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PREFACE 

The International Conference on Algebra, Logic and Discrete Mathema-
tics took place in Nig, April 14-16, 1995, and was organized by the Faculty 
of Economics Ni., Faculty of Philosophy Nig, and Mathematical Institute 

SA ND Belgrade. 

This book contains most  of the  papers presented during the Conference. 

Editors 
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386 	 M. (Irk. and S. Bogdanovie 

Introduction 

As known, one of the best methods used in studying of structure of semi-
groups, as well as other algebras, is the decomposition method. The main 
idea of this method is to decompose a semigroup into components, possibly 
of simpler structure, to study the components in details and to establish 
mutual relationships between the components within the entire semigroup. 
We differentiate two general kinds of decompositions: external decomposi-
tions, where we include decompositions into a direct product and related 
concepts, and internal decompositions, by which we mean decompositions 
by equivalence relations. In this paper our attention will be aimed only to 
internal decompositions, which will be here called simply decompositions. 

By a kind of decompositions we will mean a mapping T : S 1—,  Ts  by 
which to any semigroup S we associate a subset Ts, possibly empty, of the 
partition lattice Part(S) of S. But it is often of interest to consider such 
kinds of decompositions which can be applied on any semigroup, i.e. such 
that T is nonempty subset of Part (S), for any semigroup S. For example, 
many kinds of decompositions have the property that for any semigroup 
S, Ts contains the zero of Part (S), i.e. the one-component partition {S}. 
For that reason we define a type of decompositions, or a decomposition type, 
as a mapping T : S i Ts  by which to any semigroup S we associate a 
subset Ts  of the partition lattice Part (S) of 5, containing its zero. In other 
words, a decomposition type T is a collection of sets Ts indexed by the 
set of all semigroups, and it is defined if for any semigroup S we define 
what are the elements of T5. Of course, any type T of decompositions 
induces a mapping T' : S T. by which to any semigroup S we associate 
a subset T's  of the lattice E(S) of equivalence relations on 5, containing the 
universal relation on S, called a type of equivalences, and vice versa. For 
a given type T of decompositions and a semigroup S, the elements of T s 

 will be called T-decompositions of 5 , and related equivalence relations will 
be called T-equivalences on S, and S will be called T-indecomposable if the 
one-component partition {S} is the unique T-decomposition of 5, i.e. if the 
universal relation is the unique. T-equivalence on S. 

Consider a decomposition type T and a semigroup S. Since Ts  is a subset 
of the lattice Part(S), then T s  is a poset with respect to usual ordering of 
partitions, from where several very important questions follow: 

(1) Does Ts  have a greatest element? 
(2) Is Ts a complete lattice? 
(3) Does 'Ts  a complete sublattice of the partition lattice on 5? 

Such problems have been treated first by T. Tamura and N. Kimura [112], 
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Theory of greatest decompositions of semigroups (A survey) 	387 

1954, and [113], 1955. After that, they have been considered by many au-
thors. The aim of this paper is to make a survey of main ideas, concepts and 
results concerning greatest decompositions of semigroups of various types. 
We will talk about the mostly important decomposition types and the results 
concerning these. 

We know that one of the most important algebraic theorems is the fa-
mous Birkhoff 's representation theorem, proved by G. Birkhoff in [3], 1944, 
which says that any algebra can be decomposed into a subdirect product of 
subdirectly irreducible algebras. Of course, in Theory of semigroups similar 
theorems are also very important. A decomposition type T will be called 
atomic if there exists the greatest T-decomposition and their components are 
T-indecomposable. But only four atomic types of decompositions of semi-
groups are known: semilattice decompositions, whose atomicity has been 
proved by T. Tamura [110], 1956, ordinal decompositions, whose atomic-
ity has been proved by E. S. Lyapin [62], 1960, U-decompositions, whose 
atomicity has been proved by L. N. Shevrin [96], 1965, and orthogonal de-
compositions, whose atomicity has been established by S. Bogdanovi6 and 
M. Cirk in [10], 1995. hi this paper these decomposition types will take an 
outstanding place. 

This paper is divided into five chapters. 
In the first chapter we introduce notions and notations that will be used in 

the further text, we give a classification of decomposition types and define 
the types that will considered in this paper, and we also present several 
general results concerning decompositions by congruences. 

Because of the great importance and enormous quantity of the results 
concerning semilattice decompositions of semigroups, these results will be 
separated from the ones concerning band decompositions and they will be 
presented in Chapter 2. 

Chapter 3 is devoted to the remaining significant types of band decompo-
sitions. Namely, in this chapter we make a survey of the results on matrix 
and normal band decompositions of semigroups. 

In Chapter 4 we consider decompositions of semigroups with zero: or-
thogonal decompositions, decompositions into a left, right and matrix sum 
of semigroups, and quasi-semilattice decompositions. 

Finally, in Chapter 5 we talk about yet other types of decompositions: U-
decompositions, ordinal decompositions, /-matrix decompositions and semi-
lattice-matrix decompositions. 
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388 	 M. (iris and S. Bogdanovie 

1. Preliminaries 

This chapter is divided into three sections. In Section 1.1 we introduce 
notions and notations that will be used in the further text. In Section 1.2 we 
make a classification of decompositions and we single out the most important 
decomposition types, which will he treated later. Finally, in Section 1.3 
we consider decompositions by congruence relations and we present several 
general results concerning these decompositions. 

1.1. Basic notions and notations 

Throughout this paper, Z+ will denote the set of all positive integers. 
Further„5 = So  means that S is a semigroup with zero 0, and S # S° 
means that S is a semigroup without zero. If S = S° , we will write 0 instead 
{0}, and if A is a subset of S, then A' = A-0, A° = AU0 and A' = (S—A)°. 
If A is a subset of a semigroup S, then 11A = {x E S I (3n E Z+ )x" E A}. 

For a binary relation 4' on a set A, e°" will denote the transitive closure 
of 4, 4 -1  will denote the relation defined by a 	b <=> b a, and for a E A, 
al; = {x E A I a x} and 	= {x E A 1:re a}. By a quasi-order we 
mean a reflexive and transitive binary relation. If is a quasi-order on a 
set A, then the relation e defined by = n e -1  is an equivalence relation 
called the natural equivalence of e. A relation on a semigroup S = 5° is 
called left 0-restricted if 0 = 0. A right 0-restricted relation on S is defined 
dually, and a relation e on S = S° will be called 0-restricted if it is both 
left and right 0-restricted, i.e. if 0 = = 0. We say that a relation e on a 
semigroup S satisfies the common multiple property, briefly the cm-property, 
if for all a, b, c E 5, ae c and b c implies ab c. Similarly, for,  a relation e on 
a semigroup S = we say that satisfies the 0-common multiple property, 
briefly the 0-cm, -property , if for all a, b, c. E 5 , ab 0, a e c and b c implies 
ab c. 

Let K be a subset of a lattice L (not necessary complete). If K con-
tains the meet of any its nonempty subset having the meet in L, then K is 
called a complete meet-subsemilattice of L. A complete join-subsemilattice 
is defined dually. If K is both complete meet-subsemilattice and complete 
join-subsemilattice of L, then it is called a complete sublattice of L. If L is 
a lattice with unity, then any sublattice of L containing its unity is called a 
1-sublattice of L. Dually we define a 0-sublattice of a, lattice with zero, and 
we define a sublattice of a lattice L with zero and unity to be a 0, I- sublattice 
if it is both 0-sublattice and 1-sublattice of L. If any element of L is the 
meet of some nonempty subset of K, then K is called meet-dense in L. 

An element a of a lattice L with the zero 0 is an atom of L if a > 0 and 
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there exists no x E L such that a > x > 0. A complete Boolean algebra B is 

atomic if every element of B is the join of some set of atoms of B. If L is a 
distributive lattice with zero and unity, then the set 93( L) of all elements of 
L having a complement in L is a Boolean algebra and it is called the greatest 
Boolean subalgcbra of L. 

For a nonempty set A, P(11) will denote the lattice of subsets of A. Let A 
be a nonempty set and let L be a sublattice of P(A) containing its unity and 
having the property that any nonempty intersection of elements of L is also 

in A. Then for any a E A there exists the smallest element of L containing a 
(it is the intersection of all elements of L containing a), which will be called 
the principal element of L generated by a. 

A subset A of a semigroup S is called completely semiprime if for :r. E S, 

s 2  E A implies x E A, completely prime if for x, y E 5, xy E A implies the 

either a; E A or y E A, left consistent if for x, y E S, xy E A implies x E A, 

right consistent if for x, y E 5, xy E A implies y E A, and it is consistent 
if it is both left and right consistent. Clearly, the empty set has any of 
these properties and the sets of completely semiprime, completely prime, left 
consistent, right consistent and consistent subsets are complete sublattices 
of P(S). A consistent subsemigroup of a semigroup S will be called a filter 

of S. The empty set will be also defined to be a filter. By .F(S) we denote 

the lattice of filters of S, which is a. complete meet-subsemilattice of P(S), 
and therefore a complete lattice, but it is not necessary a sublattice of P(S). 

It is well known that a subset A of a semigroup S is a filter of S if and 
only its complement is either empty or a completely prime ideal of S. The 

principal element F(S), called the principal filter, generated by a E S will 

be denoted by N(a). 
In studying of semigroups with zero we use some similar notions. Namely, 

a subset A of a semigroup S = 5° is called left 0-consistent if A' is left 

consistent,' right 0-consistent if A' is right consistent, and it is 0-consistent 

if A' is consistent. Similarly, an equivalence relation 0 on S = 50  will be 

called left 0-consistent if for a:, y E S, xy 0 0 implies xy 0 x, right 0-consistent 

if for x, y E S, xy # 0 implies xy 0 y, and 0-consistent if it is both left and 

right 0-consistent. 
Let S be a semigroup. By Id(S) we denote the lattice of ideals of S. 

This lattice is a sublattice of P(S), it is also a complete join-subsemilattice 

of P(S), but it is not necessary a complete meet-subsemilattice, since the 
empty set is not included in Id(S). The principal element of Id(S), called 

the principal ideal, generated by a E S will be denoted by J(a).Further, 

ad(S) will denote the lattice of left ideals of a semigroup S .  defined in 

the following way: if S = 5° , then Lid(S) consists of all left ideals of S, 

and if S has no zero, then Gld(S) consists of the empty set and all left 

Theory of greatest decompositions of semigroups (A survey) 	389 
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390 	 M. (Iri6 and S. Bogdanovie 

ideals of S. The lattice of right ideals of 5, in notation T?,1d(S), is defined 
dually. Lattices .CId(S) and 7:11d(S) are complete sublattices of P(S). The 
principal element of ad(S), called the principal left ideal, generated by 
a E S will be denoted by L(a). The principal right ideal generated by a E 5, 
defined dually, will be denoted by R(a). By id"(S) we denote the lattice 
of completely semprime ideals of 5, which is a complete l-subsemilattice 
of Id(S). The principal element of /d"(S), called the principal radical, 
generated by a E S will be denoted by E(a). By Ridic(S) and adrc(S) 
we denote the lattice of left consistent right ideals and the lattice of right 
consistent left ideals of S , which are complete sublattices of RId(S) and 
Cid( S ), respectively. 

For a nonempty subset A of a semigroup S define the relations PA, RA 
and LA by: 

a PA  b <4. (\ix, y S)(xay A q xby E A), 
a RA b 	(by E S)(ay E A #. by E A), 
a LA b q (Vx E S)(xa E A .4* xb E A). 

Then PA  is a congruence on S called the principal congruence on S defined 
by A, RA is a right congruence called the principal right congruence on S 
defined by A, and LA is a left congruence called the principal left congruence 
on S defined by A. If A is a nonempty family of subsets of 5, then f'(A) will 
denote the congruence which is the intersection of all principal congruence 
on S defined by elements from A. 

Let A be a nonempty set and let X E 71(A). The relation Ox on A 
defined by 

aexb q a,bEX or a,bE A— X 	(a,b E A), 

is an equivalence relation on A whose classes are precisely the nonempty sets 
among the sets X and A — X . Clearly, when X = 0 or X = A, then Ox is 
the universal relation on A. Also, for any X E P(A), ex = 0,1x . Further, 
for a nonempty subset A of P(A), 0(A) will denote the equivalence relation 
on A defined by: 

° (A) = n ex. 
XEA 

If A is a complete meet-subsemilattice of 2(A), and it contains the unity of 
2(A), then 0(A) can be alternatively defined by: 

a 0(A) b 	A(a) = A(b) 	 (a,b E 5), 
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Theory of greatest decompositions of semigroups (A survey) 	391 

where for x E A, A(s) denotes the principal element of A generated by x. 

For a semigroup S, Q(S) will denote.the lattice of quasi-orders on S, E(S) 
will denote the lattice of equivalence relations on S and Con (5) will denote 

the lattice of congruence relations on S. It is well-known that Con (5) is 

a complete sublattice of e(S) and /48) is a complete sublattice of Q(S). 

By E*(S) we denote the lattice of 0-restricted equivalence relation on a 
semigroup S = 5°, which is the principal ideal of E(S) generated by the 

equivalence relation x determined by the partition {S', 01. 

An ideal A of a semigroup S is a prime ideal if for x, y E 5, xSy C A 

implies that either x E A or y E A, or, equivalently, if for all ideals M and 

N of S, MN C A implies that either M C A or N C A. A completely 
0-simple semigroup with the property that the structure group of its Rees-
matrix representation is the one-element group, is called a rectangular 0-

band. Equivalently, a rectangular 0-band can be defined as a semigroup 

S = in which 0 is a prime ideal and for all a, b E 5, either aba = a or 

aba = 0. 
For undefined notions and notations we refer to the following books: G. 

Birkhoff [2], S. Bogdanovie [4], S. Bogdanovie and M. Cirie [7], S. Burris 
and H. P. Sankappanavar [17], A. H. Clifford and G. B. Preston [35], [36], G. 
Gratzer [45], J. M. Howie [48], E. S. Lyapin [62], M. Petrich [72], [73], L. N. 
Shevrin [98], L. N. Shevrin and A. Ya. Ovsyanikov [102], [103], 0. Steinfeld 

[105] and G. Szisz [109]. 

1.2. A classification of decompositions 

In this section we classify decompositions of semigroups into few classes 
and we single out the most important types of decompositions. 

Let us say again that by a decompositions of a semigroup S we mean a 

family D = {SC}cEY of subsets of S satisfying the condition 

S  = 	S°" 
	where Sc, n so  = 0, for (t„ E Y, a 0 /3. 

o(EY 

Various special kinds of decompositions we obtain in two general ways: im-
posing some requirements on the structure of the components S„, and im-
posing some requirements on products of elements from different classes. 

The first general type of decompositions that we single out are decompo-

sitions S onto subsemigroups, determined by the property that any So, is a 

subsemigroup of S. Clearly, decompositions onto subsemigroups correspond 
to equivalence relations satisfying the cm-property, so the following theorem 

can be easily proved: 
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392 	 M. drie and S. BogdanovM 

Theorem 1.1. The poset of decompositions of a semigroup S onto sub-
semigroups is a complete lattice which is dually isomorphic to the lattice of 
equivalence relations on S satisfying the cm-property. 

If to a decomposition of a semigroup S onto subsemigroups we impose an 
additional condition 

ab E (a) U (b) , 

for all elements a, b E S belonging to the different components, then we 
obtain so called U-decompositions. Decompositions of this type will be con-
sidered in Section 5.1. 

The second general class of decompositions that we single out form de-
compositions whose related equivalence relations are congruences. Decom-
positions of this type are called decompositions by congruences. When the 
decomposition 1) is a decomposition by a congruence relation, then the index 
set Y is a factor semigroup of S and many properties of S are determined by 
structure of the semigroup Y. Special types of decompositions by congru-
ences we obtain imposing some requirements on the structure of the related 
factor semigroup. If a class ci of semigroups and a semigroup S are given, 
then a congruence relation B on S is called a c-congruence on S if the related 
factor 10 is in t, the related decomposition is given a c-decomposition, and 
the related factor semigroup is called a t-homomorphic image of S. When 
there exists the greatest -decomposition of S , i.e. the smallest (E-congruence 
on S, then we say that the factor semigroup corresponding to this congru-
ence is the greatest t-homomorphic image of S. A semigroup S is called 
t-indecomposable if the universal relation is the unique c-congruence on S. 
Of course, when the class t contains the trivial (one-element) semigroup, 
then the T-decompositions determine a decomposition type. 

If the decomposition 1) is both a decomposition by a congruence relation 
and a decomposition onto subsemigroups, then it is called a band decomposi-
tion of S and the related congruence relation is called a band congruence on 
S. Equivalently, the type of band decompositions is defined as the type of 
Cdecompositions, where t equals the variety [x 2  = x] of bands. Moreover, 
by some subvarieties of the variety of bands we define the following very 
important special types of band decompositions and band congruences: 

—semilattice decompositions and congruences, determined by the variety 
[x 2  = x, xy  =  yx] of semilattices; 

— matrix decompositions and congruences, determined by the variety 
[x 2  = x , xyx = = [x2  = x, xyz  =  x z] of rectangular bands; 

— left (right) zero band decompositions and congruences, determined by 
the variety [x 2  = x , xy = x] ([x 2  = x, xy = y]) of left (right) zero 
bands; 
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normal band decompositions and congruences, determined by the va-

riety [x 2  = x, xyzx = x zyx] = [x 2  = x, xy zu = x zyu] of normal bands; 

left (right) normal band decompositions and congruences, determined 

by the variety [x 2  = x, xyz = x zy] ([x 2  = x, xyz = yx z]) of left (right) 

normal bands. 

Also, chain decompositions and congruences are determined by the class of 

chains (linearly ordered semilattices). The decomposition D is called an 

ordinal decomposition if it is a chain decomposition, i.e. Y is a chain, and 

for all a,b E S, 

a E S oi, b E S 0 , a < 13 	ab = ba = a. 

These decompositions will be considered in Section 5.2. In the last chapter 
of this paper we will also consider /-matrix decompositions and seinilattice-
matrix decompositions, which will be precisely defined in Sections 5.3 and 

5.4, respectively. 

Semigroups with zero have a specific structure and in studying of such 
semigroups it is often convenient to represent a semigroup S = in the 

form: 

S  = 	Sa ,  
oEY 

where S, n so  = 0, for a,13 E Y, a 

In this case, the partition D of 5, whose components are 0 and S a*, a E Y, 

is called a 0-decomposition of S. If, moreover, any S, is a subsemigroup of 

S, we say that D is a 0-decomposition of S onto subs:emigroups and that S 

is a 0-sum of semigroups Sa, a E Y, and the semigroups S o, will be called 

the summands of this decomposition. Equivalence relations corresponding 
to such decompositions are exactly the ones which satisfy the 0-can-property, 
so the following theorem follows: 

Theorem 1.2. The poset of 0-decompositions of a semigroup S = S° onto 
subseinigroups is a complete lattice which is dually isomorphic to the lattice 
of equivalence relations on S satisfying the 0-cm-property. 

Special decompositions of this type may be determined by some properties 
of the index set Y. Namely, it is often convenient to assume that Y is a 
partial groupoid whose all elements are idempotents, and to require that the 

multiplication on S is carried by Y, by the following condition: 

Sw5p c Sc, 	if ah3 is defined in Y 

. S o, 	= 0 	otherwise 
for all a,0 E Y. 
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For example, if Y is a semigroup, i.e. a band, we obtain so called 0-band decompositions. If the product a/3 is undefined, whenever a # /3, then S„S/3 = 0, whenever a # /3, and such decompositions are called orthogonal decompositions. If Y is a left (right) zero band, then the corresponding 
decomposition is called a decomposition into a left (right) sum of semigroups. 
If Y is a nonempty subset of I x A, where I and A are nonempty sets, and the 
partial multiplication on Y is defined by: for (i, A), (j, /2) E Y, the product (i, A)(j,p) equals (i„ u), if (i, u) E Y, and it is undefined, otherwise, then 
the decomposition D carried by Y is called a decomposition into a matrix sum of semigroups Sc„, a E Y. Finally, if Y is an arbitrary poset and for 
a, /3 E Y, the product all is defined as the meet of a and /3, if it exists, then 
the related decomposition is called a quasi-semilattice decomposition of S. 

1.3. Decompositions by congruences 

Given a nonempty class C of semigroups. Let Con e  (5) denotes the set 
of all T-congruences on S. Of course, Con e  (5) is a subset of Con (S) and it 
can be treated as a poset with respect to the usual ordering of congruences. 
Properties of posets of -congruences inside the lattice Con (5) have been 
first investigated by T. Tamura and N. Kimura in [123], 1955, where they 
proved the following theorem: 

Theorem 1.3. (T. Tamura and N. Kimura [123]) If rr is a variety of semi-
groups, then Cone  (S) is a complete lattice, for any semigroup S. 

For the variety of semilattices, the previous theorem has been proved also 
by T. Tamura and N. Kimura [122], 1954 (see Theoreni 2.1). 

The problem of existence of the greatest decomposition of a given type has 
been solved in a special case, for so-called le-decompositions, by T. Tamura 
[110], 1956. The solution of this problem in the general case has been given 
by N. Kimura [54], 1958, by the next theorem. Note that by an algebraic class 
of of semigroups we mean a class of semigroups closed under isomorphisms. 

Theorem 1.4. (N. Kimura [54]) Let ft be a nonempty algebraic class of 
semigroups. Then st is closed under subdirect products if and only if Con e (S) 
has the smallest element, for any sernigroup S for which Cone(S) # 0. 

As N. Kimura [54] noted, this theorem has been also found by E. J. Tully. 
Note that if Con e  (5) has the smallest elements, then it is a complete meet-
subsemilattice of Con (S). 

The converse of Theorem 1.3 has been proved in a recent paper of M. 
eiriC and S. Bogdanovie [24]. Namely, they proved the following theorem: 

V
ir

tu
al

 L
ib

ra
ry

 o
f 

F
ac

ul
ty

 o
f 

M
at

he
m

at
ic

s 
- 

U
ni

ve
rs

it
y 

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs



Theory of greatest decompositions of semigroups (A survey) 	395 

Theorem 1.5. (M. tirie and S. BogdanoviC [24]) Let be a nonempty alge-
braic class of semigroups. Then is a variety if and only if Con c  (S) is a 
complete sublattice of Con (S), for any semigroup S. 

By the proof of the previous theorem, given in [24], the next theorem also 
follows: 

Theorem 1.6. (T. Tamura and N. Kimura [123]) If is a variety of semi-
groups, then Colic (S) is a principal dual ideal of Con (S), for any semigroup 

S . 

Note that Theorems 1.4, 1.5 and 1.6 holds also for any algebra. 
The following theorem, proved by M. Petrich in [72], 1973, has been very 

useful in his investigations of some greatest decompositions of semigroups. 

Theorem 1.7. (M. Petrich [72]) Let It be a variety of semigroups, 1) the 
class of subdirectly irreducible semigroups from and S any semigroup. Then 

a congruence 0 on a semigroup S, different from the universal congruence, 
is a It-congruence if and only if it is the intersection of some family of V - 
icongruences. 

If we define the trivial semigroup to be subdirectly irreducible, then The-
orem 1.7 says that Conz(S) is meet-dense in Conc (5). 

2. Semilattice decompositions 

Semilattice decompositions of semigroups have been first defined and 
studied by A. H. Clifford [29], 1941. After that they have been investi-
gated by many authors and they have been systematically studied in several 
monographs: by E. S. Lyapin [62], 1960, A. H. Clifford and G. B. Preston 
[35], 1961, M. Petrich [72], 1973, and [73], 1977, S. Bogdanovi6 [4], 1985, S. 

BogdanoviC and M. (.1,irie. [7], 1993, and other. 
First general results concerning semilattice decompositions of semigroups 

have been the results of T. Tamura and N. Kimura from [122], 1954. There 
they proved a theorem, given below as Theorem 2.1, by which it follows the 
existence of the greatest semilattice decomposition on any semigroup. This 
theorem initiated intensive studying of the greatest semilattice decomposi-
tions of semigroups and Section 2.1 is devoted to the results from this area. 
We present various characterizations of the greatest semilattice decomposi-

tion of a semigroup, the smallest semilattice congruence on a semigroup and 
the greatest semilattice homomorphic image of a semigroup, given by M. 
Yamada [132], 1955, T. Tamura [110], 1956, [112], 1964, and [117], 1972, M. 
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Petrich [69], 1964, and [72], 1973, M. S. Putcha [79], 1973, and [80], 1975, 
and M. eiri6 and S. Bogdanovie. [21]. We also quote the famous theorem 
of T. Tamura [110], 1956, on atomicity of semilattice decompositions, which 
is probably the most important result of the theory of semilattice decom-
positions of semigroups, and we give several characterizations of semilattice 
indecomposable semigroups given by M. Petrich [69], 1964, and [72], 1973, 
and T. Tamura [117], 1972. For the related results concerning decomposi-
tions of groupoids we refer to G. Thierrin [127], 1956. 

Section 2.2 is devoted to lattices of semilattice decompositions of a semi-
group, i.e. to lattices of semilattice congruence on a semigroup. We present 
characterizations of these lattices of T. Tamura [120], 1975, M. (Irk! and S. 
Bogda,novi6 [23], and S. Bogdanovi6 and M. (Irk [12]. 

2.1. The greatest semilattice decomposition 

As we noted above, the first general result concerning semilattice deconr-
positions of semigroups is the one of T. Tamura and N. Kimura [122], 1954, 
which is given by the following theorem: 

Theorem 2.1. (T. Tamura and N. Kimura [122)) The poset of semilattice 
decompositions of any semigroup is a complete lattice. 

By the previous theorem it follows that any semigroup has a greatest semi-
lattice decomposition. The first characterization of the greatest semilattice 
decomposition has been given by M. Yamada [132], 1955, in terms of P-
subsemigroups. A subsemigroup T of a semigroup S is called a P-semigroup 
of 5 if for all a l  , , a„ E S, 

al. • • a„ E T 	 ,a„) C T, 

where C(a i  , 	, a„) denotes the subsemigroup of S consisting of all products 
of elements a l , , a„ E S with each (L i  appearing at least once [132]. Recall 
that P(A) denotes the intersection of all principal congruences defined by 
elements of a nonempty family A of subsets of a semigroup. 

Theorem 2.2. (M. Yamada [132]) A relation 8 on a semigroup S is a semi-
lattice congruence if and only if 0 = P(A), for some nonempty family A of 
P-subsemigroups of S. 

As a consequence of the previous theorem it can be deduced the following 
theorem: 
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Theorem 2.3. (M. Yamada [132]) Th .Nutaticot outuiductioc cotagruerac.e. oin 

a semigroup S equals the congruence P(X), where X denotes the set of all 

P-subsemigroups of S. 

Another approach to the greatest decompositions of semigroups, through 
completely prime ideals and filters, has been developed by M. Petrich [69], 
1964. He proved the following four theorems: 

Theorem 2.4. (M. Petrich [69]) A relation 0 on a semigroup S is a semi-

lattice congruence if and only if 9 = 0(A), for some nonempty family A of 

completely prime ideals of S. 

Theorem 2.5. (M. Petrich [69]) The smallest semilattice congruence on a 

semigroup S equals the congruence 0(X), where X denotes the set of all 

completely prime ideals of S. 

Theorem 2.6. (M. Petrich [69]) A relation 9 on a semigroup S is a semi-

lattice congruence if and only if 0 = 0(A), for some nonempty family A of 

filters of S. 

Theorem 2.7. (M. Petrich [69]) The smallest semilattice, congruence on a 

semigroup S equals the congruence 0(X), where X denotes the set of all 

filters of S. 

Another proofs of the previous two theorems have been given by the 

authors in [21]. 
The role of completely prime ideals and filters in semilattice decompo-

sitions of semigroups can be explained by Theorem 1.7. Namely, the two-

element chain Y2 is, up to an isomorphism, the unique subdirectly irreducible 

semilattice, and any homomorphism of a semigroup S onto Y2 determines a 

partition of S whose one component is a completely prime ideal and other 

is a filter of S. This approach has been used by M. Petrich in [72], 1973. 
M. Petrich [69], 1964, also gave a method to construct the principal filters 

of a semigroup: 

Theorem 2.8. (M. Petrich [69]) The principal filter of a senzigroup S gen-

erated by an element a E S can be computed using the following formulas: 

N I  (a) = (a) , N „+1( a) = (fx ESIN „(a) n (x) 	, 	E Z-I- 

N(a) = 	 N„(a). 

71EZ+ 
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The third approach to the greatest decompositions of semigroups is the 
one of T. Tamura from [117], 1972. Using the division relation I on a semi-group S defined by: 

alb a bE asi 

T. Tamura defined the relation ---+ on S by: 

a--. b <#. (3n E Z+) a I b", 

and he gave an efficient characterization of the smallest semilattice congru-
ence on a semigroup: 

Theorem 2.9. (T. Tamura 1117D The smallest semilattice congruence on a 
semigroup S equals the natural equivalence of the relation —4 0° 

Another proof of this theorem has been given by T. Tamura [118], 1973. 
Three different characterizations of the smallest semilattice congruence 

on a semigroup have been also obtained by M. S. Putcha in [79], 1973, and 
[80], 1975. 

Theorem 2.10. (M. S. Putcha [80]) The smallest semilattice congruence on 
a semigroup S equals the equivalence on S generated by the relation xy 

yx, for all x, y E S. 

Another proof of this theorem has been given by T. Tamura [119], 1973. 

Theorem 2.11. (M. S. Putcha [80]) The smallest semilattice congruence on 
a semigroup S equals the relation —°O

, where — 	fl 	. 

Theorem 2.12. (M. S. Putcha [79]) The smallest semilattice congruence on 
a semigroup S equals the relation 9 on S defined by: a 9 b if and only if for 
all x, y E 5 1  there exists a semilattice indecomposable subsemigroup T of S 
such that xay,xby E T. 

An approach to semilattice decompositions of semigroups, different to 
the one of M. Petrich and T. Tamura, has been developed by M. (.;iriC. and 
S. Bogdanovie in [21]. As we will see later, the results obtained there ex-
plained the connections between the above presented results of M. Petrich 
and T. Tamura. M. Cirie. and S. Bogdanovi6 [21] started from the com-
pletely semiprime ideals and they first gave the following representations of 
the principal radicals of a semigroup: 
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Theorem 2.13. (M. irk and S. Bogdanovie [21]) The principal radical of a 
semigroup S generated by an element a E S has the following representation: 

E(a) {x ESla 

Theorem 2.14. (M. tiriC and S. BogdanoviC [21]) The principal radical of 
a semigroup S generated by an element a E S can be computed using the 

following formulas: 

El(a) =N/75ciS, E„(a) = SE„(a)S , n E Z+ , E(a) = U E„(a). 
nEz+ 

Recall that Zd"(S) denotes the lattice of all completely semiprime ideals 
of a semigroup S. By means of Theorems 2.13 and 2.9, the authors in [21] ob-
tained the following characterization of the smallest semilattice congruence 
on a semigroup: 

Theorem 2.15. (M. brie. and S. BogdanoviC [21]) The smallest semilattice 
congruence on a semigroup S equals the equivalence 0(ides(S)). 

A characterization of the greatest semilattice homomorphic image of a 
semigroup has been given by M. Cirie and S. BogdanoviC, [21], through prin-
cipal radicals of a semigroup: 

Theorem 2.16. (M. irk and S. Bogdanovie [21]) If a,b is any pair of 

elements of a semigroup S, then 

E(a) fl E(b) = E(ab), 

i.e. the set Es of all principal radicals of S, partially ordered by inclusion, 
is a semilattice and it is the greatest semilattice homomorphic image of S. 

As a consequence of the previous theorem, the authors in [21] proved the 
next theorem without use of the Zorn's lemma arguments: 

The next theorem, which gives a connection between Theorems 2.15 and 
2.5, has been proved by M. Petrich [72], 1973. Another proof of this theorem, 
without use of the Zorn's lemma arguments, has been given by the authors 
in [21], as a consequence of Theorem 2.16. 

Theorem 2.17. (M. Petrich  [72])  Any completely semiprime ideal of a semi-
group S is the intersection of some family of completely prime ideals of S. 

In other words, Theorem 2.17 says that the set of completely prime ideals 

of a semigroup S is meet - dense in ides(S). 
Another consequence of Theorem 2.16 is the next theorem which gives a 

representation of the principal filters better than the one from Theorem 2.8. 
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Theorem 2.18. (M. Ciric and S. BogdanoviC[21]) The principal filter of a 
semigroup S generated by an element a has the following representation: 

N (a) = {a; ESIx 	a}. 

The components of the greatest semilattice decomposition of a semigroup 
are characterized by the next theorem, which is clearly a consequence of 
Theorems 2.13, 2.18 and 2.9. 

Theorem 2.19. (M. Petrich [72]) The component of the greatest semilattice 
decomposition of a semigroup S containing an element a of S is precisely 
the subsemigroup E(a) fl N (a). 

The most significant theorem of the theory of semilattice decompositions 
of semigroup is probably the theorem of T. Tamura [1101, 1956, on atomicity 
of semilattice decompositions of semigroups, given here as Theorem 2.20. 
Note that another proofs of this theorem have been given by T. Tamura in 
[112], 1964, by means of the concept of "contents", in [117], 1972, using the 
relation , in [118], 1973, and [120], 1975, by M. Petrich [69], 1964, 
by means of completely prime ideals, and by M. S. Putcha [79], 1973, using 
the relation defined in Theorem 2.12 and the subsemigroups of the form 

, a„). 

Theorem 2.20. (T. Tamura [110]) Any component of the greatest semilat- 
tice decomposition of a semigroup is a scinilattice indecomposable semigroup. 

Semilattice indecomposable semigroups have been described by T. Tamu-
ra [117] and M. Petrich [69], [72], by the following 

Theorem 2.21. The following conditions on a semigroup S are equivalent: 
(i) S is semilattice indecomposable; 

(ii) (V a,b E S) a --oc° b; 
(iii) S has no proper completely semiprime ideals; 
(iv) S has no proper completely prime ideals. 

The equivalence of conditions (i) and (ii) has been established by T. 
Tamura. [117], 1972, (i) q (iii) has been proved by M. Petrich [69], 1964, 
and (i) q (iv) by M. Petrich [72], 1973. 

Note that in the class of semilattice indecomposable semigroup the mostly 
investigated were Archimedean semigroups, defined by: a b, for all 
elements a and b. Semilattices of such semigroups have been studied by many 
authors. The most important results from this area have been obtained by 
M. S. Putcha [79], 1973, T. Tamura [116], 1972, M. ( 1,irie and S. Bogdanovk 
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[19], 1993, and [21], S. Bogdanovie and M. OW [6], 1992, and [14], and L. 

N. Shevrin [99] and [100], 1994. For more informations about semilattices of 
Archimedean semigroups the reader is also referred to the survey paper of 
S. Bogdanovie and M. Cirie. [8], 1993, or their book [7], 1993. 

2.2. The lattice of semilattice decompositions 

T. Tamura [120] got an idea of studying semilattice decompositions of 
a semigroup through quasi-orders on this semigroup having some suitable 
properties. We say that a quasi-order on a semigroup 5' is positive if a ab 

and bab, for all a, b E S. These quasi-orders have been introduced by B. 
M. Schein [88], 1965, and they were since studied from different points of 
view by T. Tamura, M. S. Putcha, S. Bogdanovie, M. airie and other. By 

a half-congruence T. Tamura in [120], 1975, called a compatible quasi-order 

on a semigroup, and by a lower-potent quasi-order he called a quasi-order 

on a semigroup satisfying the condition: a 2  a, for all elements a. Using 
these notions, T. Tamura proved the following theorem: 

Theorem 2.22. (T. Tamura [120]) The lattice of semilattice congruences 
on a semigroup S is isomorphic to the lattice of positive lower-potent half- 
congruences on S. 

As the authors noted in [23], the notion "lower-potent half-congruence" in 
Theorem 2.22 can be replaced by "quasi-order satisfying the cut-property". 
Recall from Section 1.1 that a relation on a semigroup S satisfies the 

common multiple property, briefly the cm-property, if for all a, b, c E S,a6c 

and b c implies ab c. Using this notion, introduced by T. Tamura in [116], 
1972, Theorem 2.22 can be written as follows: 

Theorem 2.23. The lattice of semilattice congruences on a semigroup S 

is isomorphic to the lattice of positive quasi-orders on S satisfying the cm- 

property. 

Using the Tamura's approach, the authors in [23] connected semilattice 
decompositions of a semigroup with some sublattices of the lattice id"(S) 

of completely simple ideals of a semigroup. Recall from Section 1.1 that a 

subset K of a lattice L is meet-dense in L if any element of L can be written 

as the meet of some family of elements of K. We will say that a sublattice 

L of ides(S) satisfies the completely prime ideal property, shortly the cpi-

property, if the set of completely prime ideals from L is meet-dense in L, 

i.e. if any element of L can be written as the intersection of some family of 

completely prime ideals from L. As we seen before, this property was proved 

for Id"(S) by Theorem 2.17. M. Cirie and S. Bogdanovie [23] showed 
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that the cpi-property plays a crucial role in semilattice decompositions of 
semigroups: 

Theorem 2.24. (M. tiriC and S. BogdanoviC [23]) The lattice of semilattice 
decompositions of a semigroup S is isomorphic to the lattice of complete 
1-sublattices of Ides(S) satisfying the cpi-property. 

Another connection of semilattice decompositions of a semigroup, with 
some sublattices of the lattice of subsets of a semigroup, has been established 
by S. Bogdanovie. and M. OW in [12]. There they proved the following 
theorem: 

Theorem 2.25. (S. BogdanoviC and M. tirie [12]) The lattice of semilattice 
decompositions of a semigroup S is isomorphic to the lattice of complete 
1 -sublattices of P(S) whose principal elements are filters of S. 

For more informations about the role of quasi-orders in semilattice decom-
positions of semigroups we refer to another survey paper of S. Bogdanovi6 
and M. 6116 [16]. 

3. Band decompositions 

Although the existence of the greatest band decomposition has been es-
tablished by T. Tamura and N. Kimura in [123], 1955, by the theorem which 
is given here as Theorem 1.3, there are no sufficiently efficient characteri-
zations of the greatest band decomposition of a semigroup in the general 
case. But, there are very nice descriptions of greatest decompositions for 
some special types of band decompositions, as semilattice decompositions, 
treated in the previous chapter, matrix decompositions, where left zero band 
and right zero band decompositions are included, and normal band decom-
positions, where left normal band and right normal band decompositions 
are included. This chapter is devoted to the results concerning the greatest 
matrix decomposition of a semigroup, which will be presented in Section 3.1, 
and to the results concerning the greatest normal band decomposition of a 
semigroup, which will be presented in Section 3.2. 

Matrix decompositions, as well as left zero band and right zero band 
decompositions, have appeared first in studying of completely simple semi-
groups. Namely, by the famous Rees-Sushkevich theorem on matrix rep-
resentations of completely simple semigroups, any completely simple semi-
group can be decomposed into a matrix of groups, and also into a left zero 
band of right groups and into a right zero band of left groups. First general 
results concerning these decompositions have been obtained by P. Dubreil 
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[41], 1951, who constructed the smallest left zero band congruence on a semi-
group, and by G. Thierrin [128], 1956, who characterized the components of 
the greatest left zero band decomposition of a semigroup. The general the-
ory of matrix decompositions of semigroups has been founded by M. Petrich 
in [70], 1996. These results will be a topic of Section 3.1. 

Normal bands have been introduced by M. Yamada and N. Kimura [133], 
1958, whereas left normal bands have been first defined and studied by V. V. 
Vaguer [129], 1962, and B. M. Schein [86], 1963, and [87], 1965. The general 
results concerning left normal band, right normal band and normal band 
decompositions of a semigroup, presented in Section 3.2, have been obtained 
by M. Petrich in [71], 1966. 

For additional informations about matrix and normal band decomposi-
tions the reader is referred to the book of M. Petrich [73], 1977. 

3.1. Matrix decompositions 

As we noted before, the first general result concerning left zero band 
decompositions of a semigroup is the one of P. Dubreil [41], 1951. Define the 

relations and ti on a semigroup S by: 

a b 	L(a) n L(b) # 0, 	a --:; b a R(a) fl R(b) # 0, (a, b E 5). 

The relation :1:: has been introduced in above mentioned paper of P. Dubreil, 
where he proved the following theorem: 

Theorem 3.1. (P. Dubreil 1411) The smallest left zero band congruence on 

a semigroup S equals the relation " 

The components of the greatest left zero band decomposition of a semi-
group have been first described by G. Thierrin [128], 1956, by the following 
theorem: 

Theorem 3.2. (G. Thierrin [128]) The components of the greatest left zero 
band decomposition of a semigroup S are the minimal left consistent right 
ideals. 

Other characterizations of the greatest left zero band decomposition of a 
semigroup have been obtained by M. Petrich in [70], 1966. In this paper he 
proved the following two theorems: 

Theorem 3.3. (M. Petrich [70]) A relation 0 on a semigroup S is a left zero 

band congruence on S if and only if B = 0(A), for some nonempty family 

A of left consistent right ideals of S. 

V
ir

tu
al

 L
ib

ra
ry

 o
f 

F
ac

ul
ty

 o
f 

M
at

he
m

at
ic

s 
- 

U
ni

ve
rs

it
y 

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs



404 	 M. drie and S. Bogdanovi6 

Theorem 3.4. The smallest left zero band congruence on a semigroup S 
equals the relation 0(7Z/die (5)). 

The key theorem in theory of matrix decompositions of semigroups is the 
next theorem, proved by M. Petrich in [70], 1966, which gives a connec-
tion between left zero band, right zero band and matrix congruences on a 
semigroup: 

Theorem 3.5. (M. Petrich [70]) The intersection of a left zero band con-
gruence and a right zero band congruence on a semigroup S is a matrix 
congruence on S. 

Conversely, any matrix congruence on S can be written uniquely as the 
intersection of a left zero band congruence and a right zero band congruence 
on S. 

Combining Theorems 3,,1 and 3.5, the following characterization . of the 
smallest matrix congruence on a semigroup follows: 

Theorem 3.6. (M. Petrich [70]) The smallest matrix congruence on a semi- 
. 

group S equals the relation 7:**, °°n ti °O. 

Combining Theorem 3.3 and its dual, M. Petrich [70] obtained the follow-
ing two theorems: 

Theorem 3.7. (M. Petrich 170D A relation 9 on a semigroup S is a matrix 
congruence on S if and only if 9 = 0(A), for some nonempty subset A of 
X, where X = LId"(5) 

Theorem 3.8. (M. Petrich [70]) The smallest matrix congruence on a semi-
group S equals the relation 0(X), where X = drc  (.5) U TM& (S ) 	• 

M. Petrich in [70] also gave an alternative approach to matrix decom-
positions of semigroups, through so-called quasi-consistent subsemigroups. 
Namely, by a quasi-consistent subset of a semigroup S he defined a com-
pletely semiprime subset A of S satisfying the condition: for all x, y, z E S, 
xyz E A if and only if xy E A. Quasi-consistent subsemigroups of a semi-
group M. Petrich connected with left consistent right ideals and right con-
sistent left ideals by the following theorem: 

Theorem 3.9. (M. Petrich [70]) The intersection of a left consistent right 
ideal and a right consistent left ideal of a semigroup S is a quasi-consistent 
subsemigroup of S. 

Conversely, any quasi-consistent subsemigroup of S can be written uniqu-
ely as the intersection of a left consistent right ideal and a right consistent 
left ideal. 

U Rldic(S). 
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Using the previous theorem, matrix congruences on a semigroup can be 
characterized through quasi-consistent subsemigroups of a semigroup as fol-
lows: 

Theorem 3.10. (M. Petrich [70]) A relation B on a semigroup S is a matrix 
congruence on S if and only if 6) = 0(A), for some nonempty family A of 
the set of quasi-consistent subsemigroups of S. 

Theorem 3.11. (M. Petrich [70]) The smallest matrix congruence on a 

semigroup S equals the relation 0(X), where X denotes the set of all quasi-
consistent subsemigroups of S. 

Using Theorem 3.5 and the fact that the join of any left zero band congru-
ence and any right zero band congruence on a semigroup equals the universal 
congruence on this semigroup, the lattice of matrix congruences on a semi-
group can be characterized in the following way: 

Theorem 3.12. The lattice of matrix congruences on a semigroup S is 
isomorphic to the direct product of the lattice of left zero band congruences 
and the lattice of right zero band congruences on S. 

A characterization of the lattice of right zero band decompositions of a 
semigroup can be obtained through left consistent right .  ideals of a semi-
group, modifying the results of S. Bogdanovie and M. (.;iri6 [13] to semi-
groups without zero. For related results concerning semigroups with zero we 
refer to Section 4.2. 

Until the end of this section we will consider only semigroups without zero, 
because the definition of the lattice 'Tad(S) is different for semigroups with 
and without zero, and the set of right consistent left ideals of a semigroup 
with zero is one-element. 

Theorem 3.13. The poset Ridle(S) of left consistent right ideals of a 

semigroup S S °  without zero is a complete atomic Boolean algebra and 

7Zidle(S) = S(TZ1d(S)). 

Theorem 3.14. The lattice of left zero band decompositions of a semi-
group S # S° is isomorphic to the lattice of complete Boolean subalgebras of 
RI di' (S). 

The role of left zero band decompositions of a semigroup in direct decom-
positions of the lattice of right ideals of this semigroup is demonstrated by 
the following two theorems: 

Theorem 3.15. The lattice R.Td(S) of right ideals of a semigroup S # 5 °  

is a direct product of lattices I,„, a E Y, if and only if S is a left zero band 

of semigroups S a , a E Y, and L c, Rld(S,), for any a E Y. 
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Theorem 3.16. If S,, a E Y, are components of the greatest left zero 
band decomposition of a semigroup S # S ° , then the lattice Tad(S) can be 
decomposed into a direct product of its intervals [0„5„], a E Y, which are 
directly indecomposable. 

3.2. Normal band decompositions 

In the introduction of Chapter 3 we said that the general theory of nor-
mal band decompositions of semigroups, including here left normal band and 
right normal band decompositions, has been founded by M. Petrich in [71], 
1966. The methods used in this paper has been obtained by combination of 
the methods which M. Petrich used in [69], in studying of seniilattice decom-
positions, and the ones used in [70], in studying of matrix decompositions. 

M. Petrich in [71] defined a left (right) normal complex of a semigroup 
S as a nonempty subset A of S which is a left (right) consistent right (left) 
ideal of the smallest filter N(A) of S containing A, and he defined a normal 
complex of S as a subset A of S which is a quasi-consistent subsemigroup 
of N(A). He also introduced the following relations on a semigroup 5: for a 
nonempty subset A of S , A is the equivalence relation on S whose classes 
are nonempty sets among the sets A, N(A) — A and S — N(A), and for a 
nonempty family A of subsets of S , (1)(A) is the equivalence relation on S 
defined by: 

4)(A)  = n 
AEA 

Theorem 3.17. (M. Petrich [71]) A relation 9 on a semigroup S is a left 
• normal ban fl congruence on S if and only if 9 = 4)(A), for some nonempty 
family A of left normal complexes of S. 

Theorem 3.18. (M. Petrich [71]) The smallest left normal band congruence 
on a semigroup S equals the relation 9 = 4)(X), where X denotes the set of 
all left normal complexes of S. 

In order to study normal band congruences on a semigroup through left 
normal band congruences and right normal band congruences, M. Petrich 
proved the following theorem, similar to Theorem 3.5 concerning matrix 
congruences: 

Theorem 3.19. (M. Petrich 1711) The intersection of a left normal band 
congruence and a right normal band congruence on a semigroup S is a nor-
mal band congruence on S. 

Conversely, any normal band congruence on S can be written as the in-
tersection of the smallest left normal band congruence and the smallest right 
normal band congruence on S containing it. 
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Using this theorem, M. Petrich [71] characterized normal band congru-
ences and the smallest normal band congruence on a semigroup by the fol-
lowing two theorems: 

Theorem 3.20. (M. Petrich [71]) A relation 0 on a semigroup S is a normal 
band congruence on S if and only if 0 = (NA), for some nonempty subset 
A of X, where X denotes the set of all left normal complexes and all right 
normal complexes of S. 

Theorem 3.21. (M. Petrich [71]) The smallest normal band congruence on 
a semigroup S equals the relation 0 = 4, (X), where X denotes the set of all 
left normal complexes and all right normal complexes of S. 

In Theorem 3.20, X cannot be replaced by the set of all normal complexes, 

but this can 1)e done in Theorem 3.21: 

Theorem 3.22. (M. Petrich [71]) The smallest normal band congruence on 
a semigroup S equals the relation H = 4)(X), where X denotes the set of all 
normal complexes of S. 

4. Decompositions of semigroups with zero 

The first kdown type of decompositions of semigroups with zero have been 
orthogonal decompositions, called also 0-direct unions, which have been first 
defined and studied by E. S. Lyapin in [60] and [61], 1950, and 5. Schwarz 
[90], 1951. After that, they have been studied by many authors, mainly 
as orthogonal sums of completely 0-simple semigroups. General study of or-
thogonal decompositions of semigroups with zero has done by S. Bogdanovie 
and M. Cirie in [10], 1995, and [13]. The results obtained there will be a 
topic of Section 4.1. Among these results we emphasize Theorem 4.8 on 
atomicity of orthogonal decompositions. 

Decompositions of a semigroup with zero into a left, right and matrix sum 
of semigroups have been first defined and studied by S. Bogdanovie and M. 
(',irie in [13]. The results concerning these decompositions obtained in this 
paper will be presented in Section 4.2. We also give Theorem 4.21 which es-
tablish connections between the decompositions into a left, right and matrix 
sum, and orthogonal decompositions inside the lattice of 0-decompositions 
of a semigroup with zero. Note also that some decompositions of semigroups 
with zero, similar to decomposition into a matrix sum, have been considered 

by 0. Steinfeld in [105]. 
Quasi - sernilattice decompositions of a semigroup with zero, which are 

carried by partially ordered sets, appeared recently in the paper of M. Cirie 
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and S. Bogdanovie [26]. These decompositions will be considered in Section 
4.3. 

Note finally that decompositions into a left, right and matrix sum of 
semigroups, and quasi-semilattice decompositions of semigroups with zero 
are generalizations (or analogues) of left zero band, right zero band, matrix 
and seinilattice decompositions, respectively, as showed by Theorems 4.22 
and 4.28. Orthogonal sums have no such analogue. 

4.1. Orthogonal decompositions 

In studying of orthogonal decompositions of semigroups with zero, S. Bog-
danovie and M. (.1rie [10], 1995, has started from the notion of 0-consistent 
ideal. They defined a 0-consistent ideal of a semigroup S = S° as an ideal 
A having the property that A' is a consistent subset of S. They denoted by 
Zd°c (,5̀ ) the set of all 0-consistent ideals of a semigroup S = S° and they 
proved the following theorem: 

Theorem 4.1. (S. Bogdanovi6 and M. tiriC [10]) The poset Id°c( S) of all 
0-consistent' ideals of a semigroup S = 5° is a complete atomic. Boolean 
algebra and Id°c(S) = 93(Id(S)). 

Furthermore, any complete atomic Boolean algebra is isomorphic to the 
Boolean algebra of 0-consistent ideals of some semigroup with zero. 

Using this theorem, S. Bogdanovie and M. drie [10] obtained the follow-
ing theorem concerning orthogonal decompositions: 

Theorem 4.2. (S. Bogdanovie and M. tiriC [10]) Any semigroup S = 5 0 
 has a greatest orthogonal decomposition and its summands are all the atoms 

in Id°c (5 ). 

Another approach to orthogonal decompositions, through certain equiva-
lence relations, has (lone by S. Bogdanovie and M. dile in [13]. A 0-restricted 
and 0-consistent equivalence relation on a semigroup S = 50  will be called 
an orthogonal equivalence. This name will be justified by the role of these 
equivalences in orthogonal decompositions, which will be demonstrated in 
Theorem 4.4. Namely, the authors proved in [13] the following two theorems: 

Theorem 4.3. (S. BogdanoviC and M. irk [13]) The poset of orthogonal 
equivalences on a semigroup S = S° is a complete sublattice of the lattice 
E(5). 

Theorem 4.4. (S. Bogdanovie and M. tiriC [13]) The poset of orthogonal 
decompositions of a semigroup S = S° is a complete lattice and it is dually 
isomorphic to the lattice of orthogonal equivalences on S. 
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Note that the suntan& in an orthogonal decomposition of a semigroup 

= SO are precisely the nonzero classes of the related orthogonal equiva-
lence, with the zero adjoined, and vice versa. 

By Theorems 4.3 and 4.4 we deduce the following: 

Theorem 4.5. The lattice of orthogonal decompositions of a semigroup S = 
S° is a complete sublattice of the partition lattice of S. 

The lattice of orthogonal decompositions has been also characterized by 
some Boolean subalgebras of 1(0'(S) as follows: 

Theorem 4.6. (S. Bogdanovie and M. tirie [13]) The lattice of orthogonal 
decompositions of a semigroup S = S° is isomorphic to the lattice of complete 
Boolean subalgcbras of 

Note that any complete Boolean subalgebra of idoc(S) is atomic and its 

atoms are precisely the summands in the related orthogonal decomposition 

of S , and vice versa. 
To describe the smallest orthogonal equivalence on a semigroup with zero, 

S. BogdanoviC. and M. Ciri6 in [10] defined the relation ^, on a semigroup 

S = by 

a — b <=> .1(a) (1 .1(b) 	0, for a,b E 	 ON 0, 

and they proved the following: 

Theorem 4.7. (S. Bogdanovie and M. tiriC [10]) The smallest orthogonal 

equivalence on a semigroup S = S° equals the relation 

Note also that the lattice of orthogonal equivalences on S is the principal 

dual ideal of the lattice p(S) of 0-restricted equivalence relations on S , 

generated by ,°`). Since p(S) is the principal ideal of E(S), generated by 

the equivalence relation x on S determined by the partition {,5',0}, then 

the lattice of orthogonal equivalences on S is precisely the (closed) interval 

of e(s). 
The main theorem of the theory of orthogonal decompositions of semi-

groups with zero is the theorem on atomicity of orthogonal decompositions, 

proved by S. Bogdanovie.. and M. CiriC. in [10], 1995. This is the following 

theorem: 

Theorem 4.8. (S. BogdanoviC and M. One [10]) The summands of the great-

est orthogonal decomposition of a semigroup S = S° are orthogonally inde-

composable semigroups. 

Id°c(S ). 
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S. Bogdanovi6 and M. Ciri6 in [13] also observed that orthogonal decom-
positions of a semigroup S = S° are closely connected with direct decompo-
sitions of the lattice of ideals of S. This connection is demonstrated by the 
following three theorems: 

Theorem 4.9. The lattice Id(S) of ideals of a semigroup S = S° is a 
direct product of lattices L a, a E Y, if and only if S is an orthogonal sum 
of semigroups 5, a E Y, and L a  = Id(S a ), for any a E Y. 

Theorem 4.10. (S. Bogdanovie and M. tirie [13]) The lattice Id(S) of ideals 
of a semigroup S = 5° is directly indecomposable if and only if S is orthog-
onally indecomposable. 

Theorem 4.11. (S. Bogdanovie and M. tide [13D If 8,, a E Y, arc sum-
ma ►ds of the gmatest orthogonal decomposition of a semigroup S = S°, 
then the lattice Id(S) can be decomposed into a direct product of lattices 
Id(5(,), E Y , which are directly indecomposable. 

4.2. Decompositions into a left, right and matrix sum 

In studying of decompositions of semigroups with zero into a left sum of 
semigroups, S. Bogdanovi6 and M. CiriC. in [13] used the methods similar 
to the ones used in studying of orthogonal decompositions. At first, they 
considered equivalence relations on a semigroup with zero which we call here 
left sum equivalences. Namely, a 0-restricted, left 0-consistent equivalence 
relation on a semigroup S = 5° will be called an left sum equivalence. Right 
sum equivalences on S are defined dually. These names will be explained 
by the role of these equivalences in decompositions of S into a left sum and 
a right slim of semigroups, respectively, as demonstrated in Theorem 4.13. 
But, first we give the following theorem: 

Theorem 4.12. (S. Bogdanovie and M. (irk [131) The poset of left sum 
equivalences on a •sentigmup S = S° is a complete sublattice of the lattice 
c ( S). 

Theorem 4.13. (S. Bogdanovie and M. tirie [13]) The poset of decompo-
sitions of a semigroup S = 50  into a left sum of semigroups is a complete 
lattice and it is dually isomorphic to the lattice of left sum equivalences on 
S 

As in orthogonal decompositions, the sumands in a decomposition of a 
semigroup S = So into a left sum are the nonzero classes of the related left 
sum equivalence, with the zero adjoined, and vice versa. 

By Theorems 4.12 and 4.13 we obtain the following: 
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Theorem 4.14. The lattice of decompositions of a semigroup S = S° into 
a left sum of semigroups is a complete sublattice of the partition lattice of S. 

To characterize the smallest left sum equivalence on a semigroup, the 
authors used the relation 1 defined by G. Lallement and M. Petrich [59], 
1966, on a semigroup S = S° by: 

a b <4. R(a) n R(b) 0, for a, b E S', 	ONO. 

The relation 4 on S is defined dually. Using the above relation, S. Bog-
danovk and M. (iris [13] characterized the smallest left sum equivalence as 
follows: 

Theorem 4.15. (S. Bogdanovie and M. tiriC [13]) The smallest left sum 
equivalence on a semigroup S = S° equals the relation 	O. 

As in orthogonal equivalences, the set of left sum equivalences on a semi-
group S = S° equals the interval [ ,-,r  x.  x] of the lattice E(S). 

Instead of 0-consistent ideals, used in studying of orthogonal decomposi-
tions, in studying of decompositions of a semigroup with zero into a left sum 
of semigroups, S. Bogdanovk and M. Cirk used in [13] the notion of the left 
0-consistent right ideal. Namely, they defined a right ideal A of a semigroup 
S = S° to be left 0-consistent if A' is a left consistent subset of S. The set 
of all left 0-consistent ideals of a semigroup they denoted by Tadloc r  

,) and 
they proved the following two theorems: 

Theorem 4.16. (S. BogdanoviC and M. brie [13]) The poset Tad me(S) of 
all left 0-consistent right ideals of a semigroup S = S° is a complete atomic 
Boolean algebra and 7Z1dme(5') = 93(1ZId(S)). 

Theorem 4.17. (S. Bogdanovie and M. tiriC [13]) The lattice of decompo- 
sitions of a semigroup S = S° into a left sum of semigroup is isomorphic to 

- the lattice of complete Boolean subalgebras of 7' adick  

As in orthogonal decompositions, the summands in a decomposition of 
a semigroup = S° into a left sum of semigroups are precisely the atoms 
in the related complete Boollean subalgebra of Rldi°c(S), which is atomic, 
and vice versa. 

As S. BogdanoviC. and M. (I•k. in [13] observed, the previous two theorems 
can be applied to direct decompositions of the lattice of right ideals of a 
semigroup with zero: 

Theorem 4.18. The lattice Tad(S) of right ideals of a semigroup S = 5° 
is a direct product of lattices L ( , a E Y, if and only if S is a left sum of 

semigroups S e,, a E Y, and L„ R.Id(S„), for any a E Y. 
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Theorem 4.19. (S. Bogdanovie and M. tirie [13]) If S„, a E Y, are the 
summands of the greatest decomposition of a semigroup S = So into a left 
sum of semigroups, then the lattice rld(5) can be decomposed into a direct 
product of its intervals [0„5„], a E Y, which are directly indecomposable. 

Note that the interval [0„C,,1 in Theorem 4.19 cannot be replaced by the 
lattice Rid( S (.), in contrast to Theorem 4.11. 

In order to characterize decompositions of a semigroup with zero into 
a matrix sum of semigroups, S. Bogdanovi6 and M. Civic consider in [13] 
equivalence relations that are the intersection of a left sum equivalence and 
a right sum .equivalence, which will be called here matrix sum equivalences, 
and they proved the following theorems: 

Theorem 4.20. (S. Bogdanovie and M. (iriC [13]) Tlae 	 f po of matrix sum 
equivalences on a semigroup 5 = S° is a complete lattice. 

Theorem 4.21. (S. BogdanoviC and M.. tiriC [13]) The poset of decomposi-
tions of a semigroup S = S 0  into a matrix sum of sentigroups is a complete 
lattice and it is dually isomorphic to the lattice of matrix sum equivalences 
on S. 

Note that the sumands in a decomposition of a semigroup = 5° into 
a matrix sum are exactly the nonzero classes of the related matrix sum 
equivalence, with the zero adjoined, and vice versa. 

Note also that the previous two theorems give a connection between the 
decompositions into a left sum, decompositions into a right sum and de-
compositions into a matrix sum. The authors in [13] established a similar 
connection between the decompositions into a left sum, decompositions into 
a right sum and orthogonal decompositions. This connection is given by the 
following theorem: 

Theorem 4.22. (S. BogdanoviC and M. irk [13]) The join in i(S) of any 
left sum equivalence and any right sum equivalence on a semigroup S = 
is aa orthogonal equivalence on S. 

Especially, the join of Z. ,  (x) and 4 	equals 

The above quoted results can be summarized by the following theorem: 

Theorem 4.23. In the partition lattice of a semigroup S = , the meet 
of any decomposition of S into a left sum and any decomposition of S into 
a right sum of semigroups is an orthogonal decomposition, and its join is a 
decomposition into a matrix sum of semigroups. 

Especially, the meet of the greatest decomposition of S into a left sum and 
the greatest decomposition of S into a right sum of semigroups is the greatest 

V
ir

tu
al

 L
ib

ra
ry

 o
f 

F
ac

ul
ty

 o
f 

M
at

he
m

at
ic

s 
- 

U
ni

ve
rs

it
y 

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs



Theory of greatest decompositions of semigroups (A survey) 	413 

orthogonal decomposition of S, and its join is the greatest decomposition of 

S into a matrix sum of semignrups. 

Note finally that decompositions of a semigroup with zero into a left sum, 
right sum and matrix sum of semigroups can be treated as generalizations 
of left zero band, right zero band and matrix decompositions, respectively. 
This follows by the following theorem: 

Theorem 4.24. The lattice of left zero band (right zero band, matrix) de-

compositions of a semigroup S is isomorphic to the lattice of decompositions 

into a left (right, matrix) sum of semigroups of a sentigmup T arising from 

S by adjoining the zero. 

4.3. Quasi-semilattice decompositions 

Studying of quasi-semilattice decompositions of semigroups with zero be-
gan in the paper of M. and S. BogdanoviC. [20], 1994. In this paper, 
some notions which appears in studying of semilattice decompositions of 
semigroups the authors modified for semigroups with zero. Namely, the au-

thors defined a 0-positive quasi-order on a semigroup S = S°  as a quasi-order 

e having the property that for a, b E S, ab 0 0 implies a e ab and b ab, they 

defined a quasi-order e on S to satisfy the 0-cm -property if for all a, b, c E 5, 

ab 0 0, a e c and b c implies ab 1 e, and they proved the following theorem: 

Theorem 4.25. (M. tirie and S. Bogdanovie [20]) The poset of left 0-restric-

ted positive quasi-orders on a semigroup S = S°  satisfying the 0-cm-property 

and the poset of 0-restricted 0-positive quasi-orders on S satisfying the 0-cm-

property are complete lattices and they are isomorphic. 

Further, M. Ciri6 and S. Bogdanovi6. defined in [20] a completely 0-semi-

prime ideal of a semigroup S = as an ideal A of S having the property 

that A' is a completely semiprime subset of S. Similarly, A is said to he 

completely 0-prime if A• is a completely prime subset. The set of all com-

pletely 0-semiprime ideals of S , denoted by ideosis, ) is clearly a complete 

lattice. A sublattice L of Id"°•(.9) is defined to satisfy the c - 0-pi -property 

if the set of completely 0-prime ideals from L is meet-dense in L, i.e. if any 

element of L can be written as the intersection of some family of completely 

0-prime ideals from L. Using these notions, M. (Irk and S. Bogdanovi6 [20] 

proved the following theorem: 

Theorem 4.26. (M. tirie and S. BogdanoviC [20]) For a scmigroup S = , 

the poset of complete 0,1-sublattices of the lattice Ide °8 (5) satisfying the c-

0-pi-property is a complete lattice and it is dually isomorphic to the lattice 

of 0-restricted 0-positive quasi-orders on S satisfying the 0-cm-property. 
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The investigation of quasi-semilattice decompositions of semigroups with 
zero M. ('iris and Bogdanovi6 continued in [26J, where they proved the fol- 
lowing three theorems that characterize the lattice of quasi-semilattice de-
compositions of a semigroup with zero: 

Theorem 4.27. (M. (iriC and S. BogdanoviC [20]) The poset of quasi-semi- 
lattice decompositions of a semigroup .5' 	.5fO is a complete lattice and it is 
dually isommphic to the lattice of 0-irstricted 0-positive quasi-orders on S 
satisfying the 0-cm-property. 

Theorem 4.28. (M. tirie and S. BogdanoviC [26]) The lattice of quasi-semi- 
lattice decompositions of a semigroup S = S° it is dually isomorphic to 
the lattice of left 0-restricted positive quasi-orders on S satisfying the 0-cm-
prope•ty. 

Theorem 4.29. (M. tirie and S. BogdanoviC [26]) The lattice of quasi-semi-
lattice decompositions of a scmigroup S = S° is isomorphic to the lattice of 
complete 0,1-sublattices of Ide °6 (8) satisfying the c-0-pi-pmperty. 

We finish this chapter by the theorem which give a connection between 
quasi-semilattice decompositions of semigroups with zero and seinilattice 
decompositions. Note that this connection is incorporated in the name of 
q u asi-sem Hat tice decom positions. 

Theorem 4.30. (M. tirie and S. BogdanoviC [26]) The lattice of sentilat- 
ti cc decompositions of ca sentigroup S is isomorphic to the lattice of quasi- 
sentilattice decompositions of the semigroup T arising from S by adjoining 
the zero. 

5. Yet other decompositions 

In this paper we talk about yet other types of decompositions having the 
greatest one. 

The topic of Section 5.1 will be U-decompositions, introduced and first 
studied by L. N. Shevrin [93], 1961, as a powerful tool in studying of lat-
tices of subsemigroups of a semigroup. We quote the theorem considering 
the properties of the poset of U-decompositions, the theorem on atomic-
ity of these decompositions, as Theorem 5.3, and also three theorems on 
application of U-decompositions to direct decompositions of the lattice of 
subsemigroups of a semigroup. For informations on other applications of 
U-decompositions, and related U-band decompositions, in studying of the 
lattice of subsemigroups of a semigroup the reader is referred to the books 
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of L. N. Shevrin and A. Ya. Ovsyanikov [102], 1990, and [103], 1991, their 
survey article [101], 1983, and the book of M. Petrich [73], 1977. Note that 
L. N. Shevrin used the names "strong decomposition" and "strong band 
decomposition" for these decompositions. But, because the notion "strong 
band of semigroups" has been also used for other concepts of the semigroup 
theory, here we use the names used also in the book of M. Petrich [73], 1977. 

Ordinal decompositions, treated in Section 5.2, came out from studying 
of linearly ordered groups in the papers of F. Klein-Barmen [55] and [56], 
1942, and [57], 1948, and A. M. Kaufman [51] and [52], 1949. They have 
been introduced by A. M. Kaufman [51], 1949, where they have been called 
successively-annihilating sums (bands) of semigroups. General study of these 
decompositions has done by E. S. Lyapin in his book [62], 1960, where he 
showed that the poset of ordinal decompositions of any semigroup is a com-
plete sublattice of the partition lattice of this semigroup, and proved the 
theorem on atomicity of ordinal decompositions, given here as Theorem 5.8. 
Here we also present the results of M. (Irk and S. Bogdanovi6 that character-
ize lattices of ordinal decompositions of semigroups. For more applications 
on applications of ordinal decompositions see the books: E. S. Lyapin [62], 
1960, M. Petrich [73], 1977, and L. N. Shevrin and A. Ya. Ovsyanikov [102], 
1990, and [103], 1991. 

/-matrix decompositions have arisen in the paper of G. Lallement and M. 
Petrich [59], 1966, as a generalization of matrix decompositions. The very 
nice results obtained in this paper will be presented in Section 5.3. For some 
applications of such decompositions see the papers of J. Fountain and M. 
Petrich [43], 1986, and [44], 1989. 

The last section of this chapter is devoted to setnilattice-matrix decom-
positions of semigroups. These decompositions have been first studied by A. 
H. Clifford [29], 1941, who proved that unions of groups (completely regular 
semigroups) are semilattices of completely simple semigroups, which are in 
fact semilattices of matrices of groups. After that, semilattice-matrix de-
compositions have been studied by many authors, for example by P. Chu, 
Y, Guo and X. Ren [28], 1989, L. N. Shevrin [100], 1994, S. Bogdanovil! and 
M. (Irie. [11], 1995, and [15], and other. By the well-known theorem of D. 

McLean [64], 1954, and A. H. Clifford [30], 1954. on the decomposition of 

a band into a semilattice of rectangular bands, semilattice-matrix decom-
positions can be treated as generalizations of band decompositions, and in 
many papers these decompositions have been used to make preparations 
for band decompositions. Here we present some general properties of these 

decompositions discovered by M. (.;iriC. and S. Bogdanovi6 in [27]. 
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5.1. U-decompositions 

We said in the introduction of this paper that general study of U-decom-
positions has been done by L. N. Shevrin iii [96], 1965. There he has obtained 
the result that can be formulated in the following way: 

Theorem 5.1. (L. N. Shevrin [96]) The poset of U-decompositions of a soni-
group S is a principal ideal of the partition lattice of S. 

hi the same paper L. N. Shevrin considered also U-band decompositions 
and some their special types. Namely, for any subvariety V of the variety 
of bands a U - V - band decomposition of a semigroup S is defined as a de-
composition which is both U-decomposition and V-band decomposition. By 
Theorems 5.1 and 1.6 the following theorem follows: 

Theorem 5.2. For any subvariety V of the variety of bands, the poset of U-
V - band decompositions of a semigroup S is a principal ideal of the partition 
lattice of S. 

L. N. Shevrin [96] also proved the theorem on atomicity of U-decomposi-
tions, which is given below. 

Theorem 5.3. (L. N. Shevrin [96]) The components of the greatest U -dc-
composition of a semigmup S are U-indecomposable. 

Among the numerous applications of U-decompositions in studying of 
lattices of subsemigroups of a semigroup we emphasize the application to 
decompositions of these lattices into a direct product, which is demonstrated 
by the following three theorems: 

Theorem 5.4. (L. N. Shevrin [94]) The lattice Sub (S) of subsemigroups of 
a semigroup  'S is a direct product of lattices L c„ cY E Y, if and only if S has 
a U-decomposition into subsemigroups .5,, ce E Y, and Sub (S e,) 	L, for 
(1711/ (E 	1. 

Theorem 5.5. (L. N. Shevrin [96]) The lattice Sub (S) of subsemigroups of a 
semigroup S is directly indecomposable if and only if S is U-indecomposable. 

Theorem 5.6. (L. N. Shevrin [96]) 	E Y, are the components of the 
greatest u-decomposition of a semigroup S, then the lattice Sub (N) of sub-
semigroups of S Can be decomposed into a direct product of lattices Sub (Sc,), 
cr E Y, which are directly indecomposable. 

WP advise the reader to compare the previous three theorems with Theo-
rems 4.9-4.11, concerning direct decompositions of the lattice of ideals of a 
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semigroup with zero, Theorems 4.18 and 4.19, concerning direct decompo-
sitions of the lattice of right ideals of a semigroup with zero, and Theorems 
:3.15 and 3.16, concerning direct decompositions of the lattice of right ideals 
of a. semigroup without zero. 

5.2. Ordinal decompositions 

General study of ordinal decompositions has been made by E. S. Lyapin 
in his book [62] from 1960. There he showed the following property of the 

poset of ordinal decompositions: 

Theorem 5.7. (E. S. Lyapin [621) The poset of ordinal demnpositions of a 
semigmup S is a complete sublattice of the partition lattice of S. 

E. S. Lyapin [62] also proved the very important theorem on atomicity 
of ordinal decompositions, whose another proof has been given by M. (Irk.. 

and S. BogdanoviC in [25]. 

Theorem 5.8. (E. S. Lyapin [621) The components of the greatest ordinal 

decomposition of a semigroup S are ordinally indecomposable. 

To characterize the lattice of ordinal decompositions, M. (Irk and S. 
Bogdanovii.: [25] have used the next theorem, obtained in their earlier paper 
[23], which gives a characterization of the poset of chain decompositions of 
a semigroup through completely prime ideals. 

Theorem 5.9. (M. tirie and S. Bogdanovie [231) The poset of chain decom-
positions of a semigroup S is isomorphic to the poset of complete 1-sublattices 
of Ides(S) consisting of completely prime ideals of S. 

Note that another characterization of the poset of chain decompositions 

can be given by filters as follows: 

Theorem 5.10. (S. BogdanoviC and M. brie [121) The poset of chain de-
compositions of a semigroup S is isomorphic to the poset of complete 0,1- 
sublattices of P(S) consisting of filters of S. 

M. 	and S. Bogdanoviis. [25] defined a strongly prime ideal of a semi- 

group S as an ideal P of S having the property that for all , y E , 

xy = p E P implies that either a: = p or y = p or a:, y E P, and they 

proved that the s et of all strongly prime ideals of a semigroup S, denoted 

by IdsP(S), is a complete 1 - sublattice of the lattice Id(S) of ideals of S. 

Moreover, they gave the following characterization of the lattice of ordinal 

decompositions of a semigroup: 
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Theorem 5.11. (M. tirie and S. Bogdanovie [25]) The lattice of ordinal 
decompositions of a semigroup S is isomorphic to the lattice of complete 
-sublattices of Id8P(S). 

5.3. I-matrix decompositions 

If 9 is a congruence on a semigroup S and S/9 is a rectangular 0-band, 
then 9 is said to be an I-matrix congruence, where I is an ideal of S which 
is the 0-class that is the zero of .5/0. The corresponding decomposition is 
an 1-matrix decomposition of 5 , and I is called a matrix ideal of S. G. 
Lallement and M. Petrich [59] defined a quasi-cmpletely prime ideal of a. 
semigroup S as an ideal I satisfying the condition that for all a, b, e E S, 
abc E I implies that either ab E I or be E 1, and they proved the following 
theorem: 

Theorem 5.12. (G. Lallement and M. Petrich [59]) An ideal I of 0 senzigroup 
S is a matrix ideal if and only if it is prime and quasi-completely prime. 

To characterize /-matrix congruences, G. Lallement and M. Petrich [59] 
introduced the following notions: if A is a nonempty subset of a semigroup 
S. then an equivalence relation N on S is called a left A-equivalence if the 
following conditions hold: 

(1) A is a 0-class of 5; 
(2) 0 is a left congruence; 
(3) for all 	y E S, xy A implies xy 9 a:. 

A right A-equivalence is defined dually. Necessary and sufficient conditions 
for existence of a left A-equivalence and a right A-equivalence on a semigroup 
have been determined by the following theorem: 

Theorem 5.13. (G. Lallement and M. Petrich [59]) Let A be a subset of a 
sentigmup S. Then there exists a left A-equivalence and a rig ht A-equivalence 
if and wily/ if A is a quasi-completely prime ideal of S. 

The following theorem has been also proved in [59]: 

Theorem' 5.14. (G. Lallement and M. Petrich 159D Let I be a matrix ideal 
of a sentigmup S. Then the poset of left 1-equivalences on S is a complete 
sublattice of the lattice of left co•gruemrs on S. 

C. Lallement and M. Petrich [59] characterized the smallest /-equivalence 
in three ways. At first, they defined a. left I -complex of a semigroup S as a 
nonempty subset A of S having the following properties: 

(1) A n 	o; 
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(2) A is a left consistent subset of 5; 
(3) A U I is a right ideal of S. 

A right I-complex has been defined dually. For an element a E S — I, let 

C(a) they denoted the smallest left 1-complex of S containing a, i.e. the 
intersection of all left /-complexes of .5' containing a, called the principal left 

I-complex of S generated by a, and they proved the following 

Theorem 5.15. (G. Lallement and M. Petrich [59]) Let I be a matrix ideal 
of a semigroup S. Then the relation 0 on S defined by: 

	

a 0 b <4- a, b E I or C(a) = C(b) 	(a, b E 5 ) , 

equals the smallest left I -equivalence on S. 

The second and third characterization of the smallest left /-equivalence 
on a semigroup have been given by the following two theorems: 

Theorem 5.16. (G. Lallement and M. Petrich [59]) Let I be a matrix ideal 
of a sentigroup S. Then the relation 9 on S defined by 

a b 	(Va; E S ) (ax a E I <4,  barb E I) 	(a,b E 5), 

equals the smallest I-matrix congruence on S. 

Theorem 5.17. (G. Lallement and M. Petrich [59]) Let I be a matrix ideal 
of a semigroup S. Then the smallest left I -equivalence equals the principal 
left congruence LI.  

Following the ideas used by M. Petrich in studying Of matrix decomposi-
tions, G. Lallement and M. Petrich proved in [59] the next theorem, similar 
to Theorem 3.5. 

Theorem 5.18. (G. Lallement and M. Petrich [59]) Let I be a matrix ideal 
of a semigroup S. Then the intersection of a left I-equivalence and a right 
I-equivalence is a I -matrix congruence on S. 

Conversely, any I -matrix congruence on S can be written uniquely as the 
intersection of a left I-equivalence and a right I -equivalence on S . 

Using the previous theorem and Theorem 5.14, G. Lallement and M. 
Petrich proved also in [59] the following two theorems: 

Theorem 5.19. (G. Lallement and M. Petrich [59]) Let I be a matrix ideal of 
a semigroup S. Then the poset of I-matrix congruences on S is a complete 
sublattice of Con (S). 

Theorem 5.20. (G. Lallement and M. Petrich [59]) Let I be a matrix ideal 

of a semigroup S and let 0 denote the smallest I -matrix congruence on S. 
Then = n L = RK = LK, where K E S13,2 
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5.4. Semilattice-matrix decompositions 

Let a semigroup S be a semilattice Y of semigroups 5„, cr E Y, and for 
any o. E Y, let S, be a left zero band (right zero band, matrix) of semigroups 

E 1„. M. (!irii7 and S. Bogdanovi6 [27] called the partition {Si 	E /}, 
where 1 = U„ Ey 	a semilattire-left (semilattice-right, semilattice-matrix) 
deco7nposition of S, or briefly 	s-m-)decomposition. 110 denotes 
the equivalence. relation determined by this partition and if p denotes the 
semilattice congruence determined by the partition {S„ Icr E Y}, then 
is called a semilattire-left (semilattire-right, seinilattice-matrix) equivalence 
on S carried by e , or briefly 8-1- (s-r-, s-m-)equivalence, and p is called a 
carrier of 9. Clearly, an equivalence relation N on a semigroup S contained 
in a semilattice-congruence p on S is a s-l-(s-r-,s-m-) equivalence carried by 
P if and only if for all a, b E S, a g  b implies abe a (a e  b implies abOb, a 0b 
implies aba 0 a). 

M. (111(7 and S. Bogdanovi6 studied in [27] some general properties of 8-1-, 
s-r- and s-m-e(lnivalenee.s and their carriers, and they proved the next four 
theorems. Note that Theorem 5.24 is similar to Theorems 3.5, 3.19 and 5.18. 

Theorem 5.21. (M. Ciric and S. Bogdanovie [27]) The set of s-l-(s-r-„s-m-) 
equivalences On a semigroup S carried by a semilattice congruence p on S is 
a closed interval of e(S). 

Theorem 5.22. (M. tiriC and S. Bogdanovie [27]) The set of carriers of a 
s-l-(s-r-, s-m-)equivalence H on a semigmup S is a convex subset, with the 
smallest element, of the lattice of semilattice congruences on S. 

Theorem 5.23. (M. OriC and S. Bogdanovie [27]) The poset of all a 8-1-(s-r-, 
s-m-)equivalences on a semigroup S is 0 complete lattice. 

Theorem 5.24. (M. One and S. BogdanoviC [27]) The intersection of a 
s-l-equivalence and a s-r-equivalence on a semigroup S is a s-m-equivalence. 

Conversely, any s-m-equivalence can be written, uniquely up to a carrier, 
as the intersection of a s-l-equivalence and a s-r-equivalence. 
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INVITED LECTURE 

WORD PROBLEMS FOR VARIETIES OF ALGEBRAS 

(A SURVEY) 

Sinisa Crvenkovie 

1. Introduction 

In the algebraic sense, a word is a formal expression, or finite string of 
symbols, built up in a more or less transparent way from certain primi-
tive symbols, called constants, and certain other symbols which represent 
algebraic operations. A word problem is the problem of deciding in a given 
context, whether or not two given words represent the same element of the 
algebra. For such a. problem to have a definite sense, certain assumptions 
must be made. Typically, one is concerned with some specific variety of al-
gebras, such as groups or associative rings or the like. Word problems range 
all the way from triviality to algorithmic unsolvability. 

The origin of the field of word problems may be traced back to R. Dedekind 
who in 1900 described the free modular lattice on three generators. At 
the begining of the century Axel Thue had formulated the word problem 
for finitely presented semigroups--or, as one now says, Thue systems—and 
solved various special cases of the general problem. 

But negative results, unsolvability results in algebra, were impossible be-
fore the notion of an algorithmically unsolvable problem was formulated. In 
1935-1936 A. Church and, independently, A. M. Turing gave equivalent pre-
cise mathematical definitions of the intuitive notion of algorithm. "Tur-
ing machines" and "Church's Thesis", led to Church's negative solution of 
the decision problem for first–order arithmetic; and, subsequently, to in-
dependent negative solutions by Church and Turing to Hilbert's Entschei-
dungsproblem for pure predicate logic. It seems that all unsolvability results 
in mathematics are, in final analysis, a translation of such classical results 
into a new setting. 

In 1947 E. Post and A. A. Ma.rkov, independently, showed the word prob-
lem for semigroups unsolvable, constructing the bridge from logic to algebra. 

Supported by Grant 0401B of RFNS through Math. Inst. SANU 
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428 	 S. Crvenkovi6 

This result was the first unsolvability result outside the foundations of math-
ematics. 

Perhaps the most celebrated result is the unsolvability of the word problem 
for groups obtained by P. S. Novikov in 1952. 

This paper surveys, unifies, and extends a, number of results on the word 
problems in the context of universal algebra. From our point of view, the the-
ory of free spectra is also a part of algebra. dealing with words. A model—
theoretic argument is used to prove unsolva.bility of many word problems for 
varieties of universal algebras. Most of the presented results are small contri-
butions of the authors to the great topic and appeard, or will be published, 
elswhere. 

2. Definitions 

In the sequel, C denotes a. first ordor language which contains the symbol 
of identity 	and has no relation symbols. If , t 2  are terms of the language 
E, then t i 	t 2  is called an equation or an identity. The set of all identities 
of E is denoted by Eq (E). If (1 is a. set of formulas of G, then by Mod (0) we 
denote the class of all algebras A such tha.l. A k (1. 

If G is a. set of new mutant symbols (E n G = 0), then by £G we denote 
U G. Usually, a symbol from G and its interpretation is denoted by the 

same letter. Let A be au algebra. and C A. Then by AG we denote the 
algebra (A, x ),EG . If R is a set of identities in EG  with no variables, then 
(G, R) is called a presentation in L. 

Definition 2.1. Let 0 be a set of identities of C, V = Mad (0) and (G, R) 
a presentation in £G. For an algebra A in E we say that it is presented by 
(G, R) in V if the following hold: 

(i) A is generated by G; 
(ii) A G 	U R; 

(iii) For any identity e ira .Cc; , with no variables, we have OUR ke 
provided A k c. 

If an algebra. A is presented by (G, R) in V, then we put A = Pv  (G , R). 
For an algebra. L we say that it is finitely presented in V if there are finite 
sets G and R such that 8 is presented by (G. R) in V. Note that the algebra 
presented by (G, 11) in V is unique up to isomorphism. 

Example 2.2. Let (U, R) be a presentation in E G . Let N be a set of identi-
ties of E and V the variety defined by flu set H U R. Then the free algebra 
:Fv (0) of the variety V on the empty set of free generators is an algebra 
presented by (G, R) in V = M 0(1(0). 
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Let H be a. set of identities of 	V = Mod (9). and A the algebra. finitely 

presented by (G, H) in V. The word problem for A = Pv (G, R) in V asks if 

there is an algorithm to determine, for any identity c in Ea with no variables, 

whther or not A e. If such an algorithm exists, the word problem is 

solvable (decidable); otherwise it is unsolvable (undecidable). 
The following two options occur in the literature for what is meant by the 

solvability of the word problem for a. variety V: 

(1) there is an algorithm which, given a. finite presentation P v (G, R) 

solves the word problem for P v (G, R) in V; 

(2) for each finite presentation Pv (G, R), there is an algorithm which 

solves the word problem for Tv ((T ,R) in V. 

We say that V has uniformly solvable word problem if (1) holds. 

Varieties with uniformly solvable word problem include commutative se-
migroups and abelian groups, any finitely based locally finite or residually 
finite variety, and the variety of all algebras of a given finite type (see [21]). 

Most of the examples which appear in the literature, of varieties with 
unsolvable word problem, provide a finite presentation for which the word 
problem is unsolvable. These include sentigroups, groups and modular lat- 

tices. 
In this paper we will apply the method of embedding to obtain several 

unsolvabilities of word problem. 

3. Varieties with solvable but uniformly unsolvable word 
problems 

Probably the first one who recognized the difference between the uniform 
solvability and solvability of the word problem was A. I. Marcev [27]. Ac-

cording to Benjamin Wells,  A.  Tarski was also interested in the existence of 

varieties with solvable but not uniformly solvable word problem. 

An algebra. A is locally finite if every finitely generated subalgebra is finite. 

A variety V is lically finite if every member of V is locally finite. 

Let us recall some facts from mathematical logic. For an arbitrary first—

order theory K, we correlate with each symbol a of K a. positive integer P((x), 

called the G5del number of a. Thus, is a. one—one function from the set 

of symbols of K., expressions of K., and finite sequences of expressions of 1C, 

into the set of positive integers. 
A set of Godel numbers is recursive if its characteristic function is a re-

cursive function. Denote by ,x„) the set of all n—ary terms in 
the language of a variety V. According to Church's Thesis, an algebra A 

finitely presented by ((r, R) in V has a. solvable word problem if the set 

IF(p 	01 1), (1 E r(xt, x2, • • • ,xn), 
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430 	 S. Crvenkovic 

	

pA g g2, 	gn) = ge4 (91 , 92, 
	

, 11n), 
	E  N,  111,92, 	gn E G } 

is recursive. 

Proposition 3.1. Let 13 be a finite algebra of a finite type. If (c1, c,,, 	, en ) E B" is a fixed n-tuple, then the set 

S={ r(p 	E 	:r2 , 	, 	), Pu (ci e2, • • • , 	) = (18 (e1,e2, 	, en)} 
is recursive. 

Proof. The proof is straightforward. 0 

Proposition 3.2. If a finitely presented algebra A is finite, then the word 
problem for A is solvable. 

Proof Follows from the previous prposition 0 
Let e, 	e 2 , 	e„ (where n E N) be identities of G. Then the formula 

	

e1 A e9 A ... A e„ 	e is called a quasi-identity. The set of all quasi-identities of E is denoted by Q(E). If K is a class of algebras in a language E then Q(K;) = {q E Q(E)1 K q). The problem of quasi-identities for a class K: asks if the set Q(K) is recursive (i.e. the set of Giidel numbers of the elements 
of Q(K)). If so, the problem of quasi-identities is solvable; otherwise it is unsolvable. 

By the Church's Thesis, the problem of solvability (decidability) of the 
problem of quasi-identities for a class K. is equivalent to the problem of the 
existence of an algorithm which, for every quasi-identity q E Q(E), decides whether or not IC 1= q. 

Remark 3.3. Let 0 be a set of formulas of E and K = M od(0). Then we 
have 

Q(K) = {q E Q(E)1 9  q}. 
Therefore, the problem of quasi-identities for such a class K, is solvable iff 

there exists an algorithm which, for any q E (MC), decides whether or not 0I- q. 

The following proposition is a Dart of the folklore. 

Proposition 3.4. Let 0 be a set of identities in some language E and let 
K = M od(0). Then K has uniformly solvable word problem if the problem 
of quasi-identities for IC is solvable. 

Similarly to the case of quasi-identities, if IC is a class of algebras in a 
language E, then Eq(K) = {e E Ey (C)1 e}. The set Eq (IC) is called the equational theory of the class K. We say that equational theory of a class 
K. is decidable (solvable) if the set Ey (IC) is recursive (i.e. the set of Godel 
numbers of the elements of Eg (IC) is recursive). 
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Proposition 3.5. Let V be a locally finite variety of a finite type. Then V 
has a .solvable word problem. 

Proof. Follows from Proposition 3.2. ❑ 

As we all know, the set of all recursive functions is countable. For a 
class of algebras 	let F/Equo  denote the characteristic function of the set 

Ir(pP--1 	E Erg/0). if VI  and V, are two different varieties, then 

Eq  (1)k) 	HEq(V• ► • Therefore we have 

Proposition 3.6. If a class of varieties of the same type has uncountably 
many elements, then there is a variety from that class having undecidable 
equational theory. 

Corollary 3.7. Let V be a locally finite variety of a finite type. If V has un-
countably many subva•ieties, then V has solvable but not uniformly solvable 
word problem. 

Proof. From Proposition 3.6. it follows that V has undecidable equational 
theory. This, of course, implies that the problem of Q( V) is unsolvable which 
is equivalent with the uniform unsolvability of the word problem for V. ❑ 

The student of A. Tarski, Benjamin Wells, in his Ph. I). thesis at the 
University of Berkeley (1982), presented the first examples of varieties having 
solvable but uniformly unsolvable word problem. This result appeared first 
in [36], later as Theorem 11.17. in [37], and recently as Theorem 1.7. in 
[38]. The last result is almost identical to our result even though they were 
obtained independently. Our construction is primarily based on an example 
appearing in the paper of Mekler, Nelson and Shelah [30]. 

Theorem 3.8 ([11]). In a language of the type (2,0,1,1) their exists a va-
riety having solvable word problem and undecidable equational theory. This 
variety is axiomatized by the following identities 

	

x - 0 0 	 f(0) 	0 	h(h(x)) 	h(x) 
s 2 	0 	f( f (x)) 	f (x) 	11(x)y 

	

x'yti yx 	f(x • y) 	0 	f(h(x)) 	h(x) 
x • (y • z) 	(x • y) z 	h(0) 	0 

hk f.Rxi).i(x2)• • •.Rxvo))/P' 0 , 

where yo(k) is a primitive recursive function such that X = {yo(k)ik E N} is 

a recursively enumerable nonrecursivc set. 

In [12] we proved the following 
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432 	 S. ervenkoviC 

Theorem 3.9 ([12]). In a language of the type (2,0, 1, 1) there exists an 
infinite (isomorphic to (w, ) chain of varieties with solvable word problems 
and uncdceidable equational theories. 

The varieties from Theorem 3.9. are constructed in the following way. Let 

the variety defined in Theorem 3.8. be denoted by V i . Denote by E n , n > 2 
the identity in f, h, 0) of the form: 

En f(x1.1(;r2 • • • f(x„). • • )) 	O. 

The variety whose set of definitional identities is same as the one for VI, 
with the exception of f(x • y) ti 0 being replaced by (e„), will be denoted by 
V„. Obviously, 

Vi C V2 C too C 	C 

It is easy to prove that all the inclusions are strict. 

Definition 3.10. Ternary discriminator on a set A is the function 

c, for a = b 
t A (a,b,c)= 

a, otherwise. 

Definition 3.11. A variety V in a language G is said to be a discriminator 
variety if there exists a term in G inducing ternary discriminator on the 
universe of every subdirectly irreducible algebra in V. 

Following the idea of Ross Willard we were able to prove 

Theorem 3.12 ([12]). There exists a recursively axim ► atized discriminator 
variety in a finitary language with solvable word problem and undecidable 
equational theory. 

Discriminator varieties are only a part of wider class of so called EDPC 
varieties, arising in the algebraization of different logical systems. 

Corollary 3.13. There exists a recursively based E D PC variety in a fini- 
tar?, language having solvable word problem and undecidable equational the-
ory. 

This result rules out the possibility of obtaining the converse of the fol-
lowing result, due to Blok and Pigozzi: 

Theorem 3.14 ([2]). Let V be an EDPC  variety having decidable equa-
tional theory. Then V has solvable word problem. 
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B. Wells proved that there is a variety of a, finite type, with a base of 
not more than 350 000 axioms, having solvable but not uniformly solvable 
word problem. Mekler, Nelson and Shelah in [30] also presented a finitely 
based variety of a finite type having the same properties. However these 
examples seem to be too complicated and are not from any well known class 
of algebras. Also their varieties have decidable equational theories. The 
following problem is still open 

Problem 3.15. Is there a finitely based variety with solvable word problem 
having undecidable equational theory? 

4. Embedding 

There are several undecidability proofs in the literature that use the result 
of Post and Markov on the existence of a finitely presented semigroup with 
unsolvable word problem. For example, in [26] we proved unsolvability of 
the word problem for the variety of relation algebras. We used the following 
result of Kogalovskii [25]. 

Proposition 4.1. If KA  and IC, are classes of algebras such that 

(1) 	C K: 2 , 
(ii) every algebra from K2 is embeddable into an algebra from 1C 1 , 

then the theories of quasi-identities of k i  and K. 2  arc the same. 

Proof. See [27] and [25]. ❑ 

Corollary 4.2. Let K 1  and 	be varieties of algebzus such that K i  C K:2 

and every algebra from K., is embcddable into an algebra front Kt . Then, K. 1 

 and K, have equivalent 'uniform word problems. 

Proof. Direct consequence of Proposition 4.1. ❑ 

So, if K 2  is the class of all semigroups, and IC. is some class of algebras, 

such that some reduct of K: satisfies conditions of Corollary 4.2., then K. 

has uniformly unsolvable word problem. But, this is not enough to obtain 
the result about the solvability of the word problem for K. The following 

theorem gives something more than Corollary 4.2. 

Theorem 4.3 ([5]). Let V be a variety with an associative operation * in 

its language. If every semigroup can be embedded into the *-reduet of some 
algebra from V, then V has unsolvable word problem. 
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434 	 S. Crvenkovi(= 

The proof of Theorem 4.3. has been given in [5] and [26]. If we analyze 
this proof, we see that condition that V has to have semigroups in it is not 
necessary. The same goes for any variety with unsolvable word problem. 

Theorem 4.3. enables us to obtain several undecidability results in a uni-

form way. For example, this theorem gives results on unsolvability of the 

word problem for some varieties which are obtained from the algebras of 
binary relations. 

For an algebra A = (A, F) we say that it is an algebra of binary relations if 
A = P(S2 ), for some set S, and F is a set of operations on binary relations. 

Let R4, be a class of algebras of binary relations such that F contains the 
operation of relative multiplication of binary relations "o". Then the variety 
H S P(R, F ) has unsolvable word problem. For example, we have unsolvability 
of the word problem for the following: 

(a) variety generated by the class of all semigroups of binary relations 
= {o}); 

(b) variety generated by the class of all involutive semigroups of binary 
relations (F = {0, - 1); 

(c) (representable) relation algebras of Tarski (F = 	 A}); 
(d) relation algebras of Jonsson ( F = In, 0,-1,6,1) ;  
(e) Kleene algebras ( F = 	0, 0, -1 , A, "")), ( = {u, 0, o, 	A} ) and 

(F= 
(f) no special name (e.g. F = {U, 	F = {n, o}). 

Theorem 4.3. can easily be applied in the following cases, thus having un-
solvable word problems 

(g) rings 	= I+, 
(It) involutive semigroups (F = • ,- 1 }), 
(i) semirings (F = {-I-, • }), 
(j) variety generated by Baer *-semigronps (F = • , 

(k) variety generated by the class of all simple semigroups, 
(1) variety generated by the class of all bisimple semigroups, 

(in) inverse semigroups (F = { • , 	), 
(n) rings with involution (F = 	• ,*}). 

5. Partial algebras 

Let A be a set and B C A". Then f : B 	A is called a partial operation 
ou A of type n. A partial algebra A is a pair ( A, F), where A is a nonempty 
set and F is a collection of partial operations on A. In our considerations F 
will always be a finite set. 

Let A be a. partial algebra. Denote by A(A) the positive diagram of A: 

A(A)= 	(a l , 	,(an) = 	E 17, 	,a„ E A, 
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f(at, a2, • • • , an) is defined and equals a in A.} 

Of course, if A is finite, then A(A) is finite. 
Suppose that A and B are partial algebras. (o : A 	B is called a 

homomorphism of A into B if, whenever f (a, , a2 , 	, a„) is defined, then so 
is f Ma i ), yo(a 2 ), 	, (p(a„)) and 

Sofflai, a2, • • • , (an)) = 	v(a2), • • • , so(an)). 

A homorphism is an isomorphism if yo is a bijection. 
Let A = (A, F) be a partial algebra and let 0 # B C A. Then 

(i) B is a subalgebra of A if it is closed under all the operations in A 
i.e. if 	 b„ E B and 	 , b„) is defined in A, then 
f(b 1 ,b2 ,... ,b„) E B. 

(ii) B is a relative subalgebra of A if for all f E F and all b 1 , 1) 2 , 	b„, 
b E B, we have: 

f (b 1 , b 2 , 	, b„) is defined and equals b if f (b 1 , b2 , • • • , b.) 
is defined in A and 	 ,b„) = b in A. 

It is not dificult to give an example of a. partial algebra A and a set B C A, 
such that B is the carrier of some relative sul)alel)ra of A but not the carrier 
of any subalgebra iu A. 

Let K be a class of algebras, A uouempty set, and F a set of partial 

operations on A. Then A = (A, F) is a partial k -algebra if (A, F) is a 
relative subalgebra of an algebra B iii k. For example, if r is the class of all 

lattices, then, a partial algebra A is a partial f--algebra (or simply, partial 

lattice) if A is a relative subalgebra (or relative sublattice) of some lattices. 

Definition 5.1. Let k be a class of algebras and let A be a partial alge-
bra. The algebra FK (A) is called the algebra freely generated by the partial 
algebra A over K if the following conditions are satisfied: 

(1) FK (A) is generated by A' and there exists an isomorphism x : A' 
A between A' and A, where: A' is a relative subalgebra of FK (A); 

(ii) If (,o is a homozphisin of A into C E k, then there exists a homor- 

phism 11 ,  of FK (A) into C such that th is an extension of xca. 

It is not difficult to prove that FK (A) is unique up to isomorphism and, 

if A is an algebra from k, then FK (A) A. Also, it is well known that if k 

is an equational class, then FK (A) exists if A is (isomorphic to) a relative 
subalgebra of an algebra B iii K. In other words, in the case of equational 

classes K, FK (A) exists if A is a partial k-algebra. 

For example, if A is a partial lattice, then FL (A) always exists. It is well 
known (see [22]) these lattices (of the form FL (A)) are the lattices that can 

he described by finitely many generators and finitely many relations. 
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436 	 S. Crvenkovi6 

Proposition 5.2 ([6]). Let IC = Mod(E) be a variety, A a partial algebra. 
Then, 

PK (A):4 Pk(A.A(A)). 
Proof. See [6]. ❑ 

Let IC be a class of algebras in a language E, and let A be a partial IC-
algebra. The problem of partial K'--algebra A asks if there is an algorithm to 
determine for any identity p q E Eq (L: U (;), with no variables, whether 
or not Fli (A)=per q. 

The problem of partial IC-algebras asks if there is an uniform algorithm 
which for any finite partial K-algebra A, and any identity p q E Eg (LUG), 
with no variables, decides whether or not F IR (A) = p q. 

Proposition 5.3 ([6]). 1e1 IC be a variety in a language E.. If K has a 
uniformly So iv(' btu word pmblem, then the problem of partial IC-algebras is 
solvable too. 

Proof. Let A he a. finite partial A.:-algebra. p 	E Eq(EU G), with no 
variables. Then. because of Proposition 5.2., FE (A) 	Pk: (A,A(A)), so 
that 

FK(A)Hp•Atq iff 	A,A(A)) p ^ q. 
Hence, directly from the algorithm for the solution of the word problem, we 
obtain an algorithm for the solution of the problem of partial algebras. ❑ 

Denote by 	the length of a term t (i.e. the limber of symbols in t). We 
can formulate two rules: 

(a) If a. set of identities I contains an identity of the form p 	q, where 
p and q are terms IpI = k/I = 1, then we take out this identity from 
the set I and in all the other identities we replace the symbol q by p. 

(0) If a set of identities I contains some identities of the form t 	t 1 , 
t ti t•, where t 1 	t•, then from I we take out the identity t 	and 
in all the other identities we replace the symbol t 2  by 1 1 . 

Let I be a set of identities. Denote by a(/) the set of identities which 
appear from I, if the rule (a) is applied, and by 13(I) if the rule (/3) is applied. 

We say that the set of identities I is a-pure if a(I) = I. Analogously, I 
is 13--pure if 13(I) = I. Obviously, if I is a finite set of identities, then there 
are natural numbers, in, a such that the set a"(1) is a-pure and set /3"'(/) 
is /3--pure. 

Definition 5.4 ([6]). Let IC be a variety in a. language t, and (A, R.) some 
finite presentation in K. Then, 

(1) If t is a term in 1...„ then by Sub (I) we denote the set of all the 
sublerms of t. 
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(2) S ub ( R) = U{Sub MI (38)(st.E RV t s E R)} . 
(3) A' = {C„.1 E Sub(R)} U A. 

(4) Define the mapping p : Sub ( R) 	Eq (L U A') in the following way: 

(i) If Iti = 1, then (p(t) is t 	C,; 
(ii) If t = f ( .11, t2t, ... ,  ), where f is an n-ary function symbol and 

,t„ are terms, then , o(t) is t = f(Ct,,Ct, • • • 'CO c="; 

Ct• 
(5) Define the set R' as 

R.' = i,o[Sub(R)JU 

U l f(Ct, (fit 2 , • • • ,Ct„) --=',' Cdp = f(t,,t2 ,... ,t„) and p 	q E 

where ,,,o[S ub (R)] = {4,o(t)lt E S ub (R)}. 

Note that if t E S ub ( R) and ItI = 1, then t E A or t is a coutant in L and 

the set R' is a set of identities, in the language L U A', with no variables. 

Let A = (A, R) be a finite presentation in a variety K. Let n be a finite 

natural number such that o"( R!) is a-pure and m be a natural number such 

that /3m(an(R!)) is /3-pure. Then let It* = 11'"(or"(11')) and A* be the set of 

all these symbols from A' U roast (L) which appear in the identities of R*. 

Theorem 5.5 ([6]). Let A = (A, F) be a finite presentation in a variety 

K. = Mod (s), in a language L, and let A* be a K -partial algebra. Then, if 
the problem of the partial algebra A* in is solvable, the word problem for 
A = (A, R) ira IC is solvable, too. 

Proof. See [6]. 

6. Free spectra 

Let V be a variety of type F. The cardinality of the free algebra over 

n generators (n > 0) in V is denoted by ,f„(V). The sequence of cardinal 

numbers 

f(V) = (f.(V)),,.>0 = (fo(V),..11(V), • • • fti(V), • • •) 

is called the free spectrum of V. 
Let A = (A, F) be an algebra of type F. Every term of the type F in n 

variables xi ..........x,,n  (u > 0) defines an n-ary operation t : A" A in a 

natural way. These operations are called n-ary term operations. The number 

of differnt n-ary term operations on A is denoted by s„(A). If A generates 

the variety V then obviously f„(V) = 8„(A) for all n > 0. The investigation 

of free spectra of specific varieties may have started with R. Dedekind [1900]. 

The Dedekind problem, the determination of the free spectrum of the variety 

D of distributive lattices, is still open. 

('q 11/ 1= 1 and 7) 7:: q E R}U 
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In group theory, the famous Burnside problem asks whether fani is 
always finite, where a,,, is the variety of groups of exponent 7n. This was 
solved in the negative by S. I. Adjan and P. S. Novikov. They proved that 
f., is infinite, for instance, for in > 4381. The choice of in was improved to 
in > 115 for odd exponents in. 

A major problem of this field is to determine what sequences can be rep-
7.cm-wed as the free spectrum of a variety. 

If V is a variety and all f„(V) are finite, then V is a locally finite variety. 
In what follows we are going to consider only locally finite varieties. 

Is there a variety V having fo (V) = 0, f 1 (V) = 10 and f2 (V) = 18? To 
answer this question we use the concept of s„ -sequence (or p„-sequence in 
the literature). Denote 

s(A) = 	81(A), 	• .sn(A), • • •)• 

For a nontrivial variety V, we define s„-sequence of V as the s„-sequence of 
:Fv (w), the free algebra on w generators in V. saA) is the number of unary 
mutant term operations and s 1 (A) > 1. 

The following two formulas connect the free spectrum and the s n -sequence 
for an algebra .A: 

(CI) 

7 
fn(A)= E(

k

,
)Sk(A), 

k=11 

((' 2 ) 

mn(A)= E( - 1)"
-1,

(1/:)/k(A). 

Back to the variety V with fo (V) = 0, f 1 (V) = 10 and f2 (V) = 18. By 
formula, ((.:2), we have s• = — f2  = -2, a contradiction. So a 
necessary condition for the representability of a sequence as a free spectrum 
of an algebra is that the corresponding s„-sequence be nonnegative. 

Let S be a semilattice with more than one element. Using formula (Cl) 
we see that .f„(S) = 2" - 1, for all n > 0. Let S be the variety of seniilattices 
then 

s(8)= 	,1,...). 

Let us see some examples which explain the flavor of the field. 

Proposition 6.1 ([15D. Let A be an idempotent groupoid with .s 3(A) < 6. 
Tine A is equivalent to a sentilattice, a diagonal semigmup, a groupoid with 
sn (A) = n, or a distributive Stainer quasigroup. 

Proof. See [15]. 0 
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Proposition 6.2. If A has two commutative binary term operations, Men 

(1) s3(A) > 9  ([ 17]); 
(2) sn (A)> 3 + n! for all 7t > 3. 

Proof. See [17]. ❑ 

The following result of .1. Dudek seems especially attractive: 

Proposition 6.3. Let d„ be the n-th Dedekind's number, that is, do 

 I•F.D (n)j, where 1) is the variety of ditributive lattices. For a variety V, 

fn (V) = d,, holds, for all n > 0, iff V is equvivalent to D. 

Proof. See [20]. ❑ 

Among other things, .1. Dudek proved the following 

Theorem 6.4. Let (A,+, • ) be an idempotent commutative algebra of the 

type (2,2) such that + and • are distinct. Then 

(i) (A, +, -) is a distributive lattice if s 3 ((A, 	• )) = 9. 

(ii) If (A, + • ) is a bisentilattice, then (A, + ) is a lattice iff s 2 ((A,-F -)). 

2 
There is no bisentilattice (A, + • ) for which s2((A,+ • )) = 3 . 
(A,- F , • ) is a nondistributive modular lattice iff 5 3 ((A, • )) = 19. 

Proof. See [16], [17]. ❑ 

In a joint paper with J. Dudek we investigated so called rectangular 

groupoids 

Definition 6.5. A groupoid (G, • ) is called rectangular (right) if it satisfies 

the following laws 

.9„((G , -)) > 70, for n> 3. 

Proof. See [13]. ❑ 

This estimation is the best posible because we have 

Theorem 6.7 ([13]). Let (G, • ) be a rectangular groupoid. Then the fol-

lowing conditions are equivalent 

(i) (G, ) is not a semigroup and satisfies 

x(y(zu)) 	x(z(yu)); 

x 2 	x, 

(xy)z xz. 

Proposition 6.6 ([13]). For any rectangular groupoid (G, • ), being not a 

semigroup, we have 
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440 	 S. Crvenkovie 

(ii) s„((G, )) = n2 , for all 71; 
.44((G. • )) = 1 6. 

Proof. See [13]. 0 

In [9] we proved the following and therefore, solving the Problem 25. in 
[23]. 

Theorem 6.8 ([9]). Let V be a variety of sentigmws. Then s n (V) = n 2 , for all n > 0, if V is the variety of nomad lands. 

Proof. See [9]. 0 

From Theorem 6.8. and by cluing some technical calculations we were able 
to prove 

Theorem 6.9 ([8]). Let be a groupoid. Then S„((i)  =  n 2 , for all n > 0, tiff' one of the following conditions hold 

(1) (7 generates the variety of normal bands; 
(ii) g is not a semigmup and satisfies 

	

xx 	x 
x(yz) 

	

((xy)z)u 	((xz)y)u; 

(iii) (7 is not a semigroup and satisfies 

xx ti x 

	

(xy)z 	xz 

	

.e(y(zu)) 	:r(z(yu)). 
Proof. See [8]. 0 

E. Marczewski formulated in [28] the problem of representability of s r,- 
sequences by algebras. He and his colleagues in Wroclaw considered many 
associated problems. 

If one considers semigroups, the following problem can be formulated. 

Problem 6.10. Characterize s„-sequences for the class of scmigroups. 

We may start with the representability of sequences 

	

= < 0, o, a, ..., 	> ce E N 

in the variety of semigronps. 

Proposition 6.11. If a semigroup S has so ( S) = 0 and s i (S) = a, > 0, 
then the following hold: 

(1) a:, 	x" arc different essentially unary term operations; 
(ii) S satisfies x"'" ti xO for some 	E 	, 2, ..., 	; 
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(iii) S satisfies x 7  x if f) > /3 and y L14  b (mod a +1- /3); 
(iv) If p, q are two terms having lenghts1 7„11  such that It, # lq  and /1„/9  

a, then p g. •Specially, all the terms xy, xy 2  , 	xy"- ' are different. 
(v) If a semigroup S has an essentially n-ary term operation, then the 

term x i x 2  • • • x„ induces essentially n-ary term operation. 

Proof. Follows immediately. ❑ 

Proposition 6.12. If a sentigroup S satisfies 

xy ti yx, xy 2  ti x 2 y, x"+ 1 	, (a > > 0), 

then every nontrivial n-ary term operation is equal to one of the following 

2 
X1X2...X,1X,, 	XIX2'''X n iXn , xix2 ' • • xn - ix,°,- 

Proof. Straightforward. ❑ 

It is easy to demonstrate that a semigroup has < 0, 1,1, ..., 1, ... > as the 
s„ sequence iff it is nontrivial setmlattice. For the case < 0,2,2, > 
we have the following. 

Proposition 6.13. A semigroup S has the 5, 4 -sequence < 	 > 
if f S generates the variety of seinig•oups determined by the identities 

X3  X2 , xy ti yx, xy - 	x 2  y 

Proof. HO. Let S be a semigroup having < 0,2,2,...,2, ... > as the 
s„-sequence. If S satisfies x 3  x, then, because of xy 2  = x2y x5  = 

x4 , it follows that xy, xy2,  x2 y are three different essentially binary term 
operations. Hence, S satisfies :r 3  N x2 . If S is a non commutative semigroup, 
then xy, yx are only essentially binary term operations of S. The term xyz 
is essentially 3-ary (Proposition 6.12.) so that from s 3(S) = 2 it follows 
that S satisfies xyz = zxy = yzx which implies xy2  = y2x = yxy. But then 
x 2 y2 = y2x2 which is a contradiction since S does not have a commutative 
binary term operation. Therefore, S is a commutative semigroup. s 2 (S) = 
2 implies that both of essentially binary term operation are commutative. 
Specially, xy2 = :e2 y. Therefore S belongs to the variety given by 

x3  "=..1 	, xy 	yx, and xy2 	x2y. 

If A is an arbitrary semigroup from the variety above, then Proposi-
tion 6.13. implies that every essentially n-ary term operation is equal to 
x • x„_ i x„ or x i  • x„_ i s t2,. Hence, ,S2 (A) < 2. Since sn (S) = 2 for all 

n > 1, it follows that S generates the variety. 
OH. It is sufficient to prove that the free semigroup F in the vari-

ety x3 	x 2 , xy 	yx, xy2 	x 2 y over an infinite set of generators has 
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442 	 S. Crvenkovit'. 

< 0, 2, 2, ..., 2, ... > as the s„-sequence. It was demonstrated above that 
s„ (F) < 2 for all n > 1. Obviously, both of terms x i  • • • x„,_ 1  x„ and 
x i  • • • x„_ x?, induce essentially n-ary term operation in F. F satisfies x 1  • • • 
x„_ i x„ 	x i  • • • x„_ i  x,2, iff this identity can be deduced from the defining 
identities. However, we can only apply sy 	yx to x 1  • • • x„_ i x„ and hence 
obtain a permutation of it. Therefore, s„(F) = 2 for all n > 1 and it is 
obvious that s o (F) = 0. ❑ 

Having done some more calculations we will be able to prove the following. 

Theorem 6.14. 	(i) For a > 3 the sequence: < 0, a, a, ...a, > is not 
representable in the class of all semigroups. 

(ii)) The sequence < 0,1,1, ..., 1, ... > is the s„ -sequencefor a sentigroup 
S if S is a nontrivial sentilattia. 

(iii) The sequence < 0, 2, 2, ..., 2, ... > is the s„ -sequencefor a semigmup 
S if S generates the variety determined by the identities 

x 3 	x 2 , xy N yx, 2:y 2  P.: 2: 2 y. 

Proof. Follows from the considerations above. 
A variety V is log--linear if it is locally finite and there exists a constant 

c > 0 such that log f„(V) < en for all n > 1. Obviously V is log-linear iff 
the free spectrum of V has subexponential rate of growth, i.e. if there exist 
constants a, c > 0 such that fn (V) < ae" for all n > 0. 

In [10] we gave a solution of the following problem of Griitzer and Kisi-
elewicz. 

Problem 6.15 ([23], Problem 29). Characterize log-linear varieties of 
semigroups. Is there any algebraic property of semigroups equivalent to (or 
following form) log-linearity'? 

Theorem 6.16 ([10]). For any semigroup variety V the following condi-
tions an equivalent: 

(i) V is log-linear; 
(ii) V satisfies the identities 

x"+ 1  xo 
x 1 x 2 • • • X,n 	X e.,( )X 6(2) • • • X,0„), 

for some o > > 0, 711 > 1, and some non-trivial permutation a of 
the set {1, ..., 

(iii) V satisfies the identities 

x"+1  x 0  
xix2 . "xi-1xixi+Ixi+2•••xm ,='•-." xi X2 • " Xi-1 Xi+1 Xi+2 " • xm, 

for some a > 13 > 0, 7n > 	1. 
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Proof. See [10]. lJ 

Corollary 6.17. Let S = (S, •) be an arbitrary finite semigroup and let n 

be a natural number such that 5"-1  = S". S generates a log-linear variety 

iff cabd = ebad holds for all a, b E 5' and ail c, d E S". 

It was proved in [31] that every semigroup satisfying condition (iii) of 
Theorem 6.16. has a finite basis for its identities, so that every log-linear 
semigroup variety is finitely based. Moreover, every subvariety of a log-
linear semigroup variety is log-linear, and therefore finitely based. So we 

have: 

Corollary 6.18. Every log-linear variety of semig•oups is a hereditarily 

finitely based. 

However, log-linearity is not necessary condition for a semigroup variety 
to be finitely based, even if the variety is locally finite. The variety V defined 

by the identity xyza: 12  was shown in [33] to be hereditarily finitely based. 

On the other hand, it is easy to check that n! < f„(V) < (n 1)" for all 

n > 1, so that V is locally finite but not log-linear. 

7. Decidability 

Let E be a. fixed set of identities of a given similarity type. The elemen-

ta•y theory based on E is the set of sentences of first-order logic which are 
logical consequences of E. An elementary, (1uasi-identies, equational theory 
is deciable iff it is a recursive set of sentences. The connections between 
these concepts are given in the diagram below. This diagram refers to any 

fixed set E of equations. 
Decidable elementary theory 

Decidable theory 
	 Uniformly solvable 

of quasi-identities 
	 word problem 

Decidable equational theory 
	Solvable word problem 

In general, none of the implications above can be reversed. 
It is well known ([24]) that in the case of the variety of relation algebras 

of Tarski every quasi-identity is equivalent to some identity. Since, in the 
case of relation algebras, there is an algorithm to construct, for every quasi-
identity, the equivalent identity, the problem of quasi-identities is equivalent 

to the problem of decidability of the equational theory. It was mentioned, as 
a consequence of Theorem 4.3., that the word problem is unsolvable for the 

class of relation algebras of Tarski. Therefore, the theory of quasi-identities 
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444 	 S. ervenkovic 

of relation algebras is unsolvable. Hence, we obtain, as a consequence, the 
well known theorem of Tarski. 

Theorem 7.1. The equational theory of the rlass of 'elation algebras is un-
decidable. 

Starting from the result on unsolvability of the word problem for rings, 
we can prove that some varieties of modules have undecidable equational 
theory. The main reason for that is that every ring A! = (R,+, • , 0) can be considered as an 7Z, module M = ( R,+, • , 0, (TOTER), where fr(r) = r • x for every x E R. Then, to every equality between two words in 7Z, corresponds 
an identity in M, and from the unsolvability of the word problem for 7Z we 
can prove the undecidability of equational theory for M (and HSP(M)). 

The same idea, with some additional ones, can be applied for the class of 
dynamic algebras. 

There are several algebraic structures which correspond to some notions 
from computer science. Such are Kleene and dynamic algebras. We con-
sider Kleene algebras which are obtained from the so—called Kleene relation 
algebras (without inversion). Kleene relation algebra, with some base U, is 
an algebra having the set of all binary relations on the set U as the carrier, 
and the fundamental Operation are set—theoretical union, composition, and 
reflexive—transitive closure. Kleene algebra. is an algebra, that belongs to the 
variety generated by all Kleene relation algebras. 

Because of the relationship between Kleene relation algebras and regular 
languages, it follows the the equational theory of Kleene algebras is decid-
able. 

We proved in [5] that the word problem for the class of all Kleene algebras 
IS unsolvable.. 

Dynamic algebras are algebraic counterparts of propositional dynamic 
logic. Roughly speaking, dynamic logic is a classical propositional logic 
with some modal operators (x) associated with the elements x of a Kleene 
algebra. We can say that the corresponding algebraic structure, dynamic 
algebras, are Boolean algebras with normal unary operators which are in-
dexed by the elements of a Kleene algebra.. Although the equational theory 
of Kleene algebras is decidable, we proved in [7] that there are infinitely 
many finitely generated varieties of dynamic algebras having undecidable 
equational theories. 

Definition 7.2. Let K. = (K,V,;,*) be a Kleene algebra. An algebra P = 
(B. • ,—. F„(a E /()) is a dynamic K algebra if it satisfies the following 
conditions: 

( 1) (B, • , — ) is a Boolean algebra. 
(2) FAO) 	0,' 
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(3) Fa (a: 	y) 	Fa (x) 	F,i (y), 
(4) Fa y b (3) 	Fa(x)+ 1,1(x), 

(5) Fo, Fa  Fn (s), 
(6) Fa F0 .(x) < Fa .(3:), 
(7) Fa.(x) G + FA-3! • Fa (x)), 

for all a, b E K, x, y E B. 

The definition above is from the paper of B. .hinson [24]. 
Let S be a semigroup with an identity. By T(S) we denote the so—called 

semigmup of left translations of S. 

Definition 7.3. Let S be a semigroup with an identity. By T(S) we denote 
the subalgebm of the Kleene relatwn algebra KO) generated by the set T(S). 
We define the dynamic set algebra 1)( S) to be (P S , (), —, (a E W(S))). 

Definition 7.4. The semigroup of Cejtin is the semigroup C presented by 

(G( C), R(C)), where 

G(C)=0, 
R(C ) = far = ea, ad = 	be = cb, bd = 	abac = adace, cea = ac, edb = be} 

It is well known that the semigroup of (!ejtin has unsolvable word problem. 

Proposition 7.5. There is a sequence Co  C 1 , 	C„,... of finitely presented 

Se11lig9YJ7Lps such taht 

(a) all semigroups C, . (i E N)have unsolvable word problems; 
(b) H S P(D(Ci )) 	S P(1)(Ci )) for all i j, i, j E N. 

Proof. See [7]. ❑ 

Theorem 7.6 ([7]). There are infinitely many finitely generated varieties of 
dynamic algebras, with countably many operations, having undeeidable equa- 
tional theories. All these varieties are generated by representable dynamic 
algebras. 

Proof. See [7]. ❑ 

Corollary 7.7. There are infinitely many finitely generated varieties od dy- 
namic algebras with countably many operations, having uniformly unsolvable 
word problems. 

Theorem 7.6. does not give any information on the word problem of dy-

namic algebras. Therefore we can formulate 

Problem 7.8. Is the word problem for all the varieties of dynamic algebras 

solvable? 
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Also, the following is still open 

Problem 7.9. Is there a finitely based variety of dynamic algebras having 
undccidable equational theory? 

Problem 7.10. Is them finite dynamic algebra which is not finitely based? 
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THE SECOND LARGEST EIGENVALUE 

OF A GRAPH (A SURVEY) 

Drago§ Cvetkovie and Slobodan Simie 

ABSTRACT. This is a survey paper on the second largest eigenvalue A2 of the 
adjacency matrix of a graph. Among the topics presented are the graphs with 
small A2, bounds for A2, algebraic connectivity, graphs with good expand-
ing properties (such as Ramanujan graphs), rapidly mixing Markov chains 
etc. Applications to computer science are mentioned. Recent results of the 
authors are included. 

0.  Introduction 

Let G be a graph on vertices 1,2,... , n. The adjacency matrix of G is 

the matrix A = 	where rajj = 1 if vertices i and j are adjacent and 
= 0 otherwise. Since A is symmetric its eigenvalues A i , A2, ... A„ are 

real. Assuming that A l  > A2 > • • • > A„, we also say that Ai(= Ai(G)) is 
the i—th eigenvalue of G (i = 1,2, ... , n). In particular, A2(G) is the second 
largest eigenvalue of a graph G. 

For general theory of graph spectra see monographs [26] and [27]. 
Concerning particular eigenvalues the following eigenvalues have been 

studied in some detail: 

1° the largest eigenvalue; 
2° the second largest eigenvalue; 
3° the smallest positive eigenvalue; 
4° the largest negative eigenvalue; 
5' the second smallest eigenvalue; 
6° the smallest eigenvalue. 

For a survey on the largest eigenvalue of a graph see the paper [27] by 
D. Cvetkovk and P. Rowlinson (see also [26], the third edition, pp. 381-

392). Concerning the smallest eigenvalue, particular attention has been paid 
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450 	 D. Cvetkovii: and S. Sindt 

to graphs with the smallest eigenvalue —2 (see [26], the third edition, pp. 
378-381). 

Graphs with small second largest eigenvalue have interesting structural 
properties. The second largest eigenvalue (in modulus) of a regular graph 
turned out to be an important graph invariant. This paper provides a survey 
of research on such graphs and oh the second largest eigenvalue 111 general. 
The starting point for wilting this survey was a shorter survey on the same 
subject given on pp. 392-394 of the third edition of [26]. 

1. Graphs with small A2 

It is an elementary fact (see, for example, [26], p. 163) that for non-trivial 
connected graphs A 2 ( K„) = —1 (n > 2), A2(K„ 1 , 742 „„ otk  ) = 0 (max(ni , n2, 

, nk ) > 2) and A2(G) > 0 for other graphs G. 
A graph property P is called hereditary if the following implication holds 

for any graph G: if G has property P. then any induced subgraph of G also 
possesses property P. (In this paper, when we say that "a graph G contains 
a graph H" we mean that G contains II as an induced subgraph). A graph 
H is forbidden for a property P if it does not have property P. If a graph G 
contains (as an induced subgraph) the forbidden graph H (for a property P), 
then G does not have property P. Then H is called a forbidden subgraph. 
A forbidden subgraph H is called minimal if all vertex deleted subgraphs 
H — i have property P. Graphs having property can be characterized by 
a collection (possibly infinite) of minimal forbidden subgraphs for property 
P. 

For any real a and any integer i the property expressed by the inequality 
A i (G) 5 a is a hereditary property. This conclusion follows from the inter-
lacing theorem (cf., e.g., [26], p. 19) which says that Ai( H) < Ai(G) for any 
induced subgraph 11 of G. 

The hereditary property of the form A 2 (G) 5 a. and in principal, the 
second largest eigenvalue of a. graph, has been studied in some detail for 
the first time by L. Howes [50] and [51] in early seventies. The following 
characterization is taken from [51]: 

Theorem 1. Let be an infinite set of graphs, then the following statements 
about G rare e quivalent: 

1°There exists a real number a such that A2 ((;) 5 a for every G E 
2° There xists a positive integer s such that for each (: E fr; the graphs 

(K., U K1)7 K 3 , (sKi  u K1 , 3 )7 K1 , (K 3 _ 1  U sKi  )7 K 1 . K s U K 1 , 8 , 
2 K1,3. 2K, and the graphs on Fig. 1 (each obtained from two copies 
of K , by adding extra edges) are not subgraphs of G. 
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Fig. 1. 

Here v denotes the join of two graphs, while U refers to union of two 

disjoint graphs. Notice that G 1  v G2 = G1 U G2 

In the rest of this section, we shall focuss our attentoin the following 

values for a: a= 1, a = 	— 1, a = (fr; — 1)/2, a = 1 and a = 2.. 

1.1 The golden section bound 

There are several results in which the (upper) bound for A2 does not 

exceed the golden section (03 — 1)/2. 
It is proved in 1993 by D. Cao and Y. Hong [17] that the second largest 

eigenvalue of a graph G on n vertices is between 0 and if and only if 

G = (n — 3)K 1  v (K 1  U K2 ). The problem of characterizing graphs G 

with 3 < A 2 (G) < (vt; - 1)/2 was also posed in [17]. Graphs G with 

A2(G) < 2 — 1 are determined by M. Petrovk [75]. An independent 

characterization of graphs with A2 < has been given by J. Li in [56]; 

in addition, all minimal forbidden subgraphs for the property A2 < -1ì— 1 are 

given there. It is proved by S. Slink [85] that the set of minimal forbidden 

subgraphs for the property A 2 ((:) < (VT"; — 1)/2 is finite. The structure of 

graphs G with A•(G) < ( \/.1  — 1)/2 has been studied by D. Cvetkovie and 
S. Simie [29]. A part of results has been announced in [28]. 

We shall introduce the notation a = 	— 1)/2 ~ 0.618033989. Obvi- 

ously, we have a2  + a — 1 = 0. 
Graphs having property A 2 (G) < a ( a-property) will be called cr -graphs. 

For convenience graphs G for which A 2 (G) < a, A 2 (G) = a, A2 (G) > a will 

be called o--  -graphs, 0 -graphs, a+ -graphs, respectively. 
The next proposition, taken from [95] (see also [9]), enables the definition 

of a class of-graphs to which every a - -graph belongs. 

Proposition 2. If G is a connected graph and if G has no isolated vertices, 
then G contains an induced subgraph equal to 2K2 or P4. 

Assume now G is a (7 - -graph. If G is a connected graph, then G must 

have at least one isolated vertex (otherwise G contains 2K2(= E) or P4 as 

an induced suhgraph, and hence is not a o'-graph). On the other hand, if G 
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is a disconnected graph, then G itself is a join of at least two graphs. Since 
the a-property is hereditary, it follows that G belongs to a class of graphs 
(here, as in [85], denoted by C) which is defined as the, smallest family of 
graphs that. contains 1( 1  and is closed under adding isolated vertices (i.e., 
if G E C. then G U K1  E C) and taking joins (i.e., if G I , G2  E C, then GI  7 G2  E C). An alternative way to describe graphs from the class C is 
in terms of minimal forbidden induced subgraphs. Actually, C is a class of 
graphs having 110 induced subgraphs equal to E (= 21(2) or f' (= 

Clearly, any a - -graph belongs to C, but not vice versa. 
The class C has been introduced and studied in [85]. Weighted rooted 

trees (with weights assigned to vertices) were used also in [85] in representing 
graphs from the class C. 

To any graph G from C we associate a weighted rooted tree T(; (also called 
all explr:ision lire of G) in the following way: 
if 11 = (111  p ... p 11„,)U ilk]  is any subexpression of a graph G (i.e. a 
graph obtained by using the above rules), then a subtree T11  with a root 
1+ corresponds to H; n(= w(v)) is a weight of v, wherea,s for each i (i = 
1,... , nn) there is a vertex vi (a son of v) representing a root of Hi. 

Example. If G = (((((K 1  p Kl  ) U 	) p K 1 ) v K1) v Ki)U3K 1 , then 
the corresponding expression tree is depicted in Fig. 2(a). In Fig. 2(b) we 
represent the same graph as a set diagram (a line between two circumscribed 
sets of vertices denotes that each vertex inside one set is adjacent to any 
vertex inside the other set). 

It turned out that the set of a - -graphs falls into a finite number of struc- 
tural types. These types are given in Fig. 3 by the corresponding expres-
sioned trees. 

It has been proved along the same lines in [55] that the set of minimal 
forbidden subgraphs for the a - -property is finite. They all belong to C 
except for E and P4. The whole list of these forbidden subgraphs will be 
described in a forth-comming paper [30]. 
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> 0, 2777 n < 6 2 <7n <3 

771 

4 < < 7 

4/)\. 
71►  

2 < m < 3 

71 

2777 

In > 0, 2711 n < 

Fig. 3. 

We present now main results of [29]. 

Theorem 3. A a-graph has at most one non-trivial component G for which 
one of the following holds: 

1° G is a complete multipartite graph; 
2° G is an induced subgraph of ; 

3 °  G contains a triangle. 

Before proceeding to describe (7-graphs mentioned in 3° we introduce some 
notation. 

Let G be a a-graph with the vertex set V. Let T be a triangle in C induced 
by the vertices x, y, z. Next, let A(G,T) = A, B(G,T) = B, C(G,T) = C 
be the sets of vertices outside T which are adjacent to exactly one, two, 
three vertices from T, respectively. Also, let GA,GB,Gc be the component, 
containing T, of the subgraph of G induced by the vertex set V — B — C, 
V — A — C, V — A — B, respectively. 
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454 	 D. Cvetkovk and S. SiniV 

Let d(u, T) denote the distance of the vertex u from the triangle T, i.e. 
the length of the shortest path between u and a vertex from T. 

(7-graphs containing triangles are now described in more detail in terms 
of induced subgraphs GA,GB,Ge. 

Theorem 4. Let G be a connected (7-graph which contains a triangle. For 
any triangle T of G the following holds for subgraphs G A , GB, Ge : 

1" G,1  is an induced subgraph of one of the graphs from Fig. 4. 
2U For GB one of the following holds: 

i) GB is an induced subgraph of graphs from Fig. 5; 
VI) GB = P4V (H U 1 ) for some a-graph H; 

iii) GB = Hi V H.2 p H3  for some cr-graphs 111, H2, H3 

3 0  For (lc  one of the following holds: 
i) (; c  is an induced subgraph of (1t3  U 	v H for some a-graph 

H; 
ii) (lc  is obtained from K„. p K3 V H by adding a pendant edge to 

each vertex of K „, where n > 2 and H is a (7-graph containing 
no induced subgraphs isomorphic to some of graphs K3 U K1, 
K2 U 3 K , 	, 2 U 2K1 , K2 , 4 U K1 i  K3,3 U K1. 

Fig. 4. 

 

Fig. 5. 

It is also proved in [29] that the set of minimal forbidden subgraphs for 
the (7—property is finite. The next theorem (taken from [29]) provides more 
details. 
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Theorem 5. If H is a minimal forbidden (induced) subgraph for the a—pro-

perty, then: 

1 0  H is one of the graphs E(= 2K2 ), F1 , F2, F3, F4 (see Fig. 6), or 

2" H belongs to the class C. 

F1 
	

F2 	 F3 
	

F4 

Fig. 6. 

All minimal forbidden subgraphs for 7—property are not yet known. On 
the other hand, more can be said if we require that both, the graph and 
its complement are a—graphs. Then, due to S. SimiC. [86], there are ex-
actly 27 minimal forbidden subgraphs for this property. Here we rather give 
explicitely (following[86]) all graphs with the property in question. 

Theorem 6. G and C are both a—graphs, if and only if either of them is 
one of the following graphs: 

Km U nK1 (71t, 71, > 0), 112,1,1 U iTaK1 i 	K2,1 U WW1 	> 0), 

K3,1 U 7TtK1 	< 3), 112,1,1,1 U inK1 	< 2), 
((K2 , 1 , 1  U K1 ) D K1 ) U K1, “1(2,1 U 2Ki) O  Ki)U K1, 

((K2,1 U K1) V K1) U K1, (K, ,1 U K1) 0 K„ (in > 2, it > 0), 

(K2,1,1 U K1)7 K„„ (K2 , 1 U2Ki)7 K m  (in < 2), 

(K3,1u2K1 )vKi, ( K2,1,1,1uK1  )vK 

1.2 Bounds equal to 1 and 2 

Graphs with A 2 (G) < I have been studied iu 1982 by D. Cvetkovie 

[24]. It turned out that some of these graphs are the complements of the 
graphs whose least eigenvalue is greater than or equal to —2. More precisely, 
A„(G) > —2 implies \2(G) < 1. If A„(G) = —2, then A2(G) < 1 equality 

holding if and only if the eigenvalue —2 of G is either non-simple or non-
main (all eigenvectors are orthogonal to the vector (1,1,... , 1)). For other 

graphs G with A2 (G) < 1, the complement G has exactly one eigenvalue 

smaller than —2. However, A„(G) < —2 and A„_1(() > —2 does not imply 

A 2 (G) < 1. These results are derived by the well-known Courant-Weyl 
inequalities for eigenvalues of matrices. For further details see the original 
paper or monograph [25] (p. 11, where [Cve5] is wrongly given as [Cve7]). 

A representation of graphs with A 2 (G) = 1 in the Lorentz space is given 

in 1983 by A. Neumaier and I I Seidel [72]. 

1, M. K2J u1t"1)vKi)uKi)vKi. 
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Bipartite graphs G with \2(G) < I have been characterized in 1991 by 
M. Petrovi(' [74]. Three families of graphs and four particular graphs with 
A2 (') < 1 are constructed. It is proved that a connected bipartite graphs 
have the property A2(G) < 1 if and only if it is an induced subgraph of the 
mentioned graphs. 

In particular, trees with the second largest eigenvalue less than 1 were 
treated by A. Neumaier [70]. More generaly, an algorithm for deciding if 
the second largest eigenvalue of any tree is less than some bound was also 
proposed by A. Neumaier. 

The exact characterization of graphs with second largest eigen value aro-
und 1 still remains an interesting open question in spectral graph theory. 

Graphs with A2 < 2 are called reficaivf graphs [72]. Some classes of 
reflexive graphs are studied in [72]. In particular, trees with A2 = 2 are 
called hyperbolic [Mb All hyperbolic trees are known [00], [70] and [72]. 

2. Bounds for A2 

Upper and lower estimates for the second largest eigenvalue of a graph 
under various restrictions were studied in literature (but not as extensively 
as for the largest eigenvalue). 

The most general result concerns the connected graphs with prescribed 
number of vertices. According to I). Powers, for a connected graph G on n 
vertices the following holds 

< A2(C) < 
2 

The upper bound is achieved, for n odd (n  =  2.4+1), if G is a graph consisting 
of two cliques of size s (graphs equal to K s ) bridged by a path of length 2; 
for n even this bound is only asymptotically sharp (see [78], or [79]; see also 
[48]). The lower bound is achieved if and only if G is a complete graph 
(see Section 1). It is interesting to note that the above (upper) estimate is 
proved by making use of the following more general estimate of the second 
largest eigenvalue in terms of the largest eigenvalue of some parts of a graph. 
Namely, due to D. Powers we have: 

A2(G) < max in A i  (Gi  ), Ai(G2)}, — (a, ,G2 ) 

where G i  and G2 denote the subgraphs induced by vertex sets of some 
bisection of (the vertex set of) a (connected) graph G. The key argument 
for proving this was based on partitioning the vertices of G according to sign 
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pattern of the elgenvector corresponding to the second largest eigenvalue (see 
[77] for details). 

If G is a connected graph on n vertices and in edges, then, due to R.C. 
Brigham and R.D. Dutton [13], the following inequality holds: 

- 2) 

In 	

A2(G) < 
'It 	a  

particular, this estimate in not too good for trees. If we assume that G 
is not a tree, then some refinements are possible, as shown in [79]. Then 
the result is expressed in terms of the estimates for the largest eigenvalue 
of a connected graph with a fixed number of edges (but not vertices). The 
latter problem is completely solved by P. R.owlinson [81] to within the graphs 
which realize the bounds. More precisely, as remarked in [79], then 

711 
(1_-

2
J - 1) < 771axIA 2 ((.)} < A1(1

771 

2 

 1 
), 

where A1 (in) is the maximum for the largest eigenvalue of a connected graph 
with in edges); thus the estimate is very tight. 

In particular, for triangle-free (and bipartite) graphs some further esti-
mates are obtained in [13]. 

Much better estimates for trees are known. If T is a tree with n > 3 

vertices, then 

0 < A2(T) < \/ 1 n 	— 2 1  
L  2 

The upper bound was obtained by Y. Hong [47]. It is the best possible 

for n (> 3) odd  (then it coincides with the bound of A. Neumaier [70] 

A 2 (T) < / 2  which holds only for n odd). As remarked by D. Powers 

[78], with more careful analysis one can get: 

\/l "  ; 	1 < inax{A2(T)} < 	7L Z 2 {, 

i.e. the bound for n even is asimptotically sharp. The lower bound is clear 
from the above (it is achived for a, tree isomorphic to a star, i.e. for T = 
K 1 ,„_1 ). Otherwise, if T K1 0,-1, then A2(T) < 1 only for 7' = S!_.2 (here 

.51_2  is the graph obtained from a star with n - 2 arms by subdividing one 

V(n-3)2+4 	 K 	52  arm). Also then A2(T) = 	2  	Thus if T 
then A 2 (T) > 1. 
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Star-like trees are trees hotneomorphic to a star (K L, for some s > 3). 
The second largest eigenvalue of star-like trees (with a. fixed number of ver-
tices and fixed minibe.• of arms) were studied by F. K. Bell and S. K. Shull.. 
(see [87]). We only mention here that for fixed s > 4, the trees with mini-
mum and maximum second largest eigenvalue (on fixed number of vertices) 
are those as intuitively expected (i.e., those having the length of all arms 
as equal as possible in the former case, and those having the length of all 
arms but one equal to 1 in the latter case). If .s = 3, then sonic interesting 
phenomena do occur (for detail see [87]). 

Results on regular graph are given in the next section. 

3. Regular graphs 

There are two main reasons why regular graphs deserve special interest 
in this context. The first is that the largest eigenvalue of a regular graph 
of degree d is equal to d, so then the second largest eigenvalue becomes 
the dominant feature in many asspects (in particular, in spectral or(derings). 
The second is that regular graphs allow a simple connection between the 
eigenvalues (of the adjacency matrix) and the eigenvalues of some other 
matrices associated with graphs, in particular, with the eigenvalues of the 
graph Laplacian (see below). 

3.1 A2 and spectral ordering of regular graphs 

The role of the second largest eigenvalue in ordering cubic graphs has 
been observed in 1976 by F.C. Bussemaker, S. Cobelji6., D. Cvetkovi6 and 

Sedel [16] (see also [26], pp. 268-269). The 621 connected cubic graphs 
with not more than 14 vertices, together with eigenvalues and many other 
data, are displayed. The sequence of eigenvalues is given in non-increasing 
order for each graph, and for a fixed number of vertices the graphs are 
ordered lexicographic* with respect to their sequences of eigenvalues. Since 
the largest eigenvalue A i  is equal to 3 in cubic graphs, the second largest 
eigenvalue A2 determines roughly the ordering of graphs. Decreasing A2 
shows graphs of more "round" shape (smaller diameter, higher connectivity 
and girth). 

A partial theoretic explanation of these empirical observations was offered 
in 1978 by D. Cvetkovi [23]. 

Theorem 1. Let G be a d—regular graph on n vertices. Let x be any vertex 
of G and let h be the average vertex degree of the subgraph induced by the 
vertices not adjacent to x. Then we have: 

b < d  - + A2(71,  —  

A 2 (n — 1) + d 
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The same inequality (see also [25], p. 71) was derived in [6] by quite 
different method. 

In further we shall offer some other theoretic support to these (empirical) 
observations (see Section 3.3). 

3.2 Algebraic connectivity 

For a graph G on n vertices, let d 1 ,d2,... ,d„ denote the corresponding 

vertex degrees. The matrix L = D — A with D = (62) the Kronecker 

symbol) is called the Lapla.cian of G. The graph Laplacian is positive semi-

definite and the second smallest eigenvalue of L (here denoted by (t(= o(G))) 

is called the algebraic connectivity of G. It was introduced in 1973 by M. 

Fiedler [35]. 
The algebraic connectivity a of a graph (in regular case) can be expressed 

in terms of the second largest eigenvalue. If G is a d-regular graph, then 

ce = it — A2. (Thus the algebraic connectivity increases as the second largest 
eigenvalue becomes smaller). 

Definition 1. An (n,d, )—enlarger is a d-regular graph G on n vertices 

with a(G) > f. 

The significance of enlargers lies, among others, in the fact that they 
enable an explicit construction of graphs with good expansion properties 
(such as expanders). One such construction of expanders is obtained by N. 
Alon and V.D. Milli -Ian [6]. For this aim we need the following definition: 

Definition 2. Let G = ( V, E) be a graph with V = {v 1 , 	, v4. The 

extended double cover of C is a. bipartite graph II = (X,Y,F) with X = 

,x„}, Y = 01, • • • , y,z) where F = {:r i yj  : i = j or vivj E E}. 

Remark. Actually, an extended double cover is a. NEI'S (Non-Complete Ex-
tended P-Sum, see [26], pp. 65-66) of G and K2 in the basis {(0, 1), (1,1)) 

(see, also [25], p. 60). 
Now the following theorem from [6] offers an explicit construction of an 

expander (see Definition 2 from Section 6). 

Theorem 2. Let G = (V, E) be an (n,d,()—cnlari«-T and let H be its ex-
tended double cover. Then H is a strong (n, d + 1, h )—expander for 

4f 

= d+ 4( 

The next theorem of N. Alon [3] points that good enlargers are in fact 

good magnifiers (see Definition 3 from Section 6). 
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460 	 D. Cvetkovie: and S. Slink' 

Theorem 3. Every (n,d,0—enlarger is an (71,d,6)-magnifier, where 

= 	 
d+ 2 

It is interesting to note that the converse also holds, i.e. that every mag-
nifier is an enlarger with some appropriate parameters (see [3], for further 
details). 

Remark. Generally, the fact that the algebraic connectivity is relevant to 
expansion property of a graph (see Definition I from Section 6) can be also 
justified by the following relation (cf. [12], Lemma 5.7) given below. Namely, 
for any graph G = (V, E) we have: 

(VX c V)(IXI < 	 Rai> 
I X I I V \

"(6)' 

where OX = y : xy E E,:c E X). A similar result. is due to R.M. Tanner 
[92]. 

More information on expansion property of graphs, and other related 
graphs can be found in Section 6. 

The work on algebraic connectivity and graph Laplacian for graphs in 
general (in particular, for non-regular graphs) will not be reported in this 
paper. For more information see papers by M. Fiedler [36], [37], [38] and 
also [44], [45]. Much information on graph Laplacians can be found in the 
book [26] and in expository papers [43], [61], [62], [66], [67]. 

3.3 Second largest eigenvalue in modulus 

The second largest eigenvalue (in modulus) of a regular graph turned 
out to he an important graph invariant since it has relations with various 
graph invariants (such as diameter and covering number etc.) and graph 
properties (including expanding properties and convergence properties of 
simple random walks). 

Let G be a d-regular graph, and let A(= A((*)) = ?mix{ 	: 
Notice that for bipartite graphs we have A( ► ) = ) 2 ((,) (due to symmetry 
of the spectrum with respect to the origin). 

Let 	be a connected d-regular graph on n vertices. According to N. 
Alon and V.D. Milman [6] we have the following bound: 

diam(G) < 21 	
2d log, ni . 

d _ A 
(1 ) 
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This bound was improved by several authors, in several directions. In-
teresting improvements are given by B. Mohar in [65], but expressed in 
terms of the second smallest, and the largest eigenvalue of Laplacian ma-
trix of any (not necessarily regular) graph. Also the following lower bound, 

diam(G) > —
4 , valid for any (connected) graph on n vertices, can be found 

nn. 
in [65]. Bound (1) is also improved by F.R..K. Chung [22]. For regular 
graphs this bounds reads: 

log( — 
(2) 	 diam(G) < 	 

log(*) 

For this bound it was observed in [31] that it is indeed the upper bound for 
covering index of a graph (i.e. it is the smallest integer c such that any pair 

of not necessarily distinct vertices is connected by a walk of length exactly 

C). Let cover(G) denote the covering number of a connected graph G. As 

proved in [31], for any (connected) graph we have diam(G) < cover(G) (it 

is also true that cover(() < diam(G) s if every vertex of G is in some 

closed walk of odd length, at most 2.s + 1; if G is a bipartite graph, then 

covcr(G) = oo). By convenient distinction between diameter and covering 

index we have: if G is a d-regular connected graph oil n vertices and t some 

positive number then: 

(i) if dmIn >m A(1 - 	then cover(G) < m (by F.R.K. Chung, 

restatement of (2)); 
(ii) if dm -1 (d -I- t.)/n > Am-l iA+ 1 1( 1-  ii;) (A E {A2, 	A„) and t > 0), 

then diam(G) < m (by C. Delorme and P. Sole [31]). 

According to P. Sarnak [82] (see also [$0]) the following estimate holds: 

arccosh( - 1 ) 
(3) 	 diam(G) < 

arccosh( f) 

for any d-regular graph G on n vertices. By considering separately non-
bipartite, and bipartite case, some further refinements of (3) are obtained 

by G. Quenell in [80]: 

arccosh(n - 1) 
	  + 1 

+ 2 
arccosh 	) 

arccosh ( 1k) 
diam(G) < arccos( u/2 - 1) 

G non-bipartite, 

G bipartite. 
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The inequality (3) can be further refined, by introducing the injectivity radius 

r of G into consideration. According to G. Quenell (see [80] for the definition 
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462 	 D. (,'vetkovi6 and S. Slink: 

of r) it holds: 

arccosh(L
A  i 

 ) 

As also remarked in [80], the estimate (3) is better than (4) provided A > 
2 Vd - 1 (in other words, see below, (4) is better only for Ramanujan graphs). 

Finally, let us mention that the inequality (3) has been generalized to the 
case of biregular graphs and regular directed graphs [31]. The authors also 
discuss connections to finite non-abelian simple groups, primitive association 
schemes, primitivity exponent of the adjacency matrix, covering radius of a 
linear code and Cayley graphs. 

The relationship between the second largest, eigenvalue in moduli of a 
graph and girth, was investigated by P. Sole. [90]. For the graphs with small 
diameter we have: 

Avo > { 	 64 ; 	is non-bipartite, 

Ay?)  > -Vd(n - 2d)/(n - 2) Jy ((((. 77: )>  ) > 	; G is bipartite. 
iT=T 

(Here, as in Section 1, a-  denotes the golden section.) For the graphs with 
larger diameter we have: 

A(G) 
2V7 -71  8+1 /, 	cos 	G is non-bipartite, 

i. 
>  

	

2v'd - 1 cos 	G is bipartite, 

where ",(G2  )--1 1.  s = L 	j 

From the above (upper) bounds for diameter it generally follows that the 
diameter is expected to be smaller as A2 (or A is smaller). Thus, by. these 
inequalities, we have at least partial explanations for the shape of cubic 
graphs. 

We now turn to important class of graphs in this context, so called Ra-
mannjan graphs: 

Definition 3. Let G be a (conected) d-regular graph. Then G is called a 
Ramanujan graph if A(0) < 2VT- 1. 

&mark. The importance of the number 	1 in the above definition lies 
in the following lower bound due to N. Mon and R. Boppana, (cf. [58]; 

arccosh(
d(d - 1)t.-1 

(4) 	 diam(G) < 	 + 2r + 1. 
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see Proposition 4.2). Suppose G,t,„ is a. d—regular (connected) graph on n 

vertices (d being fixed). Then for any sequence of such graphs we have: 

lien i of A(G„„/) > 
n 

Thus if one wants graphs with as small A 2  as possible, the above number 
serves as the lower limit of what can be done. More information this kind 
of results can be found, for example, in [73]. 

Since the second largest eigeuvalue is small in Ranianujan graphs, they are 
also good enlagers (see Definition 1 from above), and hence good magnifiers. 

An infinite family of Ramanujan graphs have been constructed, for the 
first time, by A. Lubotzky, R. Phillips and P. Sarnak in 1988. These 
graphs were realised as Cayley graphs of some groups (such as, for example, 

group PG L(2, Fq )) relative to some symmetric subset (or, alternatively, as 
quotients of a quaternion group); see [58] for details. In particular, cubic 
Raina.nujan graphs are treated in [20]. It is remarkable that the diameter 
of Ramanujan graphs cannot be too large (besides the bounds for particular 
R.amanujan graphs from [58], see the result of A. Nilli, given below). The 
girth of Ramanujan graphs is investigated in [10]. 

The following result of A. Nil]i [73] explains some effects on "2 when, in 

fact, diameter increases. Let G be a. d-regular graph, and suppose that G 
contains two edges the distance between which is at least 2k +2 (the distance 
between two edges is the length of shortest path whose terminal vertices are 
the vertices of edges in question). Then we have: 

A 2 (G) > 2Vd — 1 (1 	
+1 	k 1 
	 + 	1  • 

4. Rapidly mixing Markov chains 

The second largest eigenvalue of graphs is of some interest in the theory 

of rapidly mixing Marker chains. 
Consider a Markov chain on a finite state space S., = 11,2, 	, n} with 

transition matrix P = [pij]i'. Thus for any ordered pair i, j of states the 

quantity pjj is the transition probability from state i to state j and -is in-

dependent in the time t. The matrix P is non-negative and stochastic, i.e. 

its row sums are all equal to 1. Let ri (• = 1,2,... , n) be a. probability 

distribution over S„ and suppose that ripij = rjpii for all i,j E S„. Then 

P is said to be reversible w.r.t. probability distribution ri and the Markov 

chain is ergodie with the stationary distribution 
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464 	 D. Cvakovie. and S. Simie 

As is well known, P has real eigenvalues a l  , "2, 	, A„ with A l  = 1 > 
A2 > A3 > • • • > A > —1. The rate of convergence to ri is governed by the 
second largest eigenvalue in absolute value, i.e. by tnax(A2, 1/1 7L 1). One can 
show that the influence of A can be neglected so that the really important 
quantity is A. A reversible Markov chain is called rapidly mixing if A2 is 
sufficiently small. 

It is useful to identify an ergodic reversible Markov chain with a weighted 
undirected graph G (possibly containing loops) as follows. The vertex set is 
the state space S„ of the chain. If 	0, there is au edge in G between 
vertices i and j with the weight qt;  = ripo = 	The eigenvalues of 
G (i.e. of the weight matrix Cl = [(bi]1') are equal to the eigenvalues of 
P. In this way we see that the theory of graph spectra, is relevant to the 
problem considered, There are two immediate consequences of the above 
facts. firstly, one can use the theory of graph spectra to evaluate or estimate 
A2 in Markov chains, in particular to find upper bounds for A2. Secondly, 
one can use known graphs with small A2 to constrnct rapidly mixing Markov 
chains. 

Detailed elaboration of above ideas can be found in papers [2], [32], [33], 
[53], [58] and [89], just to mention a few among several papers by the same 
authors (I). .1. Aldous, P. Diaconis, M. Jerrum, A. Sinclai•). Note that 
rapidly mixing Markov chains are important parts in stochastic algorithms 
for enumeration of large combinatorial sets. 

5. Miscelaneous 

In this section we briefly mention other results concerning A2. 
Let us define 

1 12(G) =liminf 0 2 (11): G C 11,d(11)> 

A.J. Hoffman [46] proved the following result. 

Theorem 1. Let G be a graph with n vertices and with adjacency matrix 
A. Let r be the set of all (0, 1) matrices C with n rows and at least two 
columns such that every row sum of C is positive, and if C has more than 
two columns, no column can be deleted without destroying the property that 
C has positive row sums. Then 

it2 (G) = mine E r A i ( A — C(.1 — 	C T  ). 

It wa.s proved by M. Doob [34] that the set of all second-largest eigenvalues 
is dense in the interval ( 	oo). The same set has infinitely many 
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accumulation points, but is nowhere dense in the interval (—oo, —1 + \a]. 
These points are described in some detail by .1. Li [56]. 

It is proved by C. Licata and D.L. Powers [57] that the Platonic solids are 
self-reproducing in the following specific sense. We consider an eigenvalue 

A (in this case A = A 2 ) of the graph of the solid P considered, and the 
corresponding eigenspace t:( A) which is of dimension k. The convex hull 

of a basis of E(A) is a polytope Q. If Q is isomorphic with P, then I' is 
called self-reproducing. It is also proved in [57] that some other polyhedra 
are self-reproducing. 

Spectra of weighted adjacency matrices have been used by Y. C. de 
Verdiere to introduce a new important graph invariant in [94]. For a con-

nected graph G we introduce the class A G  of matrices A = [a ii ] for which 

aid > 0 if i and j are adjacent and = 0 otherwise. Let , 

(Th > /22 > 	> it„,) be distinct eigenvalues of A with multiplicities 

kI  = 1, k2, 	, k„„ respectively. Let p(G) = max k2 , where maximum is 

taken over the class AG. For example, p(K) = n — 1 and p( K3,3) = 4. It 

is proved that G is planar if and only if p(G) < 3. It is conjectured that 

it(G) > x( G) — 1, where x(G) is the chromatic number of G. The validity 

of this conjecture would imply the four colour theorem! 
Various inequalities involving the isoperimetric number and the spectrum 

of graphs are provided by B. Mohar [63] and [64]. 
Second largest eigenvalue in random graphs is studied in [15], [39] and 

[40]. 
It is interesting to note that expanding properties in infinite graphs are 

related to the spectral radius of the graph [11]. 

6. Some applications 

The topic concerning the second largest eigenvalue has many theoreti-
cal and practical applications. Its major interest; stems from the fact that 
it is significantly related to various types of expansion (and concentration) 
properties of graphs. These properties, in turn, axe of great practical and 
theoretical interest in many brances of mathematics and/or computer sci-
ence (such as extremal graph theory (see, e.g., [8]), graph pebbling (see, e.g., 
[55]), computational complexity (see, e.g., [5•]), parallel sorting algorithms 
(to be treated below), etc.) as well as other branches of science (like elec-
trical engineering; some decals in connection with various networks are also 

included below). 
We shall not attempt within this paper to go into details. Rather, we shall 

try to gain the importance of the topic toward various applications. The key 
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466 	 D. Cvetkovii: and S. Slinic 

idea is that many spectral parameters (invariants of graphs) are important 
link to structural properties (such as various expansion properties). 

Informally, a graph has a "good" expanding property if each (its) vertex 
subset has a large neighbourhood. For bipartite graphs, more precisely, we 
have: 

Definition 1. Let G = (U, V, E) be a bipartite graph with IUI = 	= 
Then G is an (7/, a, ,(3) - expanding (0 < a < /3 < n) if the following condition 
holds: 

	

(VX C U)(IXI > ce 	IoXI > //). 

Here, for the sake of completuess, we recall that [IX = {y : d(y, X) = I }, 
where d stands for the usual metric on a graph. 

Bipartite graphs having good expanding properties are known as ex-
panders. One of the most general definition reads as follows: 

Definition 2. Let G = (U, V, E) be a bipartite graph with IUI = IVI = 71 9 

and lE1 < dn. Then is an (n, d, h, a)- expander (a < 1) if the follwing 
condition holds: 

(VX c 17)(IXI < 	 > (I +6(1 — ILY1 ))1X1). 

In particular, if a = 	then G is called an (n,d, )-expaders and if a = 
then G is called a strong (n, d, b )-expader. 

In the above definition d and h are regarded as density and extension, 
respectively. Notice also that the expression (1 + h( 1 —L-) )) is larger as I XI 
is smaller, which supports the fact that small subsets X, more likely, have 
large neighbourhood. 

For non-bipartite graphs, the above definition has to be modified (since 
the verices are generally not distingused according to colour classes, or 
viewed as "input - output parts" of sonic system). According to [3], the 
non-bipartite analogon of expanders are magnil ic rs. The cooresponding def-
inition (most frequently refering to regular graphs) reads as follows: 

Definition 3. Let G = (V, E) be a graph on n vertices, and maximal vertex 
degree d. Then G is an (n, d, h )-magnifier if the following condition holds: 

	

(VX C U)(1.k. I < 121  n 	10X I > 6IX I.  

Some examples of (good) expanders and magnifiers we have encountered 
in Section 3. To provide some hints on applications. we need some further 
definitions. 
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We first define two classes of graphs (having s'pecial connectivity prop-
erties and possibly small number of edges) which can be viewed as com-
munication networks: concentrators (defined by M.S. Pinsker [76] in 1973) 
and superconcentrators (defined by L.G. Valiant [93] in 1975). There is an 
extensive literature on applications of these graphs in communication prob-
lems (a good source of references can be found, e.g., in [22]; see also [91] on 
construction of low complexity error-correcting codes). 

Definition 4. An (n, m)—concentrator is a graph with it input vertices and 
in output vertices, n > in, having the property that, for any set of r (< in) 
inputs, there exists a [low (a set of vertex-disjoint paths) that join the given 
inputs to some set of r outputs. 

With a slight modification, we get the definition of superconcentrators. 

Definition 5. An n—superconcentrator is a graph with n input vertices and 
n output vertices having the property that, for any set of r ( < n) inputs and 
any set of r outputs, there exists a flow that join the given inputs to given 
outputs. 

Remark. Besides these two classes of graphs, which were firstly used in con-
struction of various switching networks, there are many others of similar 
kind: for example, nonblocking networks where the partial correspondence 
between inputs and outputs by disjoint paths can be always extended with-
out disturbing existing paths (see, e.g., [21] for more precise (lefinition). 

It is also worth mentioning that superconcentrators can be constructed 
from concentrators, but also from expanders (see, e.g., [41] and [83]). Su-
perconcentrators, among others, are used in construction of parallel sorting 

networks [1]. 
As is well known from literature, expanding graphs within some prop-

erly choose-it classes do exist. Moreover, by probabilistic arguments, one can 
show, with relative ease, that within many such classes almost every graph 
posseesses the desired property (see, for example, [12]). On the other hand, 
if one needs some of these graphs, there is no efficient algorithm, for a ran-
domly chooser graph, to decide if it indeed satisfies the required properties 
(for example, it is known that the problem of checking if a given graph is 
an (n,d,0)—expander is coNP-complete). So explicit constructions are de-
sirable (but, as a rule, are very complicated). The first breakthrough was 
given by G.A. Margolis [59] (but without explicit estimate on expansion 
magnitude; only non-zero estimate is proved to exist). By a. slight modi-

fication of the previous construction, 0. Gabber and Z. Gail [41] have 
provided the estimate explicitely. Another important construction is due to 
N. Alois and V.D. Milman [5] (based on theory of group representations 
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468 	 D. •vetkovii: anti S. Shia. 

or harmonic analysis). For further constructions see [7], [4] (where finite 
geometries are used - points and hyperplains are the vertices of bipartite 
graph), [54] (bipartite graphs are obtained from affine transformations), [22] 
(graphs represented as k-sum are used), etc. On the other hand, it is worth 
noting that explicit constructions are in many circumstances poor substitute 
for probabilistic ones, since giving graphs with worse expanding properies 
then probabilistic ones. 

Besides the particular graphs with good expanding properties, very fre-
quently the (infinite) families of such graphs are more preferable. 

hi the rest, we give some details on sorting in rounds. 
Suppose we are given n elements x i , 	,a:„ with linear order unknown to 

us. Our task is to determine this linear order by as few probes as possible. 
Each probe (or gum-aim') is a binary comparision (say, is xi > 1;i?), The 
(information) theoretic bound is, clearly, log.:  n! 	n loge  n). The sorting 
in rounds is organized as follows: In the first round we ask 	(< in) 
simultaneous questions. Having the answers, we deduce all implications 
and ask, in the second round, another 9n 2 (< in) questions, deduce their 
implications, and so on. After r rounds, we need to have the unknown 
order. The need for such algorithms arises in structural modeling. 

The sorting described above is in fact parallel sorting. Here in is a number 
of processors (also called the width of algorithm); r is a (parallel) time 
required by algorithm (also called the depth of algorithm). The object is to 
minimize the size of the algorithm (equal to the number of comparisions), 
here denoted by fr ( n). 

It is known, for example that f i (n) = (2); f2 (n) = O( n4 log n) (proba-
bilistic bound) and f2(n) = 0(n+) (explicit construction by expanders). 

Here the idea of using expanders is based on the fact that after each round 
enough comparisions are avoided due to good expanding properties of partial 
graph so far grown. 

For more details see [4], [1] and [12]. 
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Algebra, Logic k Discrete Matlieiwitics 

lifg, April 14-16, 105. 

'EMS OF PEANO ARITHMETIC AND 
dLAikAL RESULTS OF NUMBER THEORY 

C. Dimitraeopoulos 

Afistit(ii -trr. iive discuss problems and residtS concerning stibSY-
tehis of first-order Peano AtithmetiC. especia4 concerning the 
priwability of basic theorems of elementary iiumber theory and 
cOinbituitoricS. 

Let LA kl6ii8ite the usual first-hider laiigike ofarithidetic and PA ii@.,hoie 
i*pressed in LA. Sulisystiils Of PA are Obtained by rex- 

tiicting tii iidatibil schema (it replacing ii. by a restriction of some other 

lllst 7■kWi11 the definition Of die "arithinetic hierarchy" of formulae of 
LA: 

1: Lt co lie a formula iif LA and n > 1. We say that  
(a) ,p is 	oi H o  Of biumded if epinvolves bOunded qiiantifiers 614; i.e. 
OatitifierS of the brin Vi < y, 3x < y , Vr < tj,3x < y. 
(b) p is .2,„ if Is of the taint 3 V 	0, Where 0 is bounded and there exist 

tifiiidn B! 131 	of similar iiiaiitiliets in front of 0: 
i i§ i1 if -1 l81ta11y equivalent to a„ formula. 

kki Wi=; pfdt.'4{1 td the iirecise daiiition of the shbsYstehiS that were first 

tiItiuii 2. For n.> h. 
(a) I eiiotes PA with induction thily fdi 	fOrinillae With' pataiiiet4S. 

(b) fi t , denotes A: 0  phis the collection 
the si.-.11eifig, 

V:i < zRthp(x,y) — 3tVX < z37) < Vp(x,y), 

leie 0 is A4 Yin Thfiii1 with iiarimeters. 
ii6118W PA 	induaion schema replaced by the least number 

INVITED Lik-tutik 
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474 	 C. Dimitracopoulos 

schema only for E„ formulae with parameters. 
111„, 	LII„ are defined similarly. 

Remark 1. Strictly speaking, the subsystems defined above include a finite 
number of axioms expressing commutativity of + and ., associativity of + 
and ., etc.; these must be added to the usual axioms, because the amount of 
induction available in some of these systems is not sufficient to prove them. 

Relations among the systems we have defined were proved by Paris & 
Kirby (see [14]) and are summarized as follows. 

Theorem 1. For all n > 0: 
1 E714 1 

(E„ 	<#. Ill„ <#. LE„ q /AL. 
Furthermore, the: converses of the vertical arrows do not hold. 

In view of this theorem, the following question was asked in the 1970's: 

Main Problem. What is the weakest subsystem of PA that can serve as a 
basis for elementary number theory and combinatorics? 

It is not difficult to see that /E t  is strong enough to serve as a basis; 
indeed, one can formalize usual proofs so that only induction for E 1  formulae 
is needed. But what happens with the strictly weaker systems BE I  and /E 0 ? 
At this point we need to mention the following result, proved by Paris (see 
[12]) and, independently, H. Friedman. 

Theorem 2. For n > 0 and 9 a 11„ +2  sentence: BE,,. 4. 1  I-  0 	lEn  I- O. 

By the previous theorem and the fact that all basic results of elementary 
number theory and combinatorics are formalized by 11 2  sentences, studying 
/E0  is the same as studying BE“, as far as our main problem is concerned. 
Unfortunately, 1E 0  seems very weak, since the usual method of coding can-
not work in it. To test its strength, the following problems were posed and 
still remain open; 

Problem 1 (Paris). Does /E t)  prove the MRDP theorem? 

By MR.DP theorem we mean the following result of Matijasevi.-R,obinson-
Davis-Putnam (see [10]), which was crucial for the negative solution of 
Filbert's 10th problem: 

MRDP Theorem. For every E i  formula (p(it) we can effectively find a 
polynomial p E Z[g, gi such that 
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N 	V ilso(i) 	= 0)], 

where N denotes the standard model of PA. 

Remark 2. Strictly speaking, p = 0 stands for p+ = p- , where 7) = p+ - p 

an d p+, E NV, yj. 
Since the MR,DP theorem cannot be expressed as a set of sentences of 

LA, what is meant in problem 1 is: Can we replace N by 1E0  I- in the 

MRDP theorem? 

Problem 2 (Wilkie). Does 1E 0  prove that the set of primes is unbounded? 

Problem 3 (Macintyre). Does 1E 0  prove PH PEo ? 

By PH PE„ we denote the following schema, which formalizes the pigeon-

hole principle for E n  maps: 

Vx < z3y < z(p(x, 	3 x1, X2 < z3y < 	x 2  A yo(xi, Y) A so(x2, Y)), 

where (p is any En  formula with parameters. 
It is widely believed that the answer to all these problems is "no". Con-

cerning Problem 1, this feeling is especially strong, in view of the following 
observation of A. Wilkie (see [19]): 

If /E n  proves the MRDP theorem, then NP = co - NP. 

Given the difficulty of working with 1E 0 , it seemed worthwhile to consider 

systems strictly between /E,, and /E l . Such a system is 1E 0  exp, where 

exp denotes the axiom Vx, y3 z( z = ). Here z = xv is a bounded formula 
defining the graph of the exponential function in the standard model; the 
existence of such a formula, was first shown by J. Bennett (see [1]). 1E 0  

exp is strictly stronger than /E n , since the latter can capture functions of 
polynomial growth only, by the following result of R.. Parikh (see [11]). 

Theorem 3. If 1E0  H Vx3yco(x, y), where ( i9 is E0 , then there exists k E N 

such that .1E0  h Vx3y < :rk k 4p(x,y). 

It is also known that 1E 0  exp is strictly weaker than /E i ; this holds 

since the former cannot prove BE I , essentially by the proof that /E n  cannot 

prove BE I  (see [14]). However, /E,, Cxp seems to be as strong as 1E 1 , as 
far as our main problem is concerned; the idea. is that existential quantifiers, 
unbounded at first sight, are essentially bounded, as long as large numbers 
exist. For example, it is known that the answer to Problems 1 - 3 is "yes" 
if we replace /E 0  by /En  exp, i.e. the following hold: 

Theorem 4. 1E0  exp proves the MRDP theorem. 

Theorem 5. 1E 0  + exp proves P H PEo . 

Theorem 6. 1E 0  exp proves that the .set of primes is unbounded. 
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The first of these results was proved by H. Gaifman and. independently, 
the author (see [6]) and the second one by the author and .1. Paris (see [5]); 
the proofs of both are based on the fact that inside any Al I= 	+ crept one 
can code finite Cm the sense of M ). 	definable sequences of elements of M. 
Theorem 6 is proved by a straightforward f(irtnalizat ion of the usual proof 
of Euclid's theorem. 
To strengthen the belief that 1E 0  + f:rp is very strong, 	Cornarps and 
the author obtained (see [4]) 

Theorem 7. /E n  + c:cp proves 	vrrsion of) the prime number theorem. 

The proof of this result is modifir•tion of Se!berg's proof, the two main 
differences being that 
(a) an approximate logarithm nincti fill  [previously introduced by A. Woods 
in [20]) is used instead of iuy„r and 
(b) arguments involving limits have bepn replaced by inductive ones. 

Attempts to solve Problems 2 and 3 led to the study of other systems 
strictly between 1E 0  and, 1E 1 . hi connection with Problem 2, A. Woods 
showed 

Theorem 8. IE0 + P II PF.,0 moves ,$'111vester's theorem, i.e, that far ony 
1 < a: < y onc of y 	1,...,y + a: has a prime. divisorp > a:. 

Let us discuss briefly the idea of his proof. In the usual proof, by consid-
ering the largest powers of prhnes in the prince power decompositions of the 
lumbers 1, , y+ 1, ..., y+ , Sylvester showed that if no prime divisor 
of y + I, 	y + a; exceeds :1! then for any function (.r) > ir(x) (= number 
of primes < 

a'IY! > (a: + 	— ,f(a:))! (t). 
But for sufficiently large a: and a still able choice of 4 - (x) (t) fails and so the 
result follows. Woods considered the logarit Ionic version of (f), using the 
approximate logarithm function referred to alcove. Then he "unravelled" (t) 
to obtain the underlying comparison map. the existence of which contradicts 
PH PE,,, (the "unravelling" was necessary. since it is not known how to define 
partial sums by a 1; 0  formula in + PH PE0 ). 

Clearly, we obtain as corollaries of the previous theprelP: 
(a.) the answer to Problem 2 is "yes" if /E,, is replaced by /En + PH PEo 
(b) if the answer to Problem 3 is "yps", then the answer to Problem 2 is 

Note that /En PH P`;,, is strictly weaker than 1E 0  + (4:p. To see this, let 
A/ be a nonsta.ndard model of P4, a E Al — N and K be the substructure 
of M with universe { E Al : 	< a" for sonic n E 	Then h: 
tE 0 + PH PE,, (since PH PEEO  is fjt  axiomatizable), but clearly K 1;4 c:rp. 
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Another system studied by A. Woods is 	which is cleftne0 as follows: 

Definition 1, Let t' 2  be the smallest class of (primitive recursive) functions 
containing +, ., all constant functions and closed under substitution and 
bounded recursion — this class was defined by A. Grzego.rczyk (see [7]). /E* 
is obtained from 1E 0  if we 

(a) add a new function symbol to LA, for each f E E 2 , 

(b) allow induction for t:;:' formulae, i.e. bounded formulae of the. new 

language kA(E2), 
(c) add a defining axiom I) b F( f) for each new function symbol 

clearly, 1E 0  C 1(2 , but it is unknown whether equality holds. It is easy to 

see that /C.2  is contained in an extension by definitions of /1; 0 + cxp; in fact, 

this inclusion is strict, since /rE r„' can only capture functions of polynomial 

growth (i.e., Theorem 3 can be proved for It instead of 1E 0 ). 

By exploiting the availability of "census functions" of e!-definable sets in 
/4:, i.e. the ability to count the number of elements of any C2-definable set 
by means of a function In Y. A. Woods proved (see [201) 

Theorem 9.. 1E; proves P/i, ff;', where PH Pe! denotes the 1,?,igeonhok 

principle schema for E formulae,. 

As a consequence of Theorems 8 and 9, Problem 2 has a positive answer 

if 1E 0  is replaced by 1C;'. 
Now we turn our attention to subsystems of tf.",, 2 , studied by A. Berardttcci 

Xz B. Intrigila (see [2]) and (!li. (4unaros (see [3]). Each one of these systems 

includes 1E 0  and is included in /E.2 , but it is unknown whether any of these. 

inclusions are proper. 
Berarducci and Intrigila, considered combinatorial principles provable in 

le;; we will refer to, only two, i.e. weak — 1' H PE0  and EQE 0 . 

Definition 4. (a) W eak — P11 PE0  is the following schema 

(I E)z > zA Va7 <(I+ E)z 3y < z (,o(x , y) 
3:( 1 , X2 < 	+ 	3y < z(;r 1  # X2 A (p(xl,y) A 400;2,0), 

where y is any E 0  formula with parameters and E > 0 is any rational number. 

(10 EQE 0  (equipartition principle for E 0  relations) tis the following schema 

Vz "if y(ai,y) defines an equivalence relation on z such that every 
equivalence class 

has exactly n elements, then 71 I Z."  

where y is any E 0  formula and n E N. 
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478 	 C. Dimitracopoulos 

It should he noted that weak — P11 PEn  had been previously considered 
by .1. Paris, A. Wilkie and A. Woods (see [14]) and that Theorem 9 clearly 
implies that It';' weak — P11 PE,,. 

Using Theorem 9, Berarducci and Intrigila obtained 

Theorem 10. 	proves EQe::', where EQe 2  is as before, but considering 
formulae instead of E, ones. 

They also showed that the following hold: 

Theorem 11. 1E 0 + weak — P11 PE, proves Lagnmge's theorem, i.e. that 
every integer is the sum of four squares. 

Theorem 12. IY.', 11 -1- EQE 0  proves the "complentent«ry condition's" of the 
quadratic reciprocity law. i.e. that for any odd prime p: 
(a) -I is a quadratic residue modp ilf p  =  lmod4 
(b) 9 is a quadratic residue modp p 	IMOd8. 

Theorem 13. lE0  EQ E, proves that a prime number is the sum of two 
squares 	it is of the form 4n + 

For the proofs they used the multiplicative property of Legendre's symbol 
(IL; ) (p an odd prime) and some group-theoretical considerations — the usual 
proofs are based on Ruler's criterion ( .1; ) 	.1. 1-112 modp, but it is unknown 
whether this is provable in the theories considered. 

flruaros, continuing the work of Berard ucci and Intrigila., proved 

Theorem 14. !t proves the quadratic reciprocity law, i.e. that for any odd 
primes p, q: 

( 11 )( 1 )= Hlyi, -1)0/-1)/2 .  
q p 

His proof is based on the usual one and explui t s the the fact that Fl o< ,<y ,,,,,w  
f(x)modp and E„ ‹ ,,, < ,, f(x) are e2  functions, k )t. any f E 15 2  and any E,,2 

 formula (p. 

He also attempted to prove the following conjecture of A. Woods (see 
[20]). 

Conjecture. /1',,,(r) -I- DEF(r) proves that the set of primes is unbounded, 
where 11; 000+ D F(r) is the subsystem of I C.: 1  if we allow only one new 
function symbol ir corresponding to the usual function r(x) = number of 
primes < x. 

Cornaros showed that adding ir and one more new function symbol to LA 
suffices, namely 
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Theorem 15. TE u (r, K D E F(r)+ D E F(K ) proves Bertrand postulate, 
where K is a new function symbol corresponding to the usual function K(x) = 

E0<n<a! iiVen  

For the proof, an approximate logarithm function is used again and care 
is taken to define other functions involved in the usual proof, e.g. •P(x), in a 

E 0 (ir, K) manner. 
Next, we discuss problems and results concerning the system /E 0 

 where ill  denotes the axiom V;r3y(y = x[ ► "17 2 11 ). By Theorem 3, /E 0  is strictly 

weaker than /E 0 +12 1 . To see that /E 0 + SI, is strictly weaker than 1E 0 + exp, 

it suffices to consider the structure with universe {x E 11/1 : M 	x < 2[1 °92a1 " 

for some n E N}, for an arbitrary nonstandard Al PA and a E M — N. 

Let us see what is known about Problems 1 — 3 if /E 0  is replaced by 

IE„+SZ,.  
(a) The feeling is that Problem I again has a negative solution. Indeed, 
Wilkie's observation shows that if 1E 0  + St '  proves the MR.DP theorem, 

then N P = co — N P. 
(b) By using ingenious coding techniques, Paris, Wilkie and Woods showed 

(see [15]) 

Theorem 16. 1E0 	proves weak — PH 0 . 

(c) Again in [15] one finds 

Theorem 17. 1E0+ S/ L  proves that the set of of primes is unbounded. 

Actually this can be improved to 

Theorem 18. 1 	St, proves Sylvester's theorem. 

This follows from Theorem 16 and the fact that Woods's proof of Theorem 

8 really uses weak — PH PE, ) , not P11 PE°. 
We continue with a short discussion of a very weak subsystem of 1E 0 . 

This is denoted by lOpen and is obtained from 1E 0  if we allow induction for 

open .formulae only. The study of free-variable systems was first advocated 
by T. Skolem (see [17]). Shepherdson obtained (see [16]) 

Theorem 19. 1 Open does not prove any of the following: 

(a) :P. 2y2  V x = 0 
(b) r + y3  z" v xyz = 0 
(e) the set of prime.' is unbounded. 
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480 	 C. Pirintracopotilos 

BY part (a) of this theorem and the fact that 1E,, proves Vx, y(x 2 
 2y2  V a, = 0), it follows that lOpen is strictly weaker than J. 

To prove this theorem. 5hephcrdson const ructed a recursive nonstandard 
model M of JO pen, in which (a )-(c) fail, as bi llows: 
The universe or M is the set of all polynomials of the form 

ar.Yr/q 	sir _ 1  X (r- 	+ • • • + a, X t bi + (4o, 
where p, gEN,q> 0, ap ,... a i  are real algelrraic, ct r, > Q if p > 0, as  is 
an integer and is > 0 if p = 0. Successor. addition, etc.., are defined in the 
obvious way; by taking .V to be - infinitely large", one can make NI into a 
discretely ordered semi-ring. 

Many other authors studied 'Open, among which A. Wilkie ([19]), L. 
Van den Dries ([IX]) and A. Macintyre J. D. Marker (PD, obtaining very i n t eres ti ng  results, We mention wily one result from [91, namely 

Theorem 20. lOpen does not innve Lagrange's theorem. 

Most proofs in [9], including the proof of the previous result, involve con- 
structions of models by unions of chains arguments and repeated use of 
purely algebraic constructions. 

Let us finish with a remark: Most of the systems we have defined in this 
paper have been studied extensively frd -mi more than one viewpoints, but we 
have been concerned only with results associated to the main problem stated 
at the beginning. For information concerning other viewpoints, we urge the 
interested readier to consult A. Macintyre's excellent survey of the subject 
([8]). 
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INVITEE) LECTURE 

ON THE MAXIMAL ORDER OF 

CERTAIN ARITHMETIC FUNCTIONS 

Aleksandar Ivie 

ABSTRACT. An upper bound for f( f(n)) is obtained when f(n) belongs to 

a certain class of multiplicative functions. Also the maximal and average 

order of Q(n) and Q(Q(n)) are determined, where Q(n) denotes the number . 

of distinct exponents in the canonical decomposition of mm. 

It is well-known (see e.g. Hardy and Wright [3]) that 

log  d(n) log log 71 
limsnp = log 2 

n--■ oc, 	 log n 

where d(n) denotes the number of divisors of n. A more difficult problem is 
to determine the maximal order of d(d(n)). In [1] P. Era's and the author 

have shown that 

lOg 71, log2 11) 
 1/2 

log d(d( It)) K ( l og3  n ) 

where log y. x = log(logk _ i  x) is the k-fold iterated natural logarithm of x, 

and f(x) < g(x) (same as f(x) = 0(g(x))) means that < Cg(x) for 

some C > 0, g(x) > 0, > X. The upper bound iu (2) is certainly close to 

being best possible. Namely if one takes 

N = 	-

1152 -1 • • • g!' , 	T 	(X), 

where pj  is the j-th prime number, then 

d(N) = pipe  • • • Pr, d(d( N)) = 2's. 

Supported by Grant 0401B of SFS through Math. Inst. SAW!. 

(1) 

(2)  
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484 	 A. !vie 

But since from• 	the Pritne number theorem (see [:3]) it follows that 

pk = k( log k + 0(log lOg k)). 

we have, with 	= E,<<, log p, 

log N = E log pk — 	) = E k 	k + 0(7. 2  100; 7' log log 7.) 
k<7• 

= -L 2 10 2  r(1 4-0 ( lokli* 1). 2 

Therefore 

2('J1ogN) 1 / 2  ( i 4_ b  

	

log 	
Nj 

, n 	 log, )) ' 

Where co(n) deikites the 	of distind jllifhii Factors Of n. This gives 

	

. 2  2 	1 '12  (4) 	 d( At)) = 2 
lo 
 (  h)g NJ-  • 	(

lo
idg. ))trig, ri 	+ 

Which was already kilowii to S. Itaiiiiiiihjgh (tied 

	

P. trdas and 1. 1Citai [2] prilved 	eirefY e > 

Icigei( 	< (ldk ) 1 th+' 

and that 
itigd( ri(g) > (luk 

for ihfiiiitely hid* 4; 	is the 	itiii.attkl divisor fiincti(in and is the 
f-th Fibonacci moldier: Their method, ilt -lever, does not seem to yield any 
improvement of (2). t r  is r-th niiiiiher: eo . er_j i). 
Their method, howeVer, does not seem td yield any improvement of (2). 

	

The argument in fij that led to 	dePended on au upper bound fOr 

= 	:= 	1, 
rt, > 

where n > 1; 1 < , < log n/ log 'l' tGfiil 

(3 ) 

(6) 
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011 the i1tialla1 ()Mei of certain arithmetic iiinctioxis 	 485 

is the 	decOnitaisition of n. As One trivially has n > 2Q s , it .follows 

that 
(n > 1), < 	

It log 
 - s log; 2 

but a slightly better botind also holds. Namely (6) yields 

	

log n > E ai log Zia, 	log p = SO(pQ ) > 2. SQ log Q 
a,>.s 	 p5_PQ 

for Q >Q0. thus Q < Qi = Q 1 (,S, n) where ('2logn)/,S = 	log Qi . If 

S < logA 	< A < 1, then 

210 Q i  > Icig; i i + log log Qi > log 2 + (1 — ) log log 	log log n, 

Bence Ii9kCji > higlogn; which gives 

10g;  it  
(7) ) < ,s, log; log 0 	

(1 < S < to•rj A n 6 < A < 1). 

If a(h) dthtotos the niiniber of noii-isoato•phiu abeliati (i.e. taininiutatiVe) 

groups with 0 elements, then a(n) is a multiplicative ftinaton (Meaning 

a(nin) = 0,(+0,)ii(n) if 711.,1i are cdprinie natural numbers) and a( pk) = P(k), 

whore P(k) is the number of partitions of k. It was shoWn iu [1] that with n 

elethents; then d(0) is a Multiplicative finictidiu (meaning mu) = a(m)a(n) 

if na, n are cOprinie natural numbers) and a(pk ) = P(k); where P(k) is the 

tittinbe• of (iattitions of k. It was shoWit in [1] that 

(8) w(a(ii)) < (log 0 3 /4 002  n) -8 , 	a(ii(n)) < (hig it)1/8042;itrc  

With fl = 11/8r = 19/16. fn what lobriskrs a variation of the tnethoil 

devekijjed in [1] will be used td prove a general result for iterates of Certain 

arithmetic ftitictions; which ih the case if the fnuctkin a(ii) yields the slightly 
better values B = 7/4, C! = 11/8 iii (S). Perhaps the correct valnes of the 
exponents of the logarithms in (k) are both 1/2 (they cannot be smaller than 
1/2). If tine; this conjecture 5eti1fus difficult to prOve. [1] will be used to prove 
a general result fd• iterates of Certain arithmetic 	Which in the case 

Of the fuhiction a(n) yields the slightly better values h = 7/4, (7 = 

(R). Peihaps the cOrtea values (if the exinnients of the lOgaiithins in (S) are 

both 1/2(they cannot be snialle• than 1/2). If true, this t'tiiijottitte seems 

difficult to Oi•ivt. 
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486 	 A. Ivie 

The functions a(n) ;Ind d(n) belong to the class of arithmetic functions F, 
which contains all mull iplicative, prime-independent functions f(n) : N — 
N such that 

( 9 ) 
	B pk) = g(k) , g(k)< 	(0 < < 1, A > 0) 

for a,ll integers k > 1 and primes p, where g(k) E N. As we have d(pk) = k+ 1 
(9) holds in this case for any c > 0, and in the case of a(n) it holds with 

= 1/2, since P(k) < 	(see [5]). A simple proof that 

(10) log f(n) log log n 
lim sup 	  = max( f (2 k  )) I  / k  

is—+ ,x,—+ ,x, log It 	 k> 

if f(n) E F was given by P. Shill [6]. We shall be interested here in the 
maximal order of f(f(n)) when f(n) E F. Lack of information about the 
arithmetic structure of g(k) makes this, in general. quite a difficult problem. 
Even in the relatively simple case of d(n) the existing bounds (2) and (3) 
are of a different order of magnitude. We shall prove an upper bound result, 
contained in 

Theorem 1. If f(n) E F and c is given by (9), flaw 

( 1 1 ) 	 log f(f(n)) << (log 71)11+2re2 (10g2 )( 
	3) /2  

Proof. We shall prove first that 

(12) 	 w( f 	< (log 70" .1) / 2 (10g 2 71 ) — (e+ 3 )/2 ,  

which seems to be of independent interest. Let the di's denote the distinct 
exponents in the canonical decomposition of n(n > 1). Since 

(.4)(11111) < 1.41( 70+ co(n), co(n k ) = W(11.),, w(n) < 	
log ?I 

log log n ' 
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On the maximal order of certain arithmetic functions 	 487 

we have, for suitaqble integers Efi > 1, 

( w ( f( n)) = w H giNai) H Goi ko  < >2 w(g( (ti)) + >2 w(g(ai)) 

ai<s 	,,,>s 	 a i < s 	a,>s 

S e  
< 	 E 1+ Ea, > s 

log S ,,<s 	- log ai 

0(log log n) 

< 
l jog 
	
S 	

E logtai 	

(.4 

log ai 
2i S<cti <2)+ 1  S 	 >(log 70( 3 +0 )/ 4  

0(log log 70 
,5 c+ 1 2i c S e  

< 
log S 

+ 	---Q(2:is,n) + (log n)cQ((log /) 0+0/4 , n) 
log S 

i=0 

	

0(log log n) . 	.„ 

	

5c+1 	 2 3 '.5( 	log 11. 
	  + (/0970 3+c)/4  < ---, + 

	

log 5 	 log S 2jS log log n 
j=o 

	

se+i 	se- i log; 
< . 	, 	. , I"6 	" + (/ogn) (3 +`) /4 , 

	

log 5 	log 5 log log n 

where summation is over j such-that 2j+ 1 5 > (log n) (3e+ 1) /4 , and where we 

used (7). Now the choice 

S = (  log 71,  y/ 2  

gives (12), since 0 < c < 1. To obtain (11) from (12) note that, if (6) holds 
(the exponents now do not have to be (listinct), then by Holder's inequality 
and (7) it follows that (ct(n) is the number of all prime divisors of n) 

(13) 	 log f(n) < A >2 a4 < A(S-1(n)) e(w(n)) 

hi (13) we replace n by f(n), use (12),(10) and the fact that St(n) < 

log n/ log 2 for all n > 1. We obtain 

to 	
log 71 ) ((log n) ( c+1)/2 (log log 7a)-(e+1)/2 )1—c, 

f(f( n )) < log log n 

which gives then (11).This ends the proof of Theorem 1. 

log log n 
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488 	 A. Ivie. 

We recall that a(n) E F with c = 1/2, so that (12) and (11) yield B = 7/4 
and C = 11/8 in (8), as already mentioned. 

It follows from (10) that ( 11 ) gives anon-trivial upper bound for log f(f(n)). 
However,Theorem 1 certainly does not resolve the problem of the maximal 
order of log f( f(n)), whose solution requires additional information on the 
function g(k) in (9). To see that f( f(n)) may assume both large and very 
small values infinitely often if f(n) E F, we present the following two exam-
ples. 

Example 1. Let f 1 (n) E F with fi(p k ) = gi (k), g i  (I ) = (2) = 2 m (k) = 
[ekl for k > 3 and a fixed c such that 0 < c < 1, where [x] denotes the 
integer part of x. Then ifn = (p i p2  • • • pi; ) 2 (li — oc) we have 

( 11 ) = 2 k', (fi( 71 ) ) = K(  log n = 2N(pK) ^ 2K log K. 
Thus for infinitely many n we have 

(14) 	 log fi(fi 	> 	
logn 

 log log n 
By construction the constant e in (14) is, for f1 ( r1), the same as the one 
appearing in (9). If we compare the bounds in (11) and (14) for log f i ( f (n)) 
it is hard to tell which one lies closer to the tree order of magnitude of 
/ 09./1( ( n)). Although 9 1 (k) in this example is of simple form, its arithmetic 
structure is obscure, and for this reason the problem is a hard one. 

Example 2. Let f2 (n) E F with 

{ 	2 
f2(Pk)= 	

1 	k 
 

2 	k = 2. 
In the previous example the function fi(f i (n)) exhibited large values, but 
in this case we clearly have 

lim inf f2(f2 (n)) = 1, Hui sup f2(f 2 (n)) = 2, 
71—■ CX) 

(X) 

since f2(f2 (n)) equals either 1 or 2. Here, at least, the problem of the 
maximal order of f2(f2(n)) is solved. Note, however, that f2 (n) itself takes 
large values, since by (10) one has 

log  f2(n) log log n 	log . inn sup 	• 
log n n 	 g 	 2 

Related to the functions co(n), it(n) is the function Q(n), which for n > 1 
we define as the number of distinct exponents a i  in the canonical decomposi-
ton (6) of n, and for convenience we set Q(1) = 1. Note that the function 
Q(n) is neither multiplicative nor additive. We shall determine the maximal 
and average order of Q(n) and Q(Q(n)). The results on the maximal order 
are contained in 

V
ir

tu
al

 L
ib

ra
ry

 o
f 

F
ac

ul
ty

 o
f 

M
at

he
m

at
ic

s 
- 

U
ni

ve
rs

it
y 

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs



On the maximal order of certain arithmetic functions 	 489 

Theorem 2. For n > n„ We have 

(15) 	
Q(70 2  ( log n  )

1/2 	
+ 0  cog311

)) loge n 

and equality holds in (15) for infinitely many n. We also have 

Clog;., n 1 / 2 	+ 0  (log4  n) 
M 	

) 
(16) 	 OO) 	logs ) 	 n ) 

and equality holds in (1(i) for infinitely many n. 

Proof. Take 

(17) 	 71 = pi • • plk, R-m oo. 

Then 

(18) 	 K = w(n) = On), Q(Q(n)) = Q(K). 

But from (17) we have 

(19) log 7/ = E :flog pj = E j(log 	0(log2  j)) 
j<K 

1 
2 

= —K 2  log K 0(A log2  A ), 

which gives 	
Q(70 2  ( log n  ) 1 / 2 	+ ( logs  n 

loge  n 	 log2  7/ 

for n given by (17), that is, for infinitely many n. From (18) we have 

	

log 	K  ) 1 / 2  moo)  (AK) 2 	 + 0  (log3  K)) 

log4  K ) ) log2  K 

for infinitely many K of the form 

(20) 
	

K = 	• • 14 r 
	

00. 

But from (19) it follows that 

1 
log K = log2  n 0 (log3  n), log log K = log 7/ + 0(1). 
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490 	 A. !vie. 

Inserting those values in the expression for Q(Q(n)) it follows that equality 
holds in (16) if n is given by (17) and It by (20). 

To obtain an upper bound in (15) note that if (j1,j2,...,jQ ) is any per-
mutation of ( 1,2,..., Q) and 1 < < • • • < a c? (Q = Q(n)) are the distinct 
exponents in the canonical decomposition of n, then 

> i 	(i = 1,...,Q). 

Thus we have, for some permutation (ji,j2,...,:jg ) of (1, 2,... ,(l), 

log n > E a i  log pj,> E a i  log pQ 	Ei log pg  
t=1 	 J=1 	 J.1 

= 	(Q — + 1) logpi = E( Q — i 1)(logi 0(log2  i)) 
J=1 	 J=1 

1 = Q E log i — 	log i 0(0 2  log2  Q) 	= 72-Q 2 (log(, 	0(log2  Q)). 
J=1 	J=1 

The above expression is similar to (19) and easily implies the upper bound 
in (15). Since the right-hand side of (15) is an increasing function of n. for 
n > n1  we have 

oon» 2 ('°g070))1" + 0  (log3 Q(n)\  

	

loge Q(n) 	 log, (100 	' 

and if apply (15) to the right-hand side of the last inequality, we obtain (16). 
This completes the proof of Theorem 2. 

To investigate the average order of Q(n) and Q(Q(7))) we shall use the 
approach developed by G. Tenenbaum and the author [4]. Therein an 
.s-function f(n) was defined as an arithmetic function for which f(n) = 
f(s(91)), where s(n) denotes the squarefull part of n (.s is called squarefull if 
s = 1 or if p2  s whenever p J .s, p a prime). Thus a(n) and Mu) — w(n) 
are both s-functions, the former being multiplicative and the atter addi-
tive. Now Q(n) is neither multiplicative nor additive, but it turns out that 
it is "nearly" an .4-function. Every n can be uniquely written as n = qs, 
(q,$) = 1, where q = q(n) is squarefree (meaning that it is either 1 or a 
product of distinct primes) and s = s(n) is squarefull. But then 

1 	Q(s(n)) 
(21) 	 Q(n) = 	

Q(s(u)) 

if q(n) > 1, 

if q(n) = 1. 
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Therefore 

E 	= E(1 + Q(s)) 	E 	1 + 
n<x 	 s<zr 	 1 <71<x I s,(q,$)=1 	s<x 

We evaluate the sum over q by (1.4) and (1.5) of [4], noting that E,„ 1 <
. We obtain 

(22 )  E Q( n )  E (  + (d(•„ )). 
n<x 	 s<x 

1  X 6X —71--..sx F (1 + p-1  ) -1  + O( B( 8 ) s -1 /2 x1 /2 log x  

Pis 

with 
B(11) = 	 p 

To estimate the error term in (22) we use (15) and 

E B(,),-1/2 <  fl  ( 1 B(p) E p- 7112  ) < log x. 

s<x 	 p<x 	 m=2 

In a similar way we may evaluate the summatory function of Q(Q(n)). The 
expression will be similar to (22), only instead of 1 Q(s) we shall have 
Q(1 + Q(s)). We obtain 

Theorem 3. We have 

E Q(n) = Dx 0(x 112  '5 / 2  x(log2 x) -1 / 2 ), 

n<x 

D  = 	E 1 + (2( s )  [1( 1 + p-1 )-1 ,  

s=1 	 Pis 

E Q(Q(n)) = Ex + 00:112  log2  x(log2  x  /2 
(l

og3  x )-1 1 2 ), 

n.<1; 

E_ 6  V-s (-4°  ( I + 9( ) ) 	+ 
• 

ir 2  
8=1 	 Pis 

It may be noted that by similar arguments one also obtains 

(23) 	 E 	1 = dkx OC.r 1 / 2  log2  30, 

n<x,Q(n)=k 
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492 	 A. !vie 

where the so-called "local density" 4 is given by 

00 

(1k
6

k = —7, H 	I fp . . + 7 )- 1) -1 
1  7rz 	 A 

s=1,Q(3)=k-1 	pis 

(k > 2), 

and dl  = 67r -2  (since On) = 1 if n is a power of a squarefree number). The 
error term in (23) is uniform in k, and each 4 > 0, since for any given k > 1 
the equation (2(s) = k — I has soi111;i011 in .s, namely 

= 74 71l • • 74_ 1 . 
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Ni, April 14-16, 1995. 

INVITED LEI:M.11tE 

VITEPATMBHbIE AJIPEBPbI ABTOMATOB 

B. B. Ky,gp.Hugeu 

PE:310ME B pa6o-re 1104 14021,HTCB OCHOBHhle pesiynbTaThi HO upo6ne-

mam nbipa34ImocT14 14 HOJIHOThI AAA YITepaT141-1111,1X anre6p anTomaTon, 

nonygenme 3a nocne,nune 6o.riee, gem Tp14,B,I1,aTb JleT, T.e. 3a nep44o,ri 

B031MKHOBet114,1114 CTa.IIoHJICHHH Teopten4 auTomaToti. Onpicanme cnoiicTn 

llyHKIX140HaJlbHbIX CmcTem anTomaToB ne,neTcn mo.nenbtibix cincTem, 

ynopsinotiemnAx no mepe napacTaman 14X c.rioaoloc -rvi. CHamana pacc-

marrpt{BaioTcsi aHTOMaThI 3e3 riamirrvi, T.C. itiyilimmt normcm, 

:3aTeM aBTOMaTbI C OfpaH14 11 e HHOli IlamHTblo, T.e. yica3ainibie (1)y1-11(1.(1414 

C 3anepxocam14, 14 L3 3aKniO4etime Konegnble aBTONIaTbl, T.e. anTomaT-

nbie liyFIK111441. 

Bse,Lkeime 

HOBSITI4e awromaTa oTHocHTcst FC LII4C.T1y BaH<Hertumx B maTemaTrime. 

OHO B0:3H14EJ10 ua CTIAKP pa,:3Hb1x ee par3.rte.noB, at Tatot<e B Texinuce, 60- 

OJI0r1414 H Apyr14X 06J1aCTSIX. Co,aepHiaTeabtio atBTOMFT npe,acTaBasteT 

ycTponcTBo C Bxo.furbimpt 14 Bbtxoxythimm Kattanamm. Ha ero BX0abl 

nocReLtoBaTenbHo TIOCTyrIaPT HEI)opmativul, KoTopau nepepa6aTbthaeTc.H 

14M C. yrteTom c.Tpoettim 	110CJle/10BaTenbHOCTI4  14 BbutaeTest T-tepe3 

BbIXO.H.Hble Kalla,J1K1. 	yi-TportcTBa moryT ,HoutycKaTb coe,2 -10Herime I4X 

KaHaJI013 meKrty 	OTo6pa:HieHme tixo,allbtx nocne,HoBaTe.nbHorrect 

B Bbixo.ruible Ha3bmatoT atirromaTHoil (pymatmert, a6 BO3MOH<HOCTb no.nytte-

Han HOBKIX Tativix oTo6paace1Imil 3a cLieT coeamietuitst aBTomaToB Hpu_Bo-

AHT K anre6pe aBTOMItT11141X 1.1131HKH14171. 

Caw?' awromaTbt 14 14X am-v.6p hi IIaLI atJIN 141'47,11e/10 B aT bC.fl B Tpvuularrme 

roma Texywero cToneTtft.H, Ho orolienuo aNTHBao, — B nepxo,H. 50-x 

F0210B. 

OCHOBOHOJlaramtuyto pom, 3 uteri, cbtrpazu pa6oTbt A. Tb1opl4Hra, 

K. Illemmia, 	Mypa, C. KM/HIM I4 Apyriu awropoB miameamToro 

493 

V
ir

tu
al

 L
ib

ra
ry

 o
f 

F
ac

ul
ty

 o
f 

M
at

he
m

at
ic

s 
- 

U
ni

ve
rs

it
y 

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs



494 	 B. B. KyApApueri 

coopfunca "AnTomaTte [1]. lioc.wAytouivie palioTm no 14:3ytiem410 an- 
re6p amTomaTon BeJ1140, 110A 60J11.11114M RJ114.111114eM 143BeCTHOil CTaT1,14 
C.B.,F16J1oHclioro [2] no TeopI4i4 (1)ywKw411 k-313ainiori n0rmm4. Tame 
(pywunen4 moryT 1)acrmaTpl4Hamen Ni K anTOMaTb1 fie3 namirm, K KOTO-
pmmx npHmeHsuoTrn onepawm cynepno:3mum4. 8o3Hmilukte ..11.1111 Taimx 
(1)yHmmil nocTaHonm4 3a,naL1 o liblpa314MOCTI4, 11o.TIHOTe, 6a3mcax, peweT-
ice 3amicHyTtax KJIKCCOB 14 Apyrme, H Tatoxe pa3HRTLaA annapaT coxpa-
HeH14.H IIpeAI4KaTOB HaN KJIEOLIeBIA AJIJ1 peweaHn '-)TMX 3a4a1-1, OKa3aJ114Cb 
BechMa 4e.iicTHeHnumm 14 Ann anrelip auTomaToH, na:ibmaembix ,nanee 
cpyininkToHanbm-Amm cHcTemamm. npm ►TOM 110A Bblpa314MOCTE,10 non-
mmaeTcm B03MOJKHOCTI, nonytreaan (1)ymarmil anHoro MHOHieCTlia tiepe3 
Apyroe nomowhio :3a,naHHhix onepatudi, a awl nonnoTolel — Hhipa:314- 
morn, nrex ()yluiwiti tiepe3 3a„giumie. 13 1a6oTe 1433,1*1114F! 14TepaTi413- 
FINN a,aref5p aBTOMaTOB oryiliecTBJIMeTCJI Ha. pn,ne moAeJlbHbIX ofrbeHTos, 
HaturHan C anTomaTon 6e:3 14aMJIT14 9  T.P. (kymiumil k-3nagnoil norknol, 
3aTeM Ansi anTomaToB a orpaumgelmoti ilaMJITE,13), T.e. (1)yinium4 C npe-
memibimm .3a,nei»Examm, 2ta.rxee Ann KoHetundx arrromaToH, T.P. anTomaT-
HbIX (1)yumar17 obi er° Blum. B HaLlerTne onepaw4ct shicTynaloT (•.ynep-
na3min414, a 14 norne.uHem rnytiae — ewe 14 06paTHa3i cE11131.. 

/IAA anTOMaTon 603 HaMJIT14 npmHannTrn (pyrtaamenTanbnme pe3yab-
Tani! 3. BOCTa O rTpoemin4 peweTKI4 3amlinyThix KnarroB 6ynenciimx 
(1)ymiaam, 311aKOMCTRO C KOTOphiMI4 ceroAan 3aTpy,nneHo B cf01:314 C 6146- 
amorpaqmtlerKoti peLniorTwo R11141' [3,4], W KOTopb111 OHM roAewmaTc...n. 
3aTem nppnianlyrem Ham6arwe ryw,erTH('mnde pe3yJIbTaT1,1 AJISI (1)ymumil 
k-:3Hatmoll J101- 41414. Mx ornoHy COCTilBJ1.11eT narixan, pa3B14TbI1 A.B. 
Ky3Heumn1m 14 C.B. 1-16,n0HCKI4M 14 onretpa.loumnr.H Ha 110H5ITI4e npe,a-
nanHor(.) xnacra. JIJISI HoHetwo-nopoKneHnbtx rptcTem TaKnx (1)ymaudi 
cemetirTH0 npe,nnonmdix xnarcon o6pa3yeT HpHTepvianbHyw cHr.Temy; 
Apyrmmpi rnoHamm, npo14:3Hont,Hoe MHOJKeCT110 II0J1111,1M TO-
14110 TorAli, KOrAli HP JIBJ151eTcJI nanmna,,HerTHom HI4 oanoro npeananHoro 
KJIacca. MHohiecTFlo H THX npe,nnonHuix KaaCcon olia3aJlOCK KOHeE1111,IM 
14 14:3 14X XapaKTep[43au1414 HbrreHaeT anropHTmintiocKan pa.3peummorTh 
3a.nali14 o nonHoTe. Ha ; ,..)TOM nyTH C.B. .116nonewei nyTem minor() 
onmra,H141-1 Brex HpeArloJIHKIX KJiaccon fibula peweHa 3azama o nanHoTe 
A.1111 chyamn4A Tpex3nattnori norman, a HmerTe r A.B. Ky3Hel:10BbIM Ha-
NAefIbI  remetirTaa ElpeAllOJIHKIX KJIHCCOB ,E1J1J1 npoH3Honbuc1 
NoHetwoil 3Ha.LniocT14. 3aTem ycktamsimm mnorkix H(...rne,n,oriaTeneri [5-9] 
norne,aoHaTeabHo 614.1114 oTKpbabi noRbie Tante ce.metirma,, a 3aKnia4114-
Tenbuble no("rpoeHm ITpC)BPJI 14.Po3en6epr [10]. 

/Insi anToMaTon C orpaHmtieHoA HaMJIT610 111114130AJITC11 1)erneH14.11 :3a-
fla4 o noanoTe 14 rthipa.:3HmorT14, a TataKe :3a,rtaL114 o cnafibix BapManTax 
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3T14X 110,arTaHOBOK [11]. I OJL aaTomaTom 'raKoro pona 110H14MaeTe51 napa 

(f,t), me f — 4.13711K1114.11 k-3Hav-H10171 J1orl4K14, a t — ['pew" ee BbILIVIC.I1e-

HI4.H. C./la6M.11 110J1HOTa 03HaLlaeT B03141 0A<HOCTb noJI,ytIeEIHsI 143 acxo,aaux 

nap c noMOnluo cynepa03141U411 ino6o4I +yr-mamH xoTb C iiamoti-tin6yab 
3a.aepao<014. nonpo6tio paccmaTpaHae.Trn cnytiari 1pyRKwIHM aay3Hatmoil 

normin. B KarlecTse annapaTa peineansi 3aech Tat0Ke 14CTIOJIb3y1OTCA 

npeanwiHme Knaccm. ()T.inittnite ;4Tor() cnytiasi OT anTomitTois 6e3 HaMATI4 

COCTOI4T B TOM, (-ITO cemericTtio ripenuannbix KnaccoH mia3a.noch 

BMeCTe r TeM, 3a11atia 0 enafion nomioTe ocTaeTr.n asiro1)aT- 

mallecK14 pa:3peummoil. 

Apyrum 0606111efilleM aBTOMaTOB 6e3 LlaNOITH SHIJI.BeTcH mace. nvleg-

HbIX aBTOMaTOB c onepaanamm cynepno:3maa4 N 06paTHOA t'ls,H314. allS1 

:4TOPO KJIarra r14TyalII411 OKa3bIBaeTrIl 11 OX0Hieg Ha cnytlaN ar3TomaT0r3 C 

orpaaatiemmii nammTbio. Taawe ynaeTcsi 01114taH14e BreX Hpe,L(HOJIHbIX 

KJ1aCCOB, KOTOpbIX oaa:3binaeTcs1 ctieTHoe tiacrio, oTxyna Tem He meaee 

1438J1eKaeTC.14 aaropmTm pacno3naHa1Iwn HOJIHOTh1 KOHeT-111b1X r14CTeM aB- 

TOMaTOB [12]. 

Ilepexon K orniaemy cmytiaio auTomaTois ,aorrannsieT ptie KOHTHH-

yaJ11,110CTI,  miiim<ecTaa ripennomibui KJIarrOB [13] 14 a.aropmTmatiecKylo 

Bepa3penniimocTb :3a„aatn4 0 nomioTe [14]. Ilowromy aliTya.ribamma eTa-

HOBSITCSI 11014CKH nyTeti, CB51:01,1ilible Kati c ocria6.neanem caoiicTa 

HOTbi, TaK 14, Hao60poT, o6o1'auleallem ?)Toro nonsrra.H. 

llepHoe Hanpaimeame peani43yeTc31 nyTem 1)arrmoTpem4H 3anatut 0 r-

HOJIHOTe 14 A-110J1HOTe, cocTosunax cooTHeTrTnetni( B npmsepae 1101)07K-

21eF11431 BCCX oT06paxienail na CJ1 OBaX JLJJMHbI r, a TaKace TaKI4X oTo61)a-

>tiellail npa mo6om ilnuicapoitaaHom r. OcHonabimm pe3yabTaTamm 3,aecb 

SIBASHOTCH 51B110e onmcanvie BCPX 7.- 14 A-npennomibix Knaccoa 14 aJIT'O-

pHTmHtlecKasi aepa31)eI1HmocTb 3a,BaT414 o6 A-nom-10Te [15]. 

BTopoe Hanpaa.neavie peanwlyeTcsi nyTem paccaoenan BCCX KOHetl -

HbIX CEICTCM aBTOMaTOB, accnenyembix Ha nonnoTy, Ha Tarim. B 0,11:1411 

THU oTHocsiTcsi Bee. TaKme cmcTembi, KoTopme conepaiaT 3a.aaanbnl x.riacc 

llocTa anTomaTois 6e:3 namsam. O•HoHammn pe3yabTa.Tama SIBJI.HeTCH 

sailloe yxa3aame rpaaanbi oTne.namocTm allrO1)l4TM141-IeCK14 pa3pe11114MbIX 

rap-Melt THROB CI4CTeM aBTOMaTOB Ha nmarpamme ❑ocTa. ),Ke rpa-

amia 0Ka:3b1isaeTcn HepHoti 14 11J1$1 cnytiasi A-nonicabl [16]. 

Hapsiay c nponntipEeinnsimm B pew(ila14 ocaolitibix 3anaxi no np06- 

JiemaTince, caitiaation iibipo314mocT610 14 BOA HoTOrl, B 0630pe 0603- 

tiaxiatoTcsi Te Hanpaarienvisi„ xoTophle eine pa3pa6oTatibi cna6o 14J114 He-

,ELOrTaTOLIHO. 143.110/KeHMe HeAeTcsi TOJII)K0 aJ111 MO/lent) fiblX enriaeB (1)y-

HmII4oHaammix CHCTCM aBTOMaTOB. 06iume. notTpoenasi, ocyniecTnnen- 

able aBTOpOM B [17]. 3,aerb He 3aTpall4BaKar3l. 
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496 	 B. B. kyhtpiumell 

1. OCHOBHIde HOHATHJI H 3a,zralni 

Flycm N = {1,2,...}, Na = {O} U N, N I  = NW}, Ans1 h 143 N nonoraom NIL = 	 ParemoTpmm nelicyropoe mmmiecTrio Al 14 
OTOfipaiKPH140 (di : Al M, rite ImasieTeri .rieliapToBoA cTe-
flel1b10 mno›BecTBa Al 14 n E N. IIyCTb PNJ — mftwEerTBo liCeX TaKI4X 
OTO6 pitiRPH14r1 W 11 1)14 mo6mx yKa3a,B11bix 11 14 St C M. 

PalTMOT1)14M y 1114Bepea,111)1Iy10 a.nrelipy (y.a) .A4 = (A4,0), B KOTOI)OVI Al Bammaerrcsi Borwrenem, S1 — Kaaccom onepauttit. C KitKahIM 11011.11411- 
0}K0rTHOM Al C Al cELEIiiieM 110CJIe.40BitTeabFlOCT6 MI-10iitieCTI1 M i) , t E N, 
TaKle1M 06pit30M. 

1 ) 	7"7 	 i+1) HMI( *11.14M 	= 	. 	N4H0iiieCTBO 	 rOC'roPIT 143 rBex 
Tal11X ',1,nemeirroB in 143 Al . 1UiS1 KOT0p1.1X nariayTesi W 143 	14 ml, 7712,..., 
711. —(i)  

143  M 	L1TO 	= W( 7711 1112, 	m„). 0603BaLrprm 4epe3 42(M) 
0 T7 MEIO>K0CTE10 1.4_1 M . neTpy,zum 11 14,/leTh, L'ITO 1st SIBJI.FleTCJI ouepaTopom 

3ani14xa1I[4n Ha. mBoxiorrBe B (A4 ) o6pa3oBa1mom Brompi noaktum.BerTBamm 
mima<ecTBa . Tem ca,mtam Jvisi 11 Beeraa Bidno.nBonm ye.noupui /,,,(M) D 
M, 1,(1„( M)) = I,(M), it TaKe-Ke eCJI 14 M D Al. TO Ibj ( A4) D 1„(M). 
MH(*Kerrylo 	 3aMblKiLF114eM M110AieCTBa M, a CaMO 

HopoKaaamtmm MI10iiieCTBOM AAR /0(M). MBO:dierTBO Al Has.Thata.eTcsi 
3ammyTbrm, orgt4 	= 11-1(714). 

ny rT b E(M) — Mllo:acecTEM Brex 3a,mi-myThIX 1-10,4M110:4tieCTB B M. 

FOBOI).HT, '-TT() Al Biapammo Liepe3 Al, ernm Al C 1,„(M). MuloaterrBo 
rfa31.11taPTC.S1 nomihrm, orm4 /w (M) = A 1 . IlonTioe M110}KeCTBO Ha3b1- 

BaCTe.}1 64314C0M, eC JIM JI1060e ('n) c06cT1iel11Toe rio/LmfickKerm o  
Ten 110.T1111,1M. 

OrimBlibrmin riporinemamm JUIN M, F .yrophie fiyikyr inprepe.roBan, Hac, 
HBARB- rem ripolinombi 8b1pa3mmorrm 14 BOA HOTE)1, R TitiiiKe fia3mroB, perm- 
eTtai 	 liJlaCCOB, MO,L114(1)141ialIV114 14X 14 HeKoTophie 1)14MbIlia10- 
11(Ple K II14M Bonporm. 

npoCirtomoil Bbipa:314morTvi noummaeTrm yKa3aume Brex Hap (M, 
Al) TaK14X, trro Al Bblpa314MO 11(1)03 AI; nosa npolinemori 110.7-1110TM — 
3aBmo Brex no.nllbtx Bo.zuvrno -rKeeTB; IIOJ1 tip06new)ii fia,34coB 	oralcaime 
Brox fia:meoB, ('('JIM 01114 cymerrBytorr; 1104 npormemoA peu.loTKI4 — 
norTpootime powemi4 Brox 3aMKBYTIIIX Ii.11are.OB 14 Bax(muteHmo ee rBoli-
eTB. 

3F1a1114e 1)ellleTKI4 E(.A4) ,B.aeT petneume npo6..riem Bbipanimorni H II0J1- 
110T1,1. TaK, abipa314MOCT11 Al tiepe3 Al 03HitgiteT npouopKy /w (M) C 

M ). /tag peweBan poeinemm nonBoTbit Kermab:tyerrcsi CneAyfol1lasl 
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cxema. (.:meTema E' C E(M) Ha:3oHem KpprepPta,A[bHon (k-c14cTemog), 

ecnvi JllOf)C)P MHO>KeCTBO M 1TOJIHO PURR() Tor,aa, Kor,aa 11.1151 mo6oro M 

143 E` Bbmonfietio M g M. 11T0 ec.rm 13(A4)\IMI # 0, tiTo aa,nee 

Hpe,ano,noraeTc.H, TO E(A4)\{M} 3111J151eTCH k-cpicTemon. HeTpy,aHo B14- 

,L1eTb, L1TO AyaJlE)Hble aTombl pealeTKI4 E(,A4), Ha3mBaemble TaKmie npe-

ATIOJIHbIMI4 KJIaC.CaM14, BX0,a31T B nto6ym k-cmcremy. rlyeTE, E r (M) — 

mHo›Ke(...TBo BCPX ripeanommix KlIaCCOB 4I E T04) — muo)KerTHo Hcex 

KnaCCOB 143 E(.A4), HP AB.11.51 101.1.114XCH noamHoxiecTitamvi H14 oaHoro npe,a-

no.n.Horo Knacca 143 E ir (M). HeTpyauo y6eiarripcm B cneaymatem yTHep-

Aiaelll414. 

lipeAsnow,eitHe 1.1. Alno.)1411nao .1],( ./14 ) 	M) n6pa3yent k -cuentemy 

y.a. .A4. 

Ocormal kruTepec BbI3bIliaeT cretTyaavisi, Kor,aa, ET,(M) SIBJI.HeTC51 nyc-

TbIM mHohiecTitom, TaK KaK 13 ;ITOM cilytiae cvicTema E ir(A4) o6pa3yeT k-

evicTemy, 14TO o3HaLtaeT cHeaellvie 3aJiat-H4 o noiworre K orn4callmo Hcex 

apeanoaHmx KJIaCCOB. OTMeTI4M 01L1411 HaA<Hbrii CJIy4al4 TaKoro poaa. 

Y.a. 1.4 11a3131BaeTC/1 KOHeLII10-110p0H-C/WHHOA, PCJI 14 cymecTrtyeT KoHeLmoe 

noamHoAcerTHo M' C M, KoTopoe SIB.1131eTC.H nomitam. 

143HecTHo [18] c.neaymuye yTHeryik.aellvie. 

lipexioweHHe 2.1. Ecizu y.a. M ste ✓imentex mouenuo-nopo.wedenuoti, nip 

L',(A4) oopa.lycin k-cuentemy. 

OTMeT14M, LITO B 06111RM CJIrlae ;:iTO yTHelyrKaeame He SIBTI.HeTeS1o6pa-

TVIMIAM. PaccmoTpmm 'renew. CJIytIa.I1, Kor.aa muoA,:ecTrio M COCTONT 143 

(1)3rHKI114171. OH 6y11eT 11J131 Hac ocHoHab[m. 111)14 %)TOM, y. a.. 6y11eT 

Ha,3brHaTcsi (i)yfiKLIHOHaJILHOPI C14C.TeM or' (4).r.). 

nyrTi, E — HeKoTopoe mno:aiecTHo 14 ())yHmtvpt f I4MPPT BHA f : E7a —> 

E, rae n E N. IlycTib U = 	 aJI(1)a14 I4T nepemeHubtx ni co 

3HaLietivistmvi B E, Z E N. /1.11m 	 (1)ynKuvni f 6y,L1eM 110J11,30BaTbC51 

Bbipax<etimem f (ui,, ... , 71i n ). KJI it( 7 C Hce.x TaKmx (1)yufau4il o6o3Ha4mm 

gepe3 PE. Bo 14:36e>KeHme c.nokKHmx vinaeKcoH y HepemeHmx 261 6y1Iem 

mcnortb3oHaTI, Ansi HX o6o3H•mellvo7 meTacvimBonia x, y, z, Bo3moaqio, 

mitae KC am . 

(.!neayst A.14. Manbuell [19], rtheaem B FE yllapHme onepativivi 71, T, 

A, V, KOTOphle onpeaenmoTcsi caeitylotakim o6pa30m: 

f(X25X3,...,xn,3:1); 

.,x 7L _ 1 ). f (x i , x 1  , x 2 , . . . , x „_1), 	ec.rm n > 1; 

(Q f) = f, 	ecnvi 7t, = 1; 

x„, x„+i) = f (x 2 , 3, ... , .'r1% -1); 
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498 	 B. B. Kyzi.p.rinuet, 

(1) 01)Ma. ;11'14X 0110paL114171 yroxtaileT 01101)a111414 I13 [1 ..1]. 
BBC...40M 	PE a. C4Ha,1)Hy10 ollepauMnO * TaK. J1J131 (iiyamUHti f(:rl, x2, 

• • • x71.) 14  91 Xn+ 1 X7/.+2 + • • • • 	) 11011 arit0M 

(.1 * g)(:172,373,..,:r, 	a,„+„,)= f 

01114CaHlibIe 01101)at11414 lia313.1BaIOTC3I, COOTBeTCT11011110, CABI4F0M, TpilI117.- 

1103141:1,14011, 0T0}1•C40C.TBJ10H140M, paramiieuviem, 14 noAcTalloithoii, a 13 CO-

BoKyrmocTm onepaturt.snom (7yneptio:4141.11414. MilowecrBo ;IT14x onepa-
umri 0603Hagmm tt c . nycTi. Al C PE 14 for (M) = Al , Tor,aa, 4).c. M = 
( M, ft„) Ha3i.nia.e'r(si wrepaTic.iliort (1).c. rforra,. 

2. 471INIAHH /-3HanHO1j J10111E14 

(DyNK11141,1 143 PE tia.:310taloTcsi (1)yl1Kiu4Hm14 1-311atiuoll .nori4H14, erJIN 

	

E = E = 	 / > 2. 

wrom enytiae BMOC ro PE ynoTpe6JuieTc31 C.14MBOJ1 P1. (I).c. PI = ( 	ft c ) 
cqw.rat -vresi oxiori 143 OeflOBIIMX M040J10r1 141epaT14B1-11,1X (1).C. ❑ OrTit (,L1./151 
HpaniorTH: u.(1).e.), Ha 143y ( 01-114 14 ROTOI)Oil 4101)M141)0Ba.111411. np06.nema-
TI4Fia 14 MOT041,1 Teoppn4 (p.c. Erjiii M = ( Al , Sl c ) 14 Al C h, TO M 
Ha•sibusaom poita. 1. Ro1 )OTKO 1,43.now14m (WM01011.10 14T01- 14 14:33/1-ieHas 
Pi , KoTopme 6.y.ayT 	 parCMOTpellf451 	aBTOMaTH1,1X 
())ytniumii. 

11J131 	 norTom [3] flaw) liwthop peweinie ynom.)myrtax 111)06- 
..riem 0 	 Bmpa:mmorTN, Cia3Hrax H petneTH(' 3amHtlyrbix KnaccoH. 
Orunnem ;-)Ty 	 COXIM11101 ero or)03iia 41enali. 

PaecMopl4M mumiierrno KnacroB 

Ci, At, j, 	3 „S" , Pi , 	, r;.,, 

rite r = 1,2,3,4; j = 1,2,3; r = 1,2,3,4,5; .9 = 1,2,...,9; t = 1,3,5,6; 
v = 1, 2 	S; 	= 1.2,.... 

(1)yHBAH414 H3 1)2 Ha3bIlialOTC.31 (1)yriRuPtsimm alIFC.61)61 J101141(14 (4).a...n.). 
KJIaer P2 	❑ orr olio3HamaeT Hepe3 	Knare (12  co,aepa.a4T BCC' 

	

, Tit1:140 %ITO .1(0,0 	0) = 0; C3 	Bco 	Taxme, tyro 
f (1, 1, • .. , 1) = 1; C4  = ("• U 	l'oriopsiT, LITO 	 f minsieTesT 
moHoTorioii, 	Bcer.ila 143 H0paBeHeTlia as < 	HriX i = 1, 2, ... , n 
crie,H.yeT, Lao f ((L l  , 	, an ) < f(bl, • • • bn). Niaee A l  ('.00TOLIT 143 Hrex 
MOHOTOIIHMX (1).a...11.; 242 = C• n A 1 ; A3 = C3 fl Ai ; /1 4  = A• fl A3. Knace 

rOrT014T 143 ncex 	f TaKPIX, LITO f (x 1 , . . . , x )z ) = f (x i  , . . . , „) 
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r.ne 4).a.JI. x lla3basaeTcsi oTimuaHmem 14 3a,aaeTc.s Tax: U = 1, T = 0; 

Dl  = (74  n D3; D2 = Al n 1)3 . Kriacc L 1  COCTOHT 143 BCeX 

f(x i ,x2,..., x„)= xl +x2 +- • •-i-x„-I-0 (mod 2); L2 = (."2 n L I  ; L3 = 

L4 = L2 n L3; L5 = D3 n L 1 . Knacc 0 9  COCT014T 143 acex 	cymecT- 

Benno 3aamcsiun4x He 6o.nee, Liem oT oasoro nepemeHHoro; 08 = Al C109; 

04 = D3 n 09; 05 = C2  n 09; 06 = C3 n 09 ; O 1  = C5 n 06 ; 07  = 0,1); 
02 = 05  n 07; 03  = 06  n 0 7 . Knacc. .S6 COCTOHT vr3 scex 	smaa. 

x i  V X2 V • • • V Xn H KOHCTaliT; S3 = C2  n 56; S5 = 	n 56; 	= S3 n S5. 

KflaCC P6 COCTOHT H3 acex 	awls. x 1 &x 2 46...&x.„ 14 KOHCTaHT; 

P5 = C2 n P6; P3 = C3 n P6; F1 = P3 n F. rosopsiT, LIT) 

y.noa.neTaopsnoT yearn-alio a", it E N i , e.c.n14 m061,1e J.L Ha6opoa, Ha KO-

Topbrx oHa pasHa 0, nmeloT oinnylo Koop.amilaTy 0. AHa..norw-mo C 3a- 

meHoi3 0 na 1 onpe,nesisie.Tcn csolicTao AA. K.na.cc 	cocTonT H3 scex 

().a..n. co csortcrraom a 0 ; Fl` = (14 n F,ti; F3`= A l  n Ft`; 	= 	n F. 

Knacc F41 COCTOMT 143 scex (1).a..n. co caoticTnom AA; 	= c4  n F,r; 

= A3 n ; = n . yAormeTnopileT csoacTay a°°, ecru ,' 

ace Ha6opm, Ha aoTophix ()Ha 1)aBHa 0, HMelOT 06111y10 moop,m4HaTy 0. 

Ana.norw-mo c 3ameHori 0 Ha 1 Esawn4Tcn caorteTao A°°. Kaacc F4° COC- 

TOMT 143 acex 4).a...n. co caotiicTaom a'; 	= (":4  n Fr; F3 = Al  n Fr; 

F?) = 	Knacc /;;;Ix' cocTomT 143 BCPX (1).a..n. co caoVicTsom A°°; 

= C4 n Fr; F7 = A3 n 	= 	n Fx). 

TeopeM 2.1. [3] /bur n. ii. c. P2  clyaeca✓tueo: 
a) stinomeenteo eeex 3(t %4) 	maaecoe e P2 ClientUO u eoenadaein c. 

Atnodseeetzteam Q. 

6) vizacebt U3 Q ohpaalpont pezaentvy no AN:mo(11mo, npueedennyv na 

puc. 1; 
e) Nadiedia 3aft47 1tyntbi1t xyt(acc e P2 umeenz 6a3ne 7a Atmattociro ezo 

eee•da tie or✓ ee, item 4; 

?) npo64eAtu, ita✓ toinbt U ebtpamtmoentu (WI n.O.e. polo 2 npu✓ enu- 

77Le ✓ bli0 1 7CO7[ENUIPI.✓14 .1“110dieeellifla.•t 0.a.✓ . (a✓t?OpU111.A•UneCICU pa3pCUIUMU. 

CBORCTIta 11.41.C. p0,aa 1 npm 1 > 2 OKa3a.JI14CI,  mnoro cnoAtHee, KaK 

BTO 6y,LLeT C.Tlea0BaTb 143 III)14BO2LMMMX nmAie yrsepl.a.neHmii. 

0603Hammm Liepe3 Pi(n)  mHoAiecrrao scex (f)yaiinmil H3 Pi, 3aBI4C5IIIIHX 

He 6o.nee, tiem OT 71 nepemeHmAx 

SICHO, LITO 4FICJI0 An)  ckyiniumil B Pi( n)  paaHo E 7i1  I  (71,1 1` . HyCTb S — 

mHo)aecTao BCPX ()yH1(ani4 	f'i(n) , Na),a,aasi 143 acrropmx npi4 HexoTopom 

i = 1,2,...,n, paaHa U. ECJI14 Al C 114 Al KOHeLIHO, TO ciepe3 a(M) 

o6o3lla4t14M Haki6oRbuiee talcno nepememibtx y (1)yirmu4R M:3 M. 
AM! KOHetI110-1101)0KLIREIH 0171  11.(H).C. M poaa 1 nycTb o(M) — Havime-

Hbmee Tahoe tutc.no lx t , wro Ansi HeaoToporo M' C M Bbl110.11HeHO 
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500 	 B. B. 1<y,(Apsniners 

= M 14 et( Al') = 	fia.30fiem ilerlyrT0e MilowecTBt) 	C 
pr(m)  n NI R-mH0>ReCTBOM B M, ec.rn4 10,(A/P) n fr(m)  = M' 14 Al' 
IV(M)  n Al', o6o3Hatu4A ero tiepe:3 R'01) . Ilyerrb R."04) = (fr (m)  U 
ST (A1) ,R,' (1" ) ). Byzem roHop14Tb, LIT() ())yHkum.n f (x 1, x2, • . . , „) 143 P1 
coxpaitheT R" ( ") ), eCJI14 ..E1J131 .nioCioro Ha6opa (ylitaatti gi,g2,...,g„ 143 
R(01)  U ,V (M)  fiy,tieT Bbnioanetio f (g , g 2 , 	, g) E R"(41) . Knacc Hcex 
(1)3,71mamil 14:3 M, coxpaniumutx 	1)f5o3Hampn Liepe3 U(Te a(m) ). 
Ha3oHem B-MBOA<OrTB0 R.°(M) ) MaKCHMaJII,H1,1M, ec.TI14 He cymerTH3reT 
Taxon) R-mHowerTHa RV A4) , wro U(Ter m) ) J U(R,' (m) ). 1-1yeTt, R(M) 

kinoiKecTBo Hcex maHcKmanbliblx R-MriohcecTB, Rk(/14) MilowecTA0 
scex nap R." (41) , J1J1111<ol'opbrx [P( m)  E R(M) mll(R(A4)) — mHoxierTrio 
Bcex BlIaccoB cOXpitHefi14)1 ;IJientiewroil 143 R(M). Ha3onpm M 

ec.m4 Al = 10,.(SZ) 14.f114 Al = loc ({c(x)}), rae c(x) = C, 
c E E1. Mc.)umorn, mnowerrna A o1iO3HaqHm 

[2] 

CaeAcTame. flpo6.4c.ma  no.nuombt (bur Konenno-itopoJsedenuba 	po- 
()a 1 a.4?opu11tmunceku pa:m(31111.nm dnsr moowo 1. 

TeopeMa 2.3. [17] Ilpotinema ebtpadumoentu ()Al vo7«4,11,12: mnowecine 
mouenno-nopo.xedennai 7l.0.e. poda 1 a•rwopummuncepu paveuzuma dm, .470- 
60?0 1. 

TeopeMa 2.4. [20] JAI! Kadocdaeo 1 > a eguyeentayon 	poda 1, drag 
le,01110pbtX 6314.710.MIC110: 

a) n.O.c. /trace/it Clientliblii &Line; 
6) 	UMCC711 6aaue 	xonctinoil .mmaito(tatt; 
a) 71.0.c. ate 11MCelit 6amica. 

CzeAcTame. [20] 1.1.40 xax.!doeo 1 > 3 pententka aadtocuyinux vaaccoa a 
71.0.c. pi  )conlieuttymbna. 

KaK ,yeTanortneHo B [2], n.(j).c. 	 KoHet-mo-nopow.n.eHnoti, 
nowromy Ansi Hee cnparse.a.m4Hh1 Teopembl 1 14 2, a Ansi mHoHcecTna 
1/(R(P1)) HaPiAeHo ero .HHHoe orificamme [10] 

I Al. 
TeopeM 2.2. [17] &An n. ffi. e. .A4 = (M, St,,) poda I nempueztaionaff 
v.onenno-nopo:xedennax, tno emeent meento: 

a) U(R(M)) =  Er(M). 
6) lir (R( M ) )1 < 2 1)(0(m)). 
a) R(M) enzpouine$ effiffielannano. 

TeOpeMa 	 pa3B14THeM TraepKaelivoi A.B. Ky311eu0Ba. 143 
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Pe3KOe oTammme CBOACTIS P1  ripm 1 = 2 14 1 > 2 nprime.no K pacc-
moTpeHmo 1)a:3Hbix Hapmaumil ocnouubtx 3a11am 1:1)151 n.(1).c. TaKmx, KaK 
mcc.nefioua,Hme Ha normoTy cmcTem (1)yuKumil c 3a.Haumbimm (-.HoficTsamm, 
Hanpmmep, cmcTem C.nyneuKoro, cauep -niatumx ace 02410114eCTHble (Pp-1K-
1.11414; m3ymeHme cTpoeHmn (1)parmewroa pellleTK14 3aMEllyTIAX Knaccos H 

11p. KpoMe Toro, m3ymagmcb o6o6weHmn P1 B Hm.ue 11.(1).c. Heo,uflopowtha 

(1)yinunful, TO ecTE, 3aumcsnumx OT pa3Hbrx rpynn nepemeHmilx, o6.nacT13 
onpeHe.neHmn KOTOpE.IX pa3.11144H1.1 [17], a TaKiiie (1)yHK1114171, nepemeHnme 

KOTOIThIX, KaK 14 camm (pymiumm, npmummaroT cmeTnoe mme.no 3Hameu14il. 
HamaTo pac.c.moTpeHme ,HeKapTonbix creneneil Ta•Kmx ofio(inueHmil 

.apyrmx cflymaeu [22]. Ha ,,,)Tmx nanpa[3meHHNX OCTalia,HJIHBaTbC,F1 He 6y-
Aem, a paccmoTpmm o6o6weHme 413/11K111413 143 Pk, uo3HmKatoutme 3a c.meT 
ymeTa upemeHm, Tpe6y1owerocsi Ann 

3. ckymoAHR c 3a,zkepaa<amH 

ilycTb f (x i  , 	, xn E P1 14 t E IV0. Hapy ( f (x i  , :V2, ...,x n ),t) 

Ha3mHaem (()ymmmeil f c 3ane.pniKoil t H MHO}lieCTBO Hcex Tal<HX nap 

o6o3Hamaem mepe:3 F1. PacnpocTpaumm Ha Pi  onepaullii 71 , T, L H V, 

Hanaran, ecJ114 molian m3 HHX, LiTo it(( f ,i)) = (it( f ), t). BBeUeM ewe 

oaay onepaumo *,, Ha3butaemylo cmHxpormori noAcTaHoHKoti, Honaran 
ARSE nap (f, t), ( ,t 1 ),( f2, t'), ... ,( f n , t'), B K()Toptax mHoniecTua HepemeH-

HbIX y (1)yriumii fl, f2, • • • , f„ nonapHo He nepeceKaioTrA, HiAno.rmemibtm 

cooTHoweHme 

(f,t) *c ((fi,t 1 ),( f2,e), • ..,(fn,e)) = ( f( 	, f2, 	f„),t + t1 ). 

MHOACeCTBO onepaumil 7/, T, 0, V, *, 0603Ha414ivi 4epe311„ H Ha3OBeM 

onepaumnmm cvaixpoHHoii cynepH03mumm. ❑ yrri, M c f1 14 Jil cc (M) = 

M, Toraa (1).c. M = (M,St cc ) lia:3bIBBPM 14TepaTI4BH011 (1).c. HocTa 

C 3a.r(ep)Exam14 poJLa 1 ( n .(1).c.(1) .3. ). 

KopoTKo 143J10}1{14M ocHotfflue 1410114 m3ymeHm51 ..:.)Tmx ()).c. [11, 17]. 

TeopeMa 3.1. 8 Nonciitto-nopowdcztuoii 	M poda 1, 1 E 

.AMOACCC71180 E.A.A.4) Konen/to U ellip0111111:37 a00ch37lueno d.tur foo6ozo 1. 

TeopeMa 3.2. flag ronektuo-nopoaordenuoii 	poda 1 711306.4C.114b1 

71,0.11UOIllbt u ettpa,mmocinu a.11 .2.0pU711.1021 11CCMU paVellIUMIA (MN .10060'1,0 1. 

TeopeMa 3.3. 1/.4$ va:»c'oo?o 1 u3 N 1  cyNecinewont 71.0.c.0.3. poda 1, arts 

vontopb1,27 13b1,11011,11CtiO: 

a) wmcemcs enclutotii da:.lue; 

6) umeentes rOtteltlibtii 6a3ue 3ad(Lnnoti, .ou47noenut; 

e) tic umeeinc,ff 6aAtea. 
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502 	 B. B. ky,apiThof.11 

C.ne,ncisme. ['cute 	30.11ttillyinb1x vstacc(R A Pi  vottnottlya ✓ebna dins( ecex 
1. 

flpmmepom Konegno-rropoKnermon 11.(1).e.(1).3.111.01/1eTC11 P1  = (Ph itec ). 
Tc.c.)persna 3.1. yTomnaneTcn ciremmirrum ofipatiom. 0603- 

ria ■-imm gepe3 MO )  mnom<ecTno ncex 4)yrammir f Tak14X, t1TO 11 pH nexo-
Topom t B61110.01ieH0 ( f, I) E .M • 

TeopeMa 3.4. Altioatecenteo Al C f 1 J18.431CMCS1 11041MM A Tl monno tno-
tha, 'kar.da ..10,.( MO)) =AuMD f,1)}, ?de f El. 

❑ ycTb M = (M,Slcc ) 14 Al' C M. POBOpli'r, LIM M' Jrn.osleTen c..na6o 
HOJIHbIM B M, eCJ1 14 AJ1SI rwmKort (1)yruiumm f 143 M (1)  tratizteTell 1, TaKoe 
LITO (f, 1) E Joce (M'). MiromweTno Al' tia:3busiteTesi c.nario npez.non-
IILIM, PCJ1I4 0110 ne cia6o nwrnoe, 110 npenpartraeTcH B Tarim:we npm 
iro6an.nerm117 nror5orr naphi 143 \M Kaace neex TaKI4X MI1 071•KeeTB 

o6o3nagmm Lrepe3 	Koace K C E( M ) na:mrnaem e..na6o KpmTe- 
11)14aJIMINM, 	mr-romieeTno M I  .SITIJI.HeTril e.J1a.60 110JIIIMM Totrno Tor,na, 
Koraa Jinn J110601-1.) T 14:3 .1-;(.M) nranornieno M' 	T. OLIeB1421,110, .11,J1S1 

c.na6o KpmTepmasitaron CI4CTPM 191 K neer,aa nbrnoarreno A J E"(M). 

TeopeMa 3.5. Ibtx vonenno-iwpodiedennoti 	M = (Al, flec ) poda 
81,M0./0/1.11b/ 71,0./todgef:7001: 

a) .muo.xeccineo c ,(M) W,01101710 ?LAU citentuot 
6) Juno:weenie° Eci,.(M) ciz(t6o xputtptta.moto; 
a) mnoaweenteo Ec1r (M) empountex .40elonuono. 

TxeopeM 3.6. ilitsr Konenno-nopoatedennux ► 3. notna I npo6.4c.ma  
c.fia6ati nortnontu arwopupt.ittunechnt paapefloidua (ins .mo6om 1. 

,Hnnoe onmcanme muc»Kerrna E cii.(M) no.nytreno noKa 1[J111 I = 2,3 [11, 
22]. lIpmne.nem 3,aect, ormeataie outlay' I  =  2. 

flyeTh M C P2 n M E {C2, C3, D:3, A1, L1 }, 060:31ratrmm t1epe:3 M 
mnomierrno ncex nap (f, t) 'raKI4x, LETO f E M 14 t E N0. 

4>yrumu43r f 	, X•, ...,X n ) 143 P2 tra3urnaeTcm Cr- , 13-,  - 14J114 (5- ())yHKIII4- 

ecam f(:/%1 X2 • • • , X1 ) pamia a:, 1, 0 14J114 cooTneTcTnernm. fIy('Tb A, 
B, r, D cyTK KJIaCe191 EiCeX 0-, (3-, y- 14.11 14 	(I)yfiKW4 COOTBeTCTBeHHO. 

06o3natimm trepe3 C mno)tecTno nrex nap Bletait (1, t 	1) , (co, t + 1) , 
(0,0), rite f E B, 	E r, 1/) E A, t. E No . 

11yeTL i E {13,1}, 0603nal-i14m mepe3 Ei mirom<errno neex nap B1411a 

(19 0 )9 ( 7,t + 1 ), (Z, t), rue f E Ci+2, t  E No. 
Ha30nem rinriummto f 	 BI.,1110J1Hell0 

.f(xl, x2, 	xn) = f (71,72, ... 
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IlyrrK Y 	mno .kKecTKo BC(X yeTrimx (()yin111til. 

IlycTb H MI10}KeCTBO ncea nap BMX& (f,0), ((p, t+ I), rne(1.Q E Y, f E S, 

t E No . 
Hui KwKnoro T 143 No o6o3nagnm tiepe:3 Z,. muo>KecTno Bcex nap B141la 

( f, (2t 	1)2 7. ), ( 	(2t + 1)2 s ), ( (0',0), 

r,fle f E D , ,70 E A, V ,  E A, t E No, se No\{0, 1,2, 	 

ARA KaHtzkoro T. 143 No 0603HatI1IM Ilepe3 W. mumKecTso Bcex nap 

nmna 

(f,(2t+ 1)2r ),(0,t),(1,t),(p,(2t+1)2 s ),('4),O), 

rne f E 	E M, 'OE M,IENo,sE No \ {0,1 2 2, 	,r}. 

	

W = {02, 03, D3, A1, LI, 	El, H ZO • Z11 • • • I WO, 	• • '}' 

TeopeMa 3.7. [11] Ameent 	paeolcmon E c ,(1)2) = W. 

3ameTnm, 	sname onvicanyie E cr (A) = W 1lJ131 .111060P0 I nmeeTcsi 

II0Ka, J114111b B nvine orrnenhabtx cemencTn c.qa6o Hpe,11110JIHbIX KJIaCCOB 

[17, 23]. 
Conep>KaTe.amnet vniTepec npencTan.risnoT ,apyrne mo.ampnKaulni np- 

06.nembi nonnoTbi Los' 	 paccmoTpeninae B pa6oTe [17]. 

4. ABTOMaTHIale 4./YHMA1114 

PaccMoTpennoe B [3] o6o6inenkte (1)yniunti11 1-3HaT4H0r1 JIOPM1(14 no divn-

Km4ii c :3anepAcKam14 - IlliJISIeTC.H npome),KyTounnAm ripm nepexone K Kaaccy 

aBTOMaTHbIX (bp-1E1mA, crioDicTna KoToporo J101'1414eCK14 cyine-

CTBeilHO cru*Knee, =lem y (1)yman4i3 C 3anelmiKamm. ILIA KKenenaK rionsf-

Tnsi asTomaTnoi,1 (1)yininI44 noTpe6yloTcm KcnomoraTeammie o6o3natie-

H14.11 14 onpene.nenaK. 
1lyrTb C — K(sfflet-nme 141114 cmeTnoe mnic,,KerrKo, KOTOpOe Ha3hIBaeM 

amtpaspyrom. HocnenoKaTenbnocTh 6yKB 143 Ha3blBaeM CJIOBOM, ecaki 

oHa KOHeT-Illit, 14 CBel)XC..110BOM, erJH4 ona 6ecKone4na. Kna,cc ncex TaKitx 

('JIOB o6o3nai-mm Liepe3 C*, a cnepxcnon — 4epe3 IlycTb C = 

C* U C' 14 E C. C,.n000, o6pa3oKannoe nepKbimm T 6yKsa,m14 143 

Ha3bIBaeM Elpe+1414,COM ,II,./171 	14 o6o3natiaem mepe3 c],.. flycTb A 14 B 

— a.11(1)a,B14T1,1 14 f : A* 	B". ECJIFT = c(1)c(2)...c(r), TO r Ha3blBaeM 

nallmog c.nona 14 o6o3nagaem 4e1)e3 	llyeTh A 14 B — a.n4)aB11Tia 14 

f : A* 	(DynKuico f Ha3blBaeM neTepmminpoKannoil (n.(pymamet1), 

eCJII4 ,L1JIY1 nio6oro 	143 A* cnpaBen.rumo II f (e)II 	a ,L(JIM .111061,1X 

SrI M 	14:3 A* 14 .rno60ro i
t
TaKoro, wro 1 < i < min(161,1e21), ecam 

= 	TO 	= 	 143BeCTHO, tITO n.cpynxnmst f moxieT 
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504 	 B. B. Ny,Apstrolekt 

6bm, peHyppeHTllo 3azialla C 110M0111b10 TaK HaThataeMbTX xanomo-lertaix 
ypaHHeHmil RNA.% 

q(1)= go, 
(I) 
	

(At + 1) = co(q(1), a(t)), 	t= 1,2,... 
b(t) = 71,(q(t), a(t)), 

rite napameTap q HammaeTesi corTaHmaem 	f 14 Hp14H14maeT 3 ilatleHH31 
143 aJI(I)afil4Ta, Q. 	pettypponTHocTh oupeitermeTcH TICK. ECJI14 Cl E 
A*, /3 E B* ,KEQ14a= a( 1 )a(2)...a(r), /3 = b(1)b(2)...b(r), K = 
(1(1)(1(2) . . . q(r), TO I11)14 f (a) = 13 e ,noBo 13 1411,ayKT1413110 13b1414r,T1S1eTC51 110 

rneityloi.u,i4m ►fipa3om: 
a) b( 1 ) = 1p(q(1), a( 1)) rile q( 1 ) = go ; 
1.1) flefil4 npm 1 < I < r – 1 Hmtn4c.nello q(1 )  =  go, TO q(t + 1) = 

co(q(t), a( t)) 14 b(t) = 0(q(t), a(t )). 
4aCTO Elpe,ano.riaraloT, LIT() a.n(l)aHt4Tia A ii B SII1J1J1 10TC5f .21,eKapT013b1M14 
cTeneloimm E1 , To-ecTb A = ( Et)" 14 B = (E1)"' 	n, m ,p E N. B 
)TOM ciip-tae (Y1' paccmoTpenm oilHomerrHoA .4.(1)ymiu4414 f (x) wait f : 
(( Er) 7 ')* 	(( EX' )* yil.o6Ho nepetiTH K n-merTHoil ,a.(1)3,71-nium14 
f(x i . 	,a; „) Blum f ' : (( E 1)* )" 	(( E I)* )"i (•.neitylonmm cnocoliom. 

Ilycli, ( 71.  E (Eh) H f((")= 0", rile 

(.77. 	en( 1 ) en( 2 ) 
	e71 ( r ) 	crm, = ehri( 1 ) chn (2 ) 	crm 

( r); 

np14 .:4Tom 

("(I)= (c1( 1 ),c2(t),—,en(t)) 	14 	eini(t)= (C1(1),C2(t),•••,C:76(t)), 

rile 1 < t < r. fly rn, 

(s i = eiMei(2)...ei(r) 	14 	C ij = c'(1)c ii(2)...c ii (r), 

r.ae 1 < i < a 14 1 < j < m. 
Tenepli no,n araem ,,f 1 ((i 5 (2 5 • • • 5 ( ) = ((i 5 (2 5 • • • 5 ( 7, )• (bYluall'Ill f' no-

.nyx4a,eTcs1 143 f (1)afiTmliec Ki4 TanhHo 3a Ci4eT nepexoita OT paccmoTpenktn 
MaTPI4U, o6pa3oHa.14Hmx HeNTop-6y1Ham14 (CTIMKaM14) CJI0B (:" 14, COOT-
BeTCTEWHI1o, CJI0B (em, K 14X npeacTaBilenkno H Ft 14/3,e CT051611013. KaHOH-
144eCKI4e ypaHnenan (2) Ansi ft 170.1137 T4a1OTCH H3 ( 1 ) 3amenoii Tam Beex 
napameTpoH Ha cooTHeTcTnyloame BeHTopribie 3na41en74si, T.e. 

q(1) = go, 
(2) 	q(l + 1)  =  co(g(t), ei(t), . . . , c„(t)), 

	

j(t) = 11) j(q(t), c i (t), . . . , c „(t)), 	
t = 1,2, . . . , j = 1, 2, ... , m. 

b  
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(DynKum° 	cqkrraem muTepnpeTankieri A.1151 f H Ha3blBaeM aKTomaTnoil 

(a.ctlynmimeg). 
napameTpu U H 714 	 cooTBeTCTBeHHO, Me.CTBOCTbI0 H pa3me- 

pHOCTb10 a.cliyinnund, a monwocTh miunKecTna 311aL1eH1414'  napameTpa q — 

tmenom ee corrommti. Coaep,KaTerimthim ToRKOBa1114eM 

f i (xi , x2, • • • , n = 	, 1/2 , • • • yin 

SIBJ1.11eTCS1 chinKuvionmponanme Texmv-iecKoro yeTpoticTna F npLna, yKa-

3aHHOr0 Ha pvicymie 2. 3.aech rocoarime ripen -Kw o6o3naLienKi 6yKnami4 

xi, a BbIX021141-de — 6y -KBamki yi. CLutrraeTcsi, Liao F (hynKumormpyeT B 

,11,14cKpeTHI,1e momenTKI Kpemerim I = 1, 2,.... B ;)Tifi momenTH Ka)K.n.we 

nxo,n. X2  H rmixo,a moryT npviummaTK 3natieavisi H3 Er, cam° ?fie yc-

TpOtACT130 MOMPT HaX0.014T1,CM B COCTORIIHRX, Kozyipyembix 3fla4eHYISIMH 

H3 Q, na3Kinaemmx TaKHie namirrbto 21,1131 F. no na6opy 3natienvi* BX0- 

..a0B 14 cocTORHHIO B MOMeHT t ycTpoticTna F no npant4.nam (2) onpe-

AeJISIIOT :3Hatle1114.8 ero BE,IX021.0B H cocTosunie B momenT t + 1. 

06o3natimm ttepe3 P:;" Knacc Bcex 	 c 3a.aannKimu napame- 

Tpamm 'it H lit 143 N. IlycTb l' a,i = U pnou 

PacripocTpankim Ha f'„,i onepauvw 7t, T, A, V, a TaK}Ke nneAem Apyrkie 

onepamen4. 
nycTK f 	 (yl , 	 TorAa 

(irjf ) (3, 1, x2, • •• X,z) = .11;( 1: 1 X2, • • • X  n) ,  

r.ne ,f 1j (xi, X2, 	, X n ) CoBlIallaeT co 3naL1enmem 	y f 

IlyCTb f 11 (X n.4.1,X n+2,...,Xn+n) = (ym+i,• • • , ym+,u), TO1'JJ 

X2,• ••,Xn, xn+i,xn+2, • • • , n+ 11) = f (xi x2, • .. , xn)), 

f '' (xn+i, xn+2, . • , xn-i-v)) = (ill , Y2, • • • , 	Y7T7. -1- 1 , Y711+2 • • • , YM+W 

nycrb TL TaKoe, tITO 7/1 -i-  j < U < m + u, Tor,nia 

(f'* r)(x2,X3,...,Xn,Xn+1,Xn+2,...,Xn+v) = (Z1, z2,• • • 	W- 1 )7 

rene zi = f; *fu np4 j = 1, 2, 	, m 14 zji = f;f(xn+i, xn+2, • • • , xn+v) Inpvi 

jl = Tit + 2, in + 3, 	, m t. 

Onepanim ir H ct Ha3htlialOTC.31, COOTBeTCTBeL1110, npoeKTHpoKanmem H 

ofrbeamieimem, a onepatuu 111411a, * SIBJIAP..TCA pacuporrpaliemem (m- 
u 

epaumg * c  ofloolvlepnoro cnytian cliyfann4A Ha newrop-itliynKuom 14 nonp.e-

}Enemy na3K1naeTcs1 110,L1cTaHOBKOrl. 
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506 	 B. B. Ky,apsiBueri 

B coRoKylluocm ollepa1ti4vi 	T, A, V, Tr, 	H * Ha3mBaem oil- 
epaturamm pa,climpeHHoil cynepno3Humn 14 o6o:3HaLti4m mepe3 Epc • 

BBeHem euke °Ally onepaukno Ha1J a.chrimumsalm, xoTopyro Ha3oBem 
O6paTHof CBM:31:40 14 0603HatIHM L1epe:3 0. 

rOBOVIIT, LITO a.(pyminkin f J  PnvieeT THII i - j, eCJIH AAA f' naiineTcm 
cHcTema Bm.rta, (2) Taxasi, LITO 14.1THK111451 (',1,e2,•••,c„) ()PIKT14BHO 
3aBHCHT OT 3Ha.LieHmii c i . flycTb fJ  TaKasi a.4)yrixamm, paccmoTpl4M 
()yint1.11,110 Bputa 

(0 i  if f )(Xi, x2, 	
/ • • • / xn, = (Y1 / y2, • • • , I/J - 1 , Yi+1,• • •,Ym.), 

BoTopasi onpeHezaeTcsi Tax. Hyrrb 3a,/laH14 (7.J10Ba num cl = ci(1)ei(2) 
...fi(r), ute / = 1,2,...,i - 1,i + 1,...,n. Torita C. uomoutmo (2) HO 
Ha.6opy 

( €1 ( 1 ) ,e2 ( 1 ) , ••• , ei-1( 1 ),ei+I( 1 ),•••en(1)) 

MOW110 	 3BageHme bi(1). floAcTamm Tenepb B (2) BmecTo 
ei(1) 3Hamerme bj ( 1), florae tier() mox<Ho 	 Ha601)bI (q(2)) PI 

Ita.nee, TaK iKC moancio no Ha6opy 

(ci( 2 ) , e2( 2 ) , ••••, e4-1( 2 )•ci-F1(2),•••,e9L(2)) 

BbItIPICJIHTI, max-lei-me bj(2). CHoBa, noacTaBHB 3HaLieHHe bi(2) BMeCTO 
e3(2) B (2), MOiii110 BbItIPICJIPITh Hafiopbt (q(3)) Pi 01(2),62(2),...,bm (2)) 
H T.A. 

Tenepb no,noraem 

)(Cr , (2, • • • , 	(i+2, • • • , 	) = 	(2, • • • , 	4/442/ • • • / (7n), 

	

r.a.e (:, = bp (1)bp (2)... bp (r) N 1' = 1,2, .. . , j - 1, j 	1,... , rn. ilo.rio}f4m 
= ctp c  U {O}. Knacc onepanHilS1 c  O Ba3b1BaeTCJI KOM11031411Hea• 

rOBORPIT, LITO a.(j)ymuutx ft H3 Pro  SIBJISIeTC11 BoHeLmo-awromaTHori (K.a. 
()ytnum,n), eCJIil aJDEFaBI4T Q B HeKOTOpOrl cpirreme (2), :3a4atoulei4 wry 
(f)yuxumo, Bonet-lea. Knacc Bcex b.a.(pymmil c napameTpamit n H 
0603E1w:um 4e e:3 f':'1"KL  . ilonaraem „Ranee, LITO Pa,I.K = ?LOU >1 Pan'ila  • 
rOBOPSIT, LITO a.(Pylninnx AB.RAPTCA 14CTHHHOCTHO41 (14.a.(1)yrnan4H), ecan 
B cHcTeme (2), 3a1La1onanl ee, a.ruhaBwr Q — o,,EuBimemenTriblii. 06o3- 
naLmm Liepe3 P:'; 11.4' 14 Pan ii; iiaacchi ricex vICTI4HI-10CTIlbIX a.chimuiri H, 
COOTBeTCTB0H110, PICTHHHOCTFIKIX B.a.())yliBunii (H.B.a.(1)yrnmn) C napa-
meTpamH n H in. llonc:»Emm 

,1,14 = 71,711>i P::(1 :RI 

	

H 	,i,K,14 = 	fia":114 
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Coaep)KaTeabno vicTinnmembie a.4)yaKa144 murepnpeTrAppoTest C onnorl 

CTOpOlibl KaK 4)ymiumonnponan1Ie ycipoileTna F 6e:3 namsrrn, a C Apyroii 

croponbi moryT c)-nirramen 1)ea.um3au143Im14 (1)yrniu414 143 C ymeTom ripe-

menn t, KoTopoe ripo6eracT 3HaIle1I14.51 1,2, ... , N Ka?KAMA 143 KOTOpbIX 

3aBPIC14MOCTb 3namemln (1)yiniu14i4 OT 311w-ref-Inc! nepemennba ()Ana 14 To 

›Ke. 
TaKMM 06pa3om, H.().C. (P1, 9 (: ) npm paC11.114pell1414 B HI4X o6i.ewral), AO 

MHO)Ke('.TBa Kewrop-(')yminI4ii J101'1410,4 14, COOTBeTCTBeHHO, on-

eparmil — .3.0 Rpc , 4)atanmecta4 111)14BO1j)IT K 11.(1).C. "Pa ,04 = (Pa ,04,ftpc)• 

3aMeTHM TaKnie, tyro (t)ynkamn C :3a2tepaixoll mnTepnpeTnpyeTen Kali 

4►yminnorrn4p0nan14e TaKoro yeTpoticTKa F e 1), toco,nomn 14 0,2111I4M 

3HatIeHIIe b(t) KoTop(ro npm lieKOTOpMX T 143 No 14 f (X1 a x2, • • • 

X n ) 143 Pj B Ka)KabIll momenT t. > T 011pelleThie'reii TaK14M coon:tome-

nviem 

	

b(t) = f(ai (t – r),a2(t – 	 – r)) 

KoTopoe, omenvtnno, monceT 6bITh ornicatio cncTemoil 8 14Aa (2). 

HyCTb M C Pa,! TOr,aa npvi ./D pc (M) = Al ()ynKIU1ona.abna.n cncTeMa 

M = (M,Stpc) 14 II 1)14 lo 	 = M 	M = (.A4, Stpc, o) Ha3bIBalOTC.11 

wrepaTI4BHb1M14 (M). C. bOCTa anTOMaTHIAX cpyuKanii (n.()).C.a.4).). n p mme- 

p amm TaKI4X 	iTHJISHOTCJI 	Bvilla, 	 H1)14 3a.aannom 1 143 N1 

no3onem OCHOBH131M14 	 enenytouivie 

Pa,t,x = (P.,1,1<,Stpc), 	(Pa,/,x,f/pr.,0) 

'Pa,/ = ( 	 P:,/ = (P,),i•qpc,0) 

143J1014M raannme pe:3yabTaTKI no nameil iI p06J1eMaTI4Ke 11JI.H n.(i).c.a.4). 

TeopeMa 4.1. [24] ,//./tH mo6wo l ll3 NI cpedu OCHOMEUX 	 KOUCti- 

no-nopo:xedeuttoii sreitainne,Fr 7110.1ibr0 0.e. Pa* 1 ,,,. 

TeopeMa 4.2. [13] /but Alo6btx 1 113 N u in lid N1 e P70,1, cyuvejneyem 

cueinnoe muodscecineo 6a3uco8 At0u47Ioc7nu ln. 

A.()yi1wan, o6po3yunnos3 no.nnyto CIICTeMy B M, Ha3bIliaRTC.11 lile4)- 

(1)eponoti. J_laJihnecnuee ynpoinenne 6a,3I4ca nocTnroeTcsi 3a cmeT MI4H14- 

mm3aw414x-mcna nepemeimmx, 1)a3mepnocT14 14 Lificna corms:11mA y illeci)- 

4)eponoth a.(1)yumn414. C.flemiouiee yTnepni,nefule LtoeT OKOHtIaTeJlblIbIll 

OTBeT C) nwrte nporrernumx B )TOM CMbICJIP 11.1e01)eponmx a.4)yman414. 

TeopeMa 4.3. [25] daitsr ino6o.lo 1 213 Nl A P:1 x  cytivenzepoln Ille00cp- 

013hte oduomepubte a.Oymilou °in delis itepeAtC7011 ,13: it C deymo cocntaimus- 

mu. 

AAA Apyrmx OCHOBHMX 11.4).C.a.(1). OTBeT no npormeme 6a314COB AaeT 

TaKoe yulepnutelme• 

( 3  ) 
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B. B. 	JIB uieB 

TeopeMa 4.4. [24] „Ur ino6oeo l ua NI e P„,i u 	6aducoe tie cyuyecin- 
eyem, e 	cylaccineyem cuemnbat 6ajuc, a maNdoce nortnasr cueme.ma, 
Be codepwatgasr e ccoe 6a..raca. 

Ho npo6.neme nortHoThi cwryaukno onvichmaioT rmextyloatHe yTBep1K-
iteH1451. 

TeopeMa 4.5. [24, 26] 114,ff ocnoenux n.0.c.a.0. .mnodiceenzeo E S (M) 
oopa.ment k-curinemy menage npu 1t4 = 	 .117060?0 I ua N1. 

TeopeMa 4.6. [13] Ainoweemeo E n (M) tcommtnyarzbuo npu M E a,.,K, 
P:3,0 u mnepUontnunya.rtbno npu .A4 E {P„,i,P,7,1 } (Mar moofreo 1 113 N1 . 

B BaLlecTBe c.neacTBusi 3aKmotutem, 4T0 y1a3aEmbimm B TeopeMe 4.6. 
mouthocTsimm 06.narialoT cooTBeTcmpoutvie pemeTKH 3aMlillyTIAX mac- 
COB B OCEMBHbIX 

Ha3oBem cmcTemy E' C E(P:3x ) k-hpHTepHant,Hoti, ecam Bcswoe KO-
nelmoe mHoA(ecTB0 M C P„, i ,„, TIOJIBb1M Total() Toraa, KOPJIa 
ARA Juo6orO mHoxierma It E E' Eibmoariello M g K. 

TeopeMa 4.7. [13] B P7t,IK  eyuvemezpont cuclunbte k-vpuntepumnbubte 
cuonembt soda EiC 	 ()Jur .47.96o?o 1 U3 N1. 

OTMeTI4M, LITO B 06111em czymae :3a4aHme a.(Pyrniumil 143 P,,, 1  He. JIBJ1.fle-
TCA .(1141.1eKTVIBliblM, Howromy Hpoliaema BEApa3HmocTH 14 TIOJIHOTb1 moxieT 
CTaBl4TC.f1 MUM. .111151 :)(p(peRTHBH0 3a,HaBaemmx cHeTem. 

TeopeMa 4.8. [14] Ilpo6.4c.ma  empada.mocinu d nsr 40elanueno dadaeae-
Alb12, NO710011)12; a.Oynkuai e 00108111A2; np06.4e.ma  nort-
110711bl, a P„ , / 

TaKMM o6pa3om, pacumpeame (PyHmuloHa.rn.Hmx Bo3moamocTerl a.(py-
HEHHA Ho 0THoweHmo K (pymmilam 1-3Hatmoil J1 01141C14 H (113/11KIH4RM C 

3a,rtep)igiamm pe3Ko yczoailisieT peineHme HHTepecytoluvfx Bac np06.nem 
.a.1131 anre6p M3ymeame HM41)01114 CJIMKBOCTI4 ocymec-
TBJDIJI0Cb B pa3Hba Hatipa[meHl$Ix. 

Mbl ocTaH0BRm('m 3,Hecb. Ha 3a,aage 0 ripH6.n14 KeHHoli IIOJIHOTe 14 Ha 
3artatie o HoJTHoTe CTIelala,J1bB0r1 060ra1lteHHiilx cHcTem a.(pylimulti. 

HepBasi 143 )THX 3a.B,a14 HmeeT HHe mooyuppniatuim 	:3a.gatia O T- 
TIOJIHOTe (r E N) 14 3artatia 06 annpoKcHmaim0HHoil ❑onHoTe (A-nonHo-
Te), KOTOphIM nocBsauaeTcst cnemiotuvtii naparpa(p. O5paTHm 
MaHHe Ha criermaabHue (p.c. P1, P2, P3 14 P4, KOTOpble SIBILFHOTCA Bo-
Aarire6pamm COOTBeTCTBylOIMIX OCHOBEIbIX 11.4).c.a.(1). 143 (3). KaKaam H3 
ITHX COCTOHT 143 BCRX 0,L1HOMeCTB1,IX 14 OLWOMepHbIX a.(1)yHKEIHrIPI HOCHTe- 

Jleii yEa,3aHmi1x ocHoBHbtx n.(p.c., a B KaLlecTB(- onepaukul B B14X Bb1C- 
TynaioT Te )Ke onepaHHH, HTO 14 B comBeTcTBylouwx n.(p.c.a.(1), Kpome 

arampunt.muNecocu ate paventu•bt (bur J17060?0 l 113 
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oneparuitii 11 H 7r. KaK yCTaHOBJIeHO B [32,24], 01114 He mmeloT 6a30ToH. 

KpoMe Toro, P1 To.gep›Kir no.aa.nrelipy P, HCCX B3al4M1100X403HaTIHMX 

oTo6paH<eHmil, moTopaH Jilinsie rresi rpytmoii C. onepanmeil 110ACTaHOBK14, 

moilesnyyst 4laCTb10 c('.651 rpynny BepHcaii,aoHcicoro Tuna [23], TO-eCTb 

TaKpo KoHeunio nopa-ac,aeHHyto rpynuy, B KOTOpOn nopstaxpi anemewros 

KOHegIibl, HO B COBotcymioen4  He orpaurnmeHm. OTKpb1Tb1M14 OCTalOTC.11 

BOUTOCbl 0 liaJIHT-114H 6a314COB B PI, a Tatme artropprrmwilecKme norraHo-

BK14 0 pa3peummorrm KoHeLmocTvt nopmaxos ee -.1.110MeHTOB 14 Hupa3- 

HMOCTI4 WrI4X ;s1.nemewroB gepe3 Apyrme. B 3aK.niogeHme 0TmeTi4m, 14To 

Teopemu 4.1, 4.2, 4.5, 4.6 14 ynommHyTue 3,tiech (()aKTbI o6 OAHOMeCTHIAX 

azre6pax ocTatoTTN criparie.a.nustaim H B CJIpute pacumpeamst 3HaMeH1431 

1 AO etieTnoro B (1)y1Iiumii, KoTopue Tem camum 46o6w,aloT a.(4yH- 

K111414. 

5. YCJI0B1451 r-110.11HOT131 14 A-110JIHOTLI AAA a.cpyHNHFiii 

roHop.HT, LITO a..(1)yaKumpt f H g r-KB14BaJ1eHTHbl, ec.rat oHvi coHrta.aatoT 

Ha Hcex Hxo.aHmx caosax AJIHHbi r (o6o3Ha9eHme: f ry), 14 A-r.M4B14BaJle- 

HTHbl, ecito f ry A.1151 J1I0601. 0 r 14:3 N. 

Ha MHOJKPC.THe B(1)0) HEse,tiem oTHouleHme, no.naraH 	M, M' C Pa*, , 

Buriwnlemnilm MArM ► , er.1114 JAJ1H BCHKOrl (1)3,HKB,1414 f 143 M HaCtileTcsi g 

03 M I , L1TO f ry. SicHo, I-rro aTo oTnoineHme o6pa3yeT ripe.anopm.n.oK, a, 

3Hatn4T, mo .kKeT 6uTt, npeacTaimeno KaK oTHomeHme macTutmoro Howl- 

,axa Ha KJ1aCCaX 3KBVIBaJleHTHOCT14, BKJHO 4Ia1011114X B Te6A BCe Taxme .rie- 

MeHTb1 M H M I , ARA KoTopux BbITIOJIHe111,1 COOTHOLUel11451 M A r  M t  14 

M' A r  M; LIT° 06o3HaLiaem M r M', a camm wiemeHTbi Ha:3uHaem r-taicHz- 

BalleHTFIMMIL 
Ha. B(1)„,i) BBe,aeM elite OAHO oTHotHem4e, 110.11ara51 AAA M, M '  C 

BbMOJIHeHilbIM M AA M t , eCJ114 AJ151 RTHKoro r tc.-t N HmeeT mecTo Mr M t . 

oTHouleHvie Tatc,-Ke ABAlleTC.H Ilpe./111011HAKOM 14 ,L1J151 ripeacTaHviTe.neii 

Al 14 Al' ero KJ1a.C.Ca ;31(104BaJleHTHOCTH, KOP,Ra Te.M CaMbIM BbIrlOnHeR0 

M AA Al' 14 AV AA M, ummem IV/ A /W; a CaMH upeATTaHmTe.nn Ha:3uHaera 

ii-:)EBHBalleHTHIAMH. 

Teopema 5.1. [15] 	.4/106143: 117 C P„,i urEN ebutoAnetto 

.10p,(M)r.lopc,o(M)o .Inp ,(A1) A fli
pc,,

,(M). 

Tamm o6pa3om, ,ELeile.THm.H onepaTopoH .If tpc ( AI) 14 .ift
pc0

(M) C TO- 

IIHOCTMO AO r- 14 A-;')KB14BalleHTHOCTer1 COBIlaaalOT, a TeM CaMbIM B ATOM 

emmcne onepaw4$I of:warn-ion (7.11/1314 0 oKanumeTesi moaemmyemoill one- 

pauroimm pacmmpetnioii Tynepno3t4umvi, 4CM Mbl B .HaJlbHeialBeM 6y/tem 

110J1b30BaTC.H. 
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B. B. Ky,41) SIBUeB 

HyiTh M, M' C Pa,1. ✓oBop.HT, LITO M 31B.0.fleTCH r-B6apa3mmbim mepe3 
M', ec.rI4 MA,../ 1-21) ,(W) 14 A-Bi,dpa3mmbrm gepe3 Al", ecam M AA 
Ji1pc (Ai " ). 

TeopeMa 5.2. ,lbut 40etanueno aodoeoextbtx 11;011C 117114.2: dunoaacceme M, 
Al' C P„,1 , 0711110711e7lUe M 0,–.10pc (M 1 ) amopunaktuneewu paapeutumo draw 
.mohaeo r 113 N. 

TeopeMa 5.3. [27] //mi wOneUtit,12, Ainoweema M, M' C f a , 1 , K  071M0Ule-
1uc AI AA A p „ (Al') aiwopummuneexu ne povensumo. 

HycTb Al C P 11 3 14 M A Jilpe (W). Ha,3oBem mnoAiecTrio M' C M 
r-noJIHI.IM B M, ecam ../11 1) ,(AP)rM H A-nosnnam, ec.um Jripc (W)A M. 

TeopeMa 5.4. Ecau M C 	Al A lopc(M), Ill-pavelitumo, a M comb 
Koneunac A-a0.4110e noamnoJieecineo u r E N, ono eyNecineyent 

yetnanoo.nuemoucuii no m06omy vonenno.my padpezuu.momy noakino- 
owe:et-nay M' C M, fft9A,ifellteif All ono r-110.1171111At a M. 

Ha C' MOM •e.ne 7-.3Ta TeopeMa csieuyeT H3 Teopemm 2.2, B 'Tem y6eac•a-
emcst Ta.K. 11 yCTI, I E f'„,/ M r E N. PaccmoTpmm mnosscecTso 
B IlpeL1110J10?Ke111414, LITO ero wiemenTbi Boamr.)3rtoT(...si csiorsamm /Lamm 
r B amisaawre E1. Tor. a paccmaTpmBan (1)ysiumo f 143 Pa a TOJIbKO 
Ha cJI0Bax ATII4Hbl r, MOiKHO ei-U4TaTb ee III)HHaaJle/KalHerf Pr . TaRHM 
o6pa3om OT paccmoTpemln a,.(pyincumf's Mb! nepeinam K (1)3Insammm 1' - 
:3Hal-lHoil JIOr14KK. OcTaeTcsi 3aMeTIlTb, SIT() onepaumm paciumpennoil 
Cy11e1)110314L11414 B Bonpocax Bbipa,3mmocTm 14 no.unoTbi ()aliTmtsecBm pe-
uyumpyloTrn K onepaumsim cynepao3mumm. ilasiee, 143 Teopembi 4.9 14 
coOTHOLLIe111431 Pii /,, A Pa  / BbITeKaeT TaK0e yTHep.)Huesime. 

TeopeMa 5.5. Yeitoeusr r-•ortnontu u A-1104,10711bl coonmentemeenno coo-
nadcoom 	ecex 0(1108101Z n.0.e.a.0. 

OTMeTHM cyniecTBennoe orr.in4time susuaTmil OJ1 HoT1.1 14 A-110.11110Tbi, 
KOT01)0e .HaeTcm c eily to Kum npeivio?Kenviem. 

TeopeMa 5.6. B loodiedoii u.a ocnoenbtx 	cyuvernewom Konennbte 
A-110.117ible C1LC711C.Aibt, a tnam.wee enentstbte A-sto.n.tabic euemembt, ne codep-
ascaupc xonennu,2: A-noitubta: nodeuente.m. 

Ounr-ute sKe 110H.HT1411 r-nonnOTht 14 A - 110J1110Thl ,HOCTaFIRSIeT TaKoe 
ymepsKueume. 

TeopeMa 5.7. [27] EcAu M CP„, i ,„ it M — Konenno, 7110 tie eyuyecineyent 
aswopummo, yczno1daa.auem0u4em no M, 3113.107(11M3t All MO A-710.4101,,A4 
Pa,i,K• 
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B TO Ace Bpemm cymecTBeBilasi cBstib nowwrmil r- 14 A-no.rtHoTbi HmeeT-

cs 14 11pOSIB./111eTCJI ripe-eKae Bcero B no,,Ixo.fle K peuieHmo 3ailam 0 r-
A-lloanoTe B Tepmi4Hax npeario.aubrx B.riaccoB. 

ECJI14 M C Pa  , M A fopc (M) 14 M' C At, Ti) IN1.3bIBileM muo:acecTso 

r-npeaTiomibim B M, PCJI14 0110 He T-110J1110 B M, no JUDI JuloCroil 

()yrix1au4 f 143 M\M` mllomiecTBo M' U If } immieTcH r-no.rtHbim B M. 
AHaJlOr141-1H0 BB0,[114TbC5I 11011.11THe A-lipeano.r[H(Wo mnoxiecTsa. flycTb 

Elr ,r (M) 14 11 ir,A(M) cyTb mHoxi;ecTBi ►. Bcex r-ripeano.numx H A-npexion-

HbIX MHO)lieCTB B Al cooTBeTcTBeimo. 

TeopeMa 5.8. Ecrot M C 1 1„,i 71 M A ./s2 1) ,(/14 ), ?no 

11,T.A(M)= U•Er,,•(M) 
r>1 

TeopeMa 5.9. Ee.au A E {r, A}, r E N, M C P,L,1, M A .10„(M), 11/I 
EC1111) v,oltennoc A-noAnoe noaninoweemeo a Al' C M, nee AV srAdzsetries 
A-71011701.M e M menu() Inar.da, 'owed°, ()as, dzaoho?e K E Abl710.471e110 

M' ct K. 

')To yrrsepmixteHme C yr-leTom Teopem 4.14 14 4.16 C1-10,1114T pemeHme 

3a,BaLi o T- 14 A-110JIHOTe B OCHOBI4b1X K orivicaHmo milo>BecTsa 

E ir ,r(Pa ,i) BoTopoe 6bli ►  Bony -Lieu() B [15]. 11p1tBe21em aTo onvicaHme. 

flycTE. t E N, o6o:3Hatimm Tlepe:3 Et mHoxiecTBo ricex CJIOB E = C(I)C(2) 

e(t) t B an(1)aByre E1. h E N H T = (t1,12,...,t1i ), rze 

ti E N npm 1 E NIL, no.no)Kicvi ET = E:' x Ell x • • • x E. llycTb 

P(Yi , Y2, • • • , Yli h- MerTabiri npeavumT, aprymeHTta y i  KoTopor(s) npmH-

mmadoT 3HatieH14 1 143 E. KaK M Bbnue, HyC.Tb P1 14 P0 CyTb COOTBeTCTBeH -

HO M110?KeCTBB 7ICTI41111MX 14 JIWKIIIAX Ha6opoB 3HauleHI4c1 nepememibix arm 

p. rotiopmm, LIT° a.(1)yHkauetB f 	, n ) M3 P„, / coxpaH,HeT p, eeJI14 

143 mc.THHHocTH Ba)Kaoro ;-.).riemewra crpoBH 

P(al,"1,-••, (4),P(iti,ab--• ,(41) , •-• , P((q ,102', ••• ,(q) 

BbiTeHaeT 14CTHHHOCTI, Bblpamieumn 

p( f 	(4,• • • , (tD,./ 	. • • •(C2), • • • f 	al, • • . , (YR)). 

Knacc Beex TaKMX a.(1)ymiumil o6o3HaLmm tiepe3 II„(p). 

BBeaem 4)yHKI(1410 v : Er x Ei* ---, No . Ilycm El = EP, 62  = 
I, = min {t l ,t2}. Tor,aa: 

0, eclat e1(1)= e2(1),• • •,e.i(i) = e2(t), / 

v(Ei,E2) — 
i, ec,rum 1 < i. < t— 1 B Ei(1) = 62(1),-,E1(t — i) = E2(t — i), 

Ho ei(t — i + 1) 	e 2 (t—i-1- 1),. 
t, ec,rt14 Ei(1) 	E2( 1). 

Eit2, 
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512 	 B. B. Ky,apsiButen 

Ha misoAiecTEse ET onpeaeamm orrHomeHme upe.anopsutHa <. 
Hyrrb A = (al  , (12 , 	, 	i4 A' = 	, cx2 , 	oh ) 	JleMeHTb1 143 

ET. flintiem A' < A, ecam 143 BKJI1OtleH14n i,j E 	cmeHyerr v(a'o otì ) < 
v(oei,aj). 

TlyeTb t' = 	 h < 1 1  14 P > 2; ecam 1 = 2, TO Hona- 
raem h = 2. flycTb B A upvr h > 2 14 yr.JIOB1414, 11TO 2 	j, BbITIOJIHell0 

v(ai,aj) 0. MHoHiecnto Hcex A', tiTo A' < A, Ha3oHem v-mnoatecTHom, 
LiaztaHaembim tanemewrom A, 14 06o3HaL1aem gepe3 	Talioe pa:36nHaem 
Ha ,EBB. 1104MHOHN:eCTBa 4 (711) , cocTosmee 143 ['rex MaKCHMaJlblibIX 1:10 < 

?)..rsemenTors, 	EsHniotlatotHee tscTa.rtiamie ;EsJ1eMeliTb1 143 4. Tali, lipm 
h = 1 umeem 	= 0. .Hcllo, tyro 3HaLseHme v(ai,aj) He 3aBliC14T OT 

Elb160pa A 143 Om ) , my--y-romy HmecTo v(ai, (t3 ) raullem 

.a./131 / > 2 H t > I ytii-PtieM cemb cemericTB 111)e,i114KaTOR. 
IlycTb h > 1, T = (tl ,t 2 ,...,t h ) 14 4 C ET. HoHcranorsKy y tH4cen 

1, 2, .. . , h Ha3oHem -1-1()AcTaHoBmoil, er.J114 flan (12, • • • , alt) 143 Bb1- 
 110.4HeHo 

( any( 1 	2 ) • • • 9 CV-y(h)) E 	• 

Byrn, .s > 1, lia30BeM milo)RecTEio 

{( 01,(4,• • • ,c4,),(al,(122 ,• • • ,(4,) , •••,(tv, (4,•-•, 00}, 

3JICMeHTOB 143 4(m ) 4.- COBMeCTI4Mb1M, ec.um cymecTHyeT COBOIVIIHOCTb if 
TaKaH, LIT() ,L1J151 /1106b1X 	7) 143 NI, a Taxxie 

i H j 143 Nit Hhino.rmeHo //(i,j) < v(n1, (i),(1, ,t1c(j)). 
Hycm p(yi,y2,...,yh) — npezyniaT, 	KOT01)0f0 pi  C 	Ha3oBeM 

p - 1)e(4)JleKCI4BH1,1M, eCJII4 4 (7n)  C pi, H 4-cHmmeTputmum, ecavE .W131 
(cti, 	, Oh) 143 pi 14 4- 110,EICTallOBKYI y Hcer,aa ushmomleHo (ct-y(l),(1-42), 

E pi. 
-pe(1).HelieleITSHM171 14 4-rvimmeTpHtIlliel npe,HHHaT p Ha3bIBaeM e-;/.ne-

meHTapHmm, eon,' NEHo:;.Hecertto \pi ABJISIeTC11 4- -COFIMeCTI4MMM. &TH Ta-

K0r0 p ❑ IN4 A E 4. \pi H i E otwe,He.rEHm HozuvrHo:,,HecTEsa Cp'(A), Q p (A) 
H Ezp (A) mHc*HecTlia. Ei Tax: 

a) a E Cpi (A) Totmo Toraa, Kor,rka HailHeTc.H (1 E 	LIT() 	< 
1, crii (ti) = a, a J1F060ti wiemeHT 	 ) 143 coHeimairrcH B pi; 

6) b E 	Toimo TorHa, KOraa B "`pi HartHeTcH J1 MCHT 

(al, (12, • • • , 	cti+1, • • • , ait), 

• 4To Ocri, 	< 1 H alf (ti) = b; 
B) mHoreHecTEso sip ( A) coBniutaerr C Cpi(A), ecam Ci,i (A) # 0, 14 

B ElpOTHBHOM c.nyEsae. 
c (4(A) 
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)14. 
E c\p7`. 

) 	1. FlyeTh .II,J111 BI7RX ij, 	E 

1 enpaBefinmtto 	 < 1, a 

110J10Hi14M, 4TO 1(3151 ncex 
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FlyCTb U > 1, H R = ,p ax } — 1)0143n0J1bHan cHeTema - 

;.3.nemenTapithrx ripe•mhaTon. Ha3hinaem R T-conmecTmmoii, ecnvi 

.11106bIX a E NI', i E Nix vi A E \1)7 Bhummietio Qip(A) # El. Ha3bIBaeM 

R W-conmecTamors, ecam ARA ncex a, 	E 	E Nix, A E 

E \pciT MHOHfeeTtia. Coi ,(A) VI C i
p' 

 ,(A) 0.aHonpeMellHO J11460 nycTm, 

aviCio nenyeTta, npamem flp14 C':,,, (A) = D Ann BeliKoro b E El cytuecTriyeT 

j E Nix  Tahoe, tITO ti = ti, /, (i,j)< 1, a E 

Ilycm n > 1, ai  E 	At = 	,(0),. • •,a in ), A i  E \prri ` 14 ji E 

npm i E N. Tor.aa, ecm4 	 111)H i 	i' 14 ti i  = tii „ a Tatohe 

v((r1 , (1 2  - ) < 1 Ansi ncex 	E 	i" E AT\{1}, Eshrnonueno 
31  

? 1, 

n Ejì r'" i)  = 0, 
i=1 

TO C14CTMY R na3onem Q-conmecTaw 

IlycTh It > 2, i E 	E 	Ps A i  

j,j'E NI' HiM4 j j' hhaionneno 

Nix  BbIlIOJIHK10 ti i  = 	H 11p14 j > 
Talohe ameeT mecTo 

n 	= 0. P 
j= 1  

lipe,a110J1 	t1TO np14 	ycnonmnx cyniecTnytoT /„ E Ni x , v E 

LIT() ii t, E N?, MHOH.CeeTna, 	31BJ13110Tc11 l -('C>BMeCTMMh1MH 14 

n P (Alv)=. 0. 
v=1 

Torna roBOpHM, HTO cl4eTeIvIa  I?  518.11.neTCH 1)-CODMeCTI4M014. . 

CeMerleTBO IlpeaHliaTOB Z1(r). )TO cemeAcTno ne nycTo npx / > 2 14 

> 1. Flpel[VIKaT p BX0414T Ii Z1(T) ToLmo Tor.aa, hor,aa pl C 	C ET , 

T = h > 1, ntaxti,t2. th } < r Ana HeIOTOpOrO in > 1 

BbITIORHell0 pl =1-171.01, r.ae pi fasnnerrcm -e..nemenTapin-Am ripe•amhaTom, 

a ('.amvs px o6pa,331KiT T - , 147 - , (2-cohmecTs4myx) cacTemy, a ARA ./1 106b1X 

j E Nix  14 A E mnwherrho Cr(A) uenycTo. 

CeME41CTBO npe.n.ahaTors J i (r). Ono ne nycTo npri r > 1 14 / > 2, a 

Tahnie nps4 r > 2 14 1 = 2. Flpe•ahaT p BXo,L1VIT n JO') Total() Torna, 

horaa pl C C ET, T = > 3, max < r, 

AMA nehoToporo 	> 1 Bb1110J1Hell0 pl = 	rne pi .1111.1151eTC5I - 

enemenTaimuilm, a camm pi otipa.33rtoT T-,W-,Q-conmecTxmylo cmcTemy; 
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cyule('TByIOT L114(7.fla i,j,/ ENth . j, i 	1, j 	1, LITO AAR A 143 \1)1 
mumf(errHo Cp''(A) nyrro np14 u E {i,j,/}. 

CeMerECTBO El1)e/[14KaTOB NT). OHO He nycro npm r > 1 ecru! 1 > 2, 
r > 2, ecam 1 = 2. Hpez14KaT p BX02114T 11 D1(r) TOLER° TOr.aa, 

Koura, pi  C e C ET, T = 	 h > 2, max{ti,...,th} < r 
JEAN HeKOTOpOr0 in > 1 BbmwtHello pi = 	rite pi  JEBJEMeTrS1 ..- 
;.).nemeprrapabim, a camp! pi (>61)a:33/Kyr T-,W- 14 D-corsmerrmmyro cr4c- 
Temy; ARA JI1O60r0 A E e\p MHOKetTlia C ip (A) H (1,(A) nyrrue; ec.rm 
ii > 3, TO ATISE 143 N-11  B1,MOJIHeHO C:AA) # 0; era h = 2, TO pin  (M) O. 

1 > 2, t > 1, T = (t,,t),4"t  C 	6 ecTh 7/-no,amHo)KecTso 
14 E/Ei = (1,2) 	= 1. 

CemeArrHo 111)e,W4Ka,TOB MO). OHO He nyrroe 111)H 1 > 2 14 r > 1. 
IlpedgyliaT p BXO/J14T 11 *I') TOLI110 Tor.Lta,, itorila C E t , 1 < r, p i 

 cOnna,ria,eT C oTHourelimem mar rivrHoro nopsurKa, oripe,nenermom Ha ET 
14 nmerolIIVIM TOLER() P -1  MI4III4MaRblib1X 14 P -1  MaKCHIVIaamtbix eaemewros. 

CemefirrHo npeaten-caTors SIN. OHO He nyrroe npm 1 > 2 M r > 1. 
flpe.gyicaT p BX0,1111T B Si(T) TOLEHO TorJra., Kor,na m C 6, t < r, cymerr- 
HyeT no.arraHorwit (T 1  Ha ET, pa3.nararow.asi B ripor4310),Herme 1114K.TIOB 
04T4HaKOBOg ElpOCTOrl 111,11 HERA p> 2, rt)a(1)1414 KOTOpOR (.7 0BnaiiaeT C pi, TO 
errb ec.rur a E ET, TO (a, (rp(a)) E p t  14 eerri4 (ai, a2) E pi, TO a2 = a/(ar )• 

IlyeT6 t > 1, 4irt 	KJIaCC Rcex oTo•pa>Ketr11 	mtroKecTria El B 
MHOHieCTBO 110/1CTaHOBOK Ha E1 . 3naLleHme (p Ha a 0603HaT4aeM (p a . 

IIyCTb (1) t  C (Ft 14  I)  COCTOH'F 143 Hcex 	TaKMX, LITO (pa  = (p„, npH 
v(a, a') < 1. llo,no?Kmm h E {3, 	T h = {t,t,...,t,), KP CET'' M Klt  
COC.TO 14T 143 Brex wremewroB (a 1 ,(a 2 	 ah) TaK14X, LITO rip i, j E NI' 
Bbmwmerio v(ai, (5) < 1. 

nyCTI) l = pm, p — npocToe, in > 1, G =< E1,-F > — a6e.n-
eHa rpynrra, B KoTopon Ka1E./11.111 Herry.neHar ).netirerrT nmeeT 11130CTOI3 
1-10p11401i p. 

111)14 p # 2 nycTb 1 p  E N-r -1  m 21 7, = 1(mod 
Cemeticnio n1)e,arciaT0r3 Li(r). Olio He nyrro Tomaio [rpm 1 = pm, 7) 

— uporroe, 711. > 1 , r > 1. ripe./1141CitT p BX0,414T B 14(0 Togno Torita, 
xor,Eta ARM treHoToporo (p H3 (1) t , t < r, cnpatte.a.romo c.ne,rryrouiee: 

a) Hyrri, k = pY 1 , p > 2. Tor.rta, 	C Iii 14 (al, a2,a3) 143 Ki3  BXOZEI4T 
B pi, ecirn TOJIKKO (pa)  a3(/)) = 1 7,00.9a  (ai(t))+(p al (a2(t))). 

6) flyrrt, k = 2"'. Torona 	C Kt 14 (al, a2, a3, a4) 143 ICti BX0.414T B 
pi, ec.rm To.nbrio 

ca„,(al(t))+ Val(a2(t)) = Val(aa(t))+ 4 0a 1  (a4(t))• 

OTMeTI4M, LITO yria3aHlibre cemericTria npvi 7' = 1 roOTBeTCTBeHHO COB-
nadiaioT C 143BeCTHb1M14 remericTftami4 11,J131 Pi 143 riaparpackt. 2. 
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Ilye.TK t 	2, T = (1,t), t eCTI, u-rio,amHol-KerTBo ET TaKoe, trro 

PG-(1,2)=2. 
CemelicTBo tipeamiaToti Vi(r). Ouo He nyeTo npli 1 > 2, r > 2. 

Ilpex4KaT p exozicr B VI(r) TOLIHO Tor/1'a, Kor,rta pi C 	t < r, H 13h1- 

no.nmerio: (a1, (i2) E 
	(m) 

flpl  Tor-HO TOraa, Korua, al (t) = a2(t); cyu1ecT- 

ByeT (,o H3 4t  TaKoe, Lao 
	

((Li,a2) E 	im ;')KBHBaJleHTHO 

cyatecTBoBaHmo Ct 143 
	

TaKOMy, tyro al(t) = (c„., (a) H a2(t) = cp„,(t). 
Flyrrb 

Wi (r) = Z1(r) U .11( )U !Mr) U M1(r) U 51(r) U Li( r) U V1(r) 

H U(Wi(r)) — MHOHieCTBO KnaceoB a.(1)yu:Kumil, coxpatmonmx nperania-

TM H3 Wj(r). 

TeopeMa 5.10. [15] 14,A1uent meow) pawnone() 	= II(Wi(r)). 
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iNvn- ED LECTUKE 

SOME NONSTANDARD TYPES OF 

ORTHOGONALITY (A SURVEY) 

Gradimir V. Milovanovie, 

ABSTRACT. This survey is devoted to some nonstandard types of orthogonal 
polynomials in the complex plane. Under suitable integrability conditions on 
w, we consider polynomials orthogonal on a circular arc with respect to a 
non-Hermitian complex inner product as well as Geronimus' version of or-
thogonality on a contour in the complex plane. Also, we introduce a class of 
polynomials orthogonal on some selected radial rays in the complex plane. In 
both of cases we investigate their existence and uniqueness, recurrence rela-
tions, representations and connections with standard polynomials orthogonal 
on the real line. We also give an introduction to the general theory of orthog-
onality on the real line and the unit circle. Zero distributions of nonstandard 
types of orthogonal polynomials are considered. 

1. Introduction 

The orthogonal systems play an important role in many branches of math-
ematics, physics and other applied and computational sciences. Especially, 
orthogonal polynomial systems appear in the Gaussian quadrature processes, 
the least square approximation of functions, differential and difference equa-
tions, Fourier series, etc. 

In this survey we mainly consider some classes of nonstandard orthogonal 
polynomials. The paper is organized as follows. In Section 2 we discuss two 
standard types of orthogonal polynomials — polynomials orthogonal on the 
real line and polynomials orthogonal on the unit circle. The most important 
properties of such polynomials are presented. Under suitable integrability 
conditions on a weight function, in Section 3 we consider polynomials or-
thogonal on the semicircle with respect to a complex-valued inner product. 

This work was supported in part by the Serbian Scientific Foundation, grant number 
0401F. 
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518 	 (;. V. MilovanoviC 

A generalization of such nonstandard orthogonal polynomials on a circular 
arc in the complex plane is treated in Section 4. Geronimus' version of or-
thogonality on a contour in the complex plane for polynomials orthogonal 
On the semicircle or on a circular arc is considered in Section 5. Sections 6 
and 7 are devoted to a new class of orthogonal polynomials on some selected 
radial rays in the complex plane. We investigate the existence and unique-
ness, recurrence relations, representations and the connection with standard 
polynomials orthogonal on the real line. Also, the distribution of zeros of 
such polynomials is included. 

2. Standard types of orthogonal polynomials 

A standard type of orthogonality is one on the real line with respect to 
a given non-negative measure dA(t). Namely, let A: R R be a fixed non-
decreasing function with infinitely many points of increase for which all mo-
ments tik = dA(t), k = 0, 1, , exist and are finite. Then the improper 
Stieltjes integral fR  P(t) dA(t) exists for every polynomial P. By the applica-
tion of the Lebesgue-Stieltjes integral fll, f (t) dA(t) to characteristic functions 
of sets, the function A engenders a Lebesgue-Stieltjes measure dA(t), which 
is known also as in— distribution (cf. Freud [10]). Moreover, if t I A(t) is 
an absolutely continuous function, then we say that ,\'(t,) = w(t) is a weight 
function. In that case, the measure dA can be express as dA(t) = w(t) dt, 
where the weight function t I w(t) is a non-negative and measurable in 
Lebesgue's sense for which all moments exists and ito = fat  w(t) dt > 0. 

In the general case the function A can be written in the form A = 
As  + Ai , where Aa, is absolutely continuous, As  is singular, and Al is a jump 
function. 

The set of points of increase of t i A(t), so-called the support of the 
measure, we denote by supp(dA). It is always an infinite and closed set. If 
supp(dA) is bounded, then the smallest closed interval containing supp(dA) 
we will denote by A(dA). 

Using the measure dA(t) we can define the inner product ( f , g), by 

(2.1) 	( f , g) = 	f (t)g(t) dA(t) 	(f , g E L2 (R) = L 2 (R;dA)), 

and consider a system of (monic) orthogonal polynomials {pk(t)} such that 

pk(t) = t k  + terms of lower degree (k = 0, 1, 	), 

P (Pk,,i) = 0, k 	71, (p„,p„) = IIN112  > 0. 
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For any In-distribution d,\(t) there exists a unique system of polynomials 

{pk(t)}. 
A general property of the inner product (2.1) that (t f , g) ( f,tg) provides 

the three-term recurrence relation for the (monk) orthogonal polynomials 

Pk(t), 

(2.2) 	Pki-i (.0 = 	— ak)P 	— b 	(f), 	k = 0, 1, 2, . , 

po(t) = 1, p_1 (t) = 0. 

The recursion coefficients can be expressed iu terms of inner product (cf. 

Milovanovie, Mitrinovie, Rassias [31, p. 33]) 

(tPk, Pk) 	 (Pk,Pk)  
ak = 	 (k > 0), 	= 	 (k > 1). 

(Pk, Pk) 	 Pk-11Pk-1) 

The coefficient 1)0 , which multiplies p_ i (t) = 0 in three-term recurrence 

relation may be arbitrary. Sometimes, it is convenient to define it by b o  = 

= dA(t). Then the norm of p„ can be express in the form 

= ON, Pn) = Vbo bi  • • • bn • 

An interesting and very important property of polynomials p„(t), ra > 
is the distribution of zeros. Namely, all zeros of p„(t) are real and distinct 

and are located in the interior of the interval A(dA). Also, the zeros of AM) 

and p„.44  (t) interlace, i.e., 

(9t+i) (71) 
k 	rk 	rk+1

4 	(k = 1, . , 71.; u E N), 

where r (7j)  k = 1,... , n, denote the zeros of p„(t) in an increasing order 
k 

(n) 	( n) 	 (n) 
2 

	

< T 	< • • • < T„ 

It is easy to prove that the zeros ri,n)  of pn(t) are the same as the eigen-

values of the following tridiagonal matrix 

ao 1/71 
	 0 

AT al N.X2-  

J7, = „I„(dA) = a2 

  

_ 0 	 b9L-r 	a91 -1 
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520 	 G. V. MilovanoviC 

which is known as the Jacobi matrix. Also, the monic polynomial p„(t) can 
be expressed in the following determinant form 

in (t) = det(t/n  

where /„ is the identity matrix of the order 71. 

Suppose that A(dA) = [a, b]. Since every interval (a, b) can be transformed 
by a linear transformation to one of following intervals: (-1,1), (0, +oo), 
(—oc, +oo), we can restrict the consideration (without loss of generality) only 
to these three intervals. A very important class of orthogonal polynomials on 
an interval of orthogonality (a, b) E R is constituted by so-called the classical 
orthogonal polynomials. Their weight functions w(t) satisfy the differential 
equation 

--Li-(A(t)w(t)) = B(t)w(t), dt 
where 

1 — t2 , 	if (a, b) = ( —1, 1), 
A(t) 	 if (a, b) = (0, +oo), 

1, 	if (a, b) = (—oo,+oo), 

and B(t) is a polynomial of the first degree. 

The classical orthogonal polynomials {Q k } on (a, b) can be specificated 
as the Jacobi polynomials fl, c'13) (t) (a,13 > — 1) on ( - 1, 1), the generalized 
Laguerre polynomials L(t) (s > 

— 1) on (0, +oo), and finally as the Hermite 
polynomials H k(t) on (—oo, +oo), with the weight functions 

t ti (1 — tr(1 + 0 1) , 	ti.-4 	 t i e -t2 	(a(3,s > —1), 

respectively. These polynomials have many nice particular properties (cf. [9], 
[25], [29], [31], [40], [43]). Some characterizations of the classical polynomials 
were given in [2-3], [5-6], [9], [20], [23]. 

There are several classes of orthogonal polynomials which are in certain 
sense close to the classical orthogonal polynomials, so-called semi-classical 
polynomials. 

In many applications of orthogonal polynomials it is very important to 
know the recursion coefficients ak and bk . If dA(t) is one of the classical 
measures, then a k  and b k  are known explicitly. Furthermore, there are cer-
tain non-classical cases when we know also these coefficients. For example, 
we mention here the generalized Gegenbauer weight w(t) = — t 2 )°, 
it, a > —1, on [-1, 1] (see Lascenov [22] and Chihara [9, pp. 155-156]), the 

V
ir

tu
al

 L
ib

ra
ry

 o
f 

F
ac

ul
ty

 o
f 

M
at

he
m

at
ic

s 
- 

U
ni

ve
rs

it
y 

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs



Some nonstandard types of orthogonality (A survey) 	 521 

hyperbolic weight w(t) = 11 cosh t on ( -oo, +oo) ([9, pp. 191-193]), and the 
logistic weight w(t) = e -t /(1 + c- t ) 2  on (-oo, +oo). 

A system of orthogonal polynomials for which the recursion coefficients 
are not known explicitly will be said to be strong non-classical orthogonal 
polynomials. In such cases there are a few known approaches to compute 
the first n coefficients a k , bk, k = 0, 1, , n - 1. Furthermore, for such a 
purpose there is the package ORTHPOL developed by Gautschi [12]. These 
coefficients then allow us to compute all orthogonal polynomials of degree 
< n by a straightforward application of the three-term recurrence relation 
(2.2). 

Another type of orthogonality is orthogonality on the unit circle. The 
polynomials orthogonal on the unit circle with respect to a given weight 
function have been introduced and studied by Szego [41-43] and Smirnov 
[37-38]. A more general case was considered by Achieser and Krein [1], 
Geronimus [16-17], P. Nevai [35-36], Alfaro and Marcellin [4], Marcellin and 
Sansigre [24], etc. These polynomials are linked with many questions in the 
theory of time series, digital filters, statistics, image processing, scattering 
theory, control theory and so on. 

The inner product is defined by 
r2ir 

= —27r  Jo  (e)g(e") OM, 

where dp(9) is a finite positive measure on the interval [0,2r] whose support 
is an infinite set. In that case there is a unique system of (monic) orthogonal 
polynomials rh 1 k kEN 0  • If 0  1---+ P( 0 ) is an absolutely continuous function on 

[0,24 then we say that p'(0) = w(0) is a weight function. 

The monic orthogonal polynomials {Ok} on the unit circle Izi = 1 satisfy 
the recurrence relations 

Ok-H(z) = 

for k = 0, 1, ..., where 44(z) = zkO k (1/z). 

As we can see these recurrence relations are not three-term relations like 
(2.2). The values Ok(0) are called reflection parameters or Szeg5 parameters. 
Defining a sequence of parameters {ak} by ak = -Ok+1(0), k = 0, 1 ,• • • , 
Geronimus [18, Chapter VIII] derived the following three-term recurrence 

relations: 

ak-1 Ok+i (z) (ak- 1 z + ak )44(z) - 44 1 	)0k-1 (z), 

akz(1 - lak-11 2  )44-1( Z ) ,  ak-1 (1141(Z) = 	4- ak)44,(z) - 

where k E N and 00,(z) = 1, 0 1 (z) = z - 40. 

z4 k (z) Ok+1(0)0k(z), 07,+1(z) 	01,.(z) Ok+1(0)z4Z( z ) ,  V
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3. Orthogonality on the semicircle 

Polynomials orthogonal on the semicircle 

ro  = {z E Clz = 	0 <0 <71- } 

have been introduced by Gautschi and Milovanovi [14-15]. The inner prod-
uct is given by 

(f,g) = f f(z)g(z)(?z) -1  dz, 

where r is the semicircle r = {z EC1z= e i9 , 0 < i < 7r}. Alternatively, 

(f,g)= 	f(c i9 )9(Pie )(10. 
0 

This inner product is not Hermitian, but the corresponding (monic) orthog-
onal polynomials {Ir k } exist uniquely and satisfy a. three-term recurrence 
relation of the form 

lrk+1(z) = 	— 
Tcrk) 7rk(z) — 

= 0, ro(z) = 1. 

Notice that the inner product possesses the property (z f, g) = (f, zg). 
The general case of complex polynomials orthogonal with respect to a 

complex weight function was considered by Gan t sc hi , Landau and Milo-
vanovie [13]. Namely, let w: (-1,1)1, R+  be a weight function which can 
be extended to a function w( z) holomorphic in the half disc 

D+={zECJIzI<1,Imz> 0},  

and 

	

(3.1) 	( f, g) = f f(z)g(z)w(z)(iz) -1  dz = 	( ie )g(e ie )w(e ie )(19. 

Together with (3.1) consider the inner product 

	

(3.2) 	 [f,g] = f f(x)g(x)w(x)dx, 

k = 0, 1, 2, 	, 

which is positive definite and therefore generates a. unique set of real (monic) 
orthogonal polynomials {Pk}: 

[Pk, pm] = 0 for k m and [Pk, Pm] > 0 for k = in (kon E N0). 
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On the other hand, the inner product (3.1) is not Hermitian; the second 

factor g is not conjugated and the integration is not with respect to the 

measure Iw(eie)I dO. The existence of corresponding orthogonal polynomials, 

therefore, is not guaranteed. 

We call a system of complex polynomials {Irk} orthogonal on the semicir-

cle if 

(irk, r 71 ) = 0 for k # 711 	and 
	

(irk ,  irm) > 0 for k = in 	(k. iii E No). 

where we assume that irk is monk of degree k. 

The existence of the orthogonal polynomials {irk } can be established as-

suming only that 

Tr 

(3.3) 
	

Re( 1, 1) = Re 	iv(e 28 )dO 	0. 

Assume that the weight function w is positive on ( —1, 1), holomorphic in 

D+  and such that the integrals in (3.1) and (3.2) exist for smooth f and g 
(possibly) as improper integrals. We also assume that the condition (3.3) is 

satisfied. 

Let Ce , E > 0, denote the boundary of D+  with small circular parts of 

radius E and centres at ±1 spared out and let `.P be the set of all algebraic 

polynomials. Further, let I', and C,,±i be the circular parts of C, with radii 

1 and e, respectively. 

Then, using Cauchy's theorem and assuming that w is such that for all 

g E `Y, 

(3.4) 	 lim g(z)w(z)dz = 0. 
(,

. ±i 

we obtain 

(3.5) 0= 	g(z)w(z)dz = 	g(z)w(z)dz 	g(x)w(x)dx, y E P. 

The (monic, real) polynomials Ipkb orthogonal with respect to the inner 
product (3.2), as well as the associated polynomials of the second kind, 

f 9k(z) = 	PkW— Pax) w(x)dx 	(k = 0,1,2,...), 
— x 

V
ir

tu
al

 L
ib

ra
ry

 o
f 

F
ac

ul
ty

 o
f 

M
at

he
m

at
ic

s 
- 

U
ni

ve
rs

it
y 

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs



524 	 G. V. Milovanovi6 

are known to satisfy a three-term recurrence relation of the form 

(3.6) 	Yk+1 = 	— ak )Yk - bkYk - i 	(k = 0, 1, 2, .. • ), 

where 

(3.7) Y-1 = 0, yo = 1 for {Pk} 	and 
	

Y-1 = -1, yo  = 0 for {(1k}• 

Denote by in k  and Pk  the moments associated with the inner products (3.1) 
and (3.2), respectively, 

i 	
f

tk = (z ', 	ink  = [xk , 1], 	k > 0, 

where, in view of (3.7), b o  = ?no . 

Gautschi, Landau and MilovanoviC [13] proved the following result: 

Theorem 3.1. Let, w be a weight function, positive on (-1,1), holomorphic 
in D+  = E C Izi < 1, lm z > 0}, and such that (3.4) is satisfied and the 
integrals in (3.5) exist (possibly) as improper integrals. Assume in addition 
that 

	

R (1,1) = Re f w(e a' ) 	0. 

Then there exists a unique system of (monic, complex) orthogonal polyno-
mials {irk} relative to the inner product (3.1). Denoting by {p k } the (monic, 
real) orthogonal polynomials relative to the inner product (3.2), we have 

(3.8) r az) = Paz) - iek-tPk-1(z) (k = 0, 1, 2, ... ), 

where 

(3.9) itoPk(0)+ iqk(0) 
Ok-1 = (k = 0, 1,2, ... ). 

iPoPk-1 (0 ) - (A-1(0) 

Alternatively, 

(3.10) 	Ok = jak 
bk 

Ok-1 
(k = 0, 1,2,-. ); 	0-1 = 

where ak, bk are the recursion coefficients in (3.6) and /t o  = (1, 1). In par-
ticular, all 0k are real (in fact. positive) if ak = 0 for all k > 0. Finally, 

(3.11) (7rk.rk) = 
0k-1[Pk-1,Pk-1] 0 0 (k = 1,2,...), 	( 7ro,7ro) = Po. 
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As we can see, relation (3.8), with (3.9), gives a connection between or-
thogonal polynomials on the semicircle and the standard polynomials or-
thogonal on [-1, 1] with respect to the same weight function w. The norms 
of these polynomials are in relation (3.11). 

In the sequel we assume that condition (3.3) is satisfied, so that the or-
thogonal polynomials {irk} exist. Since (zf,g) = (f.zg), it is known that 

they must satisfy a three-term recurrence relation 

7rk+1 ( 2) = (z — i(vOrk(z) -  130,-1(4 

r_ 1 (z) = 0, 70 (z) = 1. 

Using the representation (3.8), we can find a connection between the coef-
ficients in (3.12) and the corresponding coefficients in the three-term recur-
rence relation (3.(i) for polynomials {PO (see [131): 

Theorem 3.2. Under the assumption (3.3), the (atonic., complex) poly-

nomials {r} orthogonal with respect to the inner product (3.1) satisfy the 

reCUMEMCC relation (3.12), where the coefficients a k , 13k are given by 

Ok-1 
Ce k = Ok 0k-1 	jak, 	13 A, = 	= ek-1( 0k-1 - 	)9 

k -2 

for k > 1 and ao  = 00  - iao , with the O k  defined in Theorem 3.1. 

Alternatively, the coefficients al, can be expressed in the form 

bk 	 bp 	?no 
= — 0k-1 + 	> I, 	(t o  = 	 — 

u k -1 	 0-1 

It is interesting to consider the zero distribution of polynomials cr,L (z). 

From (3.12) it follows that the zeros of 7r„(z) are the eigenvalues of the 

(complex, tridiagonal) matrix 

k = 0,1,2,— , 
(3.12) 

icto 	1 
11i 	jai 	I 

= 	02 in:2 (3.13) 

0 

where a k and /3k are given in Theorem 3.2. 

If the weight w is symmetric, i.e., 

(3.14) 	 w(—z) = w(z), 	w(0) > 0, 
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526 	 G. V. Milovanovk 

then /to = (1,1) = rw(0) > 0, ak = 0, Ok > 0, for all k > 0, and 

ao = go, 	k = Ok — Ok--1, /3k = 	, k > 1. 

In that case ,1„ can be transformed into a real nonsymmetric tridiagonal 
matrix 

no 9 	 0 

A„ = —iD: 1 .1„D„ = 

—00 	Oi 

—01 a2 

• 	On-2 
0 	 — On-2 an-1 

where D?, = diag( , i90 , i 2 00 91 , No  0, 	) E  C" xn. The eigenvalues 7h „ 
v = 1, . . . 	of A„ can be calculated using the EISPACK subroutine HQR 
(see [39]). Then all the zeros (p, = 1, 	, 71, of r„(z) are given by ( s, = im„ 

= 1, 	, 

In [13] we proved the following result for a symmetric weight (3.14): 

Theorem 3.3. All zeros of r„ are located symmetrically with respect to the 
imaginary axis and contained in D+  = {z E C I Izi < 1, IIU z > 0}, with the 
possible exception of a single (simple) zero on the positive imaginary axis. 

If we define the half strip S+  = {z ECI lin z > 0, 	< Re z < &}, 
where 	is the largest zero of the real polynomial p„, then we can prove 
that all zeros of r„ are also in S+  (see [13] and [15]). Thus, all zeros are 
contained in D+  n S+ . 

For the Gegenbauer weight w(z) = (1 — z 2  ) A-1 / 2 , A > —1/2, the excep-
tional case from Theorem 3.3 can only arise if n = 1 and —1/2 < A < 0. 
Likewise, no exceptional cases seem to occur for .Jacobi weights w(z) = 
(1 — zr( 1 + z) 13 , a, /3 > —I, if n > 2, as was observed by several numerical 
computations (see [13]). However, in a general case, Gautschi [11] exhibited 
symmetric functions w for which r„( • ; w), for arbitrary fixed n, has a zero 
iy with y > 1. 

Some applications of these polynomials in numerical integration and nu-
merical differentiation can be found in [8], [26-28]. 

4. Orthogonality on a circular arc 

A generalization of polynomials orthogonal on the semicircle was given 
by M.G. de Bruin [7] for the circular arc 

{z ECIz= —ill, e i6  VR2  + 1, ■,0 < < — (to., tan (,o 	R}. 
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He considered the polynomials {rr} orthogonal on FR with respect to the 

complex inner product 

- 

(4.1) 	 f 	= 	0)01 ((Owl (e)de, 

where yo E (0,7r/2), and for f(z) the function fi  (0) is defined by 

AM= 	c'e  VR 2  + I), 	R = tan (p. 

Alternatively, the inner product (4.1) can be expressed in the form 

(4.2) 	 (f,g) = 	f(z)g(z)w(z)(iz — R) -1  dz. 
FR 

Under suitable integrability conditions on the weight function 'w, which 
is positive on (-1, 1) and is holo ►orphic in the moon-shaped region 

M+  = E C IZ iRl < VR2  + 	z > , 

where R > 0, the polynomials firm orthogonal on the circular arc 1R  with 

respect to the complex inner product (4.1) always exist and have similar 
properties like polynomials orthogonal on the semicircle. 

For R = 0 the arc rf, reduces to the semicircle r, and polynomials {irr} 

to {r}. It is easy to prove that the condition 

RP  I W(Z)(i.; — R) -1  dz = 	117 1 (0)(10 0 
PS  

is automatically satisfied for I? > 0 in contrast to the case R = 0 (see 

condition (3.3)). 
Quite analogous results to Theorems 3.1-3.4 were proved by de Bruin [7]. 

For example, for polynomials {Irk} (the upper index It is omitted) equalities 
(3.8) and (3.11), as well as the three-term recurrence relation (3.12) hold, 
where now the 0k is given by 

Ok—i 

instead of (3.10). Also, for the symmetric weight, w( z ) = w(—z), all zeros of 

7r„ are contained in M+  with the possible exception of just one simple zero 

situated on the positive imaginary axis. 

bk 
Ok = — R-F ink + ( = 0, 1,2,... ); 	0_ 1  = Ito , 
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Let {7r„} be the set of polynomials orthogonal on the circular arc FR , with 
respect to the inner product (4.1), i.e., (4.2). Milovanovi6 and Rajkovie [33] 
introduced the polynomials {7r,*,} orthogonal on the symmetric down circular 
arc TR* with respect to the inner product defined by 

(4.3) 
	

(f,g)* = f f(z)g(z)w(z)(iz R) -1  dz, 

where rh {z Eqz =iR -1- c -i6VR 2 +1,co <0 < r 	tan so = 
Such polynomials are called dual orthogonal polynomials with respect to 
polynomials fira 

Let M be a lentil-shaped region with the boundary (9M = FR U G, i.e., 

/14 = 	E CI IL' iRI < x/R.2 	, 

where R > 0. 

We assume that w is a weight function, positive on (-1, 1), holomorphic 
in M, and such that the integrals in (4.2), (4.3), and (3.2) exist for smooth 
functions f and g (possibly) as improper integrals. Under the same addi-
tional conditions on w and f, like previous, we have 

0= 	f(z)w(z)dz +f(x)w(x)dx, 
-1 

where = TR or G. Then both systems of the orthogonal polynomials 
{IQ and {7r7,} exist uniquely. 

The inner products in (4.2) and (4.3) define the moment functionals 

Ez k = 
itk = (zk , 	= J z k u,(z)(i.zR) -i  dz 

and 

= (z k , 1)* = J z k w(z)(iz R) -1  dz, 
rR  

respectively. Using the moment determinants, we call express the (mouic) 
polynomials irk and Ir j*, as 

PO P1 • 
	

. Pk 

P1 P2 Pk+1 
1 

rk(z) = vk  
Pk-1 Pk P2k-1 

= 
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and 

where 

7 T 1(Z) = 

/10 Ill • • 

Ill P2 
Ak 

Pk-1 Pk 

/4 	PI • • 	PI: 
/IT 	te2' 	P + 

iL 2*  k —1 
k 

14 	PI • • 	Ilk-1 
PI 	111 	PZ 

Pk-1 Ilk 	112k-2 P2 k —2 

k 

= 
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We can prove that rZ(.7) = irk(z), as well as the relation 

r i,(z) = pk(z) - 	 k = 0.1,2,... , 

where 

* 0 — 	  k-1 	
(Tr , 17 ) *  

[Pk-1,Pk-1] 
k = 1, 2,... , 0*-1 = Po*. 

Here, OZ_ I  = -0 k _ 1 , where Ok_i is the corresponding coefficient in the 

polynomial ir k.  

Also, the following theorem holds: 

Theorem 4.1. The dual (manic) orthogonal polynomials {irZ} satisfy the 

three-term recurrence relation 

741(z) 	(z - ictZ) 7rZ(z) - 13ZrZ-1(z) ,  

711 1 (z) = 0, 4,(z) = 1, 

with a*k  = -74 and i3 = 	When: rek and Ilk are the coefficients in the 

corresponding recurrence relation for the polynomials irk 1. 

Using dual polynomials we can give a very short proof that 0k-1 > 0 

(k > 0) for a symmetric weight w(z) = w(-z). Namely, since (irk, rk) = 

Ok_1[Pk-1,Pk-1] it is enough to prove that (irk, irk) > 0. In this symmetric 

case, Ok_i is real and we have 11::_ 1  = - 

w(x) 
(irk, irk) = (irk, 	= J G( z)lv(z)(iz - R) -1  dz = - f 1  (](x) 

ix - R aft 

k = 0, 1,2,... , 

Ok_l and 
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530 	 G. V. Milovanovie 

where G(z) = pk(z)2 eL11)k_1(z) 2  . Then 

w(x) /7(x) ( r k , Ir k  ) = R I G(x) 
R 2  + x2 

dx 	xG(x) 
R 2  + X2 

dx. 

Since x 	G(x) is an even positive function, the second integral on the 
right-band side vanishes and (ir k , irk) > 0. 

One complicated proof of the previous result was given in [7]. 

5. Geronimus' version of orthogonality 

In the paper [21], .1. W. Jayne considered the Ceroninms' concept of or-
thogonality for recursively generated polynomials. Ya.. L. Geronimus proved 
that a, sequence of polynomials {AI, which is orthogonal on a finite interval 
on real line, is also orthogonal in the sense that there is a weight function 

y(z) having one or more singularities inside a simple curve (7 and such 
that 

1 	 0, 	k 	711, (5.1) 	(pk,p,„) = 	. i pk(z)p,„(z)x(z)dz -  = { 2r z c 	 h,„, 	k = in 

Following Ceronimus [19] and Jayne [21], Milovanovie and Rajkovie [32] 
determined such a. complex weight function z 1— k(:), for (monic) polyno-
mials {irk} orthogonal on the semicircle I, and also for the corresponding 
polynomials { 7,- r}  orthogonal on the circular arc TR (H. > 0). 

Denoting by C any positively oriented simple closed contour surrounding 
some circle Izi = r > 1, we assume that 

(X, 

(5.2) E(4)k,Z —k  X(Z) =  WI = 1, 

for Izi > 1, and express z" as a linear combination of the monic polynomials 
r„„ rn = 0, 1,... , n, which are orthogonal on the semicircle r, with respect 
to the inner product (3.1). Thus, 

(5.3) 
	

iL = 	77L,71tir7)L(z), 

where (z", r„,) = 77L,7/,(r,1L,r7„), m = 0, 1, 	, n. Using the inner product 
(5.1) and the representation (5.2), we obtain 

rX^) 
1 

1) = 
2ri 

z"x(z)dz = 	E w k z"-k dz = 
c  

27i  c k=1 
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1111 

On the other hand, because of (5.3) and the orthogonality condition (5.1), 
we find 

(z", 1) = (E 7„,,„7r,„( z), 1) = E 7„.„,(ir„„ 1), 
m.o 	 ,u=O 

i.e., (z", 1) = 77,,,o(ro, 70) = 7n,oho• Thus, we have w„+] = 7n,oho = 
because h0 = wl  = 1. 

Finally, using the moments tin  = (z", 1), we obtain w n+1 = /41/4, n > 0, 
and 

	

i 	 k (5.4) 	 X( z) = — 	 5 	 1 1 
No k=1 

where we need the convergence of this series for kl > r > 1 . 

Suppose that w be a weight function, nonnegative on (-1, 1), holomorphic 

in D+  = {z E CI IzI < 1, in z > 0}, integrable over OD+ , and such that 
(3.3) is satisfied. Then the moments ilk  can be expressed in the form 

	

1 

l 	• w( x) ) 
Ito = 	w(z)(iz) -1  dz = -

1 
irw(0) - v .1). 	---- dx 

Jrr 	 i 	 . _ 	X 

and 

lik = 	, 111(Z)(1Z 	dz = i f i xk -1  w(x)dx, k > 1. f
r  

These moments are included in the series (5.4). 

Supposing that the weight function 112 has such moments it k , which provide 

the convergence of the series (5.4), for all z outside some circle IzI = r > 1 

lying interior to C, Milovanovk and Rajkovk [32] proved: 

Theorem 5.1. The monic polynomials {irk}, which are orthogonal on the 
semicircle r with respect to the inner product (3.1), arc also orthogonal in 
the sense of (5.1), where 

, 	1 	i 	w(x)  
Xlz) = - 	- 

Z 	ILO 	iZ - X 
dx) , Izi > r > 

and 
1.(7(30 

110 = r217( 0) + i V.1). 	-- (IX. 
_1 	'X 

In Gegenbauer case they obtained the following result: 
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532 	 G. V. Milovanovie 

Corollary 5.2. Let w(z) = (1 - z 2 ) -1 1 2 , A > -1/2. The monie polyno-
mials {ir e.}, which are orthogonal on the unit semicircle with respect to the 
inner product (3.1), are also orthogonal in the sense of (5.1), where 

1 	i 	I'(.1 +; )x(z) = 	 ( 
, 	 

z
+ Wiz,, 

f(A + 1) 
F 	

2 	z 2  

where F is the Gauss hypergeometrie series and r is the gamma function. 

In Legendre case (A = 1/2) we have 

1 	i 	z + 1  
x(z) = - + 	log 	, 

z - 1 

where the interval from - I to 1 on the real axis is considered as a branch 
cut. 

The corresponding complex weight for polynomials Ir in 	> 0) orthog- 
onal on the circular arc FR  was also derived in [32] in the form 

/ 1  (I? + ix)w(x)  
X(z) = 	 dx, 

> r > 1,  tio -1 (R 2  + 1: 2 )(z - 

where 

	

Ito = 	R 	+ 	w (x) dx 
r l

. 
 R 2  + x2  

6. Orthogonality on the radial rays in the complex plane 

In this section we start with a new type of nonstandard orthogonality on 
some radial rays in the complex plane. Suppose that we have M points in 
the complex plane, z, = as ea`Pr E C, = 0, 1,... , M -1, with different argu-
ments (ps . Some of a 3  (or all) can be oo. The case Al = 5 is shown in Fig. 6.1. 
We can define an inner product on these radial rays e s  in the complex plane 
which connect the origin z = 0 and the points z 3 , s = 0,1, ... , M - 1. 
Namely, 

M-1 
(f,g)= E e f(z)g(z)Iw(z)idz 

	

s=o 	,  

where z 1-, w(z) is a suitable function (complex weight). 

Since, this product can be expressed in the form 

M-1 
f ( f , g) = E 	f (xe l. '"$)g (xeicP., ) Ito (re i t° s ) I dx, 

s=0 0 
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we see that 
M-1 a s  

(Lf) = 	I 
8=13 0 

except when f(z) = 0. 

') 1 2  1 /11(ze i '' '' 	dx > 0, 

  

23 = 00 00* 

.0" 

Fig. 6.1 

We will consider here only the case when Al is an even number and 
cp s  = irs/in, s = 0, 1,... , 2in - 1. Thus, let in E N and eo, E1, • • • , E2m-1 be 
(27n)th roots of unity, i.e., E s  = exp(iirs/m), s = 0, 1,... , 2in - 1. We will 
study orthogonal polynomials relative to the inner product 

2m-1 
(6.1) 	 ( f,g) = E E s 1 I 	z)g----(x)lw(z)l dz. I s=o 
Suppose that a s  = 1 for each .s and let z 	w( z) be a holomorphic function 
such that 

rtv(xEs)i = w(x), s = 0, 1, 	, 2in - 1, 

and x 	w(x) be a weight function on (0, 1) (nonnegative on (0, 1) and 
fo  w(x)dx > 0). Then, (6.1) can be written in the form 

2m-1 

(6.2) 	 (f,g) 	E f(xe s )g(xE s ) w(x)dx. 
o 	s=o 
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534 	 G. V. Milova.novic 

In the case m = 1, (6.2) becomes 

( f, g) = — f(x)g(x)w(x)dx, 
1 

so we have the standard case of polynomials orthogonal on (-1, 1) with 
respect to the weight function xi= w(x). 

The inner product (6.2) has the following property: 

Lemma 6.1. ( z "1 f, g) = ( f, g)• 

Proof. Since ET ET",  = (-1) ,  we have 

0 	.9=0 
x" 4 6.7," f(xE s )g(xE 8 )) to(x)dx 

f (xe 8 )x7"E's"g(xE s )) w(x ) dx 

0 

The moments are given by 

 

(6.3) 
) 11 

= ( 	
2m —1 

9, Zq = 
( 

E EsP—q 	a:P+ w(x)dx, p, > 0. 
3=o 

If p = 2mn v, n = [p/(27/1)], and 0 < v < 2m — 1, it is easy to verify 
that 

21tt —1 	2m —1 
2711 E ET9 = 	= 

3=o 	3=o 

if v = 0, 
if < p < 2m — 1. 

Thus, pm  in (6.3) is different from zero only if p q (mod 2m); otherwise 
pp , q  = 0. Using the moment determinants 

Poo Itio 
101 Iin 

AO = I, AN= 

110,N-1 1 1 1,N —1 

PN—Lo 
PN-1,1 

• • 	PINI —1 ,IV —1 

, N > 1, 

we can prove the following existence result for the (monic) orthogonal poly-
nomials Or N(z)} 4N-'0  with respect to the inner product (6.2) (see MilovanoviC 
[30]): 
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= 	+ q + 1 ' 
0, 	 otherwise. 

4 
p = q (mod 4), 
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Theorem 6.2. If 	> 0 for all N > 1 the monic polynomials {irN(z)} jtv°20 , 

orthogonal with respect to the inner product (6.2), exist uniquely. 

It is well known that an orthogonal sequence of polynomials satisfies a 
three-term recurrence relation if the inner product has the property (z f, g) = 

(f,zg). In our case the corresponding property is given by (zmf,g) = 

( f, z.'"g) (see Lemma 6.1) and the following result holds: 

Theorem 6.3. Let the inner product (-,•) be given by (6.2) and let the 

corresponding system of monic orthogonal polynomials {n - N(z)}112 0  exist. 

They satisfy the recurrence relation 

(6.4) 

where 

(6.5) 

	

irN( z) — b rc 	N > m, 

	

irN(z) = Z N 	N = 0,1, 	. ,2m — 1, 

	

( 1rN, z"'71" N --m) 	rNii 2  
bAr = 

	

(1rN—m, 7 N—m) 	11 7 N—m11 2  

In a simple case when in = 2 and w(x) = 1, i.e., when the inner product 

(•,•) is given by 

(6.6) 	(f, g) = I [f(x)g(x) f(ix)g(ix) f( — x)g(--x) f ( — ix)g( — ix)1 dx , 

we can calculate directly the coefficient bN in the recurrence relation (6.4). 

The moments are given by 

Thus, if p = 4i + v and q = 4j + v, v E {0,1,2,3}, we have 

4 
it4i+v,4i+v = 	  4( + j) 2:' + 1 

Our purpose is to evaluate the moment determinants 

i,j > 0. 

1101) 	11 10 	• • 	µ N -1,0 

1101 	11 11 	• • 	PN-1,1 
, N > 1. AN = 

µ0,N -1 /11,N 	" • PN —1,N —1 

V
ir

tu
al

 L
ib

ra
ry

 o
f 

F
ac

ul
ty

 o
f 

M
at

he
m

at
ic

s 
- 

U
ni

ve
rs

it
y 

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs



536 	 G. V. MilovanoviC 

hi order to make it, for every k E N, we define the determinants 

Am 0 /140  0 
0 	1.1 22 	0 	/162 

/104 	0 	/1 44 	0 

0 	11/26 	0 	/166 

/12k-2,2k-2 

	

fill 	0 	/151 	0 

	

0 	/133 	0 	/173 

	

Pis 	0 	/155 	0 

	

0 	I/37 	0 	it77 

/ 1 2k-1,2k-1 

which can be expressed in terms of the determinants 4 u)  = 1 and 

    

.E;41' )  = 
itv,4+1, 

//4+1,,v 

/144-v,4+v 

/14(7L-1)+11,1/ 

/14(n-1)-Fv,44-v 

    

	

/ 1 v,4(n-1)4-t, 	/144-1.4(n-1)+v 	• • • 	/14(n-1)-Fv,4(n-1)1-v 

where v = 0, 1,2,3. 

Interpreting these determinants in terms of Hilbert-type determinants and 
using Cauchy's formula (see Muir [34, p. 345]) 

(ai — ajgbi — 
det 

[ 	1  i>j=  1 

	

ai  + 	j=i  
11 (ai 	bi) 

i,j=i 

with a i  = 4i and bi = 4j + 2v — 7, we obtain (see [30]) 

= 4n2 	(0!1!  • • • ( n  — 2 

n-1 n-1 
H IT (4i + 4j + 2v + 1) 

n > 1. 

D k = 

Also, we can prove that 

Ck = E(°/ )2 E (k2A, k(even) > 2; C k = E i,.°, )÷1)12 E k2,) 0/27  k(odd) > 1, 
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as well as 

Dk = 4112  3/ 2 , k(even) > 2; Dk = .qkl)+1)12 E41.0/2 , k(odd) > 1. 

Using the same techniques we find that 

02k = (?kDk and A2k-i-1 = Ck+1Dk• 

Combining these equalities we obtain: 

Lemma 6.4. We have 

04n = E i° )  0,1) 02) E(3) ,  

0471+1 - E i°1 1  g2)  E(3)n  

04n+2 = E;,(:).4). 1  E!,14). 1 E;,2)  E (3)  

A4n+3 E!1°-1)- 1 E !LI-4)-1 E!,24)- 1 g3)  

We note, first of all, that A N  > 0 for all N > 1, and therefore, the 
orthogonal polynomials {7rN(z)} 4N- ...'0  with respect to the inner product (6.6) 
exist uniquely, and 

AN-F1  
(riv,iriv)= 	= A 

 >0. 

Theorem 6.5. The (monic) polynomials {7r N(z)} itg) , orthogonal with re-
spect to the inner product (6.6), satisfy the recurrence relation 

(6.7) 	 7N+2(Z) z 2 7N(z)—bArrN-2(z), N > 2, 

IrN(z)= z N  , N = 0,1,2,3, 

where 

(6.8) b4n+v = 

16n2  
if 	= 0, 1, 

if v = 2, 3. 1 (871 + 2v - 3)(8n + 2v + 1) 

(4n + 2v — 3) 2  

(8n + 2v — 3)(8n + 2v 	1) 

Proof. Because of (6.5), tbe coefficients G N  can be expressed in the form 

AN+1 AN-2 2 
bN = 	 

	

PrN-211 2 	AN AN-1 
, N > 2. 
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538 	 G. V. Milovanovi 

In order to find these quotients we need a quotient of the determinants 41') . 
According to the previous equalities we get 

2 
= 4 	271—t 

TT  4(k — n + 1)  
4v) 8n + 2v + 	1 ( 	4k + 2v + 1 k= n 

and El u) /E i v)  = 4/(2v + 1). 
Then, for v = 0, 1 we find 

n > 1, 

E(v)  /E( ')  

	

1-1,-1-1  /A4n+v 	 71+1 	n  b 	 A4n  
I- V = A 

,-14(n-1)±v-1-3/A4(7/-1)+v+2 	ev+2) /E(v÷2)  n-1 

llin2  
b471,-1- V = 	  

(874 + 2V — 3)(871 + 2V + 1) 

Similarly, for v = 2,3, we have 

el)  /E(v)  

	

Azin-i-v+1 /A471-1-1, 	n+1 	n  b4,i+v = 

	

/A4n+v-2 	r,(v-2) 4-1,v-2) 
n+1 / /-/ 

(4n  + 2v — 3) 2  
b4n+v  = (87/ + 2v— 3)(8n+ 2v + 1)

. 
 

From (6.8) we conclude that 

bN 
4 

as N 

just like in SzegCi's theory for orthogonal polynomials on the interval (-1, 1). 
Since 

11 7 N11 2  = 
{bNbN - 2 • • •b211 7011 2 , 	even, 

bNbN_ 2  • • • b311 71-111 2 , N odd, 

and 11 71-011 2  = 	/Ao = Poo = 4 (Do = 1 ), 

11 7111 2  = 02/A1 = /loom /Poo = Pit = 4/3, 

we can define b o  = 4, b 1  = 4/3, so that (6.7) holds for every N > 0, where 

7-2(z) = it--1(z) = 0, 7ro(z) = 1, 7r 1 (z) = z. 
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Finally, we can determine the norms of the polynomials {rN(z)}. Let 

N = 4n + v, n = [N14], 0 < v < 3. Since 

II 	II 7fN = AN+1  — A4n+v+1  _ E!,:1_1 )_ 1  

AN — A • 4n-1- 	— 411)  

we have 

IlitN11 2  = 2N +1 	0 < N< 3, 

4 	
(2n-1 

11 11- N11 2  = 11 7r4 „-Fv11 2  = 871 + 2v+ 1 	H k=n 

2 
4(k — n + 1) 

4k + 2v + 1 
N > 4. 

7. A representation of 7rN(z) and zeros 

In this section we again consider the general case of the inner product 
(6.2) for which the corresponding system of the monk orthogonal polyno-
mials {irN(z)}r2.0  exists and satisfies the recurrence relation (6.4). Based 
on this recurrence relation, we can conclude and easily prove that irN(z) are 
incomplete polynomials with the following representation (see MilovanoviC 

[30]): 

Theorem 7.1. The polynomials from Theorem 6.3 can be expressed in the 
fmin 

( 7 . 1 ) 	7r2mn-i-v( 2.1 = 	(41)  (Z 27"  )1 = 0, 1,... ,2m— 1; 71 = 0,1,... , 

where q,(,u) (t), v = 0,1,... ,2711 — 1, are monic polynomials of exact degree n, 
which satisfy the three-term Ircumence relation 

q,(,'+ 1 (t) = (t — a (: ) 1(k" ) (t) — 1)iv) (I! iv) 	= 0,1,... , 

qi(3u) (t) = 1, (lui) (t) = 0. 

The recursion coefficients 4 1)  and b(„v)  are given in terms of the b-coefficients 

as 
a(„')  = bN 	b;:/)  = bN—mbN, N = 2ntn + 

The three- term recurrence relation (7.2) shows that the monk polynomial 

systems fe(1)1+nfo, v = 0,2,... ,21n — 1, are orthogonal. The following 
theorem gives this orthogonality: 

(7.2) 
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Theorem 7.2. Let x 	w(x) be a weight function in the inner product 
(6.2) which guarantees the existence of the polynomials 71 -Ar(z), i.e., gL'' ) (t), 

= 0, 1, 	, 2m — 1, determined by (7.1). For any E {0, 1, 	, 2m — I}, 
the sequence of polynomials { 4 ) (t)}12`0' is orthogonal on (0, 1) with respect 
to the weight function t 	w„(t) = t ( 2 v+1-2m) /2m Iv ( /2 M 

As we can see the question of the existence of the polynomials 7rN(z) is 
reduced to the existence of polynomials gV ) (t), orthogonal on (0,1) with 
respect to the weight function w u (t), for every b = 0, 1,... ,27n — I. 

The next result gives the zero distribution of the polynomials irN(z) (see 
[30] ): 

Theorem 7.3. Let N = 2mn 	n = [N12714], v E 	,2m — 11. All 
zeros of the polynomial TrN(z) are simple and located symmetrically on the 
radial rays Is , s = 0,1,... , 2m — 1, with the possible exception of a multiple 
zero of order V at the origin z = 0. 

At the end we mention that an analogue of the Jacobi polynomials and 
the corresponding problem with the generalized Laguerre polynomials were 
treated in [30]. 
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ITERATIVE METHODS FOR BOUNDING 

THE INVERSE OF A MATRIX (A SURVEY) 

Miodrag S. Petkovie 

ABSTRACT. The aim of this paper is to give a survey of iterative methods 
for bounding the inverse of a point or interval matrix. These methods are 
based on the generalized Schulz's method and developed in interval arith-
metic. The interest in bounding roundoff errors in matrix computations has 
come from the impossibility of exact representation of elements of matrices 
in those cases when numbers are represented in the computer by strings of 
bits of finite length or elements were experimentally determined by mea-
surement which leads to the uncertainty in initial data. A posed problem 
can be usefully solved by interval analysis, a new powerful tool of applied 
mathematics. A detailed study of the basic inclusion method and its modifi-
cations, including the convergence features. conditions for a safe convergence, 
the monotonicity property, the choice of initial inclusion matrices and a num-
ber of remarks concerning a practical realization, were presented. A special 
attention is devoted to the construction of efficient methods for the inclusion 
of the inverse of a matrix. 

1. Introduction 

The demands of the computer age at the beginning of the sixties years 
with its "finite" arithmetic dictate the need for a structure which has come 
to be called interval analysis or later interval mathematics - a new, growing, 
and fruitful branch of applied mathematics. "Although interval analysis is in 
a sense just a new language for inequalities, it is very powerful language and 
is one that has direct applicability to the important problem of significance in 
large computations" (R.D. Richtmeyer, Math. ( ..oinput. 22 (1968), p. 221). 
The starting point for the application of interval analysis, described for the 
first time by Moore [21], is the desire in numerical mathematics to be able to 
implement algorithms on digital computers capturing all the roundoff errors 

This work is supported by the Science Fund of Serbia under Grant No. 0401 
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544 	 M. S. PetkoviC 

automatically and therefore to calculate strict errors automatically. Interval 
arithmetic is powerful tool for bounding a result of some computation or 
a solution of an equation so that interval methods are often called self-
validiting algorithm.'. 

Anyone using a computer, whether in engineering design, physical sci-
ences, technical disciplines, Or whatever has surely inquired about the effect 
of rounding error and propagated error due to uncertain initial data or un-
certain values of parameters in mathematical models. A standard question 
should be "what is the error in the obtained results?". Numerical algorithms 
using interval arithmetic supply techniques for keeping track of errors and 
provide the machine computation of rigorous error bounds on approximate 
solutions or results. 

The application of interval mathematics to computing hag gOveral objec-
tives: to provide computer algorithms for finding sets containing unknown 
solutions; to make these sets as small as possible; and to do all this as ef-
ficiently as possible. Towards these objectives, set-to-set mappings replace 
point-to-point mappings, and set inclusions replace approximate equalities. 

The purpose of this paper is to present iterative methods for bounding 
the inverse of a matrix. The interest in bounding roundoff errors in matrix 
computations has come from the impossibility of exact representation of 
elements of matrices in some cases since numbers are represented in the 
computer by strings of bits of fixed, finite length. Besides, there are elements 
which are experimentally determined by measurement which leads to the 
uncertainty in initial data and it is only known that their values belong to 
some intervals. Finally, nearly all numerical computation is carried out with 
"fixed-precision", approximate arithmetic. In the commonly used approach, 
one assumes that the worst possible roundoff error occurs hi each numerical 
step. One then determines (or bounds) how these errors can accumulate as 
the computation proceeds. This procedure is usually called ordinary method 
for error bounding and the abbreviation OM is used to refer to it. The 
second approach uses interval arithmetic (abbreviated as IA) which has the 
advantage of an automatic control of rounding errors and, at the same time, 
an inclusion of the exact result of computation. For this reason, the main 
subject of this paper is concerned with iterative methods which use IA for 
bounding errors in matrix inversion. 

In Section 2 we will give the basic matrix operations needed for the con-
struction and analysis of iterative algorithms for the inclusion of real or 
interval matrices. A general approach to the problem of the inversion of 
matrices is described in Section 3. The two basic interval iterative meth-
ods, based on the generalized Schulz's method, are considered in Section 4. 
Conditions for the monotonicity of interval sequence of inclusion matrices 
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are the subject of Section 5. In Section 6 we study the problem of finding 
a suitable initial matrix which insures the convergence of the presented in-
terval algorithms. Efficient iterative methods for bounding the inverse of 
a matrix, which combine the efficiency of floating-point arithmetic and the 
control of accuracy of results by interval arithmetic, are presented in Section 
7. A special attention is devoted to the choice of parameters which define 
the most efficient inclusion algorithm. Finally, in Section 8, we describe an 
iterative method for the inclusion of an interval matrix. Throughout this 
paper several numerical examples are given to illustrate presented methods 
as well as difficulties which appear in solving the studied problem. 

The presented study is a two-Way bridge between linear algebra and com-
puting. Its aim is to encourage mathematicians to look further to computing 
as a source of challenging new problems, and researchers in computing to 
turn more frequently to contemporary mathematics in their day-to-day use 
of the digital machine. 

2. Interval matrix operations 

A subset of the set of real numbers R of the form 

A = [a l , a2 ]= {xi a l  < x < a2, al, a2 E } 

is called a. closed real interval. The set of all closed real intervals will be 

denoted by 1(R). If a 2  = al  then the interval A = [a l , a2 ] degenerates to the 

real number a l  and A is called a point interval. The basic operations and 

properties in the set 1(R) are described iu the book [3, Ch. 1 and 2]. Real 
intervals will be denoted by capital letters. 

A real interval matrix is a. matrix whose elements are real intervals. Since 
we deal in this paper only with real intervals and real interval matrices, we 
will use the shorter terms interval and interval matrix. The set of in x it 

matrices over the real numbers is denoted by M„,„(R) and the set of in x n 
matrices over the real intervals by M„,„(/(R)). An interval matrix whose all 
components are point intervals is called a point matrix. Point matrices (el-

ements from M„,„(R)) will be denoted by capital letters A, B,C,. . . , while 

interval matrices (elements from M?, (1(R)))by capital letters A,B,C,... 
in bold. Interval matrices are represented, as is customary for real or com-

plex matrices, by their components in the form A = (4). 

Definition 1. Two in x 71 interval matrices A = (Aij) and B = (Bii) are 

equal if and only if there is equality between all corresponding components 

of the matrices, that is, A = B <#. Al i = Bij (i = 1,... ,m; j = 1, , 

A partial ordering on the set of interval matrices M„,„(I(R)) is introduced 

by 
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546 	 M. S. Petkovie. 

Definition 2. Let A = (AO and B = (Bid) be two m X n interval matrices. 
Then 

A C B <4, Ai .i  C  Bi .i  (i = 	... 	= 1, ... ,71). 

In particular, if A = ((L i:; ) is a. point matrix, then we write A E B. Each 
interval matrix may be regarded as a set of point matrices. 

In the following we give a short review of the basic operations between 
interval matrices which formally correspond to the operations on point ma-
trices. 

Definition 3. For two in x n matrices A = (Ai d ) and B = (Bid) interval 
matrix addition and subtraction are defined by 

A ± B := (Aij 

Definition 4. Let A E mr (1(11t)) and B E Mr,(PR)). An interval matrix 
computation is defined by 

r 

AB := E AikBkj • 

k=1 

Definition 5. If A = (4) is au interval matrix and X an interval, then 

XA= AX := 

It is easy to prove that 

A+B=IiI± 111 A E A, B E 

while 
AB D {AM A E A, B E 

In the following theorem the basic properties of the introduced operations 
are given (see [3, Ch. I0]): 

Theorem 1. If A, B and C are interval matrices, then 

A + B = B + A (ceminintativity), 

A + (B C) = (A + B) + C (associativity), 

A + 0 = 0 + A = A (0 — zero matrix), 

Al = /A = A (I — unit matrix), 

(A B)C C AC + BC 
(subdistributivity), 

C( A + B) C CA + CB 

(A + 	= AC + BC, 

C(A B) = CA + CB, 
A(BC) C (AB)C. 
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Let us note that the associative low is not, in general, valid for interval 
matrices. This low is not valid even if two of three matrices are point .  matrices 
(the last property in the above theorem ). 

The inclusion isotonicity property for the matrix operations is given in 
the following theorem ([3, Ch. 10]): 

Theorem 2. Let Ak,BA, (k = 1.2) be interval matrices and X and Y real 
intervals. If * E 	—, -1 is one of matrix operations then the conditions 

Ak C Bk (l = 1,2) and X C Y 

imply A1 * A2 C B 1  * B2 MU/ XAk C YBk• 

In particular, from Theorem 2 we obtain 

AEA, BEB = Ad-BEA-FS, 

	

A E X, A EA 	AA E XA (A E R). 

Definition 6. Matrix norm of an interval matrix A is defined by 

max 

	

I! A 	AEA 	A II ,  

where II • II is an arbitrary monotone norm. 

Thus, the norm of au interval matrix is an extension of the norm of a point 
matrix and directly depends on the type of this norm. Most frequently, we 
use "maximum row-sum" norm II • 

(2.1) 	 II A II00:= nia•x II A IIx=  max 
AEA 

and "maximum column-sum" i' ("1111  II • Hi ,  

(2.2) 	 II A III:= max II A Il l = max Y' 
AEA 	 7 L-7-1  

Both norms are monotonic and multiplicative, that is (omitting subscript 
indices), 

B c A 	11 B 115
- II A II 	and 	II AB NI A II • il B il • 

In the sequel, we will omit the subscript indices (indicating the type of norm) 
and assume that the used matrix norm is monotonic and multiplicative. The 
application of some specific norm will be accented. 
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Before introducing the Concept of width, absolute value and midpoint for 
interval matrices, we recall to the corresponding definitions for a given real 
interval X = [a, b]: 

d( X ) = b — a (width); 

IX I = max 	 absolute value); 
in( 	) 	a -I- b 

2 	
(midpoint). 

Definition 7. For au interval matrix A = (Aii) the following point matrices 
are associated: 

a) the width matrix d(A) := (d(Aii)); 
b) the absolute value matrix IAI := 
c) the midpoint matrix m( A) := (m(Aij)). 

The matrix d(A) and All  have nonnegative components. The elements of 
the midpoint matrix in(A) are real numbers which are equal to the midpoints 
of the corresponding (interval) components of the interval matrix A, so that 
m(A) E A. 

Definition 8. A sequence of interval matrices {AO is monotonically non- 
increasing if A u 	Al  J A2 	• • • , and monotonically nondecreasing if 
Ao  C 	C A2 C • • • . 

Definition 9. The intersection of two interval matrices A = (Aid) and 
B = (Bij) of the same type is defined as 

A n B := (Aii  n Bo. 

It is easy to see that the intersection of interval matrices has the property 

	

ACC, BCD 	AnBCCnD (inclusion isotonicity). 

Definition 10. Let X = (:rii) and 	= (yid ) be point matrices from 
M,„„(R). Then 

X < Y 	< yij (i = 1,...,m; j = 1,... ,n) 

defines the relation of partial ordering "<" in M„,„(Ift). 

Using Definition 10 the following properties for real matrices, introduced 
in Definition 7, can be proved ([3, Ch. 10]): 
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Theorem 3. If A = 	) and B = (Bij) are interval matrices of the same 
type, then 

(1) A C B 	d(A) < d(B), 

(2) A C B 	IA1 < 
(3) d(A ±B) = d(A)+ d(B), 

(4) IA + BI < 1AI 1B1 ,  

(5) IaAI = IAA' = IAIIAI (A E IR). 

(6) IABI < IAIIBI, 

(7) d(AB) < d(A)IBI lAld(B), 

(8) d(AB) > lAld(B), d(AB) > d(A)IBI, 

(9) d(AB) = lAld(B), d(BA) = d(B)IAI, 

(10) 0 E A 	All 	< d(A) < 2 1A1 ,  
(1 1 ) m(A B ) = m(A) ± m(B), 

(12) 77/(CA) = C7n(A), 7n(AC) = m(A)C. 

(13) m(C) = C. 

3. Problems of bounding the inverse of a matrix 

In this section we will consider the problem of bounding the inverse of a 
matrix in the presence of rounding errors applying digital computers with 
the arithmetic of limited precision as well as uncertain data in elements of 
a given matrix. 

First, we point out some more general problems in matrix inversion. Let B 
be an exact matrix whose elements can be exactly represented in arithmetic 
of finite (say, double) precision in a computer. Let A = (ajj) be a matrix 
whose elements are subject to error. Suppose we know only that aij (i,j = 

1, 2,... ,n) lies in the real interval [a ip niA, where az j  and iij j can be exactly 

represented in double precision. 

Problem 1. Compute B -1  (approximately) and bound the errors resulting 

from roundoff. 

Problem 2. For a given matrix A = (a ii) with ao  E 	for i,j = 

1, 2, 	, n, compute A -1  (approximately) and bound both the errors result- 
ing from roundoff and the errors from possible errors in A itself. 
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Problem 3. Define the set 

(A 1 ) 1  = {A -1 I aii E 	A -1 A = //. 

Compute (A 1 ) -1  approximately and bound the errors due to roundoff. 

Problem 4. Find (A/) -1  exactly. 

Problem 1 can be easily solved by OM or by inverting B using Z.A. More-
over, by use of arithmetic of sufficiently high precision, arbitrary accuracy 
with arbitrary sharp bounds can he obtained. 

Using IA, Problem 2 can be solved as easily as Problem I. Using OM, 
only slightly more effort is required to solve Problem 2 than Problem 1. 

OM obviously cannot solve Problem 4 and cannot solve Pmblem 3except 
in a very crude sense. It can be shown (see [6]) that Problem 4 cannot be 
solved using IA, even if infinite precision arithmetic is used. An approximate 
solution of arbitrary high accuracy can be obtained but the amount of work 
quickly becomes prohibitive. 

Hence, we direct our attention to Problem 3 which can be solved using IA. 
Two approaches for solving this problem by LA have been developed in the 
literature.: hyperpower method [4], and Alefeld-Herzberger's modification 
of generalized Schulz' method [1]. 

The hyperpower method is defined by a matrix-valued faction 4.(A, X) 
for real n x n matrix X in the range of the real n x 71 matrices, -where A is a 
given matrix whose inverse A -1  has to be found. By means of the iteration 

x (k+i) = 4,(A, x(0 ), given X", > 0, 

we get an iterative method which generates a. sequence {X (0 } of matrices. 
Following Altman [4] we call this iterative method a. hyperpower method for 
A -1  of order p > 1 if and only if the equation 

I - AX (k+" = (I - AX (k) )P, k:> 0 

is filfilled. If the initial matrix X(°) is chosen so that p(I - AX (0 ) < 1 (p 
denotes the spectral radius), then the sequence of matrices {X (k) } converges 
to the inverse A -1  of the matrix A with the order of convergence p. Using 
suitable error-bounds for the hyperpower method it is possible to derive 
inclusion set for A -1 . Further improvements can be attained using interval 
Schulz-Herzberger's method in the final step, as it was proposed in [16] 
and [17]. Let us note that Herzberger presented in [10] a class of iterative 
methods for inverting a linear bounded operator in a Banach space, which 
can be considered as a kind of hyperpower method. 
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The second method uses an iterative procedure to bound the inverse not 
only for a point matrix but also for an interval matrix. As mentioned above, 
this method was introduced by Alefeld and Herzberger Nand analysed later 
in their books [2] and [3]. It is based on the generalized Schulz's method for 
point matrices and realized in real interval arithmetic. Since a numiter of out-
standing results concerning improvements and modifications of this methods, 
including detailed studies of many convergence properties and behaviours, 
and a practical realization, were given by Prof. J. Herzberger throughout 
about twenty papers, it is quite natural that the mentioned methods and 
their modifications are referred to as Schulz-Herzberger's methods, or the 
S-H methods, for brevity. A survey of these interval methods will be given 
in the following sections. 

Before we present iterative methods of Schulz-Herzberger's type, we give 
an example to illustrate difficulties appearing in bounding inverse matrices. 

Example 1. Let us consider the interval matrix 

A = 
I [0.999995,1.000005]] 
2 

and the point matrix 

C ( x) = [ 21  I ], ;I:EX= [0.999995,1.000005]. 

Let A-1  = (il. j ) and •(x) -1  = (ej(x)) be the inverse matrices of A and 

C(x), respectively. Then Ic i(x)1 x E X}. Let us determine, for 

instance, the component Alit of the inverse matrix A-1 . First, we have 

c1 2  = x./(2x — 1). For x E X = [0.999995,1.000005] the component c1 2 (x) 

is a monotone function so that the endpoints of the interval X yield the 

extreme values (minimum and maximum) of 2( x). According to this, using 

10 significant digits, we obtain Al2 = [0.9999950000, 1.0000050000]. 
On the other hand, using interval arithmetic of infinite precision and the 

rounding of results to 10 digits to find Al 2 , we calculate 

X 
	 = [0.9999850001,1.0000150001], 
2X — 1 

which differs from the exact result given above by A. 

4. Interval versions of Schulz's method 

Let p > 1 be a fixed natural number and I the unit matrix. If A is 

a given nonsingular point matrix and X ( ° )  is au initial matrix such that 

V
ir

tu
al

 L
ib

ra
ry

 o
f 

F
ac

ul
ty

 o
f 

M
at

he
m

at
ic

s 
- 

U
ni

ve
rs

it
y 

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs



552 	 M. S. Petkovii: 

II I — AX (°) 	1, then for finding the inverse of A the generalized iterative 
method of Schulz of the order p 

P -1  
(4.1) 	x(k+i) = 

	

E(I — A X (k) )r (k = 0, 1, 	) 
r=0 

can be applied (see [4], [26], [27], [32]). In particular, for p = 2, one obtains 
Schulz's method of the second order for calculating the inverse matrix [31] 

(4.2) 	x(k+1) = x(k) (21 — A X (k)  ) (k = 0, 1, .. 
)• 

Let X be an interval matrix containing the inverse matrix A -1  of a given 
nonsingular matrix A, and let X E X (for example, X = m(X)). For B = I — AX we have the identity 

p -2 
IP-1  - BP-1  = ( I — B)(I B B 2  • • • + BP -2 ) = AX E Br, 

r=0 

that is, after multiplying by A - ', 

p-2 
A -1  - A -1 (/ - AX )P -1  = X E( / — AX )r 

r=0 

Hence, since 	E X, 

P -2  
(4.3) A -1  = X E(I — AX )r 	 AX )p -1  

r=0 

p-2 

E X E(/ — AX )" X(I — AX)P -1  
r=0 

The last relation suggests the following iterative interval version of (4.1) for 
the inclusion of the matrix A : 

p-2 
(4.4) X ( k+1)  = (X( k) ) (1 - Am(X(k))) + X(k) 	— 	 (X(k). ) ) 11  , 

=0 

(k = 0, 1,... ), assuming that the initial matrix X (13 ) contains A -1 . 
The properties Qf the inclusion iterative method (4.4) are given in the 

following theorem ([3, Ch. 18]): 
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Theorem 4. Let A be a nonsingular n x n matrix and X(°) an it x n interval 

matrix such that A -1  E X(°) . A sequence {X(k)} of interval matrices is 

calculated according to (4.4). Then 

(4a) each matrix X (k)  (k > 0) contains A -1  ; 

(4b) the sequence {X(k ) } emiverges to A -1  if and only if the spectral radius 

p(I - Am( .30 1) )) is smalle• than 1; 

(4c) using a matrix norm II • 11 • 

11 d(X(k+ 1 )) II< 7 II d(x(k) ) 11'), 	y > 0, 

that is, the order of convergence of the method (4.4) is at least p. 

Proof. Of (4a): Setting X( 17)  = X and in(X (0 ) = X in (4.3) and taking 

into account the iterative formula (4.4), we obtain 

2 	 ' 

A -1  E in(X(k) ) 

P

E(/ - A7ii(x(k)))
7 
 + x(k)(/ - Am(xmy = x(k-1-1) .  

r=0 

Since, in addition, A -1  E X(°) , the proof of (4a) follows by complete induc- 

tion. 

Of (4b): Using the rules from Theorem 3 for the midpoint matrices, 
the midpoint mapping in the iterative procedure (4.4) gives the following 

iterative formula for the sequence Int(X (0 )1}: 

7,00k+1)) = in(xn E — Ant(x 00 )) . 
r=0 

This is a generalization of Schulz's iterative procedure given also by (4.1). 
Multiplying both sides of this equation by A one obtains 

7)-1 
Am(x(k+i)) = (/ - (I - Am ( x(k)))) E(/ - A71t(X (k) )) r  

r=0 

= I — (I — Am(X(k) )) p ., 

Or 

k+1  I - Anz(X(k+1) ) = (1 - Am(X (k) )) r  = 	- Ain,(X(11) )) P . 

Hence, there follows 

lim an,(X(k) ) = A -1  .. lim (I - Am(X (°) )) P  = 0 <=;, p(I - Am(X(°) )) < 1. 
k.00 	 k-,00 

th,c sequence {d(X (k) )) satisfies 
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Let us show that the sequence -PC ( k) converges to A -1  if and only if the 
sequence of midpoint matrices fm(X ( k ) )• converges to A - '. This follows 
from the consideration of the sequence {d(X (k))) of the width matrices which 
satisfy 

d( X (k+ 1) ) = d(X (k) )1 - Ant(X (k) )) P-1  I 

(see the properties (3) and (9) of Theorem 3). If limk..„„,m(X( 10) = A -1 , 
then the last relation implies that linik„ d(X (k) ) = 0. Conversely, us- 
ing the continuity of in and (13) of Theorem 3 it follows trivially that 

X(k)  = A -1  implies nt(X( 0 ) = Since it was shown 
above that the condition 1)(1 - Aw(X(°))) < 1 was necessary and sufficient 
for the convergence of {m(X (0 )}, it follows that (4b) is valid. 

Of (4c): First we estimate 

d(X (k÷ 1) ) = d(X (k) )1(/ — Am( X (  ) )P - 1  I 

= d(X (k) )I(AA -1  - Ant(X (k) )) 71-1  

< d(X(k) )(1.Al 24 -1  - •,t(X(k) )1)P -1 

 < d(X(k))2-(P-1)(1A1d( 

Using a. monotonic and multiplicative matrix norm II • II and the last relation, 
we get 

II d(X(k+1) ) 	2-(P-1) 1I A 11 P-I  11 d(X(k) ) 11 P  
Since the inequality 

11 B II 71 	B 	72 II B 	> 0, 72 > 0, 

is valid for every matrix norm 11 ' 11, from this inequality we get 

	

II (1(X(k+1) ) II 71 < 2—("—l) A1'-1) 11 A 	d(X (k) 11 P , 
which proves (4c). ❑ 

Remark I. From the proof given above we see that the assertion of the the-
orem is also valid even if X.(° )  is an arbitrary interval matrix not necessarily 
containing A -1 . In that case we will not have the inclusion A -1  E X( k )  in 
general. We observe that the criterion (4b) depended only on the midpoint 
matrix nt(X ( ° ) ) of the given inclusion matrix X ( °), while the width d(X ( °)) 
can be arbitrary. For this reason, taking in(X( 0 ) to be an approximation 
to A -1  (but so that the condition (4b) holds) and choosing the elements of 
the matrix X(° )  to be large enough so that the enclosure of A -1  by )0(0  be 
ensured, we can provide not only the convergence of the method (4.4) but 
also the inclusion A -1  E X( k)  (k = 1,2, ) • 

x(k)))p-1 .  

V
ir

tu
al

 L
ib

ra
ry

 o
f 

F
ac

ul
ty

 o
f 

M
at

he
m

at
ic

s 
- 

U
ni

ve
rs

it
y 

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs



In this way we ensure that A -1  E VI))  holds. Besides, we have p(I — 

Am(X 0) )) = p(I — A) = 0.8 < 1, which provides the convergence of the 
iterative procedure (Theorem 4). The first four iterations give the following 
inclusion interval matrices (using arithmetic with 7 significant digits): 

[ x (1) — 
— 

X(2)  = 

X13)  — [ 

{ 

[0.1666666, 2.2333316] [-0.8999999, 0.4999999]1 
[-1.4333324, 0.8333329] [0.5000000, 1.6999988] i ' 

[1.1716651, 1.5043325] [-0.3969995, —0.1749999] 
[-0.5963338, —0.2616657] [1.0849990, 1.3049983] 

[1.3587207,1.3672409] —0.3054331, —0.2997532] 1 
[-0.4581502, —0.4496299] [1.2088432, 1.2145233] 

( — 
[1.3636322, 
0.4545477, 

1.3636379] 
—0.4545422] 

[-0.3030319, —0.3030281] 
[1.2121181,1.2121219] I • 

Iterative methods for bounding the inverse of a matrix (A survey) 	555 

Example 2. The S-H method (4.4) for p = 2 was applied for the inclusion 

of the inverse of the point matrix 

4 	1 
5 

A= 
3 	9 ___ 
10 	10 

The initial inclusion matrix was constructed according to the procedure (6.2) 
given in Section 6. Thus, with a = 1 /(I —  I — 

A = 1, for the initial 

matrix X( ° )  we choose 

X( ° )  = 
[—a, 2 + a] 

[—a, a] 

	

[— a. a] 	HI' 141 HI ,  

	

[—a, 2 + 	[— 1/ :11 

• 

11 
1 	3 13) 	

1 

The applied iterative methods converges quadratically starting from the 
third iteration. Besides, in each iteration step we have 

	

[ 15 	_10 

	

11 	33 

	

15 	40 

	

11 	33 [

1.36363636... 

—0.45454545 ... 

—0.30303030 ... 

1.21212121... 
E 	k) . 

   

The sequence of the matrices produced by (4.4) always contains A -1 

 according to (4a) and, thus, it seems natural to form the intersection of the 
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new inclusion matrix X (k+ 1 ) and the fotiner matrix Xik) in order to decrease 
the resulting matrix, which leads to the iterative method 
(4.5) 

7)-2 
y(k+1) = in(x(k)) E(I — A nt(x(k)))r + x(k)(/ — 1 

Am(X(k) ))P-1  

x(k+1) = y(k+1) n  vio, (k = 0, 1,... ). 

 

Using this iteration procedure one obtains a monotonic sequence 

X(°)  2 x(1) 2 x(2) 2 ... 

of inclusions for A -1 . The following numerical example does show, however, 
that the convergence criterion (4b) is not sufficient for convergence in general. 
Example 3. ([3, Ch. 18]) We choose p = 2 and the matrices 

0.4 A= 0.6 	x(0) — [ [-2, 4] [-3, 3]] 
0.41 ' 	[-3, 3] [-2, 4] 

which implies that m(X(°)) = I. We obtain 

I — Am(X (°) )= [ 0° : (6i  —0.6 
0.6 

and calculate MI — Ant(X(°))) = 0.612-  0.85 < 1. Therefore, the proce 
dure (4.4) converges to A -1  using this interval matrix. Applying (4.5) we 
find 

Y( 1 ) = in(x(°)) 	x ( °) 	— itin(x(°))) = [ [-2,5.2] [-4.2, 
[-3, 4.2] [-2, 5.2] 1 ' 

which implies that X (1 ) = X( ° ) . The sequence of matrices generated by (4.5) 
therefore does not converge to A -1  in contrast to the sequence computed by 
(4.4). 

A convergence statement for the iteration (4:5) is contained in the follow-
ing theorem. 

Theorem 5. Let A be a nonsingular n x n matrix and X ( ° )  an n X n interval 
matrix for which A -1  E X(0) . If the sequence of matrices { X( k)} is produced 
by (4.5), then 

(5a) each matrix X(k) , k > 0, contains 	; 
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(51)) if the inequality p(I I - AX I) < 1 is satisfied for all X E X(13) , then 

the sequence {X(k)} ( -07117crj«- ,,i toward 14 -1 ; 

(Sc) the sequence Id(X(k))). is bounded as follows: 

II d(X(k+1))  II< 	d(X (k) ) II P , 	> 0, 

that is, the order of convergence of the iterative process (4.5) is at 

least p. 

Proof. Of (5a): As in the proof of (4a) of Theorem 4 we first show that 

A -1 E Y (k+1) , from which follows immediately that A -1  E X(k+ 1)  since 

14 -1  E X (k) . 

Of (5b): We shall use the fact that every sequence IVO}, for which 

)0°) 	X( 1 ) 	• • • holds, converges to an interval matrix X = 

where 
• ,(k) 	• • 

X ZU = n 	= 1,  • • • , in; j = 1 , • • • , it) 
k=0 

(see [3, Corollary 8 in Ch. 10]). Therefore, the sequence IVO} obtained by 
(4.5) always converges to an interval matrix X. We now show that under the 
assumptions of the theorem we must necessarily have d(X) = 0. We define 

p-2 

Y = nn(X)E(/ - A,,, ( x))T +x(/ - A7/1(X)) 1)-1  

r=0 

and obtain X = 	Yo ) c Y from (4.5). By (1) of Theorem 3 we get 

d(X) < d(Y). For d(X) we obtain from (4.5) 

d(X)II Ani(X)IP -1  > d(X)I(/ - Am(X)) 13-1 I = d(Y) d(X), 

which implies that 

d(X)(I — II - Ann(X)I'' -1 ) < 0. 

The assumption 	- Am( X)I) < I implies the existence of (I - II - 

AIII(X)1P -1 ) -1  . It can be shown that this inverse is also nonnegative. From 

this it follows that d(X) < 0, and hence d(X) = O. Taking into account 

(5a) we obtain X = A. 

Of (5c): As in the proof of (4c.) one first derives the inequality 

II d(
Y ( k+ 1 ) ) ii < -y ii d(oo) Ir 
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for a monotonic and multiplicative matrix norm II • 	From this it follows 
that the inequality 

II d(X(k+1)) 11g d(Y (k+1) ) 	711 d(X ( ' ) ) 

is valid since X ( k+ 1 ) C Y(k+ 1 ) as well as using (1) of Theorem 3 and the 
monotonicity of the norm II • II. Analogous to the proof of (4c) we use the 
norm equivalence theorem to prove the final statement. ❑ 

5. Monotonicity of Schulz-Herzberger's method 

J.W. Schmidt has proved in [28] that the inclusion X( 1 ) C X(°) is a nec-
essary and sufficient condition for the monotonicity of the interval Schulz's 
method 

(5.1) 	X(k± 1) 	in(X(k) ) 	X(k) (/ — 	(X( k) )) 

Starting from the above inclusion .1. Herzberger has derived in [7] the nec-
essary and sufficient condition which is of practical importance. Further-
more, using Schmidt's remark (given without a proof) that the inclusion 
X(1)  C X( ° )  is also necessary and sufficient for the monotonicity of the 
higher-order method (4.4) (see [28]), J. Herzberger has considered in [9] the 
monotonicity of (4.4). 

The aim of this section is to give a useful sufficient condition for the mono-
tonicity of the S-H method (4.4). Our consideration reduces to Herzberger's 
results [7] concerning the iterative method (5.1), which can be generalized 
for the method (4.4). 

Lemma 1. Let X 0) ,X (1) , ... be the sequence of interval matrices produced 
by the iterative formula (4.4) and let p(II — Am (X0) )1) < 1. If the inequality 

	

(5.2) 	21m(X(k) ) 	— Am(X(k) ))I < d(X (k)  )( — I1—Am(X (k) ) I)  
is valid for k = 0, then it holds for each k = 0,1,2,... . 
Proof. For brevity, let us introduce the notations 

C1, = I — Am(X (k) ), B k  = ICkl• 

From (4.4) we find the midpoint matrix m(X (k+I ) ) and the width matrix cpc ( k+ 1 )), 

p-I 

	

(5.3) 	 m(X(k+ 1) ) = m(x(k) ) E C;;, 
r=0 

	

(5.4) 	 d(X(k+1) ) = d(X'k))IC-1 I.  
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Using inequalities 

PCY1 	 + Yi < IXI + IYI 

for the absolute value matrices, in the special case of the point matrices we 
obtain 

(5.5) 	 ICA.I < ICklr = Bk, 

(5.6) E = 
r=o 

 

r=0 

   

Starting from (5.3), we find 

p-1 

Ant(X(k+1) ) = 	- (1 - Ant(X (k) ))) EC = I — C 7k)., 
r=o 

wherefrom 

(5.7) 	 Ck+1 = I — Am()O k+n) = c , =
k-1-1  Co 

Since pal — Ant(X (0 )1) = p(B0 ) < 1 implies p(B4) < 1 (1/ > 1), we have 

POGO = P(ICii k i) < P(Bg k ) < 

that is 

(5.8) 	p(B0 ) < 1 implies p(Bk) < 1, k = 0, 1,... . 

Furthermore, because of p(Bk) < I there exists the inverse matrix (I — 

Bk) -1  > 0 and the following identity is valid 

► -1 
(/— B P ) k 

=0 

We shall now prove that the inequality (5.2), where X(k )  is given by (4.4), 
is valid for each k = 1, 2,... if 

(5.9) 	 21m(X(°) )Col < d()C (°) )(/ — 

(the inequality (5.2) for k = 0) holds. 

Iterative methods for bounding the inverse of a matrix (A survey) 	559 
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560 	 M. S. PetkovV. 

Let us rewrite (5.2) in a (shorter) form 

(5.10) 	 21n4X (k) )C k 1 < d(X (k) )(/ — Bk) 

and assume that this inequality holds for some index k > 0. Multiplying 
both sides of (5.10) by (I — Bk ) -1 (/ — ESDICri  I, one obtains 

2 1 7 / 1 (X (k) )Ck1(1 — 

or 

- I 

(5.11) 	211»,(X(k) )Ck1 	Bxri < dpeo)(/ - 

Using inequalities 

Bt = ICkI P  > 	> 

we find 

( 1 - 	< ( 1 - lq:. -1 11 c kl) l ok! -1 1 
< 	I - 	= IC17 1 0 

= ICr 1 I(/ — Bk+1 )• 

According to (5.6) and the last inequality, from (5.11) we obtain 

(5.12) 	21?1(X (k) )( 	CDC'd < d(X (k) )1Cr l 	— B k+1 
=0 

Taking into account formulas (5.3), (5.4) and (5.7), the inequality (5.12) 
becomes 

217/4X(k+1))Ck+i I < d(X (k+1) )(1 — Bk+1 

This proves (5.10) (that is, (5.2)) by complete induction since (5.9) holds as 
the assumption of Lemma 1. D 

Theorem 6. Let A -1  E X(°) and p(II — Am(X (°) )1) < 1. Then the gen-
eralized interval method (4.4) convcrfics to A -1 , where A-1  E X(k)  (k = 
0, 1, ), and if 

(5.13) 	2Int(X (°) )(/ — Ant(X (°) ))I < d(X (°) )(/ —11 — Ant(X")I) 

1 (1— B)ICri  < (/(X (k) )(/ — BDICr' I 
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holds, then the method (4.4) is monotone. • 

Proof. First, we observe that under the given assumption, there follows that 
(4.4) converges because 

- Am(X(°) )1) < 1 implies 1)(1 - Ant(X")) < 

The inclusion A -1  E X(k)  for each k > 0 has been proved in Theorem 4. 
Under the condition (5.13) of Theorem 6 (and Lemma 1, too) the inequal- 

ity 	
217/),(X"lCkl < d(X (k) )(/ - Bk) 

holds for each k > 0. Multiplying both sides of the last inequality by 

we obtain 

(5.14) 

Since 

and 

21771(X (  

p-2 

Brk =(I—Bk 
•=0 

P -2  

k) ) Ck I E 
r=0 

p-1 

M,(X(k) ) 	Cr 

r=1 

) -1  ( I — 	> 0, 

B1 < dpc(k),(/ - Br ) . 

p-2 

< 'WPC( 	Ck I E 
r=0 

- Brk -1  < 1 - ICPk -1  I, 

from (5.14) we obtain 

217/1(x(k)) E 	< d( oo )(/ - ICri l 
7=i 

or 
p-1 

I m(x(k) ) E 	- nt(x(0) 
7-0 

 

 

< (d(X(k) ) — dPe k) )1C17 1 1)• 2 

 

Finally, according to the formulas (5.3) and (5.4) for the matrices ni(X (k+ 1) ) 

and d(X(k+ 1) ), the last inequality heroines 

(5.15) 	ini(x(k+i)) - m (X(k)) I < 42.(d( x(k)) - d(Xk-1-1)))• 
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(5.18) 	d( X ! (3? )  ) = 	> 	 
1 - - Am(X(0)11 

for i j, d(43) )> h. 
2 • max Int(X (°) )1 

562 	 M. S. Petkovk 

But, the inequality (5.15) is necessary and sufficient for the inclusion 

(5.16) 	 x ( k±' )  c 

Therefore, if the condition (5.13) is satisfied, then the inclusion (5.16) holds 
for each k > 0, which means that the generalized iterative method (4.4) is 
monotone. This completes the proof of the theorem. ❑ 

Remark 2. The condition (5.13) can be rewritten in the form 

(5.17) 	217n(X 1Ot)(/ - A1»,(X (°) ) )1( - I/ - Ant(X (°) )1) -1  < d(XM). 

Since this condition depends only on the given matrix A and the initial 
approximation in(X“))) for A -1 , the matrix d(X 0 )) > 0 can always be 
chosen so that (5.17) is satisfied. Since the convergence condition p(I1 - 
Am(X( 11 ))1) < I does not depend on the width matrix d(XM), this matrix 
can be taken so that 

(i) an initial interval matrix XM•safely includes A -1  and 
(ii) the monotonicity of the iterative method (4.4) is provided. 

We observe that (5.13) coincides with the corresponding condition ob-
tained for the interval Schulz's method (5.1). Since the construction of the 
proof of the assertion which gives a sufficient condition for the monotonicity 
of (5.1) is directly based on the relation (5.13) (see [7, Theorem 2]), for the 
higher-order interval method (4.4) (p > 1) we immediately have the following 
theorem: 

Theorem 7. Let III - Am(X(1))11 < 	the column-sum norm), then 
the method (4.4) converges to A -1 . In addition. this method is monotone if 
the following is valid 

Theorem 7 gives a. sufficient condition for the monotonicity of the gener-
alized interval method (4.4). Under the given assumptions of this theorem 
it is always possible to choose the width matrix d(X(° )  ) in such a way that 
the method (4.4) is monotone. A detailed description of the construction of 
the initial including matrix X(°) which guarantees for A -1  E X(°) is given 
in the next section. 
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6. Construction of the initial inclusion matrix 

The convergence criterion (5b) in Theorem 5 depends on the width of the 
inclusion matrix X(°) for A - I, which is not a case with the criterion (4b) 
in Theorem 4. Nevertheless, it is not difficult to find a relation between 
these criteria. For instance, if an interval matrix X" satisfies the inequality 

II I - Am(X(0) ) 11< 1, for a. monotonic and multiplicative norm II II, then 
we have that 

(6.1) 	II d(XM) 11< 	= 2( 1 - II I — Ant(V ) ) II)/ II A II 

is a sufficient criterion for the statement that II I- AX il< I for all X E X 0) . 
To construct a suitable interval matrix X(°)  let us assume that A may be 
represented as A = I - B with II B 11< I. The choice rn,(Xn := I gives 

H I - Ant(X(')) ) 11=11 B 11< 
and, according to the criterion (4b), the inclusion method (4.4) is convergent 
for every interval matrix X (°)  for which In(XM) = I. In order to insure the 

inclusion A -1  E X( ° )  we consider the equation AX = (I - B)X = I or 
X = BX I. In regard to this there follows (using a multiplicative matrix 
norm) that 

X 11 	a := 	
II B II 

wherefrom (using the row-sum or the column-sum norm) 

-a < 	< a (1 < i,j < n) 

for all the elements of X = (xi j). For the matrix X (°)  = (Xii) defined by 

(6.2) 
v(o) 	[-a, a] 
x ~ .1

=  
[-a,2+ a]  

for i # j 

for i = j, 

we have A -1  E X(°) and also m(X(°) ) = I. By virtue of Theorem 4 the 

iterative method converges to A -1 . 
From the above consideration, we see that the iterative method (4.4) 

requires weaker convergence conditions compared to (4.5). For this reason, it 
is convenient to start with the method (4.4) as soon as the sufficient condition 

(6.1) is fulfilled provided H I - Am (X(3) ) 11< 1 and then to continue with 
the method (4.5). Such a. combined process has been described in details by 

Alefeld and Herzberger 
The sufficient condition (6.1) can be weakened, which is the subject of 

the following assertion: 
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564 	 M. S. Petkovie. 

Theorem 8. If X(k )  is an inclusion matrix for A -1  , then 

(6.3) 	 II (4)" ) II< 	= 	2  
II A II 

is a sufficient condition for the convergence of (4.5) to A -1 . 

Proof. Applying the width operator d to the iterative formula (4.5), we 
obtain 

p-2 
p-1 

d(X(k+1) ) «i(nt(X (k) ) E(/ — Ain(x(0))+X(k) (1 - A711(X (k) )) 

r=0 

< d(X(k) )2 -r41 (1Ald(X(k) )) 1) 1 . 

Using a monotonic and multiplicative matrix norm, we get 

p-1 

II d(X(k+1))  II< (

II A II) 	
d(X(k)) 2 

which proves that (6.3) is sufficient for II d(X (k+ 1) ) 	0, and whence, 
V ic" A-1 . ❑ 

Remark 3. Comparing the numbers a and /3 appearing in .(6.1) and (6.3) we 
infer that a < /3, which means that the condition (6.3) is weaker than (6.1). 
Furthermore, /3 is considerably simpler to calculate and has the same value 
for all the matrices X ( k ) . Finally, the criterion (6.3) from Theorem 6 is even 
considerably less restrictive than that of Theorem 5, as it was shown in [8]. 

The result given in the following theorem provides a better inclusion for 
A -1  compared with (6.2). 

Theorem 9. For the initial inclusion matrix 5t.(°) defined by 

IC (1))  = I + ([-c, c]) with B  = 
1- IIB II  

we have A -1  E St(°) and the iterative process (4.4) converges to A-1 	' II 
row-sum or colontn-sum norm). 

Proof. Starting from the obvious equalities 

A -1  - I = (I - B) -1  - I = (I - B)-1B 
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and using a multiplicative matrix norm II • II and the well-known inequality 

11( 1  — 	 I 

	

1— II 	11' 

we obtain 

A -1  — 	11-11 (I — B) — ' 11 IIB 	1IIIIEiII. 
In this way the inclusion A — I E R0) is proved. Further, since 

II I — Am(k (I)) ) 11=11 B II< 1,  

the iterative method (4.4) converges to A -1  (see Theorem 4). ❑ 

Remark 4. The computation of X ( °) and R(°) requires the same amount of 
work but we have X(°) C X 0) . 

For nonsingular matrices A which do not have the same property as in the 
previous, some other approach which uses Theorem 7 has to be applied for 
constructing a starting matrix for (4.4) with E X (°) . Namely, according 
to Remark 1, the iterative method (4.4) converges to A -1  even if X(° )  does 
not include A -1 . But the construction (5.18) guarantees the monotonicity 
of the interval matrices produced by (4.4), 

	

X (°)  D X(1)  2 X(2)  D 	, 

and thus we necessarily have A -1  E X0 ). 

7. Combined Schulz -type methods 

In this section we describe a genera] approach to the construction of new 
methods of Schulz's type for improving bounds for the inverse A -1  of a given 
n x n nonsingular matrix A. These methods, proposed by J. Herzberger and 
Lj. Petkovi6 [18], [19], possess a great computational efficiency. 

It is well known that interval evaluations are more costly than ordinary 
floating-point computations. For this reason, it would be advisable to apply 
the necessary interval computations only in a part of the algorithm. The 
aim of this section is to present an approach for solving this problem, which 
combines iterative methods in floating-point arithmetic as well as in interval 

arithmetic. In this way, we take advantage of comparatively small compu-
tational costs of floating-point arithmetic, and the very important inclusion 
property of interval arithmetic (the enclosure of the exact result). 
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566 	 M. S. Petkovii: 

Definition 11. The mapping 4) from the set of n x n-matrices onto itself 
is called a Schulz-type method of order p > 2 for A -1  if and only if for 
Y = 4)(X, A) the equation 

(7.1) 	 - AY = (1 - A X ) 7' 

holds true. 

Remark 5. For practical computations 4) should only consist of matrix mul-
tiplications and additions. 

Two the most frequently used examples of the mapping 4) are given below: 

Example 4. Let p > 2, then 

p- 1 

(7.2) 	 4) p (X, A) = X E(I - AX) i  
J.() 

defines a Schulz-type method for A -1  of order p. 

Example 5. We can use Ostrowski's identity (see [22]) 

(
VI i-1-  I

( - AX)-1- (I - AX) 2 ) 4) 5 (X , A) =X • I + 
2 

(7.3) X I \A;  ;  + 1  (I - AX)-1-(1 - AX) 2  
2 

4 
=X • E( - AX 

which also gives a Schulz's type method of order 5. 

By means of a Schulz-type method for A -1  we can construct an iteration 
method in ordinary floating-point arithmetic as follows: 

(7.4) 	X (k+ 1)  = 4)(X (k) , A), .0)  given, k > 0. 

The following assertion has been proved in [14 

Theorem 10. Let 4) be a Schulz-type method for A -1  of order p. Then the 
sequences of matrices {X( 0 1 produced by (7.4) have the following properties: 

(a) X(k) 	A -4  a p(I - AX(°)) < 
(b) if the method (7.4) is convergent, then its order of convergence is at 

least p. 
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Let V" )  3 A-1  be an initial inclusion for A -1  and 4)(X, A) define a 
Schulz-type method of order p for A -1 . Then for fixed integers k > 0 and 
p> 1 we define: 

(7.5) 	X ( "'°)  = m(X( "M), 

X ( "' i)  = it(X (7i'i-1) , A), 	1 < i < k, 

(empty statement in case k = 0) 

r-1 
X( "4-1 '°)  = X ( "' k)  E(/ - AX (") ) i  X( "'0) (/ - AX ( "'k) )r, 

i=o 

(Horner-scheme evaluation in interval arithmetic), n > 0, 

and 

(7.6) 	x (n,o) = m(x(7i,o) ),  

X (")  = 4(X (7 L' i-1) , A), 1 < i < k, 

(empty statement in case k=0) 

r-1 
x(n+1,0) = A-(n,k) 	- AX ( "j" ) ) 2  X( "'°) (/ - AX ( "' k) ) r  n X("),

ll 	
i=o

JJ 
 

(Horner-scheme evaluation in interval arithmetic), n> 0, 

where nt(X) = (m(Xii)) is the midpoint matrix. 

Remark 6. For k = 0 we get as special cases the methods (4.4) and (4.5) 
discussed in Section 4. 

In particular, for the fixed n = 0 in (7.5) and (7.6), we obtain the combined 
methods 

X(i) 	= (I)(X (1-1) , A), 1 < i < k, 

(7.7)
r-1  x(1,k) 	x (k)E(I Ax(k)): +x(0)(1 AX(k))r

. 

i=0 
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568 	 M. S. PetkoviE 

and the monotonic version 

X (2) 	= 411(X ( x -1) , A), 1 < i < k, 

(7.8) 	 7•1 
X( 1, k) = {X (k)  E(1 - AX (k) ) i  X"(/ - AX (k) )T} n  x(0). 

i.0 

The combined methods (7.7) and (7.8) are, therefore, performed applying 
k iterations in floating-point arithmetic in order to obtain sufficiently good 
approximation (point matrix) X (k)  to the inverse matrix A -1  and then, in 
the final step, the inclusion method of the ()Her r to provide the guaranteed 
error bounds to A. Such a combination is of a great interest in practice 
and, for this reason, it was studied extensively in the papers [19] and [25]. 

For the combined methods (7.5) and (7.6) the following theorem has been 
proved in [19]. 

Theorem 11. For the methods (7.5) and (7.6) the inclusion A -1  E V") 
(n > 0) holds. 

Theorem 12. The sequence PO" ) } obtained by the method (7.5) con-
yews to A -1  if and only if p(I - AX (") ) < 1. 

As presented in Sections 4 and 6, the convergence criterion for monotonic 
methods like (7.6) for which 

X(")  2 X")  2 • • D X ( "))  

obviously holds, differ from those of the non-monotonic methods like (7.5). 
This is contained in the convergence theorem, which is quite similar to The-
orem 8. 

Theorem 13. The sequence {X ( "'°)} generated by the method (7.6) con-
verges to A -1  if the inequality 

d(X") II< 2 / II A II, 

with a monotonic matrix norm II • II, is fulfilled. 

According to Traub [33, Appendix C] the efficiency - index of an iterative 
method of order q can be defined by q11', where 0 is the total amount of 
work for one iteration step. In methods like (7.5) and (7.6) one usually mea-
sures 0 in terms of matrix multiplications and all other computational costs 
are considered to be negligible compared with these. If we count the com-
putational efforts by Traub's formula we get the following results, assuming 
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that one interval matrix multiplication costs at least about two times as 
much as a point matrix multiplication: 

ks multiplications for the application of the Schulz-type method where 
s is the number of multiplications for the evaluation of 4); 

r + 1 interval matrix multiplications for the Horner-scheme interval evalu- 
ation or approximately 2(r.+ 1) point matrix multiplications. 

This makes a total cost of ks + 2(r + 1) multiplications for one step of 
methods (7.5) or (7.(i), reduced to point matrix multiplications. A Schulz-
type method of the form (7.4) requires only ordinary floating point oper-
ations whereas the Horner-scheme interval evaluation has to be done com-
pletely by rounded interval operations to ensure the inclusion property of 
Theorem 11. 

From Theorem 11 and Theorem 12 we get lower bounds for the order of 
convergence of our methods (7.5) and (7.6) as q = rpk + 1 so that lower 
bounds for the efficiency index are given by 

E(p,r, k) 	( rpk 	oi I (k 5+2(r-1-1)) 

Before determining parameters p and r in order to establish the optimal 
combined method concerning the computational efficiency expressed by the 
efficiency index E(p, r, k), we recall that the most efficient method of Schulz's 
type in ordinary floating-point arithmetic reads 

(

Ni;-1-  1 
X (k+ 1)  = X (k)  • / + '

2 
 1 (1 AX (k) )-1- (I — AX (k) ) 2  

X (/ 1?-5-
2
+ 1 (/ AX (k) )+ (/ — AX (k) )2), 

which is constructed using the mapping 4) 5  given in Example 5. Namely, 
the number of multiplication is s = 4 for the evaluation of 4) 5 (X, A) given 

by (7.3) and s = p for 4)  p (X, A) (p # 5) given by (7.2) when Horner-scheme 
evaluation is applied. 

In the sequel, speaking about the function 4 5  (the case p = 5), we will 
assume the function defined by Ostrowski's identity (7.3), while in the re-
maining cases 4)  p (p 5) will denote the mapping (7.2). According to this, 
we define the total amount of work (expressed by point matrix multiplica- 

tions) by 

	

{ 4k + 2(r + 1), 	p = 5, 
O.=  

	

pk + 2(r + 1), 	p# 5 
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570 	 M. S. Petkovie 

(see [19]). Therefore, the lower bound of the efficiency index is given by 

(r )k` 
	01/(4k-1-2r+2), 

(7.9) 	E(p, r, k) = Sl  
(rpk 	01/(pk-1-2r-1-2), 

P 

P 5 - 

The detailed procedure for finding optimal values of p and r (with respect 
to definition (7.9)) has been done by M. PetkoW and J. Herzberger in the 
paper [25]. This problem is of a great practical importance hi applying the 
combined methods (7.5) and (7.6), and also (7.7) and (7.8). It leads to an 
optimization problem in the field of integers. First, the following theorem 
has been proved: 

Theorem 14. Let r E {1,... , 7} and let k > 1 and p (p > 2 and p # 5) be 
arbitrary integers. Then 

(7.10) 	 E(5, r, k) > E(p, r, k). 

As explained in [25], the restriction for r to be less than 8 is made for 
practical reasons. Namely, for a sufficiently great r (at least r = 16 but 
usually considerably greater, even more than 100) it is possible to find p > 6 
and k such that the inequality (7.10) becomes converse. But, such values 
of p (at least 6 iterations in floating-point arithmetic) and r (at least 16 
iterations in interval arithmetic) are meaningless in practice, especially in 
the situation when it is easy to provide initial matrices which insures the 
safe convergence. 

The optimal choice of the number of point iterations r has been considered 
in the following theorem, assuming that p = 5. 

Theorem 15. The function q(r) := 0.5k + 1)u/(4k-1 2r +2) attains its maxi-
mum on the interval (1,2) for arbitrary k > 1. 

Using the result of Theorem 15 and the fact that r is an integer, we 
conclude that the optimal r in the combined methods can be either r = 1 
or r =,2, depending on the number of iterative steps. A short analysis has 
shown that 

E(5,2,k) > E(5, 1,k) for k = 1(1)6 

and 
E(5, 2, k) < E(5, 1, k) for k > 7. 

Thus, if the number of point iterative steps k is less than 7 then r = 2 is 
the optimal value, while for k > 7 the optimal value is r = 1. However, the 
second case (k > 7) is only of theoretical importance due to the very fast 
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convergence of the applied point method (of the order 5). For example, if 
0 (100°) II= 0.8, using the estimation 

d(X") 	d( X(°)) 05k+1 

for k = 4 we obtain even d(X0 • 0  10 -61 , which is an indicative il-
lustration that the use of a (relatively) great number of iterative steps (say, 
k > 3) is not only meaningless but also not profitable (because of the limited 
precision of digital computers). 

Finally, according to the previous results and discussion, in a practical 
realization of the combined method it should be chosen p = 5 and r = 2 
(optimal for k < 6). Thus, the most efficient combined method of Schulz-type 
is of the form 

(
Vri +  1 

(7.11) X ( "' i+ 11  = x ( "'i)  • / + . 
2 	

(/ 	AX (71- () ) + (I - AX ( "'i) )2  x 

x (/ 	
2
+ 1 

(1 - AX (") ) -1- (I - AX ( "'i) ) 2 ), 

i = 0, 1, ... ,k - l (in floating point arithmetic) 

(7.12) X(71+1,0) = (A.(I — AX ( "' k) ) X(n ' k) ) • 	— AX (n ' k) ) X (1" ic )  

(in interval arithmetic), 

where X (1141)  = tn(X (") ) and n > 0 and the starting matrix X( 3,0)  includes 

A-1  
The combined methods (7.11) and (7.12) have been considered in details 

in [19]. 

Example 6. To illustrate numerically the combined method (7.11) - (7.12), 
we present the example taken from the paper [19], where a 9 x 9 nonsingular 
matrix A with A = I - B, II B 11< 1, was considered. Here • denotes the 
column-sum norm and the matrix B = (b1) is defined by 

bta = 
	0.1 	

i = 

j 
, (1 < to < 9). 

A starting inclusion matrix V")  is constructed according to Theorem 9, 

that is, X(° ,°)  = I ([-c, c]), where c =1- 118 
IIBII 11• Evidently m(X(")) = I 

and the inclusion A -1  E X• )  holds. 
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For the method (7.11) - (7.12), referred to as the method (a), it was taken 
k = 2. The result of this combined method was compared to the classical 
optimal method, referred to as method (b), which can be defined as 

Y(°) = x(0,0) and 

Y( "+ 1)  = in(Y ( " ) ) (i)1.(Y ( " ) ) V") (/ - Am(Y ( ") ))(I - Ant(Y")) 

for n = 0, 1, 	. 
Let the inequality II  d(X) 11< e = 5 x 10 -1 ° define the stopping criterion. 

The results obtained by the methods (a) and (b) are given in Table 1. 
The total computational amount of work in terms of point matrix multi-

plications under the same assumption for interval matrix multiplications as 
above is as follows: 

for the method (a): 2 x (4 + 6) = 20 
for the method (b): 5 x 6 = 30. 

It is clear that method (a) converges faster with the smaller computational 
efforts. Moreover, the computational efficiency of the method. (a) is greater 
the greater is k. 

n II d(X ( "'°)) II II d(Y (n) ) II 

C.9
 ,7,1"  

'
7

?
 L

f.,. 

7.20000000000 x 10 1  7.20000000000 x 10 1  
7.73094113280 x 10°  4.60800000000 x 10 1  
1.96000000000 x 10 -10  1.20795955200 x 10 1  

2.17606647543 x 10 -1  
1.27215720000 x 10 -6  
2.56000000000 x 10 -10  

Table 1 

8. Bounding the inverse of an interval matrix 

Let A = (Aij ) be an n x n interval matrix for which A -1  exists for every 
real matrix A E A and denote A i  = {A -1 I A E In this section the 
problem of computing au interval matrix X with At C X is considered. In 
many cases one can find an initial inclusion X(°) D At, for example, by 
means of norm inequalities. But, in that case, the question arises how to 
improve X(°) in such a way that its width d(X ( ° ) ) = d((X1 (; ) )) = (d(XT)) 
will be reduced. Theoretically, it is possible to find the interval hull of At in 
the form X = n {XI X J Ail, but this, in general, cannot be done without 
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an unreasonable amount of work. For this reason, we are not dealing with 
this kind of problem and we are looking for an improvement X* for X (°)  with 

Ai  C X* C X (°) and d(X*) < d(X ( ° ) ) such that at least for a monotone 

matrix norm 111  the strict inequality 

Il d(X * ) II<II 430) ) II 

is valid. Schmidt found in [28] and [30] a monotone algorithm for the iterative 
improvement of X (°) . Alefeld and I-lerzberger suggested in [3, Ch. 18] (see, 
also, Section 4 of this paper) a somewhat different approach by means of 
interval analysis. The proposed method is closely related to the monotone 
version of the interval Schulz method for the iterative improvement of bounds 
for the inverse of a real nonsingular matrix A and it can be read in the form 

(8.1) 	X(k+1)  = Int(X (k) ) X(k) (/ — Ant(X (k) ))) fl X(k) , 

where m(X) is the midpoint matrix of X. A similar generalization with Ak 

and limk—„„ Ak = A instead of A was already used in Chapter 20 in [3] in 
connection with the Newton-method. In the case A = A one obtains the 
well-known interval Schulz-method. For iteration (8.1) we get immediately 
the following lemma: 

Lemma 2. For Ai C X( 1)  the sequence of ',lattices {X ( O} produced by 

(8.1) has the property 

Ai  C X (k) , 	(k = 0,1,...) . 

Proof. Since A 2  C X(°) , we choose A -1  E X(°)  and by the use of the inclu-

sion property of the interval operations we find 

A -1  = nt(X(°) ) + A -1 (1 — Ant(30 °) )) E ni(X(3) )+ 

X(I)) (/ — Ant(X(°) )) C X(1 ). 

For k > 1 the proof can be done analogously. ❑ 

From (8.1) there follows 

X(°)  2 X(1)  2 	2 X(3)  2 

and thus 
(k) BM X = 

k —>oo 
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574 	 M. S. PetkoviC 

is valid. But the iteration process (8.1) could already fail with X* = X( 11 ) 
especially if d(A) is of considerable size. In that case, instead of improving 
X(o), the process starts reproducing the same disk. Therefore, a convergence 
analysis for (8.1) which gives sufficient conditions for 

II d(v) II<II d(x (°) ) II 

has to be done in such a way that the method (8.1) yields an improved 
inclusion X*. For a given matrix A these sufficient conditions will impose 
some restrictions for II IX M I II as well as for 11 d(X (°) ) 11 and so determine a 
class of matrices X ( ° )  with A i  C X ( ° )  for which method (8.1) improves X 03). 
The main result is the following theorem whose proof was given in [14]. 

Theorem 16. Let A be given, then the iteration process (8.1) converges to 
X* with d(X*) II<II d(X ( ° ) ) II if the matrix X (°) with Ai C XY11  fulfills the 
inequalities 

(8.2) 	II d(A) 11< II lx ( ° )  I II (8.11 in(A) II 	II IX (°) I II A-',1 
and 

4. 	d(A) II 	• II IX(1) 1 11 2 	 1  (8.3) 	 <II (4 )0)) ) 	6  19  2— 11 d(A) 	PC (°) I 	 IIm(A) II  
In addition to this, for X* the inequality 

2. 11 d(A) 	PC(°) I 11 2  (8.4) 	 d(X*) 	
1 —IId(A)II'III")I II  

holds. 

Remark 7. A sufficient condition for II 1X (1 )1 11 in terms of II m(A) 11 and 
11 d(A) 11> 0 such that (8.2) is fulfilled can easily be derived as 

2 

im.2A4 	v1H4)1p  + 	II m( A) II.11d(A) II  

Remark 8. From (8.4) it follows that II d(X*) H 0 as II d(A) 11—> 0. Thus, 
the estimation (8.4) claims that for A = A the interval Schulz-method con-
verges to A. This is the reason why (8.1) can be regarded as a general-
ization of the Schulz-method (5.1) in the case of an interval matrix A. 

3 

II lxm l 11< 
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Remark 9. The condition 	is inure restrictive than the correzpottaing 
result for the interval Schulz-method in the case A = A (see [8]) where the 
sufficient condition for the convergence 

II d(X")11< 	 
A II 

is proved. Here, X ( ° )  can contain singular matrices as examples show. 

Remark 10. Condition (8.3) implies that every X E X( ))  is nonsingular. 
This can be seen taking X E X( °) . Then (7n(A))' E X(° ) and we have 

16 	1  
11 X - ( 1/ 1(A)) -1  II =11 IX  - ( 1 / 1 (A)) -1 111<11d(X (13) )11< 19 	II ni(A) II 

1  

< 11 nt(A) 11 .  

According to [4, Theorem 4 in Section 4] it follows that 

(m(A)) -1  + (X - (m(A)) -1 ) = X 

is nonsingular. 
As it was shown in [14], the assumption on II PCMI II can be weakened. 

But this requires more complicated form of the upper bound for II d(X(°))  II. 
Both is given in 

Corollary of Theorem 16. Let A be given. Then the iteration process 
(8.1) converges to X* with II d(X) II<II d(X °) ) II if the matrix X( )) with 
At C X( ° )  fulfills the inequalities 

II d(A) 11< II IX ( ° ) I II .(2 11 7n(A) II • II Ivo! 11 +1 
and 

4.  

2- 

II 

 II d A) I II I I II" IX 
IX(°)I

I 	
<II d(x(o) ) 

II 

1 ( i 	11 d(A) 1111 lx"I 11) 
< II 7n(A) II 	2 

In addition to this, the inequality (8.4) holds. 

In practical computations the quantity II d(A) II is of small size. The 
interval matrix A appears, for instance, because of inaccurate initial data 
for a real matrix A or from conversion errors which are usually not too 
large. Therefore, the necessary initial inclusion X(° ) for A can often be 
calculated by an application of an interval Gaussian elimination or even by 
norm inequalities (see [14]). 
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ON SOME 4- AND 5-DESIGNS ON < 49 POINTS 

Dragan M. Acketa and Vojislav Mudrinski 

ABSTRACT. A search for those t-(q + 1, k, A) designs is made, which arise 
by action of the groups PS L(2, q) and PG L(2, q) on the ground-set II(q) = 
{0, 1, ..., q — U {c,3}. The search is made for (t, k) = (4,5) with prime 
powers q < 49 and for (I, k) E {(4, 6), (5, 6)) with prime powers q < 31. The 
group PS L(2, q) is used for q :3 (mod 4) and the group PG L(2, q) is used 
otherwise. 

The search uses orbit incidence matrices determined by orbits of t-subsets 
and k-subsets (shortly: t-orbits and k-orbits) of the ground-set, obtained by 
action of the group used. An element of an orbit incidence matrix is the 
number of those k-sets within a k-orbit, which contain a fixed t-set (repre-
sentative) of a t-orbit. Construction of orbit incidence matrices essentially 
uses 3-homogenicity of the groups. 

The total number of distinct quadruples (t, q, k, A) of parameters, for 
which t-(q + 1, k, A) designs are constructed is equal to 75. It is guaranteed 
that the obtained values of A are the only possible, which can be reached 
by action of the groups used, for the considered triples (t,q, k). It is as-
sumed that most of the obtained quadruples of design parameters are new, 
in particular those for q = 19,25,27,31 and 37. 

1. Introduction 

Let n- set denote a set of cardinality n. A t-(v, k, A) design [5] is an inci-
dence structure on v points, which consists of some k - sets of points (called 
blocks) without repetitions and which satisfies that each t points are con-
tained in exactly A blocks. GF(q) is the Galois field associated to a prime 
power q = p8 . 

The group GL(2, q) is the group of all non -singular 2 x 2 matrices with 
elements in GF(q) (= non-singular linear transformations over (GF(q))2 ),  

while S L(2, q) is its subgroup consisting of the matrices with determinant 
1. The projective general linear group PG L(2, q) and the projective special 
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580 	 D. Acketa and V. Mudrinski 

linear group PSL(2, q) are obtained from G L(2, q) and SL(2, q) respectively, 
by reduction with the corresponding groups of homoteties. 

Both PGL(2, q) and PSL(2, q) act on the common ground-set ft(q) = 
{0, 1, ..., q — 1} U {oo). It is known that PGL(2, q) acts 3-transitively for 
all q, while PS L(2, q) acts 3-homogenously for q E 3 (mod 4) and only 2-
transitively for other prime powers q. Construction of these two groups is 
described in [3] and [2] respectively. 

The orbit incidence matrix method for searching designs, which will be 
referred to as "A-technique", introduced in [2], can be sketched as follows: 

• Let be given a 3-homogenous permutation group G acting on 1/(g) 
and a pair (t, k) of natural numbers satisfying 4 < t < k <.q. 

• Construct the orbits T 1 , ...,T„, of those t-subsets of St(g), which in-
clude the set {0,1,00. Similarly, construct the orbits R h ..., B„ of 
those k-subsets of WO, which include the set {O, 1, oo}. 

• Construct the orbit incidence matrix A = 	1 < i < in, 1 < 
j < n, where Ai j  denotes the number k-subsets of St(g) within Bi, 
which contain a fixed t.-subset (representative) of Ti; the sum of all 
elements in each row of A is equal to 

Acrivial = 	
+ 1 —
k — t 	

= A-value of the trivial t-(q + 1, k, A)-design. 

• Try to find for a proper subset P of the column set of A, which 
satisfies that the sum of elements within the columns of P is equal 
to the same constant A for all the rows (1 < A < Atrivia1/2)• 

• If the subset f' is found, then all the k-subsets. of 11(q), which belong 
to the orbits B ;  corresponding to the columns of P, are the blocks 
of a t-(q + 1, k, A) design. The complementary k-subsets of 11(g) are 
the blocks of a t-(q + 1, k, Atriviai 	A) design. 

1.1. A comparision between the use of PSL(2, q) and PGL(2, q) 

Statement. If a prime power q is of the form 4k + 3, then the group 
PSL(2, q) is more suitable for looking for designs than PGL(2, q). 

Namely, as already mentioned, the group PSL(2, q) is 3-homogenous with 
the values of q of this form. Although 3-transitivity (possessed by PGL(2, q)) 
is a stronger property, it is only 3-homogenicity that matters when the ap-
plication of the A-technique is considered. On the .  other hand, the group 
PSL(2, q) is a subgroup (normal, of index 2) of PGL( 2 , q), which implies that 
orbits by action of PSL(2, q) are included in orbits by action of PGL(2, q). 
"Building constituents" of the designs are k-orbits. The smaller are the con-
stituents, the larger is the chance for making equilibrium (suitable sums of 
Aid's), which leads to designs. Therefore we have the following: 
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Consequence. If a prime power q is of the form 4k + 3, then each design 
which can be derived by A - technique with application of the group PG L(2,q), 
can be also derived with application of PS L(2,q). 

However, the group PG L(2, q) is more suitable with other prime pow-
ers. It is always 3-transitive (and consequently 3-homogenous), while, when 
P S L(2, q) is considered, only 2-transitivity is guaranteed. 

Conclusion. The group PS 1(2,q) is used for searching for designs with 
prime powers q of the form 4k + 3, while the group PG L(2,q) is used with 
other prime powers q. 

2. Results 

2.1. A global account of the generated designs 

The computer search was performed for prime powers q < 31 with k = 6 
and for further prime powers q < 49 with k = 5. 

The search was successful with:. 
P S L(2, q) and (t, k) = (4,5) for q = 47; 
P S L(2, q) and (2, k) = (4,6) for q = 19; 
P S L(2, q) and (t, k) = (5,6) for q = 11,23,27,31; 
PG L(2, q) and (t, k) = (4,6) for q = 25; 
PGL(2,q) and' (t, 	= (4,5) for q = 17,32,37. 
Note that the reported success with (t, k) = (4,6) means that there was 

no success with (t, k) = (5,6); otherwise, a 4-(q + 1,6, A2) design would be a 
consequence of a 5-(q 1,6,4) design, which corresponds to the same set 
of columns of the matrix. 

More precisely, the constructed t - (q + 1, k, A) designs are summarized in 
the following table (the numbers of t-orbits and k-orbits by action of the 
group cited are denoted by in and n respectively): 

t q k A< Atrivia1/ 2  Atrivial G in n 

5 11 6 1,2 7 PSL(2, 11) 2 6 

4 17 5 4 14 PGL(2,17) 3 4 
4 19 6 60 120 PSL(2,19) 5 19 
5 23 6 1,2,3,4,5,6,7,8,9 19 f'SL(2, 23) 7 34 
4 25 6 51,60,81,90,111 231 PSL(2, 25) 5 28 

5 27 6 2,3,4,5,6,7,8,9,10,11 23 PSL(2, 27) 10 54 

5 31 6 6,12 27 PSL(2, 31) 15 83 

4 32 5 4,5,9 29 PSL(2, 32) 5 11 

4 37 5 16 34 PGL(2,37) 7 15 

4 47 5 8,12,16,20 44 PSL(2,47) 10 33 
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When the design complementations are taken into account, it turns out 
that the total number of generated designs with distinct parameters is equal 
to 75 = 2 2 + 2 • 1 + 1 + 2 • 9 + 2 • 5 -I- 2 • 10 -I- 2 • 2 + 2 3 2 • 1 + 2 • 4. 
(note that A = Atriviai/ 2  for q = 1 9). 

A global conclusion concerning the generated designs, obtained after a 
thorough examination of the generated A-matrices, is the following: 

Statement. The above listed values of A (taking in addition the values com-
plementary w.•.t. Atrivial  into account), are the only possible values of A 
which can be reached by action of the corresponding listed groups. 

However, it is not to say that there may not exist t-(v,  , k, A) designs, 
obtained in another manner, which have some other values of A and the 
same values of t, v and k as some of the listed ones. 

2.2. Detailed results of application of A -technique 

In this section are listed A-matrices corresponding to each one of the ten 
above cited groups, together with representatives of the underlying orbits 
and with a representative of the generated designs, for each possible quadru-
ple of parameters. The t-orbits and k-orbits corresponding to successive 
rows and columns of a A-matrix are listed in front of it. 

2.2.1. Denotations. 

A-matrices in this section will be denoted as A(G; t, k). A A-matrix is 
determined by the corresponding group G and by the values of parameters t 
and k; it establishes relationship between t-orbits and k-orbits by action of 
G . 

In order to enable precise identification of s-orbits (for s E {4,5,6}), the 
following data will be given in the form (A : B; C), where 

A = the ordinal number of the coresponding orbit (= row or column of 
the (A 0 ) matrix). 

B = s — 2 elements of the lexicographically the first "special" representa-
tive, apart from the compulsory elements 0, 1, oo. 

C = the number of "special" subsets (supersets of {0, 1, oo}) within the 
orbit. 

For example, the denotation (4 : 2, 3, 7; 10) below (that is, A = 4; B = 
2,3,7; C = 10), used for a 6-orbit by action of PS L(2,11), means that this 
orbit is the fourth one among the 6-orbits (corresponds to the 4th column 
of the Aij  matrix), has the 6-subset {0,1,2,3,7, oo} as a representative and 
contains ten "special" 6-subsets. 

The design(s) generated from a A-matrix are listed after the word "De-
sign(s)". A representative design is given in ( )-brackets separately for each 
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possible A. Designs are denoted by the ordinal numbers of the columns be-

longing to the set P (cited in the description of A-technique); the blocks of 
the designs are exactly the k-sets belonging to the k-orbits corresponding to 
the columns of P. . 

Thus the denotation (A = 2 : 7,21,22,30) after the matrix 
A(PSL(2,23); 5,6) means that the 6-sets of the 7th, 21st, 22nd and 30th 
orbit of this A-matrix constitute a 5424,6,2) design. 

2.2.2. PS L(2,11), t = 5, k = 6, Atrivial = 7  • 

5-orbits: (1: 2,3; 30) (2 : 3,4; 6) 

6-orbits: (1 : 2, 3, 4; 30) (2 : 2, 3, 5; 12) (3 : 2, 3, 6; 10) (4 : 2, 3, 7; 10) 	: 2, 3, 8; 10) 

(6 : 2,3, 9; 12) 

The 2 x 6 matrix A(PS L(2,10;5,6): 	
(211111) 

510001 

Designs: (A = 1 : 2) (A = 2 : 2,6) 

2.2.3. PGL(2,17), t = 4, k = 5, Atrivial = 14 . 

4-orbits: (1 : 2; 3) (2 : 3;6) (3 : 4; 6) 

5-orbits: (1: 2,3; 30) (2 : 2, 5; 15) (3 : 2,6; 30) (4 : 3, 7; 30) 
(8 2 4 0 

The 3 x 4 matrix A(PG L(2,17); 4,5): 	4 0 4 6 
2 4 4 4 

Designs: (A = 4 : 3) 

2.2.4. PSL(2,19), t = 4, k = 6, Atrivial = 120 • 

4-orbits: (1 : 2; 3) (2 : 3; 6) (3 : 4; 6) (4 : 8; I) (5 : 12; 1) 

6-orbits: (1 : 2, 3, 4;30) (2 : 2, 3,5; 60) (3 : 2, 3,6; 60) (4 : 2,3, 7; 30) (5 : 2, 3, 8;60) 

(6 : 	2, 3, 9; 60) (7 	: 2, 3,10; 30) (8 : 	2, 3,11; 10) 	(9 : 	2,3, 12; 30) (10 : 	2, 3, 13; 60) (11 	: 

2,3, 15; 30) 	(12 : 	2, 5,6; 30) 	(13 	: 2, 5,8; 10) 	(14 	: 2, 5,12; 60) (15 : 	2, 5,15; 30) (16 	: 

2,5, 16; 30)-(17 : 2, 6,12; 10) (18 : 2, 6,16; 30) (19 : 3,4, 9;20) 

The 5 x 19 matrix A(PSL(2,19); 4,6): 

1 	2 3 4 5 6 7 8 9 

1 	1 

0 1 

1 1 

2 3 

1 

4 

1 

5 

1 	1 

6 7 

1 	1 

8 9 

8 12 16 6 12 8 8 4 8 8 6 4 2 8 2 42 2 0 

712 8 6 12 10 42 4 10 6 2 I 10 7 51 7 6 

4 	8 10 5 8 14 5 1 5 14 5 9 2 12 4 4 2 4 4 

0 12 12 0 12 12 12 0 0 0 6 6 6 12 12 12 0 6 0 

0 12 12 6 12 0 0 0 12 12 0 6 0 12 6 12 6 12 0 

Design: (A = 60 : 4, 5, 7, 9, 10, 11, 13, 14, 15). 

2.2.5. PS L(2,23), t = 5, k = 6, Atrivial = 19 • 

5-orbits: (1 : 2,3; 30) (2 : 2,5; 30) (3 : 2,6; 30) (4 : 2,8; 30) (5 : 3,4; 30) (6 : 3, 7; 30) 

(7 : 3,14; 30) 
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(6 	: 2, 3, 9; 60) 

2, 3, 14; 30) (12 

2, 5, 7; 30) (17 

2, 5, 15; 30) (22 

2, 6, 10; 10) (27 

3, 4, 11; 30) (32 

: 2, 5, 8; 30) (18 : 2, 5, 10; 30) (19 : 2, 5, 11; 60) (20 : 2, 5, 14; 30) (21 : 

: 2, 5, 17; 30) (23 : 2, 5, 18; 30) (24 : 2, 5, 19; 60) (25 : 2, 6, 8; 60) (26 : 

: 2, 6, 14; 60) (28 : 2, 6, 19; 30) (29 : 2, 8,14; 10) (30 : 3, 4, 9; 20) (31 : 

: 3, 4, 16; 30) (33 : 3, 7, 10; 10) (34 : 3, 7, 21; 10) 

The 7 x 34 matrix A(PSL(2,23); 5;6): 

6-orbits: (1 	: 2, 3, 4; 30) (2 : 

(7 	: 2, 3, 10; 60) (8 

: 	2,3, 15; 60) 	(13 

2, 3, 5; 60) (3 : 2, 3, 6; 60) (4 : 2, 3, 7; 60) (5 : 2, 3, 8; 60) 

: 2, 3,11; 60) (9 : 2, 3, 1200) (10 : 2,3,13;1O) (11 : 

: 2, 3, 18; 60) (14 : 2, 3, 19; 60) (15 : 2, 5, 6; 30) (16 : 

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 
1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 :3 4 

0 1 1 	:3 0 0 1 2 I 0 0 0 1 0 1 0 0 1 1 0 0 1 1 0 1 1 1 1 0 0 0 0 
0 0 1 0 1 1 1 0 0 0 1 2 0 3 0 0 1 0 0 1 1 0 1 1 1 0 1 1 1 0 0 0 
1 1 0 0 2 1 0 1 0 0 0 1 2 0 0 0 0 1 I 1 0 0 0 1 2 0 0 0 0 2 1 1 

0 0 

0 0 

0 0 
0 0 

01010121000101000 (12000020021001111 
0 0 0 0 1 0 0 1 1 0 1 1 1 0 1 1 1 0 1 0 1 1 0 1 2 0 2 0 0 0 1 1 0 0 

2 2 2 1 1 2 2 1 1 1 11 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 2 1 1 1 0 0 0 0 0 0 1 1 1 2 1 1 1 1 1 1 1 I 0 0 0 0 0 0 0 0 
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Designs: (A = 1 : 9, 20, 32) (A = 2 : 7, 21, 22, 30) (A = 3 : 2, 11, 18, 20, 27) (A = 4 : 

5, 7, 10, 18, 20, 22, 27) (A = 5 : 3, 5, 10, 13, 24, 26, 27, 28) (A = 6 : 1, 5, 701, 18, 19, 20, 21, 23, 

27) (A = 7 : 1, 7, 10, 12, 13, 18, 19, 20, 21, 22, 23, 27) (A = 8 : 1, 6, 7, 10, 13, 16, 18, 21, 23, 24, 

25, 26, 27, 28) (A = 9 : 1, 5, 7, 8, 12, 13, 14, 16, 18, 19, 22, 23, 27) 

2.2.6. PGL(2, 25), t = 4, k = 6, Atrivial = 231 . 

4-orbits: (1 : 2; 3) (2 : 5; 6) (3 : 6; 6) (4 : 7; 6) (5 : 8; 2) 

6-orbits: (1 : 2, 3, 4; 1) (2 : 2, 3, 5; 120) (:3 : 2, 5, 6; 120) (4 : 2, 5, 7; 120) (5 : 2, 5, 8; 60) 

(6 : 2, 5, 9; 120) (7 : 2, 5, 10; 60) (8 : 2, 5, 11; 60) (9 : 2, 5, 13; 20) (10 : 2, 5; 15; 60) (11 : 

2, 5, 16; 60) (12 : 2, 5, 17; 120) (13 : 2, 5, 18; 60) (14 : 2, 5, 19; 30) (15 : 2, 5, 20; 60) (16 : 

2, 5, 21; 120) (17 : 2, 5,22; 30) (18 : 2, 5,23; 60) (19 : 2, 5,24; 120) (20 : 2, 6, 8; 60) (21 : 

2, 6, 9; 60) (22 : 2, 6, 10; 60) (23 : 2, 6, 11; 30) (24 : 2, 6, 12; 60) (25 : 2, 6, 21; 30) (26 : 

2, 10, 12; 30) (27 : 5, 7, 12; 20) (28 : 6, 7, 15; 20) 

The 5 x 28 matrix A(PGL(2,25); 4,6) the first part: 

1 	2 3 4 5 	6 7 89 
1 
0 

1 
1 

1 
2 

1 	1 
34 

1 40 16 16 8 	8 8 8 4 8 8 8 12 4 
0 12 16 16 820 6 8 2 12 10 20 6 5 
0 12 16 16 8 	812 82 6 420 6 2 
0 12 16 20 620 8 64 8 10 12 8 6 
0 12 12 0 12 24 0 12 0 0 6 12 12 0 

The 5 x 28 matrix A(PGL(2,25); 4,6) 	the second part: 
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1 
5 

1 	1 
67 

1 
8 

1 
9 

2 
0 

2 

1 

2 2 
23 

2 
4 

2222  
5 6 7 8 

8 84 816 4 4 86 8 4400  

4 82 4 16 12 6 10 4 10 2 6 6 0 

4 20 5 10 16 6 12 10 4 10 2 6 0 6 

12 20 6 10 16 6 6 22 2 5 0 4 4 

18 24 0 6 12 12 12 12 6 12 12 3 0 0 

Designs: (A = 51 : 1,3,14,17,18,20,23,25,26) (A = 60 : 3,9,11,13,18,21,22,27) 

(A = 81 :1,3,7,10,13,14,15,17,21, 22,25,26,27) (A = 

(A = 111 : 1,3,5,7,9,11,12,13,14,15,17, 18,22,23,25, 

2.2.7. PS L(2,27), t = 5, k = 6, Atfivial = 23. 

5-orbits: 	(1 : 2,3; 30) (2 : 2,6;30) (3 : 3,4;30) (4 

90 :3,4,10,13,15,18,20,21,22,23) 

26,27) 

: 3,5;30) (5 : 3, 7; 30) (6 : 3,10;30) 

(7 : 3,12;30) (8 : 3,15;30) (9 : 4,6;30) (10 : 4,11;30) 

6-orbits: 	(1 : 2,3,4;60) (2 : 2,3,6;30) (3 : 2,3,7;30) (4 : 2,3,8;30) (5 : 2,3,9;60) 

(6 : 2,3,10;30) (7 : 2,3,11;60) 	(8 : 2,3,12;60) (9 : 2,3,13;30) (10 : 2,3,14;60) (11 	: 

2,3,15;30) (12 	: 2,3,17;60) (13 	: 2,3,18;60) (14 	: 2,3,19;30) (15 	: 2,3,20;60) (16 	: 

2,3,21; 30) (17 	: 2,3,22;60) (18 	: 2,3,23; 60) (19 	: 2,3,24;30) (20 	: 2,6,7;60) (21 	: 

2,6,12;30) (22 	: 2,6,13;60) (23 	: 2,6,14;60) (24 : 2,6,18;60) (25 	: 2,6,20;30) (26 : 

2,6,21; 30) (27 	: 3,4,9;20) (28 	: 3,4,10; 60) (29 	: 3,4,11; 60) (30 	: 3,4,12;30) (31 	: 

3,4,15;60) (32 : 3,4,16;60) (33 	: 3,4,17;30) (34 	: 3,4,19;30) (35 	: 3,4,23;60) (36 : 

3,4,26;30) (37 	: 3,5,12;30) (38 	: 3,5,14;30) (39 	: 3,5,15;60) (40 : 3,5,17;60) (41 	: 

3,5,18;30) (42 : 3,5,19;30) (43 	: 3,7,10;60) (44 	: 3,7,11;30) (45 	: 3,7,17;20) (46 : 

3,7,18; 60) (47 : 3,7,20; 30) (48 : 3,10,12;60) (49 : 3, 10, 14; 20) (50 : 3,10,15; 30) (51 : 

3,10,18;30) (52 : 3,12,15; 30) (53 : 3,12,18;30) (54 : 4,6,13;20) 

The 10 x 54 matrix A(PS L(2, 27); 5,6) 

111111111122222222223333333333444 444444455555 

 1234567890123456789012345678901234567 8 9012345678901234 

 211121211112111111100000000000000000000000000000000000 

 011100011100111111021222110000000000000000000000000000 

 100010100000100110010101002211221111000000000000000000 

 100000000101010001111610000011110110112211000000000000 

 101000100101000001010110000020001021000200112110000000 

 000001100010202002100000000110010100000111100011111000 

 0000000202000.000200011001101011000101101,00010101100110 

 100010001010100010010001010200110000102010100100011110 

 000110110001001000000111000000111001000000200202001012 

 01001101000100100000001110001000001001 2 001110112010100  

Designs: (A = 2 : 7, 22, 39, 49) (A = 3 : 2, 9, 14, 28, 33, 40, 48) (A = 4 : 6, 7, 11, 22, 25, 

26,.30, 34, 39, 45, 54) (A = 5 : 2, 7,9,14,22,28,33,39,40,48,49) (A = 6 : 3,4,6,11,16,19, 

21,25,26,27, 30,33,34,39,44,45,47,51,53,54) (A = 7 : 2,6,7,9,11,14,22,25,26,28,30, 
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586 	 D. Acketa and V. Mudrinski 

33, 34, 39, 40, 45, 48, 54) (A = 8 : 3, 4, 6, 7, 11, 16, 19, 21, 22, 25, 26, 27, 29, 32, 37, 38, 39, 43, 

45, 49, 52, 54) (A = 9 : 2, 3, 4, 6, 9, 11, 14, 16, 19, 21, 25, 26, 27, 28, 30, 33, 34, 36, 39, 40, 44, 45, 
47, 48, 51, 53, 54) (A = 10 : 1, 5, 8, 1003, 15, 17, 18, 20, 24, 30, 33, 34, 36, 38, 39, 42, 44, 45, 47, 

51, 53, 54) (A = 11 : 2, 3, 4, 6, 7, 9, 11, 14, 16, 19, 21, 22, 25, 26, 28, 29, 31, 32, 35, 39, 40, 43, 46, 
48, 49). 

2.2.8. PSL(2,31), t = 5, k = 6, "trivial = 27. 
5-orbits: 	(1 : 2, 3; 30) (2 : 2, 5; 30) (3 : 2, 6; 30) (4 : 2, 8; 30) (5  : 2, 9; 30) (6 : 

2, 18; 30) (7 : 3, 4; 30) (8 : 3, 7; 30) (9 : 3, 8; 30) (10 : 3, 10; 30) (11 : 4, 6; 30) (12 : 4, 9; 30) 
(13 : 5, 6; 10) (14 : 5, 7; 30) (15 : 12, 13; 6) 

6-orbits: (1 : 2, 3, 4; 30) (2 : 2, 3, 5; 60) (3 : 2, 3, 6; 30) (4 : 2, 3, 7; 60) (5 : 2, 3, 8; 60) 

(6 : 2, 3, 9; 60) (7 : 2, 3, 10; 60) (8 : 2, 3, 11; 60) (9 : 2, 3, 13.; 60) (10 : 2, 3, 14; 60) (11 : 
2, 3, 15; 60) (12 : 2, 3, 16; 30) (13 : 2, 3, 17; 10) (14 : 2, 3, 18; 30) (15 : 2, 3, 19; 60) (16 : 
2, 3, 20; 60) (17 : 2, 3, 21; 60) (18 : 2, 3, 22; 60) (19 : 2, 3, 24; 60) -  (20 : 2, 3, 25; 60) (21 : 
2, .3, 26; 60) (22 : 2, 3,27; 60) (23 : 2, 3, 28; 30) (24 : 2, 5, 6; 60) (25 : 2, 5, 7; 60) (26 : 
2, 5, 8; 60) (27 : 2, 5, 9; 30) (28 : 2, 5, 10; 60) (29 : 2, 5, 12; 60) (30 : 2, 5, 13; 60) (31 : 

2, 5, 14; 60) (32 : 2, 5, 15; 30) (33 : 2, 5, 18; 60) (34 : 2, 5, 19; 20) (35 : 2, 5, 21; 60) (36 : 

2, 5, 23; 60) (37 : 2, 5, 24; 30) (38 : 2, 5, 25; 60) (39 : 2, 5, 27; 60) (40 : 2, 5, 28; 30) (41 ; 

2, 6, 7; 30) (42 : 2, 6, 8; 60) (43 : 2, 6, 9; 60) (44 : 2, 6,10; :30) (45 :2, 6, 12; 30) (46 :2, 6, 18; 60) 

(47 : 2, 6, 21; 60) (48 : 2, 6,23; 60) (49 : 2, 6, 26; 30) (50 : 2, 6, 27; 30) (53 : 2, 6, 28; 60) 

(52 : 2, 8, 10; 30) (53 : 2, 8, 13; 60) (54 : 2, 8,18; 60) (55 : 2, 8, 21; 60) (56 : 2, 8, 26; 30) 

(57 : 2, 9, 13; 60) (58 : 2, 9,21; 30) (59 : 2, 9, 27; 60) (60 : 2, 9, 28; 30) (61 : 2, 18, 21; 30) 

(62 : 2, 18, 26; 30) (63 : 3, 4, 9; 30) (64 : 3, 4, 10; 60) (65 : 3, 4, 11; 30) (66 : 3, 4, 12; 30) 

(67 : 3, 4, 15; 60) (68 : :1, 4, 23; 30) (69 : 3, 4, 24; 30) (70 : 3, 4, 25; 60) (71 : 3, 4, 26; 30) 

(72 : :3:7, 8; 30) (73 : 3, 7, 15; 12) (74 : 3, 7,20; 10) (75 : 3, 7,23; 20) (76 : 3, 8, 12; 30) 
(77 : :3, 8, 14; 30) (78 : 3, 8, 18; 60) (79 : 3, 8, 22; 30) (80 : 3, 10,18; 10) (81 : 4, 6, 17; 10) 
(82 : 5, 7, 23; 10) (83 : 5, 7, 29; 12) 

The 15 x 83 matrix A(P S L(2,31); 5,6): 
1111111111 2 2222222223333333333444444444455555555556666666666777777777t8888 

12345678901234567890123456789012345 678901234567890123456789012345678901234567890123 
221111121111111112111110000000000 00000000000000000000000000000000000000000000000000 
01100000011000011011000111111121 112111110000000000000000000000000000000000000000000 
01121000201100000000000110001001100000001121211111100000000000000000000000000000000 
00001112100000001011100102120000000 101000101000100021111000000000000000000000000000 
00000110110000110100001101111100 110001010020000000101000211100000000000000000000000 
00000000000001102100121000001000102001100000011011000111011012000000000000000000000 
1000111010000000101110000000000 0000110000100020000001010000100111121111000000000000 
00010001001000110001010000000111000000001010100100002020001000001011010111100000000 
0101100001000001010011001000020000011 0100000000001101000001100000101000100011210000 
000000200000011001001001000010201 00000100000011100000011001000011000011000000221000 
01001000001100000020000010001000 100001000101011000100100200000110000110000020200100 
0000010001000001000100000202001 0001000100010002100110100100000110020011100001000000 
00000000000000000000000300000000000003003000000330000300000030030000030000000000000 
00010101011000100000010010000100001 200000200000000000100110011010110100000101000011 
00000000000000000000000050000000000000550000000000500000005000000000000010000000001 
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On some  4•  and 6-designs on 	49 points 

Designs: (A = 6 : 8, 13, 15, 16, 21, 25, 26, 29, 30, 38, 45, 46, 49, 67, 71, 76, 80, 83) (A = 

12 	: 1, 2, 5, 6, 9, 10, 13, 15, 16, 22, 25, 26, 28, 29, 31, 33, 36, 37, 41, 42, 46, 47, 49, 53, 54, 55, 58, 

59, 70, 73, 78, 83). 

2.2.9. PGL(2,32), t = 4, k = 5, .'trivial = 29. 

4-orbits: 	(1 : 2; 6) (2 : 4; 6) (3 : 6; 6) (4 : 14; 6) (5 : 16; 6) 

5-orbits: 	(1 : 2, 3; 15) (2 : 2, 5; 60) (3 : 2, 6; 60) (4 : 2, 8; 60) (5 : 2, 9; 60) (6 : 2, 11; 60) 

(7 : 2, 12; 15) (8 : 4, 5; 15) (9 : 4, 17; 60) (10 : 6, 14; 15) (11 : 14,2`2; 15) 
4 4 8 4 4 4 1 0 0 0 0 
1 4 0 8 4 4 0 4 4 0 0 

The 5 x 11 matrix A(PGL(2,32); 4,5): 00 444440810 
0 8 4 4 4 0 0 0 4 4 1 
0 4 4 0 4 8 0 1 4 0 4 

Designs: (A = 4 : 5) (A = 5 : 1, 7, 8, 10, 11) (A = 9 : 1, 5, 7, 8, 10, 11) 

2.2.10. PG L(2, 37), t = 4, k = 5, At r i v i al = 34. 

4-orbits: 	1(1 : 2; 3) (2 : 3; 6) (3 : 4; 6) (4 : 5; 6) (5 : 6; 6) (6 : 8; 6) (7 : 11; 2) 

5-orbits: 	(1 : 2, 3; 30) (2 : 2, 5; 60) (3 : 2, 6; 60) (4 : 2, 7; 15) (5 : 2, 8; 60) (6 : 3, 4; 30) 

(7 	: 	3, 7; 60) 	(8: : 	3, 12; 60) 	(9 	: 	3, 14; 30) 	(10 	: 	3,15; 30) 	(11 	: 	3,26; 60) 	(12 	: 4, 5; 30) 

(13 : 4, 11; 10) (14 : 4, 17; :30) (15 : 5, 8; 30) 

The 7 x 15 matrix A(PGL(2,37); 4,5): 

	

/8 	8 	8 	2 	8 	0 	0 	0 	0 	0 	0 	0 	0 

	

4 	0 	4 	0 	0 	4 	8 	4 	4 	2 	4 	0 	0 

	

2 	4 	0 	0 	4 	4 	0 	8 	0 	0 	4 	4 	2 

	

0 	8 	4 	0 	0 	2 	4 	0 	0 	4 	4 	4 	0 

	

0 	0 	4 	4 	4 	0 	4 	4 	0 	4 	4 	2 	0 

	

0 	4 	4 	0 	4 	0 	0 	4 	6 	0 	4 	0 	0 

	

\0 	0 	0 	0 	12 	0 	12 	11 	0 	0 	0 	0 	4 

0 	0\ 

0 	0 

2 	0 

0 	4 
4 	0 

4 	4 

0 	6 / 

Design: (A = 16 : 2,3,7,8,13,14) 

2.2.11. PS L(2,47), t = 4,  k  = 5, Atrivial = 44. 

4-orbits: 	(1: 2; 3) (2 : 3; 6) (3 : 4; 6) (4 : 5; 3) (5 : 6; 6) (6 : 7; 6) (7 : 10; 3) (8 : 11; 6) 

(9 : 13; 3) (10 : 22; 3) 

5-orbits: 	(1: 2, 3; 30) (2 : 2, 5; 30) (3 : 2, 6; 30) (4 : 2, 7; 30) (5 : 2, 8; 30) (6 : 2, 10; 30) 

(7 	: 	2, 12; 30) 	(8 	: 	2, 13; 30) 	(9 	: 	2, 14; 30) 	(10 	: 	2, 16; 30) 	(11 : 3, 4; 30) 	(12 : 	3, 7; 30) 

(13 : 3, 8; 30) (14 : 3,11; 30) (15 : 3, 12; 30) (16 : 3, 13; 30) (17 : 3, 14; 30) (18 : 3, 15; 30) 

(19 : 3, 17; 30) (20 : 3, 19; 30) (21 	: 3, 20; 30) (22 : 3,22; :30) (23 : 3, 26; 30) (24 : 3, 39; 30) 

(25 : 4, 9; 30) (26 : 4,13; 30) (27 : 4,19; 30) (28 : 4, 20; 30) (29 : 4, 21; 30) (30 : 4, 27; 30). 

(31 : 5, 8; 30) (32 : 6, 10; :30) (33 : 7, 11; 30) 

The 10 x 33 matrix A(PSL(2,47); 5,6): 
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' 1 	1 1 	1 1 	1 1 	1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 3 3 
1 2 3 4 5 6 7 8 9 0 1 2 :3 4 5 6 7 8 9 0 1 2 3 4 .5 6 7 8 9 0 1 2 3 
8 4 4 4 8 4 4 4 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
4 0 2 0 0 0 0 0 0 2 4 8 8 2 2 2 4 2 2 2 2 4 2 2 0 0 0 0 0 0 0 0 0 
2 2 0 0 4 0 0 2 0 0 4 0 0 0 4 0 4 0 0 0 2 0 2 0 4 4 2 2 4 2 0 0 0 
0 4 4 0 0 4 4 0 0 0 0 0 0 8 4 4 0 4 4 0 0 0 0 0 0 0 0 4 4 0 4 0 0 
0 0 2 4 4 0 0 0 0 2 0 4 4 0 0 4 4 0 0 0 2 0 2 0 0 0 4 4 0 4 2 2 0 
0 0 0 4 4 2 2 0 2 0 2 4 4 2 0 0 0 4 4 4 0 0 0 2 2 2 0 0 2 4 0 0 4 
0 4 0 0 0 4 4 0 0 4 0 0 0 0 0 0 0 4 4 0 0 4 8 0 0 4 4 0 0 0 0 4 4 
0 2 0 0 4 2 2 2 2 0 0 4 4 2 0 0 8 0 0 0 0 2 0 2 4 0 0 0 0 0 4 4 2 
0 0 0 0 0 0 0 4 4 4 0 0 0 0 4 4 0 0 0 4 0 0 0 'A 4 4 0 0 0 4 0 0 
0040000440000 00000048400000440044 
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Designs: (A = 8 : 5, 14, 21, 23, 24) (A = 12 : 2, 4, 10, 14,17, 20, 21, 26) (A = 16 ; 
3, 6, 8, 9, 11, 14, 17, 20, 23, 27, 30) (A = 20 : 3, 4, 5, 8, 11, 14, 18, 21, 22, 23, 24, 25, 27, 31) 

2.3. Some observations on the constructed designs 

In this section we give some miscalleneous data concerning the constructed 
designs and the construction itself. 

The designs for q E { 17, 32} were considered in more detail in [2]; just 
a few data are mentioned here. The construction for q = 17.  is due to 
Alltop and was described in [5], Example 8.5, pp. 186-187; A-technique 
is an improvement of the Alltop's construction. The design constructed for 
q = 32 and A = 5 is the first member of an Alltop's infinite class of 4-designs. 
It is likely that all the constructed designs for q = 32 can arise ([8]) by action 
of the 4-homogeneous group PGainaL(2, 32). 

The designs with q = 11 and q = 23 are related to the well-known ([5]) 
Steiner systems S(5,6; 12) and S(5,6; 24) (that is, to the 5-(12,6, 1) design 
and to the 5-(24, 6, 1) design). The first one of these Steiner systems is, 
as stated in [7], Theorem 2.26., the uniquely determined Steiner system 
S(5,6; 12), with the automorphism group isomorphic. to the famous Mathieu 
5-transitive group M12 of cardinality 8 • 9 • 10 • 11 • 12. 

The brute-force search over the colums of A-matrices was applicable on a 
PC-386 computer in the cases when the number n of columns was restricted 
to 30 (n = 30 required one week of computing time and each added unit 
to n would double the time required). The following shortcut was used for 
q = 23 and q = 47, where n is equal to 34 and 33 respectively: 

It is observed that there exist in both cases several pairs of duplicate 
columns within the A-matrix (exactly four pairs with q = 23, n = 34 and 
three pairs with q = 47, n = 33). The search is performed over the reduced 
30-column matrices, which are obtained from the A-matrices by discarding 
one of the columns from each duplicate pair. Such a reduction does not guar- 
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antee completeness of the search; it might happen that some of the existing 
designs require combinations of columns which include both columns in a 
duplicate pair. However, the arguments related to the specific coefficients of 
the two A-matrices show that no set of design parameters is missed in this 

way. 
For example, the set of A values with q = 23 is complete (all the values 

in the interval [1,...,18 = Atrivial — 1] are present). Similarly, all the elements 

in the first row of the A-matrix for q = 47 are divisible by 4, which implies 
that all the corresponding values of A must be divisible by 4; an additional 
argument shows that A = 4 is impossible. 

The A-matrices with q = 27 and q = 31 have very large numbers of 
columns (54 and 83 respectively), so there is no chance for a full search. 
However, ad hoc designed heuristic approaches ([3]) have given designs with 
all the possible values of A in these cases. 

The number of successful (that is, design-corresponding) combinations of 
columns is very large with some of the A-matrices (several hundreds with 

q = 19 and q = 47 and several thousands with q = 23). 
Some of the obtained parameters seem to be particularly interesting. For 

example, the designs constructed for q = 37 seem ([8]) to be the first 4- 

designs known on 38 points. 
A design isomorphism search was performed ([6]) among the constructed 

560 4-designs on 48 points for A E {8,12,16,24 Auxiliary graphs were at-
tached to the designs so that non-isomorphism of some two attached graphs 
implies non-isomorphism of the corresponding designs. Global results of this 
search seem to be very interesting. All the equivalence classes of isomorphic 
attached graphs are of cardinality 2; this implies that at least one half of 
the total number of the constructed designs are pairwise non-isomorphic. 
Moreover, the unique and involutory (a product of transpositions) isomor-
phism maps onto each other the two graphs of each one of the equivalence 
classes; this means that the recognized isomorphism is a global symmetry of 
the whole found class of 4-designs. 

Finally, it seems worth-while to try an isomorphism search for q = 19. 

It is only in this case that there exists a unique (and self-complementary) 
value A = 60. Is the 4420,6,60) design unique up to an isomorphism within 
the class of designs with these parameters generated by PS L(2,19) ? The 

isomorhism search in this case might use attached hypergraphs with edges 

containing three vertices each. 

V
ir

tu
al

 L
ib

ra
ry

 o
f 

F
ac

ul
ty

 o
f 

M
at

he
m

at
ic

s 
- 

U
ni

ve
rs

it
y 

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs



590 	 D. Acketa and V. Mudrinski 

REFERENCES 

[1] D. M. Acketa and V. Mudrinski, A 4-design on 38 points, (submitted). 
[2] D. M. Acketa, V. Mudrinski And I)j. Paunk, A search for 4-designs arising by action 

of PG L(2, q), Publ. Elektrotehn. fak., Univ. Beograd, Ser. Mat. 5 (1994), 13-18. 
[3] D. M. Acketa and V. Mudrinski, Some 5-designs on 28 and 82 points, (submitted). 
[4] W. O.Alltop, An infinite class of 4-designs, J. Comb. Th. 6 (1969), 320-322. 
[4] T. Beth, I). Jungnickel and B. Lenz, Design theory, Bibliographisches Institut, Mann-

heim/Wien/Zurich, 1985. 
[5] S. Dautovk, D. M. Acketa and V. Mudrinski, A graph approach to isomorphism 

testing of 4-(48,5,A) designs arising from PS L(2, 47), (submitted). 
[6] D. Gorenstein, Finite Simple Groups, An Introduction to Their Classification, Plenum 

Press,. New York, London, 1982. 
[7] Z. Jauko and V. Tonchev, private communication. 

INSTITUTE OF MATHEMATICS, Tn DOSITEJA C)rinaDovieJA, 
21000 Novi SAD, YUGOSLAVIA 

V
ir

tu
al

 L
ib

ra
ry

 o
f 

F
ac

ul
ty

 o
f 

M
at

he
m

at
ic

s 
- 

U
ni

ve
rs

it
y 

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs



FILOMAT (Ni) 9:3 (1994 501-597 
Algebra, Logic & Discrete Mathematics 

Nis, April 14-16, 1995. 

ORDERED LINEAR RESOLUTION AS THE BASE OF 

THE SYSTEM FOR AUTOMATIC THEOREM PROVING 

Ivana F. Berkovie 

ABSTRACT. U radu se opisuje uredena linearna rezolucija sa marldranim 
literalima i njene specififtosti. Da hi se o .t. uvala potpunost metode izvegena 
je modifikacija algoritnia za odredivanje rezolvente. 

Na bazi modifikovane uredene linearne rezolucije sa marldranim literalima 
izgraden je sistem za automatsko dokazivanje teorema. Sistem je implemen-
than na PC - rat'unaru i dopigta varijabilne strategije pretrativanja. Pret-
postavke i tvrdenja koje treba dokazati, zapisuju se odgovarajueim formu-
lama predikatskog ratuna prvog reda. l.T radu se daje opis implementiranog 
sistema za automatsko dokazivanje teorema, prikazuju se njegove karakter-
istike i oblasti primene. Posebno se razmatra odnos ovakvog automatskog 
dokazivaft teorema i Prolog-a. 

1. Introduction 

Automated reasoning is very important area in Artificial Intelligence, 
but the common sense is difficult to model in a computer. The needed 
knowledge is not easy to represent. Another problem is how it can de-
duce something from a set of facts, or how it can prove that a conclusion 
follows from a given set of premises. Computational logic, based on formula-
tions by some formal-language (propositional logic, predicate logic), provides 
problem-solving methods. 

The developing of theorem-proving can be divided in two directions. The 
first direction is pure automated theorem proving, which is mostly resolution-
based. The other approach is non-resolution-based theorem proving or nat-
ural deduction, which includes some heuristics and user-supplied knowledge. 
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2. The Rule of Ordered Linear (OL) 
Resolution with Marked Literals 

The most popular method for automatic theorem proving is the resolution 
method, which is discovered by .J. A. Robinson in 1965 ([4 [5]). Resolution 
method is a syntactic method of deduction. This procedure is a general 
automatic method for determining if a theorem (conclusion) follows from 
a given set of premises (axioms). Each formula will be transformed to the 
clauses form. Reduction ad absurdum is' in the basis of resolution method. 
Resolution rule will be applied on the set of clauses (axioms) which .  was 
expanded by negating the desired conclusion in clause form. 

Since 1965., many resolution forms and techniques are developed because 
the pure resolution rule has been unable to handle complex problems. Also, 
many resolution theorem provers are created. 

Ordered Linear (OL) resolution rule with marked literals ([6]) increases 
efficiency and doesn't disturb completeness of pure resolution rule. 
The generating process of OL-resolvent from central clause (dl) and auxiliary 
clause (d2): 
1. Redesignate variables (without common.variables in the clauses). 
2. Determine universal unificator 0 for last literal of dl and k-literal (k = 
1, 2, ...) of d2 (if it exists for some k, else it is impossible to generate OL-
resolvent for specification clauses). 
3. Create resolvent with marked last literal in die and add the rest of 
clause d20 without k-literal (d10 and d20 are clauses, which were formed 
by universal unificator 0 applied on dl and d2, respectively). 
4. Eliminate identical non-marked literals and tautology examination (tau-
tologies are not memorized). 
5. The Shortening Operation (delete all ending marked literals). 
6. The Compressing Operation (delete the last non-marked literal, which is 
complemented in relation to negation, with some marked literal for unificator 
A). 
7. Repeat steps: 5 and 6 until the empty clause is got, or the Compressing 
Operation is not applied on the last non-marked literal. 
The final result of this process is: the forming one OL-resolvent from central 
clause ( d I ) and auxiliary • clause ( d 2 ). 

To preserve completeness of the OL-resolution rule with marked literals, 
some resolvents have to be memorized. 

The rule of OL-resolution with marked literals is separated in two parts: 
in-resolution and pre-resolution. The steps: 1 - 5 are represented in-resolu-
tion. The steps: 6 - 7 are represented pre-resolution. Mid-resolvents are the 
products of in-resolution and without their memorizing, the completeness of 
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the method can be lost. It can be illustrated by example. 

Example 1. 
Central clause is: -, R(A) 
Auxiliary clauses are: 

al -9(X, Y) V R(X) V R(Y) 
a2 S(A, B) 
a3 -, R(R) 

where: X and Y are variables, A and B are constants, R and S are predi-

cates, is negation. 

The results without memorizing mid-resolvents are: 
Taking into consideration the central clause --, R(A) and the auxiliary 

clause al by literal R(X) and literal R(Y), one resolvent: /- , R(A)V --.5(A, A) 
is generated at the first level. This resolvent has not produced new resolvents 
and it is not possible to generate empty clause. 

Not to lose the completeness of the method some resolvents must be 
memorized that are got during the resolution procedure. 
The results with memorizing mid-resolvents are: 

Three resolvents are generated at the first level: 
1. 1-, R(A) V S(A, Y) V R(Y) from -, R(A) and al by literal R(X) 

2. /-,R(A) V -, S(X, A) v R(X) from -,R(A) and al by literal R(Y) 

3. /-41(A) V -,S(A, A) from 1., or 2: with pre-resolution. 
There are two resolvents generated at the second level: 
4. /-,R(A) V -49(A, B) from I. and a3 with in-resolution 
5. /-R(A) V -,S(B, A) from 2. and a3 with in-resolution. 
Empty clause is generated at the third level from R(A)V 	B) and 

a2. The set of clauses is contradictory. 
From the point of scientific researching this example shows that some 

resolvents have to be memorized to preserve the completeness of the method. 
This modification of Ordered Linear resolution rule is served as the base for 
development of the system for automatic theorem proving ADT. 

3. The System for Automatic Theorem Proving ADT 

In our country, the first resolution theorem-prover is developed in a scope 
of GRAPH expert system at the Faculty of Electrical Engineering in Bel-

grade, ([8]). 
The system ADT is based on the resolution rule. The system is developed 

at Technical Faculty "Mihajlo Pupin" in Zrenjanin. ADT is a system for 
automatic theorem proving, which is implemented on PC - computer by 
Pascal (Turbo Pascal ver. 6.0) programming language. The rule of Ordered 
Linear Resolution with marked literals presents the system base, ([6]). 
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594 	 I. R. Berkovie 

ADT system differs from the other resolution-based theorem-provers which 
are characterized by one fixed strategy. The system permits various syntactic 
search strategies, ([2], [3], [5]). 

The system ADT disposes three search strategies: breadth-first, depth-
first and their combination. The first and the second :strategy are common 
blind search procedures. The third blind search procedure is constructed as 
their combination. 

In breadth-first search are the nodes starting with the root node of the 
search tree. They all are generated level by level. In depth-first search, a 
new node is generated at the next level, from the one current, and the search 
is continuing deeper and deeper in this way until it is forced to backtracking. 
In combine-search, the nodes of the search tree are generated and examined 
in the breadth, until the fulfilling of the level. Then the procedure is backing 
one level up and continues in depth with backtracking. 

The system ADT permits comparisons of strategies. It is also possible to 
use various strategies to find the proof, especially if it can not be detected 
by means of other ones. 

ADT is projected for scientific - researching, teaching and practical pur-
pose. Some results of the experimental work with ADT system are described 
in ([3]). 

There are many different possibilities for using the system in education. 
ADT can be used for learning the elements of theorem-proving. It allows the 
illustration of the Unification Algorithm or the Resolution Rule. It is also 
possible to use this system for experimental work in: deduction of proofs, 
comparison of strategies, influence of various factors on efficiency proving. 

The methods of automatic theorem proving can be applied in various do-
mains of artificial intelligence. They are applicable in fields as mathematical 
theorem proving, expert systems, question-answering systems, automatic 
programming, program verification, situational control and decision, rela-
tion data bases, logical programming, etc. It is presented in some concrete 
examples ([3]). 

This system is incorporated in the system for automatic creating of the 
combinatorial disposition DEDUC ([11]), where it has presented the satis-
fying practical efficiency. ADT system is' the basic generating mechanism in 
DEDUC system. DEDUC system is aimed to automated creating time-table. 
It is implemented on PC computer. 

4. ADT system and PROLOG 

Specific high-level languages have been developed for different application 
domains. PROLOG and LISP are the most famous programming languages 
in artificial intelligence. 
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The logical programming language PROLOG and ADT system are com-
pared. 

PROLOG is a logic-oriented language ([4], [10]), which contains a resolu-
tion-based theorem-prover. The theorem-prover in PROLOG appears with 
the depth-first search approach. The first-order predicate logic is the form 
of representation in PROLOG. Programs in PROLOG consists of axioms 
(clauses, facts) and a theorem to be proved (goal). The axioms are restricted 
in "Horn clause" form. 

The first-order logic is the form of representation in ADT system, too. 
But, this system has not restriction in "Horn clause". It appears with 
clauses. The axioms are presented by auxiliary clause. The central clause is 
negating the theorem to he proved. 

PROLOG has the negation defect. This defect is corrected in ADT sys-
tem. It can be illustrated by example. 

Example 2. 

Program in PROLOG: 
vegetarian(tom). 
vegetarian(ivan). 
vegetarian(isak). 
smoker(tom). 
smoker(isak). 
ana_likes(X1) : not (smoker(X1)) , vegetarian(X1). 
PROLOG -system gives unconnected answer on following questions: 
?- ana_likes(X1). 
no 
?- ana_likes(ivan). 
yes 
If the last clause is now: 
ana_likes(X1) : vegetarian(X1), not (smoker(X1)). 
PROLOG-system gives wrong answers on following questions: 
?- ana_likes(X1). 
Xl=ivan 
?- ana_likes(ivan). 
yes 
These answers are incorrect because we have not data about Ivan and smok-
ing. We don't know is Ivan a smoker or not. The correct answer will be: "I 
don't know". 

In both cases ADT system gives the correct answer: "I don't know". In 
fact, ADT system generates only one resolvent and can not complete the 

proof with none of the three strategies. 
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AI)T system allows recursion using (example with family relationship, 
[3]) and works with structures and lists, as well as PROLOG. 

5. Conclusion 

Completeness and universality of the resolution method, as the base of 
ADT system, enables it to be applied in various domains of artificial intel-
ligence. In the scientific researching is given an example which shows that 
some resolvents must be memorized to preserve the completeness of this 
method. The relationship between AI)T system and PROLOG are empha-
sized. In this sense, the further development and applications of this system 
is possible. The system is convenient for teaching and has the practical 
purposes. 
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[13] Winston P. H., Artificial Intelligence, Addison Wesley F'ublsh. Comp., 1984. 
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FILOMAT (Ni) 9;3 (1995) 1 ,599-602 
Algebra, Logic & Discrete Mathematics 

Nis, April 14-16, 1995. 

HADAMARD'S INEQUALITY AND 

FIXED-POINT METHOD 

Momeilo Bjelica 

ABSTRACT. The famous inequality in matrix theory of J. Hadamard has 
different proofs and extensions [1, 6]. Here given proof is by the method 
of common fixed-point of mappings monotonic with respect to a functional, 
which can be applied to many, including all main inequalities [3]. Condition 
for equality: rows of a matrix are orthogonal or at least one of them is zero, 
is replaced by proportionality (appearing in numerous other inequalities) 
between rows of a matrix and corresponding rows of cofactors. 

Theorem. Let A = (a ij ) be a real square matrix and IAI be it's determinant, 
then 

(1) 1 A 1 2  H 	< aL). 
j.1 

Equality in (1) holds if and only if 

(2) ail ai i  ai2 ai2  " 	ainapi  = 0, 

for each pair of different i, j, or if at least one factor on the right side of 
(1) is equal to zero. 

Condition (2), including the disjunct, can be replaced by the next one: 
there are numbers Ai, pi, A + ft? 0 0, 1 < i < n, such that 

(3) A i nij  F pi Aij = 0, 	1 < j < n, 

where Ai.;  are cofactors. 

Proof. Define the space (product of n-spheres) 

(a) 	X = {X = 
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M. Bjelica 

and the functional f : X R 

(b) f(X) = IX I• 

Define mappings Fi  : X X, 1 < i < n 

(c) F,(X) = 

I X11 X12 	X1 n 

Ti 
Yil 	Y12 • 	Yin 	a 	Yij = 

Ri 
A  ij) 1 < j < n, 

Xni X n2 • 	'inn 

ri  = V41  + 42  + • • + 4n , 	R, = ‘/XA 	+ • • • + 

If r i  = 0, then Fi(X) = X; define the same if R, = 0. The row (yij ) j  is 
defined to be proportional to the corresponding row of cofactors (Xii)i and 
that F1(X) E X. The mapping F, is monotonic non decreasing with respect 
to the functional f 

(d) f(X) < f(F,(X)), 

by Laplace development (d) is equivalent to 

Xii X22 Xi2 + • • • + XinXiii < Yil Xil Yi2Xi2 " ' YinXin, 

(4) 
	

Xil Xil 	Xi2 Xj2 + • • • + xitLX221 < r i Ri . 

The Cauchy inequality (4) is equality [1] if and only if there are numbers Ai, 
it„ not both 0, such that 

	

Aix ii  + dzjX ij = 0, 	1 < j < n. 

If Ai,ui 	0, then equality in (d) holds if and only if sets (xij) i  and (Xii )i  
are proportional, or equivalently x ii  = yii , 1 < j < n. Hence, Fi is strictly 
monotonic with respect to f: equality in (d) holds if and only if X is a fixed 
point of mapping F1(X) = X, and for non-fixed points strict inequality 
holds. On the compact set X the functional f attains maximal value, and, 
because of strict monotonicity, it is attained on a set .F of common fixed 
points of mappings F1, 1 < i < n. The set .F is not empty, since it contains, 
e.g., diagonal matrix with diagonal ri, 1 < i < n. If X E IX, 0 0, 
Xii = ci x. ij , 1 < i,j < n, then 

iXi = 
	1 < i < n , 	= H 
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On the other hand 

 

 

= 	
1 
	II X I X —I I = 	1 	

vin —1 

Cl C2 • - • en 	 C C2 • • • en 	 Cl C2 . . . Cn 

IXI" = 	C2 . • • C711X1 2 ) 

so that 

 

aii). = = H E IXI 2   
i=1 	i=1 J=1 

The equivalence between conditions (2), including the disjunct, and (3), 
both determining the same set of matrices on which the equality in (1) holds, 
follows from earlier proofs of the theorem and this one. However, we give a 
direct proof that (2) q (3). 

(2) (3). If aii = 0, 1 < j < 7/, then Akj = 0, 1 < k < n, k 	i, 
1 < j < n and (3) holds. Let A be an orthogonal matrix with no one zero 
row, then lineal over rows of the matrix A 

,C( 	 I 1 < i < n} ) 

is n-dimensional vector space. Also 

, ai2 , 	, ai„) 1 L( {ai l  , aj2 , 	, ai„) I 1 < < 	). 

From 

(5) 
	

ai2 Aj2 + • • • + ai„Aj„ = Oij I A I , 

follows 

(Ail, Ai2, • • • , Ain) _L £( 

Vectors (ail, ai2 • • • • • ai,i) and (Ail, Ail, • 
orthogonal to the same hyperplane ((n — 

A i„) in n-dimensional space are 
1)-variety) and therefore they are 

collinear. 
(3) (2). If in (3) some µi = 0, then a ii  = 0, 1, < j < n, that is, the 

disjunct in (2) holds. Hence, suppose that ,ui 0 0, 1 < i < n, i. e., rows of A 
are not zero-vectors. If Ai 0 0, 1 < i < n, then from (5) follows (2). Now, 
without lose of generality, suirpose that Ak = 0, 1 < k < i; Ai 0 0, i < 1 < n. 
From Akj = 0, 1 < k < i, 1 < j < 71 follows that IAI = 0 and that rows of 
A are linearly dependent. From (5) follows that rows (aii )j, i < 1 < n are 
orthogonal and, therefore, linearly independent. Using also 

,C( {(aki, akz, • • • , akn) I I 5 k < i} ) 
	

f { 	an , • • • 7 (NO i < < n}) 
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602 	 M. Bjelica 

obtains that rows (akj) j , 1 < k < i are linearly dependent. Therefore, 
= 0, i < 1 < n, 1 < j < 7/, what implies that i = n. ❑ 

Note that there is an orbit of X 

IF2(Fi (X))1 5 • • < 

where Fn  o • • •o F1  (X) = 	what gives a direct proof of (1). Geometric inter- 
pretation of Hadamard's inequality is that the volume of a parallelepiped in 
n-dimensional space does not exceed product of lengths of it's edges, equality 
holds if the edges are orthogonal, or if length of one edge is zero. Also, men-
tion analogy between Hadamard' inequality and generalization of Cauchy 
inequality, namely, one special case of Holder's inequality 

n 

< 
J=1 i=1 	i-=1 

is also a sum of products of elements of matrix A. 
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SEMILATTICES OF WEAKLY LEFT 

ARCHIMEDEAN SEMIGROUPS 

Stojan Bogdanovie and Miroslav eirie 

ABSTRACT. By the well-know ►  result of A. H. Clifford, any band of left 
Archimedean semigroups is a semilattice of matrices (rectangular bands) of 
left Archimedean semigroups. The converse of this assertion don't hold, i.e. 
the class of semilattices of matrices of left Architnedean semigroups is larger 
than the class of bands of left Archimedean semigroups. In this paper we 
characterize semilattices of matrices of left Archimedean semigroups, and 
especially matrices of left Archimedean semigroups. The obtained results 
generalize the some results of M. S. Putcha and L. N. Shevrin. 

Bands of left (also right and two-sided) Archimedean semigroups form 
important classes of semigroups studied by a number of authors. General 
characterizations of these semigroups have been given by M. S.- Putcha [16], 
and in the completely ir-regular case by L. N. Shevrin [17]. Some new 
characterizations of bands of left Archimedean semigroups and of bands 
of nil-extensions of left simple semigroups have been given recently by the 
authors [6]. By the well-known result of A. H. Clifford, any band of left 
Archimedean semigroups is a semilattice of matrices (rectangular bands) of 
left Archimedean semigroups. The converse of this assertion don't hold, i.e. 
the class of semilattices of matrices of left Archimedean semigroups is larger 
than the class of bands of left Archimedean semigroups. In this paper we 
give a complete characterization of semigroups having a semilattice decom-
position whose components are matrices of left Archimedean semigroups. 
Moreover, we describe such components in the general and some special 
cases. For the related results see [7], [12] and [13]. For more informations 
about semilattice-inatrix decompositions of semigroups the reader is reffered 

Supported by Grant 0401B of RFNS through Math. Inst. SAW'. 
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604 	 S. Bogdanovi6 and M. (Irk 

to [10] and [11]. The obtained results generalize the above quoted results of 
M. S. Putcha and L. N. Shevrin. 

Throughout this paper Z+ will denote the set of positive integers. The 
division relations I and I on a semigroup S are defined by 

alb a (3x , y E S 1 ) b xay, 	alb a (3x E ,51 ) b = xa, 

and that the relations 	and -L4 on S are defined by 

a 	b 	(3n E Z+ ) a I b" , a 	b t (3n E Z+ ) a I b". 

The relation 	on S is defined dually. For n E Z+, ±>" will denote the 
n-th power of 	and 	will denote the transitive closure of 	For 
an element a of a semigroup S we define sets A„(a), n E Z+, and A(a) by 

A„(a) = fx ESla --+I  " 	A(a) = 	ESla 	sl, 

and the equivalence relations A„, n E Z+, and A on S by 

a A„ b a A„(a) = A„(b), 	a A b a A(a) = A(b), 

[3]. For undefined notions and notations we refer to [1], [2] and [14]. 

First we prove the following theorem: 

Theorem 1. The following conditions on a semigroup S are equivalent: 
(1) A is a matrix congruence on S; 

(ii) A is a right zero band congruence on ;. 

(iii) (Va, b,c E 5) abc ±>°' ac; 

(iv) (Va,b E S) aba ±›c° a; 

(v) (Va,b E S) ab -2-4" b; 
(vi) S is a disjoint union of all its principal left radicals; 

(vii) is a symmetric relation on S. 

Proof. (i) = (iii), (iii) = (iv) and (ii) = (i). This follows immediately. 
(iv) (v). For all a, b E 8, ab 	bab, so by (iv), ab _Loo b. 
(v) (ii). Let a, b E S such that a A b, and x E S. By (v), A(ax) = 

A(x) = A(bx) and A(xa) = A(a) = A(b) = A(xb). Therefore, A is a congru-
ence. Clearly, it is a right zero band congruence. 

V
ir

tu
al

 L
ib

ra
ry

 o
f 

F
ac

ul
ty

 o
f 

M
at

he
m

at
ic

s 
- 

U
ni

ve
rs

it
y 

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs



Seinilattices of weakly left Archimedean semigroups 	 605 

(ii) 	(vi). Let S be a right zero band B of semigroups 	i E B, which 

are A-classes of S. Assume a E S. Then a E Si, for some i E B, and since Si 
is a completely semiprilne left ideal of S (Lemma 4 [3]), then A(a) C Si. On 

the other hand, if b E Si, then b A a, so b E A(b) = A(a), whence Si C A(a). 

Therefore, A(a) = S i , so (vi) holds. 

(vi) (vii). Let a, b E S such that a .°'3  b. Then b E A(a), whence 

A(a)n A(b) # 0, so by (vi), A(a) = A(b). Therefore, b 	°'° a. 

(vii) (v.). For all a, b E S, b 	ab, so by (vii), ab _Loo b. ❑ 

Corollary 1. The following conditions on a semigroup S are equivalent: 

(i) A„ is a matrix congruence on 5; 
(ii) A n, is a right zero band congruence on S; 

(iii) (Va, b E 5) A„(a) C A„(aba); 
(iv) (Va, b E 5) A„(b) c A„(ab); 

(v) is a symmetric relation on S. 

Lemma 1. Let e be a band congruence on a semigroup S contained in 

where -I- = 	n 	. Then any c-class of S is a left Archimedean 

semigroup. 

Recall that a semigroup S is called left Archimedean if a 	b, for all 

a, b E S. Here we introduce a more general notion: a semigroup S will be 

called weakly left Archimedean if ab 	b, for all a, b E S. Weakly right 

Archimedean semigroups are defined dually. A semigroup S is weakly t-

Archimedean (or weakly two-sided Archimedean) if it is both weakly left and 

weakly right Archimedean, i.e. if for all a, b E S there exists n E Z+ such 

that a" E abSba. 
We give the following characterization of semilattices of weakly left Archi-

medean semigroups: 

Theorem 2. A semigroup S is a semilattice of weakly left. Archimedean 
semigroups if and only if 

a 	b = ab i. b, 

for all a,b E S. 

Proof. Let S be a semillatice Y of weakly left Archimedean semigroups 

SQ , a E Y. Assume a, b E S such that a • b. If a E 	b E So, for 

some a, [3 E Y, then 13 < a, whence b,ba E S,3. Now, b" E S o bab C Sab, for 

some n E Z+ , since So is weakly left Archimedean. Therefore, ab 	b. 
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606 	 S. Bogdanovk and M. (Ark 

Conversely, let for all a, b E 5, a 	b implies ab —L b. Assume a, b E S. 
Since a 	ab, then by the hypothesis, alb 	ab, i.e. (ab)" E Sa2 b C 
Sa2 S, for some n E Z. Now, by Theorem 1 [9], S is a semilattice Y of 
Archimedean semigroups S„, ce E Y. Further, assume a E Y, a, b E S. 
Then a 	b, so by the hypothesis, ab 	b in 5, and by Lemma 11(c) [3], 
ab 	b in S. Therefore, S, is weakly left Archimedean. ❑ 

Corollary 2. A semigroup S is a semilattice of weakly t-Archimedean semi-
groups if and only if 

a ---= b 	ab 	b & ba 	b, 

for all a,b E S. 

The components of the semilattice decomposition treated in Theorem 2 
will be characterized by the next theorem. Namely, we will give a description 
of weakly left Archimedean semigroups. 

Theorem 3. The following conditions on a semigroup S are equivalent: 
(i) S is weakly left Archimedean; 

(ii) S is a matrix of left Airhimedean semigroups; 
(iii) S is a right zero band of left Archimedean semigroups; 
(iv) is a symmetric relation on S. 

Proof. (i) 	(iv). Let a,b E S such that a 	b, i.e. b" = xa, for some 
n E Z+, x E S. By (i), 	= y:ra = yb", for some m E Z+ , y E 5, whence 
b 	a. 

(iv) = (i). This follows by the proof for (vii) 	(v) of Theorem 1. 
(iv) 	(iii). Let a, b, c E S such that a 	b and b 	c. By (iv), 

c 	b, so b" = xa = ye, for some n E Z+, x, y E S. Since (iv) 
then there exists in E Z+, z E S such that em = z(ye) = zb" = zxa E Sa. 
Therefore, a 	c, so 	is transitive, i.e. 	 . Now, by Theorem 
1, A = A is a right zero band congruence. By Lemma 1, A l -classes are left 
Archimedeau semigroups. 

(iii) 	(ii). This follows immediately. 
(ii) 	(i). Let S be a matrix B of left Archimedean semigroups 	E B. 

Then for a, b E S, a, aba E Si, for some i E B, whence a" E Siaba C Sba, 
for some n E Z. ❑ 

Recall that the relation ----I  on a semigroup S is defined by 	=—L+ 
. Now by Theorem 3 and its dual we obtain the following corollary: 
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Corollary 3. The following conditions on a semigroup S are equivalent: 

(i) S is weakly t-Archimedean; 
(ii) S is a matrix of t-Archimedean semigroups; 

(iii) L is a symmetric relation on S; 

(iv) and -24 are symmetric relations on S. 

By the following theorem we characterize matrices of nil-extensions of left 
simple semigroups. 

Theorem 4. The following conditions on a semigroup S are equivalent: 

(i) S is weakly left Archimedean and left ir-regular; 	 • 

(ii) S is weakly left Archimedean and intro-r-regular; 
(iii) S is a ?nutrix of nil-extensions of V simple semigroups; 
(iv) S is a right zero band of nil-extensions of left simple semigroups; 
(v) (Va, b E S)(371 E Z+) a" E S(ba)" ; 

(vi) (Va, b E S)(37t E Z+) a" E Sb"a. 

Proof. (i) 	(iv). This follows by Theorem 3 and Theorem 4.1 [15], since 
the components of any band decomposition of a left r-regular semigroup are 
also left 7r-regular. 

(iv) 	(iii). This follows immediately. 
(iii) (ii). This follows by Theorem 3, since a nil-extension of a left 

simple semigroup is intra-ir-regular. 
(ii) 	(i). By Theorem 3, S is a right zero band B of left Archimedean 

semigroups Si, i E B. Let a E 1 ntra(S), i.e. a = a:a 2 y, for some x,yES 
Then a = (xa)kayk , for each k E Z+. Further, a E Si, for some i E B, 
and clearly, y E Si , so y k  = za2 , for some k E z E 5, since Si  is left 
Archimedean. Therefore, a = (xa) k ayk = (xokaza2, whence a E LReg(S), 
so by Theorem 1 [5], .5' is left 7r-regular. 

(iv) (vi). Let S be a right zero band B of semigroups Si , i E B, 
and for each i E B, let Si  be a nil-extension of a left simple semigroup 

Since (v) <=> (i), then S is a nil-extension of a left completely simple 
semigroup K. Clearly, K = LReg(S) = U i Eti Now, for a,b E 5, 
a E Si , b E Sj, for some i, j E B , and a" E Iii , b" E Kj, for some n E Z, 
whence b"a E K = so a" E K i b"a C Sb"a. 

(vi) 	(v). Assume a, b E S. By (vii), there exists n E Z+ such that 
an E S(ab)"a C S(ba)". 

(v) (i). This follows immediately. 0 

Let T be a semigroup of a semigroup S. A mapping so of S onto T is a 
right retraction of S onto T if aye = a, for each a E T, and (ab)ya = a(bya), 
for all a, b E S. Left retractions are defined dually. A mapping (to of S onto 
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608 	 S. Bogdanovi6 and M. eirie 

T is a. retraction of S onto T if it is a. homomorphism and ayo = a, for each 
a E T. If T is an ideal of 5, then 'p  is a retraction of S onto T if and only 
if it is both left and right retraction of S onto T. An ideal extension S of a 
semigroup T is a (left, right) retractive extension of T if there exists a (left, 
right) retraction of S onto T. 

Some characterizations of matrices of nil-extensions of left groups have 
been given by L. N. Shevrin in [17]. By the next theorem we prove that such 
semigroups are exactly right retractive nil-extensions of completely simple 
semigroups. In this way we generalize some results of S. Bogdanovie and S. 
Milk [7], J. L. Galbiati and M. L. Veronesi [12] and A. Marku§ [13]. 

Theorem 5. The following conditions on a sentigroup S are equivalent: 

(1) S is a right retractive nil-extension of a completely simple semigroup; 

(ii) S is weakly left Airhintedean and has an idempotent; 

(iii) S is a matrix of nil-extensions of left groups; 
(iv) S is a right zero band of nil-extensions of left groups; 

(v) (Va,b E S)(3n E Z+) a" E a".9(ba)"; 
(vi) (Va, b E S)(3n E Z+) a" E a",5'b"a. 

Proof. (iv) 	(iii) and (iii) 	(ii). This follows immediately. 
(ii) 	(i). By Theorem 4.1 [15]. S is a nil-extension of a simple semi- 

group K, so it is intra-ir-regular and by Theorem 1 [5], S is left ir-regular, 
it is a right zero band B of semigroups Sa, i E B, and for each i E B, St 
is a nil-extension of a left simple semigroup 	Further, K = Intra(S) = 
LReg(S)= H 
	

by Theorem 1 [5], since the components of any band 
decomposition of a, left 7r-regular semigroup are also left r-regular. Thus, K 
is left completely simple, so it is completely simple, since it has an idempo-
tent. Thus, for each i E B, lit is a left group, so by Theorem VI 3.1 [1] (or 
Theorem 3.7 [2]), it has a right identity e i . Define a mapping (p of S onto K 
by: 

	

a(p = ac= 	 if a E 	E B. 

Clearly, ay, = a, for each a E K. Further, for a,b E 5, a E Si, b E Si, 
for some i,j E B, and ab E Sj, whence (ab)yo = (ab)ei = a(bei) = a(bca). 
Therefore, yo is a right retraction of S onto K. 

(i) 	(vi). Let S be a right retractive nil-extension of a completely simple 
semigroup K, and let K be a right zero band B of left groups 	i E B. 
Let a, b E S. Then a", b" E K, for some n E Z+, and a" E 	b" E Kj, 
for some i, j E B. If cup E Kt, for some 1 E B, since a"+ 1  E 	then 
a"+ 1 	a"+ 1 (p = a"(a(p) E KYK1 C Kt, whence 1 = i. Thus, arp E Kt , so 
b"a = (b"a)(p = b"(aco) E KjKi C 	Therefore, a", b"a E K2 7  so by the 
dual of Lemma 1.1 [s], a" E a"Ki b"a C a"Sb"a. 
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(vi) 	(v). For a, b E S there exists rt E Z+ such that a" E a"S(ab)"a = 
Sa(ba)" C a"S(ba)". 
(v) 	(iv). This follows by Theorem 4. ❑ 

Corollary 4. The following conditions on a semigroup S are equivalent: 

(i) S is a retractive nil-extension of a completely simple semigroup; 
(ii) S is weakly t-Archimedean and intm-r-regular; 

(iii) S is weakly t-Archimedean and has an idempotent; 
(iv) S is a matrix of ir-groups; 
(v) (Va, b E 5)(371 E Z+) a" E (ab)" S(ba)" 

Let us introduce the following notations for some classes of semigroups: 

Notation Class of semigroups Notation Class of semigroups 
GA left Awhintedealt .A4 rectangular bands 
B bands S semilattices 

and by X o X2 we denote the Marcev product of classes X 1  and X2 of 
semigroups. Let 

EA 0 M k +1  = (EA 0 M k ) 0 	k E Z+ . 

Now we can state the following: 

Problem. Describe the structure of semigroups from the following classes 

LA0 m k+l (L. A 0  mk+1) 	( LA 0 m k+i) 0  8.  
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SEMILATTICES OF HEREDITARY 

ARCHIMEDEAN SEMIGROUPS 

Stojan Bogdanovie, ivliroslav eirie and Melanija Mitrovie 

ABSTRACT. In this paper we investigate semigroups whose any subsemi-
group is Archimedean, called hereditary Archimedean, and semilattices of 
such semigroups. The obtained results generalize some results of J. L. Chris-
lock, M. Schutzenberger and M. V. Sapir and E. V. Suhanov. 

T. E. Nordahl [14] studied commutative semigroups whose any proper 
ideal is a power-joined semigroup. C. S. H. Nagore [12] extended this re-
sult to quasi-commutative semigroups. Semigroups containing an idempo-
tent and whose any subsemigroup is t-Archimedean have been studied by 
A. Cherubini and A. Varisco [9]. S. Bogdanovie [2] studied weakly com-
mutative semigroups whose any proper right ideal is power-joined. B. Pon-
delieek [15] described semigroups whose one-sided ideals are t-Archimedean 
semigroups. Semigroups whose any proper ideal is a power-joined semi-
group have been studied by A. Nagy [13]. S. Bogdanovie in [3] described 
semigroups whose proper (left) ideals are Archimedean (left Archimedean, t-
Archimedean, power-joined) semigroups. S. Bogdanovie and T. Malinovie [8] 
studied semigroups whose any proper subsemigroup is right Archimedean (t-
Archimedean). In this paper we study semigroups whose any subsemigroup 
is Archimedean, called hereditary Archimedean semigroups, and semilat-
tices of such semigroups. We prove also a more general theorem concerning 
semigroups whose any subsemigroup is a semilattice of Archimedean semi-
groups. Note that semilattices of Archimedean semigroups have been studied 
by a number of authours. M. S. Putcha in [16] gave the first complete de-
scription of such semigroups. Another characterizations of semilattices of 
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612 	 S. Bogdanovii:, M. OiriC and M. MitroviC 

Archimedean semigroups have been given by T. Tamura [17], S. BogdanoviC, 
and M. (Irk. [4] and M. (Irit.. and S. Bogdanovie [10]. 

Throughout this paper, Reg(S) (E(S)) will denote the set of regular 
(idempotent) elements of a semigroup S, and for e E E(S), G e  will de-
note the maximal subgroup of S with e as its identity. A semigroup S is 
said to be 7r-regular if for any a E S, some power of a is regular. 

For undefined notions and notations we refer to [1] and [5]. 

Recall that the division relation I on a semigroup S is defined by 

a b <#' (3x,y ,  E S1 ) b xay, 

and the relation 	is defined by 

a 	b a 	E Z+) a I b". 

Also, on a semigroup S we define the relations 1, 1, 1 and f by 

	

r 	t 

alb a 	E Z + ) b" E (a, b) a (a, b) , 

a 1 b a (an E Z+ )b" E (a, 1)) a, 

a] b a (3n. E Z + )b" E a (a, , 

alb a (3nEZ+)al 	alb 

Clearly, a 	if and only if b" E a (a, b) a, for some n E Z+. 

A semigroup S is a hereditary Arehintedean if a J b for all a, b E S. By a 
hereditary left Arehimedean sentigroup we mean a semigroup S satisfying the 
condition: a I b, for all a, b E S. A hereditary right Archimedean semigroup 

is defined dually. A semigroup S is called hereditary t-Arehintedean if it is 
both hereditary left Archimedean and hereditary right Archimedean. i.e. if 
a b for all a, b E S. 

The next lemma gives an explanation why we the notion "hereditary 
Archimedean" is used. 

Lemma 1. [5] A semigroup S is hereditary Archimedean if and only if any 
subsemigroup of S is Archintedean. 

Similar assertions hold for hereditary left, right or t-Archiniedean semi-
groups. 

T. Tamura in [23] proved that the class of all semigroups which are semi-
lattices of Archimedean semigroups is not subsemigroup closed. By the 
following theorem we determine the greatest subsemigroup closed subclass 
of this class. In other words, we describe all semigroups having the property 
that any its subsemigroup is a semilattice of Archiniedean semigroups. 
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Semilattices of hereditary Archimedean semigroups 	 613 

Theorem 1. Any subsetnigroup of a semigroup S is a semilattice of Archi-
medean semigroups if and only if for all a, b E S there exists n E Z+ such 
that 

(abr E (a, b) a2  (a, b) . 

Proof. If a, b E S and T = (a, b), then by, Theorem 1 [11] it follows that 

(ab)'" E Ta2 T = (a, b) a2  (a, b) , 

for some m E Z+. 
Conversely, if T is a subsemigroup of S and a, b E T, then there exists 

Tr/ E Z+ such that 

(abr E (a, b) a2  (a,b) C Ta2 T, 

so by Theorem 1 [11], T is a semilattice of Archimedean semigroups. ❑ 

The main result of this paper is the following theorem which characterizes 
semilattices of hereditary Archimedean semigroups. 

Theorem 2. The following conditions on a semigroup S are equivalent: 
(i) S is a semilattice of hereditary Archimedean semigroups; 

(ii) (Va,b E 5) a 	b 	a2  I b; 
(iii) (Va,b,c E 	 able; 
(iv) (Va,b,c E S) a 	b Sr. b 	e 	a l e.  

Proof. (i) 	(ii). Let S be a semilattice Y of hereditary Archimedean 
semigroups 5,, a E Y. Assume a,b E S such that a 	b. Then b, alb E S e„ 
for some a E Y, so by the hypothesis we obtain that 

b" E (b, a2  al b 	alb) 	( a2 , a 2 a2 

Thus a2  T  b, so (ii) holds, 
(ii) (iii). Assume a, b, c E S such that a —› c & b 	c. Then by 

Theorem 5.5 [5], ab 	c. Now by (ii) it follows (ab) 2  i  c, whence ab T  c. 
(iii) (iv). By (iii) and Propositions 7 [22], 	is transitive. Assume 

a, b, c E S such that a 	b and b 	c. Then a 	c, so a2  T  c, by (iii), 
whence a c. 

(iv) #. (i). By (iv), 	is transitive, so by Proposition 7 [22], S is a 
semilattice Y of Archimedean semigroups S„, a E Y. 

Assume a E Y and a, b E Se,. Then a —> b and b 	b, whence a T  b, by 
(iv). Therefore, S e, is hereditary Archimedean. Hence, (i) holds. ❑ 

The next theorem gives a characterisation of semigroups which are chains 
of hereditary Archimedean semigroups. 
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Theorem 3. A semigmup S is a chain of hereditary Archimedean semi-
groups if and only if 

ab I a or ab I b. 

for all a,b E S. 

Proof. Let S be a chain Y of hereditary Archimedean semigroups S e,, a E Y. 
If a E Sa , b E So, for some a, /3 E Y, then a, ab E S, or b, ab E So, whence 

a" E (a, ab) ab (a, ab) 	or b" E 	(b, ab) ab (b, ab) 

for some n E Z. 
Conversely, by the hypothesis and Theorem 1 [7], S is a chain Y of 

Archimedean semigroups S,, rx E Y. If a E Y and a, b E S c„ then then 
there exists n E Z+ such that b" E S„aS„, and by Theorem 2, a 2  b", 
whence a fi  b. Thus, S. is hereditary Archimedean. Hence, S is a chain of 
hereditary Archimedean semigroups. ❑ 

Further we study semilattices of hereditary left Archimedean semigroups. 

Theorem 4. A semigroup S is a semilattice of hereditary left Archimedean 
semigroups if and only if for all a, b E S, 

a 	b = a 1 b. 

Proof. Let S be a semilattice Y.  of hereditary left Archimedean semigroups 
Se,, a E Y. Assume a, b E S such that a 	b. Since a E Se,, b E So, for 
some a, (3 E Y, we then have that /3 <a, so b,ba E So. Now ba b, whence 

a b, which proves the direct part of the theorem. 

Conversely, by the hypothesis and Theorem 3(2) [18], S is a semilattice 
Y of left Archimedean semigroup S e,, a E Y. Assume a E Y and a, b E Scv . 
Then a b, whence a j 0, by the hypothesis. Therefore, any S, is heredi- 

/ 
tary left Archimedean, so S is a semilattice of hereditary left Archimedean 
semigroups. ❑ 

Corollary 1. A semigroup S is a semilattice of hereditary t-Archimedean 
semigroups if and only if for all im , b E 5, 

a-->b 	alb. 

Now we prove a theorem which generalizes a result of J. L. Chrislock [10]. 
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Theorem 5. The folowing conditions on a semigroup S are equivalent: 

(i) S is hereditary Archimedean and 7r-regular; 
(ii) S is hereditary Archimedean and has a primitive idempotent; 

(iii) S is a nil-extension of a periodic completely simple semigroup; 
(iv) (Va,b E ,9)(3n E Z+) an = (a"b"a")". 

Proof. (i) 	(ii). First we prove that 

(1) 	 (Va E S)(Ve E E(S))(3n E Z+) e = (e e  r 
Indeed, for a E 5, e E E(S), ea f e, by (i), whence e = (ea)" or e = (ca)'Le, 
for some n E Z+. However, in both of cases it follows that e = (ea)ne = 
(eae)". Thus (1) holds. 

Further, assume a E S. Let in E Z+ such that a"' E Reg(S) and let x be 
an inverse of a". Then amx,xam E E(S), so by (1) we obtain that 

amx = (a"'x •• (L amx)" = (a"'+ 1 x)", 

for some n E Z+, whence 

a"' =aznxa,n = (am+ l x)" a"' = (a"'"" x)n-l am+i xam = 

= (am+ I x)8 _ 1  aam xam = (am+ 1 x)"-l am+1  = 

= (am+ l x)" -2 am+ 1 :ram+ 1  = (am+ 1  x)" -2  aam x a"' a = 
(ami- l x) n - 2 am+2 = 	= = (am+ l x)" -2  are' a = 

(am+1 x) u-0,- -1) am+(,-.1) 

= am+1 	= aam xama"-1  = 

= aama" -1  = am+"• 

Thus, S is periodic, and by Theorem 3.14 [5], S has a primitive idempotent. 
(ii) (iii). By Theorem 3.14 [5], S is a nil-extension of a completely 

simple semigroup K. But,  K  is hereditary Archimedean and regular, so it 
is periodic, by the proof of (i) 	(ii). 

(iii) (iv). Assume a,b E S. Then ak  = f' and b" = f, for some 
e, f E E(S), k E Z. Further, efe E eSe = Ge , by Lemma 3.13 [5], whence 
(efe) 1" = e, for some m E Z.  Now, for n = km we obtain that an = 
(a"b"a")". 

(iv) (i). This follows immediately. 0 

Finaly we prove the following theorem which generalizes some results of 
M. V. Sapir and E. V. Suhanov [19] and M. Schutzenberger [20] (see L. N. 
Shevrin and E. V. Suhanov [21]). 
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Theorem 6. The following conditions on a semigroup S are equivalent: 

(i) S is 7r-regular and a semilattice of hereditary 'Archimedean semi-
groups; 

(ii) S is a semilattice of nil-extensions of periodic completely simple semi-
groups; 

(iii) (Va, b E .5)(371E Z+) (ab)" = (ab)"((ba)"(ab)")"; 
(iv) (Va, b E 5)(37t E Z+) (ab)" = ((ab)"(ba)"(abr),` 

Proof. (i) 	(ii). This follows immediately by Theorem 5. 
(ii) (iii) and (ii) 	(iv). This follows by Theorem 5. 
(iii) (i) and (iv) 	(i). This follows immediately. 0 
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A CONNECTION BETWEEN 
CUT ELIMINATION AND NORMALIZATION 

Mirjana Borisavljevie 

ABSTRACT. Sequent systems for classical and intuitionistic logic and nat-
ural deduction systems for these logics are characterized by two important 
theorems. Sequent systems are characterized by cut- elimination theorems, 
and natural deduction systems by normalization theorems. In this paper, 
by means of multicategories and the typed A-calculus we exhibit some simi-
larities and differences between cut elimination and normalization. We con-
sider the sequent system and the natural deduction system for intuitionistic 
propositional logic. We define a multicategory corresponding to the sequent 
system. On the other hand, a typed A-calculus corresponds to the natural-
deduction system. We show how to form a typed A-calculus out of a mul-
ticategory and vice-versa. In some kinds of multicategory, some equations 
necessary for cut elimination, are not necessary for normalization. 

Introduction 

In this paper we shall consider Gentzen's sequent system and his system 
of natural deduction for propositional intuitionistic logic.. We shall inves-
tigate the connection between cut elimination in the sequent system and 
normalization in natural deduction. 

In their papers Zucker and Pottinger have already described this connec-
tion, in a certain way. hi this paper this will be done by linking multicate-
gories and typed A-calculi. 

Certain multicategories will correspond to Gentzen's sequent system for 
intuitionistic propositional logic. Objects of these multicategories will be 
formulas and operations on objects will be logical connective. We shall take 
the arrows as proofs and operations on arrows will correspond to inference 

I would like to express my gratitude to Professor Kosta Do§en for many useful and 

important comments and advices he made on my manuscript. 
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620 	 M. BorisavljeviC 

rules. The arrow r 	A, which way have been constructed from other arrows 
by applying operations on arrows, will correspond to a particular derivation 
of the sequent F F- A. 

Equations between arrows in multicategories equate arrows which cor-
respond to derivations with the same end-sequent. On the basis of the 
equality f = g we shall be able to transform the derivation corresponding 
to the arrow f into the derivation corresponding to the arrow g. Equations 
between arrows which we shall assume will make cut elimination possible in 
some multicategories; for example, in multicategories with axioms which are 
closed for cut. In these multicategories equations can be explained in the 
following way: there will be two kinds of equation. In the equations of the 
first kind the arrows on the left-hand side will correspond to a derivation in 
which cut has to be eliminated and the arrows on the right-hand side will 
correspond to a derivation in which cuts are eliminated or of smaller degree 
than the cut on the left-hand side. Equations of the second kind equate 
arrows which are constructed by application of the same operations on the 
same arrows and the only difference is in the order of application of these 
operations. 

A typed A-calculus will correspond to the system of natural deduction of 
intuitionistic propositional logic. Types of the A-calculus will correspond to 
formulas and a term of type A will be considered as a derivation with the 
end-formula A. We shall define equations on terms that will correspond to 
the steps of reduction leading to proofs in normal form. We shall postulate 
equations on terms that will represent reductions in natural deduction such 
that the middle part of the proof is made of atomic formulas. 

In Section 1 four kinds of multicategory will be defined; they differ in 
equations their arrows. In MG-multicategories with axioms which are closed 
for cut equations will represent steps of transformation of a derivation into 
a derivation where no cut appears. In the other kinds of multicategory, 
called MGI, MN and MNI, we shall require other equations on arrows. The 
equations of MN and MNI will be closer to normalization of proofs.The 
polynomial multicategory M[X] will be formed out of a multicategory a M 
in a standard way (cf.[2]). Functional conipletness will be proved for all 
those multicategories. 

In Section 2 two kinds of typed A-calculus will be defined. One kind 
of typed A-calculus will have equations between terms that correspond to 
reduction steps in the normalization of proofs. The other kind of typed A 
-calculus will have added equations by which formulas of the middle part of 
the proof are broken into their atomic subformulas. 

In Section 3 we shall define how typed A-calculi can be formed out of 
objects and arrows of multicategories and vice versa. We shall be able to form 
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A connection between cut elimination and normalization 	 621 

only an MN-multicategory and an MNI-multicategory out of the given typed 
A-calculus. Then it will be possible to separate some equations which are 
needed for cut elimination in some extensions of Gentzen's sequent system, 
but are not needed for normalizing proofs in these systems. 

1. Multicategories 

Definition 1.1. A multigraph is made of a class of objects and a class of 
arrows together with two mappings: source: {arrows} —> {objects}*, 
target: {arrows} —› {objects}, where (objects}* is the free monoid generated 
by the class of objects; f : F 	A is an arrow, where F = A 1 ...A„ is string 

of objects (our arrows are sometimes called lnultiarrows). 

Definition 1.2. A context - free recognition grammar is a multigraph 

with operations on objects: A, V and special object 0. We also have 

operations on arrows: 
structural rules: 

f:F AL-3A-.0 
PA,n( f):1" AA- ,C 

Pr-47  
tA(f):Ar—c 

f:AAF--+C  
cA( f):Ar 

9:AA--47  
y(j1:1 A-47 

permutation 

thinning 

contraction 

cut 

connective rules: 

MI 	f:AT .-C. 	g:Lir-.0 	 MII 	
f:1. --■ il g:r-013  

f p :AABI - -.0 	sipt:AAlirc•C 	 (f,g):F--.AAB 

Mill f:Ar--.0 g:E1C---4C 	 MIV 	f:r--A 	g:F -413  

	

[f,g1:AVBr-C 	 k f:1- ---■ AvB 	k i g:1- -.AVB 

MV 	pr. g:B.1-, C 	 M
VIf:AF-- ■ B  

	

,g(f):ABF.1- ■ (:: 	 f'":1--,AB 

and special arrows: 

MVII 1 A  : A —> A, for each object A from the class of objects. 
MVIII CIA : 0 ---, A, for each object A from the class of objects. 

Definition 1.3. 
1. Let f : FAA0A and A = C1 ...C„, A = Di ...D„„ then 

PA,A(f ) =def. Pel,D,„(•••(PC„-i ,Di 	 ))•••))•••) and 
pA , A (f) : rnAo A. 

2. Let I : r -4 A and A = B1...Bn; then to ff) =def. tBi(--(tB„,(f))• 

and tA(f) : AF 	A. 
3. Let f : AAI' --+ A and A = Bi.•• 139t, 

It : Bt 	Bi Bi-Fi •••Bniii 	r 	A, A i  = 	A = 0, 

B0  = 13,+1 = 0, where 0 is the empty string and 1 < i < it; then 
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622 	 M. BorisavljeviC 

CB` (h) =del PR; 	; B1 ...Bi- I (eBi 	 ( • •.(PB.,Bi(h))•••))) and 
cA (f),_. def  (B.( cB._,( ... ( cB,(/ ))...))) and 

cA(f): r 	A. 

Definition 1.4. A multicategory is a context-free recognition grammar 
in which the following equations on arrows hold: 
MI. f(1 A )= f, 	 where 1: Al' 	B,'1A : A —4. A 

M2. 1B(g) = g, 	 where g : A 	B , 1B:13 —■ 13 

M3. h(g(f)) = h(g)(f), 	 where h : BA C, g : AA 	: r —■ A 

M4. pn,r(vr,n(h(f))(9)) = PA,A(PA,W(h)(9))(f), 

whereh:ABA—.C,g:A.B,:c—•A 

Now we shall define four kinds of multicategory. Each of them will have 
five families of equations which hold for their arrows. 

Definition 1.5. An MG-multicategory (M is for "multicategory" and 
G is for "Gentzen") is a multicategory in which the following families of 
equations hold: 
I PTC-equations: 
PPl. PB,A(PA,B(f)).= f, 

PP2. PA,B(PC,D(1)) = PC,D(PA,B(f)) ,  

PP3. PA,B(PA,C(PB,C(.0)) = PB,C(PA,C(PA,B(f))), 
PT1. PA,B(tc(f))=tc(rA,B(f)), 

PC1. cc(PA,B(f))=PA,B(ec(f)), 

PC2- cc(Pc,cf.fn ceff 
Tel. pc,B(tc(cBUM = eff(PC,BE(tCUM, 

TC2. cB(iE(f)) = f, 

for all f : PARA C. 

for all f : FABACDA E. 

for all f : rABCA C. 
for all f : ['ABA 	D. 

for all f : CC. ABA D. 

for all f : CCA D. 

for all 1: BBA 	D. 

for all f : A 	D. 

CC1. cA(PB,AA(rH(PAA,B11(f))))=PB,A(CMPA,BB(cA(f)))), for all f : AABBA —• D. 

Derivations in this family of equations differ only in the order of appearance 
of the structural rules: of contraction, permutation and thinning. 
II CUT-PTC-equations: 
CUTPI. 

CUTP2. g(pc,f)(1)) = pc,D(g(f)), 

CUTTI. te(Y(i)) = Pr,c(pc,A(tc(9))(f)), 
CUTT2. g(tc(f)) = 4:J0(M, 

CUTT3. tA(g)(f) = 	 for all f : r 	A, g : AA 	D. 
CUTCI. pc,A(Ce(g))(f)=Pc,r(ec (Pr,ce (Pcc,A(g)(f))))' 

for all f : r — A, g : C'CAA B. 

for all f : ccr — A, g : AA —• B. 

for all f r g : AAA —■ B. 

PB,C(g)(f) = p B,c (g(f)) ,  for all f : —. g : AABCA D. 

for all f: reDA — A, g : AA D. 

for all f : r — A, g : AA --. D. 

for all f : --. A, g : 	--. D. 

CUTC2. g(cc(1))=ce(g(f)), 

CUTC3. ea (9)(f) = cr(Pr,A(g(f))(f)), 
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A connection between cut elimination and normalization 	 623 

Derivations in this family of equations differ in the order of appearance of cut 
and other structural rules. For example, in one derivation cut will appear 
first and permutation will follow and in the other permutation will precede 
cut. However, in CUTC3 we replace one cut that comes after contraction 
on the left by two cuts preceding contraction on the right, and in CUTT3 
we replace one cut that comes after thinning on the left by zero cuts on the 
right. 

III IMPORTANT CUTS equations: 
ICUTI. gp ((f,h)) = g(f), 	 for all y : Ar — C. f : A —* A, h : A —. B. 

ICUT2. g p ,((f,h))= g(h), 	 for all g : Br 	C, f : A 	A, h: A 	B. 

ICUT3• (f,  h)(g) = (1(9), h(g)), 	for all y : A —. C, f :Cr 	A, h : Cr 	B. 

ICUT4. [f,h](kg)= f(g), 	 for all g : r — A, f : AA C, h : BA — ■ C. 

ICUT5. [1, h]( k • g) = h(g), 	 for all g : 	B, f : AA 	C, h: BA 	C. 

f[h](?) = pn,a (f(Y)(h)) , 	for all y : AA —. B, f : Br 	h : A 	A. 

ICUT7. 11*(g)= (pa,A(pA,c(h)(g)))*, for all y : A 	C, h : Acr — B. 

ICUT8. f(OA) = OB, 	 for OA :0—.A,OB:0—.Band 	B. 

By equations of this family the following derivations will be equated: 
I. a derivation with a cut and a derivation with one or more cuts whose cut 
formulas are subforniulas of the cut formula of the first cut; 
2. derivations which differ in the order of application of a conecctive rule 
and a cut. 

IV TROUBLESOME EQUATION: This family consists of a single equation: 

T.E. hqf,  , g]) = [h(f), h(g)1, 	for all h : CA 	D, f : 	C, y : Br 	C. 

V PTC-CUT-CON-equations: 
PA1 PA,B(gp) 	(PA,B(Y))p, 

PA2. PA,B(9p , )=(PA,R(9))p , , 

PA3. PA,B((f,g))= (PA,B(1),1 ) A.B(9)), 

PV1. PA,B([1-,9])=[PA,B(f),PA,B(01, 

PV2. PA,13(kY)= k(PA,B(9)), 

Pv3. PA,B(k , g)= ki(PA,B(Y)), 

PA,B(Y[f]) =PA,11(91[f], 

P*2. PA,B(g[f]) = 9[PA,B(f)1, 

P*3. PA,B(e) = (PA,B(g))`, 

TAI. Pc,Ane(telgrn= (Pc.A (IGO/MP , 

 TA2• 	AB (to(gpo)) = (pcji (te(y))) p , , 

TA3. tc((f, 9)) = (te(f),117(9)),  

for all y : CAABA E. 

for all g : DOA BA E. 

for all f : FA BA C, g :FARA —* D. 

for all f : (TARO E, g : DrABA E. 

for all y: 	RA 	C. 

for all g : rABA ---0 D. 

for all g : DAABA 	E, f : 

for all g : DA 	E, f : ['ABA 	C. 

for all g : CTABA D. 

for all g : AI' — D. 

for all g: Br — D. 

for all f : — A, g : r — B. 
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624 	 M. Borisavljevie. 

Tvl. 	te(Lf 	= 	vB,(7 (E,Pc,A (tc(i 1), pc,B (tc(9))1), 

for all f : Ar 	D, g : Br 	D. 

TV2. 	te(kg) =k (tc(9)), 	 for all g 	A. 

Tv3. 	tc(kfg) =ko (to(g)), 	 for all g 	B. 

T *1. PC,AB(iC(g[f])) = g[le( f )], 	 for all f : 	A, g : BA — ■ D. 

T 	Pc,Afir(tc(g[i]))=Pc.B(tc(g))[.f], 	for all f 	A, g : BA — ■ D. 

T 	tc(e) = (Pr,A(tr(g)))* 	 for all g : 	B. 

CAL 	cc(pAAB,CC(PCC,A (g))p) = PA AB,C(PC,A (cc(g))) p , 

for all g :CCAA — ■ D. 

CA2. cc(PAAB,cc(Pcc,A (g))p ,  ) = PAAH,G(PC,A(Ce(g)))pg 

for all y : GCBLI 	D. 

CA3. ce((f,g)) = (cc(f),cc(g)) , 	 for all f : CCT 	A, g 	B. 

CV1. 	PC,Av ft (cc(r Av R,ccag, ID)) = [Pc.A(cc(PA,cc(g))),Pc,B(ce(PB,cc(f)))], 

for all g : ACCF D, f : BCCF D. 

Cv2. 	ec(kg)= k(cc(g)), 	 for all g : ( .47 — A. 

CV3. 	cc(kig) = kr (cc(Y)), 	 for all g :CCF — B. 

c c,.(pA*.B,ce(g[f]))= p A ,.B . c(g[cc(f)]),for all f : ccr 	A, g : 	D. 

ce(Pa*Br,cc(pec,B(g)[f])) = PA .1-11',C(PC,B(Ce(g))[f]), 

for all f : r — A, g : CCBA D. 

ce(f+) = (Pc,A(cc(PA,cc(f))))* 	for all f : ACCF 	B. 

CUTA1. pr,AAR(PAAB,c(94)(f))= (Pr ,A(PA2,c(g)(f)))n 

.f- it(P Fin A,C(gp ,  )(f)) -= (Pr,A(PA,c(g)(f)))p ,  

for all f : 	, g : AGA ---0 D. 

CUTA2. 	= (g(f)), 

g(fp , ) = (g(f))p , 
	 for all f : Ar 	c, g : CA 	D. 

cuTvl. pr,Avrt(PAvB,c(ff,g1)(h)) 	frr,A(PA,c(f)(h)),pr,B(Pri,c(g)(0)], 

for all f : AGA 	D, g RCA 	D, h : 	C. 

CUTv2. k9(f) = k(g(f)), 

OW) = ki(9(.0), 
	 for all f 	C, CA —• A. 
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A connection between cut elimination and normalization 	 625 

CUT 	qy[f]) HO[f], 	for .11 f r — A, DI P.. 	 I). 

C1.TT3. 

PA 	,C (g[f])(h) = A *- B,A (g[f(h )]), 

for all h: A 	C, f : 	- A, y : 	D. 

PA*Br,c(fl[f])(0= PA *- fii,A (PA,B(PB,c(g)(h)gf1), 

for all h : A -- C, g : BCA D, f : r - A. 

Equations of this family equate derivations which differ in the order of ap-
plying connective rules and structural rules. 

Definition 1.6. An MN - multicategory (N stands for "Natural deduc-
tion") is a multicategory in which hold all the equations that hold for MG-
multicategories except that the TROUBLESOME EQUATION is replaced 
by the following special cases of this equation: 
NEI. lcp([f,g]) = [1cp(A1cp(0], 

NE2. 1 pp ' ([. f, g]) = [I Di,' (f), Di,' (0], 	for all f : AF 	C A D, g : 	C A D. 

NE3. 1 o[hiJ([f,g]) = P D[hd(f), D [h d(g)], 

for 	: A — C, : 	— C D, : 	—C D. 

NE4. [hi, h2]([i, 	= 	, h2)(i), [h , h2](0], 

for all hi : CA — h2: DA — E, f : Ar 	v D, g : Br - v D. 

NE5. El ([f, g]) = Pc (f),Dc(g)], 	 for all f : AI' c- 0, g : BI' 	0. 

We shall call these normalizing equations (NOR-equations) because they 
correspond to steps the normalizing of a derivation. 

Definition 1.7. An MGI - multicategory is a multicategory in which hold 
all the equations that hold for MG-multicategories except that PTC-CUT-
CON equations are replaced by the following equations: 
IA. (Up / Igpi) = lAnti• 

IV. [k 1  A ,ki 1 11] = 1  A v • 

(PAB,A(113[1,1]))* =1Ar-r• 

10. ❑° = lo. 

This family of equations will be called identity equations (ID-equations). 

Definition 1.8. An MNI- multicategory is a multicategory in which hold 
all the equations that hold for MN-multicategories except that PTC-CUT-
CON-equations are replaced by ID-equations. 

It can be easily seen that if the TROUBLESOME EQUATION holds, then 
the NOR-equations hold, too. This means that each MG-multicategory is an 
MN-multicategory. in some multicategories the TROUBLESOME EQUA-
TION cannot be det4ed from the NOR-equations and other equations. For 
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626 	 M. Borisavljevk 

example, let the arrow h : 	D be an axiom, where C is an atomic 
formula then the TROUBLESOME EQUATION cannot be derived from 
NE1-NE5 for the arrow h. 

It can be shown that from the MI-M4 equations, the equations of the 
family IMPORTANT CUTS and the ID-equations, we can derive the PTC-
CUT-CON-equations. According to that each MG-multicategory is an MGI-
multicategory, and in the same way each MN-multicategory is an MNI-
multicategory. 

From now on in this text, if not stated otherwise, we shall take as multi-
category M a multicategory of any of the four kinds previously defined. 

Now we shall form in a standard way a polynomial multicategory M[X] 
out of a multicategory M. Suppcmse a multicategory M is given. The poly-
nomial multicategory M [X] will be of the same kind as the multicategory M 
itself. In a usual way, a set of new arrows X = {xA : A : A is an object 
of M } is added to the multicategory M. Arrows of M[X] will be arrows of 
mil, arrows from X and arrows obtained with the help of the operations on 
arrows extending those assumed for M. The arrow of M[X] will have the 
form (p(xi,...,x„) : F A, where x i , ..., x„ are arrows from X which can 
appear in the construction of the arrow the 4o. Arrows x i , 1 < i < n need 
not occur in this order in construction of ( i.; they can occur several times, 
and they need not occur explicitly. The next step is making a multicategory 
out of M[X]. For this we need some equations that hold on arrows in M. 
For two arrows of .A4[X] which have the some source and target consider all 
the equivalence relations -ay for some Y C X on arrows of M[X]. Which 
basides some of the families of equations used for defining MG, MGI, MN 
and MNI-multicategories must satisfy also 
X. the equations following form: 
if so - y then vp  -ay •/I„ where (p, : Ar 	c in M[X], and similar by 
with other operations on arrows. 

The relations —y will satisfy the families equations assumed for the kind 
of multicategory to which M belongs. Then is the smallest of the 
equivalence relations ay (cf. [2], p. 57). For example, let M be an MG-
multicategory; then a x  satisfies the following families of equations: X, M, 
PTC, CUT-PTC, IMP-CUT, TR-EQ, PTC-CUT-CON. The relation 5-s–Z x is 
the smallest equivalence relation which satisfies these families of equations. 
Then M[X] with ^= a  is a polynomial MG-multicategory. 

Let M be a multicategory of one of the kinds defined above. The func-
tional completness theorem will hold for the multicategory M. 

Theorem 1.1. Let (p(x i ,...,x„): 	be an arbitrary arrow of multicat- 
egory M[X], where P = 11 1 ...B,„ and xi : 	Ai, 1 < i < n. Then for an 
arbitrary order of formulas the A. i < i < n, for example A 1 ...A„, there is 
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A connection between cut elimination and normalization 	621 

a unique arrow in the multicategory .A4, such that: 

: 	 ---. A and (75(x1)-(xn) 	(i011 

when.: Y = 
The arrow co Ai...A.  will be denoted simply by 7, and A 1 ...A„ is A. 

Proof. Only a sketch of the proof will be given here. 
I We shall first show that the arrow co of M exists for each arrow co(xi,... 
,x„) of M[X] for which hold (**). The proof will be executed by induction 
on the complexity of the arrow co(x i ,...x„). The a arrow co(x1,...x„) must 
have one of the following forms: 
1. f, where f is an arrow of M; 2. x i 	Ai; 3. pD,c(0); 4. eB(0); 5. tE(0); 
6. ifip ; 7. Ow; .. (0,0; 9. [0,a 10. kli, ; 11. k''';  12. 'IP[a 1 3. 1P * ; 14 . On 
15. IMO 16. g(0), where g in 15. and 16. is an arrow of M. 

Arrows 7,b and are of smaller complexity than arrow co and then on the 
basis of_ inductional hypothesis there are 7/;, in .M for which: 

(xi)...(x„) 	0(x l ,...,x„) and 4(x 1 )...(x„) 
Then (7 is: 

1. 1= til l (•••(t A n (f))•••); 2. 7:7 = t AI  •••tAi_l (PAa+1.••An,Ai (tAi+j...A. (1 Ai ))); 

3. PD,c( 17); 4 • PB,A 1 .../OcB(PA,....4„,BB('))); 5. PE,A1...A n (tE( 17))i 
6 . PBAc„:“(PA,B0707.)); 7. Pc AB,A((p6.,B(3))0; 8• (7:0; 	-•• 

- 9 . Psvc,A(EPA,B(TP),PA,ca)]); 10. k7/;; 11. 0 71P;  
12 . cA(PBc,b..a(PEl i ...tik ,A(P6.,e(0))); 1 3. (PA,B(V))*; 
14. cA (pB ,... 13,,,A (pA , B (TP)a))); 15. pB,...B A„A(pA,B(V)(g)); 16. g(TI7); 

On the basis of the equations that hold in the multicategory .A4[X] it can 
be easily shown that (**) holds in all cases 1-16. 
II In order to show the uniqueness of the arrow 7, we first define an equiv-
alence relation 	in the following way: 
for arrows 0(y1,...y„,) and . (7/1 ,...y,„) : 	A 

y 	if and only if 1/' H  = 43  in M, 	 (o) 

where Y = 	and yi : 	Bi and 0 is B1...B„, taken in any order. 

Then it is proved that the relation 	is an equivalence relation my. 
Since 	is the smallest equivalence relation we get 	only if = 

Now we suppose that there are two arrows in M, say co- and (7' such that 
'7, <pr  : A1 ...AJ 	A and co(x 1 )...(x„) 	7,51(xi)...(x„) 	co. As 
is transitive we have T,(x 1 )...(x„) 	(71 (x i ) ...(x „) and by implication above 

we get rp(x i )...(x„) = (10: 1 )...(x„) in M. Then from the part I of the proof 
and from equations which hold in M we get that co = co'. This means that 
7 is the unique arrow of M for which (**) holds. ❑ , 
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628 	 M. Borisavljevk 

2. Typed A-calculi 

Definition 2.1. A typed A-calculus AC is a formal theory defined by classes 
of types, terms of each type, and equations between terms. We shal write 
t E A to say that I is term of type A. 

Types. The class of types contains special a type 0, and is closed under three 
operations: A A•B, AV B, A 	B, where A, B are types. 

Terms 2.1. For each type A there are countably many variables of type A: 
x i  E A, i = 1,2,3,... 
2.2. If tE AAB then Lt E A and Rt E B. 
2.3. If u E A and t E B, then II(u, OE A A R. 
2.4. If t(x) E C and x E A, s(y) E C,y E B, uE AV B, then 
b,y (u,t(x),s(y)) E 

2.5. If t E A and s E B, then KBt E A V B, PA s E A V B. 
2.6. If u E A and t E A 	B, then tu E B. 
2.7. If u(x) E B and x E A, then A su E A 	B. 
2.8. If t E 0, then tAt E A. 

Equations. Equations have the form t =x s, where t and s have the same 
type A, and X is a finite set of variables such that all variables occuring 
freely in t ands are in X. 
3.1. =x is an equivalence relation. 
3.2. If t =y s and Y C X, then t =x s. 
3.3. =x satisfies the usual substitution rules for all terms forming operations. 
For example: 

if t i  =x t2 and s i  =x  82  then II(ti,81)=x II(t2,82) 
where t 1  , t2  E A, si ,s2  E B. 

If t(x) is a term of type A, a: E B and s is a term of type B then t[x/s] 
is the result of replacing an occurence of a: in the term t by the term s. 

Definition 2.2. A typed A-calculus is AC-ND if the following equations 
on terms hold in it: 
L. L(I1(t, 3)) =x t, 	 for all t E A, s E B. 

R. /411(t, 8)) =x s , 	 for all t E A, s E B. 

K. 6x , y (KA u, t(x), 8 (0) =x t[r/u], 	 for all u E A, t, s E 	E A, y E B. 

-K'.45 x , y (K'B u, t(x),s(Y)) =x s[Y/11], 	 for all u E B, t,s E C, x E A, y E B. 

13. (Axi)u =x L[x/u], 	 for-all u E A, t E B, x E A, 

where in K, K' and 13 no free variable in u becomes bound in t[x/u] and s[y/u]. 

0. ir 	)1 	tfiz, 	 for all x E A, t E B, z E O. 
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A connection between cut elimination and normalization 	629 

N1. Lb x , y (u, t(x), s(y)) =x 	Li(r), Ls(y)), 

foralluEAvB,xEA,yEBt,sECA D. 

N2. R15,,, y (u,gx), 8 (0) =x bx, y (11, Rt(x), Rs(y)), 

foralluEAVB,xEA,yEBt,sECA D. 

N3. 6x1 ,,2 (6, /,(u, t(x), 8(0 	(J; 	v2(x2 )) =X 

45x,y(u, 6x1,x2 ( 2 , VI (xi ), V2 0:2))(Z), 62,1,2:2(S, VI (X1), v2(x2))(y))) ,  

foralluEAvB,xEA,yEB,1,sECvD,xi EC, x2E D,vh v2E E. 
N4. 6"(u,2(x), s(y))v =A- b,,,,(u,tv(x),sv(y)), 

for•alluEAVB,:rEA,yEB,t,sECD,vE C. 

N5. t.c(6x , y  (u, t(x), s(Y)) =x a.,y(U, I OW, t(s(y)), 

for all it EAVB,X E A, yE B,c,s EA. 

The terms of typed a A-calculus code derivations of the natural deduc-
tion system for intuitionistic propositional logic. Equations L, R, K, K', 
and 0 correspond to reduction steps in the normalization theorem when a 
derivation in which maximum formula appears is transformed into derivation 
without maximum formula. Equations Ni, N2, N3, N4, N5 correspond to 
reduction steps by which a maximum segment in a derivation is eliminated. 
Terms on the left-hand side of all equations will correspond to derivations 
in which a maximum formula or a maximum segment occurs. Those deriva-
tions are transformed by reductions into derivations corresponding to terms 
on the right-hand side of equations. 
Equations on terms in a typed A-calculus A(.'-ND equate derivations with 
their normal forms. 

Definition 2.3. A typed A-calculus AC-NI) is A C-NDA if the following 
equations on terms hold in it: 

A. z =x II(Lz,Rz), 	 for all zE AA B. 

71 V . z =x 8(z, Kqx , 10,0), 	forallzEAVB,xEA,yE B. 

z =x A,zx, 	 for all z E A =, B, x E A. 

110. 	Z =X 1.0Z, 
	 for all z E O. 

Equations on terms 70, 71V, 71 	and 710 equate derivations consisting of 
nonatomic formulas in their middle part with derivations whose middle part 
consists of atomic formulas. 

3. Connection between multicategories and typed A-calculi 

In this section we show how to form a typed A-calculus out of a multicat-
egory M and how a multicategory can be formed from a typed A-calculus 
G. 
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630 	 M. Borisayljevit.  

First we shall define types and terms LC(M) front objects and arrows of 
some multicategory M. 
LCI 1. the types of L(..!(./t/1) will be the objects of M. 
2. the operations on types in LC(M) will be the operations on objects of 
M 
LCII Every arrow term (p(x i ,..., x„): y A of M[X] is a term of type A 
in LC(M), and all the free variables of co(xt,...,x„) are in X = {xi,..,xn}• 
oT. x E A, x =def. x: 	A. 
IT. If 4.2(x1,...x,,): 	A A B, then bp =dej lAr('P)- 
2T. If yo(xi ,..•,z n ): — A A B, then !bp =dcf 1  Bp' (V)• 
3T. If (Ail •••, zn) : • —'A ,  /NIA, ..., 	) : 	then ii(cp,i13) =dej (50 ,0)• 
4T. If yo(zt,..., zk) : — A v ft, 0(x1, 	x,...,x,,) : 	C, 

—C, x : 	A, y: —• 

then lix,y(42 , 1P(x),(0) =dej [0, ao2), 
where Tp is defied with respect, to Y = {x} and i is defined with respect to Y = {y}. 

5T. If co(xt 	xn) : — A, then Kfico =dej k42 - 
6T. If 42(zi,--, x n ) : 	B, then K,4 4,2 =dej eV% 
7T. If 	 A, 	 : — A 	B, 

then x'42  =dej I 8[ 1  AHIP)(49). 
8T. If (p(xi,...,xn); 	B, x : 	A, then A.,‘,0 =dej 	, 

where iTp" is defined with respect to Y = {x}. 
9T. If so(xt,...,xn); 	0, then t ALP =dej CI A M- 
LCEQ. If cp(xi,...,x„),0(xl,...,x„); 	A, 

	

then (i2 =x ti) if and only if 42 91x 	.A4[X], where X = 

Now let one typed A-calculus, C. be given. We shall define objects and 
arrows of MC(r) from types and terms of the typed A-calculus G in the 
following way: 
MCI 1. the objects of MC(E) will be the types of E. 
2. the operations on_objects iii MC(E)will be the operrations on types of C. 
MCII An arrow f : A l  ...A n  A in MC(C) will be (xl•-xn;<,0(x1,—,xn) E 
A) where co(x 1 ,...,x„) is the term of G and x 1 ,...,x„ are all free variables of 
term so, and x 1  E •••, zn E An- 
0Al• lA =dej (X; X E A) 
0A2. 	=de/ 	0; tAX E A) 
1A. If f = (xi ...x„xyyl ...y,,,; E 	x E A, y E B 

then PA,B(f) =dej (x •••X0/ 2;Yl...Ym; E C). 
2A. Iff = (xxxi...xn; E C), x E A, then ca(f)=def (xxt...xn; E C). 
3A. If f = (Si...xn; p E X), .17 E A, then ta(i)=def (xxi...xn;y2 E C). 
4A. 	f =(xt...xn;4' E A), g = (ryt—g,,,; ti) E B), x E A, 

then g(f) =dej (1 1—ZnYI —gm; t('[2142] E B). 
5A. If f=(xxi...xn;42EC),xEA, zEAA B, 

then fp  =dej (ZX1...xn; VEX / 	E C). 
6A. If f = (yxt...xs.; (pEC,yEB,zEAAR, 

then fp , =dej (zXi...Xn;  4P[Y/  RZ] E C). 
7A. If f = 	 E A), Y(xi...x14;ti ,  E 8), 

then (f, 9) =dej 	 E A A B). 
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A connection 1)ctwon tut Alimination and normalization 	611 

8A. Iff=(xxi...x n ;coE('),y= (yx,.....c,,;t1) EC), x E A, y E B and zEAA B, 
then [f, g] =dej (zxl.:.x„;61,,y(W(x), Ab(y)) E C). 

9A. If f = 	 E A), then kf =de./ 	 E AV B). 
10A. If f = 	E B), then pi' =def (Zi...Xn; ICAO E A V B). 
11A. If f = (xl...xn;(00 E A), = (xlii...Yin; 11, EC),xEB,yEAzEAB, 

then g[f] =def (xi.••xn.Y1•••Yrn; IP[x/zY[Yhd E (:)• 
12A. If f = (xxl...x,,; cp E B), then f* =dej (xi ...x,,; Ax(p E A 	B). 
MCEQ. If f 	 E A), g = 	 E A), 

then f = g if and only if 1. x;, y; E Ai, 1 < i < n, 2. cp =x 1/014) 

	

where 17 = 	= Yi.••Yn and X = {xi .-xn}. 
In this way types and terms of LC(M) and objects and arrows of MC(L) 

are defined. It is still neccessary to show that LC(M) is a typed A-calculus 
and that MC(L) is a multicategory. 

It has to be shown that the corresponding equations hold for terms of 
LC(M). Depending on what kind of multicategory M belongs to, LC(M) 
will be LC-ND or LC-NDA typed A-calculus. The following theorem holds: 

Theorem 3.1. 
1. If M is an MN-multicategory, then LC(M) is a AC-ND typed A-calculus. 
2. If M is an MNI-multicategory, then LC(M) is a AC-NDA typed A-

calculus. 

Proof. In both cases we have to verify what equations hold on terms in 
LC(M). 
1. As an example we show that the equation Ni. holds: 
LIS(u,t(x),s(y)) =x b(u, Lt(x), Ls(Y), u : 	A V B, t,s : 	C A D, 
x: 	A, y : 	B. 
Lt =def  lcp (t), Ls =def lc p (s), 45x , y (u,t(x),s(y)) =de j 1.7 

Or,y (u, Lt(x), Ls(y)) =def { 1 CP(t)1 1 C(8)](21), Lox,y(11,1(x),S(Y)) =dej 

icp(rtA(U)), 1 ep([111(U)) =x 1Cp(R, 4D(U) =X [leg* 1cp (s)1(u), 
then 	LOz.,g (u,t(x), s(y)) =x bx,v(u,  Lt(x),  Ls(Y))• 

It can be proved in a similar way that all the other equations hold. 
2. As an example we will show that the equation riA holds and that it 

depends on the equation I1: z =x ll(Lz, Hz). 
z : —* A 	B, Lz =d ef 1 A p (z), Hz = def  1Bp,(z), 
II(Lz, Hz) =def (1 Ap(Z) , 1 Bn i  ( Z )) ,  
(1 Aj,(Z) 11 Bp ,  (4) =X  (1 Ap , 1 BO (Z .) = X 1 AAB(Z) =X  Z 

then z =x II(Lz, Rz) in LC(M). 
All the other equations are verified in a similar way. ❑ 

Let M be a multicategory of any of the four kinds previously defined and 
let its axioms be closed for cut. This means that if the arrows f : AA 	B 
and g : 	A are axioms of M and A is atomic formula, then the arrow 
PO is an axiom in M, too. In this multicategory equations on arrows 
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632 	 M. Borisavljevie 

connect a derivation in which cut occurs and a derivation in which cut is 
eliminated. Equations on terms connect a derivation with the normal form 
of this derivation. Roughly speaking, equations we need for cut elimination 
yield normalization. 

On the other hand, let us see what we get from equations which we 
need for normalization. These equations will 'select' from the equations 
which we need for cut elimination only those really required. We shall 
show that from LC-ND and LC-NDA typed A-calculi we obtain only MN-
multicategories and MNI-multicategories, which are not necessarily MG and 
MGI-multicategories. 

The following theorem shows this: 

Theorem 3.2. 
I. If G is a AG-NI) typed A-calculus, then MC(G) is an MN-multicategory. 
2. If G is a A (7-NDA typed A-calculus, then MG(C) is an MNI-multicategory. 

Proof. We have to check that the equations which must hold in MN-multica-
tegories, respectively MNI-multicategories, also hold for arrows in MC(C). 

Some remarks. 
The free MG-multicategory corresponds to Gentzen's sequent system for 

intuitionistic propositional logic. Some *.MG-multicategories with axioms 
which are closed for cut are extensions of this system. Equations between 
arrows which must hold in an MG-multicategory don't make cut elimination 
possible in an MG-multicategory with arbitrary atomic axioms. 

The situation is analogous with MN-multicategories. 
We can investigate the connection between some MG-multicategories men-

tioned above and the corresponding MN-multicategories. This can be an-
other way to link cut elimination and normalization, without going via typed 
A-calculi. 
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ON WEAK CONGRUENCE MODULAR LATTICES 

Ivan Chajda, Branimir eAelja* and Andreja TepavEevie* 

ABSTRACT. The. main result of the paper is a characterization of 
weak congruence modular varieties (every algebra of which has a 
modular lattice of weak congruences). Varieties are supposed to 
have a Bunny operation, and every algebra a one element subalge-
bra. It is proved that such a variety is weak congruence modular 
if and only if it is polynomially equivalent to the variety of mod-
ules over a ring with unit. Some other characterizations of such 
varieties and of algebras in these varieties having distributive weak 
congruence lattices, are also given. 

1. Introduction 

A variety V whose similarity type contains a nullary operation 0 and 
every algebra of which has a one element subalgebra is a 0 1 -variety. An 
algebra with a nullary operation 0 is 0-regular if B = ck for each 0,0 E ConA, 
whenever [0] 9  = M o . A variety V with 0 is 0-regular if each A E V has this 
property. A 0 1 -variety which is 0-regular is a 0 1 -regular variety. A single 
algebra A with a minimal one element subalgebra A m  is Am -regular if every 
congruence on A is uniquely determined by the class containing A m . 

An algebra with 0 is weakly coherent if for every subalgebra B of A and 
each 0 E ConA, if [0] 8  c B, then C B for each x E B. A variety V is 
weakly coherent if each A E V has this property. 

Recall that an algebra A is Hamiltonian if every subalgebra of A is a class 
of some congruence on A. A variety V is Hamiltonian if each A E V has this 
property. 

The weak congruence lattice CwA of an algebra'A is the lattice of all sym-
metric and transitive subalgebras of A 2 , i.e. the lattice of all congruences 
on all subalgebras of A. The congruence lattice ConA of A is the filter 

* Supported by Grant 0401B of RFNS through Math. Inst. SANU 
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634 	 I. Chajda, B. Segelja and A. Tepavi-TviC. 

[A) in that lattice generated by the diagonal. relation A, and SubA is iso-
morphic with the sublattice (ideal) (A] of all diagonal relations. Because of 
that isomorphism, subalgebras are usually identified with the corresponding 
diagonal relations; hence, SubA is a sublattice of CwA. In addition, the 
congruence lattice of every subalgebra of A is an interval sublattice of CwA. 

An algebra A has the Congruence Intersection Property (the GIP), if for 
all p E Conti, 9 E ConC, B, C E SubA 

PA n 9A  = (P n 9)A, 

where PA  is the least congruence on A whose restriction to B 2  is p. In 
the lattice CwA the CIP is usually expressed in the following way: for 
p, B E CwA, ." 

(p A 0)V A = (p V A) A (0 V A). 
Recall that A has the Congruence Extension Property (the CEP) if for 

every congruence p on a subalgebra of A there is a congruence on A collapsing 
P. 

A has the Strong Congruence Extension Property (SCEP) if for every 
E SubA and p E ConB there is 9 E ConA such that [b], = [b]9  for every 

b E B. A variety V has the SCEP if every A E V has this property. 
A variety V is weak-congruence modular (Cw-modular) if the weak con- 

gruence lattice of every A E V is modular. 
Let e be some lattice identity 

P(x1,---,x.) = 

We say that E implies modularity if every lattice satisfying E is".modular. 
Similarly, E implies distributivity if every lattice satisfying E is distributive. 

For more details about weak coherence, 0-regularity and SCEP, see [2,3], 
and for some other properties of weak congruences see [7,8,9]. 

2. Results 

It is obvious that a variety V with exactly one nullary operation 0 in its 
similarity type is a 0 1 -variety if and only if the identity 

(1) f(0,...,0) = 0 - 

holds in V for every n-ary operational symbol f. Another characterization is 
the following. 

Lemma 1. A variety V with a single nullary operation 0 is a 0 1 -variety if 
and only if there exists at most unary term g such that for every n-ary term 
f the identity 

(2) f (g(x), . , g(x)) = g(x) 
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On weak congruence modular lattices 	 635 

holds in V. 

Proof. Let V be a 0 1 -variety. Then (1) holds, and the term g(x) a 0 
satisfies the requirement (2). 

On the other hand, if (2) holds, then by Theorem 9 in [1], every congruence 
on an algebra A in V has a class which is a subalgebra of A, and since there 
is a constant in A, this class is unique. The diagonal relation then provides 
a one element subalgebra. ❑ 

Corollary 1. A variety V with 0 is a 0 1 -variety if and only if every con-
gruence on an algebra A in V has exactly one class which is a subaglebra of 
A. 

Lemma 2. (Theorem I in RD If the lattice of subalgebras of every free 
algebra in a variety V is modular, then V is Hamiltonian. 

Theorem 1. Let V be a 0 1 -regular variety. If for each A E V the lattice 
SubA satisfies an identity E which implies modularity, then CwA satisfies 
E. 

Proof. If SUfbA satisfies E for each A E V, then also Sub.F is modular 
for every free algebra .F of V. By Lemma 2, V is Hamiltonian. Since V is 
0 1 -regular and Hamiltonian, then also each A E V has this property, and 
by (ii), Theorein 18 in [7], ConA SubA. Hence, both ConA and SubA 
satisfy E. By (iii), Theorem 18 in [7], A has the CEP and the CIP. Using 
Theorem 3 in [8], we conclude that also CwA satisfies E for every A E V. 
0 

The proof of :the preceding theorem shows that the same argument (the 
use of Theorem 18 in [7] and Theorem 3 in [8]) can be used for a single algebra 
A in any variety satisfying E, provided that A is Am-regular (in which case 
it has a unique minimum one element subalgebra, but there should be no 
constants in the similarity type of V). e may also imply distributivity. 

Theorem 2. If for each A in a variety V the lattice SubA satisfies an iden-
tity E which implies modularity (distributivity), then the weak congruence 
lattice of every A m - regular algebra in V also satisfies E. 

Proof. If A is an A,„-regular algebra in V, then it is Hamiltonian (by 
Lemma 2), has the CEP and the CIP, and thus, as above, S'ubA ConA. 
By Theorem 3 in [8] . E holds in CwA, since it is satisfied on both, ConA 
and SubA. ❑ 

By the definition given in Introduction, an algebra A is weakly coherent 
whenever every its subalgebra is a union of congruence daises provided it 
contains a congruence class containing 0. This will be used in the following 
theorem. 
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Theorem 3. Let V be a Hamiltonian 0 1 -variety which is weakly coherent. 
Then CwA is Arguesian (and hence modular) for every A in V. 

Proof. If V is weakly coherent then, by Corollary 1 in [2] and by the 
assumption, V is 0 1 -regular. Since V is also Hamiltonian, SubA ConA 
for each A E V directly by Theorem 18 in [7]. By Corollary 2 in [2], V has 
permutable congruences and thus, by the famous Jonsson result, ConA is 
Arguesian (end hence modular) for each A E V. So also SubA is Arguesian. 
By (iii), Theorem 18 in [7], A satisfies the CIP and the CEP. Using again 
Theorem 3 in [8], we get that CwA is Arguesian for each. A E V. 0 

Thus we have obtained some sufficient conditions under which a 0 1 -variety 
is Cw-modular. In the following, we give also the necessary conditions, and 
we characterize algebras in these varieties with distributive lattices of weak 
congruences. 

First we advance some known results. 

Lemma 3. (Theorem 2.9 in 191) For an algebra A, CwA is a modular lattice 
if and only if ConA and SubA are modular and A has the CEP and the CIP. 

Lemma 4. (MD 

a) A variety V has the SCEP if and only if it is Hamiltonian. 
b) An algebra A has the SCEP if and only if A is Hamiltonian and has 

the CEP. 

If A is a Hamiltonian algebra with a one element subalgebra, and each 
subalgebra of A is 0-regular, then by Theorem 18 in [7] A has both, CEP 
and CIP. This result will be used in a characterization of 0 1  — Cw-modular 
varieties. For a single algebra, similar problems are solved in the following. 

Proposition 1. Let A be a Hamiltonian 0-regular algebra which has the 
CEP. Then, 

a) A has the (IP; and 
b) A is weakly coherent. 

Proof. a) Let p,0 E CwA, p E ConB, B E Cone, B,C E SubA. Then by 
the CEP, in the lattice CwA 

((pA9)V A)A(19 AO' = pAO and 

((p V A) A (0 V .A)) A (B A C) 2  (p\2 6,) A B2  A (0 V A) A C 2  p A O. 

By Lemma 4 b), A has the SCEP, since it is Hamiltonian and has the CEP. 
Hence, both (p A 0) V A and (p V ,A) A (0 V A) have the same blocks as p A B. 
By 0-regularity then 

(AA 0) V A = (p V A) A (0 V A), 
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On weak congruence modular lattices 	 637 

and the CIP holds. 
b) Let L E SubA, 0 E ConA, and B contains [0] 9 . Now, (B2  A 0) V A 

and 0 have the same Wok [0] 8 , since A has the SCEP. By 0-regularity then 

(B2  A 0) v A = H. Again by the SCEP [0] 0  C B for each x E B, and A is 

weakly coherent. ❑ 
Now we can give a characterization theorem for 0 1 -Cw-modular varieties. 

Theorem 4. The following are equivalent for a 0 1 -variety V: 

(i) V is weak congruence modular; 
(ii) V is subalgebra modular and 0-regular; 
(iii) V is Hamiltonian and 0-regular; 
(iv) V is Hamiltonian and weakly coherent; 
(v) V is polynomially equivalent to the variety of modules over a ring 

with unit. 

Proof. (i)(v). If A belongs to a Cw-modular variety, then SubA 2  is a 

modular lattice and thus (see [4]) A 2  is Hamiltonian. ConA is also modular 

and hence, by (vi), Theorem 5.5 in [5], A is polynomially equivalent to a 
module over a ring with unit. 

(v)(i). If (v) holds and A E V, then A is 0-regular and ConA is a 

modular lattice. By Theorem 1 in [4], A 2  is Hamiltonian, and by the result 

of E. Kiss.  ([6]), A has the CEP. By the similar argument A 2  also has the 

CEP, and by a); Proposition 1, A 2  has the CIP. In the presence of the CEP, 
the UP is hereditary for subalgebras (Corollary 3 in [8]). Hence, A has the 

CIP as well (since A is, up to the isomorphism, a subalgebra of A 2 ). By 

Theorem 18 in [7], SubA ConA and SubA is also modular. By Lemma 3, 

CwA is a modular lattice. 

(ii)(i). By Theorem 1. 
(iv)-(i). By Theorem 3. 

(iii)(iv). By b), Proposition 1. 
(v)(ii). Similarly to (v)(i), since A is 0-regular, ConA is modular, 

and SubA ConA. H en ce.SubA is modular. 
By Lemma 2. ❑ 

A consequence of Theorem 17 in [7] is that in the above characterized 
weak congruence modular varieties, congruence and subalgebra lattices of 
every algebra in the variety are isomorphic, and the algebra has the CEP 
and the CIP. Under these conditions, by already used Theorem 3 in [8], 

lattice identities satisfied on ConA and SubA, also hold on CwA. By these 
arguments, it is possible to discuss the weak congruence distributivity for 
algebras in Cw-modular varieties. 
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638 	 I. Chajda, B. Seklja and A. Tepavi.levie 

Theorem 5. Let V be a 0 1 -C w-modular variety. Then, the following are 
equivalent for an algebra A E V: 

(i) CwA is distributive; 
(ii) SubA is distributive; 

(iii) ConA is distributive. 

Proof. If CwA is distributive, then obviously (ii) and (iii) hold. On the 
other hand, if SubA or ConA are distributive, then by the above argument, 
since the variety is weak congruence modular (SubA ConA, A has the 
CIP and the CEP), the distributivity is transfered to the weak congruence 
lattice. ❑ 
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A REMARK ON CONVOLUTION POLYNOMIALS 

L. N. Dordevie, D. R. Dordevie and Z. A. the 

ABSTRACT. A family of polynomials P.; (x ), = 0, 1, 	,,n} (in E No)  of 
degree i is a convolution one if satisfies the functional equation 

//A 

(1) E Pm—i(x)Pi(Y) = Pm(x +Y), 
io 

for every x, y E R. The generalization of (1) is the functional equation 

nt 

(2) E 	(a,P,q; x, y) = Pm(a,P+ x + y), 
i=0 

where Pi,k(a,p, q; x, y) is polynomial of degree j k = nt in two variables, x 
and y, and a; p, q are real parameters. The u-dimensional generalization of 
(1) is 

(3) E Prn1 / • 114. ( a,  PI,- • 	 , xn) 
rn1+ — + M11 = rn 

= 	(a, 	+ • • • + r,,; xi + • • • + x,,) . 

1. Introduction 

In the paper Convolution Polynomials [1] D. E. Knuth systematized the 
known identities regarding convolution polynomials. 

The identities involving not only convolution of variables but also convo-
lution of parameters are presented in this paper. 

A family of polynomials { 	= 0,1, ... , m} 	E No) of degree i is 
a convolution one if satisfies the functional equation (convolution condition) 

nt 

(1) 
	

Ep„,_2(x)P.(y)=P„,,(x+y), 

639 
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640 	 L. N. -DordeviC. D. R. Dordevi6 and Z. A. Ilk 

for every x, y E R. 
m xx) 
n! 	

!m 
The polynomials Pm (x) = — and P„,, 	

(in 
(x) = 	, which are necessary 

i  
for further work, satisfy the convolution condition (1). 

The generalization of (1) is a functional equation 

711 

(2) x, y) = P,„(a,p q, x y), 
i=o 

where P,(a,p q, x y) is the polynomial in one variable of degree m and 
(a, p, q, x, y) is the polynomial in two variables, x and y, of degree in, 

and a, p, q are real parameters. The polynomial Pm _i,i(a,p,q,x,y) can not 
be factorized to two polynomials in x and y, respectively. 

The equality (2) is satisfied by two families: 

(3) {Pm (a,p q, x y) =G „,(a; p q; x y)} , 

1 
P„,_i,i(a,p, q ,:r , y) = 

(m - i)!i!
G m _i,i(a; p,q;x,y), 1 

111 = 0 , 	. . . 	= 0 	. . . ntl. 

The monic Gauss hypergeometric polynomial G m  (a; pl-q; x+y) in variable 
(x y) is defined by Gauss hypergeometric function F in the following way: 

(4a) G,,,,(a; p q; x y) := (-1)?
„(p q),„ 

 F(a, -in; p q; x y) 
(Om 

= -1 )m (I) 	4- (1) m
(-7n)i(a)i (x y)i  

(a),7, .0  4-1  (7) + q)i 	j! j 

G ,„(a; 	q; x y) := E(-1)--Ei (in) CP
(a + 
+ q 	(x y). 1  

.i=0 	.7  

The polynomials G 	p, q; x, y) are monic Appell's hypergeometric poly- 
nomials in two variables defined by the Appell hypergeometric function F2 

Gm i ( a;  q; y) 	1 r (P)m-i(q)i  
P .2(a; -in+ i,-i;p,q;x,y) 

. 	. 
771-t 

(P nt- . (q)• = (-1) .  ) 	z  (a) 4/..( - in L)1(-i)k  xiyk 

	

(Om (P)i(q)k 	j!k! 
j=0 k=0 

(4b) 

(5a) 
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A remark on convolution polynomials 	 641 

(5b) 	 p, q; x, y) 
714-i i EE _ 	( in 	(i) (P+ 	j(q k)i_k xiyk.  

j=0 k=0 	
k 	(a + j + k)„,-j-k 

The following recurrence relations for monic hypergeometric polynomials 
in one and two variables, necessary for proving the Theorem 1, are given. 
Based on Gauss relations [2, 11).3,8] 

(6) -/3 tF(a + 1 ,13 + 1;7+ I; t) = F(a 1,13;7;0 - F(a,13;-y;t), 
7 
a Fel + 1,13;7;0 - ri na, 13 + 1; 7; t) = (a - 13)F(a, /3; 7; t), 

and putting a = a, /3 = -in - 1, -y = .s, F(a, -in; s; t) = (-1)m(a),„1(s)„, 
Gm (a; s; t), by elimination of F(a +1, -m -1; s; t), one yields the recurrence 

relation 	• 

S + nri 
(7) G„,+1  (a; .s; t) = tG„,( a + 1; s + 1; t) 

a + m
G,„(a; s;t). 

Starting from the relations for Appell hypergeometric function F2 [2, pp.20- 

21] 

(8) aF2(ct + 	/3'; 7 ,7'; 	y) - 13 F2(a, + 1, l3 ';' ,7';x,Y) 

- 13' F2 (a, , 	+ 1; 7, -y' , 11) = (a - /3 -/3 1 )F2(0e,0,01 ;7,7';x,Y), 

F2(a + 1,+3+ 1 ,13 '; 7 + 7 1 ; xon 

131  
— F2((v + 1,13,0 ?  +1;7,7' + 1 ;x,Y) 
7' 
= F2((t + 1, /3, 	-y, 7 1 ; x,y) - F2(ct, 13  , /3 ' ;"7 ,7'; x,Y), 

by eliminating F2(a + 1, /3, /3'; 7 ,7' ; x, y), and by setting a = a, 13 = -m - 

1  + /3' = 	= P, = 

,(P  
Gm-i,i(a;p,q;:r,y):= ( - 1)" 2r \ 	ka, —iii 

ahn 
, 
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642 	 L. N. Dordevie, D. R. Dordevie and Z. A. Ilie 

the recurrence relation for monic. Appell hypergeometric polynomials a, n+i _i , i 
 (a; p, q; x ,y) of degree m + 1 as a sum of degrees of variables x and y 

711+ 1 —  i 
 (9 ) ant+1-i,i(a; 1), (1; 	= 	xG 	+ 1; p + 1, q; x, y) 

711+ 1 

iy  
+ 	

+ 1 G m+i—i,J-1 (a + 1; p, + x, 

	

(iii + 1 — i)(p + 	— i) . 
p,q; x, 

+ 1)(a + in) 

i(q + — 1) 	. 
(in + 1)(a + in) Gm-4-1—i,i-1 (a; P, 9; x7 Y)• 

Now, by replacing (3) in (2), one obtains the following 

Theorem 1. Let a, p, q be ma numbers (a, p, q > 0) and in E No . Then 
m 

(10) p, q; x7 y) = G „,(a; p + q; x + y)• 

Proof. We implement again the mathematical induction. Using (4b) and 
(5b) one can prove (10) by simple testing for in = 1,2,3. Suppose (10) holds 
for k = in, Then we prove that (10) holds for k = + 1, i.e., 

(11)

m+1 E 	+ 1 
( ; 	 x, y) = G,„+i(a; p + q; + y). 

i=0 

Starting from the recurrence relation (9), the left-hand size of (11) becomes 

m+1 
(12) E  (nit1) 	 + 1 ;p+  q; x y) 

i= 0 

+ + 1; p, + 1; .x,  y) 	(m i)  
X (m+1)(a+m) 

X Gm-i,i( a; 1, q;: 	 1 
o+i -o  G 4_1 .,i-i.(a;p,q;x,Y) 

	

) r ,  y) 	on+i)(a+m) m  ' —i  

m 
= E (?i") I  xG,„_ i , i( a + 1; p + 1, q; x, y) (ra+70 )  G m _i,i(a; p, q; x ,y)1 

i=o 
m+i 

+ E 	:,,Gm+i_i,i_i (a + 1 ; p, 9 + 1; x, y) 
J=1 

(a---7) (-77/1.+1 —i,i —1(a; p, q; x ,y) 
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643 

711 

i=0 

l[xG7n-i,i( + l:p+  1,q;x,y) 

+ yG,„_i,i(a + 1; p,q + 1; x, y) P+arn:"  G„i _i,i (a; p,q; x,y)1 

xG„,,(a + 1;p + q + 1; a. + y) 

+ yG„,,(a + 1;p + q + 1;x + y) P+arn:"G„,(a;p q;x y) 

= (x + y)G 	+ 1; p + q + 1; x + y) P+arn:" G „,,(a; p + q; x + y) 

According to (7), the expression ( 12) is G,„+i(a;p+ q; 	y), i.e. the right- 
hand size of (11). 

Remark I. The equality (11) leads to the relation between the orthogonal 
polynomilas in two and one variable. At first we have the relations between 
orthogonal and hypergeomel ric polynomilas. 

The monic. Jacobi polynomial 	'6-1)  (t) on [0,1] and weight function 
tb-1(i_ t)t 

71t 

in(b  ( t ) 	 E(_ 1) ,.+J = G ,„(a + b + in; b; t). ( 

j ) (a  b 771, Aii-T j=0 

The monic Appell hypergeometric. polynomials Gm _i,i(a+p+q+m;p,q;x,y) 
and basic Appell orthogonal polynomials p, q; x, y) on the triangle 
T2 := {(x, y)I x 0 , y > 0,  + Y < 1} and weight xP - lyq -1 (1 - x - y)a are 
connected by the relation 

x, y) = G,„ 	+ p + q + in; p, q; x, y). 

The basic orthogonal polynomials V,„_i,i(a,p,q; x, y) on the circle C2 := 

{(x ,y) I x 2  + y2  < 1} and weight function lx1Plylq(1 - x 2  - y2 )a and ba-
sic Appell orthogonal polynomials Em _i,i(a,p,q;x;y) are connected by the 
following four equalities: 

V2m-2i,2i(alp,q; x, y)= 	 + 1)/2, (q + 1)/2; x 2 ;y2 ) , 

V2m-2i-1-1,24a,p,q; x, y) = x 	+ 3)/2, (q + 1)/2; x 2 , y2)  , 

V2m-2i,2i+1(a,p,q; x, y) = yE„,_i,i(a, (p 1)12,(q+ 3)/2; x2, y2) , 

V277/-2i-1-1,2i-F1(a, p, q; x, y) = xyE,„_i,i(a,(p + 3)/2, (q + 3)/2; x 2 , y2 ) • 

and monk Gauss polynomial G„,(a + b + in, b, t) have a relation 
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i=0 

For a family of polynomials {P,„(r, x)} , where r is real parameter and x 
is real variable, the particular case of (2) is a functional equation 

771 

E 7 ,:n  V2in-2i,2i+1(a, P, q; x ,y) = 
yrat ,(p-1- q)12+1) (x2 + y2) , 

i=0 t 
in 

	
91L

V2m-2i+1,2i+1 (al P, (I; a; , Y) = ( I 	
xyp(ai, ,(p+q)/2-1-2)( x2 + y2) 

644 	 L. N. -Dordevie, D. R. Dordevi6 and Z. A. Ili' 

The corollary of Theorem 1 are the following equalities which connect the 
orthogonal polinomials in two and one variable: 

i=0 

I
l 
 m V2in-2i,2i (a, P, q; 	= r!lai 4P+q)12)  (x 2  + y2 ) , 

i=0 

71) 	 AP+0/2-1-1) V2 ?„_2i.+1 ,2i( a, p, q; , y) = 	 / 2 	2 
( 

y ) , 

in 

 E 
m 

i 	
(1 'P-Fq -1) {X 	y) , 

i=0 

(13) 	 E P„,—,(p, x)Pi((l, y) = P,„(p q, x y)• 
i.o 

The polynomial family {P„,(r, x) 	1,11  G,„(r; x)} , where 

In ( — m)i x•'
(14) G „,,(r; x) :=. ( — 1)m(r)„, I —m; r;1) = (-0n1  (Om 	(0. 	' 

	

i.o 	" 	• 

G m (r; x) := 	( ) "-Ei (71(r + j)m _i x3 , 
3 

satisfies (13). 
The monic. confluent hypergeometric polynomial in two variables, x, y, of 

degree in (as a sum of degees in variables x and y) is denoted as 

(15) G,„—i,i(p, q; x, y): = (1,„_i (p; x) • G i (q; y), 

(in = 0,1, 	, i 	0,1, ... , m). 

j=0 

Replacing the polynomials 'defined in (14) into the (13), we obtain the 
following 
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A romark on convoIntion polynomials 	 M5 

Theorem 2. Let p, q be real numbers (p, q > 0) and M E No . Then holds 

Tn m 
(16) )Gm-4,?(P , q; X 	= "m(P (I; x  + y)• 

T=0 

Proof. Using the recurrence relation 

(17) Gm+1 (s; t) = tG„,(s + 2; t)- sGm (s + 1; t) 

proof is identical of proof of Theorem 1. 

Remark 2. The relation among the generalized Laguerre polynomial L is-I.  (t) 
on [0, +oo) and weight is - le - a generalized Hermite polynomial 1-1„,(s, t) on 
(-oo, +oo) with weight Itir( and confluent hypergeometric polynomial 
G i(s;t) is 

(18) Hm(s,t) = (-1)
„,2 ,n e L (i s+2,51-1)12-1, 2

)  
_. 

(t  = 2"t t 8 G/((8 + 245 + 1)/2; t ), 

where l = [m/2],15 = in - 21. The direct corollary of equality (16) and (18) 
are the following equalities, for the cases when degrees of both variables are 
even, then when degree of one variable is odd, and when degrees of both 
variables are odd, respectively: 

(19) E . // 2„,_2i(p,x)H2,(q,y)—(-1)m227nLrq)/2(x2 + y 2 ) ,  

i )H27„+1_2,(p, ) 112i(q y) 	
om227n+1 Lv:+012-Fl (x 2 + y2) ,  

i=0 
m 

I 
	 -2m-4-1 	(p+q)/2-1-1 _2 	2 (in

) 	( H2,„-2ip, 	 ( y) = -1 )mz 	YL„, 	+ y2 ), 
i.o 

(in) , 
20 112i-Fi (q, "Y) = ( -1r22711+2 XYLr q)/2+2 	y2 ) (X 2 	• 

i=0 

The polynomial generalization 

Like 

E pmi( a ,) •••  P7Ii„(x 	Pm(X1 ' • • + 

mi+ • • -FM = TJL 
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646 	 L. N. Dordevii- , D. R. Dordevie and Z. A. Eli 

generalizes (1), one can define the n-dimensional (n > 2) generalizations of 
(2) and (4), 

(20) E Pmi,•••,m. (a, , • • • ,Pn, x1, • • • , xn) = 
m i + • • .-1-nt„ =tn. 

Pm (a, m + • • • + p„,x1 + • • 	x„), 

and 

(21) Pmi 	x • • • Pm„ (Pn xn) = PM (pi + • • • + Pn 7 X1 +..
. Xn), 

rn i + • 	„=tn, 

respectively. 
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ON AN EMBEDDING OF A CLASS OF SEMIGROUPS 

INTO RELATIONAL ALGEBRAS 

Zoran D. Dordevie 

ABSTRACT. In this paper we give a construction of relational algebras in 
which finite semigroups which are orthogonal sums of groups with zero ad-
joined could be embedded. It is proved that if two semigroups are isomorphic, 
then the corresponding relational algebras are also isomorphic. 

1. Terminology, notations and basic definitions are taken from [1], [3] and 
[4] 

Definition 1.1. [4] A relational algebra is an algebra 

A = 	,0,1,o,1 1 , -1 )• 

of type (2,2,1,0,0,2,0,1) which satisfies the following axioms: 

(R1) (A, -I-, 	,O, 1) is a Boollean algebra; 
(R2) (A, o, 1') is a monoid; 
(R3) Operation 	is an involution of the semigroup (A, o), i.e. for all 

x, y E A, 

(x o y)" = y-1 o  x -1 (x -1 )" = x; 

(R4) For all x,y E A, (x+y) -1  = x -1 -Fy", xo(y+z) = (xoy)+(xoz); 
(R5) For all x, y E A, (x" o 	0 y = O. 

We denote the class of relational algebras by RA. The Boolean part of 
relational algebra A we call the Boolean reduct of A, and we denote it 

by RdB(A),. The semigroup part will be denoted by RdB(A). Therefore 
RdB(A) = (A, -I-, , 0,1) and Rd s(A) = (A, o). The set of all atoms of a 
relational algebra we will denote by At(A). For a relational algebra A we 
say that it is atomic (complete), if the corresponding Boolean reduct is an 
atomic (complete) Boolean algebra. 

647 
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648 	 Z. D. DordeviC 

Definition 1.2. [4] For a relational algebra A we say that it is: 
1) commutative, ifxoy.yox,forallx,yE A; 
2) symmetric, if x -1  = x, for all x E A; 
3) Boolean, if xoy=x• y, for all x, y E A; 
4) integral, if xoyi 0, for all x, 'y E A - {0}. 

An example of an relational algebra on the set P(A 2 ) of all binary rela-
tions of a set A is (P(A 2 ),u,(1, -  , 0, A 2 , 0,pA , -1 ). This relational algebra 
is called a full relational algebra. 

2. Let (G,, *a ), where a E I 	0, be groups for which (, fl 	= 0, if 
a # 13. Define an operation • on the set: 

(1) 	S= 	G1).' 	where(. = G,U 101 and 0 U 
a El 	 &EI 

in the following way: 

(2) a • b = 
, 	oerwise. 

Then (S,*) is a semigroup. Following the terminology from [1] and [2] we 
will say that S is an orthogonal sum of semigroups G?„ i.e. an orthogonal 
sum of groups with zero- adjoined. The class of all such semigroups will 
be denoted by KG°, and by KG°„ it will be denoted the subclass of KG° 
consisiting of finite semigroups with exactly n + 1 elements. 

Since every group G is isomorphic to a permutation group of a set (G'), for 
G°  groups (G„, *a ) from S = H 	we have that for every a E I, GO, 

where an isomorphism is given by 

a 1--+ f, = t.)„, = {(x,a *a  x)lx E 

Therefore, to an element a from G. (a E I) of a semigroup S, there 
corresponds a function, i.e. the relation p, in the group G'„, (a E I). The 
image of 0 is 0, i.e. po  = 0. Now in 

(3) = U (Ga  U {0}) 
crE/ 

for the operation o (the composition of relations) we have that 

4,  a , b, 	if a, b E G„, for some a E I 

0o th  

(4) {Pa*„ 6) No P0= 
0, 

if a, b E Ga , for some a E I, 

otherwise. 

Hence, (5' ,o) is a semigroup, belonging to the class KG°. 
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On an embedding of a class of semigroups into relational algebras 	649 

Lemma 2.1. Let S and S' lie senzigroups from the class KG°, given by (1) 

and (3). Then they are isomorphic. 

In the sequel, we will consider finite semigroups from the class KG°„. 

Let S E KG°„, i.e. let S = U 	G° 	a 2 , a3 	a } be a finite 0E/ 	a 	 , 	7 • • • 	71 

semigroup. 
Let 	= k (1 < k < n). From S 5' for semigroup S E KG°„ it follows 

that 
= U (Go. LI {i°}) = {°,Pa i ,Pa 2 ,• • •1Pa.}• 

cyEI 

Let us consider the set 

 

 

E S i , ai „ 	0, 1 < v < p, 1 < p < ?I} U 101. As = {p ai ,Up„,,U• • •U pair  

 

Elements of the set S' - 101 are called atoms. Therefore, elements of the 
set A s  are unions of atoms and the empty set. 

Theorem 2.1. Let S = U„Ei G°„ from KG°„ and let I/1 = k (k < n). Then 

(As, o), where o is the composition of relations, is a semigrOup with unit 1', 
where 

pei  U pe, U • • Pek 

and ei (1 < i < k) are the units of groups G a . (1 < i < k). 

Proof. It is clear. 0 

For the unary operation - I in the semigroup (5', o) we take the mapping 

Pa I Pa 

where pre 1. is the inverse element of p a  in the group Gia , for some a E I. We 
take that 0 -1  = 0. 

Since the operaton -1  is the usual inversion of relations, it can be extended 
to the semigroup (As,o) where (x -1 ) -1  = x, (x o y)" = y -1  0 x -1 , for all 
x,y E A 5 . Therefore, according to Theorem 2.1, we have that (As, 0,1',' 1  ) 
is an involutive semigroup with unit 1', where (x o y) -1  = y-1  o x' for all 

x, y E As. 
Since the elements of the semigroup As are relations, the operations 

U, fl, - (union, intersection and complement) are defined in A s . The com-
plement is related to 1, where 

	

1 = pa, U 	U • • U pa„ (union of all atoms). 

	

So for x E As where x 	U pb,U • • • U pbs  (s < 7)), will be -± = 1 - x = 

Pei U Pct  U • • U Pc.„_„ where pc , fl pbµ  = 0 for all v (1 < v < n — s) and 
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650 	 Z. I). Dordevie 

all p (1 < p < .$). Especially, 0 = 1 and 1 = 0. So we get an algebra 
(A s , u, n, -  , 0,1) of type (2,2,1,0,0). 

Let us notice Boolean algebra (P(At(As)), U, n, 0, At(A s)) and the 
mapping f :P(At(A s))1. As  defined by 

f : 	 pa, r } 	pa il  U p„,,U -U pair  and f (0) = 0, 

is an isomorphism. Then 

(5) (A s , U, n, -  ,0,1) 

is also Boolean algebra. 
Both Boolean algebras have same number of atoms (n-atoms). Therefore 

P(At(As)) ?_.= As . 

Using the operations of the set A s , we obtain: 

Theorem 2.2. The algebra. A = (As, u, n, 1, 0, 11, -1  ) of type (2,2, 1, 0, 0, 
2, 0, 1) is a relational, algebra in which the semigroup (5, lb) from the class 
KG°„ is embedded. 

Proof. Let = U„EIG,U {0} = {0, , a2, , a„} and 111 = k (1 < k < n). 
The axioms (R1),(R2),(R3) from Definition 1.1 follow by Theorem 2.1, and 
the axiom (R4) is satisfied for elements from A s  since they are relations. 
The only thing left to prove is the axiom (R5). 

Let x = pa„ y = pb, (1 < i,j < n) be arbitrary atomc A s . There are 
two cases: 
Case 1: Let 	ai  E G„ for some ct E I. Then 

x o y = Pa ;  o pai  = 	= Pa, 

where a/  E G„, and hence 

x o y = 1 - pai  =Pa , U pa, U • • • U paz _ i  U pa, +, u • U pa., 

i.e. 

° (x ° y) = Pa,--1 0 (pa , U pa, U • -U pa,_,1 U Pal+, U • • • U pan  ). 

It follows that 

(6) x -1  0 (x o y) = 	o pal  U pay -i 0 pat  U 

• • • U p a; -1 0 pa,_, U Pa;-1  o pa,+i U • • • U Pa;-1 o p an . 

Now we have two different subcases: 

(a) (1 - pa,)fG = 0. 
(b) (1 - p„,) n G. # 0, where G''-1-1  Ga . 
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On an embedding of a. clam of semigroups into relational algebras 	651 

In the case (a), x -1  o (x o y) = 0, since all the members of the union (6) 
are empty sets, and hence (.i. -1  o (x 	o y)) n y = 0 11 y = 0. 

In the case (b), for every p„ E (1 — pa, n Go,), u # a l  is satisfied. Hence 

Pacl ° Pu = 	
= Parr

(ap. E Ga). 

Therefore pap.  # pa, for all a, because in the opposite case from pa, = pa, 
i.e. pa ,-i n.„ = pa, it follows that aT 1  u = ai, i.e. ai *„ ai = al, which 
gives a contradiction. Th•refore 

(x -1  o (x o y)) n y = 0. 

Case 2: Let a i  E G,., a 1  E Go and a # 0. Then x o y = 0, and hence 

(x -1  o 	 y= 	0 1) n p„, 

	

= 	pal U  p„,-1 0  pci2  U • • U pai -1 0 pan ) n pa; . 

By (4), the members of the union p„,-1 o 1 are for all 	E G, (1 < m < n) 
from G,, otherwise they are empty sets. Since p a;  E G we have that 
pa
;' 

 for every 111 for which a„, E G,. Therefore, from (7) it 
follows that (x -1  o (x o 	y)) n y = 0. If at least one of the sets x, y is empty, 
then (x -1  o (x 	o y)) n y = 0 is obviously satisfied. Hence, the theorem is 
proved. 0 

Theorem 2.3. Let S E KG°„ where S = LL E/  G. Then in corresponding 
relational algebra As we have that t's  = 13  if and only if 'G al = 1, for all 
a E I. 

Proof. If S = {0, a 1 , a2 , 	a„}, then the atoms in the relational algebra As 
are pa i ,Pa2 , • • • , pan  (by Theorem 2.2). The unit i s  in As is the union of all 
the atoms, i.e. ls = p„,Upa2 U- • •Up a„. The unit 1 of the semigroup reduct 
of As is l's  = per  Upe2 U• • -Up„ (1 < k < n) where 111 = k, and ei (1 < i < k) 
are the units of the groups G„, (1 < i < k). Let 1G„,1 = (1 < i < k). 
Suppose that l's  = 15. Then for every i (1 < i < k) we have Pe, 01s = P 01S  
i.e. 

= pi  o (pai  U p„2  U 	p„.) = U (Pei ° Pa;) = U (Pe, ° 
i<v<n i  

Since Ga, = {ai„aj 2 ,..., 	} and we also have that pc, = pa,, U pa72  U 
• • -U pa„. , whence n i  = 1, since 	is the atom. Therefore 1G„1 = 1, for all 
a E I. 

Convesely, let IGOI = 1, for all a E I. Then Ill = n, i.e. n = k, hence 
= Pe, U p„ U. • • U pc„, i.e. 1 s  is the union of all the atoms. Therefore 

1's  = 1s. Thus, the theorem is proved. . ❑ 
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652 	 Z. D. Pordevie 

Theorem 2.4. Let S E KG?, where S = LLE1C 30. Then the corresponding 
relational algebra As  is integral if and only if III = 1. 

Proof Suppose that III > 1 and that As is an integral relational algebra, 
i.e. x o y 0 for x,y E As for which x 0 and y 0 and III = k > 1. 
Then there are at least two different groups G„ and Go  (a 0 13) in .s,which 
follows from the fact that for all IG,,I = na (1 < i < k) we have that 
n1  + n2  + • + nk = n and the assumption k > 1. Now for a E Gtr  and 
b E Go, p,, pb, hence in A5 we have p„o pb  = 0 which contradicts the 
assumption that A5 is integral. 

Conversely, let Ill = 1. Then the semigroup S contains only one group • 
G„, i.e. S = G„U {0}, and hence, all the elements x, y E A5 are the unions 
of the relations from the group Cis different from O. Since xo y is the union of 
elements of 01, we have that, x o y # 0, and relational algebra A s is integral, 
which was to be proved. ❑ 

Theorem 2.5. Let S E K G°„ where S = U,E 1S„ U {0}. Then the corre-
sponding relational algebra As  is Boolean, if and only if lit = n. 

Proof Since (du E /)(iGai = 1) is equivalent to In = n, by the property 
2.19.[1] and by Theorem 2.3 we have that the assertion holds. 0 

3. Let a semigroup S be from the class KG°„, and let A s  be the correspond-
ing relational algebra in which the semigroup S is embedded. • Denote the 

• by elements of S = U a Et  G° by 0 ' a1 , a2 ,..., a„ and the corresponding atoms 
in the relational algebra A s  by Before we give an example 
of an embedding of a semigroup into relational algebra we introduce the 
following notations. Denote by 0, 1, n the elements of a semigroup S 
and by 	the element p„ii  U p„,, U • • • U 	from A 5 . With these 
notations we have 

i2 • • • i n , 0.11.12 • • •it = (i1 0 It)(i1 0 i2 ) • • •(ft 0 it ) (i2 0 i l ) (i2 0 :72) • • • 

	

(i2 o it) • • -(im 0 	)(i, 0 .12) 	• (in, o it) 

where 
* Ct :1 1 i o = 

0 , 

if i, j E G„ 

otherwise. 

Now, we give an example of an embedding of a semigroup S E KG?, into 
relational algebra A s  . 

Example. Let a semigroup S = LLEIG?, = {0,1,2,3,4}, where G„ = 
{1}, G„ = {2,3}, G„, = {1} are groups, be given by Table 1 (The opera- 
tions of groups <la , 	< i < 3) are given in the table, i.e. x 	y = x • y). 
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On an embedding of a class of semigroups into relational algebras 	653 

1234 

0 1 2 3 4 

0 0 0 0 0 0 

1 0 1 0 0 0 

2 0 0 2 3 0 

3 0 0 3 2 0 

4 0 0 0 0 4 

TABLE I 

0 

FIGURE 1 

Then, for the relational algebra As in which the semigroup S is embedded, 

Boolean reduct is given by the lattice from Figure 1. 

The semigroup reduct is presented by the following table 

0 1 2 3 4 12 13 14 23 24 34 123 124 134 234 1234 

0 0 0 0 0 0 II 0 0 0 0 0 0 0 0 0 0 

1 0 1 0 0 (I -I 1 1 0 0 0 1 1 1 0 1 

2 0 0 2 3 0 2 3 0 23 2 3 23 2 3 23 23 

:3 0 CI 3 2 0 3 2 0 23 3 2 23 3 2 23 23 

4 0 0 0 0 4 0 0 4 0 4 4 0 4 4 4 4 

12 0 1 2 3 0 12 13 1 23 2 3 123 12 13 23 123 

13 0 1 3 2 0 13 12 1 23 3 2 123 13 12 23 123 

14 0 1 0 0 4 1 1 14 0 4 4 1 14 14 4 14 

23 0 0 23 23 0 23 23 0 23 23 23 23 23 23 23 23 

24 0 0 2 3 4 2 3 4 23 24 34 23 24 34 234 234 

34 0 0 3 2 4 3 2 4 23 34 24 23 34 24 234 234 

123 0 1 23 23 0 123 123 1 23 23 23 123 123 123 23 123 

124 0 1 2 3 4 12 13 14 23 24 34 123 124 134 234 1234 

134 0 1 3 2 4 13 12 14 23 34 24 123 134 124 234 1234 

234 0 0 23 23 4 23 23 4 23 234 234 23 234 234 234 234 

1234 0 1 23 23 4 123 123 14 23 234 234 123 1234 1234 234 1234 

In this algebra, we have that.: 

= 124, 1, = 1234. 

The algebra As is symmetric, since x -1  = x, for all x E As. 
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654 	 Z. D. -DordeviC 

Theorem 3.1. Let S and S i  be semigroups from the class KCPn . Then 
the semigroups S and S i  are isomorphic if and only if the corresponding 
relational algebras A5 and As, are isomorphic. 

Proof. Let S 	Si. Since S 	S' and 51 a SI, where 	C As and SI C A51 , it follows that S' 	SI. Let w : 	SI be an isomorphism. 
Define a mapping f: A s  A s, by 

(8) 	f(p aii  U pa., U • • • U pain, ) = (p(pa,, ) U o(Pa.)U • • • U (P(Paim ) 

Since S' SI, the relational algebras A5 and A 81  have the same number 
of atoms, and RdB(A s) RdB(As i ). 

Let x = p„,, U pa., U • • • U p a rr , y = pb11  U pbj2  U • • • U pbl a , be arbitrary 
elements of A s . Then, by (8), using the isomorphism co, we have that: 

f(x 0 y) = f((p aii  U 	U - • • U pair ) 0 (Pb„ U /4;2  U • • • U NJ, ))9 

= f( U 	0 Pb;„)) = U ca(pai, 0 Pb),„ 
1<µ<r 	 1<it<r 
1<v<s 	 1<v<s 

U ( co(Pa,,, ) 0 to(pb,)) = U w(Pai,,)° U (00(nbis,) 
1<it<r 	 1<v<s 

1<v<s 

= f(paii U p„,2 U • • •U p air ) 0 f(pk ii U pb.i2 U • • U pbj. ) 
= f (x) o f(y )• 

It is clear that f(0) = 0. To prove that f is an injection, assume that 
x = pa , i 	U- • • Upl. r

, y = Pb,, Upk72  U • • • Upb, , , r 5 s, and f(x) = f(y). Then 

f(pa i1  U Pa i2  U • • • U pai r ) = f(pb„ U pb12  U • • • U 

and hence 

(9) 
'p(Pa. 1  ) U (P(P ai ) U • • U (P(Pa.,. ) = (P(Pbil  ) U (P(Pbi, ) U • • • U W(Pbh)(, 

By (9) for all p,(1 < li < r), we obtain that 

‘P(Pai,,) fl 	) U 	) U • • u 0(19a ir  )) 

= 	) n (co(Pki , ) u w(Pbi2 ) u • • • U co(pbis  )) 
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On an embedding of a class of semigroups into relational algebras 	655 

i.e. 

(10) (p(pa, m ) = (40(P„,„ . ) n 	)) U (co(p„,,,) n w(phi2  )) U 

• • • U (So(Paa,, ) n So(Pbj, ))• 

On the right hand side of relation (10) at least one member of the union 
is different from the empty set, because in the opposite case cp(pa, ,,) is not 
an atom in A s1  (which gives a contradiction). 

Let cp(p„,s,)n Op 	0, hence, 

(11) Op% ) = ca(pb,,). 

It is clear that for different it (1 < p < r), we obtain diferent v (1 < v < 8), 
(11) is satisfied, since cp is au isomorphism. By (9) we have that 

(12) (p(p„,i ) U (p(p,,,,,)U • • • U 4,o(p „,,) = 

(0t9  a i l ) U (to(p ,,,,)U • • T(Pa i r  )) u (w(p b;, +, ) u • • • u 	)) 

Therefore, if we make intersection of the right and left hand sides of (12) 
with co(pbi,+,) U • • -Utp(pbi 

a 
) and since the atoms are differnt, we obtain that 

(P(pb„,+ , ) u • • u co(Pb,, ) = m. 

Hence, r = .s. By (11) we obtain that 

	

Pai„ = Pb ;,,, for all it., v (1 < 	v < r) 

and hence x = y, which means that f is an injection. The mapping f is 
"onto". Indeed, for an arbitrary z = (p(pa,)u co(p,„)u • • •u co(p„„,), f (x) = z 
for x = pa , U p a2  U • • • U p„„, . 

For s' ua€ IG',u {0} and Ill= k, (1 < k < n) let e i  E G (1 < i < k) 
be units of groups G„,, then is = p„ Up„U•••U 14, . Now 

f(1') = f (pe, u p„ U • • U 	= (p(p el ) U (p(p„)U • u so(p„) = 

= 	—1 U 	 --1 U 	 pair  —1) = MP„„ u 	• U 

= w(p.„ -1 )u 	• -u ca(pa,r — ') 

=,,( „)-1  U co(p,,,) -1  u • • • U (p(p„, ,  ) -1  

= (49(Ati,) U So(pa i , ) U • • • U (P(Pai,.)) -1  

= f (Pai , U 	U • .. U pair )-1  = f (x)-1 
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f(ls) = f(p.„ U 	U • • • U Pa;,,) = 49(Pa„)U 50(Pai, ) U • • ' U (P(Pai„ ) = 1  si  • 

Let us prove that f achieves (s). 
It is obvius that for arbitrary x, y E A s  it is f(x U y) = f(x) U f(y). For 

x = pa, i  u • u p„,, will be 

f(x). f(p„ii  U • • • U p„,,) = f(p„ii  U • • U 

where p„,,,pa rr „ = 0 for all 1 < v < s and 1 < µ < n — s. From there 

= 5o(p,,,)U • • • U co(p, inus ) = (p(pa, i ) u • • • U (P(Pa i , ) 

because of isomorphism (p will be w(p,,, )(1,o(p ei ,„ ) = 0., for every 1 < v < s 
and 1 < < n — .9. So, 

f(:1:) = f(p„,, U • U 	= f(x)• 

Because of x fl y = U y, f is also an isomorphism for n. Thus, As 
On the other hand if f : A s 	As, is an isomorphism of algebras As 

and As i , then the restriction fi st : S' —> SI is an isomorphism (since the 
isomrophism f maps atoms from As in atoms from As, ), and hence S 
Thus the theorem is proved. ❑ 
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VARIETIES OF POLYADIC GROUPS 

Wieslaw A. Dudek 

ABSTRACT. In this note the class of all n-ary groups is considered 
as the class of some universal algebras with different systems of 
fundamental operations. In any such case we give the minimal 
systems of identities defining this class. 

1. Introduction 

Wilhelm .  Donate, inspired by E. Noether, introduced in 1928 (see [1]) the 
notion of n-group (called also n-ary group or polyadic group), which is a nat-
ural generalization of the notion of group. The idea of such investigations 
seems to be going back to E. Kasner's lecture at the fifty-third annual meet-
ing of the American Association for the Advancement of Science, reported 
(by L. G. Weld) in The Bulletin of the American Mathematical Society in 
1904 (see [2]). The second paper which plays a very important role in the 
theory of n-ary groups is the large paper (143 pages) of E. L. Post [3]. 

We shall use the following abreviated notation: the sequence x i , x;+1 , ..., xi  
will be denoted by For j < i :r is the empty symbol. In this convention 
f (x7) denotes f (x i  , x 2 , ...,x„). The word 

	

x9 ,  • 	xiz, X ••-, :5 , 	 x,, ),  

where x appears t times, will be denoted by f(xt, (;) ,:eki+ , +1 ). For t < 0 

t 
the symbol 

f 
x ) will be empty. 

If m = k(n — 1) + 1. then the m-ary operation g given by 

,kn -)+1i ( 	)= f(f( 	ft 	,„2n- 
g(1 	

, k(n-1)+1 
J 1.1\ 4' t )1 4'n -1- 1

1 
 )1 	X (k-1)(n-1)+21 

k 

657 
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658 	 Wieslaw A. Dudek 

will be denoted by f(k) . In certain situations, when the arity of g does not 
play a crucial role, or when it will differ depending on additional assumptions, 
we write A. ) , to mean A k)  for some k = 1,2, .... 

A non-empty set a with an n-ary operation f : Gn 	G will be called 
an n-groupoid or an n-ary groupoid and will be denoted by (GI; f). An n-
groupoid (G; f) will be called an n-group or an n-ary group if and only if 

1° for allx 1 , x 2 , 	X2n _i E G the (i,j)-associative law 

(1) A x il- 	( 	), x nawk+71 ) 	t f 	xn2n+.—i  1 ) 

hold for every i, j E {1, 2, ..., n}, 

2° for all z0,:ri,..•,4_ 1 ,4+1 ,•••,x n  E G (k = 1,2,...,n) there exist a 
unique z E G such that 

(2) 1(4 -1 , z, 1:24-1) = 

Condition 1° is called associativity, and algebras (G, f) fulfilling 1 °  are 
called n-semigroups. Algebras fulfilling only 2° are called n-quasigroups. 

The above definition is a generalization of H. Weber's formulation of ax-
ioms of a group (from 1896). Similar generalization of L. E. Dickson's (with 
the neutral element) one leads to some narrower class of n-groups derived 
from 2-groups (i.e. classical groups). 

It is interesting that there exists no nontrivial (on a non one-element set) 
theory of infinitary groups, i.e. w-groups for countable infinite ordinal w, 
but there exist infinitary quasigroups of any (finite and infinite) order [19]. 
Therefore we shall consider n-ary groups (n-ary groupoids) only in the case 
when n > 2 is a fixed (but arbitrary) natural number. 

It is worthwhile to note that, under the assumption 1°, it suffices only to 
postulate the existence of a solution of (2) at the places k = 1 and k = n 
or at one place k other than 1 and n. Then one can prove uniqueness of 
the solution of (2) for all k = 1, ...,n (see [3], p. 213 17). Also the following 
Proposition is true (see [4]). 

Proposition 1.1. An n-groupoid (G; f) is an n-group if and only if (at 
least) one of the following conditions is satisfied: 

(a) the (1 , 2 )-associative law holds and the equation (2) is solvable for 
k = n and uniquely solvable for k = 1, 

(b) the (n — I ,n)-assoriative law holds and the equation (2) is solvable 
for k = 1 and uniquely solvable for k = 

(c) the-(i,i +1)-associative law holds for some i E {2,..., n — 2} and the 
equation (2) is uniquely solvable for i and some k > i. 
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Varieties of polyadic groups 	 659 

2. Varieties of n-ary groups 

In an n-quasigroup (G; f) for every s E {1,2, ...,n} one can define the 
s-th inverse n-ary operation f(s )  putting 

f (3) (4) = y if and only if f (x1 -1  , y , x ;4. 1 ) = x3 . 

Obviously, the operation f(s )  is the s-tb inverse operation for f if and 
only if 

( 3 ) 

for all 	E G. Therefore (as in the binary case) the class of all n- 
quasigroups (and in the consequence the class of all n-groups) may be treated 
as the variety of equationally definable algebras with n 1 fundamental n-
ary operations f, f" ) ,P) ,...,f("). Such variety is defined by (1) and (3). 
Obviously (1) and (3) must hold for all i,j,s E 

An n-group (n > 2) may be considered also as an algebra with three n-
ary operations. Namely, as a consequence of Proposition 1.1 we obtain the 
following characterization. 

Corollary 2.1. Every n-ary group (n > 2) may be considered as an algebra 
(G; f, f(>), f(k)) of the type (n, n, n) with the (i,i+1)-associative operation 
f where 

(a) i = j = 1 and k = n, or 
(b) i = n - 1, j = 1 and k = n, or 
(c) i E 	- 2} is fixed and k > j = i. 

Corollary 2.2. The class of algebras with three n-ary (n > 2) operations 
f, g, h is the variety of all n-ary groups (G; f) if and only if (at least) one 
of the following axiom systems is satisfied: 

1 f (f (x7), x,T+1 1 ) = f (xi, f (x21 +1 ), X /21V ) I 

(a) g(f(y,4),x)= y , 
107-1 , f (41-1  , 0 = y, 

1 (b) g( f (y,  4.  ), x'D = y , 
h(x7 -1 , f(x7 -1 ,y)) = y, 

f(x ii-. 1  , f(xTi" -i-l ),x;,Z 1 ) = 1(2:i1, f (x'it), x 24-7+1) , 
(c), 	xx i-1 , f(x 1 1 ,y,x4 1 ),44. 1 )= Y, 

h(x1 -1 ,f(x1 -1 ,y,x4 1 ).,x4 1 ) = y, where 1 < i < s <ft are fixed. 

f (x7 -2 f ( 4211 2 
)
, 
z2.-1) = f (x7-

1 f(xn2.-1)) 
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660 	 Wieslaw A. Dudek 

Note that axiom systems given by (a) and (1)) (also in Corollary 2.1) are 
valid for n = 2, too. But the greater part of characterizations of n-ary groups 
obtained by several authors are valid only for n > 2. Characterizations 
which are valid also for n = 2 are given for example in [7], [9] and [8]. Since 
in all these characterizations f is an associative operation, then founded 
systems of defining identities are not minimal. 

We give such minimal system basing on result obtained in [8]. 

Corollary 2.3. The class of all n-ary groups (n > 2) may be considered as 
the variety of algebras with one (1, 2)-associative (or (n — 1, n)-associative) 
n-ary operation f and mte (n —1)-ary operation h satisfying the following 
two axioms: 

(a) f(/0 11)-2,  z), 472, f(z, x7 -2 , 	= Y 
(b) f (f ( g, 	z), 	/07 -2 , .2")) = y. 

Proof. If an algebra (G; f, h) satisfies the above conditions, then as in [8] 
one can prove that (2) has a unique solution at the place k = 1 and k = n, 
which together with our Proposition 1.1 proves that (G; f) is an n-group. 

Conversely, if (G; f) is an n-group then for every 	xn _ 2  E G there 
exists a unique element v E G such that 

y = f (y 	2 , = f (4 -2  , v, y) = f (y , v , xr 2 ) = f (v , 41-2  , y) 

for each y E G (see [3]. 214-215). Hence for every z, x 1 , ..., xn _ 2  E G there 
exists only one n E G such that 

f(tt,x7 -3 , f(xn-2, z, 4 -2 ), Y) = Y 

holds for each y E G. Since u depends on n — 1 elements z,x 1 ,...,x„_2 , 
it may be treated as the value of an (n — 1 )-ary operation h . Obviously h 
satisfies (a) and (b). This completes the proof. 

As it is well known in an n-group (G; f) the equation 
(n-1) 

(4) f( x , z) = 

has a unique solution z E G, which is called the skew element to x and is 
denoted by 7. Since for every x E G there exists only one skew element, 
then the solution of (4) induces on G a new unary operation x 7 . 
Thus an n-group (G; f) may be considered as an algebra (G, f; -) with two 
fundamental opertations: an n-ary one f and an a unary one x . The 
variety of such n-groups is defined (see [6]) by three identities: one of the 
type (1) and two so - called Dornte's identities 

(5) f( 	, 	,y) = y, 
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(n-j- 	U-1). 
( 6 ) f (y, 	x 	, x, x ) 

In an n-group the last two identities hold for all i , j E 	71— 1} but 
one can prove (see for example [6],[4]) that (5) and (6) determine (together 
with (1)) an n-group if it hold for some fixed i, j. The minimal base of such 
variety is given by the following theorem (proved in [7]). 

Theorem 2.4. Let (G; f, ) be an n-a•y groupoid (n > 2) with a unary 
operation x — 	Then (G; f, ) is an n-group if and only if f is 
(1, 2) or (n — 1, n)-associative and D5rnte's identities hold for some fixed 
j E {1,2,...,n— 1}. 

As a consequence we obtain 

Corollary 2.5. The class of all n-ary groups (n > 2) may be considered as 
the variety of *dims with one (1,2)-associative (or (n —1,n)-associative) 
n-ary operation f and one unary operation x satisfying the following 
two axioms: 

(n-2) 	(,1) 
(a) f(x, x , f ( 	, y))=- y 

(-1) (n-2) 
(b) x)= Y • 

Theorem 2.6. The class of algebras (G; f,g,h) with one (1,2)-associative 
(or (n — 1,2) :associative) n-ary (n > 2) operation f and two (n — 2)-ary 
operations g and h is the variety of n-ary groups if and only if the following 
two identities 

( 7 ) 	f 	, g( x7 -2  ), x:1-2  , y) 	y , 

( 8 ) 	f (y, 	h( x - , xi" 2) = y 

hold for some fixed i, j E {1,2, ..., 71 — 

Proof. From [3] (p.215) follows that in every n-group (G; f) there exists 
an (n — 2)-ary operation q satisfying (7). Similarly there exists an (n — 2)- 
ary operation h satisfying (8). Thus (7) and (8) hold in every n-group. 

To prove the converse observe first that putting in (7) x = x, 1  = 	= Xn-2 
and g(

( 
x

n2) 
 ) = 57 we obtain the identity 

1 ) 	( 71-i-1) 

(9 ) 	f( '  X x, x 	= 
(n-2) 

Similarly, for h( 	) 	from (8) follows 

(10) 	f(y
,17

.1: I), :I: ,111
) = 

y, 

If f is (1,2)-associative, then (10) implies 
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662 	 Wieslaw A. Dudek 

fix1, f0 ,14-"),4Z 1 ) = f f 	f (4 +1 ), 44:21 ), 	(n1-1) ) 

	

(1 -2 ) 	(n-j-1) 
f(x i , f( f (4 +1 ), 	, x), x , 	) = 

(i-2) 	(n -j - 0 f(x i , f( x 2 , f(x1'342 ), x,24-3 1 ,x), x , 	x ) = 
(n -j - I) 

PA X ? ,  .f( 4+2 ) ,  X:27-3 ), X 	X ) = f(X?, fer3 +2), X n1-3 1 )• 

This proves (1,3 )-associativity of f. Now, using (1,2) and (1,3)-associ-
ativity we prove ( 1, ,-E)-associativity. Similarly we can prove (1, k)-associati-
vity for all k = 5,6, ..., Thus (G; f) is an n-semigroup. 

In the case of (n - 1, n)-associativity the proof is analogous. 

To prove that (G; f) is an u-group it is sufficient to solve (2) for k = 1 
and k = ii. In the same manner as in the proof of Theorem 2 in [4] one can 
verify that if (9) holds for 2 < i < n - 1 then the element 

	

(i-2) 	 (i-2) 	(n-1-1) 	(1-2) 	(n-1-1) 

	

z= ,T(.)tXIA- 	 X 11-1 Xn-2, Xn-2, Xn-2 •••, X1 , X1 , Xi  , X0) 

is a solution of the equation f(x7 -1 ,z)= x0. 

Similarly, under the assumption 1 < j < n - 2 in (10), the element 

(j- 	(n -j -2) (j -1 ) 	(n-j-2) 	(j-1) 	(n-j-2), 
Z = ,A2, ), X , X, Xn • Xn-i%Xn-1, Xn-1 7 . ••7 g2 , X2, x2 ) 

is a solution of the equation f(z,e) = x o . 

Tlius (G; f) is 	n-group if (9) and (10) hold with the restriction: 

(11) 	2 < i < 11 - 1 	and 	1 < j < n - 2. 

We have still to consider.the following cases: 

(12) = 1, j = 71 - 1, 

(13) i = 1, 2 < j < n - 2, 

(14) j = n - 1, 2 < i < 	- 2, 
(15) i = n - 1, j = 7/ - 1, 

(16) i = 1, j = 1. 

Let (9) and (10) hold for i = 1 and j = n - 1. Then 

fue,  (172) , y) 	f(y,  (n2) , 	y,  

which gives 

(n-I ) 	(n-2) „ 	 (n-2) 
f(x, x ) = f( x ,x) = x and x = f(x, x ,x) = x. 

As a consequence we obtain 
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(n-2) 	 (n-1) 	(n-3) 
y= f(x, x ,y)= f(x, f( x ,x), x ,Y)= 

(n-1)(n-3) 	 (n-3) 
/UM .r )1 7, x •"11)= f(x, 7, 	)• 

By a similar calculation we get 

(n-3) (n-3) 
y = f(y, x ,x,x)= f(y, x ,x,x). 

Thus the case (12) is reduced to (11) and (G; f) is an n-group. 

If (9) and (10) hold with the restriction (13), then 

(n-1) (i) 	(n -j -1 ) 
X = f( X, X ) = fi X , X, X ), 

which implies 

(n-2) 	 (n-j-1) 	(j) 	(n-7-1) (j-2) 
y = f(x, x ,y)= f(x. x , f(x ,x, 	), x ,y) = 

(n- 1) 	(n-3) 	 (n-3) 

f(f(x, x 	x , y) = 	x , y). 

Hence 

(n-3) 	 (n-3) 	(n-3) 

	

f(x,x, x ,y) = f(•,7, x , 	x ,y)) = 

(n-2) . (n-3) 	 (n-3) 
f(r, f( 7, 	)1 X y) (x , x ,y) = y. 

This proves that (9) holds also for i = 2. Therefore (13) may be reduced 

to (11) and (G; f) is an n-group. By a similar argumentation the case (14) 

may be reduced to (11). 

Now we consider the case (15). In this case the identity (9) has the form 
(n2) _ 

f( x ,x,y)= y. which in particular implies 

(n-2) 	 (n-2) _ 
f( x ,7, x) = f( 	,7, x) = x, 

(n-2) 
where Tr: = 	). Using these identities it is not difficult to verify that 

the solution z of the equation 

f(  (nF73) , 7, X, = y 

has the form 
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(n-3) 	(n -3 ) 	(n-3) 	(n-3) 
Z = An-2 )( X je, 	,T, x 	x 	y) = 

(n-3) times 

(n-3) 	01 - 2) 	(n-4) 	(n-3) 	(n-3) 
f(n-3)( 	f( 1 , 7,  3:), X , 	x 	x , 7;, y) = 

(n-3) (n-3) 	(n-3) 
f( i. _3)( a: , X , 	,, X , X ,y

) 
= 

(n-4) (n-'2) 	(n-4) 	(n-3) 
f(n-4)( X  1 f( X 7, 	), x 	x 7, 	= 

(i)-3) 	(n-3) 
f(n-4)( 	, 	 x , y) = 

(n-2) 	(n-4) 	 (n-2) _ 
f(x, f( 	, X, 3!), x ,x,y)= 	x ,x,y)= y. 

(n-3) — Hence in this case holds also f( x ,x,x,y) = y , which reduces (15) to 
(14). Analogously (16) may be reduced to (13). This completes our proof. 

Note that in general g (47 2) h(x7 -2 ), but as it easy to show g(x , x) = 
h(x , x) for all a; E G. Moreover, using the Post's Coset Theorem (see [3]), 
one can prove that in the case i = j we have g(x7 -2) = h(4-2 ). Hence as 
a simple consequence of Theorem 2.6 we obtain 

Corollary 2.7. The class of algebras (G; f, g) with one (1,2)-associative 
(or (n — 1, n)-associative) n-ary (n > 2) operation f and one (n — 2) - ary 
operation g is the variety of n-ary gimps if and only if the following two 
identities 

(a) f 	r.- 2 ) T-2 y = 

(b) f (y, 	,g(x7 -2 ), 4-2 ) = y 

hold for tionte fixed i = 1, 2, ..., n — 1. 

Corollary 2.8. The variety of n-ary groups (n > 2) is the class of algebras 
(G; f, g, h) with one associative n-ary operation f and two (n — 2)-ary op- 
erations g and h satisfying for some fixed i, j E {1, 2, n — 	the identity 

(17) 	f(2)(xi -i g (x7-2) , 	y 	, xr 2 ),x~- 2 )  = y .  

Proof.  hi every u - group (G; f) there exist (by Theorem 2.6) two (n — 2)- 
ary operations g and h satisfying (7) and (8). Hence (17) is satisfied, .too. 

Conversely, if the identity (17) holds in an n-semigroup (G; f), then 
(n-2) 	 (n-2) 

putting a: = x, = 	= x„_2 , g( x ) = 	and h( x ) = x in (17) 

V
ir

tu
al

 L
ib

ra
ry

 o
f 

F
ac

ul
ty

 o
f 

M
at

he
m

at
ic

s 
- 

U
ni

ve
rs

it
y 

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs



Varieties of polyadic groups 	 665 

we obtain 
(i-1) 	(n-i-1) 	(j-1) 	(n-j-1) 

f(2)( X  XI 	X 	Y, 	 = Y • 

Using the same method as in the proof of Theorem 4 from [7] one can 
prove that (G; f) is an n-group, which completes the proof. 

Analogously as in Theorem 2.6, using the Post's Coset Theorem, one can 
prove that i = for every a: E G. Thus as a simple consequence we obtain 

Corollary 2.9. The variety of n-ary groups (n > 2) may be considered 
as the class of n-ary semigroups (G; f) with one unary operation x 
satisfying for some fixed i, j E 	n} the identity 

(i-2) 	(n-i) 	(n-j) 	(j-2), 
f(2)( 	, X, X , y, x ,x, x ) = y. 

Observe that from Corollary 2.1 (a) follows that the class of n-ary groups 
(n > 2) may be considered as the subvariety of the variety of n-ary quasi-
groups. For n > 3 this class may be considered also as the subvariety of the 
class of inversive n-ary semigroups described in [20] and _may be defined by 
a system of identities containing some identities which are characteristic for 
inversive n-semigroups. 

Proposition 2.10. The class of all n-ary groups (n > 2) may be considered 
as the variety of algebras (G; f, g, h) of the type (n, n — 2, 3) defined by 

(a) f (x'1' ) = h(xl g (xr ), x n ) , 
(b) h(y, x,x) = h(x,x,y) = y, 
(c) h(h(x; ), 	= h( , h(x 4 , x3 , x 2 ), x 5 ) = h(x?, h(x3)) , 
(d) g(x7 - 3  , 9(4' 2 )) = xn-2 

where the operation f is (1, 2) or (n — 1, n)-associative. 

Proof. Any n-group (n > 3) is an inversive n-semigroup in which there 
exist two operations g and h satisfying the above identities (see [20]). 

Conversely, if an algebra (G; f, g, h) satisfies the above conditions, then. 
(n-2) 

for all x,y E G and X = g( x ) , we obtain 

f(ll, (n;2),  X) = it(Y19( (n;2) )) X ) = h(Y, 

and 

f(ii, (nx-2) i y) = h(x , XI Y) = 

which together with the (1, 2)-associativity of f implies the (1,3)-associa-

tivity. Indeed, 
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n-1-1 , 	2n-1 (n-2) ) f (x , f (4 +1  ), 	) = f f (xi, f (x2 ),x,,+2 , x x) = 

(n-3) 	 (n3) 
f(xi, f(f(st,1 +1 ), 4,`+7,1 , x ), x 	f (xi f(x2, f (x3".2 ), 	, x), x 

f(f ( x7 ,  A4+2 ) ,  4:+i 7i 1 ) ,  (":1 , 2) , 	= f( aq ,  f( n+2 x4n+-3 1 )
•  

Now, using (1.2) and (1 , 3)-associativity we prove the (1,4)-associativity. 
Similarly we can prove ( )-associativity for j = 5,6, ..., n. Thus (G; f) is 
an n-semigroup. By Theorem 13 from [20] it is an n-group. 

In the case of the (n — 1, n)-associativity the proof is analogous. 
Moreover, the above proof suggest the following characterization of n-

groups. 

Corollary 2.11. The class of all n-ary groups (n > 2) nay be considered 
as the variety of algebras (G; f, g, h) of the type (n, n — 2, 3) defined by 

(a) f(x7) = h(xi,g(4 -1 ),xn), 
(b) h(y,x,:r) = h(x, x, 	y , 
(c) f(f(x'it ), 	) = f (x , f 01+1 ), 	) • 

Proof. As in the previous proof we can prove that (G; f) is an n-semigroup 

with a unary operation x 	g(
(n 2) 

) and satisfies the assumption of 
Theorem 2.4. Hence it is an n-group. 

Conversely, if (G; f) is an n-group, then by Post's Coset Theorem .(see 
[3]) there exists a. binary group (G*,-) such that f(x7) = x i  • x2  • ... • x n  
for all x i , xn  E G. Hence g(x7 -2 ) = (x1  • x 2  • ... • x n _ 2 )-1  and 
h(x , y, z) = x • y - ' • are operations fulfilling (a) and (b), which 'completes. 
the proof. 

Remark that in general the operations g from Proposition 2.10 and Corol-
lb,ry 2.11 are not identical because the second not satisfies (d), in general. 

It is worth remaining that the operation h satisfying (b) is so-called 
Mal'cev operation. The existence of such operation in the set of all polyno-
mials of some variety of general algebras is equivalent to the commutativity 
of congruence on each algebra from this variety. Moreover, the lattice of all 
congruences of a fixed algebra from such variety is modular (see for example 
[21]). Thus for every fixed n > 2 the class of all n-groups is a Mal'cev 
variety and the lattice of all congruences of a fixed n-groups is modular. For 

= 2 this fact is known, for n > 2 it was proved in [22]. 
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Theorem 2.12. The class of algebras (G; f,g,h) with one associative n-

ary (n > 2) operation f and two binary operations g and h is the variety 
of all n-ary groups if and 12nly if for some fixed i, j E {1,2, 	- 1} the 

following two idcntities hold: 
(i)  

(18) f ( 	Y 	,g(x , y))= 
(j) 

(19) fi/ 11 3 7, 	 ) = y • 

Proof. It is well known that in every n-group (n > 2) the solution z of 
(0 ('n-1-i) 

the equation f( , y 	= y there exists and depends only on x and 

y. Thus z may be treated as the value of a binary operation g satisfying 
(18). The similar argumentation shows that there exists a binary operation 

h satisfying (19). (In general g(x, y) # h(x , y), but g(x, x) = x) for all 

x E G.) 
Conversely, let (G. ; f) be an n-semigroup with two binary operation sat-

isfying (18) and (19). Then in a similar way as in the proof of Theorem 2 in 
[4] one can verify that for 2 < i < n - 1 the element 

(i - 1) 	 (i-2) (n-1-0 	/ 
= fo(Xit - Xn-2 19 X 1 n- I, 71 -2), Xn_2, a!n- 3 WIt-21 Xn -3), ••• 

(i-2) (n-l-i) 	 (i-2) 
... X2 , 	X 	, g (x 2 , 1 ) , 	, 	x o  , g(x 1 , x 0 )) 

is a solution of the equation f(x7 -I ,z). xo . 

For i = 1 this solution has the form 

(n-2) 	 (n-3) / 	 (n-3) 	/ 
Z = fc)( X0 • 9(rn-i 	:ro ,g(x2,  x11),..., xo gtx xo))• 

Similarly, the solution of f(:;,-, x!,') = x o  has the form 

(n-l-j) (j-2), 	 (./ -1 ) 
Z = f(h(x„, x o ), 	x 0  , .r,, , /1(X n , Xn-1), 	xn. 	Xn-1, ••• 

	

(n- 1-j) (j - 2) 	 (n-l-i) (j-1), 
..., it( X4, x3), 	 x3 n(X3, x2), x3 , x2 ) 

for j E 	- 0, and 

, , 

Z = f( 1  7" 	
(n 

x.), 3: 0

-3) 

 •••, 	x.)),

(n- 
X0

3) 
 , aka:2, 1:0),

(n 

 x0 

-2)
) 

for j = 1. 
This proves (by Proposition 1.1) that (G; f) is an n-group. 
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As a simple consequence of Theorem 2.12 we obtain 

Corollary 2.13. The class of algebras (G; f,g,h) with one associative n-
ary (n > 2) operation f and two binary operations g and h is the variety 
of all n - ary groups if and only if the following two identities hold: 

(i) f 	• 9(3'. 	= 
(n-1) 

(ii) f ( h( x , ), x ) = y . 

Corollary 2.14. An n-semigroup (G; f) is an n-group (n > 2) if and only 
if for every x, y E G and some fixed i, j E {1, 2, ..., n— 1} there exists z E G 
such that 

ti) (n-l- I 
(i) f(:1', 	,z) = Y 

(n-1-j) Co 
(ii) f(z, 	y 	x ) 	y 

In particular, For i = j = n — 1 we obtain the following result proved in 
[10]. 

Corollary 2.15. An n-semigroup (G; f) is an n-group (n > 2) if and only 
if for every x. y E G there exists z E G such that 

0,-1) 

	

( 1 ) 	f( 	1 	- -;) = 	• 
(7L-J 

	

(ii) 	f(:. 	) = y. 

3. Subvarieties 

In this part basing on the results of previous section we describe some 
subvarieties of the variety of all n-groups. 

In the first place we consider the class of idempotent n-groups. This 
class is the variety selected from the variety of n-groups by the identity 

x. since in idempotent n -grbups (G; f) the operation x ---+ 
is the identity mapping, i.e. x = 7 for all x E G , then by Theorem 2.4 
this class has the following description, which for n = 2 trivially yields one-
element groups. 

Proposition 3.1. The class of all idempotent n-ary groups (n > 2) is the 
variety of algebras (G; f) with one (1, 2 ) or (n — 1, n)-associative n-ary 
operation f such that the equalities 

1?)-1) 	 (n1 
x 1Y) = AY, 	= 
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holds for every 3:, y E G. 

As a consequence of Theorem 2.6 we obtain 

Corollary 3.2. The class of algebras 
(or (n — 1,n) - associative) n -ary (n > 
(n — 2) - ary opeivtions q and h. is the 
and only if for some fixed i, J E { 1, 2, . 

hold 

(a) .f(x ii -1, .0 4-2 ). ;r7 -2 r Y) = 

(b) f (Y, :di -1  • h(x7 -2 ). 	= Y • 

(G; f,g) with one (1,2)-associative 
2) operation f and two idempotent 
variety of idempotent n-ary groups if 

11 the following two identities .  

In a similar way as Theorem 2.12 we can prove 

Proposition 3.3. The class of algebras (G; f,g,h) with one associative 

n-ary (n > 2) operation f and two idempotent binary operations g and 
h is the variety of all idcmpotent n-ary groups if and only if for some fixed 

j E { 1, 2, 	n — 1 } tht ,following two identities hold: 
(i) (n-1-0 

(i) f( 	Y 	,g( :/. .!J)) = Y 
( ,, -1-.1) co. 

(ii) f(h(x, y). 	• j') = Y 

Corollary 3.4. The class of algebras (G; f,g,lt) with one associative n-ary 

(n > 2) operation f and two idempotent binary operations g and h is the 

variety of all idempotent n - ary groups if and only if the following identities 

hold: 

. (n 	) f( 	• 11( ;r,  y)) = Y 

f(h(z, Y), (n ;: 1) ) = Y 

The variety of idempotent n-ary groups may be considered also as the vari-
ety of u-groups ill which all inverse operations are idempotent. The minimal 
system of identities defining such variety is given (for example) by Corollary 
2.1 and Corollary 2.2, where all operations PO,g,h are idempotent. 

On the other hand, it is easy to see that if in Corollary 2.3 an operation f 

is idempotent, then also g and h are idempotent. The converse is not true. 
For example, in an algebra (Z 4 ; f,g,h), where f(x,y,z). (x+y -l-z)(mod 4) 

and g(x , y) = , y) = (2x + 3y )(mod 4) , the conditions (a) and (b) are 

satisfied. Moreover. g and h are idempotent, but a 3-group (Z 4 , f) is not 

idempotent. 
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We say that an n-group (G; f) is a-commutative if f(x, (0, x g (n )) is 
invariant under a permutation a E Sn . An n-group which is a-commutative 
for every a E S„ is called commutative. It is not difficult to prove (see 
[7]) that an n-group is commutative if it is a-commutative for some fixed 
cr = (i, i + 1). Moreover, this fact together with Hosszti Theorem [11] gives 

Lemma 3.5. An n-group (G; f) is commutative if and only if there exists 
an element a E G such that for all a;, y E G and some 2 < i < n holds 

(i-2) 	(n-i) (n-i) 
a ,d;,y, a ) = f((i-a2),y,x, a )• 

Theorem 3.6. The class of all n-ary commutative groups (n > 2) may be 
considered as the variety of algebras with one (1,2)-associative n-ary opera-
tion f and one unary operation a: "i satisfying for some fixed 2 < i < n 
and 3 < j < rr. the following two identities: 

	

(i-2) 	(n-i) 
(a) f(y, 	,x, x )= y, 

(b) f (x , y , 
-3) 

 , 	
(n-j

) = y 

Proof. Since every commutative n-group satisfies these conditions we prove 
the converse. Let (G; f) be an (1,2)-associative n-groupoid satisfying (a) 

(n-i) 
and (b). Since (a) implies f( x , x, x ) = x, then (b) together with the 
(1, 2)-associativity gives 

	

0- 3 ) 	(n-j 	 0-1) 	(n-i) 	U -3) 	(n -i) 

	

y= f(x,Y, :r , :r.. 	)= f(f( x  ,x, x ),y, x ,x, x )= 

(i - 2) 	(n - i) 	(j - s) 	(tt-j) 	 (i-2) 	(n-i) 
f(x,f( x ,X x ,y), 	x )= f( x 	x 

Thus by Theorem 2.4 an algebra (G; f, ) is an n-group and x is the skew 
element. Therefore (a) and (b) are valid for all 2 < i < n and 3 < j < n. 
Moreover, 

	

(n-2) 	 (7-3) 	(n-j) 	(n-2) 

	

f(x, y, a ) 	f(f(y,x, 	
, y, y ) , y, a )= 

(j-3) 	 (n-2) 	 (n-2) 

	

f(y ,f(x,Y • Y , 	Y ), a ) = KY, a: , a ) 

	

for all a, a:, y E 	which by Lemma 3.5 completes the proof. 
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As a consequence of the above Theorem and Theorem 2.6 we obtain the 
following characterization of commutative n-groups. 

Corollary 3.7. Tice class of algebras (G; f, g) with one (1,2)-associative 
n-ary (n > 2) operation f and One (n — 2)-ary operation g is the variety 
of commutative n-ary groups if and only if for some fixed j E {1, 2, n —1} 
the following two identities hold 

(a) f 	x -11 - 	x7 -2 	= Y 

(b)
f( 	v. xi,- , 	2) , 	= y •  

In the theory of n-senhigrcmps the following identities 

f(x , :r 	, x„) = (x„ , x3-1  , x i ) 

and 

f f 	f (x:47 	(x',447 = f (x71 f Geg), f Win 

play a very important role. 
The first of them is called semi -commutativity (an n-group with this 

identity is called. by Diirnte [1], sentiabelian.) The second of them is a 
natural generalization of the medial (entropic) law for groupoids. An n-
semigroup satisfying this identity is called medial or Abelian (see [12]) since 
an n-semigroup (G; f) treated as an algebra (G; f, f) of the type (n, n) is 
Abelian in the sense of [13] (p. 87). 

Each semi-commutative n-senpgroUJ) is medial [12], but for every n > 2 
there exist medial n-semigroups which are not semi-commutative [5]. An 
n-ary group is medial if it is semi-commutative [12], or equivalently (see [5] 

and [14]), if for some fixed a E G the identity f 
(n 

, a
2) 

 ,y) 	
( 

f(y, a
n2) 

 ,x) 
is true. Hence the class of all medial n-groups is the variety defined by the 
last identity, the ( 1, 2)-associativity and (6) (or by the (n-1, n)-associativity 
and (5)). 

4. Open problems 

From the proof of Theorem 3 in [12] follows that any medial n-group 
satisfies the identity 

(20) 	.f(xi) = .f(Ti , 572 	7n). 

Hence an u-group (G; 	is Abelian as an algebra (G; 	). Note that 
(20) holds also in some non-medial u-groups. It holds for example in all 
idempotent u-groups. Therefore the following problems (announced in [5]) 
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seems to be interesting: 

Problem 1. Dcscribe the variety of all n-groups satisfying (20). 

Let (G; 	be an n -group and let 7 be the skew element to x. More- 
over, let 7" = 3• and let (s+ 1 ►  be the skew element to 7( s )  for s > 0. In 
the other words: 7{11  = 7 , ( 2  ) -= 7 , Tr; = 7, etc. 

Problem 2. Describe Hu class of n-groups in which there exists s such that 
Y ( s )  = 7( ' )  for all ele7nents and all t > s. 

Some results connected with this problem are obtained in [15] and [16]. 

Problem 3. l)( scribe the class of n-groups in which 7( s ) 	7")  for all 
sit and :r E 

Problem 4. Deseribe thf• variety V., of n-groups in which 7 (8)  = x for all 
x E G. 

The class V I  is the variety of idempotent ri-groups. Obviously V 1  C V, 
for every nat .  ural s. Moreover, V, fl V, +1  = V1  and V, C V,t  for any 
natural s, t. Any V, contains the variety of medial n-groups (and in the 
consequence - the varierty of commutative n-groups). Since I = x for all 
3-groups [1], the variety V., contains the variety of all 3-groups. 

As it is known (see [lx]) in some n-ary algebras there exist so-called split-
ting automorphisms. i.e. automorphism V ,  satisfying for every i = 1,2,...n 
the condition (4)) = f(xii , +1 ) . Such automorphisms there 
exist also in some n-ary groups (n > 2). For example, it is easy to see 
that iPa (x) = (37 + a)(ntwl. u) is a splitting automorphism of an (n+1)-group 
(Z„; f) defined by f (x7+ 1  ) = + x„+1 +0(mod n). Moreover, in some 
n-groups the unary operation x = 7 is a splitting automorphism. Such 
n-groups are called distributive. The class of distributive n-groups forms a 
variety selected In 111

/

1 the variety of all n-groups by the identity 

(21) 	 f (x7 ) = 	,  

where i = 1,2...., n. 
Every distributive n-group satisfies (20) and it is a set-theoretic union of 

disjoint and isomorphic subgroups of the form {x, 7, , where t is 
fixed. Hence it distributive n-group is idempotent or has no any idempotents 
[17]. Moreover. {(;5, 4)1 , where 0(x) = 7 is an invariant subgroup 
of the group of all splitting automorphisms. 
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In every medial distribu tive n -group (G; f) an operation f is distributive 
with respect to itself, i.e. the identity 

f 	x7+,) = f(f 	Y1, 44- 1), 	f 	x7+1)) 

holds for all i = 1,2,..., n. Such n-groups, called autodistributive, are de-
scribed in [16] and [5]. The class of autodistributive n-groups (n > 3) is a 
proper subvariety of the variety of distributive n-groups. For n = 3 these 
varieties are equal; for = 2 are trivial. 

Problem 5. Dcxeribe the rariety of all n-groups satisfying (20) and (21). 

Problem 6. Describe the class of all n-groups in which there' exists at least 
one non-trivial splitting autontorphisnt. 
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SEMIGROUPS OF INTEGRAL FUNCTIONS 

IN VALUED FIELDS 

Ghiocel Groza 

ABSTRACT. Let K be a valued field and IK[[X]] the commutative algebra of 
integral functions over K. This paper is devoted to study some semigroups 
S of (1K[P1],o), where f o g is the composite function of f,g E I K[[X]]. In 
the first section we define a topology intric..Con K and we extend to integral 
functions some notions used for polynomials (see.[5] and [6]). Here we study 
some connections between the subsentigroups (S, o) of (I K[[X]], o) and the 
topologies !nvK S on K . In the .  second section we study when a particular 
subset of K is an open set in the topology defined on K by some semigroup 

of integral functions. 

1. Semigroups and topologies 

Let K be a field admitting a rank 1 nontrivial valuation I I (see [2] or [3]), 
this is a mapping from K into E R such that for all x, y E K 

i) IxI> 0 andlx1=0iffx=0; 

ii) I xY 1=1 x 	h 

iv) there exists an element z E K \ {0} such that I z I 0 1. 

For x, y E K, define d( :r, =I x — y I  . Thus (K, d) is a metric space and 
we can, therefore, introduce the customary topological concepts into such a 
space in terms of the metric.. 

A formal power series 
00 

(1) f(X)= E akX k  E K[[X]] 
k=0 

is called an integral function over K if for every x E K the sequence 
11 

(2) S„(X) = 	akX k  
k=0 

675 
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676 	 G. Groza 

is a Cauchy sequence. We denote by IK[[X]] the commutative algebra of 
integral functions over K . If f, g E /K[[X]] we consider f o g E /k[[X]] the 
composite function of f and g, where K is a completion of K. We consider 
(S, o) a semigronii of integral functions over K and we denote by 

havl~ S = D C K; f(D) C D,V f ES}. 

Obviously, if K is a complete field, then (/K[[X]],o) is a semigroup and for 
every subsemigroup S C I Ii[[X}],K E InvKS. 

Proposition 1. LetKbe a valued field and let (5, o) be a semigroup of in-
tegral functions over K. If K E inyKS, then Inv K S defines a topology on 
K such that K is a locally quasi- compact and locally connected topological 
space. Furthermore for every a E K there exists D a  E InvjS such that D a 

 is the smallest open set ln.)mInvK S which contains a. 

Proof. Suppose that {Di}, i. E I is a family of sets from hvyKS. It is easily 
to see that 

U Di E InvKS and n Di E InvKS. 
iEl 	 iEI 

Thus Mu K S is a topology on K . If a E K we consider 

Da = U { f(O} U{a}. 
f ES 

Then Da  E 117v0 and D a  is the smallest open set from InvKS which con-
tains a. Since Da  is a quasi-compact and connected subspace of K (see [4]) 
it follows that (K, I nv K  S) is a locally quasi-compact and locally connected 
topological space. ❑ 

Remark 1. If 
o), (82 ,o) 

are two semigroups of integral functions over K, then hrtyKS1  is not neces-
sarily different from Innj S2 . For example we consider 

K=EC,S•=IE C[[X]] and 52 = E C[X]. 

Then 
IUVKSl  = InvKS2 

is the coarsest topology on E C. However for cyclic semigroups we have: 
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Seinigroups of integral functions in valued fields 	 671 

Proposition 2. Let K be a valued field of characteristic zero and let (S1, o), 
(S2 , o) be two cyclic semigroups of integral functions over K. If S i  52, 
then 

Inv K SI  InvK52. 

Proof. Let A be a generator of Si, i = 1,2. Since the set of zeros from K of an 
integral function over K is countable (see [1], p. 144 for a non-archimedean 
valuation), we consider the countable set Al of zeros of the integral functions 

}PA') — 11(X),j,k E E Nj 2  k2  0. 

There exists then aEK\M and we denote 

14 	U {.00} U{a}, i = 1,2. 
kEEN 

Hence it follows that 

D,1,0 D and lnvt, S1 inVK 52. ❑ 

We now raise the question as to when the topological space (K, InvKS) 
is separable. Since h(a) E D,„ for every h E 5, from Proposition 1 it follows 
immediately: 

Proposition 3. Let K be a valued field and let (5, o) be a semigroup of 
integral functions over K . If K E InvK S, the following conditions are 
equivalent: 

a) (K ,InvK S) is a Hausdo?ff space. 
b) S = {X}. 
c) InvKS is the discrete topology on K. 

We recall that the assertion that for every two distinct points at least one 
of them has a neighbourhood that does not contain the other is called axiom 
To. 

Proposition 4. Let be K a valued field and let (5,o) be a semigroup of 
integral functions over K . If K E InvKS , then (K ,InvKS) is a T o - (Kol- 
mogoroff) space if and only if for every a E K, either a is a fixed point of S, 
that is h(a) = a, for all h E 5, or, if there exists h1 E S such that h1(a) 0 a, 
then h2h-i(a) 0 a, for all h2 E S. 

Proof. If (K, InvKS) is a To-space, then we consider a E K such that there 
exists h1 E S for which h1(a) 0 a. Suppose there exists h2 E 5, such that 
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678 	 Groza 

h2 hi (a) = a. By Proposition 1, either h i (a) (I Da , or act  Dhi ( a), which is 
absurd since it-1(a) E Da  and a = h2h1(a) E Dhi(a)• 

Conversly, let a, a' E K, a # a'. If a, for example, is a fixed point of , 
then a' t% Da  = {a}, otherwise suppose a' E D a  and a E D a,. Hence there 
exist h1 , h2  E S such that a' = h i (a) and a = h2(a'). Since h1(a) 0 a it 
follows that /i 2 /4 (a) # a, which is absurd 'since a = h2 (a') = h2 lii (a). This 
shows that (K,InvKS) is a Kolmogoroff space. ❑ 

Corollary. Let K be a valued field, f(X) E I K[[X]] and let S = (f) a cyclic 
semigroup of integral functions over K. If K E InvKS, then (K,Inv K S) is 

a Kolmogoroff space if and only if for all a E K either a is a fixed point of 
f(X) or for all k EE N, k > 2, there exists an integral functions gk(X) over 
K such that gk(a) 0 0 and fk( X) = gk(X)d- X. 

The proof follows directly from Proposition 4. 

Example 1. Suppose that K i  = E K 2  = E C and I I is the usual archi-
medean valuation. Let, 

f(x )= ex  + X. 

If S = (f), then by Corollary it follows that (E ft, Inv ER S) is a Kolmogoroff 
space and (E C, Inv EG S) is not a Kolmogoroff space. 

Remark 2. If (K, Inv h. S ) is a Kolmogoroff space, we define a partial ordering 
< on K such that a < a' if and only if a belongs to the closure of {a'} in 
InvKS (see [4], Ch. 1). Then the open intervals of (K, <) form a basis 
for the topology /nyKS. The assertion follows by Proposition 1 and by [4], 
Ch. 1. 

2. Invariant sets and semigroups 

In this section we study the connection between particular subsets of K 
and particular semigroups of integral functions. We shall use the terminology 
and notation introduced in Section 1. We shall need the following result from 

[ 7]. 

Theorem 1. Let K be a complete valued field, {ar1L}1L>1  an infinite sequence 
of distinct elements in K such that 

(3) 11111 I X n,  I = °'3  

and {Yn}n>i  an arbitrary infinite sequence of elements in K. Then there 
exists a function f(X) E I K[[X]] such that 

(4) .f(x) = y ,i, Vj ?_ I. 

• 	 • 	 • 

V
ir

tu
al

 L
ib

ra
ry

 o
f 

F
ac

ul
ty

 o
f 

M
at

he
m

at
ic

s 
- 

U
ni

ve
rs

it
y 

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs



Semigroups of integral functions in valued fields 	 679 

Theorem 2. Let K be a complete valued field and let M = {X„}„>1 be a 
countable subset of K which satisfies (3). Then there exists an infinite cyclic 
semigroup S of integral functions over K such that M E invKS. 

The proof follows immediately from Theorem 1. 
We shall now study some particular cases when K is not necessarily a 

complete field. We begin with a lemma on a determinant which is a gener-
alization of the Vandermonde determinant. 

Lemma 1. Let K be a field of characteristic zero, m, n, k E E N and 711> k. 
We consider the polynomial Dm,n,k( X0, X1, • • • X n) E K[Xo, X1, • • • , Xn} 

defined by the determinant which has the order (k + 1)(n + 1), its j-th row, 

j = 1, 	, n + 1 has the form 

( X 7." 	
ym-i-w-Fimn+-0) 

••• •, k 

and the following rows are their derivatives up to order k inclusive. Then 
there exists C E K \ { 0 } such that 

?I 

(5) Dtrz,n,k(X0, Xi, • • • tx,,) 	 (xi  - xi ) ( k+1? 

	

i.H0
0<i<i<

L(k+-0 	

„ 

„i„  

Proof. By induction on h. using Laplace's theorem, it is easily verified that 
the (total) degree of 1), ,„,A. is 

+ 1)(k + 1) (2m + + kn) (6) deg D,,,,n,k(Xo, X1, 	Xn) =  

We shall denote Dm,n,k  by D, for simplicity. Let (X 1  - X 0 ) 4  be the highest 

power of X1 - X0 which divides D in K[X0, X1, 	, X„]. Then 

D 	v  
(7) (AI, 	A'2, • • • , X„) E.- 0, 	= 	 ,q- 1 

0 

and 

1) <i  l)  

(8) " 1
(XI Xi X2, ... X„) 

is not identically equal to zero. Since the derivative of a determinant A of 

order N is the sum of N determinants A s  in which all rows (except the s-th) 
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680 	 G. Groza 

are the same as in A and the s-th row in A s  is the derivative of s-th row in 
A, it follows that 

OD 
0X0 

(X0 , 	,X„) 

is a sum of such determinants in which all rows (excepts the i-th rows, 
i = 1,n + 2,2n + 3, , kn + k +1) are the same as in D and i-th rows are 
the i-th rows in D or a derivative of the i-th rows in D. 

On the other hand, by using suitable derivative of D, it follows that D is 
not identically equal to zero. To obtain (7) it is enough to prove that 

( 9  ) 

03 D„ v  
Ao A 1, • • • , Xn) 

is a sum of such determinants in which there exists a row which is equal to 
the first row of D or is equal to a derivative up to order k inclusive of the 
first row of D. If ql  is the smallest value of j such (9) has not this property, 
it follows that 

(10) 	 q> qi> (k + 1) 2  

Since D is a homogeneous polynomial and it remains unchanged, to within 
sign, under any transposition of two unknows, it follows that the degree of 
the product of all the factors (X j  — Xi)q, j > i , where (X i  — Xi)q is the 
highest power of X j  — Xi  which divides D is equal to 

C4 + 1q > 7(7/  + I) 	2 . 
2 	(k +1) 

Similarly, if we denote by Xf the highest power of X i  which divides D, it 
follows that the degree of the product of all the factors 

(12) 	i = 0,1,... , n, is equal to (n + 1)p (n + 1)(k + 1)m 

Since 

n(n + 1)
(k  + 1) 2 + (n + 1)(k+ 1)?n, = 	

2 
(n + 1)(k + 1)  

2 	 (2m+ n+ kn) = deg D, 

by (11) and (12) it follows that q = (k + 1) 2  and p = m(k + 1), which gives 
the assertion. ❑ 
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Semigroups of integral functions in valued fields 	 681 

Theorem 3. Let K be a field of characteristic zero and II a rank I nontrivial 

valuation of K. We denote by li a completion of K for its topology defined 

by H. We consider K 1  a countable subset of K \ {0} and 1 2  a dense subset 

of K. If {L„ 1 nEEN is a family of dense subsets of K, then there exists a 

function ..p  

(13) 	 f(X) = E a„X" E Hi[[X]]\ k[[X]] 

such that 

a) an  E L„ for all n E E /V; 
b) f (k) (x) E K2  for all x E K1 and k E E N. 

Proof. Let {xi}i EE N be the elements of K 1  and we denote by 

(14) 	 S„( X) = E (lock 
k=0 

We consider the sequences u„ = 1 • 2 + 2 • 3 + ... + n(n + 1) — 1, 

= 

Because K2 is a dense subset of k and the polynomials are continuous 

functions we can find yo,o. 111,o E K2 such that the system 

(15) I ho + bixo = yo,0 

bo + bi xi = M.,o 

has the solutions bo , b1  E K with the following property 

(16) 	 bi l< v2, = 

With the notations of Lemma 1 we have 

D2,2.1 (x 0 , xi, x2) 	0. 

Let F2 be the finite set of the cofactors of the elements in D2,2,1 (X07 x1, x2). 

Since Lo , L 1  are dense subsets in k, there exist ai E Li, i = 0,1, such that 

(17) 

ai  i< v2 , 

51(xj) — Yi,o 1< v2 

c 	, 
(5 -1(x,i) — yj,o) 

1 
0, 1. < —

2 3
v3, Ve E F2, =  

D2,2,1 
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C 

D2,2,1 
	010;2) —  Y2,0) 

C 

D 	
— 

2,2,1 

(18) 

1 
< 2 • 3 

< 1 vs , do E F2, j = 0, 1, 2. 
2 • 3 
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Because K2 is a dense subset of k there exist the elements 
Y2,0, Y0,1, Y1,1, Y2,1 E K2 such that 

Applying Cramer's rule it follows that the system 

ao  + a i  xo  + b2 a,F; + b 3 x:(3)  + ki xt + b5 4 + boll + b7x 07  = yo,o 
ao  + al  x i  + b 2 x7 + b3 a: 1̀3  + 64 4 + b5x1 + b6s7 + b72:71  = Y.Lo 

(19)
ao  + al  x 2  + b2 :4 + b3 x ..1  + Nil + b54 + b64 + 674 = Y2,0 

al  + 2622: 0  + 3b3 4 + 4b4 4 + 5b5x3 + 6b64 + 7b74 = Yo,1 
al + 262x 1  + 3634 + 4b4 4 + 5b5x41  + 666 x4 + 7b7x7 = Y1,1 
al  + 2b 2 x 2  + 3b3 4 + 4b4 4 + 5b5 x1 + 6b6 4 + 7674 = Y2,1 

in the unknowns bi , has solutions with the following property 

(20) bi l< v3, = u1 + 	u2. 

We now consider 
D8 3 (xo , x i , X2, X3) 	0 

and we denote by F3 the set of the cofactors of the elements in D8,3,2. Since 
Li, i = ui  + 1, 	, vo, are dense subsets in k, by (19) and (20) it follows 
that there exist ai E Li, i = u 1  + 1, 	, u2 , such that 

l<173 , i = 	+ 1,... , u2 , 

Su2 (xi) — Y.i,o I< 173, 

S1,2 (xj) 	y.i,l 1< 1/3, 

( 511.2(Xj 	Yj,O) 
D8,3,2 

D8,3,2 
(S:c2 (x

i
) 	) 

c 

Now by induction on r, we consider 

Dur -1-1,r+1,4X0, x l n• • • Xr+i) 	0 

(21)  1 
< 3 4 v4, 

< 
:3

1 

4
Vc E F3, j = 0, 1,2. 

•  
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Smigreupt of integral filmdom in valued fields 	 683 

and we denote by F,.+i the set of the cofactors of its elements. 
We suppose that we have found yj,k E K2, j = 0, 	r, k = 0,1,... ,r — 

1 and ai E Li, i = 0,1, ... ,n,., such that 

	

(22) 	I at 1< v t+i, = 	+1,— ut, Vt = 1 , 	,r 

	

(23) 	SV:: ) (xj)— yj,k 1< vr+i, Vj = 0,... ,r, k = 0, 	, r — 1 

+1 ,r+1 ,r 
(S(, k) (xi) 	Yi,k) < (r + 1)

1

(r + 2)
yr+2, 

VC E Fr+i ,j = 0, ..,r, k = 0,... ,r — 1. 

Since "2 is a dense subset in A 
Yr+1,1 • • • Yr-I-1,r ?/O ,re • • • I 

hold true for all j = 0,1, ... ,T + 1 

there exist the elements 

Yr+i,r E K2 such that the condition (24) 
and k = 0,1,... , r. Then the system 

(25) Stkr ) (xj)+ (/)„, + IX"r +1 	...+ 	 = Yj,k, 

0<j<r+1,0<k< r 

in the unknowns bi, which for r = 1 coincides with the system (19), has the 

solutions bi with the followitig property 

(26) I NI< or_p, = 71r  + 1, • .. ur -Fi 

Since Li, i = ur  + 1, ... ,74+1 are dense subsets in k, by (25) and (26) it 

follows that there exist ai E Li such that the conditions (22) - (24) are 
satisfied for r 1. This proves (22) - (24) for every r. 

We consider now n E E IV. Then there exists 7.E N such that 

tt r  < 71. <71r+1 

and by (22) it follows that 

—1t,•+ 2 	1 
an 	< 11„."+  2 < U 	< T+2 	 • 

217--1-2 

Hence 

	

line I an 	= 0  

and 
00 

f(X) = E a„X" E /k[[X]]. 
n=0 

We remark that we can find a„ # 0. To prove b) we consider k,j E E N 
and we chose r > k and r > j. Then by (23) it follows that 

O 
k
I 

.1
A

X j — yj,k E K2 

and this establishes the theorem. ❑ 

(24) 
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684 	 G. ( roza 

Corollary. Let K be a countable field of characteristic zero and II a rank 
I nontrivial valuation of K. We denote by 

(27) SK = {f(X) E //([[X]], f (k) (x)E 	K,forallx E K andk E E 

Then S1 is a semigroup which contains some integral functions which are 
not polynomials. 

The assertion follows from Theorem 3 by taking K2 = L„ = K for all 
nEENandK1=K\{0}. 

Let 

Soo = {Si; 3,f(X) E /K[[X]] K[X], f E SO, 

where (S1 , o) is a subsemigroup of (,YK,o). In the last part of this paper we 
shall prove that we can find an, infinite subset D of E Q such that, for all 
S1 E Soo , the topology invEQS 1  does not contain the set D. More precise 
we have the following assertion: 

Theorem 4. Suppose K = E Q and II is the usual absolute value function. 
Let D = {lin}nEEN* 

(28) f(D)C D 

then f(X) is a polynomial which is of the form 

(29) 

Proof. If 

(30) 

.f(X)=— 
1 

X s ,rEEN*,sEEN 

00 

, a • = 	— 
f(X)  = 	a ' Vi  3 	(- "ci1133 E E Z, /3j 	0 

we may assume that 	> 0 and f3j /3j+1  for all j E E N. We denote 

(31) f(
1
—) = 1 , k„ E E N*. 
n 	k„ 

 

Since f(X) is a continuous function it follows that 

(32) rim f( -

1

) = ao  = lim —
1

. 
00 n 

and let f( X) E S E Q such that 
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Semigroup of integral functions in valued fields 

We may assume that f(X) h and because the zeros of an integral function 
which does not vanish identically are isolated, it follows that 

litn 1 = 0 = ao. 
7L—n0 h; 71  

Let at be the first coefficient which is not equal to zero. Since f(X) is an 

integral function we have 

fill' I am I *. = 0  
nl --POO 

and then there exists m o  E E N, ino  > i such that for all m > mo 

716 

(33) 	 I f(x) — E aixi I< a?1L+1, Vx.  E [0,1]. 
J=1. 

By (31) and (33) it follows that, for all in > ino and n E E N*, 

rv i 	1 	a„, 	1 , 

(34) k„
- 	ni  - ( 	• 	+ • • • + 

1371E 	
~ai1L 

Hence 

(35)  

	

i 	a t 
1.1111 — = 

	

k,, 	Oi 

and for all n E E N* and nt> ino 

(36) 113776um  - k7L(ai13717 Ori  nm  + • • • + am)I 5_ 1371E —
k„

• 

Suppose that there exists a fixed 

(37) in > 7n0, 771 > 2i suchthatalpha m  0. 

Then by (35) and (36) there exists r„, E E Z such that for all n E E N* 

(38) &um  - 1v7L(a7fi11Lf3i 
1 711

m-1  + • • • + am) - rm = 0, 

where r,„ = 0(n 7-1 ). We consider the polynomials 

Pi ( X ) = 1371tX 71L' 

P2(X)= atilm/31,C 7n-t  + 	+ am. 
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G . Groza 

Then there exist Ri(X Qi (X ) E E Q[X] such that 

(39) 	 Pi(X)= Qi(X)P2(X)-1- R1 (X), 

where deg Ri(X) < 111. — i and degQ1(X) = i. By (38) and (39) it follows 
that 

(40)

 Since 

there exists n o  E E N' 

(41) 

kn = Q1(n) 

lien 	R 

(n) —  r„, 

P2 (n) 

(n) — 

= O. 

= 0 

V7/ > 77.0 

n—Ko 

such that 

11 (71) — 

P2 (7) 

1 

P2 ( 71 ) d 

where d is the least common multiple of the denominators of the coefficients 
of Q i (X). Because k„ E E N, by (40), it follows that there exists n1 E E N* 
such that 

k„ = Q1 (n), V74 > n1 . 

Hence 

(42)
I 	 1b 

— i 

j (71  ) 	Q1 (n) 	(22(71-1Y 

where 
• 	1 

Q2(X) = X 2 Q1(7)• 

Since D has a limit point, by (42), it follows that 

X 4  
P A' ) = Q2 (X ) 

Since also f (X) is an integral function we must have Q2(X) E E Q and i = 0. 
Then there exists ntEEN such that a m, # 0 and for all m 1  > 1n , ant, = 
0. Thus f(X) is a polynomial and by (34) 

I ?Finn' 	kn(aii3711/31 1 n71L—i 	am) 1< 1121. 
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gemigroups of iint..., gral functions in value<1 fieltiO 
	 eg7 

Hence there exists n2 E E N* such that for all n > 712 

(43) 	 dine' = kikti/37,idT 1 um-t  + • • • + (Ym.)• 

We denote (n, a m ) = dm  and n = d„v„. Then Iilll v„ = oo and by (43) 
I k„. Hence, if in > i, then 

k„ 
lim 	= 00, 

71. 

which is absurd. Theu in = i and 

f(X) = 2-4 4 . 

Hence by (28) it follows (29). ❑ 
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FILOMAT (Nis) 9:3 (1995), 6g9-(197 
Algebra, Logic & Discrete Mathematics 

Ni, April 14-16, 1995. 

TP14,EMATE, DIET METOJLA PE30JIMIMI4 

Hemp XOTOMCICH 

PE3IOME. CTaTbil rrocrieuretia oTmememeno 30-T14 JleT14.11 meTo,aa pe3o-
mortmr, o6octioxamforo B cTaTbe Poamcoria 1965. ro.qa . B cym-
mapHom oxreptce flp14Be,L1eHbl rummer:mile pe3yabTaTm (npasmno pe3onio 

11,1414, Teopema o6 pe30.rtiortme, npoire,nwpa onposep)Ketimn) C y1a.3amdem 
14HTeHCHBHOTO pa3m4T1451 peCTIMKT14BHbIX tpopm, TeXHI4K 14 cTpaTermit , 
a TatoKe H pacumpextict ',-)TOro meToLta, BKJI104a51 norkri-rectcyio cmcTemy 
113b1Ha Hp0J101% OT,aeabito ripkmeitemtbi Hamm ycwrirm n0 pa3m4Tx10 

meTo.ita u ero irpviJlo)KeHHIi . RpoMe onvicam4st pe3y.nbTaTox B pamxax 
pa3st4Tux CLICTeMBI "GRAPH", ripmejlemibi cue/rein-41 o6 cwcTeMe "A-
/IT C Bapkor614.ribribimm cTpaTermsimm noucxa." rt 06 cvicTeme "DEDUC" 

axTomaTmmecxoro Elope>HARMAN KOM6Y1HaTOpHbIX pacno.no>xermil . 

lipmuertex o630p orly6.nvicoftaimbix cTaTbeii 14 ,Apyrux Hall114X Tpy.HOB 

03513aHHIAX C meToxkom pe3o.rtxmarkt. B 3a1C.11 10 ,61eHl4H °Thiel-1m0 LITO CNC-

Temhi c pe3o.rnort4eg moryT oxa3aTcH n0.rre3xh1m B KattecTBe "vmTen-
JILIreHTHOTO moTopa" AJI.1 pernemix 3a,HaLl B pa3J114 1-1HbIX npo6..rtemmux 
cpeitax, oco6eHHo Tex xoTophie riojAatoTcn nocaertoxaTeabirocm 

HtffbIX Ae,f13/KH14ii. Taxmi o6pa3om BO3MCOKHO HOCTp0HTb 14 pa3Rw4Ha1e 

xerrportes,y prime 313b1KH npor p ammmpox minx 14 ripeo,aonem H3BeCTHble 

nomexpi upprcymme B lipoaore. 

1. BBe,HeHwe 

B HHHape 1995. ro,Ha coHepumnoch 30 JleT Co 	011y6JIHKOBaHHH 

CTaTbH PO6HEICOlia [10]. B IIeiE o6ocHoBaHHa HoBam J101-11tIeCKaa CHC-

TeMa 3Ha4nirreabHasi He rrosn->xo ,L1J131 TeopeTwtiecHmx pacyaiHeHHil B pam-

Hax maTemaTHRH, Ho PI HJIII npa,HTHA-lecm4x 1113HJI0}KeHHJA B Apyrmx o6.11a-

CT3IX. B TetieHHH 30-TM ReT me.Top pe30JIEOHHH .LLo6MJIc He TOJII.K0 K 

maTemaTaxam, limiellepam, cryileirram, HO aah(e. 14 K Apyrilm 110J1b30Ba-

Tea3im, npeHacxoHHo Hocpeacutom 313bIlia ['parlor. 
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XOTOMCMI 

lloaTomy B HaCTOSIllierl CTaTbe Mid He 6y2Iem 3anmmaTcH Xp0H0J10114- 

mecimm ,HOKIlaHOM pe3yabTaTon 14 HCTOpl4T4eCKI4X uannbrx. Mb! orpa-
HYPIRMCJI cymmapnbm otiepRom K.11104eBbIX pe3yabTaTon c. yxa3anuem 
nanwx yClUlal no 1)a3HHT1IIo , T01"0 meTona H ero npmnoHtem414 . 

2. CyMMapHMi4 agepic pa3BHTHJI 

meroAa pe3ogromm ero npHaoweitHii 

TeopeTwiectuim obppbeumem B KOTOI)OM pa:3BHJIC.HmeTou pe30J1101:114H 

SIBJISIeTCSI afromaTm ,•lecKoe ,HOKa:31.1.TeJlbCTBO TeopeM Ha Ji3b1Ke vicxuic.ne-
1114.H npeumtaToB nepnoro nop.Huba. Ho OTHOIlleH1410 K COCTOAHI410 aTOr1 

npo6nemaTina4,KoTopoe 01114CalTHO B chyll.aamenTa.ribnoii cTaTbe Ban Xao 
[4] co 1960. rona H cTaTbe [5] co 1965. ro,ua, cyulecTnennuti nporpecc 
ocyatecTimen ,B cTaTbe Po6mncoHa [10] nyTem CO3,HaIll431 J101`14 14eCK0171 

CHCTeMbl nepnoro nc.)psuzia He norrpe6yromeI3 J101- 1414eCK14X amviom H o6o-
CHOBaHHOrl Ha TOJII■ Ko onnom npanm.ne nbinona (npMHuMnne pe3o.nronmi4). 
,TIornmecican KoppexTnocTb H 110J1130Ta wroti CHCTeMbl 060CHOBaHHbl na 
cymecTspolumx pe3y.nbTaTax 

KJ1104eBbIMH pe3yabTaTam14 SII3J1J110TCA : npanwno pe30m0uHH, Teo-
peMa o6 pe30moune H npoueAypa onponewbennsi . IiIX MO>KHO c4:lop-
mynnponaTb c.neuy1011121M 06pa3om. 

11panwao pe3o.rnouum: 
143 .4143b1OHNTOB D1 H D2 He umeionmx 06Lunx nepemenubtx, (DTO 

MO>KHO Hceruallafly,414Tb nepemmenonanmem nepemennbix), ripe yCJI0BY114 

cpuecTHonamtH HaH6o.nee o6ulero yuncinniaTopa B Aim nenycTbix MHO- 

MeCTB JII4Tepb L1 C D1 14 L2 C D2, HI)HtleM L10 14 L20 SIBAHIOTCH 

HOHOJIHFITeJlbHIAM14 no 0THOUJeH1410 K oTpHuannio , BbIBO,HHM ,HH:3b1OHNT 

pe30abnerrra: 
(DI \Li )0 U (D2\L2)0  . 

Cneumaabno: 143 211431,10HKTOB: -IA V Ci , B V C2 BbIBOAHTCSI pe- 
3onbsenTa: CIO V C•0 , npnmem AO connauaeT c BO . 

Talcum o6pa3om npartpuro pe30rnoum4 06beamsieT npouecc noucTa-
HOBK14 nepemennbix C npwlecrom norpmecboro BbIBOAa B HCL1HC.J1eHHI4 

BbICKa3bIBaHHT71. HiL14602lee 061unii yinclonHaTop Ha.X0H14TC31 ripe nomouu4 
artropwrma yHneppiKaumi. 

TeopeMa o6 pe3o.ruoupie: 
BycTb R(S) o603namaeT o6beunnenne mnowecTna. S C MHO)KeCTBOM 

ncex -pe3o.nbnenT BbIBOJIHMbIX ,H1431,10HICTOB MnomKecTHa , Rb(S) = S H 

R„(S)= R(R„_1(5')), n > 0 . Tor2la cupane,aaHna c.ne,zkyloulast TeopeMa: 
Konetume MHO}KerTHO ,HH:31,10HKTOB S FleBb1110JIHFIMO Tor na H TOJIbK0 

Torua, xorJLa R 7,(S) conepEnT 11.1131neboToporo U > 0 nycToii ,/(143b1OHET. 
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Ouposepacemiem Hexo,aHoro mHox<ecTHa A143b1OHISTOB S Ha3b1HaeTcH 

HOCI1e,LIOBaTenbHOCTb ./(14:314011KTOB B1, B2 7 • • • Bk, TaHaH LITO Ana Hawiloro 

mnena Bi , 1 < i < k , cupasexumo: 

B i  E 5 , ,HH60 Bi siBmierresi pe:30abBeiroil HeHoTopmx upealliecTspo-

umx uneaoB , H Bk uycTori .11,1431,H)HKT. 

143 Teopembi o6 pe3wHoume cae,H,yeT: 

KoHelmoe MBOBteCTBO 11H31,10HETOB S HeBbIII0J11114M0 Toraa H TOJIbKO 

Toraa, xozaa cymecTByerr onpoBewKeHHe mHo>BecTria S. 
lloaTomy TeopeMa o6 1)e30mou1e ycTaHownsieT 110JIHOTy aToil aorH-

qecxoti CHCTeM1A. C Ile.111.10 BOBb1ellIeli1411 744:14)eBTkimiocTm "[poi:lei:wpm 

onposepmeHaft B [101 upeximhellubi HepBble cTpaTerHH noucHa (search 

principles). 

Jlormaecnan HpocToTa 14 onipurrue nepcnewrpmbi 11pHB.TleKJI14 60JIb- 

.1114CJI0 HecneitouaTeneri no (1)yaHamewraabHmm H aMIJIHEaTHBHbIM 

BOIIpOCaM. Bmpa6oTaHHIA pa3.nwinbie pecTpHRTHBHble (Popmbi pe3aino- 

HHH H occo6ble TeXIIHK14 ,L1.1131 110BbICIllel1H51 344eKTI4BHOCTI4 uporke,vp 

uoHcHa, TaHHe 'talc cemaHTHx-iecHan pe3oRioaHH , rmieppe3omouna , 
ynopa,HotleHasi pe:3wHoursi , rameibiasi pe3o.niouan , OL-pe30.1110W451 c 

maplawoBarnammH JEHTepamm 14 ApyrHe. KpoMe cHHTaxcwiecmx crpa-

Term* HoHnia anipmHy JTH60 H ray6HHy) pa3HHTbi pa3J1144Hble aspHc-

TmiecHme crpaTerHH. C "team() 110BIACILle111111 14X :)()1leKTHBEIOCTI4 Ao6aB-

.11eHbIllbl occo6hie npaBH.na KoTopme yturriataioT OCCO6eHHOCT14 OT,I1e.11b-

BMX Hpo6.nemHhrx ofmacTeii (KoMyTaTMBHOCTb , aC011HaTI4BHOCTb H TX.) 

KpoMe pecTpHETHBHbIX 4:101)M Hccge,/loBarmbi H pacumpellan meToaa 

pe0JHOILI40 Ha curial/I Horaa. Hcxon,Hoe MHO>KeCTBO He 1113.11.fleTCA HoHe-

x1HbIM H co,HepacHT cxthi aHcHom, TaHHe KaK 110,LICTaBOBOxIHOCTb paBea-

cTBa ..TH46o maTemaTHgerKort HHAymum. Meron pe3omorum ,aortomaen 

HpaBH.Tiom napamo.ayaHHHvi ./1J1.11 TeopHii C paBeHeTBom H npaBH.nom RH-

,flymum Ana TeopHii C marremaTHLIecHoli kutayKrweiti . 3T14 upaBH.na 

1103B0J15110T 3JIHMHHHp0BaTb CXBMbl aKCHOM 143 14CXO,L(1301-0 MBOBieCTBa 

,L1343b1OHKTOB. CnenenbA o6 .TOM wrarie pa3B14THS1 MO}KHO HaRTH B [18], 
rae ripi4Heaeri cupicox Hpeubielualoumii 300 6146.7morpacpwlecimx e2H4- 

B pamnax aspHeTHY-Ieclioro uporpammmposampi ocymecTaneHmA pa- 

3J1141-1Hble nporpammnbie ckirTembi KOTOpble opHeuTHpoBaHHbI Ha pa3.1m- 

g ame TeopeTHT-recm4e HRH npaKTHA-tecHme ripmfloweaum . 113 c+epbi tII4C- 

• maTemanucH, T.e. AoKa3arre.rtbeTBa Teopem B pa3a14x1HbIX maTemant-

xlecia4x Teopmx, oTHphiTm npm.nox<eHH.H BTOPO meToHa B ,apyrrenc o6na-

CT13.HX, BHe maTemaTI4K14. 
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692 	 II. XoTown' 

OKa3aJlOCID LITO meToa pe3o.r1Toumm npkimeHxm K iumpoxomy cnexTpy 
upo6.nem xoTopme Hmpa3nmm Ha sr3mxe 14C 1.114CJIeHl4/1 npeamicaTox, Taxkie 
xax: B011pOCHO-OTBeTHbIe cmcTembi, cprryauxoHHoe yupamellHe 14 Hpx-
HRTHe pemexxii , nopoKrteHme KomfixHaTopHhix pacno.noHcemei , aBTO-

mammecKoe reHephiposaHme nporpamm 14 oripeAeneHme HX xoppexTHoc-
TM, .norkmecxoe nporpammmpoBaHme 14 Henponeaypubie 313bIK14, 6a3b1 

ilaHEIMX H T.A. 02lHa 143 MO,H140/1KaLIHrl pe3o,niolIMOHHori upoue,vpm 
onposepweHlist BcTpoerma B TeMeal" FI3bIKa 111.)01-paMMI4p0BaHH3I Hponor. 
DTHm, a TaKaKe 14 Apyrreimm Hone3IIMMH HpaKTirgecKi4mm lipi4J1OHSeHHHMH, 
ymeHmueHHo 1)a30x1apeHme xoTopoe 111)0H:30111RO B nocaeacTHHH cHepx-
mepHoro HatianKHoro oriTi4mkr3ma. c Haxiana 70-Tmx, C 021.110174 CTOpOlibl 
H cKpomHoro .3()(1)eKTa norTpoexxxix nporpammHbix cmcTem, C .apyroil 
CTOpOlibI. 

flonytieHHble Teo1)eTyr-lei-1(14e pe3y.nbTaTm 14 IlpaKTIIT-leCKHe KCIIep14- 

MeHTBI cow:twilit B03mo .,:xfiocTx C 6o.nmue pea.nx3ma OliteHHBaTb 110J10Hce-

Hide 14 p0J1b MeTO,BH. pe30.THOHM14 B yCHJIHAX aKTomaTyr3aum4 norimeclior0 
yM03aK/110xleH1431 14 pacyKneHmi , occo6eHHo B 06J1aCTbAX marremaTxxie-
CKON ,HeJiTenbilOCT14. 0}K1414a1IHal1 aBTOHOMHOCTb H MOLIIHOCTb Hporpam-
MHbIX cmcTem C pe3o.n1outeti ycTynaeT mecTo HOBOr1 p0J114 KOHCyJIBTa-

HTa- acmcTerra ile.noHeRy picc.neaonaTemo B nportecce pemenax CJIOHSHhIX 

Hpo6nem. HpH :)TOM pe3omouviouHmil HOAXOA Hxna,LibmaeTcsi B Apyrite 
Hepe3o.nio U4oHHHe, HHTepaETI4BHble cvicTembi BbIBO,aa. 

3. 0630p HaHIHX pe3yabTaTos 

O63Op Hammx yckumil Hatinem C ogepHom o6 nepHoil 60.nee Kommnex-
cHoil CHCTCMe Aolia3aTe.abcTna TeopeM xoTopa," HocTpoeHHa B pamxax 
axcHepTHoil cmcTemid GRAPH, [30] Ha -_-).nexTpoTexHirgecitom (Paxy.nTeTe 

Begrpa,ae 1980-1985. roAa. 
MO,HyJlb THEOR B COCTaBe CI4CTeMb1 GRAPH CoitepacHT aHpxcTi1 e-

CKI4171 ,aoKa3aTeab Teopem C ecTecTxemixim xxato,rtom [29] H ,Ltoica3aTeab 
C pe3omo1meit 14 vtayx.uvieti [14]. ilepBbIrl 143 TAX BKJI 10qaeT murepax-
THBHIArl peH(HM pa6oThi, a ,Hpyr0171 SIBJ151e4C.F1 B110JIHe CaMOCTOBTellbHOR 

awromaTmuecxoti npouezypoil nomcxa Aoxa3aTe.nbcixa 6e3 HmemaTeax- 
cTsa tw.noHexa. Conpsimienvie ?yrmx .rioxa:3aTeneti ocymecTs.neHHo Taxwm 
O6pa3OM TITO rteRx MaJlOrl KOMILTIeKCHOCTH OTCbUlaeTCH 143 HHTepaKTHB-

HON  Ha ,r_toxa3aTeabcTito 11 Li:acTE. C pe30JI 101114erl . CpicTema C 
pe3omoimeti 14 km,nymmen o6cTovrr Ha OL-pe3omoume C maplawoHaH-
Hb1M14 JII4TepaM14 H Ha oppirananbruax pe3yaxTaTax B CB$1314 pacumpeHRH 
meTorta pe3o.nroamm Ha Teopint nepxoro Hopstaxa c maTemaTmiecxoti 

, EoTophie orn4CMIHM B [11], [12], [13]. 
C 1986. roza Ha TexxxviecRom (!)aKyJIbTeTe B 3peEIHHHHe 11p0A0.11)Kell- 
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HO cosepineHeTHoHaHme 	cHcTemm. Pa3pa6oTaHHa H HeTpoeHHa B 

C14CTM BOHM1-11)14CTIIIT-leCKa,11 TexHHHa awromaTHgeciioro ynopSIAotIe.-
HHSI a143b1OHETOB B I4CXOJLHOM MHo -AiecTHe, npm nOmO1uH Bb11414C.TfeHHA 14X 

Hecos, [7], [8]. 
CHcTema C pe3o,rfloHmeil 14 HHayFatHeil B pamxax CHCTeMbI GRAPH 

o6ocHoHaHHa Ha cTpaTergH novtelia B 11114pHHY. HoshicmeHHe ac44ex-
THBHOCTI4 BO3MO}fillo 111314 1101s.4011114 14C11011b:30BaH1451 pa3.1114 11HbIX cTpaTe.- 
rHH Ha aToti noiIBe nocTpoeima CHCTM ALIT KoTopast onHcaHHa B 

[2], [24], [26]. HepHme .)1-Cer1epl/IMOHTb1 Ha aTai C14CTM 01114CaHHbl B 

[3]. CHeTema ALIT C HapHafivunaimmH cTpaTeraHmH nomexa 3111.TIHeTCH 

tlaCTb10 60J11,111er1 CI4CTeMb1 ALIT NoTopaH Ha (PaHy.nbTeTe B 3peaHHHHe 
pa3pa6oTaHHa c 1990. roita. B camom Aerie, cHcTema HoHa3aTeabeTHa 
aonozHerma 3licnepTHo-o6yga1olt4t c0cTeivio1l , HoTopaH pa3HHHanach B 

coTpy,unirgecTHe c 14HCTI4TyTOM K146epHeTHK14 143 Kpiesa B a,HyHaTHHHom 
HanpawneHHH, [19], [20]. 06e 4acT14 .1111.115110TCH He3aBI4CHMbIMH 14 HmeioT 
camocTosrreabHoe 3nageHme B HaygHo-HccneaoHaTeabcHom, o6ria1oulem 
H HpaHmtiecNom 

0,a110 143 npawriiitiermx 	 cucTembi ALIT ocymecTimeHHo 
B 0611aCT14 nopoKaeram BomiTimaTopinilx pacno.noacermil , [21], [22]. 
Pa3pa6oTaHHa H n(CrpOenHa Ha PC KommiloTepe cncTema DEDUC ,LIJ1,11 

awromaTH -gecKoro nopoxi,n,ein4si parnopsmenm ypoKoB, KoTOpa31 14CIIO-

Jlb3ye.T cmcTemy B Kat-Wel:1e ,ne,rrytmemnoro mexamoma [9], [25], 

[26]. liOCTOHECTBO CHCTeMb1 DEDUC COCTOHT B BO3M03KHOCTH MeHHTb 

Hcxo.aHme yCJIOBT131 6e3 HeouxoanmocTvt nepemen B npoue,HypHoti IlaCTH 

CHCTeMbl. 

llaabHernume 14CC.J1e,B4OBaH14.11 KOTOpb1e CeritIaC 11p0BOXVITCH, opHeH-
THp0BaHHM Ha pa3HHTHe HenpoueziypHbIX .1131311(0B riporpammHpoHainta , 
HpH gem Heno5Ib3yeTcsi ALIT cHcTema. 

0630p Hammx aKTHHHocTeii AotionHmm c.neaytoammm CTaT1331M14, KOTO-

phie He yHOMAHyTbI Bbicwe t  a xoTophie CB51:3aHHb1 C meToiLom pe3onioram. 

HeKoTopme 4.eTaapi o6 cHrTeme c 1)e:30.11101114er! H HH,Hymmeil o6cyavieH-
HM B Tpy.Hax [15], [6]. B nepBom 143 14X onFicamia TeX:mica BbuleHe1114.51 

TOJIbK0 peJleBaHTHIAX maroB oripoHepa(eHRH 143 mHwHecTsa Hcex marors 
HoTopme ocymecTH.neHHm B HpO1lecCe nokicita enoBa3aTe.nbc.TBa. B Apy-

rom OIIHCaHHN wHcnepinmenTbr not(a:3bmatoume BO3M0a(HOCTb HOJIyT-11Tb 

pa3akigH1Ie AoKa3aTeAbeTBa 0,aB014 14 Tor! Teopemm 

B [17] npeacTaHneH HopoTKHil o630p pa:3HHTHA awromaTifgecHoro ,72(0- 

Na3aTeabcnia TeopeM, ripmBeaeimbi cBe,Lieilloi o6 ckicTeme GRAPH, npm-

mem,' Aoica3aTe.abcTB H BO3MOiKHOCTI4 ,naabBeiinuero eosepa1esCTBoBaum 

CHCTeMbI C pe3o.ntouHeil . TO no,acrpemiyao Ltanbiletiume mcczeirosa- 
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❑ . X OTOMCKH 

HRH, 0lly6.1114K0BalliIble B cTarrbe [1]. OcymecTmeallo .3.THeimi4H14poHarime 
HaeliTI4t1Hhix pe30J11,BeHT KoTopme moryT 61,1Th 1101)0KE1e11111,1 Ha • coce.rt-
Hira ypoHHAX nonclia, a TaKaCe BHCCCHHb1 HexoTopme nepemeHbi B CBJI3H 

c ripHmerielmem np•Hmaa climmeTp1414. 
B [16] onkicaulla BO3M0.11;HOCTI, 14C110J1b30Ballall cvicTemm C pe30.T11011H-

eri ARA peateHHA :3a,aaq cTa6pull4314posaHHA H TpaHc+opmviposaHHH Tex-
HonOrWieCKI4X nporteccos. 

B nepHo,ae 1983---1988. roux apoHeileaHo HeCKOJIbK0 O63opHbIX 110K-
Jla,a0B H cemmiapoH HocaHmeHHboc meToay pe.3OnK1qI4x , HoTophie ripmno-
Mor.7114 yHermmeHrmo LaicJia Hcc.nedRoHaTeneti . 

TeopeTkimectme 311aH14.11 41 np<LKTHLIPCKHI3 OnbiT OTpa3HJIlleb 14 Ha o6y-
meHne CTy,LteHTOB. AileTo,a (1)yrii1als,ieHTaahHoI7 pe3oniogHH Houten B COC-

TaB xypca "MaTemaTvmecxasi normm H rip14111.114nlibi uporpammmposaHHH 
" (KaK 0,LU4H 143 MCTULLOB vicc.neiLoHam4H TaBToJiormii ) Ha 1. Kypce o6y-
memo] upoctleccopoH 1411(1)opMaTI41;14, [23]. ROII0J11114TeJ11.110e 3HaHHe o6 
meTo.zte pe3omouvn4 cTy,u.enTbi Hoar-m.10T Ha 3. xypce B pamEax 
upe,ameTa "CmcTembr HcKyceTHeHHoro 14HTe.rurexTa", [28]. Ha ympaailie-
HHAX FICE10111,3yloTcsi dHCTeMbI ALIT H I)EDUC Ha PC KomnbtoTepax (pa-
HbIIIe. 14C110J1b30BaHlla CI4CTeMa GRAPH Ha VAX EomnbroTepe). 

Ha aCHHpaHTHOlsel ypomie "140opmaTinia B 061)a30BallH14 "  Hmpa6- 

oTaHHO ilecKoJibKo cemHuaplibtx pa6oT nocaHmemmix ilpHJ10>KeHHIIM me-
To,Lta pe3omonam. 

HaxoHeu, Hpvnie,iieHEd H HeKoTopme LII4CJI0Bble yxa3aTem4 Hammx yem-
JIHT71 no pacumpenkno meToaa pe:30JIHMX1H: 

- orly6JIHK0BaH1Ibie Tpy,Hia: 24 
- 0630plime Al)linaam: 16 

moHorpacImm 41 ymeriam(H: 2 + 2 	. 
- HaHavutaTcxyle Te314cb1 (marHcTpaTypa): 3 
- JivicepTartm4 (4ofcropaTi1): 1 +1 (B pa6OTP). 

110 14TH 'we 143 upHBP,ReHH1,1X 14ccJ1ezoBaBmI3 6biam OcyluecTBJleHHbl B pa- 
mKax npoexToH, J1H6() oT.neJlhIIbEx Tem (4 npoeKTa, 6 TeM) c (1)oHancoHoI3 
HozHepautor4 Hayqxbix ympew,Hein4ii Pecny6amm4 Cep6HYI HJ114 Boeso,m4- 
RM. 

4. 3axa1oxIeime 

1101144eCKI4 110.11ilasi cHcTema, 06oczoBamas1 Ha HpmHunme pe3o.rllo-
I414, HIITelicHBH0 pa3Huria..nacb B pamEax Te0pm4H npaKTHEH aBTOMaTH-
UecKor0 HoHa3aTenbc.TBa -reopen,' 14 nprem6pe.ria (popmy meTwla pe3o.po-
H1414 — oaHoro 143 B03m0Milib1X MeTO,L1OB aBTomaTmmecxoro socupom3He-
Aeum norPmecxoro HiArso.aa Ha KomnbioTepe. 
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HeaocTaTxm ;3Tor6 Boxixo,aa, Tara ,  xax: 

xenpmpoorzioe npe.acTaaneime B 4opme X431,10 HKTOB, 

aKCHOHeHIII4a.I113HbIt4 B3pbIB ripocTpaacTsa noticxa, 

- HeB03MOHOIOCTb COBepLIIHTb .1Loxa3aTenbcTsa C.110HOIbIX maTema-

TWIeCKI4X TeOpeM B peaJIbIlbIX pecyprax, 

B oripezte.nexoli me.pe ofiecxypaximini 14CHO.III,30BaTb aTOT meTo.a B pa- 

3.11141.1111a1X npo6netnibtx o6nacT5-ix. Ocna6.nex14e aT14X HeX(OCTaTKOB 0C- 

yillecTsJ1eHHO Haablieflummm MO,L114 14KaIIH3IMI4 14CX0HHOPO MeT01ta. Tax 

nocTpoexEta Ae,ayxTmaxam cxcTema flpo..nor-st.ibma xoTopast mcno.nx3yeT 

HMHJIHKaTI4BHy10 cfmomy ripeacTaxneam 14 co,ELepacHT pa3BI4Tb1e TeXHHEH 

cpxemst npocTpancTsa no14cRa, tic.) H xexoTopme xe,aocTaTxm. HOMHMO 

H3BeCTHbIX xe,rtocTaTx.ox, mox<xo yTftepacaaTx LIT() 14MeHHO nporpammvi-

posaime B llpanore axecno 66..rnauoii WKJIa1L B pacanetpetme npmnoweamii 

meTo.aa Pe30JI 101114I4 K pa:3.n.mtram.m ofizacTsim. 

Haulm aHaJIH3b1 14 OIMIT HCI10.111.30BaH14/1 cmcTem C pe30J1 1011,14erl 1103110- 

JISHOT caenaTE, c.ne.ayfoutvie BIABOHbI: 

- B Tex CJ1ytth.LX, Kor,aa EfflyTpenee upeacTax.memile CKpbITO OT 

110.11b30BaTeJI 	xeT neorixo,furtmocT14 yeTpaxsurb (I)opmy ,11143b1OHK- 

TOB. 
CyluecTsyeT miagyrreaxxoe _L114(7..110 aallaLl , AAA peineHan KOTO-

pha "rny6oxwe" pacpxrtexax MOACHO 11p1413eCTI4 K nocae,gosa-

TeJlbHOCTI4 HpOCTbIX 1Le.aym.1142 , C KOTOpMMH cmcTema AfiT cn-

pasnmeTca coaceM i(13,(1)exTvratio H npaxTvitiecloi y,,Roxonemopxmo. 

CMcTeMy Airf C pe3omoumeti MOWHO 14CH011b30BaTb B KatiecTse 

"IIHTeRRI4relITHOr0 moTopa," B pa3.111411HbIX npo6nemaux cpeziax 

c aeamo pemeamsi oupe,ne.nexxxtx 3a,aati. 
HC110,11b3y/1 CHCTeMy ART C peaomouten KaK ,ae..u.yxTxmixiii 6a-

314C, BO3MWVE10 HOCTp014Th pa3J114 11HbIe xenpouezypable Amami 
nporpammvipoxaxvol 11 apeoao.rieTx nexoTopme aeaocTaTxm llpo-

Aora. 
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FILOMAT  (Ni) 9;3 (1995) 1 099-7W   
Algebra, Logic X.,. 1)iaer(rte M I.,matieg 

Nis, April 14-16, 1995. 

EWE 0 IIPOBJIEME BEJ110 14EH1431 PETYJISIPHbIX 14 
J114HERHbIX J131311COB B rPY11110BME .1131311M 

F.packimmp 	ilopAaces 

1. Bne,Renne 

IlyeTb G - rpynna c mit();.Keerraom o6pa3pommx 

X = 	= 

onpe.ne.ninommmx cooTnotuenwamm 0, e,zunivateli e H C pa3peummog 	
t 
 npo6ne- 

M01i 
	ki paBeHenta czoB. Toraa MHOH(eCTBO CJIOB M = {to = xi , :E_2i2k2  • • •xit i co 

e} C E* tia3biaaeTcsi PpyTTBOBb1M 113bIKOM, 3a,aar0mmm rpyrmy G. E* - BTO 

CB060).[11biL4 mt)Hokul uaz E. rpynna G Liaaaercii KOHTeKCTHO-CB060,1114/31M SI3b1- 

140M, eCJIII coorrBeTentylowiii rpyrinoBoil 1131.4K M HB.1191eTCY1 NOHTBNCTHO-CB0- 

6oxibm. Fpynna G B ATOM car-me Ha3bumeTc.t1 NOHTeliCTHO-CB060,11HOR rpyn- 

PR,E( CBOiiCTB Ppy11110131.4X H3bIHOB paccmoTpembr B [1, 2, 3, 4]. 

B [12] noica3aHo, MTO 111)06/1eMa BK/110 ,4eH1451 H BKBVIBB-TICHTHOCTH 

HO-aBTOMaTHBIX OTO6pa>Keliviii a.nropwrmmtiectu4 pa3pemmma. aTOT pe3prb-

TaT emmyampye'r 11011b1TK14 HaNTH 110HHHOMI4HaJlblibli4I ariropkrrm nposepino-

amti 0,41103HatIHOCT11 Konelmo-aBTOManibrX tyro6pa)KeHmii. TalcHe a.nropwrmu 

nati,menbi B [10, 12, 13]. Panbine AO BLIXOXIA BT14X pe3y.nbTaToB A. B. AHHCHMOB 

[3], peumer 6o,nee of.ituyit.) :izt,rtamy. OH zoicanaBaeT, A4TO npo6nema onpe,Itene- 

HHSi 	K011et1H0-aBTOMaTHbIX oTo6paAcenmit SIBINTIOTCH tlaCTHbIM 

cnymaem npo6nembi BKJ110‘4e111411 KOHTBKCTHO -CB06040bIX 5I3b1HOB B rpynnoBble 

1131:J1CH. B patToTe [3] A. B. AHHCHMOB npezzaraer anropHTM AAA ripoBep- 

K14 BK,1110 ,4eH1411 npom3nonbnoro KOHTeKCTHO-CH060,111101•0 Haulm L B rpynnosoik 

M upynhibi C pa3peamMog npo6nemoi1 panenCrrna enos. B npea.naraemom 

anropHTMe naxo,av 	 e rren yone4Hoe MHOHSCTBO 	 e TBKO , 'ITO WI C M Tor.aa 

14 T 0.11bK0 TorAa, KOF,aa L C M. Btmee icomperrtio 210Ka3b1BaeTCH cneAylowaR 

zeopema. 

TeopeMa 1. Hymn', F = ( N, II) Konmercruno-ceo6oduast zpa.m.mantwca, no- 

poxcdavuyasr xountexen17lo-ceo6othat7l Jr3b1,1C L, a M - zpynnotwit Il3b17C Zpynnat G 

c pd3pencu.moii npo6.4e.mvii paeenemen 0408. fiyentto i i - muooicecmeo EICeZ c✓toe 
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700 	 K. H. nopiptceB 

U3 L dAuuoii menbuce 41,4.id paanoii p , a 11 = fuwvw-1 l luwvi < q,- uv 
e, 3S E N : S 	.uSv,S 	ode p u q cymo xoucmanmai U3 u3oectrzuo1l 
xuwvy - meopemu (cm. noup, [5]).Tooda L C .A4 mooda u 7110,4000 mooda, icooda 

= fi t US2 2,c M. 

Bce Heo6xoummbie CBe1e/11111 H 0 603HatIe111411 H3 Teopm4 itoirreKczno-cHo-
60,4HbIX }13bIKOB MOH010 HaIITH Hanpmmep B [5] HRH [7]. 

llenb HacTonweil pa6oTbr - momAnumpoBan, anropmTm A. B. AHHCHMOBa 

TaK, 4T06b1 OH pa6oTan 3a. HOZ 14110MHajIbH0e spemn. aTO MbI c.nenaem Anfl pe-
rylnipHbIX H3bIKOB H ARM J114HeilHbIX ..113bIKOB, 11C110J1b3yR cnenvnimmemme CB013C-

TBa BTPIX J13bIKOB. Ta pa.6oTa nponomKeHme H ,nononneHme pa6OTbI [8]. 3,aecb 
Mb" onmuerm HoBble Konetwme mHomtecTBa, C 110MOILIb10 KOTOpbIX npoBepneTcm 
BKJ1104eHl4e L C M. 

oanarpammok uepexo,a(ni 6y,aem Ha3b1BaTb meTsepity H  =  (V, I?, 5,1), r.ae 
(V, R) - Ronemnbni opmeuermpoBalmbni read) C MHOJKCCTBOM Bep11114H V 14 MHO-

HieCTBOM perwp R, S - nonyrpynna, a.nemenTbi ionopoil 6yaem Ha3bIBaTb meT-
Kamm, a 1 - (pymmvoi 143 R B S, Ha3bmaeman (1)ymanni pa3meToK. ,ll.pyrmmm 
cnoBamm, maN-caoe pe6po rpa(i)a nometremo neKoTopum anemeirrom nonyrpymnA 
S. ECJII4 7f - IIyTb B Amarpamme nepexo„RoB H , TO menca nynt /(7r) - BTO npo-
m3Be1erme meToK pP.6ep , COCTaBJD110111,14X BTOT layTb, npmtlem MPTKK 6epyTcu 
B nopmuKe npoxomuieHma pe6ep. ECJIH P - MHOHSCCTBO IlyTe1/1 B H , TO 1(P) 
6yueT MHO?KeCTBO -(0) I 37r E P :1(7) 

2. Bionomeime peryampabnc B3LIKOB B rpynnonme 831:41CH 

B TeopeMe 1 yntepacnaPTCJI, T-ITO 1JIH KOHTeKCTHO-CB060.111101•0 313b1Ka L MO?K-

HO 	nyTem HailTH KOHCLIHOe MHOHLeCTBO W1 = SZ1 US12, TaKoe, 

LIT) L BKJIIOLIaeTCH 13 iramiblii rpynnoBoi1 313bIK M rpyrinbi G C pa3peummofi 
npo6nemoiii paBemcma c.noB, Torna H TOJIbKO Tor,na, Kor1a W1 munotrae-r- 
cu B M. B ,,TOM naparpack pe11114M 6o.nee KomcpeTHylo 3anatly. .n.nn pery- 
J1S1pHbIX 113b1E0B, KOTOpb10 ELBJIMIOTCH BaJKHbIM 4aCTHISM capraem KOHTeKCT110- 

CB0 6 021.11bIX .113b1KOH K Hati,LICM ewe ,L1Ba mHon(ecTBa, 06J1a211a1011114X aTHM CBOIAC-

TBOM. :.)114 MI10 ->ftecTea. 6y1yT pa3nw4aTbc.si W 1  H menuty C0601i. 

ilyeTb L - perynopmbni H3bIK. Tor,aa cymecTByeT KOHetIllblii arrromaT - pac-` 
1-103HaBaTeRb (AeTepnlyimpoBaHHbIli HRH 1-IeJleTepM11H14p0BaHHBIR) 

A = (Q,E, ( 5, q , Z) 

TaKOR, LITO L = T(A), rte Q = 	 MHOJfieCTBO COCTOJIHIM;E = 
{x i , x 2 , ..., x r„}- BXOJIHOli HJI4H1B14T; (5- Csonwitm nepexoxtos; q1- HatranbHoe coc- 
Tonnme;Z- MI1 0}KeCTBO 3aKJ110414Te.11bHbIX COCTORM4i4; T(A)- MHOWeCTBO CJIOB 

pacno3HaBaeimbnc A. IlocTpovim Amarpammy nepexo,LioB Hq = (Q R,E*,1A), 
rpre mmo›KecTrso Beptinm Q cormanaeT C MHO}KeCTBOM COCTOJIHHil aBTOMaTa A; 
mHoniecTBo pe6ep R 06p:A:3013mo cnenyloumm o6pa3om: p E R, 1-.4e p = 
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(q1 , qi ), mor,ga 14 PO 311.1ClI TO r.n i, VC117./In eymorTnypT T g 51.1 1.1 TF.1 Taxoe.wro 

q; E (qi, x) 14 Ilp14 ;iTOM IA(p) = X. E - 3TO nycToe CJIOBO. TOcaa CJIOBO 

w E L = T (A) Tor,Ra. 14 TOJIbKO TOT,LIa, Horna cymecTsyeT nyTb 7r B HA c 

Hatianom ql , Komlom - .0.1iervieBT 143 Z 14 C MeTKO I.Ixap26 nyan w. IlyCTb G 
-1 -1 

- rpynna C MHO)KeCTBOM 0 6 pa:3poutia X = 	x2, ..., xm , x l  , X2 1 ... 1 Xm-1 } 

14 1-13FCTb M - cooTHeTcTnyiouudi rpynnoHoii 313bIK. PaCCMOTpI4M ,aviarpammy 

nepexonos HG = (Q, R, (T , 1 (; ) C TeM we MHO?KeCTBOM septum H pe6ep KaK H 

B HA, TOJIbKO MeTKI4 pe6ep ( - 4HTaem KaK =3J1eMellTbI rpy1111bI G . 

	

nyeTb FG  = (2G ,u, • , 	el ) - 3aMKHyTOe HOJIyKOJIb1.10 C onemeHTamm ncex 

110,4141110H(eCTB rpyrinbi G, 13KJII0Liail 14 nycToe MHO}KeCTBO. Onepannn B FG 

5ynyT COOTBeTCTBeHHO 0 6bc,a1411e1114e H npon3Beaenue M1101KeCTB, enkmmtnibni 

anemeHT - BTO mHowecT80 conepwainee TOJIbKO emonmy e rpynnbi G, a 

HyneHoia onemeHT - nycToe mHoweeTHo la. 3ammyTble nonyHonbna H HX nouro-

?KeH14,33 xopomo 143p4eHbl 13 [1 1]. !!:.-)TO IIOHJITHe itecfnuniposamo 14 HCII0J1b3yeTCH 

14 B [6, 9]. 

B 3ammiTrom nonyKonbuu FG  onpeae.miem 614Hapnyio onepammo [x, y] cne-

itylomnm 06pa30m: ecaH a, b E G, TO [Ial, {b}] = {aba'} H AAA x, y, z E FG 

Bb.1110J1HeHO [x U y z] = [x, [y, z] 14 [x, y U =- [x, U 21. ()german°, 

aTO HoppeHTHo HHeneHnaH one pawn B cHny ,414CTpH6yTHB1101•0 3aHoHa B FG. 

ilyeTh P - mHoweeTB0 Hcox. nyTeii B HG C Hatianom q1 14 KOHUOM - anemeHT 

143 Z. Tor ,aa ()mei:6144H° L c M Torna 14 TOJIbKO TorAa, boraa lG(P) {e}. 

- mnohcecroo acex nyTeii 143 P He conepwannix 1.114KJI0B H 11yeTb 

c13 = IG(P1). 

anemeHTapHum UHKJ1OM Ha30BeM 1114KII B HG 6e3 KpaTHbIX Hepunm, T.O. 1114KJI 

THIIa (qi „ qi „)( qi ,, qi „) • • • ( qi ,_„ gik )(qi „ , qi ,), rae qi . 	Alp ISOt 14 nycTb 

C - M110/KeCTBO 1.3.11eM('-HTap1lux 1114KJI0B B HG. Toraa, eczn 7i - nyTb 43 P , TO, 

011eBI4JIHO, It rummaJine>bwr 	14J114 It MO)KHO npe,acTaHHT, B tatike 11 = ror2 71-31  

rae 71 He conepAcHT nincrino 	E C, a r3 HatutHaeT c Holum ri  14 HoHtmeT B 

anemeHTe H3 Z. Ho Tor,aa H nyTH 7r17rz 7r3, k = 0,1,2, ... Toxce npkia,limeacaT 

P. 
PaCCMOTpHM M110>KeCTBo H4 cocTanmee 143 BCOX anemeHTos rpynnbi G HH-

.4a a = 7.1177.L -1 , rae 4L = 1 ( ;(71- 1) AAA HeHoToporo nyTH iri E HG c Hatianom gl H 

He Hmeionnix 1111KJI0B, V = (7r2) JIJIA HeKOTOpOPO nym 71-2  E C, nepexo,anmnx 

4epe3 KOHLIa 71).  14 druxecToyeT nyTb 1f3 E HG c Hatianom KOHCU 7f1 H KOH-

UOM - HeKOTOpb114 ■anemewr 14:3 Z. 113 14 H4 HBJIHIOTCH anemeHTamx 3aMKHyTOrO 

nonyHonbua FG . Ilo.naraem 1/172  = H3 U H4. 

	

O6a3yeM mno?HecTaa 	B HG, 	rae i,j,k = 1,2,...,n; n = IQI 
cnenylounim o6pa3oM: 

C; = {pip - Pe6po 143 qi  B qi } 

ok-Iffk71 	k = 2,  n  
ti 	 ik 
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702 	 K. R. flopmi<es 

HeTpyruio 3ameTtrrb, 4TO 	COCTOHT TOJIhKO 143 nyreii AJIMMOR menbnie 
14JIH parmai k +1 c natia..flom 	bom.kom qj  14 Bee y3J1b1, KOTOpbIX 'Tome 6bITI, 
mo)BeT Habana HRH KOMB,a 111M4Haalle>t<aT MHOH(eCTBy fqi , q2 , ...,qk l. 

PaccmoTpmm c.neAypoultie .-).nemenTbi 3aMKHyTOPO noJIyitOnbua FG: 
125 = f/G(Cri)}, rue j TaKoe, 4TO E Z; 
f2 6  = -([1G (C;),1G (C1)11, r,Be j Taxoe, •L1TO cymecTuyeT nyTb c namanom 

H KOHLLOM Qt ATIR nexoToporo 	E Z, T.e. 

JIeMMa 1. B
- 21 

 k = 2,3,...,n, B03.MOdcnO cyuyeem 	 aw eoeauue nyntu cod 
 guiciaa. 

,amca3atize ✓tbemeo. Ox-leBRAFlo Anse Bcex 8, t = 1, 2, 	n Bbnionfieno CTt  C C  C 
• • • C Csnt . Kpome aToro ZjAH Bcex T , 4 , t = 1, 2, ..., it ,Boxaacem tnukyinimeti 110 

41.0 B (1st  no3mo)Kno ryinecTBoBanme nyni (eh, q2 ) • • • (q,., qt ). B 
camom ,gene Ann T = 1 yroepnvienne OtleBHAMO. nyCTI, AAA < Tp B Csrt  B03- 
MOM<H0 cymecTBoBanne flTM q i )(qi  , (/2) • • • Or  , qt ) 14 pacemoTptim Csr;" C 
Csr  r+l er+1 t • 113 taburatmotnioro npe,ano.no)KeHHni Hmeem, ,4TO B 6'  r+1  B03- 
mo)NeH nyTb (q3 , qi )(q i  , (l2) • • • (qr , (Ir+i), H TaK KaK Cr.4.1 

t 
 C err  t +i B Cr°÷ 1 t  

BO3MWEHO cyinecTBobanvb,  per) pa (qr+i,q 	cgr1 t) , TO B 	BO3M0H{HO cyaxecTBo- 
Balme nyrn 	)(q , q) • • ((b., (jr+i)(qr + i , qt)• 

eneflobaTeabno, Ll Cf47 1  BO3M0>Kell nyTb (qi,(j1)(qi,q2 )- • • (qk  _ 1 , qk ), a B 
BO3M0M<BM nyTb (qk.q i )(qi ,q2 )- • (qk_ i ,qi). Tor.aa B C,rk. C CctiCtil 

Do3m0acen nyTb qi)(q i  , (/2) • • (ijk_i,q1)(qk,q1)(qi,(/2) • • • (qk  _ 1 , qi ) B KOTO-
pom co,aep>f<mTcx tu4K.n (q, (j2  )( (72, q3) • • • (qk_i,(tk)(q k ,(f 1 ). nemma .Boxa3ana. 
0 

anerrkeTEHe 1. 	onper)n.zenlibir ebtule AilloWeente 93 ,94 ,95  U 	u3 adze- 
Ateuutoe ,Tynnbt G u.meem 	C Sts  u SZ4  C SZ6  npu 7110AS a o6u4eAi crquae 
113  # 125  u 

Tal*He HeTpy,t1H0 3aMOTMTB, 4TO B oftiem cnytiae mnomecTsa ft, H 1/2 (ec-
JIM 14XMlie !,..)J1eMeHTb1 pacrMaTpl4BaeM KaK anemeirrbi rpynnw G) H3 Teopemm 
1 , BBe,nemibie A. B. AnnrnmoBbim pamipialoTc.n mnoacecTsamn 1313e,T1BHHIAMM 
Hamm B a TOM naparp4e. Ii cm.ny cne„apoinan Teopema: 

TeopeMa 2. ,a4.11 seedeuubtx ebitue 06037weenua, es/v(470710e yeAolgust 9703118a-
Jle7i7lilib4: 

(i) L C M ;  
(ii) 1/171  = St l  U 1 = {C}: 

(iii) W2 = 113 U114 = 

(iv) W3 = C/5 U c/6 = {e}. 
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EllAe 0 111106.11eMe liK/1104CHI4S1 perymilmblx H nmHeihitAx si361K0B 	 703 

,1101C123a7IteAbC71180. TaK KaK, pery.rnipHbie J1341K14 ABJIYHOTCM 4aCTHbIM14 cayma-

AMY! KOHTeKCTHO-CB060filiblX H3bIKOB, TO OKBHBaJ1eHTHOCTb yCJIOBMM (1) 14 (ii) 

ycTaHoHneHa A. B. Anincmmobum B [3]. hpoMe 9Toro W2 C W3 (C.1IeACTBHe 

1), T.e. 143 W3 = {C} CnejiyeT W2 = {e}, 14J114 AoKa3anii, tITO 143 (MB) cum-

AyeT (iii). 1-1To61,1 .4oKa,3aTb Teopemy HaM ):10CTaT04H0 ,110Ka3aTb, 4TO 143 (iii) 

caerlyeT (i) 14 143 (I) Cjle,ayeT (1v). 

(111) — (1). nyCTb W2 = 	U ct4 = {C} 14 IlyCTI, W E L. Torxta cymecTiayeT 

nyTK r BHA C Hama.riom (1 1  14 KOHLIOM 3..riemeHT 143 Z, TaKoii, 4TO 1A(r) = W. 

EC1114 71-  He co.aep)KHT 1.114KJI0B, TO /GOO E /G(Pi ) = c2.3 = {e} H cae,aoHaTe.nbHo 

E M. 
HycTb it CO,E(ep>KLIT LIANA, Toriza it coaetoKHT aReMeHTapHblit LU4K.11. .Elpy-

rythm cnoHamvi it mo>KHo npeitcTanwr, B Hvbrre r = 7f 1 r2r3 , r,ae 

1G(rt ) 1 (;(72)(1G(ri)) -1  E 114 = 

OTC10,ga CJle,E1yeT, 4TO /(;(71. 1)1(;(72) = 1G(71- 1) HRH Hee paBHO 1G(r1 7271-3) = 

iG(7171-3). TaK KaK 7r 2  E 	To )1J114Ha 7r 2  6oJlbiue 1. (.',.neaoHaTe.mbHo, cymecT- 

HyeT nyrb B HG c meHbuieii AJIHHoil, mem ,L1.11HHa 7r, meTKa KOTOpOTO parma 

B rpynne 	::)TOT Rp0Llec'c' coKpall1eHl4H MO>KHO Hp0,210J1111aTb KOHe4H0e 1.1HCJI0 

pa3, TaK HaK W - KoHe4lla,11. B KOHUP.. TT01-1) nponecca no.nroim ByTb 

6e3 UMKJIOB C meTKoi.1 pal-1110R L4.1 B rpynne G. Ho / 6 (.P1 ) = 113 = {e}. Gne,rio-

BaTeabH0, W = C B rpynne G 'i.e. L c M. 
(i)—+(iv). IlycTb L 	T.e. 1 G (P) = {e} 14 TaK KaK 11 5  C 1G(P), TO 

S/5 = 

nyCTb z E 116 . Tor,ji . = morKHo npeAcTarinT, B BH,T1e Z = WM-1 , Tae U E 

/G (Crj ), v E /G (CZ) AAA neKoToporo j, TaKoro, tyro cyalecTsyeT ByTb 71.3 C Ha-

xranom q1, Km -mom 'aJleMeHT 143 Z 14 nyeTb /0(r3 ) = W. Kpome =)Toro oxieHKaHo 

U -43TO meTKa HeKOT0p01'0 11:014 9r1 C Ha,-Tanom q 1  14 KOHLIOM q1, a V - BTO meTxa 

HexoToporo umma, npoxoninnero 4epe3 	CAe.OnaTeaKHo nyTH 7r J  = r1 r2r3  

14 r" = r 1 r3  flp14Ha21.11e)KaT 	14 Tax Kai< L C Jul, To /G(e) = 1G(r fi) = e '4 

czezioHaTe.nbno uvw = uw, 'i.e. uvu -1  = e. C.1.neaoHaTeribHo z = e 14 TaK KaK 

z npon3HoribHoe, TO 126 = 	TeOpeMa ,ItoKa3aHa. 0 

(:%Tie,g3rionani a.nropI4TM flawpyeTcH Ha BKB14BaJleHTHOCTII (i) 14 (hr) 143 Te-

opembi 2. BAH yerio6cTba i E Z 6yrieT o3HatiaTb 	E Z, a gii  - aTo dc.(Ct). 

3,necb k B 	1411,L1eKC 14 He winagaeT cTeneHb. 

AJIr0pMTM 1. 17poeepscm to,..4lon tt 

	

eue L C 	drut peo ✓aspu000 313bLICa L Id opyn- 

noecao sr3boca M opymtbr G pavelltumnii npo6rtemoii paeenentea C.208. 

BX0,4: 	= 1G (('Ti ). 	1. = 1, 2, ..., n 

Buxo,R: ..TIOTHtleCKakl flepeMCHHa11 T , nonytialoulan CTOYIMOCTb 14CTIfila, 

ecan L C M 14 CTOHMOCTb JIMEL, B 11pOTHBHOM Aaropwrm ocTaHart-

anHaeT cpa3y noc.ne. 110J1yLle111411 CT014MOCT14 T :=Jloacb. 
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704 	 K. N. flopjA)KeB 

Haman() 

1. T :=HtTmHa; 

2. am' 1 < k < n Ae.maTi. 

3. ,L(Jut 1 < i , j < n. ,LEenam 

4. k-1 	k-1 k-1 
gij 	gij 	gik gkj 

5. KoHeq JiLe.uam 

6. Konen ilenaTh 

7. ,Line j E Z 

8. Ecam gib S 	 {e} To 

9. Haman° T 	; OCTaHOB KoHerk ; 

10. 'Cone]; ,ae.nian. 

11. Zaa 1 < j < a ,LEe.naTi. 

12. ,L1a3I t E Z aenan, 
13. Eenm 	 $ 0 14 grli  S 0 To 

14. Ecam 	 {e} To 

15. Hatta.no T :=Jloaa, ; OcTaHos Koaeg 

16. KoHerk .ItexiaTb 

17. Koueg 21e.nam 

Itioaerk. 

Teopema 3. A.41oyantra I 81,1710.4701CMCS1 uc 6arice 0(n3 ) onepaquu crwaiceuuff, 
npou3eedeuus u [x, y] a/IC.41(101108 U3 3am1uymoiw nostpco.itaua FG u npoeepsent 
89C✓ 0NCUTIC L C .M, 	L - 	 .11314X, pacno3uaeae.MbLii 1C011e‘111b1.41 087110- 

malnam A, M - zpynnoeoil 	epynntu G c pa3peuiuMoit npo6riemoit paseucntea 
C.408, n - NUC.40 cocinoffnuii aomumanta. 

.fioxa3ante400n80. (Or.iarno TCOpPMbI 3 H rani:mail axcHombi 3ammyToro 
nonyboabua FG , TO 13 pnaa.x 9 14 15 aJlropHTMa 1 norkimecKasi nepemeHTaz T 
nplummaeT CTOHMOCTb Jlo;b:b TorAa H TOJIbK0 Tor,aa, Kor is L He HfunotiaeTcH 
B M. B npoTHHHom ct1y-la T HpHHHmaeT CTOHMOCTb MeTHHa. CJIe,a0BaTeJIb-

HO, aJIFOpHTM 1 KopeKTH() 111)ofiepHeT 861110JIHNeTCH J114 BKJIIOtle..HHe L C M. 
Jlento ripopepwTb, tyro (.-rpoKa 4 BbITIOJIHHeTCA He 6onee 713  pas, HpHitem 

Ka)Kabiii paa BbMOJIHNIOTCH Abe onepaHHH B 3H,MKHyTOM nonyHonbue FG. CTp0- 

K14 13 H 14 BblEIOJIIIBeTcJi Fie 6o.nee n2  pa3 KaKaasi. ( neAosa,Tenbno, anropwrm 
1 BbIllOJIHfieT He 6OJiee 0(7/ 3 ) onepaHHH CJI0 KP.HNA , ymHoaceHHH 14 [X, B 3am-
KHyTOM rionyKonbue PG. Teopema 2[oKa3aHa. ❑ 

C.Tie,geTHme 2. EC.411 011Craqu'll C.40 diCenue, y.A41loare7itter! U 	y] B 3a.m1C7tymam 
norty7co,4b7;e FG  Atodocuo ebtuo.nuumb 38 noJluttoMum4bnoe eperwJI, 1110 a.43opum.A4 1 
813.4,11C7liCSI 11002117LOMIL0,111.1114A1. 
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3. Day.nio.s..,agr..,  ...xzezzsg,aa.a..  xe....z.necra  a  rroxamr,aassara-• 

B aTom naparpaqw 	npo,LionxcaTi, 14C110.11b30BaTb pifielo  A.  B. AH14- 

ciimoBa AAR HaxoncaeiniA Kom-Lanzx MHO?KeCTB, C nomoutbio KOTOpbIX MO)KHO 

onpe,AeaviTh Eynotia.eTesi .1111 	 KOHTeKCTHO-CB0604.11b1ii 1:13bIK B rpynno- 

B014 .113131K rpynnbI C pa3pe1Imm014 ri1)o6nemoik paseticTBa CJIOB. &TO ciTenaem 

Ansi JIHHei>111bIX H3bIK013. KaK I43BeCTHO, KJ1aCC J114HeAHMX .113bIKOB BEJ110tIa.eTC.11 

B KJIaCC KOHTeKCTHO-CB060/11ILIX H3bIKOB. AHaJ114314pyri AoKa3aTenbcTso A. B. 

AHHcHmoBa[3], MO)KHO 3aKJI10414Tb, tITO 	 o npoBepKe BK.11104eH1g  Junieii- 

Horo si3 mica B Tpy11110Boii 113bIK rpyrmbi r. pa3peammoci npo6nr•moil paBeHCT-

Ba CJIOB pemaeT N 3aJ:ka4y o npobepite 011-103HatIHOCTI4 KoHexmo-asTomaTHoro 

oTo6paaKeHm. 

B BTOM naparpa(pe 6yRem paccmaTpimaTb Juniegivio rpammaTHxy F 

(N, E, 11) rzte N = {A 1 , 11 2 , ..., A n } - MHO}KeCTBO He'repmptHanoH, 

= 	X21 —Ism} 

- mitoxiecTBo TepmmHanoB, 11 - MHO)KeCTBO ripaeacn, a  L  6y,aeT o3HataaTh  JIM-

.

• 	

1,13bIK L = L(r, A I ). Ho IlTeKeTHO-CHO 6 ()Allan rpammaTmar .(N, E, 

Ha3mBaeTcn JIYIHei. Hoi , ecJIM BC(' npanmaa B H  nmeloT BHA Ai 	ctA 1 13 HRH 

Ai —>  a, roe A, B E N - tieTepmmlianbi, 	- TepmvniamTue cnosa 143 CB0- 

60,4110r0 MOH014,Eka E * . 3-1:31,1K L Ha3bIBaeTcal .1114Her4Hb1M, ecam cymecTsyeT .1114- 

Heilman rpamma T14Ka r 14 ii("mmotHaardiblii CIAMBOJI Ai E N Tante, T-ITO L = 
L(1', Ai ). 

flyeTb S - MOH014)1 C P/114H141.Ieil 1. PaCCMOTpMM MHOJISeCTBO Us = S X S  = 
{(x,Y)lx,Y E S}. U Us 111.10/114M onepaukui "o" c.neityloamm o6pa3om: ecHH 

(x,y), (z,t) E Us  TO (x.y)o (w, t,) = (xz,ty). HeTpy,aHo 13141eTb, LITO Us C 

azoti onepaume0 moHoH,n. (- t.vunitnieti (1,1). ECM{ S - rpynna, TO 14 Us 6y1eT 

rpynna, npM ecnii (1 = (,T, y) E Us , TO o6paTimim wiemeirrom  a  6y.neT  

a-1  = (x -1 ,y-1 ). 	6pa:iyem oTo6paAcefilua fl, fr, fa 143  US 

o6pa3om: 

Y) = 

Y) = 

fd(x, y) = xy 

Otiespiatio fd  ( x, y) = fr(z ,  in 	Y) 
PaccmOTpHm Amarpammy aepexofloB Hr  = (V, R,UE.,1r ) C mHoweemom 

Hepilnal V = NU{ An+ , }, rite A n+1 	N, 	- paccmaTinmaemmil inane 

MOH014,LI C MHO1KeCTB0M !-4.11elsiellT0B i(Ct,i3)1a,/3 E 	14 onepaumeg "o"; MHO- 

5KeCTBO pe6ep R o6pa3oHatio raemionwm o6pa3oM: 

	

a) eCJIM B H cymecTByeT npasmno A i  —> aAi d, Ai , 	E N, TO B R 
cymecTByeT pe6po c Hatianom Ai , KOHUOM Ai  14 MeTKOR (a,f3); 

B S  cne,zr,pouutm 
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K. H. rlopilweB 

1)) eCatt B 11 cymecTByeT HpaB14.110 Ai —> a , r,ae Ai E N, a E E*, TO B R 
cymecTByeT pe6p0 C namanom Ai, KOHUOM A n +1 14 memON (CV, E), 

-nycToe CJIOBO. 
1,1) He cymecTuyToT ,apyrme pe6pa B R, Kpome oroicammix B nynKTax a) 

6). 

nyeTb (.7 - rpynna C Mno>KecTBom o6pa3potanx 

X = E U 	I  = 	x2, .•• 1  Xrn, 	I , ••• ,Xm1 ) ,  

mlio)KecTnom onpe,aeaunownx cooTHoinennti 1, e,aminneti e 14 C pa3peninmoti 
npo6.nemoii paBencTBa c.noB. llycTb M - COOTBeTCTBy101111414 fpyllHOBOR 313b1H, 

UG - rpynna, nonygel-IHa 1 orn4cannum Bbnue cnoco6om. PaccmoTpnm anal- 7 
 pammy nepexo,aoo Hu = (V, R., U G ,1(1 ), r,ae mnomecTBa Beptunn V H pe6ep 

cosnaaaloT C COOTBeTCTB}TIOLUI4MH mnomecTBamkt B Anarpamme nepexo,1{0a fir 
a menni p e6ep ctn4Taem Kai< ..).neMCHTbi rpynnbi 11G. NaK H B naparpa$e 
2 MO)KHO paccmoTpeTb 3aminiymie nonyxonbna Fu = (UG, U, o, 0/ {(e, e)}) H 
FG = (G ,U, •, lel). Toraa oTo 6 PaWeH1431  it, fr N fd ecTecTBeinnam cnoco-
60m momno npo.ao.nwa4TB. an  OTo6pirn(eHNJI 143 Fu B FG. 

B FG BBointm onepanmo (x, y, z) cne,aylonn4m o6pa3om: eCIII4 a, b,c E G, 
TO ({a}, {b}, {c}) = abet,-  } m ARM X, y,z,t E FG sbirtomieHo: 

(x U y, z, t) = (x, z, t) U  (y, z, t) 
(x g U z ,t) = (x, y, t) U (x, z, t) 

y, z U t) = (x, y, z) U (x, y, t) 

B CHJIy ,E(14CTI)146yTI4BH0rO : OLKOHa B FG, 	y, z) - Kopetatio BBe,aennaB one- 
pann.n. 

nyeTb Pp - mnomecum Bcex nyTeil B Hr c natianom Al H KOHUOM A n+1, a 
Pu - mno>KecTBo pcex. nyTeii It HI, C aamanom Al 14 KOHUOM A n +1. 

JIeMMa 2. •fiats/ RA Co (lin btX HUME! 06oananeunti iteno,Auelto L = id(lr(Pr)). 

,fioxa3ame ✓ bonao. CI,yCTb 0.) E L. Toraa cymecTByeT BbIBOAB r: 

Al --+ 	Ai, /31 	(19.41 2 /301 	• • • 	az • • • ak Ai &  i3klik-i 	• 131 

— 	01 2 • • - ak7/3ki3k-1 • • • 01, 

r,ae 	E N, aj , 	E E*. Ho Tor.aa cyinecTByeT nyTh B HI^ 7  = 
P1P2 	1 •.Lte pi - pe6po 143 Al B A1 1 , pj  pe6pa H3 Aji_, B Al , T - pe6- 
po H3 A l  B An+1; /r(pi) = (a5,/.3i), /r(r) = (7,e). Ho Tor,aa /r(r) = 
Ir(p i ) o /r (p2 ) o • • • o / r (Pk ) o HT) = 	o (012,  /32 ) o • • • o (ak , /3k) o 	, e) = 
( 01 1(12 • • • ak -Y • 	• • 31). OToo,aa cne,ayeT, Lao fd(lr(lr)) = 
TeJlbH0 L C 

Hp.o6opoT, ecJIN W E f t(I r( Pr)), TO W MO)KHO npe.acTaBmTb B Bm,ae w = 60, 
r,ae (a, /I) - M('TKa BeKoToporo nyTm it 143 Pr 14 HyCTb 7r = PiP2 ' • •Pk, rile Pi 
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- pe6po 143 Al B Aii , pi, j = 2,3,...,k — 1 pe6pa 143 Ai i _, B .41j , pk - pe6po 

143 Aik  B An +, 14 nyCTI, IF( pj) = (ajli3j) ir(Pk) = (7,e) A.K.F1 HexoTopmx 

E E*, TaK14X 'LIT() Al A01 , Ai, —> Ak_i —4. 7 

CyTb npaHmna B r 14 a1ie2 • • •itk_ 1 7 = cv, /4-1/3k-2 • ' 131 = • Ho Tor,Ha 

cymecmyeT BbIBOH B r: 

Al 	c1Ai ,I3 i — • " — ex1a2 . "ak-iAik _ 1 /3k-Ifik-2•••01 

— ( 1 1(t2. ' • • ak-1713k-113k-2* '131 = al3 =W. 

Cne,noHaTenbHo fd(/r(Pr )) C L. JIeMMa aoua3aHa. ❑ 

CHeAcTswe 3. ..aJut Reedeltilba eu uz o6o3uane7guA L C M mozda u moAblco 
mozda, rooda fd(/u(Pu)) = 

IlyCTb P1 C P11 - 1■4110:KerTB0 Bcex nyreit C Hatia.nom A 1 , KOHUOM An+1 H He 

co,nepHianutx UHKROB 14 nyern, 

= ft(IU( )) 
IlyeTb C - MHOYKeCTB0 ”JleMeHTapHbIX 1.114KJI0B B HI/. flyCT6 

P - MHOHSeCTBO Hcex ny'reii 143 H11 , Hatimatouaixem B Al 

P" - MHO>HeCTBO Hcex 	H3 HU He co,nepHcanwx W4KJIOB H KOHIla101.1.MXCJI 

B An+1. 

OtieskinHo Pu C P', P, C P' 14 B o6meM caytiae Pc, # P' 14 P1 0 P"—.• 
PaccmoTpHm mHoHcerrHo nyTek P2  = fr = 7r i 7r 2 7r3 17r i  E P' 	E C, r3 E P"• 

Ansi BCC% 7r = ir 1 7r 2 7r3  E P2 paCCMOTp14M MHO}KeCTBO 

'118={(1/(1.(7- 2)), id(iu( 73) ), fr(Ir (72))) I cymecTsyeT nrrb r = r1 ir2 7r3  E P2}. 

EC.IIH 11p0aHa.11H314p0BaTb cnoco6 o6pa3oHaHHH muomecTsa SZ 1 , it2117 H 118, 

me SZ1 H 112 CyTb MHOWPCTIta, sHeileHHme A. B. AHHCHMOBbIM ( Teopeivia 1 
), 5.11eMeHTb1 KOTOpbIX paccmaTpHHaem KBE memeHTLa rpynnia G, TO Hexpymio 
3aMeTHTB, LITO Q7 C SZ1 i  SZH C 119 14 B oftem c.nytime 12 7  # a, 14 Q8 0 02. 

KaK 14 B IlaparpaIlle 2, 06pa3yem MHO?KeCTBa nyTeM C  ( AJIHHOR meHbine 

HRH paBnoi k + 1 ) 143 Pu (1 < i , j, k < n + 1). 

flyCTIz. 9
i = lu(Cti ) E Fu  . 3.aech k HH.LIeKC 14 He o3Haviaer czeneH.b. Pac-

CMOTpHM wiemeHirbi :3amt<Hyroro no.nymonbua F0: 

SZu = fd(gln+i) 

= i(fr(gri),fd(9i'. + 1),L(910) 

AHaA0r144H0 1LOKH,34,Tel16CTBa .nemmbi 1 MOACHO ,uoua3a.Tb, Irro B Cti BO3M03K-

HO cymecTHoHaHme nyTek, co,aepHmantx Holum' H, mien away cnoco6 o6pa-

.30BaHHA 1 7, 1t9, R9 14 Rio, nunymaeM czeitylowee TrBepKaelme: 

Jlemma 3. A..4,ff eeedeuubtx ebtlue o6o3uaitenuti ueno.Aueuo f1 7  C 118  u 128  C 9_ 10 , 

npu amore a o6u4e.m c.4rtae S1 7  0 I-29  u Q8 0 Stlo. 
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TeopeMa 4. AV, eeed( f aux euute o6o3nanettui cAedpoigue yc ✓ioetis ar8uea-
.4eumtiu: 

(1) LCM;  

(ii) W1  = It i  U 12 2  = { e}; 
(iii) W4 = 117 U C/8 = {e}; 
(iv) W5 = 1/9 U1/10 = {c} . 

itolca3anteAberrieo. ,ai<nmeaneirrtioczb yc.1101314111 (i) 14 (11) Aoxa3aHa A. B. Aim- 
CHMOBBIM B [3] (CM. TeopeMy 1). KaK 3ameTH.H4 Inoue W4 C WI H cne,aosa- 
Tenb110 143 W1 = {e} caeayeT W4 = 	143 Jlemmu 3 CJle,11yeT, T4TO ecni4 
Bb1110J1HeHO W5 = 	TO Bb1110JIHeHO W4 = {E}. LITO6b1 .110Ka3aTb TeOpeMy 

OCTaJI0Cb ,aoxa3aTb, LITO (i) metier (iv) H (iii) metier (i). 

Elyen L C M. Toraa (Csie,flennie 3) fd (lu (Pu ))  =  {e}. Ho 
otaeHH,n,Ho 	C l'u  14 c.nenoHaTenbHo s/ 9  = {e}. 

nyem Z E 1/ 18 . Tor,aa z = UVWV-1 , r,ae u E fr(gri), v = Mgr n+1.) ,  
w = fr (4 Ansi HeKOTOpOPO 2 Taxoe, NITO cyl7Xe..CThye..T nyTb 7r l  B Ht, 143 Al B Ai 

H IlyCTb lu(ir1) = (x, y). Toraa OtleBH.£1110 (u, W) meTHa HeHoTo.poro HHH.na r 2 , 
npoxoinnuero ttepe3 Ai, a Yl MOJKHO npeacTaintrb B tatae v = v 1 v2 , rzte (v i , v2 ) 
- menia HexoToporo MYTH 71-3  143 Ai  B An +1 . PaccMoTpi4M nyTH = 7x17273 
H it = 7r17r3. OmenKaHo OHM HallHHalOTC11 B Al H 3axaHHRHaloTCH B An+1• 
14meem: 

/u(r i r273 ) = (x, y) o (u, w) o (v1 , v2 ) (xuvi , v2wy) 

41 (7- 1 1-3 ) = (x, y) o (v1,  v2 ) = (xvi , v2y) 

CO1'.11aCHO CJIPACTBH10 3, xuvwy = xvy = e, omy,aa cae,uyer MTO UVWV -1  = 

e, T.e. z = C. Tax, KaK Z - Tip0H3B0J111110e 113 nip, TO nip = {e}. 
(iii)-- ► (i). Hyrm, W4 = 1-27 U 118  = {e} H nycTb w E L. CornacHo Aemmta 

2 co E fd (lr(Pr)), T.e. CJ MO>KHO npe,acrainin, B Blt/je w = (4)1w2, rae (wi w2) 
- mem. HexoToporo nyTH B Hr  c uatianom Al 14 KOHL1OM An +1 H nycTb 7r - 
cooTeeTcTsyxnaviti emy nyTb B H.  ECJrH /I" E P1 ( T.e. ec.Int it He coaepacHT 
ukuc.na ), TO fd(it/(711)E fd(lu(P I )) = f27 = {C) H CJICA0BaTeAbH0 (.4./ E M. 

llycTb 7f coaepHcHT amn. Toraa 7f MONKHO npe,acTaHHTb B mute 7f = r 1 r273 , 
rite 7x 1  E P', T<2  E C, 7-3 E P" 11 nycl% 41(10 = (an bi), iu(r2) = (a2, b2), 
lu (r3 ) = (a3 , b3 ). Toraa 

fd(du(r))= fd((ai, /00(12, b2)0(a3, b3)) = fd(aia2a3, b3b2bi) = a1a2a3b3b2b1. 

Ho a2 a3 b3 b2 (a3b3 ) -1  E 1/8 , T.e. a2 a3b3b2 (a3b3 ) -1  = e, 14.1114 a1a2a3b3b2b1 = 
a l  a3b3 b i  HeTpy,aso 3aMeTHTb, 'ITO (a l  a3 , Nth) - BTO mema IlyTH 71 73, HOTO-

pan nonymaeTcH 143 7r , onycHan 1.4K,11r2. flpoaomEam Taxmm o6pa3om onycRaTb 
1.1.14KJIbI B 7f , TO TaK KaK CJIOBO w - KoHemHoe, Ilepe3 KoHetwoe T4HCJI0 warori no- 
vr14m, LIT° fd (44 (1)) = fd (lu(r9), 	71-1  nyTE, 113 Al B An +1 He mmeHmgmg 
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11141C.110B. Ho fd (iu (7')) E .l7 = {e}. C.11e.40BaTe.11bH0 fd(lu(P2)) = {e} 14 

cor.nacHo Ci1e1LCTB1410 3 no.riymaem, LIT° L C M. Teopema AoKa3a,Ha. ❑ 

Ha 6a3e Teopembi 4 ((i)4—(iv) no.nytiaem cae,apouudi a.nropwrm, nposepsi-
101.1114ii BK1110 ,1eF114)1 L C M. 

AJIrOpPITM 2. lipoecpsem 87C.410NeldUJI L C M, dAS ✓ lilieilUOZO Sl3b1,Ka L u 2pyn- 
noeoeo Jr3boca .A4 ?pynnbt G c pa3peutumoi npo6Aemoil paeeucmea CA08. 

Bxo,z: g tilj  = lu{(1,9j ), 	a , j = 1, 2, ..., n 	1 

Bbr..xopk: JlorlimerKam nepemeimasi T , no.nymaloulail CT014MOCT6 HeTmaa, 
ecakt L C M M CTOPIAIOrTb J1031(1., B 11p0T1413HOM caytiae. 

Hataaao 

1. T := HeTmaa ; 
2. Ana 1 < k < n AlLeaam. 

3. ana 1 < i,:j < n 1 Aeaam 

4.
k 	k-1 	k-1 	k-1 gij 	H 

 •— gij 	gkj  

5. Konen AeaaTt. 

6. Koaerk ,aeaam; 

7. Ecam gl n+1 	H fd(ff il n+i ) {e} To 

8. Haman° T := Jloaa.; OcTanos Konerk; 

9. Ann 1 < i < n + 1 ottenarb 

10. Ecam gri ì 7  4) 14 	(/) 	 To 

11. Ecam (MA), 	n+1 ), fr(4)) {e} To 

12. Hatiaao T := nom". ; OcTaHon Konen( 

13. Koaeg ileaam 

Kosea. 

TeopeMa 5. Aitoopumm 2 ebtnorausem ne 6o.aee 0(n 3) onepatfuu crioascenust u 
npou3eedeuusf e 3a.mvuymo.m no.mco.abge Fu, ne 6oriee 0(n 2 ) onepaguu (x, y, z) 
e 3amxuym0m no.apcoAauc F G  u npoe•parenz Kroonenue L C M, 2de L -  au-
neinbEi .9314,1C, nopaotedaemuii rtuueanoii ?pammantutcog C 7k uemep.muumnoe, M - 
opynnoeoll $31217C opynnu C c pa3pemumort npo6.4emoii paeencmea C.408. 

.11oKa3aTe.nbcTso Teopembi nowropsieT 1Iotca3aTenbeTBo TeopeMM 3. 

CaeAcTsme 4. ECRU cymeemeytom aAzopum.mbt, eunomonoupe onepattuu y.mno- 
menus' u crwaleeutur e Fu  u (x,y,z) e FG 3a no.nuuomUmnbuoe epedwar, mo 8.420- 
purnm 2 are.4ffemcs 710.4712i0Aillaftblibt.M. 
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THEORY OF MULTIPLE ANTISYMMETRY 

Slavik V. Jablan 

ABSTRACT. Survey of problems in theory of multiple antisymmetry, which 
can be solved using antisymmetric characteristic method, is given. 

0. Introduction and definitions 

Originated from Speiser (1927) and realized by Weber (1929), the idea 
of representing symmetry groups of bands by black-white plane diagrams 
was the starting point for introducing the antisymmetry (Heesch, 1929). 
The color change white-black used as the possibility for the dimensional 
transition from the symmetry groups of friezes G21 to the symmetry groups 
of bands G321, or from the plane groups G2 to the layer groups G32, applied 
on Fedorov space groups G3 in order to derive the hyperlayer symmetry 
groups G43 (Heesch, 1930) was the beginning of the theory of antisymmetry. 
The further development of the theory of antisymmetry can be followed 
through the works by Shubnikov, Belov and Zamorzaev [1]. 

Its natural generalization, the multiple antisymmetry is suggested by 
Shubnikov (1945) and introduced by Zamorzaev (1957). Three months later, 
the different concept of the multiple antisymmetry is proposed by Mackay. 
During the next 30 years, mostly by the contribution of Kishinev school 
(Zamorzaev, Palistrant, Galyarskij...) the theory of multiple antisymmetry 
has become an integral part of mathematical crystallography and acquired 
the status of a complete theory extended to all categories of isometric symme-
try groups of the space E" (n < 3), different kinds of non-isometric symme-
try groups (of similarity symmetry, conformal symmetry...) and P-symmetry 
groups [1,2,3,4]. On the other hand, investigation of Mackay approach to the 
multiple antisymmetry was not continued. 

Supported by Grant 0401 of FNS through Math. Inst. SAND 
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712 	 S. V. Jablan 

Let the discrete symmetry group G with a set of generators {S1, 	Sr} 
be given by presentation [5] 

gn(S11 • • • Sr) 
	

n = 1, s 

and let e 1 , 	, e i  be antiidentities of the first,...,/th kind, satisfying the re- 
lations 

e i ej  = etc-.i= E ei S q  = ,S9e;, i,j =1,1, q = 1,r 	(1). 

The group consisting of transformations S' = e'S, where e' is the identity, 
antiidentity, or some product of antiidentities, is caled the (multiple) an-
tisymmetry group. In particular, for l = i = j = 1 we have the .simple 
antisymmetry. From the point of view of the mathematical logic or discrete 
mathematics the system of antiidentities can be considered as /-dimensional 
Boolean space. 

The groups of simple and multiple antisymmetry can be derived by Shub-
nikov-Zamorzaev method: by replacing the generators of G by antigenerators 
of one or several independent patterns of antisymmetry. Having in mind the 
theorem on dividing all groups of simple and multiple antisymmetry into 
groups of C k  (1 < k < 1), C k M 7" (1 < k,in;k+m <1) and (1 < m <1) 
types, and the derivation of the groups of Ck and C.Tk M"' types directly from 
the generating group G and from the groups of Mm-type respectively, the 
only non-trivial problem is the derivation of the Mm-type groups [1]. 

In this paper we will consider only the junior multiple antisymmetry 
groups of the M"(-type, i.e. the multiple antisymmetry groups isomorphic 
with their generating symmetry group, that possess the independent system 
of antisymmetries. 

Every junior multiple antisymmetry group G' of the Mm-type can be 
(uniquely) defined by the extended group/subgroup symbol 

G/ 	, 

where G is the generating group, Hi its subgroups of the index 2 satisfying 
the relationships GI Hi C2 = 	(1 < i < m), and H the subgroup of G 
of the index 2', the symmetry subgroup of G' (GI H 	= {e 1  x . . . x 
{cm}}. 

For the equality of multiple antisymmetry groups can be used three dif-
ferent criteria: 

(1) "strong" equality criterion according to which the antiidentities e i  are 
noneq uivalent. Consequently, in the symbol G/(H i , 	,H„,)1H the order 
of the subgroups H1, 	, H,,, is important. In the sense of interpretation, 
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Theory of multiple antisymmetry 	 713 

this means that the bivalent changes e i  are physically different (nonequiva-
lent) (e.g. (white black), (+ -), (S N), (0 1)...); 

(2) "middle" equality criterion, where all ei are treated as the equivalent 
ones (i.e. permutable), so the order of the subgroups mentioned it is not 
important; (3) "weak" equality criterion C/H. 

Using the "strong" equality criterion, as the result we have Zamorzaev 
groups (Z-groups), and using the "middle" Mackay (or compound) multiple 
antisymmetry groups (M-groups) [6]. In this paper the consideration is 
restricted on Z-groups. 

Theorem 1. (THE EXISTENTIAL CRITERION FOR M m -TYPE GROUPS) A 
Z-group G' will be of the M -type 

(a) if all the relations (1) remain satisfied after replacing the generators 
by antigenerators; and 

(b) if G' exausts all the antisyminetry patterns, for fixed in. 

For the derivation of Z-groups very efficiently used is the antisymmetric 
characteristic method [7,8,9]. 

Definition 1. Let all products of the generators of G, within which ev-
ery generator participates once at the most, be formed and then subsets of 
transformations that are equivalent in the sense of symmetry with regard 
to the symmetry group C be separated. The resulting system is called the 
antisymmetric characteristic of group C (AC(G)). 

The most of AC permit the reduction, i.e. a transformation into the 
simplest form; e.g., the AC of the plane symmetry group pm giv:en by the 

presentation [5] 

{X,Y, R} XY Y X R 2  = (RX) 2  E RY = YR 

is {R, RX}{YHRY, RXY }{X}{XY} and its reduced AC is {II, RX}{Y}. 

Definition 2. Two or more Z-groups belong to a family if they are derived 
from the same symmetry group G. 

Theorem 2. Two Z-groups (A and (A of the 11/1"i -type for m fixed, with 
common generating group G, are equal if they possess equal AC. 

Every AC(G) completely defines the series N, (G), where by Nm (G) is 

respectively denoted the number of Z-groups of the Art-type derived from 
G, for m fixed (1 < m < 1). For example, N1 (pm)= 5, N2(pm)= 24, 

npm). 84. 
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714 	 S. V. Jablan 

Theorem 3. Symmetry groups that possess isomorphic AC generate the 
same number of Z-groups of the M' -type for every fixed m (1 < in < 1), 
which correspond to each other with regard to structure. 

Corolary. The derivation of all Z -groups of the M' -type can be completely 
reduced to the construction of all non-isomorphic AC and the derivation of 
the corresponding groups of the Mm-type from these AC. 

According to Theorem 3, it is possible to identify every AC with the 
corresponding isomorphic algebraic term, a representative of the equivalency 
class which consists of all isomorphic AC. For example, it is possible to 
identify AC(pm)= {R, RX}{Y} with the term {A, B}{C}. 

1. The derivation of (P, 0-symmetry 
groups from P-symmetry groups using AC 

Let GP be a junior group of P-symmetry derived from G [3]. By replacing 
in Definition 1 the term "transformations that are equivalent with respect to 
symmetry" with a more general notion "transformations that are equivalent 
with respect to P-symmetry", the transition from G to GP induces the 
transition from AC(G) to AC(G P), which makes possible the derivation of 
groups of (P, 1)-symmetry of the Mm-type using the metod of AC. • 

The said can be illustrated by the example of derivation of groups G 12'4 
 from groups GI: {a, 1)(4 )}(m) and {a( 2 ), b( 4)}(m). 

In the first case, in the transition from G =pm to G4  = {a, b( 4)}(m) 
AC remains unchanged. In the second case, in the transition from G =pm • 
to G4  = 	b(4 )}(m), the equivalency of symmetry transformations is 
disturbed and the term {m,ma (2) }{b (4)} is transformed into a new AC? 
{m}{ma}{b}. In accordance with the facts already mentioned, we have 

{a, b(4) }(m) AC : 	ma}{b} = {A,.B}le} N1 = 5 N2 = 24 N3 = 84 

fa(2) , b(4) }(m) AC : {m}{tria}{b} 	{A}{B}{C} 

The given numbers N, denote the number of groups of the Mm-type of 
the uncomplete (4,0-symmetry. In a general case, besides the numbers N m 

 for p-even, we can discuss also the numbers (Nm _ i ) (1 < m < 1), where by 
(N,„_ 1 ) is denoted the number of groups of the complete (p, 1)-symmetry of 
the Mm-type. For p-odd, the relationsip N„, = (Nm ) holds, and for p-even 

(Nm ) = Arm  — (2"' — 1)(N,,, — 1), (No) = 1, 1 < m < 1. 

One of the most important results obtained using the mentioned method, 
is the derivation of the groups G 31 'P from the groups (.4 (p = 3,4,6, P Cp) 
[10] and calculation of the numbers N,, and (N, _ 1 ): 

N1 = 4840; N2 = 40996 N3 = 453881 N4 = 5706960 N5 = 5999640 

N1 = 7 N2 = 42 N3 = 168. 
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Theory of multiple antisymmetry 	 715 

(N1) = 4134 (N2) = 29731 (N3) = 260114 (N4) = 2048760 (N5) = 1249920. 

By the same method, the crystallographic (p2,1)- and (p',/)-symmetry 
groups are derived from the P-symmetry groups GV and Gi; (p = 3,4,6, 
P 	D„, D„,(2 „)) [11,12]. 

The derivation of (P, l)-symmetry groups of the Mm-type from P-sym-
metry groups using the AC-method can be reduced to a series of successive 
transitions 

G 1—* G P  1—,  GP3 	GP' l  

and induced transitions 

AC(G)i—, AC(G P) AC(G P'1 ) 	AC(G P4). 

Every induced AC consists of the same number of generators. Since every 
transition GP," H GP. k , (1 < k < l), is a derivation of simple antisym-
metry groups using AC(GP"), for derivation of all multiple antisymmetry 
groups, the catalogue of all non-isomorphic AC formed by I generators and 
simple lantisymmetry groups derived by these AC, is completely sufficient. 

3. Reduction of multiple antisymmetry simple antisymmetry 

The basis of this reduction is the idea already mentioned about the tran-
sition G 1—, GP and induced transition AC(G) i AC(GP), where AC(G) 
and AC(G P) consist of the same number of generators. This means that 
every step in the derivation of multiple antisymmetry groups 

G 	G1  1—> G 2 	(;k-1 	Gk 	... 1-4 Gi , 

i.e. the transition G" 	Gk , (1 < k < I), is a derivation of simple 
antisymmetry groups using AC(G"), followed by the induced transition 
AC(G") I AC(Gk), (1 < k < 1 — 1). All the AC of induced series consist 
of the same number of generators. 

The said can be illustrated by the example of derivation of multiple anti-
symmetry groups from the plane symmetry group pm: 

pm la, bl(m) AC : {art, na}{b} {A, B}{•}. 
For in = 1 five groups of simple antisymmetry of the M 1 -type are obtained: 

{A, B}{C} 
{E,E}{e i } 	{A, B}{C} . 
{e i ,e 1 }{E} 1—,  {A, B}{C} 

ei l{e i } 1--+ {A, B}{C} 
{E,e 1 }{E}1-+ {A}{B}{C} 
{E, e i }{e i } 1—> {A}{B}{C}. 
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716 	 S. V. Jab! an 

In the first three cases AC remains unchanged, but in two other cases AC 
is transformed into the new AC? : {A}{B}{C}. To continue the derivation of 
multiple antisymmetry grups of the Mm-type from the symmetry group pm, 
only the derivation of simple antisymmetry groups from AC : {A}{B}{0 
is indispensable. This AC is trivial and gives seven groups of simple an-
tisymmetry. If AC : {A, B}{C} is denoted by 3.2 and AC : {A}{B}{C} 
by 3.1, then the result obtained can be denoted in a symbolic form by 
3.2 i  2(3.1) + 3(3.2). Then we have 

Ni(pm)= N1(3.2) = 5 Ni(3.1) = 7 
Ni(pm)= N2(3.2) = 2N1(3.1) 3N 1 (3.2) - 5 • 1 = 
= 2( N1 (3.1) - 1) + 3( N1(3.2) - 1) = 26 4- 34 = 
= 2N1 (3.1) 3N1(3.2) - N1(3.2) = 2N1(3.1) 2N1(3.2) = 24. 
The meaning of every step in the mentioned computation is: 
1) substruction of the number N 1 (3.2), i.e. of the five groups of uncom-

plete multiple antisymmetry of the 2M-type; 
2) every group of the M 1 -type gives exactly one of these 2M-type groups, 

so we obtain 26 + 34 groups of complete multiple antisymmetry Qf the M2
-type [5,8,10]. This step contains also essential data for the calculation of the 

number N3: 6 groups mentioned possess AC 3.1, two of 4 groups mentioned 
possess AC,' 3.1 and two AC 3.1. Among five groups of uncomplete multiple 
antisymmetry of the 2M-type there are three groups with AC? 3.2 and two 
with AC 3.1; 

3) by substitution 5 = N i (3.2) we obtain N2 (3.2) expressed by N1 (3.1) 
and N1 (3.2), i.e. 2N1 (3.1)+2N1 (3.2). The sum of coefficients corresponding 
to the numbers N1 in the last line gives N2 (pm)= 24. 

Ni(pm)= N3(3.2) = 2 • 6Ni  (3.1) + 3 • (2N1(3.1) + 2N 1 (3.2)) - 24.3 = 
= 18N1(3.1) 6N1 (3.2) - 24 • 3 = 18( Ar i  (3.1) - 3) -I- 6( N I  (3.2) - 3) = 
= 184+ 62 = 18N1 (3.1) + 6N 1 (3.2) - 3(2N1(3.1) 2N1(3.2)) = 
= 12N1 (3.1) = 84 (N2(3.2)) = 12. 
Consequently, the method proposed makes possible complete reduction 

of the theory of multiple antisymmetry to the theory of simple antisymme-
try. This refers not only to the possibility of computation of the numbers 
Arm, and (N„,_ 1 ), but also to the possibility of applying the method of par-
tial cataloguation of multiple antisymmetry groups of the Mm-type [8]. If 
we take the advantage of the suggested reduction, the use of this method 
is considerably simplified and demands only the catalogues of the simple 
antisymmetry groups of the M 1 -type obtained from non-isomorphic AC. 

4. Non-isomorphic AC formed by 1 < 1 < 4 generators 

As it is shown in §3 the theory of multiple antisymmetry can be reduced 
to the theory of simple antisymmetry. For that it is necessary to know all 
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Theory of multiple antisymmetry 	 717 

non-isomorphic AC formed by 1 generators. Non-isomorphic antisymmetry 
characteristics formed by 1 < I < 4 generators are investigated in [9]. As 
the result of their study, the catalogue of that AC formed by 1 < / < 4 
generators, and the tables of the corresponding numbers 1V„i, are obtained. 
The completness of this catalogue is proved for 1 < 2, but for 1 > 3, hav-
ing in mind a great number of possible cases which we must consider, the 
completness is not proved, and there is a possibility that some AC are not 

included into the catalogue. 
In this catalogue for every AC is given a list of corresponding simple 

antisymmetry groups of the M 1 -type, connections between AC in the case 
of transition from 7n = 1 to 7n = 2 and tables of the numbers Arm . The 
notation used and the method for obtaining results are the same as in the 
example of the symmetry group pm given in §3. In AC by parenthesis ( 
) is denoted the obligation of cyclic permutation of appertaining elements, 
by [ ] the obligation of simultaneous commutation of elements; the elements 
in // parenthesis remain fixed on their places. AC obtained in all previous 
studies of the theory of simple and multiple antisymmetry for 1 < / < 4 are 
included in this catalogue. The list is the following: 

1=1  
1.1 {A}. 

= 2  
2.1 {A}{B}; 
2.2 {A, B}; 

2.3 {A, B, AB}. 

1 = 3 
3.1 {A}{B}{C}; 
3.2 {A, B}{C}; 
3.3 (A, B, C, AB, AC, BC, ABC); 
3.4 {A, B}{C, ABC); 
3.5 (A, B,C); 
3.6 (A, B, C, ABC); 
3.7 {A, B, (1; 
3.8 {A, B}, {C, ABC}); 
3.9 IA, B,C, ABC}; 

3.10 {A, B,C, AB, AC, BC, ABC}. 

= 4  
4.1 (A){13}{C}{D); 
4.2 fit, BI{C}{D}; 
4.3 ([A, B], [C, ABC], [0, AB D], [AC, BC], [AD, BD],[C D, ABC D],[AC D, BC D]); 

4.4 {A, B}{C, D}{AC, BD); 
4.5 {A}{B,CHD, BC DI; 
4.6 {A, B}{C, D}; 
4.7 48, Mille, ACM D, AD}; 
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718 	 S. V. lablan 

4.8 OMB, C, D); 
4.9 (IA, 	IC, ABC/, /D, ABD/, IACD,BCD1); 
4.10 {A, B,C}{D}; 
4.11 {{A, B,{CA,CB}}{D,C D}; 
4.12 {[A, B], [C.', D]); 
4.13 {{B, AB}, {C, AC}}{D, AD); 
4.14 (A, B, C, D); 
4.15 (C, A, (-IA){(B, C, ABC), (BD, BCD, ABC D)); 
4.16 {{A, B}, {C, D}}; 
4.17 ({A, B), {C, ABC}, {El, ABD}, (AC, BC}, AD, BD}, {C D, ABC D}, 

{AC D, BCD}); 
4.18 {A, B, AB}{C, D}; 
4.19 {A, B, C, ABC}{D); 
4.20 {{A, B}, {C, ABC}}{{D, ABD }, {ACC, BCD}}; 
4.21 ({A, AD}, {B, BD}, {C, CD}); 
4.22 {A, B, CC, D}; 
4.23 ({A, B},{C,ABC}}{{D, ABD}, {ACD, BCD}); 
4.24 {{B, AB}{C, AC), {D, AD)); 
4.25 {{{A, B}, {C, ABC}}, ({D, ABD}, {ACD, BCD}}}; 
4.26 (A, B, C, ABC: }{D, ABD, ACD, BCC)}; 
4.27 {{A, B}, {C, D}, {AC, BD}}; 
4.28 {{A, B}, {C, ABC}, {D, ABD}, {AG' D, BCD}}; 
4.29 {A, B, C, D, ABC, ABD, ACD, BCD}; 
4.30 {A, B, C, D, AB, AC, AD, BC, BD, C D, ABC, ABD, ACD, BCD, ABCD }. 

Besides all AC found in practice during previous studies of the theory of 
simple and multiple antisymmetry for 1 < I < 4, in this catalogue there are 
some AC which are not found before. 

Conjecture 1. Every abstract algebraic term formed in accordance with 
Definition 1 is AC of some symmetry group. 

Most of the AC given in this catalogue, which are not found in earlier 
practice, satisfy Conjecture 1. For example, AC 4.22 corresponds to the 
symmetry group mmmm of the category Go, and AC 4.30 corresponds to 
the symmetry group P1111 of the category G4. 

If Conjecture 1 is valid, AC 4.21 and 4.22 are counter-examples of the 
supposition [1, pp. 138] .  that equality of the first and last members of the 
series N„,(G) and N„,,(G9 implies equality of the second members of these 
series. 

Conjecture 2. Every series N„, obtained from AC1 formed by 1 generators 
is identical with some series (N7n+i)  obtained from corresponding AC 
formed by 1+1 generators. • 

As the examples of AC41  and AC 1  which satisfy the Conjecture 2 for 
1 < 1 < 4, it is possible to notice the pairs of AC: 2.2 and 1.1, 3.4 and 2.1, 
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Theory of multiple antisymmetry 	 719 

3.8 and 2.2, 3.9 and 2.3, 4.7 and 3.1, 4.13 and 3.2, 4.17 and 3.3, 4.20 and 
3.4, 4.21 and 3.5, 4.23 and 3.6, 4.24 and 3.7, 4.25 and 3.8, 4.28 and 3.9, 4.19 
and 3.10. 

Conjecture 3. Let AC 1  formed by generators A l , 	, A l  be given. Then 
by the substitution Ai = 	i = 1 , 1 , can be obtained a new ACi+i, such 
that AC1 and ACI +1  satisfy Conjecture 2. 

The study of particular non-isomorphic AC for 1 > 4 is almost a technical 
problem. However, a proof of completness of the catalogue of non-isomorphic 
AC for 1 > 2 is immensely important and one of the aims of future studies of 
the theory of simple and multiple antisymmetry must be the construction of 
an algorythm, which makes possible direct derivation of all non-isomorphic 
AC formed by 1 generators. 

In many cases, especially for AC with a large number of generators, for 
the computing of numbers N „, it is possible to use the direct product of AC. 

5. Direct product of AC 

Definition 2. Let AC' and AC" with disjoint sets of generators be given. 
The new AC = AC' AC" obtained by adding in writing AC" to AC' is called 
the direct product of AC' and AC". 

Theorem 3. Let N„„ N,'„, N,„" be the series of numbers defined by AC, 
AC', AC" respectively. Then the relationship 

N„, = E 20-0(--1)(:(7n, in - k , in - ONLN„," 
k-1-1>rn. 
m>C1>0 

holds, where 

(2 1  - 1)(2' - 1 ) ... ( 21-k-m+1 _ 1 ) 

C(1,k,m) = 
(2k - 1)(2k -1  - 1) . . . (2 - 1)(2'n - 1)(2"' -1  - 1) ...(2 - 

As an illustration of the AC , which satisfy Theorem 3, we are giving the 
following example 

AC' = 2.2 = {A, B} 	N1 (2.2) = 2 N2(2.2) = 3 
AC" != 2.1 = {C}{DI 	N1 (2.1) = 3 N2 (2.1) = 6 
AC = {A, B}{C}{.0} = 4.2. 

In accordance with Theorem 3, 
N1(4.2) 
N3 (4.2) 
N4(4.2) 

= 
= 
= 

2.3+2+3 = 11N2(4.2) = 
28 • 2 6 + 28 • 3 • 3 + 42 
560 • 3 • 6 = 10080. 

3.6+3+6+3.2.6+3-3.3+6-2.3 
3 • 6 = 1344 

= 126 
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720 	 S. V. Jablan 

Other examples of AC = AC' AC" from the catalogue of non-isomorphic 
AC for 1 < 1 < 4 are 2.1 = (1.1)(1.1), 3.1 = (2.1)(1.1), 3.2 = (2.2)(1.1), 
4.1 = (3.1)(1.1) = (2.1)(2.1), 4.2 = (3.2)(1.1), 4.6 = (2.2)(2.2), 4.8 = 
(3.5)(1.1), 4.10 = (3.7)(1.1), 4.18 = (2.3)(2.2), 4.19 = (3.9)(1.1). 

6. Tables of numbers Nrn, 

As the result we have the table survey of the numbers N„, for all noniso-
morphic AC formed by 1 < 1 < 4 generators: 

1 = 1 
N1 

1.1 

1 = 2 
N1 N2 

2.1 3 6 

2.2 2 3 

2.3 1 1 

/ = 3 
N1 N2 N3 

3.1 7 42 168 

3.2 5 24 84 

3.3 4 24 96 

3.4 4 15 42 
3.5 3 14 56 
3.6 3 12 42 

3.7 3 10 28 
3.8 3 9 21 

:3.9 2 4 7 
:3.10 1 1 1 

1 = 4 
N1 N2 N3 N4 

4.1 15 210 2520 20160 

4.2 11 126 1344 10080 

4.3 9 120 1440 11520 
4.4 9 108 1260 10080 
4.5 9 84 756 5040 

4.6 8 75 714 5040 

4.7 8 63 462 2520 

4.8 7 74 840 6720 

4.9 7 66 672 5040 

4.10 7 58 504 3360 

4.11 7 54 420 2520 

4.12 6 57 630 5040 
4.13 6 39 252 1260 

4.14 5 54 630 5040 

4.15 5 44 448 3360 
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4.16 5 39 357 2520 

4.17 5 36 264 1440 

4.18 5 34 266 1680 

4.19 5 28 168 840 

4.20 5 27 147 630 

4.21 4 23 154 840 
4.22 4 22 147 840 

4.23 4 21 126 630 

4.24 4 19 98 420 

4.25 4 18 84 315 

4.26 4 16 63 210 

4.27 3 21 210 1680 

4.28 3 10 35 105 

4.29 2 4 8 15 

4.30 1 1 1 I 
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EUCLID — THE GEOMETRY THEOREMS PROVER 

Predrag Jankie and Stevan Kordie 

1. Introduction 

Geometry is one of the mathematical disciplines demanding a big deal of 
the human intuition. That's why it is chalenging task to make a program 
solving a geometry problems. Program EUCLID proves theorems of geom-
etry in a intuitive, geometrical way (more geometrico), and presents proves 
in a natural language form. Besides, the mechanism and the basic principles 
of the prover EUCLID led us to the new form of the foundation of geometry 
and the new classification of geometrical axioms. 

Program EUCLID was written in Arity PROLOG, but essential mach-
anism of the prover does not rely on PROLOG mechanisms. Despite the 
limited resources of Arity PROLOG, the program was written in PROLOG 
because of its suitable characteristics: flecsibility, mechanism of unification 
etc. 

2. The Fundamentals of the Prover EUCLID 

There are three modules in program EUCLID: the module of axioms, the 
knowledge-pool and the proving mechanism. Although these modules are 
independent they are built as a coherent system. Besides, these modules 
are related by internal language in which all knowledge and conclusions are 
expressed. The final output - proof of the certain theorem is written in a 
natural language form. Because of its importance, first of all, let us focus 
our attention at internal language. 

3. Internal Language 

The internal language L of the prover covers all objects and relations 
accuring in geometrical axioms. Also, theorem that is to be proved has to 
be expressed in the internal language, so the internal language is important 
for user, also. All relations of the internal language L (including unary 
relations defining objects) are shown in table 1. 
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724 	 P. Janie:ie. and S. Kordic 

predicate 	 we read 

t(a) 
1(b) 

P(c) 
identical(a, b) 
non_identical(a,b) 
i(a, b) 
non_i(a,b) 
b(a,b,c) 
non_b(a,b,c) 
c(a,b,c,d) 

collinear(a, b, c) 
non_collincar(a, b, c) 
coplanar( a,b,c,d) 
non,oplanar(a,b,e,d) 
intersect(a,b) 
non_intersect(a,b) 

a is a point 
b is a line 
c is a plane 
a and b are identical 
a and b are not identical 
a and b are incident 
a and b are not incident 
b lies between a and c 
b does not lie between a and c 
pair (a,b) is congruent to pair (c,d) 

a, b and c are collinear 
a, b and c are not collinear 
a, b, c and d are coplanar 
a, b, c and d are not coplanar 
a intersects b 
a does not intersect b 

Table 1. Relations (primitive and defined) in system EUCLID 

Internal representation of relations (except for unary relations) has one 
argument more then in a table, and a value of that argument is an index of 
relation in a knowledge-pool. 

We denoted by f.L  the class of all geometry theorems that can be expressed 
either as: 

Vx2, 	, 3Y2, 	 , x2, • -Xn) 	tfi(Xl, X2, ...xn, Y1, Y2, •••Yrn)) 

or as: 
vx i  , Vx 2 , . ..vx ,„ 3Y, , 3Y2 , 	 s2, ...xn) 

01(X11 X2, -.X n. ,Y1 , Y27 —lin) V 1,/)2(Xl, 	•••Xn, Y1 Y2, •••177n) V ... 

... V Ok(XI, X21 -an, Y1, Y27 •••Ym)) 

or as: 

Or as: 

Vx , Vx 2 , . ..Vxn(0( x , x 2 , ...xn) 	4 i (x1, x2, ...xn)) 

3Y1, 3172,-.BYm( 1/071,Y2,--Y.)) 

where 0, '0 and 0i  are conjunctions of L relations ranging over some of 
the arguments x i , x 2 , ...xn  and 	Y2, • • • Ym • 

The first mentioned form we shall call universal-existential form (V — • 
3), the second universal-existential-disjunctive form (V — 3 — V), the third 
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EUCLID - the geometry theorems prover 	 725 

universal form (V) and the fourth existential form (3). All of them we shall 
denote by F. 

We interpret the t 1, theorems in program EUCLID in a appropriate PRO-
LOG way. The class 	will be the subject of the following text. 

4. The Module of Axioms 

Module of axioms consists of all geometrical axioms whithout continuity 
axioms and so called ADT module. ADT module consists of the following 
axiom, definitions and trivial theorems: 

• The additional geometry axiom: 

Va, Vb, Vc(i( a, b) A i(b, c)) 	i(a, c)) 

• The identity axioms: 
Va identical(a, a) 

Va, bb (identical(a, b) = identical(b, a)) 

Va, Vb, be (identical(a, b) A identical(b, c) 	identical(a, c)) 

• The substitution axioms: 

ba t , 	Vai , 	Van  , Vb(4)(a i ,..a,. an ) A identical(ai ,b) 

(1)(a1 , . . b, . . . an )) 

where 4) is a L relation. 
• The definitions: 

If points a, b and c and line I are such that i(a, 1), i(b, 1), i(c, 1), then 
we shall say that the points a, b and c are collinear. 

If points a, b, c and d and plane p are such that i(a,p),i(b,p),i(c,p), 
i(d, p), then we shall say that the points a, b, c and d are coplanar. 

If a is a point and i(a,b),i(a, c), then we say that b intersects c. 
• The trivial theorems: 

If points a, b and c and line 1 are such that i(a, 1), i(b , 1), non _i(c,1), 
then we shall say that the points a, b and c are non collinear. 

If points a, b, c and d and plane p are such that i(a,p),i(b,p),i(c,p), 
non_i(d,p), then we shall say that the points a, b, c and d are not 
coplanar. 

Let us note that all axioms, definitions and theorems just listed above 
are of one of the F forms. Also, each geometry axiom (excluding continuity 
axiom) can be put in one of the F forms 1  . 

1 Tarski wrote about these forms of geometry axioms in a different context. 
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726 	 P. Janiiie and S. Kordii 

We denoted by e the class of all EL  theorems which can be established 
by use of the elements from the module of axioms. It can be shown that 
program EUCLID can prove all C theorems. 

Although prover EUCLID does not use any set' theory segment, class E is 
wide enough to cover great part of usual elementary geometry courses. Also, 
any geometry theorem could be included into the module of axioms for the 
sake of more efficient and simplier proving process. 

According to the mechanism of the prover, order of the axioms is very 
important and determine the way of establishing of a theorem. Efficience of 
the prover is related to the order of axioms and this inspired us for the new 
classification of geometrical axioms. There are divided into five groups: 

-"identity" axioms; 
-"unproductive" axioms; 
-"branching" axioms; 
-"productive" axioms; 
-"strongly productive" axioms. 
Each group of axioms has a different status, and order of the axioms in a 

each group is also of the great importance. This order determines efficience 
of the prover. 

Proving mechanism is the essential part of the program EUCLID and it 
is based upon so called "sentinel-principle". That principle enables proving 
of all E theorems in a finite number of steps. 

5. The Knowledge -pool 

All objects and knowledge which are used in prover EUCLID are expressed 
in the knoWledge-pool.In the begining of the proving process for a certain 
theorem, knowledge-pool contains only datas about objects (denoted by let-
ters) and relations given by theorem itself. During the proving process, all 
objects and relations inferenced upon module of axioms are being added to 
knowledge-pool with their unique (natural number) index. For unary pred-
icates (defining objects) this index is their only argument and it is their 
identifier. 

The state of the knowledge-pool is determined by value of the so-called 
sentinel. The sentinel determines the set of objects from the knowledge-pool 
that are accesable for certain axioms in a process of proving. 

The current state of the knowledge-pool is determined by the proving 
mechanism. In case of branching (in process of theorem proving) parts of 
knowledge-pool related to disjunctive branches are independent and this 
saves integrity of the knowledge-pool as a knowledge base. 
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EUCLID - the geometry theorems prover 	 727 

6. The Proving Mechanism 

For sake of illustration, let us see the key PROLOG predicate of the 
proving mec hanism: 

proof 
	

contradiction. 
proof 	proved. 
proof 
	

adt(M),proof. 
proof 
	

ax_u(M),proof. 
proof 
	

assumption(P,NotP), 
index(B), 
retract(comments(true)),assert(comments(fail)), 
push(B4O),justified(P,IP),pop(B 4 O), 
push(B4O),justified(NotP,INotP),pop(B 4 O), 
retract(comments(fail)),assert(comments(true)), 
UIP=true,INeP=true,proofp([P,NeP])); 
(IP=true,INeP=false,proofp()); 
(IP=fdlse,INeP=true,proofp([N01))). 

proof 
	

ax_b(M). 
proof 
	

ax_p(M),proof. 
proof 
	

sentinel(G), 
first_object(G,N),N1 is N+1, 
retract(sentinel(G)), 
assert(sentinel(N1)), 
proof. 

proof :- ax_sp(M),proof. 

In the very beginning of the 	work, there are to be given assump- 
tions of a certain geometry theorem and its conclusion. Before activating 
the key PROLOG predicate in the proving mechanism - predicate "proof', 
knowledge-pool contains only datas about objects (denoted by letters) and 
relations given by theorem assumptions, and all that objects are accesable 
for the module of axioms. 

The key part of the algorithm can be (unpresicely) defined as follows: 
(1) Check if there is a contradiction in the knowledge-pool; if there is, 

report it and finish proving process in the current branch of a proof; if there 
is not, go to step (2); 

(2) Check if there are enough knowledge in the knowledge-pool to conclude 
that the theorem is proved; If there are, report it, define objects and relations 
making conclusion of the given theorem and finish proving process in the 
current branch of a proof; if there are not, go to step (3); 

(3) If possible, apply one of the ADT element and go to step (1); if not, 
go to step (4); 	 • 
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728 	 P. Janiii6 and S. Kordie. 

(4) If possible (according to current state of knowledge-pool and sentinel 
value), apply one of the unproductive axioms and go to step (1); if not, go 
to step (5); 

(5) If possible, assume that some relation over some objects from current 
knowledge-pool holds and add this assumption to the knowledge-pool as 
a fact; similary, assume negation of that relation; make proves for both 
cases; if it is not possible to assume any ralation over objects from current 
knowledge-pool, go to step (6); 

(6) If possible (according to current state, of knowledge-pool and sen-
tinel value), apply one of the branching axioms and make proves for all its 
branches; if not, go to step (8); 

(7) If possible (according to current state of knowledge-pool and sentinel 
value), apply one of the productive axioms and go to step (1); if not, go to 
step (8); 

(8) If possible (according to current state of knowledge-pool and sentinel 
value), apply one of the strongly productive axioms and go to step (1); if 
not, go to step (9); 

(9) Select the object with the least index greater then current value of the 
sentinel; give the value of this index to the sentinel; go to step (1). 

This algorithm can be modified in such a way to prove many theorems 
more efficiently, but that version a the prover can not prove all 6 theorems. 

The sentinel has a key role in determining which objects from the know-
ledge-pool are accesable in certain moment of the proving process. It is a 
sentinel principle which guaranatee ability of proving all E.  theorems. 

7. The Sentinel Principle 

The sentinel value in each moment of the proving process is determining 
a set of accesable objects for geometry axioms. In the proving .process all 
elements of ADT module could be applied no matter to the sentinel value 
(i.e. all objects from the knowledge-pool are accesable for them). Immidiate 
after entering the assumtions of the theorem which is to be proved, all objects 
occuring in these assumtions are accesable. During the proving process, 
the knowldge-pool is spreading (according to foregiven algorithm and by 
application of the geometry axioms and ADT elements). If step (9) of the 
algorithm is reached in the proving process, none axiom or ADT element 
could be applied according to current state of the knowledge-pool and .the 
sentinel value. Then the set of accesable objects, i.e. the sentinel value 
is to be changed. The sentinel is getting a least index value of all objects 
which have indexes greater then current sentinel value. It means that the 
first object whose existency was established since the last change of the 
sentinel value will be added to the set of accesable objects. Then the provitig 
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EUCLID - the geometry theorems prover 	 729 

process is continuing with application of axioms. That is how there is ensured 
inferencing of all possible conclusions for given set of relations and accesable 
objects. Also, that is how there is ensured inferencing of all concluslions 
relevant for the given theorem, and enabled occuring of any "infinite" branch 
in the proving process. 

Let's point out (once again) that forementioned mechanism ensures prov-
ing of all e theorems in a finite number of steps (but, many theorems could 
not be proved because of the limited recources of the Arity PROLOG). Also, 
let's point out that it is not a difficult task to extend the program EUCLID 
in such a way to-optimize its finished proves (i.e. to eliminate all unneccesary 
steps). 

8. The EUCLID Axiomatic System of Elementary Geometry 

In the axiomatic system of elementary geometry (geometry without axiom 
of continuity) inspired by the program EUCLID, as the primitive notions we 
take one fixed set c; (geometry objects set) and seven primitive relations 
over geometry objects: three unary relations is a point, (denoted by t), 
is a line (1) and is a plane (p), two binary relations identical (denoted by 
identical) and incidental (i), one ternary relation between (denoted by b) and 
one quaternary relation congruent (denoted by c). (Instead of writing For 
geometrical object a such that it holds t(a) ... we shall write For point a ....) 
We also use negations of these relations (except for congruence - its negation 
does not occur in any axiom). As a defined relations, we use relations colliner 
and coplanar (with their negations) and relation intersect (we don't use 
definition for relation non-intersect, but we use it as a assumtion of a theorem 
or as a assumption during the proving process). We don't use any set-theory 
segment. We use "classical" geometry axioms, additional incidence axiom 
and "identity" axioms (see section 4) and use them according to rules of 
Gentzen's NK calculus. All axioms are divided into five groups: 

-"identity" axioms (see section 4); 
. -"unproductive axioms (axioms of the form V); 
-"branching" axioms (axioms of the form V - 3 - V); 
-"productive" axioms (axioms of the form V - 3); 
-"strongly productive" axioms (axioms of the form 3). 
(according to foregiven classification additional incidence axiom belongs 

to group of unproductive axioms) 
In the forementioned modified version of the program EUCLID some of 

the productive axioms was put into the group of stronly productive axioms. 
That version of the program makes some proves more efficiently, but can't 
prove all e theorems. 
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During the proving proces prover EUCLID is denoting all new geometry 
objects by natural numbers and practicaly is making a model (or models) of 
elementary geometry in a set of natural number, or more precisely, part of 
that model sufficient to prove the given theorem. It means that, indepent 
of any concrete theorem, algorithm EUCLID could generate a model of ele-
mentary geometry in a set of natural numbers in an infinite (but recursive!) 
process. 

Appendix 

For the sake of traditional approach, a prover EUCLID gives proves ac-
cording to traditional sense of relation incidence as a set relation. 

Predicates occuring in the program's proves (except unary ones) have one 
additional argument and that is their unique index (see section 3). 

Example 1. 

Theorem: Just one plane passes throu two intersecting and distinct lines. 

***** EUCLID v4.00 - Geometry Theorems Prover ***** 

Enter list of assumtions: 
[1(a),I(b),non_identical(a,b),intersect(a,b)]. 

There exists point 3 such that 3 lies on lines a and b. 

Enter conclusion of the theorem: 
p(X),e(a,X,_),e(b,X,_),unique(X). By axiom 1.1, there exists a point 6, dis- 

tinct from 3, such that 6 lies on line a. Let Its assume i(6,b). 

By axiom 1.3, since lines a and b have two common points (3 and 
6), then, lines a and b are identical. 
Conradiction: non_identical(a,b) and identical(a,b)! 

Let us assume non_i(6,b). 

By axiom 1.1, there exists a point 14, distinct from 3, such that 3 
lies on line b. 
There must be non_identical(6,14) (oposite assumtion is obviously in 
contradiction to other assumtions). 
Since points 3 and 14 lie on line b and point 6 doesn't lie on line b, 
then, points 3, 6 and 14 are non_collinear. 
Points 3, 6 and 14 are non_collinear, thus point 14 doesn't lie on line 
a. 
By axiom 1.2, there exists a line 26, such that 26 passes throu points 
6 and 14. 
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EUCLID - the geometry theorems prover 	 731 

Points 6, 14 and 3 are non_collinear, so point 3 doesn't lie on line 26. 
By axiom 1.5, there exists a plane 30, such that points 3, 6 and 14 
lie on plane 30. 
By axiom 1.7, since points 3 and 6 lie on plane 30, line a lie on plane 
30. 
By axiom 1.7, since points 3 and 14 lie on plane 30, line b lie on 
plane 30. 
Therefore there exists the plane we are seeking (plane 30). 
Let us prove that this is only one such plane. 
Let us assume the opposite - there exists one more such plane (36), 
planes 30 and 36 are non identical and let us this is in contradiction. 
Point 3 lies on line a and line a lies on plane 36, thus point 3 lies on 
plane 36. 
Point 6 lies on line a and line a lies on plane 36, thus point 6 lies on 
Plane 36. 
Since point 1.4 lies on line b and line b lies on plane 36, thus point 
14 lies on plane 36. 
By axiom 1.7, since points 6 and 14 lie on plane 30, thus line 26 lie 
on plane 30. 
There must be nonidentical(a,26) (opposite assumtion is obviously 
in contradiction to other assumtions). 
There must he nonidentical(b,26) (opposite assumtion is obviously 
in contradiction to other assumtions). 
By axiom 1.6, since planes 30 and 36 have three commom non_colli-
near points (points 3, 6 and 14), planes 30 and 36 are identical. 
Conradiction: nonidentical(30,36) and identical(30,36)! 
Therefore p(30),e(a,30,34),e(b,30,35),unique(30), QED. 

Exaple 2. 

Theorem: Relation of congruence is reflectiv one. 

***** Euclid v4.00 - Geometry Theorems Prover ***** 

Enter list of assumptions: 

[t(a),t (b ),non_identi cal( a,b )1. 

Enter conclusions of the theorem: 

By axiom 3.2, it holds c(a,b,b,a). 
By axiom 3.3, since c(a,b,b,a) and c(a,b,b,a), then c(b,a,b,a). 

By axiom 3.2, it holds c(b,a,b,a). 

By axiom 3.3, since c(b,a,a,b) and c(a,b,a,b), then c(a,b,a,b). 
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732 	 P. Janiii6 and S. KordiC. 

Therefore, c(a,b,a,b,5), QED. 

Example 3. 

Theorem: Relation of non_itersection for lines lieing in plane is transitive 
one. 

***** Euclid v4.00 - The geometry Theorems Prover ***** 

Enter list of assumtions: 
[p(alpha),1(a),1(b),1(c), non_identical(a,b), non_identical(a,c), 
nonidentical(b,c), i(a,alpha), i(b,alpha), i(c,alpha), non_intersect(a,b), 
non intersect(b ,c )] . 

Enter conclusions of the theorem: 
non_intersect(a,c,_). 

Let us assume intersect(a,c) 

There exists point 16.such that 16 lies on lines a and c. 
Since point l6 lies on line a and line a lies on plane alpha, then, point 
16 lies on plane alpha. 
There must be noni(16,b) (oppoisite assumtion obviously is in a 
contradiction with other assumtions). 
By axiom 4.1, there exists at most one line, such that it lies on plane 
alpha, passes throu point 16 and does not intersect line b, then lines 
a and c are identical. 
Contradiction: identical(a,c) and non_identical(a,c)! 

Let us assume non_intersect(a,c). 

Therefore, non_intersect(a,c,24), QED. 

UNIVERSITY OF BELGRADE, FACULTY OF MATHEMATICS, STUDENTSKI TRG 
16, 11000 BEOGRAD 
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AUTOMATIC THEOREM PROVING IN FIELD THEORY 

USING QUANTIFIER ELIMINATION 

Aleksandar Jovanovie and 2arko Mijajlovie 

ABSTRACT. In this paper we describe a new method of elimination of quan-
tifiers for the theories of algebraically closed fields and theory of ordered real 
closed fields which may be used for the theorem provers for these theories. 
The method is bLsed on the properties of resultants of polynomials. 

1. Introduction 

One could say that mathematics was introduced in logic by Tarski and 
Godel while for Abraham Robinson and A. Malcev could be said that they 
introduced logic in mathematics. Namely, today probably most important 
applications of logic in other parts of mathematics (nonstandard analysis and 
model-theoretic algebra) originate in work of A. Robinson. First contribu-
tions of this kind in algebra were given by A. Malcev in 1936. The Robinson's 
solution of Seventeenth Hilbert problem by methods of mathematical logic, 
more precisely methods of model theory, represents an important contribu-
tion to the model-theoretic algebra. The solution is based on the method 
of elimination of quantifiers and notion of model completeness, the model-
theoretic version of the elimination of quantifiers. Beside, this notion can be 
understood as a transfer principle, which is of significant importance for the 

applications in algebra. 

Definition 1. A theory T in the first order predicate calculus admits elim-

ination of quantifiers if for every formula co or T there is a formula V,  in the 

language of T, without quantifiers such that: T co .4=> 

Let us remind that the following theorem is basic for the model theoretic 
solution of the seventeenth Hilbert's problem. 

We wish to thank to Professor Albert Dragalin for useful comments and remarks. 
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734 	 A. Jovanovie and Z. Mijajlovk 

Theorem 1. (A. Tarski, 1948) Theory of ordered real closed fields admits 
elimination of quantifiers. 

Theories which admit the elimination of quantifiers have this interesting 
property: 

Every theory which admits eliminations of quantifiers is model complete. 
In order to explain this notion, suppose that T is any first order theory 

in the language L. Let A and B be any models (i.e. operational-relational 
structures) of L. Model A is an elementary submodel of model B, or B is 
an elementary extension of A if the following conditions are satisfied. 

1. A is a submodel of B. 
2. For every formula y.9(x) of L and every a E A, 

A = yo(a) 	if and only if 	B 	yo(a). 

The fact that A is an elementary submodel of B we denote by 

Definition 2. Theory T is model complete if for any two models A and B 
of theory T if A is a submodel of B then A is an elementary submodel of 
B. 

2. Quantifier elimination for the 
theory of algebraically closed fields 

The axioms of the theory of algebraically closed fields are the axioms for 
fields and the following set of formulas, expressing that every polynomial 
of degree > 1 has a root. Let T be the field theory and T* the theory of 
algebraically closed fields. For example, the fields of complex numbers and 
algebraic numbers are models of the theory T*. 

Examples of quantifier elimination for theory T* are known for long time 
in classical algebra. One of the best known, which will be used here is the 
Resultant Theorem. 

Definition 3. Let a(s) = E i ,,„ aixi, b(s) = i<n xi be complex polyno-
mials. The resultant of polynomials a and b is the determinant 

ao  al 	 . . . 0 	... 0 
0 ao 	ai  ... a, 	... 0 

Res(a, b) = 
0 ao al  (1 71'1, 

bo  
0 

bi 	• 	• • • 
bo 	bl  

b,, 
. 	• 	• 

0 	. 

6,1 	. 
0 

0 . bo  b1 
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Automatic theorem proving in field theory 	 735 

Hence, Res(a, b) is the in n-degree determinant, where m and n are the 
degrees of polynomials a and b respectively. The main property of resultant 
is given in the following theorem. 

Theorem 2. The complex polynomials a and b have a common root in the 
field of complex numbers C if Res(a, b) = 0. 

In other words, if a and b are polynomials of degrees m and n respectively, 
then 

(1) (3x)(a(x) = 0 A b(x) = 0) q Res(a,b) = 0 

The resultant of two polynomials in any field can be defined in the same 
way, thus within the theory T. 

Let a(x) = ym 	y,„_i  x 	. . . yo  xm, b( x) = z„ z„_ i  x . . . zox" 
be polynomials, where yo , 	, y,„,zo , 	,z„ are variables. Define polyno- 
mials ao (x) = a(x), ai (x) = y,„ 	 am (x) = y„, and similarly 
polynomials b i (x). Then, by Theorem 2, we have 

(3x)(a(x) = 0 A b(s) = 0) <#. 

V (deg(ai) = zn — i A deg(bi ) = ii - j A Res(a i , bj) = 0) 
i<m 
j<n 

= 0 A = 0 ) <=> 
(2)

A(Yi i,i  

V (Yo = 0 A ... A yi_ i  = 0 A yi 0 A = 0 A ... A zj_i = OA 
i<m 
< 

zj 0 0 A Res(ai, 	= 0) VA(yi=O A zj = 0). 
i,j 

Consider other two simple quantifier elimination cases. Since every al-
gebraically closed field is infinite (roots of the polynomial (x — x o )(x —
x i ) ...(x — 1 are different from x o ,... , x„), for the polynomial a(s) = 
Ei  yix 2  we have 

(3) (3x)(a(x) 	0) <#;> yo 	0 V ... V y„, 	0. 

Now, let us show that quantifier elimination for the formula 

(4) (]x)(a(x) = 0 A b(x) 	0). 

is reduced to the case (2). First note that b(x) # 0 * (3y)(yb(x) — 1 = 0) 

and that y is a factor of every member of the polynomial yb(x) — 1, except 
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736 	 A. .rova.novk and Z. Mijajlovk 

in the free member. If we select the variable y so it is not a variable of the 
formula a(x) = 0 A b(x) # 0, then 

(3x)(a(x) = 0 A b(x) S 0) <=> (3y)(3x)(a(x) = 0 A yb(x) — 1 = 0). 

By (2), formula (3x)(a( 	= 0 A yb(x) — 1 .= 0) is equivalent to the 
disjunction (,o1 V ... V cok, which is quantifier free, and each of the formulas 
coj , j < k is of the form 

Yo= 0 A•••AN-1=0AYillAyi00Azoy=0A...Azj_iy= OA 

ziy 0 A Res( a i , ) = 0. 

for a polynomial 	Since 33: Vi cp i  q Vi3occo is a valid formula, it is sufficient 
to eliminate quantifiers of the formula 3yv i . Now, observe that the following 
sentences are true in the field theory: 

1° 3y(y = 0 A 0(y)) t> 
2° 3y(y = 0 A '1/, ) G. '0, if y does not occur in '/, 
3° zy00t>z00Ay0, 
4° 3y(zy = 0 A l/)) 	= 0 A 3y/P) V 3y(y = 0 A 0), if z is a variable 

different from y. 

Therefore, it will suffice to eliminate existential quantifier of the formula 

(3y)(y 0 0 A Res(ai,/ i ) = 0), 

i.e. formula of the form (3y)(y 0 0 A in(y) = 0) where m(y) is a polynomial. 
Let in(y) = mo  + m1 	k yA Then the following is obvious. 

(3y)(y 0 0 A in(y) = 0) t> V(mi 0 0 A mj 0). 
i<j 

Now we consider the general case of quantifier elimination in the theory 
T*. Let ca be any formula of the theory T. It is equivalent to a formula 

(Q1 x1) • • (9 nxn) 1P 

in the prenex normal form, where x is quantifier free. Using the equivalence 

. 	(Vx)a(x) 	-, ( 3x) -ia(x), 

and the fact that the quantifier elimination for --qp is done in the same way 
as for cp, we may assume that Q„ is the existential quantifier. 
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Automatic.: theorem proving in field theory .  . 	 737 

Further, by the theorem on the disjunctive normal form, there are formu-
las ?Pi , , /Pk such that V, <#. v ...V Ok and each formula Oi is a conjunc-
tion of formulas of the form u = 0, v 0, since every algebraic expression 
of T is equal to a polynomial. Since v l  0 A ... v„, 0 <#. Vi ... 0 

we may suppose that every disjunct 	is of the form 

a 1 =0A...Aan1 =0Ab40. 

Using (valid formula) ( 3 :r) Vi i/'Z 	Vi( 3x )0i it follows that it is sufficient 

to eliminate quantifiers for formulas of the form 

(5) 	 (3x)(ai = 0 ... A 	= 0 A 	0). 

Let us denote by 0 the formula (5). Now we describe the recursive pro-
cedure of the quantifier elimination for 0. Let Aix"i be the highest degree 

member of the polynomial i =- 1, ... and let no  = in -I- We 

shall determine the formulas 0 1  and 02  of the form (5) such that 0 <=> 01  V 02 

and ne t  ,nee  < no if no > 1 and 711 > 2. 
First suppose that n 1  = 0. Then 

0<#•ai =0A(3x)(a2 =0A...Aa„,=0Ab00). 

So, assume that n 1  > 0 and m > 1. We can also suppose that n2 < n1. Let 

ac = A 2 a1  - Alx"1-"2a2, a, = a2 - A 2 :02. Then 

0 <#•(A2 =0A(3x)(a 1 =0A4=0A...Aa„,=0A1q0))A 

(A 2 0A(3x)((4=0Aa2=0A...Aa,,,=0Ab 0))• 

Now it is clear that for H i  we can choose the first disjunct and for 0 2  the 

second disjunct of the right side of this equivalence. In this way, the recursive 
procedure of the quantifier elimination is defined which reduces the formula 
to the cases (2) and (3) whose solutions are described above. 

Now, we can derive few corollaries for the theory of algebraically closed 

fields T*. 

1. Let cp be a sentence of the field theory and let 7/) be the quantifier free 

formula such that T* I- so V). Then is variable free. Since the language 
of the field theory is {-F, •, 0.1}, it is clear that for 1/ ,  we can take a Boolean 
combination of formulas of the form n = 0, where n = 1 +...-F 1 (n times). If 

P1, • • • , p k are all prime factors of n then T*I- n = 0 4=> P1 = 0 V ... V pk = 

0. Further, for a formula p of T* and distinct primes p, q we have: 

1° T*I- p=0 	O. 	2° T*1- p=0\1q004*0, 

3° T* 1-p=0V(p0/1(1.)<=>p=0Vci9, 

4° p= 0 A q = 0 is inconsistent with T*. 
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738 	 A. Jovanovie and 2. Mijajlovi6 

Using DNF and the above listed properties, we see that T* 1 11' 
where 0' is true, false, or one of the formulas: 

= 0 V p2  = 0 V ... V p i, = 0, 

finite disjunction of formulas of the form q 1 	0 A q2 = 0 A . . . qt = 0, 

where pi , p2 , 	 ,qi  are distinct primes. As for a prime q in 
any field F of finite characteristic holds 

q Oq VP= 0 , 
p# ,1 

it follows that all complete extensions of theory TX are the theories of the 
form TT  = T* U {p = 01, p is prime, (theories of algebraically closed fields 
of the characteristic p), and To  = TX U {pi  A 0,1)2  A 00)3  A 0, ... 1, pi are 
primes, (the theory of algebraically closed fields of the characteristic 0). 
2. We have just described all complete extensions of T*, and we see that 
there are countable many of them, and all of them can be listed in an effective 
and uniform way. Therefore, see e.g. Theorem 2.4.15, p. 57, [MijajloviC 
1987], the theory of algebraically closed fields is decidable. Let us remind 
the reader that the field theory is not decidable. 

3. Real closed fields 

Artin-Schreier theory of real fields is used for the solution of seventeenth 
Hilbert's problem in the algebraic way. Beside it has applications in the 
other parts .  of mathematics, especially in algebraic geometry, as in Hilbert's 
the proof of Nullstellensatz. and nonstandard analysis. We note that every 
model of nonstandard analysis is a real algebraically closed field. On the 
other side, we used elements of this theory in the development of an algorithm 
for quantifier elimination for the theory of ordered real closed fields. 

Storm's algorithm 

The quantifier elimination for the theory of algebraically closed fields can 
be done in somewhat another way. Let F be an algebraically closed field 
and let f and g be polynomials over r' hi the variable x. If f and g have a 
common root a, then the greatest common divisor of polynomials f and g 
is of degree > 1 (since x — a divides both f and g). Thus 

(3x)(f(x) = 0 A g(x) = 0) .4.> degree GCD(f,g) > 1. 

The GCD(f,g) can be found bu use of the Euclid algorithm. For given 
polynomials f and g the algorithm ends in finally many steps, because its 

V
ir

tu
al

 L
ib

ra
ry

 o
f 

F
ac

ul
ty

 o
f 

M
at

he
m

at
ic

s 
- 

U
ni

ve
rs

it
y 

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs



Automatic. theorem proving in field theory 	 739 

length depends essentially only on the degrees of f and g. Hence, we can 
easily see that this algorithm is described with the quantifier free formula, 
i.e. if 

f = 	+ m2, 	= g2m2 	m2 = (13m3 11147 • , 

(1) 
	

mi-2 = 	 mi-1 = gimi 	and 

deg( f) > deg(g) > deg(m 2 ) > 	> deg(mi ), 

then 

(3x)( f(x) = 0 A g(x) = 0) <#. f = gig + mi A ... A 	= 	A z 0, 

where z is the coefficient of the highest degree of variable x in mi. Note that 
the right side of this equivalence is quantifier free. The other details of the 
proof are the same as in Section 2. 

The method of the quantifier elimination for the theory of ordered real 
closed fields is similar to the previous procedure for algebraically closed fields. 
In fact, the procedure for the ordered real closed fields can be built on 
Sturm's algorithm in the way the above described algorithm is using the 
Euclid algorithm. 

Sturm's Theorem. Let p(x) be a real polynomial and let 	,pr  be 
the sequence of real polynomials defined by: 

1. Po = P. 
2. pi  = p', where p' is the first derivation of p. 
3. For all i, 0 < i < r, there is a polynomial q such that "pi_ i  = 

pi gi  — pi+i , where p i+i  0 0 and deg(pi+i ) < deg(pi ). In other words 
gi is the quotient, —pi +i  is the reminder when pi_ L is divide by pi. 

4. pr-1 = Prqr• 
Let d(a) be the number of the sign changes in the sequence po(a),... , pr(a) 

(zeroes are ignored). Let a and b be real numbers which are not roots of p 
and let a < b. Then the number of roots of p (not counting the multiplicity 
of a root) in the interval [a, b] is equal to d(a) — d(b). 

Now we give an illustration of Sturm's theorem application to the quan-
tifier elimination on the example of a formula of the theory of ordered fields. 
Applying Sturm's theorem we get at once 

(3x)(a < x A x < b A p(x) = 0) •#, d(a) > d(b). 

• Besides, similarly as for the formula (1), using Sturm's theorem, we can 
find quantifier free formulas 7/) such that d(a) > d(b) <#. lb. In this way the 

quantifier is eliminated from the formula (3x)(a < x < b A p(x) = 0). 
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740 	 A. Jova.noviC and 2. MijajloviC 

Further reduction is obtained similarly to the procedure of algebraically 
closed fields. In this reduction the following equivalence is useful: 

= 0 ... A p„ = 0 <#. + . + p72, = 0 

(note that this formula is not a theorem of the theory of algebraically closed 
fields). 

Also, one can obtain in a similar way the following for the theory T of 
ordered real closed fields: 

1. T is complete, 
2. T is decidable. 

4. Programming implementation 

A group of students under our supervision implemented a prover for the 
theory of algebraically closed fields in the standard programming language 
C. The program is based on the procedures described in Section 2. It is 
running well on person-al computers quickly solving problems stated in the 
language of the field theory. The input formula is proved or refuted by 
reducing it to a quantifier free formula. 

The processing of sentences with more than a few quantifiers would be 
greatly accelerated with the introduction of fast calculators for long and 
very long disjunctive normal forms, and fast DNF transformers, which are 
suitable for parallelisation. 

The prover for ordered real closed fields based on Sturm's theorem is being 
integrated. The plan is to optimize, accelerate and collect these procedures 
in one Elementary Mathematics problem solver, which might be expanded 
to other applications as well. 

Let us mention just one possible application, namely we can apply the 
method of elimination of quantifiers in mathematical programming. Pro-
gramming problem with algebraic constraints in several variables x l , , x„ 

f Amin, P1 = 0 , • • • ,Pk = 0, 	> 0, • • • 7 q711 > 0 

where f , pm ,... , pk, 	, qm  are polynomials in variables x l , 	, 	with 
rational coefficients, is easily stated in the theory of ordered fields as follows: 

x7,(y = f(xi 
• ,x„) = 0 A 

▪ , x„) > 0 A 

xn(pl(x1 • • 

▪ , x„) > 0 A 

, x„)A 

...A pkGri, 

• • • A q,„(xl , 

,x„) 	0 . 

... A q„,(xi , 

, X„) = OA 

• x„) > 0)A 

.. A pk(xi,... ,x„) = OA 

▪ , x„) > 0 

f(xi, 	, xn))). 
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Automatic theorem proving in field theory 	 741 

Eliminating quantifiers from the above formula, we obtain a formula 0(y) 
of the theory of ordered fields in the single variable y. This formula is a 
finite disjunction of the formulas of the form y > r, y < r, y = r, where 
r is a rational number. Obviously this is a solution of the above stated 
mathematical programming problem. Observe that we, in fact, proved that 
problem of finding of solutioas of mathematical programming problems with 
polynomial constraints is decidable. 

5. Bibliographical and other remarks 

First and most important step in the solution of the seventeenth Hilbert's 
problem was given in [Artin t927]. Artin-Schreir theory of formally real 
fields is presented in detail in [Lang 1965]. The 'proof of Hilbert's basis 
theorem can be found in [Arlin 1955]. Solution of Hilbert's seventeenth 
problem with described methods of mathematical logic is given in [Robinson 
1955]. Elimination of quantifiers in the theory of algebraically closed fields 
and in the theory of ordered real closed fields with some detailed analysis 
evolving from these procedures, could be found in [Kreisel, Krivine 1971]. 
Here presented procedure of elimination of quantifiers differs from the last 
source, e.g. where we use the resultant of polynomials, in [Kreisel, Krivine 
1971] one lemma which relates to divisibility of polynomials is used. 

The proof of the theorem on resultant of polynomials could be found in 
any book on higher algebra, for example in [Kurepa 1965]. 

Complete solution of Hilbert's seventeenth problem based on Logic can 
be found in [Cherlin 1976] as well. 

Problem of quantifier elimination can be treated in model theory in other 
way, too. In the other approach the diagrams of models, saturated models 
and elementary embedding have special importance. This approach is more 
complex but results are deeper, see ([Sacks 1972]). 
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FILOMAT (Nis) 9:3 (1995), 743-751 

Algebra, Logic & Discrete Mathcma tics 

Ni, April 14-16, 1995. 

O 3A,LIALIE CHHTE3A /IRA ABTOMATOB 

B ORHOM ERACCE JIABI4PHHTOB 

F. I<HaH6ap,ga H IE[. Yurnymalsi 

PE310ME. B pa6oTe Aae-rcst 60.nee a44exammibiti aBrOpHTM o6xoAa. mem 

Te, KoTopbie B parioTax [1], [2] H [3]. TaK>Ke yaramellbr orlexxx 

Bpemeim o6xo,aa H iconwiecTrta cocTostrimil yHHsepcanbruIx o6xoirtirecoB 

na6mpkruToB, paccmaTpHHaemb1x B Tex pa6oTax. 

Bce pe3y.ubTaTbi 14 11011}1T1431 xoTopme He apHHoorurresi 3,aecb, MOH<H0 

HacIT14 B pa6oTe [3]. 
HyCTb L — HexoToptaii KoHexmbrri IIIIOCKI4c1 MO3B.14t1HLII3 na6HpHHT. 

.11.71H mo6oti KOHetlHal 06.11aCT14 A E ar(L) o6o3Haturm gepe3 V(A) MHO- 

>RecTso scex BepEana 143 L, HoTopme .nexiaT. Ha rpaHHHe aToR o6.nacTH. 

1-1Hcno 

dc(L) = max {diam V(A) I A KOHet111W1 o6.riacm H3 ar(L)} 

Ha3oBeM 24WC,420-teC9CUM duamentpom Jta6Hpkurra L. 06o3Ha44m ARA m0- 

6oro r E R+ =lepe3 E.&,(r) imacc BCCX naocm4x Konexmbrx mo3awm.ba 

na6HpHwrots, TakcHx, t1T0 CIO) < T. NCH°, tITO GM,(r) = 0 HpH 0 < T < 

IIycTb T — HexoTopast ukmaHmecHan naacTaHomia maoHiecTsa D. 

Onpe,ae.imm (pymmkuo V. r  : D+ N, cneAymamm crioco6om: 

a) P.,-(w) = 0, ec.rn4 w E D; 
6) Ann nlo6oro c.noria cow' E D+ HmeeT mecTo 

1.),(ww ) = lz-r(ww 1 ), 
v7 (u.g.,.) 1 )-F 3 

eczm v„.(cdcd) > 0, 
B 11pOTIIBHOM cnytiae; 

B) Pr(a) = Ar(coVA)2) +3 • • • +3 I1r(c44-1447k) Ann mo6oro a = (4,1 	(Ok E 

D+, k > 2. 
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744 	 r. Ki4al46apAa 14 LII. Yamymakim 

TeopeMa 1. ffrur ecoxemo r E R, r > V72-, cyNecmeyem unuquaritinuti ae-
mom= 2tor(r), CUAbli0 06:roaifuptii 'mace ,O(')1r(r), npu amorw Att‘C.40 cocnzo-
Snit& %or(r) Tte 6orzbute Cr, a aperitif o6zoda rta6upunma c it eeptuunaruu 
U3 Amon) xrzacca ne 6oribmc C'r 2 n, ?de C u — xoncmannat. 

BO3bMeM Llp0143BOJIMIbla neicrop 	B 11JIOCKOCTI4. BO3bMeM Taxace 
HexoTopyto upsimpo / neprm,:a.mHylo Ha 	Ilycrt. V — HemoTopan TO- 
x.ixa B HaocxocTm. Toraa Llepe:3 pi(v) o6o3Hatmm Hopmanhaym IIpoelm-
HIO  V Ha ripamYro 1. Mrno, =ITO .11J1J1 J11060171 KoHeLmoil o6.4acTH L 
.114C110 ri7(0) = diam {p t (21) I v E 1/(—A)} He 3aBMCI4T OT 1. ilo.a ii-umpvmori 

na614pFmTa L Hom4maem 4n4c.rto 

wdi7(L) = max {r„ (0)I A KoHetmaH o6.nacTh 143 ar(L)}. 

06o3Hwthm ,rosi mo6oro r E R+ T-lepe3 LT(r) Raw:T. Bcex rinocxxx 
KOHet1HbIX m03ammtax J1a614p1411TOB, Tam4x, LITO Wdy(L) < r. 	 ecm4 
AR A Hexuroporo r E R+ Mv1eeT mecTo dc(L) < r , TO Wde(L) < 	1]. 
Jlo Toro Kai( AoKaacem Te(JpeMy 1 AoKaacem c.ne,aylouiym TeopeMy. 

TeopeMa 2. flax mo6wo m E N cyNconeyent ynueepcaribubdi o6xoduux 
vicacca ,C:'(m), y xontopom 48m + 52 COCMOSINUA u 1Comopuit rza6u-
puum u3 ,Cel"(M) c n f3CpULUU 06X0aUllt 3a Aperitif ne 6orzbuie 3n2  + 2n — 2. 
.110xa3ame✓ocmeo. flocrpomm aBT0MaT Q.le(m) = (A, Q,B,(p,t1),9n), 06- 
xoasum41 ace Ra6mpremThi H3 macca ELn(m) crie,rtyromHm cnoco6om. B 
xamecTHe MHO}fteCTBa COCTOAB1414 Q Bo:36mem mBox<ecTBo 

{(cti,a2, 03,(14, as) I — 
9n <crl < 0,0 < o2 < 2,1 < a3 < 2, 

E { s, n}, a5 E le, n, w, sll Q%+ • 

(1)yminkii so 14 V,  oupeaenam Gneapouu4m cnocoliom. Ha muowecase 
Q9A, x A nne,Hem Hpe,u4KaT P caezyroamm emoco6om: P(q, a) -= 1, ec.in4 
you:utile 

{w, s} g a V (q (J, A 'NI+  (q, a) 0 s) 

BbIlIOJIHell0, 14 P(q, a) = 0 r 11p0T14BHOM enytme. Bycm qEQmaC D. 
Toraa, ecm4 q E Q91 +  H P(q, a) = 1, TO 110./10}1{14M 0(q, a) = 11,94 ,.(q, a) 14 
co(q, a) = (p9A +  ( q, a). ECJIH q E Q91, H P(q, a) = 0, TO 110J10}1(14M co(q, a) = 
(0,1,1,N,S) 14 //0,a) = 0, rae a4  = S ecam 0(q, a) = s, a a4 = n, 
ecaH q = q„ . BBe4eM Ansi mo6oro a E A oTo6paatemls Co al : D D 
te, • Q\Q%+  Q, Tamm cn00060m, x4TO 

(w ) = 	s 

(rj- (W) 

ecam w E a, 
B IlpOTI4BHOM cariae 
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3a,Aatie CLIHTP3a, 11)151 arrromaTa B 0,11HOM macce na614pHuToB 	745 

0a(q) = 1 (1 ' 
(ps(g)) 

eerm p s (q) E a, 
B npoTHBHom cariae. 

ECJIH q Q913. , T.e. q ABA steTcii cocTwlln4eM BH.Ha (a i  , a2 , a3 , a4 , as ), TO 

HpeanonoHaim, 'LIT° Lem (M) Be,HeT ce6H cornacHo eneHytoutHm HpaBH.nam 

(ino6oe HmKeripmBeHermo(-s HpaBI4J10 BbI110.11HJieTCJI TOJIbKO B TOM czymae, 

eCJIH BbillOJIHeHO CO0TBeT(113)10111ee npaBH.na ycaorme): 

1. ECJIH q = (0,2,1434.n), TO nyeTb yo(q, a) = ON( —1,2, 2,d4, s)] 

0(q, a) = Oa (s). 

2. ECJIH q = (0,0,1,134,n) It e V a, TO (.19(q, a) = 92a [( —1,1,2,114,$)] H 

0(q,a). ala (s). 

3. ECJIH q = (0, 0, 2, /34 	), TO 1-10J10)E14M, xITO 

14 

('(q, a) 
 _ 	(r/8;1,(s), 

V9A+ Wu, a), 

0 (1  (s), 
00, a) =  

'11'21+ ( qn a), 

pram /34  = S, 
e .1114 04 = n, 

e CAM 134 = S, 

ec.rn4 /34  = n. 

4. Ecam q = (0, 02, 1, 04. e) t7 s E a, TO 4p(q, a) = 02a [( —1, 2, 1,04, s)] 14 

O(g, a) = 01a(s). 

5. Ec.04 q = (0, 1, 1,04 ,e) 14 a C {w, n}, TO Bo3hMeM yo(q, a) = 9a[(0, 0, 2, 

/34, W)] H 11)(q, a) = 0,1,(w)• 

6. &Jul q = (0, 1,1,/34 , 11), TO BO3bMeM ca(q, a) = era,[( — 1, 2 7 2 ,04,0] 14 

ip(q, a) = 91a (s). 

7. ECJIH q = (0, 1,2,/34,n), TO HonoHcHm, LIT(:) 

H 

(10(q, 

) _ 
	co! (s), 

0 1  
//)(q, a) = 	

,"(s), 
 

"0 '21+ (qn, a), 

ec,rn4 /34  = n, 
ec.o4 /34  = s, 

eram /34 = n, . 

pram /34  = S. 

8. ECJIH He HmeeT merro H14 0)1110 143 npeABLayumx yezoina H aBTOMaT 

21e (m) Haxo,a0TcH B CocTOITHH14 q = (131 , 132,  133 ,134 , 135), TO OH nepexaaHT B 

cocTomme (/3.0 /4, /3:10 /34 , /3.;), rue /3ii , 1 < 2 < 5, onpeileneHo eneapoumm 

O6pa3OM. Ilpeaute Bcero 134 = /3 4  14 /3:13 = /33. Erno 

/3' = t3 1  + c11 [0240.0 (Q05 , a)] 1  —m, 
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746 	 P. KA4.roi6apita 14 111. Yintiymamti 

TO 	= 01 , l',He 

1, ecam co = n, 

ch(w) = -1, ecam w = s, 

0, ecam co = e, w, 0 ' 

14 2403) = 91+ , ecam /33 = 2, a 24/33) = 21 - , ecam /33 = 1; B nporrmsHom 
carme 

(131, 	[4, 04, 130 = (- 7n + ch(i35),4, 2 ,#4,135) 	t/(q, 	= 715 ,  

rite 
12, ecam /35  = w, 

IA' = 	0, ecam /35 = s, 

1, ecam /3 5  = e, n. 

11a.aee, N = 02403) ( q0„ a) H 11)(q, a) = 11*(33) (8 135  , a). 3HatieHvie 02 pasHo 

#2 +3 vsm") (i35172 (05) (q0„ a)), 

rte 
+, ecam a3  = 2, 

sm(03 ) = 
ecam a3 = 1. 

CMKICJI napamerrpon al,a2,a3,a 4  14 a5 6yneT c.nenpolumm. (Ioyman44 IP 
H ti) onpenenenbi TaK14M 06pa30A4, qTO norieneHme awromaTa 21em(m) B 
HemoTopom Hp0H3B0J1bHOM aa6mpmwre L Knacca Ee'n(m) 6y.ieT pa36mTo 
KaK 6bi Ha nse qacTm. A arromaT 21'en(m) BeZeT ce63i max aBTOMaT 21+ 
noxa He omaaceTcn B HeKorropoii KBa3140006eHHOR nepunme v, H q = qn  
HRI4 7/)(q, [v]) = S. ECR14 noc.rienHee mmeeT mecTo, TO 21 1e"(m) nepexo,nmT 
B COCTORHHe smna (0,1,1,a,t,a s ) H mecnenyerr sonpoc, HBR.fleTCA IIH 
HeplumHa v OCO6eHHOrl HRH Herr. HoKa OH BTO nenaerr OH HaXO,LEHTCH 
B COCTORHHAX sm,aa (ai,a2,a3,a4,a 5 ) H seneT ce63I, eCJIH He mmeeT 
mecTo Hercorroputi 143 inane eLlaHHIAX czyuaes 1-6, mam aBTOMaT 21(a3), 
rite. 203) = 21+, ecam a3 = 2, a 21(a 3 ) = 	ecam a3 = 1; napameTp a 5 

 06ecnexlmnaerr TaxyLo pa60Ty asTomaTa 21e,m(nt) 143 pa6orria [3] cnen,yeT, 
x1TO 3a BTO Ivens awromaT 	,a1314>KeTCSI Hompyr onmoil 14 TOrl ?Re 

camo2 06.nacTm, Ha rpaHmne KoTopori .nemmT seplinnia v. HapameTp 
al  Tamoil, -LITO ecam aBTOMaT 21em (771) OKa:3aRCH Ha HetcoTopoki Bepumile 
V i , TO al = p2(v) - p2(v').  11apameTpom a2 awromaT 21em(m) m3mepmer, 
Ha CKOJIbKO OH nosopagmsaeTcn, meaner HanpanneHme, asmrancb B1IOR13 

rpHHubI Hemorropoil 06.1m1-rm. nermo y6e,arrhcm, Hanpmmep, 14TO ecnm 
B Tegenne Hemorroporo spemeam, no momewra t, xorna aBTOMaT 21 ► M) 
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0 3a,aalie CHHTe3a Ansi awromaTa B o.aHOM KA a c ce .na6Hpa4HToB 	747 

oKa3ancn B VI , napameTp o 3  He MetPIJICA 14 (Y3 = 1 (aHanorHoe yTBepavie-
line nmeeT mecTo H AAA (13 = 2), TO H cnytme Korna ac = 0, = 2 14 a; = 

n BbIlIOJIHeHO, p2(v) = p2(v') pi(()) < p i  (v 1 ), a B cnymae Kozaa ac = 0, 

a2 = 0 14 a; = n — p2 ( v) = p2 ( v1 )14 pi (v 1 ) < pi (v), me (a' 1 , 04, a!) , 04 , as ) 
— cocTosmne aBTOMaTa 21:,„"(7/1) B momeHTe t. rlapameTpom a4 namiblit 
aBTOMaT 3anommiaeT CBOe CorTOHHHe B momenT, borna HOC.11e,a111411 pa3 
oKa3ancn Ha xBa3noco6eHnoil BepninHe. 

SICHO, tITO H3 ,HaHHOF0 nnHCaHH.11 ariTomaTa 91e1 (m) cnen,yeT, xiTo BMe-
CTO Toro, mTo6b1 .LIBI4TaTE,CA 110 J1a614p14HTy L, OH ,LIB14>KeTCH Hal< 6bI 

no na6npnHTy Ct(L). Ho Torna, nonymaem H3 [3], tITO BTOT aBTOMaT 

ABJI.HeTC.11 yuHBepcanbHbiM 06X0,L11414HOM ARA Knacca Bcex na614pkiHToB 

143 Knacca L (- r(m). 
ECJIH na6npnHT L COL1eWKI4T n BeplIIHH, TO L He mo>KeT HMeTb 6011bHIe 

n/2 ISBa3HOCO6eEIHbIX Bep1EIHI1 (HOJIHtleCTBO KBa,3140C06eHHbIX sep1n4H v 

paBHO KOJII4xleCTBy Bel:gin/HI Bt4.na ve). SICHO , tITO IV(A)I < n AnA J11060i1 

HOHet1HOVI o6nacTn A E ar(L). 143 ,LIaHHOPO anropmTma o6xo„Ra cne-
nyeT, LITO aBTOMaT 3a,nevi-KnBaeTcH y Haninoii KBa:3H0C06eHHOrIBepunumt 

(433nrancb BoKpyr cooTBeTcTHyloineil otinacTn) Ha, Bpemn He 6onbule 3n. 
Yt114ThIBaSI TO, IITO HaKaylo mia3noc06eHlly10 BeptunHy npoBepneT Ha 
OCO6eHOCTE. Asa pa3a, To Ha 3TO yX011,14T spew,' 3n2 . B rpacpe Ct(L) 

Bepinkm n+ lar(L)I – 1. Mello. LITO B L He meHbnie lar(L)I – 1 oco6eHmAx 
Beptunn. Bpemn, KoTopoe yxonnT Ha 06xon ;.-)Tptx Bepunni yuTeHo Bbune 
npm oueince BpemeHm o6xon,a KBa:314.oco6emibtx BeplIMH. Ha camom Aene 

OHO BX0,a14T B B Ty cymmy ymHomieHHoe Ha 2. C npyroil CT0p0Hb1 Ha 

o6xo,a, nepesa C n + I all 1 BewunHa,mn yxo,anT Bpemn He 60J1bIlle 

2(n + lar(L)I — 2). 143 BCeITO clia3a1101'0 nonymaeTcn, 'ITO Bpemn o6xona 

na6np1ETa L ne 6onblue :in 2  + 2n – 2. 

HycTb E — HeKoTopbTit mace JI11614pVIHTOB. Llepe3 Char(L) 0603- 

Haimm tincno min {Q% 121 E ecnn Un(L) = 0, TO HOJI0H(HM, 

x1TO C,har(L) = oo. Tor,na, pe:3ynbTaT Teopembi 2. mo>Kem nepe(t)op-
mynnpoBaTb cnenyloinmm cnt)co6om. 

TeopeMa 3. .14.meent Au:CM() C4cdpoti4aa 01;enr,a 

Char(Enni.))< 487n + 52 

dAba it7o6ow m E N. 

OcTaeTcH OTKpbITbIM BolIpor y.rly -quieHmn Ammon oneHRH. 

AMea3a111CMC77160 111COpe.M. 1g 1. To =IT° y aBTOMaTa nr(r) He 6onbale 

Cr COCTOSIHHci cnenyeT 143 Teopembi 2. OcTanocb eine 01WHHTb Bpemn 

o6xo.na. nyeTb IIJIOCKHA M03414 11HbIiii Ra6141N4HT L coitepyiurr n Bepuran. 
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748 	 r. K14.1n4fiap,Lta w UI. Yup-rymaks4 

ilcuo, LIT( IV(A)1 1 < 	21.1131 J1 1060P1 boHex-rHoti o6JiacTii A E ar(L). Ho 
Tor,aa, mut 14 Hume, Hoar-me  m, mi.() BpeMJI o6xo,aa He 6oribme 3r 2 n 
2n – 2, T.e. .HaHHatr B TepeMe ouemia HmeeT merro. 

HocTpoemfbul moue aBTOMaT He orraHammaeTcH Hoene 06Xo,z[a Jra-
6HpHHTa. Ha Honpoc, cywerrayeT JIH aBTOMaT, KoTopmfei 06xo,L[14r Jllo-
6oil Jia6HpHHT 143 knacca 411"(7/1) 14 oc....TaHanakmaeTc.H Hocne 06X0,aa, 
MOH(HO OTBeTHTb OTpHItaT-.nb11O, lIOCKOJIbKy pbe B crlyziae macca ncex 
KoHex-EHIIx maxmaTHbIX Jia6Hp14mTor3 6e3 KoHeLmba Amp TaKoki awromaT 
He ryruecTByeT. 

IIJIOCKHR MO3a14tIHMX J1a6Hp14HT Ha3bmaeTcH k –x -orpauwieinrum (k-
y - orpam49eHamm), ecJim OH fleH<I4T mem.Hy .IByMJ1 napanneabammi4 upH-
MbIMH, KOTOpbIe pacnoJioxieribi Ha paccrosiram k E N ozwa OT Apyroil H 
Hapa.nezabHm ocH a: (ocH y). 06o3Ha4Hm lulacc Hcex k – x-orpamPleH-
HbIX M0:3a141-IHbIX Jla6HpHHTOB Kiepe3 Lti(k), a Hcex k – y-orpammeHHbrx 
MO3a1414HMX J1a614p14HTOB ttepe3 

Cae,goraHe 1. Zia, ecex k EN umeem memo 

Char(q(k)) < 48k +52. Char(q(k))< 48k +52. 

BebTop 21 B HJIoCKOCTH HasloBeM HenotmcneHumm, ecam Ansi HexoTo-
pba 1 , 711 E Z HmeeT mecT(s) 6= li + ntj. Criezrylowan TeopeMa RIUDIeTCJI 
o6o6weHmem Teope,.mbI 2. OFla linepHbie HoKa:3aHa B [21. attecb 2taeTcsi 
6wree HpocToe 14 KopoTRoe AoRa3aTeabcTBO. 

TeopeMa 4. AA R .  A706 (MO d E R+ u ./z7o6o.e.o 14erzonuc✓ienno?o eemnopa 
11.  cyt(SCemeyem urui$uanbitb1/ amnamant, srodonouvrtics ynueepca.rabnICM 06- 
xodnuKom 7c/caeca L'!/(d). y vontopwo nucrto coentaffnuii UC 6o.Abuie Cd, the 
C — xoncinanina. 

1loxaaameribenteo. Hyr.Tb .5" = nit +

▪ 

 13 

▪  

ARA HeHoTopmx 1, M E Z. Pacc-
moTpHm cnyuaLl, Horzta 1 > 0 11 Ttl < 0. OCTaJllaHble c.riyuaH pacc-
maTpbma,toTcH aHariorw-nuam o6pa.3om. .1-1cHo, LIT( Jn06aa Honexmoti 
06JlacTI, 143 ar(L) neMKPIT B pleKoTopoli noaoce IHHp14HbI d, y xoTopon 
TarireHc yrza Hax.rwHa parieH Hyrrb A — HeHoTopasi KoHeLmax 
o 6.11acTb 143 ar(L). roHopHm. wro Hepauma v E V(A), v = (xo,Yo), 
AH.rzneTcsi 0-(1,711)-oco6t:nnoti, ecJ[m nonynnocborrb – 117n(a: – x o ) (y –
yo) > 0, He cortepaiHT 1114 o.H110171 Bepaanna 143 MHOM<eCTBa V(A), 14 eCJII4 
Ha HpHmoti –/Iill(a; – x0 ) (y – yo ) = 0 ne>i<HT Hepumlla v 1  E V(A), 
• = 	yO, T0 x io  < x0. BepiuHHa v E V(L) SIBJ151eTCH (1,m) -oco6ennott, 
eCJIH cywecTriyeT A E ar(L), T;:tbam, LIT(:) 71 JIHJI.HeTCSI 0-(/,m)-oco6emmI7 
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Bepuumoii. 3ameTHm, SITU, ecara HeKoTopon Bepauma v E V(L) (1,m)- 

oco6eima.B, TO {w, s} C Toraa, 'WHO, x4TO (1, m)-oco6eHHyio Bepm-

Huy Ha,LLo VICKaTb cpe,ard BBamioroffieHHbix Bepaum. 
/Lamm:a npoeBunii sewropcm e H it Ha Hopmanb IIOJIOCbI paBHbI, COOT-

BeTCTBeHHO, /hind 14 7/11/7//1. 

7/L 
Al = T

/ 
max{mhlml,1117n1} 14 A2 = —

n

h

t/
(—d — max {nth I ml ,lh I m1}). 

IlocTpomm aBTomaT 21 ii(d) = (A, (2, Bop, 0,q„), o6xoxnugil Bee .na-

6Hp14HTM 143 121aHHOr0 J1a6141)14HTOB cneaytoumm CrIOCO6OM. B 

HatieeTBe mlloaterma, cocToymmil BO3bMeM MHO?KeCTBO 

{(ai,a2, Ck3, a4, (15) I [A2] < 	< [Ad, 0 < (12 < 2,1 < a3 < 5, 

(1 4  E {s, n}, a 5  E {e, n, w, s}} U Q9A+ . 

40 yRKHH14 (,0 K ti) onpe,ae.mum cHeaytoumm enoco6om. flycTb q E Q 

14 a C D. Tor,rta, eex114 q E Q,2/ 4  14 ec.rn4 Ham {w, s} He HBAHeTcH 

noamHoxie(:TBom mHoxiecTua a. 14J114 q 1,1)%4.(q,a) # s, TO 111(q,a)=- 

 021+ (q, a) H (p(q, a) = (p%+ (q, a). EC2114 q E Q21+ , {w, s} c a, o q = qu 

Kaki 1,1,(q,a) = s, TO cp(q,a) = (0,0,1,a4,$) H 7/)(q, a) = 0, r,ae a4 = s 

ecam 0(q,a) = s, a a4 = n, ec.n.14 q = qu . Kax H smile se,aem AAA 

mao6oro a E A oTo6pa7-Betizsi O la  : D 	D H 09a-  : Q\Q944. —> Q. ECJII4 

q 	Q 21+ , T.e. q SIBJIBeTCSI COCTolumem B144.a (al, a2, a3,  a4,  a5 ) , • TO 

Hpe,anonoamm, trro 21.6((i) BeiteT r(,an cornacao caeapoumm HpaBH.nam 

(Jno6oe HHHieripmBeaemlots. 11paB14210 BbIIIOJIHSieTCSI TOJIbKO B TOM cariae, 

eCJIH Bb1110.71HeHO COOTBeTcTBy10 Wee ARA 1:-.)Toro npasmna yenoime): 

1. EC.1114 al > 0, Cr3  = 1 142114 	= 0, a3  = 1 14 

= 11 V ((4 5  = e A s a), 

TO co(q,a)= 0![(cti 	ch((i5), 

132 = 

02,2,41,1, (-I:5 )] 14 11)(q,a)= 01(ifi5), rAe 

1, ecn14 (.15 = e A a2 = 2, 

2, ec.TH4 (15 = n A a2 = 1, 

0, 	ecEvi (1 5  = e A a2 = 0, 

1, 	ecrivi a 5  = n A a2 = 2. 

2. Ec.TH4 q = (0,0,2,04,n), TO nono -im4m, TITO 

v( q, a ) _ go!(s), 	era?' 04  = s, 

4=91+011 , 4 ecavi 134 = n, 
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H 

l  (5) 
?Ng,

e4  g, a) =  
7.1'%+( (hi, a), 

ecru,' /34  = n, 
ecam /34  = S. 

750 	 Kr4A146ap,.Ra at III. Yuitlymmili 

H 

)(q,a) = 	
(s) 	ecam /34  = s, ii  

'4'2+ (qn, a ) , ecam /34 = n. 

3. Ec.ni al = 0, 02 = 2, a3 = 1, ot5  =e H s E a, To cp(q,a) = 
19,2i Ra1 	ch(w), 1 , 2 ,04,w)] 14  0(q,a)= 9R 14r). 

4. ECJII4 a1 = 0, a2 = 0, 03 = 1, a 5  =ensE a, TO w(q,a) = 
0„2 [(a1+ ch(s),1,1, 	H  O(q, a) = 0,1,(s)• 

5. Ecam q = (0,1,1,04 , e), TO BO3beM V(q, a) = C(ch(w), 1,2, 134  i w)] H  11)(q,a)= 

6. Et- am q = (0,1,2434 , n), To [10,710>1414M, LITO 

W(q, a) = q" (s) ' 
ecam /34  = n, 
ecam /34  = S, 

7. ECJII4 He mmeeT mecTo HH ()Arlo 143 upeam.viumx yCJI0B1411, TO as-
TOMaT Hepexo,amT B cocTosmme (/)1,/32, /3,/34,/i5 ), rH• /3i, 1 < i < 5, 
oupeHeneHo caeHylommm o6pa3oM. Ilpe}}£11e Bcero /34 = a4  14 /33 = a3. 
ECJIH 

= re 1  + chkb%(,,)(qa,, a)) 	[A21, 
TO = a', rHe 

/, ecam co = e, 

a -1, ecm co = W, 

ch(w) = m, ecam co = n, 

-m, ecan w = s, 

0, ecam w = 0 

14 91(a3 ) = 21+, ecam a3 = 2, a 240 3 .) = 21 - , eCJII4 a3 = 1; B 11pOTHBHOM 
caymae 

(/31,02,03,04,05) = 8a[("1 + Ch( (75),i-4, 2 , a4, rE5)1 

rHe 
2, 43 17./114 	= W, 

0, ecJim f35 = s, 
021 — 	1

, ecam /35 = e, 

2, ecam /35  = n. 

il)(q,a) = 81a(71-5), 
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Aanee,/i 5 = 09103) (qc,,,, a) PI IP( , a) = 	3) (q a  „ a). rlapameTp 02 
paBeH 

a2 +3 ustn(ce3)( . 5 ,091(a3) ( qcy5, a ) ),  

rHe 

sin(a3) = 
ecam (13 = 1. 

CMbICJI napameTpoH 	 , 04 14 415 6yJeT aHaaorprileH emme.ny Tex 

napameTpoH B AoKa,:3aTe.ribrTHe 11-. ,.opembi 2. 
KaK H B Teopeme 2, nerKo yfieHHTc.n, tITO aBTOMaT 947(d) yHos.neTHop-

SleT yCJIOBHSIM ,HaHHoil Teopemm. Ecaki Ila6141)14HT L H3 paccmaTpbthae-

Moro macca co,aep>KHT P Bepun4H, TO Hpemsi o6xo,Lta TaKOPO na6HpHaTa 

MO}KHO 01.1RHYITb, KaK B Hoha3aTeabc.THe Teopemm 2, T.e. OHO He 6o.ribme 

3p 2  + 2n — 2. "aTIIM Teopema HoKa,3aHa. 
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YHHBEP3MTET Y BEOPPA,HY, TM4), KAPHEZACHJEBA 4, 11000 BEOrPAIE, 10YrO-

CJIABHA 

YHHBEP314TET Y BEorPAAY, TIV4), KAPHEXKI4JEBA 4, 11000 BEOPPAII, lOYFO-

CJIABI4f1 

+, e('J111 CV 3 = 2, 
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FILOMAT (Nis) 9:3 (1995),  753-7621 
Algebra, Logic & Discrete Mathematics 

Nis, April 14-16, 1995. 

DISCRETE METHODS FOR VISUALIZING 

FRACTAL SETS 

Ljubi§sa. M. Kock 

ABSTRACT. A short summary of some known discrete visualizig models of 
fractal sets is given. A new algorithm, called graphical erosional algorithm, 
for visualising fractal sets from R. 2  is presented. Input parameters for the 
algorithm are functions from a hyperbolic iterated system. Beside visualiz-
ing, this algorithm permits estimation of fractal dimension for a set being 
visualized. 

1. Introduction 

The set of points from R2 . defined by S = 	i = 1,...nx ,j = 
1,...ny , nx , ny  E N} will he referred as the picture support. Let P be an 
arbitrary set such that 2 < Card( P) < nc (E N)andco:S — Pbe any 
mapping. Then P is called set of colors and co is color function. Under 
discrete visualization of an arbitrary set A one assumes the map ck : A —> S , 
with a given color function 0. The triple (0„9,(p) will be called a discrete 
visual model of A. 

Discrete visual models are important for processing information by com-
puter, especially when the plane set A has a complicated form, for example, 
when it is a fractal set or a chaotic attractor, like those in Figure 1. Actually, 
this figure illustrates orbits of two different dynamical systems. Namely, let 
(X,d) be a metric space and f : X — X be an arbitrary mapping. Then, 
(X, f) is a dynamical system. For any .e 0  E X, the sequence {xi}+4, such 
that x j+1  = f(xi) is called the orbit of the point x o . The limit of an orbit 

This research was partly supported by Science Fund of Serbia, grant number 0401F, 
through Matematiai institut SA Nil 
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Lj. Koci6 

FIGURE 1. A) NEURAL NETWORK AS FRACTAL SET; B) PENTAGONAL CHAOTIC 

ATTRACTOR OF CHOSSAT- C OLIJBITSBY MAFTING 

can be a set A in X which "attracts" au orbit, so it is called attractor of 
dynamical system. In fact, the attractor 

A= lim :r„ , A E X , —.+0;. 

is a fixed point of the mapping f and it does not depend on xo. Interesting 
attractors usually have noniuteger Hausdorf dimension, wherefrom the term 
"fractal" roots its name [5]. 

Example 1.1. Consider the mapping f : RR 2  --+ HR2  (11X is the partitive 
set of X), such that f = fI  ( B) U f9(B), for any B C R2 ,.where fi and 12 
are affine plane transformations defined by 

( x \ 	(0.1 —0.7 (x) ( 0 
J1  • y ) 	0.7 	0 	y 	̀- 1 

12 	
x 	( —0.3863 0.1562 ) (x) ( 0.4) 

The attractor A of the dynamical system C1-(R 2 , f) has the form of a neural 
cell (see Figure 5). By simple affine transformations of A the model of neural 
network, a fragment of neural tissue, displayed in Figure 1-A), is obtained. 

Example 1.2. Let C be a complex plane and f : C 	C be a mapping 
given by 

(1.2) 	 f (z) = :(z 9  Lk:7 	— 2.6) + 	. 

—O.:3562 —0.6863 	y 	0.4 
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The orbit of the point z0  = 0 tends to the attractor of dynamical sys-
tem (C,f) shown in Figure 1-11). The mapping (1.2) is known as Chossat-
Golubitsky formula [3], [6]. 

In these examples, two different algorithnis are used for creating visual 
models of corresponding attractors. In both of them, the formula (1.1) or 
(1.2) are treated like continued expressions, but in computer enviroment, 
earlier or later, they are rounded off and the discrete values are used for 
creating visual model. In th(:.+ next section, several methods that uses discrete 
tools for creating fractal visual models. 

2. Discrete fractal structures 

Hausdorf dimension is the must important number connected with a frac-
tal attractor. It offers an estimation how "dense" this attractor occupies the 
metric space in which it is immerged. For an arbitrary A .  C X, the -Hausdorf 
dimension* is defined by 

DH(A) = inf {p}, 
A,p)=0 

where, for p E R, p IA A, p) is the Hausdovff p-dimensional measure of A 

+00 
p(A,p) = sup{inf{EIKilv}} . 

e>o i=o 

Infimum is taken over all E-covers h = {K}= of A. In the above formula, 
IKil stands for the diameter of Ki  C X. 

Example 2.1. Let consider the Pascal's triangle of binomoal coefficients 
[8]. Select these elements p,,,,k = (11.) for which p,,,k mod 2 = 1 to obtain the 
set A. Choose the set of colors I' = { white, black}, and map A in the picture 
support S by replacing each element of A by a black point (see Figure 2). 
The visual model of A recognizes as a famous Sierpinski triangle. As it is 
shown in [8], Hausdorf dimension of A is DH = log2  3 = 1.58496... which is 
known to be the dimension of Sierpinski triangle [5]. 

Example 2.2. Many biological object possesses typical fractal properties. 
One of them, the neural tisue, is mentioned in Figure 1. Another one is the 
DNA chain, very important natural pattern that conways genetic informa-
tion. DNA has a form of a double helix being composed of two strands that 
bind together by a specific base-pairing rule. Adenine (A) always pairs with 

*Also known as Hausdorf- Besiconitch or geometric dimension 
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.0114. 

7 5 6 	 Lj. Nock 

1 	2 
1 	3 	3 

I 
1 

mod 2 

1 4 	6 4 
1 5 10 	10 5 1 

1 6 15 	20 15 	6 1 
1 	7 21 35 35 21 7 1 

ti 

FIGURE 2. BINOMIAL COEFFITIENTS MOI) 2 FORM THE SIERPINSKI TRIANGLE 

thymine (T) whilst cytosine (C) always pairs with guanine (G), like in this 
fragment 

— AACTGGG AT AT ATTTGGG- 

- TTGACC!CT A7' AT AAACCC- 

41111. 

Each DNA strand can be connected with a Brownian motion path as 
follows: the pair AT corresponds to a particle being moved forward the x-
axis for a given step. TA combination moves the particle in the oposite sense 
for the same step. CG and GC pair moves the particle along the y-axis or in 
the opposite direction. Alternation AC or CA with GT or TG directs along 
the [(0,0)(1, 1)] vector and the contrary, while AG/GA followed by CT/TC 
moves the particle along [(0,0)(-1, —1)] or back. 

Experiments, done by authors of [2], show that amino-bases of DNA, 
taken from GenBank has DH = 1.631 ± 0.137 which is significantly lower 
than Hausdorf dimension of the Curve being a trajectory of a Brownian 
motion, which is pH = 2. Figure 3 shows the path of Brownian motion (A) 
and the pseudorandom walks of two DNA (B) and (C). 
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G 
	

(1 

 

ci 

 

T .\ 

 

 

C 

A) 
	

B) 
	

C) 

FIGURE 3. A) BROWNIAN MOTION, HD= 2; n) DIMER OPS1N GENE, DH 
1.744; c) ALPHA-1-GLYCOI'RoTEIN, D11 Pr.:1.671 

Example 2.3. Another discrete method for visualizing fractal sets is con-
nected with tilling-patterns. Again start with genetic sequence of DNA taken 
from the human immunodeficiency virus type 1 (AIDS), and associate the 
Escherian* tile pattern shown in Figure 4-A) (above) in different orienta-
tion, depending on the letter A ,T,C or G in the strand. An Escher-like tile 
is obtained (Fig. 4-A) bellow). Number of closed diamonds in the pattern, 
divided by the number of tiles, so called diamond fraction, characterize the 
randomnes of the data. If this fraction is about 0.05, the data are randomly 
distributed. Correlation appears if the fraction tends to zero. 

Another type of patent, shown in Figure 4-B) is called Truchet patern, 
after Sebastian Truchet that studied such patterns in his paper from 1704. 
Diamond fraction is now replaced by the dumbell fraction which makes about 
0.0125 for the random data. Increasind diagonal trend in the pattern reveals 
increasing correlation of the data. For more details see [6]. 

3. Graphical erosional algorithm 

One of the most suitable ways to define and produce fractal sets is by (hy-
perbolic) Iterative Function System (IFS). This is a collection of contractive 
maps (A. , , f„) that act in a metric space (X, d), i.e. W = {X, f„}. 
The Lipschitz factor of W is .s = max i {si }, where s i  is the contractive factor 
of fi. Then, there exists a unique attractor A such that A = F(A), where 
F = U41 1  fi , the assertion known as the Hutchinson theorem. In other words, 
A E is a fixed point for the dynamical system (X, F). 

*after Mauritus Cornelis Escher (1898-1971), duch artist 
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Lj. Kock. 

A) B) 

WOZZzoicgritrgAti.4 
Ntoo.w..A-4,52:vvirotvzv 
.\.....-:ottawitowsk-o.:,:kvechl 

tri4 : Vtaa" .0..V1-4.4•0& 
„) •.,At...:4...:......:,..e#4..,Itt4,-"..:..N4to.,1, 
.4, - AAA\ :IttAsArv000ksv....:.:0 

#44 tivv4::vt,..4*.4c.A1-4*tv4.4::- 
w.Atv 

...--.0-•ort.,:v\vi..!4NOttit'at0.1 .0......AvItyNc:Atefav$,A%-,,,44:0 

FIGURE 4. A) Esc:HER- TILE OF RANDOM DATA (ESCHERGRAM); B) TRUCHET-

TILE OF RANDOM DATA 

According to the literature ([4]), there are five different algorithms for 
calculating (and therefore for visualizing) fractal attractors in (R 2 , d). 

Algorithm A. Based on the Hutchinson theorem, this algorithm starts with 
an arbitrary closed subset B from R 2  and transforms it by F. More precisely, 

a) initialize B0 E VR2 ), 
b) calculate Bk+i 	Bk) , k = 0, ... 

c) apply a discrete visualization <p : B 
Repeat b) and c) until NB B is,+1 ) < E, where h is .Hausdorff metric and E 

is the minimal distance between points in the picture support (picture norm). 
Good results are gain by choose Bo  to be a singleton, typically a fixed point 

of one of contractions fi  from IFS.. 

Algorithm B (Barnsley, Demko). This algorithm uses a sequence of inde-
pendent random variables fc,oi l JE N , such that pr(e,oj = ft) > 0 for any j and 
i = 1, ... . 

a) Choose r0  E R2 , 
b) calculate rk = co(xk—i), k = o. 1, 	, 
c) map each rk onto the picture support. 
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Repeat b) and c) until the Hausdorif distance between two consecutive 
pictures become, smaller than the picture norm. 

The following three algorithms are given by Dubuc and Elqortobi [4]. 

Algorithm C (Based on Williams formula). Let W* be the set of all finite 
compositions of functions of W. Let for g E W*, Fix(g) denotes the fixed 
point of g. Williams in [7] has shown that the closure of UgE w.Fix(g) is 
invariant and there is no other closed bounded invariant sets for F. 

Let e > 0 and W(e) be a family of contractions. A function g is in W(e) 
if there is a finite sequence of functions of W, 	f2 ,..., f„, such that: 

(1) g is the composition f1  o f2  o • • • o f„ and the Lipschitz constant of g 

is < E. 
(2) If k < n, then the Lipschitz constant of fl o • • • o fk  is larger than E. 
Then the set B = {Fix(g) : g E W(E)} is an approximation of A. 

Algorithm D. This is a variant of the Algorithm C. The attractor •A is 
approximated by B = {h o R o • (x), it E W(E)}, where R is a rounding map 
of the metric space X. 

Algorithm E (Graphical algorithm). Let b be a positive real number, and 
A 1((5) be a subset of X such that 

(a) for any x in X, d(r, MO)) < E; 
(b) in any ball of X, there is Just a finite number of points of M(6). 
Let B, 1  and C,,, are two sequences of subsets of X for n = 0, 1, .... Then, 

(1) A point x is choosen in C„; 
(2) A temporary set T is initially empty. A loop over W is done, such 

that for each f E W for which d(f(x), B,,, n T) > ( 5 , one chooses a point 
x' E M(6), such that d(f (x), x') < b, and is added to T. 

(3) B1L4.1 = B,,, UT and C„ +i  = C„ U T\{x}. 

Probably the most important quantity connected with the fractal set is 
its dimension. There are many definitions of dimensions, but the way of 
calculating them may be an awquard question. The most popular method 
for experimental estimating the fractal dimension of an attractor in R 2  is 
the box-counting method, which is based on the following theorem [1]: 

Theorem 1 (Box Counting Theorem). Let A E MR2 ), and Euclidean 

metric is used. Tile the plane R 2  by the square uniform mesh with the step 

2 -7L. Let Arn (A) denote the number of boxes from the mesh that intersect the 

attractor. If 

lnArn(A)1  (2.1) 	 DH = ti
m 
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FIGURE 5. A "NEURAL FELL" AND THE BOX COUNTING METHOD 

exists, then A has fractal dimension* DH. 

The graphical erosional algorithm which will be described bellow, gives 
succesive approximations of fractal sets in R and calculates an approxima-
tion of its fractal dimension at same time. 

Actually, let M„ be a uniform mesh as described in Theorem 1. Note 
that the scale plays no role in calculating DH from (2.1). So, for a unit 
of measure one can take the side of a square that "nicely" framed the set 
A. Figure 5 shows a fractal attractor that resembles to the neural cell. It 
is framed by an apropriate square Mo  with the side lenght 1. It is divided 
into four subsquares which corresponds to the net M 1  (the upper left square 
in Figure 5). The process continues for n = 3,4,5,6. Let K„(A) denotes 
2 — n-cover of A. The following algorithin produces sets K„(A) and calculate 
the fractal dimension at the same time. 

Graphical Erosional Algorithm (GEA). Let n E N. The set of nodal 
points {(iI2", j12")} from R 2  determines the standard orthogonl net M„. 
Let be a cell of M„, i.e. the set of points (x, g) such that il2" < x < 

*also called box dimension 
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n=44, N(A)=72 	n=5, N(4)=187 

n=7, N(A)=13 77 ,,=8, N(A)=3743 n=9, N(A)=14928 

FIGURE 6. (-4LA l'HICAL EROSIONAL ALGORITHM 

FIGURE 7. TESTING OF GRAPHIcAL EROSIONAL ALGORITHM 
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nmax=9 

'Din - 1.141674950740416.--1 

Dim=1.4102... 

Din = 1.41028524014706_1 

n Ln2 
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(i-1- 1)/2" and j12" < y < (j + 1)/2". Let S E R be the picture support with 
the norm (5(5) = max{d(xi,xi+i), d(Yi, 	and P = {black, white} be 
the set of colors. For any IFS, say W = {R, 	, AO with the attractor 
A, the sequence of color functions 	: A = S is associated with the net M„ 
according to the following steps: 

(1) Initialize .n = 1 and R — {white}; 
(2) Produce the point pk  (:):1„yk ) by the Barnsley-Demko algorithm; 
(3) If pk E Oatj , then A,, = S n 	{black}; 
(4) Count the number 111; i (A) of A"-cells in K „; 	• 
(5) n 	n 1. If 45(S) > 2" then go to (1), otherwise go to (6). 
(6) Calculate an approximation value of DH, given by (2.1), by fitting the 

data {(1n(2"),1nN, i (A))) by a. least-square affine function. The coefficient 
of the linear term is DH. DH tan a. 

This algorithm is illustrated in Figure 6 with A being a neural cell from 
Fig. 5. Note that the 'black' set, K„, generated in step 3 'approximates 
2n-covers of A. The number of black squares is denoted by N(A). 

Then the following theorem supports the algorithm: 

FIGURE 8. DIMENSION "BY HANDS' AND BY GEA 
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Theorem 2. If OS) 	0 and a 	oo, then the sequence {R„},T... 1 , gener- 

ated by the GEA converges to 	in Hausdorff metric. 

Proof. Denote the Hausdorff distance between two sets X and Y from R2 

 by h(X,Y). Suppose that this metric is induced by the Euclidean metric in 

R2 . It is obvious that 

(3.1) 
\772 

h(.5". A) < —
2 

6(S) . 

Let rk = (xk,yk) be the point produced by the Algorithm B. If rk E 

then the cell Dal y  becomes a part of K „(A). As h(r k, AZ i ) < -42-", then 

(3.2) 	 h(K.,(A),A)< 2 -"+i , 

As by definition, „(A) = /1, 1 ( A) fl S, then by (3.1) and (3.2) 

h(k„(A),;1) < 	(2 -11+ 1 	OS)) . 

Thus, if n 	oo and OS) — 0 then h(k„( A), A) —> 0, in Hausdorff metric. 
Note that the proof holds if i he Euclidean metric is replaced by any other 

metric in R2 . 
Calculation of fractal dititension follows from Theorem 1. 

Since the algorithm construct s succesive 1/2"-covers of A, it resembles the 
process of erosion, which suggests the name. Algorithm is tested through 
several examples. Here, Ow results of applying GEA on Sierpinski triangle 
fractal attractor is shown in Figure 7. The estimated fractal dimension is 
1.5817... which approximat (ts the true dimension 1.58496... with accuracy 

10 -2 , which is a good real for PC computer where n can not exceed 9. 
Fractal dimension of the "uenial cell" is estimated to be 1.4102.... The 

data and the fitting line are shown in Figure 8 (left-bellow). Comparing 
with box-counting performed by hands" for n < 6 and n < 7 (same figure, 
above), the data produced by ( lEA are much more regularly placed along 
the line. Note that accuracy fails for n = 7 due to the weakness of the human 
eye. 

The GEA has one more a d va n tage. It can be used for the rough estimation 
of the fractal attractor's shape. its dimensions and location in R2. 
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Algebra, Logic & Discrete Mathematics 

Nis, April 14-16, 1995. 

IDENTITY, PERMUTATION AND BINARY TREES 

Aleksandar Kron 

ABSTRACT. Some extensions of the Anderson-Belnap (Dwyer-Powers) con-

jecture for TW_, are applied to a set of binary trees. 

A binary tree T is a tree with an origin and such that each node of T 
either has exactly two immediate successors or it is an ehd-node. A subtree 
T' of a tree T is a tree such that every node of T' is a node of T and the 

immediate successor relation in T' is the immediate successor relation in T. 

A tree T is a formula-like tree (FLT) iff it has no proper subtree that is 

isomorphic to T, and no proper subtree T' of T has a proper subtree T" 

isomorphic to r. 
Every infinite FLT contains infinitely many (distinct) finite branches; ev-

ery node of a FLT is a node of a finite branch. Hence, the maximal length 
of a branch of a FLT is w. 

If T1  and T2 are FLTs, then the tree obtained by adjoining a new origin 
TiT2 and such that 7 and T2  are immediate successors of Ti T2, is a FLT. 

With every node of a FLT T one of the numbers 0 or 1 is associated, as 

follows: 0 is associated with the origin of T; if 0 (1) is associated with a node 
at level n, then 1 (0) is associated with its left hand immediate successor 
and 0 (1) is associated with its right hand immediate successor. 

If 0 (1) is associated with the origin of a subtree T', then T' is a 0-subtree 

(1-subtree). 
Let us consider the following operations on a FLT. 

SU°  Let T be a FLT and let Ti T2 be one of its 0-subtrees; then the subtree 

Ti T2 can be cut off and a subtree (T2 T3 )(Ti T3 ) can be inserted in 'T 

instead, where T3 is any FLT. 
PR°  Let T be a FLT and let 'T2 T3 be one of its 0-subtrees; then the subtree 

T2T3 can be cut off and a subtree (T1 T2)(717-3) can be inserted in T 

instead, where T1  is any FLT. 
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766 	 A. Kron 

SUL° Let T be a FLT and let T1  be one of its 0-subtrees; then the subtree 
Ti  can be cut off and a subtree ( 71 7-2)((7.27-3)T3) can be inserted in 
T instead, where T2  and T3 are any FLTs. 

SU 1  Let T be a FLT and let (T2T3)(T1 T3 ) be one of its 1-subtrees; then 
the subtree (T2T3)(71T3) can be cut off and the subtree T T2 can be 
inserted in T instead. 

PRI Let T be a FLT and let (TI7)(T173) be one of its 1-subtrees; then 
the subtree (TIT2)(TiT3 ) can be cut off and the subtree T2T3 can be 
inserted in T instead. 

SULI Let T be a FLT and let (TiT2)((TIZ)T3 ) be one of its 1-subtrees; 
then the subtree (7-  T)((7 T 17-3 ) can be cut off and the subtree 
can be inserted in T instead. 

PERM* Let T be a FLT and let Ti(T2T3) be one of its 0-or-l-subtrees; then 
the subtree Ti(T2T3) can be cut off and the subtree T2 (7i7-3) can be 
inserted in T instead. 

The main theorem: starting with a FLT T and successively performing 
the operations SU ° , PR°, SUL°, SUl , PRI , SULI, and PERM* any finite 
number of times, in any order, and such that at least one of the first six rules 
is applied at least once, it is not possible to obtain T as a result. 

1. Identity 

When Alan Ross Anderson and Nuel D. Belnap were developing relevance 
logic, among numerous systems they have been considering there was an 
implicational fragment of a very weak logic called now TW. Since there 
is only one connective in such a fragment, namely —>, we omit it and we 
write AB for A B. Also, we omit parentheses, whenever this causes 
no confusion. ABC stands for (AB)C and A.BC for A(BC). Under this 
proviso, the implicational fragment of TW has modus ponens (MP) as the 
sole rule of inference and the following axiom-schemata: 

ID AA 

ASU AB.BC.AC 

APR BC.AB.AC 

This fragment is now called TW,. Let us write A F.-  B iff both AB and BA are provable in TW,. Then Anderson and Belnap have conjectured 
(cf. [1], p. 95) that 

A = B if and only if A and B are the same formula. 
We shall call this conjecture Anderson - Belnap conjecture (A-B). 
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By A-B the identity of formulas in the language of TW, is determined 
by logical means only - by provability in the very weak theory of implication 
TW,. 

Let TW„-ID be the system obtained from TW„ by omitting the axiom 
schema ID. Dwyer and Powers have shown that A-B is equivalent to the 
following claim: 

NOID In TW„-ID there is no theorem of the form AA. 

NOID is a very strong claim. ID is a paradigm of a logical truth and 
there is hardly a descent logical theory where ID is not true. Nevertheless, 
in TW,-ID not only there is a formula A such that AA does not hold for 
it, but, moreover, AA holds for no formula A. 

The systems TW_, and TW„-ID have other formulations as well. 
Let us consider a theory that has ASU and APR as axiom-schemata, but 

instead of MP it has the following rules of inference: 

SU 	From AB to infer BC.AC 

PR 	From BC to infer AB.AC 

TR 	From AB and BC to infer AC 

Let us call the new system TRW,-ID. It is easy to see that the rules of 
TRW,-ID are derived rules of TW,-ID; hence, all theorems of TRW„,-
ID are theorems of TW„-ID. On the other hand, by an inductive argument 
it follows that TRW.-ID is closed under MP (this was proved by Dwyer 
and Powers; cf. [4] and [2] for details. TRW„-ID and TRW, are called 
in [4] M and N, respectively). Therefore, TW,-ID and TRW,-ID are 
equivalent. 

Let us adjoin the axiom-scheme ID to TRW, - ID; the resulting theory 
is called TRW,. It is clear that TRW„ and TW_, are equivalent. 

Another equivalent formulation of NOID is the following one. Let us 
consider the theory WTR„-ID, in the propositional language with —> as 
the sole connective. 

The rules of inference are SU, PR and TR, as in TRW,-ID, but the 
axiom-schemata are 

USA 	(BC.AC).AB 

RPA 	(AB.AC).BC 

The axioms of WTR+-ID are not logical truths at all. By an inductive 
argument it can be shown that A/3 is a theorem of TRW,-ID if BA is a 

theorem of WTR„,-ID. Now NOID can be formulated as: 
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768 	 A. Kron 

NOID' There is no formula provable both in TRW„ -ID and in WTR_, 
-ID. 

Let WTR_ be obtained from WTR„-ID by adjoining ID; then, of 
course, NOID has the formulation 

NOID" The only theorems common to TRW„, and WTR„ are all the 
formulas of the form AA. 

A natural deduction formulation of TRW, -ID 

In the seventies some one-premiss natural deduction formulations of TW_, 
-ID and TW_, have been elaborated in Belgrade by Boile, Do§en and the 
present author. 

Let us define consequent and antecedent occurrences of subformulas of a 
given formula A, as in [1], p. 93. 

The formula A itself is a consequent occurrence of A in A. 
If BC is a consequent (antecedent) occurrence of BC in A, then the 

displayed occurrence of B is an antecedent (consequent) occurrence of B in 
A, and the displayed occurrence of C is a consequent (antecedent) occurrence 
of C in A. 

The logic TRW,-ID has a neat formulation called TRWL -ID. There 
are no axioms in TRW' -ID and instead of SU, PR, and TR we have the 
following four rules: 

SU° Let AB have a consequent occurrence in a formula D; then we are 
allowed to substitute an occurrence of BC.AC for that particular 
occurrence of AB in D, for any formula C; 

PR° Let BC have a consequent occurrence in a formula D; then we are 
allowed to substitute an occurrence of AB.AC for that particular 
occurrence of BC in D, for any formula C; 

SW Let BC.AC have an antecedent occurrence in a formula D; then we 
are allowed to substitute an occurrence of AB for that particular 
occurrence of BC.AC in D; 

PRI-  Let AB.AC have an antecedent occurrence in a formula D; then we 
are allowed to substitute an occurrence of BC for that particular 
occurrence of AB.AC in D. 

SU°  and PR° are called consequent or 0-rules; SW and PR' are called 
antecedent or 1-rules. 

Let A and B be arbitrary formulas. Suppose that B is obtained from A 
by applying these four rules (at least one but not necessarily all of them) in 
any order; then we shall write A —>TRW'-ID B to denote this fact. Also, 
we shall write A —+TRNAP-ID B C if A --TRAV-ID B and 
B 	 C. It is clear that the relation I D is transitive. 
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If A 	 B, then AB is called a theorem of TRW' -ID. 
The theories TRW. -ID and TRW' -ID are equivalent in the sense that 

they have the same set of theorems. This can be seen from the following 
considerations. 

Let us define the depth of an occurrence of a subformula in a formula A 
as follows: A itself is at depth 0; if an occurrence of BC in A is at depth n, 
then the displayed occurrences of B and C in A are at apth n 1. 

Theorem 1. The theorems of TRW' -ID are theorems of TRW„ -/D. 

Proof. Suppose that D 	 E. Proceed by induction on the number 
n of applications of 0-or-l-rules in the derivation D —*TRW-ID  E to show 
that DE is a theorem of TRW,-ID. 

Let n = 1. Suppose that E is obtained from D by one of the 0-or-l-rules. 
Proceed by another induction on depth at which the substitution takes place. 

If the substitution takes place at depth 0, then DE is an instance of an 
axiom of TRW„-ID. 

Let DE = D1 D2.E1 E2. If D 	 E such that the substitution 
takes place at depth greater than 0, then either D 1  = E1 and D2 --TRW'-ID 
E2 or D2 = E2 and -E1 D1. In the first case, by induction hy-
pothesis, D 2 E2  is a theorem of TRW„. Hence, DE is obtained by PR. In 
the second case, by induction hypothesis, E l i) 1  is a theorem of TRW,. 
Hence, DE is obtained by SU. 

Let n > 1. Suppose that E` is obtained from D by n - 1 applications 
of 0-or-l-rules, and that E is obtained from E' by a single application of 
a 0-or-l-rule; by induction hypothesis and the first part of the proof, DE' 
and Et E are theorems of TRW„-ID. Hence, by TR DE is a theorem of 
TRW,-ID. ❑ 

Theorem 2. The theorems of TRW„-/D are theorems of TRW' -ID. 

Proof. It is easy to derive ASU and APR in TRW' -ID. Suppose that 

A -ID B. This means that starting from A and applying the 0-or-
1-rules we eventually obtain B. Let us start from BC; in this formula every 
consequent occurrence of a subformula in B is an antecedent occurrence in 

BC, and conversely, every antecedent occurrence of a subformula in B is a 
consequent occurrence in BC. It is easy to see that AC can be obtained 

from BC by applying the same rules that lead from A to B in reverse order. 
This means that AC is obtained from BC by applying a 0-rule instead of 
the corresponding 1-rule and a 1-rule instead of the corresponding 0-rule. 

Hence, if AB is a theorem of TRW' -ID, so is BC.AC. In a similar way 

we can prove that TRW' -ID is closed under PR. 
As to TR, it is trivial that if A 	 B and B —4 TRW'-ID C, 

then A 	 C. Hence, the set of theorems of TRW' -ID is closed 
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770 	 A. Kron 

under transitivity and all theorems of TRW_ + -ID are theorems of TRW' ,

-ID. 0 

Many logicians have tried to prove or disprove A-B, but it turned out that 
this was a very difficult task. 

NOID and hence A-B has been proved true by R.K. Meyer and E. Martin 
(cf. [6]) who used a semantics developed for this purpose. Thus, indeed, the 
graphical identity of two formulas in a language with --> as the sole connective 
is determined by purely logical means defined in a logical calculus in the same 
language. 

A purely constructive proof of NOID has been obtained in [4] (cf. also 
[2]). 

2. Permutation 

In TW_,-ID there is almost no rule of permutation admissible. The next 
theorem seems to give the maximum of permutation allowed in TW_+ -ID. 
Theorem 3. If AB.0 D is a theorem, then either (a) A = C and BD is a 
theorem or else (b) B = D and CA is a theorem or else (c) CA and BD 
are theorems or else (d) C.ABD is a theorem. 

Proof. Consider TRW_-ID and proceed by induction on theorems. 0 

Let C.DE be a subformula of A; suppose that B is obtained from A by 
substitution of D.CE for C.DE, at a single occurrence of C.DE and let us 
write A N B if B can be obtained from A by a finite (possibly zero) number 
of substitutions of this kind. It is clear that is an equivalence relation. 
For any A by A* we shall denote any formula B such that A N B. 

Let us consider the following permutation rules. 

PERM* From A to infer A*. 

RPERM If AB is a theorem, so is A*B*. 

PERM If A is a theorem, so is A*. 

Here 'theorem' means 'theorem of the system under consideration'. 
Let us adjoin RPERM to TRW_,-ID and let the resulting system be 

called PTW_,-ID. 
If PERM is adjoined to TRW_,-ID, the resulting system is called L; 

APR is then redundant. 
Obviously, the theorems of PTW_,-ID are theorems of L. 

Theorem 4. L = PTW_,-/D + PASU + SUP + PRP, where PASU is 
the following axiom scheme (ASU with permutation) 

PASU A.AB.BCC 
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and SUP and PRP are the following rules (SU and PR with permutation): 

SUP 	From AB to infer A.BCC 

PRP 	From BC to infer A.ABC 

Proof. It is clear that the theorems of PTW_,—ID + PASU + SUP + PRP 
are theorems of L, for PASU, SUP and PRP are obtained from ASU, SU, 
and PR, by PERM, respectively. 

On the other hand, by induction on theorems it can be shown that 
PTW. —ID PASU + SUP + PRP is closed under PERM. The only place 
in this proof that requires a little care is TR. Suppose that A.CD is ob-
tained in L from AB and B.CD by TR, and that then C.AD is obtained 
by PERM. By induction hypothesis, C.BD is a theorem of PTW_, —ID 
PASU + SUP + PRP. On the other hand, from AB we obtain BD.AD  by 

SU; hence, C.AD is a theorem, by TR. - Therefore, the theorems of L are 

theorems of PTW_,—ID PASU + SUP + PRP. ❑ 

It has been proved in [4] that NOID holds for L as well: 

NOID(L) there is no theorem of L either of the form AA or of the form ABB-
or of the form ABBA or of the form A.ABB. 

This result was obtained by constructing a cut-free Gentzen-style formu-
lation of L also called L. The structure of the proof is the following: it was 

obvious that pp is not derivable in L; if we assume that AA is derivable 
for some formula A, then there is a formula B of smallest degree such that 

BB is derivable. In considering the possible derivations of BB, there always 

was a formula C of degree smaller than the degree of B such that CC was 

derivable. 
Neither PTW_, —ID nor L is closed under modus ponens. A counter-

example provided in [5] can be used here as well. Let A = pp.pp.pp and 

B = (pp.pp)p.ppp; AB is an instance of ASU. If PTW_, —ID were closed 

under MP, applying RPERM to AB.Bp.Ap we would obtain AB.A.Bpp; 

hence, by MP applied twice, Bpp would be obtained in PTW_, —ID, contrary 

to NOID(L). 
There are proper extensions of L closed under MP such that NOID still 

holds for them. Let K be the system defined by ASU, MP, PERM and the 
following assertion rule 

ASS1 . If A is a theorem of K, so is ABB. 

There is a Gentzen-style formulation of K called in [5] J; it has been 

proved that " 
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772 	 A. Kron 

NOID(J) there is no theorem of J either of the form AA or else of the form 
A.ABB or else of the form ABBA. 

By ASU and MP K is closed under another assertion rule as well: 
ASS2 If A and BC are theorems of K, so is ABC. 
The connection between K and L is given in the next theorem. 

Theorem 5. K = L + ASS1. 

Proof. The rules of L ASS1 are derived in K. We have to prove that L 
ASS1 is closed under MP. 

Suppose that (a) Al and (b) A l  ... .244-1•Ai•Ai+1 • • • •A np are theorems 
of L ASS1; we want to prove that (c) Al. . • • •Ai-1•Ai+1 • • • .A np is a 
theorem of L ASS1. Proceed by induction on the combined weight of (a) 
and (b) (for the definition of combined weight cf. [7], p. 113). 

Let (b) be an instance A3C.CD.A 3 D of ASU, where A l  = A3C, A2 = 
CD, and D = A4 • • • •AnP. 

If i < 3, then (c) is obtained from Ai either by SU or by PR. 
If i = 3, then from (a) we obtain (c') A 3 CC by ASS1; hence, by (c') and 

SU we have CD.A 3 CD; eventually, by PERM we derive (c). 
Let i > 3 and E = Ai+1 • • • .Anp; from Ai we obtain AiEE by ASS1. 

Then we apply PR to derive A3D.A3.A 4 	Ai_lE and (c') (CD.A3D).CD 
.A3.A4 	.Ai_i E. But as an instance of ASU we have A3C.CD.A 3 D; 
hence, by using (c') and TR we obtain (c). 

Let (b) be obtained by SU; if i = 1, then A l  = AcC, where C = 
A3 ... .A np and A2 = AW, and (b) is obtained from (b') From 
(a) and (b') we obtain A'2 C by TR, as required. 

If i = 2, then (b) is A Ì C.A2C and it is obtained from (b') A 2 Ali . By 
(a), (b') and the induction hypothesis we have (c') Ai; by (c') and ASS1 we 
obtain (c) Ai CC. 

Let i > 3 and let E be as before; then (b) is Aii (A 3 	.Ai_i.AiE).A 2 .A 3  
• .Ai_ i .AiE, and it is obtained from (b') A2Ac, where, obviously, Ai = 

•Ai_ i •AiE. 
From (a) Ai  we obtain A i EE by ASS1, and then (c') Ac . (A 3 	.A1_ 1 .AiE) 

.A. 11 .A3 	.Ai_l  E by PR. By using PERM we have (c") 	(A3  ... •Ai-1 
•AiE).A3 	•Ai_iE. Hence, by (b'), (c") and TR we obtain A2•A'i(A3 
• .Ai_1.AiE).A3 	.Ai_iE; by using PERM again, we obtain (c). 

Let (b) be obtained by PR; if i = 1, then A l  = A2C and (b) is obtained 
from (b') C.A 3  .A np. From (a) and (b') we obtain A2.A3 .A np by 
TR, as required. 

If i = 2, then (b) is A2C.A2.A3 	.A np and it is obtained from (b') 
C.A3 	.A np. By (a) and ASS1 we obtain A2CC, and then, by using (b') 
and TR we obtain (c). 
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Let i > 3 and let E be as before; then (b) is A2C.A2.A3 	.Ai_i .Ai E, 
and it is obtained from (b') C.A 3 	.Ai_ 1 .AiE., where, obviously, A l  = 
A 2 C. By induction hypothesis, A2C.A2.A3 	•Ai_iE is a theorem; now 
(c) is obtained by PR. 

If (b) is obtained by PERM, the use of induction hypothesis is straight-
forward. 

Let (b) be obtained by ASS1; then A l  = Ac.A2 	.A np and (b) is ob- 
tained from (b') Ai If i = 1, then by (b'), (a) and the induction hypothesis, 
(c) A2 ... .44 7,7) is a theorem. 

If i > 1, let E be as before; from (b') we obtain (c') 24 11 (A 2 	.Ai_i E). 
A2 ... .Ai_i E by ASS1. On the other hand, from (a) we derive (c") 
Ai (Afi .A2  .A2 _ 1 E).A 11 .A 2  .Ai_iE by ASS1. Hence, by (c"), (c'), 
TR and PERM we obtain (c). 

Let (b) be obtained from (b') A I C and (b") C.A2 	.A 7ip by TR. If 
i = 1, then by (a), (b') and the induction hypothesis we obtain C; hence, by 
C, (b") and the induction hypothesis we obtain (c). 

If i > 1, let E be as before; by induction hypothesis, (c') C.A2 	.Ai_i E 
is a theorem; hence, by (b'), (c') and TR we obtain (c). 

This completes the proof of the theorem. ❑ 

The system K has an interesting property called NOE. It has been proved 
in [5] that J and hence K is closed under the following rule: 

NOE (A 1 	.A„B)B is a theorem of K if so are Ai, . • An• 

In particular, there is no theorem of K of the form AABB. 

Natural deduction systems L', L" and L"' 

Let L' be the one-premiss natural deduction system obtained from TRW' 
-ID by adjoining the rule PERM*. 

Let A and B be arbitrary formulas. Suppose that B is obtained from A 
by applying SU° , SW, PR°, pRi  or. PERM* a finite number of times; then 
we shall write A B to denote this fact. If A --+ L ,  B and one of the 
first four rules is applied at least once, then AB is called a theorem of L'. 

The restriction in the definition of theorems of L' is obvious; without it we 
have the following derivation: starting from A.BC we apply PERM* twice 
and we obtain A.BC again; hence, without the restriction, A(BC).A.BC 

would be a theorem of L'. 

Theorem 6. PTW_,-ID and L' have the same set of theorems. 

Proof. Let A*B* be a theorem of L' obtained from AB by RPERM; by 

induction hypothesis, A 	B. Hence, A* —4 L ,  A --)L ,  B 	B*. 
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774 	 A. Kron 

This shows that L' is closed under RPERM and it is easy to see that the 
theorems of PTW_,—ID are theorems of V. 

Suppose that D 	E and proceed by induction on the number n of 
applications of 0-or-l-rules. Let n = 1 and let E be obtained from E` by an 
application of such a rule and proceed by another induction on depth. If the 
rule is applied at depth 0, then E'E is a theorem of PTW_, —ID by axioms. 
Obviously, D N E' and DE is obtained by RPERM only. 

Let E'E = EIE2.E1 E2 . If E is obtained from E' such that E2 is obtained 
from _q by a 0-or-l-rule, then .E1 = El  and, by the second induction hy-
pothesis, 4E2  is a theorem of PTW_, —ID. Hence, E'E is obtained by PR. 
Again, we have D N E' and we obtain DE. 

If E is obtained from E' such that 4 is obtained from E1  by a 0-or-l-rule, 
then g = E2 and, by the second induction hypothesis, El  El is a theorem 
of PTW, —ID. Hence, E'E is obtained by SU. Again, D N E' and DE is a 
theorem of PTW_, —ID. 

Let n > 1. Suppose that E' is obtained from D by n — 1 applications of 
0-or-l-rules, and that E is obtained from E' either by a single application 
of a 0-or-l-rule or by PERM*; by the first inductiOn hypothesis DE' is a 
theorem of PTW_, —ID. If E is obtained from E' by an application of a 
0-or-l-rule, then E'E is a theorem of PTW_, —ID by the first part of this 
proof; hence, DE is a theorem of PTW_, —ID by TR. If E is obtained from 
E' by PERM*, then DE is obtained by RPERM from DE'. 

This completes the proof of the theorem. ❑ 

Let L" be the one-premiss natural deduction system obtained from L' by 
adjoining the following two new 0-or-l-rules 

SUL° Let A have a consequent occurrence in a formula D; then we are 
allowed to substitute an occurrence of AB.BCC for that particular 
occurrence of A in D, for any formulas B and C; 

SUL1  Let AB.BCC have an antecedent occurrence in a formula D; then 
we are allowed to substitute an occurrence of A for that particular 
occurrence of AB.BCC in D. 

Theorem 7. The theorems of L" are theorems of L. 

Proof. The proof of Theorem 6 can be extended in the case when either 
SUL°  or SUL' is applied to E' at depth 0; then in L we can apply PERM 
to an instance of ASU. ❑ 

It is easy to derive ASU in L". Also, we can show that L" is closed 
under SU, PR, and TR. Hence, L" contains TRW_, —ID. However, there are 
theorems of L that are not theorems of L". In particular, L" is not closed 
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under PERM: there is a theorem of L" of the form A.BC such that B.AC 
is not a theorem of L", as in the following example. 

We have (pp.ppp)p --q) pp by SUL 1 , but not p 	(pp.ppp)pp; the 

latter derivation is impossible in L". On the other hand, in L from the 
instance pp.pp.pp of ASU we obtain p.pp.ppp by PERM; then we apply SU 

to obtain (pp.ppp)p.pp; eventually, we use PERM to prove p.(pp.ppp)pp. 

Let L'" be obtained from L" by adjoining PERM. This means that the 
set of theorems of L'" is defined as the smallest set of formulas satisfying 
the following two clauses: (1) if A —> L , B in L", then AB is a theorem of 

L'" and (2) if A.BC is a theorem of L" 1 , then B.AC is a theorem of V". 
The definition of a theorem of L"' can be given by (1) and (2'): if A —> L,  

BC in L", then B.AC is a theorem of L"'. 
It is not difficult to see that the definition using (1) and (2) is equivalent 

to the definition using (1) and (2'). Of course, L and L'll have the same set 
of theorems. 

A natural deduction system K' 

Let us adjoin ASS1 to L'" and let the resulting system be called K' . 
Hence, the set of theorems of K' is the smallest set satisfying the following 
conditions: (i) if AB is a theorem of L"', then AB is a theorem of K' and 

(ii) if A is a theorem of K`, then ABB is a theorem of K`. 
The definition of a theorem of K' can be given by (i) and (ii'): if A.BC 

is a theorem of L'", then B.AC is a theorem of K'. 
It is easy to prove 

Theorem 8. K and K' have the same set of theorems. 

3. Binary trees 

In [3] a connection between TRW' -ID and binary trees has been estab-
lished. 

By a binary tree we understand a tree such that (1) there is a unique 
element at level 0 called the origin of T and (2) each node of T is either an 
end-node or has exactly two immediate successors. 

By a subtree T' of a binary tree T we understand a subset T' of nodes 

of 'T such that T' is a binary tree and the immediate successor relation in 
T' is the immediate successor relation in T. 

A subtree T' of T is proper if T' is a subtree of T, and 7' and T are 

not identical. Obviously, a subtree 7 -1  of r is proper if the origin of T' is 

distinct from the origin of T. 
A binary tree T is finite (infinite) if the set of nodes of T is finite (infinite). 
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776 	 A, Kron 

After several conversations with Ilijas Farah in the period 1990 - 92 the 
concept of a formula-like tree (FLT) has emerged and the present author 
was able to represent the one-premiss natural deduction systems considered 
above as systems of operations on FLTs. 

Let T' and T" be two binary trees. We shall say that they are isomorphic 
iff there is a mapping h from T' onto T" such that the following conditions 
are satisfied: (1) if x is the origin of T', then h(x) is the origin of T" and 
(2) if the nodes y and z of T' are the left and the right immediate successor, 
respectively, of a node x in T', then h(y) and h(z) in T" are the left and 
the right immediate successor, respectively, of h(x) in T". 

If T' and T" are finite trees and one of them is a proper subtree of the 
other, they cannot be isomorphic. However, if they are infinite, it is possible 
that they are isomorphic and yet that one of them is a proper subtree of the 
other. 

Let the full binary tree (FBT) be the infinite binary tree with no finite 
branch. In FBT every subtree is FBT. There are examples of binary trees 
that have isomorphic proper subtrees and are different from FBT. Here is 
one: 

This is an infinite tree; each node in the infinite (rightmost) branch has 
an end-node as the left successor and a node in the infinite branch as the 
right successor. Any proper subtree with the origin in the infinite branch is 
isomorphic to the whole tree. 

Let us call a tree T formula-like tree (FLT) iff (1) it has no proper subtree 
that is isomorphic to T and (2) no proper subtree V of T has a proper 
subtree isomorphic to V. 

There is a trivial consequence of the above definition and the fact that 
being a subtree is a transitive relation. 

Theorem 9. A subtree of a FLT is a FLT. 

Every finite binary tree is a FLT, but there are infinite FLTs as well. For 
example, take the above infinite tree and extend each end-node by a finite 
tree that is different from all finite trees adjoined to previous end-nodes. 

Every infinite FLT contains infinitely many (distinct) finite branches; ev-
ery node of a FLT is a node of a finite branch. Hence, any branch of a 
FLT is at most of length w. Therefore, the nodes of a FLT are arranged in 
levels and to each level there is attached a natural number. The number 0 
is attached to the origin. 
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Theorem 10. If Ti  and 'T2  are FLTs, then 
Ti T2 

7iT2 
is a FLT. 

Proof. If the contrary is the case, then there is a proper subtree h(TI T2 ) of 
TiT2 isomorphic to 'Ti 'T2 . By definition of isomorphism, h('Ti  T2 ) = h(Ti )h(T2 ) 
and h(T) and h(T2 ) are isomorphic to Ti  and T2 , respectively. The origin of 
h(TT) is either in the subtree T or in the subtree T2 , say in T.  Now the 
origin of h(TI T2 ) coincides either with the origin of Ti  or with another node 
of T. Since h(Ti  T2 ) = h(Ti)h(T2 ), the left successor of the node h(TIT2) is 
h(7i). But Ti and h(Ti) are isomorphic and h(Ti) is a proper subtree of 
contrary to the assumption that Ti  is a FLT. 

We proceed similarly, if the origin of h('TiT2) is in the subtree T2. ❑ 

Formulas and binary trees 

Formulas of the propositional language with 	as the sole connective are 
naturally connected with finite binary trees. The nodes of such a tree are 
subformulas of the formula A we are constructing the tree for. Thus, the 
formula A itself is at the origin of the tree. If an occurrence of a subformula 
BC of A is at a node at level n, then, at level n+ 1, the displayed occurrence 
of B is the left and the displayed occurrence of C is the right successor of 
the displayed occurrence of BC. The end-nodes of such formula trees are 
occurrences of propositional variables. 

Suppose that in the propositional language that we are considering there 
is only one propositional variable, say p (this is sufficient to prove NOID, 
NOID(L) NOID(J) and NOE); then we can identify formulas and finite bi-
nary trees. Let p be the tree consisting of a single node. If A and B are 

finite binary trees, then AB is the tree obtained by taking a node as the 
origin of the tree such that A and B are the left and the right immediate 
successor of the origin. 

In the sequel we shall interpret formulas as FLTs. For any propositional 
variable p we choose a FLT T and we interpret p as T. Let.A and B be any 

formulas and let Ti  and 7-2  be the FLTs such that A and B are interpreted 
as FLTs T and T2, respectively; let us choose a new node called T as the 
origin of a new tree and take Ti  and T2  to be the only immediate successors 
of TT, thus: 

Ti T2 

TT 
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778 	 A. K r on 

By Theorem 10, Ti T2 is a FLT and we interpret AB as TiT2• 
In denoting trees we shall use the conventions adopted in writing formulas. 
Propositional formulas have a property called substitution; let us show 

that FLTs enjoy the same property. Suppose that 71 is a FLT and T a 
subtree of Ti 

T2 

then this occurrences of the FLT T2  in Ti  can be cut off and a FLT T3 can 
be inserted instead: 

T3 

Theorem 11. Let Ti  be a FLT, let T2  be a subtree of Ti  and let T4 be the 
tree obtained from 71 by cutting of  T2  and by inserting a FLT T3 instead; 
then T4 is a FLT. 

Proof Proceed by induction on levels. Let T2  be 71; then, obviously, T4 is 
T3 . If T1  is TiiTi", then the origin of T2 is at a certain level n in 	If it is in, 
say, 	then in 77 it is at level smaller than n and by induction hypothesis 
the result T4' of substitution of T3 for T2  in T? is a FLT. By Theorem 9, T1" 
is a FLT; hence, by Theorem 10, so is 'TOT, i.e. T4. ❑ 

Natural deduction and FLTs 

There is a connection between derivations in one-premiss natural deduc-
tion systems TW' —ID, L', and L" and FLTs. In order to explain this 
connection, let us show how the rules of L" can be interpreted as operations 
on FLTs. 

To every node of a FLT T we associate one of the numbers 0 or 1, as 
follows: 0 is associated with the origin of T; if 0 (1) is associated with a 
node at level n, then 1 (0) is associated with its left hand successor and 0 
(1) is associated with its right hand successor at level n 1. 

If 0 (1) is associated with a node of a tree, then we shall call it a 0-node 
(1-node). 

Now the rules SU°, PR° , SIP, PR1 , SUL°, SUL 1 , and PERM* can be 
represented as operations FLTs as follows. 
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SU° 	Let T be a FLT and let 7-1 7-2  be one of its 0-nodes: 
Ti T2 

TT 

Then the subtree T1 T2  can be cut off and a subtree T2 73.71 7-3  can be 
inserted in 'T instead: 

T2 7-3  T  7-3 

T2 73 7i T3 

7-27-3.7iT3 

where T3  is any FLT. Let us call the new tree 'P. 
In a similar way we can represent the remaining 0-rules. 
As to the 1-rules, let us represent SW. Suppose that 7 -' is a FLT and let 

T27-3•TIT3 be one of its 1-nodes; then the subtree T27-3•T1T3 can be cut off 

and the subtree 7-1 T2  can be inserted instead, producing thus the tree T. 
In a similar way we may represent the remaining 1-rules. 
Now we represent PERM*. 
PERM* 	Let T be a FLT and let 'Ti .7;7-3 be one of its 0-or-l-nodes: 

7-2 	T3 
\/ 
T2T3 

T1 T2 T3 

Then the subtree Ti.T2 T3  can be cut off and the subtree T2 .7iT3 can be 

inserted in 7-  instead: 
T1 T3 

T2 T173 

T2-T1T3 

By Theorem 11, the result of an application of a 0-or-l-rule or PERM* • 
to a FLT is a FLT. Suppose that these rules are applied to a finite binary 
tree; then NOID can be stated as follows: 
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780 	 A. Kron 

NOID(T) (1) Starting from a FLT T and successively performing the oper-
ations SU° , PR°, SU l , PR', SUL° , SUL', and PERM* any finite 
number of times and in any order, and such' that one of the first six 
operation is performed at least once, it is not possible to obtain T' 
as a result, where V is either T or TTi Ti ; 
(2) starting with a FLT TT 1  and successively performing the op-
erations SU°, PR° ,S U1 , PR', SUL°, SUL', and PERM* any finite 
number of times and in any order, and such that one of the first six 
operation is performed at least once it is not possible to obtain T i 

 as a result; 
(3) starting with a FLT TT I TI  and successively performing the op-
erations SU ° , PR°, sui, P RI , surL0, SUL', and PERM* any finite 
number of times and in any order, and such that one of the first six 
operation is performed at least once it is not possible to obtain T 
as a result. 

If the rules are applied to a finite FLT T, then NOID(T) is true, since we 
can identify formulas and finite binary trees. 

Theorem 12. NOID(T) is true for any FLT T. 

Proof. An interpretation of a theorem of L in the set of all FLTs is a ho-
momorphic image of a theorem of L; hence, it has a form of a theorem of 
L. By NOID(J) there is no theorem of L either of the form AA or of the 
form A.ABB or of the form ABB; hence, there is no FLT either of the form 
TT or of the form T i .TI T2 T2  or of the form T tr2T2. If a FLT T2 can be 
obtained from a FLT T by a finite number of applications of 0-or-1-rules 
and PERM*, then Ti  T2 is a homomorphic image of a theorem of L. Hence, 
NOID(T) is true. ❑ 

There is no natural interpretation of one-premiss natural deduction sys-
tems L'" or K' in terms of operations on FLTs, for there are theorems of 
these systems that cannot be obtained by performing such operations only. 
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ABTOMATbI PI JIABVIPT4HTbI 

B. B. Eynpsniu.keB, III. Ymnymmrq H r. KHHH6apAa 

PE310ME. B pa6oTe pa3HHHaeTcH Homlenum noueJIenLIH aBTOMaTOB B 

..aa6mpilwTax 3a clieT pacampeHHH TOJIROBaH14.11 na614p12rra coispe-
MeHHOTO 1-10H14MaH1413 ,aHcHpeTHog reomeTpwlecHoti cpeam, H TOJIKO-

swum awromaTa — ,ao Hepapxrem a6cTpaHTHbix mamHH. 3aTeM Ha 
npHmepe Homex-mbixawromaToe B HJIOCKHX m03app.mb1x .na614pHHTax otie-

pqmsaioTcH xoHTypbi rrpo6.nemaTHHH 14 ripHHoiteTc.a HeHoTopme pe3y.ab-
TaTLI. 

1. JIa6HpHHTM. n-mepnme na6Hpmurta 

06o3HaHI4m mHc*HecTso Beex HaTypaabHhix gHCeJI Hepe3 N, HeJIMX 

HHce.n — Hepe3 Z, ./IecICTBHTelIbIlbIX Hvicen — T4 ep e3 R, MHOHieCTBO 

N U {0} — tlepe3 N0 . Ilycrrb z1  , z2  E Z H n E N0, IIOJI0H{HM 7L = 

{1,2,—, n}, ecam n > 0, H 9l = 0, ec.TH4 7L = 0, a TaHace 

(zi,z2)= {z E ZIzi < z < z2 }, Ez1,z2)= {z E Zlzl < z < z2}, 
(zi,z2] = {z E Zlzl < z < z2}, [z1,z2] = {z E ZIz1 < z < z2}. 

Bcio.iiy B noc.neHyloulem, ec.nH cneimanbHo He oroHopeHo, mepe3 i, j, k, 
1, m H n o6o3Ha.meHEa HeEoTopble Hanypaahrime HHc.na. 

nycrb A — HeHoTopbdi ampaHHT 6y1H a. 06o3Halmm Hepe3 A* 
MHOH<eCTBO Bcex CJIOB a HpLaa a 1  ...an , rje a, E A (1 < i < n), BKJI10 1-laff 

nycroe CJIOBO A. 110JI0H(HM A+ = A*\{A}. 

/Dm cnoHa a = al 	E A+ nycTh f(a) = a l , 1(a) = a„ H lal = n. 

3TH 3Hameram Ha3OBeM, COOTBeTCTBeHHO, JIeBbIM H npaBbim KOHUOM, H 

TafoRe Hm4Hoi)1 c.nosa a. Jlio6oe CJIOBO a1 skuta. ...aj, 1 < i < j < n, 

Ha3butaem LIOACJIOBOM cnoHa a, H o6o3HaHaem :3TO a l  < a. Ilycroe 

CJIOBO A SIBJI,FieTCSI HOJICJIOBOM JII060F0 CJI0Ba. ECJII4 a1 < a, TO HpH 

f(a1) = f(a), iimmem ai\a, a upra 1(al) = 1(a), innuem ct/ai. 
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au' Jim6mx a E A* H n E No. 110JIOACHM 

a" = aa ...a 

ecam n # 0, m a' 1  = A, ecam n = 0. 

IlyCTb X — HexoTopoe mHwBecTi3o. tlepe3 P(X) o6o3Hatimm mHo>Be-
CTBO scex 110,LIMHO}KeCTB mHoAcecTBa X, uepe3 Po(X) — M130)1SeCTBO 

Bcex HenyCTMX 11021,MHOHieCTB M110>KeCTBa X, a tiepe3 IXI — M011.1HOCTIp 

mHoxiecTsa X. 
[IycTb {Xa  : a E A} — HeKOTOpOe HIlileKCHp0BaHHOe cemeiicTso 

M110?KeCTB Xa . TorAa AJTH mo6oro a()  E A -Liepe3 p a. o6o3Haumm 0TO-

6paxiellme HpoefampoBaHm npom3BeAeHmH 'T acit  Xa  Ha COMH0}1{14TeJ113 

Xao  ECJIH MHOWeCTBO 1411,LIeKCOB A — Borietmoe MliOaCeCTBO, TO B 

HocReAyloatem BcerAa 6yAem upeAuo.11araTb, IITO A = {1,..., I Al}. 
HycTb {fi : j E J} — HeKoTopoe mHAexcmposaHHoe cemericTBo cfoyn-

Kum, 	: A i 	B, TaKmx, qTO fi i (X) = fj,(X) 	J110613IX x E Ail  fl 
ecam 	j2 . Llepe3 UjEJfj, UjEJfj : Ui E jAi 	B, o6o3Hammm 

cpyHmuno, Taxylo, MTO UjEjfilA,f = 	Ansi mo6oro j' E J. /Um mo6oro 
mHwRecTBa X o6o3Hatimm tiepe3 ix, ix : X 	X , ero ToatAecTBeHHyto 

4 ► 3THEamio, T.e TaxyEo, 'ITO ix(x) = x ,L1.1131 Bcex X 143 X . 
IlyCTb V 14 J — HexoTophie clieTlibie MHO>HeCTBa, H F C V x V x J. 

flyCTb : r r — HeHoTopoe uacTmx-moe 0,LITIO3HaITHOe oTo6pa>KeHme, 
xoTopoe Ayre y = (v 1 ,v2 ,j) conocTawnHeT, ec.TH4 0110 onpeAe.neHo Ha 

Ayry y = (v2,vid). Ha6op (V,F, 7) Ha3mBaeTcH opuettmupoeantatm 
zpa0o.m HnH opepa0o.m . a.nemeHTbi 143 V Ha3oBem ero eepunata.mu, a 
anemeHTm V13 F — ero dymmu. Jlyry (v,v,j) E r Ha3mBaem neimeti B 

Beinumie v. B Aaabaeilmem BmecTo rainuem (V, r), ecam cue-
1.114311b110 He HoAtiepBmBaeTcH, o Kaxoiel mmeHHo (f)ymillmm 7  puler pet). 
anemeHTEd 143 J CHTM 1,4HAexcamm Ayr oprp4a. 

lima (V, r) H 	v2 E V 0603liatIHM tlepe3 Jvl , v2 (F) MHO)ReCTBO {j : 

(V1,V2,j) E r}. ECJIH v1 = V2 = V, TO BmecTo 41,1,2(r)  ammem J,(F). 
ECJIH Jv (r) = 0 )1J151 mo6oro v E V, T.e. B oprpa4e (v,r) HeT neTeJlb, 
TO (v,r) Ha3bmaeTc3i opzpaOodu 6e3 nernedtb. ECJIH 1,4,,„(r)1 < 1 ,a.1131 
JI10613IX VI, v2 E V, TO (V, r) Ha3bmaeTcH op?pa0am 6e3 npainnbtx ay?. 

ECJIH cyntecTByeT 7y." AAR J11060i1 -y E r, TO oprpa(I) (V, r) Ha3bmaeTcH 
zpaOom. B rpaci)e (v,r) A.nst .rmo6oil y E r mHorKecTso < y >= {7,-y} 
Ha3bIBaeTcJL peopom. ECJIH y YIBJISIeTC31 neureti, TO pe6po < y > Ila3bI-

BaeTcsi nermeii. LIepe3 < r > o6o3Haumm MHOACEICTBO Bcex pe6ep rpa4)a 
(V, r). rpaq.. (V, r) SEB.TISIeTC51 rpacl)om 6e3 neTeab (6e3 xpaTabtx pe6ep), 
eCJIH (V, r) — oprpa4 6e3 neTe.rth (6e3 xpaimmx Ayr). 

ECJIH oprpact• (rpa4)) (V, r) 6e3 xpaTHmx Ayr (pe6ep), TO BmecTo 
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(vI , V21..1) 

(< (Vi, V2, j) >) imusem COOTBeTCTBeHHO (V1, V2) (< v1 i v2 >). 

MHO>KeCTBO BeputRH V 14 MHO?KeCTBO Ayr oprpacpa G 6yAem miorAa 
o6o3uaqaTb COOTBeTCTBeHHO qepe3 V(G) H r(G). 11aJIee, 11yCTb X H Y 
— ueicorropme muoxcecTua. ECJIH 3a,Aaub" aetcoTopme cpy111{111414 f : V –4. 
Xvig:r –f Y, TO Tpotiica (G, f,g) ua3bmaeTcsi uazpyasceuribtAt opzpa0am, 
muoacecTua X H Y Ha3bIBalOTCJI, COOTBeTCTBeHHO, muoxtecTuamn 0111- 

.44emox Bepunfm H Ayr oprpaiOa G, g — paamentrati seputun oprpa431a 
G H f— paamernicoii ay? oprpacim G. II.rm ill06mx u E V(G) H 7 E 
r(G) 3HaT-leFIHSI f(u) H g(y) cjrYicauti f H g Ha3bIBalOTCSI COOBeTCTBeHHO 

ommeinaccn7 eeputunal u m ommemnoti ayzu 7 B narppitenuom oprpa(Pe 
(G, f, g). 1-lepe(X,Y) o6o3ila4nm x.riacc scex narpyHcenublx oprpactIou 
C MHC*KeCTBOM XB icaLlecTue muwicecTua OTMeTOK BepIII14H H YB xagecTue 
muoxiecTua OTMeTOK Ayr aTi4x oprpagms. EC.THIFICHO, 0 icalcux (1)ymcuusix 
f H g 14,AeT peqb, TO Ansi mo6bix u E V(G) H 7 E r(G) umecTo f(u) H 2(7) 
numem COOTBeTCTBeHHO 12/1 H 171, a ecau XOTHM noimepicuy'rb, o Haicom 
HMeHHO oprpacpe HAeT peqb, TO nmuem COOTBeTCTBeHHO, kik; 14 171G. 

11J1f1 J11060r0 v E V(G) 06o3Hatimm [v] c;  = 11711 P1(7) = V H -y E r(G)}. 
HarpyicenubIIi oprpacp 	 E c(X,Y) lia3bmaeTcsI nacmtao Tia- 

rpyacesmoro oprpaci:la (G, f,g) E g(X,Y), eczu Bbinosnieubi yCJI0B14.21: 

1) V(G]) C V(G) 14 r(G1) C r(G); 

2) fi (u) = f(u) H 91(7) = g(7) ,Anu mo6bix u E 11 (G1) H 7 E r(GO• 
i-lacTb (G1, fi ,gi ) narppiceinioro oprp4a (G, f,g) na3bmaeTcu nodop-
va0o.m, ecru,' 143 U,v E V(Gi ) H (u, v, j) E r(C) ATM HeicoToporo j E J 
cReAyeT, 11TO (U, v, j) E r(C1). 

HycTb I 	3axpbrrbril e)114H1ILIFIHbIr1 unTepuan 14 X — uexoTopoe TO- 

no.riorvimeclioe npocTpancTuo. nyCTb 0 — cuerrime MHO?KeCTBO 'Terme- 

pbambix (byllICUM71 f : I X , TaK14X, T4TO BbIlIOJIHeHbI caeAyronme ycao- 

BMA: 

1) ARA JIIO6bIX f E 0 VI VI, r2 E I, Ewan f(r i ) = f(r2), TO {ri,r2} = 
{0,1}. 

2) Asist mo6oll f E 0 cyluecTuyeT He 6anee oAuoil g E 0, Taxoil, 1-1TO 

f(I) = g(I); 

3) Ann aio6bix f,g E 0, ec.rm f(I) g(I), TO umeeT mecTo f[(0,1)] n 
g[(0,1)] = 0; 

4) ARA mo6bix f,g E 0, ecall f g, 1(0) 	1(1) H f(I) = g(I), TO 

f(0)= g(1) H  f(1) = g(0); 

5) Ansi mo6bix f,g E 0, ecni4 f # g, 1(0) = 1(1) H f(I) = g(I), TO 

y (l)yincuum f H g "npoTusonommuibie opueuTaume, T.e. cyulecTuyeT 

y6bataloniasi cpyincuuu a : I 	I, 'micas', LITO, f = g o a. 
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786 	 B. B. KyApsunlen, III. Yur.iymmem u r. Km.u46apita 

Onpenenmm oprpacp (V(0), F(0)) cnenytolumm cnoco6om. IlycTb 

V(0) = { f (0)1 f E 0} U {f(1) If E 0}, r(o) = {(f(0),f(1),f)If E 0). 

ECJIH y = (f(0), f(1), f), TO 7 = (g(0),g(1),g), rile g Tahoe, x1TO g(I) = 
f (I); ecam TaKoe g He cyinecTsyeT, TOy He onpeseneno. Ecnm (V, r) 
(v(0), r(0)), TO 0 Ha3bisaeTcR X -pea.flu3a4ueti oprpaspa (V, F). B c.ny-
qae, hor,sa X = R2 , TO smecTo X-peanmasms rosopmm n✓tooccur  pea i-
u3als usr.Oprpacp Ha3bisaeTcA nitattapubt.m, ecam cyalecTsyeT ero u.nochaA 
pea.smasmn. Ha6op (V(0),r(0),0) Ha3mHaeTcn X -opzpa0o.m; ec.nm 
X = R2 , TO a TOT Ha6op Ha3msaeTcn n./10C7CU.A4 op-epa0o.m. Hocume..4e.44 
X-oprpa,(11)a (V(0), r(0), 0) Ha3b1BaeTCSI MHOWeCTBO U f E e f (I). t1acTo B 

noc.nesyrontem, ecnm sicHO H3 KOHTeKCTa HRH He XOTHM nosmeptcmsaTb o 
haRom HMeHHO mHmhecTse 0 mseT peub, mbi B 0603HatleHHH HROCK0r0 

rpaxpa onycxaem o6o3Ha4eHme aToro mnwhecTsa. 
HycTb G = (V,r) — HexoTopmil Oprpadp. ECJII4 AJISI J1106MX v1, V2 E V 

cymecTsyeT HOCRe,a0BaTenbHoCTb Ayr 71, 72,..., 7„„ Tahan;ITo p1(71) = 
v1 , P2(7m) = v2 H P2(7j) = pi(7i+i) 21.11H J11060r0 i, 1 < i < n — 1, TO 

r) Ha3biBeTCsi CA1T3tibt.A4 op2pa0o.m. 
RIM oprpa4a G = (V, r) H v E V Bso,amm cze,sYylollxe MHoxcecTsa 

6yhs: 

Cona (G) = 	I -y E rl, Conb(G) = {b.1,17 E 1}, 

Conva (G) = 	I pi  (7) = v, 7 E r}, Conb(G) = 	1 p2 (7 ) = v,-y Er}, 
Con(G) = Con a (G) U Conb(G), Con lv(G) = Con','L (G) U Conb(G) 

HycTb Y — HexoTopoe MHoHceCTBO H g : F Y xY.Onpese.amm (1)yHEsmm 
Cona (g) : Con a (G) —> Y H Conb(g) : Conb(G) --+ Y c.nespolumm cnoco-
6om: Cona (g)(a..),) = p i (g(7)) H COrlb(g)(b-y ) = p2(g(7)) .rno6of3 y E 
r. HyCTb 

Con(g) = Con a (g) U Conb(g). 

Ha Conly (G) ssesem oTHoweHme DKBHBaJleHTHOCTH C,41)11  c.nespolumm CHO-

co6om. Ec.sm p1(7) = v H „EWA y E r cymecTsyeT .Llyra y , TO a.. 
Con

, 

Torna Cona (G) = Con'v (G)/ CZn . Cruet-m.)14a crzedosanusf s oprp4e 
G eCTb MHO>KeCTBO Inv  : v E V}, rje 7v — 6mHapnoe oTHomeHme B 

Conn (G) ARSt .rmo6oro v E V. 06o3Halimm ry = {7 E Flpi(7) = v} AJIM 
.7no6oro i = 1,2. Ecam Ann .rHo6oro b E Con,(G) mmeeT mecTo: 

1{O' E Con,(G)1(6, 6') E 71„ H 6' = 	4.Tis1 sehoToporo y E 	= 1, 

TO MoH(Ho oripezeal4Tb iv : ry  --> ry  TaliHM cilOc060M, tiTO 7/v(7) = y', rse 
7' TaxaA, tiTo Gal], [ay]) E yv . ECJIH r„ honexmo 	mo6oro v E V, T.e. 
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oprpacp G HBJIHeTCS1 JI0KaJ113H0 KOHeT411bIM, H fjv  onpe,aeneno  H SIBJIBeTCH 

E(HKJIHLIeCKOrl HOACTaHOBKOA .B.1151 JI1060r1 V E V, TO y na3BmaeTcsi cuc- 
memoii epalgenuff. B  cayliae,  Kor,na G — rpacf), umunemecicasi no,n- 
CTaHOBKa ijv  : r y  —> r y  HOJIHOCTMO  onpe,Lken.BeT 7/v , H TeM cammm Bpaine- 
Mile 7/. Ha OCHOBaHH14 BTOI'O, C  neabro yupoulepian o6ateiei KapTHHbI, MbI 

B c.aymae, Korzta G  SiBJisieTCS1  rpaci)om, Ho"( BpaIIUeHHeM 6y,Ltem HOHHMaTID 

cemeticTso IJ =Iv E  V}, TaKoe, trro 	JIBJ151eTCJI 11141Q114T•leCK0171 110A- 

CTaHOBK0771 mHorxecTria  r„ AAA  iio6oro v E V. Ilapy (G,y) Ha,3oHem 
opzpa0om C c cucmemoii  citedoeanuff  71, a ecan IJ — cncTema Bpainem4m, 
TO — opzpaOom G c  cucinemoil  epaNcritoT 

IlyCTb St, 52 1 ,E H Ei — KOHeLIHbIe  ampaHHTBI 6yKB, Tame, ,ITO mo6oe 
H3 3T14X MHOHteCTB  coitepainT  IlyCT011 CHMBOJI A,  H  (G, — HeKOTOpbS1 

CBSI3HbII3 oprp4 C  cHcTemog  cae.rtoBaHHst. IIaJtee , AaHbi oTo6paxieHaa 
f : V(G)  —>  1 , g :  r(G) E x E.  Ha6op L = (G, f,g07,111,E1) 
Ha3bmaeTcH (S21,E1)-.446upuninom c •otoasceCmeom ornmemox eeptuun 
u mnowecmeom ommemox  dyz  E. ECJIH Sli = {A}, Ei = {A}, TO 

BMeCTO (52i,E1)-Jia6zpmwra roHopmm npocTo fia6upunin 14 BmecTo L = 
(G, f,g,ri, {A}, {A}) Hi/mem  L =  (G,f,g,n), T.e. .11a6mplinrr npocTo pacc-
maTpviBaem BaB narppicennbril oprpa4) C cHcTemoil c.ne,aosankm. Ho,n 
COCTOHHHeM 	E 1 ) - na6HpHHTa  H01Ipa3ymeHaem mo6ylo napy Bm.na 
gi), rate 	V(G) -+ S21 14  91  :  r(G)  -+  E1 x E1. 06o3HauHm tiepe3 
G(S2,121; E, El) macc Bcex  (ni,  E 1 )-na6HpHHTori, a gepe3 £(12, E) — Bcex 
na6HpHHTos, C MHOHieCTBOM OTMeTOK  seminal S2 H MHO)KeCTBOM OTMeTOK 

Ayr  E.  EcJIH .HaH  .na6HpHHT  L  = (G, 	Ei), TO G, V  =  V(G), 
r = r(C), f, g 14 71  o6o3Hatiaem  COOTBeTCTBeHHO tiepe3 G(L), V -(L), 
r(L), ft, 9L H 71L. Ecm  cileuHanbuo  He oroBapHBaeM, o KaKHX f,g 14 

71 miler petm, TO BMeCTO (G,f,g,7),11 1 ,E1) ramem (G,1-1 1 ,E 1 ); B caymae, 

Hor,aa 121 = {A} H El  = {A}, TO BMeCTO (G,S21,E1) nknuem npocTo, tITO 

L = (V(L),r(L)). Kai( H  B cariae  narppRemmix oprpaclimB, mbi BmecTo 

g(7) H 91(7) 6y.rkem laacTo  1114CaTb, COOTBeTCTBeHHO, 171  F1  11711; 7 E r(G). 
ECJIH g(7) = A) (g i (7) = (a, A)) ARA nexoTopmx a E E (a E E1) H 

E r(G), TO 6y,Etem 11HCaTb 171= g(7)= a (11711  =  91(7) = 
B na6HpkinTe L moryT  6bITb  HIA,HeneHm ,HHa mHomecTsa Bep1111111 V1 

H V2 (DT14 mrioacecTsa  moryT  6bITb 14 IlyCTbIM14, HO eCJII4 HepHoe Hyc-

Toe, TO HTopoe 06313aTeJ1bH0 IIyCTO). Bepaumbi mHO>CecTBa V1 Ha3bI-

BaeM Haxla.71bHbIMH, a V2 — KOHetIHbIMH. JIa6HpMHT L B Taicom cnymae 

o6o3Hagaem L vv2i  1411H (L;V1 ,V2 ). 1-lacTo B noc.ne,apoluem 6y,ELem paccma- 

TpHBaTb J1a6HIM4HT131 C ,LUVMS1 BbllieJ1eHHb1MH (021H0171 Bb1,1(eJICHHOA) pa-

3J110-111131M14 Bep11114HaM14,  npkrqem  B TaHom cjlytiae HepHylo 143 HHX Ha3bI-

BaeM exodom, a Apyrylo euxodom aantioro .na6i4pmErra (ecma Bbiztenena 

0,L1Ha, TO ee Ha3bIBaeM Bxoaom), T.e. 6y.nem paccmaTpnBaTb 
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788 	 B. B. Ny,ApsiBueB, III. Yurmymamu 7,4 r. Kmu.46ap,rka 

Kor,rta Vl = {v1} H V2 = {'02} HJIH V2 = 0. B TaHom czyllae BMeCTO 

L {v2}  14 Di vo 6yJ1eM III4CaTb COOTBeTCTBeHHO L vi,21  H Lv1 , T.e. (L; 	V2) 14 {vl 
(L; v i ) (artecb v1  — Bxa1J, a v2 — BbIXOJI na6Hpkarra 	B .na6Hpkurre 
Lv, Bepauma vl ABJ131eTCH BX0A0M). ECJI14 B L BbI1IeJ1eHbI BX0./1 H BbIXO,I1, 

TO HHoraa 6y1 em HX 0603HatlaTb xlepe3 vs (L) H VAL), cooTBeTCTBeHHO. 

Jla6HpHHT L1 E 	 E, E1) Ha3b1HaeTcH ,4acrtzmo(nodria6upu16mom) 
.na6HpHHTa L E .C(1/,S/1; E,E1), ecam oprpa4i G(L1) .71BASIeTCH ',Tacna° 
(HoHoprpasfom) oprpacith, G(L), fL , = Alv(L 1 ), gL 1  = gdr(Li) H ( 11L1)v = 

(hlL)v n (rl(Li) x rl(L i ))• 
/larr.Hm ceilxiac onpeHeneHHe o.THEToro H.aacca .na6mpHwroH, c HoTopalm 

Hoc.HeiTyloaTem 6yneM 14MeTb Hen°. aro mace n-aa6HpHETToH. 
0 6o3HaqHm Liepe3 En MF10?KeCTBO {el, 	, en,} 6a3HCHbIX e2I141114 1.111131X 

HexTopos n-mepHoro eHHHH,HoHa HpocTpaHcma Rn, a T-1epe3 En 0603- 
HaLIHM MHOWeCTBO 

{el , • • • , 	) • • • I 'en}, 

rHe ei = ei 1  = -es, 1 < i < n. B cRyliae n = 2 H 7/ = 3 HmecTo 13603- 

HatleHI4171 6a314CIMIX BeKTOpOB H BeKTOpOB r, j; k 6yHem, COOTBeTC-

TBeHHO, 110J1b30BaTbC$1 0603HatIeHHAMH e, n, u, W, S H d. 
Jla6npnErr L = (G, f,g,y) E ,C(R,E), 6e3 gpaTubTx Ayr H HeTeab, 

Ha3bmaeTcH n-mepubt.A4 ita6upuninom rum n-Aa6upurimom, n > 2, ec.HT4 
BbHIOJIHeHbI czedaytouTHe yCJI0B1451: 

1) 12 = {A} E = En U {A}; 

2) G(L) smageTcH rpaSom H 171 E En AAR mo6oll Hyrki y E F(L); 

3) Ana aTo6oro -y E F(L) HmeeT mecTo 171 = 11'1 -1  ; 
4) Tit, = ,L(.1131 J11060r1 v E V. 

B Hocne,Hygmuem, B 0603Hatliii4P1 n-aa6HpHuTa (G,f,g, 77) 6yHem onyc-
EaTb g, c"-THT&H, KOHeT-IHO, tiTO B J11060M xonlipenTom carme g 3aHaHa, a 
Taxate 6yHem OnyCKaTb f H 7/, IIOCKOJIbKy f (v) = A 14 1/„., = AAA J11060t1 

v E V(L) y HancHoro n-na6HpHrrra L, T.e. 63/.4eM TIHCaTb upocTo, Y-1TO 

L = (V(L),r(L)). TaT°He HoonpeHeaHm g Ha Hapax ra4Ha (v,v), v E V, 
cLuerraH, "-rro kv,v)1 = 0 ( 0  — BTO HyJ1b BegTop). 

IIycTb MHN,M0N, — HeHoTopme TOTIK14 B Rn , H MN = 
• • • + am en . ByHem roHopHTb, t1TO HeTcrop MN udent a rianpae✓teriuu 
eCJIH ai > 0 H aj = 0, g B atanpaerzertuuEi, ec.HH 	< O H 	= 0 ,H.H.H Hcex 
j # i, 1 < j < n; 1 < i < n. MHO)KeCTBO T arpe3Hos B Rn Ha3mHaeTcH 71- 

xoquzypatlueii, ecaH Jno6me Asa pa3max arpe3xa 143 aToro mHog<ecTsa 
moryT HmeTb He 6oHblue 0,L1HOC1 o6THeil TOtIK14, ripm-Tem, ecHH ona ecTb 
y H14X, TO ()Ha o6H3aTenbHo SIBIDIeTCJI KoETHeHott Ana 06011X OTpe3K0B. 

n-.na6HpHETT L = (V, F), rae V C Rn, Ha3oHem npsTmoyzaabtium n-
ria6upulimam, eCJIH 
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1) Him mo6bix u , v E VI43 (21,V) E r cae,ayeT, 4T0 Iry HHeT B HanpaHne-
H1414 KU, VA; 

2) mHoHcecTito OTpe3KOB T = { uv I (u, v) E r} smaffelroi u-Kompvir ypa-
uHeri. 

/LIR .rno6oii Hyri4 (u, v) E r, u = ,x1,•• • , 01 v = (1117 • • • 7 Yn), onpe.ae-
JIHM 41yHEIH410 {A m  : I —4. Rn} TaHylo, trro 

.fu,v(t) = (x1 + (Yi — xi )t,..., xn + (y„ — x„)t). 

xiTO CeMe 1cutO Ifu,v1(u, v) E F1 FIBJTHeTC.FI Rn-peaaH3armeti rpaclia 
G(L); Ha3oBeM ee 2uueu7lou peaAuxqueti aarmoro npstmoyro.ribHoro .na-
6HpHErra L. 4)Hrypa L = j 0, ) Er  ( L)  uv B Rn HBJISIeTCSI Hocprreaem 

HHHeilHoil peanH3aHHH ripamoyroabHoro 71-MepHOTO Jia6HpHHTa L. 
HyCTb Zn  — HeJ10t1I4CJIeHlia31 peateTHa B Rn. Ilpstmoyroammal n-

mepumil .Tia6HpHHT L = (V, F) na3onem wonucAeurtum n-mepubim .na6H- 
pI4HTOM, eCJII4 V C Z n . n-meptibdi HeJ10414CJIeHlibI1 .na6mplurr L = 
(V, r) Ha3oHem 	 n-mepnmm na6npnrcrom, 7n E N, ecnt4 
T = {Ind (u,v) E r} — MH0}1<,eCTBO OTpe3KOB )21J114Hb1 771. BMeCTO 1- 

MO3a141411bIirl 6y)Tem npocTo 1111CaTb .A403ClUainbai. 

Ilpo Beplunny v m-Mo3aw-IHoro n-mepnoro aa6npnrrra L roHopmm, 

11TO °Ha orrocpurna 8 L, eCJII4 cymecTsyeT 6ecHoHeuHmil n-mepHEA m-
mo3aw-mbrI3 Jia6HpHHT L1 Taxa'', tITO L n L1  = 14 V E V(L1). m-
mo3awamilit n-meprimii na6t4pHHT Lyn], Ha3butaeTcsi m-npaeu✓abnum n-me-

pHbIM J1a6HpI4HTOM, ecim Bepariffra vl oTxpbrra B L. BMeCTO 1-Hparamb-

Hmil 6yHem npocTo =cam 11paBlIJIMMIVI. 

IlpoBeHem mepe3 Hepuanim Z" sce B03MOMHbIe npsimme, napa.naezb-
time OCJIM HoopAHHaT. RCHO, tITO HonymeHHasi cjiHrypa SIBJI.HeTCH HOCHTe-

Rem memeilHott Rn-pea.TH43aHHH HeHoToporo npHmoyranbHoro n-mepHoro 
aa6Hpyiwra, KOTOpb1c1 0603HatIHM tlepe3 Zn . MHoacecTso HeputHH oToro 

Ra6kipturra eCTb Z". OT4eBI4HH0, 	mo3aw-mbill n-mepHadi .na614pHHT 

MOH(HO oupeneawrb H HaK Cail3Hy10 (Harm/Hier:limo) xlaCTb na6HpHirra 

Zn. IIOA waxmamnbmi n-Atepubt.44 ✓ a6upu7tmom 6yHem 1101114MaTb 

nonna6wpmsrr .Tia6npzirra Zn. 

B HanhHeilmem BMeCTO 2-mepabdi Hpamoyronhfibiti (M03a14T4HbIii, 

HpasHablibiii) ria6Hpmfrr 6yHem 110CaTb HJIOCKI4171 upHmo-

yromillbrii (mo3awnErbliA, Heaotmcnemibifi, npaszabribul) J1a6Hp1IFIT. 

HyCTb L = (V, r) — HexoToplidi rumcmial upHmoyroabHmil .71a6HpHHT. 

MHO}ReCTBO R2  \L SIBJIHeTCH OTIcpb1Tb1M H B o6ntem cityitae (ecam L He 

SIBTIReTCSI nepenom) HeCB$1311b1M. Ra614p14HT L Ha3oHem k 1-C6313101,44, 

ecan MHO/KeCTBO R 2  \L Hmeer k orpaHHT4ermbrx KOMHOHeHTOB CBSI3HOCTH. 

HyCTb L = (V, r) — HeHoTophdi HJIOCKH171 mo3ammbiI3 na6HpHHT. HyCTb 

— BCe KOMHOHeHTbI CBSI3HOCTI4 mHoHtecTsa R2  \ L. ,i/upoii 
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790 	 B. B. Ryitpsim.leB, III. YuxqymJn44 14 r. Ki4m46apAa 

.na6HpHHTa L Ha3oBem JHo6oe HenycToe MHOH(eCTBO H faeLna U1 fl Z 2 , 
1 < i < k. B caymae, Kor.aa H EoHexmo , LHApy Ha3bmaem xonennoii; 
B HpOTHBHOM c.nyqae 6ecxonennoil . HHOCKHA MO3a1411Hb1171 J1a6HpIIHT L 
Ha3bmaem ampotmo k 1 -cesr3num, ecaH B Hem Totmo k xoHetrHiax Amp, 
k E N = {0, 1,2,... }; HpH k = 0 .na6HpHHT Ha3mBaem 0.EIHOCBSI3H131M. B 
,na.nbneVauem, Icor,aa pegb KneT 0 CBA3HOCTH IIJIOCKHX MO3a14x-MMX aa6Hp-
HHTOB, MM Hmeem B BH.Uy T-114CJI0 KOHeIMMX ,Lchap, eCJH4 He oroBopeHo 

Knacc Bcex IIHOCKHX M03aHIMbIX Ea614pHHTOB o6o3Hatmm gepe3 .C2, 
KJIaCC Bcex KOHe*MbIX .na6HpHHToB 143 £2 — Xiepe3 ,CO, a macc Bcex 
6ecxoHeLmbix .na6HpHHToB 143 .C2 — uepe3 G1. 

2. JIa6Hplurnme MOHCTphi. Zonyvmmme aBTOMaTLI B 

.718514p14HTaX. KOJIJIeRTHBLI A(ilyeTIIMMX aBTOMaTOB B za6Hp14irrax 

OcHosHoe Hpe,nHa3Haueaue .na6HpHHTa — 3anyTaTb 14J114 HolimaTb 
TITO-311460 143114 icoro-aH6o. BTO T-ITO-J11460 B Hamem czygae mbi 6y-
AeM Ha3bIBaTb JIa6HpHHTHbIM MOHCTp0M. HyCTb r E £(11,S11, E ,E 1 ) 

— HeHOTOpb.111 KJIaCC .rta6HpHHToB. f-MOHCTp0M, " MHOI-OpyliHM" , " MHO-

POPOROBbIM " , "mHoroHormm" cymecTsom, Ha3oBem mammy: 
a) y KoTopoci eCTb HaMATb, !Soifer-Inas! BilyTpeHH5151, KOTORBH moxieT 

6bITb B COtleTaJIHH C 6ecKoHeurroci BHeume2, opraHH3oBaHHog pa311b1M14 
cuoco6amH (B B14,ae (pallor° 14J114 Hecxo.nbxxx mara3HHos, ctieTtamoB, 
CTeK0B, B mule ozHoil HJIH HeCK0.11bICHX ReHT, TaKHX, Rax y Ma11114HM 

Tb10p14FITa); COCTOHHHe namsiTH B J110602 MOMeHT KolawyeTcsi Hapog 
q = (q', q"), r.ne q' ormckmaeT COCTOAHHe BayTpeEnieg IIaMJITH, a q" — 

COCTOHHHe BHeameti, ecaH oHa, KOHeLIHO, cymecTByeT, B HpOTHBHOM csny-
gae q" SIBJI.HeTCH nyCTI,IM CJIOBOM; 

6) RoTopaal moxieT HpHCyTCTBOBaTb B HeCKOJIMMX Bepunmax na6Hp-
HHTa on-HoBpemeHHo; °Ha HmeeT n POJIOBOK, xoTopme moryT Haxo.n:HTcH 
B rt pa3JIWUMIX Bepunmax HeEoToporo .na6HpHnTa 143 .aaHHoro Knacca 

JIa6HpHHTOB; 

B) KoTopasi SIBJI.HeTCJI ,n0HyCT14MOrl ARA ,naHHoro Knacca f na6Hp14H-
TOB, T.e. moweT B mo6om na6HpHHTe 143 AaHHoro Knacca "HepeABH-
raTbcse HJIH, ApyrHmH cnoBamH, BTOT .na6HpHHT SIBILHeTCH ee "cpeLtoil 
o6HTaHHA" (B Hoc.ne.nyfoulem paThACHHM 0 xleM 3./(eCb 14,1LeT petlb); 

r) KoTopaH momeT CTI4paTb HJIH 1114CaTb OTMeTKII 143 mHo)KecTBa 11 1  
BO Bcex Bepunmax .na6Hp14HTa,. B KOTOpMX HpHcyTcTByeT, HRH ,rke.naTb 
TO Hie camoe y J1106011 14HIULLIeHTH0ti BTHM Bepmmiam Ayre (B ee isoarke 
HRH B Hatiaze B 3aBHCHMOCTH OT Toro, 5113.7151eTCH JIH cooTBeTcTspoulast 
Bepuncia ee KOHnOM HJIH Hatia.nom COOTBeTCTBeHHO) HJIH B Ronne Ayr, 
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EoTopmx Hb16mpaeT B Katiecute nym cHoero ,1LaabHe13i1Iero nepeAmacen-

afl, C oTmeTbamn 143 miloacecTna E'; 
.11) KoTOpaSi momeT nepeAHnraTb, 6paTb C CO6010 I4JI13 OCTaBASITI, B 

Bepuilemax KaMHH (OH14 npeAcTaHnsnoT cHoero poAa HOHe -K.10pO BHemity-

two namscrb, HX KOAHLIeCTBO ne yHenuminiaeTcH 14 He ymenbniaeTcn, OHH 

caw,' n0 ce6e He ilepe,AmiraloTcn); cpe.zw BTMX Hamner' moryT 6biTb 

Tame, KOTOphIMI4 MOASHO "oTmemaTb." TOJIb1O nepunnibi (BepumHHble  

Kamm') 14.1114 Tame, KOTOpbIM14 MOWHO oTmemaTb TOJIKKO Ayres (opmen-

TiipHbie KaMHH); HeKOTOpK1e 143 KaMHeri (Bep11114HHKIX, opHeHTHpablic 14J114 

OCTaAbHbIX) moryT 6bITb "0)11101'0 14 Toro sbe niteTa" 14J114 moryT 6bITb 

"nobpaineHEa pa3.11141-1HLIMI4 Epacxamii". 
TaIIHM o6pa3om, £-MOHCTp — BTO ynopsiAomeimmil na6op 

A = (A, Q 	H OP, So, go), 

y boToporo A — M1101KeCTBO Bcex BX0£"}IbIX na6Hp14HTHbIX cHTyarIHi3, 

Q — MHOMeCTBO Bcex KOHOB, OHHCb1Ba1011.114X cocTonnme HaMSITH, B 

— MHOHLeCTBO scex HoAoH, 011HCIABa1011.111X BbIXO,E114131e AerICTBIIA, K = 

(K, K 1 , K 2 , ,k) — HamneHan cTpyi(Typa, rje mHo>RecTsa K1 H K2, K1, 

K2 C K, K 1  n K2 = 0, ABASHOTCA, COOTBeTCTBeHHO, MHO)KeCTBaMH Hepin-

1,111HbIX 14 OpHeIITHpHbIX xamHeil, 14 r....+K — OTHOIlIeHHe 9KB14BaJ1eHTHOCTH 

B K, Taxoe, iiTQ [k] C Ki Ansi .111o6bix k E K i  14 i = 1,2, mHowecTso 

H = {h1 , h2 , . hn } — MHOHCeCTBO .1'0.110BOK (BTM POJIOBKH ne naAo ny- 

Tam c ronom,camii HHenuieR namsan, : Q x A —> B, :QxA —>Q11q0 

— Hamanbnoe COCTOAHHe £-MoacTpa. HyCTb L, L = (G, 	— Hexo- 

TOphlii JIa6HpHHT 143 r(11,511,E, E1), KOTOpbH71 HaXQHFITCSI B Het oTopom 

COCTOAHHH f 1  g') 14 ,Ltallb1 HexoTopme oTo6pa1Hemin: 

1H : H —> V(L), 	1 : K V(L) U Con(L) U H. 

rite 1K(k) E V(L) U H Ann nio6oro k E K1 Fl 1(k) E Con(L) U H AEA 

nio6oro k E K2. HorpysHernibim £-MOHCTp0M A B na6Hpi4HTe L na3oHem 

Tpoi;my (A, 1H, L ic), a napy (1H, /k) — ero uorpysbennem. 

OKa3aBIIIHCb B na6mpnriTe L AMR KOT0p01-0 OH SIBASIeTCH ,a011yCTHMKIM, 

T.e.63/Aymm norpplieH B L, na6iipiniTablit MOHCTp Ao6HpaeT BCeB03M0-  

?Kap° emy AocTynivio nOopmaiiieno, NoTopan, Kw:legs°, 3aBHCHT OT 

norpysfsenza; o6o3Hatimm ee mepe3 a(liblic). Ha camom Aene, nycTb 

vi = AEA nio6oro i, 1 < i < n. TorAa, a(1H , 1 ic) coAepsmT 

caeAyionvio micisopmankno: 
— o6 oTmeTicax Hepaum, B KOTOpbIX OH npkicyTcTsiyeT, H 06 oTmeTuax 

Ayr, 14HHHaeHTHEIX aTitim Hepiumiam, T.e o muomecTHe 

{(f(vi),vi) : 1 < i < n} U {(f(vi),vi) : 1 < i < n} U {(g(x), x) : 

x E (Con„,(L)), 1 < i < n} U {(g'(x), x) : x E (Con,, ;  (L)) : 1 < i < 
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792 	B. B. KyilpaBges, UI. Yuv1ymm4ti H r. KI4m46apita 

— 0 HaJI14414H Eam 	B Beplumtax, B KOTOMAX OH npracyTcasyeT, o 
HaJIMII414 KamHeil Ha ,hyrax, HHILHELeHTilbIM aTHm sepunmam, H imam-Lam 
Kamneii y ce6si, T.e. o mHo)RecTne 

{(1 ic-1 (h),h): h E H} U{(/Z 1 (c),c): 

c E Cony, (L),1 < i < n} u {(1Z 1 (vi),v i ) : 1 < i < n}; 

— B3aIIMHOM pacno.uwEeHHH ranonox, T.e..onpenensieTcA oTHolueHHe 
BKBHBaJleHTHOCTI4 p(1H) Ha mHo>xecTne H czenyroumm cnoco6om: 

h1 p(1H) h2 TOr,aa H TO.111,K0 'mum, ecJIH /H(hi) = lH(h2), 

MSI .11106bIX hi , h2 E H; 
— o CHCTM ClIeHOBaHRSI B nepnumax, B KOTOpbIX OH npmcyTcTnyeT, 

T.e. o mnoacecTHe 

{ri„, i  I 1 < i 	n}. 

Yx114Tb1BaS1 COCTOS1HHe BuyTpenneti uaM.HTH H COCTORHHe nneumeil naun-
TH, G-moncTp A npennplummaeT czenylonme ribixonEase HeFICTBHH: 

1) pemaeT, xaxHM cnoco6om 143MeHHTb BpemenHbie oTmeTKH Bepumn 
(moacer naace 14X cTHpaTb, T.e oTmexiaTb BeprimHy IlyCTbIM CHMBOJIOM 
A), B KOTOpbIX OH npmcyTcTByeT, ec.rm OHH TaM cyinecTsyroT, HRH 14X 
T yaa 3anHcbmaTb, ecim MX TaM HeT, T.e. Ha nepummax vi, 1 < i < n, 
H3MeHROT 3HalleHafl 01)37Erfamm ft H TeM cambnn 3amenneT aTy cpymtnkno 
Ha (pyHRAPHo ?R • ); 

2) peumeT, 'mime xamE1 .BO3bMeT (ec.am 01114 TaM ecTb), a xame 
Hamm OCTaBHT, B HepinHHax, n IcoTopba OH npHcyTcTnyeT, B Jiyrax, 
RoTopme HHIIH,aelITHE.1 aTHm sepunmam, 14 B }mane .ziyr, xoTopme OH Mal-

6HpaeT B xamecTne nyTerl nepennHacenHA CBOHX POJIOBOK; T.e. Taimm 
cnoco6om meaner (f)ymatmo /k Ha 41)yHKI(1110 11)(1,c ); 

3) kmmenneT COCTORHHA•BHyTpeHrierl K BHenmen HaMATH, T.e.H3 COCTO-

AH1431 q nepexonaT B COCTORHHe (70(q, a(1H,1k )); 
4) fiblaipaeT Ayres HHT[PlileHTHble sepal-imam, B NOTOpb1X OH npHcyTc-

TsyeT, B xatiecTne nyTeti naabHeinnero nepennwHeHHA CBOHX rOJIOBOE. 

Ilycm aTo 2r,yrn 7 = Oi(q,a(IH,lK)), 1 < i < n; ecm4 HRH HexoTopmx 
i,j HmeeT mecTo vi = vj , TO -yi = y,. Torna crpyHEamo 1H 3ameageT Ha 
cpylmmeno ip(tH), Taxylo, tITO 	 = P2(7i)• 

Oranuem eute ,L(011yCTHMOCTI3 naHnoro r-moHcTpa Ago upeasne na.nHm 
HeRoTopme onpene.neHHA. 

ilycTb naH Ha6op 

A= (A.1,A2,M, M1 7 	f 	; 	P,'"-R)) 

V
ir

tu
al

 L
ib

ra
ry

 o
f 

F
ac

ul
ty

 o
f 

M
at

he
m

at
ic

s 
- 

U
ni

ve
rs

it
y 

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs



ABTOMaTb1 H na6mplurrbi 	 793 

r,ae AI, A2, A = A 1  U A2, M, M', K — BeBoTopme MHONieCTBa: f : A -4 

M, 	A —> M' — BeEoTopme 4)37mm:um; k : K 	A — ilexoTopam 

uacTirtmasi y11E1114/1; A — oTriouieume aKBHBaJIeHTHOCTI4 s A, TaKoe, 

ecam a i  a2, TO 

ai E Ai 14 a2 E A2, HJIHa1 E A2 H a2 E A1, 

— oTBouteHme aBBHBaReATHOCTI4 BKHp —  IlexoTopoe 6mBapHoe 

oTBoateRme B A/ A. ABTOMOAH43MOM aTOrI crpywryphi BaBoBem  JIIO- 

6ylo 6HeKH1410 i : A 	A TaKy10, 'TO 

. 1) f (i(a)) = f (a) H f'(i(a)) = (a) Arm mo6oro a E A; 

2) l[p] n k (a)I = I [p] n k -1 (i(a))I ,I(J151 rmo6mx p E K; 

3) i(Ai ) = A1  H i(A2) = A2; 

4) al ^'A  a2 = i(ai) 	i(a2); 

5) ([au], [a2]) E p 	([2(ai)],  [i(a2)]) E p. 
GratimollapHoil Togicoli arromop4m3ma i 1:m30:tem „Tno6p0 Totucy H3 

A I  JI,JIJI BoTopoil i(a) = a. MBOJEaCTBO Bcex cTammoBapublx ToxieN aBTO-

MopcjnnMa i o6o3nammm gepe3 St(A; i), a ilepe3 Aut(A) — mao)Beciso 

Bcex aBTOM0p0143MOB crwricrypm A. 06o3Haumm 

St(A) = n  St(A; i). 

iEAut(A) 

Ilorpyacemeie (/H,/K) Ha3bIBaeTc.n BeTynmicnam, ecam ,ansrmo6oro 

1 < i < n, mmeeT mecTo 

St(vi) = St[(Conva.(L),Conit',' (L), E, E', K; f Icon ,  „ (L), 
on 

11C1Cont(L).,
C 	

), 'K)] 0 0 

H 	a(1 H  , 1K)) E St(vi). IlycTb (/H, 1K , q) R (1 11 , 1 11  q') — HexoTophie 

usa Borpym<euma „aarnioro A-MoucTpa. IHIIIeM 

(1 H , 1 K , q ) 	(PH, 	q1 ) , 

ecam q' = (p(q,a(1H,1K)), l'H  = 	a(1H , 1K )) H Pic = 	--06o3Haxarm 

MIIMEaCTBO Bcex HeTyIIHROBbIX Borpym<emedi tiepe3 Emb(A, L). ECJTR 

MHOJEeCTBO Ernb(A, L) 3axphiTo HO OTHOHIBHHIO I{ oneparam TO BTOT 

aBTOMaT HaBbiBaeTcA 40113rCTI4MbIM. 

Thrum (/H, /K, q) R (l'H ,1 1K  , q'). — nexoTopme ,aBa norpymcerimu- Aaumoro 

A-MoucTpa. IIRHTeM 

( 1H, 1K , 	(l H, 1K , q'), . 
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794 	 B. B. Ky,apsisuen, Ill. Yorlym./n414 H F. l<144146apila 

ec.ng cymecTByeT Hocae,aoBaTem,HocTb HorppgeHgt1 (PH , lk,qi ), 1 < i < 
n, Taxag, 1TO 

(1H,1 1k,q1)= (11/4,q1) 14 (1ili,d 7k,q n). 

14 'weer mecTo 

( liH , /10 qi) 	( Iii/E1 li1{-1 ,qi+1), 

ARA mo6oro i, 1 < i < n-1. ECJIH JVIJI ,aagaoro ,C-moHcTpa cyglecTByeT 
norpyaceHge (1H,1K,q), TaKoe, xrro .41o6oe Horpyacefige (PH , PK ,e), yzo-
B.neTrsopmoutee YCJI0B1410 (/11 7 1K, q) .  (11H ,PK ,q`), JIBJI,HeTCJI HeTymemo-
Bb1M, TO MM roBopgm, TITO ,/(aHHLIf1 moacTp TlaCT1411110 aonycTgm.1Thee-
denue.m £-MOHCTpa A B .aa6mpauTe L Ha3oBem 110C.The,a0BaTeJII,HOCTI3 
Horpyx<eHgii 

( 1 H, 1(k,go),( 11/41,q1),•••, 
Taxpo, TITO (qpi ck,q0)= (1H,1K,q) 11 

li l iK  qi ) K ,qi+1), 

Ansl J11060r0, 	0, 1, 	rOBOPHM, Xrro A o&odum na6gpgHT L, ecag 

00 

UliH(H)= V(L)• 
i=1 

3HaTLIHT, J1a614p11HTHIAM14 MOHCTpaMH MOUT 61aITI3 14 aBTOMaT, awromaT 
C 0,EHIHM 14J114 HeCK0.111,1{14M14 mara3gHamg, cgeTtuniamg, cTeHamg, H maul-
gHa Thlopgura, 14 awge KOJIJIeRTHBI)VTaKHX matugH. SICHO, TITO go.rinex-
THB J1a614pHHTHbIX moucTpos SIBJIHeTCSI OLIHI4M J1a6HpHHTHBIM "csepxmo-
HCTp0M" . 

A6CTpaKTHEIM KOHeT-IHIAM aBTOMaTOM Ha3bmaeTcH Ha6op 2( = (A, Q, B 
p, ) , r,ae A, B 14 Q cyTh gonetumie aJgPaBgThi: BX07t1011, BhIXO,1;110r1 

14 COCTORHISI COOTBeTCTBeHHO; : Q X A Q 14 9,/.7 : Q X A B CYTE,  
(1)3rmagg4 nepexo,aort 14 BIAXO,LIOB COOTBeTCTBeHHO. 

HOCMOTpMM ceitqac B HamecTseIla6Hp14HTHIAX MOHCTPOB aBTOMaTbI, 

a B icatiecTrie Ra6gpgHToB Haacc E(S1,E), HoTopmiel oupe,aengeTcg Tag: 
HexoTopbdk L E .C(S1,E) HpgHaxleacHT maccy .C(SI,E) Tor.aa 14 TOJIbli0 
Toraa, eCJIH AAA .mo6oI3 v E V(L) H .111061AX 71,72 E r(L), Tagmx, TITO 

P1(71) = p1(72) = v, cae,ayeT, xrro 1711 0 1721. Tor.aa HapTgaa ,aaHa B 
Hpeamzrymem Haparpacpe yrrpoulaeTcH H , Hocxwthxy BTOT c.nymail fang 
Hac 6yAeT OT3eHb Baaanam, MM ee 3,aecb ,raagm B 6o.aee KoHxpeTHom 
BM.zLe. 

ABTOMaT 2t Ha3oBem aonycTramum Anti Knacca J1a6HpHHTOB 
ec.ng ero 13x0,i111011 ampaBwr COCTOHT 143 63TgB a Bg,aa (c4.),{0 -1,• • •,(T,,,}), 

V
ir

tu
al

 L
ib

ra
ry

 o
f 

F
ac

ul
ty

 o
f 

M
at

he
m

at
ic

s 
- 

U
ni

ve
rs

it
y 

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs



ABTOMaTb1 14 J1a614PHIITb1 
	

795 

rite w E 0  H 	 C 	H Bbixo,anoil a.m:pam4T eCTb E U {K}, K E, 

npm BTOM Bcerua 0(q,a) E p2 (a) U {K}. 06o3aatn4m Kaacc Bcex TaKHX 

aBTOMaTOB gepe3 A(11, E). llyCTb %go  — HeKOTOpbH1 HH1411HaJ1bHbla 

asTomaT H3 A(1, E) 14 L v. — HeHOTOph1171 14111111,14aJIb11bn4 JIa6HpHHT 143 

Z(11, E). 14nTepripeTiwyem d4ymuwoumpoBarn4e asTomaTa 94 0  B na6Hp-

14HTe L o  caextylonalm O6pa3OM. ABTOMaT 94, nomeataeTcA B Hallal1bHOM 

momellTe B Bepummy V0 aa61piniTa Li,. HpeAno.noximm, iTO B 

MOMeHT aBTOMaT 910  oica3a.nic3T'B Bepanme v za6HprinaTa L" H B 

COCTOSIHH14 q. CtillTaeM, T-ITO OH o6o3peBaeT narpyweEmyro 3Be3,4y, o6p-

a3oBanuyio mcxoAsinn4m14 143 aTorsel Beplumllbi mramrdEro Bxo,anoil 63TxBoil 

B BTOT MOMeHT JIBJI.HeTCY1 napa, o6ipa3oBannasi OTMeTK0171 Bepuumbi 14 

MHO)KeCTBOM OTMeTOK 3Be3,E1bI. B cnezkyloun41, momeHT, ecru ,' 0(q, a) # K, 
TO aBTOMaT nepememaeTcm B sepuamy,B KoTopyto BeLteT ,asyra C OT-

meTKoii gP(q, a), a ecall IP(q, a) = tc, TO ocTaeTcH Ha mecTe, 14 Bcerua nape-

X0,934T B COCTOSIHHe p(q, a). TOT nporLec npoaomicaeTcsi itazee. Taia4m 
o6pa3oM aBTOMaT ocymecTEmsieT ABmicenHe no Jia6mpHHTy, nocaeitoBa-
Tell3H0 npoxo,asi HexoTopbul 113/Tb. Ha camom Ilene 4)ymcwnom4posaime 

asTomaTa %go B na6mpHaTe L go  mo)Kno onpeAe.rxi4Tb Kai noBezienme as- 

TomaTa %go  B JIa614p14HTe Lvo 

HOCJIe)10BaTeJ1bHOCTb nap 

7 (240; Lvo  ) = (go, vo), (qi 7 VI ), • • • 

naamBaem noeedenue.A4 aetnamatna 21q, a .4a6upurtme L", ecan vi+ 1 ecTb 

Bepunma .fla6mpmfaa L", B boTopylo aBTOMaT, HaXOXICb B COCTOSIEHH 

qi, nepexo,m4T 143 Bepumnbi vi, a qi+i  eCTb COCTORHIle asTomaTa 94, 7  B 

KOTOpOe nepeitaeT npi4 BTOM aBTOMaTTIOCJIe).10BaTeJIMIOCTI3 TI(2to ; L vis,) 

= V0, v1, na3bmaem mpaennopueii asTomaTa 21q0  B J1a6HpHHTe Lvo. 
ECJII4 Ansi nexoToporo u E V(L v.) cyiuecTByeT q E Q21 Taxoe, 14TO napa 

go 
(q, u) nplemaxleacHT 70q0 ; Lv,„), TO FOBOpHM, tITO 21q, 06X0,aHT Bepum- • 

fly u na6upPniTa L". 06o311atmm MHO>KeCTBO Bcex Bepaam, KoTopme 

o6xoA3T 940  B na6i4pvinTe L vD , L3epe3 Int(21 q0 ,Lvo ). 
BBeztem HOWITHR .nonycTmmoro aBToMaTa 14 ero noBezerme B cayuae 

n-mepHblx nplimoyroabnux JIa614p14HTOB 6anee (Dopmaablio. 

asTomaT %qo  = (A, Q, B, cp,11), g o ) 11a3bmaeTcsi donycmumbt.m, ecm4 A — 

MHO)KeCTBO Bcex Henyclux 110,11,MHO7KeCTB maoa‘ecTBa En, B = En U {0} , 

14 11(q, a) E aU {0} Mni Bcex q E Q HaE A. lioaedenue.m aBTOMaTa %go B 

na6mpremTe L = (V, F; v', v") Ha3bIBaeM HOCI1e210BaTeJ1bHOCTb 74940 ; L) : 

(q0,v0),(qi,v1),..., rlle vo = 	 E I' 141114 Vi = Vi+1) qi-I-1 

w(qi, [vin L) 14 11)(qi,[vi]L) = Kvi,vi +1)1, 2 = 0, 1,.... llapy (qi,vi) 143 nose-

AeHl4Si r(21.q.; L) 6y,aem o6o3natiaTb tiepe3 ri(210 ; L). 

HycTb L„ E Z(ft, E) H 21q, E A(1/, E). ECJIH Int(940 , L„0 ) = V (L„), 

V
ir

tu
al

 L
ib

ra
ry

 o
f 

F
ac

ul
ty

 o
f 

M
at

he
m

at
ic

s 
- 

U
ni

ve
rs

it
y 

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs



796 	 B. B. KyARITBReB, HI. Yurgym.nwi > r. Kkun46ap,qa 

TO roHopmm, LITO 2t" o6xo,LcHT 	B HpOTHBHOM cnyllae Luc, SIBJI.HeTCSI 

✓013yta7C0ti „VLSI %qv BTH HOHJITHA ceiblac MOHCHO pacumpHTb AO JII06bIX 

cotTeTaHHil HHHIIHaJILHI,IX HAM HeHHHIII4aJIbHbIX aBTOMaTOB H JIa6HpHH-

TOB. 4T06bI Jiertle OHHCaTb BCe 5TH COgeTaHHSI HocTymm Tax. HycTb 
L E E(S2, E) H 21 E A(Si,E) Hpwiem H L H 2t moryT 6bITI3 bat( HMI- , 
l(HaJII3HbIMH Tax H HeHHHIIHajIbrIbIMH. PaCCMOTpHM HOHATHR "a(3-06- 
X0,LIHT' H ",@a-RoHyuma", rtte a,[3 E {I,A,E}. ECJIH a = I (a # I), 
TO 2( ABJI,FIeTCH HHHIIHanbHMM (HeHHHILHaJlblIbIM) aBTOMaTOM, a ecru,' 

= I (/3 I), TO L HrhasieTcA HHHI:(HaJIbHhEM (HeHHHLIFIaJIbHhIM aa6Hp-
HHTOM. CJIOBO A yba3bmaeT Ha TO, LITO HpH TOM 6epyTcm "ice BepIIII4HbI 

HaHHoro HeHHHIII/Ia.TIbHOPO JIa6HpmErra L HJTH ace CQCTOLIHHLI AaHHoro 
HeHHHILHaJIbHOr0 asTomaTa %, a CJIOBO E — Ha TO, LITO 6epeM TOJIbK0 

HexoTopyro Hepunmy AaHHoio,HeHHHHHaarbuoro .na6HpHuTa L HJIH Helm-
Topoe COCTOAHHe Aanlloro asTomaTa 21. Tax, HanpHmep, L vo  E Z(11, E) 
31B.TISIeTCH IA -.4oeyuncoii Ana 21 E A(1i,E), eCJIH Anal Bcex q E Q 91  na6HpH-
HT Lvo  SIBJIIIeTC31 JI0By11IK017I AAA 21.q . ABTOMaT E A(S1,E) AA -o6xodum 
..ria6HpremT L E Z(ft, E), ecru! )1.11S1 ricex q E Qs H Bcex v E V aBTOMaT 
21q 06X0X/IT .na6HpHHT L v . ECJIH a,0 E {IX}, TO BMeCTO a/3-o6xo.HHT 
H 0a-J-foriyunta roBopmm o6xo.ru4T H .noByama. Ecali a,0 E {I,A}, TO 

BmecTo 013-06X04CHT H /3a-aoByunca roBopnm c4tJZbfEO 06X0aU972 H cuabnas- 
Aoeytuxa. 

Hap.a,v c HoBezkermem aBTomaTa B aa6HpHHTe MO WHO TaioKe pacc-
moTpeTb nose,aerme CHCTeMbI aBTomaroB B ..na6mprepaTe. HycTb E 
Z(S2,E) H 3a.rkaBa cHcTema )1011yCTHMI3IX aBTOMaTOB A = {94 ,..., A2,nn }. 
ECJIH HO./I, Hose,aeHmem aToll CHeTeMbI.B 	 HOHHMaTb MHO}KeCTBO 

HOBeaermil 

{r(2(q,;4,),...,x(9(4.;Lv.)}, 

TO aTy CHCTMY H53bmaem ne3aeucu.moii, a canto Hose,HeHme — nose-
denuedia nexteucumoii cucme.mbi. ECJIH AAA HeboTOpovo i, 1 < i < n, 
ht(Qiiq , , L v.) = V, TO coHopmm, Ina A 06X0,LIFIT a ecru' 

= V, TO PosopHM, LITO A A-o6xodurn 	B rlpo- 
THBHOM c.Trytme roBopmm, LIT° 	SIBJI.HeTCJI JtoByuncori H COOTBeTC- 

TBeHHO A-JI0ByllIK017I 	Re3ainicHmoil CHCTeMbI A. KaK H , B caymae 
oxioro awromaTa MM moxiem BBeCTI4 aHaTIONTLIIMIM crioco6om HOHJITHJI 

a/(3-o6xo,BBT H Pa-noByluxa (a)(3-A-o6xo,ra4T H ,3a-A-aosynixa), rae a, /3 
E {I,A,E}. ECJIH a, E {I,E}, TO BMeCTO 00-06X02I,HT H 0a-noHyluxa rait-
opHm 06X0X4T H .noByluxa. ECJIH a, E TO BMeCTO a /3-A-o6xo,H,HT 
H 13a-A-nosylima rosopmm CHTIbH0 06X0,LIIIT H CHJIbflail aosyunca. 

PaCCMOTpHM Telleph 60Ree CHJIbHbIii Bapmaisur nose,rtemem CHCTeMbI 

aBTOMaTOB A .E(OHyCTI4MbIX laJISI E(Sl, E) B JIa6HpHFITe 	 E L(11, E). 
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3aHo,aupyem Hamm aBTOMaTbI C nomontbio 6yKB 	 cgmTaH, -tiro 

tti upnrnimaeT B Har-lecTHe 3HatieHnsi TO COCT0511114e, B KOTOpOM HaX0,E1FITCH 

HRH A. EC.T114 BX0,11110r1 a.THIMBHT ARA aBTOMaTa 2liqi , 1 < i < n, coc-

TOFU 113 6y1(B a Bwaa 

(w>fui,• • •,ni--1,ui+1,•••,unI,{ 0).,• ••,(770), 

rae w E SZ H {cri,... , am } C E, a Hbixo,aHoti aacpaHvIT eCTb MHOHteCTBO 

EU {n}, E, H np• aTOM Hcer,Lia Oi(q,a) E p3(a)U{k}, q E Qi, TO CHC-

TeMy A Ha3oBeM icortitexrnueom. ITHTepnpenwyem (PyHEnnounposaHne 

HanneHTnHa A = {21 1q1 , ,2lnqn } B ero ,aHreDKeHmem B Ha6np- 

IIHTe 	cneaytontnm o6pa3oM. ABTOMaT 2tq, B HatlaJlbHbIrl MO- 

meHT nomemaem B HepuuHuy vi aa6npnEtTa L, 1 < i < n. lipe,anoacmcnm, 

T-1TO B HeKOTOpbIrl momeHT t aBTOMaT 24 ,  OKa3a.TICSI B Bepumne va H B 

COCTOSIHHH CT-114TaeM, x1TO OH o6o3peHaeT HarppReHllyio 3Be3,Lky, 

o6pa3oHammo ncxo,n,Hummn H3 aTotl BepIIIHHbI Hyramn. Ero BX02LHOVI 

6yHrsoil a= B BTOT MOMeHT HBJ151eTCH Tpoiixa, o6pa3oHaHHasi oTmeTHoR 

Heputnum, MHO)KeCTBOM KO):10B Hcex aBTOMaTOB KOJIJICKTHBa, Haxo,afflun-

XCH B Hepun4He Hpome Ho,aa camoro aBTOMaTa 2tq . , K MHOHieCTBOM 

oTmeTox 3Be3,abl. B cHeayroamia momeHT, ecan al) K, TO aB-

TOMaT nepeHeufaeTtH B Hepan4Hy, B HoTopyio He,aeT ,ayra C oTmeTHosn' 

Oi(4,a.ii ), a ecan 7/4q1,a ti ) = Ic, TO ocTaeTcH Ha mecTe, H nepexo.anT 

B cocTosnme (pi(ql, BTOT 11p011eCC npo,aoHameTcH ,aa.nee. TaHnm 

o6pa3oM asTomaT 2tiqs  ocyatecTsaHeT ,askmenne IID Ha6npnuTy, noc.ne- 

,a0BaTeHbH0 npoxo,aH HeKOTOpbeel HyTb. TIOCIle)10BaTenbHOCTb Hap 

(q?, v?),(gi , vi) ,  • • • 

rile (0,4) = (qi,vi), 4 +1  ecTb Hepnania, B HoTopyio nepexoaHT an- 

TOMaT 143 BeplIII4Hbl 	HaXO1L1Cb B COCTOJIHH14 d, a qii+i  — ero HoHoe 

COCTORHHe, HaHmHaem noeedenuem aemomama2t iq , xortrtexmuaa A a .4a6u-

ptmme 	npn BTOM roHopnm, turo 91 4q , o6xo.ay1T Hepuinabi 4,v1, 

H o6o3Hamaem mHoa<ecTso 14X xiepe3 Int(A, 	i). HocHeaoHaTeab- 
. 

HOCTb 

7r(A,L,,,...,„„) 	oho 	go , 	v .71), 01, 	 7  q:.1, 	vn1), 

Taxan, ,L1TO HOCJle,a0BaTellbHOCTb (q?, v?), (q.1 , 	, 	.1113.71.51eTCH noHeAe- 

HKem aBTOMaTa 21 2q,  KOJIJIeliTHBa A B Ha6npnHTe 	Ha3bIBaeTCSI 

noeedenuem noimermuea A a .na6uputtme 	nyczb Int(A, Lvi t• • • >v. ) 

= U?_iint(94,L„.„;i). ECJII4 Int(A, = V, TO rosopmm wro A 

o6xodum B npoTAHHom cnymae 	AnnHeTcH itoeyturoii 

.uiu A. JIa6upreniT L Ha3bmaem CILAtonal rwaymwoil ,anx A, ecan AAA 
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. 798 	 B. B. KyrApsnmee, III. YupIyMamI H r . Km1046apAa 

J1106MX v1, • • • ) 1.in E V(L) na6mpmwr 	JIBILFIeTCJI nosyunior4 ARA A. 
Konneicrmys A CUAbli0 o6xodum aa6mpmHT L, ecam unn nEo6mx v1 , , v„ 
E V(L) KOJIJIeRTHB A 06X0,DHT na6mpmHT 

Ha6op A = 	 rae 	= (Ai, Qi, 	 i = 1, . . . , m, 
— HexoTopmil aBTOMaT, HanaHaeTcm vo.f ✓texmueom donycmumbtx aemo-
mamoe e Rn, ecam ,ansi mo6oro i = 1, 	m, 

1) Ai = {a E Po(En) x [FIZ I  (0 U Qi)]Ipi+I (a) = 0}; 
2) 13i  = En U {0}; 

3 ) Oi(q, a) E Pi(a) U {0}, LEAH mo6b.ix qEQi 14 a E A; 
3,13(eCb Hpe,wionaraercm, T4TO 9 — HexoTopmil 4)MICCHp0BallEtblit 9.11emeHT, 
He HpmHailneacammil mHomtecTEgy 

llyCTb L — HeKoTophdel n-mepHbril JIa6HpMHT, vi, i = 1, , m, — 
HexoTopme Beinunam n-mepHoro na6mpmErra L 14 qi — HeKoTopoe COCTO-
same aBTomaTa 21i, i = 1,...,m. 06o3Haimm /7= H 
4, = 

q) = 	 0)) 1 , 	, [ai(6, Om ), 

rae 

[ai( 6/01/ = 
qi , ecam vi = vi H  i j; 
9, 	ecam vi # vi H.1114 i = j. 

HyCTE. v0 = (17(1; vo, ..., VIM — HexoTopmA Ha6op Hepuum n-mepHoro 
Ra6mpmwra L. Hoeedettue.44 wo.11.4elcmuea A = 	 e n-mepuo.144 
.aa6upunme (L; go) Ha3bIBaeTCJI HOCJIe,a0BaTeJIMIOCTI:, r (A; L, 110) = ( 70, 6) , . . . , (iTt , 6), 	, rae vt  = (vi , 	, Vr) H qt = 	 Taxam, TITO ,L(.1131 
.THo6mx t, 	zae t = 0, 1,... m i = 1,...,m, 

1) qt; — HattaabHoe cocTomame awromaTa Qti; 
2) (vi,v1+1 ) E r WITHvt = v1+1;  

. 3) ql-Fi = 	ai(fft, 6)); 
4) iki(qi,ai(fit;6)) = 1(v1,v1+1)1• 
06o3Har-mm 

Intii  (A; L, fio ) = 	(1 < j < m, i = 0,1,...), 
Int i (A; L,110 ) = 	 (i = 0,1,...), 
Int .i(A; L070) = (42. 1 {4}, 
Int(A; L,tio ) = 	i (U 1.1L 1  fun), 
Fr(A;L,t70 ) = V \Int(A; L, 

ECJIH Biome vo = 	= va = Vo, TO B Rocne,iLpoulem HcerAa 6 yaem 
rosopwrb He o Hose,,aeHmm A B (L; v0 ), a o Hose,aeHmm A B n-mepHom 
na6mpmHTe (L; Vo), H BO Hcex Blaine BBeaelIBLIX 0603HatleH1431X,'B HOTO-
pmx clifirypmpyeT 60, 6yAem 1114CaTh Vo BMeCTO r)o. 
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FoHopHm, ti TO X0.11.11eKT14B AOIIyCTHMbIX aBTOMaT A o6xodum n-mepubdi 

J1a6Hp14HT (L; vo), ecnH Fr(A; L, vo) = 0. rOBOI(IM, "KIT° KO.T1J1eKT14B A 
ClifibttO 06X0att771 n-mepHmii na6HpHHT L, ecru Arm mo6oro v E V(L) 
ROJI.11eKTI4B A 06X0):(14T (L; v). n-meprimil na6HpHHT (L; vo) Ha3mHaeTcH 

n-Atepnoii .ttoeytuxoti Anx xanneHTHHa A, ecaH A He 06X0a14T (L; v0). 

Tai e, n-mepHbdi na6HpHHT (L; vo, vi) Ha3hmaeTcsi n-mepHoti aoHyHtHoti 

Ann A, ecam v 1  E Fr(A; L,v0) H [v1] n-mepHmil na6HpHHT L 
Ha3bmaeTcH CU✓10-101i n-.Mepuoii Jzoeyuncoa Any KOJI.T1eKTI4Ba A, ecJIH AAA 

Juo6oro v E V(L) K0.11J1eET14B A He o6xcoHT (L, V). 

OTMeT141‘4 HeHoTopme aBTOMaTIA
q  9.121 i' 	q ' 1 < 21 < • • • < 2 m  < n, 

140J1J1eKTI4Ba A = (94 , 	 ABTOMaTbI 	 Ha3bIBalOTCH 

Ka.A47-131.44U a xo.4.4eicmuee A, ecJix Hmexyr mecTo c.ne,ayroluHe yCJI0B1451: 

a) y aErromaTa 	, 1 < j < 711, TOJIbKO OXIO COCT0511114e — 

6) ecim Ansl HeHoToporo Hxo,aa 

a = (w, lui,• • • ,ui t -i,ui t +1,• • •,tinl,fai ,• • • ,crm}) 

awromaTa 21 ,̀71. , 1 < 1 < in, HmeeT mecTo iki(q, a) = a-k, 1 < k < m, 

TO
( 
 cyatecTayeT j 	1 < j < n, 1 < 1 < in, Taxoe, =ITO Ui $ A 14 

iPiq,a1 ) = ak, rv:Le 	= (co, fu i ,...,ui _i,ui+1,...,un }, fo- 1 ,...,crm l) 14 Ui 

KO,L( COT031HH5I qi. 

KOJIJIeICTI4B A c m OTMetIeHHbIMH aBTOMaTaMH 	, 	, HoTopme 

3IBIL5110T01 Hat11151M14, Ha3b1BaCTCH xcha4ewinueo.A4 U3 n - m aemomamoe C 

m Ica/wile/7. 

3. ,LIonycillmme awromarm B 11BOCRI4X MO3BLIP-MBIX Jia6Hpiurrax 

— KJIaCC HeKOTOpMX JIa614p14HTOB (L; 	ECJI14 HeKOTOpMVI 

aBTOMaT 210  CI4J113110 06X0X4T Jno6oil na6HpHHT (L; u) 143 C , TO MM 

roBopHM, uTO aBTOMaT 2410  31B.1131eTC.13 yHHHepcanbrnam o6xo,./m4Hom ARA 

E.Hacca r. 

lipeAnaweime 3.1. Cywecineyem ynueepccuonbtii o6xodnuic alto tutacea 
ecex tuazmamnbtx .486upuumoe 6e3 xonennux dup. 

C Apyroil CTOpOHM, HmeeT mecTo HeTpHHHaabHmil pe3yin,TaT: He 

cymecTayeT KOHeT-1Hb11"4 HF1141114aJIblibIr1 arcTomaT, KOTOpb1r1 06X0a14T Hce 

HoHetmbie thnocHHe mo3aH4-mme J1a6HpFIFITM. 3TO yTHepauleHme xis! Ho-

Hetumix 11.71OCKI4X maXMaTHbIX Jia6HpHHTGH 4JaKTIVIeCIC14 yeTaHOBJICHO B 

pa6oTe [31 c Becbma rpomo3ximm o6ocBoBaimem, 14C1I0J1b3y10111,14M cpez4 

Hpouero 14 Si3bIK Teopm4 HaTeropHti. anemeHrrapHoe 14 HopoTHoe AoHa3a-

TeJ11)CTBO aToro yTHepiHeaeHHH ,aaeTcH B pa6oTax [17,18] (4iopmanbHoe 
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OTJIHT-114e MO3aHT-1HbIX H maxmaTimix J1a6Hpl4HTOB He SIBJISIeTCJI 3,,nech cy-
laeCTBeHHE04 NieTOZEHTleCKH 6oaee Haraagioe Acixa3aTerfficTso aToA 
TeopeMa co,aepx<renca B [15], TeXHHKa xoToporo I103BOJIHJIa peumTb 
HexoTopme enpyrne H yl[pOCTMTb yate pememime 3a,riatua THEM, 3aLtaxl 

o6xo,,na. 
IlyCTb — HeKOTOphIll KJIaCC HTIOCE1IX MO3a14411MX aa6HpHirr0s. Ha 

mnoecTHe Hcex Hap (i,j) E N2  onpe,aeamm maCT1411ElbH3 Hopa,aox <, 
Hoaoraa (a,b) < (c,d) TOTIHO TorAa, Koraa a<cHb< d. Hpe,aaxaT 
PL(i,j) onpeaeaHm Tamm cnoco6om, TITO P ,c(a,b) = 1, ecaH cyulecT-
HyeT KOJIJIeKTHB THHa (a, b), o6xoa.HIIIHR Bce .71a614pHHTLI H3 C, H PL(a, b) 
= 0, ecaH Taxoti ROJIJIeKTHB He cymecTiveT. HeTpyAno HH,LkeTB, TITo 

Hpe,n:HxaT PL JIBILHeTCSI MOHOTOHHOrl (Ppm:meta OTHOCHTeJIbH0 aTor° ma-
CTxP-IHOI'O IIopaaxa. Touaee , HyCTb (a, b) < (c, d) . Tor,aa, ecru Pc(a, b) 
= 1, TO P L (c, d) = 1, a ecru PL(c,d) = 0, TO P L(a,b) = 0. Hapy (a, b) 
Ha3oHem H147KHer1 e,npnemerl Ana PL, ecam P c(a,b) = 1, a P L (c, d) = 0 
Ana ap36oro (c,d), Taxoro, 14To (c,d) < (a,b) H (c,d) (a,b). HycTE 
T[PL] — MHOWeCTBO Bcex HYDKHHX e,BI4H1411 AEA PL. SICHO, TITO 3a,naHHe 
PL oa:Ho3Hatmo onpezte.naeTca yxa3aHHem T[PL]. 

TeopeMa 3.1. HAteem memo paeenaneo T[P L id 	{(1,2,(2,0)}, npu 
anto.A4 neacomopue acormetcmuebt anuna (1,2) o6xodsnt Jaa6upatatmot U3 72 aute-
mon acttacca E0  3a epemx 0(n 3 ), a muna (2,0) — 3a epeAtar 0(n2 ), u oc-
manaeflueaaomcir nocrte o6xoda. 

B pa6oTe [10] Hoxa3aHo, TITO PL0 (1,5) = 1, npHgem cyalecTsyroT 
HexoTopme KOJIJIeKTHBM THna (1,5), xoTopme 06xoanT 14 OCTaHOBJIHBa10- 

TCSI uocie o6xo.aa mo6oro .na6HpHHTa H3 Go. B pa6oTe [2] awl acxH3 
Aoxa3aTeabcTsa Toro, TITO PL0 (1,2) = PL,(2,0) = 1 (noJIHOe „noRa3a-
TeJlbCTBO MOJKHO HaVITH, HanpHmep, B pa6oTe [14]). 14 Haxollerk, B 

pa6oTe [7] 6Bia upHse,nell acx143 ,noxa3aTeabcTHa Toro, TITO PL 0 (1, 1) = 

0, a nonuoe Aoxa3aTeabcTHo 3Toro (paxTa 6m.no AaHo B pa6oTe [8]. 
B pa6oTe [2] noxa3aHo, TITO aBTOMaT CO CT1eTTIHEOM 06X0,/f.HT xaacc 

PL0 , HO 3a Hpema 0(n2 ). B pa6oTe [6] TeopeMa 3.1 o6o6ntaeTca Ha 
cariatei IIJIOCEHX HpamoyroabHmx aa6HpHaTos C COOTBeTCTBy101.1.114MH 

orkeHxamH HpemeHH o6xoja HH,,na 0(n2 ) 14 0(n3 ), a Ana asTomaTa co 
cueTLIHRom H 001[HHM xamHem BTO Hpemsi paHHo 0(n2 ). 

Cae,nyeT 3aMeTHTB, TITO BO3M0>KHO "HaomeHHoe" paccaoeHme Knac-
ca Co, Taxoe, TITO AJIST xamAoro CJIOSI yX<e HailaeTcH asTomaT C 0,LITIHM 

KaMHeM, o6xo.HawHJ3 ero. 

TeopeMa 3.2 ffitg riao6ow k E N cyNecnteyent acormenmue rnuna (1,1), 
curtano o6xoasrucuii ece xouennue nitocacue (utaxmantubte) Ato3auunbae sta6u- 
punmu, y acontopbtx ate 6o.aee k (acomnoneum xocexanocartu) chap, npu amore 
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aemomam &mem rte 6o✓tee C k  cocmosniuti. 

B pa6oTe [12] 6m.no ycTaHOBJIeHO, t4TO cymecTayeT KOILTIeKTHB THHa 
(1,1), KoTopmii CHJIbH0 06X0,11HT Bce icoHetnime HJIOCEHe maxmaTHme 
JIa6HpHHTbI, Hmeroulne He 60.nee AByx B pa6oTe [13] noKa3aHo 

TO Hie camoe, HO B c.nyuae, xorvla y na6Hpi4HTa He 6o.nmue Tpex Amp. 

3aTeM B [9] 6m.na AoKa3aHa nepHast tiacTE, Teopemm 3.2 ATM c.urIasi 
KOHeT-ibIX EIROCKFIX maxmaTHmx J1a6HpHHTOB, a no3?Ke B [5] 6m.Tia yc-

TaHomeHa orkeHHa AJISI tueic.na COCTOSIHYSI aBTomaTa H yllpouteHo aoxa3a-

TeabCTBO HepBOVI LlaCTH Teopemm. 
BO3MOHCHOCTH K0.11./IeKTHBOB aBTOMaTOB HpH o6xo„ae Yia6HpHHTos MHO-

PO 'Hive, mem BO3MOHCHOCTH He3aBficHmmx CHCTeM aBTOMaTOB. 06 aTom 

CBILLteTeRbCTBylOT c.neayloatme yTHepaulem4H, B KOTOpbIX pet-lb PmeT 0 

tcoHetmmx H 6eCKOHetillblX IIJIOCKHX MO3aH4HbIX ,ria6HpHHTax. 

TeopeMa 3.3. [16] PlAteem Memo coomuoutenue {(2, 3), (3,2),(4,1), (5, 0) 

} C T[PL 2 ]. 

B pa6oTax [1,4] 6m.Tio yeTaHoH.neHo, 4TO PL2 (1,7) = 1, a B pa6oTe 

[11] — 11T0 Pc2 (1,5) = 1; HaxoHeu, C HOM0111b10 AOCTaTOT-IHO oauerx 

KoacTpyHruem 6m.na AoHa3aHa TeopeMa 3.3 [16] (olaeHmermo, Pc 2 (0, j) = 

0). /10Ka3aTeilbCTBO Teopemm 3.3 Hp0BOAH.TIOCE. HocpeAcTsom HoHcTpy-

rAporiam4H COOTBeCTBylOIHerl JI0ByllIKH AJISI KO.T1J1eKTHBOB Hcex THHOB 

(2,2),(3,1)H (4, 0). 3aTeM CTI)OHJIHCb Hpi4mepm EOJI.T1eKTHBOB Hcex THHOB 

(i,j) E T[PL2 ], KOTOpMe 06X0ASIT Bce IMOCKFle mo3alomme J1a614pHHTM. 

TaK KaK H AAR cvicTem aBTOMaTOB, HuTepecHo BbISICHHTB, Kaime 

AOCTaTO4H0 HimpoxHe maccm JIa6HpHHTOB moryT 6bITb 060I3ZieHb.1 KOJI-

nexTI4BamH HpocTmx THHOB. 3aMeTHM, 4TO eCJII4 nepetim K xnaccy Pc2 

scex TIJIOCKVIX MO3aH4HbIX .11a6HpHHTOB, He coaepwaamx 6ecxoneqHmx 

iiJzap, TO ocTaHeTcH cHparmamemmm yTHeINK,LteHvie, aHanorw-moe Teopeme 

3.3. 

TeopeMa 3.4. [16] Alio x ✓tacca G12  u npeduranta Pct umeem Atecmo 

coomuouteuue {(2,3),(3,2),(4,1),(5,0)} C T[P,2 ]. 

B [16] HoKa3aHo, MTO PL,(1,3) = 0. OTcloaa cae,ayeT, 4TO T[PL2 ] 

(TEPLI2 1) paHno HAM 1(1,5),(2,3),(3,2),(4,1),(5,0)}, HRH 1(1,4), (2,3), 

(3, 2), (4,1), (5, 0)}. CyatecTayeT n4HoTe3a, LITO TEPL 2 1 = T[Pc2 ] = 

1(1,5),(2,3),(3,2),(4,1), (5,0)1. 

CIIHCOK JIHTEPATYPbI 

[11 M. Blum and W. Sakoda, On the capability of finite automata in 2 and 3 dimensional 

space, The Procedings of the 18th Annual Symposium on Foundations of Computer 

Science, 1977, pp. 147-161. 
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OMITTING TYPES IN KRIPKE MODELS 

Zoran MarkoviC 

ABSTRACT. When can a type be omitted in a Kripke model of some intu-
itionistic theory is investigated. As it is usual with intuitionistic systems, 
various classically equivalent formulations of the Omitting Types Theorem, 
become nonequivalent statements in the intuitionistic setting. Several such 
formulations are discussed in terms of whether they have the intended mean-
ing in Kripke models, and several theorems are proved. 

Classically, an Omitting Types Theorem states that an apparently weaker 
condition, concerning individual formulas from a type ("locally omitting"), 
suffices for the whole type to be omitted in some model. We will start by 
considering what meaning these expressions may have in the case of Kripke 
models of some intuitionistic theory T. A "type" should clearly be a type of 
an element of a Kripke model of T. If we restrict ourselves to Kripke models 
in which the frame, i.e., the partial ordering, has the least element the base 
node, this should be an element of the universe at the base node. A type 
for T can be defined as a set of formulas in the same language L(T) with 
one free variable, say x o , consistent with T. Analogous definition may be 
given for n-types. If E(z o ) is a type for T, we say that some Kripke model 
of T realizes E if there is an element of the universe at the base node of 
this model, for which every formula from E is forced. Dually, we say that 
some Kripke model of T omits E if for every element of the universe at the 
base node of this model, there is some formula from E which is not forced 
for this element. As for the "local omitting", we may consider the following 
four formulations: 

(1) for any sentence 3x o co(x 0 ) in £(T) consistent with T, there exists 
some formula a(x0 ) E E such that the sentence 3xo(so(xo)A-irr(x0)) 
is consistent with T; 
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804 	 Z. Markovi6 

(2) for any sentence 3x0c,o(x0) in L(T) consistent with T, there exists 
some formula o(x 0 ) E E such that the sentence 3xo --, 0,0(xo) 
o- (x 0 )) is consistent with T; 

(3) for any sentence 3x0co(xo) in L(T) consistent with T, there exists 
some formula cr(xo ) E E such that the sentence --Nxo(co(xo) 
(7(4)) is consistent with T; 

(4) for any sentence 3xoso(x0) in L(T) consistent with T, there exists 
some formula cr(x o ) E E such that T V Vxo(co(xo) 	cr(xo)). 

In intuitionistic predicate calculus it is easily provable that: 

3x0G0(x 0 ) A --lo- (x0)) 	3x0 -1(ca(x0) 	o(x0)) 

and 
34-.0,o(xo) 	o(xo))  —+ -091x 0 ((p(x 0 )—> o(x0)) 

while neither of the reverse implications holds. Therefore, we have 

(1) = (2) 	(3) 	(4). 

However, the whole statement (2), even intuitionisticaly, implies (1), so we 
may dismiss it. It is easy to show that for the.remaining there statements 
none of the reverse implications holds intuitionisticaly. The statement (4) 
is the most interesting, not only because it is the weakest of the four, but 
also because it is strong enough to prove that in the Lindenbaum algebra 
of consequences of T, E generates a nonprincipal filter. We shall also use 
(1), mainly for technical reasons, while (3) does not seem to deserve much 
attention. 

Let G be a countable first-order language, T a consistent (intuitionistic) 
theory in G and E a set of formulas in .0 with at most x o  free. In [3] the 
following theorem was proved. 

Theorem 1. If for any sentence 3x 0 59(x 0 ) in C consistent with T, there 
exists a formula o(x o ) E E such that the sentence 3x 0 (co(x 0 ) A -icr(x0 )) is 
consistent with T then there exists a Kripke model of T with a countable 
universe at each node, such that for every element a of the universe at the 
base node, there exists a formula cr(xo ) E > such that -icr[a] is forced at the 
base node. 

The proof is a Henkin-style argument along the lines of completeness 
proofs of [1] and [4]. T is gradually extended to an .0 U C-saturated theory 
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(C being a countable set of new constants). At each stage three steps are 
made: for n = 3k and n = 3k + 1 we work toward making the final theory 
saturated (we provide a "witness" from C for an existential consequence and 
add one of the disjuncts of a disjunction which is a consequence), while for 
n = 3k + 2 we add —icr(c k ) for some appropriate a(xo ) E E. 

It was observed later by Kripke that practically the same proof will prove 
the following dual theorem, which might be more useful for intuitionistic 
theories. 

Theorem 2. (Intersecting Types Theorem) If for any sentence 3x0p(x0) in 
consistent with T, there exists a formula u(x0) E > such that the sentence 

3x 0 (co(x 0 ) A cr(x 0 )) is consistent with T, then there exists a Kripke model of 
T with a countable universe at each node such that for every element a of 
the universe at the base node, there exists a formula cr(xo) E E such that 
cr[a] is forced at the base node. 

These results may be improved in two directions. One direction is to 
require T to be a saturated theory, i.e., a deductively closed consistent set 
of sentences satisfying the following two conditions: 

—if 3xca(x) E T then co(e) E T for some individual constant c from 

£(T) 
—If yoU/P ET then coET or 11, E T 

While Troelstra and Kreisel argue that we should not assume that all 
intuitionisticaly acceptable theories must be saturated (e.g. [5]), it is a fact 
that all major, naturally arising, examples of intuitionistic theories are sat-
urated. Therefore, this is not an unreasonable requirement. In this case the 
condition (4) is sufficient for omitting. 

Theorem 3. If T is a saturated theory and for any sentence 3x o so(x0) 

in 	consistent with T there exists a formula cr(xo) E E such that T If 

Vx o (co(x0) 	a(x o )) then there exists a Kripke model of T which omits E. 
Proof. Let E = {3xoyao(x0),3xo(pi(x0),... } be an enumeration of all exis-

tential sentences in G consistent with T. By the hypothesis of the Theorem, 

for each i E w there exists a Kripke model Yfti = ((Si, 0i, <0;21 8 : s E Si) of 

T, a formula ri(x 0 ) E E and an element a E A o. such that 

Oi 	Oi H- (paa] and oi  
Let Xi = (E 9Jti)' be the collection of models .9Ii(i E to) (c.f. [4]). We shall 

prove the following, two claims: 
1° ti T 
2° 931 omits E, i.e., if 93/ = ((S, 0, <); 218 : s E S) then for every a E Ao 

 there exists u(xo) E E such that 0 v u[a]. 
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806 	 Z. Markovie 

For 1° it is enough to note that T is saturated and is, therefore, preserved 
under the operation of collection (cf. [4]). For 2°, we note that A o  of 931 
consists, by definition, of individual constants occurring in T. Therefore, if 
c E Ao  the sentence 3x0(xo = e) will be a sentence of .0 consistent with T, 
so for some i E w , (pi in our enumeration E will be (x0  = c). Then, for some 
a E A 0 . will have Oi II- a = c and oi  cri[a] and so O a  ai (c). As 
O < Oi in 9)1, we obtain 0 cri(c). ❑ 

Another direction in which we can improve Theorem 1. is to put some 
restriction on elements of E. We will show that in two such cases we can 
obtain the omitting types theorem in full strength, i.e., using (4) as the 
"locally omitting" condition. 

Theorem 4. Let E be a set of negated formulas in ,C, with at most x o  free. 
If for any sentence 3xoco(x 0 ) in G consistent with T, there exists a formula 
-,a(x 0 ) E >2 such that T 1/ Vx0((p(xo) -.0. (x0)) then there exists a Kripke 
model of T omitting E. 
Proof. Consider >2' 	E >2}. It is easy to prove that T Ff V x o (co(x 0 ) 
—> -to-(x 0 )) if and only if 3x 0 (q)(x 0 ) A o(x0)) is consistent with T. If T V 
Vxo(co(x0) -0(x0)), by completeness theorem (e.g. [1]) there exists a 
Kripke model 97/ = ((5,0,<);91,:s E 5) of T in which for some s E S and 
a E A 3  we have s co[a] and s -.alai which means that for some s' E S 
we have s < s' and s' o[a]. The truncation of 931 at s', 9Jt9  will be a 
model of T U {3x0((p(x0) A o(x0))}. We may apply now the Intersecting 
Types Theorem (Theorem 4.) to E' and obtain a Kripke model of T with 
a countable universe at each node which not only omits >2 but in which 
actually for each element a of the universe at the base node there exists 
some -'o(x o ) E >2 such that a[a] is forced at the base node. ❑ 

Theorem 5. Let >2 be a set of formulas with at most x o  free which are 
decidable in T, i.e., for each c(x 0 ) E >2 we haveT Vxo(cr(x 0 )V -,a(x 0)). If 
for each sentence 3x04p(xo) consistent with T there exists a formula a(xo) E 
E such that T Vx0((p(xo) —> a(x0)) then there exists a Kripke model of T 
omitting E. 
Proof. As in the proof of Theorem 4, T 1/ Vx0((p(x0) --+ a(4)) implies that 
in some Kripke model MI of T for some s and a E A3  we have s co[a] and 
s o[d]. As s T we get s -+a[a] and the truncated model MI, is a model 
of T U 040,0(4) A -.0- (x0))}. We may then apply Theorem 1. and obtain 
the model of T omitting E. ❑ 
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A CLASSIFICATION OF LOOPS ON 

AT MOST SIX ELEMENTS 

Sneiana Matie-Kekie and Dragan M. Acketa 

ABSTRACT. Eight kinds of equivalence classes (five of which are new) within 
the family L(n) of finite loops on n elements (n < 6) are considered. The 
classes arise by combining the operations of isotopy over L(n) (with some of 
its specializations) and loop-parastrophy (parastrophy followed by a special 
isotopy, which - returns the image to L(n)). 

The used isotopies are triples of permutations of the ground-set (applied 
successively to rows, 'columns and elements of the associated Cayley table) 
which map L(n) onto L(n). Classical isotopy and isomorphic classes corre-
spond to the triples of the form (p, q, r) and (p, p, p) respectively. Three new 
natural kinds of interclasses, denoted as C-, R- and E-classes, correspond 
to the triples of the form (q, p, p), (p, q, p) and (p, p, q) respectively. The 
combinations "isotopy over L(n) loop-parastrophy" and "isomorphism + 
loop-parastrophy" lead to the classical main classes and to a new kind of 
classes, denoted as H-classes. Finally, a new kind of classes, called paras-
trophic closures, corresponds to the transitive closure of the loop-parastrophy 
operator. 

Cardinalities, intersections and dualities for all the eight kinds of equiva-
lence classes of loops are completely determined for n < 6. In addition, the 
following theorem, related to classical isomorphic, isotopy and main classes, is 
proved by using the new H-classes: All the isotopy classes within a main class 
have the same family of cardinalities of their included isomorphic classes. 

1. Introduction 

Isotopy classes, isomorphic and main classes belong to the "folklore" of the 
theory of latin squares and loops. These classes were studied, for example, 
in [8], [6], [4], [7]. 

In particular, the figures 9408,109,22 and 12 of Table 1. were for the first 
time correctly determined in the papers [8], respectively [6]. These figures 
were confirmed by computer in [4]. A systematic tabulation of latin squares 
on at most six elements and of some their properties was given in [7]. An 
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810 	 S. Matk-Keki6 and D. Acketa 

extensive review of the related results was given in the book [5], Sections 4.2 
and 4.3. 

In this paper are additionally considered five new ([2]) kinds od equiva-
lence classes of loops: C—, R—, E—, II—classes and parastrophic closures. 
The relationships among all the eight kinds of classes are studied in detail 
for the case of loops on at most six elements. 

Isotopy and isomorphic classes of latin squares correspond to the isotopies 
determined by three and one permutation of the ground-set. C—, R— and 
E—classes correspond to the cases when exactly two among the three per-, 
mutations determining a loop-preserving isotopy — coincide. 

A very small modification (abandoning of fixing the unit) of the algorithm 
for generating isomorphic classes of loops generates ([1]) C— and R—classes. 
On the other hand, C— and R—classes can be further used ([2]) for a con-
struction of isotopy classes. 

It is known ([3]) that iterative applications of parastrophic operators 
within the class of loops (to a fixed initial loop) — produce loops belong-
ing to at most six different isomorphic classes. Parastrophic closures are 
obtained when the arising loops themselves are considered, instead of their 
isomorphic classes. The upper bound for the cardinality of parastrophic clo-
sures with loops of order n is equal ([2]) to 6 • max g.c.d.(s i , , sk ), where 
the maximum is taken over all the partitions n — 1 = s i  . • • + sk • 

The relationships between H—classes and isomorphic classes are com-
pletely analogous to the rehtionships between main classes and isotopy 
classes. 

The inclusion chart of the considered kinds of loop classes has the following 
outlook: 

main classes 

parastrophic closures I 

Figure 1. 

In Table 1. are given some summary data for n < 6, which include 
cardinality of the family L(n) of all loops of order it, as well as the number 
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of all the above defined subclasses of L(n). The figures for the three well-
known kinds of classes can be also found in [5]: 

7t < 3 4 5 6 

cardinality of L(n) 1 4 56 9408 
number of isomorphic classes in L(n) 1 2 6 109 
number of E—classes in L(n) 1 2 5 103 

number of C— (also number of R—) classes in L(n) 1 2 3 40 

number of isotopy classes in L(n) 1 2 2 22 

number of II—classes in L(n) 1 2 4 40 

number of main classes in L(n)  1 2 2 12 

number of parastrophic closures in L(n) 1 4 14 832 

Table 1. 

It would be hard to extend such results to larger values of n, since 
IL(7)I = 16.942.080 ([5]). 	 • 

The classes were enumerated and analysed with the aid of a PC computer, 
by using algorithms given in [1]. Most of the running time was spent for the 
generation of parastrophic closures. This is a consequence of the fact that 
parastrophic closures are not superclasses of isomorphic classes. 

The questions concerning the relationships among the considered classes 
of loops of order n are obviously trivial for n < 3. The full description will 
be given for n = 6, while the corresponding data for n E {5, 4} will be briefly 
listed in the last section. 

Isomorphic classes of loops as well as their cardinalities are listed in the 
Appendix. These classes are basic constituents of all' the considered classes 
of loops except for the parastrophic closures. 

2. Definitions and denotations 

Let S(n) denote the set {1, 	, n}. 
A latin square of order n is an n X n matrix A with elements in S(n), 

which satisfies that there are no two coinciding elements in the same row or 
in the same column of A. 

A loop (with unit 1) of order it is a latin square A of order n, which 
additionally satisfies A[i, 1] = A[1, i] = i, for 1 < i < n. 

Let L(n) denote the family of loops of order it. 

We proceed with definitions of eight kinds of equivalence classes over L(n). 
Two loops X and Y of order n belong to the same isotopy class if there 

exists an isotopy , i.e., a triple T = (p, q, r) of permutations of S(n) satisfying 

Y[p(i),q(j)] = r(X[i,j]), forl < i , j < n. In particular, if T is of the form 
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(p, p, p), (q, p, p), (p, q, p) or (p; p, q), then the loops X and Y are respectively 
said to belong to the same isomorphic class, C—class, R—class or E—class. 

The type of an isotopy class is the family of cardinalities of the included 
isomorphic classes. 

Let r A  and lA respectively denote the permutations of S(n) which produce 
the right and the left inverse elements of the loop A (thus A[i, rA(i)] = 1 
and AVA(i),fl = 1 for i E 5(n)). 

Each loop A has six loop-parastrophes A, p(A), A(A), r(A), Ar(A), pr(A), 
associated to it, where r is the transposition operator, while the opera-
tors p and A have the following meaning (denotations p and A are in ac-
cordance with the denotations used in [3]): p(A)[rA(i),A[i,j]] = j, and 
A(A)[A[id], /A(j)] = i , for 1 < i,j < n. 

Two loops X and Y from L(n) are said to belong to the same main class 
if there exists another loop Z E L(n), such that X and Z belong to the same 
isotopy class and Y is a loop-parastroph of Z. In particular, if the word 
"isotopy" in this definition is replaced by the word "isomorphic", then X 
and Y are said to belong to the same II—class. 

Two loops X and y from L(n) are said to belong to the same parastrophic 
closure if there exists a sequence X = Z2, . . . Zk = Y of loops from L(n), 
such that Zi+1  is a loop-parastroph of Z2 , for 1 < i < k —1. The parastrophic 
closure, associated to a loop A, will be denoted by PC(A). 

The order 0 of a permutation p is the smallest natural number such that 
p° is the identical permutation. 

The-ordinal numbers of isotopy classes will be followed by the letter "I". 
The ordinal numbers of C— and R— classes will be usually followed by the 
letters "C" and "R", respectively. No additional letters will be used with 
the ordinal numbers of isomorphic classes. 

3. C—, R—, E— and isotopy classes 

Given a permutation p of S(n), the permutations q of S(n), such that the 
isotopies (q „p, p), (p, q, p), and (p, p, q) map L(n) to L(n) — are characterized 
in [2]. Although the definitions of C—, R— and E—classes are analogous, 
it turns out, when consideration is restricted to the loops in L(n), that 
E—classes have a special role. ' 

Namely, isotopies a) (q, p, p) b) (p, q, p) c) (p, p, q) map a loop X from 
L(n) to another loop in L(n) if and only if ([2]) for, 1 < i < n: 

a) q(i) = p(X[i,p-1 (1)]) 
b) q(i) = p(X[p-1(1),i]) 
c) q(X[p-1 (1), i]) = q(X[i,p -1 (1)]) = p(i) 

The commutator of a loop X E L(n) is the set of those elements 
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k E S(n), which satisfy that X [k, = X [j, k], for each j E S(n). The num-
ber of commutators is ([2]) an invariant of an E—class. An abridged search 
for E—classes can be gained by partitioning (representatives of) isomorphic 
classes w.r.t. this number. 

Those E—classes, the loops of which have more than one commutator, are 
listed (by means of their isomorphic subclasses) in the separate fields of 1., 
3. and 5. column of Table 2. (the remaining E—classes necessarily coincide 
with isomorphic classes). Each represented E—class has in the next column 
to the right associated an expression of the form ( f (A) • c(A) . . .) , where: 

- c(A) is the cardinality of the isomorphic class determined by A 

- f (A) is the number of isotopies of the form c), which fix 
the loop A. 

2 commutators 3 commutators 6 commutators 

3 (2.120) 1 (12 • 60) 

50 (2.120) 2 (12 . 60) 

92 (2.120) 4,79 (6 .20 + 6 .40) 39 (120 .6) 

94 (2.120) 8,83 (2 . 60 -I- 2. 120) 40,42 (8.60 + 8.30) 

103 (2.120) 47,78 (6.20 + 6 .40) 455 (4 . 120 + 4 .60) 

104 (2.120) 54,82 (2 . 60 + 2.120) 49 (12.60) 

Table 2. 

The cardinality of the E—class determined by A is equal to 

f( 
1

A) 
(n — 1)! • (number of commutators of A); 

the numerator is equal to the number of isotopies of the form c). 
The next two tables give the intersection and inclusion relationships 

among isotopy, C—, R— and isomorphic classes over L(6). 
The denotations in the x—th row and the y—th column of Table 3. mean 

that the isomorphic class 10.x+ y belongs to the intersection of the C—class 

C and the R—class R : 
Each C—class has a non-empty intersection with each R—class within the 

same isotopy class ([2]). Consequently, each loop isotopy can- be represented 
as a product of two special isotopies within C—classes and R —classes respec- 

tively. Isotopy classes of loops in L(n) can be determined as the unions of 
those R—classes, which have non-empty intersections with the same C—class. 

A further conclusion is that each C—class has at least one common iso- 
morphic class with each R—class inside the same isotopy class. E.g., since 

the isotopy class 10/ includes three C— and three R—classes, it follows that 
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x y=0 y=1 y=2 y=3 y=4 y=5 y=6 y=7 y=8 y=9 

0 1C 1R 2C 2R 2C 2R 3C 3R 4C 4R 4C 5R 5C 4R 5C 5R 6C 3R 1 7C 6R dC 7R 8C 7R 8C 8R 9C 9R 10C1OR 11C 9R 12C 7R 13C11R 13C12R 2 14C13R 15C14R 16C15R 16C15R 14C16R 12C 8R 13C17R 16C15R 11C 9R 15C18R 3 17C16R 13C12R 17C19R 18C14R 14C19R 16C15R 18C18R 17C13R 19C10R 20C20R 4 21C21R 22C16R 23C22R 24C23R 25C24R 22C16R 26C25R 27C26R 28C27R 29C28R 5 24C23R 30C14R 22C13R 28C29R 31C27R 32C30R 26C24R 33C31R 34C 4R 31C29R 6 25C25R 33C32R 27C33R 28C34R 35C35R 36C 9R 22C19R 37C31R 33C36R 35C37R 7 37C36R 24C23R 29C28R 21C21R 32C30R 21C21R 20C20R 23C22R 27C38R 38C 3R 8 39C39R 29C28R 28C40R 40C 4R 24C23R 40C 4R 28C40R 28C34R 34C 4R 30C14R 9 30C18R 40C 5R 24C30R 26C25R 26C24R 24C30R 26C25R 22C16R 22C16R 34C 5R 10 26C25R 33C32R 37C32R 25C25R 32C23R 31C40R 21C22R 23C21R 31C34R 32C23R 

Table 3. 

the number of included isomorphic classes cannot be smaller than 9. This 
number is actually equal to 12; each one of the isomorphic classes 41, 45, 97 
and 98 is included into the intersection of the classes 22C and 16R. 

Each row of Table 4. contains in order the ordinal number of an isotopy 
class, the included C-classes, the included R-classes and the set of included 
isomorphic classes: 

11=1C = IR = 	 {1} 
21 =2C = 2R = 	 {2,3} 
31 =3C + 6C + 38C = 3R = 	 {4, 9, 79} 
41 =4C + 5C + 34C + 40C = 4R + 5R = 	{5, 6, 7, 8, 58, 83, 85, 88, 91, 99} 
51 =7C = 6R = 	 {10} 
61 =8C + 12C = 7R + 8R = 	 {11, 12, 13, 17, 25} 
71 =9C +11C + 36C = 9R = 	 {14, 16, 28, 65} 
81 =IOC + 19C = lOR = 	 {15,38} 
9/ =13C = 11R + 12R + 17R = 	 {18, 19, 26, 31} 

101 =14C + 17C + 22C = 13R + 16R + 19R ={20, 24, 30, 32, 34, 37, 41, 45, 52, 66, 97, 98} 
117 =15C + 18C + 30C = 14R + 18R = 	{21, 29, 33, 36, 51, 89, 90} 
121 =16C =,15R = 	 {22, 23, 27, 35} 
131 =20C = 20R = 	 {39, 76} 
141 =21C + 23C = 21R + 22R = 	 {40, 42, 73, 75, 77, 106, 107} 
151 =24C + 32C = 23R + 30R = 	 {43, 50, 55, 71, 74, 84, 92, 95, 104, 109} 
161 =25C + 26C = 24R + 25R = 	 {44, 46, 56, 60, 93, 94, 96, 100, 103} 
171 =27C = 26R + 33R + 38R = 	 {47, 62, 78} 
181 =28C + 31C = 27R + 29R + 34R + 40R ={48, 53, 54, 59, 63, 82, 86, 87, 105, 108} 
191 =29C = 28R = 	 {49, 72, 81} 
201 =33C + 37C = 31R + 32R + 36R = 	{57, 61, 67, 68, 70, 101, 102} 
211 =35C = 35R + 37R = 	 {64, 69} 
221 =39C = 39R = 	 {80} 

. Table 4. 
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4. II—classes and main classes 

II—classes play a central role among the classes in Figure 1. They can be 
used for establishing a relationship among the well-known kinds of classes 
(isotopy, isomorphic and main): 

Theorem 1. All the isotopy classes within the same main class have the 
same type. 

The proof is based on the intermmediate notion of II—class. It easily 
follows from the following three lemmas: 

Lemma 1. Each 	class and each isotopy class within the same main class 
have non-empty intersection. 

Proof. Suppose that a main class contains a II—class II and an isotopy class 
IT s.t lI fl IT = 0. If L 1  E II and L2 E IT, then by definition of main class, 
there exists an isotopy i and a loop-parastrophy 7r .  satisfying L 1  = iriL2 . 
Thus the loop iL 2  belongs to the classes IT and II, contradicting II fl IT = 
O. ❑ 

Lemma 2. Isomorphic classes within a II—class have the same cardinality. 

Proof. Consider two isomorphic classes 1A11  and I M2  within the same 
II—cla .ss. Let L E I M1  and 71-  be a loop-parastrophy satisfying r(L) E 111/2. 
The function 7F maps 1M1  to I M2  since iriL = i7rL E I M2  for arbitrary 

iL E 1M1. The operator 7r is expressed by means of the operators A, p and 

r . Since all these operators are involutive [2], it follows that there exists the 
inverse function 7r -1 . This implies that the function 7r is a bijection between 
1M1 and I M2 . ❑ 

Lemma 3. The intersections of a II—class with distinct isotopy classes from 
the same main class — have the same number of included isomorphic classes. 

Proof. Analogously to the proof of previous lemma, one primarily proves 
that the intersections of isotopy classes with the same II—class have the same 
cardinality (the proof remains valid when the isomorphism i is replaced by 
the isotopy). The application of Lemma 2 to the equicardinal intersections 
completes the proof. ❑ 

Proof of Theorem 1. Lemmae 1, 2 and 3 give that the intersections of two 
isotopy classes with each II—class within a main class — consist of the same 
number of equicardinal isomorphic subclasses. ❑ 

It turns out that each two isotopy classes, taken from any two distinct 
main classes over L(6) have different types (such a conclusion need not be 
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816 	 S. Mati6-KekiC and D. Acketa 

valid for larger ground-sets). Therefore, main classes over L(6) can be recon- 
structed by use of the relationships between isotopy and isomorphic classes. 

According to the following Table 5., the isotopy classes of loops on 6 
elements can be collected into 12 wholes (denoted by I,II,... ,XII) w.r.t. 
the type. The families of cardinalities of the included isomorphic classes are 
given in the third column of the table (e.g., the family {60,60,120,120} is 
written as 2 • 60 + 2. 120). 

I 11 1 • 60 
II 21 1 	• 60 + 1 • 120 

III 51 1 • 20 
IV 61 1 	• 60 -I- 4 - 120 
V 101 4 • 30 -I- 8 • 120 

VI 161 9 • 120 

VII 221 1.40  
VIII 31, 171, 191 1 	20 + 1 •40 + 1 • 60 

IX 41, 151, 181 2 • 60 + 8 • 120 
X 71, 91, 121 2 • 60 -I- 2 • 120 

XI 81, 131, 211 1 - 6 + 1 30 
XII 111, 141, 201 2• 30 +2 -60+ 3• 120 

Table 5. 

It follows from Theorem 1 and Table 5. that there are at least 12 main 
classes on 6 elements. The data from [5] confirm that each one of the 12 
registered candidates is itself a main class. The same conclusion can be 
derived from Table 6; there are only 12 different collections of isotopy classes 
which have non-empty intersections with a H- class. 

5. Duality 

Loops L and r(L) are said to be dual to each other. Two isotopy (isomor-
phic) classes are dual whenever they contain two mutually dual representa-
tives. It easily follows from the definition that the dual of a C-class is an 
R -class within the same isotopy class, and conversely. On the other hand, 
II-classes and main classes contain complete pairs of mutually dual isomor-
phic classes, since the duality operator is a special kind of a loop-parastroph 
operator. 

Duality operator will be denoted by ,-,•; the denotation N  between two 
equicardinal sets of classes means that the underlying bipartite matching of 
mutually dual classes is not yet decided exactly. 

The mutually dual pairs of isomorphic classes are (4, 47), (5, 53), (6, 59), 
(7, 48), (8, 54), (9, 62), (13,17), (14, 18), (15, 64), (16, 19), (21, 57), 
(24, 52), (26, 65), (28,31), (29, 67), (30,66), (33, 68), (34, 37), (36, 70), (38, 
69), 
(51, 61), (56,60), (58, 63), (78, 79), (82, 83), (85, 86), (87, 88), (89, 101), 
(90, 102), (91, 105), (92, 104), (93, 96), (94, 103), (95, 109), (97, 98), 
(99, 108), (106, 107), while the remaining 35 isomorphic classes are self-dual. 
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A classification of loops on at most six elements 	 817 

An abridged way to recognize duality of isomorphic classes would be to use 
dualities between C— and R— , as well as between isotopy classes. Necessary 
data can be found in Tables 3, 4 and 9. 

E.g., XII main class contains isotopy classes 11/, 14/ and 20/. Consulting 
the numbers of included C—classes and R—classes, we conclude that 11/ 
20/ and that the isotopy class 14/ is self-dual. 

Let the class 14/ be represented similarly as in Table 4. In addition, the 
isomorphic classes, as well as their cardinalities (in ( ) brackets) are listed 
in [ brackets after the corresponding C(R)—class: 

141 = 21C[40(60), 73(120), 75(60), 106(120)] 
23(142(30), 77(30), 107(120)] 

21R[40(60), 73(120), 75(60), 107(120)] 
22R[42(30), 77(30), 106(120)] 

Comparing the cardinalities of isomorphic classes included in distinct C—
and R—classes, it follows that 21C N 21R and 23C N 22R. This implies 
(using also the cardinalities of isomorphic classes) that {40, 75} N  {40,75}, 
{42, 77} N {42, 77} and 106 — 107, which further gives that the isomorphic 
class 73 is self-dual. 

It might be interesting to note that among the only six E-classes, which 
consist of two isomorphic classes each, there are two pairs of mutually dual 
E—classes: (4, 79) N (47, 78) and (8, 83) N (54, 82). 

6. Parastrophic closures and H — classes 

Let rA  denote the permutation which produces the right inverse element 
of a loop A (A[i, rA(i)] = 1 for each i E S(n)). It can be proved that: 

Theorem 2. It is satisfed for each loop A from L(n) that: 
IPC(A)I < 6 • order(rA) < 6 • max g.c.d.(si, • • • ,sk), 
where the maximum is taken over all the partitions n — 1 = si . • • -I-  sk • 

This is an analogue' to a statement ([3]) which claims that. PC(A) has 
non-empty intersections with at most six isomorphic classes for each loop A. 
Each loop from PC(A) can be obtained from A by an application of trans-
formations of the form ApAp , when the order of r A  is odd, respectively 
of the form ApAp... or rApAp..., when the order of rA is even. 

Among all the 9408 loops in L(6), only 5650 reach the above upper bound 
6• order(rA) for IPC(A)I. More precisely, the bound is reached with all those 
loops A E L(6), which satisfy that IPC(A)1 > 12, and only with 150 loops 
with smaller IPC(A)I (120 with IPC(A)I = 12 and 30 with IPC(A)I = 6). 
We conjecture that PC(A) = 6 • order(rA) whenever IPC(A)I > 12. 

'when non-isomorphic loops are replaced by non-identical loops 
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818 	 S. Mati4-KeldC and D. Acketa 

The loops A E L(6) with IPC(A)I = 10 seem to be particularly interest-
ing. All of them have order(r A ) = 5. In addition, 10 is the largest length 
that we know of a minimal ApAp ... cycle which maps A to A, which is less 
than the theoretical maximum. 

On the basis of tests with random loops, we conjecture that the length 
of the parastrophic closure of a loop A E L(n) for a larger n almost always 
coincides with 6 • order(rA). The minimal value of IPC(A)I is, however, 
equal to 1 for each it (e.g., when A is the multiplication table of the cyclic 
group). 

The following lemma claims that the above considerations may be raised 
to the level of II—classes: 

Lemma 4. Parastrophic closures within a H—class have the same cardinal-
ity. 

Proof. Let PC1  and PC2  denote two parastrophic closures within a H—class. 
There exist two isomorphic loops L 1  and L2 belonging to PC1 and PC2 
respectively. 

A parastrophic closure is determined by its any incident loop. Using 
commutative diagrams which connect isomorphism and loop-parastrophy 
operators, one easily concludes that the parastrophic closuures corresponding 
to L 1  and L2 have the same cardinality. ❑ 

The first two columns of the following Table 6. contain the cardinality of 
parastrophic closures and the total number of parastrophic closures within 
L(6) of a fixed cardinality. The denotation X : Y is associated to the 
isomorphic class X , which is included into the isotopy class Y. II—classes 
correspond to the ( ) brackets. The number of parastrophic closures within 
each II—class 2  is given in [ ] brackets after ( ) brackets: 

In particular, Table 6, can be used for an illustration of Theorem 1. For 
example, data from Table 6 give the structure of isomorphic classes within 
XII main class, distributed w.r.t. isotopy classes and H-classes, given in 
Table 7. Note that the type of isotopy classes within XII main class is 
2.30 + 2.60  + 3 • 120 (this can be also found in Table 5). 

The second, the third and the fourth row of Table 7 correspond to isotopy 
classes, while all the columns, except for the first, correspond to II-classes. 
For each II-class are given three additional data. The cardinalities and the 
number of the included parastrophic closures are given in the 5th and the 
6-th row of the table respectively. On the other hand, the first row of the 
table contains the cardinalities of the included isomorphic classes (taken from 

tall the parastrophic closures within a H—class have equicardinal intersectionswith all 
the isomorphic classes within the same H—class 
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2) [40] (2 : 2/) [30] 	 (10 : 51) [10] 
3) [96] (9 :31, 49 : 191, 62 : 171) [60] 	(15 : 81, 39 : 131, 64 : 211) [6] 

(36 : 111, 42 : 141, 70 : 201) [30] 
4) [25] (25 : 6/) [15] 	 (80 : 221) [10] 
6) [240] (4 : 3/, 47 : 171, 72 : 191) [10] 	(14 : 71, 	18 : 91, 	22 : 121) [30] 

(8 :41, 54 : 181, 55 : 151) [30] 	(21 : 111, 40 : 141, 57 : 201) [30] 
(29 : 111, 67 : 201, 77 : 141) [15] 	(32 : 101, 34 : 101, 37 : 101) [15] 
(33 : 111, 68 : 201, 75 : 141) [30] 	(38 : 81, 69 : 211, 76 : 131) [15] 
(43 : 151, 58 : 4/, 63 : 181) [60] 	 (20 : 101) [5] 

8) [30] (3 : 21) [15] 	 (46 : 161) [15] 
10) [48] (93 : 161, 96 : 161) [24] 	(97 : 101, 98 : 101) [24] 
12) [50] (6 :41, 	59 : 181, 	74 : 151) [15] 	(78 : 171, 79 : 31, 	81 : 191) [10] 

(28 : 71, 	31 :91, 	35 : 12!) [15] 	 (12 : 61) [10] 
18) [80] (7 :41, 48 : 181, 71 : 151) [20] 	(11 :61, 	13 : 6/, 	17 : 6/) [20] 

(16 : 71, 	19 : 9/, 23 : 121) [20] 	(24 : 101, 41 : 101, 52 : 101) [20] 
24) [75] (5 :41, 50 : 151, 	53 : 181) [15] 	(30 : 101, 45 : 101, 66 : 101) [15] 

(26 : 9/, 27 : 12/, 65 : 71) [15] 	(44 : 161, 56 : 161, 60 : 161) [15] 
(51 : 111, 61 : 201, 73 : 141) [15] 

30) [48] (85 : 4/, 86 : 181, 91 :41, 95 : 151, 	105 : 181, 	109 : 151) [24] 
(89 : 111, 90 : 111, 	101 : 201, 102 :201, 	106 : 141, 	107 : 141) [24] 

36) [40] (82 : 181, 83 ; 41, 84 : 151) 	[10] (94 : 161, 	100 : 161, 103 : 161) [10] 
(87 : 181, 88 : 41, 92 : 151, 99 : 4/, 	104 : 151, 108 : 181) [20] 

Table 6. 

30 60 30 60 120 
	

120 
36 21 29 33 51 89,.90 
42 40 77 75 73 106, 107 
70 57 67 68 61 101, 102 
3) 6) 6) 6) 24) 30) 

[30] [30] [15] [30] [15] [24] 

Table 7. 

Table 9 of Appendix). For example, the last column of the table corresponds 
to a II-class having 3 • 2 • 120 = 30 . 24 = 720 loops. 

7. Classifications on 5 and 4 elements 

In this section are given the corresponding classifications of loops on 5 
and 4 elements. Denotations in the tables are completely analogous to those 
on 6 elements, with the additional denotations ' and " for loops on 5 and 4 
elements respectively. 

11/ 
14/ 
20/ 
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820 	 S. Mati6-Keki6 and D. Acketa 

n = 5 

Table 6' 

Table 2" 

2 commutators 2 commutators 
1', 2'1(3 . 8 + 3 . 8) 6'1 	(20 . 6) 

y=1 y=2 y=3 y=4 y=5 y=6 
1R':1C' 

1/' = 1C' 

2R':2C' 

+ 2C' 

1R':2C' 

= 1R' + 

2R':1C' 

2R' = 

2R':1C' 3R':3C' 

2/' = 3C' = 3R' = {6'} 

1/11 •2 	3•8+ 1.24 II ' 2/' 1 • 6 

1) [6] (6':21') 	[6] 
2) [1] (3':11') 	[1] 
6) [4] (1':11', 2':1/', 4':1I') 	[4] 

8 ) [3] (5':1I') 	[3] 

n=4 
4 commutators 

1" (24  • 1)12" 1(8 • 3) 

Table 2' 

Table 3' 

Table 4' 

Table 5' 

Table 3" 	y = 1 

 

y = 2 

2R" :2C" 

 

1R" :1C" 

 

    

Table 5" 
	

I" 1/" 1 • 1 

Table 6" 	1) [4] I (1":1/")[1] 	(2":2/") [3] 
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Table 4" 1/" = 1C" = 1R" = {1"} 
2/" = 2C" = 2R" = {2"} 
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A classification of loops on at most six elements 	 821 

Appendix 

The representatives of the-  109 isomorphic classes within L(6) are given in 
Table 8. Each one of these loops is represented by a 16-digit sequence; the 
four consecutive quadruples of the sequence contain the middle four elements 
of the 2nd, 3th, 4th and 5th row of the loop respectively: 

1 = 1436456136526123 	2 = 1436456136526124 	3 = 1436456136526213 
4 = 1436456156126123 5 = 1436456156236214 6 = 1436456161523624 
7 = 1436456256136124 8 = 1436456256216213 9 = 1436456262513614 
10 = 1436516262513614 11 = 1436516262513624 12 = 1436516262514613 
13 = 1436516262514623 14 = 1436516262534621 15 = 1436516265134621 
16 = 1436516462514623 17 = 1436516462533612 18 = 1436516462533621 
19 = 1436516462534612 20 = 1436516465123621 21 = 1436516465124623 
22 = 1436516465213612 23 = 1436516465233612 24 = 1436516465234612 
25 = 1436526161523624 26 = 1436526161524623 27 = 1436526161533624 

28 = 1436526165233614 
31 = 1436526461533612 
34 = 1436561261533264 

37 = 1436562162533164 
40 = 1456416256136234 
43 = 1456426156236134 
46 = 1456426165323614 
49 = 1456456156326123 

52 = 1456456162133624 
55 = 1456456256316213 
58 = 1456456262313614 
61 = 1456461265313264 
64 = 1456516462133621 
67 = 1456526461233612 

70 = 1456562165323164 
73 = 1456621435614623 
76 = 1456651432614623 
79 = 3156126456236412 
82 = 3156146256216234 
85.= 3156426156236412 
88 = 3156426165321624 
91 = 3156456156236412 
94 = 3156461215636234 
97 = 3156462115636234 
100 = 3156462165321463 

103 = 3416156461524623 
106 = 3416456261531624 
109 = 3416562165321264 

29 = 1436526165234612 
32 = 1436526465213612 
35 = 1436561262533164 
38 = 1436562462514163 
41 = 1456416265233614 
44 = 1456426165233612 
47 = 1456456136126123 
50 = 1456456156326213 

53 = 1456456236216134 
56 = 1456456261233614 
59 = 1456461235616234 
62 = 1456462135626134 
65 = 1456526161323624 
68 = 1456526465313612 
71 = 1456612435614632 
74 = 1456621435614632 
77 = 1456652431624613 
80.= 3156126465214632 
83 = 3156146256236214 
86 = 3156426156326413 
89 = 3156456116236234 
92 = 3156456256216413 
95 = 3156461265231264 
98 = 3156462115636432 
101 = 3416156256216234 

104 = 3416456216536124 
107 = 3416526461521623 

30 = 1436526461524613 
33 = 1436526465214613 
36 = 1436561461524263 
39 = 1456416256136231 
42 = 1456426156236132 
45 = 1456426165233614 
48 = 1456456136126234 
51 = 1456456161323624 

54 = 1456456236216213 
57 = 1456456262133621 
60 = 1456461265233164 
63 = 1456462165323164 

66 = 1456526165323614 
69 = 1456561265313264 
72 = 1456612435624631 
75 = 1456651431624623 
78 = 3156126456216432 
81 = 3156126465234612 
84 = 3156146265314623 
87 = 3156426165231634 
90 = 3156456116236432 

93 = 3156456262311624 
96 = 3156462115626234 
99 = 3156462165321264 
102 = 3416156456236132 

105 = 3416456256316124 
108 = 3416562115626234 

Table 8. 

Table 9. gives the number of loops within distinct isomorphic classes of 
L(6). The set of (labels of) isomorphic classes which have cardinality c is 
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822 	 S. Mati6-Kela and D. Acketa 

denoted by "Sc". 

S6 = {15, 39, 64} 	 S20 = {4, 10, 47, 72} 

S30 = {20, 29, 32, 34, 36, 37, 38, 42, 67, 69, 70, 76, 77} 	S40 = {78, 79, 80, 81} 

S60 = {1, 2, 6, 8, 9, 14, 18, 21, 22, 25, 28, 31, 33, 35, 40, 49, 54, 55, 57, 59, 62, 68, 74, 75} 

S120 = {1, 2, ... , 109} - (S6 U S20 U S30 U S40 U S60) 

Table 9. 

The corresponding tables for L(5) and L(4) are: 

Table 8.' 1' = 145451523 2' = 145452513 3' = 145512351 
4' = 145521352 5' = 315451523 6' = 345451512 

Table 9.' SZ = {31, S6 = {6'}, S'8 = {1' ,2 1 ,4 1 }, S'24 = { 5i ) 

Table 8." 1" = 1441 2" = 1442 
Table 9." S"1 = (1"), S"3 = {2"} 

INSTITUTE OF MATHEMATICS, 21 000 NOVI SAD, TRG DOSITEJA OBRADOVIC.  A 4, 

YUGOSLAVIA 
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FILOMAT (Nis) 9:3 (1995), 823-829 
Algebra, Logic & Discrete Mathematics 

Nis, April 14-16, 1995. 

ON DIMENSIONS OF CLASS SPACES 

arko Mijajlovie and Dusan OiriC 

ABSTRACT. In our previous papers, we have introduced the notion of a class 
space, i.e. topologies on proper classes, and we defined and studied there 
the main topological concepts on such spaces. In this paper we shall discuss 
the notion of dimensions of class spaces. Analogues of Ind and ind for class 
spaces are defined, and their properties are studied. 

1. Introduction 

In our previous papers [3], [4], we have introduced the notion of a class space, 
i.e. topologies on proper classes, and explained the reasons for studying 
so defined spaces. In this paper we shall discuss and study the notion of 
dimensions of class spaces. 

First we shall review some notation. We shall use the notation and def-
initions introduced in [3], [4]. For example, by capital letters X, Y,Z,... 

we denote classes, and by x, y,z,... sets. Greek letters may stand both for 
classes and for sets. For our metatheory we shall take NBG class theory 
if not otherwise stated. Further, we shall assume the usual constructions 
and definitions from set theory and class theory. For example, we remind 
the reader that a class X is transitive if from x E y E X it follows x E X. 
Throughout the paper K will denote a transitive class. Now we review the 
axioms for class spaces as we shall often refer to them. 

Let K be a class and r and a be classes of subsets of K. We call triple 

K = (K, r, a) a topological class if the following axioms are satisfied: 

0. 0 E 7 )  OE a 
1. x,yErxr1yEr 
2. For any i, and (xil j E i), (Vj E i xj E 7) 	E r 

3. For any a E K there is x E r such that a E x. 

4. Vx ErVyE cr x — y E T. 

823 
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824 	 Z. Mijajlovie and D. eiri6 

1'. x,yEaxUyEa. 
2'. For any i, and (xi' j E i), (Vj E i xj E a) 	nixj E G- 
3'. For any subset x of K there is y E a such that x C y. 
4'. VxErVyEa y—xEcr. 

Elements of r are open subsets while elements of a are closed subsets of 
K. The following proposition from [3] states that a is uniquely determined 
by r, and vice versa. 

Proposition 1.1. Let K = (K,r,a) and K' = (K,r,a') be class spaces. 
Then a = a'. 

Various topological notions for class spaces, such as the continuity, the 
compactness, product of class spaces etc were introduced in our previous 
papers, and various results concerning these notions were proved. The most 
important result obtained is that the finite product of compact class spaces 
is also a compact class space. In this paper we shall discuss and develop the 
notion of dimensions of topological class spaces. 

The functions Ind (Brower-Cech, or large inductive dimension), ind (Men-
ger-Urysohn, or small inductive dimension), dim (see [1]) are the most impor-
tant dimension functions for topological spaces. By use of these functions we 
can classify topological spaces according to their dimensions. Let us remind 
that the notion of the compartment plays the main role in the definitions 
of Ind and ind, while in the definition of dim this role have the notion of 
covering and the order of covering. 

If X is a standard topological space, then B is a compartment between 
disjoint, closed subspaces P and Q if X\B = 01 U 02, where 01, 02 are 
disjoint open subsets of X which contain P and Q respectively. Every com-
partment B in X defines a partition of X of the form X = 01 U B UO2. Now, 
suppose K = (K, a, r) is a class space. If K is a proper class, then obviously 
there is no a partition of K into sets in the above form, neither there is a 
covering of K by a set-family of sets. Therefore, there is no straightforward 
way for defining of dimension functions. Our aim is to propose possible 
definitions of dimension functions on class spaces. 

In the following, cl x, int x, fr x, acc x denote respectively the closure, the 
interior, the boundary, and the set of accumulation points of a set x C X in 
a class space X. If x C a C X, then these terms in respect of the subspace 
a are denoted by cl ax, etc. If not otherwise stated, N denotes the set of 
non-negative integers. 

2. Dimension functions 

Let K = (K,r,a) be a topological class space. A set B E a is a compart-
ment between sets P, Q E a if there is U E r such that P U Q U B C U and 
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U\B = 01U 02, where 01,02 E T, P C 01, Q C 02, and 01 n 02 = 0. Let 
us notice that the notion of the compartment is well defined. Namely, by 
the Axiom 3, for every x E P U Q U B there is Ux  E r such that x E Ux  and 

U = UxEpuc2EBUx PUQU B. As we have U E T, B E a, by Axiom 4 it 

follows U\B E r, and also 01 U 02 E T. For the compartment B we shall 

say that it is a thin compartment if it has the empty interior, i.e. int B = 0. 

Theorem 2.1. For every compartment B between sets P, Q E T there is a 

thin compartment B' C B. 

Proof. As B is a compartment between P and Q, there is U E T such that 

PUQUB C U, U\B =01UO2,P C 01, Q C 02, 01,02 E r, and 

01 n 02  = 0. Let us choose 01 = U\c102. As d02 E r and U E r, 

it follows OT E T. Also 0-1 j 0 1  and OT n 02 = 0. Now we show that 

int (d02 n B) = 0. Suppose, in contrary, that int (c102 n B) # 0. Then 

there is x E Ux  C cio2 n B, so Ux  C B and Ur  n 02  o 0, i.e. B n 02  0 0, a 

contradiction. Then B' = cl 02 n B is a thin compartment between P and 

Theorem 2.2. Let IC = (K ,T,a) be a topological class space, P,Q E a and 

B a compartment between P and Q. If Xo E a is such that P n Xo  o 0 and 

Q n Xo # 0, then Bo  = B n Xo is a compartment between sets P o  = Xo n P 

and Qo  = Xo n Q in the space Xo with the topology induced by K. 

Proof. As B is a compartment between P and Q in K, and X0 E a, we have 

Bo  E a, and also Bo  is a closed subset of Xo . Further, there is U E r such 

that PUQuB C U,U\B= 01UO2, P C01, Q CO2,andO1n 02= 0 . 

Let = (U U U*) n o i  n Xo  and 02=(UUU*) nO2nXo,where U* E r 

such that X0 C U* exist by the axioms for class spaces. Further, OT and 0' 21' 

are open in X0  and X0  \Bo  = OT U 02, thus Bo is a compartment between 

Po and Qo. 0 

Definition 2.3. Let K = (K,T,a) be a topological class space where K is 

a transitive class. The function Ind,: a —> N U {-1} U {oo} is defined in the 

following way for F E a: 
Ind,(F) = —1 if and only if F = 0. 
Suppose that we have defined values Ind,(F) < n-1. Then Ind,(F) < n 

if for any disjoint and closed sets P, Q in F there is a compartment B E a 

between P and Q in K such that Ind,(B) < n — 1. 

If Ind,(F) < n and there is a pair of disjoint and closed subsets of F such 

that for no compartment B between them in K, Ind,(B) < n — 2 the we 
shall say that Ind,(F) = n. If for no n > —1, Ind,(F) < n, then we put 

Ind,(F) = oo. 
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826 	 2. Mijajlovi6 and D. airie 

By use of Ind, we define Indc: K 	N U {-1, 00), and Indc(K). For 
X E K we put Indc(X) = —1 if and only if X = 0. Suppose that we have 
defined values Indc(X) < n — 1, X E K. Then for X E K, Indc(X) < n 
if for any disjoint and closed sets P, Q in space X there is a compartment 
B E a between P and Q in K such that Ind c (B) < n — 1. Specially, 
Indc(X) < n if for any disjoint sets P, Q E a there is a compartment B E 
such that Ind a (B) < n — 1. Similarly we define Indc(K) < n. Namely, 
Indc(K) < n if for all disjoint P, Q E a there is a compartment B E a-  for 
P and Q such that Indc (B) < n — 1. 

If Indc(X) < n and if in the space X there is a pair of closed, disjoint sets 
such that for every compartment B between these sets in IC, Ind,(B) > n-1, 
then we say that Indc(X) = n. If for no n > —1, Indc(X) < n, then we 
put Indc (X) = oo. Similarly we define Indc(K) < n. 
Note 2.4 As K is a transitive class then X E K implies X C K, so IC 
inherits a topological structure on X. Thus Indc(X) is well defined. But 
in general, elements of a are not the elements of K, so Indc(F) is not 
necessarily defined for all F E a. 
Note 2.5 Indc(K) is well-defined, and we see that Indc(K) is a numerical 
characteristic of K in respect to dimensions of elements of K. In this way 
we avoid the problem of defining of Ind c  on higher order classes (and type 
theory), at least for transitive topological class spaces. 

Theorem 2.6. Let K = (K,r,a) be a class space. If F, H E anK and F 
H, then Indc (F) < Indc (H). Also, for all F E aft K, Ind c (F) < Indc(K). 
Proof. We prove Indc(H) < n Indc(F) < n by induction on n. If n=-1, 
then H = 0, and so F = 0, thus the inequality holds for n = —1. Suppose 
the inductive hypothesis for n — 1, and let Indc(H) < n. Suppose P and Q 
are disjoint, closed subsets of F. These sets are disjoint and closed subsets 
of H as well, so by the inductive hypothesis there is a compartment B E a 
for these sets in K such that Ind,,(B) < n — 1. Then B is obviously a 
compartment for P and Q in F, thus Indc(F) < n. 

As disjoint and closed subsets of FE a fl K are members of a, it follows 
Indc(F) < Indc(K). ❑ 

Corollary 2.7. If a C K then the following assertions are equivalent. 
(a) For all F E a, Indc(F) < n. 
(b) Indc(K) < n. 

Proof. The implication (b)(a) follows from the above theorem. Now sup-
pose (a). Then there are disjoint P, Q E a such that F = P U Q. Then 
F E a. By the hypothesis Indc(F) < n, so there is a compartment B E 
such that Ind c (B) < n — 1. Therefore Indc(K) < n. ❑ 
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We note also the following statement. 

Proposition 2.8. If IC is a topological class space and Indc(K) < oo, then 
K is a normal class space. 

Theorem 2.9. Let Ind be the large inductive dimension of (standard) topo-
logical spaces. Then for any class space IC such that a C K, and F E K, 
Ind(F) < Indc(F). 

Proof. We shall prove the statement of the theorem by induction on di-
mension. For F = 0 the inequality obviously is true. Suppose the that 
the inequality holds holds for all natural numbers up to n — 1. Suppose 
Indc(F) < n and let P, Q be disjoint closed, subsets of F. As F E a then 
P, Q E a, and as Indc(F) < n there is a compartment B E a in K such that 
Ind a (B) < n-1. Then by Definition 2.3 it follows Indc Icrn K = Inda lcrn K , 
thus Indc(B) < n —1. Let Bo = B n F. As Bo E cr, and a is a subclass of K 
, by the inductive hypothesis it 'follows Ind(B) < Indc(B). The dimension 
function Ind is monotonous on closed subsets, so Ind(B o ) < n — 1, as by 
Theorem 2.2 for the compartment Bo  between closed sets P and Q in F we 
have Ind(F) < n. ❑ 

Definition 2.10. Let K be a transitive class and IC = (K, T , CI) be a class 
space. The function ind a : a N U {-1, oo} is defined in the following way: 
inda (F) = —1 if and only if F = 0. Suppose that we have defined values 
inda (F) < n — 1, .F E a. Now, we put ind a (F) < n if for any point p E F 
and any closed Q C F such that p 0 Q there is a compartment B E a in K 
between p and Q such that ind a (B) < n — 1. If ind a (F) < n and if there is 
p E F and closed Q C F such that p Q so that for all compartment B in 
K between p and Q we have ind a (B) > n — 1, then we put ind a (F) = n. If 
for no integer n > —1, ind a (F) < n, then we put ind a (F) = oo. 

By use of ind a  we define new dimension function hick.: K N U{-1, oo} 
and the value ind c (K) as follows. If X = 0 then we put indc (X) = —1. 
Suppose that we have defined values ind c (X) < n — 1, X E K. Then we 
put indc(X) < n if for any point p and any closed subset Q of space X 
such that p Q there is a compartment B E a for p and Q in K such that 

inda (B) < n — 1. Similarly we define indc(K) < 71. Namely, indc(K) < n 
if for any point p E K and closed Q E a such that p 0  Q there is a 
compartment B E a for p and Q such that indc(B) < n — 1. 

In particular, indc(K) < n if for every point p E K and Q E a, p 0 Q, 
there is a compartment B E a in IC with ind a (B) < n — 1. 

If indc(X) < n and if there is p E X and closed Q C X such that p 0  Q so 

that for all compartment B in K between p and Q we have ind c (X) > n-1, 
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828 	 Z. Mijajlovie and D. 6iri6 

then we put indc(X) = n. If for no integer n > —1, indc(X) < n, then we 
put indc (X) = oo. 

Theorem 2.11. Let K be a class space and X, Y E K. Then X C Y implies 
indc(X) < indc(Y). Also for all X E K, ind c (X) < indc(K). 

Proof. For n = —1, Y = 0 implies X = 0 so in this case the inequality holds. 
Suppose the inductive hypothesis, that the inequality holds for indc(Y) < 
n — 1. Suppose indc(Y) < n, and p be a point and Q a closed subset of 
space X. Then there is Q* in K such that Q = Q* fl X C Q* fl Y and 
p Q* fl Y. Since indc(Y) < n there is a compartment B E a for p and 
Q* such that ind c (B) < n — 1. Then B is a compartment between p and Q 
thus indc(X) < n. In a similar way we prove indc(X) < indc(K) for all 
X E K. ❑ 

Corollary 2.12. The following statements are equivalent: 

(a) For all X E K, indc (X) < n. 
(b) indc(K) < n. 

Proof. The part (b)(a) follows from the above theorem. Suppose (a). Let 
us choose p E K and Q E a such that p V Q. Let us put X = {p} U Q. As 
indc(X) < n and Q is closed in X there is a compartment B E a such that 
indc(B) < n — 1, and this means that indc(K) < n. ❑ 

An immediate consequence of the definition of ind c  is the following as-
sertion. 

Proposition 2.13. If indc(K) < oo then (K) is a regular topological class 
space. 

Proposition 2.14. Let K be a class space. Then for every X E K we have 
ind(X) < indc(X), where ind(X) is the small inductive dimension of X. 

Proof. The proof is by induction. This inequality is obviously true for X = 0. 
Suppose the inductive hypothesis, that the inequality holds for all dimensions 
< n — 1. Suppose ind c (X) < 11 and let p be a point and Q a closed subset of 
X such that p cl Q. As indc(X) < 71, there is a compartment B in K such 
that ind c (B) < n - 1. From Definition 1.10 it follows that indcla = ind,, 
so indc(B) < n — 1. Further, B o  = B fl X is a compartment in X between 
the point p and the subset Q, and by the inductive hypothesis and Theorem 
1.11 we have indc (Bo ) < indc(B) < n — 1 and ind(Bo) < indc(B o ), hence 
ind(Bo ) < 11 - 1. Therefore ind(X) < n. ❑ 
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On dimensions of class spaces 	 829 

Theorem 2.15. Let K be a topological class space. Then for every X E 

K Fla we have indc(X) < Indc(X). Specially, if K is a T 1  class space then 

indc(K) < Indc(K). 

Proof. The proof is by induction. This inequality is obviously true for X = 0. 

Suppose the inductive hypothesis, that the inequality holds for all dimensions 
< n — 1. Suppose indc(X) < n and let p be a point and Q a closed subset of 

X such that p cl Q. As K is T1  class space then {p} is a closed subset of X. 

As Indc(X) < it there is a compartment B E a such that Ind a (B) < 71 — 1. 

Further, on K fl a we have Ind = Inde therefore Indc(B) < it — 1. By the 

inductive hypothesis indc (B) < Indc(B) < it — 1, so indc(X) < n ❑ 
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ON THE NUMBER OF EXPANSIONS OF COUNTABLE 

MODELS OF FIRST ORDER THEORIES 

Z. Mijajlovie and I. Farah 

ABSTRACT. Let A be a countable model of a countable first-order language 
L, and T be a first-order theory of a countable expansion L' D L. Let S 
denote the set of all expansions of A to L' that are models of T. It is 

proved that S can be embedded into a metric Stone space as a Gb subset, 

and therefore k = ISI satisfies CH, i.e. either k < o or k = 2 1'10 . Several 

examples that illustrates this theorem are presented, too. 

Works of Kueker [5], Reyes [9], Barwise [1], Makkai [7] and others, show 
that certain sets of model-theoretic objects related to a countable model A, 
as AutA for example, behave as analytic subsets of the Cantor discontinuum. 
This property can be proved in several ways, and we shall present here two 
methods. The first one is based on the coding of model-theoretic objects by 
real numbers (or characteristic functions of certain subsets of real numbers). 
The second one is based on the properties of Lindenbaum algebras, and it 
has more model-theoretic nature. 

1. Coding by reals 

We shall present this method by example, i.e. we shall illustrate it in the 
case of the Kueker's theorem: 

Theorem 1.1. Let A be a countable model of a countable language. Then 

CH holds for AutA, i.e. 

lAutAl < o  or 	= 2 1*°. 

The proof of this theorem that we shall present, is based on the following 
well known facts: 

Supported by Grant 0401A of RFNS through Math. Inst. SANU. 
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832 	 2. MijajloviC and I. Farah 

1.1° For Borel subsets of real numbers R, CH holds (M. Suslin), i.e. if 
X C R then IXI < R o  or IXI = 2 14°. 

1.2° Cantor's triadic set K is a closed subset of R and it has the cardinality 
of continuum. 

1.3° Suppose X is a countable set. Then 2x is homeomorphic to the 
Cantor space K. Here 2 = {0,1} has the discrete topology, and 2x has 
Tychonoff product topology. 

Now we proceed to the proof of Theorem 1.1. For the simplicity of nota-
tion, we shall assume that A is grupoid, i.e. A = (A, •), where is a binary 
relation on domain A. Let be the set of all mappings (characteristic 
functions) k : A2 	2 such that: 
(1) Va, a' , b,1/ E A (k(a, a') = 1 A k(b,b') = 1 	k(a • b, a' • b') = 1), 
(2) Va,a1 ,bEA (k(a, a') = 1Aba#. k(b, a') = 0), 
(3) Vb EA 3a E A k(a, b) = 1. 
(4) Va, b, b' E A (k(a, b) = 1 A k(a, bi) = 1 	b = b') 

If f E AutA, then let kf: A 2  -4 2 be defined by k f(a, b) = 1 iff b = f (a), 
a, b E A. Then it is not difficult to see that k f satisfies the properties (1), (2), 
(3), (4), and that to different automorphisms f and f' correspond different 
k f and k p respectively (for example, if f (a) = b f'(a) then k f(a,b) = 1, 
while k p (a, b) = 0). On the other hand, if f E .F and f: A —+ A is defined 
by b = f (a) iff k(a, b) = 1, a, b E A, then f is a well-defined function and 
f E AutA. Therefore, if the map ck is defined by 0: f k f, f E AutA, then 

: AutA 131 )  , thus 

(5) lAutAl = 
Further, let .F1, F2, .F3 be sets of functions k: A 2  —› 2 that satisfy condi-

tions (1), (2), (3) and (4) respectively. Then: 

• = 	n  ({k E 2 A2  I k(a, a') = 0}U 
a,as ,b,b'EA 

{k E 2A2  k(b, b') = 0} U {k E 2A2  I k(a • b, a' • b') = 1}), 

n  ({k E 2A2  I k(a, a') = 0} U n 	E 2A2  I k(b, a') = 01), 
a,a'EA 	 bEA,b0a 

• = n 	{k 2A2  I k(a, b) = 1} 
bEA aEA 

.F4 = U({k E 2 A2  I k(a, b) = 0} U n  {k E 2'42  I k(a,b1) = 0} 
a,b 	 bEA,b'Ob 

Let 2A 2  be the product topology, where 2 has the discrete topology. Then 
the set {k E 2A 2  I k(a,b) = a}, a, b E A, a E 2, is a clopen set. Thus, F1, 

1.2 = 
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-F2 and F4 are closed, while F3 is a countable intersection of open sets. As 

= 	n F2 n F3 n F4, it follows that .F is a G6 subset of the Cantor space 

2A 2 , so by Fact 1.1° we have< Ro or 	= `go. Hence, by (4) the 

theorem 1.1. is proved. ❑ 

 

2. Countable expansions in first -order logic 

Now we shall present a proof of a general theorem, based on the properties 
of Lindenbaum algebras, that the set of all countable expansions of a count-
able model A of a first-order theory T satisfies CH. Let us introduce and 
review first some notation and terminology. Let L be a first-order language 

and A be a model of L. Then Fori, denotes the set of all formulas of L, while 

Sent', denotes the set of all sentences of L. Further, LA = L U {a I a E A}, 

where a is the name of a, and (A, a)aEA  is the simple expansion of A to a 

model of LA. By ThA we shall denote the set {co E Sent', I AH (p}. The 

Lindenbaum algebra of T over L is L(T,L) = {[(p] cp E Sent',}, where 

= E Sent', I T '0). The Boolean operations {•, +} and con-

stants {OM in E(T, L) are defined in the usual way: [co] • [0] = [co A '0], 

[W] [ P] = No V v'], = [- p], and 1 = [0], 0 = HO], where 0 is a tautology. 

In the following, we shall identify T with {[co] I co E T}. If T = Ql we shall 

write simply E(L) instead of L(T, L). 
If B is an arbitrary Boolean algebra then B* is the Stone space of B, i.e. 

the set of all ultrafilters of B with clopen sets a* = {p E B* I a E p}, a E B, 

as a topological basis. Thus the dual space•G(T, L)* of L(T, L) is the set 

of all complete consistent theories of L that extend theory T. We remind 

the reader that the Cantor space 2 N  is the Stone space of the free Boolean 
algebra 11, with countable many free generators. The dual of an ideal I C B 

is I* = {p E B* I p n I 01. Observe that I* = U a era* is an open set. For 

the rest of notation and terminology, we shall follow [3]. 

Lemma 2.1. Let B be a countable Boolean algebra. Then B* can be em-

bedded into 2N as a closed subset. 

Proof. Since 11„ is a free Boolean algebra, there is a homomorphism 
onto 

h :11„ 	B. 

111 = ker(h), then I is an ideal of S2„, thus B 12,,// and B* 	— /*. 

Further, I* is open, hence 11: — I* is closed in 2N. ❑ 

Remark that for above I and .F = {p E Clud A ha > 0} we have F = 
a E p 

S2 c*,, — I*. 

Lemma 2.2. Let S C 2N be closed, and H C S be G6 in S. Then H is G6 

in 2N. 

V
ir

tu
al

 L
ib

ra
ry

 o
f 

F
ac

ul
ty

 o
f 

M
at

he
m

at
ic

s 
- 

U
ni

ve
rs

it
y 

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs



834 	 2. Mijajlovic and I. Farah 

Proof. There are open subsets Vi, i E N, of S so that H = niENVi• Hence 
there are open Ui  C 2N such that 11i = s n ui , i E N. Thus H = S n (ni  ui ), 
and as S is a countable intersection of open subsets of 2N, it follows that H 
is G in 2N. ❑ 

Let L be in the following a first-order language, L' D L an expansion of 
L,T a theory of L' and A an arbitrary model of L. By S(A,T) we shall 
denote the set of all expansions B of the model A to L' such that Bk T. 
Finally, let k(A,T) = 

Theorem 2.3. Let A be a countable model of a countable first-order lan-
guage L, L' 2 L be a countable expansion, and T a consistent theory of 
L. Then the number k(A,T) satisfies CH, i.e. either k(A,T) < No or 
k(A,T) = 2 1 0. 

Proof. Let A' be an expansion of A to VA  such that A' H T. Let 

P = PA' = {co E SelltvA  I (A', a)aEA Co} 

Then: 

i. T UTh(A,a)aEA  C P. 
ii. If 3x(px E P then there is a E A such that coa E P. 
iii. P is a complete consistent theory. 

Since T C P, by iii. we may assume that P is an ultra-filter of the 
Lindenbaum algebra £(T, L'A ). 
Claim The correspondence 4): A' e Pi between expansions A' of A to L' 
such that A' H T, and ultrafilters of £(T, L'A ) satisfying conditions i.- iii. is 
one-to-one and onto. 

Proof of Claim Suppose A!i and 41‘.2 are different expansions of A, and let 
P1  i P2 be the corresponding sets satisfying conditions i.- iii. Since Ac t  0 A'2 

 there is, for example, an n-ary relation symbol R of L' such that for some 
a l , a2 , , an  E A, Rai  ...a„ E P1  while —.Rai  ... E P2. Thus P1 P2, 
so 4) is 1-1. 

Now, let P be any set of sentences satisfying conditions i.-iii. Since P 
is consistent, there is a model B' of P, and without loss of generality we 
may assume A -<B, where B is a reduct of B' to L. Further, define A', an 
expansion of A by 

RA ' al  a2  . . . an  iff Rai  a2  . an  E P 	R E Rely, 

FA' a1  a2  . . . an  = b iff (Pal  a2  . = b) E P 	F E PIMP, 
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On the number of expansions of countable models 

where Rely is the set of all relation symbols of L', and Fncv is the set of 
all function symbols of L'. The structure A' is well-defined. For example, 
if F E Fnel, and al  , a2 ...an E A then 3x(Fa 1 a2 	= x) E P, so by the 
property ii. there is b E A such that (Fa 1 a2 	= b) E P. 

Now we shall prove A' -< B'. Really, suppose B' = 3xso(x, al , a2 , 
where al , a2 	an  E A and 3x(p(x,a i  , a2 , 	E ForL A , . Since P is com- 
plete, and B' is a model of P, we have 3xco(x, 	a„) E P, so by 
the property ii. there is b E A such that co(b, al , a2 , ...an ) E P i.e. B' 
co(b, a1 , ft_2 	an ). Therefore, by Tarski-Vaught's Theorem, it follows A' 
B'. Hence P = PA' i.e. 4) is onto, and this proves the claim. 

Now, by Lemma 2.1. we may assume that the Stone space £(T, L'A )* 
of the Lindenbaum algebra £(T, VA ) is closed subset of 2N. Let Y be the 
set of all ultrafilters of £(T, VA ) satisfying properties i.-iii. Then y is the 
intersection of the following sets: 

1. U = {p E £(T, LA)* Th(A, a)OEA p} = nod. I co E Th(A, a)aEA} 

2. V = 	n 	([,3x(px]* U u  [(par). 
3x(pxEFor t tA 	 nEA 

The set U is obviously closed and V is G6 in £(T, L'A )* as a countable 
intersection of open sets. Observe, for example, that [-axcox]ast is open. 
Therefore, by Lemma 2.2. y is Ga in 2N, and so 1y1 satisfies CH. By Claim 
IS(A,T)I = in so the theorem follows. 0 

In the case of finite expansions, the above theorem is a simple conse-
quence of Perfect Subset Theorem in [7]. However, the presented proof of 
Theorem 2.3. relies on rather basic model theory, and besides it gives an 
estimate of the complexity of the set S(A, T) in the analytic hierarchy (Gs). 

3. Examples 

In this part we shall list some examples that are consequences of Theorem 
2.3. In the following, A is a countable model of a countable language L. 

Example 3.1. We revise the Kueker's example from Section 1: if a A is a 
countable model of a countable language L, then lAutAl satisfies CH. Really, 
let L(F) = LufF1 where F is an unary function symbol, and T be a theory 
of L(F) which states that F is an automorphism in respect to symbols of L. 
If F is a new (i.e. F L) unary function symbol, then axioms of T are: 

1° F(G(xi,x2,... ,x,,)) = G(F(x i ),F(x2),... ,F(x„)), G E L is an n-
ary function symbol. 

2° R(x i ,x2,... , x n ) 	R(F(x1),F(x2),... ,F(x n )), R E L is an n-ary 

relation symbol. 
3° Axioms which says that F is one-to-one and onto function. 

V
ir

tu
al

 L
ib

ra
ry

 o
f 

F
ac

ul
ty

 o
f 

M
at

he
m

at
ic

s 
- 

U
ni

ve
rs

it
y 

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs



836 	 2. Mijajlovie and I. Farah 

Then obviously there is one-to-one correspondence between expansions 
of A to L U {F} that are models of T and automorphism of A. Therefore 
lAut Al satisfies CH. 

Example 3.2. (Burris and Kwatinetz, see [4, p.35]) Let A be a countable 
algebra of a countable language. The set of all subalgebras SubA, the set of 
all endomorphisms EndA and the set of all congruences ConA satisfy CH. 
To prove the first assertion, let U be a new unary relation symbol. Then 
subalgebras of A can be described as interpretations UA in the expansion 
(A, UA) which satisfy the conditions: 

cA  E UA, c is a constant symbol of L, 
For all x i ,x2 ,... ,x n  E 	 ,x„) E UA, F E L is a 
function symbol, 

i.e. the axioms 

U(c), cis a constant symbol of L, 
Vx i ,x 2 ,... ,x, i (U(xi) A U(x2) A ... U(x n ) = U(F(xi, X2, • • • , Xn)), 

where F is a function symbol of L. 
Other cases are described in a similar way. 

Example 3.3. As in the previous example one can find that the set of 
submodels of A. (or countable sequences of submodels) that satisfy certain 
first order properties, also satisfies Cli. For example, with the same notation 
as in the previous example, the set of all elementary submodels E(A) of A 
are described with following sentences: 

1° Axioms for SubA, 
2° (Vx i  , x2, 	, x n  E UX3yp 3y E Up), or more formally 

(Vx1,x2,... ,x n )((U(xi)A U(x2)A ...A U(x n )) 	 3y(U(y) A p))) 

Tarski-Vaught theorem then easily follows that U A  A if (A, U4 ) 
satisfies the listed axioms. 

Example 3.4. The set of all prime ideals of a countable commutative ring 
also satisfies CH. In other words, the Zariski space of a countable commu-
tative ring satisfies CH. To see this observe that "I is a ring ideal" is a 
first-order property. It is described by universal closures of the following 
formulas in the language of rings L = {+, •, 0} with added unary predicate 
I which represent an ideal: 

/(0), I(x) A I(y) 	I(x y), I(x) = I(x • y), I(xy) 	1(x) V 1(y). 

In a similar way one can show that CH holds for the set of all maximal 
ideals of a countable ring. 
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On the number of expansions of countable models 	 837 

Example 3.5. Let P = (P, <p) be a countable, partially ordered set, L = 
{<} and L' = {<, -<}. Taking for T the set of axioms of the linear ordering 
for -< extending <, we find that the number of linear extensions of P satisfies 
CH. It is easy to design for each 0 < k < tst o  or k = 21'0  a partially ordered 
set P which has exactly k linear extensions. 

Some other families of subsets of P for which CH holds includes the set 
of all (maximal) chains, the set of all (maximal) antichains, and the set of 
all dense subsets of P. 

Example 3.6. If A = (A, G) is a planar graph, then by simple compactness 
argument one can show that A can be 4-colored, i.e. to elements of A can 
be assigned four colors so that the adjacent vertices are in different colors 
(assuming that the Four-coloring theorem for finite planar graphs is true). 
If A is infinite countable, let a, b, c, d E A be four distinct elements. Then 
every map f: A {a, b, c, d} defines a coloring of A. It is not difficult to 
write down first-order axioms which describes colorings of the above type. 
Thus, all 4-colorings of a countable planar graph satisfy CH. 
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A SET OF AXIOMS FOR EVALUATING 

THE MULTIPROCESSOR PERFORMANCES 

I. Z. Milovanovie, E. I. Milovanovie, 
M. D. Mihajlovie and M. K. Stojeev 

ABSTRACT. When designing a parallel computer it is very important that 
it has the predicted performances. The challenge for a computer designer is 
to discover the minimum organization and equipement necessary to achieve 
given level of performance. So, the developing analythical model for charac-
terizing and understanding the parallel system performances is of a crucial 
interest. In order to avoid erroneous conclusions about the behaviour of par-
allel system a severe mathematical formulations should be involved. In this 
paper we give a survey of axioms that were proposed in the literature in 
order to introduce a scientific approach in studing the parallel system per-
formances. Further we shall propose a modified and reduced set of axioms 
based on discrete mathematical apparatus. 

1. Introduction 

From the very beginning of digital computer development, the design-
ers always storve to increase the speed of operations. There are number of 
possible ways to achieve this. An obvious approach is to improve the tech-
nology implemented in the realization of the computer components. There 
is of course a natural limitation in technology development: no signal can 
propagate faster than the speed of the light. Another way for increasing 
the speed of computation is by performing as many operations as possible 
simultaneosly, concurrently, in parallel, using parallel computers [8]. 

A parallel computer is one that consists of a collection of processing units, 
or processors, that cooperate to solve a problem by working simultaneously 
on different parts of that problem. The number of processors used can range 
from a few tens to several millions. As a result, the time required to solve 
a problem by a traditional uniprocessor computer is significantly reduced. 
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840 	I. Z. Milovanovi6, E. I. Milovanovi6, M. D. Mihajlovk and M. K. StojEev 

This approach is attractive for a number of reasons [1]. First, for many com-
putational problems, the natural solution is a parallel one. Second, the cost 
and size of computer components have declined so sharply in recent years 
that parallel computers with a large number of processors have become fea-
sible. And, third, it is possible in parallel processing to select the parallel 
architecture that is best suited to solve the problem or class of problems 
under consideration. Indeed, architects of parallel computers have freedom 
to decide how many processors are to be used, how powerful these should 
be, what interconnection network links them to one another, whether they 
share a common memory, to what extent their operations are to be car-
ried out synchronously, and host of other issues. This wide range of choices 
has been reflected by many theoretical models of parallel computation pro .- 
posed as well as by several parallel computers that were actually built. Since 
parallel computers are composed of multiple processors, interconnected to 
each other, and sharing the use of memory, input—output peripherials and 
other resources, estimating the performances of these systems is really com-
plex. The fact that the same system behaves differently when solving various 
problems makes the performance evaluation even more difficult. Different 
problems have different possibilities for parallelization. Some problems can't 
be parallelized at all. 

When designing parallel computer it is very important that the system has 
the predicted properties. It is also very important to design the algorithm 
that exploits both parallelism inherent in the problem and that available 
on the computer. The challenge for a computer designer is to discover the 
minimum organization and equipement necessary to achieve a given level of 
performance. By performance we mean the manner in which, or the effi-
ciency with which, a computer system meats its goal. So, the developing 
analytical models for characterizing and understanding the parallel system 
performances is of a crucial interest. But, attempts to express some measure 
of performance as a explicit function of certain parameters were not success-
ful always. Moreover, omitting one of the parameters leads to erroneous 
conclusions about the behaviour of parallel system. Thus, for example, in 
1967 Amadahl (see [7]) made the observation that if s is the serial fraction 
in an algorithm, then its speedup is bounded by 1/s, no matter how many 
processors are used. For example, if there are only 5% of the algorithm that 
can't be parallelized, then maximal speedup that can be achieved is 20, no 
matter how many processors are used. This statement, now popularly known 
as Amadahl's law, has been used by Amadahl and others to argue against 
the usefulness of large scale parallel computers. Fortunately, Amadahl was 
wrong. He missed the fact that the serial fraction, .s, is a function of prob-
lem size, M. Moreover, for most scientific and technical applications it has 
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property that Ern s(m) -4 0 [4]. 
m-000 

The above and other similar examples imply that in studing the perfor-
mances of a parallel system, a severe mathematical formulations should be 
involved. Therefore the following should be developed: 

• Explicit mathematical formulas that characterize the performances of 
parallel system 

• Axioms for basic parameters. 

The key for scientific approach in studing the performances lies in solving 
the above problems. 

Some common performance measures of parallel algorithm running on a 
parallel computer are the execution time, the speedup, the efficiency, the 
scalability, etc. 

2. Definitions and assumptions 

In this section, we introduce some terminology used in the rest of the 
paper. 

We assume the system of n identical processors interconnected in some 
way for the purpose of passing data and control information between the 
processors. Communication between the processors can be achieved via 
common memory modules or by message passing. Each processor is sup-
plied by some amount of local memory. By a parallel system we mean a 
combination of a parallel algorithm and a parallel architecture comprising 
of identical processing units. 

Definition 2.1. The degree of parallelism of a numerical algorithm is the 
number of operations in the algorithm that can be done in parallel. 

Note that the degree of parallelism is independent of the number of pro-
cessors in the system; it is an intristic measure of the parallelism in the 
algorithm. 

Definition 2.2. The average degree of parallelism of an algorithm is the 
total number of operations in the algorithm divided by the number of stages. 
A stage is comprised of the operations that can be performed in parallel. 

Consider a program for which execution time on a single processor is equal 
to T(1). When this program runs on a multiprocessor, the execution time 
can be divided into two components: 

• component with running time T, that must be run sequentialy; 
• component with sequential running time T p  that can be subdivided 

into parallel components running on different processors. 

A set of axioms for evaluating the multiprocessor performances 	841 
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Note that 

(1) 	 T(1) = Ts  + Tp  

Since a small number of problems posses ideal intristic parallelism, Ts  is 
greater than zero. 

Assume that T(n) is execution time when program is running on n—
processor system. The T(n) involves the following components: 

• serial execution time Ts , 
• parallel execution time, equal to Tp/n if the parallelizable part of the 

program can be partitioned into n parallel components of equal running 
time, and 

• synchronization and communication overhead To(n). 
According to the previous, we have the following definition. 

Definition 2.3. The execution time of an algorithm running on n—processor 
system is 

(2) 
	

T (n) = T + 	+ To(n) . 

Definition 2.4. The speedup of parallel system is defined as 

( 3 ) 
	

S(n) 
 = T(1) 

(n) • 

The parallel algorithm may not be the best algorithm on a single pro-
cessor, so for T(1) we take the execution time on a single processor of the 
fastest serial algorithm. 

Definition 2.5. The efficiency of the parallel system is 

(4) 
	

E(n) = 	 = 
S(n) 	T(1)  

n 	nT(n) • 

Definition 2.6. Parallel cost penalty is defined as 

( 5 ) 
	

C(n) = nT(n). 
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A set of axioms for evaluating the multiprocessor performances 	843 

Definition 2.7. Relative parallel cost penalty is 

nT(n) — T(1) 
R(n) = 	n  

Definition 2.8. The gain factor of a parallel system is 

( 7 ) 

T(1)— T(n) 	1 
G(n) = 	

T(1) 	
= 1 — s(n) . 

It is not difficult to see from the above definitions, that the execution time 
is the primary measure of a parallel system performance which is used as a 
basis for estimating other characteristics of a system. So, it was natural to 
establish the set of axioms for this metric. 

3. The set of axioms 

In the text that follows we are going to give the survey of axioms that were 
proposed in literature in order to introduce a scientific approach in studing 
the parallel system performances. Further, we shall propose a modified set 
of axioms based on discrete mathematical apparatus. 

As we have already mentioned, the execution time is the most important 
measure of parallel system performance. Its component To (n) represents 
the influence of communication and synchronization between processors on 
execution time. The value of To (n) directly affects the performance of the 
whole system. So, the analytical methods for characterizing and understand-
ing this measure were developed. In [2] Flatt and Kennedy introduced the 
following axioms for To (n): 

F.1 To(n) is continuous and twice differentiable in respect to n, 
F.2 To(1) = 0, 
F.3 TAn) > 0 for all n > 1, hence To(n) is nonnegative, 
F.4 nT4'(n) 2T4(n) > 0 for all n > 1, 
F.5 There exists n 1  > 1 such that To (ni ) = T(1). 

On the basis of the involved axioms, the authors have investigated the 
impact of synchronization and communication overhead on the performance 
of parallel systems. They have established upper bounds on the power of 
parallel processing in the presence of synchronization and communication 
overheads. 

The pioniers work of Flatt and Kennedy has motivated researchers to 
investigate the following: 

( 6 ) 
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a) Is the set of axioms F.1 —F.5 the minimal one, or it can be reduced, 
and, can some conditions be weaker? 

b) What is physical and/or geometrical meaning of F.1 —F.5? 
c) Why To(n) and other measures are considered as real functions, if they 

are defined on the set of natural numbers, N? 
In [6] the problems a) and b) were considered. The axiom F.5 is rejected 

as too strong, and instead of it the condition 

(8) 	 lim To (n) = +00 

is tested. 
As a basic value in [6] the function D(n) = nTo (n), instead of To(n), is 

taken. This enables author to introduce the following more geometricaly 
intuitive axioms: 

D.1 D(1) = 0, 
D.2 D(n) > 0, 
D.3 D(n) is strictly convex and differentiable. 

The author has proved that any To (n) satisfying F.1 to F.4 also satisfies 
D.1 to D.3. The question c) was not addressed in this paper. 

In [5] the problems a) and c) were addressed. Namely, the values To (n) 
and T(n) were considered as members of sequences {To(n)} and IT (n)} , 
respectively. This enables authors to reduce the set of axioms, defined by 
Flatt and kennedy, from five to the following three: 

P.1 To(1) = 0, To(2) > 0, 
P.2 (n 2)A 2 To (n) 2LTo (n) > 0, for n > 1. 
P.3 There exists n 1  such that To (n1 ) = T(1). 

It was shown that performance evaluation can be carried out very efficiently 
using discrete mathematical apparatus. 

Let us note that it is natural to use the discrete mathematical apparatus, 
since the number of processors in the system is an integer value. Besides, by 
utilizing this apparatus the condition F.1 (that the function is continuous 
and twice differentiable) becomes needless. Also, the axiom F.2 is expressed 
as natural and elemental condition To (2) > 0. The physical, and/or geomet-
rical meaning for P.2 and P.3 can't be given. 

Inspired by the papers [6] and [5] and having in mind questions a), b) and 
c), we propose in this paper a new set of axioms for sequence {D(n)}nEN, 
D(n) = nTo (n), as follows: 
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A set of axioms for evaluating the multiprocessor performances 	$145 

A.1 D(1) = 0, 
A.2 D(2) > 0, 
A.3 A2  D(n) > 0, for n > 1. 

Usage of discrete apparatus enables us to propose somewhat weaker con-
ditions for D(n) compared with D.2 and D.3 from [6]. Namely, instead 
of D(n) > 0 we take a condition D(2) > 0 and for sequence {D(n)} we 
assume to be convex instead of function D(n) being strictly convex and dif-
ferentiable. Further, instead of axiom P.3 from [5] we shall take a weaker 
condition (8) as in [6]. 

Now, we shall prove the following result. 

Theorem 3.1. The set of axioms A.1 -A.3 is equivalent with P.1 -P.2. 

Proof. Statement of the Theorem 3.1 directly follows from the equalities 

D(1) = To (1), D(2) =- 2T0 (2) and A 2 D(n) = (n+2)A2To (n)+2ATo(n). ❑ 

The assumption of axiom P.3 is not involved in A.1-A.3. Therefore, 

we are going to prove the main result for T(n) from [5] using A.1-A.3 and 
under assumption that (8) is satisfied. But, first, we shall prove two auxiliary 
results. 

Lemma 3.1. The sequence {D(n)}„ E N, is positive and monotone increas-

ing. 

Proof. According to A.3 it follows that 

E kAD(k + 1) > E kAD(k). 
k=1 	 k=1 

From the above inequality it follows that n + 1 
D(n + 2) 

 > 
D(n 1) 

 , i.e. 

D(n + 2)  D(n + 1) 	D(2)  
> • > 

n + 1 	 1 

and according to A.2 we have D(2) > 0, i.e. the sequence {D(n)} is mono-

tone increasing. ❑ 

Lemma 3.2. The sequence {To(n)}„EN is monotone increasing. 

Proof. According to inequality A 2 D(k) > 0, i.e. AD(k) > AD(k - 1), we 

have that 
(k 1)ATo(k) > (k - 1)AT0 (k - 1). 
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From the above inequality it follows 

	

k(k 1)LITo(k) > 	(k — 1)k ATo(k) , 
k=2 	 k=2 

i.e. 
n(n 1)AT0 (n) > 1 •2ATo(1) = 2T0(2) = D(2) > 0 , 

which established the result. 0 

We now present the main result for T(n). 

Theorem 3.2. If equality (8) is satisfied, then there exists an unique value, 
n = no , for which the sequence {T(n)} reaches the minimum, i.e. the in-
equality 

T (no ) < T(n) 

for all n > 1, is valid. When the inequality D(2) < Tp  is valid, then no  is 
an unique solution to 

(no  — 1)noiTo (no  — 1) — Tp  < 0 
no (no  1)AT0(no) — Tp  > 0 . 

Otherwise, no  = 1. 

Proof. Let D(2) < Tp , i.e. 2To(2) < Tp . According to (2) the equality 

	

1 	 1  (10) AT(n) = AT0(n) 
n(n + 1) Tp n(n + 1) 
	 = 	(n(n 1)ATo(n) — Tp ) 

is valid. From (10), for n = 1 we obtain the inequality 

ATM = —
1 

(D(2)— Tp ) < O. 
2 

Now, it is necessary to prove that the sequence {T(n)} is not decreasing 
for all n > 1, but there exists n for which AT(n)> 0. Assume the opposite, 
i.e. that for all n > 1 the inequality AT(n) < 0 is valid. Then according to 
(10) we obtain 

(11) ATo (n) = AT(n) 	
1 	

Tp  < 	
1 	

Tp  . n(n + 1) 	— n(n + 1) 

According to (11) we have 

1  
ATo(k) < 	k(k + 1) Tp k=1 	 k=1 

n-1 	 n —1 
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i.e. 

To (n) < Tr  (1 -11-1  

From the last inequality it follows that 

lin, To (n) < Tp  

which is in contradiction to the assumption that (8) is valid. Consequently, 
we conclude that the assumption A T(n) < 0 for all n > 1, is not correct. 
Namely, there are values for n for which A T(n) > 0, i.e. there is at least one 
value n = no  for which the inequalities 

(12) AT(no  — 1) < 0 , 	AT(no) > 0 

and (9) are valid. 
Now, it is necessary to prove that n o  is unique. Using A.3 we obtain 

(13) A (n(n 1)AT0(n)) = (n 1)0 2 D(n) > 0 . 

From (13) it can be concluded that the sequence {n(n+1)AT0(n)} is mono-
tone increasing. Accordingly, there exist the unique value n = n o  such that 
inequalities (9) and (12) are valid. 

Now, we are going to prove that for n = n o  the sequence {T(n)} reaches 
a minimum. To prove this it is enough to show that A 2 T(no  — 1) > 0 and 
that the sequence {T(n)} is monotone increasing for n > n o . 

From (10) we obtain 

(14) A2 T(n) = A2To(n)+ n(n 
12)(n  + 2) T. 

According to (10) and (14) it follows that 

(15) A2 T(n) =  1  n+ 2 
+  2  (A2D(n)) 	

2 
n  +  2  A To (n) . 

Substituting n = no  — 1 in (15) and using inequality (12), the inequality 

1  
A 2 T(no — 1) > no  + 1  (A2 D(no — 1)) > 0 

is obtained. 
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Since the sequence {n(n+1)ATo(n)} is monotone increasing, and accord-
ing to equality n(n 1)AT(n) = n(n 1)ATo(n) — T p , it follows that the 
sequence {n(n+1)AT(n)} is monotone increasing, also. On the other hand, 
since no (no  1)ATo(no) — Tp  > 0 it follows that no(no 1)AT(n o ) > 0. 
Now, according to inequality n(n 1)AT(n) > n o (no  1)T(no ) > 0, we 
obtain that AT(n)> 0, for all n > no. 

If we assume that D(2) > Tp , then from (10) we obtain ATM= —
1 

(D(2)— 
2 

Tp ) > O. Further, since AT(n)> ATM > 0 for all n > 1, we conclude that 
in this case no  = 1. 0 

Remark. Theorem 3.2 have been proved in [5] under conditions P.1 to P.3. 
According to the results proved in Theorem 3.2 we are going to prove the 

following results for sequences {S(n)} and {C(n)}, n E N. 

Theorem 3.3. Let the inequality (8) be satisfied. The sequence {S(n)} has 
an unique maximum at no  > 1. Also, if D(2) < Tp  then 

T(1)  
T(1)  < S (no) pC(no 

— 1 ) AC(no) — 
(16) 

Proof. In theorem 3.2 we have proved that, under certain conditions, the 
sequence {T(n)}, n E N, has the unique minimum at n o  > 1. The following 
is also valid 

(17) AT(no  — 1) < 0 , 	AT(no) > . 

From (3) we have that 

AT(n)  
(18) AS(n) = T(1) ( 

T(n)T(n 1) ) 

Combining (17) and (18) we obtain 

(19) AS(no  — 1) > 0, 	AS(no) < 0. 

This means that the sequence {S(n)}, n E N, has the unique maximum 
at no  > 1. 

nT(1)  
Since C(n) = nT(n), i.e. C(n) =

S(n) 
 the following is also valid 

n 
AC(n)=T(1) 

S(n
)
) S(n

AS( 
 1))  
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and 

S(n 1) — (n 1)5(n)  
(21) 	 AC(n) = T(1) 

S(n)S(n+ 1) 	• 

By substituting n with n o  — 1 in (20) and n with no  in (21), the right and 
left parts of inequality (16) are obtained, respectively. ❑ 

Similarly as in [2], [5], some other properties of sequences defined by (2) 
to (7) can be proved. For the sake of illustration, we give some properties 
that directly follows from axioms A.1 to A.3. 

Theorem 3.4. The sequence {C(n)} , n E N, is monotone increasing and 
convex. 

Theorem 3.5. The sequence {E(n)}, n E N is monotone decreasing, con-
vex, and has a property E(1) = 1. 

Theorem 3.6. The sequence {R(n)}, n E N, is monotone increasing for 
n > 2. 

Theorem 3.7. If the equality (8) is valid, then the sequence {G(n)}, n E N, 
has an unique maximum at no  > 1. 
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ON ONE CONGRUENCE RELATION 

ON  A  GLOBAL SEMIGROUP 

Zarko M. Mitrovie 

ABSTRACT. A group  G end its global semigroup Glb CI is considered. 
Every congruence relation  in  the group G induces a congruence relation 
in the semigroup Gib  G  . These congruence relations and their classes are 
studied. 

1. The induced equivalence relation. 

1. Let g be a binary relation defined on a set S and Pow S the power. 
 set of S . The relation  p  induces a series of relations on Pow S , defined 

by quantifiers. One of these relations is defined by 

(1) AaB  	(Va E A, 3b E B) apb , 

where A, B E Pow S . 

Theorem 1. If g is  a  reflexive or transitive relation, then a is also 
reflexive and transitive  respectively. 

Proof. If e is reflexive, then for every a E A there exists a E A such that 
apa holds true. Therefore,  Aa A is valid for every A E Pow S , so that a 
is reflexive. 

Let g be transitive. If  AaB and BaC hold true, then for every a  E  A 
and b E B there exist b1  E B and c E C such that apb1  and bpc hold 
true. - Therefore, for b 1  E B there also exists c 1  E C such that bigci . 
Now from agbi  and b 1  pct  we get agci  , i.e. for every a E A there exists 
c1 E C such that aoci  holds true. From this it follows that AaC holds 
true, so that a is transitive. ❑ 

Using a we can define a new induced relation 6 on Pow S by 

(2) S = a n 	. 
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852 	 2. M. Mitrovit 

In other words 

B 	[(Val E A,31)1 E B) aiebi A [(Vb2 E B, 3a2 E A) b2pa2 , 

where A, B E Pow S . 

Theorem 2. If p is a reflexive and transitive relation on S , then 6 is 
an equivalence relation on Pow S . 

Proof. From the definition of 6 we can directly see that 6 is symmetric. 
We shell use the following characteristics of relations ([3]) : If relations a 

and Q  are reflexive (transitive), then so are the following relations-: a n 
and a -1  . Thus, since e  is reflexive and transitive so is the relation 6 . 
Therefore, 6 is an equivalence relation. 0 

In what follows we shell assume that p is an equivalence relation. 
We shell say that 6 is an equivalence relation induced by g and denote 

it by e. 
Let us introduce the notation 

Ax = {e,1 xEXE Pow Sl 

(Elements of ex are equivalence classes.) 

Theorem 3. The following logical equivalence 

(3) 
	

A'pB 	eA = AB 

holds true, where A, B E Pow S . 

Proof. Let AeB be valid. If ex  E °A  , then there exists a E A such that 
ea = px E OA • For this a E A there exists b E B such that apb holds 
true, i.e. ea = Ob E eB  . Therefore, ex E pB , so that pA  c eB  is valid. 
In exactly the same way we conclude that eB  C eA  holds true. Therefore, 
OA = OB • 

Conversely, let eA = eB  be valid. If 
that there exists b E B such that ea 
from b E B it follows that there exists a 
that AbB is valid. 

Therefore, (3) holds true. ❑ 

On account of Theorem 3 we conclude that we can describe equivalence 
classes for e by 

eA = {X E Pow S I AOC} = {X E Pow S eA  = ex } . 

a E A , then ea E PA = eB , so 
06 4=> apb holds true. Similarly, 
E A such that bpa . This means 
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Let us introduce the notation 

(4) r OA] = U Pa • 
aEA 

Tho following logical equivalences 

A-B:. eA = 0. B 4—>" 0A = 0B 
	

[6A] = feB1 

are now evident. 
Let us now describe in detail the equivalence classes for "6 . 

Theorem 4. X E eA if and only if X contains at least one element from 
every equivalence class of the family OA , but does not contain any element 
from any class out of e A  . In other words 

X E 2A <=›- X c [b] A [(Va E A) X n ea  0]. 

Proof. From Theorem 3 we directly get the validity of that assertion. D 

It is obvious that [eA] is the maximal element of "A (in the sense that 
there is no element of 'OA which contains [6A] ). 

If A C eb  , then [A] = ob , so that X E 6 e , 	X C eb  . This means 
that 

(5) 6eb= Poweb • 

2. Let f:X--1 7 , then the relation kernel of f , 	= kerf , is an 
equivalence relation on X , defined by 

(Va,b E X) 	ant) < 	> f(a) = f(b). 

The equivalence classes of K are defined by k a  = f -1 (f(a)). 
The kernel lc induces the equivalence relation k on Pow X . 
Since 

	

[kA] = U 'C a = U 	(f(a)) = f —11 (U f( a)) 
aEA 	aEA 	 aEA 

= f-1 {f( a ) I a E A} = ri (f(A)) 

we have [k A] = .f -1 (i(A)), so that 

A&B <=>- f-1 (f(A))= f -1 (f(B)) 

holds true. 
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2. The congruence relation on Glb G. 

1. Let us now consider a group G . The set Pow G with the global 
operations 

AB = {ab I a E A, b B} , 

A -1  = {a-1  I a E A} 

is the global monoid (i.e. semigroup with identity) with involution -1  ([1], 
[2]). 

This monoid we shall denote by Glb G . Suppose g is a relation on 
G and a and .6 are the relations on Pow G , defined by (1) and (2) 
respectively. 

Theorem 5. If e  is a relation on (G,.) , compatible with the operations in 
G , then the relation a is compatible with the global operations in GlbG . 

Proof. Let AcrB and X crY be valid (A, B, X ,Y E Glb G) . If u E AX , 
then there exist a E A and x E X such that u = ax holds true. In the 
other hand, from AaB (X crY) it follows that for every a E A (x E X) 
there exists b E B (y E Y) such that agb (xpy) is valid. Since g is 
compatible with the binary operation, axgby holds true. Thus, for any 
u = ax E AX there exists v = by E BY such that axgby is valid. This 
means that AX a BY holds true, so that a is compatible with the global 
binary operation. 

Let AcrB (A, B E Glb G) be valid, then for every a E A there exists 
b E B such that agb holds true. Since p is compatible with the unary 
operation -1  in G , from agb it follows a -1 0-1  . This means that 
for every a -I  E A-1  there exists b -1  E B -1  such that a-1  gb-1  , i.e. 
A -1  crB -1  holds true. ❑ 

Theorem 6. If g is a congruence relation on G , then "g is also a 
congruence relation on GlbG . 

Proof. Using Theorem 5 and the well known result: If a and ,3 are 
relations on G , compatible with operations in G , then so are the following 
relations: 13 -1  and a fl 3  , we can conclude that 6 is a congruence relation 
on Glb G . ❑ 

2. If H is a subgroup of G , then the relation u  , defined by 

(Vx, y E G) xpy  	x -1 y EH .< 	> xff = yff , 

is an equivalence relation on G . The equivalence classes for ft are defined 
by to  = xH . 
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On one congruence relation on a global semigroup 	 855 

Let us consider the equivalence relation # on Glb G induced by it . 
Since 

[AA] = U µa = U a H = AH , 
aEA 	a EA 

on account of (4) , 
AftB 	AH = BH 

holds true. 
Let us put E = {e} , where e is the identity of G . Then E is the 

identity of Gib G ([4]). On account of /LE = eH = H and (5) we have 
= Pow H and [#H] = H  . 

Theorem 7. Every normal subgroup H of G induces the congruence 
relation it on Glb G , defined by 

(6) 	(VA, B E Glb G) NIB -4=> AH = B H , 

where 1.41 = Glb H 

Proof. If H is a normal subgroup of G , thenµ is an equvalence relation 
on G , so that, account of Theorem 6, the induced equivalence relation # 
is a congruence relation on Glb G . 

Since A H  = Pow H and H is a group, the equality µH = Glb H must 
hold. ❑ 
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ABSTRACT. Let g be a relation on the set S . By using the quantifiers and 

the relations g i cl a series of relations on the power set Pow S are defined. 
The characteristics of these relations are studied and their classification is 

made. 

1. The elementary induced relations 

Let e  be a binary relation defined on a set S and Pow S the power 

set of S . The relation g on S induces a series of relations on Pow S . 
Induced relations determined only by quantifiers we shall call the elemen- 

tary induced relations. There are four such relations and they are defined 

by: 

(1) 

	 {AellB <=>. (3a E A, 3b E B) aeb , 

A021 B -<=>- (3a E A,Vb E B) aeb , 

Ae22 B <:=> (Va E A, Vb E B) aeb 

-4=> (Va E A, 3b E B) aeb , 

If we introduce the notations 

AeB 	(Va E A, Vb E B) aeb 

and 
aeB <=;>- {a}eB , 

then we can write 

Ae21B .;=> (3a E A) ap.13 , 
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858 	 2. M. Mitrovic and I. F. Berkovie 

A022B <—> APB 

It is obvious that 

(2) 
	

012, P21 g. 011 
	and 
	

022 g 012, 021 

hold true. 
With the help of the operation - I we obtain the new four induced 

relations. For them, on account of (2), 

and (2') „1 n 1 (- „1 
v12 / v21 = V11 

hold true. 

Theorem 1. The inclusions 

022 
 c n -1 n -1 

V22 — V12 / e2i 

(3) 
	

Lf 2 I
1 
 `= 012 	and 	021 C 012 

hold true. 

Proof. If A.0211 B .;=> 13 021 A is valid, then there exists at least one element 
of B which is 0-related to every element of A , so that every element 
of A is a-related to at least one element of B , i.e. Ae i2 B holds true. 
Conversely, let A012  B is valid, i.e. every element of A is e-related to at 
least one element of B , but this does not guarantee that any two elements 
of A are 0-related to the same element of B . Therefore, the inclusion 
0211  g 012 holds true. 

From the proved inclusion it directly follows that the second inclusion is 
also valid. ❑ 

With the help of the elementary induced relations and operations n and 
-1  with relations we can obtain new induced relations. On account of (2), 
(2') and (3) there are only ten new induced relations more. 

Let us put 
ck i;  = eij  n 	(i,7 = 1,2) , 

= en n 01721  , /32 = 022 n 61' , 7= 012 n 021 

The relations a are obviously symmetric. 

2. - -induced relations 

Let us consider the elementary relations induced by e -1  and put 

= (0-1 )0 (i,j = 1,2) 
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According to (1), using  ap- lb  <#. boa , we have 

(1') • 

ithiB 

M12B 

ko21B 

A .022 B 

<=> 

-,4:- 
<=#, 
<=> 

(3a E A, 3b E B) 

(Va E A, 3b E B) 

(3a E A,Vb E B) 

(Va  E A, Vb E B) 

For these induced relations and their inverse relations the inclusions anal-
ogous to the inclusions (2), (2') and (3) hold true. 

The relations 'di .; , Si  and y (i,j = 1,2) are defined like the 
corresponding relations from the point 1. 

The relations induced by 0 -1  we shall call 	induced relations. 

Theorem 2. The  equalities 

(4) e1
-11 	(e -1 )11  and „1 	(,,-1 

&22 = lN )22 

hold true. 

Proof. Since 

April  B < 	>  Ben  A <=> (3b E B, 3a E A) boa 

< 	>  (3a  E A, 3b E B) bpa 	A -611 B , 

we conclude that 0 1-11  =All  is valid. 
In a similar manner we can prove the second equality. ❑ 

3. The classification of the induced relations 

Let a be one of the induced relations, then the relations a and C;r1 
 we receive by using the conventions: 

Ani),  11 -1  = (1) -1 	and 
	= 

For example, Si  = 011  n our ,  
For every induced relation  a there exist three corresponding induced 

relations more: cr -1  ,  a and  m -1 . We shall say that these four relations 
are conjugate to each other. If  cr  is an elementary induced relation, then we 
shall call all such relations  the  elementary induced relations in the broader 
sense. 

Using the elementary  induced  relations in the broader sense and the op-
erations n and -1  with relations, we receive the large number of new 

boa , 

boa , 

bpa , 

boa  . 
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860 	 2. M. Mitrovi6 and I. F. BerkoviC 

induced relations. There are 98 such relations. On account of inclusions (2), 
(2') and (3) and the corresponding inclusions for - -induced relations, as well 
as the equalities (4), these new induced relations may be formed by at the 
most four elementary induced relations in the broader sense. Because of this 
fact all the induced relations may be classified into four classes: 

Class A. The elementary induced relations in the broader sense; there are 
12 such relations. 

Class B. The induced relations formed by using only two relations of the 
Class A there are 34 such relations. 

Class C. The induced relations formed by using only three relations of the 
Class A there are 36 such relations. 

Class D. The induced relations formed by using only four relations of the 
Class A there are 16 such relations. 

All the induced relations may be grouped into groups of four conjugate 
relations each. There are groups which contain the same relations (for ex-
ample, ell  = 611) • 

In the Class A there are 2 groups of four and 2 groups of two relations 
each. Let the representatives of these groups be just the elementary induced 
relations. If we denote the groups by Ai (i = 1,2,3,4) , then those 
representatives are: 

Al : ell , A2 : 012 , A3 : 021 , A4 : 022 • 

The groups Al and A4 contain only two elements each. 
In the Class B there are 5 groups of four, 6 groups of two and 2 groups of 

only one relations each. Let the representatives of the groups of the Class B 
be: 

B1 : Oil n 	, B2 : On  fl 7 0, 21  , B3 012 n en , B4  : 012 n ea , 

B5 : ei2 n '&12 , B6 : 012 n A21 , B7 : 012 n (e.12) -1  , 

B8  : en n (e21) -1  , B9 : 021 n 611  , B10 : 021 n 621  , 

B11 : 021  n '021 , B12 : 	n -6• 20 -1  , B13 : 022 n 621  • 

The groups B4 , B5 , B7 , B9 , B11 and B12 contain two and the 
groups B1 and B13 only one relations each. 

In the Class C there are 8 groups of four and 2 groups of two relations 
each. Let the representatives of the groups of the Class C be: 

Ci : en  n 0,721  n 012, C2 : 012 n 021 n -62 5  C3 : 012 n 021 n -021 
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C4  : 012 n 021  n  ( 7) \12) -1  7 C5  012 n 021 n (e21) 	C6 012  n  621  n 612  9 

C 7  012 n 01-21  n ezi , C8  012  n  021  n  (P21) -1  , C9  021 n eV n O21 

C10 :  021 n og  n (e21) -1  • 

The groups Cl and C10 contain only two relations each. 
In the Class D there are 2 groups of four, 3 groups of two and 2 groups of 

one relation each. Let the representatives of the groups of the Class D be: 

D1 : 012  n 021 n 6 12  n t)- 21  , D2 : 012  n 021  n (612) -1  n ("020 -1  , 

D3: 012 n 02i n '612 n ( -012) -1  ,  D4  012 n 021 n O21 n (§21)-1  7 

D5 012 n PT _  .21  n 012 n (612) -1  , D6 : 012 n 621 n 	n 020 -1  , 

D 7  6.21 n  611  n  621  n 020 -1  

The groups Dl , D2 and D6 contain two relations and the groups D5 

and D7 only one relation each. 

4. Some characteristics of the elementary induced relations 

The following characteristics of relations: reflexivity, antireflexivity, sym-
metry, antisyrnmetry and transitivity are said to be the fundamental char-
acteristics of relations. 

Lemma. If relations o and r have one of the fundamental characteristics, 

then the relations a-1  and a  fl  r have the same characteristic ([5])  . 

If e  has one of the fundamental characteristics, then we shall find all 
the induced relations which have the same characteristic. We shall not be 
interested for such characteristics of induced relations which the relation o  
does not have, i.e. which are not hereditary characteristics. For example, 
a are symmetric relations, but  p need not be. 

Theorem 3. If e  is a reflexive  relation then 011 and 012 are also 

reflexive but 021  and  022 are  not. 

Proof.  Let  o be reflexive, i.e. 

(5) 	 (Va  E  S) aoa 

and let A E Pow S  . 
Since from (5) it follows (Va  E  A) 

(3a  E A) aoa 

so that Oil  is reflexive. 
From (5) we obtain (Va  E  A, 3a  E  A) aoa , i.e. Aei2 A so that 012  is 

reflexive. 
However, it need not exist a  E  A such that apA holds true. From this 

it follows that 0 21  and 022  are not reflexive. ❑ 

aoa , we conclude that 

AeriA , 
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Theorem 4. If o is an antireflexive relation then 0 21  and 022  are also 
antireflexive, but 0i , and 012  are not. 

Proof. Let p be antireflexive, i.e. 

(Va E S) (a, a) 0 

and let A E Pow S. 
It may exist a 1 , a2 E A such that a10a2 holds true, so that it may be 

Api i  A . Similarly, for every a 1  E A it may exist a2 E A such that ai ea2 
holds true, so that it may be A0 12 A . Therefore, O il  and 012  are not 
antireflexive. 

Since (Va E A) (a, a) p , it may not exist al  E A such that, for every 
a2  E A , a l  0a2 holds true. Hence, (A, A) 0 021  and (A, A) 0 022 . o 
Theorem 5. If p is a symmetric relation then 0 11  and 022  are also 
symmetric but 0 12  and 021  are not and the equalities 012 = N12 and 
021 = Q21 hold true. 

Proof. Let e  be symmetric, i.e. 

(6) apb = bpa 

and let A, B E Pow S . 
From (1) it is obvious that O il  and 022  are symmetric and that 

and 021  are not symmetric. 
Since 

012 

A012 B -<==:> (Va E A, 3b E B) a eb 

(Va E A, 3b E B) boa <=::. A&512 B , 

the equality 0 12  = 0. 12  holds true. 
In exactly the same way we can prove the second equality. 0 

Theorem 6. If e  is a transitive relation then on  is not transitive, but 
the other three elementary induced relations are transitive. 

Proof. Let p be a transitive, i.e. 

(7) agb A boc 	age. 

If ApliB A B011 C holds true, then 

[( 3a E A, 3bi  E B) aebi 	A [(3b2 E B, 3c E C) b 2 0c] . 
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Since, generally speaking, b 1  # b2 , then Agile need not hold, so that 
All is not transitive. 

If Api2B A Be12 C holds true, then 

E A, 3b1  E B) agbl i A [(bb E B, 3c E C) bee]. 

Since, for every b E B , there exists c E C such that bee , then for 
b1  E B must exist cl  E C such that bl eci  . Now from apb1  and bl eci  it 
follows apc1  . Thus, for every a E A there exists c 1  E C such that aeci  , 
so that ile12C holds true. 

From 

Ae21B A B p2i C -4=;> [(3a E A) apB ] A [(36 E B) bpC 

it obviously follows that (3a E A) apC , i.e. Ao21C . 
The logical equivalences 

Ap 22 B A Bp 22 C < 	> AO A B pC 

>- 	11022C 

evidently hold true. ❑ 

If p is an antisymmetric relation, then it is easy to prove that the 
elementary induced relations may not be antisymmetric. 

Theorem 7. If relation p and the representative of a group of conjugate 
relations have one of the fundamental characteristics, then the same char-
acteristic have all the relations of that group. 

Proof. The assertion of the Theorem follows directly from the Lemma. ❑ 

5. The hereditary characteristics of the induced relations 

According to Theorem 7 we can conclude that: 
I. If p is a reflexive relation, then the relations of the following groups: 

Al — 2 , B1 — 2 , B4 — 5 , B7 , C1 , C6 and D5 are also reflexive. 
II. If p is an antireflexive relation, then the relations from the following 

groups: A3 — 4 , B9 — 13 , C9 — 10 and D7 are also antireflexive. 
III. If p is a symmetric relation, then p -1 	p holds true, so that the 

- -induced relations coincide with the ordinary induced relations. According 
to (2), (2'), (3) and Theorem 4, we can conclude that: 

(i) The Classes C and D do not exist. 
(ii) In the Class B the groups: 

(a) B1 coincides with the group Al ; 
(b) B2 and B5 coincide with the group A2 ; 
(c) B8 and B11 coincide with the group A3 ; 
(d) B10 and B13 coincide with the group A4 . 
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864 	 Z. M. Mitrovie and I. F. Berkovi6 

(iii) The following groups mutually coincide: B3 and B6 , B4 and 
B7, B9 and B12. 

Therefore, in this case we have only the following induced relations: 

Al: 011, 
A2 : 012  , 0121  , 
A3 : 021 , 611.  
A4 : 022  , 
B3 : 012 n 021 , 0121  n 0211  , 
B4 : 012  n 621  , 
B9 : 021 n 0211  • 
The relations from Al and A4 are symmetric relations if p is 

symmetric, but the relations from the groups B4 and B9 are always 
symmetric. The other relations are not symmetric. 

IV. If p is a transitive relation, then the relations of the following groups: 
A2 — 4 , B3 — 13 , C2 — 10 and D1 — 7 are also transitive. 

V. If e  is a quasi-order, i.e. a reflexive and transitive relation, then 
the relations from the following groups: A2 , B4 — 5 , B7 , C6 and D5 
are also quasi-orders. In particular, the relations from the group B4 are 
equivalence relations. 

VI. If e  is a strict order, i.e. an antireflexive and transitive relation, then 
the relations of the following groups: A3 — 4 , B9 — 13 , C9 — 10 and D7 
are also strict orders. 

VII. If e  is a tolerance, i.e a reflexive and symmetric relation, then Oil  
is tolerance. Moreover, if e  is only reflexive, then 0 12  n e i2 is also a 
tolerance. 

VIII. If p is an equivalence relation, then only 

= 01z n 0121  

is an equivalence relation. Therefore, the unique equivalence relation on 
Pow S induced by an equivalence relation on S is just the relation 6.  . 

It is easy to show that if p is the equality relation on S , then (5 is the 
equality relation on Pow S . 

Remark. We may obtain induced relations also by using the operations U 
and —1  or by using all the three operations n , U and —1  , but we shall 
not do it in this paper. 

6. Some applications 

Let K" be a Euclidean n-dimensional linear space and Int IR be the set 
of all the closed real intervals. 
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In [1] the relations on Pow In  induced by the orthogonality of vectors 
in K are considered. In [2] and [3] some relations on Int R induced by 
the relation < (less or equal) on R are studied. 

In [4] the congruence relations on global semigroup of a group G induced 
by a congruence relation on G is considered. 
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ON MODIFICATIONS OF THE GALOIS GROUP 

Boris V. Novikov 

ABSTRACT. In this paper we define Doss modifications of groups and we 
describe such modifications of a simple cyclic group. 

Let K be a field, L a finite normal extension of K with the Galois group G. 
Sweedler [4] has defined a Brauer monoid M(G, L) which allows to classify 

i so called strongly primary algebras. M(G, L) i s a semilattice of Abelian 
groups and its idempotents are in 1— 1 correspondence with some of partial 
orders on G (so called lower subtractive G-posets). 

Another approach to studying the structure of the Brauer monoid was 
suggested in [3]. Let 0 be an element not contained in a finite multiplicative 
group G. We call a modification of G the monoid on GU{0} with an operation 
* such that x * y is equal to xy or 0 for x, y E G, and besides 1 * x = 
x * 1 = x, 0 * 0 = 0 * x = x *  0 = 0. It was shown in [3] that there exists a 
1 — 1 correspondence between the modifications of G and the idempotents of 
M(G, L). Moreover, the describing of a Brauer monoid may be reduced to 
the studying of the modifications because their second 0-cohomology groups 
[2] are isomorphic to the group components of M(G, L). 

However, the enumerating of all modifications of a given group seems to 
be a difficult problem. In the general case there are known simple properties 
of modifications only such as [3]: 

a) the modifications yields the condition of 0-cancellativity: if x * z = 
y * z 0 or z*x=z*y 0 then x y; 

b) the ideal of all non-invertible elements of a modification is nilpotent. 

In this paper we describe a kind of modifications of a simple cyclic group. 

867 
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Definition. The modification S of a group G is called a Doss modification 
(analogously to the well-known condition for embedding a semigroup into a 
group [1]) if 

(Va,bES) a*Snb*S0aEb*,5 V bEa*S. 

In what follows we assume that G = (alaP  = 1) is a cyclic group of prime 
order p, S is its commutative Doss modification, different from G°(.) (i.e. 
3x,yEG x*y= 0). 

Lemma 1. S is a 0-direct union of monogenic semigroups (which are gen-
erated by indecomposable elements) with joined identity. 

Proof. If x, y are indecomposable elements then x*Sny*S = 0; in particular, 
(x) * (y) (y) * (x) = 0. Since G has the prime order the subgroup of in-
vertible elements is trivial. So every nonidentity element of S is divided by 
an indecomposable element and is in fact a power of it. Therefore S — {1} is 
0-direct union of the monogenic subsemigroups generated by the indecom-
posable elements. ❑ 

Remark. Evidently, the converse assertion is true too. 
We shall describe the commutative Doss modifications with two or three 

generators. It will conveniently to denote an element ak  E G by bk, when it 
is regarded as an element of S (hence bk = ak  * • • • * ak n times). Accordingly 
to Lemma 1 T = S — {1} is a semigroup which has the presentation of the 
form 

T = (bii ,... ,bir jb7,k = 0,1 < k < 

whence a l  + • 	= p r — 1. 

Theorem 1. If r = 2 then 

T = (bk,bp_klbT b;:ri  = 0) 

where 1 < k < p — 1,2 < m < p —1. 

Proof. Let 

T = (bk ,bi lbln = bp—m+1 = 0) 

for some 1 < k,1 < p — 1,k 1. We may assume that k < 1. Since 

= fa,a2 ,..., aP-1} 

we obtain, regarding as the element aij E G : 

k+2k+•••+(m-1)k+1+21+•-•+(p—m)1 1+21-• --1-(p —1) (mod p) 

or 
m(m — 1)k + m(m. — 1)1 -.a 0 (mod p). 

Therefore k +1 = 0 (mod p) because 2 < m < p — 1. ❑ 

V
ir

tu
al

 L
ib

ra
ry

 o
f 

F
ac

ul
ty

 o
f 

M
at

he
m

at
ic

s 
- 

U
ni

ve
rs

it
y 

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs



On modifications of the galois group 	 869 

Corollary. The number of all distinct (but maybe isomorphic) 2-generated 
commutative Doss modifications is equal (p — 1)(p — 2)/2. 

The situation for r = 3 is more complicated. We need a number-theoretic 
lemma: 

Lemma 2. Let k, a, x be integers, p3 2 < a < x < p — 3. Denote the residue 
kx(mod p) by pk (i.e. 0 < Pk < p — 1). If pk > a for all 1 k < (p — a)/2 
then p = 1(mod 3), a = (p + 2)/3 and x = (p — 1)/2. 

Proof. If x # (p — 1)/2 then either x < (p 3)/2 or x > (p + 1)/2. So we 
consider three cases. 

1. Let x < (p — 3)/2 (then (p + 2)/3 < (p — 3)/2 whence p > 13). 
We shall prove by induction by i that if ri,r3, • • • ,r2i-1 > (P -1-  2)/3 then 

P2i+1 = (2i + 1)x — ip. 
For i = 0 it is evidently. Let 

= (2i — 1)x — (i — 1)p > (p + 2)/3. 

Then 
• (2i + 1)x ip = 	+ 2x — p > 0, 

(2i + 1)x — (i + 1)p = p2 i_-i  + 2x — 2p p + (p 3) — 2p < 0 

and 

= (2i + 1)x — ip. 

Therefore if it holds p2k+1 > a > + 2)/3 for all k, 2k +1 < (p — a)/2, by 
the condition of Lemma 2 then p2k+1 = (2k + 1)x — kp for these values of 
k. However, if we chose 2k + 1 to be equal to the odd integer being between 
(p — a)/2 — 2 and (p — a)/2 then k > (p — a — 5)/4 and 

P2k+1 = x — k(p — 2x) < x 
p — 

4 
a —  5

(p 2x) = x P  — 
 2 
a  —  3  pP  — 

 4

a  —  5  

< 	 
p— 3p—cx— 3 p—a— 5 

p 
	— 3a—p+9 

— 2 	2 	 4 	4 

Since (p + 2)/3 < a < (p — 3)/2 and p 	13, the last expression is less or 
equal (a + 6)/4 < a. 

2. Let x > (p + 1)/2. We shall prove by induction that if p1, ..• , Pk-1 

(p + 2)/3 then pk = kx — (k — 1)p. 
It is truefor k_< 2:pl= x and p2= 2x — p because 2x > p. So we may 

assume that k > 3. 
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Let pk_ i  = (k - 1)x - (k - 2)p > (p+ 2)/3. Then it follows kx < kp from 
x < p - 3. On the other hand 

kx = k 	ki(Pk-1+  (k - 2)p) 

> p + 2 + rk  _sp) 
	(k

3  3)p +2k  

	

2) = (k 	+ k 1 	3 	 3(k - 1) • 

The last summand is greater than (k - 1)p because k > 3. Hence Pk = 
kx - (k - 1)p. Then we have for k = [(p - a)/3] + 1 : 

pk = p - k(p - x) < p 3 71  -3  a  = a. 

3. Let x = (p - 1)/2 and k = 2[(p - a + 2)/4] - 1. Then 

kx = 
(P-a+2 1\ 

4 	2) (P 1) = P + 1  P 

	

2 	4 
+2 

 (mod 7)). 

It is evidently that the right side of this congruence is equal to Pk. If 
Pk  > a we obtain: 

p +1 p - a + 2 
<   + 1, 

2 	4 

i.e. a < (p + 4)/3. Since a is an integer and a > (p + 2)/3, the assertion of 
Lemma is proved. ❑ 

Now we are able to describe the 3-generated modifications. 

Theorem 2. If r = 3 then under suitable choice of a generator of G 

T = 	 = b2m  b77",:r = 0) , 

where 2 < m < p - 2. 

Proof. Let 

	

T= 	 = 	= b7; = 0) , 

where 

( 1 ) 
	

a+ii+7=p+2 

and 2 < a, 0,7 <p-2 (whence p> 5). It is possible to choose the generator 
of G such that k = 1. Furthermore, we may assume that a > #,7 and m < n. 
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At first we shall show that n = p - 1. Let n < p- 1 on the contrary. Then 

it follows from (1) that a > (p+2)/3 and either -1 or y-1 is > (p- a)/2. 

Let /3 - 1 > (p - a)/2 for example. Since bk = bi (t (b m ) for k < a 
all residues of m, 2m, (/3 - 1)m are > a and we have from Lemma 2 a = 
(p + 2)/3,m = (p - 1)/2. But then /3 > (p + 2)/3 and a > /3 implies 
a = = y. Again using Lemma 2 and taking into account that n > m we 
obtain n = p - 2. 

If On 	0 then 4,, = b p -2 = b n  what is impossible. So /3 < 4 whence 

p = 7 and 

(bp-1 = {bp-7+l ~ bp—Y+2,...,bp_1 } U 0 

(2)  
(bm) = {  b  a , b 	, b p 	U  0. 

Lemma 3. If (2) carries  out  then the inequalities 

km  >  (k - 1)p 

a  +  (k  - 1)p 
< < p - -y 

k 

are true for all k < - 1. 

Proof of Lemma. For  k =  1  first inequality is evident and last one turns to 

the form 
a  <  m < p - 7  

what follows from (2). 
Let Lemma was  proved  for  k -  1,  i.e. 

(3) (k - 1)m > (k - 2)p 

a  + (k  -  2)p   
(4) y. 

k - 1 < m < 
- 

Suppose that km <  (k  - 1)p, k > 2. Since km > (k - 2)p from (3) then 

bTn = bk,n,-(k-2)p 

T = (b i , b3,  bs ibl = 1,3 = b5 = 0) . 

However one can check easily that such a modification doesn't exist. 
The case y - 1 > (p - a)/2 is considered analogously. 
Therefore n = p - 1 and 
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872 	 B. V. Novikov 

whence 

1)  a < km — (k — 2)p p — -y, a + (k —2)p 
< m < (k—p -7  

From here and (4) it follows 

a + (k  — 2)p < (k — 1)p — 7 
k — 1 	— 	k 

In particular, for k = 2 we have: 

	

2a + < p = a + + — 2, 	> a + 2, 

in contradiction with maximality of a. 
Hence km > (k — 1)p. But then it follows from bi,c;, = bk,_( k _ i ) p  that 

< km — (k — 1)p < p — -y 

whence 

m> 
a + (k — 1)p   

k 	0
• 

Ending of the proof of Theorem 2. For k = - 1 we obtain consecutively: 

a + Ca"— 2)p 
1 	P — 7, 07 — < 27 — 2, 	< 2. 

Therefore Q = 2, (bra) = {b m , 0} and a = p — 7 = m. ❑ 

Finally we formulate two problems: 
1. Find necessary and sufficient conditions under which the nilpotent 

semigroup with 0-cancellation is a modification of some finite group. 
2. Let 9X be the set of all modifications of a given group G, which are 

different from G° (G with a joined zero). Let us define a partial order on 
971: G(*)> G(o) < VX, y E G(x - * y = 0 xoy = 0). Describe the maximal 
elements of poset 9.1/ (at least for G = Zp). 

REFERENCES 

[1] R. Doss, Sur bimmersion dune demi-groupe dans un groupe, Bull.Sci. Math. 72 
(1948), 139-150. 

[2] B.V. Novikov, On partial cohomologies of semigroups, Semigroup Forum 28 (1984), 
353-364. 

[3] B.V. Novikov, On the Brauer monoid, Matem. Zametki (in Russian, submitted). 
[4] M.E. Sweedler, Weak cohomology, Contemp. Math. 13 (1982), 109-119. 

SALTOVSKOYE SHOSSE 258, APT. 20, 310178 KHARKOV, UKRAINE 

i.e. ka + (k — 1)7 < p. 
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PARTIAL COMPLETIONS OF BOOLEAN ALGEBRAS 

Zikica Perovie 

ABSTRACT. Similarly to notion of completeness and k-completeness we de-
fine a notion of partial coinpletness with respect to a subalgebra C. We also 
give a categorial characterization of partially complete Boolean algebras, and 
a construction of partial completion. 

Since the completion of a relatively small Boolean algebra could be very 
large, it is reasonable to consider the possibility of making a completion of 
just a subalgebra of given Boolean algebra. This makes even more sense for 
various types of lattices, where the completion of the whole lattice is not 
anymore in the same variety. 

1. Partially complete Boolean algebras 

To make a motivation for our definition, we will list some known facts on 
complete Boolean algebras. 

Proposition 1.1. (i) Boolean algebra B is complete iff for every partition 

(bi)i E l, the mapping co : B nivoi)  defined by co(b) = (b • bi)iEl is an 
isomorphism. (bi), as usually, denotes the principal ideal generated bu bi. 

(ii) Let K be a cardinal. Boolean algebra B is tc-complete iff every disjoint 
family D, of cardinality less than K, could be extended to a partition (bi)i€i 
so that the mapping (to : B fl iEl(bi) defined by cp(b) = (b • bi)j €1 is an 

isomorphism. 

Proof. (i) co is trivialy a monomorphism, and it is onto since B is complete. 

On the other hand, let (bi)io. , be a disjoint family in V. Let now (bi)iE/i 
be its extension to a maximal disjoint family which is a partition of one in 
B. Consider a sequence (ei)iv i  E fl, (bi)such that ei = bi for i E 

and 0 otherwise. The element corresponding .to this sequence in the above 

873 

V
ir

tu
al

 L
ib

ra
ry

 o
f 

F
ac

ul
ty

 o
f 

M
at

he
m

at
ic

s 
- 

U
ni

ve
rs

it
y 

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs



874 	 Z. PeroviC 

isomorphism is E iE/  b i . Since every disjoint family in B has supremum, B 
is complete. 

(ii) If B is K-complete, then for every disjoint family of cardinality K we 
just add the complement of its summ, to make the desired partition, and 
construct the isomorphism in the same way as in (i). For the other side, 
proof is just the same as in (i). ❑ 

Having this proposition in mind we define a notion of partial completeness 
of a Boolean algebra over its subalgebra. 

Definition. Let B he a Boolean algebra, and C its subalgebra. B is par-
tially complete with respect to C (shorter "C-complete") if for every parti-
tion (c i ) ici  of C, the mapping co : B llie/ (ci), defined by (to(b) = (b • ci)iE l 
is an isomorphism. 

Proposition 1.2. Let B be a Boolean algebra, and C its subalgebra so that 
B is C -complete. 

i) Let b E B, (bi) i€I  C B. For every partition (ci)jEl, in C, b = Eiel  b•ci, 
and there exists EiEi bi  • c i . 

C is a regular subalgebra of B. 

for every D C C, there exists supD in B. 

Property i) is equivalent to B being C -complete. 

Pro-of. i) Follows from the fact that the induced mapping co : B H iEj(ci) 
is an onto mapping. 

ii) It is enough to prove the preservation for disjoint sums. So let c = 
EiE , ci  in C. Then, {c i  : i E I} U {c'} is a partition in C, and the element 
in 	x (c') having coordinates c i , i E I, and 0 on the coordinate c' 
corresponds to c. 

iii) In the case of disjoint family it is just special case of i) for b = 1. In 
the general case we can disjointize it on every step. ❑ 

Definition. Let C < B „S. A. homomorphism (19 : B 	S is C-complete if 
it preservs existing C-sums i.e. for every {ci : i E I) C C, (p(E i€1  ci) = 
EiE/(P(ci). 

Proposition 1.3. If B is C -complete then for any completion C of C there 
exists a C-complete embedding m : C B, so that the following diagram 
commutes: 
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C 

B 

Proof. Let 13 be a completion of B, and let e 1  : B 	B be the inclusion 
embedding. Since f = e i  o i is a complete embedding of C into complete 
Boolean algebra B, by the Sikorski extension theorem, there exists a com-
plete embedding m : C B, so that f = m o e. 

e 	_ 
C -4 C 

it 	im  

B 	B 

Let us prove that /m(m) C B. Since every d E C is of the form a 
E e(D), for some D C C, we have: 

m(a) = m(E e(D)) = E m(e(D)) = E f (D) =EDEB 
Hence m is the embedding with the desired properties. ❑ 

We will prove the anologue of Sikorski's extension theorem. 

Proposition 1.4. Let B be a Boolean algebra, and C its subalgebra. If 
B is C-complete, then for every Boolean algebra A, and its subalgebra S 
and any homomorphism f : S -+ B, such that Im(f) C C, there exists a 
homomorphism g: A --> B satisfying gos= f. 

Proof. Let us consider the following diagram: 

A 
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876 	 Z. Perovi6 

Let fi  denote f with the restricted codomen C, and f2  = e o h. m is the 
mapping from the preceeding proposition. Since C is a complete Boolean 
algebra, by the Sikorski extension criterion, there exists homomorphism 9 1 , 
so that the upper diagram commutes. g = mog1 . Let us prove that gos = f. 
Really, 

gos=mog1os=mof2=moeof1 =iof1 = f 
0 

We define a completion of a Boolean algebra B over a subalgebra C anal-
ogously to definition of a completion. 

Definition. Let C < B < S. B is C-dense in S, if for every element a E S 
there exists a partition (ci)i er of 1 in C and a family (bi)io- C B, so that 
a = Ei E 

Definition. Let C < B. Boolean algebra S is a C-completion of B if: 
(i) S is a C-complete Boolean algebra. 
(iii) B is C-dense in S. 

2. CONSTRUCTION OF PARTIAL COMPLETIONS 

Constructing a partial completion of a Boolean algebra we will use sheafs 
over a subalgebra following [2]. Sheaf of Boolean algebras is a generalization 
of the notion of subdirect product of an indexed family of sets so that the 
index set and the members of the family have topological structure. Then 
Boolean algebra is represented as a set of continuous choice functions. We 
will just mention here the definition and the main representation theorem. 

Definition. Let S and X be topological spaces, it a mapping Ir : S -4 
X and B = (Bp )pEx a family of Boolean algebras indexed by a set X. 
S = (5,7r,X,B) is a sheaf of Boolean algebras if it satisfies the following 
conditions: 
(i) (B p ) pE x is a partition of S. 
(ii) r is a projection i.e. r[Bp] = {p} and r is continuous, open and a local 
homeomorphism. 
(iii) Let u c X be an open subset, and 	f„ Eflpeu  Bp  continuous 
functions froth u to S, and 	 and ti  (x i , 	, x ia ) Boolean terms. 
Then, the set 

{P E u t(fi(P), • • • , fn(P)) = ti(fi(P),. , fn(P))} 
is open. 

Boolean algebras B p  are called stalks of the sheaf S. The set of sections 
over u is usually denoted by F u (S), and the set of global sections by r(s). 
For two sections f,g over u, Ilf = glIu = {p E u : f(p) = g(p)}. It is easy to 
see that algebra of global sections is a subdirect product of the stalks. 
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Definition. Let B be a Boolean algebra, C < B and X = UltC. Let for 

p E X, < p >fi be filter in B generated by p, B p  = B/ (p) f '. Let also, 

for b E B, fb : X S be the mapping defined by fb(p) = b/ (p) f ' and 

irp  : B B p  be the canonical homomorphism. Finally, let S = UpEx  Bp  be 

the topological space having D = {fb [u]: b E B, u C X, open} as a base of 

topology, and 7r : S X projection. S = (S, ir, X, (B p )pEx) is called the 

sheaf of B over subalgebra C. 

Theorem 2.1. Let the notation be as in th.,  preceeding definition. S is 
a sheaf of Boolean algebras. Boolean algebra B is isomorphic to Boolean 
algebra of global sections of S. 

Following ideas from [1], we define an algebra of dense open sections over 
a subalgebra. 

Definition. We say a function f E fi  B/P is a dense open section of B 

if the set of all points at which f is continuous is a dense open set of X. 

FD (B) is the set of dense open sections of B. For the congruence relation 

on fi  B/P defined by: f , g if they agree on a dense open subset of X, 

will be denoted by R(B), the algebra of dense-open sections of B. 

We summarize a few properties of R(B). s denotes the isomorphism from 

B onto ClopUltB from the Stone duality. 

Proposition 2.2. (i) A function f E H B/P is continuous at point P E X 

if there is some c E P and some b E B so that f agrees with fb on s(c). 
(ii) The mapping cp : r(B) i R(B) defined by v(f) = f 1 	is an 

embedding, into a dense subalgebra. 

Proof. (i) It is easy to get from the definition the known fact that fb (u), 

b E B, u open in X, constitute the base for the topology of S. Therefore, 

{fb(x)lx E P} is a neighboorhood basis for the point all". Hence, if f agrees 

with fa  on s(x) then f is continuous at each point of s(x). On the other 

hand, if f is continuous at P, then f(P) equals b/P, for some b E B, hence 

f(P) = fb(P). Since fb[X] is an open neighboorhood of b/P, by continuity of 

f, there exists a neighboorhood u of P which is mapped into fb[X], meaning 

that f and lb agree on u. c is then, any member of B such that s[c] C u. 
(ii) It is obviously a homomorphism. Let us check that it is 1 — 1. So 

suppose v(f) = 0/ N. This would mean that Ii f 011 is of first category, 

which is impossible since it is a non-empty open set. To prove that Im(co) 

is dense in R(B), suppose that f is a nonzero dense open section. By part 

(i) of this proposition, there exists c E C and b E B, so that f = fb  on S(c). 

Then for the global section g defined as fb on S(c), and zero otherwise, we 

have g < f. 0 
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878 	 Z . Perovi6 

In the sequal C-section will denote a memeber f of rB such th4,there 
exists c E C such that f(P) = 1 for C , E P, and zero otherwise. The' set , of 
C sections will be denoted by I"C. By Theorem 2.1, C is isomorphic to rc, 
and we will identify them. 

Proposition 2.3. R(B) is C -complete. 

Proof. Consider {L : c E D}, a family of C-sections. Let f be the dense 
open section defined by: f(P) = 1 if c E P for some c E D, 0 otherwise. It is 
really a dense open section, since , for U = U{S(c); c E D}, it is continuous 
in every point of U U intUc. ❑ 

Proposition 2.4. FB I ti  is C-dense in 7Z(B). 

Proof. Let f E 7Z(B). Let it be continuous on a dense open set U. Let 
further {c i  : i E I} be a maximal disjoint family of clopen sets in U. Wlog, 
we can suppose that for each i E I there exists b i  E B so that for every 
P E ci, f(P) = bill'. If this is not the case, for every P E ci, we can find a 
neighbourhood so that for some b E B, f = fb on that neighbourhood, and 
then find the finite subcover of every ci , and finally take the refinement of 
{ci  : i E I}. It is obviously f 

The folowing theorem directly follows from the preceeding propositions. 

Theorem 2.5. Let C < B. TZ(B) is a C -completion of B. 
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SOME CONGRUENCES ON AN AG**-GROUPOID 

Petar V. Protie and Milan Boiinovie 

ABSTRACT. Some  congruences on  AG*-groupoids have been considered in 
[3]. In this paper we  shall describe some  congruences on AG**-groupoids. 

1.  Preliminaries 

If on groupoid S the following is true 

(1) (Va,b,c E S)  (ab)c  =  (cb)a, 

then S  is an AG - groupoid  (Abel-Grassmann's groupoid), [4]. In an AG-
groupoid, clearly, holds  medial  law 

(2) (ab)(cd)  = (ac)(bd), 

for every a, b, c, d E S. 
Let on AG-groupoid  S  the following is true 

(3) a(bc) = b(ac) 

for every a, b, c E S.  This class of AG-groupoids we shall call an AG** - 
groupoids. If S has left identity then S is an AG**-groupoid, [8]. Let S be 
an AG**-groupoid and a,  b,  c,  d  E S, then 

(4) (ab)(cd) =  c((ab)d)  = c((db)a)  =  (db)(ca). 

An AG-groupoid S is called an inverse AG - groupoid if for every a E S there 
exists a' E S such that  (aa')a  = a, (a' a)a` = a' and a' is an inverse for a, 
[9]. As usually we shall denote by V(a) the set of all inverses of a E S  .  If 
a, b E S, a' E V(a), b'  E V(b)  then a'b' E V(ab), [9]. 

For undefined notions and notations we refer to [1],[2], [6] and [10]. 
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2. The congruence a 

Lemma 2.1. Let S be an AG**-groupoid and E(S) # 0, then E(S) is a 
semilattice. 

Proof. If e, f E E(S), then by (4) and (2) it follows that 

of = (ee)(f f) =- (fe)(fe) = (f f)(ee) = fe. ❑ 

The basic definitions of congruences on an AG-groupoid are given in [91 
and those definitions are analogous with those in semigroup theory. 

Theorem 2.1. Let S be an AG** -groupoid and let E(S) # 0, then the 
relation cr defined on S with 

a= {(x,y) ES x S I 	E E(S))ex = ey} 

is a congruence relation on S and ea f, for every e, f E E(S). Furthermore, 
a= {(x, y) ES x S I 	E E (S))xe = ye} . 

Proof. Clearly, a is a reflexive and symmetric relation. Let xo-y, yaz, then 
ex = ey, fy = fz for some e, f E E(S). Now by (1), (2), (3) and (4) we 
have 

(e f )x = ((ee)f)x = (x f )(ee) = (e f)(ex) = (e f )(ey) = (ee)(f y) 

= (ee)(f z) = (e f)(ez) = (z f)(ee) = (z f)e = (e f)z. 

Since of E E(S) we conclude xcrz and a is a transitive relation. Hence, o-  is 
an equivalence relation. 

Let xo- y and z E S, then ex = ey for some e E E(S). Now we have 

e(xz) = (ee)(xz) = (ex)(ez) = (ey)(ez) = (ee)(yz) = e(yz), 

e(zx) = (ee)(zx) = (ez)(ex) = (ez)(ey) = (ee)(zy) = e(zy). 

Hence, a is a congruence relation. 
Let e, f E E(S), then since E(S) is a semilattice we have 

efe = eel = off.  

Hence, ea f for every e, f E E(S). 
Let /3 be a relation defined on S with 

= {(x,y) ES x SI (3e E E(S))xe = yel. 
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If (x, y) E /3, then there exists e E E(S) such that xe = ye. Now, by (1) we 
have 

ex = (ee)x = (xe)e = (ye)e = (ee)y = ey, 

so (x, y) E a. Conversely, if (x, y) E a ,then there exists f E E(S) such that 
fx = fy. Now, we have 

xf = x(ff) = f(xf) = (ff)(xf) = (fx)(ff) = (fy)(ff) 

= (ff)(yf)= f(yf)= y(ff)= yf, 

so (x, y ) E 0. Hence, a--- a. 
Now, if (x, y) E a and z E S , then for some e E E(S) hold (xz)e = (yz)e 

and (zx)e = (zy)e. ❑ 

Corollary 2.1. Let S be an AG-groupoid with left identity 1, then the re-
lation a is a smallest congruence on S with property that ea f for every 
e, f E S. 

Proof. Let r be an arbitrary congruence with above property, then for a, b E 
S from aab 	ea = eb we have ear = ebr. Now, erar = erbr and since 
1 E E(S) it follows that lrar = 1rbr,  , whence ar = br. Hence, a C T. ❑ 

3. The maximum idempotent-separating congruence p, 

Lemma 3.1. Let S be an inverse AG**-groupoid, then I V(a.) I= 1 for each 
a E S. 

Proof. Let a E S and x, y E V(a), then 

xa = x((ay)a) = (ay)(xa) = (ax)(ya) = y((ax)a) = ya, 

SO 

x = (xa)x = (ya)x = (xa)y = (ya)y = y. 

Hence, I V(a) 1= 1. ❑ 

If S is an inverse AG**-groupoid then unique inverse for a E S we denote 
with a -1 . Notice that as -1  is not necessary idempotent. 

Example 3.1. Let S be an AG-groupoid defined by the following Cayley 
table: 

1 2 3 4 

1 2 2 4 4 
2 2 2 2 2 
3 1 2 3 4 
4 1 2 1 	2 . 
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882 	 P. V. Proti6 and M. Boiinovia.  

Then S is an inverse AG**-groupoid, e, f E E(S). Elements 1 and 4 are 
mutually inverse and 1 4 = 4, 4 . 1 = 1 are not idempotents. 

Remark 3.1. We notice that if p is a congruence relation on AG**-groupoid 
S, then S/p is an AG**-groupoid. Also, if S is an inverse AG**-groupoid, 
then S/p is an inverse AG**-groupoid and if (x,y) E p then (x -1 , y-1 ) E p 
and conversely. 

Theorem 3.1. Let S be an inverse AG**-groupoid and E(S) 0, then the 
relation 

p = {(a,b) ESxS a -1  a = b-l b} 

is an idempotent-separating congruence on S. If on S holds a- la E E(S) for 
all a E S then p is a maximum idempotent-separating congruence on S. 

Proof. It is clear that p is an equivalence. 
If apb, c E S and e E E(S) then 

(ac) -1 (ac) (a-l c-1 )(ac) = (a- I  a)(c-1  c) 

= (b-1 b)(c -1  c)) = (b-1  c -1 )(bc) = (bc) -1 (bc), 

so acpbc. Similarly, capcb. Thus p is a congruence. 
Let e, f E E(S) and epf then e = ee = f f = f. Hence, p is an 

idempotent-separating. 
Let a -l a E E(S) holds for all a E S. If p is an idempotent-separating 

congruence on S, a, b E S and apb then from a-1  pb -1  we have a-l apb-lb. 
Since p is idempotent-separating it follows that a-la = b-1  b, whence it 
follows that apb and p C p. 0 

4. A congruence pair 

Example 4.1. Let S be an AG-groupoid defined by the following Cayley 
table: 

1 2 3 4 5 

1 2 1 1 1 	1 
2 1 2 2 2 2 
3 1 2 4 5 3 
4 1 2 3 4 5 
5 1 2 5 3 4 

Then S is an inverse AG** -groupoid, a = a -1  for every a E S and acrl 
a -1  a. 

. 

In this section with S we shall denote the inverse AG**-groupoid in which 
as -1  = a- la holds for every a E S. 
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Lemma 4.1. If a E S then a —l a E E(S). 

Proof. Let a E S then 

(a— 1  a)(a—I.  a) = a-1  ((a-1  a)a) = a-1 ((aa-1 )a) = a-1  a E E(S). ❑ 

Hence, E(S) # 0. 

Definition 4.1. Let K be a subset of S, then: K is full if E(S)C K; K is 
self-conjugate if x -1 (Kx) C K for every x E S; K is inverse closed if from 
x E K it follows, x -1  E K; K is normal if it is full, self-conjugate and inverse 
closed. 

Let p be a congruence on S. The restriction pi E(s)  is the trace of p to be 
denoted by trp, and the set kerp = {a E S I (3e E E(S)) ape} is the kernel 
of p. 

Lemma 4.2. Let p be a congruence relation on S, then kerp is a normal 
subgroupoid of S. 

Proof. If a, b E kerp, then ape, bp f for some e, f E E(S). Now abpe f and 
since of E E(S) we have that ab E kerp. Hence, kerp is a subgroupoid of S. 

Clearly, kerp is full. 
Let a E S ., then a(kerp • a-1 ) = {a(ba-1 ) I b E kerp}. From b E kerp 

we have that bpe for some e E E(S) so a(ba-1 )pa(ea-1 ). Since a(ea-1 ) = 
e(aa-1 ) E E(S), then a(ba-1 ) E kerp. Hence, a(kerp,a-1 ) C kerp and kerp 
is a self-conjugate subgroupoid of S. 

If x E kerp, then xpe for some e E E(S) and x -1  pe-1  = e. Hence, 
x -1  E kerp and kerp is inverse closed. 

By above we conclude that kerp is a normal subgroupoid of S. ❑ 

Definition 4.2. Let K be a normal subgroupoid of S and r congruence on 
semilattice E(S) such that 

(5) eaEK,era—l aaEK 

for every a E S and e E E(S). Then the pair (K, r) is a congruence pair for 

S. 

In such a case, we can define a relation p( K , T ) on S by 

(6) 
—1 	—1. 	.--1 ap(Kolb .4=;• a aro o, ao , ba—I  E K. 
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Lemma 4.3. For a congruence pair (K ,r) for S, we have 

e(ab) E K, era-1  a = ab E K 

for any a,b E S, eE E(S), 

Proof. Let a,b E S, e E E(S), e(ab) E K and era- la, then 

e(ab) = (ee)(ab) = (be)(ae) = (((bb-1 )b)e)(ae) = ((eb)(bb-1 ))(ae) 

= (b((eb)b-1 ))(ae) 	(b((b-lb)e))(ae) = (e((b-l b)e))(ab) 

= ((b-l b)e)(ab) = (e(b-l b))(ab), 

(ab) -1 (ab) = (a-1 b-1 )(ab) = ((ab)b-1 )a-1  = ((b-1  b)a)a-1  = (a-1  a)(b-1  b) 

r e(b-1  b). 

By above and (5) we have ab E K. 0 

Theorem 4.1. If (K ,r) is a congruence pair for S, then p( K 0.) is the unique 
congruence p on S for which kerp = K and trp = r. Conversely, if p is a 
congruence on S, then (kerp,trp) is a congruence pair for S and P(kerp,trp) = 
p. 

Proof. Let (K, r) be a congruence pair for S, and let p = p(K ,„). Then p is 
reflexive since K is full, and it is symmetric since r is symmetric. Let apb 
and bpc, so that a-1  arb-1  brc-1  c and ba-1 ,bc-1  E K. Since K is inverse 
closed we have (ba -1 ) -1  = b- la E K. Since K is a substructure we have 

(b -1  a)(bc-1 ) = (b-l b)(ac-1 ) E K. 

From above and b -1 bra -1 a, by Lemma 4.3, it follows that ac -1  E K. Thus 
ape and p is transitive. 

Next let apb and c E S. Then 

(ac) -1  (ac) (a-  c-1 )(ac) (a' a)(c-  c) 
7.0 -1 0(e-i c) = (b-1 ci )(bc) = (bc)-1 )(bc). 

Also, 

(ac)(bc) -1  = (ac)(b-1  c -1 ) = (ab-1 )(cc -1 ) E K • E(S) c K, 

(bc)(ac) -1  = (bc)(a-l c -1 ) = (ba-1 )(cc -1 ) E K • E(S) c K. 

Hence, acpbc. Similarly, capcb. Therefore p is a congruence on S. 
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If a E kerp, then ape for some e E E(S). Now, as-1  = a-rare and 
ae, ea-1  E K whence by (5) it follows that a -1  E K. Since K is inverse 
closed we have a E K. Conversely, if a E K, then from a = (aa -1 )a E K and 
a-1  ar(a-la)(a-1 a) we have apa-la and a E K. Consequently, kerp = K; 
and obviously trp = r. 

Now let A be a congruence on S such that kerA = K and OA = T. Assume 
first that aAb. Then a -1  Ab -1  so that a -l aAb- lb and also ab-1  Abb -1  = 
b-l b, ba-1  Aaa -1  = a- la. This shows that a -g arb- lb and ab-1 , ba -1  E 
kerA = K, which implies that apb and A C p. Conversely, assume that apb. 
Then a- laAb - lb and ab-1 , ba-1  E K = kerA. Now there exist e, f E E(S) 
such that ab -1  Ae, ba- lAf whence a - lbAe, b- laAf . From above and a -l a = 
as -1 , /rib = bb-1  we have 

ab-1  = ((aa -1 )a)b -1  = (b -1 a)(aa-I )Af(bb -1 ), 

ba-1  = b(( a -i. a)a -1 )  _ 

and since E(S) is a semilattice it follows that 

eA = ab -1  A = f(b -l b)A = ba-1  A = fA. 

Now 

a = (aa -1 )aA(bb -1 )a = (ab-1 )bAeb, 

b = (bb-1 )bA(aa -1 )b = (ba -1 )aAea 

and by (4) 

aAeb = e(ea) = (ee)(ea) = (ae)(ee) = (ae)e = ((eb)e)e 

= (ee)(eb) = e(eb) = eaAb. 

Hence, p C A. Consequently, p =  A which proves uniqueness. - 
Conversely, let p be a congruence on S. By Lemma 4.2 we have that kerp 

is a normal substructure of S. For a E S, e E E(S) let ea E kerp, e trpa' a, 
holds then eap f for some f E E(S). Now a = (aa-1 )apeap f and a E kerp. 
Hence, statement (5) holds and (kerp, trp) is a congruence pair for S. From 
above it follows that kerp(kerp,trp) = kerp, trp(kerp,trp) = trp. Now the 
uniqueness just proved implies that P(kerp,trp) = P• 0 

Some congruences on an AG"-groupoid 	 885 
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THE ALGORITHMS AND DATA STRUCTURES 

FOR FORMING SYMBOLIC MODELS 

OF THE ROBOTIC SYSTEMS 

MiloA Rackovie and Dusan Surla 

ABSTRACT. One of the basic problems in forming mathematical models of 
the robotic systems in their symbolic form is the formation of calculation 
graph for the analytical expessions of robotic quantities. The first step in 
formation of the calculation graph is the splitting of the expression into the 
products of the other expressions and the remaining expression. In this 
paper the necessary and sufficient conditions for splitting of the analytical 
expressions into the set of products of two expressions are found, and the 
algorithm for solving this problem is described. 

1. Introduction 

Significant advancements in the development of mathematical models of 
robotic systems have been made by numeric-symbolic [1] and symbolic [1-3] 
methods. An algorithm has been constructed [2,3] to form the mathemat-
ical model of a simple kinematic chain in symbolic form, and the program 
environment SYM [4] has been implemented for modelling of the robotic 
systems. This algorithm has been modified for complex kinematic chains, 
using the programming package Mathematica [5]. 

In [6], a network model of database has been proposed for generating the 
mathematical models of robotic systems in symbolic form. The navigation 
through the database allows easy formation of the analytical expressions and 
obtaining numerical values for the corresponding robotic quantities. 

The analytical expressions, obtained with the aid of the algorithm from 
[6] can be simplified by applying trigonometric identities. These expressions 

The work was supported by the Ministry for Science and Technology of Serbia, grant 

no. 0413 through the Institute of Mathematics, Novi Sad 

887 

V
ir

tu
al

 L
ib

ra
ry

 o
f 

F
ac

ul
ty

 o
f 

M
at

he
m

at
ic

s 
- 

U
ni

ve
rs

it
y 

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs



888 	 M. Rackovi6 and D. Surla 

are of the following form: 

(1) Y = E 
N 

where each of the addends is of the form: 

(2) = ki • TI  x.e," 
j=1 

and where: 

Y - is the robotic quantity to be calculated; 
ki  - is a constant coefficient related to the i-th addend; 
x i  -is one of the basic variables of the robotic system model represented 

by its name (q,4, 4, sin q, cos q). For each addend the same sequence 
of variables xj, j = L is used. 

e ij  - is the exponent of the j-th variable of the i-th addend. The algo-
rithm for forming the mathematical model ensures that each of the 
exponents is a nonnegative integer number. 

The main task is to form the calculation graph for the chosen analytical 
expressions of the type (1), with the minimum of mathematical operations. 
To obtain the maximal reduction in the number of mathematical operations 
this paper proposes splitting of the chosen expression in the form: 

(3) Y = E(yi, 	+ Ym+1 
1=1 

where Yti, Yr2, 1 = 1, M and Ym+1  are also the expressions of the type 
(1). 

The expressions 114, Yi2, 1 = 1, ...,M have two addends at least and 
are determined in a way which maximize the reduction of the number of 
mathematical operations. Ym +1  represents the remainder of the expression 
Y which can not be split into products any more. 

This paper gives the necessary and sufficiant conditions for reducing the 
expression for Y into that of type (3). The concept of structural matri-
ces which is used in solving this problem, is briefly described in the next 
paragraph. 

2. Structural matrices 

The concept of structural matrices was introduced in [1] to represent 
analytical expressions of the robotic quantities. 
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Structural matrix S of the expression Y is represented with the vector of 

coefficients KS = 	 , the vector of variables Xs = [x1 , 

and the matrix of exsponents: 

S 	,s 
ei i. 	'12 [ 

e21 
,S 	S 

'11 	•-22 
... 	... 
S ....Ni 	

eS 
€N2 	

eL 
p 
- 

p 	

2L 
... 

v S ,NL 

given in the previous paragraph. 
In [1], the algebra of structural matrices is introduced, and here is de-

scribed only the multiplication of the structural matrices because this is 
important for sloving the assigned problem. 

Let us observe the multiplication of two structural matrices which have 
the same vestors of variables. 

A = (KA, XA, EA) 

B = (KB, Xs, EB) 

XA= XB 

If the exponent matrices EA i EB are given with: 

B 

••• 	••• 
B ,B 	

eJL  en -J2 

then their product is the exponent matrix Ec where: 

and where: 

Ec = 

C. 
n €C ell 	eiL 
' 	

pc 	pc 
21 	e22 	"2L 

	

••• 	••• 

	

c. 
eMl €M2 M2 	emL 

M = I•J 
C. 	A 	B ena  = 	-F cji  

m = (i — 1). J + j 

1 = 	L;i = 1,...,I;j = 1, 	. 

ES = 

EA  = 
A 

e 11 
A 

••• 

[ 

A 
"11 

0A 

22 

•-12 
A 
- 

••• 
A 

' 21 

 

A 
CIL 
e iz, 

••• 
eA IL 

EB  = 
en en 
B B 

efi 
e B 

e2 22 

e1L1 

BL 
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Also, if the vectors of coefficients KA and Kg are given by: 

kit 
kA KA = 2  ; KB = - 
kA 	 kB 

k B  

then,  their product is the vector of coefficients Kc  where: 

kiC 
Kc  = 2  

k C  

kgr  

and where: 

M = I•J 

kicn=kA • kB 

M = ( i — 1) • J j 

i= 1,...,I; j =1,...,J. 

Thus the structural matrix C is obtained as a product of the structural 
matrices A and B. 

C = (KC)XC7EC) 
Xc = XA = XB 

In solving our problem we have an opossite situation. The structural 
matrix exists and two structural matrices whose product will be the given 
matrix, are to be found. 

3. Splitting of the structural matrix in the form of products 

The problem can be broken in two separate problems. The first is to split 
the exponent matrix and the second is to split the vector of coefficients. 

Let us observe the equation 

(4) 
	

EA • EB = EC 

where EA, EB i Ec are the exsponent matrices defined in the previous 
paragraph. The matrix Ec  represent the exsponents of the expression of the 
type (1) which we want to write in the form of product of the expressions of 
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the same type. The matrices EA and EB are the unknowns in this equation. 
If the solution of the system exists, then the matrices EA and EB which 
satisfy the equation will represent the exponent matrix of the expressions 
which form the product. 

If we write equation (4) as a system we obtain an I • J • L linear equations 
with (I + J) • L unknowns. The system is of the form: 

(5) eit 	emt 
A B 

in= (i — 1) • J + j 

1 = 1,...,L;i= 1,...,1;j= 1,...,J. 

T
Let us denote vectors [cil,...,e1,U T , 	 and [e,,, c 1 , 	Li 

(rows of the matrices EA, EB and Ec) with e' , ell and ecru  respectively. 
Now, the system can be written in a vector form: 

(6)
elt ep = 

= (i — 1) • J j 

i = 1, ..., I; j = 1, ..., J. 

where the addition of the vectors is defined in the usual way. 
Let us choose it and i2 so that il,i2 E {1,...,I} and it # i2, and jl and 

j2 so that jl, j2 E {1, J} and jl # j2. Then, we pick the four following 
equations from the system (6): 

(7)
A 	B 	C. 

ej1 = 

ml = (il — 1)-J + jl 

(8) B 	„„C , i1 	= u m2 

m2 = (il — 1) • J + j2 

(9) 	
,A 	„„B 	,C 

= `-rn3 

m3 = (i2 — 1) • J + jl 

(10) 	 ,A 
i2  j

_ ,,
B j2 = 

‘,0 
' 	r- 	̀-sq/4 

m4 = (i2 — 1)• J + j2 

By summing equations (7) and (10) we obtain 

(11) 	 ,A 	,A j_ ,B 	,C 	,C 
`-'i2 	r--j2 = 'ml 	'7/i4 
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Also, by summing equations (8) and (9) we obtain 

(12) 	 0  A j_ 	_L 0A ,B 	0C _ 
"
0C 

j2 "i2 -1-  "j1 = 'm2 	m3 

It follows that following condition must be satisfied 

(13)

 or in another form 

(14) 

C 
eml emc  4  = em2 -r  em3  

C ,c 	„c 
"ml 'm3 — 'm2 — 'm4 

If the condition (13) is not fulfilled it follows that the system (6) has no 
solution. 

If this procedure is repeated for each combinatin of il, i2 and jl, j2 on 
the basis or transitivity law for equality, the I • J conditions are obtained 
which have to be satisfied to provide the solvability of the system (6). 

If these conditions are satisfied it can be shown that the system has an 
infinite set of solutions in the set RL. For solving the concrete problem where 
all the exponents which are found in analytical expressions of the robotic 
quantities have nonnegative integer values, we need to find our solutions of 
the system (6) in the set (N U{0})L. The solution which belongs to the set 
(N U{ 0}) L  we will call the allowed solution. First, we can prove that there 
is at least one solution in the set ZL. 

Lemma 1. If the conditions (13) are satisfied then exists at least one solu-
tion of the system (6) in the set Z". 

The lemma is proved by derivation of the solution. 
Suppose that conditions (13) hold. Then, for ell we take the 0 vector. 

From J equations in which ei participates we have that: 

(15) C ei  = 

j = 1, ..., J. 

Now for each ei , i # 1 remains J equations from which follows that: 

	

A C 	C 	C 
ei = em 1  — el — — em, 

m = (i — 1) • J j 

i = 2, ..., /. 

Let us check the correctness of equation (16). We choose il E {2, .., I}. For 
i2 we take 1, and for jl, j2 we take any combination from the set {1, ..., J}. 
Equation (16) follows from the condition (14) for this combination and tran-
sitivity law for equality. 

Thus the solutions which are in the set ZL are found for all e.,4, i = 1,..., I 
and eP I  j = 	J because all 	= 	M are from the set Z L .  

Now we can prove that exists an allowed solution. 

(16) 
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Theorem 1. If the conditions (13) are satisfied then exists at least one 
allowed solution of the system (6). 

Suppose that conditions (13) hold. For ei4  we obtain each of the com-

ponents so that eliti  = min(41 ,...,eS) for 1 = 1,..., L. The obtained vector 

is allowed because all the ec„, are allowed. From J equations in which ell 

participates we have that: 

(17) 
	 ,B =,C -e1 

j = 

These solutions are also allowed because e ct  > eil  for j = 1, J and 

= 1, ..., L. Now for each eA, i 0 1 remains J equations from which follows 

that: 

(18) A 	C 	C 	A 	 C 	A 
ei = e„„ el + el = ••• = ern, — C.1 + el 

mi (i — 1) • J + j 

= 2, ..., /. 

The correctness of equation (18) is proved in an analogous way as equation 
(16) from Lemma 1. Now we must prove that all the e.dit for i = 2, ..., I are 

alowed. 
Suppose that there exists il and /1 for which eA ti  < 0. Then, choose 

the j1 so that e i.11  = 	= min(e111  , ...,egn ). Now follows that eA ll  = 

eS ti  — eil1 = 0. The vector paticipates in another I — 1 equations. 

From these equations we choose the one in which eA also participates. It 

follows that e7111 = ecm111 — e tl = 0 where inl = (il — 1) :J + jl. From 

this equation follows that e ic7, 111  = 41  and the contradiction is obtained 

with the assumption that d i.  < 0 because ecna  > 0, for m = 1, ..., M and 

1 = 1, ..., L. 
In an analogous way we can solve the problem of splitting the vector of 

coefficients. Let us observe the equation 

(19) KA • KB = Kc 

where KA, KB and Kc are the vectors of coefficients defined in the previous 

paragraph. 
If we write equation (19) as a system we obtain I •J equations with (/-1-J) 

unknowns. The system is of the form: 

(20) k A  • k if = km  

m = (i —1)- J + j 

i =1,...,I;j =1,...,J. 
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By a procedure analogous to the one for splitting the exponent matrices 
we obtain' the following conditions: 

	

(21) 
	

krnc l  k cm4  = kmC2 •• kZ3 
or in another form 

km2(22) 
kc = ICC m3 	m4 

which are analogous to the conditions (13) and (14). 
The following theorem can be proved: 

Theorem 2. If the conditions (21) are satisfied, then exists at least one 
solution of the system (20) in a set of real numbers. 

Suppose that conditions (21) hold. For k1 we take the value 1.00. From 
J equations in which kill participates we have that: 

(23) kB = kf 

= 
Now, for each kA, i # 1 remains J equations from which follows that: 

kc 	kc 
(24) == 

k 	ke  
M j = (1 — 1) • J j 

i = 	/. 

The correctness of equation (24) is proved in an analogous way as equation 
(16) from Lemme 1. 

Now, the complete problem can be formulated. Let us observe the equa-
tion 

(25) A• B = C 
where A, B and C are the structural matrices. The goal is to obtain the 
matrices A and B so that equation (25) holds. 

Theorem 3. The structural matrices A and B which satisfy the equation 
(25) exist if and only if conditions (13) and (21) are fulfilled. 

If the conditions (13) and (21) hold, the existence of the matrices A and 
B is proved by applying Theoreme 1 and Theoreme 2, and assemblying the 
corresponding exponent matrix and vector of coefficients into a structural 
matrix. The theorem in the opposite direction obviously follows from the 
procedure for obtaining the conditions (13) and (21). In the case when the 
conditions (13) are not satisfied the contradiction is obtained in the system 
(6), and if the conditions (21) are not satisfied the contradiction is obtained 
in the system (20). 
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4.  The algorithm 

When the conditions (13) and (21) are derived two rows from the ma-
trix EA and EB, i.e. two elements of the vectors KA and KB, are chosen. 
Also, by choosing four rows from the matrix Ec, four elements of the vector 
Kc are chosen. This means that these four addends from the expression 
described by the exponent matrix Ec and the vector of coefficients KC, are 
obtained by multiplying two expressions each containing two addends which 
are described by the chosen parts of the matrices EA and EB and vectors 
/CA and KB. Thus every condition of the type (13) and (21) represent a 
"2 x 2" multiplication. 

In the same way equations (16) and (18) describe a "2 x J" multiplication 
because the two rows of the matrix EA and all J rows of matrix EB are 
chosen as well as two elements of the vector KA and all J elements of the 
vector KB. Also are chosen the '2- J rows of the matrix EC and the same 
number of elements of the vector K. 

The algorithm task is to reduce the starting expression Y to the type (3) 
by splitting the structural matrix S into the products. 

The first step is to obtain all possible "2 x n" multiplications, where n is 
determined as large as possible for each multiplication. The description of 
this part of the algorithm, written in pseudocode, is given bellow. 

for (il = 1 ; 	< N ; il+ +) 
{ 

for (i2 	+ 1 ; i2 < N ; i2+ +) 
{ 

if ( Not Mem (i 1 ,i2)) 
{ 

MemPair(i1. ,i2,mu); 

s = eh — ei2; 

= 
for (i3 = 1 ; i3 < N ; i3++) 

{ 

for (i4 = i3 + 1 ; i4 < N ; i4 	) 
{ 

if (s == e;3  — e;,54  && q==) ) 

MemPair(i3,i4,mu); 

else if (s==e4—e3 &St q == tks  ) 

MemPair(i4,i3,mu); 
} 

} 
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896 	 M. Rackovie and D. Surla 

} 

MemMul(mu); 
FreeMul(mu); 

} 

} 

Function NotMem checks if the given pair is memorised in the knowledge 
database. If it is the function returns 0 because of the transitivity law for 
equality there is no sense to check the conditions for that pair. 

Procedure MemPair memorises the given pair in variable mu which will 
contain the complete multiplication. 

Procedure MemMul memorises complete multiplication mu in the know-
ledge database. 

Procedure FreeMul frees the variable mu for a new multiplication. 
After applying this part of the algorithm we have memorised in the knowl-

edge database all possible "2 x n" multiplications over the structural matrix 
S. Now, the manipulating over the knowledge database is used to provide 
such a selection of multiplications which enable the reducing the starting 
expression Y in the type (3) with a minimum of mathematical operations. 
Here will be explained only how to produce the "m x n" multiplications 
using m — 1 "2 x n" multiplications. 

If m-1 " 2 x n" multiplications (or their parts) are found in the knowledge 
database having the same first elements of each pair and all different second 
elements of the each pair, it is easy to prove that a "m x n" multiplying 
is constructed. From the transitivity law for equality follows that all the 
conditions for the existing solution of the systems (6) and (20) are satisfied 
when I = m and J = n. 

6. Conclusion 

The algorithms for forming symbolic mathematical models of complex 
robotic systems have been developed. With the aim of reducing the number 
of mathematical operations, the investigations are directed towards the de-
velopment of the algorithms for symplification of analytical expressions and 
the formation of a corresponding calculation graph. 

A theorem is proved with the necessary and sufficient conditions for split-
ting the analytical expressions into the products of two expressions. On the 
basis of this theorem an algorithm for forming the set of candidates for split-
ting the expressions into products is given. This algorithm is implemented 
and tested on an example of the robotic mechanism with six rotational de-
grees of freedom. Of the set of obtained candidates we can choose the ones 
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which reduce the number of mathematical operations. On the concrete ex-
ample significant reduction of analytical expressions has been achieved. 

Further investigations will be concerned with the development of algo-
rithms for grouping the expression candidates memorised in the knowledge 
database which reduce the number of mathematical operations. 
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Nis, April 14-16, 1995. 

ON HARTE'S THEOREM FOR 

REGULAR BOUNDARY ELEMENTS 

Vladimir Rako"CeviC 

ABSTRACT. This paper is a paraphrase and extension on my talk given at the 
conference Algebra, Logic and Dicrete Mathematics, Nis, April 14-16, 1995, 
and it is inspired by Harte's theorem (Proc. Amer. Math. Soc. 99(1987), 
328-330). In this paper we would like to present some results and problems 
connected with Harte's theorem. 

1. Introduction. 

Let S be a semigroup (ring) with identity. The element a E S is ((uon 
Neumann) regular if a E aS a. That is, there is a solution of the equation 
axa = a. These solutions are usually called inner or 1-inverses of a, and will 
be denoted by a - . If in addition, xax = x, then we call x a reflexive inverse 
of a, and denote it by a+. The set of all regular elements in S will be denoted 
by S and it obviously includes the invertible group S -1  and the idempotents 
S' = {a E S : az = a). An element a is unit regular or decotnposably regular 
provided there is b E S -1  such that aba = a ([1], [2]). It is easy to prove 
that 

(1.0.1) 	 = S'S-1  = {a E A : a E aS-l a}. 

When A is a Banach algebra with the identity 1, Harte [14, Theorem 1.1] 
(see also [15], [26]) has shown that the decomposably invertible elements are 
the intersection of the regular elements with the closure of the invertibles 
(for a subset M of A let b'M and c/ M denote, respectively, the boundary 
and the closure of M) : 

(1.0.2) 	 A -1 A.  = An d(A -1 ). 

Supported by Grant 0401C of RFNS through Math. Inst. SANU. 
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900 	 V. Rakolevi6 

Let us remark that the left side in the equality (1.0.2) is purely algebraic, 
while the right side in (1.0.2) depends on metric properties of A. Hence, the 
remarkable characteristics of Harte's theorem is that it proves the equality of 
two different quantities. In this paper we would like to present some results 
and problems connected with Harte's theorem. 

2. Harte's type theorems 

In this section A denotes a Banach algebra with identity 1. 

Theorem 2.1. Let A be a Banach algebra with identity 1, and S be a mul-
tiplicative semigroup of A, such that A -1  C S C A. Then 

(2.1.1) 	 SA'= A n ci(S) e.t> SA'CA.  

Proof. It is enough to prove = . If a E An c/ (5) then 
and b E S such that 1+ (b — a)a+ = c E A -1 . Hence a+ (b 
a = (c-1  b)a+a, and a E S A' . To prove 'C', suppose that 
a E A, and there are c E S and p E A' such that a = cp. 
n = 2, 3,..., and an  = cpn . It is clear that pn  E an 
Hence a E c/ (S). ❑ 

Corollary 2.2. Let A be a Banach algebra with identity 1, and S be a 
multiplicative semigroup of A, such that A -1  C S C A. Then 

(2.2.1) 	 A'S = A n ci (s) 	A'S C A. 

Proof. By the proof of Theorem 2.1; let us only remark that now if a E 
An ci (s) then there are a+ E A and b E S such that 11-a+(b—a). c E A -1 . 
Hence a + aa+(b — a) = ac, i.e., a = aa+(bc-1 ), and a E A'S. ❑ 

Let Al'  (A 77 1 ) denotes the semigrop of all left (right) invertible elements 
of A. Now we have 

Corollary 2.3. Let A be a Banach algebra with identity 1. Then 

(2.3.1) 	 AT 1 A' = An et (AT 1 ), 

(2.3.2) 	 Asycl  = An ci(.4,7 1 ), 
(2.3.3) 	A7 1 .A .  n A'A,-.-1  = An ci (Ail) n ci (A,7 1 ). 

there are a+ E A 
— a)a+a = ca, i.e., 
a E SA'. Hence, 
Set pn  = p — 1/n, 
E S and an  a. 

Proof. By Theorem 2.1 and Corollary 2.2; let us only remark that A -1  C 
C A, Ai l  A' C A, A -1.  c A,7 1  c A, and A'A,7 1  CA. ❑ 
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Remark 2.A. Let us remark that 

(2.4.1) 	Ail A' c {a EA:aE aAi l a} C A'AT I  C A, 

and 

(2.4.2) 	A*44,7 1  c {a EA:aE 	c 	c A. 

Only for a special semigroup S C A, say S is a subgroup of A -1 , one can 
has 

(2.4.3) 	 S A' = {aEA:aEaSa}=A'Sc A. 

With this observation, we now come to Harte's theorem [14, Theorem 1.11. 

Corollary (Harte's theorem) 2.5. Let A be a Banach algebra with iden-
tity 1. Then 

(2.5.1) 	 A -1  A' = An cl(A - '). 

Proof. By Theorem 2.1. ❑ 

Corollary 2.6. Let A be a Banach algebra with identity 1, a E A and S 
be an open multiplicative semigroup of A, such that A -1  C S C A and 
SA' C A. Then the following conditions are equivalent: 

(i) a E SS, 
(ii) a = sp, sES,pE A' and sp S 

Proof. By Theorem 2.1. ❑ 

Corollary 2.7. Let A be a Banach algebra with identity 1, a E A and S 
be an open multiplicative semigroup of A, such that A -1  C S C A and 
A'S C A. Then the following conditions are equivalent: 

(i) a E SS, 
(ii) a = ps, s E S, p E A' and ps S. 

Proof. By Corollary 2.2. ❑ 

Corollary 2.8. Let A be a Banach algebra with identity 1, a E A and S be 
an open multiplicative semigroup of A, such that A -1  C S C A, A'S C A 
and A'S C A. Then the following conditions are equivalent: 

(i) a E SS, 
(ii) a = siPf = P2 82, Si E S, pi E A' (i = 1,2), slpi  S and p2s2 4r,1 S. 

Proof. Clear. ❑ 
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902 	 V. Rakolevie 

Corollary 2.9. Let A be a Banach algebra with identity 1 and a E A. Then 
the following conditions are equivalent: 

(i) a E (524 /-1 , 
(ii) a = sp, si E A 1-1 , p E A' and p 0 1. 

Proof. Clear. ❑ 

Corollary 2.10. Let A be a Banach algebra with identity 1 and a E A. 
Then the following conditions are equivalent: 

(i) a E Lc- 1 , 
(ii) a = ps, si E Az. 1 , p E A' and p # 1. 

Proof. Clear. ❑ 

Corollary 2.11. Let A be a Banach algebra with identity 1 and a E A. 
Then the following conditions are equivalent: 

(i) a E 6A -1 , 
(ii) a = siP1 = P2 82, Si E A -1 , pi E A' and p, $ 1 (i = 1,2). 

Proof. Clear. ❑ 

Recall that the generalised exponential, Exp(A), [15, Theorem 7.11.4] 
form the connected component of 1 in A -1 ; 

Exp(A) = {eel ec 2  .eck : c i  E A, i = 1,... k} . 

It is well known that Exp(A) is an open subset of A and a closed normal 
subgroup of A. Also, (see [19, (5.5)] 

Exp(A)A' = {a E A : a E aExp(A)a} = A'Exp(A) C A. 
For the proof of the next result see [19, Theorem 6] 

Theorem (Harte-Raubenheimer) 2.12. Let A be a Banach algebra with 
Identity 1. Then 

(2.12.1) 	 Exp(A)A' = A n cl Exp(A). 

Recall that Exp(A) is the unique open subset of A -1  which is a connected 
subgroup of A -1  [21, Theorem 4.4.2]. In addition to Theorem 2.12 we have 

Theorem 2.13. Let A be a Banach algebra with identity 1, and S be an 
open subset of A -1  and subgroup of A -1 . Then 

(2.13.1) 	 S A' = A n c/ (S) -4=> A' C cl S. 

Proof. It is enough to prove the = . From A' C c/ S we have SA' C cl S. 
Now (2.13.1) follows from the proof of Theorem 2.1. ❑ 
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Corollary 2.14. Let A be a Banach algebra with identity 1, a E A, S be an 

open subset of A -1  and subgroup of A -1  , and A° C cl S. Then the following 

conditions are equivalent: 

(i) a E SS, 
(ii) a = siPi = P2s2, si E S, pi E A' and p i  # 1(i = 1,2). 

Proof. By Theorem 2.13. ❑ 

Recall that an element a in A is hermitian if Ilexp(ita)11 = 1 for all real 

t [28]. Let us denote the set of all hermitian idempotents in A by Ah. In 
connection with the Moore-Penrose generalized inverse, RakoEevie [22] (see 
also [6], [17], [18], [23], [25]) has studied the set of elements a in A for which 

there exists an x in A satisfying the following conditions: 

(2.14.1) 	 axa = a, 

(2.14.2) 	 xax = x, 

(2.14.3) 	 ax 	is hermitian, 

(2.14.4) 	 xa 	is hermitian. 

By [22, Lemma 2.1] there is at most one x such that equations (2.14.11), 

(2.14.12), (2.14.13) and (2.14.14) hold. The unique x is denoted by at and 
coiled the Moore-Penrose inverse of a. Let At denote the set of all elements 
in A which have Moore-Penrose inverses. Clearly At C A, and if A is a 

C*-algebra then At = A [18, Theorem 6]. 
For the proof of the next two results see [22, Theorem 2.5, Corollary 2.6] 

Theorem (Rakoeevie) 2.15. Let A be a Banach algebra with identity 1. 

Then 

(2.15.1) , 	A -1 4 n 4A-1  = At n c/ (A -1 ). 

Corollary 2.16". Let A be a Banach algebra with identity 1 and a E At. 

Then the following conditions are equivalent: 

(i) a E 611-1 , 
(ii) a = siPt = Pzsz, si E A -1 , pi E A' and pi  # 1 (i = 1,2). 

3. Semigroups in B(X). 

Now we shall describe others semigroups which obey condition (2.4.3). 

Let X be an infinite-dimensional complex Banach space and denote the set 
of bounded (compact) linear operators on X by B(X)(K(X)). The fact that 
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904 	 V. Rakolevi6 

K(X) is a closed two-sided ideal in B(X) enables us to define the Calkin 
algebra over X as the quotient algebra C(X) = B(X)/K(X). C(X) is itself 
a Banach algebra in the quotient algebra norm 

(3.0.1) 	 K(X)11 = 	inf IIT Kll. K EK(X) 

We shall use it to denote the natural homomorphism of B(X) onto C(X); 
71- (T). T K(X), T E B(X). Throughout this paper N(T) and R(T) will 
denote, respectively, the null space and the range space of T. Set a(T) = 
dim N(T) and /3(T) = dim X I R(T). An operator T E B(X) is Fredholm if 
R(T) is closed, and both a(T) and #(T) are finite. If T E B(X) and R(T) 
is closed, it is said that T is semi-Fredholm operator if either a(T) < oo or 
#(T) < co. Set 

(3.0.2) 	4 +(X) = {T E B(X): R(T) is closed and a(T) < oo}, 
and 

(3.0.3) 	(I>_(X) = {T E B(X) : R(T) is closed and /3(T) < oo}. 
It is clear that (I)(X) = 4)4.(X)n 4)_(X). Let us mention that (I)(X),4) + (X) 
and 4_(X) are multiplicative open semigroup in B(X) ([7], [15]) and by 
Atkinson's theorem ([7, Theorem 3.2.8], [15, Theorem 6.4.3]) we have 

(3.0.4) 	 c(X) = ir -1 (C(X) -1 ). 
The index of an operator T E B(X) is defined by i(T) = a(T) — #(T), if at 
least one of a(T) and /3(T) is finite. It is well known that B(X) -1  +K(X) C 
(I)(X), and that T E B(X) -1  K(X) if and only if T E 4)(X) and i(T) = 0. 
Set 

(3.0.5) 	 (1) 0 (X) = {T E 4)(X): i(T)= 01, 
(3.0.6) 	 4 1(X) = r -1 (C(X)7 1 ), 
(3.0.7) 	 (I)r(X) = r -1 (C(X)7 1 )- 
It is well-known that 4)0(X), 41(X) and (I),(X) are open semigroups in 
B(X) ([7], [15]). Further, T E 4,(X) if and only if T E 4)+(X) and there 
exists a bounded projection of X onto R(T); T E (1)4X)) if and only if 
T E (I)_(X)and there exists a bounded projection of X onto N(T) ([6], [7], 
[15]). Recall that an operator T is regular, i. e., T E B(X), if and only if 
N(T) and R(T) are closed, complemented subspaces of X ([6], [15], [26]). 
Let us mention that Gonzalez [11, Theorem] has proved [14, Theorem 1.1] 
for operators. His proof was based on a theorem of Caradus [6, Chapter 5, 
Theorem 13] involving two kinds of "gap" between the subspaces (see a good 
comment [14, pp. 329], and for further related results see e.g. [3], [4], [5], 
[10], [27]). 
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Theorem (Gonzalez) 3.1. Let X be a Banach space, T E B(X) and P 
is a projection in B(X) with N(P) = N(T). Then the following conditions 
are equivalent. 

(i) There is a sequence {U„} in B(X) -1  with {1111;111} bounded, such 
that HT — UnPII —> 0. 

(ii) There is U E B(X) -1  such that T = UP. 
(iii) T E (5B(X)'. 
(iv) N(T) is isomorphic to a complement of R(T). 

Theorem 3.2. If X is a Banach space, then 

(3.2.1) 	 (1)1(X)B(X)* = B(X) n cl (4(X)1), 

(3.2.2) 	 B(X) ° 4' r (X)= B(X) n cl(ibr(X)), 

(3.2.3) 	41(X)B(X)' n B(X) . (1),.(X) = B(X) n cl (1'(X)i) n cl(4) r (X)). 

Proof. By [6, p. 132, Theorem 2] we have that 41(X)B(X)* C B(X) and 

B(X)* 4),(X) C B(X). Hence the proof followes by Corollary 2.3. ❑ 

Corollary 3.3. Let X be a Banach space and A E B(X).' Then the follow-
ing conditions are equivalent: 

(3.3.1) 	 T E (540 1(X), 

(3.3.2) 	T = PB, P E B(X)*\(1)1(X) and B E 4)1(X), 

Proof. By (3.2.1) and the fact that iti(X) is an open subset of B(X). ❑ 

Corollary 3.4. Let X be a Banach space and A E B(X). Then the follow-
ing conditions are equivalent: 

(3.4.1) 	 T E 154) r(X), 

(3.4.2) 	T = CQ, Q E B(X)* \(1),(X) and C E 4),(X), 

Proof. By (3.2.2) and the fact that 4> r(X) is an open subset of B(X). ❑ 

Let us mention that it has been proved in [24, (3.5)] that 

(3.4.3) 	{A E B(X) : A E A4)(X)A} = B(X)*(1)(X)= 4)(X)B(X)*. 

The following three results are from [24]. 

On Harte's theorem for regular boundary elements 	 905 
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906 	 V. Rakoevie 

Theorem (Rakoeevie) 3.5. If X is a Banach space then 

(3.5.1) 	 B(X)'4(X) = B(X)n cl4)(X). 

Corollary 3.6. Let X be a Banach space and A E B(X). Then the follow-
ing conditions are equivalent: 

(3.6.1) 	 A E (54)(X), 
(3.6.2) 	A = PB, P E B(X) . \4)(X) and B E 4)(X), 
(3.6.3) 	A = CQ, Q E B(X)*\ 4)(X) and C E 4)(X), 

For any Hilbert space X, let dimH X denote the Hilbert dimension of X, 
that is the cardinality of an orthonormal basis of X. We set nulH(T) = 
dimH N(T) and defH(T) = dimH R(T) 1- for T E B(X). If X is a separable 
Hilbert space, then with connection according to Theorem 3.5 we have 

Theorem 3.7. Let X be a separable Hilbert space. Then 

(3.7.1) B(X) n c/ 4)(X) 

= 4(X) U {T E B(X) : nulH(T) = defH(T) and R(T) closed). 

Theorem 3.8. If X is a Banach space then 

(3.8.1) 	B(X)'4 0 (X) = 4'0(X)B(X)* = B(X)n c14'0(X). 

Proof. By [6, p. 132, Theorem 2] we have that 40(X)B(X)* C B(X) and 
B(X)4) 0 (X) C B(X). Hence we can apply Theorem 2.1 and Corollary 
2.2. ❑ 

Corollary 3.9. Let X be a Banach space and A E B(X). Then the follow-
ing conditions are equivalent: 

(3.9.1) 	 A E 4540(X), 
(3.9.2) 	A = PB, P E B(X)' \4) 0 (X) and B E Ito(X), 
(3.9.3) 	A = CQ, Q E B(X)' \ 4) 0 (X) and C E 4)0(X), 

Proof. By Theorem 3.8, Corollary 2.7 and Corollary 2.9. ❑ 
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On Harte's theorem for regular boundary elements 	 907 

Remark 3.10. Let X be a Banach space. By Theorem 3.8 we have 

(3.10.1) 	 B(X)*(1) 0 (X) = 4 0 (X)B(X)'. 

From the proof of [24, Theorem 3, (3.3)] we can conclude that 

(3.10.2) 	{A E B(X): A E Atto(X)A} C B(X)*(1) 0 (X). 

Now we have the following question (problem): If X is a Banach space, must 

we have 

(3.9.3) B(X)*(1)0(X) = (1) 0 (X)B(X) .  = {A E B(X) : A E All)0(X)A}? 

Recall that by Atkinson's theorem a bounded linear operator on a Banach 
space is Fredholm if and only if it has an invertible coset in the Calkin 
algebra. Motivated by this Harte ([12], [13], [15], [16], [19]) has associated 
(and has investigated) "Fredholm" elements of a Banach algebra A with 
an arbitrary homomorphism T : A i B; (A and B are complex Banach 

algebras with identity 1 # 0, T is bounded with T(1) = 1). An element 

a E A is Fredholm (more precise T-Fredholm) if T(a) E B. The set 
of all T-Fredholm elements of A is denoted by 4)T(A). Recall that the 
homomorphism T : A 1-4 B is finitely regular if 

T-1 (0) C 

and an ideal I of A is inessential if the set of accumulation points of the 

spectrum of x E I is a subset of {0} for each x E I. 
Recently DjordjeviC ([8], [9]) has investigated regular and T-Fredholm 

elements and, among other things, he has proved 

Theorem (Djordjevie) 3.11. Suppose that the inessential ideals h, i = 

1,2, of A have the same sets of idempotents, 1 2  is a closed subset of A, and 

let Pi : A Al I i  be the natural homomorphisms of A onto Al I„ i = 1,2. 

Now, if P1  is a finitely regular, then 

(3.8.1) 	 A*(1)pl (A) = A n cl (4)p2 (A)). 

DjordjeviC has got Theorem 3.5 as a corollary of Theorem 3.11. ( The 
proof is based on the facts that the ideal of finite-rank operators in B(X), 

F(X), and K(X) have the same sets of idempotents and F(X) C B(X), 

and then applying Theorem 3.11 with B(X) in place of A, F(X) in place of 

Il  and K(X) in place of 12.). 
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908 	 V. RakaeviC 

4. Partial order and regular boundary elements 

Recall that in semigroup S the relation 

(4.0.1) 
	 e  < f 	e = ef = fe, e,fES . , 

is well-known standard partial ordering relation on the set of idempotents, 
if any. Hartwig [20] has introduced the following, so coiled plus-relation. 
Definition (Hartwig) 4.1. Let S be a semigroup. For a, b E S set a < b, 
if 

(i) a is regular, and 
(4.1.1) 

(ii) there is some a+ E S, such that a+a = a+ b, aa+ = bat 

It is well known [20, Theorem 1J that the plus-relation of (4.1.1) defines 
a partial-order on S. This partial order is coiled plus-partial order, shortly 
+-order, and for idempotents the standard order (4.0.1) coincides with the 
+-order. 

Remark 4.2. Let (G, <) be a partially ordered set. By a closed interval in G 
we shall mean any-subset of the form {xEG:a<x<b},{xEG:x> a}, 
or {x E G : x < a}, where a and b are arbitrary elements of G. There are 
many known ways of using the order properties of G to define a topology on 
G. Recall that a base for the open set in the well-known interval topology of 
G consists of all subsets of the form n{ci  : i = 1, 2, ... ,n}, where each Ci is 
the complement of a closed interval. We let I denote the interval topology 
on G. It is natural to set the following question (problem): 

If S is a semigroup, (S, <) is a partial ordered set with the plus-partial 
order and ch (5 -1 ) the closure of S -1  in interval topology on S, must we 
have 

(4.2.1) 
	

s-is. = Sn 

Clearly, instead of interval topology, we can consider other topologies de-
fined by plus-partial order (or other partial order) on S, and set the similar 
question to (4.2.1). 

If we specialize to the case where S = R is a ring with unity, then we have 
Theorem 4.3. Let R be a ring with unity, and L(R -1 ) = {y E R : y < 
x for some x E R -1 } be the set of predecessors of R -1 , where < is the 
plus-partial order. Then we have 

(4.3.1) 	 R -1  R' = R n L(R -1 ) 
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On Harte's theorem for regular boundary elements 	 909 

Proof. By [20, Proposition 3, (i), (v)] and (1.0.1). ❑ 
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A NONSTANDARD PROOF OF STEINHAUS'S THEOREM 

Miodrag Ragkovie 

ABSTRACT. We give an intuitive and easy proof of the well known Stein-
haus's theorem by use of nonstandard analysis. 

In [5] Hugo Steinhaus proved the following very useful result. 

Theorem 1. (Hugo Steinhaus, 1920) Let A be a set with positive Lebesgue 
measure A(A) > 0. Then, there is an interval [a, b], such that [a, b] C 
A— A= {x — ylx,y E A}. 

Before we prove the theorem we introduce some notation from nonstan-
dard analysis and prove the lemma. We make use of Loeb measure [1]. 

We can suppose that A C [0,1]. Let TH = {0, -17, ,1} (for H E 
* N\N) be a hyperfinite interval, *P(TH ) a set of hyperfinite subsets of TH, 

pH(A) = 11/4t (for A E *P(TH)) counting measure, L(AH) Loeb measure, 
[a, b]H = {x E THIa < x < b} (for a, b E TH ) and stH:TH —÷ [0,1] standard 

,1311]  part map. Let a *0 [ci  = H  , where [a] is a integer part of a E * Rfin• 

Lemma. Let A be a set with positive Lebesgue measure \(A) = in > 0. Let 
B be a hyperfinite set, B C st H-1  (A) and p H(B) > to m. Then, there are 
a E TH and n E N such that 

(*) 	 µH (Bn [a ' 
+ 

11 H) 4n 

Proof. Suppose that there are not a and n such that (*) holds. 
The set S = {n E *NI (Va E TH) (pH (B n [a, a + H ) < L)} is inter-

nal and N C S. By over shpil there is K E *N\N such that K E S and 

H   
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912 	 M. Ra.skovk 

Let B' 	n 	s4-1.)„ 01. Then stK(/3') C A, B' C st7‘1 (A) 
and 1.1K(k) < L(AK)(sti<1  (A)) = m. According to the fact that k E S we 
have 

IB1 = 	E 	B n i 	
K 

s '9+1)  
[IC 	H Bn[4-,41 ) 11 00 

c IB 1 1111p,X B n { K  	) H  'S K 
 

It follows then that 

9 	 1/3 1U  3 IBil 3 	3 
—10 7n  —‹ " 	 PK  (B)<  H — 4 K = 	(Bi)  ‹ 4 7n  

a contradiction ❑ 

Proof of the theorem. Let a and n be as in lemma above. Let I = [— an id H  
and C = B n [a, a + 1] H . Then I C C — C. Otherwise, C n (C x) = 
for some x E I and 4n > AH(C) -F pH(C + x) > L. Contradiction. Finally, 
st H / c st H (c — C) = stH (c)— St H (C) C A — A. ❑ 

Now, we shall give an application of Steinhaus's theorem and method 
from [3] and [4]. 

First, we give the following definitions and theorems. 

Definition 1. A function f: R —> R is measurable on A C R if for each 
r E R U {oo} a set {x E RI f(x) < r} n A is a measurable. 

Let L(p) be the Loeb measure obtained from counting measure it on 

1 
TK,H = { — K, — K +

H
,...,K —

H 
 ,K} 

(for k E N). 
Let f be a map from [—K, K] into R and let F be a interval map from 

TK,H into *R. 

Definition 2. The function F is a lifting of the function f if and only if 

L(p)fx E TK,HIstH(F(x)) # f(stH(x))} = 0 

Definition 3. The function F is a uniform lifting of the function f if and 
only if stH(F(x)) = f(stH(x)) for each x E TK,H • 

The following two theorems are of great importance for example in prob-
ability theory (see [1]). 

<IB , I 3 H 
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A nonstandard proof of Steinhaus's theorem 	 913 

Theorem 2. (see [1]) The function f is Lebesgue measurable if and only if 
it has a lifting function F. 

Theorem 3. (see [1]) The function f is continuous if and only if it has a 
uniform lifting function F. 

The proofs of theorems can be found in [1]. 

Theorem 4. Let fi(x — y) = gi (f1(x) ,  fl(y) , 	(x) ,  rn(y) ,  y) (i = 

1, • • • m) be a system of functional equations, such that g i : R2m+2  —+ R (for 
i = 1,... , m) are continuous functions. Let A C R be a set of positive 
Lebesgue measure. Then, if all solutions f i  are measurable in A if follows 
that its are continuous at zero. 

Proof. Let B, it and H be as in proof of the last theorem. Let hi(x) = 
f(x) xEA and let Hi  be a lifting of h i  (Theorem 2). Then, using The-o xER\A 

orem 1, we can define an improved lifting function, such that for each 
X E 	M H CB—B 

F' (x) = min-rg(Hi (y), Hl  (z), 	, H„,(y), H„,,(z), y, z)lx = y— z,x,y E B). 

Then, for some yo, zo E B 

stFi  (x) = st*  gi( 111(Y0), H i(zo), • •. , Hm(Y0), nt(zo),Yo, zo) 

= gi(stHi(Yo), stHi  (A), 	, stHm (yo ), stHm(zo), stYo, stzo) 

= gi(hi (styo), h i (stzo), 	, hm (styo ), h„,,(stzo), sty° , stzo) 

= fi (styo — stzo) = 1(st(yo — zo)) = f i  (stx) 

(where, we write st instead of stH). 
Hence F' is a uniform lifting function for fi on the interval 

and by Theorem 3 fi is continuous on the same interval. ❑ 
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DECOMPOSITION OF COEQUALITY RELATION 

ON THE CARTESIAN PRODUCT OF SETS 

WITH APARTNESSES 

Daniel Abraham Romano 

ABSTRACT. A coequality relation on a set with an apartness is defined by 
standard way as a consistent, symmetric and cotransitive relation. The co-

equality relation on the product n Xi of sets with apartnesses is called de-

composible if it is determined by its special projections on Xi respectively. 

This paper contains some theorems about characterization of decomposible 

coequality on the Cartesian product II xi of sets Xi with apartnesses which 

are generalization of result of the main theorem in a paper by the author. 
As application of these theorems, we give the exact description of coideals of 

the commutative rings nn t  Xi and Xi. 

Introduction 

This paper continues the program of [7,8,9,10,12] to develop of coequality 
relations from the constructive mathematics ([1],[6],[14],[15]). The author is 
introduced the notion of coequality relation on sets with apartnesses in his 
papers [7],[8] and describes their basic properties in his papers [8] and [12]. 
Coequality relations on the Cartesian product of sets with apartnesses plays 
a central role in the developments [9] and [11]. 

At the beginning of the seventies, there appeared a number of papers 
dealing with decomposible congruences on the direct product of algebras, 
see e.g. papers [3] and [16]. In them it is used the well-known concept of 
diagonal operation ([2],[4]). The notion of compatibility of relation and the 
operation on the set given in the classical book [5]. If C is a coequality 

relation on the set (X, =, 0), and if w is an internal binary operation on X, 

then we say ([8],[10],[11]) that they are compatible if and only if 

	

(Vx, ,y,y` E X )((w(x , y), w(x' , )) E C 	(x, x i) E C V (y, 	E C. 
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916 	 D. A. Romano 

In this paper we give the necessary and sufficient conditions for decom-
posibility relation on the Cartesian product 1-17_, xi and Hi-1  Xi which are 
generalizations of the main theorem in the paper [13]. 

A coequality relation C on a commutative ring (R,=,,-F,.) ([6],[10],[14]) 
with an apartness is a cocongruence on R ([10]) if it is a coequality relation 
compatible with the operations in R and if holds 

(Vx, x' E R)((xx` , 0) E C 	(x, 0) E C A (y, 0) E C). 

We get, as applications of the main theorems that every cocongruences on the 
commutative rings 'T in xi  and Fri 	with apartnesses are decomposible. 
If C is a cocongruence on the commutative ring R, then ([10]) the set S = 

E R : (x, 0) E C) is a coideal ([10],[14],[15]) of the ring R. It is a strongly 
extensional subset ([14],[15]) of R such that 

-i(oEs),xES—zEs,x+yEsx€SvyEs,xyESsESAyES. 

As the last we give a description of coideals of the commutative rings H7_, Xi 
and Fr i  Xi using the coideals of Xi. 

Results I 

Theorem 1. Let C be a coequality relation on the Cartesian product 1 : 1 x-
of sets X i,(i = 1, ...,n) with apartnesses. Then relations q i  on X i ,(i = 
1, . ,n), defined by (x i , xii ) E qi <=> 

(Vi = 	, n) — {i})(((xl,... 	 ,xn)) E C) 
is a coequality relation on X i ,(i = 1,... , n). 
Proof. We give the proof for q i  . For q2 , 	, q„, the proofs are analogous. 

xc ) E ql <#. (3x2 E X2) 	(3xn E Xn)(((xi, • • • ,xn), 	, x2, ••• , xn)) E C) 

((xi, x2, ••• , xn), (xi x2, • • • , xn)) 	((a, x2, ..• x.), (a, x2, • • • ,xn)) 
.#• (xi, x2, 	xn) 0 (a, x2, ...,xn) V (x` 1, 	, x.) 0 (a, x2, • • • xn) 
r*xt$aVxi 3Oa 

<=;• (xi , 	(a, a); 

E ql s (3x2 E X2) • • • (3xn E Xn)(((xi, • • • , xn), (xl, x2, ••• , xn)) E C) 

.(3x2 E X2) ... (axn E 	 xn),(x1,x2, • .. , xn)) E C) 
<#. (4,x1) E ql . 

x 11 1. ) E q1 .4* (3x2 E X2) • • • (3xn E Xn)(((xl, x2, • • • , xn), 	x2, . • • , xn)) E C) 

Uzi, x2, ••• • , xn),(xi, X2, • Xn)) E C V ((xi, X2, • 	Xn), (X 111 , X2, ••• • Xn)) E C) 
•#;• (xi ,xi) E qi V (4,4) E ql. 	❑ 

Using the strongly extensional and embedding bijection 
2 

( fi x) f : ( 	3 ((xl, • • • , xn), (M., • • • , Yn)) 	(frl, Y1), • • • , (Xn, Yn)) E 	x?, 
i=i 

we have the following 
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ti=1 j=1 	 j=i+1 

n 	i-1 	 n ( 

1(C) = 	rrxxq, x 	x.)• 
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Corollary 1.1. Let C C 	X 1 ) 2  be a coequality relation. Then 

i-1 

f  (c) g U 	x qi x [J 	. 
i=, 

Proof. ((xi , Yi) , • • (x n, Yn)) E f(C) 

((xi). • • ,xn), (Y1, • • • yn)) E C = ((xi, x2, • • xn), (Y1, Y2, • • • yn)) E C 

V ((y1, x2, • • • , Xn), (Y1, Y2, 53, • • • , Xn)) E C V ... 

V ((yi,•• Yn-1, xn),(Y1,Y2, • ••,yn)) E C 

( 5 1 , y1) E giV(x2, Y2)Eg2V ... V (xn, yn)E qn * 
Yi), (x2, Y2), • • • , (XnlYn)) E (qi x X2 2  x • • • X71 2  ) 

U (x12 X q2 X X3 2  X • • • X Xn2) . • U(X12 X • • • X X„-1 2  X qn) 

( n 	i-1 	 n 

((xi, yi), ... , (xn, Y71.)) E U 11.X. xqix H x; . 0 
i=1 j=1 	 j=i+1 

Definition 1. A coequality relation C on the Cartesian product fZ 1 X1 
is decomposible if and only if 

Theorem 2. Let C be a coequality relation on the product Ir_ 1  X i  of sets 
with apartnesses. Then C is decomposible if and only if C is compatible with 
the diagonal operation d defined by 

d: (1-1 X1. 	(x l  , 	, x n ) 	1 	) E H X2  X i , 	X„ 	 •. 
i=1 	 i=1 

Proof. (1) Let C be a decomposible on the Cartesian product Hin_ i  X. We 
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i=1 j=1 
2) • 

(

n i-1 	 n 

U 	x3 x 2 
x H X 2  

(

n 	i-1 	 71 

ti rixi xsix H 
i=1 j=1 	 j=i+1 
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have 

E C 

<=> C 

	

> 	Y1), (x3, 	(xnn, Ynn )) E f(C) 

= 1, 	, n)((x ii , g!) E qi) 

= 1, . . n)(((xl , 	. , (x j„, y!„)) E f (C)) 

	

<=> 	= 1 , • • • n)(((xL xl, • • • x in), 	A, • • •, YO) E C) 

	

<#> 	= 1, 	 E C). 

(2) Let C be a coequality relation on Hi- 1  xi  compatible with the diagonal 
operation d. Let ((ai, bi),..., (a n , bn )) be an arbitrary element of 

Then there exists i = 1,...,n such that (ai,bi) E qi, i.e there exists i = 
1, ,n and there exists x 1  E • 7 E Xi-1,xi+1 E • • • , xn E 
Xn  such that ((x i , .• .,xi—i,ai,xi+i, ...,x,,), (x1, • • • , xi—i, bi,xi+i, • • , xn)) 
E C. Therefore 

((cti 	, an), (bi • • • , bn)) E C. ❑ 

Theorem 3. Let X i  be commutative rings with apartnesses and let S be a 
coideal of the ring Hin_ 1  X. Then there exists coideal s S i  of Xi(i = 1,.. .,n) 
such that 

Proof. Let S be a coideal of the ring Hi- 1  Xi  . Then there exists cocon-
gmemce C on f 1  xi  such thet 

(x,y)EC<*x—yE S. 

The cocongruence C is compatible with the diagonal operation d because 
the diagonal operation d can be expressed as follows 

= (x1,0,...,0)+ •• • + 
= 	 •• • + 

V
ir

tu
al

 L
ib

ra
ry

 o
f 

F
ac

ul
ty

 o
f 

M
at

he
m

at
ic

s 
- 

U
ni

ve
rs

it
y 

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs



( 71 

E xt et ,E y' 	E  C 	yei ) E C) 
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Therefore, if we put (1,0,...,0) = 	..., (0,...,0,1) = en, 

(d(x l , 	, xn), (y1 , 	, yn)) E C 

V((x''YI) E  C)(because (Vi = 1, 	, 	et) E C)). 

i=1 

By Theorem 2, the cocongruence  C  is decomposible such that 

n 	i-1 	 n 

1  f (C)  = U IT '° x  q .  x  II Jo
) 

1 	 1 	' 
i=1j=1 	 j=i+1  

( 

It is easy to prove that qi is a cocongruence on Xi, (i = 1,...,n). Thus, by 
Proposition 2.5 in {10], there exists the coideal Si of Xi, (i = 1,...,n) such 

that 
(xi, x;) E qi <=>- xi — xi E Si. 

Now, we have 

x E S <=> (x,0) E C 

((Xl, 	X n), (0, 	0)) E f(C) = U 1 Xq i x H 3 

	

i=1 j=1 	 j=i+1 

s. (3i,1 < i < n)((xi, 0)  E 	4#> (3i, 1 < i < n)(si E 

i-1 
*XEIPCJXSiX 11.  ❑ 

j=1 	 j=i+1 

Results II 

Theorem 4. Let C be a  coequality  relation on the Cartesian product fi r_ i  xi. 
Then the relation qi on X i (i E N), defined by 

(x, y) E qi  .* (3a, b  E  H  1  X  j) 

(a(i) = x A b(i) = y  A  (Vk  E N — {i})(a(k) = b(k) A (a, b) E C), 

is a coequality relation on Xi(ti  E  N). 

Proof. (1) Let x,y be elements  of  Xi such that (x,y) E qi and let u be 

an arbitrary element of  Xi .  Then there exist a, b, c E Ilr i  Xi such that 
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920 	 D. A. Romano 

a(i) = x A b(i) = y A (Vk E N — {i})(a(k) = b(k) A (a, b) E C), and c(i) = 
u A (Vk E N — {i})(c(k) = a(k)). From here, we have 

(a, b) E C (a, c) E C V (c, b)ECacVcOb 

-xuVuOy 	(x ,y)-0 (u, u). 

(2) (x,y) E qz 	(3a,b E H7 1  .Xj)(a(i) = x A b(j) = y A (Vk E N — 
{i})(a(k) = b(k)) A (a, E C) q (y, x) E qi. 

(3) Let x, y, z be elements of Xi such that (x, z) E qi. Then there exists 
a,b,c E 1-17 1  X j  such that a(i) = x A c(i) = z and (Vk E N — {i})(a(k) = 
b(k)) A (a, c) E C and 

b(i) = y A (Vk E N — {i})(b(k) = a(k) = c(k)). 

Therefore 

(a, c) E C 	(a,b) E C V (b,c) E C 

(x , y) E qi V (y,z) E qi. 	❑ 

Using the strongly extensional and embedding bijection 

f: H X j) 3 	{(a(i),b(i)): i E N} E H 	, 
= 1 	 j = 1 

00 	 00 

we have the following 

Corollary 4.1. Let C C (117: 1  Xj)2  be a coequality relation. Then 

f(() 	 x qi+i x 
i=0 j=1 	 j=i1-2 

Proof. Let a, b be elements of n7, x;  such that (a, b) E C. If we put 

00 

at  E H Xi t E {0} U N U {oo}) a °  = a, a" = b, 
i=1 

(Vj E N)(j < t 	at (j) = a(j) A t > j 	at (j) = b(j)), 

2 
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Decomposition of coequality relation ... 	 921 

we have 
00 

(a,b) E C = V((ai ,ai+1 ) E C) 
i=o 
00 

V((a(i),a(i+ 1 ) E qi+1) 
i=o 

00 	i 	 00 
V (a , b) E 	x 	x 	xi  
i=o 	j=1 	 j=i+2 

0o 	i 	 oo 

	

<#, (a, b) E U11 	x 	x fl Xj 

,=0 j=1 	 j=i+2 

Therefore 

f(c) U H x qi+i  x fl Jiq . ❑ 

,=. j=1 

Definition 2. A coequality relation C on the Cartesian product fir_ i  Xi 
is decomposible if only if 

0o 	i 	 00 

.f(C)= U (11 	x ,i+i x fl 	. 
,=. j=1 	 j=i+2 

Theorem 5. Let C C 	Xi)
2 be a coequality relation on the Cartesian 

product 	xi of sets with aparthnesses. Then C is decomposible if and 
only if C is compatible with the diagonal operation d on 	xi defined by 

	

d: (

00 	N 	 oo 

11X) 3 F 	{F„(n)E X„,:n EN} EnXi. 

	

i=i 	 i=i 

Proof. (1)Let C be a decomposible relation on the Cartesian product Tr i Xi 
of sets and let F {{F„(j) E Xj j E NJ : E IV} and G {{G 7,(j) E 

Xi : j E : n E -ri)1 be arbitrary elements of (r1  . Then 

(d(F), d(G)) E C 

({Fn(n) E Xn  : n E N}, {Gn  (T) E Xn  : n E 	E C 

	

co (i 	 co 

44. {(Fn (n),Gn (n)) E X72, : n E 11) E f (C) = U Xix 
i=0 	

qi+i x 	x?) 
i=i+2 

<#, (3n E 1■1)((F.(n), G n(n)) E qn) 
(3n E N)(i(Fn (i) , G n (i)) E X? : i E N) E (C)) 

.4*(3n EN)((Fn ,Gn) E C. 
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( II 
 

S = = U 	x i  x 	x H xi  . 
i=0 j=1 	 j=i+2 

co 	i 	 oo 

922 	 D. A. Romano 

(2) Let C be a coequality relation on H7! Xi compatible with the diagonal 
operation d and let {(ai, 	: i E N) be an arbitrary element of 

(

U II x. x qt+i x II -'( 

Then there exists n in N such that (an , bn) E qn  , i.e. there exists n E N and 
there exist x, y Err_ i  X 2  such that 

(x,y) E C Ax(n) = an A Y(n) = bn  A (Vk E N — {n})(x(k) = y(k) = xk E Xk). 

Let we define x i , yi  E H i  xj( i E N) such that 

x" = a A yn = b A (Vi E N— {n})(Vj E N)(x i (j) = xi  = y'(j))• 

Then, by compatibility of d, we have 

00 

(x, y) E C g V ((x t , y i ) E C) 
j=1 

(x n ,e) E C(because (Vj E N — {n})—.((x 3  ,y 3 ) E C)) 

q (a, E C q {(a(i), b(i)) E 	: i E N) E f(C). ❑ 

Theorem 6. Let Xi(i E N) be commutative ring with an apartness and 
let S be a coideal of the ring fl X i . Then there exists the coideal S i  of 
Xi(i E N) such that 

00 	i 	 00 

i=0 j=1 	 j=i+2 

Proof. Let S be a coideal of the ring Hr i  X. Then there exists the cocon-
gruence C on fjr_ i  Xi such that (x,y) E C q x—y E S. The cocongrunce C 
is compatible with the diagonal operation d because the diagonal operation 
d can be expressed as follows,if we put e 2  = (0, , 0, 1, 0, ... )(i E N) 

00 
d(F)= {F,,(n)E X„ : n E N) = E Fnen 

n=1 
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Decomposition of coequality relation ... 	 923 

Therefore 

00  ao 

(d(F),d(G)) E C <=> (E F„e", E G „e") E C 
n=1 	n=1 

03 

V ((Fne", G nen) E C) 
n=1 

cc 

V ((Fn,G, ) E C). 
n=1 

By Theorem 5, the cocongruence C is decomposible such that 

f(C)  = V fl Xj x qi+i x H 
i=0 j=1 	 j=i+2 

It is easy to prove that qi  is a cocongruence on X i(i E N). Then, by 
Proposition 2.5 in [10], there exists the coideal Si of Xj(i E N), such that 
(x, y)E qi <=> x — y E Si(i E N). Now, we have 

a E S (a,0) E C 

oo oo 

<=> i(a(i), 0) E X? : E N} E f(C) = U (111 )(1 xqi+tx ri Xi 
i=0 j=1 

<:;. (3n E N)((a(n + 1), 0) E qn+i) 
.4* (3n E N)(a(n + 1) E Sn+1) 

co( n 
aE 	HxjS„.fix .  fq o 

n=0 5=1 	

>< 	
j=n4-2 

x;  . 
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SEMIDIRECT PRODUCTS OF SOME SEMIGROUPS 

Blago je Stamenkovie 

ABSTRACT. Regular semidirect products of semigroups have been studied 

by G. B. Preston [5], orthodox by T. Saito [6] and E-inversive by F. Cabro 
and M. Micoli [3] e.t.c. In the present paper we study semidirect products 
belonging to one of the following classes of semigroups: 7r-regular, semi-
lattices of Archimedean semigroups, Archimedean, left Archimedean, right 
Archimedean and other. At the end of the paper we give a new proof of the 
Wilkinsons theorem. 

Let T and S be semigroups and let 0 : S 	EndT be an antimorphism 

of S into the endomorphism semigroup of T. For s E S, t E T we denote 

t(s0) by ts. If t,ti E T, s, s 1  E S then (HO' = tstl and (ts) 3 1 = Po. By 

semidirect product of T and S with structural mapping 0 we mean the set 

T x S with the following multiplication: 

(t, s)(t1 , s i ) = (ttl, ssi ), B. H. Neumann, [4]. 

This product will be denoted by To x S. 
By Z+ we denote the set of all positive integers. If a, b E S, then a I b 

if xa = b for some x E 51 . A semigroup S is 7r-regular if for every a E S 

there exist n E Z+ such that an E a"Sa". By E(S) we denote the set of all 

idempotents of S. A semigroup S is Archimedean (left Archimedean, right 

Archimedean) if for all a, b E S there exists n E Z+ such that an E SbS 

(an E Sb,a" E bS). For undefined notions and notations we refer to [1]. 
Regular semidirect products of semigroups have been studied by G. B. 

Preston [5], orthodox by T. Saito [6] and E-inversive by F. Cabro and 
M. Micoli [3] e.t.c. In the present paper we study semidirect products 
belonging to one of the following classes of semigroups: 7r-regular, semi-
lattices of Archimedean semigroups, Archimedean, left Archimedean, right 

925 
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926 	 B. Stamenkovi6 

Archimedean and other. At the end of the paper we give a new proof of the 
Wilkinsons theorem. 

Theorem 1. The following conditions are equivalent on the semigroup U 
To x S. 

(i) U is a 7-regular, 
(ii) S is a ir-regular, and for all t E T and s E S there exist x E T, y E S 

and m E Z+ such that: 

(1) 	tt S t S2 	tS".-1 X 5'm  (U S? . . . em-1 ) 8711  = tt 3 t32  . . . tSm-1  

(iii) S is a .2r-regular, and for every s E S there exists y E S and m E Z+ 
such that for e = sin y E E(S) and for every t E T it holds: 

(2) ttsts2 	tsm-1  E T(tt sts2 	em-1 
and 

(3) (u s ts2 	ts' ) . E (tee' 	ism -) e te(ttsts2 	ts"1-1 )€. 

Proof. (i) 	(ii) Let U be ir-regular. Then for (t,$) E U there exist (x.y) E 
U and m E Z+ such that: 

(4) (Us . .. 	x s^. (tt s ...tsm-l )s- Y, s'n y 8') = (tts 	tsm 	Sm ) 

whence it follows (ii). 
(ii) (iii) Let (ii) hold. By (1) it follows (2), since for s E T there exist 

y E S and m E Z+ such that sm ye' = s'n and s'ny = e E E(S). Moreover, 
acting on (1) with e = smy gives 

(te...t sm-i )e = (tt s ...t s "-1 ) e (x sm ) e(tts...t sm-1 )e, 

so (3) holds. 
(iii) (i). Suppose that (iii) hold and let (t, s) E U. Then there exist 

y E S and in E Z+ such that smys 911  = sm . Also by (3) there exists u E T 
such that: 

(tts 	tsm-  1  )e = (Us 	)€ue(tts 	tsm- ' )e 

and by (2) we obtain 

(te .t sm-1 	 ) ) e  = v(tts 	tsm-ie 
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Semidirect products of some semigroups 	 927 

for some v E T. Let x = O. Then 

its  ...ts'n  i xa m (tts...ts m-l rY = 

v(tts 	t8--1 )e(uns m  (Hs 	ts."-1  = 

V(tt S 	1 ) e  U s  (its  . . .i sm-1 )e  

11(it s t s2  . . .t sm-1  ) e  = 

it s  .. 	. 

This proves (4) and completes th proof of 7r-regularity of U. ❑ 

Note that for in = 1 the condition (2) becomes t E Tie, and (3) means 
that Te is a regular semigroup, so as a consequence we obtain Theorem 6 

[5]. 

Corollary 1. (G. B. Preston [5]) Let U = T9 x S be a sernidirect product 
of semigroups. Then U is regular if and only if: 

(1) S is regular, and 
(ii) for all s in S there exists y E S such that for e = sy E E(S) T s  is 

regular and for every t in T, t E Tte . 

Theorem 2. Let U = T9  x S be semidirect product of semigroups. Then 
U is a semilattice of Archimedean semigroups if and only if next conditions 
holds: 

(i) S is a semilattice of Archimedean semigroups and 
(ii) (Vs, s i  E 5)(\ift,ti E T)(3u E T)( 3Y,v E S)(3n E Z+ )((sSl) 91  = 

ys2 v 	(tt s u32 )Y Ir ol (ttn (ssl)' . 

Proof. Let U be semilattice of Archimedean semigroups. Then for all (t, s), 

(t i ,si ) E U there exist (x,y),(u,v) E U and n E Z+, such that: 

((t,$)(t i ,si))" = (x,y)(t,$) 2 (u,v). 

From this we can obtain (i) and (ii). 
Conversely, suppose that conditions (i) and (ii) holds. Then by (i) and 

Theorem 1 from [2] it follows that for arbitrrary s,s i  E S exist y, v E S and 
n E Z+ such that 

\n ssi) = ys 2 v 

From (ii) and (5) we can conclude tat there exists x E T such that: 

(6) 	ttl(tt i )ss1  ...(tt i ) ( "1)-1  = x(ttsus 2 )Y = x(tts)YuYs2. 

(5 ) 
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928 	 B. Stamenkovi6 

Consequently, for all (t,$),(t i ,si ) E U there exist (x,y),(u,v) E T and 
n E Z+ such that 

((t,$)(ti,s1))" = (tq,ssi) ,L 

= ((t,t1)(ttl)ssi ...(ttl) (33 ' )6-1 ,(ssir) 

= (x(tts)yuys 2 ,ys 2 v) from (5) and (6) 

= (xy)(t, s) 2  (u, v) 

which together with Theorem 1 from [2] implies that U is a semilattice of 
Archimedean semigroups. ❑ 

Theorem 3. Let U = T9  x S seinidirect product of semigroups. Then U is 
an Archimedean semigroup if and only if next conditions are fulfield: 

(i) S is an Archimedean semigroup, and 
(ii) (Vt, t i  E T)(Vs,si E 5)(3u E T)(3y, v E S)(3k E Z+ )(St = ysv 

k-1 i  (tus )y I I-L=O  ti i). 

Proof. Let U be an Archimedean semigroup. Then for all (t, s), (t 1 , si) E U 
there exist (x,y),(u,v)E U and k E Z+  such that: 

(ti  , s1 )k = (x, y)(t, s)(u, v)• 

From this immediately follows that conditions (i) and (ii) holds. 
Conversely, suppose that conditions (i) and (ii) are fulfield. Then from 

(i) we obtain that for all s, si E S there exist y, v E S and k E Z+ such that 

(7) si = ysv, 

hence, from (ii), we conclude that for all t, t 1  E T there exist x, u E T such 
that: 

(8)

k-1 

tsi = 	 = x (tus)Y. 
i=0 

Consequently, for all (t,$),(t i ,si ) E U there exist (x,y),(u,v) E U and 
k E Z+ such that: 

(ti,si) k  = ( ti 	... 	,sin ) 
= (X(tU sr, ysv) = (xtvu", ysv) by(7)and(8) 

= (x, y)(t, s)(u, v), 

which means that U is an Archimedean semigroup. ❑ 

From Theorem 3, putting k = 1, we obtain the next corollary. 
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Semidirect products of some semigroups 	 929 

Corollary 2. Semidirect product of semigroups Ue x S is a simple setnigroup 
if and only if next conditions are fulfield: 

(i) S is a simple semigroup, and 
(ii) E TOS,81 E 5)(3u E T)(3y,v E S)(si = ysv 	(tter 

t1 ). 

Theorem 4. Semidirect product of semigroups U = To x S is left Architne-
dean semigroup if and only if next conditions are fulfield: 

(i) S is a left Archimedean semigroup, and 
(ii) (Vt, t i  E n(Vs,si E S)(3u E T)(3y,v E S)(3k E Z+)(st 	ys 

k-1 3' tY ri,=0  ti i). 

Proof. By multiplying in U we can simply prove that U is a left Archimedean 

iff for all t, t 1  E T, s,si E s exist x E U, y E S and k E Z+ such that: 

x -1 

(9) 	(t1 Sl) k  = (t t71 ...t
i t 	 = (xtY , ys) = (x, y)(t, s) 

holds. Suppose that U is a left Archimedean semigroup. Then from (9) we 
can obtain that conditions (i) and (ii) holds. 

The converse of the theorem can be obtained immediately from (9). ❑ 

From Theorem 3, putting k = 1, we obtain next corollary. 

Corollary 2. Semidirect product of setnigroups U e  x S is a left simple semi-
group if and only if next conditions are fulfield: 

(1) S is a left simple semigroup, and 
(ii) (Vt, t i  E T)(Vs,si E S)(3y E S)(si = ys 	t' I t1). 

The proof for next result is similar as the proof of Theorem 4. 

Theorem 5. Semidirect product of semigroups U = T e  x S is a right 
Archimedean semigroup if and only if next conditions are fulfield: 

(1) S is a right Archimedean semigroup, and x -1 

(ii) (Vt tl E T)(Vs,si E 5)(3x E T)(3k E Z+)(t,t11 	
s

= tx3). 

Corollary 3. Semidirect product of semigroups U e  x S is a right simple 

semigroup if and only if next conditions are fulfield: 

(i) S is a right simple semigroup, and 
E T)(VS, Si E S)(3x E S)(ti = xt s ). 

G. B. Preston in [5] gave the proof for Wilkinson's theorem, we shall give 
here one more proof for this theorem. 
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930 	 B. Stamenkovi6 

Theorem 6. Semidirect product of semigroups U9  x S is a group if and only 
if T and S are groups and SO C AutT . 

Proof. Let U be group. Then by Corollaries 2 and 3 we obtain that S is a 
group. Let e be the identity element in group S. Then from (ii) of Corollary 
2 we obtain: 

(10) (tit, E T)(3x E S)(t1 = txe) 

and 

(11) (Vt, E T)(3x E S)(t 1  = xte). 

Hence, from (9) we conclude that for every u E T there exists x E t such that 
u = utx 1  whence u i  = (u1x 1 ) 1  = utxt = u. Consequently, e9 is an identity 
mapping. Now by (10) and (11) we obtain that equations t 1  = tx, t1  = xt 
have solutions in T, so T is a group. 

Since for every t E T and s E S 

t = t i  = t Ss -1  = ( tS-I  ) S-1 , 

we conclude that every mapping 80 has it's inverse mapping .5 -1 9, so SO C 
AutT. 

Conversely, let S and T be groups and let e be identity in S, f identity 
in T. By streightforward verification we obtain that ( f , e) is an identity of 
semigroupT and that every (t, 8) E U has it's inverse element (t, s) -1  = 
(t -1 , 8 -1 ), so U is a group. ❑ 
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DETERMINANTAL REPRSENTATION 

OF GENERALIZED INVERSES 

OVER INTEGRAL DOMAINS 

Predrag Stanindrovie and Miomir Stankovie 

ABSTRACT. In this paper we introduce a general form of determinantal repre-
sentation of generalized inverses, for matrices which admit rank factorizations 
over an integral domain. We investage necessary and sufficient conditions for 
existence of generalized inverses. Finally, we examine correlations between 
the minors of generalized inverses and minors of the source matrix. 

1. Introduction and preliminaries 

We consider an integral domain I with an involution A : a i a. For an 
m x n matrix A let a = {al, 	, ar} and /3 = {p i , . . . , p,.} be the subsets of 

{1, 	, m} and {1, 	, n}, respectively. Then A (7i 73: = I Alp denotes 

the minor of A determined by the rows indexed by a and the columns indexed 
by S. If a = 11, , m}, then I AR I can be simply denoted I Ao I, and 
similarly if = {1,... , n}, then I A ct; I can be denoted by I A" I. Also, the 
algebraic complement of I A73  I is defined by 

0 

	

/15' I = Aii ( 73: 	
cr p +1 ••• ar r 	 i N p -F q  A  (00. • • • a - ap+I ••• 0,*) 

oaii 	 13q -1  i 139+1 ••• 	 ••• 14-1 13q }1 ••• Or 

The r-th compound matrix Cr (A) of A is a matrix of order (7) x (nr ) 

defined on the following way. The rows of Cr(A) are indexed by the r-
element subsets of {1,... , m}; the columns are indexed by the r-element 
subsets of {1, , n}, and the (a, /3) entry of Cr (A) is defined as I Acti I. 

931 
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932 	 P. Stanimirovie and M. Stankovi6 

For A E On" consider the following Penrose [13] equations in X (where 
A* = (71) T ): 

(1) AX A = A (2) X AX = X (3) (AX)* = AX (4) (X A)* = X A. 
If m = n we add 

(5) 	AX = X A . 
For a subset S of { 1, 2, 3,4,5) the set of matrices G obeying the conditions 

represented in S will be denoted by A{S}. A matrix G E A{S} is called an 
S-inverse of A and is denoted by AV). 

The starting point of the investigations of this paper is the determinantal 
representation of generalized inverses of complex matrices [1, 4, 7, 15, 16]. 
Also, we use the determinantal representation of the Moore-Penrose inverse, 
the weighted Moore-Penrose inverse and the group inverse over integral do-
main ([2], [11] and [12]). Let us recall 

Theorem 1.1. [2] Let A be an m x n matrix of rank r over IL and let 
A = PQ be a rank factorization of A. Then the following conditions are 
equivalent; 

(i) A has a Moore-Penrose inverse. 
(ii) P* P and QQ* are invertible over I, 

(iii) Cr(A) has a Moore-Penrose inverse. 
(iv) E I A c4;1• (AM is invertible in I, where a, /3 run over r-element 

cY,0 

	

subsets of { 1, 	, in) and { 1, 	, n} respectively. 
Furthermore, the Moore-Penrose inverse G = 	if it exists is given by 
G = At = Q*(QQ*) -1 (P*P)-1 P* and 

	

gii = (E 171b11A:I 1) -1 	E 	I41 -- 1AV a:jEa; fkiE0 	aii 

Similar results are obtained for the weighted Moore-Penrose inverse A t" 
[12], which satisfies equations (1), (2) and 

(6) 	(MAX)* = MAX 	(7) (N X A)* = NXA.  

Theorem 1.2. [12] Let A be an in x n matrix of rank r over IL and let 
A = PQ be a rank factorization of A. Then the following conditions are 
equivalent: 

(i) A has a weighted Moore-Penrose inverse with respect to M and N. 
(ii) P* M P and Q 	are invertible over I. 

(iii) C r(A) has a weighted Moore-Penrose inverse with respect to C,,(M) 
and C,,(N). 
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Determinantal reprsentation of generalized inverses ... 	 933 

(iv) E I (N -1 A * M) 12y I I A73 I= E I (MAN-1) ,"3,  I I A5 I is invertible in I. 
«43 	 ot,f3 

Determinantal representation of the group inverse over an integral domain 
I is introduced in [11]: 

Theorem 1.3. [11] Let A be an m x n matrix of rank r over 11, and let 
A = PQ be a rank factorization of A. Then the following conditions are 
equivalent: 

(i) A has a group inverse. 
(ii) C r(A) has a group inverse. 

(iii) E I A4 I is invertible in I. 
-y 

Furthermore, the group inverse GI = (gij), if it exists, is given by 
-2 

E I (AT )0 I 	 73 I • aaji A 

The main results of this paper are: 
(1) Generalization of the algebraic complement and determinant, and ob-

tain general form of the determinantal representation for different classes 
of generalized inverses: the Moore-Penrose inverse, the weighted Moore-
Penrose inverse, the group inverse and the left(right) inverses. In this way, 
we generalize the results obtained in [16]. 

(2) Necessary and sufficient conditions for existence of the general de-
terminantal representation, and partially, existence of the Moore-Penrose 

inverse, the weighted Moore-Penrose inverse and the group inverse. 
(3) Correlations between the minors of diferent classes of generalized in-

verses and minors of the given matrix. 

2. Determinantal representations of generalized inverses 

First we generalize the concepts of determinant and algebraic complement 
(see [1, 2, 4, 7, 8, 11, 12, 15, 16, 17]). 

Definition 2.1. The generalized determinant of an m x n matrix A of rank 

r, denoted by N( R, r)(A), is defined by 

(2.1) 	 N(R,r) (A) = E I 	I I  
ct,0 

where R is an m x n matrix satisfying condition 

(2.2) 	 rank(AR*) = rank(R* A) = rank(A). 

Note that (2.2) is satisfied if and only if rank(R) > rank(A) = r. 

gij = 
; 0:iE/3 
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934 	 P. Stanimirovie and M. Stankovi6 

Definition 2.2. Let A, R be m x n matrices over I and let R satisfies (2.2). 
The generalized algebraic complement of A corresponding to aij is defined 
by 

(2.3) 	 = 	E 	Ra 	I Aa  I • 
(-L--7  ogiEcv;O:iE0 	 .7s 

In a similar way can be generalized the notion of adjoint matrix. 

Definition 2.3. Matrix whose elements are equal to AU' R)  we denote by 
adj( ")(A), and we write it as the generalized adjoint matrix of A, corre-
sponding to R. 

Finally, in the following definition we introduce the general determinantal 
representation of generalized inverses over an integral domain. 

Definition 2.4. Let given an m x n matrix A of rank r over I and m x n ma-
trix R which satisfies condition (2.2). General determinantal representation 
of generalized inverses of A is defined by 

(2.4) A(t,R) 	(N(R,r)(A)) -1 . adj(") (A). 

For two full-rank matrices A and R we have: 

Lemma 2.1. If A is an m x n matrix of full-rank and matrix R has the 
same dimensions and rank, then: 

I AR* I , r = m 

1 I R* AI , r n. 
{(R*adj(AR*)) ii  , r = m 

Proof. (i) Follows from the Cauchy-Binet Theorem. 

 (ii) The relation (A*adj(AA*)) ii  = E Ap 
0

—,,I A,3 is obtained in 
0:iEP 	vaii 

[1], [6]. The result (ii) can be obtained in a similar way, substituting the 
matrix A* by the matrix R*. 

(iii) It is implied by (i) and (ii). ❑ 

Now we investage main properties of the generalized adjoint matrix, ge-
neralized algebraic complement and generalized determinant. 

(i) Nui,o(A) = 

(ii) = ij (adj(R* A)R*) ij  , r = 71. 

(iii) A" ' R)  = {
R * (AR * ) - 1 , r = m V
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Determinantal reprsentation of generalized inverses ... 	 935 

Lemma 2.2. Let A = PQ be a full-rank factorization of an m x n matrix 
A of rank r, R 1  be an r x n matrix of rank r and R2 be an m x r matrix of 

rank r. Generalized adjoint matrix satisfies the following: 

adj(tRi)(Q) • adj(t,R2)(p) = adi(tR2R1)(A). 

Proof. For 1 < i < n, 1 < j < in we obtain the following representation for 
(i,j)-th element of the matrix product adj( t ,  

r 

(adj("1) (Q) • adj("2) (P)) = E Q,(i ik,Ri) • pkjo ,Ro — 
ij 

k=1 

a 
= E E I (R1)0 —;) 1Q,61 -  E (R2r 	P" = 

k=113:iEl3 	
uqki 	 ("Rik a:iEa 

E 	(R2R1)cin • E aPai k 1Pa I 
agki 

 I clo I • 
cciE0e;A:iE/3 	 k=1 p-  

Using the Cauchy-Binet formula we get 
r a 	a  
E 	IP"17-1(2/31= aa  
k=1 UP 3k 	aqki 

which implies 

(adj(1. 	(Q) • adi(t ,R2) (p)) = (adj(t ,R2R1) (A)) ij  . ❑ 

Similarly, the following lemma can be proved: 

Lemma 2.3. If A = PQ is a full-rank factorization of an mxn matrix A of 
rank r, R1 and R2 are matrices of apropriate sizes, and satisfy rank(QR1) = 
rank(R2P) = r, then the generalized determinant satisfies 

N(Ri,r)(Q) • Nu:1 2 ,0(P) = N(R2Ri,r)(A). 

Proof. From Lemma 2.1 and the Cauchy-Binet theorem we obtain: 

N(Ri,r)(Q) • N(R,,r)(P) = I ( 

=E1(1T)011Q01"EIR2Y 1 IIPa i= 
(3 

= E 1 (R2R1)I I li c"; I= N(R2131,0(A). ❑ 

a,13 

From Lemma 2.2 and Lemma 2.3 we have. 

Corollary 2.1. If A = PQ is a full-rank factorization of an m x n matrix 

A of rank r, R 1  and R2 satisfy conditions from Lemma 2.2 and Lemma 2.3, 
then the generalized determinantal representation satisfies 

R1)(Q) • adj(t ,R2 )(P): 

r 
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936 	 P. Stanimirovi6 and M. Stankovi6 

Q(t,Ri) . p(t,R2) 	A(t,R2R1) .  

The following theorem showes the properties of determinantal represen-
tation of generalized inverses. 

Theorem 2.1. Let A, R be m x n matrices of rank r and A = PQ be a 
full-rank factorization of A. Then: 

N A t = Q(1-,Q)p(t,P) = A(t,A) ;  

(ii) AtmN  = Q(LQN-1 )p(t,AfP) = A (t,mAN -1 ) ;  

A# — Q ( LQ .) P( t'P*)  = A ( t'A*) ; 

(iv) A -1  = A") , for arbitrary regular R and regular A; 

(v) A" )  represents the left(right) inverses, for a full-rank matrix A. 

Proof. (i) Follows from At = QtPt and Lemma 2.1. 

(ii) It is implied by A tm,N  = (QN -1 )*(Q(QN -1 )*) - I ((M P)* P) -1 (M P)* 
[12], [17] and Lemma 2.1. Furthermore, from Defitiltion 2.4, we obtain the 
following determinantal representation for AL ,N , (see [17]) and [12, Theorem 
8]: 

(4,N) ..= (Ei(MAN -1 )111/1 7 =3 	,-y,6 
I (m AN-1)00, ,

Oaii 
 I 	I /31.  . 

= 

 (
EicATviipt-,Y1) • 	E 	i(AT)ocwi

aa  I Aa  I . 
-y,6 	 agiE01;R:i0 	

ji 	° 

(v) For example, suppose r = m. Using the Laplace's development for 
the square minors AR we get 

Nui,m)(A) = L, RRE a=3, 
Oa1• • 0 	k=1 	3k 

I AO Il = 
r a 

n a 

	

, 
as 

, 
A R I , 	

n =E au E „, 	i li 	= 	aii.4(i R' m) . 
1=1 	/3,1E0 	

ii 	'- 
1=1 

For p 	q, 1 < p, q < in, substituting in the minors of A, the q-th row 

(iii) Follows from Theorem 1.3 and 
-2 

(E I A ; I) • E 
cajEcr;INE0 

-1 
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by the p-th row, and using N( Ro„)(A) = 	RAp = 0, in the same way 

we prove E 	(R, "' ) = 0. Hence, go  = 	N ( R ,„,)(A), and consequently 
1.1 

A • A(t ,R) = /„„ for arbitrary R. This means that A(•) represents the class 

of right inverses of the full-rank matrix A in the case r = m < n. 

On the other hand, it can be proved that A(t , R)  represents the class of left 

inverses of A, in the case r = it < tn. ❑ 

In the following theorem we examine existence of the general determinan-
tal representation. 

Theorem 2.2. Let A, R be in x n matrices of rank r over I, A = PQ be 
a full-rank factorization of A and R. = ST be a full-rank factorization of R. 
Then the following conditions arc equivalent: 

(i) A(t ,R)  exists. 
(ii) QT* and S* P are invertible matrices in I. 

(iii) N( T , r)(Q) and A r(s , r) (P) are invertible in IL 
(iv) N( R , r)(A) is invertible in L 

Proof. (i)(ii): If A(t ,R) exists, from Corollary 2.1 and Lemma 2.1, we get 

A(t,R) = A (ksT) = Q um p(t,$) T. (QT.)-1(s.p)-1 s .. 

From AA(t , R) A = A follows 

QT*(QT*) -1 (S*P) -1 S*P = I, 

which implies (ii). 
(ii)(i): If QS* and T*P are invertible, from Lemma 2.1 and Corollary 

2.1, we conclude 

	

T*(0- ) -1 (s* p) -1  s* = Qom . 	,$) = Act ,sT) = A(t,R) _ 
(ii)(iii) A square matrix over a ring I is invertible if and only if its 

determinant is invertible in I [9], [10]. Hence, QT* and S* P are invertible 
matrices if and only if IQT*I and IS*Pi are invertible in II. Finally, from 
Lemma 2.1 we obtain 

IQT*I = N(T,r)(Q), 	IS * Pi = N(s,r)(P)• 

(iii)<=>(iv) An application of Lemma 2.3 implies 

N(T,r)(Q) • N(S,r)(P) = N(ST,r)(A) = N(R,r)(A)• 

Therefore, N( R, r)(A) is invertible if and only if both N(s, r)(P) and N(T,r)(Q) 
are invertible. ❑ 
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Corollary 2.2. Let A be an m x n matrix of rank r, and A = PQ be its 
full-rank factorization. The following conditions are equivalent: 

(i) At exists. 
(ii) QQ* and P* P are invertible matrices in I. 

(iii) A r( Q ,,.)(Q) and N( p,r) (P) are invertible in IL 
(iv) N( A ,,.)(A) is invertible in I. 

Corollary 2.3. For an m x n matrix A of rank r the following conditions 
are equivalent: 

(i) At A4,N  exists. 
(ii) P* M P and Q N -1 Q* P are invertible matrices in I. 

(iii) N(QN-1,,.)(Q) and N(pm, r)(P) are invertible in I. 
(iv) Now AN -1,0 (A) is invertible in I. 

Corollary 2.4. Let A be a square matrix of order n, rank r and rank(Q P). 
r. Then the following conditions are equivalent: 

(i) A# exists. 
(ii) Q P is invertible matrix in I. 

(iii) N(a* r)(Q) and Ar(Q. ,r)(P) are invertible in I. 
(iv) No  .,,.)(A) is invertible in I. 
(v)E A4 I is invertible in I. 

ti 

Proof. Note that (iv) <#. (v) follows from 

-2  
ti 

In the following part of this section we represent minors of generalized 
of A, in terms of minors of A and arbitrary matrix R, which satisfies the 
condition (2.2). 

Theorem 2.3. Let A, R be matrices of type m x it whose rank is r and let 
A = PQ be a full-rank factorization of A. Then for all a, we have 

(2.5) 	
I (A(t'R))5 I=  (E I A li I I CAI6 I) 	• I (77)p I 

1,8 

= (N(R ,r)(A)) 

Proof. In ([2], Theorem 3.) is proved the following relation for the reflexive 
generalized inverses G = (gib) of A: 
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gii = E I Gil 	1N/3 i • 

The proof can be completed using that A(t ,R) is a reflexive generalized inverse 
and 

( 

	

(A") )ii  = E I Ali I I (TM 	• E I (W)51 -
a 

act,i I  AcI3 
I. 
 El 

	

1, 5 	 oejEa 05,iEd 

In particular, the last theorem and Theorem 2.1 imply: 

Corollary 2.5. Let A, R be matrices of type in x it and rank r over I. Then 
for all a, Q  is valid: 

-2 

	

I A# 0 = 	Kly I) 	I A« I =  ( 1V(A*,r)(A)) I  1(A7)51; 
ry 

—1 

	

l Atci31 = 
	

I 71/3a  I = (N(A , 7.)(A)) -1  I A,̀4  I ; 

-1 

I ( AtM,N) a I = E I An I (MAN -1 ); I ( I ( MAN-1 )5'  I = 
l',5  

= (N(4AN -1 ,r)(A)) 1  I (M AN -1 731 - 

Proof. If m = n, and R = A*, in (2.5) we obtain G = A#. Similarly, for 

R= A we obtain G = At, and G = AL ,N  is induced by R= MAN -1 . ❑ 

Note that correlations between minors of A and corresponding minors of 
the Moore-Penrose and group inverse are proved (in another way) in [2] and 
[11], respectively. 
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SEMI-FREDHOLM ELEMENTS IN BANACH ALGEBRAS 

Nebojga Stojkovie 

ABSTRACT. In this paper we define the set of semi-Fredholm elements in a 
semisimple Banach algebra and we prove that the perturbation class of this 
set is a closed twosided ideal of this algebra. 

1.  Introduction 

Let X  be Banach space and let B(X) be Banach space of all bounded 

linear transformations of X into X. For T E B(X) we let N(T) denote the 

kernel of T, N(T) = {x  E XIT(x) =  0} and we let R(T) denote the range 

of T, R(T) {y E  XIT(x) = y for some x E X}.  If  T E B(X) and R(T) is 

closed, we say that T  is a semi-Fredholm operator if either dim(N(T)) < 00 

or dim(XI R(T))< oo. We have two classes of semi-Fredholm operators, 

0+ (X) = {T E  XIR(T)  is closed and dimN(T)  < oo} and 

0_(X) = {T E  B(X)IR(T) is closed and dimX/R(T) < 

We also set 0(X) = sP +  (X)  n &_(X) and call this set of Fredholm 

operators on X. It is known that T  E B(X) is Fredholm if and only if 

r(T) is invertible in the Calkin algebra C(X)(C(X)  =  B(X)/K(X) where 

K(X) is set of compact operators and 7r denote the natural homomor-

phism of B(X) onto  C(X),r(T) =  T K(X). Index of T is defined by 

i(T)  =  dim(N(T))  — dim(X  R(T)). Set of finite dimensional operators is 

denoted by F(X) and let Gi(A)(Gr(A))  be set left (right) invertible ele- 

ments of algebra A. 
If A is a semisimple Banach algebra, x is defined to be a Fredholm element 

of A if there exists a y E A such that xy — 1, yx— 1 E soc(A). Set of Fredholm 

elements is denoted by  0(A). 

941 
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942 	 N. Stojkovi6 

2. Preliminaries 

Let X be Banach space and let T E B(X). Next two theorems are proved 
by Yood in [8]: 

Theorem 2.1. T E 0.4 (X) and i(T) < 0 if and only if there exists To E 
B(X) and K E K(X)(K E F(X)) such that T = T o + K where To  is bounded 
below. 

Theorem 2.2. T E 0_(X) and i(T) > 0 if and only if there exists T o  E 
B(X) and K E K(X)(K E F(X)) such that T = To K and R(To) = X. 

By [2, Theorem 57.19] T E B(X) is bounded below if and only if T is not 
left topological divisor of zero and operator T E B(X) is onto if and only 
if T is not right topological divisor of zero [2, Corollary 57.17]. Let A be a 
seinisimple Banach algebra and let H1 and 1-1, be a sets defined by 

	

H1 = 	E Aix is not left topological divisor of zero }, 

	

= 	E Aix is not right topological divisor of zero }. 

Sets H1  and H,. are open semigroups [5, p.21]. 
In [6] Rowell defined set of left-Fredholm elements 

01(A) = {x E Al3y E A such that yx — 1 E 800)}1 

OP = 	E 01(A)iind(x) < 01, 

and proved [6, Theorem 5.3] that x E 0 ° (A) if and only if there exists 
u E soc(A) and a E G1(A) such that x = a u. 

3. Results 

In this paper we define sets 

	

0_7(A) = 	E Al3a E 1113k E soc(A) such that x = a + k}, 

	

c±(A) = 	E Al3a E 11,3k E soc(A) such that x = a + k}. 

Remark. If we put A = B(H), H is Hilbert space, then 0-+" (A) = e be-
cause T is not left topological divisor of zero if and only if T is left invertible 
in B(H) [2, Theorem 57.19]. 

In general case is G1(A) C H1 and Gr(A) C H,. [5, p.20]. From this fact 
we get 0 ° (A) C OT.(A). If X is Banach space then 01(X) C 0+(X). 
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Semi-Fredholm elements in Banach algebras 	 943 

Definition 3.1. Let A be semisimple Banach Algebra. We defined sets of 
semi-Fredholm elements 0+  and 0_ in A by 

0+(A) = 0_T(A) U 0(A) and 0_(A) = 04_- (A)U 0(A). 

Lemma 3.2. (1) If x, y E OT (A) then xy E 	(A). 
(2) If x E O_T (A) and k E soc(A) then x k E 	(A). 

(3) If x E 	(A) and a E C, A 0, then Ax E 0T(A). 

Proof. (1) Let x = al  + k 1  and y = 	k2 such that ai,a2 E Hi and 
ki , k2  E soc(A). Then we have 

xy = (ai + ki)(a2 + k2) = aia2 kia2 aik2 kik2 = a l  a2  k, 

where we put kia2 	+ki k2 = k E soc(A). From fact that Hi  is semigroup 
we have a y a2  E Hi and from this xy E 0+— (A). 

(2) and (3) is obvious. ❑ 

Let Min(A) be a set of minimal idempotents of A and let e be a fixed 
minimal idempotent of A. We shall write 2 to denote left regular represen-
tation of Banach algebra A on the Banach space Ae, that is 2(y) = xy for 
y E Ae. 

Theorem 3.3. If x E 0_7(A) then x is semi-Fredholni operator on Ae and 
< 0. 

Proof. Let x E OVA). Then there exist a E 111 and k E soc(A) such that 

x = a + k. Let ye E Ae be arbitrary element. Then we have 

2-(ye) = xye = (a + k)ye = aye + kye = ii(ye)1- i(ye) = + i)ye. 

From this we get 2 = a + k and k is compact on Ae because dim(k) < oo. 

As a is not left topological divisor of zero [2, Theorem 57.4], we get from 
Theorem 2.1 that is semi-Fredholm operator on Ae and 42) < 0. ❑ 

If y E 0(A) then y is Fredholm operator on Ae [1, Theorem F.2.6]. From 
this fact and Theorem 3.3 we have that if x E 0+(A) then 2 is semi-Fredholm 

operator on Ae. From [1, Example F.4.2] and fact that algebra A/K(X) is 

commutative because it is generated by T K(X) we get that the converse 

of Theorem 3.3 is false. 
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944 	 N. Stojkovi6 

Lemma 3.4. Set OVA) is open. 

Proof. It is known that Hi is open. Let x E 0+— (A). Then there exist a E Hi 
and k E soc(A) such that x = a + k, and there exists e > 0 such that for 
u E A, < E implies a — u E Hi. Let y E A and let lix — < E. Then we 
have 

y = x — (x — y) = a — (x — y) + k, 

and a — (x — y) E Hi. That means that y E OVA). ❑ 

Let S be a subset of Banach space A. Perturbation class of set S is 

P(S) {aEAla+sESforallsES}. 

Next two lemmas are valid with assumption AS C S for every A 0 0. 

Lemma 3.5. [3, Lemma 5.5.3] P(S) is linear subspace of A. If S is open 
subset of A, then P(S) is closed. 

Lemma 3.6. [3, Lemma 5.5.5] Let A be a Banach algebra with unit and let 
G be a group invertible elements in A. If GS C S, then P(S) is a left ideal; 
if SG C S, then P(S) is a right ideal. 

Theorem 3.7. P(0 -4:(A)) is a closed two sided ideal of A. 

Proof. In Lemma 3.4 is shown thatfc."(A) is a open set and from Lemma 
3.5 it follows that P(OT(A)) is a closed set. 

Let b E G(A) and x = a + k, a E Ht , k E soc(A). Then we have 

bx = ba + bk = ba + ki, 

where we put bk = k1  E soc(A). Suppose that ba HI. Then there exists 
a sequence {y„}`,',`L i  in A such that bay„ 0,n —> oo. But in this case 
b -1  bay, = ay, --+ 0, 
n 	oo, which is impossible. Thus ba E Hi. From this it follows that 
bx E 0+—  (A), so we have 

(1) 	 G(A)OVA) C OVA). 

From the other side 

xb = ab + kb = ab k2 , 

where k 2  E soc(A) and ab E Hi. (If ab 	Hi  then there exists sequence 
{z„}°"_ 1  such that abz„ = a(bz„) 	0,n 	oo and a (1 Hi what is contra- 
diction.) It follows that 

(2) 	 P+(A)G(A) c OT.(A). 
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From (1),(2) and Lemma 3.6 it follows that P(OT(A)) is two sided ideal 
of A. ❑ 

Let now suppose that A and B are Banach algebras with identity 1 and 
T : A —> B is a homomorphism of Banach algebras. Suppose that T is 
bounded and T(1) = 1. In [4] Harte defined a E A as Fredhoim element with 
respect to T if and only if T(a) E G(B). Analogously we define left and right 
Fredholm elements with respect to T as 

01(A). {a E AIT(a) E G1(B)}, 

0,(A) = 	E AIT(a) E Gr(B)}. 

Next Lemma follows immediately: 

Lemma 3.8. (1) If x,y E 01(A) then xy E 0 1 (A). 
(2) If xy E 01(A) then y E 01(A). 
(3) If x E O1(A) and u E N(T) then x u E 01 (A). 

(4) x E 01(A) and E C, A 0 0 then Ax E Oi(A). 

(5) 01 (A) is open set. 

Theorem 3.9. P(01(A)) is a closed two sided ideal of A. 

Proof. 01(A) is open set, so P(01(A)) is closed set of A. 
Let z E G(A), y E C(A) and let b E B be a left inverse for T(y). Now we 

have 
bT(z -1 )T(zy) = bT(z -1 )T(z)T(y) = bT(y) = 1, 

so zy E p1(A) and G(A)C(A) C 01(A). 
Similarly i(A)G(A) C 01(A), and by Lemma 3.6 it follows that P(01(A)) 

is a two sided ideal of A. ❑ 
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Nis, April 14-16, 1995. 

ON THE ANTIINVERSE AND COREGULAR SEMIGROUPS 

AND SOME THEIR APPLICATIONS 

Kaleo Todorov 

ABSTRACT. In the present survey are considered some basic results, con-
serning the two — sided identical semigroups, their subclasses of antiinverse 
and coregular semigroups, as well as some application of this investigations 
towards problem of the Hadamard matrices. 

1. Introduction and preliminaries 

An element a of a semigroup S we call two - sided identical if there exists 
an element b E S (which we call neutral to a) such that 

(1) a = bab 

A semigroup S we call two - sided identical if every element of S is two-sided 

identical. 
For elements a and b of a semigroup S, we say that they are mutually 

antiinverse if the following conditions hold 

(2) aba = b and bab = a. 

A semigroup S is antiinverse if for every a E S there exists its antiinverse 

element b E S. 
An element a of a semigroup S we call coregular and b E S its coinverse, 

if 

(3) a = aba = bab. 

A semigroup S we call coregular, if every element of S is coregular. 

947 
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948 	 K. Todorov 

It is evident that every coregular semigroup is two — sided identical. More-
over, every coregular semigroup is simultaneously regular and antiinverse, 
but the converse is not true. 

The first systematic investigation of the above shown classes semigroups 
are the ones of the antiinverse semigroups and are included in a sequence 
of papers of S. BogdanoviC and other as well as in the paper [21] of Sharp. 
Almost simultaneously with the investigations of antiinverse semigroups have 
appeared also the ones of the coregular semigroups (see Bijev, Todorov [2]). 

Somewhat later have been introduced and investigated by the author the 
two — sided identical semigroups (see K. Todorov [22]). 

The class of the two — sided identical semigroups is a quite large class of 
semigroups. To it belong all the semigroups, possesing two — sided identity 
element (in particular the groups). A lot of examples indicate however the 
presence of two — sided identical semigroups without two — sided identity 
element. To the class of two — sided identical semigroups belong some of the 
regular semigroups — such as for example any antiinverse semigroup. This 
two classes does not cover each other, as shown in the coming two examples. 

A more complete idea about semigroups, belonging to the intersection of 
the classes of two — sided identical, regular and coregular semigroups can be 
obtain from the paper [3] by Bijev, Todorov , where has been delivered a 
complete classification of the abstract semigroups, included in the symmetric 
semigroup T3 of degree 3, whereby for each one of them is remarked, whether 
it is reguilar, two — sided identical or coregular. 

From the results known for the two — sided identical semigroups I'll cite 
the following statements. 

Theorem 1. Let E(S) be the set of the idempotents of the semigroup S, let 
N(+) be the additive semigroup of natural numbers and let for the elements 
a, b E S, e E E(S) and in E N(+) we have 

(4) 	 a = bab and b" = e. 

Then 
a) a2  = (abi) 2  = (bia) 2 , 	i = 1,2, ..., m; 
b) a2k  = bpa2kbm-p ;  a2k-1 = bpa2k-lbp ,  p = 1 , 2 ,  ..., 	k = 1,2,  

c) Any element of the semigroup < a, b > can be represented as the type 
ai bi , where i = 0,1, ...; j = 0,1, ..., m — 1 and i + j > 0. 

Both the antiinverse and coregular semigroups may be considered as a 
subclasses of the class of the two — sided identical. 

Coregular and antiinverse form subclasses of the class of regular semi-
groups. Although coregular semigroups form a subclass of the class of anti-
inverse semigroups, strictly containing the class of commutative antiinverse 
semigroups. 
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On the antiinverse and coregular semigroups 	 949 

From the theory of the antiinverse semigroups I schall cite the following 
statements 

Theorem 2. Let S be a semigroup. Then the semigroup S is a antiinverse 
iff 	

(Va E S)(3b E S)(a2  = b2 , ba = a3  b, a5  = a). 

Theorem 3. Let G be a group. Then G is antiinverse iff G is a union of 
subgroups which belong to the class of the trivial group, of the cyclic group 
of order 2 and of the quaternion group. 

Theorem 4. (Bogdanovie, [7] Theorem 4.1) Let S be a semigroup. Then all 
proper subsemigroups of S are antiinverse iff one of the following conditions 
hold: 

I. (Va E S)(a = a3 ), 
2. S is a cyclic group of prime-power order (> 1), 
3. S is the cyclic group of order 4, 
4. S is M(2,1) semigroup, i.e. S=  a2 ,  =< a >: a2  
5. S is M(2,2) semigroup. 

Define a relation p on a semigroup S as follows: apb <#. a and b are 
antiinverse in S. Let 

S[a] ={x E S xpa}, 

for all a E S. 

Theorem 5. If S is a commutative semigroup, the following are equivalent: 
(i) S is antiinverse. 
(ii) p is a congruence on S. 
(iii) S[a] is a subsemigroup of S , for all a in S. 
(iv) a3  = a , for all a in S. 

Coregular in the multiplicative matrix semigroup M 2 (R) of real matrix 
is the matrix 

(

cos ,0 	sin 	o < < 21r, 	7r ,  sin 0 — cos 0 

defining the axial symmetries of the figures of a given plane. 
In the class of coregular semigroups are valid the following statements: 

Theorem 6. Let the elements a and b of a semigroup S satisfy condition 
(e). Then: 

a) a3  =- a. 
b) a2b2 a2 = a2 = b2a2b2. 
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950 	 K. Todorov 

c) a2 b = ab2  = a. 
d) b2  = b implies a2  = a. 
e) a2  = b2  implies a = b3 . 

Theorem 7. For a semigroup S the following conditions are equivalent: 
a) S is coregular. 
b) a3  = a for every element a of S. 
c) S is a union of disjoint groups, the elements of which are of order < 2. 

Some interesting continuations of the already shown classes of semigroups 
are containted further in the papers of Bijev [1] and Chvalina and Ma-
touAkova [10]. 

Accordingh to Bijev [1] any representation of the element x of an arbitrary 
semigroup S in the form 

x = ab, a,b E S for a3  = a and b3  = b 

is called coregular. A good motivation for the examination of this repre-
sentations is the fact, that in the multiplicative semigroup of all ortogonal 
matrices of rank 2 

( cos a — sin a( cos 0 sin ,3 ) , o < /3 < 27r, sin a 	cos a 	' 	sin 8  — cos # 

the matrix of the second type are coregular, and the matrix of the first type 
are coregular representative. 

Theorem 8. Let (A, f) be a unar. Then the semigroup End (A, f) is coreg-
ular zff it is antiinverse. 

Theorem 9. Let Tx be the symmetric semigroup on the set X. The follow-
ing conditions are equivalent: 

1) Tx  is coregular. 2) Tx  is antiinverse. 3) card X < 2. 

Theorem 10. Let X be an infinite set. There exists a coregular commu-
tative subsemigroup H x  of the symmetric semigroup Tx ( not generated by 
idempotent elements only) such that cardH x  = card X. 

A quite striking application of the two — sided identical semigroups turned 
out to be the one bound to the problem of the Hadamard matrices. 

The quaternion group Q is an origin in the study of the antiinverse 
semigroup, which as well the coregular semigroups, present subclasses of 
the class of two-sided identical semigroups. In this respect the quater-
nion group Q as a two — sided identical semigroup admits further gener-
alizations (see Magnus and al.[18] and Neuman [19]) about its genetic code 
Q=(2,7: i = iii, i =iii) 

The following statements hold: 
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On the antlinverse and coregular semigroups 	 951 

Theorem 11. Let S be the semigroup generated by the elements of a count-
able set M = {a l , a2 , ...} subject only to the relations 

(5 ) 

	

a1  = a2a02, ai = ajaiaj = ai+ laiai+ i 

for each two elements ai, aj E M with 1 < j < i. Then: 
1) a? = 	= (ak at ) 2  for ai, aj, al, at E M with k 	1. Further is putting 
= -1. 
2) aiaj = -ajai for ai,aj E M with i j. 
3) aiajai = aj for every two elements ai,aj E M with i # j. 
4) S is a group. 
5) Let a E M and let I denote the number of the factors of the element 

c = c1 c2 ...ck, (ci E M,i = 1,2,...,k) equal to the element a. Then ca = 
(-0" ac. 

6) a4  = 1 for every element  a  E S. 
7) IC(S)I = 2. 
8) The group S contains only two conjugate singleton classes and each 

one of its other conjugate classes is a two - element one. 
9) Any subgroup of S is a normal subgroup of S if it contains at least 

one conjugate class distinct from the class of 1. 
10) The centralizer Cs(c) of every element c E S is infinite. 
11) (ai, aj)"..+t Q for ai ,cti  E  M with i # j. 
12) S is a locally finite group. 
13) The subsemigroups of S generated by the subsets U of M with n = 

IUI > 1 are groups having properties 1) -6), 9), 11). 
14) Let C(S n ) denote the center of the semigroup S n  = (al, an ) then 

{{±1, ±aia2...a„} is odd; 
C(Sn ) = 

{±1} is even; 

15) Each element c E S„ may be written in the form 

C = — 1 yo aul au2 ,un  
1 	2 •••"'n 7 

where ui E {0;1},i = 0,1,..., it. 
16) Let a E Mn  = {ai,...,a„} and let 1 denote the number of the factors 

of the element c = cic2...ck,(ci E Mn ,i = 1,2,...,k), coinciding with the 
element a. Then ca = (-1)k -1  ac. 

17) The conjugate class IC, = {bab-1 , b E S,} for every element a E 

S n\{1, - 1} is two-element and coincides with the set {±a}. 

18) IS n I = 2n+1. 
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952 	 K. Todorov 

Corollary 1. Every element c of the semigroup S of order 4 (defined in 
theorem 8) generates a normal subgroup of S. 

The properties 1)-18) of the semigroup S in Theorem 11 strongly depend 
on its genetic code (5). Adding a new relation give a new semigroup. The 
following Theorem 12 is a special case of Theorem 11. 

Theorem 12. Let S be a semigroup generated by the elements of the count-
able set M = a2 ,...} subject only to the relations (5) and ak = al for 
some ak E M. Then S is a commutative group with identity element 1 = ak 
in which each non-identity element is an element of order 2. 

The groups S„ = 	a2 , a,,) in Theorem 11 we shall call n — generated 
q. groups. 

There exists a close connection between the so constructed n—generated 
q. groups and the Hadamard matrices. 

As is well known, in 1893 Hadamard proved that if X = (x ii ) is a square 
matrix of order n then holds the inequality 

n n 

IdetXI2 	E 
i j=1 

where the equality 
n n 

detX1 2 x 2  
i 

 =HD 
j.1 

holds iff 

k=n 

XikXik = 0, i # j, i,j. 1, ....,n or xij = 0 for some i. 
k=1 

By definition, a square matrix H of order n whose entries are +1 and —1 
is called a Hadamard matrix of order n provided that its rows are pairwise 
orthogonal, in other words 

HH' =H'H=nE, 

where H' is the transposed matrix of H. 
It is known (see Hedayat and Wallis [151) that there exist Hadamard 

matrices of orders 1 and 2, but it can be shown that every other Hadamard 
matrix has order 4t for some positive integer t. The question: "How many 
different Hadamard matrices of a given order might exist?" is a very difficult 
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On the antiinverse and coregular seinigroups 	 953 

question to answer and researchers' interest in it varies for almost a whole 
century. 

Hadamard matrices of infinitely many orders have been constructed, and 
it has been conjectured that one exists for every t, but no general proof is 
available, and the number of unsettled orders is infinite. 

From the above described basic properties of the n-generated quaternion 
group one can construct Hadamard matrices by fixing a representative from 
every conjugate class Ka , a 0  {1, - 1} and from the set {1, -1}. Taken in 
a given order the so fixed elements of the n-generated quaternion group 
S„, together with the rows and columns corresponding to them cmprise 
a subtable of the multiplicative table of the semigroup S. The signs of 
the elements of this subtable, taken in the same order, form the Hadamard 
matrix. In this way we obtain from the q. group Q the following Hadamard 
matrix: 

1\1  i j k 1 1 1 1 
i -1 k -j 1 -1 1 - 1 
j -k -1 i 1 —1 —1 1 
k j -i -1 1 1 — 1 —1 

These relations are described by the author in details in [24]. 
What are the further possibilities for obtaining of the Hadamard matrices 

on the basis of the considered n-generated q. groups? As the calculations 
show with the multiplication table of the integral quaternions 

+1, ±i, ±j, ±k, 
+1 +i +j +k 

 

is associated Hadamard matrices of order 12 of the type 

(

Al 	A2 	A3 

—Bi B2 B3 

Ci — C2 — B2 

where Ai, Bi, Ck are Hadamard matrices of order 4. 
All this is a good motivation for the further investigations of the corre-

sponding algebras of the n-generated q. group. For the present because of 
the principal difficulties as compared to the already known results a more 
thorough investigation is made on algebra of the 3-generated q. group. The 
received basic results can be formulated as follows: 

Lemma 1. The (group) algebra H3 (of the quaternion group 53 in Theorem 
11) over the field R of the real number is a 8-dimensional (associative) 
algebra, containing the quaternion algebra H. 

2 
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954 	 K. Todorov 

i= Every element a = Ei=o7   ai e i  E H3 is a divisor of zero if 

a7  = Eao , as  = — sal , a5  = Eat, a4 = —Ea3, 

where E = ±1. If 

a = ao  (1 + ee7 ) -1- ai  (e l  — Ee6) -F a2 (e2  + ees ) + a3 (e3  — ee4 ) 

and 

	

a* = bo (1 — ee7) + 	+ Ees) + b2 (e2  — ee5 ) + b3(e3 + Ee4). 

then 
aa* 
	

= 0. 

Theorem 13. Let us put 

1 —  = fq —  = ao(eo — e7) + ai (ei + es) + a2(e2 — es) + a3(e3 + e4)}, 

fq+ = bo(eo e7) bi(ei — es) + b2(e2 + es) + b3(e3 — e4)}, 

where ai,bi E R. i,j = 0, 1, .., 7. Then: 
1) I —  n 1+ {0}, 
2) I —  and I+ are the uniquely non-trivial minimal ideals of the algebra 

113, 

3) I—  H I+, where H is the quaternion algebra, 
4) H3 = I —  + I+ . 

Let us put 
1 ei  — e7 _i , if i = 0,2; 

	

2 .fi = 	ei + e7—i, if i = 1 ,3,5,7; 
e7 _ i  — ei , if i = 4,6. 

Here, to every element a E H3, the norm N (a) E R and minimal poly-
nomial are associated. When determining these characteristics is used the 
regular representation of the quaternions of the algebra H3 by means of finite 
matrices. 

Further, for every element a E H3 are determined the essential properties 
of its conjugate element ri E H3, as well as the integral elements of the 
algebra H3. 

By formulating the propositions and their proofs equally both the basis 
f and the basis e of the algebra H3 is used. 
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On the antiinverse and coregular semigroups 	 955 

2. Norm and minimal polynomial 

Let us recall that if 

(6) 	 q = ao 	a2j a3 k 

is an arbitrary element of the quaternion algebra H, then: 

1) the positive number N(q) = Eii 30  is the norm of the quaternion 
q; 

2) h(x) = X 2  - 2a0 x N(q) is the minimal polynomial, satisfied by 
the quaternion q; 

3) q = ao  — ai i — a2j — a3k is the conjugate to a quaternion, as 
qq = qq = N(q); 

4) by the regular representation of the algebra H (over the field of real 
numbers R) by Skornjakov [28] and Deuring [13] to the quaternion 
q in (6) corresponds the matrix 

A 

 = (

ao  

al 
a2 

 a3  

—a 1 
 ao 

a3  
— a2 

—a2  
—a3 
ao  

al 

—a3 
 a2 

—a 1  

ao 

where N(q) = 

	

I 	Ai and 	is the determinant of the matrix A. 

Remark I. Here and on, (a)1/2k  for a > 0 and k - a natural number means 
the arithmetical root of the number a, i. e. the module of the complex 
number (a) 1 /2k . 

	

Let q = ji07  ci fi  = 	q2  be an arbitrary element of the quaternion 
algebra H3, where 

	

i=3 	 i=7 

	

gl = > 	cifi E 	q2 = > cifi E i+ , 

	

i=0 	 i=4 

i.e. 

ql = (COI Cl C2, C3, 0, 0, 0, 0), 	q2 = (0, 0, 0, 0, C4, C5, C6, C7) E H3. 

The positive number N(q): 

N(q) = N (qi) E R, 	if q = qi , i = 1,2 

Or 

N(q) = (N(qi)N(q2)) 112  E R, 	if q qi,i = 1,2 

we shall call the norm of the quaternion q. 
For the elements of the quaternion algebra H3 a describtion of the above 

characteristics is given in the following. 

V
ir

tu
al

 L
ib

ra
ry

 o
f 

F
ac

ul
ty

 o
f 

M
at

he
m

at
ic

s 
- 

U
ni

ve
rs

it
y 

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs



956 	 K. Todorov 

Theorem 14. Let q = 	cifi  be an arbitrary element of the quaternion 
algebra H3 and let 

i=3 	 i=7 

ql = E c i fi  E 1  , q2  = E ci fi  E I+, q qi, i = 1,2. 
i=0 	 i=4 

Then: 
1) of the basis f by a regular representation of H3, the matrix 

B1 0 
Af  = 0 C1) 

corresponds to the quaternion q, where 

( CO c  —c1 —C2 —C3 C7 — C6 CS C4 

B f = 
Co  —C3 C2 

C f = C6 C7 — C4 C5 

C2 C3 CO — C1 1  —05 C4 C7 C6 • 

C3 —C2 Cl CO —C4 —05 —C6 C7 

2) N(q) = 4  Of 1 1  = ((Ei: (3) e?)(Ei4:74 CD)1/2 = (N(q i )N(q2 )) 112  is the 
norm of the quaternion q ( see Remark 1). 

3) the quaternion q = Eii=  ci fi  satisfies the minimal polynomial 

h(x) = x4  — 2(e0 c7)x 3  + (N(91) N(q2) + 4c0 c7 )x 2  — 

—2(c 7 N(q 1 ) co N(q2 ))x N 2 (q)• 

Corollary 2. Let q = Ei=oi=7   ci fi  be an arbitrary element of the quaternion 
algebra H3 and let 

i=3 	 i=7 

qi = E eifi E 1- 5 q2 = E cifi E 1+ . 
i=0 	 i=4 

The norm N(q) of every element q E 113 has the following basic properties: 
I. N(q)> 0, and N(q) = 0 iff q = O. 
2. N(aq) = «2  N(q) for a E R and q E H3. 

3. N (xy) = N(x)N(y) = N (yx), x, y E H3. 

4. Let q = E:= 70  aiei, 
i=7 

(7) 	s = E a2  and t = 2( —a 0 a 7 	a6  — a2a5  a3a4 ), 
i=0 

then 

i)
N2( q) = 82 t2 = (s + 0( 8  t) = 

= [(ao  — a7 ) 2  + (a i  + a6 )2  + (a2  — a5 ) 2  + (a3  + a4 ) 2 ]x 
[(ao  + a7 ) 2  + (ai  — a6 ) 2  + (a2  + a5 ) 2  + (a3  — a4) 2 ]. 
ii) h(x) = x4  — 4a0x3  2[24 s — 24x 2  — 4(aos a7t)x + s2 t2. 
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3. Conjugate elements 

Let 
i=7 

q = E ci = 	q2 , 
i=o 

where 
i=3 

ql = E cif, E 
i=o 

The quaternion q E H3 

i=7 

q2 = E Cifi• 
i=4 

g =4i, if q = qi, i = 1,2 

Or 
i=3 

(co  — Ecifi)(N -looN(q2))i/2+ 
i=0 

i=6 

+(c7b > cifi)(N(q0N-1(82))1/2, 
i=4 

if q # 0 and q # qi, i = 1,2, we shall call conjugate of the quaternion q E /13. 

Theorem 15. For every quaternion q of H3 and its conjugate q there hold: 
1) qq = qq = N(q)• 
2) N(q) = N(q). 
3) -64 = aq for every a E R. 
4) q. 
5) 29 = yx for x, y E 

4. Integral elements 

The integral quaternions of the algebra H have been determined for a 
first time by Hurwitz in [16] (see Hurvitz [17]). The method which we use in 
the present paragraph is more sophisticated than the one given by Dickson 
in [14]. 

The integral quaternions of the algebra H (see Dickson p. 148, Theorem 
1) are given by 

q = CLOP + 	a2i a3k, P = 	2 

for integral values of c/ o , al , a2 , a3 . Expressed otherwise, they are the 
quaternions whose four coordinates are either all integers or all halves of 
odd integers. 

(8) 
1 + 	jk 
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Proposition 1. (see Dickson, p. 157) The first components of the elements 
of any (maximal) set of integral elements, with properties R, C, U of a 
direct sum B C constitute a (maximal) set of integral elements of the first 
component algebra B, and similarly for the second components. Conversely, 
given a (maximal) set b of integral elements b of a rational algebra B and a 
(maximal) set c of integral elements c of another rational algebra C, such that 
B and C have module (3 and y and have a direct sum, then if we add every 
b to every c we obtain sums forming a (maximal) set of integral elements of 
the direct sum B + C. 

The next theorem is also immediate from the foregoing Proposition and 
(8). 

Theorem 16. The integral quaternions of the algebra H3 are given by 

q = aop al  f1 + a2 f2 + a3 f3 + a4 f4 + asfs + as is avr, 

where 
fo + fi + 12 + 13 	14 + 15 + 16 + 17  

P = 	 , 	T =   2 	 2 
for integral values of ao , al, ..., a7 . 
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GENERATION OF PRIMITIVE BINARY POLYNOMIALS 

Miodrag Zivkovic 

ABSTRACT. Binary linear recurrent sequences with the primitive character-
istic polynomial are used as a good approximation of the random sequence. 

A known algorithm is implemented in a program for generation of primi-
tive binary polynomials of degree < 5000 with the given number of terms. 

An account is given of problems solved during the program developement. 
Practically hardest among them is the problem of obtaining the factorizations 
of the numbers 2" — 1. 

Let Fq  denote the finite field of order q = p", where p is prime and 
n > 1. The multiplicative group F; of nonzero elements of Fq  is cyclic and a 
generator of Fq* is called a primitive element. A monic irreducible polynomial 
whose roots are primitive elements is called a primitive polynomial. 

It is known [2] that the binary (over GF(2)) sequence {a n}„>0 satisfying 
the linear recurrent relation ak+„ = En; ak+ifi possesses good statistical 
properties if its characteristic polynomial f = 0  fix' is primitive. For 
example, the period length of such sequence (so called m—sequence) is N = 
2n  —1, the difference between the number of ones and zeros across the period 
is exactly one, and each n—tuple from {0, 1} n  except 0 appears exactly once 
in one period. The two sequences {a„ +,.} and {a„ +s }, 0 < r < s < N, are 
mutually orthogonal, i.e., the equality 

yin+q_na„4., = N 1, for 0 <r=s<N E(_1  
1  :L-o 	 — 1, 	for 0 < r < s <. N. 

holds. m—sequences are used for obtaining uniformly distributed random 
numbers [9]. Another field where m—sequences are widely used is cryptol-
ogy [6]. Quality of m—sequences grows with n, and therefore there is a need 
to obtain primitive polynomials of degree as large as possible. 

Supported by Grant 0401B of RFNS through Math. Inst. SANU. 

961 

V
ir

tu
al

 L
ib

ra
ry

 o
f 

F
ac

ul
ty

 o
f 

M
at

he
m

at
ic

s 
- 

U
ni

ve
rs

it
y 

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs



962 	 M. 2ivkovi 

There are several published tables of primitive binary polynomials. Wat-
son [11] gives for n < 100 one primitive of degree n, and Stahnke [8] lists 
for each n < 168 a primitive with a minimum number of nonzero coefficients 
(trinomial or pentanomial). Zierler and Brillhart [13,14] extended this work 
by listing all primitive and irreducible trinomials of degree n < 1000, with 
the period for some for which the factorization of 2n  — 1 is known. Ito-
demich and Rumsey [7] have listed all primitive trinomials of degree Mi, 
12 < j < 17 (here Mj denotes the jth Mersenne exponent, the prime for 
which 2 )14.,  — 1 is also prime). The list has been extended by Zierler [12], 
Kurita and Matsumoto [4] and Heringa, Blote and Compagner [3] up to 
M23 = 11213, M28 = 86243 and M31 = 216091 correspondingly. One prim-
itive pentanomial of each degree Mj, 8 < j < 27 is also listed in [4]. For 
those n < 5000, for which the factorization of 2' —1 is known, in [13,14] the 
first primitive trinomial (if such exists) and a randomly generated primitive 
5— and 7—nomial of degree n in GF(2) are given. 

In this paper we give some characteristics of the algorithm for genera-
tion of primitive binary polynomials which is used to assemble the tables 
in [13,14]. 

Generation of primitive polynomials is performed by testing primitivity 
of the sequence of trial polynomials from the given set. Here we deal with 
the set of polynomials f of degree n with t terms, for given n and odd t, with 
the constraint f(0) = 1. The number t is usually small, to enable simple 
calculation of the corresponding linear recurrent sequence. The sequence of 
trial polynomials is formed using the linear recurrent sequence of order 127 
as a source of random numbers. 

The primitivity test of a given polynomial f is effectively performed using 
the following set of conditions [5, Th 3.18] 

f(0) = f(1) = 1, 

mil* I  f I x 2k  — x} = n, 

for all prime p 1 2' —1 	f x(2n —1) /P — 1. 

The condition (1) eliminates polynomials divisible by x and x + 1. As t 
is odd for trial polynomials, this condition is automatically fulfilled. 

The polynomial x 2k  —x is equal to the product of all irreducible polynomi-
als of degree dividing k [5, Th 3.20], and therefore the irreducible polynomi-
als satisfy the conditions (1) and (2). The inverse is not true: a polynomial 
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equal to the product of different irreducible polynomials of degrees dividing 
n satisfy (1) and (2) (and it is not irreducible). The number of irreducible 
polynomials of degree n equals to [5, Th 3.25] 

E p(d)2n/ d , 
din 

whereµ is the Moebius function, defined by 

{1 

	if n = 1 

µ(n) = 	(-1)r if 71 is the product r distinct primes 

0 	if n is divisible by the square of a prime. 

To check if f satisfy (2), it is necessary to calculate it residues s2k  —x (mod f). 
Squaring in GF(2) is simple, because (a+ b) 2  = a2  +b2 . After each squaring, 
a residue is calculated from the division of a polynomial of degree at most 
2n — 2 by f. The fact that f is sparse is used to perform division more 
efficiently. The total number of elementary (inGF(2)) operations needed to 
test the condition (2) is bounded by O(tn 2 ), which is not small, having in 
mind the number of polynomials that need to be checked. The problem is 
solved in the usual way (see for example [3]): the condition (2) is modified 
by previously checking the conditions 

(2a) (f,x 	x) =  1,  2 < k < 12, 

(2b) (1, f ` ) = 1, 

where ( f, g) is the greatest common divisor of f and g, which is computed 
by the Euclidean algorithm. This makes the complete test (2) more com-
plicated, but for the large part  of  trial polynomials (85% according to the 
estimate from [3]) it is ended by (2a). The condition (2b) eliminates the 
polynomials divisible by the square  of  a polynomial. 

The numerical complexity of finding the factorization of 2' — 1 is very 
large. This makes it unreasonable to include the factorization as a part of 
the primitivity check. Even more, it is unreasonable to compute these fac-
torizations at all, because all those of them that are known can be found 
in [1,10] (which is an output of the famous Cunningham project). Therefore 
the factorizations from [1,10] are input in a data base using a special pro-
gram. The process is not straightforward, because in cited references there 
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are actually four tables, containing (not always complete) factorizations of 
the numbers 
(A) 2 2" 1  - 1, k < 600, 
(B) 22k-1  + 1, k < 600, 
( c ) 24k-2 4_1 =  LM, L = 22k-1 _ 2 k + 1, m = 22k-i + 2 k + k < 600, 
(D) 24k+1 k < 300. 
The first step is to list all n < 4800 for which all the prime factors of 2" - 1 
can be found. For some values of n, the number 2" - 1 has simple algebraic 
factors. These algebraic factors are then further split in the'algebraic factors 
or their prime factors are taken from one of the tables A, B, C or D. The 
program for updating the factorization data base tests automatically the 
factors during the input. It uses algebraic factors and the factors that are 
already in the data base. This is useful for example if the factorization of 
22n - 1 is to be input when the factorization of 2n  — 1 is already input. 

The efficiency of the primitivity check depends also on the order in which 
the prime factors of 2n - 1 are used in (3): the check is carried out for the 
small factors p first, because according to [5, Th 3.5] the probability that (3) 
is not satisfied is greater for small than for large prime factors. 

The number of primitive polynomials of degree n is q5(N)/n [5, Th 3.5] 
(here 0(n) is Euler's function, showing the number of integers i with 1 < 
i < n that are relatively prime to n). Therefore a randomly chosen binary 
polynomial is primitive with the probability a/n where 

a = (1- 2-")11(1 - 
1 
 -). 

PIN 	P 

The complexity of this primitivity check is O(ktn 2 ), where k is the number 
if different prime factors of 2" - 1. Taking into account the "density" of 
primitive polynomials, an upper bound for the complexity of generation of 
one primitive polynomial is roughly estimated by O(ktn 3 ). The program, 
when running on a PC with the 80486 microprocessor on 66MHz, gives one 
primitive polynomial of degree 500 (1000) after about 2 min (20 min). 
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