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PREFACE

The Conference of algebraists from Belgrade, Za-
greb, Skopje, Sarajevo, Titograd, Novi Sad and some other yugos-
lav mathematical centers took place in Novi Sad on May 30th Yuneth.
There were 55 official participants with 30 reports.

Beside the offical participants, some other mathe-
maticians attended the Conference.

It was the second conference of yugoslav algebra-
ists. The first conference took place in Skopje in 1980.

The participants agreed that such meetings are ve-
ry useful for interchanging scientific informations, fruitful
collaboration in varions algebraic fields, and making contacts for
other types of activities.

It was decided that the communications of the co-
nference will be published in a separate volume.

This book of proceedings is a result of the prece-
ding agreement. The next algebraic conference will be organized
by the algebraists of the Faculty of Sciencie from Belgrade in
1982.

Novi Sad Editor
Mart 1982.
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POLYNOMIAL SUBALGEBRAS
G. Cupona and S. Markovski

A polynomial subalgebra of an algebra A = (A, 0) is a
subset B of the carrier of the algebra which is closed under the
polynomials belonging to a set of 0 -polynomials. In this
paper polynomial subalgebras are considered, together with a few
properties and examples. A special attention is given to the
polynomial subalgebras of the algebras belonging to a variety.

1. Throughout the paper 0 and 0’ will be two sets of
operational symbols and X = {xl,xz,...,xn,...} will be the set
of individual variables. By Ox will be denoted the set of all
O -polynomials, i.e. Ux = Term ( U )e If p € Ux and if each
variable that occurs in p is in the set {xl,...,xn}, then we will
usually write p=p(x1, ...,xn) . Let A: 0 -+ O”x be a mapping such
that if £ € {(J (n), then £~ = £(x;,...,% ). The mapping A
induces a mapping from Ux into U’x (denoted with the same
symbol A) defined by: (i) x"=x, for each x€ X and (ii) f € U(n),
p=fp,...p, = p"=f"(py7i.../pPy).

- 0’/ -
Let A be an U -algebra, A” an -algebra and ¢:A > A" a
mapping such that ¢(f,(a,,...,a )) = £f2.(¢(a;),...,9(a )) for
A1 n A’ 1 n
each f € U (n) and al,...,an€.- A. The mapping ¢ in this case will
be called a A-homomorphism from A into A”. Moreover, if AC A“ and
if the embedding of A into A~ is a_A-homomorphism, then A is said
to be a A-subalgebra of Al (We will sometimes say polynomial ho-
momorphism (polynomial subalgebra) instead of A-homomorphism
(A-subalgebra) .)

!

If A" is an U -algebra, then an U—algebra “A” by the same
carrier A” is defined by: gA, (al’,...,al;) = f'é,(ai,...,ar;), fo.r
each f € U (n) and al’,...,ar’leA’. We say that "A~ is induced
from A by A.

\
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Let (_ be a class of O”-algebl\:as and C be a class,\ of
U-algebras. Then by AC’ will be denoted the class of U‘E-al-
gebras which are A-subalgebras of U’ -algebras belonging to C’,
and by CA the class of Oﬂ-algebras A° such that all A-sub-
algebras of A~ are in . We say that a pair ( C ' C') is
~-compatible if each algebra A & C is a A-subalgebra of an
algebra A” € C’ such that "A° € C.

The following properties give some connections between C '
C’ ~ A

v C and C .
o : ’
1°. (a) If C is a class of U-algebras and C a class
of O”—algebras, then: A( CA)Q C , B C‘C (~ C’ >

(b) The equation A( (") = (' holds iff each (J -algebra

A€ C is a A-subalgebra of an U’-algebra A” such that each
A-subalgebra of A” is in C.

A 7/
(c) The equation (AC’) = ([ notas iff (” contains
any U'—algebra A° such that every a-subalgebra A of A~ is
A-subalgebra of A" € C’ .

2%, 1f ( C, C') is a A-compatible, then Cg ~C”.

;O. If C’ is a quasivariety of O”-algebras, then AC’
is also a quasivariety of U-algebras. ([8] , p. 274).

We note that there are known infinite many varieties of
O”-algebras C' such that “C’ is a proper quasivariety.
This suggests to look for a description of the set of varieties
C’ of U,-algebras such that ° C' to be also a variety of

U-algebras.

I'd
io. Let C be a variety of U’-algebras and A be an
-algebra. Let F~ be the U’-algebra which is freely generated
by A in C' and let p be the least congruence on F~ such that:

a= f&(al,...,an) inA = ap f},(al,...,an).
, =
Then A € AC if the following condition is satisfied:
a,b € A= (apb=> a=b).



§°. Let C’ = Varo,, L~ be a variety of O’-algebras
defined by a set of identities I°. Denote by <I "> the set of
identities which are consequences from I”, i.e. which hold in
all U'-algebras belonging to C' , and denote by “I~ the set
of U -identities p=q such that p" = q¥<r”>. Then * C “is a
variety iff "C’ = var “z-. and, if ~(C’ is the variety of
all U—algebras then "I~ consists of trivial identities, i.e.
the identities of the form p = p, where p € U x*

et (= var I, C” = var ., z° be such that CC ~(”.
Denote by I" the following set of U' -identities:

{p* = q"|p=qg € 1}UL,

/
var o’ t". Then the pair ( C ’ C ) is A-compatible
n

_°. If C’ is an axiomatizable class of O”-algebras, then
AC’ can be defined by a system of open formulas. ([7] ).

§°. Let I” be a class of U/-identities satisfyng the follo-
wing condition:

4
(**) If u’,v” are finite sequences on g UX, p'€ UX and
if there is a q € Ux such that u’p”v” = g“€ <z ”>, then there
is a gq" € <r”> such that u”xv” = gq" € <I”>, where x is a variable
which does not occur in u’p“v”.

Then “Var o I is a variety of U-algebras (s]).

2. Now, we will state some results concerning special classes
of algebras, which will throw better look on the properties }_°-§°.

1) Let Sem be the variety,K of semigroups. If O” = {.} O’,’(Z)
and if p(xl,...,xn) € UX' then by the associative law an (2)
identity of the form p = xilxiz...xik hoJ.ds in Sem, where
ivE {1,2,...,n}. Thus, we can assume that if C is a variety of
semigroups, then C= Varz, where I is a set of identities of

the forms x, ...Xx, = X. ...X. , where i , j,€ {1,2,...},
11 v A

. 1 J
including thé idenléity xi(xzxzj =(x1x2)x3.

y
\



The following result is known as Cohn-Rebane’s theorem .\ '

(1] page 185): i

If A is an U-algebra, then there is a semigroup S and a
mapping £ » £ of U into S such that AC s and f;(a;,...,a))
= fal...an for each £ € (J'(n) and all al,...,ané A. Then we
say that A is an U-subalgebra of the semigroup S. If C’ is a
class of semigroups, then by C,( U) will be denoted the class
of U —-algebras which are U—subalgebras of semigroups belonging
to C’ . Thus, the Cohn-Rebane’s theorem can be formulated as
follows:

1.1) Sem ( U) is the variety of all ,U-algebras.

We wil; state some other results. Fir‘st, we will give some
definitions. If p &€ Ux and if be xUQ + then |p|y is the

note the variety of commutative semigroups, and by C o the variety

r
r__r+m R . !
Absem (x =x ), where r and m are positive integers. Then we have:

1.2) A€ BAbsem (0 ) if A satisfies any identity p = g, where

p,q € Ux are such that |p|y = |q|,, for each b € Cux ([x0]).
1.3) gr’m( 0) is a variety iff r=1 or - U(l). ([6]).

We note that, if U(o) = @, then 1.1) and 1.2) are con-
sequences from §°. If in 1.1) or 1.2) we have U(o) =g,0\ C £
(or in 1.3) U# @), then the condition (**) of _8_° is not satisfied,

et O=q53= O, 0" =¢1= (0 and
£2 = X %X5...%x . If (” is a class of groupoids, then ~( is
denoted by C' (n) . Also, Sem (xXyz=xyxz, Xyz=xzyz), Sem (xyz=xyxz),
sem (xF=x"") will be denoted respectively by: p, p*, P .- And,
’

Sem, is the class of n-semigroups, i.e. algebras with an associative
n-ary operation.

2.1) Sem(n) = Sem_.
2.2) gr’m(n) is a variety iff r=1 or n-1 is a divisor of m.

2.3) _C_r'm(n) is a variety for all r,m,n.



2.4) D(n) is a variety for every n.
2.5) Ql(n) is a proper quasivariety for every n 2 3.

2.6) Let £~ be a set of semigroup identities p = g such that
|p|i z |q|i (mod n-1) (*x*)

for each i=1,2,... , where n 2 3, and let C' = Sem(I). Then
C’(n) is a variety. (We note that this result is a corrolary
from §°; and, conversely, if a variety C, = Sem(r”) satisfies

the condition (x*) of §°, then (***) is satisfied for every
identity p = g€ r”.)

The above results are proved in the papers [3], [4], [5], [9].
Some of the results in 1) and 2) suggest the following conjecture:
If C' is a variety of semigroups such that C(CB is a variety
of CT-algebras for every [j , then C,(n) is a variety of
n-semigroups for every n 2 2.

3) If R is a ring, then by 1.1) there is a semigroup S and

a pair of elements a,b € S such that x+y = axy, xey = bxy ("e" is
the multiplication in the ring R). But, if S is a semigroup with
at least two elements, and if the operations + and e defined on §
by: x+y = axy, xey = bxy, where a,b € S, then (S;+,e) is never a
ring. This example shows that it can happen a pair ( C ' C’) to
be not A-compatible, although C g; ’\C/ . In [2] there are given
several e;amples of such noncompatible pairs. We note that in each
of the examples 1.1)-1.3), 2.1)-2.4) we have a compatible pair of
varieties. -

4) Now we will finish our considerations by an example of
a variety C’ = Var:r” such that A(j’ is not a variety although
"r” does not contain non trivial identities. Namely, let
0 =0 0= C -

= (2) = (-1, = (3) = {f}, and £~ = (xlxz)x3. If
17 = {(((xlxz)xl)xz)x1 = ((xlxl)xl)(xzxzn, then "I ° does not
contain nontrivial identities, but "Varl~” is a proper subclass
of the class of ternary groupoids (i.e. algebras with a ternary
operation):

\
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SEMIGROUPS WITH n-PROPERTIES
B. Trpenovski

Semigroups with n-property were introduced in [8] in the
following way: a semigroup S posseses the n-property iff every
n-subsemigroup of S is a subsemigroup, i.e. Q¢S, Qnﬂ_c__-_ Q=>ng_ Q.
The problem of describing the structure of a semigroup with
n-property is a special case of a problem formulated in [1]. Neverthe-
less, this special case is not easy to deal with and a structure
description is given in [8] only for unipotent semigroups of that
type. Using the idea of involving an (n+l)-ary operation, n > 1,
in a semigroup, in this paper we introduce several classes of
semigroups and give structure descriptions which follow the same
pattern of structure description for unipotent semigroups with

n-property.
First we collect some of the results from [8] in the following
Theorem 1. (i) Every semigroup with n-property is periodic;

(ii) If s is a group,then S posseses the n-property iff the
order of every element of S is relatively prime with n;

(iii) Let H be a group with n-property, » a set such that
HNP = § and ¢:P » H a mapping. Extend ¢ to a mapping from
S* = HUP onto H by ¢(x) = x for all x€ H and define an operation
in S* by

xoy = ¢ (x)¢(y).

Then S* = S[H,P,¢] will be a unipotent semigroup with n-property.
Conversely, every unipotent semigroup with n-property can be obta-
ined in that way.ﬂ

The ge@eral pattern sugested by (iii) of the above theofem
is the structure set [H,Pﬂﬂ. To be more precise, and for convenience,
we bring out the following



Leﬁma 1. Let P be a partial semigfoup,‘E a semigroup such
that PNE = # and ¢:P - E a homomorphism. Extend ¢ to a mapl\b‘ing
¢*:S = PUE > E by ¢*(e) = e for all ee E and define an operqtion
in S by '

. {xy if x,y€P and xy is defined in P,
xoy =

¢* (x)¢*(y) otherwise.
Then S(o) will be a sefnigroup with E as an ideal and ¢*-epimorphism.

Proof. This is in fact Lemma III.4.1 of [3] Note that a
mapping ¢ from a partial semigroup P into a semigroup E is a homo-
morphism if ¢(xy) = ¢(x)¢(y), x,y€ P, whenever xy is defined in P.

We will denote the semigroup construéted in Lemma 1 by
s[r,E,¢].

A subclass of the class of semigroups with n-property can be
defined in the following way: a semigroup S is said to be a Aoge-

o
n+1

migroup iff QcS, Q < Q = SQcQ. The structure of a Ag—semigroup

is very simple which is seen from

Lemma 2. ([7], Theorem 1) . A semigroup S is a Ag-semigroup

iff S is periodic and xy = e, for all x,y€ S, where ey is the

corresponding idempotent in Zy>. (Here n > 1).

In order to obtain more interesting classes of semigroups we
can substitute the left-ideality by corresponding n-ideality and,
alternatively, taking subsemigroups, beside n-subsemigroups, to
posseses the ideal property. In that way we can introduce the ’
following two classes of semigroups: a semigroup S is said to be a
A?-semigroup (Ag-semigroup) iff Q¢s, Qn+ng = s™cQ (Qcs,
Q2¢o =>an <€Q). Each of this two classes, for n = 1, represents
the class of A-semigroups (see, for example, [2], [4]). So, dealing
with A';-or Ag-semigroups we asume that n > 1. For any semigroup
which belongs to either of this two classes we say that posseses
"left-ideal n-property". Observe that

Lemma 3. (1) Every Ag-semigroup is a A-semigroup and a
semigroup with n-property;

(11) Every i-semigroup is a A;-semigroup;

(iii) Every A'll-semigroup is a A'z‘-semigroup.



The following is almost abvious:

Lemma 4. Every subsemigroup and every homomorphic image of a
Ag-, A’l’-, A;—semigroup is a A:-, A'l‘-, Ag-semigroup, respectively.

Lemma 5. Let S be a semigroup. Then:
(i) S is a A-semigroup iff Sac<a> for every a€S;

(ii) s is a Al-semigroup iff s ag<a> for every aé€ S, where
<a> = {akm'lIke NO} is the cyclic n-subsemigroup of S generated
by a, if s is a X'I‘-semigroup then sMac<a> for every aE€S;

(iii) S is a Ag-semigroup iff s a_c_<a> for all a€sS.

Proof. For (i) and (ii) see [2] Lemma 2 and [7] Lemma 3. From
(ii) and Lemma 3 it follows that if S is a Ag-semigroup then
s™a c<a> for all a€S. Conversely, if Q is a subsemigroup of a

Ag-semigroup S and gq€Q, from an£<q>§Q if follows that SanQ.
Lemma 6. Let S be a -, J\?-, Ag-semigroup. Then:
(i) S is periodic;

(ii) The set E of all idempotents of S is a right-zero
subsemigroup of S and is an ideal in S;

(iii) For all a€s, m, =1 where m, is the period of a and:
if S is a A-semigroup, then |<a>| < 3, if S is a A?-semigroup then
|<a>] < n + 2, if S is a Ag-semigroup then [<a>| < 2n + 1.

Proof. For A-and A?-semigroups see [2] and [7] Let S be a
Krzl-semigroup, a S and <a> = {a,'az,...}. If <a> were infinite,
then Q = <an+l> would be a subsemigroup of S which does not

2n+l but, on the other hand, a2n+1 = anan+1e SanQ and

contain a
this is a contradiction. So, S is periodic since <a> is finite.

Let ez be the idempotent in <a> and x€S. Then

Xeg = xea' ... egesle, C <ex> = {e,},

Xe, = e,. (1)

From (1) it follows that E is a right-zero subsemigroup of S.
If e€E and x €8, again from (1) it follows that exex = e.e.x = ex,



10

so ex€E, i.e. ES<cE which proves (ii). Let K, be the peric;:)dic
part of <a> and y€K,. From (1) we have that y = yea = ea and
Ka = {ey}. Let <a> = {a,az_,...,as = ea} and Q = <an+1>; if ‘\

s 2 2n+l then a2n+le Q which is a contadiction and so we have
|<a>| <2n+1. ' :

In what follows_ S will be a semigroup of any of the classes

n

n n
Ay )‘1' )\2. Let us put

)‘0'

P = S\E

where E is as before, the set of all idempotents of S. Then P
will be a partial semigroup such that for every a €P there exists
some k€N with ak'not defined in P, which is a consequence of the
periodicity of S; we may call such a partial semigroup a power
breaking partial semigroup. We have therefore seen that

a) P is a power breaking partial semigroup.

Let us define a mapping ¢:S + E by ¢(x) = eyr ey the
idempotent in <x>, and let xy = z, Xx,y,Z€S. For some meN,

m> %, we have that z™ = e, and then, by Lemma 3 and 5,
e, = Xy...XY€ Snyg<y>
which implies that e, = ey and

¢ (xy) = ey = exey = ¢(x)o(y),

and ¢ is an epimorphism from P onto E. The restriction y = ¢‘|P
then is a homomorphism from P into E, which establishes

b) There is a homomorphism y:P + E.

The operation in S can be, now, expressed of follows:
Xy if x,y€P and xy is defined in P

c) xy =
¢ (x) ¢ (y) otherwise.

Finaly, from Lemma 2 and 6 it follows that P posseses the
left-ideal property which can be introduced in the following way:

d) (1) If s is a Ag-semigroup then P is just a set; (ii) if S
is a A-semigroup then xy = y2 whenever xy is defined in P; (iii) if

n_ - 8
S is a Ay semigroup then XoXyeooX = X, 8 < n+2, whenever K X)eo Xy
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is defined in P; (iv) if S is a Ag-semigroup then as in (iii) with
s < 2n+l.

Conversely, let E be a left-zero semigroup, P a power breaking
partial semigroup, PNE = @, and ¢:P + E a homomorphism. Extend ¢
to a mapping ¢*:S = PUE + E by ¢(e) = e for all e€E and define
an operation in S as in Lemma 1. According to Lemma 1 S(o) will be
a semigroup and ¢* an epimorphism. It is easily seen that S is
periodic. Finaly: (i) if P is a set without operation defined on
it, then S(o) will be a A -semigroup; (i1) if xy = y2 whenever xy
is defined in P, then Sy c {¢(y),y } € <y> since ¢(v) is the corre-
sponding idempotent to y (if y is not defined in P then yS
= [¢(y)]s = ¢(y)) and so, S(o) will be a A-semigroup; for (iii)
and (iv), similarly as in (ii) we can see that S(o) will be a
A?—, Ag-semigroup, respectively.

From the above discusion follows

Theorem 2. A semigroup S posseses the left-ideal n-property
iff s = S[P,E,¢] where E is a left-zero semigroup, P a power brea-
king partial semigroup and: (i) S is a xg-semigroup, (ii) Ar-semi- .
group, (iii) AT-semigroup, (iv) Ag-semigroup iff (i) P is a set
without operation defined on it, (ii) xy = y2, X,y€ P, whenever xy
is defined in P, (iii) X X;...x = xi, s < n+2, whenever X _X;...X,
is defined in P and (iv) XXpeo X, = xs, s < 2n+1 whenever

X Xpe.-X, is defined in P. -

Let us observe that it is very easy to formulate right dual
of left-ideal n-property and, by symetry, to translate all results.
Also, we can, now, obtain structure description for semigroups with
ideal n-property which can be introduced in an obvious way. For
example, for the corresponding class of Ag-semigroups we will come
to zero semigroups while in all other classes with ideal n-property
E reduces to one idempotent and some additional identities will be

needed: instead of xy = y2 or xoxl...xn = xg we will have x =x2=y2
or xoxl...x = xj = xn whenever xy, respectlvely R KpeeoXy is defi-
ned in P. Det us observe that theclass of Al-semlgroups can be

1nterpreted as a class of n-semigroups (for a structure description

see [9]).

i
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IDEMPOTENT PURE CONGRUENCES ON CLIFFORD SEMIGROUPS

Branka P.Alimpié and Dragica N.Krgovié

In this note we describe idempotent pure congruences on
Clifford semigroups and we get an expression for the greatest idem-
potent pure congruence on such a semigroup (Theorem 4). This is a
solution of the problem stated by M.Petrich [3].

First we briefly mention congruence pair of an inverse
semigroup. All undefined terminology and notation can be found in
[1] and L3] .

For a congruence p on an inverse semigroup S the kernel

and the trace of p is defined by

ker o {aeSl(JeéEs) apel,

tr p p]ES

respectively [ZJ. This associates to each congruence p on S the
ordered pair (kerp, trp).

Conversely, the pair (K,p) is a congruence pair for S if

K is a normal subsemigroup of S, ? is a normal congruence oOn Es’
and they satisfy

(i) aegk A epa ‘a = aex (a€S, eeE_),
, s

1

(i1) xk~ Yok lk (keK) .

. Theorem 1. LZ] Let S be an inverse semigroup. If (K,p)

is a congfuence pair for S, then °(x,7) defined by
\ ’
\ ) _ o . -
do g )b E>a lapb™b A ab ik



14 ' *,
is the unique congruence p on S for which kgr p =Kand tr p = D.

Conversely, if p is a congruence on S, then (ker p,trp) is § con-

gruence pair for S and P (kerp trp)=p'
14

A congruence p on an inverse semigroup S is idem@tént

pute if fo; any ae¢s, eeEs, ape implies a€E [3] (

Theorem 2 [8]. Let S=[¥; Gyr ¥, B] be a Clifford semigroup.
r

The pair (K,p) is a congruence pair on S if and only if K= [Y;Ka, YJ B]
r
(i) Ka is a normal subgroup of Ga,qu,

(ii) %,B _—.‘f;,B |y

(iii) » is a congruence on E_ such that

-1
e, > A e rep = KBLFa,B < K.

(iv) ex>ep = K. < Ko.
According to Theorem 2 we have

Corollary 1. Let S= [v; Gyr % BJ be a Clifford semigroup.
4
Then (E,p) is a congruence pair on S if and only if p is a congruence

on Es such that

(1) a > B A-empeB => kPG,B is one-one.
By Theorem 1 and Corollary 1 we get a description of an

idempotent pure congruence on Clifford semigroup.

Theorem 3. Let S=[Y; Ga' ?a,B] be a Clifford semigroup.
If p is a congruence on li:B such that (1) holds, then the relation
p defined by

def - _
ase by & eeg A 3P, o = by (FB,uB

is an idempotent congruence on S, Conversely, if p is an idempotent

pure congruence on S, then

a>BAer e, B ‘FG,B is one-one,

asebg &> ejpeg A aa?a,as = bs"pe,as’
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If p is a pure congruence on an inverse semigroup 3

then p restricted to each subgroup of S is the equality relation.
The converse is an open problem [3].

Let p be a congruence on a Clifford semigroup S and p
restricted to each subgroup of S be the equality relation. If

a reg, then according to Theorem 1, a;IaapeB, i.e. e,re Hence,

g
a ed, which implies a, =e..

Thus, for a Clifford semigroup S, a congruence p is pure
if and only if p restricted to each subgroup of S is the equality

relation.

Theorem 4. Let S=[Y; G_,, 31 be a Clifford semigroup.
—==urer c , B2
The relation 1 on S defined by

def

1 _ -1 =
a,t by &> (VyeY) (an?Y ay = ©gyly,8y)A aa‘fa,aﬂ bB‘fB:“B

is the greatest idempotent pure congruence on S.

Proof. Let T be the relation on E, defined by
def

_ 1 -1
€y T S e (VYEY)(e ?Y ay eBY Y:BY)

Evidently, 7T is an equivalence relation on Es' Let e,r €gr e;é Es'

Then

- -1 _ -1
oo T By &S (¥red) (o P oy =g, P Tay)

-4
=7ED (& (5)F oy, (ov) = 8 (6v) Tox,8(om)
-1 -1 _
FEVED g (5)Poy,aten'P vroy = s onf sv,8 (0 Fy s 00

_l _ -
= (¥yeY) (e(aG)Y Y'(“‘S)Y, - (BG)YY (BG)Y

Al

eaea.

ﬁeas Tegs &> e

pu— N 7
Hence, t 1s a congruence on Eg.
1

Let a>g and e, T e,, i.e.



(¥yeY) (e, ?Ylaf ‘70-1

Y,BY)'

16

e N -1 L
Then, for y=a, we get e = eB(fa,B‘ Consequently, %%,B is qnebone.

By Theorem 3, 1 is idempotent puré. Let p be any idempotent\pure
. \

A

congruence on S. Then, by Theorem 3,
a, pbgd>e 0eg A al, o=bf g
and

(2) e pe, => (¥rel) (VK. EC )X e oX e, € (vre¥) (v €6 )X O, ox .

-1
Let X e . X = . Th 2 i
Ye a;fY,aY' i.e Y?Y ay an Then by (2), e, DXYYY,BY Since

is idempotent re, we have X = e so X € . Hence
e P pure, v Y(fYrBY "By’ Y(PY:BY ’

1 .
eay Y, aY eB;fY By’ for all ye Y. Analogously, we can prove
.1 ‘

eBYlfY,BY ? Y}UY and thus e, T eg-

Therefore 1t is the greatest idempotent pure congruence on S.

Corollary 2. Let o be the least group congruence and let
T be the greatest idempotent pure congruence on a Clifford semigroup

S. Then +t=0¢ if and only if the homomorphisms 92 8 are all one-one.
14

Proof. Let the homomorphisms 92 8 are all one-one. Then
: ’

Y yiay = € = €, P g, for all v¢¥, so e, T e, for all o, geY.

Thus, trt = Wp s i.e. 1 is a group congruence. Since kert=E, 1t is
s
the least group congruence o. Conversely, let t=d. Then trr=wE B
s

soe te for every a,B8eY. According to Theorem 3, YL 8 is one-one,
’

]
for every « B8 such that a>8.
’

If the homomorphisms QL g are all one-one, Theorem 4 and
’
Corollary 2 yield the following expression of the greatest idempotent

pure congruence on S:
a bB &> aa‘fa,ae = bB?B,aB

Remark. The corollary 2 can be obtained by the following

assertions: A Clifford semigroup is E-unitary if and only if the
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homomorphisms Z 8 are all one-one [1], and an inverse semigroup
’

is E-unitary if and only if o=1 [3]

Corollary 3. Let none of the homomorphisms ‘f& B(m>8) of
’

a Clifford semigroup S be one-one. Then 1t=£.

Proof. e, Te;, x>e 7 eaB = Va,uﬂ is one-one. Hence

B
trt=€E. Since ker 1 = E, we get =Eg

The following example shows that the converse is not true.

GB = {ea)
G, = {ea,aa) GY = (ey, bY}
Gd={e6}
= - .
e, T eg es; T eY = ‘1’Y,6 is one-one
eB T eY=> ea T e6=> Pa,d is one-one

eB T e6=>ea T e6=> ?a,d is one-one

Hence, 1t=¢ , and, for example, VB o is one-one.
14

Theorem 5. Let t be the greatest idempotent pure congruence
on a Clifford semigroup S=[Y; Ga,Soa B]' and o>8. The following con-
v N ’
ditions are equivalent:

(i) e = eg-
(i1) (Ver)Y’ 4wy, By 1S one-one.

- 1
(1ii) (¥ve¥) eBY(fY 8y € Cay T ¥, ay:

Proof. (i) = (ii). Let a,B€Y and a>B. Then e, T e

=P (VveY) eje T ege. = (VyeY) e, T ey =A¥y) (PC!Y:B'Y is one-one.

ay

s s -1
(ii) = (iii). Let XYéeBY‘f v By" Then

-1 . - )
xeeBY YiBY A5 XY(FY:BY = ®gy = sy (XY?Y:“Y)?(IY,BY

is one-one)

& X YY ay = emY (because C’GY,BY

1
% X e
€ a'YkPY ay”
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. -1
(iii) wp (i) . Let Xye an? YooY Then
-1 .
Xy€uyTy,ay @Xrﬁ,ay =~ oy
= oy for, oy (XYY’Y,GY)YM,BY - XYYYrBY

_ -1
) = XY*Y:BY = gy = xYéeBY(P Y,BY,

' -1 -1
Hence, e < e . i ii
’ a;f Yooy S B;{Y,BY According to (iii) and Theorem 4

we have e, T es.

An inverse semigroup is E-disjunctive if and only if
r =&[3)].
Theorem 6. A Clifford semigroup S=[Y; Gy ?a,BJ is

E-disjunctive if and only if (¥o,B€Y) (a>B =» (5YGY)?1Y By is not
14

one-one) .
Proof. If there exist a,B Y such that o> and the homo-

morphism ‘ﬁ Yis one-one for all yeY, then e,te by Theorem 5.

Y,B B
Hence, 1#¢&. Converesely, let t#f. Then there exist a,BeY such that

a#g and e,te from which it follows that e,Te g- We distinguish

B’ B
three cases: of=a,af=f and a>af. If aB=a then B>a. Since eareB it
follows that ?%Y ay is 6ne—one for all yeéY by Theorem 5. By analogy,
’

af=g implies ? is one-one for all yeY. If o>aB then ecl-remB

ay,By

implies is one-one for all yeY by Theorem 5.

((’cw,uﬁv
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Novi Sad 1981 Completions of Models and Galois Thery

Zarko Mijajlovié
l, Completion of models.

It is often considered the following problem: Given two
olasses M., M’ of structures , define a map ¢ so that for AeM
the pair ¢(A)= (B,p) completes A in a certain way, where Be '
and p:A ——> B is a morphism. In order to make the consideration
clear, we assume that 'm,m’ are classes of models respectively in
languages L, L’ so that L <L, and that m,m’ are elosed under
isomorphic images. For 4,B € MUM by Mor(A,B) a set of
homomorphisms is denoted. Instead of piMor(A,Q) we shall write
p:A —> B. If A is a model, then A stad® for the domain of A.

Definition 1.1, Let A€ TN. A pair (B,p) is a completion of A

(in respect to M') 1ff the folloVing holds:

1° Bem’ ,2° p:iaA—» 3B,

3° For any ge"ﬂl’ » any q:A —>C there B -—-'—(—-> o]
is LB —> C such that &£p=q, i.e. \ /‘

the displayed diagram commutes. p R

Example 1.2. 1° TN\ is the class of all linear orderings, M

is the class of all complete orderings, B 1s obtained from A by

adjoing to A all Dedekind cuts, p is inclusion, Mor(4,B) is the

set of all embeddings from A into B.

2° ‘M is the class of all algebraically closed fields, B is an
algebraic closure of 4, Mor(ﬁ,g) is the =et of all embeddings
from A into B. »

3° N, is the class of all distributive lattices, MU 1is the set
of all Boolean algebras, B 1s a Boolean algebra generated by
a lattice of sets in Stone representation theorem isomorphie to
A. Mor(A,B) is the set of all embeddings from A into B pre-
serving end-points 0,1 (if they exist in A).

The following proposition sumariszessome simple properties
of this notion:

Pbosition 1.3, 1° It (B,p) is a completion of 4, B'< B, BeM’

and p:A __";13_' then (B’,p) is a completion of A. _

2° 1r A has'a completion (B,p) then A has a completion (C,q) so
that q is an inclusion.



3° Izroge‘m: s P2A —> C, and A has a completion in ’m_’., then
A has a completion (B,p) for some B<C, Be M . |

4° 1¢ A LM J.:Al-ﬁ Ay, and (B159)5 (By,9) are comple-
tions respectively of A),A,, then there is @3 :B) —» B, such
that qL= p3p.

Proof: Properties 2° and 3° follow by the abstractness d’f the

class 'm: . '

4° 1_31 __L, 22 In the displayed diagram , the map

pr /’ lq r=qKk is constructed first, ‘thenp.
oK

In some cases it is possible to strength the property 4° in
the previous proposition. '

Theorem 1,4, Assume 'm.' is closed under nonempty intersectins of
decreasing chains of models in 'm,' , and suppose all homomorphisms
in question are injective. Then for any completions (B,p), (C,q)
of A € M,  there is an isomorphism oL :B—">C so that p=q.
Proof: Let (B,p), (C,q) be completions of A, and let 0(:_}2 —C
@:C——>B Dbe such that dolp=q, (3=p which exist by the defi-
nition of completion. If one of -(’/5 is not an isomorphism, then
it follows that one of &L, 3  1s not onto. Let B’= AL(B). Thus
B°C B, and as one of o, 3 is not onto it follows B’#B. Let
acA. As  dp=q, Pq=p - we have >eLp=p, 80 pa = P.(pa ,
hence pa € B°. Therefore, p:A —pB’. Since pL:B —=» B° it
follows B°@ T/ . Hence,
(1) (B’,p) is a completion of A.

Now we construct a decreasing sequence g-go 2 -B-l cee R Q’g-.,
where 3<|Bl+=k,- i.e. k is the cuccessor cardinal of card(B).
Let _121-3". Assume (Qg.p) has been comstructed for all ¥<A , A<k.
Then By ¢ B, and (Bysp) is a completion of A, If A=§+1 B,
is constructed in the same way, as B° has been constructed from B.
If a<k is a 1limit ordinal, let B, ,Q Bye As for all §<a

P:A —s B, 1t follows that B* is nonempty, thus by assumption
on TV we have B,& m , and (By»p) 1is a completion of 4.
Therefore, D= By 1s nonempty, and (D,p) 1is a completion of A.
But for r<k B}"By-l" #, so ocard( !\‘J“ (B'—B!_,,l)) > k, what

contradicts to |[By| < k. Hence, oC,P are onto, thus they are
isomorphisms, [ ]
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Corollary 1,5, Assume ‘m: is as in the previous theorem. Then all
completions of A €M are isomorphic.

‘
Qopollary 1,6, Assume ‘M 1s as in the previous theorem, and

let 13514-»52. Iz (By,p), (B,,q) are completions respectively
of Al’ 4, then there is an isomorphism Psgl—"—vgz such that q= Pp.

Proof: Observe that (B,,p), (B;,q{) are completions of A,.

2, Embeddings of fields,

Let P, E, £ be fields such that FgE, P cK. Then an embedding
d:E —> X 1s an Y-embedding 1ff &L fixes F pointwise, i.e.
¥xeF c[x=x. Now we prove a theorem on F-embeddings by use of
model theoretic methods. Notation and all notions from model theory
are as in £zl .

Theorem 2,1, Let E,F be fields, F «E, E is algebraic over F, and
let K > F Dbe an arbitrary field. Assume for all fields L,

F cL<E such that |L:E|< o, there exist an Frembedding

of L into K. Then there exist an F-embedding of E into K.

Proof: Let JCF= &L U{a: a€F}, where &£ 1s the language

of the theory of the fields, and X= (g,a)“F, g:(g,a)a‘r, and

M =Th(K) U A(E), where A(E) is the diagram of E. Without
loss of generality we may assume that A(E) is closed under con-
juncfions of formulas.

(1) M 1is a consistent theory.

We prove (1): Let .‘C(gl,...,pn) € A(E), where ‘C(xl,...,xn)
belongs to #£y, and Dyseeesby €E. Let I=F(by,...,by) be the
subfield of E generated by bl,...,bn.and F, Then F &L =E, and
since all elements bl,...,bn are algebraic over F it follows
|L:F| < oo , thus there is an F-embedding o(:L —> K. As o is an
P-embedding it follows that &£ is an embedding from 1L into K,
also. Hence, for K’=(k, biseees by), K7 is a model of

Th(K) + 2(21,...,211). By Compactness Theo‘rem " 1is consistent,
i.e. (1) holds.

~, H K\_\\\ ‘ Let (El’ké)esE be. a model
A \ S~ - of M. Then ) gl'!;, i.e.
K = L — 3 K, is elementary equivalent
\5 ‘ ' to K, so there is a model
= / . . H such that K < H, and
: .13 x5 =, H. Since '



(Sl'zkze)ed: E A(E), E is embedded into K;, and therefore into H
also, say by p . We prove p(E) S K. Let e <E. Since E is alge-
braic over F, there is a polynomial p over F so that p(e)=Q. Let
dl""'dn be all distinct roots of p in H. Then H =Y , where

Yy is Axqee.x(p(xg)=0A... Ap(&):OAqﬁl‘}‘“xi#xj). As E<H
it follows 5#1’ .+ Hence, all roots of p in H belong to K. As
p(p(e))=0 it follows p(e)el. Observe that @:E —> K is

an F-embedding - since p :}3 — 5 is an embedding. This finishes
the proof of theorem. !

As a consequence of the last theorem we prove that an alge-
braic closure of a field F is a completion of F in the sense of
the first part of this paper, see also Example 1.2.2°. For conve-
nience wé repeat the definition of algebraic closure of a field.

Definition 2.2, ILet F, E be fields, and assume F < E. Then E is
an algebraic closure of F iff
1° E is algebraic over F, 2° E is algebraically closed.

Theorem 2,3, ILet E be an algebraic closure of F. Then (E,p) is
a completion of F in respect to the class M of all algebrai-
cally closed fields, where p is the inclusion. The converse also
holds, that is if (E,p) is a completion of F in respect to m’,
then E 1s an algebraic closure of F.

Here, for F&M , E €M , Mor(F,E) is the set of all
embeddings from F into E.
Proof: Suppose E -is an algebraic closure of F, and let p:F — E
be inclusion, Obviously, parts 1° and 2° in Definition 1.1. are
satisfied. So we prove 3°. Let K be an algebraically closed field
and q:F —> Kk an arbitrary embedding. However, without loss of
geherality we may assume that q 4s the inclusion. To prove that
E 1is P-embedded, 1.e. that there is o :E —» K with dp=q, into
Eccording to the Theorem 2.1, it suffices to prove that for all
intermediate fields L, P s L €E, |L:F|<oe , L 1is F-embedded
into K. So let |L:E|<ee, P <L <E. Then there are a,,...,a,€E
algebraic over P so that L= F(aj,...,a)

By induction on n we prove that _lj(al,...,an) is P-embedded
into K.

Assume t:g(al.....an_l)—,g is an P-embedding. Let p(x)
be an irreducible polynomial for a, over _lj(al....,an_l). Let
b= ¥(ay), i=1,...,n-1. In that case we have



€ :2(aj,ee0,8p) — B(by,eea,bpy ). >

Then p°(x), the image of p(x) under ¢ 4is also irreducibdle
over g(bl.....bn_l). as otherwise we would have for some polynomials
pi. pé p'-pipé. and 80 p=p;p,, a contradiction. X is oclosed, s0
there is b &K such that p(b )-0. Then there iS V;t such that

:1(.1.....3 ) — I(bl""'bn)' Y(agy)= by, i=1,...,n.

The existence of 1 4 is provided by the following well-kmown

Lemma 2.4, Let H, X;, X, be fields such that E & LK. Let
ac[l, ba xz. If a,b are roots of the same irreducible polynomial
p(x), then there is an E-isomorphism ai1H(a) — H(b), A(a)=db, H(a)
is a subfield of K, generated by HU {a), and similarly for !(b),

Now we prove the converse of the theorem,

Let (E,p) be a completion of P, where p is an inclusion. Pur-
ther, let X be an algebraic closure of ¥ eo that p:? — K. The
class M of all algebraically oclosed filelds is closed under inter—
sections of decreasing chains, thus by Corollary 1l.5. E and K are
P-isomorphic, hence E is also an algebraic olosuro of F.

As a consequence of the previous theorom we have thatall re-
sults in 1St section are applicable in case of fields and algebrai-
cally closed fields.

We observe, also, that the proof of Theorem 2.1, may be obtai-
ned by use of ultraproducts, or saturated models instead of Oompa;
ctness Theorem,

34 Galois Theory, infinitary extensions.

In this section we shall.présent a model-theoretic approach
in determining infinite algebraic extensions of fields. The only
real hardle to be overcome is the existence of suitible extensions,
first of all the existence of an algebraic closure. However, we shall
give an outline only, providing proofs at main steps, as we do not
pretend to have an original contribution in this section. Therefore,
the value of this part is of methodological character only. As a guide
we had .in mind the first part of [4].

Theorem 2,1, Every field is a subfield of a closed field.

For the proor of this theorem the following lemma is needed.
Lemma For every field F and every nonconstant polynomial p(x)
over P there is a field ¥, P <P’ and p has a root in F’.
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00f of Lemma: Let q(x)lp(x) be a nonreducible polynomial over
R. Let P’= P(x1/(q), (q) is the ideal of F(x]. generatcd by q.

Proof of Theorem 3.1, Let C= {o 1 X3 th]} be a set o.f.’\new con-
stant symbols so that for p#q cp and cq are distinct constant sym-

bols. By above lemma the set T= Theory of fields + A(_) +
{p(o )=0: pel‘[x‘)} is finitelly consistent, so by Compactnesa Theo-
rem there is a model H= (H,c )Pdl’l’l of T, Then F is embedded into H,

and every polynomial p over E of degree 2 1 has a:root in H.
Hence, there is a sequence F=F chclhs .. » B1=H, s0 that

every polynomial p over 1‘1 has a root in 2441 Thus, K= U E; 1s
algebraically closed, and F < K.

Theorem 3.2, Every field F has an algebraic closure.

Proof: Let K be an algebraically closed field, F < K (such field
exists by Theorem 3,1.). Then the subfield E of K with domain E=
{acks a 18 algebraic over g} is an algebraic closure of F.

Theorem 3,3, If E is an algebraic closure of F, then E is a minimal
algebraically closed field extending F. :

Proof: et Fc A CE, A is an algebraically closed subfield of E.
Let acA and pe&F(x] be irreducible polynomial such that p(a)=0, As
A is closed, p splits into linear factors, p(x)= m(x-ao)...(x-an),
me€P, a;6 A, But a; are roots of p(x) in E also, 50 by the uniqueness
of factorisation of polynimials (P(x]is a unique factorization dom-
ain) 1t follows that a is one of 85000008y 1, 1.6, a€A,

Theorem 3,4. Let E be an algebraically closed field and ¥} E. Then
E is an algebraic closure of F iff E is a minimal algebraically
olosed extension of 2.

Proofs By theorems 2.3, 3.3.

Theorem 3,5, Let E be an algebraic closure of F. Then for every al-
gebraically closed field H such that F c H there is an F-embedd-
ing f3: E — H.

Eroof: by Theorem 2.3.

Zheorem 3.6. 1° ILet 2, @°, be algebraic closures of fields
2, @ respectively. Then every embedding f£:P —> G can be extended
to an embedding g: "' — G°.

2° Every two algebraic closures E, K of a field H are isomorphic.

Broof: Follows by Theorem 2.3, Proposition 1.3, and Theorem 1.4.
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Theorem 3,7, Let E be a field. Then E is not a finite union of
it’s proper subfields.

Proof: Assume E= K, UK, U ... U K,» K; are subfields of E.

case 1° Suppose E is finite., Then the multiplicative group of X is
cyclic, say generated by a. Then for some i a &li. s0o B s li. a
contradiction.

case 2° Suppose E is infinite. First we prove the following

Claim: Let G be a group and GyseeeyGy 1t°s subgroups. If G is fin-
ite union of some cosets of Gl"“'Gn then for some ksn IG:0k|< co,

Proof of Claim: Suppose for all ken [G:Gy =0, and let

1
G= Clu ees U Gilu C% U oo UC:n where cg' is a coset og Gi‘ As
|G:G 1= e , there is a coset C of G, so that Cf c%. j€r,. Purther,

cn 0%= #, C<G, hence C SC%U eee U Cg » thus for some yg@G
n

C= 6,7, and 6, € 63y 21U ... U c;‘ny‘l. Por some x; C}= Gx,
therefore G= Siu ees U S: where S;' is a coset Gi’ Thus G is a

n
union of cosets of subgroups 62,..., Gn. Repeating this process we

obtain cosets T7,...,T] of G, 80 that G= T7 U ... U 0. Thus
[G:G,|< 00, contradicting our assumption.

Now we return to the proof of the theorem, By Claim, for some
izn (E':Kil< oo, where E° denotes the additive part of the field
E. Therefore, K.{ 1s also infinite. Let acE-K,. If k;,k,<K,, ky#k,,
then K+k1a;€ K+k2a, 80 \K':Ki|= oo , a contradiction. Thus, E-K,= g,
i.e. E=K,. 1

The following theorem is the main step in this approach, and
it is due to M.Isaacs. It’s proof is strongly based on the Theorem 2.1.

Theorem 3,8. Let F §§1.§2 be fields, E,, E, are algebraic over F.
Let P;= {pePE(x): p has a root in E,;}. Then E; % E, iff P,=P,.

Proof: First we prove

Claim: ILet E be an algebraic extension of F so that for all a€E
the minimal polynimial m, of a over F has a root in a field K. Then
there 138 an F-igomorphism f£:E —> K.

Proof of Claim: By Theorem 2,1, it suffices to prove the claim in
case [E:F|<so. So assume |E:F|<°°, and let K’ be an algebraic clo-
sure of K. Let J be the set of all F-isomorphisms of E into K”.Then
[Jl<w since |E:F|<co. For f€J we have F <f 1(K) € E. Further,

1) B=ggy £ H(E).
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Really, if a€&E let m, be a minimal polynomial of a over F.

By assumption m, has a root b in K. There is an P-isomorphism
h:F(al — F(b], and therefore there 1s an F-embedding g:)h, &:E —KJ

So geJ, and aeg X(K), i.e. (1) holds. \

Now, by Theorem 3.7. for some f&J E= . ‘1(x) i.e. I(E) < K.
This is the end of the proof of C/laim,

Now we continue the proof of the theorem.

Ve have that for each acE, m, has a root in E,, thus it has
a root in E,. By Claim there is an P-isomorphism f:E; — E,.

Similarly, there is an F-isomorphism g:_E_z'——-y E;. et
L= gf(E,). Then FSLSE, and L is F-isomorphic (via gf) to E;. We
show I=E,. Let a €E;. m, has exactly (say)r roots in E,, so, as
L 1s F~isomorphic to El, o, has exactly r roots in L. Thus, a€lL, i.e,
El.-I.. Hence, g is onto so g is an F~isomorphism from E, to El’

Corollary: If E is an algebraic extension of F and every nonconstant
Pe F(x] has a root in E, then E is an algebraic closure of F.

Proof: Let E;=E and let E, be an algebralc closure of F. Using the
same notation as in the previous theorem we have P1=P2, so by the
same theorem El and 12 are F-isomorphic.

Corol : Let Fc E,,E, be fields, BE,, B, are algebraic over F., If

=€2103 ) s
E, E, are elementary equivalent over E, i.e. (gla)aﬂ, = (Ez,a) aeP?
then E 52 are F-isomorphic.

h_o_;_ Observo that (E;,a),cp 2 (Byea),p implies P=P,.
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THE MAXIMAL SEMILATTICE DECOMPOSITION OF AN n-SEMIGROUP

Pano KrZovski

The purpose of this paper is to generalize the notion of the
maximal semilattice decomposition of a semigroup to n-ary case.

1. Some definitions. Let S be an n-semigroup i.e. an algebra
S whit an associative n-operation

(xl,xz,...,xn) > X X Xy

S is called an n-semilattice if S is commutative, idempotent and
satisfies the following identity
i, i i, 3y 3,  d
1 2 k _ 1 2 k
X, Xy cee Xy = x
where il+iz+"'+ik = j1+j2+...+jk =n, iv’jv > 0.
A congruence o on an n-semigroup S is called a semilattice

congruence if S/q is an n-semilattice.
'An ideal I of S is said to be completely simple iff
xlxz...xneI@xleI or xzel or ... or xneI.

A subset F of S is a filter in S iff I = S\F is a completely
simple ideal.

2. Characterisation of semilattice congruences whit comple-
tely simple ideals.

2.1. Let 1 be the set of all completely simple ideals in S.
Then the relation o defined by '

Xoy & (YI€1:)(x,yE€I or x,y€eI)
is a semilattice congruence.
Proof. Since the elements of I are completely simple ideals,
one easily obtains that o is a congruence on S; so it remains to
\ !

show that a": is a semilattice congruence. Let I €: and X1r¥Xys- ..,xne S.
Since I is a completely simpie ideal we have that

i
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n ,
X" e I@x\el, x1x2"‘xnel<=> xiix. ceeX, €1

i i |
2 n 4
where v » iv’ is a permutation of {1,2,...,n}; ‘-\
i, i i 3 3j 3 )
i 2 k 1 2 k
X TR, Teeuxp €l & Xy TRy Te.axp eI,

. i, +dy) #eet i = 3) + 3, 4ot 3 = 1,
which implies
n .
X OX; X Xop.eoeX XOX, X. o..X. }
172 n 1,71, i,
i i Le 3y 3 ]
1 2 k 1 2 k
1 2 reeX T OX) TRy Tlllxp
i.e. o is a semilattice congruence.ﬂ

Let us denote the congruence o of 1.1.by ag. We shall show

now that the converse of 1.1. is also true:
2.2, If o is a semilattice congruence on S, then there is a
family I of completely simple ideals in S such that o = Ay
Proof. Let a be a semilattice congruence on S and let us
associate to each element x€ S the subset Fy of S defined by

F. = {ye S|xax™ Ly},

The set F, 1s nonempty and a filtre in S. Namelly it is
clear that X€EF,. If Uy sUyy e U  €EF,, then we have that

xax™ Ly axP"2 (x01
S0 we get n

(n-1) (n-1)

un-l) un

Xax U;uy...u, SO Uju,.. .uneFx. Cc'mversely let

uu,.. .un€ Fx' Then

n-1

n-1 n-1_ _n-1
XaX uju,...u

n-1
aX 4,u,...u.u axu ax u_,

n n n n

n-1 n-1
i.e. u €F,. Since x U u,...u aX uiluiz'”uin where v -+ iv,
is a permutation of {1,2,...,n} we get ul,uz,...,unGFx, i.e.

Fx is a filtre.

Put I = S\F, and let I, = {lexes}. So r, is a set of
completely simple ideals in S. We shall show that o = ay
a

Let yoz, I € I and y¢I . Therefore y€ F, i.e. xax™ 1y, Since

n-1 n-1
X “yax 2z we have that zeFx, i.e. z¢Ix. We have thus shown that

agaz . Conversely, let Xa, ¥; then x€ Fx
a

a
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implies Yé.Fx: i.e. xaxn_ly. For the same reason yer implies
yuyn-lx. But since o is a semilattice congruence, we have

n-1 1

"'y ay®™?'x and xay.0

Let us note that:

2.3. If ):1 and 22 are sets of completely simple ideals and
sér,, S¢£2, then uzl = czz if and only if I, = I,.0

3. The least semilattice congruence.

It is clear that the intersection n of all semilattice congru-
ences is a semilattice congruence. So:

3.1. xny iff for every completely simple ideal I in S
X,y €I or x,y¢ I. a

Now we shall give another description of n. Let us denote
by N(x) the minimal filtre in S containing x, i.e. N(x) is the
filtre generated by x.

A direct consequence of 3.1. and the definition of N(x) is

3.2. xny & N(x) = N(y).0

The classes of the congruence n are called n-classes. If
X €S, then the n-class which contains x is denoteed by Nx' With
this notations we have that:

3.3.1) NX X ...x = Nx, X, o..x. ! where il,iz,...,in is a
172 n i 7i i
1 72 n
permutation of {1,2,...,n}.

II) an = Nx.

1) N, t1. 12 ik iy 3 i
X b4 R ¢ =N 1 2 k . .
1 2 k Xy x2 ceeXp Ty where i, + i, +...+

+ ik= jl + j2 +...+ jk= n.
IV) N, is a subsemigroup of S.[

As in ‘the binary case S is said to be n-simple iff S has no
proper compl'etely simple ideals.
\



30

For the n-ary case, and in a similar way as in the blnary case,
we can prove some analogous properties for the semilattice decompo-

\

sition, a part of wich is formulated below.

A constructive way for abtaining N(x), which has an indu};tive
nature, is given with the following statement:

3.4. Let x be an element in S. Let N (x) = {x,xn,xz(n_l)+l,...,

k(n—1)+1 .} and let N,
e.{.ements y in S such that Nn(X)(\ J(y) # &, where J(y) = yUS yU

Ust2ysuU...uys?tlus®lys® !, Then N(x) = U N (0.0

(x) be the n-sem1group generated bv all

3.5. If I is an ideal of some n-class of an n-semigroup S,
then I has no proper completely simple ideals.

Proof. Let S be an n-semigroup, z€ S and I an ideal of I\Iz. It
will suffice to prove that I is the only filtre of I. Let F be a
filtre of I, a€F and let

2n-2

= {x€s]|a X E€F}.

We shall show that T is a filtre of S. Let XyrXgreeerX € T;

then a?""?x, €F for i = 1,2,...,n. By the inclusion FEICN, we

have that NaZn-zxi = Nan-lxi = inan-l =N, which implies
a2n-2 2n-2 2n-2

xi, x;a €I. Since a X., a€F it follows that

(a2n-2 2n-2 _ a‘2n—2 2n-2 2n-2

)EF and x;a e€F. Nz is an

n-subsemigroup of S, so (an'lxlxzan'l)an_2

xi)a (xia

éNz which implies

N_n-1 n-1_n-2 = N_n-1 = N_,
a xlxza a a X%, z
2n-3

and finally a xlxze I. Since F is a filtre, then

2n- - - - -
n 3x1x2)a3n n (azn le) (xzaZn Z)an 2€F

xlxze_r-‘. By induction, if follows that T is an
n-subsemigroup.

ala

implies a2P~3

Let x1x2"‘xn€ T. By the inclusion F;IQNZ we have that

2n-2 -
a,a xlx,_,...anNz and N(a)gN(an 1xl) gN(an 2x xz)c. ... € N(ax 1X2+ -

n-2
<X )< R(a Xy XgeeoX))

N(a) = N(z2).




31

So we have shown that

n-1 n-1 n-2
Xy %53 , a xlxz,...,axlxz...xn_IENz.

since J is an ideal it follows that

a2n-2xi' xiazn_z, a2n_3x1x2, v ,a“xlx2 e.x _EI.

2n—2x

a

We have that a 1%+ +Xpr a€F, so

2n-2 2n-2 _ _n-2,.n 2n-2
(a X Xpe..X )a = a (@ %, x,...x 1) (xa JEF

172 172
.which implies anxlxz...xn_l, x.a?"2¢F. But then

n
a?h2(x a2""2) - (aZn-an)aZn-zeF and so a2n-2xn€ F,

n
i.e. anT. By reapeting this procedure with a, anxlxz...x
we get xn_le T. Thus T is a filtre.

n-2%n-1 €F

Ie is clear that FET<I. Let x€TNI. Then azn_zxeF. Since
F is a filtre, it follows that x€ F. But from aeNz(\T it follows
that NS T. So TNI = I and finally F = 1.0

As a consequence of 3.5 we conclude that

3.6. Every n-semigroup is an n-semilattice of np-simple

n-semigroups. 0

3.7. If I is a completely simple ideal of an n-semigroup S
and if Ian = @, then IN N, is completely simple.l

The following is a consequence of 3.7.

3.8. Every completely simple ideal of an n-semigroup S is a
union of n-classes.[

If YS denotes the set of "all n-classes of an n-semigroup S,
then the following holds:

3.9. If I is a completely simple ideal of an n-semigroup S,
then J = {NxeYsler} is a completely simple ideal in Ys. Conversely,
if J is a completely simple ideal in Y_, then I = {xESINXE J} is
a completely simple ideal in s.0
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The dual space of reductive groups over local fields

M. Tadié

Let G be the group of rational points of a connected
reductive group defined over nonarchimedean local field k .Then
G 1is a totally disconnected locally compact group.

If H 1is a Hilbert space and 7 a homomorphism from G
into the group of all unitary operators on H such that the map-
ping g * T(g)v is continuous for all v ¢ H , then (y,H) 18
called the unitary representation of G . If H has no non-
trivial closed G-invariant subspaces then we say that (v,H) is
irreducible unitary representation of G .

The Hecke algebra of G is denoted by H(G) . It 1is the
algebra of all compactely supported locally constant functions on
G under the convolution. Let

m(f) = [f(g)T(g)dg
G

for f € H(G) . Then H is H(G)-modul and H" = q(H(G))H is
H(G) -submodul. If (7,H) is irreducible then V 1is a simple

H(G) -modul. In this way the problem of classification of irredu-
cible unitary representations of G can be reduced to .the purely
algebraic problem of classifying certain classes of simple

H(G) ~modules.

Let G denote the dual space of G . It is the set of all
unitary equivalence classes of irreducible unitary representations
of G . Let Ll(G) be the Banach algebra of all integrable
functions on G . For f e Ll(G) set

||f|l=_5up{“"(f)lllﬁ . (m,H) e G)

Then H ” is a new norm on Ll(G) and completion of Ll(G)
with respect to this norm is denoted by C*(G) . Then C*(G) is

* .
called a C -algebra of G . Denote by C'(G)® the set of ‘all
equivalence classes of irreducible * ~-representations of c*(g)
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Then there is a natural bijection from Cf(G)'~ onto G . Let
cL(T) = {o eb*(G) ; 42& ker m € ker o} \

for T $'C*(Gf'. Operator C& defines so-called Jacobson to-
pology on C*(Gf~, By using the natural bijection 8 becomes
a topological space.

Note that we can describe the tbpology of (e by algebraic
tools, namely in terms ofcchafacters.

Now we shall describe the topology of dual space of
SL(2,k). In [0,1]x{0,13 we identify (t,0) and (t,1) for
0<t<1 and let J denote the space obtained by this identi-
fication. Then SL(2,kf\ is homeomorphic to the disjoint of two
copies of J , countably many tori {z ecC H |z|=1} and count-
ably many points. Tori and two copies of J correspond to ir-
reducible subrepresentations of the unitary principal series
and the complementary series, points correspond to absolutely
cuspidal irreducible representations. Note £h§t SL(2,kf is

not a Hansdorff space.
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morphic Forms, Representations and L-funkctions,
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*
|2| Dixmier J., Les C -algebres et leurs représentations,
Gauthier-Villars, Paris, 1969.

*
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covering group of SL(2,R), Glasnik matemati&ki 7(27) (1972),
35-48.

|4] M11121& D., On C*-algebras with bounded trace, Glasnik
matemati¥ki 8 (28) (1973), 7-22.

Is] Silberger A.J., Introduction to harmonic analysis on
reductive p-adic groups, Princeton University Press, Princeton,
New Jersey, 1979.
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Novi Sad 1981 ON SOME FINITE GRUPOIDS WHOSE

EQUATIONAL THEORIES ARE NOT FINITELY BASED
Valentina darizenov

ior an alzebra 5&, L($) denotes its lanruage. By the
eouational theory of an algebra dt ve mean the set of all iden-
tities of the form tl=t2, where tl and t2 are terms of the lan-
fuage L(ﬁt), which are satisfied in . Equational theory of
#f will be denoted by Id(Ft). A basis of the equational theory
Id@@ ) is every subset of it from waich in equational logic every
identity from Id(#t) can be derived. R. C. Lyndon proved that
the equational tueory of every two-elerent alyiebra has a finite
basis ([2)), and that there exists a finite al;ebra of finite type
whose equational theory is not finitel; based. He gave the example
of seven-element algebra of fype <0,2» with such property ([3]).
Later V. V. Vi in ([5)) found four-elerient rupoid and V. L.
nurskiz ([4]) found thuree-element grupoid, both havinec the mentioned
property.

vie shall give an example‘of n-eleuent grupoid, where n is an
arbitrary natural number greater than 3, with equational theory

which is not finitely based.
fheorem 1. Let & binary operation on the set An={§°,al,...,
a“_“ be defined by (
3,17 if i5>321;
ags otherwise.

A
If n )%, then the equational theory of the grupoid j*n=(An, *) is

not finitely based.

i
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Proof. We shall not give a complete proof, because some

parts of it can be proved as in [5]. °

By a left-associated term we mean a term whose all lé,lft
parentheses are at the very beginning; in this case it is of the
form (...((xi $ X5 )'xi ) eee)ex. . The value of such term in thé

: 1 2" 13 1s ,
algebra *n can be easily determined, i. e.
ais+l’ if 11>i2)... is_lbis}l;
(-.-(ail'aﬁ- )'..-)’Bi =
2 8 85 otherwise;

where a]._l,...,a,_-L € A. Therefore the following identities belong
5 8 .
to Id(F_):
(1) (x-3)y=x-y,
(Iﬁ) ((-'-((x'yl)’ya)' ---)'yk)' yl=
eoe . . “eees)" . h

(Cees((x yp(l)) yp(2)) ) yp(n)) Ip(1)» Where k¥ 2 and
p€Sk (Sk is the set of all nonidentical permutations of the set
f1.2,....x} ).

If the identity t1=t2 belongs to Id(.'kn), then at least one
of the following conditions is fulfilled:
(a) t) and t, have in '.'ﬂ:n a constant value aj,
(b) t, snd t, are left-associated ternms,
(c) None of. the terms t; and t, is left-associated.
Denote by Id'(.'ﬂ:n) the set of all identities t=t, from Id@ft )
which satisfy (b) and do not satisfy (a). Similarly as in [5] we
can prove that every set of identities from Id’(:ﬂ:n) whose terms
on both left and right sides have at most m occurences of variables

. p. d

can be derived from the set Im= {Iju Py <m{Ii‘ pesi] ( j‘.-‘)¢si-3‘¢).

Assume that the equational theory .Id(ﬁ:n) has a finite basis
& . Then from the set &'=dD NId’(R ) all identities from

1a°(X ) can be derived. Since ¥’ is a finite set, the number
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of occurences of variables on each side of the terms from 3?

is less than some fixed natural number m. Thus, from Im we can
derive all identities from Id’(.kn). However for pGSm the iden-
tity (Ig) belongs to Id’(‘ﬂ:n) but it is not derivable from Im.
From the obtained contradiction it follows that Id(.,ﬂ‘n) is not
finitely based.

Remark. Grupoid f 4 from the previous theorem is isomorphic
to the grupoid +]01 23 from [5]. The function f-(go Sl 52 ;3)
ojo oo o is corresponding isomorphism.
l1jloo10
2loocoo
310310

The following theorem is immediate consequence of Theorem 1l.

and (4.

Theorem 2. For each natural number n)3 there exists n-element

grupoid such that its equational theory is not finitely based.
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ON CAUCHY SEQUENCES OF A VALUED FIELD *
Jusuf Alajbegovié

1. Introduction

The purpose of this note is to prove several statements
what will show thw relationship between the notion of the
Cauchy sequences and the notion of the distinguished pseudo-
-Cauchy family in a valued field.

The idea for this occured in clearing out some Aifficul-
ties appearing in the proof of Ribenboim’s characterigation

of the valued fields which are complete by stages.

2. Basic notions

We first list the necessary definitions and background

results from [5] .

Definition 1. An additive abelian group ]' is called totally

ordered if there is a total ordering ,{" on] such that :
(VA ALY el ) oL&p =L+ p+y
A subgroup A of a totally ordered abelian group 1 is
called isolated if: (Vyel )(VIieA ) o¢y<s > yed .
The rank of a totally ordered additive abelian group
is the ordinal type of its set of nonzero isolated subgroups

ordered under 2 .

*
This paper is , with complete proofs , in print in the

Radovi ANUBIH IXIX/20 .

i

\
3
\
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Definition 2. A valued field is a pair (K,v) where K is a

field and v is mapping from K onto a set FU{OO} ,where I_\'
is a totally ordered additive abelian group and oo;éf is a|
symbol such that Y +co=oco+) =oco+too=oo and y<oo for °
each Ye[' ,for which the following conditions are satisfie&:
1) v(R\0}) =" , v(0) = os 3

ii) v(xy) = v(x) ¢ v(y) /for all x,y in K

iii) v(x+y) > min{v(x),v(y)} for all x,y in K .
Group | = fv = v(K\{0}) is called the value group of the
valuation v , and the rank of the group T v is called the
rank of v . The set A, a-{'xGK : v(x)> O} is a subring of K
and K is the field of fractions of A, . It is well known
that there is a bijective correspondence between the set of
prime ideals P of the ring Av and the set of isolated sub-
groups A of totally ordered group Pv given by

P> v(Ap\P) or by Ar> v'l({ y €l',: SeA §<y yu{o}

such that PGP’ implies A2’ where A correspond to P
and A’ to P’ . Also,if PSP’ are prime ideals of A, and
A2 A’ are the corresponding isolated subgroups of Pv ,
then (AP/P’VIVP) is a valued field ir vP./P is defined by:
(¥x €ANP) vp./P (x+P) = B(v(x)) ,
where §: A->A/A’ is the canonical mapping.
Avalued topology T; on a valued field (K,v) is the
-topology with the open neighbourhoods base for O consisting
of all the sets V,(0) -{xex : v(x)>x‘} sy y€l, ywhere | is
cofinal in [’ vy + A valued field (K,v) is called complete if
the field K is complete in the topology ff; .
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Definition 3. A family (a,)..p ©Of elements from a valued
field (K,v) is called pseudo-Cauchy (or P.C.F.) if the set
T is well ordered,without the last element,and :
(37, e I(VZ, 7, 77e D) T, 7<% 7" v(a-18) v(a-a)
If the family <ar>r e satisfies also the following two
conditions:

i) (VY7Z7em a,€ A,

ii) { X€K : T,4T = { & v(x)} is a prime ideal of A, ,
distinct from M -{xeK : v(x)>0} ,where fz_- v(ar_- a”)
for 7,&¢7< 7°°, then {az), n is called the distinguished

pseudo-Cauchy family (or D.P.F.) of a valued field (K,v) .

It is not difficult to show that a P.C.F. (a, y . n with
elements in A, is distinguished if and only if the set <Y;'>r->2‘=
is cofinal in a nonzero isolated subgroup of T v

If T is a well ordered set without the last element and
<a?'>2'eT a family of elements from a valued field (K,v),then
an element a €K is called pseudo-limit of the family <a?‘>re'1‘
if there is an element 7 ,€T: 2, & T 2*°'= v(a-ar)< v(a-ar,).
In that case the family <ar>ret[' is called pseudo-convergent

to a , and we write a € Ps.lim a,
Zem,(K,v)

Definition 4. A valued field (K,v) is complete by stages if
the following two conditions are satisfied :
i) (VP S P’ : succesive prime ideals in % )
(AP/P’VP’/P) is complete valued fieid 5
ii) If T is a well ordered set, <P,;>Z,GT a family of
prime ideals of A, and {87Dpep @ family of elements
in A, such:'that : (¥7',7%€T) 7<SZ % Pp <P A a-8 €F ,

then there i\s an element acA, : (¥ZZe 1) a—arePr .
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3. Some remarks concerning the proof of Ribenboim’s theofgm

In [4) and [5] Ribenboim stated and proved the:
following theorem : ‘
Theorom A A valued field (K,v) is complete by stages if and
only if every D.P.C.F. in (K,v) has a pseﬁdo—limit in K .

The end of the proof of that theoreﬁ in [5]) is incorect,
as it was shown in [1] ., and an earlier proof of the author
in [Ll--) is incomplet_e . Proposition 3.1..and its proof clearo
out this situation. We first g:"we a part of the statement
contained in the Remark 2.p.48.[6] .

Lema 3.1, ILet T = 'w(a) denote the set of ordinal numbers
less than a limit ordinal A , {Mg),.qn & family of ideals of
a ring A , and <a?>reT a family of elements from A such that

’ /
(Y ,7eT) 2<c?'=> M., < Mr—A a-a €M, .

Then there is an element 7, € T such that: (Y2 e&T) a.-a~ €M,
4 ~ / L4 /
or ((3T’cofinal in T)(V7,Z/€T’) 7<? = a -8, & Mr\nr, .

Proposition 3.1. Let (K,v) be a valued field such that every

distinguished pseudo-Cauchy family in (K,v) has a pseudo-limit
in (K,v). I£ T is a well ordered set,without the last element,
<Pt'>ve‘1‘ a family of prime ideals of A and <ar>re'1‘ a family
of elements in Av such that :

~ / /
(¥z,z’em) ¢ 7' => P,,SP. A a-a_ €P. ,
then there exists an element a&% such that

a-areP?, for all ZeT .
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4, Cauchy-sequences and D.P.C. families in a valued field

Theorem 4.1. Let (K,v) be a valued field , rank(v) = 1 , and
<‘n> new Cauchy-sequence in (K,v) with a, €A, for all new

Then the following holds :

((3Inew) ay = lim a

. n YV((3N - cofinal in w) <an§

new,(K,v) 45 D.P.C.F. in (K,v) ) .

ne N

Proof Since by assumption rank(v) = 1 , we can choose an
increasing sequence ()f n> of positive elements in I'
such that <Y'n> new
M, -{xeK s vix) > X'n’] for all new , <Mn>neuo is the

basis of open neighbourhoods for the element O in the valued

new v
is cofinal in [’ v * Thus , if we denote

topology on (K,v) . The sequence (an§ is Cauchy in (X,v),

new
hence :’ (Vnew)(ainew: n<in)(\7‘mew) idm=>a; -8 €M .
n

Thus we tan choose an increasing sequence. {in> and a

new

sequence (b , with b_ = a,
n’ new n

i for all new,such that:

n
(¥n,new) n<n’ => b - ainleMn,
In particular Y O ; ; T
in new 18 cofinal in i v ° Lema 2.1.

implies that either there exists some n;ew with bn -bnE Mn-
1
for all new , or there exists a set N cofinal in w such

that bn'bn'eMn\Mn’ for all n<n’ in N . In the first case

we take n = i , hence a . = ;iél:»an , since v(bnl- b, )>'J/;1
for all new and <"§>nw is cofinal in I‘v .

In the second case , (b ) is obviously P.C.F. in (K,v) .

necN
Furthermore,the family (b > . ¢y 1s distinguished since :

(VnGW) n<!"l'.% n<in< in' = afl:l< Yinr $ ai - ai '6 Mi , =
. n n n
Svlay —ay > SN e v - b0 >0
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v ' » and the theorem is

Thus , <bn> neN is cofinal in I
established .

Theorem 4.2. TLet (K,v) be a valued field with the valued
topology satisfying the first axiom of separability .

Ir <an>new is a Cauchy sequenge of (K,v) with elements in
A, , then there exists a set N cofinal in w such that {8 nen
is D.P.C.F. in (K,v) if and only if the set {an : new} is
infinite .

Proof If <an‘> ney 18 D.P.C.F. in (X,v) -, then the set

{‘n : new} is infinite , since :

(5noew)(Vn,n§n'€;-w) n <n <n¢n"= v(an-an')< v(an,-an" )=
= a -a,. %% 0.

Conversely , let {an : neoo\] be an infinite set and <an>new
Cauchy sequence in (K,v) , with anG% for all new .

In the proof of the previous theorem the assumption that
rank(v) = 1 is used to show the existence of a sequence
{¥0 pew cOfinal in I'v and 0< Y;1< ¥y~ . for all n<n’
in w . Such a sequence exists in this case becouse the va-
lued topology on (K,v) satisfais the first axiom of separa-
bility . Hence we can apply the conclusions of Theorem 4.1.

for the sequence <‘n> . So , it can happen that there

new
exists some n,éw such that a, = lim a, . In that
o
new, (K,v)
case we can take N = {new: a, +a, } and it is obvious
(<}

that a, « 1lim a, for all n) in N ,and {a > .y i8

n
neN, (K,v) Cauchy sequence in (K,v).
Thus,Theorem 4.1. allows us to conclude that there exists a

set N’ cofinal in N such that <%> ncy’ 18 D.P.C.F. in

(K,v) and of course , N’ is cofinal in w .
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Example According to [2] ( Exercise 2 , p.p.452-453 )

the field K-k((x))r of formal power series with coefficients
in a given field k and exponents in a given totally ordered
abelian group I , with respect to the natural valuation ¢
on K , is a valued field . Furthermore , r,_,- I‘ .

Let I = HFl - the Hahn product of the groups I‘i = R
iel
( R - the additive group of real numbers ) for all ie€I .

Then I‘o is its own principal isolated subgroup in the case
that I=N (N - the set of natural numbers ) , and is equal

to the union of the sequence of isolated subgroups of I‘U-
distinet from I'o- in the case that I=Z (Z-the set of integers).
Obviously , in both cases , rank( f@) is infinite .
Furthermore , the valued topology on (K, ) satisfais the

first axiom of separability as it was shown in [3] .

Remark Theorems 4.1. and 4.2. clear out the situation when
a Cauchy sequence in a valued has a subsequence which is a
distinguished pseudo-Cauchy family in (X,v) .

In the case of discrete , rank one , véluation v on
a field K it is not hard to show (see [5)) that if (apjpeq
is P.C.F. in (K,v) , then there exists an increasing sequence &>

N new

which makes <a a Cauchy sequence in (K,v) .

ln> new
In particular , if (K,v) is topologicaly complete , then

there exists an element a€ X such that a=lim 87y o hence
New
one can show that a€Ps.lim a, .
7eT, (K,v)
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SOME REMARKS ON BOOLEAN EQUATIONS'

D. Bankovié

In this article we discuss mainly systems of Boolean
equations i.e. equations of the form AX = B and XA = B, where
A, B, X are matrixes whose elements are im Bool'ean algebra B
(theorem 3). The theorems 1. and 2. that follow,we shall. use
in the proof of the theorem 3.

Theorem 1 (Vanght). If S is a Horn sentence of the lan-
guagé of Boolean algebras and B2 = s, then S holds on a‘ll Bo-
olean algebras. '

Proof.: See, for example, |1| or |2].

Theorem 2. Let f : anBm+Bandg : B” x B™ + B be
Boolean functions and let for each Y€ B" the equation, &n X,
f(X,Y) = 0 be consistent:.. The following conditions

(a) (VX) (£(x,¥) = 0 = g(X,Y) =0 )

() (Vx) (g(x,7)

are equivalent.

A

£(X,Y))

We can write this theorem in the form
(\/Y) (dx)£(x,Y) = 0=> (\{Y) [(VX) (£(X,Y) = 0=>g(X,Y) = 0)
& (V0 g,y < £x,m)] .

Proof.: Since for any Y€ B there is Xe& B such that
f(X,Y) = 0, let XY be the element that is related to Y such
that f(Xy,Y) = 0. Assume that (a) holds. Then for each Y

£(Xy,¥) = 0=> g(X,,¥) = 0

i.e. X il's the solution of the equation g(X,Y) = 0. According to
Léwenheim’s theorem (|3|, theorem 2.11), f((xy,Y)f(x,Y)U
(X,Y)£' (X,¥)) = 0. Since (a) holds, we have :
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0.

9((XY,Y)f(X,Y)L/(X,Y)f'(X,Y))
Using the well known equality “ . ‘
h(tVUt'W) = hE(V)U t’£ (W)
where V = (Vl,...,Vn), W= (Wl,...,Wn), h : B® » B, we have

g(Xy,Y)f(x,Y)Ug(X,Y)f’(X,Y) =0 i.e. g(X,¥)E’'(X,¥Y) =0 .

We can write the last equalitylas g(x,y) < £(X,Y).
The proof for (b) => (a) is obvious.

Definition 1. Let Q = IlqijII i=1,ee., m; 3=1,...,n
and R = ||rjk|| j=1,...,n; k =1,...,p be two matrixes with

elements belonging to Boolean algebra B. Then the product QR
is the mxp matrix such that

n
(QR) 4y = JU=1 9475k (i=1,...,m; k=1,...,p)

Matrixes QT and Q' are introduced as:
T -
, , (i=1,...,n; 3Jj=1,...,n)
(Q )ij = qij

and matrix I is defined by

I= ||61:‘|| 1]
where 611 =1, Gij =0 (1 # j).
Definition 2. A vector (xl,...,xn)E.Bn is said to be nor-
mal if
]
X, =1
=1 1

and orthogonal if

x =0 (4,3 =1,...,n and 1 # j).

1%
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A vector that is normal and orthogonal is said to be orthonormal.

Theorem 3. Let A = IIaijll and I = ||61j|| be square
matrixes of order n. The following properties are equivalent:

(a) A has a right inverse, i.e. the system AX = I is consistent,
(b) A has a left inverse, i.e. the system XA = I is consistent,
(c) for any square matrix C of order n, the system AX = C is

consistent,
@ (Vx)(Vy)(ax = avy =>x = v),
(e) ATA = I,
(£) (aT1)’ = (1'aT)r = AT,
noy
(9) a,y =1 (1L=1,...,n)
=1
i n
= ’
where ay = ay J;} apy
h#i

(h) each row and each column of the matrix A is orthonormal.

The proof of this theorem is given in "Boolean functions
and equations" by S. Rudeanu using a few lemmas. Z. Mijajlovié
proved (c)< (e) by means of Vanght’s theorem, his proof being
much shorter i.e. it is reduced on the proof in Boolean algebra
Bz. In this way we mainly prove the ofher equivalences.

Proof:

(a) => (c) : Right multiplying A.A-l = I by C we have A.A l.Cc =,

i.e. the matrix A_l.C satisfies the equation AX = B for any C.
(¢) => (a): 1f (Nc) (JX) (AX = C) holds, then for C = I we have
(3x) (ax = 1). -

(a) —=> (h) : Let us now write the sentence "Each row and each

column of the matrix A is orthogonal” in the more favourable way.
The orthogonality of the i-th row is defined as

aijaik =0 (j,k=1,...,n and Jj # k) ,
namely, we have the conjuétion of n2-n qualities.
The normality of i-th row is defined by \U Xij = 1, It means
j=1

that orthon&rmality of a row of the matrix is defined by the
conjuction of nz—n+1 equalities and orthonormality of all rows
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is deflned by the conjuction of n(n -n+l) equalities. Let

P = n(n -n+1)2. Similarly, the orthonormality of all columns can
be written as E equalities. Namely, the sentence (h) can be: exp-
ressed as the conjuction of p equalities. If we write all these
equalities in the form m = 0 (i.e. 0 on the right side) and if

we denote all the left sides of these equalities by ml,mz,..:,m

pl
then we can write the sentence (h) in the form
p .
Um, = 0.
i=1
Then (a) —> (h) can be written as
' P
dAx@ax =1 = Um; =0
i=1
p
i.e. (Vx)y@ax =1 => Um, = 0).
i=1

This means that (a) —> (h) is Horn sentence and it is sufficient
to prove this sentence in B2. Let, in Bz, (3X)AX = I holds. Then
for some X

a; %,V a %,V e vay x =1
ay1%1 Y 2%V eee Vag X, =0
(1) .
anlxllkla 2x21U cee kJannxnl =0 .

At least one element of the left side of the first equality is 1.
Let, for example, a) 4%y, be such an element, i.e. a,y = 1 and
Xy, = 1. Since Xy = 1, according to (1), the elements

ayr Agyrecerany must be 0, i.e. the matrix A has in the i-th

column exactly one 1. Similarly, from

a)1%)Y 3 %5V ... Va X, =

a5,X Y a%55U ... Vag x5 =1

Va 0

an1¥12Y 2n2%95 Y -ee VagpXy,
we have that some Xk = l,i.e. A = 1 and Xp = 1. Here is
k # 1, because in the i-th column of the matrix A all elements
are, except a4 equal to 0. The other members of the k-th column
of the matrix A are 0.

The proof for other columns is similar. Thus each column
of the matrix A has exactly one 1 and all these 1’s are in the

different rows, i.e. each row and each column is orthonormal.
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(b)= (h): in a similar way.

(h)—> (a): This seutence can be written in the form

Um =0 =>(3X)Ax = I
i=1

p
i.e. (E\x)(\Jmi=o=bax=1)
i=1

This means that the sentence (h) => (a) is Horn’s and we prove it
in B,. Let (h) hold in bz, i. e. each column and each row contains
exactly one 1. Then for X = A the equality AX = I is satisfied.
(h) =2 (b): The some as (h) =>(a).

(h) = (e): The sentence (h) => (e), i.e.

P T

Umnmn =0=AA-=1

P

is Horn'’s

We suppose that, in Bys each row and each column contains exactly
one 1. This gives ATA = I.

(e) => (b): ATA = I means that (JX)XaA
(h) => (g): The condition \n} aj:.L =1 (i

I.

l,.¢.,n)

j=1
can be written in the form
n noy
1 (Uay =1
i=1 j=1J

so we write (h):7 (g) as
\J m, =0ﬁl—l(\}a) =1.

=1 i=1 j=1 3
The last sentence is Horn’s and ‘we are going to prove it in Bz.
Let (h) holds in B2. For example, the 'i -th row contains in the .j-th
place (in the j-th column) 1. Then a:| =1.0'.0’...0" =1, thus

Ua = 1.
=1 3

(g) = (h) : We can write the sentence (g) —> (h) in the form
p
|_\(Ua ) =1 \um =0

i=1 j=1 i=1
which is Horn’s and it is sufficient to test it in B,. If \Ja\_j =1,
) . j=1 -
then in B2 one element of this union is 1. Let a]](' =1, i.e.

’ r ’ r r = :
Ak 31k 22k *°- ai-l,k qi+1,k " ajx = 1. This means that
2 = leoagy = 0ray =035 5= 00 354 = 0reeer 3p =0,
namely at 1east one element of the i-th row of the matrix A is 1
and all other elements of the column to wich this element belongs,



é?g 0’s. Assume now that some row contains two or more 1’s. Then
(bearing in mind that each row contains at least one 1) there are
more than n 1’s in the matrix A and this means that some column
contains more than one 1. Thus we get the contradiction. Hence,
each row and each column has exactly one 1 and in B2 this means
that all rows and all columns are orthonormal.

(h) = (£): (ATI’)' = (I'AT)’ = AT can be written as

@Tryr =aT A (@l = AT

Each of the last two equalitiee contains n2 equalities. If we
write all these equalities (there are 2n2 equalities) in the fofm
s, = 0 A s, = 0 NeeeAs_= 0, where q = 2n2, then the last conjuc-
tion becomes \4e = 0. Therefore the sentence (h) =) (f) is Horn'’s
and it is sufficient to prove it in B2. Let (2) hold in B2, i.e.
each row and each column of the matrix A contains exactly one 1.
This also holds for the matrix AL. If (AT)ij = 1, then (ATI’)ij=0,
because we multiply (AT)ij by (I’)ii, i.e. by 0 and other members
of the i-th row of the matrix A~ are 0. Using operation ’ we have
(atrr ) 15 1, If (A )iJ = 0, then some other element of the i-th
row of the matrix AT is 1. Multiplying the i-th row of A and the
j—th column of I’ we get 1, i.e.

(A I’ ) = 1, hence (A I’ )’ = 0., This means (ATI’)’ = AT, simi-
larly we obtain (I’ At ) = AT.

(£) => (h): The formula (f)—> (h) is Horn'’s, because it can be

written as
q
\Us, = 0= \Jrn =
m=1 i=1
80 me prove it in Bj. Since
@aTr’)’ = aT

&= (Tt =a (because (AT)T = a)

(== ((ATI')T)' =A (because for evary matrix S with elements in
B (s')T = (sT)’) holds)

¢=i?((1’)TA)’ = A (because for matrices Reyn and Q. with
elements in B (RQ)T = QTRT holds)

&5I'A =4,

the conditions (ATI’)' = AT and I’A = A’ are equivalent. Let

(ATI’)’ = aT in B,, i.e. I'A = A! If aij = 0, then at least one

element of the j-th column of the matrix A is 1, because

(I'2) 4 = 2,4V 33U ... Uay, yV0Vay, 4U...Va =1
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But if aij = 1, then all the elements of the j-th column are 0,
because

(I'l’\)1j = aljU"' Uaj-l,juouajﬂ,ju”'\)anj =0,
This means that each column of the matrix A contains exactly one 1.
Similarly, starting with (I’AT)’ =A’, 1.e. AL’ = A’, we
can prove that each row of the matrix A contains exactly one 1.
(d) => (h): The equalities
AX = AY and X=Y
can be written as
n n
(2) 1/\l J/_\I(AX) = (AY)ij), i/=\1 j-/—-\l((X)ij = (Y)ij)
i.e. in the form
n n n n
i/=\1 j/=\1((1=\x)ij+(1ul:lij =0), i/_\1 j/=\1((x)ij ;=0

where we denote with A the conjuction of n members.
i=1

If we denote all members of the first conjuction in (2) by pl""’szx
and of the second one by rl,...,rlz1 we get instead of (2)
2

Yoo O
)P 0 r i r = 0.
k\- k © =1 " \
Then the implication (\d X) (\V'Y) (AX—AY — X=Y) becomes
(3) (\/x)(VY)(u pk=0———>\er=0).

m—l
Since the elements Py (k-—l,...,n ) depend upon the elements of the
matrixes X,Y and A and the elements T (m—l,...,n ) depend upon the
matrixes X and Y, we can write (3) in the form
(4) (V2) (£(z,M) = 0=>g(z,M) = 0)

where 2z = (x 117+ ¥nns yll,...',y'nn)'and M= (aj;s...ra ). Note

that function g doesnnot actualy depend upon M. Accord:l.ﬁrg1 to the-
orem 2, formula (4), bearing in mind the condition
(VM) (dz)£(z,M) = 0, is equivalent to
(V2)(g(z,M) < £(z,M)).
The condition (WYM) (J))f(z,M) = 0 is satisfied, because it is
equivalent to (VA)(ZX,Y) (AX = AY). If is sufficient to take X=Y=I.
Now we use the following: if C => (A &> B) then
C-—=>((a=3D) &5 (B ==YD)) . Therefore the formular (d)=>(h), i.e.
(N2) (f(z M) = 0:==,g(z,M) = 0)=>bM) =0,

where b(M) = \J mi’ and
L i=l :
(5) (V2)(g(z,M) < £(z,M) =>bM) =0

are equivalent. The formula (5) and
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(32) (g(z,M) < £(z,M) => bM) = 0)

are also equivalent. This means that the formula (d) —»(h) 'is
Horn’s and it is sufficient to prove it in éz. Assume that ?ll rows
_and columns of the matrix A are not orthonormal i.e. there exists
a row or a column, that does not contain exactly one 1. If, for
example, the i-th row contains all 0’s, then the equalities I

' (Ax)il = (AY)il""’(AX)in = (AY)in

also hold in the cases when the corresponding elements of the mat-
rixes X and Y are not equal. The other nz-n equalitias do not imply
the equality of the corresponding elements of the i-th rows of the
matrixes X and Y, because thay are not in these matrixes. When a
row contains two 1’s, for example the j-th row has 1 in the k-th
and h-th places, then )
(6) X UKy = ¥V ¥y (i=1,...,n)
The last equalities do not imply
B Xy T ¥y and Xy = Yyq (1 =1,...,n)

because it is sufficient to be Xpy = Vpy = 1 and then (6) ho%ds,
while the elements Xpq and Yyy can be arbitrary. The other n"-n
equalities (that result from equaliting the other elements of the
matrixes AX and AY) do not contain the elements of the i-th row of
the matrix A. When the k-th column of the matrix A contains only
0’s, then the elements of the k-th row of the matrixes X and Y are
not in
(7) (AX)kj = (AY)kj (j=1,...,n)
i.e. the equalities (7) hold , olthough the corresponding elements
Xy and Yii (i=1,...,n)can be different.

If a column of the matrix A contains at least two 1’s, for
example the k-th column has 1 in the i-th and j-th plases, then the
elements xkh acn yyp (h=1,...,n) are in the equalities

(8) (Ax)ij = (AY)ih and (AX)jh = (AY)jh (h =1,...,n)
Since there are not two 1’s in a row, the equalities (8) are of
the form *kh = Yxn 204 Xy = vpp (h=1,...,n)

i.e. we have the same equalities. This means that there are elements

Xg and Yre that to not take part in the equalities AX=AY,i.e. the
elements X g and Ypg Can be different.

(e) (h) : Left multiplying AX=AY by AT we get X=Y,
REFERENCES
1 C.C. Chang, H.J.Keisler,Model Theory,North-Holland,Amsterdam (1973
§ Z.Mijadlovié, Two remerks on Boolean'algebras (in érint). ( ).

S.Rudeanu,Boolean functions and equations North-Holl
Amsterdam (1974.). q ' olland,
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ABSOCIATIVE SYSTEMS OF TOPOLOGICAL n-QUASIGROUPS
MaliSa R. ZiZovié

In this paper we introduce and begin a preliminary study
of a associative systems of a topological n-quasigroups. We
can gonsider that arbitrary topological n-quasigroup which
belongs to an associative topologocal system is completely
regular topological space.

First, let us quote some of the results from 4], 5] 5] and [6]

Theorem l.[4] If n-quasigroups Q(Ai) ieg 1,2,...,2n}=N2n
are conected by a general associative law

J-1 _n j+n—1 2n-1 J+n-1 2n-1
Ay (pCad™,aD),adi T Tl = (a7 ap5ad P, a5 (1)

for each je{ 2,3,...,n} then

1. Each Q(Ai) ieN,, isotope to one and only one n-group
Q(A) with a unit.

2. There is a binary group Q(B) so that it is

Aa)) = B(B(...(B(ap,ay),85).00),8, 1),a,).

For n=2 this theorem is proved by Belousov [2] and it is
known, as n-analogous of Belousov’s theorem about four quasi-
groups.

Quasiéroup isotopy characterization Q(Ai) in relation to
n-groip Q(A) from the previous theorem that is the following
one is proved

Theorem 2.|5] If n-quasigroups Q(Ai) ieN2n satisfy (1)
then the fqllowing equalities are valid:

\

4 A 14
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-1 J
Apy_p(a])= -A(1} 231’°°’T23 3T23 225-10T55- 185 23+1T23+2aa+1’
. 1T2nan) cereceneens u(e)

mk 2mn

-1
Aps(af)=nd, 14023, 17550 l""T2n 172080 5410 T5T48n_ g4 e+ s

. . - Tn _1T2Jan).............(3)
for each j &, . (Tix=Ai( k ,x, k » .
Definition 1. (6] Let it be yen , wherea is a.set of all
n-quasigroup operations defined on Q. The system I is called

il-system, if for each A ,A  jef where m is a fixed number
(m=2i-1, ieNn)v, there are Ag,A g0 for each t{ 2s-1|s;4i,seNn}
it satisfed (1).

Definition 2. [6] Let it be I<f? , where @ is a set of all
n-quasigroups defined on Q. The system I is called iA-system
if for each Am’Am+l el where m is a fixed number (m=2i-1, ie Nn)
there are such Ai,A . iel, that for each te{ 2s-1|s#i, =N}
we have equality (1).

Definition 3. [6] Let it be <2 , where 2 is a set of all
n-quasigroups defined on Q. I is called A-system if it iA-
system for each ieNn.

Theorem 3.[6] Let iA-system £ of n-quasigroups be given
on Q. Then we can define group B on Q so that each operation

Acl has a shape n-1
A(xl]l.)= B ( Glxl’ oo e nxn)

where oy is automorphism of the group B and a4 'lz:Nn\{ i}
some permutations of the set Q.

We remark that arbitrary permutationa n Irom above theorem
we can get as a composition of some translations of quasigroups
from the system I, according to the theorem 2.

Theorem 4.(6] Let to Q be given iA-system r of n-quasi-

groups, then we can Jdefine group B on Q so that each operation
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CeI has the shape

n-1
C(x7)=B( B (@ 1%3, «ev 5@ X ),k)
where % are automorphisms of the group B, and k is a some
element from Q.

We remark that the above theorem can be read as Hosszli-Glu-
skin’s theorer. : ;e2 [4]) "hen I ={A} naimely I is a one-element
set from one n-group.

Before topological associative systems definitions we
shall proove the next theorem

Theorem 5. If semitopological n-quasigroups Q(Ai), i;Nan,
out of which at least one is topological, satisfy general asso-
ciative law (1) then:

1. n-Group Q(A) isotope to n-quasigroups Q(Ai) is
topological.

2. Group Q(B) where A(x§)=n51(x§) is topological.

3. All quasigroups are topological,”

Proof: 1. Let Ai be topological quasigroup and let it be
i=2j-1 then from (2) we find that

n._ 171 n J
A(xl)—Agj_l(Tg Tl xl, s ,Tgn T2n—lxn)

so that A is topological n-quasigroup since the translations
are homeomorphisms of space according to lemma B.Eﬂand
it is n-group at the same time so that, according to lemma H-Eﬂ
it is topological n-group.
In the same way we proove i=2j using the relation (3). .

2, Let e be unit of group Q(A), then group Q(B) can
be shown as a retract of n-group Q(A), that is

: A(X,Fy€5€400049e)=B(x,¥)
so that group Q(B) is topological according to lemma 1. Eﬂ.

5& Having in mind relations (2) and (3) and the fact

that Q(A) is topological n-group we can conclude that, since

| .
the translations Tg are homeomorphisms of space according to



lggma 5.[9] that all n-quasigroups Q(Ai) iEN2n are topological.

Definition 4. Let Q be topological space and & set of éll
semitopological n-quasigroups defined on thé Q. {K-system ﬂ in
the set 2 we call it topological if I consists of at least gne
topological n-quasigroup. |

" Definition 5. Let Q be topological space and g set of all
semitopological n-quasigroups defined on Q. iA-system § in the
set o is called topological iA-system if I consists of at least
one topological n-quasigroup.

Definition 6. Let Q be topological space and @ set of all
semitopological n-quasigroups definéd on the Q. A-system I in
the set g is called topological A-syFtem if 1 consists of at
least one topological n-quasigroup.

Using the theorem 5. we shall proove the next:

Theorem 6. Let Q be topological space and ¢ topological
ii—system of n-quasigroups/defined on Q, then we have:

1. Each of n-quasigroups from : is topological.

2. All quasigroups from I are isotopy to topological n-
group and isotopyes are homeomorphisms. Even n-quasigroups from
o which take part in building iA-system are topological.

Proof. It is enough to take for example that n-quasigroup Bel

is topological then we proove that each one is topological ta-
king them in pairs and joining them 2n-2 semitopological n-qua-

sigroups from o so that all satisfy general associative law (1)
then according to theorem 5. it follows that all are topological
and that n-group is one where isotopyes are topological.

In the same way we can proove the theorem about iA-systems
of topological n-quasigroups.

Theorem 7. Let Q be topological space, £ topological
iA-system of n-quasigroups defined on the set Q, then we have:



1l. All n-quasigroups from : are topological. >9

2. All n-quasigroups are isotope to topological
n-group and those isotopes are automorphisms of topological
group Q(B) (theorem#4.).

The above theorem can be read as a generalisation of
topological analogy of Hosszii-Gluskin’s theorem ([8])s

Theorem 7. If ¢ = A} is topological iA-system of one
topological n-group then there is topological group Q(B) such
that it is L

A(x?):B(ni (xl,a:xe,a 2x3, oo an'lxn),c)
where o is automorphism of topological group B, and ¢ is some
element of the set {), when the conditions are fulfilled

an'lx=B(c,B(x,c'l)) y aC=C .

Remark Arbitrary topological quasigroup which belongs to
an associative topological system is completely regular topo-
logical space.

In connection with associative systems it is natural to
ask the question: Is arbitrary quasigroup an element of an
associative system?

The answer is negative what can be easily concluded on the
basis of the next consideration: If each quasigroup is an
element of an associative system then the arbitrary loop is
a member of an associative system so that it is isotope to
some group, and from this on the based of Albert’s theorem it
would follow that the arbitrary loop is isomorph to some gréup

which is not true.
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TOYOLOGICAL 1eDIAL n-QUASIGLOUL'S
MaliSa R. "i%ovié

In this note it is showed how an arbitrary medial topolo-
gical n-quasigrour can be presented as a topological group,
with conclusion that all medial topological n-quasigroups are
completely regular topological svaces.

n
\le denote with a? (8y,...,8,) and with a (a,..,a)
h.ng_l
n-groupoid Q is called n-quasigroup if the equation
i-1
(ai ’:‘C’aril+1)=b

solves for each ie{1l,2,...,n} and for arbitrary ByyeeerBy 79
ai+1""’an’b €Q.

n-quasigroup () is called medial if it satisfies the

medial law n n n n n
((xll)y(x2l)a"a(xnl))=((xll)""’(xln)> -0---(1)

for arbitrary xll,.i..,xnnsQ.

Medial n-quasigroups are satisfied by the following theorem

Theorem 1. 1 If Q is a medial n-quasigroup then there is
Abel?’s group {(+) from Q such _that it is.

=) =ig£5xi+b cereeenaa(2)

where b is definite fixed element from Q and a (i=1,...,n)
are mutually commutative automorphisms of that group.

Definition 1. Tobological space Q, which is n-quasigroup
as well, is called semitopological n-quasigroup if a quasigroup
operation ‘is continious with all variables and if all transla-
tions are ﬁpmeomorphisms of a topological space.

\
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logical n-quasigroup if all inverse operations are contiﬁious

with all variables together. \
According to the definition it immediately follows: |
Lemma 1. Topological (semitopological) n-quasigroup retract

is a topological (semitopological) quasigroup.
Lemma 2. Superposition of semitopological n-quasigroup and

semitopoldgical m-quasigroup is semitopological (m+n-1)-quasigroup.
Proof: Continuity of new quasigroup operation can be seen

by sefinition, and that arbitrary translation is homeomorphi;m

of space can be seen from the following relation:

i .
A+ B(a%*l,x,a§+n-2) =

. i-1 i1 {2 _
A(ai ,B(ag ’x’&?+l )y 2:? l) T i-1 QI+
Aa 81 Cp+i-1

ST x igjemei-1

\

j-1 i-1 -1 -2 j s L.
=ﬁA(ag ,x,ag ,B(aT+1 ), ﬁ:i )= ial—lk men-2% isjgi-1
qn+i
m+i-1 -1 m+n-2
A(ay™",B(ay )s am+1’x a5 )— j=1, m+n-2 x
\ am+1 J

m+i-1 < j< m+n-1
N\ EeB(al*i1y)
where Tt n-1 X= A(a , ,a?"l)
Ay
Lemma 3. superposition of topological n-quasigroup and topo-
logical m-quasigroup is topological (m+n-1)-quasigroup.
s
Proof: Continuity of arbitrary inverse operation JC comes

from the following relations
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_
J m+n-1, _
C(xl ) = Xn+m

s N
J(a # B)(x‘i’+n )=X.n

. 1 _ )
(A # B)(xg ,xm+n,x§:§ l)=xj naimely

AGEL, 8Ok, ) Ry g

_ J-1 i-1 +i-1 +n-1
xj‘ A(xl ’xm+n’xj+l’B(x? )’x:+i ) 13 i+

Tt G A I ST ST B T S R Y S

Lemma 4. Topological n-quasigroup which is n-group, it is
topological n-group.

Proof: It is necessary to proove the continuity of operation
x=%. As it is A(X,X,s0e0,%,%X)=X we have 1hA(x,'...,x)=§ and
it follows U(i)=U(1mA(x,...,x)) E“nA(V(x),...,V(x))=§?§).

Lemma 5. If topological n-quasigroup Q(A) is isotopy n-qua-
sigroup Q(B) but isotopyes are homeomorphisms of space then Q(B)
is topological n-quasigroup.

Proof: Let them {ai}gz% be isotopy of topological n-quasi-
groupr(A) in n-quasigroup Q(B) homeomorphisms of space. Let U

be neighbourhood of B(x?) than

BEGENUC 4 A0 %) Dza 0 Gy 59 D=
o 8005 Gl DS g 4Cag (v Geg ) BB

so that the operation B is continuous. Operation continu:i.ﬂl:y1r iB
is is proved by fact that 1riB are isotopyes with 1TiA which are
continuous, and isotopyes are homeomorphisms of space.

Definition %. Topological n-quasigroup which sétisfied the
medial law, is called topological medial n-quasigroup.

Theoreml2. If Q() is medial topological n-quasigroup, then
on Q there_i§\topological Abel’s group Q(+) such that it is
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()= 53 %% + D
where ai (i=l,y...,n) are mutually coﬁmutafive automorphié?s of
the topological Abel’s group Q(+) and b determined element from Q.

Proof: A theorem is proved by aryty induction: ;

For n=2, let'Q be binary medial topological quasigroup then
there is such Abel’s topological group that

A(x,y)= v(x)+ X(y) +c
where v and x commutative automorphisms of the topological group
Q(+) and c determined element from Q. The main isotope (+ )
of topological quasigroup Q(A) defined in the following way
x+y=A(R;1x,L;l)
is evidently a topological quasigroup (taking into consideration
that the translations Ra and Lb are homeomorphisms of the topolo-
gical quasigroup), and at the same time it is Abel’s group as
well, To say that and are automorphisms of the topological
group can be secn immediately from the fact that
ux)= Rax+ (-k) and x (x)= Lb(x)+ (-h).

We assume that the theorem relates to each natural member
less than n.

From the assumption, that the quasigroup Q() is topological
and from lemma 1. it follows

ACu,v)=(b,u,v, g ) and
B(xg)= (a,xg)

that they are binary namely (n-1l)-medial topological quasigroup
which we get by putting it in the medial law

n n-1
Ji=(a)=b for if2,3 , and y,=(x;, a )=%xq,

y5=(a 4x3) and
n-1
zl=(a,x1, a )= 8x; and
2 n-3

23=(8yX3y 8 )= YX; o0 50,
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(From the quated definitions it is clear that a, 8 andY are

space homeomorphisms.,)
Having in mind the inductive assumption we have
A(u,v)=y u¥ s vid
B(xg)=12124....41nxn4c
where % and 4 are topological Abel?’s group and Ayry ands
automorphisms of the correspondent topological groups, c and d
determined elements from Q and.kilj=ljli
On the basis of medial law it follows that
A(le,B(xg))=(3x1,{yxi1122 ) naimely

yo X1 % 6ag%ote 0 FA X Fe)Pd = (Bxp, (vx; D).

Group + is replaced by group + which is isomorph with it
since (i)6=(+) and § is space homeomorphism. From preliminary
relation we get

-1

(x§)=ulx1$(u2x2+....+unxn+6 c)fd cosecns (3

1 for ifl and ¥ =ves ~1

PSP
where Hg =8 EY
are spaces hom€Omorphisms.

Medial topological quasigroup retract (xg—l,a)‘is medial
topological (n-1)-quasigroup and according to inductive suppo-
sition there is Abel’s topological group Q(¥) so that

n-1 _ . . -

(%77 758)=v X WX ¥ e +Vn-lxr;—1¥h
where .; are automorphisms of the topological group Q(¥) and
h is a fixed element from Q.

Futting that x,=a in (3) we come to the equality

njxy FupXptesetup Xy 1)=wXg¥ voXpFe e ¥y, X, o%h
where ix=yux%d and uﬁ_lqun_1x+una+6-lq and so ¥ anqlla_l
are space homeomorphisms and having in mind the fact that
group (Q,%), (Q,%) and (Q,+) are main isotope we get from (3)

\

\
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using the relatoin

ufv=u¥vig
and u¥v=u+v+f
(f and g are fixed element from Q), that it is
(x§)=ulx1+u2x2+...+unxn+b.

Proof that uy i=1,2,...,n are mutually commutative automo-
rphisms of topological group Q(+) is similar to the algebraic
case [1] .

The question of complete regularity of topological Qhasi—
groups is not quite solved [3]. On the basis of this result we
have that the medial topological quasigroup is completely

regular topological space.
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GROUPOIDS OF PSEUDOALGEBRAS

F. Ferenci

Let A* denote the set of all finite strings on the nonvoid set
A and let A be the empty string. If V is a nonempty set dis-
joint from A and o is a mapping of V into A(A*), ther. the sys-
tem 4 = a <A,V> is a pseudoalgebra [3] where A is the base set,
V the set of operational symbols and a(v) for any ve V is an
operation. The set A(A*) is the base set of a groupoid GA whose
multiplication is defined by (ul-uz)(p) = ul(uz(k)p) for arbit-
rary u;, u,¢ a®" ang pe¢ A* [2]. The right ideal G(4) of G, ge-
nerated by a(V) = {a(v)|ve V} is the groupoid of the pseudoal-
gebra A.The operations of the pseudoalgebra B = B<G(4) ,V> are
defined by B(v)(blb2 e bn) = ("'(a(V)'bl)'bz)"")'bn for
arbitrary ve V and bl’b2’ . bn € G(4) (the multiplications

on the right side of this equality are performed in G(4) and
ind the special case n = 0 we have B(v) (A) = a(v)). For these
pseudoalgebras the following assertion is valid:there exists

a mapping of G(4) into A which is a homomorphism of B into 4
(see [1]). ‘ A

There is an analogy between the previous considerations and the
following fact from automata theory. If A' = o’<A,V> is a una-
ry universal algebra (the operations a’(v) are transformations
of the set A, i.e. mappings of A into itself) then let M(4')
denote that submonoid of the full transformation monoid on A
which is génerated by a’ (V) = {a’(v) |[ve V}. The operations of

the unary uﬁ}versal algebra B’ = B’'<M(4') ,V> are defined by



68

B'(v) (b) =a’(v) b (the multiplication is in M(4’)). For
these universal algebras the following assertion holds: the;
re exists a mapping of M(4') into A which is a homomorphism |
of B’ into A’ (in the primitive class generated by 4’ , B’

is a free algebra whose free generating set is the unit of

M(@A")).
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(saZetak)

Kvadratna kvazigrupa je svaka kvazigrupa (Q,-), u kojoj vrijedi

1_dentitet
ca.bc =abea. (1)
Npr. ako je u polju (C,+,«) kompleksnih brojeva definirana operacija

o formulom

ach =l'£=-a4%i-b, (2)

tada je (C,®) kvadratna kvazigrupa. Skup C moie se shvatiti kao euklidska

ravnina. Za bilo koje dvije todke a,b te ravnine, identitet (2) moZe se

(aob)-a _1+i
-a 2 °

To znali da su to¢ke a, b, aeb vrhovi trokuta direktno sliénog trokutu s

pisati i u obliku

vrhovima 0, 1, 3‘—;1, tj. aeb je sredisSte pozitivno orijentiranog kvadrata
sa dva susjedna vrha a, b, &to opravdava naziv promatranih kvazigrupa.
Svéki identitet u kvadratnoj kvazigrupi (C,®) interpretira neki
geometrijski teorem..S druge /strane, ovaj geometrijski model (C,e)
kvadratnih kvazigrupa daje motivaciju za ispitivanje kvadratnih kvazigrupa.

U kvadratnoj kvazigrupi (Q,*) vrijede i identiteti

aa=a (idempotentnost), (3)

a*ba =ab-a (elasti¥nost), ) (L)
abea =basb, : ‘ (5)
ba-ab=a, (6)
a.bc =ab.ac (lijeva distributivnost), (?7)
bcea=basca (desna distributivnost),l (8)
abecd = acsbd (medijalnoét). (9)

Pomoéu kvadratne kvazigrube mogu se dobiti' i neke. druge kvazigrupe.
Za svako a,b €Q element
.‘ axb =abea , ' (10)

zove se poloviéte para elemenata a, b, a (Q,*) je komutativna idempotentna

.medijalna kvazigrupa.
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Neka je na skupu Q definirana operacija m ekvivalencijom

agb=c gmpbc=a. - : .o()
Tada je (Q, @) tzv. rot-kvazigrupa J. Duplédka, tj. kvazigrupa, u k\'p_joj
vrijedi identitet
xo(xoy) =zo[(xuz)ny]. (12)
Operacija m moZe se definirati i eksplicitno formulom
aob=(a-ab).(a-ab)(abeb). o (13)
Neka je operacija A definirana ekvivalencijom »
adb=cémpakc=>b, (14)
gdje je % operacija definirana formulom (10). Tada je (Q, &) idempotentna
kvazigrupa, u kojoj vrijedi jo35 i -identitet ’
[(asb)ac]aa=[(asa)ac]an. (15)
Operacija & moZe se definiratd eksplicitno formulom

aab=[(a-ab)(abeb)« (ab-b)] [(beba)«(b-ba) (bara)]. (16)

Vladinmir Volenec, Quadratic quasigr/oupﬁ

(Summary)
A quadratic quasigroup is a quasigroup (Q,+) with the identity (1).
It satisfies the identities (3)-(9). If the operations %, @, & are
defined on the set @ by (10), (11) resp. (14), then (Q,%* ) is a commutative
idempotent medial quasigroup, (Q, @) is a rot-quasigroup of J. Duplék,
i.e. it holds the identity (12), and (Q, &) is an idempotent quasigroup
with the identity (15). The operations b, & can be defined directly by

(13) and (16).
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P. Ecsedi-Téth* and L. Turi**

O. Introduction

Our motivation for determining all interpolants of the
arbitrarily given first order sentences ¥ and ¥ by an effective
procedure comes from computer science, namely from the theory of
program verification. There, according to the well-known method of
Floyd-Hoare, a program (or more precisely a program schema) must
be associated by so called assertions [1,4]. This association can
partially be mechanized; the difficulty arises in associating
assertions to loops. If (§ is the assertion immediately before the
loop and.ylis the one immediately after it, then the assertion
associated to the loop can be looked for among the interpolants
of ¢ and Y as was pointed out in [2]. Thus, by providing an effective
method to generate the interpolants of § and¥, we can completely
automatize the Floyd-Hoare verification process. This, of course,
represents but a little interest from a practical point of view,
since the Floyd-Hoare method is object to several impediments
(nevertheless, it seems to be the only general approach which has
practical applications). In the same time, however, automated
Floyd-Hoare process can serve as a basis for further research. In
this paper we define an algorithm which enumerates the set of
interpolants for arbitrarily given ¢ and¥ . (The existence of such

an enumerating algorithm easily follows from the Completeness
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Theorem; in this paper, however, we avoid ény use of that ‘-\
theorem and exhibit explicitely an enumerating algorithm.) \

l. Zero order interpolants

Let O bve an arbitrary zero order sentence and let 70
be the set of sentence symbols (i.e. prime sentences) occuring
in 0. It is well-known that every function h:7T0-$2 (where 2 ={O,l})
can be extended uhiquely to a function ?1 over the set of sentences

of the 1anguage‘z'o' according to the following recursion:

ﬁ(;o/\‘w) = min (ﬁ(y), ﬁ(‘y))
R(pvy) = max (h(p), hy)
h(1g) =1-hip

h(y-y) = max (@) ,1-h(@).

Since 7o is finite and hence ‘2’0'2 is finite as well (where
A
ttrz = {hlh:'ro'-,Z}) , we can compute h(0) for every hew-z . Let

cal (0 = min {R(o)|he "2}.

It is clear, that Cal (0) is computable for every zero order
sentence ¢ and that the following lemma holds:

Lemma 1 Let 0 be a zero order sentence. Then,

Cal (0) = 1 if and only if 0 is a tautology.

Let Con (0’1,0'2) = Cal (Gl-po‘z). The following assertion

is easily obtained from Lemma 2 by Deduction Theorem:

Lemma 2 TLet 0'1,9_'2 be zero order sentences. Then,

Con (0,,0,) =1 if and only if O 0,.

Let @ and Y be zero order sentences and set

I"V ={x | X 1is a zero order sentence such that TY g T¢nTy
and @m)X and X)-'y} .



73

Theorem 3 Let ¥ and Y be zero order sentences. Then

I is decidable; i.e. there exists an algorithm Int such that
—?/F’ ?Iy

Inty, &)

for arbitrary zero order sentence .

=1 if and only if X € I

oy otherwise Int}.',’,(X) =0

Proof Let Inty,,(X) = min { Con (p,7), Con (X.¥),
Tau (¢,9,¥) where Tau (¢,%,X) = 1 if and only if TXsTWNTY
and otherwise it is O. It is immediate from Lemma 3 and from the
finiteness of 7¢, TY and 7X that Int"y(,‘r) is computable for every
zero order sentence X and that Int"y,Q’) =1 if and only 1if

Xe€ Iy,.", and otherwise it is O.

2. First order interpolarmnts

Turning to the more involved question of the first
order case we recall and refine some well-known facts.

A first order formula ¢ is in prenex normal form if
and only if it has the form g= lel...anny/ where Q; (i=1,...,n)
is either the existential (J) or the universal (V) quantification
symbol and no quantifier occurs in Y.

Lemma 4 (Prenex Normal Form Theorem)

There exists an algorithm Pren such that for every @,

Pren (¥) is in prenex normal form and ¢ is logically equivalent

to Pren (sg) .

Proof Trivial and can be found in any textbook on
logic. We note, however, that the rigorouos definition of Pren

is rather tedious (and hence is omitted here).
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A first order formula in prenex.normal form is said
to be in standard form if and only if ¢= gleyl. .4 x ¥y ¥ .

\

The following assertion is immediate.

Lemma 5 . (Standard Form Theorem) There exists an

algorithm Stand such that for every ¢ in prenex normal form,

@ is logically equivélent to Stand (¢) and Stand (¢) is in standard

form.
From now on, we shall always assume, that for every
arity we have an infinite set of function symbols.

Lemma 6 (Existential Skolem Normal Form Theorem)

There exists an algorithm Skolg sucl-; that for every

2=§xl$_'xl...;xn!xn'yin standard form we have k¢ if and only if
k& _Skolg (p) and Skolj(y) = ... 3% WE (X)) /¥ 0w s (X0 X ) /Y)

where none of the function symbols fl—’£2""£n occurs in ¢ and

—f-igl’ ---4X;)/y; denotes the substitution of the term f, (x,,... ,xi)

into the variable Yy for all i=1l,...,n.

Proof . of this lemma is quite elementary and can be
found e.g. in [5]

Let Cterm be an algorithm which enumerates the set of
closed terms and for every ke, let li:numk enumerate the set wk.
The algorithm which computes the i-th component of an ordered
n-tuple a is denoted by (a)i. For (= 3xl...xky and lew we
define

ct (p,0) = Pfctern ((Enum_ (1)),)/x;,...,Cterm ((Enum (L)) 7%, ]
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Lemma 7 (Special Semantical Form of Herbrand's

Theorem) For every existential sentence (¢, K¢ if and only if

there exists an L €W such that E V cf (y,1).
igl

Proof. This assertion follows immediately from the
well-known Herbrand's Theorem (see [5]) and from the definition
of Cf.

We can summerize the facts claimed in Lemmata 4,5,6,7
as follows

Lemma 8 For every first order sentence ¢ , By if

and only if there exists an [€w such that EV Cf (S‘kolg
igt

(Stand (Pren (¢))),i).

Let us define the algorithm Calf for every first order
sentence as follows.

Step 0. Let [=0.

Step 1. Compute Cal ( V Cf (Skolg(stand (Pren (p))),i).

If the value is 1 thexj;‘(L:alf (p) =1 else go to Step 2.

Step 2. Increase L by 1 and go to Step 1.

By Lemma 8 Calf (@) stops and gives value 1 if and only
if lrgo, otherwise Calf ((f) does not halt.

Let Conf (§,9) = Calf (¢y=-y).

Lemma 9 For every two first order sentences (Y and ¥,

Conf (%) = 1 if and only -if @ kY and undefined (i.e. does not

halt) otherwise.

Proof. Immediate by definitions.

|
0
A
\

'



76 : . ‘ t

\

Now we can provide an algorithm such that it enu.mexiates
all consequences of a given §. Let Form be an algorithm which L'~
enumerates the set of sentences. Let Conseq (¢,n) = Form (n) if
and only if Conf (¢, Form(n)) = 1.

Let Tauf (y,‘y,X) =1 if and only if TX g 'ryn‘r‘yv
(recall ﬁhat, for a first order formula ¢, TO denotes the set of
non-logical symbols occuring in @), and let Tauf (y,’y,X) =0
otherwise. ' ' ’

We define the a_lgorithm Interp (so,yl,n) for arbitrary
first order sentences V,’yl and for new as follows.

Interp (y,‘yl,n) = Conseq (¢, (Enum2 (n))2) if and only if
Conseq (Conseq ((f, (Enum2 (n))z) R (Enum2 (n))l) =Y and
Tauf (?'y' Conseq (So, (Enum2 (n))z) = 1.

Let ¢ and 9 be first order sentences such that ey -
We put '
={X]X is a first order sentence, TXSTYNTY and

YEX, X"W}

Thus we have by Lemma 9 and by definition the following

Iy

Theorem 10 For any fixed first order sentences (p,‘;l/,f,

there exists an n €W such that Interp (¢,¥,n) =X if and only if

Z €I ; i.e. the set I, _ is enumerable.
9:7 ¢y

3. Outlook
The algorithm presented in section 2 is of high complexity.
The reduction of this complexity is of great importance but the

present work does not intend to deal with such questions. We
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provide, however, some remarks concerning this reduction.

In case of zero order logic there are faster algorithms
to generate the set of interpolants. These are based on the
isomorphism between the Lindenbaum-Tarski algebra of zero order
sentences and the Boolean algebra of finite functions associated
to the equivalence classes of zero order sentences.

In the Boolean algebra of functions we are able to
find those functions which correspond to interpolants, and then to
generate the appropriate representative sentences (for example in
full disjunctive normal form), relatively quickly.

Analyzing the above isomorphism we have showed that, in
case of zero order logic, the interpolants for any given sentences
yand Y may be classified in a finite set of classes, and we have
estimated the cardinality of this finite set. These results will
appear in [3]. -

In the first order case further research is required.

The considerations of this paper can bé generalized in
several ways. For exémple, any application to the program verification
problem needs similar algorithms for formulae with free variables

instead of sentences. This will be investigated elsewhere.
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ON AFFINE PLANES OVER Aﬁ-QUASIGRUPS (SUMMARY)

Juraj Siftar,Zagreb

An A;-algebra is defined as an idempotent groupoid of or-
der n in which every pair of distinet elements generates a
subgroupoid of the same order k. Such algebras were introdu-
ced and investigated by Szamkolowiez (1962) and Puharev (1965).
Each Ai-algebra Q can be used for the construetion of an inei-
dence structure Pf in a natural way: the elements of Q are
pointé.the subgroupoids of order k are lines and the inecidence
relation is "e". Here £ = (n-1)/(k-1). For £2k32 P} is
a regular plane,which meahs that each pair of distinet points
lies on a unique‘line, that each point lies on exactly 2 1i-
nes‘and that each line contains exactly k points. We shall eon-

sider the case when n=k2 so that we have an affine plane. Also,

we confine our attention to Ak

n—algebras which are quasigroups,

in which case it easily follows that the subgroupoids of order
k are subquasigroups. )

. Puharev proved that an affine plane over an Aﬁ-quasigroup
(Qy+) is deamarguesian if Q is medial,i.e. if the identity

’ (a-b)- (c-d) = (a-e)-(b.q)

holds for all a,b,c,d €Q. It is our aim to find some suffici-
ent conditions on (Q,-) such that the corresponding affine
plane O bqlongs to the other'ou%standing classes of planes:
franslationkplanes, dual translation planes, semifield planes

and nearfiel@ planes.
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We are able to prove the following results:

Theorem 1. ‘ -

If Q has the right (or left) distriﬁutive"property,then o is
. a‘translatibn plane.

Theorem 2, (

If there is in Q a subquasigroup K of order k which has the

right distributive property and satisfies the condition that
1’k26K and all a,beQ\K,
then O is a dual translation plane.If there is another sub-

(kl-a)-(kz-b)=(k1-k2)~(a-b) for all k

que.sigroup L of order k which intersects K and satisfies the
right distributivity law,then a is a semifield plane.

Theorem 3.

If Q contains two intersecting subquasigroups K and L of order
k such that K is medial,L has the right distributive property
and (kp6y)+ (€1 €p)=(ky - £k, + £,) for all kp,k,€K and

{1, {ZEL ,then Ol is a nearfield plane.

Sazetak

O AFINIM RAVNINAMA NAD A;—KVAZIGRUPAMA

Idempotentnu kvazigrupu Q reda n nazivamo A;-kvazigrupom
ako svaka dva njezina razlidita elementa generiraju potkva-
zigrupu jednog te istog reda k. Ovakve se kvazigrupe na pri-
rodan nadin povezuju sa strukturama incidencije koje su,u
posebnom slu&aju n=k2, afine ravnine. Puharev je pokazao da
Je medijalnost Aﬁ-kvazigrupe Q dovoljan uvjet da pripadna
afina ravnina QU bude Desarguesove. Ovdje nalazimo neke do-
voljne uvjete na kvazigrupu da bi Ol bila ravnina translaci-
Je,dualna ravnina translacije,ravnina polupolja i ravnina

skoropolja,respektivno.
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AN ALGORTITHM FOR THE CONSTRUCTION OF NON-SIMPLE MATROIDS
Dragan Acketa,Novi Sad

Abstract. We describe a simple algorithm for the construction
of all non-isamcrphic non-simple matroids on n+l elements,provided
all non-isamorphic matroids on n elements are known.

Introduction

Matroid M on a finite set (carrier) S is an ordered pair (S,F),
where F is a family of subsets of S,satisfying the following three
axioms: I. SEF II. if A,BE€ F,then ANBEF

III. if A€TF and a,b€ S\ A,then b is a member of all sets of
F containing Au<{a} if and only if a is a member of all sets of F con-
taining AU{DbY

The elements of F are flats of M. All flats of a matroid M,
ordered by inclusion,constitute a semimodular lattice L,each element
of which (except the minimal) is a join of atoms (immediate followers
of thé minimal element-zero).The elements of the zero of L are loops
of M, while atoms of L are also atoms of M.

Matroid is simple if all its atoms are singletons,otherwise it
is non-simple . :

The addition of a new element e to a flat X of a matroid M

on S (eés) is At{he replacement of all fla‘t§ Z of M,which conta_jn X,
by ‘zu<e). '
The algorithm
Step 1: Addition of one new lqop to (i.e. one new element to
the zero ﬂalp of) each matroid on n elements. '

Step 2:\.,‘ Construction of k (possibly not all distinet) loop-
\ N .

'
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less non-simple matroids on n+l elements ,which correspond to an arbit-

rary loop-less matro:.d M on n elements with k atoms, by addition of E_)ne
new element to an atom of M. '

Step 3: An isomorphism check of the matroids constructed in
Step 2. and the elimination of the isomorphic copies.

Some explanations and comments

Step 1. uses (and establisﬁes) an 1-1 correspodence between all
non-isomorphic matroids on n elements and all non-isamorphic matroids
with loops on n+l elements. }

Any loopless non-simple matroid on n+l elements can be constru-
.cted by the procedure of Step 2. ,for there is ’not an element of the
carrier of a matroid,which is not included in an atom of it.

Step 3. (by far the most tedious one) may be shortened if we pri-
marily eliminate the isomorphic matroids constructed from the same ma-
troid on n elements and observe that the loop-less matroids on n+l ele-
ments,obtained by addition of the same p-tuple of numbers of new ele-
ments to the ordered atoms of a rank p simple matroid are isomorphic.

A modification of this algorithm is used in [1] for the construc-
tion of non-simple matroids on 8 elements. All non-isomorphic simple
matroids on 8 elements are also known ([2]),and we suggest this algorithm
for the construction of non-simple matroids on 9 elements.There is a ve-

ry little hope for its use on larger sets,for even the construction of

all non-isomorphic simple matroids on 9 elements seems to be unreachable.

REFERENCES

[1] Acketa,D.M., All matroids on 8 elements (to appear)

[2] Blackburn,J.A.,Crapo,H.H. ,Higgs,D.A., A catalogue of cambinatorial
geametries,Math.Camput. 27(1973),155-166.
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IMoH

HEHOTOPHE XAPAKTEPUCTUKM TABJWL BYJNEBHWX ®YHKLMIMA
U MOCTPOEHVS BHPAYEHMA B OMEPATOPAX WEDGEPA

M. XoToMcku

Qyuxuun f: Ln""'Lz, Z,-{01}, npencrasnenHa TaGmuueii.

nmaem f KakK J—le KOOPII.VIHaTy BeKTOpa f 1 C INOMOUWbLI KOHKa=-

TeHauun Gynem nucate f = K:f‘ FfE. W

Hn - - - 2 I | F He TPYLHO YCMOTPETh CIenylyuue XapaK—
o --- 0 o0 N

0o --- 0 1 f* TEPUCTUKMN CBASAHHHE C cTon6GuamMy Tal—
. - T JIALB o

1 -« 1 4| f

I. Kaxnuit BeKTOp .I, ¢=4n MOpoOXInaeTCy BhpaxeHUEeM

X; = :; (K Olz'rK ’I/“ ) wnM Kopoue X;= i&"k [ (24 ﬂ

raq r=2¢4 J=0 =1
roe [ Ii- uenas qac'rb.
i2%r
BupaxeHue KK/,([r/(z 4)_7 penpes3eHTUpyYeT apryMeHTHYI-
=1 j=0 r=q
4acTh TaObNULH.

MycTs N, necaTuuHmnil 3KBUBAJEHT OMHapHON 3amucu BeKkTopa Ag .
Iy _I0)I61) 7
I (12 I(¢) ’

TakumM o6pasom 3HaueHUs AN, OTHCKUBAKTCHA HENOCPELCTBEHHO M

O6osnauny J(W=2-4  rorma N =

He3aBHCIMO ApPYT OT IpYyTa, T.e. OpOlle ueM NpenjoXKeHO B [8],.

Uucno -/(n) coorBéTcTByeT @ynxume KOHCTaHTe f=4 u yHoBle-
TRCPEET DPAaBEHCTBY [_IN (I(n))

- ® .
NocpencTEoN eetvropa 1<4<n BEKTOP f MOXHO TNDPENCTABMTH

B 'Oync ]C K (K flzfi-r 42+»)

TOpa f Ha w*cu‘ax KOTOprX B X croaT &,4,CO0TBETCTBEHHO.

fo; f1 KOODIAMHATH BEeK=-
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Vcnonp3yem mnpuBefeHHYW HOTAUUO OJIA ONMCaHUA MeTOona HOCTpOe%
HMA OCOOHX BHpaxeHuit B omnepaTopax llepdepa. Bonpocu npencrag—
TIeHUsT M MUHUMU3AUMK B 06061e HHHX onepaTopax Tx'-JqA--x
pPaccMOTDPEHH n[ﬁ] n[ﬁ]. Tam 3TV OmepaTopH B BupameHMHx MMewnT
NepeMeHHY ANUHy. Mu 6ymeM paccMaTpHMBaTh BHDaXEHUS KOTODHE,
MCXONA OT TalOnuUH CTPOATCHA MCKIWNYMTENbHO Ha GMHApDHEM Olepa-
TOpe ;t{}:iﬁ}. IlokaxeM 4TO KaxOyl 6yneBy (PYHKUUKO M IepeMeH-—

HHX MOXHO NpPenCTaBUTBh BHDPaXeHuUeM oco6oro Bmma: P—Bblpa)KeHVIeM.

Onpenenenne 4. P-mepeBo /nompe3aHHoe OepeBo/, 8TO GMHADHOe

IepeBO, KaxJad He KOHLeBas BepuuHa KOTOPOTO CBA3aHa XOTH OH
ONHO# M3 OBYX MCXOOALMXUB Hee IpPaHb, C BEPUMUHON KOTOpPOH co-
OTBETCTBYeT NEePeMeHHasd, NUGO0 HernocpeNCTBEHHO nu6o yepes Of-
HYy BepuuHy. P-TIepeBO 3aKOHUEHO eCnyM KaxXOo#l KOHLUeBOW BepuuHe
COOTBETCTBYEeT NepeMeHHasa IaHHO! QyHKLUU.

Onpenenexne 2. Bupakxenue 6yneBoit yHKUMM COOTBETCTBYyWUEe

3aKOHYEHOMY P-mepeBy Ha3hHBaeTCHA P-BHpaxeHMUE.

Teopema . Kaxpywo 6yneBy dyHKLMI0 i MEepeMeHHHX MOXHO MNpeml-
CTaBUTh P-BhHpaxeHyeM B OMHADHHX OnepaTopax me®¢epa?
llokaszaTenbcTBO 0GOCHOBAHO H& ClEAYOWMX JieMaX.

Jlema 4. Ecnu f u g danaHHHe GyneBH (QYHKLMM N TNepeMeHHHX,
TO MOXHO OTEHCKATH GyNeBH dyukumn ¥ n ¥ raxkue uto
(3t¥)*€=f , npu uem yf‘/ﬂ‘-//:zs(g"fw'), 7 vel,.

llokasarenscTBo. OGO3HAuUUM yepe3d § KOOpIOMHAaTh KOTOpbhe MOTryT

uMeTsr nwboe 3HaueHue u3 L, /cBOGOLHbE fj A?j W/ %V
e o o0 5 4
koopauHaTe/ M nycTs 215=4 ., 3HaueHus 0 4 0 1
. . 1 o0
¥ u ¥/ onpenenenHs B Tadnuue. 4 4 2 g

4) AHHanoruuHnii pesaynsTaT nelicTBMTeneH mnA oneparopa [pca.
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Jlema 2. [lo Gynesoit yyHkuue f m nepemeHHHx u nwGoil ee nepe-
MEHHOH X; , MOXHO OThHCKAaTh Oynesb JyHkumu F~ ¥ un ‘€ koropue
He 3aBMUCAT cYUeCTBEHHHM o6pa3oM OT X , Takue UTO
(Frxty)t(xre)=f
JlokasaTensCcTBO., YTBepXOEHME JIeMb BLHIMOJNHAETCA LAA CHENYOuuX
BGKTOpOB, 3anuCcaHHHX NMOCDEACTBOM nepeMennof ;.
2% 2¢ 125 261 P R L
F= J{/S (’.}Sf FI ‘2 +r)  rae /fJ? +2 +r-= fp.‘.,.,-

-
2 ¢

K (K y/Ji’-rr VJ!‘%Z 3 r  rae y/quur y//z-l-z"

¢ /5‘(»’% w‘% L5, e EF= I
= r=4

npy¥ YeM KOODAMHATH BEKTODPOB € u¥ onpenenﬁmrcn U3 ycnoBus
(F/2+2"+r 7 VJZ +2"+r)7 > 2% 2" +r— fa'z‘+z""+r

C MCHONb30BaHUEM Tadnmum sIeMbl 1. !

' Tenepb, NOKA3aTENbBCTBO TEOPEMb CTAHOBUTCA OUEBUOHHM.

AnroputM oThickaHua P-BHpaxeHUs MOXHO OCOCHOBAThH HA NOBTOD-—

HOMiDpMMGHeHMN nems 2, noka ff’ Q? n Y He oKaxyTcs {YHKUUSA-

MU ONHOW nepemerHoW. OmHako, P-BHpaxeHWe MeHbWed OMMHH NONYy—

yaeTcs eciu nemy 2 MCHONb30OBATh TOJNBKO TOTLA& KOIOa K HaHHOit

dyHKLUUE He npmmeHMMﬁ vactu a/ uwnu 6/ crnepywweil nemm 3.

Tounee, uacTsh 5//mcnonbayeTc3.Toano ecnu He mpumeHuMma a/.

Nema 3. Tycrs J° u (. naHHHE BEKTODhH.

a/ Ecnu He CyWeCTBYOT KOOPHUHATH BEKTOPOB f m X , Takue

4To f"= x/ =0 , To IyHruus
25 S

% K (K F12+,,Kl€/2+2 -rl) rae Polz*;ﬁ ;f—l

ne aaBmcmj OT JC, M YAOBNETBOPAET YyCIJOBUKO X, P€=F.
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d2+r J242 %~ \
6/ Ecnu nna f sunonmeno: ecnmm f, =4 rorma f, =4,

TO @ynxﬁnqu'n W ,onpeleneHHH CHeLybUUM 06pPa3oM

n-c

27y 2¢-1 ot ‘i--f ol i . . —y . ¢
42547 J2f+2 +C) IZHr mh2%42 L d2°+r
F=K(KE""KFR e RITILE Zf

4=0 * r=4.
-C é-4 . -1 -
- P= ( ) K % s o : ;
J=o0 " r=4 r=4 szg 2% jz‘+r0‘
 giter gtz [ el =
rae L g iy
S ,ana £ =

.He 3aBUCHAT OT X U YLOBJIETBODAWT F/‘(Z;-fy’)éf -
JoxasaTensCTBO yYCTAHABAMBAETCH HENOCPEICTBEHHO# NMPOBEDKOM.
MoxeT KasaTCsa YUTO Takoli MopANOK NpmMeHeHua jem 2 u 3
npuBeneT K MUHMManbHOMY P-BHpaxeHUW, HO 3TO He TakK. [losTomy
CTE8HOBUTCA BONPOC OTHCKAHUA MUHUMANLHHX P-BHpaxeHMi.
llpuMep. Hna BekTopa f= 44441001 Gynesol QyHkumMm Tpex
TIepeMeHHHX, yKa3aHHi{t NMOPANOK NPUMEHEHMH JNeM NPMBOIUT K Cle—
nyouemy P-supaxemumw: F = ((2, 1(X,12)) M (T (x,1x)) T x5 .
OnHako, 3TO He MMHMUManbHOe P-BhpaxXeHue, TaK Kak clenylouee

BHpaxeHUe TaKkXe ABNAETCH P-BHpaXeHUeM ONAHHON GYHKUUM

f=((141‘1‘,)f(x,_1‘x,)) T(:’erz) .

JiurepaTtypa

4. B.A.KoBans, HekoTOpHe BONPOCH MONYYEHUA MMHMUMANBHHX BHpa-
*eHuit B oneparopax "wrpux lledjepa"kbcrpenka [mpca/, B KH.
Bonpocu Teopun 3UM, Kuen I966.

2.l.A.llocnenos,Jlornueckue MeTOHOH &aHanu3a M CUHTE3a CXEM,
"OHeprua", Mockea IC68.

3e.Ml. XoToMcku ,00MH cnoco6 OTHCKAHMA 3IHAUEHM# FopMyn HMcYUCHe—

HMA BHCKa3uBaHuil,"MaTemaTuuku Bechuk" I12/27/,1075,Beorpan.
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HOMOMORPHISMS OF NETS
K. Stojmenovski

Homomorphisms between nets of the same dimension and degree
are considered in this paper. .

0. Let (.P be a nonempty set, n a positive integer (n#¥1l) and
Bl,...,Bk (k 2 n+l) a collection of disjoint subsets of the boolean
of ® . The elements of P are called points, the sets Bys..esBy
classes and the elements of the classes are blocks.

The structure N = ( ? H Bl" ..,Bk) is called an n-dimensional
net with a degree k (or simply an [n,k] - net) if the following
statements are satisfied.

(I) If P is a point and i€ {1,...,k}, then there exits
exactly one block bie Bi such that Pe€ bi'
(II) Each sequence of blocks bi ""’bi from different classes
1 n
contains exactly one common point.
" It is shown in [1] that Bl""’Bk have the same cardinal
which is called the ordre of the given net.

Let N = (9 ; By,...,By) and N” = (P B,...,BY) be two
n-dimensional nets with the same degree k. A mapping f£: +» P~ is
said to be a homomorphism from N into N° if it satisfies the
following condition:

(H) For each block bver there exists a b\:GB\; such that
f(b,) = {£(P) |P€ b} SD;.

An isomorphism is a bijective homomorphism such that £ is
also a homomorphism.

If (.() € @ and the embedding mapping from ?" into P
is a homorﬁorphism, then N is said to be a subnet of N-.

Furthér on by a net we will always mean an [n,k'] - net.
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l; If f is a homomorphism from a.net N into a net N” such
that |£(b)| = 1 for a block b of N, then f is a constant hamomo-
rphism, i.e. |[£(P)| =

Proof. Let f be constant on a block be B , and let f(b) =
= {P°}. If j # i and b € BJ, then bf\bJ # 40, and this implies that
P € f(b ) . Therefore there exists: abje B’ such that f(b )€ bj and
P’ ebj, for each by €B,. If P € P, then P belongs to a block of
B and thus f(p)Eb . ‘

Assume now that jl < j2 < ... < jn and j,, # i. Then for each

v there is a block b € B such that P°€b; and £(P)€b; for
Iy Iy Iy Iy
each P€ P. This implies that P° and f(P) are in biA ...AbS,
- 1 n
and therefore £(P) = P~ for each Pe ?
2 Let f be a homomorphism from a net N into a net N7, and
let b ,b € B be such that f(b )Sbs, f(b )Sb for some

b GB .Then f(b)-—f(b)

Proof. Assume that f(b ) # f(b ), and Q“ € f(b )\f(b ) . There
exists a point Peb such that Q7 = f(P) Let i < 12 cee < 1
and iv # s for each v €{1,...,n-1}. By (I) there exist b

n-1
ey
i1

..'.,b such that Pebi y bi € Bi for each ve{l,...,n-1}. And,

i
n-1
by (II) there exists a unique Re ‘P such that Reb N ...nbl/\
l n-1

2 .
/\bs. Then: £(R) ef(bil)/\ l\f(bi _ )r\f(bs) S'biln ...r\bln_lr\ bS’
and also Q” = £(P) €b A ...Ab”°, where b. are such that

il -] iy

f(bi ) € bi . Thus we have Q° = f£(R) € f(bz) , and this is impo-
ssible for we have assumed that Q¢ f(b ).

3. If f is a surjective homomorphism from a net
N=(%P; By/...,By) into a net N” = ( P-; B{,...,BY), then:

bve Bv - f(bv) GB\:

and for each v €{1,...,k} and b\;e B\: there exists a bv € Bv
such that f(bv) = b;.

Proof. If bsGBs then there exist a bBGBs such that f(bs) (Y bs’.
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Assume that Q”e b_\f(b_). Then there exists a P& P such
that £(P) = Q~ : for f: P+ P is a su.tjective. There exists a
unique block b €B_ such that PEb . Then Q = ‘(P)Gf(b ) and
therefore f(bl) Sb . Thus f(bg )‘b and f(b )‘b and by 2 this
:melles that f (b )y =¢£ (b ), but this is illposs:l.ble for
Q- Gf(b ) and Q° ¢f(b ) . Therefore b'\f(b ) =@ i.e. bl; = f(ba).

Assume now that bseBs. We have to show that there is a
bseBs such that f(bs) = bs‘. Let P € bs’, then P~ = f(P) for some
P€ P ; there is a unique b € B, such that P€b,, and thus
P € f(bs)/\bs’, which implies f(b;) = b;.

4. If £:N » N is a bijective homomorphism, then it is an

isomorphism.
t

Proof. We have to show that £ 1:N” » N is also a homomorphism.

If b GB ’ then there is b GB such that f(b ) b;, and
this J.mplles that £l is a homorphlsm.

5. Let f be a homomorphism from a net N = P ;Bl,...,Bk)
into a net N” = (“P7;B/,...,B)) such that for any i,j: 1<i<j<k
and biEBi, bj ij we have f(b,) # f(bj‘). Then N" =(f( P );
f(Bl).""'f(Bk)) is a subnet of N~.

Proof First, by the assumed property of f, we have that
£(8; YN E(By ) =@ if i # j. Also by 1, we have that |£f(b;)| > 1
for each i e{l,...,k) and b; €B;. Namely if we had lf(b )| =
for some i €({1l,...,k) and ble Bl, then we would get that f is
constant and then ff(bi) = f(bj) for any i,j and bieBi, bjij.

Let P“€ £( “P) and 1<i<k. Then there is a P&“P such that
P~ = £(P) and therefore by (I) there is a unique b GB such
that P Gb ; this implies that P~ €f(bl) .

Assume now that P~ = f(Pl), Plebl; then P'ef(b )I\f(bi)
whence follows that there is a b EB such that f(b )sb
f(b ) <b and by 2 we set f(b, ) = f(b ). So we have proved that
N" satlsf1e§ (1).
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Finally assume that 1<i,<...<i <k and ‘bi € B, . Then there
v v |

is a unique point P € ® such that Pebi for each v, and thus
P°= £(P) €£(b;, ). This implies that the’condition (II) is
satisfied. Voo ¢

" “Therefore N" is an n-dimensional k-net. Clearly the embedding

mapping from N" into N” is a homomorphism.

If £f:N > N~ is a surjective homomorphism, then f(bi) # f(bj)

for i#j is satisfied and moreover then we have N” = N".

6. Let £ be a surjective homomorphism from a net N = ('P ;Bl,.
""Bk) into a net N° = (’P’;Bl’,...,B];) and let o = ker f. If‘
Pe€P , then by P is denoted the a-equivalence class containing P;
if b is a block in N, then the set {Q|f(Q) € £(b)} is denoted by b
and Ei = {Ei|bii Bi}. Then N/o = ( 'P/a, 1""'§k) is a net iso-
morphic with N°.

Proof. If P = Q and P€b, then we have £(Q) = £(P) € £(b) and
thus Qeb, i.e. b is well defined. Assume that Bi = Bj' where

biGBi and bjGBj Then £(P) Gf(b ) iff £(P) e £ ‘(b.) and therefore

f(b ) = f(b ) which is possible only if i=j. ThJ.s shows that if i#j,
then BiI\B = 4.

Let P € P/o and i €{1,...,k}. Then there is a unique b € Bi
such that P €b and thus £(P) € £(b), i.e. ?&Seﬁi.

Assume that P€ bac, where E,Ecﬁi; then b,c ¢B; and

£(P) € £(b) A f(c) and this implies that f(b) = f(c), i.e. b = c.

Finally, let 51 ¢ Ei and 1siyp<...<i <k. Then there exists a

unique point P such :hat 1\;6 biln Abin

...I\f(bi ), i.e. '15651/\ ...nb; . Conversely, if 6;311/\
f\Sin, then £(Q) € £(by 1)/\ r\f(bin) and this implies that

and thus £(P) € f(bi) N
1

£(P) = £(Q), i.e. P = Q. Thus we have proved that N/a is a net.
Clearly the canonical mapping £:7 -+ £(P) is an isoporphism from
N/a onto N~°.
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A NEAR-RINGS -
Novi Sad 1981 GS OF D-AFFINE TYRE

V. Da3ié

In this paper we consider one special type of the near-rings
with defect. We study some substructure of the near-rings of this type.
Also, we give certain characterizations of the defect of such kind the
near-rings.

A (left) zero-symmetric near-ring R is a set with two bina-
ry operations + and . , such that (R,+) is a group ( not necessarily
abelian), (R,.) is a semigroup, the left distributive law holds, i.e,

x(y+z)=xy+xz for all x,y,z€R
and ox=o for all xER, where o is the neutral element of (R,+). A right
ideal of R is a normal subgroup of (R,+) such that

(x+a2)y-xy¢ A for all ac A, x,yER,
A subgroup B of (R,+)is a right R-subgroup if BR & B, A subgroup M of
(R, +) is an invariant subgroup if RM& M and MR & M (see [3])

‘ Let (S,.) be a multiplicative subsemigroup of the semigroup
(R,.) whose elements generate (R,+). The normal subgroup D of the group
(R,+) generated by the set

Dg= {déR:G{i,yé R)(Is<S) (x+y)s=xs+ys+d_}'
is called the defect of distributivity of the near-ring R (see [1])
Let R be a near-ring with the defect D and let S be a muiti—
plicative subsemigroup of (R,.) whose elements are distributive, i.e.
(x+y)s=xs+ys for.all x,YER and s¢& S,
Definition. The near-ring R with the defect D is said e near-
ring of D-affine type, if R=L+D, where (L,+) is & subgroup of
(R,+) generated by S. If (R,+) is an abelian group, then we say that

R is an abellan near-ring of D-afflne type.

0
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Every T€R have the form =2 (#8;)+d (s; ZS, 4 €D). Clearly,
. . i : .

L is a distributively generated near-ring. If R is an abeli\an near-ring
of D-affine type, then all rER have the form r=s+d (8¢S, d€D)., In
this case L is a subring of the nesr-ring R. If LND={o}, thén by first
isomorphism theorem we have R/D= L.

Exmplel.- 1) Every distributively generated near-ring is a
near-ring of O-affine type. '
| 2) Let R be a distributively generated near-ring and let A
be an ad.ditiye group. On the set RXA we dgfine the operations + anci o

as follows:

(1.'1 ,al)+(r2,12)=(rl+r2,nlﬂa)

(rlre,az), if o) ¥ o
(ryr8y)(r,,0,)=
l’ 1 2’ 2 (1‘11‘2,0), if .l =0

for all rl,raéﬂ, tl,azeA. From straightforward cslculation it follows

that (RXA,+,.) is & near-ring of D-affine type, where Da{(o,a): aéA?’.

Theorem 1. Let R be & near-ring of D-trriné type. The normal
subgroup A of the group (R,+) is a right ideal of R if and only if
AS<A and for all xeR, d€D, a&€A hold (x+a)d-xdcA.

Proof., Let A be a normal subgroup of (R,+) and (x+a)d-xd<A
for all xcR, ac€A, de D, It suffices to show that statement is true
for all r&R of the form r=s+d (scS, d=< D). Thus, for all x,y<R, acA,
where y=s+d (8&S, A€ D) we have

(x+a)y-xy=(x+a)(s+d)-x(s+d)
=(x+a)s+(x+a)d-(x8+xd)

=xs+as+(x+a)d-xd-xs.
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Since as¢ A and (x+a)d-xd €A it follows (x+a)y-xy€Ad for all x,yER,
acA, i,e, A is a right ideal of R.
Converselly is immediate.
Definition. L.et R be a near-ring and let D be a subset of R,
The normal subgroup A of (R,+) is a right D-ideal if for all xcR, a€A,
d ¢D hold (x+a)d-xd €A.
Every right ideal of R is a right D-ideal. The converse isn’t
true. For example, if R is a distributively generated near-ring and A
is a normal subgroup of (R,+) which isn’t R-subgrowp. Then A is a right
O-ideal, but isn’t a right ideal of R.
Definition. Let R be a near-ring and lefl be a subset of R.
The subgroup B of (R,+) is a right D-subgroup if for all b&€B , €D
hold bd«< B,
Clearly, every right D-ideal is a right D-subgroup. From the
definition of the right D-ideal and by using Theorem 1 , we have
Theorem 1. Let R be 8 near-ring of D-affine type. The sub-
set A of R is a right ideal of R, if and only if ASCA and A is a right
D-ideal.
Theorem 2. Let R be a near-ring of D-affine type.
a) All right ideals A of R are of the form A-I’+D', where
I'SSI’, D'SCD’ and A is a right D-ideal.
b) All R-subgroups B of R are of thé form B=I"'4-D’’, whepe
I’“S<I’’, D’’S<D’’ and B is D-subgroup.
\ Proof. a) Since ASCA, the result follows as an immediate
consequence of the Theorem 1° ., |
b) For ali b=i”pd”¢&B and r¢R, where r=s+d (8 €8, d€D)
we have '
br=(i"4+.d4d* )(=s+4)
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br=(i¥ + d")s+(i”+‘ 4”7 )a

br=i”s+d” s + (17 + 4" )d
N .

br=b) +by+bz € B, (1% s=b, € B, d” 8=b, & 13,?1’«1)%1:3 €B)

\
i

By induction on k, where r=Z(:sk)+d (s‘—kés, d&D), we complete the
: k

proof. '

Corollary 3. let R be an abelian near-ring of D-affine type
such that every normal D-subgroup is a right D-ideal of R. Then every
right R-subgroup is a right ideal of R.

Denote by A(R) the annihilator of R, i.e. A(R)={a €R:ra=o
for all réR} o The following theorems 5ife certain characterizations
of the defect D.

Theorem 4, Let R be a near-ring of D-affine ty/;;e. Then
DCA(R) if and only if R is a distributively generated near-ring. |

Proof. If D<A(R), then for all x,y,r <R, where razi(i-si)-od

(sie S, 4 €D), we have (x+y)d=o=xd+yd. Hence, d° is a distributive ele-
ment and every rc R we can write in the form r=Z(:si ), where éi are
i

a distributive elements.

Converselly, if R is a distributively generated near-ring,
then D={o} , that is DSA(R).

Theorem 5, Let R be a near-ring of D-affine type. If D is
a subring of R, then D2 - {o} .

Proof. By definition of the defect D, for all dke‘D we have
4 =) (v, +d -r )
x 3 X, d"‘;l X,
(r, €R,A] ==(x,_ r_ +y,_ T, )+(x, +y, )
X, ’d‘kJ i iy e iy T e T T, 0 Ty » rkJeR).

It sufficies to show that statement is true for all Ty of the form
J
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rkd.'d+d'(’3(£s’ d¢ D). Thus,

d{ ==y, r_-x_ 7T +(x, +y, )(8,+d)

g™ T iy ‘kj kg "kJ Nt

! ==y, T =x_ T +(x. +Yy, )8.+( +y, )a
TR T P T A N Tiar e Al

' m=y, T, -X. T, +X, B.+Yy, 8.+(x_+y_)d
ETRR T T T A i e

d; ==y, r_ -x,_ T +x. (r, -d)+y, (»,. -4)+(x,_ +y, )d
ey T T Ty e T T T g e T T e g

' m=y T, =X, P +X, T -X._ d+y, r -y, d+(x,_ +y, )d
R B LT P Pt

Comey, T =X, d+y, T, =Y, d+(x, +y, )d
dkj I P P T A ‘xa x,

Hence, d:i'.dllt;j'di('yk‘jrkd-xkdd"ykdrka

d,d; =-d4.y, r, -d 4d+d,y, r. -4.y, 4d+(d +4,y,. )d.
1dxa i Lt i e G P b

-Ikad+(xkj+yka)d)

Thus, didl': =0, because the defect D is an ideal, i.e. a right R-subgroup,
J

and by assumtation D is a subring of R. Since D2 =Z 4,4, ,(di,dk(-'D) ’
ik

we have

44 = 2 (any
k‘1 J

+ d.d! -d.» D=0
i k;] i k;]

Thus, p? = {of and this finiches the proof.
For example, a neai'-ring of A-endomorphism of the growp

(Z6,+), where A ={o,3} (see table 2 of [2]) is an abelian near-ring
of D -affine type with S={f_,f,,f,,2,,f,,fc{ and the defect

P =tort1rtortzaiylg
:D =$f°,f9,fl'2,f14} + Since w as a subnear-ring ‘is distributive, we

nave J 2 ={oj . However, a near-ring (19) (see [3/, p. 341) is an abe-

lian near-ring of D-affine type with S={o,3} and D={o,2,4} « But D eas
a subnear-ring isn’t distributive and hence D # iOJ’ .

\
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For all x,y€R and m¢ M'we call the element -(xm+ym)+(x+y)m
the distributor of x and y with respect tom and denote ij: by ]_x,y,m |
Denote by DH(R) the normal subgroup of (R,+) generated by

‘{[x’y’m] iX,y €R,m ePIJ’
Theorem 6. Let R=L+M be a neu--ring with the dei’ect D, where

(L,+) is a subgroup of {R,+) generated by multiplicative sub-
semigroup (S,.) of distributife'elenents of R, If M is a subset of addi-
tive center of (R,+) and RMCM, then DQDM(R).
Proof, ILet d€D and d=-(xr+yr)+(x+y)r,(x,y,r€R). It suffi-

cies to take r€R of the form r=s+m,(s<S,meM). Thus,

d=—(x(s+m) +y(s+m))+(x+y) (s+m)

d=-(xs+xm+ys+ym) +(x+y)s+(x+y)m

d=-ym-ys-xm-xs+xs+ys+(x+y)m

d=-ym-xm+(x+y)m € Dy(R).

Theorem 7. Let R=L+M be a near-ring with defect D, where (L,+)
is a subgroup of (R,+) generated by multiplicative subsemigroup
(8,.)of distributive elements of R and let M be an invariant subgroup
of B, If M is a subset of additive center of (R,+) and DM(R) is 2 right
M-subgroup, then DM(R) is an ideal of R.

Proof. Let r-zi(_-_l;si)ﬂn ,(8;&5,mneM) and
a=-(xb+yb) +(x+3)b €D, (R), (x,7¢ R, be M)
Then ar=(-(xb+yd) +(x+y)b)( Zi(:si) +m)
are )_: (=(x(sbsy ) +7(+b8,))+(x+7) (b8, ))+(~(xb+3b) +(x+7)b)mE Dy (R).

Thus, DH(R) is a R-subgroup. The result follows by using Theorem 6 and
Lemma 3.2 of fl]
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SOME NONAXIOMATIZABLE CLASSES OF SEMIGROUPS
A.Krape?, Matemati¥ki Institut Beograd

To prove nonaxiomatizability results for some classes
of models, we regularly use three well known theorems of model
theory: compactness theoreii, Lowenheim-Skolem theorem and
ultraproduct theorem.

COMPACTNESS THEOREM. (Godel-ilalcev) A theory T has a model iff
every finite subset of T has a model.

LGWENHEIM-SKOLEi4 THEOREM. If theory T has infinite models, then
it has models of any power 3 WLWU

LW is a power of the language L and is defined by
NLll =9+ cardL

~ ULTRAPRODUCT THEORE#i (to$). Let (Ai)iol be a family of models

for L and let F be an ultrafilter over I. Then for any formula
P(xys..00x,) of L and any ay,...,a €M A,

F F . . . .
neake vhaf..nafl irr fierlae yla (i), ai]} @
(We assume that in []Ai and [\FAi i runs through index set I),

Proofs of these theorems and details of ultraproduct
construction can he found in any standard textbook on model theory
such as D] .

In the sequel we use these theorems to give typical
nonaxiomatizability proofs in the case of semigroups. We believe
that careful reader can easily produce his own nonaxiomatizable
classes of semigroups.

*

DEFINITION: A semigroup S, with zero 0, is nil if:
(M) ¥x3dn (x" = 0) ' \

(N) is a sentence of so called W -logic. We assume. that
m,n,p,q,rlare variables for natural numbers and that'x,y,x1,...,x
are variables for semigroup elements

\we should state explicitely that for purely practical
reasons we do not include 0. among natural numbers. Otherwise we should

n
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write in all formulas that all variables are different froﬁ 0.

It is natural to ask if there exists a set of first order
axjoms for a class of all nil semigroups. Using compactness theorem
we shall prove that there is no such a set. In order to do that, we
shall construct a semigroup satisfying all first order sentences true
in all nil semigroups but which is not nil.

THEOREM 1. The class of all nil semigroups is nonaxiomatizable.
Proof: Let a, be a generator of a. free semigroup Fn and
I = {wan | twl >,n} . By |w) we denote the length of the word

n
w from Fn' It is easy to prove that In is an ideal of Fn and that

F /1 is ni
n/I_ s nil.
n i .
Let us denote Fn/I-n b_y‘Sn and In by On. The semigroup

S = E_Sn is also nil with a zero 0 = (01,02,...). By ZSn we
denote a subsemigroup of f]Sn with elements a such that only
finitely many a(m) (m€N) are different from U

Let L ={-,0,a} and ThS be the set of 211 sentences in
a language {-,0} true in S and:

(N,) a ¢ o0 (nen)

Let T =Ths U §(N )| nen} and T) some finite subset
of T. Ty is contained in some theory T, = ThS U {(Nn) ‘ n<r }.
(S,ar)ﬁ= Tr ] Tr and T0 are consistent theories, and by compactness
theorem so is T. ket (S°,a) be a model for T. S"®S (S and S satisfy
the same set of first order sentences) since S°is a model of ThS
but S° is not nil because it is a model for all (Nn) (n €N).

If the class of all nil semigroups was axiomatizable, from
S®S” it would follow that S” is nil, a contradiction.

Example 1. A semigroup S is power-joined (see [2} ) if:
(PJ) Vxydmn (x™ = y")

Adapting the proof of Th1 we can prove that the class of
all power-joined semigroups is nonaxiomatizable.

Example 2. S is a 3PJ-semigroup (see [3] ) if it is a semigroup in
which:
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(BPJ) nyVIMIqu ((xy)P = (xmyn)q)

For BPJ-semigroups a theorem similar to Th1 holds.

In (4] a more general result is proved, of which the
above results are simple consequences.
DEFINITION: Let S be a semigroup. A semigroup defined on power set
of S, with a product defined by:

AvB=Ja-b|aen, bes}
when A #¢ , B #¢ and A-B =¢ otherwise, we denote by 25, A
semigroup isomorphic to 2S is called a global of S. If S is a
group, then any semigroup isomorphic to ZS is called a global of
a group.

An interesting result about globals of finite groups can
be found in [5] . ’

Using LBwenheim-Skolem theorem, we prove:

THEOREM 2. The class of all globals of groups is nonaxiomatizable.

Proof: Let L be an expansion of the language io} . If the class of

all globals of groups is axiomatizable by a theory T in L, then

(by Lowenheim-Skolem theorem) there are models for T of all cardinals
> lILl . But if K is a limit cardinal, there is no global of a

group, with exactly WK elements, which is a contradiction.

Consequently, the class of all globals of groups is
nonaxiomatizable. :

The following, more general theorem, has the same proof
as Th2,
DEFINITION: Let K be a class of semigroups. We say that S is K-global
if 5% 2% and GeK. :

THEOREM 3. Let K be a class of sem%gnoups with an infinite model.
Then a class of all K-globals is nonaxiomatizable.

Example 3. Th3 holds for the following classes K (of course the
list is not exhaustive):

the class of all regular semigroups

the class of all inverse semigroups

the class of all cyclic groups

the class Sf all bands

the class of all free semigroups

the class of\a11 nil semigroups
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Example 4. Th3 holds for an axiomatizable class K of semigroups
with arbitrary large finite models, since it is well known that
a theory with arb1trary large finite models, has an 1nf1n1te model.

Example 5. Th3 holds for every nontrivial variety K of sen1groups

A variety is trivial if it satisfies the axiom ny (x = y).

) Since K is variety there are free K-semigroups. Ambng‘

them there is a free K-semigroup with infinitely many free generators,
Clearly this semigroup is infinite if K is not trivial.

Example 6. Th3 also holds in all logics where L6wénheim-$ko]em
theorem holds. Examples of such logics are w-logic, weak second
order logic and Lﬁ~w

DEFINITION: S is palindromic semigroup (see [6] ) if it satisfies:

(P) An>1 Vx1...xn (x1...xn = xn...x1)

THEOREM 4. A class of all palindromic semigroups is nonaxiomatizable.
Proof: Let a ,bn be generators of a free semigroup F and

I, = &weF ‘ le}n} As in Th1 I_ is an ideal and P /1,

is palindromic.

Let F be the Fréchet filter over N (a set of all subsets
of N with finite complements) and G some ultrafilter containing F.
Let also S = TTGSn. We prove that S is not pa1indromic.4

Let g = ... = x4 = (ays2p,...)% and x, = (by,by,...)5
Then: .

XqeooXy = (0,...,0, a2+}bn+1,a2+;bn+2,...)a

XpoooXg = (050,500 alTlp afntl )6
and {IHQN ) x g(m)ox (m) # x"(m)...x1(m)} = {n+1,n+2....}el=cG

SO Xy...X, $ XpeeeXy

Since this is valid for allm&N, S is not palindromic and
by altraproduct theorem, the class of all palindromic semigroups is
nonaxiomatizable.

Example 7. The class of all finite bands is nonaxiomatizable.

Let S, be the left zero semigroup with n elements and F
a nonprincipal ultrafilter. f]FSn is a left zero semigroup not
isomorphic to any of Sn (neN), since F is nonprincipal. There are
no other finite left zero semigrou.s except Sn (neN), so f\FSn
is infinite.
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Hlonaxiomatizability follows.

Example 8 (D. Blagojevi¢). The class of all semigroups with finitely
many idempotents is nonaxiomatizable.
The proof of example 7 is also applicable to example 8.

Example 9 (D. Blagoievi¢). The class of all regular semigroups in
which every element has only finitely many inverses

Since xyx = x in all left zero semigroups, the proof of
example 7 is again applicable.
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COMPATIBLE SUBASSOCIATIVES
N. Celakoski

The notion of compatible n-subsemigroup of an n-semigroup,
introduced in [1], and almost all the results on compatibility
obtained there, can be generalized for J-subassociatives of a
J-associative in a straightforward way. In this paper we shall
consider these questions for J-associatives in some details.

§1. Preliminaries

Let A = (A;F) be an algebra with the carrier A and a nonempty

set of finitary operations, F = F2 V) F3 U ... U Fn\J ..., Where
Fn consists of the n-ary operations of F. If f € Fo+1 and
f:(xo,xl,...,xn)k+ Yr then it is written y = fxox1 ces X

The semigroup A~ with a presentation

<Aj;{a = a_a,...a

01" a = faga,...a, in A}>

n| o1l

if the mapping ~ is injective. ~

If ¢:A » A" is a homomorphism, then there exists a unique
homomorphism ¢~:A~ + A°~ such that ¢~(a*) = ¢(a) for any a€ A.
Clearly, if ¢ is an epimorphism (isomorphism), then ¢~ is‘a150‘an
epimorphism (isomorphism), but it may happen ¢ to be a monomorphism
and ¢* not to be such one (Ex. 1), §3). Avmonomorphism ¢:A > A” is
said to be compatible if ¢":A" +.§" is also a monomorphism. And,

a subalgebra B of A is said to be compatible in A if the embedding

monomorphism e:B + A is - compatible.

|

i
'
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The subject of this paper are compatible subassociatives of
an associative. Namely, an F-algebra A = (A;F) is called an
F-associative if it satisfies all the identities that hold in the
-class of semigroﬁp F-algebras, i.e. if the general associative
law holds in A. An F-associative is called an F-group if (A,f) is
an n-group for each f € F,- It is well known that ény F-group is
a semigroup F-algebra ([2]).

In studying associatives, it is convenient to consider the
submonoid J = JF of the additive monoid of nonnegative integers
generated by the set {n-1 IFn # @}, If dF is the greatest common
divisor of the elements of JF, then the following result holds:
Every F-associative is a semigroup associative if and only if
dF € JF, and then an F-associative is in fact a (dF+1)-semigroup.
We note also that the associative law implies that for each n € JF
we have an "associative product"”

[]: (XgrXyreearx)) > [xoxl...xn].

in an F-associative A, where [xo] = xX_. This is the reason why an

o

one of its elements. The structure of cyclic J-associatives is
described in [5].

§2 Properties of. compatible subassociatives

Denote by SZ(A) the set of all J-subassociatives of a
J-associative A and by <C(A) the set of all compatible J-subasso-
ciatives of A. The following statements hold:

2.1. B € €(A) & B~ is a subsemigroup of A-~.[]
2.2. BE LA = LB N €Ba) c €m.0
.3. BE €M) = LB c .l

2.4. S(n) is inductive, i.e. if {B;|1€ I} is a chain in
C(n), then B = ({Bi € @m) .0

N
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2.5. If PE€AutA, B € &(A) and C = P (B), then
BEWMRA &Ce €m.0

2.6. B € £ (A), A\B is an ideal in A => B € € (3a).

Note that the sufficient condition in 2.6 is not necessary
(Ex. 4), §3).0

2.7. If G is a J-subgroup of a semigroup J-associative A,
then G € «2(a).0

If A =<a> = {an+1|n € J} is an infinite cyclic J-associative,
then A" is the free semigroup generated by a (3.1 in [5]) . The
theorem 4.1 od [1] is true for J-associatives too:

2.8. A J-subassociative B of an infinite cyclic J-associative
A is compatible in A if and only if B is cyclic.u

Using the fact that every J-subassociative C of a finite
J-group G is a J-subgroup of G,as well as 2.7 and 2.8 it can be
proved the following proposition:

2.9. Let A = {an+1|n € J} be a finite cyclic J-associative,
let P be its periodic part and C be a J-subassociative of A.

i) If C < P, then CE& T().

ii) Let C $ P and let k be the least integer such that
k+1 € C. If there exists g € J such that C = aq+1€ c,
k+1fq+l and q < s, then c ¢ £(a).

b =a

n+1 m+1
Y,

(Here, s=min{n € J|(Im € J) m#n, a = a and the peri-
n+l

odic part of A is P = {X|x€ A, x = a for infinitely many n € J}.)

§3. Examples {

Below we give four examples which can be also found in [1],
pP-p. 26, 28. Ternary associatives, i.e. J-associatives with
J = {2k|}< > 0} in all of them are considered.

1) Let A = {a,b,c}, B = {a,b} and a ternary operation
be defined\ on A by: ‘

[cec] = b and [xyz] = a if {a,b} N {x,y,z} # @.

i
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Then A is a J-associative and B is a J-subassociative of A. The
free coverings A" and B" are given by the following multiplication
tables:

A"

Q |m |o | e
< |e |O |
| g | O

P e e e
e |e o (o ]e
e |e (o o il

=]

o Ip | o R R (T

< |w |* |a |O° |

o lp |o|e |f |o fim
oo o R || [ja
» |r |e |U | | [<

R (e | | | | |

|al =6, [B*= 4.
The extension ¢” of the embedding monomorphism e:B + A is not a
monomorphism, for e€“(u) = e¢”(v) = o but u # v. Thus B¢€ € (3).

2) Let A = {a,b,c,d,e} and a ternary operation [ ] be defined_
on A by: ‘

{x,¥,2} N {c,d,e} # @, (x,y,2) # (e,e,e) = [xyz] =¢c,

x,y,z €{a,b} = [xyz] = a

and [eee] = d. Then A is a J-associative, B = {a,b} and C = {c,d}
are two isomorphic J-subassociatives and

A~ = {a,b,c,d,e,aa,bb,cc,ee,be,eb,de}, |A"| = 12,
(aa=ab=ba, cc=ac=ca=ad=da=ae=ea=bc=cb=cd=dc=dd=ec=ce, de=ed);

B~ = {a,b,aa=ab=ba,bb}, |B~] = 4;

Cc* = {c,d,cc=cd=bc,dd}, lc~| = 4.
Therefore B € ¥(A) and C¢ ¢©(A), for cc=dd in A" but cc#dd in C-.

Thus isomorphism, in general, do not preserve the compati-
bility.

3) The set A = {1°,1",3,5,7,...} with the ternary operation
[xyz] = y(x) + y(y) + y(2), where the mapping y:A + N is defined
by v(17) =1 = y(1"), y(a) = a for all a # 1°,1", is a ternary
semigroup, i.e. J-associative and B = {1-,3,5,...}, C = {1",3,5,...}
are J-subassociatives. The free coverings A", B~, C" of A,B,C,
respectively, are given by:
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A~ = {1°,1*, (1°,19, (1°,1", ",17), 1",1"} v {3,4,5,6,...1,
B~ =1{1-, (1°,1°), 3,4,5,6,...1,

c = (1", (1",1"), 3,4,5,6,...},

where

11013 o 1,13y, atedak) = 3 = 3,5,
(11,13y* (24x) = a+k = (2+k)* (11,13,
11% (24k) = 34k = (2+4k) 1.

Thus B,C € T(A).

The intersection D = BN C is also a subassociative of A,
but it is not compatible in A; namely, ¢€"(3*5) = ¢~(5*3) = 8,
but 3*5 # 5%*3 in D.

4) Consider the additive semigroup of positive integers,
N(+), as a ternary semigroup A, [xyz] = x+y+z. The set
B = {2k+1|k=0,1,2,...} is a ternary subsemigroup of A and
B £ A* £ N(+). Thus the extension €":B* > A~ of the embed-
ding €:B + A is a monomorphism, i.e. B e<A(n), but A\N = 2N is

not an ideal in A.
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ON A CLASS OF SEMIGROUPS

P.Protié¢ and S.Bogdanovié

G.LALLEMENT and M.PETRICH have considered Rees matrix semigroup over
monoid in [61 Using the method of E.EUPONA, ‘2} we give the structural
theorem of semigroups in which some ideal is a Rees matrix semigroup over
monoid, (Theorem 1.1.).The similar method have used s.MILIE and v.PAVLOVIE

in [7]. In section 2. we consider semigroups in which some quasi-ideal is

a group (minimal).These semigroups are considered in [9] (Theorem 5.1 4).
In section 3. we consider a class of (m,n)-ideal semigroups.This class is
larger than a class of bi-ideal semigroups which are considered by B.TRPE-
NOVSKI in [10], so that it contains a class of semigroups in which all
subsemigroups are left ideals which were considered by E.G.SHUTOV, 13
and N.KIMURA,T.TAMURA and R.MERKEL, [4].

We denote by da> a n/llonogenic semigroup generated by element a ,
|¢adl is the cardinal of (ad» , Ka is the cyclic subgroup of d<a)

For nondefinied notions we refer to ﬁ,8,9] .

1. EXTENSION OF REES MATRIX SEMIGROUP

Let D =D! be a semigroup with a group U(D) = G (a group of

‘units of D) and P is a JAx I-matrix over G . Let vH(D;I,A;P) be a
set of elements (a;i,A) , where a€D , i€I , A&/ and operation is -
definied by :

’ (a;i,l\)(b;j,{«) = (ap‘jb;i,(u) .

Then /‘{(D;I,J\;P) is a semigroup which we call the Rees matrix semigroup
over monoid D , (G.LALLEMENT and M.PETRICH, fe.

CONSTRUCTION. Let JH(D;I,A;P) be a Rees matrix semigroup and Q
a partial semigroup so that: (DweIxA\) NQ=¢ . Let S:p-,fp be a
ﬁapping from Q into semigroup 7(.1) of all mappings from I into I and
?:p-—r'?P a n\iapping from Q into semigroup -7(-'/\) of all mappings from A

\

\
\



114
into J\ Let for all p,q&Q be:

@ Pq €Q=p §Pq= gq/ §1>’ ’)?pq\= ﬁpﬁzq

(ii) pqéQ% §g EP = const., '7p ?q = const. | \‘\'x

Let h:QxI~»D be mapping and

(iii) Pq€Q =% h(pq,i) = h(p,i gq)h(q,i)
(iv) the term p aig h(P,i)P;I,z i does not depend on i €I for p,qeQ ;
P P
this term we denote by k(p,A) .
Let us define a multiplication on Z- (DxIxA)VQ with:
(1) (a;1,A) (b33, ) = (ap “jb;i,(ﬁ)
(2) plazi,pn) = (h(p,i)a;i!p,A)
(3) (a;i, &)p = (ak(p, &);i, {\"zp)
%) PQ=T€Q=hpg =r €&z
-1 .
(5) P1¢Q =» Pq (h(p,i§q>h(q,1)p¢,7pqq,i ;18 B AT, 0,0

NOTATION. (X, - ) = YH(D;1,A;P;0Q;h,k, §,7) D

THEOREM 1.1. A semigroup & contains some ideal which is a Rees

matrix semigroup if and only if &, 2 r/l((D;I,A;P;Q;h,k, £§.7) .

PROOF. Let a semigroup JZ. have an ideal K which is a Rees matrix
semigroup.Then Q = Z\ K 1is a partial semigroup so that:

I = kuQ = M(D;1,A;P)VQ , (R T M(D;I,A;P)).

For p€Q and (1;i,)e€K is p(1;i,d) = (d;k,8) €K , where
= - = 4
d =h(p,i,8) , k 1§P»2 , 8 7p,i , 80 that

(h(p,i, ¥ );i§ g’ 3'7p :I.) = p(1;1,4 )pi‘t;k,c)
. -1,
= (h(p,1,8 518, o VT, PGk b

-1,
(h(P,i,l )P l?P’ikP Lk;i;p,g ;2) .
From this we have 9"zp " Q , 80 that
p(1;4,0) = (n(p,1,¢ 1€ ¢ 8

Further
1)

The function k 1is introduced in order to simplify the proof of Theorem 1.1.



. = . -1 .
(h(p,i,)51E @) = e, 8267 55, 8)
RCCRW ST SN SITRARTIPN

= (h(p,i,? );igpl ,A) .
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From this h(p,i,&) = h(p,i,4 ) , i.e. h does not depend on aand

i§p,6 = igm , i.e. & does not depend on A. Hence,
p(l;i,8) = (h(p,i);igp,«)
where h: QI —>D and sp : I-»I . Similarly

(1;1,8)p = (k(p,A);i, &%)
P
where k: QxA —>»D and "Ip: A - A

Since
(p usph(p,i);i,e\) = (11,4 ) (h(p,i);i !p,d)
= (1;1,Q)p(1;i, )
= (k(p,n);i, *\”Zp)(l;i,-t\)
= (k(P;(\)PA,,l'i;i,es)
P
it follows that p-{\igph(p’i) = k(P’A)PAnzpi , i.e. k(p,A)

so,the term p aiy h(p, does not depend on i€&1I .
P

i)l:a_1
A i
Tp
- For p&Q , d&€D we have

p(d;i,a) = p(1;i, 0 )(p—gid;i,(\)

(h(p,1)31 8, 0)(p7y dst, )

(h(p, DDp p ;P ;G518 0)

(h(p,i)d;i@P,A)

(d;i,™)p = (dk(p, &);i, A”IP) .

For p,q&Q ; pq€Q we have
(h(PQ:i);igpq,(\) = (p@)(15i,4) = p(a(1;1,4)) = p(h(q,i);i§

(h(p,i§ Ih(q,1);i8 € . %)

hence
hipq,i) ﬁ.‘v.h(p,igq)h(q,i) ~ and igpq = i"gqu .
Similarly

k(pa, &) = k(p, A)k(q, am ) and A7 =477

~

i

=Pl.
1 hp’

»A)
q

-1
1)p“"lpi
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For p,q€Q ; pq¢Q we have

3 - . -1' = -1' :
-1 \
=(h(p,k § Ih(a,K)P 5k § § o) ‘“
from this )
-1 -
A d = hip,k §q)h(chk)?‘\k » 1=k Eq ?p '
Thus Eq gp = const.
Similarly

pq = (d;i,4) = (p-lli;i,ﬂ )(d;i, Q) = ((p’éi;i,l )pl)q = (p-nlik(p,ﬂ );i,e’lp)q

= (p7pk(p, Lk, e 55, 49,7,)
from this
-1
d=p Eik(p’ Z)k(q: 2'21,) s A= 1’7’1) '7q
Thus Qp”[q = const.

Since

-1 -1 -1
d = pg,;kp, Di(q, L7 ) = o7y k(pa, ) = hip,k § In(q,kp™, 7, Uk

we have that d does not depend on k and f, therefore pq 1is given by (5) .
By this we established that < v/((D ;I, ;P;Q;h,k, § ?2) .
The converse of the theorem is obvious.

The proof of the next theorem we omited.

THEOREM 1.2. Two semigroups JH(D;I,A;P;Q;h,k, !,’?) and
\/H’(D"‘;I*, A PR, KT, g’,‘y’) are isomorphic if and only if there
exist an isomorphism -¢¥:D —» D* , a mapping i —» u, from I into
u(*) = ¢* , a mapping 4 —>V, , from A into u(*) = ¢", a bijektive
mapping e:1 1", a_bijective mapping \p: N — A*F, a partial
isomorphism .0,:Q —» Q“ and the following conditions are satisfied:

(1) p ewo=vyv p* u
at &7 avie L
- ~
(2) ‘!p@ ‘Cg
r
(3) Tt - vy
p-A.
- P
(4) h(p,1) eV =y 1‘ h (p.n.,i?)ui

=P



(5) k(p,a)es = v k"(pn, a¥ Wl 117

o
,’ZP
2. SEMIGROUPS IN WHICH SOME QUASI-IDEAL IS A GROUP

The nonempty subset A of a semigroup S is a quasi-ideal of S if
ASOSA <A, 19].

THEOREM 2.1. Some quasi-ideal of a semigroup S is a group if and only if
s = \/’((G;I,A;P;Q;h,k,i »Y) , where G is a group.

PROOF. If some quasi-ideal Gi of a semigroup S is a group,then G
is the minimal quasi-ideal,(Theorem 5.3. [9]).Let K be the union of all

i

minimal quasi-ideals of S .Then K is completely simple kernel of S ,
(Theorem 5.14. [9]).Since K & /h(G;I,/\;P) , 117, it follows from this
that s % M(G;1,A;P;Q;h,k, §,7).

The converse is trivial.

COROLLARY 2.1. A semigroup S has an ideal which is a rectangular
band if and only if S £ «/((G;I,A;P;Q;h,k,8,%) where |GI=1 .

COROLLARY 2.2. A semigroup S is completely simple if and only if

3. (m,n)-IDEAL SEMIGROUPS

A subsemigroup A of a semigroup S is an (m,n)-ideal of S if AmSAng A,
where m,n ENV{O}, (A°S = SA® = §), ]5]. S is an (m,n)-ideal semigroup if
all of its subsemigroﬁps are (m,n)-ideals. (1,1l)-ideal semigroup is called
bi-ideal semigroup.There exists (2,1)-ideal semigroup which is not bi-ideal.

For example,semigroup given by the table:

123 456 789
1121222 22 2
2 121 2 2 2 2 2 2
33 4 3 4 4 4 & & 4
4 3 4 3 4 4 4 4 4 &4
5 3 4 3 4 6 7 8 9 4
6 3 4 3 4 7 8 9 4 4
7 3 4 3 4 8 9 4 4 &4
8 3 4 3 4 9 4 4 4 &
9 3 4 3 &4 4 4 & 4 4

LEMMA 3.1. If S is an (m,n)-ideal semigroup then homomorphic image

of S is the (m,n)-ideal semigroup and any of subsemigroup from S is the

(m,n)-ideal semigroup. .
LEMMA 3.2. If S is an (m,n)-ideal semigroup,then (Va eS)(amSang<a>).

PROOF. ‘Let S be an (m,n)-ideal semigroup and a an element of S ,then

amSan_c_ <a>ms \,‘a>n_c:_‘ Zay.

\
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The subset R of a partial semigroup Q is a partial subsemigroup of Q

if x,y €R; xyeQ implies xye&R . The partial subsemigroup R of the partial
semigroup Q is an (m,n)-ideal of Q if /RmQRng_.\Q implies RIQR" <. R . If all
partial subsemigroups of a partial semigroup Q are (m,n)-ideals of Q , ﬁhen
we call Q a partial (m,n)-ideal semigroup. _
A class of (m,n)-ideal semigroup is a subclass of a class of semigroups
which are described b}; Corollary 2.1., i.e. the following theorem holds:
THEOREM 3.1. If S is an (m,n)-ideal semigroup,then S = E\V/Q , where

E is a rectangular band and ideal of 'S ; Q is a partial (m,n)-ideal semigroup.

PROOF. Let S be an (m,n)-ideal semigroup and a €S .Let «£ad» be an

infinite semigroup and B ='I aZk:k €N % . It is clear that B is a subsemigroup
of {a® .By Lemma 3.1. we have that B is an (m,n)-ideal of {a% . So
azmanzneBm Za Bn €. B ,which is impossible.Hence, <a% is finit for every
a€S and .E# @ . Let e€E and x €S , then by Lemma 3.2. we have eSe €de},i.e.
(1) exe = e .
It follows by (1) and by Proposition 3.2.[3]1 that E is a rectangular band and
obviously it is an ideal of S . Let Q = S E be a partial semigroup and A be a
partial subsemigroup of Q , AmQAnQQ . Then B = {AY 1is an (m,n)-ideai of S
and A"QA"¢ B"SB" < B and A"QA"g BNE = A . Hence, Q is a partial
(m,n)-ideal semigroup.

REMARK. If S is an (m,n)-ideal semigroup it is periodic.

THEOREM 3.2. Let Q be a periodic partial (m,n)-ideal semigroup, E

a rectangular band, QNE=¢ and f:Q—»E a homomorphism (partial).Let us

put f(e) = e for every e€E and £:S = QUE —>» E so that f\Q is a homo-

morphism.We define an operation on S by
Xy a8 in Q , if x,y €Q and xy is definied in Q
xy {f(x)f(y) otherwise .
Then S is an (m,n)-ideal semigroup.

PROOF. Let the conditions of the theorem be satisfied, B a subsemigroup
of S, B® = B\E , b= xlxz...xm,(xl,xz,...,meB), c = ylyz...y‘_l
(yl,yz,...,yneB). Suppose that b€Q , 8€Q , c€Q . Then bsc€Q and thus
bscé€ B'mQB'ng B*GB . It is clear that bsc¢E .1f béBNE , 8€Q , c€Q ,
then bsc = f(bs)f(c) = £(b)£(8)f(c) = f(b)f(c) =bc€B , If b€Q , 8€E ,
ceQ , then bsc = f(bs)f(c) = f(b)f(8)f(c) =£f(b)£f(c) = £(bc) . Now,if
bcéE , then bsc = f(bc) = bc€B . If bce E , then there exists k€N so
that (bc)k = e¢BNE and £(bc) '(f(l:n:))l't = f(bc)k = f(e) = e € B . Hence,

bsc = f(bc) = e€&B . The other cases can be considered in a similar way.
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We will mention some more characteristics of the (m,n)-ideal semi-

groups.

LEMMA 3.3. If S is an (m,n)-ideal semigroup,then for every a €S is

\a%! < 2m+2n+l .

PROOF. <£a» 1is a finit semigroup for every a€S . Let e be the

idempotent of (a9 and p be the least natural number so that aP = e . 1f

xel(‘ , then x = exe = e , (Theorem 3.1.).Hence, l(. = {e}. Suppose that

4

P 7 2m#2n+l and B -{az,l ,a6,...,ap = e} S <a? The set B is a sub-

2m

semigroup of <a% , and a aazn€-~5m<a> " . B which is a contradiction.

LEMMA 3.4. Let e be an idempotent of an (m,n)-ideal semigroup S .

PROOF. Directly follows.

THEOREM 3.3. If S is an (m,n)-ideal semigroup,then S = e\EjE s(e),

where S(e) are disjoint maximal unipotent subsemigroups of S .

PROOF. Let x,y€S(e) . Then there exist p,q €N such that xP = y‘l =e .

By Lemma 3.2. it follows (xy)"e(xy)"g <xy>. From this we have e € &xy> ,

i.e. there exist r&N such that (xy)r = e . It is easily to verify that

S(e) are maximal disjoint semigroups.
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SOME CHARACTERIZATIONS OF BANDS OF POWER JOINED SEMIGROUPS

Stojan Bogdanovié

A semigroup S is called power joined if for each pair of elements

a,b€&S there exist m,n€&€N with At =b" . we say that a semigroup S is a

band of power joined semigroups if there exists a congruence L4 such that
S/g is a band and each class mod¢ 1is a power joined semigroup.Bands of
power joined semigroups are studied by T.NORDAHL, [5] in medial case and

by author, ll] in general case.In the present paper we give some new

characterizations of bands of power joined semigroups.
For nondefinied notions we refer to [2,3,6,7,8'\.
Let S be a semigroup.We define a relation -2 ons as follows:
a—PB—p iff (Im,neN)( a=1b")
THEOREM 1. .L_et_ S be a semigroup.Then the following conditions are

equivalent: .

(A) S is a band of power joined semigroups.

(B) (¥a,bes)( ab —B— a2 —B— gp? ) |

tc) (VYa,bes)Y m,neN)( ab —B M

PROOF. (A)=%(B). Let S be a band Y of power joined semigroups Sx

«{ &Y . For a€s, ,.beSh’ we have ab,azb,abze S‘w and thus (B) .
(B)=p(C). Let S satisfy condition (B).Then we have

ab —B— azb = (ab)b —B— (ab)b2 = ab3 P --- B gD ‘an =

= a(ab™) —B— az(abn) = a3bn -2 e P M

Hence,the condition (C) holds.
(C)=%(A). This follows by Theorem 1. [1].

The symboliém u 'C' v , where u and v are words Qver some alphabet

means that for all substitutions of variables by elements of S , the

\
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resulting elements are t’-equivalent.We denote by m) the class of all

bands in which the identity u = v holds.If. Sé ﬁa , then S is a @-band.

The following condition

(D) (Vxl,xz,...,xkes)( ulv) [
where {xl,xz,...,xk\ _ is the set of all/variables in u and v is necessar.;y
in the - following:

PROPOSITION 1. § is a (% -band of semigroups in a class & if and
is the band congruence
induced by the decomposition of S then the condition (D) holds.

PROOF. Trivial.

only if S is a band of semigroups in & and if T

THEOREM 2. Let S b

equivalent:
(E) S is a @-band of power joined semigroups.

a semigroup.Then the following conditions are

(F) (B) and (D) , where Ta —2— .
(6) (C) and (D) , where Ta —B—
PROOF. Follows immediately by Theorem 1. and Proposition 1.

THEOREM 3. Let S be a semigroup.Then the following conditions are

equivalent:
(E1) S is a semilattice of power joined semigroups.

(F1) (Va,bes)( ab —B— a%p —B— gp2 —B—pa ) .

(61) (VYa,b&s)(¥ m,neN)( ba —B— a™" ) .

PROOF. (E1) =% (F1). By Theorem 2. we have ab —E— a%b —B— g2

and ab —E— ba and thus (F1).By hypothesis and by Theorem 1. we have
that (F1) implies (Gl). (Gl)=p(El). Follows by Theorem 1. (see also
Theorem 2. in [1]).

A subsemigroup B of a semigroup S is a bi-ideal of S if BSB @ B ,
[8]. A semigroup S is a band of bi-ideals 13i , 1€Y 1f s = }GJY Bi ,
BN B, =¢ ,1i4 3 and BB, oB, .

PROPOSITION 2. S is a rectangular band of semigroups in a class &

if and only if S is a band of bi-ideals from &.

PROOF. Let S be a rectangular band Y of semigroups SA ,PEY
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and she €f . Then for each £ €Y we have

ss (Us)s-\)ss Vs S s, .
(1 pey P04 r U S g Sapa o

Hence, S is a band of bi-ideals from 9 .

Conversely,let S be a band of bi-ideals B € T er). Let
T be the congruence relation on S induced by the decomposition of S .

Sa

For aeBi , be l.’.-1 we have abaé&B Bjnic. Biji and abae&B Bjnig Bi
So Bi = Biji and therefore T 1is a rectangular band congruence.
EXAMPLE 1. A semigroup S is a bi-ideal semigroup if all its sub-

semigroups are bi-ideals.If S is a bi-ideal semigroup,then S = \J S(e)

(e) e€EE ’
where S , e€E(S) are unipotent bi-ideal semigroups,

S(e)s(f) < S(ef)

and S(e)(\ S(f)=d,e # £, 19] . Hence,any bi-ideal semigroup is a recta-
ngular band of unipotent bi-ideal semigroups.

EXAMPLE 2. Let S be a semigroup.Then S is a completely simple if
and only if S is a rectangular band of groups, [2]. Hence completely
simple semigroup is band of its minimal bi-ideals,(the converse is also
true).

THEOREM 4. Let S be a semigroup.Then the following conditions are

equivalent:
(1) 8 is a rectangular band of power joined semigroups.

(2) (Ya,b,ceS)( abc —B— gc ) .

(3) S is a band of power joined bi-ideals.

PROOF. (1)€®>(2). This is the Theorem 3. in [1]. (1)43(3). This
follows by Proposition 2.

A semigroup S is a band of left (right) ideals L, , i€y if

§ = UL ,LinLjsa,i#j.
i€y
PROPOSITION 3. S is a left (right)_zero band of semigroups in &

if and only if S is a band of right (left) ideals from GCP.
PROOF. Similarly to the proof of Proposition 2.

THEOREM 5. Let S be a semigroup.Then the following conditions are

equivalent:

1) . s is a left zero band of power joined semigroups. '

(2) (Ya,bes)(ab—P—a) . _

(3) \S is a band of power joined right ideals.
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PROOF. (1)4&»(2). This is the Corollary from [1]. (1)&>(3).

Follows by Proposition 3. : o -
It is clear that \dualy theorem to the Theorem 5. holds.
A band S is a left (right) regular if in S the idéntity dx = axa
(xa = axa) holds, J]. o v
THEOREM 6. Let S be a semigroup.Then the following conditions a_ré‘

egﬁivalent: ) . P
(1) s is a left regular band of power joined semigroups.

(2) (Wa,bes)( ab —B— a2 —B— 42 —B— 4pa ) .

(3) (Ya,bes)(¥muneN)( ab —B— g™" —B— gba ) .
(4) (Ya,besS)(¥mn&N)( ab —E— a™"a" ) .

PROOF. (1) =3(2)=3(3). Follows by Theorem 2. (3)«3(4). It follows
from ab -k aba that a™b" —L a™b"a" and since ab —2— ™" we
have (4) . (4)sb(1). Assume that a—E— b . Then by (4) we have ab —E— a .
Hence,each class mod —P _ is5a power joined semigroup.Suppose a—E— b
and c€S . Then ac —B amckam and bc —L bnckbn . It follows from
this that »

. ac —F nmcknm P bnckbn —2— be .
Similarly we obtain ca —L— b . Consequently —E— isa congruence and
since a—E— 12 , for every a&S we have that S 1is a band of power
joined semigroups.From (4) we have that S/ —E— is a left regular band.

SOME NOTES., Let C , Cr s C! , Ct s CP denote the class of semi-

groups which are semilattices of archimedean,right archimedean,left archi-

medean, t-archimedean -and power joined semigroups respectively.Also let D ,
Dr , De s Dt. , DP denote the class of semigroups which are bands of arci-
medean,right archimedean,left archimedean,t-archimedean and power joined
semigroups respectively:Using the implication scheme of M.S.PUTCHA, f7]
and Theorems 1. and 3. we have the following implication scheme:

De—epD —wDy —»D «——D «—D «e+—D

Pttty
Cp—’ct_—.cﬂ_’c -—-er-—Ctd——-Cp
On the other hand let P , LZ ,RZ , LR, RR , RB denote the class

of semigroups which are power joined,left zero bands of power joined semi-

groups,right zero bands of power joined semigroups,left regular bands of
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of power joined semigroups,right regular bands of power joined semigroups
and rectangular bands of power joined semigroups respectively.We then have
the following strict implication scheme:

N

1
I
!
'RB

< ]

LZ C

g
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A NEW TYPE OF BINARY GRIDS AND RELATED
COUNTING PROBLEM

Ratko To3ié, Vojislav Petrovié

Mathematical Institute, Nowi Sad

A binary (m, n)- D -grid is defined as an array of m
rows and n columns formed from mn square cells each of
which is divided into two congruent rectangulars. Thus, Fig.
1 is a (3, 4)- p -grid.

Fig. 1

In fact, each D - grid gives a tilling of some recta-
ngular with dominos in a special ways; the rectangular is divi-
ded into mn unit squares and each unit square is covered
with ‘two dominos.

Two (m, n) -D -grids are said to be equivalent iff
they can be transformed one into the other by rigid motion in
the space.

In this paper we determine the number &~ (m, n) of

d
non- equivalent (m, n)-D - grids, for arbitrary natural num-

-

bers m and n .
By :t(m n) Ve denote the set of all (m,n)- Dp- grids.
b

Once m and n are specified, we write simply J instead

of x(m ey 1f £ is a set, then the cardinality of is
2

|#] . By [x] we denote the smallest integer > x . It is

clear that
) _ ,mn )
| ony | =2 (1

\
i
'
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Any rigid motion in the space by which two (m,n) - D-
grids (m # n) can be transformed one into the other, reduc“es
to one of the transformations from the group of simmetries“of
the rectangular (Fig. 2):
A “ - B

Fig. 2

i - identical transformation,

a = symmetr;} with respect to the vertical axis,

b - symmetry with respect to the horizontal axis,

c - symmetry with respect to the center 0 of rectan-
gular (central symmetry). .

Let t(x) denote the grid into which the grid x is
transformed by applying the transformation L . We shall con -
sider the following subsets of X :

A= {(x)a(x) = x} ,
B={x/bx) = x},
€= {x[c(x) = x}

If m = n , we have square »p - grids. Now, in additi-
on to i, a, b and ¢ , the group of rigid motiens which trans-
form a square into itself contains four additional transforma-
tions (Fig. 3):

A B ¢

D c
Fig. 3

d - rotation about the center (0 of the square through
angle Y: 900,
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e - symmetry with respect to the diagonal BD ,

f - symmetry with respect to the diagonal Ac ,

g - rotation about the center o0 through angle V:-QOO.

Let A,B,¥ be subsets of JX-= Z'(n’n) , defined as for
rectangular grids. We consider also the following subsets of X:

D= (x[dix) = x} .
E={(x]e(x) = x} ,

F= x/£x)=xy :
@@= (x/g(x) = x}

In [2] we have generalised some results of Hoffman
given in [1] , for an other type of binary grids. In the sa-
me way as in [2] , it can be proved that for p - grids the

following statement is true:

Lemma 1.

(1) 1fm#n, then
N (min) = & CIZ|+ 1R + B+ €] ) (2)

(i) WyCnyn) = § 1D + 3O+ |A]+[B+|€]+[E[+|¥). ()

/
Now, we are going to determine the numbers |#|, |B|,

€], |2, |El, and |Fl.

Lemma 2. For arbitrary natural m, n, and for corre-

sponding subsets £, B,€ of I-= -z(m

sn)
(i) 1# = 2”“.%1 , (4)
(ii) |B| = (Bl . (5)

(iii) |g| = 2"% . , (6)

proof. (i) For n = 2k (k € N), an arbitrary p-grid . x

from x(m o) can be represented in the form
b
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where p and 0 are (m,k) - Dp-grids. Now, X € A iff 0 =
a(p). It means that x € is determined b'y its (m,k) -Dp -
subgrid P containing mk =m % = m [.’.2’.1 cells, hence follows
the statement. )

For n = 2k + 1 (k > 0) , an arbitrary »p - grid x:

from Z

(m.n) ° can be represented in the form
b

where p and Q@ are (m,k) - p-grids and 1 1is a (m,1)- D -
grid. Now, x e A iff Q0 = a(p) . Since a(r) = r for ar-
bitrary (m,1)- D- grid 1 , it follows that X € a is deter-
mined by its D - subgrids P and I contdining  m(k+1l) =

__ n+1 _ i . .

*m == =m [3] cells, and (4) 1is proved.

(ii) (5) can be proved in the same way

(iii) x €§¢ iff any two cells situated symmetricaly
with -respect to the center 0 of x are of the same sort (eit-
her @ or M ). If either mor n , is even, x € ¢ is de-
termined by % =F—"%--‘ pairs of cells. If both m and n are
odd, the central cell is symmetrical to itself and it can be
of arbitrary sort. In that case, x € ¥ is determined by
mn2-1 +1 = TEZE] pairs of cells (central cell included), and
the statement follows.

Remark. If m=n , (4), (5) and (6) become:

&= | B| = 2" 4l , )

lf!éz[n'?z] . ) (8)

-

Lemma 3. Egg_arbitr‘ar-y natural n , and for corres-
ponding subsets &, £ ,&F of X:=&

(i) Bl = |Fl =0 , 5
-1
(ii) | = (1+-1)*) . 2 . (10)

(n,n)

(9)

Proof. (i) x €fg 1iff each cell situated on the di-
agonal BD (Fig 3) 1is transformed into itself by applying
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the transformation e , but it is impossible because e(8)=-0
and e(M) =B . Hence, £= 0. Similarly, #- 0.

(ii) If n is even (n=2k, k = 1) , then Xe X

(n,n)
can be represented in the form
P q
S R
where P,0 ,R and s are (k,k) - D-grids. Now, x €D iff
0 = d(p), R = d(Q) =d%(p) and s = d(R) = d°(p) . It means

that X€a&) 1is determined by its p - subgrid P , containg
2

-3 cells.

If n is edd (n = 2k + 1, k > 0) , then x €& iff
the central cell (with the center o - Fig.3) is transformed
into itself by applying the transformation d ; but it is im -
possilkle because a(@>) =8 and a8 =M ). 1In that
case, D - f§, hence follows the statement.

Theorem. (i) If m #n , then

mn=2 QMB:I-Q + Q[g‘l.n_z + QT;E]_Z 3

Nd(m,n) =2

2 2
n2—3 n- {‘%]-'24_21.'5:1_3 ﬁ-B

(i1) W (n,n) = 2 +2 + (1+(-1)") .2

Prdof. (i) Follows from (1), (2), (4), (5) and (6).

(ii) Follows from (1), (3), (7), (8), (9) and (10).
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PERFECT PERMUTATIONS AND RELATED
COUNTING PROBLEM

Ratko To$%ié, Dusan Surla

Mathematical Institute, Novi Sad

-

Let ¢ and [o) denote the sets of all permutations
of the elements of the sets Nq = {0, 1, 2,...,q-1} and

-

Nq = Nq\{O} , respectively. Two permutations from ¢ , p =

31 +ev d, and p”~ = a; aj ... a’ _4 , are said to be equ-
ivalente (we write p~p~) 1iff there exists 1 e » sueh
that for arbitrary i € Nq’ a;- a, =1 (hod g). The equiva-

lence relation A defines a partition of the set @ into
the classes of cardinality g . For each class we take as its
representative the permutation in which ag = 0. Let Q
denote the set of all such representatives.

o

We associate with each permutation p = a al...aq_le Q
a word w(p) = b, b, ...bq -1 over the alphabet Nq,
in such a way that for i = 1,2,...,g-1, ‘?igai- a;_4q (mod ¢q).

It is clear that two permutations p and p” from ¢ ‘are equ-
ivalent iff w(p) = w(p™)
A permutation p € 9 is called perfect iff w(p) € o°7
Let n~(g) denote the number of perfect permutations in

the set o)

Lem;a. If p = ag ag «e- aq_1 € 0 is 2 perfeet per-
mutatidh, then
2,1 " 3 = ( g ) (mod ¢).
g-1
Proof. a 17 2, = izi (a;, - ai-i) (mod ¢) =
q'i

= ['i (mod g) = ( 7)) (mod ¢)
i=1
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. Corollary 1. 71f q is odd, then N(g) = 0.
Corollary 2. If Q@ is even, then

- g
ag_1 =a, t 5 (mod q)

In order to determine the numbers N(g) for some
even integers, we developed a computer algorithm. The results

can be formulated in the form of the following statement:

Theorem. (a) ~(2) =1 ,
(b) wN(u4) =1,
(c) wN(6) = 4 ,
(d) ~w(8) = 24 ,
(e) w~(10) = 288 ,
(f) ~(12) =-3856

Now, we formulate two problems (the second being the
generalisation of the first) and a conjecture.

Problem 1. Determine ~(14).

Problem 2. Find a formula for ‘N(2m) , m € N.

Conjecture. For arbitrary natural m, m > 3 , ~N(2m)
is an even number. .

Perfect permutations are of some importance in the the-
ory .of horizontally complete latin squares and in the coding theory
(see [1] and [2])- Namely, a latin square of order q such
that its entry belonging to i- th row and to j -th column is
aj_1 + i -1 (mod g) , where aj ay
mutation from @ , is horizontally complete.

.aq -1 1is a perfect per-

Using computer, we found four latin squares of order 10,

TABLE
0 1 8 2 4 9 7 3 6 5 0 9 2 86 13 745
12 9 3 50 8 4 7 6 103 97 2 4 8 5 6
2 3 04 6 1 9587 2 1 4 08 3 5 96 7
3 4157 2 06 9 8 3251 9 46 07 8
4 5 2 6 8 3 17 0 9 4 3 6 2 0 5 7 1 8 9
5 6 37 94 2810 5 4% 7 3 16 8 2 90
6 7 4 8 05 3 9 2 1 6 5§ 8 4 2 7 9 3 0 1
7 85 9 16 4 0 3 2 76 95 3 8 0 4 1 2
8 9 6 0 2 7 5 1 u4 3 8 7 06 ¥ 9 1 5 2 3
9 07 1 386 2 5 4 9 81 7 5 0 2 6 3 u
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07 6 4w 8 3 91 25 0 346 271 9 85
187 5 9 4 0 2 3 6 1457 3 8 2 0 9 6
2 986 05 1 3 4 7 2 56 849 310 7
3 097 16 2 45 8 3 67 95 04 2 1 8
4 1 0 8 2 7 3 5 6 9 4 7 8 06 15 3 2 9
5 21 9 3 84 6 70 S 8 917 2 6 4 30
6 3 2 04 95 7 8 1 6 9 0 2 8 3 7 5 4 1
7 4 3 1506 8 9 2 7 01 3 9 4 86 5 2
8 54 26 17 9 0 3 8 1.2 4 05 97 6 3
9 6 5§ 3 7 2 8 0 14 9 2 351 6 0 8 7 4

given in TABLE, which have the following properties:
(i) each of them is horizontally complete;
(ii) all 320 ordered triples of three adjacent (in a
row) elements are different.

Problem 3. Does there exist more then four latin squ-
ares of order 10 satisfying these properties?
The answer i§ affirmative if there exists
more then four perfect permutations over the set {0,1,...,9}
such that all their subwords of length 3 are different.
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OR AFFINE STEINER TERNARY ALGEBRAS

M. Polonmijo

Abstract. In this paper, we investigate affine Steiner ternary
algebras (ASTA’s) and give their representation by the unipotent
abelian groups, for which a derived loop is used. For a finite ASTA ,
the elqments and quadruples of the associated Steiner quadruple system
(5Q8) are respectively £he points and planes of an affins space over
GF(2). It implies an elementary proof of Cemeron’s result which states

that affine geometry is characterized among SQS’s by a symmetric difference

property.
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SOME COMBINATORIAL SEARCH PROBLEMS

Ratko Tosié,
Mathematical Institute, Novi Sad

The problem of ascertaining the minimum number of wei-
ghings which suffice to determine the defective coin in a set
of n coins of the same appearance, given an equal arm bala-
nce and the information that there is precisely one defective
coin present, is well known. A large number of solutions exist,
some based upon sequential procedures and some not. References
to many papers on this question can be found in [2] and [7].

It is interesting that the corresponding problem for
more than one defective coin has attracted little attention.
The problem is of singnificance because it represents one of
the simplest examples of a sequential testing problem replete
with the difficulties of combinatorial nature. For some discu-
ssion of these matters in greater detail, see [1], [3], [5]
and [6] . In [3] a systematic way is indicated in which the
theory of dynamic programming can be used to provide a compu-
tational solution to the determination of optimal and subopti-
mal testing policies. The problem for two coins was also in-
vestigated by Cairns in [4] . Apart from these papers, little
appear to be written on the subject.

We denote with uz(ﬁ) the maximum number of steps
in an optimal program for two defective coins problem.

We proved the following statement:

Theorem. rlo;_;;3 DT < uy ) < hoga (O] + 1.

An infinite set of n”s is determined for which the
lower bound is reached and the corresponding procedures . are
cpnstrubtéd inductively. Some results of Cairns are improved
and his coqjecture that uz(n) has one of the values 2k- 1,

k-1

2k, 2k+1 ,‘@epending onn , for 3 <n < 3k , 1s' shown to
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be slightly incorrect. It follows that for 3

k1o, < gk,

uz(n) has one of the values 2k-2, 2k-1, 2k, depending on v:.

Proof of Theorem and further details are given in [§].
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SUBALGEBRAS OF ABELIAN TORSION GROUPS

G.Cupona,G.Vojvodié and S.Crvenkovié

An Q-algebra 2A=(A;Q) 1is said to be an Q-subalge-
bra of a semigroup S if AEC€CS and there is a map-
ping w—»w of § into S such that w(al,...,an)=ﬂsa1...an

for each n-ary operator w€&€Q and any al,...,an€A.If

C is a class of semigroups,then by C(Q2) 1is denoted
the class of Q-algebras which are Q-subalgebras of semi-
groups belonging to C.Here we give corresponding de-
scriptions of the classes ABTG(Q) and Am(Q),where ABTG
is the <class of abelian torsion groups and Arn the
class of abelian groups in which each element has an
order which is a divisor of m(m>2 is a given inte-
ger).
1.First,we will give a description of ABTG(Q).

Theorem l.Let Q#Q(1) (Q(n) <Zs the set of n-ary
operators belonging to Q).An Q-algebra A=(A;Q) belongs
to ABTG(Q) <ff <t satisfies the following conditions:
(*) For every m,n>1l,0 € Q(m),w” "€ Q(n),ieNm={1,2,...m}
and permu%gtion Vr+iv of Nm the following <identity equa-

, \ ..
tions are satisfied:

1

W (XypeearX )=0" (X, ,ﬂ..,x. ),
li m 11 -
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0B (% s e _
w (xl, ’xml-n-l) w”w (xl"°"xm+n—1) ,

= (R, yeee,X W (R, penn . 5
( 1’ ’ i_\ll (xl' Ixi+n_1)lxi+n,...,Xm+n_1), Lo

(**) There <18 a mapping m:2e-m(z) of AUQ <Into th\g

set of positive <integers such that:
i i a o 3, 3 By B

w. e (al peevsa P=u. .. .0 P(al ,...,aqq),

1 p q 1 P

for any w,€ Q(n\)) ,ake A and nonnegative <Integers iv’j\)’ Oy,

BA such that:
iv;‘jv (modm(wv) ), axEBA (modm(a)\))

and:

'1+iln1+. . .+ipnp=a1+. . .+ocq

=R.+...+ .
plp Pl Bq

Proof.In the first place,it is <clear that if A 1is 'a

1+j 1n1+. . et]

subalgebra of an abelian semigroup S then (*) is sati-
sfied. (In [4] it 1is shown that the converse is also sa -
tisfied) .If Se€ABTG and if for each aeA(we),m(a)(m(w))
is the order of a (w) in S,we obtain that the conditi
on (**) is satisfied.

Assume now that A=(A;Q) 1is an Q-algebra which
satisfies the conditions (*) and (**).If ze€eAufQ then
Cz denotes the cyclic group with a generator 2z and

order m(z).Further on,let H be the free product

H= u Cz in the class of abelian groups.(We wuse a
z € AUQ

multiplicative notation.)
If u=au“e H and a=w(a,,...,a ) in A,then we wri-

te upwa ...anu‘,and also wa ...anu’-qu.Let UHVE UV

1 1
or u-v.Further on,denote by = the reflexsive and tran-
sitive extension of o ,i.e.:

ugvg(auo,ul,...,upe H)u=u0,v=up.P>0 and u;_,Huy

for -each 1ie€{(1,...,pl}.



143

Then, clearly, = 1s a congruence on H, and w(al,...,an)=

=a in A = wa -..a xa.

1

We will show that:

(a) a,be A =>(axb=>a=b),

and this will complete the proof of Theorem 1..
First we introduce the notion of Q-word.Namely,

an element weH is said to be an Q-word ~iff

i, i i« a
= 1 p, 1 q
w=w, 0, ...wp a, ...aq ’
and 1+iln1+. . .+ipnp=a1+. . .+aq,where w, € Q (n\,+1) ,iv,a )‘> 0.
Then, il iP o, aq
wy ...wp (a1 ,...,r:tq )=ae€A,

and we say that a=[w] 1s the "value" of w.

We note that by (**) the value of an Q-word w
is uniquelly determined.

Clearly ,(A) is a consequence of the following pro-
position
(AA) Let u,veH be such that uHv.If u is an O-word

then v is also an §-word and [u]l=([v].

i1 ip al aq
Proof.Let u=w, ...wp a, "'aq 0, € Q(nv+1) and 1+iln1+...+
+in =a_+...+0 .
pp 1 a . i, i B e, @
Assume first that ul-v.Then u=w, ...wp a, a, ...aqq,
: Y Y
= = 1 q
B,=0, (modm(a,)),B, >1 \ a,=u, (a, reeerdyg )'YA>°,
i 41 i Byty 1 ayty oqtY
.01 2 p 1 2 '2 q'q,
V=W, Wy ...mp a:l a, ...aq

Let we Q(n+l),n>1.Then v=w

srn(w)a\il:m(al)v,for each s,

t>0 and it can be easily seen that there exist s,t>0

such thdt 1+sm(w)n+(1 +l)n +in,+...+i_n =tm(a1)+Bl+Y1-l+a,2+

20 2 PP
+y2+...-g-aq1:\Fyq,and this will imply that v is also an -

'
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-word.Moreover,we shall have:

i +1 i i tm(a,)+B,+y.,-1 a,+Y o _+Y
_ sm(w) 2 177171 2 '2 qg'q
v] =w 1 w, ...wp (a1 13y ...aq A )
i i tm(a,)+8 o o \
s 1 1 1 2 \
= m(w)ml ...wp (a1 ray ,...,aqq)= \

i i o o [+
= 1 2 qy_
=0y 7.0 (al ray ,...,aq )=1(u] .

Consider now the case u—v.Namely,we can assume

J1 i ip By By . .o, _
that u=w, 0, ...wp a, ...aq R 31>1,]l:11(modm(w )),B)\za)\(mod
S P R | i B.-v,+1l B,-Y B,Y
_ 1 p."1 "1 2 '2 q'q
m(a)\)),and v=w, wy ...wp a, a, ...aq ,where

Y

= 1 q
al--wl(a:l ,...,aq ) .We can also assume that nk>1 for some

ke€{1l,...,p}.Now it can be easily seen that there exist

SrSgrecesS ,tl,...,tq>0 such that

P

1+(j1-1+slm(w1) )nl+(12+szm(w2) )n2+. . .+(ip+spm(wp) )np=

=(61-Y1+1+t1m(a1))+(8 -y,+t m(a ))+...+(B -y _+t m(a )) .

2 q g
Then: . ; - |
_ Jl-l+slm(m1) 1p+spm(wp) Bl-yl+1+t1m(al) BZ y2+t2m(a2)
=W IR a a
1 P 1 2
-y _+t
...an Yq qm(aq)
4 q
an .
j,-1l+s m(w,) i +s m(w_) Y Y B,-yv,+t.m(a,)
I ¢ 1 1 P P 1 q 1 '1 "1 1
(vl =0, ety (wl(a1 reeerdg ),a1 ’
B -y +t m(a_)
vee,ad 3T T
_ 3ytem(w) ip+spm(wp) B+t m(a;) Bq+tqm(aq) _
=W e W (a reeeg@ )=
1 1 q
i i o o
= 1 P 1 qy -
Wy e (a1 reeeidg )=[u] .

This completes the proof of (AA), and thus of Theoreml.
as well. ‘
Corollary.If QN\Q(1)#@, then the clase Am(Q) i8 a vari-
ety.

Proof. In this case we have that m:z—m(z)=m is a con-
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stant ,and thus in (**) we have a system of identiti-
es.

2.Consider now the case when Q=Q(1) consists of
only unary operators.The following example shows that
the conditions (*),(**) are not suficient.
Example.Let Q=0Q(1) and let Wy be a fixed element of
Q.Let A={1,2,3,4,5} and the algebra A=(A;0) be defined
by:
=(123) (45), w,=1 if w#wo.

A BoA

“o
The algebra 3.’ satisfies the conditions (*), (**).Namely,
the condition (*) reduces to the commutativity of the
semigroup generated by the transformations which are
interpretations of the operators from Q.And,if we put
m(wo)=6,m(w)=m(a)=l for each we@ ,w#wo and each aeA,we

obtain that (**) is also satisfied.But A does not be-

long to ABTG(Q),for if A were an Q-subalgebra of a

group GE€ ABTG then we would have B§4=4,but ngl=3,which
is impossible. (Namely, B§4=4 implies that Bcz) is the iden-

tity of the group G.)
Theorem 2.ret 9=Q(1). an Q-algebra. A=(A;Q) belongs to

ABTG(R) Zff <t satisfies the following conditions:

-

(*7) ww T (x)=w""w (x), for any w ,w”" "€ Q,x€A;

(**7) There <s a mapping m:wem(w) of 9 <nto the set

m(w) (x)

of positive <integers such that W =x,for any W€,

xXeh;
(*** )N sqtisfies any quasiidentity of the following

form : .
wl.\. ,wp (x)=wl.

. .wé(x) =Wy .wp (y)=w1’. . .m&(y) ’
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Proof.Clearly, the conditions (*°),(**°) and (***°) are
necessary.The suficiency is a corollary. of  the folldwing
Lemma.Let T be a commutative group of permutations \‘,;on

)

a set A such that:

0 (x)=w" " (X)=Dw’ (y)=0""(y) .
Define a relation =~ on A by:
axb @'(a¢er)b=¢(a).Then, (i) ® is an equivalence in A.
(i1)If B is a subset of A such that (Vae a) (JibeB)arxb
then the mapping £: (w,b)—ew(b) is a bijection from ‘
QXB into A, such that E(w’w”,b)=w’(€(w",b)).)
(1ii)If K is an abelian group generated by B and if
G=I'X K,then by putting &(w,b)=(w,b),we obtain that the
algebra (A;T) 1is a TI-subalgebra of G.

The proof of the Lemma is obvious.
3.Here we will make some remarks and state

some problems.
First,we note that if we +try to generalize

Theorem 1. for abelian periodical semigroups,then we get
the result that this generalization is not true.And,we
do not know 1f the corresponding analogy of Theorem 1.
holds for the class of commutative sémigroups with the
propertiy (Wx) @m> 0)x™ l=x.

The similar situation arises if we try to ge-
neralize Theorem 2..

We also note that we do not know any conveni-
ent description of the class C () if C 1is one of
the following classes of semigroups:

(a) idempotent semigroups,

(b) periodic groups,;
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(c) groups,
(d) inverse semigroups,
(e) regular semigroups,

(f) completely simple semigroups.
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In other words we think that the well known Kurosh~’s

problem of characterisations of C(Q) is

until now

solv-

ed only for a few classes of semigroups,namely only

if C 1is one of the following classes

1) the class of semigroups [1];

2) the class of commutative semiaroups [4] ;

3) the class of cancelative semigroups (5] ;

4) the class of nilpotent semigroups (6),

5) the <class of semilattices [2],

6) gl m,i.e. the class of commutative semigroups
’
. . . . m+1 .
satisfies the identity x =x [3);
7) ABTG,
8) Am.

We would 1like also to mention the
finding the set of varieties C of semigroups

Cc(Q) is also a variety  for all Q or

3
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PROPER SUBSEMIGROUPS OF A SEMIGROUP
S.Milié and S.Crvenkovié

Let L be the elementary language of the semi-
group theory and ¢(x,y) a formula in the language L.

Denote with S¢ a class of semigroups satisfying
the condition

(*) Vi) @y) o (x,y) .

A semigroup S belongs to a class QS of semi-
groups if each proper subsemigroup of S belongs to
S4- '

In [4 E.S.Ljapin introduced the concept of a
basis class for some class of semigroups.

In the present article we consider some classes
QS¢ and their basis class.

First,we have the following theorem.

Theorem 1.(5Let S be a semigroup.Then,the following

two propositions are equivalent.

(i) QS¢ has »a basis class relative to the class
of all semigroups.

(ii) Qs¢cs¢.

If ¢(x,y) 1is one of the following formulas
(1) X=XYX,

(2) X=XYX A XY=YX,
(3) x=yx2;

(4) =x%y,

we have:

Proposition l.[5)Let S be a semigroup.The following con-
ditions aré equivalent.
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1 5€0s,. : , ‘
¢ : : - n
S is monogenic of ~an index of 2 or (Vke S)x =x
4

[ S1)

for some integer n >2. \

It follows immediately that QS¢ does not have :
a basis clas. ' \

If m and r are the index and. period,respecti-
vely,of the monogenic semigroup <a> we denote by

Ka={afn,am+l, coa,amE Ly

the subgroup of <a>.

Denote with 1 the c¢lass of semigroups S¢ where
¢ (x,y)=xy=y.The class I has a basis class(see [4]).Ac-
cording to (5] ,Q1 does not have a basis class rela-
tive to the <class of all semigroups.

Let ¢(x,y) be the following foérmula
(1) xm=ym/\ yx=xm+1y A xn=x,
where m,n are positive integers, n>1.S is the class
SI;'n(seeIZ]).If Se S;l,n we denote by [{x,y}] the semi-
group generated with x,yeS such that the formula (1°)
holds. [{x,y}] is a finite ogroup.We have the following;
Theorem 2. 2 Let S be a semigroup.Then

sesx & (Ves)@yes) (tix,yh e Sk o)

According to [3],the set M,of all groups [{x,y}]esl*l:’n

which can not be represented as a union of proper

subgroups of the same type,is a basis class for Sr?l,n'

Theorem 3.Let S be a semigroup.seQSI’r"l,n iff one and

only one of the conditions hold.

(1) Vaes)a=a MDD+l ) rem,n-1) is the GCD of m,n.

(2) S 1is a cyclic group |Sl=pa,pa-1!(m,n—l) and
pa*(m,n-l),where p 1is a prime number and a
nonnegative integer.

(3) S 1is a monogenic semigroup with an index of 2
and r|(m,n-1),where r is a period of the semi-
group S.

Proof.Let SGQSﬁ,n and let xe S.:lf S ii_]not monc(vge:fclz)“

then <x>esr;’n.It follows that X'=e_, =X i.e. x 7

=x.If S 1is monogenic 1i.e. S=<x>,then it holds that

(a) S 1is a cyclic group

or

(b) s 1is a monogenic semigroup.
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@) %2 %k Py
Consider (a).Let |S|=p, p,“...p, .Then <a “j> is a sub-
iy Ty
. Py
group of S(pi are primes,j=1,...k).<a j>esx:|n and
s ’
p, (m,n-1) p, (m,n-1)
4 Iy
a =,..=a =eq
so that a(m'n_1)=e,; i.e. lSl'(m,n—l)(ao that (1) holds).
1f |S|=p® (c€ N,p-prime) then <ap>es;‘ n-We have
’

a=1
(ap) (m,n‘1)=(aP)P =e

For oa=1 and p)(m,n-1) (2) follows immediately.For a >1
we have _
(ap§ (m,n—l),pa 1)

=ee

ie. p*! | (m,n-1).

If S=<a> 1is a monogenic semigroup i.e. (b) holds, then

S 1is finite(otherwise Se¢S* ) and s={a,a%,...,a™ 1y,
’ .

Ka’=KaU{ a™ 1} is a subsemigroup of S and is not regu-
2, . e = >
lar (K] ;e’xa) so that K ¢Sk ,m>3.It follows that m=2

i.e. az=a2+r.Ka is a «cyclic group of order r genera-

ted with the element ar+1.Further on, <a>eSl‘;‘1 n and
’

(=P

[

(ar+1) (m,n-1) - (ar+1)r=

It follows that ((m,n-1),r)=r i.e. r|(m,n-1).
If (1) holds,it follows that amm-1) 4o o uni-
ty for a.Then we have am=ea=an-1 so gthat SeSI"‘l,
Let condition (2) hold.Then <ap>€sr’[*l,n as

n*

g -
(@P ) ™D _(P)"ee (1<8<a )
so every subgroup of S belongs to Sﬁ:n i.e. Serr’:l n°
- 14 14
(3) .Subsemigroups of S are K and subgroups of

a
K,.As r|(m,n-1) it follows that
(ar+1) (m,n—1)=e

so v?e see that every element itself can be taken to .
be y in formula (1°).It follows “that’ seQSrﬁ,n'

From the definition of the class Sr*lfl n it fal-
lows that xn—1=ex.Let p be a prime number éuch -that
p>n—1.Then\",uCp€ QSI’;[,n and CpqE SI’{I,n.Therefore,QSI’I‘l,n does
not have a basis class relative to the class of all

. \
semigroups. \
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ON A CLASS OF SEMIGROUPS AND ITS
CHARACTERISATION
Milié s., Pavlovié V.

In this paper semigroups containing a Rees matrix subse-
migroups as an ideal are considered. For such semigroups a struc-
tural description is given by the Theorem 1. This class.of semi-
groups coincides with the class of semigroups having at least one
minimal left ideal and at least one minimal right ideal [Clifford
A. H., Theorem 3.1. in [1]].

Let M[1,G,J,P] be a Rees matrix semigroups, where I and
J are non empty sets, G is a group, P is a JxI matrix with ent-
ries pji in G; T a partial semigroup and let

]

TumI,G,J,P]

where (IXGxJ)n T =¢ . Let
g : T»>7(I) and n: T+ J(J)

be mappings, where 9(I) and 9(J) are semigroups of all mappings
I in I and J in J, respectively, i.e.

E:P'*Ep and n:p*np,
such that for all p,gq&T is fulfilled:
I €T th = g and = ;
(a) f pq en épq Eqéip Nog = Mpg ¢
(b) If pggET then gqu is a constant mapping and npncT
is constant mapping; )
Let
‘ ¢ : TXI~>G

be a mapping, which satisfies :

\
A
\
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\

(c) If pgeT then ¢(Pq,i)=¢(P,iEq)¢(q,i) ; o

(@)  p. . ¢>(p,i)p':l . = ¥(p,j) , i.e. does not depend upon

j, i€ jn_,1i .

P p J
ieTI.
Let us define the multiplication in S by:

(1) (i,%x,3)+ (k,y,R) = (irXijle) ’
(ii) pe(i,x,J) = (i£Pl¢(Pri)xrj) [
(iii) (i,x,j)‘P = (ilx\l’(PIj)l jnp) [;

where pe T, (i,x,3), (k,y,2)€IxGxJ ;
(iv) If pg=r in T then pg=r in S;
if pq¢T then i
R
= (i i . 3
Pq (lEqu,¢(P: Eq)¢(qll)pjnpnqri InNg
Let us denote the groupoid (s,.) by n[1,G6,3,P;T,¢,&,n].
It is directly verified that N[I,G,J,P;T,¢,&,n] is a semigroup
with a Rees matrix subsemigroup M[I,G,J,P] which is an ideal in
n.

Now we can state

Theorem 1. In a semigroup S there is an ideal which is
a completely simple subsemigroup (Wwithout zero) if and only if a
semigroup S is isomorphic to a semigroup €M[I,G,J,P;T,¢,E,n]

Proof. See [2] .
From Theorem 3.1. and the Theorem 3.2. from [1] and The-

orem 1. of this paper, we have.

Theorem 2. A semigroup S contains at least one minimal
left ideal and at least one minimal right ideal if and only if S
is isomorphic to a semigroup Y[I,G,J,P;T,¢,E,n] .

Problem. Give a structural description of a semigroup

which contains a Rees matrix subsemiqgroup as a left ideal.
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ON ONE REPRESENTATION OF GENERALIZED EQUIVALENCES
B. Se3elja J. UZan

In this article we describe tne representation of (n+1)-ary equivalence re-
lations on S [1], by means of the system of k-ary (2<k<n) relations (specially

by binary relations).
* * *

1. [1] (n+l-ary relation p on S is an equivalence relation') on S, S| >n, n €N,
iff it satisfies:

(1) (Vags..oray €5) ((agse--5a,584) € 0)2)

3)
(2) (Yays--05a,,0 € S)((a]™) €0'=> (312 23p(ne1)) € 0>

for each n€{1,...,n+1}! ; and

(3) (Yag, ayseeosapy €5)((a,027) € 0 A (3]s a ) €0 A

B, . n-1
(a-i # aja fOY‘ 1# J! 13J e {1,.--,”}) ===> (ao; a1 E] an+1) e p).

2. In [1] it is proved that (n+l}ary equivalence relation p on S, induces on S
partition of type n [2], and vice versa.

3. Starting with (1) and using (2), we get the following:
. ' i-1 j=1 n+1
(M éla1,...,aj_1,aj+1,...,an+1 €5)((ag s a5 aj,qs 25s aj+1) € p), for each

i, J€E{1,...on+1}, i #J, i.e. if o satisfies (1), then p is reflexive [3].

4. It is obvious that each (n+1)-ary relation p on S can be represented by the

system of (n+1-i)-ary relations p_ i , 1 € {1,...,n}, CYRRRRRLY € S, sucn that
1 /

(4) (x?+1")’e pa: iff (ay x?+1-1) € o,

1) For n > 1: generalized equivalence.
2) (1,n+1) - reflexive [3].

3) an+1

1 stands fﬁr a

1,...,an+1; see also [3].
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and that each such system of p i , CRRRRRLE € S, defines,by (4),an (n+1)-ary
1 . ‘ :

relation p on S.

a) If [S| = m € N, then the above mentioned system consists of at most p1 rela-
tions pai . Note that some of them may be described by the same set. '
1 ‘

b) It follows also that each collection of at most m' (n+1-1)-ary relations pai s
1€ {1,050}, 345000535 €S, |S| = m € N, determines one (n+1)-ary relation
p on S, defined by (4).

LEMMA 1.

If p is (n+l1)-ary relation on S, defined by

(a) {a?+1) € p iff there are i, j € {1,...,n+1}, i # j, such that a; = aj,

then p is (n+l)-ary equivalence relation on S.

Proof:
o is reflexive and symmetric (satisfies (T) and (2)) by its definition (a).
Let (af) € o and (a]*!) € o, a, ¢ 350 1,3 € {1yeeeandy 1 # 3. Then

a, =3, for some k € {1,...,n}, and

34y = ap’ for some p € {1,...,n}, by (a) and by the assumption.
Then aj =3, for some k € {1,...,n-1}, or A = ap, for some p € {1,...,n-1},
and if neither is satisfied, then ay = a4 = . In every case it follows that

(a2-1, a..1) € e, proving that o is transitive.

THEOREM 2.

Let P be (n+l1)-ary equivalence relation on S, n > 11), |S| >n, and let Dai be

(n+1-i)-ary relations on S, defined by (4), i € {1;...,n-1}2). Then the ! fo1-

lowing is satjsfied:

I The restrictions P _i of relations Dai to the corresponding sets
S\(al,...,ai}J), ard (n+1-i)-ary equivalence relations?’;
n+1 .
II If (aitl) e Da1 , then

1

(8nis1)" " " 2n(ne1)’

eo, a for each me {1,...,n+1}1 ;
m(1)’ " (i)’

NF . +1- -3
III PgiN T, = st ‘\(5\{a,,...,ai})"+1 i
1) pis at least ternary

2) pai are at least binary.
1
3) The cases when there are equal elements among al,..,ai, are also included.

4) Because of (2): pai =0 a , for each ne {1,...,i}I.
(1) ()
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Proof:

1,. 7,i are reflexive (they satisfy (1) :
1

(a) (agl}, a., ag'}, 3 a:::) €5,i , for j,k € {i+1,...,n+1}, j # k, since

SR i
(a) is by (4)°), equivalent to

(b) (ays al;is a0 a?l}, a0 altl) €0, for 5, k€ (i+t,..., n#1), and (b) is

satisfied since p is reflexive.

I,. Sai are symmetric (they satisfy (2)):
1

. - . . n+i n+1

Since pa}gpal , from (a, 41

i+l
n+1

) € Bai it follows that (a
. 1
(a}, ) €p. p is symmetric and thus

) € oa: » and by (4),

(a}s B (ir1)> 3 (net)) €0

for each permutation #€ {i+1,...,n+1}!. From this and the fact that

{a1,...,ai}ﬂ{a"(i+1),...,a“(n+1)} =9,

it follows that

(B (ist)eeso2a(nen)) € Pal >

for each @€ {i+1,...,n+1}! .

I3' Ba} are transitive (in the sense of (3)):

=i - +1-i - . .
Fet (xg e pa} and (x? T e 5, %k # Xy k #p, k,p € {1,...,n-i}. This
is equivalent to (a}, X2-1) €p and (a;, X?+1'1) € o, X # Xgs k #ps

ks p € {1,...,n-1}. p is symmetric and thus’

i on-i i onHl-i y

(c) (xo, a}, x? 1) € p and (a1, X3 1) € o, Xy # xp, k #ps ksp {1,...,n-1}.

Suppose now that a) a,,...,a; are not all mutualy different, and b) a,,...,a; are
1 i 1 i

all different.

a) In this case, using Lemma 1., we get

(@) (e 2 37w g €0

b) Here we use the fact that p i is the relation on SMags-..as)s e
k 1
n-i+1}

{ag50 05353 N X0 esX =P, and from (c),by (3)Jit follows again that

5)Ficop i
4%y
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i oon-i-1

(X Iy a1s X s Xn'i+1) G‘D
By symmetry (d) implies
; {
(ai Xn'i‘1 ) € : )
1% ’ n-1+1 e

Hence, in both cases we get

n-i-1
0 > Xp- 1+1) €%, Pa } °

proving transitivity (3) for Eai .
1

II follows directly from the symmetry of o.
III,. It is obvious that

Sn+1-1‘

0 )n+1-i.

a;\E} \(S\{%’”‘Ji}

IIIZ. The converse is also true, i.e.

+1-1 n+t-
N 1-1 1-1 C.p i \7, i

A

If (x?+1 1) € Sn+1 1\ (s \{31, LY })n+1 1, then there is at least one

NCASCHRPER)

a € {a1,...,ai} such that xj =a, J€ {1,...5n+1-1} , k € {1"°'f1} .

Now by II, the statement

n+f-i, _ , j-1 n+f-i .
(x1 ) = (x1 > A X ) € °a}
is equivalent to
j-1 n+-1i -
(a,» x3” s 3.y X ) €Ep k-1 i
k 2 k* 73+t X1, 31 ’ ak+1’
and hence
(xn+1 1) 6o i
a -

n+{-i

. s - . J-1
Since by the definition of p } s (x1 » As Xy

) £ p i , then it follows that
3

n+i-
(x e Pa } \ P ; » proving III,.
III1 and III2 show that III is satisfied, completing the proof of Theorem 2.

When we put i = n-1 in the formulation of Theorem 2., we get the following pro-

position.
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COROLLARY 3.

If p is (n+1)-ary equivalence relation on S, n > 1, ISI 2 n, theh
}.

the relations San-l are binary equivalence relations on S {"1"”"
1

The following proposition is a direct consequence of Theorem 2., remark a) in

4) concerning the finite sets and the fact that 3y5---,3; represent all varia-

tions with repetitions of the class i one the finite set S. !

n-1

COROLLARY 4.

If |S| =m>n (mn € N), then each (n+l1)-ary eguivalence relation

i 1)

on S can be represented by m (n+1-i) - ary relations pai, satisfying I, II

and III from Theorem 2. !

COROLLARY 5.

Under the assumptions of Theorem 2., if .ap # aq, for some

p.qg e {1,...,i}, p # q, then pa.i are universal (n+l-i)-ary relations on S.
1
Proof:

(x n+1-1

X4 ) € pa: for arbitrary xy,....x 4 ;€S iff (a1, x"+1'i) €o

n+1-1i 1

and this is true since p is reflexive.

REMARK: From Corollary 5. it follows that p i are universal (n+1-i)-ary rela-
tions on S {a1,...,a }, since the restr1ct10n of an universal relation is uni-
versal.

COROLLARY 6. 2)
Let P be (n+l)-ary relation on S, defined by (a), Lemma 1. Then E_ai
- 1
(on S\{al,...,ai}) satisfies the same property (a), Lemma 1., if aj,...,a; are
different.'”
Proof: n+1 _
‘ (a;,4) € p_ 1 is equivalent to
i+ ay
(n+1)€p1 CYRRRRLP €S ceesd € S\{a,,...,a,}, that is
.|+1 3 1 3 3 .l+13 3 n+1 1’ £ ] .I t]
(by ( )) to
ng _______ 2_§-E:__1:::::a €S, PR € S\ {a1,...,ai}.
1) In fact there are (m+1 1) classes of relations, each class con51st.1ng of

relations\'\ described by the same set; see also notice 4) concerning Theorem 2.
\ .
2) Of Theorem 2. and Lemma 1.

3) The casé when al,...,ai are not all\ different has been considered in Corol-

i

lary 5.
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By the definition of o, some of yseeespyg in (g) must be equal. Since all

ays...58; are different and

{313---931} ﬂ {ai+1s°--3an+1} = g s ‘ \.\

it follows that equal elements are among ai+1,§..,an+1, proving that Eaiw sa-
tisfies (a), Lemma 1. ' L

The following proposition is a converse of Theorem 2.

THEOREM 7.
et |S|>n, newN, and let

{pi; i e{1,..., n-1}, a
4

be a collection of (n+l1-i)-ary relations on S, satisfying I, II and III from

g7y € s}

Theorem 2. Then [ defined by (4) on S, is (n+l1)-ary equivalence relation.
Proof:

A. P is reflexive:

Suppose that 3ys...58, 4 are not all different. We shall consider following two
cases:

a) {a1,...,ai} n {ai+1,...,an+1} =0 ; and
b) {a1,...,ai} n {ai+1""’9n+1} 0.

If a) holds,and ap = aq for some p, q € {i+l,...,n+1} , p # q, then the reflexi-

vity of p follows by the same propery of Eai. But if, assuming a), a_ = aq for
1

P

some p,q € {1,...,i}Jand 3 g2 08,y Are different, then we have the following:
(a"+1) € o is by (4) equivalent to (a9+1) €p i ie. to
1 i+l a,

n+i _ -1 i
(a544) € egl~t, o, adiys 3pe et

This is,by I[,equiva]ent to

1
(a_, a_, a™t ) € p p-1 q-1 i
p’ "p* "i+3 ay LI ap+1. a0 aq+1,

which holds if and only if

+1
(a,, a_, a" ) €5 p-1 q-1 i
p* p’ Ti+3 ay a3y ap+1. 3,00 aQ+1’
and this proves the reflexivity of p, since pbi are reflexive relations.
Suppose now that b) holds. Then L
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n+ n+i L=
(a1+1) € p : if and only if (a1+1) € °a; \ °a: )

and this is by III equivalent to

(a ?:}) € Sn+1 i \ (S \{a1. ey ))n+1 i .

n+1-i })n+1-1

Thus, p is reflexive by (4) and by the fact that S
allways contains at least one element from {a1,...,ai}.

\ (S \{a1....,ai

B. p is symmetric:

This is the direct consequence of (4) and II.
C. o is transitive:
n n+
Let (ao)e Py (31 )G P> ap#aqs p#aq, Psqe{i.---.n}.

Here again we consider two cases: a) 3 5.5
b) dgseeesdp g are different elements of S.

nef are not all different, and

If a) is satisfied and a, =ap, ora

n n+l = e then by the assumptions we have

(h) (3,5 a?-1, a,,q) €.

In all other eases included in a), (h) follows from (already proved) reflexivity
of p.

Assume now that b) holds. Then

(ag) € o iff (a?) € Eai-1 iff (a . af i) € pa: and

n+1 . n+1
(a ) € iff (a 1+1) € pa} .

Hence, by the transitivity of Eai , it follows that
1

n-1 - . A .
(ao, a4 0 an+1>€°a} » and this is equivalent to (h).
A., B. and C. completely prove the theorem.
For i = n-1,\Theorem 7 reducesto the following proposition.

COROLLARY 8.
Let| |S|> n,n € N, and let {p Sl ag....a € S} be a collection
of binary relatlons on S, such that I, If and III are satisfied. Then the rela-

tion p, defined by (4) on S, is (n+l)-ary equivalence relation.
¥V
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Directly from Theorem 7., provided that S is finite, we get the fol]oWing:

COROLLARY 9.

Let |s| =m>n, m, neN, and let

{pa.;'._ ; ie{1,...,n-1}, LTTERRPL e s} ‘
be a collection of ml (n+1-i)-ary relations on S, such that I) II and III from
Theorem 2. are satisfied. Then p, defined by (4), is (n+l1)-ary equivalence re-

lation on S.
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