
The Logic of Preference
and

Decision Supporting Systems

Dragan Cvetkovie

MPI-I-93-260 	 November 1993

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

Author's Address

Dragan CvetkoviC
Mathematical Faculty
Studentski Trg 16
11000 Belgrade
Yugoslavia
ecvetkov@yubgef51.bitnet

current address:

Dragan CvetkoviC
MPI Informatik
Im Stadtwald
66123 Saarbriicken
Germany
dragan@mpi-sb.mpg.de

Publication Notes

This is a translation into English and a slight modification of my thesis presented for
the Master of Science Degree at the Mathematical Faculty, University of Belgrade and
defended on May 19, 1993.

Acknowledgements

To Aleksandar Kron, 2arko Mijajlovi6 and Milan Boti6, members of my Master of Science
thesis committee, and to Hans Jiirgen Ohlbach for some of his ideas that influenced my
work.

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

Abstract

In this thesis we are exploring some models for von Wright's preference logic. For a
given (initial) set of axioms and a set of formulae, some of them valid, some of them
problematic (in the sense that it is not always intuitively clear whether they should
be valid or not), we investigated some matrix semantics for those formulae including
semantics in relevance logics (first degree entailment and RM3), various many—valued
(Kleene's, Lukasiewicz's, ...) and/or paraconsistent logics, in Sugihara matrix, and
one interpretation for preference relation using modal operators ❑ and O. In each

case, we also investigated dependence results between various formulae. An opposite
problem (i.e. searching for a logic that satisfies given constraints) is also addressed. At

the end, a LISP program is presented that implements von Wright's logic as a decision
supporting system, i.e. that decides for a given set of preferences, what alternatives
(world situation) we should choose, according to von Wright's preference logic system.

Keywords

Logic of preference, von Wright, relevance logics, paraconsistent logics, many—valued logics,

decision supporting systems, LISP

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

Contents

1 Introduction and history 	 3
1.1 Martin's logic of preference 	3
1.2 Logic of preference Chisholm—Sosa 	 4
1.3 Hallden's logic of preference 	5
1.4 Von Wright's logic of preference 	 5
1.5 Question of semantics 	 7
1.6 Other approaches to semantics 	8 1.7 Our intentions 	

8

2 In search for semantics 	 9
2.1 System of preferences and Efde 	 9

2.1.1 Von Wright's preference system 	 9
2.1.2 Intended interpretation 	9
2.1.3 What is valid? 	

10 2.1.4 What is not valid?
10 2.1.5 New system of axioms 	 11 2.1.6 Axioms and rules of Efde 	 11

2.1.7 Dependences between formulae 	 12 2.1.8 Slight modifications 	 14
2.1.9 Dependences in new system 	 15 2.2 Interpretation in Sugihara matrix 	 15 2.2.1 Definitions 	

15 2.2.2 Why using Sugihara matrix? 	 16 2.2.3 Negative results 	
17 2.3 Return to Epic 	 17 2.3.1 Results 	
18 2.4 Paraconsistent and many—valued logics 	 18 2.4.1 Why paraconsistent logics? 	 18 2.4.2 Definitions for many—valued logics 	 19 2.4.3 Testing method 	
19 2.4.4 System 1 	
19 2.4.5 System 2 	
20 2.4.6 System 3 	
20 2.4.7 System 4 	
20 2.4.8 System 5 	
21 2.5 Results 	

2.5.1 Remarks about the table of results 	 22
21

2.6 Opposite problem 	
2.6.1 Definition of interpretations 	

 23
23 2.6.2 Results 	

2.7 New interpretations 	 24
2.7.1 Kleene's 3—valued logic 	

 27
 27

1

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

2 	 CONTENTS

2.7.2 Results 	 28
2.7.3 Von Wright's extended system 	 28

2.8 Indifference relation 	 28

2.8.1 Definitions 	 28
2.8.2 Weak indifference relation 	 29

2.8.3 Strong indifference relation 	 29

2.9 Further investigations 	 30

2.9.1 Definition of relevance logic RM3 	 31

2.9.2 Dependences between formulae in RM3 	 32

2.10 Alternative system 	 33

2.10.1 Definition of the system 1 	 34

2.10.2 Another system 	 35
2.10.3 Dependences between formulae in those systems 	 36

2.11 Slightly misbehaving 	 37

2.11.1 Results 	 38

2.11.2 Another Efde—model 	 38

3 Logic of preference and modal logics 	 40

3.1 Definition of interpretations 	 40

3.1.1 Properties 	 40

3.2 Modal logic and indifference relation 	 44

4 Decision supporting systems 	 46

4.1 Simple example 	 46

4.2 The making of decision procedure 	 46

4.2.1 Theoretic foundations 	 47

4.2.2 Decision procedure 	 47

4.2.3 Remarks about the procedure 	 49

4.2.4 Modifications for the extended system 	 49

4.2.5 Modifications for indifference relation 	 49

4.3 Implementation 	 50

4.3.1 Program description 	 51

A Source program listing 	 53

A.1 File variable .1sp 	 53

A.2 File include .1sp 	 53

A.3 File stepl.lsp 	 57

A.4 File step2.lsp 	 58

A.5 File step3.lsp 	 59

A.6 File step4.lsp 	 60

A.7 File step5.1sp 	 62

A.8 File step6.lsp 	 63

A.9 File postproc Asp 	 64

A.10 File main.lsp 	 66

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

Chapter 1

Introduction and history

The whole story about the logic of preference and preference relations is an at-
tempt at the formalization of (rather fuzzy) feeling of preferring something, that is,
an attempt of axiomatic explanation why we choose one thing over another. His-
torically speaking, this relation is already mentioned in Aristotle's work, but first
modern attempts have been made in the decade of 1950-1960. But, as von Wright
said in [vW72], contrary to the development in deontic logic, where authors mainly
agree with basic postulates of the theory, the situation in the logic of preference is
quite different. To quote ([vW72, p.141]):

...The 'intuitions' of various researchers into this field seem largely at
variance with one another. Is the preference relation transitive? Are any
two states or things comparable for preference; if one state is preferred
to another is, then, the negation of the second preferred to the negation
of the first (`contraposition'); can a preference between disjunctions or
conjunctions be distributed, and if so, how? These are questions on
which there are almost as many divergent opinions as there have been
writers on the topic.

The concept of preference is also used in economics, but in a relation to 'utility'
function. We can also split preferences into individual and group preferences, but
we are going to consider only individual preferences.

In the sequel, we are going to present only the most important systems, and for
the more complete presentation the reader is referred to [Hub72].

1.1 Martin's logic of preference

Martin presented this system, which was one of the first, in [Mar63] in 1963. He
introduced two relations: X Prfr a, b, t, with intended meaning "Person X prefers a to b in time t" and X Indiff a, b, t as -'(X Prfr a, b, t) A - '(X Prfr 6, a, t), where a and b are sentences. The main properties of those relations (slightly simplified)
are:

(Ml) X Prfr a, b,t—+a0b
(M2) X Indiff a, b,t —+ X Indiff b, a, t
(M3) X Indiff a, a, t
(M4) (X Prfr a, b, t) A (X Prfr b, c, t) —+ X Prfr a, c, t
(M5) (X Indiff a, b, t) A (X Indiff b, c, t) 	X Indiff a, c, t
(M6) (X Prfr a, b, t) V (X Prfr b, a, t) V (X Indiff a, b, t)

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

4 	 CHAPTER 1. INTRODUCTION AND HISTORY

(M7)

(M8)

(M9)

(M10)

(M11)

(M12)

(M13)

X Prfr a, b, t -+ 	Prfr b, a, t)

X Prfr a,b,t 4-4 X Prfr

(X Prfr a, c, t) V (X Prfr b,c,t)-- X Prfr (a V b),c,t

X Prfr c, (a V b), t (X Prfr c, a, t) A (X Prfr c, b, t)

If a is a theorem, and b a false statement, then X Prfr a, b, t.

If a is true, and b false, then X Prfr a, b, t.

If e is a non-false statement and if c(x, y) is a conformance degree of

statement x compared to y, then c(a, e) > c(b, e)4- X Prfr a, b, t.

1.2 Logic of preference Chisholm—Sosa
Roderik M. Chisholm and Ernest Sosa introduced their logic of preference in [C

ow in
S66b

g
]

in 1966. Except for a preference relation P, they also introduced

relations:

(Dl) xSy 4-* -,(xPy) A -1(yPx)

(D2) Ix 4.4 --1(xP-Ix) A -4-1xPx)

(D3) Nx 4.4 (3y)(Iy A xSy)

(D4) Gx 4-4 (3y)(Iy A xPy)

(D5) Bx 4- ► (3y)(Iy A yPx)

As for the axioms, their list of axioms is:

(C&S1) (Vx)(Vy)(xPy -,(yPx))

(C&S2) (Vx)(Vy)(Vx)(-.(xPy) A -,(yPz) -,(xPz))

(C&S3) (Yx)(Vy)(Ix A iy xSy)

(C&S4) (`dx)[(Vy)(/y xPy) --4 xP-,x1

(C&S5) (Vx)[(Vy)(/y yP-'x) xP-'x]

In [CS66a], authors slightly modified their logic, and instead of (C&S4) and

(C&S5) they introduced axiom:

(C&S4') (Vx)[(Vy)(/y xPy) V (Vy)(Iy

Chisholm and Sosa strongly object to von Wright's and Martin's princ
are o

ip
ften

les

xPy •.4 (x A -11)P(y A -,z) and xPy 4-4 -,y12-.x, giving examples that
cited when discussing various principles of preference logic ([CS66a, p.322]):

Given such principles, we cannot say, as the other systems do, that if

p is preferable to q then not-q is preferable to not-p. There being happy
Americans (p) is intrinsically preferable to there being stones (q), since

the former entails the existence of pleasure and of no displeasure and
the latter entails the existence of neither. But, there being no stones
(not-q) is not intrinsically preferable to there being no happy Americans
(not-p) since neither of these negative states of affairs entails that any
pleasure exists or that any displeasure exists.

For similar reasons, we must reject the following formula:

PPq= (pSt •-•-• q)P(q84 p)

(`same in intrinsic value as')

Cis intrinsically indifferent in value')

Cis intrinsically neutral in value')

Cis intrinsically good')

Cis intrinsically bad')

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

1.3. HALLDEN'S LOGIC OF PREFERENCE

which is sometimes taken as axiomatic; indeed we must say both that
the left hand expression does not imply the right, and also that the right
hand expression does not imply the left. Suppose that p is the state of
affairs which is its being false that there are three happy Greeks and that
q is the state of affairs which is there being two unhappy Romans; then
the expression on the left will be true and the expression on the right
will be false (indeed, q and not-p will be preferable to p and not-q). Or
suppose that p is the state of affairs which is there being stones and q is
that state of affairs which is there being no happy Americans; then the
expression on the right will be true, and the expression on the left will
be false.

But, to all those (and some other) objections, von Wright said in [vW72, p.148]:

... Criticism leveled against it on the ground that it is counterintuitive have failed to convince me.

1.3 Hallden's logic of preference

SOren Hallden defined one preference system in [Ha166] that he connected with
modal logics. He used notation xBy for "If we have to choose between x and y,
then we should choose x", and xSy for "If we have to choose between x and y, then we can choose x or we can as well choose y".

His axiom system is:

(111) 	x
(H2) 0(z y) -4 (Ox Dy)
(113) 0(x 	y) 	-,(x.13y)
(H4) xBy A yBz zBz
(H5) 0(x y) xSy
(H6) xSy ySx

(H7) xSy A ySz --> zSz
(118) xSy A zSu (xBz 4-> yBu)

1.4 Von Wright's logic of preference

It is generally credited by all authors working into this area that von Wright's con-
tribution was very important for

the further developments in the logic of preference.
Von Wright published his first work on that subject in 1963 in [vW63]. He says that
he will consider preferences between states of affairs because all other preference
types (i.e. between objects and between actions) can be reduced to this kind of pref-
erences. For operations on states of affairs, he chooses standard boolean connectives
of classical propositional logic as he said in [vW72] on page 143:

... States of affairs can be called proposition-like entries. This means
that they can be negated and that we can form with them molecular
compounds which can be handled in accordance with the laws of propo-
sitional logic (PL).

Furthermore, he distinguishes two kind of preferences:
extrinsic - for which we can state rational reasons why we prefer one state to another and which von Wright

does not investigate, and intrinsic for which we cannot state rational reasons why we

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

6 	 CHAPTER 1. INTRODUCTION AND HISTORY

choose something. Von Wright investigates this kind of preferences. Furthermore,
he says that all preferences should be considered relative to the person that chooses
and to the moment in time (see also how Martin introduced preference relation in

section 1.1 on page 3).
For his preference relation P, von Wright introduces the following axioms:

(W1) xPy --1(yPx)

(W2)xPy A yPx xPz

(W3) xPy +4 (x A -iy)P(y A -Ix)

(W4) (x V y)P(x V u) 4.4 (x A nx A nu)P(nx A A X) A (x A -Ix A -vu)P(--Ix A

ny A u) A (y A -12 A -,u)P(-Ix A A z) A (y A -4 A -,u)P(--ix A -ty A u)

(W5)xPy H (x A a)P(y A a) A (x A --0)P(y A -icy), where a is a new variable.

Von Wright also introduces a (weak) indifference relation x/y as -,(xPy) A

-i(yPx) and a strong indifference (`value-equality') relation E. We say that xEy

if and only if (under no circumstances) neither state x A -ty is preferred to y A -ix

nor vice versa. For relation I, von Wright does not require any special property to

hold, and the reason for introducing E are the following two principles:

(El) xPy A zEz zPy

(E2) xPy A yEz —0 xPz

He gives the following reason for the existence of two different indifference re-
lations (see [vW63, pp.55-57]): As the formula xPy means that x is preferred to

y under all circumstances, according to the definition of I, sly does not mean

any more under all circumstances, but under some circumstances. For indifference

under all circumstances, he introduces relation E.
In his another article ([vW72]) published in 1972, von Wright slightly changes

the system, or, to cite (on page 142):

Without abandoning its central tenets, I shall propose some changes
which at the same time will make the theory stronger and less complex

then it was in its original form.

Basically, von Wright says that preferences are holistic, i.e. relative to circum-

stances, and he introduces two different meanings for notion of preferring state s to

state t under circumstances

(Dl) We say that s is preferred to t under circumstances Ci if and only if every

C;-world that is also a s-world but not a t-world is preferred to every

C;-world that is also a t-world but not a s-world.

(D2) We say that s is preferred to t under circumstances Ci if and only if

some Ci-world that is also a s-world is preferred to some Ci-world that

is also a t-world, but no Ci-world that is also a t-world is preferred to
any C;-world that is also a s-world.

However, von Wright does not choose any of those definitions for the intended

one ([vW72, p.148]):

The two definitions are two ways of explicating the notation of a holistic
preference. Both ways seem to be reasonable. There is nothing to decide
between them on grounds of logic.

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

	

1.5. QUESTION OF SEMANTICS 	
7

He also does not want to address the problem of arguments of preference rela-
tion that are tautologies or contradictions. As for the axioms, von Wright drops
axiom (W2) and instead studies the following one (which he calls 'Principle of Value
Comparability')

(W29 xPy -+ xPz V zPy

that he uses to prove (W2). Contraposition of this axiom gives axiom (C&S2) of
system Chisholm-Sosa. If we define indifference relation in this system as -'(xPy) A --.(yPx), we can readily see that this relation satisfies principles (El) and (E2) (as
well as the usual condition that it is an equivalence relation).

Indeed: xPy A xEz -+ xPy A -i(zPz) A —t(zPz) —+ (xPz V zPy) A -'(xPz) A
--,(zPx) 	zPy A -,(xPz) A --1(zPx) 	zPy. That proves (El), analogously for (E2).

In that sense, the modified system is really a simplification of the original one,
because there are no (and also no need for) two different indifference relations. We
will mainly work with the original von Wright's system. We can also notice that
Hallden's axiom (H8) (see section 1.3) is also derivable in this extended system.

Indeed: Let us suppose that xly and zlu. That means that --.(xPy), -'(yPx), -i(zPu) and --1(uPz). Using (W2'), we have xPz xPy V yPz, and hence xPz yPz. Furthermore, yPz yPu V uPz, and hence yPz yPu, which together give xPz yPu. Similar in other direction. That proves the axiom (H8) of Hallden's
system.

1.5 Question of semantics

Rescher addressed semantics of preferences in [Res67]. He mainly used 'utility-
function' approach.

For a set of worlds w1, wz, 	wn he introduced measure #, which he calls 'index
of merit', as a function from set of worlds to real numbers. Using this measure, he
defined an interpretation P# in the following way:

aP#S if #(a) > #(3).

He also introduced another measure *(a) def
#(a) — #(,a) and, accordingly, another interpretation:

ctP*,3 if * (a) > ,k(13).

For von Wright's preference relation, he introduced von Wright's semantics in the following way: Let, as before, w1, wn be a set of worlds (states of affairs
in von Wright's terminology), and suppose that there exists a preferential order >
together with the indifference between worlds. We say that aP'/3 if

(V7)(Vw1)(Vw2)(wi = (a A A 7) A w2 (—o A 13 A 7) 	> w2)

where 7 is independent of a and /3.

With the help of those semantics, Rescher investigated some of the more popular
axiomatizations and principles of logics of preference. It is interesting to note that
none of those semantics supports Chisholm's and Sosa's standpoint that principles
(W3) and (M8) should not hold. Moreover, in semantics PW all von Wright's axioms hold, except (W4) from right to left.

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

8 	 CHAPTER 1. INTRODUCTION AND HISTORY

1.6 Other approaches to semantics

The question of semantics was also addressed by Sven Danielsson in [Dan68]. In
this work, on pages 19-21, he gave one model for preference relation.

First, he introduced PC-valuation t, that is the usual valuation for propositional
formulae, then M-valuation (modal logic valuation) as an ordered pair (t, m), where
t is (above-defined) PC-valuation, and m is a mapping from the set of valuations
t into its power set, so that ti (Op) = 1 if and only if tll(p) =1 for some tii E m(e).

Finally, he introduced i-valuation: i-valuation, relative to M-valuation (t, m),
is an ordered triple (OM, om, R), where:

• OM is a non-empty set;

• om is a function that to every propositional formula so that 400) = 1
assigns a non-empty subset of OM so that om(q) = om(r) if t(D(q 4-4 r)) = 1,

and

• R is a relation on OM with the following properties:

1. (Vx E OM)(Vy E OM)(xley V yRx)

2. (Vx E OM)(Vy E OM)(Vz E OM)(xlly A yRz xRz)

3. x E om(p V g)—> (3y)(3z)(y, z E om(p) U om(q) A yRz A zRz)

Of course, we write xPy for xRy A —.yRx. In this model, xPy is valid if x is
`intrinsically better' then y.

Except for this valuation, Danielsson also defined A—valuation which he used for
investigating properties of his Ai and Bi operators (i = 1,2, ... , 6).

1.7 Our intentions
In this work, we are trying to find some appropriate semantics for von Wright's
logic system, but not in a way Rescher did, but using the following approach:

We assume that states of affairs (arguments of preference relation) behave ac-
cording to the laws of classical propositional logic (we will call it inner logic), as
von Wright remarked in [vW631, and for outer logic, we employ different logics:
first, we use first degree entailment E f de (relevance logic described in [AB75]), and
after that various other relevance, paraconsistent and many—valued logics, Sugihara
matrix etc. A criteria for choosing outer logic is that it has a matrix (tabular)
interpretation, as we are looking for matrix interpretation for preference relation.

In all those logics, unless otherwise stated, we will look for the interpretation f

of the following type:

Ia, if x = 0 and y = 0;
b if x = 0 and y = 1;

Azi3Y) = c' if x = 1 and y = 0;
d, if x = 1 and y = 1.

and we try, using computer, to find values for a, b, c and d, so that this interpretation
retains the most of the preference relation properties.

Except for this approach, we also tried to find connections between logics of pref-
erence and modal propositional logics, and we investigated properties of preference
relations defined using modal operators.

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

Chapter 2

In search for semantics

2.1 System of preferences and Efde

2.1.1 Von Wright's preference system

If we denote with P preference relation, we have the following system of axioms for
von Wright's logic of preference (see [vW63] or [KM75]):

(W1) xPy -4 --.(yPx)

(W2) xPy A yPz -0 xPz
(W3) xPy H (x A -'y)P(y A -Ix)
(W4) (x V y)P(z V ti) H (x A A nu)P(--ix A -iy A z) A (x A -1z A -iti)P(nx A

ny A u) A (y A A --1U)P(-Ix A A Z) A (y A -1Z A nti)P(nr A A ti)
(W5) xPy +-+ (x A a)P(y A a) A (x A -, a)P(y A -e), where a is a new variable.

2.1.2 Intended interpretation
The first interpretation we are going to consider is a natural interpretation i.e. a
kind of interpretation that assures us that if x is true and y false, then xPy is true
and yPx is false. So, one way to embed logic system (W1)-(W5) into the first
degree entailment Efde is the following:

1, if x = 1 and y = 0;
f(xPy)= { 4, if x = 0 and y = 1;

2, otherwise.

where so 1-4 //) is assumed to mean 9 72 0, i.e. Sp --+Ik and tp 	yo (see [AB75]). We
are using characteristic matrices for Efde given by T. J. Smiley ([AB75, pp.162-
163]):

A 1 2 3 4 V 2 3 4 -,
1 2 3 4 1 1 1 1 1 4 4 4

1 v
. csi

 cf.,
 ,—

,

2 2 4 4 1 2 1 2 1 1 4 4 ce, 3 4 3 4

..., 1 1 3 3

cvz 1 4 1 4

c
,

4 4 4 4 1 2 3 4 1 1 1 1

where 1 is designated true, and 4 designated false value.
Testing above axioms in this interpretation, we obtained the following results:

- Axioms (W1), (W2) and (W3) are valid;
- Axioms (W4) and (W5) are only valid from right to left.

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

10 	 CHAPTER 2. IN SEARCH FOR SEMANTICS

2.1.3 What is valid?

With the help of the computer program written in LISP and using above tables for
Eide, we obtained validness of the following formulae:

(1) xPy ,(yPx)

(2) xPy A yPz xPz

(3) xPy -+ (x A -,y)P(y A -'x)

(4) (x A -iy)P(y A -Ix) xPy

(5) (x A A nu)P(--lx A ny A z) A (z A A -1u)P(--,x A -I A u) A (y A A

-iu)P(-is A A 2) A (y A A nti)P(-a A -1y A u) --0 (x V y)P(z V u)

(6) (x A a)P(y A a) A (x A -.a)P(y A -la) xPy, where a is a new variable.

(1) Oa/ 	
\I;A-11111A-oillylim iS nu(variable,

(8) xP(y v z) —0 xPy A xPz

(9) xPy A xPz —> xP(y V z)

(10) (x V y)Pz xPz V yPz

(11) xPz V yPz (x V y)Pz

(12) xPz A yPz (x V y)Pz

(13) (x A y)Pz -+ xPz A yPz

(14) xPz A yPz (x A y)Pz

(15) (x A y)Pz —+ xPz V yPz

(16) xPy -+

(17) -'yP-'x xPy

(18) xP(y A z) xPy V xPz

(19) xPy V xPz xP(y A z)

(20) xPy A xPz -4 xP(y A z)

(21) --,(yPx)-- xPy

2.1.4 What is not valid?

The following formulae are invalid in the above-mentioned interpretation:

(o2) Converse of (2): xPz xPy A yPz.

(o5) Converse of (5): (x V y)P (z V u) (x 	A-ru)P(,x A-iy A z) A (xA -izA

-,u)p(-izi\-wAu)n(yA--izAnu)P(-ci\ - iyAz)n(yn -izA -m)P(-ixn-iyAu)

(o6) Converse of (6): xPy -+ (x A a)P(y A a) A (x A -1a)P(y A -la), where a

is a new variable.

(o7) Converse of (7): (x A a)P(y A a) V (x A -ice)P(y A -la) -+ xPy, where a

is a new variable.

(o12) Converse of (12): (x V y)Pz xPz A yPz.

(o15) Converse of (15): xPz V yPz (x A y)Pz.

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

FAVB - ► C

(R4) 	

1-A-+C .13 (R2)

(R3)

2.1. SYSTEM OF PREFERENCES AND Efde 	 11

2.1.5 New system of axioms

Considering the following set of axioms:

(S1) xPy -'(yPx) 	 (formulae (1), (21))
(S2) xPy A yPz --> xPz 	 (formula (2))
(S3) xPy 	 (formulae (16), (17))
(S4) (x V y)Pz xPz V yPz 	 (formulae (10), (11))

we are going to prove the following theorem:

Theorem 2.1.1 From axioms (S1)-(S4), using axioms and rules of Efde) derive all formulae (1)-(21).

2.1.6 Axioms and rules of Efde

To prove theorem 2.1.1, we need axioms and rules for a logical system we are working
in. We will use axiomatization of Epic from [AB75, p.158]. Axioms are:

(El) A A B A
(E2)A A B B

(E3)

(E4) B AV B

(E5) A A (B V C) (A A B) V C
(E6) A —0

(E7) —o A

and inference rules are:

12i411 1%114
I- A —* C

we can

We will also use the following lemma from [AB75, p.159]:

Lemma 2.1.1 The following equivalences are provable in Efde:

(a) AABT -t BAA

(b) A V B B V A

(c) AA(BAC)4=t(AAB)AC
(d) AV(BVC)47-1(AVB)VC
(e) AA(BVC)71 (AAB)V(AAC)
(f) AV(BAC) -4=*(AVB)A(AVC)
(g) -.(A A B) <=1 	V
(h) --1(A V B) 	-"A A --1B

(commutativity of A)

(commutativity of V)

(associativity of A)

(associativity of V)

(distributivity of A over V)

(distributivity of V over A)

(de Morgan's law for A)

(de Morgan's law for V)

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

12 	 CHAPTER 2. IN SEARCH FOR SEMANTICS

2.1.7 Dependences between formulae

In sequel, we will write (9), (13) I- (6) for the statement that formula (6) is derivable
from formulae (9) and (13).

Lemma 2.1.2 The following holds:

(a)

(b)
(12), (9), (4) I- (5);

(6), (1), (21) I- (7);

(c) (13), (9) I- (6);

(d) (11) F (12);

(e) (19) I- (20);
(f) (13) I- (15);

(g) (10), (13), (16), (17), (18) I- (4).

Proof:

(x A A -iu)P(-Ix A -1y A z)A (x A A -iu)P(-Ix A -1y A u) A (y A A-iu)P(-tx A

A z) A (y A A -1u)P(-1x A A u) (x A -1(z V u))P(z A -1(x V y)) A (x A -1(z V

u))P(u A -1(x V y)) A (y A -1(z V u))P(z A -i(x V y)) A (y A -1(z V u))P(u A -1(x V y))
(de Morgan's laws)

(x A -1(z V u))P(z A -1(x V y)) A (x A -i(zV u))P(u A -1(x V y)) A (yA -1(z V u))P(z A

-1(x V y)) A (y A -1(z V u))P(u A -1(x V y)) ((x V y) A -1(z V u))P(z A -1(x V y)) A

((x V y) A -1(z V u))P(u A -1(x V y)) (formula (12), distributivity in Eid e)

((x V y) A -1(z V u))P(z A -1(x V y)) A ((x V y) A -1(z V u))P(u A -1(x V y))

((x V y) A (z V u))P((z V u) A -1(x V y)) 	 (formula (9))

((x V y) A -1(z V u))P((z V u) A -1(x V y)) --> (x V y)P(z V u) 	(formula (4))

(x A-kzA-,u)P(-oA-iyAz)A(xA-,zA -iu)P(-ixA -TAu)A(yA -.zA -.u)P(--.xA

A z) A (y A -kz A --,u)P(-Ix A -'y A u) --> (x V y)P(x V u) (rule (R1) several times)

(b)
(y A a)P(x A a) A (y A -'a)P(x A -,a) yPx 	 (formula (6))

--,(yPx) 	--,((y A a)P(x A a)) V -1((y A --,a)P(x A -,a))
(rule (R4) and de Morgan's laws)

xPy -.(yPx) 	 (formula (1))

-1((y A a)P(x Aa))V-,((yA -.a)P(xA -.a)) —> (x A a)P(yAa)V(x A-'a)P(yA - 'a)
(formulae (1) and (21), substitution)

xPy —> (x A a)P(y A a) V (x A -,a)P(y A -.a)
(rule (R1) on previous 2 formulae)

(c)
(x A a)P(y A a) A (x A -,a)P(y A -, a) xP(y A a) A aP(y A a) A xP(y A -,a) A

-iaP(y A - 'a) 	 (formula (13))

xP(y A a) A aP(y A a) A xP(y A -0) A -iaP(y A 	—> xP(y A (a V -.a)) A aP(y A

a) A -IaP(y A -'a) 	 (formula (9))

xP(y A (a V -la)) A aP(y A a) A -IaP(yA 	xPy A aP(y A a) A -1aP(y A -la)

(a V -la is a tautology of propositional logic)

xPy A aP(y A a) A -,aP(y A -,a) —> xPy 	 (axiom (El))
(x A a)P(y A a) A (x A -'a)P(y A -la) --+ xPy 	(rule (R1) several times)

(d)
 xPz A yPz xPz 	 (axiom (El))

xPz xPz V yPz 	 (axiom (E3))

xPz V yPz (x V y)Pz 	 (formula (11))

xPz A yPz (x V y)Pz 	 (rule (R1) applied several times)

(e)

(a)

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

(1)

(g)

xPy A xPz -> xPy
xPy -4 xPy V xPz
xPy V xPz xP(y A z)
xPy A xPz -+ xP(y A z)

(x A y)Pz xPz A yPz
xPz A yPz 2Pz
xPz xPz V yPz
(x A y)Pz -4 xPz V yPz

(axiom (El))
(axiom (E3))

(formula (19))
(rule (R1) applied several times)

(formula (13))
(axiom (El))
(axiom (E3))

(rule (R1) applied several times)

2.1. SYSTEM OF PREFERENCES AND Efde 	 13

(x A -iy)P(y A -Ix) xP(y A -Ix) A -iyP(y A -Ix) 	 (formula (13))
xP(y A nx) A -IyP(y A --lx) -0 (xPy V xPnx)A (-,yPy V --TP-.,x)

(formula (18))
-1yPnx xPy (formulae (16), (17))
(xPy V 2P-1x) A (-iyPy V nyP--ix) -) (xPy V x P-12) A (-'yPy V xPy)

(substitution)
(xPy V xP-tx) A (-IyPy V xPy) xPy A (xP-ix V -yPy) 	(distributivity)
xPy A (xP-Ix V -'yPy) xPy 	 (axiom (El))
(x A -,y)P(y A -Ix) -+ xPy 	 (rule (R1) several times)

0

So, we derived formulae (4), (5), (6), (7), (12), (15) and (20). Since formulae
(1) and (21) are in fact axiom (S1), (2) is axiom (S2), (16) and (17) are axiom (S3),
and (10) and (11) are axiom (S4), we only need to derive formulae (3), (8), (9),
(13), (14), (18) and (19).

Lemma 2.1.3 The following holds:

(a) (1), (18), (19), (21) I- (13
);

(b) (1), (18), (19), (21)1- (14

Proof:
(a)

(x A y)Pz - ,(zP(x A y))
-i(zP(x A y)) -+ n(xPx V zPy)
-,(zPx V zPy) - ,(zPx) A -'(zPy)
- , (zPx) A -,(zPy) xPz A yPz
(x A y)Pz xPz A yPz

(b)
xPz A yPz -.(zPx) A --.(zPy)
--1(zPx) A -'(zPy) -'(zPx V zPy)
-,(zPx V zPy) -.(zP(x A y))
-(zP(x A y)) (x A y)Pz
xPz A yPz (x A y)Pz

Lemma 2.1.4 The following holds:

(a) (1), (10), (11), (21) I- (9);
(b) (1), (10), (21) I- (8);

(c) (10), (16), (17) I- (18);
(d) (11), (16), (17) I- (19);
(e) (14), (16), (17), (19)1- (3).

(formula (1))
(formula (18), (19), substitution)

(de Morgan's laws)
(formulae (18), (19))

(rule (R1) several times)

(formula (1))
(de Morgan's laws)

(formulae (18), (19), substitution)
(formula (21))

(rule (R1) several times)
0

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

14 	 CHAPTER 2. IN SEARCH FOR SEMANTICS

Proof:
(a)

xPy A xPz -,(yPx) A ,(zPx)
-4(yPx) A -,(zPx) - -i(yPx V zPx)
-.(yPx V zPx) - ,((y V z)Px)
--1((y V z)Px) xP(y V z)
xPy A xPz xP(y V z)

(b)
x./)(y V z) - -I((y V z)Px)
--.((y V z)Px) -0 -1(ypxy zPx)
-1(yPx V zPx)--o -,(yPx) A --,(zPx)
-ON A ,(zPx) xPy A :12:
xP(y V 	xPy A xPz

(formulae (1), (21), substitution)
(de Morgan's laws)

(formulae (10), (11), substitution)
(formula (21))

(rule (R1) applied several times)

(formula (1))
(formula (10) and rule (R4))

(de Morgan's laws)
(formulae (1), (21), substitution)

(rule (R1) several times)

(c)
xPcy A 2) -icy A z)P-ix

al(V A 01: 14 (IV al!)Pat
(ny V -1)P-ix -IP-1 V -12P-1z

--TP-+x V 	-0 xPy V xPz
xP(y A z) -0 xPy V xPz

(d)
xPy V xPz -o-TP-Ix V -1zP-Ix 	 (formula (16)

V -,zP-ix (-,y V -iz)P-ix 	 (formula (11))

(-iy V -'z)P-'x -o -1(y A z)P-Ix 	 (de Morgan's laws)

-1(y A z)P-.x --o xP(y A z) 	 (formula (17))

xPy V xPz --0 xP(y A z) 	 (rule (R1) several times)

(e)
xPy --0 xPy V (xP-ix A -iyPy) 	 (axiom (E3))

xPy V (xP-ix A -iyPy) (xPy V -txPx) A (xPy V -iyPy)) 	(distributivity)

(xPy V -IxPx) A (xPy V -iyPy) --0 (xPy V xP-Ix) A (-iyPy V -iyP-Ix)
(formulae (16), (17))

(xPy V xP-Ix) A (-iyPy V -TP-Ix) -0 xP(y A -ix) A -iyP(y A -ix)
(formula (19))

xP(y A -ix) A -wP(y A -,x) — (x A -,y)P(y A -ix) 	 (formula (14))

xPy -+ (x A -iy)P(y A -ix) 	 (rule (R1) several times)

Proof of theorem 2.1.1: Follows directly from lemmas 2.1.2-2.1.3, since all for-

	

mulae are derived from (S1)-(S4) 	 ❑

2.1.8 Slight modifications
The above-presented system is in a way too weak: for instance, the axiom (S3), i.e.
Martin's axiom (M8), is problematic and prone to criticism (see [CS66a],[CS66b]).
To avoid this, we will consider the following interpretation that still belongs to the
above-mentioned class of natural interpretations:

1 1, if x = 1 and y = 0;
, 	4, if x = 0 and y = 1;

f(xPY) = 2, if x = 1 and y = 1;
3, ifx= 0 andy=0.

Slightly modifying the already mentioned LISP program, we were able to show
that the following formulae are not true in this interpretation:

O. Au 	(1! A --rulPtu A -ix)

(formula (16))

(de Mop's laws)
(formula (10))
(formula (17))

(rule (R1) several times)

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

2.2. INTERPRETATION IN SUGIHARA MATRIX 	 15

(4) (x A -iy)P(y A -Ix) xPy
(5) (x A 	A ti)i:/(--,x A 	A z) A (x A 	A -1u)P(-Ix A -1y A u) A (y A 	A

-,u)P(-ix A A z) A (y A A -rti)P(-tx A A u) —> (x V y)P(z V u)
(16) xPy -+

(17) xPy

and all others from the list (1)-(21) are valid.

2.1.9 	Dependences in new system

Looking at the proofs of lemmas 2.1.2-2.1.3, we can readily see that the following
theorem is true:

Theorem 2.1.2 In the new system, the following dependences hold:

(a) (6), (1), (21) I- (7);
(b) (13), (9) I- (6);

(c) (1), (10), (11), (21) I- (9);
(d) (11) I- (12);

(e) (19) I- (20);

(f) (13) I- (15);

(g) (1), (10), (21) I- (8);

(h) (1), (18), (19), (21) I- (13);

(i) (1), (18), (19), (21) I- (14).

that is the list of axioms for this system could be:

(S* 1) xPy -1(yPx)
(S*21 xPy A yP;

(N) zli(y n z) xPy V ri3z
(S*4) (x V y)Pz 7.1 xPz V yPz

because all other formulae can be derived from those.

(formulae (1), (21))

(Ina (1))

(formulae (18), (19))
(formulae (10), (11))

2.2 Interpretation in Sugihara matrix

2.2.1 Definitions

Following the work of M. Tokarz ([Tok80]), we will define Sugihara matrix as an
ordered 6-tuple Sr = (I, —, A, V, -+, D), where (carrier set) I is a chain with respect
to some (fixed) ordering <, connective — is a unary, bijective involution with the
property that x < y implies —y < —x, connectives A and V are defined as a minimum
and a maximum of two elements with respect to the ordering <, connective -4 is
defined as

{—xVy, ifx<y; x-4 y=
—xAy, ifx>y.

and D = E 	— a < a} is a set of non-negative elements of I.
We usually choose I = {—n,..., —1,1, ..., n}, and in that cases we will denote

Sugihara matrix with Sn . If it contains 0, we will denote it by sg. For given
matrix Si, we define a Si-interpretation f: Var I on propositional variables
which extends in natural way to formulae in the following way:

'Sugihara matrix which does not contain n is r A11.,1

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

16 	 CHAPTER 2. IN SEARCH FOR SEMANTICS

1 ° If B is a propositional variable, then 1(B) E I;

2° AC A D) = min(f (C), f(D));
3° AC V D) = max(f (C), f(D));
4° feiC) = - f(C);
5° AC D) = f(C) -0 f(D);

We will say that formula yo is valid in S1-interpretation f if AO E D,
if it is valid in all Si-interpretations and, finally, valid if it is Si-valid for all Si
(see [AB75], pages 400-401).

One of the well-known results concerning Sugihara matrices is the connection
between relevance logic RM and Sugihara matrix ([AB75]).

2.2.2 Why using Sugihara matrix?

All ?nylons methods of interpretation in 	have have the same shortcoming, i.e. rather

problemaiic formulae (g 	(1 In yid 	will try le circ gent
this problem. First, let us consider the formula (21), that is

-1(yPx)-> xPy

and let us try to find what interpretation we need to dispose of its validity.

Theorem 2.2.1 The condition for invalidness of the formula (21) and for validness
of the formula (1) at the same time in some Sugihara matrix is

f(xPy)+ f(yPx) < 0.

Proof: Let us denote AxPy) = p and f(yPx) = q, for some p, q E I. Then we
have:

max(-p, -q), if p -q; _ I - min(p, q), p < -q;
f(xPY -0Px)) = 	-q), if p > -q. l - max(p, q), otherwise.

f(--,(yPx) xPy) = 	q), if p < -q.
max(p,q), if p -q;

so (1) will be true and (21) false if for all x and y: f(xPy 	-,(yPx)) > 0 and
f(-1(yPx) xPy) < 0. We have the following cases:

(i) p = -q. In that case, we must have min(p, q) < 0 and max(p, q) < 0, and
that is impossible since p and q have opposite signs.

(ii) p > -q. In that case, we must have max(p, q) < 0 and max(p, q) < 0, and
that implies that both p and q are negative, which is impossible since p + q > 0.

(iii) p < -q. In that case, we must have min(p, q) < 0 and min(p, q) < 0 — no
contradiction here. This condition is equivalent to p + q < 0. 	 ❑

So, with respect to this theorem, we made another slight modification of our
LISP program, and for interpretation of the preference relation P, we have chosen
the following (fairly arbitrary) one:

f maxatl , ,
f(xPy)

= (x, lYi)
which satisfies the condition of the theorem.

We obtained the following results for Sugihara matrix S2 (we will use notation
(1)-(21) from page 10):

(a) Valid formulae: (1), (2), (4), (5), (9), (10), (11), (12), (13), (14), (15),
(18) and (20);

(b) Invalid formulae: (3). (6). (7), (8), (16), (17), (19), (21), as well as all

and

if x < y;
if x > y.

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

2.3. RETURN TO E fde 	 17

2.2.3 Negative results

As we could see, the formula (20) is still valid although it is intuitively false 2 .
So we tried to find an interpretation in Sugihara matrix in which (20) is invalid.
Unfortunately, it is not possible because of the following theorem:

Theorem 2.2.2 In all Sugihara matrices Si, no matter what interpretation f is,
formula

xPy A xPz xP(y A z) 	(*)

is valid.

Proof: Let as before, f(xPy)= p, f(xPz)= q, where p, q E I. As I is a chain and
A y is defined as min(x, y), we have that min(y, z) E {y, z} and, hence, AxP(y A

z)) E {p, q}. That means that f(xPy A xPz) = min(p, q) and f(x13(y A z)) E {p, q}
and, since min(p, q) < p and min(p, q) < q, we have:

f((*)) 	max(—min(p, 4),P) , if min(y, 2) = Y;
max(— min(p, q), q) , otherwise.

Suppose that p > q (otherwise we have symmetrical reasoning). In that case
min(p, q) = q and hence

f((*)) = fmax(— q,p) , if y < z;
max(-4, q) , if Y > 2 .

If y > z, then f((*)) > 0, since at least one from — q, q must be > 0.
If y < z, we have the following two cases:

(i) 	ul 	111 citt 	p.. V

(b) p < 0. In that case also q < 0, so f((*)) = max(—q,p) > —q > 0.

So, f((*)) is always non—negative, and hence formula (*) is valid. 0

Corollary 2.2.1 The algebraic structure in which (20) is invalid is either not a
chain, or a conjunction is not defined as a minimum of two elements.

2.3 Return to Efde

So, we have seen what can be done using Sugihara matrices, and what can be done
if we are looking for "natural interpretations" for preference relation 3 in El de . But,
the problem with Sugihara matrices is that we do not know what its background
logic is4 , so we can not prove lemmas and theorems of dependences as we did
in Ef de in previous sections. So, we returned to El de and wrote another LISP
program which, using 'brute force' method, searches for 'the best' interpretation for
preference relation P in Bid e . We will understand the term 'the best' as the one in
which as many acceptable formulae as possible are valid and as few non—acceptable
formulae (i.e. of (16), (17), (20) and (21)) as possible are valid.

2 One example is: if x is interpreted as "to win $100", y as "to win $70", and z as "to win $80",
we (usually) do have xPy and xPz but not xP(y A z), since y A z means "to win $150".

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

18 	 CHAPTER 2. IN SEARCH FOR SEMANTICS

2.3.1 Results

We suppose that our interpretation for P is as follows (for a, b, c, d E {1, 2,3,4)):

a, ifx= 0 andv=0;

f (zPY) = b, iff:: °1 aanndd yY : 01 ;
d, ifx=landy=1.

The program checked out all von Wright's axioms, all formulae (1)—(21), as well as
all hopefully invalid formulae in all interpretations (there are 4 4 = 256), and found
out the following results:

(a) If (a, b, c, d) E {(2, 4, 4, 4), (3, 4,3,4), (3,4,4,4)}, then formulae (16), (17)
and (21) are invalid.

(b) In all under (a) mentioned interpretations, formulae (4) and (5) are

invalid, and in the first and the third one, formulae (11) and (15) are
also not valid.

(c) Formula (20) is valid in all interpretations!

(d) In all under (a) mentioned interpretations, valid von Wright's axioms are
(W1), (W2) and (W5), whereas axioms (W3) and (W4) are only valid
from left to right (that is, opposite from what we had before!).

(e) In the second under (a) mentioned interpretation, as a consequence we
have xPzVyPz xPzAyPz, (formulae (12) and (o12) give xPzAyPz
(x V y)Pz, and formulae (10) i (11) give (x V y)Pz xPz V yP z), so we
can say that this interpretation is also unacceptable.

By the way, the fact mentioned under (c) can also be proved:

Theorem 2.3.1 In every matrix interpretation of preference relation P of the
above—mentioned type where logical operations between preferences are defined as
in Efde , and operations in preference relation are defined as in classical logic, for-
mula (20) is valid.

Proof: In the same way the theorem 2.2.2 from page 17 was proved since inner
connectives are defined in a classical way, and so y Az E {y, z}. 	 ❑

2.4 Paraconsistent and many—valued logics

A step to paraconsistent and many—valued logics is a rather natural one for further
exploring of preference relations. Many—valued logics have some properties that
are not true in two—valued logics. One of these was demonstrated in article Social
choice and Lukasiewicz logic ([0vc91]) by Sergei Ovchinnikov, where the author,
using many—valued Lukasiewicz logic, constructed a model for collective choice rule
in group preferences that satisfies the property of unrestricted domain, nondicta-
torship, independence of irrelevant alternatives and Fareto principle and obtained
a kind of result that Arrow proved that are impossible if we are working in classical
logic (see [Ke178] for more details about Arrow's theorems).

2.4.1 Why paraconsistent logics?

In paraconsistent logics ([PRN89]), deriving contradiction in a logical system does
not mean that any formula is derivable. Namely, we distinguish two concepts: we
say that logic is trivial if it contains all formulae, and that it is contradictory if

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

2.4. PARACONSISTENT AND MANY—VALUED LOGICS 	 19

there exists a formula so so that both yo and 	are contained in that logic. In the
classical case, those two notions have identical meaning, but in the paraconsistent
one they are different.

So, why paraconsistent logics? It happens very often that our list of wishes
(preferences) that we put into preference logic is contradictory, and we try to keep
those contradictions local, that is, not to destroy the whole system.

2.4.2 Definitions for many—valued logics

In order to work with matrices for many—valued logics, we need a method to define
a consequence relation formally. One method is given in [Urq86] on pages 76-77.

Let us assume that we are dealing with a fixed language L for propositional
many—valued logic, and that connectives are contained in {A, V, --4, 4-41.

A matrix for the language L consists of

—an abstract algebra A of the appropriate type;
—a non—empty subset D C A of designated elements;

If v: A 2Var(L) 1-4 	is an assignments of elements of the matrix to propositional
variables, then v can, in the usual way, be extended to formulae.

Let r and A be finite (possibly empty) sets of formulae of L. We say that A is a
consequence of r with respect to matrix M, denoted with I' A, if the following
holds: for every assignment v of elements of M to variables of L, if v(so) E D for all
co E r, then v(0) E D for some tk E A. Formula w is a tautology with respect to M
if 0 kw. yo, which we abbreviate as km

2.4.3 Testing method

All paraconsistent andior many—valued logic systems presented bellow have matrix
representation for logical connectives, and for the preference relation P, we will use
the following interpretation:

a, if x = 0 and y = 0;
b, if x = 0 and y =1; v(xPy) =
c, if x = 1 and y = 0;
d, if x = 1 and y = 1.

where a, b, c and d are constants that belong to the language of given logic. We
again modified our LISP program to search for interpretations according to the
given matrix.

2.4.4 System 1

This is a paraconsistent logic defined in [AT75] in 1975. Its matrix is:

A 0 1 2 V 0 1 2 --4, 0 1 2 -,
0 1 2 0 0 0 0 1 2

I e—
i C

D
 C

s1

1
-1

 1 1 1

1
-1

 0 1 2

.--1 0 0 0

1
-4

2 1 2 0 2 2 0 1 2

where 0 and 2 are designated true and 1 a designated false value.

5 We can also use a function a: V ar(L) A, that is more usual.

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

20 	 CHAPTER 2. IN SEARCH FOR SEMANTICS

2.4.5 System 2
This system is from [KdC89] and [BR89]. The implication in this system is the
strong one in the sense that cp —+ is a theorem only if 9 and share variables.
The matrix below is also a matrix for relevance logic RM3 ([AB75, p.470]).

System 2 is defined in the following way: M = ({1, 2, 3), V, A, —4, where
x A y = 	y) and z V y = max(x, y) for x, y E {1,2,3), and with the following
matrix for -4 and

1 2 3
1 3 3 3 1 3
2 1 2 3 2 2
3 1 1 3 3 1

with 3 and 2 as designated true, and 1 as a designated false value.

. 	illg 	1 110 	11

61 with carrier set I = {- 1 , 0,1} and with connectives defined as in section 2.2.1,
Page 15.

2.4.6 System 3

These are actually two systems from [Mor89, pp.299 and 301] and from [Car85,
p.367], but, applied to von Wright's preference logic, they give the same result.
Those systems are in paraconsistent logics discussed in order to establish a relation-
ship between classical logic Co and paraconsistent logics C1, C2, Cu, investigated
by da Costa adC74],[dCA77]).

The first system, denoted by Col (or by Pl. in [Car85]) has the following matrix:

A 1 2 3 V 1 2 3 --> 1 2 3 -'
1 1 3 1 1 1 1 1 3

CYD
 .-4

C
V

 1 1 3

C
V

 1 1 1

C
.1 1 1 3

C
V

3 3 3 1 1 3 1 1 1

with 1 and 2 as designated true, and 3 as a designated false value.
The second system, denoted by C0.2, has the following matrix:

A 1 2 3 V 1 2 3 1 2 3 -1

1 1 3 1 1 1 1 1 3

C
* C

V
 •

'4

C
V

 1 1 3

C
V

 1 1 1

C
V

 1 1 3

C
V

3 3 3 1 1 3 1 1 1

with 1 as a designated true, and 2 and 3 as designated false values.

2.4.7 System 4

This system is discussed in [Por84], and it represents Lukasiewicz's L-modal system.
Here, we have two kinds of negation: a strong (or a classical) one (-.) and a weak
one (•-•). Its matrix is ([Por84], pages 87 and 88):

A 1 2 3 4 V 1 2 3 4 —). 1 2 3 _ 	4 -, ,..•

1 2 3 4 1 1 1 1 1 2 3 	4

1-
1

 C
 1

-i

C
V

 2 2 4 4

C
V

 1 2 1 2

C
V

 1 1 3 	3

C
V

CYD

3 4 3 4 1 1 3 3 1 2 1 	2
A A A A 1 9 3 .1. 1 1 1 	1

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

2.5. RESULTS 	 21

with 1 as a designated true value. We will name 4.1 the system with the strong
negation —1, and 4.2 the system with the weak negation

Note that we can obtain system 4 as a direct product of two tables of classical
logic with operations defined componentwise, and substituting (1, 1) I-4 1, (1, 0)1-)
2, (0, 1) 3 and (0, 0) 4 (see [1tes69, pp.96-97]).

2.4.8 System 5

This system is discussed in [Mor71] where it was used for checking some axioms of
deontic logic. Some 5 different systems were used there for each binary connective,
and we used all of them for our testing, but here we will only present the system
that is mathematically 'the most corrects one', because, for our purpose, those
differences do not show. Domain is the set {1, 2, ... , 6), and the matrix for negation
and conjunction is:

A 1 2 3 4 5 6
1 1 2 3 4 5 6 1 6
2 2 2 3 5 5 6 2 5
3 3 3 3 6 6 6 3 4
4 4 5 6 4 5 6 4 3
5 5 5 6 5 5 6 5 2
6 6 6 6 6 6 6 6 1

with disjunction and implication defined in the standard way: x V y *,z A -'y)
and x --+ y 	-ix V y. A formula is said to be true if its value is < 3.

Other systems can be obtained modifying the table for conjunction in the fol-
lowing way:

variant 2: 2 A 5 = 5 A 2 = 6 (instead of 5);

variant 3: 1 A 4= 4 A 1= 5 (instead of 4);

variant 4: 1 A 3 = 3 A 1= 2 (instead of 3), 1 A 6 = 6 A 1 = 5 (instead of 6),
3A 4 =4A 3= 5 (insteadof6)and 4A6=6A4=5 (instead of 6);

variant 5: 1 A 2= 2 A 1= 1 (instead of 2), 1 A 5= 5 A 1= 4 (instead of 5),
2 A 4 = 4 A 2 = 4 (instead of 5) and 4 A 5 = 5 A 4 = 4 (instead of 5).

2.5 Results

All those matrices are implemented on computer in order to find the best interpre-
tations in the following sense:

—As many axioms as possible should hold;
—The axioms (W1) and (W2) must be valid;
—Formulae (16), (17) and (21) should not be valid;
—As many formulae as possible from the set (1)—(21) except from those

mentioned above should be valid;

—The opposite of (20) should not be valid;

Here is a table with results based on presented criteria:

6 In some of 1:barn .von

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

22
	

CHAPTER 2. IN SEARCH FOR SEMANTICS

System a b c d Invalid axioms Invalid formulae Valid converses

Ef de 2 4 1 2 w5,w7 — —
2 4 4 4 w4,w6 4,5,11,13,16,17,21 o5,o6,o12,o15
3 4 1 2 w3,w4,w5,w6,w7 3,4,5,16,17 —
3 4 3 4 w4,w6 4,5,16,17,21 o5,o6,o12,o15
3 4 4 4 w4,w6 4,5,11,13,16,17,21 o5,o6,o12,o15

sugihara - - - - w3,w5,w7 3,6,7,8,16,17,19,21 —
system 1 2 1 0 1 w4,w6 4,5,16,17,21 o5,o6,o12,o15

2 1 1 1 w4,w6 4,5,11,13,15,17,21 o5,o6,o12,o15
2 1 2 1 w4,w6 4,5,16,17,21 o5,o6,o12,o15

system 2 1 1 3 2 w3,w5,w7 3,16,17,21 07

2 1 1 1 w4,w6 4,5,11,13,16,17,21 o5,o6,o12,o15
2 1 2 1 w4,w6 4,5,16,17,21 o5,o6,o12,o15

2 	1 	3 	1 w41w5,w6 ;w7 4,5,16,17,21 —

0. 	1 	1 	I iwaliuji"------------rFrgygtem 1 wi.,4 1,N,11,1 0 ,0 ,0 	,0
2 	3 	2 	3 w4,w6 4,5,16,17,21 o5,o6,o12,o15

2 3 3 3 w4,w6 4,5,11,13,16,17,21 o5,o6,o12,o15

system 4.1 — — — — — — —
system 4.2 2 2 3 4 w4,w5,w6,w7 4,5,11,13,16,17,21 —

2 3 2 4 w4,w5,w6,w7 4,5,8,11,13,16,17,19,21 o12,o15
2 3 4 4 w4,w5,w6,w7 4,5,8,11,13,16,17,19,21 o12,o15
2 4 1 4 w4,w5,w6,w7 4,5,16,17,21 —
2 4 2 4 w4,w6 4,5,16,17,21 o5,o6,o12
2 4 3 4 w4,w5,w6,w7 4,5,11,13,16,17,21 —
2 4 4 4 w4,w6 4,5,11,13,16,17,21 o5,o6,o12,o15
4 2 3 2 w3,w5,w7 3,8,16,17,19,21 07
4 4 1 2 w3,w5,w7 3,16,17,21 o7
4 4 3 2 w3,w5,w7 3,8,16,17,19,21 07

Results for the system 5 are not presented in our table, but here they are:

There is no interpretation (out of e = 1296 different) that satisfies all
conditions;
In all interpretations the formula (20) is valid;

—If we weaken our conditions so that (16) and (17) are allowed to be valid,
then we obtain the following results: if a E {4, 5, 6} and b E {4, 5, 6} and
c E {1,2,3} and d E {4, 5,6}, then7 :

* In all interpretations mentioned above, from the set of axioms only
(w5) and (w7) are invalid;

* In all interpretations above, all formulae (1)—(20) are valid, that is,
only (21) is invalid;

* In all above—mentioned interpretations, from converses, only (o7) is
valid.

Note also that in the system 5 all axioms and rules of Epic are valid.

2.5.1 Remarks about the table of results

— Labels for formulae in the table have the following meaning:

7 Note that this interpretation is the "natural one" in the sense described at the beginning of
section 2.3.

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

2.6. OPPOSITE PROBLEM 	 23

(wl) is the axiom (W1);
(w2) is the axiom (W2);
(w3) is the axiom (W3) from left to right;
(w4) is the axiom (W3) from right to left;
(w5) is the axiom (W4) from left to right;
(w6) is the axiom (W4) from right to left;
(w7) is the axiom (W5) from left to right;
(w8) is the axiom (W5) from right to left;

—Label (for instance) (o7) denotes converse of the formula (7), i.e. other
direction of implication in that formula (see section 2.1.4 on page 10).

—The first and the third interpretation in Ef de are not of the above—
mentioned type, but they are included in the table for the sake of com-
pleteness.

—The interpretation in Sugihara matrix is also not of the above—mentioned
type, but it is also presented for the sake of completeness.

2.6 Opposite problem

In previous sections, we have seen how axioms and formulae 'behave' in various
logic systems: relevance, paraconsistent and many-valued. We can also bring out
the opposite question: is it possible to define logical connectives in such a way that
all von Wright's axioms are valid but none of the formulae (16), (17), (20) and (21)
is? Of course, all that under the restriction that inner logic is the classical one.
This restriction is seemingly a logical one, as we should expect states of affairs to
`behave' in a natural way.

/0•1 Definition of interFetatiOD
In the line with those remarks, we will distinguish two kinds of logical connectives:
classical connectives A, V, 	and 4-+ for operations in preferences, and con-
nectives Ap, Vp, 	 and 4-+p for operations on preferences. With P1 we
will denote an interpretation of relation P and will use lower-case Greek letters for
propositional formulae (so, sb .. .) and upper-case Greek letters for formulae of the
logic of preference (4), V, ,). Furthermore, we will write 'preference formula' for
the term 'formula of the logic of preference'.

Definition of preference formulae: The set of preference formulae is the small-
est set closed under the following two rules:

(1 °) If yo and b are propositional formulae, then coPU) is a preference formulas.

(2°) If 4) and are preference formulae then -4, 4)A 4)V 	If and 4,
are preference formulae, too.

Definition of interpretation: For propositional formulae, interpretation f is the
usual one, and for the preference formulae, we have the following cases:

(1°) If so and 6 are propositional formulae, then f(yoPt,b) = f(so)Pff(1').
(2°) If 4) and W are preference formulae, then:

(a) f(-4) = -1Pf(4))
8 Note that, because of their nature we alcuAliv roctr4,1. 	 rh 	 • ..•

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

24 	 CHAPTER 2. IN SEARCH FOR SEMANTICS

(b) AO A 11r) = 	Ap f('')
(c) f(t V T)= f(1) VP f(1)
(d) -4 41) = f() -41) f(W)

(e)fit " = 	"12 PP)

In the rest of this section, we will assume that the interpretation f for preference

relation P is the usual one:

a, ifx=0andy=0;
ifx=0andy=1;

f(4PY) = c, ifx=landy=0;
ifx=landy=1.

2.6.2 Results

We examined tables for all formulae, and here are the results;

I Exammin of 6e am (W1) Fel the 	colistrimis;
a 	 and d->- , c1 	 (1.1-W1)

• Examination of the axiom (W2) gives the following constraints:
aAb-4 b,bAc-)a,bAd-+b,cAa->c,cAb->d,dAc-4 	(U-W2)

• Examination of the axiom (W3) gives the following constraint:
a = d 	 (U-W3)

It is also a corollary to the following theorem:

Theorem 2.6.1 For (W3) i.e. xPy (x A -,y)P(y A -Ix) to be valid, f(xPx) --=

f(yPy) must hold for all x and y and for all interpretations f.

Proof: Proof is case-based. If x and y are equivalent, then both (x A -1y) and

(y A --a) are false, so the left hand side reduces to f(OP0), and the right hand
side could be either f(OPO) or f(1P1), so we must have f(xPx) = f(yPy) for

(W3) to hold. If x and y are not equivalent, then (easy check) z 4-4 (x A -1y), and
y 4-4 (y A -a), so the formula is always true.

However, the following theorem is also true:

Theorem 2.6.2 If for all x and y we have f(xPx)= f(yPy), then formulae (16)

and (17) are also valid, that is

xPy 4-+ -iyP-ix.

Proof: Similar to the proof of theorem 2.11.1 on page 38, except there are not that
many cases (the fourth case is not needed).

So, we have to choose: either we do not have the axiom (W3), or we have both
this axiom and the Martin's axiom (formulae (16), (17)).

This is hardly a surprising result, as we also have the following lemma:

Lemma 2.6.1 The following holds:

(a) (W3) I- (16)

(b) (W3) F (17)

Proof: Using (W3), we obtain xPy ;72 (z A -,y)P(y A -Ix), and -+yP-ix 72 (-ly A

-1--lx)/2 (--a A -,y), that is -iyP-ix (x A -,y)P(y A -a), and, because implication

is transitive, we finally get xPy 	 ❑

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

2.6. OPPOSITE PROBLEM 	 25

Corollary 2.6.1 For (W3) to be valid, and (16) and (17) to be invalid, we need at
least one of the conditions:

1 ° In outer logic, implication should not be transitive;
2° In inner logic, formula x 42 	should not be valid.

The first condition in corollary 2.6.1 is rather an unusual one, and it is not
clear what a logic is without transitive implication, and the second condition is not
acceptable for the von Wright's concept of preference relation.
• Examination of the axiom (W4) gives the following constraints (we present only
nontrivial constraints):

ci.-Ac,b+-0aAb,d4.4aAa 	 (U-W4)
• Examination of the axiom (W5) gives the following constraints:

b4-*aAb,c4 -+aAc,di- aAd 	 (U-W5)
but the third constraint is not necessary because of (U-W3), and the first two are
already contained in (U -W4).
• The formula (8) gives the following constraints:

(U-8) so we can expect that there are models for (W1)-(W5) where (8) is invalid. Because
of (U-W4), the first constraint in (U-8) must hold, so, only the second one could
be a candidate for invalidness of the formula (8). Since (U-W3) implies a = d, the
formula (8) will not be valid if a c A a is invalid.
• The formula (9) gives the following constraints:

(U-9) that is, since the first constraint, because of (U-W4), must be valid, this formula
will not be valid if c A d -+ d is invalid, i.e. (because of (U-W3)) if c A a 	a is
invalid.

So, we proved the following theorem:

Theorem 2.6.3 For the formula (9) to be invalid; we need the formula A y —+ x
to be invalid,

• The formula (10) gives the following constraints:
c-->aVc,d--).bVd 	 (U-10)

that is, because of (U—W3 c a V c and a —+ b V a, and so we immediately have
the following theorem:

Theorem 2.6.4 For invalidness of the formula (10), we need the invalidness of the
formula x x V y.

• The formula (11) gives the following constraints:

(U-11)
that is, because of (U—W3 a V c c and a V b a, so we can safely expect that
there is an interpretation in which (W1)—(W5) are valid and (11) is not.
• The formula (12) gives the following constraints:

(U-12) so, since a A c —+ c, because of (U—W4), must be valid, the constraints for the
invalidness of the formula (12) are given in the theorem 2.6.4.
• The formula (13) gives the following constraints:

a—+aAc,b-4bAd (U-13)
that is, since (U—W3) reduces the second constraint to b 	b A a, which is true
according to (U—W4), the invalidness of the formula (131 is rediined fn th.. inv.1;A_

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

26 	 CHAPTER 2. IN SEARCH FOR SEMANTICS

• The formula (14) gives the following constraints:

	

aAc--*a,bAd-b 	 (U-14)

that is, since (U-W3) reduces the second constraint to b A a b, which is true ac-

cording to (U-W4), the invalidness of the formula (14) is reduced to the invalidness
of the formula a A c -4 a, and conditions for the invalidness of the formula (14) are
given in the theorem 2.6.3.

• The formula (15) gives the following constraints:

	

a---+aVc,b--+t■ Vd 	 (U-15)
that is, since (U—W3) reduces the second constraint to b —+ b V a, the constraints

are a --0 a V c and b —+ a V b, and the conditions for the invalidness of the formula

(15) are given in the theorem 2.6.4.

• For the formulae (16) and (17) theorem 2.6.2 shows that they must be valid.

• The formula (18) gives the following constraints:

	

aciVbIc--ocVd 	 (1.1-18)

i0 io (H1) Ni es the Rai constrit to c 1E4 e 	C0111iNtiS
are a -4 a V b and c a V c, and the conditions for the invalidness of the formula
(18) are given in the theorem 2.6.4.

• The formula (19) gives the following constraints:

	

aVb--+a,cVd-*c 	 (U-19)
that is, since (U-W3) reduces the second constraint to cVa--+c, the formula (19)

is invalid if both a V b --> a and a V c c are invalid, and that means that we should
expect that there are models for von Wright's logic where (19) is invalid.

• The formula (20) gives the following constraints:

	

aAb--+a,cAd-+C 	 (U-20)

that is, because of (U-W3), a A b a and a A c c. The second constraint is
necessarily true (because of (U-W5)), and that means that the invalidness of (20)
is reduced to the the invalidness of a A b -+ a, and the conditions for the invalidness
of (20) are given in the theorem 2.6.3.

• Finally, the formula (21) gives the following constraints:
a, 	b, -tb 	d 	 (U-21)

and that means, because of (U-W1), that (21) is invalid in interpretations where
b0--,c or a 0 -Ia.

To conclude, there are interpretations in all logics where the formulae (8), (11),
(13), (19) and (21) are invalid, and for the other formulae, we need conditions given
in the theorems 2.6.3 and 2.6.4, i.e.:

• Formula (9) is invalid if not I- a A c -+ a in outer logic;

• The formula (10) is invalid if not I- c-■ aVcor if not I- a -4. a V b in outer

logic;

• The formula (12) is invalid if not I- a A b a in outer logic;

• The formula (14) is invalid if not E- a Ac a in outer logic, so (9) and (14)
are either both valid or both invalid;

• The formula (15) is invalid if not F- a -> a V c or if not I- b-4 aVbin outer
logic;

• The formula (18) is invalid if not I- a -4 a V b or if not I- c --+ a V c in outer
logic, so the formulae (10) and (18) are either both valid or both invalid;

• The formula (20) is invalid if not I- a A b a in outer logic, so the formulae

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

2.7. NEW INTERPRETATIONS 	 27

Of course, the question is if we should go that far, and investigate so weak
logics where the theorems 2.6.3 and 2.6.4 hold. One example of such a logic is
Kleene's 3—valued logic K3 ([Res69]) if we choose only T for a designated true value.
Another example is Linear logic ([Gir87]) if we choose its operator 0 (`tensor') for
a conjunction, 78 (`par') for a disjunction, and if we interpret our implication —+ as
a linear implication —0. The big question is if those systems can validate all von
Wright's axioms, so we will not investigate this question any further.

2.7 New interpretations

So, the previous section showed that it is impossible (at least in this way) to ob-
tain an interpretation that fulfills all our wishes from the beginning of section 2.5.
Because of that, we established a new goal — to find interpretations in above—
presented logical systems where all von Wright's axioms are valid. The table in
section 2.7.2 below shows the results of that goal. The notation is as above, but
the table is slightly different because there is no column of valid axioms — they
are all valid. Furthermore, concerning converses, we do not consider the formula
(o5), since it is one direction of the axiom (W4) and (o6), since it is one direction
of the axiom (W5). We give only those interpretations where (21) does not holds
and where converse of (20) does not hold 10 . In our investigations, we also included
Kleene's 3—valued logic K3 because of the reasons given at the end of section 2.6.2.

2.7.1 Kleene's 3—valued logic

Matrix for the logic K3 is ([Res69, p.34]):

A T 	/J.. V T 	/1 — -1/.1.
T

rill
1111

T 	/1 T

1111
iTli

T T T Till

ITII
ITT T

Ti

II
1T

We are going to consider two systems: kleene 1, with a designated true value T,
and kleene 2, with designated true values T and I.

Actually, except for all those systems, we also considered two further variants
of Kleene's logic described in [MD90]. Both are defined on the same domain as the
original system, conjunction, disjunction and negation are as in K3, the difference
is only in implication. The first system is a system of Przymusinski, and the second
one is their own (i.e. Matheieu—Delahaye). Tables for implication are as follows
([MD90, p.388]):

T 1 I T 1 I
T T 1 1 T T 1 1

T T T T T T
I T 1 T I T T T

But those systems do not make any difference for our purposes, so we did not
want to include them in our table (the table is already big enough!). Also, 3—valued
logics of Slupecki and Sobociiiski ([BB92, pp.76-77]) did not change the general
picture.

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

28
	 CHAPTER 2. IN SEARCH FOR SEMANTICS

2.7.2 Results

So, the new results are:

System a b c d Invalid formulae Valid converses

Epic 2 4 2 2 21
2 4 4 2 8,11,13,19,21 -
3 4 3 3 21
3 4 4 3 8,11,13,19,21 -

system 1 2 1 1 2 8,11,13,19,21 -

2 1 2 2 21
system 2 2 1 1 2 8,11,13,19,21 -

2 1 2 2 21
system 3 2 3 2 2 21

mommannom

sysiem1.1

I 3 ,11,13,19,11 41

— — — - -

-

system 4.2 2 4 2 2 21
2 4 4 2 8,11,13,19,21 -

system 5 - - - - -
kleene 1 - - - - -
kleene 2 I I 	T 1 21 o7,o12,o15

I 1 T 1 21 o7,o12,o15

2.7.3 Von Wright's extended system

We will call von Wright's extended system one that is given in [vW72] with axiom
(W2') xPy xPz V xPy

instead of the axiom (W2). As already mentioned, from this axiom we can derive
(W2), and in the extended system an indifference relation satisfies all conditions for
the strong indifference relation in [vW63].

The natural question is: what is the behavior of extended system in the above-
mentioned interpretations? Checking it out, we get some very interesting results:
Namely, the formula (W2') is only valid in those models where all formulae except
(21) are valid. In other models, it is not valid.

So, we can conjecture that there is a connection between the formula (W2') and
(at least one of) the formulae (8), (11), (13) and (19).

2.8 Indifference relation

2.8.1 Definitions

We are going to include indifference relation into our investigations. Von Wright
([vW63]) distinguishes two different indifference relations:

- the weak one, I, defined by x/y H -,(xPy) A -,(yPx)

- the strong one E. We say that xEy if and only if under no circumstances
is state x A 	preferred to y A -c nor vice versa. According to Huber
([Hub721), the relation E is defined by:

xEy 4-> -'((x A -iy)P(y A -a)) A -'((y A -ix)P(x A -1y))

but it seems that it is not what von Wright had in mind.

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

2.8. INDIFFERENCE RELATION 	 29

2.8.2 Weak indifference relation

The main properties of this relation are (see [vW63],[vW72] or [Hub72J):

(il) x/x

(i2) xIy grx

(i3)dy A yiz —0 xIzil

Checking out the formulae (i1)-(i3) in our models of von Wright's logic (i.e. in
Eide , system 1-3, system 4.2 and kleene 2), we get the following results:

System a 	b 	c 	d Valid formulae
Epic 2 	4 	2 	2 il,i2,i3

2 	4 	4 	2 il,i2
3 	4 	3 	3 il,i2,i3
3 	4 	4 	3 il,i2

system 1 2 	1 	1 	2 il,i2,i3
2 	1 	2 	2 il,i2,i3

system 2 2 	1 	1 	2 il,i2
2 	1 	2 	2 il,i2,i3

system 3 2 	3 	2 	2 il,i2,i3
2 	3 	3 	2 il,i2,i3

system 4.2 2 	4 	2 	2 il,i2,i3
2 	4 	4 	2 il,i2,i3

kleene 2 I 	I 	T 	1 il,i2,i3

„,„,, I 1 T 1 ;EH

2.8.3 Strong indifference relation

Contrary to the weak indifference relation, which was defined by means of the
preference relation P, the strong indifference relation has to be considered as an
independent relation. Of course, because of principles (el) and (e2) below, it is not
completely independent, at least not in interpretations we are considering. Accord-
ing to von Wright, this relation should be an equivalence relation, should satisfy the
axioms (W2)—(W5) (with E instead of P) as well as the following two principles:

(el) xPy A xEz —+ zPy

(e2) xPy A yEz xPz

As already said, if we drop the axiom (W2) and add xPy xPz V zPy instead,
as von Wright did in his extended system avW721), then the weak indifference
relation also satisfies (el) and (e2) what otherwise is not the case.

The table of results for strong indifference relation is as follows (we only present
those interpretations where all above—presented constraints hold):

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

30 	 CHAPTER 2. IN SEARCH FOR SEMANTICS

System Preference abed

Eide 2 4 2 2 or 2 4 4 2 1 	3 3 1
1 	4 4 1
2 	4 4 2
3 	3 3 3
3 	4 4 3

3 4 3 3 or 3 4 4 3 1 	2 2 1
1 	4 4 1
2 	2 2 2
2 	4 4 2
3 	4 4 3

system 1 21 1 2 or 2 1 2 2 0 1 1 	0
0 1 1 	2
2 1 1 	0

2112

iiiiMMOINOillmilimen

gySiPd ifilla 1 1
3 1 1 	3

system 3 2 3 2 2 or 2 3 3 2 1 3 3 	1
1 3 3 	2
2 3 3 	1
3 3 3 	2

system 4.2 2 4 2 2 or 2 4 4 2 1 3 3 	1
1 4 4 	1

The system kleene 2 is not included in the table because there are too many
interpretations for the relation E (exactly 2.2.3.2 = 24), but, basically, the results
are as follows: for both interpretations for P, we have the same results: a E {T,

b E {I, 	c E {T, 1,1} and d E {T,I}.
For the above—presented table we only considered the interpretations where all

von Wright's axioms were valid, and for the relation E, we were considering inter-
pretations of the following type:

a, ifx=OandY=0; 1 , 	b, if x = 0 and y =1;
f(xEY) = c, ifx= 1 and y=0;

d, if x = 1 and y = 1.

2.9 Further investigations

Since all logical systems give, more or less, the same results, in the sequel we will
explore only two (or three) different systems. One of them is the system 2 (defined
in section 2.4.5 on page 20) with interpretation:

{2, ifx=0andy=0;
1, if x = 0 and y = 1;

xPy = 2, if x = 1 and y =0;
2, if x = 1 and y = 1.

There are several reasons for that, but the most important are:

• This system has a well—known and (in [AB75]) well—developed logic;

• Interpretation of the preference relation is the 'natural' one;

ifx=0andy= 0 ;
1, if 	x = 0 and y = 1;

and xEy = 1, if x = 1 and y = 0;
3, if x = 1 and y .= 1.

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

4,111,...mgmedmomm.

2.9. FURTHER INVESTIGATIONS 	 31

• The axioms of Ef de are valid in this logic (actually, Efde is its subsystem), so
we can use (with slight modifications) all proofs from section 2.1.7 on page
12.

Note that, although the formula (W2') is valid in this interpretation, we still
have two different indifference relations. The reason for that is that for proving (el)
and (e2), except for the formula (W2') and definition of the indifference relation,
we also need a tautology (x V y) A x A which is not true in this logic. That
means that I and E are different in this system.

A logic 'behind' the system 2 is the relevance logic RM3.

2.9.1 Definition of relevance logic RM3

The relevance logic RM3 is described in [AB75], and its axioms are ([AB75, pp.231—
232,470]):

(Al) ((A 	B) --+ B

(A2) (A B) ((B —0 C) —0 (A —o C))
(A3) (A (A —o B)) —0 (A —o B)
(A4)AAB—>A

(A5) AAB-0B

(A6) (A —0 13) A (A —o —o (A — B A C)

(A7)OA A OB —o 0(A A B)
(A8) A —o AV B

(A9) B —> A V B

(A10) (A —4 C) A (B —0 --qA V B C)

(11 v GI) 	(1111i1) 11Gt
(Al2) (A —+ ,A)

(A13) (A —› 	(B --+

(A14) n-1,4. A

(A15) A (-'A A)

(A16) A ((A B) —o B)

(A17) A V (A B)

and inference rules are:

FA FB
(rl)

FAAB
F A A —+ B

(MP)
B

In the list of axioms, the axioms (A1)—(A14) are the axioms of a relevance
logic E, and the modal operator of necessity ❑ in the axiom (A7) is defined as
DA deg

 (A —+ A) A.
Because of the axiom (A2) and of the modus ponens (i.e. the rule (MP11. the

, 	 • 	1-1 	■•••

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

32
	

CHAPTER 2. IN SEARCH FOR SEMANTICS

2.9.2 Dependences between formulae in RM3
With respect to the above-mentioned remarks we can immediately state the follow-
ing lemmas. We will use the same notation as before.

Lemma 2.9.1 The following is true:

(a) (12), (9), (4) 	(5);

(b) (13), (9) I- (6);

(c) (11) F- (12);

(d) (19) I- (20);

(e) (13) I- (15);

(f) (10), (13), (16), (17), (18) F- (4).

(a) The same as the proof of lemma 2.1.2 (a) on page 12.
(b) The same as the proof of lemma 2.1.2 (c) on page 12.
(c) The same as the proof of lemma 2.1.2 (d) on page 12.
(d) The same as the proof of lemma 2.1.2 (e) on page 12.
(e) The same as the proof of lemma 2.1.2 (f) on page 13.
(f) The same as the proof of lemma 2.1.2 (g) on page 13.

Lemma 2.9.2 The following is true:

(a) (10), (16), (17) F (18);

(b) (11), (16), (17) I- (19);

(c) (14), (16), (17), (19) F (3).

Proof:
(a) The same as the proof of lemma 2.1.4 (c) on page 14.
(b) The same as the proof of lemma 2.1.4 (d) on page 14.
(c) The same as the proof of lemma 2.1.4 (e) on page 14.

Lemma 2.9.3 The following is true:

(a) (w7) F (7)

(b) (8), (16), (17) F- (13)

(c) (9), (16), (17) F- (14)

Proof:
(a)

xPy ► (x A a)P(y A a) A (x A -,a)P(y A --,a) 	 (formula (w7))
(x A a)P(y A a) A (x A - ,a)P(y A 	—) (x A a)P(y A a) 	(axiom (A4))
(x A a)P(y A a) —) (x A a)P(y A a) V (x A -'a)P(y A -'a) 	(axiom (A8))
xPy (x A a)P(y A a) V (x A -'a)P(y A -,a) 	(transitivity of implication)

(b)
(x A y)Pz -kzP-,(x A y) 	 (formula (16))
--,zP--1(x A y) 	 V 	 (de Morgan's laws)
--izP(-'x V -,y) -1zP-Ix A 	 (formula (8))
-zP-Ix A -1.zP-,y —) xPz A yPz 	 (formula (17))
(x A y)Pz -+ xPz A yPz 	 (transitivity of implication)

(c)

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

, 	4,41. **11.: Am:11621-11.41M1, 	 ; in%

2.10. ALTERNATIVE SYSTEM 	 33

xPz A yPz -+ --tzP-ix A -'zP-'y
--izPnx A --,zPny --+ nzP(nx V "iy)
--IxP(nx V ny) nzP-1(2 A y)
-1zP-,(x A y) (x A y)Pz
xPz A y122 -4 (x A y)Pz

(formula (16))
(formula (9))

(de Morgan's laws)
(formula (17))

(transitivity of implication)
0

So, the list of formulae we are left with is:
xPy --,(yPx) 	 (wl)
xPy A yPz xPz 	 (w2)
(x V y)P(z V u) -0(x A A -1u)P(--ix A ny Az) A (x A -Iz A --1u)P(-ix A -1y A u) A

(y A A nu)P(nx A --ty A z) A (y A nz A --itt)P(,x A -vy A u) 	 (w5)
xPy (x A a)P(y A a) A (x A -'a)P(y A na), where a is a new variable (w7)
xP(y V z) xPy A xPz 	 (8), (9) (x V y)Pz x132 V yPz 	 (10), (11)
xPy 	 (16), (17)
Alternatively, we can make an axiomatization which contains all von Wright's

original axioms. For this case, we will need the following lemma:

Lemma 2.9.4 The following is true:

(a) (W3) f- (16), (17);

(b) (W4) F- (W3).

Proof:
(a) The same as the proof of lemma 2.6.1 on page 24.
(b) If we substitute x = y and z = u in (W4), we obtain our result using laws

of propositional logic (see also [KM75]). 	 ❑
Hence, in that case the axiomatization will be (not necessarily the minimal one):

(W*2) xPy A yPz -0 xPz
(W*3) (x v y)P(z v U 	(x A -.1z A --Iu)P(-,x A A z) A (x A -tz A nu)P(nx A

	

A u) A (y A -ix A --1/4)P(-Ix A 	A z) A (y A 	A -,u)P(--tx A 	A u)
(W*4) xPy (x A a)P(y A a) A (x A -,a)P(y A -.a), where a is a new variable
(W*5) xP(y V z) xPy A xPz

(W*6) (x V y)Pz -4.71 xPz V yPz

We can also note that the formulae (8) and (9) (i.e. (W*5)) are in a way deriva-
tions of (W3) and (W4). Indeed, using (W3) we get:

xP(y V z) (x A (-'y A -1z))Pay A -Ix) V (z A -Ix))
whereas (W4) gives:

xP(y V z) (x A (--ly A -,z))P(y A -In) A (x A (-w A -'z))P(z A -,x)
and using transitivity we finally get:

	

(x A (-I A -iz))P((y A 	V (z A -ix)) 4 '7!
(x A (-'y A -,z))P(y A -Ix) A (x A (-'y A -,z))P(z A -Ix).

2.10 Alternative system

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

34 	 CHAPTER 2. IN SEARCH FOR SEMANTICS

logic RM3 because the axiom that the weak indifference relation is transitive is not
fulfilled there. One system that gives a model that is in that class is the system 1
(described in section 2.4.4 on page 19) with interpretation:

2, if x = 0 and y = 0; 	 0, ifx=.0 andy=0;
1 , if x = 0 and y = 1; 	 1, if x = 0 and y = 1;

xPy = ' i 	
and xEy =

1, f x = 1 and y = 0; 	 1, if x =1 and y = 0;
2, if x = 1 and y = 1. 	 0, if = 1 and y = 1.

This logic is described in [AT75].

2.10.1 Definition of the system 1

A logic behind the system 1 is a paraconsistent logic L. In this logic, we distinguish
two kinds of variables: A-variables (A1, A2, 	for variables that take values 0

and 1, and B—variables (B1, B2, ...) for variables that take only the value 2. We

will wlii,A1,A1,..,folfomillutlig tie aly Illies Q1(111111,is,„,fol
formulae that take all 3 values.

We define B—formulae in the following way:

1° All variables are B-formulae;

2° If B1 and B2 are B-formulae, then B 1 -+ B2, B1 A B2, B1 V B2 and -,B1
are also B-formulae.

A-formulae are defined in the following way:

1° All A-variables are A-formulae;

2° Formulae Ai --+ A2, Al AA2) A1 VA2) "A1) B1 Al and Al -+ (Ai VA.)
are A-formulae;

3° If Al and .A2 are A-formulae and B1 arbitrary formula, then Al A2,
Al AA2, Al VA2, -1.41, B1 --+ Al and Al -4 Al VB1 are also A-formulae;

4° If -'B1 is an A-formula, then Bi is an A-formula;

5° Formulae 	--+ (Ai -■ B1) i "A1 -4 -'(A 1 A B1) are A-formulae;

6° Theorems obtained from A-formulae using only modus ponens are also
A-formulae.

Axioms of the logic L are listed below ([AT75, p.21]):

(L1) (B2 -)

(L2) (Bi -4 (B2 -4 B3)) -4 ((B1 -+ B2) -+ (B1 -> 83))

(L3) -'A1 (A1

(L4) -'A1 --+ -'(A1 A Si)
(L5) (31 -4 B2) -> ((-431. -4 B2) -> B2)

(L6) Bi 	(-432 -+ 	B2))

(L7) B1 -4 (82 Bi A B2)

(L8) Bi

(L9) -'-'Si -4 Bi

(L10) Bi A B2

(L11) Bi A B2 B2

(L12) B1 --+ Bi V 132

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

	

OWNWORHIPMPIIMPI 1.1 	 4 94MMIEW"

2.10. ALTERNATIVE SYSTEM 	 35

(L13) B2 -> B1 V B2

(L14) 'Si- V -152 - (B1 A 52)
(L15)-IA. A -1B2 -4 -I(Bl V B2)
(L16) -'(Br —0 B2) --+Bi A "B2
(L17) nBi A Bi

and a inference rule is

(MP) I- 51 I- B1 -+ B2

1- 52

To prove some dependence results, we will need the following lemma;

Lemma 2.10.1 In the logic L implication is transitive, that is:

—> 92, 2 	403E 601

Proof;

(1) (CO2 -4 il)3) -4 (91 -4 (9°2 	W3)) 	 (axiom (L1))

(2) V2 '"°' SO3 	 (hypothesis)

(3) 91 -+ (92 	93) 	 ((MP) on (1) and (2))

(4) (cal -4 (402 -4 P3)) 	((Soi 	r) -+ 	403)) 	(axiom (L2))

(5) (91-4 92) -*(91 -*93) 	 ((MP) on (3) and (4))

(6) F2 	 (hypothesis)

(7) Wi 	'P3 	 ((MP) on (5) and (6))

0

2.10,E
Another system with desired properties is the system 3 presented in section 2.4.6
on page 20 and described in [Mor89]. In that system, the interpretation is given by:

p 	32 : ii ff : : 0° and dd yY =7" " - - °1 :
' Y = 3, if x = 1 and y = 0;

1

2, if x = 1 and y = 1. and

x Ey 	
3, if z = 1 and y = 0;

=

31 ,, ifif xx == 00
and
a n d yy == 01 :

z

1, if x = 1 and y = 1.

An axiomatization of the logic Co.i of this system (the logic CO 3 2 is not suitable
since the formula n(xP x) is invalid there) contains axioms (C1)-(C12) of a para-
consistent logic C1 , together with axioms (C13)-(C16). We will use a shorthand A°
for -i(A A -'A). Axioms are:

(C1) A —> (B •-- A)

(C2) (A —>. B) -- ((A -4 (B --- C)) -4 (A -4 C))
(C3) A A B --- A

(C4) AAB—>B
(rAl A -I. (R 	A A 7:11

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

36 	 CHAPTER 2. IN SEARCH FOR SEMANTICS

(C9)A V --1A

(C10)--'A -4 A

(C11)B ° -4 ((A —> B) ((A -4 -'B) -,A))

(C12)A° A B° -.4 ((A A Br A (A B) ° A (AV B) °)

(C13)(-'A) °

(C14)(A A B)°

(C15)(A V B) °

(C16)(A B)°

and inference rules are (MP) and uniform substitution.
If we note that the axioms (Cl) and (L1) are the same and that the axioms (C2)

NA 	are Ye7 	aid because it is all we needed in the previous proof, we

have the following lemma:

Lemma 2.10.2 In the logic Cod implication is transitive, i.e.:

'P1 	co2,402 	403 1- <P1 	403

Proof:

(1) (402 	503) -4 (401 	(402 -+ 503))

(2) 402 -4 93

(3) WI -4 (402 	503)

(4) (401 -+ 42) -"4 ((401 	(402 	403)) 	(91 	4P3))

(5) 91 -4 402

(6) (401 -4 (402 	403)) 	(401 	403)

(7) 401 -4 403

(axiom (C1))

(hypothesis)

((MP) on (1) and (2))

(axiom (C2))

(hypothesis)

((MP) on (4) and (5))

((MP) on (3) and (6))

0

2.10.3 Dependences between formulae in those systems

In those systems we have the validness of all the axioms (W1)-(W5) as well as the
validness of the formulae (7), (9), (10), (12), (14)-(18) and (20).

If we analyze proofs of lemmas of dependences and if we use the above-proved
fact that the implication is transitive, we can readily state the following lemma:

Lemma 2.10.3 In the systems L and C0.1 the following is true:

(a) (W4) I- (W3);

(b) (W5) I- (7) ;

(c) (9), (16), (17) I- (14);

(d) (W3) F- (16), (17);

(e) (10), (16), (17) F- (18);

(f) (12), (16), (17)1- (20).

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

2.11. SLIGHTLY MISBEHAVING 	 37

Proof:
(a) Same as the proof of lemma 2.9.4 (b) on page 33.
(b) Same as the proof of lemma 2.9.3 (a) on page 32.
(c) Same as the proof of lemma 2.9.3 (c) on page 32.
(d) Same as the proof of lemma 2.9.4 (a) on page 33.
(e) Same as the proof of lemma 2.1.4 (c) on page 14.
(f)

xPy A xPz -- -tyP-ix A -,zP-ix
-TP-ix A -,zP--+x ---* (--iy V -' z)P-x
(y V -,z)P-iz —› -.(y A z)P-Ix
--, (y A x).P-Ix -+ xP(y A z)
xPy A xPz --+ xP(y A z)

(formula (16))
(formula (12))

(de Morgan's laws)
(formula (17))

(transitivity of implication)
0

After that, we are left with the following formulae:

(W**1) xPy -+ -, (yPx)

(W** 2) xPy A yPz -+ ez

(W**3) (x V y)P(z V u) # (x A -1.z A -44)P(-Ix A ny A z) A (x A nz A -itt)P(,x A
-iy A u) A (y A nz A -iti)P(nz A ny A z) A (y A -lz A -- ,u)P(-,x A -ty A u)

(W**4) xPy r=t (x A a)P(y A a) A (x A -1a)P(y A na), where a is a new variable.
(W"5) xPy A xPz -4 xP(y V z)

(W**6) (x V y)Pz -4 xPz V yPz

(W**7) xPz A yPz --4 (x V y)Pz

(W**8) (t A y)Pz --4 xPz V yPz

2.11 Slightly misbehaving

All above-presented interpretation methods were based on the fact that the inner

logic is a classical, binary one. We can also look at the problem from a different
point of view, as Huber did in his dissertation ([Hub72]). Namely, for a fixed
preference formula o, let m be the number of variables in (I), and define a mapping
k(m):1 N I 1-) . N as

3,
k(m) = {m,

m + 1,

if m = 1;
if m > 1 and odd;
otherwise.

He assigns positive values to variables using a function v: Var f--4 {1, 2, ... , k(m)}
and expands it to propositional formulae: v(x A y) = min(x, y), v(x V y) = max(x, y),
and v(-ix) = k(m) + 1 - x. Finally, he defines a function r that maps preference
and indifference relations to a set {T, 1} in the following way:

r(xPY) = {
I, if v(z) 5 v(Y)

;

and

r(x/y) = { I, if v(z) 0 v(y)
;

The outer logic in his case is the classical one.

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

38 	 CHAPTER 2. IN SEARCH FOR SEMANTICS

We will try the similar approach with the difference that the outer logic is not
the classical one, but one of the above-presented. We also have to change slightly
his definition of the interpretation T. We will use the following one:

a, if v(x) = v(y),
r(x.Py) = b, if v(x) > v(y);

c, if v(x) < v(y).

where a, b and c are constants that are to be found. We will only consider models
where all von Wright's axioms are valid.

2.11.1 Results

Unfortunately, results are not very spectacular. The table for all systems, except
the system 5 is as follows:

System a 	b 	c Invalid formulae Invalid converses
Efde 2 2 2 21 -

3 3 3 21 -
4 4 4 21 -

system 1 1 1 1 21 -
2 2 2 21 -

system 2 1 1 1 21 -
2 2 2 21 -

system 3 2 2 2 21 -
3 3 3 21 -

system 4.1 4 4 4 21 -
system 4.2 2 2 2 21 -

4 4 4 21 -

and for the system 5 we have: if a, b, c E {4, 5, 6}, then all axioms, all formulae
(except (21)) and all converses are valid.

In other words, the interpretation becomes a trivial one and we do not get al1 12
 we are looking for.

2.11.2 Another Efde—model

Of course, another question is what will happen if we choose Efde for our inner logic
as well. For that case we ran our program with interpretation 13

Ia, if x = y;
= b, if x < y (in Efde sense); xpy

c, if z > y (in Efde sense);
d, otherwise.

and found out that in all these interpretations the formulae (16), (17) and (20) are
valid. This can also be viewed as a consequence of the following theorem:

Theorem 2.11.1 The formulae (16) and (17) are valid in all interpretations of
above-mentioned type, no matter what values a, b, c and d take.

Proof: The proof is case-based:

12 Actually, we get more, and that is the problem.
13 We will say that x < y in Efde sense if implication s 	is true in Efae.

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

2.11. SLIGHTLY MISBEHAVING 	 39

(i) (x = y) In that case f(xPy) = f(-1yP-Ix) = a, so the formulae are valid.

(ii) (x < y in Ef de sense) Using Efde tables, we can easily see that the formula
x < y -ty < -ix is true, and so we have that f(xPy) = f(--TP-ix) = b,
which implies that our formulae are valid.

(iii) (y < x in Ef de sense) The same as in previous case.

(iv) (x and y are incompatible in Ef de sense) It is only possible if x = 2,
y = 3 or if z = 3, y = 2. But then we also have that z = 	and y =
so the formulae are again valid. 	 0

As we already know, this result is not very surprising. If we search for models
for all von Wright's axioms, we get the following results:

System a b c d Invalid formulae Invalid converses
Efde 2 2 2 2 - -

3 3 3 3 - -
4 4 4 4 21 -

In general case, exploring all interpretations will be very complicated and long-
time job even with the help of computer as there are 4 16 = 4294967296 — 4.3 10 9

 different models.

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

Chapter 3

Logic of preference and
modal logics

If we take a closer look at the definitions (D1) and (D2) from page 6 which von
Wright gave in [vW72], we can hope that modal logics can be useful for describing
the preference relation. Namely, the definition (D2) says:

We say that s is preferred to t under circumstances Ci if and only if some
C;-world that is also a s-world is preferred to some C;-world that is
also a t-world, but no C;-world that is also a t-world is preferred to
any Cs-world that is also a s-world.

Furthermore, Hallden's system from section 1.3 on page 5 has an axiom ❑(x +.+'

y) xEy, and since formula -t(xEy) xPy V yPx is valid, a simple manipulation
of Hallden's axiom shows us that the following definition does make sense.

3.1 Definition of interpretations

Definition: The modal interpretation of preference relation, denoted by P°, is
defined as:

x Pc y 4-+ 0(x A -'y) A -,(:)(y A -ix)

The immediate result of this definition is a Kripke satisfiability relation II-. We
can define a Kripke model as (X, R, v), where X 0 is a set of possible worlds,
R C X2 is an accessibility relation and v : X x Var 1-0 {T, 1} is an assignment of
truth values to atomic formulae at possible worlds. Following the definition of P°,
we immediately have:

w IF xP°y iff (awi)(wRwi Awl x A -'y) A (Vw2)(wRw2 -+ w2IY y A -ix)

where for formulae that does not contain preference relation, the satisfiability is
defined in a usual way. Since we do not want to specify modal logic, we will say
nothing more about relation R.

3.1.1 Properties

From the definition of F 0 , we readily have the following theorem:

Theorem 3.1.1 For P° , we have:

(a) II- xPcly —> --,(yPcl x);

40

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

3.1. DEFINITION OF INTERPRETATIONS

(b) - (yPpz) xPD Y
(c) IF xPDy A yP° z —*xP °z;

(d) xP°x xP°y A yPc z

(e) IF xPE3yH (x A -w)PI:3 (y A --c);

(f) IF xPpy

41

(formula (21));

(formula (o2));

Proof:

(a) As we have n(y./3° 3;) 4-+ --10(y A -Ix) V 0(x A ny), the formula is reduced to

0(x A
-

y) A -10(y A -Ix) --10(y A -ix) V 0(x A -iy)

which is obviously valid, and that proves (a).
(b) Follows directly from the proof under (a).
(c) In that case, the formula is reduced to:

0(x A ny) A --4(y A --,x) A 0(y A nz) A --0(z A -iy) —> 0(x A -1z) A -10(z A --ix)

This implication is false if antecedent is true and consequent false. That means
that 0(x A ,y) and 0(y A --lz) are both true and that both 0(y A --c) and Q(z A ,y)
are false. Furthermore, 0(x A- ,z) could not be false, since in that case we will have a
contradiction as at least one of x A -'y, yA -Ix must be true in some world. Indeed, if
for a world tvi we have v(w i , = T, v(wi , y) = .1, then we must have v(w i , z) =
and that means that v(w i , x A -1Z) = T, what is a contradiction, and if for a world
w2 we have v(w2, y) = T, v(w2,2) = 1, then we must have v(tv 2 , 2) = T and that
implies again that v(w2, x A = T.

So, 0(x A nz) is true, and for consequent to be false we must force 0(z A nx)

to be true, and that means that in a world tv3 we have v(w3, z) = T, v(w3, x) =
and that is again a contradiction since both 0(y A --,x) and Q(z A -iy) are false.

That proves that our formula is valid and thus (c) is proved.
(d) In this case we have to prove that the converse of the formula of the proof

of (c) is false:

0(x A -1z) A -10(z A -c) --+ O(x A -iy) A -.0(y A --lx) A 0(y A -1z) A -10(x A
-'y)

One counter-model for this formula could be: ({wi, w2), 	w2)), v), where
v(wi,x)= v(w2, x) = T, v(w i , y) = v(w2, y) = v(wi,z) = v(w2,z) = 1.

(e) The proof is straightforward and follows directly from the definition of P.
(f) Follows directly from the definition of P° and the fact that x *-4

In a similar way, we prove the following theorem:

Theorem 3.1.2 For Pp, we have:

(a) II- (x A a)P1:1 (y A a) A (x A -ia)P° (y A -la) --> xPpy, where a is a new
variable;

(b) 1)4 xi:spy 	(x A a)P° (y A a) A (x A -1a)P°(y A -.a), where a is a new
variable 	 (formula (o6));

(c) (xA -nzA -1u)P 1:1 (-,zA -TAz)A(xA -IzA --lu)PCI (--IxA-TAu)A(yA-IzA
--m)P 1:1 (--c A --TA z) A (y A A -m)P L1 (--Ix A -TA u) (x V OP° (z V u);

(d) 1)4 (xVy)P 1:1 (zVu) 	(z A zA -1u)P I:1(--txA-IyAz)A(x A---IzA-Iu)P °(-c A
-T A u) A (y A A --120/313 (-c A A z) A (y A -tz A -,u)Pci (nx A -ny A u)

(formula (o5));

Proof:
(a) After applying the definition, this formula is reduced to:

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

42 	CHAPTER 3. LOGIC OF PREFERENCE AND MODAL LOGICS

0(xAaAny)A-10(yAaA-Ix)A0(xA-iaA-ly)A-10(yA-taA-tx) 0(xA-Iy)A-10(yA-Ix)

Let us prove this implication. The method is similar to the method used in
the previous theorem. If we suppose that the implication is not true, we get that
formula 0(y A -Ix) must be false (because both 0(y A a A -Ix) and 0(y A -la A -Ix)
are false, so formula ,()(x A -1y) must also be false). But in that case formulae
0(x A a A -,y) and 0(x A A -1y) could not both be true, what is needed for the
implication to be false. So, we obtained a contradiction, and that means that the
implication is true.

(b) Follows directly from the proof in (a). It is easy to construct a counter-
model for this formula.

(c) Reducing the formula to a modal formula and using 0(z V y) H Qx V Oy as
well as a distributivity property, we only need to prove the following formula:

0(x A -Ix A nu) A 0(y A -Ix A -1u) A -10(z A -Ix A -1y) A -10(u A -Ix A -1y)
(0(x A -Ix A -1u) A -10(x A -Ix A -1y) A -10(u A -Ix A -1y)) V (Q(y A -Ix A -1u) A -10(x A
-Ix A -1y) A -10(u A -Ix A -Iy))
and this is further reduced to the proof of the following formula of a propositional
logic:

aAbAcAd- ► (aAcAd)V(bAcAd)

which is obviously true. That proves the implication.
(d) Follows directly from the proof under (c), if we look at the modal translation

of this formula. 	 ❑

Checking other properties of relation P°, we immediately have the following
theorem:

Theorem 3.1.3 For P° , we have:

(a) II- xPpy 	(x A a)Pci(y A a) V (x A --scr)Pc3 (y A -,a), where a is a new
variable
	

(formula (7));

(b) xPci(y V z) xPcly A xPI:lz
	

(formula (8));

(c) x.PQy A 	—) xP°(y V z)
	

(formula (9));

(d) xPljz V y.Pc z (x V y)PD z
	

(formula (11));

(e) (x V y)P D.z xP cl z V y.F' D z
	

(formula (10));

(f) IF xPCz A yl'°z . (x V y)P°z
	

(formula (12));

(g) (x V y)Pc z --+ xPI3z A y.Pc z
	

(formula (o12));

Proof:
(a) The modal translation of this formula gives the following formula:

0(x A -Ty) A -'Q(y A -Ix) —>
(0(x A a A -1y) A -,0(y A a A -Ix)) V (0(x A -la A -1y) A -10(y A 	A -a))

Let us prove this formula. Suppose it is not true. That means that antecedent is
true and that consequent is false. That means furthermore that formulae 0(x A a A
-ty), 0(x A -la A -,Y), 0(y A a A -Ix), 0(y A -la A -Ix) and 40.(y A -Ix) are all false, and
that 0(x A -iy) is true. This is impossible, because it means that there is a world
where x A is true and that in the same world both x A a A and x A -la A -1y
are false.

This proves our implication.
(b) The modal translation of this formula, using modal tautology 0(x V y)

Oz V 0y, gives us a formula

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

3.1. DEFINITION OF INTERPRETATIONS 	 43

0(x A 	A --iz) A --,0(y A -Ix) A -10(z A -Ix) —>
0(x A -,y) A 0(x A -1z) A -10(y A -Ix) A -30(z A -'x)

An analysis of this formula shows us that one of 0(x A - ,y) and 0(x A -ix) must
be false, which, together with the condition that 0(x A - ,y A -sx) must be true leads
to a contradiction. This proves our formula.

(c) For the other implication direction we need that modal formula 0(x A -'y) A
Q(x A -ix) -4 Q(x A -'y A -,,z) is true, what generally is not the case.

(d) The modal translation of this formula, together with properties of operator
0, gives us a formula

(0(x A -Ix) A -0(x A -ix)) V (0(y A -Ix) A -4(x A -1y))
(0(x A -,x) V 0(y A -Ix)) A -10(x A -Ix A -'y)

For this formula to be false, disjunction 0(x A -Ix) V 0(y A -12) must be true, and
so formula 0(x A A -'y) must also be true. But this is impossible, since at least
one of 0(x A -,x) and 0(x A -1y), according to hypothesis, must be false. That leads
to a contradiction, and that proves our formula.

(e) In order to prove this, we need to prove that there is a model where the
converse of the implication from proof under (d)) is not true. Such a model could be
({wi , w2, w3}, ((w1, w2), (wi, w 3)), v) where v is given by: v(wi , x) = T, v(wi, =
v(wi, z) = 1, v(w2 , = T, v(w2, y) = v(w2, 2) = 1, v(w3,x) = 1, v(w3, y) =
v(w3, = T.

That means that the formula (10) is not true,
(f) The modal translation of the formula (12) is

0(z A -ix) A 0(y A -,z) A -10(z A -Ix) A -10(x A -'y)
(0(z A -1z) V 0(y A -1z)) A -10(z A -Ix A -'y)

Suppose that this formula is false. That means that 0(x A -Ix) and 0(y A -Ix)
are both true and that both 0(x A --,x) and 0(x A ny) are false, what implies that
0(z A -ix A -1y) must be true (for implication to be false) which is impossible. That
proves the implication and, at the same time, validness of the formula (12).

(g) The formula to be falsified is the converse of the implication from previous
proof. One model where this formula is not true is awl, w2}, ((wi, w2)), v) where v
is given by: v(wi,x) = 1, v(wi, y) = 1, v(wi , x) =1, v(w2 , x) = 1, v(w2, Y) = T,
v(w2, = 1.

So, this implication is not true, and that means that the converse of the formula
(12), i.e. the formula (o12), is also not true. 	 ❑

We also have the following theorem:

Theorem 3.1.4 For Pc', we have:

(a) II- (x A y)P°z xP°z A yPD.z
(b) xpoz A yP°z (x A y)Pc z

(c) (x A y)P°z xP °z V yPaz

(d) xpoz V yPc z (x A y)P° z

(e) IF xP°(y A z) -+ xPay V x_Pclz

(f) Iy xPcl y V xPI:l z xP°(y A z)

(g) xPpy A xPpz xP I:3 (y A z)

(h) xP° (y A z) --+ xP°y A x.Pciz

Proof:
(a) The modal translation of this formula is

(formula (13));

(formula (14));

(formula (15));

(formula (o15));

(formula (18));

(formula (19));

(formula (20));

(formula (o20));

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

44 	CHAPTER 3. LOGIC OF PREFERENCE AND MODAL LOGICS

0(XAYA"Z)A -10(2A -1Z)A-10(ZA"Y) -4 0(xA-tz)A0(yA-ix)A-.40(xA-ix)A0(zA"Y)

This implication is false if formula 0(x A y A -'z) is true and at least one of Q(x A -.z)
and 0(y A -1z) is false, and this is not possible.

(b) The proof is reduced to the proof that formula 0(x A -z) A 0(y A nz) -+
0(x A y A -,z) is not a theorem of modal logic, and a counter-model for that is easy
to find.

(c) The proof is similar to the proof under (a). In this case, we need to prove
implication

Q(x A y A -1) A 	A -,x) A -10(z A -'y)

(0(x A --iz) A --10(z A nz)) V (0(y A -Ix) A -10(z A -iy))

This implication is false if 0(x A y A -1z) is true and both 0(x A -1z) and 40(y A -Ix)
are false, what is impossible.

(d) Modal formula here is the converse of the formula in the proof under (c),

uldit tuy to stitiligo m collguitoil it tills is: (Ituoul, ((ti , tul),11))witli
v given by: v(wi,x) =1, v(wi,Y) =1, v(wi,z) = 1, v(w2,x) = T, v(w2, V) = 1,
v(w2 , z). 1.

(e) Modal translation gives us a formula

(0(x A --,y) V 0(x A -,z)) A -10(y A -,x) A --10(z A -Ix)
(0(x A -iy) A -00(y A -ix)) V (0(x A -lz) A -10(z A -Ix))

and that reduces our proof to the proof that propositional formula (a V b) AcAd
(a A c) V (b A d) is a tautology, and that is evidently true.

So, the formula (18) is true.
(f) The proof follows directly from the previous proof as the converse of the

above-presented propositional formula, i.e. formula (a A c) V (b A d) (aVb)AcAd
is not a tautology. Of course, we can easily make a Kripke counter-model for the
respective modal formula.

(g) Modal translation of this formula is:

0(x A -'y) A -,0(y A -,x) A 0(x A --ix) A -4(z A -,x)
(0(x A -1y) V 0(x A -Ix)) A -10(y A -ix) A -10(x A -ix)

which is further reduced to propositional formulaaAbAcAd-).(aVb)AcA d,
which is a tautology of propositional logic. That proves our implication.

(h) For converse of the formula (20) to be true, we need validness of the converse
of the implication from the proof under (g) which is not the case since a V b -4 a A b
is (obviously) not a tautology of propositional logic. 	 ❑

So, in our modal interpretation, from the list of formulae (1)-(21), the following
are valid: (1)-(8), (11)-(13), (15)-(18) and (20).

3.2 Modal logic and indifference relation
If we introduce the indifference relation 1 0 in the usual way, i.e. as xlrly
-'(xP°y) A -,(yP°x), using modal logic principles, we obtain:

xPy. (0(x A -'y) 0(y A -ix))

and its immediate consequence is the following theorem:

Theorem 3.2.1 The following is true:

(a) I° is reflexive;
lv 	 v-in •

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

3.2. MODAL LOGIC AND INDIFFERENCE RELATION 	 45

But /c1 is not necessarily an equivalence relation as the following theorem shows:

Theorem 3.2.2 10 is not transitive.

Proof: The modal translation of the transitivity condition gives the following for-
mula:

(0(x A -,y) 4-> O(y A -Ix)) A My A -,z) 4-4 0(z A -'y)) --> (0(x A z) 	0(z A -ix))

One counter-model for this formula is:

(Iwo, wi, w2, W3, w4, 	((wo, w1), (w0, w2), (w0, w3), (w0, w4), (w0, ws)), v)

where v is given by v(wo, z A --4z) = .1, v(tvi, z) = v(w i , z) = T, v(wi, =
v(w2, y) = T, v(w2, x) = 1, v(tv3, x) = v(w3, z) = 1, v(w3, = T, v(w4,
1, v(w4 , z) = T, v(w5 , z) = 1 and v(w 5 , z) = T. Other (unspecified) variable
assignments in v are arbitrary.

So, transitivity of relation /I:I need not hold.

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

Chapter 4

Decision supporting systems

'1111DIA Aiampig
The main application of preference relations should be in decision supporting sys-
tems. The idea is that a user gives his set of preferences, and the system decides
between what alternatives the user should choose. The following simple example is
from [KM75, pp.190-191]:

A bachelor has possibilities to spend the evening with Jane, to spend the evening
with Helen or to watch television. He gave the following set of preferences:

(1°) I prefer to spend the evening with Jane than to watch television;

(2°) I prefer to spend the evening with Helen than to watch television;

(3°) I prefer to be alone than to be with both Jane and Helen;

Formally, his list of preferences is (t is television, j is Jane and h is Helen):

jPt, hPt, 	A h)P(j A h).

Applying von Wright's system, we get the following list of states:

	

(j A -'h A -It), (-1j A h A -It), (- 'j A 	A -it)

that is not to watch television in any case!
Of course, it is very hard (maybe even impossible) to design a decision supporting

procedure that will give only one (i.e. the best) alternative — this procedure here is
useful for reducing the set of alternatives (unfortunately sometimes to an empty set)
the user faces (there were 8 alternatives in the example and the program eliminated
5 of them.).

4.2 The making of decision procedure

The main goal of this section is to make a procedure for deciding in the von Wright's
original systems (as described in [vW63] and [vW72]). The input to the procedure
is a list (set) of preferences (as in the above-Presented examnlel and the ontnnt

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

+4
(xrx?) A (4-73 V ... V 4-7n), otherwise by (**)

al «2 	Os
xi x2 • • • Xn) if al = 1 — by (*)

4.2. THE MAKING OF DECISION PROCEDURE 	 47

4.2.1 Theoretic foundations

In order to construct a procedure as described above, we will need the following
lemmas:

Lemma 4.2.1 Let {x1,... , x,} be a list of all variables that appear in preference,
and let= = xr42 	40 2 = 41 42 4. and (I)3 = x71 x72 2 	, where

E 10,11. Then

(01 V 0013 4-4 01P13 A 02P03.

Proof: In the proof we will need the following tautologies that are easy to prove:
(*) 	(x A (x V y)) 4'4 X
(**) 	(x A (-Ix V y)) H (x A y)
Applying the axiom (W4) we have

(1)2)P4)3 "' (01 A -43)P(03 A -41 A -42) A (02 A -43)P(4,3 A -41 A -42).
Further, we have:

4)1 A -4
3 +4 (x11 x2e€2 ...x na") A (x1-71 V X1-72 V ... V X111-7")

{

0 1

In a similar way we prove that 02A-43 +4 02 as well as that (403A01A-102) <-4
0

Lemma 4.2.2 Let {xi,— ,z n } be a list of all variables that appear in preference,
and let 01 = xi 1 ft? • • gn ' 02 = 4142 • ..zgn and 03 = felY2' 	, where

I 	{ 1 1) 1

(1)1P(4)2 V 403) 4--) t1P ,12 A (1)1P4.3.

Proof: Similar to the proof of lemma 4.2.1. 	 ❑

The immediate consequence of those two lemmas is:

Corollary 4.2.1 Let {x1, 	xn } be a list of all variables that appear in preference,
and let (Di = 4142 —4^, (1 ,2 = xf1 x2 2 ... 44, 4i3 = 	x7," and 4'4 =
ell 42 . 	, where ai, 	E {0,1}. Then

(bi V 4)2)P(4)3 V 4■4) H 4;1P4I°3 A 4)1P4,4 A 402P4)3 A 4?2p4)4.

We also need the following theorem from [vW63] (see also [KM75]):

Theorem 4.2.1 Suppose that ORO, 0 H 01 and V, H th, where (fii and 01 do not
contain any variable not already in and 0. Then OiRibi.

4.2.2 Decision procedure

According to the lemmas and theorems from the previous section, the main job in
constructing a decision-supporting procedure is to reduce propositional formulae,
that are arp-urnpnts of the TraPTPTIrP rplatinn ?AA 11P14PP+ a;.;7171P+;ut. n nrrn frtrrn

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

48 	 CHAPTER 4. DECISION SUPPORTING SYSTEMS

want to prove if a system is consistent or not (i.e. to give an answer of the type
Yes/No), what can be easily done — we want to generate all acceptable states of
affairs for the given preference list.

The algorithm is as follows:

Si. Make a list V of all variables that appear in our preferences;

S2. Apply the axiom (W3) to every preference where a set of variables on the left
side is disjoint from the set of variables on the right side;

S3. For every x E V that appears only on the one side of preference relation, put
it also on the other side using tautology 0 H 0 A (x V -ix), and according to
theorem 4.2.1. Repeat this step until all variables of this preference relation
appear on both sides;

S4. If an argument of preference relation is not already in disjunctive normal form,
transform it into disjunctive normal form. After that, apply lemmas 4.2.1
and 4.2.2 and corollary 4.2.1 to obtain conjunction of preferences whose argu-
ments are only conjunctions of literals (i.e. of variables and their negations);

S5. If some variable from V is missing from some preference, apply axiom (W5)
to add it to that preference;

S6. Apply axiom (W2) to the obtained set of preferences.

The output from this procedure are relations between worlds (i.e. states of af-
fairs), and we can safely eliminate all worlds (out of 2" for n variables) that are
preferred by some other world.

Example: If we apply this procedure step by step to the lane—or—Helen—or—TV'
dilemma above, we get the following (we will write xy for x A y and x for 	and
will use the following shorthand: 1 	jht, 2 a-- jht, 3 E- jht, 4 jht, 5 Ei jht,
6= jht, 7= jht and 8 = jh :

• after step (S1), we have V = {j, h, t};

• step (S2) transforms our set of preferences into UOP(it), (hi)P(iit), (7 V
h)P(jh);

• step (S3) is not applicable;

• step (S4) first transforms formula (5V h)P(jh) into (jh V jh V jh)P(jh),
and after this step our set of preferences is (ji)P(jt), (h)P(ht), (jh)P(jh),

(jh)P(jh), (jh)P(jh);

• after step (S5), our set of preferences is: 2P5, 4P7, 2P3, 6P7, 5P1, 6P2, 3P1,
4P2, 7P1, 8P2.

• step (S6) adds the following preferences: 2P1, 4P1, 6P1, 6P5, 6P3, 4P5,
4P3, 8P5, 8P3, 8P1;

As states 1, 2, 3, 5 and 7 are preferred by some other states, we eliminate them,
and the set of alternatives that remains is {4, 6, 8} i.e. {jhf,jhf,jhi}.

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

4.2. THE MAKING OF DECISION PROCEDURE 	 49

4.2.3 Remarks about the procedure

• Step S2 should be applied before other steps, otherwise we can obtain a con-
tradiction as shown in the following example: if our preference is xPy and
V = fx, y) applying S2, we obtain xPy and that is all we get, but if we
apply other steps before S2, we will also get a preference xyPxy that is a
contradictory one.

• For the same reason, we should apply step S4 before step S5.

• Applying transitivity only at the very end of the procedure does not change
the set of worlds we obtain. For instance, if our original preference set is xPy,
yPz, we get the same result no matter when we apply transitivity. Indeed,
rule S2 gives xpiy, yiPpz, steps S3 and S4 are not applicable, step S5
adds xgzPiyz, xyzPxyz , xyiPzuz and iyiPigz, and transitivity (step S6)
finally adds xyiPiyz and 4z132gz. We obtain the same result if we also
apply transitivity at the very beginning, that is if we start from the set of
preferences xPy, yPz and xPz.

4.2.4 Modifications for the extended system

As mentioned several times, von Wright's extended system was obtained from the
original one by adding axiom xPy xPz V zPy. As dealing with disjunction of
preferences is generally hard, we are going to apply this axiom in another form i.e.
as xPy A -'(xPz) zPy and as xPy A -.(zPy) xPz.

According to this remark, we modify our decision procedure by adding the fol-
lowing steps:

S3.1 If the left side of preference relation is equal to the left side of some negated
preference, add the preference between the right side of the negated preference
and the right hand side of the one considered.

S3.2 If the right side of preference relation is equal to the right side of some negated
preference, add the preference between the left side of the considered prefer-
ence and the left side of the negated one.

4.2.5 Modifications for indifference relation

According to von Wright, we have two different indifference relations, the weak
one and the strong one. We can do nothing with the weak one, except to replace
eventually every appearance of 9/0 by --IWO) A (tki'9).

As for the strong one, we have a different situation: because of principles (el)
and (e2) from page 29, we can safely exchange in preferences states that are in
relation E.

So, for those relations, we add another two steps to our procedure:

S1.1 Replace every appearance of formula co.rik with --,(9.Pik) A —.(0)9);

S1.2 Apply the rule of symmetry to the relation E i.e. for every 9E0, add IbEga to
the set of preferences;

S1.3 Apply the same rules to the relation E as to the relation P;

as well as the following two steps:

S5.1 If the left side of relation E is equal to the left side of some preference, add to
the set of preferences a preference whose left side is the right side of relation
E, and the right side is the right side of the considered preference;

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

50 	 CHAPTER 4. DECISION SUPPORTING SYSTEMS

S5.2 If the left side of relation E is equal to the right side of some preference, add to
the set of preferences a preference whose right side is the right side of relation
E, and the left side is the left side of the considered preference;

4.3 Implementation

The above—described decision supporting procedure (prover) is implemented in
Common LISP ([Fra88],[Ste90]) in a version GC Lisp for PC computers', but the
version presented in appendixA alos runs under Unix. Input to this prover is the
name of the file where the set of preferences is given. Preferences are in LISP—form,
i.e. they are of the form (P<left> <right>). Expressions <left> and <right> are
also LISP—expressions, i.e. expressions in prefix notation. Logical connectives are
AND, OR and NOT, where AND and OR could be of any arity. We also assume that every
preference is of the above—specified type, i.e. that there are no operations between
preferences. We will understand the set of preferences as the conjunction of them.

Another input parameter is the file that contains the list of all variables 2. Vari-
ables are arbitrary words made from letters, but, as LISP does not make difference
between upper— and lower—case letters except in strings, it means that variables
Jane, jane and JANE (as well as the other 13 combinations) are all the same. This
file also contains a filter—formula, i.e. a formula that is used to reduce further (to
`filtrate') the set of alternatives, as explained in [MKRT75]. Namely, for every alter-
native that remains, we check if the filter is also true in this world (i.e. valuation),
and if not, we do not include this alternative into our final list of alternatives. If
the user does not want to mess up with the filter, he can just leave that line empty
and that will mean that the filter is always true.

During its work, the prover creates several temporary files and the final output
is also written into a file.

An example: For the example presented in section 4.1 on page 46, input to our
prover is
File wishnst .prf contains the following lines:

(P Jane television)
(P Helen television)
(P (NOT (AND Jane Helen)) (AND Jane Helen))

whereas file vars.prf contains the single line:

(Jane Helen television)

If we run our prover on this input, we will obtain the following set of worlds in the
file out .prf 3 :

(AND JANE (NOT HELEN) (NOT TELEVISION))
(AND (NOT JANE) HELEN (NOT TELEVISION))
(AND (NOT JANE) (NOT HELEN) (NOT TELEVISION))

However, if we want to have at least one of the options above (i.e. Jane, Helen
or TV), we add a filter (in notation from section 4.1) (j V h V t), i.e. file vars prf
is:

lAs the most of this thesis, the program was written when author was at the Computer Lin-
guistic department at the University of Saarland, Saarbrficicen, Germany, in period from March—
September 1992, thanks to European Community stipend.

21n fact, this was not necessary, since it is possible to modify the prover to find this list itself,
but in this way it makes life easier both to the program and to the programmer.

3 0r in any file that user specified.

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

4.3. IMPLEMENTATION 	 51

(Jane Helen television)
(OR Jane Helen television)

and the program output will be:

(AND JANE (NOT HELEN) (NOT TELEVISION))
(AND (NOT JANE) HELEN (NOT TELEVISION))

4.3.1 Program description

The program is split into several modules, each of them corresponding to one step
in our procedure described in section 4.2.2 on page 47 as well as in the subsequent
sections. Here we will only describe the most important of them, and the complete
listing of the program is given in appendix A. The communication between modules
is over files: every module reads in (the internal representation of) the result of the
work of previous module, performs its function, and stores the result of its work
in another file. The master program decides upon the names of intermediate files
and takes care that all intermediate files are to be erased at the end of the final
step. The version of the program described here only covers the basic version of the
decision procedure, but, as the program is modularly written, it is relatively easy
to add modules for the extended system and for the indifference relation.

do-vars Reads in a list of variables, makes pairs of variables and their internal
representations and at the end replaces every variable with its internal repre-
sentation. The input to this function is the name of the file that contains the
list of variables.

do-formulas It performs the following task on all formulae from the input file:
it splits them into the left hand part and the right hand part, replaces all
variables with their internal representation and writes resulting formulae into
the output file. The arguments to this function are the names of the input
and the output file.

step2 Applies the axiom (W3) to all formulae from the input file and stores the
result into the output file. The arguments to this function are the names of
the input and the output file.

step3 Performs step 3 to all formulae of the input file, and stores the resulting
formulae into the output file. The arguments to this function are the names
of the input and the output file.

step4 Performs step 4 to all formulae of the input file and stores the resulting
formulae into the output file. This step is split into two subparts:

(I.) Transform formulae into a perfect disjunctive normal form (for the given
list of variables). This task is performed by function pdnf, , whose argu-
ments are the input formula and the list of variables.

(2.) Apply lemmas and theorems from section 4.2.1 on page 47.

The arguments to this function are the names of the input and the output
file.

step& Application of the axiom (W5). The arguments to this function are the
names of the input and the output file.

trans-clos This function, for a given relation, finds its transitive closure ([Ben91]).
Its input is a relation (as the list of ordered pairs of elements) whose closure
is to be found, and the output is this closure.

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

52 	 CHAPTER 4. DECISION SUPPORTING SYSTEMS

steps This function reads from the input file ordered pairs of worlds (world =
one conjunct in a perfect disjunctive normal form) that are related one with
another, finds the transitive closure of this relation, and stores its result, as
the list of ordered pairs, into the output file. The arguments to this function
are the names of the input and the output file.

postprocessing This function eliminates all worlds that are on the right side of
preference relation from the list of worlds and translates the given result from
internal into original representation. The arguments to this function are the
names of 3 files: the input one, the intermediate one and the output one.

prover This function is the master function of the whole prover: it communicates
with the user, calls all of the above described modules and generates unique
names for all intermediate files.

The function prover is as follows:

i
t procedure 	perlermg ilo main Jew t raill 	!Ili

; names, calls all modules and gives the results
(DEFUN prover (kAUX input -prf input -var res-prf file-ti

file -t2 file -t3 file -t4 file -t6 file -t6 file -t7)
(SETA input -prf (read-and-check "input"))
(SETA input -var (read-and-check "variables"))
(TERPRI)
(PRINC "The name of the output file:")
(SETA res-prf (READ-LINE))
(TERPRI)
(do -vars input -var)
(MAKE-RANDOM-STATE)
(SETA file -ti (unique -f -name))
(do-formulas input -prf file -ti)
(SETA file -t2 (unique -f -name))
(step2 file -ti file -t2)
(SETA file -t3 (unique -I -name))
(step3 file -t2 file -t3)
(SETA file -t4 (unique -f -name))
(step4 file -t3 file -t4)
(SETA file-t5 (unique -f -name))
(steps file -t4 file-t5)
(SETA file -t6 (unique -f -name))
(step6 file-t5 file -t6)
(SETA file -t7 (unique -f -name))
(postprocessing file -t6 file -t7 res-prf)
(delete-files *all -f -names*))

and we start it by (prover).

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

Appendix A

Source program listing

A.1 File variable .1sp
;;; file variables.lsp

;; contains declarations for all global variables

(in-package "WRIGHT")
(DEFVAR *v-names* NIL "List of variable names.")
(DEFVAR *all-f-names* NIL "List of temporary file names.")
(DEFVAR *filter* NIL "Filter formula.")
(DEFVAR *prefvars* NIL "List of pairs (ord-number variable).")
(DEFVAR *all-worlds* NIL "List of all states of affairs.")
(DEFVAR *checked-contrad* NIL "Checked for a contradiction.")
(DEFVAR *contrad* NIL "Contains all contradictions found.")
(DEFVAR *dont-ask* NIL "If to ask about contradictions.")

(NPO 1161(11 61 	164 side pralerehees.0
(DEFVAR *right-side* NIL "Worlds on the right side of preferences.")
(DEFVAR *allowed-worlds* NIL "Worlds that remained.")

A.2 File include . lsp

;;; file include.lsp

;; contains functions needed in all modules

(in-package "WRIGHT")

;; function my-error takes care of errors, give diagnostic
; message and exits the program
; code 1: file does not exist
; code 2: variable from formula is not in the list
; code 3: something happened to file from previous step
; code 4: some variable was forgotten before step 5
; code 5: there is a contradiction in preferences
; code 6: list of variables was empty
; code 7: could not create unique file name in 40 tries

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

54 	 APPENDIX A. SOURCE PROGRAM LISTING

(CASE code
(1 (PRIN1 text) (PRINC "-- file does not exist"))
(2 (PRIN1 text) (PRINC "-- vex does not exist"))
(3 (PRIN1 text) (PRINC "-- file vanished"))
(4 (PRIN1 text) (PRINC "-- some vars are missing"))
(5 (PRINC "There is a contradiction:")

(DOLIST (item text)
(PRINT (CONS 'P (LIST (in2var (CAR item))

(in2var (CADR item)))))))
(6 (PRIN1 text) (PRINC "--variable list is empty"))
(7 (PRINC "Could not create file name")))

(TERPRI)
(PRINC "Prover error. Erasing files and aborting program!")
(TERPRI)
(delete-files *all-f-names*)
(QUIT))

; function deletes all temporary files, their names are
; in the list that is suplied as argument
(DEFUN delete-files (llist)

(DOLIST (i (REVERSE llist))
(IF (PROBE-FILE i) (DELETE-FILE i))))

; function that prints a line and newline after that.
; built-in PRINT first print a newline, then text and
; after that one space
(DEFUN my-print (text file)

(PRIN1 text file)
(TERPRI file))

; this function looks if the file exists and if not
; it returns error message back
(DEFUN not-exists? (file-name code)

(IF (NULL (PROBE-FILE file-name)) (my-error code file-name)))

; this function reads file name and check if it exists.
; if not it tries again
(DEFUN read-and-check(text &AUX res)

(LOOP 	 •
(FORMAT t ""%The name of the "A file:" text)
(SETQ res (READ-LINE))
(IF (AND (> (LENGTH res) 0) (PROBE-FILE res))

(RETURN res)
(FORMAT t " The file "A does not exist! Try again." res))))

;; general operations on the lists
;; set operations

; narrowing of the list
(DEFUN narrow (llist)

(CORD
((ATOM llist) llist)
((NULL llist) NIL)
((ATOM (CAR llist)) (CONS (CAR llist) (narrow (CDR llist))))

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

A.2. FILE INCLUDE.LSP 	 55

(T (APPEND (narrow (CAR Mist)) (narrow (CDR llist))))))

; removes elements listed in 11 from llist
; it first narrows the llist
(DEFUN rm-e1-1 (llist 11 &AUX res)

(SETQ res (narrow llist))
(DOLIST (i 11 res)

(SETQ res (REMOVE i res))))

; remove duplicates from the list
(DEFUN rm-dp(llist)

(REMOVE-DUPLICATES llist :test #'EQUAL))

; makes the set-union of two lists
(DEFUN my-union (listl list2)
(REMOVE-DUPLICATES (APPEND list1 list2) :test #'EQUAL))

; set difference of two lists
(DEFUN difference (lists list2)

(SET-DIFFERENCE listl list2 :test #'EQUAL))

; set intersection of two lists, it also works on atoms
(DEFUN my-intersec (11 12)
(COB
((OR (NULL 11) (NULL 12)) NIL)
((AND (ATOM 11) (ATOM 12)) (my-intersec (LIST 11) (LIST 12)))
((ATOM 11) (IF (MEMBER 11 12 :test #'EQUAL) (LIST 11) NIL))
((ATOM 12) (IF (MEMBER 12 11 :test #'EQUAL) (LIST 12) NIL))
(T (INTERSECTION 11 12 :test #'EQUAL))))

; Makes direct product of lists
(DEFUN mul (llist &AUX res)

(SETQ res (CAR llist))
(DOLIST (item (CDR llist))

(SETQ res (REVERSE (product item res))))
(REVERSE (MAPCAR #'REVERSE res)))

; makes direct product of two lists
(DEFUN product (listi list2)

(COND
((NULL listi) NIL)
(T (APPEND (merge-el (CAR listi) list2)

(product (CDR listi) list2)))))

(DEFUN merge-el (x llist)
(COND
((NULL llist) NIL)
(T (CONS

(IF (ATOM (CAR llist)) (LIST x (CAR llist))
(CONS x (CAR llist)))

(merge-el x (CDR llist))))))

; assigns an ordered number to every member
(DEFUN ord-numb (llist)

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

56 	 APPENDIX A. SOURCE PROGRAM LISTING

(rdbr 1 llist))

(DEFUI rdbr (n llist)
(COND
((NULL llist) NIL)
(T (CONS (LIST n (CAR llist)) (rdbr (+ 1 n) (CDR llist))))))

(DEFUN literal? (boolean) ; if literal
(OR (poslit? boolean) (neglit? boolean)))

(DEFUN poslit? (boolean) ; if positive literal
(ATOM boolean))

(DEFUN neglit? (boolean) ; if negative literal
(AID (LISTP boolean)

A (al W1111) '400
(poslit? (UDR boolsan))))

; Sorts list of numbers in increasing order for abs.
; As SORT destroys its argument, we have to copy its contest
(DEFUN abs -sort (llist)

(SORT (COPY-LIST llist) V< :key *'abs))

; includes x in list so that list is sorted, if
x is already in a list, does nothing

(DEFUN include-by-size (x llist)
(COND
((NULL llist) (LIST x))
((ATOM llist) (include-by-size x (LIST llist)))
(T (abs-sort (ADJOIN x llist :key #'ABS)))))

;;; pseudo-random-number generator, generates letters and returns
;;; a string of len such letters
(DEFUN random-string (len kAUX res)

(SETQ res (LIST (+ 66 (RANDOM 26))))
(DOTIMES (i (- len 1) res)

(SETQ res (CONS (+ 66 (RANDOM 26)) res)))
(FORMAT nil " -{-C-}" (MAPCAR IPCHARACTER res)))

;; find unique name for the file
; file is of (DOS) length 8+3, all random
; it adds its name into the list *all-f-names*
(DEFUN unique-f-name()

(FROG (file-name i)
(SETQ i 0)
again
(SETQ i (+ 1 i))
(IF (> i 40) (my-error T NIL))
(SETQ file-name

(FORMAT nil " -A. -A"
(random-string 8) (random-string 3)))

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

A.3. FILE STEP1.LSP

; for a given world, translate it into a number
; from 0 to 2 -number-of-variables -1
(DEFUN 1-to-n (11ist &AUX res j)

(SETQ res 0
j 1)

(DOLIST (i (REVERSE llist) res)
(IF (> i 0)

(SETQ res (+ res j)))
(SETQ j (* 2 j))))

; translates given number into a list of length len
(DEFUN n-to-1 (n len kAUI res i j)

(SETQ j len
res NIL
i n)

(DOTIMES (i1 len res)
(SETQ res (CONS (- 0 il 1) res)))

(LOOP
(IF (ZEROP i) (RETURN (REVERSE res)))
(IF (> (MOD i 2) 0)

(SETQ res (SUBST j (- j) res)))
(SETQ i (FLOOR i 2)

j (- j 1))))

A.3 File stepl.lsp

;;; file steplasp

; reads a line from the file, reads a list of variables,
; makes ordered pairs, and then replaces every variable with
; its internal representation
(DEFUN do-vars (file-name)

(not-exists? file-name 1)
(WITH-OPEN-FILE
(si file-name :direction :input)
(SETQ *v-names* (READ si NIL NIL))
(IF (NULL *v-names*)

(my-error 6 file-name))
(SETQ *prefvars* (ord-numb *v-names*)

filter (READ si NIL NIL))
(IF (NULL *filter*) (SETQ *filter* T))))

; It finds index of variable in a list that is a list of
; ordered pairs where second element is a variable. The
; first element is 0, and function returns NIL if this
; variable is not in the list.
(DEFUN find-index (var vlist)

57

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

58 	 APPENDIX A. SOURCE PROGRAM LISTING

; list. The list is a list of pairs (number variable)
(DEFUN repl-var (formula llist &AUX fff varlist ind replment)

(SETQ fff (narrow formula)
varlist (MAPCAR #'CADR llist))

(COND
((ATOM formula)
(CAR (NTH (find-index formula llist) llist)))
(T (DOLIST (vari fff)

(COND
((MEMBER vari varlist :test #'EQUAL)
(SETQ ind (find-index vari llist))
(COB
((NOT (NULL ind))
(SETQ replment (CAR (NTH ind llist))

formula (SUBST replment sari formula)))))

((NOT (MEMBER varl '(and or -) :test PEQUAL))
(my-error 2 varl))))))

formula)))

;; It works on all formulas from the given file: it splits
;; it into left and right part, it substitutes variables and
;; stores result into another file.
(DEFUN do-formulas (fname-1 fname-2)

(not-exists? fname-i 1)
(WITH-OPEN-FILE
(so fname-2 :direction :output)
(WITH-OPEN-FILE
(si fname-1 :direction :input)
(DO* ((formula (READ si NIL NIL) (READ si NIL NIL)))

((NULL formula) NIL)
(my-print
(LIST
(repl-var (SUBST '- 'not (CADR formula)) *prefvars*)
(repl-var (SUBST '- 'not (CADDR formula)) *prefvars*))

so)))))

A.4 File step2.lsp

;;; file step2.1sp

(in-package "WRIGHT")

; formula W3 is applied if left and right side of the
; relation have no variables in common, otherwise don't apply
; it (no need for). It returns T if lists of variables are
; disjoint, NIL otherwise
(DEFUN crit-W3 (left right)

(NULL (my-intersec (narrow left) (narrow right))))

; as literals are numbers, complementing it just changes a
; sign of it

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

A.5. FILE STEP3.LSP 	 59

(- literal))

; de Morgan's laws, negates formula
(DEFUN de -morgan (boolean)

(COND
((literal? boolean) (complement boolean))
((CASE (CAR boolean)

(AND (CONS 'or (MAPCAR #'de -morgan (CDR boolean))))
(OR (CONS 'and (MAPCAR #'de-morgan (CDR boolean))))
(- (CADR boolean))))))

; application of axiom W3, list = ((left) (right)) and that
; corresponds to left P right
(DEFUN apply -W3 (left right)

(LIST (CONS 'and (LIST left (de -morgan right)))
(CONS 'and (LIST right (de -morgan left)))))

; perform step 2 (axiom (W3) on input file
(DEFUN step2 (fnamel fname2 &AUX left right a-new)

(not-exists? fnamei 3)
(WITH-OPEN-FILE
(so fname2 :direction :output)
(WITH-OPEN-FILE
(si fnamel :direction :input)
(DO* ((formula (READ si NIL NIL) (READ si NIL NIL)))

((NULL formula) NIL)
(SETQ left (CAR formula)

right (CADR formula))
(IF (crit-w3 left right)

1111l1J'N 1111
(SETQ a-new (LIST left right)))

(my-print a-new so)))))

A.5 File sot elo6 .113p

;;; file step3.lsp

(in-package "WRIGHT")

;; step 3 is applied if the list of variables on one side
;; is different from the list of variables on the other side

; finds all variables that are on the left hand side and not
; on the right hand side.
(DEFUN only-on-one (lft rht tAUX 1 d)

(COND
((ATOM lft) (SETQ 1 (LIST lft))
(IF (ATOM rht)

(SETQ d (LIST rht))
(SETQ d (rm-dp (MAPCAR /PASS (rm-e1-1 rht '(- and or)))))))

((ATOM rht) (SETQ d (LIST rht))

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

60 	 APPENDIX A. SOURCE PROGRAM LISTING

(SETA 1 (rm-dp (MAPCAR #'ABS (rm-01-1 lft '(- and or)))))))
(T (SETA 1 (rm-dp (MAPCAR *UM (rm-ei-1 lft '(- and or)))))

(SETA d (rm-dp (MAPCAR #'ABS (rm-e1-1 rht '(- and or)))))))
(difference 1 d))

; adds a variable: formula goes to (and formula (or x (not x)))
; where x is that new variable
(DEFUN add-var (formula vi)

(CONS 'and (LIST formula (CONS 'or (LIST vi (complement vi))))))

; adds to formula all variables from the list
(DEFUN completev (formula llist)

(COND
((NULL llist) formula)
(T (DOLIST (vari llist formula)

(SETQ formula (add -var formula varl))))))

(DEFUN step3 (fname1 fname2 &AUX left right o-left o-right)
(not-exists? fnamel 3)
(WITH-OPEN-FILE
(so fname2 :direction :output)
(WITH-OPEN-FILE
(si fname1 :direction :input)
(DO* ((formula (READ si NIL NIL) (READ si NIL NIL)))

((NULL formula) NIL)
(SETQ left (CAR formula)

right (CADR formula)
o-left (only-on-one left right)
o-right (only-on-one right left))

(my-print (LIST (completev left o-right)
(completev right o-left)) so)))))

A.6 File step4.lsp

;;; file step4.lsp

(in-package "WRIGHT")

;; we have to do two different things: 1. translate formulas
;; into perfect disjunctive normal form (for given list of
;; variables, and 2. apply lemmas and theorems of
;; distributivity

; formulas of the kind (or fi (or f2 f3) ...) translates
; into (or fi f2 f3 ...)
(DEFUN or-up (fla)

(COND
((EQUAL (CAR fla) 'or) (move-or fla))
(T fla)))

(DEFUN move-or (fla &AUX res)
(SETQ res (LIST 'or))
(DOLIST (item (CDR fla) res)

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

A.6. FILE STEP4 . LSP 	 61

(COND

((ATOM item) (SETQ res (APPEND res (LIST item))))
(T (COND

((EQUAL (CAR item) 'or)
(SETA res (APPEND res (CDR (or-up item)))))

(T (SETA res (APPEND res (LIST item)))))))))

; function transforms list (((xi x2 ...)) 	((yl y2 ...)))
; into ((xi x2 ...) 	(yl y2 ...))
(DEFUN level-up (llist)

(MAPCAR #'narrow llist))

; transforms formula into dnf formula. Arguments of the
; formula are numbers and negation is already replaced with
; -, here we will replace positive numbers with negative
(DEFUN dnf (fla)

(IF (literal? fla) (LIST fla)
(CASE (CAR fla)

(- (dnf (de-morgan (CADR fla))))
(or (level-up (MAPCAR #'dnf (CDR (or-up fla)))))
(and (MAPCAR #'rm-dp

(MAPCAR #'narrow
(mul (MAPCAR #'dnf (CDR fla)))))))))

; for formula in dnf (i.e without operators) finds the list
; of all variables
(DEFUN 1-of-vars (fla)

(rm-dp (MAPCAR #'ABS (rm-e1-1 fla '(and or)))))

; adds all combinations of new variables into formula
; (completion to perfect DNF)
(DEFUN pdnf-compl (fla vlist &AUX varl leftl left2)

(COND
((NULL vlist) fla)
(T (SETQ varl (CAR vlist)

lefti (include-by-size vari fla)
left2 (include-by-size (- varl) fla))

(LIST (pdnf-compl leftl (CDR vlist))
(pdnf-compl left2 (CDR vlist))))))

The list of the form (((x y) (a b)) ((p q) (r s)))
transforms into ((x y) (a b) (p q) (r s)). More general:
binary tree transforms into linear list. More general:

; arbitrary tree transforms into linear list
(DEFUN tree-to-list (llist &AUX res)

(COND
((NULL llist) NIL)
((ATOM (CAR llist)) (LIST llist))
(T (SETQ res NIL)

(DOLIST (item llist res)
(SETQ res (APPEND res (tree-to-list item)))))))

; function transforms formula into PDNF with respect to the
; list of added variables that is the second argument to the

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

62 	 APPENDIX A. SOURCE PROGRAM LISTING

; function. formula is already in DNF, we only add
; new variables. The principle is the same as in step 5
; (with small modifications).
(DEFUN pdnf (fla list-vari &AUX res fi)

(SETQ res NIL)
(IF (ATOM fla)

(SETQ fl (LIST fla))
(SETQ fi fla))

(DOLIST (item fi (tree-to-list res))
(SETQ res (APPEND res (pdnf-compl item list-vari)))))

; it takes formulas and transform them into PDXF, and
; finally, step 4 and lemmas and theorems of distributivity
(DEFUN step4 (inp -file out-file kAUX left right varl)

(not-exists? inp -file 3)
(WITH-OPEN-FILE
(so out-file :direction :output)
(WITH-OPEN-FILE
(si inp -file :direction :input)
(DO* ((fla (READ si NIL NIL) (READ si NIL NIL)))

((NULL fla) NIL)
(SETQ left (dnf (CAR fla))

right (dnf (CADR fla))
varl (my-union (1 -of -vars left) (1 -of -vars right))
left (rm-dp (pdnf left varl))
right (rm-dp (pdnf right vats)))

(DOLIST (a-new (product left right))
(my-print (LIST (CAR a-new) (CDR a-new)) so))))))

A.7 File step5.lsp

;;; file step5.lsp

(in-package "WRIGHT")

;; Application of axiom W5 i.e. adding variables. In this
;; stage, formulas are already simple conjunctions
;; represented as simple list of numbers with sign - if
;; variable is negated. Also, the list of variables on the
;; left hand side and the right hand side is the same,
;; thanks to previous steps.

; returns the list of variables not in this formula
(DEFUN list-to-add (formula)

(difference
(MAPCAR #'CAR *prefvars*)
(rm-dp (MAPCAR #'ABS (narrow formula)))))

; adds all possible combinations of variables in a formula
; and stores the resulting formula into output file
(DEFUN completev-w5 (f la vlist out-file NAME left right

vari lefti left2 righti right2)
(COND

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

• 	,99+ 49 0, 911194110190.9 spri••••••■••••■ 	 1 ,1'94 	 11,4MWW

A.8. FILE STEP6.LSP 	 63

((NULL vlist) (my-print (MAPCAR #'1-to-n (MAPCAR #'abs-sort fla))
out-file))

(T (SETQ left (CAR fla)
right (CADR fla)
vari (CAR vlist)
leftl (include-by-size varl left)
rightl (include-by-size vari right)
left2 (include-by-size (- varl) left)
right2 (include-by-size (- varl) right))

(completev-vs (LIST lefti rightl) (CDR vlist) out-file)
(completev-w6 (LIST left2 right2) (CDR vlist) out-file))))

; step S

(DEFUN stepS (inp -file out-file &AUX addsl addsr)
(not-exists? inp -file 3)
(WITH-OPEN-FILE
(so out-file :direction :output)
(WITH-OPEN-FILE
(si inp -file :direction :input)
(DO* ((fla (READ si NIL NIL) (READ si NIL NIL)))

((NULL fla) NIL)
(SETQ addsl (list-to-add (CAR fla))

addsr (list-to-add (CADR fla)))
(IF (NOT (EQUAL addsl addsr)) (my-error 4 fla))
(completev -w6 fla addsl so)))))

A.8 File Mt p 6 . 11T

;;; file step6.lsp

(in-package "WRIGHT")

;; stuff related to step 6, i.e. transitive closure of a
;; given relation

; makes an array out of relation
(DEFUN rel-to-arr (relation nmr-vars &AUX a m)

(SETA m (EXPT 2 nmr-vars)
a (MAKE-ARRAY (LIST m m) :element-type '(MOD 2)

:initial-element 0))
(DOLIST (it relation a)

(SETF (APPLY #'BIT a it) 1)))

; makes a relation out of an array
(DEFUN arr-to-rel (my-arr &AUX res d2)

(SETA d2 (CADR (ARRAY-DIMENSIONS my-arr))
res NIL)

(DOTIMES (i (CAR (ARRAY-DIMENSIONS my -arr)))
(DOTIMES 	d2)

(IF (= 1 (BIT my-arr i j))
(SETA res (CONS (LIST i

res)
j)

res)))))

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

64 	 APPENDIX A. SOURCE PROGRAM LISTING

; defines closure of given relation, where relation is
; represented as a list of ordered pairs of numbers.
; Warshall's algorithm.
(DEFUN tr-rel (relation &AUX arr2 n tmpb-ik ai ak ta m)

(SETA arr2 (rel-to-arr relation (LENGTH *v-names*))
n (CAR (ARRAY-DIMENSIONS arr2)))

(DOTIMES (k n)
(SETA ak (MAKE-ARRAY n :displaced-to arr2

:displaced-index-offset (* k n)
:element-type '(MOD 2)))

(DOTIMES (i n)

(SETA tmpb-ik (BIT arr2 i k))
(SETA m (* i n)

ai (MAKE-ARRAY a :displaced-to arr2
:displaced-index-offset m
:element-type '(MOD 2))

ta (MAKE-ARRAY n :element-type '(MOD 2)
:initial-element tmpb-ik))

(BIT-IOR ai (BIT-AND ta ak NIL) T)))
(arr -to -rel arr2))

; This function reads in the pairs of worlds from the file
; inp-file, finds transitive closure and stores the result, as
; the list of pairs in the file out-file
(DEFUN step6 (inp-file out-file &AUX relation)

(not-exists? inp-file 3)
(SETQ relation NIL)
(WITH-OPEN-FILE
(si inp-file :direction :input)
(DO* ((formula (READ si NIL NIL) (READ si NIL NIL)))

((NULL formula) NIL)
(SETQ relation (ADJOIN formula relation :test #'EQUAL))))

(SETQ relation (tr-rel relation))
(WITH-OPEN-FILE
(si out-file :direction :output)
(DOLIST (item relation)

(my-print item si))))

A.9 File postproc.lsp

;;; file postproc.lsp

(in-package "WRIGHT")

; makes the list of all variables from one (left or right)
; side of relation.
(DEFUN which-side (inp -file side *AUX res operation tmpv ip tf)

(SETQ res NIL)
(IF (EQUAL side 'left)

(SETQ operation 'car)
(SETQ operation 'cadr))

(WITH-OPEN-FILE

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

A.9. FILE POSTPROC .LSP 	 65

(si inp-file :direction :input)

(DO* ((formula (READ si NIL NIL) (READ si NIL NIL)))
((NULL formula) NIL)
(SETQ tf (EQUAL (CAR formula) (CADR formula)))
(IF (AND (NULL *checked-contrad*)

(NULL *dont-ask*) tf)
(PROGN
(SETQ *dont-ask* T)
(FORMAT - t "%Contradiction found! -

Do you want to ignore it? (YIN) ")
(SETQ ip (READ))
(IF (EQUAL ip 'Y)

(SETQ *checked-contrad* T))))
(IF (AND (NULL *checked-contrad*) tf)

(SETQ *contrad* (APPEND *contrad* (LIST formula))))
(SETQ tmpv (APPLY operation (LIST formula)))
(IF (NOT (MEMBER tmpv res :test #'EQUAL))

(SETQ res (APPEND res (LIST tmpv))))))
(IF (NULL *checked-contrad*) (SETQ *checked -contrad* T))
res)

; all worlds on the left hand side
(DEFUN left-side (inp-file)

(which-side inp-file 'left))

; all worlds on the right hand side
(DEFUN right-side (inp -file)

(which-side inp -file 'right))

; check if there is a contradiction
(DEFUN contradiction? ()

(NOT (NULL *contrad*)))

; function generates all possible worlds
(DEFUN all-worlds (kAUX res)

(SETQ res NIL)
(DOTIMES (i (EXPT 2 (LENGTH *v-names*)) res)

(SETQ res (CONS i res))))

; worlds that are allowed, i.e. all except those on the right
; hand side of any preference
(DEFUN allowed-worlds()

(difference *all-worlds* *right-side*))

; function translates internal representation into
; the original one.
(DEFUN in2var (formula &AUX r)

(SETQ r (n-to-1 formula (LENGTH *v-names*)))
(DOLIST (itm r r) ; the first r is evaluated before loop!

(IF (< itm 0)
(SETQ r (SUBST (CONS 'not (LIST (- itm))) itm r))))

(DOLIST (itm *prefvars*
(SETQ r (SUBST (CADR itm) (CAR itm) 0))

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

66 	 APPENDIX A. SOURCE PROGRAM LISTING

; we want to evaluate formula given a valuation of its .

; variables. We need it to implement filter possibility.
; ve assume that valuation is a list of ordered pairs
; (value var-name), and that formula is a wit
; (with and, or, not))
(DEFUN valuate (formula valuation &AUX res)

(SETQ res formula)
(DOLIST (item valuation (eval res))

(SETQ res (SUBST (CAR item) (CDR item) res))))

; from *allowed-worlds* makes a list of valuations of above type
; argument world is one state of affairs
(DEFUN make-value (world kAUX r w)

(SETQ r NIL)
(DOLIST(vv world r)

(IF (< vv 0) (SETQ w NIL) (SETQ w T))
(SETQ r (CONS (LIST w (NTH (- (abs vv) 1) *v-names*)) r))))

; This function applies above procedure to all formulas in
; the file
(DEFUN postprocessing (inp -file inter out-file WWI len)

(not-exists? inp -file 3)
(SETQ *checked -contrad* NIL

contrad NIL
left-side (left-side inp -file)
right-side (right-side inp -file))

(IF (contradiction?) (my-error S (rm-dp *contrad*)))
(SETQ *all-worlds* (all-worlds)

allowed-worlds (allowed-worlds)
len (LENGTH *v-names*))

(WITH-OPEN-FILE
(so inter :direction :output)
(DOLIST (item *allowed-worlds*)

(IF (valuate *filter* (make-value (n-to-1 item len)))
(my-print item so))))

(WITH-OPEN-FILE
(so out-file :direction :output)
(WITH-OPEN-FILE
(si inter :direction :input)
(DO* ((formula (READ si NIL NIL) (READ si NIL NIL)))

((NULL formula) NIL)
(my-print (in2var formula) so)))))

A.10 File main.lsp

;;; file main.lsp
(in-package "WRIGHT")

; This functions sets to nil all global variables that were
; used in program. This is necessary for memory savings if
; we run the program again
(DEFUN erase-global ()

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

-,..!i—oviemmow• 	I

A.10. FILE MAIN.LSP 	 67

(SETQ *v-names* NIL
all-f-names NIL
filter NIL
prefvars NIL
all-worlds NIL
checked-contrad NIL
contrad NIL
dont-ask NIL
left-side NIL
right-side NIL
allowed-worlds NIL))

; reads all program files necessary for the program
(DEFUN load-all 0

(LOAD "variable.lsp" :verbose NIL)
(LOAD "include.lsp" :verbose NIL)
(LOAD "stepi.lsp" :verbose NIL)
(LOAD "step2.1sp" :verbose NIL)
(LOAD "step3.lsp" :verbose NIL)
(LOAD "step4.lsp" :verbose NIL)
(LOAD "step5.lsp" :verbose NIL)
(LOAD "step6.lsp" :verbose NIL)
(LOAD "postproc.lsp" :verbose NIL))

; procedure that performs the main job: it reads the file
; names, calls all modules and gives the results
(DEFUN prover (*AUX input-prf input-var res-prf file-ti

file-t2 file-t3 file-t4 file-t5 file-t6 file-t7)
(SETQ input-prf (read-and-check "input")

input-var (read-and-check "variables"))
(TERPRI)
(PRINC "The name of the output file:")
(SETQ res-prf (READ-LINE))
(TERPRI)
(do-vacs input-var)
(MAKE-RANDOM-STATE)
(SETQ file-ti (unique-f-name))
(do-formulas input-prf file-ti)
(SETQ file-t2 (unique-f-name))
(step2 file-ti file-t2)
(SETQ file-t3 (unique-f-name))
(step3 file-t2 file-t3)
(SETQ file-t4 (unique-f-name))
(step4 file-t3 file-t4)
(SETQ file-t5 (unique-f-name))
(steps file-t4 file-t5)
(SETQ file-t6 (unique-f-name))
(step6 file-t5 file-t6)
(SETQ file-t7 (unique-f-name))
(postprocessing file-t6 file-t7 res-prf)
(delete-files *all-f-names*))

(DEFUN main ()
(pima (acmill)

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

68 	 APPENDIX A. SOURCE PROGRAM LISTING

(load-all)
label-main
(erase-global)
(prover)
(PRINC "Again? (Y/N) ")
(SETA again (READ))
(IF (EQUAL again "f)

(PROGN
(erase-global)
(GC)
(GO label-main)))))

; do the execution
(in-package "WRIGHT")
(main)
(quit)

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

Bibliography

[AB75] 	A. R. Anderson and N. D. Belnap, Jr. Etailment. The Logic of Relevance
and Necessity. Vol I. Princeton University Press, 1975.

[AT75] 	F. G. Asenjo and J. Tamburino. Logic of antinomies. Notre Dame
Journal of Formal Logic, 16:17-44, 1975.

[BB92] 	L. Bolc and P. Borowik. Many—Valued Logics I. Theoretical Founda-
tions. Springer Verlag, 1992.

[Ben91] 	Stefan Benzschawel. Transitive closure: New aspects of old theme. Tech-
nical Report IBWS Report 203, Wissenschaftliches Zentrum, IWBS,
IBM Deutschland, 1991.

[BR89] 	R. T. Brady and R. Routley. The non—triviality of extensional dialectical
set theory. In Priest et al. [PRN89], pages 415-436.

[Car85] 	Walter A. Carnielli. An algorithm for axiomatizing and theorem proving
in finite many—valued propositional logics. Logique et Analyse, 28:363—
368, 1985.

[Chi64] 	Roderik M. Chisholm. The descriptive element in the concept of action.
The Journal of Philosophy, 61:613-625, 1964.

[CS66a] 	R. M. Chisholm and E. Sosa. Intrinsic preferability and the problem of
supererogation. Synthese, 16:321-331, 1966.

[CS66b] 	R. M. Chisholm and E. Sosa. On the logic of "intrinsically better" .
American Philosophical Quarterly, 3:244-249, 1966.

[Dan68] 	Sven Danielsson. Preference and Obligation. Studies in the Logic of
Ethics. Filosofiska FOringen, Uppsala, 1968.

[dC74] 	Newton C. A. da Costa. On the theory of inconsistent formal systems.
Notre Dame Journal of Formal Logic, 15:497-510, 1974.

[dCA77] N. C. A. da Costa and E. H. Alves. A semantical analysis of the calculi
C,,. Notre Dame Journal of Formal Logic, 18:621-630, 1977.

[Dun86] J. Michael Dunn. Relevance logic and entailment. In Gabbay and
Giinthner [GG86], pages 117-224.

[Fra88] 	Franc Inc. Common LISP. The Reference. Addison Wesley, 1988.

[GG86] 	D. Gabbay and F. Giinthner, editors. Handbook of Philosophical Logic
Vol III: Alternatives to Classical Logic. D. Reidel, 1986.

[Gir87] 	Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1-
1119 19527

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

70 	 BIBLIOGRAPHY

[Haa88] 	Susan Haack. Deviant Logic. Some Philosophical Issues. Cambridge
University Press, 1988.

[Ha166] 	S8ren Ha'Men. Preference logic and theory choice. Synthese, 16:307-
320, 1966.

[Han68] 	Bengt Hannson. Fundamental axioms for preference relations. Synthese,
18:423-442, 1968.

[Han70] 	Bengt Hannson. Preference Logic: Philosophical Foundations and Ap-
plications in the Philosophy of Science. Lund, 1970.

[HC68] 	G. E. Huges and M. J. Cresswell. An Introduction to Modal Logics.
Methuen and Co. Ltd., London, 1968.

[Hub72] 	Oswald Huber. Axiomatische Priferenzenlogik in der psychologis-
chen Entscheidungsforschung. PhD thesis, Philosophische Fakultit,
Salzburg, 1972.

[KdC89] J. Kotas and N. C. A. da Costa. Problems of modal and discussive logic.
In Priest et al. [PRN89], pages 227-244.

[Ke178] 	Jerry S. Kelly. Arrow Impossibility Theorems. Academic Press, 1978.

[KM75] 	A. Kron and V. Milanovie. Preference and choice. Theory and Decision,
6:185-196,1975.

[Mar63] 	Richard M. Martin. Intension and Decision. A Philosophical Study.
Prentice—Hall Inc., 1963.

[MD90] 	P. Mathieu and J.-P. Delahaye. The logical compilation of knowledge
bases. In van Eijck [vE90], pages 386-399.

[MKRT75] V. Milanovie, A. Kron, S. RadlovaEki, and B. TauzoviC. IstraiivaEki pro-
jekt: Projektovanje organizacije proizvodnih sistema. Technical report,
MaAinski Fakultet Novi Sad, 1975.

[Mor71] 	Edgar Morscher. A matrix method for deontic logic. Theory and Deci-
sion, 2:16-34, 1971.

[Mor89] 	Chris Mortensen. Paraconsistency and Ci. In Priest et al. [PRN89],
pages 289-305.

[Ovc91] 	Sergei Ovchinnikov. Social choice and Lukasiewicz logic. Fuzzy Sets and
Systems, 43:275-289, 1991.

[Por84] 	Jean Porte. Lukasiewicz's L—modal system and classical refutability.
Logique and Analyse, 27:87-92, 1984.

[PRN89] G. Priest, R. Routley, and J. Norman, editors. Paraconsistent Logic.
Essays on the Inconsistent. Philosophia Verlag, Munich, 1989.

[Res67] 	Nicholas Rescher, editor. The Logic of Decision and Action. Pittsburgh,
1967.

[Res68] 	Nicholas Rescher. Topics in Philosophical Logic. Synthese Library. D.
Reidel Publishing Company, Dordrecht, 1968.

[Res69] 	Nicholas Rescher. Many—valued Logic. McGraw—Hill, 1969.

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

BIBLIOGRAPHY 	 71

[Ste90] 	Guy L. Steele, Jr. Common LISP. The Language. Digital Press, second
edition, 1990.

[Tok75] 	Marek Tokarz. Functions definable in Sugihara algebras and their frag-
ments I. Studia Logica, 34:295-301,1975.

[Tok76] 	Marek Tokarz. Functions definable in Sugihara algebras and their frag-
ments II. Studia Logica, 35:279-283,1976.

[Tok80] 	Marek Tokarz. Essays in the Matrix Semantics of Relevant Logics.
Warszawa, 1980.

[Urq86] 	Alasdair Urquhart. Many—valued logic. In Gabbay and Giinthner
[GG86], pages 71-116.

[vE90] 	Jan van Eijck, editor. Logics in AI. European Workshop JELIA '90,
LNAI 478. Springer Verlag, 1990.

[vW63] 	Georg Henrik von Wright. The Logic of Preference. An Essay. Edin-
burgh University Press, Edinburgh, 1963.

[vW72] 	Georg Henrik von Wright. The logic of preference reconsidered. Theory
and Decision, 3:140-169, 1972.

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74

