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ČLANOVI KOMISIJE :

Vanredni profesor dr. Zoran Petrović
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Chapter 1

Preliminaries

In this chapter, some essential concepts in Commutative rings and graph theory

are proposed to the support the introduced associations between graphs and rings;

which are presented in the second and third chapters.

1.1 Introduction to Rings

In this section, a short account of Commutative rings with unity is presented.

The aim of this presentation is the proper abstract setting for unique factorization

theorems for polynomials.

1.1.1 Definitions and Examples of Ring Structure

A Comutative ring with unity is a ring R that satisfies two more axioms under

multiplication;

• The commutative property; that is, a.b = b.a for any a, b ∈ R
• The existence of the unit in R; that is, a× 1 = 1× a = a for all a ∈ R.

Example 1.1.1. Let R = {(a, b) : a, b ∈ R}. For (a, b) and (c, d) in R; we define

an addition and multiplication on R as follows:

(a, b) + (c, d) = (a+ c, b+ d)

(a, b).(c, d) = (ac, bd).

The ring obtained this way is called the direct product of R.

We will use only ring to avoid the repetition of the phrase ”comutitive ring with

unity”. Let R be a ring. An element a of R is a unit if there is b ∈ R such

that ab = 1. The set of units U(R) forms a group and it is called the group of

units of R. A nonzero element, which has no multiplicative inverse will be called

a proper element. Thus the elements of R is divided into three classes: zero,

1



Chapter 1. Preliminaries 2

units and proper elements.

Remark. The word subring has the obvious meaning: a subset of a ring which is

a ring under the inherited sum and product.

In what follows we shall often use the chinese reminder theorem (see [2]):

Theorem 1.1.1. (Chinese remainder theorem). Suppose that b1, b2, ..., bk are k

positive integers that are relatively prime in pairs. If a1, ..., ak are any integers,

then the simultaneous congruences

x ≡ ai mod bi, i = 1, ..., k,

have a common solution that is unique modulo b1b2...bk.

1.1.2 Ideals

An ideal in a ring R is a subset I of R such that

1. 0 ∈ I ;

2. if a, b ∈ I , then a+ b ∈ I ;

3. if a ∈ I and r ∈ R, then ra ∈ I.

An ideal I 6= R is called a proper ideal.

Example 1.1.2. The set I of 2 × 2 real matrices of the form

[
r 0

0 0

]
with the

standard operations form an ideal with multiplicative identity 1I=

[
1 0

0 0

]
. Note

that I ⊆ R, the ring of all 2× 2 real matrices, but 1I 6=

[
1 0

0 1

]
.

Recall that a subring which is closed under left(right)-multiplication by any ele-

ment of the ring is called left(right) ideal. A princple ideal ring is a ring in

which every ideal has the form < a >. A maximal ideal is an ideal which is

maximal amongst all proper ideals. A prime ideal is a proper ideal satisfies that;

if a,∈ R such that ab ∈ P , then a ∈ P or b ∈ P .

If R is a commutative ring and I is an ideal in R, then the equivalence class of

a ∈ R, namely,

[a] = {b ∈ R : b ≡ a mod I}

is called the congruence class of a mod I. The set of all the congruence classes

mod I is denoted by R/I. This set is called the quotient ring of R modulo I.
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Example 1.1.3. The set of multiples of an integer n forms an ideal, which is

usually denoted by nZ. The ring Zn is the quotient ring of Z modulo the ideal nZ,

that is, Z/nZ ∼= Zn.

A ring R is called Artinian, if, whenever I1 ⊇ I2 ⊇ ... ⊇ In ⊇ ... is a descending

chain of left ideals of R, then there exists an integer k such that Ij = Ik for all

j ≥ k. In other words, there is no infinite properly descending chain of left ideals

of R.

We call a ring R local if R has exactly one maximal ideal I. In this case, we call

R/I the residue field of R. A ring with only finitely many maximal ideals is called

semi-local.

Example 1.1.4. The ring of integers Z is not Artinian since Z ⊃ 2Z ⊃ 4Z ⊃ ...

is an infinite properly descending chain of ideals. While the ring Zn is an Artinian

for n <∞.

One may get immediate from the Lattice Isomorphism Theorem that every quo-

tient R/I of an Artinian ring R by an ideal I is again an Artinian ring.

Let I be an ideal of the commutative ring R and define

rad I = {r ∈ R : rn ∈ I for some n ∈ Z+}

called the radical of I.

Let I be an ideal of the commutative ring R and define

Jac I to be the intersection of all maximal ideals of R that contain I

where the convention is that Jac R = R. (If I is the zero ideal, Jac 0 is called

the Jacobson radical of the ring R, so Jac I is the preimage in R of the Jacobson

radical of R/I.)

In an arbitrary ring an element r such that rn = 0 for some integer n > 1 is called

nilpotent. An ideal I ≤ R is called nilradical <R if x ∈ I implies xn = 0 for

some positive integer n. We observe that in the ring Zpn every nonunit is nilpoten.

Lemma 1.1.1. 1. (Nakayama’s Lemma) If M is any finitely generated R −
module and JM = M , then M = 0.

2. The Jacobson radical contains the nilradical of R : rad0 ⊂ JacR.

Lemma 1.1.2. The following are equivalent:
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1. R is an Artinian ring.

2. Every nonempty set of ideals of R contains a minimal element under inclu-

sion.

The next result gives the main structure theorem for Artinian rings(e.g [3]).

Theorem 1.1.2. Let R be an Artinian ring.

1. There are only finitely many maximal ideals in R.

2. The quotient R/(JacR) is a direct product of a finite number of fields. More

precisely, if Mi, ...,Mn are the finitely many maximal ideals in R then

R/(jacR) ∼= ki × ...× kn,

where ki is the field R/M for 1 ≤ i ≤ n.

3. Every prime ideal of R is maximal.

4. The ring R is isomorphic to the direct product of a finite number of Artinian

local rings.

Proof. To prove (1), let S be the set of all ideals of R that are the intersection of

a finite number of maximal ideals. By lemma 1.1.2, S has a minimal element, say

Mi ∩M2 ∩ ...Mn. Then for any maximal ideal M we have

M ∩M1 ∩M2 ∩ ...Mn = M1 ∩M2 ∩ ... ∩Mn,

so M1∩M2∩ ...∩Mn ⊆M . According to the fact which says ”If R is commutative,

I1 and I2 be ideals of R and assume P is a prime ideal of R that contains I1I2 (for

example, if P contains I1 ∩ I2). Then either I1 or I2 is contained in P .”, Mi ⊂M

for some i. Thus M = Mi and so M1, ...,Mn are all the maximal ideals of R.

The proof of (2) is immediate from the Chinese Remainder Theorem applied to

M1, ...,Mn, since these maximal ideals are clearly pairwise comaximal and their

intersection is Jac R.

For (3), we first prove J = Jac R is nilpotent. By descending chain condition.

there is some m > 0 such that Jm = Jm+1 for all positive i. By way of contradiction

assume Jm 6= 0. Let S be the set of proper ideals I such that IJm 6= 0, so J ∈ S.

Let I0 be a minimal element of S. There is some x ∈ I0 such that xJm 6= 0, so

by minimality we must have I0 = (x). But now ((x)J)Jm = xJm+1 = xJm, so

it follows by minimality of (x) that (x) = (x)J. By Nakayama’s Lemma, then

(x) = 0, a contradiction. This proves Jac R is nilpotent.

Since Jac R is nilpotent, in particular Jac R ⊂ rad 0, so these two ideals are

equal by Lemma1.1.1.

Every prime ideal P in R contains the nilradical of R, hence contains Jac R by
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what has already been proved. The image of P is a prime ideal in the quotient

ring R/(Jac R) = k1 × ... × kn. But in a direct product of rings R1 × R2 (where

each Ri has a 1) every ideal is of the form I1 × I2, where Ij is an ideal of Rj for

j = 1, 2. It follows that a prime ideal in k1 × ...× kn consists of the elements that

are 0 in one of the components. In particular, such a prime ideal is also a maximal

ideal in k1× ...×kn and it follows that P was a maximal ideal in R, which finishes

the proof of (3).

Let M1, ...,Mn be all the distinct maximal ideals of R and let (Jac R)m = 0 as in

(3). Then
n∏
i=1

Mm
i ⊆

(
n∏
i=1

Mi

)m

⊆ (Jac R)m = 0

By the Chinese Remainder Theorem it follows that

R = (R/Mm
1 )× (R/Mm

1 )× ...× (R/Mm
n )

and each (R/Mm
i ) is an Artinian ring with unique maximal ideal Mi/M

m
i , proving

(4).

A nonzero ring R is an integral domain if, for all r, s ∈ R with r 6= 0, s 6= 0, the

product rs 6= 0. A principal ideal domain (PID) is a domain in which every ideal

is principal. A field F is an integral domain such that for every a ∈ F there is

b ∈ F such that a.b = 1 ∈ F .

Let R be a ring. If r, s ∈ R, then r divides s if there exists t ∈ R such that

rt = s. Two elements r, s are associates if there is u ∈ U(R) such that ru = s.

An element r 6= 0 is a zero divisor if there is s 6= 0 in R such that rs = 0. Let

r 6= 0 be in R; r is reducible if there exist a, b ∈ U(R) such that r = ab; r is

irreducible if r is not reducible. We can now state our most important definition.

A ring R, with unity, is a unique factorization ring (UFR) if for each nonzero

nonunit r ∈ R,

1. there exist irreducible elements, r1, ..., rn, such that r = r1...rn, and

2. whenever r = r1...rn = s1...sm where r1, ..., rn, s1, ..., sm, are irreducible, then

n = m and each ri, 1 ≤ i ≤ n, is an associate of some sj, 1 ≤ j ≤ m, and

each sk is an associate of some ri.

Let us look to some examples of rings which are not an integral domain; these are

Zm where m is a nonprime integer greater than 1.
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Consider m = 4, the first example for which Zm is not an integral domain. Let r

denote the element r+ < m > of Zm. Then U(Z4) = {1, 3} while the nonunits are

0 and 2. Clearly, 2 is irreducible in Z4; hence Z4 is a UFR.

Next let m = 6; then U(Z6) = {1, 5} and R−U(R) = {O, 2, 3, 4}. However, notice

that 4 =2.2, 3 = 3.3, and 2= 2.4. Therefore, Z6 contains no irreducible elements,

and hence fails to be a UFR.

The definition of the unique factorization property in domains is quite similar to

rings. The only difference is the stucture of the domains where they are without

zero divizors.

Proposition 1.1.1. Consider R be a PID, a ∈ R and d = gcd(a,m). Then, a

and d are associates in R/I where I =< m >.

Proof. We have that a and d are associates if and only if there exists x ∈ R such

that x and m are relatively prime and a = xd, that is, a − xd ∈< m >. So, if

there exists t ∈ R such that a
d
− tm

d
and m are relatively prime, we set x = a

d
− tm

d

and the result follows.

Now, we turn to the study of factorization in R/I. We would like to write every

nonzero nonunit element of R/I as a product of weak irreducible elements.

Proposition 1.1.2. Let a 6= 0 be a nonunit element of R/I. Then, a can be

written as a = b.pn1
1 .p

n2
2 ...p

nr
r , where b is an unit of R/I, 0 ≤ ni ≤ ki, i =

1, 2, ..., r and m = pk11 .p
k2
2 ...p

kr
r is the irreducible factorization of m in R. Also,

this factorization is unique.

Proof. From the Proposition 1.1.1 above, we have that a and d are associates,

where d = gcd(a,m). Since d is a divisor of m, then d = pn1
1 .p

n2
2 ...p

nr
r , where

0 ≤ ni ≤ ki, i = 1, 2, ..., r. Therefore, a = b.d = b.pn1
1 .p

n2
2 ...p

nr
r , where b is an unit

of R/I. Such factorization is unique because suppose that a = c.p
n
′
1

1 .p
n
′
2

2 ...p
n
′
r
r and

0 ≤ ni ≤ ki, i = 1, 2, ..., r, where c is an unit of R/I.

Set r = p
n
′
1

1 .p
n
′
2

2 ...p
n
′
r
r . So, we have that both, r and d are divisors of m and also, d

and r are associates. Thus, we conclude that d and r are also associates, and this

implies that n
′
i = ni, i = 1, 2, ..., r, since R is an unique factorization domain.

Proposition 1.1.3. If m = pk11 .p
k2
2 ...p

kr
r is the irreducible factorization of m in R,

then pi is irreducible in R/I if and only if ki ≥ 2.

Lemma 1.1.3. Zm is a UFR if and only if m is a power of a prime.
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Proof. Suppose m is not a power of a prime. Let p be a prime dividing m. Then

p is not a nilpotent element of Zm, for if so, then pk = 0 for some k > 1, and

therefore, m divides pk which is impossible. Hence Zm is not a UFR.

On the other hand, Suppose that m = pk, k > 1. By the factorization of the

Proposition 1.1.2, we have that every nonzero element a ∈ Zm can be written as

a = xpe, where x is an unit element and e ≤ k. Since pr = 0 for all r ≥ k, we

see that 0 ≤ e < k. So, again by Proposition 1.1.2, this factorization is unique.

Finally, Proposition 1.1.3 tells us that p is an irreducible element of R/I since

k ≥ 2. Thus, the proof follows.

Theorem 1.1.3. Every Principal Ideal Domain is a Unique Factorization Do-

main.

Proof. See [3](Theorem 14. p. 287)

Note that not every unique factorization domain is PID. For instance Z[x] is

unique factorization domain but not PID.

1.1.3 Ring Homomorphism

A ring homomorphism from R to R
′

is a mapping ϕ : R −→ R
′

such that

ϕ(a+ b) = ϕ(a) + ϕ(b),

ϕ(ab) = ϕ(a)ϕ(b)

for all a and b in R. The kernel of ϕ is defined to be

kerϕ = {a ∈ R : ϕ(a) = 0}.

Example 1.1.5. Let n be a given integer, n > 0. Then the mapping f : Z −→ Zn
given by

f(a) = [a]

where [a], the equivalence class to which a belongs (a ∈ Z), is a homomorphism

since we know that

[a+ b] = [a] + [b],

[ab] = [a][b].

Example 1.1.6. The projection mapping

pj :
∏

Ri −→ Rj
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is a ring homomorphism for each j.

A ring homomorphism always takes 0 to 0. However, it might not take unity to

unity. For instance, take the mapping:

ϕ : Z2 −→ Z6

given by ϕ(0) = 0 and ϕ(1) = 3. This is a homomorphism of additive groups since

the order of 3 in Z6 is 2. It is also multiplicative since 32 = 3 in Z6. Thus 3 is

idempotent in Z6 (a solution of the equation x2 = x).

Lemma 1.1.4. Let n and m be integers greater than one, and m divides n. The

map ϕ : Zn −→ Zm is a ring homomorphism.

Proof. Since m divides n. then, there is an integer k with n = km. Let π : Z −→
Zm be the standard projection; i.e., π(a) = [a]m.

Define ϕ : Zn −→ Zm by

ϕ([a]n) = π(a).

We must show that ϕ is well-defined. If [a]n = [b]n, then there is an integer l with

a− b = ln = lkm.

Thus,

π(a) = [a]m = [b+ lkm]m = [b]m = π(b).

The following theorem is the so-called the Chinese Reminder Theorem.

Theorem 1.1.4. If n,m are relatively prime then we have a ring isomorphism:

ϕ : Znm ∼= Zn × Zm

Proof. The ring homomorphism ϕ is given by

φ(a) = (a mod n, a mod m)

This is a ring homomorphism because n and m divide nm:

(a+nm b) = (a+n b, a+m b) = (a, a) + (b, b) = ϕ(a) + ϕ(b)

ϕ(ab) = (ab, ab) = (a, a)(b, b) = ϕ(a)ϕ(b)

Lets look at just the first step:

a+nm b ≡ a+n b mod n
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This is because both numbers are congruent to a+ b modulo n.

It is easy to see that ϕ is a bijection, and that by using the Euclidean algorithm.

Corollary 1.1.1. For n > 1 an integer, write n =
k∏
i=1

peii , where the pi are distinct

primes. Then there is a ring isomorphism Zn ∼= Zpe11 × Zpe22 × ...× Zpekk
Proof. Show that ring isomorphisms F ∼= G × H and H ∼= J × K imply a ring

isomorphism F ∼= G× J ×K. Then use induction.

Theorem 1.1.5. Consider that n ∼= 1(mod m). The function f : Zm → Zmn
given by f([x]m) = [nx]mn is an injective homomorphism .

Proof. Let [a]m, [b]m ∈ Zm. Then

f([a]m + [b]m) = f([a+ b]m) = [n(a+ b)]mn = [na]mn + [nb]mn = f([a]m) + f([b]m).

Furthermore, we note that

f([a]m)f([b]m) = [na]mn[nb]mn = [n2ab]mn.

We are given that n ∼= 1 (mod m), hence n = mq + 1 for some q ∈ Z. By

multiplying both sidesof this equation by n we get n2 = mnq+n, so n2 ∼= n (mod

mn). Therefore, we get

f([a]m)f([b]m) = [n2ab]mn = [nab]mn = f([ab]m) = f([a]m[b]m).

Hence f is a homomorphism. To show f is injective, we can compute the kernel

of f . Let x ∈ ker(f). Then [0]mn = f([x]m) = [nx]mn so mn|nx ⇒ m|nx. But

n ∼= 1(mod m) tells us that (m,n) = 1. So we have m|nx ⇒ m|x. Therefore

[x]m = [0]m and so ker(f) = {[0]m}. Hence f is injective.

1.1.4 Polynomial Rings

Let R be a ring. A polynomial with coeffcients in the ring R is an expression f(x)

of the form

a0 + a1x+ a2x
2 + ...+ amx

m,

where ai is an element of R for i = 0, 1, 2, ...,m. If ai = 0 then the term aix
i may

be omitted when writing down the expression dening the polynomial. Now R[x]

denotes the set of all such polynomials over R.

Example 1.1.7. The set of all quadratic polinomials a0x
2+a1x+a2 with cofficients

a, b ∈ Zn forms a polynomial ring.
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Proposition 1.1.4. If R is an integral domain, then R[x] is also an integral

domain.

Proof. If f, g ∈ R[x] and fg = 0,then f0g0 = 0 in R. Therefore, since R is an

integral domain, either f0 = 0 or g0 = 0 or both. Suppose that f0 = 0. Then

(fg)1 = f1g0 + f0g1 = 0

either f1 = 0 or g0 = 0. continuing in this way, we forced to get f = 0 or g = 0.

That shows us that the R[x] has no zero divisors.

Proposition 1.1.5. Let F be a field. Then F [x] is a PID.

Proof. Let A ⊆ F [x] be any ideal. To show that A is principal, we may assume

that A 6= (0). Then A contains some nonzero elements, and we can choose f ∈ A
with deg(f) as small as possible.

Since f ∈ A and A is an ideal. we have (f) ⊆ A and we claim that in fact (f) = A.

To see this, let g ∈ A and write g = fq + r by division algorithm, where either

r = 0 or deg(r) < deg(f). Now r = g−fq is an element of A, and so by our choice

of f , it cannot be that deg(r) < deg(f). The only alternative. Therefore, is that

r = 0 and hence g = fq ∈ (f), as required. Therefore F [x] is a PIR.

Since the field F is surely a domain, F [x] is a domain by Proposition 1.1.4, and

we are done.

It is obviously noticed from Theorem 1.1.3 and Proposition 1.1.5 that if F is a

field, then F [x] is a unique factorization domain.

A polynomial f over F of positive degree which can be factored as f = gh where

g and h are polynomials over F of positive degree is called reducible over F ; A

polynomial of positive degree which can not be thus factored is called irreducible

over F .

Since Zp is a field, a polynomial of the form x2 − ax + b ∈ Zp[x] is reducible if

and only if there exist c, d ∈ Zp so that, x2 − ax + b = (x − c)(x − d). There are(p
2
)

such polynomials for which c 6= d and p for which c = d. Therefore, there are

exactly (p
2
)

+ p =
p(p− 1)

2
+ p =

p(p+ 1)

2

reducible monic quadratic polynomials in Zp[x]. Since there are p2 polynomials of

the form x2 − ax + b and each one is either reducible or irreducible, we conclude
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there are

p2 − p(p+ 1)

2
=
p(p− 1)

2

irreducible monic degree 2 polynomials in Zp[x].

The following theorem characterizes the roots of the polynomial ax2 + bx+ c ≡ 0

mod p.

Theorem 1.1.6. The quadratic polynomial ax2 + bx+ c mod p has at most two

solutions, and those solutions are given by

x =
−b±

√
b2 − 4ac

2a
.

In particular, if b2− 4ac is a quadratic nonresidue mod p then x2− ax+ b = 0 has

no solutions mod p.

Proof. The elementary development of the quadratic formula is dependent solely

on the field properties and so can be carried out purely symbolically in Zp. Suppose

ax2 + bx+ c = 0.

Then,

x2 +
b

a
x =
−c
a
.

Completing the square on the left side in the usual manner gives

x2 +
b

a
x+

b2

4a2
=

b2

4a2
− c

a

where b2

4a2
is defined since 4 6= 0 and a2 6= 0 in Zp (since p is odd). Then(

x+
b

2a

)2

=
b2 − 4ac

2a
=⇒ x+

b

2a
= ±
√
b2 − 4ac

2a

where the square root has the meaning described above. Finally,

x =
−b±

√
b2 − 4ac

2a
.

Proposition 1.1.6. Let n1, ..., nk be a mutually coprime set of positive numbers.

Let n = n1...nk. If f(x) ≡ 0 mod ni has Ni solutions mod ni, then f(x) ≡ 0

mod n has N1...Nk solutions mod n.

Proof. If f(x) ≡ 0 mod n, then f(x) ≡ 0 mod ni for each i, since ni | n. In

particular, each solution x mod n induces a k−tuple of solutions x mod ni to the
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k congruences f(x) ≡ 0 mod ni. Conversely, given a k−tuple of solutions a1, ..., ak

to f(x) ≡ 0 mod ni, we can find a unique a mod n such that a ≡ ai mod ni, by

the Chinese Reminder Theorem. (We are simultaneously solving the system x ≡ ai

mod ni.) In particular, f(a) ≡ 0 mod ni. Therefore, a mod n is a solution to

f(x) ≡ 0 mod n. This means that each k − tuple of solutions to f(x) ≡ 0

mod ni induces a solution to f(x) ≡ 0 mod n. One easily sees that these two

associations are inverse to each other, so there is a 1− 1 correspondence between

solutions to f(x) ≡ 0 mod n and simultaneous solutions to f(x) ≡ 0 mod ni.

Since each f(x) ≡ 0 mod ni has Ni solutions, altogether there are N1...Nk possible

different k−tuples of solutions to these congruences, and thereforeN1...Nk different

solutions mod n to f(x) ≡ 0 mod n.

A polynomial f ∈ k[x1, x2, ..., xn] is symmetric if

f(xτ(1), xτ(2), ..., xτ(n)) = f(x1, x2, ..., xn)

for every possible permutation xτ(1), xτ(2), ..., xτ(n) of the variables x1, x2, ..., xn.

Given variables x1, x2, ..., xn, we define σ1, σ2, ..., σn ∈ k[x1, x2, ..., xn] by

σ1 = x1 + x2 + ...+ xn

...

σr =
∑

τ(1)<τ(2)<...<τ(r)

xτ(1)xτ(2)...xτ(r).

...

σn = x1x2...xn

And σi is a symmetric polynomial for all i = 1, ..., n.

A classical theorem on symmetric polynomials attributed to Newton, states that

(R[x1, x2, ..., xn])symmetric ∼= R[σ1, σ2, ..., σn]

. A short account on the proof can be found in [4].

1.2 Introduction to Directed Graphs

In a graph, edges are unordered pairs of vertices and thus have no direction. In

a directed graph, edges are ordered pairs of vertices and thus have a direction (or

orientation) from the first vertex to the second vertex in the ordered pair. Most
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of the ideas introduced for graphs can be carried over to directed graphs, modified

only to take into account the directions of the edges.

1.2.1 Definitions and Basic Stracture

A directed graph or digraph D is a triple consisting of a vertex set V (D), an

edge set E(D), and a function assigning each edge an ordered pair of vertices. The

first vertex of the ordered pair is the tail of the edge, and the second is the head;

together, they are the endpoints. We say that an edge is an edge from its tail to its

head. The terms ”head” and ”tail” come from the arrows used to draw digraphs.

The empty graph on n vertices, denoted by En, is the graph of order n where E

is the empty set.

Figure 1.1: An Empty Graph

Let D be any digraph. A walk of length k in D is a sequence of vertices

v0, v1, ..., vk−1 of D such that for each i = 1, 2, ..., k − 1, the edge ei has tail vi−1

and head vi. If the edges in a walk are distinct, then the walk is called a trail .

A walk is closed if v0 = vk−1. A path in D is a walk in which all the vertices are

distinct.

Proposition 1.2.1. Let D be a digraph and let u, v be a pair of distinct vertices

in D. If D has an {u, v}-walk W , then D contains an {u, v}-path P such that

A(P ) ⊆ A(W ). If D has a closed {u, u}-walk W , then D contains a cycle C

through u such that A(C) ⊆ A(W ).

Proof. Consider a walk P from u to v of minimum length among all (u, v)-walks

whose arcs belong to A(W ). We show that P is a path. Let P = u1u2...uk,

where u = u1 and v = uk. If ui = uj for some 1 ≤ i < j ≤ k, then the walk

P [u1, ui]P [uj+1, uk] is shorter than P ; a contradiction. Thus, all vertices of P are

distinct, so P is a path with A(P ) ⊆ A(W ). Let W = w1w2...wk be a walk from

u = w1 to itself (u = wk). Since D has no loop, wk1 6= wk. Let v1v2...vt be a
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shortest walk from v1 = w1 to vt = wk1. We have proved above that v1v2...vt is a

path. Thus, v1v2...vtv1 is a cycle through v1 = u.

An arc vi1vi ∈ E(D) is called a forward edge of the walk, and an edge vivi1 is

called a backward edge of the walk. The net length of a walk is the difference

between the number of forward edges and the number of backward edges, in the

walk. Note that the net length may be negative.

Note that a cycle is a closed walk, where v0 = vk−1 and the vertices v0, v1, ..., vk−1

are distinct from each other. The distance between two vertices of a graph is the

number of edges of the shortest path between them.

Let us illustrate these definitions with an example. In the graph of Figure 1.2,

a, c, f, c, b, d is a walk of length 5. The sequence b, a, c, b, d represents a trail of

length 4, and the sequence d, g, b, a, c, f, e represents a path of length 6. Also,

while e, d, b, a, c, f, e is a cycle. In general, it is possible for a walk, trail, or path

to have length 0.

Figure 1.2: Basic Definitions

In a digraph D, a vertex has two degrees. The outdegree outdeg(v) of a vertex

v is the number of edges of which v is the tail of a vertex; the indegree indeg(v)

of v is the number of edges of which v is the head of a vertex. The degree deg(v)

of a vertex v of D is defined by deg(v) = outdeg(v) + indeg(v). The maximum

degree is ∆(G), the minimum degree is δ(G). Clearly, the sum of the indegrees of

the vertices of a digraph equals the sum of the outdegrees. It is often referred to

as the First Theorem of Graph Theory.

Proposition 1.2.2. In a graph G, the sum of the degrees of the vertices is equal

to twice the number of edges. Consequently, the number of vertices with odd degree

is even.
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Proof. Let S =
∑
v∈V

deg(v). Notice that in counting S, we count each edge exactly

twice. Thus, S = 2|E| (the sum of the degrees is twice the number of edges). Since

S is even, it must be that the number of vertices with odd degree is even.

The terminology used in discussing digraphs is quite similar to that used for graphs.

The cardinality of the vertex set of a digraph D is called the order of D and is

denoted by n(D), or simply n. The size m(D) (or m) of D is the cardinality of its

arc set.

Theorem 1.2.1. [5] If G is a digraph of order n and size m with V (G) =

{v1, v2, ..., vn}, then
n∑
i=1

outdeg(vi) =
n∑
i=1

indeg(vi)

Proof. When the outdegrees of the vertices are summed, each arc is counted once,

since every arc is incident from exactly one vertex. Similarly, when the indegrees

are summed, an arc is counted just once since every arc is incident to a single

vertex.

A graph is regular provided each vertex has the same degree. If k is the common

degree, then the graph is regular of degree k. A connected regular graph of degree

2 is a circuit .

Figure 1.3: Examples of Regular Graphs

A subgraph of a graph G is a graph such that V (H) ⊆ V (G) and E(H) ⊆ E(G)

and the assignment of endpoints to edges in is the same as in G. We then write

H ⊆ G and say that ”G contains H”.

Given a graph G, the complement of G, denoted by Ḡ, is the graph whose

vertex set is the same as that of G, and whose edge set consists of all the edges

that are not present in G.

The components of a graph G are its maximal connected subgraphs. A com-

ponent is trivial if it has no edges; otherwise it is nontrivial. An isolated vertex

is a vertex of degree 0. Therefore, Deleting a vertex or an edge can increase the

number of components. Although deleting an edge can only increase the number
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of components by 1, deleting a vertex can increase it by many. When we obtain

a subgraph by deleting a vertex, it must be a graph, so deleting the vertex also

deletes all edges incident to it.

The union of graphs G1, ..., Gk, written G1∪G2∪ ...∪Gk, is the graph with vertex

set
i=1⋃
k

V (Gi) and edge set
i=1⋃
k

E(Gi). The intersection of graphs G1, ..., Gk, writ-

ten G1∩G2∩ ...∩Gk, is the graph with vertex set
i=1⋂
k

V (Gi) and edge set
i=1⋂
k

E(Gi).

Let G = (V,E) be a graph with vertex set V and edge set E; similarly let

G1 = (V1, E1) and G2 = (V2, E2). The conjunction G = G1 ∧ G2 is defined

by V = V1 × V2 and {u, v} = {(u1, u2), (v1, v2)} ∈ E if and only if {u1, v1} ∈ E1

and {u2, v2} ∈ E2.

Two vertices u and v of a digraph D are adjacent if there is an arc of the form

uv or vu. We call a vertex u incident to an edge e if u ∈ E.

The underlying graph of a digraph H is the graph G obtained by treating the

edges of H as unordered pairs; the vertex set and edge set remain the same, and

the endpoints of an edge are the same in G as in H, but in G they become an

unordered pair.

Figure 1.4: H1 and H2 are Subgraphs of G.

Figure 1.5: A Graph and Its Complement
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A clique in a graph is a set of pairwise adjacent vertices. An independent set

is a set of pairwise non-adjacent vertices. A graph G is multipartite if its vertex

set is a union of disjoint independent sets, which are known as partite classes.

Observe that a set of vertices is independent in G if it contains no pair of adjacent

vertices. In terms of the associated partition, we have the following condition. A

given digraph D satisfies G→
−→
Ck if and only if the vertices of G can be partitioned

into k independent sets S0, S1, ..., Sk−1 so that each edge of D goes from Si to Si+1

for some i = 0, 1, ..., k − 1 (with addition modulo k).

A graph G is bipartite if V (G) is the union of two disjoint (possibly empty) in-

dependent sets called partite sets of G.

Figure 1.6: Two Bipartite Graphs and One Non-bipartite Graph.

A complete graph is a simple graph whose vertices are pairwise adjacent; the

(unlabeled) complete graph with n vertices is denoted Kn.

Figure 1.7: Examples of Complete Graphs

Let m and n be positive integers. The complete bipartite graph Km,n is the

bipartite graph with vertex set V = U ∪W , where U contains m vertices and W
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contains n vertices and each pair {u,w} where u ∈ U and w ∈ W is an edge of

Km,n. Thus Km,n has exactly mn edges.

Figure 1.8: A Few Complete Bipartite Graphs.

A vertex-coloring of a graph is an assignment of a color to each vertex so that

vertices that are joined by an edge are colored differently. One way to color a

graph is to assign a different color to each vertex.

Note that a bipartite graph is complete bipartite if every vertex is adjacent to

every vertex outside its partite class.

1.2.2 Graph Homomorphisms

Let G be a graph with vertex set V , and let H be a graph with vertex set W . A

homomorphism from G to H is a mapping ϕ : V → W such that uv is an edge

of G implies {ϕ(u), ϕ(v)} is an edge of H. We write G → H to indicate that a

homomorphism from G to H exists. A homomorphism of G to H is also called an

H−colouring of G, or that G is H − colourable.[6]

We can apply the above definition of homomorphism to the corresponding symmet-

ric digraphs of G and H. The homomorphisms of graphs preserve adjacency, while

homomorphisms of digraphs also preserve the directions of the arcs. Therefore, a

homomorphism of digraphs G −→ H is also a homomorphism of the underlying

graphs, but not conversely.

Note that for graphs ϕ(u)ϕ(v) ∈ E(H) implies that ϕ(u) 6= ϕ(v), since each edge

of H consists of two distinct elements.

A homomorphism ϕ : G −→ H is called injective, if u 6= v ∈ V (G) implies

ϕ(u) 6= ϕ(v) ∈ V (H), i.e., if ϕ is one to one. An injective homomorphism is also

called an monomorphism.
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A homornorphism ϕ : G −→ H is called surjective, if v ∈ V (H) implies that there

is a vertex u ∈ V (G) such that ϕ(u) = v, i.e., if ϕ is onto vertices. A surjective

homomorphism is also called an epimorphism.

A homomorphism which is both injective and surjective, is called a isomorphism.

The following theorem is the so-called Dual path theorem. It represents the ho-

momorphism to oriented paths.

Theorem 1.2.2. Suppose D is a Digraph and P an oriented path. Then G 9 P

if and only if there is an oriented path W such that W → G and W 9 P .

If G → P and W is an oriented path such that W → G, then of course W → P

by composition. Thus the sufficiency of the condition is obvious. The necessity is

shown in [7].

Since the homomorphic image of a directed path may be a walk, so one can observe

the following:

Proposition 1.2.3. A mapping f : V (Pk) → V (G) is a homomorphism of Pk to

G if and only if the sequence f(0), f(1), ..., f(k) is a walk in G.

In particular, homomorphisms of G to H map paths in G to walks in H, and

hence do not increase distances. If we denote by d(u, v) the distance (length of a

shortest path) from u to v in D, then we have the following fact.

Proposition 1.2.4. [8] If f : G → H is a homomorphism, then d(f(u), f(v)) ≤
d(u, v), for any two vertices u, v of G.

Proof. If u = v0, v1, ..., vk = v is a path in G, then f(u) = f(v0), f(v1), ..., f(vk) =

f(v) is a walk of the same length k in H. Since every walk from f(u) to f(v)

contains a path from f(u) to f(v), we must have d(f(u), f(v)) ≤ k.

In the spirit of the theorem 1.2.2, we may expect that for an oriented cycle
−→
C we

have, G →
−→
C if and only if there is an oriented cycle homomorphic to G that is

not homomorphic to
−→
C . An equivalent restatement of this would say that G→

−→
C

if and only if each oriented cycle homomorphic to G is also homomorphic to
−→
C [9].

Note that this condition on cycles is stronger than the dorresponding condition on

paths.

Proposition 1.2.5. A mapping f : V (
−→
C k) → V (G) is a homomorphism of

−→
C k

to G if and only if f(1), f(2), ..., f(k) is a closed walk in G.

Corollary 1.2.1.
−→
C 2k+1 −→

−→
C 2l+1 if and only if l ≤ k.

Proof. An odd cycle has no closed odd walk shorter than its length, and has a

closed walk of any odd length greater than or equal to its length.
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Figure 1.9 illustrates a homomorphism f : C9 −→ C5; the images f(v), v ∈ V (C9)

are shown in C5.

Figure 1.9: Homomorphism of Odd Cycles

Since a cycle is a homomorphic image of a cycle, we can reformulate the last result

as follows.

Corollary 1.2.2. Let
−→
C k be a digraph cycle of length k. A digraph D satisfies

D →
−→
Ck if and only if the length of every directed cycle in D is divisible by k.
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Unitary Cayley Graph

Recalling, there has been a lot of different connections between rings and graphs,

such as zero-diisor graps, ...etc. Here we will present one such connection. Some

results on the Unitary Cayley graph of a finite ring are presented (e.g [1], [10]). The

present study determins precisely the diameter, girth, vertex (edge) connectivity,

vertex and edge chromatic number.

2.1 Introduction

Cayley graphs stem from a type of diagram now called a Cayley colour diagram,

which was introduced by A. Cayley in 1878 as a graphic representation of abstract

groups. Its definition is suggested by Cayley’s theorem (named after Arthur Cay-

ley) and uses a specified, usually finite, set of generators for the group. Cayley

colour diagrams were generalized to Schreier coset diagrams by O. Schreier in

1927. Cayley graphs provide graphic representations for abstract groups. They

are a bridge between groups and surfaces, and they give rise to examples for vari-

ous extremal graph problems, and good models for interconnection networks.

Definition 2.1.1. For a positive integer n > 1 the unitary Cayley graph Gn =

Cay(Zn, Un) is defined by the additive group of the ring Zn of integers modulo n

and the multiplicative group Un of its units. If we represent the elements of Zn by

the integers 0, 1, ..., n, then,

Un = {a ∈ Zn : gcd(a, n) = 1}

So Gn has vertex set V (Gn) = Zn = {0, 1, ..., n} and edge set

E(Gn) = {{a, b} : a, b ∈ Zn, gcd(a− b, n) = 1}

21
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The graph Gn is regular of degree |Un| = φ(n), where φ(n) denotes the Euler

function. If n = p is a prime number, then Gn = Kp is the complete graph on p

vertices.

Example 2.1.1. Suppose the finite groups Gn = Z9, Gm = Z3 × Z3. Unitary

Cayley graph of these rings are regular graphs of oreder 6 and 4 respectivily.

Figure 2.1: Cayley Graph of Z9 and Z3 × Z3

A generalization of unitary Cayley graphs presents itself readily: given a finite

ring R (commutative with unity), one may define GR = Cay(R,R∗) to be the ring

whose vertex set is R, with an edge between x and y if x− y ∈ R∗.

Since R is a finite ring, it is Artinian, and hence R ∼= R1× ...×Rt, where each Ri

is a finite local ring with maximal ideal mi. Since (u1, ..., ut) is a unit of R if and

only if each ui is a unit in R∗i , we see immediately that GR is the conjunction of

the graphs GR1 , GR2 , . . . , GRt . Moreover, if x, y ∈ Ri, {x, y} is an edge of GRi

if and only if x− y /∈ mi.

We denote by ki the (finite) residue field Ri/mi, πi : Ri → ki the quotient map,

and fi = |ki|. We also assume (after appropriate permutation of factors) that

f1 ≤ f2 ≤ ... ≤ ft.

The following lemma is well known and it is inserted here for the seek of complete-

ness.

Lemma 2.1.1. If S be a finite local ring with maximal ideal m. Then there exists

a prime p such that |R|, |m| and |R/m| are all powers of p.

Two vertices x = (x1, ..., xt), y = (y1, ..., yt) are adjacent if and only if xi−yi ∈ R∗i
for all i = 1, ..., t. Equivalently, x is adjacent to y if and only if for each i = 1, ..., t,
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xi − yi /∈ mi, that is, πi(xi) 6= πi(yi).

2.2 Vertex Degree

For a finite graph G, with vertices {v1, ..., vr}, a representation of G modulo

n is a set {a1, ..., ar} of distinct, nonnegative integers, 0 ≤ ai < n satisfying

gcd(ai − aj, n) = 1 if and only if vi is adjacent to vj. The representation number,

Rep(G), is the smallest n such that G has a representation modulo n. It was shown

by Erdös and Evans (e.g [11]) that any finite graph can be represented modulo

some positive integer, and so the representation number of a finite graph is well

defined.

Assume that n = pk1i1 ...p
km
im

, where pi1 , ..., pim are distinct primes. If in the rep-

resentation of Gn a vertex v corresponds to an integer a, then we will assign

coordinates to v as follows. The coordinates of v with respect to the ordered set

of primes pi1 , ..., pim are (v1, ..., vm), where vj ≡ a mod pij for j = 1, ...,m, and

vj ∈ {1, ..., pij − 1} for j = 1, ...,m. If u has coordinates (u1, ..., um) and v has

coordinates (v1, ..., vm) then u is adjacent to v if and only if uj 6= vj for j = 1, ...,m.

In this coordinate representation two vertices of Gn share the same coordinates if

and only if they share the same neighbourhood. Thus we know the structure of

Gn (e.g[12]).

Proposition 2.2.1. Let n = pe11 ...p
et
t for distinct primes p1, ..., pt, where p1 <

p2... < pt. The degree of a vertex v ∈ V (Gn) is given by deg(v) = φ(n).

Proof. For any v ∈ V (Gn), using the notation as it is showen above, we assign

each vertex v to a set X(v1, ..., vt), where 0 ≤ vi ≤ pi − 1 and vi ≡ v ( mod pi).

A vertex v in Gn is adjacent to a vertex w ∈ X(w1, ..., wt) if only if vi 6= wi for all

i with 1 ≤ i ≤ t. For if vi = wi for some i, then v ≡ w ( mod pi), which implies

that v − w ≡ 0 ( mod pi). Hence, pi divides v − w, and v − w is not a unit of n.

This implies v and w are non-adjacent.

Conversely, if vi 6= wi for all i, then v−w 6≡ 0 ( mod pi) for all i. Hence, none of

the prime divisors of n divide v − w. This implies that v − w is a unit of Zn, and

hence v and w are adjacent.

By construction, each set X(v1, ..., vt) has cardinality
t∏
i=1

pei−1i . Finding the degree

of v thus reduces to finding the number of sets whose vertices are adjacent to v,

then multiplying by the number of elements per set.

In the collection of sets X(v1, ..., vt), each vi ranges from 0 to pi, and thus takes
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on one of pi possible values. Suppose the vertices of X(w1, ..., wt) are adjacent to

those of X(v1, ..., vt), the set containing v. Then each wi must satisfy the condi-

tions wi 6= vi, 0 ≤ wi ≤ pi− 1. Each wi thus takes on one of pi− 1 possible values.

The total number of sets X(w1, ..., wt) whose vertices are adjacent to those of any

X(v1, ..., vt) is given by
s∏
i=1

(pi − 1). Hence, the degree of v is given by

deg(v) =

(
t∏
i=1

pei−1i

)(
t∏
i=1

(pi − 1)

)

=
t∏
i=1

pei−1i (pi − 1)

=
t∏
i=1

φ(peii )

= φ(n)

Corollary 2.2.1. Gn is φ(n)-regular for all n.

Proof. This follows immediately from Proposition 2.2.1, which gives φ(n) as the

degree of an arbitrary vertex of Gn.

Proposition 2.2.2. Let R be any ring. Then

1. GR is a regular graph of degree |R∗|.
2. Let S be a local ring with maximal ideal m. Then GS is a complete multipar-

tite graph whose partite sets are the cosets of m in S. In particular, GS is a

complete graph if and only if S is a field.

3. If R is any Artinian ring and R ∼= R1 × ...× Rt as a product of local rings,

then GR = ∧ti=1GRi
. Hence, GR is a conjunction of complete multipartite

graphs.

Proof. : The proof of (1) follows from the fact that the neighborhood of any vertex

a is {a+ u : u ∈ R∗}. To prove (2), simply note that x, y ∈ S are adjacent if and

only if x− y /∈ m and that S is a field if and only if m = 0. The third statement

follows from the fact that R∗ = R∗1 × ...×R∗t .

Example 2.2.1. From the figure 2.1, we observe that any vertex v ∈ V (Z9) has

degree φ(9) = 6; that is exactly the number of edges which are adjacent to v. Also,

the degree of any vertex in G(Z3 × Z3) is |U3 × U3| = 2.2 = 4.

Remarks.

1. Since Cayley graphs are k-regular graphs, then we have that

k|V | =
∑

v∈V (G)

deg(v) = 2 | E | .
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2. Not every regular graph is a Cayley graph. For instance, the following graph

is 3-regular but not unitary Cayley graph.

Figure 2.2: 3-Regular Graph with 46 Vertices

N(v) will be used for the neighborhood of a vertex v (that is, the set of vertices

adjacent to v) and N(u, v) for the number of common neighbors of the vertices u

and v.

Proposition 2.2.3. Suppose a = (a1, ..., at) and b = (b1, ..., bt) are vertices of GR.

Let I = {i : 1 ≤ i ≤ t, πi(ai) = πi(bi)} and J = {1, ..., t} − I. Then

N(a, b) = |R|
∏
i∈I

(1− 1

fi
)
∏
j∈J

(1− 2

fj
).

Proof. See [1].

2.3 Vertex Coloring

The Clique Number, denoted ω(Gn) is the size of largest complete subgraph

that can be found in a graph. The chromatic number of a graph, denoted by

χ(Gn) is the smallest number of colors needed to color the vertices of so that no

two adjacent vertices share the same color.

Next, the chromatic number and the clique number of Gn are going to determined.

From now on we always assume that n is an integer, n ≥ 2.

Theorem 2.3.1. [10] Let n = pe11 p
e2
2 ...p

et
t , where p1 < p2 < ... < pt and ei ≥ 1 for

all i = 1, ..., t. Then ω(Gn) = χ(Gn) = p1.

Proof. Let m represent the vertices and km is the coloring. For each m, 0 ≤
m ≤ n − 1, there is a unique km, such that m ≡ km( mod p1). The vertex m

is assigned the color km. If two vertices m and m
′

receive the same color then

km ≡ k
′
m( mod p1), so m ≡ m

′
( mod p1). This allows m to not be adjacent to



Chapter 2. Unitary Cayley Graph 26

m
′
. Thus, this coloring is proven and therefore, χ(Gn) ≤ p1. It is known in graph

theory that ω(Gn) ≥ χ(Gn). Hence the proof follows.

We observe that in Gn there exist a p1−clique. The clique in Gn is {0, 1, ..., p1−1}
which implies p1 ≤ ω(Gn).

Example 2.3.1. Figure 2.3 shows that ω(G12) = χ(G12) = p1 = 2. For the

chromatic number, the vertices that are colored yellow are 0 mod 2 and the vertices

that are colored pink are 1 mod 2. The clique number is represented by the vertices

{0, 1}.

Figure 2.3: Cayley graph of Z12

Proposition 2.3.1. Let R be a finite ring. Then ω(GR) = χ(GR) = f1.

Proof. See [1].

2.4 Diameter and Girth

The distance d(x, y) of vertices x and y of a graph G is the length (number of

edges) of a shortest x, y − path. The diameter is the maximal distance any two

vertices of G may have. The girth of a graph is the length of a shortest cycle

contained in the graph.

The following theorem, represents the diameter of the ring of integers for n ≥ 2.

See [10].

Proposition 2.4.1. The diameter of Gn is 1 if n is prime, 2 if n is an odd

composite number, and 3 if n is an even composite number.

Proof. Case 1 : Suppose n is prime. Claim: Gn = Kn, and the diameter of Gn is

1. [12]

Let n be prime, and let v and w be vertices of Gn. Then v−w ∈ Zn, and v−w < n.
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Because n is prime, this implies that v − w is relatively prime to n. Hence v − w
is a unit of the ring Zn, and v and w are adjacent. Since v and w are arbitrary,

each vertex of Gn is adjacent to every other vertex, and Gn = Kn.

Case 2 : Next, suppose n is an odd composite number, where n = pe11 p
e2
2 ...p

et
t . As

in Proposition 2.2.1, we assign each vertex v of Gn to a class X(h1, ..., ht), where

each hi ranges from 0 to pi − 1. Let v, w ∈ V (G) be given, where v ∈ X(v1, ..., vt)

and w ∈ X(w1, ..., wt). If vi 6= wi for all 1 ≤ i ≤ t, then v and w are adjacent.

Suppose vi = wi for at least one value of i. Then v and w are non-adjacent,

which implies that the diameter of Gn is at least 2. If n is odd, pi ≥ 3 for all i.

Hence, each hi has at least three possible values. Thus, we can construct a class

X(u1, ..., un) such that ui 6= vi and ui 6= wi for all 0 ≤ i ≤ n. Let u ∈ X(u1, ..., un)

be given. Then u is adjacent to both v and w, so v, u, w is a path of length two

between v and w. Since v and w are arbitrary nonadjacent vertices of Gn, the

diameter of Gn is 2.

Case 3 : Suppose n is even, and n ≥ 2. We again let v, w ∈ V (G) be given, where

v ∈ X(v1, ..., vt) and w ∈ X(w1, ..., wt). If vi 6= wi for all 1 ≤ i ≤ t, then v and w

are adjacent. If vi = wi for some i, the situation is more complicated. We have

n = pe11 p
e2
2 ...p

et
t , with p1 = 2. Thus, for each X(h1, ..., ht), h1 has only two possible

values. If v1 = w1 for v and w, we can again construct a class X(u1, ..., un) such

that ui 6= vi and ui 6= wi for all 0 ≤ i ≤ n. Thus, any vertex in l is adjacent to

both v and w, and the minimum length for a path between v and w is 2.

If, v1 6= w1, but vi = wi for some i ≥ 2, the above argument fails. Clearly, v

and w are non-adjacent. However, we cannot construct a class whose vertices are

adjacent to both v and w. The first coordinate of any class will be equal either to

v1 or w1. Thus, there is no path of length two between v and w. Since there exist

pairs of vertices in Gn which are not connected by any path of length 1 or 2, the

diameter of Gn is at least 3.

We now show that the diameter of Gn is exactly 3. We construct a class of vertices

X(u1, ..., ut), as follows. If vi 6= wi, let ui = wi. If vi = wi, let ui be any integer

such that ui 6= wi, 0 < ui < pi − 1. Let u ∈ X(u1, ..., ut) be given. Then u is

adjacent to v. Also, u and w agree in their first coordinate, so there exists a vertex

y adjacent to both u and w. Hence v, u, y, w is a path of length three between v

and w. So the minimun length for such a path is three, so the diameter of Gn is

at most 3. Combining this result with the lower bound for diameter given above,

this implies that the diameter of Gn is exactly 3.

In the following we use diam(G) and gr(G) (respectively) to denote the diameter

and girth of a graph G.
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Theorem 2.4.1. Let R ∼= R1 × ...×Rt be an Artinian ring. Then

diamGR =



1 if t = 1 and R is afield

2 if t = 1 and R isn′t afield

2 if t ≥ 2, f1 ≥ 3

3 if t ≥ 2, f1 = 2, f2 ≥ 3

∞ if t ≥ 2, f1 = f2 = 2

Proof. See [1].

Theorem 2.4.2. Let R ∼= R1 × ...×Rt be an Artinian ring. Then

grGR =


3 if f1 ≥ 3

6 if R ∼= Zr2 × Z3 for some r ≥ 1

∞ if R ∼= Zr2 for some r ≥ 1

4 otherwise

Proof. See [1].

Corollary 2.4.1. The number of triangles in GR is |R|
3

6

t∏
i=1

(1− 1
fi

)(1− 2
fi

).

Proof. If f1 = 2, then by Proposition 2.2.3. GR is triangle-free, so the claim holds

in this case. If f1 ≥ 3, then given a vertex a ∈ R, by Proposition 2.2.2 there are

|R∗| = |R|
t∏
i=1

(1 − 1
fi

) choices for an adjacent vertex b. Now, Proposition 2.2.3.

implies that there are |R|
t∏
i=1

(1− 1
fi

) choices for a third vertex which is a common

neighbor of both a and b. Since any such triangle may be formed in 6 distinct

ways, the total number of triangles is

|R|3

6

t∏
i=1

(1− 1

fi
)(1− 2

fi
).

Example 2.4.1. Consider the ring R = Z4 × Z9. Then f1 = |Z4/{0, 2}| = 2

and f2 = |Z9/{0, 3, 6}| = 3. In the figure 2.4 we observe that diamGR = 3; that

is exactly the minimum number of edges between any two vertices. Furthermore,

grGR = 4 such that the shortest length of any cycle is 4. In this ring we note that

Cay(R,R∗) is tiangle-free; that is

363

6
(1− 1

2
)(1− 2

2
)(1− 1

3
)(1− 2

3
) = 0
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Figure 2.4: Cayley Graph of Z4 × Z9

2.5 Connectivity

A separating set or vertex cut of a graph G is a set S ⊆ V (G) such that G−S
has more than one component. The vertex connectivity, or simply connectivity

κ(G), of a graph is defined to be the minimum number of vertices whose removal

disconnects the graph, or reduces it to single vertex; for example κ(Kp) = p − 1,

κ(Kn,n) = n.

A graph with more than two vertices has connectivity 1 if and only if it is con-

nected and has a cutvertex. A graph with more than one vertex has connectivity

0 if and only if it is disconnected.

An edge cut of a multigraph G is an edge-set of the form [S; S̄], with φ 6= S 6= V (G)

and S̄ = V (G)− S.

For S, T ⊆ V (G), [S, T ] = {xy ∈ E(G) : x ∈ S, y ∈ T}.

The edge-connectivity of G is

κ
′
(G) = min{|[S, S̄]| : [S, S̄] is an edge cut}.
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A graph G is k−edge-connected if there is no edge cut of size k − 1.

Let G be a connected graph. A disconnecting set of edges in G is a subset

D ⊆ E(G), such that removing the edges in D from G yields a disconnected graph.

Let u and v be distinct vertices of a graph G. An u, v-disconnecting set of edges

in G is a subset H of E(G) such that removing the edges of H from G yield a

graph with no paths from u to v.

We will use Menger’s theorem for edge connectivity to find edge connectivity of

Gn.

Theorem 2.5.1. Menger’s Theorem Suppose x and y are distinct vertices of

a graph G. Then the minimim size of an x, y-disconnecting set of edges equals the

maximum number of pairwise edge-disjoint x, y-paths in G.

Theorem 2.5.2. The unitary Cayley graph Xn has vertex connectivity κ(n) =

φ(n).

Proof. The proof is presented in [13](Theorem 4. page 3). It is left to the reader,

because some unrequired concepts are involved in the proof.

Proposition 2.5.1. The edge connectivity κ
′
(Gn) of Gn is equal to φ(n).

Proof. For n < 3, the proposition is trivial. Let n ≥ 3 be given. First, we show

κ
′
(Gn) ≥ φ(n).

Let v and w be vertices of Gn. Since Gn can be decomposed into φ(n)
2

disjoint

Hamiltonian cycles 1. Hence, there are at least φ(n) paths from v to w whose edge

sets are disjoint. By Menger’s theorem, to disconnect v and w, we must remove

at least φ(n) edges. Since v and w are arbitrary vertices of Gn, κ
′
(Gn) ≥ φ(n).

To see that κ
′
(Gn) = φ(n), note that we can isolate a vertex v of Gn, simply by

removing all edges incident at v. Since the degree of any vertex of Gn is φ(n), we

can isolate a vertex by removing φ(n) edges. Hence, κ(Gn) ≤ φ(n). Since we have

already shown the other inequality, κ(Gn) = φ(n), and the proof is complete.

Theorem 2.5.3. (Whitney [1932a])[14] If G is a simple graph, then

κ(G) ≤ κ
′
(G) ≤ δ(G).

Proof. The edges incident to a vertex v of minimum degree form an edge cut;

hence κ
′
(G) ≤ φ(G). It remains to show that κ(G) < κ

′
(G).

We have observed that κ(G) ≤ n(G) − 1. Consider a smallest edge cut [S, S].

If every vertex of S is adjacent to every vertex of S, then | [S, S] |=| S || S |≥
1A Hamiltonian cycle is a cycle which contains every vertex of a graph
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n(G)− 1 ≥ κ(G), and the desired inequality holds.

Otherwise, we choose x ∈ S and y ∈ S with x 6↔ y. Let T consist of all neighbors

of x in S and all vertices of S − {x} with neighbors in S. Every x, y path passes

through T , so T is a separating set. Also, picking the edges from x to T ∩ S and

one edge from each vertex of T ∩ S to S (shown bold below) yields | T | distinct

edges of [S, S]. Thus κ
′
(G) =| [S, S] |≥| T |≥ κ(G).

Figure 2.5

Proposition 2.5.2. Let R be any finite ring, and let κ(GR) and κ
′
(GR) denote

(respectively) the vertex-connectivity and edge-connectivity of its unitary Cayley

graph. Then κ(GR) = κ′(GR) = φ(R).

Proof. According to Whitney [1932a] κ(GR) ≤ κ
′
(GR) ≤| R∗ | holds. The other

direction can be done by showing that that GR is edge-transitive by observing that

for any edge {u, v} the automorphism x 7→ (v− u)−1(x− u) maps u to 0 and v to

1. Hence κ(GR) =| R∗ |, it follows that κ(G) = κ
′
(G) = φ(R).



Chapter 3

Digraphs Associated With

Quadratic Polynomials

The quadratic polynomial x2 − ax + b is reducible over the ring R if it can be

factored as x2− ax+ b = (x− c)(x− d), where a = c+ d, and b = cd. For n <∞,

one can construct a mapping ϕ : R×R −→ R×R in the form (a, b) 7−→ (a+b, a.b).

This mapping defines a relation between finite commutative rings R and digraphs
1. In this chapter the finite commutative ring Zn is chosen to work on.

3.1 Introduction

Let A = Zn be a finite ring. Define a mapping ϕ : A2 → A2 by (a, b) 7−→ (a+b, ab).

Likely, it reflects the ring structure of A. This mapping can be interpreted as a

finite directed graph G = G(A) with vertices A2 and arrows defined by ϕ. The

main idea is to deduce, if possible, ring properties of A from graph properties of

G such as, the number of components, the lengths of longest paths and longest

cycles, the maximal degree of vertices, etc. The graphs G(Zn = Z/nZ) should

reflect some number-theoretic properties of integers.

Since Zn is finite, it has integer characteristic n. We see that either n is prime, Zn
is a field and Zn[x] is a UFD, or n is not prime, Zn has zero-divisors and Zn[x]

does not have the UF property.

Example 3.1.1. The following digraphs represents the digraphs of the rings Z1,

Z2, Z3, Z4 and Z2×Z2. We note that G(Z4) and G(Z2×Z2) are not homomorphic,

because the digraph G(Z4) contains 5 cycles (or 5 closed walks), which is not

1This kind of associations between digraphs and finite rings is proposed by Aleksandar Lipkovski (e.g
[15])

32
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satisfied in the digraph G(Z2 × Z2).

80, 0<

80, 1<81, 0< 81, 1<

Figure 3.1: Digraphs G1 = G(Z1) and G2 = G(Z2)

80, 0<

80, 1<81, 0<

80, 2<

82, 0<

81, 1<

82, 1<

81, 2<

82, 2<

Figure 3.2: Digraph G3 = G(Z3)
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80, 0<

80, 1<81, 0<

80, 2<82, 0<

80, 3<

83, 0<

81, 1<

82, 1<

81, 2<

83, 2<

81, 3<

82, 2<

82, 3<

83, 1<

83, 3<

Figure 3.3: Digraph G4 = G(Z4)

0 0
0 0

0 0
0 1

0 1
0 0

0 0
1 0

1 0
0 0

0 0
1 1

1 1
0 0

0 1
0 1

0 1
1 0

0 1
1 1

1 0
0 1

1 0
1 0

1 0
1 1

1 1
0 1

1 1
1 0

1 1
1 1

Figure 3.4: Digraph of Z2 × Z2
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3.2 Degrees and Vertices

As we mentioned previously, the definition of the outgoing (incoming) degree of

the vertex (a, b) is the number of arrows beginning (ending) in this vertex. Since

G is a graph of a function, then the outgoing degree of each vertex (a, b) equals

one. One may ask what the incoming degree of the vertex (a, b) is. The answer is

shown in the following Proposition.

Proposition 3.2.1. The incoming degree of the vertex (a, b) ∈ G equals the num-

ber of distinct roots of the quadratic polynomial x2 − ax+ b ∈ Zn[x].

Proof. See [15].

In the case of Gp for prime p, the incoming degree of a vertex (a, b) can be either

0 (if x2 − ax + b is irreducible, i.e., 0 6= 4b − a2 ∈ Zp is a quadratic nonresidue

modulo p), or 1 (if 4b−a2 = 0), or 2 (if 4b−a2 6= 0 is a quadratic residue modulo p).

In the case of Gn for nonprime n, the incoming degree of a vertex (a, b) can be

greater than 2, which depends on the different factorizations of x2 − ax+ b.

Theorem 3.2.1. Let p1, p2, ..., pk be the composition of the number n. Then the

highest indegree of any vertex (a, b) in the graph G(Zn) is less than or equal to 2k.

Proof. Consider x2 − ax + b = 0 be any reducible quadratic polynomial over Zn.

Since the incoming degree of a vertex (a, b) is the number of roots of its polyno-

mial. Then According to Theorem 1.1.6 and Proposition 1.1.6, we observe that

indeg(a, b) = 2× 2× ...× 2(k − times) = 2k.

The starting vertices (a, b) (with incoming degree 0) correspond to irreducible

quadratic polynomials x2−ax+b in Zn[x]. It can easily be seen that the number i

of irreducible quadratic polynomials is i ≥ n2 −
(
n+1

2

)
= n(n−1)

2
(Zn[x] has unique

factorization exactly when n is prime, and then the equality holds), therefore the

number of starting vertices is i. This gives a rough upper estimate for the number

of components cn ≤ i.

3.3 Components and Closed Paths

Consider closed paths, or cycles, in G. Up to cyclic permutations, the cycles are

described by the corresponding arrow sequences.
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Definition 3.3.1. The sequence

(a1, b1)→ (a2, b2)→ ...→ (ak, bk). (3.1)

of arrows in G defines a cycle of length k (or a k-cycle) if (ak + bk, akbk) = (a1, b1)

and (ai + bi, aibi) 6= (aj, bj) for all j ≤ i < k.

We see from figure 3.3 that there may exist cycles of length 1 as well as longer

cycles. The definition also implies that if k > 1, then every bi 6= 0.

Proposition 3.3.1. 1. There are exactly n = #A cycles of length 1 in G, and

they correspond to the vertices (a, 0).

2. Each connected component of G contains exactly one cycle, and the number

of connected components is n+ #{cycles of length > 1}.
3. The graph G1 is a (weakly) connected component of G if and only if A has

no nontrivial nilpotent elements.

Proof. See [15].

Observe that in this subject the girth of the digraph Gn is 1, while the diameter

is infinity.

Proposition 3.3.2. For k = 1, the sequence” (3.1) is a 1-cycle ⇐⇒ σ1(b) = 0.

For k = 2, the sequence (3.1) is a 2-cycle ⇐⇒ σ1(b) = σ2(b) = 0.

For k = 3, the sequence (3.1) is a 3-cycle ⇐⇒ σ1(b) = σ2(b) = σ3(b) = 0.

Proof. See [15].

Remarks

1. In the ring A = Zn, this is equivalent to the condition that n is not squarefree,

since Zn has no nontrivial nilpotents if and only if n is square-free. This leads

to an (inefficient) algorithm for deciding whether a given integer n is square-

free: look for 2-cycles in the corresponding graph Gn.

2. The existence of a 3-cycle implies that the ring Zn for non-prime n has zero-

divisors, since in such case b1b2b3 = 0 and all bi 6= 0.

3. If the sequence (3.1) is a k − cycle, then σ1(b) = σ2(b) = ... = σk(b) = 0.

However, as the example A = Z5 shows, it is already false for k = 4: there

is a 4-cycle (2, 2) −→ (4, 4) −→ (3, 1) −→ (4, 3) such that σ1(b) = σ2(b) =

σ3(b) = 0 and σ4(b) 6= 0.

4. For any prime number p, if the digraph G(Zp) contains k − cycle, k > 1.

Then σk(b) 6= 0, that is because Zp is free of zero-divisors.

5. In the k − cycle, k > 1 we have b1 + b2 + ... + bk = 0, b21 + b22 + ... + b2k = 0

and an1 .a
n
2 ...a

n
k = 1 for any n ≥ 1.

6. The graph (G8) in [15] is represented as follows
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80, 0<

80, 1<81, 0<

80, 2<

82, 0<

80, 3<83, 0<

80, 4<

84, 0<

80, 5<85, 0<

80, 6<

86, 0<

80, 7<

87, 0<

81, 1<

82, 1<

81, 2<

83, 2<

81, 3<

84, 3<

81, 4< 85, 4<

81, 5<

86, 5<

81, 6< 87, 6< 81, 7<

82, 2<

84, 4<

82, 3<

85, 6<

82, 4<

82, 5<

87, 2<

82, 6<

82, 7<

83, 1<

83, 3<

86, 1<

83, 4<

87, 4<

83, 5<

83, 6<

83, 7<

84, 1<

84, 2<

84, 5<

84, 6<

84, 7<

85, 1<

85, 2<

85, 3<

85, 5<

85, 7<

86, 2<

86, 3<

86, 4<

86, 6<

86, 7<

87, 1<

87, 3<

87, 5<

87, 7<

Figure 3.5: Digraph of Z8
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3.4 Further Properties

Let p and q be relatively prime numbers, such that n = pq, p < q. Define a map

ϕ1 : Zn → Zp

that maps representatives 0 ≤ a < n in Zn to (a mod p) in Zp. Since p divides

n, then ϕ1 is a homomorphism. Moreover, kerϕ1 = pZn < Zn, and | kerϕ1 |= p.

Similarly, the same holds for ϕ2 : Zn → Zq.

Observe that mappings ϕ1 and ϕ2 induce mappings of corresponding graphs, which

will be denoted again by ϕ1 and ϕ2.

We will denote the longest cycle in the digraph G(Zn) by
−→
Cm for short, and all

our discussion later will be based on the construction of ϕ1 and ϕ2. Furthermore,

we will refer to Zn, Zp and Zq as sets of natural numbers.

Since a closed walk might be a cycle, so according to the structure of ϕ1 and ϕ2

and the sequence 3.1, we can reformulate the Corrollary 1.2.5 as follows:

Corollary 3.4.1. A mapping f : V (
−→
C k) → V (G) is a homomorphism of

−→
C k to

G if and only if f(1), f(2), ..., f(k) is a cycle in G.

That means, a closed walk, which is mapped by ϕ1(ϕ2) is a cycle. This consequence

will be used in this work from now on.

Proposition 3.4.1. Let
−→
Cm and

−→
Cn1 be two directed cycles in G(Zn) and G(Zp)

respectively. If
−→
Cm 7→

−→
Cn1, then we have n1 divides m.

Proof. Suppose that
−→
Cm is a s-cycle; that is,

(a1, b1)→ (a2, b2)→ ...→ (as, bs).

Since ϕ1 is a homomorphism, then

(ϕ1(a1), ϕ1(b1))→ (ϕ1(a2), ϕ1(b2))→ ...→ (ϕ1(as), ϕ1(bs))

is a cycle in G(Zp), and

(ϕ1(a1), ϕ1(b1)) = (ϕ1(as + bs), ϕ1(as.bs))

= (ϕ1(as) + ϕ1(bs), ϕ1(as).ϕ1(bs)) (3.2)
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Since ϕ1 connects q elements in Zn into every element a ∈ Zp, so that gives us two

cases:

1. If (ϕ1(a1), ϕ1(b1))=(ϕ1(a2), ϕ1(b2)). Then by (1), this process will be re-

peated for all (ϕ1(ai), ϕ1(bi)), i = 2, ..., s . Thus n1 = 1 and m = s.n1.

2. If (ϕ1(a1), ϕ1(b1)) = (ϕ1(aj), ϕ1(bj)), for some 2 < j < s. Then (ϕ1(ai), ϕ1(bi)),

i < j are all different. So according to (3.2) m = t.n1, for 1 ≤ t < s. Hence

m is divisible by n1.

If we suppose that n1|n2, n1 6= 1 (n1 might equal to n2), then it is not proved yet

that the maps ϕ1 and ϕ2 send the longest cycle
−→
Cm in G(Zn) to longest cycles

−→
C n1 and

−→
C n2 in G(Zp) and G(Zq) respectively. Because the cycles in G(Zp) and

G(Zq) which is smaller than
−→
C n1 and

−→
C n2 might have a pre-image which is a cycle

with length longer than the pre-image of
−→
C n1 and

−→
C n2 themselves. For instance,

let
−→
C n1 =

−→
C 3 and

−→
C n2 =

−→
C 6 then the pre-image for both of them is

−→
C 6 while

the pre-image of cycles
−→
C 3 and

−→
C 5 is a cycle

−→
C 15 which is longer than

−→
C 6. So

this case is not considerable in the following proposition. As a matter of fact the

computer calculations show that for n from 1 to 200 this exception case does not

exist at all.

Proposition 3.4.2. The maps ϕ1 and ϕ2 send the longest directed cycle
−→
Cm to

the longest directed cycles
−→
C n1 and

−→
C n2 respectively.

Proof. Suppose that
−→
C n1 ,

−→
C n2 are the longest cycles in G(Zp) and G(Zq) respec-

tivaly. Then n1, n2 will have only two possible cases:

Case (1) If n1 = 1, the cycles
−→
C n1 and

−→
C n2 have the same pre-image. Let us call

it
−→
C r, so n1|r, n2|r (see Proposition 3.4.1), and by Chinese Reminder Theorem

r = n2. Our goal now is to prove that
−→
C r is the longest cycle in G(Zn).

Assume that there is an another cycle
−→
C d 6=

−→
C r such that d > r, then the length

of ϕ1(
−→
C d) divides the length of

−→
C d, also the length of ϕ2(

−→
C d) divides the length

of
−→
C d. Then again by using Chinese Reminder Theorem we get ϕ1(

−→
C d) >

−→
C n1 or

ϕ2(
−→
C d) >

−→
C n2 (This inequality holds whether ϕ1(

−→
C d) and ϕ2(

−→
C d) are relatively

primes or they are not relatively primes); This contradicts our assumption, that

is
−→
C n1 ,

−→
C n2 are the longest cycles.

Case (2) If (n1, n2)=1. As we have done in the case (1), the cycles
−→
C n1 and

−→
C n2

will have the same pre-image
−→
C r where n1|r, and n2|r. Suppose that there is an

another cycle
−→
C q such that q > r, then the length of ϕ1(

−→
C q) divides the length of

−→
C q and the length of ϕ2(

−→
C q) divides the length of

−→
C q (see Proposition 3.4.1).
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• If the length of ϕ1(
−→
C q) = n1, then the length of ϕ2(

−→
C q) > n2. Similarly if

ϕ2(
−→
C q) = n2, then the length of ϕ1(

−→
C q) > n1. Both cases contradict with

our assumption.

• If the length of ϕ1(
−→
C q) = 1, in this case the length of

−→
C q equals the length

of ϕ2(
−→
C q), which means ϕ2(

−→
C q) > n2. This is a contradiction.

• If the length of ϕ1(
−→
C q) < n1 and it is not 1. Then ϕ2(

−→
C q) > n2 because

−→
C q >

−→
C r, where lengths of the last cycles is the product of ϕ1(

−→
C q), ϕ2(

−→
C q)

and
−→
C n1 ,

−→
C n2 respectively. This case indicates a contradiction.

Hence in both cases we have proved that
−→
C r =

−→
Cm which completes the proof.

Theorem 3.4.1. Let p, q ∈ N be relatively prime numbers, i.e., gcd(p, q) = 1. Let

n = p.q. Then, the length of the longest cycle
−→
Cm is the least common multiple

of n1 and n2, where n1 and n2 are the lengths of the longest cycles
−→
Cn1 and

−→
Cn2

respectively.

Proof. We will use the Lemma 1.1.4 in the proof. Consider that
−→
Cm is a s-cycle,

that is

(a1, b1)→ (a2, b2)→ ...→ (as, bs).

Then, h1(
−→
Cm) is a cycle in G(Zp). Similarly, h2(

−→
Cm) is a cycle in G(Zq). So

according to propositions 3.4.1 and 3.4.2, we have the following cases:

1. If (a1, b1) ∈ Zp × Zp ⊂ G(Zn). Then, both h1 and h2 send (a1, b1) to the

same vertex, so that the cycle
−→
Cm must terminate at the first multiple of

n1 and n2, because (a1, b1) is a unique original vertex of (ϕ1(a1), ϕ1(b1)) and

(ϕ2(a1), ϕ2(b1)).

2. If (a1, b1) /∈ Zp×Zp. Then, the map ϕ1 sends the element t in Zn to element

(t mod m) in Zp. Similarly, the map ϕ2 sends the element t in Zn to element

(t mod k) in Zq. Since m and k are two different modules, by Chinese Re-

mainder Theorem, two different vertices (ϕ1(a1), ϕ1(b1)) and (ϕ2(a1), ϕ2(b1))

uniquely determine the original vertex (a1, b1). Thus the length of
−→
Cm termi-

nates exactly at the first multiple of the lengths of
−→
Cn1 and

−→
Cn2 . Hence the

proof follows.

Theorem 3.4.2. Let p1, ..., pr ∈ N be pairwise relatively prime numbers, i.e.,

gcd(pi, pj) = 1 for i 6= j. Let n = p1...pr. Then the longest cycle
−→
Cn in G(Zn) has

a length m = LCM(n1, n2, ..., nr), where n1, n2, ..., nr are the lengths of the longest

cycles in G(Zp1), G(Zp2), ..., G(Zpr) respectively.

Proof. The proof can be done directly by using induction involving Chinese Re-

mainder Theorem.
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The following Proposition is well known as Fermat Little Theorem, and it is rep-

resented here for the sake of completeness.

Proposition 3.4.3. Let p be a prime and a ∈ Z be a number that is prime to p

(i.e., p does not divide a). Then

ap−1 ≡ 1 mod p.

Proposition 3.4.4. The length of the longest cycle
−−→
Clpm can be pm−1 or α.β for

some α > 1, where 1 < β is the length of the cycle, which is less than or equal to
−→
Cn1.

Proof. Let p be a prime number, and m > 1 be any integer. The function ϕ :

Zpm → Zp which is defined by ϕ(a) = a mod p is a homomorphism, and kerϕ =

pZpm < Zpm , where | kerϕ |= pm−1.

Suppose that

(a1, b1)→ (a2, b2)→ ...→ (as, bs)

is the longest cycle
−−→
Clpm in G(Zpm). Therefore, we have

If b1 ∈ kerϕ, then ϕ(
−−→
Clpm ) will be (a, 0), a = ϕ(a1) ∈ Zp. Since then, lpm = pm−1.

To prove that, We will consider the case m = 2, then use the mathematical in-

duction. Suppose b1 ∈ kerϕ, so b1 can be written in the form tp, where 1 ≤ t < p.

Applying the mapping ϕ on
−−→
Clp2 yeilds;

(a1, tp)→ (a1 + tp, a1tp)→ ...→ (a1 + (1 + a1 + a21 + ...+ ap−21 ), ap−11 tp)

From Fermat Little Theorem we have the following:

ap−11 p ≡ p mod p2

(ap−11 − 1)p ≡ 0 mod p2

Since then,

(a1 + (1 + a1 + a21 + ...+ ap−21 ), ap−11 tp) = (a1, tp)

Which means that this path is closed at (a1, tp). Therefore, the length of this cycle

is p.

If b1 /∈ kerϕ, then a1 won’t be in kerϕ neither. Thus we have a cycle ϕ(
−−→
Cpm) with

length more that 1. According to theorem 3.4.1, we observe that the length of the

cycle ϕ(
−→
Cn1) divides lpm . Hence lpm = αβ for some α > 1.

Note that, at the moment there is no way to determine the value of α in the second

case. For instance, when n = 5, 5-cycle is the longest cycle in G(Z25). At the same

time, 4-cycle is the longest cycle in G(Z5). When n = 11, 30-cycle is the longest
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cycle in G(Z121). At the same time, 6-cycle is the longest cycle in G(Z11).

Theorem 3.4.3. Let n ∈ N and n = pn1
1 p

n2
2 ...p

nr
r be the decomposition of n into

primes, such that pi 6= pj for i 6= j, Then, the longest cycle
−→
Cn of G(Zn) has a

length m = LCM(lpn1
1
, lpn2

2
, ..., lpnr

r
), where lpn1

1
, lpn2

2
, ..., lpnr

r
are the lengths of the

longest cycles in G(Zpn1 ), G(Zpn2 ), ..., G(Zpnr ) respectively.

Proof. The proof holds by following the preceding argument, Theorem 3.4.2 and

Chinese Remainder Theorem.

Theorem 3.4.4. Suppose that n ∼= 1(mod m). There is a cycle of length r, r ≥ 1

in the graph G(Zmn)(not neccessary the longest one) if and only if the longest cycle

in G(Zm) is of length r.

Proof. assume that
−→
Cr is the longest cycle in the graph G(Zm), that is

(a1, b1)→ (a2, b2)→ ...→ (ar, br)

Since f is a homomorphism. Then f(
−→
Cr) is a cycle in the graph G(Zmn) . Since

every element in Imf is of the form [na]mn, a ∈ Zm , therefore, we notice that

(f(a1), f(b1)) = (na1, nb1) = (n(ar + br), n(ar.br))

Since f is injective. Then f(
−→
Cr) is a cycle of length r.

(⇒) This direction can be proved easily by taking a map g : Zmn → Zm , where

g(a) = [a]m.

For more generalization, we show graphs of the direct product of rings of integers

modulo n.

Theorem 3.4.5. Let p and q be any two prime numbers. Then the longest cycle

in the graph G(Zp × Zq) is a cycle of length n = LCM(n1, n2), where n1 is the

length of the longest cycle in G(Zp) and n2 is the length of the longest cycle in

G(Zq).

Proof. The projection map ϕ1 : Zp × Zq → Zp , where ϕ1((a, b)) = [a]p is a

homomorphism.

Also the map ϕ2 : Zp × Zq → Zq, where ϕ2((a, b)) = [b]q is a homomorphism.

Suppose that (a1, b1) → (a2, b2) → ... → (ar, br) is the longest cycle in the graph

G(Zp × Zq), where ai, bi ∈ Zp × Zq.
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Since ϕ1 is a homomorphism then,

ϕ1((a1, b1)) = (ϕ1(a1), ϕ1(b1))

= (ϕ1(ar + br), ϕ1(ar.br))

= (ϕ1(ar) + ϕ1(br), ϕ1(ar).ϕ1(br)) (3.3)

From the definition of ϕ1, we observe that ϕ1(ai) is the first coordinate of ai, we

will refere to it by ai1, similarly, ϕ1(bi) is the first coordinate of bi, we will refere

to it by bi1.

ϕ2(ai) is the second coordinate of ai, we will refer to it by ai2, similarly, ϕ2(bi) is

the second coordinate of bi, we will refer to it by bi2.

Thus, from (3.3) we get

(a11, b11) = (ar1 + br1, ar1.br1). (3.4)

It is clear that ϕ1(
−→
Cr) is a cycle in G(Zp), also it satisfies (3.4). That shows us

ϕ1(
−→
Cr) divides

−→
Cr.

If we repeat the same procedure on ϕ2, we get

ϕ2((a1, b1)) = (ϕ2(a1), ϕ2(b1))

= (ϕ2(ar + br), ϕ2(ar.br))

= (ϕ2(a1) + ϕ2(br), ϕ2(ar).ϕ2(br)) (3.5)

Therefore,

(a12, b12) = (ar2 + br2, ar2.br2). (3.6)

It is clear that ϕ2(
−→
Cr) is a cycle in G(Zq), also it satisfies (3.6). That shows us

ϕ2(
−→
Cr) divides

−→
Cr, which means

−→
Cr is a multiple of ϕ1(

−→
Cr) and ϕ2(

−→
Cr).

Observe that n1 and n2 are the lengths of the longest cycles in the graphs G(Zp)
andG(Zq) respectivily. Furthermore, the maps ϕ1 and ϕ2 are onto and the multiple

of these two cycles is longer than any other two cycles.

Therefore, according to Theorem 3.4.1, we find that the length of
−→
Cr is the Least

Common Multiple of ϕ1(
−→
Cr) and ϕ2(

−→
Cr).

Theorem 3.4.6. Let p be a prime number, and
−→
Cn1 is the longest cycle in the

graph G(Zp). The longest cycle in the graph G(Zp × Zp) is a cycle of length

1. k = LCM(n1, β), if there is a cycle of length β such that 1 < β < n1 and

(n1, β) = 1.
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2. k = n1 if there is no such a cycle
−→
Cβ, 1 < β < n1. Or the only cycles which

are shorter than
−→
Cn1 are cycles of length divides n1.

Proof. Define the maps ϕ1 : Zp×Zp → Zp , by ϕ1((a, b)) = [a]p, and ϕ2 : Zp×Zp →
Zp, by ϕ2((a, b)) = [b]p.

The maps ϕ1 and ϕ2 are homomorphisms and onto. Consider that
−→
Cr is the

longest cycle in G(Zp × Zp); that is, (a1, b1) → (a2, b2) → ... → (ar, br), where

ai, bi ∈ Zp × Zp.
Since ϕ1 is a homomorphism then,

ϕ1((a1, b1)) = (ϕ1(a1), ϕ1(b1))

= (ϕ1(ar + br), ϕ1(ar.br))

= (ϕ1(ar) + ϕ1(br), ϕ1(ar).ϕ1(br)) (3.7)

We will use the same notations as we mentioned in the last theorem. ai1 refers to

the first coordinate in the element ai. Similarly, bi1 refers to the first coordinate

of bi.ai2 refers to the second coordinate in the element ai, similarly, bi2 refers to

the first coordinate of bi.

Thus, from (3.7) we get

(a11, b11) = (ar1 + br1, ar1.br1). (3.8)

It is clear that ϕ1(
−→
Cr) is a cycle in G(Zp), also it satisfies (3.8). That shows us

ϕ1(
−→
Cr) divides

−→
Cr.

If we repeat the same proccess on ϕ2, we get

ϕ2((a1, b1)) = (ϕ2(a1), ϕ2(b1))

= (ϕ2(ar + br), ϕ2(ar.br))

= (ϕ2(a1) + ϕ2(br), ϕ2(ar).ϕ2(br)) (3.9)

Therefore,

(a12, b12) = (ar2 + br2, ar2.br2). (3.10)

It is clear that ϕ2(
−→
Cr) is a cycle in G(Zq), it satisfies (3.10). That shows us ϕ2(

−→
Cr)

divides
−→
Cr.

Considering that ϕ1 and ϕ2 are onto, and
−→
Cr is multiple of ϕ1(

−→
Cr) and ϕ2(

−→
Cr).

Then, by Chinese Reminder Theorem we have the following:
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1. If G(Zp) contains at least a cycle
−→
Cβ, such that 1 < β < n1, and (n1, β) = 1.

Then m = LCM(n1, β).

2. If G(Zp) contains no cycles or contains cycle
−→
Cβ such that 1 < β < n1, or

β|n1 Then m = LCM(n1, β) = n1.

The largest multiple that we can get is the longest cycle in G(Zp), which means

that the length of
−→
Cr is exactly the length of the longest cycle in G(Zp).

Theorem 3.4.7. Let pn1
1 , p

n2
2 , ..., p

nr
r be coprimes, such that pi 6= pj for i 6=

j, Then, the longest cycle
−→
Cn in G(Zpn1

1
× Zpn2

2
× ...Zpnr

r
) has a length m =

LCM(lpn1
1
, lpn2

2
, ..., lpnr

r
), where lpn1

1
, lpn2

2
, ..., lpnr

r
are the lengths of the longest cy-

cles in G(Zpn1 ), G(Zpn2 ), ..., G(Zpnr ) respectively.

Proof. This theorem can be proved in other way. Define a mapping ϕ : Zpn1
1 p

n2
2 ...pnr

r
→

Zpn1
1
×Zpn2

2
× ...Zpnr

r
by ϕ([a]pn1

1 p
n2
2 ...pnr

r
) = ([a]pn1

1
, [a]pn2

2
, ..., [a]pnr

r
). This mapping is

well defined. Furthermore, it is an isomorphism. We know that the longest cycle

in G(Zpn1
1 p

n2
2 ...pnr

r
) is the least commmon multiple of the length of the longest cycles

in the digraphs G(Zpn1 ), G(Zpn2 ), ..., and G(Zpnr ) (e.g [16]). Since ϕ is bijection,

Then the longest cycle in G(Zpn1
1
×Zpn2

2
× ...Zpnr

r
) has a length equal to the length

of the longest cycle in G(Zpn1
1 p

n2
2 ...pnr

r
).



Chapter 4

Matlab and Mathematica

Algorithms

In this chapter we are going to present the algorithms, which have been built

on computer softwares Mathematica and Mathlab, to calculate the requested as-

sociated digraphs in chapter 3. Some notations are presented and quoted from

[17].

4.1 Fundamental Number-Theoretic Algorithms

An algorithm is an effective method expressed as a finite list of well defined instruc-

tions for calculating a function. Starting from an initial state and initial input,

the instructions describe a computation that, when executed, proceeds through a

finite number of well-defined successive states, eventually producing ”output and

terminating at a final ending state. For us, an algorithm will be a method which,

given certain types of inputs, gives an answer after a finite amount of time.

Several things must be considered when one describes an algorithm. The first is

to prove that it is correct, i.e. that it gives the desired result when it stops. Then,

since we are interested in practical implementations, we must give an estimate of

the algorithm’s running time, if possible both in the worst case, and on average.

The size of the inputs for an algorithm will usually be measured by the number of

bits that they require. For example, the size of a positive integer N is [lgN ] + 1.

We will say that an algorithm is linear, quadratic or polynomial time if it requires

time O(lnN), O(ln2N), O(P (lnN)) respectively, where P is a polynomial. If the

time required is O(Na), we say that the algorithm is exponential time. Finally,

46
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many algorithms have some intermediate running time, for example

eC
√
lnNlnlnN ,

which is the approximate expected running time of many factoring algorithms and

of recent algorithms for computing class groups. In this case we say that the al-

gorithm is sub-exponential.

One of the most common operations used in number theory is modular multipli-

cation, i.e. the computation of ab modulo some number N , where a and b are

non-negative integers less than N . This can, of course, be trivially done using the

formula div(mul(a, b), N), the result being the value of remainder. When many

such operations are needed using the same modulus N , there is a more clever

way of doing this, due to P . Montgomery which can save 10 to 20 percent of the

running time, and this is not a negligible saving since it is an absolutely basic

operation.

Many of the algorithms that we give are valid over any base ring or field R where

we know how to compute. We must emphasize however that the behavior of these

algorithms will be quite different depending on the base ring. Let us look at the

most important example.

The simplest rings are the rings R = Z/NZ, especially when N is small. Opera-

tions in R are simply operations ”modulo N” and the elements of R can always be

represented by an integer less than N , hence of bounded size. Using the standard

algorithms mentioned in the preceding section, and a suitable version of Euclid’s

extended algorithm to perform division, all operations need only O(ln2N) bit op-

erations (in fact O(1) since N is considered as fixed!). An important special case

of these rings R is when N = p is a prime, and then R = Fp the finite field with

p elements. More generally, it is easy to see that operations on any finite field Fq
with q = pk can be done quickly.

4.2 Introduction to Mathematica

Mathematica is a program created by physicist Stephen Wolfram. He’s the icono-

clastic London-born genius who won a PhD from California Institute of Technology

in just one year, at age 20. Mathematica 1.0 was officially launched on Thursday,
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June 23, 1988.

Mathematica is renowned as the world’s ultimate application for computations.

But it’s much more, it’s the only development platform fully integrating compu-

tation into complete workflows for modelling the simulation, visualization, devel-

opment, documentation and appointments.

Using unique hybrid symbolic numeric computation, Mathematica delivers results

of method reliability imprecision, it solves problems other tools cannot. With

Mathematica people can get results faster, thanks to thousands of highly opti-

mized algorithms. Mathematica also can connects to all existing applications and

databases, allowing us to build a new or existing work and infrastructures effort-

less deliver our content in applications cross-platform using innovate technologies,

like computable document format. Twenty-five years of building on bold design

principles make Mathematica the world’s ultimate computation platform.

Mathematica is redefining the field of graph visualization, significantly raising the

quality and efficiency of automatic graph layout, and allowing immediate graph

visualization to become a mainstream part of the everyday computational work-

flow.

Built into Mathematica is a large collection of original and state-of-the-art graph

layout algorithms developed through a collaboration between algorithm developers

and graphic designers at Wolfram Research. Given particular data, Mathematica

automatically selects the best algorithms to use, and by being able to draw on

Mathematica vast web of geometric, numeric, graph theoretic, visualization and

rendering capabilities, it is able to achieve a very high level of efficiency, routinely

handling graphs with even millions of nodes.

4.2.1 Algorithm Construction

In the beginning, we turn back to the construction of the associated digraphs with

quadratic polynomials in Zn[x]. The maping ϕ : Zn × Zn −→ Zn × Zn, which

is defined by ϕ((a, b)) = (a + b, ab), presents digraph with edges and vertices

(a, b) ∈ Zn × Zn. The cycles are defined as in 3.1. Every component starts with

irreducible vertex and ends with a cycle.
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Remark . The vertex (a, b) is represented in Mathematica in this form {a, b}.
The algorithm is mainly divided into several parts; to achieve it, we need first to

create the ring Zn. That is,

L1 = Table[i, i, 0, n - 1]

where n is input value. The addition and multiplication on this ring is defined in

this way:

Mod[a[[1]] + a[[2]], n], Mod[a[[1]] * a[[2]], n]

Now, we can see the main parts of the algorithm

• Create the set of vertices Zn × Zn
A = CartesianProduct[L1, L1]

• Define the mapping ϕ by

f[a] := Mod[a[[1]] + a[[2]], n], Mod[a[[1]]*a[[2]], n]

• The first part of the excution, that we create the paths, where the mapping

ϕ maps the first vertex in A then its image consecutively untill the image of

one vertex is already included in the path. Afterwords, new component is

being started. The vertices, which are mapped by ϕ, are immediatly removed

from A. Indeed, some of these paths are subcomponents in G(Zn).

i = 1;

While[l > 0,

bi = A[[1]];

Z = DeleteCases[A, A[[1]]];

A = Z;

l = Length[A];

If[l == 0, Break[]];

If[Cases[A, f[bi[[1]]]]==f[bi[[1]]],

v=1;

While[Cases[A, f[bi[[v]]]]==f[bi[[v]]],

AppendTo[bi, f[bi[[v]]]] ;

Z = DeleteCases[A, f[bi[[v]]]];

A = Z;

l = Length[A];

v++ ]];

i++]

• Now, All we need paths which contain cycles, so we have to omit the others.

This step represents us the number of components.
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t=0;

d=0;

While[t < i,

t++;

If[Cases[bt, f[Last[bt]]] == {f[Last[bt]]},
d++;

xd = bt]]

• To determine the cycles and their number, we have to cut the vertices which

are not included in any cycle, and then to measure thier length. That leads

us to our request.

k=0;

While[k < d,

k++;

While[f[Last[xk]] 6= f[First[xk]],

yk = DeleteCases[xk, First[xk]];

xk=yk]]

• The longest cycles are the cycles which have the largest length, measuring all

the cycles, then keeping the longest ones is shown in the following command.

h = 0;

While[h < k,

h++;

jh = Length[xh]];

q=1;

p=0;

m={1};
While[q < k,

q++;

m=Append[m, jq]];

While[p < k,

p++;

s=Max[m]];

u= Position[m, s];

r = Length[u];

e = 0;
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While[e < r, e++; Print[xu[[e,1]]]]

• The output data xu[[e,1]] refers to the form of the longest cycles, d refers to

the number of components, s refers to the length of longest cycles, and r

refers to the number of longest cycles.

Example 4.2.1. The following is an excution of the algorithm for five randome

values.

n=3

{{0, 0}}
{{1, 0}}
{{2, 0}}
3

1

3

n=11

{{1, 9}, {10, 9}, {8, 2}, {10, 5}, {4, 6}, {10, 2}}
12

6

1

n=19

{{18, 15}, {14, 4}, {18, 18}, {17, 1}, {18, 17}, {16, 2}, {18, 13}, {12, 6}}
20

8

1

n=55

{{54, 53}, {52, 2}, {54, 49}, {48, 6}, {54, 13}, {12, 42}, {54, 9}, {8, 46}, {54, 38}, {37, 17},
{54, 24}, {23, 31}}
{{4, 28}, {32, 2}, {34, 9}, {43, 31}, {19, 13}, {32, 27}, {4, 39}, {43, 46}, {34, 53}, {32, 42},
{19, 24}, {43, 16}}
73

12

2

n=100

{{11, 30}, {41, 30}, {71, 30}, {1, 30}, {31, 30}, {61, 30}, {91, 30}, {21, 30}, {51, 30}, {81, 30}}
{{1, 10}, {11, 10}, {21, 10}, {31, 10}, {41, 10}, {51, 10}, {61, 10}, {71, 10}, {81, 10}, {91, 10}}
{{51, 70}, {21, 70}, {91, 70}, {61, 70}, {31, 70}, {1, 70}, {71, 70}, {41, 70}, {11, 70}, {81, 70}}
{{21, 90}, {11, 90}, {1, 90}, {91, 90}, {81, 90}, {71, 90}, {61, 90}, {51, 90}, {41, 90}, {31, 90}}
271
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10

4

Next, we are proposing another part of the algorithm to calculate the longest path

in the graph. This part is seperated in order to avoid having stored values in the

memory during the first excution, which generate huge erors. Furthermore, this

seperation shortens the run-time to get fast results.

The idea of this algorithm is to pick up the irreducible vertices, because they cor-

respond to the start of any component, then to map those vertices. That can be

shown in the following.

• Create the A and define the mapping ϕ.

L1 = Table[i, i, 0, n - 1];

A = CartesianProduct[L1, L1];

l = Length[A];

f[a] := Mod[a[[1]] + a[[2]], n], Mod[a[[1]]*a[[2]], n];

• Determine the vertices which are reducible, then remove them from A.

A1 = Table[f[A[[t]]], t, 1, l];

c = Union[A1];

A1 = c;

m = Length[A1];

t = 0;

While[t < m,

t++;

Z = DeleteCases[A, A1[[t]]];

A = Z];

• Now, start mapping the rest of vertices in A to get the full paths.

i = 1;

While[l > 0,

bi = A[[1]];

Z = DeleteCases[A, A[[1]]];

A = Z;

l = Length[A];

v = 1;

While[Cases[bi, f[bi[[v]]]] 6= f[bi[[v]]],
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AppendTo[bi, f[bi[[v]]]] ;

v++ ];

If[l == 0, Break[]]; i++];

• To get the longest paths we need to the length of every path we get, then to

omit the shorter ones.

l = Length[A];

h = 0;

While[h < i,

h++;

jh = Length[bh]];

q = 1;

p = 0;

m = 1;

While[q < i,

q++;

m = Append[m, jq]];

While[p < i,

p++;

s = Max[m]];

u = Position[m, s];

r = Length[u];

e = 0;

While[e < r,

e++; Print[bu[[e, 1]]]];

Print[s]

• The output data Print[bu[[e, 1]]] refers to the form of the longest paths,

Print[s] refers to thier length, and Print[s] refers to thier number.

Example 4.2.2. The longest path in the digraph G(Z7) is shown as below.

{{2, 6}, {8, 1}, {9, 8}, {6, 6}, {1, 3}, {4, 3}, {7, 1}, {8, 7}, {4, 1}, {5, 4}, {9, 9}, {7, 4}, {0, 6},
{6, 0}}
{{6, 2}, {8, 1}, {9, 8}, {6, 6}, {1, 3}, {4, 3}, {7, 1}, {8, 7}, {4, 1}, {5, 4}, {9, 9}, {7, 4}, {0, 6},
{6, 0}}
14

2
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Remark. In this example we have two longest paths in one component.

We go forward to view another algorithm, where two input values are involved. In

this case alittle changes is needed in the beginning such as;

L1 = Table[i, i, 0, n1 - 1];

L2 = Table[i, i, 0, n2 - 1];

A1 = CartesianProduct[L1, L2];

A = CartesianProduct[A1, A1];

f[a] := {{Mod[a[[1, 1]] + a[[2, 1]], n1], Mod[a[[1, 2]] + a[[2, 2]],

n2]},
{Mod[a[[1, 1]]*a[[2, 1]], n1], Mod[a[[1, 2]]*a[[2, 2]], n2]}};

The symboles n1 and n2 are input data, and the rest of the algorithm is similar to

the first algorithm.

Example 4.2.3. Consider the values n1=5, n2=11. Then the longest cycles in

the graph is,

{{{4, 10}, {3, 9}}, {{2, 8}, {2, 2}}, {{4, 10}, {4, 5}}, {{3, 4}, {1, 6}}, {{4, 10}, {3, 2}},
{{2, 1}, {2, 9}}, {{4, 10}, {4, 9}}, {{3, 8}, {1, 2}}, {{4, 10}, {3, 5}}, {{2, 4}, {2, 6}},
{{4, 10}, {4, 2}}, {{3, 1}, {1, 9}}}
{{{4, 1}, {3, 9}}, {{2, 10}, {2, 9}}, {{4, 8}, {4, 2}}, {{3, 10}, {1, 5}}, {{4, 4}, {3, 6}},
{{2, 10}, {2, 2}}, {{4, 1}, {4, 9}}, {{3, 10}, {1, 9}}, {{4, 8}, {3, 2}}, {{2, 10}, {2, 5}},
{{4, 4}, {4, 6}}, {{3, 10}, {1, 2}}}
73

12

2

The algorithm, which calculates the longest path in this case, is quite similar to

the previous one. That is:

L1 = Table[i, i, 0, n1 - 1];

L2 = Table[i, i, 0, n2 - 1];

A1 = CartesianProduct[L1, L2];

A = CartesianProduct[A1, A1];

l = Length[A];

f[a] := {{Mod[a[[1, 1]] + a[[2, 1]], n1], Mod[a[[1, 2]] + a[[2, 2]],

n2]},
{Mod[a[[1, 1]]*a[[2, 1]], n1], Mod[a[[1, 2]]*a[[2, 2]], n2]}};
A2 = Table[f[A[[t]]], t, 1, l];
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c = Union[A2];

A2 = c;

m = Length[A2];

t = 0;

While[t < m,

t++;

Z = DeleteCases[A, A2[[t]]];

A = Z];

Example 4.2.4. The following is the longest path in the graph G(Z2 × Z3).

{{{0, 2}, {0, 2}}, {{0, 1}, {0, 1}}, {{0, 2}, {0, 1}}, {{0, 0}, {0, 2}}, {{0, 2}, {0, 0}}}
{{{0, 2}, {1, 2}}, {{1, 1}, {0, 1}}, {{1, 2}, {0, 1}}, {{1, 0}, {0, 2}}, {{1, 2}, {0, 0}}}
{{{1, 2}, {0, 2}}, {{1, 1}, {0, 1}}, {{1, 2}, {0, 1}}, {{1, 0}, {0, 2}}, {{1, 2}, {0, 0}}}
{{{1, 2}, {1, 2}}, {{0, 1}, {1, 1}}, {{1, 2}, {0, 1}}, {{1, 0}, {0, 2}}, {{1, 2}, {0, 0}}}
5

4

4.3 Introduction to Matlab

MATLAB is a numerical computing environment and fourth-generation program-

ming language. The name MATLAB stands for MATrix LABoratory, because its

basic data element is a matrix (array), MATLAB allows matrix manipulations,

plotting of functions and data, implementation of algorithms, creation of user in-

terfaces, and interfacing with programs written in other languages, including C,

C + +, Java, and Fortran.

Three men, J. H. Wilkinson, George Forsythe, and John Todd, played important

roles in the origins of MATLAB. Our account begins more than 50 years ago.

Cleve Moler, the chairman of the computer science department at the University

of New Mexico, started developing MATLAB in the late 1970s. It soon spread

to other universities and found a strong audience within the applied mathematics

community. Jack Little, an engineer, was exposed to it during a visit Moler made

to Stanford University in 1983. Recognizing its commercial potential, he joined

with Moler and Steve Bangert. They rewrote MATLAB in C and founded Math-

Works in 1984 to continue its development. These rewritten libraries were known

as JACKPAC. In 2000, MATLAB was rewritten to use a newer set of libraries for

matrix manipulation, LAPACK.
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MATLAB was first adopted by researchers and practitioners in control engineering,

Little’s specialty, but quickly spread to many other domains. It is now also used in

education, in particular the teaching of linear algebra and numerical analysis, and

is popular amongst scientists involved in image processing. MATLAB can be used

for math computations, modeling and simulations, data analysis and processing,

visualization and graphics, and algorithm development. The standard MATLAB

program has tools (functions) that can be used to solve common problems. In

addition, MATLAB has optional toolboxes that are a collection of specialized pro-

grams designed to solve specific types of problems. Examples include toolboxes

for signal processing, symbolic calculations, and control systems.

4.3.1 Algorithm Construction

In Matlab the ordered pairs is represented as matrices of type 1× 2. i.e, the pair

(a, b) has the form [a, b]. A different way has been done to construct this algo-

rithm, where we obligated to sperate the algorithm into several M-files. The main

M-file calls the rest in order make the excution. That is done as next.

The first step is to creat the Cartesian product of A. Note that the notation S is

used instead of A in this algorithm

function A=cartesianprod(n)

D=zeros([n*n 2]);

t=0;

for i=0:n-1

for j=0:n-1

t=t+1;

D(t, [1 2])=[i j];

end

end

A=D;

Next, we have to define the mapping ϕ by

function [f]=myfunc(A,n)

s=A(1,1);

r=A(1,2);

f=[mod(s+r,n),mod(s.*r,n)];

end
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Similarly, we create paths by mapping the first vertex in A, then remove it from

A. A new path is chosen when the image of a vertex is not found in A(it means

that the vertex is already mapped).

function [R]=prepaths(n)

A2=cartesianprod(n);

S=A2;

r=0;

q=0;

m=n*n;

while q<m

r=r+1;

Sn=myfunc(S(1,[1 2]),n);

T(1,[2*r-1 2*r])=S(1,[1 2]);

S=checkpair(S,T(1,[2*r-1 2*r]));

v1=size(S);

v=v1(1,1);

if v==1

q=m;

end

a=checkloop(S,Sn);

if a==0

T(2,[2*r-1 2*r])=Sn;

S=checkpair(S,T(2,[2*r-1 2*r]));

v1=size(S);

v=v1(1,1);

if v==1

q=m;

end

t=1;

b=0;

while b<m

t=t+1;

Snj=myfunc(Sn,n);

a=checkloop(S,Snj);

if a==1

b=m;

T(t+1,[2*r-1 2*r])=Snj;
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end

if a==0

Sn=Snj;

T(t+1,[2*r-1 2*r])=Snj;

S=checkpair(S,T(t+1,[2*r-1 2*r]));

v1=size(S);

v=v1(1,1);

end

if v==1

q=m;

end

end

end

end

r1=r+1;

T(1,[2*r1-1 2*r1])=S(1,[1 2]);

R=T;

end

Two M-files are needed in this file for execution. The first one removes the pair

which is chosen to be in R from S.

function [S]=checkpair(S1,T)

m=size(S1);

n=m(1,1);

if T==S1(1,[1 2])

S2=S1(2:n,:);

end

if T==S1(n,[1 2])

S2=S1(1:n-1,:);

end

for i=2:n-1

if T==S1(i,[1 2])

k=i;

S2=S1([1:k-1 k+1:n],:);

end

end

S=S2;
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end

The second one tests whether the element in R(The matrix which include all paths)

or not.

function [w]=checkloop(S,T)

c=size(S);

a=c(1,1);

B=zeros(1,a);

for j=1:a

if T==S(j,[1 2]);

k=j;

B(1,k)=1;

end end

w=isequal(B,zeros(1,a)); end

Here is the main algorithm, which presents the required output data.

function [L1,N]=graphloop(n)

[R]=longestloop(n);

c=size(R);

n1=c(1,2);

F1(1,[1 2])=[1 0];

for j=2:n1/2

M=longcolumn(R(:,[2*j-1 2*j]));

M1=checkpath(M);

g1=size(M1);

g2=g1(1,1);

F1(j,[1 2])=[j g2];

end

m=max(F1(:,2));

F3=checkrow(F1);

a1=size(F3);

a=a1(1,1);

N=a;

F4=F3(:,1);

Ll=F3(1,2)-1;

for i=1:a
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j=F4(i,1);

M=longcolumn(R(:,[2*j-1 2*j]));

M1=checkpath(M)

end

During the calculation, some entries were ignored, so that [00] occupied these en-

tries(property in matlab). THis led us to creat the following file.

function [V]=longcolumn(S)

c=size(S);

m=c(1,1);

b=0;

while b<m

if S(m-b,1)+S(m-b,2)==0

b=b+1;

S=S(1:m-b,:);

else b=m;

end

end

V=S;

end

Another M-file is requested in the main algorithm. This file is responsible for

collecting the cycles which are included in R.

function [L]=checkpath(S)

c=size(S);

m=c(1,1);

k=0;

for i=1:m-1

if S(m,[1 2])==S(m-i,[1 2])

k=m-i;

end

end

if k==0

L=[0 0];

else L=S(k:m,[1 2]);

end
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end

The Last M-file in this algoritm keeps the longest path(cycle) and check whether

other paths(cycles) have the same length.

Example 4.3.1. >> [L1,N]=graphloop(11)

M1 =
1 9

10 9

8 2

10 5

4 6

10 2

1 9

L1 = 6

N = 1

The following diagram describes the construction of the whole algorithm in Matlab

and the way how it works.

Figure 4.1: Diagram of Algorithm



Chapter 5

Computer Calculations

In the present chapter, we are going to present the calculations of digraphs asso-

ciated with the quadratic polynomials with coefficients in R. Some notations are

used, such as cn (number of components), lc (length of the longest cycle), N.lc

(number of lengest cycles), and pn (the longest path).

5.1 Digraphs Associated with Quadratic Polynomials in

Zn[x]

Since R is finite, it has integer characteristic charR ∈ N. If n is not a prime, then

R has zero-divisors and R[x] is not a unique factorization ring. If n = p is prime,

then A nevertheless could have zero-divisors. However, if R is a (finite) domain,

then it must be a field. One can see some interesting results in Tables 5.1 and 5.2,

where the the associated digraphs of the ring Zn for 1 ≤ n ≤ 200 are considered,

such as:

1. For any prime number p, if G(Zp) has cycles of length greater than 1, then

the longest is unique. However, the opposite is not neccessary true. For

instance, the digraph G(Z172) has a unique longest cycle of length 22, while

172 is not prime.

2. With respect to the prime numbers, the cycles in digraphs G(Z2), G(Z3),

and G(Z7) are all cycles of length 1. Furthermore, the digraph G(Zpq) has p

longest cycles, in which q 6= p = 2, 3, 7.

3. The longest paths in G(Zpn1
1

), G(Zpn2
2

), ..., and G(Zpnk
k

) are not divisors of

the longest paths in G(Zn), n = pn1
1 p

n2
2 ...p

nk
k .

4. The relation between paths and number of components are inverse relation-

ship. i.e, longer paths appear in the digraphs with lower components and

vice versa.

62
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Table 5.1: Table of Results for 1 ≤ n ≤ 100

n cn lc. N. lc pn n cn lc. N. lc pn

1 1 1 1 1 51 57 10 3 18
2 2 1 2 3 52 71 4 6 22
3 3 1 3 5 53 56 14 1 67
4 5 2 1 4 54 126 9 6 11
5 6 4 1 6 55 73 12 2 18
6 6 1 6 5 56 84 4 14 12
7 7 1 7 9 57 60 8 3 34
8 12 4 2 6 58 64 14 2 35
9 14 3 2 6 59 65 17 1 130
10 12 4 2 6 60 93 4 18 8
11 12 6 1 14 61 64 17 1 92
12 15 2 3 6 62 64 18 2 44
13 14 4 1 22 63 98 3 14 11
14 14 1 14 9 64 176 32 16 34
15 18 4 3 8 65 87 4 22 22
16 30 8 4 10 66 72 6 6 14
17 19 10 1 18 67 71 39 1 103
18 28 3 4 6 68 97 10 6 18
19 20 8 1 34 69 72 10 3 32
20 31 4 6 6 70 84 4 14 12
21 21 1 21 9 71 74 10 1 96
22 24 6 2 14 72 180 12 4 14
23 24 10 1 32 73 76 30 1 153
24 36 4 6 8 74 78 24 2 49
25 50 5 4 12 75 150 5 12 12
26 28 4 2 22 76 101 8 6 34
27 63 9 3 10 77 84 6 7 14
28 35 2 7 10 78 84 4 6 22
29 32 14 1 35 79 81 28 1 96
30 36 4 6 8 80 206 8 36 12
31 32 18 1 44 81 252 27 9 28
32 72 16 8 18 82 90 22 2 63
33 36 6 3 14 83 85 12 1 144
34 28 10 2 18 84 105 2 21 10
35 42 4 7 12 85 118 20 2 24
36 73 6 2 8 86 96 11 2 98
37 39 24 1 49 87 96 14 3 35
38 40 8 2 34 88 148 12 4 18
39 42 4 3 22 89 95 51 1 149
40 80 4 30 8 90 174 12 4 14
41 45 22 1 63 91 98 4 7 22
42 42 1 42 9 92 121 10 6 32
43 48 11 1 98 93 96 18 3 44
44 61 6 6 15 94 100 12 2 60
45 87 12 2 14 95 123 8 9 34
46 48 10 2 32 96 216 16 24 20
47 50 12 1 60 97 102 23 1 139
48 90 8 12 12 98 236 7 12 10
49 118 7 6 10 99 175 6 21 16
50 100 5 8 12 100 271 10 4 14
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Table 5.2: Table of Results for 101 ≤ n ≤ 200

n cn lc. N.lc pn n cn lc. N.lc pn

101 104 10 1 127 151 155 30 1 221
102 114 10 6 18 152 248 8 20 34
103 106 22 1 135 153 272 30 2 34
104 176 4 46 22 154 168 6 14 14
105 126 4 21 12 155 193 36 2 62
106 112 14 2 67 156 213 4 18 22
107 109 13 1 155 157 160 63 1 178
108 333 18 3 20 158 162 28 2 96
109 113 30 1 157 159 168 14 3 67
110 146 12 4 18 160 520 16 72 20
111 117 24 3 49 161 168 10 7 32
112 210 8 28 16 162 504 27 18 29
113 116 8 1 200 163 169 34 1 206
114 120 8 6 34 164 229 22 6 64
115 145 20 2 42 165 219 12 6 18
116 163 14 6 35 166 170 12 2 144
117 199 12 2 30 167 170 56 1 290
118 130 17 2 130 168 252 4 42 12
119 133 10 7 18 169 552 208 3 226
120 240 4 90 8 170 236 20 4 24
121 343 30 24 36 171 283 24 2 50
122 128 17 2 92 172 243 22 1 98
123 135 22 3 63 173 180 50 1 219
124 161 18 6 44 174 192 14 6 35
125 406 25 20 29 175 350 5 28 13
126 196 3 28 11 176 374 24 8 30
127 132 79 1 205 177 195 17 3 130
128 416 64 32 66 178 190 51 2 149
129 144 11 3 98 179 184 20 1 241
130 174 4 44 22 180 467 12 12 14
131 132 18 1 168 181 185 22 1 203
132 183 6 18 15 182 196 4 14 22
133 140 8 7 34 183 192 17 3 92
134 142 39 2 103 184 292 20 4 42
135 396 36 3 38 185 240 24 9 49
136 240 20 4 24 186 192 18 6 44
137 144 26 1 106 187 230 30 2 36
138 144 10 6 32 188 253 12 6 61
139 142 9 1 219 189 441 9 21 17
140 217 4 42 12 190 246 8 18 34
141 150 12 3 60 191 196 21 1 305
142 148 10 2 96 192 528 32 48 36
143 169 12 2 30 193 198 151 1 303
144 462 24 8 26 194 204 23 2 139
145 197 28 2 49 195 261 4 66 22
146 152 30 2 153 196 625 14 6 16
147 354 7 18 11 197 205 33 1 285
148 197 24 6 49 198 350 6 42 16
149 155 22 1 197 199 202 40 1 275
150 300 5 24 12 200 728 20 8 24
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5.2 Digraphs Associated with Quadratic Polynomials in

Zn1
× Zn2

[x]

The ring of integers modulo n is a field if and only if n is a prime number. Oth-

erwise, it is not even a domain. However, the direct product of the rings Ri, for i

some index set I has zero divisors. For instance, in the ring Zp×Zq, the elements

(1, 0) and (0, 1) satisfy that (1, 0).(0, 1) = 0. That means Zp×Zq can’t be domain,

so that can’t be field.

Similar observations can be seen in the Table 5.4 and 5.3 such as;

1. In the case, when n1 = n2; the construction of the digraphs G(Zn1n2) and

G(Zn1 × Zn2) is completley different.

2. In the construction of the digraphs G(Zpq) and G(Zp × Zq), we have that

both have the same number of component, number of longest cycles, length

of longest cycle, and length of longest path, which has been partly proved in

chapter 3.

3. In the digraph G(Zn1 ×Zn2), where n1 is prime and n2 = 2, 3, 7; the number

of components cn1n2 = cn1 × cn2 ; the longest cycle ln1n2 = ln1 ; the number of

cycles N.ln1n2 = n2 the length of the longest path pn1n2 = pn1 .

Table 5.3: Table of Results for 1 ≤ n ≤ 20

n cn lc. N.lc pn

1 1 1 1 1
2 4 1 4 3
3 9 1 9 5
4 26 2 10 4
5 39 4 14 8
6 36 1 36 5
7 49 1 49 9
8 168 4 64 8
9 213 6 12 10
10 156 4 56 8
11 149 6 28 19
12 234 2 90 6
13 199 4 30 22
14 196 1 196 9
15 351 4 126 8
16 1232 8 448 10
17 375 20 4 34
18 852 6 48 10
19 704 8 46 34
20 1154 4 504 8
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Table 5.4: Table of Results for 1 ≤ n1, n2 ≤ 20

n1 n2 cn lc. N.lc pn n1 n2 cn lc. N.lc pn

2 3 6 1 6 5 4 13 71 4 6 22
2 4 10 2 2 4 4 14 70 2 14 9
2 5 12 4 2 6 4 15 93 4 18 8
2 6 12 1 12 5 4 16 164 8 24 10
2 7 14 1 14 9 4 17 97 10 6 18
2 8 24 4 4 6 4 18 146 6 4 6
2 9 28 3 4 6 4 19 101 8 6 34
2 10 24 4 4 6 4 20 166 4 36 6
2 11 24 6 2 14 5 6 36 4 6 8
2 12 30 2 6 6 5 7 42 4 7 12
2 13 28 4 2 22 5 8 80 4 30 8
2 14 28 1 28 9 5 9 87 12 2 14
2 15 36 4 6 8 5 10 78 4 28 8
2 16 60 8 8 10 5 11 73 12 2 18
2 17 38 10 2 18 5 12 93 4 18 8
2 18 56 3 8 6 5 13 87 4 22 22
2 19 40 8 2 34 5 14 84 4 14 12
2 20 62 4 12 6 5 15 117 4 42 8
3 4 15 2 3 6 5 16 206 8 36 12
3 5 18 4 3 8 5 17 118 20 2 24
3 6 18 1 18 5 5 18 174 12 4 14
3 7 21 1 21 9 5 19 132 8 9 34
3 8 36 4 6 8 5 20 209 4 84 8
3 9 42 3 6 7 6 7 42 1 42 9
3 10 36 4 6 8 6 8 72 4 12 8
3 11 36 6 3 14 6 9 84 3 12 7
3 12 45 2 9 6 6 10 72 4 12 8
3 13 42 4 3 22 6 11 72 6 6 14
3 14 42 1 42 9 6 12 90 2 18 6
3 15 54 4 9 8 6 13 84 4 6 22
3 16 90 8 12 12 6 14 84 1 84 9
3 17 57 10 3 18 6 15 108 4 18 8
3 18 84 3 12 7 6 16 180 8 24 12
3 19 60 8 3 34 6 17 114 10 6 18
3 20 93 4 18 8 6 18 168 3 24 7
4 5 31 4 6 6 6 19 120 8 6 34
4 6 30 2 6 6 6 20 186 4 36 8
4 7 35 2 7 10 7 8 84 4 14 12
4 8 64 4 12 6 7 9 98 3 14 11
4 9 73 6 2 8 7 10 84 4 14 12
4 10 62 4 12 6 7 11 84 6 7 14
4 11 61 6 6 15 7 12 105 2 21 10
4 12 78 2 30 6 7 13 98 4 7 22
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n1 n2 cn lc. N.lc pn n1 n2 cn lc. N.lc pn

7 14 98 1 98 9 11 15 219 12 6 18
7 15 126 4 21 12 11 16 374 24 8 30
7 16 210 8 28 16 11 17 230 30 2 36
7 17 133 10 7 18 11 18 350 6 42 16
7 18 196 3 28 11 11 19 241 24 2 50
7 19 140 8 7 34 11 20 383 12 12 18
7 20 217 4 42 12 12 13 213 4 18 22
8 9 180 12 4 14 12 14 210 2 42 10
8 10 160 4 60 8 12 15 279 4 54 8
8 11 148 12 4 18 12 16 492 8 72 12
8 12 192 4 36 8 12 17 291 10 18 18
8 13 176 4 46 22 12 18 438 6 12 10
8 14 168 4 28 12 12 19 303 8 18 34
8 15 240 4 90 8 12 20 498 4 108 8
8 16 440 8 80 10 13 14 196 4 14 22
8 17 240 20 4 24 13 15 261 4 66 22
8 18 360 12 8 14 13 16 446 8 68 26
8 19 248 8 20 34 13 17 270 20 2 38
8 20 440 4 180 8 13 18 398 12 4 30
9 10 174 12 4 14 13 19 283 8 17 34
9 11 175 6 21 16 13 20 457 4 132 22
9 12 219 6 6 10 14 15 252 4 42 12
9 13 199 12 2 30 14 16 420 8 56 16
9 14 196 3 28 11 14 17 266 10 14 18
9 15 261 12 6 16 14 18 392 3 56 11
9 16 462 24 8 26 14 19 280 8 14 34
9 17 272 30 2 34 14 20 434 4 84 12
9 18 426 6 24 10 15 16 618 8 108 12
9 19 283 24 2 50 15 17 354 20 6 24
9 20 467 12 12 14 15 18 522 12 12 16
10 11 146 12 4 18 15 19 369 8 27 34
10 12 186 4 36 8 15 20 627 4 252 8
10 13 174 4 44 22 16 17 610 40 8 34
10 14 168 4 28 12 16 18 924 24 16 66
10 15 234 4 84 8 16 19 642 8 148 34
10 16 412 8 72 12 16 20 1156 8 216 12
10 17 236 20 4 24 17 18 544 30 4 34
10 18 348 12 8 14 17 19 384 40 2 66
10 19 246 8 18 34 17 20 623 20 12 24
10 20 418 4 168 8 18 19 566 24 4 50
11 12 183 6 18 15 18 20 934 12 24 14
11 13 169 12 2 30 19 20 643 8 54 34
11 14 168 6 14 14 20 20 - - -



Chapter 6

Discussion

The main part of this thesis concentrates on a relation between digraphs and finite

commutative rings, which is presented as coeffitients of the rings of quadratic poly-

nomial. In doing so, we provided theorems, lemmas and corollaries which aimed

to support the understanding of the construction and the main idea of this asso-

ciation. Moreover, Another reason to study this idea of directed graphs resulted

from the study of Unitary Cayley Graph (e.g [1]). We discussed some graphical

terminologies such as vertex degree, triangles, ... etc. starting with special cases

then general.

This kind of connections is studied and detialed in chapter 3, That is summarized

in constructing a mapping ϕ : A2 → A2 by (a, b) 7−→ (a + b, ab), where A rep-

resents the coeffitients of the quadratic polynomial x2 − ax + b modulo n. The

vertices are the elements (a, b) ∈ A2 and the edges are defined by the mapping ϕ.

Intuitively, this mapping reflects the ring structure of A.

This idea is studied and proposed by Aleksandar Lipkovski (e.g [15]), then it is

improved and presented in some conferences(e.g [16]) and in the joint work with O.

Shafah and A. Lipkovski (e.g [18]). In this thesis, it is presented with more detials.

A computer calculations is used to see the behaviour(cycles) of this digraph by cre-

ating an algorithm in Mathematica and Matlab softwares to calculate the number

of components(the paths and the cycles). This algorithm represents the number

of components, the number of cycles(the shortest and the longest ones), and the

longest paths.

The calculations show us some intersting results, like the cycles in digraph G(Zn)

are determened by the cycles in the the digraphs of its prime factories. One
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might notice correspondence to the fundamental theorem of arithmetic. In ad-

dition, the digraphs of Zpm for some m > 0, is not isomorphic to the digraph

G(Zp × ....× Zp)(m times).

At the moment there is no answer how the cycles in G(Zpm) are determened. A

different construction of cycles are apperead in the table of results for different

primes. For instance, when n = 5, 5-cycle is the longest cycle in G(Z25). At the

same time, 4-cycle is the longest cycle in G(Z5). When n = 11, 30-cycle is the

longest cycle in G(Z121). At the same time, 6-cycle is the longest cycle in G(Z11).

So in this work this is an open problem one can work on.
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torijum Univerziteta u Beogradu unese moju doktorsku disertaciju pod naslovom:

”Finite Rings and Digraphs: Further development of Theory and Algorithms”

koja je moje autorsko delo.

Disertaciju sa svim prilozima predao sam u elektronskom formatu pogodnom za

trajno arhiviranje.

Moju doktorsku disertaciju pohranjenu u Digitalni repozitorijum Univerziteta u

Beogradu mogu da koriste svi koji poštuju odredbe sadržane u odabranom tipu
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prerade, ako se navede ime autora na način odredjen od strane autora ili davaoca
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