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Introduction 

In this thesis we will give an interesting relation between finite rings and their 

graphs, such relations are obtained in following way. 

Consider a directed graph G = G (Z„) = (V, E, 0) on a fmite ring R = Z„.  = 

Z/nZ, where V, E are sets of vertices and edges respectively, and 0: 	x 

Z„.  defined by 0(a, b) = (a + 6, ab). Since R is finite, it has an integer characteristic 

n = char R E N. If it is not a prime, then R has zero divisors and R[X] is not a unique 

factorization ring, but if it is prime, then R nevertheless could have zero-divisors 

(e.g., 712 X 712). Let in and k be relatively prime numbers, such that it = mk, m < k and 

define two maps 

h2 Zn Zk 

by hi  (a) = (a mod nt) and h2  (a) = (a mod k) respectively, so h i  and h2  are homo-

morphism maps, suppose that es  = 012 ... s — 1 is a directed cycle of length s in a 

directed graph G, then many interesting algebraic relations will exist between longest 

cycles in Zn , and Zk, which will be shown up in the chapter III. 

Scientific field (nauena oblast): Mathematics (matematika) 
Narrow scientific field (u2a nationa oblast): Abstract Algebra (Izvod Algebra) 
UDC: 512.552.4:519.17(043.3) 
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Chapter I 

Preliminaries 

This first chapter introduces the fundamental definitions and properties of rings and 

graphs. We will start with a ring theory and throughout this paper, R denotes a finite 

commutative ring with unity. 

(I) RINGS 

In this section, we assume that a ring R is an abelian group with a multiplication 

operation (a, b) -, ab, which is associative, and satisfies the distributive laws a(b + 

c) = ab + ab, (a + b)c = ac + bc. 

1.1 General ring axioms 

1.1.1 Definition 

A ring (R, +,.) is said to be commutative if a•b = b•a for all a, b E R. 

1.1.2 Definition 

A ring (R, +,.) is said to be ring with unity if there exist element e E R such that 

a • e = a for all a E R. The element e is called the unity of R. 

The unity is also called the identity or unit element of R. Generally it is denoted 

by 1 (not to be confused with the integer 1). The unity of a ring, if it exists, is unique. 

1.1.3 Example 

The set of integers 71 under the usual addition and multiplication is a commutative ring 

with unity. 

1.1.4 Example 

271, under the usual addition and multiplication is a commutative ring without unity. 

1.1.5 Example 

Let 7L[12-1 fa + 	a, b E z}. Under the usual addition and multiplication of 

numbers, Z [-N.] is a commutative ring with unity. 
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1.1.6 Definition 

The ideal I is an additive subgroup of a ring R, which satisfies the condition: 

arc I for all a E /, and all r E R. 

We say that an ideal I of R is proper if neither I = {0) nor I = R. 

1.1.7 Example 

(2Z, -En is a proper ideal in (71, +,•). 

1.1.8 Definition 

Let R and S be rings. A map f: R S is called a ring homomorphism if f (a + b) = 

f (a) + f (b) and f (a b) = f (a) • f (b) for all a, b E R. If R and S are rings with 

identity, it's customary to also require that f (1 R ) = is  [usually we just write f (1) = 

1]. If f is also a bijection then it is called an isomorphism and we say that R and S are 

isomorphic rings, and we write R S. 

1.1.9 Definition 

If f: R -, S is a ring homomorphism, we define the kernel of f in the most natural 

way: 

Ker f = fr E R, f (r) = 0). 

Since a ring homomorphism is in particular a group homomorphism, we already know 

that f is injective if and only if Kerf = {0). If f 0, it is easy to check that Kerf is a 

proper ideal. 

1.1.10 Example 

The function f:Z Zn , defined by f (a) = a = a mod n is a surjective ring homomor-

phism with kernel nZ. [There is no ring homomorphism Z , -, Z for n > 1 except the 

0 —homomorphism]. 

1.1.11 Lemma 

Suppose f: R S is a ring homomorphism and the only ideals of R are {0} and R. 

Then f is injective. 
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1.1.12 Definition 

Let R and S be rings. The product ring R x S of R and S is the set consisting of all 

ordered pairs (r, s), where r E R and s E S. Addition and multiplication are defined 

component-wise: For r1 , r2  E R and s1 , .52  E S, 

(r1, Si) + (r2, s2) = (r1 + r2, st  + s2)• 

(4, so • (r2, s2) = (r • 7-2 , 	s2 )• 

I won't go through the verification of all the axioms; basically, everything works 

because everything works in each component separately. 

1.1.13 Example 

71 2 x  713  = {(0, 0), ( 0, 1), (0, 2 ), ( 1 , 0), ( 1, 1), ( 1, 2)). 

It is not difficult to prove that 712 X 713 -a 7L6 . 

1.2 Quotient rings 

Let I be a proper ideal of R. Since I is an additive subgroup of R by definition, it 

makes sense to speak of cosets r + I of I, r E R. Furthermore, a ring has a structure of 

abelian group for addition, so I satisfies the definition of a normal subgroup. From 

group theory, we thus know that it makes sense to speak of the quotient group: 

R/I = tr + /, r E R). 

1.2.1 Definition 

The set of cosets of an ideal I given by R/I = {r + I, r G R) is a ring with identity 

1 R  + I and zero element OR + I called a quotient ring. 

Note that we need the assumption that I is a proper ideal of R to claim that R/I 

contains both an identity and a zero element (if R = I, then R/I has only one element). 

1.2.2 Example 

Consider the ring of matrices M2 (Z2 [i]), where 7L2 denotes the integers modulo 2, and 

i 2  = —1 E 1 mod 2. This is the ring of 2 x 2 matrices with coefficients in 

712 [i] = (a + ib, a, b E {0, 1)). Let / be the subset of matrices with coefficients taking 

values 0 and 1 + i only. It is an ideal of M2  (Z2  [i]). Indeed, take a matrix UE/, a 
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matrix M E M2 (Z2 [i]), and compute UM. An immediate computation shows that all 

coefficients are of the form a(1 + i) with a E Z2  [i], that is all coefficients are in 

{0,1 + 1). Clearly I is an additive group. We then have a quotient ring M2 (Z2 [WA 

We have seen that Kerf is a proper ideal when f is a ring homomorphism. We 

now prove the converse. 

1.2.3 Proposition 

Every proper ideal / is the kernel of a ring homomorphism. 

1.2.4 Definition 

An element x of a ring R is called nilpotent if there exists some positive integer n such 

that xTh = 0. 

1.2.5 Example 

In the ring 7L/97L, the equivalence class of 3 is nilpotent because 3 2  is congruent to 0 

modulo 9. 

1.3 Maximal and prime ideals 

Here are a few special ideals. 

1.3.1 Definition 

Let R be a ring. The ideal {ra: r E R} is called the principal ideal generated by a E R 

and is denoted by < a >. An ideal I is called principal if there exists a E R such that 

1 =< a>. 

1.3.2 Theorem 

Let A be any subset of a ring R, and let {O yer  be the family of all ideals in R such that 

A g 4. Then 1 = fl yer  /y  is the smallest ideal in R containing A, and we write I = < 

A >. 

1.3.3 Definition 

A maximal ideal in the ring R is a proper ideal that is not contained in any strictly larger 

proper ideal. 
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1.3.4 Example 

The ideal 3Z is maximal in Z, but the ideal 47L is not since 471 c 27Z c Z. 

1.3.5 Definition 

Ideals I and] are called comaximal or relatively prime if I + J = R. 

One can prove that every proper ideal is contained in a maximal ideal, and that 

consequently every ring has at least one maximal ideal. But we will skip that since it is 

not in our concentration. Let us mention the following theorem, which will be used for 

characterizing maximal ideals. 

1.3.6 Theorem 

If I is an ideal of a ring R, then the canonical map 

7E: R 	R/I 

sets up a one-to-one correspondence between 

• the set of all subrings of R containing I and the set of all subrings of12/1, 

• the set of all ideals of R containing I and the set of all ideals of RA • 
Here is a characterization of maximal ideals in commutative rings [Our assumpt-

ionn is that, the reader knows definitions of a field and an integral domain]. 

1.3.7 Theorem 

Let M be an ideal in a ring R. Then M is a maximal if and only if R/M is a field. 

1.3.8 Definition 

A prime ideal in a commutative ring R is a proper ideal P of R such that for any 

a, b E R, we have that: 

ab E P if and only if a E P or b E P. 

1.3.9 Example 

The ideal < 6 > is not a prime ideal in Z, since 2 x 3 E < 6 > although neither 2 nor 

3 belong to < 6 > . However the ideal < 5 > is prime in Z, since the product of two 

integers is a multiple of 5 only if at least one of the two is a multiple of 5. 

The prime ideals of Z are precisely the maximal ideals; they have the form < p > for a 

prime p, and the zero ideal < 0 > (which is not proper). 
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Here is again a characterization of a prime ideal P of R in terms of its quotient 

ring R/P. 

1.3.10 Theorem 

Suppose that P is an ideal in R. Then P is a prime ideal if and only if R/P is an integral 

domain. 

1.3.11 Corollary 

In a commutative ring, a maximal ideal is prime. 

In the following we are giving some definitions which will be used in the next 

chapter. 

1.3.12 Definition 

Let R be a commutative ring with identity. Let J(R) be the intersection of all maximal 

ideals of R. J(R) is called the Jacobson radical of R. 

1.3.13 Definition 

Let R be a commutative ring with identity. Let N(R) be the intersection of all prime 

ideals of R. Then N(R) is called the nilradical of R. If N(R) = {0}, then R is called a 

reduced ring. 

1.3.14 Definition 

Let R be a ring, and let M be a left R-module. Choose a nonempty subset S of M. The 

annihilator, denoted by ann R  (S), is the set of all elements r in R such that for each s in 

S, rs = O. [In set notation, annR (S) = {r E R: for all s E S, rs = 

The annihilator of a single element x is usually written ann R  (x) instead of ann R  ({x)). 

If the ring R can be understood from the context, the subscript R can be omitted. 

1.4 Fermat's Little Theorem 

In what follows Fermat's Little Theorem will be used so we state it for 
completeness. Despite its name, Fermat's Little Theorem is one of most important 
theorems. It was presented by Pierre de Fermat's in 1640 without proof in one of his 
letters. Leonhard Euler provided the first published proof in 1736. The theorem is very 

useful as a way of testing very large primes. 
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1.4.1 Proposition 

Let R be a finite commutative ring and e be the identity element of R. Then PI = e for 

all x E R. 

Proof 

Suppose R is a finite commutative ring, define 	R -* R by frx  (r) = xr for all r E R, 

so 7rx  is a bijective map (multiplying by x -1  is the inverse map). Hence 

rhER r = Fli-ER xr = 	HER R, 

and this implies x 1/11  = e. 

1.4.2 Theorem (Fermat's Little Theorem) 

Let p be a prime number and a e Z be a number that is prime to p. Then 

aP -1 -a 1 mod p. 

Proof. See in [11, p. 298]. 

1.4.3 Example 

from the last theorem, then we know that: 

(47) 2  a 1 mod 3. 

(110) 6  a-  1 mod 7. 

(11) GRAPHS 

Many real-world situations can conveniently be described by means of a diagram 

consisting of a set of points together with edges joining certain pairs of these points. For 

example, the points could represent people, with edges joining pairs of friends; or the 

points might be communication centers, with edges representing communication links. 

Notice that in such diagrams one is mainly interested in whether or not two given points 

are joined by an edge; the manner in which they are joined is immaterial. 

A mathematical abstraction of situations of this type gives rise to the concept of 

a graph. 

1.5 General definitions and axioms 

1.5.1 Definition 
A graph G is an ordered triple (V, E, cD) consisting of a non-empty set V of 

vertices (points-nodes), a set E of edges disjoint from V, and an incidence map 43 that 
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associates with each edge of G an ordered or unordered pair of (not necessarily distinct) 

vertices of G. 

If e is an edge and it , v are vertices such that CD (e) = uv, then e is said to join u and 12; 

the vertices u and v are called the ends of e. 

We shall assume throughout this work that both sets Vand E of a graph are finite. 

It would be convenient to write a graph G = (V, E, 43) as G = (V, E) or simply as G. 

The following example of graph should serve to clarify the definition. 

1.5.2 Example 

Let G = (V, E (1)). Where V = 	v2 , v3 , v4 , v s}, E = 	e2 , e3 , eit , es , e6 , e7 , es }, and 

(13 is defined by : 

c13(e 3 ) = v2 	(13(e 2) = v2  v3 , CD(e3) = v3 v3 , CD(e4) = v3 v4 ,43(es) = v2 v4 , cl)(e6) = 

v4 v5 , c13(e 7) = v2 v3 , and 43(e8 ) = v2 v3 .Then G is the graph which is presented in the 

following diagram 

12 4 

Figure 1.5.1 A diagram of the graph G. 

Notice that the definition of a graph implies that to every edge of the graph G we 

can associate an ordered or unordered pair of nodes (vertices) of the graph. If an edge 

e E E is thus associated with an ordered pair < u, v > or an unordered pair (tt, v) 

where u,v C E, then we say that the edge e connects or joins the nodes u and v. Any 

pair of nodes which is connected by an edge in a graph is called adjacent to an edge. 

1.5.3 Definition 

In a graph G = (E ,V), an edge which is associated with an ordered pair of V x V is 

called a directed edge of G, while an edge which is associated with an unordered pair of 

nodes is called an undirected edge. 
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In the figure 1.5.1 we have edges e l , e2 , and e6  are directed. But edges e3 ,e4 ,e5 ,e7  and 

e8  are undirected. 

1.5.4 Definition 

A graph in which every edge is directed is called a directed graph (a digraph), and if 

every edge is undirected then a graph is called an undirected graph. But if some edges 

are directed and some are undirected then a graph is called mixed. 

1.5.5 Definition 

An edge of a graph with identical ends is called a loop. 

The direction of a loop is of no significance; hence it can be considered either a directed 

or an undirected edge. 

For example e3  in figure 1.5.1 is a loop. 

1.5.6 Definition 
A graph is simple if it has no loops and no two of its edges join the same pair of 

vertices. 
So the graph in example (1.5.2) is not a simple graph. But the graph in the next figure is 

a simple (and directed) graph. 

1 

2 

e3 
Figure 1.5.2 A diagram of the simple graph G. 

1.5.7 Definition 
A trivial graph is a graph which has just one vertex. 

1.5.8 Definition 
The graph with finite number of vertices as well as a finite number of edges is called a 

finite graph; otherwise, it is an infinite graph. 
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1.5.9 Definition 

A vertex v, and an edge ej  are said to be incident with each other, when v 1  is an end 

vertex of ej  

In figure 1.4.1, el , e2  ,es  ,e7  and e8  are incident with the vertex v 2 . 

1.5.10 Definition 

For a graph G, a walk is a fmite alternating sequence of vertices and edges that begins 

and ends with a vertex and no edge appears more than once. The number of edges is 

called the length of the walk. 

A vertex however, may appear more than once. Any edge that appears in a walk is 

incident to the preceding vertex and to the next vertex. 

In figure 1.5.3, for example, v i av2 bv3 cv3 dv4ev2f v s  is a walk. 

h 

Figure 1.5.3 

1.5.11 Definition 
The net length of a walk is the difference between the number of forward edges and the 

number of backward edges, in the walk Note that the net length may be negative. 

1.5.12 Definition 
A closed walk is a walk that begins and ends with the same vertex, and a walk that is 

not closed is called an open walk 

1.5.13 Definition 
A path is an open walk in which no vertex appears more than once, and the length of a 

path is the number of edges in that path. 

In figure 1.5.3, for example; v 4 ev2  !v s  is a path of length 2. 

1 1 
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1.5.14 Definition 

The distance between two vertices 11 and v in a graph G is the length of the shortest path 

joining them. It will be denoted by d(u,v). If there is no path between u and v, then we 

say d(u, v) = oo. 

1.5.15 Definition 

For a graph G, the diameter of G is denoted by diam(G) and is defined by diam(G) = 

sup(d(u, v): u # v, and U., v E G}. 

1.5.16 Definition 
A cycle is a closed walk such that no vertex (except the initial and the final vertex) 

appears more than once. A cycle is also called a circuit. 

1.5.17 Definition 

For a graph G, the girth of G is denoted by gr(G) and is defined as the length of the 

shortest cycle in G. If there are no cycles in G, then we say gr(G) = co. 

1.5.18 Definition 

A graph G is called a connected graph if there is at least one path between any pair of 

vertices in G. Otherwise, G is called disconnected. 

For instance, in figure 1.5.2, the graph is connected, while in figure 1.4.4, the graph is 

disconnected. 

Figure 1.5.4 A diagram of A disconnected graph G 

1.5.19 Definition 

A graph G is called a complete graph if every pair of its vertices are adjacent. 

A complete graph of n vertices is denoted by Ka, K„ has (z) edges. 

1.5.20 Example 

The following is, K4 complete graph 
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Figure 1.5.5 A diagram of the complete graph K4 

1.5.21 Definition 

For a graph G, G is a bipartite graph if its vertex set V can be partitioned into two 

disjoint subsets Vi  and V2 such that, every edge of G joins a vertex of 14with a vertex of 

vl  

V2 

Figure 1.5.6 A diagram of a bipartite graph 

If every vertex in Vl  is joined to every vertex in V2 we obtain a complete bipartite graph. 

We write Km  for the complete bipartite graph with I Vi  I = m and I V2  I = n. Here IEI = 

mn. 

Figure 1.5.7 A diagram of the K3 , 3 graph 

1.5.22 Definition 
A planar graph is one that can be drawn on a plane in such a way that there are no "edge 

crossings," i.e. edges intersect only at their common vertices. 

1.5.23 Theorem (Kuratowski 1930) 

A finite graph G is planar if and only if it has no subgraph that is isomorphic to the 

complete graph in five vertices K5 or the complete bipartite graph K3,3. 
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b 

r 

e 	a4  

H 
Figure 1.5.9 

1.5.24 Definition 

Graphs G = (VG , EG ) and H = (VH , En ) are isomorphic if there is a bijective function f 

from VG to VII such that for all vertices u and v in VG , (u, v) E EG if and only if 

(f (u), f (v)) E EH. And we write G 2-, H. 

1.5.25 Example 

Let G and H be the two graphs indicated in figures 1.5.8 and 1.5.9 

G 
Figure 1.5.8 

Let f: G --> H defined by: 

f(ei) = a9 f(e2) = ate f(e3) = 	f(e4) = 	f(es) = 	f (ea) = aia , 

f(e7) = as , f(ea) = at , f(eg) = 	f(eta) = as f (en.) = a4 f(etz) = a 3  , 

f (en ) = a2  , and f(e14) = as 
Then f is the bijective function from VG to ITH  satisfy the following condition: 

For all vertices u and v in VG , (u, v) E EG if and only if (f (u), f (v)) E EH. 

And hence G H. 

Figure 1.5.10 gives another diagram of the graph G in the above example 
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es  

1 

eu 	2 

Figure 1.5.10 

As a matter of fact all of our concentration will be on a homomorphism of 

graphs instead of isomorphism of graphs which will ignore the bijectivity, see definition 

3.3.1 in the Chapter III. 

1.5.26 Definition 

A tree is a connected graph with no cycles. A spanning tree of a graph G is a subgraph 

of G which is a tree and includes all the nodes of G. 

1.5.27 Example 
In this example the tree has 6 vertices and 6 — 1 = 5 edges. The unique simple path 

connecting the vertices 2 and 6 is 2456. 

Figure 1.5.11 a diagram of tree 
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1.5.28 Definition 

In an undirected tree, a leaf is a vertex of degree 1. 

1.5.29 Theorem 
Every tree has at least 2 leaves. 

Proof 

Let T be a tree and P : ul , u2,...,uk a longest path in T. We know that P is not closed 

because T is a tree. We know that u l  has degree 1 because if u i  was adjacent to any 

vertex not on P, we would have a longer path and it can't be adjacent to any vertex on P 

other than u 2  or we would have a cycle. Similarly, u 2  must have degree 1. 

1.5.30 Corollary 

If the minimum degree of a graph is at least 2, then that graph must contain a cycle. ■ 

1.5.31 Example 

Consider the following graph G 

The three spanning trees G are: 

e 
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Chapter II 

Graphs associated with rings 

Introduction 

In this chapter I will give some connections between commutative ring theory 

and graph theory which is very useful to understand a given algebraic structure R. 

2.1 Zero-divisor graph 

The idea of a zero-divisor graph of a commutative ring was introduced by I. 

Beck in [13] where he was mainly interested in coloring of commutative ring. This 

investigation of colorings of a commutative ring was then continued by D. F. Anderson 

and M. Naseer in [8]. 

2.1.1 Definition 

An element x in a ring /2 is called a zero-divisor if there exist a non-zero element y in R 

such that xy = O. 

2.1.2 Definition (Anderson and Livingston graph I' (R)) 

Let R be a commutative ring with 1, and let Z(R) be its set of zero-divisors. We 

associate a (simple) graph F(R) to R with vertices Z(R)* = Z(R)\{0) , the set of non- 

zero zero-divisors of R, and for distinct x, y E Z( R)*, the vertices x and y are adjacent 

if x y = O. 

Thus F(R) is the empty graph if and only if R is an integral domain. 

2.1.3 Example 

Below is the zero-divisor graph for (7L 6  ,+,•) and (7L8  ,+,•). 

• 	• 
Note that this example shows that nonisomorphic rings may have the same zero-divisor 

graph. 
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2.1.4 Theorem ([9], Theorem 2.2) 

Let R be a commutative ring. Then 1(R) is finite if and only if either R is finite or an 

integral domain. 

2.1.5 Theorem ([9], Theorem 2.3) 

Let R be a commutative ring. Then F (R) is connected and Diam 1(R) 3. 

2.1.6 Theorem ([9], Theorem 2.4) 

Let R be a commutative ring not necessarily with identity. If 1(R) contains a cycle, then 

gri(R) 4. 

2.1.7 Theorem 

Let R be a commutative ring. Then 1(R) is complete if and only if either R 7L2 X 712 

or xy = 0 for all x, y E Z (R). 

2.1.8 Definition 

For any x, y E Z(R), define x y if f x y = 0 or x = y. The relation is always 

reflexive and symmetric, but usually not transitive. The zero-divisor graph l(R) 

measures this lack of transitivity in the sense that — is transitive if and only if r (R) is 

complete. (Not all graphs under this condition are simple). 

2.1.9 Example 

In [Example 2.1.3], the zero divisor graph for (Z 8  ,+,-) will have a loop, because 

4 x 4 = 16 E 0 mod 8. The diagram will change as the following: 

2 	4 	 6 

• 	 • 

2.2 Comaximal graphs 

2.2.1 Definition 

A comaximal graph denoted by fl(R) is the graph obtained by setting all the elements of 

R to be the vertices and defining distinct vertices x and y to be adjacent if and only if 

Rx + Ry = R. 

fTh 
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In the following, J(R) will be refries to the Jacobson radical of R, U(R) is the group of 

units of R , 1(R) is the set of idempotents in R, and Max(R) is the set of maximal ideals 

of R. And if we suppose that 11 1 (R) =< U(R) > and 112 (R) =< R \ U(R) > then we 

can give some properties of 11(R) as in the following theorems: 

2.2.2 Theorem ([15], Theorem 2.2) 

Let R be a commutative ring. Then the following statements are equivalent. 

(a) The graph 112  (R)\J(R) is completely bipartite. 

(b) I M ax(R)I = 2. 

2.2.3 Theorem ([15], Proposition 2.3) 

Let R be a commutative ring and let 71> 1. Then the following statements hold: 

(a) If I Max(R) I = n < 00, then the graph 11 2  (R) \ J(R) is n-partite. 

(b) If IMax(R)I ?. 2 and the graph 02 (R) \J(R) is it-partite, then IMax(R)I < rt. In 

this case, if the graph 11 2  (R)\J(R) is not (n — 1)-partite, then I M ax(R)I = 7/. 

2.2.4 Theorem ([15], Proposition 2.4) 

Let R be a commutative ring with I Max(R)I 2. Then the following statements hold: 

(a) If the graph 11 2  (R) \ J(R) is complete n-partite, then n = 2. 

(b) If there exists a vertex of the graph 112 (R)\J(R), which is adjacent to its every 

other vertex, then R Zy x Ft, where F is a field. 

2.2.5 Theorem ([15], Theorem 3.1, Lemma 3.2, and Proposition 3.3) 

Let R be a commutative ring. Then the graph 11 2 (R)V(R) is connected and we have 

diam(112 (R)\J(R)) 3. Moreover, diam(12 2 (R)\J(R)) = 1 if and only if R 

7L 2  X 7L2. Also if I Max(R)I 2, then diam(11 2  (R) \ J(R)) = 2 if and only if one of the 

following statements hold: 

(a) The Jacobson radical J(R) is a prime ideal of R. 

(b) IMax(R)I = 2 and R 7L2 X 7L2. 
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2.3 Intersection ideal graphs 

2.3.1 Definition 

Let F = 	i E /) be an arbitrary family of sets. The intersection graph G(F) of F is the 

graph whose vertices are S t , i E I and in which the vertices S, and Si  (i,j E I) are 

adjacent if and only if S, Si  and Si  n 	0. 

We will denote to the intersection graph of ideals of /2 by In(R). From the last 

definition it is clear that In(R) is the undirected simple graph and its vertices are in a 

one-to-one correspondence with all nontrivial left ideals of R and two distinct vertices 

are joined by an edge if and only if the corresponding left ideals of R have a nontrivial 

(nonzero) intersection. Clearly the set of vertices is empty for left simple rings. In this 

case we refer In(R) as the empty graph. Also for any ideal / in R we will give the same 

symbolize Ito refer to the vertex in In(R) which is corresponded to I. 

The following is Lemma 2.1 in [16] 

2.3.2 Lemma 

If In(R) is planar, then any chain of ideals of R has length at most five. 

2.3.3 Lemma ([16], Lemma 2.6) 

If In(R) is planar, then I Max(R)I 5_ 3. 
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Chapter III 

An interesting relationship between finite rings and graphs 

Introduction 

If we have a finite commutative ring I? and 0: R 2  R2  is a mapping, where 

0(a, b) = (a + b, ab) for all a, b E R, then 0 defines a finite directed graph G = G (R), 

with vertices R 2  and edges defined by 0. We will call it a ring graph, and under this 

connection we can connect some ring properties of R to graph properties of G. The basic 

of this work will be on rings R = Z = 2/nZ, their graphs should reflect number-

theoretic properties of integers. 

3.1 Degrees and Vertices 

In this work, we consider the degrees of vertices in G (Z,i). As usual, the 

outgoing (incoming) degree of a vertex (a, b) is the number of arrows going out 

(coming in) this vertex, since G is a function, so it is clear that the outgoing degree of 

each vertex is one. One might ask what the incoming degree of the vertex (a, b) is. The 

answer to this question was given in [5] as the following proposition. 

3.1.1 Proposition 

The incoming degree of the vertex (a, b) E G equals the number of distinct roots of the 

quadratic polynomial X 2  — aX + b E R[X]. 

If p is a prime, then the incoming degree of a vertex (a, b) in the graph Gp  can 

be either 0 (if X 2  — aX + b is irreducible, i.e., 0 # 4b — a 2  E Z, is a quadratic non-

residue modulo p), or 1 (if 4b — a 2  = 0), or 2 (if 4b — a2  # 0 is a quadratic residue 

modulo p). 

If n is a nonprime, then the incoming degree of a vertex (a, b) in the graph Gp 

 can be greater than 2, which depends on the different factorizations of X2  — aX + b. 

(As we will see in Figure 3.1 when n = 6, incoming degree is equal to 4). 
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3.1.2 Definition 

The sequence: 

(3.1) 
	

bi ) —> (a2 , b2 ) —> • • —> (ak , bk ) 

of edges in G defines a cycle of length k (or a k-cycle) if (a k  bk , ak bk ) = 	b1 ) 

and (a, + b„ a,b,) * (ai , bi ) for all j 	< k. In addition, ek  will be referred to the 

directed cycle with vertices 0,1, ..., k — 1. 

In the following diagram, G, = G(Z,) for i = 1, 2, 3, 4, 5, and 6. We notice that 

there are cycles of length one (loops) as well as longer cycles. Also, some graphs G, do 

contain G1  as a (weakly) connected component and some do not. The definition also 

implies that if k > 1, then every b, * O. 

G 2 :G1  + 

= L3 

G 3  :GI. + 
	 G4 :3L2  + 

L2 > 
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• > •47  > 0 

ey
• 	> • > > > 

 

• > • > • 

 

> 0 

  

  

Gs:Gi + 2L + 
	

G6:G1 + L2 + L3 + 

Figure 3.1 

The following are propositions 3.1, 3.2 and 3.3 in [5]. 

3.1.3 Proposition 

/) There are exactly n = #R cycles of length 1 (or loops) in G, and they correspond to 

the vertices (a, 0). 

2) Each connected component of G contains exactly one cycle, and the number of 

connected components is n + 4t[cycles of length > 1). 

3) The graph G1  is a (weakly) connected component of G if and only if R has no 

nontrivial nilpotent elements. 

Actually the 11 components corresponding to loops are trees, with these loops as 

roots. Cycles of length greeter than 1 correspond to non-tree components, and the graph 

G is a union of these two paths: G = T U N. [T refers to tree and N refers to non-tree]. 

3.1.4 Proposition 

If the sequence (3.1) is a k-cycle, then 
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a1 (b) = (b) = 0-3 (b) = 0, (ak (a) - 1)o-k (b) = 0 

where am  (X) = 	X k ) = 	are the usual elementary symmetric polynomials 

in k variables. 

3.1.5 Proposition 

For k = 1, the "sequence" (3.1) is a 1-cycle (or loop) <=> a l  (b) = O. 

For k = 2, the sequence (3.1) is a 2- cycle <=> al  (b) = a2  (b) = O. 

For k = 3, the sequence (3.1) is a 3- cycle => (b) = a2 (b) = cr3  (b) = 0. 

3.1.6 Remarks 

1) It is easy to see that there exists a 2- cycle i=> the ring R has nontrivial nilpotent 

elements. For, since (a 2 , b2 ) # (al , b1 ), we have h i.  # 0, bi = 0 and this is a nilpotent 

in R. Conversely, if c is a nilpotent, Ck —1 # 0, c k  = 0 for k > 1, take b = ck-1 . Then 

b 2  = 0 and there is a 2- cycle (-1, b) -> (b - 1, -b) --> (-1, b). Therefore, the 

existence of nilpotents in R is visible in the graph G in two different, equivalent ways: 

the absence of a G 1 -component and the presence of 2- cycle. 

2) In the case R = 74,, this is equivalent to the condition that n is not square free, since 

Z,, has no nontrivial nilpotents if and only if n is square-free. This leads to an 

(inefficient) algorithm for deciding whether a given integer n is square-free: look for 2-

cycle in the corresponding graph Gm . 

3) The existence of a 3- cycle implies that the ring R has zero-divisors, since in such 

case b 1 b 2 b3  = 0 and all b1  # O. 

4) Proposition 3.1.3 suggests a tempting conjecture: if the sequence (3.1) is a k-loop, 

then a1 (b) = a2  (b) = • • • = ak (b) = O. However, as the example I? = Zs  shows (see 

Figure 3.1), it is already false for k = 4: there is a 4-cycle (2, 2) - (4, 4) -> (3,1) -, 

(4,3) such that a1 (b) = a2 (b) = a3 (b) = 0 and o-4.(b) # O. In this case, 11-4.(b) = 1 in 

accordance with the proposition. 

3.2 A Connection between a zero-divisor graph C(R) and a ring graph G(R) 

Let F(R) be a zero-divisor graph defined as in [Definition 2.1.8]. Suppose 

that a, b E 1- (/?) are adjacent vertices, which means that ab = O. Now we have two 

cases: 

(1): If a # b, then ab = b a = 0 0(a, b) = 0(b , a) = (a + b, ab) = (a + b, 0), and 
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then 0(a + b, 0) = (a + b, 0) is a loop in the ring graph G(R). 

(2): If a = b, then a is an idempotent element in R and thus a2  = 0 0(a, a) = 

(2a, 0), and then 0(2a, 0) = (2a, 0) is also a loop in the ring graph G(R). 

These two cases can be explained as in the following diagram: 

(a, a 

Figure 3.2 

From figure 3.2 we can notice that an edge of a nonzero zero-divisor graph 

corresponds to a point in a tree component! [In a non-tree component there are no zero-

divisors]. Moreover nonzero zero-divisors must be on level 2 in each tree component 

and level 1 consists of 71 points(a, 0), a E R, so if we have a zero-divisor graph P(R) 

then all vertices in both cases (1), (2) must be on level 2 of the graph G(R), also don't 

forget vertices of the form (0, a), for all a C R, a * 0. Because 0(0, a) = (a, 0), and 

then 0(a, 0) = (a, 0) are loops in G(R) for all a E R which are (n — 1) cases in a finite 

ring R with IR I = n. [i.e. vertices (0, a), a E R are also on level 2 in G(R)]. 

If we refer to the number of vertices of level 2 in G(R) by bt, the number of edges 

in P(R) by ?le , and the number of loops in P(R) by n 2 , then we can conclude the 

following proposition from the above argument. 

3.2.1 Proposition 

Let R be a finite ring with 71 elements, and suppose that P(R), G(R) are its nonzero 

zero-divisor graph and ring graph respectively. Then 

= (n — 1) + 2fle  + 

3.2.2 Example 

Suppose that R = (7L6, +,•). Then by Example 2.1.3 we have n e  = 2 and n1 = 0, so 

= (6 — 1) + 2 x 2 + 0 = 9 which is the number of vertices of level 2 in G(7L6) = 66 

See ( Figure 3.1) to check. 
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3.3 Homomorphism of graphs 

3.3.1 Definition 

A homomorphism of G to H, is a mapping f:V(G)—)V(H) from G to H, such that it 

preserves edges, that is, if for any edge (u, v) of G ,(f (u), f (v)) is an edge of H. We 

write simply G -, H. 

If f is any homomorphism of G to H, then the digraph with vertices f (v), v E 

V (G), and edges f (v) f (w), vw E E (G) is a homomorphic image of G. Note that f (G) 

is a total subgraph of H, and that f: G —* f (G) is a surjective homomorphism. 

3.3.2 Proposition 

Let G and H be digraphs, and f: G —> H a homomorphism. If v o , vi ,• • • , vk_i  is a walk 

in G, then f (v 0 ), f (v i ),• • • , f (v k _i ) is a walk in H, of the same net length ([14]). 

In particular, homomorphisms of G to H map paths in G to walks in H, and 

hence do not increase distances (the minimum length of the paths connecting two 

vertices). So we have the following fact. 

3.3.3 Corollary 

If f : G —> H is a homomorphism, then d(f (u), f (v)) d(u,v), for any two vertices 

u, v of G . 

Proof 

If u = vo , Th. ,• • • , vk  = v is a path in G, then f (u) = f (v 0 ), f (v i ),• • • , f (v k ) = f (v) 

is a walk of the same length k in H. Since every walk from f (u) to f (v) contains a path 

from f (u) to f (v), we must have d (f (u), f (v)) k. • 
3.3.4 Definition 

The graph with vertices v o , 	Vk_i and edges v,v, +1  for i = 0,1, ..., k — 1 (with 

addition mod k) is called the cycle ek . Note that Ck  has k vertices and k edges. 

3.3.5 Corollary 

A mapping f: V (ek ) -# V (G) is a homomorphism of ek  to G if and only if f (vo), 

f (vi), • • • , f (vk_i) is a closed walk in G. 
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Proof 

Suppose that Ck  is a cycle of distinct vertices v o , 	vk_i . Then v, and v,+]  are 

adjacent for all i = 0,1, ... , k — 1 (with addition mod k). By the Definition 3.2.1, 

f: V (4), V (G) is a homomorphism of ek  to G if and only if f (a,) and f (a 1 .+.1) are 

adjacent for all i = 0,1, ..., k —1 (including f (vk_i ) and f (vo)), if and only if 

f (vo), f (m.), • • . , f (v k  _ 1 ) is a closed walk in G. 

3.3.6 Remark 

In the case of G = G (R) every closed walk is a cycle. 

Proof: Obviously, since the out-degree is always 1. 

• 

Observe that a set of vertices is independent in G if it contains no pair of 

adjacent vertices. In terms of the associated partition, we have the following condition. 

A given digraph G satisfies G Ck  if and only if the vertices of G can be partitioned 

into k independent sets S o , Si, S k_i so that each edge of G goes from S, to S,+]  for 

some i = 0,1, ..., k — 1 (with addition modulo k). 

Recalling that a closed walk is a homomorphic image of a cycle, we can 

reformulate the last result as follows. 

3.3.7 Corollary 

A digraph G satisfies G ek  if and only if the net length of every closed walk in G is 

divisible by k. [See reference 14, page 6]. 

3.3.8 Corollary 

C2k+1 -* C71+1 if and only if 1 < k. 

Proof 

An odd cycle has no closed odd walk shorter than its length, and has a closed walk of 

any odd length greater than or equal to its length. 	 • 

Figure 3.3 illustrates a homomorphism f: C7 -, Cs ; the images f (v), v E V(C7) 

are shown in Cs . (Hence we see the closed walk f (0), f (1), , f (6), f (0) in Cs). 
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Figure 3.3 

3.4 Related Properties 

3.4.1 Theorem 

f = {([42,[a].) E zn  x Zni  I a E Z} is a function f: Z n  lin  if and only dm I n. 

Proof. See in [7, p. 89]. ■ 

Let in and k be relatively prime numbers, such that n = m. k, m < k. Define a 

map 

hi : Zit  —t Zm 

that maps representative 0 a < n in Z„ to (a mod m) in 7Lm . Since M divides n, then 

hi  is a homomorphism. Moreover, kerk = min  < Zn , and I kerhi l = k. 

Similarly, the same holds for h 2 : Z,, 	Zk. 

Observe that mappings hi  and 112  induce mappings of corresponding graphs, 

which will be denoted again by h1  and h2 , 	G (Z it) G(Z,n ), h2 : G (Zn) —> G(4). 

We will denote the longest cycle in the digraph G(4,) by d in  for short (We 

should notice that G may have more than one cycle of the same longest length In ), and 

all our discussion later will be based on the construction of h i  and h2 . 
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3.4.2 Proposition 

Let e,„ and Cim be two directed cycles in G (Zn) and G (Z,n ) respectively. If a,,, --> a,m , 
then tm, divides In . 

Proof 

Suppose that ei„ is a s-cycle (where s = /,,); that is, 

(ai , bi ) —' (a2, b2) —> • • -, (as, bs), 

Since hi  is a homomorphism, then 

(hi (ai), hi( bi)) - (hi (a2), hi( bz)) —> ..• —> (hdas), hi( bs)) 

is a cycle in G(4), and 

(hi  (ai ), ( bi))= (hi (as + 120, hi  (as  • bs)) 

(1) 	 = (hdas) + hi( bs), hi(as) • hi(bs)) 

Since hi  connects k elements in Zn  into every element a E Z„„ that means 

(hi  (cti), hi( bi)) = (hi (a) ), hi( b0), for some 2 j 5_ s. Then (hi (al), hi( h,)), I < j 

are all different. So according to (1) I n  = t. 1,,,, for 1 	t 	s. Hence In  is divisible by 

In the following we will use the so-called Chinese Reminder Theorem: 

3.4.3 Theorem (Chinese Reminder Theorem) 

Let ni , n2 , ..., nr  E N be pairwise relatively prime numbers, i.e., gcel(n„ni ) = 1 for 

i * j. Let n = nin2  nr . Then the map 

Z„ Z,,, x x 7Lnr  , [x] ([x mod ni ], 	[x mod m]) 

is an isomorphism of rings. 

Proof. (e.g [12]) 	 • 

3.4.4 Proposition 

If n = m. k, m and k are relatively prime numbers, then Gm  = Gin  X Gk. 
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Proof 

By Theorem 3.4.3, Z„, = Z, x Zk and since h1 :74, —) Zm , h2 : 	Zk define ring 

homomorphisms from Zit  to 7Lm  and Zk respectively, then hi : G(2,) —> (7Lm), 

h2 : G (Z ip -4 G(7Lk) also define graph homomorphisms. Hence Gm  = Gm  X Gk. 

3.4.5 Corollary 

There is a bijection between cycles 

where r = LCM (s, t). 

In the following proposition, if we suppose that l m  Il k , lm  # 1 (so /in  might be 

equal to 1 k ) then there is no proof that maps h i  and h2  will send the longest cycle e,„ 

in G(Z„) to longest cycles e,„, and Cik  in G(4,1 ) and G(Z k ) respectively. Because the 

cycles in (7Lm ) and G (Zk) which are smaller than dim  and e, k  might have a pre-image 

which is a cycle with length longer than the pre-image of e tm  and e, k  themselves. As 

an example, suppose that n = 17 x 25 = 425 so in = 17 and k = 25 then e,„, = eic 
, C/k = es  and the pre-image for both of them is eil, while the pre-image of cycles 

C4  E G (Z,,,) and Cs E G(4) is a cycle e20  which is longer than e,c . So we will take in 

our consideration that if i nt  I / k , then 1m  must be equal to 1. 

3.4.6 Proposition 

The maps hi  and h2  send the longest directed cycle Can to the longest directed cycles 

e,„, and C/k , respectively. 

Proof 

Suppose that eim ,e, k  are longest cycles in G(Z, n ) and G (Zk) respectivaly. Then /,,,, I n 

 will have only two possible cases: 

Case (1) If I„, = 1, then e,„, and C/k have the same pre-image. Let us call it C r , so 

lin in ik r (see proposition 3.4.2), and by Chinese Reminder Theorem r = / k . Our goal 

now is to prove that 4 is the longest cycle in G(Z„). Assume that there is an another 

cycle ed  # er  such that d > r, then the length of h i  (ed ) divides the length of ed , also 

the length of h 2 (Cd) divides the length of ed . Then again by using Chinese Reminder 

Theorem we get hded ) > e,„, or h2 (ed) > C/k (This inequality holds if mod) 

and h2  (ed ) ) are relatively primes or even if they are not relatively primes); 

This contradicts our assumption, that e,,,„e, k  are longest cycles. 

Case (2) If (/„„ l k ) = 1. As we have done in the case (1), the cyclesC'~ m and eik  will 

have the same pre-image er  where lin k-, and l k  Ir. Suppose that there is an another cycle 

er in Gri and pairs of cycles (es , et ) in Gm  x Gk, 
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4 such that q > r, then the length of hi  (eq ) divides the length of 4 and the length of 

h2  (eq ) divides the length of eq  (see proposition 3.4.2). 

If the length of h i  (4) = /„„ then the length of h 2  (4) > l k . Similarly if h2 (eq ) = 

l k , then 

the length of hi  (4) > 1„,. Both cases contradict with our assumption. 

If the length of h i 	) = 1, in this case the length of e q  equals the length of h2 (4), 

which means h2 (4) > l k . This is a contradiction. 

If the length of h i  (eq ) < 	and is not 1. Then h 2  (eq ) > l k  because 4 > er . Where 

lengths of the last cycles is the product of 14(4), h 2  (eq ) and eint ie, k  respectively. 

This case indicates a contradiction. Hence er  is the longest cycle in G(Z,i ). 

So in both cases we have proved that a,. = e,n  which completes the prove 	■ 

3.4.7 Corollary 

All directed cycles ep, for all primes p are incomparable. i.e., C p 	eq  if and only if 

P= 

3.4.8 Theorem 

Let m, k E N be relatively prime numbers, i.e., gcd(m,k) = 1. Let n = mk. Then, the 

length of the longest cycle ein  is the least common multiple of / n, and /k , where 4, and 

/k  are the lengths of the longest cycles aim  and e, k  respectively. 

Proof 

We will use the theorem 3.4.1, and the argument below it. Consider that ein  is a s-cycle 

(where s = /„), that is 

(at, hi ) —> (a2 , b2 ) 	•• • —* (as , bs). 

Then, hi  (ein ) is a cycle in G(4,). Similarly, h 2 (e),„) is a cycle in G(4). So according 

to propositions 3.4.2 and 3.4.6, we have the following cases: 

(1) If (ct i , bi) 	x Z,, c G(4). Then, both hi  and h2  send (at , bi) to the same 

vertex, so that the cycle e,„ must terminate at the first multiple of 1„, and / k , because 

(al , bi ) is a unique original vertex of (h i  (al), hl  ( bp) and (h2  (al), h2  ( 10). 

(2) If (al , bi ) t4 4, x 71„,. Then, the map hi  sends the element t in 4 to element (t 

mod In) in 	Similarly, the map h2  sends the element t in 4 to element (t mod k) in 

4. Since m and k are two different modules, by Chinese Remainder Theorem, two 
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different vertices (h i.  (ai ), h1 ( b1)) and (h 2 (a1 ), h2  ( b1 )) uniquely determine the 

original vertex (a 1 , b1). Thus the length of e,n terminates exactly at the first multiple of 

the lengths of ez „, and elk . Hence the proof follows. 	 • 

3.4.9 Theorem 

Let Th. , p2 , 	E N be pairwise relatively prime numbers, i.e., gcd(p t ,m) = 1 for 

i j. Let n = Pt „. pr . Then the longest cycle e' in  in G(74) has a length i, = 

LCM(/pi  /p2  , , 1pr  ), where /pi  , 1p2  , 1pk  are the lengths of the longest cycles in 

G (Zp i )„ G (71.p 2 ), • • G(Z pr), respectively. 

Proof 

The proof follows directly from theorem 3.4.8 and Chinese Remainder Theorem, by 

mathematical induction on r. 	 • 

3.4.10 Proposition 

The length of the longest cycle e ip„, can be pm -1  or a • r for some a > 1, where r is 

the length of the cycle Cy,. 

Proof 

Let p be a prime number, and in > 1 be any integer. The function h: Zp . --* Zp which 

is defined by h(a) = a mod p is a homomorphism, and kerh = pTp. < ZP'  . where 

Ikerhi = pm -1 . 

Suppose that 

-> (a2 , b2 ) -> • • • -* (as, bs ) 

is the longest cycle d,p „, (where /p. = s) in G(Zp.). Therefore, if b 1  E kerh, then 

h(eip„,) will be (a, 0), a = h(a1) E Zp • It follows that, 1 p . < pin - ' (because pm -1  is 

the number of elements in 4., which are congruent to a mod p), where 1 pm is the 

length of the cycle eip ,,, . To prove /p . = pm -1  we will prove it for M = 2 and the 

complement comes by using the mathematical induction on M. 

Let M = 2 = s = 1p. = ip 2, suppose that b i  = tp,1 t < p that means 
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(*) 	hi) = (a1, tp) 	(a1  + tp, tP) -' (ai  + tp + tP, (al + tP)(ai tP)) 

•• • -* (al  + (1 + 	+ a? + a? + •• • + ac -2 )tp ail' 1  tp) 

Since 
2 	aP 1  - 1  

1 + + a? + a? + • • • + 
73 = 1  ' 

then 
p -1 

—2N. 	p-1. \ 	 al 

a i-1 

—1 	p-1. 
(al  + (1 + 	+ 2  + 3  + •• • + p jtp, 	El)) - (al  + 	tp, 	tp), 

 

by (Theorem 1.4.2) we get, 

(ai  + 
a
l
p-1 
 1  tp ap1  tp) = 	tp), and by the substitution in (*) we get: 

(al , hi ) -> (a l  + tp, tp) •-) (a l  + tp + tp,(ai + tp)(ai tp)) -) • • • -) 	bi ) 

Hence 1p m = p2-1 = p •  

If b1  E kerh, then a1  won't be in kerh neither. Assume that h(eip „,) = or  that means 

1 < r /p . According to theorem 3.4.8, we observe that r divides 1 p m. Hence 1pm = 

a r for some a > 1. • 

Note that, at the moment there is no way to determine the value of a in the 

second case. For instance, when n = 5, 5-cycle is the longest cycle in G(Z 25 ). At the 

same time, 4-cycle is the longest cycle in G (Zs) [so it is case 1]. When 7/ = 11, 30- 

cycle is the longest cycle in G(Z 121 ). At the same time, 6-cycle is the longest cycle in 

G (Z IA ) [so it is case 2]. 

Let n E N and n = pi 1  p2 2  prnr be the decomposition of 11 into different 

primes. Then, according to theorem 3.4.3, Z, is isomorphic to Z p pi X 7Le2 x ...x Zpnr. 

3.4.11 Theorem 

Let n E N and n = PiniP2n2 ... Prnr  be the decomposition of 11 into primes, such that 

pi  * pi  for i * j, Then, the longest cycle e n, of G (Z,L ). Has length 

1„ = LCM(/41, 1 742, ... 119 ,7), where 11,7;2, /p;ir are the lengths of the longest 

cycles in G(Zp ni), G(Z p.2), 	G (Zp.,.) respectively. 

Proof 

The proof comes by using Chinese Remainder Theorem, the preceding argument, and 

Theorem 3.4.9. 	 • 
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Conclusions 

The aim of this thesis is to find some an interesting relations between finite 

commutative rings with unity and there digraphs. The strategy was to define a digraph 

G (Z„) on the fmite ring Z„ = 71/nZ as follows: 

Define a mapping yo: Zn  x Z n  Zn  x 4, by yo(a, = (a + b, ab). Likely, this 

mapping reflects the structure of Z i . Since Z,„ is finite, so one can interpret cp as finite 

digraph G = G(Z„) with vertices 4, x and arrows defined by cp. If 71 is not prime, 

then 4, has zero-divisors and Zn  [X] is not a unique factorization ring (if ab = 0, a # 

0, b # 0, then (X — a)(X — b) = X[X — (a + b)] are two distinct, nonassociated 

factorization of X 2  — (a + b)X. If it = p is prime, then 4, nevertheless could have 

zero-divisors. From the above we see that either 71 is a prime, 4, is a field and 4, [X] is 

a UFD, or 71 is not prime, 4, has zero-divisors and 4, [X] does not have the OF 

property. Let in and k be relatively prime numbers, such that it = mk, in < k. Define 

two maps 

h1: Z„ —> 	, 

h2: —> Zk 

This two maps representatives 0 5 a < n in 4to (a mod in) in Z.,,, and (a mod k) in 

Zk respectively. 

Observe that mappings h 1  and h2  induce mappings of corresponding graphs, which will 

be denoted again by h 1  and h1 . Define the directed cycle Ck  = 012 ... k — 1 in G(Za 

likewise e,„ will refer to the longest cycle in G (Zn ). By using a homomorphism graphs 

and Chinese Reminder Theorem, I will prove some properties like; 

1) Let e,„ and din  be two directed cycles in G(4) and G(Z,,,) respectively. If 

e,„ -4 e'rn , then we have 1,n  divides I„. 

2) If it = In. k, in and k are relatively prime numbers, then G„ = G,n  x Gk. 

3) The maps h1  and h2  send the longest directed cycle e,„ to the longest directed 

cycles e,„, and Cik  respectively. 

4) Let m, k E N be relatively prime numbers, i.e., gcd(m, k) = 1. Let it = mk. 

Then, the length of the longest cycle e,,, is the least common multiple of 1,,, and 

/ k , where 1„, and 1 1, are the lengths of the longest cycles ei„, and di!, 

respectively. 
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5) The length of the longest cycle e ip „, can be pm -1  or a r for some a > 1, where 

r is the length of the cycle 	 . eip „,  

6) Let 71 E N and n = pini p2n2  prTh r be the decomposition of n into primes, such 

that p i  pi  for i j, Then, the longest cycle ein  of G(Zn ). has a length In  = 

LC M 	!pip 	/p ;,,-), where I p riti, / 142, 	14, are the lengths of the longest 

cycles in G (Zp n 1), G 	n2 )) 	G (Z p nr) respectively. 
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penonrroprijym YHHaepaHTera y Beorparty yHece mojy goKropticy ancepratutjy non 

HaC.TIOBOM: 

"Lipchitz space and quasiconformal mappings" 

Koja je moje ayropcKo Therm 

gmcepratutjy ca C1314M nprinomma npeaaohla cam y eaerrpoHcKom cbopmary normutom 

3a TpajHo apnumpame. 

	

Mojy aorropcxy apiceprartHjy noxpameHy y 	periontrokym Yrumepsurem 

y Beorpariy mory Tia KoppicTe GBH KOjN nowTyjy ortpea6e carimicane y oaa6panom Truly 

umlaute KpeaTrume 3ajearmue (Creative Commons) 3a Kojy cam ce mu -Erma/ma.. 

t. Ayropcmo 

2. Ayropcmo - HeKomemtrijanHo 

3. Ayropcmo — HeKomepuTijanito — 6e3 npepaae 

4. Ayropcmo — HeKomepurijamno — nenHTH ITOTh VICTI4M ycnontima 

5. Ayropcmo — 6e3 npeparie 

6. Aympcmo — rieratm non HCTHM yencumma 

(Moimmo na 3aoKpymarre canto jemmy On mecT noHybema mmeritut, KparaK onuc 

maternal aarr je Ha nonehTimr num). 

HOTIIIIC itoirropaHma 

Y Beorpaay, 	  
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1. Autorstvo - Dozvoljavate umno2avanje, distribuciju i javno saopgtavanje dela, i 
prerade, ako se navede ime autora na naein odredjen od strane autora ili davaoca 

licence, Lk i u komercijalne svrhe. Ovo je najslobodnija od svih licenci. 

2. Autorstvo - nekomercijalno. Dozvoljavate umno'favanje, distribuciju i javno 
saopgtavanje dela, i prerade, ako se navede ime autora na naein odredjen od strane 

autora iii davaoca licence. Ova licenca ne dozvoljava komercijalnu upotrebu dela. 

3. Autorstvo - nekomercijalno - bez prerade. Dozvoljavate umnolavanje, distribuciju i 
javno saopgtavanje dela, bez promena, preoblikovanja iii upotrebe dela u svom delu, 
ako se navede ime autora na naein odredjen od strane autora iii davaoca licence. Ova 
licenca ne dozvoljava komercijalnu upotrebu dela. U odnosu na sve ostale licence, 
ovom licencom se ogranieava najveoi obim prava korikenja dela. 

4. Autorstvo - nekomercijalno - deliti pod istim uslovima. Dozvoljavate umnolavanje, 
distribuciju i javno saopgtavanje dela, i prerade, ako se navede ime autora na naein 
odredjen od strane autora ili davaoca licence i ako se prerada distribuira pod istom ill 

slienom licencom. Ova licenca ne dozvoljava komercijalnu upotrebu dela i prerada. 

5. Autorstvo - bez prerade. Dozvoljavate umno2avanje, distribuciju i javno saopgtavanje 
dela, bez promena, preoblikovanja ili upotrebe dela u svom delu, ako se navede ime 
autora na naein odredjen od strane autora iii davaoca licence. Ova licenca dozvoljava 

komercijalnu upotrebu dela. 

6. Autorstvo - deliti pod istim uslovima. Dozvoljavate umnolavanje, distribuciju I javno 
saopaavanje dela, i prerade, ako se navede ime autora na naein odredjen od strane 
autora iii davaoca licence i ako se prerada distribuira pod istom iii slienom licencom. 
Ova licenca dozvoljava komercijalnu upotrebu dela i prerada. Sliena je softverskim 

licencama, odnosno licencama otvorenog koda. 
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