (c)  = [1 cenn] Hn , n = 1, 2, 	. 

Thus, 
A,1= A„ [1 + (Dc] [1 + (1 1 )c} 

where. 
= det[L(xi+7)li,j=o,...,n-1• 
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Theorem 3.3. The polynomials P, L (x; Cl - 1,1) satisfy the following three-
term recurrence relation 

(n+ 1) (1 + 	c) P„÷i(x; c I -1, 1) = (2n+1) (1 + ( nnc) xP„(x; c 1 - 1, 1) 

- n + (nI2 )c) P„- 1 (x; c 1 - 1, 1). 

Proof. By {13„(x; e I - 1, 1)1 we denote the sequence of monic polynomials of 
the Legendre type. According to the property (x f, g) = (f, xg) of the inner 
product defined by the functional  13 : ( f,g) = I3 (fg), we conclude (cf. [2] 
and [9]) that this sequence satisfies a three-term reccurence relation of the 
form 

13,0- 1 ( :r ; c - 1,  1)  = Xii„(X; CI — 1, 1) - titt Pn  —1  (X; C I — 1,1), 

where (see [3]) 

An-10n+1   
fin = 

;64, 
Knowing a relation for the monic Legendre polynomials and the determinant 
An , we yield 

lin+1(x;c) - 1 , 1 ) =  xP,L(x;c  - 1 , 1 ) 
2 
	 (1+ ("-2-1)c)(1+ (nI2)c) P„--i(x; Cl - 1,1 ). 4n 2  - 	(1 + ( 2 )c)(1 ("24 )c) 

Putting 
(2n)! 

Pn(s; c 1 - 1, 1)  =274112 P„(x;  - 1, 1), 

we finish the proof. ❑ 

By induction and using the three-term recurrence relation, we obtain: 

Theorem 3.4. The  polynomial  P„(x; el-1,1) can be expressed in the form 

[n/2] 

P„(x;  el-1,1) = -772
1 	(_ok  ( nk)  (2n — 2k 

It

) {

1 -I- (( 71
2
)  +  2k) C} X" -2k  

k=0 

where n = 2,3 

Remark.  This formula was derived in [6] with a mistake. 

The last formula shows that the sequence { P„(x; c 1 — 1, 1)} has a degen-
erated property in the sence that is 

P„(x; —(2)-1I — 1,1) = /3„_2(x; — (ti) -1  I — 1,1). 
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Theorem 3.5. The polynomials P„(x; cl — 1,1) are quasi-orthogonal of the 
second order with respect to the functional 

1 
J(13) (P) = j.  P(x.)(1 — x 2 ) dx. 

—1 

The polynomial Pn (x; cl — 1,1) has at least n — 2 different zeros with odd 

multiplicity in (-1,1). 

Proof. Because of the orthogonality, we have for any polynomial p(x) of 

degree k (k < n 3) that 

/3 (P„(x; c I - 1, 1)p(x)(1 - x 2 )) = 0, 

i.e., 

£1 Pn (x;cl — 1,1)p(x)(1 — x 2 ) dx = 0. 

be all distinct zeros of P,(x; c I - 1,1) with odd multiplicity and which are in 
So, we yield quasi-orthogonality of the order 2. Finally, let xni, Xn2) • • • 'Ink 

(-1, 1). If we introduce the node polynomial p(x) = (x - x n1)(x - x n2) • • • (x - 

x „k), then the polynomial P„(x; c I - 1, 1)p(x)(1 - x2 ) does not change sign 

in (-1,1). Therefore, 

P„(x; c I - 1, 1)p(x)(1 - x 2 ) dx # 0. 

Because of that, we conclude that deg p(x) > n - 2. 0 

EXAMPLE 3.2. The polynomial 

P3(x; c I — 1,1) = 5(1 + 3c)x 3  — 3(1 + 5c)x, 

has the zeros 

xi = 0, z2,3 = 
113(1 + 5c) 

5(1 + 3c) 

All zeros of P3(x;c I — 1,1) are in (-1,1) if c > — 1/3. For c < — 1/3, two of them 

are out of (-1,1). 

Remark. According to Favard's theorem (see [2]) there are exist the weight distri-

butions wi(x), i = 1,2,3, corresponding to the previous functionals Ji: 

+00 
Ji(P) — 	P(x)dwi(x), 	i = 1,2,3. 

These distributions are (see [3]) 

tv i (x) = 	-1-c6(a:), w2(x) = (1— x)" +c(5(x), w3(x) = 1+ e(5(x —1)± h(x 1)), 

where 6(x) is the I)irac's delta function. 
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WORKSHOP ON TOPOLOGY 
(FIFTH Nta-SOFIAN TOPOLOGICAL SEMINAR) 

Guyletchitza, June 27 - 30, 1995 

The fifth Nis-Sofian topological seminar was held in the Scientific Cen-
ter Guyletchitza, on the mountain Rila, near Sofia on June 27 to June 30, 
1995. Besides topologists from Ni and Sofia two topologists from Italy and 
two from Russia were also participants of the seminar. The following papers 
were presented: 

June 27, 1995 

Chairman: Gino Tironi 

15:00 - 15:30 D. Doitchinov: On uniform frames 
15:30 - 16:00 G. Dimov , D. Vakarelov: S-systems and duality theorems 
16:00 - 16:30 V. Gutev: On set-valued selections for lsc mappings 

Chairman: Doitchin Doitchinov 

17:00 - 17:30 I. Gotchev , H. Mintchev: On sequential properties of Noe-
therian topological spaces 

17:30 - 18:00 S. Popvassilev: On some topologies on IR" 
18:00 - 18:30 D. Karaivanov: The commutativity between subspaces and 

hyperspaces 

June 28, 1995 

Chairman: Stoyan Nedev 

9:30 - 10:00 A. Gryzlov: On some theorems from the partition calculus and 
the theory of cardinal invariants 

10:00 - 10:30 P. Semenov: Countable sets of non-convex valued non lsc map-
pings 

10:30 - 11:00 M. Stanojevie: On hyperspaces with the locally finite topology 

113 
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Chairman: Ljubi§4 Koeinac 

11:30 - 12:00 D. Milovaneevie: U-systems and U-spaces 
12:00 - 12:30 D. Vakarelov: Equivalence of some separation principles 
12:30 - 13:00 D. Stavrova: A generic approach for restricting cardinality of 

topological and more general spaces 

Chairman: Momir Stanojevie 

15:30 - 16:00 A. Bella: On the number of compact, H-closed and H-sets in 
Hausdorff spaces 

16:00 - 16:30 M. Zi2ovie: Some topologies on lattices 

Chairman: Pavel Semenov 

17:00 - 17:30 R. Krstie: Fuzzy topological separation axioms 
17:30 - 18:00 S. Vueie: Ordered fuzzy topological spaces and separation ax-

ioms 

June 29, 1995 

Chairman: Doitchin Doitchinov 

9:30 - 10-00 S. Nedev: On some selection theorems 
10:00 - 10:30 P. Semenov: Some results on set-valued selections 

Chairman: Anatolij Gryzlov 

11:00 - 11:30 Lj. Koeinac: Around a G6-diagonal 
11:30 - 12:00 G. Tironi: The product of pseudoradial spaces 
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FILOMAT is a continuation of Zbornik radova Filozofskog fakulteta u Nisu , Ser-
ija Matematika (vol. 1(1987)- vol. 6(1992) and is published yearly. It publishes 
original papers in all fields of pure and applied mathematics. 
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All manuscripts (the original and a copy) must be written in English. The 
extent of the papers is limited to ten pages in length; manuscripts over 10 pages 
are accepted only exceptionally. Manuscripts should not require many language 
corrections. 
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