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Introduction

As known, one of the best methods used in studying of structure of semi-
groups, as well as other algebras, is the decomposition method. The main
idea of this method is to decompose a semigroup into components, possibly
of simpler structure, to study the components in details and to establish
mutual relationships between the components within the entire semigroup.
We differentiate two general kinds of decompositions: external decomposi-
tions, where we include decompositions into a direct product and related
concepts, and internal decompositions, by which we mean decompositions
by equivalence relations. In this paper our attention will be aimed only to
internal decompositions, which will be here called simply decompositions.

By a kind of decompositions we will mean a mapping T : § — To by
which to any semigroup 5 we associate a subset T, possibly empty. of the
partition lattice Part(S) of 8. But it is often of interest to consider such
kinds of decompositions which can be applied on any semigroup, i.e. such
that T is nonempty subset of Part (5), for any semigroup 8. For example,
many kinds of decompositions have the property that for any semigroup
5, Tg contains the zero of Part(S), i.e. the one-component partition {5}.
For that reason we define a type of decompositions, or a decomposition lype,
as a mapping T : 5 — Tg by which to any semigroup S we associate a
subset Ty of the partition lattice Part(S) of S, containing its zero. In other
words, a decomposition type T is a collection of sets T indexed by the
set of all semigroups, and it is defined if for any semigroup S we define
what are the elements of Tg. Of course, any type T of decompositions
induces a mapping 3’ : 8 — T’ by which to any semigroup § we associate
a subset T of the lattice £(.) of equivalence relations on S, containing the
universal relation on 5, called a type of equivalences, and vice versa. For
a given type T of decompositions and a semigroup 5, the elements of T
will be called T-decompositions of S, and related equivalence relations will
be called T-equivalences on 5, and § will be called T-indecomposable if the
one-component partition {8} is the unique Z-decomposition of S, i.c. if the
nniversal relation is the unique T-equivalence on §.

Cousider a decomposition type T and a semigroup S. Since Ty is a subset
of the lattice Part(S), then Ty is a poset with respect to usual ordering of
partitions, from where several very important questions follow:

(1) Does T¢ have a greatest element?
(2) Is Tg a complete lattice?
(3) Does Ty a complete sublattice of the partition lattice on §7

Such problems have been treated first by T. Tamura and N. Kimura [112],
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1954, and [113], 1955. After that, they have been considered by many au-
thors. The aim of this paper is to make a survey of main ideas, concepts and
results concerning greatest decompositions of semigroups of various types.
We will talk about the mostly important decomposition types and the results
concerning these.

We know that one of the most important algebraic theorems is the fa-
mous Birkhoff s representation theorem, proved by (. Birkhoff in [3], 1944,
which says that any algebra can be decomposed into a subdirect product of
subdirectly irreducible algebras. Of course, in Theory of semigroups similar
theorems are also very important. A decomposition type T will be called
atomic if there exists the greatest T-decomposition and their components are
T-indecomposable. But only four atomic types of decompositions of semi-
groups are known: semilatiice decompositions, whose atomicity has been
proved by T. Tamura [110]. 1956, ordinal decompositions, whose atomic-
ity has been proved by E. S. Lyapin [62], 1960, U-decompositions, whose
atomicity has been proved by L. N. Shevrin [96], 1965, and orthogonal de-
compositions, whose atomicity has been established by S. Bogdanovi¢ and
M. Cirié in [10], 1995. In this paper these decomposition types will take an
outstanding place.

This paper is divided into five chapters.

In the first chapter we introduce notions and notations that will be used in
the further text, we give a classification of decomposition types and define
the types that will considered in this paper, and we also present several
general results concerning decompositions by congruences.

Because of the great importance and enormous quantity of the results
concerning semilattice decompositions of semigroups, these results will be
separated from the ones concerning band decompositions and they will be
presented in Chapter 2.

Chapter 3 is devoted to the remaining significant types of band decompo-
sitions. Namely, in this chapter we make a survey of the results on matrix
and normal band decompositions of semigroups.

In Chapter 4 we consider decompositions of semigroups with zero: or-
thogonal decompositions, decompositions into a left, right and matrix sum
of semigroups, and quasi-semilattice decompositions.

Finally, in Chapter 5 we talk about yet other types of decompositions: U-
decompositions, ordinal decompositions, [-matrix decompositions and semi-
lattice-matrix decompositions.
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1. Preliminaries

T'his chapter is divided into three sections. In Section 1.1 we introduce
notions and notations that will be used in the further text. In Section 1.2 we
make a classification of decompositions and we single out the most important
decomposition types, which will be treated later. Finally, in Section 1.3
we cousider decompositions by congruence relations and we present several
general results concerning these decompositions.

1.1. Basic notions and notations

Throughout this paper, Z* will denote the set of all positive integers.
Further, S = 5% means that 5 is a semigroup with zero 0, and § # §°
means that 5 is a semigroup without zero. If 5 = 5, we will write 0 instead
{0}, and if A is a subset of S, then A* = A-0, A® = AUO and A’ = (§—A)°,
If Ais a subset of a semigroup 5, then VA = {z € §|(In€ Z+)a" € A}.

For a binary relation £ on a set A, £% will denote the transitive closure
of £, €71 wiII (Imlnl.f= the relation defined by a£='b < béa, and for a € A,
af = {w afx} and éu = {& € A | w€a}. By a quasi-order we
mean a wﬂoxwv and transitive binary relation. If £ is a quasi-order on a
set A, then the relation E defined hy 6 = ENE is an equivalence relation
t'}l‘“(‘tl the natural equivalence of £. A relation € on a semigroup § = 59 is
called left O-vestricted if 06 = 0. A right O-restricted relation on S is defined
dually, and a relation £ on § = 8% will be called O-restricted if it is both
left and right O-restricted, i.e. if 0 = £0 = 0. We say that a relation £ on a
semigroup 5 satisfies the common multiple property, briefly the cmn-property,
if forall a,b,c € 5, afecand bfeimplies ab€ ¢. Similarly, for a relation € on
a semigroup S = 8 we say that € satisfies the O-common multiple property,
briefly the O-cm-property, if for all a,b,c € S, ab # 0. a £ ¢ and b€ e implies
ab&c.

Let A" be a subset of a lattice L (not necessary complete). If K con-
tains the meet of any its nonempty subset having the meet in L, then K is
called a complete meet-subsemilattice of L. A complete join-subsemilattice
is defined dually. If A is both complete meet-subsemilattice and complete
join-subsemilattice of L, then it is called a complete sublattice of L. If L is
a lattice with unity, then any sublattice of L containing its unity is called a
[-sublattice of L. Dually we define a 0-sublattice of a lattice with zero, and
we define a sublattice of a lattice L with zero and unity to be a 0, [-sublattice
il it is both O-sublattice and I-sublattice of L. If any clement of L is the
meet of some nonempty subset of &', then K is called mect-dense in L.

An element a of a lattice L with the zero 0 is an atom of L if a > 0 and
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there exists no @ € L such that @ > 2 > 0. A complete Boolean algebra B is
atomic if every element of /3 is the join of some set of atoms of B. If L is a
distributive lattice with zero and unity, then the set B(L) of all elements of
L having a complement in L is a Boolean algebra and it is called the greatest
Boolean subalgebra of L.

For a nonempty set A, P(.1) will denote the lattice of subsets of A. Let A
be a nonempty set and let L he a sublattice of P(A) containing its unity and
having the property that any nonempty intersection of elements of L is also
in A. Then for any a € A there exists the smallest element of L containing a
(it is the intersection of all elements of L containing «), which will be called
the principal element of L generated by a.

A subset A of a semigroup S is called completely semiprime if for @ € 9,
2 € A implies @ € A, completely prime if for x,y € 5, vy € A implies the
ecither . € A or y € A, left consistent if for x,y € S. xy € A implies z € A,
right consistent if for @,y € S, xy € A implies y € A, and it is consistent
if it is both left and right consistent. Clearly, the empty set has any of
these properties and the sets of completely semiprime, completely prime, left
consistent, right consistent and consistent subsets are complete sublattices
of P(5). A consistent subsemigroup of a semigroup .5 will be called a filter
of §. The empty set will be also defined to be a filter. By F(5) we denote
the lattice of filters of S, which is a complete meet-subsemilattice of P(5),
and therefore a complete lattice, hut it is not necessary a sublattice of P(S5).
It is well known that a subset A of a semigroup S is a filter of S if and
only its complement is either empty or a completely prime ideal of 5. The
principal element F(5), called the principal filter, generated by a € 5§ will
he denoted by N (a).

In studying of semigroups with zero we nse some similar notions. Namely,
a subset A of a semigroup § = 8° is called left 0-consistent if A® is left
consistent, right 0-consistent il A® is right consistent, and it is 0-consistent
if A® is consistent. Similarly, an equivalence relation 6 on 5 = 59 will be
called left 0-consistent if for v,y € S, xy # 0implies xy 6 z, right 0-consistent
if for 2,y € 5, xy # 0 implies wyfy, and O-consistent if it is both left and
right 0-consistent.

Let S be a semigroup. By Zd(5) we denote the lattice of ideals of S.
This lattice is a sublattice of P(9), it is also a complete join-subsemilattice
of P(S), but it is not necessary a complete meet-subsemilattice, since the
empty set is not included in Zd(5). The principal element of Zd(5), called
the principal ideal, generated by a € 5 will be denoted by J(a).Further,
LTd(S) will denote the lattice of left ideals of a semigroup 5 defined in
the following way: if § = 5°, then LId(S) consists of all left ideals of S,

5

and if § has no zero, then £Zd(S) consists of the empty set and all left
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ideals of 5. The lattice of vight ideals of S, in notation RZd(5), is defined
dually. Lattices £Zd(S) and RZd(S) are complete sublattices of P(5). The
principal element of LZd(5), called the principal left ideal, generated by
a € .5 will be denoted by L(a). The principal right ideal generated by a € 5,
defined dually, will be denoted by R(a). By Zd*(5) we denote the lattice
of completely semprime ideals of 8, which is a complete [-subsemilattice
of Zd(\5). The principal element of Zd<*(S), called the principal radical,
generated by a € 5 will be denoted by E(a). By RZd(S) and LT« i 0.
we denote the lattice of left consistent right ideals and the lattice of right
consistent left ideals of 9, which are complete sublattices of RZd(S) and
LTd(S), respectively.

For a nonempty subset A of a semigroup S define the relations P , A
and L4 hy:

alPsb & (Vo,y€ S)zaye A & abye A),
aRab & (VyeS)aye A & bye A),
alsb & (VeeS)eae A & xbe A).

Then Py is a congruence on § called the principal congruence on 5 defined
by A, R, is a right congruence called the principal right congruence on §
defined by A, and L 4 is a left congruence called the principal left congruence
on 5 defined by A. If A is a nonempty family of subsets of 5, then P(A) will
denote the congruence which is the intersection of all principal congruence
on S defined by elements from A.

Let A be a nonempty set and let X € P(A). The relation Oy on A
defined by

aOyb & a,beX or a,be A-X (a,be A),

is an equivalence relation on A whose classes are precisely the nonem pty sets
among the sets X and A — X. Clearly, when X = @ or X = A, then Oy is
the universal relation on A. Also, for any X € P(A), Oy = O4,. Further,
for a nonempty subset A of P(A), O(A) will denote the equivalence relation
on A defined by:
O(A) = [ Ox.
XeA

If A'is a complete meet-subsemilattice of P(A), and it contains the unity of
P(A). then ©(A) can be alternatively defined by:

aO(A)b & A(a) = A(D) (a,b € §),
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where for z € A, A(z) denotes the principal element of A generated by z.

For a semigroup S, Q(5) will denote.the lattice of quasi-orders on .5, E(9)
will denote the lattice of equivalence relations on S and Con (\9) will denote
the lattice of congruence relations on §. It is well-known that Con (9) is
a complete sublattice of £(5) and &£(5) is a complete sublattice of Q(S5).
By £%(S) we denote the lattice of O-restricted equivalence relation on a
semigroup S = SO, which is the principal ideal of £(5) generated by the
equivalence relation y determined by the partition {5°,0}.

An ideal A of a semigroup S is a prime ideal if for z,y € 59, xSy C A
implies that either @ € A or y € A, or, equivalently, if for all ideals M and
N of §, MN C A implies that either M C Aor N C A. A completely
0-simple semigroup with the property that the structure group of its Rees-
matrix representation is the one-element group, is called a rectangular 0-
band. Equivalently, a rectangular 0-band can be defined as a semigroup
§ = 5% in which 0 is a prime ideal and for all a,b € S, either aba = a or
aba = 0.

For undefined notions and notations we refer to the following books: G.
Birkhoff [2], S. Bogdanovi¢ [4], S. Bogdanovi¢ and M. Ciri¢ 7], S. Burris
and H. P. Sankappanavar [17], A. H. Clifford and G. B. Preston [35], [36], G.
Gritzer [45], J. M. Howie [48], E. S. Lyapin [62], M. Petrich [72], [73], L. N.
Shevrin [98], L. N. Shevrin and A. Ya. Ovsyanikov [102], [103], O. Steinfeld
[105] and G. Szasz [109].

1.2. A classification of decompositions

In this section we classify decompositions of semigroups into few classes
and we single out the most important types of decompositions.

Let us say again that by a decompositions of a semigroup S we mean a
family D = {Sa}aey of subsets of § satisfying the condition

= U Sy where S, NS =0, for v, €Y, a # B.
a€eY

Various special kinds of decompositions we obtain in two general ways: im-
posing some requirements on the structure of the components S,, and im-
posing some requirements on products of elements from different classes.

The first general type of decompositions that we single out are decompo-
sitions S onto subsemigroups, determined by the property that any Sy is a
subsemigroup of §. Clearly, decompositions onto subsemigroups correspond
to equivalence relations satisfying the em-property, so the following theorem
can be easily proved:
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Theorem 1.1. The poset of decompositions of a semigroup S onto sub-
semigroups is a complete lattice which is dually isomorphic to the lattice of
equivalence relations on S satisfying the cm-property.

[f to a decomposition of a semigroup S onto subsemigroups we impose an
additional condition

ab € (a) U (b),

for all elements a,b € S belonging to the different components, then we
obtain so called U-decompositions. Decompositions of this type will be con-
sidered in Section 5.1.

The second general class of decompositions that we single out form de-
compositions whose related equivalence relations are congruences. Decom-
positions of this type are called decompositions by congruences. When the
decomposition D is a decomposition by a congruence relation, then the index
set Y is a factor semigroup of § and many properties of 5 are determined by
structure of the semigroup Y. Special types of decompositions by congru-
ences we obtain imposing some requirements on the structure of the related
factor semigroup. If a class ¢ of semigroups and a semigroup S are given,
then a congruence relation 6 on § is called a C-congruence on S if the related
factor 5/ is in €, the related decomposition is given a C-decomposition, and
the related factor semigroup is called a C-homomorphic image of 5. When
there exists the greatest €-decomposition of 9, i.e. the smallest C-congruence
on 5, then we say that the factor semigroup corresponding to this congru-
ence is the greatest C-homomorphic image of §. A semigroup S is called
C-indecomposable if the universal relation is the unique C-congruence on 9.
Of course, when the class € contains the trivial (one-element) semigroup,
then the €-decompositions determine a decomposition type.

If the decomposition D is both a decomposition by a congruence relation
and a decomposition onto subsemigroups, then it is called a band decomposi-
tion of 5 and the related congruence relation is called a band congruence on
5. Equivalently, the type of band decompositions is defined as the type of
C-decompositions, where € equals the variety [2? = x] of bands. Moreover,
by some subvarieties of the variety of bands we define the following very
important special types of band decompositions and band congruences:

- semilattice decompositions and congruences, determined by the variety
[2* = 2,2y = yz] of semilattices;
matriz decompositions and congruences, determined by the variety
[¢? = 2, 2ye = @] = [2? = z,2yz = x2] of rectangular bands;
left (right) zero band decompositions and congruences, determined by
the variety (22 = z,2y = 2] ([ = 2,2y = y]) of left (right) zero
bands;
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— normal band decompositions and congruences, determined by the va-

riety [2? = 2, zyze = vzyr] = [2? = 2, wyzu = wzyu] of normal bands;

— left (right) normal band decompositions and congruences, determined

by the variety [¢2 = z,zyz = a2y] ([2* = z,2yz = yaz]) of left (right)
normal bands.

Also, chain decompositions and congruences are determined by the class of

chains (linearly ordered semilattices). The decomposition D is called an

ordinal decomposition if it is a chain decomposition, i.e. Y is a chain, and
for all a,b € S5, '

a€ S, beSz a<pB = ab=ba=a.

These decompositions will be considered in Section 5.2. In the last chapter
of this paper we will also consider /-matrix decompositions and semilattice-
matrix decompositions, which will be precisely defined in Sections 5.3 and
5.4, respectively.

Semigroups with zero have a specific structure and in studying of such
semigroups it is often convenient to represent a semigroup S = S° in the
form:

5 = U S where S, N S = .0, for a,feY,a#f.
a€Y

In this case, the partition D of S, whose components are 0 and 53, a €Y,

is called a 0-decomposition of §. If, moreover, any Sq Is a subsemigroup of
S, we say that D is a 0-decomposition of 5 onto subsemigroups and that S
is a 0-sum of semigroups 54, @ € Y, and the semigroups S will be called
the summands of this decomposition. Equivalence relations corresponding
to such decompositions are exactly the ones which satisfy the 0-em-property,
so the following theorem follows:

Theorem 1.2. The poset of O-decompositions of a semigroup S = 5% onto
subsemigroups is a complete lattice which is dually isomorphic to the lattice
of equivalence relations on S satisfying the 0-cm-property.

Special decompositions of this type may be determined by some properties
of the index set Y. Namely, it is often convenient to assume that Y is a
partial groupoid whose all elements are idempotents, and to require that the
multiplication on 9 is carried by Y, by the following condition:

for all a, 3 €Y.

?

{ SaSp C Sap if a/ is defined in Y
Sa53 =0 otherwise
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For example, if V is a semigroup, i.e. a band, we obtain so called 0-band
decompositions. If the product afl is undefined, whenever o # /3, then
SaS3 = 0, whenever o # 3, and such decompositions are called orthogonal
decompositions. 1f Y is a left (right) zero band, then the corresponding
decomposition is called a decomposition into a left (right) sum of semigroups.
II'Y is a nonempty subset of I'x A, where [ and A are nonempty sets, and the
partial multiplication on Y is defined by: for (i,A),(j, ;) € Y, the product
(4, A)(J, 1) equals (i,p), if (¢,1) € Y, and it is undefined, otherwise, then
the decomposition D carried by Y is called a decomposition into a matriz
sum of semigroups S,, a € V. Finally, if Y is an arbitrary poset and for
@, 3 €Y, the product a3 is defined as the meet of v and /3, if it exists, then
the related decomposition is called a quasi-semilattive decomposition of .

1.3. Decompositions by congruences

Given a nonempty class € of semigroups. Let Cone (.5) denotes the set
of all €-congruences on 5. Of course, Cong (.9) is a subset of C'on (.9) and it
can be treated as a poset with respect to the usual ordering of congruences.
Properties of posets of C-congruences inside the lattice Con (.5) have been
first investigated by T. Tamura and N, Kimura in [123], 1955, where they
proved the following theorem:

Theorem 1.3. (T. Tamura and N. Kimura [123]) If € is a variety of semi-
groups, then Cone (5) is a complete lattice, for any semigroup 5.

For the variety of semilattices, the previous theorem has been proved also
by T. Tamura and N. Kimura [122], 1954 (see Theorem 2:1 )

The problem of existence of the greatest decomposition of a given type has
been solved in a special case, for so-called p-decompositions, by T. Tamura
[110], 1956. The solution of this problem in the general case has been given
by N. Kimura [54], 1958, by the next theorem. Note that by an algebraic class
of of semigroups we mean a class of semigroups closed under isomorphisims.

Theorem 1.4. (N. Kimura [54]) Let € be a nonempty algebraic class of
semigroups. Then € is closed under subdirect products if and only if Cong (.9)
has the smallest element, for any semigroup S for which Cone (8) # @.

As N. Kimura [54] noted, this theorem has been also found by E. J. Tully.
Note that if Cone (5) has the smallest elements, then it is a complete meet-
subsemilattice of Con (.5).

The converse of Theorem 1.3 has been proved in a recent paper of M.
Ciri¢ and S. Bogdanovié [24]. Namely, they proved the following theorem:
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Theorem 1.5. (M. Ciri¢ and S. Bogdanovié [24]) Let € be a nonempty alge-
braic class of semigroups. Then € is a variety if and only if Cong (5) is a
complete sublattice of Con (5), for any semigroup 5.

By the proof of the previous theorem, given in [24], the next theorem also
follows:

Theorem 1.6. (T. Tamura and N. Kimura [123]) If € is a variety of semi-
groups, then Cong (5) is a principal dual ideal of Con (5), for any semigroup
Sy

Note that Theorems 1.4, 1.5 and 1.6 holds also for any algebra.
The following theorem, proved by M. Petrich in [72], 1973, has been very
useful in his investigations of some greatest decompositions of semigroups.

Theorem 1.7. (M. Petrich [72]) Let € be a variety of semigroups, D the
class of subdirectly irreducible semigroups from € and S any semigroup. Then
a congruence § on a semigroup S, different from the universal congruence,
is a C-congruence if and only if it is the intersection of some family of O-
CONGruences.

If we define the trivial semigroup to be subdirectly irreducible, then The-
orem 1.7 says that Cong(5) is meet-dense in Cong (5).

2. Semilattice decompositions

Semilattice decompositions of semigroups have been first defined and
studied by A. H. Clifford [29], 1941. After that they have been investi-
gated by many authors and they have been systematically studied in several
monographs: by E. S. Lyapin [62], 1960, A. H. (lifford and G. B. Preston
[35], 1961, M. Petrich [72]. 1973, and [73], 1977, 5. Bogdanovié [4], 1985, S.
Bogdanovi¢ and M. Ciri¢ [7], 1993, and other.

First general results concerning semilattice decompositions of semigroups
have been the results of T. Tamura and N. Kimura from [122], 1954. There
they proved a theorem, given below as Theorem 2.1, by which it follows the
existence of the greatest semilattice decomposition on any semigroup. This
theorem initiated intensive studying of the greatest semilattice decomposi-
tions of semigroups and Section 2.1 is devoted to the results from this area.
We present various characterizations of the greatest semilattice decomposi-
tion of a semigroup, the smallest semilattice congruence on a semigroup and
the greatest semilattice homomorphic image of a semigroup, given by M.

Yamada [132], 1955, T. Tamura [110], 1956, [112], 1964, and [117], 1972, M.
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Petrich [69], 1964, and [72], 1973, M. S. Putcha [79], 1973, and [80], 1975,
and M. Ciri¢ and §. Bogdanovi¢ [21]. We also quote the famous theorem
of T. Tamura [110], 1956, on atomicity of semilattice decompositions, which
is probably the most important result of the theory of semilattice decom-
positions of semigroups, and we give several characterizations of semilattice
indecomposable semigroups given by M. Petrich [69], 1964, and [72], 1973,
and T. Tamura [117], 1972. For the related results concerning decomposi-
tions of groupoids we refer to G. Thierrin [127], 1956.

Section 2.2 is devoted to lattices of semilattice decompositions of a semi-
group, i.e. to lattices of semilattice congruence on a semigroup. We present
characterizations of these lattices of T. Tamura [120], 1975, M. Ciri¢ and S.
Bogdanovic [23], and S. Bogdanovi¢ and M. Ciri¢ [12)].

2.1. The greatest semilattice decomposition

As we noted above, the first general result concerning semilattice decom-
positions of semigroups is the one of T. Tamura and N. Kimura [122], 1954,
which is given by the following theorem:

Theorem 2.1. (T. Tamura and N. Kimura [122]) The posct of semilattice
decompositions of any semigroup is a complete lattice,

By the previous theorem it follows that any semigroup has a greatest seimi-
lattice decomposition. The first characterization of the greatest semilattice
decomposition has been given by M. Yamada [132], 1955, in terms of P-
subsemigroups. A subsemigroup T of a semigroup S is called a P-semigroup
of 5 if for all ay,... ,a, € 9,

LL0 U (P eT = ("(fL],... ,an)gT,

where ("(ay, ... ,a,) denotes the subsemigroup of 5 consisting of all products
of elements ay, ..., a, € 5 with each a; appearing at least once [132]. Recall
that P(A) denotes the intersection of all principal congruences defined by
elements of a nonempty family A of subsets of a semigroup.

Theorem 2.2. (M. Yamada [132]) A relation 6 on a semigroup S is a semi-
lattice congruence if and only if 8 = P(A), for some nonempty family A of
P-subsemigroups of .

As a consequence of the previous theorem it can be deduced the following
theorem:
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Theorem 2.3. (M. Yamada [132]) T7ee smallcat soilaliice congruenee on
a semigroup S equals the congruence P(X), where X' denotes the sel of all
P-subsemigroups of S.

Another approach to the greatest decom positions of semigroups, through
completely prime ideals and filters, has been developed by M. Petrich [69],
1964. He proved the following four theorems:

Theorem 2.4. (M. Petrich [69]) A relation 8 on a semigroup S is a semi-
lattice congruence if and only if § = O(A), for some nonempty family A of
completely prime ideals of 5.

Theorem 2.5. (M. Petrich [69]) The smallest semilattice congruence on a
semigroup S equals the congruence O(.Y), where X' denotes the set of all
completely prime ideals of 5.

Theorem 2.6. (M. Petrich [69]) A relation 8 on « semigroup S is a semi-
lattice congruence if and only if 8 = O(A), for some nonempty family A of
filters of 5.

Theorem 2.7. (M. Petrich [69]) The smallest semilattice congruence on a
semigroup S equals the congruence O(.\), where X' denotes the set of all

filters of 5.

Another proofs of the previous two theorems have been given by the
authors in [21].

The role of completely prime ideals and filters in semilattice decompo-
sitions of semigroups can be explained by Theorem L.7. Namely, the two-
clement chain Y is, up to an isomorphism, the unique subdirectly irreducible
semilattice, and any homomorphism of a semigroup S onto Y2 determines a
partition of S whose one component is a completely prime ideal and other
s a filter of §. This approach has been used by M. Petrich in [72], 1973.

M. Petrich [69], 1964, also gave a method to construct the principal filters
of a semigroup:

Theorem 2.8. (M. Petrich [69]) The principal filter of a semigroup S gen-
erated by an clement a € 5 can be computed using the following formulas:

Ni(a) = (a), Nutila)= ({x € S| Nu(a)n J(x) 4 @}), n€ Zt
N(a)= U Ny (a).

nez+
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The third approach to the greatest decom

one of T. Tamura from [117], 1972 Using th
group .5 defined by:

positions of semigroups is the
e division relation | on a semi-

alb & bhe Stas?,

T. Tamura defined the relation — on § by:

¢t —b & (ImeZ*ya|b",

and he gave an efficient characterization of the smallest semilattice congru-
ence on a semigroup:

Theorem 2.9. (T. Tamura [117]) The smallest semilattice congruence on a
semagroup S equals the natural equivalence of the relation —

Another proof of this theorem has been given by T. Tamura [118], 1973,
Three different characterizations of the smallest semilattice congruence

on a semigroup have been also obtained by M. S. Putcha in [79], 1973, and
[80], 1975.

Theorem 2.10. (M. S. Putcha [80]) The smallest semilattice congruence on
a semigroup S equals the cquivalence on § generated by the relation xy =

ryr = yx, for all x,y € 81,
Another proof of this theorem has been given by T. Tamura [119], 1973.

Theorem 2.11. (M. S. Putcha [80]) The smallest semilattice congruence on
a semigroup S equals the relation —*, where — =— N — -1,

Theorem 2.12. (M.S. Putcha [79]) The smallest semilattice congruence on
a semigroup S equals the rvelation 6 on S defined by: a b if and only if for
all k,y € SV there exists a semilattice indecomposable subsemigroup T' of §
such that vay,xby € T.

An approach to semilattice decompositions of semigroups, (l.if’forvut to
the one of M. Petrich and T. Tamura, has been developed by M. Ciri¢ and
5. Bogdanovié in [21]. As we will see later, the results obtained there ex-
plained the connections between the above presented results of M. Petrich
and T. Tamura. M. Ciri¢ and §. Bogdanovié¢ [21] started from the com-
pletely semiprime ideals and they first gave the following representations of
the principal radicals of a semigroup:
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Theorem 2.13. (M. Ciri¢ and S. Bogdanovi¢ [21]) The principal radical of a
semigroup S generated by an clement a € S has the following representation:

Sa)={zeS|a — x}.

Theorem 2.14. (M. Ciri¢ and S. Bogdanovié [21]) The principal radical of
a semigroup S generated by an element a € S can be computed using the
following formulas:

1(a) = V8aS, Ba(a) = V/SZ.()5, n € 2%, S(a)= |J Sa(a).

neZ+

Recall that Zd®*(§) denotes the lattice of all completely semiprime ideals
of a semigroup S. By means of Theorems 2.13 and 2.9, the authors in [21] ob-
tained the following characterization of the smallest semilattice congruence
on a semigroup:

Theorem 2.15. (M. Ciri¢ and S. Bogdanovi¢ [21]) The smallest semilattice
congruence on a semigroup S cquals the equivalence O(Zd=(9)).

A characterization of the greatest semilattice homomorphic image of a
semigroup has been given by M. Ciri¢ and S. Bogdanovi¢ [21], through prin-
cipal radicals of a semigroup:

Theorem 2.16. (M. Ciri¢ and S. Bogdanovi¢ [21]) If a,b is any pair of
elements of a semigroup 5, then

Y (a) N (b) = S(ab),

i.e. the set g of all principal radicals of S, partially ordered by inclusion,
is a semilattice and it is the greatest semilattice homomorphic image of 5.

As a consequence of the previous theorem, the authors in [21] proved the
next theorem without use of the Zorn’s lemma arguments:

The next theorem, which gives a connection between Theorems 2.15 and
2.5, has been proved by M. Petrich [72], 1973. Another proof of this theorem,
without use of the Zorn’s lemina arguments, has heen given by the authors
in [21], as a consequence of Theorem 2.16.

Theorem 2.17. (M. Petrich [72]) Any completely semiprime ideal of a semi-
group S is the intersection of some family of completely prime ideals of 5.

In other words, Theorem 2.17 says that the set of completely prime ideals
of a semigroup § is meet-dense in Zd*(S).

Another consequence of Theorem 2.16 is the next theorem which gives a
representation of the principal filters hetter than the one from Theorem 2.8.
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Theorem 2.18. (M. Ciri¢ and S. Bogdanovi¢ [21]) The principal filter of a
semigroup S generated by an element a has the following representation:

N(e)={ze§|a —™ a}.

The components of the greatest semilattice decomposition of a semigroup
are characterized by the next theorem, which is clearly a consequence of
Theorems 2.13., 2.18 and 2.9.

Theorem 2.19. (M. Petrich [72]) The component of the greatest semilattice
decomposition of a semigroup S containing an element a of § is precisely
the subsemigroup L(a) 0 N(a).

The most significant theorem of the theory of semilattice decompositions
of semigroup is probably the theorem of T. Tamura [1 10], 1956, on atomicity
of semilattice decompositions of semigroups, given here as Theorem 2.20.
Note that another proofs of this theorem have been given by T. Tamura in
[112], 1964, by means of the concept of "contents”, in [117], 1972, using the
relation —in [L18], 1973, and [120], 1975, by M. Petrich [69], 1964,
by means of completely prime ideals, and by M. S. Putcha [79], 1973, using
the relation defined in Theorem 2.12 and the subsemigroups of the form
Clay, ... a,).

Theorem 2.20. (T. Tamura [110]) Any component of the greatest semilat-
tice decomposition of a semigroup is a semilattice indecomposable semigroup.

Semilattice indecomposable semigroups have been described by T. Tamu-
ra [L17] and M. Petrich [69], [72], by the following

Theorem 2.21. The following conditions on a semigroup S are equivalent:

(1) 5 is semilattice indecomposable;

(ii) (Va,be S)a —>= b;
(1) 5 has no proper completely semiprime ideals;
(1v) S has no proper completely prime ideals.

The equivalence of conditions (i) and (ii) has been established by T.
Tamura [117], 1972, (i) < (iii) has been proved by M. Petrich (69], 1964,
and (i) < (iv) by M. Petrich [72], 1973.

Note that in the class of semilattice indecomposable semigroup the mostly
mvestigated were Archimedean semigroups, defined by: a« — b, for all
clements a and b. Semilattices of such semigroups have been studied by many
authors. The most important results from this area have been obtained by
M. 5. Putcha [79], 1973, T. Tamura [116], 1972, M. Ciri¢ and S. Bogdanovi¢
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[19], 1993, and [21], S. Bogdanovic and M. Cirié [6], 1992, and [14], and L.
N. Shevrin [99] and [100], 1994. For more informations about semilattices of
Archimedean semigroups the reader is also referred to the survey paper of
S. Bogdanovié and M. Ciri¢ [8], 1993, or their book [7], 1993.

2.2. The lattice of semilattice decompositions

T. Tamura [120] got an idea of studying semilattice decompositions of
a semigroup through quasi-orders on this semigroup having some suitable
properties. We say that a quasi-order £ on a semigroup S is positive if a £ ab
and b€ab, for all a,b € S. These quasi-orders have been introduced by B.
M. Schein [88]. 1965, and they were since studied from different points of
view by T. Tamura, M. S. Putcha, 5. Bogdanovi¢, M. Ciri¢ and other. By
a half-congruence T. Tamura in [120], 1975, called a compatible quasi-order
on a semigroup, and by a lower-potent quasi-order he called a quasi-order
£ on a semigroup satisfying the condition: a® € a, for all elements a. Using
these notions, T. Tamura proved the following theorem:

Theorem 2.22. (T. Tamura [120]) The lattice of semilattice congruences
on a semigroup S is isomorphic to the lattice of positive lower-potent half-
congruences on .

As the authors noted in [23], the notion "lower-potent half-congruence” in
Theorem 2.22 can be replaced by "quasi-order satisfying the cm-property”.
Recall from Section 1.1 that a relation £ on a semigroup .5 satisfies the
common multiple property, briefly the em-property, if for all a,b,e € 5, afc
and b€ implies ab € . Using this notion, introduced by T. Tamura in [116],
1972, Theorem 2.22 can be written as follows:

Theorem 2.23. The latticc of semilatlice congrucnces on a semigroup S
is isomorphic to the lattice of positive quasi-orders on S satisfying the cm-
property.

Using the Tamura’s approach, the authors in [23] connected semilattice
decompositions of a semigroup with some sublattices of the lattice Zd®*(5)
of completely simple ideals of a semigroup. Recall from Section 1.1 that a
subset K of a lattice L is meei-dense in L if any element of L can be written
as the meet of some family of elements of K. We will say that a sublattice
L of Zd**(5) satisfies the completely prime ideal property, shortly the epi-
property, if the set of completely prime ideals from L is meet-dense in L,
i.e. if any element of L can be written as the intersection of some family of
completely prime ideals from L. As we seen before, this property was proved
for Zd**(S) by Theorem 2.17. M. Ciri¢ and S. Bogdanovi¢ [23] showed
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that the cpi-property plays a crucial role in semilattice decompositions of
semigroups:

Theorem 2.24. (M. Ciri¢ and S. Bogdanovi¢ [23]) The lattice of semilattice
decompositions of a semigroup S is isomorphic to the lattice of complete
[-sublattices of Td®S(.S) satisfying the cpi-property.

Another connection of semilattice decompositions of a semigroup, with
some sublattices of the lattice of subsets of a semigroup, has been established
by S. Bogdanovié¢ and M. Cirié¢ in [12]. There they proved the following
theorem:

Theorem 2.25. (S. Bogdanovi¢ and M. Ciri¢ [12]) The lattice of semilattice
decompositions of a semigroup § is isomorphic to the lattice of complete
[-sublattices of P(S') whose principal elements are filters of §.

For more informations about the role of quasi-orders in semilattice decom-
positions of semigroups we refer to another survey paper of S. Bogdanovié¢
and M. Ciri¢ [16].

3. Band decompositions

Although the existence of the greatest band decomposition has been es-
tablished by T. Tamura and N. Kimura in [123], 1955, by the theorem which
is given here as Theorem 1.3, there are no sufficiently efficient characteri-
zations of the greatest band decomposition of a semigroup in the general
case. But, there are very nice descriptions of greatest decompositions for
some special types of band decompositions, as semilattice decompositions,
treated in the previous chapter, matrix decompositions, where left zero band
and right zero band decompositions are included, and normal band decom-
positions, where left normal band and right normal band decompositions
are included. This chapter is devoted to the results concerning the greatest
matrix decomposition of a semigroup, which will be presented in Section 3.1,
and to the results concerning the greatest normal band decomposition of a
semigroup, which will be presented in Section 3.2.

Matrix decompositions, as well as left zero band and right zero band
decompositions, have appeared first in studying of completely simple semi-
groups. Namely, by the famous Rees-Sushkevich theorem on matrix rep-
resentations of ‘completely simple semigroups, any completely simple semi-
group can be decomposed into a matrix of groups, and also into a left zero
band of right groups and into a right zero band of left groups. First general
results concerning these decompositions have been obtained by P. Dubreil
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[41], 1951, who constructed the smallest left zero band congruence on a semi-
group, and by G. Thierrin [125], 1956, who characterized the components of
the greatest left zero band decomposition of a semigroup. The general the-
ory of matrix decompositions of semigroups has been founded by M. Petrich
in [70], 1996. These results will be a topic of Section 3.1.

Normal bands have been introduced by M. Yamada and N. Kimura [133],
1958, whereas left normal bands have been first defined and studied by V. V.
Vagner [129], 1962, and B. M. Schein [36], 1963, and [87], 1965. The general
results concerning left normal band, right normal band and normal band
decompositions of a semigroup, presented in Section 3.2, have been obtained
by M. Petrich in [71], 1966.

For additional informations about matrix and normal band decomposi-
tions the reader is referred to the book of M. Petrich [73], 1977.

3.1. Matrix decompositions

As we noted before, the first general result concerning left zero band
decompositions of a semigroup is the one of P. Dubreil [41], 1951. Define the

. / r : ;
relations = and = on a semigroup 5 by:

amb & LanLb)#0, a~b & R(@)NRb) £, (a,bES). -

. r . . . .
The relation = has been introduced in above mentioned paper of P. Dubreil,

where he proved the following theorem:

Theorem 3.1. (P. Dubreil [41]) The smallest left zero band congruence on

. ‘ 1 o
a semigroup S equals the relation = >,

The components of the greatest left zero band decomposition of a semi-
group have been first described by G. Thierrin [128], 1956, by the following
theorem:

Theorem 3.2. (G. Thierrin [128]) The components of the greatest left zero
band decomposition of a semigroup S are the minimal left consistent right
ideals.

Other characterizations of the greatest left zero band decomposition of a
semigroup have been obtained by M. Petrich in [70], 1966. In this paper he
proved the following two theorems:

Theorem 3.3. (M. Petrich [70]) A relation 8 on a scmigroup S is a left zero

band congruence on S if and only if § = ©(A), for some nonempty family
A of left consistent right ideals of .
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Theorem 3.4. The smallest left zero band congruence on a senigroup S
equals the relation @(RId'*(9)).

T'he key theorem in theory of matrix decompositions of semigroups is the
next theorem, proved by M. Petrich in [70], 1966, which gives a connec-
tion between left zero band, right zero band and matrix congruences on a
semigroup:

Theorem 3.5. (M. Petrich [70]) The intersection of a left zero band con-
gruence and a right zero band congruence on a se migroup S is a matriz
congrucnece on S,

Conversely, any matriz congruence on S can be written uniquely as the
mtersection of a left zero band congruence and a right zero band congruence
on .

Combining Theorems 3,1 and 3.5, the following characterization of the
smallest matrix congruence on a semigroup follows:

Theorem 3.6. (M. Petrich [70]) The smallest matriz CONGruence on o seni-

y . L r o
group § cquals the relation =~ >N =~ ©.

Combining Theorem 3.3 and its dual, M. Petrich [70] obtained the follow-
ing two theorems:

Theorem 3.7. (M. Petrich [70]) A relation 8 on a semigroup S is a matriz
congruence on S if and only if @ = O(A), for some nonempty subset A of
X, where X = LTd™(S) U RId<(S).

Theorem 3.8. (M. Petrich [70]) The smallest matriz congruence on a semi-
group S equals the relation ©O(.V), where X' = LId*™(5)U RId'(S). -

M. Petrich in [70] also gave an alternative approach to matrix decom-
positions of semigroups, through so-called quasi-consistent subsemigroups.
Namely, by a quasi-consistent subset of a semigroup S he defined a com-
pletely semiprime subset A of § satisfying the condition: for all z,y,z € §,
zyz € Aif and only if zy € A. Quasi-consistent subsemigroups of a semi-
group M. Petrich connected with left consistent right ideals and right con-
sistent left ideals by the following theorem:

Theorem 3.9. (M. Petrich [70]) The intersection of a left consistent right
ideal and a right consistent left ideal of a semigroup S is a quasi-consistent
subsemigroup of S.

Conversely, any quasi-consistent subsemigroup of § can be written uniqu-
cly as the intersection of a left consistent right ideal and a right consistent
left ideal. '
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Using the previous theorem, matrix congruences on a semigroup can be
characterized through quasi-consistent subsemigroups of a semigroup as fol-
lows:

Theorem 3.10. (M. Petrich [70]) A relation 6 on a semigroup S is a matriz
congruence on S if and only if 8§ = O(A), for some nonempty family A of
the set of quasi-consistent subsemigroups of 5.

Theorem 3.11. (M. Petrich [70]) The smallest matriz congruence on a
semigroup S equals the relation O(X'), where X' denotes the set of all quasi-
consistent subsemigroups of 5.

Using Theorem 3.5 and the fact that the join of any left zero band congru-
ence and any right zero band congruence on a semigroup equals the universal
congruence on this semigroup, the lattice of matrix congruences on a selni-
group can be characterized in the following way:

Theorem 3.12. The lattice of matriz congruences on a semigroup S 1is
isomorphic to the direct product of the lattice of left zero band congruences
and the lattice of right zero band congruences on S.

A characterization of the lattice of right zero band decompositions of a
semigroup can be obtained through left consistent right ideals of a semi-
group, modifying the results of S. Bogdanovi¢ and M. Ciri¢ [13] to semi-
groups without zero. For related results concerning semigroups with zero we
refer to Section 4.2.

Until the end of this section we will consider only semigroups without zero,
because the definition of the lattice RZd(S) is different for semigroups with
and without zero, and the set of right consistent left ideals of a semigroup
with zero is one-element.

Theorem 3.13. The posel RIdA¥(S) of left consistent right ideals of a
semigroup S # S without zero is a complete atomic Boolean algebra and

RIA*(S) = B(RIA(S)).

Theorem 3.14. The lattice of lgft zero band decompositions of a semi-
group S # S° is isomorphic to the lattice of complete Boolean subalgebras of
RId*®(S).

The role of left zero band decompositions of a semigroup in direct decom-

positions of the lattice of right ideals of this semigroup is demonstrated by
the following two theorems:

Theorem 3.15. The lattice RTd(S) of right ideals of a semigroup 5 4 50
is a direct product of lattices Lo, a €Y, if and only if S is a left zero band
of semigroups Sqo, @ €Y, and Ly = RId(Sy), for any a €Y.
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Theorem 3.16. If 5., a € Y, are components of the greatest left zero
band decomposition of a semigroup S # S, then the lattice RTd(S) can be
decomposed into a direct product of its intervals [0,5,], a € Y, which are
directly indecomposable.

3.2. Normal band decompositions

In the introduction of Chapter 3 we said that the general theory of nor-
mal band decompositions of semigroups, including here left normal band and
right normal band decompositions, has been founded by M. Petrich in [71],
1966. The methods used in this paper has been obtained by combination of
the methods which M. Petrich used in [69], in studying of semilattice decom-
positions, and the ones used in [70], in studying of matrix decompositions.

M. Petrich in [71] defined a left (right) normal complez of a semigroup
5 as a nonempty subset A of S which is a left (right) consistent right (left)
ideal of the smallest filter N(A) of S containing A, and he defined a normal
complex of 5 as a subset A of § which is a quasi-consistent subsemigroup
of N(A). He also introduced the following relations on a semigroup : for a
nonempty subset A of 5, ® 4 is the equivalence relation on 5 whose classes
are nonempty sets among the sets A, N(A)— A and S — N(A), and for a
nonempty family A of subsets of 5, ®(A) is the equivalence relation on §
defined by:

®(A) = [ ®a.
' AEA
Theorem 3.17. (M. Petrich [71]) A relation 8 on a semigroup S is a left
- normal band congruence on S if and only if = ®(A), for some nonempty
Jamily A of left normal complezes of S.

Theorem 3.18. (M. Petrich [71]) The smallest left normal band congruence
on a semigroup S equals the relation 8 = ®(V'), where X' denotes the set of
all left normal complezes of S.

In order to study normal band congruences on a semigroup through left
normal band congruences and right normal band congruences, M. Petrich
proved the following theorem, similar to Theorem 3.5 concerning matrix
congruences:

Theorem 3.19. (M. Petrich [71]) The intersection of a left normal band
congruence and a right normal band congruence on a semigroup S is a nor-
mal band congruence on S.

Conversely, any normal band congruence on S can be written as the in-
tersection of the smallest left normal band congruence and the smallest right
normal band congruence on S containing it.
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Using this theorem, M. Petrich [71] characterized normal band congru-
ences and the smallest normal band congruence on a semigroup by the fol-
lowing two theorems:

Theorem 3.20. (M. Petrich [71]) A rclation 8 on a scmigroup S is a normal
band congruence on S if and only if # = ®(A), for some noncmply subset
A of X', where X' denotes the set of all left normal complexes and all right
normal complexes of S.

Theorem 3.21. (M. Petrich [71]) The smallest normal band congruence on
a semigroup S equals the relation § = ®(V), where V' denoles the sct of all
left normal complexes and all vight normal complezes of 5.

In Theorem 3.20, .\’ cannot be replaced by the set of all normal complexes,
but this can be done in Theorem 3.21:

Theorem 3.22. (M. Petrich [71]) The smallest normal band congruence on
a semigroup S equals the velation § = ®(V), where X' denotes the set of all
normal complexes of §.

4. Decompositions of semigroups with zero

The first known type of decompositions of semigroups with zero have heen
orthogonal decompositions. called also 0-direct unions, which have been first
defined and studied by E. 5. Lyapin in [60] and [61]. 1950, and S. Schwarz
[90]. 1951. After that, they have been studied by many authors, mainly
as orthogonal sums of completely 0-simple semigroups. Gieneral study of or-
thogonal decompositions of semigroups with zero hias done by S. Bogdanovi¢
and M. Cirié¢ in [10], 1995, and [13]. The results obtained there will be a
topic of Section 4.1. Among these results we emphasize Theorem 4.8 on
atomicity of orthogonal decompositions.

Decompositions of a semigroup with zero into a left. right and matrix sum
of semigroups have been first defined and studied by S. Bogdanovi¢ and M.
(iri¢ in [13]. The results concerning these decompositions obtained in this
paper will be presented in Section 4.2. We also give Theorem 4.21 which es-
tablish connections between the decompositions into a left, right and matrix
sum, and orthogonal decompositions inside the lattice of 0-decompositions
of a semigroup with zero. Note also that some decompositions of semigroups
with zero, similar to decomposition into a matrix sum, have been considered
by 0. Steinfeld in [105].

Quasi-semilattice decompositions of a semigroup with zero, which are
carried by partially ordered sets, appeared recently in the paper of M. Ciri¢
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and 5. Bogdanovi¢ [26]. These decompositions will be considered in Section
4.3.

Note finally that decompositions into a left, right and matrix sum of
semigronps, and quasi-semilattice decompositions of semigroups with zero
are generalizations (or analogues) of left zero band, right zero band. matrix
and semilattice decompositions, respectively, as showed by Theorems 4.22
and 128, Orthogonal sums have no such analogue.

4.1. Orthogonal decompositions

[ studying of orthogonal decompositions of semigroups with zero, S. Bog-
danovi¢ and M. Ciri¢ [10], 1995, has started from the notion of 0-consistent
ideal. They defined a 0-consistent ideal of a semigroup § = §9 as an ideal
A having the property that A® is a consistent subset of 5. They denoted by
LZd°(5) the set of all 0-consistent ideals of a semigroup 5 = 5% and they
proved the following theorem:

Theorem 4.1. (S. Bogdanovi¢ and M. Cirié [10]) The posct Zd(8) of all
O-consistent idcals of a semigroup S = 89 is a complete atomic Boolean
algebra and Td"(S) = B(Td(S)).

Furthermore, any complete atomic Boolean algebra is isomorphic to the
Boolean algebra of 0-consistent ideals of some semigroup with zero.

Using this theorem, S. Bogdanovi¢ and M. Cirié¢ [10] obtained the follow-
ing theorem concerning orthogonal decompositions:

Theorem 4.2. (S. Bogdanovi¢ and M. Ciri¢ [10]) Any semigroup S = 89
has a greatest orthogonal decomposition and its summands are all the atoms
i, TdO=(.8).

Another approach to orthogonal decompositions, through certain equiva-
lence relations, has done by S. Bogdanovié and M. ('iri¢ in [13]. A O-restricted
and 0-consistent equivalence relation on a semigroup § = 59 will be called
an orthogonal cquivalence. This name will be justified by the role of these
equivalences in orthogonal decompositions, which will be demonstrated in
Theorem 4.4. Namely, the authors proved in [13] the following two theorems:

Theorem 4.3. (S. Bogdanovi¢ and M. Ciri¢ [13]) The poset of orthogonal
cquivalences on a semigroup S = 8% is a complete sublattice of the lattice
E(S).

Theorem 4.4. (S. Bogdanovi¢ and M. Ciri¢ [13]) The poset of orthogonal
decompositions of a semigroup § = S© is a complete lattice and it is dually
womaorphic to the lattice of orthogonal equivalences on S.



Theory of greatest decompositions of semigroups (A survey) 409

Note that the sumands in an orthogonal decomposition of a semigroup
§ = 59 are precisely the nonzero classes of the related orthogonal equiva-
lence, with the zero adjoined, and vice versa.

By Theorems 4.3 and 4.4 we deduce the following:

Theorem 4.5. The lattice of orthogonal decompositions of a semigroup S =
59 s a complete sublattice of the partition lattice of S.

The lattice of orthogonal decompositions has been also characterized by
some Boolean subalgebras of 7d"¢(\5) as follows:

Theorem 4.6. (S. Bogdanovi¢ and M. Cirié [13]) The lattice of orthogonal
decompositions of a semigroup § = 89 is isomorphic to the lattice of complete
Boolean subalgebras of Td¢(5).

Note that any complete Boolean subalgebra of Td"(S) is atomic and its
atoms are precisely the summands in the related orthogonal decomposition
of 5, and vice versa.

To describe the smallest orthogonal equivalence on a semigroup with zero,
S. Bogdanovi¢ and M. Ciri¢ in [10] defined the relation ~ on a semigroup
5 = 59 by

a~b & Ja)nJ(b)#0, forabeS®, 0~ 0,

and they proved the following:

Theorem 4.7. (S. Bogdanovi¢ and M. Ciri¢ [10]) The smallest orthogonal

cquivalence on a semigroup S = 5O cquals the relation ~™.

Note also that the lattice of orthogonal equivalences on 5 is the principal
dual ideal of the lattice £°(8) of O-restricted equivalence relations on 9,
generated by ~. Since £°(5) is the principal ideal of £(9), generated by
the equivalence relation \ on 5 determined by the partition {5°,0}, then
the lattice of orthogonal equivalences on S is precisely the (closed) interval
[~ x] of £(5).

The main theorem of the theory of orthogonal decompositions of semi-
groups with zero is the theorem on atomicity of orthogonal decompositions,
proved by S. Bogdanovi¢ and M. Cirié in [10], 1995. This is the following
theorem:

Theorem 4.8. (S. Bogdanovié and M. Ciri¢ [10]) The summands of the great-
est orthogonal decomposition of a semigroup S = 89 are orthogonally inde-

composable semigroups.
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S. Bogdanovié and M. Cirié¢ in [13] also observed that orthogonal decom-
positions of a semigroup § = 59 are closely connected with direct decompo-
sitions of the lattice of ideals of 5. This connection is demonstrated by the
following three theorems:

Theorem 4.9. The lattice Td(8) of ideals of a semigroup S = 80 is a
direct product of lattices Ly, o € Y, if and only if S is an orthogonal sum
of scmigroups S, o € Y, and L, = Td(5,), for any v € Y,

Theorem 4.10. (S. Bogdanovié and M. Ciri¢ [13]) The lattice Td(S) of ideals
of a scmigroup § = 89 is direetly indecomposable if and only if S is orthog-
onally indceomposable.

Theorem 4.11. (S. Bogdanovi¢ and M. Ciri¢ [13]) If Soy a € Y, are sum-
mands of the greatest orthogonal decomposition of « semigroup § = S°,
then the lattice Zd(S) can be decomposed into a direct product of lattices
Ld(S, ), o € Y, which are divectly indecomposable.

4.2. Decompositions into a left, right and matrix sum

[ studying of decompositions of semigroups with zero into a left sum of
semigroups. S. Bogdanovié and M. Cirié in [13] used the methods similar
to the ones used in studying of orthogonal decompositions. At first. they
considered equivalence relations on a semigroup with zero which we call here
left sum equivalences. Namely, a 0-restricted, left 0-consistent equivalence
relation on a semigroup S = S9 will be called an left sum cquivalence. Right
sum: cquivalences on S are defined dually. These names will be explained
by the role of these equivalences in decompositions of § into a left sum and
a right sum of semigroups, respectively, as demonstrated in Theorem 4.13.
But, first we give the following theorem:

Theorem 4.12. (S. Bogdanovi¢ and M. Ciri¢ [13]) The posct of left sum
cquivalences on a semigroup S = S is a complete sublattice of the lattice
E08),

Theorem 4.13. (S. Bogdanovi¢ and M. Ciri¢ [13]) The poset of decompo-
sitions of a semigroup S = 5 into a left sum of semigroups is a complete
lattice and it is dually isomorphic to the lattice of left sum equivalences on
5

As in orthogonal decompositions, the sumands in a decomposition of a
semigroup S = 5% into a left sum are the nonzero classes of the related left
sum equivalence, with the zero adjoined, and vice versa.

By Theorems 4.12 and 4.13 we obtain the following:
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Theorem 4.14. The latticc of decompositions of a semigroup § = S° into
a left sum of semigroups is a compleic sublattice of the partition lattice of 5.

To characterize the smallest left sum equivalence on a semigroup, the
. r . .
authors used the relation ~ defined by G. Lallement and M. Petrich [59],
1966, on a semigroup 5 = 5" hy:

a~b & Rla)n Kb)#0, fora,be S*. 0~ 0.

The relation ~ on § is defined dually. Using the above relation, S. Bog-
danovié¢ and M. Cirié [13] characterized the smallest left sum equivalence as
follows:

Theorem 4.15. (S. Bogdanovi¢ and M. Ciri¢ [13]) The smallest left sum

X

. . ’ i . r
cquivalence on a semigroup 5 = 8§ equals the relation ~

As in orthogonal equivalences. the set of left sum equivalences on a semi-
group § = §° equals the interval [~ ™ \] of the lattice £(5).

Instead of 0-consistent ideals, used in studying of orthogonal decomposi-
tions, in studying of decompositions of a semigroup with zero into a left sum
of semigroups, S. Bogdanovic¢ and M. Ciri¢ used in [13] the notion of the left
0-consistent right ideal. Namely. they defined a right ideal A of a semigroup
S5 = 59 to be left 0-consistent if A® is a left consistent subset of 5. The set
of all left 0-consistent ideals of a semigroup they denoted by RZd"¢(5) and
they proved the following two theorems:

Theorem 4.16. (S. Bogdanovi¢ and M. Ciri¢ [13]) The poset RId™4(S) of
all left O-consistent vight idcals of a semigroup § = S° is a complete atomic
Boolean algebra and RId¢(5) = B(RId(S)).

Theorem 4.17. (5. Bogdanovi¢ and M. Ciri¢ [13]) The lattice of decompo-
sitions of a semigroup S = 5" into a left sum of semigroup is isomorphic to
the lattice of complete Boolean subalgebras of RIdOC(.S).

As in orthogonal decompositions, the summands in a decomposition of
a semigroup 5 = SY into a left sum of semigroups are precisely the atoms
in the related complete Boollean subalgebra of RZd'%¢(.5), which is atomic,
and vice versa.

As S. Bogdanovié and M. Ciri¢ in [13] observed. the previous two theorems
can be applied to direct decompositions of the lattice of right ideals of a
semigroup with zero:

Theorem 4.18. The lattice RIdA(S) of vight ideals of a semigroup S = 5°

is a direct product of lattices Lo, o € Y, if and only if S is a left sum of
semigroups Sy, « € Y, and L, = RIA(S,), Jor any o € Y.
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Theorem 4.19. (S. Bogdanovi¢ and M. Ciri¢ [13]) If S., « € ¥V, are the
summands of the greatest decomposition of a semigroup § = §° into a left
sum of semigroups, then the lattice LId(S) can be decomposed into a direct
product of its intervals [0, 5,), « € Y, which are directly indecomposable.

Note that the interval [0,5,] in Theorem 4.19 cannot be replaced by the
lattice RZd(S,,), in contrast to Theorem 4.11.

[ order to characterize decompositions of a semigroup with zero into
a matrix sum of semigroups. S. Bogdanovié¢ and M. Ciri¢ consider in [13]
equivalence relations that are the intersection of a left sum equivalence and
a right sum equivalence, which will be called here matriz sum cquivalences,
and they proved the following theorems:

Theorem 4.20. (S. Bogdanovi¢ and M. Ciri¢ [13]) The poset of matriz sum

cquivalenees on a semigroup S = 8% is a complete latlice,

Theorem 4.21. (S. Bogdanovi¢ and M..Ciri¢ [13]) The posct of decomposi-
tions of a scmigroup § = 8% into a matrviz sum of semigroups is a complete
lattice and it is dually isomorphic to the lattice of matviz sum cquivalences
on 5.

Note that the sumands in a decomposition of a semigroup S = 5% into
a malrix sum are exactly the nonzero classes of the related matrix sum
equivalence, with the zero adjoined, and vice versa.

Note also that the previous two theorems give a connection between the
decompositions into a left sum, decompositions into a right sum and de-
compositions into a matrix sum. The authors in [13] established a similar
connection between the decompositions into a left sum, decompositions into
a right sum and orthogonal decompositions. This connection is given by the
following theorem:

Theorem 4.22. (S. Bogdanovi¢ and M. Ciri¢ [13]) The join in £(8) of any
left sum equivalence and any vight sum equivalence on a semigroup S = 8§
is an orthogonal equivalenee on §.

S - o ‘o .
Lspecially, the join of ~ > and ~ > equals ~™
The above quoted results can be summarized by the following theorem:

Theorem 4.23. [n the partition lattice of a semigroup S = 8§°, the meet
of any decomposition of S into a left sum and any decomposition of S into
@ right sum of semigroups is an orthogonal decomposition, and its join is o
decomposition into a matriz sum of semigroups,

Especially, the mect of the greatest decomposition of S into a left sum and
the greatest decomposition of S into a right sum of semigroups is the greatest
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orthogonal decomposition of S, and its join is the greatest decomposition of
S into a matriz sum of sciigroups.

Note finally that decompositions of a semigroup with zero into a left sum,
right sum and matrix sum of semigroups can be treated as generalizations
of left zero band, right zero band and matrix decompositions, respectively.
This follows by the following theorem:

Theorem 4.24. The lattice of left zevo band (right zero band, malriz) de-
compositions of a semigroup S is isomorphic to the lattice of decompositions
into a left (right, matriz) swn of scmigroups of a senigroup T arising from
S by adjoining the zero.

4.3. Quasi-semilattice decompositions

Studying of quasi-semilattice decompositions of semigroups with zero be-
gan in the paper of M. Ciri¢ and S. Bogdanovié [20], 1994. In this paper,
some notions which appears in studying of semilattice decompositions of
semigroups the authors modified for semigroups with zero. Namely, the au-
thors defined a 0-positive quasi-order on a semigroup S = 5% as a quasi-order
€ having the property that for a.b € 5, ab # 0 implies a £ ab and b€ ab, they
defined a quasi-order £ on 5 to satisfy the 0-cm-property if for all a,b,c € 5,
ab # 0, af ¢ and & e implies ab&c, and they proved the following theorem:

Theorem 4.25. (M. Ciri¢ and S. Bogdanovi¢ [20]) The poset of left O-restrie-
ted positive quasi-orders on a semigroup S = 59 satisfying the O-cm-property
and the poset of O-restricted 0-positive quasi-orders on S satisfying the 0-cm-
property are complete lattices and they are isomorphic.

Further. M. Ciri¢ and S. Bogdanovié defined in [20] a completely 0-seni-
prime ideal of a semigroup 5 = 59 as an ideal A of 5 having the property
that A® is a completely semiprime subset of 5. Similarly. A is said to be
completely O-prime if A® is a completely prime subset. The set of all com-
pletely 0-semiprime ideals of 5. denoted by Zd<®5(S) is clearly a complete
lattice. A sublattice L of 7d95(§) is defined to satisfy the c-0-pi-property
if the set of completely 0-prime ideals from L is meet-dense in L, i.e. il any
clement of L can be written as the intersection of some family of completely
0-prime ideals from L. Using these notions, M. ('iri¢ and S. Bogdanovié¢ [20]
proved the following theorem:

Theorem 4.26. (M. Ciri¢ and S. Bogdanovi¢ [20]) For a semigroup 5 = 99,
the posct of complete 0, 1-sublattices of the lattice Td°%3(5) satisfying the c-
O-pi-property is a complelc lattice and it is dually isomorphic to the lattice
of O-restricted 0-positive quasi-orders on 8 satisfying the 0-cm-property.
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The investigation of quasi-semilattice decompositions of semigroups with
zero M. Ciri¢ and Bogdanovi¢ continued in [26], where they proved the fol-
lowing three theorems that characterize the lattice of quasi-semilattice de-
compositions of a semigroup with zero:

Theorem 4.27. (M. Ciri¢ and §. Bogdanovi¢ [20]) The posct of quasi-semi-
lattice decompositions of a semigroup § = §° is q complete lattice and it is
dually isomorphic to the lattice of O-restricted O-positive guasi-orders on §
satisfying the O-cm-property.

Theorem 4.28. (M. Ciri¢ and S. Bogdanovi¢ [26]) The lattice of quasi-semi-
lattice decompositions of a semigroup S = 8§ it s dually wsomorphic to
the latticc of left O-vestricted positive quasi-orders on S satisfying the 0-cm-
property,

Theorem 4.29. (M. Ciri¢ and S. Bogdanovi¢ [26]) The lattice of quasi-semi-
lattice decompositions of a semiagroup S = SO is isomorphic to the lattice of
complete 0. 1-sublattices of Td“%(S) satisfying the c-O-pi-property.

We finish this chapter by the theorem which give a connection hetween
quasi-semilattice decompositions of semigroups with zero and semilattice
decompositions. Note that this connection is incorporated in the name of
quasi-semilattice decompositions.

Theorem 4.30. (M. Ciri¢ and S. Bogdanovi¢ [26]) The lattice of semilal-
tice decompositions of a semigroup § is isomorphic to the lattice of quasi-
semilattice decompositions of the semigroup T arising from 8 by adjoining
the zero.

5. Yet other decompositions

[n this paper we talk about yet other types of decompositions having the
greatest one,

The topic of Section 5.1 will he U-decompositions, introduced and first
studied by L. N. Shevrin [93], 1961, as a powerful tool in studying of lat-
tices of subsemigroups of a semigronp. We quote the theorem considering
the properties of the poset of U-decompositions. the theorem on atomic-

5.3, and also three theorems on

ity of these decompositions. as Theorem
application of U-decompositions to direct decompositions of the lattice of
subsemigroups of a semigroup. For informations on other applications of
U-decompositions, and related U-band decompositions, in studying of the

lattice of subsemigroups of a semigroup the reader is referred to the books
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of L. N. Shevrin and A. Ya. Ovsyanikov [102], 1990, and [103], 1991, their
survey article [101], 1983, and the book of M. Petrich [73], 1977. Note that
L. N. Shevrin used the names “strong decomposition” and "strong band
decomposition” for these decompositions. But, because the notion "strong
band of semigroups™ has been also used for other concepts of the semigroup
theory. here we use the names used also in the book of M. Petrich [73], 1977.

Ordinal decompositions. treated in Section 5.2, came out from studying
of linearly ordered groups in the papers of F. Klein-Barmen [55] and [56],
1942, and [57], 1948, and A. M. Kaufman [51] and [52], 1949. They have
heen introduced by A. M. Kaufman [51], 1949, where they have been called
successively-annihilating sums (bands) of semigroups. General study of these
decompositions has done by E. 5. Lyapin in his book [62], 1960, where he
showed that the poset of ordinal decompositions of any semigroup is a com-
plete sublattice of the partition lattice of this semigroup, and proved the
theorem on atomicity of ordinal decompositions, given here as Theorem 5.8.
Here we also present the results of M. Ciri¢ and S. Bogdanovié¢ that character-
ize lattices of ordinal decompositions of semigroups. For more applications
on applications of ordinal decompositions see the books: E. 5. Lyapin [62],
1960, M. Petrich [73], 1977, and 1. N. Shevrin and A. Ya. Ovsyanikov [102],
1990, and [103], 1991.

[-matrix decompositions have arisen in the paper of G. Lallement and M.
Petrich [59], 1966, as a generalization of matrix decompositions. The very
nice results obtained in this paper will be presented in Section 5.3. For some
applications of such decompositions see the papers of J. Fountain and M.
Petrich [43], 1986, and [44]. 1989,

The last section of this chapter is devoted to semilattice-matrix decom-
positions of semigroups. These decompositions have heen first studied by A.
H. Clifford [29], 1941, who proved that unions of groups (completely regular
semigroups) are semilattices of completely simple semigroups, which are in
fact semilattices of matrices of groups. After that. semilattice-matrix de-
compositions have been studied by many authors. for example by P. Chu,
Y. Guo and X. Ren [28]. 1989, L. N. Shevrin [100], 1994, S. Bogdanovi¢ and
M. Ciri¢ [11]. 1995, and [15]. and other. By the well-known theorem of D.
MecLean [64], 1954, and A. H. Clifford [30]. 1954. on the decomposition of
a band into a semilattice of rectangular bands, semilattice-matrix decom-
positions can be treated as generalizations of band decompositions, and in
many papers these decompositions have been used to make preparations
for band decompositions. Here we present some general properties of these
decompositions discovered by M. Ciri¢ and S. Bogdanovié in [27].
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5.1. |J-decompositions

We said in the introduction of this paper that general study of U-decom-
positions has heen done by L. N. Shevrin in [96], 1965. There hie has obtained
the result that can be formulated in the following way:

Theorem 5.1. (L. N. Shevrin [96]) The poset of U-decompositions of a scimi-
group 5 s a prineipal ideal of the partition lattice of S,

In the same paper L. N. Shevrin considered also U-hand decompositions
and some their special types. Namely, for any subvariety V of the variety
of bands a U-V-band decomposition of a semigroup 8 is defined as a de-
composition which is both U-decomposition and V-band decomposition. By
Theorems 5.1 and 1.6 the following theorem follows:

Theorem 5.2. For any subvaricty V of the variety of bands. the posct of U-
V-band decompositions of a semigroup S is a principal ideal of the partition
lattice of 8.

L. N. Shevrin [96] also proved the theorem on atomicity of U-decomposi-
tions. which is given helow.

Theorem 5.3. (L. N. Shevrin [96]) The components of the greatest U-de-
cotposition of a scmigroup S are U-indecomposable .

Among the numerous applications of U-decompositions in studying of
lattices of subsemigroups of a semigroup we emphasize the application to
decompositions of these lattices into a direct product, which is demonstrated
by the following three theorems:

Theorem 5.4. (L. N. Shevrin [94]) The lattice Sub (8) of subsemigroups of
a semigroup”S is a dircet product of lattices L, o € Y, if and only if S has
a U-decomposition into subsemigroups S, « € Y, and Sub (S,) = L,. for
any o €Y,

Theorem 5.5. (L. N. Shevrin [96]) The lattice Sub (8) of subscmigroups of a
semigroup S us direetly indecomposable if and only if S is U-indecomposable.

Theorem 5.6. (L. N. Shevrin [96]) I/ 5,, v € Y, arc the components of the
greatest U-decomposition of a semigroup S, then the lattice Sub (8) of sub-
semigroups of S can be decomposed into a diveet product of lattices Sub (S.,,),
o €Yo which arve diveetly indecomposable.,

We advise the reader to compare the previous three theorems with Theo-
rems 9L 11, concerning direct decompositions of the lattice of ideals of a
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semigroup with zero, Theorems 4.18 and 4.19, concerning direct decompo-
sitions of the lattice of right ideals of a semigroup with zero, and Theorems
3.15 and 3.16. concerning direct decompositions of the lattice of right ideals
of a semigroup without zero.

5.2. Ordinal decompositions

General study of ordinal decompositions has been made by E. S. Lyapin
in his book [62] from 1960. There he showed the following property of the
poset of ordinal decompositions:

Theorem 5.7. (E. S. Lyapin [62]) The poset of ordinal decompositions of a
semigroup S is a complete sublattice of the partition lattice of 5.

E. S. Lyapin [62] also proved the very important theorem on atowmicity
of ordinal decompositions. whose another proof has heen given by M. Ciri¢
and S. Bogdanovié in [25].

Theorem 5.8. (E. S. Lyapin [62]) The components of the greatest ordinal
decomposition of a scmigroup S are ordinally indccomposable.

To characterize the lattice of ordinal decompositions, M. Ciri¢ and S.
Bogdanovié [25] have used the next theorem, obtained in their earlier paper
(23], which gives a characterization of the poset of chain decompositions of
a semigronp through completely prime ideals.

Theorem 5.9. (M. Ciri¢ and S. Bogdanovi¢ [23]) The poset of chain decom-
positions of a semigroup S is isomorphic to the posct of complete 1-sublattices
of Tde(S) consisting of completely prime ideals of 5.

Note that another characterization of the poset of chain decompositions
can be given by filters as follows:

Theorem 5.10. (S. Bogdanovi¢ and M. Ciri¢ [12]) The posct of chain de-
compositions of a semigroup 8 is isomorphic to the poset of complete 0,1-
sublattices of P(8) consisting of fillers of 5.

M. Ciri¢ and S. Bogdanovié [25] defined a strongly prime ideal of a semi-
group S as an ideal P of 5 having the property that for all z,y € S,
xy = p € P implies that either & = por y = pora,y € P, and they
proved that the set of all strongly prime ideals of a semigroup 5. denoted
by Zd5P(S5), is a complete l-sublattice of the lattice Zd(S) of ideals of 5.
Moreover. they gave the following characterization of the lattice of ordinal

decompositions of a semigroup:
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Theorem 5.11. (M. Ciri¢ and S. Bogdanovi¢ [25]) The lattice of ordinal
decompositions of «a semigroup S is isomorphic to the lattice of complete

[-sublattices of Td¥P(5).
5.3. I-matrix decompositions

[0 is a congruence on a semigroup § and /0 is a rectangular 0-band.,
then 8 is said to be an [-matriz congruence, where [ is an ideal of .5 which
is the #-class that is the zero of 5/8. The corresponding decomposition is
an [-matriz decomposition of 8. and [ is called a matriz ideal of §. G.
Lallement and M. Petrich (59] defined a quasi-completely prime ideal of a
semigroup S as an ideal I satisfying the condition that for all a,b,e¢ € 5,
abe € [ implies that either ab € [ or be € [, and they proved the following
theorem:

Theorem 5.12. (G. Lallement and M. Petrich [89]) Anideal I of a semigroup
S i a matriz ideal if and ondy if it is prime and quasi-completely prime.

To characterize I-matrix congruences, (i, Lallement and M. Petrich [59]
imtroduced the following notions: if A is a nonempty subset of a semigroup
S, then an equivalence relation # on S is called a left A-equivalence if the
following conditions hold:

(1) Ais a f-class of 5

(2) 615 a left congruence:

(3) forall v,y € S, a2y ¢ Aimplies vy 6 2.

A right A-cquivalenee is defined dually. Necessary and sufficient conditions
for existence of a left A-equivalence and a right A-equivalence on a semigroup
have heen determined by the following theorem:

Theorem 5.13. (G. Lallement and M. Petrich [59]) Let A be a subset of a
semagroup S. Then there exists a left A-cquivalence and a vight A-cquivalence
if and only if A is a quasi-completely prime ideal of .

The following theorem has been also proved in [59):

Theorem™5.14. (G. Lallement and M. Petrich [89]) Let I be a matriz ideal
of a semigroup S. Then the poset of left -equivalenees on S s a complele
sublattice of the lattice of lefi congruences on S,

G Lallement and M. Petrich [59] characterized the smallest [-equivalence
i three ways. At first, they defined a left f-complex of a semigroup § as a
nouempty subset A of 5 having the following properties:

(1) AnT=@:
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(2) Ais aleft consistent subset of 5

(3) AU is a right ideal of 5.
A right [-compler has been defined dually. For an element a € 5 — l. let
(!(a) they denoted the smallest left /-complex of & containing a, i.e. the
intersection of all left [-complexes of 5 containing a. called the principal left
[-compler of § generated by a, and they proved the following

Theorem 5.15. (G. Lallement and M. Petrich [59]) Let [ be a matriz ideal
of a semigroup S. Then the relation 8 on S defined by:

abb < abel or Cla) = C(D) (a,b e 5),
equals the smallest left T-cquivalence on §.

The second and third characterization of the smallest left [-equivalence
on a semigroup have been given by the following two theorems:

Theorem 5.16. (G. Lallement and M. Petrich [59]) Let [ be a matriz ideal
of a semigroup S. Then the relation 8 on S defined by

afb & (VeeS)(axael & baxbel) (a,b e N),
equals the smallest [-matvie congruence on 5.

Theorem 5.17. (G. Lallement and M. Petrich [59]) Let [ be a matriz ideal
of a semigroup S. Then the smallest left -equivalenee equals the principal
left congruence Ly.

Following the ideas used by M. Petrich in studying of matrix decomposi-
tions. (. Lallement and M. Petrich proved in [59] the next theorem, similar
to Theorem 3.5.

Theorem 5.18. (G. Lallement and M. Petrich [59]) Let [ be a matriz ideal
of a semigroup §. Then the interscetion of a left I-cquivalence and a right
I -equivalence is @ T-matriz congruence on 5.

Clonversely, any [-matriz congrucnce on S can be written uniquely as the
intersection of a left I-equivalence and a right I-equivalence on 5.

Using the previous theorem and Theorem 5.14. (. Lallement and M.
Petrich proved also in [59] the following two theorems:

Theorem 5.19. (G. Lallement and M. Petrich [59]) Lt I be a matrix ideal of
a semigroup S. Then the posct of T-matriz congrucnees on S is a complete
sublattice of Con (\9).

Theorem 5.20. (G. Lallement and M. Petrich [59]) Let I be a matriz ideal

of a semigroup S and lct 6 denote the smallest [-matriz congruence on .
)

Then® = RyN Ly = Rg = Li, where K ={z €5 |a* ¢ I}
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5.4. Semilattice-matrix decompositions

Let a semigroup S be a semilattice ¥ of semigroups S,, a € Y, and for
any a € Y let S, be aleft zero band (right zero band, matrix) of semigroups
Sioiel,. M. Ciri¢ and 8. Bogdanovié [27] called the partition {5 | i € I},
where [ = U”E,- I, a semilattice-left (semilattice-right, semilattice-matriz)
decomposition of 5, or briefly s-I- (s-1-, s-m=)decomposition. 1f § denotes
the equivalence relation determined by this partition and if p denotes the
semilattice congruence determined by the partition {5, | v € Y}, then #
is called a semilattice-left (semilattice-right, semilattice-matrix) cquivalence
on S5 carvicd by p. or briefly s-l- (s-r-, s=m-)equivalence, and p is called a
carrier of 8. Clearly, an equivalence relation # on a semigroup S contained
i a semilattice-congruence p on 8 is a s-l-(5-1-, s-m-) equivalence carried by
o it and only if for all a,b € S, apb implies abfa (a ob implies ab8b, apb
implies aba # «).

M. Cirié and . Bogdanovi¢ studied in [27] some general properties of s-1-.
s=1- and s-m-equivalences and their carriers. and they proved the next four
theorems. Note that Theorem 5.24 is similar to Theorems 3.5. 3.19 and 5.18.

Theorem 5.21. (M. Ciri¢ and S. Bogdanovic [27]) The set of s-I-(s-1-, s-m-)
cquivalences on a sendgroup S carvied by a semilattice congruence p on S is
a closed interval of £(8).

Theorem 5.22. (M. Ciri¢ and S. Bogdanovié [27]) The set of carviers of a
sel-( ==, s=m=)equivalence 8 on a senigroup S is a conver subsct, with the
smallest clement, of the lattice of semilattice congrucnees on S,

Theorem 5.23. (M. Ciri¢ and §S. Bogdanovi¢ [27]) The posct of all a s-1-( s-1-,

s=m=)equivalences on a semigroup S is a complete lattice.

Theorem 5.24. (M. Ciri¢ and S. Bogdanovi¢ [27]) The intersection of a
s-l-cquivalence and a s-r-cquivalence on «a semigroup S is a s-m-cquivalence,

Conversely, any s-m-equivalence can be written. uniquely up to a carrier,
as the intersection of a s-l-equivalenee and a s-r-cquivalence.
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WORD PROBLEMS FOR VARIETIES OF ALGEBRAS
(A SURVEY)

Sinisa Crvenkovié

1. Introduction

In the algebraic sense, a word is a formal expression, or finite string of
symbols, built up in a more or less transparent way from certain primi-
tive symbals, called constants, and certain other symbols which represent
algebraic operations. A word problem is the problem of deciding in a given
context, whether or not two eiven words represent the same element of the
algebra. For such a probleinn to have a definite sense, certain assumptions
must be made. Typically. one is concerned with some specific variety of al-
gebras, such as groups or associative rings or the like. Word problems range
all the way from triviality to algorithmic unsolvability.

The origin of the field of word problems may be traced back to R. Dedekind
who in 1900 described the free modular lattice on three generators. At
the begining of the century Axel Thue had formulated the word problem
for finitely presented semigroups —or, as one now says, Thue systems—and
solved various special cases of the general problem.

But negative results, unsolvability results in algebra, were impossible be-
fore the notion of an algorithimically unsolvable problem was formulated. In
19351936 A. Church and. independently, A. M. Turing gave equivalent pre-
cise mathematical definitions of the intuitive notion of algorithm. “Tur-
ing machines™ and "Chureli’s Thesis”, led to Church’s negative solution of
the decision problem for first—order arithmetic: and, subsequently, to in-
dependent negative solutions by Church and Turing to Hilbert’s Entschei-
dungsproblem for pure predicate logic. It seems that all unsolvability results
in mathematics are, in final analysis, a translation of such classical results
into a new setting.

In 1947 E. Post and A. A. Markov, independently, showed the word prob-
lem for semigroups unsolvable, constructing the bridge from logic to algebra.
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This result was the first unsolvability result outside the foundations of math-
ematics.

Perhaps the most celebrated result is the unsolvability of the word problem
for groups obtained by P. S. Novikov in 1952,

This paper surveys, unifies, and extends a number of results on the word
problems in the context of universal algebra. From our point of view, the the-
ory of free spectra is also a part of algebra dealing with words. A model-
theoretic argument is used to prove unsolvability of many word problems for
varieties of universal algebras. Most of the presented results are small contri-
butions of the authors to the great topic and appeard, or will be published,
elswhere, ‘

2. Definitions

In the sequel, £ denotes a first order language which contains the symbol
of identity ~. and has no relation symbols. If £, t, are terms of the language
L, then t; = t, is called an cquation or an identity. The set of all identities
of Lis denoted by Eq(L). If 8 is a set of formulas of L, then by Mod (6) we
denote the class of all algebras A such that A = 6.

If (7 is a set of new contant symbols (£ N ¢ = @), then by £; we denote
LU G Usually, a symbol from ¢/ and its interpretation is denoted by the
same letter, Let A be an algebra and ¢ C A. Then by A« we denote the
algebra (A, 2 ),eq. If R is a set of identities in L with no variables. then
(7, R) is called a presentation in £,;.

Definition 2.1. Let 0 be a set of identities of L,V = Mod(0) and (¢, R)
a presentation in L. For an algebra A in £ we say that il is presented by
(GO R) in YV if the following hold:
(1) A s genevated by ¢4
(ii) Ax F0U R;
(iii) For any identity ¢ in L, with no variables. we have 0 UR E ¢
provided A |= ¢,

[l an algebra A is presented by (¢!, R) in V. then we put A = Py (G, R).
For an algebra B we say that it is finitely presented in V if there are finite
sets (Fand [t such that B is presented by ((7. ) in V. Note that the algebra
presented by (¢, 1) in V is unique up to isomorphism.

Example 2.2. Let ((/R) be a presentation in Lo, Let 8 be a set of identi-
ties of L oand V the varicty defined by the set 8 U R. Then the Sfree algebra
Fu(0) of the variety V on the cmply scl of free generators is an algebra
presented by (GLR) in'V = Mod(8).
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Lot 8 be a set of identities of £,V = Maod(8). and A the algebra finitely
presented by (G, R)in V. The word problem for A = Py(GLR) 'V asks if
there is an algorithm to determine, for any identity ¢ in L with no variables,
whther or not A |= e. If such an algorithm exists, the word problem is
solvable (decidable ); otherwise it is unsolvable (undecidable).

The following two options occur in the literature for what is meant by the
solvability of the word problem for a variety V:

(1) there is an algorithm which, given a finite presentation Py(G. R)
solves the word problem for Py (G, R)Yin V;

(2) for each finite presentation Py (i, R). there is an algorithm which
solves the word problem for Py (¢, R) in V.

We say that V has uniformly solvable word problem if (1) holds.

Varieties with uniformly solvable word problem include commutative se-
migroups and abelian groups. any finitely based locally finite or residually
finite variety, and the variety of all algebras of a given finite type (see [21]).

Most of the examples which appear in the literature, of varieties with
unsolvable word problem. provide a finite presentation for which the word
problem is unsolvable. These include semigroups, groups and modular lat-
lices.

In this paper we will apply the method of embedding to obtain several
unsolvabilities of word problem.

3. Varieties with solvable but uniformly unsolvable word
problems

Probably the first one who recognized the difference between the uniform
solvability and solvability of the word problem was A. 1. Mal'cev [27]. Ac-
cording to Benjamin Wells. A. Tarski was also interested in the existence of
varieties with solvable but not uniformly solvable word problem.

An algebra A is locally finite it every finitely generated subalgebra is finite.
A varicty V is lically finite it every memhber of Vis locally finite.

Let us recall some facts [rom mathematical logic. For an arbitrary first—
order theory A, we correlate with each symbol v of A a positive integer ['(«),
called the Gédel number of . Thus, I' is a one—one function from the set
of symbols of K, expressions of A and finite sequences of expressions of K,
into the set of positive integers.

A set of Gadel numbers is recursive if its characteristic function is a re-
cursive function. Denote by T(xy, ®a, ... _,,) the set of all n—ary terms in
the langnage of a variety V. According to Church’s Thesis, an algebra A
finitely presented by (i, /2) in V has a solvable word problem if the set

{F(P ~ f1)|1’afl € ‘T(;l"lw'r‘.h--' 1;1::1)1
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?)‘A(.r}h.q'_’* e -ﬂu) — qA(.rlls‘q:Is'- . egn)n 1 E N1 f];.!jg, R ,g” 6 (J’}

is recursive.

Proposition 3.1. Let B be o finite algebra of a finite type. If (crien, .. ep)
€ B" is a fired n-tuple, then the set

' 3 3 3
S={l(p=~ 0| p.ge Tl s, v ,;::,,),;)"((',.r‘;,,... 1 Cu ) 2P (6, Cay oo v}
IS recursioe,

Proof. The proof is straightforward. 0

Proposition 3.2. [f « Jinitely presented algebra A is Jinite, then the word
problem for A is solvable,

Proof. Follows from the previous prposition [

Let ¢, ¢, eu, ..., e, (where n e N) be identities of £. Then the formula
A AL A, — e is called a quasi—identity. The set of all quasi-identitieg
of L is denoted by Q(L). If A is a class of algebras in a language £ then
QM) = {ge QLK = q). The problem of quasi-identitics for a class A
asks if the set Q(A)) is recursive (i.e. the set of Godel numbers of the elements
of Q(K))). If so. the problem of quasi-identities is solvable; otherwise it is
unsolvable,

By the Church’s Thesis. the problem of solvability (decidability) of the
problem of quasi-identities for a class A is equivalent to the problem of the
existence of an algorithm which, for every quasi-identity ¢ € (L), decides
whether or not A’ |= ¢.

Remark 3.3. Lel 6 be a set of formulas of £ and A = Mod(8). Then we
hawve

QA)={qe QL) 0F q}.

Therefore, the problem of quasi-identities for such a class A is solvable iff
there exists an algorithm which, for any ¢ € ¢(K), decides whether or not
0 q.

The following proposition is a part of the folklore.

Proposition 3.4. Let 8 be a set of identitics in some language £ and let
K = Mod(0). Then K has uniformly solvable word problem iff the problem
of quasi-identitics for K is solvable.

Similarly to the case of quasi-identities, if A is a class of algebras in a
language £, then Fq(K) = {c € Eq(L)|A | e} The set Eg(k) is called
the equational theory of the class A'. We say that equational theory of a class
K is decidable (solvable) if the set Fg(K) is recursive (i.e. the set of Godel
numbers of the elements of Eq(K) is recursive),
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Proposition 3.5. Let V be a locally finite varicty of a finite type. Then V
has a solvable word problem.

Proof. Follows from Proposition 3.2. 0

As we all know, the set of all recursive [unctions is countable. For a
class of algebras A, let H, 1) denote the characteristic function of the set
{(T(p=q)|p=ge Eq(K)}. If Vi and Vy are two different varieties, then
Hgy vy # Hegv,)- Therefore we have

Proposition 3.6. If a class of varictics of the same lype has uncountably
many elements, then there is a varicty from that class having undecidable
equational theory.

Corollary 3.7. Lct V be a locally finite varicty of a finite type. If V has un-
countably many subvarictics. then V has solvable but not uniformly solvable
word problem.

Proof. I'rom Proposition 3.6. it follows that V has undecidable equational
theory. This, of course, implies that the problem of Q(V) is unsolvable which
is equivalent with the uniforimn unsolvability of the word problem for V. D

The student of A. Tarski. Benjamin Wells, in his Ph. D. thesis at the
University of Berkeley (1982). presented the first examples of varieties having
solvable but wniformly unsolvable word problem. This result appeared first
in [36]. later as Theorem 11.17. in [37]. and recently as Theorem 1.7. in
[38]. The last result is almost identical to onr result even though they were
obtained independently. Our construction is primarily based on an example
appearing in the paper of Mekler, Nelson and Shelah [30].

Theorem 3.8 ([L1]). I a language of the type (2.0, 1, 1) there cxists a va-
riety having solvable word problem and undecidable equational theory. This
varicty is axiomatized by the following identitics

r-0=0 J0) = 0 hh(x)) = hix)

P20 fUfe) = fla)  hle)y =0

Ly Ry flr-y)=0 flh{xz)) = hx)
ve(y-z)=(r-y) 2 h(0) =0

WECfCe ) flas) - flag)) = 0,
where @(k) is a primitive rccursive function such that X = {@(k)|k € N} is
a recursively enumerable nonrecursive sel,

In [12] we proved the following
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Theorem 3.9 ([12]). In a language of the type (2,0,1,1) there ewists an
mfinite (isomorphic to (w, <)) chain of vavicties with solvable word problems
and undecidable cquational theories.

The varieties from Theorem 3.9. are constructed in the following way. Let
the variety defined in Theorem 3.8. be denoted by V. Denote by ,, n > 2
the identity in {-, f,h,0} of the form:

i % Flanpfilms. oof(,)s i) 22 0,

The variety whose set of definitional identities is same as the one for V|,
with the exception of f(a-y) = 0 being replaced by (¢,), will be denoted by
V.. Obviously,

Vlgv'ig"'(_:vug'-'

[t is easy to prove that all the inclusions are strict.
Definition 3.10. Ternary discriminator on a scl A is the function

e, for.=18
i, olhorwise,

tala.b.c)= {

Definition 3.11. A varicty V in a language £ is said to be a discriminator
varicty if there cxists a term in Loinducing ternary diseriminator on the
universe of cvery subdiveetly irvedueible algebra in V.

Following the idea of Ross Willard we were able to prove

Theorem 3.12 ([12]). There caists a recursively axiomatized diseriminator
varicly in a finitary language with solvable word problem and undecidable
cquational theory.

Discriminator varieties are only a part of wider class of so called EDPC’
varieties, arising in the algebraization of different logical systems.

Corollary 3.13. There caists a vecursively based EDPC' variety in a fini-
tary language having solvable word problem and undecidable equational the-
ory.

This result rules out the possibility of obtaining the converse of the fol-
lowing result. due to Blok and Pigozzi:

Theorem 3.14 ([2]). Let V be an EDPC variety having decidable equa-
tional theory. Then V' has solvable word problem.
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B. Wells proved that there is a variety of a finite type, with a base of
not more than 350000 axioms, having solvable but not uniformly solvable
word problem. Mekler. Nelson and Shelah in [30] also presented a finitely
based variety of a finite type having the same properties. However these
examples seem to be too complicated and are not from any well known class
of algebras. Also their varicties have decidable equational theories. The
following problem is still open

Problem 3.15. Is there a finitely based variety with solvable word problem
having undecidable equational theory?

4. Embedding

There are several undecidability proofs in the literature that use the result
of Post and Markov on the existence of a finitely presented semigroup with
unsolvable word problem. For example, in [26] we proved ansolvability of
the word problem for the variety of relation algebras. We used the following
result of Kogalovskii [25].

Proposition 4.1. If A and K arc classes of alychras such that
(1) Ky € Kg,
(ii) every algebra from K. is cmbeddable into an algebra from Ky,

then the theories of quasi-identitics of Ky and Ky are the same.

Proof. See [27] aud [25]. O

Corollary 4.2. Let Ky and K be varicties of algebras such that Ky C Ky
and cvcry algebra from Ko is embeddable into an algebra from K. Then, Ky
and K., have equivalent wiiform word problems.

Proof. Direct consequence of Proposition 4.1. 0

So, if Ky is the class of all semigroups, and A is some class of algebras,
such that some reduct A, ol A satisfies conditions of Corollary 4.2., then A
has uniformly unsolvable word problem. But. this is not enough to obtain
the result about the solvability of the word problem for K. The following
theorem gives something more than Corollary 4.2.

Theorem 4.3 ([5]). Let V be a variety with an associative operation * in
its language. If every scmigroup can be embedded into the +—reduct of some
algebra from V., then' V. has unsolvable word problem.
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The proof of Theorem 4.3. has been given in [5] and [26]. If we analyze
this proof, we see that condition that V has to have semigroups in it is not
necessary. The same goes for any variety with unsolvable word problem.

Theorem 4.3, enables us to obtain several undecidability resnlts in a uni-
form way. For example, this theorem gives results on unsolvability of the
word problem for some varieties which are obtained from the algebras of
binary relations.

Foran algebra A = (A, F) we say that it is an algebra of binary relations if
A = P(5%). for some set 5, and F is a set of operations on hinary relations.

Let Ry be a class of algebras of binary relations such that F contains the
operation of relative multiplication of binary relations "o”. Then the variety
S P(Rg) has unsolvable word problem. For example, we have unsolvability
of the word problem for the following:

(a) variety generated by the class of all semigroups of binary relations
(F={o})
(b) variety generated by the class of all involutive semigroups of binary
relations (F = {o,7'});
(¢) (representable) relation algebras of Tarski (/' =
(d) relation algebras of Jonsson (F = {N,o,~ ' A});
(¢) Kleene algebras (F = {U,0,0.=', A"}, (F = {U,B,0,"", A}) and
[ F =4U,0,0, 4,1} )
() no special name (e.g. "= {U.o}, I' = {N,0}).
Theorem 4.3, can easily be applied in the following cases, thus having un-
solvable word problems
(g) rings (F7 = {+,-.0,1}),
(h) iuvolutive semigroups (F = {.,~1}).

{u.No,~ 1 ALY

(i) semirings (F' = {+, - }).

(J) variety generated by Baer *—semigroups (F = A
(k) variety generated by the class of all siniple semigroups,
(1) variety generated by the class of all bisimple semigroups,
(m) imverse semigroups (F = {-,~'}),

(n) rings with involution (F = {4, -,*}).

5. Partial algebras

Let A be aset and B C A", Then f: B — Ais called a partial operation
on A of type n. A partial algebra A is a pair (A, F). where A is a nonempty
set and I7is a collection of partial operations on A. In our considerations F
will always be a finite set,

Let A be a partial algebra. Denote by A(A) the positive diagram of A:

A(A) = { flwr gy oo yuy) = | f € F, 4, ds,... .0, € A,
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flay. as, ... .a,)is defined and equals @ in A.}

Of course, if A is finite, then A(A) is finite.

Suppose that A and B are partial algebras. ¢ : A — B is called a
homomorphism of A into B if, whenever f(a,.as,... ,a,) is defined, then so
is flela)),plas), ... .ela,)) and

O f(@rs ... ) = f(plar)oplaz), ... ,@lan).

A homorphism is an isomorphism if ¢ is a bijection.

Let A = (A, F') be a partial algebra and let § # B C A. Then

(i) B is a subalgebra of A if it is closed under all the operations in A
ie. if by, bo. ... b, € B and f(by.by,....0,) is defined in A, then
flby bay ... b,) € B.

(ii) Bis a relative subalgcbra of Aif for all f € F and all by, by, ..., by,
he B, we have:

f(by,bay ... .0, )is defined and equals biff f(by, b, . .., by)
is defined in A and f(b.bs, ... .b,) =0 in A.

It is not dificult to give an example of a partial algebra A and aset B C A,
such that B is the carrier of some relative subalebra of A but not the carrier
of any subalgebra in A.

Let A be a class of algebras, A nonempty set, and F a set of partial
operations on A. Then A = (A, F) is a partial K-algebra if (A, F) is a
relative subalgebra of an algebra B in K. For example. if £ is the class of all
lattices, then, a partial algebra A is a partial L-algebra (or simply, partial
lattice) if A is a relative subalgebra (or relative sublattice) of some lattices.

Definition 5.1. Let A be a class of algebras and let A be a partial alge-
bra. The algebra FK (A) is called the algebra freely generated by the partial
algebra A over K if the following conditions arc satisfied:
(i) 'K (A) is generated by A" and there caists an isomorphism x : A" —
A between A and A, where A" is a relative subalgebra of F'K (A);
(it) If ¢ is @ homorphism of A into (" € K., then there caists a homor-
phism ¢ of FFK (A) into (' such that o is an cxlension of xe.

It is not difficult to prove that £ (LA) is unique up to isomorphism and,
if Ais an algebra from A, then FK (A) = A. Also, it is well known that if A
is an equational class, then F'K (A) exists if A is (isomorphic to) a relative
subalgebra of an algebra B in A, In other words, in the case of equational
classes A, /I (A) exists if A is a partial K-algebra.

For example, if A is a partial lattice, then F'L (A) always exists. It is well
known (see [22]) these lattices (of the form FL(A)) are the lattices that can
be described by finitely many generators and finitely many relations.
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Proposition 5.2 ([6]). Let K= Mod(S) be a varvicly, A a partial algebra.
Then,
FR(A) = Pyo(AA(A)).

Proof. See [G]. O

Let A- e a class of algebras in a language £. and let A be a partial A-
algebra. The problem of partial K -algebra A asks if there is an algorithm to
determine for any identity p = ¢ € Eq (L U (/). with no variables. whether
ornot FR(A) = p=q.

The problem of partial K -algebras asks il there is an uniform algorithin
which for any finite partial K-algebra A, and any identity p = ¢ € Eq (LU,
with no variables, decides whether or not F'A (A) = p=g.

Proposition 5.3 ([6]). Let K be a varicty in a language L. If K has a
uniformly solvable word problem, then the problem of partial K algebras is
solvable too,

Proof. Let A be a finite partial K-algebra, p = ¢ € Fg(L U(), with no
variables,  Then. because of Proposition 5.2., FK (A) = Pr(A,A(A)), so
that

FRAEpq iff PoAAA) | p~ g
Hence, directly from the algorithm for the solution of the word problem, we
obtain an algorithm for the solution of the problem of partial algebras. O

Denote by [t] the length of a term ¢ (i.e. the number of symbols in 7). We
can formulate two rules:

() IFa set of identities [ contains an identity of the form p = ¢, where
pand g are terms |p| = |¢| = 1, then we take out this identity from
the set [ and in all the other identities we replace the symbol ¢ by p.
() I a set of identities [ contains some identities of the form ¢ a i,
baty. where £ # 1., then from [ we take out the identity ¢ & t, and
i all the other identities we replace the symbol 1, by #,.
Let 1 be a set of identities. Denote by «([) the set of identities which
appear from I il the rule («) is applied, and by A(1)if the rule (/) is applied.
We say that the set of identities [ is a—pure if a(1) = 1. Analogously, [
is Gopurc if (1) = 1. Obviously, if [ is a finite set of identities, then there
are natural numbers, m, n such that the set o” (/) is o pure and set 4™([)
is -pure.

Definition 5.4 ([6]). Let K be a vaviety in a language £ and (A, R) some
Jinite presentation in K. Then,

(L) If tds a term in L, then by Sub(t) we denote the set of all the
subterms of t.
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(2) Sub(R) = Sub()|(Is)(s=te RVImse R)}.

(3) A' ={C,|a € Sub(R)}UA.

(4) Define the mapping o = Sub(R) — Eq(LU A") in the following way:
(i) If |t| = L. then p(t) is t = Oy

(i) Ift = flti. ta, ... . t,), where fis an n-ary Junetion symbol and
tiotoy oo by are terms, then (1) ist = f(Cy, Ciyyonr oLl ) &
(o

(5) Define ﬁ).r sel R as
R = o[Sub(R)U{C, = C,||pl=1and p=q€ R}U

W F(C 0 Oy v e 1 C )2 Oyl p= St 80s e oo i) and p = q € R},
where @[Sub(R)] = {o(t)|t € Sub(R)}.

Note that if £ € Sub(R) and |[f| = 1, then # € A or tis a contant in £ and
the set R’ is a set of identities. in the language £ U A, with no variables.

Let A = (A, R) be a finite presentation in a variety K. Let n be a finite
natural number such that o’ (') is o pure and m be a natural number such
that 4™ (™ (R")) is f—pure. Then let 7 = A (R')) and A* be the set of
all these symbols from A’ U const (£) which appear in the identities of R*.

Theorem 5.5 ([6]). Let A = (A F) be a finile presentation in a variely
K = Mod(Z). in a language £, and lct A= be a K ~partial algebra. Then, if
the problem of the partial algcbra A™ in K is solvable, the word problem for
A=(A.R) mn K is solvable, oo,

Proof. See [6]. O

6. Free spectra

Lot V be a variety of type F. The cardinality of the free algebra over
n generators (n > 0) in V is denoted by f,(V). The sequence of cardinal
numbers

f(v) - <fn.(v)>ngn = (!Ln(v)-fl(V} «fu(v)---->

is called the frec spectrum of V.

Let A = (A, F') be an algebra of type F. Every term of the type Fin n
variables @y, #q,... ., (n > 0) defines an n—ary operation ¢ : A" — Ain a
natural way. These operatious are called n-ary lerm operations. The number
of differnt n-ary term operations on A is denoted by sp(A). If A generates
the variety V then obviously [,(V) = s,(A) for all n = 0. The investigation
of free spectra of specific varieties may have started with R. Dedekind [1900].
The Dedekind problen, the determination of the free spectrum of the variety
D of distributive lattices, is still open.
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In group theory, the famous Burnside problem asks whether f,(G,.) is
always finite, where @G, is the variety of groups of exponent m. This was
solved in the negative by 5. I. Adjan and I S. Novikov. They proved that
[ is infinite, for instance, for m > 4381, The choice of 1 was improved to

me 2 115 for odd exponents m.

AV

A major problem of this field is to determine what sequences can be rep-
resented as the free speetrum of a variety.

[V is a variety and all f,(V) are finite, then V is a locally finite variety.
In what follows we are going to consider only locally finite varieties.

Is there a variety V having f,(V) = 0, filV) =10 and f,(V) = 18?7 To
answer this question we use the concept of s, —sequenee (or Pn -Sequence in
the literature). Denote

‘(‘(-A)_—" (-“H(A).M{A). ..... S ,,(.A),...).

For a nontrivial variety V, we define sy-sequence of Voas the s, sequence of
Fy(w), the free algebra on w generators in V. su(\A) is the number of unary
contant term operations and s (A) > 1.

The following two formulas connect the free spectrum and the s, —sequence
for an algebra A:

(1)
fulA) =3 ;’_).«‘.(A);
k=0 v
(('2)

sl A) = 3=1" 4 ) filA).
k

=]

Back to the variety V with fy(V) = 0, f,(V) = 10 and f+(V) = 18. By
formula (C2), we have sy = f, — 2f, + Jfo = =2, a contradiction. So a
necessary condition for the representability of a sequence as a free spectrum
of an algebra is that the corresponding s, sequence be nonnegative.

Let S be a semilattice with more than one element. Using formula (1)
we see that f,(S) = 2"~ 1. forall n > 0. Let 8 be the variety of semilattices
then

5(H) = 10,15 1y s .l,...).

Let us see some examples which explain the flavor of the field.

Proposition 6.1 ([15]). Let A be an idempotent groupoid with s3(A) < 6.
Then A is cquivalent to a semilattice, a diagonal semiagroup, a groupoid with
sl A)Y = n, or a distributive Stainer quasigroup.

Proof. See [15]. O
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Proposition 6.2. If A has two commutalive binary term opcrafions, then

(1) ss(A) =9 ([17]):
(2) s,(A) > 34 n! for all n > 3.

P‘I‘unf. See [17]. 0
The following result of J. Dudek seems especially attractive:

Proposition 6.3. Let d, b the n—th Dedekind’s number, that is, d, =
| Fp(n)|, where D is the variety of ditributive lattices.  For a variety V,
fu(V) = d,, holds, for all n > 0. iff V is equoivalent to D.

Proof. See [20]. 0O

Among other things. J. Dudek proved the following
Theorem 6.4. Let (A, +. ) be an idempotent commutative algebra of the
type (2,2) such that + and - arc distinet. Then

(i) (A, +, o) is a distributive lattice iff sa((A,+,-))=9.
(i) If (A, +-) is a biscilattice, then (A, +-) is a lattice iff so((A,+-))=
2.

There is no bisemilattice (A + ) for which so((Av+-)) =3,

(A, +, ) is a nondistributive modular lattice iff ss({A,+-)) = 19.

Proof. See [16], [17]. [

[n a joint paper with J. Dudek we investigated so called rectangular
groupoids

Definition 6.5. A groupoid (i, - ) is called rectangular (right) if it satisfies
the following laws

2
Gl =~ B0

(zy)z = x2.

Proposition 6.6 ([13]). lor any rectangular groupoid (G, - ), being not a
semigroup, we have

’Sr:((("- - )) Z ”'2~ f”'f- n _>_ B
Proof. See [13]. O
This estimation is the best posible because we have

Theorem 6.7 ([13]). Let (G ) bea rectangular groupoid.  Then the fol-
lowing conditions are cquivalent

(i) (G, +) is not a scimigroup and satisfies

w(y(zu)) = z(z(yu));
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(i) s, (G ) = 02, for all u:
(1ii) s4(((7L ) = 16,
Proof. See [13]. O

In [9] we proved the following and therefore, solving the Problem 25. in
[23].
Theorem 6.8 ([9]). Let V be o varicty of semigroups. Then (V) = n?,
Jor-all w >0, iff V is the varicty of normal bands.

Proof. See [9]. 0O

From Theorem 6.8, and by duing some technical caleulations we were able

to prove

Theorem 6.9 ([N]). Let G be « groupoid. Then S,(G) = n?, for all » >0,
iff one of the Jollowing conditions hold

(1) G gencrates the varicty of normal bands;
(i1) G is not a semigroup and satisfics
H 1 At £
(yzs) = wz
((ey)z)u = ((wz)y)u
(iii) G is nol «a semigroup and salisfies
xr = o
(xy)z =~ az
v(y(zu)) = w(z(yu)).

I’f'rmf. See [H] 0

E. Marczewski formulated in [28] the problem of representability of s, -
sequences by algebras. He and lis colleagues in Wroclaw considered many
associated problems.

[T one considers semigroups, the following problem can he formulated.
Problem 6.10. Characterize Syosequences for the class of senigroups.
We may start with the representability of sequences
S =< 0,000, 00,00,..> weEN
in the variety of semigroups.

Proposition 6.11. [f a semigroup S has s4(S) = 0 and 5,(S) = a, v > 0,
then the following hold:

(i) woa® o are different cssentially unary term operations;

(ii) S satisfics 2t = af for some 3 € 11,2y i}
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(iii) S satisfies @” =2 iff 7.0 > 3 and vy =& (mod a+1— 3);

(iv) If p.g are two terms having lenghts 1,1, such that I, # 1, and 1,1, <
a, thenp # g, Specially, all the terms ay, xy®, ..., xy*~" are different.

(v} If a semagroup S has an essentially n-ary term operation, then the
lerne g -+ - ay, tnduces essentially w—ary term operation.

Proof. Follows immediately. 0

Proposition 6.12. [f a scuigroup S satisfics
: 9 . A
By % ya, 2yt 2ty ¢ =mah (az 8 > 0)
then every nontrivial n-ary torm operation is cqual to one of the following
i - e e . .2 e » o
AT A SR H 4 N '?]"',,‘"""n—l'rn- b oy .I.[.J,:;"‘.I,n,_l.l.n.
Proof. Straightforward. [

It is easy to demonstrate that a semigroup has < 0,1,1,...,1,... > as the
s, sequence iff it is nontrivial semilattice. For the case < 0,2,2,...,2,... >
we have the following.

Proposition 6.13. A scimigroup S has the s, -sequence < 0,2,2,...,2,... >
iff S generates the variety of scmigroups determined by the identilies
et ww? wy oy, xy =ty

Proof. (—). Let S be a semigronp having < 0,2,2,...,2,... > as the
s, sequence, If S satisfies +* = x, then. because of xy* = 2%y = 2% =
x*, it follows that zy, xy”. +*y are three different essentially binary term
operations. Hence, S satisfies +* ~ #*. If S is a non commutative semigroup,
then xy, ya are only essentially binary term operations of S. The term zyz
is essentially 3-ary (Proposition 6.12.) so that from s3(S) = 2 it follows
that S satisfies xyz = zwy = yza which implies ay* = y?z = yazy. But then
r¥y? = y*e® which is a contradiction since S does not have a commutative
binary term operation, Therefore, S is a commutative semigroup. s,(S) =
2 implies that both of essentially binary term operation are commutative.
Specially, xy* = x?y. Therefore S belongs to the variety given by

¥ ot ryxoyx, and xy?x 2ty

If A is an arbitrary semigroup from the variety above, then Proposi-
tion G.13. implies that every essentially n—ary term operation is equal to
Xy Ty @y OF &y -y, x. Hence, sqo(A) < 2. Since 5,(S) = 2 for all
n > 1, it follows that S generates the variety.

(—). It is sufficient to prove that the free semigroup F in the vari-

.3

2

ety 2® =~ 2, xy ~ yx, vy’ =~ x’y over an infinite set of generators has
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< 0.2,2,...,2,... > as the s,-sequence. It was demonstrated above that
so(F) < 2 for all > 1. Obviously, both of terms @, ---2,_, z, and
ay ey induce essentially n-ary term operation in F. F satisfies x, - - -
By ity 2wy cesa, s i this identity can be deduced from the defining
identities. However, we can only apply xy = yx to x, -+ 2,_,2, and hence
obtain a permutation of it. Therefore, s,(F) = 2 for all n > 1 and it is
obvious that s,(F)=0. O

2,
)

Having done some more calculations we will be able to prove the followine.
g g

Theorem 6.14. (i) For oo > 3 the sequence < 0,0, v, e, ... > is not
representable in the class of all semigroups.

(ii) The sequence < 0,1, 1, ..., 1,... > is the s, “sequence for a senigroup

S iff S is a nontrivial scmilattice,
(i) The sequence < 0,2,2,...,2,... > is the s, -sequence for a semigroup
S if'S generates the variety determined by the identitics
¥ xoat, wyxogr. ay® = a2’y

Proof. Tollows from the considerations above.

A variety Vis log-lincar if it is locally finite and there exists a constant
¢ > 0 such that log f,(V) < en for all n > 1. Obviously V is log-linear iff
the free spectrum of V has subexponential rate of growth, i.e. iff there exist
constants a.e¢ > 0 such that f,(V) < ae” for all n > 0.

In [10] we gave a solution of the following problem of Gritzer and Kisi-
elewicz,

Problem 6.15 ([23], Problem 29). Characterize log-lincar varietics of
semagroups. s theve any algebraie property of semigroups equivalent to (or
following form) log-lincarity?
Theorem 6.16 ([10]). For any semigroup varicty V the following condi-
tions are cquivalendt:
(1) V is log-linear;
(ii) V satisfies the identities
avtl a pf
Ly Xy R Xy laia)y Lam),
Jor some o > 3> 0, m > 1, and some non-trivial permutation o of
the set {1, ...,m};
(ii1) V satisfics the identities
c*Hl g gf
R L e R R R e O B R P R B S R R D R o

Jor some o > 3 >0, m>i>1.
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Proof. See [10]. O

Corollary 6.17. Let S = (5.-) be an arbitrary finite semigroup and let n
be a natural number such that §*~' = 5". S generates a log-—linear variety
iff cabd = cbad holds for all a. b€ S and all e.d € 5.

It was proved in [31] thal every semigroup satisfying condition (iii) of
Theorem 6.16. has a finite basis for its identities, so that every log—linear
semigroup variety is finitely based. Moreover, every subvariety of a log—
linear semigroup variety is log-linear, and therefore finitely based. So we
have:

Corollary 6.18. Every log-lincar varicly of semigroups is a hereditarily
finitely based.

However, log-linearity is not necessary condition for a semigroup variety
to be finitely based, even if the variety is locally finite. The variety V defined
by the identity xyza = x* was shown in [33] to be hereditarily finitely based.
On the other hand, it is easy to check that ! < f, (V) < (n+ 1) for all
n > 1, so that V is locally finite but not log -linear.

7. Decidability

Let © be a fixed set of identities of a given similarity type. The elemen-
tary theory based on ¥ is the set of sentences of first-order logic which are
logical consequences of . An elementary, quasi-identies, equational theory
is deciable iff it is a recursive set of sentences. The connections between
these concepts are given in the diagram below. This diagram refers to any
fixed set ¥ of equations.

Decidable elementary theory

|
Decidable  theory Uniformly  solvable
of quasi-identities word problem
l l
Decidable equational theory Solvable word problem

In general, none of the inplications above can be reversed.

It is well known ([24]) that in the case of the variety of relation algebras
of Tarski every quasi-identity is equivalent to some identity. Since, in the
case of relation algebras, there is an algorithm to construct, for every quasi-
identity, the equivalent identity, the problem of quasi-identities is equivalent
to the problem of decidability of the equational theory. It was wentioned, as
a consequence of Theorem 1.3., that the word problem is unsolvable for the
class of relation algebras of Tarski. Therefore. the theory of quasi-identities
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of relation algebras is unsolvable. Hence, we obtain, as a consequence, the
well known theorem of Tarski.

Theorem 7.1. The cquational theory of the class of velation algebras is un-
decidable.

Starting from the result on unsolvability of the word problem for rings,
we can prove that some varieties of modules have undecidable equational
theory. The main reason for that is that every ring R = (R, +, -,0) can be
cousidered as an R module M = (Ry+, +,0,(fi)rer)s where f.(x) = -z for
every x € K. Then, to every equality hetween two words in R, corresponds
an identity in M, and from the unsolvability of the word problem for R we
can prove the undecidability of equational theory for M (and HSP(M)).

The same idea, with some additional ones, can be applied for the class of
dynamic algebras.

There are several algebraic structures which correspond to some notions
from computer science. Such are Kleene and dynamic algebras. We con-
sider Kleene algebras which are obtained from the so—called Kleene relation
algebras (without inversion). Kleene relation algebra, with some base U, is
an algebra having the set of all binary relations on the set U as the carrier,
and the fundamental operation are set—theoretical union, composition, and
reflexive-transitive closure. Kleene algebra is an algebra that belongs to the
variety generated by all Kleene relation algebras.

Because of the relationship between Kleene relation algebras and regular
langnages, it follows the the equational theory of Kleene alpebras is decid-
able,

We proved in [5] that the word problem for the class of all Kleene algebras
is unsolvable.

Dynamic algebras are algebraic counterparts of propositional dynamic
logic.  Roughly speaking, dynamic logic is a classical propositional logic
with some modal operators () associated with the elements # of a Kleene
algebra. We can say that the corresponding algebraic structure, dynamic
algebras, are Boolean algebras with normal unary operators which are in-
dexed by the elements of a Kleene algebra. Althongh the equational theory
of Kleene algebras is decidable, we proved in [7] that there are infinitely
many finitely generated varieties of dynamic algebras having undecidable
equational theories,

Definition 7.2. Let A = (N.V,i.%) be a Kleene algebra. An algebra D =
(B. .= F.a € K)) is a dynamic A’ algebra if i salisfies the following

conditions:
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Fale +y) = Fo(x) + Fu(y),
) & Fo(a) + Fi(r),

; #) < Fa(x)
(7) F‘r[‘(:‘" S 'l‘l+ th'(f‘r'[?u("r))'
forall a,be K, x.y € B.

The definition above is {rom the paper of B. Jonson [24].
Let S be a semigroup with an identity. By 7(S) we denote the so—called
semigroup of left translations of S.

Definition 7.3. Let S be o semigroup with an identity. By ¥(S) we denote
the subalgebra of the Kleene relation algebra K (S) generated by the set T(S).
We define the dynamic scl algebra D(S) to be (PS,), —, Fula € ¥(8))).
Definition 7.4. The semigroup of Cejtin is the semigroup C presented by
(G(C), R(C)), wherc
((C)={a,b,c,d,¢}.
R(C)={ac = ca.ad = du.be = b, bd = db.abae = adace, cca = ac, edb = be}

It is well known that the semigroup of Cejtin has unsolvable word problem.
Proposition 7.5. There is a scquence Cy €y, .., Gy of finitely presented
semigroups such taht

(a) all semigroups C;. (1 € N )have unsolvable word problems;

(b) HSP(D(C;)) # HSP(D(C;)) for all i £ Jn i€ N.

Proof. See [7]. D

Theorem 7.6 ([7]). Therc arc infinitcly many finitely generated varieties of
dynamic algcbras, with countably many operalions, having undecidable equa-
tional theorics. All these vavicties are generated by representable dynamic
algebras. :

Proof. See [7]. O
Corollary 7.7. There arc infinitely many finitely generated varieties od dy-

namic algebras with countably many operations, having uniformly unsolvable
word problems.

Theorem 7.6. does not give any information on the word problem of dy-
namic algebras. Therefore we can formulate

Problem 7.8. Is the word problem for all the varicties of dynamic algebras
solvable?
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Also. the following is still open

Problem 7.9. Is there a finitely based variety of dynamic algebras having
undecidable cquational theory?

Problem 7.10. Is there finite dynamic algebra which is not Jinitely based?
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THE SECOND LARGEST EIGENVALUE
OF A GRAPH (A SURVEY)

Dragos Cvetkovi¢ and Slobodan Simi¢

ABSTRACT. This is a survey paper on the second largest eigenvalue Az of the
adjacency matrix of a graph. Among the topics presented are the graphs with
small X2, bounds for As, algebraic connectivity, graphs with good expand-
ing properties (such as Ramanujan graphs), rapidly mixing Markov chains
etc. Applications to computer science are mentioned. Recent results of the
authors are included.

0. Introduction

Let (¢ be a graph on vertices 1,2,... ,n. The adjacency matrix of (¢ is
the matrix A = [a]'. where a;; = 1 if vertices ¢ and j are adjacent and
a;; = 0 otherwise. Since /A is symmetric its eigenvalues A Aay oo A, are
real. Assuming that Ay > Ay > --+ > A, we also say that A(= Ai(G7)) is
the i—th eigenvalue of (/ (i = 1.2,....n). In particular, Ay((7) is the second
largest eigenvalue of a graph (v,

For general theory of graph spectra see monographs [26] and [27].

Concerning particular cigenvalues the following eigenvalues have been
studied in some detail:

19 the largest eigenvalue:

22 the second largest eigenvalue;

3 the smallest positive eigenvalue:

47 the largest negative eigenvalue;

ro

5% the second smallest eigenvalue;

G the smallest eigenvalue.
For a survey on the largest eigenvalue of a graph see the paper [27] by
D. Cvetkovi¢ and P. Rowlinson (see also [26], the third edition, pp. 381-
392). Concerning the smallest eigenvalue, particular attention has heen paid

449
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to graphs with the smallest eigenvalue —2 (see [26], the third edition, pp.
378-381).

Graphs with small second largest eigenvalue have interesting structural
properties. The second largest eigenvalue (in modulus) of a regular graph
turned out to be an important graph invariant. This paper provides a survey
of research on such graphs and on the second largest eigenvalue in general,
The starting point for writing this survey was a shorter survey on the same
subject given on pp. 392-394 of the third edition of [26].

1. Graphs with small A,

Itis an elementary fact (see, for example, [26], p. 163) that for non-trivial
connected graphs Ay(N,) = =1 (n > 2), A2 (N siy g e i ) = 0 (max(ng, ng,

cohg) 2 2) and Ay ((7) > 0 for other graphs (.

A graph property P is called hereditary if the following implication holds
for any graph /1 if (¢ has property P, then any induced subgraph of (i also
possesses property P. (In this paper, when we say that "a graph G contains
agraph 7 we mean that - contains # as an induced subgraph). A graph
1 is forbidden for a property P if it does not have property P. If a graph ¢/
contains (as an induced subgraph) the forbidden graph H (for a property P),
then 7 does not have property P. Then H is called a forbidden subgraph.
A forbidden subgraph H s called minimal if all vertex deleted subgraphs
I — 1 have property P. Graphs having property P can be characterized by
a collection (possibly infinite) of minimal forbidden subgraphs for property
P.

Forany real @ and any integer i the property expressed by the inequality
Ail(7) < ais a hereditary property. This conclusion follows from the inter-
lacing theorcm (cf., e.g., [26], p. 19) which says that A\;(H) < A(() for any
induced subgraph H of (.

The hereditary property of the form Ay((/) < a. and in principal, the
second largest eigenvalue of a graph, has been studied in some detail for
the first time by L. Howes [50] and [51] in early seventies. The following
characterization is taken from [51]:

Theorem 1. Let G be an infinite set of graphs, then the following statements
about G arve cquivalent:

" There cxists a veal number a such that Ay (G < a for every (1 € G.

20 There cxists a positive integer s sueh that for cach ¢ € G the graphs
(KUK K, (sKGUR )7 Ky, (Ko UsKy) 7 Ky KU R,
2I . 2 and the graphs on Fig. | (cach obtained from two copics
of Wy by adding extra cdges) ave not subgraphs of (4.
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Here 57 denotes the join of two graphs, while U refers to union of two
disjoint graphs. Notice that (v 7 (iy = @ Uit

In the rest of this section, we shall focuss our attentoin the following
values for a: a = ;';, a=vV2-1,a= (ﬁ —1)/2,a=1and a=2. 7

1.1 The golden section bound

There are several results in which the (upper) bound for A, does not
exceed the golden section (V5 — L)/2.

It is proved in 1993 by D. Cao and Y. Hong [17] that the second largest
eigenvalue of a graph (7 on n vertices is between 0 and 1 if and ouly if
GG = (n—3)K, 7 (KU RKy). The problem of characterizing graphs
with % < M(G) < (VB = 1)/2 was also posed in [17]. Graphs (7 with
Aa(G) < V2 = | are determined by M. Petrovi¢ [75H].  An independent
characterization of graphs with As < V2 — 1 has been given by J. Li in [56];
in addition. all minimal forbidden subgraphs for the property Ay < V21 are
given there. It is proved by S. Simi¢ [85] that the set of minimal forbidden
subgraphs for the property Ax((r) < (V5 — 1)/2 is finite. The structure of
graphs (¢ with As((/) < (V5 = 1)/2 has been studied by D. (vetkovié¢ and
S. Simi¢ [29]. A part of results has been announced in [28].

We shall introduce the notation o = (\/.Fw —1)/2 = 0.618033989. Obvi-
ously, we have 0> + o — 1 = 0.

Graphs having property Ay((7) < @ ( a-property) will be called o-graphs.
For convenience graphs ¢ for which Ay(G) < a, A2((7) = @, Ao ((7) > o will
be called o~ -graphs. a®-graphs, o -graphs, respectively.

The next proposition, taken from [95] (see also [9]). enables the definition
of a class of graphs to which every a~-graph belongs.

Proposition 2. If C is a connected graph and of G has no isolated vertices,

then i contains an induccd subgraph equal to 2K or Fy.

Assume now (4 is a o -graph. If (7 is a connected graph, then (¢ must
have at least one isolated vertex (otherwise (i contains 2Ky(= E) or Py as
an induced subgraph. and hence is not a a~-graph). On the other hand, if ¢
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is a disconnected graph. then ¢/ itself is a join of at least two graphs. Since
the a-property is hereditary, it follows that (2 belongs to a class of graphs
(here, as in [85], denoted by C) which is defined as the smallest family of
graphs that contains Ky and is closed under adding isolated vertices (i.e..
it ¢ € C. then (GU Ky € C) and taking joins (i.e., if (/1,5 € C, then
Gy 7 Gy e C). An alternative way to describe graphs from the class C is
in terms of minimal forbidden induced subgraphs. Actually. € is a class of
graphs having no induced subgraphs equal to £ (= 2/5) or P (= £y,

Clearly, any o~ -graph belongs to C. but not vice versa.

The class € has been introduced and studied in [85]. Weighted rooted
frees (with weights assigned to vertices) were used also in [85] in representing
graphs from the class C.

To any graph ¢/ from C we associate a weighted rooted tree T, (also called

an capression lree of (-') in the fll“ﬂWillg’ way:
T H=(Hxg...0 H,)U nly is any subexpression of a graph ¢/ (i.e. a
graph obtained by using the above rules), then a subtree Ty with a root
rocorresponds to H; n(= w(v)) is a weight of o, whereas for cach ¢ (1 =
L....cm) there is a vertex v; (a son of v) representing a root of H;.

Example. If (; = (((((K; 7 K, VUK Ky Ky) 7 Ky U 3Ky, then
the corresponding expression tree is depicted in Fig. 2(a). In Pig. 2(h) we
represent the same graph as a set diagram (aline between two circumseribed
sets of vertices denotes that each vertex inside one set is adjacent to any
vertex inside the other set).

| /IAI\\.I oo

( {
() Fig. 2. (h)

[t turned out that the set of a~-graphs falls into a finite number of struc-
tural types. These types are given in Fig. 3 by the corresponding expros-
sioned trees.

It has been proved along the same lines in [85] that the set of minimal
forbidden subgraphs for the a”-property is finite. They all belong to ¢
except for £ and Py, The whole list of these forbidden subgraphs will be
described in a forth-comming paper [30].
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m

2m

m>0,2m+n <06 2<m<3}

m

4<m<7

A

m 2
2<m<3 m >0, 2m+n <55
Fig. 3.

We present now main results of [29].

Theorem 3. A a-graph has al most one non-trivial component (: for which
one of the following holds:

1 (7 s a complete multipartile graph:

2¢ (¢ is an induced subgraph of (s

39 (G contains a trianglc.

Before proceeding to describe a-graphs mentioned in 39 we introduce some
notation.

Let (7 be a o-graph with the vertex set V. Let T be a triangle in (7 induced
by the vertices @, y,z. Next, let A(G,T)= A, B(G,T)= B, ((G,T) =
be the sets of vertices ontside 17" which are adjacent to exactly one, two,
three vertices from T, respectively. Also, let (v 4, /g, (i be the component,
containing T, of the subgraph of ¢ induced by the vertex set V — B — (',
V—-—A-(C,V — A— B, respectively.
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Let d(u,T) denote the distance of the vertex u from the triangle 7', i.e.
the length of the shortest path between u and a vertex from 7.

a-graphs containing triangles are now described in more detail in terms
of induced subgraphs /4, G 3, (e,

Theorem 4. Let (7 be a connected a-graph which contains a triangle. For
any triangle T of (i the following holds for subgraphs (i 4, G, Geo:

L7 Gy is aninduced subgraph of one of the graphs from Fig. 4.

20 Tor Gy onc of the following holds:

i) G ois an induced subgraph of graphs from Fig. 5;

i) Gg=Pyrsg(HUKy) for some a-graph I ;

i) Gp=Hyg Hy g Hy for some a-graphs Hy, Hs, H5.

37 For Geoone of the following holds:

1) Gleois ancinduced subgraph of (KyU Ky )z H for some o-graph
H;

i) Gieois obtained from K, 57 K3y H by adding a pendant cdge to
cach verter of I, where n > 2 and H is a a-graph containing
no induced subgraphs isomorphic to some of graphs Ky U Ky,
NoUSKy, Ny U2K,, Koy UKy, KyyU Ry,

X A

Fig. 4.

A A A

Fig. 5.

[t is also proved in [29] that the set of minimal forbidden subgraphs for
the o—property is finite. The next theorem (taken from [29]) provides more

details.
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Theorem 5. If H is a minimal forbidden (induced) subgraph for the a—pro-
perty, then:
19 H is one of the graphs E(=2K,), Fy, Fa. Fy, Fy (see Fig. 6), or
2¢ H belongs to the class C.

F I Fy Fy

Fig. 6.

All minimal forbidden subgraphs for a—property are not yet known. On
the other hand, more can he said if we require that both, the graph and
its complement are a—graphs. Then, due to 5. Simi¢ [86], there are ex-
actly 27 minimal forbidden subgraphs for this property. Here we rather give
explicitely (following[86]) all graphs with the property in question.

Theorem 6. (& and (& are both a—graphs, if and only if either of them s
one of the following graphs:

K, unky (mn=>0), Ky, U mhiy, Koy Umhy (m>0),

Ky Umiy (m<3), KygiaUumhky (m<2),

((Ka1a U Ky hy)u Ky, ((K2q U 200)s7 W)U Iy,

(Kaq UK KUKy, (KUK Y K, m>2,n2>0),

(Ko g UK Ko (Kaq U2K0) 7 Ky (m £ 2),

(K3 U2K1)T Ky (KaygaaUK DT R (K2 UR) T R UE, AVA.SE

1.2 Bounds equal to 1 and 2

-

Graphs with Aa(() < | have been studied in 1982 by D. Cvetkovi¢
[24]. It turned out that some of these graphs are the complements of the
graphs whose least eigenvalue is greater than or equal to —2. More precisely,
A (G) > =2 implies Ao(() < Lo If A, (G) = =2, then Ay((7) < 1 equality
holding if and only if the eigenvalue —2 of (7 is either non-simple or non-
main (all eigenvectors are orthogonal to the vector (1i1,:x .4 1)). For other
graphs (¢ with A2((7) < 1. the complement (i has exactly one eigenvalue
smaller than —2. However, A, () < =2 and Au_1(G) > =2 does not imply
Xs(G) < 1. These results are derived by the well-known Courant-Weyl
inequalities for eigenvalues of matrices. For further details see the original
paper or monograph [25] (p. 11, where [Cves] is wrongly given as [CveT]).

A representation of graphs with As((#) = | in the Lorentz space is given
in 1983 by A. Neumaier and J. J. Seidel [72].
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Bipartite graphs ¢ with Ay((#) < 1 have been characterized in 1991 by
M. Petrovi¢ [74]. Three families of graphs and four particular graphs with
Ax((7) < 1 are constructed. It is proved that a connected bipartite graphs
have the property Ay(¢) < 1if and ouly if it is an induced subgraph of the
mentioned graphs.

In particular, trees with the second largest eigenvalue less than | were
treated by A. Neumaier [70]. More generaly, an algorithm for deciding if
the second largest eigenvalue of any tree is less than some bound was also
proposed by  A. Neumaier.

The exact characterization of graphs with second largest eigenvalue aro-
und 1 still remains an interesting open question in spectral graph theory.

Graphs with Ay < 2 are called reflexive graphs [72]. Some classes of
reflexive graphs are studied in [72]. In particular, trees with A2 = 2 are
called hyperbolic [60]. All hyperbolic trees are known [60], [70] and [72].

2. Bounds for A,

Upper and lower estimates for the second largest eigenvalue of a graph
under various restrictions were studied in literature (but not as extensively
as for the largest eigenvalue).

The most general result concerns the connected graphs with prescribed
number of vertices. According to D). Powers, for a connected graph (¢ on n
vertices the following holds

=1 < Mol L;—"J il

The upper bound is achieved, for n odd (n = 2541 ), if (+'is a graph consisting
of two cliques of size s (graphs equal to K) bridged by a path of length 2;
for 7 even this bound is only asymptotically sharp (see [78], or [79]; see also
[48]). The lower bound is achieved if and only if (+ is a complete graph
(see Section 1). It is interesting to note that the ahove (upper) estimate is
proved by making use of the following more general estimate of the second
largest eigenvalue in terms of the largest eigenvalue of some parts of a graph.
Namely, due to D). Powers we have:

A(G) < max mind Ay (), A (Gy)),
((F1.6i)

where (71 and ¢/, denote the subgraphs induced by vertex sets of some
bisection of (the vertex set of) a (connected) graph (/. The key argument
for proving this was based on partitioning the vertices of ( according to sign
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pattern of the eigenvector corresponding to the second largest eigenvalue (see
[77] for details).

If (¢ is a connected graph on n vertices and m edges, then, due to R.C.
Brigham and R.D. Dutton [13], the following inequality holds:

m(n — 2)
n '

As(ED)

In particular, this estimate in not too good for trees. If we assume that (¢
is not a tree, then some refinements are possible, as shown in [79]. Then
the result is expressed in terms of the estimates for the largest eigenvalue
of a connected graph with a fixed number of edges (but not vertices). The
latter problem is completely solved by P. Rowlinson [31] to within the graphs
which realize the bounds. More precisely, as remarked in [79], then

. m— 1
LS = 1) < maaf a6} < A=

D

where A;(m) is the maximum for the largest eigenvalue of a con nected graph
with m edges); thus the estimate is very tight.

In particular, for triangle-free (and bipartite) graphs some further esti-
mates are obtained in [13].

Much better estimates for trees are known. If 7" is a tree with n > 3
vertices, then

0 < Ma(T) < L";ZJ.

The upper bound was obtained by Y. Hong [47]. It is the best possible
for n (> 3) odd (then it coincides with the bound of ~A. Neumaier [70]

Ma(T) < \/# which holds only for n odd). As remarked by D. Powers
(78], with more careful analysis one can get:

L” ; 1} — | < max{\(T)} < L” ; 2],

i.e. the bound for n even is asimptotically sharp. The lower bound is clear
from the above (it is achived for a tree isomorphic to a star, i.e. for JHE=:
K1) Otherwise, if T # Iy -1, then Ay(T') < L only for T" = S2_, (here

52 _, is the graph obtained from a star with n —2 arms by subdividing one

arm). Also then A(T) = \/E:M Thus if T # Kin-1,52_2,

then \o(T) > 1.
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Star-like trees are trees homeomorphic to a star (K 5 for some s > 3).
The second largest eigenvalue of star-like trees (with a fixed number of ver-
tices and fixed number of arms) were studied by F. K. Bell and S. K. Simié
(see [87]). We only mention here that for fixed s >, the trees with mini-
mum and maximum second largest eigenvalue (on fixed number of vertices)
are those as intuitively expected (i.c., those having the length of all arms
as equal as possible in the former case, and those having the length of all
arms but one equal to 1 in the latter case). If s = 3. then some interesting
phenomena do occur (for detail see [87]).

Results on regular graph are given in the next section.

3. Regular graphs

There are two main reasons why regular graphs deserve special interest
in this context. The first is that the largest eigenvalue of a regular graph
of degree d is equal to d, so then the second largest eigenvalue heconies
the dominant feature in many asspects (in particular. in spectral orderings).
The second is that regular graphs allow a simple connection between the
cigenvalues (of the adjacency matrix) and the ecigenvalues of some other
matrices associated with graphs, in particular, with the eigenvalues of the
graph Laplacian (see below).

3.1 Az and spectral ordering of regular graphs

The role of the second largest eigenvalue in ordering cubic graphs has
been observed in 1976 by F.C. Bussemaker, S. Cobeljié, 1. Cvetkovié and
1.1 Sedel [16] (see also [26], pp. 268-269). The 621 connected cubic graphs
with not more than 14 vertices, together with eigenvalues and many other
data, are displayed. The sequence of eigenvalues is given in non-increasing
order for each graph, and for a fixed number of vertices the graphs are
ordered lexicographicaly with respect to their sequences of eigenvalues. Since
the largest eigenvalue Ay is equal to 3 in cubic graphs, the second largest
eigenvalue Ay determines roughly the ordering of graphs. Decreasing Ay
shows graphs of more "round”™ shape (smaller diameter, higher connectivity
and girth).

A partial theoretic explanation of these empirical observations was offered
in 1978 by D. Cvetkovié [23)].

Theorem 1. Let (7 be a d—reqular graph on n vertices. Lot & be any verter
of G and let 6 be the average vertex degree of the subgraph induced by the
vertices not adjacent to x. Then we have:
5 < lf\::: + Ao(n —d)
=" n-L+d"
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The same inequality (see also [25]. p. T1) was derived in [6] by quite
different method.

In further we shall offer some other theoretic support to these (empirical)
observations (see Section 3.3).

3.2 Algebraic connectivity

For a graph (¢ on n vertices, let dy.da. ... .d,, denote the corresponding
vertex degrees. The matrix L = D — A with ) = [did;;]} (6 the Kronecker
symbol) is called the Laplacian of (. The graph Laplacian is positive semi-
definite and the second smallest eigenvalue of L (here denoted by a(= «(()))
is called the algebraic conncctivity of (. It was introduced in 1973 by M.
Fiedler [35].

The algebraic connectivity a ol a graph (in regular case) can he expressed
in terms of the second largest eigenvalue, If (¢ is a d-regular graph, then
o = d— Xy. (Thus the algebraic connectivity increases as the second largest
eigenvalue becomes smaller).

Definition 1. An (n.d.¢)—enlarger is a d-regular graph ( on n vertices
with a((r) > e

The significance of enlargers lies, among others. in the fact that they
enable an explicit construction of graphs with good expansion properties
(such as expanders). One such construction of expanders is obtained by N.
Alon and V.D. Milman [6]. For this aim we need the following definition:

Definition 2. Let (; = (V.F) be a graph with V' = {vy,... .tp}. The
extended double cover of ¢ is a bipartite graph I = (X.Y.F) with X =
{#1,... 22}y Y = {910 .. ,yu} where F = {wiy; 19 =J or v € E}.
Remark. Actually, an extended double cover is a NEPS (Non-Complete Ex-
tended P-Sum. see [26], pp. 65-66) of ¢ and Ky in the basis {(0,1),(L, 1)}
(see. also [25], p. 60).

Now the following theorem from [6] offers an explicit construction of an
expander (see Definition 2 from Section 6).

Theorem 2. Lel (¢ = (V. E) be an (n.d.¢)—enlarger and let H be its ea-
tended double cover. Then H is a strong (n,d + 1. 8)—expander for

Je
= .
d + 4de

The next theorem of N. Alon [3] points that good enlargers are in fact
good magnifiers (see Definition 3 from Section 6).
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Theorem 3. Every (n, d,e)—enlarger is an (nyd.&)-magnificr, where

h:—-zt—.
o + 2¢

[t is interesting to note that the converse also holds, i.e. that every mag-
nifier is an enlarger with some appropriate parameters (see [3], for further
details).

Remark. Generally, the fact that the algebraic connectivity is relevant to
expansion property of a graph (see Definition | from Section G) can be also
Justified by the following relation (¢f. (12], Lemma 5.7) given below. Namely,
for any graph (/ = (V, E) we have:

[ XTIV X

|
(VX C "r)(l‘(l = z = |()\’| > “' a( (7)),

where dX = {y: a2y € E,x € X). A similar result is due to R.M. Tanner
[92].

More information on expansion property of graphs, and other related
graphs can be found in Section 6.

The work on algebraic connectivity and graph Laplacian for graphs in
general (in particular, for non-regular graphs) will not he reported in this
paper. For more information see papers by M. Fiedler (36], [37], [38] and
also [44]. [45]. Much information on graph Laplacians can be found in the
hook [26] and in expository papers [43], [61], [62]. [66], [67].

3.3 Second largest eigenvalue in modulus

The second largest eigenvalue (in modulus) of a regular graph turned
out to be an important graph invariant since it has relations with various
graph invariants (such as diameter and covering number ete.) and graph
properties (including expanding properties and convergence properties of
simple random walks).

Let ¢ be a d-regular graph, and let A(= A((/)) = mar{ || 2 | N # d}.
Notice that for bipartite graphs we have AG) = A () (due to symmetry
of the spectrum with respect to the origin).

Let ¢/ be a connected d-regular graph on n vertices, According to N.
Alon and V.D. Milman [6] we have the following bound:

(1) diam(() < 2 7 ‘M)\ log, n].
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This bound was improved by several authors, in several directions. In-
teresting improvements are given by B. Mohar in [65], but expressed in
terms of the second smallest. and the largest eigenvalue of Laplacian ma-
trix of any (not necessarily regular) graph. Also the following lower bound,

. 4 .
diam((/) > —. valid for any (connected) graph on n vertices, can be found
e

(¥
in [65]. Bound (1) is also improved by F.R.K. Chung [22]. For regular
graphs this bounds reads:

(2) diam((/) < fw]
log( 1)
For this bound it was observed in [31] that it is indeed the upper bound for
covering index of a graph (i.c. it is the smallest integer ¢ such that any pair
of not necessarily distinct vertices is connected by a walk of length exactly
¢). Let cover((7) denote the covering number of a connected graph (i. As
proved in [31], for any (connected) graph we have diam((/) < cover(() (it
is also true that cover((/) < diam((/) + s il every vertex of (A is In some
closed walk of odd length. at most 2s + 1; if (7 is a bipartite graph, then
cover(() = 00). By convenient distinction hetween diameter and covering
index we have: if ( is a d-regular connected graph on n vertices and t some
positive number then:
(1) if d™/n > A"(1 — %). then cover((G) < m (by F.R.K. Chung,
restatement of (2)):
(i) if d™=Yd+1)/n > A THAH|(L - Ly(xve{r,... , A, ) and £ > 0),
then diam((;) < m (by C. Delorme and P. Sdle [31]).

According to P. Sarnak [82] (see also [30]) the following estimate holds:

) ' arceosh(n — 1)
(3) dianm(G) L —————F—

A

5

arccosh( Kf )

for any d-regular graph ¢/ on n vertices. By considering separately non-
bipartite, and bipartite case, some further refinements of (3) are obtained
by G. Quenell in [S0]:
arccosh(n — 1 : ) .
#——[—f——) +1 (¢ non-bipartite,
arccosh ('K)
arccos(n/2 — 1)
arccosh (—.:)

diam((7) <
+ 2 (i hipartite.

The inequality (3) can be further refined. by introducing the injectivity radius
» of (4 into consideration. According to G, Quenell (see [80] for the definition
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of ) it holds:

n
arceosh( e |
(4) diam((/) < ald —I[ ) + 2r 4+ 1.
arccosh( K )

As also remarked in [80], the estimate (3) is better than (4) provided A >
2¢/d =T (in other words, see below, (4) is better only for Ramanujan graphs).

Finally, let us mention that the inequality (3) has been generalized to the
case of biregular graphs and regular directed graphs [31]. The authors also
discuss connections 1o finite non-abelian situple groups. primitive association
schemes, primitivity exponent of the adjacency matrix, covering radius of a
linear code and Cayley graphs.

The relationship between the second largest eigenvalue in moduli of a
graph and girth, was investigated by P. Solé [90]. For the graphs with small
diameter we have:

Vd  g(() >4 . .
A > ‘ = s (7 - artite,
A((7) > { V21 W >6 (7 is non-hipartite,

. \ﬂl(n—‘Zd)/(n—Z) G > 6 ¢ o ;
A = ? ~ ., 1 Gis bipartite,
A(G) > { = A > 8 (¢ is hipartite

(Here, asin Section 1, @ denotes the golden section.) For the graphs with

larger diameter we have:

2vd - lcos Iz (¢ is non-hipartite,
2vd — 1 cos i'_”l (¢ is bipartite,

A >

where s = ["(L,)_JJ

From the above (npper) bounds for diameter it generally follows that the
diameter is expected to be smaller as Az (or A is smaller). Thus, by these
inequalities, we have at least partial explanations for the shape of cubic
graphs.

We now turn to important class of graphs in this context, so called Ra-
manujan graphs:

Definition 3. Let (/ be a (conected) d—=regular graph. Then ¢/ is called a

Ramanujan graph if A(¢(/) < 24/d = 1.

Remark. The importance of the number 2¢/d = 1 in the above definition lies
in the following lower bound due to N. Alon and R. Boppana (cf. [58];
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see Proposition 4.2). Suppose (i, is a d—regular (connected) graph on n
vertices (d being fixed). Then for any sequence of such graphs we have:

Liminf A(Gh ) = 2Vd — 1.

=X

Thus if one wants graphs with as small A, as possible, the above number
serves as the lower limit of what can be done. More information this kind
of results can be found, for example, in [T3].

Since the second largest eigenvalue is small in Ramanujan graphs. they are
also good enlagers (see Definition | from above), and hence good magnifiers.

An infinite family of Ramanujan graphs have been constructed, for the
first time, by A. Lubotzky. R. Phillips and P. Sarnak in 1988. These
oraphs were realised as Cayley graphs of some groups (such as. for example,
group PG L(2, Fy)) relative 1o some syminetric subset (or, alternatively, as
quotients of a quaternion group): see [58] for details. In particular, cubic
Ramanujan graphs are treated in [20]. It is remarkable that the diameter
of Ramanujan graphs cannot he too large (besides the bounds for particular
Ramanujan graphs from [58]. see the result of A. Nilli, given below). The
girth of Ramanujan graphs is investigated in [10].

The following result of A. Nilli [73] explains some effects on Ay when, in
fact. diameter increases. Let (¢ be a d-regular graph, and suppose that
contains two edges the distance between which is at least 2k 42 (the distance
between two edges is the length of shortest path whose terminal vertices are
the vertices of edges in guestion). Then we have:

I
k1

) e |
Xasl(GF) = 2Jd — | -
2( () = 2V« l( J'.'+l)+

4. Rapidly mixing Markov chains

The second largest eigenvalue of graphs is of some interest in the theory
of rapidly miring Markov clhains.

(‘onsider a Markov chain on a finite state space S, = {1.2,... ,n} with
transition matriz P = [p;]7- Thus for any ordered pair ,j of states the
quantity p;; is the transition probabilily from state i to state j and is in-
dependent in the time t. The matrix P is non-negative and stochastic, i.e.
its row sums are all equal to 1. Let m; (i = 1.2....,n) be a probability
distribution over S, and suppose that m;p;; = 7;p;; for all i,j € Sy,. Then
P is said to be reversible w.r.t. probability distribution ; and the Markov
chain is ergodic with the stationary distribution ;.



1464 0. Cvetkovié and S. Simié

As is well known, P has real eigenvalues AMcAa, A, with Ay =1 >
Ay 2 Ay > --- > A, > —1. The rate of convergence Lo 7; is governed by the
second largest eigenvalue in absolute value, i.e. by max(\y. [Anl). One can
show that the influence of A, can be neglected so that the really important
quantity is Ay, A reversible Markov chain is called rapidly mixing if Ay is
stlliciently small.

It is useful to identify an ergodic reversible Markov chain with a weighted
undirected graph ¢/ (possibly containing loops) as follows. The vertex set is
the state space 8, of the chain. If p;; # 0, there is an edge in ( hetween
vertices & and j with the weight ¢;; = mp;; = Tipji- The eigenvalues of
G (i of the weight matrix ¢ = [¢;;]}) are equal to the eigenvalues of
P T this way we see that the theory of graph spectra is relevant to the
problem considered, There are two immediate consequences of the above
facts. Firstly, one can use the theory of graph spectra to evaluate or estimate
Ay i Markov chains, in particular to find upper bounds for Ay, Secondly,
one can use known graphs with small Ay to construct rapidly mixing Markov
chains.

Detailed elaboration of above ideas can be found in papers [2], (32], [33],
(53], [88] and [89], just to mention a few among several papers by the same
authors (D. J. Aldous, P. Diaconis, M. Jerrum. A. Sinclair). Note that
rapidly mixing Markov chains are important parts in stochastic algorithms
for enumeration of large combinatorial sets.

5. Miscelaneous

[u this section we briefly mention other results concerning A,.
Let us define

ji2(G) = liminf{ Ao (H) : ¢ € H.d(H) > d}.

tl—
ALJ. Hoffman [46] proved the following result.

Theorem 1. Let (0 be a graph with n vertices and with adjacency matriz
Ao Let T be the set of all (0, 1) matrices € with v rows and at least two
columns suel that cvery row sum of C' is positive, and if €' has more than
two columns. no column can be deleted without destroying the property that
(" has positive row sums, Then

2(€) = mingerAi (A = C(J = ™'y,

[t was proved by M. Dooh [34] that the set of all second-largest eigenvalues

is dense in the interval (V24 vh.o0). The same set has infinitely many
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accumulation points, but is nowhere dense in the interval (—oo, =1 + V2.
These points are described in some detail by J. Li [56].

It is proved by C. Licata and D.L. Powers [57] that the Platonic solids are
self-reproducing in the following specific sense. We consider an eigenvalue
A (in this case A = Ay) of the graph of the solid P considered, and the
corresponding eigenspace £(A) which is of dimension k. The convex hull
of a basis of £(A) is a polviope Q. If @ is isomorphic with P, then P is
called sell-reproducing. It is also proved in [57] that some other polyhedra
are self-reproducing,.

Spectra of weighted adjacency matrices have been used by Y. C. de
Verdiére to introduce a new important graph invariant in [94]. For a con-
nected graph (¢ we introduce the class A¢; of matrices A = [a;;] for which
a;; > 0if ¢ and j are adjacent and a;; = 0 otherwise. Let gy, o, ..y b
(g1 > piz > -+ > i) be distinet eigenvalues of A with multiplicities
ky = Lky ... ky,. respectively. Let p((7) = max ks, where maximum is
taken over the class Aq;. For example, p(K, ) = n — 1 and p(N33) = 4. It
is proved that (7 is planar il and only if p(¢7) < 3. It is conjectured that
() > X () — 1, where \((/) is the chromatic number of (. The validity
of this conjecture would imply the four colour theorem!

Various inequalities involving the isoperimetric nmmber and the spectrum
of graphs are provided by B. Mohar [63] and [64].

Second largest eigenvalue in random graphs is studied in [15], [39] and
[40].

It is interesting to note that expanding properties in infinite graphs are
related to the spectral radius of the graph [11].

6. Some applications

The topic concerning the second largest eigenvalue has many theoreti-
cal and practical applications. Its major interest stems from the fact that
it is significantly related to various types of expansion (and concentration)
properties of graphs. These properties. in turn, are of great practical and
theoretical interest in many brances of mathematics and/or computer sci-
ence (such as extremal graph theory (see, e.g., (8]). graph pebbling (see, e.g.,
[55]), computational complexity (see., e.g., [52]), parallel sorting algorithmns
(to be treated below). etc.) as well as other branches of science (like elec-
trical engineering; some detals in connection with various networks are also
included below).

We shall not attempt within this paper to go into details. Rather, we shall
try to gain the importance of the topic toward various applications. The key
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idea is that many spectral parameters (invariants of graphs) are important
link to structural properties (such as various expansion properties),

Iuformally, a graph has a "good” capanding property if each (its) vertex
subset has a large neighbourhood. For bipartite graphs, more precisely, we
have:

Definition 1. Let 7 = (I/, V) be a bipartite graph with (] = {|V] = n.
Then Gis an (n, o, 3)- expanding (0 < o < 3 < n) if the following condition
holds:

(VX CUNIX| > o= [0X] > 4).

Here, for the sake of completness, we recall that X = {y:dy.X)=1},
where o stands for the usual metric on a graph.

Bipartite graphs having good expanding properties are known as cu-
panders. One of the most general definition reads as follows:
Definition 2. Let ¢/ = ({/.V, E) be a bipartite graph with |U/| = |V| = n,
and [E| < dn. Then 7 is an (n.d, 8, o)- expander (o < 1) if the follwing
condition holds:

e ; X ;
(VX CUNIX| < anm = |0X]> (146(1 - J—-l))|.x|).

n
In partienlar, if o = '7 then (7 is called an (n.d, 6 )-expaders and if o = 1.
then ¢/ is called a strong (n,d. 8)-expader.

[ the above definition d and 6 are regarded as densily and extension,
respectively. Notice also that the expression (1 + 8(1 — % )) is larger as | X|
is smaller, which supports the fact that small subsets X. more likely, have
large neighbourhood.

For non-bipartite graphs, the above definition has to be modified (since
fthe verices are generally not distingused according to colour classes, or
viewed as Tinput - output parts™ of some system). According to [3]. the
non-hipartite analogon of expanders are magnificrs. The cooresponding def-
inition (most frequently refering to regular graphs) reads as follows:

Definition 3. Let ¢/ = (V. E) be a graph on n vertices. and maximal vertex
degree d. Then ¢ is an (n.d,d)-magnifier if the following condition holds:

|
(VX CUNIX| < 5n = [0X] > o|X].

Some examples of (good) expanders and magnifiers we have encountered
in Section 3. To provide some hints on applications. we need some further
definitions.
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We first define two classes of graphs (having special connectivity prop-
erties and possibly small number of edges) which can be viewed as com-
munication networks: concentrators (defined by M.S. Pinsker [76] in 1973)
and superconcentrators (delined by L.G. Valiant [!)3] in 1975). There is an
extensive literature on applications of these graphs in communication prob-
lems (a good source of references can be found, e.g.. in [22]; see also [91] on
construction of low complexity error-correcting codes).

Definition 4. An (n,m)—concentrator is a graph with = input vertices and
m output vertices, n > 1, having the property that, for any set of » (< m)
inputs, there exists a flow (a set of vertex-disjoint paths) that join the given
inputs to some set of r ontputs.

With a slight modification, we get the definition of superconcentrators.

Definition 5. An n—superconcentrator is a graph with » input vertices and
n output vertices having the property that, for any set of r (< n) inputs and
any set of r outputs, there exists a flow that join the given inputs to given
outputs.

Remark. Besides these two classes of graphs, which were firstly used in con-
struction of various switching networks, there are many others of similar
kind: for example, nonblocking networks where the partial correspondence
between inputs and outputs by disjoint paths can be always extended with-
ont disturbing existing paths (see, e.g.. [21] for more precise definition).

[t is also worth mentioning that superconcentrators can be constructed
from concentrators. but also from expanders (see. e.g.. [41] and [83]). Su-
perconcentrators, among others. are used in construction of parallel sorting
networks [1].

As is well known from literature. expanding graphs within some prop-
erly choosen classes do exist. Moreover, by probabilistic arguments, one can
show. with relative ease, that within many such classes almost every graph
posseesses the desired property (see. for example, [12]). Ou the other hand,
if one needs some of these oraphs. there is no efficient algorithm, for a ran-
domly choosen graph. to decide if it indeed satisfies the required properties
(for example, it is known that the problem of checking if a given graph is
an (n,d,0)—expander is coNP-complete). So explicit constructions are de-
sirable (but, as a rule, are very complicated). The first breakthrough was
given by G.A. Margulis [59] (but without explicit estimate on expansion
magnitude; only non-zero estimate is proved to exist). By a slight modi-
fication of the previous construction, Q. Gabber and  Z. Galil [41] have
provided the estimate explicitely. Another important construction is due to
N. Alon and V.D. Milman [5] (based on theory of group representations
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or harmonic analysis).  For further constructions see [7], [1] (where finite
geometries are used - points and hyperplains are the vertices of hipartite
graph). [54] (bipartite graphs are obtained from affine transformations), [22]
(graphs represented as k-sum are used), ete. On the other hand. it is worth
noting that explicit constructions are in many circumstances poor substitute
for probabilistic ones, since giving graphs with worse expanding properies
then probhabilistic ones.

Besides the particular graphs with good expanding properties, very fre-
quently the (infinite) families of such graphs are more preferable.

- the rest. we give some details on sorting in rounds.

Suppose we are given n elements xy, ... ., with linear order unknown to
us. Our task is to determine this linear order by as few probes as possible.
Each probe (or question) is a binary comparision (say, is @w; > w;?), The
(information) theoretic bound is. clearly, log, n! (~ nlog, n). The sorting
in rounds is organized as follows: In the first round we ask m; (< m)
simultaneous questions.  Having the answers. we deduce all implications
and ask, in the second round. another my(< m) questions, deduce their
mnplications, and so on.  After r rounds, we need to have the nnknown
order. The need for such algorithms arises in structural modeling.

The sorting described above is in fact parallel sorting. Here m is a number
of processors (also called the width of algorithm): » is a (parallel) time
requred by algorithm (also called the depth of algorithm). The object is to
minimize the size of the algorithm (equal to the number of comparisions),
here denoted by f.(n).

It is known, for example that fi(n) = (*_,‘), fa(n) = O(nzlogn) (proba-
bilistic bound) and fo(n) = ()(ml) (explicit construction by expanders).

Here the idea of using expanders is based on the fact that after each round
enough comparisions are avoided due to good expanding properties of partial
graph so far grown.

For more details see [4], [1] and [12].
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INVITED LECTURE

SUBSYSTEMS OF PEANO ARITHMETIC AND
CLASSICAL RESULTS OF NUMBER THEORY

C. Dimitracopoulos

AESTR,}E:T. We discuss problettis and restilts concerhing subsys-
tetiis of first-order Peano Arithmetic. especially cohcerning the
provability of basic theorems of elenjentary mumber theory dnd
coinbinatorics.

Let LA detiote the usual first-order langnage of arithitiletic and PA denote
Pediio’s dxioihs expressed in LA. Subsystems of PA dre obtained by rex-
tricting the iidiection schema or replacing it by a restriction of some other
schetha.

Fitst we tecall the definition of the “drithinetic hierarchy” of formulae of

LA:

Deﬁﬁitldﬁ 1: LPt v be a formula of LA and n > 1. We say that
(a) @ is ¥, or H(, t bounded if g involves bounded quantifiers only, i
qnaﬂtiﬁms of thie forni Y < y, Iz < g, Vo < 4, Ju < g

(h) wis ¥, it s of the form 3V ... 8. where 8 is bounded and there exist
1 “thmnrtfmna of BlocR: of similar hu'lntlhms in front of 4.

(c) ©is I, if ~¢ 8 logically equivalent to a £, formula.

Nb‘w. we j)‘i-d'cb"(;‘d ta thie precise defiliition of the stubsysteins that were first
sttidied.
Defitiition 2. For 4 > 0.
(d) f_‘,, denotes [’A with induction only for ¥, formulae with panmeters

(b) I?_;,, detiotes I8 Y plis the caol llection schema for ¥, formulas only, i.e:
the scheta

¥ < 23yela, y) — Ve < 23y < tep(x, ),

WHFIP p 15 atly Yy, forttitila with paramieters.
(¢) L._J,, dPllOtPs PA with the induction schema wplm ed by the least number

173
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schema only for X, formulae with parameters,
[11,,. BIL,, LI, are defined similarly.

Remark 1. Strictly speaking. the subsystems defined above include a finite
number u! axioms expressing commutativity of + and ., associativity of +
and ., ete.: these must be added to the usual axioms, because the amount of
indnetion nvuilnhin in some of these systems is not sufficient to prove them.

Relations among the systems we have defined were proved by Paris &
Kirby (see [14]) and are summarized as follows.

Theorem 1. For all n > 0:

v
—n+l

U

BS,.1 < BI,

I

Y, & [, & LY, & LI,

Furthermore, the converses of the vertical arrows do not hold,
[ view of this theorem, the following question was asked in the 1970’s:

Main Problem. What is the weakest subsystem of PA that can serve as a
busis for elementary number theory and combinatorics?

It is not difficult to see that /S, is strong enough to serve as a basis:
indeed. one can formalize usual proofs so that only induction for ¥ Y, formulae
is needed. But what happens with the strictly weaker systems BY ¥, and /X,
At this point we need to mention the following result, proved by Paris (see
[12]) and, independently. H. Friedman.

Theorem 2. Forn >0 and 8 a 42 sentence: B, . 0= IS, F

By the previous theorem and the fact that all basic results of elementary
number theory and combinatories are formalized by I, sentences, studying
[¥y is the same as studying BE,, as far as our main problem is concerned.
Unfortunately, IS, seems ver v weak, since the usnal method of coding can-
not work in it. To test its strength, the following problems were posed and
still remain open:

Problem 1 (Paris). Docs IS, prove the MRDP theorem?

By MRDP theorem we mean the following result of Matijasevié- Robinson-
Davis-Putnam (see [10]). which was crucial for the negative solution of
Hilbert’s 10th problem:

MRDP Theorem. For every ¥, formula o(&) we can cffectively find a
polynomial p € Z[F, §] such that
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N E Vilo(F) — 3i(p = 0)],

where N denotes the standard model of PA.

Remark 2. Strictly speaking, p = 0 stands for pt = p~. where p = pt —p~
and pt.p~ € N[Z, 7).

Since the MRDP theorem caunot he expressed as a set of sentences of
LA, what is meant in problem 1 is: Can we replace N |= by I, F in the
MRDP theorem?

Problem 2 (Wilkie). Docs [, prove that the set of primes is unbounded?
Problem 3 (Macintyre). Docs IY, prove PH Py, 2

By PHPY, we denote the following schema, which formalizes the pigeon-
hole principle for ¥, maps:

Ve < 23y < z@(x,y) — Jo e < 23y < 200y # 22 Ap(@,y) A @(za,9)),
where ¢ is any S, formula with parameters.

It is widely believed that the answer to all these problems is “no”. Con-
cerning Problem 1, this feeling is especially strong, in view of the following
observation of A. Wilkie (see [19]):

If IS, proves the MRDP theorem, then NP> =co— NP.

Given the difficulty of working with IS, it seemed worthwhile to consider
systems strictly between Y, and Y. Such a system is [X, + eaxp, where
cxp denotes the axiom Y, ydz(z = «¥). Here z = 2% is a bounded formula
defining the graph of the exponential function in the standard model; the
existence of sueh a formula was first shown by J. Bennett (see [l]). I¥, +
cxp is strictly stronger than [Y,, since the latter can capture functions of
polynomial growth only. by the following result of R. Parikh (see [11]).

Theorem 3. If [T, b Yedyp(x.y), where @ is Sy, then there exists ke N
such that IS, FYa3y < of + & ple,y).

It is also known that Y, + cap is strictly weaker than JX,; this holds
since the former cannot prove BY,, essentially by the proof that /X, cannot
prove BY, (see [14]). However, IX, 4 cap seems to be as strong as I%,, as
far as onr main problem is concerned; the idea is that existential quantifiers,
unbounded at first sight. are essentially bounded, as long as large numbers
exist. For example, it is known that the answer to Problems | — 3 is “yes”
if we replace [X, by (X, + cuap,i.e. the {ollowing hold:

Theorem 4. IS, + cxp proves the MRDP theorem.
Theorem 5. X, 4 eap proves PHPE,.

Theorem 6. IS, + cap proves thal the sct of primes is unbounded.
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The first of these results was proved by H. Gaifman and, independently,
the author (see [6]) and the second ope by the author and J. Paris (see [5]);
the proofs of both are based on the fact that inside any M |= [, + cxp one
can code finite (in the sense of M), ¥, definable sequences of elements of M.
Thearem G is proved by a straightforward formalization of the usual proof
of Euclid’s theorem.

To strengthen the belief that 1S, + exp is very strong, Ch. Cornaros and
the anthor obtained (see [4]) '

Theorem 7. IS + cap proves (a version of ) the prime nwmber theorem.

The proof of this result is a modification of Selberg’s proof, the two main
differences heing that
(a) an approximate logarithm functign (previously introduced by A, Woods
in [20]) is used instead of log.e and
(b) arguments involving limits have heey replaced by inductive ones.
Attempts to solve Problems 2 and 3 led to the study of other systems
strictly between [, and, [E,. In connection with Problem 2, A. Woods
showed *

Theorem 8. /Y, + PHPY, proves Sylvester’s theovem, i.c. that for any
L <o <yoncofy+ 1, y+x has a prime divisor p > .

Let us discuss briefly the idea of his pypul Iu the usunal proof, by consid-
ering the largest powers of primes in the prime power decompositions of the
numbers Lo oo, g+ 1oy g+ @, Sylvester showed that if no prime divisor
of y+ 1, ...y + @ exceeds & then for any function £(x) > 7(x) (= number
of primes < )

alyt > (w4 y — €(x))! (1)
But for sufficiently large & and a suitable chpice of €(x) (1) fails and so the
result follows. Woods considered the logarithmic version of (1), using the
approximate logarithin funetion referred to above. Then he “unravelled” (1)
o nlnlnin the underlying comparison map. the existence of which contradicts
PH P, (the “nnravelling” was necessary, since it is not known how to define
partial sums by a Xy formula in IX, + PH PY,).

Clearly, we obtain as corollaries of the previous theorem:

(a) the answer to Problem 2 is “yes™ if LJH is replaced by IS, + PHPY,
(h) 1! the answer to Problem 3 is “yes”. then the answer to Problem 2 is
\(‘“1

Note that IX, + PH PX, is strictly weaker than 1S, + caep. To see this, let
M be a nonstandard model of PA, 0 € M — N and K be the substructure

of M with universe {e € M : M |= & < a" for some n € N}. Then K |
I, 4+ PHPY, (since PHPY, s 11, axiomatizable), but clearly K & cap.



Subsystems of Peano Arithmetic and Number Theory 477

Another system studied by A. Woaods is f&Z, which is defined as follows:

Definition 3. Let £ be the smallest class of (primitive recursive) functions
containing +. .. all constant functions and closed under substitution and
bounded recursion — this class was defined by A. Grzegorczyk (see (7). 1€2
is obtained from X, if we

(a) add a new function symbol to LA, for each f € &2,

(b) allow induction for & formulae. i.e. bounded formulae of the new
language LA(E7).

(¢) add a defining axiom DEF([) for each new function symbol f.

Clearly, 1S, C [E2, but it is unknown whether equality holds. It is easy to
see that [E2 is contained in an extension by definitions of [X, + exp; in fact,
this inclusion is strict, since [E€2 can only capture functions of polynomial
growth (i.e.. Theorem 3 can be proved for 1E£2 instead of IX,).

By exploiting the availability of “census functions” of £2-definable sets in
[£2, i.e. the ability to count the number of elements of any £Z-definable set
by means of a function in &*. A. Woods proved (see [20])

Theorem 9. [£2 proves PHPE:, where PH PE? denotes the pigermholf'

principle schema for  formulac.

*«

As a consequence of Theorews 8 and 9. Problem 2 has a positive answer
if 1%, is replaced by [E7.

Now we turn our attention to subsystems of 1€2, studied by A. Berarducci
& B. Intrigila (see [2]) and C'h. Cornaros (see [3]). Each one of these systems
includes IS, and is included in [, but it is unknown whether any of these
inclusions are proper.

Berarducei and Intrigila considered combinatorial principles provable in
1£2; we will refer to only two, ie. weak — PHPY, and EQY,.

Definition 4. (a) Weak — PPHPY, is the following schema
(I e an Yeg(lte) i< gl ) =
Juey,as < (L4 €)z Fg < 200 # 22 A @, 9) A p(@2,9)),
where ¢ is any ¥, formula with parameters and £ > 0is any rational number.
(b) EQYq (equipartition principle for &, relations) tis the following schema
V= “if (. y) defines an equivalence relation on z such that every
equivalence class
has exactly n clements. then n | 27,

where ¢ is any Xy formula and n € N.
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It should be noted that weak — PIPY, had been previously considered
by J. Paris, A, Wilkie and A. Woods (see [14]) and that Theorem 9 clearly
implies that 182 F weak — PHPY,,.

Using llmnwm 9. Berardueei and Intrigila obtained

Theorem 10. 1&: pmr'r 5 LQ‘_. where FQE? is as before, but considering
2 formulae inste rui of Yy ones

They also showed that the following hold:

Theorem 11. 1Y, + weak — PH PY, proves Lagrange s theovem, i.e. that
cvery integer is the sum of four squares,

Theorem 12. IS, + EQY, proves the complementary conditions™ of the
quadrafic veciproe rh; law. i.c. that for any odd prime p:

(a) -1 us a quadratic residue modp iff p = Linod4

(b)  2is a quadratic residue modp iff p = + 1mods.

Theorem 13. X, + EQX, proves that a prime number is the sum of two
squares ioff of is of the form 4n + 1.

For the proofs they used the multiplicative property of Legendre’s symbol
() (p an odd prime) and some group-theoretical considerations — the usual

|H()n[.s are based on Buler’s eriterion (5) = ! =Y maodp, but it is unknown
whether this is provable in the theories considered.
Cornaros, continuing the work of Berardueei and Intrigila, proved

Theorem 14. [E2 proves the quadratic ree iprocity law, i.e. that for any odd
pr .'H“ S D,

(E)L) = (=1)r=ta=1)/2,
P

His proofis based on the usual one and exploits the the fact that [Tocr<y, wiz)
flaymodp and Yoncrey J(2) are EF functions, for any f € £ and any &7
formula .

e also attempted to prove the following conjecture of A. Woods (see
[20]).

Conjecture. IY(m)+ DEF () proves that the sct of primes is unbounded,
where [Ng(m) + DEF(T) is the subsystem of [£2 if we allow only one new
Junetion symbol © corvesponding to the usual Junction 7(x) = number of
privmes < .

Cornaros showed that adding 7 and one more new function symbol to LA
suffices, namely
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Theorem 15. IS(7. K )+ DFF(7)+DEF(K) proves Bertrand’s postulate,
where K is a new funetion symbol corvesponding to the wsual function K(x) =
Z(}<ns.r lngr"”‘

For the proof, an approximate logarithm function is used again and care
‘s taken to define other functions involved in the usual proof. e.g. p(x), in a
Yo(m. K') manner.

Next. we discuss problems and results concerning the system IS, +
where 2, denotes the axiom Yrdy(y = 2Ueaer]) By Theorem 3, IS, is strictly
weaker than 15,482 To see that 15,482 is strictly weaker than 1X,+eap,
it suffices to consider the structure with universe {# € M : M | w < altogzal”
for some 1 € N1, for an arbitrary nonstandard M | PA and e € M — N.

Lot us see what is known about Problems 1 — 3 if I, is replaced by
IS, + Q.

(a) The feeling is that Problem | again has a negative solution. Indeed,
Wilkie’s observation shows that if I¥, + §2; proves the MRDP theorem,
then NP =¢co— NP.

(h) By using ingenious coding techniques. Paris, Wilkie and Woods showed

(see [15])

Theorem 16. [, + $, proves weak — PH PY,.

(¢) Again in [15] one finds

Theorem 17. IS, + 2, proves thal the sel of of primes is unbounded.
Actually this can be improved to

Theorem 18. IS, + 2, proves Sylvester’s theorem.

This follows from Theorem 16 and the fact that Woods's proof of Theorem
8 really uses weak — PHPY, . not PHPY,.

We continue with a short discussion of a very weak subsystem of IX,.
This is denoted by Open and is obtained from 13, if we allow induction for
open formulae only. The study of free-va riable systems was first advocated
by T. Skolem (sce [17]). Shepherdson obtained (see [16])

Theorem 19. [Open docs not prove any of the following:
(a) ©* £ 2PV £ =
(b) 2% +y* £ *Vayz =10

(¢) the set of primes is unbounde d.
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By part (a) of this theorem aund the fact that [, proves Va, y(z? #
2y* Vo = 0), it follows that Open is strictly weaker than [Y,.

To prove this theorem, Shepherdson constructed a recursive nonstandard
model M of [Open, in which (a)-(¢) fail. as follows:
The universe of M is the set of all polynomials of the form

”.]‘ _X’]’/‘f + ﬂ"]'— | ‘\'(J'_”‘/'l + 1 + () ‘k' 1/q _|. s

where pog € N g > 0. a,,... .4, are real algebraic, a, > 0if p > 0, a, is
an integer aud is > 0 if p = 0. Successor. addition. ete.. are defined in the
obvious way; by taking X to be “infinitely large™, one can make M into a
discretely ordered sewi-ring.

Many other authors studied Qpen, among which A. Wilkie ([19]), L.
Van den Dries ([I8]) and A. Macintyre & D. Marker ([9]). obtaining very
iteresting results. We mention ouly one result frow [9], namely

Theorem 20. [Open docs not prove Lagrange s theorem.

Most proofs in [9], including the proof of 1he previous result, involve con-
stractions of models by unions of chains arguments and repeated use of
purely algebraic constructions.

Let us finish with a remark: Most of the systems we have defined in this
paper have been studied extensively from more than one viewpoints, but we
have been concerned only with results associated to the main problem stated
at the beginning. For information concerning other viewpoints, we urge the
interested reader to consult A, Macintyre’s excellent survey of the subject

([8]).
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ON THE MAXIMAL ORDER OF
CERTAIN ARITHMETIC FUNCTIONS

Aleksandar Tvié

ABSTRACT. An upper bound for f(f(n))is obtained when f(u) belongs to
a certain class of multiplicative functions. Also the maximal and average
order of Q(n) and Q(Q(n)) are determined, where QQ(n) denotes the number
of distinct exponents in the canonical decomposition of n.

It is woll-known (see e.g. lardy and Wright [3]) that

log d{n)loglogn _ ., .4

(1) lim sup
i logn

where d(n) denotes the number of divisors of n. A more difficult problem is

to determine the maximal order of d(d(n)). In [1] P. Erdés and the author

have shown that

1/2
log n log, -n) /
loga n

(2) log d(d(n)) < (

where log, » = log(log,_, r) is the J-fold iterated natural logarithm of @,
and f(x) < g(x) (same as f(x) = O(g(x))) means that |[f(x)]] < C'g(x) for
some (' > 0, g(x) > 0, & > xg. The upper bound in (2) is certainly close to
being best possible. Namely if one takes

N = p’l"_lyﬂl'”_l ---pff"”1. r— 00,
where p; is the j-th prime number, then
d(N)=pip2-prs d(d(N))=2",

JE——
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But since from the prime number theorem (see [3]) it follows that
Pi = k(logk + O(log log k).

we have, with #(x) = Z:I'<:" log p,

log N = Z log pr — B pr) Z Ilog® ko + O(r* log » log log 1)
k

k<r
[ log log
= —r2lag r(1 4+ O (M) ).

2 log r

Therefore
BT N )1/2 : log. \
(3) 'r:w(N):M [_}_()(L!"-‘ )
log, n log,

where w(n) detiotes the number of distinet prithe factors of n. This gives

. 2og 2(2log N 1172 7, 6

which was alreddy khown to S. Ramatitijan (see [5]).
P. Erdds and [, Kitai [2] proved that for evety ¢ > 0

]dg d(r}‘(w) < (](]g n )1/0”,.+,;

and that . ,
ldg d") (1) > (log )=

for infinitely fiidiiy #; Whets is tlie +-fuld itebated divisot finction and is the
r-th Fibonacei vtimler: _Tlu—!ir" method, libwever, does not seem to yield any
improvement of (2). €, is r-th Fibnatel tHitibos: oo B e = 0o (0 2 1),
Theit method, however, does not seein td yield any improvement of (2).
The argumerit in [1] that led to (2) dépetided on an upper bound for

(5) Q= 0(5;4) := Z L

25

where n > 1.1 < 5 < log n/log2 and
a —1 %] ‘l!-_!'.' r!,.
(6) =P Py ey
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is the cationical decomposition of n. As one trivially has n > 2925 it follows
that

log n

?hlg'z

Q < (n = 13

but a slightly better bound also holds. Namely (6) vields

1
logn > Z a;logp;, > 8 Z logp = SO(py) = EHQ log ()

> S P<ipe

for Q > Qp. Thus @ < Q1 = ((5.n) where (2logn)/S = Q1log@Qq. U
§ <log?n, 0< A< 1 then

2log Qq > log Qy + loglog Q1 > log2 4+ (1 = AYloglog n > loglogn,
hence logQ)q > loglog n, which gives

IU!_’; (2

(7) Q(5.n) < (1< 8 <lognl< A<l).

Sloglogn

If a(n) denotes the nimber of non-isomorphic abelian {i.e. commiutative)
groups with n elements, then a(n) is a multiplicative function (meaning
a(mn) = a(m)a(n) il m,n are coprime natural numbers) and a(pk) = P(k),
where P(k) is the number of partitions of k. It was shown in [1] that with n
cletents. then a(#) is a hniltiplicative function (meaning a{mn) = a{n)a(n)
if m.n are coprime natural iumbers) and a(p¥) = P(k), where P(k) is the
futiiber of partitions of k. [t was shown in [1] that

(R)  wla(n)) < (log n)**(log, n)~%, logala(n)) < (log n)T/R(tnggn)—('
with B = 11/8,CC = 19/16. in what follows a variation of the method
developed in [1] will be used to prove a peneral result for iterates of certain
arithmetic futictions. which il the case of the function d(it) yields the slightly
better values B = 7/4. C = [1/8in (8). Perhaps the cortect values of the
exponetits of the logarithms in (8) are Both 1/2 (they catitiot be smaller than
1/2). If true, this cotijectute seetns difficult to prove. [1] will be used to prove
a getieral result fot iterates of certain atithinetic functiotis, which in the case
of the fuiiction a(n) yields the slightly better values B = 7/4, 0 = 11/8in
(R). Perliaps the correct values of the exponents of the logarithins in (8) are
both 1/2(they cannot be sifaller than 1/2). 1f true, this tonjecture seems
difficult to prove.
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The functions a(n) and d(n) belong to the class of arithmetic functions /.
which contains all multiplicative, prime-independent functions f(n): N —
N such that

(9) T = glk). gk) < e (0<e< 1, 4>0)

for all integers k > 1 and primes p, where g(k) € N. As we have d(p*) = k+1
(9) holds in this case for anv ¢ > 0, and in the case of a(mn) it holds with
¢ = 1/2,since P(k) < eAVE (see [5]). A simple proof that

(10) I sup M -
Th=— 1% I“g n

il fin) € I was given by P. Shiu [6]. We shall be interested here in the
maximal order of f(f(n)) when f(n) € F. Lack of information about the
arithmetic structure of g(A) makes this, in general. quite a difficult problem,
Even in the relatively simple case of d(n) the existing bounds (2) and (3)
are of a different order of magnitude. We shall prove an upper bound result,

contained in

Theorem 1. If f(n) € I and ¢ is given by (9), then

(11) log f(f(n)) < (log 'r.u)”+"""*"-_)(Iug.§2 'u)("u_"”/g.

Proof. We shall prove first that

(12) w( f(n)) < (log n)"‘“”g(lugz w) et

]

which seems to be of independent interest. Lot the a;’s denote the distinct
exponents in the canonical decomposition of n(n > ). Since

& logn
wlmn) < w(m)+wn), wn®) =wn), win) € ———,
log log n
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we have, for suitagble integers 3; > 1,

w(f(n) = Hy-“-(a,}1‘[(-:“'(”.,-) < Y wlata))+ Y wlla

w;<S 25 <N i =S

1th 5 Z L L”' - Iugn,

O(log log n)

- ot 5 Z Z al i Z a
o J=0 WS KPS log, i, >(log n)3+e)f4 log a;
getl O(loglog 1) gje e ) »

& log 5 + ,Z-.:’ W(J(Z’s n) + (log n)°Q((log )3+ n)
s UL giege log n i

< log 5 b gu log 2.1',5'1,;;]03; " + (logn)t 7
Gred j_,;:'-l log n

+ (logn) 3t/

= log S o log 5 log log n

where summation is over j such that 27¥18 > (log n)B3etD/4and where we

used (7). Now the choice
¢ ( log n iyt
© \loglog n

gives (12), since 0 < ¢ < 1. To obtain (11) from (12) note that, if (6) holds
(the exponents now do not have to be distinct), then by Holder’s inequality
and (7) it follows that (£2(n) is the number of all prime divisors of n)

(13) log f(n) < AZ« < A(SUn)) (w(n)

In (13) we replace n by f(n). use (12),(10) and the fact that (n) <
logn/ log 2 for all n > 1. We obtain

log f(f{n)) < (ﬁgi) ((log )tV (loglog n) =L+ D/2)1=
' log log n

which gives then (11).This ends the proof of Theorem 1.
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We recall that a(n) € F with ¢ = [/2, 50 that (12) and (1 1) yield B = 7/4
and ("= 11/8in (8), as already mentioned.

[t follows from (10) that (11)gives anon-trivial upper bound for log f( f(n)).
However, Theorem | certainly does not resolve the problem of the maximal
order of log f( f(n)), whose solution requires additional information on the
function g(&) in (9). To see that F(f(n)) may assume both large and very
small values infinitely often if f(n) € F. we present the following two exam-
ples.

Example 1. Let fi(n) € I with fi(p%) = g1(k), G(l)=g(2)=2 g (k) =
[ ] for k > 3 and a fixed ¢ such that 0 < ¢ < 1. where [#] denotes the
integer part of r. Then ifn = (pypy - - P ) (KN — ) we have

fi(n) = 2K, Fi(filn)) = [r"‘-r]. logn = 20(pr) ~ 2K log K.

Thus for infinitely many n we have

(14) log fi(fi(n)) > (I_]“}L)
og logn

By construction the constant ¢ in (14) is. for Ji(n), the same as the one
appearing in (9). If we compare the bounds in (1) and (14) for log fi( fi(n))
it is hard to tell which one lies closer to the true order of magnitude of
log [i( fi(n)). Although gy(k) in this example is of simple form. its arithmetic
structure is obscure, and for this reason the problem is a hard one.

Example 2. Let fy(n) € F with
—_— | & #2
L) =1 _
2 Ry w=
In the previous example the function Si(fi(n)) exhibited large values, hut

in this case we clearly have

liwinf fo( fa(n)) = 1, lim sup ol faln)) = 2,

TL==+ 1 =120
since fo( fa(n)) equals either 1 or 2. Here. at least, the problem of the
maximal order of fo( f(n))} is solved. Note, however. that fa(m) itself takes
large values, since by (10) one has
. log fo(n)loglogn  log2
lim sup = —.
iR logn P

Related to the functions w(n), Q(n)is the function ()(n), which for n > |
we define as the number of distinet exponents ajin the canonical decomposi-
ton (6) of n, and for convenience we set (J(1) = 1. Note that the function
(1) is neither multiplicative nor additive. We shall determine the maximal
and average order of ()(n) and Q(()(n)). The results on the maximal order
are contained in
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Theorem 2. Forn > n, we have

¥ 1/3 >,
(15) O(n) < 2 ( log n L4+0 log, n ,
log, n log, n

and equality holds in (15) for infinitely many n. We also have

ol i\ 12 i
(16) Q(Q(n)) < (')}I(:'"'?:") (1 +0 (—4: ’i“ :))
0g, 083

and equality holds in (16) for infinilcly many n.

Proof. Take

(17) n:p}p::---p‘}::, K — o,
Then
(18) K =wn) =0Qn). QQ(n)=QK).

But from (17) we have

(19) logn = Z jlogp; = Z J(logj 4+ O(logsy 7))

i<K <K
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= %h"’ log K + O(K*log, K),

which gives

¥ 1/2 ) .
Qln) = 2 ( log n ) (l 40 (lng:‘ n))
log, n log, n

for n given by (17), that is. for infinitely many n. From (18) we have

o o o flog K 172 (1(:g3 K))
Q@) = Q) =2 (lng_, I\’) (l +0 logy i

for infinitely many A" of the form

(20) K = p{p'; ceep, T — 0.

But from (19) it follows that

log K = %lngi i+ Ology 1), loglog K = logy n + O(1).
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Inserting those values in the expression for Q(Q(n)) it follows that equality
holds in (16) if n is given by (17) and Kby (20).

To obtain an upper bound in (15) note that if (J1sJ2s-.21Jq) is any per-
mutation of (1,2,.... Q)and I <ap <+ <ag(Q = Q(n)) are the distinet
exponents in the canonical decomposition of n, then

w;, > i LR [—

Thus we have, for some permutation {219id00s o5 0 b0l (1,200 . /Q);

«Q (&} ¢
logn > Zu,lugp.}l > Zﬂil('j_’;])(b)_j_F] > Z t1og po g

=1 i=1 i=1
Q Q

=Y (Q i+ )logp = Z(Q — i+ )(logi+ O(log, i))
i=] f=1

@ % |

= [ logi— ¥ dlogi+ O(Q%log, Q) = =Q*(log O + O(log, O)).

z§ g i Zla ogi+0(Q" log, Q) = SQ*(log Q + O(log, Q)

The above expression is similar to (19) and easily implies the upper bound
in (15). Since the right-hand side of (15) is an increasing function of n for
1 > ny we have

log (1)) g3 log., ()(n) )
Q(Q(n)) <2 ——— | — | |,
H@m)) < 2 (]ng._, Q(n) e log, Q(n)
and if apply (15) to the right-hand side of the last inequality, we obtain (16).
This completes the proof of Theorem 2.

To investigate the average order of Q(n) and Q(Q)(n)) we shall use the
approach developed by G. Tenenbaum and the author [4]. Therein an
s-function f(n) was defined as an arithmetic function for which f(n) =
[ls(n)), where s(n) denotes the squarefull part of n (s is called squarefull if
s = Lorif p> | « whenever p | s, p a prime). Thus afn) and n) - w(n)
are both s-functions, the former being multiplicative and the atter addi-
tive. Now (Q(n) is neither multiplicative nor additive, but it turns out that
it is "nearly” an s-function. Every n can be uniquely written as n = qs,
(q,5) = 1, where ¢ = ¢(n) is squarefree (meaning that it is either 1 or a
product of distinct primes) and s = s(n) is squarefull. But then

(J('n):{ L+ Q(s(n)) if g(n) > 1.

o Q(s(n)) if g(n) = 1.
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Therefore

Y Q)= (1+0Q(s) > L+ Q).

n<r s<u l<n<a /s (q,5)=1 s<w

We evaluate the sum over ¢ by (1.4) and (1.5) of [4], noting that 3> . 1 <
V. We obtain

(22) Q)= (1+Q(s)x

n<a s<r

GO

)
nm-s

[T+ ") + OtB(s)s™ et P log s

pls

with
Biw) = H( 1 4+ p—‘/“’.

Pl

To estimate the error term in (22) we use (15) and

S Bls)s < [0+ Biw Y ) < log .

s<w p<ar m=2
In a similar way we may evaluate the summatory function of Q(Q(n)). The
expression will be similar to (22). only instead of 1 + Q(s) we shall have

Q1+ Q(s)). We obtain

Theorem 3. We hawe

Z Q(n)= Dax+ ()(.1']'/2 lu;_{r)/l‘, x(log, .::)‘1/2).

n<r

X

5 B I+ Q(s) o
l)_w__z‘ﬁ H(|+p j=1.

$=1 .,1|3
Z Q(Q(n)) = Er+ ()(.‘r]/"’ log* x(log, .::)]"f!{logg ;::]"1/'2 )

n<r

# iZ(JU+HQ(H))H“+P—1)*|_

e
s=1 pls

[t may be noted that by similar arguments one also obtains

(23) Z | =dyr + (){.rl”! ]c_)g! @),

nS.r,LJ[u]:k
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where the so-called "local density” d}, is given hy

)

O |
i = — - p-1)—1 RS
== II  -TIa+»™ (k> 2),

s=1.Q(s)=k=1" p|s

and dy = 6772 (since Q(n) = 1 il nis a power of a squarefree number). The
error term in (23) is uniform in &, and each d; > 0. since for any given & > |
the equation Q(s) = & = | has a solution in s. namely

e i I3 o
=P Pl
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UTEPATUBHLIE AJITEBPBI ABTOMATOB

B. B. Kynpasues

PE3IOME. B paboTe nNpuUpBoJATeA OCHOBHBLIE pesy/hTaTbl MO rpobJe-
MAaM BLIPAIMMOCTH WM TIOJHOTH JJDT MTePATUBHEBIX anrebp aBTOMATOR,
modiyuenble 3a nocdaeane bojee, dem TpUALATL JeT, T.e. 3a nepuoa
ROAHMKHOBEOHMAW CTAHOBJICHWA TeOpPUA alTOMATOR. OnucaHve CBOMCTB
(YHEIMOHAILHBIX CHCTEM ABTOMATOR BeASTON 115 MOJIEJLHBIX CHUCTEM,
YHOPAJSOYEHHBIX (10 MCPe HAPACTAHAA WX CIOAKAOCTH. C'mavana pacc-
MATPUBAIOTCH aRTOMATH Des mTaMATH, T.e. pynkimmn k-3HauHOKW JTOTHUKA,
saTeM aBTOMATHLI ¢ OTPAHMUCHHOK NaMAThIO, T.€. YKasaHHbIe (pyHKIHMM
C 3a0eprRKAMM, M B 3AK/110He e - — KOHeUHLIE ABTOMATDL, T.e. aRpTOMAT-
Hble (hyHKIMA.

Bsenenue

[MousiTHe ABTOMaTa OTHOCUTCH K UACNY BamHeAlIMX B MaTeMaTHUKe.
OHO BOIHMKJIO Ha CThIKe PA3ibIX ee DazlelloB, a TakKe B TeXHHKe, bu-
odorvy ¥ aApyrux obnactax. ConepHaTebio asToMaT UpelcTaBIseT
coBoit yeTpolcTBO ¢ BXOJAHBIMA U BHIXOIHLIMW KaHaTaMU. Ha ero Bxobl
NOCHCMOBATENLIO TTOCTYHAcT AHPOPMAalIn, KOTOpas nepepabaTbiBaeTCa
MM ¢ YUETOM CTPOCHUS HTOR DOCHeAOBATEILIOCTA U BRLIACTCA qepes
BBIXOMHBIE KaHAJBI. DTWU YCTPORCTBA MOTYT HOMYCKaTh cOSAMHCHAE UX
kanados Mexy coboil. OTobpakerne BXOANBIX nociieoBaTelLHOCTeR
B BBIXOHBIC HASBIBAIOT aBTOMATHOR GYHKUMER, a4 BOZMOKHOCTEL NOTYHe-
HUsl HOBBIX TAKUX OTOODAKCHAN 30 cUeT coeMHenns aRTOMATOB IPUBO-
AT K adreGpe anToMAaTHLIX (yHKIKHA.

('aMy ABTOMATHI M UX adreOphl Haualld UCCIeoBaThesl B TPUIALATHe
FOAB TEKYLLEro CTONeTUA, 10 0cobDerno akTuio, — B Heprol 50-x
roloB.

OCHOBONOAATAIONLY IO POJL 3ACCH CHIFPatn paboTh A. Tewpunra,
K. [emrora, 9. Mypa, (. Kauau u apyrux asTopos 3HaMEHUTOTO
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chopauka " AproMarn” [1]. HMocaenyiomme PabOTL 10 M3yvyenmo a-
rebp aRToMaToOBR BeJUCch NOA GOALWMM BAUSHUEM M3BECTHOM CTaTLu
C.B. Hononckoro (2] no reopuu pyukumii k-snavanoit normku. Takue
DYHKIMM MOTYT PaceMaTPUBATLEN KaK aABTOMATH Des naMsaTH, K KoTo-
PRIMWA TIPUMEHAIOTCSA onepanuy cynepnosuumu. Bosuukimme s TAKUX
(GyHKIMIA nocTanosKy 3agayu o BHIPAZUMOCTH, nodnoTe, Gasucax, peurer-
RO SAMKHYTLIX KJIACCOB MU APYTHE, a4 TAKKe PasBUTLI} anpgaparT coxpa-
HEHUA NIPCAMKATOR KaK KIIOYeBOR AN peleHus »1ux saay. OKa3aJJnch
BECHMA JIHCTBOHIIBIMM M JUIA anreGp aBToMaTOR, HAABIBACMBIX JlaJiee
Gy HRIMOHANBHBIMU CUCTEMAMMU. [Ipn aroMm noa suipasumoctsio non-
MMACTEN BOSMOKHOCT HONYUCHUS GYHKIMHA OLHOIO MHOMKOCTBA Hepes
APYTOe ¢ NOMOIbIO 3allaHHLIX onepammi, a Hoa NONHOTOH — BhLIPa3u-
MOCTL Beex pynkuaid vepes saganunie, B pafore wiyvenme UTePaTUR-
HbIX il‘J[]’l‘r)p apToMaToR OCYHWECTBAACTCH Ha PAILE MOJCIHBHBIX ()rl'lx(‘l'{'l‘()li,
Hatuiasn ¢ aBToMaToB 603 HaMATH, T.e. (yuKUMI k-3paun0d JIOTMKH,
FATEM U ABTOMATOB ¢ OFPAIMYeHHOR NaMATHIO, T.e. (GYHKIAK Bpe-
MEIMHBIMU 3aNCPKKAMY, Jaee A0 KOHOYHLIX aRTOMATOB, T.0. ABTOMAT-
HBIX GYHKIMIA obmero suaa. B kavecrpe onepaLuii BLICTynaor cynep-
HOSUIMKI, a B NOCHLIHEM ClyYae — ee U obBpaTHAd CRAsh.,

Ilns asToMaTOR O3 TAMSTH NPUBOLATC N hyHAAMenTATLHBIE Pey -
Tarer 9. Ioeta o erpoenun PEMIETRY 3aMKHY ThIX KHaccoB OyJIeBCcKux
DYHEIMM, 3HAKOMCTBO ¢ KOTOPBIMU Coroms BATPYMHEHO B CRIZM ¢ OUO-
TAOTPAGUUeCROR peskocTbio Kaur [3,4], B KOTOpWIX oM COMEPHKATCHA,
3aTeM HUPUBOINTCA HAMBON e CYIMECTRBOHHLIC PesyAbTaThl s ()Y HKIMH
k-snaqnoit soruku.  Wx OCHOBY COCTABIACT NOAXOA, passuTbit A.B.
Kysaenoswim u C.B. H6a0HcKUM M OMAPAIOUMACH Ha TOHSTHE Mpe-
HOMHOPO Kjacca.  nsi KOHOUHO-TOPOKACHHBIX CUCTOM TAKAX by KM
COMERCTBO NPEMIONHBIX KIAccons obpasyeT Kputepuasbayio CUCTEMY;
APYTAMU - CHOBAMU, NPOUIBOJILHOE MHOKECTRO ARIACTCH HOMHLIM TO-
HHOTORLA, ROPLa HE SIBIASTCA NOAMHBOKCCTBOM HY OIITOTO TPeNonHoro
Kiacca. MHOKeCTHO 9THX NPEUNOTHBLIX KIACCOB OKA3ANOCE KOHEYHLIM
M3 UX XAPARTePUIALMN BUITCKACT AJrOPATMUUCCKAS DAsPelmMOcTh
saftavy o noanore.  Ha atom nyru C.B. $H6n0uckui NYyTeM SIBHOIO
OIMUCAHUA BCEX NPEANOJNHBIX KIaccoB Oblla pellena 3alada o moJHOTe
I PYHKIMA Tpexsiaddol JOruku, a sMecte ¢ A.B. Ry:suenossim na-
AACHBL OTACALIBIC coMeReTBa NPeJNOIHBIX KIACCOB U TPOU3BOILHOM
KOHEYHOR 3HAYHOCTA. 34TeM YCUIUIMMU MHOFUX ueesenosateneii [H-9]
NOCACAOBATENLHO GLUIM OTKPLITHL HOBBIC TAKME COMORCTRA, A 3AKII0 Y-
Tedbibie nocrpoenus uposen U.PoseuGepr [10].

[lns aBTOMATOB ¢ OrPAHMUCHON TAMATHIO HPUBOIAATCH POITCHUS 3a-
AAT O HOMNOTE U BLIPASUMOCTH, & TAKKe 3aJaUh 0 cAabbix BAPUATAX
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ATUX MOACTAHOBOR [l l]. [Tol AaBTOMATOM TAKOIO pola DOHAMaeTes Dapa
(f.t), roe f — QyHEOMS L-spaunoid JOorvkr, a f — BpeMs ee Bbiunucie-
HWAA. (nabas MOJHOTA O3HAYUACT BOIMOARHOCTL nojayvedns U3 MCXOAHDIX
gap ¢ DOMOWIO Cyuepnosuimit moboi GyHKIMM XoTh ¢ KaKOHW-HUOY Ib
sasepxroi. [onpobuo paceMaTpuBacTes coyuail GyuKuMil IBysnadHon
AOrMKY. B KadecTse allapaTa PelieHUs 34ech TakAe UCToJb3yloTed
mpeanodnbe kiacchl. OTamume sToro ciydas oT asToMaTon Bes maMaTh
COCTOWUT B TOM., YUTO CeMOMCTBO Il])(-‘Jl]](lJllI]:lX KJACCOR OKa3aJloch cueT-
HBIM. DBMecTe ¢ TeM. 3agaua o claboil noJgaoTe 0CTAaeTes aJlropuT-
MUYUECKHA Pa3pelmMoi.

Jpyrum o6obmeIreM aBToMaToR Dot AMITU ABJIACTCS KJIace JIMHei-
ABbIX ABTOMATOB ¢ OUepaLlusiMKU Cyneprnosmumm 1 obparnoil coaszu. Jlas
HTONO Kilacca CUTYallni ORKASLIBACTCS ll(lX()H{(-‘ﬁ e ('le‘-lﬂl‘/‘l aprToMaToB ©
OTFpAHMUCHHONR maMAThio. Lakde ylaeTcs omUcatne Beex MpeJnoIHbIX
KJaccoB, KOTOPLIX OKA3LIBACTCS CUHCTHOC YHACTO, OTRKYy/lla TeM He MeHee
M3BAEKAeTCs alTOPUTM PacnosiaBaius HOJHOTH KOHETHBIX CACTeM aB-
tTomatos [12].

[Tepexon k obmemy cliytailo aBTOMATOR JOCTABIAET ye KOHTUH-
YaJLHOCTH MHOAKECTBA NPEIIOJIHLIX KIacCon [13] ¥ alropuTMUUECKYIO
HepaspelMMOcTh 3alati o nojnoTe [14]. ToaToMmy akTyalbHBIMM €Ta-
HOBATCH HNOUCKHA ﬂy’l‘Pﬁ. CHAYAIMNLIC RKaKk ¢ ocjabneauem CBOMCTB NOJ-
HOTBI. Tak U, HAODOPOT. oboralenveMm »TOro HORATHAA.

[lepBoe HAIPABACHUE PEATRIYeTC MYy TeM PACCMOTPeRNA SA0a8W O 1=
NnoJHOTeE U A-[!(_)J‘[H(PTP. COCTOANIMY COOTBETCTBEHHO B U])OHI?])H(’ Hl:)]')(')}']'{-
JNeEVsT BEeX OTODpaKenuil ia cA0BaX JUIMHBLL 7'y & TAKKe TakuX oTobpa-
SKOHWI 0py M1060M GUECHpOoBanHoM 7. OCHOBILIMU PesyIbTaTaMi 3AECH
SABJISIOTCH ABAOE OMACAHMe BCeX 7= W A-TPenolibix KIaccos U ajro-
PUTMHUUCCKas HOPA3PeUIMMOCTL $alavu 06 A-noanote [15].

Bropoe HanpasleHHe DOAIMAyCTes MyTeM paccloeHns Beex KOHEe-
HbIX CHCTEM aBTOMaTOB. noecne/lyeMblX Ha noJanoTy, Ha TUIIBL. B OJIAH
THI OTHOCSATCH BCE TAKAC CUCTEMBL. KOTOPbIe COlepHaT saJlaHHBIA KJace
Mocta aptToMaToB Oe3 namaTh. OQCHOBHLIMA pesydbTaTaMW ABJACTCH
ABHOE YKA3AHMEe FPANMILI OTLCJTUMOCTH AITOPUTMUMECKN PaspeliMMbIX
CYUAeH TUINOB CUCTOM aBTOMaTOB Ha Aaarpamme [MocTa. DTa #e Tpa-
HUIA OKa3biBACTCH BEPHOR W s clydan A-noanoThl [16].

Hapsiay ¢ NpOABUACHMIMU B PEWICHAN OCHOBHBIX saJlad 1o npobd-
JeMaTUKe, CBSA3AHHOW ¢ BLIPOIMMOCTLIO W noJanoToi, B obszope 0HO3-
HAYAIOTCA Te HAlPAaBICHU. KOTOpLIe elle paspaboTalbl cnabo ni He-
nocTatouno. Vsnoxenne sefeTes TONLKO U MOASThHBIX cayuaen (y-
HKIMOHAJbHLIX CUCTEM aBTOMATOB. OOue DOCTPOCTAA, OCYIecTRIIeH-
Hpie apTopoM B [1T], 34ech He 3aTparnBaloTcs.
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1. OcHOBHBIE TOHATUA U 3amadmn

Nyere ¥ = {1, %...} Ny = {0} UN, Ny = N\{1}. mns b ous N
nogoraem N/ = {1,2,...,h}. Pacemorpum HeKOTOpoe MuoxecTso M u
orobpaskenne w : M — M, rae M™ smaseres n-0i nekapToBoil cre-
enblo MHOkeeTBa M un € N. Ilyers Py — MuokecTso BCEX TaKUx

OTODPAKCHUA w 1pU N100OKIX YRasaunuwix nou Q C [y,

Pacemorpum yuusepeasniyio anrebpy (y.a) M = (M.Q), s kotopoii
M wasbisaeres nocurenem, 0 — knaceom onepaiuii. (' KasIbIM 10MH-

omecTsom M C M eBAKEM HOCHOLOBATONLHOCT MHORKECTR F”, 1€ N,
FAKUM 0D pasoM.

Honowum MY = M. Jlanee. muomectso :_“IT(H-” COCTOUT W3 CBeX
FARMN 20CMCHTOR 1 u3 M, s KOTopRIX nadiayres w us O u My, . .
My, W ;1_1_“). UTO e = W, My oy, Obosmaunm vepes I“(;W]
MHOMCCTRO u‘,;":',ﬁm

-y

Herpymo suaers, uro Iy swaseres OHEPATOPOM
HIMURaUUS Ha MHOKeCTRe B(M ) 06pasoBalHoM BeeMy 10 AMHOKeCTBAMM
MuozRecTsa M. Tem cambiM ans g Beeraa BLmOAHenn yenosus [ (M) D
M, 1(1(M)) = L,(F), a raxke ccan BT 2 M. 1o 1,(M) D I,(M).
Muomwecrso 1o( M) naspmactesn saMblKaHuem Muoosecrsa M, a camo M

HOpOHAAIOIMM MEOMKecTBOM st To(M). Muomectso M HABLIBAOT OS]
BaMKEny LM, ccnu M = fo(M).

Hycrn (M) — MuokecTso weex BAMKHY THIX TOAMHOMKCCTHE B M.,
Posopat, uro M BLIpasuMo vepes M. ecan M C I,(M). Mnowkeerso
M naspiBaeTes nomnmm, ecam LAM) = M. Monnoe MuomeeTno Ha3bI-
BACTCH DABUCOM, ecan 1106068 ero cOBCTBEHROC MOAMHOKOCTEO He B sio-
TCH TTOJIHLIM.,

Ocnosinim npoGaemamn s M., kotopuie Oysy T unrepecosarth nac,
SIBIAHIOTCS NTPOOIEM I BHIPASUMOCTY U NOJNHOTBLL. a Takke Dasucon, |2e1-
CTRA SAMKHYTHIN KIACCOB, MOAMGUKAIN UX U HEKOTODbIe NPUMBIKAIO-
HIMC K HUM BOTIPOCHI.

[Ton npobHiaeMol BLpasMMocTy NOEUMaeTe s YEasanme peex nap (M,
M) raknx, wro M BhIpasuMo yepes M: nog, HPOHIEMOR TOTHOTH —— yKa-
SAHAE BCEX NOJHLIX HOJAMBOAECCTR] 11011, npnﬁuvmnﬁ Oa3UCcon OIMMUcanme
BeeX DAZMCOB. OCHU OHM CYIMeCTBYI0T, 10oJL NTPOHJACMOR  peleTkr
MocTrpocane P TR Beex BAMRKHYTHIX RIlaccon W HAXORITCHU e ¢ [‘l!l)l.;‘[-
CTH.

dnaune pewerkn S(M) naer pPetenne npobuaem BLpasuMOCTH M o -
norel. Tak, supasumocts M depes M osnauaer nposepry [,(M) C

[M). s pewenns NPOBAEMBL HOAHOTHL UCTONLAYETCS ¢TI0 4y 10 LA
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cxemMa. Cuerema Y C Y(M) nasopem KpUTepUabLioR (A-CUCTeMO ),
ecan JHoHoe MHOKECTBO | 7 MO0 TOYHO TOTAa. Korta s JoGoro M
uz O/ sbmonueno M ¢ M. Sleno, wro ecan S(M)N\{M} # 0, uto nanee
npemnonoraercs. o S(M)\{ M} ssaserca k-cucremoit. Herpyano su-
HeTh, YTO JlyaldbHBIe aToMbl peeTin (M), RasblBacMble Takke mpe-
JMOJHLIMM KJaaccamu, sxoT B aobyio k-cueremy. Ilyers S (M) —
MHOKECTBO BCOX HPeJnosibix Kiaccos d Yx(M) — MHOKeCTBO Brex
KiaccoB u3 S( M), He sSBASHONUXCHA DOAMHOKCCTRAMW HA OLHOTO Npe-
DOJMHOrO Knacca us (M), Herpyano yOeMThes B cliejly lomeM yTBep-
AHICHAW .

IIpemmomenue 1.1. Muowccmao N (M)US= M) obpasyemn k-cuememy
ai.a. M.

Ocobblii UHTEPEC BHISLIBACT CUTYalust, Koraa Ss(M) spasercs myc-
THIM MHOKCCTBOM, TAK Kak B 9ToM ciydae cuctema Y-(M) obpazyer k-
CUCTeMY., YTO O3HAYACT CHe/IeHUe 3aaun O NOJHOTe K OINACcanuio Beex
UPEANOTHBIX Kidaccos. OTMeTUM OJMH BaXHBI ciaydall TaKOTo pola.
y.i’l‘. _,‘M Ha3bIBaeTC s }{('JHE“-III(l*lltl])UH{Jli‘lIH(lﬁ. eclin cylecrpyeT KOHeYMHOe
noaMuokectso M' C M. koTopoe sSiBAseTCs TOJIHbIM.

WspsecTho [IH] CJHeJIYI0NY e VIBepKIACHAe.

IIpemmomenne 2.1. Leaun y.a. M gaagemes voncuo-nopo.w0eunot, mo

=

V(M) obpazyem k-cucineat.

OTMeTHM, UTO B OBIIEM CJIyHae 9T0 YTBepKIeHre He asasercd obpa-
TUMBIM. PaceMoTpuM Tereph cayudaii, Korda Muo#ectso M cocTouT u3
gyukumit. On 6ymer ans nac ocuosabiM.  Hpwu 21om, y. a. M Bynet
HA3BIBATCH (YHKIMOHAILIOR cueTemoi (§.e.).

[ycrs £ HeKOTOPOe MUOACCTBO W GyHKIns [ uMeeT BUIL f:E™ =
E.rne n € N. Hyers 7 = 4w uz oo} adasnT nepeMeHHBIX U €O
suaveunsmu B £, 0 € N JList sanven gyuskuuu [ OyseM noib3oBaThesd
BoipaskenueM f(ug ... ). Raace Beex Takux Gpynrmuit oHoznatMM
gepes Pgp. Bo uabekenne cJomibLIX MHAPKCOB Y [1;-,']'191»1@.'[1}15}( u; Hyaem
HCTMOJAL30BATEL I8 UX 0DOSHAUCHW METACUMBOIILL &, ¥, =, BO3MOKHO, €
WHJICKCAMM.

Cneaysn AWM. Mamwuen [19], ssenem s P yHapible onepauau i, 7,
A, V, KOTopble ONPeacsioTes CRe/y UM obHpasom:

(f Wy agss «oFn ) = Flas, @3, oo gy BN

(TN 1, Xy eay) = fla,m a0 0080 )3

(AF) X1 X2y e eslinot) = (21 21,22, 00 @ym)y e 0 > S
(nf)=(7f)= Af)=F, ccnun =13

(V ), 2, .....a“..r-h“): Fligg g scevilingd 1t
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Popma 21ux onepaumit yrounser onepaimmn us [13].
Boeaem s g a Gunapiyio onepammio * tak. Jlis Gpynrumi [y, s,
sy ) W og(Egq, T2y e os By ) NONATAEM

(!’ * 0N 2, T3y 0y y, gty on Wy ) = f(ﬂ(:rn-{-l s W 2y coy Wy )y Xy eay Xy ).

OnUcatibie ONepaimm Ha3bBAIOTEN, COOTROTCTBONNO, ¢ ABUTOM. TPaHC-
HOAUIMEH, OTORICCTRICHACM, pacimpeteM, M NoAcTaloBKOMU, a B co-
BOKYITHOCTH OHEPALUAMU cynepnosuimn. MuoxecTso »Tux onepa-
i obosnaumum Qe Hyers M C Ppow Io. (M) =M, rorna ¢g.c. M =
(M) nasnmaeres wrepartusnoi ¢g.e. [Mocera.

2. ®yurumu l-3HauHOM JOTUEHM

Cyukumn ws Prnasssatores Gyukumsmm l-suavnoi JIOPUKM, ecain
E=E={0,12,..0-1}, 1>2.

B aroMm cayyvae smecro Pp yuorpebasieres cumpon P doe. Pyr= (P, Q)
CHUTACTEN OMHOR U3 OCHOBULIX MoAedel urepatusibx ¢.e. Hoera (s
RPATROCTHL 1Lh.c. ). Ha M3YUCHUHM KOTOPOR GOPMUpOBATUCE npobuaema-
TMRa 1 mMetoast reopuu g, Fean M = (M. Q) v M C P, 10 M
HASLIBACM .¢.c. poa l. ROpOTRO M3N0KAM OCHOBILIC UTOMK WAy Yenns
Pr. kotopbie OyayT Bamon HaMm Js paccMoTpenns .. aBTOMATHLIX
hy HKIMA.

st P90 Hoerom (3] aaso noswoe pemwenme YHOMAHYTBIX 1PO6O-
JEM O TTIOJHOTE, BHIPASMMOCTH, DasncaX U PemeTRe SaMKHYThIX KI4cCoR.
OnumenM a1y pemerky, coxpamas ero oGo3HadCHUsL.

Pacemopum mioskectso () kiaccon

Ciy Ay Dyoiboy, O Sy, P B F2,

rae ¢+ = 1,2,3,4; j = L2, 3 v = 1,2,34,5: s = 1,2,....9: 1 = I, 3.:5,6:
i =0l 2en s B HE= 1B e

Pyurmmm s I naseiBaloTes PyHKuMAMU anreOpul noruku (§.a.i.).
Raace Py 9. Moer obosnavaer vepes (. Ranace (Y conepsut pee
d.a.n foorakne wro f(0,0....,0) = 0: ('3 — pee (¢.a.n., Takde, uro
Flikivess 1) & I € = @ U % Fosopsit, uto ¢ua.n. [ smaseres
MOHOTOHOM, ecllM BCerna ui Hepasencra a; < b; npu peex (= 1,2, .. T
caenyer, wro flay,...o,a,) < f(bye....0,). Kaace Al COCTOUT M3 Brex
MOHOTOIHBIX (a; Ay = CoN Ay Az = CaN Ay Ay = Ay N Ay, Kaace
Dy coctont us Beex guan. [ Takux, uro flaer,ooooy) = F(F, ... 750)
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rae (.a.Jji. T HA3LIBACTCSH OTPUILAHMEOM W 3a0aeTosl Tak: O=1, T =0
Dy = Cyn Dy; Dy = Ay N Dy, Kuace Ly coctour Uz Beex ¢.a..
f(1, @20y 20) = Ty +2a+-tayta (mod 2); Ly = (3N Ly Lz = C5Ndiag
Ly = LsN Ls; Ly = D30 L. Kiace Og cocTOUT U3 Beex .auil., CymecT-
BOHHO 3aBUCANMAX He BoJec. Yen oT ogHoro nepementoro; Oz = Ay N0g;
Oy = D30 Og; O5 = (3N 0g; Oy = Claifl Qg Oy, = i 01 Oy 07 = {0. l},
0y = 05N 07; O3 = Og N 7. Kaace S coctont us Beex ¢.a.n. BUla
2y V aa V-V iy, W KoHCTanT; S3 = ('3 N .56 55 = (4N Sg: 51 = 82 N.85.
RKnace Py coctonT M3 peex (.a.j. BAIa s1&aads .. &x, M KOHCTaHT;
P, = (43N Ps; P =CinPes B = PN ks, FosopsT, 4To (.a.u1.
YJIOBIETBOPSIOT YCNOBUIO 0l i € Ny, ecam jobule o nabopos, Ha KO-
TophiX oHa pasna 0, umeioT obutyio koopaunaty (. AHATOTAIHO € 3a-
menoit 0 va | onpenensierca csoidcrso A*. Kaacce F}' coctont B3 Beex
¢.a.1. co csoifctBoM a'; [ = Cy N FYS FY = A0 F5 B = FY N F.
Knace FY coctout ms seex doa. co csoldersom A% = €N B
F¥ = AN FY FY = FENFY. ®.a.0. ynosietsopaeT cBORCTRY a™, eciu
Bee HABOPBI, Ha KOTOpLIX oHa papia 0, UMeT 0DULY0 KOOPIMHATY 0.
Anagoruuno ¢ samenoi 0 na | ssomaren cpofierso A™. Ruace F© coc-
TOUT W3 Beex ¢.a.i. co cpoieTrom a™; F7¥ = (0 FP: £ = Ay 0 Ff®;

0 = Fron Fye. Knace FYY cocTonT u3 Beex ¢g.a. co cpoifcToM A%
FR = CynFe; B2 = Ay N g kg = Ego N F2e.

s [

Teopem 2.1. [3] Aas n. . . Py cnpasedauao:

ﬂ} MHONCCCTNBO BCEL AMANNYINOLE NAecos 8 IP-_l CHenMHo u f'OBH(H’ﬂ:E”L cC
Mmuoxcecmaom ().

6) waaces us Q 00pazyIoN PEWCINRY 1O BRAIUCHUK, npuscdennyo na
puc. I;

8) waxcOwi zamwnymoii wadce & Py umcem Oa3ue . MOUHOCIL €20
ace2da ne boaee, vem 4;

2) npobacmu noanomu U aspasuMmoci 0ag n..c. poda 2 npumenu-
MEABHO K NONEUHUBLM MO ACCCMABAM (@A, QAZOPUINMUNECCRU PAIPEUUMBL.

CpoicrBa o.¢.c. pota [ npu | > 2 OKasalluch MHOTO CJIOKHEe, Kak
270 ByIeT cJeJlOBATL W3 [1PUBOAMMBIX HUAKe yIBepHICHUHA.

O0o3HAUMM vepes Pf") MHOOAKECTBO BeeX pynsuvi u3 P, 3aBucamnx
ge BoJee, 4eM OT 7 MePEMEHHLIX 1y, M, ..y Uy

Acno, uto ymcno pgnl Gynrmait 8 P pasno T, CLYL Myers S;—
MHOMKECTBO BeeX (hyHKINN 1 I”i("]. KarJlasi U3 KOTOPbIX OPU HEKOTOPOM
i,i=1,2,...,n, pasaa u;. Ecoim M C Py u M koneuHo, To 4depes a(M)
0603HAUUM HAMBOMBIICe TUCIO TepeMeHHbIX Y GyHKaid uz M.

JList KoHeuHo-NopoRAeHol 1.¢.c. M pona l uycTs a(M) — naume-
HBIIee Takoe wMeno o, uto A sekotoporo M’ C M BBHITOJHEHO
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lo.(M') = M n of(M’) = «'. Hasonem nenycroe Mpogkecrso M C
P o M R-vmosectson 8 M. ecnm I, (M") PP = ppt g pt 4
l’d”('\“ MM obosnauns ero vepes ROM) - [lyeqy, Ro(M) (RoAM)
.5'['"‘”.11"'("”’). bynem rosopurs, aro dpyakuns f(ey,ay, ... x,) ns P
coxpanser RYM eeqn pis moBoro naGopa ¢y ukimii D12y enn sy U3
RM) ,H‘I”(’”] Oyuser sumosseno f(gy, g2, ..., 0,) € R*M) . Knace npeex
bymrunit mz M, coxpansionmx RM) . u6oanaumnm uepes J(Ro(M)y,
Hazonem K-muokecrso RealM)y MAKCUMMIBHBIM, CCIIA [le CYILecTRYeT
rakoro R-muosectia R.']"(A'”. UTO U(‘R;'(M)} D U(RM), Nyern R(M)

MHORECTBO BCOX MaKCMMadbibiX R-MBOKecTs, Ry(M) — MuokecTno
peex nap RYOM) s koToprix RYM) € R(M) U(R(M)) — muokectso
BEEX KJaccoB coxpadednt anementos w3 R(M). Hazorewm n.d.c. M
TPpUBMANLHOW, ecau M = Ig‘,(.‘v';{,) win M = g ({c(x)}), rae e(x) = e,
c € E Mommocers muokeersa A obosnaumm uepes |Al.

Teopem 2.2. [17] Eeau n. §. ¢. M = (M, S2e) poda | wempuenaasnas u
NONC '|'HH-'“H]H).M'(’J'HHHH. THO UWMEeCT Mecoe:!

@) U(R(M)) = Sr(M).

0) [U(R(M))] < 2R(a(M)),

a) ROM ) cmpoumes eddexmuano.

DTa TeopeMa SBISCTCH PasBUTHEM yreepmaennn A.B. Kysnenosa us
[2].
Cunencrsue. [Ipobacma noanoms das KONCo-noposedennue n.f.c. po-
da | aacopumatuncenu paspewuasa dasg anboeo .

Teopema 2.3. [17] [pobacaa avpasusmocmu dafi woneoms Muoxcecmea
RONCH0-10po. A unoli n..c. poda | arcopummuve ey paspeiuma dag awo-

noco .

Teopema 2.4. [20] Jax xaxcdoco | > 3 cyuecmayem n.g.c. poda l, das
WUN{H}'N}IJ" BUHILOANCHO!

) e uMecn enemnbal oo

0) e usmeem Gasue adaunol vonewnoi Mougnocu;

a) n..c. ne uateem bazuca.

Cuaencrsue. [20] Jlaa vawcdoco | > 3 pewemna AUMENYINVLL NAACCOB 8
e Prowonmunyaavia,

Rak yeranosneno s [2], n.d.c. Py ssaseres KOHOUHO-00pomaeHHOM,
NOATOMY JUIS Hee COpaBeIuBEL TeopeMbl | U 2, a s MHOKECTBA
((R(P))) naitaeno ero sisHoe onucanme [10]
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Peskoe ornuume cpobdicts Py npn [ = 2 u |l > 2 npuseno k pacce-
MOTPERUIO PA3HBIX BapUalUP 0CTHOBHLIX 3afad Uld O.(.C. TakAX, Kak
Heche JoBalnre Ha IoJIHoTyY CcUueTeMm lll‘\'llh'llldﬁ ¢ 3aJlaHHLIMA ('Ij(_)l‘;]("l‘Bil‘MM,
HanpuMep, cucreMm CHynenroro, cogepHalmy Bee oJHOMeCTHLIe (YyHK-
UM, M3YUYeHHe CTPOeHrA (pParMeHTon PeleTkU 3aMEHYTBIX KJaccoB U
ap. Kposme toro, uzyuanucn obobumenns P s suge n.¢.c. BHeoJHOPOIHLIX
GYHKIMA, TO CTh 3aBUCHILMY OT PasHbIX TPYON HepeMeHHbIX, 0DJlacTH
onpemesenus KOTophix pasiudunnl [1 7], a Tak&e pyHKIMA, DepeMeHHbIe
KOTOPBIX, KaK M CaAMKM (YHKIMKA, IPUTAMAIOT CUOTHOE UMCJIO 3HAUeHUA.

Hauwato pacemorpenue JAckapToBLIX cTenefeil Taknx obodmenuit u
Apyrux caydaes [22]. Ha 9TUX nanpasiednax ocTalasiuBaThes He Dy-
JIeM, a paceMoTpum obobuenne Qyukimin ns P, BO3SHUKAIOIMe 34 cyer
yueTra BpeMeHM, TI’)F‘ﬁ_\leIl[(-‘I OCst 4J15 UX BBIVMTUCJIeHM A,

3. PyHrUMU ¢ 3anepARKAMHA

Oyers fle1,22,...52,) € P ut € No. Mapy (f(x1.@a,...,25).1)
HasbiBaeM (QYHKUMeR [ ¢ sajepAiKoidl £ 1 MHOKECTBO BeeX TAKUX map
oboznavaeM vepes P, PacnpocTpanum na P onepanuu 17, 7, A u 'V,
mojgaras, ecan g — mobas ws aux, aro p((f,1)) = (p(f).1). Bpenem eme
OIHY ONePAINIo *c. HA3LIBACMYIO CUHXDOHHOR MOACTAHOBKOR, mojaras
s nap (fo8), (fit"), (fout’)e oo (fus ')y B KOTOPBIX MHOMKECTBA TepeMeH-
HBIX ¥ QyERIANA f1, fo..... [, HOHapHO He OePeCeRaloTes, BBHIIOIIeHHBIM
COOTHOMCHUE

(Frt) #e (o) (s t)s oo (Fan 1)) = (FUL fon s fudt 1),

MuoxkecTBO onepaimii 17, 7. A, V. # obosnauum depes (e 1 HazoBeM
omepalMsIMy CUHXPOHHON cynepnosuian. Tlyers M C Pym g (M) =
M. rorma ¢p.c. M = (M.8) naspisaem urepartusioin ¢p.c. Hocra GpyHK-
oMt ¢ sagepskamu poja [ (igae.ad.s).

KOpOTKO M3JOMAM OCHOBHBIC UTOTH M3ydeHus >TUX ¢.c. [11, 1%}

Teopema 3.1. B wowewno-nopowdcinoi n.g.c.g.z M poda l, I € Ny,
Mmuoxccemao S (M) woncwnio u cmpoumes sfdesmuano dag awbozo 1.

Teopema 3.2. Jlag xoncuo-nopoxwdennoi n.f.c.f.z poda | npodacms
ROANOML U BHPAILMOCTIL LALOPIIMUNCCRIL Pazpeiiums. 0.ag aw0boeo L.

Teopema 3.3. Jas vaxcdoso | ws Ny cyweemayom n.d.c.g.s. poda l, oas
KOTOpLlLY BLNoANEHO!

@) uMeemes cuemunil oasie;

f) uMeemes koweunntdl oae sadainol MougHocm;

8) HE UMECTNCA HAIUCA.
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Caencreue. Pcucmua samwnymua xaaceoa 8 Pp konmunyaasia 0ag acez

L.

[TpuMepomM KOHEURO-MOPOKACHHEOR 1L.d.c 1. stsnseres P = (P Qec).

Hust Py reopema 3.1, yrounaseres cuneayioimy obpasom.  O603-
Haunm gepes MU miowectso seex pyuxkumit f Takux, 4Tto npu Heko-
Topom 1 shinoareno (fol) € M.

Teopema 3.4. Muowecmeo M C Iy gaagemes noanvas & Py omovno mo-

eda, woeda Jo (M) = P u M D {(f. 1)}, ede [ & [,

[Tyerh M = (M,Qcc) u M' € M. Tosopsr, uro M!' smasercs cnabo
moaHbIM B M, ecan aas seskoi pynkuumn f s MY paitneres 1, rakoe
aro (fot) € Ja.(M"). Muomecrno M' naswisaeres ciaabo e no-
HBIM, ecqiu oHo fe enabo noJHoe, 10 IPeBpaacTes & TAKOBOe Mpu
Aobapiemn moboil napel uz M\M'.  Kaace BeeX Takux MBOKeCTH
obosnaunm vepes Y. (M), Ruace K C (M) nasuisaem ciabo Kpure-
PUAILHBLIM, ecn MHOKecTBo M aaasetesn cnabo HOJHHLIM TOUYHO TOT A,
Koraa Juist goboro T uz N(M) sumondeno M 2 T, OQuesuano, nas
cnabo Kpurepuanbioil cucertemnsl N oseerga semosaneno 2D Y. (M),

Teopema 3.5. Jas vouevno-nopoxcdcunot n.p.c.p.s. M = (M. ) poda
[ &unoane st noAoHeeuus:

i) Muonccemao Sep (M) Konwewno wan cucmito;

0) muomecmao Ne (M) caabo xpumepuannio;

a) Mronceemeao Yo (M) empowmes sfdenmuano.

Txeopem 3.6. g xoneuno-nopoxcdenwnnr n..c..s muna | npobacsma
CAAOOT NOANONBL AALOPUIMMUNCCKU PAIPCUUMA ad aw0bozo [

flsnoe onncanme MaokecTBa Yer (M) nonydeno noka aas [ = 2,3 [11,
22]. IlpuseseM 3aech omucaue caydasn [ = 2.

Hyerh M C Py u M € {(',(s, D3, Ay, L1}, obozuauum uepes M
MHOKeCTBO Beex nap (f, 1) rakux, uro f € M nt € Ny.

bynxums f(ay, o, ..., x,) Wi Py vasssaeTest -, (3-, y- WK - GpyHKIM-
eit, conn f(ay, @, .o ) pasnax, 1, 0 unu T coorsercrredno. [lycrs A,
B, T, D cyrh Knacesl BeeX a-, 3-, - Wy 6- GYHKUMAA COOTBETCTBEHHO.

Obosnaunm uvepes (' MHOAKECTBO Beex nap suda (fof 4+ 1), (e d 4+ 1),
(1,0).rne fEB, e, he A, t € Ny.

[lyers ¢ € {0,1}, oBossauum vepes E; MHOKeCTBO Beex nap BHIA
(£,0), GGyt + 1), (i,t), rae f € Ciga, t € No.

Hasosem (pyurimmio [ 4eTHOMH, eciid BLITOJIHeHO

.f(;1:15:1:21" 'w"*"lt) L= f(T],?Eg.....,.T.'u).
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MyeTs Y — MHOKECTBO BCeX UeTHBIX gy TKITANA.

Myets H muokectso seex nap suia (f,0), (¢, 0+1), roe ¢ € Y,f€eds,
t € Ny.

Jns kasknoro r w3 Ny oDospadum yepes / MHOMKCCTRO BCeX Oap BUAa

(fo (204 1)27), (228 4 1)2°), (41,0),

rne feD, pe A, e A tE Ny, s€ No\{0,1,2,...,7}.
Jlna kawanoro r uz Ny oDo3zHAUUM 9gepes W, MHOMKeCTBO BCeX map
BWU la
(F (204 1)27),(0.4), (L), (. (20 + 1)27), (9,0),

I‘,U.('-‘TEA'I L,DE’U h € M, fEA(].NEI’V{)\{O]Z }.y
Hy‘Th ["/ "“{(r (; .lr){ ‘] L] Eﬂ L].H /() /].... H, Wl.}

Teopema 3.7. [11] Hatccin mecmo pascncingo Cen(Py) = W.

3aMeTUM, 4TO SBHOE ONWCaHUe Vel Py )= W s moboro | umeetcs
HOKa JIAIIL B BUAJE OTASHLHLIX ceMelors cjlabo npenoibX KIaccoB
[17, 23].

Conep:RATeNbHBIA UITCDEC TPEACTABIAIOT APYTHE MOIUGUKAIAN 1P~
0BIeMbl TOLHOTL A0S 1.¢.c..3., paceMoTpertble B pabote [17].

4. AsroMaTHble QYyHKUUH

Pacemorpennoe B [3] obobuene GyHKImMi [-sHaTHOR JOTUKA 10 GyH-
KIMH © 3aleprHKaMy SIB/BICTCA TPOMERKY TOUHLIM TPU 0epexolie K Riaccy
ABTOMATHBIX (YHKIMA. cBoicTBA KOTOPOro BHTJBLAT JOTWYMECKA CyILe-
CTBEHHO CllOZKHee, WoM Yy (YHKIMA ¢ sanepkkamu. [Lis BBenenna TOHA-
THA ABTOMATHOR (GYHELMKM NOTPeGYoTes BeooMoraTelbHble obosHave-
HUS M OTPeaeleHns.

IMyecrs €
anpapurom. llocnenopatenbinocth OYKB W3 (' HasbIBaeM CJIIOBOM, €CJH
OHa KOHEUHA, U CBEPXCIOBOM, ecin oHa HGeckoneuna, Riace eex Takux
caoB obosHauuM depes (7. a cnepxenop — depes (0 IyeTs C =
(U ¥ u £ e C. Cropo. obpaszoBainoe nepBbMA r OyRBaMu U3 &,
HazpiBaeM Opepurcom s € u oboszpadaeM depes &y. Oyecrn Au B
— angpasutel u [ AT — B*. Ecan £ = c(1)e(2)...e(r), TO r HazbiBaeM
UIMHOH caoBa & 1 obozaadaem vepes ||€]]. Myers A u B — andaBurnl u
f:A* — B*. Gymrrumio [ Hasbisaem AeTePMUAUPOBAHHON (1. pyHKIMeid ),
ecmn st moGoro € mi A* cnpasesauso || f(E)|] = [|€]l, a mnsn mobux
£ u & w3 AY M moGoro i Takoro, 4To 1 < i < min(|&],|€&]), econ
& = &li, To EEN] = £(€)s)i. WsmectHO, UTO A.QYHKIUA f MoxeT

KOHeUYHOe WK cUYeTHoe MHOASCTBO, ROTOPOE Ha3bIBaeM




504 B. L. Kyapnunen

OLITL PERYPPEATHO 3a/ada ¢ HOMOUIBIO TaK HA3hIBACMbIX RaHOHUUYeCKUX
YpasHenuit Bua

q(1) = qo,
(1) G+ 1) = @lq(0),alt)).  t=1.2,...
b(t) = (q(t).a(t)).

PG HapaMeTap ¢ Ha3bIBAeTCAs COCTONHUOM U [ W IPUEMMACT 3HAYCHUs
M3 anpasura (). Dra PEKYPPeHTHOCT onpepenseres Tak, enm o €
A", B e B*, h € Q u a = a(l)a(2)...a(r), 3 = biO(2)...b(r), Kk =
g g(2) .. q(r), 10 npu fla) =4 enoso 3 MILILY KTUBHO BLIYTUCIACTCS 110
0 CHeUYIOUUM oDhpa3zoMm:

a) b(1) = w(g(1).a(1)) rae g(1) = go;

O)ecot npu | €t € r — | BEuMCHeHO (1) = ¢, 1O qit + 1) =
wla(t).alt)) v b(t) = (g(t), a(t)).
Hacto npeanonarator, uto agdasurst A u B ssasiores JEeKAPTOBBIMK
crenenammn by, ro-ecth A = (E)" u B = (E)™, rie ny,m,p € N. B
JTOM CAIYHae 0T paccMOTPenrs oqHOMecTHON JLgyakuMn f(2) suaa i e
(CE)") — ((E)™)* yao6ao NeperTU K n-MecTHON JL Y HKILMW
Fl@1, 35 000 iy ) Bama f' 2 (B — ((£)7)™ caenyomuM cnocobou.

Myers ¢™ € (ER) m fC¥) =™, rpe

CC = eM1)e"(2).. e™r) m ™ = ML) ™)
pu oM
)= (er()sealt),ooyenl®)) m (E) = () (1), (..., el (1),
rae | <t <r. llyers
G=cill)ed2)oei(r) m ¢ = el(1)eh(2)...e(r),

rme l<ie<mml <ji<m.

Tenepn nonaraem f'(¢y,Cas.. .. Cu) = (]2 oy e0 0o CL). ynkuus [ no-
ayvaetes us [ paKTUUECKHM TOJLKO 3a cuer nepexosa oT paccMoTpeHus
MATPHIL, 0OPA3OBAHBIX BeKTOP-OyKBaMu (cTpokamu) caos (" U, coor-
BeTCTHeHHO, chon (™, K UX OpeacTaBiennio B suae cronbuos. Kanon-
uuaeckue ypasneaust (2) ana f' noayvaotes us (1) samenoit tam peex
HapaMeTpos Ha COOTBETCTBYIOMIAC BEKTOPHBLIC 3HAUYCHM, T.e.

q(l) = qo,
(2) § ¢{t+ 1) = @lg(t),e1(t),...,en(t)), t= Liyai s = 1,20 vaiilhe
bi(t) = W (gUL e T Yo von €{E)),
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Gyukmuio f' cunTaem uHTepUpeTalMed 1 f ¥ HasbIBaeM aBTOMATHOM
(a.pyuxmueit).

[TapaMeTpbl 7 U M HAZLIBACM, COOTBETCTBEHHO, MECTHOCTBIO U pasMe-
PHOCTLIO a.QyHKIMK, a MOIHOCTE MHOKECTBA 3paveHui napamMeTpa ¢ —
GUCIOM ee cocTostiuil. (CoaepKaTedbibM TOJTKOBARUEM a.(yHKIUKA

fller, e, mn) = (91592500 Ym)

ABASETCA (YHKIAOHUPOBAIAC TEXHAUCCKOTO YOTPORCTBA I Buna, yKa-
SAHHOrO Ha PUCYHKe 2. 3/ech BXOMHABI CTPETKN 0H03HAMeHDI OyKBaMu
2, a BRIXOAHBIe — Dyksamu y;. CundraeTes, 4To F pyHKOAOHUPYeT B
[ACKPETHLIe MOMEHTHI Bpemenbl [ = 1,2,.... B 211 MOMEHTBI KarKllble
BXOJ &; W BBIXO ¥; MOTYT HNPUAUMATL 3HaYeHUs M3 E;; camo e yc-
TPORCTBO MOKET HAXOAWTHCH B COCTOAHUAX, KOAMPYeMbIX 3HAUCHUAMU
u3 (). Ha3bBAEMBIX Takke Damsithio s F. Mo nabopy 3HaueHUH BXO-
JIOB ¥ COCTOSHUIO B MoMedT t yerpoicrsa Fono npasuiam (2) onpe-
HeJA0T 3HaueHUA ero BLIXOA0B U COCTOSHUE B MOMEHT t+ 1.

OGosnaunM depes P knace peex a.pyHKuMi ¢ 3aJaHHbIMKU Dapame-
tpamu n u m u3z N. Ilyers Py = U P,

21

Pacnpoctpanum na P, | onepaium 1,7, A, V., a TakkKe BBelleM Apyrue
ofnepaiumn.

Myctb f'{@1,22,..-45 £} = (@1 55« <3 Pjue ~=1 Y )y TOLAR

(i f )y, 29,00 ta) = filer, e, @),

rae fi(@1,x2,...,&,) cOBIALACT €O FHAHCHUEM Y y f(15T200 00 Tn)s
Hyt Th fU(@ng1s Ent2s e s Tngn) = (Ymt1s -+ s Ymsw)s TONAR

(f'r_Tf")(;n1 By e s Bipy L 1oy wos s Bygn) = (Flmry @y 0380 ))s

e . : = ’ y - F
f (:"n-l—-l s g2y o vnnd 'n+u)) - (U] s Y2y s Y Y41y Ym420 - -4 ym+w)-
Oyers w takoe, uto m+ 1 < w < m+ u, TOorla
.rr . -
(f *f ‘12’ "*'rhﬂ"r:'rl-l—lu'r:n‘{-l""';I:JL+EI):("’]*"'21"‘5“"171.-‘-10-'1)?

e Np— ! " { = . - -~ R o . e
rae z; = fi« f, opn j = 1,2, cougttt B 250 = f_j,(.l.n+1,.1.,l+g,...,.l.n+1,) npu
'=m+2,m+3,....,m+t

Ounepaiuy T U ¢ HAZHIBAIOTCH, COOTBETCTBOHHO, NPOCKTUPOBAHUEM U

obbeMHEHMeM, 4 ONMepAlAs BULA * SABJIAETCH PacopocTpaHenueM ofl-
U

epalum *¢ OJQHOMEepPHOTO cayda GyHKEIMIA Ha BeKTOP-(QYHKIUU A DOTpe-
AKHEMY Ha3blBaeTCsH O TAHOBROM.
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B coBokynnoetu onepanun n T, A, V, T, ¢ v * HaibBaeM on-
EPALMAMY DACIIUPeHHON CYTIePTIO3UIMU U 0BO3H A YAM uepes Y.,

Bsenem eme omny onepamuio nan a.pYHKUMSAMU, KOTOPYIO HA30BEM
0bpaTHOR CBA3LIO U 0HO3ZHAMUM yepes O,

FosopsT, 910 a.pyukuas f umeer Tun i — Jsecam s [ paiinercs
cucrema Buda (2) Takas, 4to QyHKIMA Vilg,c1.02,....¢,) GUKTUBHO
JABUCHT OT sHaveHuid ¢;.  Ilyets f' takas a.@ynkims. PacCMOTPUM
GYHELUMIO BWIa

i !
(Of.f )['I'IR""'J*---»:"ri—]w;lri+la---a'"n):(ylsyiu---~:"},i—l~?f.,"+]-'-'sync)$

KOTopast onpeienseTcs tak. Ilyern sajans cnosa suna £ = ei(1)e(2)
coee(r), re L= 1,2, 00— L,i4 1,...,n. Toraa ¢ noMouisio (2) no
Habopy

(ei(1)iea(l), ... yeicq(1); eigall)ss .6l 1))

MOAKHO BLIYUCIAUTE 3Ravenne b;(1). IMogcrasum Teneps B (2) BMecTo
ei(1) smavenue bi(1), nocne yero MoKHO BBLIYMCIUTE Habopsl (¢(2)) n
(b1(1),....0,(1)). Manee, Tak me MOKHO 1O Habopy

(e1(2),02(2),.. . ei-1(2). €541(2), . .., €,(2))

BBIMMCIUTEL 3Havenne bi(2). CHoBa, nogcTasus sHaveHME bi(2) BmecTo
€i(2) B (2), MOKHO BBIMUCIUTD nabopwl (¢(3)) u (1)1(2),()3(2),...,!),,,(2))
M T

Temeph nonoraem

(O_f.'ff)(Cl-(% voen Cim106it gy e s () =(CE o Chss sy i nalig g e Conglh

rae G = bp(L)bp(2)...bp(r)nl = L2,....0—= 1L+ 1,...,m. Nonoxuum
2.0 = Qe U{O}. Knace onepanuit (). 0 HA3LIBACTCH KOMHIO3UIMECH.
FCoopst, uro a.pyuxmms f' uz Py asnsercs koedno-aproMaTnoi (k.a.
hyHKuMs ), ecnm anpasur Q B HEKOTOPOR cuceTeme (2), 3aiatomeil a1y
byskumio, Konewen. Kiace seex k.a.pynkimit o napamMeTpaMm n u m
0DO3HAYUM uepes P:;f";. [lonaraem nanee, uro P, ;. = Unm>1 Pyl
[oBopsaT, uTo a.pyHKIMA ABASOTCH MCTUHHOCTHOMN (n.a.pyrrima), eciaum
B cucreMe (2), sagaommii ee, angasut () — omnosaeMenTHBIHE. O6os-
Hatwmm depes PUTu PU Knacesl Beex METHHHOCTHBIX a.pyHKIMIA u,
COOTBETCTBEHHO, MCTUHHOCTHLIX K.a.QYHKUMAN (M.K.a.QyEKIMA) © napa-

MeTpaMu n v m. H(Jﬂ()H{MM

) o LI r _ IR
‘(riﬂ.l.l/] == Un,'mz] },1‘(‘],1 u [rl..[‘K.Pt = U [u.l.}{,ﬂ‘
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ConepKaTellbHO UCTUHHOCTHLIC 4. ()YHKIAX UHTEPOPeTUPYIOTCS © OJMHOMN
CTOPOHBI Kak (YHKIMOHAPOBAHAE yeTPORCTEA F' Oes namMaTu, a ¢ IpyroU
CTOPOHBI MOI'YT CUMTATLC S DeAIU3alMsaMu QYUKW us Py ¢ yueToM Bpe-
MeHUM I, KOTopoe npoberaet savends 1,2,.... ¥ KakUbll U3 KOTOPBIX
3ABUCAMOCTL 3HAUYEHWH ()VIKIMAK OT 3HavdeHuid nepeMedlblX odHa U Ta
e

Takum 06paszom, m.d.c. (£, ) npu pacwmpenny B BUX obbekTa P 10
MHOMKECTBA BEKTOP-GYHKIMA [-30aTHOR JIOTMKKM WM. COOTBETCTBEHHO, ON-
epaimit — 10 Qpe, GAKTUUCCKN TPUBOMAT K .¢.C. Paitm = (Patys pc)-

BaMeTUM TakkKe, UYTO (YHEIAA ¢ 3a]1ePKKOR UHTepopeTUpyeTes Kak
GyHKIMOHUPOBAHUE TAKOI'O YCTPOUCTBA F ¢ n BxomamMu M OIHMM Bbl-
X040M, 3Haverne b(1) KoToporo npu gekotopbix T ui No v f(ar, 22,0,
@,) M3 P B Kamapii MomenT 12> 7+ | onpegensercs TAKAM COOTHOIIe-
HUEM

b(t) = flai(t — T)ax(l — T)seertiny(t = T))
KOTOPOE, OYeBUIHO, MOACT DLITH ONACAHO CUeTeMOR Buda (2).

Mycte M C Py, Torna npu Jo,. (M) = M ¢yRKIMOHAILHAA CHCTEMA
M = (M, Q) napu .I”]“__O(M) =M ¢.c. M = (M, 0) HABBIBAIOTCS
utepatuBabiMu @.c. [locra apToMaTHBIX Qpynarumii (n.¢.c.a..). [pume-
paMu Takux ¢.c. asasiores goe. sana Py [pu sanansom [ uz Ny
HA30BEM OCHOBHBIMM D.().c.a.d. craegyomme

'Pn..(,r{ = (“n.Lh’s“pC)- 'P:,i,K = [I]rl.‘!.ﬁ- Qpc,O)
’Pu.f = (I,rn.!- SZ])l‘ }~ P:_[ = (IDH.I- szpr.O)

M 300/KUM THaBEbIe PesyILTATh 10 Hameld npobieMaTuke JUiA n.¢.c.a.g.

(3)

Teopema 4.1. [24] Jax awhoco | us Ny epedu ocnosnuir n.a.c.a.f. vorev-
HO-NOPOHCOCNHOT FBAACINCA MOAVKO (.. P i

- mm . o
Teopema 4.2. [13] Jas awbwa | uz N uwm us Ny 8 PJ o cyucemayem
CHETINOEC MUONCCCMBO DUANCO8 MOUHOCTRU 1.

A.pynrums, obHpasyioilad moJiyo cueTemy i M. nasusaercsa [ed-
Ppeponoit. Hanbrefwee yuponenue Hasnca J0CTUTAeTCs 3a CUeT MUHW-
MU3AMAY UACHa TepeMeHiiblX, PasMepiocTy U HHcla coctosamit y Hled-
peposoit a.pypkumn. Cneayiouiee YTBePAILCHAC [LaeT OKOHYUaTeTbHBII
oTBeT 0 Bue npocTeidmux B atom cmbicae [HeddgepoBbix A (pyHKIMHA.
Teopema 4.3. [25] [as awboeo | us Nvoa PL o cyuecmayom Lleddep-
08HE OOHOMEPIBLE A yrryL 0m D8YT NEPEMCHUNBT U ¢ dayata coCIOINUA-
Mil.

Jlnsa Apyrux OCHOBHLIX ML.(.c.a.p. OTBET 00 npotiueme Ha3UMCOB TaeT
TaKoe yTBePHKICHUE.
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Teopema 4.4. [24] Aag awbozo | us Ny e Py u'Pr, basucos ne cyuLec-
syem, a P, cywecmayem cvemnndl 6azue, a marxce noanas cucmema,
ne codepawcauyns a cebe daacea.

[lo npobaeme NOAHOTH CUTYALUMIO OMUCBIBAIOT ClIeYIOUUe YTBe K-
JCHUA.

Teopema 4.5. [24, 26] Aas ocnosnnz n.g.c.a.. smuoxncecmeo Yr(M)
oopasyem k-cucmemy mouno npu M = Py x 0ag awhoeo | uz N,.

Teopema 4.6. [13] Muoxceemeo T (M) Kownuiyaasio npu M € {P, | .
Prixh w cunepronmunyansio npu M € {Put P} dad awboeo | us Ny.

B Kagecrse cneicTBUA 3aKIIOMACM, 9TO yKa3aHHLIMU B Teopeme 4.6.
MOUHOCTSIME ODAAAAIOT COOTRETCTBYIONMEe PelleTRY 3aMKHYTBIX KJac-
COB B OCHOBHBLIX N.{.c.a.¢.

Hazosem cucremy S/ C Y(P; 1) k-KpuTepnanbuoii, ecin Besikoe Ko-
Hevnoe MEOKecTBO M C P, x. ABIACTCS DOJHBIM TOYHO TOFAA. KO
st moboro muoxectsa K € X' suinoaneno M ¢ K.

Teopema 4.7. [13] B Prix cyweemsyom cvemise k-xpumepuanvusie

cucmemn suda X' C Y (P, ) das awboeo | us Ny.

*
zLJ.H

Ormerum. ato B 06WeM cayydae 3agaHue a.pyrrumit us P, ne sapise-
TCA APPEKTUBHLIM, NOHTOMY TPOGIEMaA BLIPAIUMOCTA M DOAHOTB MOMKET
CTABUTCS JIUMIIL IJ1A 9OOeKTUBAO 3a0aBacMBIX CUCTeM.

Teopema 4.8. [14] [Ipobacsa supasusmocu das spdexmueno sadaaac-
MBLE KOHENUBLT CUCTLEM A PYNNYUT 8 ocuo8HLLL np.coa. w npodacsa noa-
nomet 8 P, ascopumatuncenu we pasperwumn das awbozo | us Ny.

Takum 0Bpaszom, paclMperne GyHKLAOHATLELIX BOIMOKHOCTOH a.dy-
HKIMA [0 OTHOWEHWIO K (QYHKOMAM [-3HAYHOR NOTUKM M GynEIMAM ©
SAACPHRRAMU PEIKO YCTOKHACT PelleHue MHTePecyolux Rac npobaem
A anrebp a.pynrauit. Uzydenne npupoast sToi ciaokaocTy ocymec-
THBJSLIOCH B PDA3HLIX HaNPaBJICHUNX.

Mbl ocTaHOBUMCeR 31ech Ha 3aaaude o NPUDIUACHHON TONDOTe W Ha
jallate O noJHOTe CHeNUalbHOR 0DOTalleHHLIX CUCTeM a.|yHKIMA.

[leppas n3 2Tux 3amau umeer jpe MOAAGUEAIIMA — 3a1ada O 7-
nojguore (r € N) u 3asavya 06 ammpoKCUMaATAORRON TOTHOTE (A-noano-
Te), KOTOPBIM NOCBAMEAETCS  ¢J1e 1y 1o i naparpadg. OOGpaTuMm BHU-
Mame Ha cneudadnbasle goe. Pry Poy Py Py, KoTopble SBASIOTCS MO-
AANTeDPAMM COOTBOTCTBYIO MY OCHOBHDIX m.d.c.acp. vz (3). Kaxknasn usz
HUX COCTOMT M3 BeeX OAHOMECTHBIX M OJHOMEDHBIX a.(yHKUMAN HoCUTe-
A€l yKazaHHbIX OCHOBHBIX IL{.C., & B KauecThe onepanuii B HUX BhIC-
TYHAIOT Te e ONeDAUMU, UTO U B COOTBOTCTBYIOMWMX 11.(.c.a.¢, KpoMme
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onepaimii ¢ n 7. Rak ycranonieno [32.24], onn me uMei0T DAZUCOB.
Rpome toro, Py conepHu noaadrebpy Pl Beex B3aMMHOO[ABO3HATHBIX
oTOOpaKeHUi, KoTOpas sSBJIAeTCs Fpymnnoi ¢ onepamueit NoACTAHOBKA,
MOIeJUPYs YacThio cebs rpynmy Depreal I0BCKONo TUIA [23], To-ecTh
TAKyl0 KOHeUYHO MOPOAKACHHYIO Ppynuy, B KOTOPOI MOPAIKA 2/1eMeHTOR
KOHOYUHBI. HO B COBOKYIHOCTHM He orpaHuuenbl. OTKPBITBIMY OCTAOTCA
BOMPOCHL 0 HATUUMU Dasucos B P}, a TakKe aJIropuTMUYECKUe DOCTAHO-
BKU O PaspelldMOCTH KOHeUHOCTU TOPSUIKOB ee HIEMeHTOB W BbIpas-
AMOCTH 5TUX 2jeMenTos depes apyrue. B saknouenne oTMeTHM, HTO
teopembl 4.1, 4.2, 4.5, 4.6 1 ynoMsayThle 316Ch pakTbl 06 OIHOMECTHBIX
adrefpax OCTAIOTCS CIPABCATMBLIMU U B CAyHae pacumpernst 3HaYeHns
| no cuyeTHOTO B ¢.c. GYHKIMA, KOTOPBIC TEM CAMLIM obobmatoT a.pyn-
KUK,

5. YcaoBus T-MOJHOTHI M A-TIOIHOTEI IJIA a.cbyl{Rnuﬁ

CosopsaT, 4To a.GyHKINA f 1 ¢ r-2KBABAJICRTHRL, €CJM ORI COBIAJAIOT
Ha BCEX BXOMHBIX CJAOBAX MIVHBL 7 (0BO3HAYUCTHAE: frg). m A-aKBUBasIe-
HTHBL, ecan frg ana moboro rus N.

Ha muoskectse B( P, ) seieM oTHOIIeHAe, NoJarad 1 M, M'CP;,
ahmonnerabiM MALM' . conn ans BCAKOR GyHKIAN [ w3 M naiinercs g
s M', ato frg. Hero, uro »To oTHOWERKE 0OpazyeT Npeanopsuok, a,
JHAUMT. MOYKET BbITh OPEACTABICHO Kak OTHOMeHAe YacTUIHORO nopsi-
JIKa Ha KAAccax 9KBUBATCHTHOCTU, BEAIOYAIOUIMX B cefBs Bee TaKue ajlie-
MenThl M w M', ANA KOTOPBLIX BBINOJHEHH COOTHOMERUA MA, M n
M' A, M; aro obozHataeM M M'. a caMu »JeMedTbl HashiBaeM T-2KBU-
BalleHTHLIMU.

Ha B(P,,) sBefeM elle 0JIHO OTHOUICHKE. nonaras s M, M' C Pr,
peimonneHasiM M A4 M. ecnn uist BESKOTO 1 13 N umeer mecto M r M.
)70 OTHOIEHME TAKKC ABISETCA IPeITOPSUIROM U I npecTaBuTeei
M u M' ero kaacca 9KBMBAJEHTHOCTH, KOTAA TEM CAMBIM BLITIOJIHEHO
MAAM uM Ay M, mmnem M A M': a caMy Ipe/lcTaBUTeIW HasblBaeM
A-9KBUBAJCHTHBIMM.

Teopema 5.1. [15] ag awdur M C P, ureN sunoaneno
J“pr(.n/f)?'Jululio(,’m’l) n ‘IQ])C(A,)A Jupl‘.,o(ﬁ'd).

Takum oBpasoM, AeHCTBAS ONCPATOPOB J”p‘.{;ll) u .];';])‘_"O(M) ¢ TO-
JHOCTBIO 10 T'- A /l-?’)l‘{ﬂﬂHEIJ](‘H'I‘H()('T("ﬁ coBIaJaAlOT, a TeM CaMbIM B 2TOM
CMBICTIe onepamnus obpaTHOR CBH3U O oKaszbBaeTCsl MOeJIAPYeMOR ore-
PAMAAMY PACTIUPEHHOR CYTIePIOSUIIMK, HeM Mbl B AadbHedmem Oynem
MOJL30BATCA.
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Ilyers M, M'" C P, ;. Tosopsit, uto M ssnsertes T-BBIDA3ZMMBIM Uepe:s
M', ecoin M A, .f;-;l)(.t(ﬂl’) v A-suipasuMmbiv uepes M, ecnu M Ay
g
Jape (M").

Teopema 5.2. Jlas asffiexmueno sadaeacamr vonemms Muoxcecms M,
M'" C P, . omuowenue M A, Sy (M) ancopumatunecnu pazpetiumo dag
aw0b020 v uz N.

Teopema 5.3. [27]) Jas wonewnnz mnoxcecma M. M C P, x omuoue-
y A/ . g1 2OV vy S 7 -
nue M A 4 Jape (M') ancopumatuvecsu ne paspewmaio,

[Tycr M C P,ym M A JUIW_(M’}. Hasosem muowkectso M' C M
r-noausiMm B M. ecan J“p‘,(M’)r M u A-nonunim. ecin Jilpv. (M'YAM.

Teopema 5.4, Eeau M C P, M A Jg'gp‘.(M). M-pauyperwunmo, a M cems
Koneunoc A-noanoe nodmuoxceemeo v r € N. mo CHULCCTNBYEM QA20-
P, yemanasaus aowui no A060oMy Konewnoaty PAIPCUUMOMY NOOMIO-
wceemay M C M, saagemes an ono r-noanum e M.

Ha camom mege sta TeopeMa clielyeT U3 TeopeMbl 2.2, B vyem y6Hemwa-
emest tak.  Ilyern f € Poymwr € N, Pacemorpum munokectso ET
B OpeanoyiOARCHUU, YTO ero 2JIeMeCHThI HUJ_I,H])YIU'I'E'JI CJIoOBaMW  QJIMHBI
roB andasure . Torana paceMmaTpusas Gpyukumio f wz P, Tonbko
Ha CIOBax ATUHABL 7. MOXKHO CUUTATH e NPURALIeKAILCH Py, Takum
0DPAzZOM OT PACCMOTPEHUA a.GpyHKIME Mbl nepeuwntn K GpyeHskumam [7-
3HAMHOA Norvkn.  OcTaeTesl 3aMeTUTh, UTO OHePAIMY PACIIUpPeHHOR
CYTEPUOIMIMN B BONPOCAX BLIDASUMOCTU M HOJHOTH (GaKTHUeC KK pe-
AYUAPYIOTCs K onepamuaM cynepnosumuu. Jasnee, us TeopeMbl 4.9 u
cooTROWenun P, A P, ; BulTekaeT Takoe YTHeDHICHHe,

Teopema 5.5. Ycaosus r-noanoms u A-noanomn COOMABCINCINEENNO 08~
nadawm dag acer ocnoanw n.gh.c.a.dg.

()’I’I\.’Il’-"l‘ldf\ﬂ CYIEeCTBEHHOEe OTIUYME [TOUMTUN NOJIHOTHI U .fl-nl'iJllﬂ)'I‘bI._
ROTOPOe gaeTcH CIe Y O IUM npeajloxeHmem.

Teopema 5.6. B waxcdotl usz ocnosnma nop.c.a.h. cyuecmayiom vonewne
A-noanwe cucmems, @ maxwce evemnne A-noanme CUCTCMBL, HE codep-
HCAULILC Koy A-noanss nodeucne.

Orivune ke NOHATUR P-NONHOTLI U A-10JBOTH AOCTABISOT Takoe
yTH(‘]')H{,LlPHMP.

Teopema 5.7. [27] Ecau M C Poix u M — wonewno, mo ne cyuecmayem
Lazopumata, yemanasavsaouezo no M, seagemes au ono A-noawwm e

],fl.l'.h"
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B 1o ke BpeMsa CYecTBeHHad CBi3h HOHATUU 7- U A-TTOMHOTH UMeeT-
CA W OPOABJISETC NPEAKIe BCero B NOAXOLe K PeNeHUIo 3alad o r- ¢
A-NOJHOTE B TePMUHAX 1TPEANONHBIX KIACCOR.

Ecou M C P, M A Jupt-(ﬁ'ﬂ u M C M, to BazhiBaeM MHOKeCTBO
M' r-upeanonusim B M, ecam opo we r-nonno B M, vo s moboi
dyaxkmm [ us M\M' muoxectso MU {f} sunseres r-nonawm 8 M.
AHANOTMYHO BBOAMTLES NolsTue A-npeagosnoro MoxecTBa. Ilyern
Srr(M)u Sea(M) cyTh MHOKECTBA BCOX r-OPenojibix v A-npemmno-
HbIX MHOM¥KecTB B M cooTBeTeTBORHO.

Teopema 5.8. Feau M C P, u M A J“p[.(M). 1o
SralM) = | JEr (M)

r2>1

Teopema 5.9. Ecau A € {r,A}, r € N, M C Py, MAJg.. (M), e M
comp koneunoe A-noatoc nodaciosceemao uw M C M. mo M" seasemes
M-noansm 8 M mouwno mozda, xwozda dag awooeo N € N (M) aunoaneno
M ¢ K.

1o yrseprEaerre ¢ ydetom Teopem 4.14 w416 cBomuT pelenne
sagad 0 r- U A-TOJHOTe B OCHOBHLIX [L.C.a (). K OUMCAHUI0 MOOKeCTBA
Y o(Pay) KoTopoe Hnlito nosnyveno s [15]. [pusensem ato onncanme.

Mycts t € N, ofosuatuun depes ] Mpomectso seex cion & = o(1)e(2)
c..e(t) anvant £ B andasnre E llpu h € N u T = (11, ts,...,1), ToE

1 o
t; € N npu t € N, nonowum £l = E;‘ 4 Ml SRR Ef". IlyeTsb
(U1, Y2y -2 yn) — h-MecTHLI TpemMKaT, apryMeHThl §; KOTOPOro MpuH-

MMAlOT 3HAUCHUA W3 Ef'. Rak ¥ BLILC, HYCTH 1 WU pg CYTh COOTBEeTCTBEH-
HO MHEOMECTRA MCTUHHBIX W JIOKITLIX 1aBODOB 3Havenuil nepeMeHHbIX 1715
p. Topopum, uro a.pyrkumst f(ay, ey, ... 2y) n3 Py coXpasser p, eciu
W3 MCTHHHOCTHU KarKIOro 2JeMeATa CTPOKK
9 o3 9 51
pled,ad, . o) plof oz, qq), . oplad,ag . o)

BblTeRKaeT UCTUHHOCTDL BblpaAeHNs

p(f(n'}. (rf. e o106 N _,"'(n‘.i. rr::: ..... £y} v f(fl.}l. (vi., coeoag)).

Kaace Beex Takux a.Qpyukumit obosuauum depes Uy(p).
Boesem gyukmuio v @ E7 x Ef — No. Iyern g = Ef‘. €y = E:i’.
i = min {ty,t2}. Toruaa:
O.ecameq (1) = ea(l), ... eq(t) = call),
tyeern L <1 <t—1ue(l)= ga(l),.neq(t = 1) = ea(t = 1),
Ho eq(t—i+ 1) # ea(l —24 1),
t, ecam gq(1) # ea(1).

I

A

v(ey,2) =
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Ha MaO®KecTRE E,"" OmpeellMM OTHOMeHUe TPeAnopsiIKa <.

Mycre A = (. 00,...,00) u A" = (af, oy, ....a)) — anemenTtsr u3
El. Mumew A" < A, ecnu m3 sriIovenus i,j € N, enenyer v(od,af) <
(g, ag). ‘

[lyers ' = max{t;, ta,...,tp), h <l ut' > 2; ecniu | = 2. To nona-
raem h = 2. Ilyers B A upu h > 2 n yenosum, uro i # j, BuNONHeHO
V(g a;) # 0. Muoxkeerso seex A', uto A' < A, nazoBeM v-MHOKeCTBOM,
3anaBaeMbiM seMeHToM A, n obosnavuaem depes £ Takoe £ pazOusaem
Ha JBa MNOJIMHOAKECTRA 5("”, COCTOALLeE M3 BCeX MaKCUMalbHBIX o <
AIEMEHTOB, U {5 BRIOYaloIee ocTalbible sieMedTol U3 €. Tak, npu
h =1 uveen £ = (. Heno, uro 3navenue v(a;,a;) He 3aBUCUAT OT
BuiDOpa A us £ noatoMy BMecTo v(a;, a;) numem (e, ).

ot 12201t > 1 yRamkeM ceMb ceMeicTB npeaMKaTon.

Hyers. b 2 1, T = (#ydsyves @) 8 €€ E,T. [Honcranosky v umcen
1.2,..., 1 nasosem E-NOLCTAHOBRKONR, ochu s (o, n, ... 0p) U3 € BBI-
MOJIHCHO

(y(1)s y(2)s - oo ) € €.
[Tyerh 5 > 1, Ha30BeM MHOMKECTRO

{(rr:,(vé,...,rr}l).(rt.]'z.ng.....ni),....(rrf.nij,...,ﬂi)}.
anementos us £ focoBMecTUMBIM, ecau CYMEeCTRYET COBOKYTMOCTE £-
DOACTAHOBOK Y1472, . ..,7Ys TAKast, 4TO A J0O6LIX ¢ 1 p u3 N a Takke
i v jui N sumonneno ve(i, J) < V(n-’jw(i).rvf;p(j)).

[lyere p(yi 2, ... yn) — upemukar, wis kotoporo py C €. Hazosem
p E-peduercusanm, ecnu £ C P1s M E-CUMMETPUMHEBIM, ©CJIW IS
(s o) M3 pp U E-TTONCTAHOBKK Y BCETIa BLITIOINEHO (rr,.,“,.uﬂ,.(g).

) € pr.

E-pediekcUBHBIA M E-CUMMeTPUYRBIA OpeauKkaT p HasbiBaeM E-aje-
MEHTAPHBIM, €CJIM MHOKeCTBO E\py sABjaseTcs E-copmecTrMbiM. Jlas Ta-
Kkoro p npn A € E\p1 m i € Ni* onpenesmm noamnomectsa ('(A), Qi(A)

z‘f,(.fl) MHOKCCTBa F; Tak:

a)a e ('f,(/l) TOYHO TOrAa. Korfda Haliaerces o) € Ef', ato v{ag,al) <
L, &i(1;) = a, a moboit snement (o), ey, ey t)) M3 € CONCPEKUTCA B py;

6) b e Q,(A) Touno toraa, koraa s E\py uaiinercs anement

n
(rl'l.(l'g!....!l’l'_],f}‘i.ﬂlfi+|.....H’jl).
Takol, uto v(og,el) < 1 n o(t;) = b;

B) MHOACCTBO si,(‘A) COBIAJAOT ¢ (';(A). ecnu (,';;[A) Z0, uc Qf)(A)
B IPOTUBHOM cllyYae.
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Myeth n > 1, 1 R = {p'.p*.....p"} — npomssonbBas cucteMa §-
sieMeHTapHbIX npeaukatons.  Haszpipaem R T-coBMeCTUMOM, ecau IJis
nobbix o € NI, i e NP w A € €\p] sumonneno Q,(A) # £ Hazwiaewm
R W-cosMmecTuModt, ecian ans seex a. o € Ni', 1 € NE, A € E\pf,
A" € &\p] muOkecTBa ("[-(A) M (',"«,{A) OJHOBPEMEHHO MO0 MY CThI,
anbo HemycTwl, npuuenm npu (7. (A) = () nns Beskoro b € Ep eymecTsyeT
j € Nf* rakoe, uto t; =1t;, ve(i,j) < 1L 0 € Qe (A).

i . il - t ol i / Ty 5 /

Myete n > 1, a; € N/, A" = (af,ad,...00q), A € E\p]* m ji € Ny
npu i € Ni'. Torga, ecav a; # al upn i # @' wtj = t;,, a Takxke
v(al  ad ) <1 ans seex i i€ Ny wi" € Ni'\{1}, u seinonmeno

3%

(Velni(A) =0,

=1

To cueTeMy R HazoseM (J-cOBMeCTHMOR.
Hyets n > 2,1 € N, a; € Ny u A' € E\p{*. Hojomum, 4T0 415 Beex

. -
7.5 € NJ* upu j # j' Beinonneno vl aq ) # 1o [lyers anst Beex 1,15 €
N{" BbIMOJHeRO £, = t; . W 1pK j = | enpapeivso u(n,'-l.ru') £ 1@

TakAHe UMeeT MecTOo
i e
ﬂ € o (A1) = 0.

=1

[ pemonoRuM, UTO NPU ATUX YEJTOBAAX CYIECTRYIOT l, € N*, ve N{,
ato iy, € Ni, MHOKeCTBa Al sisasorest £-COBMECTUMBIMUA U

q _
a8,
n=1

Torma rosopum, 4to cuctema fossaseres D-copMecTUMOM.

CemeiicTso mpemakaTos Zi(1). 1o ceMecTRO ne mycTo mpu [>2mn
r > 1. llpemrat p BXOAMT 18 Z(7) TOUHO TOrAa, KOPAa M c &£ C E,T.
T = (t1. 12y ..o tp)y b 2 L max{ty, ta2. ..., ty} < v s HeKOTOPOro m 2 1
BBITOJHERO pp = N4 pj. TUe pt sasasieTes E-eJeMenTapHbIM TPeIUKaTOM.
a camu p* obpasytor T-, W-. Q-coBMecTUMY 10 CHCTEMY, & [UIA NOOBIX
j € Nt u A € §\pr MHOKeCTBO ("f,{ A) nenycto.

Cemederso npeamkaton Ji(r). Ono ge nycTo apud r >1lul>2 a
Takike Opu 7 > 2 # [ = 2. llpeuEaT p BXOAAT B Ji(r) rouno Tormia,
korga ;y € € C E,T, T = (11, 12,....01), b 2 3, max {tl.f-_),....th} £ r,
ISt HeKoToporo m 2> | sbimoageno pm = NiL,py. rae pt sasaserca §-
eJeMeHTapHbIM, a caMu p' obhpasyloT T-.W-,(Q-cOBMECTAMY IO CUCTEMY;
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cymecTsyooT unena i,5,0 € NP, i £ §. i #1, 7 # 1 gto ans A us E\pl
MuoxecTso (' A) nyero npu u € {¢,4,1}

Cemeiictno npeamkaros Di(r). Ono ne nyeto npu r > 1 ecam [ > 2,
wapu r > 2, ecam | = 2. Mpeaykar P BxomT B Di(r) Toudo Torga,
Koraa, pp C € C EIT, T = (fla,nsti), b > 2, 1na.x{t1....,f.h} <. i
A HeRkoToporo m > | Bbmosineno py = ML pi, rae p' asasieres -
AIEMEHTAPHBIM, a caMu p' obpasyor T-,W- u D-cosMmecTuMmy o cHc-
Temy: agns mo6Goro A € £\p MHOKecTRA CHA) m ("2(A) nyetwle; ecau
h > 3. 10 st i us Nt suimoaneno (.'f,(,fl) # 0 ecom b = 2, 1o pynEM) £ (.

[Mycrs manee !l >2,t> 1, T = (1, 1), & C E,T, £ CCTH P-TTOAMAOKECTRO
Mg =(1,2)=1.

Cemeiterso npeamkatos M(r). ono me nycroe upu l > 2 ur > 1.
[lpemKkat p BXOIUT B Mi(r) Touno Tormna. koraa mC &t < v, p
CORBINaJgaeT ¢ OTHOIICHUEM HACTHUYMHOTO ]]l’!]].ﬂﬂ]‘{;l.. ()”])F‘jlf"ﬂE“[IH(”\-‘[ Ha P)F
n aMeiommm Touno 71 MummManbinix v 101 MakcUMALELIX eTeMeRTOR.

Cemelierso npeamraros S(r). Ono pe uycroe apu | > 2 mwr > 1.
[Tpemkar p sxomar B 8)(r) Touno Torma. Koraa py C &, t <7, cymecT-
BYeT nHoicTanobka o, Ha El, pasznaraioman n NPOUIBOACHAE [IUKIOB
OMMHAKOBOW NPOCTOR MINELL p > 2, rpaduk KOTODOR coBIALAET ¢ p1. TO
eCcTh CCJIM @ € E{‘r. TO (a,0,(a)) € py v ecan (ay.a,) € M- TO ay = a,(ag).

[Tycrn ¢ > 1, &, — knace peex OTODPAKCHUNE ¢ MHOMKECTEA Efj B
MHOKCCTBO MOACTAROBOK Ha £, Buadenne ¢ na a obosnayaeM o,.

lycrs @, € @) u &, cocToUT U3 Beex » Takux. urto Pa = Qo OPH
via,a') < 1. Honowum h € {4}, Ty = {1t ..1}, Ki € E,T” n K
COCTOUT U3 BCEeX HJIEMEHTOB (a1.0a.....a;) TAKUX. 9TO npu ¢, € Nl"l
BhIimosineno v(a;,a;) < 1.

[lycto | = p™, p — npocroe, m > 1, (¢ =< E,+ > — abexn-
CBa Tpymna, B KOTOPOR Kadbi HeHYJAeBOR “0eMenT uMeeT opoctoi
OOPAN0K .

Mpu p #2 nyers 1, € N n 20, = 1(mod p).

Cemeitcrso npemraros Li(r). Ono ne IycTo ToJabKo npu [ = p™, p
— upoctoe, mo 2> 1, r > 1. Hpemvkar p sxomt B Li(r) Touno torma.
ROTa st HekoToporo o us ®,. t < r, cupaseanuso clle Iy lonee:

a) Myers k= p™, p> 2. Torna p; C K3 n (a1, as,a3) us K} sxomr
B p1. €CIM TONBKO @4, (a3(t)) = 1,(p, (a1(t)) + Pa, (a2(1))).

6) Hyers &k = 2™, Toraa p; C K v (a1,as,a3.04) 013 K} wxomr B
P1. ECIU TOILKO

'7:‘!:1(("'1(1")) + ‘rgrl](“?(f)) = tfgu](ﬂ'fi("')) i "r:llq(“"("))‘

OTMeTuM, UTO yKasaHHbIe ceMeHcTBA TPU r = | COOTBOTCTBOHHO COB-
Ha/aloT ¢ MIBeCTHLIMU ceMelcToaMu A Fj us naparpada 2.
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[lyets ¢ > 2, T = (I, ). £ ecTh P-NOAMHOKECTBO E?‘ TaKkoe, 4YTO
VE;-'(I.'Z) = 2.

Cemeiictso npemukatons Vi(r). Oro me nyecro npu [ > 2, r > 2.
Mpemkar p Bxoymt B Vi(r) Touno Toraa, korga py C £, t < r, ¥ BbI-

nosHeno: (ay, ) € E;‘(m) Mgy TOUHO TOra, Koria ay(t) = ax(t); cymect-

_ ~(M
ByeT ¢ u3z ¢, Takoe, 4ro BEIOUCHIne (dq,ay) € & LAY N 1 PEBAUBAJEHTHO

CYMECTBOBAHMIO o M3 [5) TakoMy, uTo aq(t) = @, () 1 az(t) = @u,(t).
Mycrn
Wir) = Zy(r)Ui(r) U Dy(r) U My(r) U Si(r) U Li(r) U Vi(r)
u T(W(r)) — MHOKeCTBO KIaccoB a.pyHKIMA, cOXPaHAIONMK npeluKa-
el U3 Wi(r).
Teopema 5.10. [15] HAatecn aecmo pascncmao S (P ) = U(Wi(r)).
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SOME NONSTANDARD TYPES OF
ORTHOGONALITY (A SURVEY)

Gradimir V. Milovanovié

ABSTRACT. This survey is devoted to some nonstandard types of orthogonal
polynomials in the complex plane. Under suitable integrability conditions on
w, we consider polynomials orthogonal on a circular arc with respect to a
non-Hermitian complex inner product as well as Geronimus’ version of or-
thogonality on a contour in the complex plane. Also, we introdunce a class of
polynomials orthogonal on some selected radial rays in the complex plane. In
both of cases we investigate their existence and unigqueness, recurrence rela-
tions, representations and connections with standard polynomials orthogonal
on the real line. We also give an introduction to the general theory of orthog-
onality on the real line and the unit circle. Zero distributions of nonstandard
types of orthogonal polynomials are considered.

1. Introduction

The orthogonal systems play an important role in many branches of math-
ematics, physics and other applied and computational sciences. Especially,
orthogonal polynomial systems appear in the Gaussian quadrature processes,
the least square approximation of functions, differential and difference equa-
tions, Fourier series, etc.

In this survey we mainly consider some classes of nonstandard orthogonal
polynomials. The paper is organized as follows. In Section 2 we discuss two
standard types of orthogonal polynomials - pelynomials orthogonal on the
real line and polynomials orthogonal on the unit ¢ircle. The most important
properties of such polynomials are presented. Under suitable integrability
conditions on a weight function, in Section 3 we consider polynomials or-
thogonal on the semicircle with respect to a complex-valued inner product.

This work was supported in part by the Serbian Scientific Foundation, grant number
0401F.

o
=1
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A generalization of such nonstandard orthogonal polynomials on a circular
arc in the complex plane is treated in Section 4. Gieronimus’ version of or-
thogonality on a contour in the complex plane for polynomials orthogonal
on the semicircle or on a circular arc is considered in Section 5. Sections 6
and 7 are devoted to a new class of orthogonal polynomials on some selected
radial rays in the complex plane. We investigate the existence and unique-
ness, recurrence relations, representations and the connection with standard
polynomials orthogonal on the real line. Also, the distribution of zeros of
such polynomials is included.

2. Standard types of orthogonal polynomials

A standard type of orthogonality is one on the real line with respect to
a given non-negative measure dA(f). Namely, let \:R — R be a fixed non-
decreasing function with infinitely many points of increase for which all mo-
ments g = [ ¥ dA(1), k=0, 1...., exist and are finite. Then the improper
Stieltjes integral jm, P(t) dA(t) exists for every polynomial £. By the applica-
tion of the Lebesgue-Stieltjes integral fﬁ F(t) dA(t) to characteristic functions
of sets, the function A engenders a Lebesgue-Stieltjes measure dA(¢), which
is known also as m-distribution (cf. Freud [10]). Moreover, if ¢ — A(1) is
an absolutely continuous function, then we say that \'(t) = w(t) is a weight
Junction. In that case, the measure dA can be express as dA(1) = w(t) dt,
where the weight function ¢ — w(f) is a non-negative and measurable in
Lebesgue’s sense for which all moments exists and j = Jp w(t)dt > 0.

In the general case the function A can be written in the form A = A\, +
As + Ay, where A, is absolutely continuous, A, is sineular, and X; is a jumn
: j 2 5 j i
function.

The set of points of increase of 1 +— A(t), so-called the support of the
measure, we denote by supp(dA). It is always an infinite and closed set. If
supp(dA) is bounded, then the smallest closed interval containing supp(d\)

we will denote by A(dX).

Using the measure dA(1) we can define the inner product (f,¢), by
(21)  (fg)= / FOTDAND  (fog € LH(R) = LA(R:dA)),
Jr

and consider a system of (monic) orthogonal polynomials {pg(#)} such that

pr(t) = t* + terms of lower degree (k=0,1,...).
(Prpnd =0, k£ n, b= ||p”||'.’ =0
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For any m-distribution dA(1) there exists a unique system of polynomials
{pe(1)}-

A general property of the inner produet (2.1) that (1f,¢) = (f,tg) provides
the three-term recurrence relation for the (monic) orthogonal polynomials
Pi(t),

(2.2) pk-}—l(f) = (T == H.k)].l‘g‘.(f.) S b-’n’}')-'\'—l(t)~ L= 0’ ]_’21 -
po(t) =1, p-i(t) =0.

The recursion coefficients can be expressed in terms of inner product (cf.
Milovanovié¢, Mitrinovié, Rassias [31, p. 33])

o, Pi P
o= WP s gy gy = _erd s,
(Pks LUA:] (Pk—l s Ph—1 )
The coefficient by, which multiplies p_i(t) = 0 in three-term recurrence

relation may be arbitrary. Sometimes, it is convenient to define it by bp =
po = jm dA(t). Then the norm of p, can he express in the form

”P?i” = % (P'ruf’u.) =Y b(]b] t 'bn -

An interesting and very important property of polynomials p,(t), 7 2 1
is the distribution of zeros. Namely, all zeros of p, (1) are real and distinct
and are located in the interior of the interval A(dN). Also, the zeros of pu(1)
and p,41(1) interlace, L.e..

(n+1 (n) _ _(nt1) .
L }<'rk” < Tt (k=1,....n; n€N)

T . . .
where T}c ) k=1,....n, denote the zeros of p, (%) In an Increasing order

i < i << rin,

It is easy to prove that the zeros Ti_”} of p,(t) are the same as the eigen-
values of the following tridiagonal matrix

[ g \/b_l 0 7
\/1_'; | \/E

Jo = Ju(dX) = NI ,
L O \/b?_i__l Up_1 |
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which is known as the Jacobi matriz. Also, the monic polynomial Pult) can
be expressed in the following determinant form

ﬁ-n(” = (IPfL('ﬁ[” - Ju)n

where [, is the identity matrix of the order n.

Suppose that A(dA) = [a,b]. Since every interval (. b) can be transformed
by a linear transformation to one of following intervals: (—1, 1), (0, +00),
(—00,+>), we can restrict the consideration (without loss of generality) only
to these three intervals. A very important class of ort hogonal polynomials on
an interval of orthogonality (a. b) € Ris constituted by so-called the elassical
orthogonal polynomials. Their weight functions w(t) satisfy the differential
equation

%[A(f}m(f)) = B(t)w(t),

where ‘
L ==g® if (a,b)=(-1.1),
A(t) = ¢ ¢, if (a,b) = (0,+0),
1, il (a,b) = (—o0c,+x),

and B(t) is a polynomial of the first degree.
The classical orthogonal polynomials {Qk} on (a.b) can he specificated
as the Jacobi polynomials P}c“’m(t) (v, > —1) on (=1, 1), the generalized

5

Laguerre polynomials Li(t) (s > —=1) on (0, +00), and finally as the Hermite
polynomials H(t) on (—oc, +0c), with the weight functions

b (=014 8, =™, e (a8 > —1),

respectively. These polynomials have m any nice particular properties (cf. (9],
[25], [29], [31], [40], [43]). Some characterizations of the classical polynomials
were given in [2-3], [5-6], [9], [20], [23].

There are several classes of orthogonal polynomials which are in certain
sense close to the classical orthogonal polynomials, so-called semi-classical
polynomials.

In many applications of orthogonal polynomials it is very important to
know the recursion coefficients a; and be. If dA(t) is one of the classical
measures, then a, and b, are known explicitly. Furthermore, there are cer-
tain non-classical cases when we know also these coefficients. For example,
we mention here the generalized Gegenbauer weight w(t) = [t]#(1 — #3)=,
s > =1, on [=1,1] (see Lascenov [22] and Chihara [9, pp. 155-156]), the
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hyperbolic weight w(t) = 1/ cosht on (=00, 400) ([9. pp. 191-193]), and the
logistic weight w(t) = e t/(1+¢7*)% on (—oc, +00).

A system of orthogonal polynomials for which the recursion coeflicients
are not known explicitly will be said to be strong non-classical orthogonal
polynomials. In such cases there are a few known approaches to compute
the first n coeflicients @y, bg, & = 0,1,... ,n— 1. Furthermore, for such a
purpose there is the package ORTHPOL developed by Gautschi [12]. These
coefficients then allow us to compute all orthogonal polynomials of degree
< n by a straightforward application of the three-term recurrence relation
(2.2).

Another type of orthogonality is orthogonality on the unit circle. The
polynomials orthogonal on the unit circle with respect to a given weight
function have been introduced and studied by Szegd [41-43] and Smirnov
[37-38]. A more general case was considered by Achieser and Krein [1],
Gieronimus [16-17]. P. Nevai [35-36], Alfaro and Marcellan [4], Marcellin and
Sansigre [24], etc. These polynomials are linked with many questions in the
theory of time series, digital filters, statistics, image processing, scattering
theory, control theory and so on.

The inner product is defined by

P p——
(f9)= 2—/ F(e)g(et) dp(8),
T Jo

where du(#) is a finite positive measure on the interval [0, 27] whose support
is an infinite set. In that case there is a unique system of (monic) orthogonal
polynomials {¢x}ren,. If € — p() is an absolutely continuous function on
[0,27], then we say that p'(#) = w(f) is a weight function.

The monic orthogonal polynomials {¢x} on the unit circle |z] = 1 satisfy
the recurrence relations

dra1(2) = 20k(2) + drg1(0)@p(2),  dppa(2) = H3(2) + dr41(0)zdk(2),
for k=0,1,..., where ¢}(z) = (1) z2).

As we can see these recurrence relations are not three-term relations like
(2.2). The values ¢ (0) are called reflection parameters or Szego parameters.
Defining a sequence of parameters {ax} by ap = —dps1(0), £ = 0,1,..-.;
Geronimus [18. Chapter VIII] derived the following three-term recurrence
relations:

_ - _ 25

p—10k41(2) = (k=17 + ax)Pr(2) — @kz(1 — Jag—]")Pr-1(2),
x 2 -

ﬂk—1fb}:+](z) = (ap—12z + “k)‘f);.:(:) —apz(l = \‘Lk—l\ )@Z_,](:-),

where k € N and ¢g(z) = |, ¢1(z) = = — ap.
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3. Orthogonality on the semicircle
Polynomials orthogonal on the semicircle
INn={zeClz=¢*, 0<0< 1}

have been introduced by Gautschi and Milovanovi¢ [14-15]. The inner prod-
uct is given by

(fs!i)z/f(:)g(z)(i:)“d:.
Jr

where ["is the semicircle I' = {z € C [2=6",0%0< m}. Alternatively,

(f) = / F(e)g(e™) do.

This inner product is not Hermitian. but the corresponding (monic) orthog-
onal polynomials {7} exist uniquely and satisfy a three-term recurrence
relation of the form

Te1(2) = (2 —dog)mp(2) — Beme_q(2), E=i0.1,2,.. .,

T-1(2) =0, me(z)=1.

Notice that the inner product possesses the property (z2f,¢) = (f, zg).

The general case of complex polynomials orthogonal with respect to a
complex weight function was considered by Gautschi, Landau and Milo-
vanovi¢ [13]. Namely, let w:(=1,1) — Ry be a weight function which can
be extended to a function w(z) holomorphic in the half dise

Dy ={zeC||z|<1,Imz > 0},
and

(3.l) (f,g):/f(:)g(:)'d_n(:)(iz)—lr[::f _f{r'iﬁ)g(f‘iﬁ)ur(r-iﬁ)d().
r 0

Together with (3.1) cousider the inner product

l —
(3.2) [f.9] = [ fC)g(ayw(e) da.
-1

which is positive definite and therefore generates a unique set of real (monic)
orthogonal polynomials {py}:

(Pespn] =0 for k#m  and (Prsp] >0 for k=m (k,me Np).
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On the other hand, the inuer product (3.1) is not Hermitian; the second
factor g is not conjugated and the integration is not with respect to the
measure |w(e?)| df. The existence of corresponding orthogonal polynomials,
therefore. is not guaranteed.

We call a system of complex polynomials {7} orthogonal on the semicir-

cle if
(M), ) =0 for k#m and (mp,m,) >0 for k=m (k,m € Np).

where we assume that 7, is monic of degree k.

The existence of the orthogonal polynomials {7} can be established as-
suming only that

(3.3) Re(1,1) = Re / w(e®)do # 0.
JO

Assume that the weight function w is positive on (=1, 1), holomorphic in
D, and such that the integrals in (3.1) and (3.2) exist for smooth f and ¢
(possibly) as improper integrals. We also assume that the condition (3.3) is
satisfied.

Let ('.. ¢ > 0. denote the houndary of D4 with small circular parts of
radius & aud centres at £1 spared out and let P be the set of all algebraic
polynomials. Further, let I and (', 4y be the circular parts of . with radii
| and &, respectively.

Then, using Cauchy’s theorem and assuming that w is such that for all
g€ P,

(3.4) !ill‘l} / g(z)w(z)dz = 0.
T (.:.tl
we obtain

. 1
(3.5) U:/g(:)m(:)rl::/ g(z)w(z)dz —{—/ gle)yw(x)de, g€ P
c JIF

=1

The (monic, real) polynomials {pg}. orthogonal with respect to the inner
product (3.2), as well as the associated polynomials of the second kind,

| X il
Q'A-(S):/ Mrn(;r}dw (=002 5 50

—% S a
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are known to satisfy a three-term recurrence relation of the form

(3.6) U1 = (2 — @)y — bryr_ (k=0,1,2,...),

where

(3.7) y—1 =0, yo =1 for {ps} and Yy-1=—1, yo =0 for {qs}.

Denote by my and gi the moments associated with the inner products (3.1)
and (3.2), respectively,

e = (25, 1), My = [:zrk. 1], k=0,

where_ in view of (3.7), by = my.
Gautschi. Landau and Milovanovié [13] proved the following result:

Theorem 3.1. Let w be a weight function, positive on (=L, 1). holomorphic
m Dy ={z€Cllz| <1, Imz >0}, and such that (3.4) is satisfied and the
indegrals in (3.5) exist (possibly) as improper integrals. Assume in addition
that i
Re(1,1) = ne/ w(e®ydo £ 0.
0

Then there cxists a unique system of (monic, compler) orthogonal polyno-
mials {m).} relative to the inner product (3.1). Denoting by {py} the (monie,
real) orthogonal polynomials relative to the inner product (3.2), we have

(3.8) Te( =) = pr(z) — 01 pr—1(2) (k =0,1,2,...},
where

. (( 1 (0
(3.9) 0, = —L0Pr(0) + igi(0) (k=0,1,2....).
thopr—1(0) — g1 (0)

Alternatively.

I)k

(3.10) 0. = la; + 7 (=012, .05 f_1 = uo,

k-1

where ag. b are the recursion cocfficients in (3.6) and fo = (L.1). In par-
ticular, all 8y are real (in fact, positive) if a. = 0 for all k > 0. Finally,

(3.11) (mpe,mp) = Bea[prorspra] #0 (k=1,2,...), (mo, 7o) = po.



Some nonstandard types of orthogonality (A survey) 525

As we can see. relation (3.8). with (3.9), gives a connection between or-
thogonal polynomials on the semicircle and the standard polynomials or-
thogonal on [—1,1] with respect to the same weight function w. The norms
of these polynomials are in relation (3.11).

In the sequel we assume that condition (3.3) is satisfied, so that the or-
thogonal polynomials {m;} exist. Since (zf,g) = (f.z9), it is known that
they must satisfy a three-term recurrence relation

mes1(2) = (2 — tog)mil2) — Brm—-1(2), E=0,1,2,.-2%

(3.12)

r_1(z) =0, m(z)=1.
Using the representation (3.8), we can find a connection between the coef-
ficients in (3.12) and the corresponding coefficients in the three-term recur-
rence relation (3.6) for polynomials {pg} (see [13]):

Theorem 3.2. Under the assumption (3.3), the (monic, complex) poly-
nomials {m.} orthogonal with respect to the inner product (3.1) satisfy the
recurrence relation (3.12), where the coefficients oy, 3. are given by

by
= B s

ap = O — Oy —iag, I bp—q = Br—1(0p—1 — tag—1),

for k> 1 and «g = by — tag, with the 8, defined in Theorem 3.1.

Alternatively, the coeflicients oy can be expressed in the form

by ) m
I N
0.1

ap = —fr1 + —_—=—,
B_1 o

It is interesting to consider the zero distribution of polynomials m,(2).
From (3.12) it follows that the zeros of 7,(z) are the eigenvalues of the
(complex, tridiagonal) matrix

il\{] 1 ()
4 oy |
(3.13) = [y dee
1
0 ij-,,.__l 'Ij”n—l

where a;, and 3 are given in Theorem i

If the weight w is symmetric, i.e.,

(3.14) w(—z) = w(z), w(0) > 0.,
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Il

then po = (1, 1) = Tw(0) > 0, ap = 0,80, >0, forall k>0, and
o =00 =0 -0y, B = f);,‘:__r k>

[n that case .J, can be transformed into a real nonsymmetric tridiagonal
matrix

(xq Hn 0
= 9‘) (251 H]
A, =—iD7'1,. D, = -0y .
T : H'nﬁ‘_’
O _H?J‘*E -1

where ), = diag( L iB, %808y, i%0,0,8,,...) € O The eigenvalues 17,,,

v=1l....,.m, of A, can be calculated using the EISPACK subroutine HQR

(see [39]). Then all the zeros (,, v = 1,. .. . n,of m,(2) are given by ¢, = i,
1

P = o e

In [13] we proved the following result for a symmetric weight (3.14):

Theorem 3.3. All zeros of 7, are located symmetrically with respect to the
imaginary axis and contained in Dy = {z € C | || < I, Imz > 0}, with the
possible cxception of a single (simple) zero on the positive imaginary aris.

If we define the half strip S ={z€ C|Imz > 0, —&n £ Rez < §,},
where £, is the largest zero of the real polynomial p,,. then we can prove
that all zeros of 7, are also in 5, (see [13] and [15]). Thus, all zeros are
contained in Dy N &y,

For the Gegenbauer weight w(z) = (1 — S TN —1/2. the excep-
tional case from Theorem 3.3 can only arise if # = | and =112 € X < 0.
Likewise. no exceptional cases seem to oceur for Jacobi weights w(z) =
(1=2)"(1+2), a,8>—1.ifn 2 2, as was observed by several numerical
computations (see [13]). However, in a general case, Gautschi [11] exhibited
symmetric functions w for which m,,( -:w), for arbitrary fixed n, has a zero
iy with 3y > 1.

Some applications of these polynomials in numerical integration and nu-
merical differentiation can be found in [8], [26-28].

4. Orthogonality on a circular arc

A generalization of polynomials orthogonal on the semicircle was given
by M.G. de Bruin [7] for the circular arc

]‘H:{:E(C|::—iR+riH\/I{!+l,u,9§H§rr—xp. tany = R}.
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He considered the polynomials {7[*} orthogonal on ['g with respect to the
complex inner product

T
(4.1) (Fa)= / £1(8)g1(8)un (8) do.

o

where ¢ € (0,7/2), and for [(z) the unction fi(#) is defined by

f1(8) = f(=iR + VR + 1), I = tan ¢.

Alternatively, the inner product (4.1) can be expressed in the form
(4.2) (f.g)= / F(=)g(= (=) iz — B) " da.
drg

Under suitable integrability conditions on the weight function w, which
is positive on (—1, 1) and is holomorphic in the moan-shaped region

M+={:€(C

lz 4+ iR < VvV E? + 1, lm:>0},

where R > 0, the polynomials {7/} orthogonal on the circular arc I'g with
respect to the complex inner product (4.1) always exist and have similar
properties like polynomials orthogonal on the semicircle.

For R = 0 the arc 'z reduces to the semicirele I', and polynomials fn i
to {m,}. It is easy to prove that the condition

"
Re / w(z)(iz — R)y 'dz = Re / w(#)df # 0
+I'p Lo
is automatically satisfied for £ > 0 in contrast to the case R = 0 (see

condition (3.3)).

Quite analogous results to Theorems 3.1-3.4 were proved by de Bruin [7].
For example, for polynomials {7} (the upper index R is owitted) equalities
(3.8) and (3.11), as well as the three-term recurrence relation (3.12) hold,
where now the 8 is given by

b k

0, = —R+ a0 + e

(h=0,1.2,...);  8_1 = po,

instead of (3.10). Also, for the symmetric weight, w(z) = w(—2z), all zeros of
7, are contained in M4 with the possible exception of just one simple zero
situated on the positive imaginary axis.
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Let {m, } be the set of polynomials orthogonal on the circular arc I'r, with
respect to the inner product (4.1), i.e., (4.2). Milovanovié and Rajkovic [33]
introduced the polynomials {7} orthogonal on the symmetric down circular
arc ' with respect to the inner product defined by

(4.3) ([:9)" = | [(2)g(z)w(z)iz+ R)™" d=,
JI

where I'n = {z € Clz = iR+ e “VRPF 1,0 <O < 7 -, tanp = R}.
Such polynomials are called dual orthogonal polynomials with respect to
polynomials {r,,}.

Let M be a lentil-shaped region with the boundary M = Tptl g, 16,

M={zeC|lz+iR| < VR +1},

where R > 0.

We assume that w is a weight function, positive on (=1, 1), holomorphic
in M. and such that the integrals in (4.2), (4.3). and (3.2) exist for smooth
functions f and g (possibly) as improper integrals. Under the same addi-
tional conditions on w and f, like previous, we have

1
():/f(:)*m(:)rf:+/ Slx)w(x)da,
T J =1

where " = I'y or I, Then both systems of the orthogonal polynomials
{m.} and {7} exist uniquely.

The inner products in (4.2) and (4.3) define the moment functionals
Lz¢ = 1, e = (2. 1) = / Fw(z)is - R)~"d=
Sy

and
A E3 3 3 . 'I\ - < =1 =
ik - Iy s N}: - (;J\‘ I )* = / () + R)Tdz,
I
respectively. Using the moment determinants, we can express the (monic)
polynomials 7 and 7 as

fo M1 v i
I 1 b2 Hht1

T(z) = A :
L Hek—1 i ek —

K

| Z z
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and
Wom e il
I O Ml
z) =
mi(z) =
Pl My P gy
| z Al
where
fo 1 ot k=1 TS R [y
IO fhk mom I
Ay = ) ’ K= )
Jik—1 Lk Jlak—2 Br_1 M Hp—s
We can prove that (=) = m(2). as well as the relation
Ti(z) = pr(z) — 0 pe—1(=). ko=l )id o
where
Mo
ﬂz_,:—{—j‘#—. R 0 SR 4, = pug.
[Pe—1,Pi—1]
Here, 8;_; = —0p_1. where #,_y is the corresponding coefficient in the

polynomial .
Also, the following theorem holds:

Theorem 4.1. The dual (mmonic) orthogonal polynomials {7} satisfy the
threc-term recurrence relation

Trp(2) =(2— g )me(z) — Bemp_q(2) b=10,1,2.. ...,

T (2)=0, m(z) =1,

with o = =@, and 3} = A, where ay. and By are the cocfficients in the
corresponding recurrence rclation for the polynomials {m}.

Using dual polynomials we can give a very short proof that ¢,y > 0
(k > 0) for a symmetric weight w(z) = w(=2). Namely, since (mp, 7)) =
11 [Pr—1.pr=1] it is enough to prove that (mg.7g) > 0. In this symmetrie
case. Qx_y is real and we have 07 _, = =6, and

1 -
(mmn=mwm:/'mnwmnﬁm4k:4/ ST G R
J=1 'l..’ff—R

4y
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where (/(2) = pp(2)® + ﬂf._lpk_] (z)%. Then

1 — 1 i
(Tp ) = :‘i’./;l (r'(.;:)H;Lﬂ__Td:r:+i/;1 .::(r'(;a')%rlm.

Since & — /() is an even positive function. the second integral on the
right-hand side vanishes and (7, 74) > 0.

One complicated proof of the previous result was given in [7].

5. Geronimus’ version of orthogonality

I the paper [21], J. W. Jayne considered the CGieronimus’ concept of or-
thogonality for recursively generated polynomials. Ya. L. Geronimus proved
that a sequence of polynomials {pits which is orthogonal on a finite interval
on real line. is also orthogonal in the sense that there is a weight function
2 (=) having one or more singularities inside a simple curve (" and such
that

0, k # m,

(- k= i,

1
[r)l) (pkw”*m) = ?r'; pfc(:)]’m.{:)\(:)d: = {
& J

Following Geronimus [19] and Jayne [21], Milovanovié and Rajkovic¢ [32]
determined such a complex weight function = — \ (=), for (monic) polyno-
mials {4} orthogonal on the semicirele I', and also for the corresponding
polynomials {ﬂ'f} orthogonal on the circular arc 'y (R > 0).

Denoting by (" any positively oriented simple closed contour surrounding
some circle [z] = » > 1, we assume that

-
: o =k _
(5.2) v(z) = E wrz ", w; =1,
k=1
for |z] > 1. and express =" as a linear combination of the monic polynomials
Ty =001, .n, which are orthogonal on the semicirele I'. with respect
to the inner produet (3.1). Thus,
LA
B % g A o
(5.3) = = g T Tan(2).
=0

where (2", 7)) = Yo (T s T ), m = 0,1,... , 1. Using the inner product
(n.1) and the representation (5.2), we obtain

| ‘ 1 e
:.l." — :JL A > i: = l‘:h “’3 =w, .
()= 5 § G = o ﬁé,;“‘“ "
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On the other hand, because of (5.3) and the orthogonality condition (5.1),
we find

n

<‘7”- 1) = (Z Vi T L2V 1) = Z T'u.m(wm.- J)~

m={ m=0

e, (2" 1) = yuo{mo.m) = Yuohe. Thus, we have wuq1 = ynoho = Yu0,
because hg = wy = 1.

Finally, using the moments p, = (=", 1), we obtain w, 41 = i, /pto, n = 0,
and

(5.4) Wz)= —Y o=k, 2] % 1;

where we need the convergence of this series for |z > r > L.

Suppose that w be a weight funetion, nonnegative on (=1, 1), holomorphic
in Dy = {z € C||z| < I, lmz > 0}. integrable over ¢, and such that
(3.3) is satisfied. Then the moments i can be expressed in the form

.
o = / w(z)iz) " dz = l (imu((]} — v.p. / wlz) r[u:)
J I 1 J =1 &€

1
g = / HFw(z)iz) " dz = i/ o Tw(eyde, k>1.
r J=1

and

These moments are included in the series (5.4).

Supposing that the weight function w has such moments jii, which provide
the convergence of the series (5.4), for all z outside some circle [z] =7 > 1
lying interior to (', Milovanovi¢ and Rajkovié [32] proved:

Theorem 5.1. The monic polynowmials {m,.}. which are orthogonal on the
semicirele T with respect to the inner product (3.1). are also orthogonal in
the sense of (5.1), where

: 01 o
(l-%L ”('r')(l;r:). EEZ S

o =1q 2 =l

| o=

x(z) =

and

w(x)

.

1
po = mw(0) 4 ¢ v.p. /
J=1

In Gegenbauer case they obtained the following result:
2 )
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Corollary 5.2. Let w(z) = (1 — 22)*"V2 X > —1/2. The monic polyno-
mials {my.}, which are orthogonal on the unit semicivele with respect to the
inner product (3.1), arc also orthogonal in the sense of (5.1), where

1 i DA+ 1 1
((2)=— - — F(l.=,A+1;—),
¥z 3+ Tzt [(A+1) ( 2 * :-’)

where I as the Gauss hypergeometrie series and T is the gamma Junction.

[n Legendre case (A = 1/2) we have

I i 241
X(2)=—-4 —log 3
@z -
where the interval from =1 to | on the real axis is considered as a branch
cut.
The corresponding complex weight for polynomials {xF} (R > 0) orthog-
onal on the circular arc I'g was also derived in [32] in the form

_ L/‘ (R + i )w()
oo Sy (RE4 a2 (z—a)

dr, |2] = #5 1,

where

1 i
[ x
flo = /_l "R—{_,% w(a)dr.

6. Orthogonality on the radial rays in the complex plane

[n this section we start with a new type of nonstandard orthogonality on
some radial rays in the complex plane. Suppose that we have M points in
the complex plane, z;, = a,e® € C, 5 =0,1,..., M —1, with different argu-
ments @,. Some of as (or all) can be oo, The case M = 5 is shown in Fig. 6.1.
We can define an inner product on these radial rays (s in the complex plane
which connect the origin = = 0 and the points z,. s = 0,1,....M — 1.

Namely,
M-—1

(f,9)= Z ftw“/}q f(=)g(2) |w(=)]dz,

s=0
where = — w(z) is a suitable function (complex weight).

Since, this product can be expressed in the form

M—-1

(fagi= Z /0 ‘ f(.r:r'.r"-‘ )g(;rrri\f‘s) }-u:(,::r""?) , da,

5=0
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we see that
M—1

(f, f) = ; A | fxei)

except when f(z) = 0.

¢ | m(.rr'w’) I dr > 0,

Fig. 6.1

We will consider here ouly the case when M is an even number and
ps=ms/m,s=0,1,.... 2m — 1. Thus. let m € N and g, €1, ..., Ea;u_1 De
(2m)th roots of unity, i.e., ¢, = exp(ims/m), s = 0,1,...,2m — 1. We will
study orthogonal polynomials relative to the inner product

2ri—1
. ; ==} N N (<] o~
(6.1) o)=Y < [ sG] de
s=0 Sl
Suppose that ag; = 1 for each s and let z — w(z) be a holomorphic function
such that
[w(xes)| = wlx), s=0,1,....2m—1,
and x +— w(x) be a weight function on (0, 1) (nonnegative on (0, 1) and
1 . . .
fD w(x)dx > 0). Then, (6.1) can be written in the form

1
(6.2) (f,9)= / (
Jo

2m—1

Z f(.rss)y(;r:s_.;))-w(.:.-)d.'r:.

s=0
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In the case m = 1, (6.2) becomes

1 —
(f.g)= / fla)g(a)w(x) da,
-1

so we have the standard case of polynomials orthogonal on (—1,1) with
respect to the weight function @ — w(x).

The inner product (6.2) has the following property:
Lemma 6.1. (2™ f,¢q) = (f,2™q).

Proof. Since s = ¢7™ = (=1)* we have

S

1 s2m=1
(=™ F.o) :/ (Z i ] )g(:rt_s)) w(x)dar
0

s=0

1 2m—1
/ (Z f(:r's_g):r'”“E'{),“-_q(:::;—‘s))m{.::)d.r:
Jo

s=0

=(fiz"g). O

The moments are given by

2m—1
(6.3) foug = (2037 = ( Z ;-‘i."")

s=0

1
/ e w(zyde, p,qg> 0.
Jo

[fp=2mn4v,n=I[p/(2m)],and 0 < v < 2m — 1, it is easy to verify
that

2m—1 2m—1

ZEJI:ZEV:{ZT“ if = [,
. — ¢ 0 ifl <w<2m-1.

s=0

Thus, p,, in (6.3) is different from zero only if p = ¢ (mod 2m); otherwise
tipg = 0. Using the moment determinants

Hoo 2410 st HN-1,0
Fton fli ST N =11
_\() — 1, AN = . ’ N Z l»
HoN-1 M1, N—-1 - HN-],N-1

we can prove the following existence result for the (monic) orthogonal poly-
nomials {7 n( :)}?\‘,’:‘“ with respect to the inner product (6.2) (see Milovanovi¢
[30]):
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Theorem 6.2. If Ax > 0 forall N > | the monic polynomials {rn(2)}1 20,
orthogonal with respect to the inner product (6.2), cxist uniquely.

It is well known that an orthogonal sequence of polynomials satisfies a
three-term recurrence relation if the inner product has the property (2f,¢) =
(f.zg). In our case the corresponding property is given by (=™f,g) =
(f.z™g) (see Lemma 6.1) and the following result holds:

(s 4]

Theorem 6.3. Let the inncr product (-,-) be given by (6.2) and let the
corresponding system of monie orthogonal polynomials {mn(z) '};,zn caist.

They satisfy the recurvence relation

T

{h"i) WN-{-?H‘(:) = 2 Tl-N(:) - IJNTI'N_,”,‘(Z], N > m,
an(z)=2N, N=0.1,....2m—1,
where

(TN, 2™ TN —m ) _ HTFN“"')
( TN—m» ‘”-.‘\"—'m) ”TrN—m “3

(6.5) by =

In a simple case when m = 2 and w(x) =1, i.e. when the inner product
(-,-) is given by

o o I o e
(6.6) (f.9)= /0 [f(a-)y(m.f(f.r:).f;{afJ-)+f(ﬂ=)u(—x)+f(—wtr).u(—im>] dz,

we can calculate directly the coefficient by in the recurrence relation (6.4).
The moments are given by
4
ﬂ?l.u‘ :(:J’~:‘[] = P+q+ l
0. otherwise.

p = q(mod4).

Thus, if p = 4i + v and ¢ = 4j + v, v € {0,1,2,3}, we have

1
A+ j)+2w+17

t,J 2 0.

Paitvdity =

Our purpose is to evaluate the moment determinants
Hoo fio HN=1.0
Ho1 fn HN=1.1
An = . , N>l

po.N—1 HMHI,N-1 7 HN-1,N-1
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In order to make it, for every k& € N, we define the determinants

oo 0 g 0

0 2 0 G2
. o4 0 Jlag 0
Cp= 0 a6 0 Heo 1

ag—2

[
i
=
|
L3

i 0 sy 0
0 s 0 jury
His 0 a5 1]

Dy = 0 far 0 pgp

J2k—12k-1

. . . - 17
which can be expressed in terms of the determinants E[l, = | and

LN Hatuw e Ha(n—1)4uv,u
278 Hat+ v a4 £ £ f"‘:lfr).—})+11.4+1/
].‘(V} —
T .
Hoa(n—=1)+u Hatvd(n-1)40v - .“"!(n.;l)+u.4{'n-l)+u
where v = 0, 1,2, 3.

[nterpreting these determinants in terms of Hilbert-type determinants and
using Cauchy’s formula (see Muir [34, p. 345])

ﬁ (ﬂ,i = ﬂ_";)(b.,: = b,)

[ 1 ]“ i>)=1
(]F‘t f - "
aitb5]; . IT (@i +0))

ty=1

with a; = 4i and b; = 45 4 20 — 7, we obtain (see [30])

(0! (n—1)1)°
n—1mn-—1

IT II(4i445+20+1)

1=0 j=0

ELI’) - 4”2

M L

Also, we can prove that

(h: = £ pt2) k(even) > 2: (Y = E® E((f) klodd) > 1,

“kf2 g (k+1)/2 5 (k=1)/2°
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as well as

kieven) > 2; D) = M L k(odd) > 1.

(1) ga(3)
Di=Eypk etz Bkt oo

k2 Lnga
Using the same techniques we find that
Agp = CrpDy and  Agpyq = Cieg Dy

Combining these equalities we obtain:

Lemma 6.4. We have

Ay, = 't;'(U) J1) p(2) p(3)
41 = i T "o

A-lu-l--l = L:J[EIF(])E,(Z)E.(:S).
(0) s
A*h,-{—_’ = LR-{-ILH-}-]E )E ‘)

_ ™ o) L(2) 3
Agnys = B4, B B B
We note, first of all. that Ay > 0 for all N > 1, and therefore, the
orthogonal polynowmials {7 (=)} 52, with respect to the inner product (6.6)
exist uniquely. and

Ani
An

(rn, 7)) = ||7n]]? = > 0.

Theorem 6.5. The (monic) polynomials {7 n(z ),t_[, orthogonal with re-

spect to the inner product (G.6G). satisfy the reewrrenece velation

(6.7) wtne2(2) = 2n(z) — byTv—a(z), N =2,
an(zy=:N, N=0,1,2,3,

where

16n*®
(8n 4+ 20— 3)(8n+2v +1)

if v=20,1,

((]H) b411+y = N
(4n + 200 — 3)°

(8n+ 20— 3)(Su+2v+1)

if v=23.

Proof. Because of (6.5), the coefficients by can be expressed in the form

= A Ay
by — |17rNH2: N+1 N.I‘ N> 2.
llm -2l Ay  Apn-g
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In order to find these quotients we need a quotient of the determinants E.,(,_”).
According to the previous equalities we get

E(U) 4 2n—1 A — | 2
ntl _ ‘ H (___L) .om >,
B 8+ 20+ oo Ak 20+

and BV /B = 4f(20 4 1),

Then, for v = 0,1 we find

() A(v)
b o A471+u+1 /Atln-!-u _ E-,L+] /E"H‘
Aty = 5 . =R 3)
o A,{(“_] ]+l/+3/A-I(1!.—1]+U+'3 ELI +l)/l‘;£::‘+i3,
i.e.
L6
bflu.+|./ -

(Sn 420 —3)(Sn+ 204+ 1)

Similarly, for v = 2,3, we have

(v) ()
h - A4n+u+l /Ath-H _ En-{-] /E‘“-U
dn4v — = = v—3) *
Adntv-1/Dgngp—2 Ev(a:-ll)/EJ(l 2
i.e.
(4n 4+ 20 — 3)?
b'l'n.-l-u =

(8n+ 20 —=3)(Sn+20+1)°

From (6.8) we conclude that
1 .
by — 1 as N — 400,

Just like in Szegd’s theory for orthogonal polynomials on the interval (=1,1).

Since . ‘ )
“‘,rr ”2 { bNhN-«'J s 'bg“‘ﬂ”(}”‘!, N even,
N —

bnbn—z -+ bs||my|]*. N odd,
and ”‘fl'()“.'3 = ;ﬁl/;ﬁ(] = lgop = 4 (A(] = 1J;

lmi]]* = Az /Ay = froofta /ftoo = pr1 = 4/3,
we can define by = 4, by = 4/3, so that (6.7) holds for every N > 0, where

r=i{z)=m_i(z)=0; Mzl =1, Fil2)=2
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Finally, we can determine the norms of the polynomials {mn(z)}. Let
N=4dn4+r, n=[N/4. 0<w <3 Since

()

s Angr | Aqngert _ Eag
lrwll”™ = — = = =Tt
Ay Asntr EY)
we have
Ienl? = . 0 <N <3
x|l = ———. 3
N 2N + 1 -
2n—1 :
5 5 | Hh=n+1)
P PO PO, S BT Y Nsa,
Ieall = Mol = g7 (T

4k 4+ 20+ 1 ' -

7. A representation of wx(2) and zeros

In this section we again consider the general case of the inner product
(6.2) for which the corresponding system of the monic orthogonal polyno-
mials {TI'N(Z)}-I’;;;:'O exists and satisfies the recurrence relation (6.4). Based
on this recurrence relation. we can conclude and easily prove that my(z) are
incomplete polynomials with the following representation (see Milovanovié

(30]):

Theorem 7.1. The polynomials from Theorem 6.3 can be cxpressed in the
form

(7.1)  Fomngal2) = 227 (2*"™), w=0,1,...,2m—1; =01,

v . a 9
where qL }(1’)‘ v="0.1,....2m—1, arc monic polynomials of exact degree n,
which satisfy the three-term recurrence relation

@21 (1) = (1 — g (1) = B2 (), m=0,1,.,

Ay =1 ¢y =o.

(7.2)

The recursion coefficients al” and b are given in terms of the b-coefficients
) n q .

s

) = by +byys W =by_pby, N =2mn+tw

The three-term recurrence relation (7.2) shows that the monic polynomial

systems {qi () toe v =0.2.....2m — 1, are orthogonal. The following

theorem gives this orthogonality:
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Theorem 7.2. Let x — w(x) be a weight Junction in the inner product
(6.2) which guarantees the cxistence of the polynomials wn(z), e, q.fl")(i‘.),
v=0,1, ... 2m — 1, determined by (7.1). For any v € 10,1,...,2m — 1},

the sequence of polynomials {q,(._y)(t)}:t':’((‘) is orthogonal on (0, 1) with respect

to the weight function t v w, (1) = ((2v+1=2m)/2m w(tt/2m)y,

As we can see the question of the existence of the polynomials mn(z) is
reduced to the existence of polynomials f,rSf”(!.), orthogonal on (0. 1) with
respect to the weight function w,(t), for every v = 0. 1,... . 2m — 1.

The next result gives the zero distribution of the polynomials 7mx(z) (see
[30]):

Theorem 7.3. Let N =2mn+wv. n = [N/'Zm.]_. veE {01, ... 2m— l}. All
zeros of the polynomial wn(2) are simple and located symmetrically on the
radial rays 1, s = 0,1,... ,2m — 1, with the possible cxeeption of a multiple
zero of order v oal the origin z = 0.

At the end we mention that an analogue of the Jacobi polynomials and
the corresponding problem with the generalized Lagnerre polynomials were
treated in [30].
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ITERATIVE METHODS FOR BOUNDING
THE INVERSE OF A MATRIX (A SURVEY)

Miodrag S. Petkovi¢

ABSTRACT. The aim of this paper is to give a survey of iterative methods
for bounding the inverse of a point or interval matrix. These methods are
based on the generalized Schulz’s method and developed in interval arith-
metic. The interest in bounding ronndoif errors in matrix computations has
come [rom the impossibility of exact representation of elements of matrices
in those cases when numbers are represented in the computer by strings of
bits of finite length or elements were experimentally determined by mea-
surement which leads to the uncertainty in initial data. A posed problem
can be usefully solved by interval analy

sis, a new powerful tool of applied
mathematics. A detailed study of the basic inclusion method and its modifi-
cations, including the convergence features, conditions for a safe convergence,
the monotonicity property, the choice of initial inclusion matrices and a num-
ber of remarks concerning a practical realization, were presented. A special
attention is devoted to the construction of efficient methods for the inclusion
of the inverse of a matrix.

1. Introduction

The demands of the computer age at the beginning of the sixties years
with its "finite” arithmetic dictate the need for a structure which has come
to be called interval analysis or later interval mathematics - a new, growing,
and fruitful branch of applied mathematics. "Although interval analysis is in
a sense just a new language for inequalitics, it is very powerful language and
is one that has divcet applicability to the important problem of significance in
large computations™ (R.D. Richtmeyer, Math. Comput. 22 (1968), p. 221).
The starting point for the application of interval analysis, described for the
first time by Moore [21]. is the desire in numerical mathematics to be able to
implement algorithms on digital computers capturing all the roundoff errors

This work is supported by the Science Fund of Serbia under Grant No. 0401
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automatically and therefore to calculate strict errors automatically. Interval
arithmetic is powerful tool for bounding a result of some computation or
a solution of an equation so that interval methods are often called self-
validiting algorithmns.

Anyone using a computer, whether in engineering design, physical sci-
ences, technical disciplines, or whatever has surely inquired about the effect
of rounding error and propagated error due to uncertain initial data or un-
certain values of parameters in mathematical models. A standard question
should be "what is the error in the obtained results?”. Numerical algorithms
using interval arithmetic supply techniques for keeping track of errors and
provide the machine computation of rigorous error bounds on approximate
solutions or results.

The application of interval mathematics to compnting hags several objee-
tives: to provide computer algorithms for finding sets containing unknown
solutions: to make these sets as small as possible: and to do all this as ef-
ficiently as possible. Towards these objectives, set-to-set mappings replace
point-to-point mappings. and set inclusions replace approximate equalities.

The purpose of this paper is to present iterative methods for bounding
the inverse of a matrix. The interest in bounding roundoff errors in matrix
computations has come from the impossibility of exact representation of
elements of matrices in some cases since numbers are represented in the
computer by strings of bits of fixed, finite length. Besides, there are elements
which are experimentally determined by measurement which leads to the
uncertainty in initial data and it is only known that their values belong to
some intervals. Finally, nearly all numerical computation is carried out with
Mixed-precision”, approximate arithmetic. I the commonly used approach,
one assumes that the worst possible roundoff error occurs in each numerical
step. One then determines (or hounds) how these errors can accumulate as
the computation proceeds. This procedure is usually called ordinary method
for crror bounding and the abbreviation QM is used to refer to it. The
second approach uses interval arithmetic (abbreviated as Z.A) which has the
advantage of an automatic control of rounding errors and, at the same time,
an inclusion of the exact result of computation. For this reason, the main
subject of this paper is concerned with iterative methods which use ZA for
bounding errors in matrix inversion.

In Section 2 we will give the basic matrix operations needed for the con-
struction and analysis of iterative algorithms for the inclusion of real or
interval matrices. A general approach to the problem of the inversion of
matrices is described in Section 3. The two basic interval iterative meth-
ods. based on the generalized Schulz’s method, are considered in Section 4.
Conditions for the monotonicity of interval sequence of inclusion matrices
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are the subject of Section 5. In Section 6 we study the problem of finding
a suitable initial matrix which insures the convergence of the presented in-
terval algorithms. Efficient iterative methods for bounding the inverse of
a matrix. which combine the efliciency of floating-point arithmetic and the
control of accuracy of results by interval arithmetic, are presented in Section
7. A special attention is devoted to the choice of parameters which define
the most efficient inclusion algorithm. Finally, in Section 8, we describe an
iterative method for the inclusion of an interval matrix. Throughout this
paper several numerical examples are given to illustrate presented methods
as well as difficulties which appear in solving the studied problem.

The presented study is a two-way bridge between linear algebra and com-
puting. Its aim is to encourage mathematicians to look further to computing
as a source of challenging new problems, and researchers in computing to
turn more frequently to contemporary mathematics in their day-to-day use
of the digital machine.

2. Interval matrix operations
A subset of the set of real numbers R of the form
A = [ay, 03] = {xr|ay < & < ay, ag,ax €R}

is called a closed real interval. The set of all closed real intervals will he
denoted by [(R). If @y = ay then the interval A = [y, az] degenerates to the
real number aq and A is called a point interval. The basic operations and
properties in the set [(R) are described in the book [3. Ch. 1 and 2]. Real
intervals will be denoted by capital letters.

A real interval matriz is 2 matrix whose elements are real intervals. Since
we deal in this paper only with real intervals and real interval matrices, we
will use the shorter terms inferval and interval matriz. The set of m x n
matrices over the real numbers is denoted by M., (R) and the set of m x n
matrices over the real intervals by M,,.(/(R)). An interval matrix whose all
components are point intervals is called a point matriz. Point matrices (el-
ements from M,,.,.(R)) will be denoted by capital letters A, B. (',... , while
interval matrices (elements from M, ([(R))) by capital letters A, B,C, ...
in bold. Interval matrices are represented. as is customary for real or com-
plex matrices, by their components in the form A = (A;;).

Definition 1. Two m x n interval matrices A = (A;;) and B = (B;;) are
equal if and only if there is equality between all corresponding components
of the matrices, that is, A=B & A;; = By (i=1.....m j=1,...,n).

A partial ordering on the set of interval matrices M, ( [(R)) is introduced
by
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Definition 2. Let A = (A;;) and B = (Bi;) be two 1 x n interval matrices.
Then
AQB =4 A.,'_,,'(_:B,'_i (f:1.....’1‘”._’]'21.....,‘.”,].

In particular, if A = (a;;) is a point matrix, then we write A € B. Fach
interval matrix may be regarded as a set of point matrices.

[n the following we give a short review of the basic operations between
interval matrices which formally correspond to the operations on point ma-
Lrices.

Definition 3. For two m X » matrices A = (Ai;) and B = (B;;) interval
matrix addition and subtraction are defined by
A+B:= (:1”: + B”)

Definition 4. Let A € M, .(/(R))and B € M. (I{R)). An interval matrix
computation is defined by

AB = (Z A,’;,Bk_j) .
k=i

Definition 5. If A = (A;;) is an interval matrix and X an interval. then
XYA=AX:= (\ .-"lf'_,':l.
[t is easy to prove that

A+B={A+H AcA BeB),

while

AB D {AB| A€ A.B e B}
[n the following theorem the basic properties of the introduced operations
are given (see [3, Ch. 10]):
Theorem 1. If A. B and C arc intcrval matrices. then
A+B =B+ A (commutativity),
A+ (B+C)=(A+B)+C (associativity),
A+O0=0+A=A (0 - zero malriz),
Al = 1A = A (I — unit matriz),
(A+B)C C AC+ BC
C(A+B)CCA+CB
(A +B)(' = AC' + B(",
('(A+B)=CA + (B,
A(BC) C (AB)C.

(subdistributivity ),
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Let us note that the associative low is not, in general. valid for interval
matrices. This low is not valid even if two of three matrices are point matrices
(the last property in the above theorem).

The inclusion isotonicity property for the matrix operations is given in
the following theorem ([3. C'l. 10]):

Theorem 2. Let Ay, By (k= 1.2) be interval matrices and X and Y real
intervals. If ¥+ € {4, —.-} is onc of matviz operations then the conditions

A, CB,(k=1.2) and X CY

imply Ay * Ay C By By and YA, C YB,.

In particular, from Theorem 2 we obtain

AeA, BeB = A+ Be A+ B,
Ae X, AeA = Me XA (AeR).

Definition 6. Matrix norm of an interval matrix A is defined by
|| A [|:=max || Al
AEA

where || - || is an arbitrary mounotone norm.

Thus, the norm of an interval matrix is an extension of the norm of a point
matrix and directly depends on the type of this norm. Most frequently, we
use "maximum row-sum” norm || - [J~..

(2.1) | A Hos:= max | A |se= mju-:z | 45|
J

and "maximum column-sum’”™ norm || - ||y,
(2.2) || A |li:= max || A= mja.xz [zl
[
Both norms are monotonic and multiplicative, that is (omitting subscript
indices),
BCA = |B|<[Al and [[AB[<[|A|-|IB].

In the sequel, we will omit the subscript indices (indicating the type of norm)
and assume that the used matrix norm is monotonic and multiplicative. The
application of some specific norm will be accented.
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Before introducing the concept of width, absolute value and midpoint for
interval matrices, we recall to the corresponding definitions for a given real
interval X = [a, b]:

d(X)=b—a (widlh);

|X| = max(|al,]b]) (absolute value);

m(X)= = j 0 (midpoint).

Definition 7. For an interval matrix A = (A;j) the following point matrices
are associated:

a) the width matrix d(A):= (d(A;;)):

b) the absolute value matrix |A| = (|A”~|);

¢) the midpoint matrix m(A):= (m(A;;)).

The matrix d(A) and |A| have nonmegative components. The elements of
the midpoint matrix m(A) are real numbers which are equal to the midpoints
of the corresponding (interval) components of the interval matrix A. so that

m(A) e A.

Definition 8. A sequence of interval matrices {A} is monotonically non-
increasing if Ag 2 Ay 2 Ay D -+, and monotonically nondecreasing if
Ay CA CAC---,

Definition 9. The intersection of two interval matrices A = (Aij) and
B = (B;;) of the same type is delined as

AnNB:= (AN Bi',;).

[t is easy to see that the intersection of interval matrices has the property
ACC, BCD = AnNnBCCND (inclusion isotonicity).

Definition 10. Let X = (a;;) and ¥V = (yi;) be point matrices from
M,,..(R). Then

XY S ayctisliaii=l,... n)

defines the relation of partial ordering "<” in M,,,.(R).

Using Definition 10 the following properties for real matrices, introduced
in Definition 7. can be proved ([3. Ch. 10]):
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Theorem 3. [f A = (A;;) and B = (Bj;) arc intcrval matrices of the same
type, then '

(1) ACB = d(A)<d(B).

(2) ACB = |A|<|B|.
(3) d(A +B)=d(A)+d(B).
(4) |A+B| <A+ |B|.

)
)
)
(5) |AA| = |AMN = |M]A] (A eR).
(6) |AB| < [A[|B].
(7) d(AB) < d(A)|B| + |A|d(B),
(8) d(AB) > |A|d(B). d(AB) > d(A)B|,
) d(AB) = |A|d(B), d(BA)=d(B)|A|,
) Oe A = |A| <d(A)<2A|
) m(A + B)=m(A)x m(B),
(12) m(C'A) = Cm(A). m(AC)=m(A)C"
(¥3) mf€") = (.

3. Problems of bounding the inverse of a matrix

In this section we will consider the problem of bounding the inverse of a
matrix in the presence of rounding errors applying digital computers with
the arithmetic of limited precision as well as uncertain data in elements of
a given matrix.

First, we point out some more general problems in matrix inversion. Let B
be an exact matrix whose eloments can he exactly represented in arithmetic
of finite (say, double) precision in a computer. Let A = (a;;) be a matrix
whose elements are subject to error. Suppose we know only that a;; (1,7 =
1,2,....n) lies in the real interval [a;;.@;;]. where a;; and @;; can be exactly
represented in double precision.

Problem 1. Compute B~ (approximately) and bound the errors resulting
from roundoff.

Problem 2. For a given matrix A = (a;;) with a;; € [g.ij,ﬁ,-j] for i,j =
1,2,...,n, compute A~! (approximately) and bound both the errors result-
ing from roundoff and the errors from possible errors in A itself.



550 M. S. Petkovié
Problem 3. Define the set

(AN ={A7" ay; € [ay;, @), A7 A= 1),

—1

Compute (AT)™" approximately and bound the errors due to roundoff.

Problem 4. Find (A/)”" exactly.

Problem I can be easily solved by OM or by inverting B using ZA. More-
over. by use of arithmetic of sufficiently high precision, arbitrary accuracy
with arbitrary sharp bounds can be obtained.

Using TA. Problem 2 can be solved as easily as Problem 1. Using OM,
only slightly more effort is required to solve Problem 2 than Problem |.

OM obviously cannot solve Problem 4 and eannot solve Problem 3 except
in a very crude sense. It can be shown (see [6]) that Problem 4 cannot be
solved using A, even if infinite precision arithmetic is nsed. An approximate
solution of arbitrary high accuracy can be obtained but the amount of work
quickly becomes prohibitive.

Hence, we direct our attention to Problem 3 which can be solved using ZA.
Two approaches for solving this problem by 7.4 have been developed in the
literature: hyperpower method [4], [6] and Alefeld-Herzberger’s modification
of generalized Schulz’” method [1].

The hyperpower method is defined by a matrix-valued fuction (A, X)
for real » x n matrix X in the range of the real n x n matrices, where A is a
given matrix whose inverse 4=! has to be found. By means of the iteration

XD = §(A, X9) given X >0,

we get an iterative method which generates a sequence { X%} of matrices.
Following Altman [4] we call this iterative method a hyperpower method for
A~V of order p > | if and only if the equation

[— AXHN = (f_ Axthye 15

is filfilled. If the initial matrix X is chosen so that p(/ — AX(®) < | (p
denotes the spectral radins), then the sequence of matrices {X*)} converges
to the inverse A~! of the matrix A with the order of convergence p. Using
suitable error-bounds for the hyperpower method it is possible to derive
inclusion set for A1, Further improvements can be attained using interval
Schulz-Herzberger’s method in the final step, as it was proposed in [16]
and [17]. Let us note that Herzberger presented in [10] a class of iterative
methods for inverting a linear bounded operator in a Banach space, which
can be considered as a kind of hyperpower method.
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The second method uses an iterative procedure to hound the inverse not
only for a point matrix but also for an interval matrix. As mentioned above,
this method was introduced by Alefeld and Herzberger [1] and analysed later
in their books [2] and [3]. It is based on the generalized Schulz’s method for
point matrices and realized in real interval arithmetic. Since a number of out-
standing results concerning improvements and modifications of this methods,
including detailed studies of many convergence properties and behaviours,
and a practical realization. were given by Prof. J. Herzberger throughout
about twenty papers, it is quite natural that the mentioned methods and
their modifications are referred to as Schulz-Herzberger’s methods, or the
§_H methods. for brevity. A survey of these interval methods will be given
in the following sections.

Before we present iterative methods of Schulz-Herzberger’s type, we give
an example to illustrate difficulties appearing in bounding inverse matrices.

Example 1. Let us cousider the interval matrix

I [0.999995, 1.000005]
A=
2 |
and the point matrix
iz} = [i rll , TEX= [O.f].‘)ﬂﬂ!—)-”). 1.000005].

Let A~ = (A};) and ('(x)~' = (¢f;(x)) be the inverse matrices of A and
C'(x), respectively. Then A}, = {'r-'::j(;r)|:r € X}. Let us determine, for
instance, the component Af, of the inverse matrix A-'. First, we have
cly = of(2z~1). Forz € X = (0.999995, 1.000005] the component cya ()
is a monotone function so that the endpoints of the interval X yield the
extreme values (minimum and maximum) of ¢},(«). According to this, using
10 significant digits, we obtain A}, = [0.9999950000, 1.0000050000].

On the other hand, using interval arithmetic of infinite precision and the
rounding of results to 10 digits to find Al,, we calculate

v

S = 09999850001, 1.0000150001]

which differs from the exact result given above by . L

4. Interval versions of Schulz’s method

Let p > 1 be a fixed natural number and I the unit matrix. If Ais
a given nonsingular point matrix and X© is an initial matrix such that
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| {—=AX® ||< 1, then for finding the inverse of A the generalized iterative
method of Schulz of the order P

=1
(4.1) XD = XIS (7o ax®y (=0, 1,

r=0

can be applied (see [4], [26], [27], [32]). In particular. for p = 2, one obtains
Schulz’s method of the second order for calculating the inverse matrix [31]

(4.2) KU o R — ARy 1 P

Let X be an interval matrix containing the inverse matrix A=1 of a given
nonsingular matrix A, and let X € X (for example, X = m(X)). For
B =1—-AX we have the identity

p—2
[P0 =Bt =il BT B BV oy B"*) = AX Y B,

r=0

that is. after multiplying by A-T,
ATV —ATY I - AXP-T = x (F—AXY.

Hence, since 4A-1 ¢ X,

p—2

(43) AT =X (I - AX) + A7'(J — Ax !
=0

p—2

€ X Zu —AX)Y +X(I - AX)P1,

r=()

The last relation suggests the following iterative interval version of (4.1) for
the inclusion of the matrix A -

p—2

i ) p—1
(4:4) XD = (x9) 37 (1 - Am(XM)) X (1- Am(X®))"
=0
(k=0,1,...), assuming that the initial matrix X contains A~1,

The properties of the inclusion iterative method (4.4) are given in the
following theorem ([3, Ch. 18]):
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Theorem 4. Let A be a nonsingular X n matriz and X annxn interval
matriz such that A=1 € X A sequence {XWY of interval matrices is
calculated according to (4.4). Then
(d4a) each malrix XK (J: > 0) contains AT
(4b) the sequence (X)) converges to A=Y if and only if the spectral radius
p(f — Am( X)) is smallcr than 1;
(4¢) using a matriz novm || - || the sequenee {d(XUN)} satisfies

X <y 1 dXED [P 7 2 0,
that is. the order of convergenee of the method (4.4) is at least p.

Proof. Of (4a): Setting X" = X and m(X®) = X in (4.3) and taking

into account the iterative formula (4.4), we obtain

p—2

r p—1
A1 em(XW) 5 (1 - Am(x9)) + X (1 - ..hu.(x“:)))’ = X(k+1),

r=0

Since. in addition, A1 € XV the proof of (4a) follows by complete induc-
tion.

Of (4b): Using the rules from Theorem 3 for the midpoint matrices,
the midpoint mapping in the iterative procedure (4.4) gives the following
iterative formula for the sequence {m(X(¥)}:

p=1 "
m(X*H) = ”'(X(A:')Z([ - Am(X(“)) :

p={)

This is a generalization of Schulz’s iterative procedure given also by (4.1).
Multiplying both sides of this equation by A one obtains

p—1

Am(X () = (1 — (I - Am(x“"))) Z(! S ,m(x““’))r

r=0

I—(I- ;-IJJJ(X(k'))j'.

or

k+1
= Am(XEF) = (1= Am(X9)7 = (1 = Am(X )"

Hence, there follows

lim m(XM)=A"1e L_Hm (- ,flrn(X(m))ri =0 & p(l- Am(X(O’)) < 1

k— o0
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Let us show that the sequence {X")} converges to A~ if and only if the
sequence of midpoint matrices {m(X(¥))}. converges to A~'. This follows
from the consideration of the sequence {d(X™)} of the width matrices which
satisfy

d(XMHD) = d(XE)) (1 = Am(X k)71

(see the properties (3) and (9) of Theorem 3). If lim g o, m(XM)) = 4-1
then the last relation implies that limy_. d(X)y = ). Conversely, us-
ing the continuity of m and (13) of Theorem 3 it follows trivially that
limg_o, X* = A= implies lim,_.., m(X®M) = A=1. Since it was shown
above that the condition p(f — Am(X(0)) < | was necessary and sufficient
for the convergence of {m(X*)}, it follows that (4b) is valid.

Of (4c): First we estimate
d{x(k-lv-l))

d(XH)|(1 - Am(XK)yyr=1)
d(X" )| (A4 — Am(X“ﬂJ})rl—ll
d(X® (A A= - m(X )=
d(X W2~ = Al x 8-t

IA

IA

Using a monotonic and multiplicative matrix norm || - || and the last relation,
we gef

| d(XEHD) (< 270=D) 4 =1 ax Ry )

Since the inequality
FBIn <N BIS I BIl, 71 >0, 9 >0,
is valid for every matrix norm || - ||, from this inequality we get
. ==t} {p=1 —1_p -
FAXEED) gy < 270=Dr =D =g g a(x ) |,
which proves (4¢). O

Remark [. From the proof given above we see that the assertion of the the-
orem is also valid even if X(©) {5 an arbitrary interval matrix not necessarily
containing A~'. In that case we will not have the inclusion A4-1 € X¥) in
general. We observe that the criterion (4h) depended only on the midpoint
matrix m(X)) of the given inclusion matrix X(©. while the width d(X(0))
can be arbitrary. For this reason, taking m(X(®) to be an approximation
to A= (but so that the condition (41) holds) and choosing the elements of
the matrix X© to be large enough so that the enclosure of A= by X(©) bhe
ensured. we can provide not only the convergence of the method (4.4) but
also the inclusion A=' € X% (k= 1,2,...).
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Example 2. The S-H method (4.4) for p = 2 was applied for the inclusion
of the inverse of the point matrix

11
5 5
A=
3 9
10 10

The initial inclusion matrix was constructed according to the procedure (6.2)
given in Section 6. Thus, with a = I/(I1—= || I = A||) = 2, for the initial
matrix X we choose

o [Foeztd Fed ] (053] RS

SVENETIVIERIS S NS

In this way we ensure that A~" € X9 folds. Besides, we have p(I —
Am(X©)) = p(I — A) = 0.8 < 1, which provides the convergence of the
iterative procedure (Theorem 4). The first four iterations give the following
inclusion interval matrices (using arithmetic with 7 significant digits):

x() — [ [0.1666666.2.2333316]  [—0.8999999, 0.4999999]

= [ [~ 14333321, 0.8333329]  [0.5000000. 1.6999988] |’
x(2) = [L1716651. 1.5043325]  [—0.3969995, —0.1749999]

T | [-0.5963338. —0.2616657 [1.0849990, 1.3049983] |’

X(g}_' [1.3587207, 1.3672409]  —0.3054331, —0.2997532]
= [[-0.4581502, —0.4496209]  [1.2088432, 1.2145233] |

X — [ (13636322 1.3636379]  [—0.3030319, —0.3030281]
T [—0.4545477. —0.4545422) [1.2121181,1.2121219) |~

The applied iterative methods converges quadratically starting from the
third iteration. Besides, in each iteration step we have
B3 136363636, —0.30303030 . ...
A7l = = e Xt¥,
- —0.45454545. ..  1.21212121...

—

The sequence of the matrices produced by (4.4) always contains A~1
according to (4a) and. thus, it seems natural to form the intersection of the
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new inclusion matrix X%+ and the former matrix X(4) in order to decrease
the resulting matrix, which leads to the iterative method

(4.5)

p—2

Ylk+1) — ,”,(X(f»'))Z“ _ _,,1”,,(X(k‘)))?' + X”"}(] _ ‘,‘hn(x(k))}r-wl’

r=0
X = YO0 i, h= 1, 1, ).

Using this iteration procedure one obtains a monotouic sequence
X0 o xM x5,

of inclusions for A='. The following numerical examiple does show, however,

that the convergence criterion (<1b) is not suflicient for convergence in general.

Example 3. ([3. Ch. I8]) We choose p = 2 and the matrices

[ 8] we= [ )

which implies that m(Xm)) = I. We obtain

om0 = [

and caleulate p(f — Am (X)) = 0.6v/2 = 0.85 < [. Therefore, the proce-

dure (4.4) converges to A= using this interval matrix. Applving (4.5) we
find

YO = i (XO) 4 XO (] — Ap(XO)) = H:iiﬂ %:2“];” .

which implies that XD = X0 The sequence of matrices generated by (4.5)
therefore does not converge to A= in contrast to the sequence computed by
(4.4).

A convergence statement for the iteration (4.5) is contained in the follow-

ing theorem,

Theorem 5. Let A be a nonsingular n xn matriz and X an nxn interval
matriz for which A" € XOV [f the sequence of matrices {X5Y ds produced
by (4.5). then

(ha) each matriz XK, > 0. contains A~
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(5b) if the inequality p(|1 — AX|) < | is satisfied for all X € X(©® | then
the sequence { X5} converges toward A7
(5¢) the sequence {d(X'"))} is bounded as follows:

” d(XUH—I)) ”_: _:,,I H (!(X(k']) H:“-. 7, > 0.

that is, the order of convergenee of the iterative process (4.5) 15 al
least p.

Proof. Of (5a): As in the proof of (4a) of Theorem 4 we first show that
A1 € YR from which follows immediately that A=1 € X+ since
A~ e X0,

Of (5b): We shall use the fact that every sequence {X®}, for which
X0 5 X1 > X)) D ... Jolds. converges to an interval matrix X = {Xi3)s
where

+
X = n \f:) (=1, v adlly G = 5 ses 5)
k=0

(see [3, Corollary 8 in Ch. 10]). Therefore, the sequence {X"} obtained by
(4.5) always converges to an interval matrix X. We now show that under the
assumptions of the theorem we must necessarily have d(X) = 0. We define

p—:

Y = m(X)Y (/= Am(X))" +X(I = Am(X))

=

p—1

and obtain X = (X;; NY,;) CY from (4.5). By (1) of Theorem 3 we get
d(X) < d(Y). For d(X) we obtaiu from (4.5)

A(X)| T — Am(X)|"~" > d(X)|(f = Am(X))' ™ = d(Y) = d(X),
which implies that
AX) (1= |1 = Am(X)|""") < 0.

The assumption p(|/ — Am(X)[) < 1 implies the existence of (I —|I-
Am(X)|""‘)-1. It can be shown that this inverse is also nonnegative. From
this it follows that d(X) < O. and hence d(X) = . Taking into account
(ha) we obtain X = A-L.

Of (5¢): As in the proof of (4c) one first derives the inequality

g

| dCY DY <Al X |
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for a monotonic and multiplicative matrix norm | - |]. From this it follows
that the inequality

| dXE+DY | d(YE D) | < ) d( XKy )|

is valid since X410 € Y(+1) a5 well as using (1) of Theorem 3 and the
monotonicity of the norm || - ||. Analogous to the proof of (4¢) we use the
norm equivalence theorem to prove the final statement. 0

5. Monotonicity of Schulz-Herzberger’s method

J.W. Sehmidt has proved in [28] that the inclusion XM C X() is a nec-
essary and sufficient condition for the monotonicity of the interval Schulz’s
method

(5.1) XD = m(XO0) 4 XD (1 = Am (X)),

Starting from the above inclusion .. Herzberger has derived in [7] the nec-
essary and sufficient condition which is of practical importance. Further-
more, using Schmidt’s remark (given without a proof) that the inclusion
XM C X s also necessary and sufficient for the monotonicity of the
higher-order method (4.4) (see [28]), J. Herzberger has considered in [9] the
monotonicity of (4.4).

The aim of this section is to give a useful sufficient condition for the mono-
tonicity of the S-H method (4.4). Our consideration reduces to Herzherger’s
results [7] concerning the iterative method (5.1). which can be generalized
for the method (4.4).

Lemma 1. Let X XU, .. be the sequence of interval matrices produced
by the iterative formaula (4.4) and let p( [/ —Am (X)) < 1. If the inequality
(5.2)  2fm(XH) (1 - Am(X(“))] < AXWOYT - |1 = Am(XP)|)

is valid for k =0, then it holds for each b = 0.1.2.... .

Proof. For brevity, let us introduce the notations
Ci=1-Am(X™), B, =|Cy.

From (4.4) we find the midpoint matrix m(X*+1) and the width matrix
d(Xk+1)y
p=1
(5:3) m(X*+) = (x9S gy,
r=0
(5.4) d(XUHD) = 4 X)) ey
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Using inequalities
IXY| < [X|[Y], [X+Y]|<[X]+]Y]

for the absolute value matrices, in the special case of the point matrices we
obtain

, . .
(5.5) |C| € |Cw|” = B,

p=1

Z 5

r=0

"I—] 1
<Y =SB

=0 r=0

=

(5.6)

Starting from (5.3), we find
p—1
Am(X 1)) = (1 - (1- _;lr,J(x‘*"))) Y @ =1-Cl,
r=0
wherefrom
k41 0 pFH
(5.7) Cigr = 1 — Am (X)) = €} = C§
Since p(|1 — Am (X)) = p(Bg) < | implies p(Bg) < 1 (v > 1), we have

.]k ,k
p(ICxl) = p(ICG 1) < p(By ) < 1
that is
(5.8) p(Bo) < 1 implies p(Byg) < 1. A= 0y lyea s .

Furthermore, hecause of p(By) < | there exists the inverse matrix (I —
B.)~! > O and the following identity is valid

p=1
Y B = (/- By (I -B}).

r=u

We shall now prove that the inequality (5.2), where X (%) is given by (4.4),
is valid for each k= 1,2.... if

(5.9) 2Am(X M Cy| < d(X)(T - By)

(the inequality (5.2) for k = 0) holds.
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Let us rewrite (5.2) in a (shorter) form
(5.10) 2m(XMN) eyl < d(XM) (1 - By)

and assume that this inequality holds for some index & > 0. Multiplying
both sides of (5.10) by (I — By)="(1 — B})|C}™"|. one obtains

2m (X C|(1 ~ By) ™' (1 - B)|ICLT'| < d(X¥))(1 - BY)|CL |

or

=1
(5.11) 2|m (X ¢y Z BLIC,™"| < d(X™y(1 - Bi)|Cl7).

r=0
Using inequalities
n ) n—1 )
By = |Cif" > |7 ||Ck] 2 |,
we find
(1 - BDICL™ < (1 - |Cp ' lehiey™ |
<IciT-1e ey =
= 1CL7'[(J = By ).

Cy7H( - |Ch))

According to (5.6) and the last inequality, from (5.11) we obtain

p—1

m(X*) (Y cpey

=0

(5.12) 2 <X PN = Biyr).

Taking into account formulas (5.3), (5.4) and (5.7), the inequality (5.12)
hecowmes

X UNCy 5] €l XWFINIT B ),

This proves (5.10) (that is, (5.2)) by complete induction since (5.9) holds as
the assumption of Lemma 1. O

Theorem 6. Let A1 e X and p(|1 — Am(X()|) < 1. Then the gen-
eralized interval method (4.4) converges to A=V, where A= € XK (k=
0.1,...), and if

(5.13) 20X (1 = Am (X)) < XY~ |1 - Am(XO)])
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holds, then the method (1.4) is monotone,

Proof. First. we observe that under the given assumption, there follows that
(4.4) converges hecause

p([I = Am (X)) <1 implies  p(I - Am (X)) < 1.

The inclusion A~1 € X'¥) for each k& > 0 has been proved in Theorem 4.
Under the condition (5.13) of Theorem 6 (and Lemma 1, too) the inequal-
ity

2m (XM ¢l < XK - By)

holds for each & > 0. Multiplying both sides of the last inequality by

p—2
Y Bp=(/-By)'(U-B;) 20,
=)
we obtain
’_'
(5.14) 2Am (X))l S B, < (XM (1 -BYT).
=0
Since
=1 p=3
m (X ¥ ZC,4 |m (X CHZB’
r=()
and
[—-B' < r-|ci,
from (5.14) we obtain
=1
2lm(X ) 3" € < dX W1 - e
=i
or
fi=<1
| , Rl gy &
m(X*) Y cp - m (X )} % Q(d(x“")—d(x‘“)|c;, ).
=)

Finally, according to the formulas (5.3) and (5.4) for the matrices m(X*+1))
and d(XFtD), the last inequality becomes

(5.15) [n(XEED) — (XN | < = (d(XH)) — a(XEFDY).

|
2
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But, the inequality (5.15) is necessary and sufficient for the inclusion
(5.16) X+ o x(8)

Therefore, if the condition (5.13) is satisfied, then the inclusion (5.16) holds
for each & > 0, which means that the generalized iterative method (4.4) is
monotone. This completes the proof of the theorem. O

Remark 2. The condition (5.13) can be rewritten in the form
(5.17) 2l XY — Am (X)) (1 = |T - Am (X))~ < (X)),

Since this condition depends only on the given matrix A and the initial
approximation m(X©)) for A=, the matrix d(X®) > O can always be
chosen so that (5.17) is satisfied. Since the convergence condition p(|1 —
Am(X@)[) < 1 does not depend on the width matrix d(X(®), this matrix
can be taken so that

(i) an initial interval matrix X safely includes A= and
(ii) the monotonicity of the iterative method (:1.4) is provided.

We observe that (5.13) coincides with the corresponding condition ob-
tained for the interval Schulz’s method (5.1). Since the construction of the
proof of the assertion which gives a sufficient condition for the monotonicity
of (5.1) is directly based on the relation (5.13) (see [7, Theorem 2]), for the
higher-order interval method (1.4) (p > 1) we immediately have the following
theorem:

Theorem 7. Let |[I — Am (X)) < 1 (||« || the column-sum norm), then
the method (4.4) converges to A=V, I addition. this method is monotone iof
the following is valid

2+ max |m(.\'§?] )|

508 d(X©) =y — 1 ori 4, d(x©
(5.18)  d(X;)=h> . Am(XfO))” Jori# 5, d(X;)>h.

Theorem 7 gives a suflicient condition for the monotonicity of the gener-
alized interval method (4.4). Under the given assnmptions of this theorem
it is always possible to choose the width matrix d(X(®) in such a way that
the method (4.4) is monotone. A detailed description of the construction of
the initial including matrix X which guarantees for A=1 € X(© g given
in the next section.
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6. Construction of the initial inclusion matrix

The convergence criterion (5h) in Theorem 5 depends on the width of the
inclusion matrix X for A=", which is not a case with the criterion (4bh)
in Theorem 4. Nevertheless. it is not difficult to find a relation between
these criteria. For instance, if an interval matrix X satisfies the inequality
| I — Am(X©)) ||< 1, for a monotonic and multiplicative norm || - ||, then
we have that

(6.1) | d(XD) [« o =2(1= || 1 = Am(XP) 1)/ | A

is a sufficient criterion for the statement that || 7= AX ||< 1forall X € X(©®,
To construct a suitable interval matrix X let us assume that A may be
represented as A = [ — B with || B ||< 1. The choice m (X)) := I gives

W= Am (X)) 1=l B |I< 1.

and, according to the criterion (4b). the inclusion method (4.4) is convergent
for every interval matrix X' for which m(X©) = 1. In order to insure the
inclusion A1 € X we consider the equation AX = (I — B)X = I or
X = BX 4+ I. In regard to this there follows (using a multiplicative matrix
norm) that

|
| X |I€£a:i= ——m,
| L= B

wherefrom (using the row-sum or the colnmu-sum norm)
—a<r<a (1<4,3<n)
for all the elements of X = (r;;). For the matrix X(® = (X;;) defined by

6 v () [—a.al fori #

(6-2) TR { [—a,2 + a] fori=j,

we have A~ € X9 and also m(X'™) = I. By virtue of Theorem 4 the
iterative method converges to A1,

From the above consideration, we see that the iterative method (4.4)
requires weaker convergence conditions compared to (4.5). For this reason, it
is convenient to start with the method (4.4) as soon as the sufficient condition
(6.1) is fulfilled provided || 7 — Am (X)) ||< | and then to continue with
the method (4.5). Such a combined process has been described in details by
Alefeld and Herzberger [1].

The sufficient condition (6.1) can be weakened. which is the subject of
the following assertion:
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Theorem 8. [If X*) is an inclusion matriz for A=', then

; 2

(6.3) | XSO e p=——

Al

s a sufficient condition for the convergence of (4.5) to A=,

Proof. Applying the width operator d to the iterative formula (4.5), we
obtain

P2

d(m(x“‘l)) Z(I . "J‘”"(X(A.))) + X(“(f — Am(x(k)));l_l)

=0

{[(X(F«'+l})

[FAN

1A

p=1
(f(x“")z-?'“(pmx“h) .
Using a monotonic and multiplicative matrix norm, we get

Ll

p—1
(XD )< (lT) (RGN L

which proves that (6.3) is sufficient for || d(X**1) ||— 0, and whence,
Xl 41 O

Remark 3. Comparing the numbers « and /3 appearing in (6.1) and (6.3) we
infer that o < 4. which means that the condition (6.3) is weaker than (6.1).
Furthermore, /3 is considerably simpler to calculate and has the same value
for all the matrices X¥)_ Finally, the criterion (6.3) from Theorem 6 is even
considerably less restrictive than that of Theorem 5. as it was shown in [8].

The result given in the following theorem provides a better inclusion for
A~V compared with (6.2).

Theorem 9. For the initial inclusion matriz X defined by

[REA

x(0) — I+ ([—c.c]) with ¢ = ———
el =B

we have A1 € X0 and the iterative process (4.4) converges to A= (-l
row-sum or colomn-sum norm).

Proof. Starting from the obvions équalities

A —F=(l - By ' —F=(I-B)'B
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and using a multiplicative matrix norm || - || and the well-known inequality

|
(1= 8)7" < ——.
I— || B
we obtain
B , . | B
AT = 1<l (7= B I Bl =
- || B |

In this way the inclusion A=" € X is proved. Further, since

7= An(X 1=l B (1< L.

the iterative method (4.4) converges to A~ (see Theorem 4). O

Remark 4. The computation of X and X(0) requires the same amonnt of
work but we have X(0) ¢ X ().

For nonsingular matrices A which do not have the same property as in the
previous, some other approach which uses Theorem 7 has to be applied for
constructing a starting matrix for (4.4) with A=! € X9 Namely, according
to Remark 1, the iterative method (1.4) converges to A~! even if X does
not include A='. But the construction (5.18) guarantees the monotonicity
of the interval matrices produced by (4.4),

X0 5 xMox@ 5

and thus we necessarily have 17! ¢ X(0),

7. Combined Schulz-type methods

In this section we describe a general approach to the construction of new
methods of Sehulz’s type for improving bounds for the inverse A=! of a given
n % n nonsingular matrix A. These methods, proposed by J. Herzberger and
Lj. Petkovié¢ [18], [19], possess a great computational efficiency.

It is well known that interval evaluations are more costly than ordinary
floating-point computations. For this reason, it would be advisable to apply
the necessary interval computations only in a part of the algorithm. The
aim of this section is to present an approach for solving this problem, which
combines iterative methods in (loating-point arithmetic as well as in interval
arithmetic. In this way, we take advantage of comparatively small compu-
tational costs of floating-point arithmetic and the very important inclusion
property of interval arithmetic (the enclosure of the exact result).
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Definition 11. The mapping ¢ from the set of n x n-matrices onto itself
is called a Schulz-type method of order p > 2 for A= if and only if for
Y = @(X.A) the equation

(7.1) I —AY =(I - AX)"

holds true.

Remark 5. For practical computations @ should only consist of matrix mul-
tiplications and additions,
Two the most frequently used examples of the mapping & are given below:

Example 4. Let p > 2, then

p—1
(7.2) ¢, (X, A)= XD (I - AXY

1={)
defines a Schulz-type method for A= of order p.

Example 5. We can use Ostrowski’s identity (see [22])

VH+ 1

¢5(.\',A):,X'-(I+ (I—A.-Y)+{I—AX)2)

2
(7.3) X (!— ‘ﬁ; M- AX)+ (1 - AX)Z)
4
=X Z(I - AX

r=A(
which also gives a Schulz’s type method of order 5.
By means of a Schulz-type method for A=! we can construct an iteration
method in ordinary floating-point arithmetic as follows:

(7.4) XD — g x® A), XO given, & >0.

The following assertion has been proved in [IR]:
2

Theorem 10. Let @ be a Schulz-type method for A=Y of order p. Then the
sequences of matrices { X 5} produced by (7.4) have the following properties:
(a) X = A-1 e ol — AXWY) < |,
(b)) of the method (7.4) is convergent, then its order of convergence is at
least p.
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Let X(0:0) 5 A-1 he an initial inclusion for A~! and ®(X, A) define a
Schulz-type method of order p for A='. Then for fixed integers £ > 0 and
p > | we define:

(7.5) X0 = (X0,
x(nd) = g(xni-1 4), 1<i<k,

(empty statement in case k = 0)

r—1
X(n+1.0) = X-(nj.-) Z(I B AX(:]..A:)):' + X{?l.ﬂ]([ _ Aj‘—(u,.k))r1

i=0

(Horner-scheme evaluation in interval arithmetic), n >0,

and

(76) ‘,"('H.,O] — ‘NI.(X(”'"] ).
X = @(x i1 A), 1 <i<k,

(empty statement in case k=0)

r—1
X('n-{-lo {‘X('n. A)Z 1\[;1&]) +X(1LU)(I AX'('H. L)) }ﬂx(n,ﬂ),

i=0

(Horner-scheme evaluation in interval arithmetic), n >0,

where m(X) = (m(X;;)) is the midpoint matrix.

Remark 6. For k = 0 we get as special cases the methods (4.4) and (4.5)
discussed in Section 4.

In particular, for the fixed » = 0in (7.5) and (7.6), we obtain the combined
methods

X =@(XU-V A), 1<i<k,

- r—1
(71) X“'“ _ X(“Z 1}‘(1‘.) X(G)(I_AX(k))r.
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and the monotonic version

X® =XtV A), 1<i<k,
(T_H) : . r—1 T . s .
X0 = X031 AXB) 4 XO(F - gx By FNx©.
i=0

The combined methods (7.7) and (7.8) are, therefore, performed applying
k iterations in floating-point arithmetic in order to obtain sufficiently good
approximation (point matrix) X*) to the inverse matrix A=! and then, in
the final step, the inclusion method of the order r to provide the guaranteed
error bounds to A~!. Such a combination is of a great interest in practice
and, for this reason, it was studied extensively in the papers [19] and (25].

For the combined methods (7.5) and (7.6) the following theorem has been
proved in [19].

Theorem 11. For the methods (7.5) and (7.6) the inclusion A=1 ¢ X(n.0)
(n > 0) holds.

Theorem 12. The sequence { X0} obtained by the method (7.5) con-
verges to A~ if and only if p(1 — AX (00 < |,

As presented in Sections 4 and 6, the convergence criterion for monotonic
methods like (7.6) for which

X0 5 x(10) 5 ... 5 x(0) 5 4-1

obviously holds, differ from those of the non-monotonic methods like (7.5).
This is contained in the convergence theorem, which is quite similar to The-
orem 8.

Theorem 13. The sequence {X("0Y} generated by the method (7.6) con-
verges to A~ if the inequality

X <2/ (1A,

with a monotonic matrix norm || - ||, is fulfilled.

According to Traub [33, Appendix (] the efficiency index of an iterative
method of order ¢ can be defined by ¢'/9, where © is the total amount of
work for one iteration step. In methods like (7.5) and (7.6) one usually mea-
sures O in terms of matrix multiplications and all other computational costs
are considered to be negligible compared with these. If we count the com-
putational efforts by Traub’s formula we get the following results, assuming
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that one interval matrix multiplication costs at least about two times as
much as a point matrix multiplication:

ks multiplications for the application of the Schulz-type method where
s is the number of multiplications for the evaluation of ®;
r + 1 interval matrix multiplications for the Horner-scheme interval evalu-
ation or approximately 2(r + 1) point matrix multiplications.

This makes a total cost of ks 4+ 2(r 4+ 1) multiplications for one step of
methods (7.5) or (7.6), reduced to point matrix multiplications. A Schulz-
type method of the form (7.4) requires only ordinary floating point oper-
ations whereas the Horner-scheme interval evaluation has to be done com-
pletely by rounded interval operations to ensure the inclusion property of
Theorem 11.

From Theorem 11 and Theorem 12 we get lower bounds for the order of
convergence of our methods (7.5) and (7.6) as ¢ = rp* 4+ 1 so that lower
bounds for the efficiency index are given by

E(p. v, k) = (rp* 4 1)/ kest2r+1)),

Before determining parameters p and r in order to establish the optimal
combined method concerning the computational efficiency expressed by the
efficiency index E(p,r, k). we recall that the most efficient method of Schulz’s
type in ordinary floating-point arithmetic reads

vh+ 1
2

XAl — x Ul (1 = (1 —AXWY (1 - AX(“)?)

X (l = ﬁf—lu - AX®y 4 (1 - AX”"))2),

which is constructed using the mapping ®; given in Example 5. Namely,
the number of multiplication is s = 4 for the evaluation of ®5(X, A) given
by (7.3) and s = p for ®,(X, A) (p # 5) given by (7.2) when Horner-scheme
evaluation is applied. _

In the sequel, speaking about the function @5 (the case p = 5), we will
assume the function defined by Ostrowski’s identity (7.3), while in the re-
maining cases &, (p # 5) will denote the mapping (7.2). According to this,
we define the total amount of work (expressed by point matrix multiplica-
tions) by

4k 4 2(r + 1), =5
_{pk-l-z(-r-l-l), p# 5
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(see [19]). Therefore, the lower hound of the efficiency index is given by

(r5* 4 1)1/ Uk2r4) gy = 5,

7.9 E(p,r,k) = ey
(7.9) (por, k) {(T'Pk-l- L)/ (ph+2r42) p#

i |

The detailed procedure for finding optimal values of p and 7 (with respect
to definition (7.9)) has been done by M. Petkovi¢ and J. Herzberger in the
paper [25]. This problem is of a great practical importance in applying the
combined methods (7.5) and (7.6), and also (7.7) and (7.8). It leads to an
optimization problem in the field of integers. First, the following theorem
has been proved:

Theorem 14. Letr € {1,...,7} and let k > | and p (p > 2 and P#5) be

arbitrary integers. Then
(7.10) E(5,r, k) > E(p,r,k).

As explained in [25], the restriction for r to be less than 8 is made for
practical reasons. Namely, for a sufficiently great r (at least r = 16 but
usually considerably greater, even more than 100) it is possible to find p > 6
and k such that the inequality (7.10) becomes converse. But, such values
of p (at least 6 iterations in floating-point arithmetic) and r (at least 16
iterations in interval arithmetic) are meaningless in practice, especially in
the situation when it is easy to provide initial matrices which insures the
safe convergence.

The optimal choice of the number of point iterations r has been considered
in the following theorem, assuming that p = 5.

Theorem 15. The function g(r) := (r5% + 1)1V/Ak+27+2) unaing its mazi-
mum on the interval (1,2) for arbitrary k > 1.

Using the result of Theorem 15 and the fact that r is an integer, we
conclude that the optimal 7 in the combined methods can be either r = 1
or r = 2, depending on the number of iterative steps. A short analysis has
shown that

E(5,2,k) > E(5,1,k) for k= 1(1)6

and

E(5,2,k} < E(5,1,k) fork>T.

Thus, if the number of point iterative steps k is less than 7 then r» = 2 is
the optimal value, while for k > 7 the optimal value is 7 = 1. However, the
second case (k > 7) is only of theoretical importance due to the very fast
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convergence of the applied point method (of the order 5). For example, if
| d(X©)) ||= 0.8, using the estimation

XA e A

for k = 4 we obtain even || d(X'"*) ||~ 107%1, which is an indicative il-
lustration that the use of a (relatively) great number of iterative steps (say,
k > 3) is not only meaningless but also not profitable (because of the limited
precision of digital computers).

Finally, according to the previous results and discussion, in a practical
realization of the combined method it should be chosen p = 5 and r = 2
(optimal for k < 6). Thus, the most efficient combined method of Schulz-type
is of the form

v+ 1
)

5+ 1 . —
X (1 _ Y5+ (I = AX"™9) (I - A.’(‘”‘")"),

(7.11) ‘X'('n.,'i-l-]} s ‘X'(”‘” ! (I 4+ {I - A"\'{?L,i]) + (] . AX(?I,‘i))'Z) %

i =0.1,... .k =1 (in floating point arithmetic)

(7.12) X(?i+1,0) — (X(Ol(’ o /\X(“'k]) _l_ ‘X'(H,,l!\')) . (] o A‘X'(?L,k)) + ‘X'(il,k)

(in interval arithmetic),

where X (0 = 3 (X(®9)) and n > 0 and the starting matrix X (09 includes
A,

The combined methods (7.11) and (7.12) have been considered in details
in [19].

Example 6. Toillustrate numerically the combined method (7.11) - (7.12),
we present the example taken from the paper [19], where a 9 x 9 nonsingular
matrix A with A =1 —.B. || B ||< I, was considered. Here || - || denotes the
column-sum norm and the matrix B = (b;;) is defined by

{0.1 i # ]

S s (AL, < 9).
0 po=

bij =

A starting inclusion matrix X®9 is constructed according to Theorem 9,

that is, X090 = [ 4 ([—c.c]), where ¢ = 1—!—{11‘&3—" Evidently m(X(©00) = |

and the inclusion A=' € X0 Lolds.
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For the method (7.11) - (7.12). referred to as the method (a), it was taken
k= 2. The result of this combined method was compared to the classical
optimal method, referred to as method (b), which can be defined as

YO = x(00)  a4d
Yint+l) — m(Y"™) + (m(Y") 4 Y(")(l — Am(Y"™))(f - Am(Y(")))

forn=20,1,....

Let the inequality || d(X) ||< e = 5 x 10710 define the stopping criterion.
The results obtained by the methods (a) and (b) are given in Table 1.

The total computational amount of work in terms of point matrix multi-
plications under the same assumption for interval matrix multiplications as
above is as follows:

for the method (a): 2 x (4 4 6) = 20
for the method (b): 5 x 6 = 30.
[tis clear that method (a) converges faster with the smaller computational

efforts. Moreover, the computational efficiency of the method (a) is greater
the greater is k. ‘

n [RECSERIN Y™ ]

0 7.20000000000 x 107 7.20000000000 x 107

l 7.73094113280 x 10° 4.60800000000 x 10!

2 1.96000000000 x 10=10 1.20795955200 x 10!

3 217606647543 x 10!

1 1.27215720000 x 10~

5 2.56000000000 x 10~10

Table |

8. Bounding the inverse of an interval matrix

Let A = (A;;) be an n X n interval matrix for which A=! exists for every
real matrix A € A and denote A’ = {A~!| A € A}. In this section the
problem of computing an interval matrix X with A C X is considered. In
many cases one can find an initial inclusion X(® 2 A¢ for example, by
means of norm inequalities. But, in that case. the question arises how to
improve X% in such a way that its width d(X(®) = d{(.\’}?))) = ((l(/\':;-)’))
will be reduced. Theoretically, it is possible to find the interval hull of A? in
the form X = N{X| X 2 A}, but this, in general, cannot be done without
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an unreasonable amount of work. For this reason, we are not dealing with
this kind of problem and we are looking for an improvement X* for X () with
Al C X* C XO© and d(X*) < d(X?) such that at least for a monotone
matrix norm || - || the strict inequality

| d(X*) [I<]) d(X ) ||

is valid. Schmidt found in [28] and [30] a monotone algorithm for the iterative
improvement of X(©. Alefeld and Herzberger suggested in [3, Ch. 18] (see,
also. Section 4 of this paper) a somewhat different approach by means of
interval analysis. The proposed method is closely related to the monotone
version of the interval Schulz method for the iterative improvement of bounds
for the inverse of a real nonsingular matrix A and it can be read in the form

(8.1) XO+D = L (XB) 4+ XE(T - Am(XP))} n XB,

where m(X) is the midpoint matrix of X. A similar generalization with Ay
and limp_. Ay = A instead of A was already used in Chapter 20 in [3] in
connection with the Newton-method. In the case A = A one obtains the
well-known interval Schulz-method. For iteration (8.1) we get immediately
the following lemmas:

Lemma 2. For Ai C X' the sequence of matrices {X®} produced by
(8.1) has the property

AtcX®  (k=0,1,...).

Proof. Since A C X we choose A1 € X and by the use of the inclu-
sion property of the interval operations we find

A = (XY £ AT = Am(X ) € m(X D)+
XO(f - Am(X®)) c XV,

Por k > 1 the proof can be done analogously. O

From (8.1) there follows
X0 o X 3 X 5 XB D L,

and thus
lim X = X*

b 130
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is valid. But the iteration process (8.1) could already fail with X* = X(0)
especially if d(A) is of considerable size. In that case, instead of improving
X, the process starts reproducing the same disk. Therefore, a convergence
analysis for (8.1) which gives suflicient conditions for

| d(X™) f|<|| d(X‘) |

has to be doune in such a way that the method (8.1) yields an improved
inclusion X*. For a given matrix A these sufficient conditions will impose
some restrictions for || [X®] || as well as for || d(X)) || and so determine a
class of matrices X( with A" C X(® for which method (8.1) improves X(0),
The main result is the following theorem whose proof was given in [14].

Theorem 16. Let A be given, then the iteration process ( 8.1) converges to
X with || d(X7) ||<[| d(X©) || if the matriz X with A € X(©) Sulfills the

inequalitics

3
XS [l m(A) || - (] 1XO] || +3

(8.2) | d(A) ||<

and

4- || d(A) || - ]| X |2
2— || d(A) ]| - || 1X©@ |

16 1
19 || m(A) |

(8.3) <l (X ||I<

In addition to this, for X* the incquality

2- || d(A) || - X

8.4 ([ X™ <
i X < T X

holds.

Remark 7. A sufficient condition for || |X(0)) | in terms of || m(A) || and
| d(A) ||> 0 such that (8.2) is fulfilled can easily be derived as

2

X 1< T = .
IIf(l2 1 \/II'!( A e 2\ m(A) || - || d(A) |

Remark 8. From (8.4) it follows that || d(X*) [[— 0as || d(A) ||— 0. Thus,
the estimation (8.4) claims that for A = A the interval Schulz-method con-
verges to A~'. This is the reason why (8.1) can be regarded as a general-
ization of the Schulz-method (5.1) in the case of an interval matrix A.
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Remark 9. The coudition (5.3) is more restrictive than the t'urru.‘jpuudiug
result for the interval Schulz-method in the case A = A (see [8]) where the
sufficient condition for the convergence

Al

| (X)) ||<

is proved. Here, X©) can contain singular matrices as examples show.

Remark 10. Condition (8.3) implies that every X € X(® is nonsingular.
This can be seen taking X € X Then (m(A))~! € X9 and we have
16
X —(m(A) ] =/l |X - AN <l dix(® R
I = (AN =11 = (AN X < g3 - o
|

< —.
| m(A) ||

According to [4, Theorem 4 in Section 4] it follows that
(m(A)) '+ (X - (m(A) H=X

is nonsingular.

As it was shown in [14]. the assumption on || |[X®] || can be weakened.
But this requires more complicated form of the upper bound for || d(X(©) ||.
Both is given in

Corollary of Theorem 16. Lct A be given. Then the iteration process
(8.1) converges to X* with || d(X*) ||<|| d(X(©) || if the matriz X(®) with
AP C XO fulfills the inequalitics

I
(A
A < T Tz T A T TXO] 41
and

4- | d(A) || - || 1X]|* (0)
<|| d( X

2= A - o <A

| LA [ IX©) ||)

<Al (' 2 '

In addition to this, the incequality (8.4) holds.

In practical computations the quantity || d(A) || is of small size. The
interval matrix A appears. for instance. because of inaccurate initial data
for a real matrix A or from conversion errors which are usually not too
large. Therefore, the necessary initial inclusion X(©) for A can often be
calculated by an application of an interval Gaussian elimination or even by
norm inequalities (see [14]).
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ON SOME 4- AND 5-DESIGNS ON < 49 POINTS

Dragan M. Acketa and Vojislav Mudrinski

ABSTRACT. A search for those -(q + 1,k, ) designs is made, which arise
by action of the gronps PSL(2,4) and PGL(2,q) on the ground-set §2(q) =
{0,1,..,¢ = 1} U {oc}. The search is made for (t,k) = (4,5) with prime
powers ¢ < 49 and for (¢, k) € {(4,6),(5,6)} with prime powers g < 31. The
group PSL(2,q) is used for ¢ =3 (mod 4) and the group PG L(2,q) is used
otherwise.

The search uses orbit incidence matrices determined by orbits of t-subsets
and k-subsets (shortly: t-orbits and k-orbits) of the ground-set, obtained by
action of the group used. An element of an orbit incidence matrix is the
number of those k-sets within a k-orbit, which contain a fixed t-set (repre-
sentative) of a t-orbit. Construction of orbit incidence matrices essentially
uses 3-homogenicity of the groups.

The total number of distinct guadruples (t,¢, &k, A\) of parameters, for
which t-(¢ + 1, k, A) designs are constructed is equal to 75. It is guaranteed
that the obtained values of A are the only possible, which can be reached
by action of the groups used, for the considered triples (t,q, k). It is as-
sumed that most of the obtained guadruples of design parameters are new,
in particular those for ¢ = 19,25, 27,31 and 37.

1. Introduction

Let n-set denote a set of cardinality n. A #-(v, k, A) design [5] is an inci-
dence structure on » points, which consists of some k-sets of points (called
blocks) without repetitions and which satisfies that each ¢ points are con-
tained in exactly A blocks. (/F(q) is the Galois field associated to a prime
power ¢ = p°.

The group (7 L(2,q) is the group of all non-singular 2 X 2 matrices with
elements in (F(¢) (= non-singular linear transformations over (G F(q))?),
while SL(2,q) is its subgroup consisting of the matrices with determinant
1. The projective general linear group P(/L(2,q) and the projective special
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linear group P5L(2, q) are obtained from (/L(2,q) and S L(2, ¢) respectively,
by reduction with the corresponding groups of homoteties.

Both PGL(2,q) and PSL(2,q) act on the common ground-set §}(q) =
{0, 1,...,¢ = 1} U {oc}. It is known that PGL(2,q) acts 3-transitively for
all ¢. while PSL(2.¢) acts 3-homogenously for ¢ = 3 (mod 4) and only 2-
transitively for other prime powers ¢. Construction of these two groups is
described in [3] and [2] respectively.

The orbit incidence matrix method for searching designs, which will be
referred to as " A-technique”, introduced in [2], can be sketched as follows:

e Let be given a 3-homogenous permutation group (¢ acting on (q)
and a pair (1. k) of natural numbers satisfying 4 <t < k < q.

o Construct the orbits Ty,...,T,, of those t-subsets of £(¢), which in-
clude the set {0,1,00}. Similarly, construct the orbits By, ..., B, of
those k-subsets of £2(q), which include the set {0, 1, 00}.

o Construct the orbit incidence matrix A = (Aij), 1 <t <m, 1<
J < n, where A;; denotes the number k-subsets of {(g) within B,
which contain a fixed t-subset (representative) of T;; the sum of all
elements in each row of A is equal to
Atrivial = qt 1 : t) = A-value of the trivial t-(¢ + 1, k, A)-design.

e Try to find for a proper subset P of the column set of A, which
satisfies that the sum of elements within the columns of P is equal
to the same constant A for all the rows (1 < A < Arivial/2).

o If the subset P is found, then all the k-subsets of (¢), which belong
to the orbits B; corresponding to the columns of P, are the blocks
of a t-(¢ + 1,k,A) design. The complementary k-subsets of {)(q) are
the blocks of a t-(¢ + L, &, Airivial — A) design.

1.1. A comparision between the use of PSL(2,¢) and PG L(2,q)

Statement. If a prime power q is of the form 4k + 3, then the group
PSL(2,q) is more suitable for looking for designs than PG/L(2, q).

Namely, as already mentioned, the group PSL(2, q) is 3-homogenous with
the values of ¢ of this form. Although 3-transitivity (possessed by P/ L(2, q))
is a stronger property, it is only 3-homogenicity that matters when the ap-
plication of the A-technique is considered. On the other hand, the group
P5L(2,q)is asubgroup (normal, of index 2) of P(/L(2, q), which implies that
orbits by action of P.SL(2,q) are included in orbits by action of PG/L(2,q).
"Building constituents” of the designs are k-orbits. The smaller are the con-
stituents, the larger is the chance for making equilibrium (suitable sums of
Aij’s), which leads to designs. Therefore we have the following:
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Consequence. [f a prime power g is of the form 4k + 3, then cach design
which can be derived by A-technique with application of the group PG L(2,q),
can be also derived with application of PSL(2,q).

However, the group P(/L(2.q) is more suitable with other prime pow-
rs. It is always 3-transitive (and consequently 3-homogenous), while, when
PSL(2,q) is considered, only 2-transitivity is guaranteed.

Conclusion. The group PS5 1L(2.q) is used for searching for designs with
prime powers ¢ of the form Ak + 3, while the group PG L(2,q) is used with
other prime powers q.

2. Results

2.1. A global account of the generated designs

The computer search was performed for prime powers ¢ < 31 with k=6
and for further prime powers ¢ < 49 with & = 5.

The search was successful with:

PSL(2,q) and (t,k) = (4,5) for ¢ = 47;

PSL(2.q) and (t, A) = (4.6) for g = 19;

PSL{(2,q) and (t,%&) = (5,6) for ¢ = 11,23,27,31;
PG L(2,q) and (t, k) = (4.6) for ¢ = 25;
PGL(2,q) and (t, k) = (4,5) for ¢ = 17,32,37.

Note that the reported success with (£, k) = (4,6) means that there was
no success with (¢, k) = (5,6); otherwise, a 4-(¢ 4 1.6, A2) design would be a
consequence of a 5-(¢ + 1.6, \;) design, which corresponds to the same set
of columns of the A;; matrix.

More precisely, the constructed t-(g + 1, k, ) designs are sumimarized in
the following table (the numbers of t-orbits and k-orbits by action of the
group cited are denoted by 1 and n respectively):

t ¢ k X Avpivialf2 Ky oivial O mon
5 11 61,2 | PSL(2.11) 2 6
4 17 5|4 14| PGL(2,17) 3 4
4 19 6|60 120 PSL(2,19) 5 19
5 23 6(1,2,3,4,5,6,7.8,9 19| PSL(2,23) 7 34
4 25 6|51,60,81,90,111 231 | PSEL(2,28) &5 28
5 27 6(2,3,4,5.6,7,89.10,11 23| PSL(2,27) 10 54
5 31 66,12 27| PSL(2,31) 15 83
4 32 5[4,59 20| PSL(2,32) 5 11
4 37 5|16 34| PGL(2,37) 7 15
4 47 5|8,12,16,20 44 | PSL(2,47) 10 33




582 D. Acketa and V. Mudrinski

When the design complementations are taken into account, it turns out
that the total number of generated designs with distinct parameters is equal
to75=2-242-141-14+2:-942-54+2-1042-24+2-34+2-142-4.
(note that A = Ayyiyiar/2 for ¢ = 19).

A global conclusion concerning the generated designs, obtained after a
thorough examination of the generated A-matrices, is the following:

Statement. The above listed values of X (taking in addition the values com-
plementary w.r.d. Agivial into account), arve the only possible values of A
which can be reached by action of the corresponding listed groups.

However, it is not to say that there may not exist 1-(v,k, ) designs,
obtained in another manner, which have some other values of A and the
same values of £, v and & as some of the listed ones.

2.2. Detailed results of application of A-technique

In this section are listed A-matrices corresponding to each one of the ten
above cited groups, together with representatives of the underlying orbits
and with a representative of the generated designs, for each possible quadru-
ple of parameters. The f-orbits and k-orbits corresponding to successive
rows and columns of a A-matrix are listed in front of it.

2.2.1. Denotations.

A-matrices in this section will be denoted as A(Gt k). A A-matrix is
determined by the corresponding group (7 and by the values of parameters ¢
and k; it establishes relationship between f-orbits and k-orbits by action of
G.

[n order to enable precise identification of s-orbits (for s € {4,5,6}), the
following data will be given in the form (A : B; ('), where

A = the ordinal number of the coresponding orbit (= row or column of
~ the (Ai;) matrix).
B = s —2 elements of the lexicographically the first "special” representa-
tive, apart from the compulsory elements 0, 1. 0.
("= the number of "special” subsets (supersets of {0,1,00}) within the
orbit.

For example, the denotation (4 : 2,3,7;10) below (that is, A = 4; B =
2,3,7; €' = 10), used for a 6-orbit by action of PSL(2,11), means that this
orbit is the fourth one among the G-orbits (corresponds to the 4th column
of the A;; matrix), has the G-subset {0,1,2,3,7,00} as a representative and
contains ten "special” G-subsets.

The design(s) generated from a A-matrix are listed after the word ”De-
sign(s)”. A representative design is given in ( )-brackets separately for each
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possible A. Designs are denoted by the ordinal numbers of the columns be-
longing to the set P (cited in the description of A-technique); the blocks of
the designs are exactly the k-sets belonging to the k-orbits corresponding to
the columns of P.

Thus the denotation (A = 2: 7,21,22,30) after the matrix
A(PSL(2,23);5,6) means that the G-sets of the 7th, 21st, 22nd and 30th
orbit of this A-matrix constitute a 5-(24,6,2) design.

2.2.2. PSL(2,11),t =5, k = 6, Msivial = 7 -
5-orbits: (1:2,3:30) (2:3.4;6)
6-orbits: (1:2,3,4:30) (2:2,3,5;12) (3:2,3,6;10) (4 :2,3,7;10) (5: 2,3,8;10)
(6:2,3,9;12)
B B . ) 1 T 211111
The 2 x 6 matrix APSL(210:5.6): (210001)
Designs: (A=1:2) (A=2:2,6)

2.2.3. PGL(2,17)st =4, k =5, Ayiviat = 14 .
4-orbits: (1:2;3) (2:3:6) (3:4;6)
5-orbits: (1:2,3:30) (2:2,5;15) (3:2,6;30) (4:3,7;30)
The 3 x 4 matrix A(PGL(2,17);4,5): (j -(z) : ?))
Designs: (A =4: 3) st

2.2.4. PSL(2,19), t = 4, k = 6, Awiviat = 120 .

4-orbits: (1:2:3) (2:3:6) (3:4;6) (4:8;1) (5:12;1) )

6-orbits: (1:2,3,4;30) (2:2,3,5;60) (3:2,3,6:60) (4:2,3,7;30) (5:2,3,8;60)
(6 : 2,3,9;60) (7 : 2,3,10;30) (8 : 2,3,11;10) (9 : 2,3,12;30) (10 : 2,3,13;60) (11 :
2.3,15:30) (12 : 2,5,6;30) (13 : 2,5,8;10) (14 : 2,5,12;60) (15 : 2,5,15;30) (16 :
2,5,16;30)-(17 : 2,6,12; 10) (18 : 2,6,16;30) (19 : 3,4, 9;20)

The 5 x 19 matrix A(PSL(2,19);4,6):

L1181 1 17T 1 A
1 2 345 6 78 90123 45 67 89
81216612 8 84 & 8642 8 2 42 20
712 861210 42 41062110 7 51 76
4 8105 814 51 51459212 4 42 4 4
0121201212120 0 06661212120 60
01212612 0 00121206012 6126120

Design: (A = 60 :4,5,7,9,10,11, 13, 14, 15).
2.2.5. PSL(2,23), t =5, k = 6, Aurivial = 19 .

5-orbits: (1:2,3;30) (2:2,5:30) (3:2,6;30) (4:2,8;30) (5:3,4;30) (6:3,7;30)
(7 : 3,14; 30)
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6-orbits: (1:2,3,4;30) (2:2,3,5;60) (3:2,3,6;60) (4:2,3,7;60) (5 : 2,3, 8; 60)
(6 :2,3,9;60) (7 : 2,3,10;60) (8 : 2,3,11;60) (9 : 2,3,1230) (10 : 2,3,13;10) (11 :
2,3,14;30) (12 : 2,3,15;60) (13 : 2,3,18;60) (14 : 2,3,19;60) (15 : 2,5,6;30) (16 :
2,5,7;30) (17 : 2,5,8;30) (18 : 2,5,10;30) (19 : 2,5,11;60) (20 : 2,5,14;30) (21 :
2,5,15;30) (22 : 2,5,17:30) (23 : 2,5,18;30) (24 : 2,5,19;60) (25 : 2,6,8;60) (26 :
2,6,10;10) (27 : 2,6,14;60) (28 : 2,6,19;30) (29 : 2,8,14;10) (30 : 3,4,9;20) (31
3,4,11;30) (32 : 3,4,16;30) (33:3,7,10;10) (34 : 3,7, 21; 10)

The 7 x 34 matrix A(PSL(2,23);5,6):

111111111 122222222228333
123456789012345678901234567890123
222112211111110000000000000000000
012111000000111211111111000000000
011300121000101001100110111100000
001T011100012030010011011101110000
110021010001200001110001200002110
0101T01210001010000200002002100111
0000100110111 011101011012020001100

- o OO0 O o w

Designs: (A =1:9,20,32) (A= 2:7,21,22,30) (A =3:2,11,18,20,27) (A = 4 :
5,7,10,18,20,22,27) (A= 5:3,5,10,13,24,26,27,28) (A=6:1,5,7, 11,18, 19, 20, 21, 23,
27) (A=7:1,7,10,12,13,18,19,20,21,22,23,27) (A =8 : 1,6,7, 10, 13, 16,18,21,23, 24,
25,26,27,28) (A=9:1,5,7,8,12,13, 14, 16, 18, 19, 22, 23, 27)

2.2.6. PGL(2,25), t =4, k = 6, Apivia = 231 .

4-orbits: (1:2;3) (2:5:6) (3: 6;6) (4:7;6) (5:8;2)

6-orbits: (1:2,3,4;1) (2:2,3,5;120) (3:2,5,6:120) (4 : 2, 5, 7; 120) (5 : 2,5, 8;60)
(6:2,5,9;120) (7 : 2,5,10;60) (8 : 2,5,11;60) (9 : 2,5,13;20) (10 : 2,5;15;60) (11 :
2,5,16;60) (12 : 2,5,17;120) (13 : 2,5,18;60) (14 : 2,5,19;30) (15 : 2,5,20;60) (16 :
2,5,21;120) (17 : 2,5,22:30) (18 : 2,5,23;60) (19 : 2,5,24;120) (20 : 2,6, 8;60) (21 :
2,6,9;60) (22 : 2,6,10;60) (23 : 2,6,11;30) (24 : 2,6,12;60) (25 : 2,6,21;30) (26 :
2,10,12;30) (27 :5,7,12;20) (28 : 6,7, 15;20)

The 5 x 28 matrix A(PGL(2,25);4,6) the first part:

1. 1 11
12 3456789012 34
1401616 8 8 8 84 8 8 812 4
0121616 820 6 82121020 6 5

0121616_8 812 82 6 420 6 2
0121620 620 8 64 81012 8 6
01212 01224 0120 0 612120

The 5 x 28 matrix A(PGL(2,25);4,6) the second part:
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11 22 22 2
67 8 9 01 23 4

816 4 4 86 8
1612 6104 10
42051016 61210410 2606
122061016 6 6 22 2 5044
18240 61212121261212300

2:9:2 2
5678
4400
2660

Designs: (A = 51 : 1,3, 14,17,18,20,23,25,26) (A = 60 : 3,9,11,13,18, 21, 22,27)
(A =281:1,3,7,10,13,14,15, 17, 21, 22, 25, 26, 27) (A = 90 :3,4, 10,13, 15, 18, 20, 21, 22, 23)
(A=111:1,3,5,7,9,11,12,13, 14, 15,17, 18, 22, 23, 25, 26, 27)

229, PST2.27); # =8, B=%y Auivisl = 23,
5-orbits: (1:2,3;30) (2:2,6;30) (3:3,4;30) (4:

(7:3,12;30) (8:3,15;30) (9:4,6:30) (10 : 4,11;30)
6-orbits: (1:2,3,4;60) (2:2,3,6;30) (3:2,3,7;30) (4:2,3,8;30) (5:2,3,9;60)

(6 : 2,3,10;30) (7 : 2,3,11;60) (8 : 2,3,12;60) (9 : 2,3,13;30) (10 : 2,3,14;60) (11 :

3,5:30) (5 : 3,7:30) (6 : 3,10;30)

2,3,15;30) (12 :
2,3,21;30) (17 :
2,6,12;30) (22 :
2,6,21;30) (27 :
3,4,15;60) (32 :
3,4,26;30) (37 :
3,5,18;30) (42 :

2,3,17;60) (13 :

2,3,22:60) (18

2.6,13;60) (23 :
3,4,9;20) (28 :

3,4,16;60) (33

3,5,12;30) (38 :
3,5,19;30) (43 :

2,3,18;60) (14 :
1 2,3,23:60) (19 =
2,6,14;60) (24 :

3,4,10:60) (29

© 3,4,17;30) (34 :
3,5,14; 30) (39 :
3,7,10; 60) (44 :
3,10, 12; 60) (49 :

2,3,19;30) (15 :
2,3,24:30) (20
2,6,18;60) (25 :
. 3,4,11;60) (30 :
3,4,19;30) (35 :
3,5,15;60) (40 :
3,7,11;30) (45 :

2,3,20;60) (16 :

1 2,6,7;60) (21 :

2, 6,20;30) (26 :
3,4,12;30) (31 :
3,4,23;60) (36 :
3,5,17;60) (41 :
3,7,17;20) (46 :

3,7,18;60) (47 : 3,7,20;30) (48 : 3,10, 14;20) (50 :
3,10, 18; 30) (52 : 3,12,15;30) (53 : 3,12,18;30) (54 : 4,6,13;20)
- The 10 x 54 matrix A(F5L(2,27);5, (J)

3,10, 15;30) (51 :

111111111122222222223333333333444444444455555
12345678901‘23456781”1]‘234567890123456789(112345678901234
211121211112111111100000000000000000000000000000000000
011100011100111111021222110000000000000000000000000000
1000101000001001710010101002211221111000000000000000000
1000000001010100011 11010000011110110112211000000000000
10100010010100000T010110000020001021000200112110000000
000001100010202002100000000110010100000111100011111000
000000020200000020001100110101100010110100010101100110
'1(]()01{)0010]0](!!)01"”lll(ltl'l[']]ll‘ll]()]100(!(110201010019001]110
000110110001001000000111000000111001000000200202001012
010011010001001000000011100010000010012001110112010100

Designs: (A =2:7,22,39,49) (A =3:2,9,14,28,33,40,48) (A =4:6,7,11,22,25,
26,30, 34,39, 45,54) (A = 5 : 2,7,9, 14,22,28,33,39,40,48,49) (A = 6 : 3,4,6,11,16,19,
21,25, 26,27, 30,33, 34, 39, 44, 45, 47,51,53,54) (A = 7 : 2,6,7,9,11, 14,22, 25,26, 28, 30,

.
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33,34,39,40,45,48,54) (A = 8 : 3,4,6,7,11,16,19, 21, 22, 25, 26, 27, 29, 32, 37, 38, 39, 43,
45,49,52,54) (A =9:2,3,4,6,9,11,14,16,19, 21, 25, 26, 27, 28, 30, 33, 34, 36, 39, 40, 44, 45,
47,48,51,53,54) (A =10 : 1,5,8, 10,13, 15,17, 18, 20, 24, 30, 33, 34, 36, 38, 39, 42, 44, 45, 47,
51,53,54) (A =11:2,3,4,6,7,9,11,14, 16, 19, 21, 22, 25, 26, 28, 29, 31, 32, 35, 39, 40, 43, 46,
48, 49).

2.2.8. PSL(2,31),t =5, k =6, Ayivial = 27.

5-orbits: (1 :2,3;30) (2 : 2,5;30) (3 : 2,6;30) (4 : 2,8;30) (5 : 2,9;30) (6
2,18;30) (7 : 3,4;30) (8 :3,7:30) (9 :3,8;30) (10 : 3,10;30) (11 : 4,6;30) (12 : 4, 9;30)
(13:5,6:10) (14 : 5,7;30) (15 : 12,13;6)

6-orbits: (1:2,3,4;30) (2:2,3,560) (3:2,3,6;30) (4:2,3,7; 60) (5:2,3,8;60)
(6 :2,3,9;60) (7 : 2,3,10;60) (8 : 2,3,11;60) (9 : 2,3,13;60) (10 : 2,3,14;60) (11 :
2,3,15:60) (12 : 2,3,16;30) (13 : 2,3,17;10) (14 : 2,3,18;30) (15 : 2,3,19;60) (16 :
2,3,20;60) (17 : 2,3,21560) (18 : 2,3,22;60) (19 : 2,3, 24;60) (20 : 2,3,25;60) (21 :
2,3,26560) (22 = 2,3,27;60) (23 : 2,3,28;30) (24 : 2,5,6;60) (25 : 2,5,7;60) (26 :
2,5,8;60) (27 : 2,5,9;30) (28 : 2,5,10;60) (29 : 2,5,12;60) (30 : 2,5,13;60) (31 :
2,5,14;60) (32 : 2,5,15;30) (33 : 2,5,18;60) (34 : 2,5,19;20) (35 : 2,5,21:60) (36 :
2,5,23;60) (37 : 2,5,24;30) (38 : 2,5,25;60) (39 : 2,5,27;60) (40 : 2,5, 28;30) (41
2,6,7:30) (42 :2,6,8;60) (43 : 2,6,9;60) (44 :2,6,10;30) (45 :2, 6,12; 30) (46 :2, 6, 18; 60)
(47 : 2,6,21;60) (48 : 2,6,23;60) (49 : 2,6,26;30) (50 : 2,6,27;30) (51 : 2,6, 28:60)
(52 : 2,8,10;30) (53 : 2,8,13;60) (54 : 2,8,18;60) (55 : 2,8 21;60) (56 : 2,8, 26;30)
(5T +2,9,13;60) (58 : 2,9,21;30) (59 : 2,9,27;60) (60 : 2,9,28;30) (61 : 2,18,21;30)
(62 : 2,18,26:30) (63 : 3,4,9;30) (64 : 3,4,10;60) (65 : 3,4,11;30) (66 : 3,4,12;30)
(67 @ 3,4,15:60) (68 : 3,4,23;30) (69 : 3,4,24;30) (70 : 3,4,25;60) (71 : 3,4,26;30)
(72 © 3,7,8;30) (73 : 3,7,15;12) (74 : 3,7,20; 10) (75 : 3,7,23;20) (76 : 3,8,12;30)
(77 : 3,8,14;30) (78 : 3,8,18;60) (79 : 3,8,22;30) (80 : 3,10,18;10) (81 : 4,6,17;10)
(82 :5,7,23:10) (83 : 5,7,29;12) '

The 15 x 83 matrix A(PSL(2,31);5,6):

TT111111112222222222333333333344444444445555555555666666666677777777778888
12345678901234567890123456789012345678901234567890123456789012345678901234567890123

2211]11211]]111112111IIO0DD0000000000000000000000000000000D000000000000000000000000
01]0000001IDDODI]OIIDODlll]I112]112111110000000000000000000000000000000000000000000
0]12100020]10000000000011000]001100000001121211111}00000000000000000000000000000000
00001112100000001011]00102120000000101000101000]00021111000000000000000000000000000
0000011011000011010000]1011111001100010100200000001010002]1100000000000000000000000
00000000000001l021001210000010001020011000000110110001110]1012000000000000000000000
100011101000000010]]100000000000000]100001000200000010]0000100111121111000000000000
00010001001000]1OOUI01000000011100000000101010010000202000100000]011010111100000000
0101100001000001010011001000020000011010000000000110100000110000010100010001]2]0000
00000020000001100100100100001020100000100000011100000011001000011000011000000221000
01001000001100000020000010001000100001000101011000100100200000110000110000020200100
00000100010000010001000002020010001000100010002100110100100000110020011100001000000
00000000000000000000000300000000000003003000000330000300000030030000030000000000000
000]0]010]10001000000]00]0000100001200000200000000000100110011010110100000]01000011
0000000000000000000000005000000000000055000OOOOUDOS00000005000000000000010000000001
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Designs: (A=6:8,13,15, 16,21, 25,26,29, 30,38, 45, 46,49, 67, 71,76, 80,83) (A =
12 : 1,2,5,6,9,10, 13,15, 16, 22, 25, 26, 28, 29, 31, 33, 36, 37,41, 42, 46, 47, 49,53, 54, 55, 58,
59,70,73,78, 83).

2.2.9, PGL(2,32), 1 =4, k =5, Asivisi = 29
4-orbits: (1:2;6) (2:4:6) (3:6:6) (4:14:6) (5:16;6)
5-orbits: (1:2,3:15) (2:2,5:60) (3:2,6:60) (4:2,860) (5:2,9,60) (6 :2,11;60)
(7:2,12:15) (8:4,5;15) (9:4,17:60) (10 : 6,14;15) (11 : 14, 22;15)
44844410000
) ) 14084404400
The 5 x 11 matrix A(FP(/L(2.32);4.5): | oo444440810
08444000441
04404801404

Designs: (A=4:5) (A=5:1,7.8,10.11) (A=19:1,5,7,8,10, 11)

2.2.10. PGL{2,37), t =4, k = b, Ajrivial = 3%
4-orbits: 1(1:2;3) (2:3;6) (3:4;6) (4:5;6) (5:6;6) (6:8;6) (7:11;2)
5-orbits: (1:2,3:30) (2:2,5:60) (3:2,6;60) (4:2,7;15) (5:2,8;60) (6 :3,4;30)
(7 : 3,7:60) (8 : 3,12;60) (9 : 3,14;30) (10 : 3,15;30) (11 : 3,26;60) (12 : 4,5;30)
(13 :4,11;10) (14 : 4,17;30) (15 : 5,8;30) ’
The 7 x 15 matrix A(PGL(2.37);4,5):

8 & 8 2 & 0 0 0 0 0 0 0 0 0O
4 0 4 0 0 4 8 4 4 2 4 0 o0 0
2 4 0 0 4 | () g8 0 0 4 4 2 2 0
0 4 0 0 2 4 0 0 4 4 0 0 4
0 0 4 4 | ] 4 4 0 4 4 0o 4 0
0 4 4 0 i 1] 0 6 0 4 0 0 4 4

0O 0 0 o0 12 0 12 000 0 0 0 4 0

(=21

Design: (A = 16 :2,3,7.8,13,14)

2.2.11. PSL(2.47), t = 4, k = 5, Mrivial = 44.

4-orbits: (1:2:3) (2:3:6) (3:4:6) (4:5;3) (5:6;6) (6:7;6) (7:10;3) (8:11;6)
(9:13;3) (10: 22;3)

5-orbits: (1:2,3;30) (2:2.5;30)(3:2,6;30) (4:2,7:30) (5:2,8;30) (6 :2,10;30)
(7 : 2,12;30) (8 : 2,13;30) (9 : 2,14:30) (10 : 2,16;30) (11 : 3,4;30) (12 : 3,7;30)
(13 : 3,8:30) (14 : 3,11;30) (15 : 3,12;30) (16 : 3,13;30) (17 : 3,14:30) (18 : 3, 15;30)
(19 : 3,17;30) (20 : 3,19;30) (21 : 3,20330) (22 : 3,22;30) (23 : 3,26;30) (24 : 3,39;30)
(25 : 4,9;30) (26 : 4,13;30) (27 - 4,19;30) (28 : 4,20;30) (29 : 4,21;30) (30 : 4,27;30)
(31:5,8;30) (32:6,10;30) (33 :7,11;30)

The 10 x 33 matrix A(FPS5L(2,47):5,6):
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1]]1]1]1]122222222223333
]2345678901234567890]‘23456789[1123
8444844444(1t]t]lHlDHUI]UUUHUU[IllﬂﬂOU(!D
4Ii2”1]”(!()“24882224‘2222422(1()“{]0{]000
22llllfl(Hl2[’]"4()(1“4{}4I][HI2UZI]44224201’JU
(}44l]”44l](_!ﬂﬂ(l“844(!'14UIJ(]U(J(HJU44U4UO
l][]2"!4!l[]U(l‘2I14-1(!(!44I]l’lfl‘l!]2ﬂﬂ[l44ﬂ422D
[lll(344220‘2!]2442IHHI444“(]0222“0240[]4
1'34llfl[']-14{l['l-‘l{l(l'(HIUUII44U[]4SUII44UI)U[J44
l1211[142222(10442”“8l’.ll)l]ﬂ2024“(lﬂﬂ[]442
l)['l[l(llltl[l-144l_]lltlﬂ44l)l}ﬂ4ﬂﬂﬂ"ﬂl-‘l-’IIHJH400
[]|i4lJll[]H44Unﬂ(lllllﬂ(|00484(l(lﬁlll(l‘i‘lUl]44

Designs: (A = 8 : 5,14,21,23,24) (A = 12 : 2,4,10,14,17,20,21,26) (A = 16 :
3,6,8,9,11, 14,17, 20, 23, 27, 30) (A=20:3,4,5,8, 11,14,18, 21,22, 23, 24, 25,27, 31)

2.3. Some observations on the constructed designs

In this section we give some miscalleneous data concerning the constructed
designs and the construction itself.

The designs for ¢ € {17,32) were considered in more detail in [2]; just
a few data are mentioned here. The construction for g = 17 is due to
Alltop and was described in [5], Example 8.5, pp. 186-187; A-technique
is an improvement of the Alltop’s construction. The design constructed for
¢ = 32and A = 5 is the first member of an Alltop’s infinite class of 4-designs.
[t is likely that all the constructed designs for ¢ = 32 can arise ([8]) by action
of the 4-homogeneous group PGamalL(2,32).

The designs with ¢ = I1 and ¢ = 23 are related to the well-known ([5])
Steiner systems S(5,6;12) and 5(5,6524) (that is, to the 5-(12,6, 1) design
and to the 5-(24,6,1) design). The first one of these Steiner systems is,
as stated in [7], Theorem 2.26., the uniquely determined Steiner system
5(5,6;12), with the automorphism group isomorphic to the famous Mathieu
-transitive group My, of cardinality 8-9-10- 11 - 12.

The brute-force search over the colums of A-matrices was applicable on a
PC-386 computer in the cases when the number n of columns was restricted
to 30 (n = 30 required one week of computing time and each added unit
to n would double the time required). The following shorteut was used for
q =23 and ¢ = 47, where n is equal to 34 and 33 respectively:

It is observed that there exist in bhoth cases several pairs of duplicate
columns within the A-matrix (exactly four pairs with ¢ = 23,n = 34 and
three pairs with ¢ = 47, n = 33). The search is performed over the reduced
30-column matrices, which are obtained from the A-matrices by discarding
one of the columns from each duplicate pair. Such a reduction does not guar-
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antee completeness of the search; it might happen that some of the existing
designs require combinations of columns which include both columns in a
duplicate pair. However, the arguments related to the specific coefficients of
the two A-matrices show that no set of design parameters is missed in this
way.

For example, the set of A values with ¢ = 23 is complete (all the values
in the interval [1,...,18 = Agsivial — 1] are present). Similarly, all the elements
in the first row of the A-matrix for ¢ = 47 are divisible by 4, which implies
that all the corresponding values of A must be divisible by 4; an additional
argument shows that A = 4 is impossible.

The A-matrices with ¢ = 27 and ¢ = 31 have very large numbers of
columns (54 and 83 respectively). so there is no chance for a full search.
However, ad hoc designed heuristic approaches ([3]) have given designs with
all the possible values of A in these cases.

The number of successful (that is, design-corresponding) combinations of
columns is very large with some of the A-matrices (several hundreds with
g = 19 and ¢ = 47 and several thousands with ¢ = 23).

Some of the obtained parameters seem to be particularly interesting. For
example, the designs constructed for ¢ = 37 seem ([8]) to be the first 4-
designs known on 38 points.

A design isomorphism search was performed ([6]) among the constructed
560 4-designs on 48 points for A € {8, 12, 16,20}. Auxiliary graphs were at-
tached to the designs so that non-isomorphism of some two attached graphs
implies non-isomorphism of the corresponding designs. Global results of this
search seem to be very interesting. All the equivalence classes of isomorphic
attached graphs are of cardinality 2; this implies that at least one half of
the total number of the constructed designs are pairwise non-isomorphic.
Moreover, the unique and involutory (a product of transpositions) isomor-
phism maps onto each other the two graphs of each one of the equivalence
classes: this means that the recognized isomorphism is a global symmetry of
the whole found class of 4-designs.

Finally, it seems worth-while to try an isomorphism search for ¢ = 19.
It is only in this case that there exists a unique (and self-complementary)
value A = 60. Is the 4-(20.6,60) design unique up to an isomorphism within
the class of designs with these parameters generated by PSL(2,19) 7 The
isomorhism search in this case might use attached hypergraphs with edges
containing three vertices each.

i
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ORDERED LINEAR RESOLUTION AS THE BASE OF
THE SYSTEM FOR AUTOMATIC THEOREM PROVING

Ivana F. Berkovié

ABSTRACT. U radu se opisuje uredena linearna rezolucija sa markiranim
literalima i njene specificnosti. Da bi se oéuvala potpunost metode izvrsena
je modifikacija algoritina za odredivanje rezolvente.

Na bazi modifikovane uredene linearne rezolucije sa markiranim literalima
izgraden je sistem za automatsko dokazivanje teorema. Sistem je implemen-
tiran na PC' - ra¢unaru i dopuita varijabilne strategije pretrazivanja. Pret-
postavke i tvrdenja koje treba dokazati, zapisuju se odgovarajuéim formu-
lama predikatskog racuna prvog reda. U radu se daje opis implementiranog
sistema za automatsko dokazivanje teorema, prikazuju se njegove karakter-
istike i oblasti primene. Posebno se razmatra odnos ovakvog automatskog
dokazivaca teorema i Prolog-a.

1. Introduction

Automated reasoning is very important area in Artificial Intelligence,
but the common sense is difficult to model in a computer. The needed
knowledge is not easy to represent. Another problem is how it can de-
duce something from a set of facts, or how it can prove that a conclusion
follows from a given set of premises. Computational logic, based on formula-
tions by some formal-language (propositional logic, predicate logic), provides
problem-solving methods.

The developing of theorem-proving can be divided in two directions. The
first direction is pure automated theorem proving, which is mostly resolution-
based. The other approach is nou-resolution-based theorem proving or nat-
ural deduction, which includes some heuristics and user-supplied knowledge.

591
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2. The Rule of Ordered Linear (OL)
Resolution with Marked Literals

The most popular method for automatic theorem proving is the resolution
method, which is discovered by J. A. Robinson in 1965 ([2], [5]). Resolution
wethod is a syntactic method of deduction. This procedure is a general
automatic method for determining if a theorem (conclusion) follows from
a given set of premises (axioms). Each formula will be transformed to the
clauses form. Reduction ad absurdum is in the basis of resolution method.
Resolution rule will be applied on the set of clauses (axioms) which was
expanded by negating the desired conclusion in clause form.

Since 1965., many resolution forms and techniques are developed because
the pure resolution rule has been unable to handle complex problems. Also,
many resolution theorem provers are created.

Ordered Linear (OL) resolution rule with marked literals ([6]) increases
efficiency and doesn’t disturb completeness of pure resolution rule.

The generating process of OL-resolvent from central clause (d1) and auxiliary
clause (d2):

L. Redesignate variables (without common.variables in the clauses).

2. Determine universal unificator © for last literal of d1 and k-literal (k =
1,2,...) of d2 (if it exists for some k, else it is impossible to generate OL-
resolvent for specification clauses).

3. Create resolvent with marked last literal in d1© and add the rest of
clause d20 without k-literal (d10 and d20 are clauses, which were formed
by universal unificator © applied on d1l and d2, respectively).

4. Eliminate identical non-marked literals and tautology examination (tau-
tologies are not memorized).

5. The Shortening Operation (delete all ending marked literals).

6. The Compressing Operation (delete the last non-marked literal, which is
complemented in relation to negation, with some marked literal for unificator
A).

7. Repeat steps: 5 and 6 until the empty clause is got, or the Compressing
Operation is not applied on the last non-marked literal.

The final result of this process is: the forming one OL-resolvent from central
clause (d1) and auxiliary clause (d2).

To preserve completeness of the OL-resolution rule with marked literals,
some resolvents have to he memorized.

The rule of OL-resolution with marked literals is separated in two parts:
in-resolution and pre-resolution. The steps: 1 - 5 are represented in-resolu-
tion. The steps: 6 - 7 are represented pre-resolution. Mid-resolvents are the
products of in-resolution and without their memorizing, the completeness of
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the method can be lost. It can be illustrated by example.

Example 1.
Central clause is: =R(A)
Auxiliary clauses are:
al —=S5(X,Y)V R(X)V R(Y)
a2 S(A,B)
a3 - R(B)
where: X and Y are variables, A and B are constants, B and S are predi-
cates, - is negation.

The results without memorizing mid-resolvents are:

Taking into consideration the central clanse =R(A) and the auxiliary
clause al by literal R( X )and literal R(Y'), one resolvent: /- R(A)V-S(A,A)
is generated at the first level. This resolvent has not produced new resolvents
and it is not possible to generate empty clause.

Not to lose the completeness of the method some resolvents must be
memorized that are got during the resolution procedure.

The results with memorizing mid-resolvents are:

Three resolvents are generated at the first level:

1. /~R(A)V ~5(A,Y)V R(Y) from ~R(A) and al by literal R(X)

2. [~R(A)V =5(X,A)V R(X) from =R(A) and al by literal R(Y")

3. /~R(A)V ~S5(A, A) from 1., or 2. with pre-resolution.

There are two resolvents generated at the second level:

4. [~R(A)V =S(A, B) from 1. and a3 with in-resolution

5. [~R(A)V =S5(B, A) from 2. and a3 with in-resolution.

Empty clause is generated at the third level from /=R(A)V -S5(A, B) and
a2. The set of clauses is contradictory.

From the point of scientific researching this example shows that some
resolvents have to be memorized to preserve the completeness of the method.
This modification of Ordered Linear resolution rule is served as the base for
development of the system for automatic theorem proving ADT.

3. The System for Automatic Theorem Proving ADT

In our country, the first resolution theorem-prover is developed in a scope
of GRAPH expert system at the Faculty of Electrical Engineering in Bel-
grade, ([8]).

The system ADT is based on the resolution rule. The system is developed
at Technical Faculty "Mihajlo Pupin” in Zrenjanin. ADT is a system for
automatic theorem proving, which is implemented on PC - computer by
Pascal (Turbo Pascal ver. 6.0) programming language. The rule of Ordered
Linear Resolution with marked literals presents the system base, ([6]).
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ADT system differs from the other resolution-based theorem-provers which
are characterized by one fixed strategy. The system permits various syntactic
search strategies, ([2], [3], [5])-

The system ADT disposes three search strategies: breadth-first, depth-
first and their combination. The first and the second strategy are common
blind search procedures. The third blind search procedure is constructed as
their combination.

In breadth-first search are the nodes starting with the root node of the
search tree. They all are generated level by level. In depth-first search, a
new node is generated at the next level, from the one current, and the search
is continuing deeper and deeper in this way until it is forced to backtracking.
[n combine-search, the nodes of the search tree are generated and examined
in the breadth. until the fulfilling of the level. Then the procedure is backing
one level up and continues in depth with backtracking.

The system ADT permits comparisons of strategies. It is also possible to
use various strategies to find the proof, especially if it can not be detected
by means of other ones,

ADT is projected for scientific - researching, teaching and practical pur-
pose. Some results of the experimental work with ADT system are described
in ([3]).

There are many different possibilities for using the system in education.
ADT can be used for learning the elements of theorem-proving. It allows the
illustration of the Unification Algorithm or the Resolution Rule. It is also
possible to use this system for experimental work in: deduction of proofs,
comparison of strategies, influence of various factors on efficiency proving,.

The methods of automatic theorem proving can be applied in various do-
mains of artificial intelligence. They are applicable in fields as mathematical
theorem proving, expert systems, question-answering systems, automatic
programming, program verification, situational control and decision, rela-
tion data bases. logical programming, etc. It is presented in some concrete
examples ([3]).

This system is incorporated in the system for automatic creating of the
combinatorial disposition DEDUC ([11]), where it has presented the satis-
fying practical efficiency. ADT system is the basic generating mechanism in
DEDUC system. DEDUC system is aimed to automated creating time-table.
[t is implemented on PC' computer.

4. ADT system and PROLOG

Specific high-level languages have been developed for different application
domains. PROLOG and LISP are the most famous programming languages
in artificial intelligence.
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The logical programming language PROLOG and AD'L system are com-
pared.

PROLOG is a logic-oriented language ([4], [10]), which contains a resolu-
tion-based theorem-prover. The theorem-prover in PROLOG appears with
the depth-first search approach. The first-order predicate logic is the form
of representation in PROLOG. Programs in PROLOG consists of axioms
(clauses, facts) and a theorem to be proved (goal). The axioms are restricted
in "Horn clause” form.

The first-order logic is the form of representation in ADT system, too.
But, this system has not restriction in "Horn clause”. It appears with
clauses. The axioms are presented by auxiliary clause. The central clause is
negating the theorem to he proved.

PROLOG has the negation defect. This defect is corrected in ADT sys-
tem. It can be illustrated by example.

Example 2.

Program in PROLOG:
vegetarian(tom).
vegetarian(ivan).
vegetarian(isak).
smoker (tom) .
smoker (isak) .
ana_likes(X1) : not (smoker(X1i)), vegetarian(X1).
PROLOG-system gives unconnected answer on following questions:
7- ana_likes(X1).
no , e
?7- ana_likes(ivan).
yes
If the last clause is now:
ana_likes(X1) : vegetarian(X1), not (smoker(X1)).
PROLOG-system gives wrong answers on following questions:
7- ana_likes(X1).
Xi=ivan
7- ana likes(ivan).
yes
These answers are incorrect because we have not data about Ivan and smok-
ing. We don’t know is Ivan a smoker or not. The correct answer will be: "I
don’t know™”.
In both cases ADT system gives the correct answer: "I don’t know”. In
fact, ADT system generates only one resolvent and can not: complete the
proof with none of the three strategies.
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ADT system allows recursion using (example with family relationship,
[3]) and works with structures and lists, as well as PROLOG.

5. Conclusion

Completeness and universality of the resolution method, as the base of

ADT system, enables it to be applied in various domains of artificial intel-
ligence. In the scientific researching is given an example which shows that
some resolvents must be memorized to preserve the completeness of this
method. The relationship between ADT system and PROLOG are empha-
sized. In this sense, the further development and applications of this system
is possible. The system is convenient for teaching and has the practical
purposes.
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2
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HADAMARD’S INEQUALITY AND
FIXED-POINT METHOD

Momc¢ilo Bjelica

ABsTRACT. The famous inequality in matrix theory of J. Hadamard has
different proofs and extensions [1, 6]. Here given proof is by the method
of common fixed-point of mappings monotonic with respect to a functional,
which can be applied to many, including all main inequalities [3]. Condition
for equality: rows of a matrix are orthogonal or at least one of them is zero,
is replaced by proporticnality (appearing in numerous other inequalities)
between rows of a matrix and corresponding rows of cofactors.

Theorem. Let A = (a;;) be a real square matriz and |A| be it’s determinant,
then '

T

(1) A < 111(22)

Ji=
FEquality in (1) holds if and only if
< (2) i1 + A2ty + ot Gy, = 0,

for each pair of different i, j, or if at least one factor on the right side of
(1) is equal to zero.

Condition (2), including the disjunct, can be replaced by the next one:
there are numbers A;, pi, \? + pi #0, 1 <i < n, such that
(3) Aiaij + piAi; = 0, 1<j<m,
where A;j are cofactors.

Proof. Define the space (product of n-spheres)

7
Z;z:fj = Zafj, 1<i< n}
=1

i=1

(a) A= {.X - (:!,'i'j)
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and the functional f: . — R
(b) f(X)=1X].

Define mappings F; : .V - X, 1 <i<n

1 Zr19 ate T1n
- ' ’ ) ’ Py :
() F(X)=| va w2 v W |, Yig = '}?‘X:‘je 1 €5 <n,
= ]
Il Ty ... Xy

T = ;1:';’, + :r:'tf)? +---+;r:;‘-"”, R; = \/X;-“)] + X% + » e X,-?Zn-

If r; = 0, then F;(X) = X; define the same if B; = 0. The row (yij); is
defined to be proportional to the corresponding row of cofactors (X ij); and
that F5(X) € A'. The mapping F; is monotonic nondecreasing with respect
to the functional f

(d) [(X) < f(Fi(X)),

by Laplace development (d) is equivalent to

zaXatzpXo+--+ Tinutin £ yihxﬂ + Y2 X+ -+ YinXin,

(4) T X +2aXo+ -+ 2w X < iR

The Cauchy inequality (4) is equality [1] if and only if there are numbers Ai,
ti, not both 0, such that

)\,‘:E,‘j + ,(.',,',Xz'j = 0‘, 1 § J < n.

If Aipi # 0, then equality in (d) holds if and only if sets (z;;); and (Xii);
are proportional, or equivalently z;; = y;;, 1 < j < n. Hence, F; is strictly
monotonic with respect to f: equality in (d) holds if and only if X is a fixed
point of mapping F;(X) = X, and for non-fixed points strict inequality
holds. On the compact set A" the functional f attains maximal value, and,
because of strict monotonicity, it is attained on a set F of common fixed
points of mappings Fj, I < ¢ < n. The set F is not empty, since it contains,
e.g., diagonal matrix with diagonal r;, 1 < i < n. If X € F, |X| # 0,
,X:'j = Cilyij, | S L,J S n, then

n
X|=ea?, 1<i<m, X" =][er

i=1
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On the other hand

. Xis 1 . 1 N 1 -
I"\I:}(J)‘:*——-it-\uH:ftIXI-’f = ————x|*!
ci €1¢2...¢ c1eg...0n cype L

— Ch vo0 T
XIP = rcs-.cal P,

so that

Ll )

7 T n
()
i=1 =1 “g=1
The equivalence between conditions (2), including the disjunct, and (3),
both determining the same set of matrices on which the equality in (1) holds,
follows from earlier proofs of the theorem and this one. However, we give a
direct proof that (2) & (3). )
(2) = (3). Ha;; =0,1<j<mthen Ay; =0, 1 <k < m, k # 4,
1 <7 < nand (3) holds. Let A be an orthogonal matrix with no one zero
row, then lineal over rows of the matrix A

L({(ai,a;,..., gin)| 1 €1 <€mn})
is n-dimensional vector space. Also

(@i1, @iay .. s tin) L L({aj1,052,...,05) | 1 <j<m, j#1}).
From
(5) . anAj +anAp+ -+ apAjn = 65| A|,
follows

(AsiyAizyes os Ain) L L({as15058, .iain) |1 €3 <0, J #FE} )

Vectors (@i1, @, ... a5) and (Aj, Aia, ..., Ay in n-dimensional space are
orthogonal to the same hyperplane ((n — 1)-variety) and therefore they are
collinear.

(3) = (2). If in (3) some p; = 0, then a;; = 0, 1.< 7 < n, that is, the
disjunct in (2) holds. Heuce, suppose that p; # 0, 1 <7< n,i. e, rowsof A
are not zero-vectors. If A\; # 0. | < i < n, then from (5) follows (2). Now,
without lose of generality, suppose that A, = 0, 1 <k <4 AN #0,0 <! < n.
From Ag; = 0,1 <k < i, 1 <j<nfollows that |[A| = 0 and that rows of
A are linearly dependent. From (5) follows that rows (a;;)j, ¢ < | < n are
orthogonal and, therefore, linearly independent. Using also

L({(ak1,arzs--rhn) | L <k <3}) L L({(en,an,...,a1,) | i< 1 < m})
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obtains that rows (ay;);, 1 < k < i are linearly dependent. Therefore,
A =0,i<l<n, 1 <j<n, what implies that i = n. O

Note that there is an orbit of X

|X

S F(X) < B(FAX) < < |Fu(.v. B(R(X))...)],

where I, 0--.0 Fy(.Y') = F, what gives a direct proof of (1). Geometric inter-
pretation of Hadamard’s inequality is that the volume of a parallelepiped in
n-dimensional space does not exceed product of lengths of it’s edges, equality
holds if the edges are orthogonal, or if length of one edge is zero. Also, men-
tion analogy between Hadamard’ inequality and generalization of Cauchy
inequality, namely, one special case of Hélder’s inequality

(S(01) “H(E)

J=1 Ni=1 j=1
|A| is also a sum of products of elements of matrix A.
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SEMILATTICES OF WEAKLY LEFT
ARCHIMEDEAN SEMIGROUPS

Stojan Bogdanovié and Miroslav Cirié

ABSTRACT. By the well-known result of A. H. Clifford, any band of left
Archimedean semigroups is a semilattice of matrices (rectangular bands) of
left Archimedean semigroups. The converse of this assertion don’t hold, i.e.
the class of semilattices of matrices of left Archimedean semigroups is larger
than the class of bands of left Archimedean semigroups. In this paper we
characterize semilattices of matrices of left Archimedean semigroups, and
especially matrices of left Archimedean semigroups. The obtained results
generalize the some results of M. S. Putcha and L. N. Shevrin.

Bands of left (also right and two-sided) Archimedean semigroups form
important classes of semigroups studied by a number of authors. General
characterizations of these semigroups have been given by M. S. Putcha [16],
and in the completely 7-regular case by L. N. Shevrin [17]. Some new
characterizations of bands of left Archimedean semigroups and of bands
of nil-extensions of left simple semigroups have heen given recently by the
authors [6]. By the well-known result of A. H. Clifford, any band of left
Archimedean semigroups is a semilattice of matrices (rectangular bands) of
left Archimedean semigroups. The converse of this assertion don’t hold, i.e.
the class of semilattices of matrices of left Archimedean semigroups is larger
than the class of bands of left Archimedean semigroups. In this paper we
give a complete characterization of semigroups having a semilattice decom-
position whose components are matrices of left Archimedean semigroups.
Moreover, we describe such components in the general and some special
cases. For the related results see [7], [12] and [13]. For more informations
about semilattice-matrix decompositions of semigroups the reader is reffered
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to [10] and [11]. The obtained results generalize the above quoted results of
M. S. Putcha and L. N. Shevrin.

Throughout this paper Z* will denote the set of positive integers. The

division relations | and | on a semigroup S are defined by
!

alb & (3x,ye S b=zay, alb & (FxeS)b=za,
!

s l v
and that the relations — and — on 5 are defined by

a—b & (ImeZt)a|bd, a—b (InezZ*)a|d".
{

The relation — on 9 is defined dually. Forn € Z+, Ln will denote the

! U .. 1
n-th power of —, and —* will denote the transitive closure of —. For
an element a of a semigroup 5 we define sets A, (a), n € Z+, and A(a) by

Ala)={z €5 |a i 2k Ala)={x €S |a o0 x},
and the equivalence relations A,,, n € Z*, and X on & by
ar, b & Ay(a)=A,(b), adb & A(a) = A(D),

[3]. For undefined notions and notations we refer to [1], [2] and [14].

First we prove the following theorem:

Theorem 1. The following conditions on a semigroup S are equivalent:
(1) A is a matriz congruence on S';
(ii) A is a right zero band congruence on S ;
(iii) (Va,b,c € §) abe =~ ac: '
(iv) (Va.b € S) aba —= q;

(V) (vﬂ«‘_ {) E _S‘) ﬂ[b _l;rx, b.‘
(vi) 5 is a disjoint union of all its principal left radicals;

(vil) —" is a symmetric relation on S.

Proof. (i) = (iii), (iii) = (iv) and (ii) = (i). This follows immediately.

(iv) = (v). For all a.be S, ab Y bab, so by (iv), ab oo p,

(v) = (ii). Let a,b € S such that e Ab, and = € §. By (v), A(az) =
A(x) = A(bz) and A(za) = A(a) = A(b) = A(zb). Therefore, ) is a congru-
ence. Clearly, it is a right zero band congruence.
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(ii) = (vi). Let § be a right zero band B of semigroups 5;, i € B, which
are A-classes of S. Assume a € 5. Then a € S;, for some ¢ € B, and since 5;
is a completely semiprime left ideal of § (Lemma 4 [3]), then A(a) C 5i. On
the other hand, if b € 5;. then b Aa. so b € A(b) = A(a), whence S; C A(a).
Therefore, A(a) = 5;, so (vi) holds.

(vi) = (vii). Let a,b € 5 such that @ L.}, Then b € A(a), whence
Aa) N A(b) £ @, so by (vi). A(a) = A(b). Therefore, b~ a.

(vii) = (v). For all a,be 5, b s ab, so by (vii), ab L0, O

Corollary 1. The following conditions on a semigroup S are equivalent:
(i) A, s @ matriz congruence on S
(ii) A, is a right zero band congruence on S;
(iii) (Va,b € §) Ap(a) C A, (aba):
(iv) (Va,be §)Au(b) C Ay(ab);

[ § . . .
(v) —" is a symmelric relation on S.

Lemma 1. Let £ be a band congruence on a semigroup S contained in L

l ph o ’
where -~ =—— N —— . Then any é-class of 5 is a left Archimedean

semigroup.

Recall that a semigroup § is called left Archimedean if @ L, b, for all
a.b € §. Here we introduce a more general notion: a semigroup 5 will be
called weakly left Archimedean if ab L b, for all a.b € S. Weakly right
Archimedean semigroups are defined dually. A semigroup S is weakly t-
Archimedean (or weakly two-sided Archimedean) if it is both weakly left and
weakly right Archimedean, i.e. if for all a,b € 5 there exists n € Z* such
that a™ € abSba.

We give the following characterization of semilattices of weakly left Archi-
medean semigroups:

Theorem 2. A semigroup S is a semilattice of weakly left Archimedean

semigroups if and only if

!
a—>b = ab—0b,

for all a,b € §.

Proof. Let § be a semillatice Y of weakly left Archimedean semigroups
S, @ € Y. Assume a,b € 5 such that ¢« — b. If a € S, b € Sp, for
some a, 3 € Y, then 3 < o, whence b,ba € 5. Now, b* € S3bab C Sab, for

. " . 1
some n € Zt, since S is weakly left Archimedean. Therefore, ab — b.
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Conversely, let for all a,b € S, a — b im])lies ab -5 b, Assume a,b € 5.

Since @ — ab, then by the hypothesis, a2b — ab, . (ab)" € Sa’b C
Sa*§, for some n € Z*. Now, by Theorem 1 [9], .S is a semilattice ¥ of
Archimedean semigroups S,, « € Y. Further, assume o € Y, a,b € 5,.

Then @ — b, so by the hypothesis, ab L bin S, and by Lemma 11 (¢) [3],
ab - §in Sy- Therefore, S, is weakly left Archimedean. O

Corollary 2. A semigroup S is a semilattice of weakly t-Archimedean semi-
groups if and only if

a—b = ab-b & ba -,

foralla,be S.

The components of the semilattice decomposition treated in Theorem 2
will be characterized by the next theorem. Namely, we will give a description
of weakly left Archimedean semigroups.

Theorem 3. The following conditions on « semigroup S are equivalent:
(1) 5 is weakly left Avehimedean:
(ii) 5" is @ matriz of left Archimedean semigroups;
(iii) S is a right zero band of left Arehimedean Semigroups;

. - ; ; :
(iv) — is a symmetric relation on §.

Proof. (i) = (iv). Let a,b € § such that ¢ —— b, i.e. b" = za, for some
n € Zt, 2 € 5. By (i), a™ = yra = yb", for some m € Z%, y € 5, whence
b— a.

(iv) = (i). This follows by the proof for (vii) = (v) of Theorem 1.

(iv) = (iii). Let a,b,c € S such that a« —— b and b —— c. By (iv),

! _— ; ;
¢ — b, s0 b" = xa = ye, for some n € Z+, z.y € 5. Since (iv) & (i),
then there exists m € Zt, = € § such that ¢™ = :(yc) = zh" = zza € Sa.

! - same { !
Tllm'ofm'e @ — ¢, 50 — Is transitive, i.e. —= ——"_ Now, by Theorem

1, Ay = Ais a right zero band congruence, Bv Lemma 1, A\-classes are left
Archimedean semigroups.

(iii) = (ii). This follows immediately.

(ii) = (i). Let S be a matrix B of left Archimedean semigroups .5;, ¢ € B.
Then for a,b € 5, a,aba € 5;, for some i € B. whence a™ € S;aba C Sha,
for somen € Zt. O

t ]
Rpcaﬂ that the relation — on a semigroup S is defined by —=—

M —. Now by Theorem 3 and its dual we obtain the following corollary:
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Corollary 3. The following conditions on a semigroup S are equivalent:
(i) S is weakly t-Archimedean,
(ii) S @s a matriz of t-Archimedean semigroups;
(iii) Liisa symmetric relation on S

" /] r : ; 4
(iv) — and — arc synonetric velations on §.

By the following theorem we characterize matrices of nil-extensions of left
simple semigrounps.

Theorem 4. The following conditions on a semigroup S are equivalent:

.

(1) S is weakly left Avchimedean and left w-regular;

(i) S is weakly left Avchimedean and intra-m-reqular;

(iii) S @s a matriz of nil-crtensions of left simple semigroups;

(iv) S is a right zero band of nil-cxtensions of left simple semigroups;
(v) (Va,be S)3Ane Z1)a* € S(ba)*;

(vi) (Va,be 5)3neZt)a" € Sb"a.

Proof. (i) = (iv). This follows by Theorem 3 and Theorem 4.1 [15], since
the components of any band decomposition of a left r-regular semigroup are
also left w-regular.

(iv) = (iii). This follows immediately.

(iii) = (ii). This follows by Theorem 3, since a nil-extension of a left
simple semigroup is intra-m-regular.

(ii) = (i). By Theorem 3. 5 is a right zero band B of left Archimedean
semigroups S;, ¢ € B. Let a € Intra(5), i.e. a = xa’y, for some x,y € §.
Then a = (xza)fay®, for each k € Z*. Further, a € 5;, for some i € B,
and clearly, y € 5;, so y* = za*, for some k € Z%. z € §, since S; is left
Archimedean. Therefore. « = (wa)*ay* = (za)*aza®, whence a € LReg(5),
so by Theorem 1 [5], § is left 7-regular.

(iv) = (vi). Let 5 be a right zero band B of semigroups S5;, i € B,
and for each ¢ € B, let 5; be a nil-extension of a left simple semigroup
K;. Since (v) & (i), then 5 is a nil-extension of a left completely simple
semigroup K. Clearly, X' = LReg(5) = U;ep K. Now, for a,b € 5,
a €95, be S, for somei,j € B, and a € Ky, b* € K, for some n € Z,
whence b"a € S;N K = K, 50 a” € K;b"a C S0"a.

(vi) = (v). Assume a,b € 5. By (vii), there exists n € Z1 such that
a™ € S(ab)*a C S(ba)".

(v) = (i). This follows immediately. O

Let T be a semigroup of a semigroup 5. A mapping ¢ of S onto T is a
right retraction of S onto T if ap = a, for each a € T, and (ab)p = a(byp),
for all a,b € §. Left retractions are defined dually. A mapping ¢ of 5 onto
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T is a retraction of § onto T if it is a homomorphism and ap = a, for each
a€T. If Tis an ideal of 5, then ¢ is a retraction of S onto T if and only
if it is both left and right retraction of S onto T'. An ideal extension § of a
semigroup T is a (left, right) retractive extension of T' if there exists a (left,
right) rctraction of 5 onto T. ,

Some characterizations of matrices of nil-extensions of left groups have
been given by L. N. Shevrin in [17]. By the next theorem we prove that such
semigroups are exactly right retractive nil-extensions of completely simple
semigroups. In this way we generalize some results of S. Bogdanovic¢ and S.

Mili¢ [7], J. L. Galbiati and M. L. Veronesi [12] and A. Markus [13].

Theorem 5. The following conditions on a semigroup S arc equivalent:

(i) S is a right retractive nil-extension of a completely simple semigroup;
(i1) S s weakly left Archimedean and has an idempotent;
(i) 5 s a matriz of nil-extensions of left groups;
(iv) 5 is a right zero band of nil-cxtensions of lcft groups;
(v) (Va,be §)3ne Z1)a" € a*5(ba)";
(vi) (Va.be S)3n € Z1) a" € a*Sb a.

Proof. (iv) = (iii) and (iii) = (ii). This follows immediately.

(i1) = (i). By Theorem 4.1 [15]. § is a nil-extension of a simple semi-
group K, so it is intra-w-regular and by Theorem 1 [5], 5 is left 7-regular,
it is a right zero band B of semigroups 5;, ¢ € B, and for each i € B, 5;
is a nil-extension of a left simple semigroup K;. Further, K' = Intra(5) =
LReg(S) = Uiep Ni- by Theorem 1 [5], since the components of any band
decomposition of a left w-regular semigroup are also left r-regular. Thus, K
is left completely simple, so it is completely simple, since it has an idempo-
tent. Thus, for each i € B, K is a left group, so by Theorem VI 3.1 [1] (or
Theorem 3.7 [2]), it has a right identity ¢;. Define a mapping ¢ of S onto K
by:

ap = ae; ifae S, 1€ B.

Clearly, ag = a, for each a € K. Further, for a,b € 5, a € 5;, b € 5;,
for some 4,5 € B, and ab € 5;, whence (ab)p = (ab)e; = a(be;) = a(byp).
Therelore, ¢ is a right retraction of 5 onto K.

(1) = (vi). Let § be a right retractive nil-extension of a completely simple
semigroup ', and let K be a right zero band B of left groups K;, ¢ € B.
Let a.b € §. Then a™, 0" € K, for some n € Z*, and a™ € K;, b" € K,
for some i,5 € B. If ag € K, for some [ € B, since a™*! € K;, then
a"tl = a"tlp = a(ap) € K;K; C K, whence | = i. Thus, ap € K;, so
b*a = (b"a)p = b™*(ap) € K;K; C K;. Therefore, a",b"a € K;, so by the

dual of Lemma 1.1 [8], " € o K d"a C a™S5bh"a.
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(vi) = (v). For a,b € S there exists n € Zt such that a™ € a™S(ab)"a =
a™Sa(ba)® C a™S(ba)".
(v) = (iv). This follows by Theorem 4. O

Corollary 4. The following conditions on a semigroup S are equivalent:
(i) 5 is a retractive nil-celension of a completely simple semigroup;
(ii) .5 is weakly t-Archimedean and intra-w-regular;
(iii) 5w weakly t-Archimedean and has an idempotent;
(iv) § is @ matriz of T-groups:
(v) (Ya,be S)3IAn € Z*) a™ € (ab)"S(ba)".

Let us introduce the following notations for some classes of semigroups:

Notation | Class of semigroups | Notation | Class of semigroups
LA left Avchimedean M rectangular bands
B banads S semilattices

and by [} o 1% we denote the Mal'cev product of classes 1} and A5 of
semigroups. Let

LAo MM = (LAo MK oM, keZt.

Now we can state the followine:

Problem. Describe the structure of semigroups from the following classes

LAo MM (LAo MM 0B, (LAo M) 0 8.
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SEMILATTICES OF HEREDITARY
ARCHIMEDEAN SEMIGROUPS

Stojan Bogdanovié¢, Miroslav Cirié¢ and Melanija Mitrovié

ABSTRACT. In this paper we investigate semigroups whose any subsemi-
group is Archimedean, called hereditary Archimedean, and semilattices of
such semigroups. The obtained results generalize some results of J. L. Chris-
lock, M. Schutzenberger and M. V. Sapir and E. V. Suhanov.

T. E. Nordahl [14] studied commutative semigroups whose any proper
ideal is a power-joined semigroup. . S. H. Nagore [12] extended this re-
sult to quasi-commutative semigroups. Semigroups containing an idempo-
tent and whose any subsemigroup is t-Archimedean have been studied by
A. Cherubini and A. Varisco [9]. S. Bogdanovié¢ [2] studied weakly com-
mutative semigroups whose any proper right ideal is power-joined. B. Pon-
delicek [15] described semigroups whose one-sided ideals are t-Archimedean
semigroups. Semigroups whose any proper ideal is a power-joined semi-
group have been studied by A. Nagy [13]. S. Bogdanovié¢ in [3] described
semigroups whose proper (left) ideals are Archimedean (left Archimedean, t-
Archimedean, power-joined) semigroups. S. Bogdanovi¢ and T. Malinovié [8]
studied semigroups whose any proper subsemigroup is right Archimedean (-
Archimedean). In this paper we study semigroups whose any subsemigroup
is Archimedean, called hereditary Archimedean semigroups, and semilat-
tices of such semigroups. We prove also a more general theorem concerning
semigroups whose any subsemigroup is a semilattice of Archimedean semi-
groups. Note that semilattices of Archimedean semigroups have been studied
by a number of authours. M. S. Putcha in [16] gave the first complete de-
scription of such semigroups. Another characterizations of semilattices of

Supported by Grant 0401B of RFNS through Math. Inst. SANU.
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Archimedean semigroups have beew given by T. Tamura [17], S. Bogdanovié
- and M. Ciri¢ [4] and M. Ciri¢ and S. Bogdanovié [10].

Throughout this paper, Reg(5) (E(S5)) will denote the set of regular
(idempotent) elements of a semigroup 5, and for ¢ € E(Y), (. will de-
note the maximal subgroup of S with e as its identity. A semigroup S is
said to be m-regular if for any « € 5, some power of a is regular.

For undefined notions and notations we refer to [1] and [5].

Recall that the division relation | on a semigroup S is defined by
alb & (Fe,ye SH)b=zay.
and the relation — is defined hy
a—b & (InecZt)al|b".

Also, on a semigroup S we define the relations |, |, | and | by
T t

alb & (3neZt)b™ € (a,b)ala,b),
alb & (IneZt)b" e (a,b)a,
!
=4

alb (3n € ZT)b" € a{a,b),

7

alb & (meZalb& alb
t ! T

Clearly. a | b if and only if b" € a (a.b) a, for some n € Z7.
t

A semigroup 5 is a hereditary Arvchimedean if a | b for all a,b € S. By a
hereditary left Archimedean semigroup we mean a semigroup S satisfying the
condition: a | 0, for all a,b € 5. A hereditary right Archimedean semigroup

!
is defined dually. A semigroup 5 is called hereditary t-Archimedean if it is
both hereditary left Archimedean and hereditary right Archimedean. i.e. if
albforall a,beSs.
t

The next lemma gives an explanation why we the notion "hereditary
Archimedean™ is used.

Lemma 1. [5] A semigroup S is hereditary Archimedean if and only if any
subsemigroup of S is Archimedean.

Similar assertions hold for hereditary left, right or t-Archimedean semi-
groups.

T. Tamura in [23] proved that the class of all semigroups which are semi-
lattices of Archimedean semigroups is not subsemigroup closed. By the
following theorem we determine the greatest subsemigroup closed subclass
of this class. In other words, we describe all semigroups having the property
that any its subsemigroup is a semilattice of Archimedean semigroups.
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Theorem 1. Any subsemigroup of a semigroup S is a semilattice of Archi-
medean semigroups if and only if for all a,b € S there exists n € ZF such
that

(ab)" € (a,b)a* (a,b).

Proof. If a,b € 5 and T' = {«.b), then by Theorem | [11] it follows that
(a)™ € Ta*T = (a,bya* {a,b),

for some m € Z%,
Conversely, if T is a subsemigroup of S and a,b € T, then there exists
m € ZT such that

(ab)™ € {(a,b)a* (a,b) C Ta*T,

so by Theorem 1 [11], T is a semilattice of Archimedean semigroups. O

The main result of this paper is the following theorem which characterizes
semilattices of hereditary Archimedean semigroups.

Theorem 2. The following conditions on a semigroup § are equivalent:
(i) 5 is a semilattice of hereditary Archimedean semigroups;
(i) (Va,be S)a—0b = a* | b:
(iii) (Va,b,ce€ S)a —c & b—¢ = ab| ¢;
(iv) (Va,b,ceeS)a—b& b——¢c = alec.

Proof. (i) = (ii). Let S be a semilattice Y of hereditary Archimedean
semigroups o, a € Y. Assume a,b € 5 such that @ — b. Then b, a*b € S,
for some e € Y, so by the hypothesis we obtain that

" e (b, a!b) a’b (b.u%) = ((z,g,b) a’ (rzz. b).

Thus a? | b, so (ii) holds.
(ii) = (iii). Assume a,b,c € 5 such that @ — ¢ & b — ¢. Then by

Theorem 5.5 [5], ab — ¢. Now by (ii) it follows (ab)?* | ¢, whence ab | .
(iii) = (iv). By (iii) and Propositions 7 [22], — is transitive. Assume
a,b,c € S such that « — b and b — ¢. Then a — ¢, so a® | ¢, by (iii),
whence a | e.
(iv) = (i). By (iv), — is transitive, so by Proposition 7 [22], S is a

semilattice Y of Archimedean semigroups S,, a € Y.
Assume a € Y and a,b € 5,. Then « — b and b — b, whence a | b, by
(iv). Therefore, S, is hereditary Archimedean. Hence, (i) holds. O

The next theorem gives a characterisation of semigroups which are chains
of hereditary Archimedean semigroups.
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Theorem 3. A semigroup S is a chain of hervedilary Archimedean semi-
groups if and only if
ab | a or ab|b.

fm' allabe s.

Proof. Let § be a chain Y of hereditary Archimedean semigroups 5,, « € Y.
[fae S, be Ss, for some a, 3 €Y, then a,ab e S, or b,ab € 53, whence

a" € (a,ab)ab(a,ab) or 0" € (b,ab)ab(b,ab)

for some n € ZT.

Conversely, by the hypothesis and Theorem 1 [7], 5 is a chain Y of
Archimedean semigroups S..c € Y. If @ € Y and a,b € S,, then then
there exists n € Z1 such that b* € S,aS,, and by Theorem 2, a*> | b",
whence a | b. Thus, 5, is hereditary Archimedean. Hence, S is a chain of
hereditary Archimedean semigroups. O

Further we study semilattices of hereditary left Archimedean semigroups.

Theorem 4. A scmigroup S is a scmilattice of herveditary left Archimedean
semigroups if and only if for all a.b € S,

a—b = alb
!

Proof. Let S5 be a semilattice Y of hereditary left Archimedean semigroups
S, € Y. Assume a,b € 5 such that @ — b. Since a € S,, b € 54, for

some a, 3 € Y, we then have that 7 < «, so b,ba € 53. Now ba | b, whence
[
@ | b, which proves the direct part of the theorem.
!

Conversely, by the hypothesis and Theorem 3(2) [18], 5 is a semilattice

Y of left Archimedean semigroup 5., o € Y. Assume a € Y and a,b € 5,.

Then o — b, whence « | b, by the hypothesis. Therefore, any S, is heredi-
i

tary left Archimedean, so .S is a semilattice of hereditary left Archimedean
semigroups. 0O

Corollary 1. A semigroup S is a semilattice of hereditary t-Archimedean
semigroups if and only if for all a,b € S,

a—b = alb
t

Now we prove a theorem which generalizes a result of J. L. Chrislock [10].
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Theorem 5. The folowing conditions on a semigroup S are equivalent:
(i) S is hereditary Archimedean and w-regular;
(ii) S is hereditary Archimedean and has a primitive idempotent;
(iii) S is @ nil-extension of a perviodic completely simple semigroup;

(iv) (Va,be S)3n € Z%) a" = (a*b"a™)".
Proof. (i) = (ii). First we prove that
(1) (Va € S) (Ve € E(5))(3n € Z%) e = (eae)™.

Indeed, for a € 5, ¢ € E(S5), ea | €, by (i), whence ¢ = (ea)" or € = (ea)"e,
for some n € Zt. However. in both of cases it follows that ¢ = (ea)"e =
(eae)™. Thus (1) holds.

Further, assume @ € 5. Let m € Z* such that «™ € Reg(5) and let z be
an inverse of @™. Then a™ux,xa™ € E(S), so by (1) we obtain that

" — ("m P e “mI)n = (“m+l.r)u,

for some n € Zt, whence

m+1

m m

a™ = a"ra™ = ((L m+1m)n—1ﬂm+lmam

) a™ = {a

"L+|.l')”'_] 1n+l:l:)n—]um+] ==

=(a aara™ = (a

= (am+]. }n— m+l m+1 (am-l-]m)n—2aummama =

- (um+] ;1:)7 m+1m)n—'.!“’m+2 e —

“aa™a = (a
— ((Lm+lII_)n—(n—-l)"m+(n—1) =

“m+l.r”nu+n— . (Lfb llm(Lu 1 -

= aa™a*"! = ",
Thus, S is periodic, and by Theorem 3.14 [5], .S has a primitive idempotent.

(ii) = (iii). By Theorem 3.14 [5], S is a nil-extension of a completely
simple semigroup K. But, A" is hereditary Archimedean and regular, so it
is periodic, by the proof of (i) = (ii).

(iii) = (iv). Assume a,b € . Then «* = ¢ and V* = f, for some
e,f € E(S), k € Zt. Further, ¢ fe € ¢Se = (7., by Lemma 3.13 [5], whence
(efe)™ = e, for some m € Z*. Now, for n = km we obtain that a" =
(a

?Lb?l T ﬂ.
(iv) => (1). This follows immediately. O
Finaly we prove the following theorem which generalizes some results of

M. V. Sapir and E. V. Suhanov [19] and M. Schutzenberger [20] (see L. N.
Shevrin and E. V. Suhanov [21]).
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Theorem 6. The following conditions on a semigroup S are equivalent:

(i) 5 is m-reqular and a semilattice of hereditary Archimedean semi-
groups;
(ii) 5" is a semilattice of nil-extensions of periodic completely simple semi-
groups;
(iii) (Va,be 5)(In € Z1) (ab)” = (ab)™((ba)"(ab)™)";
(iv) (Va,be S)(3n € Z%) (ab)" = ((ab)™(ba)™(ab)™)".

Proof. (i) = (ii). This follows immediately by Theorem 5.

(1]

(2]
(3]

[9

==

[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]

(ii) = (iii) and (ii) = (iv). This follows by Theorem 5.
(iii) = (i) and (iv) = (i). This follows immediately. O
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A CONNECTION BETWEEN
CUT ELIMINATION AND NORMALIZATION

Mirjana Borisavljevié

ABSTRACT. Sequent systems for classical and intuitionistic logic and nat-
ural deduction systems for these logics are characterized by two important
theorems. Sequent systems are characterized by cut- elimination theorems,
and natural deduction svstems by normalization theorems. In this paper,
by means of multicategorics and the typed A-caleulus we exhibit some simi-
larities and differences between cut elimination and normalization. We con-
sider the sequent system and the natural deduction system for intuitionistic
propositional logic. We define a multicategory corresponding to the sequent
system. On the other hand, a typed A-calculus corresponds to the natural-
deduction system. We show how to form a typed A-calculus out of a mul-
ticategory and vice-versa. In some kinds of multicategory, some equations
necessary for cut elimination, are not necessary for normalization.

Introduction

In this paper we shall consider Gentzen’s sequent system and his system
of natural deduction for propositional intuitionistic logic. We shall inves-
tigate the connection between cut elimination in the sequent system and
normalization in natural deduction.

In their papers Zucker and Pottinger have already described this connec-
tion, in a certain way. In this paper this will be done by linking multicate-
gories and typed A-calculi.

Certain multicategories will correspond to Gentzen's sequent system for
intuitionistic propositional logic. Objects of these multicategories will be
formulas and operations on objects will be logical connective. We shall take
the arrows as proofs and operations on arrows will correspond to inference

[ would like to express my gratitude to Professor Kosta Dogen for many useful and
important comments and advices he made on my manuscript.
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rules. The arrow I' — A, which way have been constructed from other arrows
by applying operations on arrows, will correspond to a particular derivation
of the sequent I' - A.

Equations between arrows in multicategories equate arrows which cor-
respond to derivations with the same end-sequent. On the basis of the
equality f = g we shall be able to transform the derivation corresponding
to the arrow f into the derivation corresponding to the arrow g. Equations
between arrows which we shall assume will make cut elimination possible in
some multicategories; for example, in multicategories with axioms which are
closed for cut. In these multicategories equations can be explained in the
following way: there will be two kinds of equation. In the equations of the
first kind the arrows on the left-hand side will correspond to a derivation in
which cut has to be eliminated and the arrows on the right-hand side will
correspond to a derivation in which cuts are eliminated or of sialler degree
than the cut on the left-hand side. Equations of the second kind equate
arrows which are constructed by application of the same operations on the
same arrows and the only difference is in the order of application of these
operations.

A typed A-calculus will correspond to the system of natural deduction of
intuitionistic propositional logic. Types of the A-calculus will correspond to
formulas and a term of type A will be considered as a derivation with the
end-formula A. We shall define equations on terms that will correspond to
the steps of reduction leading to proofs in normal form. We shall postulate
equations on terms that will represent reductions in natural deduction such
that the middle part of the proof is made of atomic formulas.

[n Section | four kinds of multicategory will be defined; they differ in
equations their arrows. In MG-multicategories with axioms which are closed
for cut equations will represent steps of transformation of a derivation into
a derivation where no cut appears. In the other kinds of multicategory,
called MGI, MN and MNI, we shall require other equations on arrows. The
equations of MN and MNI will be closer to normalization of proofs.The
polynomial multicategory M[X'] will be formed out of a multicategory a M
in a standard way (cf.[2]). Functional completness will be proved for all
those multicategories.

In Section 2 two kinds of typed A-calculus will be defined. One kind
of typed A-calculus will have equations between terms that correspond to
reduction steps in the normalization of proofs. The other kind of typed A
-calculus will have added equations by which formulas of the middle part of
the proof are broken into their atomic subformulas. !

In Section 3 we shall define how typed A-calculi can be formed out of
objects and arrows of multicategories and vice versa. We shall be able to form



A connection between cut elimination and normalization 621

only an MN-multicategory and an MN[-multicategory out of the given typed
A-calculus. Then it will be possible to separate some equations which are
needed for cut elimination in some extensions of Gentzen’s sequent system,
but are not needed for normalizing proofs in these systems.

1. Multicategories

Definition 1.1. A multigraph is made of a class of objects and a class of*
arrows together with two mappings: source: {arrows} — {objects}*,
target: {arrows} — {objects}. where {objects}* is the free monoid generated
by the class of objects: f: " — A is an arrow, where ' = A;...A,, is string
of objects (our arrows are sometimes called mulliarrows).

Definition 1.2. A context-free recognition grammar is a multigraph
with operations on objects: A, V and =; special object 0. We also have
operations on arrows:

structural rules:

= i {[”‘{g,‘;"& — permmutation
T}})I_T;T thinning
Tﬁ?}—‘iu——';? contraction
f[arg)llif_}—v( cut
connective rules:
Ml 855  laer=r M Loty
MII] LAT=C gBL—C MIV [:r—A g —B

([ AVBI —C' W JT—AVE o g T—AVE

fl—= gBA—=C : [f:AT—B
MV JIA=BrA—( MVI FT—A=D

and special arrows:

MVII 14:A — A, for each object A from the class of objects.
MVIII 04 : 0 — A, for each object A from the class of objects.

Definition 1.3.

1. Let f:TAAO — A and A = ('1...C, A = Dy...Dy,, then
par(f) =des. Pey Do Py 0y (PC Do (P Dy (f))--))-.) and
paa(f): TAAO — A,

2. Let f:T — A and A = By...B,; then ta(f) =daes. tB,(---(tB,.(f)).)
and ta(f) : AT — A.

3. Let f: AAT — A and A = By...B,,
h: BiB,'+1...BHB,jB;+1...B,, H]...Bi_ll“ > A, Ai - Bg+]...Bn, An = @,
By = B,41 =0, where 0 is the empty string and 1 < ¢ < n; then
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P (h) Zacr PB, &, By By (B (PBiyy By ((PB, B, (R))...))) and
ca(f) =des eBr(eBr=1(..(cBi(f))...))) and
ea(f): AT — A.

Definition 1.4. A multicategory is a context-free recognition grammar
in which the following equations on arrows hold:

M1. f(14) = f, where f: A — B"14:A— A
M2. 1g(g) = ¢, where g: A — B, 1g:B— R
M3. h{g(f)) = h{g){[), where h : BA — ', g: AA—B, f:T — A

M4, par(pr a(RFD) = pa.alpa, s (R)(g))f),
where h: ABA — C,g:A—B, f:T — A

Now we shall define four kinds of multicategory. Each of them will have
five families of equations which hold for their arrows.

Definition 1.5. An MG-multicategory (M is for "multicategory” and
G is for "Gentzen”) is a multicategory in which the following families of
equations hold:

[ PTC-equations:

PPL. pp a(pan(f)) =f, forall f:TABA — (.
PP2. pan(pe n(f) =peppa,u()) for all f: TABACDA — E.
PP3. pa,a(paclpe.c(f) =prcpaclpas(f)), forall f:TABCA — (.
PTL pas(te(f) =te(pa, (), forall f:TABA — D.
PCL ce(pa n(f)) =pa.plee(f), for all f: C'CAABA — D.
PC2. ca(pe.a(f)) = ce(f), for all f:CCA — D.

TCL pe gltelen(f) =cppe.nrte(£))), forall f: BBA — D.

TC2. cp(tu(f)) =1, forall f: A — D,

CCL calpp.aalcppaass(f)) =ppalcp(paprlca(f))), foral f: AABBA — D.
Derivations in this family of equations differ only in the order of appearance
of the structural rules: of contraction, permutation and thinning,.

[1 CUT-PTC-equations:

CUTPL. pa.c:(91f) = pe.c(9(f)), forall f:T — A, g: AABCA — D.
CUTP2. g(pe, p(£)) = pe.p (9{f)), forall f: TC'DA— A, g: AA — D.
CUTTIL. te(g{f}) = pr.cpe,alte(g){f)), forall f:T— A, g:AA — D.
CUTT2. g{te(f)) = te:(g(f)), forall f: T — A, g: AA — D.
CUTT3. ta(g){f) = tr(y), forall f:I'— A, ¢g: AA— D.
CUTCL pealec(@))f) = perlecpr.co(pee,ale)(F))).

forall f: ' — A, g: CCAA — B.
UTC2. glee(F)) = eelglf)), forall f:C'CT — A, g: AA — B.
UTC3. e ()Y = erlpr, alg{NH) forall f: T — A, g: AAA — B.

-~ -~



A connection between ent elimination and normalization

623

Derivations in this family of equations differ in the order of appearance of cut
and other structural rules. For example, in one derivation cut will appear
first and permutation will follow and in the other permutation will precede
cut. However, in C'UTC3 we replace one cut that comes after contraction
on the left by two cuts preceding contraction on the right, and in CUTT3
we replace one cut that comes alter thinning on the left by zero cuts on the

right.

[II IMPORTANT C'UTS equations:

1CUT1.
1CUT2.
1CUT3.
1CUT4.
ICUTS.
[CUTSs.
1CUTT.
1CUTS.

ap((f hY) = g(f).

gpr ((f h)) = g(h),

(fi h){g) = (f{g). h{a)).

[f 1) k) = fly).

£ 1) ke g) = hig),

fIRg*) = pa.a (f{g)(h)).
h*(g) = (pa,alpa,ch)g))*.
f(O4) =08,

for all
all
all

g
for g
for ]
for all g
for all g

for all g

for all y

A — O f:A— A b
Bl — ', f:A— A h
TA—=C, f:CT— Ak
T — A f:AA—=C,h
T — B, f:AA —C h

:A — B.
A — B.
: T — B.
:BA — (.
: BA — (.

TAA— B, f: Bl —C,h: A— A
A — O, h: ACT — B.
foralOA:0— A, 08 :0—Band f: A— B.
By equations of this family the following derivations will be equated:

1. a derivation with a cut and a derivation with one or more cuts whose cut
formulas are subformulas of the eut formula of the first cut;

2.

and a cut.

IV TROUBLESOME EQUATION: This family consists of a single equation:

T.E. h([f,g]) = [R(f), h{g}].

V PTC-CUT-CON-equations:
PAL. pa.s(gp) = (pa.s(9))y.

PA2. paplyp) =anlg)),.

PA3. paB((f,9)) = (paa(f).panly)),
Pvi. pa s([f.9]) =as(f)paulg),
Pv2. paples) = k(panly))

PVv3. paB(prg) = prlpan(y))

P=1. pa B lf]) = pa n(y)[f].

P=2. pa p(gfD) = glpa n(f)]

P=3. paplg®) = (pa ply))".

TAL peanstelyp)) = (pealte(y))p,
TA2. peanp(telyy)) = (pealle(y))),
TA3. te((fog)) = {te( ) tely),

for
for
for
for
for
for

for
for
for
for
v, for

for

all g :
all g :
all f:
all f:
all ¢
all g:
all
all
all
all
all
all f:

g:
g:
g:
b

derivations which differ in the order of application of a conecctive rule

forall h: A — D, f: AT — ', g: BT — (.

CAABA — E.

DAABA — E.

FABA — C, g : TABA — D.
(‘TABA — E, g: DTABA — E.
TABA — (..

FABA — D.

DAABA — E, f:T —C.
DA— E, f:TABA —C.

CTABA — D.
A — D,
: BT — D.

[— A g:T—B.
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TN

Tv2.
Tv3.
=1
T =2,
T =3.

CAL.

CAaz2.

CA3.

vl

Cv2.
Cv3.
C=>1.

C=2.

C=3.

CUTAL.

CUTA2.

CUTwvI.

CuUTv2.

M. Borisavljevi¢

te ([ 0]) = pava.c (e, alte())pe s (te(g)]),
forall f: A' = D, g: BI' — D.

teley) =k (te(y)), foral g:T' — A.

te(grg) =g (teey))s forall g : ' — B.
rea=ptelglf1)) = glte (0] forall f:I'— A, g: BA— D.
pea=pritelf1)) =peplte@)f], foral f:I'— A g: BA—D.
te(g*) = (pealte(g)))?®, for all g : AT — B.

copanp.ccpacalyg))p) = pans.clpealea(y)))y,
for all g : CCAA — D.
cclpanp,colpec.alg))p) =pann.cpealec(g)))p,
forall y : ('CBA — D.
coe((fg) = (ce(feclg)). forall f:0('C'— A, g:CCT — B.
peavilcopave, colly SN = [pealec(pa,cety)) pe plee(pr.oe (£
forall g : ACCT — D, f: BCCT — D.
coleg) = klec(y)), forall gy : "CT — A.
colprg) = pelec(yd) for all g : ('C'T' — B.
ccpasn.collfD)=pazsp.clglece(H)]) foral f: CCT — A, g: BA — D.
cc(paz mr.copee s (W) = passr clpe slec()f]),
forall f:T'— A, g: CCBA — D.
ce(f*) = (pealee(pace(S)))N?, forall f: ACCT — B.
meoani(Paan,clup X)) = (pr alpaz.c(9)()p
proaaapraa gy ) = (pr.apa.c(g){f)),
for all f ; Pl g s ACK —.D,
9{fpy = (el
9 Sy = (9(f))prs forall f: AT — (', g: CA — D.
proave(pave.c(Uf, a])(h) = [proawa.c (O, pros(pe.c(9)(h)],
for all f:ACA— D,g: BCA— D, B:T —C.
k() = klg(f)).
kg(Fy = w(9(f}), forall f:T — ', CA— A
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CUT=1. k{g[f1) = 2{g}[f], far all f:0 — A, g BA — 0 b : OVA D.
CUT=2. pazsp.c@lfDk) =pa=npatylf(M)]).

for all iy & =12, FoiClF — A, g o BA~— D,
CUT=3. pazspr.c(lfDU) =pa=psraleanpe.c(@){r)f]),

for all bt A — €, gt BOA — D, f1 T — A

Equations of this family equate derivations which differ in the order of ap-
plying connective rules and structural rules,

Definition 1.6. An MN-multicategory (N stands for ”Natural deduc-
tion”) is a multicategory in which hold all the equations that hold for MG-
multicategories except that the TROUBLESOME EQUATION is replaced
by the following special cases of this equation:
NEI1. ]f."p([fl U]) = []('P(f)~ lf'}’<-'}>]'
NE2. 1p,{[f,9]) = [N ppe (F) Ly ()]s forall f: Al — C'AD, g: Bl' = CAD.
NE3. 1p[l[f,9]) = [Vl 1) Lol Ka)s

forall hy : A — ", [ Al —C = D, y: B[ — ' = D.
NE4. [hy, hoJ([f, 91} = [[h1. h2](F). [, ha]{g)].

forall hy : CA — E hy : DA — E, f: Al —Cv D g: B[ —CVD,
NEs. OY([f,¢]) = [O“4F. O ()], for all f: ATl — 0, g: B — 0.

We shall call these normalizing equations (NOR-equations) because they

correspond to steps the normalizing of a derivation.

Definition 1.7. An MGI-multicategory is a multicategory in which hold
all the equations that hold for MG-multicategories except that PTC-CUT-
CON equations are replaced by the following equations:

IA. (Lapiilpp) = lann.

Iv. [k1ar1B]=1ave-

I=. (Pazp.a(1g[1a]))* =14z u.

0. O°%=1,.

This family of equations will he called identity equations (ID-equations).

Definition 1.8. An MNI-multicategory is a multicategory in which hold
all the equations that hold for MN-multicategories except that PTC-CUT-
CON-equations are replaced by [D-equations.

[t can be easily seen that il the TROUBLESOME EQUATION holds, then
the NOR-equations hold. too. This means that each MG-multicategory is an
MN-multicategory. In some multicategories the TROUBLESOME EQUA-
TION cannot be det.¢ed from the NOR-equations and other equations. For
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example, let the arrow h : ('A — D be an axiom, where (’ is an atomic
formula then the TROUBLESOME EQUATION cannot be derived from
NEI-NE5 for the arrow h.

It can be shown that from the M1-M4 equations. the equations of the
family IMPORTANT CUTS and the ID-equations, we can derive the PT(-
CUT-CON-equations. According to that each MG-multicategory is an MGI-
multicategory, and in the same way each MN-multicategory is an MNI-
multicategory.

From now ou in this text, if not stated otherwise, we shall take as multi-
category M a multicategory of any of the four kinds previously defined.

Now we shall form in a standard way a polynomial multicategory M[X]
out of a multicategory M. Suppouse a multicategory M is given. The poly-
nomial multicategory M[X] will be of the same kind as the multicategory M
itself. In a usual way, a set of new arrows X = {ax4: — A:Ais an object
of M } is added to the multicategory M. Arrows of M[X] will be arrows of
M. arrows from X' and arrows obtained with the help of the operations on
arrows extending those assumed for M. The arrow of M[X] will have the
form p(xq,...,0,,) : ' — A, where 2y, ..., &, are arrows from X which can
appear in the construction of the arrow the p. Arrows ;. 1 < i < n need
not occur in this order in construction of ¢; they can occur several times,
and they need not occur explicitly. The next step is making a multicategory
out of M[X]. For this we need some equations that hold on arrows in M.
For two arrows of M[X] which have the some source and target consider all
the equivalence relations =y for some ¥ C X on arrows of M[X]. Which
basides some of the families of equations used for defining MG, MGI, MN
and MNI-multicategories must satisfy also
X. the equations following form:
if @ =y ¢ then @, =y b, where g, 9 : AT — ' in M[X], and similar by
with other operations on arrows.

The relations =y will satislv the families equations assumed for the kind
of multicategory to which M belongs. Then =y is the smallest of the
equivalence relations =y (cf. [2], p. 7). For example, let M be an MG-
multicategory; then =y satisfies the following families of equations: X, M,
PTC, CUT-PTC, IMP-CUT, TR-EQ, PTC-CUT-CON. The relation =y is
the smallest equivalence relation which satisfies these families of equations.
Then M[X] with =y is a polynomial MG-multicategory.

Let M be a multicategory of one of the kinds defined above. The func-
tional completness theorem will hold for the multicategory M.

Theorem 1.1. Let p(aqy,...,x,): ['— A be an arbitrary arrow of multicat-
eqgory M[X]. where T' = By..B,, and x; : — A;, | <i < n. Then for an
arbitrary order of formulas the A, i <1 < n, for cxample Aq...A,,, there is
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a unique arrow P in the mullicateqgory M, such that:

P ALAT — A and B(aq)..(xn) 2y @(X1, .0y Tn),s (#%)

where Y = {a1,....@5}.
The arrow B, 4 will be denoted simply by @, and Ay.. A, is A.

Proof. Only a sketch of the proof will be given here.
[ We shall first show that the arrow 3 of M exists for each arrow ¢(zq, ...
s &y,) of M[X] for which hold (**). The proof will be executed by induction
on the complexity of the arrow p(#y....x,). The a arrow @(zq,...x,) must
have one of the following forms:
1. f, where fis an arrow of M; 2. a; :— A 3. pp.o(¥); 4. eg(); 5. tg();
6. .d’p! ‘f"p' N. (‘f E) . {" E] 10. g1 1L bt iy 12. I'f?[f] 13. *; 14. ’tf?({),
15. 9(g); 16. g(v), where g in 15. and 16. is an arrow of M.

Arrows 1 and £ are of smaller complexity than arrow ¢ and then on the
basis of inductional hypothesis there are 4, € in M for which:

W{Ei)...(20) Sy V(21 , ooy ) and By Joe,) Sy Elmy, avdn)

Then P is:
Lof=ta,(ta, (f))); 2. 5 = ta, oy, _,(IPA.+1 Al Blgr it (145 )))5
3. pp.c(¥); 4. p.ay..a, (cB(Pa,..a,, sB(V)): 5. PE.Ay..a, (tE(V));
6. peac,a((Pa,B(¥)),); T poanal(pa.s(P)p); 8. (0,6); -
9. pave,a([pa.s(¥), pa.c(€)]): 10, s 11 g
12. ca(pB=c.aaps,..poa(pac()E]D)) 13. (pas ff’))*
14. ca(pB,..Be.a(Pa.s(0)(E)): 15, poy..p, a(pa.s(¥)(9); 16. g(¥);

On the basis of the equations that hold in the multicategory M[X] it can
be easily shown that (**) holds in all cases 1-16.
II In order to show the uniqueness of the arrow 3, we first define an equiv-
alence relation ~y in the following way:
for arrows ¥(yy,...9) and E(yy. o) : T — A

P~y € iland only if Py =& in M, (o)
where Y = yy,...y,, and y; : — B; and O is By...B,, taken in any order.

Then it is proved that the relation ~y is an equivalence relation =y.
Since =y is the smallest equivalence relation we get 9 =y £ only if ¥ = £.

Now we suppose that there are two arrows in M, say @ and @' such that
@a@' Al A:JF_’A‘"”I 3('1) ( ):? P, af( ) ( )NY(P As =y
is transitive we have $(xy)...(x,) = F(x1)...(x,) and by implication above
we get B(x1)...(x,) = @' {21)...(x,)) in M. Then from the part I of the proof
and from equations which hold in M we get that = @'. This means that
% is the unique arrow of M for which (**) holds. O
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2. Typed A-calculi

Definition 2.1. A typed A-calculus AC is a formal theory defined by classes
of types, terms of each type, and equations hetween terms. We shal write
t € A to say that t is term of type A.

Types. The class of types contaius special a type 0. and is closed under three
operations: AN B, AV 3, A = B, where A, B are types.

Terms 2.1. For each type A there are countably many variables of type A:
€ Ayt = 1,203 e

22.Ifte AN B then Lt € A and Rt € B.

23 fue Aand t € B, then Il{u.t)e AN B.

24, If H(x) € (" and @ € A, s(y) € (', y € B, u € AV B, then
0 y(u,t(x),s(y)) € C.

25. Ift€ Aand s € B, then Kyt € AVB, K\se AV B.

26 fuée Aandt € A= B, then tu € B.

2.7. fu(x)e B and v € A, then \,u € A = B.

2.8. If t € 0, then 14t € A.

Equations. Fquations have the form ¢ =x s, where ¢t and s have the same
type A, and X is a finite set of variables such that all variables occuring
freely in f and s are in X.
3.1, =x is an equivalence relation.
32. ft=y sand Y C X, then t =y s.
3.3. = x satisfies the usual substitution rules for all terms forming operations.
For example:
if ty =x t2 and sy =x sy then (1, s) =x II(t2,52)

where 1,1y € A, 51,5 € B.

If t(x) is a term of type A, € B and s is a term of type B then t[z/s]
is the result of replacing an occurence of « in the term t by the term s.

Definition 2.2. A ‘t_\/])(’(] A-calculus is AC-ND if the following equations
on terms hold in it:

L. L(II(t,3)) =x ¢, forall t € A, s € B.

R. R(I(% %)) =x 9, forall te A, s € B.

K. 8:.4(K au,t(x), s(y)) =x t[x/u], forallu € A, t,s €',z € A,y € B.

K by g (Kjpu, t(x), s(y)) =x s[y/u], foralu e B, t,se ',z € A, y € B.
(Azt)u =x t[z/u], forallu € A, t€ B, ¢ € A,

where in X, K and # no free variable in u becomes bound in t[z/u] and s[y/u].

0. tfefea(z)]l=x gz, foral € A, t€ B, z€ 0.
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N1 Légy(u, t(z), s(y)) =x duy(u. Li(r). Lsiy)),
foral nE AVB, s €A yeBt,seCAD.
N2, Rép y(u, t(x), s(y)) =x b (u. Rt(r), Rs(y)),
forall e AVB, s €A ye Bt seCAD.
N3. bz 0o (02 y(u, tlr), s(y)). o () omalan)) =x
Oy (W, 8y o (1 vr (1), v2(02))(0), 82y 2y (so01(@1)  v2(22) )W),
foralu€e AVB.r e A ye B . t,se('VI) ) €', r9€ D, vy,v9 EL.
N4 bay(u, t(x),s(y))e =x by y(u to(r), so(y)),
forallue AVB,re A, yeB t,seC=DveC.
N5, ter(ba,y(u, t(x), s(4)) =x buyluarctin) ees(y)),

forall ue AVB, re A, ye B, 1,s € A.

The terms of typed a A-calenlus code derivations of the natural deduc-
tion system for intuitionistic propositional logic. Equations L, R, K, K', /3
and 0 correspond to reduction steps in the normalization theorem when a
derivation in which maximum formula appears is transformed into derivation
without maximum formula. Equations N1, N2, N3, N4, N5 correspond to
reduction steps by which a maximum segment in a derivation is eliminated.
Terms on the left-hand side of all equations will correspond to derivations
in which a maximum formula or a maximum segment occurs. Those deriva-
tions are transformed by reductions into derivations corresponding to terms
on the right-hand side of equations.

Equations on terms in a typed A-caleulus AC-ND equate derivations with
their normal forms.

Definition 2.3. A typed A-caleulus AC-ND is A C-NDA if the following
equations on terms hold in it:

gA. z=x lI(Lz, Rz), for all z € AA B.

nV. z=x 6(z, Kpz, K,y forall =€ AV B, r€ A, y€B.
W= B=% Azzx; forall ze A= B,z € A.

n0. z=x oz, for all =z € 0.

Equations on terms A, V. 1 = and 70 equate derivations consisting of
nonatomic formulas in their middle part with derivations whose middle part
consists of atomic formmlas.

3. Connection between multicategories and typed A-calculi

In this section we show how to form a typed A-calculus out of a multicat-
egory M and how a multicategory can be formed from a typed A-calculus

L.
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First we shall define types and terms LC(M) from objects and arrows of
some multicategory M.
LCI 1. the types of LC(M) will be the objects of M.
2. the operations on types in LC(M) will be the operations on objects of
M.
LCIT  Every arrow term o(#q....,2,): — A of M[X] is a term of type A
in LC(M), and all the free variables of ¢(xy,...,2,) are in X = {z,..,2,}.
0T. z € A, xr =y4o5. x: — A.
IT. H(xy,..on): — AAB, then Lo =4.5 14,{p).
2T. Uy, nan): — AA B, then Ro =45 15, ().

3T. (e, on) t  — Ay ey, mn) 1 — B, then (g, ) =4e¢ (@, 9).
AT. If @(z1,..0,2) 0 — AV B, ey, k0 y) . — (7,
Eyry s Yoo tm): —C,x: — A y: —B

then 62y (@, ¥(x), £()) =dey [V, El{),
where ¥ is defied with respect to ¥ = {r} and € is defined with respect to Y = {y}.
ST. He(z1,.vn) s — A, then Kpo =g0p pe-
6T. If o(xy,....,25): — B, then [\'f‘tp =dof kP
TT. If (21, -syzn): — A, (21,000 0n): — A= B,
then o =4.5 1p[1a){¢"}{e).
8T. If p(z1,....xn): — B, x: — A, then Ap¢ =def B
where 7 is defined with respect to Y = {z}.
9T, @21, zn) i — 0, then typ =400 O(e).
LCEQ. If @(xy, ..cizn), (&), .coyzpn) i — A, .
then ¢ =x o if and only if o 2x ¢ in M[X], where X = {z1,...,zn}.
Now let one typed A-calculus, £, be given. We shall define objects and
- arrows of MC(L) from types and terms of the typed A-calculus £ in the
following way:
MCI 1. the objects of MC(L) will be the types of L.
2. the operations on.objects in MC(L)will be the operrations on types of L.
MCIT Anarrow f: Ay A, — Ain MC(L) will be (225 @(21, ..., Ty) €
A) where @(zy....,2,,) is the term of £ and xq,...,x, are all free variables of
term ¢, and @1 € Ay, ..., >, € A,,.
0A1. 1_4 =dr‘f (:l‘.:‘l? € A)
0A2. OA =def (£ €EVjeqx € A)
1A, I f=(x..tpzyy .- Ym:p €EC), s €A yeEB
then pa g(f) =dey (1...0nyzyy ... Ym; 9 € C').
2A. If f=(zzxy...;my 9 € ), 0 € A, then ca(f) =gef (x21...7n; 9 € C).
3A. U f=(z1..onip € X), r € A, then t4(f) =gy (xT1...20; 0 € C). -
4A. U f=(z1..0,;0 € A), g = (zy1..4m; % € B), z € A,
then g(f) =def (F1. . Tnyr..-Ym; 'j’[-"/‘ﬁ] € B).
5A. If f=(zz..xy;p€C7), r €A z€AABR,
then f, =4cy (z21...xn:[xfLz] € C).
6A. If f=(yr1..tn;p€C, yE€EB, € AAB,
then f,1 =g.¢ (zer...eni@lyf/R2) € C).
TA. U f=(z1...kn;0 € A), glxr...xuit) € B),
then (f,9) =des (1...00; (e, ¥) € AA B).
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BA. U f=(z21..0njp e ) r.r =(yz1..0 W EC), s EA y€ Band z€ AAB,
then [f, g] =aey (zx1. 020300 4 (0(2), ¥(y)) € C).

9A. If f=(z1...xn;p € A) lhe;: wf =def (T1xn; Kpp € AV B).

10A. If f = (z1...0059 € B), then po f =gop (£1..20; Kyyh € AV B).

MNMA. If f=(z1..tn;0 €A), g=(ryy..ym;VEC), s €EB, yeEAz€E A= B,
then ¢[f] =geyp (x1...cpy1..ymi[e/zy[y/e]] € C).

12A. If f = (z2z1...2n;9 € B), then f* =4op (£1...Z2n; Azp € A = B).

MCEQ. If f = (z1...2n59 € A), g = (y1...¥n; ¥ € A),
then f=gifand only if 1. x,, 4, € A;,1<i<n, 2. p=x Y[F/T],
where T=x1..2,, ¥ =y1...un and X = {z1...70 }.

In this way types and terms of LC(M) and objects and arrows of MC(L)
are defined. It is still neccessary to show that LC(M) is a typed A-calculus
and that MC(L) is a multicategory.

It has to be shown that the corresponding equations hold for terms of
LG(M). Depending on what kind of multicategory M belongs to, LC(M)
will be LC-ND or LC-NDA typed A-calculus. The following theorem holds:

Theorem 3.1.

1. If M is an MN-multicatcgory. then LC(M) is a AC-ND typed A-calculus.

2. If M is an MNI-multicategory, then LC(M) is a AC-NDA typed A-
calculus.

Proof. In both cases we have to verify what equations hold on terms in
LC(M).

1. As an example we show that the equation N1. holds:

Lé(u,t(z),s(y)) =x 6(u,Li(x).Ls(y),w : — AV B, t,s: — CAD,

z: — A, y: — B.
Lt =ges Lop(t), Ls =gey Lep(s), g y(u,t(2), $(4)) =des [E,3])(u),

t(x

8z,y(u, Lt(z), Ls(y)) rtrf[lfr’U)’l(;" ())(u), Lémy(u t(z) S(y)) =def
(u)
(a

Lep([E,3)(u)), Lop([E3](u)) =x Lop([E 3]0 {(u) =x [Lep(t), Lop(s)u),
then Lé. y(u,t(2),8(y)) =x 6z ,,(u Lt(a ) s(y)).
It can be proved in a similar way that all the other equations hold.
2. As an example we will show that the equation nA holds and that it
depends on the equation 11: =z =y Il(Lz, Rz).
z: —A=8B, Lz =def 1,4,.(3), Rz =def 1Bp’(z)v
I(Lz, Rz) =aes (Lap(z), Ly (2)),
(Lap(2), 1Bp(2)) =x (Lap: Ly )(2) =x Lanp(z) =x 2
then z = x H(L~,R4) in LC(M).
All the other equations are verified in a similar way. O

Let M be a multicategory of any of the four kinds previously defined and
let its axioms be closed for cut. This means that if the arrows f : AA — B
and ¢ : [ — A are axioms of M and A is atomic formula, then the arrow
flg) is an axiom in M, too. In this multicategory equations on arrows
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connect a derivation in which cut occurs and a derivation in which cut is
eliminated. Equations on terms connect a derivation with the normal form
of this derivation. Roughly speaking, equations we need for cut elimination
vield normalization.

On the other hand, let us see what we get from equations which we
need for normalization. These equations will ’select’ from the equations
which we need for cut elimination only those really required. We shall
show that from LC-ND and LC-NDA typed A-calculi we obtain only MN-
multicategories and MNI-multicategories, which are not necessarily MG and
MGI-multicategories.

The following theorem shows this:

Theorem 3.2.
LAf L 1s a AC-ND typed A-calculus, then MC(L) is an MN-multicategory.
2. If L is a AC-NDA typed A-caleulus, then MC(L) is an MNI-multicategory.

Proof. We have to check that the equations which must hold in MN-multica-
tegories, respectively MNI-multicategories, also hold for arrows in MC(L).

Some remarks. .

The free MG-multicategory corresponds to Gentzen’s sequent system for
intuitionistic propositional logic. Some MG-multicategories with axioms
which are closed for cut are extensions of this system. Equations between
arrows which must hold in an MG-multicategory don’t make cut elimination
possible in an MG-multicategory with arbitrary atomic axioms.

The situation is analogous with MN-multicategories.

We can investigate the connection between some MG-multicategories men-
tioned above and the corresponding MN-multicategories. This can be an-
other way to link cut elimination and normalization, without going via typed
A-calculi.
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ON WEAK CONGRUENCE MODULAR LATTICES

Ivan Chajda, Branimir Seselja* and Andreja Tepavéevié*

ABSTRACT. The.main result of the paper is a characterization of
weak congruence modular varieties (every algebra of which has a
modular lattice of weak congruences). Varieties are supposed to
have a nullary operation, and every algebra a one element subalge-
bra. It is proved that such a variety is weak congruence modular
if and only if it is polynomially equivalent to the variety of mod-
ules over a ring with unit. Some other characterizations of such
varieties and of algebras in these varieties having distributive weak
congritence lattices, are also given.

1. Introduction

A variety V whose similarity type contains a nullary operation 0 and
every algebra of which has a one element subalgebra is a 0,-variety. An
algebra with a nullary operation 0 is 0-regularif 8 = ¢ for each 8,¢ € ConA,
whenever [0]; = [0],. A variety V with 0 is 0-regular if each A € V has this
property. A 0,-variety which is O-regular is a 0;-regular variety. A single
algebra A with a minimal one element subalgebra A,, is A,,-regular if every
congruence on A is nniquely determined by the class containing A,,.

An algebra with 0 is weakly coherent if for every subalgebra B of A and
each 8 € ConA, if [0]s C B, then [z], C B for each z € B. A variety V is
weakly coherent if each A € V has this property.

Recall that an algebra A is Hamiltonian if every subalgebra of A is a class
of some congruence on A. A variety V is Hamiltonian if each A € V has this
property.

The weak congruence lattice C'w.A of an algebra A is the lattice of all sym-
metric and transitive subalgebras of A?, i.e. the lattice of all congruences
on all subalgebras of A. The congruence lattice C'onA of A is the filter

* Supported by Grant 0401B of RFNS through Math. Inst. SANU
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[A) in that lattice generated by the diagonal relation A, and SubA is iso-
morphic with the sublattice (ideal) (A] of all diagonal relations. Because of
that isomorphism, subalgebras are usually identified with the corresponding
diagonal relations; hence, SubA is a sublattice of Cw.A. In addition, the
congruence lattice of every subalgebra of A is an interval sublattice of Cw.A.

An algebra A has the Clongruence Intersection Property (the CIP), if for
all p € ConB., 0 € ConC, B,(' € SubA

panby = (pno),,

where py is fhe least congruence on A whose restriction to B? is p. In
the lattice ('wA the CIP is usually expressed in the following way: for
p.0eCwA, ‘

(PAB)VA=(pVA)A(BVA).

Recall that A has the Congruence Extension Property (the CEP) if for
every congruence p on a subalgebra of A there is a congruence on A collapsing
p.

A has the Strong Congruence Extension Property (SCEP) if for every
B € SubA and p € C'onB there is 8 € C'onA such that [b], = [b]s for every
b€ B. A variety V has the SCEP if every A € V has this property.

A variety V is weak-congruence modular (C'w-modular) if the weak con-
gruence lattice of every A € V is modular.

Let &£ be some lattice identity

BBy 5555 85) = QB aery )

We say that & implics modularity if every lattice satisfying & is modular.
Similarly, £ implies distributivity if every-lattice satisfying £ is distributive.

For more details about weak coherence, 0-regularity and SCEP, see [2,3],
and for some other properties of weak congruences see [7,8,9].

2. Results

It is obvious that a variety V with exactly one nullary operation 0 in its
similarity type is a 0;-variety if and only if the identity

(1) f(0,...,0)=0

holds in V for every n-ary operational symbol f. Another characterization is
the following.

Lemma 1. A varicty V with a single nullary operation 0 is a 0,-vartety if
and only if there cxists at most unary term g such that for every n-ary term
f the identity

(2) flg(x),...,9(x)) = g(x)



On weak congruence modular lattices 635

holds in V.

Proof. Let V be a 0;-variety. Then (1) holds, and the term g(z) = 0
satisfies the requirement (2).

On the other haud, if (2) holds, then by Theorem 9 in [1], every congruence
on an algebra A in V has a class which is a subalgebra of A, and since there
is a constant in A, this class is unique. The diagonal relation then provides
a one element subalgebra. O

Corollary 1. A varicty V with 0 is a 0,-variety if and only if every con-
gruence on an algchra A in 'V has ezactly one class which is a subaglebra of

A.

Lemma 2. (Theorem [ in [4]) If the lattice of subalgebras of every free
algebra in a varicty V is modular, then V is Hamiltonian.

Theorem 1. Let V be a 0, -reqular variety. If for each A € V the lattice
SubA satisfies an identity & which implies modularity, then C'w.A satisfies

Z.

Proof. 1f SubA satisfies & for each A € V, then also SubF is modular
for every free algebra F of V. By Lemma 2, V is Hamiltonian. Since V is
0y-regular and Hamiltonian, then also each A € V has this property, and
by (ii), Theorem IS in [7], ('on A = SubA. Hence, both C'onA and SubA
satisfy £. By (iii). Theorem I8 in [7], A has the CEP and the CIP. Using
Theorem 3 in [8], we conclude that also C'w.A satisfies £ for every A € V.
O .
The proof of-the preceding theorem shows that the same argument (the
use of Theorem 18 in [7] and Theorem 3 in [8]) can be used for a single algebra
A in any variety satisfying &, provided that A is A,,-regular (in which case
it has a unique minimum one element subalgebra, but there should be no
constants in the similarity type of V). £ may also imply distributivity.

Theorem 2. If for cach A in a varicty V the lattice SubA satisfies an iden-
tity & which dmplics modularity (distributivity), then the weak congruence
lattice of every A, -reqular algebra in 'V also satisfies £.

Proof. If A'is an A, -regular algebra in V, then it is Hamiltonian (by
Lemma 2), has the CEP and the CIP, and thus, as above, SubA = ConA.
By Theorem 3 in [8]. & holds in ("wA. since it is satisfied on both, C'on.A
and SubA. O

By the definition given in Introduction, an algebra A is weakly coherent
whenever every its subalgebra is a union of congruence classes provided it
contains a congruence class containing 0. This will be used in the following
theorem.
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Theorem 3. Let V be a Hamiltonian 0,-variety which is weakly coherent.
Then C'wA is Arguesian (and hence modular) for every A in V.

Proof. 1f V is weakly coherent then, by Corollary 1 in [2] and by the
assumption, V is 0,-regular. Since V is also Hamiltonian, SubA = ConA
for each A € V directly by Theorem 18 in [7]. By Corollary 2 in [2], V has
permutable congruences and thus, by the famous Jonsson result, ConA is
Arguesian (end hence modular) for each A € V. So also SubA is Arguesian.
By (iii), Theorem 18 in [7], A satisfies the CIP and the CEP. Using again
Theorem 3 in [8]. we get that ('wA is Arguesian for each A € V. O

Thus we have obtained some sufficient conditions under which a 0;-variety
is C'w-modular. In the following, we give also the necessary conditions, and
we characterize algebras in these varieties with distributive lattices of weak
congruences.

First we advance some known results.

Lemma 3. (Thcorem 2.9 in [9]) For an algcbra A, CwA is a modular lattice
if and only if Con A and SubA are modular and A has the CEP and the CIP.

Lemma 4. ([3])

a) A variety V has the SCEP if and only if it is Hamiltonian.
b) An algebra A has the SCEP if and only if A is Hamiltonian and has
the C'EP.

If Ais a Hamiltonian algebra with a one element subalgebra, and each
subalgebra of A is O-regular, then by Theorem 18 in [7] A has both, CEP
and CIP. This result will be used in a characterization of 0, — C'w-modular
varieties. For a single algebra, similar problems are solved in the following.

Proposition 1. Let A be a Hamiltonian 0-regular algebra which has the
CEP. Then,

a) A has the CIP: and

b)) A s weakly cohcrent.

Proof. a) Let p.# € C'wA, p € ConB, 8 € ConC, B,C € SubA. Then by
the CEP, in the lattice ('t A

(pAYVA)A(BAC) =pAf and
(pVAYA(BVAYA(BAC) =(pVA)ABEA(BVA)ACE=pAb.

By Lemma 4 b). A has the SCEP, since it is Hamiltonian and has the CEP.
Hence, both (pAf#) vV A and (pV A)A (@ V A) have the same blocks as p A 6.
By 0-regularity then

(pABYVA=(pVAYA(BVA), '
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and the CIP holds.

b) Let B € SubA, 8 € (‘onA, and B contains [0]5. Now, (B* A8) V A
and # have the same blok [0],. since A has the SCEP. By 0-regularity then
(B*A@)V A = 0. Again by the SCEP [0], C B for each z € B, and A is
weakly coherent. [

Now we can give a characterization theorem for 0;-C 'w-modular varieties.

Theorem 4. The following arc equivalent for a 0,-variety V:

(i) V is weak congrucnce modular;
(i) V is subalgebra modular and 0-regular;
(iii) V is Hamiltonian and 0-regular;
(iv) V is Hamiltonian and weakly coherent;
(v) V is polynomially cquivalent to the variety of modules over a ring
with unat.

Proof. (i)=>(v). If A belongs to a C'w-modular variety, then SubA? is a
modular lattice and thus (see [4]) A? is Hawiltonian. (‘on.A is also modular
and hence, by (vi), Theorem 5.5 in [5], A is polynomially equivalent te a
module over a ring with uuit.

(v)=>(i). If (v) holds and A € V, then A is 0-regular and ConA is a
modular lattice. By Theorem | in [4], A? is Hamiltonian, and by the result
of E. Kiss ([6]), A has the CEP. By the similar argument A? also has the
CEP, and by a), Proposition |, .A* has the CIP. In the presence of the CEP,
the CIP is hereditary for subalgebras (Corollary 3 in [8]). Hence, A has the
CIP as well (since A is. up to the isomorphism, a subalgebra of A%). By
Theorem 18 in [7]. SubA = (‘'onA and SubA is also modular. By Lemma 3,
CwA is a modular lattice.

(il)=>(i). By Theorem I.

(iv)==(i). By Theorew 3.

(ili)==(iv). By b), Proposition 1.

(v)=(ii). Similarly to (v)==(i), since A is 0-regular, C'onA is modular,
and SubA = C'onA. Hence, SubA is modular.

(ii)==(iii). By Lemma 2. O

A consequence of Theorem 17 in [7] is that in the above characterized
weak congruence modular varieties, congruence and subalgebra lattices of
every algebra in the variety are isomorphic, and the algebra has the CEP
and the CIP. Uunder these conditions, by already used Theorem 3 in [8],
lattice identities satisfied on C'onA and SubA, also hold on C'wA. By these
arguments, it is possible to discuss the weak congruence distributivity for
algebras in C'w-modular varieties.
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Theorem 5. Let V be a 0,-C'w-modular variety. Then, the Jollowing are
equivalent for an algebra A € V:

(i) CwA is distributive;
(i) SubA is distributive;
(iii) C'onA is distributive.

Proof. If C'wA is distributive, then obviously (ii) and (iii) hold. On the
other hand, if SubA or ('onA are distributive, then by the above argument,
since the variety is weak congruence modular (SubA = C'onA, A has the
CIP and the CEP). the distributivity is transfered to the weak congruence
lattice. O
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A REMARK ON CONVOLUTION POLYNOMIALS

L. N. Dordevié, D. R. Dordevié and Z. A. Ilié

ABSTRACT. A family of polynomials {FP;(x),i = 0,1,...,m} (m € Ng) of
degree i is a convolution one if satisfies the functional equation

"

(1) Y Pu-il@)Piy) = Pz + ),

+=0
for every z,y € R. The generalization of (1) is the functional equation

m

(2) > Po_iilupgin,y) = Pule,p+ g2+ 9),

i=0

where Pj r(a,p, ¢; z,y) is polvnomial of degree j + &k = m in two variables, ¢
and y, and a, p, ¢ are real parameters. The n-dimensional generalization of
(1) is

(3) Z -PmL .m,,[”-l'l«----f’?n:rlv---v-rn}

mi+-+my=m

= f’,,,,((l..j)] + -+ pair1 + "'+xn)-

1. Introduction

In the paper Convolution Polynomials [1] D. E. Knuth systematized the
known identities regarding convolution polynomials.

The identities involving not only convolution of variables but also convo-
lution of parameters are presented in this paper.

A family of polynomials { Pi().i = 0,1,...,m} (m € Np) of degree i is
a convolution one if satisfies the functional equation (convolution condition)

Tt

(1) S Puia)Piy) = Pl + ),

i=0

639
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for every xz,y € R.
"l” ("I:)”l

g8 = - which are necessary

The polynomials P, () =

for further work, satisfy the umvu]utmn condition (1)
The generalization of (1) is a functional equation

m

(2) > Puiilapgiey) = Pulap+ .2 + ),
t=0

where P, (a,p+ ¢q.x+ y) is the polynomial in one variable of degree m and
P,._ii(a,p,g.a,y)is the polynomial in two variables, x and y, of degree m,
and a, p,q are real parameters. The polynomial P,,_; ;(a,p,q,z,y) can not
be factorized to two polynomials in @ and y, respectively.

The equality (2) is satisfied hy two families:

|
(3) {Pm(a,er gyt +4) = m(v'-,...(a:wq; :r+y)},
m 'TIL—i,f(rtaj)aQ1J'sy)a
M =05 Lisvn s 8= 05 L ,m}.

{Pm—i,i(ff',]h g, y) =

The monic Gauss hypergeometric polynomial (7, (a; p+¢; x+y) in variable
(x+y)is defined by Gauss hypergeometric function £ in the following way:
(P+ q)m

( a )nl
(P4 Om = (—m)j(a); (x4 y)

(@) = (+a); I

(4a) Gplaip+gety) =(=-1)" Fla,—m;p+ ¢;x + y)

- (_I)ZHL

5

1.e.,

) . L a1 (]J+q+_7)m-;
41 Gola;p+qe+y) = (—l)'"'”( )—( +y)
(4b) Pty ; i) yy.

The polynomials (+,,,—; i(a: p, ¢; &, y) are monic Appell’s hypergeometric poly-
nomials in two variables defined by the Appell hypergeometric function F

(P)'m—i(q)i

(@)

(5a) Ga_ila;p,q; o, y) = (=1)" Fy(a;—m 4+ t,—4;p,q;2,y)

T—

i . T ‘:’J. k
= (_l}.‘h‘ JU nme—i q Z Z (” ?+k( m +T) ( z)-‘-- r. y

:
(@n ‘& (P)i(a)x J'K!
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(5b)  Giilaipogs2.y) =

— i by L= +j):;e—i—’(f1'+k)i—k ik
g (10) () kB
Zz( ) ] ki ((l+]+k)m—j—k "

=0 k=0 J

The following recurrence relations for monic hypergeometric polynomials
in one and two variables. necessary for proving the Theorem 1, are given.
Based on Gauss relations [2, pp.3.8]

.

fj )

(6) ';tF(a + 1,8+ Liv+ 1;t) = Fla+ 1,8;7;t) — Fla, 8;7;t),
aF(a+1,8;79:t) — AF(a, 8+ 1;9:t) = (a — 8)F(a, 357 1),

and putting @ = a, 3 = —m — 1,7 = 5. Fa,—m;sit) = (=1D)™(@)m/(8)m

(n(a; s3t), by elimination of F(a+1.—m—1;s;t), one yields the recurrence
relation

s+

a+

(7) Gosr (a5 5:8) = tGo(a + 1y + 158) = oG (a; 5i1).
1

Starting from the relations for Appell hypergeometric function Fy [2, pp.20-
21]

(8) aF(a+1,8,857,752.y) = BFy(a, B+ LAy 2.)
—B'Fy(a, 8,8+ 577y = (e = — BYF(a,B,87,7;2,9)
G
P2 py(ee+ L+ L35+ L5 2,9)
~
if
+ [7_?!-‘_1(“ + LA, 4"+ Ly, 7' + La,y)

= Fy(a+ LA, 3519 2,9) — Fa(a, B, 857,72, 9),

by eliminating Fy(a 4+ 1.7.4:7.9"s2.y). and by setting a« = a, f = —m —
1+4, 8 =—di,y=p.7 =«

MF

Gm—iila;p,qz,y) = (=1)" (@) b(a, —m + i, =45 p, 452, Y),s
lm
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therecurrence relation for monic Appell hypergeometric polynomials Gont1-ii
(a;p,q;x,y) of degree m + 1 as a sum of degrees of variables z and y

” m41—4
(9) (Tm-{-l—i.i(ﬂ‘;?)!f];5"'-.‘/) = T_}Tm('m—i,i(“ + lip+ 1, q;&, y)
1y
ﬁ(;m-}—}—i.i—l(” + I;Pafl+ 1:-’”-?)‘)

(m-l—l—i)(p-i—m—i)(, e -
- T—i, il Py g2,
(m+ 1)(a+m) #h Pl e

lg+i-1) (B )
(7”.-'— l)(a+ an) 7??!+1—!,l—1 ,qu,-,,y .

Now, by replacing (3) in (2), one obtains the following

Theorem 1. Let a.p.q be veal numbers (a,p,q > 0) and m € No. Then

T

my .
(10) Z ( ; )(:‘,,,M(u.: P, y) = Gulasp+ g e + ).

=0

Proof. We implement again the mathematical induction. Using (4b) and
(5b) one can prove (10) by simple testing for m = 1,2, 3. Suppose (10) holds
for k = m, Then we prove lll.ll (10) holds for k = m 4+ 1, i.e.,

mi+1 :
mA I .
(1) Z ( : )(,,“4,'_,-.,-(@,;,(,;:a:,y)= Gusi(a;p+ ¢ o+ y).

. t
1=0

Starting from the recurrence relation (9), the left-hand size of (11) becomes

m=+1
12 > (™ {L:,Hl;*m,,,_,-,,-m + Lip+ Lga,y)
i=0
1 ' n+1—1 —1
T ¥Gmer-ii-1(a+ Lip,g+ 1;,y) — &m—%ﬂ-x

' (g+i—1 '
X ('m—i‘i(”‘: Pagr. "/) == ﬁ%(’wu-%-l—i.i—l(“;?’v q;x, ?})]

m
= Z (T) l:-l'(-"m—i‘f(“' s l; P + 1- R .'r,y) (1‘1:—_;-1:’”1) ('m —1, a(ﬂ‘ P T y)]
i=0

m+1
+ Z . [J('m-i-l*u—l("‘}‘ l; s Py (I‘{'l €T, ff)

+i-1) .«
- %jl(’m+l—'i.i—l ((L; Paqx, y)]
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Il

() l:m(-"m*i.i(“ + lip+ L gi2,9)

i

+ yGm-iile + 1ipg+ L2, y) - ]],_—{;_i;_%rl(;?rz—i,i(“;fjv q;z,y)]

=zGula+ Lip+qg+ 10+ y)
+yGula+ Lip+g+ La+y) - %({m(a;p+ G;r+y)

=(x+y)Gula+ Liptg+ Liety) - Eﬂ?,:_”(;m(“;p'i'q;m +y)

According to (7), the expression (12) is Gp1(a@;p+ ¢; @ + y), i.e. the right-
hand size of (11).

Remark [. The equality (11) leads to the relation hetween the orthogonal
polynomilas in two and one variable. At first we have the relations between

orthogonal and hypergeometric polynomilas.

The monic Jacobi polynomial ’tf’?(,'l"b—”(t) on [0,1] and weight function

t*=1(1 —¢)* and monic Gauss polynomial (¢ + b+ m, b,t) have a relation

Cm

- j b'l'j)m—-' 4 -
(3,6=1)(4) .= § " (=1)m+i ’“) ( i b+ m; b;t).
Pt () = 3 (1) (.;' P FEE pdlA

=0

The monic Appell hypergeometric polynomials Gy, —; i(e+p+q+m;p,q;z,9)
and basic Appell orthogonal polynomials E,,_; i(a,p,¢;x,y) on the triangle
Ty :={(z,y) | * >0,y > 0. 2+y < 1} and weight 2P~1y971(1 — 2 — y)* are
connected by the relation

Em—i,i(aa DY) = (-'Irn*i.i(ﬂf +p+q+mip,q; '-E,?I)-

The basic orthogonal polyuomials V,,_; i(a, p,q; z,y) on the circle C :=
{(z,y) | «* + y* < 1} and weight function |z|?|y|?(1 — 2% — *)* and ba-
sic Appell orthogonal polynomials E,,_; ;(e,p,q;x;y) are connected by the
following four equalities:

Vam—zigile,pyqs,y) = E,_iila,(p+1)/2,(qg + 1_)/2;372».3!2),
Vam-2i41,2i(0 P, 30, 4) = 2 En_iia, (p+ 3)/2,(g + 1)/2;2%, %),
Vam-igit1(a,p, 50, y) = 9 Eii(a, (p+ 1)/2,(¢ + 3)/2;2%,9%)

Vam-2i41,2i41(, s g5 2,9) = 2y B i(a, (p+3)/2,(g + 3)/2; 2%, 4).

\
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The corollary of Theorem 1 are the following equalities which connect the
orthogonal polinomials in two and one variable:

T

m S
Z ( i )E'fra—i‘z(“~1}aq; x,y) = ‘pT(nh?"f‘l ”(:E +9),

1=0
m
' w,(p 2 2 v
( g ) V.!'rn—?i‘fi(“:])* Ga,y)= p;(n Akalf )(:E & yz) )
i=0

(

) V‘.!m—‘.!i%l ,'_]i{(f-. Ps s, f]) = 31:1,1(;::1(p+")/2+]}(:BE ' gZ) 3

n

2

m
i
m a,(p+q) /241 2 2

I.)Vzm—-zé.-ziﬂ (a.p.gia,y) = yP’(’: aatis) )(113 +Y"),

1=(
m
T . a,(p+q)/2 a
( 5 ) v'.?m—‘.’i-l—]ﬁ.’i-i—] (”* P, l/) = ;l:yfpa():’(?+ I)/)+2)(:’:2 + yr’) .
1=0

For a family of polynomials { P, (r,2)}, where 7 is real parameter and z
is real variable, the particular case of (2) is a functional equation
T
(13) Y | Pucilp2}Pile,9) = Pulp + 0,2 + ).

1=0
. 1
The polynomial family { P, (r,2) = — Gon(7; x)}, where
m!

(1) Gu(rsa) = (=1)™(r) Fl=mirit) = (=1)7(r), 3 S Z
i=0 (r); 7

i.e.,

Tt . i . '
Gu(r; )= Z(_l )m+J (J ) (r+7J )m—jw'?a

=0
satisfies (13).
The monic confluent hypergeometric polynomial in two variables, z, y, of
degree m (as a sum of degees in variables x and y) is denoted as

( }-5) (:"??1—‘i,‘i(p! q;r, y) = (-"?rtwi(]"; .‘L‘) " (":(fh y)1

f =0, Ty 5 1= 0, 1,0 . ym)

Replacing the polynomials defined in (14) into the (13), we obtain the
following ’
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Theorem 2. Let p,g be real numbers (p,g > 0) and m € No. Then holds

m

(16) Z (”'L)('l”'—t.t(]L q;r, .U) = (-7'711(‘7)"' ¢, + y)

; !
=0
Proof. Using the recurrence relation
(17) Guar(s:t) = 1G (s + 2;8) — sG (s + 152)

proof is identical of proof of Theorem 1.

Remark 2. The relation among the generalized Laguerre polynomial Lf“l(t)
on [0, +00) and weight t*~'c ' generalized Hermite polynomial H,,(s,t) on

(—oc, +00) with weight |¢|”« ", and confluent hypergeometric polynomial
Gi(s;t) is

(18) H,,;(S,t) = (_1)7112“;]& L([x+‘_’r5+1)/'l—1(t2‘) = 2?“t6(t‘t((3+ 2‘5+ 1)/2,t2),

where [ = [m/2],6 = m — 2[. The direct corollary of equality (16) and (18)
are the following equalities. for the cases when degrees of both variables are
even, then when degree of one variable is odd, and when degrees of both
variables are odd, respectively:

(19) Y (’:) Hom—2ilp. 2 ) Hail g, y) = (= 1) 2" LI (o2 4 o),
i=0
m

m ymeg2m
( ; )H2m+1—‘2i(}’)a 2)Hailg,y) = (=1)m22m 1y [+ a) 24152 4 o2,

I
o

i

=

n

L) y2m 2
( e')H%n—ze(p,-r-)!f-_mw.y) = (—1)m2Em Ay LPra 241 (52 § o2,

T
7

=0
m [ Y 2
> ( ; ) Hym—2i01(p, ) Haigr (q,y) = (— )72 PRy LY 0242 (2% 4 o),
1=0

3
=

The polynomial generalization

Like
Z ’I'”_H(-"l Jooo Py (@) = Pz + -+ + 20)

my4Fm,=m
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generalizes (1), one can define the n-dimensional (n > 2) generalizations of
(2) and (4),

(20) Z Pﬂn,...,m,,(”‘* Procoe s Puspy... 1-'1"n) —

my+t-+m,=m

Pm(GaPl + it Py v m'n.),

and

(21) Z Pml (])1» Ha| ) b Prn,, (_Pns -'Hr..) = Pm(]”l b i, o PR i LR ‘+wn)1
Mmy4-my=m

respectively.
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ON AN EMBEDDING OF A CLASS OF SEMIGROUPS
INTO RELATIONAL ALGEBRAS

Zoran D. Dordevié

ABSTRACT. In this paper we give a construction of relational algebras in
which finite semigroups which are orthogonal sums of groups with zero ad-
joined could be embedded. It is proved that if two semigroups are isomorphic,
then the corresponding relational algebras are also isomorphic.

1. Terminology, notations and basic definitions are taken from [1], [3] and
[4].

Definition 1.1. [4] A relational algebra is an algebra
A= (A:%, o 1{]- 11 0, lfﬂ_l )

of type (2,2,1,0,0,2,0, 1) which satisfies the following axioms:
(R1) (A,+,¢,7,0,1) is a Boollean algebra;
(R2) (A,0,1") is a monoid:
(R3) Operation ~' is an involution of the semigroup (A,o), i.e. for all
T,y €A,

(zoy) ' =y lox"l, (@) =gy

(R4) Forallz,y € A, (a+y) ' =a271+y7 !, wzo(y+z) = (zoy)+(xoz2);
(R5) Forall z,ye A, (+ 'o(Toy))oy=0.

We denote the class of relational algebras by RA. The Boolean part of
relational algebra A we call the Boolean reduct of A, and we denote it
by Rdg(A),. The semigroup part will be denoted by Rdgs(.A). Therefore
Rdg(A) = (A, +,¢,7,0.1) and Rds(A) = (A,0). The set of all atoms of a
relational algebra we will denote by At(A). For a relational algebra A we
say that it is atomic (complete), if the corresponding Boolean reduct is an

atomic (complete) Boolean algebra.

647
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Definition 1.2. [4] For a relational algebra A we say that it is:
1) commutative, if x oy =youw, forall z,y € A;
2) symmetric, if 271 =z, for all 2 € A;
3) Boolean,if x oy =2 ey, forall z,y € A;
4) antegral, if x oy # 0. for all 2,y € A — {0}.

An example of an relational algebra on the set P(A?) of all binary rela-
tions of a set A is (P(A*),U,N,”,3, A%, 0,A4,”"). This relational algebra
is called a full relational algebra.

2. Let (Go.*%q), where a € I #£ @, be groups for which G/, N Gy =@, if
a # . Define an operation e on the set:

(1) §=|]a, where (7 = G, U {0} and 0 ¢ | ] (2.,

el el

in the following way:

@) b { a4, D, if a,b € ¢, for some o € [
aeb=

0, otherwise.

Then (5, ) is a semigroup. Following the terminology from [1] and [2] we
will say that S is an orthogonal sum of semigroups (2, i.e. an orthogonal
sum of groups with zero adjoined. The class of all such semigroups will
be denoted by K% and by K9 it will be denoted the subclass of K (0
consisiting of finite semigroups with exactly n + 1 elements.

Since every group (4 is isomorphic to a permutation group of a set (G"), for
groups ((7,,*,) from § = Uﬂe, (" we have that for every a € I, G, 2 G,
where an isomorphism is given by

a fou= 0, ={(2,0%4 2)|2 € Go}.

Therefore, to an element a from (7, (o € I) of a semigroup S, there
corresponds a function, i.e. the relation p, in the group ', (a € I). The
image of 0 is @, i.e. pg = @. Now in

(3) §' = J (Gau{2})
ae]
for the operation o (the composition of relations) we have that

(4) o = { P b if a,b € (74, for some a € T,
o MR —

@, otherwise.

Hence, (5, 0) is a semigroup, belonging to the class K GO.
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Lemma 2.1. Let S and S be semigroups from the class KGO, given by (1)
and (3). Then they are isomorphic.

In the sequel, we will consider finite semigroups from the class KGY.
Let § € KG%, ie. let § = U, G = {0,a1,02,0a3,...,a,} be a finite
semigroup.

Let |[I| =k (1 <k < ). Irom § = 8" for semigroup 5 € KG9, it follows
that

8" = [ (GG 040} = {2 puys puge -+ )
o€l

Let us consider the sel

As = {p Upai, Us +Upu,, [P, €505, #0,1<v <p1<ps "} bl
Elements of the set S' — {@} are called atoms. Therefore, elements of the
set Ag are unions of atomns and the empty set.,

Theorem 2.1. Let S =J, ., G from KG and let [I| =k (k < n). Then
(Ag,0), where o is the composition of relations, is a semigroup with unit 1%,
where

1" = Pey Upe, U---Upe,
and e; (1 < i < k) are the units of groups G, (1 <1< k).
Proof. Tt is clear. O

For the unary operation ! in the semigroup (57, 0) we take the mapping

-1
Pa'— Py

where p~! is the inverse element of p, in the group i , for some a € I. We
n I l o

take that @7 = @. :

Since the operaton ~! is the usual inversion of relations, it can be extended
to the semigroup (Ag,o) where (z7')"' =z, (xoy)™! =y~ oa™1, for all
2,y € Ag. Therefore, according to Theorem 2.1, we have that (As, o, 17,7+
is an involutive semigroup with unit 1, where (z 0 y)™' = y~1 oz~ for all
x,y € Ag.

Since the elements of the semigroup Ag are relations, the operations
U, N,” (union, intersection and complement) are defined in Ag. The com-
plement is related to 1, where

1 =pa, Upy, U---Up,, (union of all atoms).

So for z € Ag where 2 = py, Upp, U---Upp, (s <n),willbez=1—-2 =
Pe, U pey U=+ Upe, ., where p., N py, = @ for all v (1 € v < m—s)and
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all o (1 < p < s). Especially, @ = 1 and 1 = @. So we get an algebra
(As,U,N,~,@,1) of type (2.2,1,0,0).

Let us notice Boolean algebra (P(At(As)),U,N,~,3, At(As)) and the
mapping f: P(At(Ag)) — Ag defined by

f : {f’a,] aPu,—_za c e '!prl,',_ } = Pu,l u P(l..z DR Prl,r and f(@) = @,
is an isomorphism. Then
(5) (As,U,0,7,2,1)

is also Boolean algebra.
Both Boolean algebras have same number of atoms (n-atoms). Therefore

P(At(Ag)) & Ag.
Using the operations of the set Ag, we obtain:

Theorem 2.2. The algcbra A = (Ag,U,N, ~,1,0,1',71) of type (2,2,1.0.0,
2,0,1) is a relational algebra in which the semigroup (S, ) from the class
K@ is embedded.

Proof. Let § = UaeiGo U {0} = {0,a1,ay,...,a,} and [ =%k (1 <k<n).
The axioms (R1),(R2),(K£3) from Definition 1.1 follow by Theorem 2.1, and
the axiom (R4) is satisfied for elements from Ag since they are relations.
The only thing left to prove is the axiom (R5).

Let = p.,, y = py, (1 < 4,5 < n) be arbitrary atome Ag. There are
two cases:
Case 1: Let a;,a; € (7, for some o € . Then

roy= Pa; © pr:, = f’r:,*‘laj = Pu,

where a; € (+,,. and hence

roy= l’“pu.l = Pa,y UPa-;U"'UPu,_.UPa,H Weenld pa.,

'E_l o (:IT o y) = p::f‘ o (lo”l u pug Lseald pm_]] Up!l;+1 ) =il Pa, )‘
It follows that

(6) 27 'o(Foy) = Pa;=1 0 Pay U pg.—10pg. U...
"'Upru_l O Pay_y Upra,‘_‘ O Paryq U "'Upa." 0 Pay,-
Now we have two different h"lll')(‘a.ﬁt-‘S:

{ﬂ.) (]- _Pu;)ﬂ(.";[ =J.
(b) (1 = po,) NGy # B, where €

o 1
oG,
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In the case (a), Vo (o) = @, since all the members of the union (6)
are empty sets, and hence ("o (Toy))Ny=B Ny = 3.
In the case (b), for every p, € (1 — p,, N G), u # aq is satisfied. Hence

il
Pa=10Pu = ~tuou = Pa,, ((L;,,“ € (Gy)-

Therefore p, # po; for all u, becanse in the opposite case from p,, = pq;
8. Pg,—1x u = Pa; it follows that a;] *o U = @, .. a; ¥4 @; = a;, Which
gives a contradiction. Therclore

(+'o(Toy))Ny=02.

Case 2: Let a; € (v,.a; = (/5 and «« # 3. Then z oy = @, and hence

("I“_] 0 ("B o y)) ﬂ ,f}' = (I’ﬂ,f‘ Q l )n f’fh
= (py -1 0Py, Upy=10pa, U---Upy=10p,. )N Paj-

By (4), the members of the inion p, -1 01 are for all a,, € G, (1 <m < n)
from (7,, otherwise they are empty sets. Since p,, € (}; we have that
Pa; # Pay=1xra,, for every m for which a,, € (. Therefore, from (7) it
follows that (z=! o (Toy)) "y = @. If at least one of the sets z,y is empty,
then (z7' o (Toy)) Ny = @ is obviously satisfied. Hence, the theorem is
proved. O

Theorem 2.3. Let § € N(/) where § = J,¢; G%. Then in corresponding

relational algebra Ag we have that 1), = 1, if and only if |G| = 1, for all
ael

Proof. If S = {0,a;.as,...,a,}.then the atoms in the relational algebra Ag
are Puiy Pags -+ Pu, (by Theorem 2.2). The unit lg in Ag is the union of all
the atoms, i.e. 1g = p,, Up, U---Up,, . The unit Iy of the semigroup reduct
of Agis 1%y = p.,Upe,U---Up,, (1 <k < n)where |I| =k,ande; (1 <i< k)
are the units of the groups 7, (1 < ¢ < k). Let |(¢y,| = n; (1 <4 < k).
Suppose that 1y = 1. Then forevery ¢ (1 <4 < k) we have pe,0lle = pe,olg
ie.

Poy = P, 0 (g U Py U s g, T = U (Pe; @ Pg;) = U (Pe; © Pay, )-
1<ikn 1<vin,

Since (o, = {aj,,aj,,....a; | and we also have that p., = pa; U pg;, U
U, s whence n; = |. since p, is the atom. Therefore |7, | = 1, for all
a € l.

Convesely, let |G| = 1. for all & € I. Then |I| = n, i.e. n = k, hence
Iy = pe, Upe, U--Up, .ie. 1 is the union of all the atoms. Therefore
1'; = 1g. Thus, the theorem is proved. . O '
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Theorem 2.4. Let S € K% where § =, e Then the corresponding
relational algebra A is integral if and only if |I| = 1.

Y.
Proof. Suppose that [I| > | and that Ag is an integral relational algebra,
ie. woy # 0 forall w,y € Ag for which  # 0 and y # 0 and |[I| = k > 1.
Then there are at least two different groups (7, and G5 (a # 3) in s,which
follows from the fact that for all |74, = n; (1 < ¢ < k) we have that
ny 4+ mny + -+ ny = n and the assumption & > 1. Now for a € (7, and
b e Gy pe # pi, hence in Ag we have Pa© pp = @ which contradicts the
assumption that Ag is integral.

Conversely. let |/| = 1. Then the semigroup 5 contains only one group
Ga,ie. § =G, U{0}, and lience, all the elements x,y € Ag are the unions
of the relations from the group (¢!, different from @. Since oy is the union of
elements of (7, we have that z oy # 0, and relational algebra A is integral,
which was to be proved. O

Theorem 2.5. Let 5 € KGY where S = UgerSy U {0} Then the corre-
sponding relational algebra Ag is Boolean, if and only if |I]| = n.

Proof. Since (Va € I)(|(7,] = 1) is equivalent to |I| = n, by the property
2.19.[1] and by Theorem 2.3 we have that the assertion holds. O

3. Let a semigroup 5 be from the class K%, and let Ag be the correspond-
ing relational algebra in which the semigroup S is embedded. Denote the
elements of 5 = {J,c; (7 by 0,01, as,...,a, and the corresponding atoms
in the relational algebra Ag by pu,,pa,, ..., pq,. Before we give an example
of an embedding of a semigroup into relational algebra we introduce the
following notations. Denote by 0,1,2,..., n the elements of a semigroup 5
and by 4112 ...14,, the element Puy, Upg, U--Upy, from Ag. With these
notations we have

U2l 012+ = (i1 o fi)(dy 0 ga) -+« (d1 0 fr)(i2 051 ) (i3 0 5a) + -+
(’lojt)(“m Oji)(?:m Oj'.’.)"'(i'mojt)

Wllf‘l"(’ ) . . )
o ke 7 ifi,5 €,
ioj= .
0, otherwise.

0

n Into

Now, we give an example of an embedding of a semigroup 5 € K
relational algebra Ag.

Example. Let a semigronp § = J,c;G% = {0.1.2,3.4}, where G, =
{1}, Go, = {2.3}, ¢, = {1} are groups, be given by Table 1 (The opera-
tions of groups (7, (1 <1 < 3) are given in the table, i.e. z %,y = z o y).
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1234

=W R = O
o o o O go|lo
o OO - Ol
[
b

TABLE 1

Ficure 1

Then, for the relational algebra Ag in which the semigroup 5 is embedded,
Boolean reduct is given by (he lattice from Figure 1.

The semigroup reduct is presented by the following table

001 2 3 4 12 13 14 23 24 34 123 124 134 234 1234

1 o1 0 o 0 1 | 1 0 0 0 1 1 1 0 1
> loo 2 3 0 2 3 o 23 2 3 23 2 323 23
3 oo 2 0 % 2 0 o2 3 2 23 3 2 23 23
4 0o o0 o 0 4 0 (0 } [}] 4 4 Q0 4 4 4 4
12 lo1 2 3 0 12 13 1 23 2 3 123 12 13 23 123
13101 3 2 013 12 1 23 3 2 123 13 12 23 123
14 o1 0 0o 4 1 14 0 4 4 1 14 14 4 14
5 23 923 23 23 23 23 23 23

: 2 3 1 23 24 34 23 24 34 234 234
34 (00 3 2 4 3 2 4 23 34 24 23 M 24 234 234
123 o 1 23 23 0 123 123 1 23 23 23 123 123 123 23 123
124 {01 2 3 4 12 13 14 23 24 34 123 124 134 234 1234
134 001 3 2 4 13 12 14 23 34 24 123 134 124 234 1234
234 [0 0 23 23 4 23 23 4 23 234 234 23 234 234 234 234
1234 |0 1 23 23 4 123 123 14 23 234 234 123 1234 1234 234 1234

In this algebra, we have thai:
.= 124, 1= 1234.

The algebra Ag is symmetric, since x~1 = ., for all # € Ag.
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Theorem 3.1. Let S and Sy be semigroups from the class KGY. Then
the semigroups S and S| are isomorphic if and only if the corresponding
relational algebras Ag and As, are tsomorphic.

Proof. Let S = §;. Since § = § and §; = S1, where S’ C Ag and
81 C Ag,, it follows that §' = Si. Lt g 8" — 51 be an isomorphism.
Define a mapping f: A¢ — Ag, by

(8) f(pa,, U Pai, U Upq, )= ‘P(f’a., )uU P(Pa,) V- U @(pa,,,)

!

Since 5" = S7, the relational algebras Aq and As1 have the same number
of atoms, and Rdg(As) = Rdg(Ag ).

Let ¢ = Pai, U pa;, UsssUpg, , y= Poj, U pp, U U Pb; s be arbitrary
elements of A¢. Then, by (R), nsing the isomorphism o, we have that:

f(m o U) = .f{(ﬂa” U/’rrt: L weme UPa,r)O(Pb,-l Uﬂh,-g U Uﬂbh))

= f( U (Pas, © po;, )) = U @(pa,, ©py;, )

1<p<r 1<pu<r ¢
1<pv<s 1<v<s
= U (PP, )oelm,, )= | elpa,)o |J wlps,,)
1<p<gr 1€ ulr 1<v<s
1<v<s
= J(Pai, Upay, U---Upy, ) o f(po; Ups,, U--Upy, )
= flx)o f(y).

[t is clear that f(@) = @. To prove that f is an injection, assume that
T = Payy UPai, U "Upa, sy = py, Upp U---Upy, 1 < s,and f(z) = f(y).
Then

f(pu.l U Pa;, Wil Pai, ) = f(ﬂb‘,-] U Pb;, u-.-u Pb;, ¥

and hence

(9)
P(Pa, JU @(pa,, ) U Up(pa,, ) = @lpy;, ) U ®(pv;, YU ---Up(ps,,)

By (9) for all u(1 < u < r). we obtain that

P(Pas, ) N (@(pa,, ) U @(pay,) U -+ Up(pg, )
= (Pa,, ) N (@(po;, ) U p(pry, ) U=+ U (py, )
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i.e.

(10)  @(pa,,) = (@(pa,,) O 2(pr, DU ((pa,,) 0 elpn,, ) U ...
e ((P(Pu‘# ) n ‘P(pb,‘, ))
On the right hand side of relation (10) at least one member of the union
is different from the empty set, because in the opposite case go(pﬂ'.“) is not

an atom in Agy (which gives a contradiction).
Let (P(p(hp ) m W(pbfu ) # (]‘ lll‘li(‘f-n

(11) P(pa,, ) = @lps;, ).

It is clear that for different (1 < < 1), we obtain diferent v (1 < v < s),
(11) is satisfied, since @ is an isomorphism. By (9) we have that
(12)  @(pa, ) U @(pa,, ) U Upp,, ) =

(P(pa, YU @lpa, ) U= Ug(pe, ))U (PP, ) U Up(ps;,))

Therefore, if we make intersection of the right and left hand sides of (12)
with ap(pg,hﬂ JU---Ug(py, ) and since the atoms are differnt, we obtain that

elpn, U Uep(p,,) = @.

et

Hence, r = s. By (11) we obtain that
Pai, = o, - Torall pw (1 < p,v <)

and hence x = y, which mecans that f is an imjection. The mapping f is
"onto”. Indeed, for an arbitrary = = ¢ Pay YU @(pa, )U---Up(p,, ), f(z) =2
for & = p,, Up,,U---Up, .

For 87 = Uae s, U{@} and |1 = k. (1 < k < n) let g €GL (1<i<k)
be units of groups 7, . then 1 = Pey Upe, U---Up,, . Now

FOU) = f(pey Upey Us+-U piy) = @l pe, ) U @(pey ) U =+ Up(pey ) = 1.

f@T) = f((Paiy Upa, U+ Upa, )V = flpa, ~' U Pa, TU - Upg, )
= @(pa, TNV Rlpa, U Ug(pa, ")
= @(Pa, ) U @lpa, )T U U(py, )7
= (@(Pa;, ) U @(pu, ) U -+ U (pa,, )"

= f(,pal1 U pa;, U Upyg, )7l = f(.‘l.')_].
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J(1s) = f(Pa;, Upay, U -Upa, ) = @pa, YU (P, ) U+ Up(pa,, ) = 1s,.

Let us prove that f achieves (8).
It is obvius that for arbitrary @,y € Ag it is f(x Uy) = f(x)U f(y). For
= pg, U-oUpg, will he

JIE) = f(mu ’ "Upu._,) = f(Pn.’l ki "Uﬂu.ﬂ_s)

where p, Np, =@ foralll <rv<sand 1 <p<n— s From there
Pagy " Pai, /

f(&) = @(pe, YU Uplpe,, . )= @(pa, ) U~ Up(pa, )

because of isomorphism ¢ will be p(p., JN@(p., )= @, foreveryl <v <s
and 1 < p < n—s. So,

F(#) = F(par, U U pa,) = F(x).

Because of x Ny = T U g, f is also an isomorphism for N. Thus, Ag = Ag,.

On the other hand if f: A¢ — Ag, is an isomorphism of algebras Ag
and Ag, ., then the restriction [|¢ : 9" — 87 is an isomorphism (since the
isomrophisin f maps atoms from Ag in atoms from Ag, ), and hence 5 = 5.
Thus the theorem is proved. O
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VARIETIES OF POLYADIC GROUPS

Wieslaw A. Dudek

ARSTRACT. In this note the class of all n-ary groups is considered
as the class of some universal algebras with different systems of
fundamental operations.  In any such case we give the minimal
systems of identities defining this class.

1. Introduction

Wilhelm Dérnte. inspired by E. Noether. introduced in 1928 (see [1]) the
notion of n-group (called also n-ary group or polyadic group), which is a nat-
ural generalization of the notion of group. The idea of such investigations
seems to be going back to 1. Kasner’s lecture at the fifty-third annual meet-
ing of the American Association for the Advancement of Science, reported
(by L. G. Weld) in The Bulletin of the American Mathematical Society in
1904 (see [2]). The second paper which plays a very important role in the
theory of n-ary groups is the large paper (143 pages) of E. L. Post [3].

We shall use the fnllnmng abreviated notation: the sequence z;, z;41,..., %;
will be denoted by @/, For j < i aJ is the empty symbol. In this conventtou

1

f(x}) denotes f(.r;..:r._,. eeentn ). The word

Pl iy @iy @iy By enmn T Bttt g o B Vs

. . . (1)
where & appears t times. will be denoted by f(2f, 2, 2},,,,). For t <0

)y .
the symbol @ will be empiy.
If m=k(n— 1)+ 1. then the m-ary operation ¢ given by

gaE Y = B FTED ) 8 e ) 2 e 1y 42)
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will be denoted hy fi4,. In certain situations, when the arity of ¢ does not
play a crucial role, or when it will differ depending on additional assumptions,
we write f,, to mean f, for some k=1,2,....

A non-empty set (7 with an n-ary operation f:G™ — (7 will be called
an n-groupoid or an n-ary groupoid and will be denoted by (G5 f). An n-
groupoid ((7; f) will be called an n-group or an n-ary group if and only if

1% for all ). a0, ..., 20,_1 € G the (i, j)-associative law

(1) FT SN e ") = flad £, 22050
hold for every i, j € {1.2,...,n},

2° for all @y, @y, uuey Bpet, Xpgyy s € G (k= 1,2,...,n) there exist a
unique z € (¢ such that

(2) f(.‘.r.‘f_lii,.l’fz_H):;J:HI

Condition 1" is called associativity, and algebras (G, f) fulfilling 1° are
called n-semigroups. Algebras fulfilling only 2° are called N-quasigroups.

The above definition is a generalization of H. Weber’s formulation of ax-
ioms of a group (from 1896). Similar generalization of L. E. Dickson’s (with
the neutral element) one leads to some narrower class of n-groups derived
from 2-groups (i.e. classical groups).

It is interesting that there exists no nontrivial (on a non one-element set)
theory of infinitary groups, i.e. w-groups for countable infinite ordinal w,
but there exist infinitary quasigroups of any (finite and infinite) order [19].
Therefore we shall consider n-ary groups (n-ary groupoids) only in the case
when n > 2 is a fixed (but arbitrary) natural number.

It is worthwhile to note that, under the assumption 1°, it suffices only to
postulate the existence of a solution of (2) at the places k=1 and k =n
or at one place & other than 1 and n. Then one can prove uniqueness of
the solution of (2) for all & = 1,...,n (see [3], p. 213'7). Also the following
Proposition is true (see [4]).

Proposition 1.1. An n-groupoid ((; f) is an n-group if and only if (at
least) one of the following conditions is satisfied:

(a) the (1.2)-associative law holds and the equation (2) is solvable for
k=0 and uniguely solvable for k = 1,

(b) the (n — L n)-associative law holds and the equation (2) is solvable
Jor k=1 and uniquely solvable for k = n,

(¢) the(i.0+ 1)-associative law holds for some i € {2,...,n — 2} and the
cquation (2) is uniquely solvable for i and some k > i.
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2. Varieties of n-ary groups

In an n-quasigroup (7 /) for every s € {1,2,...,n} one can define the
s-th inverse n-ary operation f1*) putting

fO'@Y) =y  if andonlyif  f(a}7',y,20,,) =2, .

Obviously, the operation  f0*) is the s-th inverse operation for f if and
only if

(3) f“) ~_]- fa). ’q+1):37.¢1

for all x,,....x, € (. Therefore (as in the binary case) the class of all n-
quasigroups (and in the consequence the class of all n-groups) may be treated
as the variety of equationally definable algebras with n 4+ 1 fundamental n-
ary operations [, f', f*) . f0") Such variety is defined by (1) and (3).
Obviously (1) and (3) must hold for all ¢,j,s € {1,2,...,n}.

An n-group (n > 2) may be considered also as an algebra with three n-
ary operations. Namely, as a consequence of Proposition 1.1 we obtain the
following characterization.

Corollary 2.1. FEvery n-ary group (n > 2) may be considered as an algebra
(G5 f, f9, f5)) of the type (n,n,n) with the (i,i+ 1)-associative operation
[ where

(a) i=5=1 and k=n, or
by i=n—-1, j=1 and k=n, or
(¢) t€{2,....n—=2} is fived and k > j = 1.

Corollary 2.2. The class of algebras with three n-ary (n > 2) operations
£,k is the varicty of all n-ary groups (G5 f) tf and only if (at least) one
of the following arxiom systems is satisfied:
ff('r” J:'-Ll-ll]_ f ‘]af(ln+l) :.z_;l)’
(a) § 9L/, ai).a5) =y,
("'f(l y)) =4y,

flai™ f(ff'l"?“) Tn1) = fl2170 f2271)),
(b) g(f(y,:.) an) =y,
h(z?~", fl=zt" Ly =v,
=y f(?"+l Doeai') = fleh fleph),2niah) s

(c) fl(-fiz—l ey s' el ) 2h) = Y, _
h(z{™', f(xi™) y 2y, ) 2%,) = 9, where 1 < i< 38 < h are fized.
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Note that axiom systems given by (a) and (b) (also in Corollary 2.1) are
valid for n = 2. too. But the greater part of characterizations of n-ary groups
obtained by several authors are valid only for n > 2. Characterizations
which are valid also for n = 2 are given for example in [7], [9] and [8]. Since
in all these characterizations f is an associative operation, then founded
systems of defining identities are not minimal.

We give such minimal system basing on result obtained in [8].

Corollary 2.3. The class of all n-ary groups (n > 2) may be considered as
the varicty of algcbras with one (1,2)-associative (or (n — 1, n)-associative)
n-ary operation [ and one (n— 1)-ary operation h satisfying the following
two arions:

(a)  f(h(a]". ,;).:I']"“, ',f(:’ .'L"]"_:‘j, ) =1,
( b) f[ f( B -l',|!4-" 2zl .I"!L_'). h{ .‘L‘rll_", :)) = .

Proof. 1f an algebra ((/: f.h) satisfies the above conditions, then as in [8]
one can prove that (2) has a unique solution at the place k=1 and k = n,
which together with our Proposition 1.1 proves that (G f) is an n-group.

Conversely, if ((; f) is an n-group then for every z,,...,x,_» € (G there
exists a unigue element v € ¢ such that

y =Ty 7 0) = fl@} ™% 0,y) = fly,0,277%) = f(v,2]7%,y)
for each y € (¢ (see [3]. 214-215). Hence for every z,xy,...,2,_2 € G there
exists only one u € (¢ such that

flu, 2", f(Zno 2,27 ), 9) = ¥

holds for each y € (/. Since u depends on n — 1 elements z,xy,...,%,_o,
it may be treated as the value of an (n — 1)-ary operation fi. Obviously h
satisfies (a) aud (b). This completes the proof.

As it is well known in an n-group (G f) the equation
(n—1}

(4) fO e z)=u

has a unique solution = € (¢, which is called the skew element to = and is
denoted by #. Since for every x € (i there exists only one skew element,
then the solution of (4) induces on (¢ a new unary operation =z — T .
Thus an n-group ((/; f) may be considered as an algebra (7, f; 7) with two
fundamental opertations: an n-ary one f and an a unary one ¢ — T . The
variety of such n-groups is defined (see [6]) by three identities: one of the
type (1) and two so-called Dérnte’s identities

(i—1) (n—i—=1)

(5) fO e F o y)=y,
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(m—j—1) _ (j=1)
i Tw & )=yl

(6) fy.

b

In an n-group the last two identities hold for all 4,7 € {1,2,...,n—1}, but
one can prove (see for example [6],[4]) that (5) and (6) determine (together
with (1)) an n-group if it hold for some fixed 7, 7. The minimal base of such
variety is given by the following theorem (proved in [7]).

Theorem 2.4. Let (G f. ) be an n-ary groupoid (n > 2) with a unary
operation w — T . Then (G5 f, 7 ) ds an n-group if and only if f is
(1.2) or (n — l.n)-associalive and Dérnte’s identities hold for some fived
0,5 € {1,2,..on — 1}

As a consequence we abtain

Corollary 2.5. The class of all n-ary groups (n > 2) may be considered as
the variety of alycbras with one (1,2)-associative (or (n—1, n)-associative)
n-ary operation [ and onc unary operation v — & satisfying the following

two arioms:
~ (m=2) (n—1)
(a) fla, = . f(C « .y)) =y,

(n— (rn—2)

(b)  FO "), ) =y,

Theorem 2.6. The cluss of algebras (G5 f.q.h) with one (1,2)-associative
(or (n — 1, n)-associative ) n-ary (n > 2) operation [ and two (n — 2)-ary
operations g and I is the variety of n-ary groups if and only if the following
two identitics

(7) Halad a9 = us

(8) g ) 5T =y

hold for some fized i,5 € {1.2,...,n— 1}.

Proof. From [3] (p.215) follows that in every n-group ((; f) there exists
an (n —2)-ary operation g satisfying (7). Similarly there exists an (n — 2)-
ary operation /v satisfving (). Thus (7) and (8) hold in every n-group.

To prove the converse observe first that putting in (7) ¢ = 2, = ... = Z,_,

{n—2) . . -
and g( @ ) =T we obtain the identity
(i—=1) _ (n—=i=1)

(9) fly & *» y)=uy.
n—=2)

. ( "
Similarly, for fi{ « ) =2 from (8) follows
(7=1y _ in—=j—=1)

(10) flyy "= .2, & )=y,
If fis (1,2)-associative, then (10) implies
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e DT (i=1) - (B=—3§—1)
flay, fles*™), 6303 = f(f (2, f(231),2205Y), 2,3, & )=
(_1 2) . (n—j—1)

JIETWIVIE ”“) ;'_’F,l,l), i p? =

U z!) " (??—J—l)

Sl s flag?), ,:";,’, x), w z )=
2 n " In— ” ~ (n n
f(f 'f f + n+il) € 'J' f(.‘ll’f( n+31 .
This proves (1.3)-associativity of f. Now, using (1,2) and (1,3)-associ-

ativity we prove (1.:)-associativity. Smulzu]y we can prove (l,k) associati-
vity for all & = 5.6, ....n. Thus (G} f) is an n-semigroup.
In the case of (n — 1. n)-associativity the proof is analogous.

To prove that (7 f) is an n-group it is sufficient to solve (2) for k = 1
and & = n. In the same manner as in the proof of Theorem 2 in [4] one can
verify that if (9) holds for 2 <4 < n—1 then the element

(t—2) _ (n—i—=1) (i=2) __ (n—i—1) (1—2) (n—i-1)
Z :‘(,}{-'n—l Tn—1y Tl s¥pany Tpogy Lpog yeey Ty , T, I 7"30)

is a solution of the equation f(z}~!, z) = a,.
Similarly, under the assumption 1 < 7 < n —2 in (10), the element

. L =Y s =) G- (n—j—2) (J-1) ~ (n—3-2)
“ = f(‘}(-’il- T s by 3 Tpo1sTp_]y Tpof 4.y T2 , T2, T )

is a solution of the equation f(z,2%) = w,.

Thus (¢ f) is"an n-group if (9) and (10) hold with the restriction:

(11) 2<i<n—1 and 1 <5< n-2,

We have still to consider the following cases:
(12) b= Jj=n-—1,
(13) i =1, 2<j<n—2,
(14) j=n—-1, 2<i<n—-2,
(15) t=n—1, j=n-1,
(16) =, 3= 1

Let (9) and (10) hold for i =1 and 7 = n — 1. Then

1@ ) = £, 8 =,
which gives
@y = 158 = e and 7= £(7,"2,5) = 3

As a consequence we obtain
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_ An=2 o n=1) _ (n=3)
y= @7 = fE O E), 7 ) =

(n=13) _ (n=3)

fUE N E ) = fe ).

By a similar calculation we get

(n=3) _ (n=3) .
y= fly. & ,Ex)=fly, = ,%,7).

Thus the case (12) is reduced to (11) and ((; f) is an n-group.
If (9) and (10) hold with the restriction (13), then

. (n=1) ()} ~ (n=j=1)
r=fl@ = )= f(r,e, = ;
which implies
= _ (n=2) L dn=j—1) (j) . (n—j—=1) (j=2)
y=flz,. & .y)=flw. @ e, z, ), ,y)=
(n—1} (n—43) (n—3)

porE 0w ) = few ).
Hence

_ (n—=3)

I (o

(n—a3) =3)

) = ST few, T ) =

(n==2) .  (n=3) (n—3)

fe f(F, x &), ® ,y)= flz,z, T ,y)=y

This proves that (9) holds also for i = 2. Therefore (13) may be reduced
to (11) and (G f) is an u-group. By a similar argumentation the case (14)
may be reduced to (11).

Now we consider the case (15). In this case the identity (9) has the form
(n=2) 7 5 v . .
f( "z JE,y) = y. which in particular implies

(n—=2)

where T = g( 7 ). Using these identities it is not difficult to verify that
the solution = of the equation

(n=3) _

f( &€ ,.’1’2,.’!7,2) =Y

has the form
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(n— ) _ (n=3) _ (n-3) _ (n—3) _
= fnen( 2 ,E, T JE Z Ty 2 ,ET,Y)=
St Nt

~

(n—3) times
(n—3) (n=2) _ (n—4) _ (n—3) _ (n-3) _
Fa=aC @ 5 {0 T FaE®)y T 4T B sTawe B T =

(m=3) (n—4%) e (n—23)

.fﬂn—.“){ o ‘Tay):

(n—4)  (n=2) _ (n—4) _ (n=3) _
f(n.—4)( I s T Xy Ty X ST Y) =

(n—4) (n—=3) __ (n—3)

fn.f-T( Y 1Tay):
( )

Hence in this case holds also f(m:;'”,ﬁ.". #,y) = y, which reduces (15) to
(14). Analogously (16) may be reduced to (13). This completes our proof.

Note that in general g(ay7%) # h(277?), but as it easy to show g(z,...,z) =
h(a, ... x)forall » € (. vanvel usmg the Post’s Coset Theorem (see [3]),
one can prove that in the case i = j we have g(z]7%) = h(27~?%). Hence as
a simple consequence of Theorem 2.6 we obtain

Corollary 2.7. The class of algebras (G f,g) with one (1,2)-associative
(or (n — 1,n)-associative) n-ary (n > 2) operation f and one (n — 2)-ary
operation g is the varicty of n-ary groups if and only if the following two
identities

(a)  flai™! g } Ty =,

(b)  fly.x) '-.ffd - ”-))— Y
hold for some fired 1= 1,2,...,n—1.

Corollary 2.8. The varicty of n-ary groups (n > 2) is the class of algebras
(G5 f,g,h) with one associative n-ary operation f and two (n — 2)-ary op-
erations g and i satisfying for some fized i,j € {1,2,...,n—1} the identity

(17) f,'_,](.w:iI r,l(;'l'_ Joml 2 11 % s (7 L 2:;‘_2_) = 45

Proof. In every n-group (G f) there exist (by Theorem 2.6) two (n — 2)-
ary operations ¢ and h satisfying (7) and (8). Hence (17) is satisfied, too.
Conversely, if the identity (17) holds in an n- somigroup (G f), then

_‘) [
putting @ = zy = ... = Byu_s, g({n:r:z) = & and h( )) =z in (17)
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we obtain
o (i—1) _ (n=i=1) (7=1) _ (n—j—=1)
Jo(C &, ® Ly, @ @, X )= g,
Using the same method as in the proof of Theorem 4 from [7] one can
prove that ((; f) is an n-group, which completes the proof.

Analogously as in Theorem 2.6, using the Post’s Coset Theorem, one can
prove that & = & for every & € (7. Thus as a simple consequence we obtain

Corollary 2.9. The varicly of n-ary groups (n > 2) may be considered
as the elass of n-ary scmigroups (G f) with one unary operation © — T
satisfying for some fized i, ) € {2,3,...,n} the identity

(i—-2) . (n—1) (n=3) . (3=2)
x A T

S s yy, k) =y

Observe that from Corollary 2.1 (a) follows that the class of n-ary groups
(n > 2) may be considered as the subvariety of the variety of n-ary quasi-
groups. For n > 3 this class may be considered also as the subvariety of the
class of inversive n-ary semigroups described in [20] and may be defined by
a system of identities containing some identities which are characteristic for
inversive n-semigroups.

Proposition 2.10. The class of all n-ary groups (n > 2) may be considered

as the varicty of algebras (G5 f,g,1t) of the type (n,n —2,3) defined by
(a)  fla?) = bz, 9(257" ), 20),

(b) Ay, z,x)=hlz,x,y)=1y,

(¢) h(h(a3).x3) = bz, h(2q, 5, 22), 05) = bz, M(23)),

(d)  g(27% g(a}77)) = wn-2,

where the operation f is (1,2) or (n— L, n)-associative.

=2

Proof. Any n-group (n > 3) is an inversive n-semigroup in which there
exist two operations g and /i satisfying the above identities (see [20]).
Conversely, if an algebra ((7; f,g,h) satisfies the above conditions, then

(n—2)

for all z,y € (¢ and & = g( = ), we obtain

(n—=2) (n—2)

fly, = .2)=h{y,9( = ),z)= My 2,%) =Y

and
. (n=2) P
flz, = ,9)= Mz, 2,9)=Yy,
which together with the (1,2)-associativity of f implies the (1,3)-associa-
tivity. Indeed,
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~ o o (n=2)
flxo, fla3t), 205" = f(f(2y, flaBt), 22250, = ,3) =

(n—=3) (n—3)

flay, FUET it ). e @)= fly, fl, f(5??), 22050 2), & %)=

{n—=2)

FUF(at, f(a572), 050, ™ &) = flad, f(a5??), 22035").

Now, using (1.2) and (1.3)-associativity we prove the (1,4)-associativity.
Similarly we can prove (1, j)-associativity for j = 5,6, ...,n. Thus (G5 f) is
an n-semigroup. By Theorem 13 from [20] it is an n-group.

In the case of the (n — 1, n)-associativity the proof is analogous.

Moreover, the above proof suggest the following characterization of n-
groups.

Corollary 2.11. The class of all n-ary groups (n > 2) may be considered
as the variety of algcbras (G5 f.g,h) of the type (n,n —2,3) defined by

(a)  fl=]) = hley,g(as") 20)

(b) J’.'.('{,'...'..i )= (e, u) =19,

() fOFGR). Gt = flay, flagt'), aln3").

Proof. Asin the previous proof we can prove that ((; f) is an n-semigroup

with a unary operation » — T = g((":;“) and satisfies the assumption of
Theorem 2.4. Hence it is an n-group.

Conversely. if ((/; f) is an n-group, then by Post’s Coset Theorem (see
(3]) there exists a binary group (G*,-) such that FleY) = 24 225 vveus ity
for all @y, 24.....0, € ;. Hence g(a77%) = (21 -2y ... Tu_»)~! and
Ma,y,z) =a-y~" - = are operations fulfilling (a) and (b), which completes
the proof.

~ Remark that in general the operations g from Proposition 2.10 and Corol-
lary 2.11 are not identical because the second not satisfies (d), in general.

It is worth remaining that the operation h satisfying (b) is so-called
Mal’cev operation. The existence of such operation in the set of all polyno-
mials of some variety of general algebras is equivalent to the commutativity
of congruence on each algebra from this variety. Moreover, the lattice of all
congruences of a fixed algebra from such variety is modular (see for example
[21]). Thus for every fixed n > 2 the class of all n-groups is a Mal’cev
variety and the lattice of all congruences of a fixed n-groups is modular. For
n =2 this fact is known, for n > 2 it was proved in [22].
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Theorem 2.12. The class of algebras (G f, g, ) with one associative -
ary (n > 2) opcration [ and two binary operations g and h is the variety
of all n-ary groups if and only if for some fived 1,7 € {1,2,...,n— 1} the
following two identities hold:

i lu—l—a)
a8y S gt = 0,
n—1-—y
(19) f(h(-'fl!l).‘ g =y,

Proof. 1t is well known that in every n-group (n > 2) the solution z of
A2y tn—=1—3) .
the equation f(o. ¥ .z) =y there exists and depends only on z and

y. Thus z may be treated as the value of a binary operation g¢ satisfying
(18). The ~.11n||ar aregumentation shows that there exists a binary operation
h satisfying (19). (In general g(a,y) # h(x,y), but g(z,z) = h(z,x) for all
x € (L)

Conversely. let ((/: f) be an n-semigroup with two binary operation sat-
isfying (18) and (19). Then in a similar way as in the proof of Theorem 2 in
[4] one can verify that for 2 <7 <n—1 the element

(i—1) (n—1—=t) (i—2) (n—1—1)
= f( J(’n—i p—n w"/(’n—l A ,,_3)..‘!'”_-_,. In-3 1.(]("811—21:1"!1—3),---

(i=2) (n—1-=1) (i—=2) (n=1-1)

gy (e ), o, T, g(21,T0))

is a solution of the equation a2 =,
For i = | this solution has the form
(n—1) (n—=23) (n—3)

z= fo )l xo ~gle,_1-a) Eo o, Glas, @y )y ey Lo gy, o).
j

Similarly, the solution of f(z.a%) = x, has the form

ln=1-4) H— (n—1-j) (j—1)
z= f(h(.!f,-,...l'g,) Ty % <h(ln ‘n—l) Ly P P PR
(n~1-3) U—'] (n=1-7) (
ol may @y Jh(xg,xe), X3, 2 )

for j€{2,....n— I'}. and

(n—=3) (n—:3) (n—2)

z = fh{xntn)y ®g seeali{ T3, 22), o s, o), ®o )
for j=1.

This proves (hy Proposition 1.1) that ((i; f) is an n-group.
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As a simple consequence of Theorem 2.12 we obtain

Corollary 2.13. The class of algebras (G5 f,g,h) with one associative n-
ary (n =z 2) opcration [ and two binary operations g and h is the variety
of all n-ary groups if and only if the following two identities hold:

[(n—1)

(1) SO o gley)) =y,
{re—
(11) f(h(.n"_]]}_ £ ): 1.

Corollary 2.14. An n-scmigroup ((; f) is an n-group (n > 2) if and only
if for every w.y € G and some fived i,5 € {1,2,...,n—1} there exists z € ¢
such that

() (==t

(B  flx. 4 2=,

i . tn=1=31(j)
()  fl=. ¥ --'Jl']:!l-

[n particular. for = j = n — 1 we obtain the following result proved in
[10].

Corollary 2.15. An n-scmigroup ((i; f) is an n-group (n > 2) if and only
if for cvery x.oy € (0 there exists z € ¢ such that
R (=11
(i) fO « .2)=y,
(=1

(] Hz. 2 )=y

3. Subvarieties

[n this part hasing on the results of previous section we describe some
subvarieties of the variety of all n-groups.

In the first place we consider the class of idempotent n-groups. This
class is the variety selected from the variety of n-groups by the identity
fle,..w) = . Since in idempotent n-groups (G f) the operation # — T
is the identity mapping. i.e. @ = ¥ for all = € (7, then by Theorem 2.4
this class has the following description, which for » = 2 trivially yields one-
element groups.

Proposition 3.1. The class of all idempotent n-ary groups (n > 2) is the
variety of algcbras (G5 f) with one (1,2) or (n — 1, n)-associative n-ary
operation. [ such that the equalities

Lin=1) (n—=1)

O )= Ffly 2 )=y
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holds for every w.y € (4.
As a consequence of Theorem 2.6 we obtain

Corollary 3.2. The cluss of algebras (G f,g) with one (1,2)-associative
(or (n— 1, n)-associative ) n-ary (n > 2) operation f and two idempotent
(n — 2)-ary operations g and h is the varicty of idempotent n-ary groups if
and only if for some fired 1) € {1,2,...,n— I} the following two identities
hold

(a) Sl gl ™) ) =y,
() fly.al™ b)) =y

In a similar way as Theorem 2,12 we can prove

Proposition 3.3. The cluss of algebras (G f.g,h) with one associalive
n-ary (n > 2) operation [ and two idempotent binary operations g and
" b is the varicty of all idompotent n-ary groups if and only if for some fized
i,j € {1,2.ccon — L} the following two identities hold:

N (i (=1=1)
(i) fl=x, v . gle.y))=4y,
(n=1=y1 (3}

(i)  f(hla,y). ¥ .r)=y.

Corollary 3.4. The cluss of algebras (G fog.h) with one associative n-ary
(n > 2) operation [ and two idempotent binary operations g and h is the
variety of all idcmpotent n-ary groups if and only if the following identities
hold:

. (n=1}

(i) fO & gley)) =y,

(n—1]

(i)  flhle.y). v ) =y.

The variety of idempotent n-ary groups may be considered also as the vari-
ety of n-groups in which all inverse operations are idempotent. The minimal
system of identities defining such variety is given (for example) by Corollary
2.1 and Corollary 2.2, where all operations f1*), g, h are idempotent.

On the other hand. it is casy to see that if in Corollary 2.3 an operation f
is idempotent, then also ¢ and h are idempotent. The converse is not true.
For example, in an algebra (Zy: f,g.h), where f(z,y,2) = (z+y+z)(mod4)
and g(x,y) = hir,y) = (20 + 3y)(mod4), the conditions (a) and (b) are
satisfied. Moreover. g and h are idempotent, but a 3-group (Zy, f) is not
idempotent.
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We say that au n-gronp (G5 f) is a-commutative if HEotirs - yZomy) 18
invariant under a permutation o € 5,. An n-group which is ¢-commutative
for every a € 5, s called commutative. It is not difficult to prove (see
[7]) that an n-group is commutative iff it is @-commutative for some fixed
a = (1,14 1). Moreover. this fact together with Hosszi Theorem [11] gives

Lemma 3.5. Au n-group (G5 f) is commutative if and only if there ezrists
an element a € (/ such that for all x,y € (¢ and some 2 < i <n holds

L (i=2) (n—i) (i—2) (n—1)

JUa ey "y = (0 e, )

Theorem 3.6. The class of all n-ary commutative groups (n > 2) may be
considered as the variety of algebras with one (1,2)-associative n-ary opera-
tion [ and onc unary operation @ — & salisfying for some fized 2 < i< n
and 3 < j < n the following two identities:

N (=23 (n—1)
(a)y My & @ 4 J=g,

l4=3) o (n=j)

(b) fle,y. v 2, 7 )=9.

Proof. Since every commutative n-group satisfies these conditions we prove

the converse. Let ((45 f) be an (1,2)-associative n-groupoid satisfying (a)
. (i=1) . (n—i) . )

and (b). Since (a)implies f(" @ &, * ') = x, then (b) together with the

(1, 2)-associativity gives

=% . (n=j)
&€

{i—=1) . (n—1) (i=3) . (n—j)
”: f(-],)’]‘ o, iy . ey = -

):f(f( LRSI )5y'- £y, & ):

(1=2) _ (n=i) (1=3) . (n=3) (i=2) . (n—i)

Jla, O, @ ) & 5, » V= f( & .2, & v Y).

Thus by Theorem 2.4 an algebra (G5 f, 7 ) is an n-group and # is the skew
element. Therefore (a) and (h) are valid forall 2<i<n and 3<j<n.
Moreover,

(n=2) (7—3) _ (n..—j} (n—2)

fleyy, a )= f(fly.e. ¥ g, ¥ )y, a )=

(n=j+1) (n=2) (n—2)

f(!}-.f'(o'f'-u:’l-’m-f/- ¥y o) oa )= fly,x, «

for all a,.x.ye ¢/ which by Lemma 3.5 completes the proof.
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As a consequence of the above Theorem and Theorem 2.6 we obtain the
following characterization of commutative n-groups.

Corollary 3.7. The class of algebras (G5 f,g) with one (1,2)-associative
n-ary (n > 2) opcration [ and one (n — 2)-ary operation g is the variety
of commautative n-ary groups if and only if for some fived j € {1,2,...,n—1}
the following two idontitics hold

(@) ool glat=). 00" =y,
(b)  f(.a. _f/...':'-"3_L.{j{.:"{*i..rj“r") =y.

In the theory of n-semicroups the following identities

Flry a8 ) = Flag el Y a)

and

FUGD- Jzt ) SGni)) = FUGRT), S(@5),s 0, F(21)
play a very important role.

The first of them is called seni-conumutativity (an n-group with this
identity is called. by Dorute [1]. semiabelian.) The second of them is a
natural generalization of the medial (entropic) law for groupoids. An n-
semigroup satisfving this identity is called medial or Abelian (see [12]) since
an n-semigroup ((:: f) treated as an algebra (G f, f) of the type (n,n) is
Abelian in the sense of [13] (p. 87).

Each semi-commutative n-semigroup is medial [12], but for every n > 2
there exist medial n-semigroups which are not semi-commutative [5]. An

n-ary group is medial iff it is semi-commmutative [12], or equivalently (see [5]

— . , . N (n—2) | (n=2)
and [14]), iff for some fixed a € (¢ the identity f(x, a ,y)= f(y, a ,z)

is true. Hence the class ol all medial n-groups is the variety defined by the
last identity, the (1,2)-associativity and (G) (or by the (n— 1, n)-associativity
and (9)).

4. Open problems

From the prool of Theorem 3 in [12] follows that any medial n-group
satisfies the identity
(20) ) = [HF. 70 T

Hence an n-group ((: [) is Abelian as an algebra (G5 f,”). Note that
(20) holds also in some non-medial n-groups. It holds for example in all
idempotent n-groups. Therefore the following problems (announced in [5])
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seems to be interesting:
Problem 1. Describe the variety of all n-groups satisfying (20).

Let (¢G5 f. ) be an n-group and let T be the skew element to z. More-

over, let 7" = and let #**!) he the skew element to ') for s> 0. In
the other words: 7V = 7. 73 =F, 73 =7, etc.

Problem 2. Deseribe the elass of n-groups in which there exists s such that
T = 7Y for all elements and all £ > s,

Some results connected with this problem are obtained in [15] and [16].

Problem 3. Describe the class of n-groups in which T # 7 for all
s#t and r € ().

Problem 4. Dcsevibe the varicty V, of n-groups in which %) =z for all
xr e (4.

The class 'V, is the variety of idempotent n-groups. Obviously V,; C V,
for every natural s. Moreover, V., NV, =V, and V, C V,, for any
natural s.7. Any  V, contains the variety of medial n-groups (and in the
consequence - the varierty of commutative n-groups). Since T = x for all
3-groups [1], the variety Vo, contains the variety of all 3-groups.

As it is known (see [18]) in some n-ary algebras there exist so-called split-
ting automorphisms. e, antomorphism 4 satisfying for every 1 = 1,2,..n
the condition «( f(1)) = _f(.'i':f]_lq'tf?(;!:,j),.ﬁ?_i_l). Such automorphisms there
exist also in some n-ary eroups (n > 2). For example, it is easy to see
that ¢,(x) = (o +a)(mod n) is a splitting automorphism of an (n+1)-group
(Z; f) defined by f(a}") = (2,4 ...+ 2,4, +b)(modn). Moreover, in some
n-groups the wnary operation @ — T is a splitting antomorphism. Such
n-groups are callod distributive. The class of distributive n-groups forms a
variety selected [rom the variety of all n-groups by the identity

(21) FLaTh = et e 2l ) s

where ¢ = [.2.....n.

Every distributive n-group satisfies (20) and it is a set-theoretic union of
disjoint and isomorphic subgroups of the form {z, 7, ....7'=D} | where ¢ is
fixed. Hence a distributive n-group is idempotent or has no any idempotents
[17]. Moreover. {o, 0% ¢t ..., '}, where ¢(a) = T is an invariant subgroup
of the group ol all splitting avtomorphisms.
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In every medial distributive n-group ((; f) an operation f is distributive
with respect to itsell, i.e. the identity

F@ L)) = PO g 2 i s o ST 800 2840)) 5

holds for all i = [.2.....0.. Such n-groups, called autodistributive, are de-
seribed in [16] and [3]. The class of autodistributive n-groups (n > 3) is a
proper subvariety of the variety of distributive n-groups. For n = 3 these
varieties are cqual: (or n = 2 are trivial.

Problem 5. Deseribe the ravicty of all n-groups satisfying (20) and (21).

Problem 6. [iseribe the class of all n-groups in which there exists at least
one non-trivial splilling aulomorphisi.
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SEMIGROUPS OF INTEGRAL FUNCTIONS
IN VALUED FIELDS

Ghiocel Groza

ABSTRACT. Let KN be a valued field and TK[[X]] the commutative algebra of
integral functions over /. This paper is devoted to study some semigroups
S of (IK[[X]],0), where [0 g is the composite function of f,g € IK[[X]]. In
the first section we define a topology Invg 3 on K and we extend to integral
functions some notions used for polynomials (see.[5] and [6]). Here we study
some connections between the subsemigroups (5,0) of (I K[[X]],0) and the
topologies Tnvg S on A lu the second section we study when a particular
subset of K is an open sci in the topology defined on K by some semigroup
of integral functions.

1. Semigroups and topologies

Let K be a field admitting a rank 1 nontrivial valuation || (see [2] or [3]),
this is a mapping from A into € R such that for all w,y € K
i) o[>0 and |2 |=0iff 2 = 0;
i) oy == lly I
i) |[z+yl<lz |+ |0l
iv) there exists an element z € A"\ {0} such that | z |# 1.

For z,y € K, define d(.r.yy) =| « — y | . Thus (A, d) is a metric space and
we can, therefore, introduce the customary topological concepts into such a
space in terms of the metric.

A formal power series

oK

(1) f(X)=Y aX* e K[[X]]

k=0
is called an integral function over K if for every x € K the sequence

(2) Su(X)=) wX*
k=0

675 ®
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is a Cauchy sequence. We denote by IK[[X]] the commutative algebra of
integral functions over K. If f.g € I K[[X]] we consider fog € IK[[X]] the

composite function of f and g, where K is a completion of K. We consider
(5,0) a semigroup of integral functions over K and we denote by

InvgS = {D C K; f(D)C D,Yf € S).

Obviously, if K" is a complete field, then (I K[[X]],¢) is a semigroup and for

every subsemigroup S C ITN[[X}], N € Invg S
Proposition 1. Lellbe a valued field and let (5,0) be a semigroup of in-
tegral functions over K. If K € InvgS, then Invg S defines a topology on
K such that K is a locally quasi-compact and locally connected topological
space. Furthermore for coery o € K there exists D, € Invg S such that D,
is the smallest open set from Invg S which contains a.

Proof. Suppose that {1);}.7 € [is a family of sets from Invg§. It is easily
to see that

U D; € Inoy S and ﬂ D; € Imuy 5.
ief el

Thus Invy S is a topology on K. If @ € K we consider

D, = |J ()} Ha}.

fes

Then D, € Invg S and 1), is the smallest open set from Invy .S which con-
tains a. Since D, is a quasi-compact and connected subspace of K (see [4])
it follows that (N, InogS) is a locally quasi-compact and locally connected
topological space. O

Remark 1. If
(“’Ila 0)1 (S21 0)

are two semigroups of integral functions over K, then Invy .S is not neces-
sarily different from /nwvg S,. For example we consider

K =€, 5 =1eC[[X]] and 5 = € C'[X].

Then
Inoe Sy = Invg Ss

is the coarsest topology on € ('. However for cyclic semigroups we have:
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Proposition 2. Let K be o valued ficld of characteristic zero and let (S5, 0),
(52,0) be two cyclic semigroups of integral functions over K. If S # 83,
then

Ino S # InogS,.

Proof. Let f; be a generator of 55,0 = 1, 2. Since the set of zeros from K of an
integral function over A" is countable (see [1], p. 144 for a non-archimedean
valuation), we consider the countable set M of zeros of the integral functions

X)) - fHX)jkee NFE+ K #£0.

There exists then ¢ € A"\ A/ and we denote

7, = U {ff"{u}}U{a}, i=1,2

keeN

Hence it follows that

[),], # D:andInvg Sy # Invg§y. O

We now raise the question as to when the topological space (K, InvgS)
is separable. Since i(a) € [),, [or every h € S, from Proposition 1 it follows
immediately:

Proposition 3. Let I be a valucd ficld and let (5,0) be a semigroup of
integral functions over K. I[ K € Invgs, the following conditions are
equivalent:

a) (K, InvgS) is a Hausdorff space.
b) S ={X}
c) InvyS is the discrcic topology on K.

We recall that the assertion that for every two distinct points at least one
of them has a neighbourhood that does not contain the other is called axiom
To.

Proposition 4. Let be I\ o valued field and let (S.0) be a semigroup of
integral functions over K. [f W € Invg S, then (K. InvgS) is a Tp- (Kol-
mogoroff ) space if and only if for every a € K, either a is a fized point of S,
that is h(a) = a, for all h € 5, or, if there cxists hy € 5 such that hy(a) # a,

then hohy(a) # a, for all hy € 5.

Proof. If (K, InvgS)is a Ty-space, then we consider @ € K such that there
exists hy € § for which /iy(«) # a. Suppose there exists hy € 5, such that
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hohi(a) = a. By Proposition 1, either hy(a) € D,, or a ¢ Dy, q), which is
absurd since hy(a) € D, and @ = hyhy(a) € Dy, (q)-

Conversly, let a,a’" € N.a # «'. If a, for example, is a fixed point of 5,
then @' ¢ D, = {a}. otherwise suppose ¢’ € D, and @ € D, . Hence there
exist hq,hy € § such that a' = hy(a) and @ = hy(a’). Since hy(a) # a it
follows that hahy(a) # a. which is absurd since a = hy(a’) = hohy(a). This
shows that (K, InvgS) is a Kolmogoroff space. O

Corollary. Let K be a valued field, f(X) € IK[[X]] and let S = (f) a cyclic
semigroup of integral functions over K. If K € Invg S, then (K, InvyS) is
a Kolmogoroff space if and only if for all @« € K either a is a fized point of
fIX) or for all k € € N. I >2, there exists an integral functions gp(X) over
K such that gg(a) # 0 and [*(X) = gx(X) + X.

The proof follows directly from Proposition 4.

Example 1. Suppose that Ky = € R, Ky = € (" and || is the usual archi-
medean valuation. Let

flXy=e* + X,

If S = (f), then by Corollary it follows that (€ R, InvegS) is a Kolmogoroff
space and (€ C', fnve5) is not a Kolmogoroff space.

Remark 2. If (I, Invy 5) is a Kolmogoroff space, we define a partial ordering
< on K such that a < a' if and only if @ belongs to the closure of {a'} in
Invg S (see [4], Ch. 1). Then the open intervals of (K, <) form a basis
for the topology Invy S. The assertion follows by Proposition 1 and by [4],
Ch. 1.

2. Invariant sets and semigroups

In this section we study the connection between particular subsets of K
and particular semigroups ol integral functions. We shall use the terminology
and notation introduced in Section 1. We shall need the following result from

[7].
Theorem 1. Let K be a complete valued field, {@n }u>1 an infinite sequence
of distinet elements in K such that

(3) lim |, |=o00

=)

and {y, }n>1 an arbitrary infinite sequence of elements in K. Then thepe
exists a function f(X)€ [ N[[X]] such that

(4) FCej) = yj, V5 2 1.
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Theorem 2. Let K be a complete valued field and let M = {2, },>1 be @
countable subset of K which satisfics (3). Then there ezists an infinite cyclic
semigroup S of integral functions over K such that M € InvgS.

The proof follows immediately from Theorem 1.

We shall now study some particular cases when K is not necessarily a
complete field. We begin with a lemma on a determinant which is a gener-
alization of the Vandermonde determinant.

Lemma 1. Let K be a ficld of characteristic zero, myn,k € € N andm > k.
We consider the polynonial D, (X0, X14..., Xn) € K[Xo, X1,...,X4]
defined by the determinant which has the order (k4 1)(n + 1), its j-th row,
j=1,....,n+ 1 has the form

- thi i1 Sre—=T14H(h+1)(n+1)
T LA v T Y3 )

and the following rows arc their derivatives up to order k inclusive. Then
there exists '€ K \ {0} such that

F 7 i = -k - ” - 2
5)  DgplHo, Koo s X =C [P ] =2 &H
’ i=0 0<i<j<n

Proof. By induction on /. nsing Laplace’s theorem, it is easily verified that
the (total) degree of D, , , is

4 D) (k41
(6) deg Dy nn( Xoo X1, o0 5o X )i= M—L)(Qera +n+ kn)

We shall denote D, x by ), for simplicity. Let (X3 — Xo)? be the highest
power of Xy — Xo which divides D in K[Xg,X1,...,Xy]. Then

dD, . . .

(7) D (Xs, K12 Xavens  Ku) =0, §=0,1,2,..0 g — 1
X

and

) a1 . ~

(8) m(:\h.-\],)&g,...,Xn)

is not identically equal to zero. Since the derivative of a determinant A of
order N is the sum of N determinants Ay in which all rows (except the s-th)
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are the same as in A and the s-th row in A, is the derivative of s-th Fow in
A, it follows that

IX. (Xoy X1,...,X,)
is a sum of such determinants in which all rows (excepts the i-th TOWS,
t=1,n422n+3,... .kn+k+ 1) are the same as in D and i-th rows are
the i-th rows in D or a derivative of the i-th rows in D.

On the other hand. by using snitable derivative of D, it follows that D is
not identically equal to zero. To obtain (7) it is enough to prove that

)

9 :
9) axX;

{‘Xvﬂ.‘x’l LR 4’(71)

is a sum of such determinants in which there exists a row which is equal to
the first row of D or is equal to a derivative up to order k inclusive of the
first row of D. If gy is the smallest value of j such (9) has not this property,
it follows that

(10) ¢>q > (k+ 1)

Since D is a homogencous polynomial and it remains unchanged, to within
sign, under any transposition of two unknows, it follows that the degree of
the product of all the factors (X; — X:)7, § > 1, where (X; — X;)7 is the
highest power of X; — X; which divides D is equal to

nin + l)(

s 12'
3 k+1)

(11) €2 g

Similarly, if we denote by X! the highest power of X; which divides D, it
follows that the degree of the product of all the factors

{12) X[ i=0,1,....n, isequal to (n+1)p>(n+ 1)(k+ 1)m
Since

, 5 k _

M(Af—f— LY+ (n+ 1)(h+1ym = w(27r1.+13.+kn) =deg D,

2

by (11) and (12) it follows that ¢ = (k + 1)* and p = m(k + 1), which gives
the assertion. 0O '
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Theorem 3. Let K be a ficld of characteristic zero and || @ rank | nontrivial
valuation of K. We denote by K a completion of K for its topology defined
by ||. We consider Iy a countable subset of K\ {0} and K, a dense subset
of K. If {Ly}neen is a fomily of dense subsets of K, then there exists a
function

(13) fix)= \: a X" € IK[[X))\ K[[X])

n=0
such that
a) an € Ly, for allne € N;
b) f¥)(z) € Ky for all v € Ky and k € € N.
Proof. Let {x;}icen be the clements of Ky and we denote by

"

(14) ""n(‘k') =5 Z(Lk:\'k

k=0
We consider the sequences n, = 1-24+2-34+...+n(n+1)-1,

— Uy

By == u’n

Because K5 is a dense subset of A and the polynomials are continuous
functions we can find yyo. 710 € Ko such that the system

(15) { bo + b1 = Yoo

bo + by = 10
has the solutions by, b, € I with the following property
(16) | b |< vs,i=0,1.
With the notations of Lemma | we have
D2z a(xg, 2y, 22) # 0.

Let F, be the finite set of the cofactors of the elements in D33 .1(xo,T1,22)-
Since Lg, Ly are dense subsets in I, there exist a; € L;, 1= 0,1, such that

| @i |< v2,

(17) | S1(2j) — g0 [< v2

€

Dy

| i
(S1lz5) = wo)| £ 3.3 Yee F3,j=0,1.

.
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Because K’ is a dense subset of K there exist the elements
Y2.0, Y01, Y1.1, Y21 € Iy such that

¢ 1
—(51(x2) — ¥-
) [)2.2‘l< 1(2) !/3‘(}) < 2.31;31
(18)
i -
’Dz,z,] (g — Uil < 5 '3713, Yee Iy, j=0,1,2.

Applying Cramer’s rule it follows that the system

ap + ayxg + n’J-_:.'lf?, + b;;:r_:ﬁ + by :r:g + b,r,.?:'g + b(;.‘l!g + b7:1:g = Yo,
ap + aqxy + f)3:17$ + b;;.‘::‘? + 5;4.'1:‘]1 + bs,:z:';’ + bﬁ;zr';’ + b;ur:;‘r =10
J ag + ayy + byl + byad + baxy + bsay + beal + bral = yy 0
ay + 2byxy + Cib;g;ng + 404 ;1:3 - 5b5:1r3 + 6bﬁ.’l?8 + 7b7:1:8 = Yo.1
ay + 2byuay + .'H)_-m:% + 40, .’L‘? + -’)b5:1:? B (‘J'b.;;t:';’ 4 7’(')7:!:(15 =Y.
ay + 20y + I%b:;:c% + 404:::3 + F)bswé + Gbgxh + Theas = 1

(19)

in the unknowns b;, has solutions with the following property
(20) | by | w3, d=u3 4+ 1, :0s ;00
We now consider

Dgza(xo, 21, 22,23) #0

and we denote by F; the set of the cofactors of the elements in Dg 3. Since

Liy © = up +1,... s, are dense subsets in K, by (19) and (20) it follows
that there exist a; € L;, i = uy + 1,... , uy, such that

(Jai|< vy, i=u+1,...,u9,
Sup(25) = yio |< v3,
| Sea(25) — win |< w3,
— ’ : (Su i) —yio) <Lv
Dy, ™ "l 3.4 0
|| By (i) = w)| < grgon, Ve € B j=0,1,2

Now by induction on r. we consider

Dy 41,041,0(%0, @150« Trg1) # 0
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and we denote by F,,; the set of the cofactors of its elements.
We suppose that we have found y; . € K2, 7 =0,1,... i k= 0515, v 5=

land a; € L;, 1 =0,1,... .1y, such that

(22) |(L!‘ |< Vpgrs L= 1 + Liwe « 5 Uas VE = 15 cas 7
(23) | .5'&’:)(:1:3-} — ik |[< Vg1, Vi=0,... 1 k=0, ,7 = 1
‘ ¢ i k) ) 1

(24) — (55, (3) = #ik)| < U2,

Dy, 41,041, (r+1)(r+2)
Vf'E F,-+|.j:ﬂ...,?',k:[),....:r'—l.
Since Ky is a dense subset in IV there exist the elements

Yrg 1,00 Yrdd1s o s Yrgtrs Yoo -+ 2 Yrg1,r € Ko such that the condition (24)
hold true forall 5 =0.1,... ,7+ land k=0,1,...,7. Then the system

25)  SW(w;)+ (b rr X4 by XL = v
0<j<r4+1,0<k<y

in the unknowns b;, which [or # = | coincides with the system (19), has the

solutions b; with the following property

(26) | B |< gt =tp+ 1,000 3 Upq

Since L;,i = u, + 1,... .1, 41 are dense subsets in I, by (25) and (26) it
follows that there exist «; € L; such that the conditions (22) - (24) are
satisfied for r + 1. This proves (22) - (24) for every 7.
We consider now n € € V. Then there exists r€ N such that
e < 1 < Upg

and by (22) it follows thal

1 L |
i ”H lw (& N_|_J < ’L«, -;"‘;"FJ/H < .
u?‘_{_z
Hence 1
lim |, |*=0
=X
and
2
fIX)=) a, X" € IR[[X]).
n=>0

We remark that we can find a, # 0. To prove b) we consider k,j € € N
and we chose r > k and » > j. Then by (23) it follows that

IM () = gk € Ko

and this establishes the theorem, [
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Corollary. Let K be a countable field of characteristic zero and || @ rank
I nontrivial valuation of K. We denote by

(27) Sk ={f(X) e IK[[X]], f¥(x) € K, forallz € K andk € € N}.
Then Sk is a semigroup which contains some integral functions which are
not polynomials.

The assertion follows from Theorem 3 by taking K, = L, = K for all
nee N and Ky = K\ {0}.
Let
Soo =195 3A(X) € IK[[X])\ K[X], fe S}k

where (51, 0) is a subsemigroup of (5x,0). In the last part of this paper we
shall prove that we can find an infinite subset D of € (2 such that, for all
51 € Sw, the topology InvegS; does not contain the set 0. More precise
we have the following assertion:

Theorem 4. Supposc K = € () and || is the usual absolute value function.
Let D = {1/n},een- and let f(X) € Seq such that

(28) f(D)ycD

then f(X) is a polynomial which is of the form

o O (e "

(29) HX)==-X°.reeN* seeN
2

Proof. If

b

(30) FX)= a; X, a; = %i a;,B;€€Z,B;#0
i=0 s

we may assume that 3; > 0 and 3; | #;41 for all j € € N. We denote

l |
('il) f(—]:—-knEEN*.
n s,

Since f(X)is a continuous (unction it follows that

(32) lim f(l):ﬂg: lim -—1—

n—ca g n—oo k,,
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We may assume that f(X) ¢ A and because the zeros of an integral function
which does not vanish identically are isolated, it follows that

|
lim — = 0= ap.

T—x T

Let a; be the first coeflicient which is not equal to zero. Since f(X)is an
integral function we have

im | a,, |'17: 0
%

==

and then there exists my € € N,y > i such that for all m > myg

i

(33) | fla)— Z rl,.’,‘..'f"i | < ™1, Yo € [0, 1].

i=1

By (31) and (33) it follows that, for all m > mg and n € € N7,

1 v, J_ (\"m, l l
34 il SO S WL, | F ST
(34) Ky ( 3 ni i B, 1™ )| = natl
Hence
(35) : ln =

1= 0% ,l'.:” - E

and for all n € € N™ and m > g

(36) |ﬂmnm - !.:,!(n-,Jn,,;f,—l‘n”"" + ... 4wy, )| < 'dm—‘n._'
Suppose that there exists a fixed

(37) m > mg. m > 2isuchthatalpha,, # 0.

Then by (35) and (36) there exists r,, € € Z such that for alme e N*

(38) Bpn — {\“”[('i‘,‘f,“ﬁf‘_i?J‘Wii +...ta,)—-1rn=0,

where 7, = O(n'~'). We consider the polynomials

Pl (X ) = ﬂ:-n .x-m’
Po(X) = aiffm BT X ™ 4 o+
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Then there exist Ri(X),(1(X) € € Q[X] such that
(39) (X)) = Qu(X)P(X) + Ri(X),

where degRi(X) < m — i and degQ(X) = i. By (38) and (39) it follows
that ;

Ry (1) — 7

4 by = iln = 1)
(40) J1(n) + Py ()
Since
lim M =0
=00 f’.ﬂn)
there exists ng € € N~ such that
R] (”) — T 1
> ny,
(41) ‘ Po(r) } I 1 Y > nyg

where d is the least common multiple of the denominators of the coefficients
of 1(X). Because k, € € N, by (40), it follows that there exists n EeN*
such that

hn = Qq(n), VY > ny.

Hence

) | B I B n=t
(42) 'f(H) S Qi(n) T Qa(nTy
where

o o
Q20X) =X Ql(?)-
Since D has a limit point, by (42). it follows that

)ﬁ_{
Q2(X)

JX) =

Since also f(X')is an integral function we must have Q2(X)eeQandi = 0.
Then there exists m € € N such that o, # 0 and for all my > m, gy, =
0. Thus f(X)is a polynomial and by (34)

e /3
' B, ™ — A'-,L(rlli;{-iﬂ.‘r!jj 1m—i + ...+ a,) |< _?:n.



g(—!ll'l'l,.’,l'(')lll‘l.\-‘ tl[ ;l\il"llf’l'-'ll rllllCt:Ol\S :Il V?I.l"l"(l I"lei(lF ggv
Hence there exists ny € € N* such that for all n > ns
(43) Bratt™ = k(i B 8710 L4 ).

We denote (n,a,,) = d,, and v = d,v,. Then limwv, = oo and by (43)

v | k. Hence, if m > 4. then

. A"H
lim — = o0,

n—ox

which is absurd. Then m = @ and

vy

) X

J(X)=
Hence by (28) it follows (29). O
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TPUAIIATH JIET METOIA PE30J/JIIOIINN

[Terap XoroMcku

PE3IOME. CTaThn mocgeliena oTMedeHnio 30—TU NeTHA MeToOda peso-
JouuK, obocHoBaHHoro i crarhe PobuHcodHa 1965, roga. B cym-
MapHOM OUepKe [MPUBE/CHbl KAIOUeEble Pe3yabTaThl (OIpaBU/IO Pe3oiio
MK, Teopema ob pesosiomre, IPoUeaypa oIpoBep-KeHUA) ¢ yKazaHueM
MHTEHCUBHOTO PASBUTUN PECTPUKTUBHRX (OPM, TEXHUK M CTPATerui |
a TakyKe M pacUIMpeHUU = Toro MeToJa, BKIKYAA JOTUUECKY o cCUCTeMy
ssplka [pogor. OTaenanino npuieeHdbl HALDA YCWUIJIMA 110 PA3sBUTHIO
MeTOJa M ero MpUIoKeHid . RpoMe onMcaHWA pesybTaTOB B PaMKax
pasBuTuA cucteMmbl "GRAPIHY, npusenennn ceegenns o6 cucreme 7 A-
OT ¢ BapUABMILHBIMU ¢ TPpaTeTyHIMHU TToucka” u o6 cucteme "DEDUC?
IS ABTOMATHYCCKOTO TTOPOAJAEHUH KOMOMHATOPHLIX PACHOOKeHWA .
[Mpusegen ob63op onyOAMKORAHHBIX CTATHEW U APYTI'MX HAIIUX TPYAOB
CBA3AHHBIX € MeTOA0M Deio/iounn. B 3akMioueHMH oTMeUeHo YTo CHUC-
TeMBl C Pe30IOIMel MOryT ORasaTed MOJe3HbIM B KadecTBe "MHTeI-
JIUTeHTHOTO MoTopa” /Ui pelleHrHd 3aau B PpasiiMUHbIX OpobaeMHBIX
cpenax, ocobeHHO Tex KOTopbie NOJAA0TCH Hocde/oBaTeJbHOCTA Heclo-
AKHBIX Aeayknui. Takun ofpasoM BO3ZMOMKHO HNOCTPOUTE M pasJvUHble
Hempoeay PHbIe H3bIKK [1POIPAMMMPOBAHMA U NIpealofeTh M3BeCTHbIe
noMexu npucyiue B [Iponore.

1. Brenenue

B smBape 1995. rosa cosepmuiock 30 get co nHa onyOJIMKOBaHUS
cratbu Pobuncona [10]. B neil obocnoBaimia Hosas Joruvdeckas CHC-
TeMa 3HAUMTeJbHas He TOILEO ULl TeOPeTHUeC KUX pacyKIAeHUd B paM-
KaX MaTeMaTHKW, HO U U OPAKTUYeCKIX DPUIOKeHMA B ApyruX obia-
cTax. B revenun 30—TH neT MeTOJ Pe3OJIONMU A00HICA He TOJILKO K
MaTeMaTHKaM, UHAKeHepan. ¢TYIeHTaM, HO Jake W K APYTUM NOJb30Ba-
TelsM, PeBacXo/IH0 HocpeacTroM sa3bika [Iponor.
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[HosToMy B HacTOAMEH cTaThe MLl He BYyeM 3aHUMATCA XPOHOJOTH-
YeCKHM JOKIaloM pesylibTaTos M MCTOPUYecKux gaHabix. Mbl orpa-
HAYMMCSA CYMMAapHLIM OUePKOM KIIOUEeBRIX Pe3ylbTaTOB ¢ YKa3aHAeM
HAIIUX YCUJIUK MO PA3BATHIO HTOI'0 METO/A WM ero OPUIOKeHUH .

2. CyMMapHBI/ OUepK pa3sBUTUSA
MEeTOA Pe30JIOLUU U ero NPHJIoKeHuH

TeopeTudyeckuM OKPY#HeHNEM B KOTOPOM Pa3BUIICA METO Pe30JI0NAN
SIBJISICTCS AaBTOMATUUYECKOe JOKA3aTelbCTBO TeoPeM Ha sA3bIKe MUCUHrcie-
HUAS OpelrKaToB nepporo nopsamka. [lo oTROWenno kK coctoaamio »Toi
npobaeMaTUER, KOTOPOe OITUCAHHO B yHIaMeHTa bA0R cTaThe Bag Xao
(4] co 1960. roaa u crarbe ["1] co 1965. roaa, cymecTBeHHbI nporpecce
ocymectsien B crarbe Pobuncona [10] myTeM cosganus gorudeckoi
CUCTeMbl TEPBOro DOPSAIKA He NOTPedyIomeld JOrMyecKuX akcuoM A 06o-
CHOBaAHHOW Ha TOJALKO OJHOM [PaBUJIe BLIBOAA (PUHITULINE Pesosionun ).
Jlornyeckas KOPpeKTHOCTL M NOJHOTaA 9TOW cucTeMbl 0BOCHOBaHHBI Ha
CYUEeCTBYIOMMAX pesylibTaTax DphpaHa.

RuouesbiMu pesynbrataMu ABAAIOTCA @ OPABUIO Pe30JIONNH, Teo-
peMa 06 pesoaonMe U Oponedypa onposepxenus . Ux moxso cop-
MYJIUPOBATHL CJAEIYIOMAM 06a3zom.

[IpaBuno pezodionuu:

U3 mmswiorkros Dy v Dy pe uMerommx obMX nepeMeHHBIX, (2To
MOMKHO BCErZla HOJIyUUTh NePerMeHOBAHUEM MepeMeHHbIX ), IPHU yCIOBUM
CYyMecTBOBaHUsA Hanbosee obuero yEMQpUKaTopa 0 )i HeOyCTBIX MHO-
#ects auteps Ly € Dy wm Ly C Dy, oppudem [1©O un L;0 ssasrorcs
AOTIOJHATENLHBIMA N0 OTHOMEHUIO K OTPUOAHUIO , BHIBOJAM [IU3LIOHKT
— pe30JibBeHTAa:

(DI\L1)O U (Dy\L2)O .

Cnemuanbuo: u3 amspiorkTos: —AV (4 , BV ('y BbBOZATCA pe-
3oabBeHTa: (1O V (L0 |, opuvem AO conagaer ¢ BO .

TakuM 0Opa3oM NPaBUIO PE3OTIOUA 0BLeMAAET NPOLece MOACTa-
HOBKM [epeMeHHBIX ¢ OpodeccoM JOTHYeCKOT0 BbIBOLAa B MCUUCIEHUU
BbicKasblBaHUU. Hanbonee obmuilt yaudukaTop HaXxomuTes npu noMomm
alropuTMa YEUPUKAILAM.

Teopema o6 pezononue:

[lycrs R(S) obospavaer obbeaMueare MHOEeCTBa S ¢ MHOMKECTBOM
BCEX E30/bBEHT BLIBOAMMBIX U3 IM3BIOHKTOB MHOKecTBa S, Ro(S) = S n
Ry(S) = R(R,.1(5)), n > 0. Toraa cnpaBeanysa cneyomasn TeopeMa.:

Roneunoe MHOMeCTBO AU3LIOHKTOB § HeBLINOJHUMO TOTAA W TOJLKO
Toraa, Koraa R, (5) conepkur ana Hekotoporo n > 0 nycToil AM3bIOHKT.
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OnpoBepyKeHneM UCXOHOIO MHOKeCTBA JW3LIOHKTOB S Ha3bIBaeTCs
HOCAeMOBATEeNBHOCTL AUsbionKToB [y, Ba, ..., By, Takas 4To 118 KadaA0ro
ynesa B; , 1 <1<k, copaBennuso:

B; € 5, nubo B; sBAsieTcs pe3obBeHTOR HOKOTOPBIX NpeauecTByo-
IUX YIEHOB, U By nycToil IM3LIoHKT.

N3 teopembl 06 pezojionue cieiyer:

Koneunoe MHOMeCTBO JM3LIOHKTOB S HEBBIIOJHMMO TOMIA W TOIbKO
TOrZla, KOrda CyMecTBYeT ONpoBepKeHrne MHOKeCTBa 9.

HoatoMy Teopema o6 Pe3onode yeTAHOBJSNST NOJHOTY 2TOH JOrU-
yecko# cueTeMmbl. (! [edhio NOBLICHIeRUs 5GHeKTUBHOCTH Opolenypbl
onpoBepskerus B [10] npeiomeninl neppble cTpaTerdd noucKa (search
principles).

Jlorpueckas mpocTOTA U OTKPLITBIE OePCHeKTURBl TPUBJIEKIA DOMb-
moe YUejJo decdenosatesncii no GyngjaMeHTalbibLIM 1 adlJAKaTUBHBIM
BonpocaM. BbeipaGorTaHHL! pasiuunble PeCTPUKTUBHBIE GOPMBI Pe30JIIo-
OUM U occobble TeXHMKW /U5 HOBLICIIEHUS aQPeKTUBHOCTH TpOnedyp
OOMCKa, TaKhWe Kak: CeMalTUUecKads pPe3oiolus , THIeppe3oiionnd ,
ynopanodesaa pesojionms , Juneiinad pezonwomus , OL-pesomonus c
MapKMPOBAHHBIMU JIUTepamMu 1 Apyrue. Kpome cMHTaKCMYIeCKUX CTpa-
Teruit noucka (B WMpuEY TUHO B 1IyOUHY ) PA3BUThl pa3JMIHbIe ABPUC-
traeckre cTpaterun. (' eIL0 DOBLICHEHU UX 2 (G PeKTUBHOCTH N0OaB-
JeHbIHBI 0CcOobbIe NPaBU/ia KOTOPLIe YUUTLIBAIOT 0CcOOeHHOCTH OTAeb-
HBIX IPOBIEMHBIX 00JacTell (KOMY TATUBHOCTD , aCONMATABHOCTD W T.I1.)

KpoMe pecTpUKTUBHBIX (OpM MCc/leIoBaHAEB U PaclIMpeHds MeTola
pedoIomUM Ha caydail Korda WeXo/Hoe MHOMKeCTBO He ABJIAETCA KOHe-
YHBIM ¥ COAEPAKUT CXHMbI AKCUOM, TaKAe KaK NOACTAHOBOYHOCTb paBeH-
cTBa JubO MaTeMaTWueckod wuayknuu. MeTod pesomonMM AONOJTHEH
MPaBUJIOM NAPAMOJLY AN LISl TCOPUAR ¢ PaBeHCTBOM W NPABMAIIOM MH-
AyKOMKA A Teopuil ¢ MaTeMaTHUecKOW WHAYKOMed . D TH OpaBuia
MO3BONIAIOT 3AUMUHUPOBATH CXHMbl AKCHOM M3 UCXOIHOTO MHOMECTBa
IM3BIOEKTOB. CBeeHbA 00 5TOM HTalle Pa3BUTUA MOKHO Haiitu B [18],
rIe OpUBeleH CHUCOK npesbicmalonmid 300 Gubiuorpa¢uaeckux em-
HUIL.

B paMEax sBpUCTHYECKONO IPOIPAMMHAPOBaHUs OCYIIecTBJIeHHbl pa-
3JUYHEBIE IPOrPAMMHBIE CHCTEMbl KOTOpbIE OPUEHTUPOBAHHBI Ha pa3Jjiv-
YHBIe TEOPeTHUeCKUe UK IPAKTUUYeCcKAe Tpuioxenus . M3 cheppl ymc-
TOM MaTeMaTUKH, T.e. [Joka3aTe/bCTBa TeopeM B Pa3JIMYHBIX MaTeMaTH-
YecKUX TeOpUsAX, OTKPLITH NPUIOAKEHAA 3TOrO MeTola B APYTHX obna-
CThbAX, BHE MaTeMaTUKU.
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Okazaoch UTO METOM Pe3oIoNUM NPUMEHUM K UIMPOKOMY CIeKTpYy
NpoHIeM KOTOPLIe BLIPA3IUMBI Ha s13blKe UCUUCTOHUA TPeIAKATOB, TaKue
KaK: BOOPOCHO-OTBeTHBIE CUCTEMbl, CHTYAHWOHHOe YIOpPaBleHUe U OpPU-
HATUE pelleHUuN , MOPOKRICHMe KOMOMHATOPHBIX PACOONOKeHdH , aBTo-
MaTHUEeCKOe MeHepblpoBanue NPorpaMM U oupeleleHde UX KOPPeKTHOC-
TH, JOTHYECKOe [NPOrpaMMUpOBAHAe W HEOPONeay pPHble A3blkM, Oasbl
JAHHLIX M T..  OnHA U3 MOAM(PUEADMA Pe30JIIUOHHOR Tponemsyphl
ONPOBEeP/ReHUsA BCTPOCHHEA B TeMelb s3blKa nporpaMmMmuposarus [Iponor.
DTUM, a TakK&Ke U JAPYIUMY DOJMe3HbIMA TPAKTUYeCKHIMUA [PUI0KeHUAMY,
YMEHBIIEHHO Pa3z0vuaperre KoTOPoe [POU30LI0 B MOCTeJCTBHM CBePX-
MEepHOTO HadaJbHOIO ONTUMW3Ma ¢ Havaja 7T0-TBIX, ¢ OQHON CTOPOHDLI
U CKPOMHOTO 5(@erTa NOCTPOPHHLIX IPOrPAMMHBIX CHCTEM, ¢ APYTol
CTOPOHBI.

[onyuennple TeopeTUUecKue Pe3ynbTaThl U NPaKTUUeCKUe dKCIepu-
MEHTBI COZAAMN BOIMOKHOCTL ¢ DONLIIe pealiniMa ONeHUBATL MOJIOKe-
HAE U POJIL METOLA PE3OJIIONUA B YCUIAAX aBTOMATU3ANNNA JOTHUeCcKOTro
YMO3aKJYe s U pacyKAeHus , 0ccobDedHo B obIacThbaX MaTeMaTHue-
CKOR nesrelibHOCTH. (EKUIAaHHAN ABTOHOMHOCTL W MOHNIHOCTh NPOrpaM-
MHBIX CHCTEM € pesofionMel yeTyoaeT MecTo HOBOM PoJIM KOHCYJIbLTa-
HTa-aCUCTeHTa YeJJOBeKY WCeCIe4oBaTeN o B TPonecce PelleHnsa CJIO0KHEbLIX
npobaeM. Ilpu 2TOM Pe30JOIMOHHBIA TOAX0/ BKAAALIBACTCA B APYTHe
HePe30JJIIIUOHAbIe, UHTePaKTHUBHbIe CUCTEMBI BbIBO LA,

3. OB30p HAIIMX pe3yJLTATOB

0630p HALIMX yCUINK HauleM ¢ odepkoM ob neppoil Gojee KOMIIeK-
CHOW CHCTeMe JIOKa3aTeNbeTBa TeopeM KOTOpas NOCTPOeHHa B paMKax
akcmepTHOH cucremnl GRAPH. [30] ma DnekTporexamueckoMm pakyntere
B benrpane 1980-1985. roma.

Monyss THEOR B coctabe cucremnl GRAPH conepsut sspuctuye-
CKMH JlOKa3aTesb TeopeM ¢ eCTecTBeHHBIM BBIBOAOM [29] U AoKaszaTeb
¢ pesomonueid n unaykureir [14]. [lepsbiii M3 UX BKIOYaeT MHTepaK-
TUBHBIN perxmuM paboTbl, a OPYTOR SIBIAETCA BHOJNHE caMOCTOATeILHON
ABTOMATUYECKOW NpoNenypoit NoMcKa JloKa3aTelLCeTBa De3 BMelaTelb-
cTBa vesopeka. ConpsiKenre »TUX NOKasaTeJell OcyllecTBIeHHO TaKuM
00OpasoM YTO mesh Majod KOMINICKCHOCTH OTCHUIACTCH U3 UHTePaKTUB-
HOW 9acTH Ha [NOKA3aTeldbCTBO B 4acTh ¢ pesonwonueit . CHucerema c
pesomonueid u uraykumeir oberout Ha OL-pesosnonme ¢ maprkupoas-
HBIMH JIMTepaMW U Ha OPHUI'UH aJIBHBIX pesyJibTaTax B CBA3U })RCUIH})EHHH
MeTOola Pe3oJIonrMd Ha TEOPHUU HepBOro HOPLIKa ¢ MaTeMaTUYecKol WH-
aykmmeit , kotopble omdcanan 8 [11], [12], [13].

" 1986. rona va Texauueckom GpakyanTeTe B 3peHsHUEe NPONOIKEH-
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HO COBePIIEeHCTBOBaHMe »T0H cuerembl. PaspaboraHHa M BCTpoeHHa B
CUCTEMY HOBasd »BPUCTHUCCKWS TeXAWKA aBTOMATUUeCKOTO YyHopsIoue-
HUS IA3BIOHKTOB B UCXO/HOM MHOMKECTBe, IPH HOMOUIU BHIYACJTeHUA UX
Becos, [7], [8].

Cucrema ¢ pesonwouneid u viykudeid B pamrax cucrembl GRAPH
oboCcHOBaHHA Ha cTpaTervu noucka B mmpury. [loewicmenne addex-
TUBHOCTH BO3MOMKHO DU [TOMOILM MCTOAb30BAHUSA Pa3IMIHbIX CTpaTe-
ruii . Ha a71oil nouse nocrpoenna cuctema AT kotopas onmcadHa B
(2], [24], [26]. Ilepsbie sxcnepuMenThl Ha 2TOR cUcTeMe OMMCaHHBI B
[3]. Cucrema AT ¢ Bapua®UALHLIMKA CTPATETUsMHM DOMCKa SABJIAETCS
qacThio 6ombmer cuetemibl AJIT roTopas Ha GakydbTeTe B 3peHAHUHE
pazpaboramna ¢ 1990. roga. B camom gene, cucreMa nokasaTelLeTBa
JOonoJHeHHa ?)H(‘['IP])'I‘H()%lf).\'tl&l‘l()l_ll.l’l‘;! CHCTEMOR |, KoTopada pa3BUBAajach B
COTPYIHAYECTBE ¢ MOCTUTYTOM KUOePHeTHKA M3 KHMeBa B 9IyKaTHUBHOM
Hanpasienuu, [19], [20]. O6e qacTy ABNAIOTCA HE3aBUCUMBIMUA U UMEIOT
CAMOCTOATENBHOE AMAUCHYC B 1Ay THO-UCCAeJOBATeIbCKOM, 0DyIalomeM
W MPaKTHUYeCcKOM cMbicie.

OmHo 3 opaktuyeckus npuiokenunid cucetemibl AJIT ocymecTsnerro
B 0BJACTY HDOPOKLCHAA KOMOMNATOPHLIX pacnojoxeruit , [21], [22].
Paspaboranna u nocrpoenaa na '(C komosoTepe cuctema DEDUC nna
ABTOMATUYECKOTO HOPOKICHMS DacTopIKeHns yPOKOB, KOTOpas AcOo-
ap3yer cucremy AJIT B kauccerse geaykTMBHOrO MexanusMa [9], [25],
[26]. HMoctouncto cuctenvel DEDUC cocTONT B BO3MOXKHOCTH MeHATb
MCXOIHBIE YCIOBUA He3 HeOMXOAUMMOCTH OepeMed B Mpolely pHOA dacTh
CUCTeMBbl.

Hansrelmme uceneoBaHU . KOTOPbIe ceffdac NPoOBOLATCA, OPHUeH-
TUPOBAHHBI Ha Pa3BUTHE HelPONe/y PHBIX H3bIKOB NPOrPaMMHAPOBaHUA ,
opu geM ucnodbsyercs AT cuerema.

O630p HAAX aKTUBHOCTEH NOTOJIHAM CJIe LY IOIUMA CTaThAMHA, KOTO-
pBle He YOOMSIHY Thl BbICII¢. 4 KOTOPLI® CBA3AHABI ¢ METOLOM pPe3oJilolnHA.
HekoTopele getanu ofi cucTerme ¢ pesollioluell 1 MEIyKOWel obcyKiaen-
BBl B Tpyaax [15], [6]. B nepsom u3 MX onmMcaHHA TeXHWKa BblAeJeHUA
TOJILKO pelIeBaHTHLIX MAroB Ol0puBePAKeHHs U3 MHOMKEeCTBa BCeX 1aroB
KOTOpbI& ocyuecTB/IeHHBl B ITpolecee JOUCRa JoKaszaTeJlbCTHA. B apy-
roM OHNMCAHHBI HKCHEPUMCTTLI NOKa3bIBAIOLIIMEe BO3IMOKHOCTL NOJYYHATH
paszidyHbie JOKa3aTeIbCTRa OJIHOR M TOR e TeopeMbl.

B [17] npenctasien KopoTKUil 0030p Pa3BUTAA aBTOMATUIECKOTO 10~
Ka3aTellbCTBa TeopeM, npuseeiinl csefedba o6 cucteme GRAPH, npu-
MepH JOKa3aTelbeTh U BOIMOAHOCTH JalbHeRIero coBeplencTBOBanns
CHCTEMBI € Pe3ojiolMell . DTo noJACTPeKHylo AalibHeRNe uccilenosa-



694 [1. XoToMcKH

HUA, onyOauKoBaHHble B cTaThe [1]. OcylecTBAeHHO »NMMUENPOBaHAE
MIeHTUYHBIX Pe30JILBEHT KOTOPLIC MOTYT ObITh DOPOAKACHHL Ha COCe -
HAX YPOBHAX HOMCKA, & TAKAC BHCCeHHBI HEKOTOPbIE NepeMeHbl B CBA3M
¢ TpUMeHeHMeM NpPABHIa CAMMOTPHN.

B [16] omucanHa BO3MOMKHOCTL UCIONL3OBAHASA CHCTEMBI ¢ PE30JTIOLH-
el JUIA pelleHua 3a/1at CTaBNINIUPDOBAHANA U TPAHCHOPMUPOBAHUA TeX-
HOJIOTUYEeCKUX OPOHeccoB.

B nepuone 1983 1988, ro/a npoBeseHHO HECKOJIbKO 0D30PHBIX JIOK-
NA/I0B 1 CEMUHAPOB MOCBAMLEHHBLIX METOLY Pe30JIOMUNA, KOTOPbIe IPUIo-
MOTJIM YBEJIUYeHWIO MUCTa UCCcaeoBaTee |

Teoperudeckue 311aHUA U NPAKTUUCCKUA OOBIT OTPA3UIACh U Ha 0by-
ueHne cTynedToB. Merton GpyrjiaMeHETaATBHONR pe3oJIloHUK Bolles] B COC-
TaB Kypea " MaTeMa ruueckas JorMKa 1 IPUHIUINL IPOrPAMMUPOBAHUS
" (Kak OIMH M3 MeTOI0B WecheloBalusi TasTonorui ) va 1. kypce oby-
duenua npodeccopons unpopmaruku, [23]. ldonosaurensnoe zpanme o6
MeTO/Ie Pe30JII0IUN HTU CTYJeHThl NOJYYaloT Ha 3. Kypce B paMKax
upeamera " CueTeMil HeKyceTsennoro uatestekta”, [28]. Ha ynpakne-
HAAX uenodib3yoTes cuetembl AT u DEDUC va PC koMmoboTepax (pa-
Hbie ucnonabzoBadia cucteMa GRAPH ma VAX kommbsioTepe).

Ha acoupasTrom yposne "Mndpopmaruka B obpazosamumn” BeIpa6-
OTAHHO HECKOJIBKO COMHHAPHLIX PafoT HOCBAILCHHBIX TPATOKEHUIAM Me-
TOoa Pe3oJronuu. % =

Hakonen, npuBeicibl 1 HEKOTOPDLI® YUCIOBBIE YKa3aTeU HAUIMX yCH-

JHA N0 paclApeHuio MeTOSa PesoJIoNun:

- OnmyOJIMKOBaHUBI® TPY/h: 24

- 0Bb30pHbIe JoKIagbl: 16

- Moporpapuu v yuebEWURM: 24+ 2 .

- KaHJMAATCKWe Te3suchbl (MarneTpaTtypa): 3

- JmcepTtammy (AoKTopaThl): 1+ 1 (B pabote).
[TouTu Bee M3 NPUBCACHHLIX MCCICIOBAHUI ObIIW OCYLIeC TBICHHB B pa-
MKaX OPOeKTOB, JMOo OTACHbIbIX TeM (4 opoekTa, 6 TeM) ¢ poHaAHCOBOM
NOUIePARKOR HayuHLX yuapesxaeuuit Pecnybaukn Cepbumu niam Boesomu-
HEI.

4. 3ariro4dyeHue

Jloruyeckn nosnas cucreMa, 0HOCHOBAHHAN Ha UPUHIUINE Pe30Jio-
U, UHTEHCUBHO DasBUBANACH B DAMKaX TEOPHHM U IPAKTHUKU aBTOMaTH-
YECKOTO JOKAa3aTesLeTBa Teoper U Opuobpesa GopMy MeToma pesotio-
oUW~ OJHOTO M3 BUIMOAKHBIX METOLOB aBTOMATHUECKOI0 BOCOPOU3BE-
IeHus JJOTHYeCKOrO BhIBOLA Ha KOMILIOTepe.
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HenocTaTku aToro nolxofa, Takue Kak:

- HeOpBIPOHOC NpecTapienne B GopMe AW3LIOHKTOB,

- AKCIOHEHIMaJILHLIY B3DBIB NPOCTPaAHCTRA NOUCKA,

- HEBO3MOMKHOCTE CORePIIMThL J0Ka3aTelbCTBa CJIOKHBIX MaTeMa-
TAYECKUX TeopeM © pealibHLIX pecypcax,

B olpelelleHOR Mepe 0becKypaknin UCHoJb30BaTh 9TOT MeTOL B pa-
3AHBIX npobiaeMuLix obnactax. Ocnabnenne HTUX HENOCTATKOB OC-
YIIeCTBJICHHO HalibHeAIMMu MOAN(PUEAIUAMA UCXOOHOTO MeTOla. Taxk
nocTpoeRHa AeAyKTuBHasm cuctema [Iponor-sspika KOTopas UCIONb3YyeT
MMIUTMKATUBHY IO GOPMY MPEcTaBJIeHASA U COAePKAT Pa3BATble TeXHUKA
CyKeHWs TPOCTPaHCTBA NOMCKA, HO U HeKoTophle HenocTaTku. [loMumo
M3BECTHBIX HeAOCTATKOH, MOMHO YVTBeP:HKAaATh YTO MMEHHO MporpaMMu-
posanue B [Iponore saecsio DoiboR BRIAL B paclliperne OPUIIOKEeHEN]
MeToda Pe3oJIoINK K PasimuHbM 0DITacTAM.

Hallm aBAU3bl M OMBLIT UCTONLIOBAHUA CUCTEM € pe3oJiiolueid No3Bo-
JAKT cAedaTh clelYiolre BLIBOIbLL:

- B Tex cayuasx, Korji BHyTpeHee [pejcTaBlieHHe CKPBITO OT
HOJBIOBATE/H . HeT HEOOXOAMMOCTH YCTPaHATh GOpMy IU3bHHK-
TOB.

- CymecTByeT 3HAMUTENLHOC MUCIO 3afad, VA pelleHds KOTO-
peix "raybokue” pacykIeHUs MOKHO NPUBECTH K HOCAeNoBa-
TeALHOCTH NPOCTHIX JeAYKIMHA , ¢ KoTopbiMK cucTema ALT co-
papigeTcs cosceM HGpeKTUBHO U IPAKTUYeCKA Y A0BOJTeTBOPUMO.

- Cuecremy AJIT ¢ pezononveld MOKHEO UCIONB30BaTh B KadecTBe
P METeTUre THOrO MOTOPa B pa3UdHbIX NpobieMHBIX cperax
¢ HelbI0 PeulcHUs OOpeaellcHHbIX 3a1a4.

- Ucnoabsys cuctemy AJIT ¢ pesomoumeil Kak neqyKTUBHLIA Ga-
3UC, BO3MOMHO HOCTPOMTL Pa3jIMvdHble HeoponerypHble A3bIKH
OPOrpPaMMMpOBARVI U NDCEOAOIeTh HEKOTopble HenoctaTku IIpo-
Jora.
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EINE O NPOBJIEME BRJIOYEHWA PETYJIAPHBIX U
JMHEMHLIX §I3LIKOB B I'PYNIOBLIE S3LIKU

Epacumup flakos ﬁup,nxcen

1. Bpnenenne
[ycts (7 - rpynna ¢ MuoecTBoM 06pasyommx
F— NY ot — Tan s o=l =il a1
X =008 = Ji, B e B BT <85 5wy ks

onpeaeAIIMMA cooTHoNcnAMKM @, equauneid € M ¢ paspemmmoid npobie-
Moii paBeHcTBa cnop. Toria muomkectso caos M = {w = :nfl’ .’r:f: e -:I:f“|w =
€} C £ masuBaeTca TpYTIOBLIM H3LIKOM, 3agalomuM rpymiy (G E* - 1o
ceobomabil Mmonoua naa L. ['pynna (7 3amaeTca KOHTEKCTHO-CBODOJHBIM A3LI-
KOM, €CJIM COOTBETCTBYIOMMI MpyMMoBoi Aspik M ABIAETCA KOHTEKCTHO-CBO-
Gomueim. [pymma (7 B wron cilyvae Ha3LIBAETCs KOHTEKCTHO-cBO60qHOM rpyT-
moii. Psx cpoifeTs rpyninonsLix askikos paceMmotpens B [1, 2, 3, 4].

B [12] mokasano, 9410 npofieMa BKIIOUEHUA M SKBUBAJECHTHOCTM KOHeu-
HO-aBTOMATHBLIX 0TOGpaske i aJropUTMUUECKA paspelliuMa. DTOT pesylib-
TAT CTUMYJIWMPYET MOMNbITEW HAlTH MNOJTMHOMWHAJLHBIA aJropuTM IpOBepAIO-
MM 0AHOZHAMHOCTH KOHCUHO-aBTOMATHBEIX oTo6paxennid. Takue anropuTMEl
waiizensl B [10, 12, 13]. Panswe 1o Berxona stux pesyabtaton A. B. AHVICUMOB
[3], pemaer Gonee obmyio waauy. On nokasplBaeT, 4To npobiieMa onpeaese-
HMA OQHOZHAYHOCTH KOHCUO-ABTOMATHEIX 0TOOpaskeHMH ABJIAIOTCA YaCTHBIM
cilydaeM MpoGieMbl BKIIOUCHMA KOHTEKCTHO-CBOOOIHBIX A3BIKOB B IPYTNOBLIE
aspikn. B pafore [3] A B Anvcumos npeanaraet ajaropuTM AN TpoBep-
KM BEJTIOUEHM MPOU3BOJILIIOI KOHTEKCTHO-CBOBOAHOTO A3BbIKa L B rpymmosoit
A3BIK M Tpyrisl ¢ paspeninvoil npobaemoid papencTsa cios. B npensaraemom
ANLOPUTME HAXOAUTCA Koncunoe Muoskectso Wy tako e, uwro W) € M toraa

M T oabKo Tora, koraa [ C M. Bonee KoHKpeTHO JoKa3blBaeTcA Caelylomad
TeopeMa.
Teopema 1. fTyems I' = (N, Y. 1) wowmexcmuo-cacbodnas zpammamura, no-

poxcdaowa vowmexcmio-caoioduni szux L, a M - epynnosoit asux zpynnv G
¢ paspemusoi npobacmoi paacnemea caoa. Myems §y - Muoxcecmeao scex cros

699



700 K. H. F]op,umea

us L dawnott menvue wan pasnoi p,afly = {‘H.‘tmrm_l] |u'um| < gy uwv #
g, A5 € N : 8§ = uSn.8 = w}, 2de p u ¢ cyms xoucmanms us uzsecmuoi
zuwvy - meopesn (em. nanp. [5]). Tozda L € M mozda u moasko mozda, xo20a

I/I/yl = !1| U !l_a g M

Bee neofxommele cefeHMA M 0603HAYCHMA M3 TEOPMM KOHTEKCTHO-CBO-
6OAHBIX ASBIKOB MOXHO HaiiTn Hanpumep B [5] wom [7]. 7

Hene nactosmmei paborul - Moanduimpoats aaroput™m A. B. Auucumosa
TaK, UTOBBI 0H paboran 3a N0JIMHOMUANLHOE BPeMA. DTo Mbl ClellaeM [JIA pe-
CYJAPHBIX A3LIKOB M JULH IMHERHBIX A3LIKOB, UCIIOJb3YA criemMduuecKkre cBoic-
TBA HTUX A3BLIKOB. DTa pafioTa NpoAoKeHHe M JoTIoTHeHHe paboTl [8]. 3aecw
MBI OLMIIEM HOBBIC KOHEUHBIC MHOMKECTBA, ¢ MOMOLbIO KOTOPHIX MPOBEPAETCA
Briaouenune [ C M,

Auarpamvoid nepexonos Gyaem Haspisath vetsepky H = (V, R, S,1), rae
(V. R) - koueuserii opuentupovannuii rpad ¢ Muomectsom sepmmn V. n muo-
wecTBoM pebep RS - noayrpynna, ajJleMeHTH KOTopol Dy neM Ha3bplBaTh MeT-
Kamu, a [ - (ynkuma us [ B Y, nasoiBaeMas ¢pyHKUMA pasMmeTok. Jlpyrumm
CIOBAMH, Kam/0e pefipo rpada noMedeHo HEKOTOPBIM 5J1EMEHTOM MOJIY TP YL
5. Ecau T - uyTh B marpamme nepexogos H | to MeTka nyTy () - 10 npo-
M3BEICHUE MOTOK pebep, coCTABIAIONMX 9TOT IyTh, MPUYEM MeTKH BepyTcs
B OOpIKe npoxoxacana pebep. Ecam P - muoxectso myteit 8 H | o I(P)
6yner maowectso {w|3In € P:l(x) = w}

2. Bruaroderde peryJusIpHEIX A3BIKOB B TPYHOIOBBIE A3BIKU

B reopeme | yTBep:kaaetTca, 4o LI KOHTeKeTHO-cBo60 1HOrO A3pKa [, MoX-
HO KOHCTPYKTMBHLIM Iy TeM HailTH KoHeuHoe MEOkectBo W) = , U Qy, Takoe,
uto L prmovaercs u manintii rpyunosoit ssmik M rpynne (7 ¢ paspemumoii
npobJeMoil paBeHCTBA ClloB, TOLAA4 U TollbKo Torma, Korga W, srmouaer-
ca B M. B stom naparpade pemmm Gosee KOHKPEeTHYIO 3ajavy IJid pery-
JAAPHBIX A3BIKOB, KOTOPBIC ABIGIOTCA BAXKHBIM YaCTHBIM CJy4YaeM KOHTEKCTHO-
CBOBOMHBIX A5LIKOB W HAWICM elle ABa MHOMecTBa, obJIaqalolmMX BTUM CBOMHC-
TBOM. ©)TW MO ~KecTBa HyiyT paznmyatbea Wi u meskay coboi.

[lycrs L - perynspasii wspik, Torga cymecTByeT KoHeUHBIA aBToMAaT - pac-
NO3HABATCIL (A€ TEPMUHMOBAHHLIA MM He LeTe PMUHUPOBAHHLIIA )

A=(Q.%,8,q.,7)

I

takoit, uro L = T(A), rae @ = {q1,q2, ..., gn }- MHONKeCTBO cocToAHMIAY =
{@1, @0, @y, |- BXOAHOH an(anuUT; 8- GYHKIMA MePeX010B; ;- HAYATBLHOE COC-
TOAHME; Z- MIIOKECTBO 3aKMIOUUTeNbHbIX coctosnmii; T(A)- MHOKecTBO ciioB
pacnoshasaembix A, [locrpoum smarpammy nepexonos Hy = (Q, R, X*,14),
LAe MHOMKECTBO BepuidH () coBHaflaeT ¢ MHOMECTBOM cOCTOAHMIA apTomaTta A:
MHOecTBO pebep f ofpasosalo caeayommm obpazom: p € R, rme p =
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(q“q_-, )., TOrAn M TOJALEO ToOlin, KorJs cyinecTRyeT 1 = }_\. ] {F} TAKOE, UTO

g; € 6(qi,x) v npu sTom [,(p) = x. € - ato nycroe cnopo. Torma cioso
w € L = T(A) rorma u Tonnbko Toria, Korfga cylectsyeT HyTh T B Hy e
HavaJoM (1, KOHIOM - 90eMelT U3 7 n ¢ merko nxap26 nmytu w. Ilycts G
- rpymma ¢ MHOMEeCTBOM 00 DisylolmX X = {.‘1.‘,,:1:9,...,:z:m,.‘z:]_l,m;l,...,:17;1}

M nycTe M - COOTHETCTHYIOIMIA Tpynnosoi AsbiK. PaceMoTpum aAnarpammy
nepexomos Hy = (Q. K. (/.[;) ¢ Tem e MHOMKeCTBOM BEPUIMH 1 pebep Kak M
B H 4, TOMbKO MeTKM pefic) cUMTaeM Kak 2J1eMeHTHI IDYIIbl G

Mycts Fiy = (29,U, -, . {¢}) - 3aMKHYTO€ [OJIYKOJBIO € 2JIeMEHTAMU BCEX
MoAMHOMecTs Tpynnul (¢, wiilouas W nyctoe MHoxectso. Onepauuu B Fg
GYyAYT COOTBETCTBEHHO ODLC/MHEHUE W POU3BEACHUE MHOMKECTB, e IMHUYHBIA
BIEMEHT - 9T0 MHONKeCTBO |}, cofepKallee TolbKo eqMuuuy € rpymmst (7, a
HYJIEBOU 9JIEMEHT - Iy CTOE MHOKECTBO ¢b. 3aMKHYTBIE OJYKOJIBLA U UX NPUJIO-
FKEHUA XOPOLIo U3yUeHbl 1 [11]. 9710 nonaTHe AePUHUPOBAHHO U UCTIOJIL3YETCA
u B [6,9].

B 3aMKHYTOM MoJykoasic [ onpenensem DUHApPHYIO OTlepALMIO [z,y] coe-
ayromuM obpaszom: ecmm a.h e (7, To [{a},{0}] = {aba='} w ana z,y,2 € Fg
ppmosseno (¢ Uy, 2] = [r. 2] U[y,2] n [2,yU 2] = [2,y] U [2,z]. Ouesnano,
5T0 KOPPEKTHO BBeJlcHHAH OlepallMa B CUIy AUMCTpUBY TUBHOTO 3aKOHA B Fg.

Mycte P - MuON)ecTBO eex nyTeid B Hg ¢ Ha4aioM ¢; M KOHIOM - 2JI€MEHT
us 7. Torxa ogesuano L C M torga u Toawko Toraa, koraa lg(P) = {e}.

Mycts P - Maoxectno seex nyTeid u3 P oHe colepxanmx WMKI0B U MyCTh
Q3 = l(F).

D) leMeHTAPHBIM IMKI0M 11 sosem 1wk B fl g 6e3 KpaTHBIX BePIIMH, T.€. MK
ouna (G, i, ) (Gias Gi) =+ (0 G ) G @,)s A€ G5, # g3y AA S # t u mycts
(' - MHO¥KecTBO saemenTa v mkinos 8 Hg. Toraa, ecom m - 0y Th U3 P, 1o,
OUeBMAHO, T NpUHAIIEkWT ['| UM T MOXHO NpeJcTaBUT, B BUIe T = M7,
rie T He coJepRUT WMkion Ty € (7, a T3 HAUMHAET ¢ KOHLa ) U KoH4YaeT B
snemente u3 Z. Ho toraa w nymu mmhms, k = 0,1,2,... Toxke npUHALNEKAT

P.

PaccmoTpum MHoAeC O )

na e =uve ', roeuw =T

4 . COCTOANEE U3 BCEX HIeMEHTOB I'pyIIibl (7 Bu-
) A HEKOTOPOTO LY THU T € HG ¢ Ha4YaJioM ¢ 4
Ty) ANA HeKoToporo nyTH Ty € (7, mepexoIAmmx
gepes KoHUa T M cymectsyer myTh T3 € Hg © nayaliom KOHeNl Ty M KOH-

|
He MMeIoLMX [MKaos, 1 = [

oM - HeKoTo bl anieMent us Z. $lg n {1y ABNAIOTCH 2IEMEHTAMU 3aMKHYTOTO
nonykombia F;. Monaracy Wy = Q3 U (.

O6asyem muokectsa nyieii v He, (-‘-&! rae i, J,k = 1,2,..,0; 0 = |Q|
clenyiommM obpazon:

(' = {plp - pebpo u3 ¢ B gj }

G =i U OOl k=190
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Hetpyano sametuts, uro ('Y cocTomT TosbKo M3 myTei JJIMHOU MeHBIe
py 5 :

uam pabHoit k4 1 ¢ Havasiom ¢;, KoHIOM {; ¥ BCe Y3JIbl, KOTOPBLIX KpOMe BEITh
MOMKET HAUAIA MM KOHILA TPUHALIERAT MHOKECTBY {1, G2, vy i ).

Pacemorpum carenyionme sieMenTsr 3AMKHYTOTO NOJyKobla i

Q5 = {la(C'}})}, rae j rakoe, uro g; € Z;

Q6 = {[la( T la(CP)]}, rae j rakoe, uto cymectsyer nyTs ¢ Hauazom 4
M KOHLOM ¢ A0t Hekotoporo ¢, € Z, Te. Oy # ¢.

Jlemma 1. B ('-',!‘:1-. k=2.3,....n, soamoxcno cyuecmaoaanue nymu codep mca-
.

ULE20 YUNAA.

Hoxasameascmeao. Ouennno pnsa seex s,¢ = 1,2, ..., 1 BuIIOIHEHO e e
-+ € ("7, Kpome s1oro ans seex 7, 8,1 = 1,2,...,n nokasxkem unnykumeil no
ro,ouro B (T Bosmomio cymecrsosanme nytu (s @) (q1,42) - (¢ryq:). B
camom aede wut = 1 yroepsaene ovesuano. yers qunr < ry g C7, Boa-
MOXHO cymectsoBaive 0yti (go, q1)(q1,¢2) -+ (¢r, q) m pacemorpum CTH C
CT 1 Clyr - Vi3 MuayrimonHoro npenooxenus uMeem, uTo C} .41 BO3-
MOEH MY Th (s G1)(91592) « (v, Gry1 ), 1 Tak kak 0, , C Cly w8 O,
BO3MOKHO CyIecTBOBABUe peb pa (Guyr, ) , To B (,"_:‘,il BO3MOKHO CYIIECTBO-
sarve ny i (o g1 )( Gy ¢2) - (Grs @1 (G141

Caenosatensno, u ('F7" posmoxen ayts (G, q1)(q1,¢2) - (qe—1,gx), a B
('fj_l BosMoskeH myTh (. ¢ )1, q2) “+(qe-1,9;). Toraa s (:3, C C,-kk"lcfj_l
Boamoren yTh (G 1)(q142) -+ (qe-1, @) (e 41 ) (@1, G2) -+ (Gi—1, ¢j) B KOTO-
POM conepRuTea WAk (). ¢ )( G2y qa) - = (-1, @i )(qr, q1 ). JTemma nokaszana.
O

Canencreme 1. Jag onpedeacnunnz auue Muoxcecma 03,04, u Qs uz aae-
Menwmos epynnu (7 umeent g C Q5 w Qg C Qg npu mom o obueM cayvae

Q_’; # S-Z-, (] 124 ?é S-lp;.

Tawke merpymno samerntn, uto B 06WeM caydae MHOKecTBA Q) u Qs (ec-
M MIXHNE 2JIEMEATBL PAcCMaTpUBAeM KaK »JeMeHTl rpynnet (7) u3 Teopemsl
I, BRenennnie A, B, Auncumonbiv Pa3iiM4alo TeA MHOMKECTBAMU BBedeHHBIMU
HaMK B 2ToM naparpade. B cuay caegyoman teopema:

Teopema 2. Jlas aacdennnz swue oboznavenui, caedywouue yeaoaus sxeusa-

AEHTNNDL:

(i) & € M;

() Wy =92, U8, = {e};
(1) Wy = Q3080 = {c}:
(iv) Wy = Q.U Q, = {r}.
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Hoxazameavcmao. Tak kak peryinApHBIe A3BIKA ABJIAIOTCA YacTHBIMM cliyda-
AMM KOHTEKCTHO-CBOGONLIX J14LIKOB, To #KBUBadeHTHocTs yeaosuid (1) w (i)
yeranosaena A. B. Ammcuniosum B [3]. Kpome storo Wy € Wy (Cnencteue
1), Te. 3 Wy = {¢} cacayer Wy = {€}, nam nokazanu, uro mu3 (uB) cie-
ayer (iii). Yrobel moKasarn, reopeMy HaM JA0CTATOMHO A0Ka3aTh, uro u3 (iii)
caenyer (1) n mu3 (i) caeayer (iv).

(iti)—(i). Nyers Wy = QU Qy = {¢} n nycts w € L. Toraa cymectsyer
myte T B H 4 ¢ Hauadon ¢ v kouttom siement us Z, Takoid, uto l4(T) = w.
Ecau T ne coneput warios, 1o {(7) € lg(Py) = Q3 = {€} u cnenosarensno
w e M.

Myctn ™ copepssnt unka. loraa T cogesAT anementapieiid waka. dpy-
MMM CJIOBAMWU T MOMHO pe/lCTaBUT, B BUIe T = T Ty, Lae

la(m (T} lal(m)) ™t € Qy = {e}.

Orciona caeayer, uro l;(7m ) (7)) = lg(m) wim Bee pabno lg(mmams) =
lg(mymy). Tak kak Ty € (', 10 anuna Ty Goaswe 1. CienoBaTenbHo, cymecT-
ByeT nyTh B Hg ¢ MeHbIICH JUIMHOR, YeM IVMHA T, MeTKa KOTOPOTo paBHa W
B rpymme (7. DToT npollece CoKPAlleHUA MOKHO TPOLOIIKATE KOHeYHOe YMCo
pas, TAK Kak JUIMHA W - Kollcdiasd. B KoHIe »Toro npouecca MoayyMM My Thb
Ges WAKIOB ¢ MeTkoit pamioii w B rpyme (¢, Ho lg(Py) = Q3 = {e}. Caeno-
BaTelbHO, W = € B rpynne (¢ e, L C M.

(i)—(iv). Oyers L C M. 1e. lg(P) = {€} n 1ak xak 5 C lg(P), 1o
Qs = {e}.

Mycts 2 € . Toraa = moHHO NpeAcTaBUT, B BUAE T = wou~!

, Tle u €
lg(("{‘j), v € l(CF}) ans uckoroporo j, TAKOro, YTO CYILECTBYET NyTh Ty C Ha-
YAJIOM (fj , KOHLOM H1eMEHT W3 7 v nyers l(m3) = w. Kpome aToro oueBUIHO
U -»TO METKA HEKOTOPOI'O 11V TW T} ¢ HAYaJloM (; U KOHILOM ¢, a ¥ - 9TO METKa
HEKOTOPOTO MUK, Hpoxoiiero depes ¢ . CnegoBaTelbHO My TH T = MMMy
u " = mms npuaasaesar I’ u rak kak L € M, 1o lg(n') = lg(x") =emn

1

cJefoBaTeALHO WHW = Wi, T.c. WU~ = €. (‘negoBaTeNbHO 2 = € WM TaK Kak

z npouaBoasHoe, 1o g = {¢|. Teopema gokazana. 0O

Caeaytolwmii aaropurn Hasupyeren Ha skpusanentoctd (i) u (iv) ns Te-
opemir 2. Ian yaoGeTsa ¢ € Z GydeT o3HauaTh ¢; € Z, a k _ aro lg(CF).
p - ' i ij ij

3necw k 8 !]fj UHIEKC U He osiadaeT cTeleHb.

Aaropurm 1. Hpoacpacin snawuenue L © M dag peeyaspuozo azvixa L u 2pyn-
noaozo azwxa M epyunv (7 ¢ puspemusolt npobaesmoi pagencmeaa caos.

Bxom ¢;; = la(C5). 1) = L2,..m

Brixom: Jlormueckasn nepevendad 1, noayuaioman ctroumocts Meruna,
ecm L € M u cronmocts JIo®&L, B npoTUBHOM cliydae. AJTOpUTM OCTaHaB-
AMBaeT cpasy nocge gojydeivs ctoumoct 1 :=Jloxs.
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Haugano
1. T :=HeTuna;
2. Ona | <k <n Henaro

3. Han 1 < i, j < n Henars

4. s g gk el

5. Koren Heaarn

6. KRonen Henartn

7. Ona j € 7 Heaarn

8. Ecam g7} £¢on 9\ #{e} To

9. Hauano T :=Jloxs ; Ocranos Konen ;
10. Ronen Henatn

11. Oaa | < 5 < n Jdeaars

12, Maa (€ Z deaatn

13. Ecam gf, # o m gf, # ¢ m 95 # ¢ To

14. Ecau (9, 9i;] # {e} To

15. Hauano T :=Jloxs ; Ocraros Koren
16. Konren Henars

17. Kowen Henars

Koren.

Teopema 3. .'-‘..JJ.H(.'J‘TJTHJLM [ avnoangemed we boaee ()(7&3) ONEPAYUU CAONCEHUA,
npouzacdenud u [.‘r., y] JNCMCUMOA UZ FAMENYMo20 noaykoasya Fip u npoeepaem
axanvenue L C M, 2de L - PECYAAPNBLT AZDIK, PACROINABACMBLT KONEYNBLM ABTNO-
mamom A, M - epynnoaoit samn cpynnu (7 ¢ paspewumod npobaesmol pasencmeaa
CAOE, TL - HUCAO COCINOINNT aamoMama,

Hoxazameascmao. (CoTfmacno TeopeMbl 3 M yUMTBIBAA AKCUMOMBI 3aMKHYTOTO
nojykodsbla [y, To 3 pagax 9 u 1H ajdropurma 1 noruveckas nepementan T
OpUHAMAET CTouMocTh JIOWRL Torga M Todkko Torda, korga L ne Brmovaetcs
B M. B nporusnom cayuac T npuammaer croumocts Mermra. Caegopatens-
HO, anroput™ | KopekTho NpoBepAeT BLIMOJMHASTCA JIW BKIIOYeHUe L g M.

Jlerko nposepuTh. Yro crpoka 4 BeIOJHAeTCA He Godee n® pas, npudem
KAIbIM pas BLIMOJHAIOTCH JIBC OMepalMA B 3aMKHY TOM noaykodbue Fi;. Crpo-
kn 13 1 14 poinonsaercs ne Gonee n? pas kakaaa. (legoBaTensHo, aJIrOpPUTM
| Bomomuter we Honce O(n') onepanum caokeHMA, YMHOKeHUA U [:r, y] B 3am-
KHY TOM nodykonwie F;. Teopema nokazana. 0O

Caencreue 2. Ecaw onepagun caoxcenue, ymuoxncenuve u [x,y]  zamxuymon
noayxoave Fop Moo annorwnms za noaugoMuaasnoe apesms, mo aazopumat |
ABAACICH NOAUHOMUTABNBIAL, '
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v
3. Diroorzosromenc asmimoiIinei mOLERon 5 K[ ) SRR oD Eae o s

B stom naparpade Gy/em npogoiiEaTh ucnoab3oBaTh uaeio A, B. Axu-
CUMOBa JUTA HAXOMICHMI KOICUHBIX MHOMKECTB, ¢ NOMOIBI0O KOTOPBIX MOMKHO
oHpededUTh BRIOYACTCA JIM JaHHBIE KOHTEKCTHO-CcBOBOJHBIA A3BIK B IpyMNIoO-
BOM H3BIK CPYIINBI ¢ paspeiivyvoi npobieMoid paBeHCTBa CJIOB. ©TO clenaem
IOJIA TUHEeHHBIX A3BIKOB. [Wak M3BecTHO, KJIace JUHeHHBIX A3bIKOB BKIKOYaeTcs
B KJIACC KOHTCKCTHO-CBONOJIILIX A3BIKOB. AHainusmpya dokaszaTenbcTBo A. B.
Auvcumosal3]. MoskHO 3aK10UMTH, 9TO 3a/a4a 0 NPOBEPKe BKIIOYCHUA JTUHEH-
HOTO A3 BIKA B FPYHIOBOA 51%LIK TPYILI ¢ pa3pemMoid npobiemoii paBeHcT-
Ba CJIOB pellaeT M 3aJadvy o [DoBepKe 0JHO3HAYHOCTH KOHeYHO-aBTOMAaTHOIO
oTobpaKeHUA.

B sTtom maparpade 0Oyien paccMaTpuBaTh JIMHeliHylo TpamMatuky [T =
(N,X,I) rae N = {A;, A...... A, } - MHOKeCTBO HeTepMUHATOB,

N = {.‘1:1 o B ---airm}

- MHOMeCTBO Tepmunanony. || - MuoskecTso mpasun, a L 6yner osHayaTb JU-
neituenii sawik L = LT, A ). Konrekerno-ceo6omnan rpammatukal'= (N, Z,1I)
Ha3bIBACTCA JIMHEHHOM, ey see npasuna B I umeror sua A; — aA;ff wim
A; — a, rae A, B € N - nerepMuianu, «, /3 - TepMMHAJIHBIE CIIOBA M3 CBO-
GomHoro MoHouaa . flsnie [ naspiBaeTcs JMHEMHBIM, €CJIM CYIIECTBY €T JIM-
HeliHaa rpamMMa TuKa I w1 nerepmuHadbeii cumsosn A; € N takme, uro L =
L(T, A;).

Mycte S - MoHOWA ¢ camnnicid 1. Pacemorpum MuoxkectBo g = 5 X 5 =
{(z,y)|z,y € §}. B Uy nuoimm onepauma "o” cieaynommm obpasoM: eciu
(z,y), (2,t) € Ug ro (w.y) o (=z,1) = (xz,ty). Herpyano Buaers, uro Us c
< counmued (1,1). Ecam 8 - rpynna, o u Ug 6yner
rpynna, npu aTom ecau ¢ = (@, y) € /s, To o6paTHEIM siaeMenTOM @ bGyner
a=' = (2= y™"). O6pasven orobpaskenun fi, fr, fa n3 Us B 5 cnenyomum

ATOKM oHepalreid MOHOKIL

obpazom:

fillz,y)==
frle,y)=y
Jalz,y) = =y

Ouemmnso falz,g) = fil. 1)fles)
Pacemorpum amarpanmay tepexomos Hp = (V, R, Ug.,lr) ¢ MHOXecTBOM
gepmua V = N U{A, ] tue Ayy ¢ N, Uge - paccmaTpuBaeMblil BhIlIe
& B

MoHoMa ¢ MHoxecTBoM =uencinton { (o, )|, 3 € £*} u onepanmeit ”o”; MHo-
xectBo pebep K ofpazosano cuegyommuM obpazom:

a) ecom B Il cymecrsyer npasuno A; — ad;3, A;,A; € N, o8 R
cymectyer pebpo o navanom A, kontom A; u metkoii (a, 3);
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b) ecom i Il cymecrsyer npasuno A; — o, rne A; E N, a € £, 108 R
cymectsyer pebpo ¢ Havdajgom A;, komom A,y M Metkoit (a,&), ¢
—ny("]"(l'" CIOBO.

V) He cyliecTByI0T apyriae peGpa B R, KpoMe onMcaHHBIX B MyHKTaxX a) U
6).

[lyete (7 - rpynna ¢ MuokecTBoM 06 pasyionmx

. | : = a1 e |
X =BuXN = ey, & ey By A gsangllh s

‘m

MHOMECTBOM ONPeArIAINIIKUY cooTHOmennid @, eqmnuneid € u ¢ paspemmMoii
npobaemoil pasencroa caos. [Myets M - coorseTcTBY IO NI TPYNIIOBOM A3LIK,
a {/g - rpynma, noaydemnias onncaHHBM BBIMe crnocofoM. PaccMoTpum amar-
pammy nepexonon Hy = (V. R, Ug,ly), rae mucxkectsa sepumn V' u pebep
COBHAAAIOT ¢ COOTBETCTRBYIOIUMM MHOKECTBAMU B AnarpamMme rnepexonon Hr,
a MeTku p ebep cuntaenm kak saementsl rpynmsl /. Kak v B maparpadge
2 MOMKHO paceMoTpeTh saMkHyTHe noaykoasna Fyy = (Ug,U,0,¢,{(e,€)}) n
Fo = (GLU - @ {e}). Toraa orobpaxenun fi, f, v f; ecrecTBennbM cnoco-
GOM MOMKHO TPOAONHUTL. Ao oTobpakenua us Fyy s Fiy.
B I ssoamm onepatmio (e, gy, 2) cnenyioumm obpasom: ecam a,b,e € (7
ro ({a}, {b}. {e}) = {abeb')
{w g, b= (e, 2, ) U {24)
(r.yUszt) = (2, gt} U, z1)
Gtz Wty = {eygnz) U {8, 9,1

B cuny muerpubymmirnoro sakona B fyp, (:i:,y,z) - KOPEeKTHO BBeJleHHasd olle-
paumH,

v s x, Yy, z,t € Iy Bremonneno:

G
Il

Mycte Pr - muoskeetno seex nyreii 8 Hp ¢ navanom A, u kormom Angr, a
P - mioskecrso seex nyteit s Hyr ¢ navanom A; u konnowm Anpr.

JMemma 2. Jlas aacdcune aviwe oboznavenuis wenoaneno L = fy(lp( Pr)).
Hoxazameavemao. Myer w € L. Torma eymecrsyer spsoa s I:

A! — fl‘lf'l.,ut"f] —_ ﬂ‘tfl‘-l.ﬁll,j:,l")’-_ffil — v = g "n-’kAimdk,[jk—l L ‘,6[

— g Y BBy - P,

rae A, € N, oy, 9,7 € £ Ho rorpa cymecrsyer nyTs B Hr m™ =
PPz pET,orae py - peiipo ws Ay B Ay, p; pefpa s A; | B Ai;, T - pe6-
po u3 Ay v Augy; Inlpy) = (0g,8;), In(t) = (¥,¢). Ho toraa Ip(m) =
Ie(pr)olr(pz)o---olp(p)olr(T) = (ay,B1) o (cs, Ba) 0+ -0 (ar, Bi) 0 (7,€)
(vpevg -~ oy 3 e_y -+ 4)). Orcrona caenyer, uro fy(lp(7)) = w. Caenopa-
renbuo L C f,(Ip( ).

Hg’tnﬁup{l'r. CeiM W E /,'(l'r( Pr]}, TO W MOM¥HO NpeJIcTaBUTL B BUIE W = a’[j,

Il

rae (e, /3) - MeTka Hekoroporo nyta ™ us Prov nyets T = pypa- - py, rae 21
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- pebpous A; B A, pj. J = 2.8, ...,k — 1 peGpa uz A;,_, B A;,, pr - pebpo

us A;, B Aup monyers Ie(p) = («;,/3;)  Ir(pe) = (7,€) ana HexkoTopbIX
aj,f;,y € T, takux uro Ay — o A; By, Ai, — (l_f_,_,A,;JHﬁjH, A1 — v
cyTh mpaBuia B I v a1y = &, Beeyfe—o-+-3 = . Ho torma

CymecTByeT BbIBOJ B FZ

A — A — - — g o Ay B 1B—ne By
— vy Yo Bra - B = aff = w.

Cnenoparensno fy(lp(Fr)) C L. Jlemma nokazana. 0O

Caencreue 3. fas ascdewnur awuwe ovoswavennit L C M moeda u moavxo
mozda, xozda fy(ly( 1)) = {¢)

Nycts P, € Py - MHOMCCTHO Beex myTei ¢ Hadanom Ap, koHuoMm A, 4, ¥ He
COAePKALIMX HAKJIOB KU NV CTL

Q7 = fallu(P1))

Oycrs (' - MHOMeCTBO »acymentapapx uukaos B Hy. Mycts

P’ - MHOM)ecTBO Beex nyTeil us Hy, nauunaommxea B A,

P" - maO¥ecTBO BeeXx Ny el us Hy Be cofepallilMx UMKI0B M KOHYAIOIIUXCA
B An+l'

Ouesumuo Py C P, I, C P v B obmem cayuae Py # P' v Py # P". <.
PacemorpuM MuOXecTBO 1yTeid 1% = {7 = mmyms|m € P 7, € C, 13 € PV,
lns Beex T = T Moy € Py paceMoTpUM MHOMECTBO

Qa = {(fillu(72)), fallo(ms)). [.(lir(73)))| cymecTByer nyTe @ = 17,73 € Pa}.

Ecitn npoasaamanposaTh ciiocob ofpazosanua MHoxkecTBa §)1, (2,807 n (g,
roe 0, u Qy cyTs MHOecTa, pBeaennble A. B. AaucumoseiM ( Teopema 1
), AMEMEHTHI KOTOPBIX paccMiaTpUBAEM KaK ajleMeHThl Tpymmsl (7, To HeTpyaHO
sameTuth, uto 27 C ), Qs C Qs u B obmem cayvae ;7 # Q) n Qg # Qs

Kak u B naparpajde 2. ofpasyem MHokecTsa myteit (f ( aimHol MeHbie
wmu pasroit K+ 1 ) us I (1 <4, 5, k<n+1).

[Mycts gfj = IU(("!:'?.) € Iy 3mech k vHAeKc M He o3HadyaeT cTemneHb. Pac-
CMOTPHM 2JIEMeHTBl 3aMKHY TO1I'0O HoJy KoJablla FG:

2y = f.f(.q? u+l)
Q'Ill — { (h(q;:)v f(f(g;‘n+l )1 fr(g::))
AH&J’IOI‘H‘-{““ JoKaszaTellbeTa JeMMbI l MOX¥HO JOoKa3aThb, 4YTO B (/',kj BO3MOMK-

HO CYMIECTBOBAHME [YTeil. co/epHaliMX UMKIbLI ¥, MMesA BBUOY crocob obpa-
3oBanuA (7, Sdg, (g u §)y, noiyuaem clieayloliiee yTBepKIAeHHE:

JMemma 3. Jlax saedenunr awue ofosnavenui ucnoaneno 7 C Qg u g C Oy,
- ) AS
npu smom & obugem cayuae (2 # Qg u Qg #F Q.
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Teopema 4. /[as esacdcranz anute oboanavennd caedynowue ycao8us 3Ixeusa-
AEHITMNDBL

(i) LC M;
) Wh =8 u &y = {e}y
(iii) Wy = Q7 U s = {e};
) Ws = Qo U0 = {e).

Aoxazameascmao. DxsusanenTHocTh yeaobui (1) m (ii) mokazanma A. B. Anu-
cumossiM B (3] (em. Teopemy 1). Kak samernau semme Wy C W, u cnenopa-
reavio us W, = {¢} caenyer Wy = {e}. U3z Jlemmn 3 caeayer, uto ecam
sumosreno W5 = {¢}, to pumoaneno Wy = {e¢}. Uto6w mokasate Teopemy
ocTanock AoKazaTk, uTo (i) Baeuver (iv) u (iii) saeuer (i). .

(i)=(iv). Hyere L € M. Torma (Cnemersue 3) fo(ly(Py)) = {e}. Ho
owennmno (7' ., C Py u cnenoparensro {2y = {e}.

Oycts 2 € §y9. Torma z = uwvwv™', rae w € fi(gh), v = fa(9] ny1)
w = f.(gl ana HekoTOpoOro § Takoe, YTo cymecTByeT nyTh ™ B Hy s A, B A;
u nycrs ly(m) = (2, y). Torma oyeBnano (U, W) MeTKa HEKOTOPOTO LIMKJa Ty,
npoxosmero 4epes A;. a v MOXKHO OpeACTaBUTL B BUle U = Uy Uy, rae (v, ;)
- MeTKa HekoToporo mytd 73 M3 A; B A, Pacemorpum nytm m' = mmoms
u " = mms. Ouenumno oM HauMHaloTcA B Ay M 3akanuusatorca B Apy.
Hmeem:

ly(mmems) = (2,y) o (u,w) o (v, v,) = (Tuw, v2wy)

lu(mims) = (2,9) 0 (v1,02) = (21, v2y)

Coranacno Cneactemio 3, LuVWY = TVY = €, oTKy Ja clleflyeT YTo uvwv~ ! =
€, 1.e. z = €. Tak, kak = - npoussoabHoe u3 o, 10 Q9 = {e}.

(ili)—(i). Mycts Wy = Q; U Qs = {e} v nycts w € L. Coraacro nemme
2 w € fa(lp(Fr)), T.c. W MOXKHO MPeACTABATL B BUIE W = WiWq, rae (wy,ws)
- MeTka HekoToporo oyt B Hp ¢ nayanom A, n konnom A, u nycrs 7 -
cooTBeTcTBY0OWMH emy nyTs B Hyy. Ecom m € Py ( T.e. ecm T He conepkur
wakna ), 1o fq(ly(m)) € fa(lu(Py)) = Q7 = {€} n cnenosatensno w € M.

[Iycte T comepskut mmka. Torga T MoMKHO TpeACTaBUTL B BUIe T = Ty MMy,
rae 1y € P, my € (', m3 € P" wnyers ly(m)) = (ar,b), ly(7m2) = (as,by),
ly(ms) = (as, bs). Torna

Jallu(m)) = fa((ay,bi)o(az, by)o(as, bs)) = fa(aiazaz, bsbyby) = ajasaszbsbyb,.

Ho asasbsbs(azbs)™' € Qg, T.e. agazbsba(aszbs)™! = e, wmm ayazazbsbsby =
a,a3bsb;. Herpynuo sametuts, uto (a;as, bsb,) - aTo MeTka nyTu 7,73, KoTo-
padA nojlydaeTca U3 T, onyckas IMKN Tp. [lponomkan takum obpasom onyckaTh
UMKJIBL B T, TO TaK KiK CIIOBO W - KOHEUHOR, Uepe3 KOHeYHOe YMcJIo IIaroB mHo-
ayunm, uro fy(lu (7)) = fa(ly(7")), rae ' nyte ua A; B A, 4, He UMeromumii
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wkaos. Ho fi(ly(7')) € 2 = {e}. Caenosarensro fi{(ly(P:)) = {e} n
corsacHo cieactsuio 3 noaydaem, uro L € M. Teopema nokasana. 0

Ha 6aze Teopemer 4 ((1)<(iv) nonydaem cienylommii aaropuT™, NpoBeps-
wommid Briaovennsn L C© M.

Anropurm 2. [poascpacm avawvenua L C M, dag auneiinozo aswxa L u 2pyn-
noaozo ganxa M epynnw (1 ¢ paspeuwumodi npobaemoil pasencmeaa caos.

Bxom: gf; = lu(C};), 4,7=12,..,n+1

Brxom: Jloruueckasn nepemendasa 1T, moaydawomas crouMmocTs Mlermaa,
ecou L, C© M u crommorts JIoEs, B IPOTHBHOM clyvae.

Hagamo

1. T := Wletuna ;

2. Ona 1 < k < n Henarr

3. Hna | <i,j <n+ 1 Henare
S S | k=1 k-1
4. g5 =g Vg ogy;
5. Komen ITenarn
6. Kounen Heaarnb:
7. ECJ’IH q,il n41 # (/) " d(ﬂ;‘ 41 ) '—Ié {‘:} TU
8. Hauano T := Jloxs; Ocranor Komen;
9. Hana 1 <1< n+ | Henars
10. Ecam ¢, # dm gl #omygl', ., # ¢ To
11. Ecnn (ft'(yu fd J: n+]) f’“ gn ) % {6’} TO
12. Hauano T := Jloxs ; Ocramop Komen
13. Komen Henats
Konen

Teopema 5. Aazopumm 2 avnoansem we boaee ()(113) OMEPAYUU CAONCENUT U
npouzeedenud a samwuyniom noaykoasye Fyp, we boaee ()(n2) onepayuu (Z,Y,z)
8 aamxnymom noayxoavye Fo, u nposepsem axawuwenuve I C M, ade L - au-
netinwil azvik, nopamcdaesmui auneinoil zpamsmamuroii ¢ n wemepmunaaos, M -
epynnosot gzvik epynnwt (7 ¢ paspeumol npobaeMoll pagencmaa caos.

’
HokasaTellbcTBO TeopeMbl IOBTOpAET HOKA3aTeJlbCTBO Teopemm 3

Caencreue 4. Ecau cyuccmayom aazopummosl, abnoingouue onepayus ymuo-
wcenus u caoncenus a Frou (2,y,2) & Fii 3a noaunomuaasnoe apems, mo aazo-
pUTHM 2 ABAACTNCA NOAUNOMUTABHBIM.
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THEORY OF MULTIPLE ANTISYMMETRY

Slavik V. Jablan

ABSTRACT. Survey of problems in theory of multiple antisymmetry, which
can be solved using antisy mmetric characteristic method, is given.

0. Introduction and definitions

Originated from Speiser (1927) and realized by Weber (1929), the idea
of representing symmetry groups of bands by black-white plane diagrams
was the starting point for introducing the antisymmetry (Heesch, 1929).
The color change white-black used as the possibility for the dimensional
transition from the symmetry groups of friezes (731 to the symmetry groups
of bands G321, or from the plane groups (75 to the layer groups (32, applied
on Fedorov space g}oups (/3 in order to derive the hyperlayer symmetry
groups (43 (Heesch, 1930) was the beginning of the theory of antisymmetry.
The further development of the theory of antisymmetry can be followed
through the works by Shubuikov, Belov and Zamorzaev [1].

Its natural generalization, the multiple antisymmetry is suggested by
Shubnikov (1945) and introduced by Zamorzaev (1957). Three months later,
the different concept of the multiple antisymmetry is proposed by Mackay.
During the next 30 years, mostly by the contribution of Kishinev school
(Zamorzaev, Palistrant, Galyarskij...) the theory of multiple antisymmetry
has become an integral parl of mathematical crystallography and acquired
the status of a complete theory extended to all categories of isometric symme-
try groups of the space E" (n < 3), different kinds of non-isometric symme-
try groups (of similarity symmetry, conformal symmetry...) and P-symmetry
groups [1,2,3,4]. On the other hand, investigation of Mackay approach to the
multiple antisymmetry was not continued.

Supported by Grant 0401 of FNS through Math. Inst. SANU
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Let the discrete symmetry group (v with a set of generators {Sy,...,5,}
be given by presentation [5]

FulS1s oo 58y) = E, 7l=m

and let ey,...,e; be antiidentities of the first,...,Ith kind, satisfying the re-
lations

eie; =eje; € =E a5y =8y, BA=T1 a=Tr7 (1).
The group consisting of transformations S’ = €'Y, where ¢’ is the identity,
antiidentity, or some product of antiidentities, is caled the (multiple) an-
tisymmetry group. In particular, for { = 7 = 7 = 1 we have the simple
antisymmetry. From the point of view of l:he mathematical logic or discrete
mathematics the system of antiidentities can be considered as [-dimensional
Boolean space.

The groups of simple and multiple antisymmetry can be derived by Shub-
nikov-Zamorzaev method: by replacing the generators of (7 by antigenerators
of one or several independent patterns of antisymmetry. Having in mind the
theorem on dividing all groups of simple and multiple antisymmetry into
groups of C* (1 < k <), C*M™ (1 < k,m;k+m <)and M™ (1 < m < 1)
types, and the derivation of the groups of (_f" and (% M™ types directly from
the generating group (7 and from the groups of M™-type respectively, the
only non-trivial problem is the derivation of the M™-type groups [1].

In this paper we will consider only the junior multiple antisymmetry
groups of the M"™-type, i.e. the multiple antisymmetry groups isomorphic
with their generating symmetry group, that possess the independent system
of antisymmetries.

Every junior multiple antisymmetry group ' of the M™-type can be
(uniquely) defined by the extended group/subgroup symbol

(;/(Hh 1H'm.)/Ha

where (7 is the generating group, H; its subgroups of the index 2 satisfying
the relationships G/ H; ~ (y = {¢;} (1 < i < m), and H the subgroup of G
of the index 2™, the symmetry subgroup of G' (G/H ~C}" = {e1} x ... x
{Cm}.)'

For the equality of multiple antisymmetry groups can be used three dif-
ferent criteria:

(1) "strong” equality criterion according to which the antiidentities ¢; are
noneq uivalent. Consequently, in the symbol G/(Hq,..., H,,)/H the order
of the subgroups Hq,..., H,, is important. In the sense of interpretation,
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this means that the bivalent changes ¢; are physically different (nonequiva-
lent) (e.g. (white black), (+ -), (5 N), (0 1)...);

(2) "middle” equality criterion, where all ¢; are treated as the equivalent
ones (i.e. permutable), so the order of the subgroups mentioned it is not
important; (3) "weak” equality criterion (+/H.

Using the "strong” equality criterion, as the result we have Zamorzaev
groups (Z-groups), and using the "middle” Mackay (or compound) multiple
antisymmetry groups (M-groups) [6]. In this paper the consideration is
restricted on Z-groups.

Theorem 1. (THE EXISTENTIAL CRITERION FOR M™-TYPE GROUPS) A
Z-group G' will be of the M "™ -type

(a) if all the relations (1) remain satisfied after replacing the generators
by antigenerators; and

(b) if ' exausts all the antisymmetry patterns, for fized m.

For the derivation of Z-proups very efficiently used is the antisymmetric
characteristic method [7.8.9].

Definition 1. Let all products of the generators of (¢, within which ev-
ery generator participates once at the most, be formed and then subsets of
transformations that are equivalent in the sense of symmetry with regard
to the symmetry group (i he separated. The resulting system is called the
antisymmetric characteristic of group ¢ (AC(()).

The most of AC' permit the reduction, i.e. a transformation into the
simplest form; e.g., the AC" of the plane symmetry group pm given by the

presentation [5]

{X,Y,R} XY =YX R'=(RX\'=E RY=YR

is {R, RX{YH{RY,RXY }{X}{XY} and its reduced AC is {R, RX H{Y}.

Definition 2. Two or more Z-groups belong to a family iff they are derived
from the same symmetry group (.

Theorem 2. Two Z-groups () and (4 of the M™ -type for m fized, with
common generating group (i, are equal iff they possess equal AC'.

Every AC(() completely defines the series N,,((), where by N(G) is
respectively denoted the number of Z-groups of the M™-type derived from
G, for m fixed (1 < m < [). For example, Ni(pm)= 5, Na(pm)= 24,
Ni(pm)= 84.
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Theorem 3. Symmetry groups that possess isomorphic AC generate the
same number of Z-groups of the M™ -type for every fized m (1 < m < 1),
which correspond to each other with regard to structure.

Corolary. The derivation of all Z-groups of the M™ -type can be completely
reduced to the construction of all non-isomorphic AC' and the derivation of
the corresponding groups of the M™-type from these AC'.

According to Theorem 3, it is possible to identify every AC' with the
corresponding isomorphic algebraic term, a representative of the equivalency
class which consists of all isomorphic AC'. For example, it is possible to
identify AC'(pm)= {R, RX }{Y} with the term {A, B}{C'}.

1. The derivation of (P,l)-symmetry
groups from P-symmetry groups using AC

Let 7 be a junior group of P-symmetry derived from - [3]. By replacing
in Definition 1 the term "transformations that are equivalent with respect to
symmetry” with a more general notion "transformations that are equivalent
. with respect to P-symmetry”, the transition from ' to GF induces the
transition from AC'((7) to AC((GP), which makes possible the derivation of
groups of (P, [)-symmetry of the M™-type using the metod of AC.

The said can be illustrated by the example of derivation of groups (1'5’4
from groups G3: {a,b® }(m) and {a®,b(H}(m).

In the first case, in the transition from ' =pm to G** = {a,b*)}(m)
AC' remains unchanged. In the second case, in the transition from ¢ =pm
to G* = {a® b*}(m), the equivalency of symmetry transformations is
disturbed and the term {m,ma®}{p9} is transformed into a new AC*
{m}{ma}{b}. In accordance with the facts already mentioned, we have

{a, 6"} (m)  AC: {m,ma}{b} ~ {A,BHC} Ny =5 Np=24 N3 = 84
{a® b} (m) AC: {m}{ma}{b} ~ {AH{B}{C} Ny =7 Ny =42 N3 = 168.

The given numbers N,, denote the number of groups of the M™-type of
the uncomplete (4,[)-symmetry. In a general case, besides the numbers N,,
for p-even, we can discuss also the numbers (N,,_1) (1 £ m < I), where by
(Nyu—1) is denoted the number of groups of the complete (p, [)-symmetry of
the M™-type. For p-odd, the relationsip N,, = (N,,) holds, and for p-even

(Nm)zNm*(‘zm_l)(Nm_'l)v (Ng):.l, 1§771S1-

One of the most important results obtained using the mentioned method,
is the derivation of the groups (:'f;p from the groups ;5 (p = 3,4,6, P ~ C,)
[10] and calculation of the numbers N,, and (N,,_1):

N| = 4840. Ny = 40996 N3 = 453881 N4 = 5706960 N5 = 59996160
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(N1) = 4134 (Ng) = 29731 (N3) = 260114 (Ng) = 2048760 (Ns) = 1249920.

By the same method, the crystallographic (p2,1)- and (p',!)-symmetry
groups are derived from the P-symimetry groups (,:‘f; and (:g (9 = 3:4.6;
Pou Du, Dn(‘ln)) [11,12]

The derivation of ( P,l)-symmetry groups of the M™-type from P-sym-
metry groups using the AC-method can be reduced to a series of successive
transitions

s i3F s GF) s oA

and induced transitions
AC(G) — AC(GPY = AC(GPY) > L = AC(GPY.

Every induced AC' consists of the same number of generators. Since every
transition GPF=1 — FF (1 < k < 1), is a derivation of simple antisym-
metry groups using AC(G7*=1), for derivation of all multiple antisymmetry
groups, the catalogue of all non-isomorphic AC' formed by [ generators and
simple tantisymmetry groups derived by these AC', is completely sufficient.

3. Reduction of multiple antisymmetry simple antisymmetry

The basis of this reduction is the idea already mentioned about the tran-
sition (& — GF and induced transition AC(G) — AC(GF), where AC(G)
and AC(GF) consist of the same number of generators. This means that
every step in the derivation of multiple antisymmetry groups

Gl s P o il e o G

i.e. the transition GGK¥=' — F, (1 < k < 1), is a derivation of simple
antisymmetry groups using AC/((7*~1), followed by the induced transition
AC(GF 1) = AC(G*), (1 < k < 1—1). All the AC' of induced series consist
of the same number of generators.
The said can be illustrated by the example of derivation of multiple anti-
symmetry groups from the plane symmetry group pm:
pm {a,b}(m) AC :{m,ma}{d} ~{A, BH{C}.
For m = 1 five groups of simple antisymmetry of the M'-type are obtained:
{A, BHC}
{E, EXer} = {A, B}
{e1,e1{E} — {A-B}{('
{er,e1}{e1} — {4, B}{C
(E.cl}{E} — {A{{BY{C)
{E,en {er} — {AHBH(}.

1
J
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In the first three cases A(' remains unchanged, but in two other cases AC
is transformed into the new AC' : {AH B}{C'}. To continue the derivation of
multiple antisymmetry grups of the M -type from the symmetry group pm,
only the derivation of simple antisymmetry groups from AC : {A}{B}HC}
is indispensable. This A(' is trivial and gives seven groups of simple an-
tisymmetry. If AC : {A, B}{('} is denoted by 3.2 and AC : {AH{B}{C'}
by 3.1, then the result obtained can be denoted in a symbolic form by
3.2 — 2(3.1) + 3(3.2). Then we have

Ni(pm)= N1(3.2) =5 Ny1(3.1)=7

Ny(pm)= N2(3.2) = 2N1(3.1) + 3N1(3.2) = 5-1 =

=2(Ni(3.1)= 1)+ 3(N1(3.2) = 1) =26+ 34 =

=2N1(3.1)+ 3N1(3.2) — N1(3.2) = 2N¢(3.1) + 2N(3.2) = 24.

The meaning of every step in the mentioned computation is:

1) substructron of the number N;(3.2), i.e. of the five groups of uncom-
plete multiple antisymmetry of the 2M-type;

2) every group of the M'-type gives exactly one of these 2M-type groups,
so we obtain 26 + 34 groups of complete multiple antisymmetry of the M?-
type [5,8,10]. This step contains also essential data for the calculation of the
number N3: 6 groups mentioned possess AC' 3.1, two of 4 groups mentioned
possess AC' 3.1 and two AC' 3.1. Among five groups of uncomplete multiple
antisymmetry of the 2M-type there are three groups with AC 3.2 and two
with AC' 3.1;

3) by substitution 5 = N{(3.2) we obtain Ny(3.2) expressed by Ny(3.1)
and Ny(3.2),i.e. 2N((3.1)4+2N(3.2). The sum of coetlicients corresponding
to the numbers Ny in the last line gives No(pm)= 24.

Ny(pm)= N3(3.2) = 2-6N1(3.1) + 3-(2N1(3.1) + 2N1(3.2)) — 24 -3 =
I8N1(3.1) + 6N1(3.2) — 24 -3 = I8(N1(3.1) = 3) + 6(N1(3.2) - 3) =

= 184+ 62 = 18Ny (3.1) 4+ 6N1(3.2) — 3(2N,(3.1) + 2N, (3.2)) =

= 12N((3.1) = 84 (Ny(3.2)) = 12.

(Consequently, the method proposed makes possible complete reduction
of the theory of multiple antisymmetry to the theory of simple antisymme-
try. This refers not only to the possibility of computation of the numbers
N, and (N,,—1), but also to the possibility of applying the method of par-
tial cataloguation of multiple antisymmetry groups of the M™-type [8]. If
we take the advantage of the suggested reduction, the use of this method
is considerably simplified and demands only the catalogues of the simple
antisymmetry groups of the M'-type obtained from non-isomorphic AC.

4. Non-isomorphic AC formed by 1 < I < 4 generators

As it is shown in §3 the theory of multiple antisymmetry can be reduced
to the theory of simple antisymmetry. For that it is necessary to know all



Theory of multiple antisymmetry 717

non-isomorphic AC' formed by [ generators. Non-isomorphic antisymmetry
characteristics formed by | < [ < 4 generators are investigated in [9]. As
the result of their study, the catalogue of that AC' formed by 1 <[ < 4
generators, and the tables of the corresponding numbers N,/ are obtained.
The completuess of this catalogue is proved for I < 2, but for I > 3, hav-
ing in mind a great number of possible cases which we must consider, the
completness is not proved. and there is a possibility that some AC are not
included into the catalogue.

In this catalogue for every AC' is given a list of corresponding simple
antisymmetry groups of the M'-type, connections between AC in the case
of transition from m = | to m = 2 and tables of the numbers N,,. The
notation used and the metlod for obtaining results are the same as in the
example of the symmetry group pm given in §3. In AC by parenthesis (
) is denoted the obligation of cyclic permutation of appertaining elements,
by [ ] the obligation of simultaneous commutation of elements; the elements
in // parenthesis remain fixed on their places. AC/ obtained in all previous
studies of the theory of simple and multiple antisymmetry for 1 < [ <4 are
included in this catalogue. The list is the following:

2.1 {AH{B};
2.2 {A, B}
2.3 {A, B, AB}.

=3

3.1 {AHBHCY;

3.2 {A, BHC);

3.3 (A, B,C, AB, AC, BC', AB(T);
3.4 {A, BH{C, ABC};

3.5 (A, B,C);

3.6 (A, B,C, ABC);

3.7 {A, B, C};

3.8 {A, B},{C,ABC}}:

3.9 {A,B,C,ABCY);

3.10 {A, B,C,AB, AC, BC ABC'}.

=4

4.1 {AHBHCHD);

4.2 {A, BHCHD);

4.3 ([A, B, [C, ABC),[D, ABD],[AC, BC],[AD, BD),[C D, ABCD], [ACD, BCD));
4.4 {A, BH{C, DHAC,BD};

45 {A{{B,CH{D, BCD};

4.6 {A, BHC, D};

4.7 {B,ABH{C, ACH{ D, AD};

\
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4.8 {A}(B,C, D);

4.9 (/A B/, /C,ABC/, /D, ABD/, [AC' D, BC'D/);

4.10 {A, B,C}{D};

4.11 {{A, B,{CA,CB}}{D,D};

4.12 {[A, B), [¢', D]};

4.13 {{B, AB},{C, AC}}{D, AD};

4.14 (A, B,C, D);

4.15 (¢, A,CA){(B, (", ABC"),(BD, BCD,ABCD)};

4.16 {{A, B}, {C, D}};

4.17 ({A, B} {C,ABC} {D, ABD},{AC, BC} {AD,BD},{CD, ABC D},
{ACD, BC'D});

4.18 {A, B, AB}{C, D};

4.19 {A, B,C, ABCH{D};

4.20 {{A, B}, {C, ABC}YH{D,ABD},{AC'D,BC D}};

4.21 ({A, AD}, {B, BD},{C, ('D});

4.22 {A, B,C, D},

4.23 ({A, B}, {C, ABC}{{D, ABD},{AC D, BC' D});

4.24 {{B, ABH{(, AC},{D, AD}};

4.25 {{{A, B}, {C, ABC}},{{D, ABD},{AC:D, BCD}}};

4.26 {A, B,C, ABCH{D,ABD, AC'D, BC: D},

4.27 {{A, B}, {C, D},{AC, BD}};

4.28 {{A, B}, {C, ABC} {D,ABD}, {ACD, BCD}};

4.29 {A,B,C,D,ABC,ABD, AC'D, BC:D};

4.30 {A,B,C,D,AB,AC,AD,BC,BD, (D, ABC, ABD, ACD, BCD, ABCD).

Besides all AC’ found in practice during previous studies of the theory of
simple and multiple antisymmetry for 1 <1 < 4, in this catalogue there are
some AC" which are not found before.

Conjecture 1. Every abstract algebraic term formed in accordance with
Definition 1 is AC" of some symmetry group.

Most of the AC' given in this catalogue, which are not found in earlier
practice, satisfy Conjecture 1. For example, AC' 4.22 corresponds to the
symmetry group mmmm of the category (49, and AC' 4.30 corresponds to
the symmetry group P1111 of the category (4.

If Conjecture 1 is valid, AC' 4.21 and 4.22 are counter-examples of the
supposition [1, pp. 138] that equality of the first and last members of the
series N,,((+) and N,,(G") implies equality of the second members of these
series.

Conjecture 2. Every serics N, obtained from AC'; formed by | generators
is identical with some series (Ny,41) obtained from corresponding AC 4,
formed by I+ 1 generators.

As the examples of AC';y1 and AC'; which satisfy the Conjecture 2 for
1 <1 <4, it is possible to notice the pairs of AC": 2.2 and 1.1, 3.4 and 2.1,
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3.8 and 2.2, 3.9 and 2.3, 4.7 and 3.1, 4.13 and 3.2, 4.17 and 3.3, 4.20 and
3.4.4.21 and 3.5, 4.23 and 3.6, 4.24 and 3.7, 4.25 dnd 3.8, 4.28 and 3.9, 4.19
and 3.10.

Conjecture 3. Let AC, formed by generators Aq,..., Ay be given. Then
by the substitution A} = A\, 1 = 1.1, can be obtained a new AC\ 41, such
that AC), and AC 141 satisfy Congecture 2.

The study of particular non-isomorphic AC' for I > 4 is almost a technical
problem. However, a proof of completness of the catalogue of non-isomorphic
AC for I > 2 is immensely important and one of the aims of future studies of
the theory of simple and multiple antisymmetry must be the construction of
an algorythm, which makes possible direct derivation of all non-isomorphic
AC formed by [ generators.

In many cases, especially for AC" with a large number of generators, for
the computing of numbers N, it is possible to use the direct product of AC.

5. Direct product of AC

Definition 2. Let AC" and AC™ with disjoint sets of generators be given.
The new AC' = AC"AC” obtained by adding in writing AC™ to AC" is called
the direct product of AC" and AC™.

Theorem 3. Let N,,. N' . N,.,” be the series of numbers defined by AC,

m*

AC", AC™ respectively. Then the relationship

N?n = Z zlmg.’;](m—”( -(”L,’n_ bom — I)N,{-N'm“

k41>m,
m>2k. >0

holds, where

(21 o l)(zf—l o l)“.(zl—k—in-l-l _ 1)
(28 = 1)(2F1 = 1)... (2= 1)(2m — 1)(2m-1 = 1)...(2-1)

Clk,m) =

As an illustration of the A(' which satisfy Theorem 3, we are giving the
following example

AC' =22={A, B} N(22)=2 Ny(22)=3

ACT =2.1=+AC0H D} Ni21)=3 Nj(21}j=6

AC = {A,BH{CHD} =4.2.
In accordance with Theorem 3.

Ni(4.2) =2-3424+3 = LIN,(4.2) = 3-64+34+643-2-643-3-3+6-2-3 = 126

N4(4.2)=28-2-6+28-3-34+42-3-6= 1344

Ny(4.2) =560 -3 -6 = 10080.
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Other examples of AC" = AC'AC” from the catalogue of non-isomorphic
AC for 1 €1 € 4 aie 2.1 = (LL(L.0); 3.1 = (2.1)(1:1), 3.2 = (2.2)(1.1),
4.1 = (3. )( 1) = (2.1)(2.1), 42 = (3.2)(1.1), 4.6 = (2.2)(22), 4.8 =
(3.5)(1.1), 4.10 = (3.7)(1.1). 4.18 = (2.3)(2.2), 4.19 = (3.9)(L.1).

6. Tables of numbers N,,

As the result we have the table survey of the numbers N,, for all noniso-
morphic AC' formed by 1 <[ < 4 generators:

fo=c1
Ny
1.1 1
=12
IV] .NQ

2.1 3 6

o2 2 3

3 1 1
f =03

N Ny N
3.1 T 42 168
3.2 5 24 84
3.3 4 24 96
3.4 4 15 42
3.5 3 14 56
3.6 3 12 42
3.7 3 10 28
3.8 3 9 Zl
3.9 2 4 T
3.10 1 1 1
[ =4
Ny N Ny Ny

4.1 15 210 2520 20160
4.2 11 126 1344 10080
4.3 9 120 1440 11520
4.4 9 108 1260 10080
4.5 9 84 756 5040
4.6 8 75 714 5040
4.7 8 63 462 2520
4.8 T 74 840 G720
4.9 < 7 66 672 5040
4.10 i 58 LY 3360
4.11 il 54 420 2520
4.12 6 57 630 5040
4.13 6 39 252 1260
4.14 5 54 630 50410
4.15 5 44 448 3360
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4.16 5 39 357 2520
4.17 5 36 264 1441
4.18 5 34 266 1681
4.19 5 28 168 5S40
4.20 5 27 147 (30
4.21 4 23 154 240
4.22 4 22 147 sS40
4.23 4 21 126 (30
4.24 4 19 98 120
4.25 4 18 84 315
4.26 4 16 63 210
4.27 3 21 210 1680
4.28 3 10 35 105
4.29 2 4 8 15
4.30 1 3| 1 |

(1]
(2]

(3]
14]
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EUCLID - THE GEOMETRY THEOREMS PROVER

Predrag Jani¢i¢ and Stevan Kordié

1. Introduction

Geometry is one of the mathematical disciplines demanding a big deal of
the human intuition. That’s why it is chalenging task to make a program
solving a geometry problems. Program EUCLID proves theorems of geom-
etry in a intuitive, geometrical way (more geometrico), and presents proves
in a natural language form. Besides, the mechanism and the basic principles
of the prover EUCLID led us to the new form of the foundation of geometry
and the new classification of geometrical axioms.

Program EUCLID was written in Arity PROLOG, but essential mach-
anism of the prover does not rely on PROLOG mechanisms. Despite the
limited resources of Arity PROLOG, the program was written in PROLOG
because of its suitable characteristics: flecsibility, mechanism of unification
etc. =

2. The Fundamentals of the Prover EUCLID

There are three modules in program EUCLID: the module of axioms, the
knowledge-pool and the proving mechanism. Although these modules are
independent they are built as a coherent system. Besides, these modules
are related by internal language in which all knowledge and conclusions are
expressed. The final output - proof of the certain theorem is written in a
natural language form. Because of its importance, first of all, let us focus
our attention at internal language.

3. Internal Language

The internal language L of the prover covers all objects and relations
accuring in geometrical axioms. Also, theorem that is to be proved has to
be expressed in the internal language, so the internal language is important
for user, also. All relations of the internal language L (including unary
relations defining objects) are shown in table 1.

723
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predicate

we read

t(a)

[(b)

plc)

identical{a,b)
non_identical(a,b)
i(a,b)

non_t(aw,b)

b(a, b, )
non_b(a,b, )
cla,b,c,d)

a is a point

b is a line

¢ is a plane

a and b are identical

a and b are not identical

a and b are incident

« and b are not incident

b lies between a and ¢

b does not lie between a and ¢

pair (a,b) is congruent to pair (e, d)

collinear(a.b,c) i.b and ¢ are collinear
non_collincar(a,b,¢)  a,b and ¢ are not collinear
coplanar(a,b,c,d) a,b,¢ and d are coplanar
non.oplanar(a,b,c,d) a,b,c and d are not coplanar
intersect(a.h) @ intersects b
non_interscet(a,b) a does not intersect b

Table 1. Relations (primitive and defined) in system EUCLID

Internal representation of relations (except for unary relations) has one
argument more then in a table, and a value of that argument is an index of
relation in a knowledge-pool.

We denoted by & the class of all geometry theorems that can be expressed
either as: '

Y1, Vo, .. Vau, IV, Vs, . 3 (0(E ), B20..85) = W(81, 82,80, Y1; Yoy - Yim))

oT as:
Vs Vibay ooVt IV, Y5, o AV (0 B14 8oy sitn) =
V(T Tay iy, Y1, Yoy oo Yo ) V o &1, Tay oo, Y1, Yo, Y ) V
oo V00 (81 By ool Yo, YaseaYon))
or as:
Visi, Vg, VB (DR 1, oy itn ) = W81, %3, -:24))
or as:

Enfl 3 3},23 Hy;n(*b(}/] ’ Y:h }/m.))

where ¢, ¥ and 1); are conjunctions of L relations ranging over some of
the arguments iz, 2y, ...2, and Y}, Ys, ... Y.

The first mentioned form we shall call universal-ezistential form (V —
), the second universal-ezistential-disjunctive form (¥ — 3 — V), the third
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universal form (V) and the fourth ezistential form (3). All of them we shall

denote

by F.

We interpret the £, theorems in program EUCLID in a appropriate PRO-
LOG way. The class £ will be the subject of the following text.

4. The Module of Axioms

Module of axioms consists of all geometrical axioms whithout continuity
axioms and so called ADT module. ADT module consists of the following

axiom,

definitions and trivial theorems:

The additional geometry axiom:
Ya,Yb.Ve(i(a,b) A (b e)) = i(a,c))

The identity axioms:
Yaidentical(a,a)

Ya, Vb (identical(a,b) = tdentical(b,a))
Ya, Vb, Ve (identical(a,b) A identical(b,¢) = identical(a,c))

The substitution axioms:

Ya,,.. Ya;... Ya, Vb(pla,,...a;,...a,) N\ identical(a;,b)

= Play,...b,...a,))

where ¢ is a L relation.

The definitions:

If points a,b and ¢ and line [ are such that i(a,l),i(b,{),#(c,!), then
we shall say that the points a,b and ¢ are collinear.

If points a,b, ¢ and d and plane p are such that i(a,p),i(b, p),i(c,p),
i(d,p), then we shall say that the points a,b,c and d are coplanar.

If @ is a point and i(a.b),i(a,c), then we say that b intersects c.
The trivial theorems:

If points a,b and ¢ and line [ are such that i(a,l),i(b,l),noni(c,1),
then we shall say that the points a,b and ¢ are non collinear.

If points a.b,c and d and plane p are such that i(a, p),i(b,p),i(c,p),
non_i(d,p). then we shall say that the points a,b,c and d are not
coplanar.

Let us note that all axioms. definitions and theorems just listed above
are of one of the F forms. Also, each geometry axiom (excluding continuity

axiom) can be put in one of the F forms

1Tarski wrote about these forms of geometry axioms in a different context.
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We denoted by ¢ the class of all £ theorems which can be established
by use of the elements from the module of axioms. It can be shown that
program EUCLID can prove all £ theorems.

Although prover EUCLID does not use any set-theory segment, class £ is
wide enough to cover great part of usual elementary geometry courses. Also,
any geometry theorem could be included into the module of axioms for the
sake of more efficient and simplier proving process.

According to the mechanism of the prover, order of the axioms is very
important and determine the way of establishing of a theorem. Efficience of
the prover is related to the order of axioms and this inspired us for the new
classification of geometrical axioms. There are divided into five groups:

-"identity” axioms;

-"unproductive” axioms;

-"branching” axiowms;

-"productive” axioms;

"strongly productive” axioms.

Each group of axioms has a different status, and order of the axioms in a
each group is also of the great importance. This order determines efficience
of the prover.

Proving mechanism is the essential part of the program EUCLID and it
is based upon so called "sentinel-principle”. That principle enables proving
of all I/ theorems in a finite number of steps.

. 5. The Knowledge-pool

All objects and knowledge which are used in prover EUCLID are expressed
in the knowledge-pool. In the begining of the proving process for a certain
theorem, knowledge-pool contains only datas about objects (denoted by let-
ters) and relations given by theorem itself. During the proving process, all
objects and relations inferenced upon module of axioms are being added to
knowledge-pool with their unique (natural number) index. For unary pred-
icates (defining objects) this index is their only argument and it is their
identifier.

The state of the knowledge-pool is determined by value of the so-called
sentinel. The sentinel determines the set of objects from the knowledge-pool
that are accesable for certain axioms in a process of proving.

The current state of the knowledge-pool is determined by the proving
mechanism. In case of branching (in process of theorem proving) parts of
knowledge-pool related to disjunctive branches are independent and this
saves integrity of the knowledge-pool as a knowledge base.
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6. The Proving Mechanism

For sake of illustration, let us see the key PROLOG predicate of the
proving mechanisw:

proof :- contradiction.

proof :- proved.

proof :- adt(M),proof.

proof :- ax u(M),proof.

proof :- assumption(P,NotP),
index(B),

retract(comments(true)),assert(comments(fail)),
push(B,0),justified(P,IP),pop(B,0),
push(B,0),justified(NotP,INotP),pop(B,0),
retract(comments(fail)),assert(comments(true)),
((IP=true,INeP=true,proofp([P,NeP]));
(IP=true,INeP=false,proofp([P]));
(IP=fdlse,INeP=true,proofp([NeP]))).

proof :- ax b(M).

proof :- ax_p(M),proof.

proof :- sentinel(G),
first object(G,N),N1 is N+1,
retract(sentinel(G)),
assert(sentinel(N1)),
proof.

proof :- ax_sp(M),proof.

In the very beginning of the program’s work, there are to be given assump-
tions of a certain geometry theorem and its conclusion. Before activating
the key PROLOG predicate in the proving mechanism - predicate "proof”,
knowledge-pool contains only datas about objects (denoted by letters) and
relations given by theorem assumptions, and all that objects are accesable
for the module of axioms.

The key part of the algorithm can be (unpresicely) defined as follows:

(1) Check if there is a contradiction in the knowledge-pool; if there is,
report it and finish proving process in the current branch of a proof; if there
is not, go to step (2);

(2) Check if there are enough knowledge in the knowledge-pool to conclude
that the theorem is proved; If there are, report it, define objects and relations
making conclusion of the given theorem and finish proving process in the
current branch of a proof; if there are not, go to step (3);

(3) If possihle'. apply one of the ADT element and go to step (1); if not,
go to step (4); ‘ ’
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(4) If possible (according to current state of knowledge-pool and sentinel
value), apply one of the unproductive axioms and go to step (1); if not, go
to step (H);

(5) If possible, assume that some relation over some objects from current
knowledge-pool holds and add this assumption to the knowledge-pool as
a fact; similary, assume negation of that relation; make proves for both
cases; if it is not possible to assume any ralation over objects from current
knowledge-pool, go to step (6);

(6) If possible (according to current state of knowledge-pool and sen-
tinel value), apply one of the branching axioms and make proves for all its
branches; if not, go to step (8);

(7) If possible (according to current state of knowledge-pool and sentinel
value), apply one of the productive axioms and go to step (1); if not, go to
step (8);

(8) If possible (according to current state of knowledge-pool and sentinel
value), apply one of the strongly productive axioms and go to step (1); if
not, go to step (9);

(9) Select the object with the least index greater then current value of the
sentinel; give the value of this index to the sentinel; go to step (1).

This algorithin can be modified in such a way to prove many theorems
more efficiently, but that version of the prover can not prove all £ theorems.

The sentinel has a key role in determining which objects from the know-
ledge-pool are accesable in certain moment of the proving process. It is a
sentinel principle which guaranatee ability of proving all £ theorems.

7. The Sentinel Principle

The sentinel value in each moment of the proving process is determining
a set of accesable objects for geometry axioms. In the proving.process all
elements of ADT module could be applied no matter to the sentinel value
(i.e. all objects from the knowledge-pool are accesable for them). Immidiate
after entering the assumtions of the theorem which is to be proved, all objects
occuring in these assumtions are accesable. During the proving process,
the knowldge-pool is spreading (according to foregiven algorithm and by
application of the geometry axioms and ADT elements). If step (9) of the
algorithm is reached in the proving process, none axiom or ADT element
could be applied according to current state of the knowledge-pool and the
sentinel value. Then the set of accesable objects, i.e. the sentinel value
is to be changed. The sentinel is getting a least index value of all objects
which have indexes greater then current sentinel value. It means that the
first object whose existency was established since the last change of the
sentinel value will be added to the set of accesable objects. Then the proving
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process is continuing with application of axioms. That is how there is ensured
inferencing of all possible conclusions for given set of relations and accesable
objects. Also, that is how there is ensured inferencing of all concluslions
relevant for the given theorem. and enabled occuring of any "infinite” branch
in the proving process.

Let’s point out (once again) that forementioned mechanism ensures prov-
ing of all & theorews in a finite number of steps (but, many theorems could
not be proved because of the limited recources of the Arity PROLOG). Also,
let’s point out that it is not a difficult task to extend the program EUCLID
in such a way to.optimize its finished proves (i.e. to eliminate all unneccesary
steps). '

8. The EUCLID Axiomatic System of Elementary Geometry

In the axiomatic system of elementary geometry (geometry without axiom
of continuity) inspired by the program EUCLID, as the primitive notions we
take one fixed set G (geomelry objects set) and seven primitive relations
over geometry objects: three unary relations is a point, (denoted by t),
is a line (1) and is a plane (p). two binary relations identical (denoted by
identical) and incidental (). one ternary relation between (denoted by b) and
one quaternary relation congrucnt (denoted by ¢). (Instead of writing For
geometrical object a such that il holds t(a) ... we shall write For point a ....)
We also use negations of these relations (except for congruence - its negation
does not occur in any axiom). As a defined relations, we use relations colliner
and coplanar (with their negations) and relation intersect (we don’t use
definition for relation non-intersect, but we use it as a assumtion of a theorem
or as a assumption during the proving process). We don’t use any set-theory
segment. We use "classical” geometry axioms, additional incidence axiom
and "identity” axioms (see section 4) and use them according to rules of
Gentzen’s NK calculus. All axioms are divided into five groups:

-"identity” axioms (see section 4);

-"unproductive? axioms (axioms of the form V);

-"branching” axioms (axioms of the form ¥ — 3 — v);

-"productive” axioms (axioms of the form ¥ — 3);

-“strongly productive” axioms (axioms of the form 3).

(according to foregiven classification additional incidence axiom belongs
to group of unproductive axioms)

In the forementioned modified version of the program EUCLID some of
the productive axioms was put into the group of stronly productive axioms.
That version of the program makes some proves more efficiently, but can’t
prove all £ theorems.
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During the proving proces prover EUCLID is denoting all new geometry
objects by natural numbers and practicaly is making a model (or models) of
elementary geometry in a set of natural number, or more precisely, part of
that model sufficient to prove the given theorem. It means that, indepent
of any concrete theorem, algorithm EUCLID could generate a model of ele-
mentary geometry in a set of natural numbers in an infinite (but recursive!)
process.

Appendix

For the sake of traditional approach, a prover EUCLID gives proves ac-
cording to traditional sense of relation incidence as a set relation.

Predicates occuring in the program’s proves (except unary ones) have one
additional argument and that is their unique index (see section 3).

Example 1.

Theorem: Just oue plane passes throu two intersecting and distinct lines.

4% EUCLID v4.00 - Geometry Theorems Prover *****

Enter list of assmmtions:
(I(a).l(b),non identical(a,b),intersect(a,b)].

There exists point 3 such that 3 lies on lines a and b,

Enter conclusion of the theorem:
p(X),e(a,X,.),e(h,X,.),unique(X). By axiom 1.1, there exists a point 6, dis-

tinct from 3, such that 6 lies on line a. Let us assume i(6,b).

By axiom 1.3, since lines a and b have two common points (3 and
6), then, lines a and b are identical.
Conradiction: non_identical(a,b) and identical(a,b)!

Let us assume non_i(6,h).

By axiom 1.1, there exists a point 14, distinct from 3, such that 3
lies on line b.

There must be non_dentical(6,14) (oposite assumtion is obviously in
contradiction to other assumtions).

Since points 3 and 14 lie on line b and point 6 doesn’t lie on line b,
then, points 3, 6 and 14 are non_collinear.

Points 3, 6 and 14 are non_collinear, thus point 14 doesn’t lie on line
a.

By axiom 1.2, there exists a line 26, such that 26 passes throu points
6 and 14.
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Points 6. 14 and 3 are non_collinear, so point 3 doesn’t lie on line 26.
By axiom 1.5, there exists a plane 30, such that points 3, 6 and 14
lie on plane 30.

By axiom 1.7, since points 3 and 6 lie on plane 30, line a lie on plane
30.

By axiom 1.7, since points 3 and 14 lie on plane 30, line b lie on
plane 30.

Therefore there exists the plane we are seeking (plane 30).

Let us prove that this is only one such plane.

Let us assume the opposite - there exists one more such plane (36),
planes 30 and 36 are non identical and let us this is in contradiction.
Point 3 lies on line a and line a lies on plane 36, thus point 3 lies on
plane 36.

Point 6 lies on line a and line a lies on plane 36, thus point 6 lies on
plane 36.

Since point 14 lies ou line b and line b lies on plane 36, thus point
14 lies on plane 36.

By axiom 1.7, since points 6 and 14 lie on plane 30, thus line 26 lie
on plane 30.

There must be non_ identical(a,26) (opposite assumtion is obviously
in contradiction to other assumtions).

There must be non_identical(b,26) (opposite assumtion is obviously
in contradiction to other assumtions).

By axiom 1.6, since planes 30 and 36 have three commom non_colli-
near points (points 3. (6 and 14), planes 30 and 36 are identical.
Conradiction: non_identical(30,36) and identical(30,36)!

Therefore p(30),e(a,30,31),e(h,30,35),unique(30), QED.

Exaple 2.
Theorem: Relation of coneruence is reflectiv one.

¥44% Buclid v4.00 - Geometry Theorems Prover *¥*#**

Enter list of assmptions:
[t(a),t(h),nonidentical(a.b)].
Enter conclusions of the theorem:
c(a,b,a,b, ). '
By axiom 3.2, it holds c(a.b.b.,a).
By axiom 3.3, since ¢(a.b,b.a) and c(a,b,b,a), then ¢(b,a,b,a).
By axiom 3.2, it holds ¢(h.a.h,a).
By axiom 3.3, since ¢(b,a.a.h) and c(b,a,a,b), then c(a,b,a,b).
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Therefore, c(a.b,a.b.h), QED.

Example 3.

Theorem: Relation of non_itersection for lines lieing in plane is transitive
one.

¥ Euclid v4.00 - The geometry Theorems Prover ****#

Enter list of assumtions:
[p(alpha)](a).l(b).](¢), nonidentical(a,b), non_identical(a,c),
non_identical(b,c), i(a,alpha), i(b,alpha), i(c,alpha), non_intersect(a,b),
non_intersect(b,c)].

Enter conclusions of the theorem:
non_intersect(a.c._).

Let us assume intersect(a,c)

There exists point 16such that 16 lies on lines a and c.

Since point 16 lies on line a and line a lies on plane alpha, then, point
16 lies on plane alpha.

There must be non_i(16G,b) (oppoisite assumtion obviously is in a
contradiction with other assumtions).

By axiom 4.1, there exists at most one line, such that it lies on plane
alpha, passes throu point 16 and does not intersect line b, then lines
a and ¢ are identical.

Contradiction: identical(a,c) and non_identical(a,c)!

Let us assume non_intersect(a,c).

Therefore, non_intersect(a,c,24), QED.

UNIVERSITY OF BELGRADE, [FACULTY OF MATHEMATICS, STUDENTSKI TRG
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AUTOMATIC THEOREM PROVING IN FIELD THEORY
USING QUANTIFIER ELIMINATION

\

Aleksandar Jovanovié¢ and Zarko Mijajlovié

ABSTRACT. In this paper we describe a new method of elimination of quan-
tifiers for the theories of aluebraically closed fields and theory of ordered real
closed fields which may Lo used for the theorem provers for these theories.
The method is bised on the properties of resultants of polynomials.

1. Introduction

One could say that matlematics was introduced in logic by Tarski and
Godel while for Abraham Robinson and A. Malcev could be said that they
introduced logic in matheniatics. Namely, today probably most important
applications of logic in other parts of mathematics (nonstandard analysis and
model-theoretic algebra) originate in work of A. Robinson. First contribu-
tions of this kind in algebra were given by A. Malcev in 1936. The Robinson’s
solution of Seventeenth Hilbert problem by methods of mathematical logic,
more precisely methods of imodel theory, represents an important contribu-
tion to the model-theoretic algebra. The solution is based on the method
of elimination of quantifiers and notion of model completeness, the model-
theoretic version of the elimination of quantifiers. Beside, this notion can be
understood as a transfer principle, which is of significant importance for the
applications in algebra. '

Definition 1. A theory T in the first order predicate calculus admits elim-
ination of quantifiers if for every formula @ or T there is a formula ¥ in the
language of T', without quantifiers such that: T F @& .

Let us remind that the following theorem is basic for the model theoretic
solution of the seventeenth Hilbert’s problem.

We wish to thank to Professor Albert Dragalin for nseful comments and remarks.
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Theorem 1. (A. Tarski, 1948) Theory of ordered real closed fields admits
elimination of quantifiers.

Theories which admit the elimination of quantifiers have this interesting
property: .
Every theory which admils climinations of quantifiers is model complete.
In order to explain this notion, suppose that 7' is any first order theory
in the language L. Let A and B be any models (i.e. operational-relational
structures) of L. Model A is an elementary submodel of model B, or B is
an elementary extension of A if the following conditions are satisfied.
1. A is a submodel of B.
2. For every formula ¢(&) of L and every @ € A,

A | p(a) if and only if B  ¢(a).
The fact that A is an elementary submodel of B we denote by A<B.

Definition 2. Theory T is model complete iff for any two models A and B
of theory T if A is a submodel of B then A is an elementary submodel of
B.

2. Quantifier elimination for the
theory of algebraically closed fields

The axioms of the theory of algebraically closed fields are the axioms for
fields and the following set of formulas, expressing that every polynomial
of degree > 1 has a root. Let T be the field theory and T* the theory of
algebraically closed fields. For example. the fields of complex numbers and
algebraic numbers are models of the theory 7*.

Examples of quantifier elimination for theory T are known for long time
in classical algebra. One of the best known, which will be used here is the
Resultant Theorem.

Definition 3. Let a(x) = Eigm a;xt, b(x) = ngn 29 be complex polyno-
mials. The resultant of polynomials ¢ and b is the determinant

thy @1 ..o Giw 0 ... 0O

O g @1 oo Wy ... 0

Res(a, b) = () vaw QY @1 ees G
B n (}() I’J] Y osnee bn 0' ‘e 0
0 by by ... b, ... 0

0 S bn bl v e b,l
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Hence, Res(a, b) is the 1 + n-degree determinant, where m and n are the
degrees of polynomials @ and b respectively. The main property of resultant
is given in the following theorem.

Theorem 2. The compler polynomials a and b have a common root in the
field of complex numbers C iff Res(a,b) = 0.

In other words, if @ and b are polynomials of degrees m and n respectively,
then

(1) (Fz)(a(z) = 0ADb(z) = 0) < Res(a,b) =0

The resultant of two polvnomials in any field can be defined in the same
way, thus within the theory T.

Let a(z) = ¥m + Ym—1o + ...+ yor™, blx) = 24 + zp12 + ... + 202"
be polynomials, where ;.. .. . Unis 205 - -+ 5 2y are variables. Define polyno-
mials ag(z) = a(z), a1(x) = g + ...y12" 7" @ (x) = Y and similarly
polynomials b;(z). Then, by Theorem 2, we have

(dz)(a{z) = 0 A b(x) =0) &
\/ (deg(ai) =m — i Adeg(b;) =n— jARes(a;,b;) = 0) v

E<m
1<n
/\(‘.',', =0Az; =0}
(2) . i
\/ (y():[)/\.../\‘q,,, :OAj}i#UAZ()IOA...AZ_i_I = 0A
< m
1<n

z; # 0 A Res(ag, b;) = 0) v \(yi =04z =0).

V]

Clonsider other two simple quantifier elimination cases. Since every al-
gebraically closed field is infinite (roots of the polynomial (z — zo)(z —
z1)...(x —x,)+ 1 are different from wq,... ,,), for the polynomial a(z) =
> yiz' we have

(3) (Fala(x) £ 0) Sy A0V ... Vy, #0.
Now, let us show that quantifier elimination for the formula
(4) (o) (a(x) = 0 A D(x) £ 0).

is reduced to the case (2). I'irst note that b(z) # 0 < (Jy)(yb(z) - 1=0)
and. that y is a factor of every member of the polynomial yb(x) — 1, except
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in the free member. If we select the variable y so it is not a variable of the
formula a(2) = 0 A b(2) £ 0, then

(3z)(a(z) =0Ab(x) #0) < (Fy)(Iz)(a(z) = 0 A yb(z) — 1 = 0).

By (2), formula (32)(a(x) = 0A yb(z) — 1 = 0) is equivalent to the
disjunction ¢q V ...V . which is quantifier free, and each of the formulas
@i, J < k is of the form

Yo=0A.AYi-1 =0Ayi ZOAy #0A 2y =0A ... Azj1y = 0N
zjy # 0 A Res(a, ) = 0.

for a polynomial b;. Since 31V, ¢; & V32 is a valid formula, it is sufficient
to eliminate quantifiers of the formula 3ye;. Now, observe that the following
sentences are true in the field theory:

1° 3y(y = 0 A (y)) & h(0),

2° dy(y = 0 A ) & o0, if g does not oceur in .

3°zy#£0z£0Ay #£0,

4° Jy(zy =0AP) < (- =0ATyy)VIy(y =0 A1), if zis a variable
different from y.

Therefore, it will suffice 1o eliminate existential quantifier of the formula
(Fy)(y # 0 A Res(a;, b)) = 0),

i.e. formula of the form (3y)(y # 0 Am(y) = 0) where m(y) is a polynomial.
Let m(y) = mo + my + ...+ muy*. Then the following is obvious.

(Ay)y #0Am(y) =0) < \/(mi #0Am; #0).

i<y

Now we consider the general case of quantifier elimination in the theory
T*. Let ¢ be any formula of the theory T. It is equivalent to a formula

(Qra)...(Quan)th
in the prenex normal form, where  is quantifier free. Using the equivalence
(Va)o(a) & —~(Ja)-a(x),

and the fact that the quantifier elimination for ¢ is done in the same way
as for ¢, we may assume that (), is the existential quantifier.
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Further, by the theorem on the disjunctive normal form, there are formu-
las ¥y, ..., such that ¢ < ¢ V...V, and each formula 1; is a conjunc-
tion of formulas of the forn u = 0, v # 0, since every algebraic expression
of T is equal to a polynomial. Since vy #0A ...v # 0 & v102... 0 0
we may suppose that every disjunct v; is of the form

a1 =0A...A@, =0AD#£0.

Using (valid formula) (3:)\/, i & V;(32)v; it follows that it is sufficient
to eliminate quantifiers for (ormulas of the form

(5) (Fa)ay, =0A...Aaym =0AbF£D0)

Let us denote by # the formula (5). Now we describe the recursive pro-
cedure of the quantifier elinination for #. Let Ajz™ be the highest degree

member of the polynomial v (). 7= 1.....m,and let ng = m+ > ni. We
shall determine the formulas 8, and 6, of the form (5) such that 6 < 6; V 6,
and ng, ,ng, < ng if ng > 1 and m > 2.

First suppose that ny = (. Then
o a =0A(de)as=0A...Aay, =0Ab#£D0).

So, assume that ny > 0 and m > 1. We can also suppose that ny < nq. Let
al = Agay — Ma™ T "ay. al = ay — Aqgr', Then

B (A =0ATa) e, =0Ady=0A...Aa, =0Ab#0))A
(A Z0A (Fa)(e) =0Aay =0A ... Aay, =0Ab#0)).

Now it is clear that for #; we can choose the first disjunct and for f, the
second disjunct of the right ide of this equivalence. In this way, the recursive
procedure of the quantifier climination is defined which reduces the formula
to the cases (2) and (3) whose solutions are described above.

Now, we can derive few corollaries for the theory of algebraically closed

fields T™.

1. Let ¢ be a sentence of the field theory and let ¥ be the quantifier free
formula such that 7= F ¢ < 1. Then ¢ is variable free. Since the language
of the field theory is {+.-.0. 1}, it is clear that for ' we can take a Boolean
combination of formulas of the form #» = 0, where n. = 14...+1 (n times). If
Piy. .., pi are all prime factors of n then 1T*Fu=0&p =0V...Vpi =
0. Further, for a formula - of 7% and distinct primes p, ¢ we have:

I* T*Ep=0=kg#0 2T*Fp=0Vqg#0& q#0,
T kp=0V(p£0rp)&p=0Vey,
4° p=0Ag¢=0is inconsistent with T
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Using DNF and the above listed properties, we see that T* P & Y
where ' is true, false, or one of the formulas:

™ :0\/]’)2 :OV...V]J;_. :U,
finite disjunction of formulas of the form nFOANG=0A...q=0,

where py,p2, ..., Pry g1y o, ... ¢ are distinct primes. As for a prime g in
any field F of finite characteristic holds

9# 0% \/ p=0,
P#Y
it follows that all complete extensions of theory T* are the theories of the
form T, = T* U {p = 0}, p is prime, (theories of algebraically closed fields
of the characteristic p), and T, = T* U {p1 #0,p2 # 0,p3 # 0,...}, p; are
primes, (the theory of algebraically closed fields of the characteristic 0).

2. We have just described all complete extensions of T*, and we see that
there are countable many of them, and all of them can be listed in an effective
and uniform way. Therefore, see e.g. Theorem 2.4.15, p. 57, [Mijajlovié
1987], the theory of algebraically closed fields is decidable. Let us remind
the reader that the field theory is not decidable.

3. Real closed fields

Artin-Schreier theory of real fields is used for the solution of seventeenth
Hilbert’s problem in the algebraic way. Beside it has applications in the
other parts of mathematics. especially in algebraic geometry, as in Hilbert’s
the proof of Nullstellensatz. and nonstandard analysis. We note that every
model of nonstandard analvsis is a real algebraically closed field. On the
other side, we used elements of this theory in the development of an algorithm
for quantifier elimination for the theory of ordered real closed fields.

Sturm’s algorithm

The quantifier elimination for the theory of algebraically closed fields can
be done in somewhat another way. Let F be an algebraically closed field
and let f and g be polynomials over F in the variable z. If f and g have a
common root a, then the greatest common divisor of polynomials f and g
is of degree > 1 (since x — a divides both f and g). Thus

(Fz)(f(x) =0A g(x) = 0) & degree GCD(f,g) > 1.

The GCD(f,g) can be found bu use of the Euclid algorithm. For given
polynomials f and g the algorithm ends in finally many steps, because its
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length depends essentially ouly on the degrees of f and g. Hence, we can
easily see that this algorithim is described with the quantifier free formula,
ie. if

f=qg+ma, g =ma+ms, ma=qz3ma+ Mg,...,
(1) Mg = G 1My_1 + My,  Dhi—q = iy and
deg(f) > deg(g) > deg(ma) > ... > deg(m;),

then
Fz)(f(x)=0Ag(z)=0) < f=qyg+miA...Ami_y =gmi Az #0,

where 2 is the coefficient of the highest degree of variable  in m;. Note that
the right side of this equivalence is quantifier free. The other details of the
proof are the same as in Section 2.

The method of the quantifier elimination for the theory of ordered real
closed fields is similar to the previous procedure for algebraically closed fields.
In fact, the procedure for the ordered real closed fields can be built on
Sturm’s algorithm in the way the above described algorithm is using the
Euclid algorithm.

Sturm’s Theorem. Lct p( ) be a real polynomial and let po,pr, ... ,pr be
the sequence of real polynoiials defined by:

L. po =p.

2. p1 = p', where p' is the first derivation of p.

3. For all ¢, 0 < ¢ < 7, there is a polynomial ¢ such that p;_, =
Pigi — pis1, where po # 0 and deg(pit1) < deg(p;). In other words
gi is the quotient, —p; 4y is the reminder when p;_; is divide by p;.

4. pr—1 = Prqr-

Let d(a) be the number of the sign changes in the sequence po(a), ... , pr(a)
(zeroes are ignored). Let a and b be real numbers which are not roots of p
and let @ < b. Then the nuwniber of roots of p (not counting the multiplicity
of a root) in the interval [a.h] is equal to d(a) — d(b).

Now we give an illustration of Sturm’s theorem application to the quan-
tifier elimination on the example of a formula of the theory of ordered fields.
Applying Sturmm’s theorem we get at once

(Fz)(a < = A e < bApla)=0)& da)> db).

Besides, similarly as for the formula (1), using Sturm’s theorem, we can
find quantifier free formulas ¢ such that d(a) > d(b) < 9. In this way the
quantifier is eliminated frou the formula (3z)(e <z <b A p(z)=0).
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Further reduction is obtained similarly to the procedure of algebraically
closed fields. In this reduction the following equivalence is useful:
pr=0A...Ap, :04:>p'i)+...-|—pfL =0

(note that this formula is not a theorem of the theory of algebraically closed
fields). :
Also, one can obtain in a similar way the following for the theary T of
ordered real closed fields:

. T is complete,

2. T is decidable.

4. Programming implementation

A group of students under our supervision implemented a prover for the
theory of algebraically closed fields in the standard programming language
('. The program is based on the procedures described in Section 2. It is
running well on personal computers quickly solving problems stated in the
language of the field theory. The input formula is proved or refuted by
reducing it to a quantifier {ree formula.

The processing of sentences with more than a few quantifiers would be
greatly accelerated with the introduction of fast calculators for long and
very long disjunctive normal forms, and fast DNF transformers, which are
suitable for parallelisation.

The prover for ordered real closed fields based on Sturm’s theorem is being
integrated. The plan is to optimize, accelerate and collect these procedures
in one Elementary Mathematics problem solver, which might be expanded
to other applications as well.

Let us mention just one possible application, namely we can apply the
method of elimination of quantifiers in mathematical programming. Pro-
gramming problem with algebraic constraints in several variables z4,... , z,

F—omi; p =05 =0 @>0,....,0.>0

where f, pi,...,Pr.q1,... . ¢y are polynomials in variables x4, ... ,z,, with
rational coeflicients, is easily stated in the theory of ordered fields as follows:

Jay...xn(y = flar,. a0)A

P&ty oo 3 Tn ) = ON . AP E 40 o y85) = DA

il e o 5 By} 32 BN o s Ay (8895 w558 ) 25 QYN

NEL oo Tl PIE o o 8] = O o o BR(BY w00 5 2 )= 0N
GT1ye0Tn) > 0A A @ulT1, ... y20) > 0=

¥ < f(Z1yee o viin)))
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Eliminating quantifiers from the above formula, we obtain a formula ¥ (y)
of the theory of ordered ficlds in the single variable y. This formula is a
finite disjunction of the formulas of the formy > r,y <r,y =71, where
r is a rational number. Obviously this is a solution of the above stated
mathematical programming problem. Observe that we, in fact, proved that
problem of finding of solutions of mathematical programming problems with
polynomial constraints is decidable.

5. Bibliographical and other remarks

First and most important step in the solution of the seventeenth Hilbert’s
problem was given in [Artin 1927]. Artin-Schreir theory of formally real
fields is presented in detail in [Lang 1965]. The proof of Hilbert’s basis
theorem can be found in [Artin 1955]. Solution of Hilbert’s seventeenth
problem with described metliods of mathematical logic is given in [Robinson
1955]. Elimination of quantifiers in the theory of algebraically closed fields
and in the theory of ordercd real closed fields with some detailed analysis
evolving from these procedires. could be found in [Kreisel, Krivine 1971].
Here presented procedure of elimination of quantifiers differs from the last
source, e.g. where we use tlie resultant of polynomials, in [Kreisel, Krivine
1971] one lemma which relates to divisibility of polynomials is used.

The proof of the thearen on resultant of polynomials could be found in
any book on higher algebra. for example in [Kurepa 1965].

Complete solution of Hilbert’s seventeenth problem based on Logic can
be found in [Cherlin 1976] as well,

Problem of quantifier eliinination can be treated in model theory in other
way, too. In the other approach the diagrams of models, saturated models
and elementary embedding have special importance. This approach is more
complex but results are deeper, see ([Sacks 1972]).
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O 3AJIAYUE CUHTE3A NJII ABTOMATOB
B OIIHOM KJIACCE JIABUPUHTOB

. Knnuoapnma u . ¥Yuraymand

PE3IOME. B pabote maerca Goaee »({heKTUBHBIA aaropuT™ obxoga ueM
Te, kotopele maubl B panotax [1], [2] u [3]. Takwke yaydmens! oleHKM
BpeMeHr 06X0/1a U KoM eCTRA COCTOAHMI yHUBEPCAIbHBIX 06X0IUMKOB
NabUPUHTOB, pZI.CCMa'l‘pt'l'Hat‘Mblx B Tex paboTax.

Bee pesysibTaThl W NOHNTHS, KOTOpble He OPUBOMATCA 3/€Ch, MOKHO
mafiTu B pabote [3].

Mycts L — HeKOTOpPbLIi KOHeUHBIA MI0CKUHA MO3aldHbIA TaOUPUHT.
Ilns mio6oii KoBeunoit obiacT A € ar(L) obosnaunm depes V(A) MHO-
JKECTBO BCeX BePUIMH M3 [. KOTOpbIe JekaT Ha rpaHMIe 5TOH 0bJIacTH.
Yucno

de(L) = max {diam V(A) | A koneuHas 06JacTh U3 ar(L)}

Haz0BeM yurausneckum ducrempor tabupunta L. O6o3HauuM M1 Ji0-
Goro r € Rt uwepes L¥:(r) Knacc BeeX MIOCKAX KOHEYHBIX MO3aMIHBIX
nabupuuToB, Takux, 4ro de(L) < r. Heno, aTo LB(r)=0mprn 0<r <
V2.

[lycTh T — HEKOTOpas LMKIMYEcKas NONCTAHOBKA MHOMKeCTBa .
OnpenenuMm ¢yHKIAW U; DT — N, cneaywmmM cnocoboMm:

a) 7r(w) =0, ecim w € D;

6) mia moboro cinoba ww' € DT uMeeT MecTO

b fio) = v (ww'), | ecm v (ww') > 0,
T vo(ww') + 3 B NPOTHBHOM CIy4ae;

B) Ur(@) = Pr(wiwz) +3 - +3 Pr(wp—1wy) Ana nwboro @ = wy ... Wk €
Dt, k> 2.
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Teopema 1. /Jlas acaxoco r € R, » > 2, CYWECTIBYEM UHUYUAABNBLY ae-
momam Uor(r), cuasmo odrodsuutl xaaee “or(7), npu smom wucao cocmo-
anutl Aor(r) ne boavue ('r, a apema obroda aabupunma ¢ n sepuunamu
u3 9Mmozo Kaacca ne boaviwe C'rin, 20e ¢ u (' — xonemanma,

BosbMmem npoussosbmbiit BEKTOP ' B MIOCKOCTH. BosbMeMm Takke
HEKOTOPYIO MPAMYI0 | Bep rHEAILAYIO Ha 7. [lyets v — mekoropas To-
“Ka B muockocTH. Toraa vepes py(v) oGosnaumm HOPMAJIbHYIO IPOeKIl-
VIO TOYKM v Ha npaAMyto . ScHo, uTo nns mo6ol koHeurod obaactu A
ancno ry(A) = diam {py(v)|v € V(A)} me sasucut or 1. Mox U~ PUHOH
Jabupunra L noammaem uucjio

wdg(L) = max {ris(A) | A koBeuHas oBnacTh U3 ar(L)}.

Ob6osnaumm ans moboro r € Rt depes L3(r) Kinace Bcex MIOCKHX
KOHEYHBIX MO3aMYHBIX JTADUPUHTOB, TAKUX, YTO wdiz(L) < r. flcro, ecnn
s Bekotoporo r € RT umeer mecro de(L) < 7, 10 wde(L) < [vr? —1].
Ilo Toro Kak mokamem TeopeMmy 1 moKameM clleayronryio Teopemy.

Teopema 2. /las awboeo m € N cyuwecmsyem ynusepcanvuvili obroduur
xaacca Lg'(m), y komopoeo 48m + 52 coemosnuii u Komopuil Awboli aabu-
purm uz L2 (m) ¢ n sepuiun obrodum sa spems ne boavwe 3n® + 2n — 2,

Aoxazameavemeo. Ioctpoum asToMart Ue(m) = (A,Q, B, ¢, v, qn), 06-
XOIAIUA Bee NTaBGUPUHTH M3 Klacca LY (m) cnenyonuM cnocobom. B
KadgecTse MHOMECTBA COCTOANMNA () BO3bMEeM MHOMKECTBO

{(”11(121“33a41”5)| —m < < 0.0 < 45 S 21 1 S (3 S 2$
@4 € {s,n},a; € {e,n,w,s}} U Qg -

QyBKIMU © U 1P ompemesnM cnenyomwnMm cnoocobom. Ha MBomkecTBe
Qg+ X A BBenmem npemmurar P caenyrommM cuocobom: P(g,a) = 1, econm
yclIoBUe

{W,S} (.Z aV (f} # (n N "/’Q[+(q1“) 7£ S)

BhINOMHEHO, U P(¢,a) = 0 n npotusROM cayuqae. [Iycts ¢ € Q m a C D.
Torpa, ecnm g € Qg+ v Pg.a) = 1, 1o nonowum q,a) = Yo+ (g,a) n
©(g,a) = wo4(q,a). Ecan q € W+ m P(g,a) = 0, To nonomxmum plg,a) =
(0,1,1,a4,8) u ¥(q,a) = 0, rme a4 = s ecan Y¥(gq,a) = s, a ag = n,
eclid ¢ = q,. BBemem nns mo6oro a € A otobpaxerus ] : D — D nu
62 tQ\Qg+ — Q, TakuM cnocobom, uTo

ﬂl(w) _Jw. el w € a,
‘ ol (w) B NIPOTUBHOM ClyYae
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) q. ecJin pslq) € a,
0.(q) = {

qﬂf(]!a(ff)) B OPOTUBHOM cllyYae.

Ecin ¢ € Qgpq» T.€. g ABISETCS COCTOSHUCM BUIA (e, 2, 03, 4, 05), TO
OpeanoaoXaM, aT1o L () BeneT cebsa corjacuo cjaedyolMM TpaBuiaM
(MoBoe BEMAKeNPUBEIHHOS [1PABAIIO BLIMOMAASTCA TOJLKO B TOM ClIyUae,
eCJM BBIMOMHEHO COOTBCTC [BYIOIIee UL ATOTO TPAaBUIIA YCJIOBUE):

1. Ecom ¢ = (0,2,1./4,.n), To nyers @(g,a) = 62[(=1,2,2,,s)] n
(g, a) = 6(s).

2. Eenn ¢ = (0,0.1,4,.1) u e & a, o p(q,a) = 2[(=1,1,2,84,8)]
¥(g.a) = B1(s).

3. Ecov ¢ = (0,0,2, /3. 1), TO DONOKAM, UTO

ol a) _ o ecau fly = s,
T e r;,l @), ecau iy =n,

%1
g, ) = Iﬁ‘ll(s). ecnu Iy = s,

| e (quea),  ecmm By = .

4. Ecim ¢ = (0,32,1./3;.e) u s € a, 10 p(q,a) = 02[(-1,2,1,54,8)] u
V(g a) = 01(s).

5. BEeang = (0,1, 1. 3. ¢) na C {w.n}, 1o BosbMeM ¢(q, a) = 62((0,0,2,
By, w)] u (g, a) = O (w).

6. Ecm ¢ = (0,1, 1./4,. 1), To BO3bMEM @©(q, @)
(g,a) = 0} (s).

7. Ecmm g = (0,1,2, 4. 1), To DOOOKAM, YTO

02((-1,2,2,84,8)] m

plg,a) = f(/f*'(s)- ecan /3y = m,
' 1 @+ (- @), ecim 1y = s,
" [ i
, _ ] 8,(s), ecsin 34 = n,
Vg, a) = { 94 (¢u, @), ecan A =8

8. Ecim He UMeeT MecTo HU OJHO W3 NPeIbLIYIIAX YCIOBU 1 aBTOMAT
A (m) Ha.XOIIPlT(ﬂ B coctosann ¢ = (1,32, A3, B4, 35 ), TO OH NepexoIuT B
cocroanue (31,35, 44, 84, 5L), roe 4, 1 < i <5, onpenesiero clenyromnm
obpa3zoMm. Hpe}ﬁﬂe Beero 1y = 34 ¥ 35 = 3. Ecamn

4=+ (-11[.¢/:Q1(m)((m_5, a)] > —m,
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To 3] = ', rae
l, ecniv w = n,
ch(w)=4¢ =1, eciu w = s,
0. ecsim w = e, w,0

uA(P3) = AT, ecom By = 2, a U(P3) = U™, ecau 3 = l; B npoTuBHOM
cay4dae

(!i;'ﬂfg?f[j:;”ﬂ’!lﬂ'{)} - (_"”*—l'(‘h(ﬁ.’))ﬂﬁ{-j;”."zﬂﬁ*ﬁ[_js) 1 'd’((f-a“):B—En

rie
2, ecan fIs = w,

B =240, ecnu B; = s,

L, ecom /35

Il
Ic
=

Hanee, (3t = -z[rgl(f_i_q)(qus_,fa) n(q,a) = w,bmwl‘)(qﬁ&,a). 3Havenwue (I, paBHO

B2 +3 l’smm“)(f’js "/’Ql(fial((mm“))a

ruie
+, ecqm ay = 2,
Slll(rr;;) =

—, ecqn ag = .

Cmblen napaMeTpoB ay, ay, as, 04 U a5 GyneT caenyommM. DyHKIMM ©
U 1 onpenesieHbl TakMM 0BPazoM, UTo noseieHMe asTomata AM(m) B
HEKOTOPOM OPOM3BOILHOM HabupuaTe L knacca L£2(m) 6yner pa3buro
KaK Obl Ha aBe dacTH. Astomar UAM(m) Bemer ceba kak aBToMar AT
NOKa He OKakeTCA B HeKOTOPOH KBasvMocoOeHHON BepliMHe v, U ¢ = ¢y
umn 1(q,[v]) = s. Ecam nocnemuee umeet Mecto, To A" (m) nepexomuTt
B cocrosnue sBuaa (0,1, 1. a4, a5) ¥ uccnegyer sompoc, sBasieTcs u
BepummnHa v ocobeHnold wiu ner. [loka oB »To nesaeT oo HaXOOUTCA
B COCTOSAHMAX BHIA (cvp, g, (3, y,5) U BefeT cebsi, ecld He HMeer
MeCTO HeKOTODbLIA W3 BhINIe JaHHLIX caydaeB |-G, kak astomat A(as),
rae A(as) =AY, ecam a3 = 2, a WUlay) = U™, ecin az = 1; napameTp as
obecnevnBaeT Takyio paboty apToMata AT (m) Uz pabotw [3] cremyer,
YTO 3a 3TO BpeMs aBToMaT LD'(10) ABMNKeTcs BOKPYT OMHOR M TOM ke
caMoi obslacTH, Ha TpaHuIe KOTOPOR JeXMT BepimmHa v. Ilapamerp
Q] TaKOH, YTO ecau aBroMaT AP (m) oKaszalcs Ha HEKOTOPOH BepluHe
v', T0 a; = pa(v) — pa(v’). MapamerpoMm ay aBTOMAT AP (m) usmepser,
Ha CKOJBKO OH MOBOPavUBAeTCHA, MeHACT HalpaBjieHWe, NBUTAACh BAOIL
IPHULLI HeKOTOpol objacru. Jlerko ybeamrbes, HampuMmep, UTO eciu
B TeueHMEe HEKOTOPOr0 BPeMeHM, [0 MOMeHTa t, Koraa aBromMat AM(m)
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okazaJicsi B v/, mapaMeTp (4 He MenscA ¥ az = | (aHalorgoe yTpepikie-
HWAe UMeeT MeCTO U JUIS vy = 2), To B cilydae Korfa of = 0,0y =2uaf =
N BBIMOJHEHO, Pa(v) = p2(0') u py(v) < p1(v'), a B cayuae koraa ay = 0,
ay =0umaf =n — py(v) = pa(v') upi(v') < pr(w), rae (af, ah, ag, af, ag)
— cocrtoaare apTomara 2" (ne) B momenTe t. [lapamMerpom o4 nasHHBIA
aBTOMAT 3alOMWHAeT CBOC COCTONHME B MOMEHT, KOTJa MocleTHUA pas
OKa3alJicAad Ha KBEL.'_#H(H'()()PHII()E;’I BepIIIWHE.

fAcro, 9To M3 HAHHOTO OHMcaHud aBToMaTa AL () caenyer, 4YTo BMe-
CTO TOTO, YTOBBl ABUIaThLes 10 JabDUpUATY L, OB OBUMKeTcd Kak Dbl
no nabupuaty Ct(L). Ho torma noaydaem uz [3], 4To »TOT aBTOMAT
ABIACTCA YHMBEPCAJLHLIM ODXOJUMKOM Ui KJlacca BeeX JaDMPHUHTOB
u3 Kkaacca LHp(m).

Ecan nabupusat L conepsut n sepliidd, To L He MoKeT uMeTh HoJbiie
n/2 KBa3noCODEHHLIX BepIIAN (KOJMUYeCTRO KBa3sMOCODEHHBIX BepIIMH v
PaBHO KoMUUecTBY Bepiimi suia ve). fHcero, aro [V(A)| < n nna noboi
KoHeunol obnactn A € ar(/). W3 mamHoro aaroputma obxona cle-
LyeT, 9TO aBTOMAT 3a/le DA UBACTC Y KarkIol KBa3MocoDeHHON BepIHbL
(ABUTasich BOKPYT COOTBOTCTRY I0MEHR 0bnacTn) na speMs He DoJbire 3n.
YUuThBag TO, UTO Kakly 0 KBAtMOCODEHHYIO BepIIMHY NpoBepsieT Ha
0coBeHOCTL IBa pasza, To Ha »To yxoauT spems 3n®. B rpade Ct(L)
pepmmn n+ |ar(L)| — 1. $lcno. uro s L we mensme |ar(L)| — 1 ocobeHnbIx
BepimrH. Bpemsi, KOTopoe yXoAdT Ha 00X0J 9TUX BepUIMH YUTeHO BbIlIe
Npy OlleHKe BpeMeHd oOXo/la KBazuocobeHHbIX Bepumi. Ha camom nene
OHO BXOJMUT B »Ty CyMMy yaHokennoe #a 2. Apyroil ¢cTOpoHLI Ha
obxon mepesa ¢ n + |ar([)| — | BepumpaMu yxoamT Bpems He Holbile
2(n 4+ |ar(L)] = 2). W3 Beero ckazanoro noiydaeTcs, 4To Bpems obxona
}]a.BPI})HHTa L Be Gombme 3n® 4 2n — 2.

lyers £ — wekotophil kiace nabupuntos. Yepes Char(L) obos-
gauum urcsio min {Qg |2 € Un(L)}: ecum Un(L) = (, To noJoKAM,
yro Char(£) = oc. Toraa pesynnrar TeopeMmbl 2. MoxkeM nepedop-

MYJHPOBATL CIAIYIONNAM O0CODOM.

Teopema 3. Hamcem mccino cacdyouad oyenna
Char( £2 () < 48m 4+ 52
dava awbozo m € N.

OcraeTcss OTKPBITBIM BOOPOC YJYUIIeHUsA AaHHOR ONeHKH.

Hoxazameavemso meopeatn. 1. To uro y apTomata Agp(r) #He Gonbue
C'r cOCTOAHMM clegyeT Wi TeopeMbl 2. (OcTanoch eme OleHUTh Bpems
obxona. IycTh nnockuii Mozaudnblil TabUPUAT L cONep:KUT 1 BepUIH.
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Acro, uro [V(A)| < [r]* ans noboit koreunolt oGnactn A € ar(L). Ho
TOTLa, Kak ¥ BbIIe, DONydacM, U4TO Bpems obxoma He Gonbue 3rin +
2n — 2, T.e. NaHHAA B TepeMe OoeHKA UMeeT MeCTO.

[ocTpoernLl Boe apToMaT He OCTaHABIMBaeTCs Docae obxomga Ja-
Gupmara. Ha sonpoc, cymecrsyer siu 4BTOMAT, KOTOPBIH 0O6X0MUT Mro-
Ooit nabupuET M3 Kaacca LI(m) m ocrapaBIMBaeTes nocie obxona,
MOMHO OTBETHTE OTPULATCIRAO, HOCKOJLKY YiKe B cllyuae KIacca Beex
KOHEUHBIX MAXMaTHBIX NalUPUETOB 63 KOHOYHRIX OBID TaKOW aBTOMAT
HE CYLIeCTBYyeT,

[Inockumit MO3aUUHBIX TABKHPUET Ba3BLIBACTCS k—z-orparuuennsv (k—
Y-OTPAHUYCHHBLIM ), €CJIM O NOKUT MEKIY ABYMs napajjleJbHbIMA ] s-
MBIMH, KOTOPbIE Dacnolokerl Ha pacctosauu k € N ogna ot Apyrou u
HapageslibHbl 0cu @ (ocu y). OBosgauyum Kiace Beex b — r-OrpaHUYeH-
HBIX MO3AMYHBIX JaDUPUHTOB uepes L'ﬁ(!.:), a BCexX k — y-orpaHUYeHHBIX
MO3AMTHLIX JaDUPUETOB - — Yepes L‘i”l(k).

Cuencrsue 1. /flas acer b € N umcem Meemo

Char(Ljj(k)) < 48k + 52, (fhar(ﬁi’l(k)) < 48k + 52.

BekTop 7 B NI0CKOCTH HA3OREM HeSOURCTOHEDIM, €CIM I HEKOTO-
peiX [,m € Z umeer mecTo 7 = {1 + mj. Caenyomasn teopema sBasercs
obobmenrem Teopembl 2. Ona Buepsble n0KazaHa b [2]. 3nech naercs
Hoslee IPOCTOE U KOPOTKOE OKA3ATONLETRO.

Teopema 4. /[as awboeo d € RY u awhoeo YEAONUCACHNO20 BEXKMOPA
U cywecmsyem unuguaasint aamosam, ABAAOWNTCH YHUBEPCAABHBLM 0B-
zoduurom kaacca L2(d). y komoposo wucao cocmosnuti ne boavwe C'd, 2de
' — wonwemanma.

Hoxazameavemao. Myers 7 = mi + 1 nis HeKkoTopblX {,m € Z. Pacc-
MOTpUM ciydad, korga [ > 0 n m < 0. OcTadbHble clay4dyam pacc-
MATPRIBAIOTCA aBajloruunbiM obpasoM.  fleHo, uto m0bas KoHeuHoH
obnacth n3 ar(L) newuT 1 nekoTopoil nosoce WWpUELL d, Yy KOTOpo#n
TaHIeHC yria Hakjaosa pasen [/m. [Iyetn A — HeKOTODAA KOHedHas
obaacte w3 ar(L). Tosopum. gro sepuma v € V(A), v = (zo,v),
apagerca A-(L,m)-ocobennod. ecaw nonyunockoets =l/m(x —x9) + (y —
Yo) > 0, He COACPKUT oM OAHOH BePOTMHLL U3 MHOKecTBa V(A), u ecin
Ha mpAMod —I/m(x — @) + (4 — yo) = 0 nemur pepummHa v' € V(A),
o' = (2, 90), To 2f < 2g. Bepumma v € V(L) ssnsercs (1, m)-ocobennoti,
ecim cymectByer A € ar( L), takas. 94To v sABIASETCH A-(l,m)-ocobernoi
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BepIMHOA. 3aMeTum, UTo. ecau Hekotopos sepumna v € V(L) (I,m)-
ocoberras, 1o {w,s} C [¢v]. Torma. Acuo, uro (I,m)-ocobennyio Bepim-
MHY HaJ0 MCKATh CPeIM KiasnocoDeHHBIX BepIIMH.

JINUHBL TPOEKIMI BEKTOPOB € ¥ N Ha HOPMaJib [0J0CBL PaBHbl, COOT-
setcTserno, h/ml v mh/ml. llycrs

ml ) ml
AL = —, max {mh/mi lh/ml}n Xy = !—{—r{— max {mh/ml, h/ml}).
1 )

[Moctpoum apromat As(d) = (1. Q. B,o. ¥, qu). 0bXoAANMN Bee Jia-
GUPMHTLI M3 JAHHOTO Kiiacca TaDUPUHTON CJeAYIOMMM ClocoboM. B
KauecTBe MHOMKeCTBa COCTOMIMEA () BO3ZBMEM MHOOKECTBO

{(01,052,(1’3.0’4,![’5) l [.»\_3] ~ f1q S [/\1},() S (A5} g 2.] S x3 < 5,

wy € {s,n}, a5 € {e,n, w,s}} U Qg -

OyEKIMM © W 1) ONpesleuM ey I0IMM cnocobom.  Ilyers ¢ € @
ua C D. Torma, eciv ¢ € Quy ®u ecam nim {w,s} He ABIsAeTCA
MOMAMHOKCCTBOM MHOKECTHA . MU ¢ 7 qu ¥ P94 (q, a) #s, 10 P(g,a) =
'd’m+(([aa') n plg,a) = "Q[-v-[']’»”)- enm ¢ € QQL+1 {W,S} Ca, 1 q={(n
uma P(g,a) = s, 10 @(g,0) = (0.0,1,04,8) 1 ¥(¢g,a) = 0, rne ag = 8
ecmu t(g,a) = s, a (y — N, eCin ¢ = (n- Kak ¥ Bbllle BeneM s
NoBoro a € A otobpaenns 6 : D — D n 8} : Q\Qgy — €. Ecm
g ¢ Qs T-e. ¢ ABIACTCA COCTONHMEM BUIA (avy, g, (3, (g, 05), TO
npeanooxuM, 910 Ag(d) sejer ceba coraacto caelyoumm npaBUJIaM
(110606 HUAKeNPUBeACHHOC TPABAJIO BHIIOJIHACTCA TONLKO B TOM CJIyTae,
eCITM BBIMOJNHEHO COOTBOTC TBYIONCE U 9TOTO MPABMIA yCJIOBHAE):

l.EBemm oy >0, g =1 umn g =0, a3 =1
ar =nV(a; =eAs € ),
To @(q,a) = 04[(ar + ch(@; ), 52,2, 04,05 ) moap(g.a) = 0l (@), rme

[, ecau a; =eAay =2,
2. ecnn oy =nAag =1
0, ecan ay =eAway =0,
|, ecnum oy =nAay =2

2. Ecanw g = (0,0,2, /34, 1), 10 TOIOKUM, UTO

= qh‘j{sp ecJin r[jfl =8,
(’D(q" 4= { 9.‘2l+(r1'u~. ”‘}-: eCJIu ﬂd: -

|
B
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l(s), ©Cu [Iy = s,
(g, a) = {'r,’!QlJr(qu,u), ecsm 3y = n.
3. EBemm o = 0, g = 2, a3 = I, o = eus € a, 10 w(g,a) =
0*[(aq + ch(w), 1,2,34,w)] n 1(q,a) = Bfl(w).
4. Ecmm o = 0, ag = 0. g = 1, s = e nsEa To (qa) =

02[(e1 + ch(s), 1, 1, 4, s)] u Ylq.a) = 81 (s).
5. Ecim ¢ = (0,1,1, 4, e), To Bosbem elg,a) = 93-[((‘1](W)’ 1,2, /4, w)] n
¥(q,a) = 0} (w).

6. Eciu ¢ = (0,1,2,34,n), to LONOKUM, UTO

_ ) a91(s)s eciu Iy = n,
¢, a) = v
#l¢.¢) {‘PQH(‘“” ), ecau [y =s,

1(y Sl —
Wl e {H”.{SL eclu 34 = n,

U+ (gusa),  ecom By = s,

7. Ecin e MMeeT MecTo HM osHO U3 OpedbLOy U yCJIOBUHA, TO aB-
TOMAT Nepexonut B coctosuune (/3,3, 83, By, 35), roe 3;, 1 L1 < b,
Onpefesiero cienylomuM obpasom. Ipewkne Beero 4 = a4 u B3 = as.
Ecan

o =5 N
a =+ chthg  (qagy@)] > [Ag],
ey
To 3 = o', roe
[, ecin w = e,
=, ecom w = w,
ch(w) = ¢ m, ecnu w = n,
-1, eclld w = s,
0. ecaimw =0
v U(az) =AY, ecnm a3 = 2, a A(evy) =A™, ecot a3 = 1: B OPOTUBHOM
caydae

("fjin"j?vﬁf%ﬂ-hﬂﬁ) = Hi[('--tl ot (‘h(ﬁ!ﬁ}aﬁf- 2*“4165 )] Hu 1/’((]»“) = 931(65)1

rme

B

ecau g

[
=

=

ecnn 3 =

|
n
-

,_}H
By =
I, ecom /35 e,

Il

b

e [Ig

[
B
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Hanee, s = Py (Gees ) 1 (g a) = -aflgl(m](qu.,),rt). [MapameTp /3,
pasen '

oy 43 7" (g V(1) (Tevs» @)

rme

+. eCau vy 2,
sm(ay) =
—., ecau oy = 1.

CMBICT TapaMeTPOB iy, (1o, iy, (v U vy OYAeT aHATOTHYeH CMBICITY Tex
JKe mapaMeTpPoB B JOKaA3aTeILOTBE TeOPEeMbLL 2.

Kak 1 B Teopeme 2, nerko yvoemures, uto apromat Az(d) yaosiaeTBop-
AT YCIOBUAM HAHHOW Teoperbl. Foian nabupunt L U3 paccMaTpbiBae-
MOTO KJlacca COOePAKUT 1 RepUIMH, To BpeMsa oHXola Takoro JabUpHUHTA
MOMHO ONEeHUTh, KaK B JOKA3ATeILCTEe TeopeMbl 2, T.e. oHO He Dolbie
3n? 4+ 2n — 2. DTUM Teopema JoKasaHa.
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DISCRETE METHODS FOR VISUALIZING
FRACTAL SETS

Ljubisa M. Kocié

ABSTRACT. A short summary of some known discrete visualizig models of
fractal sets is given. A new algorithm, called graphical erosional algorithm,
for visualising fractal sets [rom R? is presented. Input parameters for the
algorithm are functions from a hyperbolic iterated system. Beside visnaliz-
ing, this algorithmn permits catimation of fractal dimension for a set being
visnalized.

1. Introduction

The set of points from R*. defined by § = {(z;95),0 = 1,...n0,7 =
Ly.oony, ngyny € N} will be referred as the picture support. Let P be an
arbitrary set such that 2 < Clard(P) < n.(€ N) and @ : 5 — P be any
mapping. Then P is called scf of colors and ¢ is color function. Under
discrete visualization of an arbitrary set A one assumes the map ¢ : A — .5,
with a given color function . The triple (¢,.5,¢) will be called a discrete
visual model of A.

Discrete visual models are important for processing information by com-
puter, especially when the plane set A has a complicated form, for example,
when it is a fractal set or a chaotic attractor, like those in Figure 1. Actually,
this figure illustrates orbits of two different dynamical systems. Namely, let
(X,d) be a metric space and [ : X — X be an arbitrary mapping. Then,
(X, f) is a dynamical systcmn. For any @g € X, the sequence {x; ;"z";’, such
that @;41 = f(a;) is called the orbit of the point xq. The limit of an orbit

This research was partly supporied by Science Fund of Serbia, grant number 0401F,
throngh Matematicki institut SAND
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FIGURE 1. A) NEURAL NETWORK AS FRACTAL SET; B) PENTAGONAL CHAOTIC
ATTRACTOR OF CHOSSAT-(GOLUBITSKY MAPPING

can be a set A in X which *altracts™ an orbit, so it is called attractor of
dynamical system. In fact, the attractor

A= lim

wa AEX,
H—tr

is a fixed point of the mapping f and it does not depend on zg. Interesting
attractors usually have noninteger Hausdorf dimension, wherefrom the term
“fractal” roots its name [5].

Example 1.1. Consider the mapping f: HR*> — HR? (KX is the partitive
set of X), such that f = fi(B)U fo(B), for any B C R?, where f; and f»

are affine plane transformations defined by
a 0.1 —-0.7 2 0
L (y) - (0-7 0 ) (y) ! (—1) ’
e —0.3863  0.1562 x 0.4
-1 Ja: (y) o (fo.:msz —(].(jHGIi) (y) T (0.4)
The attractor A of the dynamical system (HR?, f) has the form of a neural

cell (see Figure 5). By simple alfine transformations of A the model of neural
network, a fragment of neural tissue, displayed in Figure 1-A), is obtained.

Example 1.2. Let C be a complex plane and f : C — C be a mapping
given by

1:2) flz)= (" + 47+ 2" - 26)+ 2.
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The orbit of the point z; = 0 tends to the attractor of dynamical sys-
tem (C, f) shown in Figure [-13). The mapping (1.2) is known as Chossat-
Golubitsky formula [3], [6].

In these examples, two different algorithms are used for creating visual
models of corresponding attractors. In both of them, the formula (1.1) or
(1.2) are treated like continued expressions, but in computer enviroment,
earlier or later, they are rounded off and the discrete values are used for
creating visual model. In the next section, several methods that uses discrete
tools for creating fractal visual models.

2. Discrete fractal structures

Hausdorf dimension is the most inportant number connected with a frac-
tal attractor. It offers an estimation how “dense” this attractor occupies the
metric space in which it is inmmerged. For an arbitrary A C X, the Hausdorf
dimension*® is defined by

DylA) = inf {p}.,
)

ul Ayp)=t

where, for p € R, p — p(A. p) is the Hausdorff p-dimensional measure of A

=+
(A, p) = su]){inf{z | K|P}) .
) i=0
Infimum is taken over all s-covers K’ = { K;}15 of A. In the above formula,

| K;| stands for the diameter of K; C X.

Example 2.1. Let consider the Pascal’s triangle of binomoal coefficients
[8]. Select these elements p, . = (}) for which p,, . mod 2 = 1 to obtain the
set A. Choose the set of colors I” = {white, black}, and map A in the picture
support § by replacing eacli element of A by a black point (see Figure 2).
The visual model of A recognizes as a famous Sierpinski triangle. As it is
shown in [8], Hausdorf dimension of A is Dy = log, 3 = 1.58496... which is
known to be the dimension of Sierpinski triangle [3].

Example 2.2. Many biological object possesses typical fractal properties.
One of them, the neural tisie. is mentioned in Figure 1. Another one is the
DNA chain, very important natural pattern that conways genetic informa-
tion. DNA has a form of a double helix being composed of two strands that
bind together by a specific base-pairing rule. Adenine (A) always pairs with

*Also known as Hausdorf-Besiconitch or geometrie dimension
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FIGURE 2. BINOMIAL COEFFITIENTS MOD 2 FORM THE SIERPINSKI TRIANGLE

thymine (T) whilst eytosine (') always pairs with guanine (), like in this
fragment

¢ T GGG AT AT A T T G & G —
|

A A
SN T
T T G A ¢ ¢ @ ' a T 47

T
A (-
A A A C ¢ ¢ -

Each DNA strand can be connected with a Brownian motion path as
follows: the pair AT corresponds to a particle being moved forward the x-
axis for a given step. TA combination moves the particle in the oposite sense
for the same step. (G and (i( pair moves the particle along the y-axis or in
the opposite direction. Alternation AC or CA with GT or TG directs along
the [(0,0)(1,1)] vector and the contrary, while AG/GA followed by CT/TC
moves the particle along [(0.0)(—1, —1)] or back.

Experiments, done by authors of [2], show that amino-bases of DNA,
taken from GenBank has )y = 1.631 £ 0.137 which is significantly lower
than Hausdorf dimension of the curve being a trajectory of a Brownian
motion, which is Dy = 2. Figure 3 shows the path of Brownian motion (A)
and the pseudorandom walks of two DNA (B) and CED.
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FIGURE 3. A) BrRowNIAN MOTION, H ) = 2; B) DIMER OPSIN GENE, Dy &
1.744; ¢) ALPHA-1-GLYCOUROTEIN, Dy = 1.671

Example 2.3. Another discrete method for visnalizing fractal sets is con-
nected with tilling-patterns. Apain start with genetic sequence of DNA taken
from the human immunodeficiency virus type 1 (AIDS), and associate the
Escherian® tile pattern shown in Figure 4-A) (above) in different orienta-
tion, depending on the letter AT, or (5 in the strand. An Escher-like tile
is obtained (Fig. 4-A) bellow). Nunber of closed diamonds in the pattern,
divided by the number of tiles. so called diamond fraction, characterize the
randomnes of the data. If this [raction is about 0.05, the data are randomly
distributed. Correlation appears if the fraction tends to zero.

Another type of patern. shown iu Iigure 4-B) is called Truchet patern,
after Sebastian Truchet thal studied such patterns in his paper from 1704.
Diamond fraction is now replaced by the dumbell fraction which makes about
0.0125 for the random data. Increasind diagonal trend in the pattern reveals
increasing correlation of the data. For more details see [6].

3. Graphical erosional algorithm

One of the most suitable ways to define and produce fractal sets is by (hy-
perbolic) Iterative Function System (IFS). This is a collection of contractive
maps (fi,..., fu) that act in a metric space (X, d), i.e. W ={X, f1,..., fa}.
The Lipschitz factor of W is s = max;{s;}., where s; is the contractive factor
of f;. Then, there exists a nnique attractor A such that A = F(A), where
F = Ul fi, the assertion knowu as the Hutchinson theorem. In other words,
A € HX is a fixed point for the dynamical system (X, F').

*after Mauritus Cornelis Escher (1898-1971), duch artist
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FIGURE 4. A) ESCHER-TILE OF RANDOM DATA (ESCHERGRAM); B) TRUCHET-
TILE OF RANDOM DATA

According to the literature ([4]). there are five different algorithms for
calculating (and therefore for visualizing) fractal attractors in (R?,d).

Algorithm A. Based on the Hutchinson theorem, this algorithm starts with
an arbitrary closed subsct B from R* and transforms it by F. More precisely,

a) initialize By € H(R?),

b)icaleulate By =\ B) « B=0de. .,

¢) apply a discrete visualizalion o : By, — Bj.

Repeat b) and ¢) until h( I3}, Bf,H ) < &, where h is Hausdorff metric and ¢
is the minimal distanece between poinls in the picture support (picture norm).

(food results are gain by choose By to be a singleton, typically a fized point
of one of contractions f; from IFS.

Algorithm B (Barnsley, Demko). This algorithm uses a sequence of inde-
pendent random variables {¢;} ;en. such that pr(e; = fi) > 0 for any j and
F = Ly o0

a) Choose rg € R?,

b) calculate ry. = p(wp-1). b =0.1,...,

¢) map each vy onto the piclure support.
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Repeat b) and c) until Ihe Hausdorff distance between two consecutive
pictures become smaller than the picture norm.

The following three algorithms are given by Dubuc and Elqortobi [4].

Algorithm C (Based on Williams formula). Let W* be the set of all finite
compositions of functions of W. Let for g € W=, Fiz(g) denotes the fived
point of g. Williams in [7] has shown that the closure of Ugew- Fiz(g) is
invariant and there is no other closed bounded invariant sets for F.

Let £ > 0 and W(e) be a family of contractions. A function ¢ is in W(e)
if there is a finite sequence of functions of W, f1, fa, ..., fu, such that:

(1) g is the composition [} o [, 0-+-0o f, and the Lipschitz constant of g
is <e.

(2) If k < n, then the Lipschitz constant of f; o--- o fy is larger than e.

Then the set B = {Fix(g): g € W(s)} is an approximation of A.

Algorithm D. This is a variant of the Algorithm C. The attractor A is
approzimated by B = {h o I' o g(x),lh € W(e)}, where R is a rounding map
of the metric space X. :

Algorithm E (Graphical algorithm). Let & be a positive real number, and
M(8) be a subset of X such that

(a) for any x in X, d(x, M(8)) < £;

(b) in any ball of X, there is just a finite number of points of M(6).

Let B, and (', are two scquences of subsets of X for n = 0,1,.... Then,

(1) A point x is choosen in (',;

(2) A temporary set T is inilially empty. A loop over W is done, such
that for each f € W for which d(f(x), B, NT) > 6, one chooses a point
z' € M(8), such that d(f(x).2") < ¢, and is added to T

(3) Bays = BoUT and Oy = C,, UTV{2}.

Probably the most important quantity connected with the fractal set is
its dimension. There are many definitions of dimensions, but the way of
calculating them may be an awquard question. The most popular method
for experimental estimating the fractal dimension of an attractor in R? is
the box-counting method. which is based on the following theorem [1]:

Theorem 1 (Box Counting Theorem). Let A € H(R?), and Euclidean
metric is used. Tile the plane R* by the square uniform mesh with the step
2-n. Let N,y (A) denote the number of boxes from the mesh that intersect the
attractor. If

In N, (A]
(2.1) Dy = lim {Hh—l(z(“)_)} :
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FIGURE 5. A "NEURAL ('ELL” AND THE BOX COUNTING METHOD

exists, then A has fractal dimension™* Dy.

The graphical erosional algorithm which will be described bellow, gives
succesive approximations of fractal sets in R and calculates an approxima-
tion of its fractal dimension at same time.

Actually, let M, be a uniform mesh as described in Theorem 1. Note
that the scale plays no role in calculating Dy from (2.1). So, for a unit
of measure one can take the side of a square that "nicely” framed the set
A. Figure 5 shows a fractal atiractor that resembles to the neural cell. It
is framed by an apropriate square M, with the side lenght 1. It is divided
into four subsquares which corresponds to the net My (the upper left square
in Figure 5). The process continues for n = 3,4,5,6. Let K, (A) denotes
27"-cover of A. The following algorithin produces sets K, (A) and calculate
the fractal dimension at the same time.

Graphical Erosional Algorithm (GEA). Let n € N. The set of nodal
points {(i/2",7/2")} from R* determines the standard orthogonl net M,,.
Let A, be a cell of M,,, i.c. lhe set of points (z,y) such that W2 L g <

*also called bor dimension
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n=4, N(A)=72 n=3, N(4)=187 n=6, N(A)=522
n=7, N(A)=1377 =8, N(4)=3743 n=9, N(A)=14928

FIGURE 6. GRATHICAL EROSIONAL ALGORITHM
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FIGURE 7. TESTING 01 Gilialliical EROSIONAL ALGORITHM
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(t4+1)/2"% and 5 /2" <y < (j+1)/2". Let § € R be the picture support with
the norm 6(.5) = max{d(x;.xi1), d(y;,y;41)}, and P = {black,white} be
the set of colors. For any IFS. say W = {R, fi,..., f} with the attractor
A, the sequence of color functions ¢,, : A — S is associated with the net M,
according to the following steps:

(1) Initialize n = 1 and R — {white};

(2) Produce the point py = (.1, yy) by the Barnsley-Demko algorithm;

(3) If px € A, then K, = SN AL — {black};

(4) Count the number N, (A) of A"-cells in K, ;

(5) m—=mn+ 1L If6(S) > 27" then go to (1), otherwise go to (6).

(6) Caleulate an approzimation value of Dy, given by (2.1), by fitting the

data {(In(2"),ln NV,,(4))} by a least-square affine function. The coefficient
of the linear term is Dy. Dy =~ tana.

This algorithm is illustrated in Figure 6 with A being a neural cell from
Fig. 5. Note that the 'black™ set, K, generated in step 3-approximates
2y-covers of A. The number of black squares is denoted by N(A).

Then the following theorem supports the algorithm:

-

& [Din = 1.202313009s3128 . . _| n [Dim = 1.14674950740118. . .|
a -1
F o 3
[ c o
- -
n_max=~6 . n_max=7
n Ln2 T n Ln2
- [pin = 1 _a1028524014708 |
a
z
51
n_max=9
n tn2 Dim=1.4102...

FIGURE 8. [DIMENSION "BY HANDS' AND BY GEA
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Theorem 2. If 6(5) — 0 and n — oo, then the sequence {Ih\’n};’le, gener-
ated by the GEA converges (o |, in Hausdorff metric.

Proof. Denote the Hausdor(l distance between two sets X and Y from R?
by h(X,Y). Suppose that this metric is induced by the Euclidean metric in
R?. It is obvious that

i 2

(3.1) WS, A) < £a(.5‘) .

2

Let 7 = (zg,yx) be the point produced by the Algorithm B. If rp € A},

then the cell A}, becomes a part of K,,(A). As h(ry,A};) < V22" then
(3.2) WK, (AY, A) € 9t
As by definition, Fn(A) = (1)1 S, then by (3.1) and (3.2)

(I (), 1) € 5 (27 4 6(5)) .

Thus, if n — oo and 6(5) — 0 then i N, (A), A) — 0, in Hausdorff metric.
Note that the proof hold- if 1he Euclidean metric is replaced by any other
metric in R2.
Calculation of fractal dimen: .H)lll follows from Theorem 1.

Since the algorithm constructs succesive 1/2%-covers of A, it resembles the
process of erosion, which sugeosts the name, Algorithm is tested through
several examples. Here, the results of applying GEA on Sierpinski triangle
fractal attractor is shown in lieure 7. The estimated fractal dimension is
1.5817... which approximatcs the true dimension 1.58496... with accuracy
10~2, which is a good resull for PC' computer where n can not exceed 9.

Fractal dimension of the “urural cell” is estimated to be 1.4102.... The
data and the fitting line ave <hown in Figure 8 (left-bellow). Comparing
with box-counting performed “hy hands™ for n < 6 and n < 7 (same figure,

above), the data produced by (iEA are much more regularly placed along
the line. Note that accuracy fails for n = 7 due to the weakness of the human
eye.

The GEA has one more alvantage. It can be used for the rough estimation
of the fractal attractor’s shipe. its dimensions and location in R2.
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IDENTITY, PERMUTATION AND BINARY TREES

Aleksandar Kron

ABSTRACT. Some extensions of the Anderson-Belnap (Dwyer-Powers) con-
jecture for TW_, are applied to a set of binary trees.

A binary tree 7 is a tree with an origin and such that each node of T
either has exactly two immediate successors or it is an end-node. A subtree
T' of a tree T is a tree such that every node of 7' is a node of 7 and the
immediate successor relation in 7" is the immediate successor relation in 7.
A tree T is a formula-like tree (FLT) iff it has no proper subtree that is
isomorphic to 7, and no proper subtree 7' of 7 has a proper subtree T
isomorphic to 7".

Every infinite FLT contains infinitely many (distinct) finite branches; ev-
ery node of a FLT is a node of a finite branch. Hence, the maximal length
of a branch of a FLT is w.

If 7, and 75 are FLTs, then the tree obtained by adjoining a new origin
7,75 and such that 7; and 7, are immediate successors of 175, 1is a FLT.

With every node of a FLT 7 one of the numbers 0 or 1 is associated, as
follows: 0 is associated with the origin of 77 if 0 (1) is associated with a node
at level n, then 1 (0) is associated with its left hand immediate successor
and 0 (1) is associated with its right hand immediate successor.

If 0 (1) is associated with the origin of a subtree 7', then T'is a 0-subtree
(1-subtree).

Let us consider the following operations on a FLT.

SU® Let 7 be a FLT and let 7; 73 be one of its 0-subtrees; then the subtree
T, T; can be cut off and a subtree (5, T3)(ThT3) can be inserted in 7
instead, where 73 is any FLT.

PR Let 7 be a FLT and let 7375 be one of its 0-subtrees; then the subtree
7,75 can be cut off and a subtree (I1'T,)(ThT3) can be inserted in 7
instead, where 7 is any FLT.

765
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SUL® Let 7 be a FLT and let 7, be one of its 0-subtrees; then the subtree
7, can be cut off and a subtree (71%)((7275)T3) can be inserted in
7 instead, where 7, and 73 are any FLTs.

SU! Let 7 be a FLT and let (T,73)(T1T3) be one of its I-subtrees; then
the subtree (723)(Ti T3) can be cut off and the subtree 7;7; can be
inserted in 7 instead.

PR! Let 7 be a FLT and let (T172)(T173) be one of its I-subtrees; then
the subtree (7;7;)(7;7;) can be cut off and the subtree 7575 can be
inserted in 7 instead.

SUL' Let 7 be a FLT and let (Ti'L)(7173)T3) be one of its I-subtrees;
then the subtree (7;7;)((7273)73) can be cut off and the subtree 75
can be inserted in 7 instead.

PERM* Let 7 be a FLT and let 71(T2 T3) be one of its 0-or-1-subtrees; then
the subtree 7;(7373) can be cut off and the subtree 75(717;3) can be
inserted in 7 instead.

The main theorem: starting with a FLT 7 and successively performing
the operations SU°, PR?, SUL?, SUl, PR!, SUL!, and PERM* any finite
number of times, in any order, and such that at least one of the first six rules
is applied at least once, it is not possible to obtain 7 as a result.

1. Identity

When Alan Ross Anderson and Nuel D. Belnap were developing relevance
logic, among numerous systems they have been considering there was an
implicational fragment of a very weak logic called now TW. Since there
is only one connective in such a fragment, namely —, we omit it and we
write AB for A — B. Also, we omit parentheses, whenever this causes
no confusion. ABC stands for (AB)C and A.BC' for A(BC). Under this
proviso, the implicational fragment of TW has modus ponens (MP) as the
sole rule of inference and the following axiom-schematas:

ID AA
ASU AB.BC.AC
APR BC.AB.AC
This fragment is now called TW_,. Let us write A = B iff both AB and

BA are provable in TW_, . Then Anderson and Belnap have conjectured
(cf. [1], p. 95) that

A = B if and only if A and B are the same formula.

We shall call this conjecture Anderson - Belnap conjecture (A-B).
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By A-B the identity of formulas in the language of TW_, is determined
by logical means only — by provability in the very weak theory of implication
TW._,.

Let TW_,~ID be the system obtained from TW_, by omitting the axiom
schema ID. Dwyer and Powers have shown that A-B is equivalent to the
following claim:

NOID In TW_-ID there is no theorem of the form AA.

NOID is a very strong claim. ID is a paradigm of a logical truth and
there is hardly a descent logical theory where ID is not true. Nevertheless,
in TW_-ID not only there is a formula A such that AA does not hold for
it, but, moreover, AA holds for no formula A.

The systems TW_, and TW _~ID have other formulations as well.

Let us consider a theory that has ASU and APR as axiom-schemata, but
instead of MP it has the following rules of inference:

SU From AB to infer BC.AC
PR From BC to infer AB.AC
TR From AB and BC to infer AC

Let us call the new systern TRW _—ID. It is easy to see that the rules of
TRW_-ID are derived rules of TW _-ID; hence, all theorems of TRW _,—-
ID are theorems of TW_-ID. On the other hand, by an inductive argument
it follows that TRW _,-ID is closed under MP (this was proved by Dwyer
and Powers; cf. [4] and [2] for details. TRW_,-ID and TRW _, are called
in [4] M and N, respectively). Therefore, TW_-ID and TRW_-ID are
equivalent.

Let us adjoin the axiom-scheme ID to TRW_, — ID; the resulting theory
is called TRW_,. It is clear that TRW_, and TW_. are equivalent.

Another equivalent formulation of NOID is the following one. Let us
consider the theory WTR_ ID, in the propositional language with — as
the sole connective.

The rules of inference are SU, PR and TR, as in TRW_-ID, but the
axiom-schemata are

USA (BC.AC).AB
RPA (AB.AC).BC

The axioms of WTR_ 1D are not logical truths at all. By an inductive
argument it can be shown that AB is a theorem of TRW_-ID iff BAis a
theorem of WTR_,-ID. Now NOID can be formulated as:
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NOID"  There is no formula provable both in TRW _,~ID and in WTR._,
-ID.

Let WTR_., be obtained from WTR_,-ID by adjoining ID; then, of
course, NOID has the formulation

NOID™  The only theorems common to TRW_, and WTR_. are all the
formulas of the form AA.

A natural deduction formulation of TRW_ -ID

In the seventies some one-premiss natural deduction formulations of TW _
~ID and TW_. have been elaborated in Belgrade by Bozi¢, Dogen and the
present author.

Let us define consequent and antecedent occurrences of subformulas of a
given formula A, as in [1], p. 93.

The formula A itself is a consequent occurrence of A in A.

If BC' is a consequent (antecedent) occurrence of BC in A, then the
displayed occurrence of B is an antecedent (consequent) occurrence of B in
A, and the displayed occurrence of C' is a consequent (antecedent) occurrence
of C'in A.

The logic TRW_-ID has a neat formulation called TRW' —ID. There
are no axioms in TRW' -ID and instead of SU, PR and TR we have the
following four rules:

SU" Let AB have a consequent occurrence in a formula D; then we are
allowed to substitute an occurrence of BC.AC for that particular
occurrence of AB in D, for any formula (;

PR? Let BC have a consequent occurrence in a formula D; then we are
allowed to substitute an occurrence of AB.AC' for that particular
occurrence of BC' in D, for any formula C';

SU' Let BC.AC have an antecedent occurrence in a formula D; then we
are allowed to substitute an occurrence of AB for that particular
occurrence of BC.AC in D;

PR' Let AB.AC have an antecedent occurrence in a formula D; then we
are allowed to substitute an occurrence of BC' for that particular
occurrence of AB.AC in D.

SU? and PR are called consequent or O-rules; SU! and PR! are called
antecedent or 1-rules.

Let A and B be arbitrary formulas. Suppose that B is obtained from A
" by applying these four rules (at least one but not necessarily all of them ) in
any order; then we shall write A —pgw'_ip B to denote this fact. Also,
we shall write A ——TRW'-ID B ——TRW'-ID Cif A ——TRW'-ID B and

B —1rw'p C. It is clear that the relation —pgrw_ip is transitive.
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If A —gprw'_p B, then AB is called a theorem of TRW' -ID.

The theories TRW _—ID and TRW'_-ID are equivalent in the sense that
they have the same set of theorems. This can be seen from the following
considerations.

Let us define the depth of an occurrence of a subformula in a formula A
as follows: A itself is at depth 0; if an occurrence of BC' in A is at depth n,
then the displayed occurrences of B and (' in A are at dépth n 4 1.

Theorem 1. The theorems of TRW', ~ID are theorems of TRW _ ~[D.

Proof. Suppose that D —prw'_p . Proceed by induction on the number
n of applications of 0-or-1-rules in the derivation D —pgw' 1p £ to show
that DFE is a theorem of TRW _~1D.

Let n = 1. Suppose that F is obtained from D by one of the 0-or-1-rules.
Proceed by another induction on depth at which the substitution takes place.

If the substitution takes place at depth 0, then DFE is an instance of an
axiom of TRW _ -1D.

Let DE = Dy D9.E\Ey. If D —prw'_ip £ such that the substitution
takes place at depth greater than 0, then either Dy = Fy and Dy —qrw'-1p
Ey or Dy = Ey and By —ppw'_p Di1. In the first case, by induction hy-
pothesis, Dy Ey is a theorem of TRW_,. Hence, DFE is obtained by PR. In
the second case, by induction hypothesis, F;D; is a theorem of TRW_,.
Hence, DE is obtained by SU.

Let n > 1. Suppose that E'is obtained from D by n — | applications
of 0-or-1-rules, and that [ is obtained from E' by a single application of
a 0-or-1-rule; by induction hypothesis and the first part of the proof, DE'
and E'E are theorems of TRW_—ID. Hence, by TR DE is a theorem of
TRW_-ID. O

Theorem 2. The theorems of TRW _ ~ID are theorems of TRW' ~ID.

Proof. 1t is easy to derive ASU and APR in TRW' -ID. Suppose that
A —grw'p B. This means that starting from A and applying the 0-or-
I-tules we eventually obtain B. Let us start from BC'; in this formula every
consequent occurrence of a subformula in B is an antecedent occurrence in
BC', and conversely, every antecedent occurrence of a subformula in B is a
consequent occurrence in HC'. It is easy to see that AC' can be obtained
from BC by applying the same rules that lead from A to B in reverse order.
This means that AC' is obtained from BC by applying a 0-rule instead of
the corresponding 1-rule and a l-rule instead of the corresponding 0-rule.

Hence, if AB is a theorem of TRW'_~ID, so is BC.AC'. In a similar way
we can prove that TRW’_ -ID is closed under PR.

As to TR, it is trivial that if A —prw'_p B and B —1rw'-in C,
then A —rw'_ip C. Hence, the set of theorems of TRW'_ -ID is closed
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under transitivity and all theorems of TRW_,—ID are theorems of TRW' -
ID. O

Many logicians have tried to prove or disprove A-B, but it turned out that
this was a very difficult task.

NOID and hence A-B has been proved true by R.K. Meyer and E. Martin
(cf. [6]) who used a semantics developed for this purpose. Thus, indeed, the
graphical identity of two formulas in a language with — as the sole connective
is determined by purely logical means defined in alogical calculus in the same
language.

A purely constructive proof of NOID has been obtained in [4] (cf. also

[2]).
2. Permutation

In TW _~ID there is almost no rule of permutation admissible. The next
theorem seems to give the maximum of permutation allowed in TW _ —ID.

Theorem 3. [f AB.C'D is a theorem, then either (a) A= C and BD is a
theorem or else (b) B = D and C'A is a theorem or else (¢) CA and BD
are theorems or else (d) C.ABD is a theorem.

Proof. Consider TRW _-ID and proceed by induction on theorems. O

Let C.DE be a subformula of A; suppose that B is obtained from A by
substitution of D.C'E for C.DE, at a single occurrence of C.DE and let us
write A ~ B iff B can be obtained from A by a finite (possibly zero) number
of substitutions of this kind. It is clear that ~ is an equivalence relation.
For any A by A* we shall denote any formula B such that A ~ B.

Let us consider the following permutation rules.

PERM*  From A to infer A*.
RPERM  If AB is a theorem, so is A* B*.
PERM If Ais a theorem, so is A*.

Here ’theorem’ means 'theorem of the system under consideration’.

Let us adjoin RPERM to TRW_-ID and let the resulting system be
called PTW_-1D.

I[f PERM is adjoined to TRW_-ID, the resulting system is called L;
APR is then redundant.

Obviously, the theorems of PTW_-ID are theorems of L.

Theorem 4. L = PTW_,-ID + PASU + SUP + PRP, where PASU is
the following axiom scheme (ASU with permutation )

PASU A.AB.BCC
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and SUP and PRP are the following rules (SU and PR with permutation):

Ssup I'rom AB to infer A.BC'C
PRP From BC to infer A.ABC

Proof. 1t is clear that the theorems of PTW_-ID + PASU + SUP + PRP
are theorems of L, for PASU, SUP and PRP are obtained from ASU, SU,
and PR by PERM, respectively.

On the other hand, by induction on theorems it can be shown that
PTW_-ID + PASU + SUP + PRP is closed under PERM. The only place
in this proof that requires a little care is TR. Suppose that A.C'D is ob-
tained in L from AB and B.CD by TR, and that then C.AD is obtained
by PERM. By induction hypothesis, C.BD is a theorem of PTW_-ID +
PASU 4+ SUP + PRP. On the other hand, from AB we obtain BD.AD by
SU; hence, C.AD is a theorem, by TR. Therefore, the theorems of L are
theorems of PTW_-ID + PASU + SUP + PRP. O

It has been proved in [4] that NOID holds for L as well:

NOID(L) there is no theorem of L either of the form AA or of the form ABB.
or of the form ABB A or of the form A.ABB. —

This result was obtained by constructing a cut-free Gentzen-style formu-
lation of L also called L. The structure of the proof is the following: it was
obvious that pp is not derivable in L; if we assume that AA is derivable
for some formula A, then there is a formula B of smallest degree such that
BB is derivable. In considering the possible derivations of BB, there always
was a formula C of degree smaller than the degree of B such that C'C' was
derivable.

Neither PTW_-ID nor L is closed under modus ponens. A counter-
example provided in [5] can be used here as well. Let A = pp.pp.pp and
B = (pp.pp)p-ppp; AB is an instance of ASU. If PTW_-ID were closed
under MP, applying RPERM to AB.Bp.Ap we would obtain AB.A.Bpp;
hence, by MP applied twice, Bpp would be obtained in PTW _, —ID, contrary
to NOID(L).

There are proper extensions of L closed under MP such that NOID still
holds for them. Let K be the system defined by ASU, MP, PERM and the

following assertion rule

ASS1 _If Ais a theorem of K, so is ABB.

There is a Gentzen-style formulation of K called in [5] J; it has been
proved that
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NOID(J) there is no theorem of J either of the form AA or else of the form
A.ABB or else of the form ABBA.

By ASU and MP K is closed under another assertion rule as well:

ASS52 If A and BC' are theorems of K, so is ABC.

The connection between K and L is given in the next theorem.
Theorem 5. K =L + ASS1.

Proof. The rules of L + ASS1 are derjved in K. We have to prove that L +
ASS1 is closed under MP.

Suppose that (a) A; and (b) 4; ... Aij-1.A;.Ait1 ... .A,p are theorems
of L + ASS1; we want to prove that (c) Ay ... \Aj1.Ajyq ... A,pisa
theorem of L + ASS1. Proceed by induction on the combined weight of (a)
and (b) (for the definition of combined weight cf. [7], p. 113},

Let (b) be an instance A3C.CD.A3D of ASU, where Ay = A3C, Ay =
€D and D=3y ... Anp.

If i < 3, then (¢) is obtained from A; either by SU or by PR.

If'7 =3, then from (a) we obtain (c¢’) A3C'C by ASS1; hence, by (¢’) and
SU we have C'D.A3C D; eventually, by PERM we derive (c).

Let ¢ > 3 and £ = Ajyy ... .A.p; from A; we obtain A;EE by ASS1.
Then we apply PR to derive A3D.A3.44 ... A;_1E and (c¢’) (CD.A3D).CD
Asz.Ag ... .A;_1E. But as an instance of ASU we have A3C.CD.A3D;
hence, by using (¢’) and TR we obtain (c).

Let (b) be obtained by SU; if ¢ = 1, then 4; = AC, where C' =
Az ... Anp and Ay = A3C, and (b) is obtained from (b’) AjA}. From
(a) and (b’) we obtain A}C' by TR, as required.

If 7 =2, then (b) is A{C.A,C and it is obtained from (b’) A A}, By
(a), (b") and the induction hypothesis we have (c’) A%; by (¢’) and ASS1 we
obtain (c) A CC.

Let i > 3 and let E be as before; then (b) is Al(As ... . A;1.A;E).Ay. A

- -Ai—1.A;E, and it is obtained from (b’) Az A}, where, obviously, A; =
Al.As ... .A;_1.AE.

From (a) A; we obtain A; EE by ASS1, and then (¢’) A} (A3 ... .A;_; AGE)
Ay As ... A1 E by PR. By using PERM we have (¢”) Aj.Aj(As ... Aj
AiE). Ay ... .Ai_1E. Hence, by (b’), (c”) and TR we obtain A,.4}(A;

- A1 AE). Az ... LAi_1 E; by using PERM again, we obtain (e)).

Let (b) be obtained by PR; if i = 1, then A; = A;C and (b) is obtained
from (b’) C".A3 ... .A,p. From (a) and (b’) we obtain A5.A3 ... .A,p by |
TR, as required. _

If © = 2, then (b) is A3C.A3.A3 ... .A,p and it is obtained from (b")
C.Az ... .Anp. By (a) and ASS1 we obtain A;CC, and then, by using (b”)
and TR we obtain (c). '
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Let ¢ > 3 and let E be as before; then (b) is A;C.A3.A3 ... A;j_1.A;E,
and it is obtained from (b’) (".As ... .A;_1.A;E., where, obviously, A; =
A,C'. By induction hypothesis, A;C.A3.A5 ... .A;—1 E is a theorem; now
(¢) is obtained by PR.

If (b) is obtained by PERM, the use of induction hypothesis is straight-
forward.

Let (b) be obtained by ASS1; then Ay = Aj.Ay ... .Ayp and (b) is ob-
tained from (b’) A}. If i = 1. then by (b’), (a) and the induction hypothesis,
(c) Ay ... .A,pis a theorem.

If i > 1, let £ be as before; from (b’) we obtain (¢’) Aj(A2 ... A1 F).

Ay ... .A;_1E by ASSl. On the other hand, from (a) we derive (c”)
Ai(AL Ay ... A;E).ALAy ... A E by ASS1. Hence, by (c”), (¢’),
TR and PERM we obtain (c).

Let (b) be obtained from (b’) A;C' and (b”) C".Ay ... .Aup by TR. If

i = 1, then by (a), (b’) and the induction hypothesis we obtain C'; hence, by
(', (b”) and the induction hypothesis we obtain (c).

If 7 > 1, let E be as before; by induction hypothesis, (¢’) C.Ay ... . A; 1 F
is a theorem; hence, by (b’), (¢’) and TR we obtain (c).

This completes the proof of the theorem. O

The system K has an interesting property called NOE. It has been proved
in [5] that J and hence K is closed under the following rule:

NOE (A; ... .A,B)B is a theorem of K iff so are Ay,..., Ay.

In particular, there is no theorem of K of the form AABB.

Natural deduction systems L', L" and L'

Let L' be the one-premiss natural deduction system obtained from TRW',
~ID by adjoining the rule PERM™.

Let A and B be arbitrary formulas. Suppose that B is obtained from A
by applying SUY, SU!, PRY, PR!, or PERM* a finite number of times; then
we shall write A — s B to denote this fact. If A —y, B and one of the
first four rules is applied at least once, then AB is called a theorem of L'.

The restriction in the definition of theorems of L’ is obvious; without it we
have the following derivation: starting from A.BC' we apply PERM™ twice

" and we obtain A.BC again; hence, without the restriction, A(BC').A.BC
would be a theorem of L'.

Theorem 6. PTW_-ID and L' have the same set of theorems.

Proof. Let A*B* be a theorem of L' obtained from AB by RPERM; by
induction hypothesis, A — 1, B. Hence, A* — A — g B —r B*.
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This shows that L' is closed under RPERM and it is easy to see that the
theorems of PTW _,~ID are theorems of L'.

Suppose that D —sp, E and proceed by induction on the number n of
applications of 0-or-1-rules. Let n = 1 and let E be obtained from £’ by an
application of such a rule and proceed by another induction on depth. If the
rule is applied at depth 0, then E'FE is a theorem of PTW_ -ID by axioms.
Obviously, D ~ E’ and DE is obtained by RPERM only.

Let E'E = E{E}.E\E,. If E is obtained from E' such that E, is obtained
from Ej by a 0-or-1-rule, then E{ = E; and, by the second induction hy-
pothesis, ) Ey is a theorem of PTW_-ID. Hence, E'E is obtained by PR.
Again, we have D ~ E' and we obtain DE.

If £ is obtained from E’ such that E{ is obtained from E; by a 0-or-1-rule,
then Ef = F, and, by the second induction hypothesis, E; E] is a theorem
of PTW _-ID. Hence, E'E is obtained by SU. Again, D ~ E' and DE is a
theorem of PTW_-ID.

Let n > 1. Suppose that E' is obtained from D by n — 1 applications of
O-or-l-rules, and that E is obtained from E’ either by a single application
of a 0-or-l-rule or by PERM*; by the first induction hypothesis DE' is a
theorem of PTW_-ID. If E is obtained from £’ by an application of a
0-or-1-rule, then E'E is a theorem of PTW_-ID by the first part of this
proof; hence, DE is a theorem of PTW_,-ID by TR. If E is obtained from
E" by PERM*, then DE is obtained by RPERM from DE'.

This completes the proof of the theorem. O

Let L" be the one-premiss natural deduction system obtained from L' by
adjoining the following two new 0-or-1-rules

SUL? Let A have a consequent occurrence in a formula D; then we are
allowed to substitute an occurrence of AB.BCC' for that particular
occurrence of A in D, for any formulas B and C;

SUL' Let AB.BCC have an antecedent occurrence in a formula D; then
we are allowed to substitute an occurrence of A for that particular
occurrence of AB.BC'C in D.

Theorem 7. The theorems of L" are theorems of L.

Proof. The proof of Theorem 6 can be extended in the case when either
SUL® or SUL! is applied to E" at depth 0; then in L we can apply PERM
to an instance of ASU. O

It is easy to derive ASU in L”. Also, we can show that L” is closed
under SU, PR, and TR.. Hence, L contains TRW _,—ID. However, there are
theorems of L that are not theorems of L”. In particular, L” is not closed
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under PERM: there is a theorem of L” of the form A.BC' such that B.AC
is not a theorem of L', as in the following example.

We have (pp.ppp)p — 1 pp by SUL', but not p —y: (pp.ppp)pp; the
latter derivation is impossible in L. On the other hand, in L from the
instance pp.pp.pp of ASU we obtain p.pp.ppp by PERM; then we apply SU
to obtain (pp.ppp)p.pp; eventually, we use PERM to prove p.(pp.ppp)pp.

Let L' be obtained from L by adjoining PERM. This means that the
set of theorems of L' is defined as the smallest set of formulas satisfying
the following two clauses: (1)if A —y, B in L, then AB is a theorem of
L and (2) if A.BC is a theorem of L', then B.AC' is a theorem of L'".

The definition of a theorem of L can be given by (1) and (2'): if A —
BC in L”, then B.AC is a theorem of L"'.

It is not difficult to see that the definition using (1) and (2) is equivalent
to the definition using (1) and (2’). Of course, L and L' have the same set
of theorems.

A natural deduction system K’

Let us adjoin ASSI to L' and let the resulting system be called K’ .
Hence, the set of theorems of K’ is the smallest set satisfying the following
conditions: (i) if AB is a theorem of L', then AB is a theorem of K' and
(i) if A is a theorem of K', then ABB is a theorem of K'.

The definition of a theorem of K’ can be given by (i) and (ii’): if A.BC
is a theorem of L', then B.AC is a theorem of K'.

It 1s easy to prove

Theorem 8. K and K' have the same set of theorems.

3. Binary trees

In [3] a connection between TRW' ~ID and binary trees has been estab-
lished.

By a binary tree we understand a tree such that (1) there is a unique
element at level 0 called the origin of 7 and (2) each node of 7 is either an
end-node or has exactly two immediate successors.

By a subtree 7' of a binary tree 7 we understand a subset 7" of nodes
of T such that 7' is a binary tree and the immediate successor relation in
7' is the immediate successor relation in 7.

A subtree 7' of 7 is proper iff 7" is a subtree of 7, and 7' and 7 are
not identical. Obviously, a subtree 7' of 7 is proper iff the origin of 7" is
distinct from the origin of 7.

A binary tree 7 is finite (infinite) iff the set of nodes of 7 is finite (infinite).
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After several conversations with Ilijas Farah in the period 1990 - 92 the
concept of a formula-like tree (FLT) has emerged and the present author
was able to represent the one-premiss natural deduction systems considered
above as systems of operations on FLTs.

Let 7" and 7" be two binary trees. We shall say that they are isomorphic
iff there is a mapping h from 7" onto 7" such that the following conditions
are satisfied: (1) if z is the origin of 77, then h(z) is the origin of 7" and
(2) if the nodes y and z of 7' are the left and the right immediate successor,
respectively, of a node z in 7', then h(y) and h(z) in 7" are the left and
the right immediate successor, respectively, of h(z) in 7.

If 7" and T" are finite trees and one of them is a proper subtree of the
other, they cannot be isomorphic. However, if they are infinite, it is possible
that they are isomorphic and yet that one of them is a proper subtree of the
other.

Let the full binary tree (FBT) be the infinite binary tree with no finite
branch. In FBT every subtree is FBT. There are examples of binary trees
that have isomorphic proper subtrees and are different from FBT. Here is
one:

NS
L Ta
Nt

This is an infinite tree; each node in the infinite (rightmost) branch has
an end-node as the left successor and a node in the infinite branch as the
right successor. Any proper subtree with the origin in the infinite branch is
isomorphic to the whole tree.

Let us call a tree 7 formula-like tree (FLT) iff (1) it has no proper subtree
that is isomorphic to 7 and (2) no proper subtree 7' of 7 has a proper
subtree isomorphic to 7',

There is a trivial consequence of the above definition and the fact that
being a subtree is a transitive relation.

Theorem 9. A subtree of a FLT is a FLT.

Every finite binary tree is a FLT, but there are infinite FLTs as well. For
example, take the above infinite tree and extend each end-node by a finite
tree that is different from all finite trees adjoined to previous end-nodes.

Every infinite FLT contains infinitely many (distinct) finite branches; ev-
ery node of a FLT is a node of a finite branch. Hence, any branch of a
FLT is at most of length w. Therefore, the nodes of a FLT are arranged in
levels and to each level there is attached a natural number. The number 0
is attached to the origin.
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Theorem 10. If 73 and 7, are FLTs, then
i T
NS
T
isa FLT.

Proof. If the contrary is the case, then there is a proper subtree h(7;7;) of
7, T isomorphic to 7;75. By definition of isomorphism, h( 7,75 ) =h(T; )M(T2)
and h(T;) and h(7y) are isomorphic to 7; and 73, respectively. The origin of
h(T,Ty) is either in the subtree 7; or in the subtree 7, say in 7;. Now the
origin of h(7;73) coincides either with the origin of 7; or with another node
of Ty. Since h(T1Ty) = k(T )h(Ty), the left successor of the node h(717z) is
h(7T1). But 7y and h(7;) are isomorphic and h(7;) is a proper subtree of 77,
contrary to the assumption that 7; is a FLT.
We proceed similarly if the origin of A(7173) is in the subtree 75. O

Formulas and binary trees

Formulas of the propositional language with — as the sole connective are
naturally connected with finite binary trees. The nodes of such a tree are
subformulas of the formula A we are constructing the tree for. Thus, the
formula A itself is at the origin of the tree. If an occurrence of a subformula
BC of A is at a node at level n, then, at level n+ 1, the displayed occurrence
of B is the left and the displayed occurrence of C' is the right successor of
the displayed occurrence of BC'. The end-nodes of such formula trees are
occurrences of prop'ositional variables.

Suppose that in the propositional language that we are considering there
is only one propositional variable, say p (this is sufficient to prove NOID,
NOID(L) NOID(J) and NOE); then we can identify formulas and finite bi-
nary trees. Let p be the tree consisting of a single node. If A and B are
finite binary trees, then AB is the tree obtained by taking a node as the
origin of the tree such that A and B are the left and the right immediate
successor of the origin.

In the sequel we shall interpret formulas as FLTs. For any propositional
variable p we choose a FL'T' 7 and we interpret p as 7. Let A and B be any
formulas and let 7; and 7, be the FLTs such that A and B are interpreted
as FLTs T; and T3, respectively; let us choose a new node called 7;7; as the
origin of a new tree and take 73 and 7; to be the only immediate successors
of 773, thus:

T
Mgl
LT,
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By Theorem 10, 7;7; is a FLT and we interpret AB as 7; 7.

[n denoting trees we shall use the conventions adopted in writing formulas.
Propositional formulas have a property called substitution: let us show
that FLTs enjoy the same property. Suppose that 77 is a FLT and T, a
subtree of 7;:

Tz

T
then this occurrences of the FLT 7; in 77 can be cut off and a FLT T3 can
be inserted instead:

73
T
Theorem 11. Let Ty be a FLT, let T, be a subtree of T; and let T; be the

tree obtained from Ty by cutting off T, and by inserting a FLT 75 instead;
then 74 is a FLT.

Proof. Proceed by induction on levels. Let 75 be 7y; then, obviously, 7; is
T3. If 7y is T/T{", then the origin of 7; is at a certain level n in 77. If it is in,
say, 77/, then in 7} it is at level smaller than » and by induction hypothesis
the result 7, of substitution of 73 for 7, in 77 is a FLT. By Theorem 9, 7;"
is a FLT; hence, by Theorem 10, so is 7/7/", i.e. 7y. O

Natural deduction and FLTs

There is a connection between derivations in one-premiss natural deduc-
tion systems TW' -ID, L', and L” and FLTs. In order to explain this
connection, let us show how the rules of L" can be interpreted as operations
on FLTs.

To every node of a FLT 7 we associate one of the numbers 0 or 1, as
follows: 0 is associated with the origin of 7 if 0 (1) is associated with a
node at level n, then 1 (0) is associated with its left hand successor and 0
(1) is associated with its right hand successor at level n + 1.

If 0 (1)is associated with a node of a tree, then we shall call it a 0-node
(1-node).

Now the rules SU?, PR?, SU', PR!, SUL?, SUL!, and PERM* can be
represented as operations FLTs as follows.
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50 Let 7 be a FLT and let 7373 be one of its 0-nodes:
i T
N
T'T,

Then the subtree 7;7; can be cut off and a subtree 7373.7775 can be
inserted in 7 instead:
T, Tz v T3
NS
T3y Tl

il
1,13 W73

where 73 is any FLT. Let us call the new tree 7.

In a similar way we can represent the remaining 0-rules.

As to the 1-rules, let us represent SU'. Suppose that 7" is a FLT and let
T, 7. T, T; be one of its 1-nodes; then the subtree 7,73.7,73 can be cut off
and the subtree 7,73 can be inserted instead, producing thus the tree 7.

In a similar way we may represent the remaining I-rules.

Now we represent PERM™.

PERM* Let 7 be a FLT and let 7;.7275 be one of its 0-or-1-nodes:

T, Ts
L%
% Th
oA
PAREYE:

Then the subtree 7,.7,73 can be cut off and the subtree T5. 7175 can be
inserted in 7 instead:
i Tz
N
T, TTs
LW
T, Ti'T3

By Theorem 11, the result of an application of a 0-or-1-rule or PERM*
to a FLT is a FLT. Suppose that these rules are applied to a finite binary
tree; then NOID can be stated as follows:
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NOID(T) (1) Starting from a FLT 7 and successively performing the oper-
ations SU°, PR?, SU!, PR!, SUL?, SUL!, and PERM* any finite
number of times and in any order, and such’ that one of the first six
operation is performed at least once, it is not possible to obtain 7"
as a result, where 7" is either 7 or 7T, T;;

(2) starting with a FLT 77T, and successively performing the op-
erations SUY, PR?, SUY, PR!, SUL®, SUL!, and PERM* any finite
number of times and in any order, and such that one of the first six
operation is performed at least once it is not possible to obtain 7
as a result;

(3) starting with a FLT TT,7; and successively performing the op-
erations SU°, PR?, SU!, PR!, SUL?, SUL!, and PERM* any finite
number of times and in any order, and such that one of the first six
operation is performed at least once it is not possible to obtain 7°
as a result.

If the rules are applied to a finite FLT 7, then NOID(7) is true, since we
can identify formulas and finite binary trees.

Theorem 12. NOID(T) is true for any FLT 7.

Proof. An interpretation of a theorem of L in the set of all FLTs is a ho-
momorphic image of a theorem of L; hence, it has a form of a theorem of
L. By NOID(J) there is no theorem of L either of the form AA or of the
form A.ABEB or of the form ABB; hence, there is no FLT either of the form
1T or of the form 7;.77727; or of the form 7;737;. If a FLT 75 can be
obtained from a FLT 77 by a finite number of applications of 0-or-1-rules
and PERM~*, then 7,7; is a homomorphic image of a theorem of L. Hence,
NOID(7) is true. O

There is no natural interpretation of one-premiss natural deduction sys-
tems L" or K’ in terms of operations on FLTs, for there are theorems of
these systems that cannot be obtained by performing such operations only.
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ABTOMATHBI 1 JIABUPUWUHTHI

B. B. Kygpasues, [II. Yuraymany u I'. Knoudapna

PE3IOME. B pafoTe pa3spubaeTcd KOHUENIMA NMOBeJeHUA aBTOMATOB B
JabMpUHTaX 3a cUeT pacllupeHrA ToMKoOBaHMA JabWMpuHTA N0 COBpe-
MEHHOI0 NOHMMAaHMA J[MCKPETHOW TI'eoMeTpMUecKoi cpenpl, M TOJKO-
BaHMA aBTOMaTa — /0O MepapXuM abcTpaKTHBIX MallMH. 3aTeM Ha
npUMepe KOHEUHBIXABTOMATOB B IMJOCKMX MO3aMUHBIX JabupuHTax oue-
PUMBAIOTCA KOHTYPbl NpohaeMaTUKM U IPUBOJETCA HEKOTOPBIE Pe3yJib-
TaTHhl.

1. JIabupuHTHI. N-MepHble JIJAOMPUHTEI

Obo3znauynMM MHOMKECTBO BeeX HATYpaldbHBLIX uuces vepes N, mesblx

yucen — depes Z, nefcrsuTeNbHBIX yncesn — ueped R, MHoxkecTBO
N U {0} — uepes Ny. Ilycreb 21,23 € Z n n € Ny, nonoxum n =
{1,2,...,n},eciu n > 0, u = = @, ecsin n = 0, a Takke

(z1,2)={2z€Z|lnn <2< )}, [z,22)={2€Z|z £ 2< 2},
(21,.32] = {Z € Z|21 s 32}, [2’1,22] — {2 S lel <z S 2.'2}.

Beiosy B noclieflyioleM, ec/ii clelMalbHO He OrOBOpPeHo, yepes i, j, k,
[, m u n oBo3HAYEHbI HEKOTOPLIE HAaTypaJbHBIe YUCIla.

Iycts A — HekoTopbii anpasur 6yks a. OGosHaumm depes A*
MHOYKECTBO BCEX CJOB & BUJIA @ ...dy, rae a; € A (1 <1 < n), Bknouan
mycroe cioso A. Tomowum AT = A*\{A}.

Ilns cioBa @ = @y ...a, € AT nyers fla) = a1, (a) = a, 1 |a| = n.
U 3HAYEHWS HA30BeM, COOTBETCTBEHHO, JIEBHIM U NPaBbIM KOHIOM, W
TaKKe JUTMHOMN clioBa a. JlioBoe cioBo @) BUAA @;...a;, 1 <1< j<n,
Ha3blBaeM MOIACIOBOM cJOBa «, W obo3HavaeM »T1o ay < a. Ilycroe
coBo A siBNsercsa NoAcHoBoM jgwoboro ciosa. Femm ap < a, To npu
flay) = fla), mmmem a;\a, a opu (o) = I(@), mamem o/a;.

783
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s nmobeix a € A* u n € Ny, nonoxnm

o = aa...o

N, e

n

ecm n # 0, ma™=A, ectn n = 0.

[Tycrs X' — nekoTopoe muoxectBo. Yepes P(X) oboznaunm MHOKe-
CTBO BCexX IIOJMHOMKecTB MHoxkecTBa X, depe3 Py(X) — MHOKecTBO
BCeX HeMyCTBIX NOIMHOMKecTB MHOWecTBa X, a 4yepes |X| — momuocts

MHOM¥ecTBa X.

[Mycte {X, : a € A} — HekoTopoe HMHIEKCUPOBaAHHOe ceMelcTBO
muoxecTs X,. Torma mna moboro ay € A uepes p,, o6o3HaAYUM OTO-
Opaenue npoekTupoBanus npoussenenus [[ ., X, Ha coMHOXUTeTb
X.,- Ecnmu mMuosxecTBo MHACKCOB A — KOHeYHOEe MHOMKECTBO, TO B
nociienyiouem Beerga 6yaem npemmonarats, uto A = {1,...,|A|}.

Hycrs {f; : 7 € J} — HekoTopoe MHIEKCMPOBAHHOE CeMelcTBO (yH-
knmu, f; @ A; — B, Takmx, uro fj () = f;,(x) ana nwobex ¢ € A; N
Aj,, ecam §1 # J2. Yepes Ujesfi, Ujesf; : UjesAd; — B, obosuaunm
(G YHKIHAIO, TAKyIO, 9TO UjEijlAja = fj A moboro j' € J. Ilna no6oro
MHOKecTBa X 00o3HAUMM Yepes iy, ity : X — X, €ro TOXKIECTBEHHY IO
GyHKIUIO, T.e Takyio, 410 tx(z) = & s Beex o m3 X .

[Iyers V' u J — HekoTopble cueTHble MHOecTBa, U I' C V x V x J.
[lyecrs = : [' = ' — HekoTopoe YacTUUHOE ONHO3HAUYHOE 0TOOparkeHme,
KoTopoe myre y = (vy,v2,j) CONOCTABIsAET, €CJIU OHO ONpPELeNeHO Ha

Y, oyry ¥ = (va,v1,5). Habop (V,I',7) HasbBaeTcsa opuenmuposanibim
epagom wian opepaom . DieMeHTbl M3 V' Haz0BeM ero sepuwiunamMu, a
aneMmentnl U3z I' — ero dyeamu. Iyry (v,v,j) € ' HazeiBaeM nemaei B
pepuwune v. B naabuefimem smecto (V,I,7), mamem (V,I'), ecau coe-
UAJBLHO He NOMUepPKUBAeTCA, 0 KaKOW MMeHHO (YHKIWU - WIET Pedb.
DileMeHThl U3 J cUATaeM WHIEKCcaMM Iy oprpada.

Il (V') u vy,vy € V obGosznauum uepes Jy, .,(I') Mooxecrso {j :
(v1,v2,7) € T'}. Ecimm vy = w3 = v, T0 BMecTO Jy, o, (') mamem J,(T).
Fean J,(I') = 0 ansa mwoboro v € V, 1.e. B oprpade (V,I') mer nereinsn,
1o (V,I') nassisaercs opepagom 6ez nemeav. Ecmm |J,, ,,(T)] < 1 ana
mobuix vy,v; € V, to (V,I') naswsaercs opepaom bes xpammnwnz dye.

Ecau cymecrsyer ¥ juis mwoboid v € I'y 1o oprpad (V,I') rassiBaeTcsa
epaggom. B rpade (V,T) mis nwoboit v € T' muowecTso < v >= {v,7}
HazbBaercs peopom. Ecnm v Apisercs netTnelt, To pebpo < 7y > Ha3bl-
paeTcsa nemaet. Yepes < I' > obo3zrauymM MHOKecTBO BeeX pebep rpada
(V,I). I'pag (V,I') asansercs rpadpom Ges neTens (He3 KpaTHBIX pebep),
eciu (V,T') — oprpad Ge3s nerenb (6e3 KpaTHBIX IyT).

Ecan oprpa¢ (rpa¢) (V,I') Ges kpaTHBIX ayr (pebep), To BMecTO
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(v1,12,7)
(< (v1,v2,7) >) mumem cooTBeTcTBEHHO (v1,v2) (< v1, 12 >).

MuowskecTso Bepimi V' u muowectso ayr I oprpada ¢ 6yiem unorma
obosnavaTb coorBercTBenno uepes V(G) n (7). lanee, nyers X u Y
— HEKOTOpble MHOMecTBa. [lciu 3anaHBl HEKOTOpPLle pyHKOUKA f @V —
Xug:I' =Y, 1o Tpoiika ((7, f,g) Ha3bIBaAETCA HAZPYHMCEHHBLM OPZPaPoM,
MuOMecTBa X W Y Ha3BBaloTCs, COOTBETCTEEHHO, MHOMKECTBAMM OmM-
Memox Bepmi U ayr oprpada G, g — pasmemkol sepwun oprpada
G u [ — pasmemxol dye oprpada G. Haa nwdeix uw € V(G) u v €
I'(G) 3navenus f(u) u g(v) Gyakumit [ ¥ ¢ HA3LIBAIOTCA COOBETCTBEHHO
ommemroll 8epuiuns. U W omMemrol dy2u ¥ B HaUpy:KeHHOM oprpadge
(G, f,g). Yepeti(X,Y) obosnaunM Kilace BCeX HarpyKeHHBIX opTrpadoBn
¢ MEHOKecTBOM XB KauecTBe MHOMKECTBa OTMETOK BepIIVH U YB KaduecTBe
MHOMKECTBA OTMETOK IyT »Tux oprpadon. Eciu AcHo, 0 KaKUX (yHKIUAX
f n g uner peus, To mia nwbuix w € V(GE) uy € ['(() Bmecto f(u) n g(7y)
OWIIeM COOTBETCTBeHHO |u| u ||, a eciim XOTUM NOAUEPKHYTh, O KAKOM
UMeHHO oprpade uiaer pedn, TO NHLIEM COOTBeTCTBEHHO, |u|; u |y
Ilns mo6oro v € V(G) oboznauum [v]g = {|y||pi1(y) = v n vy € I'(G)}.

Harpysxennstit oprpad ((71, f1,91) € G(X,Y) HaszpBaeTca wacmbio Ha-
rpyskennoro oprpada (G, f,¢) € G(X,Y), eciin BbIIONHEHb! YCIOBUA:

1) V(Gy) CV(G) u I'(Gy) € T(G);

2) fi(uw) = f(u) m g1(y) = g(7) mns mo6eix u € V(Gy) ny € I'(Gy).
Yacte (G, f1,91) Barpysennoro oprpapa ((7, f,g) BazbBaeTcsa nodop-
epagom, ecimm u3 u,v € V(Gy) n (u,v,7) € I'((G) nns mekoroporo j € J
caeayer, uro (u,v,7) € ['(G).

i

[lycrs [ — 3aKpbITBIN €MHUYHEBIA MAETEepBan 1 X — HEKOTOpoe TOo-
noJsiorudeckoe npocrpadcTso. llyctn @ — cyeTHoe MHOMKECTBO Hellpe-
PBIBHBIX QyHEIMEA f: ] — X, TakuX, 4TO BBINOJHEHBI ClIelylollue yClio-
B

1) asn ao6eix f € O u ry,rg € I, ecim f(ry) = f(r2), 10 {r1,m2} =
{0,1}.

2) nnst moGoit f € O cymectsyer me Gonee oaHol g € O, Takoit, UTO
fr)y = g(l);

3) mis nwbbix f,g € O, ecom f(I) # g(I), To umeer mecto f[(0,1)] N
g[((), l)] =

4) nasn mwo6ux f,g € O, ecan f £ g, f(0) # f(1) w f(I) = g(I), 10
f(0) =g(1) m f(1) = g(0);

5) ans 06X f,g € 0, ecnm f # g, f(0) = f(1) m f(I) = g(]), 0
y GyHKIMM f ¥ ¢ "OPOTUBONONOKHLIC OPUEHTAlUK”, T.e. CYMecTByeT
ybpiBatomas ¢pyuxuus « : [ — [, taxas, 9TO, f=g6a.
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Onpenenum oprpad (V(0),I(0)) canenyromum cnocobom. Ilycts
V(0) = {f(0)|fe O}u{f(1)|fe®}, T(O)={(f(0),f(1),f)|f € O}

Ecan 7 = (£(0), f(1), f), 10 7 = (9(0),9(1),g), re g raxoe, uto g(I) =
f(I); ecnu TaKoe g He cymecTByeT, To 7 He ompeneneso. Ecmu (V,T) ~
(V(0),T(0)), To © nassiBaercsa X -peasuszayuet oprpada (V,I'). B cay-
uae, korza X = R?, 1o BMecTo X-pealusanmsa roBopuM naockas pean-
uzayusOprpad Ha3bBAeTCA NAGHAPHBM, €CJIA CYIIECTBYeT ero miockas
peamusamua. HaGop (V(0),I(0),0) nassBaerca X -opzpagom; ecau
X = R?, 10 s1oT HaDOp Ha3blBaeTCA naockum opepadom. Hocumenem
X-oprpada (V(0),I(@),0) nasbiBaerca MmuoxecTBo Usep f(I). Hacto B
nocjenyrwlleM, eciv ACHO U3 KOHTEKCTa WA He XOTUM [OJ4epPKHUBATL O
KaKOM HMMeHHO MHOXecTBe © uieT peub, Mbl B 00603HAUEHUH MIOCKOTO
rpaa onyckaeM oDO3HAYEHUE HTOI0 MHOMKeCTBA.

[ycrs G = (V,I') — HekoTopslii oprpad. Ecau mns no6wix vy, vy € V
cyllecTByeT MOC/HedOoBaTeIbHOCTL OYT V1,72, - - -, Ym, TakagmTo py(vy1) =
o1, P2(Fm) = v2 1 P2(7:) = P1(vi41) Anst moboro i, 1 < i < n— 1, 10
(V.I') naseBeTcs caaanbm opzpagom.

Hna oprpada G = (V,I') m v € V BBOMMM clleyloline MHOMKECTBA
OyKB:

Con,(G) = {ay |y €T}, Cony(G)={b,|yeT},
Cong (/) = {ay|p1(7) = v, y €T}, Cony(G) = {by|p2(y) = v, v €T},
Con((7) = Con,(G) U Cony((7), Conl(G)= Con!(()U Con}(G)

[Iycrs ¥ — HekoTopoe MEOKecTBO M ¢ : ' — Y x Y Onpenenum ¢pyuruun
Con,(g) : Con,(G) — Y n Cony(g) : Cony(G) — Y cienyiommM cnoco-

Bom: Cong(g)(ay) = p1(g(7)) u Cony(g)(by) = p2(g(7y)) nas nw6oit v €
I'. Iycrs

Con(g) = Con,(g) U Cony(g).
! v Con )
Ha Conj,((;) BBegeM oTHOLEHNE SKBUBAJEHTHOCTU ~ ClIeJy IOIIUM CIIO-
" s Con
cobom. Ecmm pi(y) = v n qna y € T' cymecrByer ayra 7, 10 a, ~ bs.
. C T
Torna Con,(G) = Conl,(G)/ ~'. Cucmema caedosanus 1 B oprpade
(i ectb MHOKecTBO {1, : v € V}, rme 7, — OGuUHAPHOE OTHOIIEHWE B

Con, () ans no6oro v € V. O6osnaunm I = {y € T'|pi(y) = v} ans
noboro @ = 1,2. Ecimu nns mo6oro § € Con, () uMeeT MecTo:

{¢' € Con,(G)|(6,68") € ny 1 8’ = [a,] ana mexoroporo vy € I',}| =1,

TO MOMKHO ONpeNeNuTs i, : [, — [, TakuM cnocobom, uto 7,(v) = v/, rae
v rakasn, aro ([ay], [ay]) € ny. Ecmma Ty koreuno ans nw6oro v € V, 1.6,
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oprpa¢ G ABAAETCA JOKAJILHO KOHEUHBIM, W 1), OOpelelleHO U ABJIAeTCA
OUKJIMYEeCKOR nolcTaHoBKOM s ynwobol v € V| 10 1 Ha3blBaeTcd cuc-

memoti epausernusg. B cayuae, worma ¢ — rpad, TAKIMYEcKas MTO-
CTaHOBKA 1}, : I'y — [’y momHoCTLIO onpenenseT 1, U TeM caMbIM Bpallle-
ave 7. Ha ocHOBaHWM »Toro, ¢ [eJLIo YIPOIleHua obiell KapTUHBI, Mbl

B ciydae, Korga G sBisiercs rpadoM, nox BpailiesdeM OyieM NOHMMATb
cemeitcTBo 1) = {n,|v € V}, Takoe, uro 1), ABAAETCA NUKIUIeCKOR mon-
CTAHOBKOH MHO:kecTBa ', ansa moboro v € V. llapy (G,7) nazoBem
opepagpom (7 ¢ cucmemol caedosBanus 1), a €cin 1] — CUCTeMa BpallleHus,
To — opzpadom (G ¢ cucmemol 8pauycHusg 1.

[Mycrs £, Qy, ¥ u ¥ — rKoHeuHble aldpaBUTH OYKB, TaKkue, 4To J0boe
M3 3TUX MHOMKECTB COMEPKUT MycToil cuMBoa A, u ((7,7) — HeKOTOPbIA
CBS3HBIA oprpad ¢ cuereMoil cnegoBanus. [lanee, naEbl oToOpaKeHUA
f:vV(G) — 9,9 :I(G) - ¥x Y. Habop L = (G, f,9,7,,%1)
HazbBaeTcA (1, Xy )-aabupurmom ¢ muoxcecmaom ommemor gepuiun )
u muoxmcecrngom ommemor dyz L. Ecmm Qp = {A}, ¥ = {A}, 10
BMecTo ({1, ¥1)-1abupunTta roBOpUM OpoOCTO aabupunm v BMecTo L =
(G, fyg,m,{A},{A}) mumem L = (G, f,g,7), T.e. MTaBUPHUHT NPOCTO pacc-
MaTpMBaeM KakK HarpymeHHLIH oprpa¢ ¢ cucremoid cineposanms. Ilon
coctosiaueM (£, X1 )-nabupunra noapasyMmeBaeM nobyio napy suna ( fi,
q1), rae f; : V(G) — @ v gy : I(G) — Ey x ;. O6o3nauum yepes
L£(Q,84; X, 51) knace Beex (1, Iq)-1ab6upunTOB, a gepe3 L({, X) — Beex
NabUPUHTOB, ¢ MHOAKECTBOM OTMETOK BepPUIMH §) 1 MHOXKECTBOM OTMETOK
ayr Y. Ecmm mam nabupunt L = (G, f,9,7,81,%1), 10 G, V = V(G),
I' = I(G), f, g m n obosnadaem cooTBeTcTBeHHo uepes (L), V{(L),
I'(L), fr, g, v . Ecau cneumaibHO He OropapuBaeM, O Kakux f, g m
n uaer pedn, To BMecto ((7, f,¢,1,, X)) mamem (G, 2, X1); B caydae,
korma ; = {A} u ; = {A}, to BMecTo ((7,§;, ;) numemM OpocTo, UTO
L =(V(L),I'(L)). Kak u B ciiydae HarpyseHHbIX oprpaos, Mbl BMECTO
g(7) u g1(7) 6ymem wacto nucath, cooTBeTcTBeHHO, |y| 1 ||¥]|; v € ().
Ecmu g(v) = (o,A) (g1(7) = (o,A)) ansa sekoTopeix 0 € X (0 € 1) u
v € I(G), to Gynem macats |y| = g(7) =0 (||7ll = 1(v) = o).

B naBupunte L Moryt OuiTh BbIAeNeHBI ABa MHOXecTBa BepmuHa V)
u Vo (9T MHOMKecTBa MOTYT GbITh M IYCTBIMM, HO €CJIA MepBoe Iyc-
Toe, To BTopoe obazarenbino nycro). BepmmHb MHOMecTBa V) Ha3bl-
BaeM HauyallbHBIMU, a Vi — KoHedHbIMH. JIabupuaT L B TakoMm ciydae
obGo3HavaeM L;;f wau (L; Vi, Vy). Yacro B mocnenyromem 6yneMm paccma-
TPUBATh NaDUPHUHTHEI ¢ JBYMs BblAEJeHHBIMM (O/HOM BbLIeNeHHO) pa-
3JIUYHLIMMA BepUIMHAMM, OpPMYeM B TAKOM clydae HepBYIO M3 HUX Ha3bl-
BaeM e8zodom, a INPYTyio ewrodom AaHHOrO NabUpuUHTa (ec/iu BbLAEJIeHA
O/Ha, TO ee Ha3bIBaeM BXOIOM), T.e. DyleM paccMaTpUMBaTh claydai,
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korna Vi = {v1} u Vo = {v} umm V3 = . B rtakoMm ciaydae BMecTo
Vo

L}“;’}\ u Ly, Oynem mmcaTh COOTBeTCTBEHHO Ly2 w Ly, 1e. (Ljvy,v) n

(L;v1) (3mecs vy — BXOZ, a v — BbIXoJ Jabupunra L} ; B nabupunte

L,, BepmnHa vy ABAAETCA BXoJOM). Eciu B L BhLIe/NeHbl BXOI UM BRIXOI,
TO MHOTrIa Bynem ux obo3HaudaTh Yepes vy(L) 1 vy(L), cooTBeTCTBEHHO.

Jlabupunt Ly € L(N,4; X, ¥q) HasbBaeTca vacmyio( nodaabupunmon)
nabupunaTa L € L(Q,Q;E,%,), ecau oprpad G(L,) aBasierca dacTbio
(nonoprpadom) oprpada G(L), fu, = frlv(e,)s 90, = 9Llry) 7 (7L, )w =
(nL)v N(TL(Ly) x TL(L1)).

Hlamum cefivac onpesenerre OMHOTO Kiacca JabBUPUHTOB, ¢ KOTOPBIM
nocjienywuem dyseM uMeTh Aelo. DTo Kiace n-JabupuHTOB.

O6o3zraunm dyepesz E™ MHOXecTBO {€1,...,€,} Ga3McHBIX €IMHUYHBIX
BEKTOPOB N-MepPHOTO eBKJIMIOBa mpocTpaHcTBa R, a uepes E™ 0603-
HaYHUM MHOMECTBO

{61,...,(37“:‘5-"1,...,6”},

rjie e = 6‘;1 = —¢€;, 1 <1 <n. Bcrygae n = 2 w n = 3 BMecTo 00603-

HavyeHnuit Ga3UCHBIX BEKTOPOB 'F,j',.’_a: ¥ BEKTOPOB i’,j’,E 6ymeM, COOTBETC-
TBEHHO, MOJNL30BaThcA 06o3HAUEHMAMY €, n, U, W, s 1 d.

Jlabupuur L = (G, f,g,m) € L(N,X), Ge3 KpaTHLIX AyI U OeTelb,
HA3BIBAETCH T-MEPHLLM AAOUPUNTIOM UIW n-aabupunmom, n > 2, ecin
BRITIOJTHEHBI CJIeQyOIIHe yCIOBUA:

1) Q={A}u T =E"U{A);

2) (L) ssaserca rpadoM u |y| € E™ nna mo6oii nyru v € I'(L);

3) mnsa moGoro v € ['(L) umeer mecto |y| = [§]7';

4) 1, =0 nasn moGoit v € V.

B nocnenywomem, B ob6o3navenun n-nabupunra (G, f,g,n) 6ynem omyc-
KATh ¢, CYATaA, KOHeYHO, YTO B MI0HOM KOHKPETHOM cliydae g 3alaHa, a
Takske DyneM omyckaTh f u 7, nockoabKy f(v) = A u 5, = 0 nua awboi
v € V(L) y ramunoro n-nabupunrta L, T.e. Bynem mHcaTh NPoOCTO, YTO
L =(V(L),I(L)). Takske moonpenenum g Ha napax suna (v,v), v € V,
cuntad, 9To |(v,v)| = 0 (0 — »TO HYJIb BEKTOP).

Illycte M u N, M # N, — HekoTophle Touku B R", n MN = aje; +
<o+ 4+ a,e,. ByneMm roBoputh, UTO BEKTOpP MN udem e nanpasaenuu ;.
ecim a; > 0 ma; = 0, M B nanpasaenuu €;, eciii a; < 0w a; = 0 s Beex
J# 1,1 <j<n;1<i<n Mroxecrso T orpeskoB B R" nasbiBaercs n-
xonguzypayueti, eciim NoOble Ba pa3HBIX OTPe3Ka W3 3TOr0 MHOMKECTBA .
MOTYT uMeTh He BoJjblie oJHONA obHlell TOYKM, NpUUeM, eClIM OHA eCcTh
y HUX, TO OHa 0DA3aTeJbHO ABJAETCA KOHIEBOM MIA 06OMX OTpPE3KOB.

n-nabupuar L = (V,T'), rue V C R®, Ha30BeM npamoyzoavHum n-
aabupunmom, eciu
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1) mnsa mobuix u,v € Vus (u,v) € I' caenyer, uro b uuer B HanpasJe-
aun |(u,v)];
2) mHO¥ecTBO oTpeskok 1' = {uv|(u,v) € I'} aBnserca n-KoHPUTYpa-
nmemn.
Hns nwoboit nyru (u,v) € I', u = (21,...,2,), v = (y1,...,Yn), OOpeIe-
miM ¢yrKmMio {f,, : { — R"} takyio, uro

fu v(” = 11 + (1 — o)ty . on yn + (yn _-'En)t)-

Hcno, uto cemeitcrBo { f, ,|(u,v) € T'} apaserca R"-peanuzanueit rpada
(G(L); nazoBeM ee aunelinoll peaauzayueld JaHHOTO NPAMOYTOJNBLHOTO Ja-
bupurta L. Purypa L = U(u.u)er(L)“_'“ B R"™ sABnserca Hocurenem
TUHETHOW pealu3anuy NpsiMoyrodbHOTO f-MepHOoro mabupuaTa L.
[Iycrs Z"™ — penouuciendas pewerka B R™.  [lpsamoyronababii n-
Mepubi 1abupunat L = (V,]') BazoBeM yeaovucaennsm n-MepHbIM Jabu-
puatoMm, ecan V. C Z™. n-MepHBI HeJdOYUCIIeHHBIM Jabupunt L =
(V,T') mazoBeM m-mozauriisiM n-MepHBIM JdabupuaToMm, m € N, ecian
{wv | (u,v) € '} — wmuoxkecTBO OTpeskoB JAauHBI M. Bwmecro -

MO3aWYHbIHA Gy/IeM OPOCTO MUCATH MOZAUNBL.

[lpo BepurmHy v M-MO3aU4HOrO n-MepHOro nabupuHTa L roBOpHM,
yro oHa omxpsima 6 L, eciu cylecTByeT DecKOHeYHBIA 7n-MepHbLIA m-
Mo3auunbli nabupunt L, Takoi, uro LN Ly = {v} n v € V(L1). m-
MO3aMYHbIA 1-MePHBIN NabUpUHT Lyl Ha3bBaeTCs M-NPasuibHblM N-Me-
PHBIM JaBGUpPUHTOM, eciiy BepllnHa vy OTKpbITa B L. BmecTo 1-npaBuinb-
HBIA ByeM NpocTo MUCATH MPaBHIbLHBIMA.

[IpoBenem yepes BepirHbl Z™ Bce BO3MOMKHBIe NpsAMbIe, Tapalljielb-
Hble OCAM KOOpIMHAT. flcHO, UTO NojlydyeHHasi GUIrypa sBJseTCA HOCUTe-
JleM nuHeHod R™-peann3anun HEKOTOPOro NPAMOYTOJIBHOTO N-MePHOTo
AabupuBTa, KOTOPBIH o6o3naunM depes Z". MHoOXecTBO BeplUIMd 9TOTO
nabupunrta ecth Z". OUeBUAHO, YTO MO3aUYHBIA n-MepHLIA JTabMPUHET
MOYKHO ONpe/le]IMTh M Kak CBA3HYIO (HarpyXeHHYI0) dacTb JabupunaTa

Hon wazmamubis n-smeprum aadbupurmonm 6yaeM NOHUMATL J0O0K
nouiabupuaT mabupunra 2",

B pasibHelmeM BMecTo 2-MepHbLIA IPAMOYTroJbHBIA (MO3aWYHBIHA, Ie-
JIOYMCJIeHHBIH, NPaBUILHELIA) HabupuaT OyaeM nucaTh IOCKUA MPAMO-
YyTOIbHBIA (MO3aMYHBIH, Nel0UncIeHbIA, IPABUIbHbBIA) J1aDUPUHT.

Hycts L = (V,T') — HekoTOPBIN NJI0OCKUIA NPAMOYTONBHBIA 1aOMPUHT.
Muosectso R?\L sBasieTcsi OTKphITEIM B B obmeM ciydae (ecin L ue
sABJAeTcA HMepeBoM) Hecss3ibiM. Jlabupunt L naszosem k + l-cedssnwbim,
ecan muaoxecTBo R?\ L uMeeT k orpaHWYeHHBIX KOMIOHEHTOB CBA3HOCTH.
lycts L = (V,I') — mekoTopblit TA0CKUA MO3AMIHBIN J1aOUPUHT. [Iyctb
Ui,...,Ux — Bce KOMIOHEHTHI CBA3HOCTUM MHOMKeCTBA R\ L. Jwpoi
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nabupuraTa [ HazoBeM nwoboe Henmycroe MHoxecTBo H Buma U; N Z2,
1 < i < k. B cayuae, korna H KoHedHO, HBIPpY Ha3BIBAEM KOHENHOT);
B IIPOTUBHOM ciiyuae beckonewnol . [lnockuit Mozawdnsii nabupunr [
Ha3blBaeM JbIPOYHO k+ 1-c843nbM, €CTU B HEM TOYHO k KOHEYHBIX IbID,
keN={0,1,2,...}; npu k = 0 n1aBUPUHT Ha3bIBaeM OQHOCBA3HLEIM. B
nadbHEHINeM, KOTIa pedb WIeT O CBA3HOCTH MIOCKUX MO3aWYHBIX Tabup-
MHTOB, Mbl MMeeM B BUIY YMCJIO KOHEYHBIX [bIP, €C/ld He OroBOPeHo
MHaYe,

Fnace Bcex mIOCKMX MO3aWvHBLIX JaOUpPUHTOB 0603HaUuM udepes Lo,
KJlace BeeX KOHeYHbIX nabupuaToB M3 Lo — depe3 Ly, a Kiacc Beex
beckoHeuHbIX TabUPUHTOB U3 Lo — depes L.

2. JladbupuHTHBIe MOHcTpEL. JlonmycTuMble aBroMaThl B
nNadbupuHTax. KONIEKTHBBI HONYCTHMBIX aBTOMATOB B JIAOMPHHTAX

OcroBHOE nNpelHa3zHavYeHMe NabUpHHTA — 3allyTaTh WK NOKAMAaTh
4T0-Aub0 UAU Koro-ambGo. ©DTo uTo-mbO B HallleM cliydae MBI Oy-
JleM Ha3blBaTb JabUpUHTHBIM MoHcTpoM. Ilyers £ € L(Q,04,5,%;)
~— HEKOTOPBIA Kiaacc JabUpUHTOB. L-MOHCTpOM, "MHOropykum”, ”MHO-
rorosiosbiM”, " MHOroHOrMM” CcyIleCTBOM, Ha30BeM MAallMHY:

a) y KOTOPOH ecThb maMsATh, KOHeYHas BHYTPEHHAA, KOTOpPas MOMKeT
OBITH B cOUeTaHUM ¢ DECKOHEUHON BHeNIHeH, opraHﬁ3OBaHHOﬁ pPa3HbIMU
cnocobamu (B BUZEe OJHONO WM HECKOJNBKAX MarasuHOB, CUYETUHMKOB,
CTEKOB, B BUIe OTHOW WIN HEeCKOJIBKWX JIeHT, TAKWX, KaK y MAINIMHLI
Troiopuara); cocrosinMe NaMATH B JA060M MOMeHT KomupyeTcs Tapoi
q=(q',q¢"), rne ¢' onncuBaer cocTosHWe BHyTpeHHeH mamATH, a ¢ —
COCTOAHWE BHENIHeH, eclii OHa, KOHeYHO, CYUIeCTBYeT, B IPOTUBHOM CJIY-
yae ¢ sBnAeTcs NyCTHIM CIOBOM;

6) KoTOpas MOMeT HPUCYTCTBOBATh B HECKOJIbKAX BepUIMHaX Jabup-
MHTA ONHOBPEMEHHO; OHa MMeeT 7 TOJNIOBOK, KOTOPHIe MOTYT HaXOIUTCSA
B 7 Pa3jIMYHLIX BepIIMHAX HEKOTOPOro JaGWpHHTa M3 MaHHOTO Kjacca
NabUPUHTOB;

B) KOTOpasi sBJsAeTCA NOMyCTUMOM A JaHHOTO Kiacca L nabupus-
TOB, T.e. MoOMeT B JOOM JabWpHHTE W3 JAHHOrO Kiacca ~ HOepe/BU-
rarbca” UM, APYTUMM CJIOBAaMU, 9TOT JaOUPUHT ABIAAETCA ee " cpenoi
oburapusa” (B mocleqyomeM Pa3bsACHUM O YeM 3/ech UIeT pedb);

r) KOTOpas MOMeT CTUpPaTh MM OUCATb OTMETKA U3 MHOxkecTBa ()
BO BCeX BepmMHaX JaBUMPHUHTA, B KOTOPBLIX OPUCYTCTBYeT, WIIWA HIeNaTh
TO e caMmoe y ni060# MHNUICHTHOR STUM BeplUIMHaM Oyre (B ee KOHIE
WM B Hadaljie B 3aBUCHMOCTH OT TOTO, ABJIAETCA JIM COOTBETCTBYOILAA
BepIIMHEA ee KOHIOM WJIM HAa4YaJloM COOTBETCTBEHHO) WJIM B KOHIle IyT,
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KOTOPBIX BBIOMpaeT B KauecTBe IIyTH CBOETro JajbHeHIlero nmepeapusxen-
Wi, ¢ OTMETKaMM M3 MHO:KecTBa L';

Nl) KOTOpas MOMKeT NepelIBurath, 6paTh ¢ cobOI WM OCTaBIATHL B
BepUIMHAX KaMHM (OHM MpPe/CTaB/IAKT CBOETo PoJa KOHeUHYI BHEIIHY-
010 MAMATH, UX KOJMYeCcTBO He yBelJMUYMBaeTCs M He YMeHbUIAeTCsd, OHU
caMu no cebe He NepeBMraloTCsi); Cpeld TUX KaMHEd MOryT GBITH
Takue, KOTOPBIMM MOMHO "oTMeuaTh” TOJNBKO BepUIMHBI (BeplUIMHHbIE
KaMHKM) WU TaKhe, KOTOPHIMU MOMKHO OTMe4daTb TOJIbKO IyTy (opuen-
TUpPHBIE KaMHM ); HEKOTOpLIe U3 KaMHell (BepIIMHHBLIX, OPUEHTUPHBIX UK
OCTAJBHBIX) MOTYT BBITH ~OJHOrO W TOrO e IBeTa’ WA MOTYT OBITh
" IOKpallleHbl Pa3IMIHBIMY KpacKaMu™ . '

TaknM 06pas3oM, L-MOHCTP — 3TO YIOPSIOYEHHBIA HABOP

-A = (AaQs ka"aH’d)’cps‘?D)s

y KoToporo A — MHOMKeCTBO BCeX BXOJHBIX JaOMPUHTHBIX CHTY i,
() — MHOM¥eCTBO BCeX KOJOB, ONUCBIBAIOIMX COCTOSHME HaMATH, B
— MHOMECTBO BCeX KO/OB, OIMCHIBAIOIMX BbIXomHble AeficTBus, K =
(K,Ky, K3,~k) — KamHeBasl CTPYKTypa, I/le MHOKeCTBA K, n Ky, Ky,
K, C K, Ki1NK;,; = 0, siBiusioTcA, COOTBeTCTBEHHO, MHOKECTBAMU BepII-
WHHBIX ¥ OPUEHTUPHBIX KaMHe#, U ~x — OTHOUIeHWe DKBUBAJEHTHOCTH
s K, takoe, urto [k] C K; nasn mobeix k € K; m @ = 1,2, MEOXKeCTBO
H = {hi,hy,...h,} — MHOXKECTBO rOJNOBOK (3TH NOJOBKM HE HalO Iy-
TaTh ¢ rONOBKaMM BHemmHeid namsaTe, ¥ QX A — B, p: QXA —Q u g
— gauanbHOe cocTosEMe [-moHcTpa. Ilycts L, L = (G, f,g,m) — HeKo-
Topblit nabupuHT 13 L(§1, (1, ¥,¥), KOTOPBIH HAXOAUTCS B HEKOTOPOM
cocrosauum (f',¢') v nannl HekoTopele 0TOOpaKeHus:

lg: H— V(L) Ic: K= V(L)uCon(L)U H.

rre (k) € V(L)U H nns moboro k € Ky u lg(k) € Con(L)U H nns
no6oro k € Ky. lorpysenasm L-MorcTpoM A B abupunte L HaszoBeM
tpoiiry (A,ly,Lx), a napy (lg,lx) — ero morpyxenuem.

Oka3aBMch B 1abupuaTe L Ui KOTOPOro OH ABAAETCA JOMY CTUMBIM,
T.e6yIydn TorpyKeH B L, 1aBMpPUHTHLIA MOHCTP AcobupaeT BCeBO3MO-
JKHYIO eMy MOCTYHHYI0 MH(pOpMAIMio, KOTOpas, KOHEeYHO, 3aBUCUT OT
norpy;keaus; obGO3HaAUMM ee dYepes a(ly,lx). Ha camom nexne, mycrb
v; = fu(h;) ana moboro ¢, 1 < 1 < n. Torna, a(ly,lx) comepxur
cJIely 0Ty HHPOPMAIMIO:

— 06 OTMeTKaX BepIIiH, B KOTOPbIX OH IPUCYTCTBYeT, K 06 OTMeTKaX
YT, MHIMJEHTHBIX 3TUM BeplUIMHAM, T.€ O MHOKEeCTBe

{(f(i)yvi) s 1 < i < n}U{(Sf'(vi)yvi) 11 <8< npU{(g(e) )
z € (Cony,(L)),1 < i <nyu{(¢'(z),2): 2 € (Cony,(L)):1 < i< n}
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— O HELJII/I‘-IPIH KaMHel B BepllWHaXx, B KOTOPLIX OH OpUCYTCTBYeT, O
HaJInIHUHA Ha.MHGPl Ha nyrax, AHIIMIEHTHBIM 3TUM BepluiMHaM, 1 HaJHU4YINH
KaMHel y (‘P.6ﬂ., T.e. O MHOXKeCTBe

{UR (b, k) s h e H}U {5 (e) )
¢ € Cony, (L),1 <i<n}pu{(Ic"(vi),v;):1<i<n);

~ B3aMIMHOM pPaclloJIOKeHNHU IOJIOBOK, T.e. OmpeeliseTcs OTHOLICHe
9KBMBaJeHTHOCTH p(ly) Ha MHOMecTRe H cremyomum cmocoGom:

hi p(l5) hy Torna u Tonbko Torma, ecau lu(hy) = fH(h:g),

A nobbix by, hy € H;
O cucTeMe CJleJOBaHUA B BepUIMHAX, B KOTOPBIX OH [IPUCYTCTBYeT,
T.e. O MHOMKecTBe
{7 |1 X $< 0}

Y UUThIBasA COCTOSHUE BHYTPeHHEH MaMATH M COCTOSHUE BHeIIHel mamsi-
T, L-MOHCTP A npeInpuHUMaeT clIenyiolide BbIXOMHbIE AeicTBUA:

l) pemaer, kakuM cnoco6oM M3MeHWTH BpeMeHHBlIE OTMETKH BeplIiH
(MOXeT najke MX CTHPaTh, T.e OTMEYaTh BEPUIMHY MYCTHIM CUMBOJIOM
A), B KOTOPBIX OH NPHCYTCTBYeT, ec/ld OHM TaM CYIIeCTBYIOT, WM KX
TYa 3alUCEIBATH, €CIH UX TaM HeT, T.e. Ha BepmuHax v;, 1 < ¢ < n,
V3MeHAeT 3HaYeHMs QYHKOMM f' M TeM caMbIM 3aMeHSeT 3Ty ¢yHKIMIO
ra pyukmuo P( f);

2) pemaetT, Kakue KaMHM BO3bMeT (eciM OHM TaM eCTh), a KaKue
KaMHM OCTaBUT, B BepUIMHAX, B KOTOPBIX OH OPUCYTCTBYeT, B Iyrax,
KOTOpble MHUM/EHTHBI TUM BepUIMHAM, U B KOHIE IyT, KOTOPhIe OH BhI-
Oupaer B KayecTBe OyTeil MepeJBH/KeHUA CBOMX TOJIOBOK, T.e. TAKUM
cocoboM MeHsieT GYHKIMIO [k Ha (yHKINAIO &(l,c);

3) M3MeHseT COCTOSAHMA-BHYTPeHHEH 1 BHEIIHeH MaMATH, T.e M3 COCTO-
AHWA ¢ nepexomuT B coctosimme ¢(q,a(ly,lx));

4) BeIOMpaeT NyrHM MHIUAEHTHBIE BePUIMHAM, B KOTOPLIX OH IPUCYTC-
TByeT, B KauecTBe IyTell JalibHeillllero mepeBuKeHUS CBOUX TOJIOBOK.
IIycts 31O myrm v; = 'w,(q,a(l,q,[;c)) 1 <1 < nj ecam s HEKOTOPLIX
i,Jj UMeeT MecTo v; = vj, TO 7 = 7;. Torma q)ym{umo lp 3aMensier Ha
dyuxmumio Y(ly), Takyo, 410 (1) (hi) = p2(7i)-

OnumieM eme nonycTUMOCTh JaHHOTO L-MOHCTpa AHO mpekne naum
HEKOTOPBIe Olpele/leHus.

[IycTh man HaBop

A= (AlaAith M'sK;fsf’ak;NAapaNK)a
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rne Ay,As, A= Ay U Ay, M, M', K — uexoTopsle MHO%ecTBa; f : A —
M,f'.: A - M'" — nexkoropele ¢pyukmun; k @ K — A — HekoTopas
yacTiYHafs GYHKIUS; ~, —— OTHOUWEHHe SKBUBaJeHTHOCTH B A, Takoe,

yTO ecJik a; ~ a3, TO
ay € AL 1 ay € Ay, Win a1 € As moas € Aq,

~K — OTHONIeHMe DKBUBaJeHTHOCTH B K u p — HekoTopoe Gunaproe
oTHOmenue B A/ ~ 4. AproMop@u3MoMm 2TOH CTPYKTYPhl HA30BeM JIIO-
6yt 6ueknmio i : A — A Takyio, 4TO

1) f(i(a)) = f(a) n f'(i(a)) = f'(a) ana moboro a € A;

2) |[p] Nk~ (a)| = |[p] N k=1 (i(a))| ana mobbix p € K;

3) (A1) = A1 mi(Ay) = Ay

4) ay ~4 az = i(ay) ~4 1(a2);

5) ([a1], [a2]) € p = ([i(a1)], [i(a2)]) € p-

CrauuoHapHO# TOukoi aBToMOp(U3Ma i HazoBeM JIOOYIO TOUKY U3
Ay nns kotopoi# i(a) = a. MuoKecTBO BCex CTAlMOHAPHLIX TOYEK aBTO-
MopdusMa ¢ obozaunm vepes St(A;i), a gepes Aut(A) — MHOKeCTBO
Bcex aBToMop¢u3MoB cTpyKTypbl A. OBo3naunm

StA)=[) St(A;i).
i€Aut(A)

[Morpysxenue (I, ) HaspiBaeTCA HETYIMKOBLIM, ecjin A Iboro ¢,
1 <1< n, uMeeT MecTo

St(v;) = St[(Cong"(L),('ung'[L),E,E’,ﬁ'; f|Con'u__(L)af'|Con'u‘,(L),
Con
IJClCon'vl_(L); ¥ 17]u;(L)1 NK)] :I£ 0

u ¥i(q,a(lp,lk)) € St(v;). Hycrs (lgyliyq) m (Iy, 1, q') — HeKoTopbie
aBa morpysxenus nannoro A-moncrpa. [lumem

! '

“H?‘[Ks(I) = (l'Hleaq )1
ecmu ¢' = @(q,ally,lx)), Iy = ¥(q,a(ln,lk)) » lh- = ¢(lx). -Obo3naunm
MHOKECTBO BCeX HeTYNMKOBLIX MOrPYKeHWH depes Emb(A,L). Ecmm
maOxecTBo Emb(A, [) 3aKpbiTo MO OTHOWIEHNIO K Ollepalldd =, TO 9TOT
aBTOMAT Ha3blBAETCs 0IYCTHUMbIM.

Iycrs (U, Ui, q) v (I, %+ ¢') — HekoTOpbIe [Ba NOTPYAeHUA NAHHOTO

A-morctpa. [Tumem

([Hy[h'v q.) :*> (lfHJstqr): 2
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€CJIM CyllecTByeT NOoCHIeOBaTelbHOCTD norpyrxeHu -li lin q; 1<1<
YY)y — —
n, TakKasd, 4TO

(ljllhl}CvQ‘l) :-(1}{11110‘11) n (l?ﬁ K> qn) = (I}{’ ’.'Caqr)»
A UMEeT MecTo
(f},[,l}(, qi) = (lglsl}?IaQi+l)v
nist moboro ¢, 1 <4< n—1. Ecun ana narsoro L-MOHCTpa cymecTByeT
norpyxenue (ly,lk,q), Takoe, 9yTo nw6oe norpyxeane (ly, %, q'), yno-
BierBopsioee yciaosuio (Iy,lg,q) = (U4, %, q'), aBageTcs meTymmKo-
BBIM, TO Mbl TOBOPHMM, YTO JaHHBIA MOHCTp 4YacTW4YHO nonyctum.lose-

denuem L-voEcTpa A B nabupunTe I Ha30BeM MOC/TeNOBATENLHOCTE
HOrpyKeAni

(l?fv l{])(v qU)s (l}:ﬁ l}{a fh), s sliey
Takyo, 494To (l?{?l?{a ‘10) = (IH,II(? Q) 44

(s Ui 06) = UL i),

s moboro, 1 = 0,1,.... T'oBopuM, yto A obzodum nabupunt L, ecsu
> .
U ta(H) = v(L).
=1

3HaunT, 1aGUPUHTHBIMU MOHCTPAMH MOTYT GLITh M ABTOMAT, ABTOMAT
€ OIHWM WJIM HECKOJIbKMMM MarasuHaMy, cCYeTUMKAMHU, CTeKaMM, U Malll-
nHa ThropuHTa, U a)ke KOJIEKTUBBI TaKAX MAIMH. SICHO, YTO KOJIIEK-
TUB JTaOVPUHTHBIX MOHCTPOB ABJAETCA OJHUM JaGUPUETHBLIM " CBEPXMO-
HCTpOM” .

ABCTpaKTHLIM KOHEUHBIM aBTOMAaTOM HA3LIBAETCS Habop A = (4,Q, B
v@ ), tne A, B u Q cyTh KOHeYHBIe alpaBUTBI: BXOOHOM, BLIXOIHOMH
¥ COCTOAHMII COOTBETCTBEeHHO; ¢ : Q@ X A — Q u ¢ : Q x A — B cyts
(yHKOUM NepexoloB M BRIXOHOB COOTBETCTBEHHO.

[TocmoTpum ceiffuac B KadecTBe NaBMPUHTHBIX MOHCTPOB aBTOMATHI,
a B KadecTBe jJIaBUPHUHTOB KJIACC f(Q,E), KOTODBII ONpesenseTcs Tak:
BekoTopbiit L € L(%, ¥) npusannexur knaccy L£(f2,¥) torga u Toabko
TOrfa, ecau nnsf jawboit v € V(L) u mobeix v;,vy; € (L), Takux, yro
Pi1(71) = p1(72) = v, crenyer, uto |y1| # |y2|. Torna Kapruma mama B
npeblayleM maparpage yopomaercs , HOCKOIbKY TOT ciyuai mis
Hac OyzeT OdYeHb BaKHBIM, MBI ee 3/ech HaIWM B Hojlee KOHKpETHOM
BUIE. '

ABTomaT 2 Ha30BeM NOMYyCTHMBIM IUIs KJacca JabGHPHHTOB [!(Q,E),
eclii ero BXOIHOW aldaBHUT cOCTOMT M3 OykB a Buma (w,{o1,...,0,}),
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rmew € Qu {oy,...,0,} C %, u Beixomuoit andasut ecth LU{k}, £ € X,
npu atoM Beerda ¥(g,a) € pa(a) U {x}. OBozHaumM Kiacc Bcex TaKUX
apTomatoB uepe3z A(Q,X). Ilycrs 2, — HeKOTOpPbIA MHUIMAILHBIA
apromar u3 A(Q,X) u L, — HEKOTOPbLI MHUNWAJbHBIA JabUPHUHT U3
E(Q,E). WaTepnperupyeM (yHKIMOHMpOBaHWe aBToMaTa Ry B nabup-
unTe Ly, crenyromum obpazom. AsToMar U, noMemaercs B Ha4albHOM
MOMEHTe B BepuMHy vy JAabupunta L, IlpemmomoxuM, uro B Kakow-
TO MOMeHT aBToMaTr 9, OKa3aJcs B BepmiMHe v MabupuHTa L., ¥ B
cocrosany q. Cumraem, 410 oH 0603peBaeT HarpysKeHHYI0 3Be31y, 0bp-
A30BAHHYIO UCXOIAMMMY U3 3TON BepIIMHLL gyramu.Ero sxommoit 6yksoi
B 9TOT MOMEHT ABIAETCA mapa, ofpasoBaHHasd OTMETKON BepIIVHBl 1
MHOMKECTBOM OTMETOK 3Be3/bl. B ciaenyommit Moment, ecin (g, a) # K,
TO aBTOMAT llepeMellaeTcs B BepUIMHY,B KOTOpylO BeleT [yra ¢ OT-
MeTKoM 1(q,a), a ecin (¢, a) = K, TO OCTaeTCs Ha MeCTe, U BCerlla nepe-
XOMUT B COCTOAHME ¢(q,a). DTOT npolec npomonkaercsa nanee. Takum
06pa30oM aBTOMAT OCYILeCTBIAET JBUKeHWe N0 JaDUPUHTY, TOCIeNoBa-
TellbHO MPOXO0IA HeKoTopLi# nyTh. Ha camom nmene ¢pyHKOMOHMpOBaHuMe
aBroMata Uy, B JabupunTe L, MOKHO ONpeleNUTh KaK NOBe/leHre aB-
tToMaTa U, B nabupunte L, '
[locnenoBaTebHOCTEL Hap

W(QLQU; LUO) = (qO??"D)?(q]avl)a s

pasbiBaeM noaeedenuem asmomama Wy, 6 aabupunme Ly, , €CIA Viy) €CTh
BeplIMHa Jabupunta L,,, B KOTOPYIO aBTOMAT, HAXOMACh B COCTOSHUM
gi, NEPEXOIAT U3 BEPUIMHBL U;, & ¢i41 €CTh COCTOAHMe aBTOMaTa g, , B
KoTopoe nepeiiaer npu stom asromatllocaenrosaTelbHOCTD Tr(Ugq; Lug)
= wg,v1,... HaseBaeM mpaexmopuetl apromarta Ay B nabupunre Ly,
Ecan nna sekoroporo u € V(L,,) cymecTsyer ¢ € Qmm TaKoe, UTO Hapa
(g,u) npunaanexut (U, ; Ly, ), 170 ToBOpUM, 9T0 24, 0OXOIUT BeplIM-
uy w nabupunta L, . OGo3padynM MHOXKeCTBO BCeX BepIIMH, KOTODbIe
obxomut U,, B nabupunre L,,, gepes Int(Agqs L )-

BeemeM NOHATHA JONYCTUMOIO aBTOMAaTa M ero moBejleHWe B ciy4ae
n-MepHBIX NPAMOYTOJbHLIX TabupunToB Gosee GopMalbHO. Koneunblii
aptromat Aqy = (A,Q, B, ¢, 1, q0) HasbiBaeTcA JONYcUMbLM, €CIA A —
MHOMECTBO BCeX HEemyCTbiX HOJMHOKECTB MHOMXKeCTBa E®, B=E"u{0},
u P(g,a) € aU{0} una Beex q € Q ma € A. llosedenues aBToMatTa g, B
nabupunre L = (V,T;v',0") nasbiBaeM moc/ieloBaTelIbHOCTD T(Ago; L) :
(go,v0)s (q1,01)s ..., Tate vg = V' (0i,0i41) € I wmu v, = Vig1, Qi+l =
o(gi, [viL) m ¥(gi,[vile) = |(vi,viga)ls 8= 0, 1,.... Iapy (i, i) U3 HOBe-
nenus (2, s L) 6ymem obosravars depes mi(Agy; L)

q0°?

Mycts Ly, € £(2,5) n Uyy € AR, E). Ecau Int(Agg, Lug) = V(L)
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TO roBopum, uto U, obxomur L,,; B IPOTUBHOM clIydae L,, aBnsercs
aosywkold ans Ay, DTH HOHATHA cefiuac MOMKHO PACIIMPUTH A0 TIOOBIX
COYeTaHMI MHANMATbHBIX MM HeMHUIMAJIbHLIX AaBTOMATOB U J1abHpUH-
T0B. Yr0obbl Merve omucaTh Bce TH COYETAHMA MOCTYNUM Tak. 1lycTh
L e LX) e A(Q,%) npudyem u L u A MOryT GBITH KaK MHH-
IMaIbHBIMM TaK M HeMHUOWAJbHbIMM. Pacemorpum momsatma ”af3-o6-
xomat’ u "fa-nosymxka”, rae a,f € {LA,E}. Ecmu a =1 (a # 1),
10 2 ABIsSETCA WHUIMAJLHLIM (HEMHUOWAJILHBIM) ABTOMATOM, a eciu
B =1(B#1), 10 L ABNAeTCA MHULMANBEBIM (HeMHMIAAILHBIM ) mabup-
uaToM. CjioBo A yKa3plBaeT Ha TO, YTO IPH 9TOM GepyTcA Bee BepIINHbL
NaHHOI'O HeMHUIWaJbHOTO JabupuuTa L WM Bce COCTOAHWA NaHHOTO
HerHMIMa/baoro aBroMara 2, a cnoo E — Ha To, uTo Gepem TonbKO
HEKOTOPYIO BepPUIMHY JIaHHOTO HeMHUIHAJbHOIO JabupuBTa L MIN HeKo-
TOpOe cocTosnue namHoro aBroMarta 2. Tak, manpumep, L,, € £(Q,X)
Apasercs [A-aosywrol nna A € A(Q,X), ecnm s Beex ¢ € Qg nabupu-
BT Ly, sasnsercs jgoBymkoit mis A,. Astomar A € A(Q,Y) AA-obzodum
nabupunt L € L(Q,X), ecan ans secex q € Qg n Bcex v € V aBToMmar
A, obxomut nabupunt L,. Ecm a,8 € {I,LE}, 10 BMecTo af-06x0muT
n fa-nosymka ropopuM o6xomut M aoBymka. Ecmm o, € {ILA}, 10
BMecTO @/f-06X0mMT U Fa-N0BYLIKa TOBOPUM CUALHO 006TO0UM U cUAbHAA
A08YUIKA.

Hapsany ¢ nosememmeM aBTOMaTa B JaBUPHWHTE MOKHO TaKkKe pacc-
MOTpeTh NOBeeHAe CUCTEMBI aBToMaToB B Jabupunte. Ilyctn Lu] s
L(9Q, Y) ¥ 3azaHa cHUCTeMa JONYCTUMBLIX aBToMaToB A = {Q(,“ Qi',’;}
Ecmu nos nosenenvem aToit cucTeMbl. B Ly, .. ,, DOHAMATh MHOMKECTBO
NOBeleHUH

{ﬂ'(Ql .‘;Lv.)a- --sﬂ(mqn; Lun)}a

TO 3Ty CUCTEMY HA3bIBaeM HE€3a8UCUMOlL, a CaMO TOBeleHWEe — noae-
denuesm nesasucumolr cucmems. Ecam mus mekoroporo i, 1 < i < n,
Int(Qli Ly, )=V, o rosopum, uro A 06x0mmT L, ... ., , & ecan
1_1111t(91q yLy,) =V, 10 roBopum, uro A A-obzodum L, ., ; B 0po-
TUBHOM Clly4Yae FOBOPUM, 4TO L, ., SABIAETCA JOBYWKONR U COOTBETC-
TBeHHO A-/10ByHKo# 1A He3aBUcHMOM cuctembl A. Kak u B ciayuae
OJIHOI'O aBTOMaTa Mbl MOXeM BBeCTH aHAJIONMYHBIM CIHOCODOM MOHATUA
aff-obxommt u fa-nosymka (a3-A-obxomut u fa-A-nosymka), rue «, 3
€ {LAJE}. Ecim a, € {LLE}, To BMecTO aff-06x0MT 1 Ba-10ByHIKa rOB-
opuM 006xoauT U JoBymKa. Ecim a,f € {l,A}, To BMecTo af3-A-06x0muT
u [fa-A-n0BylIKa TOBOPUM CHILHO OBXOMAT M CUJILHAA JIOBYIIKA.
Paccmorpum Tenepn 6Gosiee cUIBHBIA BapuWaHT NOBeeAUA CHCTeMBI
aBTOMaTOB A HOOYCTUMBIX IR f(Q,E) B nabupwunre L, ., € L(Q,X).
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3akomMpyeM HallM aBTOMATBI ¢ HOMOMIBLIO OYKB Ui, ..., Uy, CIATAHA, UTO
u; IpUHEMMaeT B KauecTBe 3HAUCHUS TO COCTOAHME, B KOTOPOM HAXOIUTCA
Qlf“, wim A. Ecnm Bxoanoii anpaBuT AJs aBTOMaTa mg., 1 <1< mn, coc-
TOUT M3 DYKB a BUIa

(w, {ulj ceeg Uy—1, U415 '-au’n}a {(Tl',l' . me})a

roe w € Q u {o1,...,0,} C X, a BuXoqHO# al(aBUT ecTh MHOKECTBO
SU{k}, k ¢ T, u npu a1om seeraa Pi(g,a) € pa(a)U {k}, q € Qi, TO cuc-
teMy A HazoBeM xoaackmusom. VlaTepumperupyem (G yHKIMOHMPOBaHME
komnekTuBa A = {Ql’q],..‘,Ql.;‘“} B Ly, .. v, €ro IBUXKeHMeM B 1abup-
uaTe Ly, . ., chledyommM obpasoM. AsToMaT Qlfh B HadaJIbHBIA MO-
MEHT ToMelnaeM B Bepumny v; Jabupunra L, 1 < < n. Ilpemmonoxny,
4TO B HEKOTOPBIA MOMEHT ! aBTOMaT Qlfh_ OKazalcs B BepluHe vf u B
coctosamu ¢f. Cumraem, uTo oH 00O3peBaeT HArpyKeHHYIO 3Be3ly,
0Bpa30BaHHYI0 MCXOANMMI U3 3TONH BepIIMHBL AyraMu. Ero Bxomuoi
GykBOil a! B 9TOT MOMEHT SABIIAETCA Tpoiika, 06pa3oBaHHAA OTMETKON
BepUIMHBI, MEOKECTBOM KOJIOB BCeX aBTOMATOB KOJITEKTUBA, HaXOIAMIH-
Xcsi B BepHIMHe vf, KpoMe Kojla caMOTo aBToMaTa Q[f;__, 1 MHOKECTBOM
OTMETOK 3Be3jbl. B cieyiommuii MOMeHT, eclin i(gt,al) # K, TO aB-
TOMaT mepeMellaeTcs B BepIIMHY, B KOTOpYIO BelleT nyra ¢ OTMeTKOM!
¥i(gl,at), a ecmm Pi(gt,al) = Kk, To ocTaeTcs Ha MecTe, M IepeXOIMT
B cocrosamne @;(gf,al). DToT mpomecc NPOLOJKAETCH Jalee. Taxum
obpa3oM aBTOMAaT m; oCyllecTBsIeT ABMKeRNe N0 MTabMpUHTY, mocie-
[OBATENBHO MPOXoMs HexoTopbid nyTh. [locnenosaTepbHOCTD Nap

(G?,‘U?),(q},i):),...,

rae (¢7,v?) = (gi, v:)s 'u;’“ ecTh BeplIMHA, B KOTOPYHO IepeXonuT aB-
TOMAT W3 BepPIIMHBI U], HAXOIICH B COCTOAHUM ql, a qj-H — ero HOBOE
COCTOsIHME, HA3bIBaEM 1108¢JeHueM a8momama ‘21; xoanexmusa A 8 aabu-
punime Ly, ... v, ; IPA 9TOM FOBOPHM, 4TO 2! 06X0mMT BepUIMHEI v)0l,...
4 oBo3gauaeM MEOKecTBo uX uepes Int(A, Ly, ..v,;1). [locnenosareib-
HOCTb ’

0 0 .0 0 1 1 .1 1
TT(A9LU1,---.L'“) = (QI""‘QH’Ul"'"’ﬂn 1(%1"'3‘1111”1!'"7”7;)3"'7

TaKasi, 4To NOC/eloBaTelLHOCTh (q?,v?),(q},v}),... SBJSeTCA MOBeIle-
HMEeM aBTOMaTa Ql,ﬁh rkonnektusa A B mabupuare L, .. v,, Ha3bBaeTCA
noeedenuem xoasexmusa A 8 aabupunme Ly, . v, - HMycTd 105 1 W Z—
= UL, Int(Uq,, Ly,37). Ecom Int(A, Ly,,..v,) = V, TO roBopuM HTO A
obzodum Ly, . ,; B OPOTUBHOM cly4dae Ly, ..., ABIAETCA nosywkotl
s A. JlabupurT [ HasbiBaeM cuabnoil aosywroll nua A, ecim Ui
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JOBBIX vy, ...,v, € V(L) nabupusat Ly, ,....v, ABIseTCS NOByMKON s A.
Ronnexktus A cuasno obzodum naGupunt L, ecmn nus mobuix vy,. .., v,
€ V(L) ronnexrus A ob6xomur nabupunt Ly«

Ha‘ﬁop A= (Qllﬂ R agl'm.)a roe 2[{ = (Ai, Qis Bis Pis Tbi? q;])a = ) SR ) Ty
~— HEKOTOPBLI aBTOMAT, Ha3bIBAETCA KOAAERMUBOM donycmumuz asmo-
mamoe 8 R™, ecim nia nroboro i =1,...,m,

1) Ai = {a € Po(E™) x [[Ti2, (0 U Q:)]Ipis1(a) = 6};

2) B; = E* U {0};

" 3) vi(g,a) € p1(a) U {0}, s mobrix g € Q; u a € A;
3MECH NPEenolaraeTcs, YTo § — HeKOTOpbIA (pUKCHpOBaHHKI 51eMenT,
HEe NpUHAJIeKalMid MHOKecTBY U ;Q;.

[lycte L — mexoTopsiit n-MepHbIA nabupusr, v, ¢ = 1,...,m, —
HEKOTOPbIE BEPIIMHBI n-MePHOro NabupuBTa L M ¢; — HeKoTopoe cocTo-
sAnue aBroMarta A;, ¢ = 1,...,m. Ob6osznauum 7 = (Viyeooyt) B

q‘: (q11'--7qm)' HYCT}’

ai(ﬁv (T) = ([vi]L’ [ai(ﬁ1 @)]17 KRR [(L,‘('l_f', (j')]‘??l)v

rue e
" ¢j, eclu v;=v;u i# j;
[a:(7, P)]; = 9 o
\ eClM v; # vj MK 1 = j.
[ycts i = (vg,5,...,v§") — mekoTopsii HabGop BepiuH n-MepHOTo
nabupunra L. [losedenuem xoanexmuea A = (A1,...,%U,) 8 n-meprom
aabupunme (L; T) Ha3bIBaeTCs NOC/Te0BATENBHOCTE m(A; L, %) = (%o, o)
ol i I 1 m - 1 m
yor s (U5Gt)y .oy voe Ty = (v}, ..., 0 m @ = (¢f-..,q"), Takas, yro mus
mwobeix ¢, 1, rne t =0,1,... mi= L, v im0y
1) g5 — BavambHOe cocToAHWe aBTOMATA Ass

2) (tzi,vhﬂ €T nam vf = 'vf_H;
2 3) gipy = @ilgE, ai(F, §));

4) (gl ai(T, §b)) = |(’”§s”f+1)|-

Oboznaunm
Int;(A;L,’t?g) = vf A<gmi=01u:)
Int*(A; L, %) = {v},..., 0"} (i=0,1,...),
Int;(A; L, %) = U2, {v?},
Int(A; L, 7) = Ug2, (UL {v}),
Fr(A; L, %) = V\Int(A; L, %).

Ecan sprre vy = -+ = o* = vg, T0 B nocnenywumeM Bcerga Oysem
roBOpUTEL He o nosenenun A B (L;%), a o nosemenuu A B n-meproM
nabupunte (L;vg), U Bo Bcex BbIllle BBeZEHHBIX 0D03HAYEeHUSAX, B KOTO-
PHIX pUrypupyer i, 6ydeM nucaTh vy BMECTo .
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FoBopuM, YTO KOJIJIEKTUE JIONYCTUMBIX aBToMaT A 06z0dum n-MepHbIA
nabupunt (L;vg), ecam Fr(A; L,vy) = 0. TDoBopum, uTto Koanextus A
cuabno obrodum n-mepHbli nabupunt L, ecau aas mwoboro v € V(L)
komnektns A ob6xomut (L;v). n-meprbid nabupurT (L;vg) HaspBaeTcs
n-mepnoti aosywrol s konnektusa A, ecim A me obxomut (L;ug).
Takxe, n-mMepHublid nabupunt (L; vy, v1) HA3BIBAETCA N-MEPHOK JIOBY KO
s A, ecin vy € Fr(A; L,v) u [n] # E™. n-mepmsri na6upunt L
Ha3bIBaeTCA CUALHOU n-meprol aosywikoll 1 KolnekTuBa A, ecnn Ui
nwboro v € V(L) konnekrns A me obxomur (L,v).

OTMeTHM HEKOTOpble aBTOMaThI Ql:;,ll,] ,...,Qif;lf:n, 1K€ 3 i ioes gy K W
KoJnekTura A = (lel,...,Qlj;"l). AproMaTs Qlf,l' ,...,Qlfl'; Ha3bIBAKOTCH
KAMHAMYU & KoAnexmuse A, eclii UMEIOT MecTo (1‘..119,[[}’}0[11";/[6 YCIIOBUS:

a) y aBToMara Ql;’;}, , 1 <7 <m, TONBKO 0MHO COCTOAHUE — (i}

6) ecau I/ HEKOTOPOro BXOAa

a= (_UJ,{’LL‘I,... ’ “t(—lau’i;+1$'",u11}1{013" '10171.})

aBTOMaTa Q[f;.-,’ 1 <1 < m, ameer mMecto Pi(q,a) = o, 1 < k < m,
To cyumecTByeT j # i, 1 < j < n, 1 <1 < m, Takoe, ut0o u; # A u

Yi(g,a') = oy, rne a' = (W, {Uge e ey Ujmdy Uil s Un )y {01500 01 Om}) 1 %

KOJl COTOSHUA ;.
Kosnektus A ¢ m oTMedeHHbBIMEA aBToMaTaMu 2471 ... Ay, KOTOpBIE
s i

ABAAIOTCA KAMHAMM, Ha3blBACTCA KOAAECKTRUBOM U3 T — M ABIMOMAIMO8 C
m Kammetl.

3. JlomycTMMBbIe aBTOMAThHI B IJIOCKMX MO3aM4HBIX JIADMPHMHTAX

[lycts £ — kiace HekoTopbix nabupuatos (L;w). Ecian gHekoTopbri
apromMar 2, cuiabHO 06XOAMT N0OOA MTabUPUHT (Lyu) uz L, To MbI
rOBOPUM, UTO aBTOMAT A, SABIAACTCS YHUBEPCAIbHBIM OOXOMUMKOM JUIS
Kiaacca L.

Ipemnoxenue 3.1. Cyuwccmayem yrnusepcanvisli obroduux das xKaacca
acer WATMAMHBLE AABUpuINOs 63 KOHEUHBT Obp.

C apyroif CTOPOHBI, WMEeT MecTO HeTPUBMAJBHBIA pesyibTaTr: He
CyIeCTBYeT KOHeUHBIH MHMIMANbHBIA aBTOMAT, KOTOPBIA 0OX0mUT BCe
KOHeUHble JIOCKHe MOo3auunbie JaOUPHHTBL. DTO yTBepHIeHue A KO-
HeUHBIX MIOCKUAX IAXMAaTHBLIX JaOMPUHTOB (QaKTHUYECKH yCTAHOBJIEHO B
pabore [3] ¢ BecbMa rpoMo3/iKuM 0DOCHOBaAHUEM, UCTIOJb3YIOIIMAM CPeIH
IpOYero U A3LIK TEOPUM KaTeropuit. DJieMeHTapHOE W KOPOTKOE J0Ka3a-
TeqLCTBO ATOTO yTBep:kKIeHWUs laeTcA B paboTax [17,18] (popmanbHOE
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OTIUYMEe MO3aMYHBIX M MaXMATHBIX JaOUPUHTOB He sABJIAETCA 3/1eCh CY-
mecTBeHHBIM ). MeTommuyecku HoJiee HarisgHOe MOKA3aTelbCTBO 3TOM
TeopeMmbl colepKUTcas B [15], TeXHMKa KOTOPOro NO3BOJIMIA PelInTh
HeKOTOpble ApYyrue U YIPOCTUTh YiKe pelleHHble 3a/lauyy TUMa 3aadu
obxona.

[lycts £ — HeKOTOPBIN Knace MIOCKUX MO3aMdHbIX JabupuaTos. Ha
MHO¥KecTBe Beex nap (i,7) € N? ompememuM wacTHUHLIE NOpAXOK <,
nosoras (a,b) < (e,d) Touno torma, korma @ < ¢ u b < d. Ilpemaxar
P.(7,7) onpenenum takum cnocoboM, uto Pe(a,b) = 1, ecim cymect-
ByeT KOJIJIeKTHB Tuna (a,b), obxomusmmii Bee nabupunrsl u3z L, u Pz(a,b)
= 0, ecny Takoll KOJJIEKTHB He cymecTByeT. HeTpymHo Bumerh, uTo
npemukar Py sBnseTca MOHOTOHHON ()YHKIMeH OTHOCHUTEJILHO 9TOTO Ya-
cruunoro nopsanka. Touree, mycts (a,b) < (¢,d). Torna, eciu Ps(a,b)
=1, 10 Pg(e,d) = 1, a ecnmu Pg(c,d) = 0, To Pg(a,b) = 0. Iapy (a,b)
HazoBeM HWxHel emmanneit nna Pg, ecim Pe(a,b) = 1, a Pe(e,d) = 0
nna moboro (¢,d), Takoro, uro (¢,d) < (a,b) u (¢,d) # (a,b). Iycrs
T[P;] — MBOKecTBO Bcex HVMKHMX equnuil juid Py, flcHo, yTo 3ananue
P, omrosraunO onpenensiercsa ykazaaumem T[P.].

Teopema 3.1. Hmeem mecmo pasencmso T[Pc, ] = {(1,2,(2,0)}, npu
amom nexomopsie xoaaexmues, muna (1,2) obrodsm aabupunms uz n xae-
mox xaacca Loy sa apems O(n?), a muna (2,0) — 3a epems O(n?), u oc-
madasaAusawmnca nocae 051‘00(1.

B pabGore [10] nokasano, uro P, (1,5) = 1, npudem cymecTByoT
HEKOTOPBIe KOJIJIeKTUBbI TUna (1, 5), KoTopble 0GXOMAT U OCTAHOBIUBAIO-
TeA nocse obxona Jroboro nabupunta us Ly. B pabore [2] mam sckus
nokazatelbcTBa Toro, urto Pr (1,2) = P, (2,0) = 1 (nonsoe nokasa-
TeJbCTBO MOYKHO HalTH, Hanpumep, B pabote [l4]). W nakomen, B
pabore (7] GBIT TpUBeNeH BCKU3 IOKa3aTelbCTBa TOro, uyrto P (1,1) =
0, a moJHOE NOKa3aTelhCTBO BTOrO (akTa GblIo AaHO B pabote [8].

B pabBore [2] mokazano, 4T0O aBTOMAT €O CUETUYMKOM OBXOIUT Kiacc
P¢,, no 3a spems O(n?). B paborte [6] Teopema 3.1 oBobmaercs mHa
ciydaidl OJOCKAX OPSAMOYTOJIbHBIX J1aBMPUHTOB € COOTBETCTBYIOUIMMM
onenkamn Bpemenu obxoza suma O(n?) u O(n?), a nas aBTOMaTa co
CYETUMKOM M OJIHMM KaMHeM »To BpeMms pasio O(n?).

Cuenyer 3aMeTUTb, YTO BO3MOMWKHO ' BJlOKeHHOe” paccliioeHue Kiac-
ca Lo, Takoe, 4YTO IJIA KakKIOro cjlosi yxe HailleTca aBTOMAT ¢ OIHHAM
KaMHeM, 00XOIAImMd ero.

Teopema 3.2 /Jlas awboeo k € N cywecmeyem xoasexmue muna (1,1),
cuabno obrodsuyull ece Koneunve naockue (wWazmammsie) Mosaunnse aabu-
purmsl, y xomopuz ne boaee k (KomMnonenm xocedznocmu) dup, npu IMOM
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asmomam umeem we boaee (_4"; cOCmogHUL.

B pabote [12] Gblto ycTaHOBJIEHO, YTO CYUNIeCTBYeT KOJJIEKTUB THUIla
(1,1), koTopblil cHABHO OOXOIWT BCe KOHeUHble I[UIOCKHE IIaXMaTHbIe
nabUpUATHI, UMeomMe He Oosnee asyx asip. B paGore [13] mokazano
TO e caMoe, HO B cllydae, Korfa y gabupuHTa He Doublue Tpex HbIp.
3atem B [9] Gblna mokazana nepBas 4YacTh TeopeMbl 3.2 [UIA ciydas
KOHEUHBIX INIOCKUX INaXMaTibiX JabUpUHTOB, a mo3xe B [5] Oblia yc-
TaHOBJIeHA OTEHKa JJIA YUC/la COCTOAHUN aBToMaTa U YIPoIleHo 1oKa3a-
TeJbCTBO NepBoil 4acTHU TeopeMbl.

Bo3aMoKHOCTY KOJUIEKTUEOB aBTOMATOB NPH 06X0/1e NabUPUHTOB MHO-
ro WUpe, YeM BO3MOMKHOCTY He3aBUCUMBIX cucTeM aroMaToB. 06 aTom
CBUJETENLCTBYIOT CJeyloliue yTBep:AKLeHus, B KOTOPBIX pedb UIeT O
KOHeYHLIX ¥ DeCKOHEeUHLIX [JIOCKHX MO3aMuHbIX JIaDMpUHTAX.

Teopema 3.3. [16] Hamecem mcemo coomnowenue {(2,3),(3,2),(4,1),(5,0)
} € T[Pg,).

B paBorax [1,4] 6b10 ycranosiaeno, uro P, (1,7) = 1, a B pabore
[11] — uto Pg,(1,5) = 1; HaKoHeN, ¢ NOMONIbIO [OCTATOYHO OOl
KOHCTPYKINMM Gblia Hokazana TeopeMma 3.3 [16] (ouesummo, Pr,(0,5) =
0). okaszaTeabcTBO TeopeMbl 3.3 NPOBOIMIOCH TOCPEACTBOM KOHCTPY-
MPOBAHUS COOTBECTBYIONICN JOBYIKN JUIA KOJIJIEKTUBOB BCEX THUIIOB
(2,2),(3,1) u (4,0). 3aTem cTPONINACH NIPUMEPBI KOJUTEKTUBOB BCeX THTIOR
(i,7) € T[P.,], KoTOpBIe 0OX0AAT Bee MIOCKUME MO3anyHble TaOUPUHTDL.
Tak e, Kak W JUIS CUCTeM aBTOMaTOB, WMHTEPeCHO BBIACHMThL, Kakue
JNOCTATOYHO MMPOKMEe KAacchl 1aBUPAHTOR MOTYT ObITh 0GOMIEHB! KOJI-
JeKTUBAMY [IPOCTHIX TUTIOB. 3aMeTHM, U4To eciy nepeitn k knaccy Pgy
BeexX MIOCKUX MO3aUuYHBIX J1abUMPUHTOB, HE coleprKalldXx OGecKoHeYHbIX
JIBIP, TO OCTAHeTCs CIpaBe/lIUBbIM Y’ l‘BE‘])}K,ELOLlHP AHOJIOTWUHOE TeopeMe

3.3.

Teopema 3.4. [16] Jas waacca Ly u npeduxama Ppi umeem mecmo
coomnowenue {(2,3),(3,2),(4,1),(5,0)} € T[P.].

B [16] nokasaso, uTO PL 1,3) = 0. Orciona crenyer, uro T[P.,]
(T[Pg)) pa.BHO wiam {(1 (2,3) (3,2),(4,1),(5,0)}, nmm {(1,4),(2,3),
(3:2), (4 1),(5,0)}. (yuiv( teyer rumnoresa, uro T[Pg,] = T[Pg] =
{(1,5),(2,3) (3, ),(4,1), (5,0)}.

CIIUCOK JJUTEPATYPHI

[1] M. Blum and W. Sakoda, On the capability of finite automata in 2 and 3 dimensional
space, The Procedings of the 18th Annual Symposinm on Foundations of Computer
Science, 1977, pp. 147-161.



802

B. B. Kyapasues, II. Yuuymauyu u I'. Kuanbapaa

(2] M. Blum and D. Kozen, On the power of the compass, The Procedings of the 19th

Annual Symposium on Foundations of Computer Science, 1978, pp. 132-142.

[3] L. Budach, Automata and labirinths, Math. Nachrichten 86 (1978), 195-282.
[4] 7. Habasinski and M. Karpinski, 4 codification of Blum-Sakoda T-pebbles algorithm,

ICS PAS Reports, vol. 448, 1981.

[5] A. Hemmerling, 1-pointer automata searching finite plane graphs, Z. Math. Logik

(6]

Grundlag. Math. 32 (1986), 245-256.
A. Hemmerling, Remark on the power of compass, Lecture Notes in Computer Sci-
ence, vol. 233, Springer-Verlag, 1986, pp. 405-413.

[T] F. Hoffmann, One pebble does not suffice to search plane labyrinths, Lecture Notes

(8]

in Computer Science, vol. 117, 1981, pp. 433-444.
F. Hoffinan, 1-Kiesel-Automaten in Labirinthen, Report R-Math-06/82., AdW der
DDr, Berlin, 1982.

[9] K. Kriegel, Universelle 1-kiesel automaten fur k-komponentige labirinthe, Report

[10]
(11]
[12]

[13]

R-Math-04/84, AdW der DDR, Berlin, 1984.

N. A. Shah, Pebble automata on arrays, Computer graphics and Image Processing 3
(1974), 236-246.

A. Szepictowski, A finite 5-pebble automation can search every maze, Information
Processing Letters 15 (1982), no. 5, 199-204.

A. Szepietowski, On searching Plane Labyrinths by 1-pebble Automata, EIK 19
(1983), no. 1/2, 79-84. _
A. Szepietowski, Remarks on searching labirinths by automata, Lecture notes in Com-
puter Science, vol. 158, 1983, pp. 457-464.

[14] I'. Kuaubapnaa, O6 ofrode xoneyrnss aabupunmos cucmemamu asmomamos, Huc-

[15]
(16]
(17]

KpeTHabla MaTemaTuka 2 (1990.), no. 2, 71-82.

['. Kumubapaa, Hosoe doxasameasemao meopemur Bydara-odxonzuna, Iluckper-
Habla MaTemaTHKa 3 (1991), no. 3, 135-146.

[ Kunubapaa, O MuMuMasbHble yHUBEPCAABNBLT KOAAEKMUBAT ABTMOMAMOa JAbla
naockur aabupunmos, Jluckpernasia MaTemaTuka 6 (1994), no. 4, 133-153.

B. b. Kynpriasues, A. C. Hoakonzun u U. Y cxuxymunnx, Beedenue o meopubly
abempaxmustz aemomamos, M.: Uzg-Bo MTY, 1985.

[18] B. B. Kyapoiasues, C. B. Anecxun u A. C. [oarkonsunu, Beedenue e meopubLy

CJl14

asmomamos, M.: Hayka, 1985.
MEXAHUKO-MATEMATUYECKMA ®AKYIBTET, MT'Y, MockBA, Poccus

YHUBEP3UTET ¥ BEOrPALY, TM®, KAPHE/UKUIEBA 4, 11000 BEorpram, I0Oyro-
ABHA

YHUBEP3UTET ¥ BEOTPALY, TM®, KAPHEIKUIEBA 4, 11000 BEorprand, KOyvro-

CIHIABHA



FILOMAT (Nis8) 9:3 (1995), 803-807
Algebra, Logic & Discrete Mathematics
Nis, April 14-16, 1995.

OMITTING TYPES IN KRIPKE MODELS

Zoran Markovié

ABSTRACT. When can a type be omitted in a Kripke model of some intu-
itionistic theory is investigated. As it is usual with intuitionistic systems,
various classically equivalent formulations of the Omitting Types Theorem,
become nonequivalent statements in the intuitionistic setting. Several such
formulations are discussed in terms of whether they have the intended mean-
ing in Kripke models, and several theorems are proved.

Classically, an Omitting Types Theorem states that an apparently weaker
condition, concerning individual formulas from a type (“locally omitting”),
suffices for the whole type to be omitted in some model. We will start by
considering what meaning these expressions may have in the case of Kripke
models of some intuitionistic theory T. A “type” should clearly be a type of
an element of a Kripke model of T'. If we restrict ourselves to Kripke models
in which the frame, i.e., the partial ordering, has the least element the base
node, this should be an element of the universe at the base node. A type
for T' can be defined as a set of formulas in the same language £(T) with
one free variable, say z,, consistent with 7. Analogous definition may be
given for n-types. If > (z¢) is a type for T', we say that some Kripke model
of T realizes Y if there is an element of the universe at the base node of
this model, for which every formula from ) is forced. Dually, we say that
some Kripke model of 7" omits Y if for every element of the universe at the
base node of this model, there is some formula from } which is not forced
for this element. As for the “local omitting”, we may consider the following
four formulations:

(1) for any sentence Jzgp(zo) in L(T') consistent with T', there exists
some formula o(z¢) € 3 such that the sentence 3zq(@(zo) A-a(zo))
is consistent with T";

803
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(2) for any sentence Jzgp(zo) in L(T) consistent with T, there exists
some formula o(zg) € ) such that the sentence Jzg—(p(zg) —
o(zp)) is consistent with T';

(3) for any sentence Jzgp(zo) in L(T) consistent with T, there exists
some formula o(xg) € 3 such that the sentence —Vzqo(p(zy) —
o(zg)) is consistent with T’

(4) for any sentence Jzgp(zg) in L£(T') consistent with T, there exists
some formula (zg) € ) such that T ¥ Vao(p(zo) — o(x0)).

In intuitionistic predicate calculus it is easily provable that:

dzo((0) A ma(20)) — Izo-(p(20) — 0(20))

and
Jzo-(p(z0) — o(z0)) — —Vzo((20) — 0(20))

while neither of the reverse implications holds. Therefore, we have
(1) =(2)=(3) = (4).

However, the whole statement (2), even intuitionisticaly, implies (1), so we
may dismiss it. It is easy to show that for the.remaining there statements
none of the reverse implications holds intuitionisticaly. The statement (4)
is the most interesting, not only because it is the weakest of the four, but
also because it is strong enough to prove that in the Lindenbaum algebra
of consequences of T', " generates a nonprincipal filter. We shall also use
(1), mainly for technical reasons, while (3) does not seem to deserve much
attention.

* * *

Let £ be a countable first-order language, T a consistent (intuitionistic)
theory in £ and )7 a set of formulas in £ with at most zo free. In [3] the
following theorem was proved. ’

Theorem 1. If for any sentence Jxop(zo) in L consistent with T, there
ezists a formula a(zo) € 3 such that the sentence Jzo(p(zo) A —a(zp)) is
consistent with T then there exists a Kripke model of T with a countable
universe at each node, such that for every element a of the universe at the
base node, there exists a formula o(z¢) € Y such that —cola] is forced at the
base node.

The proof is a Henkin-style argument along the lines of completeness
proofs of [1] and [4]. T is gradually extended to an £ U C-saturated theory
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(C' being a countable set of new constants). At each stage three steps are
made: for n = 3k and n = 3k + | we work toward making the final theory
saturated (we provide a “witness” from (' for an existential consequence and
add one of the disjuncts of a disjunction which is a consequence), while for
n = 3k + 2 we add —c(cy) for some appropriate o(xzo) € 3.

It was observed later by Kripke that practically the same proof will prove
the following dual theorem, which might be more useful for intuitionistic
theories.

Theorem 2. (Intersecting Types Theorem) If for any sentence Jzge(zo) in
L consistent with T, there exists a formula o(xg) € Y, such that the sentence
Jzo(p(20) A 0(x0)) is consistent with T, then there exists a Kripke model of
T with a countable universe at each node such that for every element a of
the universe at the base node, there exists a formula o(zg) € ), such that
ola] is forced at the base node.

These results may be improved in two directions. One direction is to
require 7' to be a saturated theory, i.e., a deductively closed consistent set
of sentences satisfying the following two conditions:

— if Jz(z) € T then ¢(e¢) € T for some individual constant ¢ from
L(T)
~-IfouyeT thenpecTorypeT.

While Troelstra and Kreisel argue that we should not assume that all
intuitionisticaly acceptable theories must be saturated (e.g. [5]), it is a fact
that all major, naturally arising, examples of intuitionistic theories are sat-
urated. Therefore, this is not an unreasonable requirement. In this case the
condition (4) is sufficient for omitting.

Theorem 3. If T' is a saturated theory and for any sentence dzop(zo)

in L consistent with T there exists a formula o(zo) € Y, such that T If
Vao(e(zo) — a(zo)) then there exists a Kripke model of T which omits Yoo

Proof. Let E = {3zopo(x0), Izop1(z0), ...} be an enumeration of all exis-
tential sentences in £ consistent with 7. By the hypothesis of the Theorem,
for each i € w there exists a Kripke model 9; = ((54, 05, <i); Us: s € 5;) of
T, a formula 75(z¢) € 3 and an element a € A, such that

O; I+ T, 0; IF ¢ila] and  O; ¥ ola].

Let 91 = (Y 901;)' be the collection of models 9;(i € w) (c.f. [4]). We shall
prove the following two claims:

lPMmE=T

2° 9N omits ¥, i.e., if M = ((5,0,<);Us:s € 5) then for every a € Ao
there exists a(zo) € 3, such that O If ofa].
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For 17 it is enough to note that T is saturated and is, therefore, preserved
under the operation of collection (cf. [4]). For 2°, we note that Ay of 9N
consists, by definition, of individual constants occurring in T'. Therefore, if
¢ € Ag the sentence 3x¢(x9 = ¢) will be a sentence of £ consistent with T,
so for some ¢ € w, ; in our enumeration E will be (zg = ¢). Then, for some
a € Ap, we will have O; IF @ = ¢ and O; If oi[a] and so O; I a;(c). As
O < O; in 9, we obtain O I a;(c). O

Another direction in which we can improve Theorem 1. is to put some
restriction on elements of ). We will show that in two such cases we can
obtain the omitting types theorem in full strength, i.e., using (4) as the
“locally omitting” condition.

Theorem 4. Let )" be a set of negated formulas in £, with at most zq free.
If for any sentence Ixop(zo) in L consistent with T, there exists a formula
—o(zg) € ) such that T ¥ Yao(p(zo) — —o(x0)) then there exists a Kripke
model of T omitting Y.

Proof. Consider 3. = {o: -0 € 3_}. It is easy to prove that T ¥ Vzo(@(zo)
— =0a(zg)) if and only if 3zg(p(zo) A o(z0)) is consistent with T. If T' I/
Vzo(p(zo) — -o(z0)), by completeness theorem (e.g. [1]) there exists a
Kripke model 2 = ((.5,0,<);Us:s € §) of T in which for some s € § and
a € A; we have s |k [a] and s | —~o[a] which means that for some s’ € §
we have s < s’ and s' IF ofa]. The truncation of 90 at s', 9, will be a .
model of T'U {3z¢(@(z0) A o(z0))}. We may apply now the Intersecting
Types Theorem (Theorem 4.) to 3" and obtain a Kripke model of T' with
a countable universe at each node which not only omits 5 but in which
actually for each element a of the universe at the base node there exists
some —o(zg) € 3 such that o[a] is forced at the base node. O

Theorem 5. Let ). be a set of formulas with at most xy free which are
decidable inT, i.e., for each a(xo) € 3 we have T & Vao(o(zo)V-o(zg)). If
for each sentence zop(xo) consistent with T there ezists a formula o(zg) €
> such that T i/ Vzo(@(zo) — o(z0)) then there exists a Kripke model of T

omitting Y.

Proof. As in the proof of Theorem 4, T' I/ Vo (w(z0) — o(zo)) implies that
in some Kripke model 9 of T' for some s and @ € A; we have s IF ¢[a] and
slf ola]. As s |- T we get s IF =o[a] and the truncated model 91, is a model
of T'U {3zo(@(z0) A 0o(z0))}. We may then apply Theorem 1. and obtain
the model of T omitting . O
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A CLASSIFICATION OF LOOPS ON
AT MOST SIX ELEMENTS

Snezana Mati¢-Kekié¢ and Dragan M. Acketa

ABSTRACT. Eight kinds of equivalence classes (five of which are new) within
the family L(n) of finite loops on n elements (n < 6) are considered. The
classes arise by combining the operations of isotopy over L(n) (with some of
its specializations) and loop-parastrophy (parastrophy followed by a special
isotopy, which returns the image to L(n)).

The used isotopies are triples of permutations of the ground-set (applied
successively to rows, ‘columns and elements of the associated Cayley table)
which map L(n) onto L(n). Classical isotopy and isomorphic classes corre-
spond to the triples of the form (p,q,7) and (p, p, p) respectively. Three new
natural kinds of interclasses, denoted as C-, R- and E-classes, correspond
to the triples of the form (g, p,p), (p,q,p) and (p,p,q) respectively. The
combinations isotopy over L(n) + loop-parastrophy” and ”isomorphism +
loop-parastrophy” lead to the classical main classes and to a new kind of
classes, denoted as Il-classes. Finally, a new kind of classes, called paras-
trophic closures, corresponds to the transitive closure of the loop-parastrophy
operator.

Cardinalities, intersections and dualities for all the eight kinds of equiva-
lence classes of loops are completely determined for n < 6. In addition, the
following theorem, related to classical isomorphic, isotopy and main classes, is
proved by using the new [I-classes: All the isotopy classes within a main class
have the same family of cardinalities of their included isomorphic classes.

1. Introduction

Isotopy classes, isomorphic and main classes belong to the ?folklore” of the
theory of latin squares and loops. These classes were studied, for example,
in (8], (6], [4], [7]-

In particular, the figures 9408, 109, 22 and 12 of Table 1. were for the first
time correctly determined in the papers [8], respectively [6]. These figures
were confirmed by computer in [4]. A systematic tabulation of latin squares
on at most six elements and of some their properties was given in [7]. An
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extensive review of the related results was given in the book [5], Sections 4.2
and 4.3.

In this paper are additionally considered five new ([2]) kinds od equiva-
lence classes of loops: C'—, R—, E—, II—classes and parastrophic closures.
The relationships among all the eight kinds of classes are studied in detail
for the case of loops on at most six elements.

[sotopy and isomorphic classes of latin squares correspond to the isotopies
determined by three and one permutation of the ground-set. C'—, R— and
E—classes correspond to the cases when exactly two among the three per-
mutations determining a loop-preserving isotopy — coincide.

A very small modification (abandoning of fixing the unit) of the algorithm
for generating isomorphic classes of loops generates ([1]) C'— and R—classes.
On the other hand, C— and R—classes can be further used ([2]) for a con-
struction of isotopy classes,

It is known ([3]) that iterative applications of parastrophic operators
within the class of loops (fo a fixed initial loop) — produce loops belong-
ing to at most six different isomorphic classes. Parastrophic closures are
obtained when the arising loops themselves are considered, instead of their
isomorphic classes. The upper bound for the cardinality of parastrophic clo-
sures with loops of order n is equal ([2]) to 6 - max g.c.d.(sy,... ,sx), where
the maximum is taken over all the partitions n — 1 = s; + ...+ s4.

The relationships between IT—classes and isomorphic classes are com-
pletely analogous to the relationships between main classes and isotopy
classes.

The inclusion chart of the considered kinds of loop classes has the following
outlook:

| main classes |

| isotopy classes |

1
C'—classes | | R—c]asses] L II—classes I
l F —classes

isomorphic classes |

| parastrophic closures |

Figure 1.

In Table 1. are given some summary data for n < 6, which include
cardinality of the family L(n) of all loops of order n, as well as the number
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of all the above defined subclasses of L(n). The figures for the three well-
known kinds of classes can be also found in [5]:

n <3 4 5 6
cardinality of L(n) 1 4 56 9408
number of isomorphic classes in L(n) 1 2 6 109
number of F—classes in [(n) 1 2 5 103
number of C'— (also number of R—) classes in L(n)| 1 2 3 40
number of isotopy classes in L(n) 1 2 2 22
number of II—classes in L(n) 1 2 4 40
number of main classes in L(n) 1 2 2 12
number of parastrophic closures in L(n) 1 4 14 832

Table 1

It would be hard to extend such results to larger values of n, since
|L(7)| = 16.942.080 ([5]).

The classes were enumerated and analysed with the aid ofa PC computer,
by using algorithms given in [1]. Most of the running time was spent for the
generation of parastrophic closures. This is a consequence of the fact that
parastrophic closures are not superclasses of isomorphic classes.

The questions concerning the relationships among the considered classes
of loops of order n are obviously trivial for n < 3. The full description will
be given for n = 6, while the corresponding data for n € {5,4} will be briefly
listed in the last section.

[somorphic classes of loops as well as their cardinalities are listed in the
Appendix. These classes are basic constituents of all the considered classes
of loops except for the parastrophic closures. :

2. Definitions and denotations

Let S(n) denote the set { .yn}.

A latin square of order n is an n x n matrix A with elements in S(n),
which satisfies that there are no two coinciding elements in the same row or
in the same column of A.

A loop (with unit 1) of order n is a latin square A of order n, which
additionally satisfies A[7,1] = A[l,¢] =14, for 1 <i < n.

Let L(n) denote the family of loops of order n.

We proceed with definitions of eight kinds of equivalence classes over L(n).

Two loops X and Y of order n belong to the same isotopy class if there
exists an isotopy , i.e., a triple 7' = (p, q,7) of permutations of S(n) satisfying
Y[p(i),q(j)] = r(X[i,j]), forl <4,j < n. In particular, if 7" is of the form
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(p,p,p), (4, P, D), (P, ¢, p) of (psp, q), then the loops X and Y are respectively
said to belong to the same isomorphic class, C—class, R—class or E—class.

The type of an isotopy class is the family of cardinalities of the included
isomorphic classes.

Let 74 and [ 4 respectively denote the permutations of S(n) which produce
the right and the left inverse elements of the loop A (thus Ali,ra(i)] = 1
and A[l4(i),i] = 1 for i € S(n)).

Each loop A has six loop-parastrophes A,p(A),M(A), T(A), Ar(A), pT(A),
associated to it, where 7 is the transposition operator, while the opera-
tors p and A have the following meaning (denotations p and A are in ac-
cordance with the denotations used in [3]): p(A)[ra(i), Al1,7]] = j, and
MAAL I LaG)) = i, for 1 < i, < n.

Two loops X and Y from L(n) are said to belong to the same main class
if there exists another loop Z € L(n), such that X and Z belong to the same
isotopy class and Y is a loop-parastroph of Z. In particular, if the word
"isotopy™ in this definition is replaced by the word "isomorphic”, then X
and Y are said to belong to the same M—class.

Two loops X and Y from L(n) are said to belong to the same parastrophic
closure if there exists a sequence X = Z,,2Z,... ,Z;, = Y of loops from L(n),
such that Z;y is a loop-parastroph of Z;, for 1 < i < k—1. The parastrophic
closure, associated to a loop A, will be denoted by PC(A).

The order O of a permutation p is the smallest natural number such that
p“ is the identical permutation.

The-ordinal numbers of isotopy classes will be followed by the letter ”I”.
The ordinal numbers of C'— and R— classes will be usually followed by the
letters """ and " R”, respectively. No additional letters will be used with
the ordinal numbers of isomorphic classes.

3. C—, R—, E— and isotopy classes

Given a permutation p of S(n), the permutations ¢ of S(n), such that the
isotopies (q.p, p), (p, q,p), and (p, p,q) map L(n) to L(n) — are characterized
in [2]. Although the definitions of C—, R— and E—classes are analogous,
it turns out, when consideration is restricted to the loops in L(n), that
E —classes have a special role.

Namely, isotopies a) (q,p,p) b) (p,q,p) ¢) (p,p,q) map a loop X from
L(n) to another loop in L(n) if and only if ([2]) for 1 < ¢ < n:

a) q(i) = p(X[t,p~'(1)])
b) q(i) = p(X[p~'(1),1])
¢) ¢(X[p~H(1),4]) = q(X[i,p~"(1)]) = p(i)

The commutator of a loop X € L(n) is the set of those elements
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k € S(n), which satisfy that X[k, j] = X[j, k], for each j € S(n). The num-
ber of commutators is ([2]) an invariant of an E—class. An abridged search
for E—classes can be gained by partitioning (representatives of) isomorphic
classes w.r.t. this number.

Those FE—classes, the loops of which have more than one commutator, are
listed (by means of their isomorphic subclasses) in the separate fields of 1.,
3. and 5. column of Table 2. (the remaining F—classes necessarily coincide
with isomorphic classes). Each represented E—class has in the next column
to the right associated an expression of the form (f(A)- c(A)+...), where:

- ¢(A) is the cardinality of the isomorphic class determined by A

- f(A) is the number of isotopies of the form ¢), which fix

the loop A.
2 commutators 3 commutators 6 commutators
3 (2-1‘20) 1](12- 60)
50| (2-120) 21(12-60)

92| (2:120) | 4,79|(6-20+6-40) 39 (120-6)
94| (2:120) | 8,83 [(2-60+2-120)|40,42| (860 + 8-30)
103| (2:120) |47,78|(6-20 + 6-40) |43,55|(4-120+ 4 -60)
104| (2-120) |54,82|(2-60+2-120)| 49| (12-60)

Table 2.

The cardinality of the K —class determined by A is equal to

—f(lT) -(n — 1)!+ (number of commutators of A);
the numerator is equal to the number of isotopies of the form ¢).

The next two tables give the intersection and inclusion relationships
among isotopy, C'—, R— and isomorphic classes over L(6).

The denotations in the z—th row and the y—th column of Table 3. mean
that the isomorphic class 10z +y belongs to the intersection of the C'—class
C and the R—class I :

Fach €' —class has a non-empty intersection with each R—class within the
same isotopy class ([2]). Consequently, each loop isotopy can be represented
as a product of two special isotopies within ('—classes and R—classes respec-
tively. Isotopy classes of loops in L(n) can be determined as the unions of
those R—classes, which have non-empty intersections with the same C'—class.

A further conclusion is that each C'—class has at least one common iso-
morphic class with each E—class inside the same isotopy class. E.g., since
the isotopy class 101 includes three ('— and three R—classes, it follows that
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zly=10

y=1

y=2

=38

y=4

y=35

y==6

y=71

y=28

y=9

7C 6R
14C13R
L7C16R
21C21R
24C23R
25C25R
37C36R
39C39R
30C18R
26C25R

O W DU W - O

1C IR
8C TR
15C14R
13C12R
22C16R
30C14R
33C32R
24C23R
29C28R
40C 5R
33C32R

2C 2R
83C TR
16C15R
17C19R
23C22R
22C13R
27C33R
29C28R
28C40R
24C30R
37C32R

2C 2R
8C 3R
16C15R
13C14R
24C23R
28C29R
28C34R
21C21R
40C 4R
26C25R

25C25R

3C 3R

9C 9R
14C16R
14C19R
25C24R
31C27R
35C35R
32C30R
24C23R
26C24R
32C23R

4C 4R
10C10R
12C 8R
16C15R
22C16R
32C30R
36C 9R
21C21R
40C 4R
24C30R
31C40R

41C SR
11C 9R
13CI7R
13C18R
26C25R
26C24R
22C19R
20C20R
28C40R
26 C25R
21C22R

5C 4R
12C 7R
16C15R
17C13R
27C26R
33C31R
37C31R
23C22R
28C34R
22C16R
23C21R

5C 5R
13C11R
11C 9R
19C10R
28C27R
34C 4R
33C36R
27C38R
34C 4R
22C16R
31C34R

6C 3R
13C12R
15C18R
20C20R
29C23R
31C29R
35C37R
33C 3R
30C14R
34C 5R
32C23R

Table

3.

the number of included isomorphic classes cannot be smaller than 9. This
number is actually equal to 12; each one of the isomorphic classes 41, 45, 97
and 98 is included into the intersection of the classes 22¢ and 16 K.

Each row of Table 4. contains in order the ordinal number of an isotopy
class, the included C'—classes, the included R—classes and the set of included
isomorphic classes:

W =1C=1R=
2] =2C = 2R =
31 =3C +6C 4+ 38C = 3R =
4] =4C + 5C 4+ 34C + 40C = 4R +5R =
5] =7C = 6R =
6] =8C' +12C =TR+8R =

71 =9C 4+ 11C + 36C' = 9R =
81 =10C 4+ 19C = 10R =
9/ =13C =11R+ 12R+ 17R =

10/ =14C +17C 4+ 22C = 13R + 16R + 19R =

1171 =15C 4+ 18C +30C = 14R + 18R =

121 =16C =
131 =20C =

J5R =

20R =

141 =21C + 23C = 21R + 22R =
151 =24C + 32C = 23R + 30R =
161 =25C + 26C = 24R + 25R =
171 =27C = 26R + 33R + 38R =
181 =28C' + 31C = 2TR + 29R + 34R + 40R ={48, 53, 54, 59, 63, 82, 86, 87, 105, 108}
{49,72, 81}
{57,61,67,68, 70,101, 102}

19 =9C =
201 =33C +
217 =35C =
22] =39C =

28R =
ITC =
35R +
39R =

31R4+32R+ 36R =

3TR =

. Table

{1}
{2,3}

{4,9, 79}
{5,6,7,8, 58, 83, 85, 88, 91, 99}

{10}

{11,12,13,17, 25}
{14, 16, 28, 65}

{15, 38}

{18,19, 26,31}

{22, 23, 27,35}

{39, 76}

{40,42,73,75, 77,106, 107}
{43, 50, 55,71, 74, 84, 92, 95,104, 109}

{44, 46, 56, 60, 93, 94, 96, 100, 103}

{47, 62,78}

{64, 69}
{80}

4.

{20, 24, 30, 32, 34, 37, 41, 45, 52, 66, 97, 98}
{21, 29, 33, 36,51, 89, 90}
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4. TI—classes and main classes

II—classes play a central role among the classes in Figure 1. They can be
used for establishing a relationship among the well-known kinds of classes
(isotopy, isomorphic and main):

Theorem 1. All the isotopy classes within the same main class have the
sarne type.

The proof is based on the intermmediate notion of II—class. It easily
follows from the following three lemmas:

Lemma 1. Fach ll—class and each isotopy class within the same main class
have non-empty intersection.

Proof. Suppose that a main class contains a II—class II and an isotopy class
ITstINIT=0.f L €1l and Ly € IT, then by definition of main class,
there exists an isotopy i and a loop-parastrophy 7 satisfying L, = miL,.
Thus the loop iL, belongs to the classes [T and I, contradicting Il N IT =
9. O

Lemma 2. [somorphic classes within a Il—class have the same cardinality.

Proof. Consider two isomorphic classes M and [ M; within the same

II—class. Let L € TM; and 7 be a loop-parastrophy satisfying (L) € I M,.
The function 7w maps IM; to IM, since mil = inl € IM; for arbitrary
il, € IM,. The operator 7 is expressed by means of the operators A, p and
7. Since all these operators are involutive [2], it follows that there exists the
inverse function 7~1. This implies that the function = is a bijection between

IM, and IM,. O

Lemma 3. The intersections of a Il—class with distinct isotopy classes from
the same main class — have the same number of included isomorphic classes.

Proof. Analogously to the proof of previous lemma, one primarily proves
that the intersections of isotopy classes with the same Il—class have the same
cardinality (the proof remains valid when the isomorphism i is replaced by
the isotopy). The application of Lemma 2 to the equicardinal intersections
completes the proof. O

Proof of Theorem [. Lemmae 1, 2 and 3 give that the intersections of two
isotopy classes with each I1—class within a main class — consist of the same
number of equicardinal isomorphic subclasses. U

It turns out that each two isotopy classes, taken from any two distinct
main classes over L(6) have different types (such a conclusion need not be
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valid for larger ground-sets). Therefore, main classes over L(6) can be recon-
structed by use of the relationships between isotopy and isomorphic classes.

According to the following Table 5., the isotopy classes of loops on 6
elements can be collected into 12 wholes (denoted by LII,... XII) w.r.t.
the type. The families of cardinalities of the included isomorphic classes are
given in the third column of the table (e.g., the family {60,60,120,120} is
written as 2 - 60 4+ 2 - 120).

[ 17 1-60 VII 221 (1-40
I} 27r)11-6041-120| | VIII| 37, 171, 197|1-20+1-40+ 1-60
II| 57 1-20 IX| 41, 151, 181|2-60+8-120
IV| 61|1-60+4-120 X| 71, 91, 127(2-604+2-120
VI10/]4-3048-120 XI| 81, 131, 21I'|1- 6 +1-30
VI | 161 9-120 XIT 117, 141, 207 |2-304+2-60+3-120
Table 5.

[t follows from Theorem 1 and Table 5. that there are at least 12 main
classes on 6 elements. The data from [5] confirm that each one of the 12
registered candidates is itself a main class. The same conclusion can be
derived from Table 6; there are only 12 different collections of isotopy classes
which have non-empty intersections with a II— class.

5. Duality

Loops L and 7(L) are said to be dual to each other. Two isotopy (isomor-
phic) classes are dual whenever they contain two mutually dual representa-
tives. It easily follows from the definition that the dual of a C'—class is an
R—class within the same isotopy class, and conversely. On the other hand,
[I-classes and main classes contain complete pairs of mutually dual isomor-
phic classes, since the duality operator is a special kind of a loop-parastroph
operator.

Duality operator will be denoted by ~; the denotation ~ between two
equicardinal sets of classes means that the underlying bipartite matching of
mutually dual classes is not yet decided exactly.

The mutually dual pairs of isomorphic classes are (4, 47), (5, 53), (6, 59),
(7,48), (8, 54), (9, 62), (13,17), (14, 18), (15, 64), (16, 19), (21, 57),

(24, 52), (26, 65), (28,31), (29, 67), (30,66), (33, 68), (34, 37), (36, 70), (38,
69),

(51, 61), (56,60), (58, 63), (78, 79), (82, 83), (85, 86), (87, 88), (89, 101),
(90, 102), (91, 105), (92, 104), (93, 96), (94, 103), (95, 109), (97, 98),

(99, 108), (106, 107), while the remaining 35 isomorphic classes are self-dual.
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An abridged way to recognize duality of isomorphic classes would be to use
dualities between C'— and K— , as well as between isotopy classes. Necessary
data can be found in Tables 3, 4 and 9.

E.g., XII main class contains isotopy classes 11/, 141 and 20/. Consulting
the numbers of included ' —classes and R—classes, we conclude that 1171 ~

20/ and that the isotopy class 147 is self-dual.

Let the class 141 be represented similarly as in Table 4. In addition, the
isomorphic classes, as well as their cardinalities (in ( ) brackets) are listed
in [ ] brackets after the corresponding C'( R)—class:

141 = 21C[40(60), 73(120), 75(60), 106(120)]
- 23C'[42(30), T7(30), 107(120))
= 21R[40(60), 73(120), 75(60), 107(120)]
+ 22 R[42(30), T7(30), 106(120)]

Comparing the cardinalities of isomorphic classes included in distinet C'—
and R—classes, it follows that 21C' ~ 21R and 23C" ~ 22R. This implies
(using also the cardinalities of isomorphic classes) that {40,75} ~ {40,75},
{42,77} ~ {42,77} and 106 ~ 107, which further gives that the isomorphic
class 73 is self-dual.

It might be interesting to note that among the only six E-classes, which
consist of two isomorphic classes each, there are two pairs of mutually dual
E—classes: (4,79) ~ (47,78) and (8,83) ~ (54, 82).

6. Parastrophic closures and II—classes

Let r4 denote the permutation which produces the right inverse element
of a loop A (A[i,r4(3)] = 1 for each i € S(n)). It can be proved that:

Theorem 2. [t is satisfed for cach loop A from L(n) that:
|PC(A)| < 6-order(rs) < 6-maz g.c.d.(s1,...,5),
where the mazimum is taken over all the partitions n — 1 = s; 4+ ...+ Sg.

This is an analogue' to a statement ([3]) which claims that. PC(A) has
non-empty intersections with at most six isomorphic classes for each loop A.
Each loop from PC(A) can be obtained from A by an application of trans-
formations of the form ApAp..., when the order of r4 is odd, respectively
of the form ApAp... or 7ApAp..., when the order of r, is even.

Among all the 9408 loops in L(6), only 5650 reach the above upper bound
6- order(r4) for |PC(A)|. More precisely, the bound is reached with all those
loops A € L(6), which satisfy that |PC(A)| > 12, and only with 150 loops
with smaller |[PC(A)| (120 with |[PC(A)| = 12 and 30 with |[PC(A)| = 6).
We conjecture that PC(A) = 6 - order(r4) whenever [PC(A)| > 12.

lwhen non-isomorphic loops are replaced by non-identical loops
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The loops A € L(6) with |[PC(A)| = 10 seem to be particularly interest-
ing. All of them have order(r4) = 5. In addition, 10 is the largest length
that we know of a minimal ApAp... cycle which maps A to A, which is less
than the theoretical maximum.

On the basis of tests with random loops, we conjecture that the length
of the parastrophic closure of a loop A4 € L(n) for a larger n almost always
coincides with 6 - order(rs). The minimal value of |PC(A)| is, however,
equal to 1 for each n (e.g., when A is the multiplication table of the cyclic
group).

The following lemma claims that the above considerations may be raised
to the level of II—classes:

Lemma 4. Parastrophic closures within a I1—class have the same cardinal-
ity.

Proof. Let PCy and PCy denote two parastrophic closures within a I1—class.
There exist two isomorphic loops L; and Ly belonging to PC; and PC,
respectively.

A parastrophic closure is determined by its any incident loop. Using
commutative diagrams which connect isomorphism and loop-parastrophy
operators, one easily concludes that the parastrophic closuures corresponding
to Ly and Ly have the same cardinality. O

The first two columns of the following Table 6. contain the cardinality of
parastrophic closures and the total number of parastrophic closures within
L(6) of a fixed cardinality. The denotation X : Y is associated to the
isomorphic class X, which is included into the isotopy class Y. Il—classes
correspond to the () brackets. The number of parastrophic closures within
each Il—class® is given in [ ] brackets after ( ) brackets:

In particular, Table 6, can be used for an illustration of Theorem 1. For
example, data from Table 6 give the structure of isomorphic classes within
XII main class, distributed w.r.t. isotopy classes and Il-classes, given in
Table 7. Note that the type of isotopy classes within XII main class is
2-30+42-60+ 3-120 (this can be also found in Table 5).

The second, the third and the fourth row of Table 7 correspond to isotopy
classes, while all the columns, except for the first, correspond to Il-classes.
For each Il-class are given three additional data. The cardinalities and the
number of the included parastrophic closures are given in the 5th and the
6-th row of the table respectively. On the other hand, the first row of the
table contains the cardinalities of the included isomorphic classes (taken from

“all the parastrophic closures within a II—class have equicardinal intersections with all
the isomorphic classes within the same [I—class
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1) [60] (1:11) [60]
2) [40] (2:20) [30] (10 : 57) [10]
3) [96] | (9:37, 49:191, 62:17I) [60] (15:87, 39:131, 64:211) [6]
(36 : 111, 42 : 141, 70 : 201) [30]
4) [25] (25:61) [15] (80 : 221) [10]
6) [240] | (4:31, 47:171, 72:191) [10] (14:7F, 18:91, 22:12]) [30]
(8:4I, 54:187, 55:15I) [30] (21:117, 40: 141, 57:201) [30]
(29 : 111, 67 : 20/, 77 : 147) [15] (32 :107, 34 : 10/, 37:10J) [15]
(33 : 117, 68:20/, 75:141) [30] (38 :8/, 69:21[, 76 :13[) [15]
(43 : 151, 58 : 47, 63: 181) [60] (20:101) [5]
8) [30] (3:2I) [15] (46 : 161) [15]
10) [48] (93 : 167, 96 : 161) [24] (97 : 101, 98 :101) [24]
12) [50] | (6:41, 59:181, 74:151) [15] (78:17[, 79:31, 81:19I) [10]
(28 :71, 31:91, 35:12[) [15] (12 : 61) [10]
18) [80] | (7:47, 48:18/, 71:15[) [20] (11:6[, 13:61, 17:61) [20]
(16 : 71, 19: 97, 23:12]) [20] (24:107, 41:10I, 52:101) [20]
24) [75] | (5:4[, 50: 157, 53:181) [15] (30:107, 45: 101, 66:101) [15]
(26 :91, 27 : 121, 65:7I) [15] (44 :16/1, 56 : 161, 60:161) [15]
(51:111, 61 :207, 73 :141) [15]
30) [48] (85:471, 86: 18/, 91:4/1, 95:15], 105: 181, 109 : 151) [24]
(89 : 117, 90 : 117, 101 : 20/, 102 : 201, 106 : 14], 107 : 141) [24]
36) [40] | (82:181, 83 .4/, 84 :15]) [10] (94 : 167, 100 : 167, 103 : 161) [10]
(87 : 181, 88 :4/, 92:15], 99: 4/, 104 : 151, 108 : 18]) [20]
_ Table 6.
30 60 30 60 120 120
117 36 | 21 | 29 | 33 | 51 | 89,90 -
141| 42 | 40 | 77 | 75 | 73 | 106, 107
207 | 70 | 57 | 67 | 68 | 61 |101, 102
3) 6) 6) 6) 24) 30)
[30] [30] [15] [30] [15]  [24]
Table 7.

Table 9 of Appendix). For example, the last column of the table corresponds
to a Il-class having 3 -2 - 120 = 30 - 24 = 720 loops.

7. Classifications on 5 and 4 elements

In this section are given the corresponding classifications of loops on 5
and 4 elements. Denotations in the tables are completely analogous to those
on 6 elements, with the additional denotations > and ” for loops on 5 and 4
elements respectively.
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n==5

Table 2’ 2 commutators 2 commutators

’,2’[(3-8+3-8) 6’| (20-6)

Table3 y=1|y=2|y=3 | y=4|y=5|y=6
LR:1C"[2R2C° [ 1R:2C° | 2R™1C7 | 2R*1C | 3R™:3C”
Il =1C"+2C" = 1R’ + 2R’ = {1’,2,3,4,5")

Table 4’

9P = 3C" = IR = {6}
Table 5 [FTiI'[1-2+3-8+1-24| [IF 2r'[1-6|

1) [6] (6°:21") (6]
. . 2) ] (3:10) 1]
Table B o [4] | (110, 2210, 47:10°)  [4]

8) [3] (5:10) [3]

n—4

Table 27 4 commutators

[ (24-D]2°](8-3)

Table 3” y=1 | y=2 Table 4” 11" =1C” = 1R” = {1}
LR”:1C” | 2R”:2C” 21" = 2C" = 2R = {2}
Table 5% [PT1IPTL- 1] [P [2FP]1-3]

Table 67 1) [4] | (17:10")[1]  (2":21")[3]
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Appendix

The representatives of the 109 isomorphic classes within L(6) are given in
Table 8. Each one of these loops is represented by a 16-digit sequence; the
four consecutive quadruples of the sequence contain the middle four elements
of the 2nd, 3th, 4th and 5th row of the loop respectively:

1 =1436456136526123
4 = 1436456156126123
7= 1436456256136124

2 = 1436456136526124
5 =1436456156236214
8 = 1436456256216213

3 = 1436456136526213
6 = 1436456161523624
9 = 1436456262513614

10 = 1436516262513614 11 = 1436516262513624 12 = 1436516262514613
13 = 1436516262514623 14 = 1436516262534621 15 = 1436516265134621
16 = 1436516462514623 17 = 1436516462533612 18 = 1436516462533621
19 = 1436516462534612 20 = 1436516465123621 21 = 1436516465124623
22 = 1436516465213612 23 = 1436516465233612 24 = 1436516465234612
25 = 1436526161523624 26 = 1436526161524623 27 = 1436526161533624

28 = 1436526165233614
31 = 1436526461533612
34 = 1436561261533264

29 = 1436526165234612
32 = 1436526465213612
35 = 1436561262533164

30 = 1436526461524613
33 = 1436526465214613
36 = 1436561461524263

37 = 1436562162533164 38 = 1436562462514163 39 = 1456416256136231
40 = 1456416256136234 41 = 1456416265233614 42 = 1456426156236132
43 = 1456426156236134 44 = 1456426165233612 45 = 1456426165233614
46 = 1456426165323614 47 = 1456456136126123 48 = 1456456136126234
49 = 1456456156326123 50 = 1456456156326213 51 = 1456456161323624
52 = 1456456162133624 53 = 1456456236216134 54 = 1456456236216213
55 = 1456456256316213 56 = 1456456261233614 57 = 1456456262133621
58 = 1456456262313614 59 = 1456461235616234 60 = 1456461265233164
61 = 1456461265313264 62 = 1456462135626134 63 = 1456462165323164
64 = 1456516462133621 65 = 1456526161323624 66 = 1456526165323614
67 = 1456526461233612 68 = 1456526465313612 69 = 1456561265313264
70 = 1456562165323164 71 = 1456612435614632 T2 = 1456612435624631

73 = 1456621435614623
76 = 1456651432614623

74 = 1456621435614632
7T = 1456652431624613

75 = 1456651431624623
78 = 3156126456216432

79 = 3156126456236412 80.= 3156126465214632 81 = 3156126465234612
82 = 3156146256216234 83 = 3156146256236214 84 = 3156146265314623
85 = 3156426156236412 86 = 3156426156326413 87 = 3156426165231634
88 = 3156426165321624 89 = 3156456116236234 90 = 3156456116236432
91 = 3156456156236412 92 = 3156456256216413 93 = 3156456262311624
94 = 3156461215636234 95 = 3156461265231264 96 = 3156462115626234
97 = 3156462115636234 98 = 3156462115636432 99 = 3156462165321264
100 = 3156462165321463 101 = 3416156256216234 102 = 3416156456236132

103 = 3416156461524623
106 = 3416456261531624
109 = 3416562165321264

Table 9. gives the nﬁmber of loops within distinct isomorphic classes of
L(6). The set of (labels of) isomorphic classes which have cardinality ¢ is

104 = 3416456216536124
107 = 3416526461521623

Table 8.

105 = 3416456256316124
108 = 3416562115626234
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denoted by ”5.”.

Sg = {15, 39, 64} Sa0 = {4,10,47,72}
S30 = {20, 29, 32, 34, 36, 37, 38, 42, 67, 69, 70, 76,77} S40 = {78,79, 80, 81}
Sen = {1,2,6,8,9,14,18, 21, 22, 25, 28, 31, 33, 35, 40, 49, 54, 55, 57, 59, 62, 68, 74, 75}
Si30 = {1,2,... ,109}—(SGUSjZ(]U-S‘3UUS40USGO)

Table 9.

The corresponding tables for L(5) and L(4) are:

Table 8. 1’ = 145451523 2' = 145452513 3’ = 145512351
4" = 145521352 5' = 315451523 6' = 345451512
Table 9 S5 ={3'}, St={¢'}, S's={l,2,4'), S ={5}
Table 87 17 = 1441 27 = 1442
Table 9.  §"; = {17}, S73 = {2}

INSTITUTE OF MATHEMATICS, 21 000 Novi SAD, TRG DosiTElA OBRADOVICA 4,
YUGOSLAVIA
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ON DIMENSIONS OF CLASS SPACES

Zarko Mijajlovié¢ and Dusan Cirié

ABSTRACT. In our previous papers, we have introduced the notion of a class
space, i.e. topologies on proper classes, and we defined and studied there
the main topological concepts on such spaces. In this paper we shall discuss
the notion of dimensions of class spaces. Analogues of Ind and ind for class
spaces are defined, and their properties are studied.

1. Introduction

In our previous papers [3], [4], we have introduced the notion of a class space,
i.e. topologies on proper classes, and explained the reasons for studying
so defined spaces. In this paper we shall discuss and study the notion of
dimensions of class spaces.

First we shall review some notation. We shall use the notation and def-
initions introduced in [3], [4]. For example, by capital letters X,Y,Z,...
we denote classes, and by z,y,z,... sets. Greek letters may stand both for
classes and for sets. For our metatheory we shall take NBG class theory
if not otherwise stated. Iurther, we shall assume the usual constructions
and definitions from set theory and class theory. For example, we remind
the reader that a class X is transitive if from z € y € X it follows z € X.
Throughout the paper K will denote a transitive class. Now we review the
axioms for class spaces as we shall often refer to them.

Let K be a class and 7 and o be classes of subsets of K. We call triple
K = (K,7,0) a topological class if the following axioms are satisfied:

0. Per, ODec

l. z,yer=>zNyerT

2. Forany i,and (z;| j€1i), (Vi€Ei z;€ET)=> Ujz; €T
3. For any a € K there is ¢ € 7 such that a € z.

4, VzeTVyeao z—-yerT.

823



824 Z. Mijajlovi¢ and D. Ciri¢

I z,yee=>zUye€eoaT.

2'. For any i, and (z;| j€1i), (Vjei z; €0)=>Njz; €
3'.  For any subset z of K there is Y € o such that z C 3.
4. VeerVyeo y—z€o.

Elements of 7 are open subsets while elements of ¢ are closed subsets of
K. The following proposition from [3] states that o is uniquely determined
by 7, and vice versa.

Proposition 1.1. Let K = (K,7,0) and K' = (K,7,0') be class spaces.
Then o = o',

Various topological notions for class spaces, such as the continuity, the
compactness, product of class spaces etc were introduced in our previous
papers, and various results concerning these notions were proved. The most
important result obtained is that the finite product of compact class spaces
is also a compact class space. In this paper we shall discuss and develop the
notion of dimensions of topological class spaces.

The functions Ind (Brower-Cech, or large inductive dimension), ind (Men-
ger-Urysohn, or small inductive dimension), dim (see [1]) are the most impor-
tant dimension functions for topological spaces. By use of these functions we
can classify topological spaces according to their dimensions. Let us remind
that the notion of the compartment plays the main role in the definitions
of Ind and ind, while in the definition of dim this role have the notion of
covering and the order of covering,

If X is a standard topological space, then B is a compartment between
disjoint, closed subspaces P and Q if X\B = 0; U 02, where Oy, O, are
disjoint open subsets of X which contain P and Q respectively. Every com-
partment B in X defines a partition of X of the form X = O, u BUQ,. Now,
suppose K = (K, 0,7) is a class space. If K is a proper class, then obviously
there is no a partition of K into sets in the above form, neither there is a
covering of K by a set-family of sets. Therefore, there is no straightforward
way for defining of dimension functions. Our aim is to propose possible
definitions of dimension functions on class spaces.

In the following, clz, int z, fr 2, acc z denote respectively the closure, the
interior, the boundary, and the set of accumulation points of a set z C X in
a class space X. If 2 C a C X, then these terms in respect of the subspace
a are denoted by cl,z, etc. If not otherwise stated, N denotes the set of
non-negative integers.

2. Dimension functions

Let K = (K, 7,0) be a topological class space. A set B € ¢ is a compart-
ment between sets P,Q € ¢ if there is U € 7 such that PUQ U B C U and
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U\B = 0, U Oy, where 0,0, € 7, P C01,Q COz,and 01 N0z = 0. Let
us notice that the notion of the compartment is well defined. Namely, by
the Axiom 3, for every z € PUQ U B there is U, € T such that z € U, and
U = UgepugesUz D PUQ U B. As we have U € 7, B € o, by Axiom 4 it
follows U\B € 7, and also Oy U Oy € 7. For the compartment B we shall
say that it is a thin compartment if it has the empty interior, i.e. int B =0.

Theorem 2.1. For cvery compartment B between sets P,Q € 7 there is a
thin compartment B' C B.

Proof. As B is a compartment between P and @, there is U € 7 such that
PUQUB C U, U\B =0,U0,, PC O01,Q C Oy, 01,0, € 7, and
01N 0y = 0. Let us choose Of = U\clOy. As clO; € 7 and U € 7,
it follows O7 € 7. Also Of D Oy and O7 N Oy = 0. Now we show that
int (105 N B) = 0. Suppose, in contrary, that int (c10y N B) # 0. Then
thereis z € Uy C clO2 N B,so U, C Band U, N0y #0,i.e. BNO2 #0, 2
contradiction. Then B' = ¢l Q3 N B is a thin compartment between P and
Q. O

Theorem 2.2. Let K = (K,7,0) be a topological class space, P,Q € o and
B a compartment between I and Q. If Xo € o is such that PN Xo # 0 and
QN Xo#0, then By = BN Xy is a compartment between sets Py = Xo N P
and Qy = Xo N Q in the space Xo with the topology induced by K.

Proof. As B is a compartment between P and @ in K, and Xy € o, we have
By € o, and also By is a closed subset of Xo. Further, there is U € T such
that PUQUB C U, U\B=0,U03, PC01,QC 0,, and O N O3 = 0.
Let O = (UUU*)NO; N Xgand O3 =(UUU*)NO N Xo, where U* €7
such that X, C U* exist by the axioms for class spaces. Further, O] and O3
are open in Xo and Xo\ By = O7 U O3, thus By is a compartment between
Pg and Qo. O

Definition 2.3. Let X = (K,7,0) be a topological class space where K is
a transitive class. The function Indy:a — N U{—1}U {oo} is defined in the
following way for F' € o:

Ind,(F) = -1 if and only if F = 0.

Suppose that we have defined values Ind,(F) < n—1. Then Ind,(F) < n
if for any disjoint and closed sets P, @ in F' there is a compartment B € o
between P and @ in K such that Inds(B) <n—1.

If Ind,(F) < n and there is a pair of disjoint and closed subsets of F' such
that for no compartment B between them in K, Inds(B) < n—2 the we
shall say that Ind,(F) = n. If for non > -1, Ind,(F) < n, then we put
Ind,(F) = oc.
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By use of Ind, we define Indg: K — N U {—1,00}, and Ind¢(K). For
X € K we put Inde(X) = —1if and only if X = 0. Suppose that we have
defined values Inde(X) < n—1, X € K. Then for X € K, Inde(X) < n
if for any disjoint and closed sets P, @ in space X there is a compartment
B € o between P and Q in K such that Ind,(B) < n — 1. Specially,
Inde(X) < nif for any disjoint sets P, @) € o there is a compartment B € o
such that Ind,(B) < n — 1. Similarly we define Ind¢(K) < n. Namely,
Indc(K) < n iff for all disjoint P,Q € o there is a compartment B € o for
P and @ such that Indg(B) < n — 1.

If Inde(X) < n and if in the space X there is a pair of closed, disjoint sets
such that for every compartment B between these sets in K,Ind,(B) > n-1,
then we say that Inde(X) = n. If forno n > —1, Inde(X) < n, then we
put Inde(X) = co. Similarly we define Ind¢(K) < n.

Note 2.4 As K is a transitive class then X € K implies X C K, so K
inherits a topological structure on X. Thus Inde(X) is well defined. But
in general, elements of ¢ are not the elements of K, so Inde(F) is not
necessarily defined for all F € ¢. '

Note 2.5 Indg(K) is well-defined, and we see that Ind¢(K') is a numerical
characteristic of K in respect to dimensions of elements of k. In this way
we avoid the problem of defining of Inds on higher order classes (and type
theory), at least for transitive topological class spaces.

Theorem 2.6. Let K = (K,t,0) be a class space. IfF\HeonK and F C
H, then Inde(F) < Indc(H). Also, for all F € on K, Ind¢(F) < Inde(K).

Proof. We prove Ind¢(H) < n = Ind¢(F) < n by induction on n. If n=-1,
then H = 0, and so F = {, thus the inequality holds for n = —1. Suppose
the inductive hypothesis for n — 1, and let Indc(H) < n. Suppose P and Q
are disjoint, closed subsets of F. These sets are disjoint and closed subsets
of H as well, so by the inductive hypothesis there is a compartment B € o
for these sets in K such that Ind,(B) < n— 1. Then B is obviously a
compartment for P and @ in F, thus Indc(F) < n.

As disjoint and closed subsets of F € ¢ N K are members of o, it follows
Inde(F) < Inde(K). O

Corollary 2.7. If o C K then the following assertions are equivalent.
(a) For all F' € o, Indc(F) < n.
(b) Inde(K) < n.

Proof. The implication (b)=>(a) follows from the above theorem. Now sup-
pose (a). Then there are disjoint P,Q € o such that F = P U . Then
F' € 0. By the hypothesis Ind¢(F) < n, so there is a compartment B € o
such that Ind,(B) < n — 1. Therefore Indg(K)<n. O
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We note also the following statement.

Proposition 2.8. If K is a topological class space and Indc(K) < oo, then
K is a normal class space.

Theorem 2.9. Let Ind be the large inductive dimension of (standard) topo-
logical spaces. Then for any class space K such that o C K, and F € K,
Ind(F) < Inde(F).

Proof. We shall prove the statement of the theorem by induction on di-
mension. For F' = ) the inequality obviously is true. Suppose the that
the inequality holds holds for all natural numbers up to n — 1. Suppose
Inde(F) < n and let P, @ be disjoint closed, subsets of F'. As F' € ¢ then
P,Q € o, and as Inde(F') < n there is a compartment B € ¢ in K such that
Ind,(B) € n—1. Then by Definition 2.3 it follows Ind¢|oN K = Ind,|eNK,
thus Inde(B) < n—1. Let By = BNF. As By € 0, and o is a subclass of K
, by the inductive hypothesis it follows Ind(B) < Inde(B). The dimension
function Ind is monotonous on closed subsets, so Ind(By) < n — 1, as by
Theorem 2.2 for the compartment By between closed sets P and () in F' we
have Ind(F) <n. O

Definition 2.10. Let K be a transitive class and K = (K, 7,0) be a class
space. The function ind,:o — N U{—1,00} is defined in the following way:
ind,(F) = —1 if and only if F' = (. Suppose that we have defined values
ind,(F) < n—1, F € 0. Now, we put ind,(F) < n if for any point p € F
and any closed Q C F such that p € () there is a compartment B € o in K
between p and Q such that ind,(B) <n— 1. If ind,(F) < n and if there is
p € F and closed Q C F such that p € @ so that for all compartment B in
K between p and @Q we have ind,(B) > n — 1, then we put ind, (F) = n. If
for no integer n > —1, ind,(F) < n, then we put ind,(F') = oo.

By use of ind, we define new dimension function indeg: K — NU{-1,00}
and the value ind¢(K) as follows. If X = 0 then we put inde(X) = —1.
Suppose that we have defined values inde(X) < n—1, X € K. Then we
put inde(X) < n if for any point p and any closed subset () of space X
such that p € @ there is a compartment B € ¢ for p and @ in K such that
ind,(B) < n— 1. Similarly we define indc(K) < n. Namely, inde(K) < n
iff for any point p € K and closed € o such that p ¢ @ there is a
compartment B € o for p and () such that indg(B) < n - 1.

In particular, inde(A) < n if for every point p € K and @ € 0, p € @,
there is a compartment B € ¢ in K with ind,(B) <n — 1.

Ifinde(X) < nand if thereis p € X and closed () C X such that p ¢ @) so
that for all compartment 5 in A between p and @ we have ind¢(X) =2 n—1,
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then we put inde(X) = n. If for no integer n > —1, inde(X) < n, then we
put indo(X) = oo. .

Theorem 2.11. Let K be a class space and X,Y € K. Then X c Y implies
inde(X) <inde(Y). Also for all X € K, inde(X) <inde(K).

Proof. Forn = —1,Y = implies X = () so in this case the inequality holds.
Suppose the inductive hypothesis, that the inequality holds for indeg(Y) <
n — 1. Suppose inde(Y) < n, and p be a point and Q a closed subset of
space X. Then there is Q* in K such that Q = Q* N X C @*NY and
p¢Q*NY. Since inde(Y) < n there is a compartment B € o for p and
(" such that ind,(B) < n— 1. Then B is a compartment between pand @
thus inde(X) < n. In a similar way we prove inde(X) < inde(K) for all
XeK. 0O '

Corollary 2.12. The following statements are equivalent:

(a) Forall X € K, ind¢(X) < n.
(b) inde(K) < n.

Proof. The part (b)=>(a) follows from the above theorem. Suppose (a). Let
us choose p € K and @ € o such that p € Q. Let us put X = {rtu@. As
inde(X) < nand @ is closed in X there is a compartment B € o such that
inde(B) < n —1, and this means that inde(K)<n. O

An immediate consequence of the definition of inde is the following as-
sertion.

Proposition 2.13. Ifind¢(K) < oo then (K) is a regular topological class
space.

Proposition 2.14. Let K be a class space. Then for every X € K we have
ind(X) < inde(X), where ind(X) is the small inductive dimension of X .

Proof. The proofis by induction. This inequality is obviously true for X = 0.
Suppose the inductive hypothesis, that the inequality holds for all dimensions
< n—1. Suppose inde(X) < n and let p be a point and Q) a closed subset of
X such that p € Q. As inde(X) < n, there is a compartment B in K such
that ind,(B) < n — 1. From Definition 1.10 it follows that inde|o = ind,,
so inde(B) < n— 1. Further, By = BN X is a compartment in X between
the point p and the subset (), and by the inductive hypothesis and Theorem
.11 we have inde(Bp) < inde(B) < n— 1 and ind(By) < inde(Bp), hence
ind(By) < n — 1. Therefore ind(X) < n. O
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Theorem 2.15. Let K be a topological class space. Then for every X €
K No we have inde(X) < Inde(X). Specially, if K is a T, class space then
indc(K) < Inde(A).

Proof. The proofis by induction. This inequality is obviously true for X = 0.
Suppose the inductive hypothesis, that the inequality holds for all dimensions
< n—1. Suppose inde(X) < n and let p be a point and @ a closed subset of
X such that p € Q. As K is Ty class space then {p} is a closed subset of X.
As Inde(X) < n there is a compartment B € o such that Ind,(B) < n—1.
Further, on K N o we have Indy = Inde therefore Indc(B) < n — 1. By the
inductive hypothesis indc(B) < Inde(B) < n—1, s0 indg(X)<n O
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MODELS OF FIRST ORDER THEORIES

7. Mijajlovié and I. Farah

ABSTRACT. Let A be a countable model of a countable first-order language
L, and T be a first-order theory of a countable expansion L' O L. Let §
denote the set of all expansions of A to L' that are models of 7. It is
proved that & can be embedded into a metric Stone space as a (/5 subset,
and therefore k = |§| satisfies CH, i.e. either k < Ro or k = 2%0, Several
examples that illustrates this theorem are presented, too.

Works of Kueker [5], Reyes [9], Barwise [1], Makkai [7] and others, show
that certain sets of model-theoretic objects related to a countable model A,
as AutA for example, behave as analytic subsets of the Cantor discontinuum.
This property can be proved in several ways, and we shall present here two
methods. The first one is based on the coding of model-theoretic objects by
real numbers (or characteristic functions of certain subsets of real numbers).
The second one is based on the properties of Lindenbaum algebras, and it
has more model-theoretic nature.

1. Coding by reals

We shall present this method by example, i.e. we shall illustrate it in the
case of the Kueker’s theorem:

Theorem 1.1. Let A be a countable model of a countable language. Then
CH holds for AutA, ti.e.

|JAutA| < Ry or |AutA|= P

The proof of this theorem that we shall present, is based on the following
well known facts:

Supported by Grant 0401A of RFNS through Math. Inst. SANU.
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1.1°  For Borel subsets of real numbers R, CH holds (M. Suslin), i.e. if
X C R then | X| < Rg or | X| = 2%,

1.2 Cantor’s triadic set K is a closed subset of R and it has the cardinality
of continuum.

1.3° Suppose X is a countable set. Then 2% is homeomorphic to the
Cantor space K. Here 2 = {0, 1} has the discrete topology, and 2% has
Tychonoff product topology.

Now we proceed to the proof of Theorem 1.1. For the simplicity of nota-
tion, we shall assume that A is grupoid, i.e. A = (A4,-), where - is a binary
relation on domain A. Let F be the set of all mappings (characteristic
functions) k : A2 — 2 such that:

(1) Va,a',b,b' € A (k(a,a')=1Ak(b,b')=1= k(a-b,a’-b')=1),
(2) Va,a',be A (k(a,a’)=1Ab# a= k(b,a')=0),

(3) VbeA Jae A k(a,b)=1.

(4) Va,b,b'e A (k(a,b)=1Ak(a,b')=1=b=1")

If f € AutA, then let k;: A> — 2 be defined by ks(a,b) = 1 iff b = f(a),
a,b € A. Then it is not difficult to see that k satisfies the properties (1), (2),
(3), (4), and that to different automorphisms f and f’ correspond different
ky and kg respectively (for example, if f(a) = b # f'(a) then ks(a,b) = 1,
while kgi(a,b) = 0). On the other hand, if f € F and f: A — A is defined
by b = f(a) iff k(a,b) = 1, a,b € A, then f is a well-defined function and
[ € AutA. Therefore, if the map ¢ is defined by ¢: f — k;, f € AutA, then

onto

¢ AutA = F, thus
(5) |AutA|=|F|.
Further, let Fy, F,, F3 be sets of functions k: A?> — 2 that satisfy condi-
tions (1), (2), (3) and (4) respectively. Then:
Fi= () ({ke2”|k(a,a) = 0}U
a,a’ bb'€A

(k€227 | k(b,0") = 0} U {k € 2*" | k(a-b,a’ - b') = 1)),
Fo= () (ke2® |k(a,d)=0}u () {ke2%[k(ba') = 0}),

a,a'cA beAb#a

Fs= () Uik €2 [k(a,) = 1)
bEAa€A

Fi=Jdke2® [k(ab)=0}u [ {ke2"|ka,b)=0}
a,b beAb' #b

Let 24% be the product topology, where 2 has the discrete topology. Then
the set {k € 24" | k(a,b) = a},a,b € A, a € 2, is a clopen set. Thus, 7,
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F, and F, are closed, while F; is a countable intersection of open sets. As
F = Fy N Fy N FyN Fy, it follows that F is a G5 subset of the Cantor space
24 5o by Fact 1.1° we have |F| < Ry or |[F| = 2% Hence, by (4) the
theorem 1.1. is proved. O

2. Countable expansions in first-order logic

Now we shall present a proof of a general theorem, based on the properties
of Lindenbaum algebras, that the set of all countable expansions of a count-
able model A of a first-order theory T satisfies CH. Let us introduce and
review first some notation and terminology. Let L be a first-order language
and A be a model of L. Then For; denotes the set of all formulas of L, while
Sent denotes the set of all sentences of L. Further, Ly = LU {a|a € A},
where @ is the name of a, and (A, a).e4 is the simple expansion of A to a
model of L4. By ThA we shall denote the set {¢ € Senty | A ¢}. The
Lindenbaum algebra of 7' over L is L(T,L) = {[¢]|¢ €Sentr}, where
[¢] = {tp €Senty,|T + ¢ — }. The boolean operations {-,+} and con-
stants {0,1} in L(T, L) are defined in the usual way: [o] - [] = [¢ A ),
[¢] + [¥] = [eV ], [¢]' =[], and 1 = [6], 0 = [-6], where 6 is a tautology.
In the following, we shall identify 7' with {[¢]|¢ € T}. If T = @ we shall
write simply £(L) instead of L(T, L).

If B is an arbitrary Boolean algebra then B* is the Stone space of B, i.e.
the set of all ultrafilters of B with clopen sets a* = {p € B*|a € p}, a €B,
as a topological basis. Thus the dual space L(T), L)* of L(T,L) is the set
of all complete consistent theories of L that extend theory 7'. We remind
the reader that the Cantor space 2V is the Stone space of the free Boolean
algebra €, with countable many free generators. The dual of an ideal I CB
is I* = {p e B*|pn T # 0}. Observe that I* = Uyesa™ is an open set. For
the rest of notation and terminology, we shall follow [3].

Lemma 2.1. Let B be a countable Boolcan algebra. Then B* can be em-
bedded into 2 as a closed subset.

Proof. Since €, is a free Boolean algebra, there is a homomorphism

i€, - B.

If I = ker(h), then I is an ideal of €, thus B = Q. /1 and B* = Q7 —I*.
Further, I* is open, hence 1% — [* is closed in 2N, 0

Remark that for above I and F = {p € Q,| A ha > 0} we have 7 =
aep
Ll
Lemma 2.2. Let § C 2N be closed, and H C S be (i5 in S. Then H is G
in 2N,

onto
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Proof. There are open subsets V;, i € N, of § so that H = NienVi. Hence
there are open U; C 2V such that V; = §n Ui,i € N. Thus H = §n(n;U;),
and as 5 is a countable intersection of open subsets of 2V it follows that H
is Ggin 2V. 0O

Let L be in the following a first-order language, L' D I an expansion of
L,T a theory of L' and A an arbitrary model of I. By S(A,T) we shall
denote the set of all expansions B of the model A to L' such that B T.
Finally, let k(A,T) = |S(A,T)|.

Theorem 2.3. Let A be a countable model of a countable first-order lan-
guage L, L' 2 L be a countable expansion, and T a consistent theory of
L. Then the number k(A,T) satisfies CH, i.e. ecither k(A,T) < Ny or
E(A,T) = 2%,

Proof. Let A’ be an expansion of A to L', such that A’ E 7. Let

P=Pi=Hpc SentyA [(A’,a)een = ¢}

Then:

i. TUTh(A,a),eq € P.
i.. If Jzpa € P then there is @ € A such that @a € P.
iii. P is a complete consistent theory.

Since T C P, by iii. we may assume that P is an ultrafilter of the
Lindenbaum algebra £(T, L',).

Claim The correspondence ®: A’ — P} between expansions A’ of A to L/
such that A" [= T', and ultrafilters of £(T, L',) satisfying conditions i.- iii. is
one-to-one and onto.

Proof of Claim Suppose Ajand A} are different expansions of A and let
P11 Py be the corresponding sets satisfying conditions i.- iii. Since Al #£ A}
there is, for example, an n-ary relation symbol R of L’ such that for some
ai,az,...,ay, € A, R, ...a, € Py while -Ra, ...a, € P,. Thus P, # Py,
so @ is 1-1.

Now, let P be any set of sentences satisfying conditions i.-iii. Since P
is consistent, there is a model B’ of P, and without loss of generality we
may assume A<B, where B is a reduct of B’ to L. Further, define A’, an
expansion of A by -

IfAfr'M(lg ..-ap iff Reja,...a, € P R € Rely,,

FA’aln,g...anzb iff (Fayay...0,=0)€P I € Fncy,,
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where Rel;, is the set of all relation symbols of L', and Fncy: is the set of
all function symbols of L'. The structure A’ is well-defined. For example,
if ¥ € Fnc), and @q,as...a, € A then 3z(Faya,y...a, = z) € P, so by the
property ii. there is b € A such that (Fa,a,...a, =b) € P.

Now we shall prove A’ < B’. Really, suppose B’ |= Jzp(z,ay,a,,...a,),
where ay,a3...a, € A and J2p(z,0y,0,,...4a,) € Forg,,. Since P is com-
plete, and B’ is a model of P, we have Jzp(z,q;,4,...a,) € P, so by
the property ii. there is b € A such that ¢(b,a,,8,,...a,) € Pie. B' |
o(b,a;,ay,...a,). Therefore, by Tarski-Vaught’s Theorem, it follows A’ <
B'. Hence P = P4 i.e. ® is onto, and this proves the claim.

Now, by Lemma 2.1. we may assume that the Stone space L(T, L’;)*
of the Lindenbaum algebra L£(T,L'y) is closed subset of 2N Let Y be the
set of all ultrafilters of £L(7, L';) satisfying properties i.-iii. Then ) is the
intersection of the following sets:

L. U={peL(T,L})*| Th(A,a)eea C p} = {[#]"| ¢ € Th(A, a)aea}
22 v=_ N ([FFzez]* U U [ea]").
Bma:cEF‘orL;‘ a€A
The set I is obviously closed and V is G in L(T, L'y)* as a countable
intersection of open sets. Observe, for example, that [~Jzpz]®st is open.
Therefore, by Lemma 2.2. Y is G5 in 2V, and so |Y| satisfies CH. By Claim
|S(A,T)| = ||, so the theorem follows. O

In the case of finite expansions, the above theorem is a simple conse-
quence of Perfect Subset Theorem in [7]. However, the presented proof of
Theorem 2.3. relies on rather basic model theory, and besides it gives an
estimate of the complexity of the set §(A,T) in the analytic hierarchy (Gs).

3. Examples

In this part we shall list some examples that are consequences of Theorem
2.3. In the following, A is a countable model of a countable language L.

Example 3.1. We revise the Kueker’s example from Section 1: if a A is a
countable model of a countable language L, then |[AutA| satisfies CH. Really,
let L(F) = LU{F} where F is an unary function symbol, and T' be a theory
of L(F) which states that /" is an automorphism in respect to symbols of L.
If Fis a new (i.e. F & L) unary function symbol, then axioms of T' are:
1° F(G(z1,22,... %)) = G(F(z1), F(z2),...,F(2,)), G € L is an n-
ary function symbol.
2° R(z1,23,...,%,) & R(F(z1),F(z2),...,F(zn)), R € L is an n-ary
relation symbol.
3° Axioms which says that F'is one-to-one and onto function.
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Then obviously there is one-to-one correspondence between expansions
of A to L U{F} that are models of 7" and automorphism of A. Therefore
|[Aut A| satisfies CH.

Example 3.2. (Burris and Kwatinetz, see [4, p.35]) Let A be a countable
algebra of a countable language. The set of all subalgebras SubA, the set of
all endomorphisms EndA and the set of all congruences ConA satisfy CH.
To prove the first assertion, let I/ be a new unary relation symbol. Then
subalgebras of A can be described as interpretations U/ in the expansion
(A, U#A) which satisfy the conditions:

c® € UA, ¢ is a constant symbol of L,
For all zy,xs,...,2, € U2) F(z1,23,... ,3,) € UA, F € Lisa

function symbol,
i.e. the axioms

[/(¢), ¢ is a constant symbol of [,
V.’E] s Loy n ,-’E,;,(U(.’El) A U(T‘Z) AT U(mn) = U(F(IE],IQ, ey 2771))5
where F'is a function symbol of L.
Other cases are described in a similar way.

Example 3.3. As in the previous example one can find that the set of
submodels of A (or countable sequences of submodels) that satisfy certain
first order properties, also satisfies CH. For example, with the same notation
as in the previous example, the set of all elementary submodels £(A) of A
are described with following sentences:

1° Axioms for SubA,
2° (Vay,29,...,2, € U)(Jyp = Jy € Ugp), or more formally
(Var, @, ..y @a)(U(z1) AU(z2) AL AU(24)) = (Fye = Fy(U(y)Ae)))

By Tarski-Vaught theorem then easily follows that U4 < A iff (A,U#%)
satisfies the listed axioms.

Example 3.4. The set of all prime ideals of a countable commutative ring
also satisfies CH. In other words, the Zariski space of a countable commu-
tative ring satisfies CH. To see this observe that "I is a ring ideal” is a
first-order property. It is described by universal closures of the following
formulas in the language of rings L = {+,-,0} with added unary predicate
I which represent an ideal:

1(0), I{z)AI(y) = I(z + y), I(z) = I(z-y), I(zy) = I(z)V I(y).

In a similar way one can show that CH holds for the set of all maximal
ideals of a countable ring.
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Example 3.5. Let P = (P, <p) be a countable, partially ordered set, L =
{<} and L' = {<, =}. Taking for T' the set of axioms of the linear ordering
for < extending <, we find that the number of linear extensions of P satisfies
CH. It is easy to design for each 0 < k < Rg or k = 2% a partially ordered
set P which has exactly k linear extensions.

Some other families of subsets of P for which CH holds includes the set
of all (maximal) chains, the set of all (maximal) antichains, and the set of
all dense subsets of P.

Example 3.6. If A = (A, (7)is a planar graph, then by simple compactness
argument one can show that A can be 4-colored, i.e. to elements of A can
be assigned four colors so that the adjacent vertices are in different colors
(assuming that the Four-coloring theorem for finite planar graphs is true).
If A is infinite countable, let a,b,¢,d € A be four distinct elements. Then
every map f: A — {a,b,c,d} defines a coloring of A. It is not difficult to
write down first-order axioms which describes colorings of the above type.
Thus, all 4-colorings of a countable planar graph satisfy CH.

REFERENCES

[1] J. Barwise, Admissible Sets And Structure, Springer, Berlin, 1977.

[2] C. C. Chang, H. J. Keisler, Model Theory, North-Holland, Amsterdam, 1973.

[3] H. J. Keisler, Model Theory For Infinitary Logic, North-Holland, Amsterdam, 1971.

[4] R. N. McKenzie, G. F. McNulty, W. F. Tayler, Algebras, Lattices, Varieties, Vol I,
Brooks/Cole Publ. Co., 1987.

[5] D. Kueker, Definability, automorphisms and infinitary languages, The Syntax and
Semantics of Infinitary Logic edited by J Barwise, Lecture Notes in Mathematics,
Vol. 72, Springer, Berlin, 1968, pp. 152-165..

[6] K. Kuratowski and A. Mostowski, Set Theory, PWN-Polish Scientific Publishers,
Warsaw, 1967.

[7] M. Makkai,, Admissible sets and infinitary logic, Handbook of Mathematical Logic,
ed J.Barwise, North-Holland, Amsterdam, 1977, pp. 233-282.

[8] Y. N. Moschovakis, Descriptive Set Theory, North-Holland, Amsterdam, 1980.

[9] G. E. Reyes, Local definability theory, Ann. Math. Logic 1 (1970), 95-137.

[10] S. Shelah, Classification theory and the number of non-isomorphic models, North-
Holland, Amsterdam, 1978.

[11] S. Todorcevié, 1. Farah, Some Application of the Method of Forecing, Matematicki
Institut, Beograd, 1995. '

UNIVERSITY OF BELGRADE, FACULTY OF SCIENCES, DEPARTMENT OF MATHEMATICS,
STUDENTSKI TRG 16, P.B.550, 11000 BELGRADE, Y UGOSLAVIA



FILOMAT (Nis) 9:3 (1995), 839-849

Algebra, Logic & Discrete Mathematics
Nis, April 14-16, 1995.

A SET OF AXIOMS FOR EVALUATING
THE MULTIPROCESSOR PERFORMANCES

I. Z. Milovanovié¢, E. I. Milovanovi¢,
M. D. Mihajlovié¢ and M. K. Stojcev

ABSTRACT. When designing a parallel computer it is very important that
it has the predicted performances. The challenge for a computer designer is
to discover the minimum organization and equipement necessary to achieve
given level of performance. So, the developing analythical model for charac-
terizing and understanding the parallel system performances is of a crucial
interest. In order to avoid erroneous conclusions about the behaviour of par-
allel system a severe mathematical formulations should be involved. In this
paper we give a survey of axioms that were proposed in the literature in
order to introduce a scientific approach in studing the parallel system per-
formances. Further we shall propose a modified and reduced set of axioms
based on discrete mathematical apparatus.

1. Introduction

From the very beginning of digital computer development, the design-
ers always storve to increase the speed of operations. There are number of
possible ways to achieve this. An obvious approach is to improve the tech-
nology implemented in the realization of the computer components. There
is of course a natural limitation in technology development: no signal can
propagate faster than the speed of the light. Another way for increasing
the speed of computation is by performing as many operations as possible
simultaneosly, concurrently, in parallel, using parallel computers [8].

A parallel computer is one that consists of a collection of processing units,
or processors, that cooperate to solve a problem by working simultaneously
on different parts of that problem. The number of processors used can range
from a few tens to several millions. As a result, the time required to solve
a problem by a traditional uniprocessor computer is significantly reduced.

839
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This approach is attractive for a number of reasons [1]. First, for many com-
putational problems, the natural solution is a parallel one. Second, the cost
and size of computer components have declined so sharply in recent years
that parallel computers with a large number of processors have become fea-
sible. And, third, it is possible in parallel processing to select the parallel
architecture that is best suited to solve the problem or class of problems
under consideration. Indeed, architects of parallel computers have freedom
to decide how many processors are to he used, how powerful these should
be, what interconnection network links them to one another, whether they
share a common memory, to what extent their operations are to be car-
ried out synchronously, and host of other issues. This wide range of choices
has been reflected by many theoretical models of parallel computation pro-
posed as well as by several parallel computers that were actually built. Since
parallel computers are composed of multiple processors, interconnected to
each other, and sharing the use of memory, input—output peripherials and
other resources, estimating the performances of these systems is really com-
plex. The fact that the same system behaves differently when solving various
problems makes the performance evaluation even more difficult. Different
problems have different possibilities for parallelization. Some problems can’t
be parallelized at all.

When designing parallel computer it is very important that the system has
the predicted properties. It is also very important to design the algorithm
that exploits both parallelism inherent in the problem and that available
on the computer. The challenge for a computer designer is to discover the
minimum organization and equipement necessary to achieve a given level of
performance. By performance we mean the manner in which, or the effi-
ciency with which, a computer system meats its goal. So, the developing
analytical models for characterizing and understanding the parallel system
performances is of a crucial interest. But, attempts to express some measure
of performance as a explicit function of certain parameters were not success-
ful always. Moreover, omitting one of the parameters leads to erroneous
conclusions about the behaviour of parallel system. Thus, for example, in
1967 Amadahl (see [7]) made the observation that if s is the serial fraction
in an algorithm, then its speedup is bounded by 1/s, no matter how many
processors are used. For example, if there are only 5% of the algorithm that
can’t be parallelized, then maximal speedup that can be achieved is 20, no
matter how many processors are used. This statement, now popularly known
as Amadahl’s law, has been used by Amadahl and others to argue against
the usefulness of large scale parallel computers. Fortunately, Amadahl was
wrong. He missed the fact that the serial fraction, s, is a function of prob-
lem size, m. Moreover, for most scientific and technical applications it has
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property that lim s(m)— 0 [4].

The above and other similar examples imply that in studing the perfor-
mances of a parallel system, a severe mathematical formulations should be
involved. Therefore the following should be developed:

e Explicit mathematical formulas that characterize the performances of
parallel system
e Axioms for basic parameters.

The key for scientific approach in studing the performances lies in solving
the above problems. )

Some common performance measures of parallel algorithm running on a
parallel computer are the execution time, the speedup, the efficiency, the
scalability, ete.

2. Definitions and assumptions

In this section, we introduce some terminology used in the rest of the
paper.

We assume the system of n identical processors interconnected in some
way for the purpose of passing data and control information between the
processors. Communication between the processors can be achieved via
common memory modules or by message passing. Each processor is sup-
plied by some amount of local memory. By a parallel system we mean a
combination of a parallel algorithm and a parallel architecture comprising
of identical processing units.

Definition 2.1. The degree of parallelismn of a numerical algorithm is the
number of operations in the algorithm that can be done in parallel.

Note that the degree of parallelism is indeperident of the number of pro-
cessors in the system; it is an intristic measure of the parallelism in the
algorithm.

Definition 2.2. The average degree of parallelism of an algorithm is the
total number of operations in the algorithm divided by the number of stages.
A stage is comprised of the operations that can be performed in parallel.

Consider a program for which execution time on a single processor is equal
to T(1). When this program runs on a multiprocessor, the execution time
can be divided into two components:

¢ component with running time 7 that must be run sequentialy;
e component with sequential running time 7}, that can be subdivided
into parallel components running on different processors.
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Note that
(1) (1) = T4 7T,.

Since a small number of problems posses ideal intristic parallelism, T is
greater than zero.

Assume that T'(n) is execution time when program is running on n—

processor system. The T'(n) involves the following components:

e serial execution time T, _

e parallel execution time, equal to Ty, /n if the parallelizable part of the
program can be partitioned into n parallel components of equal running
time, and

e synchronization and communication overhead To(n).

According to the previous, we have the following definition.

Definition 2.3. The ezecution time of an algorithm Tunning on R—processor
system is

(2} T(n)=T,+ % + To(n).

Definition 2.4. The speedup of parallel system is defined as

(3) S(n) =

The parallel algorithm may not be the best algorithm on a single pro-
cessor, so for T(1) we take the execution time on a single processor of the
fastest serial algorithm.

Definition 2.5. The efficiency of the parallel system is

(4) E(n) = S_E:z_) = %(%5

Definition 2.6. Parallel cost penalty is defined as

(5) C(n) = nT(n).
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Definition 2.7. Relative parallel cost penalty is

nT(n)—T(1)
n—1 '

(6) R{n) =

Definition 2.8. The gain factor of a parallel system is

(7) G(n) = T(lzfz—l'f(n) =1~ S(ln) .

It is not difficult to see from the above definitions, that the execution time
is the primary measure of a parallel system performance which is used as a
basis for estimating other characteristics of a system. So, it was natural to
establish the set of axioms for this metric.

3. The set of axioms

In the text that follows we are going to give the survey of axioms that were
proposed in literature in order to introduce a scientific approach in studing
the parallel system performances. Further, we shall propose a modified set
of axioms based on discrete mathematical apparatus.

As we have already mentioned, the execution time is the most important
measure of parallel system performance. Its component Tp(n) represents
the influence of communication and synchronization between processors on
execution time. The value of Ty(n) directly affects the performance of the
whole system. So, the analytical methods for characterizing and understand-

- ing this measure were developed. In [2] Flatt and Kennedy introduced the

following axioms for Tp(n):

F.1 Ty(n) is continuous and twice differentiable in respect to n,
F.2 T(](l) = 0, )

F.3 T}(n) > 0 for all n > 1, hence Ty(n) is nonnegative,

F.4 nT{(n)+ 2T4(n) > 0 for all n > 1,

F.5 There exists n; > 1 such that Tp(ny) = T(1).

On the basis of the involved axioms, the authors have investigated the
impact of synchronization and communication overhead on the performance
of parallel systems. They have established upper bounds on the power of
parallel processing in the presence of synchronization and communication
overheads.

The pioniers work of Flatt and Kennedy has motivated researchers to
investigate the following: :
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a) Is the set of axioms F.1-F.5 the minimal one, or it can be reduced,
and, can some conditions be weaker?

b) What is physical and/or geometrical meaning of F.1-F.5?7

¢) Why To(n) and other measures are considered as real functions, if they
are defined on the set of natural numbers, N?

In [6] the problems a) and b) were considered. The axiom F.5 is rejected
as too strong, and instead of it the condition

(8) lim To(n) = +o00
n—o00
is tested. ’

As a basic value in [6] the function D(n) = nTy(n), instead of Ty(n), is
taken. This enables author to introduce the following more geometricaly
intuitive axioms:

D.1 D(1) =0,
D.2 D(n) > 0,
D.3 D(n) is strictly convex and differentiable.

The author has proved that any Ty(n) satisfying F.1 to F.4 also satisfies
D.1 to D.3. The question c) was not addressed in this paper.

In [5] the problems a) and c) were addressed. N amely, the values Ty(n)
and T'(n) were considered as members of sequences {Ty(n)} and {T(n)},
respectively. This enables authors to reduce the set of axioms, defined by
Flatt and kennedy, from five to the following three:

P.1 Tp(1) =0, T5(2) > 0,
P.2 (n+ 2)A*Ty(n) + 2ATe(n) > 0, for n > 1.
P.3 There exists ny such that To(n1) = T(1).

[t was shown that performance evaluation can be carried out very efficiently
using discrete mathematical apparatus.

Let us note that it is natural to use the discrete mathematical apparatus,
since the number of processors in the system is an integer value. Besides, by
utilizing this apparatus the condition F.1 (that the function is continuous
and twice differentiable) becomes needless. Also, the axiom F.2 is expressed
as natural and elemental condition T5(2) > 0. The physical and/or geomet-
rical meaning for P.2 and P.3 can’t be given.

Inspired by the papers [6] and [5] and having in mind questions a), b) and
¢), we propose in this paper a new set of axioms for sequence {D(n)}nen,
D(n) = nTy(n), as follows:
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Al DP(l) =10,
A2 D(2) >0,
A.3 A’D(n)>0,forn > 1.

Usage of discrete apparatus enables us to propose somewhat weaker con-
ditions for D(n) compared with D.2 and D.3 from [6]. Namely, instead
of D(n) > 0 we take a condition D(2) > 0 and for sequence {D(n)} we
assume to be convex instead of function D(n) being strictly convex and dif-
ferentiable. Further, instead of axiom P.3 from [5] we shall take a weaker
condition (8) as in [6].

Now, we shall prove the following result.

Theorem 3.1. The set of arioms A.1-A.3 is equivalent with P.1-P.2.

Proof. Statement of the Theorem 3.1 directly follows from the equalities
D(1) = To(1), D(2) = 2T5(2) and A2D(n) = (n+2)ATy(n)+2ATp(n). O

The assumption of axiom P.3 is not involved in A.1-A.3. Therefore,
we are going to prove the main result for T'(n) from [5] using A.1-A.3 and
under assumption that (8) is satisfied. But, first, we shall prove two auxiliary
results.

Lemma 3.1. The sequence {D(n)},en, is positive and monotone increas-
ing.

Proof. According to A.3 it follows that

i EAD(k+1) > zn:kAD(k) .
k=1

k=1

D(n+2) D+l

From the above inequality it follows that , 18
n+1 n
Di{n+2 Din+1 D(2
(n+2) Dt DO
n+ 1 n 1

and according to A.2 we have D(2) > 0, i.e. the sequence {D(n)} is mono-
tone increasing. O

Lemma 3.2. The sequence {To(n)}nen is monotone increasing.

Proof. According to inequality A?D(k) > 0, i.e. AD(k) > AD(k - 1), we
have that
(k + DATo(k) > (k - DATo(k - 1).
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From the above inequality it follows

k=2 k=2

n(n+1)ATo(n) > 1-2ATo(1) = 2Ty(2) = D(2) > 0,
which established the result. O
We now present the main result for 7'(n).

Theorem 3.2. If equality (8) is satisfied, then there ezists an unique value,
n = ng, for which the sequence {T(n)} reaches the minimum, i.e. the in-
equality

T(no) <T(n)

for all n > 1, is valid. When the inequality D(2) < T, is valid, then ngy is
an unique solution to

(ng - 1)7!0AT0(R0 - 1) — Tp S 0
no(no + 1)ATy(ng) — B2 0,
Otherwise, ng = 1.
Proof. Let D(2) < T, i.e. 2Ty(2) < T,. According to (2) the equality

1 1
n(n+ 1) Ty = n(n+1)

(10) AT(n) = ATp(n) — (n(n + 1)ATy(n) — T,)

is valid. From (10), for n = 1 we obtain the inequality
AT(1) = %(D(Z) -Tp)<0.

Now, it is necessary to prove that the sequence {T(n)} is not decreasing
for all n > 1, but there exists n for which AT(n) > 0. Assume the opposite,
i.e. that for all n > 1 the inequality AT(n) < 0is valid. Then according to
(10) we obtain

1 1

F 1 : —_ e & .
(11) ATo(n) = AT(n) + n(n+1) s n(n+1) FP

According to (11) we have

n—1

n—1

1
YAk Y —— 1T,
- rEay
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1
To(n) < T, (1 — —) .
n

From the last inequality it follows that

i.e.

lim To(n) < T,

n—4ou

which is in contradiction to the assumption that (8) is valid. Consequently,
we conclude that the assumption AT (n) < 0 for all » > 1, is not correct.
Namely, there are values for 1 for which AT(n) > 0, i.e. there is at least one
value n = ng for which the incqualities

(12) AT(ng—1)<0,  AT(ng) >0

and (9) are valid.
Now, it is necessary to prove that ng is unique. Using A.3 we obtain

(13) A (n(n + 1)ATy(n)) = (n+ 1)A*D(n) > 0.

From (13) it can be concluded that the sequence {n(n+1)ATy(n)} is mono-
tone increasing. Accordingly, there exist the unique value n = ng such that
inequalities (9) and (12) are valid.

Now, we are going to prove that for n = ng the sequence {T'(n)} reaches
a minimum. To prove this it is enough to show that A?T(ng — 1) > 0 and
that the sequence {T'(n)} is monotone increasing for n > ny.

From (10) we obtain

2

2 _ A2
(14) A*T(n) = A*To(n) + "t DT D) e

According to (10) and (14) it follows that
(15) A'T(n) = L (A?D(n)) - _z ATy(n).
n+ 2 n+ 2
Substituting n = ng — 1 in (15) and using inequality (12), the inequality

A'T(ng—1)>

— (A*D(ng—1)) >0

is obtained.
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Since the sequence {n(n+1)ATy(n)} is monotone increasing, and accord-
ing to equality n(n + 1)AT(n) = n(n + 1)ATy(n) — T,, it follows that the
sequence {n(n+ 1)AT(n)} is monotone increasing, also. On the other hand,
since ng(ng + 1)ATy(ng) — T, > 0 it follows that ng(ne + 1)AT(ny) > 0.
Now, according to inequality n(n + 1)AT(n) > no(ng + 1)T(ng) > 0, we
obtain that AT(n) > 0, for all n > ny.

If we assume that D(2)>T,, then from (10) we obtain AT(I):% (D(2)-
T,) = 0. Further, since AT(n) > AT(1) > 0 for all n > 1, we conclude that
in this case ng = 1. O
Remark. Theorem 3.2 have been proved in [5] under conditions P.1 to P.3.

According to the results proved in Theorem 3.2 we are going to prove the

following results for sequences {.5(n)} and {C(n)}, n € N.

Theorem 3.3. Let the inequality (8) be satisfied. The sequence {S(n)} has
an unique mazimum at ng > 1. Also, if D(2) < T, then

T r
(1) <S(?LU)S E—(;—(”L)L_])

L16) AC(ng) —

Proof. In theorem 3.2 we have proved that, under certain conditions, the
sequence {T'(n)}, n € N, has the unique minimum at ng > 1. The following
is also valid

(17) AT(ng—1)<0, AT(ng) > 0.

From (3) we have that

(18) AS(n) = T(1) (—HT‘;‘\‘%’:L—I)) .

Combining (17) and (18) we obtain
(19) AS(ng—1)>0, AS5(ng) <0.
This means that the sequence {S(n)}, n € N, has the unique maximumn

at ng > 1.
T(1
Since C(n) = nT(n), i.e. C(n) = n.' (L)
S(n)

S(n) —nAS(n)
S(n)S(n+1) "’

, the following is also valid

AC(n) = T(1)
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and

Sn+1)=(n+1)5(n)

(21) AC(n) =1T(1) S(n)S(n+1)

By substituting n with 79 — 1 in (20) and n with ng in (21), the right and
left parts of inequality (16) are obtained, respectively. 0O

Similarly as in [2], [5], some other properties of sequences defined by (2)
to (7) can be proved. For the sake of illustration, we give some properties
that directly follows from axioms A.1 to A.3.

Theorem 3.4. The sequence {C'(n)}, n € N, is monotone increasing and
CONVET.

Theorem 3.5. The sequence {£(n)}, n € N is monotone decreasing, con-
vex, and has a property (1) = 1.

Theorem 3.6. The sequence {R(n)}, n € N, is monotone increasing for
n > 2.

Theorem 3.7. If the equality (8) is valid, then the sequence {G(n)}, n € N,
has an unique maximum at ng > 1.
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ABSTRACT. A group (7 end its global semigroup GIb(G is considered.
Every congruence relation in the group G induces a congruence relation
in the semigroup GIbG . These congruence relations and their classes are
studied.

1. The induced equivalence relation.

1. Let p be a binary relation defined on a set S and Pow S the power
set of S . The relation p induces a series of relations on Pow S , defined
by quantifiers. One of these relations is defined by

(1) AcB <<= (Ya€ A,3be B) apb,
where A, B € Pow S .

Theorem 1. If p is a reflexive or transitive relation, then o s also
reflezive and transitive respectively.

Proof. If p is reflexive, then for every a € A there exists a € A such that
apa holds true. Therefore, Ao A is valid for every A € Pow S , so that o
is reflexive.

Let p be transitive. If Ae¢B and BeC hold true, then for every a € A
and b € B there exist by € B and ¢ € C such that apb; and boc hold
true. -Therefore, for by € B there also exists ¢; € C' such that bypc; .
Now from apb; and bjpc; we get apcy ,i.e. for every a € A there exists
¢ € C such that ape; holds true. From this it follows that AcC' holds
true, so that o is transitive. O

Using o we can define a new induced relation § on Pow S by
(2) § =anot.

851
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In other words
AéB <— [(ch € A, db € B) aypby ] A [(ng € B,day € A) bsoay ] P

where A, B € Pow S .

Theorem 2. If p is a reflexive and transitive relation on S, then & is
an equivalence relation on Pow S .

Proof. From the definition of § we can directly see that § is symmetric.

We shell use the following characteristics of relations ([3]) : If relations «
and [ are reflexive (transitive), then so are the following relations : an 3
and a~!' . Thus, since p is reflexive and transitive so is the relation & .
Therefore, ¢ is an equivalence relation. 0O

In what follows we shell assume that ¢ is an equivalence relation.
We shell say that é§ is an equivalence relation induced by p and denote

it by ¢.
Let us introduce the notation

ox = {o:|z€ X € PowS}

(Elements of px are equivalence classes.)

Theorem 3. The following logical equivalence
(3) ApB <= pa= 08

holds true, where A,B € Pow S .

Proof. Let ApB be valid. If p, € p4 , then there exists @ € A such that
0o = 0y € 04 . For this a € A there exists b € B such that apb holds
true, i.e. p, = pp € pop . Therefore, p, € pp , so that py4 C pg is valid.
[n exactly the same way we conclude that pg C p4 holds true. Therefore,
A = 0B .

Conversely, let p4 = pp be valid. If a € A, then p, € ps = 05 , s0
that there exists b € B such that p, = g, & apb holds true. Similarly,
from b € B it follows that there exists a € A such that bpa . This means
that AgB is valid.

Therefore, (3) holds true. O

On account of Theorem 3 we conclude that we can describe equivalence
classes for o by

64 = {X € PowS |ApX} = {X € PowS |os=ox}.
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Let us introduce the notation
(4) [64] = | 0a-
aeA

Tho following logical equivalences

ApB = fpa=ip <= pa=o0 < [b4]=[08]
are now evident.

Let us now describe in detail the equivalence classes for p .

Theorem 4. X € g4 if and only if X contains at least one element from
every equivalence class of the family o4 , but does not contain any element
from any class out of pa . In other words

X€epy <= XClpa A [(VaeA) Xnp,#0].

Proof. From Theorem 3 we directly get the validity of that assertion. O

It is obvious that [g4] is the maximal element of g4 (in the sense that
there is no element of §,4 which contains [g4] ).

If AC o, then [pa] = 0y, s0 that X € 9,, & X C pp . This means
that

(5) 0o, = Powpy .
2. Let f:X — Y | then the relation kernel of f , & = kerf ,is an
equivalence relation on X | defined by

(Va,be X) ash = fla)= f(b)-

The equivalence classes of x are defined by &, = f~'(f(a)).
The kernel & induces the equivalence relation # on Pow X .
Since

[2a = Uk = (@) = 71U f@)

ag€A =y a€A
= fTHf(a)|a€ A} = f7H(f(4))
we have [i4] = f71(f(A)), so that

ARB = fTU(f(A) = [T(f(B))

holds true.
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2. The congruence relation on GIbG.

1. Let us now consider a group ' . The set Pow( with the global
operations
AB = {ab|a€ A,be B},

A7 = Jo 7 fae A)

is the global monoid (i.e. semigroup with identity) with involution ~! ([1]
[2]).

This monoid we shall denote by GIbG . Suppose p is a relation on
GG and o and g are the relations on Pow (7 , defined by (1) and (2)
respectively.

?

Theorem 5. If p is a relation on ((G,.), compatible with the operations in
G, then the relation o is compatible with the global operations in GIlbG .

Proof. Let AoB and XoY bevalid (A,B,X,Y € GIbG). If ue AX ,
then there exist ¢ € A and z € X such that u = az holds true. In the
other hand, from AoB (XcoY) it follows that for every a € A (z € X)
there exists b € B (y € Y) such that apb (zoy) is valid. Since p is
compatible with the binary operation, axgby holds true. Thus, for any
u=azr € AX there exists v = by € BY such that azpby is valid. This
means that AXeBY holds true, so that ¢ is compatible with the global
binary operation. -

Let AcB (A,B € GIbG) be valid, then for every a € A there exists
b € B such that apb holds true. Since p is compatible with the unary
operation ~! in G , from apb it follows a~'pb~! . This means that
for every a~! € A~! there exists 6~1 € B~! such that a~lob~1 | ie.
A~1gB~! holds trye. O .

Theorem 6. If p is a congruence relation on (¢ , then 6 is also a
congruence relation on GIbG .

Proof. Using Theorem 5 and the well known result: If a and (3 are
relations on G', compatible with operations in G , then so are the following

relations: f~! and anf, we can conclude that § is a congruence relation
on GIbG. O

2. If H is a subgroup of G , then the relation u, defined by
Vo, y € G) apy <= z'yeH <= zH=yH,

is an equivalence relation on G . The equivalence classes for p are defined
by u:=12H .
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Let us consider the equivalence relation i on GIbG induced by p .

Since
[fa] = U;Lu:UaH:AH,
aEA a€A

on account of (4) ,
ApB <= AH =BH

holds true.

Let us put E = {e} , where e is the identity of G . Then E is the
identity of GIbG ([4]). On account of ug = eH = H and (5) we have
g = PowH and [gy] = H .

Theorem 7. Fvery normal subgroup H of G induces the congruence
relation i on GIbG | defined by

(6) (VA,Be GIb) ApB < AH=BH,

where g = GlbH .

Proof. If H is a normal subgroup of G , then p is an equvalence relation
on (& ,so that, account of Theorem 6, the induced equivalence relation f
is a congruence relation on GIb(G .

Since fig = Pow H and H is a group, the equality fpm = GIb H must
hold. O
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THE INDUCED RELATIONS ON A POWER SET

Zarko M. Mitrovié¢ and Ivana F. Berkovié

ABSTRACT. Let ¢ be a relation on the set S . By using the quantifiers and
the relations g i o~ ! a series of relations on the power set Pow S are defined.
The characteristics of these relations are studied and their classification is
made.

1. The elementary induced relations

Let p be a binary relation defined on a set S and Pow .S the power
set of § . The relation ¢ on S induces a series of relations on Pow § .
Induced relations determined only by quantifiers we shall call the elemen-

tary induced relations. There are four such relations and they are defined
by:

AonB < (Ja€e A,3be B) apb,
Api:B < (Ya€ A,3be B) apb,
(1) AppB < (3ae AVbe B) apb,
AppnB < (Ya€ ANbe B) apb.

If we introduce the notations
ApB <= (VYa€ A,Ybe B) apb

and
apB << {a}oB,

then we can write

App B <= (Ja€ A) apB,
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AngB — AQB )

It is obvious that

(2) 012, 021 C on and 022 C p12, 001

hold true.
With the help of the operation ~! we obtain the new four induced
relations. For them, on account of (2),

(2)) o» 05 C ot and g3t C ofl, o5
hold true.

Theorem 1. The inclusions

(3) 051 C 012 and  py C o7}

hold true.

Proof. If Agz_llB < Bpy1 A is valid, then there exists at least one element
of B which is p-related to every element of A , so that every element
of A is p-related to at least one element of B ,ie. Ap;2B holds true.
Conversely, let Ap12 B is valid, i.e. every element of A is p-related to at
least one element of B, but this does not guarantee that any two elements
of A are p-related to the same element of B . Therefore, the inclusion
92‘11 C pi2 holds true.

From the proved inclusion it directly follows that the second inclusion is
also valid. 0O

With the help of the elementary induced relations and operations N and
with relations we can obtain new induced relations. On account of (2),
(2’) and (3) there are only ten new induced relations more.
Let us put

aij=eijNei'  (i,i=1,2),
Br=eonNey, B2=o0mn Nex', 7=o012N00 .

The relations « are obviously symmetric.

2. "-induced relations

Let us consider the elementary relations induced by ¢~! and put

8ij=(0™")i; (4,4=1,2).
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According to (1), using ap~'b < bpa , we have

ApgnB <= (Jae A,Fbe B) bpa,

, Ap1nB <= (Vae A,3be B) bpa,
() ApnB < (Jac ANbe B) bpa,
App B <= (Va€e A,¥be B) bpa.

For these induced relations and their inverse relations the inclusions anal-
ogous to the inclusions (2), (2’) and (3) hold true.

The relations a&;; 3; and ¥ (#,7 = 1,2) are defined like the
corresponding relations from the point 1.

The relations induced by p~! we shall call ~- induced relations.

Theorem 2. The equalitics

(4) o = (e and o3 = (07V)2

hold true.

Proof. Since

Aoi! B < BonA <= (3be B,3a€ A) bpa
< (JdJa€e A,3be B) bpa <= ApnB,

we conclude that gﬁl = py1 is valid.
In a similar manner we can prove the second equality. O

3. The classification of the induced relations

—

Let o be one of the induced relations, then the relations @ and ¢!
we receive by using the conventions:

—_— i

unv = pgNo, ;F‘ = (@)™! and fi=p.

For example, f; = §11 N (512) 7"

For every induced relation o there exist three corresponding induced
relations more: ¢~!, & and (7)~!. We shall say that these four relations
are conjugate to each other. If ¢ is an elementary induced relation, then we
shall call all such relations the elementary induced relations in the broader
sense.

Using the elementary induced relations in the broader sense and the op-
erations N and ~1 with relations, we receive the large number of new
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induced relations. There are 98 such relations. On account of inclusions (2),
(2') and (3) and the corresponding inclusions for “-induced relations, as well
as the equalities (4), these new induced relations may be formed by at the
most four elementary induced relations in the broader sense. Because of this
fact all the induced relations may be classified into four classes:

Class A. The elementary induced relations in the broader sense; there are
12 such relations.

(Class B. The induced relations formed by using only two relations of the
Class A ; there are 34 such relations.

Class C. The induced relations formed by using only three relations of the
Class A ; there are 36 such relations.

Class D. The induced relations formed by using only four relations of the
Class A ; there are 16 such relations.

All the induced relations may be grouped into groups of four conjugate
relations each. There are groups which contain the same relations (for ex-
ample, 017 = gl_ll) .

In the Class A there are 2 groups of four and 2 groups of two relations
each. Let the representatives of these groups be just the elementary induced
relations. If we denote the groups by A7 (i = 1,2,3,4) , then those
representatives are:

Al:onn, A2:p12, A3:p03, Ad:py.

The groups Al and A4 contain only two elements each.

In the Class B there are 5 groups of four, 6 groups of two and 2 groups of
only one relations each. Let the representatives of the groups of the Class B
be:

Bl:on Noyit, 321911001_21, B3:p12Npa1, Bd:ppanog,

B5:p13N g1z, B6:p1aNpy, BT:p2N(a)",
B8 012N (1), B9:eu Ny , Bl0:pyNoy,
Bll:py Ndar, Bl2:py N ()", Bl3:pwnoy, .

The groups B4 , B5 , BT , B9, Bl1l and B12 contain two and the
groups B1 and Bl3 only one relations each.

In the Class C there are 8 groups of four and 2 groups of two relations
each. Let the representatives of the groups of the Class C be:

Cl:pnNe Nz, C2:p12NeaaNg1z, C3:0120 021 N3,
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Cd 12 Ny N(12)" , CH:pzNearN(d21)™", C6:p12N o5 Néi2 ,
CT7:p12N oy Nd21, C8:p1aNg N (821)"", C9:p21 Ny Moo,
C10: 031 N o33 N (821) 7"
The groups C'1 and ('10 contain only two relations each.

In the Class D there are 2 groups of four, 3 groups of two and 2 groups of
one relation each. Let the representatives of the groups of the Class D be:
Dl:pizNen NézNist s D2:przNean N(d12)7 N (8a)7",
D3:owNon NN (d2), Ddiennen Nénn(én),

D5 012N N o2 N(612)™" . D6:p12Nepy Noar N (621)7",
D7 : 021 Noxy! N1 O (82)7"
The groups D1, D2 and DG contain two relations and the groups D5
and D7 only one relation each.

4. Some characteristics of the elementary induced relations

The following characteristics of relations: reflexivity, antireflexivity, sym-
metry, antisymmetry and transitivity are said to be the fundamental char-
acteristics of relations.

Lemma. [frelations o and 7 have one of the fundamental characteristics,
then the relations a=' and a1 have the same characteristic ([3]) .

If p has one of the fundamental characteristics, then we shall find all
the induced relations which have the same characteristic. We shall not be
interested for such characteristics of induced relations which the relation o
does not have, i.e. which are not hereditary characteristics. For example,
a are symmetric relations, but o need not be.

Theorem 3. If o is a rcflexive relation then o1 and p12 are also
reflexive but pa1 and pyy are not.
Proof. Let p be reflexive, i.e.
(5) (Va € 5) apa
and let A€ PowlsS .

Since from (5) it follows (Va € A) apa , we conclude that

(e € A) apa <= ApnAd,

so that o1y is reflexive.

From (5) we obtain (Va € A,3a € A) apa, i.e. ApiaA sothat pqa is
reflexive.

However, it need not exist a € A such that apA holds true. From this
it follows that g2, and p2 are not reflexive. O
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Theorem 4. If p is an antireflezive relation then py; and py, are also
antireflezive, but p11 and g1y are not.

Proof. Let p be antireflexive, i.e.

(Va€S) (a,a)¢o

and let A € Pow §. .

It may exist ay,a; € A such that ay0a; holds true, so that it may be
Apn A . Similarly, for every a; € A it may exist a; € A such that a;pa,
holds true, so that it may be Agj,A . Therefore, py;; and py5 are not
antireflexive.

Since (Va € A) (a,a) ¢ g, it may not exist ayp € A such that, for every
az € A, arpaz holds true. Hence, (A, A) Z 021 and (A, A) & pyp. O

Theorem 5. If p is a symmetric relation then e11 and pyy  are also
symmetric but p15 and py; are not and the equalities p15 = p1o and
021 = D91 hold true.

Proof. Let p be symmetric, i.e.
(6) apb = bpa

and let A, B e Pows§ .
From (1) it is obvious that p;; and 022 are symmetric and that p,
and py; are not symmetric.
Since
Api2B <= (Va€ A,3b€ B) apb
= (VGE A,3be B) b@ﬂ — Ap12 B,
the equality g5 = g12 holds true.

In exactly the same way we can prove the second equality. O

Theorem 6. If p is a transitive relation then 211 s not transitive, but
the other three elementary induced relations are transitive.

Proof. Let p be a transitive, i.e.
(7) apb A bpe = apc.
If Apy1B A Bp11C' holds true, then

[(Ga€A,3b1€B) agbi] A [(Fb€B,IceC) byoc].
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Since, generally speaking, b, # by , then Ap;;C need not hold, so that
11 is not transitive.
If Ap1aB A Bp12C' holds true, then

[(Va€ A,3b, € B) aoby] A [(Vb€ B,3ceC) boc].

Since, for every b € B | there exists ¢ € ' such that bpc , then for
by € B must exist ¢; € (' such that bype; . Now from apb; and bypeq it
follows agpey . Thus, for every a € A there exists ¢; € C' such that apey ,
so that Ap13C' holds true.

From

ApsnB A BpyC <= [(Ja€e A) apB] A [(3be B) boC]

it obviously follows that (da € A) apC ,ie. ApynC .
The logical equivalences

ApaB AN Bpsyy (' <= ApB A B pC
= ApC — Apyr C
evidently hold true. O

If p is an antisymmetric relation, then it is easy to prove that the
elementary induced relations may not be antisymmetric.

Theorem 7. If relation o and the representative of a group of conjugate
relations have one of the fundamental characteristics, then the same char-
acteristic have all the relations of that group.

Proof. The assertion of the Theorem follows directly from the Lemma. O

5. The hereditary characteristics of the induced relations

According to Theorem 7 we can conclude that:

I.If p is a reflexive relation, then the relations of the following groups:
Al1-2,B1-2,B4-5,B7,C1,C6 and D5 are also reflexive.

II. If p is an antireflexive relation, then the relations from the following
groups: A3—4,B9— 13,9~ 10 and D7 are also antireflexive.

III. If p is a symmetric relation, then p~! = p holds true, so that the
“-induced relations coincide with the ordinary induced relations. According
to (2), (2’), (3) and Theorem 4, we can conclude that:

(i) The Classes C and D do not exist.

(ii) In the Class B the groups:

(a) Bl coincides with the group Al;

(b) B2 and B5 coincide with the group A2;

(c) B8 and B11 coincide with the group A3;

(d) B10 and B13 coincide with the group A4.
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(iii) The following groups mutually coincide: B3 and B6 , B4 and
B7, B9 and B12.
Therefore, in this case we have only the following induced relations:

Al : o1 ,

A2: 012, 017

A3 091, 9511 :

Ad: 0y ,

B3: p1aNpa, 012 Nox »

B4: 013N oy

B9 : pa ﬂg{ll .

The relations from Al and A4 are symmetric relations if p s
symmetric, but the relations from the groups B4 and B9 are always
symmetric. The other relations are not symmetric.

IV.If p is a transitive relation, then the relations of the following groups:
A2—-4,B3—-13,C2—-10 and D1 — 7 are also transitive.

V. If p is a quasi-order, i.e. a reflexive and transitive relation, then
the relations from the following groups: A2 , B4 -5, B7,C6 and D5
are also quasi-orders. In particular, the relations from the group B4 are
equivalence relations.

VL. If p is a strict order, i.e. an antireflexive and transitive relation, then
the relations of the following groups: A3 —4, B9 - 13, (C9— 10 and D7
are also strict orders.

VIL. If p is a tolerance, i.e a reflexive and symmetric relation, then gy,
is tolerance. Moreover, if p is only reflexive, then p2 N 91_21 is also a
tolerance.

VIIL If p is an equivalence relation, then only

6 = p12 N of7

is an equivalence relation. Therefore, the unique equivalence relation on
Pow S induced by an equivalence relation on S is just the relation ¢ .

[t is easy to show that if p is the equality relation on 5 , then & is the
equality relation on Pow S .

Remark. We may obtain induced relations also by using the operations U
and ~! or by using all the three operations N, U and ~' , but we shall
not do it in this paper.

6. Some applications

Let K" be a Euclidean n-dimensional linear space and Int R be the set
of all the closed real intervals.
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In [1] the relations on Pow K" induced by the orthogonality of vectors
in K are considered. In [2] and [3] some relations on Int R induced by
the relation < (less or equal) on R are studied.

In [4] the congruence relations on global semigroup of a group G induced
by a congruence relation on (7 is considered.
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ON MODIFICATIONS OF THE GALOIS GROUP

Boris V. Novikov

ABSTRACT. In this paper we define Doss modifications of groups and we
describe such modifications of a simple cyclic group.

Let K be a field, L afinite normal extension of K with the Galois group G.
Sweedler [4] has defined a Brauer monoid M((, L) which allows to classify
so called strongly primary algebras. M(G, L) is a semilattice of Abelian
groups and its idempotents are in 1 — 1 correspondence with some of partial
orders on (7 (so called lower subtractive (G-posets).

Another approach to studying the structure of the Brauer monoid was
suggested in [3]. Let 0 be an element not contained in a finite multiplicative
group (7. We call a modification of (¢ the monoid on (GU{0} with an operation
* such that z * y is equal to zy or 0 for z,y € (7, and besides 1 ¥ z =
z*1l=2,0x0=0%+zx =2 +0=0.It was shown in [3] that there exists a
1 —1 correspondence between the modifications of (¢ and the idempotents of
M(G, L). Moreover, the describing of a Brauer monoid may be reduced to
the studying of the modifications because their second 0-cohomology groups
[2] are isomorphic to the group components of M(G, L).

However, the enumerating of all modifications of a given group seems to
be a difficult problem. In the general case there are known simple properties
of modifications only such as [3]:

a) the modifications yields the condition of 0-cancellativity: if z * z =
y*z#0orz+x =2y #0 then z = y;
b) the ideal of all non-invertible elements of a modification is nilpotent.

In this paper we describe a kind of modifications of a simple cyclic group.

867
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Definition. The modification S of a group G is called a Doss modification
(analogously to the well-known condition for embedding a semigroup into a
group [1]) if

(Va,be §) axSNbxS#0=>aebxS V beaxh.

In what follows we assume that G = (a|a? = 1) is a cyclic group of prime
order p, S is its commutative Doss modification, different from G°(.) (i.e.
dz.ye G zxy=0).

Lemma 1. S is a 0-direct union of monogenic semigroups (which are gen-
erated by indecomposable elements) with joined identity.

Proof. If @,y are indecomposable elements then 2+.SNy+5 = 0; in particular,
() * (y) = (y) * (z) = 0. Since (7 has the prime order the subgroup of in-
vertible elements is trivial. So every nonidentity element of .5 is divided by
an indecomposable element and is in fact a power of it. Therefore S — {1} is
0-direct union of the monogenic subsemigroups generated by the indecom-
posable elements. 0O

Remark. Evidently, the converse assertion is true too.

We shall describe the commutative Doss modifications with two or three
generators. It will conveniently to denote an element a* € G by by, when it
is regarded as an element of S (hence % = a**---*a* n times). Accordingly
to Lemma 1 T = 5 — {1} is a semigroup which has the presentation of the
form

T = (b,-l,...,bir
whence oy + -+ a, =p+7r—1.

Theorem 1. [fr = 2 then

T = (bi,byoslb = B3 = 0)
where l <k<p-1,2<m<p-1.
Proof. Let

bk =0,1<k<r)

T = (b, biloy = 477" = 0)
for some 1 < kI <p-—1,k# . We may assume that & < [. Since
{bry bty B b, 0F, . B0 = {a,d?, ..., a” 7}

we obtain, regarding bf as the element a* € G :
k4+2k+--+(m—-Dk+14+204+---+(p—m)l=1424---+(p—1) (mod p)
or

m(m —1)k+m(m—-1)=0 (mod p).
Therefore k +1=0 (mod p) because 2<m <p-1. O
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Corollary. The number of all distinct (but maybe isomorphic) 2-generated
commutative Doss modifications is equal (p — 1)(p — 2)/2.

The situation for 7 = 3 is more complicated. We need a number-theoretic
lemmas:

Lemma 2. Let k,«a,x be integers, % <a <z < p-—23. Denote the residue
kx(mod p) by py (ie. 0<pp <p—-1).Ifpr>aforall <k<(p-a)/2
then p = 1(mod 3),a = (p+2)/3 and z = (p— 1)/2.

Proof. If x # (p— 1)/2 then either ¢ < (p—3)/20r z > (p+1)/2. So we
consider three cases.

1. Let x < (p—3)/2 (then (p+ 2)/3 < (p— 3)/2 whence p > 13).

We shall prove by induction by ¢ that if r1,73,...,72,01 > (p+2)/3 then
p2i+1 = (2t + 1)z — ip.

For 2 = 0 it is evidently. Let

prici = (2i — Dz —(i—1p> (p+2)/3.
Then
(2i4+ 1)z —ip=pric1 420 —p >0,
(2t4+ Dz —(+1)p=pria+2e—2p<p+(p—3)—2p<0

and
prit1 = (21 + D)z — ip.

Therefore if it holds pagy1 > > (p+2)/3 for all k, 2k + 1 < (p— @)/2, by
the condition of Lemma 2 then pygpy1 = (2k 4+ 1)z — kp for these values of
k. However, if we chose 2k + 1 to be equal to the odd integer being between
(p—a)/2—2and (p—«)/2 then k > (p— a—5)/4 and

~ i B —a-3 p-a-5
P =z —k(p—20) <o - T 2(p—2) = 2t j — 2 1
<p—3p—a—3_);u—r'r—5:Z'ia—p—{—.()
= 2 P 4

Since (p+2)/3 < a < (p—3)/2 and p > 13, the last expression is less or
equal (a+6)/4 < a.

2. Let z > (p+ 1)/2. We shall prove by induction that if py,...,px—1 >
(p+2)/3 then px = kz — (k — 1)p.

It is true for k < 2:p; = = and py = 2z — p because 2z > p. So we may
assume that k& > 3.
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Let py1 = (k—1)z — (k—2)p > (p+ 2)/3. Then it follows kz < kp from
z < p— 3. On the other hand

ko = (s + (k — 2p)
k (p+2 _ e (k—3)p+ 2k
> E(T+(k—2)p) =(k-1)p+ TRV

The last summand is greater than (k — 1)p because k > 3. Hence p; =
kz — (k —1)p. Then we have for k = [(p— «)/3] + 1:

p—«

pr=p—k(p—z)<p-3 =a.

3. Let z = (p—1)/2 and k = 2[(p— a + 2)/4] — 1. Then

p—a+2 1 p+1l p—a+2
by = - SR — —] — )
2 ( . 2) (p—1) 5 3 (mod p)

[t is evidently that the right side of this congruence is equal to pj. If
Pk > o we obtain:
" p+1 P + 2
2 4
i.e. a < (p+4)/3. Since a is an integer and a > (p + 2)/3, the assertion of
Lemma is proved. 0O

47

+ 1,

Now we are able to describe the 3-generated modifications.

Theorem 2. Ifr = 3 then under suitable choice of a generator of G

T= (blib‘mob??—ll ;n. =~ bgn. = bzz;n = ) »

where 2 <m < p-— 2.

Proof. Let

1= (bk1 bms b:'i.lbi.lr = bEL = b:; = 0) ’
where
(1) a+pB+y=p+2

and 2 < o, 3,7 < p—2 (whence p > 5). It is possible to choose the generator
of (7 such that k = 1. Furthermore, we may assume that « > 3,y and m < n.
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At first we shall show that n = p— 1. Let n < p— | on the contrary. Then
it follows from (1) that o > (p+2)/3 and either 3 —1or y—11is > (p—a)/2.

Let 3 —1 > (p— a)/2 for example. Since by = bf ¢ (bn) for k <
all residues of m,2m, (3 — 1)m are > « and we have from Lemma 2 a =
(p+2)/3,m = (p— 1)/2. But then 8 > (p+ 2)/3 and a > [ implies
a = f# = v. Again using Lemma 2 and taking into account that n > m we
obtain n = p — 2.

If b4 # O then b}, = b,_o = b, what is impossible. So # < 4 whence
p=Tand -
T = (b1, b3, bs|b = b3 = b3 = 0).

However one can check easily that such a modification doesn't exist.
The case ¥ — 1 > (p — «)/2 is considered analogously.
Therefore n = p— 1 and

(bp—1> . {bp—"r-i-l» bp—'y+2: § vy bpfl} uo

(bm) = {ba,ba.{.],. . -1bp—‘r} U 0.

(2)

Lemma 3. If (2) carries out then the inequalities

km > (k—1)p

——-&Hi_l)psvnSP—‘{

are true for allk < g — 1.
Proof of Lemma. For k = 1 first inequality is evident and last one turns to

the form
a<m<p—1°

what follows from (2).
Let Lemma was proved for k£ — 1, i.e.

(3) (k—1)ym > (k-2)p
(4) “—Ti—_lz-)BSmSp—v-

Suppose that km < (k — 1)p,k > 2. Since km > (k — 2)p from (3) then

b = bim—tie—a)p
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whence

at(k=2p _  (k=1p—q

agk:rn—(k—Q)pgp—'y, : <m< 2

From here and (4) it follows

at(k—2)p (Fk-1p—y
k—1 - k '

Le. ka+(k-1)y <p.
In particular, for k = 2 we have:

2aty7<p=a+f+y-2, f>a+2,

in contradiction with maximality of a.
Hence km > (k — 1)p. But then it follows from bk = bem—(k—1)p that

a<km—(k—1)p<p—1~

whence
a+(k—1)p
. ;

m >

Ending of the proof of Theorem 2. For k = = 1 we obtain consecutively:

‘Therefore 8 = 2, (by) = {by,0} and a = p — y=m, [

Finally we formulate two problems:

1. Find necessary and sufficient conditions under which the nilpotent
semigroup with 0-cancellation is a modification of some finite group.

2. Let 9 be the set of all modifications of a given group (7, which are
different from G°(G with a joined zero). Let us define a partial order on
M:G(+) > G(o) & Ve, ye Glzrxy=0=z oy = 0). Describe the maximal
elements of poset 21 (at least for G = Zy)
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PARTIAL COMPLETIONS OF BOOLEAN ALGEBRAS

Zikica Perovié

ABSTRACT. Similarly to notion of completeness and k-completeness we de-
fine a notion of partial completness with respect to a subalgebra C. We also
give a categorial characterization of partially complete Boolean algebras, and
a construction of partial completion.

Since the completion of a relatively small Boolean algebra could be very
large, it is reasonable to consider the possibility of making a completion of
just a subalgebra of given Boolean algebra. This makes even more sense for
various types of lattices, where the completion of the whole lattice is not
anymore in the same variety.

1. Partially complete Boolean algebras

To make a motivation for our definition, we will list some known facts on
complete Boolean algebras.

Proposition 1.1. (i) Boolean algebra B is complete iff for every partition
(b)ier, the mapping @ : B — [];c;(b:) defined by o(b) = (b-bi)ier is an
isomorphism. (b;), as usually, denotes the principal ideal generated bu b;.

(ii) Let k be a cardinal. Boolean algebra B is k-complete iff every disjoint
family D, of cardinality less than k, could be extended to a partition (bi)ier
so that the mapping ¢ : B — [];c;(bi) defined by ¢(b) = (b-b)ier ts an
isomorphism.

Proof. (i) ¢ is trivialy a monomorphism, and it is onto since B is complefe.
On the other hand, let (b;);cs, be a disjoint family in B. Let now (bi)ier
be its extension to a maximal disjoint family which is a partition of one in
B. Consider a sequence (e;)ier, € Hieh(bi)_ such. that ¢; = b; for ¢ € I,
and 0 otherwise. The element corresponding to this sequence in the above

873
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isomorphism is z:’el b;. Since every disjoint family in B has supremum, B
is complete.,

(i) If B is k-complete, then for every disjoint family of cardinality K we
just add the complement of its summ, to make the desired partition, and
construct the isomorphism in the same way as in (i). For the other side,
proof is just the same as in (i). O

Having this proposition in mind we define a notion of partial completeness
of a Boolean algebra over its subalgebra.

Definition. Let B be a Boolean algebra, and C' its subalgebra. B is par-
tially complete with respect to C' (shorter ”C-complete”) if for every parti-
tion (¢;)ies of C, the mapping ¢ : B I1;c1(ci), defined by (b)) = (b-¢;)ier
is an isomorphism.

Proposition 1.2. Let B be a Boolean algebra, and C its subalgebra so that
B is C'-complete.
' i) Letb € B, (b;)ier C B. For every partition (ei)ier; 0 C, b= 2ierbeci,
and there ezists ) .. b; - c;.

i) C' is a regular subalgebra of B.

it1) for every D C C, there exists supD in B.

Property i) is equivalent to B being C-complete.

Proof. i) Follows from the fact that the induced mapping ¢ : B = [Lics(ei)
is an onto mapping.

i) It is enough to prove the preservation for disjoint sums. So let ¢ =
YoicrCiin C. Then, {c;:i € I} U{c'} is a partition in C, and the element
in [[;c;(ei) x (c’) having coordinates ¢;, i € I, and 0 on the coordinate ¢’
corresponds to c.

iii) In the case of disjoint family it is just special case of i)forb=1. In
the general case we can disjointize it on every step. 0O

Definition. Let ¢' < B,S. A-homomorphism ¢ : B — § is C-complete if
it preservs existing C-sums i.e. for every {¢; : i € I} C C, e(Xierci) =

ZiEI p(cs).

Proposition 1.3. If B is C'-complete then for any completion C of C' there
exists a C'-complete embedding m : C — B, so that the following diagram
commutes:
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€

G—— ¢

1 m

B

Proof. Let B be a completion of B, and let e; : B — B be the inclusion
embedding. Since f = ¢; o i is a complete embedding of ' into complete
Boolean algebra B, by the Sikorski extension theorem, there exists a com-
plete embedding m : C' — B, so that f = moe.

O — ¢

il lm
B .8

Let us prove that Im(m) C B. Since every d € C is of the form a =
3" e(D), for some D C ', we have:

m(a) =m(D> e(D))=> m(e(D))=Y f(D)=) DeB
Hence m is the embedding with the desired properties. O

We will prove the anologue of Sikorski’s extension theorem.

Proposition 1.4. Let B be a Boolean algebra, and C its subalgebra. If
B is C-complete, then for every Boolean algebra A, and its subalgebra S
and any homomorphism f : S — B, such that Im(f) C C, there exists a
homomorphism g : A — B satisfying go s = f.

Proof. Let us consider the following diagram:

5
fa

S %4
ﬁ
C'
& \
v

C B
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Let fi denote f with the restricted codomen C', and f, = eo f;. m is the
mapping from the preceeding proposition. Since C' is a complete Boolean
algebra, by the Sikorski extension criterion, there exists homomorphism gy,
so that the upper diagram commutes. g = mog,. Let us prove that gos = f.
Really,

gos=mogios=mofy=moeofy=i0f;=f

O

We define a completion of a Boolean algebra B over a subalgebra (' anal-
ogously to definition of a completion.

Definition. Let ' < B < §. B is C-dense in S, if for every element a € §
there exists a partition (¢;)ies of 1 in C' and a family (b;);e; C B, so that
a=3,1€lb;-c.

Definition. Let C' < B. Boolean algebra S is a C-completion of B if:

(i) 5is a C-complete Boolean algebra.
(i) B is C'-dense in §.

2. CONSTRUCTION OF PARTIAL COMPLETIONS

Constructing a partial completion of a Boolean algebra we will use sheafs
over a subalgebra following [2]. Sheaf of Boolean algebras is a generalization
of the notion of subdirect product of an indexed family of sets so that the
index set and the members of the family have topological structure. Then
Boolean algebra is represented as a set of continuous choice functions. We
will just mention here the definition and the main representation theorem.

Definition. Let S and X be topological spaces, 7 a mapping = : § —
X and B = (Bp)pex a family of Boolean algebras indexed by a set X.
S = (5,7, X,B) is a sheaf of Boolean algebras if it satisfies the following
conditions:

(i) (Bp)pex is a partition of 5.

(ii) m is a projection i.e. 7[B,] = {p} and 7 is continuous, open and a local
homeomorphism.

(iii) Let v C X be an open subset, and fy,...,f, € Hpeu B, continuous
functions from » to 5, and ¢(z,...,z,) and t1(zy,...,z,) Boolean terms.
Then, the set

{peu:t(fi(p).-., fu(p)) = t1(fsi(p),--., fu(p))}

is open.

Boolean algebras B, are called stalks of the sheaf S. The set of sections
over u is usually denoted by I',(S), and the set of global sections by I'(S).
For two sections f,g over u, ||f = g|lu = {p € u: f(p) = g(p)}. 1t is easy to
see that algebra of global sections is a subdirect product of the stalks.
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Definition. Let B be a Boolean algebra, C < B and X = UltC. Let for
p € X, < p > be filter in B generated by p, B, = B/ (p)ﬁ. Let also,
forb € B, f, : X — S be the mapping defined by fi(p) = b/ (p)ﬁ and
Ty B — By be the canonical homomorphism. Finally, let § = Upex B, be
the topological space having D = {f,[u] : b € B,u C X, open} as a base of
topology, and 7 : § — X projection. § = (5,7, X,(Bp)pex) is called the
sheaf of B over subalgebra (. -

Theorem 2.1. Let the notation be as in th: preceeding definition. S is
a sheaf of Boolean algebras. Boolean algebra B is isomorphic to Boolean
algebra of global sections of S.

Following ideas from [1], we define an algebra of dense open sections over
a subalgebra.

Definition. We say a function f € [[ B/P is a dense open section of B
if the set of all points at which f is continuous is a dense open set of X.
I'p(B) is the set of dense open sections of B. For the congruence relation

~ on [[ B/P defined by: f ~ g if they agree on a dense open subset of X,
I'pB/ ~ will be denoted by R(B), the algebra of dense-open sections of B.

We summarize a few properties of R(B). s denotes the isomorphism from
B onto ClopUltB from the Stone duality.

Proposition 2.2. (i) A function f € [] B/ P is continuous at point P € X
iff there is some ¢ € P and some b € B so that [ agrees with f, on s(e).

(ii) The mapping ¢ : I'(B) — R(B) defined by o(f) = f] ~, is an
embedding, into a dense subalgebra.

Proof. (i) It is easy to get from the definition the known fact that fy(u),
b € B, u open in X, constitute the base for the topology of S. Therefore,
{fs(z)|z € P} is a neighboorhood basis for the point a/P. Hence, if f agrees
with f, on s(z) then f is continuous at each point of s(z). On the other
hand, if f is continuous at P, then f(P) equals b/ P, for some b € B, hence
f(P) = fo(P). Since fy[X]is an open neighboorhood of b/ P, by continuity of
f, there exists a neighboorhood u of P which is mapped into f,[X ], meaning
that f and f, agree on u. ¢ is then, any member of B such that s[c] C u.

(i) It is obviously a homomorphism. Let us check that it is 1 — 1. So
suppose @(f) = 0/ ~. This would mean that I|f # 0] is of first category,
which is impossible since it is a non-empty open set. To prove that I'm(¢p)
is dense in R(B), suppose that f is a nonzero dense open section. By part
(i) of this proposition, there exists ¢ € C and b € B, so that f = f, on S(e).
Then for the global section g defined as f, on S(c), and zero otherwise, we
haveg < f. O
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In the sequal C'-section will denote a memeber f of I'B such that,there
exists ¢ € ' such that f(P) = 1 for c.€ P, and zero otherwise. The' set of
C' sections will be denoted by I'C'. By Theorem 2.1, C' is isomorphic to I'C,
and we will identify them.

Proposition 2.3. R(B) is C-complete.

Proof. Consider {f. : ¢ € D}, a family of C-sections. Let f be the dense
open section defined by: f(P) = 1iff ¢ € P for some ¢ € D, 0 otherwise. It is
really a dense open section, since , for U = [J{S(c);c € D}, it is continuous
in every point of U U ntU¢. 0O

Proposition 2.4. I'B/ ~ is C-dense in R(B).

Proof. Let f € R(B). Let it be continuous on a dense open set U. Let
further {¢; : 7 € I'} be a maximal disjoint family of clopen sets in U. Wlog,
we can suppose that for each i € I there exists b; € B so that for every
P € ci, f(P)=b;/P. If this is not the case, for every P € ¢;, we can find a
neighbourhood so that for some b € B, f = f, on that neighbourhood, and
then find the finite subcover of every ¢;, and finally take the refinement of

{ci:i € I}. It is obviously f/ ~= Ywerloed ®. O
The folowing theorem directly follows from the preceeding propositions.

Theorem 2.5. Let C < B. R(B) is a C'-completion of B.
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SOME CONGRUENCES ON AN AG**-GROUPOID

Petar V. Protié and Milan Bozinovié

ABSTRACT. Some congruences on AG*-groupoids have been considered in
[3]. In this paper we shall describe some congruences on AG**-groupoids.

1. Preliminaries
If on groupoid S the following is true

(1) (Va,b,c € §) (ab)e = (cb)a,

then S is an AG-groupoid (Abel-Grassmann’s groupoid), [4]. In an AG-
groupoid, clearly, holds medial law

2) (ab)(ed) = (ac)(bd),

for every a,b,e,d € S.
Let on AG-groupoid 5 the following is true

(3) a(be) = b(ac)

for every a,b,c € §. This class of AG-groupoids we shall call an AG™*-
groupoids. If S has left identity then S is an AG**-groupoid, [8]. Let S be
an AG**-groupoid and a,b,c,d € S, then

(4) (ab)(ed) = c((ab)d) = c((db)a) = (db)(ca).

An AG-groupoid S is called an inverse AG-groupoid if for every a € S there
exists a’ € § such that (aa')a = a,(a’a)a’ = @' and o' is an inverse for a,
[9]. As usually we shall denote by V(a) the set of all inverses of a € 5. If
a,be S, a' € V(a), b’ € V(b) then a'd’ € V(ab), [9].

For undefined notions and notations we refer to [1],[2], [6] and [10].
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2. The congruence o

Lemma 2.1. Let § be an AG**-groupoid and E(S) # 0, then E(S) is a
semilattice.

Proof. If e, f € E(S), then by (4) and (2) it follows that

ef = (ee)(ff) = (fe)(fe) = (ff)lee) = fe. O

The basic definitions of congruences on an AG-groupoid are given in [9]
and those definitions are analogous with those in semigroup theory.

Theorem 2.1. Let S be an AG™*-groupoid and let E(S) # 0, then the
relation o defined on S with

o={(z,y) € S x 5| (3e€ E(S))ex = ey}
is a congruence relation on S and e f, for every e, f € E(S). Furthermore,
o={(z,y) € S x5|(Jee€ E(5))ze = ye}.

Proof. Clearly, o is a reflexive and symmetric relation. Let zey, yoz, then
ex = ey, fy = fz for some e, f € E(S). Now by (1), (2), (3) and (4) we

have

(ef)z = ((e€)f)z = (f)(ee) = (ef)(ez) = (ef)(ey) = (ce)(fy)
(cf)(e2) = (2f)(ee) = (zf)e = (ef)=.

[l
—_
™
™
S
D
~n
&
—
Il

Since ef € F(S5) we conclude zoz and o is a transitive relation. Hence, o is
an equivalence relation.
Let zoy and z € 5, then ex = ey for some e € E(5). Now we have

e(22) = (ee)(x2) = (ex)(e2) = (ey)(e2) = (ce)(yz) = e(y2),
z) = (ee)(z2) = (ez)(cx) = (e2)(ey) = (ee)(zy) = e(zy).

Hence, o is a congruence relation.
Let e, f € E(S), then since E(S) is a semilattice we have

efe=eef =¢ff.

Hence, ea f for every e, f € E(9).
Let 3 be a relation defined on S with

B={(x,y) € S x 5| (3e € E(S))ze = ye).
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If (z,y) € A3, then there exists e € E(.5) such that ze = ye. Now, by (1) we
have

ex = (ee)r = (zve)e = (ye)e = (ee)y = ey,

so (z,y) € o. Conversely, if (z,y) € o ,then there exists f € E(.9) such that
fxr = fy. Now, we have

af =2(ff)=faf)=(fNf)=(f2)(ff)=(fy)fF)
(fOwS) = Fyf) = y(ff) = yf,
so (z,y) € B. Hence, 3 = 0.

Now, if (z,y) € ¢ and z € 5, then for some ¢ € E(5) hold (zz)e = (yz)e
and (zz)e = (zy)e. O

Corollary 2.1. Let S be an A -groupoid with left identity 1, then the re-
lation o is a smallest congruence on S with property that eof for every

e.feds.

Proof. Let T be an arbitrary congruence with above property, then for a,b €
S from ach <= ea = e¢b we have ear = ebr. Now, erar = erbr and since
1€ E(5) it follows that 1T7ar = I7b7, whence ar = br. Hence, c C 7. O

3. The maximum idempotent-separating congruence p

Lemma 3.1. Let S be an inverse AG**-groupoid, then | V(a) |= 1 for each
a€Ss.

Proof. Let a € § and z,y € V(a), then

va = 2((ay)a) = (ay)(za) = (az)(ya) = y((ax)a) = ya,
s0
z = (za)r = (ya)z = (za)y = (ya)y = y.
Hence, | V(a)|=1. O

If §is an inverse AG™*-groupoid then unique inverse for a € 5 we denote
with ~!. Notice that ae™' is not necessary idempotent.

Example 3.1. Let § be an A(-groupoid defined by the following Cayley

table:
12 3
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Then S is an inverse AG**-groupoid, e, f € E(S). Elements 1 and 4 are
mutually inverse and 1-4 =4, 4-1 = 1 are not idempotents.

Remark 3.1. We notice that if p is a congruence relation on AG**-groupoid
5, then §/p is an AG™*-groupoid. Also, if S is an inverse AG**-groupoid,
then 5/p is an inverse AG**-groupoid and if (z,y) € p then (z~ 1,9y~ 1) € p
and conversely.

Theorem 3.1. Let S be an inverse AG**-groupoid and E(S) # 0, then the
relation

p=A{(a,b)€ §x 8 a~la=>b"1p}

is an idempotent-separating congruence on S. If on S holds a=1a € E(S) for
all a € S then p is @ mazimum idempotent-separating congruence on S.

Proof. It is clear that u is an equivalence.
If apb, ¢ € § and e € E(S) then

(ac)™ (ac) = (a7 e ) (ac) = (a7 ta)(cLe)
= (b7'b)(c7Te)) = (b7e™H)(be) = (be) ™ (be),

so acpbe. Similarly, capch. Thus p is a congruence.

Let e, f € E(S) and euf then ¢ = ee = ff = f. Hence, p is an
idempotent-separating.

Let a='a € E(S) holds for all a € S. If p is an idempotent-separating
congruence on S, a,b € S and apb then from a='pb~! we have a~lapb=1b.
Since p is idempotent-separating it follows that a™'a = b~'b, whence it
follows that apb and p C . O

4. A congruence pair

Example 4.1. Let S be an AG-groupoid defined by the following Cayley
table:

12345
1121111
2122 22
3112453
4112345
51123534
Then S is an inverse AG**-groupoid, a = a~?! for every a € S and aa™! =

a la.

In this section with S we shall denote the inverse AG**-groupoid in which

aa~! = a~'a holds for every a € §.



Some congruences on an AG**-groupoid 883

Lemma 4.1. Ifa € S then a”la € E(S).
Proof. Let a € § then

(a 'a)(a'a) = a ! ((¢ 'a)a) = e ((aa N )a) = a"a € E(5). O

Hence, E(S) # {.

Definition 4.1. Let K be a subset of S, then: K is fullif E(S)C K; K is
self-conjugate if x=1(Kz) C K for every z € §; K is inverse closed if from
z € K it follows, 27! € K; I is normal if it is full, self-conjugate and inverse
closed.

Let p be a congruence on 5. The restriction py, ., is the trace of p to be
denoted by trp, and the set kerp = {a € S| (3e € E(S5)) ape} is the kernel
of p. :

Lemma 4.2. Let p be a congruence relation on 5, then kerp is a normal
subgroupoid of §.

Proof. If a,b € kerp, then ape, bpf for some e, f € E(S). Now abpe f and
since ef € E(S) we have that ab € kerp. Hence, kerp is a subgroupoid of S.

Clearly, kerp is full.

Let @ € 5, then a(kerp-a!) = {a(ba™!) | b € kerp}. From b € kerp
we have that bpe for some ¢ € E(S) so a(ba')pa(ea™!). Since a(ea™') =
e(aa=') € E(S), then a(ba=") € kerp. Hence, a(kerp:a=!) C kerp and kerp
is a self-conjugate subgroupoid of 5.

If z € kerp, then zpe for some e € E(S) and z7'pe~! = e. Hence,
71 € kerp and kerp is inverse closed.

By above we conclude that kerp is a normal subgroupoid of 5. O

Definition 4.2. Let K be a normal subgroupoid of § and 7 congruence on
semilattice E(S) such that

(5) cac K, eta'la=ac K

for every a € § and e € E(5). Then the pair (K, 7) is a congruence pair for
g

In such a case, we can define a relation p(x -y on S by

(6) ap(k,r)b = alarb™'b, ab7!, ba”' € K.
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Lemma 4.3. For a congruence pair (K, 1) for S, we have
e(ab) € K, era™la = ab e K

for any a,b€ S, e € E(S5),
Proof. Let a,b € S, e € E(S), e(ab) € K and era~'a, then

e(ab) = (ce)(ab) = (be)(ae) = (36~ )b)e)(ae) = ((cb)(bb~))(ae)
(b (eb)b™"))(ae) = (b((b b)e))(ae) = (e((b~"b)e))(ab)
b=1b)e)(ab) = (e(b™ lb))(ab)
(ab)'i(a.b) (a6~ 1) (ab) = ((ab)b™! = ((b7"b)a = (a"a)(b7'b)
b= 1b).

By above and (5) we haveab € K. O

Theorem 4.1. If(K, ) is a congruence pair for S, then p( ;) is the unique
congruence p on S for which kerp = K and trp = 7. Conversely, if p is a
congruence on S, then (kerp,trp) is a congruence pair for S and pyerp trp) =
p.

Proof. Let (K,7) be a congruence pair for S, and let p = p(x ;). Then p is
reflexive since K is full, and it is symmetric since 7 is symmetric. Let apb
and bpe, so that a='arb~lbre™lc and ba~!,be™! € K. Since K is inverse
closed we have (ba=')™' = b~la € K. Since K is a substructure we have

(b7Ya)(be™!) = (b7 1b)(ac™!) € K.
From above and b~'bra~'a, by Lemma 4.3, it follows that ae~! € K. Thus

apc and p is transitive.
Next let apb and ¢ € §. Then

(ac)™"(ac) = (a7 e )(ac) = (a7 a) (e e)
b7'b)(c7le) = (b7 e ) (be) = (be) V) (be).

Also,

(ac)(be)™! = (ae)(b~ ™) = (ab~")(ec™) € K - E(S) C K,
(be)(ac)™" = (be)(a™te ) = (ba™)(ee™l) € K - E(S) C K.

Hence, acpbe. Similarly, capeb. Therefore p is a congruence on §.
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If a € kerp, then ape for some e € E(S). Now, ac~! = a~lare and
ae, ea~! € K whence by (5) it follows that a~' € K. Since K is inverse
closed we have a € K. Conversely, if a € K, then from a = (aa™!)a € K and
a~'ar(a'a)(a"'a) we have apa~'a and @ € K. Consequently, kerp = K;
and obviously trp = 7.

Now let A be a congruence on § such that kerA = K and trA = 7. Assume
first that aAb. Then a='Ab~! so that a='aAb~'b and also ab='Xbb~! =
b=, ba"1Xaa=! = a'a. This shows that a~larb~1b and ab=!, ba~! €
kerA = K, which implies that apb and A C p. Conversely, assume that apb.
Then a='aAb='b and ab~', ba™' € K = kerA. Now there exist e, f € E(5)
such that ab=!Xe,ba=' )\ f whence a~1b)e, b=laAf. From above and ¢~ 'a =
aa™', b=1b = bb~! we have

ab™' = ((aa™")a)b ™' = (b a)(aa™ )AL (bb™),
ba™' = b((a'a)a") = (a Ta)(ba" )AL ID) S .

and since F(S5)is a semilattice it follows that
&) = gh LA = FIE A= BT X=X,
Now

a = (aa™"ar(bb™")a = (ab™')bAeb,
b= (bb~")bA(aa"")b = (ba~")adea

and by (4)

aXeb = e(ea) = (ec)(ea) = (ae)(ee) = (ae)e = ((eb)e)e
= (e€)(eb) = e(eb) = eald.

Hence, p C A. Consequently, p = A which proves uniqueness.

Conversely, let p be a congruence on S. By Lemma 4.2 we have that kerp
is a normal substructure of 5. Fora € 5, e € E(S) let ea € kerp, etrpa=la,
holds then eapf for some f € E(5). Now a = (aa™")apeapf and a € kerp.
Hence, statement (5) holds and (kerp,trp) is a congruence pair for §. From
above it follows that kerp(xe,p trp) = kerp, trp(kerpirp) = trp. Now the
uniqueness just proved implies that pirerp trp) = p. O
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FOR FORMING SYMBOLIC MODELS
OF THE ROBOTIC SYSTEMS

Milos Rackovié and Dusan Surla

ABSTRACT. One of the basic problems in forming mathematical models of
the robotic systems in their symbolic form is the formation of calculation
graph for the analytical expessions of robotic quantities. The first step in
formation of the calculation graph is the splitting of the expression into the
products of the other expressions and the remaining expression. In this
paper the necessary and sufficient conditions for splitting of the analytical
expressions into the set of products of two expressions are found, and the
algorithm for solving this problem is described.

1. Introduction

Significant advancements in the development of mathematical models of
robaotic systems have been made by numeric-symbolic [1] and symbolic [1-3]
methods. An algorithm has been constructed [2,3] to form the mathemat-
ical model of a simple kinematic chain in symbolic form, and the program
environment SYM [4] has been implemented for modelling of the robotic
systems. This algorithm has been modified for complex kinematic chains,
using the programming package Mathematica [5).

In [6], a network model of database has been proposed for generating the
mathematical models of robotic systems in symbolic form. The navigation
through the database allows easy formation of the analytical expressions and
obtaining numerical values for the corresponding robotic quantities.

The analytical expressions, obtained with the aid of the algorithm from
[6] can be simplified by applying trigonometric identities. These expressions

The work was supported by the Ministry for Science and Technology of Serbia, grant
no. 0413 through the Institute of Mathematics, Novi Sad
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are of the following form:

(1) =N &

=1

where each of the addends is of the form:

L
(2) Si=k; - H o

j=1
and where:

Y - is the robotic quantity to be calculated;

ki - is a constant coefficient related to the i-th addend;

z;j -is one of the basic variables of the robotic system model represented
by its name (g, ¢, §,sin g, cos q). For each addend the same sequence
of variables z;, j = 1,..., L is used.

€ij - is the exponent of the j-th variable of the i-th addend. The algo-
rithm for forming the mathematical model ensures that each of the
exponents is a nonnegative integer number.

The main task is to form the calculation graph for the chosen analytical
expressions of the type (1), with the minimum of mathematical operations.
To obtain the maximal reduction in the number of mathematical operations
this paper proposes splitting of the chosen expression in the form:

M
(3) Y = (Yu - Yi)+ Yargs

=1

where Yy, Yip, I = 1,..., M and Yr41 are also the expressions of the type
(1).

The expressions Yiy, Y2, | = 1,...,M have two addends at least and
are determined in a way which maximize the reduction of the number of
mathematical operations. Ypry; represents the remainder of the expression
Y which can not be split into products any more.

This paper gives the necessary and sufficiant conditions for reducing the
expression for Y into that of type (3). The concept of structural matri-
ces which is used in solving this problem, is briefly described in the next
paragraph.

2. Structural matrices

The concept of structural matrices was introduced in [1] to represent
analytical expressions of the robotic quantities.
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Structural matrix S of the expression Y is represented with the vector of

. . i ) :
coefficients Kg = [k{,...,ky] , the vector of variables X¢ = [ﬂ:f,...,zi]T
and the matrix of exsponents:

s S
ELI [':'152 equ
€5 € €5

Eg = 21 32 2L

s S
€N1 N2 ENL

given in the previous paragraph.

In [1], the algebra of structural matrices is introduced, and here is de-
scribed only the multiplication of the structural matrices because this is
important for sloving the assigned problem.

Let us observe the multiplication of two structural matrices which have
the same vestors of variables.

A= (1¥’A7XA1 EA)
B = (A’BsXBsEB)
Xs=Xp

If the exponent matrices E4 i Ep are given with:

A A A B B B
0 e g A U
€ € O € € e €

Ba= 21 22 2L Eg = 21 22 2L

A A A B B B
€n €z - €L B Pp e BE

then their product is the exponent matrix Ec where:

e 0] re)
€1 e](? SR 2
Eo= |1 €2 €31
c e C
€M1 €m2 - EML
and where:
M=Td:4J
c _ A B
€mt = €il + ejf

m=(i—-1)-J+7J
[ = 1,.:b08 = lyualif = Lyl
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Also, if the vectors of coefficients K 4, and K g are given by:

» kB
LA B
Ky= kz +Kp= kz
A K

then, their product is the vector of coefficients K¢ where:

!
i

and where:
M=1-]

k= k- k7

m=(Gi-1)-J+j
i=1u,Li=1,..J.

Thus the structural matrix C' is obtained as a product of the structural
matrices A and B.

G'= (I{C,XC,EC)
Xe=Xa=Xp

In solving our problem we have an opossite situation. The structural
matrix exists and two structural matrices whose product will be the given
matrix, are to be found.

3. Splitting of the structural matrix in the form of products

The problem can be broken in two separate problems. The first is to split
the exponent matrix and the second is to split the vector of coefficients.
Let us observe the equation

(4) E,-Ep = E¢

where F4, Eg i Ec~ are the exsponent matrices defined in the previous
paragraph. The matrix E¢ represent the exsponents of the expression of the
type (1) which we want to write in the form of product of the expressions of
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the same type. The matrices E4 and Ep are the unknowns in this equation.
If the solution of the system exists, then the matrices E4 and Ep which
satisfy the equation will represent the exponent matrix of the expressions
which form the product.

If we write equation (4) as a system we obtain an [-J - L linear equations
with (I + J) - L unknowns. The system is of the form:

A, B_.C
(5) €il + €51 = €my

m=((1—-1)-J+7
b= 1, i T = Dy Fi g = 1 nes

. [l AT [.B B1T & g ik
Let us denote vectors [ef},..,ef}] , [€B,...e]}] and [y <5 €Ein]
(rows of the matrices E4. Ep and Ec) with ef, ef and e$ respectively.

Now, the system can be written in a vector form:

(6) e + ef = el

m=(—-1)-J+7]
1= Ly T59 = 1 oyl

where the addition of the vectors is defined in the usual way.

Let us choose il and 2 so that i1,42 € {1,...,I} and 71 # 42, and j1 and
j2 so that 71,52 € {1,.....J} and j1 # j2. Then, we pick the four following
equations from the system (6):

0 =G
ml =(il-1)-J+ 31
(8) e+ e = e
m2 = (i1 -1)-J + 52
(9) el + ‘f}% = €ma
m3 =(i2-1)-J +jl
(10) e+ €2 = €

m4 = (12-1)-J + 32

By summing equations (7) and (10) we obtain

Ao B oA B c
(11) €t e tentejn=epn ey
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Also, by summing equations (8) and (9) we obtain

(12) eit+eh+es+el =el, +€,
It follows that following condition must be satisfied

; c
(13) R

or in another form
(14) Bt — B = Sns — E

If the condition (13) is not fulfilled it follows that the system (6) has no
solution.

If this procedure is repeated for each combinatin of i1, i2 and j1, j2 on
the basis of transitivity law for equality, the I - J conditions are obtained
which have to be satisfied to provide the solvability of the system (6).

If these conditions are satisfied it can be shown that the system has an
infinite set of solutions in the set RY. For solving the concrete problem where
all the exponents which are found in analytical expressions of the robotic
quantities have nonnegative integer values, we need to find our solutions of
the system (6) in the set (N [J{0})L. The solution which belongs to the set
(N U{0})* we will call the allowed solution. First, we can prove that there
is at least one solution in the set ZL.

Lemma 1. If the conditions (13) are satisfied then exists at least one solu-
tion of the system (6) in the set ZL,

The lemma is proved by derivation of the solution.
Suppose that conditions (13) hold. Then, for €' we take the 0 vector.
From J equations in which ef* participates we have that:

(15) ef =ef
3 = A il
Now for each ef,i # 1 remains J equations from which follows that:
(16) ef ='31C§;1 —ef =...:ef“ —e_(f
my=(—1)-J+j
=2 gl

Let us check the correctness of equation (16). We choose i1 € {2,..,I}. For
12 we take 1, and for j1, 52 we take any combination from the set {1, —
Equation (16) follows from the condition (14) for this combination and tran-
sitivity law for equality.

Thus the solutions which are in the set ZL are found for all el,i=1,..,1T
and ef, J=1,..,J because all €5, m = 1,..., M are from the set ZL.

Now we can prove that exists an allowed solution.
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Theorem 1. If the conditions (13) are satisfied then exists at least one
allowed solution of the system (6).

Suppose that conditions (13) hold. For e we obtain each of the com-
ponents so that ey = min(ef, ..,€G)) for 1 = 1,..., L. The obtained vector
is allowed because all the ¢¢ are allowed. From J equations in which ef
participates we have that:

(17) e =€ —ef
j=1,.00,d

These solutions are also allowed because eg-‘; > efy for § = ly.d and
[=1,.. L. Now for each ¢/',i # 1 remains J equations from which follows
that:

(18) Cf:ﬁ’gl —-f(;"+e‘{1' :...:Etf:“ —€§+ef‘
m;=(G-1)-J+J
b= 2 rngidic

The correctness of equation (18) is proved in an analogous way as equation
(16) from Lemma 1. Now we must prove that all the e for i = 2,...,[ are
alowed.

Suppose that there exists il and [1 for which e,; < 0. Then, choose
the j1 so that equ“ =l = min(eﬂ“...,e?“). Now follows that eﬁ“ =
efm - eﬁl = 0. The vector rﬁ paticipates in another I —1 equations.
From these equations we choose the one in which e} also participates. It
follows that e, = eC.y — efiyy = 0 where ml = (il — 1) J + jl. From
this equation follows that &on = eAA,, and the contradiction is obtained
with the assumption that f‘ﬂ'” < 0 because eff” > 0, for m = 1,...,M and
L=, ooy i,

In an analogous way we can solve the problem of splitting the vector of
coefficients. Let us observe the equation

(19) I\'A-I\"B = K¢
where K 4, K and K¢ are the vectors of coefficients defined in the previous
paragraph.

If we write equation (19) as a system we obtain I-J equations with (I+.J)
unknowns. The system is of the form:
(20) ki kP = S

m=(G—-1)-J+7]
ey P L [ A
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By a procedure analogous to the one for splitting the exponent matrices
we obtain' the following conditions:

7 (@& 0 .C
(21) knﬂ : k?nA - kgﬂ 3 "“m-’)
or in another form

k.C k_C
(22) ml _ ™m?2

O T L@

l"m,i} km_fl

which are analogous to the conditions (13) and (14).
The following theorem can be proved:

Theorem 2. If the conditions 21) are satisfied, then exists at least one
solution of the system (20) in a set of real numbers.

Suppose that conditions (21) hold. For k{' we take the value 1.00. From
J equations in which k{! participates we have that:

o B 1.C
(23) ki = k;
i=1,..,d
Now, for each k#,7 # 1 remains J equations from which follows that:
.C C
(24) pp=tm R,
; = = —=
mi=(t—1)-J+j
1= Qiisand

The correctness of equation (24) is proved in an analogous way as equation
(16) from Lemme 1.

Now, the complete problem can be formulated. Let us observe the equa-
tion

(25) A-B =
where A, B and C' are the structural matrices. The goal is to obtain the
matrices A and B so that equation (25) holds.

Theorem 3. The structural matrices A and B which satisfy the equation
(25) exist if and only if conditions (13) and (21) are fulfilled.

If the conditions (13) and (21) hold, the existence of the matrices A and
B is proved by applying Theoreme 1 and Theoreme 2, and assemblying the
corresponding exponent matrix and vector of coefficients into a structural
matrix. The theorem in the opposite direction obviously follows from the
procedure for obtaining the conditions (13) and (21). In the case when the
conditions (13) are not satisfied the contradiction is obtained in the system
(6), and if the conditions (21) are not satisfied the contradiction is obtained
in the system (20).
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4. The algorithm

When the conditions (13) and (21) are derived two rows from the ma-
trix £4 and Epg, i.e. two elements of the vectors 4 and K g, are chosen.
Also, by choosing four rows from the matrix F., four elements of the vector
K¢ are chosen. This means that these four addends from the expression
described by the exponent matrix E- and the vector of coefficients K¢, are
obtained by multiplying two expressions each containing two addends which
are described by the chosen parts of the matrices F4 and Fp and vectors
K, and Kg. Thus every condition of the type (13) and (21) represent a
72 x 2”7 multiplication.

In the same way equations (16) and (18) describe a "2 x J” multiplication
because the two rows of the matrix F4 and all J rows of matrix Eg are
chosen as well as two elements of the vector K 4 and all J elements of the
vector I{p. Also are chosen the 2 -.J rows of the matrix Fe and the same
number of elements of the vector K. .

The algorithm task is to reduce the starting expression Y to the type (3)
by splitting the structural matrix 5 into the products.

The first step is to obtain all possible 72 x »” multiplications, where n is
determined as large as possible for each multiplication. The description of
this part of the algorithm, written in pseudocode, is given bellow.

for (il=1;11 < N ;1l4+4)
{
for (12=4dl+1;2< N ;24 4)
{
if (NotMem(il,i2))

{

MemPair(il,i2,mu);

s A
§ = €1 — G
i
q= 5

for (i3=1:i3 < N ;i3 ++)
{
for (id=i3+1;i4 <N ;id++)
{

Els — @5 8 Ykr i eaem ks
if (s==1¢;35—¢€5 qg== k—;f:';)
MemPair(i3,i4,mu);
T YO B __ kg
else if (s == €3y — ey && ¢ == %)

3
Mem Pair(i4,i3,mu);

}
}
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}
MemMul(mu);

FreeMul(mu);

}

Function NotMem checks if the given pair is memorised in the knowledge
database. If it is the function returns 0 because of the transitivity law for
equality there is no sense to check the conditions for that pair.

Procedure MemPair memorises the given pair in variable mu which will
contain the complete multiplication.

Procedure MemMul memorises complete multiplication mu in the know-
ledge database.

Procedure FreeMul frees the variable mu for a new multiplication.

After applying this part of the algorithm we have memorised in the knowl-
edge database all possible "2 x n” multiplications over the structural matrix
5. Now, the manipulating over the knowledge database is used to provide
such a selection of multiplications which enable the reducing the starting
expression Y in the type (3) with a minimum of mathematical operations.
Here will be explained only how to produce the "m x n” multiplications
using m — 1 "2 x n” multiplications.

[f m—172xn"” multiplications (or their parts) are found in the knowledge
database having the same first elements of each pair and all different second
elements of the each pair, it is easy to prove that a "m x n” multiplying
is constructed. From the transitivity law for equality follows that all the
conditions for the existing solution of the systems (6) and (20) are satisfied
when I = m and J = n.

6. Conclusion

The algorithms for forming symbolic mathematical models of complex
robotic systems have been developed. With the aim of reducing the number
of mathematical operations, the investigations are directed towards the de-
velopment of the algorithms for symplification of analytical expressions and
the formation of a corresponding calculation graph.

A theorem is proved with the necessary and sufficient conditions for split-
ting the analytical expressions into the products of two expressions. On the
basis of this theorem an algorithm for forming the set of candidates for split-
ting the expressions into products is given. This algorithm is implemented
and tested on an example of the robotic mechanism with six rotational de-
grees of freedom. Of the set of obtained candidates we can choose the ones
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which reduce the number of mathematical operations. On the concrete ex-
ample significant reduction of analytical expressions has been achieved.

Further investigations will be concerned with the development of algo-
rithms for grouping the expression candidates memorised in the knowledge
database which reduce the number of mathematical operations.
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ON HARTE’S THEOREM FOR
REGULAR BOUNDARY ELEMENTS

Vladimir Rakoéevié

ABSTRACT. This paper is a paraphrase and extension on my talk given at the
conference Algebra, Logic and Dicrete Mathematics, Nis, April 14-16, 1995,
and it is inspired by Harte’s theorem (Proc. Amer. Math. Soc. 99(1987),
328-330). In this paper we would like to present some results and problems
connected with Harte’s theorem.

1. Introduction.

Let 5 be a semigroup (ring) with identity. The element a € 5 is ((von
Neumann) regular if a € aSa. That is, there is a solution of the equation
aza = a. These solutions are usually called inner or l-inverses of a, and will
be denoted by a~. If in addition, zaz = z, then we call 2 a reflexive inverse
of a, and denote it by a*. The set of all regular elements in S will be denoted
by S and it obviously includes the invertible group S~! and the idempotents
S* ={a€ S :a® =a}. An element a is unit regular or decomposably regular
provided there is b € S~ such that aba = a ([1], [2]). It is easy to prove
that

(1.0.1) §18* =5*9 1 ={a€ A:ucaf lda}.

When A is a Banach algebra with the identity 1, Harte [14, Theorem 1.1]
(see also [15], [26]) has shown that the decomposably invertible elements are
the intersection of the regular elements with the closure of the invertibles
(for a subset M of A let M and ¢/ M denote, respectively, the boundary
and the closure of M) :

(1.0.2) AT'A* = An e (A7Y).
Supported by Grant 0401C of RFNS through Math. Inst. SANU.
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Let us remark that the left side in the equality (1.0.2) is purely algebraic,
while the right side in (1.0.2) depends on metric properties of A. Hence, the
remarkable characteristics of Harte’s theorem is that it proves the equality of
two different quantities. In this paper we would like to present some results
and problems connected with Harte’s theorem.

2. Harte’s type theorems

In this section A denotes a Banach algebra with identity 1.

Theorem 2.1. Let A be a Banach algebra with identity 1, and S be a mul-
tiplicative semigroup of A, such that A=' C S C A. Then

(2.1.1) SA* = AN cl(§) <> SA® C A,

Proof. 1t is enough to prove <= . Ifa € AN ¢l (5) then there are at € A
and b € 5 such that 14(b—a)at =c € A~1. Hence a+(b—a)ata = ca, i.e.,
a = (c7'b)ata, and a € SA®. To prove ‘C’, suppose that a € SA®. Hence,
a € A, and there are ¢ € § and p € A* such that a = ¢p. Set p, = p—1/n,
n=2.3,...,and a, = cpy,. It is clear that p, € A=, a, € S and @, — a.
Hence a € ¢l(5). O

Corollary 2.2. Let A be a Banach algebra with identity [, and S be a
multiplicative semigroup of A, such that A= ¢ S ¢ A. Then

(2.2.1) A*S = AN cl(S5) = A°S C A.

Proof. By the proof of Theorem 2.1; let us only remark that now if a €
AN cl(S) then there are a* € Aand b € S such that 1+at(b—a)=c € A~L.
Hence a + aat(b— a) = ae,ie., a = aat(bec1), and a € A*S. O

Let A7' (A;!) denotes the semigrop of all left (right) invertible elements
of A. Now we have

Corollary 2.3. Let A be a Banach algebra with identity 1. Then

(2.3.1) ATTA" = An el (ATY),
(2.3.2) AAT = An d(ATY),
(2.3.3) ATTANACAT = AN cd (ATY) Nl (ATY).

Proof. By Theorem 2.1 and Corollary 2.2; let us only remark that Al C
ATTCAATTA* CA AV C AT c A and A®AZTC A, O
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Remark 2.4. Let us remark that

(2.4.1) ATA* c{ae A:acaAfla} C A°A7Y C A,
and
(2.4.2) A*AT  c{ac A:a€aAla} C ATVA® C A,

Only for a special semigroup 5 C /Al, say S is a subgroup of A~!, one can
has

(2.4.3) SA*={a€ A:a€aSa} = A*S C A.

With this observation, we now come to Harte’s theorem [14, Theorem 1.1].

Corollary (Harte’s theorem) 2.5. Let A be a Banach algebra with iden-
tity 1. Then

(2.5.1) AT'A* = An d(A7Y).

Proof. By Theorem 2.1. O

Corollary 2.6. Let A be a Banach algebra with identity 1, a € Aand S
be an open multiplicative semigroup of A, such that A= C § C A and
SA* C A. Then the Jollowing conditions are equivalent:

(i) a €48,

(i) a=sp, seS,pe A and sp ¢ 5.

Proof. By Theorem 2.1. O

Corollary 2.7. Let A be a Banach algebra with identity 1, a € Aand S
be an open multiplicative semigroup of A, such that A1 C § C A and
A*S C A. Then the following conditions are equivalent:

(i) a €4S,

(ii) a=ps, s€ S, pe A andps ¢ 5.

Proof. By Corollary 2.2. [

Corollary 2.8. Let A be a Banach algebra with identity 1, a € A and § be
an open multiplicative semigroup of A, such that A= C § C /T, A*SC A
and A*S C A. Then the Jollowing conditions are equivalent:

(i) a € 68,

(i) a=s1p1 = pasa, s; € 5, pi € A* (1=1,2), syp1 € S and pasa € 5.

Proof. Clear. O
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Corollary 2.9. Let A be a Banach algebra with identity I and a € A. Then
the following conditions are equivalent:

(i) a€ 84",
(i) a = sp, s; € Arl, peA® andp # 1.
Proof. Clear. 0O

Corollary 2.10. Let A be a Banach algebra with identity | and a € A.
Then the following conditions are equivalent:

(i) a € 641,
(i) a = ps, s; € A7, p€e A® and p # 1.
Proof. Clear. 0O

Corollary 2.11. Let A be a Banach algebra with identity | and a € A.
Then the following conditions are equivalent:

(i) e € 6471,
(i) a=s1p1 = pase, s; € A7Y, p; € A* and p; # 1(i = 1,2).
Proof. Clear. 0O -

Recall that the generalised exponential, Exp(A), [15, Theorem 7.11.4]
form the connected component of 1 in A~1;

Exp{A) = {e®e® . ..e® 1 € A i =1, ...k}

[t is well known that Exp(A) is an open subset of A and a closed normal
subgroup of A=1. Also, (see [19, (5.5)]

Exp(A)A®* = {a € A:a € aExp(A)a} = A*Exp(A) C A.
For the proof of the next result see [19, Theorem 6]

Theorem (Harte-Raubenheimer) 2.12. Let A be a Banach algebra with
identity 1. Then

(2.12.1) Ezp(A)A* = AN cl Ezp(A).

Recall that Exp(A) is the unique open subset of A~ which is a connected
subgroup of A~! [21, Theorem 4.4.2]. In addition to Theorem 2.12 we have

Theorem 2.13. Let A be a Banach algebra with identity I, and S be an
open subset of A~! and subgroup of A~1. Then

(2.13.1) SA® = AN cl(S) < A® CclS.

Proof. It is enough to prove the <= . From A® C ¢/ S5 we have SA® C ¢l S.
Now (2.13.1) follows from the proof of Theorem 2.1. O
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Corollary 2.14. Let A be a Banach algebra with identity 1, a € A, S be an
open subset of A~! and subgroup of A1, and A® C ¢l S. Then the following
conditions are equivalent:

(i) a €4S,

(i) @ = s1p1 = p2sa, i € 5, pi € A® and p; £ 1(1=1,2).

Proof. By Theorem 2.13. [

Recall that an element @ in A is hermitian if ||exp(ita)|| = 1 for all real
t [28]. Let us denote the set of all hermitian idempotents in A by A}. In
connection with the Moore-Penrose generalized inverse, Rakocevi¢ [22] (see
also [6], [L7], [18], [23], [25]) has studied the set of elements a in A for which
there exists an = in A satisfying the following conditions:

(2.14.1) ara = d,
(2.14.2) zaw =2,
(2.14.3) ar is hermitian,
(2.14.4) ra is hermitian.

By [22, Lemma 2.1] there is at most one & such that equations (2.14.11),
(2.14.12), (2.14.13) and (2.14.14) hold. The unique z is denoted by al and
colled the Moore-Penrose inverse of a. Let Al denote the set of all elements
in A which have Moore-Penrose inverses. Clearly At ¢ A, and if Ais a
('*-algebra then AT = A [18, Theorem 6].

For the proof of the next two results see [22, Theorem 2.5, Corollary 2.6]

Theorem (Rakoéevié¢) 2.15. Let A be a Banach algebra with identity 1.
Then

(2.15.1) | A”TAS N ALA™ = AT el (A7),
13

Corollary 2.16. Let A be a Banach algebra with identity 1 and a € AT
Then the following conditions are equivalent:

(i) a € 6471,

(ii) a = s1p1 = P2s2, Si € A7, p € A andpi £ 1(1= 1,2):

3. Semigroups in B(X).

Now we shall describe others semigroups which obey condition (2:4.3).
Let X be an infinite-dimensional complex Banach space and denote the set
of bounded (compact) linear operators on X by B(X)(K(X)). The fact that
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K(X) is a closed two-sided ideal in B(X) enables us to define the Calkin
algebra over X as the quotient algebra C(X)=B(X)/K(X). C(X) is itself
a Banach algebra in the quotient algebra norm

(3.0.1) IT + K(X)|| = di T+ K]

We shall use 7 to denote the natural homomorphism of B(X) onto C(X);
(1) =T+ K(X), T € B(X). Throughout this paper N(T') and R(T') will
denote, respectively, the null space and the range space of T. Set o(T) =
dim N(T') and 3(T) = dim X/R(T). An operator T € B(X) is Fredholm if
R(T) is closed, and both a(T) and B(T) are finite. If T € B(X) and R(T)
is closed, it is said that T is semi-Fredholm operator if either a(T) < oo or
B(T) < 00. Set

(3.0.2) P (X)={T € B(X): R(T) is closed and a(T) < oo},

and

(3.0.3) ®_(X)={T € B(X): R(T) is closed and B(T) < co}.

It is clear that ®(X) = &, (X)N®_(X). Let us mention that P(X), Py (X)
and ®_(X) are multiplicative open semigroup in B(X) ([7], [15]) and by
Atkinson’s theorem ([7, Theorem 3.2.8], [15, Theorem 6.4.3]) we have

(3.0.4) o(X)=r"Y(C(X)™).

The index of an operator T € B(X) is defined by i(T) = o(T) — B(T), if at
least one of «(T') and B(T) is finite. It is well known that B(X)""+K(X)C
®(X), and that T € B(X)~! 4+ K(X) if and only if T € ®(X) and i(T) = 0.
Set

(3.0.5) Po(X) ={T € (X):4T) = 0},
(3.0.6) @ (X) =N (C(X)),
(3.0.7) ®.(X)=r"Y(C(X)D).

It is well-known that ©(X), ®,(X) and ®,(X) are open semigroups in
B(X) ([7], [15]). Further, T € &,(X) if and only if T € &, (X )and there
exists a bounded projection of X onto R(T); T € ®,.(X)) if and only if
T € ®_(X)and there exists a bounded projection of X onto N(T) ([6], [7],

[15]). Recall that an operator T is regular, i. e., T' € B(X), if and only if
N(T) and R(T) are closed, complemented subspaces of X ([6], [15], [26]).
Let us mention that Gonzalez [11, Theorem] has proved [14, Theorem 1.1]
for operators. His proof was based on a theorem of Caradus [6, Chapter 5,
Theorem 13] involving two kinds of “gap” between the subspaces (see a good
comment [14, pp. 329], and for further related results see e.g. [3], [4], [5],
(10}, [27]).



On Harte's theorem for regular boundary elements 905
Theorem (Gonzalez) 3.1. Let X be a Banach space, T' € ET’?) and P
is a projection in B(X) with N(P)= N(T). Then the following conditions
are equivalent.
(i) There is a sequence {U,} in B(X)™" with {|U-Y)]} bounded, such
that ||T — U, P|| — 0.
(ii) There is U € B(X)™! such that T = UP.
(iii) T € 6B(X)™".
(iv) N(T) is isomorphic to a complement of R(T).

Theorem 3.2. If X is a Banach space, then

(3.2.1) ®;(X)B(X)* = B(X) N cd(®(X)1),
(3.2.2) B(X)"®,(X) = B(X) N cl (,(X)),

(3.2.3) & (X)B(X)* N B(X)*®,(X) = B(X)N e (@(X)1) N el (®r(X)).

—

Proof. By [6, p. 132, Theorem 2] we have that ®,(X)B(X)* C B(X) and
B(X)® ®,(X) C B(X). Hence the proof followes by Corollary 2.3. [

Corollary 3.3. Let X be a Banach space and A € B(X). “Then the follow-
ing conditions are equivalent:

T e (S(I'l(X),
(332) T=PB, PcB(X)"\&(X) and Be®(X),

Proof. By (3.2.1) and the fact that ®;(X) is an open subset of B(X). O

o —

Corollary 3.4. Let X be a Banach space and A € B(X). Then the follow-
ing conditions are equivalent:

(3.4.1) T € 69,(X),
(342) T=CQ, QeB(X)*\®,(X) and C€d(X),

Proof. By (3.2.2) and the fact that ®,.(X) is an open subset of B(X). O
Let us mention that it has been proved in [24, (3.5)] that

(34.3) {A€B(X): A€ A®(X)A} = B(X)*®(X) = ®(X)B(X)*.

The following three results are from [24].
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Theorem (Rakoécevié¢) 3.5. If X is a Banach space then

——

(3.5.1) B(X)*®(X) = B(X)ncld(X).

—

Corollary 3.6. Let X be a Banach space and A € (X). Then the follow-
ing conditions are equivalent:

(3.6.1) A€EiP(X),
(3.6.2) A=PB, PeB(X)'\®X) and B¢ P(X),
(3.6.3) A=CQ, QeB(X)'\®X) and C € ¢(X),

For any Hilbert space X, let dimy X denote the Hilbert dimension of X
that is the cardinality of an orthonormal basis of X. We set nulgy(7T) =
dimpy N(T') and defy(T) = dimy R(T)* for T € B(X). If X is a separable
Hilbert space, then with connection according to Theorem 3.5 we have

Theorem 3.7. Let X be a separable Hilbert space. Then

(3.7.1) B(X)Ncld(X)
= ®(X)U{T € B(X) : nuly(T) = defy(T) and R(T) closed}.

Theorem 3.8. If X is a Banach space then

———

(3.8.1) B(X)*®(X) = ®o(X)B(X)® = B(X) N el ®(X).

Proof. By [6, p. 132, Theorem 2] we have that ®(X)B(X)* C E(E?) and

B(X)*®¢(X) C B(X). Hence we can apply Theorem 2.1 and Corollary
22, O

Corollary 3.9. Let X be a Banach space and A € E‘(BT) Then the follow-
ing conditions are equivalent:

(3.9.1) A € 60y(X),
(392)  A=PB, PeB(X)'\®(X) and B e o(X),
(3.9.3)  A=CQ, QE€B(X)*'\®(X) and C € &(X),

Proof. By Theorem 3.8, Corollary 2.7 and Corollary 2.9. O
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Remark 3.10. Let X be a Banach space. By Theorem 3.8 we have
(3.10.1) B(X)*®y(X) = ®o(X)B(X)".
From the proof of [24, Theorem 3, (3.3)] we can conclude that
(3.10.2) {Ae B(X): Ae A®o(X)A} C B(X)*®o(X).

Now we have the following question (problem): If X is a Banach space, must
we have

(393)  B(X)"®o(X) = o(X)B(X)" = {A € B(X): A € A®(X)A)?

Recall that by Atkinson’s theorem a bounded linear operator on a Banach
space is Fredholm if and only if it has an invertible coset in the Calkin
algebra. Motivated by this Harte ([12], [13], [15], [16], [19]) has associated
(and has investigated) “I'redholm” elements of a Banach algebra A with
an arbitrary homomorphism 7' : A — B; (A and B are complex Banach
algebras with identity 1 # 0, T is bounded with T(1) = 1). An element
a € A is Fredholm (more precise T-Fredholm) iff T(a) € B~1. The set
of all T-Fredholm elements of A is denoted by ®r(A). Recall that the
homomorphism T : A — B is finitely regular if

T-1(0) C A4,

and an ideal I of A is inessential if the set of accumulation points of the
spectrum of & € I is a subset of {0} for each = € I.

Recently Djordjevi¢ ([8], [9]) has investigated regular and T-Fredholm
elements and, among other things, he has proved

Theorem (Djordjevié¢) 3.11. Suppose that the inessential ideals I;, © =
1,2, of A have the same sets of idempotents, Iy 1s a closed subset of A, and
let P, : A — A/I; be the natural homomorphisms of A onto AlL, 1 =1;2.
Now, if P, is a finitely reqular, then

(3.8.1) A*®p (A) = AN cl (Pp,(A)).

Djordjevié¢ has got Theorem 3.5 as a corollary of Theorem 3.11. ( The
proof is based on the facts that the ideal of finite-rank operators in B(X),

—

F(X), and K(X) have the same sets of idempotents and F(X) C B(X),
and then applying Theorem 3.11 with B(X) in place of A, F'(X) in place of
I; and K(X)in place of I5.).
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4. Partial order and regular boundary elements

Recall that in semigroup § the relation
(4.0.1) e f<se=ef=fe, e fes",

is well-known standard partial ordering relation on the set of idempotents,
if any. Hartwig [20] has introduced the following, so colled plus-relation.

Definition (Hartwig) 4.1. Let § be a semigroup. For a,b e Sseta<hb,
if
(i) a is regular, and

4.1.1
( ) (ii) thereis some a* €S, suchthat ata = atb, aat = bat.

It is well known [20, Theorem 1] that the plus-relation of (4.1.1) defines
a partial-order on S. This partial order is colled plus-partial order, shortly
+-order, and for idempotents the standard order (4.0.1) coincides with the
+-order.

Remark {.2. Let (G, <) be a partially ordered set. By a closed interval in GG
we shall mean any-subset of the form {z € G:a < z < b}, {z € G:z > al,
or {x € G :z < a}, where @ and b are arbitrary elements of (. There are
many known ways of using the order properties of (¢ to define a topology on
G. Recall that a base for the open set in the well-known interval topology of
(& consists of all subsets of the form MC: 1i=1,2,..., n}, where each C; is
the complement of a closed interval. We let Z denote the interval topology
on G. It is natural to set the following question (problem):

If 5 is a semigroup, (S, <) is a partial ordered set with the plus-partial
order and ¢z (51) the closure of S~ in interval topology on 5, must we
have

(4.2.1) 5718% =8N elg (5717

Clearly, instead of interval topology, we can consider other topologies de-
fined by plus-partial order (or other partial order) on S, and set the similar
question to (4.2.1).

If we specialize to the case where § = R is a ring with unity, then we have

Theorem 4.3. Let R be a ring with unity, and LR ={yeR:y<
& for some x € R} be the set of predecessors of R™Y, where < is the
plus-partial order. Then we have

(4.3.1) RT'R*=Rn L(R™Y) = L(R™Y).
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Proof. By [20, Proposition 3, (i), (v)] and (1.0.1). O
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A NONSTANDARD PROOF OF STEINHAUS’S THEOREM

Miodrag Raskovié

ABSTRACT. We give an intuitive and easy proof of the well known Stein-
haus’s theorem by use of nonstandard analysis.

In [5] Hugo Steinhaus proved the following very useful result.

Theorem 1. (Hugo Steinhaus, 1920) Let A be a set with positive Lebesgue
measure M(A) = m > 0. Then, there is an interval [a,b], such that [a,b] C
A— A=Az —ylz,ye A}.

Before we prove the theorem we introduce some notation from nonstan-
dard analysis and prove the lemma. We make use of Loeb measure [1].

We can suppose that A C [0,1]. Let Ty = {O.ﬁ,%,... 1} (for H €
*N\N) be a hyperfinite interval, *P(Ty) a set of hyperfinite subsets of Ty,
p(A) = % (for A € *P(Ty)) counting measure, L(py) Loeb measure,
[a,b]y = {z € Tyla < o < b} (for a,b € Ty) and sty: Ty — [0, 1] standard

part map. Let a *f3 = Iii‘,ijfﬂ, where [@] is a integer part of & € * Rg,.

Lemma. Let A be a set with positive Lebesgue measure A(A) = m > 0. Let

B be a hyperfinite set, B C S'f.;’r](A) and py(B) > %m. Then, there are
a €Ty and n € N such that

1 3
(*) ;L;;(Bﬂ[a,u-l- E]H) >a

Proof. Suppose that there are not a and n such that (+) holds.
The set S = {n € *N|(Va € Tn) (prr (BN [a,a + 117.1}{) < )} is inter-
nal and N C §. By over shpil there is k' € *N\N such that K € 5 and

K e
I~

H

911
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Let B' = {g|B N[5, 5# ), #0}. Then stx(B') C A, B' C st3'(A)

have § g
5 . 1
|B|: E Bn f,_—.l:
K K /,
B[, SHL), #0

S S+1 3 H
< ! e o < 'ﬁ—.
< | B'| max Bﬂ[ﬂ,, = )H Bl

It follows then that

e < < = — = —ql1 £
]Om_,uH(B)_ " 1K 4,LL1\(B)_ 4m

a contradiction O

Proof of the theorem. Let @ and n be as in lemma above. Let [ = [— ;—w 4—17;] -
and C' = Bn [n,,a + :T]H' Then I C C' — C. Otherwise, CN(C +z) =0
for some z € I and & > py(C)+ py(C +2) > . Contradiction. Finally,
stul € sty(C = C) = sty(C)-sty(C)CA-A. O

Now, we shall give an application of Steinhaus’s theorem and method
from [3] and [4].

First, we give the following definitions and theorems.

Definition 1. A function f: R — R is measurable on A C R iff for each
re€ RU{occ} aset {z € R|f(z) <7} N A is a measurable.

Let L(p) be the Loeb measure obtained from counting measure p on

1 1
TK.H = {—I{P,ﬁl( + 'H—, K — E, I\"}

{for k 6 .:’V).
Let [ be a map from [-K,K] into R and let F' be a interval map from
Tk y into K.

Definition 2. The function I is a lifting of the function f if and only if

L(p){z € T ulstu(F(2)) # f(stu(x))} =0
Definition 3. The function F is a uniform lifting of the function f if and
only if sty (F(x)) = f(stg(z)) for each z € Ty y.

The following two theorems are of great importance for example in prob-
ability theory (see [1]).
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Theorem 2. (see [1]) The function [ is Lebesgue measurable if and only if
it has a lifting function F.

Theorem 3. (see [1]) The function f is continuous if and only if it has a
uniform lifting function F.

The proofs of theorems can be found in [1].

Theorem 4. Let fi(z — y) = gi(f1(x), [1(u)s- . "(2), ™ (y),2,9) (i =
1,...,m) be a system of functional equations, such that g;: R*™*? — R (for
i = 1,...,m) are continuous functions. Let A C R be a set of positive
Lebesque measure. Then, if all solutions f' are measurable in A if follows
that its are continuous at zero.

Proof. Let B, n and H be as in proof of the last theorem. Let hi(z) =

{f'((]"") r;if\iA and let H; be a lifting of h; (Theorem 2). Then, using The-

orem 1, we can define an improved lifting function, such that for each
r€ [~ k], CB-B

Tdn dn

Fi(z) = min{"g(H1(y), Hi(2),. ..  Hp(y), Hu(2),y,2)|z = y — 2,2,y € B}.

-

Then, for some yy,20 € B

stF'(z) = st*g:(Hi(y0) Hi(20),- . s Hin(30), Him(20), %0, 20)
= gi(stH1(yo), stH1(z0), ... ystH (o), stHn(20), styo, stzo)
= gi(h1(styo), h1(stz0)y ..y b (Styo ), hn(st20 ), Styo, stzo)
= fi(styo — stzo) = fi(st(yo — 20)) = f'(stx)

(where, we write st instead of styr).
Hence F* is a uni_form lifting function for f* on the interval [—&%,ﬁ]
and by Theorem 3 f* is continuous on the same interval. O
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DECOMPOSITION OF COEQUALITY RELATION
ON THE CARTESIAN PRODUCT OF SETS
WITH APARTNESSES

Daniel Abraham Romano

ABSTRACT. A coequality relation on a set with an apartness is defined by
standard way as a consistent, symmetric and cotransitive relation. The co-
equality relation on the product [T X of sets with apartnesses is called de-
composible if it is determined by its special projections on X; respectively.
This paper contains some theorems about characterization of decomposible
coequality on the Cartesian product [T X; of sets X; with apartnesses which
are generalization of result of the main theorem in a paper by the author.
As application of these theorems, we give the exact description of coideals of
the commutative rings [[/_, X; and [[72, X;.

Introduction

This paper continues the program of [7,8,9,10,12] to develop of coequality
relations from the constructive mathematics ([1],(6],[14],[15]). The author is
introduced the notion of coequality relation on sets with apartnessesin his
papers [7],[8] and describes their basic properties in his papers (8] and [12].
Coequality relations on the Cartesian product of sets with apartnesses plays
a central role in the developments [9] and [11].

At the beginning of the seventies, there appeared a number of papers
dealing with decomposible congruences on the direct product of algebras,
see e.g. papers [3] and [16]. In them it is used the well-known concept of
diagonal operation ([2],[4]). The notion of compatibility of relation and the
operation on the set given in the classical book [5]. If C'is a coequality
relation on the set (X, =,#), and if w is an internal binary operation on X,
then we say ([8],[10],[11]) that they are compatible if and only if

(Vz,2', 9,9 € X)((w(z,y),w(z',y)) € C = (z,2") € CV(y,9) € C.

915
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In this paper we give the necessary and sufficient conditions for decom-
posibility relation on the Cartesian product [];_, X; and [];2, X; which are
generalizations of the main theorem in the paper [13].

A coequality relation €' on a commutative ring (R, =, #, +,-) ([6],[10],[14])
with an apartness is a cocongruence on R ([10]) if it is a coequality relation
compatible with the operations in R and if holds

(Va,2" € R)((z2',0) € C = (z,0) € C A (y,0) € C).
We get, as applications of the main theorems that every cocongruences on the
commutative rings []_; X; and [];-, X; with apartnesses are decomposible.
[f (" is a cocongruence on the commutative ring R, then ([10]) the set § =
{z € R:(z,0) € C}is a coideal ([10],[14],[15]) of the ring R. It is a strongly
extensional subset ([14],[15]) of R such that
—-(HES},J:ES:}—z65’,1:+y€5=>::e.5'vyES,::yES:>a:ES/\yGS.

As the last we give a description of coideals of the commutative rings []\—, X;
and [];2, X; using the coideals of X;.

Results I

Theorem 1. Let C' be a coequality relation on the Cartesian product [}, X,
of sets Xy, (1 = 1,...,n) with apartnesses. Then relations q¢; on X;, (i =
1,...,n), defined by (z;,2') € q; &

(V7 = {Lio..sn} = {iD(((Z1,- -+ vZis e e+ 1 Za)s (Z1y0 ee s 2yt ,E0)) € C)
is a coequality relation on X;,(i = 1,... ,n).
Proof. We give the proof for ¢;. For ¢3,...,¢, the proofs are analogous.
(z1,2]) €q1 & (rz € X32)...(3z, € K W((B1 3000 550 ), (215220000, En)) € C)
=>((r1,zz,..,,:cn),(x'l,xz,...,r"));é((a,a:g,...,zn),(a,xg,...,z"))
& (T1,%2,...,2n) # (¢, 22,...,25) V (2], %2,...,2n) # (a,T2,...,2Zp)
=z FavVr] #a
& (z1,11) # (a,a);
(z1,71) € g1 © (322 € X2)...(3zn € Xu)(((21,---,Zn), (2}, 22,...,22)) € C)
& (Irz € X2)...(3zn € Xn)(((2],22,..-,2Z0), (21,22, ...,2,)) € C)
& (z],71) €Eq1.

(I]‘r;,) €q < (Jz2 € X?)---(axn S Xn)(((flrzhv---371),(1:1’;1"2,---:-‘Trl)) € C’,)
:>((-.rl..rg,...,rn),(x'l,zg,...,;f:n))6C’V((z'l,rg,...,:r:n),(x'i',;rz,...,zn))EC)
@ (r,21) €q V (s, 2)) € qr. a

Using the strongly extensional and embedding bijection

n 2 n
f: (H "\’i') 9 ((II.----I'n)g(yla---,yn)) — ((Ilayl)l""(zn:yrl)) G H-ngv
i=1

f=1

we have the following
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Corollary 1.1. Let C' C (][], X:)" be a coequality relation. Then

n i—1

J(C) C U H )ﬂf X q; X H )&f
i=1 \j=1 j=it+1

P?‘OOf. ((mlyyl)v---a(mn«. yn.]] € f((;) —

(21, s 20), (g1, 90)) € C = (21,2250, 20), (Y12 Y25+ -, Yn)) € C
V((y1,22,-5T0), (11, Y2, 23, ..., x,)) EC V...

V(¥ s Yna15%0), (Y1542, -, Yn)) € C =

(Z1, 1) €@ V(22,92) € 2 V-V (20, Un) € g0 =

(1, 91) (22, 92) -y (200 1) € (@1 X Xo2? x ... X,2)

Jx® x g2 x X3% x -+ % XH?JU---U(X]Z XX X1t X qn) =

" i—1

(@r9)ses(emm)) € U | [T XT xax ] x7]. ©
=oAL =it

Definition 1. A coequality relation (" on the Cartesian product []I, X
is decomposible if and only if

]

7 i—1 n
fe)=U Il X} xax [ x2
=1 \La=1 j=i+1

Theorem 2. Let C' be a cocquality relation on the product [[_, X; of sets
with apartnesses. Then C' is decomposible if and only if C' is compatible with
the diagonal operation d defined by

n T
d: (HX;) 9(.rl,...,:r:")n——r(m},...,:r.:';)eHX,-.
i=1

Proof. (1) Let C' be a decomposible on the Cartesian product [, X;. We
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have

(d(z',2%,...,2"),d(y", 4%, ...,y")) e C

& (21,235 ., 3h), (y},.;%, LUR))EC
~ ('?Jlilyl) (a‘.Zay2) n,ﬂyn )Ef( )

& (Fi=1,..., ”)((Tivyi) € qi)

= (3 = 1o m){((#5,01)s - (2hs 9h)) € £(C))

& (Fi=1,...,.0)((=},25,...,28), (&, 0, ..., 9 ) € ©)
& (F=1,...,0)((«", )EC‘)

(2) Let ' be a coequality relation on H?:l X; compatible with the diagonal
operation d. Let ((a1,b1),...,(an,b,)) be an arbitrary element of

1
LnJ h X2 X qi X H X
i=1 \j=1 Jj=i+1

Then there exists « = 1,...,n such that (a;,b;) € ¢;, i.e there exists i =
l,...,n and there exists z; € Xy,...,%;—1 € X;_1,%iz1 € Xig1,...,%5 €
Xy such that ((z1,...,%i21,8i, Zig1,- -, 20), (B1y0 3 Tic1, 04, Tig1y e e -y )
€ C. Therefore

((ary...,ay),(b1,...,b,)) € C. O

Theorem 3. Let X; be commutative rings with apartnesses and let S be a

coideal of the ring [['—, X;. Then there ezists coideal s S; of X;(i = 1, n)
such that

U H X% Sy x H X;

i=1 \j=1 j=i+1

Proof. Let S be a coideal of the ring [];-, X; . Then there exists cocon-
gruemce C' on [], X; such thet

(z,y) eC &z —yebs.

The cocongruence € is compa.tlble with the diagonal operation d because
the diagonal operation d can be expressed as follows
d(zl,...,z") = (&],... SEL)
= (2},0,24.,0) 4 »++4(0,...,0,a"
_(xl,a:é,..., 21)(1,0,...,0) -« + (2P, 28,...,2™)(0,0,...,1).
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Therefore, if we put (1,0,...,0) =¢',...,(0,...,0,1) = €",
(d&y..-y2™) (o5 - s9")) €C

n n
& (inci,Zy‘ei> eC = v (zie',y'e’) € O)
1=1 i=1
i

= V(@' ¢) € C)(because (Vi =1,. ., n)((€,e) € 0)).

=1

By Theorem 2, the cocongruence C' is decomposible such that

n

fey= Hszq,x H \f2

=1 i=i j=i+1

It is easy to prove that ¢; is a cocongruence on X;, (¢ = 1,...,n). Thus, by
Proposition 2.5 in [10], there exists the coideal S; of X, (i = l,...,n) such
that

(zi,z}) €Eqi < x;—2; € 8.

Now, we have

z€85 & (2,00€C

n i—1
& ((Z1y-+-r2n), (0,...,00) € F(C) = |J | J] X7 x @ x H X?
=1 \ j=1 Jj=i+1

& (3,1 <i<n)((z:,0) € q;) & (3,1 < i < n)(z; €55)

¢>1:€H.X X S; X H

1=i+1

Results I1

Theorem 4. Let C be a coequality relation on the Cartesian product Tie, X
Then the relation q; on X;(i € N), defined by

(z,y) € i & (Fa,be [[72, X;
(a(i) =z Ab(2)=yA (Vk‘ e N— {i})(a(k) = b(k) A (a,b) € C),
is a coequality relation on X;(i € N).

Proof. (1) Let z,y be elements of X; such that (z,y) € g¢; and let u be
an arbitrary element of X;. Then there exist a,b,c € [1i=, Xi such that
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(l(i)—l‘/\b}"‘J/\(Vk‘EN {i})(a(k) = b(k) A (a,b) € C), and (i) =
u A (Vk € N — {i})(c(k) = a(k)). Fr_qm here, we have

(a,b) € C = (a,e) eCV(e,b)eC=>a#eVe#b
=cFuVutys (z,y)# (u,u)

(2) ('r y) € ¢ & (Ja,b € 72, X;)(a(i) = 2 Ab(j) = yA(Vk € N —
{1})(a(k) = b(k)) A (a,b) € C) & (y,2) € g.

(3) Let z,y, z be elements of X; such that (z,z) € ¢;. Then there emsts
a,b,c € H X;j such that a(¢) = z A ¢(i) = z and (Vk € N — {i})(a(k

b(k)) A (a,0) € C and
b(i) = y A (Vk € N — {i})(b(k) = a(k) = (k).
Therefore
(a,¢) € C = (a,b) € CV (be) € C

> (z,y)€qV(y,2)€q. O

Using the strongly extensional and embedding bijection

2
4 (ij) 3 (a,b) — {(a(),b(i)) : i € N} € [] X7,

J=1
we have the following

Corollary 4.1. Let C C ([[;Z, X;)? be a coequality relation. Then

f(C) _U(HX X Gip1 X HX)

i=0 \ j=1 j=i+2

Proof. Let a,b be elements of [[72; X; such that (a,b) € C. If we put

a' € HXJ-(tG {0} UN U{o0}) a® = a,a™ = b,
=1

(Vi€ N)J <t =d'(j)=a(i)At>j = a'(j) = b)),
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we have

(a,b) € C = \/((a*’,a*“) € 1)

=0

= \/((a(2),a(i+ 1) € qiy1)

=0

:>\/ (a,b)EHXfoIHIX H ij_

1=0 F=7 7j=t+2

o0
(a, IJ)EU HYqu,-Hx H XJ?

J=i+2
Therefore

C')CU szxq,ﬂx H x!). o

i=0 \j=1 i=i+2

Definition 2. A coequality relation (' on the Cartesian product Hfi] X;
is decomposible if only if

0o 1 00
:U H'Xf?qu'IX H .XJ?

i=0 "\ =1 j=142

Theorem 5. Let C' C ([[., .-‘i',:)2 be a coequality relation on the Cartesian
product [[i=, X; of sets with aparthnesses. Then C' is decomposible if and
only if C' is compatible with the diagonal operation d on [[;=, X; defined by

00 N o0
d(HX,) 9F'——’{Fn(n)eX'ﬂ:ﬂ‘EN}EHX'.'

i=1
Proof. (1)Let C' be a decomposible relation on the Cartesian product Tl ]X
of sets and let F={{F.,(j)€ X;:j€N}:n€ N}and G = {{Ga(J)
X;:j € N} :n € N} be arbitrary elements of ([];2, X,-)N. Then
(d(F),d(G)) e C
© ({Fu(n) € Xn :n €N} {Gu(n) € Xn:n €N} EC

j=i+2

& {(Fu(n),Gu(n)) € X2 :neN}e f(O)= (H X} x gip1 % H x?)
=0 y =

& (An € N)((Fu(n), Gn(n)) € qn)

= (3n € N)({(Fa(i), Gn(i)) € X} :i € N} € f(C))

L= (HH € N)((Fn;(;va) € G
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(2) Let C' be a coequality relation on H! -1 Xi compatible with the diagonal
operation d and let {(a;,b;) : i € N} be an arbitrary element of

U I:IX X g1 X H

i=0 j=i+2

Then there exists n in N such that (a,,b,) € gy, i.e. there exists n € N and
there exist z,y € Hjix X such that

(z,y) € CAz(n) = anAy(n) = b A(Vk € N—{n})(z(k) = y(k) =z € Xp).
Let we define z,y' € [172, X;(i € N) such that

e =aAy" =bA(Yie N={n})(Vje€ N)(z'(j) = z; = ¥'(j)).

Then, by compatibility of d, we have

(z,9) € C & V((=',y") € C)

F=1
= (2", y") € C(because (Vj € N — {n})-((z7,y’) € C))
& (a,b) € C & {(a(i),b(i)) € X} :ie N} e f(C). O

Theorem 6. Let X;(i € N) be commutative ring with an apartness and
let S be a coideal of the ring []i2 1 Xi. Then there exists the coideal S; of
Xi(i € N) such that

S:G(HX X Sip1 X H X)

=0 =1 —l+2

Proof. Let 5 be a coideal of the ring [T;2, X;. Then there exists the cocon-
gruence C' on []:2, X; such that (z,y) € C & z—y € S. The cocongrunce '
is compatible with the diagonal operation d because the diagonal operation
d can be expressed as follows,if we put e = (0,...,0,1,0,. . JtEN)

d(F)={F.,(n)e X,,:neN}= Z Foe*.

n=1
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Therefore

(d(F),d(G)) € C & iﬂ;e”,icne eC
n=1 n=1

= \/ e, Gre™) € C)

n=1

V (Fu,G) € C).

n=1

By Theorem 5, the cocongruence €' is decomposible such that

f(C)—U H’( X Gig1 X H X3

= j=i+2

It is easy to prove that ¢; is a cocongruence on X;(i € N). Then, by
Proposition 2.5 in [10], there exists the coideal S; of X;(: € N), such that
(z,y) € q; & 2 —y € Si(t € N). Now, we have

a€S e (a,0)eC

& {(a()0) € XP:ie Nt e f(O) = (H X2 g x ] x")
=0 j=1 j=i+2

& (3n e N)((a(n+1),0) € gns1)

& (3n € N)(a(n+ 1) € Su41)

o0 n o0
aEU (HXJ'X.‘)',,_{_]X H Xj). O

n=0 \j=1 j=n+42
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SEMIDIRECT PRODUCTS OF SOME SEMIGROUPS

Blagoje Stamenkovié

ABsTRACT. Regular semidirect products of semigroups have been studied
by G. B. Preston [5], orthodox by T. Saito [6] and E-inversive by F. Cabro
and M. Micoli [3] e.t.c. In the present paper we study semidirect products
belonging to one of the following classes of semigroups: w-regular, semi-
lattices of Archimedean semigroups, Archimedean, left Archimedean, right
Archimedean and other. At the end of the paper we give a new proof of the
Wilkinsons theorem.

Let T and S be semigroups and let 6 : S — EndT be an antimorphism
of § into the endomorphism semigroup of T. For s € 5,1 € T we denote
t(s0) by t*. If t,ty € T, s,s, € 5 then (tt1)® = t°tf and (2°)" = t91°. By
semidirect product of 7' and § with structural mapping f we mean the set
T x § with the following multiplication:

(t,8)(t1,s1) = (], s51), B. H. Neumann, [4].

This product will be denoted by Ty x 5.
By Z* we denote the set of all positive integers. If a,b € S, then a | b
I

if za = b for some & € S'. A semigroup S is m-regular if for every a € §
there exist n € Z*+ such that a™ € a"Sa”. By E(S) we denote the set of all
idempotents of S. A semigroup S is Archimedean (left Archimedean, right
Archimedean) if for all a.b € § there exists n € Z* such that a™ € 5bS
(a" € Sb,a™ € bS). For undefined notions and notations we refer to [1].
Regular semidirect products of semigroups have heen studied by G. B.
Preston [5], orthodox by T. Saito [6] and E-inversive by F. Cabro and
M. Micoli [3] e.t.c. In the present paper we study semidirect products
belonging to one of the following classes of semigroups: w-regular, semi-
lattices of Archimedean semigroups, Archimedean, left Archimedean, right

925



926 B. Stamenkovié

Archimedean and other. At the end of the paper we give a new proof of the
Wilkinsons theorem.

Theorem 1. The following conditions are equivalent on the semigroup U =
T;,- RS

(i) U is a m-regular,
(ii) S is a w-regular, and for allt € T and s € S there exist z eT,ye S
and m € Z* such that:

(1) I s ATTE Sl ARV

(iii) S is a w-regular, and for every s € S there exists yeSandme Zt
such that for e = s™y € E(S) and for every t € T it holds:

(2) e 5T e Tt ST e

and

gm= 1

(3) O e L € U LA C e TN

e

Proof. (i) = (ii) Let U be m-regular. Then for (t,5) € U there exist (2.y) €
U and m € Z* such that:

n—1

(4) @t e Ls™)

?

)s"'y, Smys'm) e (Its N 'ts"‘_

whence it follows (ii).

(ii) = (iii) Let (ii) hold. By (1) it follows (2), since for s € T' there exist
y € 5 and m € Z% such that s™ys™ = s™ and sy = e € E(S). Moreover,
acting on (1) with e = s™y gives

m—1 sfn

(tts-..tsm—l)ez(tts...is )E(T )e(tts‘..tsm—])e,

so (3) holds.

(iii) = (i). Suppose that (iii) hold and let (t,s) € U. Then there exist
y € 5 and m € Z* such that s™ys™ = s™_ Also by (3) there exists uw € T'
such that:

1 gm=—1

(#5770 = e T e (e 45T

and by (2) we obtain

m—1 m—1

(A S L e S
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for some v € T. Let 2 = u¥. Then

m—1 m—=1 m

e e T )Y =
(.. .ts"'_’)f(uy)s (1. ) =
ottt YL T ) =

(st ") =
m—1

e ...

This proves (4) and completes th proof of r-regularity of U. O

Note that for m = 1 the condition (2) becomes t € T't*, and (3) means
that T°¢ is a regular semigroup, so as a consequence we obtain Theorem 6

[5].
Corollary 1. (G. B. Preston [5]) Let U = Ty x S be a semidirect product
of semigroups. Then U is reqular if and only if:
(1) S is regular, and
(ii) for all s in S there exists y € S such that for e = sy € E(5) T¢ s
reqular and for every t in T, t € T't®.

Theorem 2. Let U = Ty x 5 be semidirect product of semigroups. Then
U is a semilattice of Archimedean semigroups if and only if next conditions
holds:

(i) S is a semilattice of Archimedean semigroups and
(ii) (Vb s1 € 5')(Vt t; € T)3u € T)3y,v € S)(3An € Z1)((ss =
ysiv = tts'u, )Y | § [ 1(tt5)(”‘)

Proof. Let U be semilattice of Archimedean semigroups. Then for all (2, s),
(t1,51) € U there exist (x,y),(u,v) € U and n € Z*, such that:

((t,8) (k1 91))" = (2, 9)(t,8)* (4, v).

From this we can obtain (i) and (ii).

Conversely, suppose that conditions (i) and (i) holds. Then by (i) and
Theorem 1 from [2] it follows that for arbitrrary s,s; € S exist y,v € S and
n € Z1 such that

(5) (s81)" = ys’v
From (i1) and (5) we can conclude tat there exists = € T' such that:

(6) b5 (t4)%0 . (1) = w(tu Y = (1t
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Consequently, for all (t,s),(t1,s1) € U there exist (z,y),(u,v) € T and
n € Z* such that

((t,8)(t1,1))" = (i1, 881)"
= (L)) . ()™ (ss)™)
= (m(tts)yu“z,yszv) from (5) and (6)
= (zy)(t,s)*(u,v)

which together with Theorem 1 from [2] implies that U is a semilattice of
Archimedean semigroups. O

Theorem 3. Let U = Ty x § semidirect product of semigroups. Then U is
an Archimedean semigroup if and only if next conditions are fulfield:

(i) S is an Archimedean semigroup, and
(ii) (Vt,t; € T)(Vs,s1 € 9)(3u € T)(Fy,v € )Tk € Z*)(sh = ysv =

k—1 ,s;
(tus)y !. Hi:g tll)'

Proof. Let U be an Archimedean semigroup. Then for all (¢,3),(t1,81) € U
there exist (z,¥),(u,v) € U and k € Z* such that:

(t1,1)* = (2, y)(t, 8)(u, v).

From this immediately follows that conditions (i) and (ii) holds.
Conversely, suppose that conditions (i) and (ii) are fulfield. Then from
(i) we obtain that for all s,s; € § there exist y,v € S and k € ZT such that

(7) Sk = Ysv
1 Ysv,

hence, from (ii), we conclude that for all {,¢; € T there exist z,u € T such
that:

k—1
i m=—1
(8) H 151 = {1t ...tf’ = a{tu®)¥.
s

Consequently, for all (t,s),(t1,s1) € U there exist (z,y),(u,v) € U and
k € Z* such that:

m—1

() = (ot s
= (z(tu®)?, ysv) = (2tYu?,ysv) by(7)and(8)
= (2, y)(t, 8)(u, v),
which means that U/ is an Archimedean semigroup. O

From Theorem 3, putting k = 1, we obtain the next corollary.
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Corollary 2. Semidirect product of semigroups Ug X .5 is a simple semigroup
if and only if next conditions are fulfield:

(i) S is a simple semigroup, and
(i) (Vi,t1 € T)(Vs, € S)3u € T)3y,v € §)(s1 = ysv = (tw*)! |

!
t1).
Theorem 4. Semidirect product of semigroups U = Ty x 5 is left Archime-

dean semigroup if and only if next conditions are fulfield:

(i) S is a left Archimedcan semigroup, and
(i) (V1.1 € T)(¥s,51 € $)(Fu € T)3y,0 € §)(3h € ZH)(s} = ys =

v | 150 65).
!

Proof. By multiplying in [/ we can simply prove that / is a left Archimedean
iffforall t,¢; €T, s,81 Esexistz €U, y€e S and k € Z7T such that:

(9) (t1y81)" = (6,847 s7) = (2t?,ys) = (2,9)(t,9)

holds. Suppose that U/ is a left Archimedean semigroup. Then from (9) we
can obtain that conditions (i) and (ii) holds.
The converse of the theorem can be obtained immediately from (9). O

From Theorem 3, putting k = 1, we obtain next corollary.
Corollary 2. Semidirect product of semigroups Ug X 5 is @ left simple semi-
group if and only if next conditions are fulfield:

(i) S is a left simple semigroup, and
(ii) (Vt,t1 € T)(Vs,81 € 5)(3y € s =ys = V| t).
!

The proof for next result is similar as the proof of Theorem 4.
Theorem 5. Semidirect product of semigroups U = Ty X 5 is a right
Archimedean semigroup if and only if next conditions are Sulfield:

(i) S is a right Archimedean semigroup, and

k-1

(ii) (Vt,t; € T)(Vs,s1 € §)(Jz € T)(3k € Z*)(¢, 87" codyt = )
Corollary 3. Semidirect product of semigroups Ug X 5 is a right simple
semigroup if and only if next conditions are fulfield:

(i) S is a right simple semigroup, and

(ll) (Vt,fq € T)(VS, s1 € )3z € St = xt*):

G. B. Preston in [5] gave the proof for Wilkinson’s theorem, we shall give
here one more proof for this theorem.
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Theorem 6. Semidirect product of semigroups Ug X S is a group if and only
if T and S are groups and S C AutT.

Proof. Let U be group. Then by Corollaries 2 and 3 we obtain that Sis a
group. Let e be the identity element in group $. Then from (ii) of Corollary
2 we obtain:

(10) (Vt,t1 € T)(3z € S)(ty = tz°)
and
(11) (Vt,t] € T)(El:r € S)(tl = :;r.‘te).

Hence, from (9) we conclude that for every u € T there exists z € ¢ such that
u = u'z! whence u' = (ula') = ula! = u. Consequently, ef is an identity
mapping. Now by (10) and (11) we obtain that equations ¢; = b, 1 = @t
have solutions in 7', so T is a group.

Since for every t € T and s €

1 1

t = tt — ts.s" - (ts_l)s_ ,
we conclude that every mapping s6 has it’s inverse mapping s~16, so S0 C
AutT.

Conversely, let § and T be groups and let e be identity in 5, f identity
in T'. By streightforward verification we obtain that (f,e) is an identity of
semigroupT’ and that every (¢,s) € U has it’s inverse element (1,8 =
(t7',s71), s0 U is a group. O
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DETERMINANTAL REPRSENTATION
OF GENERALIZED INVERSES
OVER INTEGRAL DOMAINS

Predrag Stanimirovié and Miomir Stankovié

ABSTRACT. In this paper we introduce a general form of determinantal repre-
sentation of generalized inverses, for matrices which admit rank factorizations
over an integral domain. We investage necessary and sufficient conditions for
existence of generalized inverses. Finally, we examine correlations between
the minors of generalized inverses and minors of the source matrix.

1. Introduction and preliminaries

We consider an integral domain I with an involution A : @ — @. For an
m x n matrix Alet @ = {a,...,a,} and § = {f,..., 0.} be the subsets of
{1,...,m} and {1,... ,n}, respectively. Then A (;: ;:) = | A7 | denotes
the minor of A determined by the rows indexed by « and the columns indexed
by 8. If @ = {1,...,m}, then |Af| can be simply denoted | Ag|, and
similarly if # = {1,...,n}, then | A§| can be denoted by [ A% |. Also, the
algebraic complement of | A} | is defined by

a ] eer Ap_q 1 X i Ol + O] oo Op—] Qpgp] «oo Oy
Hiie | A% | = Ay (1311 . Bacs i Berr o ﬁr) =(=1)P"74 (m o Byt Byt1 ﬁr)-

The r-th compound matrix C(A) of A is a matrix of order (”) x (7')
defined on the following way. The rows of C(A) are indexed by the 7-
element subsets of {1,...,m}; the columns are indexed by the r-element
subsets of {1,...,n}, and the (a, ) entry of C(A) is defined as | A3 |.

931
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For A € C™*™ consider the following Penrose [13] equations in X (where
A* = (A)T):
(1) AXA=A4 (2) XAX=X (3) (AX)*=AX (4) (XA)*=XA.
If m =n we add
(5) AX =XA.
For a subset § of {1,2,3,4,5} the set of matrices (+ obeying the conditions

represented in § will be denoted by A{S}. A matrix G € A{S} is called an
S-inverse of A and is denoted by A(S),

The starting point of the investigations of this paper is the determinantal
representation of generalized inverses of complex matrices [1, 4, 7, 15, 16].
Also, we use the determinantal representation of the Moore- Penrose inverse,
the weighted Moore-Penrose inverse and the group inverse over integral do-
main ([2], [11] and [12]). Let us recall

Theorem 1.1. [2] Let A be an m x n matriz of rank r over I, and let
A = P(Q) be a rank factorization of A. Then the following conditions are
equivalent;

(i) A has a Moore-Penrose inverse.
(ii) P*P and QQ* are invertible over 1.
(iii) C'(A) has a Moore-Penrose inverse.
. — . . . .
(iv) E;J Agl - | A3 | is invertible in I, where a, B run over r-element
cx,

subsets of {1, ... ,m} and {1,... ,n} respectively.

Furthermore, the Moore-Penrose inverse G = (g;;), if it exists is given by

G = At = Q*(QQ*)"Y(P*P)"1 P* and

H 0
géj:(EIZgllAﬂ) oy IZ;|F|AS|-
¥,8 arj€a; BHER ajy

Similar results are obtained for the weighted Moore-Penrose inverse A;r” N

[12], which satisfies equations (1), (2) and
(6) (MAX)*= MAX (1) (NXA)*=NXA.

Theorem 1.2. [12] Let A be an m x n matriz of rank r over I, and let
A = PQ be a rank factorization of A. Then the following conditions are
equivalent:

(i) A has a weighted Moore-Penrose inverse with respect to M and N .
(ii) P*MP and QN ~'Q* are invertible over L.
(iii) C'(A) has a weighted Moore-Penrose inverse with respect to C',(M)
and C'.(N).



Determinantal reprsentation of generalized inverses ... 933
(iv) S (NTTA*M)E || A% = ¥ |[(MAN-1)5 || A | is invertible in L.
a,f3 ﬂiﬁ

Determinantal representation of the group inverse over an integral domain
I is introduced in [11]:

Theorem 1.3. [11] Let A be an m x n matriz of rank v over I, and let
A = PQ be a rank factorization of A. Then the following conditions are
equivalent:

(i) A has a group inverse.
(ii) C'(A) has a group inverse.
(iii) 3| AY| is invertible in 1.
v
Furthermore, the group inverse (¢ = (gij), if it exists, is given by

-2

0
91‘:':(2]/13’;0' > HAT)EIE)%IAEI-

arj€a; B1iepd

The main results of this paper are:

(1) Generalization of the algebraic complement and determinant, and ob-
tain general form of the determinantal representation for different classes
of generalized inverses: the Moore-Penrose inverse, the weighted Moore-
Penrose inverse, the group inverse and the left(right) inverses. In this way,
we generalize the results obtained in [16].

(2) Necessary and sufficient conditions for existence of the general de-
terminantal representation, and partially, existence of the Moore-Penrose
inverse, the weighted Moore- Penrose inverse and the group inverse.

(3) Correlations between the minors of diferent classes of generalized in-
verses and minors of the given matrix.

2. Determinantal representations of generalized inverses

First we generalize the concepts of determinant and algebraic complement
(see [1, 2, 4,7,8, 11, 12, 15, 16, 17]).

Definition 2.1. The generalized determinant of an m x n matrix A of rank
7, denoted by N(g )(A), is defined by

(2.1) Nin(4) = X | Rp| 1451,
where R is an m x n matrix satisfying condition
(2.2) rank(AR*) = rank(R*A) = rank(A).

Note that (2.2) is satisfied if and only if rank(R) > rank(A) = r.
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Definition 2.2. Let A, R be m x n matrices over I and let R satisfies (2.2).
The generalized algebraic complement of A corresponding to a;;j is defined
by

9 (1,R)
(28] Al R IA [«
" GJEaﬁtEﬁl ﬂ| da ¢

In a similar way can be generalized the notion of adjoint matriz.

Definition 2.3. Matrix whose elements are equal to AE;{’R) we denote by

adj"(A), and we write it as the generalized adjoint matrix of A, corre-
sponding to R.

Finally, in the following definition we introduce the general determinantal
representation of generalized inverses over an integral domain.

Definition 2.4. Let given an m X n matrix A of rank 7 over I and m x n ma-
trix R which satisfies condition (2.2). General determinantal representation
of generalized inverses of A is defined by

(2.4) AR = (Ngy(A) 7 adi(B R (A),

For two full-rank matrices A and R we have:

Lemma 2.1. If A is an m X n matriz of full-rank and matriz R has the
same dimensions and rank, then:

. |AR*|, r=m

(1) Nern(4) = { | R*4), r=mn.

(i) AR = { (A AR )y *=m
(adj(R*A)R*);;, T=n.

R*(AR*)™, r=m

A(T'R) -
(i) { (R*A)"'R*, r=n.

Proof. (i) Follows from the Cauchy-Binet Theorem.

(ii) The relation (A*adj(AA®)); = Z |A,@|—d—1Ag| is obtained in

g:i€
[1], [6]. The result (i7) can be obtained in a sumlm way, substituting the
matrix A* by the matrix R*.

(7i¢) It is implied by (i) and (ii). O

Now we investage main properties of the generalized adjoint matriz, ge-
neralized algebraic complement and generalized determinant.
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Lemma 2.2. Let A = PQ be a full-rank factorization of an m X n matriz
A of rank v, Ry be an r x n matriz of rank v and Ry be an m X r matriz of
rank r. Generalized adjoim matriz satisﬁcs the foHowing:

Proof. For 1 < i< mn, 1 <7 < m we obtain the followmg representation for
(i,7)-th element of the matrix product adj (hR1)(Q) - adj(hH2) (P):

(adj(f.nl)(Q ) - adj(T+Fa)( ) ZQTRI PR =

:ZZHRllfil |Q.!5 Z|(Rz“| |P°'|—
k=1 piiep ajEa
a:jEasfi: :‘eﬁ
Usmg the Cauchy-Binet formula we get
- 0 D{ d a3
5 oo P75 1@l = 5o 1451,
1 7k @i

which implies

(adj”'Rl)(Q) adj(-f )(p))“ = (adJ(TH Hl}(A))l__ O

J

Similarly, the following lemma can be proved:

Lemma 2.3. If A = PQ is a full-rank factorization of an m x n matriz A of
rank v, Ry and Ry are malrices of apropriate sizes, and satisfy rank(QR1) =
rank(Ry P) = r, then the generalized determinant satisfies

N, (@) Niry 1) (P) = NeryRy ) (A)-
Proof. From Lemma 2.1 and the Cauchy-Binet theorem we obtain:
Ny ) (Q) - Nr,(P) = |QRT |- | B3 P| =
= Z|(ﬁ?)g||c9a|-2n“f?z)“||fml —

—Z' (R Rl)ﬁHA I_N(Rle T)(A) L

a3
From Lemma 2.2 and Lemma 2.3 we have.

Corollary 2.1. If A = PQ is a full-rank factorization of an m X n matr iz
A of rank v, Ry and Ry satisfy conditions from Lemma 2.2 and Lemma 2.3,
then the genemlzzed determinantal representation satisfies
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Q(T!Rl) . P(TIRZ) — A(T1R2Rl)‘

The following theorem showes the properties of determinantal represen-
tation of generalized inverses.

Theorem 2.1. Let A, R be m X n matrices of rank v and A = PQ be a

Jull-rank factorization of A. Then:
(i) At = Q(T,Q)P(T.P) - A(f.A);

(ii) Al n = Q(T,Qf\.’_l)p(f-MP) = ALMANTY).

(iii) A# = QhQ7) p(t.P7) _ A(T,A*);

(iv) A~ = ALR) Jor arbitrary regular R and regular A;

(v) AR represents the left(right) inverses, for a full-rank matriz A.

Proof. (i) Follows from A" = QtPt and Lemma 2.1.

(ii) It is implied by AL’N = (QNH*QQN)* )" ((MP)*P)~ (M P)*
[12], [17] and Lemma 2.1. Furthermore, from Defifiition 2.4, we obtain the
following determinantal representation for AL'N, (see [17]) and [12, Theorem
8]:

-1

_ e — 0
(4he),, = (zwm—wzw;n) X | (AN | 55 a5
ij .5 «,pB aji
(iii) Follows from Theorem 1.3 and
—~3
Afy ATC! a Aﬂ' —
SIS ngshag-
~ aij€a; €S
-1
ay 0O o
ol DIUCRHIEHY B S (U H v
¥,6 aijEa; BieS I

{v) For example, suppose 7 = m. Using the Laplace’s development for
the square minors Az we get

P
Yo )= S [ 510 |-
8 k=1 Ik

n - a - .
:Za,—, Z Rﬁ%__["qﬁl :ZGHALB’ ).
: =1

i=1 B,legd

For p # ¢, 1 < p,q < m, substituting in the minors of A, the ¢-th row
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by the p-th row, and using N(g,)(A Z RpAs = 0, in the same way

i
we prove Y. a,,,AEf'm) = 0. Hence, ¢;; = 6;jN(r,m)(A), and consequently
=1
A- AR = [ for arbitrary R. This means that AHR) represents the class
of right inverses of the full-rank matrix A in the case r =m < n.

On the other hand, it can be proved that A(h#) represents the class of left
inverses of A, in the case r =n <m. 0O

In the following theorem we examine existence of the general determinan-
tal representation.

Theorem 2.2. Let A, R be m x n matrices of rank v over I, A = PQ be
a full-rank factorization of A and R = ST be a full-rank factorization of R.
Then the following conditions are equivalent:
(i) ALR) exists.
(ii) QT* and S*P are invertible matrices in L.
(iii) Ner,n(@Q) and Ns.)(P) arc invertible in 1.
(iv) N(rr)(A) is invertible in L

Proof. (1)=(ii): If ALHT) exists, from ('orollaly 2.1 and Lemma 2.1, we get
A(T,R) = AHST) — (J(TTF . phS) = T*(QT™) (, P)~ Lg*
From AA(THR) A = A follows
QT*(QT*)~\(§*P)~'1S*P = I,
which implies (ii).
(ii)=(i): If @S* and TP are invertible, from Lemma 2.1 and Corollary
2.1, we conclude
T*(QT*)"(.S"P)‘].S'* =QtT.p ptS) = A(1ST) = A(1LR)

(i) (iii) A square matrix over a ring I is invertible if and only if its
determinant is invertible in I [9], [10]. Hence, QT* and S*P are invertible
matrices if and only if |Q7| and |$*P| are invertible in L. Finally, from
Lemma 2.1 we obtain

QT™| = Nirr)(Q), |§*P| = N(s,n(P)-
(iii)<>(iv) An application of Lemma 2.3 implies
Ner.oy(Q) - Nism(P) = Nistiry(A) = Nrry (A).

Therefore, N(g,»(A) is invertible if and only if both N(s ) (P) and N7 (Q)
are invertible. 0O
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Corollary 2.2. Let A be an m x n matriz of rank v, and A = PQ be its
Jull-rank factorization. The following conditions are equivalent:
(i) Al ezists.
(i) QQ* and P*P are invertible matrices in 1.
(iii) Ng.)(Q) and N(p(P) are invertible in I.
(iv) Nia,n(A) is invertible in .

Corollary 2.3. For an m x n matriz A of rank r the following conditions
are equivalent:
(i) AL‘,N ezists.
(ii) P*MP and QN~1Q*P are invertible matrices in I.
(i) Nign-1,(Q) and Nipam,ry(P) are invertible in L.
iv) Nppan-1,)(A) is invertible in 1.

Corollary 2.4. Let A be a square matriz of order n, rank r and rank(Q P)=
r. Then the following conditions are equivalent:

(i) A#* exists.

(ii) QP is invertible matriz in L.

(iii) Nip-)(Q) and Nig- +)(P) are invertible in .

(iv) Nia-r)(A) is invertible in 1.

(v) 22| AY| is invertible in L.

i

Proof. Note that (iv) < (v) follows from
-2
-1
(Neasny(A))™ = (Z | A3 I) . O
¥

In the following part of this section we represent minors of generalized
of A, in terms of minors of A and arbitrary matrix R, which satisfies the
condition (2.2).

Theorem 2.3. Let A, R be matrices of type m x n whose rank is r and let

A = PQ be a full-rank factorization of A. Then for all o, 8 we have
-1

SIAN®RG 1@l =

~¥,6
(Nrany(A) T B 1-

Proof. In ([2], Theorem 3.) is proved the following relation for the reflexive
generalized inverses G = (g;;) of A:

At R)a
- | (AttR)g)

[
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gij = Z|fo§ IA

The proof can be completed using that A”'R) is a reflexive generalized inverse
and
— a
(A(T'R))ij: Z|Ag||(ﬂ)§| ’ Z ) I(R)§|()T|A%| a
¥,6 o, jEx 5,1€H It
In particular, the last theorem and Theorem 2.1 imply:

Corollary 2.5. Let A, R be malrices of type m x n and rank r over I. Then
for all v, B3 is valid:

-2
| A#q| = | AB| = (Na=y(A) 7 [(AT)S 5
Y
-1
Tel= Z|-’43HE2| |'_4"n|:(N(A.r)(A)) | Ag |5
5,6
-1
(AL )3 = | Do I1AJII(MAN-T)] || |(MAN-T)3|=

= (N(nfmw—l,r)(A))_l | (MAN_]JC; |-

Proof. If m = n, and R = A*, in (2.5) we obtain G = A#. Similarly, for
R = A we obtain G = A!, and G = AI\/{.N is induced by R = MAN~'. O

Note that correlations between minors of A and corresponding minors of
the Moore-Penrose and group inverse are proved (in another way) in [2] and
[11], respectively.
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SEML-FREDHOLM ELEMENTS IN BANACH ALGEBRAS

Nebojsa Stojkovié

ABsTRACT. In this paper we define the set of semi-Fredholm elements in a
semisimple Banach algebra and we prove that the perturbation class of this
set is a closed twosided ideal of this algebra.

1. Introduction

Let X be Banach space and let B(X) be Banach space of all bounded
linear transformations of X into X. For T € B(X) we let N(T') denote the
kernel of T, N(T) = {z € X|T(z) = 0} and we let R(T") denote the range
of T, R(T) = {y € X|T(z) =y forsome z € X}. U T € B(X) and R(T) is
closed, we say that T is a semi-Fredholm operator if either dim(N(T)) < o0
or dim(X/R(T)) < oo. We have two classes of semi-Fredholm operators,

¢, (X)={T € X|R(T)is closed and dimN(T’) < >} and

®_(X)={T € B(X)|R(T) is closed and dimX/R(T) < co}.

We also set #(X) = @,(X) N &_(X) and call this set of Fredholm
operators on X. It is known that T € B(X) is Fredholm if and only if
7(T) is invertible in the Calkin algebra C(X)(C(X) = B(X)/K(X) where
K(X) is set of compact operators and 7 denote the natural homomor-
phism of B(X) onto C(X),n(T) = T + K(X). Index of T is defined by
i(T) = dim(N(T)) — dim(X/R(T)). Set of finite dimensional operators is
denoted by F(X) and let (/j(A)(G-(A)) be set left (right) invertible ele-
ments of algebra A.

If A is a semisimple Banach algebra, z is defined to be a Fredholm element
of A if there exists a y € A such that zy—1,yz—1 € soc(A). Set of Fredholm
elements is denoted by @(A).

941
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2. Preliminaries

Let X be Banach space and let T € B(X). Next two theorems are proved
by Yood in [8]:

Theorem 2.1. T € ¢,(X) and i(T) < 0 if and only if there exists Ty €
B(X)and K € K(X)(K € F(X)) such that T = Ty+ K where To ts bounded
below.

Theorem 2.2. T € ¢_(X) and i(T) > 0 if and only if there exists T, €
B(X) and K € K(X)(K € F(X)) such that T = To+ K and R(Tp) = X.

By [2, Theorem 57.19] T € B(X) is bounded below if and only if 7" is not
left topological divisor of zero and operator ' € B(X) is onto if and only
if T is not right topological divisor of zero [2, Corollary 57.17]. Let A be a
semisimple Banach algebra and let H; and H, be a sets defined by

H; = {z € Alz is not left topological divisor of zero s

H, = {z € Alz is not right topological divisor of zero }.

Sets H; and H, are open semigroups [5, p.21].
In [6] Rowell defined set of left-Fredholm elements

®,(A) = {z € A|Fy € A such that yz — 1 € soc(A)},

&0 = {2 € &)(A)]ind(x) < 0},

and proved [6, Theorem 5.3] that a € @FO(A) if and only if there exists

u € soc(A) and a € Gi(A) such that z = a + u.

3. Results

In this paper we define sets
P (A) = {z € A]3a € H 3k € soc(A) such that z = a + k},

?T(A)={x € A|Fa e H,.3k € soc(A) such that 2 = a + k}.

Remark. 1f we put A = B(H), H is Hilbert space, then 9. (A) = 95[50 be-
cause 1" is not left topological divisor of zero if and only if 7' is left invertible
in B(H) [2, Theorem 57.19].

In general case is Gi(A) C H; and G.(A) C H, [5, p.20]. From this fact
we get #7°(A) C 87 (A). If X is Banach space then &,(X) C &, (X).
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Definition 3.1. Let A be semisimple Banach Algebra. We defined sets of
semi-Fredholm elements @, and ¢_ in A hy

G, (A) =D (A)UD(A) and _(A) = PT(A) U B(A).

Lemma 3.2. (1) If z,y € ?(A) then zy € ¢ (A).
(2) If z € @ (A) and k € soc(A) then x + k € P (A).
(3) Ifx € 2 (A) and A € C, A # 0, then Az € L (A).

Proof. (1) Let ¢ = ay + ky and y = ay 4+ ky such that ay,a; € H; and
ky,ky € soc(A). Then we have

xy = (a1 + k1)(az + k2) = aras + kray + arky + kiks = ayaz + K,

where we put kyas+aika+k ks = k € soc(A). From fact that H; is semigroup
we have aja; € H; and from this zy € @ (A).
(2) and (3) is obvious. [J

Let Min(A) be a set of minimal idempotents of A and let e be a fixed
minimal idempotent of A. We shall write Z to denote left regular represen-
tation of Banach algebra A on the Banach space Ae, that is Z(y) = zy for
y € Ae.

Theorem 3.3. Ifz € O (A) then T is semi-Fredholm operator on Ae and
i(z) <0.

Proof. Let x € &7 (A). Then there exist « € H; and k € soc(A) such that
r = a+ k. Let ye € Ae be arbitrary element. Then we have

Z(ye) = zye = (a + k)ye = aye + kye = a(ye) + z(yc) = (@ + k)ye.

From this we get 7 = a + J: and k is compact on Ae because dim(k) < oo.
As @ is not left topological divisor of zero [2, Theorem 57.4], we get from
Theorem 2.1 that 7 is semi-Fredholm operator on Ae and #(z) <0. O

If y € ®(A) then 7 is Fredholm operator on Ae [1, Theorem F.2.6]. From
this fact and Theorem 3.3 we have that if z € &4 (A) then Z is semi-Fredholm
operator on Ae. From [1, Example F.4.2] and fact that algebra AJK(X)is
commutative because it is generated by T + K (X ) we get that the converse
of Theorem 3.3 is false.
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Lemma 3.4. Set ® (A) is open.

Proof. 1t is known that H; is open. Let z € @ (A). Then there exist a € H,
and k € soc(A) such that 2 = a + k, and there exists ¢ > 0 such that for
u€ A, |lul| < €implies @ — u € Hy. Let y € A and let ||z — y|| < ¢. Then we
have

y=z—(z-y)=a—(z-y)+k,
and a — (z — y) € H;. That means that y € #7(4). O

Let .5 be a subset of Banach space A. Perturbation class of set S is
P(S)={a€ Ala+ s € S for all s€ S5}.

Next two lemmas are valid with assumption AS C S for every X # 0.

Lemma 3.5. [3, Lemma 5.5.3] P(S) is lincar subspace of A. If S is open
subset of A, then P(S) is closed.

Lemma 3.6. [3, Lemma 5.5.5] Let A be a Banach algebra with unit and let
G be a group invertible elements in A. If GS C S, then P(S) is a left ideal;
if SG C S, then P(S) is a right ideal.

Theorem 3.7. P(®(A)) is a closed two sided ideal of A.

Proof. In Lemma 3.4 is shown that 7 (A) is a open set and from Lemma
3.5 it follows that P(®1(A)) is a closed set.
Let be (G(A)and x =a+ k,a € H,k € soc(A). Then we have

bx = ba + bk = ba + kq,

where we put bk = ky € soc(A). Suppose that ba ¢ H;. Then there exists
a sequence {y,}5>; in A such that bay, — 0,n — oco. But in this case
b='bay,, = ay, — 0,

n — oo, which is impossible. Thus ba € H;. From this it follows that
bx € d(A), so we have

(1) G(A)DL(A) C DL (A).
From the other side
xb = ab+ kb = ab+ ky,

where ky € soc(A) and ab € H;. (If ab ¢ H, then there exists sequence
{z,}5%, such that abz, = a(bz,) — 0,n — oo and a ¢ H; what is contra-
diction.) It follows that

(2) B (A)G(A) C B (A).
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From (1),(2) and Lemma 3.6 it follows that P(®7(A)) is two sided ideal
of A. O

Let now suppose that A and B are Banach algebras with identity 1 and
T : A — B is a homomorphism of Banach algebras. Suppose that T is
bounded and T(1) = 1. In [4] Harte defined ¢ € A as Fredholm element with
respect to T'if and only if T'(a) € G(B). Analogously we define left and right
Fredholm elements with respect to T as

®,(A) = {a € A|T(a) € Gi(B)},

®,.(A) = {a € A|T(a) € G.(B)}.
Next Lemma follows immediately:

Lemma 3.8. (1) If z,y € ¢/(A) then zy € &(A).
(2) If zy € ®(A) then y € &1(A).
(3) If x € ®(A) and w € N(T) then x + u € ¢,(A).
(4) If v € ®)(A) and X € C, X # 0 then Az € $1(A).
(5) ®,(A) is open set.

Theorem 3.9. P(®(A)) is a elosed two sided ideal of A.

Proof. ®(A) is open set, so P(®/(A)) is closed set of A.
Let z € G(A),y € #,(A) and let b € B be a left inverse for T(y). Now we
have

bT(z~ )T (zy) = bT'(z7")T(2)T(y) = bT(y) = 1,

so zy € ¢1(A) and G(A)P(A) C Di(A).
Similarly ®(A)G(A) C #;(A), and by Lemma 3.6 it follows that P(®;(A))
is a two sided ideal of A. [
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ON THE ANTIINVERSE AND COREGULAR SEMIGROUPS
AND SOME THEIR APPLICATIONS

Kalco Todorov

ABSTRACT. In the present survey are considered some basic results, con-
serning the two — sided identical semigroups, their subclasses of antiinverse
and coregular semigroups, as well as some application of this investigations
towards problem of the Hadamard matrices.

1. Introduction and preliminaries

An element a of a semigroup 5 we call two - sided identical if there exists
an element b € S (which we call neutral to a) such that

(1) a = bab
A semigroup S we call two — sided identical if every element of S is two-sided
identical.

For elements a and b of a semigroup S, we say that they are muiually
antiinverse if the following conditions hold

(2) aba =b and bab=a.
A semigroup S is antiinverse if for every a € § there exists its antiinverse
element b € §.

An element a of a semigroup § we call coregular and b € 5 its coinverse,
if
(3) a = aba = bab.

A semigroup S we call coregular, if every element of 5 is coregular.

947
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[t is evident that every coregular semigroup is two — sided identical. More-
over, every coregular semigroup is simultaneously regular and antiinverse,
but the converse is not true.

The first systematic investigation of the above shown classes semigroups
are the ones of the antiinverse semigroups and are included in a sequence
of papers of S. Bogdanovi¢ and other as well as in the paper [21] of Sharp.
Almost simultaneously with the investigations of antiinverse semigroups have
appeared also the ones of the coregular semigroups (see Bijev, Todorov [2]).

Somewhat later have been introduced and investigated by the author the
two — sided identical semigroups (see K. Todorov [22]).

The class of the two — sided identical semigroups is a quite large class of
semigroups. To it belong all the semigroups, possesing two — sided identity
element (in particular the groups). A lot of examples indicate however the
presence of two — sided identical semigroups without two — sided identity
element. To the class of two — sided identical semigroups belong some of the
regular semigroups — such as for example any antiinverse semigroup. This
two classes does not cover each other, as shown in the coming two examples.

A more complete idea about semigroups, belonging to the intersection of
the classes of two — sided identical, regular and coregular semigroups can be
obtain from the paper [3] by Bijev, Todorov , where has been delivered a
complete classification of the abstract semigroups, included in the symmetric
semigroup T3 of degree 3, whereby for each one of them is remarked, whether
it is reguilar, two — sided identical or coregular.

From the results known for the two — sided identical semigroups I'll cite
the following statements.

Theorem 1. Let E(S) be the set of the idempotents of the semigroup S, let
N(+) be the additive semigroup of natural numbers and let for the elements
a, be S, e € E(S) and m € N(+) we have

(4) a=bab and b =e.

Then
a) a* = (ab*)? = (b'a)?, i =1,2,...,m;
b) a?* = bPalkhm—p; g2k-1 = ppgdk-1pp. p =192 ..m, k=1,2,....
c) Any element of the semigroup < a,b > can be represented as the type
a'b?!, where i =0,1,...; 7=0,1,...m—1 and i +37>0.

Both the antiinverse and coregular semigroups may be considered as a
subclasses of the class of the two — sided identical.

Coregular and antiinverse form subclasses of the class of regular semi-
groups. Although coregular semigroups form a subclass of the class of anti-
inverse semigroups, strictly containing the class of commutative antiinverse
semigroups.
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From the theory of the antiinverse semigroups I schall cite the following
statements

Theorem 2. Let S be a semigroup. Then the semigroup S is a antitnverse
group P
iff
(Va € S)(3b € S)(a® = b?, ba = a’b, @ = a).

Theorem 3. Let G be a group. Then GG is antiinverse iff (G is a union of
subgroups which belong to the class of the trivial group, of the cyclic group
of order 2 and of the quaternion group.

Theorem 4. (Bogdanovié, [7] Theorem 4.1) Let § be a semigroup. Then all
proper subsemigroups of S arve antiinverse iff one of the following conditions
hold:

1. (Va€ S)(a=d3),

2. S is a cyclic group of prime-power order (> 1),

3. S is the cyclic group of order 4,

4. S is M(2,1) semigroup, i.e. S =< a >:a®**! = d?,

5. S is M(2,2) semigroup.

Define a relation p on a semigroup S as follows: apb & a and b are
antiinverse in 5. Let
Sla] = {z € S | zpa},

forallae S.

Theorem 5. If S is a commutative semigroup, the following are equivalent:
(1) S is antiinverse.
(ii) p is a congruence on 5.
(iii) S[a] is a subsemigroup of S , for all a in S.
(iv)a® =a, for alla in 5.

Coregular in the multiplicative matrix semigroup Mj(R) of real matrix
is the matrix

( cos#  sinf3

sinfi —cosfs

), 0<pB<2r, B#m,

defining the axial symmetries of the figures of a given plane.
In the class of coregular semigroups are valid the following statements:

Theorem 6. Let the elements a and b of a semigroup S satisfy condition
(e). Then:

a) @ = a.

b) a?b¥a® = a? = b*a’H?.
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c) a*b = ab? = a.
d) b* = b implies a® = a.
¢) a® = b* implies a = b3.
Theorem 7. For a semigroup S the Jollowing conditions are equivalent:
a) S is coreqular.
b) a® = a for every element a of S.
¢) 8 is a union of disjoint groups, the elements of which are of order < 2.

Some interesting continuations of the already shown classes of semigroups
are containted further in the papers of Bijev [1] and Chvalina and Ma-
touskova [10].

Accordingh to Bijev [1] any representation of the element z of an arbitrary
semigroup S in the form

z=ab, a,beS for a>=a and > =b

is called coregular. A good motivation for the examination of this repre-
sentations is the fact, that in the multiplicative semigroup of all ortogonal
matrices of rank 2
cosa —sina cosfl  sinf3
; . . 0<B< 2
(sma cos & ) (smﬁ —c.osﬂ) ’ <8 ’

the matrix of the second type are coregular, and the matrix of the first type
are coregular representative.

Theorem 8. Let (A, f) be a unar. Then the semigroup End (A, f) is coreg-
ular iff it is antiinverse.

Theorem 9. Let T'x be the symmetric semigroup on the sct X. The Jollow-
ing conditions are equivalent:
1) T'x ts coregular. 2) Tx is antiinverse. 3) card X < 2.

Theorem 10. Let X be an infinite set. There exists a coregular commu-
tative subsemigroup Hx of the symmetric semigroup Tx ( not generated by
idempotent elements only) such that cardHy = card X.

A quite striking application of the two — sided identical semigroups turned
out to be the one bound to the problem of the Hadamard matrices.

The quaternion group @ is an origin in the study of the antiinverse
semigroup, which as well the coregular semigroups, present subclasses of
the class of two-sided identical semigroups. In this respect the quater-
nion group ) as a two — sided identical semigroup admits further gener-
alizations (see Magnus and al.[18] and Neuman [19]) about its genetic code
Q= (ij: i=jij j=iji)

The following statements hold:
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Theorem 11. Let S be the semigroup generated by the elements of a count-
able set M = {ay,as,...} subject only to the relations

(5) a1 = aa102, G = Gj0;0; = Gi410;0i1]

for each two elements a;,a; € M with | < j < i. Then:

1) af = a% = (ax)? for ai,aj,ar,ap € M with k # 1. Further is putting
a?=—1.

2) ajaj = —aja; for aj,a; € M with i # j.

3) a;aja; = a; for every two elements a;,a; € M with i # j.

4) S is a group.

5) Let a € M and let | denote the number of the factors of the element
¢ = ez, (6 € Myi = 1,2,...,k) equal to the element a. Then ca =
(—1)*ac.

6) a* = 1 for every element a € S.

7) |C(5)] = 2.

8) The group S contains only two conjugate singleton classes and each
one of its other conjugate clusses is a two — element one.

9) Any subgroup of S is a normal subgroup of S iff it contains at least
one conjugate class distinct from the class of 1.

10) The centralizer Cs(c) of every element ¢ € 5 is infinite.

11) (ai,a;) = Q for ai,a; € M with i # j.

12) S5 is a locally finite group.

13) The subsemigroups of S generated by the subsets U of M with n =
|U| > 1 are groups having properties 1)-6), 9), 11).

14) Let C(S,,) denote the center of the semigroup S, = (a1, ..., an) then

{£1, ta1a3...a,} is odd;

C Sn - :
ia) {{d:l} is even;

15) Each element ¢ € S,, may be written in the form

c= (—1)*alt ag® a3,
where u; € {0;1},:=0,1,...,n.

16) Let a € M,, = {a1,...,a,,} and let | denote the number of the factors
of the element ¢ = cjey...cp,(¢ci € My, i = 1,2,...,k), coinciding with the
element a. Then ca = (—1)"ac.

17) The conjugate class K, = {bab=1, b € S,} for every element a €
S, \{1,—1} is two-element and coincides with the set {xa}.

18) S | = 27+,
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Corollary 1. Every element ¢ of the semigroup S of order 4 (defined in
theorem 8) generates a normal subgroup of S.

The properties 1)-18) of the semigroup S in Theorem 11 strongly depend
on its genetic code (5). Adding a new relation give a new semigroup. The
following Theorem 12 is a special case of Theorem 11.

Theorem 12. Let S be a semigroup generated by the elements of the count-
able set M = {ay,aq,...} subject only to the relations (5) and aj = ai for
some ap € M. Then S is a commutative group with identity element 1 = ay,
in which each non-identity element is an element of order 2.

The groups 5, = (a1, az, ...,a,) in Theorem 11 we shall call n — generated
q. groups.

There exists a close connection between the so constructed n—generated
q. groups and the Hadamard matrices.

As is well known, in 1893 Hadamard proved that if X = (z;;) is a square
matrix of order n then holds the inequality

|det X |* < Hi |24;]%,
i=1

i

where the equality

i n
detX|* = T lal’
i j=1
holds iff
k=n
Z Eipigs = 0 4 3y 157 = Licosm or 2y =0 for some 3
k=1

By definition, a square matrix H of order n whose entries are +1 and —1
is called a Hadamard matrix of order n provided that its rows are pairwise
orthogonal, in other words

HH' = H'H = nE,

where H' is the transposed matrix of H.

[t is known (see Hedayat and Wallis [15]) that there exist Hadamard
matrices of orders 1 and 2, but it can be shown that every other Hadamard
matrix has order 4¢ for some positive integer {. The question: "How many
different Hadamard matrices of a given order might exist?” is a very difficult
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question to answer and researchers’ interest in it varies for almost a whole
century.

Hadamard matrices of infinitely many orders have been constructed, and
it has been conjectured that one exists for every ¢, but no general proof is
available, and the number of unsettled orders is infinite.

From the above described basic properties of the n—generated quaternion
group one can construct Hadamard matrices by fixing a representative from
every conjugate class K, a ¢ {1,—1} and from the set {1,—1}. Taken in
a given order the so fixed elements of the n-generated quaternion group
Sn, together with the rows and columns corresponding to them comprise
a subtable of the multiplicative table of the semigroup S,. The signs of
the elements of this subtable, taken in the same order, form the Hadamard
matrix. In this way we obtain from the g. group @) the following Hadamard
matrix:

\' i ik 1 1 1 1
i =1k —j 1 -1 1 -1
i o~k -1 = I ~f =1 1
Eoj —i -1 i 1 —1 ~1

These relations are described by the author in details in [24].

What are the further possibilities for obtaining of the Hadamard matrices
on the basis of the considered n—generated ¢. groups? As the calculations
show with the multiplication table of the integral quaternions

] £+ £33 £k

41, +i, +§, +k, >

is associated Hadamard matrices of order 12 of the type

Ay Ay Az
-B1 By B
C1 -C; —-B

where A;, B;, C; are Hadamard matrices of order 4.

All this is a good motivation for the further investigations of the corre-
sponding algebras of the n-generated ¢. group. For the present because of
‘the principal difficulties as compared to the already known results a more
thorough investigation is made on algebra of the 3—generated ¢. group. The
received basic results can be formulated as follows:

Lemma 1. The (group) algebra Hy (of the quaternion group S3 in Theorem
11) over the field R of the real number is a 8-dimensional (associative)
algebra, containing the quaternion algebra H.
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=7 : e 5
Every element a = Y :—, a;e; € Hy is a divisor of zero iff

ar = Eap, g = —Eay, a5 = £az, A4 = —EA3,

where e = +1. If

a=ap(l+cer)+ ai(e; — ceg) + az(ea + ce5) + asz(ez — ceyq)

and

a* = bo(l — 667) + b](&] + Et‘s) + b2(€2 - 565) + b3(€3 + 664).

then

aa” = a"a = 0.
Theorem 13. Let us put
I™ ={q” =ap(eo — er) + ar(e1 + €s) + az(ex — €5) + az(es + e4)},

It = {q% = bo(eo + e7) + bi(er — eg) + ba(e2 + e5) + ba(es — e4)},

where a;,b; € R. 1,7 =0,1,..,7. Then:
1) I-nIt={0},
2) I~ and It are the uniquely non-trivial minimal ideals of the algebra
Hj,
3) I~ = H = I, where H is the quaternion algebra,
4) Hy = I~ + It.
Let us put
€; — E7_i, if = 0.,2;
2f;‘2 €£+67_,‘, it 1= 1,3