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PREFACE

The Third Yugoslav Algebraic Conference
took place 1in Belgrade, December 3-4, 1982, and
was organised by the Mathematical Inetitute
and the Faculty. of Sciences, Belgrade.

This book contains all the papers

reported during the Conference. Most of the
papers deal with problems on sepecial kinds
of algebras.

The next Conference will be organized

by the Faculty of Sciences, Zagreb, in 1984.
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LUHID ALGEBRAIC COLFLRENCE
seograd, 3-4 December 1982

ON THE POSITIONAL PARTITIONS OF ATOMS OF SIMPLE MATROIDS
Dragan M. Acketa

Abstract. We introduce several equivalence relations,which
can used for producing all non-isomorphic non-simple ma-
troids with the lattice of flats isomorphic to the given o-
ne.

PRELIMINARIES

We assume familiarity with the notions "(finite) lat-
tice","atom","covering","meet","join" in a lattice,"isomor-
rhic lattices". The minimal,respectively the maximal,element
of a finite lattice are called the gero,respectively the u-
ait. . :
A lattice L 1s gemimodular if it satisfies:

If X,YE€E L and both X and Y cover meet(X,Y), then
join(X,Y) covers both X and Y.

A lattice L is atomic if each element of L is the
Jjoin of some atoms of L.

A set-lattice is the lattice of some sets (some sub-
sets of the unit),ordered by inclusion.

Two set-lattices Li’and L2 are isomorphic if there is
a bijection between their units,which maps the sets of Ll
onto the sets of L2.

Remark. We should distinguish between "lattice iso-
morphism" and "set-lattice isomorphism", The second induces
the first,but not conversely. :

A matroid M on a finite set S 1s a semimodilar atomic
set-lattice with the unit S,in which the meet of any two a-
toms is the zero.

The sets of a matroid M are also called the flats
of M, ‘

A hyperplane of a matroid M on S is a flat covered by



the unit S. A matroid is completely determined by the family
of its hyperplanes. A

The addition of & new element z to a flat X of a mat-
roid M 1s the substitution of all flats Y of M,which contain
x)by Yu{g}e If X is the zero or an atom,then this operation
produces (the flats of) a new matroid. The element g is said
to be added to X. :

An n-set is a set of cardinality n.

A matroid M is gsimple if all atoms of M are l-smets.

A matroid is eémigimple if it is not simple,but has
-the empty zero. :

A loop of a matroid is an element of its zero.

The Steiner system S(d,k,n) is the family F of some
k-gubsets of an n-set A, such that each d-subset of A is
contained in exactly one set of P, It is well-known that the
sets of a Steiner system S(d,k,n) are hyperplanes of a mat-
roid M,such that all j-subsets of the unit,which satisfy
J<d,are flats of M,

The abbreviation "CWR" will be used for "combinations
with repetitions". The CWR’s are denoted by brackets "< ",
The carrier of a CWR is the set of different elements inclu-
ded in the combination. The degree of an element in a CWR is
the number of repetitions of the element. A CWR is obviously
determined by the carrier and all the degrees. Two CWR’s are
isomorphic if there is a bijection between their carriers
which preserves the degrees.

INTRODUCTION

All non-isomorphic non-simple matroids on at most 8
elements were constructed in [1]., For that purpose,new ele-
ments were added to the zero or to some atoms of simple ma-
troids on smaller sets,

All non-isomorphic matroids with loops on n+l elements
can be naturally bijected (by deleting one loop) to all non-
isomorphic matroids on n elements, This reduces the constru-



ction of non-isomorphic non-simple matroids to the construo-
tion of non-isomorphic semisimple matroids.

Each semisimple matroid with k atoms on n elements can
be obtained by addition of n-k new elements te the atoms of
the simple matroid with the isomorphic lattice of flats.

Conversely,given a simple matroid N on k elements,the
following question can be raised: "Which non-isomorphic se-
misimple matroids on n elements can be odtained by addition
of n-k new elements to the atoms of M ?"

Equivalently,the problem is to determine the classes
of the following partition X of the olass of OWR’s of
length n-k,composed of atoms of N3

(xl,... gh) f!l <y1.ooo”n—h\) LEO

X . |
<xlgooo.xn_k> N~ al""’yn-{t7
(ZyreeesTpn denotes the semisimple matroid,which is

obtained from N by addition of one new element to each atom
x4 (i£ an atom x appears q times in the CWR,then q new ele-
ments are added to x).

This problem is solved for n<8 ([1]). Our goal is te
develop methods for reducing it to some simpler problems in
the general case. Although there is little hope that this
might be used for producing all non-isomorphic non-simple
matroids on 10 elements or more, we believe that it could be

useful whgn applied to some special classes of pimple matro-
ids on larger sets.

<=

Here M

THE POSITIONAL PARTITIONS

Our main idea is to describde /!, by the use of some

gimpler equivalence relations. We define two partitions of
atoms of M:

(a) the "weak positional partition" (WPP)
def :
'x%y <=> H<x> ~ n<y>



(b) the "strong positional partition" (SPP)

x-;g;y <d='§ N = M(xy) , where M(xy) denotes the
matroid obtained from M by transposition of atoms x and y in
all the flats which contain either of x and y.

The relation (a) is the special case of A, tor n-k=1,
The word "positional" denotes that these partitions are de-
termined dy position of atoms with respect to the other
flats.

- We prove several properties of the positional pgrtiti—
ons, We primarily show that the WFP is tightly connected to
the automerphisms of & matroid:

THEORBN 1. The classes of -3 de with the orbits of
b8 awtomorphism group ef the matroid M.
Proof. Given two atoms x and y in the same class of ,%, ’

let Xy and 41 denote the new elements added to the atoms

x and y respectively,whioh yield the matroids l(x) and !< .
Any isomorphism .d. between M x> and X Kyy maps {xyx;) onto
{¥r¥7) (these are the only atoms of cardinality 2). We may
assume that el(xl)-yl.,!han d induces an automorphism of N,
which maps x to y.

Conversely,given an automorphism B of M with B(x)=y,
it can be easily extended to an isomorphism of l(x) onto
l(,) b’ d.ofinin‘ 5(:1)-y1 ¢« Q.B.D,

. A 8lightly more effective description of classes of
»5 is given bdy:

THBOREM 2, If x and y sre iwo atoms of a matroid X on S,
then xe bayve: ;R y AL and only if
{.t'...'-n':) u ! M .oi .@>{.1|.'°’.niy} .1_!. .!. M -o—t-
for sach {.110-09'n}9 8N\ <{x,¥)
Proof. The transposition (xy) fixes all flats of M which

either contain both of the atoms x,y or none of them. Assu-
ming the above cohdition for flats,we have that the flats



containing x,but not y,are mapped (under (xy)) to the flats
containing y,but not x,and conversely. This gives that all
the flats in the matroids M and M(xy) ocoincide.

Conversely,let M= N(xy) and let {81900098,,X) Do &
flat of M,where (sl,...,sn\,s S\<{x;y). Then we have that
{zl,...,zn,y) is also a flat of M. Q.EB.D,

The following theorem explains our use of the words
"weak" and “"strong":

THEOREK 3. Ifx & y are iwo atoms of a matroid M (on 8),
then xyy implies xo-ry.

Proof. lLet l<x) and M o> denote the matroids obtained
from M by addition of xq to x,respectively y, to y.

We have for each {zl,...,sn)Q_S\{x,y) H
{zl,...,zn,x,xl} is a flat of l<x><=>{zl,...,zn,:‘r.} is a
flat of M <=>(zl,...,zn,y) is a flat of M <>
<= {Zyyeees2,, ¥,y 18 a flat of l< 5o

As M= M(xy),it is easy to check that the mapping
defined by d(x)=y , ol(y)=x , d(x1)=y; , ol(8)=£ for each
Z€ S\ {X,y), 1s an isomorphism of M . onto M y>e Q.B.D.

. Our next theorem emphasizes the role of SPPs

THEOREM 4, let M be a gimple matroid on S,where
S={81yse098,), and let o be a permutation of S,which pre-

seryves the classes of -~ ,that is

ollay) = a5 > ai'\,!f: 8y

Let M(;i":pn denote the semisimple matroid obtained
LN ] n

from M by adding p; new elements to the atoms ay (pie Nu{0),
i=l,.o.’n) . Then the matroids

w - u(30n)  ms My = (3R
are isomorphic. '

Eroof. Iet My Dbe obtained from M by addition of the ele-
ments xj:-;’xi2""’xipi to the atoms a,, 1=l,..‘.,n and let



12 be obtained from M by addition of the elements
,11',12""’yip to the atomﬂ_ d-(a\i) ’ i‘l,...,n .
We claim #hat the mapping B: 8 + Uxij——>s + inj

defined by E,(ai) = cL(é.i) for 1 = 1,.0.yn
ﬁ(xij) = iy for j=lyeessPy 2 1=ly540yn
is an isomorphism of ll onto l[z.

It is easy to check that B(M) = J.(M) = M, Namely, ol
can be represented as & product of transpositions,so that
the two elements of each tranuposition are in the same class
of 4‘/, + Any of these transpositions fixes the family of
flats of M by Theorem 2.

Let X be an arbitrary flat of M. It consists of some
atoms ‘11’-""‘115 of M,such that {'11"“"1'\[ is a flat of

M ,and of the added new elements

X X ‘03X X
4.102°°°9%4 P 10 o o)Xy j9eeey 1.p .
1 1P, . oPi

* Then B(X) consists of the atoms J(a, )....,d.(ai ) ,such
shat {d(ay )seeesdlley )} 18 @ flat 1ot M,and ® of the @a-
s

d.d) elements 1111,...,3'11}1 ge o olyi-lpo-aoyiapi .
1 [}

It 18 obvieus that P(X),which satisfies these conditions,
is a flat of .20 Qo'.h.

Reughly speaking, Theorem 4 says that "if we take in-
to ascount" the classes of g.; sthen we cannot possidbly
miss a class of -\lr o However,it is often the case that
two isemorphic semisinple matroids can be odbtained by addi-
$ion of new elements to different combinations of classes
ot é .

It is for this reason that we are also trying to des-
eribe the classes of A "from the opposite side”,

Ve define a partition on CWR’s of atoms of arbitrary
length,which is induced by (the classes of) WPP,as follows:



<xl,...,x > 1\.’5 (yl,...,yq) if and only if there exists

an isomorphism between the CWR'’s (tl.....x Sy and
01....,14) ywhich preserves the classes of

Iet denote the restriction of the relation p 3 to
the OWR‘s of a fixed length q (it coincides with WPP for
q=1).

THEOREM 5. If x,7,5,% aye four different ’-Ul of s pin-
2ls patroid N,then <(X,3)-3-<s,t) impliss <X,y>T%(s,*> .
Proof. Let '(x » be obtained freom XN by addition eof x to x
and y) to y and let Mg .. be obtained by addition ef 5, %o
s and ¢, to t. If &x,7 {s,t>,then there exists an 1-omr-
ph:lneL of My 4 onto Mo 4. It maps {xy2Y o 7,77 0
{{s,l]} » &y t]_\,), because these are the only atoms of ocardina-
1ity 2. We may assume that ol(x;)=%, , J(y;)=t; . Then
d.(la)) =Ny s ol (M <y>) = M(4yy Which gives

xfg-s and y/%t and &Y% X <l,t) Q.E.D.

THEOREM 6. If x and y are of a simpls matroid M,then
&,x)%(y,y) if and only :lf v .

Proof. Follows by extension (respectively,by restriction)
of isomorphisms between the corresponding matroids. Q.E.D.

The relations of type Tl% are sufficient for genera-
tion of all non-isomorphic semisimple matroids on at most
T elements,with one single exception. .
This exception can be obtained in the following way:
Start with the simple matroid on 5 elements with the
family of hyperplanes:
{aybycY y{a,2,6) 4 {bydY, (b6}, {c,d), {o,e})
The classes of % are {a) and <{b,c,d,ey. .
The classes of the partitions {8 and 4 do not coin-
cide: The set {(b,c),<b,d),<b,e),<c,e>, @,8)) is a class of

'1\“/2 ybut 1t contains two classes of /g—» :



Lo, ,<a,05) and  {b,d), <b,e) ,<c,d>,<0,e5)

One could hope that the re/lg,tions *5— and ,g, stoget-
her with their induced partitions (one could try to define
‘il"& as & generalization of T!’q) are pufficient for genera-—
tion of all semisimple matroids (i.e., of all classes of
r!.). This seems to be true for the majority of "small" ma-
troids.

However,this is not true in general. The further coun-
terexamples are of the following type:

Take a simple natroid'm,such that the hyperplanes of
M are sets of a Steiner system S(d,k,n). Then all the parti-
tions ,{, ’ ,45, sesey ,%, have just one equivalence class
and they cannot help in detecting all non-isomorphic semi-
simple matroids,which can be obtained from M, However,the
partition 3%1 can fulfil this demand.

As no Steiner system S(d,k,n) is mown with 4) 5,
we 4o not know an example of semisimple matroid,for the con-
struction of which a relation %— with some j3 7 should be
used,

We conjecture that a finite collection of partitions
of type ,}., is suffioient for the construction of all non-
isomorphic semisimple matroids,which can be obtained from
a given simple matroid M, ‘

REFERENCE
1. D.M.Acketa, A oo tion of no g%plo gg%oggg_g
at mogt 8 ;hm'ﬁil . %o spp'o'éraﬁ-:. ombin, Inform.,

System 8oi.

Dragan M. Acketa
Institut sa matematiku
21000 Novi Sad

dr Ilije Djurisiéa 4
Yugoslavia
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CERTAIN IDEMPOTENT SEPARATING CONGRUENCES
ON ORTHODOX SEMIGROUFS

Branka P. Alimpié

In this note we describe an idempotent separating con-
Eruence. denoted by dx , on an orthodox semigroup. (Theorem 1).
his congruence is defined by an expression which is a genera-
lization of the formula for the greatesf idempotent aegarating
congruence . on an orthodox semigroup (J. Meakin, Further,
construct a semigroup g and a homomorphism of 8 onto
2& ) which induces the idempotent separating congruence &k on
S. In the case of an inverse semigroup S8, such a homomorphism
coincides with the embedding of the semigroup S in the normal
hull ¢ (K) of a normal subsemigroup K of S, obtained by M.Pet-
rich [3]. By the way, we get a new characterization of the gre-
atest i empotent-separatln congruence on an orthodox semigroup
by elements of the set %
Following J. Meakin, the greatest idempotent separating

congruence & on an orthodox semigroup S is given by
aub & (3a°¢V(a)) (30 eV(v))(We eE)(a’ea = b’eb Aaea’= beb’)

where E is the band of idempotents of S, and V(x) denotes the
set of all inverses of an element x of S,

If S is an inverse semigroup, an expression for & is
given (J.M.Howie, ([1]) by

audb & (¥ e€E)aea t = veb L.

Let K be an inverse subsemigroup of an inverse semigro-
up 8. K is pormal if it is full (ESK) and self-conjugate
((¥xeS)x Ex <K). Following M.Petrich, a pormal hull of an
inverse semigroup S is the semig&oup‘<P(K) consisting of all
isomorphisms among subsemigroups of K 6f the form eKe, eg E,
with composition of these isomorphisms as partial one-one map-
pings of K,

LEMMA 1. . (M.Petrich, (3], Propos1t10n 1) Let K be A pormal sub-
semigroup of an inverse semigroup S and let 8 = 0(S: K) be a
JD&JLLQ__GIIHLQQQES by ©:a- B¢, wnere €2:aKa »a 'Ka,
end xb0=a 'xa. Then O(S:K) is an Mm ho-
momorphism of S into §(K) and
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xer O (S:K)={ac 5| (vxeXaa‘xa = axa_la} )

Let S be an orthodox semigroup, and let E be the band
- of idempotents of S. Define the set

%;{KSS'Kst, E<K and (#xes)(vx'ev(x))x’szK}.

_ Since § is orthodox, we have E2s E, WxeS)WxeV(x))x'Ex
¢E, so EeX . '

LETWA 2. Let a,b be arbitrary elements of S. If KeX , the fol-
lowing formulae are equivalent
() (aa'evta))Gb’eV(b))(VxeK)(a'xa=b'xb A axa’=bxb’)
(11) (vae v{a))(a4b’s V(b)) (¥x¢eK)(a‘xa=b’xb A axa’=bxb’).
Proof. First we prove the implication

(vx€K)(a’xa=b’xb A axa’=bxb’) =» (a’a=b’b A aa’=bdb’),

where a’€V(a) and b’eV(b). Suppose that a’xa=b’xb, for all x,
x6K, Then we get

a’a=a’(aa’)a=b’(aa’)b (8ince aa’€k)
=b’ (aa’bb’ )b=a’ (aa’bb’ )a (Since aa’bb’€kK)
=a’ (bb’ )a=b’ (bb’ )b=b’b (Since bb'€K).

Similarly, from ( vx¢K)axa’=bxb’ it follows that aa’=bb’.

‘ . Therefore, if (i) holds, there are inverses a’ of a
and b’ of b such that a’xa=b’xb, axa’=bxb’, for all x, xeK, and
a’a=b’b, aa’=bb’, Hence a £b, and for every inverse a* of a
there exists an inverse Bt of b, such that a®a=b™b and aa"=bb".
So we have a*xa=a"aa’aa"xa=b"ba’(bb*x)a=b"bdb’(bb*x)b=b*xb, and
similarly axa®=bxb”, for all x, xeK.

If there is an inverse b of b such that

(vxeK)(a"xa=bxb A axa*=bxd),

we have a"a=bb, aa*=bb, and so b b=bb, bb*=bb, which yields
b=bbbab bbb’ b¥=b . Hence (i) =* (ii).

Bince the reverse implication is trivial, the lemma is
proved.

The following theorem generalizes the theorem 4.4[2] of
Jde. Meakin,
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THEOREM 1. Let S be an orthodox semigroup. If K€X , the rela-
tion wp of the set 8 defined by

a ugb *» (3a’'€V(a))(AV'e V(b)) (vxeK)(a’xasb’xb A axa’=bxb’)

is an idempotent separating congruence on S.
Proof. The relation g is obviously reflexive and symmetric,.
we prove that it is transitive. Suppose that a Ugb and bMzc.
Then by the lemma 2 there exist inverses a’ of a, b’ of b and
¢’ of ¢ such that a‘xa=b‘xb=c’xc, and axa’=bxb’=cxc’, for all
X, x€K, s0 we get aigce.

Now suppose that aigb and c€8. Then there are inver-
ses a’ of a and b’ of b such that a’xa=b’xb and axa’=bxb’, for
all x, xeK. et c¢’ be an inverse of c. Then

c’a'xac=c’b’xbc and acxc’a’=bcxc’b’ (since cxc’€ X),
for all x, x& K. Therefore acpgcb, since c’a’€V(ac) and
¢ v €V(be). Similarly ca @gcb, 80 My is a congruence.
From the proof of the lemma 2 it follows U p% 76, hence

Ug is idempotent separating. This completes the proof of the
theoren.

Obviously, if K=E, then qu is the greatest idempotent
separating congruence & on S,

IETA 3. Let a’€V(a), then-
(¢¥xek)(axa’a=a'axa A ag’'xa=axaa’) =pa’a=aa’.

Proof. Let axa’a=a’axa and aa’xa=axaa’. Then we have for x=aa’
and x=a’a, respectively ’

a=aa’(aa’)a=a(aa’ J)aa’=a.aa’,
a=a(a’'a)a‘’a=a’a(a‘a)a=a‘a-a,

hence a‘a=a’a.aa’ =aa’, and the lemma is proved.

LEMA 4. Let S bBe an orthodox semigroup, a€ Sand K&€X . The
following conditions are equivalent:

(1) agker Wy ‘ _

(ii) (qa’\e V(a))(Vx €K)(axa’a=a’axa A aa’xa=axaa’)

(iii) (qa"‘e V(a))(¥ xeK)(axa’aza’axaaaa’=a’a), ,
‘where q& {J, 3;}. - o
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Prooi‘. Suppose that ae ker (4gs then a Mge, for some 1dempotent
e of S, Since eeV(e), it follows from the lemma 2 that there
exists exactly.ome inverse a’ of a such that axa'=exe\=a xa, for
"‘all x €K, and a’a=aa’=e. Hence,

1) = ( Hla‘GV(a))(VxeK)bxa =a axaa‘=a’xa) = (ii).
By lemma 3, we get (ii) e (111).\F1na1y,

(iii) =» (1i1) A (i1) = (3a’€ V(a)) (¥ xeK) (axa’ =a’axaa’=a’axa’a
A a'xa-a'axaa'ﬁa'axa'a) = (Fa'eV(a))auga‘a = (i).

The lemma is proved.
COROLLARY 1. Let S be ga orthodox semigroup and and a€S. The follo-
wing conditions are eguivalemt:
(1)  acKeru
‘ (1i) (qa’eV(a))WxeE)(axa’ a=a’axa A aa’xa=axaa’)
(1i1) (qa’eV(a)) @ xeE) (axa‘a=a’axa 4 aa’ =a’a),
where g¢ {3, 31} .
For K€ S, the centralizer Kf§ o.f K is the set
Kf ={ae8|(vxeK)ax = xa} .
LBMA 5. If 5 is an orthodox semigroup, and K€X then
' ker kg S.Ig& KsE§,
Breef. Let ESEf then we have

a € ker uy ¢+ (3a'c V(a)) (vxeK) (axa’ a=a’axa 4 aa’ a/a)
=»(3a’6¢V(a)) (¥ xeK)aa’ ax=xaa’ a
&% (¥ x¢K) axuxa
wac K¢

Conversaly, let ker(l.Ks Kf. Bince Esker(ux, we have Est,
wich is equivalent to K¢ Ef. The lemma 'is proved.

Now suppose that 8 is an inverse semigroup, then the
congruence “I can be expressed in the following way:

LERMA 6. Let B be an inverse semigroup gnd Ké¥ . Then
a lgb & (¥xeK)axa labxdl,
and ker (IK-{GGSI (VxeK)aa'ln-axa'la} .
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Proof. The implication a igb = (xeK)axa  sbxb™l follows imme-

diately from the definition of (p. Conversely, define a~d

@ ¢xeK)axa Lebxb L. It is straightforward to verify that ~

is a congruence,so a~b = a i~ b'l, which ylelds @nx)a'ln-

=b"1xb. Hence, (% x¢K)axa™l bxb™L ¢ @ ( gb.
Suppose that a ¢ kermy, then (¥xéK)axa

idempotent e, and aa Tee. Hence,

'l-exe, for some

ae kerfi g &> ( xeK) axa L-aa lxaa~t
& (¥xeK)axa ta=as 1xa ,
and the lemma is provede.
COROLLARY 2, If S is gn inverse semigroup, then
(1) kerpmy = Kf e» KS'Eg
(ii) kerp = Ef.

Let a be an arbitrary element of an orthodox semigroup
S and a’'eV(a). If K€X , we have

aKa’=aa’aKa’aa’s aa’Kaa’g akKa’,
so aKa’=aa’Kaa’, and. therefore
x¢€ aKa’¢» x=aa’xaa’ & x=aa’ x=xaa’.
From these equivalences we have
X,y € aka’ & x=aa’x Ay=yaa’ = xy=aa’'xyaa’ = xy e aka’,

so aKa’ is a subsemigroup of K. Since aeV(a’), it follows that
a‘Ka is a subsemigroup of K, too.

Let Qa(K) be a mapping of aKa’ into a'Ka defined by
xF):,(K) Lefa’xa. Since
(xy) @:.(K)=a'xya=a’xaa’ya=x 92.(K)y 9:,(K) for x,y¢ aKa’,
x 0 &x)e 05(x)
a" a
a a
x 03(K)*0 A(K)

n

aa’xaa’= x, for x¢ aKa’, and -

a‘axa’a = x, for x€ a'Ka,

4
the mappings @:.(K) and \9:(1{) are mutually inverse isomor-
phisms among aKa’ and alKa.
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LEMMA 7. Let S be gn orthodox semigroup, and a,be& S. Then
.(vxeK)(a’xa=b’beaxa—bxb’)elb Oa(K) -0> (K),
where a’ is an inverse of a, b’ is an inverse of b, and KeX .
Proof. F:Lrst, we observe that
aKa' =bKb' =y aa’¢bKb’A bb'e aKa' = aa’-—-aa bb/ =bb’,
and dually,  a'Ka=b’/Kb = a’a=b’b. Now we have

W xeK) (a’ xa=b’xb A axa’ =bxdb’)
=p aKa’ =bKb A (#x¢ aKa’)a’ xa=b’xb
= 93 = O5®.

Conversely, if ea(K)= 9 (K), then aKa’ =bEb’ , a'Ka =
=b'EKb and (vxe& aka’)a’xa= b’xb, so we have aa/=bb’ and a’a=b’b.
Let xe K, then

a’xa=a’ (aa’xaa’ )a = b'(aa’xaa’ )b (Since aa’xaa’ e akKa’)
=b’ (bbd’ xbb’ )b = b/xb (Since aa’=bb’).

By dual arguments, we may prove that (¥xe K)axa’=bxb’. The
lemma is proved.

Remark. From the proof of the preceding lemma, we get a charac-
terization of the % -equivalence of an orthodox semigroup. If
KeX , we have

aXb ¢ (qar)(3IDb’)(akKa’ =bEb’ A a’Ka=b’ Kb)
' ¢ (qa’)( b’ )(aEa’ =bEb’ A &’ Ea=b’Eb),
where g6 { ¥,3] .

Now, for an arbitrary element a of S, and K&€X , we
define the set Ox(a)={ 6 ,(K)la ‘€ V(a){. As a consequence of
lemmata 2 and 7, we get

THEOREM 2. Let 8 be gn orthodox semigroup, a,be S, and KeX .
Then the following conditions are eguivalent

(1) Og(a)nb g(b) 48

(1) apgdb

(111) 6g(a) = Ogx(b).
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Broof. By(a)nBg(b) 4 8 & (Ia'e V(a))(3b€ V(D)) 6 8(K)=8 (&)
& (Ja’eV(a))([@b'e V(b)) (¥x€ K)(a’ xa=b’ xb A axa’ =bxb’ )
(By the lemma 7)
& algb (By definition of Mg)

&b (Ya’e V(a)) 3V eV(b)) (*xeK) (a’ xa=b’xbA axa’=bxt/ ) A
Wv'e V(b)) (3a’e V(a) ) ¥ x¢K) (a’xa=b’ xb A-axa’= bxb’)
, . (By the lemma 2)
S a6 T(a))(EVe V(b)) 08, (K) = 6D, (K) A

WbeV(b))@areV(a)) 6D, (K) = B3, ()
(By the lemma 7)
&0z(a)s 8 (0)A Bp(d)< Oy(a)
@ 0z(a) = O g(b).
The theorem is proved.
If K=E, denote by 6(a) the set QE(a). Then we have
COROLLARY 3. Let S be an orthodox semigroup. If a,be S, then
ambe> B(a) = 6(0) & B(a) NO(D) 48,

where ¢ is the greatest idempotent separating congruence.
on S,

Let S be an orthodox semigroup, K& and let QK(S) be
the set defined by
B x(s) ={9K(a)| a€ S} .

Since My is a congruence on the semigroup S, and a Uy b d=d
eK(a) = @ g(b), we may define an operation * on the set

B x(a)x O () 5 B L(ab).

Therefore, (GK(S),4 ) is a homomorphic image of the orthodox
semigroup S. y ’ i ‘

If S is an inverse semigroup, the set 9K(a) consists
of the single element 9% = 9:.4(K), and '

O« 65 - {62 ]{63] -{eg.
If we ideni;ify {GEE w:i..th\ 9%, we get 9%49}{’\_ pab.
, : - K
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v f o,
Hence, .by the lemma 1, 9%* 6§= 6 E° 92 y Where o is the
composition of mappings, In this case, the theorem 2 i\!educes to
THEOREM 3. Let S be an inverse gemigroup, a,b€ S, and KeX -
Then
Capgp© 63 - 63 .

Hence, if K is a normal subsemigroup of an inverse se~
migroup S, the congruence (& K coincides with the congruence
6 (8:K), obtained by M.Petrich (the lemma.1).
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FREE REGULAR ORTHOCRYPTOGROUP

Dragan Blagojevié, Aleksandar KrapeZz

i semigroup which is a union of groups is said to be com-
pletely regular. Such a semigroup is provided in a natural
way with a unary operation (usually called inversion) a — a~
where a'l is the group inverse of a in the maximal sub-
group containing a. This unary operation satisfies the iden-
tities

1

[¢R) o ix = X, x it = x7L R ot = x1x.

In fact completely regular semigroups can be defined as a
unary semigroup (a semigroup with an added unary operation)
satisfying these identities. If the idempotents of a complet-
ely regular semigroup form a subsemigroup, the semigroup is
said to be orthodox and is called an orthogroup. If in addi-
tion ¥ is a congruence, the orthogroup is called an ortho-
cryptogroup and it can be characterized within completely re-
gular semigroups by the identity

@ (x3)° = x%°

‘where x° denotes xx'l, or equally’ x1x.

- The free regular orthocryptogroup is described in [1, Sect-
ion 5). Of course, the description is inductive. In this pa-
per we will, following [l], restrict ourselves to regular
orthocryptogroups (the idempotents form a regular band) since
we want to avoid inductivity and to refine the description.
We will also consider the case when H®-classes are Abelian
groups.

The free unary semigroup is background for our work. So, let;
X be a glven set and let F Dbe the free semigroup on

Xv {( " }, where ( ' and )-l are new symbols not in X. The
free unary semigroup on X, i.e. U(X), is the smallest subset

" of F satisfying the conditions: (i) X<U(X), (ii) if

L I
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ueU(X), then (u)™eU(X), (iii) if u,veU(X), then

uv € U(X). When writing words from U(X) usual conventions

for dropping parentheses will be_addopted. The free unary. mo-
‘noid on X, i.e. U(X), is obtained from U(X) by adding the
‘empty word © behaving as an identity: ue=6u=u, for every
u €U(X). '

Let us recall some notions regarding words. The initial
i(w) of a word w€TU(X) is obtained from w by taking only
.the first occurrence of every variable from X and dropping
everything else. "he final f(w) of w is defined dually
("last" instead of "first"). The content c(w) of w is the
set of variables from X occurring in w. The reduced word
f(w) of w is obtained from w by removing from it all .oc-
currences of u° for any word u. In fact r(w) is obtained
‘by solving word problen  for groups.

Definition 1. Let v,weU(X). Then vpw if and only if
i(v) =i(w), £(v)==£(w), =(v)=r(w).

THEOREM 1. U(X)/p is the free regular orthocryptogroup on 'X.

Proof. It is evident that p is an eQuivalence. I is easy
to see that it is also a congruence. The following facts can
be used: fP(vw) P(P(v)P(w)), for ‘Pé {1 £ r} i(w—l) =i(w°)
=i(w), £(u~ ) £(w°) = £(w), o(w™ )— (r(w))_ r(w®) = 0.

S/p satisfies the identities (1),(2), i.e. the following hold:
:ocflxpx, xLyx~l px"l, XX lpx 1x, (xy)opx ¥°,

(xyxzx)° p(“v"x) . That can be .checked by a straichtforward
verification. Notice that i(xyxzx) =ilxyz) = i(xyzx),

£(xyxnx) = £(v7x) = £(xyzx). The mapping J: X+~ xp is an injec-
tion from X into U(X)/p, and U(X)/p 1is generated by

{ap | aex} Let S be any regular orthocryptosroup and

6: X S anv mapping. Define V: u(x)/p » S by (aE)W==a¢

if a€X, and ((uv)p)¥=(up)yY(vo)yY, (u” )H’ (ug)™™. Then
Y is a homomorphism and jy=g. So, U(X)/p 1is the free
regular orthocryptogroup on X.

A model of the free regular orthocryptogroup on X can be
constructed as follows. Let U(X) be the set of triples
(al...an, 8. am...am) satisfying: a; €X, ai/aj, if i/ jg
8 €G(X), where G(X) is the free group on X, with
c(g)c{ay,.-.,a,} (We can equivalently say 86(‘?({&1..‘..,%}),
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where G({al,...,an}) is the free group on {al,...,anl), and
T is any permutation of the set {l,...,n}. Let a product
be given by

(By...8,, & 8y qre o+ Bpq) (bl"'bm' hy bygeeeb ) =
= (i(al"'anbl"‘bm)’ gh, f(arx"'annblw"'bmm))
Then in  U(Y) iholds (al...an, g, alﬁ"'anu);l -
= (8)eeeByy By 8) ee.8, ), B8O (u€x),-, ™) is a model
of the free regular orthocryptogroup on X.
i'rom this mmodel one can get models for free objects in sub-
varieties of the variety of regular orthocryptogroups. For
example, if we drop the second component from elements of
T(X), we will get a model for the free regular band. A (pretty
long) description of the free regular band in set theoretic
terms can be found in [2].

THE CASE WHEN ¥-CLASSES ARE ABELIAN GROUPS

Regular orthocrwptogroups having Abelian groups for H-clas-
ses can be described by the identities (1),(2) and the identi-
ty (see [4])

(3) (xy) ®x () Oy (xy) © = () Py (o) Py ) ©
But ' .
(3) & Gy =y (ay) = %% Oy Gy ) Oxxy
= (7 Oxy (3y) @ = * Ly (xy) Oyt
& gxy=x'1xym'l
= %57 = (x)?
So, instead of (3) we can take the identity
) ()2 =Pyt

‘which is simpler than (3). Notice that the identities (1),(2)
and (4) do not form a minimal set of identities (see [3, The-
orem 2.1]). , '

Define ea(w), the exponent of tbe letter a in the word Wy
as follows: e (a) =1, ea(b) =0, if b is a letter different
from a;uea(vw)==ea(v);+ea(w), ea(w'l) =~ea(w), vhere v and
w are from U(X).

Definition 2. TLet v,weU(X). Then vpw if and only if .
i(v) = i(\srj, f(v) = £(w), ‘_ ea(v) = ea(w) for every aec(v) =c(w). -
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THEOREM 2. .U(K)/ﬁv'ig the free regular orthocrvptogroup
with Abelian groups for ¢-classes.

The proof is similar to that of Theorem 1 and will 5e omitted.

iven in the case when X is finite the free semigroups in
Theorems 1 and 2 are infinite. But it is not the case if we
restrict Y-classes to be groups from some subvariety of the
variety of Abelian groups. These varieties are defined by the
‘identities Pl x. Let A denocte the variety of Abelian
groups satisfying. xp+l=:{, The last identity topether with
thé'identities.(l\,(2),(4) defines regular orthocrvptogroups
with 9-classes from AL

Definition 3. Let v,we€U(X). Then Vp,w if and only if
(v) =i(w), £(v) =£(w), e (V)= ea(w) (mod m), for every
aec(v) =c(w). '

Now ve can state the following theorem.

THEOREM 3. U(X)/F)’n is the free regular orthocryptogroup
with ¥ -classes from An. '

Xl .
COROLLARY. If X is finite, then |U(X)/p,| = 2('}1“)(11)2 1,
Proof. The regular band E of idempotents of U(X)/pn is

| .
free and |E|= ﬁ (D:‘!_])(i!)2 (see [2., p. 155]). Every idempotent
2]

e from E is in an ‘¥-class which is the free group on the
subset of X determining the 0 -class of e (Words with the
same content are P-related). This free group has ele-
ments, where Y is the subset under consideration. How the as-
sertion immediately follows.

Bmilarly, using the formula for the number of elements of
.the free band on a finite set X, we can get the number of
elementsof the fres orthocryptogroup on X with ¥-classes from

A,.
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THE TRANSLATIONAL HULL OF A REES MATRIX SEMIGROUP OVER.'A MONOID

Sto) an Bogdanovié

Abstract. We describe the semigroups of all left translations, all
right translations and the translational hull of Rees matrix semigroup
over a monoid.

Let D = Dl be a monoid with group G of units of D and
P be a regular M x I -matrix over G° . Let M°(I,D,M,P) be a set
of elements (i,n,/k.) , where aeD®° (D with gero ndjqined) , le1I,
MM (the elements (i,O,/u) are identified with O ) and operation
is definied by

(i,g,/()(j,b,l)) = (i,ap jb,\)) .
Then M°(I,D,M,P) is a semigroup which we call the Rees matrix semigroup
over D° ., (G.Lallement-M.Petrich:A generializat:ion of the Rees theorem
in semigroups,Acta Sci.Math.30(1969),113-132).

The semigroup J\(S) " for a Rees matrix semigroup over a monoid
D , can be constructed by a device analogous to the wreth product of gro-
ups,(./\(S) is the set of all left translation of S ).

Let X#@ and D be a monoid.Let ¢ and @’ be functions
from subsets of X into D , written on the left,and define the pro-
duct of these two functions by

(e ehHx = (Ex @D
for all x€X for which (¥¢x)(@’kx) is definied,i.e. for all
x & dome N dom ‘€’

If F (X) 1is the semigroug of all partial transformations on X
written on the left,then for ‘qeF(X) and € as before,define ’Cd as
the function

. e x =€ x
for all x€&X for which @(a«x) is defined, i.e. , for all x edomel
such that .\p(x €dom G -
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Definition 1. Let P bea sdbsemigroup of ffx) and D
be a monoid.The left wreath product of P and D , denoted bx PwlD ,
is the set _ \

{("(,ff) : d€P, €: domd ———>D]’
together with the multiplication ,
() (e = (o e

It is easy to see that PwlD .is a groupoid.That this multiplica-
tion is associative will follow from the next theorem.

THEOREM 1. Let S = M°(I,D,M,P) . Then the function £ defined
by fA =(a,€) , (AaelN(8)) , where domd= domf={ie1:z\(i,1,/o
o0} Ai,1, ) = (&1,€1,4) 1if i€domx  is an isomorphism
of W) onto F(I)wlD

Proof. Assume that J\(i,a,/u) # 0 ." Then there exists jelI

such that p..#0 , so
&lt,a00 =000 00 = Tat,am)Uupy,a) # 0.
Hence, #(i,a,m) = (k,b,nx) for some keI , beD and a left
translation does not change the index in M .
Assume that  A(i,1,4) = (3,b k) 0 , A(1,1,0) = (k, e, vyto,
then for some mel , Pum #0 , so (j b,v) = (j, b,ﬂ)(m,p V) =
Ta (41,000 (m,pyr, ) = A[(i,l,/‘)(m,p/‘ wil = ad,1,0) =
(ky,c,V) #0 . Hence, j=k ,b=c , i.e. the first two indices of
?2(i,1,sm) depends only on 1 .
For f& = («,€¢) , 1ie€dome and for any (i,a,s)€S
there exists j €I such that # 0 , and thus
CA(1,a,M) = R [(1 1 /“)(j,plﬁ ,‘«)] = [e,1,)30,p ja,/u =
(Li,e¢1,4)(4,p, r‘j a,m) = (K4, (‘Ci)a,/«.) .

Therefore,

(1) Alt,a,m) = {é'“'(‘“)"(“) Lf 1 €dom o

if i¢dom°(
Let  A,4& e A(S) |, f(&) = (x,%) , £(¥) = («/,¢') . For
X«/$0 ,let 1edom(««’) . Then 1i€dom o', o(1€domx  and
using the existence of j€I such that p , # 0 , we have by (1)
Aol(t,1,u) = AL, €1,m4) = (%'t (@q/1)(€'1),p0) =
(da(li,(g“l.ql)i,/«) . If do’= @ , then ®Ad'=0 , since otherwise
there would exist 1€1I such that  A4'(1,1,4) #0  and the above
calculation would imply that olot’$ @ . Therefore f 1s a homomor-
phism.It follows from (1) that f& = f4&' implies A= | g0

that f is one-to-one.
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Let (K,%¢)€ QD'(I)wID and define A by (1) .If 1ie€doma
and p‘“ #0 , then
[ (d,a,m)](3,b,0) = (X1,(€1)a,x)(§,b,0) = (£1,(€1)a
A1,ap b, 2) = A [(1,a,m)(3,b,0)]
or both B\(i,a,(q)] (3,b,v) and -A[(i,n,p«)(j,b,u’] are zero.
Hence, <« €J/(S) and by (1) f(A) = ({,%¢) , 80 f 1is onto.
Therefore f 1is an isomorphism of JALs) onto F(1)wiD
Let X be a nonempty set and D a monoid.For the functions ¥

, define

%Jb,u) =

and ¥/ , written on the right,from subsets of X into D
their product by

x(Ver!) = (x¥)(x¥)
for ;11 x € dom'¥ /1 domy~/

If }"(X) is the semigroup of all partial transformations on X
written on the right,then for /bé-T(IX) and ¥ as before, define ﬁy«
as function

x P = xp)¥
for all xXE dom/& such that XA € dom ‘¥

Definition 2. Let D be a monoid and Q a subsemigroup of
?I(X) . Then the right wreath product of D and Q , denoted by
DwrQ , 1s the set
{(‘F,/b) : ¥ : domg—» D, /3le

together with multiplication

(.2 WA = (Ve Bl anh)

The proofs of the naxt theorems are omitted,and will be given in
detail elsewhere. .

THEOREM 2. Let S = M°(I,D,M,P) . Then the function g defined
by  €g=(¥,B) , ($cB(S) , where P(S) is the set of all right
translations of S ) ,where dom,3 = dom\ = {4eM : (i,1,4) #0 } R
(i,l,u) 8 = (i,,«‘f’,/«/s) if  edom,s ' is an isomorphism of P(S)
onto Dwr F ()

The translational hull of S is denoted by ~s). -

THEOREM 3. = Let §'=M°(1,D,M,P) and let f&= («,C) and

S &= (¥,p) . Then (A,8)€ M2(s) if and only if the following -
conditions hold:For any i€l ,ke€M ,
(i) i€edomek P a(ex 1) #0 iff kedomg}s, P(,«/&)i #0

(11) y(eD) = (¥, AE tedomd, () FO

ICE! PICE!
Further,for (4,¢) € —U(S) , we have A =0 iff £ =0.
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For («,¢) and (¥,s) asin Definition 1. and 2. , for the sake
of convenience,we let ‘
rank(e(l,‘e) = rank X , rank(¥,s) = rankp .
The semigroup of all bitranslations of § is denoted by TT(S) .
THEOREM 4. Let S = M°(I,D,M,P) . For O # («,9) e _D(8),
we have (4A,9)€ T1(8) if and only if rank f& = rank fg = 1 .
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BI - AND QUASI-IDEAL SEMIGROUPS WITH n-PROPERTY

S.Bogdanovi¢, P.KrZovski, P.Proti¢, B.Trpenovski

We give a structure description for each semigroup belonging to
the classes in the title which we define in a similar way as itwasdone in
/3/ for left-ideal semigroups with n-property.

1. SOME PRELIMINARY RESULTS

Let S be a semigroup. We shall denote by Es the set of idempotents
of S.

THEOREM 1. A semigroup S is periodic and the mapping :S - Eg» de-
fined by <P(x)-e where ey is the idempotent in <x>, is a homomorph1sm 1ff
Eﬂgﬁy a, b\_s “nen M exists reM such that (ab)'=(a"b")" and Esz =E,.

Proof.Let S be a periodic semigroup and ¢ a homomorphism,where ¢ is

defined as above. Then ker®? 1is a congruence with the congruence classes

={xes|(neN) x"=e], ecE

which are power joined semigroups. Hence, according-to Theorem 1 /7/, it
follows that for every a,beS, n€N there exists r&N such that (ab)r—(a"b")r
Furthermore since 9 is an epimorphism, we have that S/ker$= E which impli-
es that E E

Converse]y, for every a,b&S, nE N let there be on réN such that
(ab)r=(anb")r; then a2r=a2"r and S is periodic. If we put

def
apb == (3neN) a"=b"

then p Will turn out to be a band congruence and the congruence classes
mod ¢ will be periodic unipotent power joined semigroups (/7/ Theorem 1),
and then the mapping ¢ defined by ‘P(x)=ex will be an epimorphism from S
onto Es' :
CORQLLARY. 1. A semigroup S is periodic, Eg a rectangular band
and ©:S Eg (‘P(x) ey ) a homomorph1sm iff for every a b,cES, nEN there
exists an rc:N .such that (abc)r-(ac)nr Es=E

Proof Follows from-(/7/ Theorem 3) and (/7/,Theorem 1).

Let S‘ be a semigroup with zero 0 we call S a nil-semigroup iff
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for every aES there is an neN such that a"=0.

LEMMA 1. A semigroup S is a _mil-semigroup iff for every a,b=S the-
re is an neN such that a -bnﬂ ‘-

Proof. If S is a nil-semigroup then the statement in the Lemma 1 is
obvious. '

Conversely, for every a,b&S let there be an n\_N such that
Then for a=b we have that a -a"ﬂ

thermore, from an-a"” it follows that a" is the zero in <a> . Let us show

an=p"t1 .

which implies that a" is an idempotent; fur-

that a" is zero in S; let b&S is an arbitrary element. From the above discus-
sion it follows that for same k&N, bk is zero in <b> . Now, there exists
an mEN such that (a")m=(bk)m+] and, since a",bk are idempotents we have that
a“=bk which means that a"is zero for b. So, S has a zero and is a nil-semigroup.
THEOREM 2. A semigroup S is a band of nil-semigroups iff the following
properties are satisfied:
1. (vxes)(3reN) x
2. (¥x,yes) (neN)(areN) (xy)"=(x"y")".
Proof. Let S be a band Y of nil-semigroups S,, * €Y. Then according to
Lemma 1 we have that 1 is satisfied. Since every nil-semigroup is a power joi-
ned semigroup, if follows that 2 is satisfied too /7, Th.1/.
Conversely, let the conditions 1 and 2 be satisfied. Then S will be
a band Y of periodic power joined semigroups S,, &Y /7, Th.1/. So, for
a,b €Sy, a€Y, we have that a Np", b*=b%*1 for some n ,ken and,
aK=phk_pnk=kpk _ pnk+1

+
" 1 ,

which, according to Lemma 1, implies that Sy is a nil-semigroup.

Let E be a band, P a partial semigroup, EnP=@, and 9:P - E a parti-
al homomorphism. Let us extend ¢ to a mapping ¥:S=EUP - E by ¥(x)=%(x) if
xeP andy(e)=e for all ecE. Let us define an operation on S by

{ xy as in P ,if x,yeP and xy is defined in P
v (xW(y),otherwise

Then S will become a semigroup with E an ideal and y an epimorphism. In what
follows we shall denote the semigroup S constructed above by S=(E,P,¢).
A partial semigroup P is said to be a power breaking partial semi-
group iff for every xEP there exists a kEN such that x~ is not defined
in P.
THEOREM 3. The following conditions on a semigroup S are equivalent:
(i) s is periodic, ¢:S - Es (9(x)= e, ) is a homomorphism and (Vx €S)
(veec Es) xe, ex€E | Es
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(11) (Va,bES)(¥nEN)(ArcN) (ab)"=(a"b™)" and (Vx €S)(VeE E) xe,ex€E;

(iii) S = (E,P,?) where P is a power breaking partial semigroup.

Proof. From Theorem 1 it follows that (i) = (ii). If (ii) is true,
from the proof of Theorem 1 it follows that S is periodic and, since xe,ex ees
for every xCS, e€ ES, we have that Es is an ideal in S. So, if we put P=S\E,
we will have that P is a partial power breaking semigroup. According to Theo-
rem 1, the mapping ‘Plp(‘P(x)=ex) will be a partial homomorphism from P to E

suchthat ¢(e) = for all e€E,. So, we have that S=(E,P,9) and we have proved
that (ii) -» (iii). It is obvious that (iii) = (i).

2. BI-IDEAL SEMIGROUPS WITH n-PROPERTIES

A subsemigroup B of a semigroup S is said to be a bi-ideal iff B SB cB.
The principal bi-ideal B[a ] of a semigroup S generated by a €S is B[al=a uazuaSa.

A semigroup S is said to be a c-bi-ideal semigroup iff every cyclic
subsemigroup <a> of S is a bi-ideal of S.

THEOREM 4. The following conditions on a semigroup S are equivalent:

(i) S_is a c-bi-ideal semigroup;

(ii) (va€S) aSs c <a>;

(i11) (va€sS) B[a] = <a>.

Proof. From aSa c<a>S<a> c-<@a> it follows that (i) = (ii). It is
obvious that (ii) = (iii). Let (1:1’1') be satisfied and 1let <b> be a cyclic
subsemigroup of S. Then for b1,b‘]€ <b> we have that
i-1 1‘-13 b bj-] -

bisbI=b'~Tbsbbd™! ¢ b

b T<b>p9 e <b>,

and so, <b>S<b>c <b> which means that S is a c-bi-ideal semigroup.
_ Let us recall that S is a bi-ideal semigroup iff every subsemigroup
of S is a bi-ideal in S ([2]) and that the biideal B[C] generated by the non-
empty subset C of the semigroup S is B{C]= C uCzu CSC. In a simmilar way as
in the case of Theorem 4, the fqllowing can be proved:

‘ THEOREM 5. The foHowing conditions on a semigroup S are equivalent:

(ii) csc C(C> for every non- empty subset C of S;
(iii) BlC]c<C>.
A part1a1 subsemigroup R of a partial semigroup P is a b1 ideal in
P iffr 1Pro is .defined in P sy sly ZR, p<P implies r]prch If every partial
subsemigroup of'x\a partial semigroup P is a bi-ideal in P, we call P a parti-

—

al bi-ideal semigroup.
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THEOREM 6 [2]. A semigroup S is a bi-ideal semigroup iff SZ(E,P,9)

where E is a rectangular band and P a partial power breaking bi-ideal semi-

Where £ is a anc v apar LY

group.

We call partial semigroup P a partial c-bi-ideal semig;‘pup iff whe-
never apa is defined in P, apa €<a > where <a > consists of a]T:powers a"
which are defined in P. In a.similar way as Theorem 6, the following can be
proved: '

THEOREM 7. A semigroup S is a c-bi-ideal semigroup iff S=(E,P, 9) whe-
re E is a rectangular band and P a partial power breaking c- bi ideal semigroup.

It is obvious that the class of c-bi-ideal semigroups is more gene-
ral than the class of bi-ideal semigroup.

Let S be a semigroup and Q a subset of S. We call S a

(1) B0 - semigroup iff Q €5, Q™1 cq »0sQ < 0
co=os"oc 0;
(i11) B) - semigroup iff Q S, Q% Q= 0s""'Q < Q.

(1) 87 - semigroup -iff q <5, Q"

Observe that for n=1 ﬁg -, /32 - semigroups are simply biideal semigroups. It
is easily seen that:

LEMMA 2. Every subsem1group and every_homomorphic_image of gﬁ
,6']‘ - semigroup_is also aﬁo , ﬂ1 . Bz-semgroup, respectively.

LEMMA 3. (i) Every Bo-semgroup is a @ - semigroup;

(i1) every ﬁ- semigroup is a [-32- emigroup;

(iii) everyﬁ]-semgr‘oums a ,62 - semigroup,
where g- semigroup stands for bi-ideal semigroup.

LEMMA 4. Let S be a semigr‘oup If S is a g-p -sem1group then aSa c
c<a> for every aEs; if Sis a ﬂ] R ﬁz- emigroup ther then a sn ac<a> for
every a€S,

T LEMMA 5. Let S be a /92-, ﬁ?-semigroup. Thﬂ:

(i) S is periodic; and for every a €S the periodic part Haif <a>

_ig_trwm] subgroup of S;

XES, exe=e;
(i) if xyx=x_for some y =S, then x€E,
LEMMA 6. (i) If S is a p-semigroup, then |[<a>| <5 for_every a€s;
(1) if S is a BN-semigroup, then | <a> | <3 for every a€S;
(iii) if s is aﬁl-,ﬁ'z'-semigroup, then | <a>|<n+3 for every a S.
Proof. Let “for example, S be a ﬁ?-_seﬁgroup, aEs and 1et < a>
{a,a 1'a2n+|’ ..] be the n- subsemigroup of S generated by a. Since

a™%3.0%.a" 2 ae< a>nS"']< a> c<a>,
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we have that a"+2— kn+1 for some k€ N, which means that the index ra of a is

< n+2 and, since the periodic part of <a > consists of one e]ement (Lemma 5
(1)), we have that | <a>| <n+3.

Let P'be a partial semigroup. Then P is said to be a: (i) ﬂ‘-semig-
roup iff for every Q € P which posseses the property qoq]...qanQ, qjeo
whenewer q 0979, is defined in P we have that, if q]pq2 is defined in P,
then qi‘pq €qQ, 97,93 €Q, pEP; (i1) ﬁrsemigroup iff for every Q € P which
possesses the property mentioned in (i), q]p]pz...p’Hq2 defined in P implies
4jPP2--+P,195€Q; (iii) ﬁz-semgroup iff for every Q € P such that whenever
q]q2 is defined in P, if 4,9 £Q then the following is true: if q1p]p2...
Pp-195 is defined in P then ajPPg-++-P_195 €0, 9793 €Q, p €P.

THEOREM 8. A semigroup S isa ﬁ"-semgroup iff s = (P E, ?)where E
is a rectangular band and P a part1a1 power breakmg /3 -sem1group.,

Proof. Let S be a [:? -semigroup. From'Lemma 5 1t follows that S=Eu P
(P=S\E) where E is a rectangular band and ideal in S, and P is a power brea-
king partial semigroup. Let Q c P possess the property 9597+, €Q whenever
9597 ++-q, is defined in P, ;G Q and let Q*=Q UE. Then Q*n+l < Q*; since S
is a ﬁ -semigroup, it fo]lows that Q*sQ* c Q*. If q1 »9% €Q, q]pq§ € E, we
conc]ude that qlpqzeQ which proves that P is a partial ﬁ"-semlgroup. Finally,
if we put ‘P(x)—e s €y is the idempotent in <x >, we can easﬂy show that
P:P =+ E is a homomor'ph1sm (as in [2) and by Theorem 3 we have that S=(E,P, 9) .

Conversely, let S—(E P, ¢)=T with E,P as stated in the Theorem and
let BCT, B"H C B. Then B*=BNc posseses the property b b]...b €B* whene-
ver b0b1...bn is defined in P, so, if b,c€B*, p €P, then bpc €B* c B. Let
for b,c €B, teT, btcc E. If bc & B*, then b.c is not defined in P and,

btc=9(b)P(t)P(c)=%(b)P(c)=[ $(b)1"9(c)=P(b") ¥(c)=b"c €B.

If bc€P then (bc)ke E since P is a power breaking partial semigroup. Let
(bc)k=e, then

btc= ‘P(b)‘P(t)‘?(c)=‘((b)‘P(c)‘=(P(bc)=‘P[(bc)k];e.
On the other hand we have that

e=p(b)F)c)=9(b"" ¢) = b¥cep™T 3

/
if bk"EE. Now, from bc €P it follows that b €P and there exists an m €N such

that b™ is not defined in P; then for k€N, kn)in we have that bk"e E since E
'is an ideal in T. So, we have proved that btc€ B for every b,c €B, t €T, which
compietes the proof.

In 'a similar way the following can be proved:



32

THEOREM 9. A semigroup S is a /:'.I-sem1group iff S = (E,P, ﬁ) _where E
is a rectangular band, P_a partial power breakmg ,8] sem1group

THEOREM 10. A semigroup S is a ,82- emigroup iff S = (E,P, *{) where E
is a rectangular_band and P_a partial power breaking Bz-semgroup

3. QUASTIDEAL SEMIGROUPS WITH n-PROPERTY

In a similar way as in part 2 we can introduce the following classes
of semigroups: We call a semigroup S:
(i) qg—semigroup iff Q ¢S, Qnﬂ, cQ =QSNSQ <Q;
Y
(i1) g-semigroup iff Q €S, Q% CQ =QS N3 C j
(ii1) q?-semigroup iff Q <5, QnH cQ =s"ns"g <Q;
(iv) q2-sem1group iff Q <5, Q cQ= s"n s"g <Q

We are not going to reformulate all the results for the semigroups de-
fined above; these results are similar to those in 2. We shall do this only
for some of these semigraups, including the theorems which give a structure
description for each of these semigroups.

LEMMA 7. Let S be a semigroup.

(i) If S is a q semigroup, then |<a>|<3 for every a =S;

(i1) if S isa q - em1grou »_then [<a><2 for every a€S;

(iii) 1f Sisa q] ,qz-semgroup, then | \a>|/n+2 for every a€S.

THEOREM 11. A semigroup § is a qo-sem1group1_ff S = (E,P,9) where E
is a rectangular band, P a nonempty set and 9:P - E a mapping.

Proof. Since every quasiidea] of a semigroup is a bi-ideal tool, it
follows that a q -sem1group isa A" —sem1group too. So we can use all the pro-
perties which a ﬁ -sem1group possesses Let S be a q -semigroup, x,y< S and
let Q={x,y, x’ey’ex ey,e exi We shall show that Q"+ € Q. For n=2 we have
the following possibilities: (i) if in g=abc all of a,b and c are idempotents,
then (E is a rectangular band and ex,xe €E by Lemma 5) g=e x&y? eyex x*8ys
q-ac-exey if a=e,, c=e . (ii) if one of a,b and ¢ is idempotent, for example
if b is idempotent, then ab and bc will be idempotents also and g=abc=a.bcb=
ab.cbc=abe=abab. ec-eabec-eaec and again qeQ; (iii) since x2=ex, y2=ey (Lemma
7 (ii)), the product g=abc doesn't contain any idempotent in the following two
cases: g=xyx=e, and q-yxy-ey since from xyx€ < x> if follows that xyx=x (and
then x 1s 1dempotent) if xyx= =e, and similar for yxy. So, if n=2 we have proved
that Q CQ Now, let n>2; then according to previous considerations, in any

product of n+l elements from Q, the product of any three elements, as we have
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shown above, will be equal to an idempotent and, accordingly, in a similar
way we can prove that all the product is equal to an idempotent which belongs
to Q. So, Q will be an n-subsemigroup of S, i.e. Q"+] C Q. From this it follows
that Q is a quasiideal in S which implies that Q is a subsemigroup of S; we
have proved that xy =Q. If xy=y then y=xy=x2y=exy=exy=exey which is impossible
if we take x and y not to be idempotents. Similarly for xy=x. So, xy must be
an idempotent:

Xy=xyx.y = e ,y=e .ye y = ee,

Now, if we put P=S\ E, we have that for every x,y=P, xyEE. Further
more, with ‘P(x)=ex, X =P and e, the idempotent in <x> we can define a mapping
from P to E which can be considered as a partial homomorphism from P to E and
Theorem 3 concludes the proof.

Conversely, let Q€ T = EUP where E is a rectangular band, P a set
such that EnP=p and let ¢:P = E be a mapping, and let Q"” < Q. If x€QTnTQ,
i.e. X=Q1X1=X5055 Qg0 =Q, x],xze T, we have that xZ E and, according to the
definition of operation in (E,P,%), we have that :

x=x2=q2x2x]q]= ‘F(qz)‘P(xz)‘P(x])‘F(C.])=<F(q2)9(q])=‘P(q’2‘)‘9(q1) =
n
=%(q59,) = 4z, €Q
which shows that Q is a qua;i-idea] in T.
Let P be a partial semigroup. Then P is said to be a: (i) g-semigroup
iff for every Q € P which posseses the property q]qZEQ whenever 919, is defi-

ned in P, 9 ’qZCQ’ we have that, if pq is defmed in P, p€P, g€Q and, for
some p'€P, q'€ Q pg=q'p'=x, then x€ Q; (ii) q]-sem1group iff for every Q € P

which posseses the property q 0d7-+ anQ whenever q LI is defined in P,
a3 €Q we have that, if P1P2-+-P,d is defined in P for Pj eP qu and for so-
me p1e P, q 'eq, PyPp--+Ppa= q'pip2 p! = x then x&Q; (iii) qz-semgroup iff

for every Q € P which posseses the property q]ng_Q, 4y59€ Q, whenever 9492
is defined in P we have that if P1Po-+-Pyd is .defined in P, pieP, qeqQ and
for some p%eP, q'éq, p]pz...pnqﬁq'pipé...p'{' = x then x&Q.

Using a similar procedure as for Theorem 8, and using also Theorem 9
and 10, the fo]]owing‘can be proved:

THEOREM 12. A semigroup S is a q-semigroup iff S = (E,P,¥) where E is
a rectangular band and Pa part1a1 power breaking g- sem1group

THEOREM 13. A semigroup S is a q]-sem1group 1ff S = (E,P,9) _where E
is a rectangu]ar band and P a partial power breaking q1-sem1group
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THEOREM 14. A semigroup S 15 & q2- em1groug 1ff S = (E, P ?) where E
is a rectanqular gnd_@ng P_a partial -power breaking q2- em1group
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(m,n)-1DEAL SEMIGROUPS

S.BOGDANOVIC and S. MILIC

In this paper the structural theorem for (m,n)-Ideal semigroups Is
given and in this way the results of [2,5,6,7,9,10] are generalized.

A subsemigroup A of a semigroup S Is an (m,n)-ideal of
s if A"SA"cA, where m,n€N U0}, (A®s =sA®=S), [3]. S is an
(m,n)-ideal semigroup if every subsemigroup of S is an (m,n) -
ideal of s, [5]. \

A subset R of a partial semigroup Q is a part‘al subse-
migroup of Q if x,y€R, xy€Q implies xy€ R. A partial subsemi-
group R of a partial semigroup Q is an (m,n)-ideal of Q if RmQRn;.R. If
all partial subsemigroups of a partial semigroup Q are (m,n)-ideals in Q,
then we call Q a partial (m,n)-ideal semigroup. A partial semigroup Q is
power breaking if for every a €Q there exists k €N such that ak £Q.

For nondefinied notions we refer to [ 1,8].

CONSTRUCTION. Let E=1xJ be a rectangular band and let Q be a
partial (m,n)-ideal (m,n_>_1) power breaking semigroup such that ENQ = #.
Let g : p+gp be a mapping from Q into the semigroup T(I) of all
mappings from | into itself and n: p‘*ﬂp be a mapping from Q into T(J).
For all p,qeQ let:
i == = =
() pael=>g,=E8, 2 npq = Myl
ii => = const. = const.
(it)  pq ¢‘_'Q EEp = const., nong

Let us define a multiplication on S=EUQ with:

0 (L) k) = (i,0)

—
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) p(i,)) )

3) (L= (i,jnp)
(4) pg=reQ=5 pg=res
(5) pq £Q => pq = (iEqu.jnpnq)-

Then S with this multiplication is a semigroup, [4,5].

A subsunlgroup B of S is of the form B=EBUQB’ where Ep =1 x Jg
(IBEI ; JBSJ) is a rectangular band and QB is a partial subsemigroup of
Q. ’

If for p,qeQy, peQI;, -qeo; the following conditions hold:

(1) gp:l-»lB. nq?J-rJB‘

“then a semigroup which is constructed in this way will be denoted by
"('pJ)QpE’n) * »
Let us quote some of the results from [5] .

LEMMA. Let S be an (m,n)~ideal semigroup. Then

1° s Is periodic;

2° The set E of all idempotents of S Is a rectangular band and it

ls an idesp of §;
3° S<E _l_s__a_.“partlal power breaking semigroup;

4° Any subsemigroup of S is an (m,n)-ideal subsemigroup of S.

THEQREM. S Is an (m,n)-I1deal (m,n>1) semigroup If and only if §
Is Isamorphic to some M(I,J,Q,E,n).

Proof. Let S be an (m,n)-ideal semigroup. Then by Lemma and by
Theorem 1.1. [4] (see also Theorem 1.1. [5]) we have that S Is Isomorphic
to a semigroup from the above construction with (1), (11) and (1)-(5). We
shall show that the condition (iii) holds. Assume that B Iis a subsemigroup
of S. Then B-IaxJ'uQ' (lagl; JBEJ)' For p,quB, pso';, qgo;; and
arbitrary (1,)) ¢! xJ we have that

p(1,))q eBmsB "=

p(1,J)geE = I xJ
(since E Is an ideal of S), so

p(1,J)qeBNE = Ey = IgxJg -
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EP:I+IB.. nq:J->JB

so the condition (iii) holds.

Conversely, let S=M(1,J,Q,E,n) and let B be a subsemigroup of §S.

Then B'EBUQB' where Eg =1y xJ, (|B‘_=.I; JBEJ) Is a rectangular band
and QB Is a partial subsemigroup of Q.

(6)

(7)

It Is clear that

m..n n Mo
8"sB" = E;SE, U “:555 UEgSQg U QgsQg

E, Is a bi-ideal of E = I xJ, so

2.2
EgSEg = EgSE; SE,ESEE, cEEE, cEy .

Consider first the term d;SEB. Assume that bloz, ses, ceEB..Then

bsceE. Let c=(i,]) e lgxJg. We have the following cases:

(8.1)

bs gE, beQ_B , SBE .

Then sc=(1",J) and by (iil) we have bsc = b(i°,j) = (I‘Eb,J) eEB .

(8.2)

bs eE, bgE, seE.

Then s= (k,2) and

(8.3)

bsc = (kEb,Z)C= (kEbvl)(i 9j) = (kEb’j) eEB .

bs €E, bgE, sgE.

Then sc = (igs,j) and

(8.4)
(8)

9)

| Ch(: Y = (i .
bsc-b(n‘;s,_j) (IE;SEb,J) eEg
bs €E, beE. Similarly to the case (7).
Since there are no other possibilities we co.nclude:
m. '
QBSEBEEBEB .
Similarly we have that
n
EBSQB'EB'
. n m n
Consider the tem QgSQp and let beQy, s €S, ceQg . If bsceq,

bsc € Qg“qqg =0 =B
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since Q is a partial (m,n)-ideal semigroup. If bsc€E, then we have the

following cases:

(10.1) b(-:'EB . Similarly to the case (9).

(10.2) beE seE, ceE

B’ B -

Then s=(k,8), c=(i,}) and
bsc = (kg ,2)c = (K, ,j) €E, .
(10.3) bgE, seE, ceQy .
Then s = (k,2) and
bsc = (kg ,)c = (kg ,an ) € 1o xJ, = E

(10.4) DbgE, sgE, ce£B . See (8.3).

(10.5) bfE, sf#E, c#E, bs€E.

We may take that bs = (IEE ,jnn.) and so
bsc = (iEE ,jnn.n ) eEy .
(10.6) bgE, sgE, cgE, bsgE.
then ,
bsc = (ig £, »Jng n.) = (g EE ,Jn, n.)eEy .
Since there are no other possibilities, we conclude
(10) Qgseg = 8.
By (6),(7),(8),(9) and (10) we have B"sB"=B, i.e. S is an (m,n)-

ideal semigroup.
In the special case, If m,n>1, then we have the following:

THEOREM. S Is a (0,n)-ideal ((m,0)-ideal) semigroup if and only

if s Is Isomorphic to some M(1,J,Q,E,n), where |I| =1 (and Q Is a partial
(0,n)-1deal_semigroup (|J| =1 and Q is a partial (m,0)-ideal semigroup).

1§ S is a (0,0)-ideal semigroup, then S is trivial.
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EQUATIONAL REFORMULATION OF THE HEYTING
PIRST-ORDER PREDICATE CALCULUS

Branislav R. Bori&ié

According to the paper[4] of A. G. Dragalin, the uniform
algebras (abbreviated UA) - algebraic analogue of the Heyting
first-order predicate calculus I - are a special case of
pseudo-Boolean algebras (abbreviated PBA) (v. Eﬂ), where we
have two additional unary operations corresponding to the
universal and existential quantifiers and the explicit trea-
tment of substitution. In other words, UA are algebraic str-
uctures similar to cylindric (v. [6]) and poliadic (v. [5])
algebras., At the same time UA are a'generalizatidn of the
notion of functional Brouwerian algebras defined in Eﬂ.

On the other hand, a possibility of assignment of an
equational formal theory, denoted by T(~)}, to any formal
theory T, is given in the paper ET] of S. B. Presié. The the-
ory T(~) is defined axiomatically in such a way that the sy-
mbol ~ is-a formalization of the equiconsequence (or inter-
deducibility) relation of T (v. Theorem 1, fﬂ). If the con-
ditions (1) AABlgA; AABlyB and A,Bly-AAB, and (i1) AlyB

ifs }T-A4*B,'are satisfied for some connectives A and —>

vwhich are definable in T, then the formal theory T(~), which
we call an equational reformulation of T, is of particular
importance for the algebraic model theory.

In this paper we will point at the connections between
uniform algebras and equational réformulation I(~) of the
Heyting first-order predicate calculus I (formulated as in
[1]:p. 430). :

In a similar way as in [ﬁl where the cylindric algebra
of formulas is introduced, we can consider the uniform alge-—
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bra of formulas: UA(For)=(For, & , Ind, Sub), where vor is the
set of the first-order formulas, Ind - the set of individual
constants of the first-order language and Sub - substitution
of terms for the variables in elements of For.

THEOREM. |froy-A~B iff A®XB in UA(For).

Por the propositional part of the Heyting calculus, a
similar assertion has been given in [2] , and leaning on it we
will consider only those axioms which are related to the qua=~
ntifiers. ' '

LEMMA 1. Let A,B€Por and 1x(def)A—+A. Then the condi-
tions

(1) VxAA VxB<Vx(AAB)
(2) Vx(A-=»B)=> (VxA->VxB)=x1

- (3) Vx(A-»B)—=>(Ixa>IxB) =1

"'(4) AS¥xAxl (x is not free in A)
(5) 3xa»A=~1 (x is not free in A)

(6} Vxa—>a(x/t)x=1 (t is amy term free for x in A)
(7) A(x/t)=>3IxA=1 (t is any term free for x in A)
(8) LAVx1lx1

are satisfied in UA(For).
Proof. (1) VxaAV¥xB{Vxa (provable in PBA)
Vxa < A(x/y) oy {4], 2.1.7))
Herefrom, by transitivity, VxA A VxB € 4(x/y). Similarly: VxAAVxB$
€ B(x/y), and VxaA WxB <A(x/y) AB(x/y) < (AAB)(x/y) (by [4],
2.1.6) and 2.1.3)). From YxAAVxB<(4AB)(x/y) follows ¥xAAVxBg
£ Wx(AAB) (by [4], 2.1.7)).
(2)¥x(A-»B) AV¥xAS ¥x((a=>B)A &) (by (1))
& (A(x/y)—=B(x/y)) A a(x/y) (vy [4], 2.1.7) and b), d)
€B(x/y) (in FBA) ‘ p. 188)
By [4], 2.1.7), we have Yx(A-»B)A ¥xa¢VxB, 1. e.
Vx(A-+B)— (VxA—VYxB) 21 (in PBA).
(3) ((A—*B)AA) (x/y) €B(x/y)$3xB (by [4], 2.1.8) and PBa)
(A—»B)(x/y) £ A(x/y)=>3xB (in PBA)
Yx(A—B) g a(x/y)»3xB (vy [4], 2.1.7))
A(x/y)$ ¥x(A->B)»>3IxB (in PBi)
A(x/y) ¢ IAEVx(a>B)»3xB (by [4], 2.1.8))
i. e. Yx(A—B)—>(IxA-»IxB)= 1 (in P3A).

[a]
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(4) and (5) are immediate consequences of the conditions
7) and 8) of the definition 2.1. W] of UA.

(6) and (7) are given in [4] as Lemma 2.2.6.

(8) follows from the condition 7) of the def. 2.1. [4]
too

Remark. In general, the conditions (1)-(8) of the LEMMA 1
are satisfied in any UA. .

LEMMA 2, Let A and B be the first-order formulas and y a
variable which does not occur in the above formulas. Then:

(1) 4f <y B~A(x/y)& 3B, then by B~Vxad B,

(2) 12 oy Mx/y) ~BAA(x/Y), then frroyIxa~B& xas
(3) bery YA ~a(x/y)& Vahg

(4) "I_('_V_T A(x/y) ~AxA& A(x/y) .

Proof. Having in mind that I(~) is the equational refo-
rmulation of I, it is sufficient to prove that |—B->VnAB
follows from B->A(x/y)A B, and|-IxA—-BA3xA follows from
I—-A(x/y)—)BAA(x/y) (in I) (v. [7], Theorem 3). For insta-
nce, we will demonstrate (1). Pirstly, by induction on the
length of the proof for A in I, we can show that the rule

ol is perxﬁissible in I. Then from }B—*A(x/y)A B we

FVxa
have FVYy(B—A(x/y)AB), i. e. FVyB->Yy(A(x/y)AB) (by axi-
om (9.2) [1} and modus ponens). Further, by axiom (9.4) [1]
we have FB-Vy(A(x/y)AB), i. e. | B>Vya(x/y)AB (by
axiom YyB-=B and the known fact that FVx(C(x) AD(x)) <>
YxC(x)A ¥xD(x) in I). _
Similarly, (2), (3) and (4) are immediate consequences
of Theorem 3 [7] and known facts about 1
Note that the conditions [(1) and (3)] and [(2) and (4)_]
" are equivalent to the conditions 7) and 8) of the definitiom
of UA [4] » respectively. The conditions 9)-17) of this defi-
nition are well-known facts which are reélated to the substi-
tution of variables in the first-order language, and hence in
the theory I(~).
The above theorem follows immediately from. lemn” 1 and 2,
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ON SOME PROPERTIES OF RINGS IN WHICH x™=x HOLDS

Blagoje Cerovié

In this paper we shall discuss the class of rings \%n‘,

n>1, with the property that for every R€E "R’n
N x& R(x"=x)
holds.

According to the theorem of N.Jacobsoﬁ, rings from &'n
are commutative and regular since, for every x €R we have
@ 2x=x for all n>2, and xxx=x for n=2,

Example O.1. The ring Z6 and the fields 22 and Z3 all
belongs to &5 while the field GF(4) belongs to the classy;q_.

Example 6.2. For every set S the Boolean ring
(P(8),+,+) belongs to SZ,n for all n>1. If RE @,n and if P(S)
is the Boolean ring then the ring of the form R XP(S) belongs
to &'n‘ ‘

The following two lemmag were proved in fl]

_ Lemma 0.1.([1]). If ReQ, then for all x€R, (27-2)x=0.

Lemma 0.2.([11). If RE&n is an integral domain then R

is a field.

1. We shall prove that the ring  from the class fR/n does not
have nonze‘"ronilpotent ideals, i.e. that the clalss{R,n is the

subclass of! the class of semisimple rings.
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,‘ Lemma 1.1. Every ideal ideal of a ring Ré& 1dempotent. .
: Proof. If n=2 then I2=I for every ideal ICR. Ii‘ n>2
then for all x&€I we have x lGI and so x=x" xGI , 1.6€4
ICT?. Since I°CI we have I°=I. ' ‘
Proposition-1.1. Every __g from & s semisimple.
Proof. Let I be the nllptent ideal of a ring RG&H, i.e.
‘the ideal- such that f6r~ some m, 1™-0. According. to the
previous.lemmia IE=I end-so I"=I. This means that if I is nilpo-
. tent ideal 'of R then I=0, i.e. that. R does not have nonzero

nilpotent ideals, or that R is semisimple.-\

2. In this chapter we shall inveétigate some properties of

the idempotents of the rings from &n'

n-1 i

Lemma 2.1. If ReR  then for every x€R, x is idempo-

tent.

Proof. If n=2 then R is a Boolean ring so that lemma tri-
vially holds. If n> 2 then we have
f-1lmo-1_.2n-2_ .n n-2_, n-1 ,

i.e. x® 1 ig an idempotent of R.-|

The notion offorthogonal idempotents, i.e. the idempotemts

e, and ea,different from zero, for which e1e2=0 holds, will

be important in our further investigations. For example, using
];rthogona-l idempotents we can give a necessaryand sufficient

condition for the rings with unit from the class &’n that are

fields.

Proposition 2.1. A ring with unit ReR  is a field if
‘epd only if it has ggorthogona idempotents.
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Proof. If R is a ring without orthogonal idempotents

then R is a ring without zero divisors. To see this assume
that for some x,y R that are not zero we have xy=0. In that
case xn'lyn'1=0 and x®"140 and yn'1=0, i.e. X1 and yn-l
are orthogonal idémpotents of R which is the contradiction.
Trivially, if R is a field then it has no orthogonal idempo-
tents.‘+

Definition 2.1. A set E of pairwise orthogonal idempo-

tents of a ring R is an m-set if there is no idempbtent -ele-
ment of R E which is orthogonal to all elements from E.

Lemma 2.2, If RER is a nonzero ring with unit then R

Proof. Let Reﬂbn be a nonzero ring with unit which is

not a field. According to the Lemma 2.1., for every x R that

n-1

is not zero, X is an idempotent. The elements of the form

l-xn-l are not zero since in that case we would have for all

n-1

xER, if x#0 and xy=0 then x  ~y=0, and so y=0, which means

that R is without zero divisors, or that R is a field.

From

-1.2 -1 -1\2 n-1
(;-xn ) =12+ (xBTH)C=1-x R

n-1

we see that the element 1-x is idempotent which with

xn—l(l_xn-l)=xn—1_(xn-1)2=o

means that the idempotents xn_l and l--xn'1 are orthogqna1.4

idempotents of a ring R€XR, and Io={x€:R: xe=0, eeE}‘. Then E
is an m-set if and only if I =O.

Proof. Assume that E is an m-set and that Ioﬁo,then for
- nonzero ei‘gments x€& Io we have xn_leIo and :gn-l;éo, (if not,it

would be x=0). For all e €E we have that 2 Llse, since if it ie
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not so we would have that for some e€E, x2-1

=e’ which implies

n-1 .

n-1, _xn=2 is an idempotenﬁ which

that e=ee=x xe=0. Since x

is not in E and for all e€E, x2-1

e=0 we have that E \is not
an m-set whiqh is a contradiction. So Io=0. o

If I°=O and eeE an idempotent orthogonal to every other
idempotent from E then eeIo, i.e. e=0 and so E is an m-sét.‘}

If €1y-+1€g are pairwise orthogonal idempotents of an ar-

s
bitrary ring R then R is the direct summ of the ideal Io and
the ideals Rek,'k=l,._.,s. In case R'e&n, according to the le-

mma 2.3. we have

3. Definition 3.1. An m-set M of a ring Re&,n is a maximal
m-set if for all e€M,in the ideal Re there is no idempotents

other than O and e.

Example 3.1. The set of all singletons of the Boolean
ring P(8) is maximal m-set since for every a €S the idempotent

a generates the ideal {AN{aj: A€P(S)}-{@,{al].

Proposition 3.1. Let M be a maximal m-set of a ring

'Re&n. The ideals of the form Re, e€ M, are the only minimal

ideals of R.

Proof. To prove that the ideal Re is minimal it is enough
to prove that for every x€Re, Rx=Re ([3)). From the Lemma 2.1
we have that for every x& Re, x#0, xn'le Re is an idempotent.

B8ince M is a maximal m-set,xn‘1=e, and so Re=Rx"~lcpx.
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Obviously, Rx&Re and so Re=Rx.

If T#0 is a minimal ideal of R different from Re, e €M,
then, according to the Proposition 1.1, R is a semisimple ring
and I is generated by some idempotent e‘#0 ([3]). Since I and
Re, eE€EM, are minimal ideals we have that I NRe=0, and so
e’e=0 for all e€M. Therefore, e’ is orthogonal to all idempo-
tents of the set M. This gives the contradiction with the ass-

umption that M is the maximal n-set.~
From the Proposition 3.1 if follows that the maximal m-set
of a ring Re&ﬁ consists of all idempotents which generates

minimal ideals of R.

Corollary 3.1. Maximal m-set of a ring Re&n is unigue.

Proposition 3.2. If the maximal m-set M of a ring Ré&n

~ is finite then there is no m-set E of R such that |E|>{M|.
Proof. Let E be an m-set such that |E|>|M|. Since the

ideals Re, e €M, are minimal, for every f €E, ReNRf=0 or

Re(| Rf-Re. Let E_={f€E: JecM(Re\Rf-Re) }. Since Rf(\Rg=0 for

all f#g, f,g€E, for every ecM there exists at most one fE€E

such thét Ré/‘\Rf=Re. Therefore, [Eo‘flM], and so there exists

TE€ENE, such that ReNRf=0 for all e€M. Since f;fe and ef=0

for all eeM, M is not an m-set. ‘1 )

Proposition 3.3. If the maximal m-set of a ring Re&n is

Pro"of. Follows from the Propositions 2.2 and 3.1.

When the maximal m-s‘et of a ring Re&n is finite it is
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' possible to give a characterization of idempotents of R.

" Proposition 3.4. Let M={e),..,e.§ be the maximal m-set

of a ring RE€X . An element a0 of R is idempotent iff it is

the sum:- of different elements of M.

Proof. If a is the sum of elements of M then it is
idempotent of R. If a is an idempotent then, since R is the
sum of its minimal ideals Re,, i=l,..,t, we have

a=riey+..+T 84, for some rie R,
2 2 _
and so( Ti€y+e T @ =T e +ee T e,
. c s . . 2 .
whlch‘ after multiplication by e; gives rje;=r;e,, i.e. (r ej_)2
=T e, for all i=l,..,t. Therefore, Tie; is an idempotent and
since M is maximal m-set, riei=0 or rie;=e,, i=l,..,t. ~

Corollary 3.2. If the maximal m-set of a ring Reﬂ,n has

k elements then R has 2k idempotents.

Proposition 3.5. If a ring Rey,n has finite maximal m-

set then i® is a ring with unit.
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A SET OF SEMIGROUP n-VARIETIES

G. Gupona

Let 5=(S;-) be a semigroup and Q=(Q;[}) be an n-semigroup
such that Q&S and [a1...an]=a1...an, for any a e Q. Then, Q is

called an n-subsemigroup of S. If V is a semigroup variety, then
we denote by V{(n) the class of n-semigroups that are n-subsemi-
groups of \/-semigroups, and it is well known that {(n) is_a
quasivariety of n-semigroups. (See, for example [6; p.274], or
{3).) We say that Y is an n-variety iff {(n) is a variety of n-
semigroups; otherwise, i.e. if {(n) is a proper quasivariety, V
is called a quasi n-variety. (Clearly, V(2)=V for every semi-
group variety). It is well known that both the set of semigroup
n-varieties, and the set of semigroup quasi n-varieties are infi-
nite for any n 2 3. The same is true for the varieties of abelian
semigroups. (The corresponding results can be found in (17, [7],
18] and [2]). Here we establish a sufficient condition for a se-
migroup variety to be an n-variety. It is shown that almost all
the known n-varieties satisfy that condition, and some new exam-
ples are obtained.

0. PRELIMINARIES

0.1. Let x={x1,xz,...} be an infinite countable set, ele-
ments of which are called variables and let X+ be the free semi-
group on X. Elements of X+ are called semigroup terms, and if
£,n are semigroup terms, then (£,n) is said to be a semigroup
identity. A semigroup S=(S;-) satisfies a semigroup identity

(x ceeeX., , X. eeX.
i1 lp 31 jq
of S the following equation holds in S: a; rray =ay -ccay .
1 P 1
If A is a set of semigroup identities, then by VarA we denote

) if for every sequencé_a 2 ;... Of elements
1 2

the variety of semigroups which satisfy all the'semigroup identi-
ties belonging to A. The complete system <A> of semigroup identi-
ties which are consequences of A is the transitive extension of

Az’ where: \
‘ A= AVATV (g0 | cex'h,

5 +
A, = {(E; «veBy E. seeBL )(x, -oex, ,x, ---x. )&M , E.€X 7,
1 K}' 1,773, jq i, 1p i, jq o k

A= L(E -eeEg

’
2 1 ]

(See also ﬁ4] or {5].)

neeeng) | (g )€, s 2 1.
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If §€X+ and xie,x, then we denote by ]gli the number of
occurences of x; in ¢ and thus le| = Elili is the length of E.

A semigroup term § is said to be (n,A)-irreducible iff
(& n) ¢ <A> implies |E]|=|n[ (mod n-1). Otherwise, i.e. if there
is a cex+ such that (£,z) & <A> and Iglzlcl(mod n-1), then ¢
is (n,A)-reducible.

Q;g. To every set )\ of semigroup identities we associate an
index r=ind A and a period m=per). First, if lE]i=|n[i for every
ief{1,2,...} and for every semigroup identity (¢,n) € A, then we
write inda=1, perp=0. (Namely, this is satisfied iff the variety
“of abelian semigroups ABSEM is é subvariety of Var A ). Assume
now that there exists a semigroup identity (£,n) & p and an inte-
ger i€ {1,2,...} such that |g| i*lnli' Then, per p and indp are
defined by:

]

perh
inda

g.c.d.{lefy=|nls|(erm)€ A 1€{1,2,...0),
min {|g] | @n) (&n)en,r [g]# |n|}.

It can be easily seen that indA=ind <)> and perja=per «,>; and thus
we can say that indA(perA) is the index (the period) of the va-
riety Varp. We notice that if m=perp > 0 and r=indA, then

r _r+m s+k

(x1,x1 ) & <A> and moreover if (xs1,x1 ) €& <A> where k > 1,

then s 2 r and m is a divisor of k.

0.3. Let 0=(Q;T])) be an n-semigroup. Then the general
associative law holds, i.e. for any k > 1 and a reeerdyn_,)€Q
the "product" [ao...ak(n_1)] is uniquelly determined in Q; we
also write [a] = a, for every agQ.

If (&,n) is a semigroup identity such that |g|=|n|[=1 (mod n-1)
then it can be also interpreted as an n-semigroup identity. And,
if every semigroup identity (g,n) € A is an n-semigroup identity,
then ve denote by VarnA the variety of n-semigroups which satisfy
all the n-semigroup identities (g,n) € A.

Assume now that A is a set of semigroup identities, and
denote by fn)rthe set of n-semigroup identities belonging to

0 .
<A>. It is clear that if \=Varp, | =Var A Y, then yin) < vy, -
Moreover: V is an n-variety iff \(n) =V _.
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1. MAIN RESULT

Theorem. Let \/=VarA be a semigroup variety with a period m,
and let n 2 2 be such that the following condition is satisfied:

If ¢ is an (n,A)-reducible semigroup term, then there
(a) exist X,y €X such that (kag,e), (.‘;,E.ykm)é <A>, for
every positive integer k.

Then | is an n-variety.

The proof will be given in three steps, and the condition
(a) will be not assumed in the first two of them.

1.1. Let Q=(Q;L)) be an n-semigroup and let Q, be the free
semigroup in \/ with a basis Q. Thus, Q is a generating subset of

QA' and if a,sa,r00n is a set of different elements of Q then

a, ...a; =a, +se.a. iff (x, «¢.X, , X. *+*x. )€ <KA>. Define a
i1 ) iP ]1_ Jq l1 IlP 14 Jq

relation |— in QA by: ...a... — ...a, "ak(n-1)"" where

a=\a, "'ak(n-1)] in Q. Let |—1 be the symmetric extension of
— , and = be the transitive extension of [— . The following
two propositions are obvious.

1.1.1. = is a congruence on the semigroup QA'

1.1.2. Q €Y (n) iff the following statement is satisfied:

a,bgQ=—> (a x b =>a =bhb).

1.2. Assume now that geVn=VarnA [n], and that Q,, +, 1
= are defined as in 1.l. A partial mapping u « [u] from Q, in
Q can be defined in a usual way. Namely, ué;QA is in the domain
of [ ] iff u=a a, ---ay (p_,)s where a €Q, and then the "value"
[u] of u is defined by [u]=[a°a1...ak(n_1)]. The assumption
QQVn implies that [ ] is a well defined partial mapping.

Let a,,a,,... be different elements of Q, and let

usa; a; --eay . We say that u is irreducible (reducible) iff the
1 2 P

semigroup term Xy oeeeXy is (n,A)-irreducible ((n,A)-reducible).

1
The following three proposition can be easily shown.

1.2.1. If u€Q, is in the domain of [ ], then [u] — u.
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1.2.2. Let u,v Q, be such that u ¢+ Vv, and u\is irredu-
cible. If u is in the domain of { )}, then v is also in the domain
of { )} and moreover {u}={v].

1.2.3. Y is an n-variety iff every gévn satisfies the fol-
lowing condition. If u,vE;QA are in the domain of L 1 and u = v,

then [u}={v].

From 1.2.2 and 1.2.3 we obtain the following proposition.

1.2.4. If every semigroup term is (n,A)-irreducible, then
V=varA is an n-variety.

1.3. The proof of Theorem will be completed here, by
assuming that the condition (o) is satisfied.

If m=0, then all the semigroup terms are (n,A)-irreducible,
and by 1.2.4 we obtain that | is an n-variety. Thus, we can
assume that m > 0.

Let Q_eVn, and u,veQA be such that u z v and both U and v
are in the domain of[ . By 1.2.3 we have to show that [H]=[Y]'

From u = v it follows that there existy a sequence

w1,...wkeQAsuch that k 2 0 and u i—| L !——| W, l—|
|—4 % < v. If one of u,v is irreducible, then, by 1.2.2,
the sequence UyW,see. /Wy, v Can be shortened in the case k > 0,

and we have {u}={v] in the case k=0. Thus we can assume that
both u and v are reducible.

Let s be such that w=w is reducible, and LA is irreducible
for apy t < s. (If w  is reducible, then w=w,, and w=v if all
the Woreoo W are irreducible.)

The condition (a) implies that there exist a,bg Q such that
u-aimu, w=wbjm, for any pair of positive integers i,j. The
assumption u to be in the domain of [ ]1mp11es that i1 can be
chosen in such a way that all the members of the sequence
aimw,,...,a%mws_1,aimw are in the domain of [ ]. Then we also
have: u aimw1k—4... i aimw, and this implies that
[u]-[aimw] -...-[aimw]. Let j be such that j(n-1)m 2 r, where r
is the index of V. Then we have: w=wbj(n-1)m, pd (A=) m+im_
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=pd (1)W1 34 this implies that: alMupd (P=1IM 3 (n=l)m+im
Therefore we have:
aimw - aimwbj(n'l)mk—d - aimubj(n-l)mgubj(n-l)m+1m’

and:

ubj(n-l)m+im+__4 w1bj(n-l)m+:Lm|___ ...‘f—lwbj(n-l)wbj(n-l)m+iq¥n

Finally, we obtain:
[u] = [aimw] - [aimubj(n-l)m] = [ubj(n-l)m+im] =
Zeeex [wbj (n-l)m+:im] = [W] .

This completes the proof of Theorem.

2. COROLLARIES

Cor. 1. If ABSEM is a subvariety of a variety V, then V is
an n-variety for any n 2 2.

Proof. The assumption is equivalent to the statement that
per\=0, and then all the semigroup terms are (n,A)-irreducible for
every n 2 2.

Cor. 2. Let m be a non-negative integer andn > 2 be such
that n-1 is a divisor of m. If | is a semigroup variety with a
period m, then \ is an n-variety.

Proof. If \{=VarA, then every semigroup term is (n,A)-irredu-
cible. (Clearly Cor. 1 is a special case of Cor., 2.)

Cor. 3. If | is a semigroup variety with an index r=-1,then
V is an n-variety for every n 2> 2.

Proof. Let m=per\. If m=0, then we can apply Cor. 1, and
thus we can assume that m > 0. If £=xi...xj, and k > 0, then we
have: (xtmE,E), (E,Ex?m) € < A>, where \/=VarA. Thus, the condi-
tion (o) is satisfied.

A semigroup variety \/=VarA is a variety of periodic groups
iff ind\=1, perA=m 2 1 and (x1x?,x1); (x?xz,x2L €< \A>. From
Cor. 3 we obtain the following one:

Cor. 4. A variety of periodic groups is an n-variety for-
every n > 2.



Cor. 5. Let \/=VarA be a variety of abelian semigrpupe with
an index r, and let the following condition be satisfied:

(g) If (&,n) is a nontrivial semigroup-identity belonging
to A, i.e. (&,n) € A is such that |5]if]n|i for some i > 1, then
there exist j,k = 1 such that [glj > v and |n]k > r.

Then \ is an n-variety for every n > 2.

Proof. We notice first that <A> also satisfies the condi-
tion (B). If r=)
we can assume that r > 1 and m > 0. Let ¢§ be an (n,A)-reducible

, then the conclusion follows from Cor. 3. Thus

semigroup-term. Then there is a semigroup term n such that
(¢,n)€<A>, and |g| = |n| (mod n-1). Therefore, |5|i#[n|i for
some ie¢ {1,2,...} and this implies that there is an xje}{such
that [glj > r. Thus, we have (x £,£), (s,g'x];m)e <A>, for any
k > 0, and we can apply Theorem.

- _. _ r__EK+m, . .
Cor..5. Ar,m—Var{x1xz—x2x1, x,=x_ "} is an n-variety for

everyn 2 2, r 21, m 2 0. (This is in fact Theorem 2 of [1].)

Cor. 6. Denote by Nk) the following set of semigroup
identities:

My = {(Xyeeaxy X, 00ux,x ceeXy) | 2<i<k-1, je {1,k}},

i™g Xi+1
where k 2 3. Then Dk=VarA(k) is an n-variety for every n > 2.

Proof. First, it can be easily shown that if n > 3, and a
semigroup term ¢ is (n,A k) reducible, then |g| . In this
case, if g=xny, then (x £,8), (g,Ey )G. <A(k)> for any i > 0,
and thus the condition (o) is satisfied.

(We notice that it is shown in the paper [8] that D=D3 is
an n-variety for any n 2 2, and that the same proof can be
applied for the general case.)

Cor. 7. Dk{\ABSEM is an n-variety for every k 2 3, n 2> 2.
Proof. It is easy to show that (a) is satisfied.
(Cor. 7 is also proved in [2]D-

)
The following proposition is the main result of the paper

[7]-
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Prop. 8. If ly=Var(x,...x.,x ...xx ), R=Var(x, ...x,,

Xpy Xyee Xy )y 0k=|-kn R‘, then Lk' Rk’ Okare n-varieties for
any k 21, n 2 2,

We note that Ok satisfies the condition (a), but neither
of the varieties Lk’ Rk satisfies (a).

The above examples exXhaust all the known semigroup n-
varieties. A list of the known semigroup quasi n-varieties will
be given below. (see [1] , [71, 2.

Prop. 9. If r > 1, and n-1 is not a divisor of m, then

Pr m=Var(xf,x]:+m) is a quasi n-variety.
’

Prop. 10. If n 2 3 and D2=Var(x1x3x3,x1xzx1x3),

Dr=Var(x1xzx3,x1x3x3x3) , then both D" and ]:]r are quasi n-varieties.

Prop. 11. Let s,m,n and k be positive integers such that:
n23, m=0 (mod n-1), m#2s+l, m#2s+2, s+2 <m, k 2m+2,
and let A(k) be as in Cor, 6, and

J {(x?xI:-s , xs+2xm-s-1)v ).

Ak,s,m) = 2x) . X,

Then both the varieties

var Ay s,m and ABSEMﬂVarA(k_,S,m)

are quasi n-varietiesa
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THIRD ALSEBRAIC CONFERELICE
Beograd, 3-4 December 1932

ON *-REGULAR SEMIGROUPS

SiniZ%a Crvenkovié

The *-regular semigroups were introduced by M.Drazin
in [2), K.S.S.Nambooripad and F.Pastijn in [4].

In the present paper we consider some basic proper-
ties of *-regular semigroups.
1. Introduction

A *-semigroup is a semigroup equipped with a wunary

operation *: S——»S satisfying
1) (an)"= a,
2.) (ab) *= b*a*.

Such a wunary operation * is sometimes called an
involution.

A semigroup S is regular if for each af S, there
exiéps k€ S such that a = axa. For ag£ S, an element Xx{ S
is 'an inverse of a if a = axa, x = xax. An 1dempotent
of *-semigroup is called a projection if e*= e. Denote
the set of idempotents by E(S).

It is well-known that every semigroup is embeddable
in a regular semigroup. Also, it is easy to see that
every semigroup is embeddable in a regular semigroup
with involution. Namely, let S be a semigroup and S

1
a regular semigroup such that sC Sl' Take 52 to be
left-right dual of Sl and ¢ bijection such that
¢(Sl) = 82‘ If T is the O0-direct union of S1 and 82'
define *: T—=T to be
¢ (x), xC S

x* ={ 0, x=20
-1
¢ (x), XE SZ
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Obviously, 82 is. a regular semigroup with involution *
such that sC T.
2. Basic properties

Let S be a semigroup with involution. If every %¥-
class of S contains a projection, then S 1is called a
*-regular semigroup.

THEOREM 1[4 . Let S be a semigroup with involution *.
Then the following statements are equivalent.

(1) Every &%-class of S contains a projection,

(i1) for every a€s we have a*aZa,
' (i1i) for a€s, a* is P-equivalent to some inverse of a

(iv) for every agE’s, a* is Jsf-equivalent to some inve-

rse of a,

(v) for every af s there exists an element x which
satisfies axa = a, xax = x, (ax)*= ax, (xa)*= xa. ’
Many nice examples of *-regular semigroups are given
in [4 . From the paper of R.Penrose [l we see that’
the semigroup Mn(C), of complex nXn matrices, is a *-
regqular semigroup with * as the conjugate transpose of
a matrix. Some statements from [0 , for matrices, could
be applied to any *-regular semigroup.
LEMMA 1.2 EEE_IS be a semigroup with involution. The
conditions of Théorem 1 are equivalent to each of the

following.

(vi) For every af S there exists xC S such that
xx*a*= x, xaa*= a*,

(vil) For every af S there exists y€ S such that

a*y*y =y, a*ay = a¥,

Proof. If S satisfies (v) of Theorem 1 we have
xax = x(ax)*= xx*a*= x

and
a*x*a*= (xa)*a*= xaa*= a*,

Conversely, if xx*a*= x, then
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(1) x(ax)*= x

i.e.

(2) ax(ax)*= ax.

From (2) we have (ax)*= ax(ax)*= ax.From (1) we get xax=x.
Analogously, from xaa*= a* we have that xa = (xa)* and

axa = a.

(vii) 1s similar to (vi).

LEMMA 2.2 [ If S is a *-regular semigroup then there
exists a unique x such that the condition (v) of Theo-

rem 1 is satisfied.
We denote with a* an x satisfying the condition
(v).

LEMMA 3.2 [4 If S is a *-regular semigroup, then for eve-

Iy ags we have
1.1 @ht=a,

1.2 (a+)*= (a*)+,
1.3 (a*a)+= a*af*

-|- * *
1.4 aa a=a =aa a,aaa=a=a aa.
LEMMA 4.2 In a *-reqular semigroup S, if xaa*= a* and

a*ay = a%*, EgggA a+= xay-.

Proof. From xaa*= a* we have that xaa*x*= a*x* 1i.e.

(xa)*= xa and axa = a. Analogously, from a*ay = a* we have
(ay)*= ay and aya = a. It is easy to see that xay sati-
sfies (v)  i.e. af= xay .

THEOREM 2. Let S be a semigroup with involution. Then
the following conditions are equivalent.

© (A) S is a *-regular semigroup; _
(B) For any af S, there exists z£ S such that

aa*az = a,
(c) For any a€ S, there exists wE S such that
waa*a = a. )
Proof. (A)=—> (B). Lemma 1.2 implies that for every a€ s

there exists xC S such that xx*a*= x and.. xaa*= a*.
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We have that xx*a*aa*= a*, If we put =z = xx*, tﬁen

aa*az = a. ‘
(B)=>(A). From aa*az = a we have =z*a*aa* = a*, Denote x =
= (az)*. Then, xaa* = a* i.e. a*x*a*= a* so that xk*a*=

= z¥*a*x*ak= zkg*= (az)*= X.

(C) 1is the dual condition of (B)..

From consideration above, we have that aa*az = a
implies a(az)*a==a.Conversely, if in a semigroup with
involution, for every aE S there exists zE S such that
a(az)*a = a, then S is a *-regular semigroup. Namely,
a(az)*a = a means that az*a*a = a 1i.e. a%*aza*= a*. Denote
za*= y. There exists v€ S  such that a* (a*v) a*= a*. We
have that a*v*aa*= a*. Denote a*v*= x. From Lemma 4.2 we
see that a+= xay. Thus we have proved the following:
COROLLARY. A semigroup S with involution 4is ‘a *-regular

semigroup ~ if and 95l¥_ if for every aC S there exists
z€ S such that af(az) a = a.

PROPOSITION 1.2 Let S be finite *-reqular semigroup. Then,
for each at s,

a+= (a*a)t_

for some t>1.
Proof. If a*aa*a = a*a, then a*aa*aa

1- * %* 1- *
= ((aa') a) = (aa a) = a* we have a*aa*= a* i.e. aa*a = a

1
a*,

t= a*aa’. as a*aa+#

so that a+= a*. In monogenic semigroup <a*a> there
exists an idempotent (a*a)t, for some t 1.

(a*a)t(a*a)t= (a*a)t

1.e.

1 1

(a*a) ¥l (a*a) t* 1= (a*a)t.
Multiplying the last equality with a+ and a+*successive1y,
we have (a*a)t la*aa*= a* 1.e. aa*a(a*a)®l= a. From the
proof of Theorem 2 we have that a'= (a*a)t lax.
THEOREM 3. Let S be a *-regular semigroup. Then

af= a*utava*
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for any u,v such that aa*uaa*= aa* and a*ava*a = a*a.

Proof. Fram aa*uaa*= aa* we have aa*uaa*a+*= aa*a** i.e.
aa*ua = a so that a*u*aa*= a*, Similarly, we have

a*ava*= a*. If in Lemma 4.2 we take a*u* to be x and
va* to be y, we see that a+= a*u*ava*,

3. Congruences.

A relation p on a *-semigroup S 18 called a *-
relation 1f (ap)*= a*p for all aE'S, where ap denotes
the p-class containing a. We say that p preserves *.

Let S be a regular semigroup. An equivalence 7 on
E(S) 1is called normal if and only 1if there 18 a con-
gruence p on S so that m = pN(E(S)XE(S)). We say that
m 1s normal equivalence associated with p. If p 1is a
congruence on S, then Kerp = {af S: ap= ep, for some ef S}
is the kernel of p.

P.G.Trotter in [/] gave description of éongruence
on regular semigroups in terms of normal equivalences
on sets of idempotents and kernels of congruences. Let T
be a normal equivalence on E(S). For notions of m-kernel
& .+ R and U -relations we refer [1. Let S be a *-
regular semigroup. It follows that

{(a,b)€ §XS; (aa'm (bb Mbb' 1 # @,
(bb+w)(aa+n)r]aa+ﬂ #@ 1},

Ry

{(a,0)- sxs; (atam wTomN afar # ¢,
wbm aTamNb'br # ¢ 3

2
w

and #n= gﬂﬂg -

From Theorem 2.2 in [7] . we have _
PROPOSITION 1.3 Let (S,.,t,*) be a *-regular semigroup.
‘If p is a congruences: of (S,.), then :

{(a,p)€ # : ab', a'bC K},

- ©
I

where K = Kerp and 7 is the normal' equivalences associ-
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ated with p.
If p is an idempotent separating congruence, on
(s,.), we have ‘ '
- LT Y
(17 (b = (a b ICH,
(277 (a,b)E K =>(a*,bKH .

Namely, aa+n = aa+, bb+n = bb+, a+aw = a+aﬂ and b+bn = b+b

so that (a,b)C# . implies ata = b™, aa’ = pbT  from
,which (1) and (2°)° immediately follows. Also,

(a,b)E p==:(a+,b+)E p, as aT(b+)T= a'd and (a+)+b = ab'.
PROPOSITION 2.3 Let (S,.,t,*) bg_ a *-reqular semigroup

and p be an idempotent separating congruence on (S,.).

. | ' *
Then p preserves + and * if and only if (Kerp) =Kerp.
*

Proof. If o preserves + and *, then, obviosly, (Kerp) =
= Kerp. Conversely, if .(Kerp)*= Kerp, since p 1is symetric,
from (2°) we have that (a,b)E p implies (a*,b*)C o
ab+, a+b, ba+, b+aE-K and a*b*+, a*+b*6 K*= K. It follows
that (a*,b*)E p.
THEOREM 4. Let (8y.,%,*%) be a *-regular semigroup. Then
p preserves t+ and * if and only if (Kerp)*= Kerp and
(e,£)& p=>(e*,£*)C p, where e,f€ E(S).
Proof. Similar to the proof of Theorem 4.4 [§ . It should
be noticed that S/0 , in the proof of Theorem 4.4(3 ,
is a *-reqular sémigroup and the relation

p/o = {(ag,bo)€ S/aX S/0 : (a,b)Ep }
is an idempotent separating congruence on S/o with

(Kerp/o)*= Kerp/o. From Proposition 2.3 we have that p/o
preserves * 8o that p preserves *, )

In [J T.Imaocka gave a characterization of congru-
ences on special *-semigroups.

Using the previous considerations and the notion
of normal(admissible) set of subsets [J p.58, it is
possible to give similar characterization of congruences
on *-reqular semigroups. This will be presented elswhere.



[

@]

1]
)]

57

REFERENCES

A.H.Clifford, G.B.Preston, The Algebraic Theory of
Semigroups, Amer.Math.Soc., Providence,R.I.,Vol 1,1961,
Vol 2,1967.

M.P. Drazin, Regular Semigroups with Involution,
Symposium on  Regular SemiIgroups, April 1979, Northern
Illionois University, De Kolb(1979), 29-46.

T. Imaoka, *-congruences on Regular *-semiqgroups
Semigroup Forum, Vo , No.4(1981)321-326.

K.S.S. Nambooripad, F.J.C.M. Pastijn, Regular 1Involution
Semigroups (to appear).

T.E. Nordahl, H.E. Scheiblich, Regular * Semigroups,
Semigroup Forum, Vol 16(1978)369- .

R. Penrose, A Generalised Inverse for Matrices, Proc.
Cambridge Philos. Soc., 51(I955),406-416.

P.G. Trotter, Congruences on Regular and Completely
Regular Semigrougs, J. Austral. Math. Soc. (Series A)32Z
118525, 388-398.

Institut 2za wmatematiku
Ilije Djuridida 4
21000 Novi €Sad

JUGOSLAVIJA



58



THIRD ALGEBRAIC CONFERENCE
Beograd, 3-4 December 1982

SOME PROPERTIES OF THE DEFECT OF DISTRIBUTIVITY
OF A NEAR-RINGS

V.Dasi¢

Abstract

The near-rings with defect of distributivity generalize the distributively
generated (d.g.) near-rings. In the case when the defect D Is zero, we obtain
the class of the d.g. near-rings. In this paper we consider some properties of
the defect which are related to a structure of a near-rings.

A near-ring R is an algebraic system with two binary operations, addi-

tion and multiplication, such that

% (R,+) is a group
2° (R,.) is a semigroup
3% (y+z)=xy+xz for all x,y,z€R

We suppose also ox=0 for all x€R.

Let R be ‘a near-ring. We recall that the subsemigroup (S,.) of the
semigroup (R,.) is a set of generators, if (R,+) is generated by S. The defect
of distributivity of the near-ring R is the normal subgroup D of the group (R,+)
generated by the set

{d : d=—(xs+ys)+(x+y)s, x,yeR, s(-Sk

The near-ring R- with the defect D will be denoted by (R,S) when we wish to
stress the set of generators S. Every element of R can be represented as
Z(+ s) (s S).
When we say that the near-ring (R,S) has the defect D, this means
that D# R. If addition to S=R we obtain the class of the D-distributive near-
-rings. In this case, for all x,y,z€R there axists déD such that

(x+y)z = xz+yz+d.

Finally, if D=R then the defect D depends no upon the set of generators, In this
extreme case R is the D-distributive near-rlng as well.

A subgroup (B,+) of the group (R,+) is called a right R-subgroup iff
BR:{br: beB, reR§ €B. A subgroup (B,+) of (R,+) is called a left R-subgroup
iff RBE€B. A normal subgroup (B,+) of (R,+) is a right ideal of R iff (x+b)y-xyeB
for all x,yeR, beB. A right ideal B of R which is a left R-subgroup is an ideal
of R. '

Let (h S) be- a near-ring with the defect D and let (A;+) be a normal
subgroup of (R +). The normal subgroup of the group (R,+) generated by the
elements of the form \
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d=-as-xs+(x+a)s, (x€R,seS, a€h) ,
is called the relative defect of the subset A with respect to R. At 31mllar way,
we define a relative defect of a subset ACR as the relative defect of A
where A is the normal subgroup of (R,+) generated by A. The relative' defect

of the subset ACR will be denoted by Dr(A). For basic definitions and prope-
rties about near-ring with defect see [l1].

PROPOSTION 1. Let R be a near‘—gi_ng with the defect D. The set
AD(R) {aGR' aR¢< D}_]E a nilpotent ideal gf R _if and only _if D is nilpotent .

Prodf, By Theorem 3 of [2] A (R) is an ideal of R. If D is a nilpotent
ideal of R, where the index of nlopotence is n, then for all a a]eAD(R) we

have a,2,€D and a,a)...8;_35,=(a)3;).w-(ay_1350)=0- ThUs, Ap(R) s 4 nilpo-
“tent ideal of R.
The converse follows immediately, because DSAD(R).

The following theorem generalize a result of Dover ([3], T6) and a
result of Freidman ([5], Lemma 2.1).

THEOREM 2. Let R be a D-distributive near-ring, then R'sA(R),
where R*is the commutator subgroup of (R,+) . If D_is contained in the commu-
tator aubgroup R*, then R'is a nilpotent ideal of R if and only if D is nilpotent.

Proof. By Corollary 2 of Proposition 2.7 of [IJR*ReD. Hence
R ‘CAD(R) If D is contained in R*, then by Theorem 3.4 of [l] R%is an ideal
of R. Let D.be a nilpotent ideal of R. Then by Proposition 1 A (R) is a nilpo-
tent ideal of R. But R‘CAD(R) i.e.R"is nilpotent.

The converse is Immediate.

THEOREM 3. ([1] , Lemma 3.2.) Let A be a normal S-subgroup of
" the pear-ring R with the defect D. A is a right ideal of R if and only if
Dr(A)é DAA, where Dr(A) Is a relative defect of the subset A.

The following theorem characterize the relative defect of a subset A.

THEOREM 4. Let Let (R,S) be a near-ring with the defect D. a)lf A is

ibal of R.
Protif. a) Let d Z(r -(-a s;xs+(xts) s))-r JeD(A) (r; xR, s, €5,
eA) We need to show that for all y, Z€R and deD (A) lt follows (y+d)T -
-yuD (A), Let z= Z(*S) (s €59).



Applying induction on J w2 need only to show that

[y+(-as-xs+(x+a)s_'| sj-ysje'Dr(A) (x,yeR, s,s]es, a€A).

Cleafly,

[y+ (-as-xs+(x+a)s] s '-ysjsysj+[-as-xs+ (x+a)s] S)oYs Hys - [-as-xs+(x+a)s) ;s
+[y+(-as-xs+(x+a) s)]s]-ysj.

It is easy to see that -as-xs+(x+a)s=-as-xs+(x+a)s-xs+xs€A. By definition of
Dr(A) we have

- [-as--xs+(><+a)s_'lsj -ys;+ [y+(-as-xs+(x+a)s] sjeDr(A)°

From Theorem 3 it follows that Dr(A) is a right S-subgroup of R, since D is
an ideal of R. Hence [-as—xs+(x+a)s]s].eDr(A). Since DF(A) is a normal subgroup
of (R,+) we have

ysj+[-as-xs+(x+a)s]sj-ysjeDr(A).
Thus
y+(-as-xs+(x+a)s)]s.~ys. €D (A), i.e. D (A) is a right ideal of R
7Y% €& r

b) By definition of DF(A) every element in Dr(A) has the form
S‘(riidi-ri), where di=-(x].si+aisi)+(xl+ai)si (xi,ri ERSES, 8, € A). For all reR

and d=-as-xs+(x+a)s€D,(A), (x€R, s€S, a€A) we have r[-as-xs+(x+a)s]=-
—ras-rxs+(rx+ra) séDr(A), because A is a l@ft R-subgroup, i.e.ragA. Thus Dr(A)
is a left R-subgroup. Conseguently, D _(A) is an ideal of R.

Definition. Let (R,S) be a near-ring with the defect D. i
The subset B of R is a subnear-ring with a defect if and only if.B is a subnear-
—ring of R and (B,+) is generated by S'¢S.

Clearly, every subnear-ring wifh defect is a subnear-ring too. The
converse is not true in general. Therefore the class of all near-rings with defect
is no variety as well as the class of the d.g. near-ring. Meanwhile the class of
all D-distributive near-rings just like thevclass of the distributive near-rings is
a variety.

Let B be a subnear-ring with the defect D(B). Clearly D(B) €BA}D.
By Theorem 3.3 of (1] it follows that D(B) is an ideal of B. If B is an ideal
of the near-ring (R,S) with the defect D, where the set of generators of
(B,+) is S‘g_,(S, then

D(I@)G DF(B)QB(\D.

From\\,‘Corollary of the Theorem 2.6 of [l] we obtain the following

two propositions. -
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PROPOSITION 5. Let (R)S) be a near-ring with the defect D and let
A be an ideal of R. If B2A 1s a subnear-nng of R, where (B,+) is gener‘ated

\

by S'€S,_then B/A is a d.g. near-ring if and only if D(B)EA. \

PROPOSITION 5. Let R be a_D-dlstributxve near ring with the. defect
D and let A be an ideal of R. If B2A is a subnear-ring of R, then B/A is a_
distributive near-ring if and only if D(B) €A.

THEOREM 6. Let (R,S) be a near-ring with the defect D and let B
be a_subnear-ring of R, where:(B,+) is generated by S'¢S. If BND={ o}, then B
is_distributively generated as_a subnear-ring.

Proof. From BAD = {o}it follows BAD(B)=1{o}, since D(B)sD. Thus by
the Lemma 4.20 of [4]it follows B+D(B)b(e)~B/D(B)nB By using the Proposi-
tion 5 we have that B+D(B)/D(B) is a d.g. near-ring. Thus B is dlstrlbutlvely
generated as a’ subnear-ring.

/ The proof of the following theorem Is analogous to the proof of the
Theorem 6.

THEOREM 6*. Let R be a D—dnstributive near-ring with the defect D
and let B .be a subnear-ring of R. If BAD = {o}, then B is distributive as a_

subnear-ring.
' For example, the near-ring on Dg ((e], (4) p.345) is a near-ring with

the defect D ={o,23}. The subnear-ring B={o,b}is a d.g. subnear-ring, just a
distributive subnear-ring.

be a finite direct su_rngi_’_a non-empti collection of the ideals Ai tefl,2,...n}
where D-A] for some j&{l,2,...,n$ If for all if j, the set of generators S; of che
subgroup (A ,+) Is a subset in 5, then R is a direct sum of the defect D and of
the d.g. subnear-ring B=®Al’

Proof. By Theorem 6, A, is a d.g. near-ring for all if j. From Theorem

69 a) of [6]every direct sum of d.g. near-rings Is a d.g. near-ring. Thus
B = eAl Is a d.g. near-ring. Hence R:Bw.
i#
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ON THE TWO-CARDINAL PROBLEM

Aleksandar Jovanovié

For a first order theory T with a unary predicate symbol P
it is interesting to know all pairs (dA,p) admitted by T.
The following two theorems are from (1).

THEOREM 1. (GCH) Suppose o 2o 2Zp'2m 2 w and LI € o'
Then every theory T in L whioch admits (o,p), admits also
(d‘v(g).

THEOR.EM 2. Let L have a unary predicate symbol P. If AIDZW
and o >0 3 then every (a,») model has a complete extension
which is an («*,p) model.

Now it is quite clear that the most interesting cases are the
extreme ones, motivating the following definitions.
The pair («,») is (when exists):

Left Large Gap (LLG) for T iff T admits (o,p) and does
not admit any («',) for & >ot,

Right Large Gap (RLG) for T iff T admits (®k,(>) and dees
not admit any (d«3) for {b‘ <p .

Large Gap (LG) for T iff (x,») is LLG and RIG.

Left Small Gap (LSG) for T iff T admits (d,») and does not
admit any (o(,(z-,) for & <o .

Right Small Gap (RSG) for T iff T admits (Ay») and does
not admit any (A,3) for ByE .

Small Gap (SG) for T 4iff (d,pP) is 1SG and RSG.

It is clear that we can correspond partial cardinal functions
AL ){.&‘4 , to any theory T, so that (when exists):
(A (K),%) is IIG
(Ky A (K)) is RLG
(Ay (K) ,¥) is TISG
(s () dis RSG
for all k.
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For a given theory'T it would be interesting to determine the
functions I\; ‘and their domains. On the other hand it would be
nice to know what pairs can be (_)_G. Lacking the characteri-
zation we offer the following discussion. 1 ‘

THEOREM 3. Let [\, and /\: be cardinal operations defining
LLG for theories Ty snd T, , for many K. If ome of the fol-
lowing holds

1. GCH

2." A\, is monotonous

300N (W= f\ (K)
then there :l.s a theory T such that (A, f\ )(K) k) is LLG for
T. The similar is true for RILG,

Proof. Let Z =<A,V,... ) be a model for Ty such that V is
an interpretation of predicate symbol Q and |Vi= f\:(k), )
A\ = (I\,OI\:)(K). Let & =(B,U,...) be a model for T, such
that U is an interpretation of predicate symbol P and (Ul=\k,
B {=A. (K). We may suppose that L.'.ﬁ Lo =¢ and that T, has cl-
osed axioms, Considerl'che extension T o} Ty obtained in the
following way. First, take T' to be a theory in the langusge
U L. with the axioms of T,. Extend T' to T adding inter-

protatizbns of axioms of T, in the  language I..rL)L o The in-
terpretation is definod in the following way. On L.r it is
the identity. In the axioms of T, every subformula o.f. the fo-
rm 3x ¥ is replaced with the formula Ix (Qx)&¥). The uni-
verse of the interpretation is Q, so we introduce the axiom
3xQ(x). If F is an n-ary function symbol of the language
then the axiom of T is formula Q(xpk..KQ(xy => Q(F(X,...X)).
Using' the bijection |B\=[V| ,a model 3}' , an expansion of 3} is
constructed. Let £ be such a bijection. Extend £ to an isomo-
rphisam. Por cenr define o¥af(c). If F is a function sym-
bol in L'B define

-q .
FQ(f.‘a1 l..f a“) it a”ooo’ a‘\ ev
ru(’q LX) oag\) -
arbitrary otherwise,

If R is a predicate symbol in L, dofino the interpretation
of R

. - -4
i‘(aq.o.am) 1ff RQ(f ‘aﬂ.oof aM).
Now consider predicate symbol P in L. and model U=, v,.. )
for T 24" 18 ((A.cN.))(K),K) model.
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Let 3} «A,V,U,...) be some model for T with |Ul=i. Let V
and U be interpretations for Q and P, reapectively. Let I"T"
be (the reduct of L) §Qfy Ly, and let T, have the interpre-
tations of axioms of T as the only axioms. It follows that
V1< Ao (K). Using the hypothesis in the similar way, we get
A1 < (A AD(K).

COROLLARY, Let T, and T, have (A(k),k) and (k,M(x)) as LLG

and RLG, many k , respectively. Then there is a theory T for
which (A(K),"(k)) is .IG.

THEOREM 4, With the hypothesis of the corollary the following
is true for any ultrafilter D:

CUQD 1P| & 1K< AR AcL g AUTKY,
Proof. If a theory admits pairs (9> for cel and if D is
any ultrafilter over I then the theory admits pair (I\'Ao(\ \fé(&.\).
It follows that T4 admits the pair (‘Q’\(K)\ \r\ k)) and that T,
admits the pair (\QK\,\Q\"(K)\) Since (/\(\QK\), \QK\) is LLG
for T, and (\l’\\q\,V‘(\T\K\)) is RLG for T,, the proof follows
from basic ultrapower cardinallty relations,

The following theorem is from (1).
THEOREM 5., There are theories T, and T, such that for all K
(W, is LIG for T
(2%,«) is L1G for T .

The above theorem gives some examples, There is a theory such
that for all K, (k,k) is LG. The axioms of Boolean algebra
and the definition of cellularity are first order, so we can
consider models (K, cel(K)). Let ded(D,&<) be the cardinality
of the number of Dedekind cuts 1n (D,&). Michell has prooved
the independence of K< dedtk)<2 for all K . In (3) is given
an example of a theory T such that for all K, (ded(K),K) is
LLG for T. It would be interesting to have more examples, Here
we mention some consequences of the above, .

1. for all mew and all cardinals )\ ,

(l«\w(l\) WA A
(;()\) ) 'are LLG. . o
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- 2. for all mew, all cerdinals A\ and any ultrafilter D
\Q N @M< W, (AQAD,
\r\; OI< 2,00M5

\nded<x)l< ded(mx\)

3. let A Dbe finite combination of operatlons wWa (),
:L& ) and ded“( ), as example A=""*o j‘ )oded (). Then

\\"V(k)\ I\(\Qk\), in the example
\ﬂ‘;\*(def(k))t < 27 (dea>(fyu).

We note that if (£,®») is LG then there are no strongly com-
pact cardinal kbetween Mand A

The above considerations are conected with the continuum
problem., Let D be Magidor’s nonregular ultrafilter over &W,,
Then |ﬂw\\$u§and \ﬂu);\ 27 3. Using the mentioned consequen-
ces we. get: 2“3 . \ng\ = \Qw," £\Quw,\ e we
Since in Magidor’s model GCH holds the above is not interesti-
ng. But if D is a nonregular ultrafilter over ¢Jylike Magidors,
thus |Qwy |<w,, then 2“* =wy implies 2“® Swg . It fol-
1ova}that the existence of ultrafilter with the cardinal funct-~
ion with jumps, involves bounds for the continuum function, as
the above and similar examples show.

\
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EMBEDDING OF ALGEBRAS IN DISTRIBUTIVE SEMIGROUPS
S.KalajdZievski

Abstract.Subalgebras of different kinds of distributive se-
migroups are considered in ([11] , U8) and C9% . Here we make
corresponding investigations concerning left (right) semigroups.
"We also esteblish some conections between c<-subalgebras and
n-subsemigroups of each of the classes of distributive semigro-
ups, whereas ¢ is an n-ary operator.

0. PRELIMINARIES '-

Necessary preliminary definitions and results will be sta- !
ted first.

An Q-algebra A = (AjQ) is an Q-subalgebra of a semigroup
8 = (S;.) if A¢S and there is a mapping Ww@ from L into S,
such that

(1) 0(&1,32'000,%) =53.13.2000an
for every wefd(n), 819855000 58,6 A (Q (i) denotes the set of all
i-ary operators in . ).

If {w}=Q(n) =L , then instead of "L2-(sub)algebra" we say
" ~(sub)algebra". An -algebra A = (Ajw) is called an n-sub-
semigroup of a semigroup § = (83.) if «¢Q(n), n>»3, AcS and

(2) c.)(al,az,...,an) = 81850008, .

for all 81985900058, & A.

Let V be a variety of semigroups. Then V(Q))(V(n)) denotes
the class of Ql-subalgebras (n-subsemigroups, resp.) of semigro-
ups in V and Q) (VV(n)) denotes the variety of Q-algebras
(w-algebras, resp.) defined by the set of all identities valid
in V@) ( V(n), Tesp. Yo If VO (V(n)) is a variety then cle-
arly TviQ) = v ( VV(n) V(n), resp.). But in general V(Q)
(V(n)) is a quasivariety [10, pg.254]. In several papers (ra1,
131,141,061,1071,(81,19],111] ,T112),113]1) special varieties V are
considered and the corresponding answers whether V(Q) (V(n)) is
a proper quas:.varlety or a variety are given. One of the fifst
results_is' that SEM(Q) is the varlety of all Q-algebras L[1] ,
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and the other is that SEM(n) is the variety of all n-semigro-
ups [4] , whereas SEM denotes the variety of all semlgroups.

Here we are dealing with the following four varleples of
semigroups: The variety Dbt @F) of left (right, resp.) dis-
tributive semigroups, i.e. the variety defined by the left
(right, resp.) distributive law

(3) xyz = xyxz ( (3%) =xyz ==xzyz ) ,
the vai‘iety D - -'D('\.Dr of distributive semigroups and the
varlety .bc of commutative distributive semigroups.

It is shown in [11) that JD(n) is a variety and that .De(n),
DT (n) are proper quasivarieties of n-semigroups. We also
know ([3)) that D is a member of an infinite set of varie-
ties JIL of .commutative semigroups such that JJt(n) is a va-
riety. Concerning Q-subalgebras, we have ([8]) that D°@Q)
is a variety of Q -algebras for any operator domain 2 and
(£9]) that D Q) is a variety iff |Q\ Q(0)I <1

In this paper we are going to prove the following theorems:

THEOREM 1. DYQ) is a variety iff = Q(0)QL) .

THEOREM 2., D (Q) is & variety iff Q= Q(0)UQ(1) and
QLI < 1. '

THEOREM 3. Let ) be an n-ary operator (n3»3). The follow-
ing relations are satisfied:
i) D%a) = D)
ii) D@W)CDO(n), the inclusion is strict
iii) if pe{€,r} , then neither of the classes DP(n), D)
ig a subclass of the other.

Before giving the proofs of the theorems we shall state
pome lemmas which are obvious or easy to prove.

LEMMA O.1. Let V be an arbitrary variety of semigroups.
If Q = Q(0), then V(Q) is a variety. If €1 #Q(0), then
V@) is a variety iff V(Q \ L£2(0)) is a variety.

Further on we assume that £X0) = @ and that Q£ g.

TEMMA 0.2. If NQ¢N’and DQ) (D°Q) ) is & proper
quasivariety, then D (ﬂ,’) (D@ ) is g proper guasivariety.

Let 3 be a word in an arbitrary alphabet. Denote the num-
ber of occurrences of symbols in ¥ by d(§), the set of symbols
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occurring in § by c(g) and the i-th symbol in ¥ from left to
the right (the right to the left) by S(i) ( (i)g, resp.).

Two words ¥ and m in an arbitrary alphabet are said to be
:oe-correlated if:

a) c(g) = c(m) , g(i) =m(i), 1 = 1,2, (L)g= (1)

b) the sequences of the first occurrences of the symbols
in ¥ and m are equal ( whereas (i) is the first occurrence
of the symbol §(i) in g if ¢(J) # s(i) for every J, j¢ i)

c) if (k) # (1)¢ for every k, O0<kgd(y), then -\\gk) #

# (1)m for every k, 0<kgd(®).

A word ¢ is said to be the inverse of a word m if d(g) =
= d(n) and !(i) (i)n for every i, 0<igd(g) = dln).

Two words ¢ and m are said to be .‘or_-correlated if their
inverses are D-correlated.

LEMMA O0.3. (C11]) A semigroup identity §=m is valid in
D¢ (OF) iff ¢ and m are D®-correlated (DT -correlated).

LEMMA O.4. An _Q-ldentltz ¥=n is valid in 0Q) (DTQ) )
iff ¥ and and m are oD€-correlated (D T _correlated).

1. PROCF OF 'I‘HEOREM 1

First, let Q = Q(1).
© Let A = (A;0) belong_ to the variety VD(Q). We shall show
that AGD‘CQ), so that VOIQ) = Q).

Let ) = {S;weQ)} be a set of symbols such that ANQ = &
and WFT > ST for every @,ceQ. Let F(.) be the free semi-
group in the variety D* generated by the set Houa. Say that
u,veF(.) are «-neighbours or simply neighbours if u=u,-&-. *b.u,,
v=u, *a*u,, for w(b)=a in A. Let =&~ be the transitive a.nd
reflexive extension of the relation of nelghbourhood in F(.).

LEMMA 1.1. Relation «¢ is a ongruence on ().

Proof Let u =V and EPL ALY Then u:|_u2..,ulv2..,vlv2 HH

Let D(.) = F(.)/s . We shall show that A is a subalgebra
of D(.).'

Define a value, denoted by [ 1, as a partial mapping from
F(.) into‘\\lA by: [G185 +-- B2l = @@, "’/‘°s(a‘)'

It is easy to see that: '
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1°. [ is a well defined mapping, and that

2°. if u,v are neighbours and u is in the domain of [] ,
then v is also in the domain of [1 and [u] = Lv] . §

The set A can be considered as a subset of D. For, if a::".b
for some a,bel, then there is a .sequence a=uo,ul,...,u_l;_l,ut=b
such that u,,u;, ; are neighbours (0g i<t-1) and a=lal=luyl = ...
«es =[b]=b. -

The fact that w(a)=Ga for every «w¢Q , ag¢A is obvious.

Let Q#Q(1).

If & is am n-ary operator in Q (nz2), then the quasiidentity

) ox® = oyn"lx—-w.axzn'l = Qyn_lo xz2t

is valid in.D%Q). Nemely, for an arbitrary subalgebra A=(A5Q)
of a semigroup S(.) belonging to Dc whose elements a,b satisfy
the relation w(a®) = Q(bn'la), we have: c.)(acn'l) = cf').a.cn'1 =
= ®.al e - (Q(an)).cn'l = (c.)(bn'la.)).cn"l =&, a2t -
=&t g, 000 R el O L G.bn"l.(w(acn'l)) = »
= Q(bn"l(w(acn'l)) for every cgA. On the other hand, the
quasiidentity (4) is not a consequence of the identities in
D%Q). To prove that, consider the algebra A=(A;{w}), belonging
to the variety '{T‘D‘(co) and generated by the set {a,b,c} , with
one defining relation between the generators: 0(a_n)=c.:(bn'la).
The relation c.)(bn'lc.)(acn-l)) = o(acn_l) is not valid in A.
Roughly speaking, starting with Q(acn'l), the element a remains
in the second and the element ¢ in the last place after using
the identities in D%w). 8o, the defining relation can not be
used to change the element a in the second place, because of
the element ¢ in the last.

Thus, by Lemma 0.2 we have shown Theorem 1.

2. PROOF OF THEOREM 2

Let Q = {0} = Q(1). Utilizing Lemma 0.4 , we see that
¢ =M is an identity inpT@Q) iff (l)g = (1)m . On the other
hand, the class of f-algebras defined by the identity of that
type is precisely O (Q) (see [9]). Thus, if Ae VO'(Q), then
AcD() and because P QD Q), AcD Q). We can now conclude
that DTQ) =DA) and that HTQ) is a variety. '
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Let Q = {w,c} =Q(1). The quasiidentity

(5) wx =tTtx—> =

is valid in pr(n) (proceed as for the quasiidentity (4)). An
example of an algebra A=(A;{w,c})belonging to Y05Q) and not
satisfying (5) is the following: A = {a,b,c}, (x)=b for every
x¢A, ©(a)=b, ®(b)=c=x(c). We have «Xa)= (a), but Qa(a)=b;l
#c= 1‘:2(&). The algebra A belongs to 70T (Q) because every Q-term
L &) with d(3>?’ 3, has an interpretation in A equal to ¢ for
g(l):"t’ and to b for ¢(1l)=w.

Finally, let Q = {@} = Q(n), n2z2. The quasiidentity

(6) wry™? - ™ =0y ix

is valid in PTQ). To check that consider an Q-algebra A
belonging to DI'CQ) and its elements a and b satisfying the
relation c.Xabn-l) = «a®). We have: oa(abn-l) = (a?) = B.a" =
=G.a%a = Xat).a = w(abn-l).a = B.a.bn'l.a = G.bn'l.a =

= c.)(bn'la) .

In order to prove that the quasiidentity (6) is not a con=-
sequence of the identities wvalid in ,Dr(Q) define an w-algeb-
ra A=(A;0) as follows: A = {a,b,c} ,

c if dn=c or dn=dn-1=b

Q(dl,d?.”,dn.) ) {a otherwise .
We have o(bcn'l-) = ¢ = (b™) and Q(bcn-l) =c £a= o(cn"lb).
Thus (6) is not valid in A and it is obvious that AcTDF(Q).
Now we can use Lemma O.2 and the proof of Theorem 2 is
completed.

%. PROOF OF THEOREM 3

1°. It is easy to see that u = v is an identity in JD® iff
c(u) = c(v) and d(u),a(v)33 or it is a trivial one. Thus ¥ =
= w is an identity in .Dc(o) or D%(n) iff c(g) = c('vt) or it
is a trivial one. So, bearing in mind that both D) and
D°(n) are varieties ([81,[11]1) we have proved the first part
of Theorem 3. |

2°, An identity u = v is valid in D iff it is trivial or
c(u) = e(w), u(l) = v(1), (Du = (1)v and d(u),d(v)» 3. Thus:

a) § =4 is velid in D) iff c(y) = cM), (1)g = (1)m
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and d(g), d@q) >3, or it is trivial. .

b) § =™ is valid in D(n) iff o(g) = c(), (1§ = (Im,
d(§),dMm) 33 and §(1) =M(J) where s(i) and M (J) are the first
variable symbols occurring in ¥ and'q respectively, or 1t ‘is
trivial.

We can see that every identity valid in O(n) is valid in
D(w). Thus, because both classes are varieties ([93,[11]),
every algebra belonging to J(w) belongs to L(n). The converse
assertion is eV1dently not true. For example, the identity
caxyn"l = Qyxy"” =2 ig valid in D(w) but not in D (n).

30. For an O-~term ¢, denote by § the semigroup term obtained
from § by deleting every occurrence of an operator symbol.rng .
An analogue of Lemma O.4 is the following assertion: an iden-
tity ® =m is valid 1n.D¢(n) ( r(n) ). iff g and W are JD-cor-
‘related (dD ~correlated, resp.). Thus, it is easy to check
that: .

a) The identity c.':xyn'l =c.)xn']i.)xyn"l is valid in D%) and
not inD‘(n). Conversely, Qx" = OFx 1 ig valid in D% n) but
not in D).

b) The identity ©@xcwyx = Pyx®™2 ig valid in o)
but not in DT(n). Conve::'sely,c;\:ccoyen'2 = c@xygn'z is valid
in PT(n) but not in D (w).

Theorem 3 is proved.

2n-3
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IDEMPOTENT SEPARATING CONGRUENCES ON REGULAR SEMIGROUPS
Dragics N. Krgovié

At the beginning of this note we establish some proper-
ties of full subsemigroups of a semigroup S5, whose set of
idempotents E is nonempty. Also, we consider some equivalence
relations on a regular semigroup S, contained in Green's equi-
valence &£ (Proposition 2). We characterize asn idempotent se-
parating congruence § on & regular semigroup 5 in several
ways in terms of congruences and the ¥ -equivalence (Theorem 1)
- snalogously to Petrich’s characterization of any congruence
on an inverse semigroup ([8], Lemme 5,2, Corollary 5.3).

For an orthodox semigroup 5 we introduce the notion of a
normal subsemigroup of 8 and obtain some idempotent separating
congruences on S, contained in & (Theorem 2). This leads to
the characterizaetion of asny idempotent separating congruence
on an orthodox semigroup S (Theorem 3). Feigenbsum [2] intro-
duced the idempotent sepsrating congruence (K) on an orthodox
semigroup S. Here we obtain some equivalent expressions for (K)
(Proposition 5), One of them shows that the congruence (K) can
be defined without the condition a'be K,

If S is an inverse semigroup, then some of the statements
mentioned lead to the characterization of any idempotent sepa-
rating congruence on S (Theorem 5).

As special cases one obtains formulae of the greatest
idempotent separating congruence &w on regular, orthodox and
inverse semigroups respectively (Corollary 2, Corollary 4 and
Corollary 5).

Let S be a semigroup with the set of idempotents E # @.
Recall that a subsemigroup K of S is full if E<K. For any
element a in S, V(a) will denote the set of inverses of a and
V(K) = {xeSl (7aek) xeV(a)}-

The next statement reguires only routine verification, and
the proof is omitted.

LEMMA 1, Let a,b€S and a'e V(a), b'e V(b)., Then

i) @ = ab = ba'e V(a).

ii) a = ba = a'beV(a).
iii) (a = abb v b = a'ab) = b'a' e V(adb).

The staéement iii) of the preceding lemma follows also
from Lemma 1.1 [10] .
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The proof of the following lemma is based on Lemma 1,
LEMMA 2, Let K be a full subsemigroup of a aemigroug“‘ S and
a,be S. The following statements are equivalent, "

(i) (3xeK)(3k'eK)(amkbA b =Xk'a).

(ii) (ve'e V(a))(3 P c V(b))(a'a =Db' b A ab' e K).
(iii) (3 a'e V(a))(3b' e V(b))(a'a =b' b A ab'e K).
(iv) (¥#be V(b))(3e'e V(2))(a'a = b'b A 8b'e K),

Dueally, we have
LEMMA 3, Let K be a full aubsemlgoug of a semigroup 5 and let

a,b€ S, The following gtatements are equivslent.

(i) (3keK)(ak'eV(k))(a = bk' A b = 8k),

(i1) (¥a'e V(a))(3b' e V(b))(aa'= b’ A a'beK).
(11i) (3 a'e V(a))(3b'e V(b))(aa'= bb' A a'bekK).
(iv) (¥b e V(b))(3a'eV(a))(aa'= bb' A a'beKk).

Consider now regular semigroups. The next statement may
be found in [3}, § .II.4.

LEMMA 4, Let § be & regulsr semigroup. Let a,be S and a'eV(a).
Theh

(1) a¥b< (3ab e V(b))(a'a = b'b).
(1i) a¥bed (3b e V(b))(a'a = b'b A sa'= bb' ),
PROPOSITION 1. Let S be & reguler semigroup and a,be S. Let K

be 8 full subsemigroup of S. The following statements are
equivalent,
(1) (@Ek,hek)(3k'eV(k))(3h'e V(h))(e=kb=bh A b=k'a=sh),
(41) (%e'eV(a))(3b'eV(b))(a' a=b' bA aa' =bb' A a'b,ab' € K).
(111) (2e'eV(a))(ab'eV(b))(a'a=b'b A sa' =bb' A a'b,sdb' ¢ K).
(iv) (¥b'eV(b))(3a'eV(a))(a'a=b’'bA aa'=bb' A a'b,ad' ¢ K),
Proof. (i) =» (11)., Let a'c V(a). According to Lemma 2, a = kb
end b = k's implies s'a = d"b for some b'e V(b), i.e, a¥b. By
Lemma 3, a=bh' end b=sh implies se' =bt" and a'beK for some
%« V(b), i.e. aRb, S0, we have a/#b, Then, by Lemma 4, 8’ a=b'b
end se' =bb' for some b'eV(b). Bince K is a full subsemigroup of
B we have ab' = kbb'c K,
The implications "(ii) = (1ii)" and "(iv) =» (iii)" are
triviel.
(111) = (i) This follows from Lemmes 2 and Lemma 3,

(1) => (dv). Let b'cV(b). According to Lemms 2, & = kb and
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b=k'a implies a"as=b'b and sb'e¢K for some a'eV(a), i.0. a &b,
By Lemma 3, a=bh' and b=sh implies as™=bd' for some a"cV(a),
i.e. aRb, S0, we have a¥ b so, by Lemns 4, a's=b’'b and sa’'s=bd'
for some a'eV(a), Also, a'b=g'ash €K.
Definition l. For an equivalence relation o on s regular semi-
group 8, we define the kernel and the trsce of o by

kerot = [{a€B81(30€E) ade}

trd = cﬁ]E

respectively.

The next lemma follows from Lemma 4,
LEMMA 5. Let  be an equivelence relation on a regular semi-
group S, Then

1) = kerd ={seB!(38'cV(a)) sua's}.

il) s =» kerot = {8e8 (7 2'cV(a))(ads'ana's = aa'),
Definition 2, Let 8 be a reguler semigroup. A subsemigroup K
of 8 is inverse-closed if V(EK)< K.

PROPOSITION 2, Let K be & full inverse-closed subsemigroup of
& regular semigroup S and « an equivalence relation on 5 such
that L < & « The relation (K. ) defined on 8 by

a(K)b&d actb A (3b'e V(b)) ab'ek
is an equivalence relation on § for which ker(Ky)=Enker« snd
tr(K“) = trL o
Proof. The relation (Ky) is reflexive because EcK and « is
reflexive., Let a(K.)b i.es acth and ab'eK for some b'eV(b).
According to Lemma 4, a'a=b'b for some a'e¢V(a). Then bs=ba'a
implies, by Lemma 1, ba'eV(ab' ). Since K is inverse-closed we
have ba'e¢K. Thus (Ky) is symmetric. Let a(Ky)b and b(Ky«)c.
Then actb and b ¢ implies a c. Also, ab' , bc'e K for some
b'e V(b) and c'eV(c). By Lemma 4, ek b implies a'a=b'b for some
a'e V(a). Then ab' be'eK implies aa'ac’eK, i.e. ac’eK. Thus
a(Ky)c, so (Ky) is transitive. Therefore (Ky) is an equiva-
lence relation on S.

Let a eker(Ky) i.e. a(Ky)e for some e ¢E. Then ad e and
ae'e K for some e'c V(e), so ker(Ky)c kero . According to I:einnn‘i,

a' a=e¢’ e for some a'c¢V(a). Then a=a(a'a)=ae'e ¢ K, Thus

ker(Ky) cK. Therefore ker(Ky)c KNnker .

Conversely, let ke KnkerX . According to Lemme 5, ko k'k
for some k'eK, Since k(k'k)=k € K we have k(XK,)k'k. Thus
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k € ker(Ky). Therefore Knkerd c ker(Kd)

Let e,f € E such that e(Ky)f. Then eo f. Conversely, let
e f. Since £eV(f) and ef € K we have e(Ky)f. Therefore
tr(Ky)=trod . :
COROLLARY 1., Let K be a full inverse-closed subsemigroup of &
regular semigroup S. The relation (Ky) defined on S by

a(KJu_)b &> (apb A (3 b eV(b)) ab'ek) _
is an idempotent seperating equivalence relstion on S for which
ker(Kﬂ) = Knkerp .

Next we consider idempotent separating congruences on a
regular semigroup S.

LEMMA 6, ([4]). If S is regular, then a congruence gon 8 is
idempotent geparating if and only if ¢ c.f[

The next proposition follows from Lemma 5 and Lemma 6.
PROPOSITION 3, Let 9 be an idempotent separating congruence
on a regular semigroup S. The following statements are egu:.va—
lent,

(1) aekerg .

(ii) (3 d'e V(a))(aga'a A a'a = aa' e
(iii) (3a'eV(a)) aga'aga',
(iv) (3e'€V(a)) aga’s,

(v) (3a'€e V(a)) ag aa',

The following theorem describes idempotent separating con-
gruences on a regular semigroup. The corresponding characteri-
zation of a congruence on an inverse semigroup is due to Petrich
([8], Lemma 5.2, Corollary 5.3).

THEOREM 1. Let ¢ and 13 be idempotent sepsrating congruences
on a regulsr semigroup 8 such thet ¢< ¥ . The following sta-
tements are equivalent.
(1) agb,.
(11) egb A (3b'e V(b)) ab' e kerg .
(1i1) apb A (3b'e V(b)) ab € kerg .
(1v) afb A (3 Ve V(b)) ab'c kerg .
(v) (32'eV(a))(3v'eV(b))(a'a=d'b A aa' =bb A ab e kerg ).
Proof. (1) = (ii). Let agb. Then ax b and ab' g b for every
b'e€ V(b), so that ab € kerg .
(i1) = (111). Let a§b. Then apb because s is the grea-
test idempotent separating congruence on S,
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(1i1) = (iv) = (v). It follows from Lemma 6 and Lemma 4.

(v)=> (i), Let a'a = b'b, aa'= bt and ab' € ker¢ for
some a8' € V(a) and b' € V(b). Then 8'a = b'b > (a €bAdRV )

=» (ab' £ bb' A aa'’ Rab' ). Since aa'= bt we have at/ X bt .
But, ab' € kerg implies that ab'g e for some e ¢E. Then

ab'# e, which implies bb’' = e. Therefore ab'¢bb’ so that

a=asa=2abbg bbb = b,
COROLLARY 2. Let 8 be a regular semigroup. The following sta-
tements are equivalent.

(1) apb,

(i1) e#b A (3b'e V(b)) ab € kerp

(1i1) (sa'eV(a))(sb'e V(b)) a's = b'b, as’ =bV , ab'ekerp.
COROLLARY 3. Let S be a regular semigroup snd K a non-empty
subset of 8 such thet K < kerm. The following statements
are equivalent.

(1) apb A (3V € V(b)) av' € K.

(i1) aZb A (3abv'e V(b)) ab'e K,

(iii) (3a'eV(a))(@b'eV(b))(a'a = D' braa'= bb' A ab' € K).

The next proposition may be found in [2] (Theorem 3.1).
PROPOSITION 4, If S is sn orthodox semigroup then

apMbes (3a'eV(a))(ab' e V(b))(a'amb' b,sa’ =bb' ,8'b,ab ckerp).

Corollai'y 2 shows that the condition a’'be kerft in Propo-
sition 4 is not necessary.

Recall that a subsemigroup K of a regular semigroup S is
self-conjugate if a' Ka = K for all aeS and all a'e V(a).

The next lemma follows from Lemma 4,

LEMMA 7. Let K be an inverse-closed selr-con,jugate Bubgemi -
group of a regular semygroug 8. Let a,beS and a' e V(a),
b'e V(b). Then

(a¥b A abeK)=>abek,

Let S be an orthodox semigroup and ¢ a congruence on S.
Then kerg is a full self-conjugate subsemigroup of S, Lemma 2.3,
[6] shows that ker@ is inverse-closed.

Definition 3. Let S be an orthodox semigroup. A subsemigroup
K of S is.normel if K is full, self-conjugate and inverse-
~closed.

Remark. If . 9 is & congruence on an orthodox semigroup S then
kerg is a'normal subsem:.group of Se
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THEOREM 2. Let K be a normal subsemigroup of an orthodox se-
migroup S and ¢ a congruence on S such that ¢ < ée .+ The
relation ( Kg ) defined on S by

a(K )b &> (agb A (3be V(b)) ab’eK)
is 8 congruence on S for which ker (Kg ) = Knkerg snd
tr (Kg )'-trg.
Proof. According to Proposition 2, it suffices to prove that
( Eg ) is compatible. Let a ( Kg )b and ceS, Then agb
and ab'e K for some b'e V(b). According to Lemma 4, a’a=b’b
for ‘some a'éV(a), Then ace’b = ace'b' bb = acc'a’ ab' =
= (acc’a’) ab'¢K, Since ¢'b'eV(bc) and a §b = (ac) @ (be)
ve heve ac (Kg )bc, Also agb =) ca @ cb. Since cgb’'c'ek
snd b'c’' € V(cb) we have ca (K¢ ) ob.

The main characterisation theorem for idempotent separa-
ting congruences on sn orthodox semigroup follows.
THEOREM 3, Let S be an orthodox semigroup snd K 8 normsl sub-

semigroup of S such that K < kerm . The relation (KJ...) defi-
ned on 8 by

a(Ky_) bed aub A (3be V(b)) sbe K
is an idonpotont aegarati ng congruence on S and ker (Ky)=K,
Conversely, if ¢ is an idempotent sogaratig;,congruen-
ce on B then kerqg is 8 nomll subsemigroup of 85, ker¢ < kerf«.
end ¢ = (En), where K = kerg .
Proof, The direct part follows from Theorem 2. According to
Remark and Theorem 1, the converse is true.
The following theorem is due to Feigenbaum [2],
THEOREM 4, ( (2], Theorem 3.3). Let 8 be an orthodox semi-
group, X = {E<B I EcEskerp and K is a self-conjugate re-
guler subsemigroup of 8} and the relation (K) defined on 8 by
a(K)b ¢ (38'eV(a))(3Bc V(b))(a' a=d' b A a8’ =bb' A 8}’ ,a'bek),
The msp K —»(E) 48 8 1 - 1 order preserving msp of K onmto
the set of idempotent seperating congruences on 8.
According to Lemma 3, [5], we have
= {KSBIEsKskerp snd K is a normal subsemigroup of S}.

Corollary 3, Lemms 7 and Proposition 1 imply the follo-
wing statement.
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PROPOSITION 5, Let K be a normal subsemigroup of sn orthodox
semigroup such that K < kerp . The following statements sre
equivalent.

(1) a (K) b.

(i1) (sa'eV(a))(ab'eV(b))(a'a = b'b A sa’'= bb' A 8b' € K).

(iii) (3k,heéK)(3k'eV(k))(ah'e V(h))(a=kbubh A b=k'a=sh),

(iv) a (Kn) be

(v) 8#b A (3be V(b)) ab e K.
COROLLARY 4. Let 8 be an orthodox semigroup. Then
apub<=d (3k,hekerp ) (3 k'eV(k))(3h'€V(h))(ankb=bh' A buk'a=ah),

If 8 is an inverse semigroup then kery = EY, where EY
is the centralizer of E (8). Since EY is a semilattice of
groups we have aal « a™la for every a ¢Ex . Sugpose that
K< E3 end a,baS such that a~la = b1b and ab~le K, Then
sa”! = salaa™l = ablba™l - va~lav™! « bb~lbb™! m bb7Y,
because ab~lg EY and ba~l = (ab'l)'l. Therefore, according
to Theorem 3, Proposition 5 end Lemma 2, we have
THEOREM S5, Let S be an inverse semigroup and leggg_ggg of
all normel subsemigroups contained in Ey . Let K€ XK. The
relation Q, defined on S by

29y b¢=> (Fkek) (@ =kb A b = x1a)
is an idempotent sepsrating congruence on S and ker ¢, = K,

Conversely, if 9 is 8an idempotent separating congruen-
ce on 8, then kerge X emd ¢ = gkerg .

Notice that the preceding theorem is also the consequen-
ce of III,3,6 Theorem [9], Theorem 4,4 [8] and Lemma 2,
COROLLARY 5, Let S be an inverse semigroup. Then

apb¢= (3keEy ) a=1kb A b=k a),
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ON UNIBRANCHED RINGS AND A CRITERION FOR IRREDUCIBILITY
IN THE FORMAL POWER SERIES RING

Aleksandar Iipkovski

l. An important tool in classification of algebraic sin-
gularities is the process of normalisation. It is a morphism
of varieties f:X—Y, locally of the type f:SpecB—»SpecA where
AcB is an extension of domains, §(P)=PNA and the ring B is
the integral closure of the ring A. A natural discrete para-
meter associated with a singular point yeY is the number of
points in X which lay above ¥ . A simple example is given
by normalisation of the following two plane singularities.

y2= x2(x+4) y2=x3

o (S

In the first case this number is 2, in the second 1. A singu-
larity for which this number is 1 may be called unibranched.
Since the points of the fibre §#'(4) correspond to the maximal
ideals in the integral closure of the local ring @b of the
point 3€§f, the local ring Qf ‘such a singular point must have
a property that its integral closure has just one maximal
ideal. This makes the following definition reasonable.

Definition 1.1. A local domain is unibranched, if its inte-
gral closure is a local ring.

This class of local rings is a natural generalisation of the
class of integrally closed local rings. As far as I know,

for the first time they appeared in [8](p.127). Not much is
known about §uch rings. Here we list some of the known facts.

THECREM 1.2, Tet A be a local domain with field of fractions

¢
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)

K A is unibranched if and only if every overring B of A
contained in K, which is a finite A-module, is locg (see
(3]p.403, [6]p. 151). : )

THEOREM 1.3, If (A ) is an inductive system of unlbran-
ched rings A w1th 1n:]ect1ve local homomorphisms & “p then
the direct limit ring A= g_rg A, is unibranched (see [6]p.151).

THEOREM 1.4, Property of being unibranched is not hereditary
with respect to localisation (see example in [6]p.149).

A local doma:Ln is called analytically irreducible if its
completion A (in adical topology of its maximal ideal) has
no zero divisors. We say that A is a geometrical ring if it
is a finite algéebra over an algebraically closed field of
characteristic zero. In a geometrical local domain A, the
number of prime divisors of the zero ideal in A is equal to
the number of maximal ideals in the integral closure A of A
(see [10]p.135). Therefore we have the following ‘

THEOREM 1.5. Let A be a geometrical local domain, Then, A
is unibranched <> A is analytically irreducible (see also[71).

In the general case only the implication " A analytically ir-
reducible = A unibranched" remains valid (see [3]p.403, [6]
p.151).

In [8]it is mentioned one more result on unibranched
rings, belonging to W.-L. Chow, but as far as I know there is
no published proof of it. It may be of some interest to give
it here.

THEOREM 1.6. Let (A/M) be a Noetherian unibranched local do-
main. Then the projective spectrum Ptg(GtA) of the ring GrA= -
~@‘m/m""‘ is connected.

Proof. let 4 be the residue class field of the ring A
S-Q M" and PwjS the blowing up of SpecA in the closed
point M . There is a canonical birational projective epimor-
phism §:PwjS —>SpecA which has a Stein factorisation (see
[11] p.358) PtoS —’—’Z-—-'.SPCCA where A is finite _and
3:%=0, . Therefore £ is affine, Z=SpecB® where B=40s ,
8 is a finite A-module. Since SpecA is irreducible, we may
consider Z. to be irreducible too. By extending a base to




Speck  we get %

P=PujS S aSpeck ¥ Prgj (GTA)

and a diagram

p —t - spm-_t—,sy«&

t d i
Pc}lyb'-—l-—-, specB —B o &p!:A
in which all the squares are products., But a.(%:@B and (see
[11] p.327) }3Q,=P,C'(% =j',,@s =§*0= Oamp - Therefore, the mor-
phism p has connected fibres (see [111p.357). But A is uni-
branched, therefore B is local, SpecBMB consists of one po-
int and the fibre above this point is exactly P=Ptq(c‘"A).Q.E.D.

2. The interest for this class of rings arises also in
a global situation, when investigating homeomorphisms of va-
rieties in their Zariski topologies. In the case of curves
this topology is cofinite. Therefore each two algebraic cur-
ves are homeomorphic (see [11]lpp.40,52). It is another ques-
tion if this homeomorphism could be achieved by an. algebraic
morphism and how much could such a morphism differ from an
~isomorphism. Yet more complicated is the situation in higher
dimensions. Therefore, there is some interest in investiga-
ting morphisms 4:X—Y which are homeomorphisms in Zariski
topologies. In algebraic language this is equivalent to ring
extensions ACB which induce homeomorphisms of spectra
SpecAx SpecB  and which therefore may be called homeomorphic
extensions. In [9] the following is proved.

THEZOREM 2.1, If A .and B are geometrical rings, a homeomor-
phic extension A<B must be a finite extension.-

It can be treated somewhat more general case of ring exten-
sions A<B which induce a bijection of spectra. In other
words, over each prime ideal in A lays exactly one prime
ideal in B. In [5] such extensions are called unibranched
and in [1]) the case of equality SpecA=%ecB is treated. In
dimension 1 homeomorphisms and bijections of spectra are of
course the same, but it is not so in higher dimensions (see
example in [9]). (

The connection between these notions and unibranched
singularit\ies is the following. If $:X—>Y is the normali-
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\

sation of Y and § is a bijection, then Y could have only ,

unibranched singularities. ’ . S J\

3, Let X be a smooth n-dimensional algebréic var\:i.éty

(the embient space), S€X a hypersurface and gGS Let
| @8 (?y /@) be a local ring of the point § on S., f= (X, X)E

eK[x" ,X»] the local equation of § in X . By completlon we
get @ )s= Kf[x.»,x:ﬂ/( ¢) where KIIX,.,X,11 is the ring of formal po-
wer ser:n.es in n indeterminates over K. . From the 'bheorem,l 5.
it follows that ges is a unibranched sing;uiar p'oint if and
only if the polynomial § is irreducible in the ‘i‘ormallpower
series ring (we say analytically irreducible). Therefore in
the classification of such singularities it is of certain in-
terest to find a criterion for analytical irreducibility. In
the case n=2 such a criterion, an algorithm, exists.

IEMMA 3.1. If the series #€KIIX)Y]l is irreducible, its low-

(see [41p.11,[11]1p.61).
Let now {= EfﬂxPY" be the formal power series, A(f) be

the set {(p,;)lmeﬂu{o} $p4#0) . Consider the boundary of
the convex hull of the set A@)+R%2, If 4#Xu and f#Y-v,
this boundary consist of two halflines along the coordinate
axes and‘'a compact polygonal line. This polygonal line is
called the Newton polygon for 4 and denoted N(f) (see [2]p.
505,[4]1p.89).

LEMMA 3.2, If 4 is irreducible in KI[X,Y]l, its Newton poly-
gon is a straight line segment (see [4]p.90).

get L(#)= ZNG; XPYY and for an irreducible § let N() ve
(pa)eNg)

the segment (mpo)(o,») . We may consider n{m,

LEMMA 3.3, If 4 is irreducible and ol=M(m,n), then there

exist a@eK-{s} such that L@)= a.(Y”/‘"-GX"‘/“)d' (see [4]1p.91).

Let’s now briefly describe the algorithm mentioned above,
Suppose that n divides m. By setting Y'= Y-6X™ we get a
new series 4' with n-n and m'<m. Repeating this and even-
tually interchanging X and Y (to have always n<¢wm) we arrive
to the case when n does not divide . Now set €= n,e,,'-M(M,n)«.
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and m'=m/e,, n'=n/e, , Find the (unique) solution of the Dio-
phantine equation hm -on'|=4 with 0¢ 2¢mA ,0<¢e<n/2 and
set X=U" V‘ . Y U™V?. We get a new series £, (U,V)=
-Z}w(wu V¥t uhere T is the transformation of the pla-
ne Nt given by (pq)r> (privgm,pr+qs) , k=mn/e, and £ =min (xman),
Now there exist a,eK-{o} such that L(f,)= a(v-8)* (lemma 3.3.).
Set X=U, Y=V-6 . We get the series 4,(X,Y) with n=e, . By
continuing this process we get the natural numbers e,>€,>¢>...
so the process must finish after a finite number of steps.

THEOREM 3.4, If the series #€ KLIX,Y]l is irreducible, the
described algorithm can be completely applied (see [4]1p.10l).
COROLLARY 3.5. Let J(X)Y) be a polynomial. If the described
algorithm for 4§ fails in some step, § is analytically re-
ducible.

As an illustration we give here some examples.,

Example 3.6. The polynomial Y'4+2X3% X®-X°Y is analytically
irreducible.

Applying the algorithm, we have m=6, n=h ,2.=4  ,&=2

Then LU)=(Y2x3)* , v=6=4 , k=42 ,L=4 and T:(pg)>(p3y,pH).
we get $4=WH)*-UVZ | L= -X+Y2+2XY~XY?, The last polynomial
has Mm=4, n=2 | ¢,=4 and this is the end of the algorithm.

Example 3.7. The polynomial Y'+2Xy2+X*-X'Y* is reducible.
We get 4=+ UVZ and £4=-X%Y2H2XY - X3Y% | Now L(#4)=

=Y2X2=(v-xX¥+X) and §, (and $ too) is analytically reducible.
Naturally, this could be seen easily: §=(Y&X3+x*Y)(r%X3-X?v).

Example 3.8, The polynomial Y LY X -X°Y  is analytically
reducible, despite its irreducibility.

Here it is L= Y% x> 4+ X # o(Y:6X*)*  for any A-,G and the
algorithm cannot be applled. We have _4,

g =Y+ 80 kv ][ Y2+ (- ) C+ B XY+ ]

Any generalisation of this algorithm in the case of more
than two variables would be of great interest. Regretfully,
lemma 3.1. fails already in the case of three variables, as
the folloiqing simple example shows,
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Example 3.9. The polynomial #(xY,2)=YZ + X3 has a lowest
degree form YZ which is a product of two nonprovortional
linear forms. Although if it were YZ+X’= (Y+31+ )(Z+E~+ )
we would get ¢,Z2+A,Y= x® , But 322'*&;( (aX3..)Z+ (BX%. )X
and it could not contain the term X2
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n-SUBSEMIGROUPS OF SEMIGROUPS WITH NEUTRAL PROPERTIES
Smile Markovski

In the paper [1] (this volume), G.fupona give a sufficient
condition the class of n-subsemigroups of semigroups belonging
to a semigroup variety to be also a variety of n-semigroups.
Here we consider some varieties of semigroups which do not sa-
tisfy the mentioned condition, but the class of their n-subse-
migroups are varieties of n-semigroups as well.

1. THE VARIETY OF SEMIGROUPS Ok i® The variety of semi-
’
groups Ok ; is defined by the semigroup identity
’

(1.1) ooooXp = XooooXy YXyoooXyy

where X, and y are variables, k and i are integers such that
k=20, 0<ic<k+l.

1.1. The semigroup equality

(1.2) KyeooXo = Yooou¥y

= 1 “i-1’

is a nontrivial identity ig‘Ok,i iff s,r 2k, x°=y°,...,xi_ =y
Kokti = Yp-g+ir-c-r¥g T Ypo

It follows an easy description of the free semigroup
consists

A
of all nonempty sequences of elements of the set A with lengths

EA = (FA,°) in Ok,i generated by the set A. Namely, F

not greater than k+1, and with an operation defined by

; ad...as, if s<k
A, eeed_*a

ceea, fe e i >k.
R EPL M R if s>k

If Cis a class of semigroups, then by ((n) we denote the
class of n-semigroups which are n—subsemig&oups of semigroups in
C. (see [1].) Here we show that the class of n-semigroups
Ok,i(n) is a variety, which is finitely axiomatizable. We denote
by [.J the m-ary operation of the n-semigroups, and x’s and y's
are variable§.

\
1.2. The class of n+l-semigroups Ok,i(n+l) is a variety
defined by the identity

-
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(1.3) [xo"‘xi-1y1"‘ynp-kxi"‘xk] =[x .eex_ 2, ... ‘

"'znq-kxi"'fk]
where p,q are the least positive integers such that np—k >0,
ng-k > 0. ’

Proof: As a consequence of 1.1 we have that (1.3) is sa-

tisfied in any n+1-subsemig)roup of a semigroup in Ok i and,
14

furthermore,

(1.4) [XO"'xsn] = [YO'“an] ‘

is a nontrivial identity in the variety of n-semigroups defined

by (1.3) iff Xo=Yore-- PXy =Y, ’xns-k+i=ynr-k+ii ce e s Xp SV
Now, let A = (A, []) be a given n+l-semigroup which sa-

tisfy the identity (1.3). We will construct a semigroup

E€0k’i such that A will be an n+l-subsemigroup of éA.

Let -F—A be the free semigroup in Ok,i generated by the set
A. Define a relation |~ in F, by u=---a-~- |- ---a,...a ---=v
(u,ve F,), where a = [ao "'amn] in A, and let | = |-U |—-'1 .
Then, the transitive extension :z of || is a congruence on FA
(see [1]). It is enough to show that = separates the elements
of the set A, i.e. a,bEA = (azb = a=b), because in that

case we can take A" = F,/..

An element ué FA is said to be irreducible (reducible) if
its length is less than k+l1 (bigger than k). Using (1.4) we de-
fine a partial mapping [ ] of Fp into A as follows: [u] =a if
u=a...a inF, and [a ...a ] = a in A. Note that all redu-

cible elements of Fp are in the domain of [ ].

Let u,v,wve Fp. It is easy to check this properties:

(1) u I~ v, u is in ‘the domain of [] =>[u] = [v].

(11) uiHw HHw,}|H ... 4w v, u and v are reducible,
g are irreducible => [u] = [v].

We will prove only the last implication. Namely, as

Wy pooo W

W,,...,w_ are irreducible, we have that |w1| Z... = |ws| (mod n),
A such that 2|w1| + |w| = 1(mod n), i.e.

wiwwi is in the domain of [ ], for i=1,2,...,8. Thus we have:

upb—w, ... |—|wB|—-|v => u=uwu | —w wul—w wwl... stws

|—|vwws|—1vwv =v ->[u]=[uwu]=[w1ww1]=...=[wswws]=[vwv]=[v] .

8
and so there exist wgF
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Now, let a,bé A and a *b. Then there exist Ugpeoo Uy eF
such that alHu, du ...|-u b, and (1) and (11) implies
that a=b.

2. VARIETY OF SEMIGROUPS Ok 1,5 The variety of semigroups
’ ’
Ok 1,3 is defined by the identity
’ ’
XowooXy = XoeaoXy_ Vyeoo¥yo XyeooXy
where k 20, 0 si<j sk+l.

2.1. The semigroup equality

KoeooXg = Youuo¥,
is an identity in the variety Ok,i,j iff it is trivial or
s>k, r>k and LTS CYRERNE TP FPPL RN b (S PETENE S A0
As a consequence of 1.1 and 2.1 we obtain:

2.2, i<3 =0, ;N0 5=0

In the same manner as in 1.2 one can prove that,Ok,i,j(n)

klilj.

is a variety, i.e. we have:

2.3. The class of n+l-semigroups Ok i j(n+l) is a variety
r=-r
defined by the identity

[xo"'xi-1yi'"an—k+j-1xj"‘xk]

= [xo“‘xi-1zi'"zqn-k+j-1xj'°°xk]

where p,q are the least integers (p,g=0) such that pn-k+j-120,
‘gn-k+j-1>0.

3. REMARKS.

1) We note that the condition (a) of [1] is not satis-
fied in either of the varieties () 4 and Ok,i,j‘ In fact, the
condition (a) can be made a little more complicated such that
the above varieties are in its scope, but that will not give
the best posible generalization.

2) One can investigate varieties of semigroups similar
to Ok,' and 0 ,1,]' Namely, let p be a permutation of the set
{0,1,2,...,k}, x's and y’s are variables, and consider the
semigroup identities

(3.1) ceeX

Xo 51t X TRp () Xp (-0 ) ¥p (1) " Fp (k) !
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(3.2) \x°°"xk=xp(o)"'xp(i1-1)yi1xp(i1+1)"1

"'xp(ir-1)yirxp(ir+1)"'xp(k)'

Then one can prove that either of the varieties of semigroups
defined by (3.1) or (3.2) is equal to the variety Ok,m,M for
some m and M. (We assume that p(s) # s for some s in (3.1).)
Namely, let q'be the least integer such that p(q) # g, and t
be the biggest integer with the property p(t) # t. Then we have
m=min{i,s} and M=max{i,t+l} for (3.1), and m=min{q,i,},

M=max{ir+1,t+1} for (3.2).
3) The results of this paper are generalizations of the
results obtained in [2]. ) -
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ON THE EMBEDDING PROPERTY OF MODELS
Zarko Mijajlovié

0. INTRODUCTION

In this paper we are interested in those oclasses of mod-
els which admit the embedding property (abbreviated by EP).
However, in most cases we shall assume that the class is ele-
mentary. In the first part we state several properties which
are equivalent to EP, In the second part we apply these results
to consider the amalgamation property (abbr. AP) of models. We
recall that the importance of this notion arises from the study
of homogeneous-universal models.

Now we introduce some terminology. A first order lan-
guage is denoted by L, the language of a theory T by L(T), and
of a model A by L(A). If not stated otherwise, it is assumed
that L(T) is countable. Universes of models A, B, C, ... are
denoted by A, B, C, ... respectively, and the cardinal num-
ber of A by A . The class of all models of a theory T is de-
noted by MU(T). Concerning other basic notions and definitions,
we shall use them as they are introduced, for example, in [1].

Robinson forcing (finite and infinite) will be one of
the tools used here. We shall follow the notation introduced
in [4]. Therefore, (M) denotes the set of finite pieces
(i.e. conditions) of a class of models M . If A is a model
then gD(A) stands for (D({A}). 1fr @ is a set of conditions,
and pe @ , then C(p) denotes the set of all new constant sym-
bols which appear in p, i.e. symbols in p which belong to C,

C is the set of new constant symbols added to L, and used in
the notion of forcing. We recall that Tf denotes the finite
forcing companion, and pF denotes the infinite forcing com-
‘panion (cf. (3. :

A class of models Tl is said to have the embedding pro-
perty iff for all A,BE€ N there is a model CeM in which A,B
are embedded. 1r M= M(T) and M has the embedding property,
then, by definltlon, T has EP also.
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1.THE EMBEDDING PROPERTY

In this part we state and prove several properties
equivalent to EP. It should be observed that most resﬁlts may
be simplified if it is assumed that T is universal, i.e. if
T= TV (Tv denotes the set of all universal consequences of T).
This assumption is made in [6al, for example. The theorem be-
low is applied to an arbitrary theory in a countable language.
Many of the listed equivalences are known as stated in the theo-
rem, or in a similar form, but having all of them at one place
and some new proofs as well, might be of interest.

THEOREM l.i. Let T be a theory in a countable language. Then

the following are equivalent: ‘

1. T has EP,

2, Ty has EP,

3, If ¢,V are 2:3 sentences of L, then the consistency of
theories T +f , T +Y implies the consistency of T +¥+ V.

4, The class of all countable models of T has EP,

5. The class of all finitely generated submodels of T has EP.

6. T has EP for arbitrary set of models of T, i.e. for any
family 5_1, i&I, of models of T there is Ck T in which
all A, s are embedded.

7. Por each cardinal number k, the theory T has a k-univer-
sal model. (If A is a such a model, then it may be assumed
lAlsZ ; for an arbitrary language L, |A] = zmax(k Lll))

8. For all conditions p,qe ®(M) if c(p)NC(q)=@F, then
I Pm).

9. 15 a complete theory.

10. ¥ is a complete theory.

11. There is a model A of T such that ® (M)= P (a).

12, There is a submodel M of T such that all models of T are
embedded into an elementary extension of M.

Proof In several cases we shall use (implicitly or expli-
citly) the following well-known theorem
(%) A is a model of Ty 1iff A is a submodel of T.
With this theorem we can transfer arrow-diagrams be-
tween theories. In that manner we obtain the following con-
sequence:
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(%) If T and T° are theories of a language L such that
T =T" then T has BP iff T’ has EP.

The proof of this fact can be seen on the displayed
commutative diagram: '

C «_ A,B,C T
~ T~ e
~ \"\ A 'E 'g = T

/ L4 L4 (4 \‘v

A—>A"——>C ¢—— B  «+———B
= - - - - arrows stand for
embeddings.
Given A,BF T and assuming that T° has EP, models A’,B’, C°
and embeddings are obtained using (%) and EP of T°.

One important case of the application of (x%) is when
the theory T is complete, as in this case T’ has EP,

By the way, Claim (»%*) gives us a proof of (1<4~2). Now
we proceed to the proof of the rest of Theorem.
(1<>3) Assume (3), and let A,B be models of T, and assume
they cannot be embedded in a model of T, Then the theory

T+ AA+AB is inconsistent, so there are finite pieces p(2)s AA'

a(d) e AB' %,d €C, so that T+p+q is inconsistent. We may as-
sume that {cq,...,cp) Nfdy,...,d3=F. Taking ¢ (3)=Ap,
Y(3)= Aq, we have Tk (P(8) — 1Y(3)). as 3,2 do not belong
to L, it follows Tk VX V9 J( LX) A ¥Y(F)). Therefore,

T (3R YLER) A 3F¥(y)) and Ak 3%F(X), Bk IFVYD,
contradicting our hypothesis,

(4 1) This equivalence follows immediately by the equiv-
alence (1¢>3) and downward LSwenheim-Skolem theorem.

(5¢>1) similarly to (1€>4). Observe that if < is a 39
sentence which holds on A, then ¥ holds on some finitely
generated submodel of A.

(L—6) If T has EP, then obviously any finite set of models
of T can be embedded into a model of T. So let A;, i€I, De
models of T, let T° be the theory which consists of T and di-
agrams of models A;. As it was observed, T’ is finitely con-
sistent, therefore, by compactness argument T’ has a model C.
In that model all A;“s are embedded. ’ '
(6 —>17) . One may choose a collection of all nonisomorphic mod-
els of T of the cardinality <k,

(7—1) ' If A,B are models of T and k=max(|Al, [Bl), then A,B
can be embedded into a k-universal model of T.
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(1—+8) If p;ge P (M) then there are A,B€M such tlhat their
simple expansions A’,B” satisfy p,q. By EP there is C so that
A,B are embedded into C. Thus, simple expansions of C éatisfy
pUdQ. , S ,‘

(8—4)  Assume A,B are countabtl? models of T, and let 4,,
.AB be diagrams of A,B respectively, so that constant symbols
in AL are c,; s, and in AB they are cZi+1's, i€ w , Further,

let .
X= {pua: ps4,,as 45, IpVa| < MH,}.
Then the following set is generic
6= {re P M): for some s eX, r<s}.
To prove that assertion, it suffices to check the following
conditions )
(1) peG and q<p implies q €G. .
(ii) If p,q€G then there exists reG such that psr and gsr.
(iii) PFor each sentence < in LUC there exists p €G such
that either pi—¢ or pl—1%.

The first two claims trivially hold. To verify the third
one, let ¥ be any sentence of LUC. There cannot exist condi-
tions p,q such that pl~%¥ and ql~19, as otherwise pU q would
force both € and 1¥. Therefore, #l~1f or #I-11F, and con-
sequently there is s€$ such that si-? or si-1°.

Let M be a generic model generated by G. Then M is a mo-
del of T, and as Tf=Ty 1t follows MkTy. Further, if 6€4,
then p={e} is a condition , p belongs to G and pl~ €. Hence,
Ml © and therefore M is a model of A‘. Thus A is embedded
in M, In a similar way we can prove that B 1s embedded in M.

By (%) M is a submodel of T, thus A and B are embedded in a
model of T,

(8—>9) The theory 7T 15 the set of all sentences forced by
#, so by the proof of (iii) in (8 —>4), we have @gI1f or
gl=1f for any sentence <, hence 1Y€ #f or Tpent.
(9—1) 1z 7% 1s complete then Tf has EP. As Ty=T{ the im-
plication holds by (%%).

(10 —1) Similarly to the proof of (8«>1).

(7—>11) Let A be an }(&-univérsal model. If p € ?('m,), then
all sentences from p are true in some simple expansion of a
countable model B of T. As B is embedded in A, it follows that
Ap holds in a simple expansion of 4,i.e. peP(4),s0 @(5):@("!).
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(11 > 8) If C(p)N C(q)=@ then obviously p,qe @(A) implies
pVUae P(4).
(9 —12) 4as rf ig complete, then for any model A of 1T we have
Tf=Th(A), hence Ty= Th(A) . Thus, for any model B of T there is
a model C of Th(A) in which B is embedded. As C = A there is
D in which A and C are elementary embedded.
(12 —1) If all models of T are embedded into a submodel M
of T then T = Th(M) . The theory Th(M) is complete,s0it has EP.
Therefore, the implication holds by (x%).

2.THE AMALGAMATION PROPERTY

A class of models M 1s said to have the amalgamation
property iff for all A,B,C €M and embeddeings J:4—»B,
[2:A — C there is a model D
and embeddings dJd°:B —>D,
(37:C—> D such that the dis-
B [+] played diagram commutes.,
:L\ /' If the class of all models of
A ¥ a theory T has AP, then it is
said that T has AP,
_ Therefore, the amalgamation property of a class m is
a localization of the embedding property at every model A of
M . This property has been studied in general cases (cf.[Sa],
[5¢], [6v], [7], ete) as well as in some concrete cases (groups,
semigroups, Boolean algebras, etc.). We shall make a few addi-
tional remarks. First, we observe the following fact which
might be operative in proving that some classes have EP.

Lo 2\ !
/ \(5
(€Y}

PROPOSITION 2.1, A theory T has AP iff for every model A of
T and all Z?L sentences ¢,Y of LU{a: aeA}, the consistency of
T+ AA+‘f’ , T+ AA+ ¥ implies the consistency of T+ AA+ P+Y.

'This proposition is an immediate consequence of Theo-
rem 1.1. As in case of EP some weaker assumption on elementary
classes of models can be made in order to have AP,

PROPOSITION 2.2, A theory T has AP iff T has AP for count-
able models A’ in diagram'(.s).

Proof We ‘shall use the criteria given by Proposition 2,1. Sc
suppose T+ \AA+Y’, T+ AAHV _are 9onsistent theories, where AkE".
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Assume that T+ 4 +‘P+?’ is inconsistent.Then there 1s Zz CA
such that ®+Z+F +‘¥ is inconsistent. Let A°< A be such that
A’ contains all a’s which occur in £, and (A’ Is }’{o": Phen
T+ AA:+T+Y is inconsistent, contradicting the fact that A’
is countable, and that theories T+ AAre-‘f’, T+ AA;+‘f' are con-

sistent.
Example 2.3. Amalgamation of Boolean algebras.

We show that the class of Boolean algebras has AP by
use of the technique considered in the paper. The main tool
wil]l be the criteria given by Proposition 2.1, So let A be a
Boolean algebra, and assume T+ AA+‘1’, T+ AA+Y are consistent
theories, where T is the theory of Boolean algebras, and ¥ ,Y
re Eg sentences. Let 2 € A, be a finite set and BSA subal-
gebra generated by elements with names in T U{¥,Y}. Further,
let D,C be finite Boolean algebras so that B<C and B<D, and

CET™Z+f, DR M+Z+Y,

As D,C are finite Boolean algebras, there are embeddings
L:iC — 0, (3:_12 —> 1, where SL is a countable atomless Boole-
an algebra. If Jd°, (A" are restrictions of d,[(3 respectively,
then by the homogeneity of Sl(v.s. (5b)) there is m € Autfl so
that A0 L’=L., Thus, for some simple expansion §L° of SL we
have 1°B™ Z+P+Y . Hence T+ AA+‘P+'f' is finitely consistent.

In some cases it is possible to transfer the diagram
g.-*-A_ —@-»_(_2 into some other class of models, to complete there
and to transfer back to the original class. This situation is
described best in the language of categories. By an elementary
category of models we mean a category ¢ so that Ob(&£ )= M(T)
for some theory T, and morphisms of £ are all embeddings be-
models of m(T). If T has AP then we shall say that & nas AP
also, The terminology we shall use is according to (2].

A uniform transfer of diagrams between categoties ex-
ists if some universal constructions are given. This is the
content of the following assertion,

THEOREM 2.4. Let X, be elementary categories of models.
Assume that X is subordinate to <€ y 1.e. there is a faithful
functor 1: K—»‘C « Further, assume that there is a universal
functor U under the representation F of the category &£ in X
given by P(L,A)= Hom(L,ia), P(¥F ,d ):¥ — (1)¥F , Leob(L),
A€0b(X ). Then we have: if X has AP theno has AP also.
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Proof If Léf let (Up,$;) be the corresponding universal
pair. Then by definition of a universal pair, for each
¥:L —»1iA there is g':iUL—b iA so that the displayed dia-
gram commutes.

1 $1 > 1U Therefore, if A,B,C & Ob(s8)

€ L and 14 —B, Yib—C,
l / then by the universality of
iA U we have the following com-
mutative diagrams:

/;r '\\ . W /\
(‘P) y \ /

B iUA

Sa

B c
‘\ / Deob(X )
A

The right amalgam..exists by the assumption that X has
AP, Using functor i we can transfer that diagram into the cat-
egory o€

The previous theorem may be applied in many situations. -
The most important case is when the functor i is forgetful. It
means that it associates to each A€X a reduct of that model.,

Example 2.5, Let X be the elementary category of Boolean
algebras and let £ be the elementary category of distribu-
tive lattices with end-points. If i: K —>oL is the forgetful
functor, then the representation of & in X in the above
Theorem has a universal functor U. For each distributive lat-
tice L, the object UL is the least Boolean algebra in which L
is embedded. It is well known that such a Boolean algebra ex-
ists (it is easily constructed by the use of Stone represen-
tation theorem for distributive lattices). Therefore, the class
of distributive lattices has AP.
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o C**! _SYSTRE AND (n,m) ~GROUFOTIS
Mirieo Folardjo

0. Iet Q be a nonvoid set, n and m poeitive integers and
£:° — Q® . ™en Q(f) is an [n,m] -groupoid. The component operetions
of £ sre n-ary operstions f),f,...,f:¢" — Q defined by the
equivalence

2%y yeeesX) = (FpyeeeTp) <> (Fiell,.com})

Ty = (X 5eees%y)
and we write f = (fl,fz,...,gn). Q(f) will be called proper (n,m]-
groupoid if n,m,|Q) > 2 hold.

An [n,m] -groupoid Q(f) is said to be (n,m) -quasigroup (malti-
quasigroup) ([21,{3]) iff it has the following property: for amy n-tuple
(815e--58p) € §© end any injection Y:N;, — N, N -{1,...,n} , there
is a wique (om)-tuple (Byyeeesby,) € L™ such that Dpciy= 8 » for

i = 1,2,.-.,11 am f(bl’o..’bn) = (bml’...’bn"m) .

1. An (n,m] -groupoid Q(f) is said to be totally symmetric (briefly

TS) iff for anypemxtatio‘n P on Nom and for all Xy yeeesXm e’»Q the
equality Xy seeesXy) = (xn+1"'f’xn+m) 'impiies f(xn‘,(l) ~""’x?(n)) =

= (x‘\"(ml) ”"’x"f(mm)) , (cf. (8]). Obviously, the components of a TS~
[n,m) -groupoid are TS . Moreover, it isseasy to see that sny TS-[n,m}-
groupoid is @ miltiquasigroup. But if Qf) is a ™-n,m) -quasigrowp ,
then lq\=i , Mcnmspmveq’m[s] , Corollary 2.2, Therefore, we imtro—
duce the noti'?n of weak total symmetry by the following definition: -
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An (n,m) -groupoid Q(f) is said to be weakly totally symmetric
(briefly WIS) iff all its components are totally symmetric. |
Now we shall list some obvious facts for WIS - [n,m} -gmupo:.ds

11. If IQ| =1, thenany (n,u) -growpoid Q(f) isa WIS - [nm)-
quasigroup.
1.2. An (1,03 -growpoid QUE) , £ = (£seeesfy) , 15 WIS iffall .,
i=1,...,m, are permtations and f; = f;]'.

Hence, WIS -[1,m} -groupoid is an {1,m) -quasigroup.

1.3. Agy WIS - (n,1] -groupoid is an n-quasigroup.

2. For an (n,m] -groupoid Q(f) ,'i'-(fl,...,fm), and an nx p array
x-(:gd) on Q we define an. mx p arrey Cf(x)"(yi;j) , by

iy = (X g0 BogoeeerXyy)
i=lece,m, J=1,..,p (ef. [7D.
Analogously, for en r x n arrsy x-(xij) on Q wedefinean rxm
arrey R.(X) = (sﬁ) by

’id: ,j(xil’ XipreeesXyn) o
i=)lyeeeyry J=lyeee,m.
An Ln.n]-smpom. Q(f) is said to be bisymmetric iff for sny permutation
Yon R, xN andforall nxn arreys x-(xﬁ) holds

CR(D) = CRXY)
m I‘Y- (HJ)Y = (11’(1'3)).
Obviougly, the components of a bisymmetric {n,m)-groupoid are bisymmetric.
But, fraa the bisymmetry of the caomponents, the bisymmetry of an (n,m} -
groupoid does not follow. Nemely, we have the following example:
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2.1. Bxmmple. Let be Q ={a,, a,, 855..- 1, 1Q1% 3 and

n o meaDene.ex -,
£30xy 5000 sXy)m

8y otherwise

B T X e DXy ey
£5(X) yeeesX,)m

8 otherwise .

Since cflnfl(x) -8z, crznfz(x) =8, ,forall nxn arreys X,
it follows that Q(f;) and Q(f;) are bisymmetric n-groupoids. For any
n-2 bisymetric n-groupoid operetions fy...,fp on Q, Q) , f =
= (fl,fz,...,fm) , is a non-bisymmetric (n,m) —groupoid with bisymmetric
components. Namely,

cflRfZ(X) = f1(81’92""’32) =8 ,
Cflsz(xT) - fl(aet 329"" a2) = 33 ]

az for i=1, j=2,...,0

for . X-(xij),xij-

3 otherwise .
At the same way, we have shown that there are such bisymmetric n-groupoids
which are not commutative. But it does not hold for n-quasigroups.

2.2. TROPOSITION. A bisymetric miltiquasigroup is commtative.

Proof. Obviously, any (1,m}-groupoid is bisymmetric and coammutative. Iet
Q(f) be a bisymmetric [n,m] -quasigroup, n % 2 . For X)yeeeX, € Q and
& permutation P on N, ,put X-(xuv_) ,Ys(yw) ,ihare X, =X,
Ny = x"f’(v)...’ for v=1,...,0n , &nd Xpv = Ty for u=2,i0en , V=
=1,...,n . Since CRe(X) = CR(Y) , it follows
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fi(fd(xu,xm,...,xm),f‘_j(le,xa,...,xal),.t. ,fj(xnl,xna,...,:ém)) =

= fi(f;j(yll’yIZ’ ces ,yln) ,fj(ya,yaz, ceesTpp)seee ,fj(ynl,ynz, cee ,yl"]\n))

i.e. . | ' o
fi(fj(xl’x'é"""xn)'fj(xél’x22"“’xm)"“’f,j(xnl’xn?""xnn)) =

= fi(fj(x"(’(l)’ x,\,(a) ’---,x:.{(n)) ’fj(xal’x22"“’)r2n)’°"’fj(xnl’]rnQ""?)cn!1)’

for i,j = 1,e..,m. But Q(fi) is an n-quasigroup, which implies

800 Tre e %) = £505p1) Pp(@) 2+ Spm))
apd therefore Q(f) is conmutative.
Since there is no proper commitative m:itiquasigm@, we have the fol-
lowing corollary:

2.3. OOROLIARY, For n,m, \Q\>»2 , a bigymmetric {n,m) -quasigroup does
not exist.

3. In (4] a notion of C®*l-gystem was introduced, inspired by certain
gecmetrical models. C™*l-gystem is defined as a totally symmetric and
bisymetric n-groupoid (Cf.[5)). Therefore, if Q(f) is a C™*l-system,
thmthare are an abelian growp Q(+) and w e Q , suwch that f£(X,...,X) =

-—2 , yoees ,61) .
i.lxi+w for all x x, eQ ((4],051,16])

Teking into account the previous definitions and results, weakly total-
1y eymetric and bisymmstric (briefly WISB) (n,m) -groupoids are naturel
gereralization of C™*l-gystems. For Q| =1 , any (n,m] ~groupoid is WISB,
end for n =1, any WIS -{1,m] -groupoid is bisymmetric. For n, |Q\ % 2
we have the following proposition

3.1. PROPOSITICN. An ([n,m] —growpoid Q(f) , n,|Q\>2 , £ = (£)eeesfp) »
is WISB iff there sre an sbelisn growp Q(+) emd w; € Q, 1 =1,....m,
such that
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fi(xl,...,ﬁ) = -(x1+...+xn) +wy
i=1,...m.

1§
=

{

. For m =1 the statement is true (141,(51,[6]1). Therefore, let be

n
.

?
Necessity. Since Q(rl), Q(fi) yi=2,...,m , are TEB - n- groupoids,
there are abelisn groups Q(+) , A @) smd w,ve Q such that

10X eeesX) = (mtecix) + W

£ (X reees®) = © (4 @... DX ) DV
for all xl,...,ﬁeQ.Iat e,fc Q be the zeros of Q(+) , AD)
respectively. For o1l nxn arreys X= () , X'= (7)) such tha
Xy =T T E T =T T 2 Xgp m Ny < Ty = Tp W wEd X
'713"° otherwise, where x, ye Q , we get

Cfinl(x) = ri(x,y,w, coesW) =

=QxPYOVD...dDW DV ,
cfinf-l(x*) = £, (RPN, W Wy oo W) =
O (W@ (WAVD ... OWDv.
Since Q(f) is bisymetric, it follows Cg e, (O) = cfinfl(x*) and there—
fore _
x@Y = (xyw) @ (W) .
Hence x =x@f = (x+f+w) @ (-w) , implying
| (y#w) @ () = (X@F) + £+ WD () ,
i.e. '
‘ x@y = xy-f .
Thus we have ‘

250X yeeesX) = ~(roctx ) +u
vhere u = n\;' f+v.
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Sufficiency. Iet Q(+) be an abelian growp, w; € Q 5 i = 1,...,m , and

£, yeeesXy) = ~(qteactn) + W
i=lye.m. Ten Q) , £ = (fy,eee,f,) is VIS and it is bisymetric,

(x). 5:: Xen ~ B w + Wy
k,hel .

for sy nxn arrey x-(xkh) and 811 i,J = 1l,ee.,m .
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EMBEDDING OF A RING IN A RING WITH UNITY
Slavisa B. Pre3ié

1. As it is well known an arbitrary ring R without unity can
be embedded in a ring S with unity. Namely, if we take S=Rx?7
and define addition and multiplication as follows

(a,i) + (b,J) = (a+b,i+j)

(D (a,i) (b,3) = (absibeia,ij)
we obtain such a ring S. Ilovever, this construction is not re-
productive, for if the ring R already has a unity, e say, then
the ring S is not isomorphic to R. In this paper we state one
reproductive construction by which any ring can be embedded in
a ring with unity.

2. llow let R be a given ring. Ring axioms can be expressed as
follows ) '
X+y = J+X

(z+y)+2 = x+(y+2) (xey)ez = x(y+3)
(2) x+0 = X
xt(-x) = 0

x(y+2) = Xoy+xez, (F+2) X = y-X+2-X
These axioms are in the language L ={+, y = 0},Supose now that,
there is at least one ordered pair (a,i), where aeR, ieZ such
that the equalities 3

(3) a.x = ix, x.a = ix
hold for any xeR. Such pairs (a,i) will be called pre-characte-
ristic, Let P be the sel of all pre-characteristic pairs.
Obviously the implication
(al,il)eP, (ae,ig)eP=9(klal+k232,klil+k2i2)eP
(kl ) kzez)

is true. Consequently there are pairs (a,») €P, Az0 whose num-

ber \ is the smallest one. Such pairs (a, A) will be called
characteristic. '
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Any two characteristic pairs (al, 1), (a2, 2) must have the
same numbers Al, Ae. Besides that if (a, A) is a characterlstlc
pair and A is an annlhllatorl) of the ring R then

- any characteristic pair is of the form (a+n, A ) with neA

- any pre-characteristic pair is of the form (ka+n k A) with

ncelA, ke’
The notion of characteristic pairs includes that of unity, cha-
racteristic and zero elements .of a ring, Namely, if a characte-
ristic pair is one of the form
A, (3,1), (3,0)

then A is the characteristic, a is a unity of R and a is an
element of A, respectively.
For instance, let R be the ring determined by the tables

+ |0 r o r [ =
(4) e O r 0 0O O 0 }0
r r O r| 0 O r|r
This ring has two characteristic pairs
(5) (r,2), (0,2

The number 2 is the caracteristic of this ring.

3, Now we are going to state our construction., Let e £ R be a
new element and let Term (R,e) denote the set of all terms bui-
1t up by e, elements of R and symbols +, ¢, -, i.e, Term (R,e)
is the smallest sot satisfying the following conditions

Rc Term (R,e), e € Term (R,e)
x,y € Tern(R,e) = (x+y), (x-y), -x € Term(R, e)
In connection with it let

(6) (E)Term(R,e)
be the set of all formulas which one obtains from the axioms
(2) by replacing the variables x,y,z byvmembers of Term (R,e)
in all possible ways.
Finally let F be the union of the set (6) and the set of all
formulas of the following forms

(i) a+b=res(a+b), asb=res(a.b), -a=res(-a)
(a,b&R)
(7)(ii) afb (a and b are different elements of R)
(iii) xe.e=x, eex=Xx (xe Term (R,e))

1) § 6. the set of all neR such that (¥x €R)nx=xn=0
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The symbol res is a short form of the word result, so for inst-
ance res (a+b) represents that element ¢ €R which is equal to
a+b and similarly.
As a matter of fact, the set (i) v (ii) is logically equivalent
to the diagram of R. It is clear that any model M of ¥ , whose
elements are some elements of Term (R,e), determines a certain
ring S vhich has the unity e and contains the ring R as a sub-
ring., As a matter of fact such a model M is generated by R and
e.
In order to simplity the condidtions F we first derive some
lomical consequences of ¥ . B30, it is easy to conclude that ea-
ch teferm (R,e) is equal to one of the terms of the forml)
(8) a + ie (a€R, ia2)
About these terms one can easily prove the following equalities
(a+ie) + (b+je) = res(a+b) + (res(i+j))e
(9 (a+ie) ¢ (b+je) = res(ab+ib+ja) + (res(isj))e
-(a+ie) = res(-a) + (res(-i))e

(10) a+0e=a O0+1le=c¢

Deonote by 971 the union 7(i)u 7(ii) u(9) U (10). This set of
formulas, as we have remarked, is a logical censequence of the
set F , i.e. the implication F =3 71 is valid. It is importa-
nt that the converse implication T& -—p F is also true.
Indeed, if t is any element of Term (R,e) then using (9) u (10)
one concludes that t is equal to some term of the form (8).
Conseqently to prove ring axioms (2) and the formula x*e=x it
suffices to prove this under -assumption x,y,z are terms of the
form (8). So, for instance, we have

xee = (a+ie)+e = (a+ie)(0+1le)
res(as0+i0+1a) + (res(i-l))e

=a+ ie = x

and the formula xs+e=x is proved. The ring axioms (6) can be pro-
ved similarly.

In such a way our problem is reduced to the problemvof/constru-'
cting models of the set 971 (more precizely said, of those

models which are gencrated by R and e).

1 It is supbosed by convention that the terms Oe, le, 2e,,..,

(-1)e, (-2)ey+.s stand for 0,e,(e+€),ees,=4—(€4+8) 4000,
respectively,
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Such a model, in fact the ring $ determined by (1) at the very
beginning, can be described as follows. Let ~ be the: equlva-
lence . relation of the set RV (RxZ) whose classes elther are
singletons of the form {(x,i)} where xeR, i€Z, i £ Q,or are
two - element sets of the form {x, (x,0)} where x<R. Fér sake
of simplicity we shall denote classes shortly by (x,i), where
x€R, 1€Z, Accordingly to (9), (10), the operations +, °*, -,
0, e are defined by, '
(a’i) + (bQJ)
(a,i) « (b,J)
- (a,i) = (res(-a), res(-i))
(0,0), e = (0,1)

(res(a+b),res(i+j))
(res(aeb+ib+ja), res(i-j)

0]

We denote this model by R aZ. In it any two different pairs
(a;,11), (85,i5)are different elements of RaZ. In other
words this ring satisfies the following equivalence b
8, + i,e = ay + i;ee> 8 =85, i, =1,

However, ih any other model M of ?&_some equalities of the
form ,

(11) a; + ile = a, + i2e with (al,il).£ (32,12)
may hold. Consequently such a model M is a certain hemomorphic
image of RaZ, i,e, M is, up to the isomorphism, of the form

RaZ /.

where ~ is some congruence relation of RAZ which separates the
set R, i.e. satisfies the condition

(12) X,yER, X~y = X =7y

We describe now all such congruence relations. Let r be a bina-
ry relation of the set RAZ and denote by T the corresponding
smallest congruence relation of the ring RaZ, which contains
the relation r and separates the set R, if such a relation T
exists.
If (al,il)F (aa,ia) i.e. (al+ile) T (a2+iae) then we have
res (al+(-a2)) T (res(i1+(—12))e which for some aeR, i€2,i>0
yields

a rvie

1) Any element (a,i)&R AZ can be expressed in the form a+ie.
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Consider all such pairs (a,i) and denote by > the smallest i.
Because of (12) the corresponding element a must also be unique.
Denote now by r’ the relation defined by the set {(a,0),(0,n)}.
It is easy to prove the equality

T =T
i.e. r may be replaced by r’,
In such a way in the sequcl we can confine our attention to the
congruence relations T penerating by the relations r of the
form

{(2,0), (0, N}

with some fixed a€ll, x€Z, Ax0. The problem is when such a
relation T separates the set R. If X is O then obviously a mu-
st be O as well. About the other cases we have the following
lemma.

ILEMMA., The coagruence relation T generated by the relation of
the form

{(3,0), (O,)\)} (aeR, Ae2)
with X> O separates the set R if and only if the pair (a, )
is a pre-characteristic pair of the ring R.

Proof. Only if-part, If r separates R then from a T )e multi-
plylng; by x €R one obtains

ax T AX, X.8& T AX
Hence by (12) if follows that

ax = Ax, ¥ = AX (x eR)
i.e. (&, ) is a pre-characteristic pair.

If - part. The relation T satisfyies the condition

ar Ae
For that reason ahy Xq + ileéRAZ is equivalent (i.e. is in
the relation r) to some element of the form

x + ie
where x€R, 0 <i £ A -1, Additionally for such elements it can
be easily proved the following equivalences
[(X+1e)+(y+ae)J T [res(x+y+(q(i+]))a)+(r(i+i))e]

[(x+ie)+(y+3e)] [res(xy+iy+jx+(q(isj)la)+(xr(i-j))e]

| -(x+ie) [res(—x+(q(-1))a)+(r(-1))e]

N L x+0e T X, O+le Te
(x,y_eR,O él,jé}t—l)

T
T

(13)
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where q(m), r(m) with meZ denote the quotlent and the rest of
dividing m by M.
Accordingly to (13) we define an algebra R AL, where L : =
= {O,... ’ h-—l} , as follows,., Similarly to the definition of
RAa7 the set Ral consmt., of elements of the form (x 1), where
xeR, ie€l’ and additionally the equalities
(x,0) = x (xeR)
are supposed, Operations +, ¢, -, O, e are defined by ’
(x,1)+(y,3) = (res(x+y+(q(i+j)la), r(i+j))
(1) (x,1)+(y,3) = (res(xy+iy+jx+(q(i-j)la, r(i-j))
a(x,1) = (res(~x+(q(-i))a, r(-i))
0 = (0,0), e = (0,1)

X,y eR,0<1,j «A-1)
Essentially using the assumption
(¥xeR)(ax = 2 x A xa = AX)
it is not difficult to prove that the algebra RAL is a ring
with the unity (0,1) and that the ring R is its subring, Just'
on the ground of that fact it follows that the relation T sepa-
rates the set R which completes the proof.
Finally we cen describe our construction. Denote by .Qé the
class of all rings with a unity e which contains the ring R as
a subring and which are generated by R and e, The ring Ra Z is
a member of that class. This ring is a maximal member of the
class Re in the sense that any other member of that class is
some homorphich image of RAZ, Besides RAZ any member of Qe
is a ring of the form
R AL
constructed on the proof of the lemma. Each such an element
corresponds to some pre-characteristic pair (a, A ). The minimal
elements of the class ﬂe are determined by the corresponding
characteristic pairs,
For instance, the ring R given by (4) has two characteristic
pairs (5) and therefore there are just two minimal elements of
the corresponding class Re. One of them is the well-known ring

le-'
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A NOTE ON NORMED DIRECTED
MULTIGRAPHS AND UNARY ALGEBRAS

A.SamardZiski, N.Celakoski

A class of normed directed multigraphs derived by unars
or associated to K-unars is considered in this note with an
aim to ,translate" some notions and results on unary algebras
from the paper [1] in terms of multigraphs.

Let A be a nonempty set and o< Ax[\xA, where | is the set
of positive integers. The pair </ = (A;a) 18 called a normed

(a,n,b) € o an arc of Z;f. The positive integer n is called
the norm,the element a - the beginning and b - the end of the
arc (a,n,b). Any sequence

(an,,a,), (a1 lnzlaz) reeey (ak-1 rnkrb.) € a

is called a path of a to b, which we denote by (a,n ,...,n,,b),
and the sum n +...+n, 'is called the length
with the length n will be denoted by I, or more precisely all,

if it starts from a vertex a. (Note that a path is not determi-

ned uniquely by the symbols (a,n1,...,nk,b) or ann.)

We are interested in special normed directed multigraphs
which could be derived from the graph of a transformation, i.e.

from a unar.

Let (B;f) be a unar (i.e. f:x+ f(x) is a transformation
of B) and let K be a nonempty subset of . If A, is a nonempty
subset of B, and if

AL, = (g™ (a) |a€a,,n€K}, i=0,1,2,...; A=Un,,
i>0
then we can construct a normed directed multigraph (Aj;a) in
the following way

(a,n,b)€a <=> n€K and b = f(a). (1)

Then we sayithat (A;a) is a K-subgraph of the unar (B;f) gene-
rated by A -
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It is easy to show that:

PROPOSITION 1. If a normed directed multigraph (Aja) is
K-subgraph of a unar, then the following propositions hold:

1]

Ml. o C AxKxA.
M2. (Va€A)(Vnek)(ibeA) (a,n,b)Ea.

M3. If two paths with the same length start from a ver-

tex a, then they terminate in the same vertex b.

M4. Let al , aHm+P, an and bnn+p be paths in (Aj;o). If

anm and an terminate in the same vertex c, and aHm+p termi-

nates in a vertex d, then there is a path an+p with end d
(Fig. 1). [
Q ."\\\ ~ —
N TR
»0 >
2 7 >»d

PROPOSITION 2. Each of the propositions Mi (i=2,3) is
independent of the others.

M1l is independent of M2, M3, M4 if and only if K # N.
M4 is independent of M1, M2, M3 if and only if the least

element k of K is not a divisor of all the elements of K.

Proof. Below we give four examples of multigraphs (Asa,),
(A;az), (A‘“a)' (A;a“) such that (A;ai) does not satisfy the
proposition Mi, although it satisfies Mj for any j # i.

1) Clearly, if K = N, then M1 is satisfied. Assume that
PcKCN. Let (A;f) be a unar and define a, by

(a,n,b) €a, <>f"(a) =b & nel.

Then the multigraph (A;a1) has the properties M2-M4 and does
not have Ml.

2) A @, K#0, Gz
3) AP, K#£P, a

@.
AxKxA.

3
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4) Let a normed directed multigraph (A;a) satisfy M1, M2
and M3, and let k,, the least element of K, be a divisor of
any element of K. If (a,n,c) is an arc and if n=k,s, then the-
re exists a path (a,kq,,...,k,,¢). Thus, any path (a,n,,...,n_,c)
—

P
s
can be replaced by a path (a,k,,...sk,,c) with the same length
s
as the given one. If (a,k,,...,k,,c), (b,kys...,ky,c) and if
— X
s

(a,ko,.;.,ko, ko,.;.,ko,d), (b'kﬁiiéli¥°' ko,.;.,ko,d’) are
paths, then (c,ko,.;.,ko,d), (c,ko,.;.,ko,d‘) are also paths
and this, by M3, implies that d=d°. Thus, M4 is satisfied.

Assume now that there is an element of K which is not
divisible by ko, and let m&eK be the least such a number. Let
A={a,b,cl and let a, € AxKxA be defined in the following way:

e, = {(x,n,a) |x €{a,b},n€K}U{(c,n,a) |[nEK\{m}} U{(c,m,Db)}.

It is easy to show that (A;ah) satisfies M1,M2 and M3. Now, we
will show that M4 does not hold. Let m=qkstr, >0, 0<r<k,.
Then:
(a,gei;;;iyo,a), (c,ggi;;;ifo,a), (a,m,a), (c,m,b)
q q
are paths; moreover, (a,m,a), (b,m,a) and (c,m,b) are the uni-
que paths with length m. []

A normed directed multigraph (Aj;a) is called a K-graph if
pcKcN is such that M1,M2 and M3 hold. '

The proposition M4 for a K-graph can be stated (because of
M3) in the following way:

M4~°. Let a path anm and a path bnn terminate in the same
: terminates in -a vertex d, then any

vertex c. If a path anm+p

path an+p terminates in d.
The notion of a K-graph is closely connected with the no-
tion of a K-unar ([1]) as we will see below.

Let A be a nonempty set and CKE. If a mapping
(n,a)— na fxom KxA into A is defined such that
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ny...m, m

(VxeA)n1mJ.”&&_J%§H.“n =m1mr.4%?J%§H.un,

,...,mseK, n1+...+nr‘= m1+...+ms —

(2)

then we say that a structure of K-unar is built on A, i.e.
that (A;K) is a K-unar. (This notion is defined in [1], where
it is written a n] instead of na.)

PROPOSITION 3. If (A;o) is a K-graph and if a mappin

(n,a) ~ na is defined by

1]

b = na ¢<—>(a,n,b) €a, (3)

then we obtain a K-unar (A;K).

Conversely, if a K-unar (A;K) is given, and if o is defi-
ned by (3), then (A;a) is a K-graph. []

All the propositions which will be stated below are ,trans-
lations" of corresponding propositions for K-unars.

PROPOSITION 4. Every K-graph is a K-subgraph of a unar
iff the least element of K is a divisor of any element of K.
([1;2.5, p.78]). [

condition is satisfied: if two paths with the same length
start from distinct vertices, then they terminate to distinct

PROPOSITION 5. Every injective K-graph is a K-subgraph
of a unar. ([1;3.2, p.80]). []

PROPOSITION 6. A surjective K-graph is a K-subgraph of a
unar if and only if M4 is satisfied. ([1;3.6, p.82]). []

Examples
1. Let B = {a,,a,,a,,3,,3,,34,3,,3,} and

- (a1 a, a, a, a, a, a, ae)
a, a, a; a, a, a, a, a,

If K=(2,3} and A ,={a,,a,}, then the K-subgraph (A;a) of the
unar (B;f) generated by A  is given by Fig. 2.
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The K-graph given on Fig. 3 is not a K-subgraph of a unar
(B;f), for if it were, then we would have

b = £f3(c) = £(f3(c) = £(f3(a)) = f3(a) = a.

Fig. 2 Fig. 3

2. Let A={a1,aa,...,a1°} and K={3,4}. The K-graph given on
Fig. 4 is not a K-subgraph of a unar (although it satisfies
M4) .

Qz Qg Fig. 4

For, if this K-graph were a K-subgraph of a unar (B;f),
then we would have:

a

. = £%(,) = £(£2(a,) = £(£*(ay)) =

= £2(£%(a,)) = £2(£%(a,)) = £°(a,) =
=a9.

3. Let K={3,4}. Choosing the symbols Ay r@yreeer@prene;
bo,b1,...,bn,... and putting

( I3Ian)l (b

qht1

n+1,3,bn)Eot, n=0,1,2,...
(ao’3lz)l (bor3rz)€a: N
a K-graph.' "'can be generated, part of which is given on

Fig. 5. ;;ﬂ‘is surjective, but it does not satisfy M4, since
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(ags3,2), (by,3,2), (a,,4,u), (b,,4,v) o and u # v. Thus,
by Proposition 6, 3;( is not a K-subgraph of a unar.

Fig. 5

Remarks

1. For any nonempty subset K of [ there exists a unique
finite nonempty subset K, of K with the following properties:

(1) Each element n€ K is a sum of elements of K,/
n=n1+...+nr.

(11) IflceKo, then k is not a sum of the elements of
K, \{k}.

We say that K, is the base of K ([2]).

If (Aj;a) is a K-graph, and if o, is defined by:
a,=aN AxK,xA, then we obtain a K,-graph (Aja, ) which is called
the best refinement of (A;a). It is easy to see that (Aja)
is a K-subgraph of a unar (B;f) iff (A;a,) is a K,-subgraph
of (B;f).
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2. The K-graph on Fig. 4 is not a K-subgraph of a unar,
although it satisfies M4. This suggests the problem of findino
the family ¢ of subsets of N sush that

K€é<--—~> every K-graph which satisfies M4
is a K-subgraph of a unar.

3. It is conceivalble to look for necessary and sufficient
conditions a K-graph (A;a) to be a K-subgraph of a unar (A;f).
We note that this problem is not solved even in the case when
K is a one-element set, K={n}. Namely, a convenient solution
is given in [3] in the case n=2 when A is finite, and if
(A;a) is an {n}l-graph of a permutation, a solution is given
in [4] for any nel and any A.
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SEMISIMPLE RINGS

Srboljub Sredkovié

In this paper the Artinian semisimple rings (or the
classical semisimple rings) have been oonsidered. These
rings have a series of interesting and marked ocharacteri~
stics. They may be represented as finite direct sums of mi-
nimal left ideals. However, it is certainly the most impor-
tant property that they may be represented by finite direct
sums of Artinian simple rings. From this property and the
Wederburn = Artin theorem follows that the Artinian semisim-
ple rings are isomorphic to finite direct sume of complete
matrix rings over some skewfields.

In consideration of the fact +that the properties of
rings influence the properties of modules over these rings
and vice-versa for the characterization of Artinian semisim-
ple rings a reciprocal connection between the properties of
the rings and the properties of the modules over these rings
is used. By this characterization an equivalence of some
properties of rings and some properties of modules over the-
se rings has been established. Both the projective and the
injectivé modules play an important role in the previously
mentioned characterization. Such a ring characterization, as
well as some more important notions in connection with it,
present the subject matter of this paper. ‘

Some more important characteristics of the projective
and inaective modules have been proved in L4, Ch.,I, Section
2 and 3] It is certainly the most remarkable property of
injective todule. This property has been proved in [4, Ch,I,
Theorem 3.3| ., A simpler proof of this property is given in
{1]. In that proof a definition of the full module is used
as well as the property of the Z-module stated by Lemma 1 of
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this paper.

Definition 1. The left module 4 over the r:.ng R will
be called full if rA=A for all nonzero r€R, !

LEMMA 1., ZEach Z-module is injective if and o_nj_.,wz if it
is full. ‘

In [4, Ch.VII, Section 1] the above mentioned lemma
has been generalized on the integral domain, and in this pa=-
per a generalization to the noncommutative rings was made by
the following theorem.

THEOREM 2. Each R-module over the ring R of the prin-
cipal left ideals without zero divisors is injeotive if and
only if it is full. |

Proof. ILet Q be the injective R-module. Since r='rl=
=r"r,, if and only if r’=r" for each r,f0, the map f:Rr;—Rx
defined by the equality’ .f.(rr ) = rx for any r€R and x€Q is
R - homomorphism and may be extended to the homomorphism
g:R—»Q. Then x-f(r )= g(rl) rlg(l). Therefore rlQ—Q for all
r,#0, that is Q is the full module.

Reversely, let Q be the full R-module,and Rr; arbitra-
ry left ideal of the ring R and £ : er—>Q arbitrary R-homo=-
morphiem. Then f(rr,)=rf(r,). Since Q is the full module,
there exists g€ Q so that f%r )=r 1 & from which £(rrq)= (rrl)g
is obtained. Consequently, R-module Q is injective.

If R-module M is submodule of R-module N, the module N
will be called the extension of module M, The module I, as
so-ocalled trivial extension, belongs to the set of all exte-
neions of module M., Each module ¥ can be embedded into an
injective module N, Then we say that the module N is an in-
jeotive extension of module M. The module N is the minimal
injective extension of module M if it is not a nontrivial
injective extension of no one injective extension of mo~-
dule M,

The extension N of module, ¥ will be called the
essential extension if each nonzero submodule of module N
has a nonzero intersection with M, Then we say that M is the
essential sutmodule of the module N. The notation N> M si-
gnifies that the module N is the essential extension of the
module M, The module M, as so-called trivial essential ex-
tension of the module M, belongs to the set of all essential
extensions of the module M as well, If the module ¥, is an
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extension of module M, and M, an extension of M,, then, evi-
dently, M, 1s the essential extension of the module M, if
énd only if M, is the essential extension of module M, and
M, the essential extension of module M.

The essential extension N of module M will be called
maximal if N has no nontrivial essential extensions. The set
of all essential extensions of the module M has been parti-
ally ordered by inclusion. The union V of the ascending cha-
in MCM]_C ees 0f the essential extensions of the module M is
the essential extension because from HCV and HNM=0 it fo=~
llows (ENM,)NM=0, that is, HNM,=0 and E=0, In this way,
in the set of all essential extensions of the module M there
exist the maximal essential extensions.

If N is an injective extension and N, an essential ex-
tension of the module M, then the monomorphism j:M—N may be
extended to the homomorphism E:Nl—»N. Since Nl is the essen=—-
tial extension of the module M and MNKer(J)=0, then Ker(3J)=
=0, that is, the module Nl is embedded into the module N by
j. Consequently, any essential extension of the module M can
be embedded into each injective extension of the module M.
When +the module i1is injective, then it has no nontrivial
essential extensions,

In [1] the following theorem has been proved.

THEOREM 3, The following three statements are eguiva-
lent for any module M:

(a) M is an injective module,

(b) ¥ has no nontrivial essential extensions,

(¢) M ig the direct summend of each extension.

The maximal essential extension M of the module M has
no nontrivial essential extension and therefore it is the
injective module. Since M is contained in each injective ex~
tension of the module M, then Il is the minimal injective ex~
tension of the module Il, Consequently, the minimal injective
extension of the module M is unique to the isomorphism.

_ Let 1 be the left module over the ring R, Let us mark
with x°={rcRirx=0} the order of element x¢& N, Bvidently, x_
is the left ideal of the ring R. Using the left ideals x
for x€M| we define the submodule Z(II) of the module L by
equality Z(I~T)={er\1=R > xR}. And so Z(l), evidently, is the
Abelian group. Acording to the following proposition one can
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conclude that the implication xéZ(H)=$rx€ zZ(l) is va}id
for each r€R and x€7Z(li), that is, that Z(l) is the submo =~
dule of the module M,

PROPOSITION 4, If£ R*> x®, then R*> (rx)® for each re€R.

Proof. It is sufficiently to prove xt S (xx)®, Tet I,
be the arbitrary ideal which is contained in x . Then the
ideal Ilr has a nonzero intersection with the ideal xR. The~-
refore Ilm(rx)R#O. Consequently, 2 > (xx)® ana R > (rx)R
for each &R because R ‘> x,

Evidently, Z(R) is an ideal of the ring R because it
is the left ideal and (x») :>xR for each x,r€R,

' The maximal essential extension of the submodule of a
module is not unique.. However, in [3, Lemma 2] 1t has been
proved that all the sultmodules of the module M with the pro-
perty Z(M)=0 have their unique maximal essential extensions.

Definition 2, The ring R can be called regular if the~-
re exists x€R for each r&R, so that rxr=r,
PROPOSITION 5, If R ig the regular ring, then 2(R)=0.
Proof. If e®=e€R and x< e \Re, then x=xe=0, Therefo-
Tre eRf'\Re=0 and Z(R) does not contain. nonzero idempotents.
If the ring R 1is regular, then for each r€R there
exists x€R, so that rxr=r. Then xr 1is nonzero idempotent
because (xr)(xr)=x(rxr)=xr. Therefore each nonzero left ide=
al of the ring R contains an nonzero idempotent. Since Z(R)
does not contain nonzero idempotents then Z(R)=0,
The classical semisimple ringe have been characterized
by the following theorem.
- THEOREM 6. For any ring R the following ptatements are
equivalent:
(a) R 1p clapeical semisimple ring,
(v) Rumim&zgg_n_s_iﬂmi&l_e.
(o) every left ideal of the ring R is the direct sum-
mand,
(4) every left ideal of the ring R is injective as the
left R-godule,
(e) all left R-modules are gemisimple,
(£) all the exaot segquenceg 0—A’—=A—A"—+0 of the
lefi R-modules sre direot,
(g) every left R-module is projective,

(n) everv left R-module is injective,
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(1) every finitely generated left R-module is indle-
qtlve,

(3) every ovelic left R-module is injective,

(k) gvery sutmodule of the arbitrary left R-module is
itp direot swmmand,

(1) the order of each nongero element of the arbitrary

R-module is he intersection of $he finite mumber of the ma-
ximal left ideals of the xing R, |

(m) the left ennihilator of each pongero element of
the zing R 1is the intersgdction of ihe finlte number of the
maximal left jdeals of the xing R,

(n) every mazimal indevendent system of elements of
the arbitrary left module ig ithe basis of ihls module,

(o) every maximal independent gvestem of elements of
the ring R is the basis of R,

(p) every finitely generated left R-module is proje-
ctive,

(q) every cvelio left R-module ls projective.

Proof. (a)=>(ec). Every 1left ideal of the classical
semisimple ring is generated by an idempotent and therefore
it is the direct summand of the ring R.

(b)¢=(c) and (e)e=(k). Proved in [4, Ch.I, Proposi-
tion 4.1_.] .

(£) (k). Trivial,

(£)¢&(n). Proved in [4, Ch.I, Proposition 3.4] .

(h) =(4a), Trivial,

(a) =(e). If the left ideal I of the ring R is inje-
ctive, then the sequence O0— I—R—R/I—0 is exact and
direct. Therefore the ideal I is the summand of the ring R.

(e¢)=>(h). If every left ideal I is the direct summand
of the R-module R, then it is for every homomorphism f:iI—A4,
for the arbitrary R-module A, and every r€l

£(r)=f(re)=rz(e),

where e is idempotent by which the ideal I was generated.

According to [4, Ch,I, Theorem 3.2] the module A - is injec-

tive. :
(h) =(1)=>(3) ana (g) =(p) =(q). Trivial.

‘ (q)ﬁ?)(n). Let {ai} be the maximal ihdeper;dent system
of the ‘eléments of the R-module M. The system of elements
{ai} genera;tes a submodule N of the module M, For each x€M
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the sequence 0~—*(x+N)R—a>R-—~R(x+N)—r-0 is exact and direct
because the cyclic submodule R(x*N) of the module /N is
projective. Therefore the left ideal (x+N)R is the direct
summand of the ring R and was generated by an idempotent e
and also ex€N, If r¢(x+N) » then r(x-ex)ﬁN because rxf N
and r(ex)€N, Therefore R(x~ex)\N=0 and the element x-ex is
independent of the system {ai}. Since {ai} is the maximal

independent system of elements, then_(x+N)R=R. Then r(x-ex)=
=rx-(re)x=rx-rx=0, that is x=ex€ N, Consequently, the module
M has been generated by the system of elements ja }

(5)=>(a). If (3) is valid, then the ring R is selfin-
jective because it is generated by the unity 1. For the arbi=-
trary a€R the left ideal Ra is injective. The ideal Ra is
the direct .‘summand of the fing R and is generated by some
idempotent e, that is Ra=Re. Therefore e=r,a and also a=r,e
for some elements r ,r,€R. Then a=r,e=(r,e)e=ae=ar;a. Con-
sequently, the ring R is regular and selfinjective. ZEvery
left ideal of the ring R contains a nonzero idempotent. If
e € J(R) is an idempotent, then R(1l=-e)=R because J(R) is qua=
si-regular ideal of the ring R. Since ReNR(1l-e)=0,then e=0,
Therefore J(R)=0 and the ring R is semisimple. According to
[3, Lemma 5] the ring R does not contain an infinite set of
orthogonal idempotents. Let 11:>12) eee be a descending cha=-
in of left ideals. Every of ideals is finitely generated be-
cause it does not contain an infinite set of orthogonal ide-
mpotents. Thenfore <+the ideals of the chain are injective
and the equalities 11=I'+I —Ii+Ié+I3 ... are valid, Since Il
can be represented in the form of finite direct sum, then
the descending chain of left ideals must be finite. Therefo-
re, R 18 the classical semisimple ring.

(1)=(m). Trivial.

(m) =>(a). If (m) is valid,then R contains the maximal
ideal J which is not the essential submodule of +the ring R
because R has the unity.The ideal J has no nontrivial essen=-
tial extensions and therefore it is injective.The ring R can
be presented in the form of direct sum R=J+I, The ideal I is
simple submodule because J is maximal one.EBvery ideal diffe-
rent from I, which contains I, has a nongero intersection
with J. Therefore I has no nontrivial essential extensi-
ons. The ring R 18 selfinjective because it is presented in
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the form of the direct sum R=J+I of the injeotive left ide-
als. Since J(R) is contained in every maximal left ideal of
the ring R, the ring R has the unity as well, them the ring
R is semisimple.

It x€2(R) and if x#0,then (1+x)®=0 because x*(1+x)R=
=0, Therefore R(1+x)==R is the direot summand in R because
R(1+x) 1s en injective module. Byidently, X' is contained in
R(1+x) because if rex', then r=r(1t+x). Therefore R(1+x)=R,
that is, x is a quasi-regular element in R, From this we can
conclude that Z(R) is a quasi-regular ideal in R and there-
fore Z(R)=0,

Let x*0 and x€R, Then xB‘ is not the essential submo=~
dule in R because 2(R)=0, Therefore the maximal submodule
- If0 of the module R exists which has a zero intersection
with xR. Then xB‘+I is the essential sultmodule of the module
R, R-homomorphism £31—R defined with £(r)=rx is the mono=-
morphism., Let £ .f(I)-—'I be inverse to the isomorphism £,
Then £ “(rx)=r and according to [4, Ch. I Theorem 3.2] in R
exists the element r, such a one that £~ (rx) = rxv,. Then
rxry=r and IXrX=Irx or r(xrlx-'x)—o The 1ast equality is sa-
tisfied for all re x3+I. Therefore (x:r:lx-x) is the essenti-
al submodule in R and therefore x:r:lx-x-O Consequently, Rﬂis
a regular ring.

" The proof +that the ring R is classical semisimple is
derived in the same way as in the proof of the implication
(3) =(a).

(1)=>(1). Let the module i be the direct sum of sim-
ple modules {An‘]. Then every element can be presented in the
form of the sum x=an1+...+ank(0#ani€ Ani). Since 4, R/a
then %Ri are maximal ideals. In that case xR=a§1A..o/\aﬁk‘
Consequently, xR is an intersection of the finite number of
the maximal left ideals of the ring R.

(¢) =(n). For every submodule N of the module M and
for every x€ M the sequence 0—'(x+N) —R —*R(x'l'N)"‘o is
exact and ‘direct because the left ideal (x*)R 15 the airect
summand of the ring R. In all the other cases the proof of
this implication is identical to the proof of the implicati-
on (q)=>(n).

(n) =(0). Trivial,
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(0)=(c). Let I be the arbitrary 1left ideal of the
ring R and {ai} the maximal independent system in Ia Let us
complete this system with the elements \b } in such a' way to
get a maximal independent system S in R. Then S is the basis
of the ring R and R=>'Ra +ZR‘b . Let x be an arbitrary ele-
ment in I, The element x 1a a linear combination of elements
from S in which combination +the elements from {bj} can not
participate because in this case the sum whose summands are
of the form rkbk of this linear combination would belong to
the ideal I and the system {ai} would not be maximal., There-
fore I is the direct summand of the ring R.
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ON A CLASS OF BISYMMETRIC [n,m]-GROUPOIDS

Zoran Stojakovié

ABSTRACT. Bisymmetric [h4m]-grquuds were introduced
in [4] (as a generalization of CP¥l_gystems [2],[3]) and they
were also studied in [5]. In this paper a class of bisymmetric
[n,m] - groupoids is considered. It is shown that if a component
operation of a bisymmetric [n,m]-groupoid is an n-groupoid with
unity, then this component is an n-semigroup. It is also pro-
ved that this n-semigroup is an n-group with unity if there is
another component operation which is an n-quasiqroup. The struc-
ture of a bisymmetric [h,mﬂ—graqxﬂd the components of which are
either n-groupoids with unity or n-quasigroups is described.

First we give some basic definitions. Notions fram the

general theory of n-quasigroups can be found in [1].

Instead of xp,xp+l,
q q

xp. If p>qg, then xp will be considered emnty. The sequence

: q
...,xq we shall write {xi}i=p or

X,X,...,X (n times) will be denoted by k.
Let Q(f) be an n-groupoid. An element e € Q is called a
unity of Q(f) iff

£tel,x, %) = x,
for all x €eQ and every i=1l,...,n.

An n-groupoid Q(f) is called (i,j)-associative iff the
following identity holds

gt g Th i mead T e ad ™Y K0T
If Q(f) is an (i,j)-associative n-groupoid for all
i,J eNn = {1,...,n}, then it is called an n-semigroup.
An n-quasigroup with unity is called an n-loop.
An h—semigroup which is an n-quasigroup is called an n-
group. i '

An n-groupoid Q(f) is called commutative iff the follo-
wing identity holds



f'f1‘4'o‘
¢<n), PR
e e

for any permutation ¢ of N o

‘f(x“f = f(x

BERE “Let. Q be a nonempty set, n and m p051t1ve 1ntegers
. and £:Q"+Q™. Then Q(f) is called an [n, m] groupon.d The n-

: ‘ lary operations defined by

£ (x ) =y, <=> (Hyi ,yl_,_l) (y“‘) f(x ), i 1,..._

' are.called. the component operations of £ and thlS is denoted
by f—(fl,...,f) ‘

aAn [n, m]-groupoid Q(f) is comxrutative ([6]) iff

- ¢(n)
f(xl) = f(x¢ (1)

v'_'holds for all J:i eQ, i=1,...,n and any permutat:.on ¢ of N . Ob-
~viously, an [n,m]-groupoid is commutative iff all its’ component
operations are commutative n-groupoids. KR

Let Q(f) be an [n,m]-groupoid, f =(£,,...,6 ). If

X = [xij-_j is an nxp array of elements from Q, then an mxp

array C.(X) = I-yij] is defined by

yij = fi(x?g), j-=:|-l'°-ln‘ll j=ll""p'
IfX= ]:Scij] is an rxn array of elements from Q, then an r xm
array R.(X) = [zij] is defined by

zij?fj(xi?), i=1,...,x, J=l,...,m.

An [n,m]-groupoid Q(£f) is said to be bisymmetric ([4]) iff for
all nxn arrays X = [xij] and every permutation ¢ of N, XN

= ¢
Re (X) CeRe x*)

where x? 7, holds.

= Byea,9)

In [4] it is shown that there are bisymmetric [n,m]-
groupoids which are not commutative. But in [5] it is proved
that a bisymmetric [n,m]-groupoid Q(f), f = (£,/...,£), such
that there is a component operation fk for which Rfk =Q must
be commutative (by Rfk we denote the range of fk) .
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THEOREM 1. Let Q(f) be a bisymmetric [n,m]-groupoid
£ =(f1,...,fm). If fk is an n-groupoid with unity, then fk

is an n-semigroup.

Proof. Since Q(f) is bisymmetric it follows that for
every permutation ¢ of anth the following identity holds

in , n _ ¢ (i,n) n
fk({fk(xil)} i=1) = fk({fk(x¢(i,1))} i=1) .

If e 1is a unity of fk’ j eNn, then

j+n-1

n-1 n-1 n-1
fk(fk(xll e )l---rfk(xj_lr e ), fk(xj »fk(xj+n' e )rees

n-1 _ n n-1

seey fk(x2n-1' e’)) = fk(fk(xl)' fk(xn+l’ e’ ), ...
-1

cesey fk(xzn_llne ))I

i.e.
2n-1

£, (x n+1l )y

j=1 j+n-1 2n-1
k 3 rfk(xg n ), X o

_ n
1 j#n ) TE () x

which means that £
ce, fk is an n-semigroup.

is (1,j)-associative for all j eN . Hen-

THEOREM 2. Let Q(f) be a bisymmetric [n,m]-groupoid,
£=(f,,...,£ ). If f. is an n-quasigroup and f, is an n-
groupoid with unity, then £, is an n-group with unity and

there exists an Abelian group Q(+) such that
an o) 2ReR Han

n
fk(xl)

|
s~ B

»
..l

and

]
Q

n
£.(x7) L ox,
J71 j=1 i

where o is a permutation of Q.

Proof. By the preceding theorem fk is an associative
operation.

Because of the bistmetry of Q(f) we have

| n-1
. n-1 n _ n n
£,({f (x;,7 e} {o)) = £5(6 (), {5 ()b

where e is a unity of fk’ and
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n, _ n, n-1," '

£50x)) = £5(5 (x)), €T . \

If we define a :xr+fj(x,n51), then, since fj Lis an
n-gquasigroup, o is a permutation of Q. Hence,

n, _ n
fj(xl) = afk(xl) .

From the last equality it follows that fk is an n-quasigroup,
so f, is an n-group with unity. Then there exists ([1]) a
group Q(+) such that

n - . . .
fk(xl) = XXyt Xn,'

But fk is an n-quasigroup and Rfk =Q, so by Theorem
1 from [5] we get that £
the unity of the group ¢+, then

is a commutative n-group. If O is

vx1~x2-0 * ... 00 = x2-x1-0 c ... 0

and * is an Abelian group.

THEOREM 3, Let Q(f) be a bisymmetric [n,m]-groupoid,

b =(f1,...,fm). If component operations szl 2l=1,...,p are
n-guasigroups, {jl,...,jp};éﬂ; and fki, i=1,...,q are n-groupo-
ids with unity, then all operations fki, i=1,...,q are isomor-
phic n-groups with unity and there exist an Abelian group Q(+),
elements aj£' aki eQ, L=1,...,p, i=1,...,q9 and automorphisms
ajl’ £=1,...,p of the group + such that

fjl(x?) = ajz sil xs+aj ’ £=1,...,p;

£ (x™ = ? x_ + i=1,...,q9 .

ky 1 g=y 8 aki ! ! !

Proof. From Theorem 2 it follows that every operati-

on fk + 1=1,...,9 1s an n-group with unity, and from the sa-
i
me theorem we get that they are all mutually isotopic. Since

every n-loop which is isotopic to n-group with unity is iso -
morphic to that n-group ([1]), it follows that all operations
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fki, i=1,...,q9 are isomorphic n-groups with unity.
By Theorem 4 from [5] it follows that there exist an

Abelian group Q(+), elements aj ’ ak eQ, L=1,...,p, 1i=1,...
L i

’ “k r 2=1,...,p, i=1,...,9 oOf

.+.,9, and automorphisms “j
L i

the group + .such that

n
n .
. X = Q. X +a £=1,...
ijL( 1) i, B-z:l s y ! ’ q . t
n l)?
£ (X)) = a ) X +a] y 1=1,...,9 .
ki 1 ki g=1 B

Since fk is an n-group with unity e from the pre-
i

ceding equalities we obtain that for all x €Q

(x+ (n-1l)e) + a = X.

a
ki i

Putting here x =0 (where 0 is the neutral element of the group

+ ) gives ((n-1)e) +a, =0, and this implies o x =x for

Q.

ky ky ki
all x e Q. Hence, Qg 7 i=1,...,9 are identity mappings of Q.
i .
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S-BA3WCH ANA OAHOA MOOMDUHALUMKM ANMEBPH N0MMUHK

Hean CtolimeHoBsuHyY

PE3IOME . B pa6oTe onpeaenAOTCA CHMMBTPUYBCHHE GYHHUHW ONA Ha-
waoro ot 9 Tunose anrebpu $° (ofHOM MOgMdMHEUMH anrebpu NOrHHH) .

HavpeHb TaHme 4YMCNa ABYXHNBHHBIX, TPBXYNBHHHX W YBTHPBXYNBHHBIX
S-6as3vcoB, COCTOAWMXCA M3 N-MBCTHHX CHMMBTPHYBCHHUX OYHKUHH,

M yucna S-6a3MCOB, COCTORWMXCA M3 PYHKUHWMH, 38BHUCAWKMX OT HE Bo-
nee n apryMesHTOB.

B.M.MywHoB npeanomun paccmaTpHBaTb anrsbpb, HOTOpPHS
ABNAKTCA MoAHGHMHaAuMAMKM anrebp [ocTa [2] W CBA3aHH C onepauvsw
HOMNO3HUHH B, ONPBABNABMOH TOMABCTBOM

(fﬁg)(xl,xz,...,xm+n_1) =f(g(x1,x2,...,xn),

g(xz,x3,...,xn+1),...,g(xm,xm+1,...,xm+n_1)) ,

rae f,g-npoM3aBonAHEIE M-MBCTHaR M N-MECTHAA QYHHUMH. 3TH anrebpe
HaxXOAAT MPHUIOHEHWA MPH PaCCMOTPEHMH NOrHYBCHHWX CTPyKTyp SUBM,
MycTtb ¢O anre6pa 6ynNeBCHHX ¢yHanﬁ cuMcTsMa onepauui HoTOpoH B
oTnuyue oT anrebp locTa BMBCTO CynepnosvuyuH COLEPHWUT onepauHip &,
Onpenenexuye. HoHe4yHada cucTeMa GyHHUHH Ks;¢°. HasbBasTcA Gasu-
COM, ECAnH: :

1. Hampans ¢yHHUHUA K3 ¢° nosy4aeTCR W3 ¢yHHUWHW cHcTemel H ny-
TeM OTOMAECTBNEHWA apryMeHToB, WX MNBPB8CTAHOBKH, MNPHMNMCHBAHHUA
PHUHTHUBHOr O aprymeHTa (7 ﬂpHMGHBHHH‘OHBpauHH‘HUMHOSHMHH B,

2. HWHaHas M3 e NOACHMCTEM. He o6nagaeT ceokcTeom 1.

Uensio HacToOAWEH CTaTkH HEHHGTCH‘HCCﬂéAOBaHHB Bcex‘ﬁaancoe

anrebpul ¢O, COCTORAWNWX W3 CHMMETPUYHBEIX GYHHUHHA. Mogo6Hyw -npobnemy
Ana anrebpu norMHu‘Hécnénosan‘P.Toqu |4|h

CUMMEBTPHYHLE OYHHLHH HAXO4AT MPWU/IOMEBHHA B TBOPHH HOHTAHTHLIX CXEM.

HEHOTOPUE OBO3HAYEHHA
Jlanbuwe HanﬂDHaﬂoﬁﬂTCH HUMeceaylWMe MHOMBCTBA:
Ty5={E1€£€6%,£0,...,0 =1, £(1,...,1) =3}, 02,3 <1,
: V={f|€f e¢°,f(xl,x2,...,xn).=f‘(xl’,x£,...,x£)} .
T.@. MHOMEBCTBO BCEBX CaMogBOMCTBEHHLIX BYNEBCHHX OYHKUHH.
M, = {£]£ 6%, V(a,bla<h => £(a) <EM)}, rae
a =lal,a2,...,an), b‘=(bl'b2""'bn) w ac<b QCHH‘aiib'

1
(l<ic<m),
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M, ={£|£ € ¢°, £7em}, ,
T.©. MHOMECTBA BCEX M30TOHHHX M @HTHUTOHHBIX BYNEBCHHUX OYHHUHHA.
A=T UT  UT ), B=Tyo UT) UV, C=Ty UT), UM, UMZ“:“ ,
D =To UT,,U{0,1F.

Ona Hampgoro K E¢°' nycteK® = ¢°\ K.. ., {
TEOPEMA (Ue#TnuHa [[5]) IOna Toro 4T06b cHUcTeMa ¢yHHuHﬁKg;¢o
6oina 6asol, Heo6XO4WMMO WM AOCTATOYHO 4TOGH:

1° 8 H COOEepHanUcb:
-no Rpa%Heﬁ Mepe ogHa ¢yHHUWA, He npuvHaagnewawas A,
Mo  HKpakHel Mepe ofgHa ¢yHHUMWA, He npvHagnewawan B,
-Mo HpaWHeW mepe ogHa ¢yHKUMA , He npuvHagnewawan C,
-no HpaWHe#® mepe ogHa QYHHUMA , He npuvHagnewawan D.
2° Humakan vs ee NoACHMCTEM He o6Gnajgana CBOMCTBOM 19,

HEHATOPHE CBOWCTBA CHMMETPHUYHHX $YHHUWA

OnpegeneHue: n-mMecTHan ¢yHHuHHf(x1,...,xn) anrebpbl NOrMKH
HazbBaeTcqd CHMMETPHWYECHOW EciH f(xi,...,xn) =f(y1,...,yn), rae

(yl,...,yn)-nmﬁan nepecTaHoBKa (xl,...,xn).

JIEMMA 1.([ﬂ , N. 178.) Ecav cpeigu 4NEHOB AW3bHHTWMBHON COBep-

WEeHHOH Hopmasb HoM ¢opme ([ACHP) n-MEcCTHOM CHMMETDPUYBCHON QYHH-

UHH BCTb YNBH, B HOTOPuIH BXOAAT m GYHB C OTpHUaHHaMH, To B ACHYP

06A 3aT8/b HO BXOJOAT BCE8 BO3MOMHLE YNEHy C M oTpvUuaHHaMH Hanj GYH‘

Banmu.

Onpegenexue. dyHOaMBHTaN, HOW CHMMBTPHUYECHON GYHHKUWEN HHABHCa
m HazxlBasTCA Takan ¢GyHHUHR anrebps NOrWKH, Yy HOTOPOK BCE YNEH.,
sxogawne B ACHD 3ToH ¢yHHUMM, WMMBIKT poBHO M GyHB Ge3 OTpHUAHHA.
dyHOaMBHTaNb HYyl0 CHMMEBTPHYHYK N-MBCTHYW OYHHKUWE HMHAEBHCAa M My Gy-
AeM 0603HavYaTb HKaH Sg .

NEMMA 2. ([1],n. 178) NwbaRn cHUMMBTPUYHAA GYHHUMA ECTb AQW3si0H-
HUMA GYHOBMBHTENbHBIX CHMMEBTPHUYHEX DYHHUMH , MHAOBKC KOTOPpL X ONpe-

ABNABTCA OQHO3HAYHO 388aHHON CHMMBTPUYHOM QYHHUHE M.

n n n
OnpepeneHue. (] =S, V...V .8 (n >1).
Kl""'Km Kl Km
n n
OnpegensHue. S, =S _
—NPSABNEHHE. L "Kyse.. K ecnm L={K,,...,K }.

NycTs Sn MHOWEBCTBO BCBX CHUMMBTPHYHBX nN-MEBCTHuX QYHHUHWH anrebpu
noruku. Ecan k(X) o6o3HavaeT 4ucno BCeX GYHKUHWIT MHOMBCTBA X
o k(s_) = 2™1,

Onpegsnenxve. S-6a3ncom anrelpu NOrHMHW HaswBaeTca 633WC, HKOTO-
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Pt COABPHUT TONbHO CHMMETPHYHLE OYHHLHH.

JIEMMA 3. ([4]) Yucno n- MBCTHHX CHUMMBTPHYHBIX GYHHUWN 683 OHH-
TUBHbBIX NBPBMBHHHIX PaBHO 2n 1.2, TonbHo ¢dyHHUMH O M 1 BupOMABH-
HbE .

NEMMA 4. 3cam H={1,2,...,n~1} u {kl,...,km}EH , TO

n

Skyree ik ©

n
Too NS, S

T n.
kll-..,km,ne lns 4

n . N
SO,kl,...,kmeTlonSn # S0,%,v0. k8T 0 80

JloHasaTenscTBO. nyCTbSE:=f(x1,...,xn) . Jlsmma cnegyeTt W3 cne-
aywowux ¢axHtoe: £(0,...,0) =1l<=> 0 elL w £(1,...,1) =1<=>nekL.
N3 nemmbl 4 BoTEBHaeT:

= = - _ on-1
NEMMA 5. k(Toon s) —k(T01“ S,) =k(T,,NS ) =k(T; Ns)=2

Creaywwie gee nemMs goHasaHu 8 |4].

JIEMMA 6. 3cnM n 4eTHOE Yvchao, TO Sn[]V'= ¢ .

JIEMMA 7. YUCNo N~-MBCTHHX M3OTOHHBX CHMMBTPYHBEIX GYHKUWH pasHO
n n n _

nt2. 370 $YHHUHH S0 1,...,n' Sl,2,...,n""'sn' S¢ = 0.

AnR 4eTHOro n M N S NV=¢. Ana He4eTHOro n=2m+l TONbKO GYHH-

2m+1 .
uA S M30TOHHA W CamMOOBOMCTBEHHA.
L1 m+l,...,2m,2m+1 - 4

n+1l
JIEMMA 8. 3Scav n HeyeTHoe yucao (n=2m+l) , TO k(Snl1V) =2 2

“ Snn v ={Skork1,""km } , CAE POBHO 0O4HO M3 Yucen i,n-i
(0 <i<m) npuHaanewnt mHomectsy {ky,....X }.

JoHasaTensCcTBO COQEPHWTCA B JOKasaTenbCTee Teopemsl 1 ([4]).

JIEMMA 9. 3caum O <k. <n, I.={k1,...,km} Mm L°={0,1,...,n}\L,To0

(s? )’ = SL .
JoKasaTenscTBO. JlerHo NpoBEpHTL paBeHcTBa SI‘VSE =1, SnA S =0.
i = n = n
JEMMA 10. S 0 My= Sg .y o=leSgoy 10801, a2, ...

n n = = = =
O'SG'O ) k(snn M) _n+2,snﬂ M2ﬂ V=0 gns n=2m snn Mzﬂ \

n
- i -
= {80'1,2’..', } onR n=2m+l

loxasaTenscTeo. [lepeoe yTeepwijeHWe BuTexaeT W3 onpegeneHua M

nemmel 7 H}neMMH 9, a nocnegHee chnegyeT M3 neMms 8.
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4. THMH CHMMETPHHHHX ¢YHHHHH ANCEBPH ¢

Scau ¢yHHuHﬂ f NpuHHagnemuT wnaccy X (X € {A,B,C, D}] 6y -
ABM FOBOPHTL , YTO OHa umeeT cBoWcTBO X. 3cnu dyHKUWA obnagaerT,
Hanpumep, ceokcTeamu A,C W He o6najaeT ceoWcTeamu B,D, OGygem
" roBOpUTb 4TO 3TO QGYyHHUMA Tuna A,C w o6oaHauuM ee yepes /A,C/.
lBe dyHHUMH, o6najapwHe OJHWMH M TEMHM Me CBOMCTBaMW Byfnem Haa-
bBaTb GYHHUMAMW, OJHOrO M TOrO WE THMa.

JEMMA _11. YdcNo pasNMYHBEIX THAOB GYHHUWH_ K3 0° pasHo 9:

i. /a,s,c,n/, 4. /A,c,Dp/, ’ 7. /B,D/
2. /Aa,B,C/, 5. /B,C,D/ , 8. /c,n/,
3. /A,B,D/, 6. /A,D/ , 9. /p/ .

JNlemmy pmowasan P.Towwdy [3] .

MNyeTs, HaanMBp,k/A,c,D/S(n) HHCNO N~MECTHLIX CHMMETPH-
YHBIX GYHHUWW Tuna /A,C,D/, @ k/A'C'D/s(.fn) YHUCNO CHUMMBTPHYHLIX
dYHHUMH Tuna /A,C,D/ , 3aBHUCAWHMX OT He Gonee 4eM n apryMmeHTOB.
B cuny cnegywwsit Teopemsl HamAbli 0T 9 TWMNOB COAEPHWMT CHMMEBTPHUY-
Hble DYHHUHWH.

TEOPEMA 1.
_ 2 gns n=2m

1. k/A,B,C,D/S(n) = { 3 7w n=2m+1 .3TOM TWNY npUHagnewarT

HOHCTaHTW 0 W 1. Ana n=2m+l 3TOM THNY NPHHARNEBHHT W GYHHUMA

g!ﬁ?T——_ -

m+l,...,2m+l ° n

2. k/A,B C/S(n) =2"-2.370m THUNY NPUHAANEBHAT GYHHUHWH Sk X
17" "

H Sg,kl,...,km,n’{kl""’km}sH’ 338 HMCHNKW4YBHHBM HOHCTaHT 0 W 1.

=/ 0 ANR n=2m
3. k/A'B’D/S(n)"{ n-1 Ana 2m+l 370T TMN

2 -1 gnA n=2m+l.
n
COABPMHUT (YHHUHHM Skl,...,k ,2m1, kie {i,n-41}, 1 <i<m, 3a nc-

2m+1
HKNOYBHHBM QY HHKUHH Sm+1,...,2m+l .
n ana n=2m
4, k/A,C,D/S(n) = { - . 3Tom Tuny npuHagnewart
n-1 ana n=2m+1

n n —, .eh -
ST,Z,...,n'S2,...,n’S3,...,n""'sn . Ana n=2m+1 uMcHonw4aeTcA
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2m+1

CaMOABOHWCTBEHHAR GYHHUHA Sm+l,...,2m+1 .

0 anm n=2m

n 1 ann n=2m+1
mna S AR n=2m+1.
0;,c..,m

5. k/B,C,D/S(n) ={ . 34HHCTBEBHHAA (QYHHUWA 3TOrO

2n 1, no1 A% n=2m
—y— 3T0T THN cO-

6. k/A,D/S(n) = {
-2 2 -n+l AnA n=2m+1 .

2n-1

n

8
ABPHHAT GYHHKUWH skl""'km'n

v {kyreo.sk} SH, 38 ncuawdeHnem pyH-

n
1,2,...,n

2m+1
H_QYHHUHHK Skl

n n
,;Sn ;S $¢:.3S_. [nA n=2m+1 HUCHNKWYaWTCR
3,¢¢4n n ACRARR T O

HUHWK S
fane 2,...,n"

, ,k_,n’ kie{i,n-i}, lii:m.
serky

n=2m+1l. [OnA HeYyeTHoro n=2m+l

o ANA n=2m
7. k/B,D/S(n) = n-1
2 -1

anA n=2mt+l.

3TOM THNY NPUHaANBMAT GYHHKUHWH SgT;I' X ; ki e{i,n-1},
ATEIL M

n
1 <i<m, 38 UCHANKYEHUBM GYHHLUHUK S
;== — 0,l1,...,m

na n=2m

8. k/C,D/g(n) = { 77 neom+l ° O7TOT THN CONBDHAT QYHH-
n n . " —_ y
0,1,-..,11-1'50,1'...'n_zr-o.,so.

| g
ToR QYWHUMA Sy ;¢

n
n-1

b=l

i=]

|

Mn S AnAa n=2m+1 ucHawyae-

=

2h 1 am n=2m
9, -k/D/S(n) = ¢ n AN . 3TOM TUNy nNpHHaA-
n-1 n-
{2 =2 -n+l nOnnA n=2m+1 .

n __- = -
NeMaT QyHHUWUM sO,kl,.-.,kQ,{kl""’kl}“H' 32 HCHWYBHHEM GQYHH

[\
-

3

n n n
0,1,...,n-1750,1,...,n-27"""#59,1 7 Sg -

2m+1 )
o,kl,...,km

S

-
hY

E

n=2m+1 WCHNK4aWTCH H. PYHHUHH S

’ ki € {iln_i)’r

,D,OHaEiEITBJ'IbCTBO. B AOHas3aTeNeCTBE MONL3YHWTCA paBeHCTBa Meway MHO-

MECTBHMMH JOKa3aHue B |3

7. ANBNCND =(T01r]VrlM1) U{0,1} . BuTexaeT u3 nemm 4 wu 7.

2. ANBNCND"= (Tho UTll) N{0,1}. BuTexaeT ua nemmuo 4.

3. AN Bﬂ C‘r1D = (TOl[]V)\ Ml' BuTexkaeT W3 nemmsl 6 gnA n=2m.
Ana n=2m+l purexaet w3 nemm. 8,9 v 6.

4, ANB~ ﬂFf]D = Ml\‘({O,l} U(T01n V)) . CneayeT W3 femMb 7.
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5.2°NBNC ﬂD=T10 nvnom, . Jna n=2m _cnegyeT W3 feMMsl 6, a ona n=2ml

cnefgyet va nemm 4 w 10.

6. ANB-N C‘ﬂD=T01\((T01ﬂV) UM1)° CneayeT w3 nemm' 4, B w

7. OnAa n=2m+1 nonbayeTtcAa v nemma 8.

7. AN BNC’ND = (Tlon V)\\Mz. Ons n=2m cnegyet v3 nemmu 6.
Jna n=2m+1 cnegyet w3 nemm 4, 8 v 10.

8. A°NB-i Cl’lD=M2‘ ({0,1} U(Tlonv)). CnegyeT 43 nemm 4 W 10.

9. A'ﬂB‘ﬂc’ﬂD=Tlo\((T10nV) UMZ)' Cnegyet ua nevm 4,10,8 v 8.

"B cuny Teopemsl 1 4 neMMsl 3 CyMMHpYA COOTBETCTBEHHHE BHp@MEHHA

nerHo nony4yaeTcHh

TEQPEMA 2. 1. k/A,B,C,D/ (<n) = [2£2],
2. k/AB,C/g (<n) = 2™z (1), 21
- 2
+3
3,7. k/A,B,Df (<n) =k/B,D/g (<n) =2 -2 .
» 2
4,8. X/B,C,D/g (<m) =k/C,D/g (<nm) =[5 ].
_ n+l
5. k/B,C,D/S (<n) = [T [n+1] ,
n Z n
6,9. k/A,D/g (<n) =k/D/g (<n) = 2" -2 -3 1]

CUMETPUYHLIE BA3WCL ANCEBPL ¢0

o
Tun Hawporo Gasvca anrebpw ¢ ONPEABNABTCA THMNaMH NpUHa-

Anemawnx GyHHUWM 3aToro Gaauca. Cnegywwans nemma foKasaHa B [3].

JEMMA 12. Yucno pasnuyHux THMNos 6a3vcoB B ¢° pasHo B;

I lByx4neHHue TwWnw Gasucos: {/A,B,C/,/D/} .

II Tpex4YNeHHoE TWnw Gaswcoe: {/A,B,c¢/,/Cc,D/,/A,B,D/} ,
{/a,B,C/,/C,D/,/A,D/}, {/A,B,C/,/C,D/,/B,D/},.
{/a,B,c/,/B,D/,/A,C,D/}, {/A,B,C/,/B,D/,/A,D/},
{sa,B,Cc/,/A,D/,/B,C,D/} .

III YeTupex4NBHHLS TH%E 6?3ucos:{/A,B,C/,/A,B,D/,/A,C,D/,

<n

/B,C,D/}. nMycTte N? H Ni-— 4yucno Bcex i-4neHHwx S-6aaucos,

COCTOAWMXCA TONBHO M3 N-MEBCTHbLIX ¢yHHuHﬁ, COOTBETCTBEBHHO M3 QGyH-

HUHUM 3aBUCAWMX OT He Gonee, 48M OT n NEPBMEHHLIX.
Hcnone3ya TeopeMw 1 v 2 u nemMy 12 MOKHO NErHo NPOBEPHTL

paBeHCTBAa B Chnelylowsid Teopeme.
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TEOPEMA 3. 1. No g -0 B ocransHux paeBeHcTBax n >0.
[ 2@t 1)(2 “l-n) ana n=2m,
2. Ny =1 ,,.n-1 n-1 2%
2(27 "-1)(27 "=2 7 -n+l) gnR n=2m+1 .
o ln@™ -1 (2" 'on) gns n=2m
3. Ny = 1 n-1 n-1 n-1
22" 121) (3(n-1) (2 2 -1+ (2" -2 Z cp1) (n-142 2 ))
AnA n#2m,
n ¢ ana  n=2m -
4, N4 = n-1
[22°2-1) (2 2 -1) (n-1) ans n=2m+1 .
[(aly o
5. NS = ™ ogmen) 22 2 - [B)).
2 [Eil
6. Néﬁn) = (2“*1-2(n+1))(3]%?](2 21+
[n+1 2 [n+11 2
(2"-2 [“—])-(27 -1+[i‘2—])) .
[n+1]
7. N;in) - (2n+1_2(n+1))(2 _ [n+3]) [ ] [%1] .

1_ 1 12 2 2 (<2) _ (<2)_ gm _
CNEACTBME 1. N, =N =N, =N, =Nj =N, =N =n* = 0.

S-6asWc He MOMET COLQEPHMATBLCA TONLHO W3 GYHHUMH, 3aBHCAWMX
oT He 6onee [4BYX MEPEMEHHLIX.

3_ 3_ 3_ (£3)
CNEACTBME 2. N =0, N3 =36, N, =12, N,

<3
—0, n{<h.

Hanpumep, ¢yHHUHWK TpEx MNEPEMEHHLIX ONpeaenfAnT 12 4YeTupeX4yneHHwX

S-6asucos:

s}, Si,3' Si,z,s' o, s}, S§,3' s Sg,l} '

(s Si,z"si,z,3' 33,1}' (s3 Si,z' Sg' Sg,l} '

{Si,z' Si,3' si,z,a' Sg,l}' {51 2° si 30 S5 Sg,l} '
{sg, 3" 5?,3' 532,37 0,137 (5g,30 57,30 530 55,13
{83,1,3' Si,s' si,z 3 53,1} {So 1,3’ Si 53 Sg,l} '
(53,2, 3" 33,3' S1,2,3" So,1}" (8g,2,30 81,30 Sy 53,1} .

Mo aHanorHQmomy cnocoBy MOMHO NONY4YUTE BCe S-Gasuvch Hawforo Tvna.
CNEACTBHE 3. HavmeHbwee n. 4NA HOTOPOro CYWECTBYWT ABYXYNEHHHE
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6asvce COCTOAWWMECA M3 N-MECTHBIX QYHHUHH BCTb4(N§ =56) . lMpumep

‘4
nByx4yneHHoro 6Gasuca: {Sl, SO,Z} .
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MONOTONE MAPPINGS OF ORDERED SETS

Milan R. Taskovié

1. Introduction. An map f of a partially ordered set P to itself has a fixed point if
there exists an element £ in P such that f (§) = £&. An ordered pair (11, v) is called a fixed edge
of f if f (u) = vand f (v) = u, where u v (u, v e P). In a noted paper [TA] Tarski has shown
that every order-preserving (isotone or increasing) map of a complete lattice into itself has a
fixed point. Davis [DA] proved the converse: Every lattice, with the fixed point property is
complete. Order-reversing (antitone or decreasing) maps, on the other hand, may or may not
have fixed points. In a noted papers [KJ] Klime§ and [TM] Taskovi¢ has shown that every
antitone map of a complette lattice into itself has a fixed edge. The analogous problems for
conditionally complete partially ordered sets has remained largely unexplored.

Let (P, <) be partially ordered set. For x,y e P and x <y, the set ( x, y) is defined by

(x,y)=[t:tePandx<t<y].

We begin with a statements for conditionally complete sets (that is, every nonempty
subset of P with upper bound has its supremum).

Lemma 1. Let (P, <) be a partially ordered set and f an isotone mapping from P into P
such that: :

(A) f hasa forkie.a<f(a)<f(b)<b forsomea,beP,and

(B) The set (a,b) (or P) isa conditionally complete.
Then the set P (f) : = [xe P: £ (x) =x] is nonempty.

Lemma 2. (Fixed Edge Lemma)det (P, <) be a conditionally complete partially
ordered set and f an antitone mapping from P into P such that f has a fork type

'© a<f(b)<f(a)<b forsome a,bFP.

Then there exists a fixed edge (u, v) of f and there exists an u with the least element in
P such that (u, f (u)) is the fixed edge of f.

2. The main results and corollaries. With the help of Lemmas we novobtain the main
results of this paper:

Theorem 1.’ Let (P, <) be a partially ordered set. For set (1a, b) or P to be
conditionally complete it is necessary and sufficient that every isotone function f:P — P with
fork have a fixed point.
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Theorem 2. Let (P, <) be a partially ordered set. For set ( a, b) or P to be
conditionally complete it is necessary and sufficient that every antitone function f:P - P
with fork (C) have a fixed edge.

Special cases of Theorem 1. have been discussed by Davis [DA] and some others.

Corollary 1. (A. Davis [DA])For a lattice (L, <) to be complete it is necessary and
sufficient that every isotone function f:L ~ L have a fixed point.

Corollary 2. Let (P, <) be a partially ordered set. For a maximal chain L=(a,b) CP
to be conditionally complete it is necessary and sufficient that every increasing function f:P
- P such that (A) have a fixed point.

Corollary ‘3. If (P, <) is a partially ordered sets and if every isotone function f:P - P
has a fixed point, then every maximal chain of P is a complete set.

The proofs of these results with a more detailed discussion and some examples will be
published in [TM].

But the main question is open.

Problem: Let P be a nonempty ordered set and f:P - P. Solve the following
functional equation f2 (x): = £ (f(x)) = g (x), where g:P - P is given arbitrary function.
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ON A QUASIIDENTITY IN n-ARY QUASIGROUPS

J.U8an, K.Stojmenovski

Abstract. A generalization of the Reidemeister condition
for n-ary quasigroups is considered. (A generalization of this
condition for ternary nets is given in [1].)

First we will give some definitions.

Let Q be a nonempty set, Q" the Cartesian n-th power of Q
and A: Q" + Q a mapping. The ordered pair (Q,A) is called an

i€ {1,...,n} the equation

A(a1""'ai-1'x'ai+1""'an) =b (1)

has a unique solution.

Further on we will denote the sequence (a1,...,an)é Qn
shgrtly by a, and the sequence (a1,...,ai_1,ai+1,...,an) by
i(a). .
If a is any fixed element of Q" and i€ {1,...,n}, then
the mapping

—ix
Li(a)'x A(a1,...,ai_1,x,ai+1,...,an)

that any translation of (Q,A) is a permutation of the set Q.
The n-ary operation B on Q, defined by: ’

1
1 (E)X_',...,L

B(x1,..-,xn) T‘A(L n(g)xn)' (2)

the n-quasigroup (Q,A). So, any fixed element (a1,...,an)e Qn
determines an LP-isotop of (Q,A) by (2).

It can be shown that (Q,B) is an n-quasigroup with an

identity element e = A(a1,...,an), i.e. (Q,B) is an n-loop.
We can write the equality (2) in the following form:
A<x1,...,xn) = B(L1(E)x1""’LnQE)Xn)' (2°)

We will investigate some properties of LP-isotops when
the n-quasigroup (Q,n) satisfies a special condition.
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Let (Q,A) be an n-quasigroup. Consider the quasii&entity

1 1 3 3
A(x1,...,xn) = A(x1,...,xn)
" )
1 1 2 1 1
A(X ,..0,X, XTI, X, cee) X ) =
j_/—_\-]_ ( 11 e R A l+1l [ (3)
—_ .3 3 4 3 3
= A(x1,...,xi_1,xi,xi+1,...,xn)
=> A(X2,.0.,%3) = A(X ... ,x)
1 r4n 17 r8nl e
where XyreeesX are variables. If n=2, i.e. A is a binary ope-

ration, then (3) is the Reidemeister condition [1].

THEOREM. The condition (3) in an n-quasigroup (Q,A) holds
if and only if any two LP-isotops of (Q,A) with a (given in

advance) common identity element are equal.

Proof. Let (Q,C) and (Q,D) be LP-isotops of an n-quasi-
group (Q,A). By (2°) we obtain \

A(x1,...,xn) = C(L1(§)x1,...,Ln(§)xn), (4)
A(x1,...,xn) = D(L1(§)x1,...,Ln(§)xn), (5)
where X = (x:,...,x;) and ¥ = (xf,...,x:) are fixed elements

of @", A(X) adn A(y) are identity elements of (Q,C) and (Q,D)
respeétively.

Let the following condition

ec = ep =>C =D (6)
be satisfied. By the hypothesis ec=ep it follows that
3
A(X],eeesX)) = A(XT,een X))
Substituing x1=xf,...,xn=x; in (4), x1=x:,...,xn=x; in (5) and

using the assumption that the condition on the left-hand side
of the implication (3) holds and C=D, we obtain

2
A(xf,...,xn) = Ax!,...x0),
which means that (3) is satisfied.

Conversely, suppose that (3) holds in an n-quasigroup
(Q,A) and let ec=ep be an identity element of the LP-isotops
of (Q,A), defined by (4) and (5). It is necessary to show that
C=D. By the equalities
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2 1 1 1 - o 3 3 3 -
A(x,,xz,xa,...,xn) = A(x1,x2,x3,...,xn) =t,,

1 a 1 1 - 3 4 3 3 -
A(XysX3sX3peeesX ) = AXT,X,X5,.000x)) = £, (7)
N 1 1 2, _ 3 3 “y
A(x1,...,xn_1,xn) = A(x‘,...,xn_,,xn) = tn,

where tys...,t  are arbitrarily chosen elements of Q, we con-

clude that the elements xf,...,x;,x:,...,x; are uniguele deter-

mined. By (3), (4), (5) it follows that
Clt,seenrty) =.A(xf,...,x;) = A(x7,..00,X0) = D(t,,...,t,),
i.e. C=D. The proof of the Theorem is completed.

COROLLARY 1. If an n-quasigroup (Q,A) satisfies condition

(3), then the number of their LP-isotops is not greater than
lol.

Namely, let a€ Q. For any solution of the equation
A(x1,...,xn) = a we obtain an LP-isotop of (Q,A), determined
by (2). All of them have a common identity element e=a, and
thus they are equal.

Let (Q,A) be an n-quasigroup. If we substitute the vari-

ables xi reee i Xy by arbitrary fixed elements of Q, then we
1 n-2

will obtain a binafy quasigroup (a binary retract) (Q,+) of
the n-quasigroup (Q,A).

COROLLARY 2. If an n-quasigroup (Q,A) satisfies (3) then

any of its binary retracts is isotopic with a group.

Namely, if n-2 variables in (3) are fixed, then the Reide-
meister condition for the binary retracts of the n-quasigroup
(Q,A) is satisfied, and thus any binary retract is isotopic
with a group [3]. ‘
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