РИСТА КАРЉИКОВИЋ

ДИРЕКТОР II Ж. ГНМН. У ЕЕОГРАДУ

ГЕОМЕТРИJА
 ЗА III и IV РАЗР. СРЕДЊИХ ШКОЛА

СЕД МО ИЗДАЊЕ

Удешено према програму од 9. септембра 1925. год. СНБр. 20144.

> Овај је учбеник препоручен од Главног Просветног Савета и накнанно одобрен од г. Мини. стра Просвете одлуком СНБр. 24650 од 17 . јула $1929 . ~ г о д . ~$

В ЕОГРАД

ИЗДАЊЕ КРЕДИТНЕ И ПРИПОМОТНЕ ЗАДРУГЕ ПРОФЕСОРСКОГ ДРУШТВА 1929.

ПРОГРАМ ИЗ ГЕОМЕТРИJЕ

ЗА ІІІ РАЗРЕД СРЕДЊИХ ШКОЛА

1 Једнакост површина. (Паралелограми једнаких површина - Паралелограм и троугао.)
II Једнакост запремина. (Примена на призми. - Модели.)
III Израчунавање површина паралелограма и троугла.
IV Израчунавање површина призме и пирамиде.
V Претварање слика. (Претварање многоугла у троугао. Трапез у троугао. Површина непаралелограма.)
VI Питагорина теорема.
VII Круг. (Обим и површина круга и његови делови.) VIII Површина округлих тела.

- Наиомена. Сваком подесном приликом наглашавати функ= ционе везе.

ЗА IV РАЗРЕД :

Планиметрија. - Односи између страна, висине и хипотенузнних одсечака правоуглог троугла. Примена на решавање задатака у равним сликама у којима се јавља правоугли троугао.

Размера и сразмера дужи. Сличност. - Појам сличности тела. - Сличност троуглова и полигона. Однос између површина сличних слика. Цртање и читање планова и читање географских карата.

Стереометрија. - Раван. Међусобни положај равни, правих и тачака. Нормални положај праве. Трокраки лењир и његова употреба. Пројекција тачке и праве на раван. Угао нагиба праве према равни. Правило о трима нормалама. - Угао диедар и угао нагиба двеју равни. Нормалне равни. - Појам о рогљу. - Правилан и неправилан рогаљ.

Постанак призме, облице, пирамиде, купе и лопте. Мрежаз тела. Површина правилних призама и пирамида, праве облице и купе, лопте. - Запремина эвих тела по Каваљеријевом принципу. - Уписана и описана тела.

Правилни полиедри. Тетраедар, хексаедар, октоедар, додекаедар и икосаедар. Површина и запремина: тетраедра, хексаедра и октоедра.

Напомена. - При решавању задатака обраћати пажњу на функционалне везе. Упућивати ученике у цртању мрежа и изради тела, а нарочито за призме и пирамиде једнаких основа и висина ради експерименталног утврђивања Каваљеријевогпринципа. На примерима показати однос између тежине, запремине у специфичне тежине тела.

I. ЈЕДНАКОСТ ПОВРШИНА.

§ 117. Посматрајући две равне праволинијске слике мо жемо код њих утврдити ове случајеве :

1. Могу обе имати и једнаке облике и једнаке површине и тада се каже да су подударне;
2. могу имати једнаке облике а различите површине и тада су оне само сличне
3. могу имати једнаке површине и различите облике и ада се каже да су оне једнаке ; и
4. могу немати ни исти облик ни једнаке површине и тада су то различне слике.

Према овоме, подударне слике су у исто време и једнаке и сличне. Погодбе подударности прроуглова испитане су код параграфа 88. Геометрије за I и II разред. Сада ћемо се забавити погодбама једнакости, а доцније и сличности слика.
§ 118. Погодбе једнакости правволинијских слика, израчунавање површина тих слика, њихово претварање и делење у те сној су вези са овим правилима:

1. Сваки косоугли пара лелограм има једнаку поврщину с правоугаоником једнаке основице и висине.

Нека ромбоид ABCD и правоугаоник ABEF (сл. 226.) имају заједничку основицу и једнаку висину. Да бисмо доказали јед-
 накост ових слика довољно је
да докажемо једнакост троуглова BCE и ADF, који су остаци ових слика, пошто ромбоид и правоугаоник имају као заједничку површину трапезоид ABED . Троугли BCE и ADF су једнаки јер су подударни ($\mathrm{AF}=\mathrm{BE}, \mathrm{AD}=\mathrm{BC}, \Varangle \mathrm{F}=\Varangle \mathrm{E}=90^{\circ}$). Жада се ови троугли посебице додају трапезу ABCD , онда су добивени збирови, т. ј. ромббоид ABCD и правоугаоник ABEF, једнаки.

Ово правило у важности је не само за правоугаоник и ромбоид, већ и ма за која два паралелограма једнаких осно-

Ако страну $А В$ (сл. 232.) правилнога многоугла: ABCDEF продужимо и с једне и с друге стране и на продужењима пренесемо остале његове стране, па крајње тачке M и N спојимо са центром O, добијамо $\triangle \mathrm{MNO}$, чија је основица једнака са обимом многоугла, а висина му

Напомена. Како се круг сматра као правилан многоугао од бесконачно много страна, то, на основу овог правила, мора бити тачно и ово правилно: круг има једнаку повриину с оним троуглом чија је основица једнака с кружном периферијом а висина му је једнака с полупречником круга.

II. ЈЕДНАКОСТ ЗАПРЕМИНА.

§ 119. За два тела, као и за две слике, каже се да су једнака, ако заузимају једнаке делове од простора, т. ј. ако су им запремине једнаке. Опште правило помоћу кога можемо дадокажемо једнакост двеју призама, пирамида, купа, или ма која два тела, зове се Кавалеријево, а гласи:

1. Две призме (или ма која два тела), постављене на једну раван, имају једнаке запремине, ако су им једнаки пресеци сваке равнине паралелне са базисима (основама).

Тачност овога врло важног правила увиђамо, ако замислимп, да су обе при. зме (или оба тела) равнинама паралелним са базисима подељене (исечене) на бескрајно много врло танких плочица, па су те плочице по две и две једнаке. С тога и збирови тих плочица јесу једнаки, т. ј. обе призме (оба тела) морају имати једнаке запремине.

Следећа два правила доказују се применом Кавељеријевог правила:

2. Сваки косоугли паралелопипед има једнаку запремину с правим паралелопипедом исте (једнаке) основе и висине.

Нека је $\mathrm{ABCDA}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime} \mathrm{D}^{\prime}$ (сл. 233.) правоугли прав, EFGH $\mathrm{E}^{\prime} \mathrm{F}^{\prime} \mathrm{G}^{\prime} \mathrm{H}^{\prime}$ правоугли кос, а $\operatorname{RSTLR} \mathrm{S}^{\prime} \mathrm{T}^{\prime} \mathrm{L}^{\prime}$ косоугли кос паралело-

пипед, који имају сви једнаке базисе и једнаке висине, а налззе се на равни $M N$. Тада ти паралелопипеди имају, по Каваљеријевом правилу, и једнаке запремине, јер ако замислимо да су пресечени и подељени равнинама, паралелним са MN , на бескрајно много врло танких плочица, онда су те плочице по три и три једнаке, јер су оне у ствари врло танки паралелопипеди једнаких базиса.

С тога и њихови збирови, т. ј. дати паралелопипеди јесу једнаке запремине.

Наиомена. Тачност овога правила можемо увидети и посматрањем сл. 234. и 235. Нека је код прве сл. ABLJEFMK правоугли прав паралелопипед (т. ј. паралелопипед чија је основа квадрат или правоугаоник, а бочне су ивице нормалне на основи) од неке материје, која се да лако сећи (нпр. од кромпира), па га оштрим перорезом пре-

Сл. 234.

Сл. 235.

сечемо тако, да оштрица перореза пролази кроз ивицу EA, а од: ивице JL и КМ одваја једнаке делове ($\mathrm{JD}=\mathrm{KH}$). Тиме ћемо одвојити од датог паралелопипеда тространу призму ADJEHK. Ако ову одвојену призму приљубимо с десне стране датог паралелопипеда, добијамо косоугли прав паралелопипед ABCDEFGH , т. ј. паралелопипед чија је иснова робм или ромбоид, а бочне су ивице нормалне на основи, који има с датим паралелопипедом једнаке базисе (правило 1. § 117.) и једнаке висине. Па како овом операцијом нисмо ништа изгубили од запремине датог паралелопипеда, јер је његов одсечени део с леве стране додат с десне, то добивени косоугли прави паралелопипед има једнаку запремину с датим правоуглим паралелопипедом.

Нека је код сл. 235. паралелопипед ABCDEFMN прав (правоугли или косоугли), опет од материје која се да лако сећи. Ако овај паралелопипед пресечемо с леве стране перорезом, тако, да сечиво пролази кроз ивицу AD а горњу основу сече по PQ , која је паралелна с ивицом EN , па одвојени клин ADEPQN приљубимо

с десне стране датог паралелопипеда, онда добијамо кос паралелопипед ABCDPRSQ (т. ј. паралелопипед чије су бочне ивице косе према основи). Па како и овом операцијом нисмо ништа изгубили од запремине датог паралелопипеда, јер смо опет његов део одсечен с леве стране додали с десне, то добивени коси паралелопипед има једнаку запремину са датим правим паралелопипедом.*)
3. Свака тространа призма половина је, по запремини, од паралелопипеда једнаке (исте) висине, а чија је основа два пута већа од њене основе.

Паралелопипед $\mathrm{ABDCA}^{\prime} \mathrm{B}^{\prime} \mathrm{D}^{\prime} \mathrm{C}^{\prime}$ (сл. 236.) дијагоналним пресеком $\mathrm{BCC}^{\prime} \mathrm{B}^{\prime}$ подељен је на две тростране призме $\mathrm{ABCA}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}$ и CDB C'D $^{\prime} \mathrm{B}^{\prime}$. Обе ове призме имају с паралелопипедом исту висину, а њихови су базиси половине базиса паралелопипеда (правило 2. § 117.). Ове призме, по Каваљеријевом правилу, јесу једнаке запремине. Па пошто обе сабране дају паралелопипед, а једнаке су, то је свака од њих по запремини једнака половини паралелопепеда.

Сл. $2 ? 6$.

III. ИЗРАЧУНАВАЊЕ ПОВРШИНА ПРАВОЛИНИЈСКИХ СЛИКА.

§ 120. Под површином једне слике разумемо величину површине, ограничене странама те слике. До те величине долазимо када површине слике упоредимо с површином ма које основне јединице за површину ($1 \mathrm{~m}^{2}, 1 \mathrm{dm}^{2}, 1 \mathrm{~cm}^{2}$ или $1 \mathrm{~mm}^{2}$). Резултат који нам показује колико се пута садржава узета основна јединица у површини једне слике, то је величина или бројна вредност површине те слике. Површина ма које слике не израчунава се непосредним пренашањем узете јединице по површини слике, који је посао тежак и често неизводљив, већ се то израчунавање врши посредно, мерењем оних дужи на слици, од којих зависи величина, па се из величина тих дужи, рачунским путем, налази величина површине те слике. Израчунавање површина праволинијских слика опет се изводи из правила о једнакости слика.
*) Нека ученици сами од картона начине моделе слика 234. и 235.
§ 121. Новршииа правоугаоника. Нека је код правоугаоника ABCD (ел.237.) дужина $\mathrm{AB}=5 \mathrm{~cm}$ а ширина $\mathrm{AD}=3 \mathrm{~cm}$.

Сл. 237 Ако из свакога сантиметра дужине повучемо паралелну са ширином, а из свакога сантиметра ширине повучемо паралелну са дужином, онда се површина тога правоугаоника дели на квадратне сантиметре чији је број 15. До ове величине површине правоугаоника дошли бисмо, када дужину 5 помножимо са ширимом $3\left(5 \times 3=15 \mathrm{~cm}^{2}\right)$. Ако су стране некога правоугаоника 8 dm и 5 dm , онда поступајући на исти начин, нашли бисмо да је његова површина $8 \times 5=40 \mathrm{dm}^{2}$

Да бисмо, дакле, израчунали површину једнога правоугаоника, преба да измеримо негову дужсину и ширину, па добивене мерне бројеве да иомножимо. Ако су стране израчунате у $\mathrm{m}, \mathrm{dm}, \mathrm{cm}, \mathrm{mm}$, онда се површина израчунава у m^{2}, $\mathrm{dm}^{2}, \mathrm{~cm}^{2}$, и mm^{2}. Уопште, ако нам а представља дужину, b ширину, а P површину правоугаоника, онда је образац (формула) за површину његову

$$
\mathbf{P}=\mathbf{a b}
$$

Како су a и b чинитељи а P производ, то је : $\mathbf{a}=\frac{\mathbf{P}}{\mathbf{b}}$ и $\mathbf{b}=\frac{\mathbf{P}}{\mathbf{a}}$ п. j. дужина правоугаоника добива се кад му се повриина подели ширином; а ширина се добива кад му се површина подели дужином.
§ 122. Површина квадрата. Како је квадрата у ствари јеан правоугаоник, код кога је дужина једнака са шииином то се негова површина налази, када се мерни број негове стране помножи самим собом, или подигне на квадрата. Тако код квадрата ABCD (сл. 238.) мерни број стране је 3 cm , а његова површина биће $3 \times 3=9 \mathrm{~cm}^{2}$, што се и из слике види.

Уопште, ако је a величина стране, P површина, онда је образац (формула) за површину квадрата:

$$
\mathbf{P}=\mathbf{a}^{2}
$$

Одавде је $\mathbf{a}=\sqrt{\overline{\mathbf{P}},}$ т. ј. старана једнога квадрата израчунава се из повр

Сл. 323

шине, када се извуие квадрашни корен из юе. Тако, за $\mathrm{P}=36 \mathrm{dm}^{2}$, страна $a=\sqrt{36}=6 \mathrm{dm}$.
§ 123. Површина ромбоида. Како је по 1. иравилу § 118 . иовриина једнога ромобида једнака с површином правоугаоника једнаке основице ъ висине, а површина зе правоугаоника налази кад иомножимо мерне бројеве његове дужине и ширине, онда је јасно да се повриина ромбоида налази када се помноже мерни бројеви основице и висине, пошшо основииа заспиуа дужину а висина ширину правоугаоника. Тако површина ромбоида ABCD (сл. 239.), код кога је основица 5 cm а висина 3 cm , износи $15 \mathrm{~cm}^{2}$, колико је и површина правоугао-

Сл. 139.
ника $A B E F$, који је по I правилу $\S 118$ једнак ромбоиду $A B C D$. Уопште, ако а основица, h висина, P површина, онда је образац за површину ромбоида:

$$
\mathbf{P}=\mathbf{a h}
$$

Одавде је $\mathbf{a}=\frac{\mathbf{P}}{\mathbf{h}}$ и $\mathbf{h}=\frac{\mathbf{P}}{\mathbf{a}}$, т, ј. основица се римбоида изра чунава, кад се повриина подели висином; а висина се израчунава када се површина подели основицом.
§ 124. Површина ромба. Како се ромб смаира као ромбоид код кога су све стране једнаке, шо се и негова површина израчунава, када помножимо мерне бројеве основице и висине. Ако је a основица, h висина, P површина ромба, онда је

$$
P=a h, a=\frac{P}{h} \text { и } h=\frac{P}{a} .
$$

Һаиомена. Уопште, површина ма кога паралелограма израчунава се, кад се помноже мерни бројеви основице и висине. Код правоугаоника висина је заступљена ширином, а код квадрата основицом. При израчунавању површине једнога паралелограма, треба мерни бројеви основице и висине да буду изражени у истој јединици дужине. Ако нису, онда их ваља претходно довести на исту јединицу. Тако, за $a=8 \mathrm{dm}$ и $h=5 \mathrm{~cm}$,

површина $P=80 \times 5=400 \mathrm{~cm}^{2}$, или $P=8 \times 0,5=4 \mathrm{dm}^{2}$. Треба, дакле, 8 dm и 5 cm претворити или у dm, или у cm, па затим вршити множење.
§ 125. Функција. Површина квадрата постаје све већа, ако бројну вреднист страно повећамо. Тако, за $a=2 \mathrm{~m}, 3 \mathrm{~m}$, 4 m површина $\mathbf{P}=4 \mathrm{~m}^{2}, 9 \mathrm{~m}^{2}, 16 \mathrm{~m}^{2}, \ldots .$. Напротив, она се смањује, када се и страна смањује. Тако, за $a=10 \mathrm{~m}, 7 \mathrm{~m}, 6 \mathrm{~m}, \ldots$ површина $\mathbf{P}=100 \mathrm{~m}^{2}, 49 \mathrm{~m}^{2} 36 \mathrm{~m}^{2}, \ldots$. Исто тако и страна квадрата зависи од његове површине. Она постаје већа или мања, ако се површина повећава или смањује. Тако за $\mathbf{P}=64 \mathrm{~m}^{2}$, страна $\mathbf{a}=8 \mathrm{~m}$; за $\mathbf{P}=81 \mathrm{~m}^{2}, \mathbf{a}=9 \mathrm{~m} ;$ за $\mathbf{P}=25 \mathrm{~m}^{2}$, $\mathbf{a}=5 \mathrm{~m}$.

Из овога се види да површина квадрата \mathbf{P} и његова страна а јесу две количине, чије су вредности зависне једна од друге. Повећавањем а повећава се и P , смањивањем а смањује се и P , и обрнуто. За такве две количине, које стоје у таквој вези, да се бројна вредност једне количине мења, када се мења бројна вредност друге, каже се да је једна од њих зависно променьива друге, или да је функиија друге. Тако, површина квадрата је функција квадратове стране, и обрнуто, страна квадрата је функција његове површине. То се означава $\mathbf{P}=\mathbf{f}(\mathbf{a})$, или $a=f(P)$, а чита се: „површина \mathbf{P} је функција стране a," или "страна а је функција површине Р." Дешава се, да једна количина није зависна само од једне друге количине, већ од две и више. Тако, површина правоугаоника P зависи од бројних вредности дужине \mathbf{a} и ширине \mathbf{b}; површина ромба или ромбоида зависи од основице а и висине h. Тако, за $\mathbf{a}=6 \mathrm{~m}, 7 \mathrm{~m}, 8 \mathrm{~m}, \ldots$ а за стално \mathbf{h} односно \mathbf{b}, од 2 m , површина $\mathrm{P}=12 \mathrm{~m}^{2}, 14 \mathrm{~m}^{2}, 16 \mathrm{~m}^{2}, \ldots$ а и за променљиво $\mathrm{h}=3 \mathrm{~m}, 4 \mathrm{~m}, 5 \mathrm{~m}, \ldots$ $\mathrm{P}=6.3=18 \mathrm{~m}^{2}, \mathrm{P}-7.4=28 \mathrm{~m}^{2}, \mathrm{P}=8.5=40 \mathrm{~m}^{2} \ldots$... Према овоме површина правоугаоника, ромба, ромбоида је функција или само основице ако је висина стална; или само висине, ако је основица стална; или је функција и основице и висине. Ово се означава $P=f(a, h)$, а чита се: „површина паралелограма је функција основице а и висине h." Лако је појмити да је и основица а функција или само површине, или само висине, или и површине и висине. Исти је случај и са висином h .

§ 126. З а д а ци.

1. Наћи површину квадрата чија је страна а) $2,3 \mathrm{~m}$; b) 3 m 5 dm 4 cm ; c) $74 / 5 \mathrm{~m}$.
2. Колика је површина патоса облика квадрата чија је страна 5 m и 7 dm ?
3. Колика је страна квадрата чија је површина $625 \mathrm{cı1}$?
4. Колика је површина квадрата чији је обим 36 dm ?
5. Нацртај квадрат чија је површина $25 \mathrm{~cm}^{2}$.
6. Колико стаје плац облика квадрата, кад му је страна 28 m , а један квадратни метар стаје 46,30 динара?
7. Колико стаје паркет квадратне собе од 7 m 4 dm , кад се за $1 \mathrm{~m}^{2}$ плаћа 18,50 динара?
8. Наћи површину правоугаоника код кога је дужина $10,5 \mathrm{~m}$ а ширина $6,35 \mathrm{~m}$.
9. Страна једне собе има три прозора ширине 1 m а висине 2 m ; колика је површина ове стране изузев прозора ако је њена дужина 7,30 m а висина $4,50 \mathrm{~m}$?
10. Пут облика дравоуганика дугачак је 150 m а широк 8 m . Колико су кола песка потребна за његово насипање, ако на $1 \mathrm{~m}^{2}$ иде по по пола кола?
11. Један патос облика квадрата стране 8 m треба да се патоше даскама дужине $4,25 \mathrm{~m}$ а ширане 20 cm . Колико је дасака потребно и шта стаје патосање, ако се за сваку даску плаћа 6,75 динара, а раднику за сваки квадратни метар по 1,25 динара?
12. Колика је дужина правоугаоника ширине 8 m а површине $88 \mathrm{~m}^{2}$?
13. Обим једнога правоугаоника износи 144 m , а дужина му је 54 m; наһи његову површину.
14. Колико ара, а колико хектара има њива облика правоугаоника жине 187 m а ширине 59 m ?
15. Колико је hl пшенице потребно да се засеје њива облика правоугаоника дужине 164 m а ширине 112 m када се на један ар рачуна по $2^{3 / 4}$?
16. Колико кошта калдрмисање дворишта правоугаоног дужине 25 m а ширине 14 m , када се плаћа по 12,75 динара на $1 \mathrm{~m}^{2}$?
17. Наћи: а) површину ромбоида основице 15 cm а висине $7,5 \mathrm{~cm}$; b) основицу ромбоида висине $5,25 \mathrm{~m}$ а површину $42 \mathrm{~m}^{2}$; с) висину ромбоида површине $60 \mathrm{dm}^{2}$ а основице 12 dm .
његову. Површина једнога ромба износи $32 \mathrm{~m}^{2}$, а обим му је 32 m ; наћи његову висину.
наћи њего обимна једнога ромба износи $40 \mathrm{~m}^{2}$, а висина му је 5 m ; наћи његов обим.
18. Квадрат и ромб имају једнаке обиме и то по 12 m . Који од њих има већу површину и зашто?
19. Колико стају 15 прозорских окана дужине 64 cm и ширине 48 cm када $1 \mathrm{~m}^{2}$ стаје 18 динара?
20. Колика је површана ливаде облика правоугаоника када јој је дужина $78,4 \mathrm{~m}$, а ширина $4 / 7$ од дужине?
21. За колико ће се смањити површина правоугаоника од $6,82 \mathrm{dm}$ дужине и $4,26 \mathrm{dm}$ ширине, када му се свака страна скрати за 1.30 dm ? 24. Од неке ливаде облика правоугаоника дужине 283 m одсечена је парцела 38,205 ара површине а исте дужине; наћи ширину те парцеле. 20. Колико дрвета можемо засадити на обиму једнога врта облика правоугаоника дужине 144 m , ширине 84 m , када треба одстојање између свака два дрвета да буде 4 m ?
22. Нека ливада облика правоуганика дугачка је $104,8 \mathrm{~m}$ а широка $47,5 \mathrm{~m}$; колико ће се сена добити са те ливаде, ако се узме да 1 ; ар просечно даје 28 кгр. сена?
23. Неко хоће у своме врту облика правоугаоника од $64,5 \mathrm{~m}$ дужине и $41,2 \mathrm{~m}$ ширине да на́чини свуда унаоколо стазу од $3,4 \mathrm{~m}$ ширине колика је површина те стазе?
24. Кроз средину неког врта облика правоугаоника од 314 m дужине и $41,2 \mathrm{~m}$ ширине иду уздуж и попреко стазе $1,6 \mathrm{~m}$ ширине; колика је површина тих стаза? 29. Нива облика правоугаоника дугачка је $245,8 \mathrm{~m}$ а стаје 10176 динара; колика јој је ширина, ако један ар стаје 64 динара?
25. Шта стаје патосање патоса двеју соба, када је први патос квадрат са страном $8,2 \mathrm{~m}$, а други патос правоугаоник дужине 9 m а ширине $7,5 \mathrm{~m}$, када се за $1 \mathrm{~m}^{2}$ плаћа 4,50 динара?
§ 127. Површина троугла. На основу 2. правила § 118. повриина једнога троугла израчунава се, када се мерни бројеви основица и висине иомноже и добивени ироизвод подели са два. Тако, да површину троугла ABC (сл. 228.) налазимо по обрасцу $\mathrm{P}=\frac{\mathrm{AB} \times \mathrm{CM}}{2}$, пошто нам производ $\mathrm{AB} \times \mathrm{CM}$ (бројитељ) представља површину паралелограма $A B D C$, који је два пута већи од троугла ABC .

Уопште, a, b и c стране једнога троугла, а $\mathbf{h}_{(\mathrm{a})}, \mathbf{h}_{(\mathrm{b})}$, $\mathbf{h}_{\text {(c) њихове одговарајуће висине, онда је површина троугла: }}$

$$
\mathbf{P}=\frac{\mathbf{a} \cdot \mathbf{h}_{(\mathrm{a})}}{2}, \text { или } \mathbf{P}=\frac{\mathbf{b} \cdot \mathbf{h}_{(\mathrm{b})}}{2}, \text { или } \mathbf{P}=\frac{\mathbf{c} \cdot \mathbf{h}_{(\mathrm{c})}}{2}
$$

Како нам код ових образаца производ стране и њене висине представља дељеник, број 2 делитељ, а Р количник, то је јасно да је: $\mathrm{a} \cdot \mathrm{h}(\mathrm{a})=2 \mathrm{P}, \mathrm{b} \cdot \mathrm{h}_{(\mathrm{b})}:=2 \mathrm{P}$ и $\mathrm{c} \cdot \mathrm{h}_{(\mathrm{c})}=2 \mathrm{P}$.
Одавде је $:=\mathrm{a} \frac{2 \mathrm{P}}{\mathrm{h}_{(\mathrm{a})}}, \quad \mathrm{h}_{(\mathrm{a})}=\frac{2 \mathrm{P}}{\mathrm{a}} ; \mathrm{b}=\frac{2 \mathrm{P}}{\mathrm{h}_{(\mathrm{b})}} ; \quad \mathrm{h}_{(\mathrm{b})}=\frac{2 \mathrm{P}}{\mathrm{b}} ; \mathrm{c}=\frac{2 \mathrm{P}}{\mathrm{h}_{(\mathrm{c})}}$ и $\mathrm{h}_{(\mathrm{c})}=\frac{2 \mathrm{P}}{\mathrm{c}}$, т. ј. страна се једнога шроугла израчунава када се двостирука његова ровриина подели одговарајућом висином те стране; а висина се израчунава, када се двостпрука повриина иодели с праном тражене висине.

Како код правоуглога троугла једна катета заступа основицу а друга одговарајућу јој висину, то је површина правоуглога троугла, чије су катете, \mathbf{a} и $\mathbf{b}, \mathbf{P}=\frac{\mathbf{a b}}{2}$. Код равнокракоправоуглога троугла катете \mathbf{a} и \mathbf{b} су једнаке, те је његова површина $\mathbf{P}=\frac{\mathbf{a}^{2}}{2}$.

Найомена. И код троугла, као и код паралелограма, површину \mathbf{P} сматрамо као функцију или само озновице, или само висине, или и основице и висине, пошто њена бројна вредност зависи од бројних вредности основице и висине. Тако
a) За $\mathrm{c}=5 \mathrm{~m}$ и $\mathrm{h}_{(\mathrm{c})}=4 \mathrm{~m}$, биће $\mathrm{P}=\frac{5.4}{2}=10 \mathrm{~m}^{2}$;
b) За $\mathrm{c}=7 \mathrm{~m}$ и $\mathrm{h}_{(\mathrm{c})}=4 \mathrm{~m}$, биће $\mathrm{P}=\frac{7 \cdot 4}{2}=14 \mathrm{~m}^{2}$;
c) За $\mathrm{c}=8 \mathrm{~m}$ и $\mathrm{h}_{(\mathrm{c})}=5 \mathrm{~m}$, биће $\mathrm{P}=\frac{8.5}{2}=20 \mathrm{~m}^{2}$.

Исто тако ма која страна је функција површине троугла и одговарајуће висине те стране, а ма која висина је функција површине троугла и одговарајуће стране.

§ 128. Задаци.

1. Наћи површину троугла: а) основице 22 cm а висине 12 cm ; b) основице $3^{3 / 4} \mathrm{dm}$ а висине $2,3 \mathrm{dm}$; с) основице 2 mm 3 dm 6 cm а висине 1 m 6 cm .
2. Наћи површину правоуглога троугла чије су катете 7 dm и 4 dm .
3. Наћи површину равнокрако-правоуглог троугла чији је катет 6,3 m.
4. Наћи основицу онога троугла, чија је површина $30 \mathrm{~m}^{2}$ a висина 6 m .
5. Наћи висину оног троугла, чија је површина $210 \mathrm{~cm}^{2}$ а основица 35 cm .
6. Наћи другу катету правоугла троугла површине $21 \mathrm{~m}^{2}$, када му је једна катета 6 m .
7. Колике су катете равнокрако-правоуглог троугла површине $32 \mathrm{~m}^{2}$? 8. Колика је висина неког троугла основице 13 cm , када му је површина једнака с површином правоугаоника дужине $16,3 \mathrm{~cm}$ а ширине $10,7 \mathrm{~cm}$.
8. Стране једног троугла јесу 55 cm и 60 cm , а висина која одговара првој страни износи 40 cm ; наћи висину друге стране.
9. Наћи једну катету правоуглога троугла, када му је друга катета 8 dm , а површина му је једнака с површином квадрата стране 6 dm .
10. Колика је страна квадрата чија је поврпина једнака збиру површина два троугла основица 36 и 32 cm а висина 24 и 22 cm ?
§. 129. Површина трапеза. На основу 4. аравила § 118. повриина једнога иррапеза израчунава се, када се збир паралелних спрана помножи висином и добивени ироизвод иодали са два. Тако, површина трапеза ABCD (сл. 23U.) једнака је с површином троугла AMD. Па како је површина овога троугла $\mathrm{P}=\frac{\mathrm{AM.DE}}{2}$, или заменом AM са $\mathrm{AB}+\mathrm{DC}, \mathrm{P}=\frac{(\mathrm{AB}+\mathrm{DC}) \cdot \mathrm{DE} \text {, }}{2}$ то на овај образац у исто време представља и површину трапеза ABCD . Уопште, ако су \mathbf{a} и \mathbf{b} мерни бројеви паралелних страна једнога трапеза, h мерни број висине, онда је његова површина

$$
P=\frac{(a+b) . h}{2}
$$

Из овог обрасца је јасно, као и код троуглова, да је: 1) $\left.\left.a+b=\frac{2 P}{h} ; 2\right) h=\frac{2 P}{a+b} ; 3\right) a=\frac{2 P}{h}-b ;$ и 4) $b=\frac{2 P}{h}-a$, т. j
а) Збир паралелннх стррана траиезових израчунавамо, када дуплу юегову повриину поделимо висином; b) висину израчунавамо, када дуилу површину поделимо збиром шаралелних страна; с) ма коју шаралелну спрану израчунавамо, када најпре дуплу повриино поделимо висином и од добивеног количника одузмемо познашу паралелну страну.

Тако, за $\mathbf{a}=5 \mathrm{~mm}, \mathbf{b}=3 \mathrm{~m}, \mathbf{h}=4 \mathrm{~m}$ биће $\mathrm{P}=\frac{(5+3) \cdot 4}{2}=\frac{8.4}{2}$ $=16 \mathrm{~m}^{2}, \mathbf{a}=\frac{2 . P}{\mathrm{~h}}-\mathbf{b}=\frac{32}{4}-3=8-3=5 \mathrm{~m} ; \mathbf{b}=\frac{2 . P}{\mathrm{~h}}-\mathbf{a}=$ $=\frac{32}{4}-5=8-5=3 \mathrm{~m} ; \mathrm{h}=\frac{2 \cdot \mathrm{P}}{\mathrm{a}+\mathrm{b}}=\frac{32}{8}=4 \mathrm{~m}$.

Напомена. Код трапеза површину \mathbf{P} сматрамо као функцију или само једне паралелне стране \mathbf{a} или \mathbf{b}, или само висине \mathbf{h}, или обеју паралелних страна и висине, пошто се њена бројна вредност мења, када се мења бројна вредност само једне, или две, или свих ових количина. Исти је случај и ма самојом паралелном страном нли висином.

§ 130. 3 а д аци.

1 Наћи површину трапеза чије су паралелне стране 9,3 dra и 6,7 dm. а висина $3,8 \mathrm{dm}$.
2. Колика је висина трапеза чија је површмна 32 m 2 а паралелне су. му стране 10 и 6 m ?
3. Обим трапеза је 21 m непаралелне стране јесу 4 m и 3 m , висина 2 m ; наћи његову површину.
4. Наћи површину равнокраког трапеза чији је обим 30 m, крак 5 m , а висина $2,5 \mathrm{~m}$.
5. Наћи површину правоуглога трапеза чији је обим 40 m , а непаралелне стране 7 и 5 m .
6. Трапезова је површнна $124,8 \mathrm{dm}^{2}$, висина $6,4 \mathrm{dm}$, а једна од паралелних страна $12,8 \mathrm{dm}$; наћи другу паралелну страну.
7. Неки плац облика трапеза има паралелне стране 30,7 и $40,3 \mathrm{~m}$, а висину 24,6 m; наћи његову цену, ако $1 \mathrm{~m}^{2}$ стаје 38,50 динара.
8. Шта стаје m^{2} врта облика трапеза чија је цена 924 динара кад су му паралелне стране $20,75 \mathrm{~m}$ и $14,25 \mathrm{~m}$, а ширина му је $9,6 \mathrm{~m}$?
9. Једна њива облика трапеза има паралелне стране 156,2 и 143,8 m , а ширину 112 m ; колико је потребно hl ражи за усев, ако на свака 32 ара иде по 1 hl ражи?
10. Колико сена добивамо са једие ливаде облика трапеза и шта стаје то сено, кад су паралелне стране те ливаде 150 и 280 m , одстојање између тих страна 120 m , а зна се да један ар те ливаде даје просечно по 25 kgr . сена, а један kgr. сена стаје 0.25 динара?
§ 131. Површина четвороуглова са нормалним дијагоналама (квадрата, ромба и делтоида).
На основу 5. иравила § 118., повриина се свакога чешвороугла са нормалним дијагоналама израченава, када се производ мерних бројева негових дијагонала шодели са два. Тако, површина делтоида ABCD (сл. 231.) половина је од површине правоугаоника MNPQ. Па како је површина овога правоугаоника $\mathrm{P}=\mathrm{MN} . \mathrm{NP}$ или заменом MN са BD и NP са $\mathrm{AC}, \mathrm{P}=\mathrm{AC} . \mathrm{BD}$, то је онда површина делтоида $P=\frac{A C \cdot B D}{2}$. Упште, ако су код ромба и делтоида дијагонале \mathbf{d} и \mathbf{d}^{\prime} онда је образац за њихову површину $\mathbf{P}=\frac{\mathbf{d} \cdot \mathbf{d}^{\prime}}{2}$, одакле: $\mathbf{d}=\frac{2 P}{\mathbf{d}^{\prime}}$ и $\mathbf{d}^{\prime}=\frac{2 \mathrm{P}}{\mathrm{d}}$. Код ква-

драта јесу обе дијагонале \mathbf{d} и d^{\prime} једнаке, те је његова површина $\mathbf{P}=\frac{\mathbf{d}^{2}}{2}$, а $\mathbf{d}=\sqrt{2 P}$, т. ј. код ромба или делаиода једна се - ијагонала израчунава, када се тихова двосшрука повриина подели другом дијагоналом, а код квадраша дијагонала се израчунава, када се из двоструке повриине извуче квадрашни корен.

Тако, ако су код ромба или делтоида дијагонале 8 m и 10 m , онда је његова површина $\mathrm{P}=\frac{8 \cdot 10}{2}=40 \mathrm{~m}^{2}$; ако је дијагонала квадрата 12 cm , онда је његова површина

$$
\mathrm{P}=\frac{12^{2}}{2}=\frac{144}{2}=72 \mathrm{~cm}^{2}
$$

Напомена. Код ромба и делтоида површину сматрамо као функцију њихових дијагонала, а код квадрата као функцију дијагонале, пошто се бројна вредност површине мења, када се мењају бројне вредности дијагонала. Исти је случај и ма са којом дијагоналом ромба или делтоида, јер се и њена бројна вредност мења, када се мењају бројне вредности површине и друге дијагонале. Код квадрата дијагонала је функција само његове површине.

§ 132. З а д а ц и.

1. Наћи површину квадрата чија је дијагонала а) $2,3 \mathrm{dm}$, b) 3 m 8 dm 5 cm .
2. Колика ј
3. Колика је површина
4. Колика је површина делтоида, чије су дијагонале 5 m и $7,2 \mathrm{~m}$? 3 m 4 cm ?
5. Колика је једна дијагонала ромба када му је друга 5 m , а повр-
6. Колика је већа дијагонала делтоидова када му је мања $6,5 \mathrm{dm}$ а површина $32,5 \mathrm{~m}^{2}$?
7. У неком ромбу, чија је површина $2305 \mathrm{~cm}^{2}$, једна је дијагонала два пута већа од друге; колике су дијагонале?
§ 133. Површина правилног многоугла. На основу 6. иравила § 118., површина се правилног многоугла израчунава, када се његов обим помножи полупречником круга vиисаног у многоуглу и добивени ироизвод подели са два. Ово излази отуда, што је површина правилног многоугла ABCDEF (сл. 235.) једнака с површином троугла MNO, а овога је површина $\mathrm{P}=\frac{\mathrm{MN} . \mathrm{OS}}{2}$, или заменом MN са \mathbf{O} (обим многоугла), а OS са $\mathbf{r}, \mathbf{P}=\frac{\mathbf{0} \cdot \mathbf{r}}{2}$, који нам образац у исто време представља површину многоугла ABCEDF . Код правилног \mathbf{n}-троугла са страном а и полупречником уписаног круга r,

обим је $\mathbf{O}=\mathbf{n} \cdot \mathbf{a}$, а површина $\mathbf{P}=\frac{\mathrm{O} \cdot \mathrm{r}}{2}=\frac{\mathrm{n} . \mathbf{a} \cdot \mathrm{r}}{2}$.

Напомена. Код свакога правилног многоугла обим $\mathbf{0}$ је функција стране а, и обрнуто, страна а је функција обима О. Тако исто је површина функција само стране а, а не и полупречника \mathbf{r}, jep je \mathbf{r} количина која зависи од а и да̂ ce наћи, ако је а позната.
§ 134. Површина неправилног многоугла. Површину неправилног многоугла налазимо на ова два начина:

1. Начин. Ако имамо да из-

Сл. 240. рачунамо на пр. површину неправилног 5 -угла ABCDE (сл. 240.), онда из темена A повлачимо дијагонале, чиме се 5 -угао дели на троуглове: $\mathrm{ABC}, \mathrm{ACD}$ и ADE. Затим, сматрајући ове дијагонале као основице, повлачимо њихове одговарајуће висине. Најзад израчунавамо површину свакога троугла посебице и добивене површине сабирамо. Површина 5 -угла ABCDE биће:
$\mathrm{P}=\frac{\mathrm{AC} \cdot \mathrm{BB}^{\prime}}{2}+\frac{\mathrm{AC} \cdot \mathrm{DD}^{\prime}}{2}+\frac{\mathrm{AD} \cdot \mathrm{EE}^{\prime}}{2}$.
2. Начин. Ако имамо да израчунамо површину неправилног многоугла ABCDEFPQ (сл. 241.), онда повлачимо највећу дијагоналу AD , а затим из свију осталих темена спуштамо нор-

Сл. 241.

мале на ову дијагоналу, чиме се површина многоугла дели на правоугле троугле и трапезе. Најзад израчунавамо посебице површину свакога троугла и трапеза и добивене површине сабирамо. Тако, површина осмоугла ABCDEF PQ (сл. 241.) је:

$$
\begin{gathered}
P=\frac{A Q^{\prime} \cdot Q Q^{\prime}}{2}+\frac{\left(Q Q^{\prime}+P P^{\prime}\right) \cdot Q^{\prime} P^{\prime}}{2}+\frac{\left(P P^{\prime}+F F^{\prime}\right) \cdot P^{\prime} F^{\prime}}{2}+ \\
+\frac{\left(F F^{\prime}+E E^{\prime}\right) \cdot F^{\prime} E^{\prime}}{2}+\frac{E^{\prime} D \cdot E E^{\prime}}{2}+\frac{C^{\prime} D \cdot C C^{\prime}}{2}+\frac{\left(C C^{\prime}+B B^{\prime}\right) \cdot B^{\prime} C^{\prime}}{2}+ \\
+\frac{A B^{\prime} \cdot B B^{\prime}}{2}
\end{gathered}
$$

§ 135. Мерење површина у природи.

Ако је облик њиве (ливаде, винограда, плаца итд.) паралелограм, трапез или правилан многоугао, онда поступамо по досадањим упуствима за иврачунавање површина тих слика. Али, како су слике на земљиној површини обично неправилни многоугли, онда се израчунавање њихових површина врши на овај начин.

Најпре слободном руком скицирамо облик њиве на хартији и одмах делимо скицу, повлачењем дијагонала из једног или више темена, на троуглове, а на њиви, код сваког угла, забадамо кочиће, који нам заступају темена неправилног многоугла. Затим, пантљиком (конопцем чија је дужина повната) од $20,30,40$ и 50 m меримо редом сва одстојањю између свака три кочића, чије величине одмах обележавамо на скици поред одговарајуће стране или дијагонале. Када измеримо све стране троуглова,

на које је њива кочићима подељена, и њихове величине означиио на скицри, -онда приступамо тачном цртању њивине слике помоћу лењира и шестара Ова се конструкција врши цртањем сваког троугла редом с помоһу величина његових страна, узимајући 1 m у природи као 1 mm на хартији. Кад довршимо тачну нацртану њивину слику у малом (у миниатури), онда приступамо израчунавању површине сваког троугла на слици, узимајући ма коју страну за основицу и мерењем одговарајуће јој висине помоћу правоугла троугла, чија је једна катета подељена на милиметре Ако висина на слици има 30 mm , значи да је она у природи 30 m и она се као 30 m рачуна. Множењем величина основице и висине и дељењем опбивеног производа са два, добија се површина једног троугла израчуната у квадратним метрима, Када се овим путем израчуна површина сваког од осталих троуглова на слици, онда сабирамо све те површине и добивени збир представља нам површину њиве у квадратним метрима, Дељењем ове површине са 100 , добијамо површину њиве у аровима. Када све то свршимо, онда повлачимо мастилом све стране обима слике, брисве то свршимо, онда повлачимо мастилом све стране обима слике, орисредини слике означавамо површину њиве у арима.

§ 136. З а д а ц и.

1. Колики је обим правилнога а) петоугла, в) седмоугла, с) десетоугла, кад му је страна $7,2 \mathrm{~cm}$?
2. Колика је површина правилнога а) петоугла стране $a=2,6 \mathrm{~cm}$, а лолупречника уписаног круга $\mathrm{r}=1,79 \mathrm{~cm}$, b) 15 -угла стране $\mathrm{a}=0,83 \mathrm{~m}$ а лолупречника уписаног круга $\mathrm{r}-1,96 \mathrm{~m}$.
3. Колика је површина трапезоида код кога је једна дијагонала 7,28 : dm , а оба друга темена јесу удаљена од те дијагонале $4,7 \mathrm{dm} \frac{1}{} 3,4 \mathrm{dm}$.

Сл. 243.
4. У полигону ABCDEF (сл. 242.) је $\mathrm{AD}=19,6 \mathrm{~m}, \mathrm{BB},=5,7 \mathrm{~m}_{2}$ $\mathrm{EE}^{\prime}=2,8 \mathrm{~m}, \mathrm{BD}=15,4 \mathrm{~m}, \mathrm{CC} \quad=1,8 \mathrm{~m}, \mathrm{AE}=12,3 \mathrm{~m}, \mathrm{FF},=1,6 \mathrm{~m} ;$ израчунај његову површину.
5. Наћи површину полигона ABCDEFGH (сл. 243.) када іе: $\mathrm{BB},=6,8 \mathrm{~m}$, $\mathrm{B}, \mathrm{H},=2,6 \mathrm{~m}, \mathrm{CC}_{\prime}=8,6 \mathrm{~m}, \mathrm{H}^{\prime} \mathrm{C}^{\prime}=3,2 \mathrm{~m}, \mathrm{DD}^{\prime}=7,9 \mathrm{C}, \mathrm{G},=5,7 \mathrm{~m}, \mathrm{FF},=10,2$ $\mathrm{m}, \mathrm{G}_{\prime} \mathrm{D}^{\prime}=1,3 \mathrm{~m}, \mathrm{GG}^{\prime}-9,5 \mathrm{~m}, \mathrm{D}^{\prime} \mathrm{F}^{\prime}=2,9 \mathrm{~m}, \mathrm{HH},-13,4 \mathrm{~m}, \mathrm{~F}, \mathrm{E}=3,2 \mathrm{~m}$ н AB , $=5,6 \mathrm{~m}$.

IV. ПИТАГОРИНО ПРАВИЛО И ЊЕГОВА ПРИМЕНА

§ 137. Правила код правоуглог троугла.

Следећа три правила која се односе на правоугли троугао, јесу од највеће важности у Геометрији, јер имају велику примену у решавању конструктивних и рачунских задатака. Та су правила:

1. Квадрат над једном катетом правоуглога троугла једнак је по површини с оним правоугаоником коме је једна страна једнака са хипотенузом, а друга му је страна једнака с хипотенузиним одсечком до тога катета.

Да бисмо доказали да је квадрат ABMN (сл. 244.) над катетом AB једнак с правоугаоником BFED , коме је дужина

BF једнака хипотенузи BC , а ширина хипотенузином одсечку BD , доказујемо најпре да су једнаки троуглови MBC и ABF , добивени спајањем темена C и M и A и F . Ти су троуглови једнаки, јер су подударни, пошто имају по две стране

Сл. 244.
и захваћене углове једнаке $(\mathrm{BC}=\mathrm{BF}, \mathrm{BM}=\mathrm{AB}$, ₹ MBC $=\varnothing \mathrm{ABE}=90^{\circ}+\beta$). Па како је по 2. правилу §118., $\triangle \mathrm{MBC}$ половина квадрата $\mathrm{ABMN}, \triangle \mathrm{ABF}$ половина правоугаоника BFED, то је услед једакости троуглова, и половина квадрата ABMN једнака с половином правоугаоника BFED, Тада. и њихове целине јесу једнаке, т. ј. ABMN = BFED.
2. Квадрат над хипотенузом правоугла троугла једнак је са збиром квадрата над катетама. (Питагорино правило).

По предходном правилу имамо $\mathrm{BFED}=\mathrm{ABMN}$ и DEPC $=\mathrm{ACSH}$ (сл. 245.). Стога је и.

$$
\mathrm{BFED}+\mathrm{DEPC}=\mathrm{ABMN}+\mathrm{ACSH}
$$

 то је заменом у (1):

$$
\mathrm{BFPC}=\mathrm{ABMN}+\mathrm{ACSH}
$$

Наиомена 1. Тачност Питагориног правила можемо увидети најочигледније код тако званог Александриског правоуглог троугла, код кога су стране размери $3: 4: 5$. Такав је троугао на сл. 246. Ако нацртамо такав троугао узимејући за катете $3 \mathrm{~cm}(\mathrm{dm})$ и $4 \mathrm{~cm}(\mathrm{dm})$, онда његова хипотенуза

има $5 \mathrm{~cm}(\mathrm{dm})$ што се можемо и мерењем да уверимо. Ако над сваком страном овога троугла нацртамо квадрат и из

$$
\text { Сл. } 245 .
$$

сваког $\mathrm{cm}(\alpha \mathrm{m})$ њихових страна повучемо паралелне са странама, онда ће квадрат над једном катетом имати $9 \mathrm{~cm}^{2}\left(\mathrm{dm}^{2}\right)$,

квадрат над другом катетом имаће $16 \mathrm{~cm}^{2}\left(\mathrm{dm}^{2}\right)$, а квадрат над хипотенузом $25 \mathrm{~cm}^{2}(\mathrm{dm}$,), т. ј. број (25) његових квадратних сантиметара $\left(\mathrm{dm}^{2}\right)$ једнак је збиру $(9+16) \mathrm{cm}^{2}\left(\mathrm{dm}^{2}\right)$ квадрата над катетама.

Нацртај правоугли троугао чије су катете 6 cm и 8 cm и провери Питагорино правило овим путем!

Напомена 2. Из овог правила је јасно : да је квадраша ма над којом кашешом иравоуглога шроугла једнак с разликом између хипопенузиног квадраша и квадраша над другом кашешом.
3. Квадрат над висином правоугла троуглу једнак је правоугаонику, коме су стране једнаке с одсечиима хипотенузаним.

Нека је ABMN (сл. 247.) квадрат над катетом AB , ADHS квадрат над висином AD , BKLD квадрат над одсечком BD к

BPED правоугаоник чије су стране једнаке с хипотенузом BC и одсечком BD . Тада, према 2. напомени у предходном правилу, имамо :

$$
\mathrm{ADHS}=\mathrm{ABMN}-\mathrm{BKLD} \ldots(1)
$$

Па како је по 1. правилу $\mathrm{ABMN}=\mathrm{BPED}$, то заменом у једнакости (1) ABMN са BPED имамо:

ADHS $=\mathrm{BPED}$ - DKLD... (2). Из слике видимо да је $\mathrm{BPED}-\mathrm{BKLD}=$ KPEL. Заменом у (2) добијамо:

$$
\mathrm{ADHS}=\mathrm{KPEL}
$$

§ 138. Израчунавање код правоуглог троугла. Нека су код правоуглога троугла ABC (сл. 240.) : а хипотенуза, \mathbf{b} и c катете, \mathbf{p} и \mathbf{q} отсечци хипотенузини, \mathbf{h} хипотенузина висина. Тада, на основу правила 1., 2. и 3. из прет-

Сл. 248. ходног параграфа имамо ове везе између поменутих троуглових елемената: 1) $\mathbf{c}^{2}=\mathbf{a} \cdot \mathrm{p}$; 2) $\mathbf{b}^{2}=\mathbf{a} \cdot \mathbf{q}$; 3) $\mathbf{a}^{2}=\mathbf{b}^{2}+\mathbf{c}^{2}$; 4) $\mathbf{h}^{2}=\mathbf{p} \cdot \mathbf{q}$.

Помоћу ових образаца у стању смо израчунати троуглове елементе: a, b, c, p, q и h, чим знамо само два од њих. Сви рачунски задаци из правоуглога троугла састоје се у главном у томе, да су позната два од поменутих елемената а траже се остали. Тако поједине елементе израчунавамо на један од ових начина:

1) $a=\sqrt{b^{2}+c^{2}}, a=p+q, a=\frac{b^{2}}{q}, a=\frac{c^{2}}{p}$;
2) $b=\sqrt{a^{2}-c^{2}}, b=\sqrt{h^{2}+q^{2}}, b=\sqrt{a q}$;
3) $c=\sqrt{a^{2}-b^{2}}, c=\sqrt{h^{2}+p^{2}}, c=\sqrt{a p}$;
4) $h=\sqrt{c^{2}-p^{2}}, h=\sqrt{b^{2}-q^{2}} h=\sqrt{p q}$;
5) $\mathrm{q}=\sqrt{\mathrm{b}^{2}-\mathrm{h}^{2}}, \mathrm{q}=\frac{\mathrm{b}^{2}}{\mathrm{a}}, \mathrm{q}=\frac{\mathrm{h}^{2}}{\mathrm{p}}$ и $\mathrm{q}=\mathrm{a}-\mathrm{p}$;
6) $\mathrm{p}=\sqrt{\mathrm{c}^{2}-\mathrm{h}^{2}}, \mathrm{p}=\frac{\mathrm{c}^{2}}{\mathrm{a}}, \mathrm{p}=\frac{\mathrm{h}^{2}}{\mathrm{q}}$ и $\mathrm{p}=\mathrm{a}-\mathrm{q}$.

Искажи све ове начине израчунавања речима!

1. пример. Наћи остале елеменше иравоуглога шроугла жада се зна хипошенуза $a=10 \mathrm{~m}$ и одсечак $p=3,6 \mathrm{~m}$.

Други одсечак $q=a-p=10-3,6=6,4 \mathrm{~m}$, По 1. правилу имамо $: \mathrm{b}^{2}=\mathrm{aq}=10 \cdot 6,4=64, \mathrm{a} \mathrm{b}=\sqrt{64}=8 \mathrm{~m}$, затим $\mathrm{c}^{2}=\mathrm{ap}=10 .-3,6=36$. а $\mathrm{c}=\sqrt{36}=6 \mathrm{~m}$. По 3. правилу имамо : $\mathrm{h}^{2}=\mathrm{pq}=3,6 \cdot 6,4=23,04, \quad$ a $\mathrm{h}=\sqrt{23,04}=4,8 \mathrm{~m}$.
2. иример. Познаши су отсечци хипотенузини $p=1,8 \mathrm{~cm}$ iл $q=3,2 \mathrm{~cm}$; наћи осшале елеменше правоуглога троугла.

Тада је хипотенуза $\mathrm{a}=\mathrm{p}+\mathrm{q}=1,8+3,2=5 \mathrm{~cm}$. По 3 . правилу имамо $: \mathrm{h}^{2}=\mathrm{pq}=1,8 \cdot 3,2=5,76$, а $\mathrm{h}=\sqrt{5,76=} 2,4 \mathrm{~cm}$ По 1. правилу имамо: $\mathrm{c}^{2}=\mathrm{ap}=5.1,8=9$, а $\mathrm{c}=\sqrt{9=} 3 \mathrm{~cm}$; $\mathrm{b}^{2}=\mathrm{aq}=5 \cdot 3,2=16, \mathrm{a} \quad \mathrm{b}=\sqrt{16}=4 \mathrm{~cm}$.
3. пример, Познате су кашете с $=7$ dm и $b=9 \mathrm{dm}$; наћи остоле елеменше иравоуглага проугла.

По 2. правилу имамо: $\mathrm{a}^{2}=\mathrm{b}^{2}+\mathrm{c}^{2}=9^{2}+7^{2}=81+49=130$, а одавде је $и=\sqrt{130}=11,401 \ldots \mathrm{dm}$ (приближно). По 1. правилу имамо: $\mathrm{c}^{2}=\mathrm{ap}, \quad$ а $\mathrm{p}=\frac{\mathrm{c}^{2}}{\mathrm{a}}=\frac{49}{11,401}=4,297 \ldots \mathrm{dm}$ (прибл.).

C тога је $\mathrm{q}=\mathrm{a}-\mathrm{p}=11,401-4,297=7,104 \ldots$ dm. (прибл.). По 3. правилу имамо: $\mathrm{h}^{2}=\mathrm{pq}=4,297 \cdot 7,104=30,525888 \mathrm{a}$ һ $=$ $\sqrt{30,525888}=5,525 \ldots \mathrm{dm}$. (прибл.).
4. пример. Познаша је хииошенуза $a=15 \mathrm{~cm}$ и кашеша $b=12 \mathrm{~cm}$; наћи остале елеменше правоуглога троугла.

По 2. правилу имамо: $\mathrm{c}^{2}=\mathrm{a}^{2}-\mathrm{b}^{2}=15^{2}-12^{2}=225-144=81$, $\mathrm{ac}=\sqrt{81}=9 \mathrm{~cm}$. По 1. правилу ииамо : $\mathrm{c}^{2}=\mathrm{ap}$, а одавде је $\mathrm{p}=\frac{\mathrm{c}^{2}}{\mathrm{a}}=\frac{81}{15}=\frac{27}{5}=5,4 \mathrm{~cm} . \mathrm{C}$ тога је $\mathrm{q}=\mathrm{a}-\mathrm{p}=15-5,4=9,6 \mathrm{~cm}$.

По 3. правилу имамо : $\mathrm{h}^{2}=\mathrm{pq}=5,4.9,6=51,84$, а $\mathrm{h}=$ $\sqrt{51,84}=7,2 \mathrm{~cm}$.

Примери за вежбу, 1) $\mathrm{a}=20 \mathrm{~cm}, \mathrm{c}=16 \mathrm{~cm}$; 2) $\mathrm{a}=8,5 \mathrm{dm}$, $\mathrm{q}=4,2 \mathrm{dm}$; 3) $\mathrm{b}=24 \mathrm{~m}, \mathrm{q}=19,2 \mathrm{~m}$; 4) $\mathrm{b}=32 \mathrm{~cm}, \mathrm{~h}=19,2 \mathrm{~cm}$; 5) $\mathrm{c}=9 \mathrm{~m}, \mathrm{p}=5 \mathrm{~m}$; 6) $\mathrm{c}=17 \mathrm{dm}, \mathrm{h}=12 \mathrm{~cm}$; 7) $\mathrm{p}=3,7 \mathrm{~m}$, $\mathrm{h}=4,3 \mathrm{~m}$; 8) $\mathrm{q}=19,2 \mathrm{~cm}, \mathrm{~h}=14,4 \mathrm{~cm}$; 9) Површина $\mathrm{P}=24 \mathrm{~m}^{2}$, $c=6 \mathrm{~m}$.
§ 139. Примена Питагориног правила. Примена Питагориног правила је врло велика и честа, и ово правило спада у најважнија и најкориснија правила. Израчунавање многих елемената код праволинијских слика врши се с помоћу овога правила. Таквих израчунавања имамо:

a) Код квадрата:

1. Задатак. Зна се стррана а, наћи дијагоналу d. Из правоуглог троуглӑ ABC (сл. 249.) по Питагорином правилу

Сл. 249.

Сл. 250.

имамо: $\mathrm{d}^{2}=\mathrm{a}^{2}+\mathrm{a}^{2}=2 \mathrm{a}^{2}, \quad \mathrm{a} d=\sqrt{2} \mathrm{a}^{2}=a \sqrt{2}=1,41 \mathrm{a}$ (приближно, пошто је $\sqrt{2}=1,41 \ldots$ ирационалан број). Тако, за $\mathrm{a}=5 \mathrm{~m}$, биће $\mathrm{d}=1,41.5=7,05 \mathrm{~m}$.
2. Задашак. Зна се дијагонала d, наћи страну а. Како је по претходном задатку $\mathrm{d}=\mathrm{a} \sqrt{2}$, то је $\mathrm{a}=\frac{\mathrm{d}}{\sqrt{2}}=\frac{\mathrm{d}}{1,41}$ (прибл.). Тако, за $\mathrm{d}=20 \mathrm{~cm}$, биће $\mathrm{a}=\frac{20}{1,41}=\frac{2000}{141}=14,18 . . \mathrm{cm}$ (прибл.).

Задаци за вежбањө.

3. Квадратова је дијагонала $\mathrm{d}=3,4 \mathrm{~m}$; наћи страну a, површину P и полупречнике өписаног и уписаног круга R и r.
4. Квадратова је површина $\mathrm{P}=64 \mathrm{~m}^{2}$, наћи a, R и r
5. Колканана чија је површина равна збиру површина два квадрата, чије су стране $3,15 \mathrm{~m}$ и $6,17 \mathrm{~m}$?
6. Обим квадрата износи 34 dm ; наћи a, d и P.
7. Колика је дијагонала квадрата који је $2,3,4$ пута већи од квадрата стране 9 cm?
b) Код правоугаоника:
8. Задатак. Познате су стране a u b; наћи дијагоналу d. Из правоуглога троугла АВС (сл. 250.) по Питагорином правилу имамо : $\mathrm{d}^{2}=\mathrm{a}^{2}+\mathrm{b}^{2}, \mathrm{ad}=\sqrt{\mathrm{x}^{2}+\mathrm{b}^{2}}$. Такоза $\mathrm{a}=4 \mathrm{~m}$ и $\mathrm{b}=3 \mathrm{~m}$, биће $\mathrm{d}=\sqrt{4^{2}}+3^{2}=\sqrt{16+9}=\sqrt{25}=5 \mathrm{~m}$.
9. Задашак. Зна се страна а и дијаганала d; наћи страну b . Из $\triangle \mathrm{ABC}$ (сл. 250.) имамо: $\mathrm{b}^{2}=\mathrm{d}^{2}-\mathrm{a}^{2}, \mathrm{a} \mathrm{b}=\sqrt{\mathrm{d}^{2}-\mathrm{a}^{2}}$. За $\mathrm{d}=20 \mathrm{~m}$ и $\mathrm{a}=16 \mathrm{~m}$ биће $\mathrm{b}=\sqrt{20^{2}-1 \overline{\sigma^{2}}}=\sqrt{400-256}$ $=\sqrt{144}=12 \mathrm{~m}$.

Задаци за вежбање.

3. Наћи дијагоналу d, полупречник описаног круга R и "површину Р правоугаоника, чије су стране $9,7 \mathrm{~m}$ и $6,2 \mathrm{~m}$.
4. Колика је површина правоугаоника код кога је једна страна 45 cm а дијагонала 53 cm ?
5. Дијагонала једног правоугаоника јесте $7,3 \mathrm{dm}$, а једна му је страна $4,8 \mathrm{dm}$; наћи страну онога квадрата чија је површина једнака с површином правоугаониковом.
6. Наћи дијагоналу и површину правоугаоника чија је дужина 28,3 m а обим му је $83,8 \mathrm{~m}$.
c) Код ромба :
7. Задатак. Наћи сшрану ромба а, када су иознаше дијагонале $\mathbf{d} u \mathbf{d}^{\prime}$.

Из правоуглога троугла ABO (сл. 251.), код кога је страна ромба хипотенуза а половине дијагонала катете имамо, по Питагорином правилу: $a^{2}=\left(\frac{d}{2}\right)^{2}+\left(\frac{d^{\prime}}{2}\right)^{2}$, одавде је $a=$ $=\sqrt{\left(\frac{d}{2}\right)^{2}+\left(\frac{d^{\prime}}{2}\right)^{2}}$. Тако, за $\mathrm{d}=8 \mathrm{~cm}$ и $\mathrm{d}^{\prime}=6 \mathrm{~cm}$. биће :

$$
a=\sqrt{4^{2}+3^{2}}=\sqrt{16+9}=\sqrt{25}=5 \mathrm{~cm}
$$

2. Задашак. Зна се дијагонала d и страна а; наћи друzу дијагоналу d'.

Из $\triangle \mathrm{ABO}$ (сл. 251.) имамо: $\left(\frac{\mathrm{d}^{\prime}}{2}\right)^{2}=\mathrm{a}^{2}-\left(\frac{\mathrm{d}}{2}\right)^{2}$, а $\frac{\mathrm{d}^{\prime}}{2}=$ $\sqrt{\mathrm{a}^{2}-\left(\frac{\mathrm{d}}{2}\right)^{2}}$. Тако за $\mathrm{a}=5 \mathrm{~m}$ и $\mathrm{d}=8 \mathrm{~m}$, биће $\frac{\mathrm{d}^{\prime}}{2}=\sqrt{5^{2}-4^{2}}$ $=\sqrt{9}=3 \mathrm{~m}$, a $\mathrm{d}^{\prime}=6 \mathrm{~m}$.

Задаци за вежбање.

3. Наћи страну ромба чије су дијагонале $2,26 \mathrm{~m}$ и $1,75 \mathrm{~m}$.
4. Зна се једна дијагонала 『ромба 25 cm и страна 17 cm ; наћи његову површину.
$\sqrt{5}$. Обим ромба износе 212 cm а једна му је дијагонала 56 cm ; наћи његову површину и другу дијагоналу.
b) Код равностраног троугла:
5. Задашак. Зна се сырана а, наћи висину h , полуиречник оиисаног и уписаног круга R и r , површину P .

Сл. 251.

Сл. 252.

Из правоуглог $\triangle \mathrm{BDC}$ (сл. 252.) имамо: $\mathrm{h}^{2}=\mathrm{a}^{2}-\left(\frac{\mathrm{a}}{2}\right)^{2}=$ $=a^{2}-\frac{a^{2}}{4}=\frac{4 a 2-a^{2}}{4}=\frac{3 a^{2}}{4}, a h=\sqrt{\frac{3 a^{2}}{4}}=\frac{a}{2} \sqrt{3}=\frac{1,73 a}{2}$ (приб. пошто је $\sqrt{3}=1,73 \ldots$..ирационал број). Како је $\mathrm{R}=\frac{2}{3} \mathrm{~h}$, a $\mathrm{r}=$ $\frac{1}{3} \mathrm{~h}$, то је заменом h са $\frac{\mathrm{a} \sqrt{3}}{2}, \mathrm{R}=\frac{2}{3} \cdot \frac{\mathrm{a} \sqrt{3}}{2}=\frac{\mathrm{a} \sqrt{3}}{3}=\frac{1,73 \mathrm{a}}{3}$ и r $\frac{1}{3} \cdot \frac{\mathrm{a} \sqrt{3}}{2}=\frac{\mathrm{a} \sqrt{3}}{6}=\frac{1,73 \mathrm{a}}{6} \cdot$. Површина $\mathrm{P}=\frac{\mathrm{ah}}{2}=\frac{\mathrm{a}}{2} \cdot \frac{\mathrm{a}}{2} \sqrt{3}=\frac{\mathrm{a}^{2}}{4} \sqrt{3}=\frac{1,73 \mathrm{a}^{2}}{4}$

Дакле, код равостраног троугла, када знамо страну а, онда: 1) висину h израчунамо, када половину стрране помножимо са $\sqrt{3}$ или 1,73 ; 2) полупречник описаног круга R израчунавамо, када трећину стране помножимо са $\sqrt{3 \text {; 3) ио- }}$ луиречник уиисаног круга г израчунавамо, када шесиину стране помножимо са $\sqrt{3 ;}$ и 4) повриину \mathbf{P} израчунамо: када четвртину квадрата стране поможимо са $\sqrt{\overline{3}}$.

Тако за $\mathrm{a}=6 \mathrm{~cm}$ биће: $\mathrm{h}=\frac{\mathrm{a}}{2} \sqrt{3}=\frac{6 \cdot 1,73}{2}=3 \cdot 1,73=5,19 \mathrm{~cm}$ (приближ.); $\mathrm{R}=\frac{\mathrm{a} \sqrt{3}}{3}=\frac{6.1,73}{3}=2.1,73=3,56 \mathrm{~cm} ; \mathrm{r}=\frac{\mathrm{a} \sqrt{3}}{6}=$ $=\frac{6 \cdot 1,73}{6}=1,73 \mathrm{~cm} ; P=\frac{a^{2} \sqrt{3}}{4}=\frac{36 \cdot 1,73}{4}=15,67 \mathrm{~cm}^{2}$.
2. Задашак. Даша је висина \mathbf{h}; наћи \mathbf{R}, \mathbf{r}, а и \mathbf{P}.

Како је $h=\frac{a \sqrt{3}}{2}$, то је $2 h=a \sqrt{3}$, а одавде је $a=\frac{2 h}{\sqrt{3}}$; $\mathrm{R}=\frac{2}{3} \mathrm{~h} ; \mathrm{r}=\frac{1}{3} \mathrm{~h}$ и $\mathrm{P}=\frac{\mathrm{ah}}{2}=\mathrm{a} \cdot \frac{\mathrm{h}}{2}=\frac{2 \mathrm{~h}}{\sqrt{3}} \cdot \frac{\mathrm{~h}}{2}=\frac{\mathrm{h}^{2}}{\sqrt{3}}=\frac{\mathrm{h}^{2}}{1,73}$ (прибл.).
е) Код равнокраког троугла.

1. Задашак. Зна се основица с, крак \mathbf{b}; наћи основичину висину h и повриину P.

Из правоуглог троугла BDC (сл. 253.) имамо: $h^{2}=b^{2}-\left(\frac{c}{2}\right)^{2}, a h=\sqrt{b^{2}-\left(\frac{c}{2}\right)^{2}} ; P=\frac{c h}{2}=\frac{c}{2} h=\frac{c}{2} \cdot \sqrt{b^{2}-\left(\frac{c}{2}\right)^{2}}$.

Сл. 253.

Сл. 254.
2. Задатак. Даш је крак b и висина \mathbf{h}; наћи основицу с. Из правоуглог троугла BDC (сл. 253.) имамо : $\left(\frac{c}{2}\right)^{2}=\mathrm{b}^{2}-\mathrm{h}^{2}$ или $\frac{\mathrm{c}}{2}=\sqrt{\mathrm{b}^{2}-\mathrm{h}^{2}}$, а одавде је $\mathrm{c}=2 \sqrt{\mathrm{~b}^{2}-\mathrm{h}^{2}}$.
3. Задашак. Даша је основица с и нена висина \mathbf{h} : наћи крак b. Из правауглог троугла BDC (сл. 253.) имамо:

$$
b^{2}=h^{2}+\left(\frac{c}{2}\right)^{2}, \quad a \quad b=\sqrt{h^{2}+\left(\frac{c}{2}\right)^{2}}
$$

4. Кад је : $\mathrm{c}=5,4 \mathrm{dm}, \mathrm{b}=7,2 \mathrm{dm}$; наћи h и P.
5. Кад је: $\mathrm{c}=4,74 \mathrm{dm}, \mathrm{h}=6,7 \mathrm{dm}$; наћи b и P.
6. Кад је хипотенузина висина равнокракт правоуглог троугла $\mathrm{h}=3 \mathrm{dm}$; наћи његове стране.
f) Код правилног шестоугла.
7. Задатак. Зна се страна а иравилог шестоугла, наћи повриину P и иолупречнике описаног и уписаног круга $\mathbf{R} u \mathbf{r}$. Троугао ABO (сл. 254.) је равностран, те је његова површина
$\mathrm{P}^{\prime}=\frac{\mathrm{a}^{2}}{4} \sqrt{3}$. Па како је површина шестоугла 6 пута већа од површине овога троугла, то је $P=6 \cdot P^{\prime}=6 \cdot \frac{a^{2} \sqrt{3}}{4}=\frac{3 a^{2} \sqrt{3}}{2}$.

Како је полупречник описаног круга једнак са страном шестоугла, то је $\mathrm{R}=\mathrm{a}$. Полупречник уписаног круга r је висина равностраног троугла ABO , те је $\mathrm{r}=\mathrm{h}=\frac{\mathrm{a}}{2} \sqrt{3}$.

За $\mathrm{a}=3,4 \mathrm{~cm}$ биће $\mathrm{P}=\frac{3 \mathrm{a}^{2} \sqrt{3}}{2}=\frac{3 \cdot 3,4^{2} \cdot 1,73}{2}=29,9982 \mathrm{~cm}^{2}$ $\mathrm{R}=3,4 \mathrm{~cm} ; \mathrm{r}=\frac{\mathrm{a} \sqrt{3}}{2}=\frac{3,4 \cdot 1,73}{2}=2,941 \mathrm{~cm}$.

V. ИЗРАЧУНАВАЊЕ ПОВРШИНА КОД ПРИЗАМА И ПИРАМИДА.

§ 140. Врсте призама. Тела представљена на сликама: 255., 256., 257. и 258. јесу призме. Школска учионина, цигла, кутија жижица, такође су призме. Призма је, дакле, рогљасто тело, које је с горње и доње стране ограничено двема подударним праволиниским сликама, званим основама или базисима призме, а са стране паралелограмима који могу бити правоугли или косоугли. Код једне призме разликујемо двојаке ивице: основине и бочне. Основине су ивице пресеци основа са бочним странама, а бочне су ивице пресеци бочних страна међу собом. Све су бочне ивице једнаке и паралелне. Раздаљина од једне основе до друге зове се висина призме.

Према броју основиних или

Сл. 255.

Сл. 256 бочних ивица призме делимо на: шростране, четворостране и многосшране. Према томе да ли су бочне ивице управне или косе према базису, разликујемо праве и косе иризме. Права је она призма код које су бочне ивице управне на равнини базиса (сл. 255 ., 256., P^{\prime} на сл. 257.), а коса код које бочне ивице стоје косо према базису (Р на сл.257.). Код праве иризме бочне су спране аравоугли паралелограми, а код косе косоугли. Код праве призме висина је увек једнака

с бочном ивицом. Према томе да ли су базиси правилне или неправилне слике, и призма је правилна или неправилна. ІІравилна је, дакле, она иризма код које су основе иравилни иолигони (равностран троугао, квадрат, правилан петоугао и т. д. сл. 255 ., 258.). Ако је основа неправилан полигон, призма је неправилна (сл. 256., 257.). Према овоме, једна призма може бити: правилна права, правилна коса, неправилна права и неправилна коса. Призма је равноивична, ако су све њене ивице једнаке. Код праве равноивичне призме бочне су стране подударни квадрати.

Од свију разних врста призама најглавнију улогу имају призме п̄аралелойиеди (сл. 256.). То су призме код којих су базиси паралелограми. Ако је базис правоугли паралелограм (квадрат, правоугаоник), онда је паралелоиипед правоугли; ако

је базис косоугли паралелограм (ромб, ромбоид), онда је даралелопииед косоугли. И паралелопипеди, као и остале призме, могу бити: прави и коси, правилни и неправилни. Код правилног и правог паралелопипеда све су бочне стране једнаки правоугаоници а код правоуглог правог паралелопипеда код кога је базис правоугаоник, једнаке су само супротне бочне стране које су такође правоугаоници.

Под димензијама једнога правоуглог правог паралелопипада разумемо три његове ивице које се стичу у једном темену, т. ј. дужину, ширину и висину његову. Коцка је, дакле, правилан и прав правоугли паралелопипед, код кога су све ивице једнаке.
§ 141. Површина призме. Како је површина сваке призме састављена од два једнака базиса и збира бочних страна, то је формула за површину призме

$$
P=2 B+M
$$

где нам P претставља површину призме, B површину једнога басиса, а M збир површина бочних страна.

Ако је призма права, па се разастре по једној равни, онда све бочне стране дају правоугаоник чија је дужина једнака са обимом базиса, а ширина му је једнака с бочном ивицом (сл. 258.).

Спога јс бочна повриина праве призме М (или омотач призме) равна производу од обима базиса и нене висине. Ако је права призма правилна, код које је базис од п сграна величине а, а висина призме h, која је у овом случају једнака с бочном ивицом s, онда је обим базиса.
$\mathbf{O}=\mathbf{n} . \mathbf{a}$, а омотач $\mathbf{M}=\mathbf{0} . \mathbf{h}=\mathbf{n a h}$, или $\mathbf{M}=$ nas.

1) Повриина коцке. Како је коцкина површина састављена од шест једнаких квадрата (сл. 259.), то је њена површина за ивицу а:

Сл. 259.
1 иример. За $\mathrm{a}=2,5 \mathrm{~m}$ биће $\mathrm{P}=6.2,5^{2}=6,25=37,50 \mathrm{~m}^{2}$.
2. иример. За $\mathrm{P}=600 \mathrm{~cm}^{2}$ биће $\mathrm{a}=\sqrt{\frac{600}{6}}=\sqrt{100}=0 \mathrm{~cm}$.
2. Повриина правоуглог правог паралелоиииеда (сл. 260.) Ако је његова дужина а, ширипа \mathbf{b}, висина \mathbf{c}, онда је површина једног базиса $B=a b$, обим базиса $\mathrm{O}=2$. $(\mathrm{a}+\mathrm{b})$, површина омотача $\mathrm{M}=\mathrm{O} \cdot \mathrm{c}=$ $2 \cdot(a+b) c$, а површита щелог паралелопипеда:

$P=2 B+M=2 a b+2(a+b) c$.
Пример. За $\mathrm{a}=10 \mathrm{~cm}, \mathrm{~b}=6 \mathrm{~cm}$ и $\mathrm{c}=15 \mathrm{~cm}$ бића $\mathrm{B}=60 \mathrm{~cm}^{2}$, $\mathrm{O}=32 \mathrm{~cm}, \mathrm{M}=\mathrm{O} \cdot \mathrm{c}=32 \cdot 15=480 \mathrm{~cm}^{2}, \mathrm{aP}=2 \mathrm{~B}+\mathrm{M}=$ $=120+480=600 \mathrm{~cm}^{2}$.
3) Повриина поавилне и ираве тростране ирризме (сл. 261.). Овде су базиси равнострани троуглови а бочне стране подударни правоугаоници. Ако је а основина ирица а s бочна, онда је површина базиса $B=\frac{a^{2}}{4} \sqrt{3}$, а површина омотача $M=3$.as. Стога је површина призме:

Геометрија за III и IV разред.

$$
\mathbf{P}=2 B+M=\frac{\mathbf{a}^{2}}{2} \sqrt{3+3 a s}
$$

За $\mathrm{a}=6 \mathrm{dm}$ и $\mathrm{s}=10 \mathrm{dm}$ биће $\mathrm{P}=\frac{6^{2}}{2} \sqrt{3}+3.6 .10=$ $=18 \cdot \sqrt{3}+180=18 \cdot 1,73+180=31,14+180=211,40 \mathrm{dm}^{2}$.

4) Површина ираве иризме чија іе основа правоугли шроугао (сл. 262.). Ако су \mathbf{b} и с катете базиса а \mathbf{s} бочна ивица, онда је хипотенуза базиса $a=\sqrt{\mathrm{d}^{2}+\mathrm{c}^{2}}$, површина базиса $\mathrm{B}=\frac{\mathrm{bc}}{2}$, обим базиса $\mathrm{O}=\mathrm{b}+\mathrm{c}+\mathrm{a}$, површина омотач $\mathrm{M}=\mathrm{O} . \mathrm{s}=$ $(\mathrm{b}+\mathrm{c}+\mathrm{a}), \mathrm{s}$, а површина призме

$$
\mathbf{P}=2 B+M=b c+(b+c+a) s
$$

За $\mathrm{b}=3 \mathrm{~m}, \mathrm{c}=4 \mathrm{~m}$ и $\mathrm{s}=10 \mathrm{~m}$, биће $\mathrm{a}=\sqrt{3^{2}+4^{2}}=\sqrt{9+16}=\sqrt{25}=5 \mathrm{~m}$, $\mathrm{O}=\mathrm{b}+\mathrm{c}+\mathrm{a}=12 \mathrm{~m}, \mathrm{~B}=\frac{\mathrm{bc}}{2}=\frac{3.4}{2}=6 \mathrm{~m}^{2}, \mathrm{M}=\mathrm{O} . \mathrm{s}=12.10=$ $=120 \mathrm{~m}^{2}$, a $P=2 B+M=12+120=132 \mathrm{~m}^{2}$.

Сл。 262.
5) Іовриина (сл. 263.). Овде су

правоугаоници. С тога је површина основе $\mathrm{B}=\mathrm{a}^{2}$, површина омотача $M=4$ as, а површина призме $P=2 B+M=2 a^{2}+4 a s$. (4) $3 \mathrm{a} \mathrm{a}=8 \mathrm{~cm}$ и $=12 \mathrm{~cm}$ биће $B=64 \mathrm{~cm}^{2}, M=32.12=384 \mathrm{~cm}^{2}$, $a P=2.64+384=512 \mathrm{~cm}^{2}$.

6) Повриина ираве иризме чија је основа ромб (сл. 264.). Овде су бочне стране подударни правоугаоници. Ако су дијагонале базиса \mathbf{d} и \mathbf{d}^{\prime}, а бочна ивица \mathbf{s}, онда је ивица базиса $\mathrm{a}=\sqrt{\left(\frac{d}{2}\right)^{2}+\left(\frac{\mathrm{d}^{\prime}}{2}\right)^{2}}$, обим бизиса $\mathrm{O}=4 \mathrm{a}$, површина омотача $M-4$ as, а поршина призме $P=2 B+M=2 \cdot \frac{d \cdot d^{\prime}}{2}+4 a s=$ $-\mathrm{dd}^{\prime}+4$ as.

За $\mathrm{d}=16 \mathrm{~cm}, \mathrm{~d}^{\prime}=12 \mathrm{~cm}$ и $\mathrm{s}=20 \mathrm{~cm}$ биће $\mathrm{a}=\sqrt{8^{2}+\mathrm{b}^{2}}=$ $=\sqrt{64+36}=\sqrt{100}=10 \mathrm{~cm}, B=\frac{\mathrm{d} \cdot \mathrm{d}^{\prime}}{2}-\frac{16 \cdot 12}{2}=96 \mathrm{~cm}^{2}$, $M=4$ as $-4.10 .20=800 \mathrm{~cm}^{2}$, a $P-2 B+M=192+800992 \mathrm{~cm}^{2}$.

Сл. 264.
7) Површина араве и аравилне шесшостране аризме (сл. 258.). Овде су базиси правилни шестоугаоници а бочне стране подударни правоугаоници. Ако је основина иви!а a, а бочна s, онда је површина базиса $B=6 \cdot \frac{a^{2}}{4} \sqrt{3}=\frac{3 a^{2}}{2} \sqrt{3}$,

обим базиса $\mathbf{O}=\mathbf{6 a}$, површина омотача $\mathbf{M}=\mathbf{6 a s}$, а површина призме $\mathbf{P}=2 \mathrm{~B}+\mathrm{M}=3 \mathrm{a}^{2} \sqrt{3}+6 \mathrm{a}$.

За $\mathrm{a}=7 \mathrm{~cm}$ и $\mathrm{s}=12 \mathrm{~cm}$ биће $\mathrm{P}=3 \cdot 7^{2} \cdot 1,73+6 \cdot 7 \cdot 12=$ $-254,31+504=758,31 \mathrm{~cm}^{2}=7,5831 \mathrm{dm}^{2}=7 \mathrm{dm}^{2} 58 \mathrm{~cm}^{2} 21 \mathrm{~mm}^{2}$ 。

Наиомена. Код свију горњих примера видимо да је површина призме функција њених основних и бочних ивица, јер се она мења, кад се мењају бројне вредности тих ивица.

§ 142. Задаци за вежбу.

1. Наћи површину коцке ивице а) 1 m 4 dm 6 cm , b) $8,5 \mathrm{dm}$.
2. Колика је ивица коцке површине a) $61,54 \mathrm{~m}^{2}$, b) $100,3636 \mathrm{~cm}^{2}$? 3. Наћи површину правог правоуглог паралелопипеда (чије су димензије $35 \mathrm{~cm}, 20 \mathrm{~cm}$ и 42 cm .
3. Наћи површину школске табле дужине 150 cm , ширине 120 cm а дебљине 4 cm .
4. Сала облика паралелопипеда "дужине 8 m , ширине $6,8 \mathrm{~m}$ и висине $4,5 \mathrm{~m}$, има само на једном зиду три прозора димензије 0.9 m и 2 m , а врата су јој димензије $1,2 \mathrm{~m}$ и $2,15 \mathrm{~m}$. Таванаца и зидови треба да се обоје по цени од 0,45 динара од квадратног метра; колико стаје бојадисање?
5. Наћи површину правилне и праве а) тростране, b) четворостране, c) шестостране призме, ако је основина ивица $a=6,5 \mathrm{~cm}$ а бочна $s=10,25 \mathrm{~cm}$.
6. Наһи површину праве тростране призме чија је основа равно-крак-правоугли троугао катете 4 m , а бочна је ивица 9 m .
7. Наћи површину праве равноивичне а) тростране, b) шестостране призме, ако је ивица $5,6 \mathrm{~cm}$.
8. Наћи површину правилне праве петострәне призме основне ивице $\mathrm{a}=6 \mathrm{~cm}$, полупречника уписаног круга у основи $\mathrm{r}=4,13$, а висине $\mathrm{h}=12 \mathrm{~cm}$.
9. Наћи површину правилне и праве осмостране призме основне ивице 5 cm , голупречника уписаног круга базиса $\mathrm{r}=6,04$ а висане 10 cm .
10. Начини мреже од картона правилне и ираве а) тростране, b) четворостране, с) петостране, đ) шестостране, е) осмостране, f) десетостране призме, а затим еклопи та тела и нађи њихове површине
11. Начини модел једне правилне праве 12 -стране призме основине ивице 3 cm а бочне 12 cm , измери полупречник уписаног круга њеног безиса, па нађи површину те призме.
§ 143. Врсте пирамида. Пирамида, као и призма је рогъасто тело, које има за базис само један многоугао, а бочне су му стране троуглови, чије су основице стране базиса а њихова се темена стичу у једној тачки у простору. Слике: 265 , 266,267 и 268 јесу пирамиде. Код једне пирамиде разликујемо: основу или базис, бочне стране, основине и бочне ивице и врх. Основа је пирамидина она њена страна на којој она лежи (ABCD на сл. 266.), граничне површине јесу бочне стране (ABS, BCS, CDS и ADS на сл. 266.), пресеци бочних страна јесу бочне ивице (SA, SB, SC, SD), а пресеци бочних страна са базисом јесу основине ивице ($\mathrm{AB}, \mathrm{BC}, \mathrm{CD}, \mathrm{DA}$). Заједнички пресек (S) бочних ивица зове се врх пирамиде, а његово одстојање до базиса зове се висина пирамиде (SO).

Према броју основних (или бочних) ивица, пирамиде делимо на тростране, четворостране и многосшране. Тространа пирамида је најпростије рогљасто тело и зове се још шепраедар, пошто је ограничена свега са четири стране, од којих се свака може узети за базис (сл. 265.).

Према томе да ли су бочне ивице једнаке или не, пирамиде делимо на праве и косе. Код ираве иирамиде бочне су стране равнокраки троуглови, а код косе нису. Висина праве пирамиде иродире базис у центру круга описаног око базиса.

Сл. 265.

Сл. 266.

Сл. 267.

Сл. 268.

Пирамида, код које је базис правилан полигон (равностран троугао, квадрат или ма који правилан многоугао), зове се правилна. Такве су пирамиде на сликама: 266., 267. и 268. Код правилне и ираве иирамиде бочне су стране подударни равнокраки проуглови. Висина сваког таквог троугла зове се бочна висина пирамидина. Пирамида, код које су све ивице једнаке, зове се равноивична. Свака равноивична пира мида је права и правилна. Код ње су бочне стране подударни равнострани троуглови.
§ 144. Примена Питагориног правила код правих и правилних пирамида. Висина правилне и праве пирамиде продире базис како у центру круга описаног око базиса, тако и у центру круга уписаног у базису, а свака бочна висина дели основину ивицу на два једнака дела. Ове висине стварају код правилне и праве пирамиде три врсте правоуглих троуглова, о којима треба водити нарочито рачуна Код прве врсте катете су висина пирамиде \mathbf{H} и полупречник описаног круга \mathbf{R}, а хипотенуза је бочна ивица \mathbf{s}; код друге врсте катете су висина пирамиде \mathbf{H} и полупречник уписаног круга \mathbf{r}, а хипотенуза је бочна висина \mathbf{h}; и код треће врсте шатете су бочна висина h и половина основне висине а т. j. $\left(\frac{2}{a}\right)$,

а хипотенуза је бочна ивица s. Прве две врсте троуглова јесу у пирамиди, а трећа врста троуглова налази се на бочним странама. На сл. 269. \triangle SOA спада у прву врсту. \triangle SOE у другу врсту, а \triangle SEC у трећу врсту. Ти су углови са стране ове слике одвојени. Према Питагорином правилу имамо:

$$
\text { 1.) } \mathbf{s}^{2}=\mathbf{H}^{2}+\mathbf{R}^{2} \text {; 2.) } \mathbf{h}^{2}=\mathbf{H}^{2}+\mathbf{r}^{2} \text {; 3.) } \mathbf{s}^{2}=\mathbf{h}^{2}+\left(\frac{\mathbf{a}}{2}\right) \text {. }
$$

Помоћу ова три обрасца у стању смо да нађемо ма коју од количина \mathbf{s}, \mathbf{H} и а (\mathbf{R} и \mathbf{r} су познате ако се зна \mathbf{a}), ако знамо ма које две од тих количина, а нарочито их примењујемо за израчунавање висина једне пирамиде, \mathbf{H} и \mathbf{h}, ако знамо ивице те пирамиде а и s.

Сл. 269.

1. Пример. Наћи висине $\mathbf{H} \boldsymbol{\text { и }}$ иравилне и ираве иростране пирамиде основине ивице $\mathbf{a}=6 \mathrm{~cm}$, а бочне $\mathbf{s}=19 \mathrm{~cm}$. Код ове пирамиде је базис равностран троугао, те је полупречник описаног круга $R=\frac{a}{3} \sqrt{3}=\frac{6}{3} \cdot 1,73 \ldots=2.1,73 \ldots=3,46 \ldots \mathrm{~cm}$.

Из обрасца под 1. имамо:
$H=\sqrt{s^{2}-R^{2}}=\sqrt{10^{2}-3,46^{2}}=\sqrt{100-11,9716}=\sqrt{88,0284}=$ $=9,038 \ldots \mathrm{~cm}$.

Из обрасца под 3. имамо:
$\mathrm{h}=\frac{\sqrt{\mathrm{s}^{2}-\left(\frac{\mathrm{a}}{2}\right)^{2}}=\sqrt{10^{2}-3^{2}}=\sqrt{100-9}=\sqrt{91}=9,53 \ldots \mathrm{~cm} .}{\text { 2. Пример. Наћи висине } \mathbf{H} \text { и } \mathrm{h} \text { дравилне ии праве четвво- }}$ ростране пирамиде основине ивице $a=8 \mathrm{dm}$, а бочне $\mathrm{s}=12 \mathrm{dm}$.

Код ове пирамиде је базис квадрат; те је полупречник описаног круга половина дијагонале базиса d. Стога је $\mathrm{R}=\frac{\mathrm{d}}{2}=\frac{\mathrm{a} \sqrt{2}}{2}=\frac{8 \cdot 1,41}{2}=4 \cdot 1,41=5,64$. Тада је по обрасцу под 1) $\mathrm{H}=\sqrt{\mathrm{s}^{2}-\mathrm{R}^{2}}=\sqrt{12^{2}-5,64^{2}}=\sqrt{144-31,8096}=10,59 \mathrm{dm}$ а из обрасца под 3) $h=\sqrt{s^{2}-\left(\frac{a}{2}\right)^{2}}=\sqrt{12^{2}-4^{2}}=\sqrt{144-16}$ $=\sqrt{128}=11,30 \ldots \mathrm{dm}$.
3. иример. Наћи висине \mathbf{H} и \mathbf{h} правилне и праве шеспоостране иирамиде основине ивице $a=10 \mathrm{~cm}$, а бочне $s=15 \mathrm{~cm}$.

Код ове пирамиде базис је правилан шестоугао, те је полупречник описаног круга R раван страни 6-угла, т. j. $\mathrm{R}=\mathrm{a}=10 \mathrm{~cm}$. Стога је:
$\mathrm{H}=\sqrt{\mathrm{s}^{2}-\mathrm{R}^{2}}=\sqrt{15^{2}-10^{2}}=\sqrt{225-100}=\sqrt{125}=11,18 . . \mathrm{cm}$, $h=\sqrt{s^{2}-\left(\frac{a}{2}\right)^{2}}=\sqrt{15^{2}-5^{2}}=\sqrt{225-25}=\sqrt{200}=14,14 \mathrm{~cm}$
§ 145. Површина пирамиде. Пошто је целокупна површина једне пирамиде састављена од базиса и од збира бочних страна, то површину пирамидину израчунамо по обрасцу:

$$
\mathbf{P}=\mathbf{B}+\mathbf{M}
$$

где нам В представља површину базиса, а \mathbf{M} збир површина бочних страна или омотач пирамиде.
a) Ако је пирамида права и правилна онда је омотач састављен од онолико подударних равнокраких троуглова, колики је број базисових страна, као што нам показује мрежа правилне и праве четворостране пирамиде на сл. 270. Како сви ови троуглови имају једнаке основице а и једнаке висине h, то је:

$$
\mathbf{M}=\mathbf{n} \cdot \frac{\mathbf{a h}}{2}=\frac{\mathbf{n a h}}{\mathbf{2}}=\frac{\mathbf{O h}}{2}
$$

где нам је \mathbf{n} број основних ивица, а \mathbf{O} обим базиса. Па како је код правилних пирамида базис правилан полигон, то је површина базиса

$$
\mathbf{B}=\frac{\mathbf{n a r}}{2}=\frac{\text { Or }}{2}(\text { Види } \S 133 .)
$$

Стога је површина правилне и праве пирамиде

$$
\mathbf{P}=\mathbf{B}+\mathbf{M}=\frac{\mathbf{O r}}{2}+\frac{\mathbf{O h}}{2}=\frac{\mathbf{O}(\mathbf{r}+\mathbf{h})}{2}
$$

Пример. Наћи повриину иравилне и ираве тростране пирамиде, када је основина ивица $\mathbf{a}=6 \mathrm{~cm}$ а бочна $\mathbf{s}=10 \mathrm{~cm}$.

Како је овде базис равностран троугао, то је полупречник уписаног круга у базису $r=\frac{a}{6} \sqrt{3}(\S 139 . d)=\frac{6}{6} .1,73 \ldots$ $=1,73 \ldots \mathrm{~cm}$, обим базиса $\mathrm{O}=3 \mathrm{a}=3.6=18, \mathrm{~cm}$ а бочна ви-

сина $\mathrm{h}=\sqrt{\mathrm{s}^{2}-\left(\frac{\mathrm{a}}{2}\right)^{2}}=\sqrt{10^{2}-3^{2}}=\sqrt{91}=9,53 \ldots \mathrm{~cm}$ ．Стога је $\mathrm{P}=\frac{\mathrm{O}(\mathrm{r}+\mathrm{h})}{2}=\frac{18 \cdot 11,26}{2}=9.11,26=101,34 \mathrm{~cm}^{2}$.

b）Ако је пирамида равноивична，онда њене бочне стране чине равнострани подударни троуглови са странама равним основиној ивици a ．Тада је $\mathrm{B}=\frac{\mathrm{nar}}{12}$ ，а $\mathrm{M}=\mathrm{n} \cdot \frac{\mathrm{a}^{2}}{4} \sqrt{3}$ ，где нам n значи број основичиних ивица．Стога је

$$
P=B+M=\frac{n a r}{2}+n \cdot \frac{a^{2} \sqrt{3}}{4}
$$

Пример．Наћи површину правилне и праве четворостране равноивичне пирамиде са основином ивицом $a=8 \mathrm{~cm}$ ．

Овде је базис квадрат，те је $B=\mathrm{a}^{2}=8^{2}=64 \mathrm{~cm}^{2}$ ，а $M=4 \cdot \frac{a^{2} \sqrt{3}}{4}=a^{2} \sqrt{3}=64 \cdot 1,73=110,72 \mathrm{~cm}^{2}$.

$$
\text { Стога је } \mathrm{P}=\mathrm{B}+\mathrm{M}=64+110,72=174,72 \mathrm{~cm}^{2} .
$$

c）Површину једне неправилне пирамиде израчунавамо када засебно израчунамо површину сваке бочне стране，чији збир нам даје површину омотача，а затим томе збиру додајемо још површину базиса．

Пример．Наћи површину праве иирамиде，чији је базис дравоугаоник дужине $a=8 \mathrm{dm}$ ，ширине $b=5 \mathrm{dm}, a$ бочна ивица $s=12 d m$ 。

Код ове пирамиде бочне су стране равнокраки троуглови， од којих су супротни подударни．Њихове бочне висине јесу ： $\mathrm{h}^{\prime}=\sqrt{\mathrm{s}^{2}-\left(\frac{\mathrm{a}}{2}\right)^{2}}=\sqrt{12^{2}-4^{2}}=\sqrt{134-16}=\sqrt{128}=11,30 \ldots \mathrm{dm}$ и $\mathrm{h}^{2}=\sqrt{\mathrm{s}^{2}-\left(\frac{\mathrm{d}}{2}\right)^{2}}=\sqrt{12^{2}-2,5^{2}}=\sqrt{144-6,25}=\sqrt{137,75}=11,73 . \mathrm{dm}$ ．

Crora je $\mathrm{P}=\mathrm{B}+\mathrm{M}=\mathrm{ab}+2 \cdot \frac{\mathrm{ah}}{2}+2 \cdot \frac{\mathrm{bh}_{2}}{2}=\mathrm{ab}+\mathrm{ah},+\mathrm{bh}_{2}=$ $=8.5+8.11,30+5.11,73=40+90,40+58,65=.189,05 \mathrm{dm}^{2}$

Наиомена．И површина пирамиде，као и површина призме， функција је основиних и бочних ивица，јер се и она мења，када се те ивице мењају．

§ 146．Задаци за вежбу．

1．Одреди површину праве и правилне тростране пирамиде，кад习习＂ зна а）основина ивица а $=3 \mathrm{~m}$ и бочна ивица $\mathrm{s}=4 \mathrm{~m} ;$ b）основина зна а）основина ивица $=4,5 \mathrm{~m}$ и бочна висина $\mathrm{h}=7 \mathrm{~m} ; \mathrm{c}$ ）бочна ивица $\mathrm{s}=8 \mathrm{dm}$ й бочна висина $\mathrm{h}=\mathrm{dm}$ ．

2．Одреди површину правилне и праве тростране равноивичне пи－ рамиде（правилног тедраедра），чија је ивица а $=8,5 \mathrm{~cm}$ ．

3．Наћи површину правилне и праве четворостране пирамиде а） основине ивице а $=6 \mathrm{~m}$ а бочне ивице $s=8.6 \mathrm{~m} ; \mathrm{b}$ ）основице ивице $\mathrm{a}=3 \mathrm{~m}$ и висине $\mathrm{H}=5 \mathrm{~m} ; \mathrm{c})$ бочне ивице $\mathrm{s}=9 \mathrm{~cm}$ а бочне висине $\mathrm{h}-7 \mathrm{~cm}$ ．

4．Наћи површину правилне и праве равноивичне четворостране пирамиде ивице а $=7 \mathrm{dm}$ ．

5．Нани површину правилне и праве шестостране пирамиде：а）ос－ новине ивице а $=5 \mathrm{dm}$ и бочне $\mathrm{s}=8 \mathrm{dm}$ ；бо основине ивиие а $=8 \mathrm{~cm}$ и висине $\mathrm{H}=12 \mathrm{~cm}$ ；с）бочне ивице $s=16 \mathrm{~cm}$ и висине $\mathrm{H}=9 \mathrm{~cm}$ ； d）бочне ивици $\mathrm{s}=12 \mathrm{dm}$ и бочне висине 10 dm ．

6．Колика је бочна висина правилне и праве пирамиде основине ивице $\mathrm{a}=6 \mathrm{~cm}$ ，а бочне површине $\mathrm{M}=126 \mathrm{~cm}^{2}$ ，када је та пирамида a）тространа，b）четворострана，с）шестострана ？

VI．ПРЕТВАРАЊЕ И ДЕЉЕЊЕ СЛИКА．

§ 147．Претварање слика．

Претворити једну слику у другу значи добити такву другу слику，која је по површини једнака с првом сликом． Конструктивни задаци из претварања слика решавају се по－ моћу правила о једнакости слика（§ 118．137．）и дефиниција појединих слика．

1. Задапак. Разностран троугао претворити у равножрак над истом основицо.и.

Конструкицаја. Треба повући СМ $\mid \mathrm{AB}$, а из средине основице AB (сл. 271.) подићи нормалу DM : преснк M правих CM и DM је треће теме траженог равнокраког троугла ABM.

Доказ. Троуглови "ABC и ABM јесу једнаки, јер имају исту основицу и једнаке висине (3. правило § 118.), а $\triangle A B M$ је равнокрак, јер у њему висина DM полови основицу AB .

Сл. 271.
2. Задатак. Дани тироуzао $A B C$ (сл.272.), аретворииии уругу који ће иматии истуу основииу $\dot{A B}$, а на њој дашии уzao m.

Конструкција. Треба најпре конструисасати код темена А (или код темена B) дати угао тако, да му се један крак поклапа са AB , а затим повлачимо кроз теме C праву $\mathrm{CM} \| \mathrm{AB}$. Пресек крака AM угао m и паралелне CM је треће теме траженог $\triangle \mathrm{ABM}$.

Доказ. Троуглови ABC и ABM јесу једнаки, јер имају исту основицу и једнаке висине (3. правило § 118.), а троугао ABM има исту основицу и дати угао.
3. Задашак. Троугао АВС (сл.273.) иретвориши у другит тироугао, у коме ће биши исти угао A, али основииа да има дапу дужсину р.

Конструкција. Треба најпре пренети, почевши од темена A у правцу AB дату основицу p тако, да је $\mathrm{AD}=p$. Затим тачку D спајамо са теменом C, а из темена В повлачимо BE $\| \mathrm{DC}$ до пресека са страном AC. Добивени пресек E спајамо најзад са тачком D и тиме добијемо тражени троугао ADE .

Доказ. Да бисмо доказали једнакост троуглова ABC и ADE , треба да докажемо само једнакост троуглова BED и BEC, пошто дани и добивени троугао имају за заједничку површину $\triangle \mathrm{ABE}$ (код II слике $\triangle \mathrm{ADC}$). Троуглови BEC и BED (код II слике DCB и DCE) јесу једнаки, јер имају заједничку основицу, BE (код II слике DC) и једнаке висине, пошто им темена C и D (код II слике E и В) леже на једној паралелној са основицом (3."правило §118.). Стога је заиста $\triangle \mathrm{ABC}=\triangle \mathrm{ADE}$.
4. Задатак. Троугао $A B C$ (сл. 273.) арешворити у други у коме ће бипи исши угао A, али да има другу висину h

Сл. 273.

Констирукиија. Треба најпре из темена A повући нормалу $\mathrm{AF} \perp \mathrm{AB}$ и на ту нормалу пренети $h^{\prime}\left(\mathrm{AF}=h^{\prime}\right)$. Затим повући $\overline{\mathrm{FE}}$ AB дп пресека E са страном AC . Најзад се пресек E спаја са теменом B , а из темена C повлачимо $\mathrm{CD} \mid \mathrm{BE}$ и пресек D спајамо са E, чиме добијамо тражени троугао ADE. Ова конструкција је у обрнутом реду с конструкцијом код трећег задатка. Доказ. Он је истоветан као код 3. задатка.
5. Задатак Ромбоид претворити у правоугаоник.

Конструкиија. Треба код темена А и В ромбоида ABCD (сл. 226.) подићи нормале AF и BE до пресека са горњом паралелном страном. Пресеци E и F јесу друга два темена траженога правоугаоника ABEF . Доказ. $\mathrm{ABCD}=\mathrm{ABEF}$, јер имају заједничку основицу и једнаке висине. (Правило 1.§ 118).
6. Задашак. Дани тпоугао АВС (сл. 274.) прешворитй у паралелограм (косоугли или правоугли) : а) над истом основищом, b) са испом висином.

$\triangle \mathrm{ABC}$ претворили у косоугли паралелограм, треба најпре кроз В повући $\mathrm{BD}|\mid \mathrm{AC}$, а кроз C праву $C D \| A B$, а затим спајањем средина страна AC и BD добијамо паралелограм под а), а спајањем средина страна CD и BD добијамо паралелограм под b). У правоугли паралелограм претварамо троугао, када најпре подигнемо у А и В нормале AH и BD , а кроз теме C провлачимо $\mathrm{HD} \| \mathrm{AB}$, чиме добијамо правоугаоник ABDH. Спајањем средина страна AH и BD добијамо правоугаоник над истом основицом, а спајањем средина страна HD и AB добијамо правоугаоник са истом висином. Доказ. $\triangle \mathrm{ABC}=$ $=\mathrm{ABFE}$ (под а) јер су обе ове слике половине од ABDC (ABDH); $\triangle \mathrm{ABC}=\mathrm{AFEC}(\mathrm{AFEH}$ под b$)$ јер су обе слике половине од ABDH.
7. Задашак. Дани паралелограм $A B C D$ (сл. 275.) прешвориши у троугао а) над исшом основицом b) са истом висином.

Констарукција. а) Треба најпре продужити стране, AD и BC за њихове дужине и спојити тачке M и N , а затим спојити M и B . b) Треба најпре продужити стране AB и DC за њихове дужине и спојити M и N , а зитим спојити D и N . Доказ. \triangle ABM (AND) $=\mathrm{ABCD}$, јер су обе ове слике половине паралелограма ABNM (ANMD).
8. Задатак. Дани тирайез арепворити у тароугао (сл. 230.).

Констарукија. Треба доњу паралелну страну $A B$ продужити за дужину горње паралелне стране $(\mathrm{BM}=\mathrm{DC})$, а затим спојити тачке M и D . Доказ. $\triangle \mathrm{AMD}=$ ABCD по 4. правилу § 118.
9.Задатак. Претворити правоугаоник у квадраши (сл. 276.).

Конструкиија. Треба најпре страну АВ продужити за другу страну правоугаоника $\mathrm{BC}(\mathrm{BM}=\mathrm{BC})$ а затим над AM , код над

пречником, описати полукруг који сече страну BC у тачки F . Дуж BF је страна траженог квадрата BFEQ. Доказ. Када

тачку F спојимо са тачком A и M добијамо правоуглв rpo- $^{\text {то }}$ угао AFM, у коме је FB висина хипотенуза, AB и BM , (BC) отсечци хипотенузини. Стога је $\mathrm{BFEQ}=\mathrm{ABCD}$ по 䧇 3. . . вилу § 137.

Сл. 276.
10. Задашак. Дани многоугао ирешвориши у други с једном сшыраном мате.

Констиркиија. Да бисмо петоугао ABCDE (сл. 277.) претворили у четвороулао, треба најпре повући дијагоналу ADD , а затим повући кроз теме E праву $E F \| A D$ до пресека F ca продуженом страном BA. Најзад спајамо F са D. Тражени четвороугао је FBCD.

Доказ. Да бисмо даказали да је $\mathrm{FBCD}=\mathrm{ABCDE}$, треба да докажемо аамо једнакост троуглова ADE и ADF , пошто

добивени четвороугао и дани петоугао имају за заједничку површину ABCD . Троуглови ADF и ADE јесу једнаки, јер имају заједничку основицу $A D$ и једнаке висине, пошто им темена F и Е леже на истој паралелној са основицом (правило $3 . \S 118$.). Стога је заиста $\mathrm{FBCD}=\mathrm{ABCDE}$.
I. Напомена. На основу овога задатка можемо ма какав многоугао претворити у троугао (на сл. 278. добивени четво-

Сл. 277.

Сл. 278.

роугао FBCD из сл. 277. претворен је по истом поступку у \triangle FMD), а троугао даје се претворити: 1) у равнокрак троугао по првом задатку; 2) у правоугаоник, а затим овај у квадрат према 6. и 9. задатку; 3) у ромбоид према 6. задатку, и т. д.

Haћu квадраппуру једне слике значи претворити најпре гу слику у квадрат, а затим израчунати његову површину, Површина тога квадрата једнака је с површнном дате слике Тако, да бисмо нашли квадратуру једног неправилног 6 -угла. најпре га претварамо у 5 -угао добивени 5 -угао у четвороугао овај у троугао, троугао у правоугаоник и најзад правоугаоник у квадрат. Површина добивеног квадрата једнака је с површином датог 6-угла.
11. Задатак. Конструисаши квадрапт који је једнак са збиром два дана квадрашаа.

Конструкиија. Треба конструисати правоугли троугао чије су катете стране датих квадрата. Хипотенуза тога троугла је страна траженог квадрата. (Питагорино правило).
12. Задатак. Констррисати квадрашт који је једнак са разликом два дана квадраша.

Конструкција. Треба констриисати правоугли троугао, код кога је једна катета страна мањег датог квадрата, а хипотенуза страна већега квадрата. Друга катета тога троугла биће страна траженог квадрата (Питагорино правило).
II. Наиомена. Као задатак 11. дају се решити задаци: a) конструисати квадрат једнак бзбиру три дана квадрата; b) конструисати квадрат који је 2, 3, 4-пута већи од даног

квадрата; с) конструисати квадрат који је једнак с половином даног квадрата. За а) треба конструисати квадрат једнак збиру од два дана квадрата, а затим за добивени и трећи дани квадрат; за b) треба конструисати правоугли равнокрак троугао чија је катета страна даног квадрата; за с) треба конструусати равнокрако-правоугли троугао чија је катета половина стране данога квадрата.

§ 148. Делење праволинијских слика.

И задаци из дєљења праволинијских слика решавају се \& помоћу правила о једнакости слика.

1. Задатак. Дани троуzао иоделити на виие једнаких делова деоним иравима које полазе из једног троуглог темена,

Сл. 279.
Конструкиија. Да бисмо троугао ABC (сл. 279.) поделили на 5 једнаких делова деоним правима које полазе из темена C , треба супротну страну AB да поделимо на 5 једнаких делова и деоне тачке E, F, M и N спојити са теменом C.

Доказ. Троуглови; I, II, III, IV и V једнаки су јер имају једнаке основице и заједничку висину. (Правило 3. § 118.).
2. Задашак Троугао ABC (сл. 280.) иоделиши на тии једнака дела пако, да деоне ираве полазе из туоуглових тиемена.

Конструкиција. Треба нај: пре, као и код претходног задатка, дани троугао ABC подеМнти на три једнака дела деоним правима које полазе из темена C , а затим кроз E , повлачи се ES \| AC, а кроз F права

Сл. 280. FS $\|$ BC. Најзад пресек S повучених паралелних правих спојити са теменима датог троугла, чиме се троугао ABC дели на три једнака дела.

Д几оказ. Како су троуглови $\mathrm{AEC}, \mathrm{EFC}$ и FBC по 3 . пра вилу §118. једнаки, а по истом су правилу једнаки и $\triangle \mathrm{AEC}=$ $\triangle \mathrm{ACS}$ и $\triangle \mathrm{FBC}=\triangle \mathrm{BCS}$, то су једнаки и остаци троугла $\triangle \mathrm{ABC}$, т. ј. троуглови: $\triangle \underset{\mathrm{EFC}}{ }$ и ABS. Стога су троуглови: ACS, ABS и BCS једнаки.
3. Задашак. Паралелограм $A B C D$ (сл. 231.) поделиши на више једнаких делова шако, да деоне араве буду паралелне с једном паралелограмовом страном.

Сл. 281.

Консшрукција. Да би смо ромбоид ABCD поделили на три једнака дела, треба страну AB поделити на три једнака дела а затим из деоних тачака M и N повући ME и NF паралелно са страном AD.

Доказ. Паралелограми I, II и III јесу једнаки по 1. правилу § 118.
4. Задатак. Пани тараиез поделиши на више једнаких делова.

Конструкција. Да бисмо трапез ABCD (сл. 282.) поделили на 4 једнака дела, треба да му поделимо на по 4 једнака дела

Сл. 282.
обе паралелне стране AB и DC , а затим да спојимо одговарајуће деоне тачке.

Доказ. Трапдзи I, II, III IV јесу једнаки, јер имају једнаке стране и једнаке висине. (Правило 4. § 118.).

VII. ИЗРАЧУНАВАЊЕ КОД КРУГА И ЊЕГОВИХ ДЕЛОВА

§ 149. Обим круга. Ако посматрамо један правилан шестоугао уписан у кругу O (сл. 283.) и један квадрат описан око истог круга, видимо да је обим правилнога шестоугла $6 r$

или 3 d , а обим описаног квадрата 8 r или 4 d, где нам r значи полупречник а а пречник круга О. Отуда је јасно, кад се обим правилнога уписаног шестоугла подели пречником круга, да се добија за количник 3 , а кад се обим описаног квадрата подели пречником, добија се количник 4.

Па како је обим круга мањи од обима описаног квадрата, а већи од обима правилног уписаног шестоугла, онда је јасно, кад се обим круга подели пречником, да би се добио за количник број који је мањи од 4 а већи од 3. Тај количник је ирационалан број и износи приближно 3,14 или $\frac{22}{7}$, а бележи се грчким словом π (пи). Зове се Лудолфов број по Лудолфу, који га је најприближније израчунао са 35 децимала. Број π са 10 децимала је $\pi=3,1415926536 .$.

Постоје нарочите методе и обрасци за израчунавање броја π. С њима се ученици упознају у вишим разредима гим-

Сл. 283 назије, а механичким путем израчунава се овако: Обавијамо конац више пута око једнога ваљка, па дужину конца делимо бројем обртања. Добивени количник представља нам обим ваљ ковог круга. Најзад овај се обим дели дужином пречника ваљка, чиме се добија број π у приближној вредности 3,14 , колико се у обичном животу и узима за израчунавања код круга.

Ако нам O значи обим круга, а d пречник, онда је $\mathbf{O}: \mathrm{d}=\pi$, а одавде је $\mathbf{O}=\mathrm{d} \pi$, или $\mathbf{O}=2$ г π. То јест :

Обим се круга израчунава када се дужина пречника помножи са Лудолфоовим бројем $\pi=3,14$, или када се двоструки полупречник помножи са 3,14 .

Из формула $\mathrm{O}=\mathrm{d} \pi$, и $\mathrm{O}=2 \mathrm{r} \pi$. имамо: $\mathrm{d}=\frac{\mathrm{O}}{\pi}$ и $\mathrm{r}=\frac{\mathrm{O}}{2 \pi}$. То јест Пречник се израчунава када се обим иодели Лудолфовим бројем π; а полупречник, када се обим иодели са $2 \pi=6,28$.

Примери:
1.) За $\mathrm{r}=4 \mathrm{~m}$ биће: $\mathrm{O}=2 \mathrm{r} \pi=2 \cdot 4 \cdot 3,14=25,12 \mathrm{~m}$;
2.) За $\mathrm{O}=31,4 \mathrm{~m}$ биће: $\mathrm{r}=\frac{\mathrm{O}}{2 \pi}=\frac{31,4}{6,28}=\frac{3140}{628}=5 \mathrm{~m}$, $\mathrm{a} \mathrm{d}=10 \mathrm{~m}$.

Ако су обими два круга O^{\prime} и $\mathrm{O}^{\prime \prime}$, а њихови полупречници r^{\prime} и $\mathrm{r}^{\prime \prime}$, онда је $\mathrm{O}^{\prime}=2 \mathrm{r}^{\prime} \pi$ и $\mathrm{O}^{\prime \prime}=2 \mathrm{r}^{\prime \prime} \pi$. Стога је и количник левих страна ових двеју једнакости једнак с количником десних страна т. ј. $\mathrm{O}^{\prime}: \mathrm{O}^{\prime \prime}=2 \mathrm{r}^{\prime} \pi: 2 \mathrm{r}^{\prime \prime} \pi$.

Геометрија III и IV разред.

Ако трећи и четврти члан ове пропорције скратимо са 2π добијамо $\mathbf{0}^{\prime}: \mathbf{0}^{\prime \prime}=\mathbf{r}^{\prime}: \mathbf{r}^{\prime \prime}$. То јест:

Обими два круга имају се као нихови полупречници.
Напомена. Обим круга је функција полупречника, и обрнуто. (Зашто ?).
§ 150 . Површина круга. Како је круг у ствари један правилан многоугао од бескрајно много страна, то се, као и код свакога правивнога многоугла, на основу 6. правила из једнакости слика, његова површина израчунава, када се обим O помножи полупречником r и добивени производ подели са 2 . Ако нам P значи површину круга, онда је:

$$
\mathrm{P}=\frac{\mathbf{0} \cdot \mathbf{r}}{2}=\frac{2 \mathbf{r} \pi \cdot \mathbf{r}}{2}=\mathbf{r}^{2} \pi
$$

Т. ј.: Површина се једнога круга израчунава, када се квадрат његова полупречника помножи Лудолфовим бројем π. Из $\mathbf{P}=\mathbf{r}^{2} \pi$ имамо; $\mathbf{r}^{2}=\frac{\mathbf{P}}{\pi}$, а $\mathbf{r}=\sqrt{\frac{\mathbf{P}}{\pi}}$. т. ј. Полупречник се круга израчунава, када се извуче квадратни корен из количника добивеног дељењем површине круга Лудолфовим бројем π.

Примери:
1.) За $\mathrm{F}=6 \mathrm{~cm}$ биће: $\mathrm{P}=\mathrm{r}^{2} \pi=6^{2} \cdot 3,14=36 \cdot 3,14=122,04 \mathrm{~cm}^{2}$;
2.) $3 \mathrm{P} P=200,96 \mathrm{dm}^{2}$ биће: $\mathrm{r}=\sqrt{\frac{\mathrm{P}}{\pi}}=\sqrt{\frac{200,96}{3,14}}=\sqrt{64}=8 \mathrm{dm}$.

Ако су површине два круга P^{\prime} и $\mathrm{P}^{\prime \prime}$, а њихови полупречници r^{\prime} и $\mathrm{r}^{\prime \prime}$, онда је: $\mathbf{P}^{\prime}=\mathbf{r}^{\prime 2} \pi$ и $\mathbf{P}^{\prime \prime}=\mathbf{r}_{\mathrm{I}_{1}}{ }^{2} \pi$. Тада је и количник левих страна ових двеју једнакости једнак с количником десних страна, т. ј.

$$
\mathbf{P}^{\prime}: \mathbf{P}^{\prime \prime}=\mathbf{r}_{3}^{2} \pi: \mathbf{r}_{4}{ }^{2} \pi, \text { или }
$$

скраћивањем са π трећеї и четвртог члана ове пропорције:

$$
\mathrm{P}^{\prime}: \mathrm{P}^{\prime \prime}=\mathrm{r}_{1}{ }^{2}: \mathrm{r}_{\prime^{2}}{ }^{2} \text { To јест }:
$$

Повриине два круга имају се као квадрати њихових полуиречника.

Напомена. И површина круга је функција полупречника, и обрнуто. (Зашто?).
§ 151. Дужина кружног лука. Израчунавање дужине кружног лука оснива се на овом правилу :

Луци једнога круга имају се као њихови средишни углови.

Нека луци AB и CD (сл. 284.) имају као заједничку меру лук m, који се у AB садржава 5 пута а у CD 3 пута. Тада је $\mathrm{AB}=5 \mathrm{~m}, \mathrm{CD}=3 \mathrm{~m}$.

Стога је: $\mathrm{AB}: \mathrm{CD}=5 \mathrm{~m}: 3 \mathrm{~m}$, или скраћивањем са m III-ег и IV-ог члана, $\mathrm{AB}: \mathrm{CD}=5: 3 \ldots$ (1).

Ша како једнаким луцима једнога круга одговарају једнаки средишни углови, то је из слике 284: $\alpha=5 \gamma$ и $\beta=3 \%$. С тога је $\alpha: \beta=5 \%: 3$ тили $\alpha: \beta=5: 3 \ldots$ (2).

Из пропорција (1) и (2) чије су десне стране једнаке добија се $\mathrm{AB}: \mathrm{CD}=\alpha: \beta$, чиме је ово правило доказано.

На основу овога правила, сваки кружни лук има се ирема целој периферији, као што се има средишни угао тога лука арема 366°, који је средишни угао кружне периферије. Ако означимо дужину једнога лука са l, његов средишни угао са α, онда је по овоме правилу:
$1: O=\alpha: 360^{\circ}$, или $1: 2 r \pi=\alpha: 360^{\circ}$
Одавде је $l=\frac{2 \boldsymbol{\tau} \pi \alpha}{360^{\circ}}=\frac{r \pi \alpha}{180^{\circ}}$.

Сл. 284.

Из ове се формуле налази да је $\mathrm{r}=\frac{180^{\circ} \cdot l}{\pi \alpha}$ и $\alpha=\frac{180^{\circ} \cdot l}{\mathrm{r} \pi}$
Дакле, дужина се лако израчунава када се производ од полупречника, средишног угла и броја π подели са 180°; полупречник се израчунава када се производ од дужине лука и 180° подели производом од средишног угла и броја π; а средишни се угао израчунава када се производ од дужине лука и 180° подели производом од полупречника и броја π.

Напомена. Када је средишни угао дат у степенима, минутима и секундима, онда се он претходно претвори у секунде, -а тако исто и 180°.

$$
\begin{aligned}
& \text { 1. Пример. Наћи } l \text { када је } r=6 d m \text {, a } \alpha=25^{\circ} 10^{\prime} \text {. } \\
& l=\frac{r \pi \alpha}{180^{\circ}}=\frac{6 \cdot 3,14 \cdot 25^{\circ} 10^{\prime}}{180^{\circ}}=\frac{6 \cdot 3,14 \cdot 1510^{\prime}}{10800^{\prime}}=2,634 \mathrm{dm} . \\
& \text { 2. Пример. Наћи } r \text { када іе } \alpha=80^{\circ} \text { a } l=20 \mathrm{~cm} \text {. } \\
& \mathrm{r}=\frac{l \cdot 180^{\circ}}{\pi \alpha}=\frac{20 \cdot 180^{\circ}}{3,14 \cdot 80^{\circ}} \doteq 14,331 \ldots \mathrm{~cm} . \\
& \text { 3. Пример. Наћи а кад је } l=18 \mathrm{dm} \text { а } r=10 \mathrm{dm} \text {. } \\
& =\frac{l \cdot 180^{\circ}}{\mathrm{r} \pi}=\frac{18 \cdot 180^{\circ}}{10 \cdot 3,14}=\frac{162^{\circ}}{1,57}=\frac{16200^{\circ}}{157}=103^{\circ} .11^{\prime} 49,69^{\prime \prime} .
\end{aligned}
$$

§ 152. Површина кружног исечка (сектора). Израчугнавање површине кружнога исечка оснива се на овом правилу:

Сектори једнога круга имају се као њихови луци, или као њихови средишни углови.
3. Колики је земљин полупречник, кад је обим земљиног меридијана 40.000 Km ?
4. Колики је пречник круга чији је обим 5 пута већи од обима круга полупречника $3,7 \mathrm{~m}$?
5. Колико се пута окрене колски точак од 58 cm у пречнику на путу од 5 Км?
6. Колики пут пређе за годину дана врх минутне казаљке, ако је казаљка дугачка 25 mm ?
7. Столар има да начини округао сто за 10 лица тако, да за свако лице буде размака 0,6 м ; колики треба да буде пречник стола?
8. Наћи површину круга чији је полупречник $3,75 \mathrm{dm}$.
9. Колика је површина круга чија је периферија 3 m 7 dm 8 cm .
10. Колики је обим круга чија је површина $67,253 \mathrm{~m}^{2}$?
11. Један степен полутара има 15 географских миља; наћи његов: пречник.
12. Полупречник једног круга је 3 dm ; наћи дужину а) једног његовог степена b) једног минута, c) једног секунда.
13. Колики пут пређе земља обртањем око Сунца за а) један дан• b) један час, с) један минут, ако сматрамо њену путању као круг, чији је полупречник $14,800.000 \mathrm{Km}$ и када се Земља окрене један пут око Сунца за 365,25 дана?
14. Наћи дужину лука једнога круга од 52 cm у обиму, ако лук има $75^{\circ} 50^{\prime}$.
15. Наћи полупречник круга када дужина јрднога његовог лука од. 72° износм $3,241 \mathrm{~m}$.
16. Колики је средишни угао лука дужине 54 cm , а полупречник му је 9 cm ?
17. Колико лучних степена, минута и секунда има лук, који је по дужкии једнак с полупречником?
18. Колики је полутаров степен на глобу чији је пречник 50 cm ?
19. Колико је K_{m} удаљен Београд од полvтада, ако је његова географска ширина $44^{\circ} 50^{\prime} 15^{\prime \prime}$, а полупречник Земље је $6371,56 \mathrm{Km}$?
20. Један степен на упореднику који пролази кроз Трст има 77,961 K_{m}, на упореднику бепградском $78,816 \mathrm{~K}_{\mathrm{m}}$; колики су полупречници тих упоредника?
21. Колико се дрвета може засадити око округлог језера које има 300 m у пречнику, када од једног до другог дрвета треба да буде 5 m ?
22. Воз који прелази 10 m у секунду, обиђе округло језеро за 2 часа и 8 минута; колики је пречник тога језера?
23. Наһи површину кружног исечка чији је полупречник $2,5 \mathrm{~m}$, a лук му је дугачак $3,6 \mathrm{~m}$.
24. Наћи површину кружног исечка чији је средишни угао $80^{\circ} 25^{\prime \prime}$ а припада кругу обима 352 cm
25. Наћи површину кружног исечка чији је лук дугачак $2,75 \mathrm{dm}$, а има $65^{\circ} 30^{\circ}$.
26. Колико степена има лук кружнога исечка чија је површина $2,562 \mathrm{~m}^{2}$, а полупречник му је $0,7 \mathrm{~m}$?
27. Два концентрична круга имају полупречнике 27 и 18 dm ; колика је површина прстена?
28. Обими двају концентричних кругова јесу 352 и 226 m ; наћи дебљину и површину њиховог прстена.
29. Око круга обима 50 m идѐ стаза 2 m ширине; наћи површину те стазе.
30. Колико метара у секунду прелази ма која тачка на периферији точка од 15 m у обиму, када се она обрне 50 пута у минуту?
31. Наћи пречник онога точка који се обрне 72 пута у минуту, кад је брзина једне његоне тачке на периферији 21 m .
32. Колико се пута обрне у једном минуту воденички камен од 1 м у пречнику када је брзина једне тачке његовог обима 8 м?
33. Колики је један од отсечака који се налази између периферије и стране а) уписаног равностраног троугла, b) уписаног квадрата, с) уписаног правилног шестоугла, кад је полупречник круга 3 m ?
34. У кругу је позната тетива $s=5 \mathrm{dm}$ и полупречник $\mathrm{r}=7 \mathrm{dm}$; наћи средишну раздаљину тетиве
35. У кругу зна се тетива $\mathbf{s}=8 \mathrm{~cm}$ и њена средишна раздаљина $\mathrm{m}=6$ cm ; одреди полупречник r.
36. Колика је површина правилног шестоугла који је уписан у кругу полупречника $\mathrm{r}=5 \mathrm{~m}$.
37. Израчунај обим онога круга чија је површина једнака с површином квадрата стране $5,3 \mathrm{~m}$.
38. Полупречник једнога круга је 23 dm , колика је полупречник другога круга чија површина стоји према површини првога као 3: 4?
39. Површина неког круга је $2,468 \mathrm{~m}^{2}$; за колико је његова периферија већа од обима уписаног правилног шестоугла?

40, Колика је периферија круга који има исту површину као равностран троугао сьрине 5 dm ?
41. Равностран троугао, квадрат и круг имају једнак обим; у каквој размери стоје њихове површине?
42. Око округле позорнице пречника 18 m треба начинити места за 1000 лица; колику ширину мора имати тај простор за гледаоце, ако се на свакога рачуна по $75 \mathrm{dm}^{2}$?
-43. Обим једнога круга јесте $6,26 \mathrm{~m}$; наћи полупречник онога круга чија је површина два пута већа од површине првог круга.
44. Наћи површине кругова описаног и уписаног код правилнога шестоугла површине $12 \mathrm{~m}^{2}$?
45. Округло двориште обима $70,4 \mathrm{~m}$ има да се патоше квадратним плочицама стране 40 cm ; колики је број плочица потребан, ако се на отпатке по крајевима рачуна 5% ?
46. Наћи страну квадрата чија је површииа једнака с површином круга полупречника $\mathrm{r}=8 \mathrm{~m}$.

VIII ПОВРШИНА ОКРУГЛИХ ТЕЛА.

§ 157. Постанак и врсте облица. Кад права АА' клизи по обиму круга С (сл. 287.) тако, да сваки њен доцнији положај буде паралелан ранијем, па дође у свој првобитни положај, онда она описује криву цилиндарску површину. ІІрава AA', $^{\prime}$ зове се изводница, а периферија круга С линија водиљба.

Права SS', која пролази кроз центар водиље а паралелна је са изводницом, зове се осовина цилиндарске повриинне. Када се цилиндарска површина пресече двема равнима паралелним с њеном водиљом, добија се тело које се зове облица, (цилиндар, ваљак). Добивени пресеци су подударне кружне површине, а зову се основе или базиси облице. Онај део цилиндарске површине који је ограничен обимима базиса, зове се омотац. Дуж OO^{\prime}, која везује центре базиса зове се осовина; а раздаљине од једног юазиса до другог висина облице. Пресек MN омотача и равнине која пролази кроз обличину осовину зове се страна облице.

Према томе да ли је осовина нормална или коса према базисима, облице делимо на ираве и косе (сл. 288.). Код праве облице висина је једнака осовини или сграни, а код косе она је мања од осовине или стране. И код праве и код косе облице све су стране паралелне и једнаке са осовиһй...

Свака се облица сматра као призма од бесконачно много страна. Права облица може се замислити да је постала и обртањем једнога правоугаоника око једне

Сл. 287. своје стране (сл. 289.). Ова је страна осо-

Сл. 289.

Сл. 289.

вина код облице а њој супротна страна, која производи облицу, то је страна обличина.

Права облица, код које је страна једнака с пречником базиса, зове се равнострана.
§ 158. Површина праве облице. а) Када омотач праве облице развијемо у једну раван, онда добивамо правоугаоник чија је дужина једнака са обимом базиса $2 \mathrm{r} л$ а ширина му је једнака са висином обличином h. Стога је омотачева површина

$$
M=2 \mathbf{r} \pi h
$$

Целокупну површину облице, као и код призама, израчунавамо по формули $P=2 B+M$. Ако је полупречник базиса r, онда је површина једног базиса $\mathrm{B}=\mathrm{r}^{2} \alpha$, а површина облице $P=2 B+M=2 \mathbf{r}^{2} \pi+2 \mathbf{r} \pi \mathbf{h}=$ $2 \mathrm{r} \pi(\mathbf{r}+\mathrm{h})$ (сл. 290.).
b) Код равностране облице је $h=2 r$, те је површина

њеног омотача $\mathrm{M}=2 \mathrm{r} \pi \mathrm{h}=2 \mathrm{r} \pi \cdot 2 \mathrm{r}=4 \mathrm{r}^{2} \pi$ а цела површина $\mathrm{P}=2 \mathrm{~B}+\mathrm{M}=2 \mathrm{r}^{2} \pi+4 \mathrm{r}^{2} \pi=6 \mathrm{r}^{2} \pi$, т. j.

Повриина омошача равносиране облице 4 иуиа је већа, а цела повриина 6 пуша већа од повриине базиса.

Пример 1. Наћи повриину обличе чији је иолупречник базиса $r=6 \mathrm{~cm}$ а висина $h=10 \mathrm{~cm}$.

Овде је базис $\mathrm{B}=\mathrm{r}^{2} \pi=\sigma^{2} \cdot 3,14=36 \cdot 3,14=113,04 \mathrm{~cm}^{2}$, омотач $\mathrm{M}=2 \mathrm{r} \pi \mathrm{h}=12 \cdot 3,14 \cdot 10=376,80 \mathrm{~cm}^{2}$. Стога је површина $P=2 B+M=226,08+376,80=602,88 \mathrm{~cm}^{2}$.

То исто бисмо добили употребом обрасца:
$\mathrm{P}=2 \mathrm{r} \pi(\mathrm{r}+\mathrm{h})=12 \cdot 3,14 \cdot 16=602,88 \mathrm{~cm}^{2}$.
Пример 2. Наћи повриину равностране облице полуиречника базиса $r=10 \mathrm{~cm}$.

Овде је $\mathrm{P}=6 \mathrm{r}^{2} \pi=6.100 \cdot 3,14=6.314=1884 \mathrm{~cm}^{2}$.
Наиомена. Површина праве облице је функција полупречника базиса и висине (или стране) облице. (Зашто?).
§ 159. Израда обличиног модела. Да бисмо направили модел једне облице од картона или какве дебље хартије, треба предходно да начинимо њену мрежу. Па како је мрежа омотача облице правоугаоник дужине равне обиму басиза ($2 \tau \pi$) а ширине равне висини облице h (сл. 290.), то најпре приступамо конструкцији тога правоугаоника. Тако, ако желимо да начинимо модел облице висине 6 cm а полупречника базиса 2 cm , онда цртамо правоугаоник дужине $2 \mathrm{r} \pi=2.2 .3,14=$ $12,56 \mathrm{~cm}$ а ширине 6 cm , а затим како с горње, тако и с доње стране дужине добивеног правоугаоника ма где цртамо по један круг полупречника $r=2 \mathrm{~cm}$ али тако, да ти кругови додирују дужине правоугаоника. Најзад добивену мрежу сечемо оштрим перорезом и склапамо модел облице.

§ 160. Задаци за вежбу.

1. Наћи површину праве облице: а) висине 5 m а полупречника базиса $\mathrm{r}=3 \mathrm{~cm} ;$ b) висина $8,5 \mathrm{dm}$ а полупречник базиса $3,4 \mathrm{dm} ;$ с) висине 2 m 5 dm 4 cm а полупречника базиса 1 m 3 dm 8 cm .
2. Површина праве облице је $177,6612 \mathrm{~cm}^{2}$ а полупречник базиса $2,3 \mathrm{~cm}$; наћи њену висину.
зиса $6,8 \mathrm{~cm}$.
. Наєи површину облице која постаје обртањем правоугаоника своје a) ширине, b) дужине; када му је дужина 5 m а ширина 3 m . 15 cm .
3. Наћи полупречник базиса равностране облице чија је површина $5,34 \cdot \mathrm{dm}^{2}$.
4. Површина омотача једне равностране облице је $314 \mathrm{~cm}^{2}$; наћи полупречник базиса те облице.
5. Наћи висину равностране облице, ако је површина њеног омотача $1256 \mathrm{~cm}^{2}$?
6. Омотач једне облице је квадрат стране $12,8 \mathrm{dm}$; наћи полупречншк базиса те облице.
7. Наћи површину омотача трупца када му је пречник пресека 24 cm а дужина $1,2 \mathrm{~m}$.
§ 161. Постанак и врсте купе. Кад зрак SX (сл. 291.) клизи по обиму једнога круга, па поново дође у свој првобитни положај, онда описује криву површину звану купасша илу конуспиа површина. Зрак SX зове се изводница, а круг по чијем се обиму изводница креће линија водиъва. Почетна тачка S зрака зове се врх купасте површине.

Кад се купаста површина

рема базису купе вина SO нормална или коса делимо на праве (сл. 292.) ижосе (сл. 293.). Код праве купе све су стране једнаке и висина јој се поклапа са осовином. Стране код косе купе, сем две, нису једнаке.

Сл. 292.

Сл. 293.

Сл. 294.

Сваку купу можемо сматрати као пирамиду од бескрајно много страна, За праву купу, можемо замислити да постаје и обртањем правоуглог троугла око једног свог катета. Овај катет је осовина (висина) купе, дуги је катет полупречник базиса, а хипотенуза је њена страна (сл. 294.). Права купа, код које је страна једнака с пречником базиса, зове се равностррана
§ 162. Површина праве купе. а) Површину праве купе израчунавамо по обрасцу $\mathrm{P}=\mathrm{B}+\mathrm{M}$, где нам B представља површину базиса а $М$ омотача. Па како развијен омотач праве купе (сл. 295.), даје кружни исечак чији је лук l раван обиму базиса $2 ヶ \pi$, а полупречник му је једнак са страном купе s , то је површина омотача $\mathrm{M}=\frac{\mathrm{ls}}{2}=\frac{2 \pi \pi \mathrm{~s}}{2}=\mathrm{r} \pi \mathrm{s}$. Додајући површини омотача површину базиса $\mathrm{B}=, \mathrm{r}^{2} \pi$, добијамо за површину купе:

$$
\mathbf{P}=\mathbf{B}+\mathbf{M}=\mathbf{r}^{2} \pi+\mathbf{r s} \pi=(\mathbf{r}+\mathbf{s}) \mathbf{r} \pi
$$

b) Како је код равностране купе $s=2 r$, то је површина њеног омотача $M=\mathrm{rs} \pi$ $=\mathrm{r} .2 \mathrm{r}, \pi=2 \mathrm{r}^{2} \pi$, а цела површина $P=(r+2 r) r \pi=3 r r^{3} r \pi$ $=3 r^{2} \pi$, или $P=B+M=r^{2} \pi$ $+2 r^{2} \pi=3 r^{2} \pi$, т. ј.: Површина омотача равностране купе два иута је већа од површине базиса, а цела повриина три пуша.
c) Код сваке праве купе
 висина њена h, полупречник
базиса \mathbf{r} и страна купе \mathbf{s} дају правоугли троугао, код кога је \mathbf{s} хипотенуза а \mathbf{r} и \mathbf{h} катете (SOB на сл. 295.).

Стога је по Питагорином правилу:

1) $\boldsymbol{s}=\sqrt{\left.\mathbf{h}^{2}+\mathbf{r}^{2}, 2\right)} \mathbf{h}=\sqrt{\mathbf{s}^{2}-\mathbf{r}^{2}}$ и 3) $\mathbf{r}=\sqrt{\mathbf{s}^{2}-\mathbf{h}^{2}}$,

који нам обрасци помажу да нађемо на коју од количина s, h и r , ако знамо друге две.

Пример 1. Наћи повриину праве куие чији је полуиречник базиса $r=10 \mathrm{~cm}$ а страна $s=15 \mathrm{~cm}$.

Овде је површина базиза $\mathrm{B}=\mathrm{r}^{2} \pi=10^{2} 3,14=314 \mathrm{~cm}^{2}$, површина омотача $\mathrm{M}=\mathrm{rs} \pi=10 \cdot 15 \cdot 3,14=471 \mathrm{~cm}^{2}$, те је површина купе $\mathrm{P}=\mathrm{B}+\mathrm{M}=314+471=785 \mathrm{~cm}^{2}$.

Помоћу обрасца имамо:

$$
\begin{gathered}
\text { уу оорасца имамо: } \\
\mathrm{r}+\mathrm{s}) \text { тл }=25 \cdot 10 \cdot 3,14=785 \mathrm{~cm}^{2} .
\end{gathered}
$$

Пример 2. Наћи повриину праве куие чији іе полуречник базиса 6 cm и висина 8 cm .

Тада је страна $\mathrm{s}=\sqrt{\mathrm{r}^{2}+\mathrm{h}^{2}}=\sqrt{6^{2}+8^{2}}=\sqrt{100}=10$, те је $\mathrm{P}=(\mathrm{r}+\mathrm{s}) \mathrm{r} \pi=16 \cdot 6 \cdot 3,14=301,44 \mathrm{~cm}^{2}$.

Пример 3. Наћи товриину равностране куие стиране $\mathrm{s}=20 \mathrm{~cm}$.

Овде је $2 \mathrm{r}=\mathrm{s}=20 \mathrm{~cm}$, а $\mathrm{r}=10 \mathrm{~cm}$, те је

$$
\mathrm{P}=3 \mathrm{r}^{2} \pi=3 \cdot 100 \cdot 3,14=942 \mathrm{~cm}^{2} .
$$

Наиомена: Површина праве купе је функција полупречника басиса r и стране s, полупречника базиса r и висине h или висине h и стране s, а површина равностране купе је функција само полупречника базиса r. или стране s, или висине h (Зашто?).
§ 163. Израда модела праве купе, Да бисмо начинили модел од картона или какве друге хартије једне праве купе,

Сл. 296. треба да израдимо претходно њену мрежу. Па како је мрежа купиног омотача кружни исечак полупречника једнаког страни купе s (сл. 295.) и лук AB раван обиму базиса $2 \uparrow \pi$, то треба претходно нацртати тај кружни исечак. За то нам је потребан само његов полупречник s и угао α. Тако, да бисмо саградили купу полупречника базиса $r=$ 2 cm а стране $\mathrm{s}=5 \mathrm{~cm}$, треба најпре наћи $\mathrm{pa-}$ чунским путем, на осноугао $\alpha=\frac{180^{\circ} \cdot \overparen{A B}}{\mathrm{~s} \cdot \pi}=\frac{180^{\circ} \cdot 2 \mathrm{r} \pi}{\mathrm{s} \pi}=\frac{180^{\circ} 2 \mathrm{r}}{\mathrm{s}}=\frac{180^{\circ} .4}{5}=144^{\circ}$, а загим нацртати угао $\alpha=144^{0}$, а из његовог темена S описати лук AB полупречником $s=5 \mathrm{~cm}$. Добивени исечак SAB (сл. 296.) је мрежа купиног омотача. Најзад треба конструисати симетразу SC угла α и на њеном продужетку узети $\mathrm{CO}=\mathrm{r}=2 \mathrm{~cm}$, па описати круг О. Сечењем и склапањем ове мреже добијамо модел праве купе.

§ 164. Задаци за вежбу.

1. Наћи површину праве купе: а висине 4 m а полупречника базиса 3 m ; b) стране 20 cm а полупречника базиса 12 cm ; с) стране 65 cm и висине 42 cm .
2. Наћи површину омотача праве купе; а) висине 5 cm а стране $8,5 \mathrm{~cm}$; b) висине $1,5 \mathrm{~m}$ а полупречника базиса $2 \mathrm{~m} ;$ c) стране 7 dm а полупречника базиса 3 dm .
3. Наћи површину равностране куле полупречника базиса $3,5 \mathrm{~m}$. $3,2 \mathrm{dm}$ а површина омотача 50,24 висина купе чији је полупречник базиса dm а површина омотача $50,24 \mathrm{dm} 2$.
катета 6 m и 8 m најпре око једне а затим обртањем правоуглог троугла 6. Омотач праве купе висине атим око цруге катете.

вијен је кружни исечак; наћи угао тога исечка.
7. Наћи површину равностране купе а) стране $8,4 \mathrm{dm} ;$ - b) висине 7 cm .
8. Колико је квадратних метара лима потребно за покривање крова облика. купе чија је страна $5,6 \mathrm{~m}$ а пречник осовине $4,5 \mathrm{~m}$?
базиса равностране купе површине чија је ивица једнака са пречником
равностране купе површине $18,64 \mathrm{dm}^{2}$?
10. Колика је страна равностране
10. Колика је страна равностране купе чија је површина једнака с површином омотача равностране облице стране 8 dm ?
§ 165. Постанак лопте. Када се полукруг NAS (сл. 297.) обрће око свога пречника NS , па дође у свој првобитни положај, онда он производи криву површину која се зове лоишина повриина. Тело ограничене лоптином површином зове се лопша. Центар полукруга који производи лопту једновремено је и центар лопте. Све тачке лоптине површине подједнако су удаљене од центра Дуж, која везује центар лопте ма са којом тачком њене површине, зове се полупречник.

Сви полупречници једне лопте једнаки су. Дуж која везује ма које две тачке лоптине површине зове се тетива лопте. Она тетива која пролази

Сл. 297. кроз центар лопте зове се пречник. Сваки је пречник два пута већи од полупречника, те су и сви пречници једнаки. Крајње тачке једнога пречника на лопти зову се супротне лоптине тачке.
§ 166. Пресеци лопте. Кад се лопта пресече равнином добија се пресек круг. Да је пресек CMDE на сл. 297. заиста круг уверавамо се подударношћу троуглова: $00^{\prime} \mathrm{C}, 00^{\prime} \mathrm{M}, 00^{\prime} \mathrm{D}$ и 00^{\prime} Е. Сви оби троуглови јесу правоугли и имају за заједнички катет раздаљину пресека 00^{\prime}, а хипотенузе су им једнаке као полупречници исте лопте. C тога су им и други катети: $\mathrm{O}^{\prime} \mathrm{C}, \mathrm{O}^{\prime} \mathrm{M}, \mathrm{O}^{\prime} \mathrm{D}$ и $\mathrm{O}^{\prime} \mathrm{E}$ једнаки. Тада су тачке: C , M , D и E подједнако удаљене од тачке пресека O^{\prime}, те стога леже на периферији круга. Пресек CMDE зове се лоптиин круz. Ако централну раздаљину једног лоптиног круга означимо са c, његов полупречник са ρ, а полупречнмк лопте са r, онда по Питагорином правилу из правоугла $\triangle \mathrm{OO}^{\prime} \mathrm{C}$ (сл. 297.) имам : $r^{2}=s^{2}+c^{2}$, а одавде имамо $r=\sqrt{\Omega^{2}+c^{2}}, \Omega=\sqrt{r^{2}-c^{2}}$ а $\mathrm{c}=\sqrt{\mathrm{r}^{2}-\rho^{2}}$. Кад год су познате две од количина: r, ρ и c, у стању смо да нађемо трећу с помоћу горњих образаца.

Сва правила која се однесе на тетиве и њихове средишне разваљьне код круга овде се односе на лоптине кругове. Тако: 1) Једнаки лоптини кругови имају іеднаке средиине раздазине, и обрнушо! 2) Већи лопиин круг има мању

средишну раздаљину, и обрнушо; 3). Дуж, која спаја ценшар лопше са цениром лоишиног круга, нормална је на равнини щога круга, и ㄹ. д. Онај лоптин-круг, који се добија пресеком равнине која пролази кроз центар лопте, зове се највећи или главни лошшин круг. Његов центар поклапа се са, центром лопте, а полупречник му је једнак с полупречником лопте. Два главна лоптина круга секу се и њихово је пресек увек пречник лопте (APBQ и NPSQ на сл. 297. имају за пресек пречник PQ). Две тачке на лоптиној површини, ако нису супротне, одређују положај једног главног лоптиног круга. На сл. 297. тачке N и C одређују круг NCASBD, а тачке N и P круг NPSQ. Те тачке деле главни лоптин круг на два лука. Мањи круг зове се сферна расдаљина тих тачака. Сферна раздаљина тачака M и N на сл. 297. је лук $\overparen{M N}$.
§ 167. Површина лопте. Површина лоите је 4 дупа већа од повриине једног њеног главног лопшиног круга. Да је ово тачно уверићемо се доцније (§ 207.b). Па како је полупречник главног лоптиног круга једнак полупречнику лопте то је површина ма ког главног лоптиног круга $\mathbf{r}^{2} \pi$, а површина лопте

$$
\mathbf{P}=\mathbf{4} \mathbf{r}^{2} \pi
$$

где нам \mathbf{r} преставља полупречник лопте. Дакле, за израчунавање површине једне лопте, потребно је да знамо величину

Сл. 298. њеног полупречника или пречника. Пречник једне лопте да се измерити на начин, како нам сл. 298. показује. Треба, дакле, поставити лопту на хоризонталну раван MN , а са стране треба да наслонимо два правоугла троугаоника E и F тако да са једним катетама додирују лопту а друге катете да леже на истој правој HN . Одстојање AB њихових темена биће једнако пречнику лопте.

Из формуле $\mathrm{P}=4 \mathrm{r}^{2} \pi$ имамо $\mathrm{r}^{2}=\frac{\mathrm{P}}{4 \pi}$ а $r=\sqrt{\frac{\bar{P}}{4 \pi}}$, т. ј. полуиречник лопие израчунавамо с помоћу шене површине, када mу повриину најпре поделимо са $4 \pi(12,56)$ и од добивеног количника извучемо квадратани корен.

Пример 1. Наћи површину лоппе пречника 20 cm .
Њен је полупречник $\mathrm{r}=10 \mathrm{~cm}$, а површина $\mathrm{P}=4 \mathrm{r}^{2} \pi=$ $4.100 .3,14=4.314=1256 \mathrm{~cm}^{2}$.

Пример 2. Наћи полупречник лопие чија је повриина $P=2826 \mathrm{~cm}^{2}$.

$$
r=\sqrt{\frac{\bar{P}}{4 \pi}}=\sqrt{\frac{2826}{12,56}}=\sqrt{\frac{282600}{1256}}=\sqrt{225}=15 \mathrm{~cm}
$$

Примери за вежбу:
3. Наћи површину лопте чији је полупречник: а) $2,3 \mathrm{~m}$; b) 1 m 8 dm 5 cm ; c) $53 / \mathrm{dm}$.
4. Наћи полупречник лопте чија је површина а) $78,5 \mathrm{dm}^{2}$ b) $12,56 \mathrm{~m}^{2}$; c) $26096 \mathrm{~cm}^{2}$.

Наиомена. Површина лопте је функција лоптиног полупречника, и обратно. (Зашто?).

IV. СЛИЧНОСТ СЛИКА И ТЕЛА

1. ПРОПОРЦИОНАЛНОСТ ДУЯКИ

§ 168. Размера двеју дужи. Под мером једне дужи разумемо такву једну мању дуж, која се потпуно садржава у даној дужи два или више пута. Тако, дуж m је мера дужи a (сл. 29э.) јер се m садржава у а 5 пута. Под заједничком мером двеју дужи разумемо такву трећу дуж, која се пот-

пуно садржава и у једној и у другој дужи. Наиме дуж n (сл. 300.) је заједничка мера за дужи a и b, јер се она потпуно са држава у a 4 пута а у $b 3$ пута.

Под мерним бројевима двеју дужи разумемо оне резултате, који нам показују, колико се пута заједничка мера тих дужи садржава у једној а колико у другој дужи. Тако на сл. 300. мерни број дужи a је 4 а дужи $b 3$.

Под размером двеју дужи разумемо размеру њихових мерних бројева. Тако, размера дужи a и b на сл. 300. је 4:3 Да бисмо нашли, дакле, размеру двеју дужи, треба пре свега да нађемо њихову заједничку меру, затим да испитамо колико се пута заједничка мера задржава и у једној и у другој дужи, т. ј. да нађемо њихове мерне бројеве, и најзад, размера нађених мерних бројева је тражена размера датих дужи.
§ 169. Упуство за тражење заједничке мере двеју дужи. Да бисмо нашли заједничку меру за две дужи, мању дуж преносимо на већу онолико пута колико је могућно. Ако се мања дуж потпуно садржава у већој, онда је она тражена заједничка мере. Ако се мања дуж не садржава потпуно у већој дужи, већ преостаје какав остатак, онда се овај остатак

преноси на мању дуж онолико пута колико је могућни. Ако се остатак садржава потпуно у мањој дужи, онда је он тражена заједничка мера. Ако не наступи тај случај, већ преостаје нов остатак, онда се нови остатак преноси на предходни остатак и све се тако поступа, док се не добије остатак, који се потпуно садржава у предходном. Тај је остатак тражена заједничка мера. Тако на сл. 301. пренашањем дужи b на дуж a,

Сл. 301.
видимо да се b садржава у a два пута и преостаје остатак c. Овај се остатак преноси на дуж b у којој се садржава један пут и преостаје остатак d. Нови остатак d садржава се у c два пута и преостаје остатак m, који се потпуно садржава у предходном остатку d два пута. Према томе, остатак m је тражена заједничка мера за дужи a и b.

Нашомена. Радећи по горњем упуству можемо наићи на случај, да добијемо све мање и мање остатке, али никако на остатак, који се потпуно садржава у предходном. На такав случај налазимо нпр. када тражимо заједничку меру за дијагоналу и страну једнога квадрата. У овоме случају дужи немају заједничке мере и зову се несамерљивя. Напротив, дужи које имају заједничку меру, јесу самерљиве. Међутим, у строгом математичком смислу имамо несамерљивих дужи, али за обична израчунавања немамо, јер, радећи по горњем упуству. наилазимо ипак на такав један мали остатак, који се готово садржава у предхомном два или више пута, а преостали врло мали остатак се занемарује.
§ 170. Упуство за тражење мерних бројева двеју дуяи. Најпре налазимо колико се пута нађена заједничка мера садржава у предходном остатку, а затим поступно у сваком већем ранијем остатку, док не добијемо резултате који нам показују, колико се пута заједничка мера садржава најпре у мањој а затим у већој дужи. Тако, код дужи a и b на сл. 301. имамо: $\mathrm{d}=2 \mathrm{~m} ; \mathrm{c}=\mathrm{d}+\mathrm{m}=-4 \mathrm{~m}+\mathrm{m}=5 \mathrm{~m} ; \mathrm{b}=\mathrm{c}+\mathrm{d}=5 \mathrm{~m}+2 \mathrm{~m}=7 \mathrm{~m}$, $a=2 b+c=14 m+5 m=19 m$.

Према томе, мерни број дужи a је 19 а дужи b 7. Размера дужи a и b биће дакле $19: 7$, и обрнуто размера $\mathrm{b}:$ а је $7: 19$.

Напомена. Ако су величине дужи дате у метрима, онда је m њихова заједничка мера: ако су дате у десиметрима, сантиметрима, милиметрима, онда је dm, cm, mm њихова заједничка

мера а апсолутне вредности величина јесу мерни бројеви тих дужи. Тако, размера двеју дужи чије су величине 27 cm и 23 cm јe 27:23.
§ 171. Пропорционалност дужи За четири дужи каже се да су пропорционалне, ако је размера мерних бројева првих двеју дужи једнака с размером мерних бројева других двеју. Тако дужи: a, b, c и d (сл. 302.) јесу пропорционалне, јер је размера дужи a и $b 5: 3$, а и размера дужи c и d такође је 5:3. Прве две дужи имају за заједничку меру дуж p, а друге две дуж q. Стога ове четири дужи дају пропорцију $a: b=c: d$ Три дужи дају једну не-

Сл. 302. прекидну пропориију, ако је размера мерних бројева прве и други дужи једнака с размером мерних бројева друге и треће дужи. Тако, ако је p заједничка мера за a и b (сл. 303.), а q заједничка мера за b и c и ако се p садржава у $a 5$ пута а у $b 3$ пута, а q садржава у $b 5$ пута а у $c 3$ пута, онда је $\mathrm{a}: \mathrm{b}=5: 3$ и $\mathbf{b}: \mathrm{c}$ $=5: 3$, дакле је $\mathrm{a}: \mathrm{b}=\mathrm{b}: \mathrm{c}$.

Дуж b зове се средюк геометријска иропорционала између дужи a и c, дуж a зове се прва непрекидна а дуж $с$ щрећа непрекидна ироиорционала.

Пропорционалне дужи јављају се код троугла повлачењем паралелне ма из које тачке једне троуглове стране с другом

Сл. 303. којом страном. Тако, ако из тачке M стране $A C$ троугла ABC (сл. 304.) повучемо MN||AB, онда се страна AC дели на одсечке АМ и MC, а страна BC на отсечке CN и BN . Сви ти отсечци јесу пропорционални, што се можемо уверити на овај начин: Ако отсечци АМ и МС стране AC имају заједничку меру m и ако се m садржава у AM 2 пута а у MC 3 пута, онда је $\mathrm{AM}: \mathrm{MC}=2: 3$ (1). Повлачењем паралелних са страном AB из деоних тачака: E, F и G , отсечци се BN и CN стране BC деле на једнаке делове. Ако је један такав део n, онда је он заједничка мера тих отсечака и он се садржава у BN 2 пута а у CN 3 пута, те је и $\mathrm{BN}: \mathrm{CN}=2: 3$, (2). Па како су десне стране пропорција (1)

и (2) једнике, то су им једнаке и леве стране, т. ј. АМ : МС $=$ $=\mathrm{BN}: \mathrm{CN}$. Исти случај наступа ако из тачке N стране BC повучемо $\mathrm{NP} \| \mathrm{AC}$. Тада је $\mathrm{BN}: \mathrm{CN}=\mathrm{BP}: \mathrm{PA}$, чиме се доказује да су заиста отсечци ових троуглових страна пропорционални. Тако исто су пропорционалне ма које две странв \triangle MNC \triangle и ABC (сл. 304.), што се да увидети на овај начин: 1.) $\mathrm{AC}=5 \mathrm{~m}$

Сл. 304
а $M C=3 \mathrm{~m}$, те је $A C: M C=5: 3 \ldots$ (1); 2.) $B C=5 n$ а $N C=3 n$, те је $\mathrm{BC}: \mathrm{NC}=5: 3 \ldots$ (2); и 3.$) \mathrm{AB}=5 \mathrm{p}$, а $M N=3$ р, те је $\mathrm{AB}: \mathrm{MN}=5: 3 \ldots$ (3). Тада и леве стране пропорција (1), (2) и (3) јесу једнаке, т. ј.

$$
\mathrm{AC}: \mathrm{MC}=\mathrm{BC}: \mathrm{NC}=\mathrm{AB}: \mathrm{MN},
$$

Отуда имамо правило: Када се ма из које тачке једне троуглове стране повуче паралелна с другом страном, онда cy: а) отсечци прве стране пропорционални с отсечцима треће стране, b) стране новога троугла пропорционалне са странама датог троугла.

2. СЛИЧНОСТ ТРОУГЛОВА.

§ 172. За два троугла каже се да су слични, ако имају једнаке облике а различите површине. Знах сличности је ~ (положено S, почетно писмо од речи similis - сличан). Код сличних троуглова одговарајући углови су једнаки, а одговарајуће стране пропорционалне. Тако, $\triangle \mathrm{ABC} \sim \triangle \mathrm{MNC}$ (сл. 304.), пошто имају једнаке хомологе углове и пропорционалне стране. Meђутим, није потребно да знамо да су сви углови једнога троугла једнаки са угловима другога и да су њихове стране пропорционалне, па да смо начисто да су ти троуглови слични Њихова сличност биће зајемчена, ако само три елемента једнога троугла буду једнака, односно пропорционална, са истим бројем одговарајућих елемената другога троугла. Отуда, као и

за подударност троуглова, имамо четири правила о сличности троуглова. Та су правила :

1. Два су троугла слична, ако имају углове једнаке;
2. Два су троугла слична, ако имају по две стране пропорционалне и захваћене углове једнаке;
3. Два су троугла слична, ако имају по две стрине пропорционалне и углове наспрам већих од тих страна једнаке; и
4. Два су троугла слична, ако су им стране пропорционалне.

Прво оравило доказује се овако: Нека је $\Varangle \mathrm{A}=\Varangle \mathrm{A}^{\prime}$. $\Varangle \mathrm{B}=\mathrm{B}^{\prime}$, и $\Varangle \mathrm{C}=\Varangle \varnothing$ сл. 305.) Пренашањем $\mathrm{A}^{\prime} \mathrm{C}^{\prime}$ на AC од темена $\mathrm{C}\left(\mathrm{CM}=\mathrm{A}^{\prime} \mathrm{C}^{\prime}\right)$ и повлачењем $\mathrm{MN} \| \mathrm{AB}$, добијамо $\triangle M N C$,

жоји је сличан са троуглом $A B C$ по пранилу предходпог пағ раграфа, пошто имају једнаке углове и пропорционалне страңе. Па како је $\triangle \mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime} \cong \mathrm{MNC}\left(\mathrm{A}^{\prime} \mathrm{C}^{\prime}=\mathrm{CM}, \mathrm{C}=\mathrm{C}^{\prime}\right.$ и $\mathrm{A}^{\prime}=\mathrm{M}_{\text {jep }}$ су оба једнака са A), то је и $\triangle A^{\prime} B^{\prime} C^{\prime}$, као подударан са $\triangle M N C$, сличан са $\triangle \mathrm{ABC}$.

Слично овоме доказују се и остала три правила, али како та правила имају мању примену, њихове доказе изостављамо. Како два угла у троуглу одређују трећи, то није нужно да знамо да су сва три угла једнога троугла. једнака са одгова рајућим угловима другога троугла, већ је довољно да два троугла имају само по два угла једнака, па да онда морају ти троуглови бити слични. За сличност правоуглих троуглова довољно је да знамо, да имају по један оштар угао једнак, пошто су већ њихови прави углови једнаки.
§ 173. Примена сличности троуглова. а) Спуштањем хипотенузине 'висине AD, правоугли се троугао ABC (сл 306.) дели на два правоугла троугла ABD и ADC , који су не само слични међу собом, већ је сваки од њих сличан са $\triangle \mathrm{ABC}$.

Тако, $\triangle A B D \cong=A B C$, јер имају углове једнаке (β је заједнички, $\searrow \mathrm{BAD}=\Varangle \mathrm{ACB}$, јер су им краци нормални). Тада

је страна a у $\triangle \mathrm{ABC}$ хомолога са страном c у $\triangle A E D$ и страна с у $\triangle \mathrm{ABC}$ хомолога са страном p у $\triangle A B D$. Стога је:

$$
\mathrm{a}: \mathrm{c}=\mathrm{c}: \mathrm{p} \text {, или } \mathrm{c}^{2}=\mathrm{ap} \ldots \text { (1) }
$$

Из сличности троуглова ADC и ABC налазимо на исти начин да је: $\mathrm{BC}: \mathrm{AC}:=\mathrm{AC}: C D$, т. j .
$\mathbf{a}: \mathbf{b}=\mathbf{b}: \mathbf{q}$, или $\mathbf{b}^{2}=\mathbf{a q} \ldots$. (2). Отуда правило :
Свака је катета средња пропорционална између хипотенузе и оближњег одсечка.
b) Из једнакости (1) и (2) налазимо сабирањем да је и $\mathrm{b}^{2}+\mathrm{c}^{2}=\mathrm{aq}+\mathrm{ap}$, или $\mathrm{b}^{2}+\mathrm{c}^{2}=\mathrm{a}(\mathrm{q}+\mathrm{p})$. Ако у овој једнакости заменимо $\mathrm{q}+\mathrm{p}$ са a, онда добијамо Питагорино правило: $\mathbf{b}^{2}+\mathbf{c}^{2}=\mathbf{a}^{2} \ldots$ (3) доказано \mathbf{c} помоћу сличности троуглова.
c) $\triangle \mathrm{ABD} \sim \triangle \mathrm{ADC}$, јер имају углове једнаке $\Varangle \mathrm{BAD}=\Varangle \mathrm{ACD}$, $\Varangle A B D=\subset C A D$ јер су им краци нормални). Тада је страна $C D(q)$ у

Сл. 306.

Сл. 307.
$\triangle A D C$ хомолога са страном $A D(h)$ у $\triangle A B D$ и страна $A D(h)$ у $\triangle A D C$ хомолога са страном $B D(p)$ у $\triangle A B D$. Стога је по I правилу сличности троуглова: $\mathbf{q}: \mathbf{h}=\mathbf{h}: \mathbf{p}$, или $\mathbf{h}^{2}=\mathbf{p q} \ldots$, (4). т.j.

Висина хипотензина је средња пропорционална између хипотенузиних отсечака.

Напомена. Ова правила истоветна су са правилима параграфа 137،, само су овде доказана с помоћу сличности троуглова. С помоћу пропорција (1), (2) и (4) и једнакости (3) имамо сва она израчунавања код правоугла троугла, која смо имали код § 136 .
d) Нека су троуглови ADC и $\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}$ (сл. 307.) слични. Тада су им стране пропорционалне, т. $\mathrm{j}: \mathrm{a}: \mathrm{a}^{\prime}=\mathrm{b}: \mathrm{b}^{\prime}=\mathrm{c}: \mathrm{c}^{\prime} \ldots$ (1).

Како је ова пропорција продужна, то на основу особина продужних пропорција имамо:

$$
(a+b+c):\left(a^{\prime}+b^{\prime}+c^{\prime}\right)=a: a^{\prime}(2)
$$

Први члан ове пропорције је обим $\triangle \mathrm{ABC}$, а други је обим $\triangle \mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}$, те је стога $O: O \rightleftharpoons a: a^{\prime} \ldots$, (3). Како је десна размера ове пропорције једнака са $b: b^{\prime}$ и $c: c^{\prime}$, то је: $O: O^{\prime}=b: b^{\prime}$ и $O: O^{\prime}=c: c^{\prime}$. То јест:

Обими сличних троуглова имају се као ма које две хомологе стране.
e) Нека су троуглови ABC и $\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}$ ((сл. 307.) слични. Тада је $\mathrm{a}: \mathrm{a}^{\prime}=\mathrm{b}: \mathrm{b}^{\prime}$ чн $\mathrm{c}: \mathrm{c}^{\prime}$. Међутим, и троуглови ADC и $\mathrm{A}^{\prime} \mathrm{D}^{\prime} \mathrm{C}^{\prime}$ такође су тада слични, јер имају углове једнаке. Из њихове сличности излази да је $h: h^{\prime}=b: b^{\prime}$. Како је десна размера ове пропорције једнака и са размером а: a^{\prime} и са размером с: c^{\prime}. то је $\mathrm{h}: \mathrm{h}^{\prime}=\mathrm{a}: \mathrm{a}^{\prime}$ и $\mathrm{h}: \mathrm{h}^{\prime}=\mathrm{c}: \mathrm{c}^{\prime}$, т. \mathbf{j}.

Код сличних троуглова хомологе висине јесу пропорционалне са хомологим странама.
f) Нека су троуглови $A B C$ и $A^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}$ (сл. 307.) слични. Тада је $\mathrm{a}: \mathrm{a}^{\prime}=\mathrm{b}: \mathrm{b}^{\prime}=\mathrm{c}: \mathrm{c}^{\prime}$, или $\mathrm{a}^{2}: \mathrm{a}_{1}{ }^{2}=\mathrm{b}^{2}: \mathrm{b}_{1}{ }^{2}=\mathrm{c}^{2}: \mathrm{c}_{1}{ }^{2}$. По претходном правилу биће $h: h^{\prime}=c: c^{\prime} \ldots$ (1).

Како је свака размера једнака самој себи, то је с : $\mathrm{c}^{\prime}=$ c: $c^{\prime} \ldots .$. (2) Из пропорција (1) и (2) добијамо сложену пропорцију ch: $\mathrm{c}^{\prime} \mathrm{h}^{\prime}=\mathrm{c}^{2}: \mathrm{c}_{1}{ }^{2} \ldots$ (3). Ако први и други члан ове пропорције поделимо са 2 добијамо $\frac{\mathrm{ch}}{2}: \frac{\mathrm{c}^{\prime} \mathrm{h}^{\prime}}{2}=\mathrm{c}^{2}: \mathrm{c}^{2}$, мли $\mathrm{P}: \mathrm{P}^{\prime}=$ $c^{2}: c^{2}$ Како се размера $c^{2}: c^{\prime 2}$ да заменити и размером $a^{2}: a_{1}{ }^{2}$ и размером $\mathrm{b}_{2}^{\prime}: \mathrm{b}^{2}$ то је $\mathrm{P}: \mathrm{P}^{\prime}=\mathrm{a}^{2}: \mathrm{a}^{2}{ }^{2}$ и $\mathrm{P}: \mathrm{P}^{\prime}=\mathrm{b}^{2}: \mathrm{b}^{\frac{1}{2}}$.
То јест:

Површине сличних троуглова имају се као квадрати ма кога пара двеју хомологих страна.

8. СЛИЧНОСТ МНОГОУГЛОВА.

§ 174. За два многоугла, као и за два троугла, каже се да су слични, ако имају једнаке облике и различите површине И они имају одговарујуће углове једнаке а одговарајуће стране

Сл. 308.
Сл. 309.

आропорционалне. Такви су четвороуглови ABCD и $\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime} \mathrm{D}^{\prime}$ (сл. 308.) и шестоуглови $A B C D E F$ и $A^{\prime} B^{\prime} C^{\prime} D^{\prime} E^{\prime} F^{\prime}$ (сл. 309), јер иају хомологе уілове $\left(\mathrm{A}=\mathrm{A}^{\prime} . \mathrm{B}=\mathrm{B}^{\prime}, \mathrm{C}=\mathrm{C}^{\prime} \ldots\right.$, $)$ једнаке, по-

што су им краци паралелни, а према I правилу о сличности троуглова хомологе су им стране пропорционалне. Из сл. 309., према правилииа о сличности троуглова, очевидна су правила:

1) Да одговарајуће дијагонале деле сличне многоугле на сличне троугле;
2) Да су хомологе дијагонале пропорционалне с хомологим странама; и
3) Да су многоуглови слични када су састављени од истог броја сличних троуглова, узетих по истом реду.

Из свега овога је очевидно, да су правилни многоугли с једнаким бројем стрзна слични.

И код сличних многоуглова као и код сличних троуглова у важности су правила под е) и f) из претходног параграфа, која овде гласи:

1) Обими сличних многоуглова стоје у истој размери као ма које две хомологе стране или дијагонале;
2) Површине сличних многоуглова стоје у истој размери као квадрати ма којих двеју хомологих страна или дијагонала.

Напомена. С помоћу ова два правила решавају се задаци: 1) Наћи ваздуино одстиојаюе двају места на земльи с помоћу картие чија је сразмера познааша, и 2) Наћи повриину једне државе (округа, среза), с иомоћу карте чија је сразмера познаша. (Слике државе у природи и на мапи јесу сличне).

Пример 1. Наћи ваздушно отстојање Београд - Ниш, ако је одстојање тих места 4 cm на карти која је израђена $1: 5000000$. Ако је тражено одстојење X cm , онда је $4: \mathrm{x}=1: 5000000$, а одавде је $\mathrm{x}=20000000 \mathrm{~cm}=200000 \mathrm{~m}=200 \mathrm{Km}$.

Пример 2. Наћи површину државе Колорадо у Севернод Америци, ако је њена површина $6,82 \mathrm{~cm}^{2}$ на карти која је израђена по размери $1: 20000000$. Ако је њена површина $X \mathrm{~cm}^{2}$, онда је $6.82: \mathrm{X}=1^{2}: 20000000^{2}$, а овде је $\mathrm{X}=6.82$. 400000000000000 $\mathrm{cm}^{2}=272800000000 \mathrm{~m}^{2}=2728000000 \mathrm{apa}=27280000 \mathrm{Ea}=$ $282800 \mathrm{Km}^{2}$.

4. СЛИЧНОСТ ТЕЛА.

§ 175. За два тела каже се да су слична, ако имају једнаке облике а различите запремине. Тако, ма које две

Сл. 310.

Сл. 311. лопте неједнаких полупреч ника јесу сличне. Ако се нека купа пресече једном рав* нином, паралелном њеном базису, добија се купа слична датој купи(сл.310.). Ако се нека пирамида (сл. 311.) пресечеравнином, која је пабалелна њеном базису, добија се нова пирамида, слична датој пирамиди. (сл. 311)

Особине сличних тела изражене су у ова три правила:

1. Ма које две дужи (ивице) једнога шела пропорционалне су са хомологим дужинама другога тела;
2. Повриинне сличних тела стоје у истој размери као квадраши двеју њихових хомологих дужи ; и
3. Запремине сличних тела стоје у размери као кубови двеју нихових хомологих дужи.

Пример 1. Ако су ивице двеју коцки $\mathrm{a}_{1}=6 \mathrm{~m}$ и $\mathrm{a}_{2}=2 \mathrm{~m}$, онда су површиие $\mathrm{P}_{1}: \mathrm{P}_{2}=36: 4=9: 1$, а запремине $\mathrm{V}_{1}: \mathrm{V}_{2}$ $=6^{3}: 2^{3}=216: 8=27: 1$, т. ј. ако је $\mathrm{a}_{1}=3 . \mathrm{a}_{2}$, онда је $\mathrm{P}_{1} \xlongequal{=}$ $=9 . \mathrm{F}_{2}$ и $\mathrm{V}_{1}=27 . \mathrm{V}_{2}$.

Пример 2. Ако су полупречници двеју лопти $\mathrm{r}_{1}=10 \mathrm{~cm}$ и $\mathrm{r}_{2}=5 \mathrm{~cm}$, онда су површине $\mathrm{P}_{1}: \mathrm{P}_{2}=10^{2}: 5^{2}=100: 25=4: 1$, а запремине $V_{1}: V_{2}=103: 5^{3}=100^{2} 0: 125=81$, т. ј. ако је $\mathrm{r}_{1}=2 \cdot \mathrm{r}_{2}$, онда је $\mathrm{P}_{1}=4 . \mathrm{P}_{2}$ а $\mathrm{V}_{1}=8 . \mathrm{V}_{2}$.

5. КОНСТРУКТИВНИ И РАЧУНСКИ ЗАДАЦИ ИЗ ПРОПОРЦИОНАЛНОСТИ ДУЖИ И сЛИЧНОСТИ сЛИКА.

§ 276. Конструктивни задаци:
1.) За три дашее дужи $a, b \quad и$ (сл. 312.) наћи четвввиу пропорционалу. Најпре нацртамо ма какав угао BAC , а затим

Сл. 312.
на његове краке преносимо $\mathrm{AD}=\mathrm{a}, \mathrm{DM}=\mathrm{b}, \mathrm{AE}=\mathrm{c}$. Најзад спајамо тачке D и E , а из тачке M повлачимо $\mathrm{MF} \| \mathrm{DE}$. Одсечак EF је тражена четврта пропорционала х. (Правило из § 171.).

2. За две дане дขжи а и b (сл. 313.) наћи нихову тарећу непрекидну пройориионалу. Конструкција је истоветна као код

предходног задатка узимајући да је $b=c$. Одсечак EF је тражена трећа непрекидна пропорционала.
3. За две дане дужи а и в нићи нихову средьу про«орционалу. Треба на зрак AY (сл. 314.) пренети најпре a а

Сл. 314.
затим $b(\mathrm{AD}=\mathrm{a}, \mathrm{DB}=\mathrm{b})$. Затим над AB , као над пречником, описати полукруг и у D подићи нормалу DC до пресека са

Сл. 3 i 5. полукругом. Та нормала је тражена средња пропорционала x, јер је по правилу под с) из § 173. а у вези задатка 9.из претварања слика (§ 147.), $\mathrm{x}^{2}=\mathrm{ab}$, или $\mathrm{a}: \mathrm{x}=\mathrm{x}: \mathrm{b}$.
4.) Дану дуж $A B$ (сл. 315.) поделиши на два дела по некој дашој бројној размери (нир.
4:3). Најпре кроз A повлачимо зрак AX под једним произвољним оштрим углом, а затим на тај зрак преносимо 7 т. ј. $4+3$ једнаких произвољних делова. Најзад седму деону тачку D спајамо са B, а из четврте деоне тачке С повлачимо CE \| DB. Тачка Е дели по правилу из § 171. дуж АВ по размери $4: 3$.
5.) Дану дуж $A B$ (сл. 316.) поделиши на два дела по размери даших дужи a и \mathbf{b}.

Сл. 316.

Најпре кроз A повлачимо зрак AX под произвољним оштрим углом, а затим преносимо на тај зрак најпре a а затим дуж $b(\mathrm{AD}=\mathrm{a}, \mathrm{DF}=\mathrm{b})$. Најзад F спајамо са B , а из D повлачимо $\mathrm{DC} \mid \mathrm{FB}$. Тачка C дели дуж AB , према правилу под c) из $\S 171$., по размери $\mathrm{a}: \mathrm{b}$.
6. Дану дуж повећатаи у размери 3:5.

Треба најпре дану дуж поделити на три једнака дела, а затим на њено продужење преносимо још два таква дела.
7. Дану дуж поделиши у размери 7:3.

Треба најпре дану дуж поделити на седам једнаких делова, а затим, почевши с почетка, узети за смањену дуж три таква дела.
8. Дану дуж поделиши на ири дела по размери 2:3:5.

Најпре дану дуж делимо на 10 (збир датих размерних бројева) једнаких делова, а затим за делове дужи узимамо 2 па 3 и остатак од 5 таквих делова.
9. Наћи $\frac{n}{10}$ од дане дужи AB (сл. 317.), где је $n=1,2$, 3, 4, 5, 6, 7, 8 или 9.

У крајњим тачкама А и В

Сл. 317. дане дужи подижемо нормале AD и BC на које преносимо 10 произвољно узетих једнаких делова и крајње тачке С и D спајамо, а тако исто и одговарајуће деоне тачке подигнутих нормала. Најзад повлачимо дијагоналу AC. Тада је дуж $\mathrm{a}=\frac{1}{10} \mathrm{AB}, \mathrm{b}=\frac{2}{10} \mathrm{AB}, \mathrm{c}=\frac{3}{10} \mathrm{AB}, \mathrm{d}=\frac{4}{10} \mathrm{AB}, \mathrm{m}=\frac{5}{10} \mathrm{AB}$, $\mathrm{u}=\frac{6}{10} \mathrm{AB}, \mathrm{p}=\frac{7}{10} \mathrm{AB}, \mathrm{q}=\frac{8}{10} \mathrm{AB}$ и $\mathrm{r}=\frac{9}{10} \mathrm{AB}$.

Да је заиста $\mathrm{a}=\frac{1}{10} \mathrm{AB}$ излази из правила $\S 171$., jep je по том правилу а $: \mathrm{AB}=\mathrm{C} 9: \mathrm{CB}$. Па како $\mathrm{C} 9: \mathrm{CB}=1: 10$ то је и а $: A B=1: 10$. Одавде је а $=\frac{1}{10} A B$.

Истоветно се доказује да је $\mathrm{b}=\frac{2}{10} \mathrm{AB}, \mathrm{c}=\frac{3}{10} \mathrm{AB}$ итд.
10. Хонструисапи шроугао, сличан неком дашом троуглу. Повлачењем паралелних са странама датога троугла АВС (сл. 318.), добијамо троуглове: $\mathrm{A}_{1} \mathrm{~B}_{1} \mathrm{C}_{1}, \mathrm{~A}_{2} \mathrm{~B}_{2} \mathrm{C}_{2}, \mathrm{~A}_{3} \mathrm{~B}_{3} \mathrm{C}_{3}$, који су сличии, јер имају једнаке углове.

Овај је задатак неодређен, пошто добијамо више троуглова сличних датом троуглу АВС.
11. Над датом дужи $A_{3} B_{3}(с л .318$.) конструисатии троугао, сличан дашом проуглу $A B C$.

Сл. 318.
Треба код A_{3} конструисати угао A , а код В В угао B. Добивени $\triangle \mathrm{A}_{3} \mathrm{~B}_{3} \mathrm{C}_{3}$ сличан је са $\triangle\lfloor\mathrm{ABC}$, пошто имају угловједнаке. Овај је задатак одређен, јер се добија само један трое угао $\mathrm{A}_{3} \mathrm{~B}_{3} \mathrm{C}_{3}$ сличан $\triangle \mathrm{ABC}$.
12. Даном шпоуглу $A B C$ (сл. 319.) конструисаши сличан троугао тако, а) да стране даног троугла стоје према. хомологим странама траженог шроугла као $4: 3$ b) да нихови обими стоје као 4: 3.

Треба страну AB даног троугла ABC поделити на 4 једнака дела, па из треће деоне тачке E повући $\mathrm{EF} \| \mathrm{BC}$. Троугао EFA је сличан са $\triangle A B C$, јер су им хомологе стране, а тако исто и обими, у размери $4: 3$ на основу правила из § 171 . и 179. под d).
13. Даном $\triangle A B C$ (сл. 320.) конструисати сличан троугао тако, да спране даног проугла сшоје ирема странама тараженог шроугла као $4: 5$.

Треба страну $A B$ датог $\triangle A B C$ поделити на 4 једнака дела, па на њено продужење пренети још један такав део $\left(\mathrm{BE}=\frac{1}{4} \mathrm{AB}\right)$. Затим из тачке E повлачи се $\mathrm{EF} \| \mathrm{BC}$. Тражени троугао је AEF.
14. Дашом $\triangle A B C$ (сл. 320.) конспруисати сличан троугао тако, да њихове повриине стоје као 16:25.

Како се површине сличних троуглова имају као квадрати двеју хомологих страна (§ 173. под d), то се стране $=\mathrm{ABC}$ имају према странама траженог троугла као $4: 5$ чиме се овај задатак своди на пређашњи (13.).
15. Наћи висину једнога предмеша (дрвеша, куле) с помоћу неговог сенке (сл. 321.).

Да бисмо измерили висину дрвета $\mathrm{AB}=\mathrm{x}$ с помоћу његове сенке AC , треба неку мотку DE стављати вертикално.

Сл. 321.
тако, да се врх њене сенке $D C$ поклапа с врхом C сенке дрвета. Тада су троуглови ABC и DEC слични, те је $\mathrm{AB}: \mathrm{DE}=$ $\mathrm{AC}: \mathrm{DC}$. Ако је сенка дрвета $\mathrm{AC}=15 \mathrm{~m}$, мотка $\mathrm{DE}=1 \mathrm{~m}$, њена сенка $\mathrm{DC}=1,5 \mathrm{~m}$, онда је $\mathrm{x}: 1=15: 1,5$, а одавде je $x=\frac{15}{1.5}=\frac{150}{15}=10 \mathrm{~m}$.
16. Над даном дужи $M N$ (сл. 322.) констаруисашии многоугао који је сличан даном многоуглу $A B C D E$.

Најпре код даног многоугла повлачимо дијагонале AC и AD , а затим учинимо да је $\mathrm{AF}=\mathrm{MN}$. Повлачимо $F G \| B C$, $\mathrm{GH} \| \mathrm{CD}$ и HL $\| \mathrm{DE}$, чиме добијамо многоугао AFGHL који је сличан са даним многоуглом ABCDE. Најзад над MN треба конструисати MNPQR који је подударан са AFGHL. Тада је MNPQR тражени многоугао.
17. Наиршај многоугао слшиан даноме многоуглу $A B C D E$ (сл. 322.) шако, да се стране дапог многоугла имају према хомологим странама новога као $4: 3$.

Треба најпре код датог многоугла повући дијагонале АС и AD , а затим поделити страну AB на 4 једнака дела. Најзад

из треће деоне тачке F повући $\mathrm{FG} \| \mathrm{BC}$, затим $\mathrm{GH} \| \mathrm{CD}$ и најзад HL || DE. Тражени многоугао јесте AFGHL.
18. Консшруисаши два слична шетоугла шако да им хомалоге стране стоје у размери 4:3.

Сл. 322.
Треба најпре конструисати ма какав петоугао AFGHL (сл. 322.) у коме повлачимо дијагонале AG и AH. Затим његову страну AF делимо на три једнака дела. а један такав део преносимо на њено продужење ($\mathrm{FB}=\frac{1}{3} \mathrm{AF}$). Најзад повлачимо $\mathrm{BC} \| \mathrm{FG}, \mathrm{CD}=\mathrm{GD}$ и $\mathrm{DE} \| \mathrm{HL}$,

§ 177. Рачунски задаци

1. Науаи размеру дужи а и в кад су нихове бројне вредности а) 3 m и 9 m ; b) 24 dm и 18 dm : н) $3,5 \mathrm{~m}$ и 150 cm .
2. Наб̆и размеру лукова AB и CD истог круги када је а) $\mathrm{AB}=4 \mathrm{~cm}$ $C D=12 \mathrm{~cm} ; \mathrm{b}) \mathrm{AB}=15 \mathrm{~m}, \mathrm{CD}=9 \mathrm{~m} ; \mathrm{c}) \mathrm{AB}=7,5 \mathrm{dm}, C D=40 \mathrm{~cm}$, d , $80^{\circ}, \mathrm{CD}=65^{\circ}$. d) $\mathrm{AB}=80^{\circ}, \mathrm{CD}=65^{\circ}$.
3. Нани размеру углова α и β када су: а) $\alpha=18^{\circ}, \beta=150$; б) $\alpha=60020^{\prime}, \beta=500^{\circ} 30^{\circ}$.
4. Нааи размеру измену а) обима, b) површине квадрата и равностраног троугла, ако су им сгране једнаке.
5. Обим једнога троугла јесте 55 cm ; колики је обим сличнога му троугла, ако им хомологе стране стоје у размери $5: 4$?
6. Обим једнога троугла јесте $43,7 \mathrm{~m}$, а стране њему сличнога троугла јесу $4,55 \mathrm{~m}, 4,45 \mathrm{~m}$, и $6,3 \mathrm{~m}$; колике су стране првог троугла?
7. Површина једнога троугла јесте $1,4 \mathrm{~m} 2$, колика је површина њему сличнога троугла, ако им хомологе стране стоје у размери $5: 7$.
8. На једном плану једна дужина изнјси $5,7 \mathrm{~cm}$; наћи њену природну дужину, ако је један cm на плану једнак са 30 m у природи
9. Једна дужина у природи има 648 m ; којом дужином је она представљена на плану који је израђен у размери $1: 7500$?
10. Париз је од Берлина удаљен 880 Km , а одстојање ових вароши на једној карти износи 2$) \mathrm{cm}$; по којој је размери израђена та карта?
11. Неко дрво баца сенку од 24 m , а у исто време мотка од $2,7 \mathrm{~m}$ дужине баца сенку од 3 m ; наћи висину дрвета.
12. Код правоуглога троугла је површина 315 cm 2 а једна му је катета 35 cm ; наћи другу китету, хипотенузу, висину хипотенузину и
отсечке хипотенузине.
13. Хипотенуза правоуглога троугла јесте 10 cm , а њени отсечци стоје у размери $3: 5$. Наћи висину хипотенузину и катете тога троугла. 14. Страна једнога многоугла јесте 28 m ; колика је хомолога страна њему сличнога многоугла који је а) два пута мањи; b) 4,5 пута већи од задатог многоугла?
14. Земљиште од $900 \mathrm{~m}^{2}$ има површину на једном плану $0,25 \mathrm{~m}^{2}$, по којој је размери израђен овај план?
15. На једној карти која је израђена у размери $1: 7500$, величина једног језера износи 1,5 сл2; колика је права површина тога језера?
16. Једна географска карта израђена у размери 1 : 200000, а друга у размери $1: 50000$. Ако је слика једног језера на првој карти велика
$\mathrm{cm2}$, колика је површина тога језера на другој карти?
17. Обими двају сличних троуглова јесу 36 cm и 30 cm ; колика је површина другога, ако је површина првога 36 cm 2 ?

X. ПРАВЕ ЛИНИЈЕ И РАВНИ У ПРОСТОРУ

§ 178. Одређивање равнине. Равна површина, равнина или раван. је она површина у којој може једна права лежати са свима својим тачкама, па ма у коме положају била та права. Уопште, узима се да је свака раван неограничена, а дели простор на два једнака дела. Међутим и најмањи део једне равни зове се опет раван. С тога се обично раван претставља једним паралелограмом који је у ствари само део те равнине. Тако паралелограм ABCD (сл. 323,) претставља равнину П. Положај једне праве у простору потпуно је одређен двема тачкама, пощто постоји само једна права која пролази кроз те две тачке. Али, две тачке нису довољне да одреде и положај једне равни, јер кроз праву, одређену тим тачкама, можемо повући бескрајно много равнина. Међутим, три тачке које не леже на једној правој, потпуно одређују

Сл. 323. положај равни у простору. Тако, тачке: A, B и C потпуно одређују равнину Π, јер ако кроз праву $A B$ повучемо једну раван, па је око АВ обрћемо све дєтле док не прође кроз тачку С, онда од бесконачно многих положаја равнине имамо сам један положај, на коме се налазе права AB и тачка С. Према томе кроз три тачке, које не леже на једној правој, или кроз једну праву и једну тачку ван ње, можемо поставити само једну раван. Стога је раван одређена:

1. трима пачкама, које не леже на једној правој;
2. једном правом и једном пачком ван ше праве;
3. двема иравима које се секу; и
4. двема паралелним правима

Тако, раван $П$, (сл. 323.) одређена је или тачкама A, B и C, или правом $A B$ и тачком C, или пресеченим правима $A B$ и BC , или најзад паралелним правима AB и DC , пошто ни једна друга раван
 не пролази кроз поменуте тачке, односно праве.
§. 179. Положај двеју правих у простору. Две праве у простору могу имати тројак међусобан положај: 1.) могу бити паралелне ; 2.) могу се сећи ако их довољно продужимо ; 3.) могу ce укрштати или размимоилазити, ако нису паралелне, нити се секу ма колико биле продужене. У првом и другом случају мөгу праве бити у једној равни, али у трећем морају лежати у разним равнинама. Ако се праве секу, оне се секу двојако: косо или нормално, према томе, дали граде косе, т. ј. оштре и тупе углове, или само праве.
§. 180. Положај праве и равнине. Једна права и једна раван могу заузимати такође три узајамна положаја; 1.) може права лежати у равни (сл. 324 . а;) 2.) може да сече раван, ако се довољно продужи (сл. 324. b); 3.) права је паралелна према равни, ако је не сече, па ма колико је продужили а раван проширили (сл. 324. с.).

Кад права не лежи у равни, нити је с њом паралелна, онда она продире раван само у једној тачки. Продорна тачка зове се щраг или продор (E на сл. 324. b.). Права сече раван косо или нормално према томе, да ли она гради косе или праве углове са правом која лежи у равни и пролази кроз продорну тачку.
§. 181. Положај двеју равни. Две равни могу заузимати такође три узајамна положаја:1. могу се поклапати и тада чине једну раван; 2.) могу бити паралелне, т. ј. немати заједничких тачака ма колико их проширили; и 3.) могу се сећи, ако су довољно продужене. Пресек двеју равнина је увек права линија.

Под нагибним углом двеју равни разумемо онај угао између тих равни, који граде две праве што су повучене нормално на пресек тих равни ма у којој његовој тачки, а од којих једна лежи у једној а друга у другој равни. Тако, нагиби угао пресечених равнина Π и Π^{\prime} (сл. 325.) је , а добива се када у тачки M пресека $A B$ подигнемо $M N \perp \alpha A B$ и $M P \perp \mathrm{AB}$ с тим, да MN лежи у Π а а МР у Π^{\prime}. Равнине се секу косо или нормално према томе дали граде косе или праве нагибне углове.
§ 182. Паралелне праве и равнине. Погодбе паралелности праве и равнине исказане су овим правилима, чија се тачност доказује најбоље очигледно, посматрањем једнога пиралелопипеда или школске учионице облика паралелопипеда. Посматрајући паралелопипед ABCDEFPQ (сл. 326.) налазимо:

1. Да је ивица EF , која је паралелна са ивицом AB , паралелна и са равнином Π у којој се налази права $A B$, тј. када је једна права, ван неке равни, паралелиа с неком правом у равнини, онда је она паралелна и с том равнином.
2. Да су ивице BF и DQ , које су паралелне са ивицом AE , паралелне и међу собом, т. ј. када су две праве у простору паралелне с трећом правом, а нису све три у истој равни, онда су оне паралелне и међу собом.
3. Да је раван $I 1$, која је таралелна са ивицама $P Q$ и $P F$, паралелна и са равнином Π_{2}, т. ј. када је нека раван паралелна са двема правима које се секу, онда је она паралелна и са равнином коју одређују те две праве.
§ 183. Нормалне праве и равнине. Погодбе нормалности једне праве према равни исказане су овим правилима, чију тачност доказујемо опет посматрањем паралелопипеда:
4. Да је ивица АЕ (сл 326.), која је нормалне на ивицама $A B$ и $A D$ у равнини Π, нормална и на првој $A C$, која лежи у истој равни и пролази кроз траг A, т. ј. када је нека права нормална на двема правима које леже у равни и про-

лазе кроз траг нормалне праве, онда је она нормална и на свакој правој која лежи у тој равни, а пролази кроз њен траг.
2. Да је ивица QD (сл. 326.) нормална на равни Π, а нормална је на Π и раван Π_{1}. која пролази кроз $\mathrm{QD}, \mathrm{\tau}, \mathrm{j}$. кад је права нормална на некој равни, онда је нормална на тој равни и свака раван која пролази кроз ту праву.
3. Да праве AD, AC и AB (сл. 326.) на којима је ивица AE нормална, леже све три у истој равни П. т. ј. када је нека права нормална на трима правима у њиховоме заједничком пресеку, онда те три праве леже у истој равни.
4. Да су ивице АЕ и СР (сл. 326.) које су нормалне на равни Π, међу собом паралелне, т.ј. кад еу две праве нормалне на једној равни, онда су оне паралелне.

Сем горња четири, из овога параграфа имамо још и ова правила; Из једне тачке ван неке равни може се повући само једна нормала на ту раван; и b) Из једне тачке неке равни можемо подићи само једну нормалу на тој равни. То се доказује овако :
a) Ако претпоставимо, да је поред праве CA , и права СВ нормаліна на равни Π (сл. 327.), па подножне тачке А и В спо-

Сл. 327

Сл. 328.

јимо, онда добијамо $\triangle \mathrm{ABC}$ са два права угла код A и B , што је немогућно. Стога наша претпоставка да је и $\mathrm{CB} \perp$ П, као нетачна, отпада.
b) Ако претпоставимо да је поред OM, и ON \perp П (сл. 328.), онда бисмо имали у тачки O на пресеку $A B$ равнина Π. и Π^{\prime} и (Π^{\prime} је одређена правима ОМ и ON) две праве OM и ON нормалне на AB , што је немогућно, пошто из једне тачке на једној правој можемо подићи само једну нормалу. Стога наша претпоставка да је и ON \perp П у тачки O, као нетачна, отпада.
§ 184. Углови у простору.- Кад се два угла налазе у простору, па су краци једнога угла паралелни с крацима другога,

онда су а) ти углови једнаки ако су им краци у истом или супротноме смислу паралелни; b) суплементни, ако су им два крака у истом а два у супротном смислу паралелна.

Нека је $\mathrm{A}^{\prime} \mathrm{A}^{\prime \prime} \| \mathrm{AC}$ и $\mathrm{B}^{\prime} \mathrm{B}^{\prime \prime} \| \mathrm{BC}$ (сл. 329.) Ако учинимо да је $A C=A^{\prime} C^{\prime}$ и $B C=B^{\prime} C^{\prime}$ а затим повучемо дужи: A^{\prime}, $\mathrm{BB}^{\prime}, \mathrm{CC}^{\prime}, \mathrm{AB}$ и $\mathrm{A}^{\prime} \mathrm{B}^{\prime}$, тада имамо из паралелограма $\mathrm{ACC}^{\prime} \mathrm{A}^{\prime}$ да је $\mathrm{AA}^{\prime}=\mathrm{CC}^{\prime}$, а из паралело грама $\mathrm{BCC}^{\prime} \mathrm{B}^{\prime}$ даје $\mathrm{BB}^{\prime}=\mathrm{CC}^{\prime}$ Стога су и дужи AA^{\prime} и BB^{\prime} једнаке. У том случају и четвороугао $\mathrm{ABB}^{\prime} \mathrm{A}^{\prime}$ је паралелограм, те је $A B=A^{\prime} B^{\prime}$. Тада је $\triangle A B C \cong \triangle A^{\prime} B^{\prime} C^{\prime}$ пошто су им стране једнаке. а) Из њихове подударности излази да је $\alpha=\beta$. Па како је $\beta=\gamma$ као унакрсни, то је и $\alpha=\gamma$. b) Како су углови β и δ суплемен тни, то су суплементни и углови α и δ,

Сл. 329. пошто је $\alpha=\beta$.
§ 185. О пројекцијама. Под пројекцијом једне тачке у простору на некој равни разумемо ону тачку у тој равни, у којој ту раван продире нормала спуштена из тачке. Тако, ако је $\mathrm{AA}^{\prime} \perp \Pi$ (сл. 330.), онда је тачка A^{\prime} пројекција тачке А у равни Π, која се зове пројекцијска раван.

Сл. 330.
Под пројекцијом једне линије (праве или криве) на једној равни, разумемо ону линију у тој равни, на којој се налазе пројекције свих тачака задате линије. Тако дуж $A^{\prime} B^{\prime}$ (сл. 330.), је пројекција дужи AB на равни П. Пројекција једне тачке или једне праве која лежи у самој пројекцијској равни, јесте сама та тачка или права.

Геометрија III и IV разред.

Под пројекцијом једне равне слике на некој равни разумемо ону слику у тој равни, која је ограничена пројекцијама граничних страна задате слике. Тако, пројекиија \triangle MNP (сл. 330.) на равни Π је $\triangle M^{\prime} N^{\prime} P^{\prime}$.

Пројекција једне дужи, која заузима нормални положај према пројекцијској равни, је тачка. Тако, пројекција дужи AA' $^{\prime}$ на равни Π је A^{\prime}. Пројекција једне дужи која заузима кос положај према пројекцијској равни мања је од пројектоване дужи ($\mathrm{A}^{\prime} \mathrm{B}^{\prime}<\mathrm{AB}$). Ако дуж заузима паралелан положај према пројекцијској равни, онда је њена пројекција једнака с њом $\left(\mathrm{A}^{\prime} \mathrm{B}^{\prime}=\mathrm{A} K\right.$).
§ 186. Нагибни угао праве према равни. Угао између једне дужи и њене пројекције зове се нагибни угао те дужи. Тако a (сл. 331.) је нагибни угао дужи ВА према равни Π. Он се узима као мера нагибу једне дужи према пројекцијској равни.
a) Ако повучемо у равни Π (сл. 331.) кроз А праву AD , па учинимо да је $\mathrm{AD}=$ AC (пројекција дужи AB) и спојимо D са B , онда добијамо правоугли троугао BCD , у киме је страна BD , као хипотенуза, већа од BC. Стога код троуглова ABC и ABD , који имају по две стране једнаке ($\mathrm{AC}=\mathrm{AD}$ и AB заједничка), нису једнаке треће стране BD и BC . Тада су и углови ових троуглова наспрам неједнаких страна неједнаки, и то мањи је онај угао,

Сл. 332.
који лежи наспрам мање стране. Па како а лежи наспрам BC , за коју смо нашли да је мања од BD, то је $\alpha<\beta$, т. ј. нагибни угао праве према равни најмањи је од свих углова,

које гради та права с правим линијама у равни, које пролазе кроз њен траг.
b) Из сл. 332. очигледно се види тачност правила:

Ако се из једне тачке ван неке равни повуку до те равни нормала и више косих дужи, онда: 1) између свих тих дужи нормала је најкраћа; 2) дужи које имају једнаке пројекције јесу једнаке; и 3) од две косе дуяки чије су пројекције неједнаке, већа је она која има већу пројекију. Код сва три случаја, ради доказивања повлачи се раван Π^{\prime} кроз нормалу и косе праве нормално на Π. (Нека ученици сами изведу доказ).

Из овога правила изводи се последица: када се од једне дачке ван неке равни повуку до те равни једнаке косе дужи, онда се њихови шрагови налазе на кругу коме је центар траг нормалне ираве повучене из исте тачке на раван.
c) Нека су праве $M N$ и PQ (сл. 333.) паралелне а продиру раван П у тачкама А и В. Ако на тим правима узмемо две произвољнне тачке C и D, па из њих спустимо на П нормале CE и DF

Сл. 333. и спојимо E са A и F са B , добијамо правоугле троуглове AEC и BFD код којих су оштри углови m и n једнаки ($§ 184$.). Тада су и нагибни углови α и β као комлементни углова $m i$ и n једнаки. Отуда имамо и правило: две паралелне праве које секу неку раван, траде с том равнином једнаке нагибне углове.
§ 187. Телесесни углови или диедри. Телесни угао или диедар зове се слика добивена пресеком двеју равнина, Једна отворена књига, или два зида која се секу, дају телесни угао (сл. 334.). Равнине које дају диедар јесу његове стране, а заједнички пресек ивица. Коц

Сл. 334.

Сл. 335.

сл. 334. стране диедра јесу Π и Π^{\prime}, а ивица АВ. Диедар се д̂̂ замаслити да је постао обртањем једне равни око једне своје граничне линије. Првобитни и последњи положај обртне равнине јесу стране диедра. Диедар је у ствари величина обршања изражена у сшепенима обртне равнине од неног првобишног до последњег положаја. Ако је диедар усамљен, онда се он означава само својом ивицом. Тако, диедар на сл. 335. означава се (AB). Али ако више диедара имају заједничку ивицу (сл. 335.), онда се сваки од њих означа са четири слова, од којих су два ивична а друга су два узета са сваке диедрове стране. Тако диедре из сл. 335. означавамо: $\mathrm{D}(\mathrm{AB}) \mathrm{E}$ $\mathrm{E}(\mathrm{AB}) \mathrm{C}, \mathrm{C}(\mathrm{AB}) \mathrm{F}$ и $\mathrm{F}(\mathrm{AB}) \mathrm{D}$. Сва правила која важе за углове у равни, вреде и за диедре. Као углова, тако и диедара има: упоредних, унакрсних, комплеметних, суплеметних, издубљених, испупчених, затим сагласних, неизменичних и супротних. Њихове су дефиниције истоветне као и код углова у равни с том разликом, што треба заменити реч "угао" са „диедром", „теме" са „ивицом", „крак" са „страном" и „праву" са „рав"нином". Тако, упоредни су диедри они који имају заједничку ивицу и заједничку страну, а друге две стране леже у истој равни, али су у супротноме смислу: диедри $\mathrm{D}(\mathrm{AB}) \mathrm{E}$ и $\mathrm{E}(\mathrm{AB}) \mathrm{C}$ на слици 335.

Под нагибним углом једнога диедра разумемо нагибни угао његових страна (§ 181.). Тако нагибни угао диедра $\mathrm{D}(\mathrm{AB}) \mathrm{E}$ је MON (сл. 335.). Нагибни угао једнога диедра има исту величину, па ма у којој тачки ивице диедра повукли нормале краке нагибног угла. Стога се величина једнога диедра замењује величином његовог

Сл. 336. нагибног угла, јер једнаки диедри имају једнаке нагибне углове и обрнуто, што се да̂ доказати њиховим поклапањем. Две рнвнине јесу нормалне, ако им је нагибни угио прав,
§ 188. Положај равнина у простору. а) Нека раван $\Pi^{\prime \prime}$ сече паралелне равнине Π и Π^{*} (сл. 336.). Ако претпоставимо да пресеци AB и CD нису паралелни, већ да се секу у О када их продужимо, онда би се секле и равнине Π и Π^{\prime}, пошто се пресеци AB и CD налазе у тим равнинама. Како је пресек паралелних равнина Π и Π^{\prime} немогућ, то се и пресеци $A B$ и $C D$ не секv. Отуда правило: Када се две паралелне равнинепресеку трећом равнином онда су пресеци паралелни.
b) Нека су AC и BD (сл. 336.) паралелне, а тако исто и равнине Π и Π^{\prime}. Како раван $\Pi^{\prime \prime}$, одређена правима АС и BD, сече равнине П и П, то су по пређашњем правилу пресеци $A B$ и $C D$ паралелни. Тада је четвороугао $A B C D$ паралелограм, те је $\mathrm{AC}=\mathrm{BD}$. Отуда имамо правило: Паралелне дужи између паралелних равнина једнаке су.
c) Посматрањем сл. 326. видимо да је пресек BF равнина Π^{3} и Π^{4} које су нормалне на равни Π, нормалан на истој равни П. Отуда имамо правило: Када су две пресечне равнине нормалне на трећој равни, онда је и њихов пресек нор-
малан на тој равни.
d) Пیсматрањем сл. 32 д. видимо, да су равнине Π_{1} и Π_{3}, које су нормалне на правој AB , међу собом паралелне. Отуда имамо правило: Када су две равнине нормалне на једној имамо правило: Када су две равнине нор
е) Нека су равнине Π и Π^{\prime}, које секу праву MN (сл. 337.), паралелне. Ако из произвољне тачке A праве MN спустимо нормалну на раван Π^{\prime}, онда ће та нормала бити у исто време нормална и на равни Π. Продорне тачке Р и Q јесу пројекције тачке А на П' и П. Раван, одређена правима $M N$ и AQ , сече равнине П и Π^{\prime} тако, да су пресеци BP и QC паралелни. С тога су нагибни углови β и γ једнаки, као сагласни. Отуда имамо правило: Две паралелне равнине граде с једном правом једнаке нагибне углове.

Сл. 337. елне равниа. Из овог је правила јасно: 1) да су две ааралелне равни нагнуше према некоі тпрећоі равни под једнаким угловима, јер кад се две равни секу, па се једна помера паралелно своме првобитном положају, онда се не мења њихов нагибни угао, и 2) када су две равни паралелне, иа је једна од њих нормална на некој шрећој равни, онда је и она друга раван нормална на трећој равни. (Зашто?).

ХІ. РОГЉЕВИ И ПРАВИЛНА ТЕЛА

§ 189. Постанак и врсте рогљева. Када се зрак обрће око своје почетне тачке тако, да једновремено клизи и по обуму каквога многоугла (троугла, четвороугла и т. д.), чија равнина не пролази кроз почетну тачку зрака, онда он производи равнине, које само делимично ограничавају простор. Тако делимично ограничен простор зове се рогал. Права која производи рогаљ зове се ароизводиљва, а полигон по коме производиља клизи зове се водиља. Код једног рогља разликујемо ове делове: пеме, ивице, ивичне углове или стране и најзад пиелесне углове.

Стална тачка око које се обрће производиља з зве се щеме (S , сл. 338.). Пресеци граничних равнина које рогаљ даје зову се ивице (SA, SB, SC и SD). Угао између двеіу узастопних ивица зове се ивични угао или страна (\varnothing ASB \varnothing BSC, \Varangle ASD и \varnothing DSC). Нагибни угао између двеју узастопних граничних равнина зове се шелесни угао рогља. [B(AS)D, C(BS)A, $D(C S) B$ и A(DS)C]. Цео се рогаљ означава SABCD. Сваки рогаљ има онолико ивица колико и страна, а толико исто и телесних углова. Према њнховоме броју имамо рогљава: тространих, четвоространих, Петостраних и т. Д. Према томе да ли су сви ивични углови једнога рогља једнаки или не, имамо равностраних и неравностраних рогљева. Рогљеви могу бити іеднакоугли и неједнакоугли према томе, да ли су им сви углови једнаки или не.

Сл. 338.

Правилан рогаль је онај код кога су не само стране(ивични углови), већ и телесни углови једнаки. Je-

Сл. 339.

кан рогаљ може бити конвексан"(испупчен) и конкаван (издубен). Конвексан је онај "који се цео, налази само с једне

стране ма кога његовог ивичног угла (сл. 338.) а у противном случају рогаљ је конкаван. Кад се год конвексан рогаљ пресече равнином која сече све његове ивице, пресек је конвексан полигон, т. ј. полигон чији су углови издубљени. Сваки тростран рогал је конвексан. Према томе да ли је један тростран рогаљ има ивичних углова који су прави, и то један, два или три, он се зове правоугли, би-правоугли и шроструко правоугли. Тако, два суседна зида и таван школске учионице дају један троструко-правоугли рогаљ.
§ 190. Особине рогљева. а) Нека су ивични углови (стране) тространога́ рогља SABC (сл. 339.) α, β и γ, а од њих нека је α највећи. Ако угао β пренесемо на α тако да је $m=\beta$ и учинимо да $\mathrm{SC}=\mathrm{SA}$, онда су троуглови SAC и SDC подударни (SC им је заједничка страна, $\mathrm{CA}=\mathrm{SD}$ и $\mathrm{m}=\beta$). Из њихове подударности ивлази да је $\mathrm{AC}=\mathrm{CD}$. Па како је у троуглу $\mathrm{ABC}, \mathrm{AC}+\mathrm{AB}>\mathrm{CB}$, или $\mathrm{AC}+\mathrm{AB}>\mathrm{CD}+\mathrm{DB}$, то избацивањем једнаких количина AC и CD из ове неједнакости, добијамо $\mathrm{AB}>\mathrm{DB}$. Тада троуглови SAB и SBD , који имају по две стране једнаке али треће неједнаке, имају углове код S неједнаке и то $\gamma>n$. Како се ова неједнакост не мења, ако се левој страни дода β а десној њему једнак угао m, добијамо $\beta+\gamma>m+n$, или $\beta+\gamma>\alpha$, пошто је $m+n=\alpha$. Отуда правило: У сваком тространом рогљу збир два ивична угла већи је од трећега.
b) Ако и с једне и с друге стране неједнакости $\beta+\gamma>$ а одузмемо угао β или γ, добијамо: $\gamma>\alpha-\beta$ или $\beta>\alpha-\gamma$. Стога: Сваки ивични угао тространога рогља већи од разлике друга два.
c) Како сви ивични углови, не само тространог, већ и многостраног рогља, поређани у равни један до другога око једног заједничког темена, дају угао који је навек мањи од пунога (Зашто ?), то имамо ново правило: У сваком је рогљу збир свију ивичних углова мањи од 360°.
§ 191. Правилна тела. Део простора ограничен са свију страна зове се тело. Према томе да ли је тело ограничено само равним површиоама, или кривим и равним, тела се деле ра рогљаста и ваљкаста. Рогљасто је оно тело које је ограничено само равним површинама, а ваљкасто је оно које је ограничено једном кривом, или кривим и равним површинама. Код свакога рогљастога тела, које се зове још и долиедар, разликујемо: старане ивице и темена. Стране су површине које тело ограничавају, ивице су пресеци страна тога тела, а темена су пресеци ивица, чији број најмање мора бити три. Према томе да ли су све стране једнаке и углови једнаки, или не, дотични полиедар спада у правилна или неправилна тела. Правилно је, дакле, оно рогљасто пело, чије су све

стране подударне правилне слике. Код правилног шела све су ивице једнаке. Правилних тела има свега пет: ппепраедар, окшаедар, икосаедар, хексаедар и додекаедар. Прва три тела јесу ограничена равностраним троугловима и то: тетраедар са 4,

ᄂл. 340 .

октаедар са 8, а икосаедар са 20. Хексаедар или коцка ограниченॠје са 6 квадрата, а додекаедар са 12 правилних петоуглова. Облици и мреже ових тела јесу: тетраедар (сл. 340.), октаедра (сл. 341.), икисаедра (сл. 342.) хексаедра (сл. 343.), и додекаедра (сл. 344.).

Сл. 341.

Број ивица код тетраедра је 6 , код октоедра 12 , код икосаедра 30, код хексаедра 12, а код додекаедра 30.

Да правилних тела има само пет доказујемо правилом, да је збир ивичних углова једнога рогља мањи од 360° (прав. под с § 190.) и да најмање три стране дају рогаљ. Имајући

ово у виду, може се од равностраних троуглова. код којид іе сваки угао по 60°, склипити рогаљ, само од три, четири и пет троуглова код сваког темена, јер је само $3 \times 60^{\circ}, 4 \times 60^{\circ}$ и $5 \times 60^{\circ}$ мање од 360°. Према томе

Сл. 343.

могу постојати само три правилна полиедра ограничена равностраним троугловима и то: тетраедар са по три, октаедар са по четири и икосаедар са по пет ивичних углова од по 60° код сваког темена. Хексаедар .је једино

правилно тело ограннчено квадратима и то по три код сваког темена, јер је само $3 \times 90^{\circ}$ мање од 360°. Не постсји друго правилно тело ограничено квадратима, јер ако замислимо да постоји такво тело са по 4 права угла код сваког темена, онда је $4 \times 90^{\circ}=360$. Тако исто пентагон (петоугли) додекаедар је једино тело ограничено правилним петоугловима и то по три угла код сваког темени, пошто
$3 \times 108<360^{\circ}$.
Не постоји друго тело ограничено правилним петоугловима, а по 4 код сваког темена, јер је

$$
4 \times 108^{\circ}>360^{\circ}
$$

Тако исто не постоји ни једно правилно тело ограничено правилним шестоугловима, седмоугловима и т. д., јер како је потребно најмање три ивична угла код сваког рогља, а један угао код правилног 6 -угла износи 120°, код 7 -угла $125 \frac{5^{0}}{7}$, код 8 угла 135° и т. д., онда је ма који од производа: $3+120^{\circ}, \quad 3+125 \frac{50}{7}$, $3+135^{\circ}$ већи од 360°.

XII. ПРЕСЕЦИ КОД ТЕЛА

§ 192. Пресеци код призама. Код једне тростране призме имамо паралелних и управних пресека, а код четвоространих и многостраних паралелних и управних пош и дијагоналиих пресека. Паралелни је онај пресек, који се: призама још и дијагоналиих пресечемо равнином која је паралелна с базисом добива, када призму пресем Такви су пресеци A" B" C" D" E" на сл. 345. и A" B" C" D", на сл. 346. Паралелан пресек увек је подударан с базисом. (Зашто?). управни је онај пресек, који се добива када призму пресечемо равнином управни $у$ на бочне ивице, а сече све те ивице. Такав пресак је MNPQ на управном на 345 . и В" С" D" Е" на сл. 345 . Код праве призме сваки базис и сваки њлему паралелан пресек јссу управни пресеци. Дијагонални је онај пресек њему паралелан пресек јесу управни пресеци. Дијагоналние бочне ивице који се добива када равнина пролази кри сли 345 . и 346. Оваі је пресек призмине. Такви су пресеци BDD^{\prime} н на сл. 345. и 346. Оваі .

Сл. 346.

увек паралелограм, код кога су две супротне стране бочне ивице призмине, а остале су две одговарајуће дијагонале оба базиса. Број дијагоналних пресека је онолики колики је и број дијагонала једног базиса призминог. Дијагонала једне призме је права која спаја два супротна емена горњег и доњег базиса. Оне су дијагонале дијагоналних пресека.
§ 193. Пресеци код пирамида. Код једне пирамиде имамо два главна пресека: паралелни и дијагонални. Ако пирамиду пресечемо равнином паралелном са базисом, онда је добивени пресек паралелан сл. 347.). Сваки паралелан пресек дели пирамиду на два дела. део измеъу пресека и оазиса зове се заруљьна пона по
 лигона (базис и пресек), а са стране са бия има базис. Раздаљина између пресека и оазиса зару вина (EF). Код праве зарубљене пирамиде бочне су лтране равно-

краки трапези, а код праве и правилне ти су, трапези подударни. Ко праве и правилне зарубљене пирамиде висина ма које бочне стране зове се бочна висина.

Сл. 347.

Сл. 348.

Дијагоналан пресек добијамо када пирамиду пресечемо равнином која прелази кроз две неузастопне бочне ивице. Зове се дијагоналан, јер раван од које постаје пролази кроз једну од дијагонала базиса. Ма Код праве пирамиде дијагонални пресек је увек троугао (BES, сл. 348.). пирамиде немају дијагоналних пресека.

Сл. 349.

Сл. 350.
§ 194. Пресеци код облице. Код облице имамо: паралелних осовинских, управних и косих пресека. Паралелан се пресек добива кадә облицу пресечемо равнином паралелном с базисом (CD на сл. 349. и 350.)

Овај је пресек увек круг подударан с базисом. Осовински се пресек добива када облицу пресечемо равнином која пролази кроз осовину облице (ABFE на сл. 349 и 350.). Овај је пресек увек паралелограм и то код праве облице је правоугли, а код косе косоугли (сем једнога). Онај осовински пресек косе облице који је добивен када равнина пролази кроз осовину и њену пројекцију на базису, зове се значајни паралелограм косе облице.

Само овај је паралелограм (ABFE , сл. 350.) нормалан на оазису а сви остали њени осовински пресеци леже косо према базису. Коса облица има само један осовински пресек који је правоугаоник, а то је онај који се добива, када раван пролази кроз осовину а нормална је на равни значајног паралелограма (NMPQ на сл. 350.). Осовински пресеци праве облице јесу правоугаоници управни на раваини базиса.

Управни пресек је онај, који се добива када облицу пресечемо равнином управном на осовини (LS на сл. 350.). Овај пресек код праве облице је круг подударан и паралелан с базисом, а код косе облице је круг, али неподударан и непаралелан с базисом. Кос пресек добива ce, када раван сече све стране обличине, али није паралелна с базисом (RK на сл. 349.). Најзад имамо код облице још један пресек равнином која не пролази кроз осовину али је с на сл. 349.).
§ 195. Зарубљена купа. Када се купа пресече равнином паралелном с басисом, онда се она дели на два дела. Део изreђу пресека и базиса зове се зарубљена купа, а део од пресека до врха допуна зарубљене купе. Зарубљена купа ограниним површинама и оним делом омотача купе који се налази иммђуу обима пресека и базис (ABB'A', сл. 351.). Дуж $0 O^{\prime}$ ј

Сл. 351. осовина, а дуж СС' страна зарубљене купе. Остојање између 'пресека и базиса је њена висина. И зарубљене купе делимо на праве и косе према томе, да ли су постале од правих или косих купа. Код праве зарубљене купе све су стране једнаке и висина јој се поклапа са осовином ($\mathrm{H}=\mathrm{OO}$), а код косе, нису стране (сем две) једнаке и њена осовина је већа од висине.

Сл. 352.

Сл. 353.
§ 196. Купини (конусни) пресеци. Пресеке код купе делимо на осовинске и неосовинске. Осовински се пресек добива када се купа пресече равнином која пролави кроз осовину купе. Такав је пресек код једне целе купе троугао и то: код праве равнокрак ($\triangle \mathrm{ABS}$ на сл. 353.) а
 косе разностран ($\triangle \mathrm{ABS}$ на сл. 352.). Код зарубљене купе осовински је пресек трапез и то: код праве равнокрак (ABNM на сл. 353.) а код косе разностран (ABNM на сл. 352.). Код праве купе сви су осовински пресеци подударни међу собом и нормални према равнини базиса. Код косе купе осовински пресеци су уопште разнострани троуглови и сви су коси према базису, сем онога добивеног равнином која пролази кроз осовину и њену пројекцију. Овај се пресек зове значајни троугао. У њему је најдужа и најкраћа страна купе ($\triangle \mathrm{ABS}$ на сл. 352.). Од свих осовинских пресека сл. 352.). Од свих осовинских пресека троугао, а то је онај, који се добива тоуа раван дролази кроз осовину а нормална је према равнини значајног троугла (\bigwedge PQS на сл. 352.).

Неосовински пресеци јесу: круг, елиса, хипербола и парабола. Пресек је круг, ако раван сече све стране купе а паралелна је с базисом; он је елипса, ако раван није паралелна с базисом, али сече све купине стране (NM на сл. 354.), хипербола се добија, ако раван сече оба омотача двеју унакрсних купа, па била та раван паралелна или не са осовином купе (LGR и L'G'R' на сл. 354.) ; и најзад, парабола се добија када је раван паралелна са једном страном купе (PKQ на сл. 354.).
§ 197. Делови лоптине 'површине и запремине. Делови лоптине површине јесу: калота, појас или зона, сбјерни двоугао и сферни шроугао, а делови лоптине запремине јесу: опсечак или сегменаш, исечак или секшор, слој, лопшина крищка или жльеб и лоптин клин.
a) Калота је део лоптине површине изнад једног лоптиног круга (АВС, сл. 356.).
b) Лоптин појас или зона је део лоптине површине између периферија двају паралелних лоптиних кругова (m сл. 357.).

Сл. 355.
c) Сферни двоугао је део лоптине површине измећу два полукруга двају главних лоптиних кругова (ACBD, сл. 355.).
d) Сферни троугао је део лоптине површине ограничен трима луцима трију главних лоптиних кругова (BMN, сл. 355.).
e) Лоптин отсечак или сегменат је део лоптине запремине који је ограничен равнином једног лоптиног круга и калотом над тим кругом (ACBP, сл. 356.).
f) Лоптин слој је део лоптине запремине, који је ограничен равнинама двају паралелних лоптиних кругова и појасом између периферија тих кругова (ABCD , сл. 357.).

Сл. 356.

Сл. 357.
g) Лоптин исечак или сектор је део лоптине запремине који је састављен од једног лоптиног сегмета и од једне купе, чије је теме у центру лопте, а базис јој је заједнички са罪основом сегмента (OMQN, сл. 356.).
h) Лоптина кришка или жлеб је део лоптине запремине, који је ограничен сферним двоуглом и полуравнинама његових главних лоптиних кругова (ACBOADB, сл. 355.).
i) Лоптин клин је део лоптине запремине који је ограничен једним сферним троуглом и трима кружним исечцима чији је заједнички центар лоптин центар, а луци су им стране сферног троугла (EFSO, сл. 356.).

XIII. ИЗРАЧУНАВАЊЕ 8 АПРЕМИНА ТЕЛА.

§ 198. Запремина призме. а) Нека је m заједничка мера дужине a, ширине b и висине c правоуглога правога паралелопипеда $A F R S A^{\prime} F^{\prime} R^{\prime} S^{\prime}$ (сл. 358.) и нека се m садржава у a

Сл. 358. $R^{\prime} 3$ пута, у b 2 пута, а у $c 5$ пута. Ако кроз деоне тачке дужине повучемо равнине паралелне бочној страни $F R F^{\prime} R^{\prime}$, кроз деону тачку ширине повучемо равнину паралелну бочној страни $\mathrm{AFF}^{\prime} \mathrm{A}^{\prime}$ и најзад кроз деоне тачке висине повучемо равнине паралелне базису, онда се запремина овога паралелопипеда дели на коцке ивице m. За m = јадан метар, 1 dm, 1 cm... ове су коцке кубни метри, кубни дециметри, кубни сантиметри итд. Како у слоју AFRSNEKH има 6 коцака величине коцке $A B C D M N P Q$, то таквих коцака у целом паралелопипеду има 30 , пошто има 5 таквих слојева. До овога резултата дошли би-
смо када мерне бројеве димензија паралелопипеда помножимо, јер $3.2 .5=30$.

Према томе, запремина \mathbf{V} правоуглога иравог паралелоиииеда дужтне а, ширине b и"висине с једнака. је

$$
\mathbf{V}=a b c
$$

Како је код овога паралелопипеда $a b=B$ (базис) $\mathbf{c}=\mathrm{H}$ (висина), то је $\mathbf{V}=$ В.Н, т. ј. заиремина правоуглог паралелоиииеда једнака је производу од повриине базиса и висине паралелопинеда.
b. Како се коцка сматра као правоугли прав паралелопипед, код кога су све три димензије једнаке ($\mathbf{a}=\mathbf{b}=\mathbf{c}$), то је њена запремина:

$$
\mathbf{V}=\mathbf{a}^{3}, \text { а одавде } \mathbf{a}=\sqrt{\mathbf{V}}
$$

Ако зу ивице двеју коцака \mathbf{a}_{1} и \mathbf{a}_{2}, а њихове запремине \mathbf{V}_{1} и \mathbf{V}_{2}, онда је $\mathbf{V}_{1}=\mathbf{a}_{1}{ }^{3}$ и $\mathbf{V}_{2}=\mathbf{a}_{2}{ }^{3}$. Стога је $\mathbf{V}_{1}: \mathbf{V}_{2}=\mathbf{a}_{1}{ }^{3}: \mathbf{a}_{2}$, т. ј. запремине двеју коцака стоје у размери као кубови њихових ивица. То значи: ако је нпр. ивица једне коцке 2 пута, 3 пута већа или мања од ивице друге коцке, онда је зепремина прве коцке $8\left(2^{3}\right)$ пута, $27\left(3^{3}\right)$, већа или мања од запремине друге коцке. (Види § 175. под 3.).
c) Запремину косоуглог паралелопипеда, на основу 2. правила § 119., израчунавамо опет по формули $\mathbf{V}=\mathbf{B} . \mathbf{H}$, пошто

је по запремини једнак превоуглом паралелопипеду базиса B и висине \mathbf{H}.
d) Запремину тростране призме опет израчунавамо по формули $\mathbf{V}=\mathbf{B H}$, јер, ако нам B_{1} представља површину базиса у паралелопипеду једнаке висине а двапут већег базиса, $\left(\mathrm{B}_{1}=2 \mathrm{~B}\right)$, онда је на основи 3. правила § 119. запремина паралелопипеда $\mathrm{V}_{1}=\mathrm{B}^{\prime} \mathrm{H}$, а запремина тростране призме

$$
\mathbf{V}=\frac{\mathbf{V}_{1}}{2}=\frac{\mathbf{B}^{\prime} \mathbf{H}}{2}=\frac{\mathrm{B}^{\prime}}{2} \cdot \mathrm{H}=\mathrm{BH}
$$

e) Запремину многостране призме опет израчунавамо по формули $\mathbf{V}=\mathbf{B H}$, јер ако призму $\mathrm{ABCDEA}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime} \mathrm{D}^{\prime} \mathrm{E}^{\prime}$ (сл. 359.)

Сл. 359. дијагоналним пресецима $\mathrm{BEB}^{\prime} \mathrm{E}^{\prime}$ и BDB' D^{\prime} поделимо на тростране призме, онда су запремине ових при зама $V^{\prime}=B^{\prime} H, V^{\prime \prime}=B^{\prime \prime}$ Н $^{\prime} V^{\prime \prime \prime}=B^{\prime \prime \prime} H$ $V=B^{\prime} H+B^{\prime \prime} H+B^{\prime \prime \prime} H=$
$\left.=B^{\prime}+B^{\prime \prime}+B^{\prime}, \prime\right) H=B H$.
Из свега овога изводи се опште правило:

Да се запремина ма какве

Сл. 360.

призме израчунава, када се помноже мерни бројеви површине базиса и висине призме.
f) Код правоуглог иравог паралелопипеда квадрати дијагонале једнак је са збиром квадраша трију ивица које се спичу у једном пемену. Ако дијагоналу паралелопипеда (сл. 360 .) означимо са D, дијагоналу базиса са d, онда је из правоуглог троугла BEE^{\prime} :

$$
D^{2}=d^{2}+c^{2} \ldots(1)
$$

Па како је и $\triangle \mathrm{ABE}$ правоугли, у коме су a и b катете а d хипотенуза, то је $d^{2}=a^{2}+b^{2}$. Заменом d^{2} са $a^{2}+b^{2}$ у једнакости (1) добијамо:

$$
\mathbf{D}^{2}=\mathbf{a}^{2}+\mathbf{b}^{2}+\mathbf{c}^{2}
$$

Геометрија за III, и IV. разред.

Напомена. Како су код коцке све три ивице a, b и c једнаке, то је код ње:

$$
\mathbf{D}^{2}=3 \mathbf{a}^{2}, \text { a } \mathbf{D}=\sqrt{3 \mathbf{a}^{2}}=\mathbf{a} \sqrt{3}=1,73 . \mathbf{a} \text { (прибл.) }
$$

§ 199. Задаци за вежббу.

1. Наћи запремину коцке ивице: а) $5,25 \mathrm{~m}$; b) $43 / 5 \mathrm{~m}$; c) 2 dm 4 cm .
2. Колика је дијагонала коцке ивице $\mathbf{a}=5,6 \mathrm{~cm}$?
3. Колика је ивица коцке чија је: а) дијагонала $8,65 \mathrm{dm}$; b) површина $384 \mathrm{~cm}^{2}$; с) запремина $91,125 \mathrm{~cm}^{3}$?
4. Наћи површину и запремину коцке чија је дијагонала $\mathrm{D}=4 \mathrm{~m}$ 5 dm 7 cm .
5. Наћи запремину коцке чија је површина $P=100,4520 \mathrm{~cm}^{2}$.
6. Наћи површину и дијагоналу коцке запремине $V=12,326391 \mathrm{dm}^{3}$.
7. Колика је тежина коике авице $\mathrm{a}=2^{3 / 4} \mathrm{dm}$. кад је специфична тежина њене материје $s-7,3^{*}$)?
8. Колико је dm^{2} лима потребно лимару да начини коцкаст суд, који је горе отворен, а захвата 27 литара воде ($27 \mathrm{dm}^{3}$)?
9. Колика је запремина коцке тежине $2116,8 \mathrm{gr}$, а специфичне тежине 9,8 ?
10. Колика је ивица коцке тежине 525 kgr , када је специфична тежина њене материје 4,2?
11. Од 80 gr . једног метала специфичне тежине 5,2 и 130 gr . другог метала специфичне тежине 7,4 саливена је коцка; наћи њену ивицу.
12. Наћи запремину правоуглога правога паралелопиеда чије су димензије: а) $4,2 \mathrm{~m}, 3$ ш и 85 m ; b) $23 \mathrm{dm} .15 \mathrm{dm}, 34 \mathrm{dm}$.
13. Колика је запремина правоуглог правог паралелопипеда са квадратном основом, када је основина ивица а $=3,5 \mathrm{~cm}$ а бочна $\mathrm{s}=7,8 \mathrm{~cm}$?
14. Колика је запремина зида дужине 12 m , ширине 45 cm , висине 5 m ?
15. Колика је запремина врстара дужине 40 cm , ширине 3 cm , а дебљине 1 mm ?
16. Колика је кубатура школске учионице дужине $11,5 \mathrm{~m}$, ширине 8 m , а висине $6,5 \mathrm{~m}$? 17 Наћи тежину ваздуха у соби облика паралелопипеда дужине $6,8 \mathrm{~m}$, ширине $3,5 \mathrm{~m}$, и висине $4,2 \mathrm{~m}$, када је тежина једног литра ваздуха $1,3 \mathrm{gr}$.
17. Наћи запремину тростране призме чији је базис правоугли троугао катета 8 dm и 10 dm , а висине призме 15 dm .
18. Басен облика правоуглог паралелопипеда дугачак је $5,40 \mathrm{~m}$, цирок $2,3 \mathrm{~m}$, а дубок $2,70 \mathrm{~m}$. У њему има воде $2 / 3$ његове висине. Наһи количину воде у хектолитрама.
19. Наћи запремину праве призме чија је основа а) равностран троугао, b) правилан шестоугао, кад је основина ивица $2,1 \mathrm{dm}$ а бочна 4 dm .
20. Наћи запремину праве равноивичне тростране призме ивице 5 cm

* Како под специфичном тежином неке материје разумемо тежину јединице заиремине те материје (1-ог кубног сантиметра или 1 -ог кубног дециметра), то се тежина тела Q добива множењем његове запремине V са специфичном тежином његове материје $S\left[Q=V S\right.$, а одавде је $V=\frac{Q}{S}$ «. $\mathrm{S}=\frac{\mathrm{Q}}{\mathrm{V}}$]. Ако је тежина дата у килограмима, онда се запремина израчунава из $\mathrm{V}=\frac{\mathrm{Q}}{\mathrm{S}} \mathrm{y} \mathrm{dm}^{3}$, а ако је дата у грамовима, онда се израчунава у cm^{3}.

22. Колика је ивица равноивичне праве тростране призме чија је ;a) површина $1 \mathrm{~m}^{2}$; b) запремина $1 \mathrm{~m}^{3}$?
23. Колика је ширина зида дужине 10 m , ширине 45 cm а запремиңе $13,5 \mathrm{~m}^{3}$?
24. Колика је запремина тростране призме чији је базис $12,5 \mathrm{~m}^{2}$ а висина $9,7 \mathrm{~m}$?
25. Права тространа призма има висину $7,4 \mathrm{dm}$, а базис јој је правоугли троугао, чије су катете 3 dm и 4 dm ; нађи њену заиремину.
§ 200. Особине пирамида и израчунавање њихових запремина.
a) Особине пирамида. - Особине пирамида исказане су у ова три правила:
26. Кад се пирамида пресече равнином паралелном с базисом, онда а) пресек је сличан базису, б) површине пресека и базиса стоје у размери као крадрати њихових раздаљина од врха.
a) Како је пресек $A^{\prime} B^{\prime} \mathrm{C}^{\prime} \mathrm{D}^{\prime}$ (сл. 347.) добивен равнином која је паралелна са равнином базиса, то су пресеци $\mathrm{AB} \mathrm{A}^{\prime} \mathrm{B}^{\prime}$ са равнином ABS паралелни (правило под а \S 188.). Тако исто је $\mathrm{B}^{\prime} \mathrm{C}^{\prime}\left\|\mathrm{BC}, \mathrm{C}^{\prime} \mathrm{D}^{\prime}\right\| \mathrm{CD}$ и $\mathrm{A}^{\prime} \mathrm{D}^{\prime} \| \mathrm{AD}$. Тада су углови пресека једнаки са одговарајућим угловима базиса (§ 184.), а на основи правила из пропорционалности дужи \S 171.) имамо: $\mathrm{AB}: \mathrm{A}^{\prime} \mathrm{B}^{\prime}=$ $\mathrm{SB}: \mathrm{SB}^{\prime}, \mathrm{BC}: \mathrm{B}^{\prime} \mathrm{C}^{\prime}=\mathrm{SB}: \mathrm{SB}^{\prime}$ итд. Из ових пропорција добијамо: $A B: A^{\prime} B^{\prime}=B C: B^{\prime} C^{\prime}=C D: C^{\prime} D^{\prime}=A D: A^{\prime} D^{\prime}$, те $A^{\prime} B^{\prime} C^{\prime} D^{\prime} \sim A B C D$.
b) Раван која пролази кроз висину SE и ивицу AS, сече паралелни пресек $A^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime} \mathrm{D}^{\prime}$ (сл. 347.) и базиз тако, да су пресеци AE и $\mathrm{A}^{\prime} \mathrm{F}^{\prime}$ паралелни. (Правило под а § 188.). Тада су троуглови: AES и A'FS слични, те је AS: A'S = SE:SF. A како је $S A: S A^{\prime}=A B: A^{\prime} B^{\prime}$, то је $A B: A^{\prime} B^{\prime}=S E: S F$, или подизањем на квадрат свих чланова ове пропорције, $\mathrm{AB}^{2}: \mathrm{A}^{\prime} \mathrm{B}^{\prime 2}=$ $\mathrm{SE}^{2}: \mathrm{SF}^{2} \ldots$ (1). Па како површине сличних слика стоје у размири као квадрати двеју хомологих страна (\$174.), то је $\mathrm{ABCD}: \mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime} \mathrm{D}^{\prime}=\mathrm{AB}^{2}: \mathrm{A}^{\prime} \mathrm{B}^{\prime 2} \ldots$ (2). Из пропорција (1) и (2) имямо $\mathrm{ABCD}: \mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime} \mathrm{D}^{\prime}=\mathrm{SE}^{2}: \mathrm{SF}^{2}$, или $\mathrm{B}: \mathrm{b}=\mathrm{H}^{2}: \mathrm{h}^{2}$, где нам B представља површину базиса, b површину паралелног пресека, H висину целе пирамиде и h висину допуне.
2) Две пирамиде једнаких базиса и висина имају запремине једнаке.

Нека пирамида ABCD и EFPQ (сл. 361.) имају једнаке базисе ($\mathrm{ABCD}=\mathrm{EFP}$) и једнаке висине H . Ако их ставимо на раван MN , па их пресечемо равнином паралелном и базисима на одстојању h од врхова, онда је по предходном правилу $A B C D: A^{\prime} B^{\prime} C^{\prime} D^{\prime}=H^{2}: h^{2}$ и $E F P: E^{\prime} F^{\prime} P^{\prime}=H^{2}: h^{2}$

Из ових двеју пропорција имамо: $\mathrm{ABCD}: \mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime} \mathrm{D}^{\prime}=$ $\mathrm{EFP}: \mathrm{E}^{\prime} \mathrm{F}^{\prime} \mathrm{P}^{\prime}$. Па како су базиси ABCD и EFP једнаки, то из ове пропорције излази, да су и пресеци $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ и $E^{\prime} \mathrm{F}^{\prime} \mathrm{P}^{\prime}$ једнаки. Исти је случај са свима паралелним пресецима, добивеним, када пирамиде сечемо равнином паралелном за бази-

сима, а на истом одстојању од врхова. Тада, по Каваљеријевомв правилу (§ 119. под 1) пирамиде ABCDS и EFPQ имају једнаке запремине.

Сл. 361.
4. Свака је тространа пирамида трећина тростране призме исте основе и висине.

Када тространу призму ABCDEF (сл. 362.) пресечемо равнином која пролази кроз дијагонале AE и CE и кроз основину ивицу AC, добија се тространа пирамида основе ABC а

Сл. 326. темена E и четворострана пирамида основе ACFD а темена Е. Дијагоналним пресеком DCE четворострана се пирамида дели на две тростране пирамиде$\mathrm{ACD}(\mathrm{E})$ и $\mathrm{DCF}(\mathrm{E})$. Ове две пирамиде су једнаке, пошто имају једнаке основе и исту висину по предходном правилу. Међутим, пирамиде $\mathrm{AED}(\mathrm{C})$ и $\mathrm{ABE}(\mathrm{C})$ су из истог разлоға једнаке. А како је пирамида $\operatorname{AED}(\mathrm{C})$ у ствари пирамида $\mathrm{ACD}(\mathrm{E})$, то су пирамиде $\mathrm{ABC}(\mathrm{E})$, (ACDE), и $\operatorname{DCF}(\mathrm{E})$ једнаке. Па како њихов збир. даје призму ABCDEF , значи да је ма која од тих пирамида трећина призме. Cтога је пирамида $\mathrm{ABC}(\mathrm{E})$, која има исту основу и исту висину са призмом ABCDEF , трећина ове призме.
b) Запремине пирамида.

1) Према ирепходном иравилу (3), заиремину іедне тростране пирамиде израчунавамо, када површуну њеног базиса домножомо са њеном висином и добивени ароизвод иоделиво са 3. Тако, ако је В површина базиса тростране пирамиде а \mathbf{H} њена висина.

онда производ ВН представља нам запремину тростране призме исте основе и висине. Трећина овога производа, према претходном правилу, је запремина пирамиде. Дакле, запремина V код тростране пирамиде је $\mathbf{V}=\frac{\mathbf{B .} \mathbf{H}}{3}$.
2) Запремину ма које многостране пирамиде такође израчунавамо, када површину њеног базиса помножимо висином и добивени производ поделимо са 3 $\left(\mathrm{V}=\frac{\mathrm{BH}}{3}\right)$, јер, ако пирамиду ABCDES (сл. 363.) дијагоналним пресецима: BES и CES поделимо на тростране пирамиде, онда су запремине ових пирамида
$\mathrm{V}^{\prime}=\frac{\mathrm{B}^{\prime} \mathrm{H}}{3}, \mathrm{~V}^{\prime \prime}=\frac{\mathrm{B}^{\prime \prime} \mathrm{H}}{3}$ и $\mathrm{V}^{\prime \prime \prime}=\frac{\mathrm{B}^{\prime \prime \prime} \mathrm{H}}{3}$,

а запремина целе пирамиде
$V=\frac{B^{\prime} H}{3}+\frac{B^{\prime \prime} H}{3}+\frac{B^{\prime \prime \prime} H}{3}=\left(B^{\prime}+B^{\prime \prime}+B^{\prime \prime \prime}\right) \frac{H}{3}=\frac{B H}{3}$.
Из свега овога изводи се опште правило:
Вапремина ма какве пирамиде израчунава се, када се помноже мерни бројеви површине базиса и висине и добивени производ педели са 3.

Наиомена. При решавању рачунских задатака из пирамида треба водити рачуна и о правоуглим троугловима код правилних и правих пирамида (понови § 144.).
§ 201. Површина и запремина правилног тетраедра и октаедра.
a) Како је'правилни тетраедар једна равноивична тространа пирамида (сл. 340.), то је његова површина 4 пута већа од површине једног његовог равностраног троугла. Ако је његова ивица a, онда је тетраедрова површина:

$$
P=4 \cdot \frac{a^{2} \sqrt{3}}{4}=a^{2} \sqrt{3}
$$

Висина тетраедрова је катет правоуглога троуга, код кога је тетраедрова ивица а хипотенуза, а друга катета полупречник R описаног круга око основног троугла. Како је код равностраног троугла $\mathrm{R}=\frac{a}{3} \sqrt{3}(\$ 139$. d), то је висина тетраедрова $H=\sqrt{\mathrm{a}^{2}-\mathrm{R}^{2}}=\sqrt{\mathrm{a}^{2}-\frac{3 \mathrm{a}^{2}}{9}}=\sqrt{\frac{6 \mathrm{a}^{2}}{9}}=\frac{\mathrm{a}}{3} \sqrt{6 .}$ Стога је запремина тетраедрова

$$
\mathrm{V}=\frac{\mathrm{BH}}{3}=\frac{\mathrm{a}^{2} \sqrt{3}}{4} \cdot \frac{a}{9} \sqrt{6}=\frac{\mathrm{a}^{3} \sqrt{18}}{36}=\frac{\mathrm{a}^{3} \sqrt{2}}{12}
$$

b) Како је октаедар састављен од две квадратне пра вилне пирамиде које имају заједнички базис (сл. 341.) а површина му је од 8 равностраних троуглова, то је октаедрова површина $\mathrm{P}=8 . \frac{\mathrm{a}^{2} \sqrt{3}}{4}=2 \mathrm{a}^{2} \sqrt{3}$, висина једне његове пирамиде H једнака је половини дијагонале заједничког квадрата $\left(\mathrm{H}=\frac{\mathrm{a} \sqrt{2}}{2}\right)$. површина заједничког базиса $\mathrm{B}=\mathrm{a}^{2}$. Стога је запремина октаедра

$$
\mathrm{V}=2 \cdot \frac{\mathrm{BD}}{3}=2 \cdot \mathrm{a}^{2} \cdot \frac{\mathrm{a} \sqrt{2}}{6}=\frac{\mathrm{a}^{3} \sqrt{2}}{3}
$$

Напомена. Површина икосаедра је 20 пута већа од површине једног његовог равиостраног троугла. Ако је његова ивица a, онда је

$$
P=20 \cdot \frac{a^{2} \sqrt{ } \cdot}{4}=5 a^{2} \sqrt{3}
$$

Пример. Наћи површину и запремину правилног тетраедра и октаедра, ако им је ивица $a=8 \mathrm{~cm}$.

Peшене: 1) Површина тетраедра $\mathrm{P}=\mathrm{a}^{2} \sqrt{3}=64 \cdot \sqrt{3}=$ $=64.1,73=110,72 \mathrm{~cm}^{2} ; 2$) Запремина тетраедра $\mathrm{V}=\frac{\mathrm{a}^{3} \sqrt{3}}{12}=$ $=\frac{512.1,73}{12}=73,813 \mathrm{~cm}^{3}$; з) Површина октаедра $\mathrm{P}=2 \AA^{2} \sqrt{\overline{3}}=$ $=2 \cdot 64 \cdot 1,73=128 \cdot 1,73=221,44 \mathrm{~cm}$; и 4) Запремина октаедра $V=\frac{a^{3} \sqrt{2}}{3}=\frac{512 \cdot 1,41}{3}=240,64 \mathrm{~cm} .^{3}$

§ 202. Задаци за вежбу.

V 1. Одреди запремину праве и правилне тростране пирамиде кад се зна: а) основина ивица а $=3 \mathrm{~m}$ м бочна ивица $s=4 \mathrm{~m} ;$ b) основина ивица $a=4,5 \mathrm{~m}$ и висина $\mathrm{H}=7 \mathrm{~m}$.
2. ОДреди вапремину поаве $и$ прравилне четворостране пирамиде а) основине ивице а $=5$
m и вссине $\mathrm{H}-5 \mathrm{~m}$.
 основине ивице $a=5 \mathrm{dm}$ а впсинее $\mathrm{H}=7,2 \mathrm{dm} ;$ b) основине ивице а $=5,6$. m . а бочне ивице $\mathrm{s}-12 \mathrm{~m} ; \mathrm{c})$ бочне ивице $\mathrm{s}=10 \mathrm{~cm}$ а висине $\mathrm{H}=8 \mathrm{~cm}$ пирамиде, чйа је основина иввица а $=4,5 \mathrm{~cm}$ а запреминна $\mathrm{V}=67,5 \mathrm{~cm}{ }^{\text {² }}$
5. Колика је основина ивица и површина правилне и праве четворостране пирамиде, чија је висина
6. Наһи запремину пирамнде чији је базис $3 \mathrm{~m}^{2} 28 \mathrm{dm}^{2}$ а висина $\mathrm{H}=5,4 \mathrm{~m}$.
7. Колика је висина и површина праве и правилне шесторостране пирамиде чија је основина ивица $a=4 \mathrm{~m}$ а запремина $\mathrm{V}=64 \mathrm{~V}^{3 \mathrm{~m}^{3} \text { ? }}$
 основине ивице $a=6$ сm, а бочне површине $M=120$
пирамида а) тространа, b) четворострана, с) шестострана?
пирамида Наћи тежину правилне и праве четворостране сребрне пирамиде основне ивицце а $=3,4 \mathrm{~cm}$ бочне ивице $7,5 \mathrm{~cm}$., када је специфична тежина сребра 10,51 .
10. Израчунај површину и запремину а) правилног тетраедра, b) октаедда, кад је ивица а $=4,2 \mathrm{~cm}$.
11. Израчунај површину икосаедра ако му је ивица а $=1,5 \mathrm{dm}$.
12. у којој размери стоје a) површине, b) запремине тетраедра. октаедра и коцке једнаких ивица?
13. У којој размери стоје површине октаедра и икосаедра једнаких ивица?
14. Колика је запремина праве пирамиде висине $\mathrm{H}=8 \mathrm{dm}$, кад јој је базис правоугаоник дужине $a=4,2 \mathrm{~m}$ а ширине $b=2,7 \mathrm{~m}$?
15. Наћи запремину пирамиде висине $\mathrm{H}=10 \mathrm{~cm}$, кад јој је базис ромб дијагонала 5 cm и 6 cm .
§ 203. Запремина облице.
Како облицу сматрамо као призму од бесконачно много страна, шо заиремину било ираве, било косе облице, израчунавамо, када повриину базиса помножимо са висином. Ако je \mathbf{r} полупречник базиса, а h висина облице, онда је њена запремина

$$
\mathbf{V}=\mathbf{B} \cdot \mathbf{h}=\mathbf{r}^{2} \pi \mathbf{h} .
$$

Код равностране облице је $h=2 r$, те је њена запремина

$$
\mathbf{V}=\mathbf{r}^{2} \pi .2 \mathbf{r}=2 \mathbf{r}^{3} \pi
$$

Напомена. Запремину једне цилиндарске цеви, која је у ствари темо између омотача двеју облица заједничке осовине, израчунавамо када од запремине спољашње облице одузмемо запремину унутрашње. Ако јe R полупречник базиса спољашње облице, \mathbf{r} полупречник базйса унутрашње облице, а h висина (дужина) цилиндарске цеви, онда је њена запремина $\mathbf{V}=\mathrm{R}^{2} \pi \mathrm{~h}-$ $-\mathbf{r}^{2} \pi \mathbf{h}=\left(\mathrm{R}^{2}-\mathbf{r}^{2}\right) \pi \mathbf{h}=(\mathrm{R}+\mathbf{r})(\mathrm{R}-\mathbf{r}) \pi \mathbf{h}=(\mathrm{R}+\mathbf{r}) \mathbf{d} \pi \mathbf{h}$, где нам $d=\mathrm{R}$ - r значи дебљину цеви.

§ 204. Задаци за вежбу*).

\checkmark 1. Наћи запремину праве облице: а) висине $3,4 \mathrm{~m}$ а полупречника базиса $1,5 \mathrm{~m}$; b) висине 1 m 7 dm а полупречника базиса 4 dm 8 cm ; c) висине 40 cm а полупречника базиса 10 cm .
2. Наћи површину и запремину равностране облице чији је полупречник базиса $\mathrm{r}=1,2 \mathrm{~m}$.
3. Нани запремину праве облице висине $8,5 \mathrm{dm}$, кад је обим базиса $18,84 \mathrm{dm}$.
4. Наћи висину облице запремину $943 \mathrm{~cm}^{3}$ када је пречник базиса 10 cm
5. Колики је полупречник базиса облице висине 12 dm а запре мине $942 \mathrm{dm}^{3}$?
6. Наћи полупречник базиса цилиндра висине 5 m , кад му је запремина једнака запремини коцке ивице $4,7 \mathrm{~m}$.
7. Наћи површину и запремину цилиндра који постаје обртањем правоугаоника око своје ширине, кад му је дужини 15 cm а ширина 10 cm .
8. Наћи површину и запремину цилиндра који постаје обртањем правоугаоника око своје ширине, кад му је дужина 15 cm а ширина 10 cm .
9. Наћи полупречник базиса равностране облице чија је a) површина $15,34 \mathrm{dm}^{2}$, b) запремина $35,75 \mathrm{~cm}^{3}$.
*) При рачунању за ирационални број π узимати његову приближну вредност 3,14 .

а затим се у њу спушта тело, чију запремину хоћемо да израчунамо, услед чега се вода пење на извесну висину h. Тада нам запремина цилиндра ABDC претставља запремину тела. Тако, за $\mathrm{r}=25 \mathrm{~cm}$ и $\mathrm{h}=10 \mathrm{~cm}$, запремина тела биће :
$\mathbf{V}=\mathbf{r}^{2} \pi \mathrm{~h}=25^{2} 3,14 \cdot 10=19625 \mathrm{~cm}^{3}=19,625 \mathrm{dm}^{3}$ 。
Ако тело чију запремину израчунамо не тоне у води, онда се везује с другим телом које тоне и чију запремину претходно израчунамо, па од добивене запремине комбинованих тела одузимамо запремину тела које тоне.

Запремина ма кога неправилног суда израчунава се, када се тај суд најпре напуни водом, па се затим преручи вода у суд за мерење запремина неправилних тела (сл. 365.). Запремина облице добивене у том суду од преручене воде јесте једнака са запремином неправилног суда.
§ 210. Ако је Q апсолутна тежина једног тела, V његова запремина, а S специфична тежина његове материје (тежина јединице запремина [1-ог dm^{3} или 1 -ог cm^{3}] тога тела), онда је $\mathrm{Q}=\mathrm{V} . \mathrm{S}$. Из овог обрасца имамо $\mathrm{V}=\frac{\mathrm{Q}}{\mathrm{S}}$.

Запремина се једног шела израчунава када се негова пежина подели са сиецифичном шежином негове маперије.

Ако је тежина дата у Kgr. запремина се израчунава у dm^{2}, а ако је дата у gt., запремина се израчунава у cm^{2}.

Пример. Наћи запремину тела чија је тежина $35,75 \mathrm{Kgr}$., а специфична тежина његове материје 2,5 .

Сл. 365.

§ 211. ХV. МЕШОВИТИ ЗАДАЦИ

1. На коцки, чија је ивица 3 m , лежи пирамида код које је коцкина страна базис а висина јој je 5 m ; израчунај запремину тако комбинованог тела.
2. Колики је омотач облице која је уписана у коцки ивице $3,5 \mathrm{~m}$?
3. У равностраној облици полупречника базиса 4 m уписана је правилна шестострана призма; наћи њену површину и запремину.
4. Наһи површину и запремину лопте уписане у равиостраној облици полупречника базиса $3,2 \mathrm{~m}$.
5. У равностраној облици уписана је лопта и права купа; у каквој размери стоје њихове запремине ?
6. Права облица има висину $4,3 \mathrm{~cm}$ а површина њеног омотача износи $135,02 \mathrm{~cm}^{2}$, наћи површину коцке чија је запремина једнака са запремином облице.
7. Нађи тежину правилне и праве четворостране пирамиде висине $7,5 \mathrm{dm}$, а основине ивице 2.8 dm , кад је специфична тежина њене материје 7,12.
8. Колико је метара платна потребно, ширине 150 cm , за шатор облика праве и правилне шестостране пирамиде основине ивице 3 m а бочне 5 m ?
9. Равнострана облица стране 5 dm има једнаку запремину са равностраном купом; наћи површину те купе. рине $2,4 \mathrm{~m}$ а висине 6 m напуњена је житом. Колико хектолитара жита има у тој житници?
10. У каквој размери стоје а) површине, b) запремине равностране блице, равностране купе и лопте, ако имају једнак пречник?
11. Колика је запремина лопте, чија је површина једнака с површином праве купе висине 7 cm а обим базиса $8,42 \mathrm{~cm}$?
12. Колика је запремина тела ноправилног облика, када се вода пење за 10 cm у суду облика паралопипеда, код кога су димензије базиса 28 cm и 15 cm , ако се тело спусти у суд?
13. Празан суд тежак је $2,3 \mathrm{kgr}$. а напуњен водом $18,5 \mathrm{kgr}$.; наћи његову запремину у cm^{3}.
14. Наћи запремину лопте од слонове кости тежине $13,5 \mathrm{gr}$. када је специфична тежина слонове кости 1,83 .
15. Хектолитар вина тежак је $100,8 \mathrm{kgr}$.; наћи специфичну тежину вина.
16. Колика је тежина златне шупље лопте, кад јој је унутрашњи дречник 6 cm а дебљина 1 cm (специфична тежина злата 19,36).
17. Од 8 kgr . ливеног гвожђа специфичне тежине 7,12 треба да се салије ваљак од 10 cm у пречнику; колика ће бити дужина ваљка?
