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PREFACE

The monograph is the result of many years of my University lec-
turing as well as participating in discussions at scientific conferences
on problems of the science about motion of bodies. Moreover, it is
a reciprocating result since lecturing on analytical mechanics, theory
of oscillation, theory of motion stability, of tensor calculus and dif-
ferential geometry, or even engineering mechanics, has arisen in me
some justified doubts that impelled me to test the knowledge first ac-
quired in my graduate studies and later taught to others and used in
preparing my scientific papers, namely, the knowledge in accordance
with the current professional world literature.

I have accepted the fact - and used it as a starting point - that
analytical mechanics, or, more generally, mechanics, is an exact nat-
ural science; it is as exact as mathematics or, even more precisely, it
is even more exact than it if its assertions claim not only mathemat-
ical proofs, but also verification by nature and by human practice,
as well as proofs of technology. Exact to perfection, mechanics is a
mathematical theory about harmonious motion of the celestial bodies
and, at the same time, about often rough human engineering practice.
Its founders have written that geometry is part of mechanics (Isaac
Newton) or that mechanics is part of (mathematical) analysis (La-
grange). It has been developed and perfected to exactitude. At the
same time, it almost goes without saying that everything has already
been solved in this branch of natural science. The assertions (prin-
ciples, laws, theorems) of the theory of mechanics are accepted and
learnt almost as the laws of nature. Mechanics is as old as material
and written relicts that testify about the history of findings about
motion and rest of bodies; at the same time, it is as contemporary as
the novelty itself since everything new that is being created, made or
unmade cannot be separated from it.
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On the basis of the above-mentioned views, several questions log-
ically arise: What else can still be added to this science? What is the
use of additional writings published in hundreds of periodic scientific
journals? What about contributions to the body motion theory, if this
theory is logically, perceptively and experimentally harmonious and
finite to perfection? What makes possible discussions about accor-
dance of all the assertions referring to the nature of things? These and
many other questions, objections, incongruous statements and philo-
sophical qualifications and classifications1 that have accompanied the
development of theoretical mechanics are the ones that this book is
trying to give answers to. It considerably changes the knowledge
about mechanics and in mechanics, namely its starting philosophical
assumption, its mathematical-logical conception and the basic and
derived concepts that seemed to be clear. Besides, the preprinciples
are introduced; the laws of dynamics are given different meanings
and definitions; the principles of mechanics, each in its own turn, are
shown as sufficient for invariant development of the whole theory of
mechanics; the concepts of definitions, laws, principles, theorems and
lemmas in mechanics have been differentiated. As a consequence, the
axioms or laws of motion of the classical mathematical theory of me-
chanics have been omitted. Even the generality of the law about the
mutual bodies’ attraction has been subdued to questioning. The con-
cepts of particular assertions in mechanics, namely those that com-
prise the names of their authors, are replaced by new terms associ-
ated with the respective meanings or concepts so that they could be
more easily understood by the reader; the other reason for their re-
placement being the fact that the historical evidence relative to the
development of mechanics gives various data concerning the contri-
butions of the distinguished authors of theoretical mechanics. All
the presented innovations or modifications have not been made for
their own sake. The level of skill in the history of the development
of mechanics has depended upon the possession and development of
the mathematical knowledge as well as operational aspects of vari-
ous theories. The factor of the validity estimate has been and still is
the logical verification of the mental modeling of mechanical objects
as well as the confirmation of the deduced relations in nature - by

1See, for instance, P.V. Harlamov, [8]
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observing and measuring changes of the natural processes. Starting
from the universally accepted statement that analytical mechanics
is a harmonious symphony of natural sciences, I kept on noticing,
year after year, some incongruities in the theory both in its initial
assertions and in the mathematical analysis of motion. Discussions
at scientific seminars and conferences have deepened the differences
in knowledge and understanding of the mathematical assertions of
mechanics leading to opposite views or complete misunderstanding
of both the essence of mechanics and of the meaning of the mathe-
matical symbolism describing the motion of bodies. Moreover, the
basic and derived concepts, postulates, axioms, laws, principles, con-
straints, transformations ... are by no means singularly present in the
standard mechanics. In view of all this, a new logical structure of me-
chanics is proposed here; it can be briefly presented by the following
scheme:
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This structure has attempted to separate the rational core of the
classical mechanics while, at the same time, eliminating redundant
conjunctions, mathematical simplifications and, most of all, appar-
ent innovations of mass modernization. The preprinciple of existence
has defined the subject matter in mechanics as well as the dominant
mathematical dimension directed to it, without any justified doubt
about the existence of other mental worlds in mechanics. This does
not imply that the knowledge about the motion of bodies is com-
pleted; rather, it is an attempt to grade levels of knowledge from
intuitive ones to more complex or even the most subtle mathematical
proofs and conclusions. By stressing the differences with respect to
the standard professional and scientific literature in the field of me-
chanics, no particular book by one or a group of authors was kept
in mind, unless it is precisely quoted in the very text of this book;
any possible coincidence or difference left unquoted is unintentional
or unbiased. Not once was the writing of this book, especially of
some of its parts, accompanied with doubts about the legitimacy and
accuracy of the presented assertions, regardless of the deduced and
repeated proofs or many reviews by prominent experts when some of
its results had been published in scientific journals before appearing
now in this monograph. This is something that will be well under-
stood by all the eminent authors of original works in the domain of
natural sciences. What was needed, in addition to ever insufficient
knowledge, was courage (“gift for all sorts of mischief”) in order to
avoid a highly grandiose proposition about inertia coordinate systems
or to modify the “law” of mechanical energy change, or to stick to the
assertion that the standard calculus devastates the tensor character
of the mechanical systems’ differential equations of motion, or to dis-
card the principle of solidification (freezing) of variable constraints or
to change many other things that represent the subject and programs
of academic studies throughout the world. In view of all this, it is
rather difficult to exclude any possibility of transgression in this book.
Each argument proving this, based upon the preprinciples introduced
here, as well as every omission, pointed out to me, will be regarded
as an authorized contribution that I will publicly acknowledge with
gratitude.

The manuscript of this book has been read in whole or partially
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by Božidar Vujanović, Corresponding Member of the Serbian Acade-
my of Sciences and Arts, Ranislav Bulatović, Corresponding Member
of the Montenegro Academy of Sciences and Arts, Dr Slavǐsa Prešić
and Dr Zoran Marković, Professors of the Mathematical Faculty of
Belgrade University. I have accepted most of their remarks, help-
ful for further improvement of the text of the monograph. I am most
grateful for their friendly assistance and deeply indebted for their pre-
cious time and for their contribution to the publication of the book.
The manuscript was first partially and then completely arranged and
aptly prepared by Dragan Urošević to whom I am sincerely grateful
for assistance and cooperation.

Belgrade, September 26, 1997 Veljko A. Vujičić



PREFACE TO THE ENGLISH EDITION

Before the monograph was to be published in its Serbian edition
by the Institute for Textbook Publication, Belgrade, the manuscript
had been translated into English by Dragana R. Mašović, Associate
Professor, Faculty of Philosophy, Nǐs, in july, 1998. Besides, regard-
ing the Serbian and the english editions, the author would like to
stress that he had made only a few changes in the mathematical text,
namely in some of the denotation for the sake of adapting them to
the English-speaking public.

The translation was read by Prof. Dr. Vladan -Dor -dević, Member
of the Serbian Academy of Sciences, to whom the author and the
publishers owe a great debt of gratitude. His suggestions, referring
to the strictly scientific terminology, were almost wholly accepted by
the author.

The author’s thanks are also due to the technical editor Dr. Dra-
gan Blagojević, who prepared and completely arranged the text for
publication.

The author would like to thank the Mathematical Institute of
Serbian Academy of Sciences and Arts as well as the Institute for
the Textbook Publication, Belgrade, and the Ministry for Science an
Technology of the Republic of Serbia for its financial support to the
publication of monograph in English.

March 29, 1999. Veljko Vujičić

PREFACE TO THE SECOND EDITION

The first edition of the book PREPRINCIPLES OF MECHAN-
ICS has been unsuccessfully requested in bookstores and a number
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of libraries. Dr Dragomir Zeković, Professor at the Faculty of Me-
chanical Engineering in Belgrade proposed that a second edition be
published, or I should say e-version of the first edition to make the
book available to all interested readers.

By meticulous and professional reading of the book as well as rare
giftedness Dr Dragomir Zeković has noticed a multitude of misprints
and other errors ranging from commas and full stops to very complex
mathematical relations, and proposed corrections. He has specified
issues of mathematics and mechanics with precision, completely and
at a high level, in accordance with authors’ attitudes related to the
subject matter of the monograph.

The contents and length of the text have remained the same,
as of the first edition. E-version of the monograph was prepared by
Dragan Urošević.

This second improved e-edition is officially approved by the pub-
lishers of the first edition - Zavod za izdavanje udžbenika i drugih
izdanja, Belgrade and Mathematical Institute of Serbian Academy of
Sciences and Arts, without whose assistance this monograph would
not exist.

Belgrade, 2015. Veljko Vujičić



0. PREPRINCIPLES

The compound phrase preprinciple or foreprinciple is here applied as an ex-
plicit statement whose truthfulness is not subject to re-questioning, but which the-
oretical mechanics as a natural science (philosophy) about motion of bodies starts
from.

The preprinciples are the basic starting point in the theory of mechanics which
is here understood as one of the sciences about nature, instead of an abstract math-
ematical theory with no determined interpretation. Before proceeding to discussing
mechanics, it should be stated that the preprinciples, as defined above, provide for
its distinction from, for instance, geometry which is today no longer considered as
a science about real space, but as an abstract formal theory that allows for differ-
ent, equally valuable interpretations. The preprinciples express the gnoseological
assumption that mechanics has its determined interpretation as a science about the
motion of real bodies.

The requirement for clarity assumes that the preprinciples can be and are
expressed both orally and in a written form, with no previously introduced concepts
and definitions; in this way, it is easy and simple to understand the formulated
determinations, consistent with the empirically acquired knowledge or hints, all of
which being of interest for the theory of mechanics. While describing the motion
of bodies the preprinciples represent such assertions that are themselves obvious;
hence they neither provoke questions nor do they require answers since it is assumed
that the answer to accept would be the one given to himself or to others by the
very person who posed the question. Therefore, mechanics starts from the accepted
assertion which is not called into doubt at any level of knowledge.

Wider implications of the preprinciples can be grasped by studying mechanics
as a whole. The preprinciples are considered accurate in mechanics until opposed
either by a new discovery or experimentally or even by a newly-discovered phe-
nomenon in nature. If and when the scientific assertion, brought into accord with
natural phenomena, appears to be contradictory to the preprinciples, it can be
modified, tog ether with the corresponding assumptions of thus envisioned me-
chanics. The preprinciples stressed here are the following: those of existence, of
casual determinacy and of invariance.

The knowledge about motion of bodies dates from ancient times. It has
been preserved by genetic inheritance, forms of human practice and a multitude
of various records ranging from a millennia-old till the present day ones. The
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historians of science point to five millennia old records dealing with the motion of
bodies. The existing referential literature about the motion of bodies is so large
that it considerably exceeds the limits of one congruous rational theory. Even the
attempts at formal generalization have reached the sophistication level at which
it is impossible to see the knowledge that man needs about the motion of bodies.
Numerous definitions that cannot be refuted from the standpoint of the author’s
right to define his own concepts have first given rise to disparities among the theories
of essential concepts which have, in their turn, caused a final split among the
existing theories.

A rough mathematical description giving intellectually simplified models of
natural objects is often used for explaining the body’s state of motion in a way
unfaithful to reality. Besides, hundreds of theorems about the motion of body
that are annually published in numerous scientific and professional journals contain
incongruous “truths”. This is sufficiently provoking for a debate concerning the idea
of “the proved truthfulness”.

What is presented here is an attempt to give a new systematization of the ra-
tional core of mechanics, able to eliminate incongruity and vagueness of the existing
theories. This has required, among other things, that some habitual and accepted
knowledge about principles, laws, theorems and axioms should be averted, given up
or at least modified. It seems logical to expect that such an approach should cause
detachment or aversion, especially among older connoisseurs of mechanics, namely,
those who have accepted its laws and assertions as indisputable laws of nature.
In accordance with the preprinciples, as well as for the sake of greater clarity, the
basic issues of this study are explained by the mathematical apparatus with which
it is much easier to prove the completion of the preprinciples, especially that of
invariance [62].

The knowledge about the motion of bodies is expressed by the introduced
concepts and mathematical relations. The findings are elaborated, meaning that
the general knowledge is not given once and for all; hence they do not have to be
the same and equally true. The assertions about the motion of bodies, introduced
and deduced in this mechanics, considerably differ from many others in numerous
works of mechanics, especially in the part describing the motion of the body system
with variable constraints.

Preprinciple of Existence
(Ontological Assumptions)

On the basis of the inherited, existing and acquired knowledge mechanics
starts from the fact that there are:

bodies, distance and time.

The existence of a body is manifested in the theoretical mechanics as a body
mass for which the denotation m and its dimension M, (dim m = M) are accepted.
Consequently, every existing body has its mass. This is the property by which
the body existing in mechanics differs from the geometrical concept of the body
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characterized by volume V (Lat., Volumen). The difference is fundamental since
the body mass is not even quantitatively identical with its volume whose dimension
is derived by means of the dimension of length L, dim V = L3. Every body whose
motion is studied in mechanics has its mass regardless of how small it is or of the
size of its volume. The body of no matter how small volume V has a finite mass
m. Likewise, each part of the body has its mass. A part of the body of volume ∆V
has mass ∆m. If many bodies or parts of the bodies are dealt with, their masses
are successively denoted with the indices mν , ∆mν (ν = 1, 2, . . . ,) that are to be
read in the following way: “mass of the ν-th body” or “mass of the ν-th part of the
body”. No matter what natural numbers are added to the index ν, ν ∈ N, masses
mν are always determined with positive real numbers R, concrete by units of mass
M dimension.

The existence of distance is identified everywhere: among particles, celestial
bodies or between various points on the pathway that the body moves along, as
well as between the place of the body and the place of observation. It is denoted
by the letter l (Lat. longus)and is measured in units of dimension of length L.
Though it is directly perceived and observed, inherited, acquired and understood,
the distance between the body’s place or position cannot be simply determined. In
order to confirm this assertion it is sufficient to mention the following distances:
between two airplanes in the air, two ships on the sea, two vehicles on the rough
terrain or two pedestrians in the city, etc. The distances are also the subject of
other sciences, especially of metrology (µετρων - measure, measuring standard,
λoγια - Sciences), astrometry (αστρα - star), geometry (γη - Earth) and topology
(τωπωσ - place) since they depend upon the shape of the medium which the body’s
positions belong to. Any common trait can, therefore, be deduced only for very
small distances between the adjoining points; even so, only under the conditions
that the backgrounds against which the distances are being observed are not de-
generative. The positions of two bodies, no matter how small particles they can
happen to be, cannot coincide; instead, their distance must be different from zero
despite the seemingly obvious fact that there is no distance between two bodies
touching each other.

Regardless of how small a particle is, it is not a point; the starting point in
determining the distance should be a singular point of the particle or of the body
in general, namely, the one that can be adjoined by mass of the particle or of the
body in general in such a way that the whole body mass is concentrated at this
point which thus becomes a fictitious mass center . It is for this reason that this
point is called the mass point or material point. In this way the question of the
bodies’ distance is reduced to the concept of the distance between points.

The concept of the mass or material point is different from the geometrical
concept of the point not only by the fact that the mass point is characterized
by mass; it differs from the particle by the fact that distance between the two
particles always exist and is not equal to zero, since the particles, in addition to
their mass centers, also have boundary points of their volume. In this way the mass
or material point is also represented by the position (m, r). The geometrical points
can coincide, so that their distance can be equal to zero.
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The mass point position with respect to any chosen observation point can be
described by position vector r, r ∈ R3 where the symbol R3 implies a set of real tri-
vectors or in numbers r := (r1, r2, r3) ∈ R3 that are connected with three linearly
independent vectors called the base or coordinate vectors denoted by the letters:
e := (e1,e2,e3), � := (�1,�2,�3) or g := (g1, g2, g3). The notation e will be used
for orthonormal vectors of unit intensity ei, (i = 1, 2, 3), |ei| = 1, while �i will be
used for other unit vectors of rectilinear coordinate systems.

Beside the assumption that they are unit and orthogonal, there is another
assumption that ei change neither direction nor sense; instead, they are assumed
to be constant:

ei = const. (0.1)

This assumption concerning the constancy of the base vectors direction has
no place in the philosophy of the body motion since all the bodies on which the
vector base is chosen are moving. Hence mechanics introduces this assumption
conditionally as will be later discussed regarding the introduction of the velocity
definition and explanation of the inertia force.

Relative to base e, position vector r ∈ R3 can be written in its simple form in
the following way:

r = r1e1 + r2e2 + r3e3 =: riei, (0.2)

where the iterated indices, both subscript and superscript, denote addition till the
numbers taken by the indices; (r1, r2, r3) ∈ R3 are coordinates of vector r, while
r1e1 = r1, . . . , r

3e3 = r3 are covectors or components of the given vector. Scalar
multiplication of vector r by vectors ej (j = 1, 2, 3), that is, r · ej = δijr

i = rj ,
gives the jth projections rj of vector r upon the directions of the jth vectors ej .
Only with respect to base e, vector rj coordinates are identical to its projections
rj or to coordinates rj of covector rj since it is:

δij = ei · ej =





1 0 0
0 1 0
0 0 1



 . (0.3)

Observed from any point O which the position vectors start from, the directed
distance between any two immediately close points M1 and M2 is determined by
the difference between vectors r2 − r1 = ∆r, where r2 =

−−→
OM2, r1 =

−−→
OM1 and

∆r =
−−−−→
M1M2 =

(
ri
2 − ri

1

)
ei = ∆riei. (0.4)

Quantity |∆r| = ∆s can be called the metric distance or distance (Lat.,
spatium) or space metrics:

dim s = L . (0.5)

Time is denoted by the letter t (Lat., tempus), while its dimension T,

dim t = T .
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It is continuous and irrevocable. In the mathematical description it can be rep-
resented by a numerical straight line or an ordered multitude of concrete numbers,
while the multitude of their units is represented by real numbers R, t ∈ R.

Once the existence of time is accepted, the existence of motion, change, dura-
tion, the past, the present and the future is also accepted.

Preprinciple of Casual Determinacy

Distances, their changes and other factors of the body motion are explicitly
determined throughout the whole of time, in the future as in the past, and with as
much accuracy as the determinants of motion are known at any particular moment
of time.

This preprinciple of mechanics prefigures that mechanics as a theory of the
body motion is an accurate science in the mathematical sense, while as an applied
science, it is so accurate as the data which are of importance for motion are accu-
rately measured at one particular moment of time. In other words, mechanics is an
accurately conceived theory, almost to perfection, while in engineering practice it is
as much applicable as it is known, depending on the needs and technical capabilities
of those applying it.

The concept of the body motion comprises: walking, driving, sailing, swim-
ming, flying, jumping, breaking,... and all other gerunds that refer to displacement
and changes of distance or changes of the position vector in time.

Preprinciple of Invariance

Neither motion nor properties of the body motion depend upon the form of
statement: the determined truth about motion, once it is written in some linguistic
form, is equally contained in the written output of some other form or some other
alphabet.

The preprinciple of existence states that there are mass, time and distance,
determined by concrete real numbers m and t as well as real vector ∆r. This
preprinciple of invariance or independence of formalities allows for mass, as well as
time, to be denoted by some other letters, let’s say m̄ and t̄, which do not change
the nature of numbers m and t, and for which there must be m̄ = m and t̄ = t in
the whole correspondence. The same stands for distance ∆r. No matter where the
origin of coordinates from which the position vector begins is chosen, let’s say ρ,
there is an equality

∆r = ∆ρ,

so that distance ∆r does not depend on the form of writing. This is even more
expressed in the coordinate form, in which the choice of forms is considerably larger,
such as

∆r =
3∑

i=1

(
∆ri

)
ei = ∆riei = ∆yiei = ∆zi�i = ∆ρjgj = · · · .
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As such, all the three realities m ∈ R, t ∈ R and ∆r ∈ R3 are invariants, m
and t being scalar ones, while ∆r is a vector invariant.

All other factors of the body motion are also invariantly expressed in various
coordinate systems.



I. BASIC DEFINITIONS

By means of the previously accepted concepts as well as the introduced notations
it is both possible and necessary to determine (define) some of the essential concepts
of mechanics.

Definition 1. Velocity. The boundary value of the ratio between distance
and time interval ∆t, for which the material point moves from one position r(t) to
another position r(t +∆t) immediately close to it, that is, the natural derivative of
the position vector with respect to time

dr

dt
= lim

∆t→0

∆r

∆t
= lim

∆t→0

r(t + ∆t)− r(t)
∆t

def
= v (1.1)

is called the velocity of the point.

Velocity is, therefore, a vector and its nature is invariant. Depending on our
need for more specific determination, there are other formulations such as: velocity
vector, momentous velocity of the material point, velocity vector at particular po-
sition, or, even more completely, the velocity vector of the material point’s motion
at one moment or position; nor is the expression the velocity of the material point
position change considered contradictory, if the position implies the position vector.

Much more important than the formulation itself is the fact that the velocity
definition establishes a relation between distance and time. The velocity dimension
is derived from the velocity definition, being

Dim v = L T−1 (1.2)

The position vector now becomes time-dependent; hence, it follows that:

r(t) = ri(t)gi(t) → v =
dri

dt
gi + ri dgi

dt
, (1.3)

and this relation opens up the problem of accuracy in mechanics as well as of the
necessity to make relative the body motion theory which has definition 1.

According to the preprinciple of casual definiteness, relation (1.1) should be
used for an explicit determination of velocity if the vector of functions r(t) is known,
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and vice versa, of the position vector if vector v(t) is known [36]. It follows from
relation (1.1) that:

r(t)− r(t0) =

t∫

t0

v(t)dt (1.4)

or

ri(t)gi(t)− ri(t0)gi(t0) =

t∫

t0

vi(t)gi(t)dt,

that is,

[
ri(t)− rk(t0)gi

k(t0, t)
]
gi(t) =

t∫

t0

v(t)dt, (1.5)

where gi
k(t0, t) : g(t0) → g(t).

Therefore, definition (1.1) can also be written in the following form:

d

dt
[r(t)− c] = v, c = const,

which shows that the velocity of the point’s motion does not depend upon the
choice of the position vector pole in the same base.

An underlying difficulty in determining the point’s velocity emerges in the
previous choice of the base vectors system which also implies the pole and direction
of these vectors. They can be assumed as constant vectors, but, objectively, all the
bases which are the base for base vector system gi, move; consequently, vectors gi

change in time. For human existence and for observing the way the bodies move,
the base is the Earth which, just like the other planets, moves; so, its relative speed
with respect to the Sun, as well as its angular velocity, are measured or calculated
till sufficient accuracy is achieved. Regardless of the directions chosen for the base
vectors’ axes ei, �i, gi, including the directions of the Earth as the “immobile”
star, they cannot be invariable due to the Earth’s motion. In order to reduce the

relation to a scalar form, vectors
dgi

dt
should be expressed by means of base vectors

gi(t). Let it be:

ġj =
dgj(t)

dt
= ωi

jgi(t), (1.6)

where ωi
j are, for the time being, indefinite coefficients of vector ġi resolution. On

the basis of relation (1.2) it follows that the coefficient ġi dimension is time to the
power of minus one, that is,

dim ωi
j = T−1 (1.7)

Quantities ω of the dimension T−1 are called angular velocities, circular fre-
quencies or frequencies.
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Substituting relation (1.6) into (1.3) it is obtained:

v =
(

dri

dt
+ ωi

jr
j

)
gi = vigi, (1.8)

it follows from the above relation that, due to the independence of the vector gi,
the velocity vector coordinates are:

vi =
dri

dt
+ ωi

jr
j (i, j = 1, 2, 3). (1.9)

According to the preprinciples, the solutions of this differential equation’s system for
known velocities vi(t) must be equal to solutions (1.5); the integrating operations
must be elaborated so that the conditions for casual determince and invariance
should be satisfied. This is provided for by the covariant or tensor integral, under
the condition that double-dotted tensor gi

k(t0, t) and base vectors gi(t) are known.
For the constant base vectors such as g = e relation (1.6) reduces to a system

of homogeneous equations:

ω1
j e1 + ω2

j e2 + ω3
j e3 = 0,

from which it follows that ωi
j = 0, so that the velocity vector coordinates (1.9) are

in this case:

vi =
dri

dt
. (1.10)

This clearly shows that the vector coordinates of the material point’s velocity differ
with respect to various base vectors. Due to the invariance preprinciple as well as
definition (1.1) it can be written:

v =
dr

dt
=

(
dri

dt
+ ωi

jr
j

)
gi =

Dri

dt
gi =

dri

dt
ei = vigi, (1.11)

which satisfies the form equality and corresponds to the expression “the natural
derivative” used in the definition. Regarding the fact that nine above-mentioned
coefficients ωi

j are unknown, if we start from the general assumption that each base
moves and that the coefficients cannot be determined – contrary to the preprinciple
of casual determinces – it is natural that the coordinate vectors that can be related
to some base vectors, not likely to change in time, should be chosen as coordinate
vectors.

Therefore, in order to determine the material point’s position as well as the
points’ distance by relations (0.2) and (0.4), in addition to condition (0.3), what
should be introduced here is the condition that the base vectors do not change with
time:

dei

dt
= 0. (1.12)
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The choice of once oriented base constant vectors provides for setting up other
oriented coordinate systems, including curvilinear ones, that can be brought into
mutual mapping and in relation to which velocity is invariant.

Coordinate Systems. The concept of coordinate system here implies an
ordered set of real numbers and a set of mutually independent vectors that are
called coordinate vectors. The coordinate vectors differ from the base ones only
in the sense that the base ones are previously determined with respect to objects,
while the coordinate ones are determined with respect to the base ones. If the
coordinate ones are original, then they are base coordinate vectors. On the basis
of the base vectors, originally chosen as in relations (0.2), (0.4) and (1.3), it is
possible to introduce other coordinate systems x =

(
x1, x2, x3

)
, (xi ∈ R) in which

the material point’s position is explicitly mapped while the velocity has a general
invariant form.

Any other rectilinear coordinate system can be chosen as well, let’s say (z,�),
whose directions change in time with respect to base system (y, e). The two
systems’ ratio is determined by the relations:

yi = γi
αzα, ei =

∂zα

∂yi
�α = γ̄α

i �α, γi
αγ̄β

i = δβ
α.

The velocity vector can be represented by the equation:

v =
d

dt

(
yiei

)
= ẏiei =

(
γ̇i

αzα + γi
αżα

)
γ̄β

i �β =

=
(
γ̇i

αγ̄β
i zα + δβ

αżα
)
�β =

(
żβ + ω∗βα zα

)
�β = vβ�β

where
ω∗βα = γ̇i

αγ̄β
i = −ωβ

∗α = −γi
α

˙̄γβ
i

are anti-symmetrical coefficients and ∗ denotes the empty place of an index, since
it is

d

dt

(
γi

αγ̄β
i

)
= γ̇i

αγ̄β
i + γi

α
˙̄γβ
i = δ̇β

α = 0.

It follows that the velocity vector coordinates with respect to the coordinate
rotary system (z,�)

vβ = żβ + ω∗βα zα. (1.13)

By comparison with expression (0.2), it can be seen that r is a function of
yi coordinates, and through them, it is also a function of x coordinates, so that
r = r (y (x)) = yi (x) ei. According to definition (1.1), the velocity vector is:

v = ẏiei =
∂r

∂yi

∂yi

∂xk
ẋk = ẋk ∂yi

∂xk
ei = ẋkgk = vkgk. (1.14)
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It follows from these invariant relations that coordinate vectors gk for the
system of x coordinates are derived by base vectors ei by means of the covariant
relations

gi =
∂yk

∂xi
ek =

∂r

∂xi
= gi (x) , (1.15)

as well as the metric tensor

gij := gi · gj =
∂r

∂xi
· ∂r

∂xj
= δkl

∂yk

∂xi

∂yl

∂xj
. (1.16)

Accordingly, velocity vector v =
d

dt

(
rigi

)
can be reduced to the general form:

v =
dri

dt
gi + ri ∂yi

∂xk

dxk

dt
=

(
dri

dt
+ rjΓi

jk

dxk

dt

)
gi = ∇kriẋkgi = vigi

where Γi
jk(x) are the coefficients connecting the coordinate vectors gi and their

partial derivatives with respect to x coordinates, namely:

∂gj

∂xk
= Γi

jk(x)gi(x). (1.17)

It follows that the velocity vector coordinates in any system of coordinates
(x, g) can be written in the form:

vi =
Dri

dt
=

dri

dt
+ rjΓi

jkẋk, (1.18)

where
Dri

dt
denote natural derivatives of the position vector coordinates with re-

spect to time, while

∇kri =
∂ri

∂xk
+ rjΓi

kj

is a covariant derivative of these vector’s coordinates with respect to the point’s
position coordinates [36], [49].

The projections of velocity vector ẏi upon the axes of base vectors ei, as scalar
products of vector v̇i and base vectors ei, are equal to the velocity vector coordinates
ẏi:

ẏi = δij ẏ
j ,

while vi projections upon the axes of the coordinate vectors gi are linear homoge-
neous forms of the velocity vector coordinates:

vi = gijv
j = gij

Drj

dt
= gij ẋ

j

where gij(x) is metric tensor (1.16).
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The velocity square, as a scalar invariant, can now be written in the following
form:

v2 = δij ẏ
iẏj = gij ẋ

iẋj = gij
Dri

dt

Drj

dt
. (1.19)

Regarding the fact that element ds of path s(t):

ds2 = gijdxidxj = gijDriDrj

it follows that the magnitude of the velocity vector v is simply determined as a
derivative of the path with respect to time, that is,

v =
ds(t)
dt

. (1.20)

Therefore, it can be proved that covariant derivative ∇irj of the projections
rj of the point position vector upon the jth coordinate direction with respect to xi

coordinate is equal to the respective coordinates of metric tensor gij . with respect
to respective indices.

Namely, if r = ykek vector is scalarly multiplied by gj vector, the projection
of the position vector upon the j-th coordinate axis r · gj = rj = yk (ek · gj) is
obtained or:

rj = yk ∂yl

∂xj
(ek · el) = δkly

k ∂yl

∂xj
.

Regarding relation (1.16), it follows:

∂rj

∂xi
= δkl

∂yk

∂xi

∂yl

∂xj
+ δkly

k ∂2yl

∂xi∂xj
= gij + δkly

k ∂yl

∂xm
Γm

ij = gij + rmΓm
ij .

This also confirms the assertion that it is

∇irj =
∂rj

∂xi
− rmΓm

ij = gij .

By partial differentiating metric tensor (1.16) with respect to all the coor-
dinates and summing up, it is obtained that Γij,k(x1, x2, x3) are Christopher’s
symbols for the given metrics:

Γij,k =
1
2

(
∂gjk

∂xi
+

∂gik

∂xj
− ∂gij

∂xk

)
. (1.21)

For the coordinate system z in which gij = �ij = const all the symbols Γm
ij are

equal to zero, so that

∇irj =
∂rj

∂zi
= �ij ,

which more clearly points to the relation between the position vector and the metric
tensor.
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The previous relations can be related to the base vectors’ covariant derivatives
with respect to the coordinates

∇kgj =
∂gj(x)
∂xk

− Γi
jk(x)gi(x) = 0 (1.22)

which are very important for describing the base vectors and their changes in
time. Just as relations (1.15) establish the ratio between base vectors e and the
subsequently introduced coordinate g, so the covariant derivative ∇kgj stands in
a direct relation with conditions (1.12). The derivatives of relations (1.15) with
respect to time, due to condition (1.13) are:

dgi

dt
=

∂2yk

∂xj∂xi
ẋjek.

It is always possible to introduce such functions Γ(x) so that it is

∂2yk

∂xj∂xi
= Γλ

ij

∂yk

∂xλ

thus, it is obtained

dgi

dt
− gλΓλ

ji

dxj

dt
=

Dgi

dt
= ∇jgiẋ

j = 0. (1.23)

These are the conditions which, just like conditions (1.12), show that coordi-
nate vectors gi are covariantly constant:

yi = γi
αzα, ei =

∂zα

∂yi
�α = γ̄α

i �α, γi
αγ̄β

i = δβ
α

The velocity vector is

v = ẏiei =
(
żβ + ω∗βα zα

)
�β = vβ�β

where ω∗βα = γ̇i
αγ̄β

i = −ωβ
∗α = −γi

α
˙̄γβ
i are anti-symmetrical coefficients. It follows

that the velocity vector coordinates with respect to the coordinate inverse system
(z,�) are:

vβ = żβ + ω∗βα zα =
Dzβ

dt
.

This clearly shows that the velocity vector coordinates are varied regarding
various coordinate vectors. Due to the preprinciple of invariance as well as the
casual definiteness of the statement about “natural derivative” from the definition
of velocity, it is natural that the chosen coordinate vectors should be the ones that
can be related to some base vectors (0.1), invariable in time.

Once base vectors ei are chosen, other oriented coordinate vectors gi can be
chosen, including curvilinear ones, for which the natural derivatives (1.23) will be
valid.
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Definition 2. Motion Impulse. The product of mass m of the material
point and its velocity vector v is called the motion impulse of material point p.

In accordance with the preprinciples, the velocity definition and the above-
given definition, the motion impulse can be written in the following way:

p = mv = mẏiei = m
Dzi

dt
�i = mvigi =

= m
Dri

dt
gi = m

∂r

∂xi
ẋi = mẋigi.

(1.24)

Further on, special emphasis will be put on pi projections of this vector upon
coordinate directions gi:

pi = p · gi = mgij ẋ
j = aij ẋ

j , (1.25)

where
aij = mgij = m

∂r

∂xi
· ∂r

∂xj
= aji (m,x) (1.26)

is inertia tensor.
In the coordinate system (z,�), in accordance with (1.13) it will be:

pi = �ij

(
żj + ω∗jk zk

)
= �ij

Dzj

dt
,

where ω∗jk = 0 for k = j, while �ij = m�i · �j . Therefore, in such a system, there is
the material point’s motion impulse, regardless of the fact that the points do not
move with respect to this coordinate system:

pi = �ijω
∗j
k zk = ω∗ikzk = −ω∗ikzk.

It should be noted that inertia tensor aij(m,x) differs from the metric tensor
gij(x). The basic physical dimensions of the impulse vector are:

dim p = ML T−1

but its coordinates and projections can also have other dimensions.
If x coordinate is an angle, then it is:

dim pi = M L2 T−1 .

Inertia tensor aij sets up a relation between impulse and velocity at any posi-
tion. Its essential content is mass which exists for every body or material point as
well as in all coordinate systems.

Example 1. In an orthogonal rectilinear coordinate system(y, e), the inertia
tensor coordinates are equal to the point’s mass since it is

aij = mδij =
{

m i = j

0 i 6= j.
(1.27)
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However, the following relations are valid in other coordinate systems [36]:
Cylindrical: x1 = ρ, x2 = ϕ, x3 = z; y1 = ρ cos ϕ, y2 = ρ sin ϕ, y3 = z,

aij = m




1 0 0
0 ρ2 0
0 0 1


 .

Spherical: x1 = ρ, x2 = ϕ, x3 = θ; y1 = ρ sin ϕ cos θ, y2 = ρ sin ϕ sin θ,
y3 = ρ cos ϕ

aij = m




1 0 0
0 ρ2 0
0 0 ρ2 sin2 ϕ


 .

Rotatory-ellipsoitic: x1 = ξ, x2 = η, x3 = θ; y1 = b ch ξ sin η cos θ, y2 =
b ch ξ sin η sin θ, y3 = b ch ξ cos η,

aij = mb2




sh2 ξ 0 0
0 ch2 ξ 0
0 0 ch2 ξ sin2 η


 .

Rotatory-parabolidic: x1 = ξ, x2 = η, x3 = θ; y1 = ξη cos θ, y2 = ξη sin θ,

y3 =
1
2

(
ξ2 − η2

)
.

aij = m




ξ2 + η2 0 0
0 ξ2 + η2 0
0 0 ξ2η2




Bipolar: x2 = η, x3 = θ; (0 ≤ ξ ≤ π,−∞ < η < ∞, 0 ≤ θ ≤ 2π); y1 =
b sin ξ cos θ

ch η−cos ξ , y2 = b sin ξ sin θ
ch η−cos ξ , y3 = b sh η

ch η−cos ξ ,

aij = mb2




1
(ch η−cos ξ)2

0 0

0 1
(ch η−cos ξ)2

0

0 0 sin2 ξ
(ch η−cos ξ)2




Cylindrical-orthogonal: x1, x2, x3 = z; y1 = f1
(
x1, x2

)
, y2 = f2

(
x1, x2

)
,

y3 = x3,

aij = m




(
∂f1

∂x1

)2

+
(

∂f2

∂x1

)2

0 0

0
(

∂f1

∂x2

)2

+
(

∂f2

∂x2

)2

0

0 0 1




.

The inertia tensor forms a positive definite matrix whose determinant is other
than zero. During the transformation from one coordinate system into other ones,
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constraints should be looked for in mapping and degeneration of the figure, instead
of in the nature of the inertia tensor. Regarding the fact that its determinant is
different from zero, it is possible, by means of relation (1.25), to determine the
velocity vector ẋi coordinates as homogeneous linear functions of the impulse

ẋi = aijpj (1.28)

where aij(x) are countervariant coordinates of the inertia tensor. Relations (1.28)
and (1.27) are existing, determinable and invariant with respect to all possible
mappings from one coordinate system into the other one.

It should also be noted that aij inertia tensor changes during the motion if
mass m(t) of the material point changes in time. This relevant fact points to a
considerable qualitative difference between the inertial aij and the metric tensor
gij . If this fact is neglected, general conclusions about the motion of the celestial
as well as the elementary bodies may be wrong. This will be more clearly seen in
further presentation of this theory.

Definition 3. Acceleration. The natural derivative of the velocity vector
with respect to time is called the vector of the point’s acceleration.

This definition is replaced by a shorter written form:

a
def=

dv

dt
, dim a = LT−2 . (1.29)

Acording to the definition and respective relations of the velocity vector (1.1)–
(1.29), the acceleration vector a (Lat. acceleratio) can be written in many ways:

a =
Dvi

dt
gi =

D2ri

dt2
giÿ

iei

=
(

dvi

dt
+ Γi

jkvj dxk

dt

)
gi = aigi,

(1.30)

and its coordinates:

ai =
dvi

dt
+ Γi

jkvj dxk

dt
=

Dvi

dt
. (1.31)

At the same time, it is necessary to know with respect to what coordinate
vectors gi or metric tensor gij , coefficients Γi

jk are calculated. If relations (1.15)
between base ei and coordinate vectors gi from previous invariant relations (1.31)
are taken into consideration, it is easy to notice that the acceleration vector coor-
dinates can be mapped from one coordinate system y into the other one x if matrix

determinant
(

∂y

∂x

)
is different from zero, since the relations are derived:

ÿi = ak ∂yi

∂xk
i ai = ÿk ∂xi

∂yk
. (1.32)
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Regarding practice, the acceleration analysis with respect to the natural system
of the coordinate vectors (η1, η2, η3), which are unit and orthogonal is of special
interest. Let the vector

η1 = τ = lim
∆s→0

∆r

∆s
=

dr

ds

determine the direction and sense of the tangent on the pathway s at some moment
of time t and let it coincide with the velocity direction at this moment of time;
η2 ≡ n is directed with respect to the principal normal toward the center of the
(first) pathway curve, while η3 ≡ b is directed with respect to the (second normal)
binormal.

Regarding base vectors eie, the coordinate vectors can be determined by means
of linear relations:

ηi = αk
i ek −→ ek = ᾱi

kηi,
∣∣αk

i

∣∣ 6= 0

where αk
i are cosines of respective angles formed by vectors ηi and ek.

The velocity vector with respect to the natural trihedron can be represented
by the expression:

v =
dr

ds

ds

dt
= vτ (1.33)

where v, as can be seen from (1.20), is velocity vector magnitude.

Since τ · τ = 1 −→ dτ

ds
· τ = 0, where from it follows that vector

dτ

ds
is

perpendicular to τ , it can be written that
dτ

ds
=

dτ

dθ

dθ

ds
= κn, where κ is the

curvature of a curve. According to definition (1.29), the acceleration vector can be
resolved along tangent τ and principal normal n, namely:

a =
dv

dt
τ + v2 dτ

ds
=

dv

dt
τ +

v2

ρk
n = aττ + ann, (1.34)

where ρk is pathway curve radius, while n is a unit vector of the principal normal,
so that

aτ =
dv

dt
(1.35)

the acceleration vector coordinate directed with respect to the tangent (tangent
acceleration) and

an =
v2

ρk
(1.36)

the acceleration coordinate a is directed with respect to the principal normal
(normal acceleration). Relation (1.34) clearly shows that only one acceleration
component, namely, an = an, which belongs to the tangent vector field or aτ = v̇τ
belonging to the osculatory one, perpendicular to the tangent plane does not de-
termine the acceleration vector.
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Definition 4. Inertia Force. The product of the material point’s mass m
and the vector, which is equal but directed opposite to acceleration vector a, is called
the material point’s inertia force.

If the inertia force is denoted by the letter IF or simply I, the definition can
be written in a shorter form:

IF
def= −ma = −m

dv

dt
. (1.37)

Hence it follows that
dim IF = M LT−2 .

According to relations (1.30) and (1.31), it can be written:

IF = Iigi = −maigi = m
Dvi

dt
gi = −mÿiei, (1.38)

where it can be seen that the vector coordinates of inertia force

Ii = −m
Dvi

dt
= −m

(
dvi

dt
+ Γi

jkvj dxk

dt

)
. (1.39)

By scalar multiplication of vector (1.38) and coordinate vector gj the pro-
jections of the inertia force vectors upon the j-th coordinate axes are obtained,
namely,

Ij = IF · gj = −aijI
i = −aij

Dvi

dt
=

= −aij

(
dvi

dt
+ Γi

lkvl dxk

dt

)
,

(1.40)

where aij , as in relation (1.26), is inertia tensor. It is clear from relation (1.40) that
the inertia force can have many addends; also, Ij projections upon y coordinate
axes, depending on aij , can have dimensions different from ML T−2. That is why
Ij coordinates can be called generalized inertia forces.

Regarding the natural system of coordinates, in view of relations (1.34), it
follows that:

IF = Iττ + Inn = −m
dv

dt
τ −m

v2

ρk
n.

It is obvious from this equation that tangent coordinate Iτ of the inertia force

Iτ = −m
dv

dt
, (1.41)

while the coordinate on the principal normal of the curve

In = −m
v2

ρk
.
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Therefore, two last expressions show in a more obvious way than relations
(1.39) that the inertia force can exist even in the case when the velocity magnitude
is constant v = const. Only in the case that the velocity vector v = const, that
is, that the velocity changes neither magnitude nor direction, does it follow from
relation (1.37) that the inertia force is equal to zero. It can be seen, from the
relation for the velocity square (1.19), that v = const if all the velocity coordinates
ẏi with respect to the base system e are constant values. Since base vectors ei are
constant with respect to time, it also follows that the velocity vector is constant
(v = const). Consequently, as in the definition of inertia force, it follows that the
bodies moving at constant velocity v do not produce inertia force. The coordinate
systems that can be related to such bodies are called inertia coordinate systems.

The initial point of the force vector is called the dynamic point (Greek,
δυναµισ – force). The material and the dynamic points geometrically coincide,
but the concept of the material point implies mass, while the same material point,
when it is called a dynamic point, is related to inertia force, or, more generally,
some force acting at that point. In some parts of mechanics only relations between
forces are discussed with no concept of mass. In this case, it is more natural and
rational to use the concept of dynamic point.



II. LAWS OF DYNAMICS

The word dynamics is derived from the Greek word (διναµικη) meaning “a
science about forces”, while the term laws of dynamics implies formulations and
definitions used for determining particular forces with accuracy of mathematical
functions up to the concrete constant. In this study, the knowledge necessary for
the formulations that make up the laws of dynamics is acquired on the basis of
experiments and measurements in nature and human practice so that no other
logical proofs of their truthfulness are needed. They can be expressed in an oral or
written way, in words or by mathematical formulae that satisfy the preprinciples
of mechanics.

By the definition of inertia force, the dimensions of force are determined and
thus, the laws of dynamics as well; in accordance with this definition all other forces
are formulated as vector invariants having a dimension M L T−2.

The phrase “up to the concrete constant” implies concrete real numbers deter-
mined by various measurements of experimental or natural phenomena. They are
called dynamic parameters in order to emphasize that they are comprised by the
forces’ functions.

If the difference between the expressions determination-definition and determination-
law is not sufficiently clear, it should be stressed that the definition is a product
of human mind as well as of the desire for singular accuracy, while the laws of
dynamics use words or formulae of the previously defined concepts in order to
state particular repetitive properties of the body motion with accuracy up to the
dimension constant of the dynamic parameters.

All the forces, including the defined inertia force (1.37), appear as interactions
of some bodies being related to other bodies. One body, that is, one non-free ma-
terial point, can be only conditionally “separated” from others in such a way that
“separation” in mechanics is abstracted by forces. The laws of natural sciences, as
well as the laws of dynamics describe not only particular repetitive and measurable
properties of one material point’s constraint with a multitude of others. The mental
deliverance from constraints is achieved in dynamics by abstraction by forces, for-
mulated by particular laws. Nature is much more complex than mechanical models;
still, these models can be used to determine numerous movements of the body with
great mathematical accuracy. Mechanics can use one concept of the material or
dynamic point to describe a position change of all the bodies, from the celestial
ones to the bodily molecules. And such a multitude is so great that it is hardly
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comprehensible. The mass of the outer space is considered to be so great that 1023

stars of the same magnitude as the Sun can be formed, while the composition of
the Earth comprises about 4× 1051 protons and neutrons (see [9]). In this theory
of motion man can, in some cases (like that of the parachute), be regarded as a
material point, though it is accepted that it consists of, on average, 1016 of cells
that are, in their turn, regarded as having a structure of 1012 − 1014 atoms each.
The number of entities stand in some proportion with the possibilities of mutual
association. For example, in a molecule of DNA which consists of 108−1010 atoms,
the atom distribution and their mutual relations exceed any countable multitude;
this, in its own right, makes particular specific sciences introduce simpler models
upon which they can carry out their research. Mechanics finds it sufficient to deal
with the concepts of the material and dynamic points.

Law of constraints

It is from classical mechanics and its related sciences about nature that knowl-
edge can be acquired as to the ways in which the bodies affect each other through
real objects that are called the constraints. The present findings do not point to
any particular body, out of a multitude of bodies, that can be isolated and ex-
ist by itself, namely, without being affected by other bodies. Still, this assertion
cannot be made about the whole multitude of bodies whose boundaries have not
been discovered yet; neither has the multitude in its wholeness. In the observed
rational or practical locality only limited sets of constraints are known. Many con-
straints or particular sets of constraints can be abstracted by means of particular
mathematical relations used for connecting essential attributes of motion as posi-
tions of the material points x = (x1, . . . , xn), velocities ẋ = (ẋ1, . . . , ẋn) or impulses
p = (p1, . . . , pn), as well as time t, by means of geometrical or kinematic parameters
κ.

Example 2. A body M1 of mass m1 is lying or is moving along the horizontal
smooth plate. This body is connected with another body M2 of mass m2 by some
attachment (fiber, rope, thread) passing through a smooth opening O on the plate
(Fig. 1).
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Fig. 1

Therefore, two bodies with known masses are given; their motion is bound by
means of two constraints: one of them being a smooth plate, while the other is the
fiber connecting them. For the mathematical description of these constraints it is
appropriate to introduce either Descartes rectilinear coordinate system Oxyz or a
cylindrical system of coordinates ρ, ϕ, z with the coordinate origin O, so that it is:

x = ρ cos ϕ, y = ρ sin ϕ, z = z. (E2.1)

In both the coordinate systems the “plate” can be represented by the relation:

f1 := z1 − C = 0. (E2.2)

However, the second constraint in the coordinate system Oxyz is represented
by the equation:

f2 :=
√

x2
1 + y2

1 + |z2| − l = 0, (E2.3)

while, relative to system Oρϕz, it can be represented by the equivalent equation:

f2 = ρ1+ | z2 | −l = 0. (E2.4)

It is understandable that at some transverse velocity the body M1 will move
along a circular line:

x2
1 + y2

1 = l2, z1 = z2 = 0. (E2.5)

This will happen, among other possibilities, when the boundary point of body
M2 coincides with point C. Such an equation also represents the case in which
the constraint is not taken to be fiber M1C, but a circular wire of radius l along
which body M1 glides. The mechanical difference is relevant. The wire will resist
the motion if it is not ideally smooth; this does not happen with the fiber. In the
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case of smoothness both the constraints can be abstracted by the constraint force
which is called the constraint reaction and is most often denoted by the letter R.

This example can clearly differentiate the concept of the “constraints” in math-
ematics and mechanics. It is customary in mathematics to consider every relation
establishing some sort of ratio between the observed mathematical parameters as
“constraint”; consequently, it includes (E2.1), (E2.2), (E2.3) or (E2.4) and (E2.5).
In mechanics, as can be seen in this example, the constraints are (E2.2), (E2.3),
(E2.4) or (E2.5). Therefore, each mathematical relation, as in example (E2.1), will
not be called the constraint. The difference is not just formal. Constraints (E2.2)
and (E2.3) or (E2.4) produce forces, so that constraint (E2.2) can be abstracted by
some vector R1, while relations (E.3) or (E.4) are abstracted by some other vector
R2. However, “mathematical constraints” and those similar to them (“substitu-
tion”, “transformation of coordinates”, “mapping”) do not produce any forces or
other physical phenomena.

It depends upon the relation between these forces, that is, upon the relation
of bodies and their association, as well as upon the inherited motion (position
and velocity) whether body M1, for instance, will move in the plate plane along
the pathway having either the shape of a straight line to which point C of the
circumference ρ1 = const, or that of a falling or rising helix or some other curved
line.

In the case that the plate also moves so that the constraint should be of the
form

f1 := z1 − τ(vt) = 0,

where v is a velocity parameter or in the case that fiber l changes in time, constraints
(E.2) and (E.3) or (E.4) would be written in the form

f1(z1, τ) ≥ 0 (E2.6)

or
f2(x1, y1, z1, z2, τ) ≥ 0. (E2.7)

This simple example becomes more complex if it is not assumed that the plate
plane is ideally smooth - as indeed happens in practice - and that the surrounding
medium is not empty, but existent. Then the structure of the force vectors becomes
more complex.

In the most general case, the constraints linking N bodies Mν , (ν = 1, 2, . . . , N)
can be written by means of k relations

fµ (y1, . . . , yN , ẏ1, . . . , ẏN , τ(t)) ≥ 0, yi ∈ E3N , (2.1)

where τ is some known function of time, or in the form

fµ (x1, . . . , xN , ẋ1, . . . , ẋN , τ(t)) ≥ 0, (µ = 1, . . . , k) (2.1a)
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since, as already stressed, the constraints are objects that are invariant regarding
any mathematical transformations. Considering the fact that in the literature about
the constraints’ mapping (2.1) from one coordinate system y into the other x, or
vice versa, there is much vagueness or incomprehension. The previous sentence
should be repeated in the following form:

fµ (y, ẏ, τ(t))y=y(x) = fµ (x, ẋ, τ(t)) ,

∥∥∥∥
∂y

∂x

∥∥∥∥ 6= 0 (2.2)

In words, it states that the constraint equations written with respect to one
coordinate system (y, e) can be also written with respect to the other coordinate
system (x, g) in the region in which there is explicit mapping between them. The
constraints can be scalar or vector invariant.

Relations (2.1) in which are real differentiable functions in the observed region,
namely, those pointing to boundaries of motion in a particular way are considered
as constraint relations or, shorter, constraints.

Therefore, constraints are dynamic objects that, together with material or
dynamic bodies, make up the system of material, or, consequently, dynamic points.
According to relations’ structure (2.1), functions fµ of the constraints are also most
often classified as:

• unilateral or unconstraining

fµ ≥ 0. (2.3)

• bilateral or constraining

fµ = 0. (2.4)

• geometric and finite

fµ(y) = 0. (2.5)

• kinematic or differential

fµ (y, ẏ, τ(t)) ≥ 0. (2.6)

• invariable and fixed

fµ (y) ≥ 0. (2.7)

• variable or moveable1

f (y, ẏ, τ(t)) = 0. (2.8)

1There are other terms used in literarure; these are, most often: unilateral (2.3), bilateral
(2.4), holonomic (2.5), holonomic differential and non-holonomic (2.6), scleronomic, stationary or
autonomous (2.7), rheonomic, nonstationary or non-autonomous (2.8).
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It can be noticed that all the finite constraints can be written in differentiated
form by differentiation. But, it is not always possible to reduce the originally given
differential constraints to the finite ones. For this reason, the writing of differential
constraints (2.6) contains differential integrable - finite or holonomic, differential
non-integrable – non-holonomic constraints. Any particular classification implies
that the signs of equality and inequality in (2.3) and (2.4) are taken into consider-
ation simultaneously with the function class (2.5) – (2.8).

However, much more essential is the classification of all the mechanical con-
straints into real constraints and ideally smooth, or, simply, smooth constraints.

As it happens, all the constraints are real and cannot be ideally smooth. If one
constraint is classified as “ideally smooth”, it means that in mechanics it is desirable
to stress that its dynamic factors (friction, resistance, hardness, elasticity) that are
not described by differentiable functions f are either neglected or described by other
functions. The general property of all constraints is marked by the determinant
that will be called the law of constraints.

The constraints restrict displacement of the material points as forces; they are
abstracted by the constraints’ reactions; k constraints fµ = 0 (µ = 1, . . . , k), that
constrain the motion of some ν-th material point, are abstracted by vector sum

Rν =
k∑

µ=1

Rνµ (2.9)

of constraints’ reactions Rνµ.
Vector (2.9) is called the resultant of the constraints’ reactions of the ν-th

point.
The vector-function of the constraints’ reactions can be completely or partially

determined for some classes of constraints. The most important task is to determine
the nature of given constraints.

For example, constraint (E2.2) is a unilateral geometrical finite invariable and
fixed. However, relation (E2.2) does not give information which is essential for
motion, namely, whether constraint (E2.2) is real or ideally smooth. One force will
act upon body M1 if the plate surface is rough; another force will affect it if the
plate surface is polished and dry; another if it has the same polish, but it is covered
with a thin layer of fluid; another if the air above the plate is rarefied or if it is a
gas in its liquid state.

The real constraints, in addition to relation (2.1), have a multitude of proper-
ties which the constraints’ reactions will depend on. For the sake of an easy, but,
at the same time, more comprehensive solution of the given problem, constraint
reaction Rν is always possible to be resolved into two components, namely, one of
them Rτ

ν belonging to the tangent plane at the contacting vth point of the body,
while the other RN

ν is perpendicular to that tangent plane.:

Rνµ = Rτ
νµ + RN

νµ. (2.10)
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Forces Rτ
ν appear as a result of the constraint’s friction or the medium resis-

tance which always exists. Its magnitude is experimentally determined; it is gen-
eralized by the friction law and the law of medium resistance. If given force Rτ is
negligibly small, Rτ ≈ 0, and thus, with no effect upon motion, or if Rτ 6= 0 is tak-
en into account, independently of the constraint, then the geometrical constraints
are considered as ideally smooth and substituted by reaction R whose direction,
with respect to the pathway, is determined by constraint gradient

RN
νµ = λµ gradν fµ (2.10a)

where λµ is a certain constraints’ multiplier.

Laws of Friction

1. At the contacting point between the body and the constraint friction force
Rτ

ν sets up and affects geometrical constraints at the contacting point; if the bodies
touch each other with their surfaces, the friction force’ point of action is considered
to be the geometrical center of the contacting surfaces.

2. The boundary value of dry friction force Rτ
max at rest is proportional to the

magnitude of force N , perpendicular to the constraint, that is,

Rτ
max = µRN , RN = −N, (2.11)

where µ is a tabular coefficient of the sliding friction and rest, depending on the
body structure (material point), way of treatment (smoothness) and other states
(humidity, temperature, etc.) of the rubbing surfaces, but not on the size of these
surfaces.

3. The friction force of the real constraints appears in the general case as a
function of velocities and positions

Rτ
M = Rτ (y, ẏ = 0) + Rτ

K(y, ẏ) ≷ 0. (2.12)

Laws of Medium Resistance and Thrust

The bodies have a boundary contact with the surrounding real medium which
can also be considered as a constraint. The fluid medium affects the body by
resistance force which, in a way similar to the friction force, appears as a function
of the contact velocity or of connecting fluid particles and bodies, as well as a force
of pressure or thrust.

1. Each element up to the surface dσ of the body is affected by force pndσ
where pn is the surface force density directed with respect to the normal of surface
elements dσ.

2. The principal forces’ vector

F =
∫

σ

pndσ (2.13)
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can be expressed as a vector sum of resistance force F τ , directed opposite to velocity
v, and thrust force F N , perpendicular to v. [22, pp. 133, 454, 455].

Law of Elasticity of Materials

The body whose constraints between particles have the property of regain-
ing their original shapes after any kind of deformation is called elastic, while the
restitution force is regarded as the force of elasticity.

At small strains F of an elastic body, elasticity force F is proportional to strain
ε, that is,

F = −kε, (2.14)

where k is the restitution factor.

Law of Reaction Thrust

Mass flow ṁ =
dm

dt
, that departs from the body of mass m(t) in time t and at

velocity u with respect to the body affects this body by a reaction force

Φ = ṁu (2.15)

Law of Gravity

Thousands of years devoted to observing and studying positions and motion of
the celestial bodies, as well as of satellites in their interactions, offer the following
findings:

- many bodies in the outer space apparently preserve for good their positions or
repetitive apparent motion with respect to each other,

- their mutual distances are either constant or change periodically,
- there are particular centers around which the bodies move along helical path-

ways leading towards the gravitational center.
Briefly, The bodies are mutually connected by the forces that induce particu-

lar motions with respect to each other, namely, the motions that depend on their
masses, distances and kinematic characteristics of motion.

This general assertion that can be considered as the general law of gravity
does not provide sufficient information either about the constraint or about the
force of mutual connections. It only says that there are mutual forces and motions
of the bodies. The theoretical assumptions of classical mechanics about the celestial
bodies’ motion, of natural and artificial objects within the solar system have been
confirmed so far or modified with sufficient reliability in practice. The solar system
here implies all the bodes existing either permanently or for a limited amount of
time in the space in which, under any kinetic circumstances, the dominant influence
upon their motion is that of the Sun, either indirectly or through local gravitational
fields of the planets. Of interest in this study are Kepler’s laws and Newton’s force
of gravity.
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Kepler’s Laws

I. The planets describe elliptical pathways around the Sun; it is at the common
focus of all these ellipses that the Sun is located [14, p. 29].
II. The radius-vector, drawn from the Sun to the planet, covers equal surfaces in
equal time intervals.
III. The time squares of some planets’ revolution around the Sun are proportional
to the third degrees of the great semiaxes of their pathways.

Note. It can be noticed that all the three laws do not speak about force
directly; neither do they determine the mutual attraction forces. For this reason,
none of them forms the laws of dynamics on its own. However, on the basis of all the
three laws Newton was able to determine the magnitude of the mutual attraction
force (2.18).

Newton’s Gravitational Force

One material point of mass mµ attracts another material point of mass mν

(µ 6= ν) by force Fνµ which is proportional to the product of masses mν and mµ,
while it is inversely proportional to squared distance r2

νµ of these points, namely,

Fνµ = −k
mνmµ

r2
νµ

eνµ, (2.16)

where k = const > 0, while

eνµ =
rν − rµ

|rνµ| .

More material points mµ affect the νth material point of mass mν by the
resultant attraction force:

Fν =
∑
µ=1

Fνµ = −
∑
µ=1
µ6=ν

k
mνmµ

r2
νµ

eνµ. (2.17)

The constant k is called as the universal gravitational constant. Regarding
the importance of the law that Isaac Newton (1643–1727) deduced on the basis of
Kepler’s laws and published in his ingenious work Philosophia naturalis principa
mathematica (Londoni, Anno MDCLXXXVII) and in order to pay homage to my
Professor M. Milanković who made available the grandiose Newton’s work to a
wide reading audience by his book The Celestial Mechanics (Nebeska mehanika,
Belgrade, 1935), I would like to quote some of his commentaries on the universal
gravitational law. “Every particle of the matter in the outer space attracts every
other particle by the force which falls in these particles’ straight line while having
an intensity which is proportional to the products of masses m1 and m2 of these
particles; it is, though, inversely proportional to their squared distance r. The
magnitude of this force is represented, therefore, by the expression:

F = f
m1m2

r2
. (2.18)
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In the above expression, proportionality factor f is one universal constant. The
sign “minus” is eliminated from the above expression, since the word “attracts”
explicitly determines this force’s direction”.

“It is Newton’s law that finally revealed a thousand years old mystery of the
planetary motion; it is from it that new findings came into being. All inequalities
of the planetary motion and the Moon became obvious as a natural consequence of
this law, as well as a clear expression of the mutual attraction among these celestial
bodies. Not only that the nature of these inequalities became explained by it; now
they could be computed and traced back into the past or followed into the future.
It turned out that, soon after Newton’s law had been postulated, that it was also
valid for the comets, for all the celestial bodies with no exception, namely, even
beyond the solar system. The precession of the equinox that was, so far as we are
informed, first stated by Chiparcos, found its full explanation by means of Newton’s
law as did the Earth’s axes nutation that was observed later on. Even the shape of
our Earth, especially its flatness due to its rotation, was given its mechanical and
geometrical explanation in all details. The same stands for the antique question
concerning the rise of the sea tide which turned out to be an immediate consequence
of the attraction between the Sun and the Moon. Thus, Newton’s law, the most
magnificent of all that a mortal man could formulate, turned out to be the general
law of nature that all the space is subdued to. It is from this law that another new
science came into being, namely, the celestial mechanics.

On the basis of law (2.16) it follows that force F , by which the Earth of mass
mzm attracts some body of mass m is determined by the formula:

F = −k
mmz

(R + h)2
e = −mg0e = −mg0 (2.19)

where R = 6, 37× 108 cm average Earth’s radius, h distance of the observed body
from the Earth’s surface, and g0 denotes acceleration

g0 = k
mz

(R + h)2
. (2.20)

On Laws of Dynamics

The introductory commentary on the laws of dynamics now becomes much
clearer and more concrete. Our starting point that the concept of the “law of
dynamics” implies formulations - determinants of forces with accuracy up to some
constants - comprises the laws of constraints, friction, medium resistance, elasticity
of materials, reactive force, gravitational law as well as the law about the Earth’s
gravitational force (2.19). Each of these basic laws is used, directly or indirectly, for
determining particular forces. Some formulae of these forces can be of greater or
smaller generality, but they all comprise either one or a set of constants that allow
for or require a more accurate determination for particular objects. The accuracy of
these constants, including the forces’ formulae, will depend not only on ignorance
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of the objects’ nature, but often on the lack of mathematical knowledge which
would otherwise provide calculations with very complex relations. For instance [2],
in formula (2.19) the average Earth’s radius R = 6.37× 108 cm is taken, while the
equatorial one is 6.38×10 cm, [2, p. 17],“h is distance of the body from the Earth’s
surface”, while the concept of distance “from the Earth’s surface” is not precise.
It can mean one thing when it refers to the Earth’s mathematical surface; another
thing is when it implies the sea surface at some geographical latitude; another thing
is at the bottom or beyond the mountain chains. Finally, even the gravitational
constant is subjected to scientific verification for particular gravitational areas. It is
logical to expect that the recent development of astronautics and of its applications
will contribute to more accurate knowledge about the gravitational force, while the
development of other branches of mechanics will depend on making other laws of
dynamics more concrete, modified or generalized. This study supports the view
that the laws of dynamics are used for determining formulae of particular forces,
except for inertia forces introduced by the definition. As could be seen, the laws are
more or less general for particular mechanical systems. The considered number of
laws is incomplete since, for particular and more concrete body systems, the forces
are classified more concretely, including the laws by which they are determined. It
is still valid that the laws of dynamics satisfy the preprinciples of mechanics.

On the basis of the fact that the laws of dynamics are determined by observing
and measuring in nature and in experimental human practice, it is accepted that
the principle of existence is satisfied.

Once the forces’ existence is stated, the preprinciple of invariance is an indis-
pensable condition that the mappings of forces’ functions, during the transition
from one coordinate system into another, should not change the laws of dynamics.

The history of the discovery, along with the measuring and observing practice,
of the Newton’s theorem on “the world system” itself, as well as the “problem”
solving about motion of two bodies (see (3A.70)), suggests that other laws of mutual
attraction, different from (2.18), should be set up regarding the preprinciple of
casual definiteness.

On Mutual Attraction Force

Two material forces of masses m1 and m2 attract each other at mutual distance
ρ(t) by the force of magnitude [69], [70]:

F =
ρ̇2 + ρρ̈− v2

or

m1 + m2

m1m2

ρ
= χ

m1m2

ρ
(2.21)

where the meaning of velocity vor is explained by the formula:

v2
or = (ẋ1 − ẋ2)2 + (ẏ1 − ẏ2)2 + (ż1 − ż2)2.

If it is assumed that distance ρ = r does not change in time and if it is assumed
that the distance between mass M center of the Sun and the planet center of mass
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m, the expression (2.21) is reduced to:

F = − v2
or

M + m

Mm

r
.

By introducing another conjunction that it is

vor(t) = vor(t0) = rΩ

where Ω is angular velocity of the planet’s revolution around the Sun, the modified
([14] or [15]) Newton’s force (2.18) [14] is obtained:

F = − r2Ω2r

M + m

Mm

r2
= −κ∗Mm

r2
.

The principle of casual definiteness speaks about accuracy up to some con-
stant. The table on page 73 clearly shows the meaning of the concept “up to some
constant” used here along with “to the accuracy” of dynamic parameters. The
making of accuracy more relative before generalization also refers to other laws of
dynamics.



III. PRINCIPLES OF MECHANICS

The concept of the principle of mechanics implies here an expression of general
significance, based on the introduced concepts and definitions of mechanics whose
truthfulness is not liable to verification.

The principles of mechanics must be concordant with the preprinciples. small-
skip On the basis of the definitions introduced so far the principle of equilibrium
can be set up now.

By additional defining of “work”, “action” and “compulsion”, other principles
can be introduced, namely, the principle of work, the principle of action and the
principle of compulsion. The principles of mechanics are not themselves sufficient to
provide for problem-solving in mechanics without laws of dynamics. The statement
of general significance in mechanics, such as the principle of mechanics, represents
the basis for developing a whole theory of mechanics, but its application would
require knowledge of the laws of dynamics.

3A. PRINCIPLE OF EQUILIBRIUM

A body is in dynamic equilibrium so that the sums of all the forces acting upon
particular dynamic points of the body are equal to zero.

This principle can be written in the form of vector equations:
∑
µ=1

Fνµ = 0 (ν = 1, 2, . . . , N) (3A.1)

where index ν denotes the ν-th dynamic point, while index µ denotes the forces
exerted upon the ν-th dynamic point.

Material Point. If only one material point is observed, then, instead of a
system of many equations (3A.1) there is only a vector one, namely:

∑
µ

Fµ = 0. (3A.2)

In accordance to the definition of the inertia force and the laws of dynamics,
equations (3A.1) can be written in the form:

Iν +
∑

i=1

Fνi = 0, (3A.3)
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where I is inertia force determined by definition (1.37), while Fνi are the forces
determined by the laws of dynamics (2.2, 2.3, 2.8, 2.9, 2.10, etc.)

Equations (3A.3) allow some forces to be unknown in advance; consequently,
they have to be determined by means of definitions (3A.3) depending on the number
of forces known on the basis of the laws of dynamics and definition (1.37). This
implies that the constraints equations should be added to the equations of the law
(3A.1). By substituting inertia force (1.37), force (2.6) and constraint force (2.7)
in equation (3A.3), the vector equation of the material point motion is obtained:

m
dv

dt
= F + R. (3A.4)

The following conclusion can be derived from this:

Conclusion 1. The material point moves at constant velocity v if the sum of
acting forces F and constraint forces is equal to zero, that is,

∑
µ

Fµ +
∑

µ

Rµ = 0 −→ v(t) = v(t0). (3A.5)

With respect to the natural coordinate trihedron (η1, η2, η3) of equation (3A.3)
it is easy to write, if forces Fi are resolved along the tangent, the principal normal
and the binormal, namely,

∑
µ

Fµ = F = Fττ + Fnn + Fbb, (3A.6)

∑
µ

Rµ = R = Rττ + Rnn + Rbb. (3A.7)

By substituting these relations as well as the coordinates of inertia force (1.41)
and (1.42) in equation (3A.1), the scalar equations of the material point’s motion
are obtained in the natural system of coordinates:

Fτ + Rτ −m
dv

dt
= 0 (3A.8)

Fn + Rn + In = 0 (3A.9)

Fb + Rb = 0. (3A.10)

From motion equations (3A.8) and (3A.9) the following conclusion can be
drawn:

Conclusion 2. The material point moves with respect to magnitude at con-
stant velocity if forces Fτ and Rτ and mutually annul themselves, while the sum
of the respective components of these forces and the inertia force on the principal
pathway normal is equal to zero.
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With respect to other coordinate systems (y, e) and (x, g), equilibrium system
(3A.1) is invariant and covariant. If forces F and R are resolved along coordinate
vectors e or g, that is,

F = Y iei = Xjgj , R = Riei = Rjgj (3A.11)

and are substituted, together with relation (1.38) in equation (3A.1), the invariance
is obvious: (

Ii
y + Y i + Ri

y

)
ei =

(
Ij
x + Xj + Rj

x

)
gj = 0. (3A.12)

Scalar multiplication by coordinate vectors, according to relations (1.14), gives
covariant differential equations of the point motion with respect to base system
(y, e):

mÿi = Yi + Ri, (3A.13)

or with respect to any other coordinate system (x, g) that satisfies condition (1.15):

mgij
Dvi

dt
= Xj + Rj , (3A.14)

where

Xj = Yi
∂yi

∂xj
, Rj = Ri

∂yi

∂xj

are projections of forces F and R upon coordinate directions gj .
Equilibrium principle (3A.1) or (3A.3) or (3A.12) can be written with respect

to any coordinate system of coordinates (x, g) in the covariant form:

gij

(
Ij + Xj + Rj

)
= Ii + Xi + Ri = 0, (3A.15)

where Ii = gijI
j , Xi = gijX

j , Ri = gijR
j are coordinates of the forces’ covectors.

If a set of coordinates Xi of vector F −Xjgj is called a vector, then a set of
projections Xi=F · gi =

(
Xjgj

)
gi is called the covariant vector coordinates. That

is why equations (3A.15) can also be called covariant equations of the equilibrium
principle with respect to some system of coordinates (x, g).

System of Material Points and Finite Constraints

It is dynamic equilibrium principle (3A.1) that refers to a multitude of material
and dynamic points. All the relations from (3A.2) to (3A.13), derived only for one
material point of mass m, stand for every ν-th material point of mass mν . Such
a system of N material points will have N vector equations of the form (3A.1)
or (3A.2)–(3A.4) and k constraints equations (2.6). Nothing more important than
this changes. However, the manner of solving problems concerned with the system
motion comprises some difficulties and innovations originabing from the limitations
of the applied mathematical apparatus as well as from mutual constraint of the
material points that generate forces of a complex mathematical structure.
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The simplest and thus, the most widely used, way of describing is the one with
respect to base coordinate system (y, e).

It is assumed that there are N material points of mass mν (ν = 1, . . . , N)
whose position vectors rν = yi

νei (i = 1, 2, 3) and that they are connected by k
finite constraints

fµ(y1
ν , y2

ν , y3
ν) = fµ(y1, . . . , y3N ) = 0, (3A.16)

where the following notations are introduced

y1
ν =: y3ν−2, y2

ν =: y3ν−1, y3
ν =: y3ν , (3A.17)

m3ν−2 ≡ m3ν−1 ≡ m3ν . (3A.18)

The constraints (3A.16) must satisfy the velocities conditions

ḟµ =
∂fµ

∂yα
ẏα = 0, (α = 1, . . . , k, k + 1, . . . , 3N), (3A.19)

as well as the acceleration conditions

f̈µ =
∂2fµ

∂yβ∂yα
ẏαẏβ +

∂fµ

∂yα
ÿα = 0. (3A.20)

These constraints are considered independent so that the determinant of the

matrix
(

∂fµ

∂yα

)
of the level k, is different from zero:

∣∣∣∣
∂fµ

∂yα

∣∣∣∣ 6= 0. (3A.21)

It follows from equations (3A.19) that the velocities vectors are perpendicular
to the constraints gradients. This fact points to a possibility that the constraints
forces (2.7) can be viewed as a sum of friction forces (2.9) and normal component

RN
ν =

k∑
µ=1

λµ gradν fµ, where Rτ would be determined by the friction law unlike

RN determined by acceleration condition (3A.20).Thus all the constraints’ forces
Rν , regarding the constraint and friction laws, can be written by means of the
expression

Rν = Rτ
ν +

k∑
µ=1

λµ gradν fµ (3A.22)

where λµ are indefinite multipliers.
For the sake of brevity, friction forces λµ are taken as active forces Rτ

ν , while
the constraints are regarded as ideally smooth; likewise, the constraint force always
has the gradient direction and magnitude:

RN
νµ = |λµgradνfµ| . (3A.23)
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In view of all that has been said, it follows from the equilibrium principle that
a system of recognizable differential equations is:

Iν +
∑

s

Fνs + RN
ν = 0 (3A.24)

or, due to idealization of the constraints and the inertia force definition,

mν
dvν

dt
= Fν +

k∑
µ=1

λµ gradν fµ,

fµ(r1, . . . , rN ) = 0;





(3A.25)

in the scalar form, equations (3A.25) can be written, with respect to (3A.17) and
(3A.18), in a brief form:

mÿ = Y +
k∑

µ=1

λµ
∂fµ

∂y
,

fµ(y) = 0,

(3A.26)

and there are 3N +k of them which is sufficient for an explicit determination of 3N
coordinates y if Y functions are known or 3N coordinates of the force Y if motion
y(t) is known as well as k of the multiplier λµ.

By substituting ÿ from relation (1.32) in (3A.26) and subsequent multiplication

of equation (3A.26), by matrix
∂y

∂x
, it is obtained, in accordance with relations

(1.31)

ars
Dvs

dt
= Xr +

k∑
µ=1

λµ
∂fµ

∂xr
,

fµ(x) = 0,





(r, s = 1, . . . , 3N) (3A.27)

where tensor ars(mν , x) contains only one mass mν of particular material point
and its coordinates x1

ν , x2
ν , x3

ν . These differential equations are suitable due to the
possibility of reducing a great number of constraints in various coordinate systems
xi to a simple form fµ = xi

µ−const = 0, so that the constraint forces are reduced to
Rµ = λµ. In any other case, equations (3A.27) are more complex and complicated.
Another form of the same equations is denoted by number (3A.15).

Systems with Variable Constraints

In the case that finite constraints (3A.16) depend not only upon y = (y1, . . . , y3N )
coordinates, but also explicitly on time as well, velocity conditions (3A.19) and
those of acceleration (3A.20) considerably change, since the number of addends is
increasing under these conditions as is obvious in the following velocity conditions:

ḟµ =
∂fµ

∂yα
ẏα +

∂fµ

∂t
= gradν fµ · vν +

∂fµ

∂t
= 0. (3A.28)
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It becomes clear that in the case of variable constraints in time, that is, of the
constraints of the form fµ(y, t) = 0, velocities vectors v are not orthogonal to the
constraints gradient; thus, the velocities do not lie in the constraints’ tangent planes;
the pathway tangent does always not coincide with the constraints’ tangents. For
the sake of a clearer analysis of velocities conditions (3A.28), it should be noted
that the mechanical constraints are not written in the form f(y, t) = 0 since such
a writing would comprise, for instance, the equation

f = t2 + 2t + 3 = 0,

which loses the meaning of the mechanical constraints; it is in accordance nei-
ther with relation (2.2) nor with the constraints’ law. The variable constraints in
time must satisfy the dimension equation, that is, they have to be dimensionally
homogeneous. In order to achieve this homogeneity between y coordinates of L di-
mension and time t of dimension T, it is necessary to connect these values by some
parameter κ of the dimensions L and T. Therefore, time in mechanical constraints
appears in the structure of the functions containing dimension parameters, so that
variable or moveable constraints, in accordance with definition (2.6) are written in
the form:

fµ(y, τ) = 0 (µ = 1, . . . , k), (3A.29)

where τ is some real time function with definite real coefficients having physical
dimensions [49], [51]. For the sake of brevity, instead of function τ with definite
coefficients, let’s introduce an additional coordinate y0, so that it satisfies the con-
dition

f0 = y0(κ, t)− τ(t) = 0. (3A.30)

Example 3. Let the motion of two material points be limited by means of
three constraints, namely,

f1 = (y1 − y4)2 + (y2 − y5)2 + (y3 − y6)2 − 4t2 = 0
f2 = y3 − 0.5t = 0,

f3 = y6 − 0.5t + 0.3 = 0.

(E3.1)

Regarding the fact that the coordinates have a dimension of length, the coeffi-
cients 4 and 0.3 will also have a dimension of length L, while the coefficient 0.5 will
have a dimension of velocity L T−1. By an appropriate choice of parameters of one
or the other dimension µ, dim µ = L T−1, an auxiliary coordinate is introduced:

y0(µ, t) = 0.5t, dim y0 = L .

Substituting time from this newly-introduced relation, t = 2y0, in the given
constraints, it can be written that

f1 = (y1 − y4)2 + (y2 − y5)2 + (y3 − y6)2 − 16y2
0 = 0,

f2 = y3 − y0 = 0,

f3 = y6 − y0 + 0.3 = 0.

(E3.2)
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With y0 coordinate, constraints equations (3A.29) can be written in the form

fµ(ỹ) = 0, ȳ = (y0, y1, . . . , y3N

︸ ︷︷ ︸
y

) = (y0, y) (3A.31)

while the velocity and acceleration conditions in the form (3A.19) and (3A.2), that
is,

ḟµ =
∂fµ

∂ỹ
˙̃y =

∂fµ

∂y
ẏ +

∂fµ

∂y0
ẏ0 = 0, (3A.32)

f̈µ =
∂2fµ

∂ỹ∂ỹ
˙̃y ˙̃y +

∂fµ

∂ỹ
¨̃y (3A.33)

=
∂2fµ

∂y∂y
ẏẏ + 2

∂2f

∂y0∂y
ẏẏ0 +

∂2f

∂y0∂y0
ẏ0ẏ0 +

∂fµ

∂y
ÿ +

∂fµ

∂y0
ÿ0 = 0.

The last acceleration relation can be written in a shorter form

∂fµ

∂y
ÿ +

∂fµ

∂y0
ÿ0 = Φ

(
ỹ, ˙̃y

)
(3A.34)

where the composition of function Φ is obvious.
If ÿ from equation (3A.26) is included in equation (3A.34), it is obtained that:

∂fµ

∂y

k∑
σ=1

λσ
∂fσ

∂y
= m

(
Φ− ∂fµ

∂y0
ÿ0

)
− ∂fµ

∂y
Y.

The solution with respect to unknown multipliers λσ shows that the reaction
forces of variable constraints do not only depend upon ỹ coordinates and ˙̃y veloc-
ities, but also on ÿ0, as well as on inertia force −mÿ0 which emerges due to the
constraints’ change in time.

The constraints in equations (3A.31), and, especially in (3A.12), (3A.25),
(3A.26) or (3A.27) can be written in the form:

rν = rν

(
q0, q1, . . . , qn

)
, n = 3N − k (3A.35)

where q =
(
q1, . . . , qn

)
are independent generalized coordinates, while q0 is a rheo-

nomic coordinate satisfying equation (3A.30), that is,

q0 − τ(t) = 0. (3A.36)

By reducing the finite constraints to the geometrical form (3A.35) the number
of differential equations for the constraints’ number is also reduced; at the same
time, constraints’ forces R are eliminated which makes it considerably easier to
solve the problem.
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The velocities of ν-th material points, according to definition (1.1), can be
written in the following form:

vν =
∂rν

∂q0
q̇0 +

∂rν

∂q1
q̇1 + · · ·+ ∂rν

∂qn
q̇n =

∂rν

∂qα
q̇α (3A.37)

where
∂rν

∂qα
(q) are coordinate vectors that will be marked by two-indices notation

gνα; index ν denotes the number of the material point, while index α denotes the
number of independent coordinate qα (α = 0, 1, . . . , n).

For addition with respect to index ν, we use addition sign
∑
ν

, while for addition

with respect to the indices, coordinate α denotes iteration of the same letter in the
same expression, as well as both the lower and the upper indices. Vector (3A.37),
as can be seen, has n + 1 independent elementary vectors. Accordingly, impulse
vector (1.26) of the ν-th material point of mass mν of the observed system can also
be represented by the formula

pν = mνvν = m
∂rν

∂qα
q̇α. (3A.38)

Scalar multiplication by coordinate vectors
∂rν

∂qβ
gives vector pν projection

upon the tangential direction of qβ coordinate of the ν-th material point. We will
denote it by a two-indices letter:

pνβ = mν
∂rν

∂qβ
· ∂rν

∂qα
q̇α.

This is in accordance with the formula for impulse’s coordinates (1.25) of one
material point. Regarding the fact that pνβ impulses are scalars, it is possible to
sum them up:

pβ :=
N∑

ν=1

pνβ =
N∑

ν=1

mν
∂rν

∂qα
· ∂rν

∂qβ
q̇α = aαβ q̇α, (3A.39)

from which it can be seen that aαβ is an inertia tensor of the whole system:

aαβ =
N∑

ν=1

mν
∂rν

∂qα
· ∂rν

∂qβ
=

= aαβ

(
m1, . . . , mN ; q0, q1, . . . , qn

)
.

(3A.40)

If the masses are constant quantities, this tensor is written as a function of
independent coordinates:

aαβ = aβα

(
q0, q1, . . . , qn

)
. (3A.41)
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By means of important relations (3A.39) the concept of generalized impulses
of the material points’ system is introduced. Therefore, the sum of the material
points’ impulse vector projections upon the coordinate direction of the β-th gen-
eralized coordinate is considered as the generalized impulse pβ. The generalized
impulses appear as linear homogeneous forms of the generalized velocities, which is
in accordance with the basic definition of impulse (1.24). Regarding the fact that
the inertia tensor aαβ determinant is different from zero, it is possible to determine
the generalized velocities q̇α as linear homogeneous combinations of the generalized
impulses, namely:

q̇α = aαβpβ , (3A.42)

where aαβ is countervariant inertia tensor.
If the constraints do not explicitly depend upon the known functions of time

τ , there is no rheonomic coordinate q0, so that in all the expressions, from (3A.35)
to (3A.34), coordinates q0, q̇0 and p0 vanish. The impulse form (3A.39) does not
change, expect for the fact that indices α = 0, 1, . . . , n do not assume values from
0 to n, but from 1 to n. In order to facilitate this distinction further on, let Greek
indices α, β, γ, δ assume values from 0 to n,(α, β, γ, δ = 0, 1, . . . , n), while the Latin
ones take i, j, k, l from 1 to n (i, j, k, l = 1, 2, . . . , n). Then it can be written [44]:

vν =
∂rν

∂q0
q̇0 +

∂rν

∂qi
q̇i (3A.43)

pi = a0iq̇
0 + aij q̇

j (3A.44)

p0 = a00q̇
0 + a0j q̇

j (3A.45)

q̇i = ai0p0 + aijpj (3A.46)

q̇0 = a00po + a0jpj . (3A.47)

Covariant Differential Equations of the System’s Motion

If equations (3A.1) are successively multiplied scalarly by coordinate vectors
∂rν

∂qα
respective to index ν and if they are added with respect to index ν, the system

of n + 1 covariant equations of the equilibrium principle is obtained, namely,

∑
µ

Fνµ · ∂rν

∂qα
= Qα = 0 (3A.48)

or, relative to equations (3A.3),

Iα + Qα = 0 (3A.49)

where now

Iα =
N∑

ν=1

Iν · ∂rν

∂qα
(3A.50)
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are generalized inertia forces, while

Qα =
N∑

ν=1

(∑
µ=1

Fµν

)
· ∂rν

∂qα
(3A.51)

are generalized forces.

Differential equations (3A.49) represent a system of n + 1 differential covari-
ant equations of motion which will be written in an extended form. In order to
understand better their mechanical meaning, vector equations (3A.25) should be

the ones to start from. Scalar multiplication of equation (3A.25) by vectors
∂rν

∂qα
,

followed by addition with respect to indices ν, gives

N∑
ν=1

mν
dvν

dt
· ∂rν

∂qα
=

N∑
ν=1

Fν · ∂rν

∂qα
+

N∑
ν=1

k∑
µ=1

λµ gradν fµ · ∂rν

∂qα
.

The ordinary notations are introduced:

N∑
ν=1

Fν · ∂rν

∂qα
=: Qα (3A.52)

N∑
ν=1

k∑
µ=1

λµ gradν fµ · ∂rν

∂qi
= 0, (3A.53)

since it is gradν fµ · ∂rν

∂qi
=

∂fµ

∂qi
for i = 1, . . . , n;

N∑
ν=1

k∑
µ=1

λµ gradν fµ · ∂rν

∂q0
= −

k∑
µ=1

λµ
∂fµ

∂q0
=: R0; (3A.54)

N∑
ν=1

mν
dvν

dt
· ∂rν

∂qα
=

N∑
ν=1

mν
d

dt

(
∂rν

∂qβ
q̇β

)
· ∂rν

∂qα

=
∑

ν

mν

(
∂2rν

∂qγ∂qβ
q̇β q̇γ +

∂rν

∂qβ
q̈β

)
∂rν

∂qα
.

If vector
∂2rν

∂qγ∂qβ
is resolved along coordinate vectors

∂rν

∂qδ
, namely,

∂2rν

∂qγ∂qβ
= Γδ

γβ

∂rν

∂qδ
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it further follows that it is

N∑
ν=1

mν
dvν

dt
· ∂rν

∂qα
= aαβ q̈β + aαδΓδ

γβ q̇γ q̇β =

= aαβ

(
q̈β + Γβ

γδ q̇
γ q̇δ

)
= aαβ

Dq̇β

dt
.

(3A.55)

By substituting relations (3A.52), (3A.54) and (3A.55), regarding (3A.53), in
equation (3A.4) the system of n + 1 covariant differential equations of motion is
obtained [38], [49], [51]:

aαβ
Dq̇β

dt
= Qα, (α = 0, 1, . . . , n) (3A.56)

or

aiβ
Dq̇β

dt
= Qi (i = 1, . . . , n) (3A.56a)

a0β
Dq̇β

dt
= Q∗

0 + R0 =: Q0 (3A.56b)

In accordance with the definition of the material point impulse it follows that
generalized system impulses pβ = aαβ q̇α are linear combinations of generalized
velocities where the inertia tensor of a more general and complex structure:

aαβ = aβα

(
m1, . . . , mN , q0, q1, . . . , qn

)
.

The respective system of the covariant differential equations of motion (3A.56)
can be written in the form:

Iα + Qα = 0, (α = 0, 1. . . . , n)

The number of degrees of freedom can be made identical to the number of n+1
equations (3A.56).

In this way, by means of the dynamic equilibrium principles, the laws of dy-
namics and the basic definitions, the theory about motion of material points or
bodies, as well as deformable medium, has been completely comprised, regarding
the fact that the material point can represent both the body as an entity and its
particular parts.

Example 4. A material point of mass m = const is moving under the impact
of the constraints:

f1 = x− l0 − κτ(t) = 0, τ = cosΩt,

f2 = y = 0,

f3 = z = 0,
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where κ, l0 and Ω are concrete real numbers.
Determine the forces acting upon the body.
In this case, the system of differential equations (3A.26) is:

mẍ = λ1

mÿ = λ2

mz̈ = λ3.

From condition (3A.33) it follows λ2 = λ3 = 0, while it follows from equation
f̈1 = ẍ− κτ̈ = 0

λ1

m
− κτ̈ =

λ1

m
+ κΩ2 cos Ωt = 0,

so, it is obtained that the acting force is

X = λ1 = −mκΩ2 cosΩt = −mΩ2(x− l0).

Therefore, the force inducing the given motion is proportional to elongation
(x− l0) where proportionality factor Ω2 has the frequency dimension of T−2.

Example 5. Three non-free points. Let the points A(xA, yA, 0), B(xB , yB , 0)
and C(xC , yC , 0) are connected in plane z ≡ 0 by constraints (as in Fig. 2):

f1 =
√

(xC − xA)2 + (yC − yA)2 − l1 = 0,

f2 =
√

(xB − xc)2 + (yB − yc)2 − l2 = 0,

f3 =
√

(xB − xA)2 + (yB − yA)2 − 2l = 0,

f4 = xA = 0,

f5 = yA = 0,

f6 = yB = 0,

where l = l0τ(t), while l0 = const and τ(t) is a known time function of initial
value τ(t0 = 0) = 1; force FB = (0,−GB , 0) is acting at point B, while force
FC = (0,−G, 0) is acting upon point C; G = const (as in Fig. 2). Constraints’
reactions f4 = 0, f5 = 0 and f6 = 0 should be determined [67], [68], [71].
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Fig. 2

There are nine equations (3A.24), that is, (3A.26) for three dynamic points.
However, a set of the forces, projections upon z axis is empty, so that equations
(3A.26) can be written in the form:

−λ1
xC − xA

l1
− λ3

xB − xA

2l
+ λ4 = 0, (E5.1)

−λ1
yC − yA

l1
− λ3

yB − yA

2l
+ λ5 = 0, (E5.2)

Ix(C) + λ1
xC − xA

l1
− λ2

xB − xC

l1
= 0; (E5.3)

Iy(C) + λ1
yC − yA

l
− λ2

yB − yC

l
−G = 0, (E5.4)

Ix(B) + λ2
xB − xC

l
+ λ3

xB − xA

2l
= 0, (E5.5)

λ2
yB − yC

l
+ λ3

yB − yA

2l
+ λ6 −GB = 0. (E5.6)

It follows from (E5.3) and (E5.4) that it is:

λ1 =
l1

2yC

(
G− Iy(C)− Ix(C)

yC

l

)
,

λ2 =
l1

2yC

(
G− Iy(C) + Ix(C)

yC

l

)
,

and then, it is obtained from (E5.5):

λ3 =
l

2yC

(
Iy(C)−G− Ix(C) + 2Ix(B)

2

)
.

If quantities λ1, λ2 and λ3 are introduced in equations (E5.1), (E5.2) and
(E5.3), the required constraints’ reactions are obtained f4 = 0, f5 = 0 and f6 = 0,
namely:

λ4 = −Ix(C)− Ix(B) = RAx,

λ5 =
G

2
− Iy(C)

2
− yC

2l
Ix(C) = RAy,

λ6 =
G

2
+ GB − Iy(C)

2
+ Ix(C)

yC

2l
= RBy.
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Since the inertia forces:

Ix(C) = −mẍC = −ml̈, Iy(C) = −mÿC ,

Ix(B) = −mBẍB = −2mB l̈,

the found constraints’ reactions obtain a concrete form:

λ4 = RAx = (m + 2mB)l̈,

λ5 = RAy =
G

2
+

m

2

(
ÿC +

yC

l
l̈
)

,

λ6 = RBy =
G

2
+ GB +

m

2

(
ÿC − yC

l
l̈
)

.

(E5.7)

Regarding the fact that line segments AB, AC, CB are given as known time
functions, so ordinate yC = yC(l, l1) can be determined as depending on τ(t) like ÿC

derivative. For degenerative system C ∈ AB, yC = 0, it follows from the previous
solutions:

RAx = (m + 2mB)ÿ, RAy =
G

2
, RBy =

G

2
+ GB . (E5.7a)

that l = const and GB = 0 it follows that RAx = 0, RAy = RBy =
G

2
.

Such a problem is solved in mechanics in a considerably simpler and shorter
way by means of the “moment of force” and the “moment of the couples of forces”.
This statement will be explained in the following example.

Example 6. Coupled Points. Two material points of masses m1 = const
and m2 = const are connected by a rigid constraint

f1 = (x2 − x1)
2 + (y2 − y1)

2 + (z2 − z1)
2 − l2 = 0,

l = const. The first point is acted upon by force F1 = F , while the other is acted
upon by a parallel, but inversely directed force F2; the magnitudes of these forces
are equal, F1 = F = F2. By eliminating the constraint multiplier the dynamic
equilibrium conditions of the material points should be determined.
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Fig. 3

Differential equations (3A.26) are:

m1ẍ1 = X1 − 2λ1(x2 − x1)

m1ÿ1 = Y1 − 2λ1(y2 − y1)

m1z̈1 = Z1 − 2λ1(z2 − z1)

m2ẍ2 = X2 + 2λ1(x2 − x1)

m2ÿ2 = Y2 + 2λ1(y2 − y1)

m2z̈2 = Z2 + 2λ1(z2 − z1).

Elimination of the constraint multiplier is possible in two ways:
1. By summing up the respective projections which gives:

m1ẍ1 + m2ẍ2 = X1 + X2,

m1ÿ1 + m2ÿ2 = Y1 + Y2,

m1z̈1 + m2z̈2 = Z1 + Z2.

2. By identifying the obtained values

λ1 =
m1ẍ1 −X1

2(x1 − x2)
=

m1ÿ1 − Y1

2(y1 − y2)
=

m1z̈1 − Z1

2(z1 − z2)

or

λ1 =
m2ẍ2 −X2

2(x2 − x1)
=

m2ÿ2 − Y2

2(y2 − y1)
=

m2z̈2 − Z2

2(z2 − z1)
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it is obtained that

M1
z = (m1ẍ1 −X1) (y2 − y1)− (m1ÿ1 − Y1) (x2 − x1) = 0,

M1
x = (m1ÿ1 − Y1) (z2 − z1)− (m1z̈1 − Z1) (y2 − y1) = 0,

M1
y = (m1z̈1 − Z1) (x2 − x1)− (m1ẍ1 −X1) (z2 − z1) = 0,

M2
z = (m2ẍ2 −X2) (y2 − y1)− (m2ÿ2 − Y2) (x2 − x1) = 0,

M2
x = (m2ÿ2 − Y2) (z2 − z1)− (m2z̈2 − Z2) (y2 − y1) = 0,

M2
y = (m2z̈2 − Z2) (x2 − x1)− (m2ẍ2 −X2) (z2 − z1) = 0,

(3A.57)

where letter M is introduced, for the time being, in order to make the notation
shorter.

Summing up the respective relations with respect to the axes it is obtained
that:

M1
z + M2

x = m1ẍ1(y2 − y1) + m2ẍ2(y2 − y1)−
− [m1ÿ1(x2 − x1) + m2ÿ2(x2 − x1)]−
− [Y1(x2 − x1)−X1(y2 − y1)]−
− [X2(y2 − y1)− Y2(x2 − x1)] =

= Mz (I1) + Mz (I2) + Mz (F1) + Mz (F2) =

=
∑

i=1

Mz (Ii) +
∑

i=1

Mz (Fi) = 0,

(3A.57a)

where:

Mz (Ii) := lxIiy − lyIix, (3A.58)

Mz (Fi) := lxYi − lyXi, (3A.59)
Iiy := −miÿi, Iix := −miẍi, lx = x2 − x1, ly = y2 − y1.

It can be similarly proved that two more relations follow, namely:

2∑

i=1

My (Ii) +
2∑

i=1

My (Fi) = 0,

2∑

i=1

Mx (Ii) +
2∑

i=1

Mx (Fi) = 0.





(3A.60)

Moments of the Couples of Forces

For dynamic equilibrium of a system of points connected by various constraints,
principle (3A.1), and, consequently, (3A.24) and (3A.26), produces other conditions
as well such as (3A.56), (3A.57) and (3A.58). Quantity M is qualitatively different
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from forces; its dimension is ML2 T−2. The values of this dimension are called
moments of forces in mechanics. The moment of forces, including the inertia forces
moment, represents an attribute of motion produced by constraints. It can eas-
ily be shown that generalized forces (3A.51) corresponding to the dimensionless
generalized coordinates - angles, also have a dimension of the forces’ moment. A
system of two points and a line segment that couples two parallel forces of equal
magnitude, but opposite sense, is called a couple of forces, while vectors

Mk(F ) =
(

∂r

∂ei

∂F

∂ej
− ∂r

∂ej

∂F

∂ei

)
k, i 6= j 6= k

are called moments of the couples of forces. Therefore, the moments of forces are
derived concepts as special products of forces and lengths. The moment of the
inertia forces’ couple I1 and I2, I1 = −I2, as well as of other forces, can be written
in the form:

MMM = (r2 − r1)× I = ρ× I = ρ× (−ma), (3A.61)

where ρ = r2 − r1

In accordance with relations (3A.24) and (1.37), the moment of the inertia
forces’ couple can be represented in the following form:

MMM (I) = ρ×
(
−m

dv

dt

)
= ρ× v

dm

dt
− ρ× d

dt
(mv)

= ρ× vṁ− ρ× ṗ.

(3A.62)

This could be written in another way: the moment of the inertia forces’ couple
of the material points is equal to the difference of the moment of couple MMM(vṁ) of
reactive forces v1ṁ1 and v2ṁ2 and moment couple M(ṗ) of vectors ṗ1 and ṗ2.

If the mass is constant, the relation (3A.62) shows that the moment of the
inertia force’s couple is equal to the couple’s moment of the impulse change in time

MMM(I) = −(ρ× ṗ), (3A.63)

with a negative sign.
Since expression (3A.61) shows that the couple’s moment MMM does not depend

upon the choice of the position vector pole, it follows that MMM is a free vector, so that
it can be summed up with other couples’ moments. Therefore, the forces’ vectors,
bound at dynamic points, can be “transmitted”, in parallel way, to any other point,
and thus, they can be added, if the sum of thus parallelly displaced forces is added
the sum of the couples’ moments of the respective forces.

Example 7. A horizontal beam of variable length. The “beam” as
a homogeneous body of rectilinear form and of constant cross-section should be
modeled by a degenerative system of points (E5.7).

Regarding the above-mentioned consequential concept of the couple, it is ex-
pected that the same example could be solved by the couples’ moments as well.
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In this case, it is necessary to state that in z = 0 plane there are dynamic points
A(0, 0, 0), B(2l, 0, 0), C(l, 0, 0) at which forces’ coordinates RAx, RAy; RBy, −GB ,
Ix(B) = −mBẍB , Ix(C) = −mẍC , Iy(C) = −mÿC , −G are present instead of
constraints.

The equilibrium equations are:
∑

i

Xi = RAx −mẍC −mBẍB = 0,

∑

i

Yi = RAy −G−GB + RBy = 0,

∑
MiA = −Gl −mÿC l + mẍCyC + 2lRBy − 2lGB = 0.

It follows from this that it is identical to the result of examples (E5.7) and
(E5.7a).

The couple of forces’ moment is here introduced by means of real constraints.
This essential fact provides for the fact that the dynamic equilibrium principle is
applied to the motion of bodies, either rigid or deformable, in a simple way.

The “rigid body” assumes an uncountable multitude of particles that are mu-
tually linked by invariable real line segments. Out of a multitude of these particles,
let’s observe any four of them, mutually linked by means of six lengths of tetra-
hedron. The lengths of the tetrahedron sides are denoted by letters lνµ, where
indices ν mark ordinal numbers of particles 1, 2, 3, and µ = 1, . . . , 6 the number of
independent constraints.

The constraints’ equations are of the form

δij(yi
ν+1 − yi

ν)(yj
ν+1 − yj

ν) = l2ν . (3A.64)

By observing every new point of the body, whose position is explicitly deter-
mined by three new numbers, the number of new constraints increases for three.
Thus the number of independent coordinates for determining the positions of the
rigid body points does not change. The number of independent coordinates for
determining motion of the rigid body’s points is reduced to 4 · 3− 6 = 6, which six
equations of dynamic equilibrium correspond to. These equations will comprise, in
addition to forces, the forces’ couples’ moments, including the moments of inertia
forces’ couples.

Example 8. Motion of Two Bodies. The motion of a system of two
bodies, observed as material points, is known in the celestial mechanics as “the
problem of two bodies”. Kepler’s laws as well as Newton’s gravitational force, are
the ones that relate to the motion of two bodies mutually attracting each other;
this is a simple example of the system of two material points, but its reduction to
the above-mentioned laws makes it a significant problem [69], [70].

Two bodies, observed as material points M1 and M2, whose masses are m1

and m2, are moving towards each other so that the distance between their inertia
centers is a time function ρ(t).
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The condition that “the distance between the bodies is a time function ρ(t)”,
that is,

f =
√

(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2 − ρ(t) = 0. (3A.64a)

is similar to relations (E2.5) (E3.2) or (E5); hence the motion in question can be
considered in a similar way.

Differential equations of motion (3A.26) for these two material points, in the
presence of “constraint” (3A.64a), can be reduced to the form:

m1ẍ1 =
λ

ρ
(x1 − x2),

m1ÿ1 =
λ

ρ
(y1 − y2);





(3A.65)

m2ẍ2 = −λ

ρ
(x1 − x2),

m2ÿ2 = −λ

ρ
(y1 − y2).





(3A.66)

It is obtained from acceleration condition (3A.33) that the multiplier is

λ =
m1m2

m1 + m2

ρ̇2 + ρρ̈− v2
or

ρ

where
v2

or = (ẋ1 − ẋ2)2 + (ẏ1 − ẏ2)2.

If the letter χ denotes the expression

χ =
ρ̇2 + ρρ̈− v2

or

m1 + m2
(3A.67)

and is substituted in equations (3A.65) and (3A.66), the following form of the
differential equations of motion is obtained:

m1ẍ1 = χ
m1m2

ρ2
(x1 − x2),

m1ÿ1 = χ
m1m2

ρ2
(y1 − y2);





(3A.68)

m2ẍ2 = −χ
m1m2

ρ2
(x1 − x2),

m2ÿ2 = −χ
m1m2

ρ2
(y1 − y2).





(3A.69)

The right sides in equations (3A.68) represent the coordinates of vector F1

which acts upon the body of mass m1, so that the magnitude of force F1 is equal
to:

F1 = χ
m1m2

ρ
. (3A.70)
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Force F2 is of the same size, but of opposite sense (F2 = −F1) and it acts
upon the body of mass m2, which indicates a changed sign. This force is identical
to mutual attraction force (2.21).

The problem arises during the differential equations’ integration if the structure
of function χ(t, ẋ1, ẋ2, ẏ1, ẏ2) is taken into consideration or when it is compared to
Newton’s gravitational law:

F = κ
m1m2

ρ2
.

This comparison is worth further consideration.

Conjunction 1. For the distance ρ = R = const it follows:

χ = − v2
r

m1 + m2
and F = − m1m2

m1 + m2

v2
or

R

Conjunction 2. Mass m1 is mass of the planet, m1 = m, while mass m2 is
the Sun mass, m2 = M ; R is the distance between the centers of the planet’s and
the Sun’s masses; velocity R is equal to average velocity of the Earth’s revolution
around the Sun. The formula for the force could be written in the following general
form:

F = − mM

m + M

v2
r

R
= −mMR3

m + M

4π2

T 2R2

= − mM

m + M

Rv2

R2
= κ∗

mM

R2

(3A.71)

where

κ∗ =
4π2R3

(m + M)T 2
(3A.72)

while T is the period of the planet’s revolution around the Sun. Under these
assumptions, κ∗ is constant. This formula (where R is a great semi-axis of elliptical
pathway) is given in the book “Celestial Mechanics” by M. Milanković [14, p. 56];
further on, it says in the book:

“This equation expresses one important relation of parameters a andi T , which
is not completely identical with the third Kepler’s law. This law states that quotient
a3

T 2
for all the planets is always the same, but this would not be the case regarding

the former equation since the presence of mass m in this equation changes the value
of the above-mentioned quotient from one planet to another. Still, since the masses
of the planets are very small comparing to the Sun mass, m in the above equation
could be neglected beside M , and thus, the identity of the third Kepler’s law with
the laws of the celestial mechanics is obtained.”

If mass m is neglected, constant (3A.72) is written by the expression [14, p.
38, formula (28)]. In expression (2.16) this constant κ is denoted, as usual, with
letter k.

κ =
4π2a3

MT 2



3A. Principle of Equilibrium 59

and is called the universal gravitational constant whose accepted numerical value is

κ = 6.67× 10−8 cm3 gr−1 sec−2 .

The difference between κ∗ and κ can be determined with great accuracy,
regarding the fact that it is:

1
m + M

=
1

M
(
1 +

m

M

) =
1
M

(
1− m

M
+

( m

M

)2

− · · ·
)

.

Accordingly,

κ∗ = κ − κε + κε2 − · · ·

where ε =
m

M
. Since the relationship between the Earth’s and the Sun’s masses is

m

M
=

1
333432

= 299.112263× 10−8

at the first approximation it turns out to be κ∗ = 0.999997κ = 6.66997999× 10−8.
For Jupiter, it is m

M = 318,36m⊕
330000m⊕

= 95479, 7379× 10−8 so that it is

κ∗ = 0, 999045202κ = 6, 663565264× 10−8.

When all the previously mentioned conjunctions from the relation (3A.70) are
taken into consideration, it is obtained that:

κ∗ =
Rv2

or

m + M
(3A.73)

where R would be average distance of the planet’s inertia center from the Sun’s iner-
tia center, while vor is average orbital velocity of the planet’s revolution around the
Sun. For the Sun’s mass M the following numerous values are found in literature:
M = 2× 1033 gr, M = 333432m⊕ [14].

If quantity m is taken as the mass of a planet or a satellite, on the basis of the
data presented in Table,1 it is easy to compute quantity κ∗ by means of formula
(3A.73):

1Hames Alfen et all, Evolution of the Solar System, National Aeronautics and Space Ad-
ministration (NASA), SP-345, 1976, p. 16
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Sun Mass 2× 1033 333432m⊕
Planets κ∗ (10−8 cm3 gr−1 sec−2)
Mercury 6.6423 6.6737
Venus 6.6528 6.6843
Earth 6.6603 6.6917
Mars 6.6762 6.7078

Jupiter 6.6993 6.7008
Saturn 6.6426 6.6739

Uranium 6.6547 6.6861
Neptune 6.6582 6.6897
Pluto 6.6559 6.6874

Earth – Moon
Jupiter – Europe

}
6.63

Average Values 6.6569 6.6864
Average Value 6.67

Therefore, when the above-mentioned conjunctions about the motion of two
bodies are taken into consideration, the numerical values can be obtained from
formula (3A.73) which can be reduced, only by averaging, to one accepted gravita-
tional constant.

On the basis of the obtained values κ∗ = 6.6864, the radius of the Earth
R = 6.382 and of the Earth’s mass m⊕ = 5.974 [14, p. 197] is found by means of
(3A.73) so that the square velocity of the body’s revolution around the Earth (in
immediate vicinity) would be

v2
r = κ∗

m + m⊕
R

and, consequently, the Earth’s gravity acceleration

g =
v2

r

R
= 6, 6864

5, 974× 1027

(6, 38× 108)2
10−8 = 981, 33cm/sec.

All the above-mentioned numerous data, if the above-mentioned conjunctions
are taken into consideration, show under what conditions the classical value for the
gravitational force is obtained. However, formulae (3A.67) and (3A.80) indicate
that the attraction force depends upon velocity and acceleration of the distance
change between the bodies. In the case of a free fall of the body of mass m,
vr = ρ̇ = (R + ζ)

.

= ζ̇; thus, it follows:

F1 = χ
mM⊕
R + ζ

=
(R + ζ)ζ̈mM⊕

(m + M⊕)(R + ζ)
=

=
mζ̈

1 +
m

M⊕

≈ mζ̈,
m

M⊕
≈ 0.

2Hames Alfen et all, Evolution of the Solar System, NASA, SP-345, p. 17
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As discovered a long time ago by Galileo who obtained by measurement that

it is ζ =
1
2
gt2, it is more difficult to get F1 = mg, for the magnitude of the Earth’s

gravitational force, as was expected.
The characteristic case is that of motion of two bodies having masses m1 and

m2, whose distance ρ changes according to formula ρ = A cos(Ωt + α), where Ω
and α are constants; vr = ρ̇.

By means of formula (3A.67) it is obtained that it is

χ = − ρ2Ω2

m1 + m2
.

By substituting in differential equations of motion (3A.68) and (3A.69) it is
obtained that:

ẍ1 = −ω2
1(x1 − x2),

ÿ1 = −ω2
1(y1 − y2);

ẍ2 = ω2
2(x1 − x2),

ÿ2 = ω2
2(y1 − y2);

where, for the sake of brevity, the following notations are introduced:

ω2
1 =

m2Ω2

m1 + m2
and ω2

2 =
m1Ω2

m1 + m2
.

If we further state that x = x1 − x2, y = y1 − y2 and z = z1 − z2, the above-
given system of equations can be reduced to three homogeneous linear differential
equations:

ẍ = −Ω2x, ÿ = −Ω2y, z̈ = −Ω2z.

Their solutions, as is known,

x = C1 cosΩt + C2 sin Ωt

y = C3 cosΩt + C4 sin Ωt

z = C5 cosΩt + C6 sin Ωt.

at various initial conditions, determine various trajectories such as, for instance:
a) For t0 = 0 and x(t0) = x0, y(t0) = y0, ẋ(t0) = ẋ0 = 0, ẏ(t0) = ẏ0 = 0,

ż(t0) = ż0 = 0 oscillation x = x0 cosΩt, y = y0 cos Ωt, z = z0 cosΩt is obtained
along the straight line

x

x0
=

y

y0
=

z

z0
.

b) For y0 = 0, ẋ0 = 0, z0 = z10 − z20 = 0 and ż0 = 0 and motion is determined

by finite equations x = x0 cosΩt and y =
ẏ0

Ω
sinΩt along the ellipse

x2

x2
0

+
Ω2y2

ẏ2
0

= 1,
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that is,
(x1 − x2)2

(x1 − x2)20
+ Ω2 (y1 − y2)2

(ẏ1 − ẏ2)20
= 1.

æ
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3B. WORK PRINCIPLE

The statement of this principle requires more than the concepts defined so far.
It is, first of all, necessary to define the concept of work.

Definition 5. Work. The integral

W (F ) def=
∫

s

F · ds (3B.1)

is the work of force F upon real displacement ds = dr along pathway s.
Unlike the four basic definitions in which vector invariants (1.1), (1.24), (1.29)

and (1.37) are introduced, this definition introduces a scalar invariant into dy-
namics. This eliminates the difficulties which arise in algebra as well as in the
constrained vectors’ analysis due to the parallel displacement of the vectors and
their addition.

For the system of N dynamic points the forces’ work is equal to the sum of all
the forces’ works:

W =
N∑

ν=1

Wν =
∫

s

N∑
ν=1

Fν · drν . (3B.2)

The physical dimension of work is

[dim W ] = M LT−2 L = ML2 T−2 .

Integral (3B.1) is curvilinear. In accordance with the introduced coordinate
systems and their respective forces’ vectors, formula (3B.1) can be written in the
following forms:

W =
∫

s

F · dr =
∫

s

Fidri =

=
∫

s

Yidyi =
∫

s

Xidxi =
∫

s

Qαdqα.

(3B.3)

Integral (3B.2) is also reduced to the same invariant forms. In the general and
final case work is a function of the dynamic point’s position on the pathway as well
as of kinematic and dynamic parameters that a family of trajectories depends upon.
Subintegral functions are forces or coordinates of the forces’ vectors that, in the
general case, depend upon the given dynamic parameters, the position coordinates,
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the coordinates of the velocities vectors as well as upon the acceleration vectors’
coordinates when the inertia forces, that is X(κ, x, ẋ, ẍ) are in question.

For some forces the integral (3B.3) can be integrated independently of the
pathway; this is always the case when the form F · dr is a total differential of some
function, let’s say, U , namely,

Xidxi = dU. (3B.4)

Regarding the fact that the second derivative ẍ, due to the nature of forces X,
can appear only in a linear form, U(x, ẋ) appears as a function of parameters κ,
positions x and velocities ẋ. This function is called the function of the forces, while
the function of opposite sign is called the function of energy or, shorter, energy.

Work of Particular Forces

Work of Inertia Force (1.37)–(1.40) is represented by the relation

W (IF ) =
∫

s

(
−m

dv

dt

)
· dr = −m

v∫

v0

v · dv = −m

2
(v2 − v2

0). (3B.5)

If it is assumed that v0 = 0, negative work of inertia force can be expressed by
the formula

Ek =
m

2
v2, (3B.6)

which is in classical literature known as kinetic energy of the material point having
mass m.

Inertia forces’ work of the system of N material points having masses mν =
const (ν = 1, . . . , N), according to (3B.2), represents the sum of all kinetic energies
of all material points with a negative sign:

W (I) = −
∫

s

∑
ν

mνaν · drν = −
N∑

ν=1

ν∫

0

mνvν · dvν

= −
N∑

ν=1

mν

2
v2

ν = −Ek.

(3B.7)

For the points of constant mass, integral (3B.5) is easily obtained for expression
(1.40) as well. Namely,

W (IF ) = −
∫

aij(x)
Dvj

dt
dxi = −

ˆ∫
aijv

iDvj =

= −1
2

ˆ∫
D(aijv

ivj) =

= −1
2

(
aijv

ivj − aij(x0)vi
0v

j
0

)
= −(Ek − E0k).
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since it is for mν = const Daij = 0 [36].
For v0 = 0 , regarding formula (3B.6), it is obtained that kinetic energy is

equal to negative work of inertia force:

Ek = −W (I) =
1
2
aijv

ivj . (3B.7a)

It follows from here that inertia force work is equal to negative kinetic energy.

Work of Newton’s Gravitational Force (2.1) is represented by the expression

W (Fνµ) = −κmνmµ

rνµ∫

0

drνµ

r2
νµ

=
κmνmµ

rνµ
= −Π

where Π = −κmνmµ

rνµ
is gravitational potential energy.

Potential Energy. For all the forces having functions of forces U(x), X(x) =
gradU , dependent upon the material point’s position, namely, such functions that
dU(x) = X(x)dx, potential energy Ep, as negative work of forces X(x) is the func-
tion of position x:

Π(x) = Ep := −
x∫

x0

X(x)dx = −(U(x) + U(x0)). (3B.8)

Work of Constraints’ Reaction Forces.

W (R) =
∫

s

(
Rτ +

k∑
µ=1

λµ grad fµ

)
· dr, (3B.9)

demands the previous knowledge of the resistance force or friction as well as deter-
mination of Lagrange’s multipliers λµ. Friction forces Rτ are determined on the
basis of the friction law. Integral

∫

s

Rτ
µ · dr

is more definite than integral (3B.3) only if it is known that Rτ belongs to the
tangential plane of constraint fµ = 0. It most often appears as a function of
velocity, so that determination of this force’s work requires the previous knowledge
of finite equations of motion or other relations by which velocity can be determined
as a function of the object’s position.
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Example 9. The work of force Rτ = −µv, µ ∈ R, v ∈ R3 that causes the
material point of mass m to move from the initial position:

(y1
0 , y2

0 , y3
0 ; ẏ1

0 , ẏ2
0 , ẏ3

0).

It is obtained from the finite or differential equations

ẏi =
µ

m
(y0i − yi) + ẏ0i,

so that the work of the given force:

W (Rτ ) =
∫

s

Rτ · dr = −
∫

s

µv · dr = −µ

∫

s

ẏidyi =

= −µ

yi∫

y0i

[ µ

m
(y0i − yi)dyi + ẏ0idyi

]
=

= − µ2

m

(
y0iy

i − 1
2
yiy

i

)
− µẏ0iy

i

∣∣∣∣
yi

yi0

.

For y0i = 0, as is most often possible to take,

W (Rτ ) =
µ2

2m

3∑

i=1

y2
i − µẏ0iy

i;
(
ML2 T−2

)
.

The integral ∫

s

∑
µ

λµ grad fµ · dr

is considerably simplified, namely:
a) If the constraints are geometrical and depend only upon position f(r) = 0.

Then from the velocity condition

df

dt
= grad f · dr

dt
= 0

it follows that integral (3B.7) is equal to zero, so that components λµ grad fµ of the
reaction forces of constraints f do not produce work;

b) In the case that the constraints are variable in time, that is, that functions
fµ(r, τ) also depend, in addition to r, upon some explicit time functions τ(κ, t),
for which the velocity conditions have the form:

df

dt
= grad f · dr

dt
+

∂f

∂τ

dτ

dt
= 0.

For this reason, the previous integral reduces to
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−W2 =

τ∫

τ0

∑
µ

λµ
∂fµ

∂τ
dτ =: P (3B.10)

where P is rheonomic pseudopotential [41], [49], that can be determined if general-
ized force (3A.54) is reduced to a function of τ or if

dP = −
∑

µ

λµ
∂fµ

∂τ
dτ

is total potential, which is possible in some cases.

In order to understand the following exposition much easier, attention should
be also paid to the work of time-dependent forces F = (Y1(κ, t), Y2(κ, t), Y3(κ, t)).
In this case, the integral can be solved

1) as curvilinear, along the trajectory; in this case, it is necessary to determine
time t = τ(κ, y) from y = y(κ, t) finite equations of motion, or,

2) by reducing curvilinear integral (3B.3) to a definite integral by introducing
an independent time parameter, namely,

W =
∫

s

Yi(κ, t)dyi =

=

t1∫

t0

Yi(κ, t)ẏi(t)dt =

t1∫

t0

P (κ, t)dt.

(3B.10a)

Regarding the preprinciple of existence, time t is an independent variable, so
that in both of the cases the treatment of time as a function of a new independent
parameter is excluded. The relation t = t(κ, y, ẏ) is nothing else but a motion
equation of the given system solved with respect to t.

Example 10. Motion of the material point whose pathway has the form of
ellipse

y1 = a cosωt, y2 = b sin ωt,

can be written in the form:

t =
1
ω

arctg
ay2

by1
.

More generally, curvilinear integrals (3B.3) can be reduced to ordinary integrals
of the form

W =
∫

s

Yi(y, ẏ,κ, t)dyi =

t∫

t0

Yi(κ, t)ẏi(κ, t)dt, (3B.11)
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that is,

W (κ, t) =

t∫

t0

P (κ, t)dt, (3B.12)

since at real displacement dy there is velocity ẏ, so that it is dyi = ẏi(t)dt.
The function

P (F ) = F · v = Yiẏ
i = Xiẋ

i = Qαq̇α (3B.13)

is known as power in mechanics.
It is most often written in the form

dW

dt
= P = Xi

dxi

dt
. (3B.14)

Elementary Work

From relation (3B.14) or directly from (3B.11) or from (3B.13) it follows that
even differentially small work

dW = F · dr = Yidyi = Xidxi = Qαdqα (3B.15)

is a scalar invariant. This work is often considered as elementary work of forces
upon real displacement. The expression “upon real displacement” emphasizes the
difference from the other hypothetical and arbitrarily small work of these forces
upon any possible small displacement ∆r,

∆W = F ·∆r. (3B.16)

The concept of possible displacement implies any, no matter how small, diver-
sion from the material point’s real position that could be achieved by that point.
This concept is even more general than differential dr or than variation δr of the
position vector. In other words, this is any hypothetically feasible distance at pos-
sible displacement. In practice, it could be understood as a tentative, factual or
mental displacement. The size of the smallness cannot be accurately determined;
it is arbitrarily small ranging from negligibly small to some finite size. Analytically
speaking, this concept can imply a difference between the position vector of the
possible displacement of a possibly displaced point and vector r of the fixed or
given position, namely, ∆r := r(x + ∆x) − r(x). Following the finite increments
formulae, function vector ∆r can be expressed in analytical form:

∆r =
∂r

∂yi
(y∗i − yi) =

∂r

∂yi
∆yi (3B.17)

as well as

∆r =
∂r

∂xj

∂xj

∂yi
∆yi + · · · = ∂r

∂xj
∆xj + · · · = ∂r

∂qα
∆qα + · · · (3B.18)
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where ∆y, ∆x, ∆q are coordinates of possible displacement vector in various co-
ordinate systems. Vector ∆r coordinates are the ones that are most often called
possible displacements.

By analogy with elementary work upon real displacement (3B.15), formula
(3B.16) is called work upon possible displacements. smallskip Formula (3B.16)
is a scalar invariant, as well as (3B.15), and thus, because of possible and real
displacements, it satisfies the preprinciple of existence.

The invariant form

F∆r = Yi∆yi = Xi∆xi = Qα∆qα (3B.19)

satisfies the preprinciple of invariance, while relations (3B.18) and (3B.19) deter-
mine a degree of accurate determination; hence it also satisfies the preprinciple of
casual definiteness. Regarding the fact that F · dr is a scalar value, the following
addition is possible:

N∑
ν=1

Fν ·∆rν =
3N∑

k=1

Yk∆yk =
n∑

β=1

Qβ∆qβ (3B.20)

which makes up total work of all the forces Fν (ν = 1, . . . , N) upon possible dis-
placement.

Beside elementary work (3B.15) upon real displacement dr and work (3B.16)
upon possible displacement ∆r, work upon variations δrν or δy, δx, δq, is consid-
erably important and is formulated by the expression

δW := F · δr (3B.21)

or in another invariant form

δW := Y δy = Xδx = Qδq. (3B.22)

This work cannot be made equal with elementary work dA, regardless of the
fact that relations (3B.15) and (3B.22) are similar. However, work (3B.21) can be
regarded as elementary work (3B.18) upon possible displacement since δx variations
can belong to a set of possible displacements ∆x. Unlike the differential

dx =
∂x

∂t
dt =

dx

dt
dt = ẋdt, (3B.23)

Differential δx that is called the variation (See [5, pp. 27, 177] or [23]) shows
the presence of some change of function x(α, t) due to increment of parameter
α = α− δα.

Therefore, the concept of function variation x = x(α, t) implies the product
of the function derivative with respect to the parameter and small increment of the
given parameter, that is,

δx =
∂x

∂α
δα =

dx

dα
δα =:

δx

δα
δα (3B.24)
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This means that it is

δx

δα
:= lim

∆α→0

x(α + ∆α, t)− x(α, t)
∆α

(3B.25)

In the same way, for the work written in the function form

W =
∫

s

Xdx = W (x(t, α)) (3B.26)

or

W =

t∫

t0

Xẋdt = W (t)t=t(α,x), (3B.27)

the differentiating operation is valid

δW =
∂W

∂α
δα =

∂W

∂x

∂x

∂α
δα =

∂W

∂x
δx (3B.28)

or, if x is expressed by means of time t, derived from motion t = t(x):

δW =
∂W

∂α
δα =

∂W

∂t

∂t

∂x

∂x

∂α
δα =

∂W

∂t

∂t

∂x
δx =

∂W

∂x
δx. (3B.29)

Because of these characteristics of relations (3B.28) and (3B.29), elementary
work upon possible variations is better to be called work variations.

Excerpta: Considering the fact that in the referential literature there is no
unanimous understanding of the concepts of real displacement dr, possible dis-
placement ∆r and variations δr and, consequently, no respective elementary works
(3B.15), (3B.16) and (3B.21), it is necessary to note that:

1. real elementary displacement symbolized by differential d· refers to a change
in time along the actual or given trajectory and it directly springs from definition
(1.1),

2. possible displacement is any - no matter how small - displacement of indefi-
nite smallness or any hypothetical deviation of the dynamic point from its position,
provided by the constraints in its continuous medium; this displacement, that does
not really take place, disregards the time factor or any other parameter except for
boundaries established by the constraints,

3. the variation, symbolized by differential δ·, which is in direct relation with
derivative (3B.25), is the points’ deviation from the calculated or given trajectory
due to insufficiently accurate casual definiteness or disturbance of some parameter
contained within finite equations of motion or the trajectory equation in time t and
for this reason, it is also a time function. If varying of parameter α + δα is not
definite, but hypothetical, it can be regarded that variation δr belongs to a set of
possible displacements [46].
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The above-given conclusions tend to emphasize that actual displacement is
here identified with neither possible displacement nor variations.

Finally, it should be also noted that the work dimension, which also implies
“elementary works”, is equal to the dimension of the moment of force, that is,

dim W = dim E = dim M = M L2 T−2 . (3B.30)

For this reason, the elementary work upon possible displacements is sometimes
called the possible moment of forces (see [12, p. 410]). These two concepts of work
and moment of forces, due to the preprinciple of non-formality, are here regarded
as different, since work is, by its definition, a scalar invariant, while the moment is
a derived vector invariant or, simply, a vector.

Formulations of Work Principle

The essence of the work principle has been known in the literature (following
to Galileo’s postulate: “Quanto si guadagna di forza, tanto perdersi in velocita”,
Opere 2, p. 1830) as “the golden rule of mechanics” since the days of Aristotle,
while later on, it has been known as “the principle of possible displacements”, “the
principle of possible variations”, “the fundamental basic equation of mechanics”,
“the principle of virtual work”, “the D’Alembert-Lagrange principle” and so on.
One of the strictest mathematical analysts of classical mechanics, A. M. Ljapunov,
has written the following:

“Principle of possible displacements has been known to Galileo; later on, it was
used by Wallis and Ivan Bernoulli. But the first general proof of this principle was
given only by Lagrange who built it into the foundation of his analytical mechanics.
Afterwards, it was also proved by Poison, Cauchy and others; though, by its best
proof, it remains Lagrange’s.”

In this approach to the theory of body motion, the principle is not being proved,
but, as is written about the preprinciples or about the concept of the principles of
mechanics, the principle is a true statement, in oral or written form, or both, and
it is as much accurate as can be best stated on the basis of the existing knowledge.
The formulation of the principle comprises its generality. Instead of proving it, its
application to various systems is interpreted and proved. The work principle can
be, in the shortest possible way, expressed by the following sentence:

The total work of all the forces upon possible displacements is worthless, while
in the presence of unilateral constraints it is not positive.

The mathematical statement, regarding relation (3B.20), is even shorter:

∑
ν=1

F̃ν ·∆rν ≤ 0. (3B.31)

The reader proficient in mathematics maybe finds the following formulation
even more comprehensible:
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The total work of all the forces upon all independent possible displacements is
equal to zero, while for the system with unilateral constraints it is not positive.

Relation (3B.31) is very general, abut it is not directly operative. Its applica-
tion requires a strict mathematical analysis, which implies, first of all, understand-
ing of the elements it contains. The limited arbitrariness of possible displacements
is described. Vectors F̃ν comprise, as components, inertia force Iν of ν-th of this
material point as well as the principal vectors of all other forces Fνk that exert their
action upon the ν-th point, that is, Fν =

∑
k Fνk. Accordingly, without reducing

the generality of relations (3B.31), this principle can be written in the form

N∑
ν=1

(Iν + Fν) ·∆rν ≤ 0 (3B.32)

The principle written in this way implies that vector Fν comprises, as pointed
out, all the forces except for inertia ones; it also comprises the constraints reactions,
according to the law of constraints. It implies that the relations of constraints µ
are abstracted by the forces

Rν =
∑

µ

Rνµ.

If the constraints’ relations are not calculated a priori, as previously said, the
relations describing the constraints should be added to relation (3B.32), namely,

N∑
ν=1

(Iν + Fν) ·∆rν = 0 (3B.33)

fµ(r, v, τ) ≥ 0. (3B.34)

Regarding the signs of equality and inequality, a difference is noticed between
relations (3B.33) and (3B.32); the sign of inequality from (3B.32) is comprised
by relations (3B.34). In the case of bilateral constraints abstracted by the forces,
the relation of principle (3B.32) is written in the form (3B.33), while in the case
that the constraints are not taken into consideration in relation (3B.32), writings
(3B.33) and (3B.34) are given in the form:

N∑
ν=1

(Iν + Fν) ·∆rν = 0, (3B.35)

fµ(r, v, τ) = 0. (3B.36)

Starting from the fact that the constraints are more frequently written in the
coordinate form, as in relations (2.3)–(2.8), let’s observe the principle’s application
to particular mechanical systems with respect to Descartes coordinate system y :=
(y1, y2, y3).
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Static Systems

The concept of static system here implies N points of application Mν (ν =
1, . . . , N) of forces F̃ν = Fν = Y i

ν ei,(i = 1, 2, 3) connected by k finite constraints
(2.5). These constraints are written more concretely as

fµ(y1
1 , y2

1 , y3
1 , . . . , y1

N , y2
N , y3

N ) = 0, (3B.37)

or, by formalizing of indices

y1
ν = y3ν−2, y2

ν = y3ν−1, y3
ν = y3ν , (3B.38)

as
fµ(y1, . . . , y3N ) = 0. (3B.39)

For such a system Iν = 0, so that relations (3B.35) and (3B.36) can be written
in the following coordinate form:

Yα∆yα := Y1∆y1 + · · ·+ Y3N∆y3N = 0, (3B.40)

fµ := fµ(y1, . . . , y3N ) = 0. (3B.41)

Firstly, it has to be stated that the non-ideal constraint factor is abstract-
ed by the force comprised within Yα forces, while relations (3B.41) describe the
constraints’ idealization. Developing into the order with respect to possible dis-
placements of these constraints in the neighborhood of the equilibrium positions of
points Mν(y = b), what is obtained, beside linear form (3B.40), are k linear forms
with respect to ∆y, namely:

fµ(y)− fµ(b) = aµα∆yα = aµ1∆y1 + · · ·+ aµ3Ny3N = 0, (3B.42)

where
aµα =

∂fµ

∂ya

∣∣∣
yα=bα

. (3B.43)

Therefore, relations (3B.40) and (3B.41) are reduced to k + 1 linear equations

Yα∆yα = 0, (3B.44)

aµα∆yα = 0, (µ = 1, . . . , k < 3N), (3B.45)

in which there are 3N mutually dependent possible displacements ∆y3N . Regarding
the fact that relations (3B.44), according to the work principle formulation, should
comprise independent possible displacements, this problem can further be solved
in two ways in order to eliminate dependent possible displacements, namely:

a) by direct solving of equations (3B.45),
b) by introducing indefinite constraints’ multipliers.
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Solution with Respect to Dependent Displacements. If possible displace-
ments are separated into dependent ∆y1, . . . , ∆yk and independent ∆yk+1, . . . , ∆y3N ,
then in equations (3B.44) and (3B.45) the addends with dependent and independent
possible displacements are separated:

Yν∆yν + Yβ∆yβ = 0, ν = 1, . . . , k, (3B.46)

aµν∆yν + aµβyβ = 0, β = k + 1, . . . , 3N. (3B.47)

Substituting
∆yν = −aµνaµβ∆yβ == bν

β , |aµν | 6= 0 (3B.48)

in equation (3B.46), where aµν is an inverse matrix aµν , an equation with indepen-
dent displacements is obtained, namely,

(
Yβ − Yνbν

β

)
∆yβ = 0. (3B.49)

Due to independence of displacement ∆yβ it follows that the system of the
observed forces in the presence of constraints (3B.41) will be in equilibrium if it
satisfies the following system of 3N − k algebraic equations:

Yβ − Y1b
1
β − · · · − Ykbk

β = 0. (3B.50)

As can be seen from this system of equations, it is possible to determine 3N−k
coordinates of the forces’ vector by means of the remaining k.

Indefinite Constraints’ Multipliers. If each of equations (3B.42) is multiplied
by its respective multiplier λµ and then added with respect to index µ, the systems
of k + 1 equations (3B.44) and (3B.45) are reduced to two equations:

Yα∆yα = 0
k∑

µ=1

λµ
∂fµ

∂yα
∆yα = 0.





(3B.51)

The sum of these two relations
(

Yα +
k∑

µ=1

λµ
∂fµ

∂yα

)
∆yα = 0, (3B.52)

provides, just like in the previous method, for elimination of dependent possible dis-
placements ∆y1, . . . , ∆yk. Regarding the fact that λµ are indefinite multipliers for
the time being, it is permissible to separate the conditions that annul k multipliers
λµ from equations (3B.52), so that it is

Yσ +
k∑

µ=1

λµ
∂fµ

∂yσ
= 0, σ = 1, . . . , k. (3B.53)
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k equations (3B.52) of 3N − k independent variations are left, namely:
(

Yβ +
k∑

µ=1

λµ
∂fµ

∂yβ

)
∆yβ = 0. (3B.54)

From this relation more 3N − k equations of the form (3B.53) are obtained.
Thus, as a solution of the static problem, a system is obtained of 3N equations of
the forces

Yα +
k∑

µ=1

λµ
∂fµ

∂yα
= 0 (α = 1, . . . , 3N).

and k equations of the constraints fµ(y1, . . . , y3N ) = 0.

Rheonomic Systems. As in the previously-discussed static system, the work
principle is also applied to the mechanical system with variable constraints (2.8).
For the sake of brevity, and without making it less general, it should be assumed
that the constraints are given by the constraints equations

fµ(y0; y1, . . . , y3N ) = 0, y0 = τ(t), (3B.55)

where τ(t) is a known function of time.
Developing the function into a power series, as in (3B.42), it is shown that

there are 3N + 1 possible displacements ∆y0, . . . , ∆y3N . Therefore,

∆fµ =
∂fµ

∂y0
∆y0 +

∂fµ

∂yi
∆yi = 0, (i = 1, . . . , 3N).

The work principle comprises “all possible displacements” as well as the work
done by particular forces upon these displacements. Therefore, in addition to works
upon possible displacements Yi∆yi, the work upon possible displacement ∆y0, that
is, Y0∆y0 should be added here. Thus, in such a system with variable constraints
(3B.55), instead of relations (3B.40) and (3B.41), there is a system of equations:

Yα∆yα = Y0∆y0 + Yi∆yi = 0, (3B.56)

fµ(y0, y) = fµ(y0, y1, . . . , y3N ) = 0. (3B.57)

From this system of equations, by the same procedure as from (3B.51) and
(3B.55), another additional equation is obtained

Y0 +
k∑

µ=1

λµ
∂fµ

∂y0
= 0. (3B.58)

The force

Y0 = −
k∑

µ=1

λµ
∂fµ

∂y0
(3B.59)
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is evident even in more general relations (3B.56) and (3B.54); [61].

System with Unilateral and Bilateral Constraints. The work principle,
written by relation (3B.31), shows that the inequality sign refers to unilateral con-
straints. In the case of only unilateral constraints, the principle says that work
upon possible displacements is less than zero, that is (F̃ν = Fν),

N∑
ν=1

Fν ·∆rν ≤ 0 (3B.60)

while in the case of bilateral constraints, as shown,

N∑
ν=1

Fν ·∆rν = 0. (3B.61)

Let’s consider the simultaneous presence of bilateral constraints

fµ(r1, . . . , rN ) = 0 µ = 1, . . . , k (3B.62)

and unilateral ones
ϕσ(r1, . . . , rN ) ≥ 0 σ = 1, . . . , l (3B.63)

under the condition that it is k + l < 3N .
Let’s choose again coordinate system (y, e) and apply the method of the in-

definite constraints’ multipliers, while relations (3B.60) and (3B.61) are reduced,
similarly to equations (3B.51), to the forms:

Yα∆yα = ∆c, ∆c ≤ 0 (3B.64)

k∑
µ=1

λµ
∂fµ

∂yα
∆yα = 0 (3B.65)

l∑
σ=1

χσ
∂fµ

∂yα
∆yα =

∑
χσ∆cσ, (3B.66)

where they are either ∆cσ ≥ 0 or ∆cσ ≤ 0.
The sum of all the three equations

3N∑
α=1

(
Yα +

k∑
µ=1

λµ
∂fµ

∂yα
+

l∑
σ=1

χσ
∂fσ

∂yα

)
∆yα = ∆c +

l∑
σ=1

χσ∆cσ (3B.67)

gives a number of equations necessary and sufficient for problem-solving.
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As in the case of bilateral constraints k + l of displacement ∆yα it is possible
to exclude the requirement that multipliers λµ and χσ should be such that the
following equations are satisfied:

Yi +
k∑

µ=1

λµ
∂fµ

∂yi
+

l∑
σ=1

χσ
∂fσ

∂yi
= 0, (3B.68)

i = 1, . . . , k; k + 1, . . . , k + l.

Remaining 3N − (k + l) coefficients, in addition to possible probable displace-
ments ∆yj (j = k + l + 1, . . . , 3N) will be also equal to zero, that is,

Yj +
k∑

µ=1

λµ
∂fµ

∂yj
+

l∑
σ=1

χσ
∂fσ

∂yj
= 0 (3B.69)

so that, in accordance with the principle, there should be

∆c +
∑

χσ∆cσ = 0.

However, since it is, in accordance with (3B.60) and (3B.61), ∆c < 0, it follows

l∑
σ=1

χσ∆cσ > 0. (3B.70)

If independence of the indefinite constraints’ multipliers is taken into consid-
eration, the following conditions of equations (3B.68) and (3B.69) follow, namely,
that χσ and ∆cσ are of the same sign.
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Kinetic Systems

Let’s remember that vector functions Fν , whose coordinates are Y , comprise

all the active forces F , including inertia force I = −m
dv

dt
as well. Consequently,

3N differential equations of motion (3B.68) and (3B.69), as well as k + l of finite
constraints equations along with the conditions resulting from (3B.70), make up
the total system of relations for solving motion of the observed system with finite
unilateral and bilateral constraints

Non-holonomic Systems. A non-holonomic system implies a system of N
material points, whose motion is, among other things, restricted by at least one
differential non-integrable (non-holonomic) constraint. If the previous restriction
is taken into consideration, let them be the constraints

ϕµ := ϕµ(y1, . . . , y3N , ẏ1, . . . , ẏ3N ) = 0. (3B.71)

Due to the difficulties arising while developing functions (3B.71) into a series
in the vicinity of trajectory C(y) as well as due to the complexity of these con-
straints’ possible equations or their kinematic nature – and for the sake of brevity
– the method of constraints’ abstraction will be applied here, in accordance with
the constraints’ law, by respective forces – reactions of constraints Rνµ. In oth-
er words, each constraint (3B.71) acting upon the ν-th point is replaced by the
resultant vector of the constraints’ reaction as in (2.9), that is, Rνµ. Regarding
the previously introduced notation, this can be written in a shorter way, as well as
other forces’ vectors, by means of a set of 3N coordinates R1, . . . , R3N . In such a
general approach to the work principle (3B.32) it can be written in the coordinate
form

(Iα + Yα + Rα)∆yα = 0. (3B.72)

The system of 3N differential equations of motion

Iα + Yα + Ra = 0, (α = 1, . . . , 3N) (3B.73)

that is,

mαÿα = Yα + Rα, (3B.73a)
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comprises, among other things, 3N of unknown reactions of the constraints Rα

which should satisfy the acceleration conditions

ϕ̇µ(y, ẏ, ÿ) =
∂ϕµ

∂yα
ẏα +

∂ϕµ

∂ẏα
ÿα = 0. (3B.74)

Substituting ÿα from equations (3B.73) in previous equations (3B.74), k linear
equations with respect to Rα are obtained, namely:

∂ϕµ

∂yα
ẏα +

1
mα

(Ya + Rα)
∂ϕµ

∂ẏα
= 0.

From these equations it is possible to determine k reactions:

Ri = Ri(m, y, ẏ, Y,Rk+1, . . . , R3N ) (i = 1, . . . , k)

depending, among other things, upon 3N coordinates of force Y and 3N − k of
reactions Rj (j = k + 1, . . . , 3N). Further on, by substituting Ri in equations
(3B.73), that is, (3B.73a), in the system of 3N differential equations of motion,
3N − k unknown constraints’ reactions still remain. They are, as such, possible to
determine from this system depending on other functions in these equations or to
look for new 3N−k conditions that define or determine the rest of 3N−k unknown
reactions of differential constraints (3B.71). Many studies have been devoted to this
problem that is still acute.

First Conclusion. By means of the work principle it is possible to derive and
extend the dynamic equilibrium relations just like from the equilibrium principle;
the work principle and the equilibrium principle are equivalent.

Invariant Writings of Work Principle

Expressions (3B.18), (3B.19) and (3B.20) point to the fact that relations
(3B.31) or (3B.32) can be written in a similar form with respect to various coor-
dinate systems. Let (y, e) be still the Cartesian orthonormal stationary coordinate
system, (z,�) rectilinear coordinate system, (x, g(x)) curvilinear system of coor-
dinates and (q, g(q)) a system of independent generalized coordinates. The same
constraints, as can be seen from (2.2), are written by invariant expressions:

fµ(r, v, τ) = 0 → fµ(y, ẏ, τ) = 0 → fµ(z, ż, τ) = 0 → fµ(x, ẋ, τ) = 0,

τ = y0 = z0 = x0, µ = 1, . . . , k,

or in the parametric form:

rν = rν(q0, q1, . . . , qn) =: rν(q), (3B.75)

q0 = τ(t). (3B.76)
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According to relation (3B.18), possible displacements, on the basis of the choice
of coordinate system, are written in the following forms:

∆rν =
∂rν

∂yi
∆yi =

∂rν

∂zi
∆zi =

∂rν

∂xi
∆xi (3B.77)

or
∆rν =

∂rν

∂qα
∆qα =:

∂rν

∂q
∆q, (3B.78)

where
∂rν

∂q
are coordinate vectors of the ν-th point upon the configurational mul-

tifoldness M . The number of possible displacements allows for possible changes of
the constraints:

∆fµ =
∂fµ

∂y
∆y +

∂fµ

∂τ
∆τ =

∂fµ

∂x
∆x +

∂fµ

∂τ
∆τ = 0

∆f0 = ∆y0 −∆τ = 0.



 (3B.79)

If force R0 is applied to abstract constraint (3B.76), as much existent as other
constraints, possible changes of constraints (3B.79) show that there are 3N + 1
possible displacements, so that the indices in relations (3B.77) and (3B.78) take on
values i = 0, 1, . . . , 3N ; α = 0, 1, . . . , n. For this reason, work formulation (3B.31)
has the following invariants:

Ỹ ∆y = Z̃∆z = X̃∆x =

= Ỹi∆yi = Z̃i∆zi = X̃i∆xi ≤ 0,
(3B.80)

fµ ≥ 0; µ = 1, . . . , k < 3N, i = 0, 1, . . . , 3N

as well as
Q̃∆q := Q̃α∆qα ≤ 0, (α = 0, 1, . . . , n). (3B.81)

In the case that the constraints’ functions do not explicitly depend on time,
q0 coordinate does not exist; therefore, in relations (3B.80) and (3B.81) there are
no zero indices i = 0, either. The same invariance also refers to relation (3B.32).
Regarding the fact that observed relations (3B.31) and (3B.32) have been previously
extended with respect to rectilinear coordinates y, curvilinear coordinates x and
generalized independent coordinates q ∈ M will be used further on.

a) Work Principle in Curvilinear Coordinate Systems.

It has been shown in relations (1.40) that the inertia force vector’s coordinates,
with respect to curvilinear coordinate systems, are determined by the expressions:

Ii = −aij
Dvj

dt
. (3B.82)
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As X̃i in relation (3B.8) denotes a sum of active forces and inertia forces
(3B.82), it is: (

Xi − aij
Dvj

dt

)
∆xi ≤ 0. (3B.83)

This inequality directly follows from relation (3B.32), if it is kept in mind that
possible displacements, as in (3B.18) are

∆rν =
∂rν

∂xs
∆xs, (r, s = 1, 2, 3). (3B.84)

Substituting in relation (3B.32), it is obtained, regarding (1.38)

N∑
ν=1

(
Is
ν

∂rν

∂xs
+ Xs

ν

∂rν

∂xs

)
· ∂rν

∂xr
∆xr =

=
N∑

ν=1

(
Xs

ν

∂rν

∂xs
−mν

Dvs
ν

dt

∂rν

∂xs

)
· ∂rν

∂xr
∆xr =

=
N∑

ν=1

(
g(ν)srX

s
ν − a(ν)rs

Dvs
ν

dt

)
∆xr ≤ 0.

If indices i, j = 1, . . . , 3N , are introduced m3k = m3k−1 = m3k−2, i = 3ν, 3ν−
1, 3ν − 2, the relation follows:

(
gijX

j − aij
Dvj

dt

)
∆xi ≤ 0, (3B.85)

or relation (3B.83), regarding the fact that Xi = gijX
j .

If displacements are constrained by bilateral constraints

fµ(x1, . . . , x3N , τ), µ = 1, . . . , k,

in relation (3B.83), a sign of inequality drops, while, through the constraint

f0 = x0 − τ(t) = 0,

abstracted by force R0, k homogeneous linear equations with respect to possible
displacements are obtained:

∆fµ =
∂fµ

∂xi
∆xi +

∂fµ

∂xo
∆x0 = 0, (3B.86)

∆f0 = ∆x0 −∆τ = 0. (i = 1, . . . , 3N).

Multiplying with respective indefinite multipliers λµ and λ0 and summing up
with (

Xi − aij
Dvj

dt

)
∆xi = 0 (3B.87)
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it is obtained that:
(

Xi +
k∑

µ=1

λµ
∂fµ

∂xi
− aij

Dvj

dt

)
∆xi +

(
λ0 +

k∑
µ=1

λµ
∂fµ

∂x0

)
∆x0 = 0.

From this equation, 3N differential equations of motion follow

aij
Dvj

dt
= Xi +

k∑
µ=1

λµ
∂fµ

∂xi
, (3B.88)

as well the force of the constraints’ change

λ0 = −
N∑

µ=1

λµ
∂fµ

∂x0
=: X0, (3B.89)

to which k finite equations of the observed constraints fµ = 0 should be added.

b) Work Principle in Independent Generalized Coordinates

If all constraints (3B.57) are abstracted by respective constraints’ reactions

Ri =
k∑

µ=1

λµ
∂fµ

∂yi
, (i = 1, . . . , 3N) (3B.90)

and if additional constraint y0 − τ = 0 is abstracted by force R0, then equation
(3B.72) will have the following form:

(
Ii + Yi +

k∑
µ=1

λµ
∂fµ

∂yi

)
∆yi + R0∆y0 = 0. (3B.91)

Substituting constraints’ equations (3B.57) by the parametric form

yi = yi(q0, q1, . . . , qn), y0 = q0, n = 3N − k,

and displacement ∆yi by independent possible displacements

∆yi =
∂yi

∂qα
∆qα (α = 0, 1, . . . , n),

equation (3B.91), regarding equations (3A.57), is reduced to a new invariant form:

(Iα + Qα)∆qα +
k∑

µ=1

λµ
∂fµ

∂yi

∂yi

∂qα
∆qα = 0.
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However, since it is fµ(q0, q1, . . . , qn) ≡ 0, thus, it is

∆fµ(y(q)) =
∂fµ

∂yi
∆yi =

∂fµ

∂yi

∂yi

∂qα
∆qα =

∂fµ

∂qα
∆qα ≡ 0,

so that it follows for index j = 1, . . . , n = 3N−k, that the work principle, observed
with respect to the generalized coordinates, has the following form:

(Ij + Qj)∆qj + (I0 + Q∗0 + R0) ∆q0 = 0. (3B.92)

This equation is equivalent to the system of equations (3B.56) and (3B.57).
Due to the described nature of possible independent generalized displacements ∆qα,
beside producing equations (3B.56) and (3B.57), work principle (3B.92) also points
to the mutual constraint of forces Ij , Qj , displacement ∆qα and forces I0, Q

∗
0 and

R0.
Second Conclusion. As can be seen from the previous statements, the work

principle can be applied to any coordinate system, simultaneously preserving its
linear invariant scalar form for all the coordinate systems, constraints systems and
systems of forces.

Work Principle Upon Possible Variations

Relation (3B.22) has introduced the concept of work upon possible variations,
along with the statement that variations (3B.24) can belong to the set of possible
displacements. Consequently, for a particular subset of possible displacements, all
the introduced work principle relations, namely, (3B.31), (3B.32), (3B.40), (3B.51)
and (3B.52), (3B.56), (3B.64), (3B.72), (3B.81) and (3B.92) will have this very
form, except for the fact that, instead of possible displacements ∆·, possible vari-
ations δ· will be written. From this identity of the forms it cannot be concluded
that the work principle upon possible variations ∆r is the same as the principle
upon possible variations (3B.24), since ∆r and δr are not identical. æ

3C. PRINCIPLE OF ACTION

In the statements such as “under the action of the force” or “interaction of
the bodies” or “action equals reaction”, the term action implies the presence of the
forces and their inducement rather than some particular concept of action. On the
other hand, in analytical mechanics, theoretical physics or even mathematics, the
concept of action implies a more or less accurately determined functional whose
definition makes no reference of force. For this reason, as in the case of work
principle, it is necessary here to determine the concept of action.

Definition 6. Action. Action of a force F of the mechanical system is an
integral value

A(F ) =

t∫

t0

W (F )dt. (3C.1)
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where W (F ) is work of force F .
The physical dimension of action is, just like that of the impulse moment,

dim A = M L2 T−1 . (3C.2)

It is obvious that the subintegral expression of action is a scalar invariant that
can be written, regarding relations (3B.2) or (3B.3), invariantly with respect to all
the observed coordinate systems, as

A(F ) =

t∫

t0

W (F )dt =

t∫

t0

W (Y )dt =

=

t∫

t0

W (X)dt =

t∫

t0

W (Q)dt,

(3C.3)

or, regarding expression (3B.7), in the form

A(I) =
∫ t

t0

Ekdt. (3C.4)

This written form also points to the belief that action is an integral of product
of the work of a force and the time interval.

As there are many invariant and equivalent forms of writing down action, the
principle of action can be and is expressed by various, though equivalent sentences.
The mathematical statement is important here:

Action variation (3C.3) during time [t0, t] is equal, by the value, to variations
of (3C.4) for the same amount of time; thus, if

δA(F ) = δA(I). (3C.5)

According to relations (3B.22), the active forces’ work upon possible variations is

δW (Y ) = Yjδy
j = Xjδx

j = Qαδqα = 0, (3C.6)

while the action variation

δA(I) = δ

t∫

t0

W (I)dt =

t∫

t0

δW (I)dt =

t∫

t0

δEkdt. (3C.7)

In order to harmonize δA and δW (Y ), let us multiply the expression of the
principle of work (3B.35) by the differential of time dt > 0 and subsume under the
sign of integral, i.e.

∫ t

t0

N∑
ν=1

(Iν + Fν) · δrνdt =
∫ t

t0

[δW (I) + δW (F )] dt.



3C. Principle of Action 85

It is shown by certain transformations that

∫ t

t0

δEkdt = −
N∑

ν=1

∫ t

t0

mνaν · δrνdt =

=
∫ t

t0

N∑
ν=1

(−mνaν) · δrνdt =
∫ t

t0

δW (I)dt

(3C.8)

therefore the principle of action can be now operationalized using the relation

∫ t

t0

[δEk + δW (F )] dt =
∫ t

t0

(δEk + Yiδy
i)dt = 0. (3C.8a)

A more complete and accurate determination of the relation of principle (3C.8)
or (3C.8a) will be explained by its application to particular mechanical systems,
from simpler to more complex ones.

Static Problem

a) The point M(y) is attacked by force Fν = Y i
ν ei (i = 1, 2, 3; ν = 1, . . . , N).

A point M belongs to constraints fµ(y) = 0, µ ≤ 3. What results from the principle
of action?

According to expressions (3B.22), the active forces’ work upon variations δyi

is
δW = Y i

r δyi (3C.9)

where δyi are coordinates of resultant force Y i
r =

N∑
ν=1

Y i
ν . Since the static problem

implies that ÿ = 0, inertia force is absent, and thus W (I) = 0 as well, so that action
principle relation (3C.8) comes to

t∫

t0

Y i
r δyidt = 0. (3C.10)

The constraints have to satisfy the relations’ variation

δfµ =
∂fµ

∂yi
δyi = 0. (3C.11)

Multiplying by indefinite coefficients λµ, summing up with respect to µ, inte-
grating upon the interval [t0, t) and summing up with (3C.11), we have

t∫

t0

(
Y i

r +
k∑

µ=1

λµ
∂fµ

∂yi

)
δyidt = 0, (3C.12)
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which is equivalent to relation (3C.10). By the indefinite multipliers’ method, as
from (3B.52) to (3B.53), three equations of the dynamic point equilibrium are
obtained

N∑
ν=1

Y i
ν +

k∑
µ=1

λµ
∂fµ

∂yi
= 0, i = 1, 2, 3.

b) Static system of N dynamic points Mν (ν = 1, . . . , N), connected by con-
straints fµ(x1, . . . , x3N ) = 0; forces Fν = Xi

νg(ν) are functions of x coordinates of
Mν(x) points’ positions.

The work of the given forces upon variations, according to definition (3B.22)
and equations (3B.36), is

δW =
∂W

∂xj
δxj = Xj(x)δxj , (3C.13)

so that, similarly to relation (3C.8), the principle of action can be written in the
form

t∫

t0

(
Xj +

k∑
µ=1

λµ
∂fµ

∂xj

)
δxjdt = 0. (3C.14)

or in the form
t∫

t0

(
δW (F ) +

k∑
µ=1

λµδfµ

)
dt = 0. (3C.15)

Kinetic Problem

Unlike the previous static problem, the number of forces F is here enlarged
with inertia forces (1.37), (1.40) and (3A.50) and their work is being determined,
that is, kinetic energy (3B.7):

Ek =
1
2

N∑
ν=1

mνvν · vν =
1
2
aij(m, y)ẏiẏj =

1
2
aij(m,x)ẋiẋj ,

(i, j = 1, . . . , 3N).

Then, according to (3C.8), relation (3C.15) becomes

t1∫

t0

(
δEk + Yjδy

j +
k∑

µ=1

λµδfµ

)
dt = 0. (3C.16)

Therefore, the principle of action emerges here in the form of equivalent rela-
tions (3C.5), (3C.7), (3C.8) and (3C.10). The essential difference comparing to the
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work principle lies in the fact that the principle of action is used in the study of
motion by means of the kinetic energy functions.

Example 11. All forces, except for inertia ones, exerted upon a material point
of constant mass m mutually annul themselves, that is, the resultant of these forces
equals zero.

It results from relations (3C.16), (3C.12) and from definition (3C.1) that there
is only one action

A(I) =

t1∫

t0

Ekdt (3C.17)

so that in this case the principle is written down as

δ

t∫

t0

Ekdt = 0 (3C.18)

The significance of formula (3C.17) is also stressed by the fact that it is called
action function, while relation (3C.18) is called the principle of least action [50] that
has been formulated and elaborated by the most distinguished and deserving the-
orists of analytical mechanics3 Jacobi even wrote that the principle of least action
is the “mother” of the entire analytical mechanics. Relation (3C.18), derived here
from a simple example, can also be obtained from much more general observation.
If the active forces’ work variation is equal to zero, then it is

t1∫

t0

δEkdt = 0 and

t1∫

t0

δWdt = 0,

as well as vice versa. Hence relation (3C.5) can be replaced by a much more precise
formulation

δA = 0 ⇔ δW = 0. (3C.19)

For a system of kinetic energy (3B.5) relation (3C.8) is reduced to the form

t1∫

t0

(δEk + δW (x)) dt =

t1∫

t0

(δEk − δEp) dt = δ

t1∫

t0

Ldt = 0 (3C.20)

where the function
L := Ek − Ep, (3C.21)

3Wolff (1726), Maupertius (1746), Euler (1748), Lagrange (1760) and others.
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is known as the Lagrange’s function, Lagrangian or kinetic potential. Relation
(3C.20) is known as the Hamilton’s principle or the principle of stationary action,
whose action function

A =

t1∫

t0

Ldt (3C.22)

most often called Hamilton’s action, is most widely used in analytical dynamics,
despite the fact that it relates only to the mechanical systems with potential forces.
Relation (3C.8a) from which, as can be seen, (3C.18) and (3C.20) follow, is called
the principle Hamilton-Ostrogradsky. Regarding that all three relations are shown
here, namely (3C.8), (3C.15) and (3C.2), in a more general and modified form, the
author has chosen the principle of action as the term. While applying Hamilton’s
principle (3C.20) the physical meaning of function (3C.21) for which the principle
has been set is often disregarded, so that for function L known as Lagrangian any
function dependent on the used independent coordinate x, its derivatives x and
time t is accepted. Such an approach has led do some results inconsistent with
the preprinciples of mechanics, and, consequently, with the real motion as well.
This happens especially when the principle is applied to the systems of manifolds.
In order to make comparison of the assertions made here with the standards of
the classical analytical mechanics much easier, we will show the application of
action principle (3C.8) or (3C.16), in slightly more details when the configurational
manifolds are taken into consideration.

Configurational Manifolds

Let’s observe N material points of mass mν (ν = 1, . . . , N). With respect to a
arbitrarily chosen pole O and orthonormal coordinate system (y, e), the position of
the ν-th point shall be determined by vector rν = yi

νei. Let’s motion of the point
be limited by k ≤ 3N of bilateral constraints which can be represented, according
to the laws of constraints, by vectors Rτ

ν (of resistance, friction, etc.) as well as by
means of independent equations:

fµ(r1, . . . , rN , τ(t)) = 0 (µ = 1, . . . , k) (3C.23)

or,
fµ(y1

1 , y2
1 , y3

1 ; . . . ; y1
N , y2

N , y3
N , τ(t)) = 0, (3C.24)

that is,
fµ(y1, . . . , y3N , y0) = 0, y0 = τ(t). (3C.25)

Functions fµ are ideally smooth and regular in the area of constraining the
material points.

The condition for the constraints’ independence is, in the simplest way, reflect-
ed in the velocity conditions at the constraints:

ḟµ =
∂fµ

∂yi
ẏi +

∂fµ

∂y0
ẏ0 = 0. (3C.26)
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These equations will be written in the following form:

∂fµ

∂y1
ẏ1 + · · ·+ ∂fµ

∂yk
ẏk =

= −
(

∂fµ

∂yk+1
ẏk+1 + · · ·+ ∂fµ

∂y3N
ẏ3N +

∂fµ

∂y0
ẏ0

)
.

(3C.27)

From this system, linear with respect to velocities ẏ, it is possible to determine
k of velocities ẏ1, . . . ẏk by means of remaining 3N − k + 1 velocities ẏk+1, . . . , ẏ3N

under the condition that the determinant is
∥∥∥∥

∂fµ

∂ym

∥∥∥∥
k

k

6= 0 (µ,m = 1, . . . , k). (3C.28)

A multitude of ways, or, briefly, a manifold choice of sets of coordinates
qα, by means of which the position or configuration of the system’s points in
a moment of time is determined, suggests that a set of independent coordinates
q := (q0, q1, . . . , qn) ∈ Mn+1 should be called configurational manifolds. Accord-
ingly, a set of coordinates q and velocity q̇ = (q̇0, q̇1, . . . , q̇n)T should be called
tangential manifolds TMn+1. The pencil of all the velocities vectors at the point

q will consequently be denoted as TqM
n+1 which implies n + 1 base vectors

∂r

∂qα

at each point upon manifolds Mn+1. Hence, we will further on consider two sets,
namely Mn+1 and TMn+1, as well as pencil TqM

n+1 of the linear vectors. For the
sake of brevity, the following notations are introduced:

N := Mn+1, M := Mn,

TN := TMn+1, TM := TMn,

and, accordingly, TqM , TqN as well.
Considering this condition as well as the above-stated properties of func-

tions fµ, it is possible, according to the implicit functions theory, to determine,
from equations (3C.25), k dependent coordinates y1, . . . , yk by means of remaining
3N − k + 1 coordinates y1, . . . , y3N , y0. The choice of dependent and independent
coordinates is arbitrary, along with a special choice of q0 coordinates, so that each of
coordinates y1, . . . , y3N can itself be expressed as function 3N−k+1 of coordinates
y. Since, as needed, constraints (3C.25) can be expressed - as in (2.2) - in curvilinear
coordinate systems, the possibility of selecting independent coordinates is enlarged.
If the independent generalized coordinates are denoted by letters q0, q1, . . . , qn, it
follows that constraints (3C.25) can be written down in the parametric form:

yi = yi(q0, q1, . . . , qn), q0 = τ(t), (3C.29)

and thus, also as
rν = rν(q0, q1, . . . , qn). (3C.30)
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Velocity conditions (3C.26) are thus substituted, according to definition (1.1),
by relations (3A.37), that is

vν =
∂rν

∂q0
q̇0 +

∂rν

∂q1
q̇1 + · · ·+ ∂rν

∂qn
q̇n =:

∂rν

∂qα
q̇α. (3C.31)

In this topology, action principle is

t1∫

t0

[Qαδqα + δW (I)] dt = 0 (3C.32)

where

Qα = Yi
∂yi

∂qα
; i = 0, 1, . . . , 3N, α = 0, 1, . . . , n.

are generalized forces. The inertia forces’ work, for mν = const, is determined in
relation (3B.7) as negative kinetic energy; hence, regarding expression (3C.31) it is

W = −Ek = −
N∑

ν=1

mν

2
v2

ν · v2
ν =

= −1
2

N∑
ν=1

mν
∂rν

∂qα
· ∂rν

∂qβ
q̇αq̇β =

= −1
2
aαβ(mν , q)q̇αq̇β , q̇ ∈ TN .

(3C.33)

Thus, action principle relation (3C.32) has an invariant form (3C.8a) in the
generalized coordinates [10]

t1∫

t0

(δEk + Qαδqα) dt = 0, q ∈ N . (3C.34)

Let us also show that the relation (3C.16) comes up to equation (3C.34). Again
y0 is taken as an auxiliary coordinate y0 = τ(κ, t). Then, in the case of constraints
(3C.24), expression (3C.16) can be written in its extended form as:

t1∫

t0

(
δEk + Yiδy

i +
k∑

µ=1

λµ
∂fµ

∂yi
δyi + R0δy

0

)
dt = 0 (3C.35)

Variations of equations (3B.29) are:

δyi =
∂yi

∂qα
δqα, δy0 = δq0 (α = 0, 1, . . . , n).
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Substituting in relation (3B.35) it follows that is

∫ t1

t0

(
δEk + Yi

∂yi

∂qα
δqα +

k∑
µ=1

λµ
∂fµ

∂yi

∂yi

∂qα
δqα + R0δq

0

)
dt = 0

i.e.,
t1∫

t0

(δEk + Qαδqα) dt = 0, (3C.36)

regarding the fact that
∂fµ

∂yi

∂yi

∂qα
δqα ≡ 0

and

Q0 = R0 + Yi
∂yi

∂q0
= R0 + Q∗

0 (3C.37)

as in relation (3A.56b).
The kinetic energy is a homogeneous quadratic form:

Ek =
1
2
aαβ q̇αq̇β , (α, β = 0, 1, . . . , n). (3C.38)

Following classical variation calculation, after varying

δEk =
∂Ek

∂qα
δqα +

∂Ek

∂q̇α
δq̇α

and integrating (3C.36), it is obtained that:

∂Ek

∂q̇α
δqα

∣∣∣∣
t1

t0

+

t1∫

t0

(
∂Ek

∂qα
− d

dt

∂Ek

∂q̇α
+ Qα

)
δqαdt = 0 (3C.39)

This is always satisfied when the differential equations of motion are dealt with

d

dt

∂Ek

∂q̇α
− ∂Ek

∂qα
= Qα, α = 0, 1, . . . , n; (3C.40)

and boundary conditions

δqα(t1) = 0, δqα(t0) = 0.

Differential equations (3C.40) which amount to n + 1, that is,

d

dt

∂Ek

∂q̇i
− ∂Ek

∂qi
= Qi, i = 1, . . . , n; (3C.40a)

d

dt

∂Ek

∂q̇0
− ∂Ek

∂q0
= Q0 = Q∗0 + R0, (3C.40b)
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are reduced to the differential equations in the extended form since it is clear that
the kinetic energy is easy to set up aαβ known inertia tensor.

What is obviously adequate, for the invariable constraints’ systems in which
all the generalized forces are equal to zero, is the principle of least action (3C.18)
which can be, on the basis of (3B.5), brought into agreement with the preprinciple
of existence.

For the systems with invariable constraints and with such potential energy Ep

that the active forces are

Qi = −∂Ep

∂qi
, (3C.41)

equation (3C.40b) is non-existent, while equations (3C.40a) are reduced to

d

dt

∂L

∂q̇i
− ∂L

∂qi
= 0, (i = 1, . . . , n). (3C.42)

They are equivalent to principle (3C.20).
If the natural Lagrange function

L = Ek − Ep(q0, q1, . . . , qn)

is added the function
P(q0) = −

∫
R0(q0)dq0, (3C.43)

which appears at constraints (3C.23) or (3C.29), that is, [44]

L = Ek − (Ep + P), (3C.44)

equations (3C.4) are reduced to

d

dt

∂L
∂q̇α

− ∂L
∂qα

= 0 (3C.45)

that are equivalent to the principle

δ

t1∫

t0

Ldt = 0. (3C.46)

This relation produces, in addition to equations (3B.42), one more equation,
namely:

d

dt

∂L

∂q̇0
− ∂L

∂q0
= R0. (3C.47)

Conclusion 1. The principle of action provides for the consideration of the
mechanical systems’ motion by means of the energy functions if the non-potential
forces are absent.
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Principle of Action upon T ∗N
The notation T ∗N here implies 2n+2 dimensional manifolds which form n+1

generalized coordinates q = (q0, q1, . . . , qn) and n + 1 generalized impulses p =
(p0, p1, . . . , pn), meaning (1.25), that is (3A.39). Regarding the fact that p&q ∈
T ∗N denotes the tangent manifolds, then the symbol T ∗N is called the cotangent
manifolds. In the literature other terms can be sometimes found such as “phase
space”, “state space”, “Hamilton’s variables”, or “cotangential spaces”. If the
starting point is the fact that the motion state is characterized by the position
coordinates of point q as well as the coordinates of impulse p, then it could be
said that T ∗N is the state of the system’s motion or state manifolds. Since N :=
Mn+1, T ∗N can also be called the extended manifolds if it is necessary to stress its
difference from configurational manifolds Mn and its respective cotangent manifolds
T ∗M [45], [49], [51], [59], [63].

What is even more important than the term itself is the understanding and
acceptance that p0, p1, . . . , pn are the impulses whose essence is determined by
definition 2, that is, derived by formulae (1.25). At the same time, as can be seen
from relations (3A.39) and (3A.42), there is a mutually linear combination between
generalized impulses pα and generalized velocities q̇α:

pα = aαβ q̇β ⇔ q̇α = aαβpβ . (3C.48)

The next step in considering the action principle upon T ∗N implies the sub-
stitution of velocities q̇α in the above-discussed relations by means of generalized
impulses pβ .

Action (3C.4) has, in its turn, just been defined by means of impulses,

A(I) = −1
2

t∫

t0

pαdqα = −1
2

t∫

t0

pαq̇αdt.

because kinetic energy has the following forms:

Ek =
1
2
aαβ q̇αq̇β =

1
2
pβ q̇β =

1
2
aβγpβpγ . (3C.49)

Hamilton’s action is expressed by the relation:

A =

t∫

t0

Ldt =

t∫

t0

(Ek − Ep)dt =

=

t∫

t0

(2Ek − (Ek + Ep))dt =

=

t∫

t0

(pαq̇α −H)dt,

(3C.50)
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where
H := Ek + Ep =

1
2
aβγpβpγ + Ep(q). (3C.51)

If generalized forces Qα are separated into potential and non-potential Q∗α, so
that it is

Qα = −∂Ep

∂qα
+ Q∗α (3C.52)

and if they are substituted in relation (3C.36), it is obtained that

t∫

t0

[δ (pαq̇α −H) + Q∗
αδqα] dt = 0 (3C.53)

Further, it is

t1∫

t0

δ (pαq̇α −H) dt = (3C.54)

=

t1∫

t0

[
δpαq̇α + pαδq̇α −

(
∂H

∂pα
δpα +

∂H

∂qα
δqα

)]
dt =

= pαδqa|t1t0 +

t1∫

t0

[(
q̇α − ∂H

∂pα

)
δpα −

(
ṗα +

∂H

∂qα

)
δqα

]
dt

Substituting in relation (3C.53), it follows

pαδqa|t1t0 +

t1∫

t0

[(
q̇α − ∂H

∂pα

)
δpα +

(
Q∗

α − ṗα − ∂H

∂qα

)
δqα

]
dt = 0 (3C.55)

It can be seen from formula (3C.51) that it is

∂H

∂pα
= aαβpβ ,

so that, due to linear combinations (3C.48)

q̇α =
∂H

∂pα
. (3C.56)

Consequently, relation (3C.55) is reduced to

pαδqα
∣∣t1
t0

+

t1∫

t0

(
Q∗

α − ṗα − ∂H

∂qα

)
δqαdt = 0, (3C.57)
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which is equivalent to relation (3C.39). Under conditions (3C.41), relation (3C.56)
is satisfied if it is

ṗα = − ∂H

∂qα
+ Q∗α, (α = 0, 1, . . . , n) (3C.58)

these being differential equations of the system’s motion; they, along with transfor-
mations (3C.56), form the system of 2n + 2 differential equations:

ṗi = −∂H

∂qi
+ Q∗i , q̇i =

∂H

∂pi
, (3C.59)

ṗ0 = −∂H

∂q0
+ Q∗

0, q̇0 =
∂H

∂p0
, (3C.60)

where, as in (3C.40b), Q∗0 = Q∗∗0 + R0.
In the case that Pi = 0 and P ∗0 = 0 occurs, function (3C.51) can be extended

to the total mechanical energy

E = H + P, (3C.61)

so that the system of equations (3C.56) and (3C.58), as well as (3C.59) and (3C.60),
can be written in the canonical form:

ṗα = − ∂E

∂qα
,

q̇α =
∂E

∂pα
.





α = 0, 1, . . . , n. (3C.62)

In the case of the system’s invariable constraints, when there is no rheonomic
coordinate q0, equations (3C.60) vanish, while in equations (3C.62) indices range
from 1 to n.

Conclusion 2. The principle of action provides for direct consideration of the
mechanical system’s motion upon T ∗N , as upon T ∗M , by the relations of the same
type.

It is the action principle upon which the analytical mechanics, known also as
Lagrange and Hamilton’s mechanics, has been developed.

Example 12. Motion of a material point of mass m upon a vertical con-
straining smooth circular line of radius r, revolving at angular velocity ω around
the central vertical axis [3].
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Fig. 4

Let (y1, y2, y3)T ∈ E3 be Cartesian coordinates starting from the center of cir-
cumference 0, while axis Oy3 is directed vertically upwards. The spherical system
of coordinates ρ, ϕ, θ is also introduced and placed in such a way that the circum-
ference plane and plane y2 = 0 form an angle ϕ. It follows from the problem that
the material point is constrained by two constraints, namely,

f1 = ρ− r = 0, f2 = ϕ− ωt = 0.

Let’s denote q := θ, q0 = ωt, while the respective impulses are p and p0.
Manifold M is a circumference, while N is a sphere.

Kinetic energy has the forms

Ek =
m

2
(
ẏ2
1 + ẏ2

2 + ẏ2
3

)
=

=
mr2

2
(
q̇2 + q̇2

0 sin2 q
)

=
1

2mr2

(
p2 +

p2
0

sin2 q

)
,

since it is p = mr2q̇ and p0 = mr2q̇0 sin2 q.
Potential energy is

Ep = −mgr(1− cos q).

Function H, accordingly, has the form

H =
1

2mr2

(
p2 +

p2
0

sin2 q

)
−mgr(1− cos q).

Differential equations of motion (3C.59) and (3C.60) are:

ṗ =
p2
0

2mr2

cos q

sin3 q
−mgr sin q, q̇ =

p

mr2
,

ṗ0 = R0, q̇0 =
p0

mr2 sin2 q
.

æ
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3D. PRINCIPLE OF COMPULSION

In the related literature the principle of compulsion is also known as Gauss’
principle though the author himself did not considered it as a principle. The analyt-
ical form of the Gauss’ principle has been considered by many well-known scientists
of classical mechanics. Without going into historical analysis, the concept of com-
pulsion will be the first to determine here [17], [43], [48].

Definition 7. Compulsion Compulsion is a semi-sum of the products of
mass mν and squared acceleration difference

Z
def=

1
2

N∑
ν=1

mν

(
dvν

dt
− Fν

mν

)2

. (3D.1)

The previous formula for compulsion can be written in the form

Z =
∑

mνa2
ν (3D.2)

where

aν :=
Iν + Fν

mν
=

Fν

mν
(3D.3)

accelerations of the ν-th material points caused by resultant force Fν .

Formulae (1.37), (2.12), (2.15) and (2.17) show that Fν are functions of position
vector r, velocity ṙ and acceleration r̈. Since in finite equations of motion the
position vector always appears as a function of parameter κ and time, it also
follows that function Z indirectly depends on these parameters and time, that is,

Z = Z(a(κ, t)) (3D.4)

The physical dimension of compulsion is

dim Z = M L2 T−4 . (3D.5)

Function Z satisfies the preprinciple of existence regarding the fact that mass,
distance and time are existent, as well as the laws of dynamics and definition
(1.37) which determine the existence of the forces. The preprinciple of casual
definiteness is satisfied with as much accuracy as parameters κ in function (3D.3)
are accurately measured. Regarding the fact that Z, as can be seen from (3D.1), is
a homogeneous quadratic form of acceleration, the invariance of compulsion under
any regular coordinate transformation cannot be doubted. Consequently, there is no
impediment from the aspect of the invariance preprinciple, either. The difficulties
that arise in that sense should be looked for in mathematical skill. If at least
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metrics and coordinate systems, considered together with definitions 1 and 3 are
taken into consideration, function Z can be written in the following forms:

2Z =
∑

ν

mνaν · aν =
∑

ν

mνak
νek · al

νel =

=
N∑
ν

mνδkla
k
νal

ν = aija
iaj .

(3D.6)

With respect to the natural trihedron, forces Fν can be resolved as, for example
(1.40a)

Fν = Fτ
ν τ + Fn

ν n + Fb
νb (3D.7)

where τ , n, and b, are orthogonal unit vectors controlling the tangent, normal and
binormal. Thus compulsion again emerges as a sum of the squares

2Z = F2
τ + F2

n + F2
b (3D.8)

where

F2
τ =

∑
ν

mν (Fτ
ν )2 , F2

n =
∑

ν

mν (Fn
ν )2 , F2

b =
∑

ν

mν

(Fb
ν

)2
.

Analogously, each ν-th vector Fν can be resolved by means of tangent pencil
TνM ,

∂r

∂qα
∈ TνM

and respective vectors n(ν)α, perpendicular to TνM :

Fν = Fα ∂rν

∂qα
+Nαnνα. (3D.9)

By substituting expression (3D.6), after scalar multiplication at which it is

∂rν

∂qα
· nνα = 0,

and by taking into consideration (3D.3), it is obtained that

2Z = aαβaαaβ + bαβNαN β (3D.10)

where aαβ and bαβ are coefficients of the given quadratic forms. All the above-given
expressions for compulsion are represented by homogeneous quadratic forms of the
coordinates of vector a which has a dimension of acceleration. In order to be applied
in mechanics, beside stressing the statement that Z is a homogeneous quadratic
form of a, and, that through acceleration it appears as a function of parameter κ
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and time, it is necessary to reduce defined compulsion (3D.1) to clearer coordinate
forms. Therefore, three descriptions should be distinguished by means of:

1. orthonormal rectilinear coordinate system (y, e),
2. curvilinear coordinate system (x, g), and,
3. configurational manifolds M .

In all the three cases Fν in formula (3D.1) is regarded to be a resultant vector

of all the forces acting upon the ν-th point, except for inertia force Iν = −mν
dvν

dt
,

which is set apart by definition 4.

1. Compulsion in Coordinate System (y, e)

With respect to coordinate system (y, e), acceleration vectors are aν = ÿk
νek,

while forces are Fν = Y l
νel. (k, l = 1, 2, 3; ν = 1, . . . , N).

Substituting in formula (3D.1) it follows

2Z =
N∑

ν=1

mν

(
ÿk

νek − Y k
ν ek

mν

)
·
(

ÿl
νel − Y l

νel

mν

)
=

=
∑
ν=1

mνδkl

(
ÿk

ν ÿl
ν − 2

ÿk
νY l

ν

mν
+

Y k
ν Y l

ν

mν ·mν

)
.

(3D.11)

If the notations are introduced: m3ν−2 = m3ν−1 = m3ν ; i, j = 3ν − 2, 3ν −
1, 3ν = 1, 2, . . . , 3N as well as Ȳ i

ν :=
Y i

ν

mν
, it is obtained

Z =
1
2
δ̄ij

(
ÿi − Ȳ i

) (
ÿj − Ȳ j

)

=
1
2
δ̄ij ÿ

iÿj − δ̄ij ÿ
iȲ j +

1
2
δ̄ij Ȳ

iȲ j ,

(3D.12)

where δ̄ij = miδij .

2. Compulsion in Curvilinear Coordinate Systems

With respect to curvilinear coordinate systems that are in uniform correspon-
dence with (y, e), that is,

yk = yk(x1, x2, x3), ek =
∂yl

∂xk
gl,

∣∣∣∣
∂yl

∂xk

∣∣∣∣ 6= 0,

and their simple substitution in relations (3D.11) or (3D.12), what would be ob-
tained is:

Z =
1
2
aij

(
Dẋi

dt

Dẋj

dt
− 2X̄j Dẋi

dt
+ X̄iX̄j

)
, (3D.13)
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since

ÿi =
∂yi

∂xj

Dẋj

dt
, aij =

N∑
ν=1

mνδkl
∂yk

ν

∂xi

∂yl
ν

∂xj
.

In order to understand better the subsequent particularities, relation (3D.13)
will be directly derived from definition (3D.1). According to expression (1.30) it
can be written:

dvν

dt
=

Dẋk
ν

dt
gνk,

Fν

mν
= X̄kgνk.

Substituting in formula (3D.1), it follows

2Z =
N∑

ν=1

mν

(
Dẋk

ν

dt
− X̄k

ν

)
gνk ·

(
Dẋl

ν

dt
− X̄ l

ν

)
gνl =

=
N∑

ν=1

mνgνk · gνl

(
Dẋk

ν

dt
− X̄k

ν

)(
Dẋl

ν

dt
− X̄ l

ν

)
,

or if the indices are used, as from (3D.11) to (3D.12), relation (3D.13) is obtained
where

aij :=
N∑

ν=1

mνgνi · gνj =
N∑

ν=1

mν
∂rν

∂xi
· ∂rν

∂xj
.

Therefore, if the motion of the system of N material points is observed, in
which the constraints are abstracted by the forces so that every point is viewed as
“free” - at which every vector can be resolved into three components, compulsion
Z is described by forms from (3D.12) or (3D.13), each with 3N quadratic addends

of acceleration (ÿ − Ȳ ) or
(

Dẋ

dt
− X̄

)
.

3. Compulsion in Generalized Systems of Coordinates

With respect to independent generalized coordinates q ∈ Mn, n ≤ 3N , the
acceleration

aν =
d

dt

(
∂rν

∂qα
q̇α

)
=

∂2rν

∂qβ∂qα
q̇αq̇β +

∂rν

∂qα
q̈α (3D.14)

has a complex coordinate structure. Tangential pencil TνM of vector on the basis

g(ν)α :=
∂rν

∂qα
, is not sufficient enough to be used as a means of resolving the

acceleration vector. The vector

∂g(ν)α

∂qβ
= Γγ

αβg(ν)γ + b(ν)αβn(ν) (3D.15)

in the general case, it does not belong, as a whole, to pencil TνM ; instead, at
every ν-th point, it also possesses a component perpendicular to TνM ; g(ν)⊥n(ν).
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If vector nν is also resolved as nν = κγ
(ν)η(ν)γ . Substituting expression (3D.15) in

(3D.14), it is obtained that

aν =
(
q̈γ + Γγ

αβ q̇αq̇β
) ∂rν

∂qγ
+ b(ν)αβ q̇αq̇βnnu

=
Dq̇γ

dt

∂rν

∂qγ
+ bαβ q̇αq̇βκγ

(ν)n(ν)γ .

(3D.16)

By means of base vectors g(ν)γ and η(ν), vector
Fν

mnu
, should also be resolved:

Fν

mν
= Qγ ∂rν

∂qγ
+ FNnν = Qγ ∂rν

∂qγ
+ FNκγ

(ν)n(ν)γ . (3D.17)

This provides for writing compulsion in the coordinate form. Namely, by
substituting relations (3D.17) and (3D.16) in (3D.1), it follows:

Z =
1
2

N∑
ν=1

mν

[(
Dq̇γ

dt
−Qγ

)
∂rν

∂qγ
+

(
bαβ q̇αq̇β − FN

)
κγ

(ν)n(ν)γ

]2

=

=
1
2

N∑
ν=1

[
mν

∂rν

∂qγ

∂rν

∂qδ

(
Dq̇γ

dt
−Qγ

) (
Dq̇δ

dt
−Qδ

)
+

+
N∑

ν=1

mνκγ
(ν)κ

δ
(ν)n(ν)γ · n(ν)δ

(
bαβ q̇αq̇β − FN

)2
=

=
1
2
aγδ

(
Dq̇γ

dt
−Qγ

)(
Dq̇δ

dt
−Qδ

)
+

1
2
a2

N , (3D.18)

where
aγδ =

∑
mν

∂rν

∂qγ
· ∂rν

∂qδ
, (3D.19)

inertia tensor
a2

N = κ2
(
bαβ q̇αq̇β − FN

)2
, (3D.20)

while

κ2 =
N∑

ν=1

m(ν)κγ
(ν)κ

δ
(ν)n(ν)γ · n(ν)δ =

=
N∑

ν=1

m(ν)κγ
(ν)κ

δ
(ν)δ(ν)γδ =

N∑
ν=1

m(ν)κ2
(ν).

(3D.21)

By comparison to relations (3D.13) and (3D.12), it can be noticed that the
formal side of compulsion is:

ZM =
1
2
aαβ

(
Dq̇α

dt
−Qα

)(
Dq̇β

dt
−Qβ

)
=

=
1
2
aαβ

Dq̇α

dt

Dq̇β

dt
−Qβ

Dq̇β

dt
+

1
2
aαβQαQβ .

(3D.22)
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This is exactly compulsion upon manifolds M and as such, it is sufficient to
consider motion in the same way as described by means of energy (3C.38) upon
Mn and Mn+1.

Compulsion (3D.18) has both a quality and a quantity more

ZN =
1
2
a2

N =
κ2

2
(
bαβ q̇αq̇β − FN

)2
, (3D.23)

then compulsion (3D.22) that can be interpreted as compulsion of motion upon
TM and TMn+1.

Compulsion Z = ZM + ZN is equivalent to compulsions (3D.13) and (3D.12).
But, if it is desirable to describe it only at configurational manifoldness, it is suffi-
cient to consider respective function (3D.22). Due to the difficulties with determin-
ing factors κν in expression (3D.21), the determination of compulsion ZN should
be done in a somewhat more accessible way for particular forms of constraints.

Formulation of Compulsion Principle

Compulsion upon real motion is the least.
In other words, function (3D.4) has the least value at differentially small

changes of parameter κ. The mathematical relation of this principle is very simple,
namely:

δZ = 0, (3D.24)

or, concerning function (3D.4), as well as (3D.2), and similarly to

δZ =
∑

ν

∂Z

∂aν
δaν = 0. (3D.25)

Consequently, the compulsion principle can be also formulated by the following
sentence:

The first variation of compulsion with respect to acceleration is equal to zero.
Relation (3D.25) is satisfied for

∂Z

∂aν
= 0 (3D.26)

The same equations follow from the expression “compulsion is the least”.
Namely, it can be seen from function (3D.2) that Z is a positively definite qua-
dratic coordinate form which is the least and equal to zero only if aν = 0 for every
ν. The same is obtained from equations (3D.26), while the opposite is obtained for
all aν = 0 −→ Z = 0.

On the basis of this principle of mechanics as well as the three previous ones, it
is possible to develop the whole theory about motion of a system of material points.
This can be shown by the relations recognizable from the previous discussion of the
other principles.
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Relation of Compulsion Principle
with Respect to Coordinate Systems

Coordinate System (y, e). With respect to orthonormal coordinate system
(y, e), motion of N material points of mass m under the action of active forces Fν

and k geometrically ideally smooth bilateral constraints is observed:

fµ(y1
ν , y2

ν , y3
ν) = 0, (ν = 1, . . . , N). (3D.27)

Compulsion has the form (3D.11).
The accelerations existing in the expression for compulsion are conditioned by

the equations:

f̈µ =
N∑

ν=1

(
∂2fµ

∂yk
ν∂yl

ν

ẏk
ν ẏl

ν +
∂fµ

∂yk
ν

ÿk
ν

)
= 0. (3D.27a)

In accordance with the principle, the first variation with respect to acceleration
ÿk

ν of compulsion (3DG.11) is:

δZ =
N∑
ν

∂Z

∂ÿk
ν

δÿk
ν =

N∑
ν=1

mνδkl

(
ÿl

ν −
Y l

ν

mν

)
δÿk

ν = 0, (3D.28)

while respective constraint variations (3D.27) are:

δf̈µ =
N∑

ν=1

∂fµ

∂yk
ν

δÿk
ν = 0. (3D.29)

By introducing k indefinite multipliers of constraints λµ, it follows:

δZ =
N∑

ν=1

δkl

(
mν ÿl

ν − Y l
ν −

k∑
µ=1

λµ
∂fµ

∂yνl

)
δÿk

ν = 0. (3D.30)

It is equivalent to equations (3D.25) or (3D.26). Relation (3D.30) can be
written in a shorter form:

N∑
ν=1

(
∂Z

∂ÿk
ν

−
k∑

µ=1

λµ
∂fµ

∂yk
ν

)
δÿk

ν = 0. (3D.31)

Consequently, the differential equations of the observed system are:

∂Z

∂ÿk
ν

−
k∑

µ=1

λµ
∂fµ

∂yk
ν

= 0. (3D.32)

Together with k given constraints fµ = 0 are necessary and sufficient for
problem-solving. The same result would be achieved if the given constraints were
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abstracted by constraints’ reactions (2.9), (3.22). In that case, compulsion would
be

Z∗ =
1
2

N∑
ν=1

mν

(
dvν

dt
− Fν + Rν

mν

)2

, (3D.33)

while relation (3D.3)

aν =
Iν + Fν + Rν

mν
.

Equations (3D.26) would be reduced to (3D.32) while care should be taken
about the difference between Z and Z∗.

As for mechanical systems that, in addition to holonomic constraints fµ = 0,
also comprise non-integrable (non-holonomic) differential constraints

ϕσ(yν , ẏν) = 0, σ = 1, 2, . . . , l ≤ 3N − k. (3D.34)

The problem may be observed as in relation (3D.33) while additional knowledge
about reactions of constraints

Rν(ϕ) =
l∑

µ=1

Rνµ(ϕ)

is needed.
Let, as in the previous consideration of compulsion functions (3D.11), the

variation of binomic constraints’ acceleration conditions be (3D.29).
The conditions for acceleration of constraints ϕσ = 0 are

ϕ̇σ =
N∑

ν=1

(
∂ϕσ

∂yk
ν

ẏk
ν +

∂ϕσ

∂ẏk
ν

ÿk
ν = 0

)
, (3D.35)

while the respective variations are

δϕ̇σ =
N∑

ν=1

∂ϕ̇σ

∂ÿk
ν

δÿk
ν =

N∑
ν=1

∂ϕσ

∂ẏk
ν

δÿk
ν = 0. (3D.36)

Following the previous method of indefinite multipliers λ̄σ, an extended rela-
tion (3D.31) will be obtained, namely,

N∑
ν=1

(
∂Z

∂ÿk
ν

−
k∑

µ=1

λµ
∂fµ

∂yk
ν

−
l∑

σ=1

λ̄σ
∂ϕσ

∂ẏk
ν

)
δÿk

ν = 0. (3D.37)

Curvilinear Coordinate System (x, g). First of all, it should be stressed once
again that our initial or base coordinate system is system (y, e) for which equations
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(1.12) are valid. Let’s also repeat that coordinates y1
ν , y2

ν , y3
ν of the ν-th point

can be substituted by coordinates x1
ν , x2

ν , x3
ν of some other curvilinear coordinate

system. Due to a multitude of possible coordinate systems these 3N coordinates
x = (x1

ν , x2
ν , x3

ν) = (x1, x2, . . . , x3N ) form configurational manifolds M3N ; each
coordinate xk

ν is directed by coordinate vector ḡ(ν)k(x) whose pencils at particular
points are denoted by TxM3N .

By substituting y = y(x) in Z(ÿ) the compulsion of the system with N material
points is reduced to formulae (3D.13). By the same substitution, constraint fµ(y) =
0 is transformed into invariant form

fµ(y)y=y(x) = fµ(x1
ν , x2

ν , x3
ν) = 0

while relations (3D.27a), regarding (1.30) and (1.32) are reduced to the form:

f̈µ =
N∑

ν=1

(
∂2fµ

∂yk
ν∂yl

ν

∂yk
ν

∂xr
ν

∂yl
ν

∂xs
ν

ẋr
ν ẋs

ν +
∂fµ

∂yk
ν

∂yk
ν

∂xr
ν

Dẋr

dt

)
= 0,

or, by means of the changed indices, to the form

f̈µ = A(µ)ij ẋ
iẋj +

∂fµ

∂xi

Dẋi

dt
= 0 (3D.38)

The variation with respect to acceleration is

δf̈µ =
∂f̈µ

∂ai
δai =

∂f̈µ

∂ai
δ
Dẋi

dt
= 0. (3D.39)

These relations are equivalent to relations (3D.29) since it is

δÿj = δ

(
∂yj

∂xi

Dẋi

dt

)
=

∂yj

∂xi
δ
Dẋi

dt
=

∂yj

∂xi
δai.

In order to eliminate variables of acceleration in the equations (3D.39), indef-
inite multipliers λµ should be used as in relations (3C.51) to (3C.54).

The compulsion variation (3D.13) with respect to accelerations has the form:

∂Z

∂ai
δai = gij

(
Dẋj

dt
− X̄j

)
δ
Dẋi

dt
= 0; (3D.40)
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(
gij

Dẋj

dt
−Xi −

k∑
µ=1

λµ
∂fµ

∂xi

)
δ
Dẋi

dt
= 0, (3D.41)

or (
∂Z

∂ai
−

k∑
µ=1

λµ
∂fµ

∂xi

)
δai = 0. (3D.42)

A view of relations (3A.27) and (3D.41) points to the conclusion that the
differential equations of motion (3D.32) can be written in the curvilinear coordinate
system in the same form:

∂Z

∂ai
−

k∑
µ=1

λµ
∂fµ

∂xi
= 0 (3D.43)

where ai =
Dẋi

dt
are coordinates of the material points’ acceleration.

Under action of non-holonomic constraints (3D.34), beside constraints fµ(x) =
0, it is necessary to substitute y coordinates in equations (3D.35) or their variations
(3D.36) by means of x coordinates so that it follows that:

N∑
ν=1

∂ϕσ

∂ẏk
ν

∂yk
ν

∂xl
ν

δ
Dẋl

ν

dt
=

∂ϕσ

∂ẏj

∂yj

∂xi
δ
Dẋi

dt
= (3D.44)

= bσiδ

(
Dẋi

dt

)
= bσiδa

i = 0

Multiplying by λ̄σ, summing up with respect to σ and making equal the same
sides of equations (3D.44), (3D.42), it is obtained:

(
∂Z

∂ai
−

k∑
µ=1

λµ
∂fµ

∂xi
−

l∑
σ=1

λ̄σbσi

)
δai = 0. (3D.45)

This relation is always satisfied for the motion whose differential equations are:

∂Z

∂ai
=

k∑
µ=1

λµ
∂fµ

∂xi
+

l∑
σ=1

λ̄σbσi (3D.46)

Principle of Compulsion Generalized Systems of Coordinates. With re-
spect to the generalized independent coordinates, compulsion (3D.1) is reduced to
the form (3D.18), that is,

Z =
1
2
aαβ (aα −Qα)

(
aβ −Qβ

)
+

1
2
a2

N , (3D.47)



3D. Principle of Compulsion 107

where aαβ(m, q) are inertia tensors upon M , aα are acceleration vector coordinates,
Qα are generalized countervariants of the forces’ coordinates, while a2

N is double
compulsion ZN determined by expression (3D.20); the indices denote ordinal num-
bers of the generalized coordinates.

In order to describe motion upon manifoldnesses Mn, Mn+1; TMn and TMn+1,
as is described by work principle (3C.92) or action principle (3C.34), it is enough
to observe compulsion upon manifoldnesses (3D.22), that is

ZM =
1
2
aαβ (aα −Qα)

(
aβ −Qβ

)
=

=
1
2
aαβaαaβ − aαβaαQβ +

1
2
aαβQαQβ .

(3D.48)

where the indices go from 1 to n if the geometrical constraints are invariable, while
they go from 0,1, . . . ,n, if the constraints are explicitly time-dependent.

The compulsion law is simple in this case:

δZM =
∂ZM

∂aα
δaα = aαβ(aβ −Qβ)δaα = 0 (3D.49)

Regarding the fact that all variations δaα are independent, coefficients with
δaα are equal to zero, that is,

∂ZM

∂aα
= 0

or

aαβ(aβ −Qβ) = aαβ
Dq̇β

dt
−Qα = 0, (3D.50)

and these are differential equations of system’s motion (3D.56).
Accordingly, the compulsion principle produces a new form of differential equa-

tions of the holonomic systems’ motion upon TM by means of compulsion

∂Z

∂aα
= 0. (3D.51)

As for the systems with constraints (3D.34), what is important for this principle
are the acceleration constraint conditioned by equations (3D.35) so that the change
of principle (3D.49) requires the substitution of yi = yi(q) by means of generalized
independent coordinates q in equations (3D.35). Therefore,

∂ϕσ

∂yi|y(q)

∂yi

∂qα
q̇α +

∂ϕσ

∂ẏi|y(q)

∂yi

∂qα
aα = 0.

Since the expression with accelerations is important, these equations should
be written in the form

Φσ(q, q̇) + Cσαaα = 0 (3D.52)
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where the notations are introduced

Φσ :=
∂ϕσ

∂yi

∂yi

∂qα
q̇α,

Cσα =
∂ϕσ

∂ẏi|y(q)

∂yi

∂qα
.

(3D.53)

Hence, variation (3D.52) with respect to the acceleration variations has the
form

Cσαδaα = 0, σ = 1, . . . , l. (3D.54)

The same acceleration variations exist in equation (3D.49) as an expression
of the compulsion principle. The dependent variations from equations (3D.52) are
eliminated in two ways, namely,

1. by means of indefinite multipliers of constraints λσ,
2. by substituting dependent variations from equations (3D.54) into (3D.52).
By the indefinite multipliers’ method the equations (3D.54) and (3D.49) are

reduced to (
∂Z

∂aα
−

l∑
σ=1

λσCσα

)
δaα = 0. (3D.55)

In that case, the motion equations on the right side obtain, instead of zero,
generalized reactions

Rα =
l∑

σ=1

λσCσα, (3D.56)

so that, together with l, equations (3D.52) provide for solving the given problem.
The method of substituting the dependent variations by independent acceler-

ation ones is not, in essence, more complicated. Equations (3D.54) are extended,
for the sake of greater clarity, in the following way:

C10δa
0 + C11δa

1 + · · ·+ C1kδak = −C1α′δa
α′

...

Ck0δa
0 + Ck1δa

1 + · · ·+ Ckkδak = −Ckα′δa
α′

(3D.57)

α′ = k + 1, . . . , n

or, even shorter,
Cσα′′δa

α′′ = −Cσα′δa
α′ . (3D.57a)

For ‖Cσα′′‖ 6= 0 it is obtained

δaγ′′ = −Cσγ′′Cσα′δa
α′ = −Bγ′′

α′ δa
α′ (3D.58)
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where Cσγ′′ is inverse matrix Cσα′ .
If these solutions are substituted in (3D.49), it is obtained that:

∂Z

∂aα′ δa
α′ +

∂Z

∂aα′′ δa
α′′ =

(
∂Z

∂aα′ −Bα′′
α′

∂Z

∂aα′′

)
δaα′ = 0.

Regarding the fact that n + 1 − l variations δaα′ , are independent n + 1 − l
differential equations of motion, freed from the constraints’ multipliers, arise that
is,

∂Z

∂aα′ −Bα′′
α′

∂Z

∂aα′′ = 0, (3D.59)

(α′ = l + 1, l + 2, . . . , n + 1− l; α′′ = 1, . . . , l).

There are n + 1− l of these equations for the rheonomic system and n− l for
the scleronomic system. On the other hand, that there are n + 1 + l equations

∂Z

∂aα
−

∑
λσCσα, (3D.60)

originated from (3D.55) for rheonomic and n + l for scleronomic system. A system
of l constraints’ equations (3D.34) should be also added to the system of equations
(3D.60).

Equations (3D.59) in the extended form, with no compulsion functions (3D.48)
or (3D.47), are easily reduced to the recognizable form:

aα′β
(
aβ −Qβ

)−Bα′′
α′ aα′′β

(
aβ −Qβ

)
=

= aα′β
Dq̇β

dt
−Qα′ −Bα′′

α′

(
aα′′β

Dq̇β

dt
−Qα′′

)
= 0.

(3D.61)

Conclusion 1. It is sufficiently clear from the motion equations of mechanical
systems (3D.60), (3D.59), (3D.51), (3D.46), (3D.43) and (3D.32) that the compul-
sion principle is not less operative in the coordinate description of motion than
other principles of mechanics - or even more operative in its application to the
non-holonomic constraints’ systems.

Besides, this principle points to existence of compulsion (3D.23) which is per-
pendicular to the tangential manifoldness and thus to the accelerations in TM as
well as TN . This is easy to show. Namely, principle (3D.25), applied to compulsion
(3D.18), gives, beside equations (3D.51), another equation:

∂Z

∂aN
= aN = κ(bαβ q̇αq̇β − FN ) = 0. (3D.62)

Final Commentary On Compulsion Principle. It has been noticed that all the
given equations, obtained by partial differentiating of function Z with respect to
ai, can be obtained in the same way by partial differentiating of compulsion Z
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with respect to countervariant coordinates Ȳ i, X̄i or Qα. This is here brought into
accord with equations (3D.26), since, as can be seen from (3D.3) and (3D.17), Qα

are generalized accelerations. Because of this, a more strict application of relation
(3D.25) to compulsion (3D.48) reduces to:

δZ =
1
2
aαβ

(
aβ −Qβ

)
δaα +

1
2
aαβ (aα −Qα) δaβ−

− 1
2
aαβ

(
aβ −Qβ

)
δQα − 1

2
aαβ (aα −Qα) δQβ =

= aαβ

(
aβ −Qβ

)
(δaα − δQα) = 0.

Any discussion that excludes the case that it is

δ(
Dq̇α

dt
) = δQα, or δÿ = δY

leads to the previous results, as has been done.

Excerpta about the Principles of Mechanics

The principles of mechanics are statements of general significance, formed by
means of the introduced concepts and definitions of mechanics, whose truthfulness
is not subjected to verification. Each principle on its own can serve as the basis for
developing the whole theory of mechanics.

Principle of Equilibrium. The sums of all the forces acting at particular
dynamic points are equal to zero:

∑
µ=1

Fνµ = 0.

Principle of Work. The total work of all the forces upon possible displace-
ments is equal to zero, while, for the system of unilateral constraints, it is equal or
less than zero: ∑

Fν ·∆rν ≤ 0.

Principle of Action. The integral of the sum δEk + δA(F ), calculated on
real motion for the time [t0, t1], equals zero, i.e. :

∫ t1

t0

(δEk + δA(F ))dt = 0.

Principle of Compulsion. The compulsion variation with respect to accel-
erations is equal to zero:

δZ =
∂Z

∂aα
δaα = 0.

æ



IV. THEOREMS OF MECHANICS

The concept of theorems of mechanics here implies a mathematical assertion of
general significance about material systems’ motion whose truthfulness is proved on
the basis of preprinciples, principles of mechanics, basic and consequent definitions
and laws of dynamics.

The theorems of mechanics are used to effectuate the principles of mechanics.

The theorems, as consequential assertions, should satisfy the preprinciples.

Theorem on Motion Impulse Change

The natural derivative with respect to time of the generalized impulses of the
mechanical system of constant mass are equal to the generalized forces:

Dpα

dt
= Qα (4.1)

Proof: By the basic definition 2 and relation (3A.39), the generalized impulses
are defined. The differential equations (3C.56) follow from the equilibrium princi-
ple. Since it is

Daαβ

dt
= 0

for the mechanical system of constant masses, it is

aαβ
Dq̇β

dt
=

D

dt

(
aαβ q̇β

)
=

Dpα

dt
= Qα,

as claimed by the theorem.

Lemma 1. The natural derivative of the impulse of the rotary motion constant
mass system, measured by angular change, is equal to the moment of forces.

Proof 1. From the elementary work definition (3B.15) it follows that the gen-
eralized forces for dimensionless and angular coordinates have the dimension of the
moment of forces

M L2 T−2 = dim Q

so that Theorem on motion impuls change confirms the lemma.
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Proof 2. On the basis of the equilibrium principle, the concept of the moment
of force is derived (3A.63). Respectively, for the rotary motion of the ν-th particle
of mass ∆mν , firmly attached to some fixed point 0 that belongs to eigen axis u
of the rotary motion, the moment of inertia force is derived. Following expression
(3A.63), the moment of inertia force

Iν = −∆mν
dvν

dt

has the form:

−M(Iν) = rν ×∆mν
dvν

dt
= rν × d

dt
(∆mνvν) =

d

dt
(rν ×∆mνvν).

On the other hand, for |rν | = const, vν = ω × rν , it further follows that it is:

−MMMν(Iν) =
d

dt
[∆mν(rν × (ω × rν))] =

=
d

dt
[∆mν [(ω(rν · rν)− rν(rν · ω))] =

=
d

dt

[
∆mν

[
r2
νωjej − yk

νek(δijy
i
νωj)

]]
(4.2)

since it is rν · ω = yi
νei · ωjej = δijy

i
νωj .

If vector (4.2) is projected upon the coordinate axes, it will be obtained that:

−MMMν · ei =: M(ν)i

=
d

dt

[
∆mν

(
r2
νδijω

j − yνiyνjω
j
)]

=

=
d

dt

(I(ν)ijω
j
)

=
d

dt
pνi

(4.3)

where
pνi = I(ν)ijω

j (4.4)

are impulses of motion of the ν-th particle with respect to orthonormal coordinate
system (y, e).

Returning projections (4.3) into equation (3A.58), Lemma 1 is obtained, by
which it is:

dp(ν)i

dt
= Mi(Fν). (4.5)

Example 13. The lemma’s application to the description of the rotary motion
of a rigid body of constant mass around a fixed point.
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Fig. 5

For each ν-th tiny part of the body equations (4.5) and (4.4) are valid, where
indices i, j = 1, 2, 3, ν = 1, 2, . . . . If the part’s impulses (4.4) are added as parame-
ters for the same i-th axis, it is obtained that

pi =
∑

ν

pνi =
∑

ν

∆mν(r2
νδij − yνiyνj)ωj = Iijω

j (4.6)

where
Iij =

∑
ν

∆mν(r2
νδij − yνiyνj) (4.7)

is inertia tensor.
On the other hand, the principal moments of all the active forces with respect

to the coordinate axes are
Mi :=

∑
ν

Mi(Fν)

so that, for the observed rigid body, it is obtained

dpi

dt
=

d

dt

(Iijω
j
)

= Mi; (4.8)

These are differential equations of a body’s rotary motion around a fixed point
with respect to the fixed coordinate system.

Further extension of these equations, at first glance, opens up a question of
derivatives with respect to time of inertia tensor (4.7), since the previous equations

dIij

dt
ωj + Iij

dωj

dt
= Mi (4.9)

obviously comprise derivatives with respect to time İij . Let’s find their analytical
meaning. For now, it is assumed that masses are constant. In the sum

dI1j

dt
ωj = İ11ω

1 + İ12ω
2 + İ13ω

3 (4.10)
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the derivatives of the inertia tensor coordinates are:

İ11 =

(∑
ν

∆mν(y2
ν2 + y2

ν3)

)·
= 2

∑
ν

∆mν(yν2ẏν2 + yν3ẏν3) =

= 2
∑

ν

∆mν

[
yν2

(
yν1ω

3 − yν3ω
1
)

+ yν3

(
yν2ω

1 − yν1ω
2
)]

=

= 2I21ω
3 − 2I31ω

2;

İ12 = −
∑

ν

∆mν (yν1yν2)
· =

= −
∑

ν

∆mν

[(
yν3ω

2 − yν2ω
3
)
yν2 + yν1

(
yν1ω

3 − yν3ω
1
)]

=

= −
∑

ν

∆mν

(
y2

ν1ω
3 − y2

ν2ω
3
)

+
∑

ν

∆mν

(
yν3yν2ω

2 − yν1yν3ω
1
)

İ13 = −
∑

ν

∆mν (yν1yν3)
. =

= −
∑

ν

∆mν

[(
yν3ω

2 − yν2ω
3
)
yν3 + yν1

(
yν2ω

1 − yν1ω
2
)]

=

= −
∑

ν

∆mν

(
y2

ν3ω
2 − y2

ν1ω
2
)

+
∑

ν

∆mν

(
yν1yν2ω

1 − yν2yν3ω
3
)

(4.11)

By the cyclic change of indices 1, 2, 3 → 2, 3, 1 → 3, 1, 2 it is easy to obtain
derivatives of the other coordinates of inertia tensors I2j and I3j .

Substituting in (4.9) equations (4.8) obtain the form:

Dp1

dt
= I1jω̇

j + (I33 − I22)ω2ω3 + I21ω
1ω3−

− I31ω
2ω1 + I32ω

2ω2 − I23ω
3ω3 = M1,

Dp2

dt
= I2jω̇

j + (I11 − I33)ω3ω1 + I32ω
2ω1−

− I12ω
3ω2 + I13ω

3ω3 − I31ω
1ω1 = M2,

Dp3

dt
= I3jω̇

j + (I22 − I11)ω1ω2 + I13ω
3ω2−

− I23ω
1ω3 + I21ω

1ω1 − I12ω
2ω2 = M3.

(4.12)

When these equations are applied to engineering practice, namely, when they
are applied to the models of body’s rotary motion, it is important to consider the
fact that there are derivatives of inertia tensor coordinates (4.7), Iij(y(t)), with
respect to time (4.11).

The differential equations of the body’s rotary motion are considerably simpli-
fied if it is possible to attach a moveable coordinate system (z,�) to this body. With
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respect to this coordinate system the inertia tensor coordinates are constant. By
choosing the coordinate origin in the inertia center, and by orienting the coordinate
axes along the inertia axes the values Iij vanish for i 6= j, while Iii, is reduced to
the central and principal inertia moments I1, I2 and I3 If in the moveable coordi-
nate system the angular velocity is denoted Ω = Ωi�i, the differential equations of
the body’s rotary motion around the inertia center is reduced to well-known Euler
dynamic equations:

Dp1

dt
= I1Ω̇1 + (I3 − I2)Ω2Ω3 = M1,

Dp2

dt
= I2Ω̇2 + (I1 − I3)Ω3Ω1 = M2,

Dp3

dt
= I3Ω̇3 + (I2 − I1)Ω1Ω2 = M3.

(4.13)

At the same time, it is assumed that there is an explicit constraint between
the coordinates

yi = γi
jz

j ⇔ zi = γi
jy

j (4.14)

where coefficients γi
j appear as time functions.

Theorem on Kinetic Energy Change

Definition 5 has introduced the concept of work (3B.1), while concept of kinetic
energy is consequently introduced as negative work of inertia forces (3B.6) and
(3B.7a) of the material point of constant mass upon given motion. Work change
with respect to time (3B.14) is called power. These concepts are sufficient for
formulating the theorem on kinetic energy change with respect to time. The phrase
“change with respect to time” mathematically represents a natural derivative with
respect to independent variable t; [44], [64].

Theorem. Kinetic energy change of the system of material points with con-
stant masses that forces Qα act upon, with respect to time, is equal to power P of
these forces, that is,

dEk

dt
= P = Qαq̇α. (4.15)

The same theorem can be expressed in the following way: The natural deriv-
ative of kinetic energy of the system of material points with constant mass, with
respect to time, is equal to power.

Proof 1. Multiplying differential equations of motion (3C.40) with q̇α and
summing up with respect to index α, it is obtained that

d

dt

(
∂Ek

∂q̇α
q̇α

)
− ∂Ek

∂q̇α
q̈α − ∂Ek

∂qα
q̇α = Qαq̇α.

Since
∂Ek

∂q̇α
q̇α = 2Ek,

∂Ek

∂q̇α
q̈α +

∂Ek

∂qα
q̇α =

dEk

dt
,
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while
Qαq̇α = P,

the theorem on kinetic energy change (4.15) is proved.
Proof 2. Kinetic energy of the mechanical system is determined by one of

formulae (3B.7)

Ek =
1
2

∑
ν

mνv2
ν . (4.16)

The derivative with respect to time, regarding relation (3A.4) is

dEk

dt
=

∑
ν

mνvν · dvν

dt
=

∑
ν

(Fν + Rν) · vν = P

that was to be proved.
Proof 3. Kinetic energy is represented by formula (3C.49) that differential

equations of motion (3C.58) and (3C.56) correspond to. Generalized forces (3C.52)
are formed by a sum of the generalized potential and non-potential forces. Mul-
tiplying equations (3C.58) by generalized velocities q̇α, while equation (3C.56) is
multiplied by the derivatives of impulse ṗα, and by summing up with respect to α
it is obtained that:

ṗαq̇α = ṗα
∂H

∂pα
(4.17)

ṗαq̇α = − ∂H

∂qα
q̇α + Q∗αq̇α (4.18)

The difference between equations (4.17) and (4.18) is

∂H

∂pα
ṗα +

∂H

∂qα
q̇α −Q∗

αq̇α = 0 (4.19)

If expression (3C.51) is taken into consideration, that is,

H = Ek(q, p) + Ep(q, t) (4.20)

as well as (3C.52), it follows

∂Ek

∂pα
ṗα +

∂Ek

∂qα
q̇α =

(
Q∗

α −
∂Ep

∂qα

)
q̇α (4.21)

or
dEk

dt
= Qαq̇α = P

as desired.
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Change of Hamilton’s function

Lemma 2. If potential forces do not explicitly depend upon time, the derivative
of Hamilton’s function H(q0, q1, . . . , qn; p0, p1, . . . , pn) with respect to time t is equal
to the power of non-potential forces [62].

Proof. Equation (4.19) confirms the previous statement since it is

dH

dt
=

∂H

∂qα
q̇α +

∂H

∂pα
ṗα = Q∗

αq̇α = P (Q∗). (4.22)

Lemma 3. Change with respect to time of Hamilton’s function H of the
potential system with variable constraints is equal to the power of constraints R0,
that is,

dH

dt
= R0 (4.23)

Proof 1. In accordance with equations (3C.40b) and (3C.60) for potential
forces, it is Q∗

i = 0, i = 1, . . . , n, while Q∗0 = Q∗∗0 + R0 = R0, since it is

Q∗∗ =
∑

Fν · ∂r

∂q0
= 0,

so that the right side of equation (4.22) degenerates into

Q∗αq̇α = Q∗
0q̇

0,

that is, when for the rheonomic coordinate it is taken that q0 = t,

Q∗
αq̇α = R0,

which proves Lemma 3.
Proof 2. If each equation (3A.25) is multiplied by respective velocity vector vν

and summed up with respect to index ν, it is obtained:

∑
ν

mνvν · dvν

dt
=

∑
ν

Fν · vν +
∑

ν

∑
µ

λµ gradν fµ · vν

For potential forces Fν = − gradν Ep(rν) and the velocity conditions upon the
constraints

d

dt

(∑
ν

mνvν · vν

)
+ gradν Ep · vν = −

∑
µ

λµ
∂fµ

∂t
.

the previous equation is reduced to

d

dt

(
1
2

∑
ν

mνvν · vν

)
+ gradν Ep · vν = −

∑
µ

λµ
∂fµ

∂t
.
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On the basis of relations (3A.54) and (3B.7) for q0 = t, it follows from the
previous equation that it is

d

dt
(Ek + Ep) =

dH

dt
= R0, (4.24)

which is exactly Lemma 3.

Theorem on Mechanical Energy Change

By formulae (3C.43), (3C.51) and (3C.61) the total mechanical energy of the
potential rheonomic holonomic system is defined by the formula

E = Ek(q, p) + Ep(q) + P(q0). (4.25)

Theorem. Change with respect to time of the total mechanical energy (4.25)
of the system with constant masses is equal to the power of non-potential forces F ∗

ν ,
that is,

dE

dt
=

N∑
ν=1

F ∗
ν ·

drν

dt
= Q∗αq̇α. (4.26)

Proof. For Q∗
α 6= 0 and formula (3C.43), according to which it is

R0 = − ∂P
∂q0

(4.27)

differential equations (3C.62) comprise additional forces Q∗α,

ṗα = − ∂E

∂qα
+ Q∗α (4.28)

q̇α =
∂E

∂pα
. (4.29)

If equations (4.28) are multiplied by velocities q̇α, while equations (4.29) are
multiplied by ṗα and added with respect to indices α, the following two equations
are obtained:

ṗαq̇α = − ∂E

∂qα
q̇α + Q∗αq̇α

q̇αṗα =
∂E

∂pα
ṗα

Their difference is

∂E

∂pα
ṗα +

∂E

∂qα
q̇α −Q∗

αq̇α = 0
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that is
dE

dt
= Q∗

αq̇α (4.30)

which proves Theorem (4.26).

Corollary. In the systems of constraints that do not change in time, all indices
range from 1 to n (i = 1, . . . , n), instead of from 0 to n (α = 0, 1, . . . , n); at the
same time, additional coordinate q0 and respective force or power R0, as well as
rheonomic pseudopotential P vanish.

Theorem on Controllability of Motion

The concept of controllability of motion implies the possibility that the mechan-
ical system motion is realized according to a given program under the compulsion of
special generalized forces. Motion-controlling forces Uα are here considered as gen-
eralized forces of controllability. The phrase “motion control” implies the process
of realizing a given or programmed motion. Programs can be of great variety. This
study includes the program of pathways and the program of velocities. In setting
up and making a motion program, the coordinate system that mechanics is based
on should be the starting point. For the motion upon the derived manifolds it is
also necessary to know and take into consideration the relations of their generation.
The motion upon (2n + 2)-dimensional tangent manifolds TN or their equivalent
manifolds of the state T ∗N will be observed further on.

The pathway program upon N = Mn+1 can be given by one or many functions

f(q0, q1, . . . , qn) = 0, (4.31)

while the velocities program upon TN

ϕ(q0, q1, . . . , qn, q̇0, q̇1, . . . , q̇n) = 0, (4.32)

or the impulse program on T ∗N which is equivalent to them

ϕ∗(q0, q1, . . . , qn; p0, p1, . . . , pn) = 0. (4.33)

As can be seen, the program relations are similar or equal to the ideal con-
straints’ relations. Therefore, further problem-solving can be considered as condi-
tioned (“constrained”) motion of mechanical systems.

A system of material points of constant masses would be forced to move ac-
cording to program (4.31) and (4.32) upon the manifolds TN whose inertia tensor
is aαβ(q0, q1, . . . , qn); the system is acted upon by natural active generalized forces
Qα.

By using any of the previously mentioned principles, in addition to conditions
(4.31) and (4.32), the differential equations of motion will be achieved

aαβ
Dq̇β

dt
= Qα + Uα (4.34)
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if programs (4.31) and (4.32) are abstracted by forces U0, U1, . . . , Um, m ≤ n; or

aαβ
Dq̇β

dt
= Qα + λ

∂f

∂qα
+ µ

∂ϕ

∂q̇α
,

f(q0, q1, . . . , qn) = 0,

ϕ(q0, q1, . . . , qn, q̇0, q̇1, . . . , q̇n) = 0,

(4.35)

if the system of equations includes equations (4.31) and (4.32).
Condition f = 0 necessarily satisfies all the conditions of velocity and acceler-

ation which means that the first and second natural derivatives of scalar function
f are equal to zero:

Df

dt
=

df

dt
= ḟ =

∂f

∂qα
q̇α = 0

f̈ =
∂2f

∂qα∂q̇β
q̇αq̇β +

∂ḟ

∂q̇β
q̈β =

∂2f

∂qβ∂q̇α
q̇αq̇β +

∂f

∂qβ
q̈β = 0

or
∂f

∂qβ

Dq̇β

dt
=

∂f

∂qβ
Γβ

αγ q̇αq̇β − ∂2f

∂qβ∂qα
q̇β q̇a =

=
(

∂f

∂qβ
Γβ

αγ −
∂2f

∂qα∂qβ

)
q̇αq̇β = Gαγ q̇αq̇γ

(4.36)

where Gαγ is the expression in brackets.
After determining λ and µ, their substitutions in relation (4.35) and compari-

son with (4.34), the controlling forces are obtained.
Velocity program (4.32) should satisfy the acceleration condition

dϕ

dt
=

∂ϕ

∂q̇α

Dq̇α

dt
− Eαγ q̇αq̇γ = 0 (4.36a)

where Eαγ =
∂ϕ

∂q̇β
Γβ

αγ .

Substituting
Dq̇γ

dt
= aαγ

(
Qα + λ

∂f

∂qα
+ µ

∂ϕ

∂q̇α

)

From relations (4.35) in (4.36) and (4.36a), it follows

∂f

∂qβ
aαβ

(
Qα + λ

∂f

∂qα
+ µ

∂ϕ

∂q̇α

)
= Gαγ q̇αq̇β

∂ϕ

∂q̇β
aαβ

(
Qα + λ

∂f

∂qα
+ µ

∂ϕ

∂q̇α

)
= Eαγ q̇αq̇β .

(4.37)



IV. Theorems of Mechanics 121

There are as many equations as unknown multipliers λ and µ; thus, they make
up a solvable linear system:

B11λ + B12µ = C1

B21λ + B22µ = C2

}
(4.37a)

so that it is obtained

Uα = λ(q, q̇)
∂f

∂qα
+ µ(q, q̇)

∂ϕ

∂q̇α
. (4.38)

Therefore, in order to make the system move upon manifold N according to
program (4.31) and (4.32), the controlling forces should primarily satisfy relations
(4.38); then, force Uα with respect to quantity ‖Uα‖ should be greater than natural
generalized forces ‖Qα‖, that is

‖Uα‖ ≥ ‖Qα‖. (4.39)

if forces Uα control the motion opposite to the motion direction under the influence
of Qα.

In the way analogous to determination of the constraints’ reactions, controlling
forces Uα can be determined in the function of positions q and q̇ if the program is
given by means of relations (4.31) or (4.32).

In this way the needed controllability conditions of some mechanical system
are derived. In other words, it is possible to calculate, with respect to formulae
(4.37) and (4.38), what force - and how large – is needed to make a body move along
a given pathway or to increase or reduce its motion velocity. What is, therefore,
needed to control motion, in addition to conditions (4.31), (4.38) and (4.39), is
the existence of sufficiently large controlling forces U in order to make the system
controllable. The above-given assertion is expressed by the following controllability
theorem.

Theorem. The mechanical system motion is controllable according to a pro-
gram given in advance if there are such controlling forces of such magnitude, depen-
dent upon the program parameters, which are by their absolute value greater than
other respective active forces if the controlling forces direct the motion opposite to
the motion direction under the influence of other forces Qα.

Recognizable Example 14. Let’s determine force U that can control the
motion a weighty material point of mass m in vertical plane z = 0 according to the
program:

f(x, y) = y − g

2
x2 − h = 0

ϕ(ẋ) = ẋ− c = 0

where g is the Earth’s gravitational force acceleration, while h and c are given
constants.
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The differential equations of motion are:

mẍ = −λgx + µ = Ux

mÿ = −mg + λ = −mg + Uy.

Equations (4.37) for the given example are:

−g +
λ

m
− gẋ2 +

gx

m
(λgx− µ) = 0

−λgx + µ = 0 −→ µ = λgx,

λ = mg(1 + ẋ2) = mg(1 + c2).

According to relation (4.38), it is further obtained that:

Ux = −λgx + µ = 0,

Uy = λ
∂f

∂y
= mg(1 + c2)

Therefore, force Uy = mg(1 + c2) can be used for realizing the given motion.
A simpler problem states that, instead of the program, the controlling forces

are given in an analytical form, without limiting their magnitudes.
Limited sets of controlling forces are more often present in engineering than

unlimited ones.

Example 15. Let’s put into motion and direct a material point of mass m
from the rest state by controlling force U = (U1, U2, U3),

U1 = U cosα1, U2 = U cos α2

U3 = U cosα3, |U | = 1,

along the pathway to which point M(1, 2, 3) belongs.
For 0 ≤ α3 < π

2 the controlling forces are larger than the active ones. The
differential equations of motion are:

mÿi = cos αi.

If the initial position from the rest state is taken to be the pole of coordinate
system (Oy1y2y3), the finite equations of motion are:

yi =
cosαi

2m
t2,

thus the pathway equations are

y1

cos α1
=

y2

cosα2
=

y3

cosα3
,
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while, at the same time, it is necessary to satisfy the conditions:

1
cosα1

=
2

cos α2
=

3
cos α3

, 0 ≤ α3 <
π

2
,

cos2 α1 + cos2 α2 + cos2 α3 = 1.

Lemma. The motion T ∗N of the mechanical system with constant masses
is controllable according to a given program if there are such controlling forces of
such magnitude, dependent upon the program parameters of the motion state, which
are by their absolute value greater than other respective active generalized forces if
the controlling forces direct the motion opposite to the motion direction under the
influence of other generalized forces Qα.

Proof. Differential equations of motion (4.34) of the system of material points
with constant masses upon T ∗N are

Dpα

dt
= Qα + Uα, q̇α = aαβpβ . (4.40)

Equations (4.35) are reduced to:

Dpα

dt
= Qα + λ

∂f

∂qα
+ µaαβ

∂ϕ∗

∂pβ

f(q0, q1, . . . , qn) = 0

ϕ∗(q0, q1, . . . , qn; p0, p1, . . . , pn) = 0





(4.41)

since it is
∂ϕ

∂q̇α

∣∣∣∣
q̇=q̇(p)

=
∂ϕ∗

∂pβ

∂pβ

∂q̇α
= aαβ

∂ϕ∗

∂pβ
.

Condition (4.36) is transformed into

∂f

∂qβ
aβξ Dpξ

dt
= Gαγaαξpξa

γηpη = G∗ξηpηpξ,

(ξ, η = 0, 1, . . . , n).
(4.42)

Velocity condition (4.36a) is transformed into the conditions for constraining
the impulse:

∂ϕ∗

∂pβ
aαβaαξ Dpξ

dt
= Eαγaαξaγηpξpη,

that is,

∂ϕ∗

∂pβ

Dpβ

dt
= E∗ξηpξpη, (4.43)

where the substitutions are obvious.
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Substituting
Dpα

dt
from equation (4.41) into (4.42) and (4.43) a system of

structure equations (4.37a) is obtained; thus, the lemma is proved.

Example 16. Translate a linear oscillator from the initial state p = p0 =
const, q = 0, into equilibrium state p = 0, q = 0 by means of controlling force U ,
|U | ≤ 1.

The differential equations of motion are:

ṗ = −q + U, −1 ≤ U ≤ 1 (E16.1)

q̇ = p, (E16.2)

under the conjunction that inertia coefficient a = 1 and restitution coefficient c = 1.
Eliminating time differential dt differential equations of the phase trajectory are
obtained:

dp

dq
= − (q ∓ u)

p
.

From a multitude of the curves

p2 + (q ∓ 1)2 = c1,2 for u = ±1,

the ones satisfying the boundary points should be selected, that is, the first initial
(0, p0) and the second final (0, 0) ones. For the point (0, p0) this is a circumference

p2 + (q ∓ 1)2 = p2
0 + 1,

while for point (0, 0) it is a circumference of smaller radius

p2 + (q ∓ 1)2 = 1.

It is obvious that the circumferences of the same sign of forces U do not solve
the problem; the solution of the equations with different signs should be looked for.
According to the lemma, force U can be a controlled one only for ‖U‖ ≥ ‖q‖. The
point of the circumferences’ section p2 +(q +1)2 = p2

0 +1 and p2 +(q−1)2 = 1 will
exist for 4q = p2

0, that is, for p2
0 ≤ 8, and this at the contacting point p = 0, q = 2.
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Fig. 6

For smaller initial values of the impulse p0, let’s say p0 = 2, it is possible
to translate the oscillator to the rest state by a smaller force |U | < 1 with no
collision. Namely, substituting in the first equation p2

0 = 4, p = 0, it is obtained
that q =

√
5− 1, and thus,

U = (
√

5− 1)/2 ≈ 0.618

is brought into the position p = 0, q = 0 along the phase trajectory

p2 + q2 − (
√

5− 1)q = 0.

Theorem on Optimal Motion of Controllable Systems

The concept of optimal motion implies here motion of the mechanical systems
whose particular attributes have extreme values with respect to some dynamic
parameters. These are all the systems of least action and of least compulsion, de-
scribed in the section five 3C (Action Principle) and in the section 3D (Compulsion
Principle). Regarding the fact that both action and compulsion are of such nature
that they reach extreme values at virtual motion, it can be said that the differen-
tial equations of the mechanical systems’ motion describe extreme lines of action
and compulsion. However, though they are indeed optimal motions, they are not
usually considered as optimal in the referential literature. Only when, besides the
above-given attributes, extreme values of particular and specific dynamic or kinetic
properties (such as force, energy, impulse, mass) of controllable motions are looked
for, the concept of optimal motion can be used. For this reason, a more specif-
ic phrase is used in this study, namely, optimal motion of controllable mechanical
systems [52], [65], [66].
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All the above-mentioned properties of motion for which extreme values will be
looked for are set by the functional

J =

t1∫

t0

F(p, q, u, t)dt (4.44)

which is most often called “criterion of quality” or, simply, “quality” in the liter-
ature about controllability theory. Function F is known and continuous together
with the derivatives

∂F
∂p

,
∂F
∂q

,
∂F
∂u

for every point (p, q) ∈ T ∗N and all the values u1, . . . , uk. Besides, F(p, q, u, t) ≥
a‖Q∗‖p where a > 0, p > 1 and Q∗ are non-potential forces including the controlling
forces.

Out of a great number of forms of differential motion equations let’s choose
equations (3C.59) and (3C.60) in the form (4.28) and (4.29), that is,

ṗα = − ∂E

∂qα
+ Q∗α(p, q, u) (4.45)

q̇α =
∂E

∂pα
, (α = 0, 1, . . . , n), (4.46)

where a multitude of forces Q∗α also includes the controlling forces constrained
together with the partial derivatives

∂Fα

∂pβ
,

∂Fα

∂qβ
,
∂Fα

∂ui
, i = 0, 1, . . . , k ≤ n.

Controlling forces Q∗
α, as well as all controlling parameters u(t) ∈ Lp, are

available upon finite time interval [t0, t1].
For the sake of an explicit understanding of the previous introduction let’s

accept the following determinations.

Determination. Motion of the controllable mechanical system described by
differential equations (4.45) and (4.46) in the presence of the controlling forces will
be considered as optimal if, according to the action principle,

t1∫

t0

[δ(pαq̇α − E) + Q∗
αδqα] dt = 0 (4.47)

functional (4.44) achieves its extreme value.

Determination. Generalized direction forces Q∗
α, by which optimal control

of motion is realized, will be called optimal control forces, while control parameters
u0, u1, . . . , uk will be considered as optimal control parameters.
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The problem of optimal controllable motion is to find dynamic parameters,
that is, those forces that translate a controllable mechanical system from state
(p(t0), q(t0)) to state (p(t1), q(t1)) so that functional (4.44) achieves its extreme
value.

Theorem: Functional (4.44) achieves its extreme value at direct motion of
the controllable mechanical system from one point p(t0)&q(t0) ∈ T ∗N to the other
p(t1)&q(t1) ∈ T ∗N upon:

- a non-empty multitude of solutions 2n+2 of differential equations of motion
(4.45) and (4.46),

- a non-empty multitude of solutions of the system 2n + 2 of differential equa-
tions of the variational problem

(δqα). =
∂2E

∂qβ∂pα
δqβ +

∂2E

∂pβ∂pα
δpβ−

− ∂Pβ

∂pα
δqβ + γ

∂F
∂pα

,

(4.48)

(δpα). = − ∂2E

∂qα∂qβ
δqβ − ∂2E

∂pβ∂qα
δpβ+

+
∂Pβ

∂qα
δqβ − γ

∂F
∂qα

,

(4.49)

- a non-empty set of solutions out of a multitude of k equations,

∂2E

∂ur∂pα
δpα +

∂2E

∂ur∂qα
δqα − ∂Q∗

α

∂ur
δqα + γ

∂F
∂ur

= 0 (4.50)

r = 0, 1, . . . , m− 1,m + 1, . . . , k ≤ n for 2n + 2 conditions

δqα(t0) = 0, δqα(t1) = 0, (4.51)

and
∂2E

∂um∂pα
δpα +

∂2E

∂um∂qα
δqα − ∂2Q∗

α

∂um
δqα + γ

∂F
∂um

< 0, (4.52)

Proof. On a non-empty multitude of solutions p(t) and q(t) of differential
equations of direct controllable motion (4.45) and (4.46), the action principle is
satisfied (4.47).

Functional (4.44) achieves its extreme value at the given motion if for some
multiplier γ ∈ R

γδ

t1∫

t0

F(p, q, u, t)dt ≤ 0 (4.53)
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and this being minimum for γ < 0, while maximum for γ > 0, at condition (4.44),
(4.51) in the extended form:

t1∫

t0

[(
q̇α − ∂E

∂pα

)
ηα −

(
ṗα +

∂E

∂qα
−Q∗α

)
ξα

]
dt = 0. (4.54)

Let’s vary this condition in the following way:
∫ t1

t0

[(
δ

(
q̇α − ∂E

∂pα

))
δpα +

(
q̇α − ∂E

∂pα

)
δ2pα−

−
(

δ

(
ṗα +

∂E

∂qα
− Pα

))
δqα−

−
(

ṗα +
∂E

∂qα
− Pα

)
δ2qα

]
dt = 0.

(4.55)

Due to equations (4.45) and (4.46) the members with other variations δ2p and
δ2q are dropped. According to conditions (4.51) it follows

t1∫

t0

δq̇αδpαdt =

t1∫

t0

δpαdδqα = δpαδqα|t1t0 −
t1∫

t0

δqαdδpα =

= −
t1∫

t0

(δpα).
δqαdt,

t1∫

t0

δṗαδqαdt =

t1∫

t0

δqαdδpα = −
t1∫

t0

(
δqβ

).
δpβdt.

Therefore, relation (4.55) is further reduced to:

t1∫

t0

{[
(δqβ). − ∂2E

∂pβ∂pα
δpα − ∂2E

∂pβ∂qα
δqα +

∂Q∗
α

∂pβ
δqα

]
δpβ

−
[
(δpβ). +

∂2E

∂qβ∂pα
δpα +

∂2E

∂qβ∂qα
δqα − ∂Q∗

α

∂qβ
δqα

]
δqβ

−
(

∂2E

∂ur∂qα
δqα +

∂2E

∂ur∂pα
δpα − ∂Q∗

α

∂ur
δqα

)
δur

}
dt = 0.

(4.56)

Relation (4.53) in its extended form

γ

t1∫

t0

(
∂F
∂pβ

δpβ +
∂F
∂qβ

δqβ +
∂F
∂ur

δur

)
dt ≤ 0 (4.57)
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shows that relation (4.56) also contains the same variations δpβ , δqβ , δur as in
the condition of achieving extreme values of quality functional (4.53). Due to
indefiniteness and arbitrariness, of multiplier γ, by comparison (4.56) and (4.57),
it is obtained:

t1∫

t0

{[ (
δqβ

). − ∂2E

∂pβ∂pα
δpα − ∂2E

∂pβ∂qα
δqα +

∂Q∗
α

∂pβ
δqα − γ

∂F
∂pβ

]
δpβ

−
[

(δpβ). +
∂2E

∂qβ∂pα
δpα +

∂2E

∂qβ∂qα
δqα − ∂Q∗

α

∂qβ
δqα + γ

∂F
∂qβ

]
δqβ

−
(

∂2E

∂ur∂qα
δqα +

∂2E

∂ur∂pα
δpα − ∂Q∗

α

∂ur
δqα + γ

∂F
∂ur

)}
dt = 0

On the non-empty set of solutions of equations (4.48) and (4.49) the previous
integral variational relation is reduced to:

t1∫

t0

(
∂2E

∂ur∂qα
δqα +

∂2E

∂ur∂pα
δpα − ∂Q∗

α

∂ur
δqα + γ

∂F
∂ur

)
δurdt ≤ 0 (4.58)

Conditions (4.52) also follow from this relation; hence the theorem is proved.

Corollary 1. If the system constraints do not depend upon time, the number
of differential equations (4.45), (4.46), (4.48), (4.49), (4.50) and (4.51) is reduced
for one since there is no rheonomic coordinate q0; neither is there respective impulse
p0, so that indices α and β are given values from 1 to n (α, β = 1, 2, . . . , n).

Lemma. Functional (4.44) achieves its extreme value at the mechanical sys-
tem’s motion directed by unconstrained forces uα, from one motion state p(t0)&q(t0)
to the other p(t1)&q(t1) upon a non-empty multitude of solutions of the equations:

q̇α = aαβ , ṗα = − ∂E

∂qα
+ Q∗α + Uα (4.59)

(δqα). =
∂2E

∂qβ∂pα
δqβ + aαβδpβ + γ

∂F
∂pα

− ∂Q∗
β

∂pα
δqβ (4.60)

(δpα). = − ∂2E

∂qβ∂qα
δqβ − ∂2E

∂pβ∂qα
δpβ − γ

∂F
∂qα

+
∂Q∗

β

∂qα
δqβ (4.61)

δqα + γ
∂F
∂Uα

= 0, (4.62)

and inequalities

δqm + γ
∂F
∂um

< 0, δum > 0, (4.63)

under the conditions
δqα(t0) = 0, δqα(t1) = 0. (4.64)
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Proof. During the control of forces Uα, energy E and force Q∗α do not depend
upon Uα, so that the partial derivatives with respect to Uα vanish from equations
and inequations (4.48)–(4.52).

Corollary. For scleronomic systems the number of equations (4.59)–(4.64) is
reduced since there is no rheonomic coordinate q0 so that the indices are α, β =
1, . . . , n.

Theorem on Optimal Motion Control

The theory of optimal control is based upon more specific classifications of
functions and sets of functions or controlling parameters than it is usually the case
in standard mechanics. Further on, some concepts and parameters of the previously
observed controllable optimal motion state upon T ∗N are more precisely defined.

The phrase optimal motion control of the mechanical system implies functions
u(t) ∈ U (U region covers that of manifolds T ∗N ) which, as generalized forces
Q∗ = (Q∗0, Q

∗
1, . . . , Q

∗
n) or their elements, realize optimal motion at which functional

(4.44) reaches its extreme value.
Function F in functional (4.44) is convex and

F(p, q, u) ≥ a‖Q∗‖p, a > 0,p > 1. (4.65)

All the controls u(t) from Lp are accessible at given finite interval [t0, t1], that,
together with solutions (p(t), q(t) of differential equations of motion (4.45) and
(4.46) give finite value to functional (4.44).

Theorem. For motion of the mechanical system upon T ∗N which has
- a non-empty set of solutions of the system 2n + 2 of differential motion

equations (4.45) and (4.46),
- a non-empty set of solutions of the system 2n + 2 of equations (4.48) and

(4.49) of the variational problem,
- a non-empty set of solutions of the system (4.5) at 2n + 2 conditions (4.51)

and (4.52), as well as the conditions

‖(qT (t), pT (t))T ‖ ≤ B




t1∫

t0

‖Q∗(p, q, u, t)‖ dt


 < ∞, (4.66)

where B monotonously increases along with the multiplied integral, there are optimal
controlling forces Q̃∗α = Q∗α(p, q, u∗) for which functional (4.44) achieves its extreme
value.

Proof. It follows from relation (4.66) that the motion (p(t), q(t)) corresponds
to the set of controlling forces constrained by

B




t1∫

t0

‖Q∗‖dt


 ,
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Due to equations (4.65), that is, because J ≥ 0, it follows that there is lower
boundary of the value of functional J . Let Q

(k)
α be the succession of the functions

that correspond to accessible kth control u(k)(t) for which the respective succes-
sive consequential significance J(u(k)) tends towards boundary m; it follows that
J(u(k)) ≤ m + 1. For sufficiently great numbers k it further follows that

a

t1∫

t0

∥∥∥Q(k)(·, s)
∥∥∥

p

ds ≤ m + 1.

That is why such u(k) can be chosen that will weakly tend towards boundary
u∗ from Lp(t0, t1), so that it is

a

t1∫

t0

∥∥∥Q(k)(·, s)
∥∥∥

p

ds ≤ m + 1
a

.

Accordingly, it is

t1∫

t0

‖Q∗(p, q, u(t))‖ dt ≤
(

m + 1
a

)1/p

(t1 − t0)1/q

where 1/p+1/q = 1. According to this and to relation (4.66), all solutions (pα, qα)
of differential equations of motion (4.45) and (4.46) are uniformly constrained, that
is ∥∥∥

(
qT (t), pT (t)

)T
∥∥∥ ≤ B

[(
m + 1

a

)1/p

(t− t0)1/q

]
.

Uniformly constrained solutions (qk(t), pk(t)) are continuous to the same de-
gree upon interval t0 ≤ t ≤ t1, since for every two moments t′ and t′′ (t0 ≤ t′ ≤
t′′ ≤ t1) there are constants C and D, for which it is:

‖q(k)(t′)− q(k)(t′′)‖ ≤ C|t′′ − t′′|
‖p(k)(t′)− p(k)(t′′)‖ ≤ D|t′′ − t′|+

D

( t′′∫

t′

∥∥∥Q∗(p(k)(s), q(k)(s), u(k)(s)
∥∥∥

p

ds

)1/p

(t′′ − t′)1/q

≤ D|t′′ − t′|+ D

(
m + 1

a

)1/p

|t′′ − t′|1/q.

It is possible to choose such graduality (q(k)(t), p(k)(t)) that it is

lim
k→m

(q(k)(t), p(k)(t)) = (q̄(t), p̄(t)) , ∀t ∈ [t0, t1].
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It remains to be proved, from the mechanical standpoint, a clear statement
that motion state (q̄(t), p̄(t)) corresponds to the right sides of differential equations
of motion (4.45) and (4.46), so that it is Q∗

α = Qα(p, q, u∗), that is

q̄ = q + lim
k→∞

t1∫

t0

∂E(q(k), p(k))
∂p(k)

ds;

p̄ = p + lim
k→∞

t1∫

t0

[
−∂E(p(k), q(k))

∂q(k)
+ Q∗(p(k)(s), q(k)(s), u(k)(s))

]
ds.

Due to the boundary relations:

lim
k→∞

t1∫

t0

∥∥∥∥
∂E(q(k), p(k))

∂p(k)
− ∂E(p̄(s), q̄(s))

∂p̄

∥∥∥∥ ds = 0,

lim
k→∞

t1∫

t0

∥∥∥∥
∂E(p(k), q(k))

∂q(k)
− ∂E(p̄(s), q̄(s))

∂q̄

∥∥∥∥ ds = 0, (4.67)

lim
k→∞

t1∫

t0

∥∥∥Q∗(p(k), q(k), u(k)(s))−Q∗(p̄(s), q̄(s), u∗(s))
∥∥∥ ds = 0,

that are always uniformly satisfied, except upon some multitude S of arbitrary
small measure, as well as due to the inequality

∫

S

∥∥∥Q(k)(p(k), q(k), u(k))
∥∥∥ ds ≤




t1∫

t0

∥∥∥Q(k)(p(k), q(k), u(k))
∥∥∥

p

ds




1/p

|s|1/q,

which is equivalent to relation (4.67), it follows

q̄(t) = q + lim
k→∞

t1∫

t0

∂E(p̄(s), q̄(s))
∂p̄

ds,

p̄(t) = p + lim
k→∞

t1∫

t0

[
Q∗(p̄(s), q̄(s), u∗(s))− ∂E(p̄(s), q̄(s))

∂q̄

]
ds.

This proves that to controlling forces Q∗(p, q, u∗) solutions p̄α(t) and q̄α(t) of
the system of 2n + 2 differential equations of motion (4.45) and (4.46) correspond
to.
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Part of the proof referring to the extreme value of functional (4.44) is identical
to the one in proof (4.53) and (4.56) since it is, due to additional statement that
F is a convex function of u, so that

J(u∗) ≤ lim
k→∞

I(uk),

which shows that Q∗(p, q, u∗) is an optimal controlling force which optimizes the
functional to its finite value.

Example 17. The differential equations of motion are:

q̇ =
p

a
, ṗ = U(t), a = const, dim a = M (E17.1)

The optimal controlling force should be determined for which the functional

J =

t1∫

t0

U2(κt)dt, κ ∈ R

achieves minimum at the transition from motion state q(t0 = 0) = 1L, p(t0 = 0) =
2ML T−1 to rest state q(t1 = 1) = 0, p(t1 = 1) = 0.

Energy E =
p2

2a
, force Q∗α = 0, F = U2, so that equations (4.60)–(4.62) have

a simple form:
(δp). = 0 −→ δp = c1 = const (E17.2)

(δq). =
δp

a
=

c1

a
−→ δq =

c1

a
t + c2

δq + 2γU ≤ 0 −→ U0 = − δq

2γ
(E17.3)

From conditions (4.64) for t1 it follows

c2 = −c1

a
t1,

so that it is obtained U = − c1

2aγ
(t− t1).

Substituting in (E17.1) and integrating thus obtained differential equation

ṗ = − c1

2aγ
(t− t1)

it follows

p(t) = − c1

2aγ

(
t2

2
− tt1

)
+ c3 = − c1

2aγ

(
t2

2
− tt1

)
+ p0

q(t) = − c1

2a2γ

(
t3

6
− t2

2
t1

)
+

p0t

a
+ q0,
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p0 = p(t0), q0 = q(t0).

At the last above given condition q(t1) = 0, p(t1) = 0 it follows

c1 = −
6a2γ

(p0

a
t1 + q0

)

t31
.

Since it follows from relations (E17.3) that it is dim γ = M−1 T2, so that it is
obtained for c1 constant dimension

dim c1 =
M2 M−1 T2×(L+ L)

T3 = M L T−1

which is in accordance with relation (E17.2), so it can be written for γ = −1,
t1 = 1, p0 = 2 and q0 = 1,

c1 = 6(ap0 + a2q0) = 6a(2 + a)(M LT−1).

Accordingly,
U = 3(2 + a)(t− t1),

while the functional

J =

1∫

0

U2dt = 9(2 + a)2
(

t3

3
− t2t1 + t21t

)
= 3(2 + a)2(M2 L2 T−3)

If the inertia coefficient a is taken for unit (a = 1), it is obtained

Jmin = 27(M2 L2 T−3).

Coupling Function

For the sake of writing the system of differential equations of motion (4.45),
(4.46), (4.48), (4.49), (4.50) and inequality (4.52) more briefly, as well as their
consequential equations (4.59)–(4.63), the function is introduced

H =
∂E

∂pα
δpα +

∂E

∂qα
δqα −Q∗

αδqα + γF (4.68)

This function has, as can be seen, a dimension of energy or work

dimH = dim E = M L2 T−2 .

A possible doubt in the possibility of summing up small values

δE =
∂E

∂pα
δpα +

∂E

∂qα
δqα
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and
δW = Q∗αδqα

with finite value F can be eliminated since multiplier γ can be regarded as an
arbitrary small parameter or arbitrary small unit concrete (dimensional) number.

Function H can even be written in a much shorter form as

H = δE −Q∗αδqα + γF (4.68a)

where Q∗α comprise all non-potential and controlling forces.
For systems with invariable (scleronomic) constraints, energy E is equal to the

sum of kinetic energy Ek and potential energy Ep, as well as Hamilton function
H = E = Ek + Ep, so that the coupling function can be written in the form

H =
∂H

∂pi
δpi +

∂H

∂qi
δqi −Q∗i δq

i + γF (4.69)

or
H = δH −Q∗i δq

i + γF .

If the differential equations of motion are written by means of kinetic energy Ek

of generalized forces Qα, as (3B.40), the coupling function has the same significance
as the previous ones, but another form:

H =
∂Ek

∂pα
δpα +

∂Ek

∂qα
δqα −Qαδqα + γF (4.70)

The attribute coupling imposes itself since function H couples the differential
equations of the system’s motion with the variational problem of optimal motion.
By means of this function the above-given equations (4.45)–(4.46) are written in a
shorter form:

ṗα = − ∂H
∂(δqα)

, q̇α =
∂H

∂(δpα)
, (4.71)

(δp). = − ∂H
∂qα

, (δqα). =
∂H
∂pα

, (4.72)

∂H
∂ur

= 0; (4.73)

∂H
∂um

< 0, ∀δum > 0. (4.74)

Accordingly, the theorem and the lemma on optimal control are expressed by
means of relations (4.71)–(4.74), that is, by means of the coupling functions.

Example 18. The coupling function from the previous example is

H =
∂Ek

∂p
δp− Uδq + γU2 =

p

a
δp− Uδq + γU2.
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On Theorems. Theoretical mechanics, as other mathematical sciences, com-
prises more theorems than it is given here, especially in the control theory, the
oscillation theory or the theory about motion stability. Such assertions – theorems
– are meaningful as parts of some shorter paper, outside a comprehensive study
about body motion and only if, in particular, assertions separated in this way are
not proved on the basis of other theorems.

In this study, as it is stated in the beginning of this chapter, the theorem implies
an assertion of general significance about body motion whose truthfulness is proved
on the basis of definitions and principles of mechanics .



V. ON DETERMINING MOTION
(Analisis and Solutions of Relation of Motion)

The integration of differential equations or of a system of differential equations
of motion and of analyses of the solutions obtained for known parameters at some
moment of time represents the knowledge about mechanical objects’ motion. Very
few real motions of the body and, especially, systems of bodies, can be described
by finite general analytical solutions of differential equations. Many system mod-
els described in the related textbooks do not reflect faithfully the real motion of
objects. Still, with great accuracy and with a fairly proper estimate of the error
size, mechanics successfully solves problems of all mechanical motions accessible
to human eye or even more than that. Many books have been written about it;
besides, solutions of new problems are daily published. Still, only a few statements
are considered here, namely, those based upon the previous study, especially upon
the preprinciples.

On Rectilinear Motion

Two conclusions that follow from differential equation (3A.4) and represent
the starting points of Newton’s mechanics have to be verified in accordance with
the preprinciple of existence.

a) Material points, such as celestial bodies, ballistic projectiles or a thrown
body are acted upon by the gravitational force, so that relation (3A.5), according
to the present knowledge about forces, does not satisfy the preprinciple of existence;
therefore, it cannot be claimed that the bodies move uniformly along straight lines.

If the force of universal gravitation of all the celestial bodies were known at
every moment and in every position; and if the reactive motor could instantaneously
produce opposite forces, the projectile would move along a straight line with respect
to the hypothetical coordinate system (y, e).

b) Ships can move on quiet ocean waters at constant velocity, but not in a
straight line.

c) It can be arranged locally, on the Earth, with respect to the technical system
of measurement related to the Earth, that the reaction and other forces compel a
body to move at constant velocity; still, this does not lead to the conclusion about
the pathway having a shape of straight line.
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A straight line as a concept of plane geometry is not accessible to logical-
physical experiment; therefore, it is not necessary to base mechanics upon it, espe-
cially since the whole theory can be extended without the principle of rectilinear
motion.

Integrals of Material Point’s Motion Impulse

For the material point of constant mass and the condition

F + R = 0 (5.1)

it is obtained from equation (3A.4) that the motion impulse vector is constant, that
is,

p = mv(t) = c = const = mv(t0) = p0. (5.2)

At first sight, it seems to be the simplest first vector integral by which the
problem of determining motion is solved:

r(t) = v(t0)t + r(t0). (5.3)

However, a view of relations (1.24) and (1.25), and especially of (3A.39) or
(4.6), as well as disagreement about the impulse coordinates, both require that this
essential meaning should be much more clarified. Integral (5.2) satisfies and best
explains the preprinciple of casual definiteness. With as much accuracy as mass
and velocity are known at some moment t0, motion impulse p(t) can be determined
under condition (5.1) at any other moment.

The preprinciple of invariance must be satisfied so that integral (5.2) - essential
impulse p(t) - could be sustained in this theory. If vector (5.2) is resolved in
coordinate system (y, e), as in (1.24), that is

p = mv = mẏiei = ciei = mẏi
0ei

and if it is scalarly multiplied by vector ej , it is obtained that

pj(t) = mẏj = mẏj(t0) = pj(t0). (5.4)

Allowing for parallel displacement of base vectors ei, and thus of coordinate
vectors gk = ∂yi/∂xkei for free displacement of the point, vector (1.24), that is,

p = mẋkgk(x) = mẋK(t0)gK(x0) (5.4a)

can be scalarly multiplied by vector g(x). That is how projections of integral (5.2)
upon coordinate directions gl(x) are obtained in the form

pl(x, ẋ) = akl(x)ẋk = akl(x0, x)ẋk(t0) = aKla
KLpL = aL

l pL, (5.5)



V. On Determining Motion 139

where capital letters in the index denote respective value at the initial moment of
time, while the tensor

aKl = m

(
∂y

∂xk

)

0

∂y

∂xl
= mgKl = mgK(x0) · gl(x) (5.6)

represents a bipoint inertia tensor. In the referential literature, tensor gKl can be
found as “the tensor of parallel displacement”.

In order to satisfy the preprinciple of invariance, integrals (5.4) and (5.5) should
be directly obtained from the coordinate forms of motion equations (3A.13) and
(3A.14).

According to the preprinciple of invariance, this relation should also be valid
with respect to the curvilinear coordinate system. This is confirmed by integrating
the equations (3.14) for Xj + Rj = 0. The covariant integral [36], [42] is

ˆ∫
aijDvj =

ˆ∫
D(aijv

j) = aijv
j −Ai = 0, (5.7)

where Ai is covariantly constant covector Ai = gK
i pK(t0). Accordingly, integral

(5.7) is integral (5.5)

pi(t) = aij ẋ
j = aiJ ẋJ = aiJaJKpK = gK

i pK(t0), (5.8)

Without pointing to the possibility of parallel displacement of covector gi,
impulses (5.6) can be translated from the system of y coordinates into x curvilinear
coordinates. If x coordinates are denoted by indices k, l = 1, 2, 3, it will follow

pj(t) = pk
∂xk

∂yj
= pj(t0) = pK(t0)

∂xK

∂yj
.

Multiplying by matrix
∂yj

∂xl
it is obtained that

pj(t)
∂yj

∂xl
= pK(t0)

∂xK

∂yj
· ∂yj

∂xl
= gK

l pK(t0) = pl(t),

since it is

gK
l =

∂xK

∂yj

∂yj

∂xl
.

Though the covariant integrals satisfy all the three preprinciples, such inte-
gration is not widely spread in mechanics due to the “difficulties” in determining
tensor gK

l . That is why the ordinary first integrals reduced to constants are looked
for, instead of covariantly-constant integrals.

Let the differential equations of motion (3A.14) be written in the extended
form:

aij
Dẋj

dt
=

Daij ẋ
j

dt
=

Dpi

dt
=

dpi

dt
− pkΓk

ij

dxj

dt
= Xi + Ri. (5.9)
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For the conditions
Xi + Ri + pkΓk

ij ẋ
i = 0, (5.10)

that are different from conditions (5.1) the ordinary first integrals are obtained

pj(t) = const = pj(t0) (5.11)

with respect to coordinate system (x, g). Therefore, it is the same as in the case of
integral (5.4) in base coordinate system (y, e). These integrals considerably differ
from integral (5.8) and, therefore, from (5.4). That is why integrals (5.4) and (5.8)
will be called covariant integrals. These ordinary integrals (5.11) destroy the tensor
nature of the observed objects.

Example 19 (See [36, pp. 47 and 49]). Let’s observe the material point’s
motion with respect to both rectilinear system y1, y2, y3 and cylindrical coordinate
system x1 := r, x2 := ϕ, x3 := z.

It is known that [36]

y1 = r cos ϕ, y2 = r sin ϕ, y3 = z

aij = m





1 0 0
0 r2 0
0 0 1



 ,

giK =





cos(ϕ− ϕ0) r0 sin(ϕ− ϕ0) 0
−r sin(ϕ− ϕ0) rr0 cos(ϕ− ϕ0) 0

0 0 1



 .

The differential equations of motion and the integrals for

Y + RY = 0 ⇒ X + RX = 0

are

mÿi = 0
(i = 1, 2, 3)

}
τ⇔





m

[
ẍ1 − x1

(
ẋ2

)2
]

= 0,

m
[
x1ẍ2 + 2ẋ1ẋ2

]
= 0,

mẍ3 = 0

↓ ↑
∗
↓ ↑

∗

ẏi = ẏi
0 ⇐ | ⇒

τ





ẋ1 =

√√√√(
ẋ1

0

)2

+ (x1
0ẋ

2
0)2

[
1−

(
x1

0

x1

)2
]
,

ẋ2 = ẋ2
0

(
x1

0

x1

)2

,

ẋ3 = ẋ3
0.
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By covariant differentiation and covariant integration the equivalence is estab-
lished at one and the same transformation:

dẏi

dt
=

Dẏi

dt
= 0 ⇔ Dẋi

dt = 0

l l

ẏi = ẏi
0 ⇔





ẋ1 = ẋ1
0 cos(x2 − x2

0)+

+ x1
0ẋ

2
0 sin(x2 − x2

0)

ẋ2 =
x1

(x1)2
[
x1

0ẋ
2
0 cos(x2 − x2

0)−

− ẋ1
0 sin(x2 − x2

0)
]
,

ẋ3 = ẋ3
0.

A shorter, clearer, more general and important difference of the first integrals
of the impulses pi = ci and the covariant integrals pi = Ai shows integration
of differential equations (5.4) under the condition that the generalized forces are
Qi = 0. Let it be, for the time being, once again motion of one material point in
curvilinear system of coordinates x1, x2, x3, that is,

d

dt

∂Ek

∂ẋi
− ∂Ek

∂xi
= 0, (i = 1, 2, 3). (5.12)

These equations can be written in the form

D

dt

∂Ek

∂ẋi
= 0. (5.13)

From equations (5.12) for
∂Ek

∂xi
= 0,

integrals (5.11) are obtained, while from equations (5.13) covariant integrals (5.8)
are obtained, since it is

∂Ek

∂ẋi
= pi.

Canonical equations (3C.59), as can be seen from

dpi

dt
= −∂H

∂xi
+ Xi, (i = 1, 2, 3)

usually produce integral impulses of the type (5.11) under the condition that the
right sides of these equations are equal to zero.

The distribution of the ordinary integral and of integral (5.11) is greater com-
paring to covariant integrals (5.8). The reason for this mostly lies in insufficiently
developed calculation with vectors, that is, tensors. The advantage of ordinary
integration is also reflected in the fact that, at smaller number of integral impulses



142 V. On Determining Motion

than that of impulse coordinates, constants can be determined depending on the
given initial values of the observed impulse, for example,

p1(t) = c1 = p1(t0) and p3(t) = c3 = p3(t0);
p2 6= const .

This advantage becomes prominent with the system of material points with
constraints, and especially upon manifolds TM . Accuracy of both of them is
proved, though at various conditions. The covariant integration is invariant with
respect to the linear homogeneous transformations of the coordinate systems; thus,
it reflects the tensor nature of the integrals. This is not the case with ordinary
integration; neither is it in accordance with the preprinciple of non-formality which
points to the fact that the final results of the synthesis should be verified by com-
paring them to the respective results in coordinate systems (y, e).

Example 20. Motion impulse integrals along the surface. The differential
equations of the material point’s motion along surface (3A.29)

f(y1, y2, y3, y0) = 0, f0 = y0 − τ(t) = 0 (5.14)

are of form (3A.26) and (3B.53), that is,

mÿi = Yi + λ
∂f

∂yi
(5.15)

and
λ0

∂f0

∂y0
+ λ

∂f

∂y0
= 0. (5.16)

From acceleration conditions (3A.34), that is, in the concrete case (yi = yi)

f̈ =
∂2f

∂yk∂yl
ẏkẏl +

∂f

∂yi
ÿi +

∂f

∂y0
ÿ0 = 0, (5.17)

it follows

λ = −
m(Φ + ∂f

∂y0
ÿ0) + ∂f

∂yi
Yi

∂f
∂yi

∂f
∂yi

(5.18)

where

Φ =
∂2f

∂yi∂yj
ẏiẏj + 2

∂2f

∂yi∂y0
ẏiẏ0 +

∂2f

∂y0∂y0
ẏ0ẏ0. (5.19)

It becomes obvious that in the right sides of the differential equations of motion
(5.15) there exists inertia force −mÿ0 in the case that the surface equation (5.14)
comprises a time function to the degree different from one, while in the case of the
first degree there exists constant velocity ẏ0. That is why it is necessary, before
integrating differential equations (5.15), to take into consideration this fact in order
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to obtain accurate motion impulse integrals. In order to stress this important
statement, nothing will be lost concerning the general proof if the absence of the
resultant of active forces Yi. (Yi = 0) is assumed. If multiplier (5.18) is also assumed
to be equal to zero, there would be motion impulse integrals (5.4). Moreover, if it
is assumed that the surface did not change in time, that is, that equation (5.14) is
of the form f(y1, y2, y3) = 0, it would follow from relation (5.18)

λ = −m

∂2f
∂yi∂yj

ẏiẏj

∂f
∂yi

∂f
∂yi

= 0, (5.20)

which brings us back to considering motion along a double-sided fixed surface. If,
however, this surface here changed, it would follow from relations (5.18) and (5.19)

λ = −m

∂f
∂y0

ÿ0 + 2 ∂2f
∂yi∂y0

ẏiẏ0 + ∂2f
∂y0∂y0

ẏ0ẏ0 + ∂2f
∂yi∂yj

ẏiẏj

∂f
∂yi

∂f
∂yi

(5.21)

while its equalizing with zero would lead to the conclusion that motion impulses are
constant at the material point’s motion along the surface which moves uniformly
and translatory in the absence of forces. However, all the given conjunctions con-
tradict to the preprinciple of existence, to Galileo’s laws as well as to the general
gravitation law.

Conjunction (5.1) is possible, but, in that case, the multiplier of constraints
(5.2) and (5.21) points to a considerable difference between the material point’s
motion along a fixed, that is, a moveable surface.

With respect to the curvilinear systems of coordinates (x, g), constraint equa-
tion (5.14) is transformed into

f(x1, x2, x3, x0) = 0, x0 = τ(t) (5.22)

while the differential equations of motion are transformed into form (3A.14). It is
from these equations - along with the assumed conditions - that covariant impulse
integrals (5.8) are obtained, while under conditions (5.10) the first integrals of form
(5.11) will be obtained. If the observed motion along surface (5.22) is determined
by means of equations (3B.40) in which kinetic energy

Ek =
1
2
aαβ q̇αq̇β , (α, β = 0, 1, 2),

while the impulses are p0 = a0β q̇β , p1 = a1β q̇β , p2 = a2β q̇β , three covariant integrals
will be obtained, namely,

pα(t) = Aα (p(t0), q(t))

under the condition that the generalized forces are equal to zero Qα = 0 or that
the first three integrals

pα(t) = cα = pα(t0) (5.23)
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along with the conditions

Qα +
∂Ek

∂qα
= 0.

In the case that constraints (5.22) do not explicitly depend on time, coordinate
q0 and its respective impulse vanish. Only two impulses (5.23) exist in that case.

Integrals of System Motion Impulse

For an arbitrary system of material points, it is from the theorem on points’
impulse change (4.11), that the covariant impulse integrals are obtained

pα = Aα (p(t0), q(t))

where Aα are covariantly constant vectors if the generalized forces are equal to
zero. Since the covariant integrals upon TN are not elaborated, the first integrals
pα(t) = cα = pα(t0) are looked for; they are obtained in the simplest way from
differential equations (3C.58) where from it becomes obvious that there are also
first integrals, along with the conditions

Q∗α −
∂H

∂qα
= 0, (α = 0, 1, . . . , n).

For α = 0 from these equations, as well as from (3C.60), it is proved that
p0 6= −H.

Integrals of Body’s Rotary Motion Impulse

On the basis of relations (4.5) and (4.8) it follows that there are integrals of
the rotary motion impulse of the body with constant mass around a fixed point
and with respect to fixed coordinate orthonormal system (y, e):

pi = Iij(t)ωj(t) = Ai = Iij(t0)ωj(t0). (5.24)

if the moments of forces are Mi = 0, (i, j = 1, 2, 3)
Similarly, from differential equations (4.13) for Mi = 0 it is obtained that

p1 = I11Ω1 = A1 = c1,

p2 = I22Ω2 = A2 = c2,

p3 = I33Ω3 = A2 = c3,





(5.25)

where ci = const.
By squaring these equations and by summing up it is obtained that (See, for

example, [4, p. 74])

(I11Ω1
)2

+
(I22Ω2

)2
+

(I33Ω3
)2

= c2 (5.26)
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where c=const; [4].

Energy Integral

The theorem on kinetic energy change (4.15) shows that Ek is equal to the
integral

Ek =
∫

Pdt + c1, (5.27)

so that it is constant only if the system power P is equal to zero.
Relation (4.30) shows that the total mechanical energy (4.25) is constant, that

is,
Ek + Ep + P(q0) = c2 (5.28)

if the power of non-potential forces is equal to zero. Regarding constraints (4.32),
the same integral can be written in the form

Ek + Ep =
∫

R0(q0)dq0 + c2. (5.29)

If it happens that the constraints are invariable, the right side integral (5.29)
vanishes; thus, the known integral about energy “preservation” is obtained:

Ek + Ep = h = const . (5.30)

The difference between integrals (5.29) and (5.30) is comprehensively and clear-
ly presented in References [54]–[64].

Tentative Integrals of the Canonical
Differential Equations of Motion

Every function fµ(q0, . . . , qn; p0, . . . , pn) or

fµ(q0, . . . , qn; p0, . . . , pn) = cµ = const (5.31)

is an integral of the equations

q̇α =
∂E

∂pα
, (α = 0, 1, . . . , n)

ṗα = − ∂E

∂qα
+ Q∗α

(5.32)

if the derivative with respect to time of function fµ is equal to zero along the
system’s phase trajectory, that is,

ḟµ =
∂fµ

∂qα

∂E

∂pα
− ∂fµ

∂pα

∂E

∂qα
+ Q∗

α

∂fµ

∂pα
= 0 (5.33)
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or
(fµ, E) + Q∗

α

∂fµ

∂pα
= 0, (5.34)

where (fµ, E) are Poisson’s brackets for T ∗N .

Example 21. The gyroscopic forces are given by the formula

Q∗
α = Gαβ q̇β , Gαβ = −Gβα.

Let’s verify if E is an integral of differential equations (5.32). Since it is
(E, E) ≡ 0 and

Gαβ q̇β ∂E

∂pα
= Gαβ q̇β q̇α ≡ 0

it follows that there is an integral

E =
1
2
aαβpαpβ + Ep(q0, q1, . . . , qn) +

∫
R0(q0)dq0 = c.

Similarly, the existence of the energy integral in the presence of the non-
holonomic constraints of form ϕσ = bσα(q0, q1, . . . , qn)q̇α = 0 can be proved.

Example 22. Hamilton’s function H(p1, . . . , pn; q1, . . . , qn) is not an integral
of differential equations (3C.62) in the general case, since it is (H, E) 6= 0. Namely,
if relations (3C.51) and (3C.61) are kept in mind, it is obtained that:

(H,H + P) = (H, H) + (H,P) = (H,P) =
∂H

∂qα

∂P
∂pα

− ∂H

∂pα

∂P
∂qα

=
∂H

∂qi

∂P
∂pi

− ∂H

∂pi

∂P
∂qi

+
∂H

∂q0

∂P
∂p0

− ∂H

∂p0

∂P
∂q0

= −∂H

∂p0

∂P
∂q0

= q̇0R0 6= 0.

Only in the case that the constraints do not depend upon time or that it is
R0 = 0, the Hamilton’s function appears as an integral of the potential mechanical
system.

Example 23. By the composition of differential equations (4.13) with Ωi,
for Iik = 0, (i 6= k), Mi = 0 or by gradual multiplication of equations (4.15)
by respective angular velocities Ω1, Ω2,Ω3,), by addition and integration, energy
integral is obtained

2Ek = I11(Ω1)2 + I22(Ω2)2 + I33(Ω3)2 = h = const

of the body’s rotation around the inertia center.
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Integration and Preprinciples

In the course of developing the theory of mechanics on the basis of particular
principles of mechanics, it has been shown that one and the same kind of motion
of one and the same mechanical system can be described by different differential
equations with respect to the same or different coordinate systems. For all the
given systems of differential equations of motion it has been shown that they are in
accordance with the preprinciples. The preprinciple of invariance could be involved
in very complex systems of the differential equations of motion due to the devel-
oped theory of differential geometry upon manifolds and invariance of the natural
(“covariant” or “absolute”) derivative of the vector with respect to time.

However, in the calculus and its application to mechanics almost no attention
seems to be paid to the question of invariance of the differential expression’s inte-
gration, namely the differential equations among which the differential equations of
motion are most frequent. It has been said that ordinary integration destroys the
tensor character of geometrical and mechanical objects; this is not in accordance
with the preprinciples, especially those of casual determinacy and invariance. The
vector generalization as an ordered set of functions over the vector base which is, in
its turn, made up of functions, does not lead to determining the motion attributes
in mechanics either by means of differentiating or by means of integration; thus, it is
not possible to bring into accord the deduced theory with the preprinciple of casual
determinacy on the basis of this generalization. More general theories of knowledge
belong to upper levels of mathematics. Example 13 clearly shows the difficulties
that are also encountered in dealing with the preprinciple of invariance if the vector
base is not definite and known. The still present “truths” are such as “acceleration
is not a vector (in tensor sense)”, “acceleration vector is not a vector” or “inertia
tensor is not a tensor”. Such theses have no place in the theory that starts from the
preprinciples introduced here, namely, from the preprinciples of existence, casual
determinacy and the preprinciple of invariance. There is no one single general con-
figurational ordering in mechanics - namely, there is no one generally ordered set of
bodies and their mutual distances; instead, there are many sets and subsets whose
motion problems are not solved in one single way, i. d., uniformly, but in many
equivalent ways, that is, in polifold or manifold ways. Therefore, the statement
differentiation and integration of tensor on manifolds is meaningful so long as it is
clearly stated what particular manifolds are referred to or if valid proofs are given
about invariance of differentiation and integration upon manifolds. The generality
speaks about a multitude of variety, so that, regarding the preprinciple of casual
determinacy, solutions of general accuracy can be also looked for; they also require
definite and general knowledge about the given problem.

A simple integral, for instance

f(x) =
∫

xdx =
1
2
x2 + c, c = const

is indefinite or definite to the constant since, unless some other knowledge about
the function f(x) is possessed, the particular curve (pathway, force, energy and so
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on) cannot be determined from a continuous multitude of curves for each c ∈ R.
Not before one more data about f(x) at any point is known, for instance f(2) = 2,
can the particular line be known.

Something similar refers to the covariant integrals upon metrical differential
manifolds that are, as has been seen, present in mechanics. For the integral [36]:

f̂ =
ˆ∫
gij(x)vi(x)dvj(x) =

1
2
gij(x)vi(x)vj(x) +A (5.35)

or, much simpler,

f̂ =
ˆ∫
gij(x)dvj(x) = gij(x)vj +Ai (5.36)

can be said that it is indefinite or definite up to the covariantly constant tensor (Ai

- vector, A - constant). The required integral can be determined only to the degree
of knowledge about manifolds, which also implies that of the metrical tensor gij(x)
and covariantly constant tensor A at some particular point. Integral (5.36) is of
energy integral type (5.30), while integral (5.36) is of impulse type (5.24).

Example 24. A system of N material points of constant masses mν (ν =
1, . . . , N) and 3N−2 of finite constraints fµ(r1, . . . , rN ) = 0 has a two-dimensional
manifolds M2 whose metrical, or, more precisely, inertia tensor

aij =
N∑

ν=1

mν
∂rν

∂qi
· ∂rν

∂qj
= aji(q1, q2). (5.37)

Differential equations of motion (3B.40a) for Q1 = 0, Q2 = 0 are

D

dt

(
∂Ek

∂q̇i

)
= 0,

or, regarding that it is
∂Ek

∂q̇i
= pi = aij q̇

j ,

Dpi = D(aij q̇
j) = 0.

Covariant integral is of the form (5.7), that is,

ˆ∫
D(aij(q)q̇j) = aij q̇

j −Ai = 0 (5.38)

where Ai is a covariantly constant vector, that is

DAi = dAi −AkΓk
ijdqj = 0. (5.39)

If M2 is Euclidean manifolds, the covariantly constant vector can be deter-
mined by means of initial conditions q(t0), q̇(t0) and autoparallel displacement
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operator gK
i , that is, Ai = gK

i pK(t0). For manifolds of more complex structure,
where the method of parallel transition (5.39) induces additional difficulties, other
much simpler ways of determining Ai are required [42]. The difficulties in deter-
mining the boundary and initial conditions in solving partial differential equations
are not the reason to conclude that “the integral is not correct” or that it is “im-
possible”. By simplifying the example let’s observe the point’s motion along rotary
surface z = f(ρ) with respect to cylindrical coordinate system (ρ, ϕ, z; g). In that
case, the inertia tensor is

aij = mgij = m





1 +
df

dρ
0

0 ρ2



 .

Regarding the fact that the coordinates of this tensor do not depend upon ϕ =:
q2, the coordinate A2 will be constant and determined from the initial conditions.
Other coordinate A1 can be looked for and determined by means of the observed
surface’s metrics

ds2 = gijdqidqj → gij
dqi

ds

dqj

ds
= 1,

that is,

aij
dqi

dt

dqj

dt
= aijpipj = h = const .

Substituting A2 = c = a2j q̇
j = p2(t0) and A1 = a1j q̇

j = p1 in the previous
relation it follows

a11(A1)2 + a22(c)2 = h

which determines coordinate A1, since it is

a11 =
m

1 +
(

df

dρ

)2 , a22 =
m

ρ2
.

The difficulties in integration of the vector differential equations’ system - as
the differential equations of the mechanical systems’ motion are in essence, regard-
less of the coordinate form in which they are written - are best expressed by the
known Jacobi integral

∂L

∂q̇i
q̇i − L = const . (i = 1, . . . , N) (5.40)

where L is Lagrange’s function (3C.21). This integral satisfies the system of differ-
ential equations of motion (3C.40a) if kinetic energy does not explicitly depend on
time, that is,

Ek =
1
2
aij(q1, . . . , qn)q̇iq̇j
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while forces Qi = −∂Ep

∂qi
are conservative, that is, these forces’ work does not

depend on the pathway. Then it is

∂L

∂q̇i
q̇i = aij q̇

j q̇i = 2Ek,

so that integral (5.40) is reduced to the energy preservation integral:

Ek(t) + Ep(t) = h = Ek(t0) + Ep(t0). (5.41)

However, integral (5.40) is accepted; while considering the systems whose ki-
netic energy is of the form

Ek =
1
2
aij(q)q̇iq̇j

︸ ︷︷ ︸
T2

+ bi(q)q̇i

︸ ︷︷ ︸
T1

+ c(q)︸︷︷︸
T0

,

when, instead of (5.41), a different integral is obtained:

T2 − T0 + Ep = h1 = const . (5.42)

This integral does not follow directly from Theorem (4.15) on kinetic energy
change in the mechanical systems whose constraints change in time. This discrep-
ancy occurs due to overlooking equations (3C.40b), which was possible only in the
case that it is

∂E

∂q0
= 0 and

∂Ek

∂q̇0
= const = p0.

Accordingly, this special integral of the rheonomic system is far from the en-
ergy preservation integral of the rheonomic system. From Theorem (4.15) or from
Lemma (4.23) it follows that for the rheonomic system

H = Ek + Ep =
∫

R0dq0 + C.

or
E =

1
2
aαβ(q0, q1, . . . , qn)q̇αq̇β + Ep(q0, q1, . . . , qn) + P(q0) = h1.

It has been proved that n standard Lagrange differential equations (3C.40a)
of the second kind are not equivalent to the system of differential equations of the
first kind (3A.25); in order to make these two systems compatible, it is necessary
to add equation (3C.40b) to the system of standard equations (3C.40a).

On the basis of n differential equations (3C.40a) or their respective 2n differ-
ential equations (3C.59) the theorem on kinetic energy change (4.15) cannot be
proved. In order to prove it, it is necessary to take into consideration equation
(3C.40b), that is, relations (3C.60) equivalent to it. In view of this, it is natural
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to expect that the integrals of different differential equations’ systems should be
different. This is of great importance for mechanics, since overlooking or neglecting
of particular parameters, let alone equations, does not give truthful information
about motion. Similar confusion in mechanics is caused by various substitutions
of coordinates while integrating or transforming differential equations into simpler
forms if the basic conjunctions of the motion theory are not taken into considera-
tion. It is difficult to find any work on mechanics which does not comprise a linear
differential equation

ẍ + ω2x = 0 (5.43)

describing the “harmonic oscillator”. Such system of equations, as it is known,
describes periodical motion with respect to various ellipsoidal phase pathways,
though, in essence, this can only be the mapped motion with respect to phase
spirals whose initial differential equations of motion

z̈ + 2bż + cz = ±G,

where b is a coefficient of the medium resistance, while G is the ratio between dry
friction force and mass. Namely, with two substitutions of the coordinates

z̄ = z ∓ c

k2
and z̄ = xe−bt

the previous equation comes up to equation (5.43), but not to harmonious motion.
Truly, we could say “harmonious oscillations” with respect to function x(t) = z̄ebt,
but, as can be concluded from function z̄ and resistance coefficient b, such motion
of the mechanical object is not harmonious. Mechanics is not only based upon
mathematical relations but also upon the source of these relations that satisfy its
preprinciples. Even the most careful attempt to determine accurate solutions of the
differential equations is liable to impermissible errors. The general solution of the
differential equations of motion at different initial conditions determine different
trajectories. It is for this reason that the solutions of the differential equations
should be subjected to verification that, theoretically, mostly comprise a qualitative
analysis of the solution or the theory of motion stability, beside practical models
used in practice.



I strove to present Lyapunov’s results
without false modernization.

N. G. Chetaev

VI. ON STABILITY OF MOTION AND REST

Introductory Remarks

“Dynamics is a science about real equilibrium and motions of material systems.
Galileo and Newton have discovered its principles and proved their veracity by
experimenting with the heavy bodies’ fall and by explaining the planets’ motion.
However, every state of the mechanical system that corresponds to mathematically
strict solutions of both the rest equations and the differential equations of motion
is not being observed in reality.”

“The general principle for choosing solutions that correspond to stable states
in mechanics has not been given; instead, the character of science about idealized
systems has been accepted and for every strict application to our nature – every
time, on principle – solutions of the stability problems were looked for.”

“The general problem of motion stability in the classical study was solved by
Lyapunov ...” [6]

The above-quoted statements of Nicolaj Gurevich Chetaev are completely in
accordance with the preprinciples of this mechanics, whereas the work of V.V.
Rumyantsev and A.S. Oziraner [21] best precede a short discussion of the mechan-
ical systems’ stability of motion presented in this study.

Differential Equations of Motion

In order to comprise all the mechanical systems, 2n + 2 differential equations
(3C.59) and (3C.60) are observed, that is,

ṗα = − ∂H

∂qα
+ Q∗α (6.1)

q̇α =
∂H

∂pα
, (α = 0, 1, . . . , n), (6.2)

where H(p0, p1, . . . , pn; q0, q1, . . . , qn) is the function determined by formula (3C.51),
namely,

H =
1
2
aβγ(q0, q1, . . . , qn)pβpγ + Ep(q0, q1, . . . , qn, t) (6.3)

In the system of equations (6.1) and (6.2) there are n + 1 unknown impulses

pα = aαβ(q0, q1, . . . , qn)q̇β , (6.4)
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n unknown and independent generalized coordinates q1(t), . . . , qn(t) and, to the
solution of differential equations (6.1), the unknown force of the constraints’ change
R0(q0). Coordinate q0(κ, t) is given in advance to the accuracy of the chosen
parameter.

Inertia matrix aαβ is positively definite and has rank n + 1. This is easily
proved by means of positively definite function of kinetic energy Ek. If starting
from determinants (3B.5), (3B.7) and (3C.31), it can be seen, as in (3C.33) and
(3C.49), that kinetic energy

Ek =
1
2
aαβ q̇αq̇β =

1
2
aαβpαpβ ≥ 0 (6.5)

is a homogeneous quadratic form of generalized velocities q̇0, q̇1, . . . , q̇n or general-
ized impulses p0, p1, . . . , pn; it is positive for every q̇α 6= 0, while it is equal to zero
only in the case of rest, that is, for q̇α = 0 (α = 0, 1, . . . , n) or pα = 0. Accordingly,
both matrix aαβ and its inverse matrix aαβ , are positively definite.

Equation (3C.60), that is,

ṗ0 = −∂H

∂q0
+ Q∗∗

0 + R0, (6.6)

which, as the only one of the whole system (6.1), comprises function R0, can be
passed over by observing only the system of 2n differential equations of motion
(6.1). Such a system of differential equations is not complete, namely, it does not
completely describe motion of the mechanical system with variable constraints, so
that it can be called the system of differential equations of motion with respect to
a part of the variables. By excluding additional coordinate q, function (6.5) loses
the degree of homogeneity 2, which is not in accordance with the preprinciple of
invariance.

When the mechanical systems of material points with the time-independent
constraints are dealt with, relations (3B.60) vanish due to the absence of auxiliary
coordinate q0, so that equations (6.1) and (6.2) satisfy the same form:

ṗi = −∂H

∂qi
+ Q∗i (6.7)

q̇i =
∂H

∂pi
, (i = 1, . . . , n), (6.8)

where the function

H =
1
2
aij(q1, . . . , qn)q̇iq̇j + Ep(q1, . . . , qn) (6.9)

comprises positively definite matrix aij = aji of the rank n.
With the systems with variable masses m the inertia matrix depends, through

masses mν(t), on time t as well, as can be seen from relations (1.26), (3A.40) and
(3C.33).
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Equilibrium State and Position

The concept of the system’s equilibrium state implies rest of the observed bodies
in particular position qα = qα

0 = const; all the generalized velocities are equal to
zero so that, with respect to relation (6.4), generalized impulses are also pa = 0.

The equilibrium state equations, consequently, originate from equations (6.7),
that is, (

Q∗α −
∂Ep

∂qα

)

pα=0

= 0, (6.10)

or, in accordance to motion equations (3B.40) and (3B.52),

Qα(q̇, q)|q̇=0 = 0 (6.11)

so that the solutions of equations (6.10) or (6.11) determine the equilibrium state
qα
0 = const of the material system.

Determination 1. The equilibrium state of the mechanical system implies a
set of solutions qα

0 ∈ N of equations (6.11) and q̇α(t) = 0 or ṗα(t) = 0.

Determination 2. The equilibrium position of the mechanical system implies
position qα = qα

0 on the coordinate manifolds whose coordinates satisfy equations
(6.11).

Example 25. On a rotary ellipsoid whose equation is in coordinate system
(y, e)

f(y, t) = c2(t)(y2
1 + y2

2) + a2(t)y2
3 − a2(t)c2(t) = 0

or with respect to generalized coordinates q1 = ϕ, q2 = θ, q0 = a(t),

y1 = q0 cos θ sin ϕ,

y2 = q0 sin θ sin ϕ,

y3 = c(q0) cos ϕ,

there is a point of weight G; c axis of the ellipsoid is vertical, as well as y3 coordinate.

The equilibrium state of the observed point is determined by 2 + 1 equation
(6.11), namely:

Q1 = Yi
∂yi

∂q1
= −G

∂y3

∂ϕ
= Gc sin ϕ = 0,

Q2 = 0,

Q0 = −G
∂c

∂q0
cos ϕ + R0 = 0.

It follows that the equilibrium positions at the given variable constraint

ϕ = kπ (k = 0, 1, 2, . . . , n)
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under the condition

R0 = ±G
∂c

∂q0
, or

∂c

∂q0
= 0 → R0 = 0,

so that the ellipsoid axis along which the force G is acting does not change.
Deviations from solutions qα = qα

0 and pα = 0 that can be called undisturbed
or given equilibrium state are described by differential equations of motion (6.7) and
(6.8) and thus they can be called differential equations of the disturbed equilibrium
state and, according to (4.1), they can be written in the covariant form

Dpα

dt
= Qα (6.12)

q̇α = aαβpβ (6.13)

where it is assumed that the disturbances belong to the medium of the equilibrium
state in T ∗N , while at the equilibrium state point q = q0, p = 0, the right sides of
the previous equations are equal to zero:

Qα(q0, 0, . . . , 0) = 0, (6.14)

aαβpβ = 0. (6.15)

That is why previous motion equations (6.7) and (6.8) differ from disturbed
equilibrium state equations (6.12)–(6.15).

The equations of the disturbed equilibrium state q̄α = qα
0 =: bα = const can

be interpreted with approximate accuracy by means of equations (6.11). For some
other values q̄ = b + ∆q and ˙̄q = 0 forces Q̄α will not satisfy equations (6.11). The
first degree of accuracy

Q̄(q, q̇)
∣∣
q̇=0

= Q(b + ∆q, 0) = Q(q, 0) +
∂Q

∂q

∣∣∣q=b,
q̇=0

∆q + · · ·

due to equations (6.11) is reduced to

Qα =
∂Qα

∂qβ

∣∣∣
q=b

∆qβ . (6.16)

By analyzing these expressions for solutions ‖∆qα‖ 6= 0, in the sense of the

derivatives
∥∥∥∥

∂Qα

∂qβ

∥∥∥∥
b

, some required conditions about the equilibrium position q = b

of the system and its stability can be reached; since they are not reliable enough,
much more strict criteria of stability are looked for.

Differential Equations of Disturbed Motion

In the referential literature about bodies’ motion the differential equations of
disturbed motion do not always imply the same thing, regardless of the fact that
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the term is general. In the general theory of planet disturbances, these are, in the
most general sense, differential equations of motion (See, for instance, [15, p. 53])

mν r̈ν = Fν + Gν (6.17)

which the disturbance forces are added to. While describing the system’s motion by
means of equations (3B.59), when forces Q∗

i are absent, the equations of disturbed
motion are found in the form of variation:

d

dt
δpi = − ∂2H

∂qj∂qi
δqj − ∂2H

∂pj∂qi
δpj ,

d

dt
δqi =

∂2H

∂qj∂pi
δqj +

∂2H

∂pj∂pi
δpj .

(6.18)

While attempting to derive the equations of disturbed motion described by
covariant equations (6.12), the tensor variation equations1 have been derived

D2ξi

dt2
+ Ri

jklq̇
jξk q̇l = ∇lQ

iξl (6.19)

that, due to their complex non-linear structure, are not considerably present in
the stability theory.2 Differential equations (6.19) are equivalent to differential
equations (6.18) in which ξi := δqi, while Qi are generalized forces dependent on
position q and time [31, p. 41–47].

In the motion stability theory, the differential equations of disturbed motion
are reduced to the general form:

dξ

dt
= f(t, ξ), ξ ∈ Rn (6.20)

Equations (6.17) essentially differ from the other given ones; they serve as
the basis for elaborating the whole theory of the planet disturbances. All the
other above-given systems of differential equations of disturbances are formed of
the basic differential equations of motion by being developed into the degree order
or by varying the functions and their derivatives.

In [31] it has been proved that the vector projection variation is not equal
to the variation vector projection; thus, instead of equations (6.19) the covariant
differential equations of disturbance are derived in the form

Dηα

dt
= ψα(t, η, ξ) (6.21)

Dξβ

dt
= aαβηα. (6.22)

1Syng J.L., TENSORIAL METHODS IN DYNAMICS, Toronto, 1936.
2Equations (6.19), (6.21), (6.22) are often called the perturbed equations
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For the sake of further clarification and estimation of the preprinciples’ satis-
faction, let’s derive the previous equations starting from the basic equations of the
dynamic equilibrium (3A.3) or from the theorem on impulse change (4.1), that is,

d

dt
(mνvν) = Fν(r, v, t). (6.23)

The solutions of the undisturbed motion are:

vν =
∂rν

∂qα
q̇α and r = r(q(t)). (6.24)

To every other (disturbed) solution

r∗ν = rν + ξα ∂rν

∂qα
, (6.25)

the corresponding impulse is

mνv∗ν = mν
dr∗ν
dt

= mν

(
vν + ξ̇α ∂rν

∂qα
+ ξα ∂2rν

∂qβ∂qα
q̇β

)

so that the impulse disturbances, according to (1.25) and (3A.39), will be:

p∗γ − pγ =: ηγ =
N∑

ν=1

mν (v∗ν − vν) · ∂rν

∂qγ
=

=
N∑

ν=1

mν

(
∂rν

∂qα
· ∂rν

∂qγ
ξ̇α + ξα ∂2rν

∂qβ∂qα
· ∂rν

∂qγ
q̇β

)
.

However, since there is connection

∂2rν

∂qβ∂qα
= Γδ

αβ

∂rν

∂qδ
, (6.26)

regarding relations (1.26) and (3A.41), it follows

ηγ = aαγ ξ̇α + aγδΓδ
αβξαq̇β =

= aαγ(ξ̇α + Γα
δβξδ q̇β) = aαγ

Dξα

dt

(6.27)

or
Dξα

dt
= aαγηγ . (6.28)

For solutions (6.25) differential equations of motion (6.23) are:

d

dt
(mνv∗ν) = mν(∂βαrν ξ̇αq̇β + ∂αrν ξ̈α

+ ∂δαβrνξαq̇β q̇δ + ∂αβrν ξ̇αq̇β + ∂αβrνξαq̈β)

= F ∗ν (rν + ρν ,vν + ρ̇ν , t),
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where

∂α :=
∂·

∂qα
, ∂αβ =

∂2·
∂qα∂qβ

.

After scalar multiplication of these equations and equations (6.23) by coordi-

nate vectors
∂rν

∂qγ
, as well as after addition with respect to index ν, it is obtained:

N∑
ν=1

mν(∂αrν · ∂γrν ξ̈α + 2∂γrν · ∂αβrνξαq̇β+

+ ∂γrν · ∂δαβrνξαq̇β q̇δ + ∂γrν · ∂αβrνξαq̈β) =

=
N∑

ν=1

(F ∗
ν − Fν) · ∂rν

∂qγ
.

(6.29)

Partial derivatives ∂δαβrν that exist in the previous relation can be reduced,
by means of relation (6.26), to:

∂δαβrν = ∂δ(∂αβrν) = ∂δ(Γλ
αβ∂λrν) =

= ∂λrν∂δΓλ
αβ + Γλ

αβ∂δλrν =

= ∂λrν∂δΓλ
αβ + Γλ

αβΓµ
δλ∂µrν .

If these derivatives are taken into consideration, as well as relation (6.26) and
inertia tensor (3A.14), equation (6.29) is reduced to the form:

aαγ ξ̈α + aγλΓλ
αδ ξ̇

αq̇δ + aγλΓλ
αβ q̇β ξ̇α+

+ (aγλ∂δΓλ
αβ + aγµΓλ

αβΓµ
δλ)ξαq̇β q̇δ+

+ aγλΓλ
αβξαq̈β = Ψγ ,

(6.30)

where

Ψγ :=
N∑

ν=1

(F ∗
ν − Fν) · ∂rν

∂qγ
= Ψγ(ξ, η, t). (6.31)

Equations (6.30) can be further reduced to a shorter form:

aαγ
d

dt

(
ξ̇α + Γα

σδξ
σ q̇δ

)
+ aγµΓµ

σβ

(
ξ̇σ + Γσ

αδξ
αq̇δ

)
q̇β = Ψγ

or, if equations (6.27) are considered, to the form

aαγ
d

dt

(
Dξα

dt

)
+ aγµΓµ

σβ

(
Dξσ

dt

)
q̇β = Ψγ ,

or

aαγ
D

dt

(
Dξα

dt

)
=

D

dt

(
aαγ

Dξα

dt

)
=

Dηγ

dt
= Ψγ
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and this, together with equations (6.28), makes up 2n + 2 differential equations of
disturbance (6.21) and (6.22) and explains the function vector in them.

Stability of Equilibrium State and Position

The concept of stability of equilibrium state and position is not explicit, re-
gardless of the fact that the concepts of equilibrium state and position have been
previously defined. The concept of stability is necessarily preceded by explicit
determinations [26], [30].

Determination 3. At any given positive real numbers Ai and Bi – regardless
of how small they are not – some positive numbers λi and λi can be chosen for all
numerical values of the coordinates of equilibrium state qi = qi

0, pi = 0, that are
liable to the constraint

∣∣qi(t0)− qi
0

∣∣ ≤ λi, |pi(t0)| ≤ λi, (6.32)

and for every time t > t0 satisfy the inequalities
∣∣qi(t)− qi

0

∣∣ < Ai, |pi(t)| < Bi (6.33)

equilibrium state (qi = qi
0; pi = 0) of the system is stable with respect to disturbances

qi 6= qi
0 and pi 6= 0; otherwise, it is unstable.

The previous determination 1 can be formulated in other words or other re-
lations, but the meaning of the disturbance’s constraints (6.32) and (6.33) should
remain the same. By an appropriate choice of the coordinate system origin in
equilibrium state, the equilibrium state can be represented by the zero point upon
manifoldness T ∗N , that is qα = 0, pα = 0; then equation (6.14) is reduced to

Qα(0, . . . , 0, t) = 0 (6.34)

Determination 4. If at any randomly given number A > 0, regardless of
how small it is not, such a real number λ can be chosen for which all the initial
disturbances are constrained by the relation

δαβqα(t0)qβ(t0) + δαβpα(t0)pβ(t0) ≤ λ, (6.35)

and for every t ≥ t0 the inequality is satisfied

δαβqαqβ + δαβpαpβ < A, (6.36)

the undisturbed equilibrium state pα = 0, qα = 0 is stable; otherwise, it is unstable.
As in the previous proposition, δαβ and δαβ are Kronecker’s symbols.
If the stability of the equilibrium state or of the undisturbed motion is regarded

only with respect to part of 2m of variables q1, . . . , qm, p1, . . . , pm, m < n, the
stability condition (6.36) is reduced to the observed variables:

δklq
kql + δklpkpl < A (k, l = 1, . . . , m) (6.37)
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Stability Criterion

If for the differential equations of motion of the scleronomic system (6.12) and
(6.13) the positively definite function W (t, q1, . . . , qn) could be found, such that it
is

∂W

∂t
+

(
Qi +

∂W

∂qi

)
q̇i ≤ 0 (i = 1, . . . , n) (6.38)

the equilibrium state q = q0, p = 0 or q = 0, q̇ = 0 is stable.
Proof. With the conjunction that there is function W , the function

V =
1
2
aij(q1, . . . , qn)pipj + W (q1, . . . , qn, t) (6.39)

is positively definite since kinetic energy

Ek =
1
2
aij q̇

iq̇j =
1
2
aijpipj

is, by its definition, positively definite.
The derivative with respect to time of function (6.39) is since it is

V̇ = aij Dpi

dt
pj +

∂W

∂t
+

∂W

∂qi

dqi

dt
,

while
V̇ =

dV

dt
=

DV

dt
,

If equations (6.12) and (6.13) are kept in mind, the previous derivative is
reduced to the form

∂W

∂t
+ aijQipj +

∂W

∂qi
aijpj =

∂W

∂t
+ aij

(
Qi +

∂W

∂qi

)
pj

=
∂W

∂t
+

(
Qi +

∂W

∂qi

)
q̇i,

(6.40)

and the criterion is proved by this.

Corollaries

1. If the system is autonomous, function W should be looked for only depend-
ing upon the coordinates, so that condition (6.38) is reduced to

(
Qi +

∂W

∂qi

)
q̇i ≤ 0. (6.41)

That is what the conservative mechanical systems for which there exists poten-
tial energy Ep(q1, . . . , qn) are like. The choice of this very energy, if it is positively
definite, for function W , W = Ep, shows that it is

aij

(
−∂Ep

∂qi
+

∂W

∂qi

)
pj =

(
−∂W

∂qi
+

∂W

∂qi

)
q̇i ≡ 0
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namely, that the equilibrium state of the system is stable.
2. If the generalized forces consist of conservative and any other forces Q∗i (q, q̇),

that is,

Qi = −∂Ep

∂qi
+ Q∗i (q, q̇)

by the repeated choice W = Ep, as the condition of the system’s equilibrium state
stability, it is obtained as

aijQ∗i pj = Q∗i q̇
i ≤ 0. (6.42)

3. If the system is acted upon by gyroscopic forces

Q∗i = Gij q̇
j = −Gjiq̇

j (6.43)

the equilibrium state stability condition (6.41) is satisfied since it is

Q∗i q̇
i = Gij q̇

j q̇i ≡ 0

4. For dissipating forces Q∗
i = bij q̇

j condition (6.41) is reduced to the fact that
the quadratic function of energy dissipation R = −bij q̇

iq̇j should be either greater
or equal to zero.

Generalization of the Criterion. The previous theorem is also valid for
mechanical systems with rheonomic constraints. Condition (6.38) changes only if
indices i, j = 1, . . . , n take on values α, β = 0, 1, . . . , n. Therefore, three additional
addends are obtained:

∂W

∂t
+ aαβ

(
Qα +

∂W

∂qα

)
pβ =

∂W

∂t
+ aij

(
Qi +

∂W

∂qi

)
pj+

+ ai0

(
Qi +

∂W

∂qi

)
p0 + a0j

(
Q0 +

∂W

∂q0

)
pj

+ a00

(
Q0 +

∂W

∂q0

)
p0 ≤ 0

(6.44)

The proof is identical to the previous one, except for the fact that the indices
in equations (6.12) and (6.13) remain in the range 0, 1 . . . , n.

When the system of forces (3C.52) is considered, where potential energy Ep =
Ep(q0, q1, . . . , qn), and Q∗0 = Q∗0 + R0, function W = Ep can be chosen if Ep is a
positively definite function of q0, q1, . . . , qn, so that expression (6.43) is reduced to

aαβQ∗αpβ = Q∗
αq̇α = Q∗i q̇

i + (Q∗∗0 + R0)q̇0 ≤ 0.

Corollaries

1. Expressions (6.38)–(6.43) appear as consequences of relations (6.44) in the
case that the constraints are scleronomic since auxiliary coordinate q0 vanishes.
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2. The classical (standard) way of examining stability of the rheonomic sys-
tem’s equilibrium state with respect to variables q1, . . . , qn; p1, . . . , pn can be re-
garded as stability with respect to a part of the variables.

Necessary Additional Commentary

While verifying criteria (6.38) or (6.44) the starting point has been the fact
that function (6.39), that is

V = Ek + W (t, q0, q1, . . . , qn) (6.45)

is a positively definite function. Since the starting conjunction is that W is a posi-
tively definite function, while Ek is kinetic energy, there should be no disagreement
about the casual definiteness of function V . Still, the question is asked concerning
casual definiteness of kinetic energy. In order to prove this, the starting point is,
firstly, the preprinciple of invariance which states that motion attributes do not
depend upon formal mathematical description, and, secondly, from the expression
for the system’s kinetic energy

2Ek = m1v
2
1 + m2v

2
2 + · · ·+ mNv2

N =
N∑

ν=1

mνvν · vν . (6.46)

All masses mν are positive concrete real numbers, so that it cannot be refuted
that Ek is a positive function of vν which is equal to zero only if all the velocities,
that is, functions vν(t) are equal to zero. Therefore, it is true that:

2Ek =
N∑

ν=1

mνvν · vν ≥ 0. (6.47)

With respect to the orthonormal coordinate system, regarding expression (3B.7),
it also follows

2Ek =
N∑

ν=1

mν(ẏ2
ν1 + ẏ2

ν2 + ẏ2
ν3) ≥ 0. (6.48)

Nothing is going to change if other notations are introduced:

m3i = m3i−1 = m3i−2; i = 3ν − 2, 3ν − 1, 3ν

since relation (6.48) will be

2Ek =
3N∑

i=1

miẏ
2
i ≥ 0. (6.48a)

In other coordinate systems, let’s say (z, e) or (x, g) between which there are
explicit dotted mappings yi = yi(z1, . . . , z3N ), yi = yi(x1, . . . , x3N ) or constraints
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yi = yi(q0, q1, . . . , qn; n < 3N), the quadratic homogeneous form (6.48) will remain
what it is in the forms:

3N∑

i=1

miẏ
2
i =

3N∑

i=1

mi
∂yi

∂zk

∂yi

∂zl
żkżl =

3N∑

i=1

mi
∂yi

∂xk

∂yi

∂xl
ẋkẋl

=
3N∑

i=1

mi
∂yi

∂qα

∂yi

∂qα
q̇αq̇β

= �klż
kżl = akl(m,x)ẋkẋl = aαβ(m, q)q̇αq̇β ≥ 0,

where �kl, akl, aαβ are positively definitive matrices. “The deviation from the
matrices’ casual definiteness” for particular values x or q does not spring from
the kinetic energy’s nature, but from irregularity of the transformation matrices

(6.20)
(

∂yi

∂xk

)
or

(
∂yi

∂qk

)
during the transition from one to other coordinates. For

those values of coordinates x for which transformations ẏi =
∂yi

∂xα
ẋα are irregular

(therefore, non-existent), neither the casual definiteness of the matrix aij nor the
kinetic energy’s coordinate forms can be estimated.

Example 26. Kinetic motion energy of the point of mass m in the plane can
be written with respect to cylindrical coordinate system ρ, θ, z, for which there are
relations

y1 = ρ cos θ, y2 = ρ sin θ, y3 = z,

under the condition ρ 6= 0, in the form

Ek =
m

2
(
ẏ2
1 + ẏ2

2 + ẏ2
3

)
=

m

2

(
ρ̇2 + ρ2θ̇2 + ż2

)
≥ 0 (6.49)

or on the plane z = c = const,

Ek =
m

2

(
ρ̇2 + ρ2θ̇2

)
.

All the three expressions for Ek are equal to zero only if the velocities are
equal to zero since ρ = 0 cannot be taken into consideration in view of the fact
that ρ = 0 is excluded from consideration during the transformation between the
observed coordinate systems.

Invariant Criterion of Motion Stability

The concept of the invariant criterion implies general measurement standard
in all the coordinate systems for estimating stability of some undisturbed mechan-
ical system’s motion. As such, it comprises stability of the equilibrium position
and state, stability of stationary motions and, in general, of motion of mechanical
systems whose disturbance equations are of coordinate shape (6.21) and (6.22).
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If for the differential equations of disturbance (6.21)–(6.22) there is such a pos-
itively definitive function W of disturbance ξ0, . . . , ξn and time t that the expression
is

∂W

∂t
+ aαβ

(
Ψα +

∂W

∂ξα

)
ηβ ≤ 0 (6.50)

smaller or equal to zero, the undisturbed state of the mechanical system’s motion is
stable.

Proof. As can be seen from equation (6.31), functions Ψα for undisturbed
motion ξα = 0, ηα = 0 are equal to zero, that is, Ψα(0, 0, t) = 0.

The function
V =

1
2
aαβηαηβ + W (ξ, t) (6.51)

is positively definite, since it is

aαβ(q0(t), q1(t), . . . , qn(t))

a positively definite matrix of the functions upon Mn+1, while W (ξ, t) is a positively
definite function of disturbance ξα. As a scalar invariant, V is a tensor of zero order.

That is why ordinary derivative
dV

dt
is equal to the natural derivative

DV

dt
= aαβ Dηα

dt
ηβ +

∂W

∂ξα

Dξα

dt
+

∂W

∂t
(6.52)

which necessarily has to be smaller or identical to zero. By substitution of the
natural derivatives from equations (6.21) and (6.22) in (6.52) it is obtained that

DV

dt
=

∂W

∂t
+ aαβΨαηβ +

∂W

∂ξα
aαβηβ ,

and this, along with the criterion requirement, is reduced to

∂W

∂t
+ aαβ

(
Ψα +

∂W

∂ξα

)
ηβ ≤ 0. (6.53)

Therefore, the stability criterion is proved [47].

If neither forces F ∗
ν and F from relations (6.31) nor differences F ∗

ν −Fν depend
of time t on position r and velocity v, function Ψγ will also be explicitly indepen-
dent of t. Then function W should also be looked for only in its dependence
on disturbances ξ0, ξ1, . . . , ξn, that is, W = W (ξ0, ξ1, . . . , ξn), so that expressions
(6.50) and (6.53) are reduced to

aαβ

(
Ψα +

∂W

∂ξα

)
ηβ ≤ 0. (6.54)
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If the mechanical system’s constraints do not depend on time, q0, ξ0, η0,Ψ0,
vanish, so that expression (6.50), that is (6.53), is reduced to

∂W

∂t
+ aij

(
Ψi +

∂W

∂ξi

)
ηj ≤ 0, (6.55)

while expression (6.54) is reduced to

aij

(
Ψi +

∂W

∂ξi

)
ηj ≤ 0 (6.56)

where Ψi and W do not depend on ξ0 and η0.
All the expressions of the previously given criterion for the equilibrium state

stability appear as consequences of expression (6.53) if ξ and η are regarded as
disturbances of equilibrium state q and p.

On Integrals of Covariant Equations of Disturbance

Covariant equations of motion (6.12) or differential equations of disturbance
respective to them (6.21) in their extended form and in the general case have a very
complex structure what makes their integration difficult. However, by applying the
covariant integration some first covariantly constant integrals are obtained as a
means of assessing the equilibrium state stability as well as undisturbed motion.
As an addition to this assertion, the two recognizable and acceptable examples are
presented here.

1. Let generalized forces Qα in equations (6.12) have a function of force
U(q0, q1, . . . , qn). Let’s multiply each equation (6.12) by respective differential from
equation (6.13) and add in the following way,

aαβpβDpα = Qαdqα =
∂U

∂qα
dqα.

Since Daαβ = 0, it is
1
2
D

(
aαβpβpα

)
= dU

and further
1
2
aαβpβpα − U = C = const .

2. Let the right sides of covariant equations (6.21) be linear forms of distur-
bance from ξ1, . . . , ξn, that is,

Ψi = −gij(q1(t), . . . , qn(t))ξj

where gij as well as aij(q1, . . . , qn) are covariantly constant tensor. For the given
disturbances, equations (6.21) and (6.22) can be written in the covariant form:

Dηi

dt
= gijξ

j ,
Dξi

dt
= aijηj .
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By mutual complete multiplication and addition with respect to index i, as in
the previous example with respect to α, it follows

aijηjDηi = −gijξ
jDξi.

The covariant integration gives

1
2
(aijηjηi − gijξ

jξi) = A

where A is a constant, DA = dA = 0.
Therefore, by covariant or ordinary integration and the solution analysis or

directly by applying criterion (6.50) or (6.38), the stability of undisturbed motion
ξ = 0, η = 0 or that of the equilibrium state of system q = q0, p = 0 can be
assessed.

Along with additional conditions, the initial definitions can be used to speak
about asymptotic, uniform, equiasymptotic or any similar stability on the whole
or regarding part of the variables. As for stability of motion or equilibrium of
the mechanical systems it is more important to note whether disturbances in the
disturbances equations are caused by some error in calculation or they result from
some newly-induced change of forces, namely, of inertia force due to inertia tensor
change, or of active forces due to approximate accuracy of dynamic parameters,
instead of ideally accurate laws of dynamics from which formulae of particular
forces such as (2.16), (2.11), (2.13) and (2.14) are derived. In this study, the laws
of dynamics are formulated on the basis of stable processes in the sense of the above-
given definitions about stability; more precisely, it means that they are formulated
accurately to the point of the boundary value of the given number, regardless of
how small it is not. In differential equations (6.12) and, especially (6.21) every
deviation of functions or their parameters (no matter how small they are) from the
real ones can but it does not have to affect stability or instability of the observed
motion. That is why the mechanical systems’ stability with respect to forces is of
enormous importance.
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The title of this monograph as well as the selection of the given contents for
each of its sections can be regarded as an introduction to more comprehensive works
in the field of mechanics. What is, mostly and briefly, given here, though, in the au-
thor’s opinion, are only essential assertions of one theory of motion and interaction
of bodies. Not a priori assertion, but inherited, existing and acquired knowledge
was the starting point. The acquired knowledge suppressed some inherited and
existing logical and mathematical standards thus making relative the accuracy of
the most accurate natural science in the mathematical sense. This can particularly
be seen in the following relations with variable constraints:

Standard Modification

Velocity

v =
∂r

∂q
q̇ +

∂r

∂t
v =

∂r

∂q
q̇ +

∂r

∂q0
q̇0

q̇ = (q̇1, . . . , q̇n)T q̇ = (q̇0, q̇1, . . . , q̇n)T

Motion impulse
pi = aij q̇

j + bi pi = aij q̇
j + ai0q̇

0

p0 =: −H p0 = a0j q̇
j + a00q̇

0

Acceleration

ai =
Dq̇i

dt
ai =

Dq̇i

dt
, a0 =

Dq̇0

dt

Forces
Q Q, Q0

Work
W (Q) =

∫
s

Qdq W =
∫
s

(Qdq + Q0dq0)

Variational principles

δ
t1∫
t0

Ekdt = 0, δ
t1∫
t0

Ldt = 0
∫ t1

t0
(δEk + δA(F ))dt = 0.
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Kinetic energy

Ek =
1
2
aij q̇

iq̇j + biq̇
i + c Ek := −W (I) =

1
2
aαβ q̇αq̇β

|aij |nn |aαβ |n+1
n+1

Dieferential equations of motion

aij
Dq̇j

dt
= 0 aij

Dq̇j

dt
+ ai0

Dq̇0

dt
= Qi

a0j
Dq̇j

dt
+ a00

Dq̇0

dt
= Q0

or
D

dt

(
∂L

∂q̇i

)
= 0

D

dt

(
∂L
∂q̇i

)
= 0

D

dt

(
∂L
∂q̇0

)
= 0

or

q̇i =
∂H

∂pi
, q̇0 = 1 q̇i =

∂E

∂pi
, q̇0 =

∂E

∂p0

ṗi = −∂H

∂qi
, ṗ0 = −∂H

∂t
ṗi =

∂E

∂qi
, ṗ0 =

∂E

∂q0

p0 = −H p0 6= −H 6= E

Regarding these and similar comparisons the author has been posed some
important and logical questions at various scientific conferences, namely questions
like “Do you find assertions made so far in the standard mechanics erroneous?” or
“Assuming that your assertions are correct, how do you explain that they have not
been noticed in practice?”

Avoiding the word “erroneous” the author has replied that the assertions made
in this theory are better and more thorough. From Aristotle and Galileo, that is,
Newton, the contention has been accepted that the body moves uniformly under
the action of constant force. When Newton wrote his first axiom or law that the
body moves uniformly or rectilinearly in absence of forces, philosophy considered
and assessed that Aristotle’s view was erroneous. Such a rough assessment was not
given by Newton; neither did Einstein state that the proposition about rectilinear
motion was erroneous; instead, Einstein found a more complete and finer state-
ment that “rectilinear motion does not spring from experience either logically or
experimentally”. Example (E5.7) simply gives an answer to the second question -
though such object of mechanics is taken into consideration without including axial
forces; therefore, there is always a possibility of displacing one end in practice; in
other words, it has been more than just noticed in practice. In this monograph
the mathematical knowledge that can be applied to the theory about motion of
body is extended; and thus, some other views of particular attributes of motion
appear. The innovations with respect to describing known and accepted relations
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are stressed in more details. Thus, for instance, the concept of the material point
is differentiated in details from the concept of the particle or covariant integration
from standard integration of differential equations of the rigid body’s rotary mo-
tion. It has been shown that the model of material point can be used to develop
the theory applicable to all mechanical objects.

The section on Preprinciples that precedes the core of the book gives an
explicit determination of the starting conjunction in mechanics as well as its basic
concepts such as mass, distance and time; this defines its domain of research by
means of three disjunctive sets of real numbers and pencils of three oriented vectors;
the concept of geometrical spaces is abandoned, unlike that of the body volume;
the possibility of two particle’s coincidence is excluded, namely, the fact that, in
the geometrical sense, differs the concept of the particle from both the material and
the geometrical point while, at the same time, makes the “law of non-penetration”
redundant. The possibility of determining motion is accepted in advance, while the
accuracy is made relative by available knowledge of the relevant natural parameters
about some moment of rest. The knowledge about motion and rest of the body
in mechanics, described by mathematical relations in various coordinate systems,
is made relative - by the precondition of invariance that the natural attributes of
motion do not depend upon the formal way of description. Therefore, the preprin-
ciples objectify the subject of the theoretical mechanics while, at the same time,
they make relative its general knowledge; they are accompanying corrector and
verificator of all the assertions of the body motion theory.

The first section dealing with the Basic Definitions introduces and defines
only four concepts by means of which it is possible to elaborate further one theory
of the body motion. In accordance with the preprinciples, it was necessary in the
beginning to open up the problem of selecting base oriented vectors, invariable in
time. Unlike the velocity definition by means of the boundary values of distances,
what is avoided in the velocity definition is the boundary transfer of one vector to
another and thus the standard definition of velocity is accepted as a natural deriv-
ative of velocity with respect to time. In describing motion impulse the importance
of the inertia tensor and of its difference from the geometrical metric tensor is es-
pecially stressed. This definition, just like the others, remains in the whole later
theory which excludes from the present discussion the motion impulse as negative
energy (Hamilton’s function), that is, work of the forces. The term “motion im-
pulse” is used instead of “impulse” in order to stress its difference from the forces’
impulse. The definition of the inertia force determines a dimension of the force
in general which later becomes prominent at the introduction and dimensioning of
various dynamic parameters, as well as formulating the laws of dynamics.

The second section of the Laws of Dynamics gives to the concept of the
“law” a unique meaning of the force’s determinant; this makes it considerably dif-
ferent from the concept of Newton’s laws; it is due to it that the concept of law
in mechanics is strictly differentiated from the concepts of principles and theorems.
The dominant place in this section belongs to the law of constraints by which it is
stressed that the constraint between material points or particles can be abstracted
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by forces, that is, that the constraints are sources of the forces’ origins, so that the
mathematical or mental relation implied in the concept of the constraint should nec-
essarily be distinguished from the motion of mechanically and objectively existing
constraint.

In the part entitled On Mutual Attraction Force formula (2.21) is derived,
from which the Newton’s law of gravity follows for some particular conjunctions.
By dropping determinants of other forces, that is, of the laws of dynamics (for
the sake of brevity), the newly-introduced concept of the law of dynamics is not
brought into doubt.

The third section entitled Principles of Mechanics comprises four principles
on the basis of which (meaning, of each of them) it is possible to develop the whole
theory about the body motion. The equilibrium principle is most comprehensively
described with the good arguments, though it is based on the least number of defi-
nitions and consequential determinations. It is sufficient enough to comprise all the
body motions coupled with any constraints in any coordinate systems. The conse-
quential effect of the coupled forces’ moment at the system of material or dynamic
points subdued to the constraints is shown. From this principle the necessity to
generalize the formula of the gravitational force has followed or the need to doubt
the validity of the differential equations of motion with the constraints’ multipliers.

By introducing an additional definition of the concept of work the work prin-
ciple is formulated. Unlike the vector invariant of the equilibrium principle, the
work principle is expressed by means of the scalar invariant thus avoiding the
difficulties in summing up the constrainted vectors. As a consequence, beside po-
tential energy, “rheonomic pseudopotential” also appears as negative work of the
constraint-changing force; that is why it is shown that kinetic energy is a negative
work of inertia force. In a unique way elementary works upon real displacements,
possible displacements as well as work upon possible variations are characterized.
By introducing an additional coordinate - rheonomic coordinate - the principle of
the rheonomic constraints’ solidification is abandoned, so that the work principle
relation is extended for one adequate addend. This was preceded by modification of
the constraints’ variations, as well as work of the mechanical system with rheonomic
constraints.

The concept of action is defined by means of the concept of work; the concept
of action is the object of the general integral variational principle called the prin-
ciple of action. Therefore, the statement of the action principle required six basic
definitions. For such formulation of the principle and with the unique concept of
variation, the classical integral variational principles appear as corollaries. Since
by the preprinciple of existence time is taken as an invariable, it does not vary as
such; thus, this integral principle shows itself to be invariant upon the extended
configurational manifolds TMn and T ∗Mn as well as for scleronomic systems upon
TMn+1 and T ∗Mn+1; in other words, on the relations which are of the same shape
for autonomous and non-autonomous systems. A more essential meaning of this
principle is expressed in the section IV which proves the theorem on optimal control
of motion.
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On the basis of the first four definitions and the compulsion definition the dif-
ferential variational principle of compulsion is expressed that, in essence, scalarizes
the vector invariant of the equilibrium principle. By describing compulsion as a
homogeneous quadratic form of the acceleration vector coordinate over the inertia
tensor the possibility of its transformation into any coordinate system has been
proved. From the principle’s requirement that compulsion has the least value on
actual motion, it is easy to arrive at simple scalar differential equations of motion
expressed by the compulsion function.

The section on Theorems of Mechanics, states clearly, first of all, what is
implied by the “theorem” in mechanics. By means of the natural derivative with
respect to time the theorem on motion impulse change and the theorem on kinetic
energy change are proved; both theorems, in accordance with to the preprinciples,
have invariant sense and they differ from the accepted assertions of the analytical
mechanics. This becomes obvious when using the example of the change of impulse
of the rigid body’s rotary motion by which the derivatives with respect to time of
the inertia tensor coordinates are developed. The theorem on controllable motion
and optimal motion control that comprise all the mechanical systems connect the
control theory with its basic roots of the analytical mechanics.

The fifth section, namely, Motion Determination by Analisis and Solutions
of the Relations of Motion is mostly devoted to unextended covariant integration,
to the first integrals and to the covariant integrals; Poisson’s’ brackets are extended
for rheonomic systems. A brief, but sufficiently clear description of energy integral
modification is given.

The final part is the sixth section entitled Stability of Motion and Rest
by which accuracy and validity of the differential equations of motion are assessed
depending on the observed dynamic or kinetic parameters. A special emphasis is
paid to the thoughts of the highly distinguished Professor Nicolai Gurevich Chetaev
concerning false modernization, namely the thoughts that are no less actual today;
besides, not only general but covariant differential equations of disturbances are
presented as well as the author’s general criterion of stability of the equilibrium
state and of the mechanical system motion.

The book is properly referred to as a monograph since it presents one theo-
retical entirety based on the authors’ results published in scientific journals and
monographs listed in References. This theory comprises all the mechanical systems
which also include rigid and deformable bodies. The author’s concept of the rheo-
nomic coordinate’s application to deformable bodies has been left out. It has been
shown [67], [71] that deformable bodies can be represented as a system of material
points with rheonomic constraints, so that deformable medium can be modeled
by (3+1)-dimensional manifolds. Such mechanics would develop upon the derived
deformation tensor

εαβ =




ε00 ε01 ε02 ε03

ε10 ε11 ε12 ε13

ε20 ε21 ε22 ε23

ε30 ε31 ε32 ε03
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and metrics
ds2 = εαβdxαdxβ , α, β = 0, 1, 2, 3.

This metrics has invited quoting of the examples (E7) and (E8). Even more
than that, it refutes, at the end of this book, any argument trying to prove that
mechanics, as a science about motion of bodies, accomplished itself a long time
ago; on the contrary, it stimulates new knowledge about motion and interaction of
bodies.
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[38] Vujičić A.V., Invariance of D’Alembert’s principle, Bulletins for Applied
Mathematics (BAM) 218/84, Budapest, 1984.

[39] Vujiqi� A.V., K teorii integrirovani� tenzornyh differencial~nyh
uravneni� (On the theory of integration of tensorial differential equations),
Ves. Moscow University; ser. math. mech., 1985.
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1, pp. 1–5, 1991.

[79] Vujiqi� A.V., Kozlov V.V., K zadaqe L�punova ob usto�qivosti po
otnoxeni� k zadanim funkci�m sosto�ni�, Prikladna� mat. i meh.,
t. 55, vyp. 4, str. 555–559, Moskva, 1991.
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[56] Vujičić A.V., A general theorem of optimal control of motion of mechanical
non-autonomous systems, XVIII International Congress of Theoretical and
Applied Mechanics, pp. 154, Haifa, 1992.

[57] Vujiqi� A.V., O praktiqesko� usto�qivosti ravnovesi� i dvi�eni�
mehaniqeskih sistem (On the practical stability of equilibrium and motion
of mechanical systems), Prikladna� mehanika, t. 28, N. 11, str. 64–69,
Kiev, 1992.

[58] Vujiqi� A.V., O praktiqesko� usto�qivosti golonomnyh sistem
(Practical stability of holonomic systems), Dokl. Akad. nauk Ukraini,
N. 9, str. 21–23, Kiev, 1992.
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