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SOME CONGRUENCES ON GENERALIZED INVERSE SEMIGROUP 
Branka P. Alimpic 
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Abstract. A regular semigroup S is called generalized 
inTerae i! the set E(S) of all idempotents of S forms a nor
mal band [61. A band B ie normal if e!gh • eg!h, !or every 
e,f ,g,h of B.In this paper inverse and .;t. -unipotent con
gruences on S are characterized, analogous to the caracteri
zation of congruences on inverse semigroups giTen by M.Petrich 
(4]. We mention that for ot -unipotent semigroups a similar 
characterization ha s been given by Sh.Shimokawa [ 5]. Finally, 
if ~ is a congruence on s , the smallest ~-unipotent and the 
smallest inverse congruence on S containing ~ are described. 

Firstly we giTe some definitions and results. We adopt 
the notation and terminology of J.M.Howie [2]. If tis a class 
of semigroups, then a congruence f on a semigroup S is a G
congruence if S/f G ~ • A regular semigroup S is L -unipotent 
(inverse) if the set E(S) forms a right regular band (semila
ttice). A band B is right regular if e!•fe!, !or any e,f of B, 
and right normal if e!g=feg, !or any e,!,g of B. Obviously, a 
normal band is right regular if and only if it is right normal. 

RESULT 1 [6]. LetS be. ~ generalized inverse semigroup. Then 
(1) xe!y = x!ey, 
(2) xa'y • xa"y, 

!or every x,y,a G S, a',a" EV(a), e,!GE(S). 

RESULT 2 [ 5). Let S be ~ ot -unipotent semigroup. Then 
(1) a'a = a"a, 
(2) a'ea "' a"ea, 
(3) aa'ea • ea, 

!or every aES, a',a"E:V(a), eEE(S). 
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Let S be a gene r a lized inverse semigroup. A congruence ~ 

on the set E(S ) is called normal if 

et:f ::;. (v' s E S)(vs'i': V(s))s'esr s'fs. 

A regul a r subsemigroup K of S is·· called normal if it is full 

(E(S)~S ) and selfconjugate ((YSES)(Vs'EV(s))s'Ks!:K). 

For a congruence ~ on E(S) we introduce the following 

relations: 

(1)- et"0 f ~ ('r/se; S)(vs'E V(s))s'es'ls'fs 

(2) eTr f ~ (¥he E(S))he 'Lhf. 

LEMMA l. If 'i:' is ~ normal congruence on E(S), then the rela

~1! 't
0 

and tt'rare norma l congruences ~ E(S). T 
0 

is the 

s mallest semila t t ice _congr uence ~ E(S) containing 'C, 1; r is 

the s mallest right regula r ba nd congruence ~ E(S) conta ining 

rc, ~ 'Crs 'to. 
Proof. Obviously, the r elations ~0 a nd 17r a re e quiva l ences . 

For any g €. E(S) \~e have 

e '[
0

f => ('r' s,S )(fs'E V( s ))s' gegs 'Ls 'gfgs (Since s'g~V(gs) ) 

~ (VsES:(Vs'€ V(s))(s'ges 'rs' gfs 1\ s ' egs'L e' f gs) 
· ( By Result 1) 

~ gel£:
0
gf 1\ eg '[

0
fg, 

e'[rf ~ (,Yht'B(S))(hget"hgf 1\ heg'Lhfg) 

::::;. ge <[rgf A. eg 'C"rrg. 

(Since hgeE(S)) 

Hence, ~0 8nd ~r ar0 congruences. ~ 
Since 'f is normal in S, we have 'f.s. T. 

0
, and since l is 

a congruence, we hAve 't' 5.. L: r• 

Let seS, s'eV(s), then 1~e have 

e '!::
0

! ~ ('r/t(S)(-Y't'€V(t))t'ett" t'ft 

"=> (~t€S)(-¥t'-€V(t))t's'est'Lt's'fst (bince t's'~ V(st)) 

~ s'es roa"fs 
e '[ f ::::::> se'e T brJ' f r 

Henc 

For 

=> e'es t"s'fs 

~ a'e::: 'frs'fs 

L 
0 

and z;, 
t;

0 
we haTe 

are normal in S . 

ef t
0
ef ~ (lts€S)(-\fa'eV(s))s'efe't"s'efs 

(=9 ('r'se,S)('fs'eV(a))s'efst' s'!es 

~e!'C' 0fe, 

(Since ss '€E(S)) 

(Since tis normal) 

(Since "C s. t:r). 

(By ltesult 1) 



which yields that rro is a semilattice congruence . 

Similarly , for CZ: we have r 

ef CCr ef~ (\fhtE(S})hef£:-hef 

~(¥hE E(S} )hef'Ghfef (By definition of S) 

~ ef 1: fef r 

which yields that ~r is a right regular band congruence . 

Let 6 be any semilattice congruence on E(S} containing 

't: . Then we obtain 

e 6'
0 

f ~ e G" efe A fef G f 
~eo f 

(For s=s'=e , and s=s'=f) 

(Since efe b'fef) 

which implies 6"
0 
~ 6 , and 

CC so o ==;;> 't'0 C 6 0 ~ 

Hence, 1:
0 

is the smallest semilattioe congruence on E(S} con

taining CC. 
Similarly, if ~ is a right regular band congruence on 

E(S} containing 't, we obtain 

e C5 f ~ e G ef 1\ fe 6" f (For h=e and h=f ) r 
~ e 0' f (Since ef 'Ofef, fef of) 

which i mplies that b r~ £ , and CC r 5 r;:: • 
Hence, ~r is the smallest right regular band congruence 

on E(S} containing 'L • 
Finally, since every semilattice congruence is a right 

regular band congruence, it follows that ~ ~ CZ:: • r o 
Now we deseribe dC-unipotent congruences on s. 

LEMMA 2. Let CC be ~ normal congruence .Q.!! E(S) .!ill9. let K be !! 
normal subsemigroup of S such that 

( i) ae E K 1\ e 't a' a ~ a E K 1 

( i i ) a E. K =p a ' ea 'L ea 'a 

for every acS, a't:V(a) and eC:E(S), then 

(1) aebE.KAe'i::'a'a ~abGK, 

(2) ab t: K ===? aeQ.!'"K, 

(3) ab'E: K Aa'a"i:'b'b -==;> a'ea Cb'eb, 

(4) ef tfef (<tis~ right regular band congruence) 

for ~Y.. a,b6S, a'EV(a), b'GV(b) and e,feE(S) . 

Proof. (l) By Result 1, ab(b'eb)=aebt:K. Since ~is normal, 

from e'ta'a we obtain that b'eb 'Lb'a'ab. Since b'a'EV(ab) , 
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it follows from (2) that abEK. 

(2) Since K is normal, abc K ~ aeb=ab(b'eb)E K. 

(J) Assume that ab' E K and a•a 'Gb'b. Then 

a'ea = a'aa'eaa'a ~ b'ba'eab'b 

'C b'eba'ab'b 

(Since a'a 'Lb'b) 

(By (ii), since ba'GV(ab')) 

'C b'eb (Since a'a 'fb'b). 

(4) Since K is full, from (ii) we obtain that fefcef. 

DEFINITION l. Let K be ~ normal subsemigroup of S, and let S 
be~ normal congruence£!! E(S ). The pair (K, q:) is an~ -uni

potent congruence pair for S if K and CC satisfy the condi ti

ons (i) and (ii) of Lemma 2. 

DEFINITION 2 . l4 J . Let ~ be ~ congruence £!! S. Then 

ker q = i x E S I ( 3 e E E ( S)) x ~ e J 
tr g = f!E(s)· 

LEMMA 3. Let ~ be ~ ,t -unipotent c ongruence £!! S. Then, for 

a,bES , 

a_3'b<-9 (1/a'EV(a))("t/b'~V(b))(a'a tr~ b'bAab'Gker~ ). 

Proof. Let afb, a'6V(a), 

a'a ~ a'bb'b 

~a'ab'b 

9b'ba'ab'b 

f b'ab'b 

g b'b 

b'eV(b). Then 

(Since a~b and b=bb'b) 

(S i nce bfa) 

(Sinc e J i s .£-unipotent) 

( Since b ~a and aa' a= a) 

(S i nc e afb), 

so a •a trg b ' b ., From ab' f bb ' it follows that ab ' G ker f. 

Conve r sely , le t a ' a tr ~ b' b a nd ab' c ke r ~ fo r some a 'c-V(a ) 

and b '6 V (b) . Then 

a ~ab'bb'b 
~ bb' ab'b 

f bb ' bb ' ab ' b 

~ ba'a b 'ab'b 

f ba ' ab ' b 

rb 

(Since a 'a 9 b'b) 
(Since f i s ~-unipotent) 

(Since bb ' € E ( S)) 

(Since b'b f a' a ) 

(Since ab ' cs ke rJ) 

(Since a ' aJ b' b ). 

THEO REM l . Let' (K ,~) be an ~-unipotent congruence pair for ~ 
generalized inverse semigroup S , and let ~ (K , ~) be~ relation 

on S defined .Qy 
(.X) a ~(K , 'C')e,~.!:[> (3 a 'cV(a)) (3'b ' cV(b))(a ' a<1:b ' b!lab ' cK) 

Then fCK , 't') is the unique ae - unipotent congruence on S for 



which ker _f(K , 'l: )=K and tr ~(K,'l: )=CC:: . 

Conversely, if f is~ oG -un iooi<>nt congruence on S , 

th€'n (kerf , tr J) is ~£- nipotent congruence pair for S and 

~ = J (ker f , tr f). 
Remark 1 . By Results 1 and 2 we have 

a~(l<;c)b<F> (.1/a\;;V(a))(-\r'b 'E.V(b))(a •acrb'b 11 ab ' € K) . 

Proof. Since K is normal , the relation ~(K ,~) is reflexive 

and symmetric , and by Remark 1 it is transitive . 

Let a~(K,'t;)b, and CES, c'cV(c). Then a•a 'Lb ' b and ab ' Eo K 

for some a '~V (a) and b'GV(b) . Since ("" js normal , we have 

a ' a 't b' b "'"'7 c ' a ' ac 't c ' b ' be , and by ( 2) of Lemma 2 we have 
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ab 'cK =9 acc ' b ' GK . Since c ' a ' EV(ac) and c ' b '~V (bc ), if follows 

tha t acf(K,'t)bc. 

Further , from ab'GK and a'a'Lb'b we have a•(c'c)a'(;b'(c'c)b 

by (3) of Lemma 2 and ab'E K ~ cab'c'c; K, since K is sell-

conjugate . From a'c'E V(ca) and b'c'~ V(c~) it follows that 

ca 5' (K,'t')cb. 

Therefore J(K,t) is a congruence on S. 

If aGker ~(K,'{;-) , then a'a'te and aeEK for some a'.sV(a) and 

some ecE(S) , which by (i) of Lemma 2 yields aEK . Conversely , 

if aEK , then a(a'a) €K, a'a'Ca'aa'a, for a ny a'GV( a) , hence 

a g(K,'L)a•a. Consequently, K=ker ~(K,CC), and obviou sly 

tr ~(K,t) = ~. 

The uniqueness of f(k~'i:)follows from Lemma 3 . Obs erve that i t 

follows also from [1], Th eorem 5 . 1 . 

Conversely , let ~ be an cf_ - unipotent congruence on s. 
Then trf =J IE(S ) is a normal congruence on E(S) , and by ortho

doxy of S ker~ is a full and selfconjugate subsemigroup of 

s. J,et a E ker ~ , a' .S V (a) . Then a.t S' a, and a ' =a' aa' f (a' a) ( aa') 

EE(S) , so a 'E: k e r ~, and kerq is a regular subsemi group. Hence, 

it i s a n ormal subsemigroup of S . 

From ae Eo kerf and a •a ~ e it fo ll ows a=aa •a f ae E ker j>, 
so (i) of Lemma 2 h ol ds. 

Let a G ker ~ , a' tS V (a) , then a g f and a ' g g for s ome f, g 

E E(S), and so a •ea f gef f egf 3 ea •a , since ~ is ~ -unipotent 

on S , and the condition (ii) of Lemma 2 holds. 

Hence, (ker 5', tr J ) is an ;! -uni potent congruence pa i r for 

S . By the f irst par t of this theorem, g = J (kerf , tr J ) . The 
theorem is p~oved. 
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THEOREM 2. If f is ~ congruence QTI ~ generalized inverse semi

~ S, then (ker _f, (tr f )r) is !ill £-unipotent congruence 

pair for S, and }'(ker_f ,(tr}Jr) is the smallest o/., -unipotent 

congruence QTI S containing f . 
Proof. Let f be a congruence on S. By Theorem l ker!? is a 

normal subsemigroup of S, and by Lemma l (tr g )r is a normal 

congruence on E(S), and it is the smallest ri ght regular band 

congruence on E(S) containing trg • 

Let ae<:;:ker_f and a'a(trj')re. Then a'aega'a (for h =a'a), 

so a=aa'afaa'ae = aet:ker§'. 

If a E: ker ~ and a'~ V (a) , then a g f and a' J g for some 

f,g<::;E(S), and by Lemma l, we have 

a'ea trS' ge f(tr J )r egf tr_g ea'a. 

Hence, (kerg ,(tr J )r) is an£. -unipoten t congruence pair. Sin

ce trjS(trg)r, it follows that g£_s'(ker_r,(trf)r). 

Let \?' be an o( -unipotent congruence on S containing f . 
Then ker2f..kerro, and by Lemma l (tq>)r<;;.,trro, so1(ke:rr,Ctr_?)r) 

=. ~ ( ker 6', tr S) = 6" • 

Hence ~(ker g, (tr g )r) is the smallest o<'-unipotent congruence 

on S containing f . The theorem is proved. 

It is possible to establish analogous results f or inverse 

congruenc e on S. Firstly we have the following stat ement. 

LEMMA 4. Let 't be ,!! congruence QTI E(S) and l e t K be .!! normal 

subsemigroup of S such that 

(ii)' aEK =7a'a'!:aa', for every a€'S, a'€V(a). 

The n '[" is .!! semilattice congruenc e QTI E(S), and 

(ii) a"=K ~a ' ea"C ea ' a, for e very aES,a ' .:V(a), e eE(S). 

Proof. Sinc e K is full , a n d efE V(fe ), from (i i )' we ob tain 

efe = e f · fe 'L fe .ef = fef , a n d so fe "t fe f 'C:"ef. 

I f aEK, thena ' eEK , so by ( ii )' we have 

a' ea = a ' e ea 't eaa ' e 't eaa ' '[ ea 'a. 

DEFINITION ). Let K be ~ normal subsemigr ou p of S , and ~ ,!! 

normal congruence QTI E(S) . "/e say that (K ,T ) is an inverse 

con gruence pair for S if the conditions (i) of Lemma 2 and (ii) • 

of Lemma 4 are satisfied . 

low we can formulate throrems which are analogous to Theo 

rems 1 and 2 . 
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THEOREM 3 . Let (K , 'L) be.!!.!! inverse congruence pair for_!!~

neralized inverse semigroup S , and let ~(K , ~ ) be _!! relation 
Q!! S defined .Q.y (~ ) . Then f(K , CZ:) is the unique inverse .£Q.!!

gruence Q!! S for which ker f(K , '(;) =K, tr~(K , "C ) ='t: . 

Conversel y , if \ is an inverse congruence Q!! S , then 
(ker~ , tr J ) is !!!! inverse congruence pair for S and 

f = ~ (ker ~ , tr j' ) . 

Remark 3 . This theorem is a special case of Theorem l [3]. 
THEOREM 4. If f is_!! congruence on g generalized inverse . semi

~ S , then (kerf , ( t r~ ) 0 ) 1.§..!!.!! inverse congruenc e pa i r for 
Sand ~( kerf ,(trf)

0
) i s the smallest i nvers e congruence on S 

con tain i ng f . 
From Theorems 2 and 4 we have the f ollowing cons e quenc e . 

COROLLARY l. If 8 is the equality relation Q!! E(S), then 

f( E(S), c r ) is the smalle s t £.-uni potent congruence Q!! S, and 
~( E ( S ), 'i:

0
) is the smallest i nver s e congruence Q!! S. 

l 

2 

3 

4 

5 

6 
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ABSTRACT. In t his paper we consi der semigrou ps which are semilattices 
of nil-extensions of rectangular grou ps.Also,we consider semigrou p s which 
are chains of nil-ex tensions o( comp letely simple semigroup s. 

l. INTRODUCTION AND PRELIMINARIES 

I n [61 J. L .Ga lb i at i and M.L .Ver onesi s tu died ~regular semi group s 

in which every regula r elemen t is completely regular (semigrupp i forte

mente rego lar i ) . The s e semigroup s ar e compl etely describe d by M. L. Veron esi 

in ~ 9] . Semigroup s which ar e semilatt i ces of n i l - extensions of r ec ta 

ngular group s are considered in t he specia l ca se by M. S . Putcha, ~5 ) . In 

this paper we consi der th e general ca s e. 

Throu ghou t t his paper, Z+ wi ll denote t he set of al l positive 

i n tegers . 

A semigroup 

s uch that 

s is Jl: regu l ar if for every a cS t here exists 

if for every a E S tr.ere· ex is t x e- S and 

s i s compl e t e ly ~re gular 

mE Z+ such that 

S i s call e d a semi group of Galbiati -m m m 
a = a xa an d 

m m 
a x = xa 

Vero nes i (GV- s emi gr oup ) if s is 2f-regu lar an d ever y r egula r e l ement 

o f S is completely regular, [6] We wi ll say tha t a s emigr oup S 

i s ft: i nver s e i f S i s fll- r egular and ever y regula r e l ement of S 

po s se sse s a uniqu e inver s e, [5) . S 

group and ever y r e gula r e l ement of S 

i s GV-inv erse if s is GV-s emi -

posses s es a uniqu e inverse , [ 6] . 

S i s a s trongly .9£-inverse s emigroup if S i s .?L- r egular and 
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idempotent elements commute, 

nil-semigroup if for every 

[23. A semigroup 

a E S there exists 

s with zero 0 

n€ Z+ such that 

is a 

n 
a 0 

s 
By nil-extension we mean an ideal extension by a nil-semigroup. 

If B x G , where B is a rectangular band and G is a group, 

then s is a rectangular~; S is a right ~ if B is a 

right zero semigroup.A semigroup S is archimedean (left archimedean, 

right archimedean) if for every a,b€ S there exists nE; Z+ such 

that ane SbS ( anE: Sb ; anE; bS ) .A semigroup S is t-archimedean 

if it is both left and right archimedean.A semigroup S 

weakly commutative if for every a,bE; S there exists 

that (ab)n~ bS ( (ab)nE Sa ) , fl8). A semigroup S 

commutative if for every a,bE. S there exists nE Z+ 

( ab) nE; bSa , llo] ( see a 1 so [i2] ) . A sub semi group N 

is left (right) 

n E: Z+ such 

is weakly 

such that 

of a semigroup 

S is filter of 

For any xES 

s 
N(x) 

if for all x , y f' S , xy f: N implies x,yfN 

denotes the intersec tion of all filters 

containing x . Then N(x) is the least f ilter containing x . Let 

s be a semigroup and a, bE S . Following Q.s) w·e introduce the 

f ollowing notations: 

alb~b€S1as 1 

a I b # bE. as
1 

r 
1 

a lb.,.bE Sa 
(. 

a I b.,. a I b and 
t r 

a I b 
t. 

By E(S) we denote the set of a l l idemp otents of a semigroup 

For undefinied notions and notations we refer to Uz) . 
s . 

The f ollowi ng proposition is a genera liza tion of result s of Ll, 5 , 

10 ' 12 ' 14 1. 

PROPOSITION 1.1. The following conditions are equiva lent~~ 

semigroup S : 

(i) S .!.! left weakly commutative; 

(ii) S i& ~ semilattice of right archimedean semigroup; 

(iii) CV a,b €: S) a l b =* (JiH+)Ca l bi) 
I + n } r (iv) N(x) • t y '-. S: (j n ~ Z) x f yS , for~ x E S . 

Proof. (ii)~(iii). This is Theorem 3.(1) (i6) . 

(i) ~(iii) . Let S be s left weakly commutative semigroup . 
1 Assume that s I b , i.e. there exist x,yfS such that b • xay . 



l 1 

Then there exist u E- S and such th bi • (xay)L • (ay)u . 

Hence, 

(Li)-* (i). Let S be a semllattice Y 

semi groups So£ ( o< E Y) Then for E- So( bE~ 

of right archimedean 

we have that 

ab ,ba I: S and so (ab)n = bax (or some xE-S and Hence, 
./('> 

S is left weakly commutative. 

(i) ~ (iv). For xES , let 

T= { y E: S 

Let y,z E: T then 

Fromthis it fo llows that 

(l) 
m 

yx 
2 

y a = yzb . 

for some s,b E S and 

Since 

(since 
m 

X 

s is a semilattice y of right archimedean semigroups s"' < -<~ Y) 

So by 

(i)~ (ii)) we have 

ya"- ~ Sr c;;, SIJI.r = So< and 

(1) we hav e x,yzb (:-So( 

semigroup we hav e that there exist 
k x = yzbu €: yzS 

2 
y a ~~ s.r .s ~r = s o< . 

Since s ... is a righ t archimedean 

k E- Z+ and u E-S such that 

Hence, 

r E z+ 
yz E- T Assume now that yz E- T . Then there exi st and 

su ch that 
r 

X yzu E. yS so yET Fr om 

xrk = (yzu)k = zuvE-zS 

r 
X yzu 

for some 

by 

left weak commutativity,we have 

kE:Z+ and vES and thus z E:T . Therefore, 

Let yE:T then xm yat-N(x) and so 

T is a filter of 

yE;N(x) . Hence, 

T ~ N(x) and by minimality of N(x) 

(iv) .:::;> (i). Let x,y t.S , then 

(xy)~ = yxS ~ yS 

we hav e t hat 

yx E:. N(xy) 

T N(x) . 

so 

for some Hence , s is left weakly commutative.O 

COROLLARY 1 . 1. The following conditions are equivalent~~ semi

~ S: 

(i) S is weakly commutative; 

(ii) S is a semilattice of t-archimedean semigroups; 
-- I 

(iii) CV'a , bf,S)( a\b~C]if:Z+) a\bi 

s . 

(iv) N(x)=iyt.S:(3n~ Z+)xnf, ySy} ,forevery xfS . D 

REMARK . (i)# (iv).This is Theorem 6.5. {1:1]. (ii)~ (iii) . This is 

Theorem 3. 3. \16]. (i)~ (ii). This is Theorem l. \)_J ,also Proposition 

4. 2. [5] . 
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2. SEMIGROUPS OF GALBIATI-VERONESI 

In our investigations the following result is fundamental (see U9], 

Theorem 13.1.). 

THEOREM (Veronesi). S is a semilattice of nil-extensions of 

completely simple semigroups if and only !f s is .!!_ GV-semigroup. 0 

This theorem will be referred to as "Veronesi's theorem". 

THEOREM 2.1 . The following conditions~ equivalent on.!!_ semigroup S: 

is a semilattice of nil-extensions of rectangular ~; (i) 

(ii) 

s 
s is a GV-semigroup and for every e,fE. E(S) there exists 

n E Z + such that 
(2) -- -- (ef)n = (ef)n+l 

(iii) S · is £-regular and a ax a implies 2 2 
a = ax a 

Proof. (i)~ (ii). Let s be a semilattice y of nil -

extensions of rectangular groups Soe (.,( 6 Y) . Then by Veronesi' s theorem 

S is a semi group of Galbia t i -Veronesi. Assume that e E Sol and f E S~ 
n n 

are idempotents,then ef,fe t S~ , so (ef) ,(fe) ~ K~ for some 

htZ+ , wher !! K~ is a rec tangular group which is the kerne l of S~ 
n n 

Now, there exi s t g , hE- E(S) (\ K.(f\ such that ( e f) E; G
8 

, ( fe) E: ·Gh 

where G
8

,Gh are sub group s of K-0 . Since E(S) (\ ~ is a 

r ec t angu lar band we ha ve g = ghg . Furthermor e, 

(ef)n = (ef)n g 

and t here exist x E G and 
ng 

(ef) x = g 

From this we have that 

, (fe )n = (fe)nh 

y E: Gh s uch that 

(fe)ny = h . 

(ef)n m (ef)ng ~ (ef)n(ef)nx = (ef)ne(ef)nx = (efe)n(ef)nx = (efe)ny 

= e(fe)ng = e(fe )nhg = (efe)n((fe)ny)g = (efe)nef(fe)nyg 
n+l n n+l n n+l 

(ef) (fe) yg • (ef) hg = (ef)(ef) g.hg = (ef) g 
= • (ef)n+l 

Hence, for every e,f E: E(S) there exists n E: z+ such that (2) holds. 

( i i ) ~ ( i) . Let s be a semigroup of Galbiati - Veronesi with (2). 

Then 

(3) (efe)n o (ef)ne = (ef)n+le E (efe)n+l . 

Hence, (efe)n is an idempotent.Since s is a semila t tice y of 

nil-extensions of completely simple semigroups 

Veronesi) for e, f t E(S) (\ So< we have that 

S.( ( o< 6 Y) (Theorem 

is the compl etely simple kern 

an idempotent in K 
0( 

• so 

of 

e,f t- K-< where K-< 

So( . It is clear that (efe)n is 
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(efe)" a e(efe)ne 

and therefore e and (efe)n are i n the same subgrou p H!.t.. of 

Hen ce, 

(4) e (efe)n 

Now by {3) we have 

e(fe) = (efe)n(fe) = (ef)n+le = (efe)n+l = (efe)n 

From this and (4) it follows that e = efe Hence, Ko< is a recta-

ngu lar group, i.e. sc( is a ni-extension of a rectangular group. 

(i) ==> (iii). Let s be a semila t tice y of nil-extensions of 

rectangular groups so< (o( (: Y) Let a = axa Then ax' xa (; so< 
so ax = ax(xa)ax since E(~) is a rectangular band.Hence, 

= = (ax.xa)axa 2 2 
a ax·a ax a 

(iii) ~ (i) . Let (iii) holds.Then s is a GV-semigrou p ,so by 

Veronesi' s theorem we have that s is a semilattice y of nil-extensi-

ens of completely simple semigroups S~ (~ f: Y) . Since so< < o< e Y) 

is a nil-extension of a completely simple semigroup K« 

implies a= ax
2

a
2 

we have by Proposition IV.3 . 7 . n 21 

and 

that 

a = axa 

a rectangular grou p .Hence, S 

rec t angular group s .D 

is a semilattice of nil-extensions of 

COROLLARY 2 . 1 . The fo llowi ng conditions are e quiva len t ~~ semi -

is 

group S : 

( i ) 

(ii) 

s 
s 

is ~ GV - s emi gr oup and E(S) is a subs emi group of 
2 2 

s .; 
is ~regular , a = axa i mpli es a = ax a and RegS 

is a subsemigroup of s . 
' 

(iii) s is a s emilattice of nil - extensions of rectangular groups . 

and E(S) is ~ subsemigroup of S . 

Proof. (i)4=> (iii) . This equivalence follows i mmediately by Theorem 

2. l. 

(i) =* (ii) . Since E(S) is a subsemigroup of s we have by 

Proposition IV.3 .l. [i2) that a, b l: RegS implies abf:RegS . 

(ii) ~ (i). It is clear that s is a GV-semigroup.Let for 

a f- RegS be a = axa . Then a a(xax)a and xax E- RegS . Hence, 

RegS is a regular semigroup .Now by the hypothesis and by Proposition 

IV.3.7.(i2) wehavethat E(S) isasubsemigroupof S.IJ 

COROLLARY 2 . 2 . S is ~ nil-extension of ~ rectangular ~ if 

and only if 

semigroup· of 

s is an archimedean GV-semigroup and E(S) is a sub-

s .Q 
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s 
THEOREM 2.2. The following conditions~ equivalent~~ semigroup 

(i) 

( ii) 

s 
s 

is ~ semilattice of nil-extensions of right~; 

is ?r-regular and left weakly commutative; 

(iii) S is ~ GV-semigroup and for every e,fE E(S) there exists 
+ n n n E Z such that (ef) = (fef) 

2 
(iv) s is 1<r-regular and a = axa implies ax = xa x 

Proof. (i)~(ii). This equivalence follows by Proposition 1.1. and 

by Lemma 3. 1 . [15] . 

(i)=9(iii) . Let ecSo( ,fE:% 

so by Theorem 2.1. we have that (ef)n 

(fef)n are idempotents in S~ , so 

(ef)n(fef)n = (fef)n 

be idempotents.Then 

(ef)n+l for some 

ef,fefe ~' 

nEZ+ and 

i.e. 

(ef)n = (fef)n 

(iii) -G> ( i) . By Theorem 2. 1. we have that s is a semilattice Y 

of nil-exten s ions of completely simple semigroups So( (~E Y) . hence,for 

every a<t- Y, So( ha s the kerne l Ko( = RegSo( =0LCGo(;I<>( , Jo(;~). Now we 

hav e that 

1. = { (a;i,j): 
J 

i E I<O( , aEGo( f ' j E. J-1 

i s a l ef t group . Thu s f o r any two i dempot ents e ,f from 1 . we have 
J 

e f = e and s ince 
n = (ef) n = ( fef )n = f ( ef )n = f e e = e 

f or some n E z+ we have t hat e = e f = fe 
' 

so e = f , sinc e 

idemp oten ts in K« are primitive. Hence, \ :r,., I = 1 . Thu s Ko< is a 

right group.Therefore 

gr oup s. 

s is a semilattice of ni l -extensions of righ t 

(i) .....:> (iv) . For 

xa =(ax)( xa ) = ax2a 

a = axa we have that ax,xaE So( 

since E(So( ) is aright zero band . 

(iv) ~ (i). If a = axa 

a = ( a~ = xa 2x·a = 

so 

a = ax·a = ax ·xa 

t hen 

xa-axa = xa a 

2 2 2 
ax a 

2 xa 

' so 

which by Theorem 2.1. implies that s is a semilattice of nil-extensions 

of rectangular groups So( ( o(E Y) . Since in the kernel K ~ 

(-<6 Y) the following implication holds: a= axa ==;. ax= xa 2x 

the dual of Theorem 1V.3.10. U2l that K.( is a nght group,so 

( G( E: Y) is a nil-extension of a right group. O 

of so( 
we have by 

s"' 
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COROLLARY 2.3. S !! ! semilatticc 9l ~-extensions 9l ~ 

E(S) 

GV-semigroup and 

!! ! subsemigroup of 

ef = fef 

S .!_!: and only.!_!: S is a 

e,f E E(S) . Q 

COROLLARY 2.4. The following conditions are equivalent on a 

semigrou p S 

(i) S is a GV-semigroup and for every e,ff:E(S) , ef• fe; 

(ii) S is a semilattice of nil-extensions of~ and ef 2 fe 

e,f E: E(S) ; 

(iii) S is ~regular and 

of S . 

RegS is a Cliffordian subsemigroup 

Proof. (i) -::::::;. (ii). Follows immediately by Corolla ry 2 . ). 

(ii)~ (iii). This is one part of Theorem 2.3. ()) . 

(iii) ~ (i). By Theorem 2.3. [7) .D 

3. 1t-INVERSE SEMI GROUPS 

~ 

nEZ+ 

(5) 

THEOREM 3.1. The following conditions are e quivalent~~ semi-

s 
(i) s is 

( ii) s is 

such that ----
(iii) s is 

.9£-inverse; 

.?L-regula r and for every 

(ef) 0 
= ( fe )

0 
; 

.f:r egu lar and 

e,f f E(S) there exists 

a = axa = aya ~ xax = yay 

(iv) aE:S ther e exi sts mE;- Z+ such that -- --- -- --
and amSl contain~ uniqu e idempotent generator. 

Let 

yay 

Proof. (i)~(ii) . This is Theorem 4.6. [5] . 

(i)~(iv) . By Theorem 4.1.(2] . 

(i) ~ (iii). Let s be Jf:inverse.Then s is Jl-regu lar. 

a = axa = aya . Then a = a(xax)a , xax = (xax)a(xax) , a = a(yay)a, 

(yay)a( yay) and therefore xax = yay . 

(iii) ~(i). Let s be ;{"-regular with (5) . Assume that 

a axa , x = xax a = aya y yay . Then by (5) we have that 

X xax = yay y 

Hence, s is .f"-invers e.D 

THEOREM 3 . 2. The following conditions are equivalent on a semigroup 

s (i) s is GV-inverse; 

(ii) s is X:r egu lar and a = ax a imJ:!li es ax = xa 

(iii) s is a semi lattice of nil-extensions of~; 
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e,fEE(S) there exists (iv) S is ~ GV-semigroup and for every -------+ n n nE Z such that (ef) = (fe) 

(v) S is 5L-regular and weakly commutative. 

Proof. (i) ~ (ii) Let s be GV-inverse and a axa . Element a 

is in a subgroup G of s and so it has an inverse Ye G such that 

ay = ya Since xax is also an inverse of a we have that y = xax , 

since s is ~-inverse.Hence, a(xax) = (xax)a i.e. ax = xa 

Then 

Then 

so 

(ii) ~ (i). Let s be .X:regular and 

s is a GV-semigroup .Assume that a 

ax= xa , ay = ya . Now we have that 
2 2 x = xax = x a = x aya = xaxya 

ax axay ay Therefore , 

x = xax = xay = yay = y . 

Hence, S is GV-inverse. 

a= axa implies ax 

axa = aya , x = xax , y 

xya 

xa. 

yay. 

(iii) -=';> ( i v) . Let S 

groups S.< (o< E: Y) . Then S 

be a semilatti ce y of nil-extensions of 

is a GV-semigroup .Ass ume two idempotents 

e f. So{ and f ~Sr.> , then ef , fe t s..( 
.f'J 

and there exists nEZ+ 

s uch that (ef)n and (fe)n are idempotents in 

(ef)n = (fe) n 
s-<'~ and thus 

(iv)~ (iii). Let s be a GV-semigroup and f or every e,f E- E(S) 

there exists n E- z+ such that (ef)n = (fe)n . Then s is a semi -

lattice y of nil-extensions of completely simpl e semigroups so< 
(Theorem Veronesi) .Assume e,f E. E(S) n Sa( 

t he compl etely simp l e kernel Ko( of S~ 

Then e and f are in 

. Now we have that e,efeE Ge 

are maximal sub groups of ~ and f,fef E- Gf where Ge and Gf 

Thus 

( ef) n e (fe)ne f (eOn f(fe)n 

so 

(efe)n = (fe)n = (fef) 0 

i.e. Ge (\ Gf -1 0 so e = f . Hence , S~ ha s only one idempotent 

and it is a nil-extension of a grou p . 

(i)~ (iii)~ (v). This is Theorem 2 . 2. [5) . 0 

THEOREM 3 . 3 . The following conditions are equivalent~~ semigroup S: 

(i) S is strongly .:f:inverse; 

( ii) S ia A-regular and RegS !! inverse subsemigroup of S 

(iii) S is Jr-inverse and the product of ~ two i dempotents of S 

is an idempotent. 
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Proof . ( i) ~ (iii). This is Theorem 4. 2. [2). 

( i) ~ ( i i). Let S be strongly ~inverse. Then for a,bE RegS 

we have a • axa , b = byb so 

ab = (axa)(aya) ~ a(xa)(by)b = s(by)(xa)b • ab(yx)ab . 

Hence, RegS is a subsemigroup of S and it is regular (since if 

a= axa , then a = a(xax)a xax fR egS ). RegS is an inverse semi-

group since ef = fe for every e,f f E(S) . 

(ii)~ (i) . This implication follows immediately. Q 

4. UNION OF NIL-SEMIGROUPS 

LEMMA 4.1. [3) . S .!.! ~ nil-semigroup if and only g for every 

a,b E S there exists r E: Z+ such that ar = br+l . [J 

LEMMA 4.2. S .!.! ~ union E.f nil-semigroups g and only if for every 

aE-S there exists 
+ r r+l 

r E:Z such that a ~ a -------
Proof. Let s be a union y of nil-semigroups ~ ~~ y ). 

Then a{;S is in a s..l and since s-< is a nil- semigrou we have 

by Lemma 4.1. that there exists r E: z+ such that r r+l a = a 

The converse follows i mmediately . Q 

LEMMA 4 . 3 . The following conditions are equivalent~~ semigroup S : 

band ; 

(i) S is ~ nil-extension of ~ right ~ band ; 

(ii) S .!.! ~ un ion of nil-semigroups and 

(iii) <Va,bE:S)(.~m6Z+)(am = bam) ; 

(iv) S is~ right ar ch i medean union£! nil-semigroups . 

Proof. (i)~ (iii) . This is Coro llary 7. [4]. 

(ii)~ (i) . Follows py Theor em 3. [4] . 

(i).::::::;. (ii). Follows i mmediat e l y. 

(iv) c=9 (ii) . For e ,f E:E(S) 

ef = e(ey) 

there exist x,y € S such that 

e = fx , f = ey 

zero band. 

so ey = f . Hence , 

(iii)~ (iv). Follows immediately . 0 

E(S) is a right 

THEOREM 4.1. S is a semilattice of nil -ex tensions of right zero band s 

if and only if 

commutative. 

Proaf. Let 

s 

s 

is ~ union of nil-semigroups and s 

be a semilattice y of nil-extensions of right 

zero bands S~ (d~ Y) . Then by Lemma 4.2 . and Theorem 2.2. we have that 

S is left weakly commutative. 
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Conversely,let s be a left weakly commutative union of nil-

semigroups.Then by Theorem 2.2. we have that s is a semilattice 

(o{ 6 Y) . Since sol is a of nil-extensions of right groups 

nil-extension of right group and 

so<. 
so( is union of nil-semigroups we 

have by Lemma 4 . 3. that s"' is a nil-extension of right zero band.Q 

Theorem 4.1. is a generalization of arezult from [9] 

5. CHAIN OF NIL-EXTENSIONS OF COMPLETELY SIMPLE SEMIGROUPS 

y 

THEOREM 5 . 1. S is~ chain of nil-extensions of completely simple 

semigroups if and only .!.i_ S is a GV-semigroup and for any e,f E:E(S) 

either e E: efS or f E feS 

Proof. Let s be a cha":in y of nil-extensions of completely 

simple semigrou'ps Sol 

fE-St!> . Suppose that 

(o(f: y) 

..{6.[!> 

. Assume e , f~E(S) , then e (.sa( 

(ord ering of the semilattice Y ) ; the 

case ~ L. o( and we have e£: Hi>. ' 

(efe )nE: Hj~ 
of the kerne l 

is tr e t e d analogou s ly . Then 

f or some n~Z+ , where 

e fe E: sol 

H:i.A , Hj!l ar e maximal subgroups 

K~ of S~ Complete simplicity of Ko( yields 
n n 

( efe ) = e(efe ) e 6 H. H. H. !: H. • . 
iA ?(' iA 1.<' 

(e f e) in Hi~ Le ttin g u be th e i nver se of , we obtain 

e = ( e f e )nu f efS . 

Converse ly,~y Veronesi ' s t heorem it suff i ces to show t hat Y is 

linearly ordered . For any c lasses Sol. a nd S~ ( a<.,~ E: Y) , l et e f Sal , 

f E: S('J be idempotents.Then e E, efS i mplies <>1 ~f and fE: feS 

i mplies ~6o( .0 

THEOREM 5 . 2 . S is a cha i n of ~-ex ten sion s of r ec tangular~ 

if and only if 

exi s t s n£:Z+ 

S is ~ GV -semigroup an d f or every e, f €: E( S) 

suc h that e = ( e fe )n or f = (fef )n . 

th er e 

Proof. Let s be a chain y of ni l -extension s of r ec tan gular 

group s 

exists 

that 

Sa~ (o( 6 Y) . Then 

n E: Z + such that 

(ef)ne = (ef)n+le 

by Theorem 2. l. for e E Soo~ , f £:-Sf.> ther e 

(ef)n = (ef)n+l From t his it follows 
. n n+ l n 

, ~.e. (efe) = (efe) . Hence, (efe ) 

is an idempotent.Suppose thal «~() . Then 

fe)n = e(efe)ne • e 

n 
( efe) E: seX ' so 

(since E(Sol. ) is a rectangular band). 

The converse follows immediately. D 

The following theorems follows easily from the results alrea dy 

proved. 



THEOREM 5.3. S .!:! ! chain£.!: !:!..!.-ex tensions£.!: right~ g and 

S is a GV-semigrou p and ~ ever y 

such tha t (ef)n c f or (fe)n = e 

e,f t E(S) 

.o 
t here exists 

19 

THEOR EM 5.4 . S ~ ! cha in of !:!..!.-ex tensions of~ g a nd only g 
s i s a GV-semigroup and E(S) 

R E F E R E N C E S 

~) Bogdanov i c , S . :~ s labo komu t a ti vnoj polu grupi ,Ma t. Vesni k, S(l8)(33),1981 , 

145- 148 . 

[2j Bogdanovic, S. :Power re gular semi groups, Zbornik radova PMF No vi Sad 

12(1982),418-428. 

[3J Bo gdanovic,S . ,P.Kr~ov s ki , P . P rot i c,B . Trpenovski : Bi - and quasi-ideal 

s emi groups with n-property,Third algebraic conference,Beograd 1982, 

27-34 . 

[4] Bogdanovic,S. and S .Milic :A nil - extension of a compl etely simp le 

semigroup ,Pub l . lnst.Math.(to appear). 

[5] Ga l bi a ti,J .L. e M.L. Veronesi:Sui semi grupp i che sono ~band di 

t-s emigrupp i, I st ituto Lombardo(Rend . Sc. )ll4(1980),217 - 234 . 

~) Galb i ati , J.L . e M.L . Verone si: Sui semigruppi qua s i regolari,l s tituto 

Lombardo (Rend.Sc. )ll6(1982) . 

(7] Galbiati,J . L. e M. L. Veronesi :Sui semigruppi quasi completamente inversi 

(private communicat i on) . 

~) Galbiati,J.L . and M.L.Veronesi :On quasi completely regular semigroups, 

Semigroup Forum (to appear) . 

[9J Miller,D .W. : Some aspects of Green'~ relations on periodic semigroups, 

Czech.Math.J . 33(108),1983,537-544. 

l).o] Petrich,M. :The maximal semilattice decomposition of~ semigroup,Math . 

Zeitsch.85(1964),68-82. 

U~ Petrich,M. :Semigroups certain of whose subsemigroups have identities, 

Czech.Math:-J.l6Cl966) ,186-198. 

~~ Petrich,M. :Introduction~ semigroups,Merill Publ . Comp.Ohio 1973. 

(j.3) Petrich,M. :Structure of regular semigroups,C.ahiers Milth .Montpellier, 

110977). 

~41 Pond~litek,B. :On weakly commutative semigroups,Czech.Math.J.2S(lOO), 

1975,20- 23. 



20 

[15) Putcha,M. S . :Semilattice decomposition <2.£ semigroups,Semigroup 

Forum 6(1973),12-34. 

rr6] Putcha,M.S. :Rings which are semilattices ~f archimedean semigroups, 

Semigroup Forum 23(1981),1-5. 

[ln Raju,K.V. and J . Hanumanthachari:~n weakly commutative semigroups, 

Math . Seminar Notes,l0(1982),753-765. 

(18] Sedlock,J.T. :Green'~ relations ~n ~periodic semigroup,Czech .Math . J. 

19(94),1969,318-323. 

n9J Veronesi,M.L. : Sui semigruppi quasi fortemente regolari ,Rivisita di 

Matematica dell'Universita di Parma (to appear). 

26000 Panl!:evo 

M.Pijade 114 . 

Yugoslavia 



PROCEEDINGS OF THE CONFERENCE 
,ALGEBRA AND LOGIC", ZAGREB 1984 

A NOTE ON I~WARIANT n-SUBGROUPS OF n-GROUPS 

Naum Celakoski, Sne~ana Ili6 

21 

Invariant n-subgroups of n-groups are considered h ere, 
and the so called "indirect method" for proving theorems 
on polyadic groups is used. 

0. PRELIMINARIES 

Invariant n-subgroups of n-groups are considered in Rusakov 

~], [4] and some properties are investigated there by "direct 

technics" (which are used in most papers on n-groups). An "indi

rect me thod" which uses b i nary groups for proving theorems on 

polyadic groups is proposed in ~upona, Celako ski [2]. 

~7e use this method here to give an a nalogy of the well 

known result of the binary case that all normal subgroups of a 

group are exhausted by the kernels of homomor~hisms, giving fir

stly s ome characterizations of normal n-subgroups o f an n-group 

by the universal covering group. 

We will use some definitions and no tations as in [1] - [4]. 

An algebra g = (Q,[ )) with the carrier Q and an n-ary ass

ociative ooeration on Q, [ ] : (x , ... ,x )I-+ [x ... x ] (n being 
- ' n , n 

fixe d) is called an n-~~~~g~Q~E· Q is called an n-g~Q~E if, in 

addition, all the equations [a
1 

••• an_ 1x] = b, [ya
1 

••• an_ 1 ) = b 

on x a nd y are s o lvable in g. The s e migr oup .Q" = (Q " , ·) gene

rate d by the s e t Q with the set of defining relations: 

a= a
1 

• •• an for every equality a= (a
1 
••• an) in .Q_, i.e . 

.Q " = <Q ; {a = a, ... an [ a = [a 1 ••• an) in Q} > 

is calle d the ~g~y~~~~1 ~2Y~~~gg ~~~~g~Q~E 2~ g. The set 
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00 

Q' = yom, where Qm = {a
1 

••• am I avEQ} can be written 

in the form ( [ 1 ; p. 2 5] , [ 2 ; p. 13 6] ) : 

2 n-1 Q' = Q u Q u ... u Q , where Qi () Qj = ¢ if i;tj. 

An n-semigroup g can be considered as an n-subsemigroup of its 

universal covering semigroup g· . If g is ann-group, then Q' is 

a group and vice versa. 

1. INVARIANT n-SUBGROUPS AND THE UNIVERSAL COVERING GROUP 

Let g be ann-group. Ann-subgroup~ of Q1
) is said t o be 

!gYe~!egt (o r g2~~e1l !g Q iff 

( \: x E Q) ('V i E { 2 , ••• , n } ) [ n-1] [ i-1 n-i] xH = H xH . (1.1) 

This is equivalent to the state ment ([4; p.l04]) 

. [~-1 ] [ i-1 n-1 (VX
1

, ••• ,xn_1 EQ)('If~E{2, ... ,n-l }) 
1 

H = x
1 

Hxi ]· (1. 2) 

[ i-1 n-i] [ i-1 n-1]1 (Here,for exampl e , H x H istheset{h xh. hEH}, 
• 1 ~ v 

where h~ stands for hkhk+ 1 ... hm if k :5 m, or f or the empty symbol 

if k > m.) 

The following Lemma gives a characterizatio n of invariant 

n-subgroups in t erms of the universal c overing group. 

1 . 1 . LEMMA . Ann- subgroup~ of ann-~ Q i s invariant in 

Qiff 

Proof. If H is 
[xn-lH] = [ xn-2~x) , 

n-2 (by cancelling x 

(\;/ x E Q) x H = Hx in Q • . 

invariant in Q and x EQ , then by (1. 2) 
- n-1 n-2 which becomes x H = x Hx in g· and thus 

in the group g· ) xH = Hx. 

Conversely , let xH = Hx in g · for every x EQ. Then 

[xHn-1] = ~-1 = ~-2 = ... = ~-1~-i = [~-1~-i] 

f o r every iE(2 , .. . , n } . Thus , ~ is invariant in g . 0 

If ~ is a n n-subgroup of an n-group g, then ~· is a sub-

[ ] 
2 n-1 group o f g · ( 1; 3 . 2 , 3 . 9 ) and W = HUH U ... U H . Therefo-

re, by using Lemma 1.1, we have the f o llowing 

' ) Thro u g h o u t t h e paper 0 will denote an n - group and H 
an n - su b group of Q · - -



1 . 2 . THEOREM . An n - subgrOUJ2 H of an n-~ .Q is 

in .Q iff the subgrou12 w is invariant in .Q • . 

Proof. Let H b e invaridnt i n Q. The n, f o r ev ery 

xH Hx in g_· and 

xH" x(HUH 2 U ... UHn- 1 ) xHu xH 2 U ... U xHn- 1 

HxUH 2 xu ... uHn- 1x (HUH 2 U ... UHn-1 )x 

. .n-1 
(HU ... u11 )a1 ••• ai = H"a. 

Thus, ~ - is invariant in g· . 

Conversely, let~ - be invariant in R" · Then 

(Vx E Q) xW = Wx, i.e. 

2 n-1 2 n-1 
xH U xH U •.• U xH = Hx U H X U ••• U H X; 
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invariant 

xEQ , 

this is equ ivalent t o the following sequence of equalities in Q' : 

xH = Hx, XH2 = H2 Hn-1 x , ... ,x n-1 H x ; 

by Lemma 1.1, H is invariant in g. 0 
An n-group 9. is called a Q~~~~~!2~ n-g!"Q~E ( [3; p. 89]) iff 

every n-subgroup o f Q is invariant in g. 

1.3. PROPOSITION . If .Q is ann-~ and Q" is~ Dedekind 

group, then Q is a Dedekind n -~. 

Proof. Let~ be any n-subgroup of g. Since g· is a Dedekind 

group, it follows that~ - is invariant in g· and by Th. 1.2, H 

is invariant in g. Thus Q is a Dedekind n-group.Q 

The question for the converse of Prop. 1.3: 

P.1. Is g· a Dedekind group when Q is a Dedekind n-group? 

remains here without an answer. 

The set of all elements x of Q such that 

[ n-1 ] [ i-1 n-i ] xH = H xH all iE{2, .•• ,n (1. 3) 

is called the QQ~~~1!~~~ of the n-subgroup ~ in the n-group Q 
([3; p.111]) and it is denoted by NQ(H) o r shortly N(H) . 
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Clearly, N(H) -F ~since H~N(H). If x
1

, ••• ,xnEN(H), then 

(x1 ••• xn)H = x 1 ••• xnH = x 1 ••• xn_1Hxn = ... = Hx1 ••• xn = H(x1 ••• xn) 

in g·, by which follows that (x 1 ••• xn) EN (H). It is easy to ve

rify that any equatio n (a 1 ••• an_ 1x] =an o n x and (ya 1 ••• an_1) = 

= an o n y in N(H) is s o lvable in N(H) and thus ~(H) is an n-sub

group o f g. By the def inition o f N(H), g is invariant in ~(H ) 

and there is no e lement xEQ\N (H) which satisfies the c o ndition 

(1.3). Thus: 

1.4 . PROPOSITION. The normalizer ~(H) of an n- s ubgroup ~of 

Q is the lar g e st n - subgroup o f Q s uc h that ~ i s inva

riant in ~(H ) . D 

We n o te that the universal c ov ering group (N(H)) • of ~(H) 

i s contained in 

N(W) = {x 1 •• • xiEo · l x 1 ••• xiw H· x, ... xi} , 

i.e. 

(N( H)) • ~ N(W). (1.4) 

Namely, if x
1 

••• xi E (N (H)) · , where xv EN (H) , then by 1. 4 c.nd !:._:.1 

x 1 ••• xi H . 
2 n-1 x 1 ••• xi (HUH U ... UH ) = 

.n-1 
x 1 ••• xi_1 (xiHU ... uxitt )= 

n-1 
x 1 ••• x i _ 1 (Hxi U .. . u H xi) 

n-1 
Hx 1 ••• Xi U ... U H X 1 ••• Xi = 

n-1 
(Hu . .. uH )x 1 • •• xi H·x , .. . xi , 

t h a t i s x 1 • •• x i EN (W ). Thu s (1. 5 ) . 

P . 2. Does (or under wha t c onditions) equ a l i ty ho ld i n (1. 4 ) ? 

The i ndirect method can be u sed i n obtain i ng s hor t er p r oofs 

of other results as well as of the following three : 

1) If g and ~ are n-subgroups o f an n-grou p Q such t hat 

M = H II K "F ~ , and g is invariant in g , t he n M is i nvariant in K 

[ 4 ; p . 1 0 7] and w = w n K • . 

2 ) If X and II are invariant n-subgroups o f an n - group Q 

[- n-1]- [·.n-1 ] [ n-1-J such that XH = H X , then the n-subgroup B = XII is 

invariant in Q ([4 ; p . 107)) and a ·= x · H· . 

3) The c e nter of g, i . e . the set 



Z (Q) = (7. E Q I (V x E Q) [xzn- 1] = [zi- 1xzn-i], i=2 , .. . ,n ) 

is a commutative invariant n-subgroup o f g if it is not empty ; 

in that case (Z (Q)) • = Z (Q"). 
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(We note that the condition o f "non-emptiness" above is 

omited in [4; p.106] , which is a mistake . Fo r example , Z(Q) of 

the 3-group Q = ( ala is an o dd permutatio n o f {1,2,3}) with 

[xyz] = xoyoz , is empty and thus it is not ann-subgroup of g.) 

2. HOMOMORPHISMS AND INVARIANT n-SUBGROUPS 

The notion of homomorphisms of n-groups one defines in a 

usual way. The well known properties of the surjective homomor

phisms (i. e. epimorphisms) of groups that the homomorphic image 

of ~ normal subgroup is ~ normal subgroup one proves easily for 

the n-ary case directly or indirectly. But the fact that an n

group might have more than one identities or no identity element 

at all brings the situation that the notion of a ~~~~~1 of such 

a homomorphism one can not trans late in a usual way. 

Therefore we will consider the case whe n ~:Q ~ Q' is a 

surjective homomorphism of n-groups, where Q' is an n-group with 

at least one identity. In t .his case, for every i dentity e'~Q 

there exists a kerne l 

Kere-~ = {xEQ I ~ (x) = e'}. (2.1) 

An analogous relati on betwee n the invariant n-subgroups of 

ann-group and kernels -of h omomorphisms (of n-groups) can be 

stated as in the binary case. We note that every homomorphism 

~:Q ~ Q' of n-groups induces a homomorphism ~·:o· ~ Q' · between 

their unive rsal covering groups, defined by ((1; p.26]l 

(2. 2) 

If ~ is an epimorphism (monomorphism) of n-groups, then ~ - is 

an epimorphism (a monomorphism) t oo ([1; 2.2,2.3]). We will pro

ve first the following 

2.1. TEHOREM. If ~:Q ~ Q' is an epimorphism of n-groups and 

~-is an invariant n-subgroup of Q', then the complete 

inverse image of H', 

H = ~- 1 (H') = {h€7:QI~.<h)EH'} 

is an invariant n-subgroup of Q. 
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-1 
Proof. Clearly, H=~ (H') is ann-subgroup of Q (as a com-

plete inverse image of the n-subgroup g' of Q'l. 

Since g' is invariant n-subgroup of g·, it follows by Th. 

1.2 that the group g· ~ is invariant in Q''; thus H ~ = ~~ - 1 (H' ~ ) 

is invariant in QA which again by Th. 1.2 implies that H is 

invariant in Q.D 

No~ we consider the epimorphisms and invariant n-subgroups 

of an n-group. 

Let ~:Q + Q' b e an epimorphism from an n-group Q onto an 

n-group Q' with at least one identity e' and let 

~er -~ = {aEQ I ~ (a)= e'} = K. e 

Clearly, K is ann-subgroup o f Q. Since {e'} is an inva

riant n-subgroup of Q', it follows by Th. 2.1 that K = ~ - 1 
({e' } ) 

is an invariant n-subgroup of Q. 

Now let ~ b e a n invariant n-subgroup of an n-gr oup Q. Defi

ne an n-ary operation I I on the set . 

QIH = { [ xHn -l J I x E Q} 

by 

[ n-1] [ n-lJ [ [ ] n-lJ I x 1 H ... xnH I= x 1 ••• xn H . (2 .3) 

Then QIH = (QIH;I ll is an n-group (called the f~~!Q~ g~Q~E o f Q 
by Bl ~ith an ide ntity H. The n-subgroup {H) of Q is the kernel 

( n-1] of the natural h omomorph i sm ~ :Q + QIH, ~ (x) = xH , since 

H = ~- 1 {H}. 

So, we have the f o llowing theor e m: 

2 . 2 . THEOREM . Ann- subgroup~ of ann - group g is i nvariant 

in g iff ~ is ~ kernel of ~ sur j ective homomorphism 

~:Q + Q' , where 5L_ is~ n-~ with at least one 

identity element . C 

Invar i ant n-subgr ou ps of a n n-gr oup can b e characterized 

a lso a s k e rne ls of homomorphisms o f the n-gr oup i nto (binary) 

g r oups . Name ly, if g i s a n n-group a nd ~ a gr oup, then a mapp i n g 

~ :Q + G is a homomo rph i sm if f 

('If X 1 ••• 1 X ) ~ ( [x ... X ] ) 
1 n 1 n ~ (x,) .•. ~ (xn) . (2 . 4) 
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Supp,se that Q' = (Q' , [ ] I is ann-group with n identity 

e' and ~ : Q. o· d surjE.'Ctiv~ h mrJmorphism . Putting 

X • . y [ 
• • ,n - 2 J x y e (2 0 5 ) 

we o b tain a grou p (0' ,· ) wi th the identi t y e· . tl\orcrwer , if 

x, , . .. ,xn EQ a n d x ~ = ~ lx) , the n 

~ ([x, ... x ]l = x· ..... x· n , n 

and thus ¢ i s 

group ( Q • , · ) . 

n-subgro up i n 

a homomo r phism o f the n-gro up (Q , []I onto the 

Also Kc r ,cp = {xE Q \ cp (x) = e ' l is an invariant 
e 

g. There for e h f o llowi ng pro pe rty is true: 

2 . 3 . THLORD1 . An n - subgroup H of ann-~ 9. is invari a nt 

in 9. iff .!:! i s ~ kernel of a homomorphism from Q onto ~ 

(binary ) ~·I] 
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ON A CLASS OF VECTOR VALUED GROUPS 

Gorgi Cupona, Donco Dimovski 

Abstract. Vector valued groups are defined in [11, 

and some existence conditions of a kind of finite vector va

lued groups are given in [2]. Here we consider (2m,m)-groups 

and shov/ that there is an analogy between the theory of 

(2m,m)-groups and the theory of binary groups . 

0. In [1] , (m + k,m) -groups are defined. Let m ~ 1 

and G c:t ¢. (G,[ J) is a (2m, m) -group iff: 

i) [ J : ( xfm) ~ r xim J is an associative map from 

G2m into Gm, i.e. [ i r 2m + i J 3m J 
xl xi + 1 x2m + i + 1 = [[x2mjx3m J 1 2m +1 

f(or each i E {1, 2, ... ,m} ; 

and 

ii) (V~,'E_ E- Gm)(3 ~,z E Gm) [~ ~1 ~E. -:o[z ~]. 
In i), (xfm) stands for (x1 ,x2 , .•• ,x2m) and 

[xfm] stands for [ x1x2 ••• x2mJ. 

If we define a binary operation II O II on by 

(1) ~oif. =[~ii.1 

then i) and ii) imply that (Gm,o) is a group. 

It is clear that a ( 2, ~-group ii the same as 
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a group, so, usually we assume t hat m ~ 2. 

l· Let ~ = (e~) be the identity element in a ~iven 

(2m,m)-~oup ( G, [ J) i.e. in (G0 ,o) . Then the equalities 

( m ) ( m \ _ ( m \2 [ m m l e2 , el o e2 , e l; - e2,el l = e 2 el e2 el 

_ r[ m m l m l I m 1. m m-1] l - L e2 el elJel = Le2Lel el el em 

=- [ e~ e1 e~j :::: (e~ , e 1 ) 

i mp l y that (e~ , e 1 ) :::(e~ ) , i.e. e 2 -::.e1 ::: em:::em_1 = ... =e 3 -=-e. 

Hence, the components of ~ are e qual, i.e. 

e = ( e, ... , e ) = (em ) • - ~ 
m 

Moreover , [ x~-1 em x~ J == [Cxi-1 em x~]em] 

= [x~- 1 [em x~ e m- i ] ei] ::: [x~-l x~ em]= (x~) 

i . e. for each iE i l,2, ... , m1 , L i-1 m m J ( m) x1 e x-i = x1 

For each i E ~1,2, .. . ,m} \•T e define 'fi:Gm- Gm 

'f ( m) [ m-i m i] by i x1 = e x1 e . Then 

('fi) m ( x~ )::[em( m-1) x~ emiJ """(em) ~- 1 o(x~) o (em)i = ( x~) • 

So, ('f i) m = id ( identity ) 1 and hence 'Pi is a per:nut at ion 

on Gm whose orde r is a divisor of m • 

I f for some i E {l, 2 , •.. ,m-1} 'fi = id 1 then fo r 

e a ch x t: G I ( x.m-i l ei ) =- [em xm- i ei 1 = [ em- i e i xm-i ei ] 

\0 r. i m- i ) ( i m- i ) ::: T i \e 1 X :::. C 1 X 1 a nd S O X ::: e Thus for each 

i ~ {l , 2 1 ... 1 m-l1 'f\:i= id ~rov)ncn lG I l , i.e. G han 

more t h~ n one e l emcnu . 

~ · Let (G1 ·J be ~ ~roup . I t i s easy to check 

t hu.t ( G
1

[ J) \•lith [ ] : G2
;n - Gm nefincd by (2 ) :i s a 

( ?m 1 m) - t·rour . 

(.J [ x~ Y~ ] _ ( v l y l 1 x2;r2 , . ... , YmYn l 

f·:orco·;pr , in t;)lis CU!1C 1 ( G17
\ o) is th reduc- t 



(r; , . J X (;, • J >< .. • X ( G , ·) 

~ 
We call such (2~ , ~-~rou~s trivial (?m , m)-Froupa 

1 1 

If (G,[ J) is a trivial ( 2m , ,)-r-ro t1 , the for 

e'lch i E{ l , ... , m-1} 'fi(x~ ) -==- [ err-i x~ ei] 

( rn- i i) ( m i ) ( IT! i ) = e , xl o x i + 1 , e -:::. xi + l , "1 . 

For exa"lple, if m = ~~ , the order of "f2 is 2 and the 

order of ~3 is 4. In ~eneral , the order of ~i is 

m/~ .c. d .(m , i ) 

2.· If ( G,[ 1) is a (2m , ::J )-c;roup and ,if 

[ 
2m J f[ 2m] [ 2!1 J [ 2mJ \ 

xl = ~' ;(1 1 ' xl 2 ' • · · ' >=1 m ) ' 

we set 

( 3 ) 

then we get a n a l Gebr a (G; [ J1 , •.• , [ J m) \vith m 

2rn-ary operations. This a l gebra satisfies the following 

cond itions : 

(i) For each p E{ l , 2, •. . ,m) and each ( x~m) E G3m 

[ 
p r.: 2m+ ·pJ [ 2m + P1 3m · l 

:r.:l ! xp + 1 l · · · xp + 1 ..J m x2m + p t- 1 i 

rr 2:n] [ 2m] 3m --, d = l xl 1 • • • xl m x2m + 1 J i an 

(ii) (-'f~ , _2 =-(b~ JEGm)(3 ~ ,;y: E. Gm)( Vi E{l, ... ,m~J 

ra x1 · = b . =- [ :v aj . -- ). ). .:L-l 

And c onversel l y , if an al~ebra ( G; [. J1 , ... , [ Jm J 
with m 2m-ary operat i ons satisfies the condi t ions (i) and 

(ii), then ( G, [ )) is a (2m ,m) - 3roup with [ 1 defined by 

( 3 ). 
In the case of a trivia l ( 2m ,m/ - group ( G , [ ) ) , 

i.e. all of t he operations [ '] . 
). 

are 

e ssent ially binary and a re gotten from the operation of the 

gr c;up ( G , ·) • 

PROI'OSITION l. Let (G ,[ 1) be~ ( 2m , m)-p:roun, 

such that for i Etl, .. , m} [ ximJi = xi * i xm + i , where 
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~ i :G2 
-+ G is ~ binary operation. Then 

trivial (2m,m)-group. 

(G , [ J) is a 

~· It is easy to show that for each i €{1 , • • , m} 

(G, * i) is a gr oup with identity element e • Next, 

[ [ 2m+ lJ 3m l rr 2m] 3m l . . x1 x 2 x2m + 2 ::::; x1 x2m + 1 1mpl1.es that for each 

i E {l, ••• , m-l J 

( xi+ l ~i xm+i+{} *i+l·x2m+ i +l 

= (xi+ 1 "* i + 1 xm + i + 1 J * i + 1 x2m + i + 1 • 

Using this and the fact that (G, *i) is a group for each 

i G {l, ••• ,m1 it follows that *l :::- *2 = ... =- *m-1 = * m • 

Hence, (G,[ J) is a trivial (2m,m) -group. I 

REMARK. Since[x~em]= ( x~ ) -::::: [emx~J. it 

follows that in every (2m,m)-group , [x~mji depends on 

xi and xm+i , for each i Ell, ••• ,m}. 

Suppose that ( G ,[ J) is a trivial {2m,m) -group. 

Then ( G, [ J) satisfies the following conditions for each 

i E i1, ... ,m l : 
(a) [ei-l x em-l y em-iJj = e for j -:/= i ; and 

(b) [em- i x~ e i J (x~ ~ 1 ,xi) 

PROPOSITION 2. If (G, [ ] ) is ~ (2m,m) -group 

s atisfying the conditions (a) and ·(b) , then (G, [ J) is a 

trivial ( 2m ,m)-group. 

[ m-1 m-1] ( m) m Proof. Let x * y ::::. x e y e 1 • Let x1 E G 

and(yi)EGi forsome iE{l, .•• , m}. Then 

[ x~ Yi em-iJ [ 
i-1 

xl ( m i-1 \ m-i] 
xi xi+- 1 Y1 Yi J e 

::- r xi-1 [ m-1 m i-1 J m-iJ 
xi e Yi xi+ 1 Yl e e 

[ i-lr m- 1 m- lJ m i-1 m-i+ lJ = x1 xi e yi e e xi+ 1 y1 e 



[ i-1 ( ) m-1 m y
1
i-l em-i + lJ =- xl xi ~ Y i e e x i + 1 

[ 
i-·1 ( , m i-1 em-i ~ 1 J 

::::o xl xi ~ Y i J xi + 1 Y 1 

implies that 

[ rn m [ m-1 ( "\ m-1 l 
xl Y 1 1 = xl ~ ~ Y m I Y 1 e J 

-:::[x~-2 (xm-1 If Ym-l) ( xm *Yml y~-2 e2] 

= •.. =[(xl)(yl)(x2lfY2) (xm~Yml em] 

-= ( xl * Y 1 ' x2 * Y 2' • • • ' ~ * Y m J · 
This shows that (G,C J) is a trivial (2m,m)-group . I 

4-. Let (G,c J) and (K,t J) be (2m,m)-groups. 

A map f: G - K is called (2m, m) -homomorphism if 

fCm)([ximJ):: [f(x1) f(x2) ... f(x2m)J , 

where is the mth product of f, i.e. 
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f(m)(y~) = (fCy1), f(y2 ), ••• , f(ym)). It is clear that f 

is a (2m,m)-homomorphism iff f(m):(Gm,o) ____,. (Km,o) is 

a group homomorphism. 

Let f: ( Gm ,( J) ~ (Km ,c.)) be a (2m ,m) -homomorphism, 

(em) the identity in (G,LJ), (km) the identity in (K,[ J) 

and H = ker(f)=fxlxEG, f(x) = lc} ::::: C 1
(k). J~et us 

examine some properties of H. First of all, Hm is a 

normal subgroup of (Gm,o). Moreover, H satisfies the 

following conditions for each i t. { 1,2, ••• ,m 1: 

Ab [ i-1 Hm m] ove, x1 xi stands for the set 

{fxi-1 h~x~]j(h~)EHm1. 
For m =1, the condition (5) is trivial, and the 

condition (4-) is equivalent to H being a normal subgroup, 
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provided that H is a subgroup. 

Let us show (4). Because e E H, it follows that 

[ei Hm em-i]:::: Hm for each i E- { O,l, ••• ,m}. Since Hm 

is normal in (Gm,o) it follows that [x~ Hm]-= [Hm x~l· 

Now, [xi-lHmx~]-:::. [xi-l Hm x~ em] -= [x~-lHm(x~ ei-1 )em-i+ 1] 

= L.xi- l x~ ei-1 Hm em-i + lJ = [x~ nm) 

This shows that (4) follows only from the fact that Hm 

is a normal subgroup of (Gm, o) • 

The condition (5) is a consequence of the 

follov1ing equivalences: 

(G ,C J) 

[ x~ Hm J :::: [ y~ Hm j (-> f (m) ( x~) == f ( m \ y~ ) 

(' '7 f(x. ) = f(y.) for each i Eil, ••• ,m~ 
l l . 

~='7 f(m)((xl)-= f(m)((yt) for each i E{l, .. ,m~ 

(·-) [(xl Hm} =[(Yilm Hm] for each i E~l , ••• ,m]. 
We say that a subset H of a given (2m,m}-group 

is a (2m,m/-subgroup if Hm is a subgroup of (Gm,~. 

A (2m ,m) -subgroup H of (G ,C]) is ca lled normal ( 2m , m)-

subgroup if it satisfies the condition (5) and 

a norma l subgroup of (Gm,o) • 

Hm . 
lS 

Hence ker(f) is a norma l ( 2m , m)-subgroup of a 

given (2m ,m)-group (G,C" .1) for any (2m,m)-homomorphism 

f from (G,[J ) to some ( 2m , m/ - group (K,[ 1/ . 

.2.. Let (H, [ J) be a normal (2m, m) - sub~roup of 

(G, [ 1). We define a relation rv on G by 

(6) a r- b (=> [am nm} -:::. [bm Hm] 

It is easy to check that is an e quivalence on G. 

We denote the f actor set G/~ by G/H, and its element~ 

by aH • r;e:x.t 1·1e define r J on G/H by: 



(7) r(x1 H) (x2H) ... (x2mH)] = ([x~m]l H, ..• , [x~m]mH) . 

PROPOSITION 3 . (i) (G/H ,C JJ is ~ (2m ,m)-~ . 

(ii) The natural map Ji :G - G/H defined ~ ']i(x) = xH 

is~ (2m , m)-homomorphism . 

(iii) ker(ft) =H . 

Proof . (i) Suppose that xjH = y jH for each 

j E{l,2, ... ,2m}, i.e. L(xj')m Hm] =- [ (yj)m Hm]. Then 

( 5) implies that [x~ Hm ] = [y~ Hm ] and 

r 2m m] - r 2m mJ rr: 2m ] Iii] r mr 2m L xm + l H - l Ym + l H • Now , Lxl H = x1 ~ + l 
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::: fx~[Y~m+l HmJ]-= [x~ Hm y;~lJ == [Y~ Hm y;m+l] =[[y~m]Hm]. 
This, and (5) imply that for each i E{l, ... ,m} 

[x~m] iH = [y~]iH , i.e. [ ] is well defined. 

The associat ivity and the condition Q. ii) f or 

[ ) : (G/H) 2m ~ (G/H) m f ollow d i rectly f rom the associati-

vity a nd the condit ion Q. ii) for c J : G2m --- Gm 

(ii) gr(ml{[x~mJ) = r,(m)([x~mh' • • • ,[x~mJm) 

=([x~mJ1a , ... ,[x~m]mH) = [ x1H ... .. x2mH] 

= [11(xl) f,"(x2) ... 1/(x2m)l • 

(iii) ker (1T) = {x I ?l(x) "" eH 1 -::: {x j xH == eH} 

={ x I x E H1 - H • I 

The (2m,m)-group (G/H,[ J) is called 

( 2m,m)-factor group of G by H • 

PROPOSITION 4- . Let (H,( J) be a normal ( 2m , m)-

subgroup of ~ given (2m ,m) -group (G,( J). The n ( Gm/Hm, o) 

is isomorphic to the group ((G/H)m, d) via ~ isomorphism 

g defined~ g((x~)Hm) = ( x1H, ••• , xmH) = 1/(m)((x~)). 

Proof. g is well defined because [x~ Hm] =[Y~ Hm] · 

implie s that 'JT(m) ((x~)) = Ji(m) ((Y~)) . Since 'Ji(m ) is a n 
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epimorphism it follows that g is an epimorphism . If 

g((x~ ) HmJ ==- (eH)m, then ']i(m)((x~)) = (eH)m, which implies 

that [(x~)Hml = Hm • Hence, g is a monomorphism. a 

6. Suppose that (G ,C J} 

gotten from a group (G, ·). Let 

is a trivial (2m,m)-group 

II be a normal subgroup of 

( G, ·) • Then Hm is a normal subgroup of { Gm, o ) • To 

show that H s a tisfies (5), let ( x~), ( y~) E Gm • Then 

[x~ Hm] :=[y~ Hm] <= > xiH = yiH for each i E1l, ... , m} 

< > [(xi~m Hm] = [(y i')m Hm] for each i f;il, •.• ,m]. 

Hence, (H, C J) is a normal (2m,m) -subgroup of ( G ,L J) • 

Converselly, suppose t ha t H is a normal (2m,m)

subgroup of a trivia l ( 2m,m)-group (G,C J) • If h1 ,h2 E H, 

r; m- 1 m-1] ( m-1) m the n Lh l e · h 2 e == h1h 2 ,e E- H , and 

( m-1) - 1 ( -1 m-1) E m · h
1

,e ~ h
1 

,e H • Henc e , H ~ s a subgroup 

of (G ,· ) . Becau se Hm is a nor mal s ubgrou p of ( Gm,o) 

. ( m-1) m m ( m-1) · xH ~t follows that x,e H = H x,e ~ . e. ::: Hx 

for each x (;. G. Hence, H is a normal subgroup of ( G, ·). 

The above discussion shows that the notion of 

normal (2m,m) - subgroups makes sense only for "pure " 

(2m , m) -groups, i.e. for (2m,m)-groups that a re not trivial 

(2m,m)-groups . Otherwise, it is the same as the notion of 

normal subgroups . 

1· A 

algebra (G,e; 

( 2m , m)-group can be thou~ht of as an 

{C1i,C']i,[/Ji1 i= l, .. . , m ) where 

( ]i, (_ ..._ Ji, [I )i are 2m-ary operations , e is a constant, 

and the following identities are satisfied for each 

i ~ {l, .. . ,m}: 

[ p [ p + 2m] [ p -+- 2m] 3m l 
xl xp + 1 l · · · xp + l m xp +2m .._ 1 i 



= [ [ ximJ l . . . [ximjm x~: + ;.J i 
l xm +- l · · · x2m - xl · · · ~ l i 

Lxl · · · xm I ~ + l • · · x2~ i = 
[em x~i -=- xi == [x~ em]i . 
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x. 
~ , 

and 

Hence , the class of (2m,m) - groups is a variety of 

algebras . So , for better understanding of the ( 2m ,m}-groups 

it is needed to obtain canonical forms for the elements in 

free ( 2m ,m}-groups . 

We note that free ( 2m , ro)- groups are not trivia l 

(2m ,m) -groups. 
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SOME PROPERTIES OF 6-ENDOMORPHISM NEAR-RINGS 

Vucit Da~it 

Abstract. The purpose of this note is to investigate some properties 
of a h-endomorphism near-ring E6(G) whi ch depend upon the structure of the 
group (G,+). In this sence the properties which are attribute for a normal 
subgroup 6 of G act on the properties of the 6 -endomorpflism near-ring E.:\( G). 

By H0 (G) we shall d~note the set of all zero preserving mappings of 
a group (G ,+ ) into itself . If 6 is a normal subgroup of G, then fe:M

0
(G) is 

an 6-endomorphism of G if and only if (6)f(:6 and for all x,y,e:G there 
exists de:6 such that 

(x+y)f=(x)f+(y)f+d. 

The near-ring generated additively by the set End t:, (G) of all 6-endo
morphisms of a group (G,+), will be called a 6-endomorphism near-ring and · 
will be denoted by E6(G). We consider a near-ring of these 6-endomorphisms 
for which is invariant every fully invariant subgroup of the group G. We re
call that these subgroups are E6-invariant. 

A normal subgroup ;j) of the group (E6(G) ,+) generated by the set 

{15jl5=-(ht+ft)+(h+f)t, h,f E6{G),te:End6(GJ} 

is called a defct of distributivity of E
6 

(G). It is clear that 

{j) c,:(G,6)
0 

where (G,6) 0 is the set of all zero preserving nlilppings f :G+6 . Note that the 
defect ~of E6(G) depends upon the choice of the normal subgroup 6. For details 
see [2]. 
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Let (R,S) (or brieflly R) be a subnear-ring of E6 (G) generated by 
S~EndA(G). We consider the group Gas an (R,S)-group and suppose Inn(G)~S~

~End6(G). Also, E6 -i nvariant subgroups become (R,S)-subgroups of G. 
The following theorem gives some information about the structure of 

the 6-endomorphism near-ring (R,S). 

THEOREM 1. _!_f H ~~nonzero (R,S)-:subgroup of G such that MH=(O), 
then (R,S) ~equal either to the endomo_rphism nearring or to the 6-endomo
rphism near-ring whose restrictions on Hare the endomorphisms of (H,+). 

Pro~'f . If 6=(0), then a 6-endomorphism is just an endomorphism of 
(G, +). Assume that 6 ~ (0) and MH=(O). For all te:Ss; End6 (G) and all a1 ,a2e:H 
there exists de:6 such that 

(a 1 +a 2 )t=(a 1 )t+(a~+d . 

Since, by assumption, H is a (R,S)-subgroup, we have (a 1+a 2)te:H, 
(a 1)te: H and (a2)te: H. Therefore de: H. But 60H=(O) and hence d=o. Thus there
stricti on tiH is an endomorphism of (H,+). 

The fo 11 owing theorem characterises the defect ~ of the 6-endomorp

hism near-ring (R, S) . 

THEOREM 2. Let H be~ (R ,S)-s ubgroup of G and ~j) be the defect of 
(R,S). If for all te:S the restriction t!H is an endomorphism of (H,+),then --- - -- - - -
(H)~=(O) and R/Ann(H) ~~distributively generated (~.~.) near-ring. 

Proof. For all o e:~we have o = E (r.+O.-r . ), where r
1
-e:R and 

-- · 1 1 I 

ei =-{xiti + yiti)+ (xi+yi)ti'(xi'yi e: tti e:S). Thus, for all ae:H 

(a)e-=-(a)y.t.-(a)x.t.+((a)x .+(a)y. )t .=O, 
1 11 11 1 1 1 

because, by assumption, the restrictions t.IH are the endomorphisms of (H,+). 
_t:\ 1 ? 

Hence, for all a e:H and OE;OV, (a) o=O, i.e.(H}-:li =(0). Thus;~\; Ann(H) and 
from Corollary of Theorem 2.6 of [1], R/Ann(H) is a d.g. near-ring. 

Applying theorems 1 and 2, we obtain the following. 

COROLLARY._!_! H ~ ~ nonzero (R,S)-subgr~ of G su~ that 6nH=(O), 

then (H)~ =(0), where ~ ~ ~ defe~~ ~f (R,S). Further R/Ann(H) ~ ~ ~-~· 

near-ring. 

Like in (3j we shall supose the existen: e of minimal (R,S)-subgroups 

of G. In this sence the following theorem generalizes the Theorem 1.4 in [3J 
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THEOREM 3. ~et G be~ (R,S)-group such that t.{lH=(O) for every(R,S)
subgroup H of G. Then G and all its (R,S) images have minimal (R,S)-subgroups, 

either 
1° if G satisfies ~!minimum condition £n (R,S)-subgroups,or 

2° 2! R satisfies the descending chain condition on right ideals. -- ------
Proof. 1° The first case is obvious. 

2° Let R satisfies the descending chain condition on right 

ideals of R and let 

(1) 

be a decreasing sequence of (R,S)-subgroups. By using Theorem 1, we have 
that the relative defect of the set Bi ={rER/(Hi)r~Hi} with respect toR is 

contained in Bi,i.e. 

{- bs-xs+ (x+b)s/ b£B., x£R,s£S}s;B. 
1 1 

Thus, by Proposition 3.1 of [2], B. is a right ideal of R. Consequently, the 
1 

chai n (1) i nduces the chain of ri gh t ideal s 

( 2). 

Assume that the chain (1) does not stabil i ze after finitely many steps , i.e . t ~ere 

i s an integer n such tha t Hi~ Hi + 1 for all i>n.We seek a contradiction to this 
assumption. According to Proposition 3.2 in [2] , Bi is a nonzero right ideal 
of R, where B~B . + 1 for all i>n. This contradicts to the fact that the chain 

. 1 1 

(2} terminates after finitely' many steps. 

THEOREM 4. Let ftJ be~ defect of~ near-ring (R ,S) and~ H be~ 
minimal (R,S}-subgroup of G. For~ t £S the restriCtion tiH is an endomo

rphism of (H,+) if, and only if,(H)91 =(0). 

Proof . If for all t £5 the restriction tiH is an endomorphism of(H,+), 

then the result follows from Theorem 2. 
Conversely, let(H}5J=(O). Since His a minimal (R,S)-subgroup, it 

follows that for all a, a1,a2£H ~hEre exist x,y£R such that (a)x=a1 and 
(a}y=a

2 
.(Prop.2.3 , [2jr By definition of therelative defect~, for all t£5 

and x,~R there exists o~ such that o=-yt-xt+{x+y)t. By assumption , 

(a) o=O for all a £Hand all o £~.Thus , 
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0 =- (a)yt-(a)xt+((a}x+(a)y)t,i .e . 
0 =- (a1)t- (a2)t+(a1+a2)t. 

~ence, for all a1,a2 EH and all tES, (a 1+a 2)t:(a1}t+(a2)t and this finishes 
the proof. 

Let H be a subgroup of G and denote the derived subgroup of H by H'. 
We remember that H is perfect if, and only if, H'=H. As a generalization of 
the result (Th. 1.9, [3] we obtain the following. 

THEOREM 5. Let H be ~ perfect minimal (R , S).:.su~group ~f G such that 
liOH=(O}. Then R/Ann(H} is~~·.[· near-ring which_!!iS~orphic t6~dense 

subnear-ring ~ M
0
(H). (Density ~ that for !!_"!_ mEM

0
(H) and given ~ finite 

set of distinct nonzero elements h1, ••• ,hn H, ' there iS an rER/Ann(H) such that 
( h1) r= ( (hi )m. i ,; 1, .. . ,n) . . 

~. Since LIOH=(O) , then by Theorem 1 it follows that for each 
ll -endomorph i sm, the restriction on H is an endomorphism of (H,+} . Thus H is 
an (R,S)-subgroup of type 2. On the ot her hand ,by Corollary , it follows (H~= 

= (0}. Consequentl y ~~Ann(H) , where~ is a defect of (R,S) . By using the 
Corol l ary of Therorem 2.6. of [1] , we have t hat R/Ann(H) i s a d.g. near~ri ng 
and result follows f rom Theorem 1.9 of [3]. 
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Abstract. In this work the pseudoautomorphisms of the regula,, 
:roupo1ds with division are investiBated . Some pr operties of 

t he pseudoautomorphisms and relations between pseudoau tomor
? hisms and nuclei of such groupoids have b een described . 

According to [1.] and [ 2 ] we can give these definitions: 

DEFINITION l. A groupoid with division ( G-
1 
·) is _!! regular 

";roupoid wi th division (briefly RD- groupoid) if and only if 

i t satisfies the conditions: 

(3zfG)z.x::Z·Y ~(VzfG)z.x=Z · Y 
( 3 z E G-) X · z ='I· z ~ ( v z E G) X 0 z ='I· z 0 

DEFINITION 2. The left /right/ translation of the groupoid 

( G, ·) ~ Q f. G is _!! mapping .A a. : G ~ G , A a_ x =a· X 

I fa.: G __. G , fax = x ·a I 0 

DEl!,INITION 3. A bi,jection lT: {;-4 G is _!! ri ,.ht /left/ pseudo

automorphism of the groupoid { G 1·) if and onl_y if the re 

exists c E G such that (Ac7T1 Tr,).cTT) /(IT, felT, fcTT)/ is an 

autotopy of the groupoid (G-,·), i·~· (Vx,yfG)>..c7T(X·Y)= 

:AclTx· TTy /(Vx,yfG)fcTT (X·Y) = Trx · .PcTi'y/ holds. 

c is cRlled the companion of the right /left/pseudoautomor

phism. If 7T is the left pseudo;:mtomorphism and the right 

1) Seudo auto morphism ~ call it two sided pseudoautornorphism. 

JEFINITION 4. The left /right/ nucleus of the groupoid ( (;
1
·) 

is the set Ne ==- { x f_ G : ( '1:/ y, z f G ) X· ( 'j · z) =:. (X 0 

)') • z J 
IN'('=- {z t_ G: (Vx,'1 f G) xo(y . z)= (xoyJ.zj /. 

t ·et us first prove two lemmas: 
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L EHi'iA l. 'rhe groupoid with division (G,·) h8 s at least one 
r i ght /left/ pseudoautomorphism if 8nd . on l y if it h<1 s at 

least one left /right/ identity element. 
Proof. 1° Let TT be the right pseudoautomorpfism of the gro

upoid with divi s i on (& 1·) and l e t C f G be one of its c~mpa
nions.Let e EG be a r i ght l ocal i dentity element of c, i.e. 

C·e-::.c ,which by Definition 2 . we can write in the form 

;>. c e :::. · C • Then we have 

(Vx,yfG)>-c7T'(X ·'f)=>-cTTx · TTY 

( V y f G ) ).. c TT ( "_, e · y ) = ).. c Tr TT- 1 e · TTy 

(V;~EG)"AcTr("·
1

e·Y}= "Ace · 7Ty 

( V y E G ) >. c ff ( rr --1 e . y ) ~ c . rr y 

(VyfG).~clT (TT-"e.y ) =>.. en y 

. ( V y E G- J rr -1 e . y = y 

( by Definition 3 ) 
(by the substitution 
x with 7T -1e ) 

(since 7T ff- 1 is 
identity mApping) 

(since Ace -= c ) 

(by Definition 2 ) 

(since >. c lT is 
bijection ), 

Hhic h means that 7!"''e is the left identity element of ( G- 1 ·) . 

2 ° Let e be a left identity element of the croupoid 

with division (G, - ) and let l be identity ma:lpine; of the 

set G .Then we have 

(Vx,'J EG) e · (>< · Yl= (e · x) · 'J 

(Vx,'f fG) €·l(X·'i)=(e · zx) · LY 

(Vx,yfG) >-el (x ·Y)-=->..elX · ZY 

(since e is the left 
identjty element) 

':·ince l is the 
identity manpi ng) 

(by Definition 2 ), 

henc e identity mapping is a right pseudoautomorphism with 

companion e of the groupoid ( G 1 • ) • 

Remark . ThP. proof for the left pseudoE~utolllor~hism and the 
right identity element is completely analogous to the given 

nroof for the ri ght pseucloautomorphism end left identity 

element , and such we omit it . 'lie shall omit furthermore the 
~roof for the left pseudoautomorphism, ri eht identity element 

vnd right nucleus whenevPr it is ru1alogous with the proof 
for the rie;ht pseudoAutomor!hism , left identity element and 

1 eft nucleus . 



_.!..i .. :J.. 2 . 'l'he .. - -:;roupoid ( G-, · ) .b.:...£ 2 non-e1•1pty left /right/ 

nucleus if and only if it has at least one left /ri r•ht/ 

identity Plement . 

}'roof . 1° Let e be a left identity element of ( & 
1 

• ) • Then 

(e - x) · Y= X· 'I = e - ( x· Y) foreach x,yE.C. Theref ore 

e E Ne and accordinp;ly Ne -:f. ¢ . 
? 0 Let Ne-t-¢, i . e . there exists a.ENe, and let 
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b f G be a right local identity element of a.. , i . e . a-b=a . 
Then 

(\lxfG) (a. -h) · x = Q · (b-x) (sinc e a.ENL) 

(VxfG) a-x= a. - (b - x) (since a - b=Q ) 

(V)(EG)(\Iz.EG) Z·)( = z - (b -x) ( h;v Def i nition l) 

InterchEmg i ng z by b it follo ws that (VxEG) b -x ::: b - (b -x) 

and by inte r chRnging b ·X by y we ge t (VyE G) Y = b· y , i. P. . 

h is the left identi t y e l emen t of (G,.) . 
From t he Lemm a 1. and Lemma 2 . immediatel y f ollows 

THEOREM l. For each RD-groupoid ( G 1 · ) these condi tion s are 

equivalent: 

(i) (G,.) has at l e ast one right /l eft/ pseudoauto

morphism , 

( ii) ( G 1.) h as at least one l eft /right/ identity 

e lement, 

( iii) ( G1· ) has non- empty l eft /right/ nucleus. 

COHOLLARY l. If RD- groupoid (G 1 ·) hRs at least one twosided 

pseudoautomorphism t hen (G,·) is§; loop. 

Proof. By Theo rem 1. ( G 1 ·) is a RD- groupoid with two sided 

identity element. Let e be a left identity e l ement of (G,·~ 
I'hen 

a -x=a -y ~ (VzfG)z-x=Z·':f 

=?e -x-= e-y 

~x=y 

(by Definition l ) 

(by the substitution 
of z. with e ) 

(since e is the left 
identity element), 

i . e . the RD- groupoid (~ 1 -) satisfies the left-cancellation 

law. 

'l'HEC;RJ~i'1 ~ . Everv el e ment of the left nucleus Ne /right nu

cleus NY I of the 'tD- groupoid (G,·) is the companion of at 

~e8~_t -~~ right /1_eft/ P..~~:!_d_oil~-~ o m_Q_£P_hism of that_ groupoi~. 
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Proof. From the fact that ( G,.) is a group oid with division 

and proof of Corollary 1. immediately follows that for each 

Q f G- the mapping AQ. is bijective. Let a E Nt and let l be 

identity mapping of the set G . Then 

(Vx,yfG) a-(X ·Y):::::: (a·><) · y ( hy Definition 4) 

( V X., ':1 f G) A a (X · )') = :X a. X • 'f (by Definition 2 ) 

(since l is the (Vx,yE G) Aa l (X ·'f) = AalX · ZY 
ident i ty mapping ), 

which by Definition 3 . me an s t hat the identity mapping z is 

a r ight pseudoautomorph ism wi th c omp ani on Q of t he RD- grou

p oid ( G, · ) . 
THEOREM 3. Let JT b e .§: r i ght /left / pseudoautomor phi sm wi t h 

the companion C of t he RD- group oid ( G, · ) . 
7f i s the automorphi sm of t he RD- groupoid ( G, ·) if and only 

if C is an e l ement of the lef t /ri ght / nu cl eu s of ( G, ·) . 
Proof. l 0 Let TT b e an aut omorphism of the RD- grou poid ( G 1·) 1 

i.e. (Vx,':J E G) Tf(X ·Y)=7T.x-7Ty holds . The n 

(Vx,y f G) Ac 7T (X·'f) = >.cTT x · TTy 

(Vx,yEG)'A, (Tfx.7f'y)=>-clfx ·TTY 

(Vx,yf.. G) At (x .y J = :X c x · 'J 

(Vx,yfG) C·(X ·'I)-= ( C·X )·'/ 

(by supposi tion o f 
'l'heo rem 3 ) 

(si nc e 7f(X·'f): lTx -TTy ) 

( by the sub stitu tion 
-1 -<1 

of X , Y with 7T J< 1 7T Y 
respectively ) 

(by DPfinition 2 ) , 
which by Definition 4 . gives that C is the element of the 

lef t nuc l eu s Ne of the RD-groupoid ( r;. ,. ) . 
2° Le t c be an e l ement of t h e left nu cleus Ne of 

t he RD-groupoid ( G- 1 • ) • Then 

(V X 1'j t G-) Ac1T (X· Y)-:. Ac 1T X · 7r'J 

(VJl.,'f fG)c.]T(JC ·Y) = (c · rrx) · Tf':l 

(Vx,'j f G) C·TT'(Y- · '1)-= C · (Trx · 71''1) 

(by the supposition 
of Theorem 3 ) 

~by Defin ition 2 ) 

' s in ::: e cENt ). 
3i nce by •rheorem l. RD- g r oupoi d ( G-, · ) has at l eE~st one l e ft 

ident i ty e lement and by the proof of Cor oll ar y l. RD- groupoi <i 

wit h lef t ident ity element satisfies the l eft - c ancellation 

law, it follows that ('t/x,'j EG)TT(x .y):::.Tfx .T(y , i . e . 7T i 

r. he automorphism of that groupoid . 

•-!'X''TS'1 4 . T et 0 he t he set o f all d p;ht /1~f_!/ .:-::·.:::..:..· - --~~~ ~ -
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_o r ' -~~~·~ c;: ~ .. .J-c,1·oupoid (G,·) with the left /right/ 

lenti ty element e • The set §J with the composition of map-

_inBS as binary operation is ~ ~· 

roof. By Theorem 1. !P is a non-empty set . Let 7T • , 7Tz. E !fJ, 
C1 companion of 7T:, and Cz. comp anion of 7T2 , i.e. let 

(>.c
1

7T..,, Tr
1

,)...c/T1 ) and (>-c,.1i2. 1 7T2 1 ).c/TL) be autotopies of the 

roupoid ( G, · ) • Then (>-c, 7T1 Acz 7Ti 
1 

TT1 TT2 1 Ac/11 Acz'T~) is an 
.,ut otopy of ( G-, . ) , and since 

'Ac, 711 Acz. 7T1 x = Ac/T., (). c/Tz. x ) 

= 'Ac, 71:, ( C2. · TT2. x ) 

= >.c. 1!1 C 2 · TT:t T/2. x 

= (c., · 7T1 cl ) . 7r:, TT2. x 

(by Definition 2 ) 

(since (>..e.~ ,1i.,, At!;v.) 
is the autotopy) 

(by Definition 2 ) 

= :Ac1 .rr• Cz. Tr., TT,_ X ( t y Definition 2), 

it foll 0\V s thc1L (;>..C., · 7T1 c2 7!1 lT~. I 7T., 7!i. I A c,,. TT., c1. 7!1 TTi. ) is an 
autotopy of the given groupoid, i.e. 1T1 1T2.. is a right pseudo

automorphism with the companion c.,· TT1 C2. of the groupoid 

( G- 1 ·) • It holds as well (by the part 2° of the proof of 

Theorem 1~ that the identity mapping · l is a right pseudo

automorphism with the companion e of the given groupoid and 

the composition of mappings is associative, so ~ is a semi

group with identity element . 

Let 7T be a rie;ht pseudoautomorphism with the companion ~ 

of the groupoid ( G 1 • ) • Then by Definition 3. there exists 

t he mapping rr- 1 and ()..cff 1 Tf1 )..cTThs an autotopy of (G- 1 ·). 

It follows that (("Ac1rt", rr·•, (A.clfr•) = (T(\-~1 I rr-:v·~~1 )is an 

~utotopy of the ~iven groupoid, and since 

1f" 1 ;>,.-: X = 1r1 /\~ ( e · X ) 
(since e is the left 
id-~ nti ty element) 

( Bince (11-~~·. 7T-: TT-).~') 
is the autotopy) 

(h~ Definition 2), 

it follows that (>..,...,)i;e1(: JT-~ )...,.-";..-: e 7T-1
) is an autotopy, 

; • e. that T(- 1E fP, which completes the proof. 

· 1ECRm·1 5. The set fPc of ell ritrht. /left/ n seudoautomor

_ _.:1i sms '·lith comDanion c is the left /right/coset in the 

~-: _ · '.': on_::._?_r·_; _+:_~_')~- ~!. _!:~1_"'_ L:.c~_02_l :::_ !fJ '2_1'_ ~:L\ r•:j. · 2~ /~-~-ij ::.:_~!_"_2_1_~2.-: 
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eutomorphisms of the RD- groupoid ( G1·) ~ the left /right/ 

i dentity element with respect to the subgroup It of ~ auto

!'IOrphisms of that r;roupoid,_i.~· if rr6ffc then !Pc.=ff it !!Pc_ =~TT I. 
~· 1° Let 7T£!fi and«f.ft. Then (l\c.11"1 7f, ).,TT)and(<(1ot.,«) 
(' re att'totopies of the groupoid ( G,·) and thus (A.c.7r<X ,1fd..,"Ae.'ffd.) 

:L s an autotopy of that groupoid as well, consequently TrCX r:!fe, 
l·lhich gives TT Jf- S fPc . 

2° Let 7T E !!{ and l e t "f' be any element of the set !if:, 
i .e. let (~cTi, ff, Ac.TT) and (/..c."/' 1 1/1 1 /'lc'f') be autotopies 

~, f the groupoid (G,-). Then ("Ac'fi, TT,t.r.TTt"1 ().c'l',"l/'t Ac."\f):: 

= ( rr·•A.·; >-.,'/' , rr· 1'f , .,.-• 1:c-1 :A c. 'I' ) == ( rr -'"f, rrY,, rr·v) , i.e. 

TT"f'/1 i s an automorphis1n of (G-1 ·) .It f ollows that y-::TT(lf"1f)E 

Errft, i.e. !Pc Clfft, which c omp l e t e s t he p r oof. 
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Abst ract . In this ar ticle we give the proof of the existence of the 
elation semi-biplane with k=22 points on a line . 

As it is already known there exists the elation semi- biplane with k=6 

and k=lO points on a l i ne r espectively [1] . The el ation semi- biplane with 

k=l4 points on a line is determined and constructed as well l2J . 

The fol l owing member of this ser ies , i f does it exist , would be the 

el ation semi -bipl ane with k=22 points on a line . The ser ies , as one can see , 

consi s t s of t he el ation semi-biplanes with k=2p , p ~2 pr i me number. 

I t is of interest t o observe that f or k=6,14 and 22 there doesn't exis t 

the projective plane of the same order, and for k=lO the corres ponding proj ec

tive plane of order 10 is still in doubt. 

All necessary fact s about semi-biplanes can be found in ~ 1] and [ 3J . 

Applying the well known relations: 

k v = t + (2) (1) and kt6v (2) 

we get for k=22 : 

v = t + 231 and t~ll. 

Taking for t=l,2, •.. ,11 in turn, we can see that the only possibilities 

for a divisible semi-biplane are for t=l, 3,7 and 11. 

For t=l a bipl ane doesn't exist (according to the Bruck-Ryser- Chawla the

orem). According to another necessary condition, i . e. Bose-O'Conner theorem [4] 

for divisible semi-biplanes, in t he cases t=3,7 and 11 the semi-biplanes could 

exist. 

In this paper we shall investigate only the case t=ll and v=242. This i s 
k actually an el ation semi-biplane a:s k=22 i s even and t = 2 = 11. 

So l et the 242 points of that semi-biplane be denoted with: 

li,2i, ... ,22i i=O,l, ... ,lO 
and let us suppose the automorphism ~ which acts on these points as follows: 
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(Ai)g = \+l for all A~ {1,2, ••• ,22J and for all indices 

u:-{o,l, •.• ,lOJ. The indices i are to be considered as integers mod 11. 

The automorphism g acts transitevely on every "parallel class" of lines 

and on every "system" of points. 
For the first line p

1 
we can take without loss of generality: 

p
1 

= { 1
0

,2
0

, 3
0

,4
0

,5
0

,6
0

, 7 
0

,8
0

,9
0 

,10
0

,11
0

,12
0

,130 ,140 , 150 ,160 , 

17
0

,18
0

,19
0

,20
0

,21
0

,22
0
J. 

Then the whole first "parallel class" will be obtained with <::: g> from p1• 

So we have still to construct 21 "parallel classes", but it will ·be suf

ficient to construct only the first line from each cl ass as the aut omorphism 

S will produce the remaining. 
Let these lines be denoted with: p2,p

3
, . .. ,p22 . We shall find them with 

the help of another automorphism <i' of order ll which commutes with g and 

respects the compatibility conditions for the lines of semi-biplanes : 

* 111 j Pi(\ P3l = 2 for all k, m = 0,1, ... ,10 ii j i,j E:{l,2, ... ,22j. 

The action of . ~ on the points of this semi-biplane i s given as foll ows : 

() =( 1
0

)( 1
1

) ( 1
2

) ( 1
3

)( 14 )( 15)( 16 )( 17 )( 18 )( 191c 110) 

( 2u, 21' 22 , 

32 ' '4' 

2:;' 

36' 

24, 25s 26 ' 

)a , 310' 31' 

27 ' 

3.' J 

28 , 

35 ' 

21' 

'7 ' 

210) 

39 ) 
C 'o ' 
' 40' 4,, 46' 49' 41' 44' ~7' 410' 42 ' 45' 48 ) 

C 5
0

, 5
4

, 5
2

, 51 , 55 , 5~ , 52 , 56 , 51~, 55 , 57 

c 6o , 65 , 61o , 64 , 6s , 6;.. , 68 , 62 , 67, 61 , 66 ) 

C 7
0

, 7
6

, 7
1

, 7
7

, 72 , 78 , 75 , 79 , 7~ , ~10 , 75 ) 

c s
0

, a
7

, a
3

, a~0 , a6 , 62 , a9 , a7 , a1 , a3 , a4 ) 

C 9~, s
8

, 9
5

, 92 , 910 , 97 , 94 , 91 , 99 , 96 , 9' ) 

(10
0

, 10
9

, 10
7

, 10
7

, 10
5

, 101 , 1010 ,108 , 100 , 1G4 , 102 

(11
0

, 11l
0

, 11
9

, 11
8

, 11
7

, 116 , 115 , 114 , 11~ , 112 , 111 ) 

(12
0

, u
1

, H
4

, 15':1 ' 165, 17 ;:.~ ' 18.? , n 5 , 2o9, 214 , 221 ) 

(121 ' 132 ' 14~ , 1 510 ' 166 , 174' 184 , 136 ' 201~ , 2 15 ' 222 ) 

(12
2

'! 15~ , H
6

, be , 10
7

, 1·;
5

, 107 , 1 _. 1 , 200' 216 , 22~ ) 



: 1 

(12:?1 1.?41 11~7' 151' 16J I 176 1 186 ; 1 ;a , 201-1 .2171 224 ) 

(1241 13 · 1 
/ 

14-8 1 152 1 16 - ' ';; 177 ' 137' 1 ... 9' 2021 218 1 225 ) 

(1251 1.591 1491 · 153 1 1610 1178 1 1d8 1 n 10 12o3 , ') 1 .... 9 1 226 ) 

(1261 1371 1410 1154 , 1' 1'7 ou, . . CJ I 1891 190 1 2041 d1C ' 227 ) 

(127' 1381 140 i 551 1611 171011810'191' 2051 210 1 228 ) 

(1281 1391 141' 1~o l 16.2 1 1h, 1Bu 1 192 1 2061 .!11' 229 ) 

(129 1 13101 :'.42' 1571 16-. 1 , 1 ?) ' 1811 19z , 
/ 20.7' 212 1 22h) 

(:'. ~101130 I 1431 158 1 1641 172. 1821 1'; 41 2081 21_? 1 220 ) J. 

(]' (J U' 
where: p2 = p1 , P3 = P2 '· · ·' Pn = P1o· 

Actually, we have found t he firs t half of the elation semi-biplane as 

the automorphism ~ will produce all remaining parallel lines. 

The next line we have to determin: is p12 • Considering the elation se

mi-biplanes with k=lO and k=l4 from [ 1 _; and ~ 2], p12 is determined (without 

the help of a computor) to be: 

p12 ={10 , 25• 39 , 41 , 5
3

, 64, 74, 83, 91 , 109 , 115 , 

120 , 132 , 148 , 15
7

, 1610 , 176, 186, 1910 , 207 , 218, 222} 

Acting again with the automorphism G1 we find: 
c- <J <J 

pl3 = pl2 ' pl4 = pl3 , ••. , p22 = p21" 

The complete second half of the lines of the elation semi-biplane will 

be obtained with ~ ~ > . 
We have proved: 

THEOREM. There exist at least one elation semi-biplane with 22 points 

on every line with the~ G =< 5', G"> of automorphisms where 
11 11 g = G" = 1 and ~ .(j = rJ . g . 
~problem: Does there exist the series of the elation semi-biplanes 

for every k:2p, p > 2 prime number? 

Acknowledgement. The author is grateful to Professor Z.Janko for the 

useful suggestions. 
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Pe3WMe. np~BonRTeR eBeneHbR 0 BnonHe aBTOMaT~3~pOBaHO~ nporpaM 
MHO~ e~eTeMe npenHa3HaqeHo~ nnR noKa3aTenbeTBa TeopeM Ha R3hlKe 
~eq~eneH~R npen~KaTOB I nopRnKa. lloKa3aTenheTBO B ~opMe onpoBep 
~eH~R o6oeHOBaHHo Ha enenyw~~x npaB~nax BhlBona: ynopRnoqeHaR 
TI~He~BaR pe30TIWU~R e MapK~pOBaHHhlM~ n~TepaM~, npaB~TIO 6~HapHO~ 
~HnYKU~~ ~ npaB~TIO e~MMeTp~~. C~eTeMa pa60TaeT B eoeTBBe e~eTe 
Mill "rpa~" pa3pa6oTaHo~ Ha 3neKTpoTexH~qeeKOM ~aKynTeTe Eenrpan 
eKoro YH~Bepe~TeTa. np~Bon~TeR np~Mep noKa3aTenbeTBa Ha Maw~He 
PDP 11/34 e ~enonb30BaH~eM npaB~n pe3onwu~~ ~ e~MMeTp~~. 

BxonHhiM~ naHHhiM~ e~eTeMbi "rpa~ " /eM. B (4), (5), (6], (7]/ 
RBTIRIDTeR npenno~eH~R aHrn~~eKOrO R3hlKa 1 n~60 ~OpMynhl ~eq~eneHI1R 

npenMKaTo:B I nopRnKa. OTne nhHhie nporpaMMHhie MonynM nepenonRT 

npenno~eHHR aHrnHieKoro R3hlKa B ~OpMynhl HeQI1eneHI1R npenH KaTOB, 

a 3aTeM Ka~nyw 113 H11X nepeBOnRT B MHO~eeTBO nH3biDHKTOB, npH 

qeM 3 TIHMMH~pywTeR KBaHTopbi H BBonRTeR ~YHKUH~ CKone Ma. BxonHhiMH 

naHHhlM~ BDOnHe aBTOMaTM3HpOBaHO~ el1eTeMhl noKa3aTenbeTBa RBTIR 

IDTeR DM3bWHKThl nopO~DeHHhle 113 OTpHUaHMR npenno~eHMR nonne~a~e 

ro noKa3aTenbeTBy, a TaK~e ~ nH3bWHKTW nopo~neHHhle ~3 aKeHOM 

~ eop~~ I nopRDKa , n.116o H3 paHee noKa3aHHWX Teope~, neMM MnH H3 

onpeneneHHi. llH3bWHKThl npOHexonR~~e H3 eX9Mhl-aKeHOM MaTeMaTHQe 

eKO~ HHnYKUHH nM60 e~MMeTpH~ He BKTIWQaWTeR B ~exonHoe MHO~eeT 

BO, Tal< KaK 3TH exeMbl 3aMeU!e HHbl npaBHTiaMH 6MHapHO~ HHny~HH H 

eMMMeTpHH. 

YnopRnoqeHaR TIHHeiHaR pe30TIW~HR e MapKMpOBaHHhlMH TIHTepa 

MH /eM. B (1) I ~enonb3oBaHHa B eHeTeMe 6naronapR enenyw~HM xa 

paKTepHeTHKaM: I B pe3oniOUHIO noeTynaeT TOBbKO noenenHRR nHTepa 

nJ-13b iOHKTa D1 , Ha3biBaeMoro "ueHTpanbHhiM" H K-TaR /K~1 I nHTepa 
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,ll.J1!3b!OHKT8 D2 H83biB8eMoro "6oKOBbiM 11
• II 0H8 BKn!Otr8eT CTpaTerJI!lO 

MHo~ecTB8 rro.n.nep~KJI! Jll ycTpaHeHJI!H TaBTonorJI!M. III En8 ro.n8pH 38 

.nep~JI!B8HJI!10 M8p!<JilpOB8HHhlX nJI!Tepb B ITOpO~,D.eHHhlX pe30nbBeHT8X ,ll.O 

CTaTOt!HO 3aiTOMJI!HaTb TOnbKO ,ll.J1!3b!OHI<Thl ITOpO~,D.eHHhle H8 rrpOMe~yTO 

t!Hhlx-coce.nHJI!X ypoBHHX ITOJI!CK8. Cne.ny10~J1I~ rrpMMep Jlln!OcTpMpyeT rrpo 

uecc 0ThlCI<8HJI!H yrropH,D.Ot!eHOM nJI!HeMHOM pe30nbBeHThl QeHTp8nbHOro 

,D.Jil3b!OHKT8 n
1 

Jll 6oKoBoro ,D.Jil3b!OHKT8 n2 • 

ITpMMep. D1 : P(x)/Q(x)/R(x)T(x) D2 : ,R(x),T(x)P(x) 1 ). 

1° rrepeJI!MeHOB8HJI!e rr e peMeHHhlX: n2 CT8HOBJI!TCH ,R(y),T(y)P(y) 

2° OThlCKaHJI!e H8M6onee o6~ero Y HJI!~JI!K8TOp8 HOY .nnR T(x) Jll K-TOM 

(K=l, 2, ~) nMTepbi a D2 : .nnR 1<=2 HOY cy~ecTayeT Ill JI!MeeT Blii,D. 

Q=b/x} • 
3° oiflopMneHJI!e pe30nbBeHTbi: P(y)/Q(y)/R(y)/T(y),R(y)P(y) 

4° c~8TJI!e pe3onbBeHThl - CTJI!p8HJI!e HeM8p!<MpOB8HHhlX nJI!Tepb coarr8 

.na10~J1IX c rrpe.nwecTBY!O~JI!MJI! c neB8 nl11Tep8MJI! Jll JI!Cne.noa8HJI!e Ha 

TaBTOnOrJI!lO: P(y)/Q(y)/R(y)/T(y),R(y) 

5° COI<p8~eHJI!e pe30nbBe HThl - CTJI!p8HJI!e M8p!<JilpOB aH HhlX nJI!Tepb 38 

I<OTOpJilMJil HeT HeM8p!<11pOB811HblX: T8l<JilX ITOI<8 B H8WeM IT pJI!Mepe He T 

6° CTJI!p8HJil e ITO Cne,D.HJilX DJI!T epb I<OMIT neMeHT8pHhlX /rro OTHOWeHJI!lO K OT 

PJilU8HJI!10/ I< HeKOTOpO~ npe.n~eCTBY!O~e~ M8p!<Jilp0B8HHOM nJI!Tepe ITO 

YHMcpJilK8Topy ..\: .nnR A =¢ nonyt~8eTcR P(y)/Q(y)/R(y)/T(y) 

7° 1< A - npJilMepy nonyt~eHHOMY B 6° npJilMeHR!OTCH W8rJil 5 ° Jll 6° nOK8 no 

cne,D.HRR nJilTepa He 01<8~eTCRHAA8pK11pOB8HHO~ nJil60 pe30nbB8HTa He 

OKa~eTcR nycTbiM ,D. Jil3b!OHKTOJ.I. B HaweM llPlllMepe yllopR.not~eHaR n111 

He~H8R pe3onbBeHTa JllMeeT OKOHtlaTenbHhl~ BJil,D.: P(y) • 

B CliiCTeMe l11Cnonb30B8HHO cne.ny10u1ee npaalllno 6JilJiapHo~ JllH,ll.YKUJilJil 

/no.npo6Hee eM . a [ 2] Ill [ 3) I: 
VI3 ueHTpanbHOro ,ll.Jil3b!OHI<Ta Dl BJil,D.a cl v A Jll 60J{QBOro )..ll!l3b!O HI{T8 

D2 BJil,ll.8 1 B v C2r.ne A Ill B nJilTephl , cl Jll c2 ,ll.lil3b!OHKThl , HC co.nep 

lK8U!JilX 06lUI!IX ncpeMeJIHbiX Ill T8KI!IX 'ITO CylUCCTByeT ITO,ll.CT8HOBK8 (j 

.naiOlUSR ---np1H.1ep11 BJil,ll.8 A,. = Lx(O) 11 Br = ~(t) Cn116o J\,= Lx(t ) 

11 B., = Lx(O)), np11 'le~>' Lx(t) ni!IT epa nony4e11a 113 L(x) oa~owt;leHJiler.1 

KBli'Jloro axo:,·.nemiR nepe :.leHIIor: x Ha TepM t KOTOp11t1 cno6oneH Jlnfl 

x a L(x) , BbiBonnTCfl ,D.I13I. KIJIKTbi : 

Cu. v c2! v Lx(rrz 1 , .. , z 5 )) cl6'v c26v i Lx(Sg:(z 1 , •• , z
8

)) 

B Jl~i 'J hl'lHi<TSX 1.: 

'::J'IJC:i "/ " l' 111-l Jt . HI'TC' r;,op ·:t:f,,/E:'T C" 
OIT.~'C I'UPTCfl , 
,,, .. n:;Top:; . 



57 

r,ue g HOBBH cp yHKl{Yifl CKOne ~aS apryMMeHTOB j z1 1 • • • 1 z8 BCe pa3 

nYI4Hble nepeMeHHbJe a nYITepe L (0) ; S cyKueccop . nepabli1 1113 HYIX 
X 

3BnOMYIHBeTCfl B KB4eCTB9 l{eHTpBnbHOrO .ll1113b~HKTB ,llflfl Cne,uy~~ero 

ypOBHH 1 a ,upyroi1 3BnYICbiBBeTCfl B YICXO,IlH09 MHOXeCTBO 60KOBhlX ,ll1113b 

~HKTOB . npaBYiflO 6YIHBpHOi1 YIH.IlYKl{YIYI npYIMeHHeTCfl TOflbKO ecnYI npaBYI 

no ynopH.UOI.IeHoi1 nYIHei1Hoi1 pe3on~l{YIYI K .UYI3b~HKTBM n1 111 n2 He np111 

MeHYIMO . 

np1111.1ep . D1 : P(x)Q(O, h(y )) 

1° nepeYIMeHHOBBHYie nepeMeHHhlX: 

2° onpe.ueneHYie no,ucTaHOBKYI 1 ) 

D2 CTBHOBYITCH , Q(f (y1 ), z )R(z) 

~ = { h(y)/z } 
3° onpe.ueneHYie <3'- npYIMepoB : n14': P(x )Q(O , h(y)) 

n2 fl: , Q(f(y1 ),h (y ))R(h (y )) 
4° nopOX.UeHYie YIH.IlYUYIPOBBHHhlX ,ll1113b~HKTOB : 

P(x )R(h(y ))Q(g(y ), h(y )) P(x ) R(h (y ))1 Q(Sg(y ),h (y )) 

npaBYiflO CYIMMeT p111111 

Ecn111 K YICXO,IlHOMY MHOXeCTBY npYIHB,IlneXYIT ,lllll3b~HKT Bhlpaxa~~~~~· 

BKCYIOMY CYIMMeTpllllll: , R(x , y) V R (y ,x) 1 TO OH npMBO,IlYIT K nopOX,IleHM~ 
nYIWHMX .UY13bJOHKTOB KOTOpble " 3arpH3HHJOT 11 npocTpaHCTBO nolll cKa . Ho3TO 

MY B CYIC TeMe YICnOnb 30BBHHO cne,uyJO~ee npoue,uypanbH09 npaB Mn O CYI MMe 

TPYIM: 
K ue HTpanbH OMY .UY1 3b JOH KTY BM.Ua C V R(t1 ,t2 ) 1 r.ue t 1 ,t2 Tep 

MYI 1 C ,ll1113biOHKT 1 npYIMe HHIOTC fl cne ,uyJOwlll e Tp BHCcp OpMBl{YIYI: 

1° n epeMe~eHMe Te pMOB t1 111 t2 : C V R(t2 ,t1 ) 
2° npYIMe HeHYie wa rOB 4°-7° npYIMe HHeMhlX np111 OThlCKBHYIIO nMHe i1HOi yno 

PH.UOI.I e Hoi pe3 onbBe HThl. 

npMMep. n1 : P(x)/1R(f(x),y)/Q(z)R(O,z) 

1°ne pe Mewe H111 e Te pMoa: 
2°CXBTYie He npYIMe HYIMO 

3° CTYipBHYie nocn e .uHei 

.unH .A={f(x)/z,O/y} 
5° coKpaweHYie: P(x) 

P(x )/1 R(f(x),y)/Q(z)R(z,O) 
; 3° COKpa~eHMe He npMMeHYIMO 

flYITephl KOMnneMeHT BpHOi MBpKYipOBBHHOi: 
nonyt.~aeTcH P(x)/1R(f(x),O)/Q(f(x)) 

nanHeiwee CTYipBHYie He npYIMeHYIM0 1 TI0 3TOMY ,ll1113biOHKT nopOX.UeH no 

npBBYiny CMMMeTpYIM YIMe e T OKOHI.IBTenbHhlH BYI,Il: p(x) • 

l) HOY ,llnH Q(O,h(~)) Ill Q(f(yl),z) He cy~eCTByeT. no.ucTBHOBKB 
onpe.uenHeTCH no occo6oMy anropMTMY onYicaHHOMY B [3] • 
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Ecn~ cq~TaTb 4TO R RBDReTCR niD6hlM 6~HapHhlM npeD~KaTHhlM c~MBODOM, 

TO npaB~DO C~MMeTp~~ 3BMeHReT CXeMy-aKC~OM C~MMeTpMM.KpOMe TOre, 

B CMCTeMe npeDyCMOTpeHa B0 3~0~HOCTb npMMe HRTb npaB~DO C~MMeTp~M 

TODbKO K TeM 6HHBpHhlM npeDHKBTBM KOTOphle 3B~HKCHpOBBHHhl B KB4eC 

TBe CHMMeTpH4eCKHX, a He K KB~DOMY 6HHBpHOMY npeDHKBTYo 

noDb30BaTeDb CHCTeMH MO~eT Bhl6paTb ODHH H3 CDeDyiDmHX pe~H 

MOB pa60Thl: TODbKO pe30DIDIIHR, pe30DIDQHR H CHMMeTpHR, pe30DfiQHR H 

HHDYKQH~, pe30DIDQHR,HHDYKQ~R H C~MMeTpHR. 

B pe~HMe C pe30DIDQHe~, HHDYKQHe~ H CHMMeTpHe~ DDR onpenene 

HOrO QeHTpBDbHOrO H 60KOBOrO DH3biDHKTB nopO~DBIDTCR DH3biDHKThl no 

npaaHny n~He~Ho~ ynopRD04eHo~ pe30DIDQHH nH6o 6HHapHo~ HHDYKQHH, 

a 3aTeM K QeHTpBDbHOMY DH3bi0HKTY npMMeHReTCR npaBHDO CHMMeTpHHo 

E~DH npaBHDO 'CHMMeTpHH npHMeHHMO, TO nopO~DeHHhl~ DH3biDHKT CTBHO 

B~TCR HOBhlM QeHTpBDbHhlM DH3biDHKTOM DDR npHMeHeHHR npaBHD pe3 0DID 

Q~H nH6o HHDYKQHH Ha cnenyromeM ypoaHe noHcKa. Bee DH3biDHKThl nope 

~DeHHhle Ha ODHOM ypOBHe no YKB3BHhlM npa BHDBM 3BnOMHHBIDTCR DO CDe 

DYIDmero ypOBHR Ha KOTOpOM HCnODb3 YIDTCR no oqepeDH B KB4eCTBe HQ 

~hlX QeHTpBDbHhlX DH3biDHKTOB.Ha KB~DOM ypOBHe 60KOBhlMH DH3biDHKTB 

MH no 04epeDH RBDRIDTCR DH3biDHKThl HCXODHOrO MHO~eCTBB. 

HaqaDbHhl ~ QeHTpBDbHhll DH3biDH KT 6epe TCR H3 MHO~eCTBB DH3biDHKTOB 

npOHC XODRmHX H3 OTpHQBHHR npeDDO~eHHR DODDe~amero DOKa3aT e DbCT 

BY• 3TO DOCTBTQqHQ DDR HBXO~DeHHR onpoaep~eH~R eCDH OHO cyme cT 

ayeT, B npOTHBHOM OOHCK B o6meM Cnyqae npeapamaeTCR B 6eCKOHeq 

HYID npoQeDypy H nepepHBBeTCR B MOMeHTe HC 4 epnaHHR npeDHB3Ha4 eH 

hlX pecypcoa naMRTH MBWHH&I. Onpoaep~eHHe HaRneHo ecnH Ha HeKOTO 

pOM ypOBHe nopOXDeH nyCTOR DH3biDHKT . 

Ha BhlXODe nonyqaeTCR DOKB38TeDbCTBO B ~OpMe OTneqaTaHOrO 

Onpoaep~eHHR , np~ QeM neqaTBIDTCR TODbKO D~3biDHKTbl npHHBDDe~amHe 

onpoaep~eHHID , nH6o coo6meHHe o HeB03MO~HOCTH onpoaep~eHHR a npen 

H83HB4eHHhlX pa3Mepax 3anOM~HaiDmero YCTpOHCTBB . npeDyCMOTpeHHB 

TBKXe B03MOXHOCTb HBDO~~Tb OrpaH~4eH~R Ha DD~HY DHTepb , DD~HY 

DH3biDHKTOB ~ KODH4eCTBO D~3biDHKTOB OOpO~DaeMbiX Ha KB~DOM ypOB 

He . llH3biDHKThl npeBOCXODRW~e 3T~ orpaH~4eH~R He nOpOXDBIDTCR . 

~COODb30BBHHhle orpaH~4eH~R MO~HO C4~TBTb YDOBDeTBOp~TeDbHhlM~ 

TBK KBK CHCTeMa BKDID4eHa B ~HTepaKT~BHYID C~CTeMy DOKB3BTeDbCTBB 

KOTOpaR 060CHOBBHHa Ha ~DeRX eCTeCTBeHHOrO BbiBODB ~ pa36~e~ 
38DB4 Ha MeHee CDOXHhle OOD3aDa4~ . 



nonHbie cae.neHbR o TOM KaK pa6oTaeT c11cTeMa " rpaQ'. " MOJKHO nony~I1Tb 

11!3 (8]. C.necb OTMeTii!M TOnbKO ycnoBI1R nepexona 113 11HTepaKT11BHO~ 
K anOnHe 8BTOMaTI1311pOBaHO~ CI1CTeMe .UOKU3aTenbCTBa B paMKaX Cli!CTe 

Mii! "rpa¢ 11 • YnOMRHYTbl£1 nepeXO.D. npe.UyCMOTpeH B TOM 11 TOnbHO B TOM 

cnyqae Kor.na ~opMyna 11CQI1CneHI1R npe.Uii!KaTOB np11ae.neHHa K 11Mnnli!Ka

Tii!BHO~ qopMe F, 9~ , np11 t.leM ace npe.U11KaTHble 6yKBbl npli!Ha.nneJKa

W11e npaao~ qacTI1 ~ cywecTay~T 11 a neao£1 qacTii! ~ • 

KoHetlHO, KOr.na anonHe aaToMaTI1311poaaHaR c11cTeMa .noKa3aTenbCTBa 

II!CnOnb3yeTCR CaMOCTOfiTenbHO 11 He3aBii!Cii!MO OT CI1CTeMii! " rpaq, ", TO 

3TI1 npe.nnonoJKeHii!R He o6R3aHbl. 

t1) 
np11Mep OTna,UKii! Ha 3BM 

AKCit!OMbl: l. \tx\ty(R (x , y) =+ R(y , x)) 

2 . \tx\ty (R(x ,y) A R(y , z) ~ R(x, z)) 

3 .11,tx\tyR(x 1 y) 

YTaepJK.UeHI1e : \tx \ty (R (x , y) :q3 z (1R (x, z )A, R(y 1 z))) 

CKoneM~t~3!.1poaaHoe oTp~t~UaH~t~e yTa epJK.neH~t~ ~: R(a ,b)I\ (R(a , z )\IR(b,z)) 

a 
1 

b - I<OHcTaHT bl CKoneMa. 

Mcxo.n. Hoe MHOJKecTBO .Ur.13bWHKTOB: 

l. R(a,b) 

2. R(a,z)V R(b,z) 
3. ,R(m,n) !.13 aKCit!OMbl 3 m1n - KOHCTaHTbl CKOneMa 

4. 1R(y
1
z) V1 R(x,y) \IR(x,z) !.13 aKCit!OMbl 2. 

ll~t~3bWHKT np0!.1CXO.URWJ.1i !.13 aKCit!OMhl Cli!MMeTpltlltl He HyJKeH. 

HaqanbHbii1 .Ul13bWHKT: R(a,z)\IR(b,z) 

Pe~ci/JM pa60Tbl: ynopR.UOtieHaR nMHeiHaR pe3onwuMR c npaa~t~nOM c~t~MMe 

Tpr.11t1 1 6e3 lt!H.UYKUII!Iilo 

nonyt.leHHO cne.nywwee onpoaeplKeHII!e V!CXO.UHOrO MHOlKeCTBa .Uii!3bWHKTOB 

a BM.ne n~t~Hei1Horo BbiBo.na nycToro .UM3bWHKTa /np~t~BO.Uii!M ero B nepe 

ao.ne c aHrnMicKoro R3bii<a/: 

llOKA3ATETibCTBO HAW.D.EHO 

OITPOBEP~EHME COCTOMT M3 CTIEllYIDWEW nOCTIEllOBATETihHOCTM: 

UEHTPATihHb!iil: llVf3hiDHKT: R(a,z)R(b,z) 

EOKOBOM llVf3hiDHKT:1R(y,z1 )1R(x,y)R(x,z1 ) 4. B VICXO.UHOM MHOJK. 

HOY: b/y,z/z1 
UEHTPAnhHb!Vi lllil3h!DHK'l': R (a, z )/R(b, z )'1R (x, b )R(x, z) 

EOKOBOifi llM3b!OHKT : 1R(m,n) 3. B li!CXO.UHOM MHOJK. 

HOY: m/x,n/z 

4)TipHuep no.n.cKa3an ~. UaeTKOBHq 
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UEHTPATibHhlW .UM3biDHKT: R(a,n)/R(b,n)1R(m,b) 
~eMCTBOBana onepa~~R coxpameHMH 
R(a 1 n)/R(b 1n)1R(b,m) 
~eMCTBOBano npaBMnO C~MM8TpM~ 

EOKOBOM .UM3hiDHKT: R(a,z)R(b,z) 2. B MCXO~HOM MHO~ . 

HOY: m/z 
UEHTPATib Hb!M .UM3b!OHKT: R (a,n)/R(b ,n)/1 R(b ,m)R(a, m) 
EOKOBOM .UM3biDHKT :,R(y,z )1R(x,y)R(x 1 z) 4. B ~cxo~HOM MHO~. 

HOY: a/y,m/z 

UEHTPAnDHblM .UM3biDHKT: R(a,n)/R(b,n)/ R(b,m)/R(a,m),R(b,a) 
~eMCTBOBana onepa~~R c~aT~H ,~ =a/x 

R(a,n)/R(b,n)/1R(b 1 m)/R(a,m)1R(a,b) 
~e~CTBOBano npaBMnO C~MM8Tp~H 

EOKOBOM .UM3biDHKT: R(a,b) 1. B ~CXO~HOM MH0~8CTB8 
HOY: nycTaH no~cTaHOBI{a 
UEHTPATibHbiM ,llM3biDHKT: R(a,n) .uellcTBOBana onepa~~R coxpameHHR 
EOKOBOLl .UM3biOHKT:,R(y,z)1R(x 1y)R(x,z) 4. B MCXO~HOM MHO~. 
HOY: a/y,n/z 
UEHTPAnbHhlM .UM3biOHKT: /R(a,n)1R(x,a)R(x 1 n) 
EOKOBOIII .UM3hiDHKT: ,R(m,n) 3. B Hcxo~HOM MHO~ . 

HOY: m/x 
UEHTPAnbHbliii .UM3biDHKT: /R(a,n),R(m,a) 

~e~CTBOBana onepa~HR COKpameHHR 
/R(a 1 n)1R(a,m) 
~e~CTBOBano npaB~nO C~MM8Tp~~ 

EOKOBOW .UM3biDHKT: R(a,z)R(b 1 z) 2. B ~CXO~HOM MHO~ . 

HOY : m/z 
UEHTPAnhHbiM .UM3biDHKT : /R(a 1 n) / 1 R(a , m)R(b , m) 
EOKOBOM .UM3hiDHKT: , R(y,z)1 R(x,y)R(x,z) 4 . B Hcxo~HOM MHO~ . 

HOY: b/y,m/z 
UEHTPAnbHbliii .UM3biDHKT: /R(a , n)/1R(a,m)/R(b,m)1 R(a , b) 

~ellcTBoBana onepa~~A c~aTHA ,~ =a/x 
EOKOBOli .UM3hiOHKT : R(a , b) l.B HCXO~HOM MHO~ . 

HOY : nycTaA no~cTaHOBKa 
UEHTPAnhHbl;l .UIIl3hiOHKT : TTYCTOiii .UM3biOHKT ~e~cTs . onep . coKpameHHR 

~OKA3ATETihCTBO OTITE4ATAHO 
.UOKAdAHA !IEBbiTTOTIHV1MOCTh MCXOJlHOrO Ml!Oi;ECTBA 



np11Me<raHI1e : B npouecce onpoBeplKelil1fl Cl1 .!BOn nl13biOHKUI111 He ni1We TCfl. 
l{aJKnbul ueHTpanbHbtiii nl13biOHKT , KpoMe lla<ranbHOro , fiBnfleTCfl ynopHno 
<reHoiii ni1HeiiiHoiii pe3onbB9HToiii npenwecTBytomero ueHTpanbHoro 11 60KO 
aoro nl13biOHKTa , n116o BhlBeneH 113 npenwecTBytomero ueHTpanbHoro nl13b 

toHKTa no npaa11ny CI1MMeTp1111 . CI1MBOn "/" nepen n11Tepoiii MapK11pyeT 
CTOflmyto 3Q HI1M n11Tepy . 
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Abstract. It is known that for any n-semigroup there 
exists a unJ.versal covering semigroup, and there is a con
nection between some properties of an n-semi group and its 
universal covering. In this paper such a connection !or fi
nite separability properties is studied. It is proved that: 

1. If a covering semigroup £' of an n-semigroup Q 
is residu&lly finite, then g is res1dually finite as weli. 

2. I! a cancellative n-semigroup g is residually 
finite, then the cancellative universal covering semigroup 
gN is residually finite as well. 

3. If the universal covering group gA of an n-group 
g has the finite separability property , so does g. 

As a consequence of these results, the results given 
in [31 , some known results for n-semigroups, and the fact 
that finite separability properties imply solvability of al
gorithmic problems, some n-semigroup classes with solvable 
algorithmic problems are obtained. 

1. Preliminary definitions 

An n-semigroup is an algebra (Q,(]) with an associ
ative n-ary operation [) :(x1 ,x2 , ••• ,xn)>-T (x1x 2 ••• xn1· Then 
the semigroup gA given by the following presentation (in the 
class of all semigroups) 

_(Q; \a=ala2···~1 a~la2 ••• aJ in sJ > (1) 
is called the universal covering semigroup of g. It can be 
assumed that Q ~ QA, moreover, Q is a generating subset of 
gA and any element u t QA has a form u=a1 a2 ••• ai, .,.,here 
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1~ i<n, av E Q, and i= /ul is uniquely determined by u. If E is 

an n-subsemigroup of 9. then there is a (unique) homomorphism 

1\ ::!:_A~9.A such that A(p)=p, for any p e: P. E is said to be com

patible in 9. if A is injective, and then we can assume PAto be 
a subsemigroup of 9.A ([lj). 

A cancellative n-semigroup is an n-semigroup which satisfy 

the cancellative laws. Then the semigroup 9.~ given by the pre

sentation (1) (in the class of cancellative semigroups) is called 

the universal cancellative covering sernigroup of g. We note that 

b . . [ n-i 1 [ n-ib b J · n a 1a 2 •.• ai~b1 2 •.• bi 1n g 1ff a a1 ••• ai =a 1 ••• i 1n ~' 
for each a E Q. 

An n-semigroup ( Q, [ ) ) is called an n-group if 

( Va1 , ••• ,an E Q) ( j x ,y E. Q) (xa~.- •• an_1) =~, (a1 •• an-lY }san, 
or equivalently, if gA is a group. An n-group g is a cancella

tive n-semigroup and .Q"' .. g; 
We note that every n-subgroup E of an n-semigroup 9. 

is c ompatible in g ([1]). 

2 . Some connections between f i nite separability 

properties of an n-semigroup and its universal c overing 

Let J( be a class of n-se migroups and ~ t'J( . 
DEFINJTJ Oi\r l. 9. is said to be residually finite in X if 

for each x ,y E Q,xly, there is ~ surjective h~orphism 'f from 

2 to a finite n-semigroup of ]( such that 'il (x) I~ (y). 

DZFJJ\TrJON 2 . £( is said to have the fin.1te sep<trability 

property in J{ if fer each x E r~ , and n-subsemigroup E of g, x f P, 

there is ~ surjective homo 11:oruhism p from ~ to ~ finite n-semi

group of .){ ,such that ((x)t; r (~). 

leplac ein~ the v1ords "n- semi ~roup", "n-subsemi e-"roup" by 

"n ... r~roup", "n- subgrouo" respectively, ,,,e obtain the correspon

ding classes of n-• ,roups . 

riemnrk Jn the prorositions below by a res idually finite 

n-ser•ie;roup we • .. ;ill al•·•o.ys mean a residu;;lly f inite n-serigroup 

in a class of n-sern1groups . The cinsidered class of n-semigrours 

will be clearly un<. .. erstood by the context . 

ldOPO.:JJ~:or 2 .1. Jf a covering sc::.icroup ,:::' 1 )of an n-se-

mit;roup ..lo is r esid1.ally fin' te, then is .::-es1c 'lll;:. f 1n te ns wel l. 

I) r ' 1s a c~ver1n~ 
gene~atinc subset oi 

.,~ lt,r•?Un or ~n n-sc:u,7roup _ i 5 is 'l 

an'1 _x 1 ... x0
_=x1 ... ;~n foran/X,' • 
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Proof : Let a , b be two distinct elements of • Then 
a~b in Q', and , by the assumtion , there is a surjective 
homomorphism 1-P : · ' -? 2, such that § is a finite semigroup 

and 'P(a),l 'f( b ) . If we put 'II~ '{)Q and 1= "V(S) , t hen ( T, ( 1) 

is a finite n-semigroup where Lx1 . • . xn] • x1 .•• ~ , and, thus , 
't :~ __, 1 is a surjective homomorphism such that 't'(a) ~ 't( b ) . a 

It is not known whether the residual finitness of an 
n-semicroup g induces the corresponding property for its uni
versal covering. We will show, now, that we have the positive 
answer if we consider the class of cancellative n-semigroups 
and its cancel lative universal covering semigroup . 

rHOl '03ITION 2.2. If ~ cancellative n-semigroup Q is 
residually finite, then the cancellative universal covering 
semigroup g is residually finite ~ well. 

Proof: Let a,&b, a=a1 ..• ai 1 b=b1 .• . b j E.~~, av,b"~:::Q , 

1 ~ i ~ j < n . If i,lj then II :c.- \C 1 is a surjective homo
morphism from g~ to (Z ,+)such that \at # tbl . As sume , now, 
tha t i= j. Then a '= [ a~-~a1 . . • ai] ,l [a~-ib1 ... bJ =b', and, 

thus , there i s a sur j ective homomorphism '¥ f rom g into a 
f inite canc ellative n- semigroup §., such that 't (a' )-I 't' (b'). 
Then 't' induces a surjective homomorphism 'f~: g"' -? §.~ , where 
§ '" is a finite cancellative semigroup. ~1oreover, we have 
'+"(a)# '+',...(b), for if '¥~(a) .. 't'~(b), then t'(a')= 'l'(a~-ia1 ••• an) .. 

'V(al)n-i '+'"(al ... ai)= ~ (al)n-i 'f ~(bl .. • bi)= If' (b') ·o 

As a consequence of these two properties we obtain: 
COROLLARY 2.3. The universal covering group gA2.f. ~ 

n-group g is residually finite iff g is residually finite. 0 

As for the finite separability properties we have the 
following results. 

PROPOSITION 2.4. If the universal covering group gA 
of an n-group g has the finite separability property, ~ 
g also has the finite separability property. 

Proof: Let :E be an n-subgroup of g and x E Q '\.P. Then 
fA is a subgroup of g~ and x f PA. Therefore, if gA has the 
finite separability property then there is a finite group G 
and a surjective homomorphism lf :gA--p Q such that ~ (x) ~ 'f(EA). 
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The restriction '-PQ= 'f of 'f on Q is a surjective homomor
phism from _2 into a finite n-group ~(9)=Q.' and "V(x) ~ 'l'(f) 

<;. '-P (fA) 0 0 

PROPOSITION 2.5. If each n-subsemigroup QL an n-semi
. group ,2 is compatible in _2, ~ the universal coyeripg semi
group ~A has the finite separability property, then~ also 
has the finite separability property. 

·~: The proof is the same as the proof of 2.4. 0 

3. Some n-semigroup classes with solvable 
algorithmic problems 

Certain connections between the finite separability 
properties and solvability of algorithmic problems are gi
ven in [3) .To be able to state them for n-semigroup classes, 
let me note that if ~is a property for n-semigroups, then 
.a class JK of n-semigroups is a .P-class if each finitely 
presented member of X has the property 9 . Now, if a class 
~ of n-ssmigroups is residually finite (has the finite se
parability property), then j{ has a solvable word problem 
(has a solvable generalized word problem). 

Also, a table of some varieties and classes with 
solvable algorithmic problems and with some finite separa
bility properties is given in (3). Among others, the follo

wing results are given: 
(i) The variety of commutative groups (commutative 

semigroups) is res i dually finite. 
(ii) The class of free groups ( free semigroups, free 

commutative semigroups) has the finite separability property. 
Using these r esults, the results given in 2., as well 

as known results for ~-semigroups and n-groups, some corolla

ries are obtained. 
COROLLARY 3 .1. The variety .2.f. commutat -ive n-groups 

is residually finite. 0 
COROLLARY 3. 2 . The variety of commuta tive n-semigroups 

i s res i dually finite. 
Proof: Let S be a f initel y presented n-semigroup. 

The s emi gr oup Q' given by the pr esentat i on (l ) (in the class of 
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commutative semigroups ) is the universal commutative covering 
semigroup of ((71 ). ' is f i nitely generated commutative 
semigroup, so ([5) ,Th 9 . 28 , pg.l72, II) it is finitely pre
sented and is residually finite . Now, by 2 .1, is residually 
finite as well . 0 

COROLLARY 3.3. The class of free n-groups has the 
finite separability property. 0 

Using the connections between finite separability 
properties and solvability of algorithmic problems , it fol lows 
immediately that: 

1) The variety of commutative n-groups (commutative 
n-semigroups) has a solvable word problem. 

2) The class of free n-groups has a solvable genera
lized word problem. 

Remark: The result 1) could be obtained as a direct 
consequence of the results in £21 for connections between 
solvability of the word problem in n-semigroups (n-groups) 
and their universal covering . It could be proved that: 
if g~ is the universa l covering group of an n-group g with 
solvable generalized word problem, then g has a solvable 
generali zed word problem as well.The proof of this last pro
perty essentially uses the fact that each n-subgroup of g 
is compatible in g, so this result could be proved for n-se
migroups in which each n-subsemigroup is compatible. 
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Abstract. The purpose of this n ote is to describe some 
congruences on a f a ctorizable semigroup S. A necessary and su
fficie-nt condition for ( K, 'r ) , with K"' K w-, to be a congru
ence pa ir for S is given (Theorem l). Similary, a necessary 
and sufficient condition for any (K,~) to be a congruence 
pair for a Clifford uniquely factorizable semigroup is given 
(Theorem 2). 

First, we give some results about factorizable semi

groups studied by Chen and Hsieh (1].
1

) An inverse semigroup 

S is called a factorizable inverse semigroup if there exist 

a subgroup G of S and a subset E of the set E of idempo-
s 

tents of S such that S. GE. Any factorizable semigroup has 

a n identity, and if an inverse semigroup S is factorizable as 

S=GE, then S=EG, G is the unit group of S, and E=E. 
s 

l) All undefined terminology can be found in [2) • 
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RESULT l. [l] Let S be ~ semigroup. ~ to isomorphism, 

the following statements ~equivalent: 

(i) S is the direct product GX E of ~ ~ G and a 

semila ttice E with the greatest element. 

(ii) Sis~ Clifford semi group.f'(Y;G.,..,'Po~.,r.>) such that 

every 'fo~.,t.> is ~ isomorphism a nd Y is ~ semilattice with the 

grea test element .• 

(iii) S is factorizable ~ GEs for some subgroup G of s., 
such that e very e E Es is uniquely repre sented in the form le, 

where li s the identity of G, a nd ge-e g , for a ll eE. Es and 

g E. G. 

If S i s semigroup d e scribe d in Result l, every s t: S is 

uniquely r epr e s ente d in the form ge, with g€:. G and e E E • s 
Such a semigroup is ca lled a Cliff ord uniquely f a ctoriza ble 

s emi group. 

Next we me n tion congruence pa ir a nd a cha r a cteriza tion 

the orem for c ongrue n ce s on a n i n ve rse semi group due to 

Petrich [3]. 

Le t S be a n inverse semigroup. For a congruence g on S 

the kerne l a nd the trace of ~ is d efined by 

ker g ,. { a E S I ( 3 e E Es ) a g e } 

tr g "'S I E s 
respective l y . Th is asso cia t es t o each c ongruenc e g on S the 

orde r ed pa ir (ke r 9 , t r g ) • 

An i n ve r se semigroup K of S is norma l if it is f ull 

(E £ K ) and se l fco njugat e 
s 

s 'K s ~ K , for a ll s € S) . A con-

gruence 't on t he se t E is norma l if fo r a ny e ,f E E and s E S , 
s s 

et f impl ie s s ·•es t s-' f s . 

DEFI!HTI O.T l. .(he '12ir 
'--- · 

(: , 't' ) is ~ c_o_ngruenc e pa i r for 

S if K i s~ norma l sub semi eroup of . ; , ?; is ~ non•: 1 co .1gru

ence on E a nd these two s -----



(aeS , eEE ) . 
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Using these concepts , we have the mentioned chara cteri-

za tion theo rem of cont:;rue ncr·E: O!l --n inver~c se:niu'Toup . 

is a cone;;ruence pair for u , 

finecl E,l 

a ~(t<,-rJ b<-> a-
1
a 1' b 

1
b , ab-'E K 

is the unique ?onwuence g o::1 ':; for nl ic~ ke r g • K and 

t r ~ "' 7:' • Conve r se l y , if g is a c0nc;ruence on S , then 

(ker S' , tr g )' is ~ ~ence 11eir f o r S and 8(.ltt.n.
9

, ~!!) "' S 

de -

Now we de scribe congruence pairs on a Clifford semigroup . 

RESULT 3 •. [31 Let S ::::f(Y; G""'~. 4 ) be~ Clifford semi group. 

The pai r (K , 't' ) i s ~ ? On gruence pa ir for S i f and only if 

K <f(Y; Ko~.,'t'o~.,l\), wh ere 

(i) Kot. is ~ norma l sub(Q'oup of Got. , J.. 6 Y 

(ii ): e .~. > e~ =>Kd. 'f'..,," f.Kt!> 

(iii ) y;"' ~ = 'f .. ~ I K 
) I 

(iv) 't is !::_ con&TUe nce onE 
s 

such tha t 
- I 

e .. > ell ,e~~~..?:' ef.I~ K ~'fot.,~£Ko(,. 

If II is a n a rbitrary subset of a n inve r s e semi e,Toup S, 

the closure HW. of H is d e fined by Hw= {x ES I (:J eEE )x eE. H} [2]. . s 
In the next theorem 'Ne gi. ve a description of congruence 

pair (K, 't )with K = K~for a f a ctoriza ble s emi group. 

THEORCM l. Let S =- GE be a f a ctorizaol e semi group, K 
s 

a sub s et of S such tha t K = K~, and 7: §: co nc;;rue nce on Es. 

Then. (K, 't') is !::_ congruence pa ir for S if and only if there 

exi sts a norma l sub b!'oup H of G such t ha t K = HE s , a nd 

(l) e t'fs> g-1e g 't' g- 1f g , for a ll g .:: G, e, fEEs' 
-I 

(2) h eh 1' e, for a ll h G H, e <:: E. 
---- s 
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Proof. Let K =HE , and the conditions (1) and ( 2 ) a re 
----- s 

s a tisfied. If x, y~ K, then there are h~ ,h 2 EH, e, ,e~EE s 

such that x = h~ e,, y • h 2 e2. •. So 

and 

xy= h,e.h 2 e2."" h,l e,h2 e2. = h 1 h 2 (h~'e.h 2 ) e 2 E-HE s 

--i -f - f -• 
x = e,h, =h 1 (h,e,h 1 )~ HE. s 

Hence, K is a n inverse subsemigroup of S. 

From E " l E £HE it follows tha t K is full. 
s s s 

Let seS and kEK. Then sage and lc· hf for some g.;.:G, 

hE: H,e ,fc:: E •. So g-'hg • h, <:. H, g 'fg • f, E E , and 
s s 

.. i -• -· -t -f s ks = eg hfge = e ( g hg) ( g fg)e • eh1 f 1 e = h, (h. eh, )f,e ERE • s 

Thus , K is a norma l subsemigroup of S. 

Suppose tha t e,fEE, sES and e't'f. Then s=ge., for 
s 

some g E G and e 1 E E , and s 
s- ' e s • e

1 
(g-'e g )e

1
'i:' e . ( g-'f g )e. • s-'fs , 

by the condition (1). Hence ,r is a norma l c ongrue n ce onE • s 

Now we prove t ha t c oncli tions (i) a nd (ii) of Definition 1 

are se.ti s f i e d . 

If a eE K, then atK® =K , s o t h e condition (i) h ola.s. Let 

aE K. Then a= hf , fo r some hE H , fEE , and we have s 
1 -t -t - t -f 

ao.· = hffh = hfh 'L f = flf = fh hf • P. a 

by ( 2 ), so the condition (ii) h old s . 

Thus , (K , 't' ) is o. cont;rUence pair fo r S . 

ConverselJ , l et (K , '1:' ) be a congrue nce IJ<'.i r for S such 

that K = Kw . ·.'/e defii1e ·i;hc subset H of G by 

II ~ /e E. G I ( 3 e E :S 
9

) t;e E 1.<} • 

From ( 3 e E. 3 ) Je E K it :Zollo1· ·s [,E Kw· K , so we have 
s 

II "" 1 3 E G / r; E. K } = G () 1: !; 1~ , 

•:1hich yields il3 ~X:: ~ K , si~cc -~ s; K , c>.nd K
2

£ K. Since 
s s ::; 

J-, ~ 1 !3~ by dcfi.n tion of H, it follows K ~ HSn . 
~ ~ 
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From H = Gn K we conclude that H is a subr:roup of G. 

Let gE:G and hEI1. Then t here is CE E such that heeK , 
s 

and g·'(he )g" ( g 'hg}(g-'eg) E: K, since is self-conjugate in 

S. Hence g .... hgf: II , by definition of H. 

The conditions (1) and (2) follow immediately from the 

normality of~ and the condition (ii) of Definition 1 . respec

tively. The theorem is proved . 

The next theorem gives a simple characterization of a 

congruence pair for a Clifford uniquely factorizable semigroup . 

THEOREM 2. Let S ~ GEs be ~ Clifford uniquely f a ctorizable 

semi group, K a subset of S and 1' .§: congruence on Es. The pair 

(K,'t) is a congruence pair for S if and only if there exists 

a normal subgroup H of S such that K"' IIE
8

• 

Proof..From Result 1. it follows that S·<:P(Y; Go(,,.Y'ot ,ih ), 

~ • Ge,. -;:: Gl. c G, where 1 is t he greates t idempoter~t of S , 

g 'f, ti. a ge a.. , for every gE G, C!" E E • 
I S 

1f K "' HE , it follows that K<f(Y; K,~., l/lol. ~) such that 
s ' 

K.t,~ He .. ~Hl::. H, so the conditions (i)- (iv) of Result 3·. are 

satisfied and (K,, ~ )'< is a co ngruence pa ir. 

Conversely, if (K ,.'t' )': is a congruence pair for S, then 

K>.:f(Y;. KM IJitJ.,()) and the condition (i)- (iv) of Result 3'. are 

s a ti sfied. Hence, '+'ot.,() are isomorphisms a nd so Kot.=He,. for som~ 

normal su·ogroup H~ of G and K= HE • The theorem is proved. 
s 
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Abstract . The purpose of this paper is to consider inverse 
congruences on an arbitrary orthodox semigroup S. Neces sary and 
sufficient conditions on a pair (K, ~ ), for the existence of an 
inverse congruence ~ on S such that K is the kernel and ~ is 
the trace of ~ , are established . The main result is the char a
cterization of inverse congruences on an orthodox semigroup 
(Theorem 1 ). Petrich ' s charac t erization [ 9] of congruences on an 
inverse semigr oup and Feigenbaum ' s characterization [ 3] of group 
congru ence s on an or t hodox s emigroup are derived as part i cular 
cas es of Theorem l. Al so, t he characterizati on of s emillatice 
congruence s on an ort hodox s emi group i s obtained (Cor ollary 2). 
We give a lso a new des cription of the minimum i nvers e congruence 
Y on an orthodox semigroup, as a consequence of the Theorem 1. 

Le t S be a r egular s emi gr oup, E its s e t of idempotents. 
For any element a in S , V(a) will denote the set of inverses 
of a. Re call tha t a subsemigr oup H of S is self-conjugate if 
x ' Hx ~ H for all x inS and a ll x ' in V( x ), and His called full 
if E ~H. A subsemigroup H of S is inverse-closed if V(x) £.H for 
all x in H [5]. 

It is easy t o prove the nex t useful lemmas. 

LEMMA l. Let ~ be ~ inverse congruence Qg ~ regular semigroup S. 
Then 

(\f'a,b~S)(a9b ='?>(""a'E V(aJ)("'V-b'E: V(b))a'7Jb'). 

LEMMA 2. For ~ congruen ce 9 Qg ~ orthodox semigroup S, the fo
llowing conditions~ equivalent. 

(i) 
(ii) 

(iii) 
(iv) 

9 is inverse. 
(--fa, bcS) ( a~b ~ ('If-a·~ V (a ) ) (->l"b'~ V (b) ) a·~ b' ) • 
(VaE:S) (¥eE-E) ( a)'e ==, ('ta' e- V ( aJ) a'S' e ). 
(Ve, feE) ( e 5' f ~ ("'re 't:: V ( e )) (¥ f ' E V( f )) e ')' f'). 
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(v) (-v-eEE)(-ve'EV(e))e'~ e. 

(vi ) ( "'t a E S ) ( V a ' , a 11 E V ( a ) ) a ' 9 a 11 
• 

For any congruence 9 on s, let tr9 = 'JIE and ker<5 

f xES I X~ e f or some e €- E}· This associates to each congru

enceS on S the ordered pair (ker9, tr9 ). We wil l intro

duce a pair (K, 't') which is an abstraction of the properti e s 

of (ker~ , tr~ ) for some inverse congruence '5. 
DEFINITION l. Let S be ~ orthodox s emigroup. A full, self

-c onjugate inverse-closed subsemigroup of S is ~ normal sub-

semi group of S. A congruence rt; .211 E is normal if for any 

e ,f€-E and xES, x'EV(x), e'L:f implie s x'.ex'i;x'fx. The pair 

(K, 'C) is ~ inverse congruence pair for S if K is · ~ normal 

subsemigroup "of S, ~is~ normal congruence .211 E and these 

two satisfy: 

i) ( ae E: K, e It' a' a) ~ a t: K 

ii) aa''t' a'a for every 

(aE:S, e E:E, a'EV(a)) 

a E K, a'E:V(a). 

Using these concepts and notations we will obtain the 

characterizat i on of invers e congruences on orthodox semigro

ups. We start with a lemma. 

LEMMA 3 . Let (K, rt;) be ~ inverse congruence pair for ~ ort 

hodox semigroup S. Then 

i ) ( ae b E: K 7 e 't:: a 'a) ~ a b G K, 

ii) (ab ' E:.K, a•atC'b'b) :=9 a•eai(;b'eb, 

iii) e''t' e, 

for every a,b6S, eEE, a'E: V(a), b'EV(b), e'c..V(e). 

Proof . Note first that b ' a't V(ab) for every a,bES, a'EV(a), 

b 'E: V(b). 

Let a,bES, e E:E, a'E V(a), b 'E vtb) and e 'E. V(e). 

i) Let aeb l':: K and e -c a' a. Then 

(ab)(b ' ea ' aeb)=(abb ' ea')(aeb) €:K 

b'a' ab't' b' eb=b ' eeeb 't' b' ea' aeb 

is normal), which implies abE: K by 

ii) Let ab'c Kanda ' a'C'b 'b. Then 

(since E~K , K 2~ K), 

(since b ' e E:V(eb) and 'C 
Def l. i ). 

(since a ' a~ b'b), a'ea = a •aa • eaa •a ~ b ' ba ' eab 'b 
'C" b ' eab ' ba ' eb 
tt:" b ' e ba ' a b ' e b 
'tb' eb 

(using Def l.ii) on eab'E:K), 
(using Def l . ii) on ab 'E K) , 
(since a 'a'Z::'b'b). 



iii) Accordin~ oDe . l.ii) , ee ''t" e ' e . Hence e't'e ' e and 

e ' 't' e ' e since e '~ E. There ore , e ' 1:: e . 
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TIIEORE~ 1 . Let S be !!!l orthorlox semigroup . If (K ,'t ) is an in

~ congruence pair for S , then the relation q( K ,~) defined 

.Q.!.!S}1y 

a 9CK ,rr;) b le& ( 3 a ' E V (a)) (3 b 'E V( b)) (a ' a 'C b ' b , ab 'l: K) 

is the unique inverse congruence on S for which ker 5' = K and 

tr s> = tr; • 

Conversely, if g is !!!l inverse congruence .Q.!.! S, then 

(ker '! , tr 5' ) is !!!l inverse congruence pair for S and 

~(ker9 , tr 5> ) = 'J · 
Proof . Let (K , It' ) be an inverse congruence pair for S , and 

let 9 = ~(K,t)• Then 9 is reflexive since K is full , and it is 

symmetric since ~ is symmetric and K is an inverse-closed 

semigroup . Let a '? b and b 9o, so that a ' a 't'b'b, b"b 'C' o ' o and 

ab ', bo 'cK for a 'E V(a), b ', b"E.V(b ) and o 'E V(o) . Hence 

a(b'b)o'=(ab')(bc')E:.K which together with b ' b 't' a ' a by Lemma 3 

i ) yields ao 'E: K. Accordin g to Lemma J iii ), b'b'Z::b" b since 

b " b E:. V(b 'b), s o tha t a ' a i:' o ' o . Thus a5'o and q is transitive . 

Nex t let a 9 b a nd o E S , so that a ' a 't'b'b and ab'E K fo r 

some a'E:V(a), b't. V(b ). If o '(: V(o ), then o'a'EV(ao), 

o'b'EV(bo) and b'boo'a'E V(aco'b'b). Thus o 'a'ao'Cc'b'bo 

(since a ' a'tb ' b ). Further, 

(acc 'b'b)(a'bcc'a'aoo'b'a)b'=(aoo'b'ba')(bco'a'acc'b')(ab')cK 
2 (since E c;::.. K and K S K), 

a'bco'a ' aoo'b'atr::b'bcc'a'aco'b 'b (using Lemma J ii) on 

bcc'a' a cc'b'E E), whi ch implies (acc'b'b)b'E K by Lemma 3 i). 

Thus ace' b' f:. K. It follows tha t ac '5 be. According to Lemma J 
ii), a'c 'ca~b' c ' ob . Since ab'E. K and K is self-conjugate we 

have oab'o'E: K. Therefore oacycb and 9 is a congruence on S. 

Let a 9 e f or e E E , so that a 'alt:e'e, ae't. K for a' E V(a), 

e' E: V(e) . 'l'hen a( e ' e ) = (ae')e EK which implies a EK by Def l i ). 

Conversely, assume that aeK . Then a=a(a'a) e K and a'a=(a'a)(a'a) 

f or a 'l: V(a ), which implies that al)>a'a. Consequ ently, ker9=K. 

I f e ,fE E and e't-V (e), f'EV(f), then by Lemma J iii), 

e1:'e'e and f'l:'f' f s i nce e e\T( e ' e) and f E V(f ' f) . It follows 

that 
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esf~ (3e'E: V(e)) (:Jf'EV(f) )e'e 'Z;f'f# e fi:f, 

for any e, f E: E. Therefore tr 9 = q::. 

The congruence ~is inverse by Lemma 2 and Lemma J iii) 

since trg = fl:. 
Now let ~ be an inverse congruence on S such that 

ker~ =K and tr8 = rr:. Assume first that a 'db. If a'E:V(a) and 

b'"'=V(b), then by Lemma 2, a'~b' so that a'a!s'b'b; also 

ab' IS bb'. This shows that a'a ~b'b and ab' E. K, which implies 

that agb. Conversely, assume that a9b. Then a•attb'b and 

ab'E K for some a'eV(a) and b'EV(b), which implies that 

a'a 'i{b'b and ab'rs' e for some e E:E. Then by Lemma 2, ba' ~e 

since ba' E V( ab'). Hence ab' 'if ba' 'ij ba' ba' which together with 

a' a S'b'b yields 
a=aa'a 'is' ab'b 'd'ba'bb'b '(s'ba'ba'a 'i{ba'a b'bb'b = b. 

Consequently, ~ = b' which proves uniqueness. 
1

) 

Conversely, let S be an inverse congruence on S. A sim

ple verification shows that kerq is a self-con~ugat e subse

migroup of S. According to Lemma 2. 3[7] ker9 is inverse-closed . 

Consequently , ker '5 is a normal subsemigroup of S. Let a E S 

and eE:E. If ae E: ker9 and e9a'a for some a'E:V(a), then 

f ~ ae ~ aa' a = a for some f c E. Thus a € ker 9 . 
Let a4<S and a 'E:V(a). I f aEker9, then a 9e for some 

e EE. Hence a'9 e by Lemma l. It follows that aa'S' e and a'a~e 

which implies aa ' 9 a' a. Thus aa ' 9 a ' a for every a E ker '5 and 

a' E V(a) . Therefore ( ker9, tr9 ) is an inverse congruence 

pair for s . That ker '3 (kerS',t r~) =ker 9, tr c:?(ker <;>,tr~) = tr9 
follows from above . Now the uniqueness just proved impli~ s 

tha t <3'(ker9, tr<5)= '5 · 
If S is an inverse semigroup , then Theorem l reduces to 

Theorem 4 . 4 [9] . 
Since a group con1rruence on an orthodox semigroup is al -

so inverse~ we have 

l) The uniqueness also follows ~rom ~heorem S . l ~] • 
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COROLLARY 1 . J,et K be ~ normal subsemigroup of ~ orthodox ~

mip;roup S and let ae E K ~a E K, for every a E S, e E E. Then the 

relation 9 K defined .Q!! S .Qy 

a5>Kb (~ (-3b'~V(b))ab'E:K 

is ~ ~ congruence .Q!! S. 

Conversely, if 9 is~~ congruence on S, then kers> 

is !! normal subsemigroup of S with, ae E: ker9 =9 a E: ker '? , for 

every a E: S, e ~: E, and 9 = 9kerc;> · 

Let K be a subset of a semi/roup S. For any H~S define 

the left K-closure of H to be JWK = (xt-S \ (3kE:K)kx '=H}, the right 

K-closure of H to be I4=[ XE:S \('JkEK)xk E: H.} . If H{ =H{ , then 

it will be called the K-closure of H and we write H«X · H will 

be called left K-closed [ right K-closed] if Hwi = H [~ = H]. 

If H is both left and right lk losed , H will be called K-closed 

(H~=H). 

If K=H then left H-closure of H will be called left clo

sure of H and similarly in other cases . 

Let S be a regular semigroup. Notice that H~HE I) EH for 

any H~S. According to the proof of Lemma 2 , Proposition 1 and 

Lemma 3 ~J it is easy to see that the followi n g Lemma holds. 

1El\llllA 4 . Let H be !! subsemigroup of !! regular semigroup S . 

If IIE=EH=H ~ have 

i) I f H is regular, · then H~ = H,.,/, 

ii ) I f H is self-conjup;ate, then H.J'=H<.P't., 

iii) H is regular if and only if H is inverse- closed. 

Therefore, if H is a self- con~ugate subsemigroup of S 

such that HE=EH=H , then H is left-closed if and only if H is 

closed . Also, if H is a self- con~ugate regular (that is inver-. e 
se- c losed ), subsemlgroup of S such that HE=EH=H , then H uJE = 

= Huf Hc..v'!: = H w~. I n sl}Ch a case, 

(1 ) H is l eft- closed ~ H is left E- c l osed 

<==} H is E- closed 

<~ H is clo s e d . 

T,et J[. =f K ~ S ! K is a full , i n v e rse- closed, self-con;j u Gate 

su ')semigroup of S and ae E: K ="'! a E: K for any a E: S, e ~ E J and 



80 

let ~ ={ C ~S I C is a full, closed , se~f- conjugate subsemi group 

of S} . We have just proved that 'J[ = C. Therefore , for ortho

dox semig r oups the following theorem reduces to the Corrola
ry 1. 

TriEOREM 2 . ("Fei genbaum , [J] ). Let S be ~ regular sernigroup. The 

map C --7 (C ) = t Ca , b)fS x S lab ' E C for~ b ' E: V(b)} is ~ 1- l 

order preserving map of 't onto the set of ~ congruences 

Q!1 s . 
Remark . For an orthodox semigroup S we have 

LEMMA 5. If H is ~ subsemigroup of an orthodox semigroup S 

such that HE=EH=H, then Hw~=H c.v~ . 
e '1:. 

Proof. '"'e prove H w E S H (..()E ' 

e 
a E H w E =-t ea E: H for some e E E , 

=9 aa ' ea E H for a ' E V(a ) (since EH=H), 

-==;> a E. H w~ (since a ' ea E: E ). 

The proof of the converse is similar . 

Therefore, i f H is a subsemigroup of S such that HE=EH = H, 
then H is left E-closed if and only if H is E-closed . Accor

ding to Lemma 4 and Lemma 5 , if H is a regular (i . e inverse

-closed) subs emigr oup of S such that l!E = I~H=ll, thEm HJ=H w~ 
= Huf E = H CJ.:JT.. It follows that f'or any regular subsemigroup H 

of an orthodox semigroup S such that HE=EH=H , (l) holds. 

Since a semillatice congruence on an orthodox semigroup 

is also inverse , we get Lhe following corollary of Theo~em 1 . 

COHOLLARY 2 . Let S be .§!!l or t honox sernigroup . Let rr:: be !! normal 

congruence Q!1 E and au ' 'l: a ' a for every a 6 S and a ' E V( a) . Then 

the rr->lation o de~'incd on S bv 
-- J't: - ~ 

a g~ b ~ ( 3 a ' E: V ( a ) ) ( ;; b ' E: v ( b ) ) a ' a 1::: b ' b 

i§.!! semillat'cP ~ont~rucnce .9.!1 S . 

~ ~ is~ semillntiQC r.ongru~nce Q!1 S , Lhen 

r 9 is g r,.,,.maJ r.cm 1 r•~"l1~0 0'1 E , aa ' (Lr '? )a'a for s:..:!.!1I.:!.. a E: S , 

a '~ I(aj ·mrl '5 ~ tr ~ · 
rh!.! ; ;1 ~nir- Jm in tC'r!3~ r. •mr-rucnr:" on an orLhor!ox n•~mi1~rouo ~j 

is viver• ~Y 
a1l) i. r n r~~ 0n l ·, ' .. ) .' ( ~.) . 
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It is known that Y is an idempotent pure congruence on s . 
According to Theorem 1 we have 

a Yb ¢=:> ( ~ a ' ce V ( a J ) ( 3 b 'e I ( 1) ) ) ( V (a ' a)= V ( b ' b ) , a" ' E. b; ) • 

Therefore 
a Yb ~ ( '3 a ' e 1f (a) ) ( -3 b 'e V ( b) ) (a ' a= a ' a b ' ba ' a , b ' b= b ' ba ' a b ' b , a b 'E:: E) . 

Le t S be a sertigroup , a , b e S and a 'eV(a) , b '€: V(b ). I t is 
evid nt that 

a ' a=a ' ab ' ba ' a ~a = ab' ba'a ~ aa' = ab ' ba', 

'I.A ' ~ah ' h A ' ~ (a 'I"- • a ' =a a ' ~ ah 'c E) . 
I f S i s or thodox then 

a ' a Yb ' b # a = a b ' ba ' a, b = ba ' a b ' b 
<=9 aa' = ab'ba', bb' = ba'ab'. 

We have therefore eutabl i shed the followi ng r esult: 

CORO LLARY J . ~f a,b are e l ements of ~ orthodox semigroup S 

~hen the_ :[Qllowine- ~ teJ!lents ~ equi vWn1.. 
(i) a Y b. 

( i i ) (3 a' €: V (a) ) ( :J b 'E V (b) ) ( V (a' a) = V ( b' b) , a b' E E) 

(iii) (:3a'cV(a))(3b'€:V(b))(aa'=ab'ba'=ab'aa', bb'=ba'ab'). 
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The purpose of this paper is to show that the well known characteri
stic of semilattices of simple semigroups ([1),[2)) could be generalized for 
the class of n-semigroups for n>2. 

1. SOME DEFINITIONS AND RESULTS 

LetS be on n-semigroup, i.e. an algebra with an associattive n-~ry op

eration (x
1

,x
2

, ... ,xn) ~ x1x2 ... xn. An n-semigroup Sis called a ~~~il~~~i~~ 
if S is commutative, idemp:Jtent and satissies the sollowing identity 

il i2 ik jl j2 jk 
x1 x2 ... xk = x1 x2 .. . xk , 

where i
1
+i 2+ ... +ik=j 1+j 2+ .. . jk=n, \;, jv >0. 

A congruence on an n-semigroup S is called a ~~~1l~!!1~~ ~2~9C~~~~~ 

if S/a is a n-semi lattice. 

A nonempty subset A of an n- semig roup S i s called an ideal of S. iff 

aES, xiES imply x1 ... xi_1 a xi ... xnE A for every i=l,2, ... ,n. 

An ideal J of S is said to be ~91llel~!~l~ QC:!_I:!!_~ iff x1x2 ... xn E J 

x
1

E J or x2E J or ... or xn:=J. 

A subset F of S i s a filter in S iff J=S'F ·is a completely prime ideal. 

An ideal A of an n-semigroup s is completely ~~~:!.eci~~ if for any xES, 

xnE A implies xE A. 

An characterisati on of all semilattice decompositions of an n- semigroup 
S in terms of compl etely p1· ime ideals is given in [3]. The least se,mil at tice 
congruence is denated by ~ -The minimal filtre inS whi ch cont uins x is deno
ted by N( x), i. e . N(x) i s the filtre generated by x. The classes of th e congru-
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ence rt are called N-classes. If xES, then the N-<:lass which contains x is 

denated by Nx. The class Nx is the largest n-subsemigroup of S containing x 
and containing no proper completely prime ideals. 

An n-semigroup S is said to be rt-~iiEEl~ iff S has no prope:r completely 
prime ideals. For n-ary case the following theorem is given in [3] (3 .5): 

~ !~ I i~ ~Q i9~~l Qf ~Qf!)~ N ~l~~~ Qf ~Q n-~~f!)i9rQ~E s, !b~Q I b~~ no 

er£e~r ~Q~Eel~!~l~ erif!)~ i9~~l· 

As a consequence of~ we conclude that: 

1.2 ~~~r~ n-~~~i9rQ~E i~ ~ ~~IEil~!!i~~ Qf rt- ~iiEEl~ n-~~IEi9rQ~E~· 

The principal left, right two sided ideals and ideal of a semigroup S 
generated by an element xES have the following form : 

n-1 n-1 L (X) = X US X, R (X) = X U xS , 

I( x) = xusn-l xuxsn-lusn-l xsn-l, 

n-1 n-2 n-1 n-1 n-1 J( x) =xuS xuS xS u ... u xS us xS . 

An n-semigroup S is l~f! (right) ~if!)El~ if S is its only left (right) 

ideal; S is !~Q:~i9~9 ~if!)El~_if Sis its only two-sided ideal; S is ~if!)El~ if 
Sis its only ideal. These notions can be characterised in the following way: 

~ ~~! s ~~ ~Q n-~~f!)i9r£~e: 
s i~ l~f! ~if!)El~ iff sn-l a=S fQr !!ll a E s; 
S is !'!!'Q:~i'!!~9 ~if!)El~Tiff sn-lasn-l = S f£r ~ll aES 

n- n-i i-1 n-1 n-1 
Sis~iiEEl~iffS= (i~ 2 s aS )us aS fQr_~llaES. 

We note also the following results. 

~ ~ ~~f!)il~!!i~~ s '!!'i!b r~~e~~! !£ !b~ r~l~!i£Q ~ 9~fiQ~9-~~ 
n-1 

x~ y ~ xy =x 

is partial ordered set. 

2. A SEMIGROUP AND ITS N-CLASSES 

Now we shalt establish someequivalentstatements on theN-classes, when 
they are left simple, and certain properties of S in terms of either elements 
of S or some tipes of ideals of S. ([2], 11.4.9 for the binary case). 
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~I~~ fQll~~!~g ~~~9!~!~~~ ~~ ~~ n-~~~!g~~~e s ~~~ ~q~!~~l~~~

il ~~~!:Y TJ -~l~~~ i~ ~ l~f! ~!~el~ n-~~~!9!:Q~Q . 
ii) ~~~rY l~!~ !9~~l ~f s !~ ~~~el~~~ly ~~~!P~i'!!~ ~~g ideal 

iii) ~Q!: ~~~!:Y xES, xESn- l xn ~~g xsn-1 c sn-lx. 

iv) ~~~ ~~~~y xE S, Nx =Lx. 

v) ~Q~ ~~~~y xES, Nx = !yES J x E Sn-ly1xESn-\ l 

vi) ~~~ry l~g i2~~l i~ ~ ~~iQ~ 2f TJ -~l~~~~~ · 

Proof. i) .. ii) Let L be a left ideal . If xnE L, then xnELnNx; hence 

Ln N is a left ideal of N and we must have Ln N =N . But then xE L and thus 
X X X X 

Lis completely semipril'le. If xE L and y1,y2, ... ,yn_ 1E S, then Y1Yz···Yn_1xE 

E Ln N x. Hence LnNY Y x is a left ideal of NY Y x and 
Y1Yz···Yn-l 1Yz··· n-1 1Yz··· n-1 

wehavethatLnNYlYz···Y l = NYY Y xy Y foreveryi =l,Z, ... ,n-1. 
n- 1 z ·· · i-1 i ''' n·- 1 

But then y
1
y2 ... yi 1xyi ... yn 1 -= N Y for every i =-1,2, ... ,n-1. This 

- - Y1 z ·. ·Yn-lx 

implies y
1 
... y . 

1
xy .. . y 

1
:= L, which means that Lis an ideal of S. 

1- 1 n-

ii) .. iii) For any x :=s, Sn-\n is a left ideal of Sand t hus it is compl e-
. . . 2n- l ~ n-1 n n-1 n n- 1 n-1 

tel y sem1pnme. S1nce x cS x , we have xES x c S x. Th e setS x 
- n-1 n-1 

is a left ideal and t hus an idea l of S and conta in s x , so that xS ~ J( x )~S x. 
n- 1 n 

iii) "" iv) First we wi ll prove that Lx ~ Nx. By the hypo t he s i s, xES x 

::_ Sn- l x. Then L( x) = Sn-\ for every xES. If yELx, then L( x) = L(y) and thus 

x=a
1
a

2 
... an_

1
y, y=b

1
b

2 
. .. bn_

1
x for some a1 ,a2, ... ,an-l' b1 ,b2, ... ,bn_1Es. Therefo-

re N =N N n- 1 N n- l =Nb b b =N and thu s yEN , that 
X ala2 ... an-ly Xy yx 1 z· ... n-l X y X 

is L c N . 
X- X 

Now we will prove that the relatation ;t, def ined by xf.y (~ L( x)=L(y) 

is a semilattice congruence. Since TJ is t he least semilattice congruence we 

have that N c L . 
X... X 

By the hypothesis we have that uESn-lun =L(un). Thus L(u)~(un), L(un) = 

Sn-lun ~ Sn-lu = L(u), i.e. L(u) =L(un). 

We show next that for any x1 ,x2, ... ,xnE S, 

L( x
1
x

2 
.. . xn) = L( x1) n L( x2) n . . . n L( xn ) (l) 
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x EL(x x1 •. . x 1) i .e. L( x1x2 ... x 1x) = L(x x1 ... x 1). n n n- n- n n n-

Similarly 

L(x x1 .. .. x l) c L( x 1x x1 .. • x 2) and so n n- - n- n n-

L( x1x2 ... xn) <;: L(xnx1 ... xn_1) ~ ... ~ L( x1x2 .•. xn). Thus 

L( x1x2 .•. xn) ~ L( x1) nL(x 2) n .. . n L(xn). 

Let zE L( x1)nL( x2) n . . . nL(xn ) , then z=a11 a12 ... a1n_1x1 , z=a21a22 .. . 

a2nx2, .... ,z=a nlan2 .... ann-lxn' for some a ijES, where i=1,2, .... ,n; j=1, 2, ... , 

n- 1 and consequent l y 

n ) c 
Z E L( alla12' • . a ln - l xl .... anlan2' . . ann-lxn -

~ L(xnxla21a22' · .a2n-lx2 ... . an -ln - l xn-1 ) ~ ·· · ~ L(xl x2 .. . xn) 

From the equality (1) follows that 

L =L , 
xi- l xi

2 
... xin xj

1
xj

2 
... xjn 

L i 1 i 2 i k 
x1 x2 . ..• xk 

L j, j2 jk • 
x1 x2 ... xk 

where (i
1

, i 2 , .. .. ,im), (j
1

, j
2

, .. . ,j
01

) are some pe rmutation of the numbres 

(1 ,2, ... ,n) and i 1+i 2+ . . . +\=j 1+j 2+ .. . +jk=n. 

iv) "' v) Let x be any element of S. Since xnE N , then xnc: L . But 
X X 

Lx = !yES IL( x) =L(y)j . So, we obtain L(x) =L( xn). From this it follows that 

n n n-1 n n n n-1 n c n-1 n-1 n 
x ~ L(x )=x uS x . If x=x , then x=x E S x - S x. If x ·2 S x , we have 

that xESn-lx. Thus L(x) =Sn-l. Then we can write 

Nx =Lx ={ yE Si L(x) =L(y) j =-{ y : S jy E Sn- \, x ESn-lyj. 

v) .. v) If L is a left ideal of S, x an element of L, andy an element 

of N , then y E Sn-l x c L, tha t i s vi) holds 
X -

vi) -· i) It suff ices to show that Nx c Nn-l y f or all y C: N . For y, zE N , 
- X X X 

2n-1 . 2n-1 2n-1 n-1 2n-1 the hypothesi s impl i es N c L(y ) . S1nce zE N c L(y )=y uS y 
X- X-

2n-1 ~ 
we have th at z=a1 .... an-ly fot· some a1 ,a 2 , .... , an _,-=S . Hen ce Nx= Nz = 

N 2n-1 N and a . . . a yE N 
a1 ... an-l y a1a2 ... an-l 1 n- 1 x 

2n - 3 n-1 
a1 .... an _1yy y C: Nx y , and this proves t ha 

. 
1 

. 2n-l 
loJhi ch 1mp 1es z=a1 .... an - lY 

c 
X -

n- 1 
X y, 

A similar proposition ho l ds for right simple N-c ldsses . 
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By a s1mp le modification of lhe proof of l.l, one can prove the following 

theorem: 

~ !~~ f9ll9~!Q9 ~QQ9i~~QQ~ QQ ~Q n-sem1 CQ~Q S are ~g~~Y~l~Q~ 

il ~Y~r~ ~l~~~ i~ ~~9:~!9~9 ~i~el~~ 

ii) ~Y~C~ ~~Q:~l9~9 ~q~~l qf S i~ ~Q~Q!~~~!~ s~~ieri~ and ideal · 
iii) For ~Y~r~ x ::s, x :sn-lxnsn-1 

iv) For ~~~'=~ xES, N =I . X X 

v) F x~s . Nx = 1 y~SixESn-lySn-l, yESn-\sn-ll _ QC_~ Y~!:~ t 

vi) ~~~'::~ ~~Q:~i9~9 i9~~l i ~ ~QlQ~ Qf ry -~!~~~~~~ 

3. Ys IS LINEARLY ORDERED 

In thi s section we perform an ana l ysis simplar to that of section two. 

Here we suppose that Ys is l i nearl y ordered, ~1here Ys=S/ry is the set of ry-cl as

ses of S which constitutes the greatest semilattice decomposition of S. 

l.J. ! ~~ f9!!9~i ~g ~Q~~giQ~ ~ Q~ ~ ~ n -~~~~i9 CQ~Q-~'=~-~9~iY ~ !~ ~~ · 

il ~ ~~ r~ ry -~!~~~ i~ l~f~ ~ i~el ~ ~~~ vs i~ li ~~~r!~ 9 !:: ~ ~ '=~~· 

ii) ~Y~ !:~ l~f! i~~~! Qf S i~ ~Q~Ql~!~l~ eri~~ ~~q ideal. 

1·1·1· ) F s { l sn-1 , (l - ~~:~:~~ x 1 , x 2 , . ... ,xn E , x1 ,x2 , .... ,xn n x1x2 .... xn " " 

xSn-l c Sn-l x. 

Proof . i) ~• ii ) Let L be a left ideal of S. Since every N-class is 

left s·impl e , by 2.1, Li s a union of N-c1asses. If x1x2 .... xn"" L, then· 

N c L. By hypothesi s Ys is linearly ordered, which mean s that 
xl x2 .. . xn -

and 

N (: N. (: ... (:N , where (i 1 ,i 2, ... ,in) is some permutation of the numbers x . 1 2 x . 
11 ,n 

(1, 2 , .. . . ,n). We have that 

N n-1 n-1 
X · X · 

1 12 

1 n = Nn-l n-1 n-1 . .. x .n- x . y. x. x . x . ... x . x. 1n-l 1n 11 1 n 1 2 1n 1n-l 1n 

a nu tiJUs L i 5 co1,lp1ett: l y flrl"lle. 
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Since 

X E L n 

Let x1 ,X(•· •. ,xn- l ES andy ,:=_ L, then x1x2 ... x yEN c L. 
n xlx2 ... xn-l 

N = N , we have that x1x2 .. . x. 1yx ... . 
x1x2 ... xn_ 1y x1x2 ... xi_1yx i ... xn 1- 1 

and thus L is i dea l of S. 

ii) ... iii) For any x
1

,x2, ... ,xnES, Sn-lx1x2 ... xn is a l eft ideal of S 

and completely prime ideal. Since (x
1
x2 ... xn)nESn-\1x2 ... xn, we have that 

n-1 . n-1 - n-1 x1x2 ... xn S x1x2 ... xn and thus e1ther x1E S x1x2 ... xn or x2c s x1x2 ... 

n-1 n-1 n-1 xn or .. . or xnES x1x2 ... xn. From 2.1 it foollows that xS c S x. 

n-1 n-1 n-1 n-1 
iii)'* i) Let x,yES and suppose that xES xy ; the case yES xy 

is treated simi 1 arly. Then x=a 1 a2 ... an-l xl-l for some a1 ,a 2, ... ,an ·l E S, and 

thus N =N n-1 = N n-2 = N n- 2 n = x a1a2 ... an ·· l xy a1a2 ... an_ 1xy y a1a2 ... an_ 1xy y 

N a a n-1 n-1 = N n-1, that is N ~ N and therefore Y is linearly 
a l 2 . . . n- l xy Y xy x Y s 

ordered. Left simp li city of each N follows immediately form 2.1 since xESn-l xn 
. X 

for all xES . 

3.1. 

A proof of the next theorem can be given by a modificatiGn of the proof of 

3. 2. !~! f2ll2~i~g ~2~~!;!2~s 2n ~~ n -~!~igr2~~ S a~! 9~!~~!!~; . 

i l ~~!~~ TJ - ~ !~ ~~ i~ t~~-~i~~~ ~ !~~!! ~~~ v s i~ U~!~~l~ 2~~!~!~ 
ii) ~~!~~ i~!~l 2f s i~ ~2~~!!;!!~ ~~!~! ~ ~ ~ i~!~! 

. .. ) F - s [ ~ sn-1 sn -1 ,J n 111 oreveryx1,x2, .. . ,X=, x1 ,x2, ... ,x n x1x2 ... x rll'· --- ---- n n n 

R E F E R E N C E S 

[ l] Petrich M. 1 The maximal semi l attice decomRosition of a semigrou~ 1 Math. 
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braic ~;nference, Novi Sad, 1981 \93-Ju?,. 
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ON IRREDUCIBI LITY OF \VEIERSTRASS POLYNOI-'iiALS OF LOW DEGREE 

IN THE RING K([x,yD 

Aleksandar Lipkovski 

Abstract. The notion of unibranched singularities of alge
braic curves on surfaces is closely related to the notion 
of irreducible element in the ring K[()C,:.Jl of the formal 
power series. In this article some explicit criteria for 
irreducibility of Weierstrass polynomials of low degree (47) 
in the ring K[C• . ~:ll are described, thus giving us a possi
bility to recognize unibranched singularities of low multi
plicities by their local equations. 

Let S be a smooth algebraic surface over algebraically 

closed field K of characteristic 0, C c S a curve with a 

s ingular point P E. C , 'X and 'it local parameters of the sur

face ;5 in P and lCx,'() a local equation of C in $ • Then 
~ ~ ........, I " 
VP,!:., Krrx,•l)l ' r.oP,(:; vP,sl(/) where A denotes the completi-

on of t he local ring A with respect to its maximal ideal. 

The singular point P i s called unibranched, if VPc is a 
I 

domain, in other words if f is irreducible 

For a formal power series f= .L. Q.;. l('«i 

in KC[.x,~Jl. 

let 5u.pp (!):::::. 
{ I 

(C,J> ~ <J 

= (l,$) q.:s:l o , ~.J ·~INlo} • Consider the boundary of the convex 

hull of the set Sv.pp(J) +JR.; • Its compact part, a polygonal 

line, is called the Newton polygon of f and denoted N (5) •. 
The following simple lemma will be used in the sequel. 

LEHl'IA 1. ~ Newton polygon of the product j. ~ is composed 

of the Newton polygons of the factors .;. , 3- ~ attaching the 

segments of both diagrams ~ to another, ordered ~ decrea

sing slope (see (l]p.639). 
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Let f be as above . \Vri te i t i n the f orm ? ~ 3-;.. + t J<+I+ . . . 

where *"'E (.~<, ~ )"" i s homoge ne ous of degree Y\. • The numbe r fE: IN( 

is the mul t i plicity of the s ingula r point P • Accor ding to 
the Weierstrass pr eparation theorem, there exists invertibl e 
u <.K,~j)fk:.([~.~J] and qC' 1<xJ , •.. ,c{111<-.. J f KCC><)l s uch tha t m~.~tt c\i1

>- i and 

5 <x,~) : tA(K•Jl(:t-"+ o.''1C ... J';j,.... + ... -r c/"h1} • Int r oduce the para
meter y., "'".1>1 {~m,et~<'~ i, L~1 , ... ,,... } • Obviously, YE-~ ;v >-.1 • The 
number - 1/ v is the slope of the steepest segment of NCn. 
By means of the Tschirnhausen transformation \1 H "J- Q<

0
0<>/r 

we may consider ~{xJ~o • Therefore we may restrict oursel

ves to the case 
(1) ;. .,. ';J~'+ q(2)0<) ~ ,...2. + ... + q<-">(1<) 

In the following we will a lways presume that N(f) is a 
s t r aight line segment . This is a necessary condition for f 
to be irreducible (see C2Jlemma 3.2). 

LEMMA 2. (a) If f- is irreducible, ~ /"'~E fl..JI 
(b ) If tVErNJ with f , f'V relatively prime, ~ ~ is~
ducible . 

~· (a ) Obviously , i f ~vif-rNI, then N(J) ca nnot be a s egment. 
(b) Under these conditi ons N~) cannot c ontain t he points 
with i nteger coordinates ot her than its t wo ends , and by the 

lemma 1 f is irreducible. 
The usual method of exploring singul arities is the pro

cess of blowing-up, locally described by coordinate changes 
of the type x,.u,~=uv-. Let 1f:s•~.s be the blov1ing-up of 

s centered at p ' c~ be the strict transform of c ' 't be 
the number of points laying above P and let the asterisk de

note the parameters of these points. 

LENM/\ 3. (a) If v~1 then 't> f and all f'~<r 
(b) If v>1 then 't"'1 and f'.,"'f' £!: f"=r but Y*=- l> - 1 . 
(c) In~~ 't=-1 ~ ~ ,.... .. =/" ~ 'J ~2. 

~· For a proof of (a) and (b) see [31p.226 . (c) follows 
from the fact that the local equation of the strict transform ,. ru ,..l o., .. ,, .. ) ~~ .. ...:) (I) 
C' is !1 Cu.,v)=v- + ,.1." v + ... t '1.(" and V>t~o~H\ ~l 1rr ·r-2L+r.wttq • 

Note that if t is irreducible , so is !1 • According to 
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the lemma 3, after a finite sequence of blowing-ups we get 
~€(~,2) • From tbe lemma 2 it now follows that for irreduci

ble ! of degree r the only admissible values of )I are 
'].: 

1 
, 7} , ... , T . Since there is a finite number of them 

for a given r 1 We may try tO find COnditiOnS fOr irredUCi
bility of all J with a given f , starting with t' "'2 , As an 
evident corollary to the preceding lemmas we have: 

PROPOSITION 1 . For the following combinations of f ,v all 
v/eierstrass polynomials of the ~ (1) ~ analytically it
reducible: 

r =2 and every admissible ~ (=3/2); 
r =3 and ~ admissible )) (=4-/3,5/3); 
r =4- and v =5/4-,7/4-; 
f =5 and every admissible v (=k/5,k=6, .. ,9); 

r =6 and '11=7/6,11/6; 
f =7 and every admissible v(=k/7,k=8, •• ,13). 

The only nontrivial cases are of course the cases with f,r~ 
not relatively prime. For smal l f <. 8 these are onl y t' =4-, 
v =3/2 and }" =6, ~ =4-/3 , 3/2 and 5/ 3. For t he fi r s t ca s e the 

c ompl et e answer is found, Noti ce t ha t , since the point ( fV,O) 
be longs to NCO, IIYI~eta<~'l= rv and \oJith a coordina t e change we 
can have a.C~'1Cv. ) " x f'~ • 

THEOREM 1. Every Weiers tra ss polynomial of the ~ (1) with 
r =4-, y =3/2 ~ be written in the form 

~~+ a0<) :><~:fl. -t- (, (x ) x.S"~ + XG 

after ~ suitable coordinate transformation. ~ have: 
f is irreducible ~ q(c).,. ±2... and ~lt(I.\-G\(o>) >mutt l, • 

~· The first part i s obvious since ~ttqU>:::..i:V':jl. (i=2,3). 
After one blowing-up and the coordinate change ~~d-x~ we get 
a singularity with a local equation 

\{'1.+ .'Z:... Q. (•rx~}~· x~ + ?- "·(<t-:><~)t-t-2 x 
{j 1.~1 L \.~0 \. (J 

and the result follows after considering its Newtons diagram 

and the case f =2. 

THEOREM 2 . Let ~ be of !..!!£ ~ ( 1) with f" =6. 
(a) If "Y =4-/3, f ~ ~ written in the form 

:1i+ 1.\Cx) x.>~4+ 6<xJ xlf'/3 + c(-,..) XG';Jz. + do<>x1~ + x8 
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If f is irreducible, ~ ~(o):±2. ~ d..=rvu.li 01., A"'- ~n{ m<-~Uc.) 
nw.tt (a.-d) 

1 
rn<J€.t(6- lio))}. 

? i§. irreducible in the ~ .A<.6t(t8, AfO ~2.. • 

f is reducible in the follo\'ring three ~: 

1) A.> 611.+& ; 2) A<f;~+& and A.:.o ~ 2.; 
3) A"=6c(t-8, a.~:;.. 'tc;- U:::f.W-4f-ic "'2.d..) . 

(b) If 'Y =5/3, ~ can be written in~ form 
1J" -t a.Cx) X~:J~ + 6CJ<) ><s:J 3 + C.(x) x't;~2.+ ciCxJ x9::1 + X 40 

~other conditions ~the ~~in (a) (except Y-=Zd-+1). 

(c) If 'Y =3/2, f ~be written in the form 

'd"+ tt()C) x?;l + ~Cx) x.>~ 3 + c Cx) x&~2.+ c{Oq x8~ + x9 
If. J is irreducible, then a(o):::.3e, .:.~. =3 E' (E 3= i). Le t 
C(. =o i'Y\I),e.t(Q.-O.(o)) > r : m l),(t f, l A_ :: wH:I'I{YIH.jtt(iJ-d)

1 
mu.et(tt- (l{o)- C.. H(o)) J, 

!- is irreducible in the f ollowinp; two ~: 

1) >..;to~3; 2 ) A_:O w..oJ3 a nd A<3tH6 ~d A. < 6fH9 
f- is reducible i n the f ollowing two ~: 

l) )..:O IW>d3 • A> 3H6 .£E. A.> 6~ -t- '3 

2 ) .X. :;. O no.od3 , .1\=3<(+6 and A <6p+J _£E. A<3c(+6 a nd );:::6 p+9 

Proof. The f i r s t statement of t he three par ts is obv i ous sin

c e rvw t tc{0 ~L'I' (i=2,3,4- , 5 ) . 

(a ) The blowing-up and the change 'ii~'J-X 3 
leads to the series 

'a 'l.+ ?... a.,<~ -x~i+ 1 x4 + Y t>, C~-x1r 1 x~ + L c;, (~-xl) \.Hx'l. + ;L d, (~-.x~ y:+z x 
\>,o {it ll;o \~0 

and the result follows from the analysis of the Newton diag-

ram and the case r =2. 
(b) The proof is almost the same as for (a), except that two 

blowing-ups are required instead of one. 

(c) The blowing-up and the change ~~--+ ~-x4 leads to the series 
~3+ ~ a.,(~-~)'" 1/f + 2:_ f,. (:f-.K~)\.t2.X l+ !: Ci (;}-X~)C.2.X. 'l.+ ):_ ~i:.(::J-X2)~3 X 
~ qt !~o ' (>..c ~:>,o 

and the result follows from the analysis of the Newton diag-

ram and the case f' .. 3. 

Remark. The remaining alternatives ( A"'6o(t& in (a) and (b) 

and A=3d.+E>·6~+9 in (c)) can be treated further in the 

same way. 

From the theorem of Mather (Ll]p.4-78 or [4-}p. 89) it is 

easily seen that the described process will finish after a 

finite number of steps for every f E- fN/ , since the singula-
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rity (1) is formally isomorfic to the one obtained by cut
ting the "tails" of the series ~c.:>(x) at the sufficiently 

high order . However, as we see from the theorem 2 , with in
creasing of the parameter ~ the explicit conditions of ir
reducibility become very involved. This leads to the conclu
sion that the classifying parameter f is not likely to be 
the natural one. The most of the work in the classification 
of irreducible elements in the ring KCfx.(1JJ still remains 
to be done. 
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Abstract . In this paper we describe semigroups in which 
every proper two-sided ideal is partially simpl e and in this 
way a generalization of s ome results of [7] is given . Partially 
simpl e semigroups are s tudied by the author of [7J.Horeover, 
in this paper semigroups (regular semigroups) in which every 
subsemigroup (right ideal) is partially right simple are con
sidered.In this case we give some new character izations of 
semigroups in which every subsemigroup has a left identity. 
Also, vie describe semigroups in which every proper right ide
al has a left identity. Semigroups in which every subsemi
group (right ideal) has a left identity are studied by r-1 . 
Petrich in [3]. At t he end we describe semigroups which 
contain unique maximal right ideal. 

Let S be a semigroup. An e l ement aE: S is a universal 
left (interior) divisor of S if aS=S(SaS=S). A semigroup S 
is a partial (right) simple if it contains nonempty subset 
of universal interior (left) divisors . 

For nondefinied notions we refer to [1] • 

LEf.IJ!VJA 1. Let S be .!! semigroup in which every proper two

-sided ideal is partially simple. Then 
(i) Every proper two-sided ~ of S is ~ principal 

ideal and for any proper princiual ideal J(a) of s, J(a)=SaS. 

(ii) Every two-sided ideal of ~ arbitrary proper two
-sided ~ of S is ~ two-sided ideal of s. 

Proof. (i) Let J be a proper two-sided ideal of S. Then 
( ]aE.J)(J=JaJ ~ SaS <;;: J(a)). 
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Moreover J(a) S J and so J=J(a). 

Let M be a union of all proper two-sided ideals of S 
and let a~t1 be an arbitrary ele~ent. Then a£ SaS. Duppose 
that afSaS and A=aS uSa U SaS. From this and by the hypo
thesis we have that a ~ aS and a ~ Sa. Consequently A is a 
proper two-sided ideal of J(a) and J(a),A= ia}. Thus A is 
a unigue maximal two-sided ideal of J(a) which implies 

J(a)=J(a)aJ(a) sSaS (see Theorem 2.1. [?])and so a~ SaS 
which is not possible • Hence 

( 'tl a € I'' ) (a E: SaS ) 

and thus J(a)=SaS. 

(ii) Let A be a .proper two-sided ideal of S , and let 
B be a two-sided ideal of A. Then ABA is an ideal of S and 
ABA <::B. ':le prove that ABA=B . Really , if flEA c. B, then 

( .3 b E B ...., ABA) • 

It follows from this and from (i) that J(b)=SbS . By the hypo
thesis we have J(b)=J(b)3 . f.oreover,SbU Sb:J Sb8 c;;: s bG b SbS, 
from this we have J(b)3c;.J(b) b J(b) and so J(b) c;.;.ABA. 

Thus bE ABA, which is not possible. Hence, B is a two
-sided ideal of s . 

THEOHE!·; 1. Every proper two-sided ideal of S is par
tially simple if and only if ~ of the following conditions 
holds: 

( i) G is se rr. isimpl e and its every proper t1·1o-sided 
i deal is ~ urincipal ideal . 

(ii) G contains ~ unigue Maximal two-sided ideal which 
is sernisimple and its every two-sided ideal is ~ principal 
ideal . 

Proof. Let every proper two-sided ideal of S be par
tially simple and let 11 be a union of all proper ideals . 
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I f l·l=S , then J(a) is a proper two-sided ideal of S for 
every a E S and the principal factor J(a) / I( a) of ...J is 
0- simple or simple (Theorem 2 . 2. [ 7] ) and so S is semi
simple . r .ore over, every proper two-sided ideal of S is a 
principal ideal (Lemma 1 . ) . 

If 1>1 ,I S , then H is a unique maximal h1o-sided ideal 
of S and by Theorem 2 .1. [ 7], S ' f1c{a E S I SaB=S) or S' H= {a}, 
a

2 e: N. In the case S, N= i_a E S jSaS=S J we have that S is 

partially simple and so by Theorem 2 . 3 . I?Jwe have (i) . 
Let S ... t•,= [ a}, a 2 E !·1. Then , by Lemma l. and by the 

hypothesis every two- sided ideal of h is partially simple 

and 1·1 is a semisii:lple semigroup whose two-sided ideals are 
principal ideals (Theorem 2.3. [7]). 

The converse follows by Theorem 2. 3 .[7)and by Lemma 1. 

DEFINITION. [1] A partially ordered set T is downward 

well or dered if every non-empty subse t of T has a greatest 
element. 

THEORE!1 2 . The following conditions .Q.!l.!! semigroup S 
are equivalent: 

(i) Every subsemigroup of S is partially right simple; 
(ii) Every subsemigroup of S has ~ left identity; 
(iii) S is .§:. do\vnward well ordered set of periodic 

right groups. 

Proof. (i) =)(ii). Let A be a subsemigroup of s . 
Then A is a partially right simple semigroup, which implies 
that 

( ]a E A)(aA=A). 

From this we have that A 2 =A.· Thus every subsemigroups of S 
is Globally idempotent. Consequently, every subsemigroup 
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of S is regular (Theorem 2 .1. [4] ). If a E A, then 

( 3x e A)(a=axa), 

and thus 

aA=axaA=a:xA=A. 

Since ax=e is an idempotent of A, we have that e is the 
left identity of A. 

(ii) =>(i). It follows immediately. 

( ii) <=> (iii) By Theorem 6. I)] . 

THEORUI 3 . fu following conditions 2!!. S ~ equiva
lent: 

(i) S is r egular and every right ideal of S is par

tially right simple; 
(ii) Every right ideal of S ha.s ~ l eft identity ; 

(iii) S i s regul ar and E i s ~ band which i s ~ dmmward 
well ordered set of right zero s emigroups . 

Proof. (i) ~> (ii). Let 8 be regular and every right 
ideal R of is partially right simple . Then 

( 3 a€ R) ( 3 x E: S) (aR=R" a=axa). 

Consequently , R=~l=axaR=a~q. From this we have that ax=e is 

a left identity of R since e is an idempotent . 
(ii) => (i) If (ii) holds and e is a left identity of 

R(a) , then e=xa=(ex)a for some x ce_ S. Thus a=a(ex)a . Hence , 

G is regular. Let R be an arbitrary right ideal of 8 and 
e be a left identity of n. Then eR=R which implies that R 
is partially right simple . 

(ii) <=> (iii) . By Theorem 12 . [31· 

TI!EOHE!·; 4. Every proper right ideal of f.J bas ~ left 
identity if and only if ~ of the follovlin p; conditions 

holds: 
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(i) 3 is ret;ular and its every proper right ideal is 
partially right si ple; 

(ii) v contains ~ unigue maximal right ideal which is 
rer;ulv.r o.nd its every right ideal is partially ri(?jht simple; 

(ii i ) !::very right ideal of S has ~ left identity . 

Proof . Let S be a semigroup whose every proper right 

ideal has a left identity and let R(S) denote the union of 
all proper right ideals of S. Then we have that every proper 
right ideal of S is partially right simple . Let R(S)=S and 

let a be an arbitrary element of S . Then R(a) has a left 
identity e which implies e=ax and a=ea. Consequently a=axa. 
Hence, S is a regular semigroup corresponding to case (i). 

If R(S) f S , then f1cR(S) is the unique maximal right 
ideal of S . Let .d. be an arbitrary right ideal of l·l . Then 

a£ R 9 a=axa E: RSR S R2 , 

\vhich implies R2=R . Consequently 

Hence , every right ideal of J.1 is a proper right ideal of S 
and thus every right ideal of r·., has a l eft identity. r·:oreo-

- { 2 ver, by Lemma l.l. L7] we have s .... t·l= a} , a E. 1-1 or S ..... I·1= 

={a E. S I aS=SJ. If s -r~=ta3 , a2E.l'1, then by Theorem 2. 
we have that (ii) holds. 

Now, we consider the case S .... I·!={a ~ S j aS=S}. Let a 

be an arbitrary element of s -... 1'1. Then a=axa and so 

aS=axaS=axS=S. 

Since ax=e is an idempotent of D, we have that e is the 
left identity of s . Thus in this case we have that every 

right ideal of S has a left ·identity corresponding to case 
(iii). 

Since the converse is obvious, the theor em is proved. 
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THEO REN 5. Let J'.i ~ ~ proper right ideal of s . Then r:i 
is ~ unigue maximal right ideal of S if and only if ~ of 

the following conditions holds: 
- (i) s .... N={aJ, a 2E 11--

(ii) s - N=T1 uT2 , where T1=[a.E.S ... N\ a M=H] is.!! 

right simple semigroup of S and T2 ={a€ s-.... l·l l al>l=Sjis ~ 
two-sided ideal of semie;roup S -...!•1. 

Proof. Let M be a unique maximal right ideal of S . 
-- 2 

Then S-... M= {a J, a E. M or S '~·1= t a E. S l aS=SJ (Lemma l.l. 

[7]). If S ....,J'.l= {a E.S \ aS=S}, then T=S -... f1 is a sub

semigroup of S. Let a E S '- !'·!. Then we have a MS ~ aH and 

so aH is an right ideal of S. Consequently, al·IC::: f.i or al'i=S . 

If al1 <:. !'1 , then 

aS=S =->a(MuT)=NuT-=::,a!ll u aT=l·1uT. 

From this we have aB=l" since aT C: T and Jl1 (I T=0. Hence, 

CVat..T)(al·l=lfJ v al~=S ). 

If T1 = {a E S - 1·1 1 a~; =N } and T2={aE. S ..... !1 I ai ·,=S}, then 

(l) S -.. H=T1 u T2 

Let a , b €. T1 t hen 

( al: =l'~ '' brn,r") ~ a b! =aHeJ.!. 

Fr om thi s we have that ab ~ T1 . Consequentl y , T1 is a sub 

semigr oup of J . If a , b ~ T2 , then 

(aN=S " bl ' =S ) ~ abt·1 =a8= ... , 

and so abE T2 • Thus , T2 is a subsemigroup of s . 
For a E. T1 and b € T2 we have that abf't=aS=f> and bal l= 

zbt·;=S . Consequently ab , ba E T2 and we have 



(2) 

From (1) and ( 2 ), it f ollows that 

2 T2 ( s ..... N)=T2 (T1 U T2 )=T2 T1 \.J T2 c.;; T2 , 

2 ( S .... r: )T2=(T1 u T2 )T2=T1T2 U T2 ~ T2 • 

Hence, T2 is a tv10-sided ideal of - f" . 

If a E. T1 , then aS=S and so 

a(r-j v T)=r l v T -~ ar , v aT=r~ u T. 

It follo\'/S from this that aT=T, since a N=f· and M n T=~. 
Consequently we have that 

r:or eover T1 {\ T2=0 and from ( 2) and (3) we have that 
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'1\ c;:, aT2 • However, T1 is subsemigroup and so aT
1 

=T
1

• Hence, 

T1 i s a right simple s ub semi group of S . 

Conversely, in th~ case (i) the assertion follows ime

diately. Suppose now that (ii) holds. Then, f· -F S and so 

:3 ' f.1 -F ~. Consequently, at least one of the sets T
1 

and T
2 

is nonempty. If T1 and T2 are nonempty subsets of S , then 

since ab E: '1.'2 and fr oo this a8=S . If a E: T2 , then a~'i =S which 

i mplies a S=8 . Let T1=~, then 

Assur.1e that '1.'2 =0 . Then 

Hence, in every of the preceding cases \·Je have that 
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i.e. s ..... r·l={aE. S I aS=sJ, since for a'- r .. l, aS<;; l'1S<;;r1 F s . 

It follovrs from this that f·i is a I:laximal right ideal of S 

(Lemma l.l. [7] ) • 

LE!'1i!IJA 2. Let I·~ be !! unique maximal ri f",ht ideal of S . 

Then H is !! two-~ ideal if and only if T2= {a E s - r!J I af'l= 

=S] =¢. 

Proof. Let i''i be a unique maximal right idea l of S . 

v,rhich is two-sided. Then Sl'l ~ !Ill S , which implies T2=¢. 

Conversely, let T2=¢ and l e t N be a unique maximal 

right ideal of s . Then S· .... M= l_a}, a 2
E l•i or a i''i =l'" for any 

a E. :=; ..... r·: (Theor em 5.). If s ..... r'l=ia3, a
2 E i· ~ , then a t·i ~ !·1. 

Really, if we suppose that at-; $ H holds , we have that ar :=S , 

which is not possible . Let aE_1:, , then al'i c;; !·!, \vh ich top.;e ther 

with the c ase al' ' =l·~ for any a E.. S - rr; impl ies SI•l <:;, i-1 a nd thus 

M is a two-s ided i dea l of S . 

COLCRALLARY 1. Let G be ~ partially riBht simpl e semi

~ and r. b e uniqu e lllaximal right idea l of 3 . Then r. is 

~ tvto- sided ideal if and onl y if S ...... l. is !! right simpl e 

subsemigroup of S . 

Proof . Folloi'TS immediat ely from the Theorem 5. and 

I emma 2 . 

H E F 2 I~ ,, ., C . •' 
·~ J:J 
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, ALGEBRA AND LOGIC", ZAGREB 1984 

ON £. -BOUNDED UII.rRAPRODUCTS 
~arko Mijajlovic 

1 OS 

Ultraproducts of models are one of the most important 
constructions in model theory by which new or nonstandard 
models of a first order theory are obtained. Such construc
tions first appeared in (6], where T.Skolem proved the exi
stence of nonstandard models of arithmetic . The definition 

of ultraproducts of models given by J.Lo~ and his fundamen
tal theorem [2] are the main contribution to this subject, 
but today several modifications of this construction are 
known. One such recent construction is the bounded ultrapo
wer of the structure of natural numbers [3] , which Kochen 
and Kripke used to give a new proof of the famous result of 
Paris and Barrington [5], that a f orm of Ramsey theorem is 
not provable in formal arithmetic P. In this note we shall 
unify some of tho se constructions. 

Let 1ni' iei, be a nonempty family of models of a 
first-order language L. Further, let B be a Boolea n subal
gebra of the field of subsets of I, and let D be an ultrafil
ter over B. Finally , l et !f ~ Q Mi be a nonempty set of 
functions. Other mod el-theoretic notions and symbols we adopt 
as t hey appear in [ll • 

Assume feL i s a binary relation symbol. Instead of 
f..xy we shall write XfY. A formula 'f of L is E.- bounded if E 

i s built up by use of symbols of L, logical connectives and 
bounded quantifiers (lxfy), (Vxfy), where 

(3 xn) 'f' 

(VxfY)r 

stands for 
stands for 

3x(x(y~ r ), and 
Vx(xey~ t). 

If we want to construct an ultraproduct over 1r, some 
hypothesis on t should be made. Such as sumptions on Tare 
stated in the following definition. 
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DEFINITION l. Let 
l 0 T is E -convex 

implies fET. 

'f" ~ [] M .• Then 
l l n 

if f or all fE i Mi , f£ g and gE; T 

2° T is closed if T i s closed under operaions in Q fn.i. 

Thus we see that if t is closed then 'f" is a submo

del of Q mi, therefore T is a model of t he language L. 

We remind that symbols ro, n ° denote us ual proof-theoreti-
0 n n 

cal hierarchis. By 2 ~{T) we denote the set o f all X~ I 
such that for some I:n-formula 'f a nd f 1 , • •• ,fmE'f", 

X= {i: 1l1il= ~(f1(i), ••• ,fm(i)J}. Now we introduce a rela 

tion N in 1f induced by the ultrafilt er D, as in the cas e 
of the standard ultra product construction: 

f N g iff {i: f( i)= g ( i)} ED. 

As usual, if f"' g we shall say t ha t f =g a.e. (almo s t 
everywhere). Als o, we have an 11 a.e. 11 refinement of the no

tion of £-convexity : in Definition 1, the term fE. g i s re

p l ace d by fE g a . e. , where f Eg stand s fo r 

{ifi: f(i)E g (i)} E D. 

I f '.t is closed set and L ~(;) £ B, then t he rela
tion "' is a relation of congruence of the structure ;- , so 

as in the case of standard ultraproduct construction we can 

define the quotient s t ructure which we deno te by 'FjD. If 

we keep the former meanings of the symbols, we have the fol

lowing Los-type theorem: 

THEOREM 2 . Suppose 

1° L ~ (T") S B, 2° T is closed a nd an a . e . 

Then for any E -bounded formula f( x1 , ••• ,xn) 

f 1 , ••• ,f0 ~ 'F we have 

'F / D F: 'f[flD ' .. • , fnn l iff 

( iEI : 'TTti ~ <f[f 1 ( i), ••• ,fn( i)J} .: D. 

£-convex set 

and 

Proof The most of the steps of the proof are simi lar to 

the proof of classical Los theorem , thus we shall consider 

only the bounded quantifier induction step, i . e . when 

~( y,x1 , . •• , xn ) i s of the form (3 xfy) t (x,x
1

, ... ,xn). 



(=*) Assume 

T ; r) F 3x t: gn'f[x , f 1n• ···• fnn)· 

Then for some h E T we have ht:g a . e . and 
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i . e . 

Tj n F ~( hD , flD '''' , fnD 1. Therefore , by the induction hypo

thesis 

{iH: ~I= 't' [h( i) , f 1 (i), •.• , fn ( i )]} E D and 

{iH: h ( i )f g ( i )J € D as well , so 

{i H:'tn i l= h (i)£ g ( i ) 1\ 'f(h ( i ), f 1 ( i ), ... , fn (i)J} ED. 

Therefore , 

{HI : m i F (3 x f g ( i )) 'f[( h ( i ) , f 1 ( i ), ••• , f n( i ))] € D, i. e . 

fHI:mi ~ <{'[g ( i ),f1 (i), ••• , fn ( i )]} E:D. 

(¢) As sume {i " I: ?'ni l= f[g ( i) , f 1 ( i ), • •• , f n( i )]} 4CD. So 

X= {iH:mi l= (3 x £g ( i ))'t'[x, f 1 ( i ), . .. , f n( i )J} be longs to D. 

For i~X we can choo se a iE-g (i) such t hat 

mi ~ 'f[ a 1 , f 1 (i), ••• , f n(i)]. Let h EQMi b e a func tion de-

fined by h(i) = a i for iEX, and h(i) be an arbitra ry element 
if i¢X. Then h(g a .e., thus hE'f' s ince 'r i s £-convex. 

Us ing the induction hypothesis we have 

TjD\= hDfgD 1\ 'f'(hn,flD'"''fnDJ' therefore 

TjD ~ <f[gD,flD' • • • ,fnDJ. 

A structure 37/D which satisfies the conditions of 

Theorem 2, we shall call an £-bounded ul traproduct of models 

111.1' i 4C I. Us ing this theorem we can derive a number of vari
ants of ultraproduct constructions and corresponding Los-type 

t heorems. 

l 0 Let 'f" = n M., and assume that £ is interpreted 
i 1. 

in each Mi a s a full relation, i.e. £ = MI in Mi. Then 
the bounded quantifiers (3xEy), (Vx~y) become the stan

da rd quantifiers, and B= ~0 
( 'f") is the field of all sub-

. 0 
set s of I. Thus, we obtain then t he classical ultraproduct. 

2° Let M= Vw(R) be the superstructure over the field of 
real numbers , 3=" £Mw t he s et of bound ed functions, and 

£ b e t he s et-theoretical membership rela tion €. Then 
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~/D is a nonstandard model of analyzis, and in this case 
Theorem 1. gives the Leibniz transfer principle. 

3° Let ~be the structure of natural numbers, and £ be 
the standard ordering ~ in that model. Then the ultrapo
wer construction in (3] is a special case of our construc
tion, and Theorem lin (3] corresponds to our Theorem 2. 

Some theorems about standard ultraproducts have natu
ral transforms to £-bounded ultraproducts. Such one concerns 
the saturation of models. A set of formulas L(x) is £-bounded 
if every formula in L(x) is [-bounded, and L{x) contains 
a formula of the form x£c, where c i s a constant symbol. 

1'HEOREM ' • ( cf ( l] , Theorem 6 .l.) Let T/D be an £-boun-
ded ultraproduct, and assume there i s a sequence of sets 

B=J
0

2 J 1 2... in B such that fd Jn= ¢. Then ':f/D i s cv 1 
(-saturated, i.e. ~/D realizes every countable £-bounded 
type with countably many par ameters in ~/D . 

Proof It i s eas y to see that for ever y s imple expans ion 

( T /D,flD'f2D' ••. ) there i s a model T' such t ha t 

T'/D= ('F/D,flD'f2D, ••• ). Thus it s uffic es to r ea lize 
f-bounded t ypes wi thout paramet ers . So l et 'L(x) = {'f1 (x ) , 
<f2 (x), • • • } be a set of [-bounded formulas such that every 
finite subset of L(x) is f initely satisfiabl e in j'/D. Define 

~= {HJn : 'llti F ] x ('f1 (x ) 1\ ••• I\ <fn ( x ~} , n :>0 , n Ew . 

Then ~ ~= ¢, and ~ is a decreasing sequence of sets in D, 

thus for each i~I there is the greatest ni such that i €- Xni . 
Let g ET be the interpretation of the constant symbol c, 
where x ~ c belongs to ~(x). Then we can choose a function 

f E Q Mi such that 

if ni > 0 then m 1 1= <cr1" • • • "l.f ni H f ( i )J. 

Thus if H-X then 1n1 F <f [f ( i )} • Therefore we have n n 

1° f E'f since f(g a . e . 
:?

0 T/ D F 'f n [fD] by Theorem 2 . 

Hence , !D realizes the type L( x) in Y'/D . 
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There are ot 1 er v~riqnts of ul raproduct construction . 
Ke eping the meaning of the introduced svmbolA , a such one 

construction ia described in the follo~ing proposit ion. 

THE REM 4. Let the ind ex set I be the domain of a stru-
cture m , and assume 

1° L~(T)S B. 

2° 1' ~ M1 is closed under Skolem functions for ~0 

n 

formula s . 
Then for each L ~ formula <f and f 1 , ••• , f n E T we have 

T;n I= ~[flD' •• • ,fnD] iff {1~1: 'mt=l.f[f1 (i), ••• ,fn(i)]J ED. 

The proof of this assertion is straightforward so 
we omit it. This theorem cover many applications of special 
ultrapower constructions, particularly in formal arithmetic 
and set theory, cf (4). We mention the following: 

l 0 Let 'F be the set of arithmetic9.1 L ~ definab le 
functions in formal arithmetic P (n ~1), and assume B 
is the Boolean algebra of L 0 definable sets in P. Then 

n 

T / D is a model f or p n L 0 but not for p (what improve s 
n 

Mo stowski ' s theorem that P does no t have a L 0 
axiomatin 

zation). 

2° Particular ultrapowers give end extensions of models 
of theories clo se to P or ZF set theory (for the r ev iew 

see e.g . [4]). 

1. C.8.ChB ng, H.J.Keisler, Model Theory, North-Holland, 
Amsterdam , 1':!73 



110 

2. J,Los, Quelques remargues, theoremes et problemes sur 
les clas s es definissables d'algebres, Mathema tica l Inter
pretation of Formal Systems, North-Holland, Amsterdam 1955, 

98-113. 

3. S,Kochen, S.Kripke, Non- s tandard Models of Pea no Arith
metic, Mono gr aphie de L'Bns eignement Iilathematique No.30, 
Geneve 1982 . 

4. H,Kotlarski, On Skolem ultrauowers and their non-sta nda rd 
variant, Zei tschrift fUr Math. Lo gi k und Grundlagen de r Math., 
B.26, 1980, 227- 236. 

5. J,Par i s , L.Hurr ingtort, A Mathematical Incompleteness in 
Peano Ari tlmet ic, Handbook of Mathematical Logic , North
Holland, 1977. 

6 . T. Skolern , Uber die Nicht-Characteris iebarkeit 4er Zahlen
reiche mittels endlich oder abz~hltar unendlich vieler Aus
sagen mit ausschlies lich Zahl envariahlen , Fund. Math . 23 ,1934 . 

University of Belgrade 
Faculty of Scienceg, 

Hath . Depart1'1ent, 
Studentski tr J 6 
lJOOO Bel[rade 
Yugoslavia 



LOGIC OF GUARA TY 
Virgilio t·;u kardin 

lll 

Abstract. If p, ·p range over proposit ions which are guaran

teed, merely hinted at,respect i vely, by an ethical and ma

ture speaker, we argue that an information of the form 

is richer than just p / which should be equi-

valent according t o the classical logic/ . Ne give a seman

tic construct ion of a logic, termed the logic of guaranty , 

in which p v (p"'l) is equivalent to p11•q /" p is gu

aranteed, but, besides, 9 is hinted at"/. It is a 3-valued 

logic in which 1\ /and/ is a straightforward extension of 

its classical counterpart , but V /or/ receives a new in

terpretation . /Consequently p Y q is logically equivalent 

./Some characteristic feat ur es of 

the logic of guaranty are discussed, wi th some valid logi

cal i mplications and equiv alences exhi bi ted. This logi c i s 

free from the deont i c paradox /for p 'F/: p v 9 I and does not 

commit the bas i c relevance paradoxes /since P",F'f9 
p Ff.~v,'l /.A list of problems, concerning possible exten

sions and improvements, ends the paper. 

M o t i v a t i o n 

On an earlier occasion I have pointed out that /clas

sical/ logic, although origi nated by abstraction from situ

ations of human communication /and individual thinking/, 

treats /factual / propositions stated by a certain speaker 

as being ob~ctjv ely true or fal se / fifty-fifty!/. And yet, 

a meaningful a nd purposeful human communication i s based 

on the assumption that the speaker, at least in pri r.ciple , 
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states true proposi t ions , in spite of the possibility that 

he might be mistaken or even deliberately cheating us. 

Ne start with a presupposition that the speaker sta

ting propositions is an ethical and mature pearson i.e. he 

does not lie on purpose and does not make statements on 

something he cannot judge about. But even then, he does not 

utter each proposition with the same guaranty: ~or some of 

them he guarantees as surely true while others he merely 

· hints at as only likely true. Neuse proposi tional variab

les, e.g. p ,for the former, and propositiona l variables 

prefixed by the •-operator, e.g. "9 , for the latter. 

Consider now a motivating example: Either of 

/]_/ pA(pv9) P" (pAq) 

is classically considered equivalent to 

/2/ p 

/ Re ad "1\" as "and", "v" as "or"./ But d o we not find an 

information of the form /1/ richer then the c orresponding 

information of the form /2/~ Should /1/ not be more adequ

ately understood as 

/ 3/ p " • q ? 

/ 3/ i s interpreted as "p is guaranteed , but , besides , 9 

is hinted at ". 

In order to get a better grasp of the logic we are 

about to develop, think , but not as an essential restric 

t ion , of propositional variables as ranging over a set of 

action-describing propositions . Then p corresponds to 

actions the speaker to perform while • q cor -

respor.ds to actions he has only eiven a ... vve; ... ut has 

not yet decided about . Cor.cerr.ir.e la r actions , he 

mAy mnkr up hiA ~·n~ leter on or m~y r.ve up th'r.kir.r atou 

altogeti,Pr . 
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Cf course, I p /r ad " 1" as "no "/ carr ro de 0 

actions he has decid d agai~st /i . e. no o e rform d/ . 

S e m a n t i c a 

To elucidate the idea it suffices to construct only 

the propositional semantics . The basic semantic definition, 

in the table - form , springs fr om the following analysis . 

According to the proposed approach, in decision mak

ing on a certain action one can adopt one of the 3 attitudes: 

T:: be agreeable to , 

I ::r be reserved about, 

l= be contrary to; 

d epending on which one of the action-describing propositions 

A, •A , -,A resp . holds . Thus our semantics wil l be 3-

val ued, t h e values being denot ed t y T , I , ..L • Of cour

se, there is app arently the 4th attitude, na mely not even 

to cons id er tha t act ion, but then it i s beyond one 's di s pu te . 

Thus, ea ch entry i n the value-t able wi ll be one of 

I, ,.1. depending on one's mutually consistent attitu-

des towards the corresponding propositions. 

Obviously, the i-table should read: 

The .-table brings in a desired asymmetry I •p and 

•,p are not equivalent!/: 

m I 
I 

Justification: if one is agreeable to p being guaranteed, 
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he should also be agreeable to p being hinted at; if one 

is reserved about p being guaranteed /N.B. at a later sta

ge he might make up his mind !/ he cannot but be reserved 

about p being hinted at; but if one is contrary to p 

being guaranteed he need not be contrary to p being hin

ted at, thus he may nevertheless be reserved in : this case. 

The 1\ -table is a straightforward extension of the 

classical truth-table for 1\ 

1\ T ..1.. 

T I T I .l 
I I I J.. 

..1. .1. .l. ..1.. 

But v receives a new interpretation, hence the v-

table requires some more consideration. When we know only 

that somebody guarantees p v q , all we know is that he gu

arantees p or q or both, but we do not know which is 

the case. In spite of such "imprecise" information, we shall 

certainly be agreeable to p v q if we are agreeable to both 

p and 9 ; and we shall certainl ;y be contrary to p v q if 

we ere contrary to both p and q • In all other cases we 

should be reserv ed, for in neither of those cas es are we 

certain that what is actually the situat i on when p v 9 is 

guar ~ nteed /i.e. which of the three possibilities applies/ 

coincide s wi th our at t i tud e t oward s p a nd 9 

table: 
v T ..1.. 

T 1 T I I I I 
l I I .1. 

Hence t h e 

/ The "weakness" of the v- table reflects the "povert y" of 

the informotior. form p v 9 ./ Observe that in cla£dcol 
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l ogic Tv.l..=T, but under our in erpreta i "1 n , eing gree -

able t o p and contra ry t o q d oes not e n t i l es us to be -

i ng a greeable t o p v q , f or t h e s i tuation migh t b e such 

tha t p v q may be g ua r a nteed v i a t h e g uara nty of 9 only. 

Ther e 1s one more operation us ually d efined in a pro

po s itional logic viz. tfie operation;-.; of implic t ion; 

not to mention the operation ; .. ; of e quivalence which is 

just the two-way implication. ~e argue that it cannot be 

defined in terms of the opera tions defined so far, if it is 

really going to be a formalization of implication - one 

which does not commit implicat i onal paradoxes of any sort. 

/In classical logic, for example, tA..-(l is just an abbre-

viation for ,c:xvf) but then we have paradoxical tautolo-

gies like or.-(~-+ cl) , where no contextual relevance of ~ 

to 0(, is required ./ Indeed, p- q is of an essentislly 

different nature than p 1\ q or p v q . Let A , B be two 

arbitrary acti on-d escri bing propositions. Then A 1'1 ~ and 

AvB can also be conceived as /somewhat more complex/ 
.. 

action-describing prorositions, but it does not seem that 

A-B could be conceived as such; it simply says that the 

action in B is implied by the action in A • Thus, if 

A- e is to be meanir.gful, some sort of subordination should 

hold bet ween A and ! , while A 1\ B and A v 8 could be 

meaningful even if A and B are entirely independent. 

Furthermore, the values of A 11. B and A v 1'1 depends on our 

attitude towards A and 6 , while A- 6 is to be accept-

ed or rejected on some internal merits viz. its propositio-

nal form if -+ forma lizes the /purely/ l ogical implication, 

e.g. we accept A- A irrespe ctive of our attitude towards 

A • Because of these distinct fentures, we shall not attempt 
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to characterize -..-operator here, but shall leave it as a 

central theme of an subsequent paper. 

Kevertheless, since one cannot do logic without impli-

cation, we define the relation J::: of logica l implication by : 

o.l=(!l if and only if O(.t"~ ~'t for all valuations or; 

where Cj.,t: , ~'r G: { T I I I .1. l and .l. < I< T • Thus, the rela-

tion ~ of logi cal equivalence is defined by: 

i.e. 

o."" ~ if and only if oc.'t".,. (>T 

~;;.~~ if and only if 01. 1=~ 

for all valuations "r, 

and {'!! )= ()(. 

Obviously, these definitions are in conformity with their 

classical counterparts. 

Kotice that no formula takes the value T unde r all 

valuations. /No action is a priori supported!/ Indeed, if 

all propositional variables in a formula take value 

so does the formula. But, in view of the proposed definition, 

this is not an obstacle to characterizing valid logical im

plications. 

P e c u 1 i a r i t i e s 

Operators 1 and are the only unary ones. Adop-

ting the term accustomed in modal logic, each consecutive 

sequence of unary operators will be called a modal i ty . The 

following table shows that ther e are exactly 7 dis t inct mo

dalities in the displayed logi c of guar anty. 

p •p ,p ··p ,, p .,p ,.p •1•p ,., p ., . .,r ,. , . p 

i T l. T T I .J.. I I I I 
I I I I I I I I I I I 

I 
.l. I T I .L T I I ..1. I I I 

Cnl y 2 , l+) ond tt1• of the 9 variations , whe n l' s are 

fixed in the middle row, cannot be obtained via and "1 
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alO e j the forme r eprertain tO "'1(pA1p) 1 the la r o 

p "1p. t hese mo ali t ies f orm an impl~cational diagram : 

., 

00 v 

' 

' ,,, .,. 

, 

/Implication goes al ong a solid line upward s ; dotted lines 

indicate negation./ 

From the t able we can pick up the r eduction rules for 

modalities: 

/i/ of two consecut i ve .•s delete one, 

/ii/ of two consecutive ,•s delete both, 

/So far we are left only with alternating sequences of va

rious lengths, e.g •• ,,,, or -,.-,., for length 5./ 

/iii/ replace an alternating sequence of length 

greater than 3 by the sequence •-, • • 

In part ~ cular we have: 

•1•i1)1.1::>4 .,.()1.. ~ ,.,.01. 

for any formula o. 

Observe that 

/4/ •"'1•01. ..... •"'1•[\ 

for any pair of formulae. Ot and ~ • A reflection on the 

intuitive meaning of .,. reveals that this equivalence is 

not as odd as it might appear at first insight. 

From the implicational diagram for modalities we see 

in particular that 

and i • ~ 1= -, _01. 

Moreover, 
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cO::(!! if and only if l{) ... ,<:ll. 

holds for any d.,(). 

By inspection of the corresponding tables we f ind out 

/5/ 01.1=~ if and only if ex " fl 1=1 Ot. 

but the r epla cement of 1\ by v in /5/ would not yield a 

valid conclusion. 

It is worth of noticing, though trivial, that 

01./\•cll=t()( and oc. v • Ol F:l • <:J.. 

while 

01. 1\ ., ell. l=h •, tll and ~ v •1 t~. 1=1 •, • 01. 

Furthermore we have, in accordance with our motiva

tional paradigm, 

Q.A(OI..Y0) 1=:1 01../\•[l F'l OC.V(0./\('!1) 

Thus the absorbtivity laws of Boolean algebra /EA./ are not 

valid here. Nor are De Morgan l aws; their invalidity being 

justifiable in view of our understanding of the operator v 

/see def./. The vaJid equivalence 

t:l. V ~ Pl (ot./\•f)) V (•OlA~) V (or..,\(~) 

1-1 Co. A• ~) y (• 01.1\ r.>) 

also complies with our i ntuition . Concerning other BA-laws 

we find that idempotency, commutativ i ty, as sociativity and 

distributivity are all valid, but 

/6/ 

Still 

~AIOI. +~/\if'!> 

/7 I 01.. v 1 or. ~ 0 v 1 f\ 

holds for any 01., ~ • Indeed 

0-VIOI.k:::\ •'1•01. 

/cf. / 4/ /.This seems r ight, fo r by [Uaranteein OI.YiCX 

one does not really guarantee anythi~g . / He o~ly says a 

riviality . / Contra~ting / 6/ a / 7/ we may co'llme "l 
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although it is not the same giving a contradictory infor

mation about o. or a out ~ , it is uite the same g"ving 

no information about C1- or about ("!. • Bearing this in mind 

it is not surprising that 

d,.V"1cl ,.... 1(0.'1/,(l(.J 

The operation • is distribut i ve over each of the ope

rations 1\ and v 

•(()(A~) ~ •<::J..I\•~ 

•(o.vr.>) ..- ·oc.v·~ 

Even a stronger connection, 

/ 8/ 

holds, which nicely confirms our defini tion of the •-ope

ration. 

N.B. 

As an instance of /8/ we have 

•(tll/\10..~ ~ ·(~v,~) 

and each of these is l ogically equivalent to <:~-.v, <l( , 

/just poor informations!/. 

but 

In the logic of guaranty 

tll/\~1=-~ 

d.~O..V~ 

The latter fact · resolves the so-called deontic paradox /cf. 

ll, p.2l] , where a convincing example,of course using 

"ought to" instead of "guarantee" ,reads: "If I ought to mail 

a letter, I also ought to mail or burn it."/. Naturally 

CI.A~I=O..v(!> 

This logic also, to a certain significant degree, 

avoids some relevance paradoxes /cf. l 2, p.lll] /, for 

a.."-, Cll. If:. (':l and a.. If ~ v., ~ 
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but not entirely, for 

oi.Aiot l= {!>Vl{')"" i(CI.A,Dl) 

In order to resolve these, 2 distinct contexts should be 

taken into account, as proved in [ 2 ) • Hence the task to extend 

th~ logic in this direction. 

P r o b 1 e m s 

Ne end the paper with a list of pertinent problems. 

1. Find an adequate formalization of implicational 

propositions; i.e. define semantically the operation of 

logical implication. 

2. Build in a contextual approach to the logic of 

guara nty, i.e. one which will also respect different 

contents of propositionso 

3 . Consider distinctions between factual and logical 

truths . 

4. Investigate systematically other pecul ia r i t ie s of 

the logic of guar ~ nty , besides those exhibited . 

5 . Study an appropr i ate class of algebras s.t. it 

contai ns the corres~onding Lindenbaum algebr3. 

6 . Find a sound and complete axiom etization f or the 

logi c of guar 3nty /Hilbert, Gentzen or Smullyan type/. 

1. Extend the l ogic to the first , and perhaps higher , 

order level; an~ exa mi ne the conse quences for set and 

number theori es . 

8 . Pur s~e si~i l n r construct ions st g rt i n~ from di ffe-

rent backg r ounds , e . g . i ntu itionis t i c ilol~CI./. 

9 . ~onsider rossible co~t ritutions of t he l ogic o 

fU'li''Jr.ty t prctle~ of formglizin& natural lnngu9ges . 
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Abstract. 

(m,n)-ring iff 

(R,g) is an 

A universal algebra (R,f,g) is called an 

(i) (R,f) is commutative m-group, (ii) 

n-semigroup, (iii) for every a 1 , ••• ,an,b1 , ••• 

• . . , bm E- R 

i-1 m n ( ( i-1 n ) ( i-1 n ) ) g(a 1 ,f(b .1 ),ai+ 1 ) f g a 1 ,b1 ,a.i+1 , ••• ,g a .1 ,bm,ai+1 

holds . (m,n)-ring is commutative iff (R,g) is commutative 

n-semigroup. In t his paper only commutative (m,n)-rings will 

be cons idered . 

If S is an n-subsemigroup of (R, g ), then on Rxsn-1 

an equivalence relation ,..., is defined by (r~) rv (s~) iff 

there is t~ " S such that 

g ( g (r 1 ,s~),t~) = g ( g (s 1 ,r~),t~). 
operations 

(m,n)-ring, 

so that 

If R '1<. Sn-~ / 'V is denoted by S-1 R then in S-
1

R 

1, and g are defined so that ( S-
1

R,1 ,g) is an 

such that there is a homomorphism :rr-8 : R-s-
1

R 

~~ (S) is contained in n-group (S-
1
S,g), and (m,n)-ring 

is cancellative with respect to the elements of S-
1
8. It is 

proved tha t (S-1R,f,g) is universal with respect to these 

properties, and some related results. 

First, some basic definitions and notations will be 

given. General references are [1] and [31 • 

The sequence x x x is denoted by {x "Ln 
m' m+·l ' • • ·' n iri=m 

or n 
~· If m>n then ~ is considered empty, and if 
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x.=x 
~ 

for all iEJNn={1, ••• ,n} then xn 
n 

For n ~ 0 x will be considered empty. 

An element eeQ of an n-groupoid 
n 

idempotent iff f(e) = e. 

An element eeQ of an n-groupoid 
i- ·1 

identity element in (Q,f) iff f( e ,x, 

X E Q, and every i E INn. 

n 
is denoted by x. 

(Q,f) is called 

(Q,f) is an 
n-i 

e ) = x, for every 

An n-groupoid (Q,f) is commutative iff the following 

identity holds 
n o (n)) 

f(x ) = f(x(Y( 1 ) ' 

f 'or every permutation a- of the set INn. 

A mapping <.fl: Q--+ S of an n-groupoid ( Q,f) into 

an n-groupoid (S,g) is a homomorphi s m iff the identity 

cp(f(x~)) = g( { cp(xi)) i~1) 

holds. 

An n-groupoid ( Q,f) 

( i ( i+n) 2n- 1 ) 
f x1,f xi+1 , x i+n+ 1 

is an n-semigroup iff 

( j ( j +n) 2n-1 ) 
f x 1 , f xj+ 1 , x j+n+ 1 

2n-1 hold s f or ev ery x 1 ~Q , and ev ery i , j £: { 0 , ••• ,n- 1) • 

An n - semigroup is i - cancel l ati ve , i c= JNn, wi th re

spect to M.; Q iff 

( i-1 n ) ( 1-1 n ) f a 1 , x,a1 +1 = f a 1 ,y , ai+'1 implies x = y , 

wh enever a~ <= M. If an n - semigroup (Q , f) is i - cancellativ e 

with M 

tive. 

tion 

every 

Q, for every i E: INn , then it is called cancella-

An n - groupoid (Q , f) is an n-quasi~roup iff the equa-

i-1 n ) _ b 
f ( a1 , x , ai+1 -

n a 1 , b e:Q , and every 

has a unique solution x for 

i" IN n · 
An n-g roup ( Q,f) i s an n-semigroup which is also an 

n-quasigroup. 

In a commutative n-group (Q,f) an element e is 

idempotent iff e is identity element . 
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For every a E Q in an n-group (Q,f) there is unique 
n-1 -x E Q such that f( a ,x ) = a. That x is denoted by a 

and is called the querelement of a . For every a,x e:: Q, and 

every i t \ 2 , ... ,n) , we have 
i-2 n-i i-2 n-i 

f(x, a ,8, a ) f( a ,8, a , x) = x. 

It can be proved easily that ~(a) = ~ for every 

n-group homomorphism 41, and every a €: Q, and that if n-group 

is commutative then f(~) f(x~) holds. 

An algebra (R,f, g) ie called an (m,n)-ring iff 

(i) (R,f) is a commutative m-group, 

(ii) (R,g) is an n-eemigroup, 

(iii) the following distributive laws hold for every i E: INn' 

n m and every a 1 , b" E R 

g(a~-\f(b~ ), a~+~) = f({g(a;- 1 , b j ,a~+~) J j~~). 
Since thi s notation is rather complicated it will be 

simplyfied to f(a~) = a.1+a2+ ..• +am' and g (b~) = b 1 b 2 ... bn 

which is much more sugges tive but much more imprecize. a 1+ ••• 

.•• +ak mak es sense only if k =1 mod(m- '1), b1 ••• b1 makes 

sense only if 1=1 mod(n-1) and such words are called 

admissible. Admissible word b 1 ••• b1 where bi=b for 

i <: JN 1 is denoted by (b) 1 • (b) 1 is considered empty for 

l ~ o. 

The commutative m-g roup (R,f) of the (m,n)-ring 

(R,f,g) will be called the additive m-group of (m,n)-ring, 

and n-semigroup (R,g) will be called the multiplicative 

n-semigroup of the (m,n)-ring R. 

The (m,n)-ring is commutative iff its multiplicative 

n-semigroup is commutative. 

If the multiplicative n-semigroup of an (m,n)-ring 

(R,f,g) has an n-subsemigroup (S,g), which is ann-group, 

then the querelement of an element a E S, with respect to 
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the operation g is denoted by a . 

An element 0 (or OR when necessary) in an (m,n)

-ring R is zero of R iff g(a~- 1 ,0,a~+1 ) = 0 for every 

a~ c:: R, and every i ~ JNn. An (m,n)-ring may have at most one 

zero. A zero of R is clea rly additive and multiplicative 

idempotent in R but c onverse does not necessarily hold . 

By R* will be d enoted the set of non-zero elements 

in the (m,n)-ring R. 

An (m,n)-ring ( R,f, g ) is cancellative wi th respec t 

to S~ R, iff the mul t iplicativ e n-semig roup of R is 

c ancellative with resp ect to S. If S = R* then R is 

called canc ella tive. A commut a tive cancella tive (m,n)-ring 

i s called an integral (m,n)-domain. 

An (m, n )-s ubring I of the (m,n )-ring R is an ideal 

of R iff 

(i ) (I ,f ) is ann- subg ro up of the a dditive n-group of R. 

(ii) ( i-1 n ) g r., , a ,ri+
1 

1?: I for ev ery r~ (- R, every a .;: I, and 

ev ery i :: ]If n· 

Let I
1

, ••• ,Ik be ideal s of (m , n) - ring R where 

k = '\ mod(m-1). J = {x-:. R I X= a1 + •.• +ak, ai £: I i' i ( rnk } 

i s an ideal of R which is denoted by I 1 + . . . +I k , and c al l ed 

s um of ideals Ii , i G JN k* 

Let I 1 , ••• , I 1 be ideals of (m , n) - ring R wher e 

1 :1 mod(n- '1) , and J ={xE:R lx = a., . .. an+ ... +ak1 .. . ~1 , 

aij ·.:: Ij , i 'C INk , j<= l)_, k :: 1 mod (m- 1) . If R i s 

commutativ e (m, n) - ring then J is an ideal which is denoted 

b~ I 1 ... r1 and called the product of ideals I 1 , . .. , I 1 . 

In this paper all (m , n)-rings are commutative . 
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DEFI1li'riON 1. 

multiplicative n-semigroup of~ commut 

On R X Sn- 1 define relation "-/ ~ 

(m,n)-ring R. 

(r~) rv ( s~) iff there are t~- 1 c:: S such that 

r .,s2 ... snt1 ... tn- ·l = s1 r 2 ... rnt1 ... tn- 1 . 

TH EOREM 1 . The rel at ion "' defined in the definition 

is an equivalence relation on R x sn- 1
. 

Proo f . The proof of reflexivity and symmetry is 

immediate, and t he proof of transitivity will be given for 

(m, J)-rings since the notation in general case becomes to 

complicated. 

( 1 ) 

(2) 

(r1 ,r2,r3) 

( s1,s2 ,s3) 

(s1 ,s2,s3) 

(u1' u2 , u3 ) 

iff 

iff 

for s ome t 1 ,t2 ,v
1

,v2 c s , so we have from (1) 

r 1u2u
3

(s 2t 1v1 )(s
3

t 2v2 ) = s 1 r 2r
3

t 1t 2u2u
3

v1 v2 , 

and from ( 2) 

s 1u2u
3

v1 v2t 1 t 2r 2r
3
= u

1
r 2r

3
(s2t 1 v1 )(s

3
t 2v 2 ) , 

so we have finally 

( r ~. , r 2 , r 3 ) """ ( u ~, ~, u 3 ) • 

Remark. When the n-subsemigroup S is cancellative 

then the rela t ion ~ i s equivalent to the relation intro-

duced in l2] . 

Dl':FINITION 2. The equivalence class of ( s~), with 

respect to ""• will be denoted !?;[ [s~] • If TS: R then 

the set of [s~] , where s 1 ~ T, and s~ ES is denoted ~ 

s-1T. 

THEOREM 2. Let in the set -------- of the equivalen-

~ classes of ~ define operations in ~ following way: 
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Let [a~], [b~], [c~l, ... , [ d~], [e~] be m elements of s-1 R, 

define 

(i) [a~] + [b~] + [c~] + ••• + [d~] + [e~] 

8a1b2 •.• bn'''e2'''en+b1a2'''anc2'''cn···e2'''en+ ••• 

••• +e1a2 ••. an'''d2 •.• dn)x12 '''x1n'''xk2'''xkn' 

,a2b2 .•. d2e2x12'''xk2'''''anbn·•·dnenx1n'''xknU 

where k is !! number such that the words 

aibi ••. dieix1i •.. xki become admissible for multiplicative 

n-semigroup, and xij E: S, i E: JN k' j E: JN n' 

Let [a~l. Lb~J • ... , [e~] be n elements of s- 1
R, define 

(ii) [a~]lb~] •.• [e~] = [a 1b 1 ... e 1 , ... ,anbn"'enj. 

Then (S-1R,+,•) i s ~ (m,n)-ring. 

Proof. Direct verification. 

DEFINITION ). Th e (m,n)-ri ng defined in theorem 2. 

is called the localizat i on of R at S. 

COROLLARY 1 • For every a~ E R, and every b~ ::- S 

[a1,b2, ... ,bn] + ... + [am,b2 , ... ,bnl= 

= La 1 + · · · +am' b 2 • " • 'b n J • 
Proof. 

[a1 , b2, ... , bnl+ ... + [am,b 2 '"''bnl = 

r m-1 m- '11 = J a1(b2 ..• bn) + ... +am(b2 .•. bn) ,x12 ''' x 1n ''' xk2' '' xkn' 

,(h2)mx12 '''xk2 ''''' (bn)mx1n···xkn1 = [a1+ .•. +an,b'2., •.• ,bc,J 

s ince we have 

(a1+ ... +am)(b2)m ..• (bn)mx~2'' ' xk2 ''' x,n ··· xkn 
) m- 1 ( )m- '\ 

= (a 1(b2 ... bn + ... +am b2 ..• bn JX12 ' · . x 1n··· xk2 '' · 

. .. xknb2 ... bn · 

,OROLLARY 2 . If I is ~ ideal of an (m , n )-ring R 

-1 -1 
then S I i s an ideal in 3 R. 



Proof . It follows immediately from the definition 

of an ideal and theorem 2 . 

COROLLARY ) . If I1 ' ... , Ik are id ala of an (m,n)-

ring R, where k = 1 mod(m-1), then 

-1 ( Ik) s-1I -1 
S I 1 + ... + = + . .. + S Ik . 1 

Proof. It follows from theorem 2 and corollary 1 . 
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COROLLARY 4. If I,J are ideals of an (m,n)-ring R 

then s- 1 (I n J) = s- 1 I n s- 1 J . 

COROLLARY 5. If J1 , ... ,J1 ~ideals of~ (m,n)

-ring R, where 1 = 1 mod(n-1) then 

S-1(J1 ··· Jl) = (S-1J1) ..• (S-1Jl) 

Proof. It follows from theorem 2, and corollary 1 if 

c 1 = k 1 ..• k 1 , ... , 

where i1,j1,k1, ... ,p1,q 1.::J1, 

• • • ' il' j 1 'kl' • • • 'P1' ql E J 1 • 

THEOREM). S-1 S is~ multiplicative n-group. 

Proof. One checks directly that 

x = [a1s 2 ••• sn ••• t 2 ••• tn,a2s 1 .•• t 1 ,a3 , •.• ,anJ 

is a solution of the equation 

(3) x [s~J ... Lt~] 
Since R is commutative (m,n)-ring it follows that 

s-1 s is ann-group ( [4] , p.217). 

THEOREM 4. (m,n)-ring s-1R is cancellative with 

respect to the elements of s-1s. 
Proof. Since R is commutative (m,n)-ring it is 

sufficient to prove 1-cancellativity. Let 



130 

Then for some t~ E S we have 

(x1a1. • .c'\y2a2. • .c2. · ·Ynan. • .cn)t2. • .tn 

= (y1 a 1 ••• c 1 x2a2 ••• c2 ••• xnan···cn)t2 •.• tn 

or 

(x1y2 ••• yn)a1 ••• c1 ••• an···cnt2 ••• tn = 

= (y1 x2 •.• xn)a1 •.• c1 •.• an···cnt2 .•• tn 

Since a 1 .•• c 1 .•• an···cnt2 ••• tn = u2 ••• ~ it follows that 

[x~J = LY~] 
THEOREM 5. The mapping 'JT S 

~S : a~ [as 2 ••• sn,s 2 , •.• ,snl , 

homomorphism of (m,n)-rings. 

-1 R -7 S R defined ~ 

s~ E S, ~ well-defined 

Proof. Let t~ E S. One checks easily that 

[at 2 ••• tn, t 2 , ••• , tnl = [as2 .•• sn, s 2 , ••• , sn] 

so SIS is well-defined. 

From corollary 1 it follows that 

'Ji S (a ·1 + " · + am) = 'Ji S (a 1 ) + • • • + 'JT S ( am) · 

'JTS (a ). • • 'Jfs (an) = [a1s2 ••. sn,s2, .•. ,snJ ••• 
1- n n n 

•.. (ans2 •.• sn,s2, ••• ,sn1 = la1 ••. an(s2) ..• (en) ,(s2) , ••. 

••• ,(sn)n] = la1 •.• ans2 •.• sn ,s2 , ... ,sn] = 'Jfs(a ..• an). 

THEOREM 6. When (R,·) is cancellative n-semigroup 

with respect to S, then the homomorphism 'Jf8 , defined in 

theorem 5, is~ monomorphi sm . 

Proof. If [as2 .•• sn , s 2 , •.• , sn1 = [bs2 .•. sn,s2 , .•• ,snl 

then as 2 ... sns2 ... snt 2 ..• tn = bs 2 ... sns2 ... snt 2 ... tn, for 

t~ ~ S , and since R is cacellative with respect to S it 

follows that a = b . 

THEOREM 7. When 3 is~ n-group then the homomor

phism '}f8 , defined in t heor em 5 , is ~ isomorphism . 

Proof . Let Lt ,u2 ···· ·~]be arbitrary element of s-1 R. 

~ 
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If 'JTs is onto then there should exist an (ss 2 ... an , s 2 , .•. 

. . . , an] such that Cs a2 ... an, s 2 , ... , an] [ t, u2 , ... , ~ J 

for s ome Since s is an n-group then it suffices 

that there is an a & R such that ss 2 .•. an u2 .•• ~ = 

= ts
2 
... sn • If a= t(~)n-J~ ..• (~)n-3~ then, because 

( )n-2 in an n-group ui u1y = y holds for every yES, it 

follows tha t sa2 ..• sn~···~ = ts2 •.• sn holds and so 1rs 

i s surjective. By theorem 6 it i s injective . 

THEOREM 8. Let S be ~ n-sub s emigroup of the ~

plicative n-semigroup of ~ (m,n)-ring R, and let T be 

another (m,n)-ring. If cp: R ~ T 1!!, ~ (m,n)-ring ~

morphism ~ that <.p ( S) is ~ n-group in ~ mul tiplica

tive n-semigroup (T*,· ) then~ is unique homomorphism 

q>: s- 1 R ---7 T such !h!rt ~:ITs= cp. 

Proof. Let us define q3 : S-
1 

R ~ T by 

Cf(Lr,s2, ••• ,snj) = <.p(r)( c.p(s2))n-3~(s2) ••• (q>(sn))n-3c.p(sn). 

Using the fact that <.p(x1 ••• xn) = q>(x1 ) ••• cp(xn) from the 
- -

definitions of addition and multiplication easily follows 

that qf is well-defined homomorphism of rings such that 

Cf'JTs=Cf>· 
Let "¥ be an another homomorphism such that "Y TiS = ct>. 

Then for every a E: S, "il( 'JT8 (s)) has multiplicative quer

element in T so "f1(::IT 8 Cs)) = "+'C11 8(s)). 

x = lr,s , ••• ,a] is the solution of the equation 

xls2t2 ••• tn,t2' ••• ,tJ •• • [snt2 ••• tn,t2, •• • ,tnl= 

= [rt2 ••• tn,t2, ••• ,tnl 

which is checked directly. Let us denote [sit2 ••• tn,t2 , ••• ,tnl 

by ui , i=2, .•. ,n. If ui are elements of ann-group then 
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y = [rt2 ••• tn,t2, ••• ,tnl<u2)n-3u2·""" (11n)n-311n 
- -

is a solution too so 

[r,s2, ••• ,snl = [rt2 ••• tn,t2, ••• ,tnJ(u2)n-3~···<11n)n-311n 
It follows that 

"¥ ( [r' s2, • •• 'en l) = 't'( [rt2 ••• tn, t2' ••• 'tn J ( u2 )n-3u2 ••• ( 11n )n-311n) = 

= ·"+' ( [rt2. • • tn' t2' • • • 'tnl) (~ (u2) )n-3 "PC~) • • • ~ (11n) )n-3 ;<11n) • 

Using that ui = ::rr8 ( si), i=2, ••• ,n, and 'Y 'JT S = cp we have 

"t'([r,s2, ••• ,sn"J) = <f(r)(Cf(u2))n-3cp(~) ••• ('f(11n))n-3cp(11n)= 

tf( [r,s2, • • • ,snl) 

and so "'I = ·<f • 
THEOREM 9. Let S S: T be n-subsemigroups of the multi-

plicative n-sernigroup of ~ commutative (m,n)-ring R. Then 

( ) -1 -1 i ~ is ~ unique homomorphism <p: S R ·-7> T R ~ 

~ IJTT = cp'JTS • 

(ii) s-1 T is an n-subsemigroup of the multiplicative n-

-semigroup of ~ (m,n)-ring S- 1R. 

(iii) (m,n)-rings T-1 R and (01
8

(T))- 1(s- 1R) ~ 

isomorphic. 

( - 1 ( -1 - 1 )- 1 - 1 (iv) m,n)-rings ( TI
8

(T)) S R) and (S T (S R) 

~ isomorphic. 

Proof. To prove (i), let n t 2 E:: T, n 
82 ~ s, and since 

S S: T then as in proof of theorem 5 it follows that 'JfT (e) 

(_ [ l - -1 = et 2 . •• tn,t 2 , ••• ,tnl = se2 ••• sn,e2 , .•• , en c S S eo by 

theorem 3 0fT(S) is an n-group. By theorem 8 it follows 

that there is unique homomorphism '-? such that Jf T = cp 'JT S . 

The proof of (ii) is immediate . 

The proof of (iii) follows from the fact that 

-1 1 ( 11 
8

(T)) (S - R) is obtained as composition of 

'Jf 11 s 1 7s < T ) 1 1 
R -- -~ S - R - -- ~ ( :ITS ( T) ) - ( S- R) , 



133 

so ( T!S(T))- 1 (S - 1R) also has the universal property f r om 

the theorem 8 . Since universal objects are uni que up t o 

i s omorphi sm it fo llows that T-1R and ( Jr8(T)) - 1
(s- 1R) 

are i somorphic. 

The proof of (iv) is obt a ined s i milarly a s that of 

(iii). 
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Abstract. Sets and predicates defined by ordinary induction are , in a very 
strong sense , definable in the first layer of Martin- Lof's theory of types 
without universes or wellorderings , with or without function-types. 

INTRODUCTION 
Sets and predicates defined by induction can be conveniently construct

ed in Martin-LOf' s theory of types (Martin-Lof (1978), (1984) are general 

r efer ences) using the machinery of "wellorderings", or, far less generally 

and somewhat less conveniently, using universes, i . e . treating names of ty

pes as objects . Both approaches , however , involve consider abl e s trengthen

ing of the basic ar ithmetical theory ML
0

, which i s precisely the theory of 

types without either wellorderings or universes. ML
0 

has probably not been 

intended to stand alone, but it can certainly be viewed as a formalization 

of a definite body of mathematics; it might even be argued that it i s a more 

suitable (in sense of Beeson (1981)) formalization of the same body of mathe

matics as, say, HAw (in some variants). 

It encompasses a s ignificant fragment of constructive mathematics in

cluding elementary analysis, as well as (or rather undistinguishable from , 

as argued by Martin- Lof (1978)) a significant part of computing science. 

This fragment would naturally include a definite class of inductivel y defi

ned sets and predicates, namely those specified by "ordinary" as opposed to 

"generalized" induction in sense of Martin- Lof (1971); yet the means for 

their explicit construction are entirely lacking in ML
0

, save for the set of 

natural numbers . 

In this paper we show that they are definable in ML
0 

in a very strong 

sense (as well as in the subsystem of ML without function-types, named SA 
0 

for "Skolem- arithmetics" by Jervell (1978)). In view of standard facts about 
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HA, together with results and techniques of Beeson (1982) (see also section 

3) the sets and predicates of that cl ass should be somehow definable; if ML
0 

is to be a suitable formalization of anything, they should be definable in 

as s trong a sense as can be, so the results are anything but unexpected. 

In section l. we redescribe sets and predicates defined by ordinary in

duction so as to fit together with ML
0

. In section 2 . we explain what it 

means for them t o be definable and what it means for an extension to be con

servative, as ML
0 

i s not an ordinary first-order theory, and show how iso

morphism in a category introduced by J.Cartmell (1978) r el ates to de

finability. In section 3. we display i somorphs, in ML
0 

or in SA , of sets 

and predicates of section 1. 

1 . SETS AND PREDICATES DEFINED BY ORDINARY INDUCTION 

In the theory of types sets exis t as types , and predicat es as type-

. -valued functions, in view of interpret ability of types as propositions. All 

types of ML
0 

are defined by means of rules , namely: rules of formation, 

which specify the conditions for somet hing t o be a type , rules of introduc

tion, which specify how object s of a t ype are t o be construct ed , as well as 

what it means for two object s t o be equal, rules of elimination, whi ch spe

cify the condit ions for int r oduci ng functi ons over a t ype , and r ul es of 

conver sion, which define funct ions intr oduced by el iminati on. Inductively 

defined types shal l then be specified by rul es of the fol lowing gener al form 

(we shall suppr ess their obvious equality-counterpar ts ): 

1.1 . V - formation 

bt B. 
1 

v. (b ) type 
1 

1 .2. V - introduct i on 

a t:Ai · · · ar s ~ Ar, cr s t Vr( t r s(ar s )) . · · 

ci j (a , . . . ars ' cr s · .. ) ~ Vi (ti j(a ) ) 

pr ovided t ij(x ) ~ Bi (x f Ai )' 

H l1, . .. ,n j . 

iG {l , ... ,n !, j c;{ l, . .. ,mi \' reRij~~l , .. . , n~ , s e Sijr ~ {l , . .. ,mr ). 
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1 . 3. V - elimination 

minor premisses 

rec(c , ... dkm .. . ) ~ci(b,c) 

where i ,k~\l, ... ,n \, mfp, . .. ,~~· and for any pair k ,m there is a 

minor premiss of form 

with r'\m• s•~· 

1.4. V - conversion 
minor premisses 

rec(cij(a, ... ars'crs···), ... dkm··· ) 

= dij(a , ... ars'crs'rec(crs' ... dkm ••. ) ... ) 

'= ci<i/a),cij(a, ..• ars'crs··· )) 

where ranges of i,j,r,s are as in V-introduction, and minor premisses and 

ranges of k,m are as in V-elimination. 

1.5. The rules are graphically complicated, and will be, in section 3, re

duced to equivalent rules that are simpler to write down in general form; 

the present form of rules is, however, very easy to recognize in special 

cases. 

1. 6. Examples 

1.6.1. The set of symbolic expressions over a set Atom is specified by the 

following rules: 

1.6.1.1. Sexp-formation 

Sexp type 



138 

1.6.1.2. Sexp-introduction 

at Atom a ~: Sexp be Sexp 

at(a)EoSexp cons(a,b)'" Sexp 

1.6.1.3. Sexp-elimination 

(x6Atom) (x 6 Sexp yo<.C(x) zeoSexp we, C(z )) 

c" Sexp d(x) e C(at(x)) e (x ,y, z ,w) 6 C(cons (x,z)) 

Sexprec(c,d,e) 4 C(c) 

1.6.1.4. Sexp-conversi on 

a f Atom minor premisses 

Sexprec(at(a) ,d, e ) = d(a ) 6 C(at (a )) 

a e. Sexp b 6 Sexp minor premisses 

Sexprec(cons (a,b ),d, e ) 

= e(a,Sexprec(a,d,e),q,Sexprec(b,d,e)) EC(cons(a , b )). 

1.6.2. The predicates of being a list and of being an element of~ list ar e 

s pecified by the following rules : 

1.6.2.1. Formation 

a f: Sexp 

Listelement(a) type 

1.6.2.2. Introduction 

a " Atom 

c
1 

(a) ~ Listelement(at(a)) 

c 3 ' List (at (nil)) 

a~ Sexp 

List (a) type 

a~ Sexp b E List(a) 

c2 Ca , b) ~ Listelement(a) 

a EoSexp b t.Listelement(a) c ~Sexp d" List(c) 

c 4(a,b,c,d) "List(cons(a,c)) 



1.6.2. 3. Elimination 

a ~ Sexp c • Listelement(a) minor premisses 

rec(c,e,f,g ,h) • C(a ,c) 

a e Sexp C tList(a) minor premisses 

r ec(c ,e ,f,g ,h)E: D(a , c) 

provided 

C(x ,y) type (x 6 Sexp, y e Listelem nt(x)) 

D(x,y) type (x" Sexp, y._ List(x)) , 

where the minor premisses are: 

(x t; Atom) 

e(x) ~:. C(at(x) , c
1 

(x)) 

(X6Sexp, y•List(x), z • D(x,y)) 

f(x,y,z) 6. C(x ,c2 (x,y)) 
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(x G Sexp yEo- Listelement (x) ZG C(x,y ) u&Sexp V6List(u ) w,D(u,v)) 

h(x ,y,z,u,v,w)e D(cons(x,u ), c4 (x,y,u,v ) 

1.6.2.4. Conver sion 

a e Atom minor premisses 

rec(c
1 

(a ),e,f, g ,h) = e(a) 6- C(at(a) , c
1 

(a)) 

a~ Sexp bG Lis t(a ) minor premisses 

r ec (c
2

(a ,b), e ,f, g ,h) f(a,b,rec(b,e,f, g ,h ) e C(a , c2 (a ,b)) 

rec(c
3

,e,f,g,h) = g f0(at(nil),c
3

) 

a f:: Sexp b G Lis t e lement (a ) c e Sexp d 6 Lis t (c) minor premisses 

rec( c4 (a ,b,c,d),e,f, g ,h) = h(a,b,rec(b,e,f, g ,h),c,d,rec (d,e,f,g,h)) 

f D(cons(a,c),c4(a,b,c,d)). 

1.6. 3. The predicate Eval(x,y,z) ,· meaning "a LISP-evaluator, given the 

Sexp x with the environment (cf. Allen (1978)) y, terminates yielding value 

z", can be s pecified with not many more then twenty introduction-rules, pro

vided the type of environments has already been defined. 
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1.6.4. Given Eval as above, we can, by standard methods, speci fy a univer

sal predicate for all one-place recursively enumerable predicates over the 

type Sexp, with symbolic expressions as r.e. indices. 

1.7~ The semantics of cannonical objects (Martin-LOf (1978), (1984)) can 

be straightforwardly extended to rules of form 1.1-1.4. 

1.8. Sets specified by rules of form 1.1-1.4. are holomorph (Ger. zahlen

artig aufgebaut ) in sense of Peter (1967). 

1.9. The rules of elimination and conversion can be produced mechanically, 

as soon as the rules of formation and introduction are given. 

In presenqe of rules for identity- types, they entail 

following statement: 

the 

For any system of functions dkm which validate the minor premisses of 

1.3. there is a unique system of functions 

fi (z) <: Ci (y,z)(y 6Bi' z e \ (y)) 

which satisfy .the recursion-equations 

fi (cij(x, ···Yrs' 2 rs· ·· )) = dij(x, ···Yrs ' 2 r s 'fr(2 r s ). ·· ) 

' Ci (ti/x),cij(x, ···Yrs' zrs··· ))(x E:Ai ' ···Yrs EoAr, zrs 

~Vr(trs(yrs ))), 

i & ~ 1, ••• , n ~ , j • { 1 , . . . , mi ~ . 

l.lo. The rules 1.6.1. and 1. 6.2. may be seen as pr oof-theor etic unwinding 

of "domain equations" 

Sexp ~Atom+ Sexp Sexp, 

Listelement(x) ~ Isatom(x ) + List(x) (x E Sexp) 

List (x) ~ Isnil (x) + ( 3 u ' Sexp •Sexp) ((x = cons (p(u) , q (u))) 

Listelement(p(u) )• List(q(u))) (x E Sexp) , 

with the obvious predicates Isatom, Isnil , while (a=b) is shorthand for 

I(A,a ,b) , to be used when no ambiguity as to type can arise . The rules are 

indeed determined by the equations in a sense which will be made precise in 

the next section. 
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2 . DEFINABILITY AND CO SERVATIVITY 

2 . 1. Twill in the sequel denote a subsystem of ML0 containing all of 

its rules except perhaps those for function- types (in that case possibly 

some of their instances) , and perhaps some rules of form l . l - 1.4 . We shall 

say that a system of unary type-valued functions ... Vi... , i ' { l , ... , n J, 
validates the rules l.l-1 . 4. in T if types ... Ai,Bi ... , functions 

... tij'cij· ·· and a functional rec can be defined so that the rules 

l.l.-1 . 4. are derived rules ofT. We shall also say that predicates spe

cified by those rules are definable in T if there are type- valued fun

ctions which validate them in T. 

2.1.1. Weaker notions, such as existence of logically equivalent type

-valued functions (predicates), would be grossly inadequate for the theory 

of types; extending T by rules for a predicate which is only definable i n 

such a weak sense can be very nonconservative (see 2 .5 . ) . 

In view of the formulae-as-types interpretation of proof-theory, this 

suggests a notion of deductive definability of predicates and connectives 

in a system of natural deduction which is stronger then the usual notion 

of logical definability. Deductive definability would preserve some proof

-theoretic results, such as normal-form theorems. Disjunction is for ins

tance definable deductively in intuitionistic arithmetic, while only l ogi

cally in classical logic . The Shaeffer-operation, introduced by K. Dosen 

in this vol ume, defines all operations of intuitionistic propositional 

logic only logically, its rules do not suffice to define the rules of in

troduction and elimination of other propositional constants so as to vali

date the inversion principle in form of standard rules of reduction. 

2 .1. 2. If •.. Vi ... validat e the rules l.l.-1.4. we can, assuming ye Bi 

and using 1 .9. with appr opr iate choi ces of dkm' define functions which 

extr act the following information form a z E V. (y): l. 

a ) indl( z ) G Nn' so that indl(z) = i f-Nn 

b) ind2(z) f: N , so that for some j ind2(z) = j~N m. m. 
l. l. 

c) a(z) £: Ai, so that y = tij(a(z)) f:Bi 

d) 
ars (z) ~:Ar' r G-Rij' s ~s .. l.Jr 
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e) 
cr s (z ) E: vr (trs (ars (z )))' r <£ Ri j , s ~ Si j r 

so t hat 

f) z = cij(a(z ) , .• . ars (z ) ,crs(z) .. . ) e- \(tij(a(z) )) 

is derivable in T. 

Equali ties c),f) are proved by 1 . 3. or 1.9 . using appropriate identi

ty-types for C. (and a function t(i , j,x) defined by rules for finite types 
l 

so as to take the same values as tij(y)). 

2 .2 . The fact that each object of a Vi(y) is completely dete~mined by in

formation 2.1 .2. invites category-theoretic formul ation . 

Objects of the category CT will be contexts, i.e. sequences of 

assumptions 

xl cAl' X2'-A2(xl), .. . ,xn"An(xl, ... ,xn-l) 

such that the judgements 

A1 type 

.0. (x1 , . . . x 1) type (x1 c A1 , .. . ,x 1 € A 1(x1 , . . . ,x 2)) n n- n- n- n-

ar e al l derivable in T; i f 

A :: x1c A1, ... ,xn eAn( x1 , ... ,xn_1) 

B:: Y1 " Bl , ... , ym ~ Bm(yl , ... ,ym- l ) 

ar e contexts , mor phisms form~ to~ wi ll be realizations o f ~ in A , i . e . 

sequences of n- ar y f unct ions f1 , ... , fm such that the judgements 

f l (x l ' ... ,xn) ~ Bl (~) 

f ( x
1 

, ... , x ) c B ( f1 ( x1 , ... , x ) , ... , f 1 ( x1, ... , x ) ) (A) m n m n m- n -

are all derivable in T; objects and morphisms will be egual 1n CT if the 

appropriate judgements of equality are der ivable in T . 

With the obvious composition and identities , CT is a contextual ca

tegory of Cartmell (1978) , essenti~lly a subcategory of the initial 

"strong Martin- LOf structure". 

He shall say that an isomorphism f1 , ... , fn of two contexts of equal 

lenath is structure- preserving if fi 1s a function of x1 , ... ,xi only , and 



the inverses g1 , ... ,gn have the same proper y. It namely preserves he 

tree-structure of contex s (cf . Cartmell (1978)). 
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He shall say that a morph1sm of wo contexts wi h the corrrnon initial 

segmen ~ is above Q if its first length(~) componen s are the projec

tions . To morphisms of ~. y f. A(x1 , ... ,xn) o g_, z 1: A' (x
1

, ... ,xn) above 9. 
we shall simultaneo sly refer as morphisms from A t~ A' above g_. 

2. 3. The information contained in 2 .1. 2 . can now be expressed by a "do

main- equation" 

vi:: (y) ... +( 3 x ~ A1) ((y=tij (x))" vij)+ ... 

i ' {l, ... ,nl, j r,{l, .. . , mi~' 
where 

means isomorphism above y E, Bi , and the finite sums and products are 

obvious iterates of binary s ums and products as type-constructors of T. 

2 . 3.1. By 1.9 .... Vi ... is a minimal solution of equations 2 . 3., i .e . f or 

any other system of type-valued functions ... Vi_.. . over ... Bf .. which solve 

the equations , there i s a unique sys tem of mono~orphisms from Vi t o Vi 

above y ~ Bi which commute with the equations . 

The domain-equations namely suggest r ecursion- equations for functions 

hi(y , z )~Vi(y)(y G Bi , zi:Vi(y)): from ... hr(Yrs ' zrs) .. . reconstruct the r.h.s., 

map to Vi(y) by inverse- isomorphism and equate to hi(y,z); by 1.9. such 

.. . hi · ·· exist and are uni que , by the equations they are monomorphisms. 

2 . 4. THEOREM. If ... Vi, Vi. . . are unary ~-valued functions over . . . Bi . . . 

in T, and ... Vi · ·· val idate the rules 1.1-1.4. in T, the following state

ments are equivalent for .. . Vi. .. in T: 

a) they ar e i somorphi c to ... Vi. . . above ... Bi . . . 

b) they form~ minimal solution t o equations 2 . 3. 

c) they validate the rules 1.1- 1.4 . 

2 . 4.1 . Pr oof. We have alr eady checked that c) impli es b) . Given b), the com-

position of monomorphisms from 

equations, so, being unique, it 

To prove that a) 

construct c ! . and rec ' . 
1J 

implies 

v. 1 
must 

c)' 

to V! and back will commute with the 1 
be the identity; hence a ). 

we must, given the isomorphism ... fi ... , 

The i nformation contained in intr oduction- rules and 1.9. is 
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"category-theoretic" above Bi' what is claimed is exis t ence of morphisms 

and a universal property, so 1.2. and 1.9. will hold for ... Vi··· if a ) 

holds. This entails the choice 

c{j(x, ···Yrs'zrs··· ) = fi(tij(x),cij(x, 

where fi i s the isomorphism of Vi and 

be proved is precisely what 1. 3. and 1.4. 

that is a linguistic statement : there i s a 

· · ·Yrs'f~l(trs (yrs ) ' 2 r s ) · · · ) ' 

Vi above y E Bi. What r emains to 

say more compared to 1.9., and 

functional which solves the re-

cursion-equations uniformly in ... dkm··· . Given the minor premisses 

(xk E: \: • • ·Yrs ' Ar' 2~s e- V~(trs(yrs)) ,wrs ~ C~(trs(yrs) , z~s ) · · · 

dkm(x, ···Yrs' 2~s'wrs··· ) ~ C~(trs(yrs ), z~s ) ... ' 

we can define 

Ci(y,z): Ci(y,fi(y ,z)) 

dkm(x, ···Yrs' 2rs'wrs··· ) = dkm(x , Yrs'fr(trs(yrs) ,zrs) 'wrs ··· ), 

i,k6 {l, ... ,n~, mE{l, . .. ,~\· 

Given b& Bi, c f:-Vi(b), by 1.3 . 

rec(f~1 (b , c)' ... dkm ... ) e- cr (b,c) = ci (b,f~1 (b,c)). 

As .. . dkm ... can be defined uniformly in .. . dkm ... , and i,b can be, by 

2.1. 2. (which holds by 1.9., so holds for ... Vi···) extracted uniformly 

from c, we can define the functional 

rec'(z', ... dkm ... ) : rec(h(z'), ... dkm··· 

where 

h ( z' ) : g ( ind l ( z' ) , t ( ind l ( z' ) , ind 2 ( z' ) ; z' ) ) 

and g ( i , y , z ' ) is defined so as to take the same values as -1 
f i ( y, z' ) for 

itf'l, Y'B. , z'tV~(y). n 1 1 

2 .4 .2. The same kind of theorem (stating the equivalence of a) and c), 

since in most other cases it does not nake sense to claim anything like b)) 

holds for all (instances of) type-constructors of I~ , by the same kind of 
0 

proof. 

2.5 . Extending T by rules for a type-valued function which is definable 

in T, i .e. by rules which are already present in T in disguise, should 

be as conservative as possible . Although such a theorem is entirely trivial 

1n case of first-order logic, for the theory of types it requires some care. 
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New types assume there the role not only of new formulae, but of new sorts 

as well, over which yet new predicates may be defined, which will themselves 

produce yet new sorts etc . The very notion of conservativity requires re

formulation, as Martin-LOf's notion of judgement, and that is what we deri

ve in the theory of types, is relative not only to language but to deduc

tive apparatus as well. A derivation of a judgement in a context must con

tain derivations of all judgements which are ~eeded to establish the con

text and some more, if it for instance derives a = b 6 A, it must contain 

derivations of A type, a " A, b f A, these are the things we must know be

fore we can meaningfully assert that a= b'" A. If T is extended to r+ we 

can in that sense, among the judgements derivable in T+, distinguish those 

for which it is meaningful to ask whether they ar e der ivable in T already , 

namely those that pr esuppose only judgements which are derivable i n T. We 

are thus compelled to an inductive definition. 

2.5 .1. We shall say that 

- a judgement of form A t ype (~), der i vabl e in r+, is of I i f 

al l j udgements r equired t o establish ~ as a context are T-der i vable ; it is 

T-deri vable if for some A' T+ ._ A= A' (g_) and T 1- A' type (.9_); 

- a judgement of form A = B (~) , derivable in r+, is of T if the 

judgements A type (~), B type (~) ar e both T-derivable; i t i s T-derivable 

if it is of T and T f- A' = B' (g_) ; 

- a judgement of form a f: A (_g) , derivable in T+, is of T :i.f the 

judgement A type (~) i s T-derivable; it is T-derivable if it is of T and 

for some a' T+ 1- a = a' f: A (~) and T 1- a' e A' (Q) ; 

- a judgement of form a= be A (~), derivable in T+, is of T if 

the judgements A type (~), a E: A (~), b Eo- A (~) are all T-derivable; it is 

T-derivable if it is of T and T 1- a' =b' o=A' C5d). 

2.5;2. If ML
0 

is extended by the rules for the type of Brouwer ' s ordinals, 

W(N
3

, (x) (I(N3 ,x,l)+I(N3 ,x,~) • N)), or if SA is extended by the rules for 

N-+ N, it is easy to concoct judgements of form f(x)" N (x € N) or 

f(x) =g(x)" N (xe N), which are derivable in r+, of T but not T-derivable. 

T-derivability of all judgements, derivable in r+, which are of T, 

will be our notion of conservativity. Use of new types, if it is to be con

servative, may not create new objects at old types, at most new names for 

old objects. Theorem 2.6. will verify that it relates to definability as it 
should. If the formulae-as-types interpr,etation of proof-theory is to 
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make sense, this should be a way towards "more delicate proof-theoreti c 

cosure conditions involving the deductions themselves " for systems of na

tural deduction, hinted at by Troel s tra (1973, p.90); the condi tions might 

require conservation not only of the class of (hypothetical) theorems 

under logical equivalence, but of classes (types or type-valued functions ) 

of their proofs under type-theoretic i somorphism as well. 

2. 6. THEOREM. If T+ is T extended Qy_ rules for ~ system of ~

-valued functions •.. Vi ... which are definable in T, ~ judgement, de

rivable in T+, which i s of T is also T-derivable . 

2.6.1. Proof. A precise description of the self-suggesting transformation 

of derivations ("choose an inference by a V-rule such that above it there 

are no inferences by V-rules and which is not an assumption to be cancel

l ed by V-elimination or V- convers ion ; replace it with an inference by a de

rived V'-rule; propagate the effect by substituting defined V'-constants 

for all occurences of V- cons tants originating from that inference through

out the rest of the derivation (essentially by Cartmell's pul l back-mecha

nism, (1978)); do some other things , or more of the same , t o ensure that 

you still have a derivation; continue ") and a verification of its effects 

require induction over derivations . As i s oft en t he case , it seems that we 

have t o prove a s tronger statement i n order to pr ove the induction-s t ep . 

In terms of context ual categor ies , derivati ons of the four forms of 

j udgements establish contexts , equality of contexts , mor phisms and equal ity 

of morphisms . Let Con(~) and Hom( ~ ) be the classes of all contexts and 

morphisms which are established by (subderivations of)~ . Closing Con(~) 

and Hom ( ~) under application of general rules of equality and substitution 

(hence under Car tmell's pullbacks) and imposing equalities as inherited 

from CT+' we obtain well- behaved compositions and identities , thus a (con

textual) subcategory C~ of CT+. An induction- hypothesis which goes 

through is then the following statement about a derivation ~ : 

Stat( .,£. ) There is a contextual functor (Cartmell ( 1978)) F : c...._-+ CT 

such that 

a) for any object ~:: x1 " A1 , .. . ,xn~An(x 1 , .. . ,xn_1) of C~ 

there is a structure- preserving isomorphlsm fA : ~ _. F(~) of CT+ , and 

F(~) is of fonn -

Yl " F(A1), .. . ,yn~_:F(An)(y1 , .. . ,yn_1) so that 

+ - 1 -1 T 1- F(A . )(yl , .. . ,y . 1)=F(A.(f1 (yl) , .. . ,f . 1(y1, .. . ,y . 1)) l l - l l - l-
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(yl~ F(Al) , . .. ,yi - 16 Ai-l(yl, ... ,yi-2)), it { l, . . . ,n ~ , 

where f1 , ... ,fn are the components of fA ; 

b) for any morphism h : ~ B of C 

c) whenever the subderi vat ion of .1... establishing ~ is a deri vat i

on in T, F(~) = A and fA = idA in CT+. 

Contextuality of a functor essentially means that it preserves the 

tree-structure of contexts, substitution and the type-forming operations of 

ML
0

• If Stat( .( ) holds for arbitrary ,/.._ , the functors generated by dif

ferent derivations can be so chosen, by Sf)ecifying f( Vi), i r. {1, . . . , n ~ , 

as to agree on intersections of respective subcategories; we would thus 

have a functor from CT+ to CT which is a left adjoint, even a reflection, 

of the inclusion . Application of that functor would then produce the A', B', 

a ' ,b' as required by the theorem . 

Proof of Stat (,(). By induction over .1.. l-ie shall adopt the usual convention 

of suppr essing all assamptions not explicitly shown in the rul es of infe

r ence , what enfor ces the foll owi ng def i nition : 

F(A) = A, fA(x) = x for A a finit e type or N; 

F( [(A,B)) :: f(F(A),F( B)); 

f Z(A,B)(z) ~ (fA(p(z)),f8(p(z),q(z))); 

F(1T(A,B)):: Tr(F(A),F(B)); 
"-l -1 f 1T(A,B)(z) :: i\((x)f8(fA (x),Ap(z,fA (x)))); 

F(A+B) : F(A) + F(B); . 

fA+B(z) = D(z,(x)i(fA(x)),(y)j(f8(y))); 

F(I(A,a,b)) :: I(F(A),fA(a),fA(b)); 

f I(A,a,b) (z) 

F'(\) = Vi_ ' 

:: r; 

fv . =the isomorphism of 2.4.a), i~ {l, •.• ,n ~ . 
1 

It remains to check the rules of inference. 

In the case of general rules of equality and substitution, the in

duction-step follows immediately. 

In the case of rules specifying type-forming operations, the sub

case of ~-rules will show all the essential points; the rest is then a 

straightforward, though tedious, adaptation of that proof to remaining 
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sub cases. 

L -formation. If c/.._ is formed by inferring L (A, B) type from subderiva-

tions of A type and of B(x) type (x e A) , by induction-hypothesis 

we already know what F(A), fA, F(B), f 8 are, as well as their properties 

listed in Stat. If T+t-A =A' and T+t-B(x) = B'(x) (x&A) for some A', 

B' established in J.., we know that TI-F(A) = F(A') and TI-F(B)(x) = 

F(B')(x) (xf:- F~A)). Then 2.-formation infers TI-F( I.(A,B)) type, and 

Tt-F(2..(A,B)) = F(2.(A',B')). As a judgement of form "[(A,B) = C 

can be derived in T+ by ~-formation or by a general rule only, F is 

functional on objects. If fA' f 8 are s tructure-preserving isomorphisms, 

so is f ~(A,B) by identity-rules, which completes verification of a). As 

C~ contains no new morphisms except for identity of ~(A,B), b) holds; 

c) then holds by identity-rules. 

L-introduction. If J.. is formed by inferring (a,b)e ~(A,B) from crt 
subderivations of a & A and bE: B(a) , it must contain a subderivation'l' 

2(A,B) type and, since the last judgement can only be inferred by 

2 -formati on, subderivations of A type and B(x) type (x ~A). We thus 

already know What F(A), fA, F(B), f 8 , f( [(A,B)), f ~(A,B) are, as well as 

their properties listed in Stat; in particular we know that for some a ' ,b' 

T r a ' " F (A) , T+ 1- fA (a) = a ' '"" F ( A) , 

1' 1-b'€-F(B)(a'), T+\- f 8(a,b) = b'&F(B)(a'). 

By the same rule we can then infer 

T 1- (a',b')~ '[.(F(A),F(B)), 

and by identity-rules 

T+\-- f'i(A,B)((a,b)) = (a ',b')' ~(F(A),F( B)) ; 

since we can treat the corresponding judgements of equality in exactly the 

same way, the functor F can be extended to new morphisms of C~ so as to 

satisfy a) , b) and c). 

'2: - elimination . If <A is formed by inferring E(c,d) €: C(c) from subde-

rivations of c ~l: (A,B) and d(x,y)e:C((x,y)) (x~A, ye:B(x)), it must 

contain a subderivation of C(z) type (z t~(A, B)) . We then already know 

what F(A), fA' F(B), f 8 , F( "i:(A, B)) ,f 1:.( A, B)' F(C), fC are , as well as 

their properties listed in Stat ; in part icular we know that for some c ' ,d' 

T f- c ' r, i(F(A),F(B)), T+l- f l.(A, B)(c) = c' E: [( F(A) , F(B)), 

T r d'(x ,y)E:F( C)((x,y)) (x e:- F(A) , y<=-F(B)(x)), 
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+ - 1 - 1 - 1 - 1 ) T 1- fc((fA (x),f
8 

(x ,y)) ,d(fA (x) , r8 (x ,y)) =d ' (x,y) E: F'(C)((x ,y) 

By t he same r ule we can infer 

T t- E(c ' ,d') E- F' (C)( c '), 

and we have to veri fy t hat 

T+ 1- f c ( c ' E ( c ' d) ) = E ( c ' ' d ' ) E F' (c )( c J ) • 

(x E: F'(A) , Y" F'(B)( x)) . 

The function h(z) = fc(f-}(A,B)( z ), E(f-l (A, B)( z ),d)) has the properties 

T+1- h(z) E: F'( C) (z ) (z " t (F'(A), F'( B)) 

T+ 1- h ( (X , y) ) = d ' ( (X , y) ) " F' (C) ( (X 1 y) ) (X " F' (A) , y f- F' ( B) (X) ) • 

A s tatement analogous ~o 1.9 . holds for disjoint unions as well, i.e . by 

L -elimination, '[.-conversion and identity-rules we can derive that 

(z)E(z,d') i s the unique function over £(F'(A),F'(B)) with these proper

ties, thus 
T+1- h(z) = E(z,d ') t F'(C)(z) (z" L.(F(A) ,F(B)), but 

T+l-h(c') = fc(c,E(c,d))"F(C)(c). 

Since we can treat the corresponding equality-judgements in exactly the 

same way, the functor F can be extended to new morphisms of C~ so as to 

satisfy a ), b) and c ). 

r - conver sion is now immediate by combining the above constructions, since 

T+1-f 'i:(A,B)((a,b)) = (a',b') 6 t(F(A),F( B)) and 

Tl- E((a',b'),d') = d'(a',b')E:F(C)((a',b')). 

By previous remarks , this concludes the proof of Stat(~) and of the theorem. 

2.6.2. Since we have not really used the theory of categories here, cate

gory-theoretic language was not necessary; as used above , it may be taken 

for a system of convenient abbrevi ati ons . 
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3. ARITHMETICAL DEFINITIONS OF I NDUCTIVELY DEFINED PREDICATES 

3.1. Predicates specified by rules of form 1.1-1.4. can be represented by 

their "graphs", i.e. by sets of pairs (object of Ai' proof of 

Vi (tij(object))). For the gr aphs , however, rules of part i cularly s imple form 

will suffi ce: 

3.1 .1. Formation. 

wi type 

provided Ai type, ie f l, •.• ,m J. 

3.1. 2. Introduction. 

a ~ Ai ... bk ' wk .•. 

ci (a , ... bk ... ) "wi 

wher e i e ( 1 , ... ,m ~ and k r anges over a (multi )set Ki of values from 

(l, .. . ,mJ. 
3.1. 3. The rules of elimination and conversion s tipul ate t he exis tence of a 

functional which solves the r ecursion-equations 

fi(ci (x, · ·· Yk··· )) = di(x , ... yk,fk(yk) . .. 

f Ci (ci (x , · · · Yk ··· )) (x e-Ai ' . . . yk E. ~>Ik ... ) . . . 

uni.formly i n . .. di . .. , pr ovided ... Ci (x) type (x t- Wi) ... and the minor 

pr emisses 

di(x , , .. yk,zk ··· ) e Ci(ci(x, ... yk,zk ... )) 

(x &Ai' . . . yk c: \olk , zk " ~(yk) ... ) .. . 

3 .1 . 4. The stipulation of 3.1 . 3. establishes ... IV . ... as a minimal solu-
----- 1 
tion of domain-equations 

wi:::: Ai • ... •'\" · ··· i" {l, ... ,m j , 

i .e . as a system of sets of nested sequences or lists of elements of Ai's , 

in an arrangement recursively prescribed by the choice of . .. Ki . . . (with a 

natural ordering on Ki's that we shall assume fixed in the sequel). A type

-constructor to that effect may (but will not) be introduced, parameterized 

by the choice of m and ... Ki ... 

He are soing to prove that rules 1.1-1.4 . are validated in T if 

rules 3.1 .1-3 .1.3 . are, and show how the latter can be validated in SA and 

in ML
0 

for any . .. A1 . .. 
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3.2. Let n, ... mi ... , ... Rij '·· , ... Sijr··· be as in 1.1- 1.4. Defi ne 
n 

A' 
i 

for 

m :: b mi ; 

k(i,j)- a bijective pair ing funct1on such t ha t k(i,j)t:~l, .. . ,m\ 

for iE. ( l , . .. , n ~, j E:\ l , ... ,mil; 

K. - u u 1 j r ' Rij 
sijr; 

Ak(i,j) :: A . . 
l 

Let ... I-Ii ... 

Ai, m and 

be a sys t em of t ypes specified by 3.1.1-3.1.3. with 

. . . Ki. . . as above. Let 

lab(v):: rec(v, ... (x, ... yk,zk ... )x .. . ), 

Vi_(y) = ... +<3vwWk( i , j )) (y =t i j (lab(v))+ ... , 

vali :: ... +(z)p(z)+ ... , 

ci_j(x, ··· Yst'zst ··· ) :: ij((ck(i,j)(x, . .• vals(zst) ... ),r)) 

where rec is the functional of 3.1. 3. , sum of functions over the summands 

denotes the eliminatory function of mi-l times iterated binary sum , whose 

inclusions are denoted by ... ij··· . By +-rules , ••. +(z)ij((p(z),r))+ ... 

will be the identity-function of Vi_(y), and ... cij··· will validate the 

introduction-rules 1. 2 . for ... Vi_ .... Given the recursion-equations of 1.9., 

we may define 

Dk(i ,j)(y) = Ci(tij(lab(y)),ij((y,r)) 

ek ( i , j) ( x' .. · Y k ( s , t) 'wk ( s , t) .. · ) 

- dij(x, · .. l ab(yk( s , t)) ,it ( (yk(s, t) ,r)) ,wk(s,t) .. · ) ' 

i E:- ~ 1 , ... , n J , j ~ { 1 , ... , mi} . 

If .•. dij··· validate the minor premisses of 1. 3. for ... Ci ... , it is 

s traightforward to verify that ... ek(i,j)''' validate the minor premisses 

of 3.1. 3. for ... Dk(i,j)''' . Let ... gk(i,j)''' be the solutions of re

cursion- equations 3.1.3. for ... ek( i,j)'Dk(i,j)'''' which may be obtained 
uniformly by an application of rec; l et 

fi = ••• +( z)gk(i ,j)(vali(z))+ ... , 

we may then derive the judgements 

f i ( z) = gk ( i , j ) (val i ( z) ) ~ I\ ( i , j ) (val i ( z) ) ( x 6 Ai , z E- Vi ( t i j ( x) ) • 

· ~ing this equality, it is str aightforward to verify that ... fi··· solve 
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the equations 1.9. The recursor for ... Vi··· may t hen be obtained by en-

coding the above uniform construction from .. • d . . ... . lJ 

3.3. If restricted to SA, Beeson ' s (1982) model-construction would go 

through with primitive recursive functions instead of indices . Formalizing 

the construction in SA instead of HA, we might use functional expr essi ons 

instead of pseudoterms , obtaining the following fact for T=SA: 

3. 3 .1. For any context ~ :: x1 E: Al' .•• , xn E': An ( xl' ••. , xn-l) established in 

T, functions numAi(x1 , ... ,xi), i sAinum(y1 , ... ,yi), io. {l, .•. ,n}, may be 

defined so that 

a) the judgements 

... numAi (xl' ••. ,xi) c N (x1 6 A1 , ... ,xi" Ai (xl' .•. ,xi-l)) .•. 

are al l derivable in T; 

b) the judgements 

... isAinum(y1 , ... ,yi) e N (y1 E; N, ... ,yi"' N) ... 

are all derivable in SA ; 

c ) the functions ... (x1 , ... ,xi)(numAi (x1 , ... ,xi) ,r)) ... form a 

structure-preserving isomorphism of ~ and 

NA :: z1 E: NA1 , ... , zn e- NAn (z1 , ... , zn- l) 

in CT' where NA . (z1, ... ,z . 1) = !'.( N,(z)(isA .num( z1, ... , z. 1 ,z ) =0)); 
l l- l l-

d) N as defined in c) is a contextual functor from CT to CsA· 

3. 3.2. The functions ... numAi ... are GOdel -numberings , and ... NAi ··· 

may be seen as sets of appropriate GOdel-numbers defined by their chara

cteristic functions ... isAinum ... 

3.3.3 . If T is SA extended by (some) rules of form 3.1., the statement 

3. 3.1. is r eadily extended to T, using primitive recursive surjective co

ding of finite sequences of numbers ~ ... ) strictly increasing in all vari

ables (cf . Troelstra (1973)) . Let lth be the length- function, and (x) . the 
l 

i-th projection for i~ lth(x) ; let eq(x,y) be the arithmetical characte-

ristic function of equality on N. By 3.1 .3. we may define ... numWi ... so as 

to satisfy the equations 

numW
1

(c1(x, ··· Yk· ·· )) = <i,numA1(x), ( ... numWk(yk) ... )) t:- N 

(x ' Ai' · · . yk~;l-lk . · · ). 
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If ni is the size of Ki, functions ... is·linum ... should satisfy the 

equations 

isH i num ( z) = eq ( lth ( z) , 3) · eq ( l th ( ( z) 3) , n1) · eq ( ( z) 1 , i) · 

· isAinum((z) 2) · ... · is~lknum(((z) 3 \) · ... ' N (z E: N) . 

Since z > (z) j for any j ~ lth(z) , these equations are readily solved by 

formalizing the appropriate functional of simultaneous course-of-values r e

cursion (cf. Peter (1967)) in SA . The introductory constants may then be de

fined by 

cj_(x, ··· Yk ··· ) : ( i,p(x) , ( ... p(yk) ... )) .... t 

and the recursor may be defined by simultaneous course- of-values recursion . 

The types ... NWi ... , defined as in 3.3.1 ., validate the rules 3.1. with 

... NAi ··· for ... Ai · ·· and with the constants defined as above , so the 

rest of 3. 3.1. follows by (proof of) 2 . 6. 

3 . 4. Our notion of definability implies type-theoretic isomorphism of the 

definiendum and its definiens, so GOde l-numberings will not suffice when 

function-types are involved (because of well known metamathematical reasons ). 

A list of complicated objects of different sorts, and that is what 

objects of Wi' s specified by 3.1. in general are, may be represented as a 

pair of two objects: a list of same shape containing only place-holders, 

which indicate the place and the sort of object to be put in its place, and 

a system of function-tables, one for each sort, associating complicated ob

jects t o place-holder s . Lists of same shape containing onl y simple place

-holders may be r eadily defined in ML
0 

by 3.3. Function-tables are simple to 

construct as soon as we 

a ) know how to count the number of place-holders of the same sort; 

b) specify a strategy for traversing the list , i.e. associ ate table

-locati ons to list-locati ons in an unambiguous way (it may be already enco

ded by a suitable choice of place-holders), uniformly for all lists and 

tables of that kind. 

Integers may serve as place-holders; given a) and b), 

2.:(N,(n)(n<:size.(z)))--JA . may represent the i-th functi on-table, where 
l l 

sizei (z) is the number of atoms of i-th sort in the list z. The introductory 

constants may then be defined by encoding the appropriate operations of up

dat ing both the lis t and the function-tables; the recursor will recur over 

the lis t and will use the tables t o fetch atomic values when they are needed. 

The preceding sentences are essentially t o be understood only as what 
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they sound like: as hints for an exercise in programming, which we leave for 

the reader to complete. 

3.5 . The relation of the definiendum to its definiens i s what i s in compu

ting science understood as the relation of an "abstract data-type" to its 

"implementation". Thus interpreted, the "implementation" of 3. 3. turns out 

to be terribly inefficient. If we, however, admit the type of symbolic ex

pressions of 1.6.1. above a sui t able type Atom as primitive, an "efficient" 

implementation may be effected, paralelling that of 3.3 . very closely, al

though function-types will be needed to implement simultaneous course-of

-values recursion. Definability of t ypes specified by rules 3.1. in ML
0 

would nevertheless be preserved, meaning now "efficient implementability" as 

well. 

Corrigendum. The conclusion of the third r ule of conver sion in 1.6. 2.4. 

should stand under minor premisses. 
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PROCEEDINGS OF THF CONFERENCE 
,ALGEBRA AND LOGIC' I ZAGREB 1984 

Cu JTH!.INTUITIONIST LOGIC AND SYW1ETRI C SKOLEJ-1 ALGEBRAS 

Kajetan .Seper 

Pbstract . Intuit i onist l ogic, formulated e . , . by natural deduction , if 
algebrair·ally !'eformulated, leads to lleytine algebras (i.e . absolute impli
cative latt1ces wHh zero element) , :'lnd these, if al gebr aically dualized , 
le"ld to Brouwer <rlgebrc1s (1.e. absolute .mbtractive lattices with the unit 
element) . For both kinds of these absolute Skolem al gebras , implicative and 
subtractive , their topological interpre t ation i s well-known, and their uni
fication resulting in absolute implicative- subtr active ~olem algebras was 
studied by Rauszer under the name of semi-Boolean algebras . 

We established a contraintuitionist system of l ogic, which is logical
ly dual to the intuitionist one, wner e he dual J_-connectives replace the 
ordinar y ones . Thus we obt ained a l o{"J\.:al interpretation of Brouwer alge
bras . We w1sh t o contr ast it o Good•nan's interpretation. Also, as a r esult 
of another kind of unLfic;;tion of the both a~ymrnetric intuitionist systems, 
HI;) e::;tabli:;hced r-~ symmetric intuit i onist system , which, if al gebraically re
fornr!llated , lead~ to absolut e syrmrretr i c Skolem algebras . We 1r1ish to contrast 
t. l1r>m to R<;uszer' s alge':l ras . 

Contents. 0. Strong truth and strong falsity. Symmetric logic . l. In-
tuiti nist log1.:: , JL. 2. Heyting al gebras , HA . 3. Contra tntuit i onist lo
gic , .LJL. I.J. Brouwer al gebras, BA. 5. Discussion I. 6. Symmetri c intui
tionist logic, SJL . 7. Synrnetric Skolem algebras , SA . 8 . Di.scussion II. 

0. Strong t r-uth and strong falsity . Syrt'metric logic 

Under the clilssical v:Lewpoint any st atement i s considered a priori 

as being true or· fal se but not both. Under the constructive attitude the 

t ruth and the fal sity of a statement are of a posteriori character, each one 

is to be established by constructive reasoning - the truth by a proof and 

the falsity by a 1-proof or refutation - , othen1ise the s tatement is t o be 

considered as prob l.ernatlc . Such truth and falsity are called strong. S::l , con

structive l ogic may be divided into the following kinds: T (truth)-orient ed , 
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H its main concern ts the study of st1·ong t ruth; _l (falsity) - oriented, if 

this holds for strong falstty tnstead; and T -1- or S-oriented , or simply 

symmetric, i f both these species , that of s tr·o11.g truth and t \1at of strong 

falsity , are s tudt ed toge ther witll no priority of each to the ot.her . 

'Ihe most natural way to get a symmetric system of logic, e.g. from a 

T -oriented one, i s to unify the both asyrmnetr i c systems , the T -ol'l.ented 

s ystem and t he corl'esponding j_-oriented one, into a new complex sys t em . 

The both disconnect ed parts may be well mutually connected by several laHs. 

Now, the unification may proceed directly or by means of a ne1-1 connecU.ve , 

called s trong negation, Hhich i s t o express strong f alsi ty. Then , ano ther· 

new connective, called strong (or· t wo-sided ) implication , or simpl y bipli

cation, may be considered in addi t i on , or, mor eover, may replace implication . 

Consequently, sy\nmetric constructive J ogic may be divided into t he follo1•ing 

kinds: semi-syrmnetric, if the unification i s realized directly; pre- syrmne

tric, if the unificaU.on is r eal ized solely by means of s trong negation; and 

(strongly) syrmnetric , if, iJl addition , biplicat i on replaces impli.cation . 

1. Intuitionist l ogi c , JL 
Historically, the firs t constructive l ogic was developed and applied 

by Brouwer in his intuitionist mathematics or intuitionism. This intui t i o

nist logic, JL, was formalized by Heyting i n t he form of a Hilbert - style ax

i omatic system. JL i s ll-oriented . However, it contains also a specific no

tion of falsity , called absurdity in intuitionist jargon. The f al sity (or 

absurdity) of a statement is established by deducing a contradiction (or ab

surd ),JL , from that statement as assumption . This kind of falsity may be 

called not-truth or weak falsity, and is, as usuall)' , reffered t o bv negation, 

-, . It is expressible by implication,~ , and .L : ' A;;o A-=> .L. Thus one may say 

JL is weakly 1.-oriented . Then, for any statement A, A=> ·n A holds , but no 

conversely . Therefore , , A, if asserted , may be under::;tood as a new kind of 

truth of A, \>leaker than the assPrtion of A. This kind of truth may be ca lled 

not-weak- falsity of quasi-tr·u th. Thus one may say JL is quasi-T -oriented. 

So , intllltlOnistically, one may distinguish four kinds of statements : strong

ly true, weakly faV"e , quas.L-t:rue, ru1d pr·oblematic. (A qua:;i-true statement 

may count, if one wishes, as rrobl~~tic in the narrower sense.) 

Gent zen t'ormalize'i JL in tile form of a nat.unl deduction system . Tl.e 

notion of proof in tree form i~ •Jr.>fined by the follo"iru;._; n?.tural r·ules : 

1\ 
A [1 

" I A,.,ll 
r,l" II? 

I --
A ·· /\ 



1 r: 7 
1 

v f: 
v v V'l -;A,J li 

.L 
J.. pfq fi 

( 4] 

::> I 
E ~ ~~~ r => ::> ---

=> I 

!icr l=l r· <', 1' (J Lr "multiple" v F.m rule is con :.!"'red t? "1 brevwte 

the cr· 1in.ry II lnB;ul. .. r" v ~- one i.e . (A) Ld 
v Ern i:lbbrevlates v E Av B C C c 

(For a properly multiple formulation cf . 5 or 7 . ) As m ntioned above , 

., -, A wlll abi.Jrcvi.Jt A=> .l.. 

The !(introduction) rul e~ state condjtions under wh1ch a compound sta

tement may be in fered from its componenLs, ;c nrl the E(eliminatjon) rules 

state conditions under which a statemFnt. may be infered from a compound one . 

The x fal::o quodlibet rule, efq , adds to the precision of intulLionir-Jt im

plication and enables the :::> rules to be so simple as above ; esp_cially, it 

enabl es the ~ E rule to be in the form of the modus ponens, mp . TI1e rules 

fix very clearly the meaning of each connective and so replace Lheir textual 

expl anation . 

Then, one easily defj nes the notion of deducibility of the conclusion B 

from the assumptions Ai i . e . the (n+l)-ary deducibility relation 

111 , ... ,11n \- B, for each natural n. Obviousl y, Al- A i.e . t-II =>A holds , for any 

A. So , if T abbreviates 11
0 

=> A
0

, for a fixed A
0

, then 1- T holds , and 

hence C 1- T does , for ;my C, too. 

Fr om t he natural deduction formul ati on of JL one easily obtains its 

Gentz.en s quent ca l culus refor·mulation: a sequent A1 , . .. , An~ B1 , ... , Bm is 

interpreted as standing for the .Lmplicat ion A1 " • • • " An:::>I31v ••• v Bm i.e . 

f or a deduction of B
1 

v ... v Bm fr·om Ai. (For vari ous sequent for·mulations 

cf. 5 or· 7 . ) 

2 . Heyting algebr as , HA 

If algebr aically f ormulated , t he system of JL l eads t o Heyting alge

br·as (or pse~.tdo --Boolean algebr as a cordi ng to Rasiowa and Sikorski 1963, or 

absolute implicat i ve l atttces Hi.th the zero element according to Curry 1963) , 
HA . The simplest way t o formulate ,JL algebraically and so to obtain a s ystem 

for· HA is to ge t it. from the natural deduction system by means of' the 2-ary 

deducibility relation, At- B, which is LO be considered as the sole basic 
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rel ation in HA . Then , this basi c relation , denoted n s, b, 1s a partial order. 

Concer ning the 2- ar y operations 1\ , v, and ::> , and the 0-ary operation or 

zero element 0 ( ~rh ich replaces ..L ) the r·e l ation satisfies the following 

axioms and r·ules : 

..... c !': a & c '!: b 9 c~a,..b a1 " a2::=ai 

v ai ::-: a1 v a2 
a:=c & b~c 9 avb~c 

0 O~b 

:::1 a " c;S:b =-~ c ~ a::>b a .... (a=>b):!:b 

!Je r e the small le t ter s are used to emphasize the algebraic char·acter of the 

system. The 1- ary ope r a l ion , a may be defined by a:> 0, and the Q •. ·wy 0pe-

ration ot' unit e l ement 1 (Hhich r·eplaces T , and satisfies c~ 1) by ac::> ao, 

for a fixed ao. 
Eot h systems f or JL , that of natural deduction and that of PJ"'tial order 

re l at i on, are equJ.valent: 

A1 , • • • , An t- B iff A1" • •• " An~ B 

iff l~ /l,l" . . . .A A :> B. 

3. ContrawLuitionist logic, .t.JL 

BroU\•Jer ' s i ntuitionism greatly influenced further i nv•~:.tigat) on3 i nto 

the mathematical and logical reasoning by constructive n1• thods. Hegardl~ss of 

the critique of and arguments against the intultionist (weC~I<) f~ilsity ant1 the 

wtuitionist implication as well , anct of the fw·tile t' rJt,velopmcttt i.n this di

rection, several authors studied Lhe con;:;tr·ucti ve ( str0ng) fa!~ l t.. y on a ~:nr 

with constructive (strong) trutil. 

So, by means of a suil.able modification of til~ Kleene r":nlizublii ty 

notion, Nelson 1949, 1959 studied constructive fals1t y c·loscly in parallel tc 

construcli ve truth, ;md established ;nne synJ'let.ric -::~m::;tru·:t.i ve S}'SLP.ms of 

logic ~ri th :1Lrong connective::;. Fi tc'l J 9'),', 1963 a l:;u ·.tudicri 'liMi l'it' r-y<>t':'m. 

independently, t-'.arkov 1950, 19'{0 dtd so by 1'1"'111:: of t.ntu.t:.ive lc'r~t•'<'l o:pl£1 -

nation~;; esrecia lly, ht• tntroduce 1 the not.ior.s of ~tror~ r.·.:p:atlon a:Ht ::t..rong 

equ1valcnce. Titis tnClucnc•.od furL'·€.!' d"t..llk l iriVC'::~:...;!'ltJC:!l~ intr:> t)·,e ;ul Jf>C ' 

by lor,icill and dl>!:•!br•,., ic r~e:t'",oos. ~;c mcnt l•)n tml \.he f'"llow~t\"': V1r•; 1 'jf"".' '. 

l')'i;>, l•)!ill parer<> on pre-syrrtr.Pt.ri-:: Sp'it.'."'• tlo" 11 <'':tntr .. rtiV•' pr'0pn~J 1 i0'1t1 

c.•lcul1J3 •,.;it.h strong aep:atJ.Jn''. tt .. ,, .. ,_~--

1 v) <~yrm.<:>trt(' yo;t•:>m, thr> " ··~rrr.• tr1' ro: l r IC'ti v '"'t. '-· r ~ i ""_l ~ . ., ~ 

I(' •J 1 r: t>"·r1, ~;y"':!tem vl ... t'1 'J: ~.l~r tl (:. ,~ 11' ;t,.gt b!"'i't 0
• 

vr f' 1 t.t - '/ITl: 'r \·/' l .... ,,, ,.,<,,r·f 



[t •('"'!; ' 
. I ' ' ' I ,. I d 'lf" 

l 'IL •r• L L1 ,.. f " Jr r II r l l w I r-

...... ~ ,n l 

;:.r·, ~~n " 
"ll"yt tr - roar.tf~r 1 (lf'l<' " . 

.. ' . 
A i • YJFT'I t "1<' '() r.t-• r 'J r 

bll .t ·l 1n It or tr •1n• .1t1 

I -
1. 

1 r 

I 1 

• 
... 

. ) 
c:r 

•t r i 

r • .. ; 

. I' 
I .iln 7 

'L, ~ t .·L 1-

ll y d• 

.L -connt>·~Li V•;S rt.pl a e t 11,., l y rt lll .l Jl L . yrrr. t.r v 

. tJf', st:J r·i r•ht- o-lert; rE i~ 

<;Ut"1) , T , tl t~' 1.-inJ..di >ti .n ,,. ; I r , 4: t·• 1 .1 "1•· ~<;q,l i I tlv" 

1f the o r•JJn ry lcft-LO-rJ It :•r.':JI 

finn:;t ion , L , re<•<1 d.< "not f l ')€ ", r 

Jurd), jrnpltC'.lt.i.·m, :~ n! IIC~at•on, ., 

~ l J • r ! thP l-n ~ t 1 n < r • -

, t t•e ord1n wy rntr·t.Jlct ,, ho-

t V• 1 v. Tr • .- f'f. rrr;1tl0•1 ~L-, lt>rtn iPd 

a l •;o LA or· J ~. if' the ordln "{left-' -, • • l r· 

by ¢ ;m'J I : J\ L- =: T4 1\ . Cor r:rinttn t 1 • 1 i tiL• lly, w>: m 1y 'li tuv-•u ifh four 

kind::; of .;tatcments: str :lJ1i,1 y f'<.!L• , r t-1 .d :>e or >K-.:akly 1.ru~, n"t-wP.lk l v
-tt·ue or qu;-,sl -I'c h~e , mrl J_-pr·ob.lf·•rr.: t • (Q•ta::;i -fa l ,.;tty rr-1 ·r .:?tJrtt <•·• .L-
- problemaUc in the narrower sense.) rlso, we may say _LLTL is j_ ··Oriented, 

weakly T -oriented , and quasi- .L-or .tented . 

To get the natural deduction formulation for J. JL tile l-proof or re

futation trees will be, for r eason:; of syrrmetry , treet0d as di.rected up

wards, and so as generated by the following natural, upwards applicable, 

't -rul es: 

E: ,..I 1n JL AI "E in JL A 

" m - -

vE - vi in JL vi - vE j_n ,JL v m 

~eva T . (ex vero quodlibet) T 

B f.E 
B¢A P.' (or J_-=np ) B<i:A .{:I 

B 
.{: 

(A 1 
where 

lB) [A1 
(F~r '" propm"ly multiple formulation ef . 5 cr 7 . ) A~; !nentioned above 

A L Hill abbrevj.~,te T<\:: f.l. . L 

Then, the noti.on of .L-de:iud.bili.ty, B··\J\n, ... ,A1 , of t.ll'': l-conclus:Lon 

B from t he _L-assumpt. i ons A l .is clefined analog.Jq;;J y. I f l ilbN'evi<<l<'::s 

A 4-A , for a f'ixed A , then .L-i holds, and J.er:cE: l.---4 C rJoe:-;; , for ony C, too. 
G 0 0 
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The .L-s equent formul ati on of j_JL i s obtained f r om the natur a l de duc

t ion one by inter preting a JL-sequent Bm, ... , B1~ An, . .. , A1 as standir~ 

f or t he explication B r. . . . " s1 4: A v . . . v 111 i. e. f or a .1 - deduction of m n -
B ,... ... .... s1 from A. . (For various sequen t formul a tions c f. 5 or 7 . ) rn 1 

IJ. Brou1o~er a l gebr·as , SA 

If al ge brai cally f or mula t ed , t he system of .l..JL l eads t o Br·ouHei" al

gebr as (i. e . a bsolute subtr active l attices with the unit e l ement ) , BA, wher e 

the oper ati on of explica t i on (i . e . subtr ac tion or pseudo- di f fer ence ) r epl a 

ces tha t of i mplication. 

Now, t o r eformula t e the na tural deduc tion s ys t em f or ,LJL al gebraical

l y so as to obta i n a system f or BA we pr oceed s i mil arly as above f or HA , i . e . 

r epl ace 8 4 A by b :> a , and cos i der ;:; as the sol e bas ic r e l at i on i n BA. Then 

again > i s a par tia l or der r e l at i on t ha t satis fie s t he following axi oms and 

rul es : 

c > b"' a 4=: c ~ b & c ;; a a2"' .q l > a i A 

a i > a2 v a1 
b v a '7 c 4= b :> c & a ~ c v" 

b "> l 

b ;: (be:\: a) v a b <j:. a > c ~ b > c v a ct: 

The aff i rmation a '- , denoted aJ so 1- a or _j a , may be defined by 1¢ a , and the 

zer o element 0 (Hhich replaces l.. , and satisfies 0 7 c) by a
0

4: a
0

, for a fixed 

a . 
0 

The both systems for JL ar e equivalent: 

B-1 A.., , .. . ,i\1 iff B > Anv .. . v A1 

iff B4 An v ... v1\ >" 0. 

5 . Discussion I 

The s ystems JL (logic) nnrl HA (aJtz;ebra) correspond each t..n tther , Rnd 

the systems HA and BA are algebraically du:'ll each to ot.her. Now , tw0 q•Jesti

ons aris e . Hhich system 1s logic:1lly dual to JL? Hhich 3ystPm (lnv;1c) corrc!" 

ponds to BA (algebra ) "1:" ,JL does to HA? By .LJL we obt<uned the locical hml 

o JL nnd (unintendPd) the logical interpret<.~tion of BA as well. ThP. t 1Jpolo

gical 1 nterpretation of eaci' absolute Skolem algebr as , HA 'm'l BP., hy op~n 

and , respec.tively, cl0sed sets of a topological space, or more abs trilc tly, of 

a topolop;1cal Poolean :J.lge!Jra, '..!"'~ ;.;~Jl -knOWll from the r'r!J)Cr• Of ~tone 1937 

and of ~lcKin!"cy ;md 1'1nk1 1 <Jii6 . 

\-lith l'P.!J[>er>L " .l..JL (,i!ld t\ti) "l co:rpilrtJcr. Hil•1 r,oorlrnan ' ~ 10~1 paper 
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l WtS SuefPSterl ':.0 the au hor . vie ,.;u tl 0 diSCUSS this Lr· r 

ri Pd o ir •.erpr c A logical! y , r. .i · o e!J abllsn h. "lo <' or con r -

diction" or "1nti- in uttioni::::tic lo·i " How ver, this lo ic 

a r·rope r l nr;1cal interpr tat.Lnn . Wh ~ is e ffec ed is but 

quentca l cu l us r eformu l :o t ion o!' P.A . firs t, the conn ct1ve "pscudo-di ff ren

CP", :.. , tha t corresponds to ne c ua lly named a l p:ebraic ope ratior , s ugge

sted t o be r ead a;0 "bu t not ", l!> in gener al not l ogi cally i nterpr t ed t all, 

only i t s spec i al ins t ance , "negation", -,A:: T.:. fl, ~1.18')1:Ps ted t o be r ead as 

"not " , i s int roduced . Second , the swr_p;"!!;t ed r eadings "and" and "or " for the 

o her connectives "conjunct .Lon", " , and "disjune i on", v , respectively, se

em to indicate t hei r usual T-interpre t a tion. Thus , by their suggested r ea

dings , the connec tives s eem to be T-connecl1ves . So , on these "grounds " 

A", A appear s as a contradiction , but i '"' in f act a .L-tnd (tertium non da

t ur) A A. I-A, and A v, A appears as a tnd , bul i s in f act a .1.. -contradic t ion 

Av'- A. Such readings s eem to us logically unsatifactory. Formally, if suita

bly model! d by sequents , the system J_ JL may lead exactly to Goodman's se

quentcal cul us, indeed. (However, for the same purpose we would prefer .l -se

quents. ) 

6. Symmetr ic intuitionis t logic, SJL 

When l_JL was established, the idea of a dire t unifi cation of both 

asymmetri c logical systems , JL and JLJL, so ·as t o form a new s ymmetric i nt ui

tioni st l ogic, SJL, appeared clearl y . For the pt'eference of such unificat ion 

by means of the s t r·ong negation , t he syst em SJL was but mentioned in 4 . It 

was discussed t o some extent in 6 . 

We will give here onl y a s i mpl e fragment of SJL conta ining neither 

:;:.:, as a .!_-connective nor ¢ as a !-connective, or containing them but not in 

full generality . The full syst em would require more technical details i. e . 

the not i on of $- deducibility involving T- as well J. -assumptions s ymultanous

l y . 

To get the natural deduction fonnul ation for SJL we define: (a) the 

formul ae - these ar e formed as usually from the at omi c f ormulae by means of 

the cortYJecti ves ", v , ::::> , and 4: ; the other connect :i.ves T, .1. , ., A, and L. A 

are cons idered as abbr eviations for A ::;:) A , A ¢. A , for a fixed A , A ::>.L, 
0 0 0 0 0 

and T ¢ A, respect i vely, as indicated above for JL and J..JL; (b) t he r ul es -

these are all JLJ--ru1es and .LJL'l'-rules; t he other rules ar e given in (c); 

(c) t he deducibi lity t'el ations - these are all T-deduci bility relations ge

nerated by the J.-rules alone, i.e. by pr'oofs in ,l.-tree form, and aU .L- dedu

cibility relations gener a ted by the i - rules alone, i.e. by refutations in 
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1' -tl·ee form, bot-h k.incls exlended \)y t he 8.dditional simpl e SL- rul es as fol 

lovm: 

L 1-- A ~ -4 A (Le. \.. A 4 ) , 

, A ·-1 :::p A ~(i. e .\-, A). 

The s i mple .l.'"l and T¢: rules may well be added : 

.1,'::> r- A & B -\ B , ••• , B
1 

# A ::l B -\ B , ••• , B1 , n n _ 

T¢ Al, ••• , An 1- A & B -1 ~ A1 , ••• , An \- A ¢ B. 

The natural deduction formulation i s easily reformula t ed to obtain the 

corresponding S-sequent formula t ion . 

7. Syrrunetric Skolern a l gebras , SA 
If a l gebraically fonnulr~ ted , the system of S,JL l eads to a new a l ge-

br a ic s ystem which vie call s i mple absol ute ~;ymrnetl'ic Skolern a l gebras , SA . 

(Previous l y , in 6 , we called Lt "half-Bool ean <:~lgebrao ", the prefix "half" 

being the Englis h translatlon of t he Croat i an "poJu" to contrast it to Rau-

szer' s Greek "semi". ) 
Now, t o f ormul ate SJ L algebraically to obtain Sll , vie proceed as 

above for Hfl and Bl\ . Tnus we obtain a system w1ti1 two basic 2-ary relations 

~ and ;; and fou r 2-ary oper ations A , v , :::> , :md d: :>uch that s , 1\ , v , ::J 

satisf:; al.l Lhe axioms and r ules of HI\ , ~ , 1\ , v , cl: satisfy Rll tho.3e of 'i'A, 

and 5 , ;. satisfy the folloHing simple SA-rules in additicm: 

\... 

, 
,l:l 

1 ~ <~ ~ na (I.e. ~ a ) O), 

a ? O '4 a ~ O (i.e. l ~'1 a), 

1 ~ a & b ;: t.
1 
~ a .J b ) b1 , 

T d: 1
1

!:; a & b -; Cl ~ 1 16 cf b, 

where u, .. operations 1, '"' ', antl 1), '- ' o~r·e rlefine'i as in HA ::md l:JA, respecti

vely . 
Poth system." for ')JL are obviou3ly equi v·1lenL as ul'Ove . 

'Ir1e algebraic fonnulaLions for ,lL, .l.. JL, 31:<.! :'.-JL m.JI~e it pwsible lo 

define the corresponding at>.stract ( _,et - theor·C'tlC ) ~ls;.ebr:.11 c !';ystem::; ir!F.erJl<•-

tely . 

8 . D.iscu:osion II 
'ditll re. pect to SJL (and SA) it was suggested to the author t o 

ooparf' 1t with R<~U,JZer'~ 1974 , 1980 paper s 2 and 3 . A few r emarks wH l 

ufftcP. here. RauszC'r ct~·:c.l("opcd the treory of "semi- l!o01ean algebra.3" (i .e . 
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absolute implicative- subtractive Skolem algebras or lattices , in fact com

plete lattices ) by algebraic and model - theoretic methods . Also, she establi

shed and studied the corresponding "Heyting- 8rouwer logic" by means of two 

Hilbert -style axiomatic systems . However, it is hard to say for any of these 

systems to be properly a logic at all . The reasons are the same as those in 

sec .5. 

l. 

2. 

3. 

4. 

5. 

6. 

7. 
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.Abstract. The exponentiation is never extended from the real to the 
complex domain in accordance with Peacock's principle of permanence, al
though it is the best way of extending the other operations. But we show 
that we are almost compelled to Euler's equation by Peacock's principle of 
permanence ana-arso the we are definitely compelled to it if we accept the 
principle of permanence of di fferentiability. 

C. B. Allendoer fer dedicated his [1] to those aut hor s whose paper s on 

Euler' s equation had been rejected by American Mathematical Monthl y . He empha

sized t hat the expression eiUJ has to be defined , in or der t o pr ove Eul er' s 

equat ion, bu t his criteria for accept ing a defini tion of the expression as a 

good one (rigor, s implici ty and intuition) are quite vague . We can not be sati

sfi ed with s uch a vague cr i t er ia because excellent criteria have exi s ted for a 

l ong t ime . Such i s G.Peacock ' s pri nciple of permanence of equivalent forms an

nounced already in 1833 . 
A definition of on oper ation should be extended from a restricted domain 

to a wider one in such a way as t o conserve the crucial al gebraic properties of 

the operation. 

The crucial algebraic properties of addition multiplication and exponentia

tion are as follows 

{ 

a + b = b + a 

(a+b)+e = a+(b+e) 

a·(b+c) = a ·b + a·c 

ab+C = ab.ac 

a ·b = b·a 

(a.b).c = a ·(b·c) 

and the extensions of these operations (from the domain of natural numbers to 

the domain of complex numbers ) were uniquely determined by the principle, in all 

cases except one. The one with which Euler's equation is concerned. 

Mus it be so? Are we compelled by Peacock's principle to define iw e as 

cosCJ+ i sin w (as we are compelled to define al/n as Va or a-n as 
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etc.)? We shall show, that we almost are. 

We obtain complex numbers by adding the imaginary unit i to the reals 

and by combining the old r eals with the new unit i using the oper ations + 

and · uniquely extended in accordance with Peacock's principle. We immedia

tely realize that any element of the new compl ex domain i s of the form x+iy 

for real x and y (because of the defining property of i: i 2 =-1) and 

that the totality of all new numbers forms a f i eld. But what about exponentia-

tion in the new compl ex domain? Is it 

complex numbers (determined by reals, 

principle, so as t o remain within the 

possible to define exponentiation of 

i, + and ·) in accordance with Peacock' s 

compl ex domain?1 ) We shall show it is. 

Notice first that -i has the same defining property as i: ( -i )2 = -1. 

So , any calculation with i which ends with the result 

R(i) = X + iy 

when performed on -i will end with the r esult 

R(-i) = X - iy. 

But we want to treat exponentiation as a calcul ation process in the complex do

main, so if for r eal a and ~ 

R(i) = aiw = x + iy then 

R( . ) - i w . 
-1 = a = X - 1 y . 

This is al so a kind of permanence principl e . But then 

aiw. aiw = (retaining :\f by Peacock ' s principle2)) = 

= a0 = 1 = (x+iy)·(x-iy) 

i w ,J, .. ;. a = cos 't' + 1 s1n 't' . 

2 2 
X +y i.e . 

iW-i W 
a = 

It remains to find out how rp depends on a and w . 
¢ (a , w ) has to be continuous in a and W if continuity of exponentiation 

is to be preserved in the complex domain . Hence , the continuity will be pre

supposed in the sequel . By Peacock ' s principle we shall in the sequel under

stand the principle of conservation of continuity and the crucial algebraic 

properties :If . 

LEMMA l . The function ~ (a,LJ) is linear in the second argument: 
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~ (a ,k · W) = k · ~ ( a ,W) . 
Proof . 

i · (Wl+W2 ) 
= a = (Pp) = 

Li nearity f ollows f r om additivity ( l ) and continuity of ~ . 

LEM-IA 2 . The function ¢ (a ,W) is linear in the logarithm of the 

first argument: 

4<ak ,w) = k·~( a ,W). 

Proof. 

cos ~ (a
1

-a
2
,w) + i sin 4< a

1 
· a

2
,UJ) = (a1 -a2 )iW = (Pp) = a iw · a~w = 

= ( cos ~ (a
1 

,W) + i sin ~( a1 ,W)) ·( cos ~ (a2 ,c.J) + i s in<P (a2 ,W) = 

= cos (¢ (a
1 

,W) +¢( a
2
,w)) + i s in ( f< a1 ,w) +~ (a2 ,c..J)) i. e . 

(2 ) ~ (a
1

. a2 ,w) =¢< a1 ,cu) + ~(a2 ,w). 

Linearity in l ogarithm follows from ( 2 ) and continuity of 1} . 
If follows from LEMMA l. tha t 

( 3 ) ¢<a ,W) = k(a)·<.u 

and from LEMMA 2. that 

(4) ¢ (a ,uJ) = ln a· h(W). 

From (3 ) and (4) we have 
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k(a) •GJ = ln a • h(w) 

that is 

k(a) h(c..J) 
lna = w- for any a and W 

that is 

k(a) h(w) ------c-ln a - c...J - - const. 

Hence 

~(a,w) = c·W·ln a. 

So, the only possible definiti on of exponentiation in the complex domain, 

which is in accor dance with Peacock's principle, is the following one 

aiw= cos(c·W·lna) + isin(C·W·lna). 

It i s also easy to see that the crucial al gebraic properties~ are realy pre
served by this definition (for any choice of c). 

In particular, we are compelled by Peacock' s principle to define 

iW ( ) . . ( ) e = cos c·w + 1 s1n c·w , 

i .e . we are almos t compelled to Euler's equation (up to the constant c, which 
we can choose arbitrarily). 

Are we compelled to choose c=l if we want to define exponentiation of 

complex base with complex exponent in accordance with Peacock's pr inciple? No, 

we are not: 

Let 

z1 = r· (cos ~+ i sin 1) 

and let 

z2 = x + iy . 

Then 

z~2 = (r ·(cos ¢ +isin f ))(X+iy) = (Pp) = 

= r(x+iy)·(cos ~ +isin¢)(x+iy) = (Pp) = 
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= rx·riy·(cos~+isin ~ )x.(cos ~ +isin~ )iy = 

= rx · (cos(c.y·ln r) + i sin(c ·y·ln r)) · (cos(x -~ ) + i sin(x· ~ )) · 

· (cos 1 +i sin ¢ )iy = rx.(cos(x· ¢ +c·yln e) +i sin(x ·¢ +c-y·ln r))· 

· (cos(c · P._ · lne) +isin(c.f·lne))iy = 
c c 

= rx(cos(x· ~ +C·y·lnr)+isin(x· ~+C·y·lnr))·(ei~/c)iy = 

= (Pp) = rx· e-y·¢/c . (cos(x·~+C·y · lnr) +isin(x·¢+c·y·lnr)), 

and it is easy to see that the crucial algebraic properties~ are preserved 

by the definition: 

(r· (cos~+ i sin~)) (x+iy) = rx · e -y· t/> /c • (cos(x· ~ +C ·y·ln r) + i sin (x·~+C ·y·ln r)) 

for any choice of c. 
So, Peacock's principle does not compell us to choose (Euler's) c:l. 

If we add the principle of permanence of diferentiability we are com

pelled to choose c=l . Namely the function f(z) =az is diferentiable only 

for c=l. We shall prove this: 

The function 

u + iv = ax+iy = 

= ax.cos(c·y·lna) + iax· sin(c·y·lna) 

is diferentiable only if 

0 u 0 v 
~=-;ry and 

i.e. only if 
ax·ln a· cos(c·y.ln a) = c·ax· ln a ·cos(c·y· l n a) 

i.e. only if 

c = 1. 

Concl usion. We are al most compelled to Eul er's equation by Peacock's 

principle. We are definitely compel led to it if we also accept the principl e 

of permanence of diferentiability. So, Al lendoerfer's condition: 

iw . iw d/dw(e ) = l. e , or the Curtiss' condition (cf. 
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are unnecesarily strong concerning the diferentiation. Besides, they do not 

take into consideration the most fundamental principle of permanence -

Peacock's principle - which has to remain our guide in extending all the 

operations, as much as it can. 

l) Notice, that this is not possible for rational numbers . If we define 2112 

in accordanc~ with Peacock's principle as ~ we do not remain within 
rationals. 

2) In what follows we shall write (for brevity) "Pp" instead of "retaining 
4f by Peacock's principl e". 
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Abstract. In this paper we shall discuss some basic 
properties ot mea sure of randomness of the binary word x, 
ot the !unction KB(x), connected with the tests of P.Martin
-L5! (1]. Marks and definitions are similar to those in [2). 

1. Marks and De!initiona. We shall mark the set ot 

all the finite binary words with an X, and the words alone 

with x,y,z,u,v, etc. With l(x) we shall mark the length of 

the word x, and ycx will mean that y is the beginning piece 

of the word x. We shall not differentiate the notions "nu-

mber" and "the finite binary word", because we join the nu-

l(x) l(~) l(x)-i 
mber x-2 -1+ .L; x12 to the word x•x1x2 ••• Xn, xiE 

J..•l 
E{O,l}. We shall mark the set ot infinite words with an~ , 

and the words alone with o( , j3 , f! , ~ , W , etc. The word W n is 

the beginning piece of the word W which has the length of 

an n, and the symbol W is the n-th symbol of the word W. n 

Set rx is the set of all w which begin with x, i.e .. { w I 
w l(x) •X }• We think that on the set Q constructive measure 

P, (for example by using the sets f'x and P(f'x)~2-l(x)) has 

been introduced. The partially recursive functiqn ~ which 
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is defined on words , we shall call "a process" if ycx and 

xEDom(.'r) ~ yEDom(.T) and !F( y) C fF(x). Let the function 

~2(i,x) be universal for the class of all one-dimensional 

partially recursive functions. Let F(x~G(x) be substitute 

for the predicate (3C)~x)F(x)~G(x)+C, and let F(x)XG(x) be 

supstitute for the predicate (3C)0ix)F(x) •G(x)+C. 

Let the set (l be given and a constructive measure ~ 

on it. The Martin-Lof test (ML test) is a general recursi

ve function F(x,y1 , ••• ,yk) with the property 

1P{wlwEQ,F( w ,y1 , .•• ,yk)>m} ~2-m, 

where P'( w ,yl' ••• ,yk) .. sup F( wn ,y1 , ••• ,yk). 
n 

(1.1) 

The word weQ is random with respect to function F if F( W, 

,y1 , ••• ,yk) is finite. There is an universal ML test,runcti

on U, with the property that lJ(x)>F(x) goes for any other 

ML test F and every xex. 

In 1965. Kolmogorov (3) defined the measure of complexi

ty of the word x with respect to partial recursive function 

F as 

Kp.(x) • { 

m;n{l(p) I P'(p)•x} 

00 , (VpEX) F(p)fx 
(1.2) 

There ie an optimal function F0 so that for any other functi-

on G and every x goes 

Kpo(x~KG (x). (1.3) 

~e measure Kpo(x)=K(x) is known as Kolmogorov's complexity 

of the word x. Basic properties of this measure are given in 

papers [2),[3) and [4] • 

In his paper ll) Martin-Lor introduces the measure of 

randomness of the word x with respect to the assigned ML 

test F as 
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-in! F(z,y1 , ••• ,yk). 
Z)X 

(1.4) 

We introduce the measure K~(x) as ~rnpCx I !\ , • • •, 1\ ) • 

2 . ~ p~perties ~ ~ measure KB(x) 

(i) ~ ia. an universal ML llli U(x,y1 , • • • ,yk) ..ll2 

.tlw..t !.2J:. .lillY-~ .ML Ull F (X t Y 1 t • • • t Y k) .and llU'Y-~ 

XEX_g~ 

( 2 .1) 

The proof for this theorem is standard for this theory 

and is similar to the proof of Theorem 4.1 in ( 2) ,page 112. 

We shall mark the measure KBuCxly1 , ••• ,yk) more simply as 

KB(xly1 , ••• ,yk). 

(ii) Let Gx( i , y) ~ to r esult of ~pplication of l(x) 

step of a lghoritm whi ch calculates the f uncti on OUCi , y), 

i n t ha t case 

l(x) - max G ( i ,y) ~ KB(x) ~ l(x ) 
i '-1(x) , ycx x 

(2.2) 

The proof follows directly from the construction of uni-

versal test U in the proof ( 2] , which has already been me-

ntioned. 

(iii) Function KB(x) is "smooth" , a .• e. 

KB(xy)-KB(x)~ l(y) (2.3) 

This property is a direct consequence of inequality 

inf U(z)~inf U(z) . But, limKB(x) does not exist because 
z::>xy Z:>X X -'> 00 n 

(Vn)(3x)(l(x)~n) KB(x)~O . For example (Vn) KB(~)xO.(Pi-

cture 1.) 

( i v) :J.•here is .a. general recursiVe function 
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qp<t,x,y
1

, ••• ,yk) with the following properties: 

cl> ( t ,x,yl' • • • ,yk)~ KB(x Yl' • • • ,yk) 

limq?(t,x,y1 , ••• ,yk)-KB(x y1 , ••• ,yk) 
t--900 

(2.4) 

(2.5) 

~~e test U(x,y1 ,~ •• ,yk) is a general recursive function . 

Yor every neN we form the set In·{/\,O,l,OO, Ol,lO,ll,OOO, • •• 

• • • ,n} • 

y 

Y•KB(x ) 

0 X 

Pict.l. 

We define ~(t,x,y1 , ••• ,yk) as min U(xp,yl, ••• ,yk). 
pE~ 

In th~ t case ~(t,x,y1 , ••• ,yk) • l(x) - ~(t,x,y1 , ••• ,yk). 

~ v) The function KB(xJ 1& ~ e!fective, lm:t .a p~-

~ 
n (x,a)::= lKB(x)<.a) (2.6) 

i§ par t ially recursive, ami se-t 

{ x I t3a J lKBlx)<a J (2.7) 

j& r ecureive1Y enumerab ,. 

Recursivity of the predica te (2 .6) is the result of 

the recursiv1ty of the the predi cate (3t)(qp(t, x}<a ), and 
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that, in turn, is a result o! recursive enumerableneea o! 

the set ( 2 . 7 ). 

(vi) There are on l ;y: "a few" words without random, 

i.e. 
IP { r x \ KB(x~ l(x)-m} ~ 2-m l 2.8) 

IP { r I KB(x)~ l(x)-m} • [P { r I inf U(y)~m} ~ 
X X y:>X 

IP { rxiU(x))m} ( 2-m. 

So, KB(x) l(x) goes for almost a ll words x,which justifies 

the introduction of the measure KB as the measure o! the ra-

ndomness o! the word. 

(vii) [2] 

IKB(x)- K(x)\~ (2+~)1(1(x)) (2.9) 

{viii) M.! cft .:7"tx) ) • l(x)-l( .:Ttx) ) . In that oa se 

KB(x)-KB(g:-(x )) ~ d(!F (x)) (2 .10) 

KBG•.r (x)-KBG (_7-(x)) • cf (?"(x)) (2.11) 

(ix) If w is J!. recursive ~quence, in that case 

(Vn) KB( wn) !:< o 

The sequence W is characteristical for the set A={n1 , 

n2 , • • • } ~ N if n1-st,n2- nd, ••• figure in W is "1" and Pll 

other figures are "0". With WA we shall mark that the se

quence W is characteristical for the set A. If A is recu

rsive, let's form a function 

F( A ) .. o 

F(wn)=f:,_ ind { I wAcwi) - :_ ~~ :_ } 
1•1 i 2 2 

(2. 12) 

\'there ind S is the indic!'1tor of the set s, and wAc w1 ) is the ·• 

number of those ones in the word wi which are on the same 

position as the ones in the sequence W A. F( Wn ) is ML te-
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st , and critica l set of the test contains only the word WA . 

So, 
O~KB( W ~)~ KBF( W~)=O. 

(x ) For every_ word xEX 

KB(x\x)X' o 

We form the function F2(z ,x) = {l(x) ,xcz 
1\ , otherwise 

(2.13) 

Function F2 is ML test . IP{ w I F( w ,x)>- m} • lP{wl x c w ,l(x)~mJ • 

2-m 2- m-1 2-m+l 
• + +··· • 

( 1] 

[2] 

[3] 

(4] 

KB(xlx) ~K~(xjx) • 0 . 
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ON ONE DECOMPOSITI ON OF FUZZY SETS 

AND R-:LAT I ONS 

Vojvodi6 G., ~e ~elja B. 

Abstract. It is known that a fuzzy set A on an 
S, a s a mapping from S to the comnle te lattice 
~e termines the fami l y {Ap iP € L} of s ubse ts of 
A= u p• A . I n 141, it lS proved that ({A IP e 

peL P P 

177 

unemoty set 
L , unique l y 
S , s uch t h at 
L} I ~ ) i s 

a lattice is omorphic t o the quotien t r e l ative to o ne c los ure 
operat ion in L. 

He re we prove that A unique ly de termines one family 
{APIP e L} of fuzzy sets on s, and vice-ve rsa, proving the 
theorems of decompos ition and synthesis. This decomposition 
preserves the properties of fuzzy con~ruence relation (defined 
in l2ll on algebras, and using this we prove some relations in 
the class of factor algebras modulo fuzzy congruence relation, 
defined in 131. 

The main definitions and the notation are the same as 
in I 31 and I 41 • 

l. Let s t- ~ and let L = (L,/\,V ,0,1) be a complete 

lattice. Let A : s -+ L be a fuzzy set on s, and for every 

p € L, let Ap : s -+ L be a fuzzy set on S, such that for 

every x e s 

l A(x), if A(x) > p 

Ap(x) ( *) 

0, otherwise. 

PROPOSITION l.l. 

( 1) Ap(x) e {0} u [p), for every X e s, where [ {)) is a 

principal filter in L I generated by p. 

(2) If s,t e L, and s < t, then: -
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~ 

(2.1) At(x) ~ 0 implies As(x) = At(x). 

(2.2) If As(x) = t, then At(x) = t. 

Proof. Directly from (*) Q 

THEOREM 1.2. (DECOMPOSITION) If A 

fuzzy set on S, then 

A= U Ap 
p€L 

S -+- L is a 

(The union is a fuzzy one, see for example I 11). 

Proof. Let A( x ) = q, X e s. Then 

( U Ap) (x) 
peL 

V Ap( x ) 
peL 

V Ap (x) V V A-p (x) 
p _2q p,tq 

v q v 0 
p_2q 

q. 0 

PROPOSITION 1.· 3. If A S -+- L, is a fuzzy s e t on S, 

the n 

( 3 ) 

( 4) 

Proof. 

A 

A 

AO 

U Ap 
p>O 

( 3) Directly from ( *) . 

(4) Let A(x) = q , Xes. Then, if q ~ 0, the proof is 

similar to the one of Proposition 2, and if q = 0 then it 

follows from(*) that for every p ~ 01 Ap(x) 

( U Ap) (x) = 0 . fl 
p>O 

0. Then also 

PROPOSITION 1.4. Let A 

Then for every x € S : 

S -+- L be a fuzzy set on S. 

(5) If s , t e L and s < t, then At~ As (the inclusion 

is a fuzzy one 111 > • 

(6) If s ,t e L then for x e s 

As(x) ~ 0 and At(x) ~ 0 ~ As (X) = At ( X) • 



Proof. (5) Directly from (2.1). 

(6) If X e S , from 

A(s/\ t) (x) = At(x) , and 

s 11 t < t , it follows that 

s 11 t < s imply A(sll t) (x) As (x) 

(all because of (2 . 1)). 

Thus, At(x) = As(x), for every xes. n 

Remark . (6) is equivalent with U Aq 
q~ 

THEOREM 1.5. (SYNTHESIS) Let S ~ ~ and let 
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L = (L, (\, V ,0 ,1) be a complete lattice . Also let {Ap!e e L} 

be a family of fuzzy sets on S (for p € L, Ap : S + L) 

satisfying the conditions (1) and (2) from Proposition 1.1. 

A 
def 

Then, if = AO, the following is satisfied. 

(i) A u Ap 
p>O 

(ii) If x e s 1 then for every P e L 

l A(x), if A(x) > .1? 

Ap(x) 

01 otherwise . 
Proof. (i) Let A(x) t € L. We shall consider two 

cases: 

I t = 0. Then, AO(x) 0, and by (5), for every 

peL Ap(x) = 0, and hence 

II 

V Ap(x) = 0 t . 
p >O 

t ~ 0. Then, because of (2 .2 ), AO t implies 

At(x) ~ 0. Now, since for every s € L, As(x) ~ 0 (by (2 .1 )). 

it follows by (6) that As(x) t. 

(We may use (5) and (6) since those are the consequences 

of (2 .1 )). 

Thus, for every s > o·, s e L, 

As(x) AO(x) = At(x) t 1 
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and hence, again 

V Ap(x) = t. 
p >O 

(ii) If A(x) = 0, for xeS, the equality is obvious. 

Suppose now that A(x) = AO(x) = s ~ 0. Here, again, we have 

two cases: 

a) s > p, where Ap is given in (ii). By (2.2), 

As(x} s, and since p ~ s, by (2 .1) 

Ap(x} = As(x) = AO(x} = A(x}, 

b) s f.. p. Now, by (6), AO = s implies 

Ap(x} = 0 or Ap(x} = s . 

Because of (1), Ap(x) ~ s, and hence Ap(x} = 0. n 

P:OOPOSITION 1. 6. Let X : S + L, and for p e L let 

Ap : S + L, defined by ~(~ Then the following is satisfied: 

(a} If q e L and q ~ 0, then Ap = A 
q PV q 

(b) Apo = A = s. 
0 

Here we use the definition: If p e L, then 

that for X € S 

X e Ap iff A(x) ~ p (see Ill) . 

A C S p- such 

Proof. (a) 

in I 41) imply: 

The equality A 
PV q 

A n A (proved 
p q 

X € Ap V q iff xeAnA , p q 

iff X € A and X € A 
p q 

iff A(x) ~ p and A(x) > q , 

iff A(x) = Ap (x) ~ q , 

iff X € Apq 

(b) x e Ap
0 

iff Xp(x} ~ 0 , 
iff A(x} > 0 

iff X € A 0 = s. n 
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Thus we have proved that the usual decomposition of 

the fuzzy set Ap , p e L , is the same as the one of A for 

all q ~ p and is the restriction to p V q otherwise . 

Ap
0 

is , for every p , equal S . 

2 . The definition (*) , when applied on the fuzzy equi -

valence relations (defined in 111) , preserves their oroper

ties . Moreover, if p is a fuzzy congruence relation on an 

algebra A (see 131), op is for every peL a fuzzy congru

ence relation on A, as well. 

Let A= (A,F) 

complete latti ce , and 

A 12 1 (that is: 

be an algebra , L = (L,/\,Y ,0,1) a 
- 2 p : S L a fuzzy congruence relation on 

For all x , y e A p(x , x) 1 , 

p(x ,y) p(y,x) 

p ( x, y ) > Y (p ( x , z) 1\ p ( z , y )), and 
zeA 

1, •.• ,n, then for f e F 

n 
p ( f (x 1 , ... ,x) ,f(y

1
, .•. ,y )) > 1\ pi) 

n n - i=1 

If p is a f u zzy congruence re lation on A, and p e L, 

the definition ( * ) has the f ollowing form: 

PP : A2 + L, and if (x,y) e A2 

l p(x,y) if p(x,y) > :r? 

pp(x,y) (**) 

0 otherwise 

PROPOSITION 2.1. If p A2 
+ L is a fuzzy congruence 

relation on A, then for every p € L op (defined in (••)) is 

a fuzzy congruence relation on A, as well. 

Proof. pp is reflexive, since p(x,x) 

x € A, and thus pp(x,x) = 1. 

pp is obviousli symmetric. 

1 for all 

To prove that pp is transitive, we shall consider 

two cases. 
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I If for x,y,z e A pp(x,z) 0 or pp(z,y) 

then, clearly, 

oP < x, Y > 2. op < x, z > " op < z , Y > 

II Let pp(x,z) ~ 0 and pp (z,y) ~ 0, x,y,z eA. 

Then, 

Hence, 

pp(x,z) 

pp(z,y) 

p (x,z ) > p, and 

p (z, y ) > p . 

p .: PP (X, z) /\ PP ( z , y) p(x,z) /\ p(z,y) < p(x,y) 

Thus, pp (x,y) 2_ p, and pp(x,y) o(x,y ) , i.e. 

PP (x,y) > PP (x,z) /\ PP (z ,y) 

0, 

Since this inequality holds for every z e A, it follows that 

Pp is transitive. 

Let now f be an n-ary ooeration from F, and f or 

x 1 , ... ,xn,y 1 •.•. ,yn € A, let pp (xi,yi) = l)i € L. Then 

again we have two cases: 

i) pi= 0, for some i e {1, •.. ,n}. Then clearly 

n 

A Pi 
i=1 

IJ, and 

n 
pp(f(x1,. :. ,xn) ,f(y1, .•• ,yn)) 2. A l)i • 

1=-1 

ii) pi 1 0, for every 1 e (1, ... ,n}. Then, 

pi = pp(xi,yi) = o(xi,yi) 2. p , 1 1, •.. ,n . 

Hence 

n n 
P.: A op(xi ,yil 

i=1 
1~1o(xi,yi) 2 o(f(x1, ... ,xn),f(y1, •.. ,yn)). 

Thus, 

n 
P p ( f ( x 1 , . . . , xn ) , f ( y 1 , . . . , y n ) ) = P ( f ( x 1 , . . . , xn ) , f ( y 1 , . . . , y n ) ) 2.1 ~ 1 p 1 . 

This proves that pp is a fuzzy congruence relation on A. D 
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-COROLLARY 2. 2. If p : A2 -+ L is a fuzzy congruence 

relation on the algebra A, then 

p u PP 
p >O 

Proof . By Proposition 1.3 and Prooosi tion 2 . 1. 

COROLLARY 2. 3. Let {p9 jp e L} be a family of 

congruence relations on 

L = (L, (\ , V , 0,1) is 

Now , if {ppjp 

si tion 1. 5, then 

algebr A (A, F), where 

a comElete lattice. 

e L} satisfy the conditions 

P = U PP 
p>O 

is a fuzzy congruence relation on A. 

of 

Proof. By Proposition 1.5, since p pO. 0 

The following definitions are from '3J. 

0 

fuzzy 

t>roEo-

If p is a fuzzy congruence relation on A (A, F), 

then 

[ x] P 

A/p d~ f { [ x] 0 I x e A} , where 

def 
A -+ L, such that [x] 0 (a) p(x,a), a € A. 

Now, if f e F, then 

p = u p•p 
p€L p 

is the usual decomposition ·of a fuzzy set p. 

Thus, A/p = (A/p, f). For !' € L A/p is the factor algebra p 
modulo pp' which is an ordinary congruence relation on A. 

PROPOSITION 2.4. Let p be a fuzzy congruence rela

tion on A= (A,F). Then, for !' € L, 

(A/ppq)/(p /pp) ~ A/pq , for every q € L. 
q q 
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Proof. By the definition of A/p, and by Propositi

on 1. 6. D 

111 
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THE RELATIONS BET'YffiEN THE ASSOCIATOR, THE DISTRIBUTOR AND 
THE COMMU~TOR AND A RADICAL PROPERTY OF A NEAR-RING 

Veljko Vukovic 
Abstract. The concepts of (in general nonassociative and non
distributive) near-ring 8, a left (a right) near-ring, a d.g. 
near-ring, the associator, the distributor, an ideal of S, the 
relative distributor (r.d.) of a subset T of s, an S-subgroup 
of (8,+), the normal associator (distributor) subgroup of (~+~ 
the associator (the distributor) ideal of 8 etc. are defined 
in [1]. The radical J(S), the quasiradical Q(S) and the radi
cal subgroup N(S) of a near-ring 8 and a small ideal of S 
are defined in [2] • 
In this paper we have examined the relations between the asso
ciator, the distributor and the commutator of a near-ring, re
spectively of a left (a right) near-ring and of a d.g. near
-ring and the necessary and sufficient conditions that the 
associator (the distributor) be an ideal (Th. 1.-7.), the su-
fficient conditions that the radical J(S) of a left unitaxy 
near-ring S coincides with the quasiradical Q(S) and with the 
radical subgroup N(S) of S (Th.8.) 

THE CONDITIONS THAT THE ASSOCIATOR (THE DISTRIBUTOR) BE 
AN IDEAL OF A NEAR-RING S 

Let A(S) be the associator of a near-ring 8. Denote the set 

{ :x:±a-x/x(S, a(A(SD by B, the set LDUJJ =Ld1 =s ((s1 s2 )s3-

-s1 ( s 2s 3) )+s(s1 (s2s3 ) )-s( (s1 s 2 )s3)/s, sl' s 2 , s 3(~~2=( (s~_)~)~ 
~1 s3 -(s(s1s 2 ))s3+(s(s1s?)-(ss1 )s2 )s3/s,s1 ,s2 ,s3(s) by n8 and the 

identity of (S,+) by o. The set ln={d=s(x±a-x)-s(±a-x)-sx/ s, 

x(S, a(A(S~ ( <b={a=-(±a-x)s-xs+(x±a-x)s/x,sEs, aE A(S~) is 

called the left distributor (l.d.) (the right distributor (nd~) 

of the set B in S and J.nu<b the distributor (d.) of the set B 

in S. 

THEOREM 1. The normal associator subgroup A(S) £! ~ near-ring 

S is ~ ideal of S if it is ~ right (£!: ~ left) S-subgroup, 

contains its ~ r.d. Dr.!.£ s, the distributor of ~set B :ID 
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3 
S ~ D~ • Conversely, i! ~ normal associator subgroup I(s) 

is ~ ideal 2£ s ~ ~' .§.!.2. E res), f2.E. all s Es ~ it is ~ 

8-subgroup, contains its ~ r.d. in s, the !1• of ~ ~ B in 

S ~ -rl'+JJ={-d1+d2/d1tJ:P, d2tJ>]. If A(S) contains j} .2.!: J> 
then ii contains n~: 
Proof.Let A(S) be a right S-subgroup, let it contains its own 
-- 3 
r.d. in s,£n and D~. Then, since aEA(S) if and only if there 

exist s1 ,s2,s3Es such that a=(s1s 2)s-s1Cs2s 3), xa=x((s1s2 )s3-

-s1Cs2s3))=d1+x((s1s2)s~x(s1Cs2s3 ))=d1+a+(x(s1s2))s3-x(s1(s2~~ 

where dl=x((sls2)s3-sl(s2s3))+x(sl(s2s3))-x((sls2)s3) and a~ 

=x((s1s2)s3)-(x(s1s_i)s3 • Hence, x((s1s2 )s3 )=a+(x(s1s 2 ))s3 • 

Since (x(s1s 2)-(xs1 )s2 )s3 = a'~EI(S) respectively (x(s1s 2 ))s3-

-((xs1)s2)s3+d2=a'~ (where d2=((xs1 )s2)s3- (x(s1s 2))s3+CxCs1s 2)-

-(xs1)s2)s3) and from here (x(s1s 2))s3=as3-d2+((xs1)s2)s3 ) and 

since ((xs1 )s2 )s 3-(xs1 )Cs2s3 ) =~EA( S ) respectively ((xs1 )s2)s3= 

=i +(xs1 )(s2s,), then xa=d1+a+a'~-d2+i+(xs1 )(s 2s3 )-x(s1 (s2s 3 ))= 
=d1+a+as3-d2+a+a''~A(s), for all xts. 

Since for arbitrary a1,a2EA(S) and s8S, there exist~,~· ~Drsum 

that s(a1 +a2 )=d'+aa1 +sa2 E:~S) and (a1 +a2 )s=a 1s+a2s+~'tA(S~ induc

tively one can obtain that sl:i±ait-I(s), for all aiEA(S), all 

sES and iEN. 

Since, by the definition of A(S), aEA(S) if and only if there 

exist aitA(S), xits and itN such that ac1:~= 1 (xi±ai-xi) then 

for arbitrary xEs and aEA(S) there exist dL, di tDr and d\:_Jn 
such that xa = aL+".x(x.~a.-x. )) =a-+"~. (di+xx.+d . .;txa.-xx.)t-A(S) 

.L-1 l. 1 1 .L .L-1 1 l. l. :i::' 

(respectively ax=CI:i (xi±ai-xi) )x=L (xix±arc-x:r~+<id)+'Jd EI(s), 

for all aEX(s) , all xEs, some nd,niEDr and some ~tdo). 
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Since for any a, a1 tS and for any at 'A(J3) there exist dL, dd (Dr 

s uch that a1 (s+a)-s1 s=dL+s1a+s 1a-s1st~S) and (s+a)s1-ss1-

=ss1+as1+dd-ss1ti(s) then 'A(B) is an ideal of s. 

If (S,+,•) is an associative near-ring with zero then LDadDao. 

Conversely, let I(s) be an ideal of a near-ringS and O•s, 

s•ot It;s). Then, 'A(S) is an 8-subgroup, i.e. ax,xaEI(s), for all 

at-I(s) and all sEs by the definition. Also, x(s+a)-xs .. dL+Xa+ 

+xa-xstl(S) ~dLEI(s), for all x,s(S and all a~I(s). Simi

larly, dd E-'A(S). 

Likewise, from sa=s(~a-x) =d+ax+s(±a-x)=d+ax+dr±sa-sx ~A(S) 

follows dtA(S) for (some drEDr , some dt In and) all s,xfB ani 

an. af A(J3). Similarly, from as= (xia-x)s=(:x.±a)s-xs+ad~)ts) fo-

llows adEA(S), for all x,s(S, all afA(S) and some ad~do. 

Since xa=d~+a+a'~-d2+a+a"fi(s), for all xfS and aEA(S), where 

a=x((sls2)s3)- ( x ( sls2))s3' a'= x(s l a2)- (xsl ) s2 and <i.f-2,i. a'~ a' 

as a bove, t hen d1+a+a'~-d2fi(s). Hence, -d1+(d1+a+a'~-d2 ) +d1 
from X( s) and a+efs 3-d2+d1 EI( s ) •••••• (+ ) . From(+ ) f ollows fua.t 

- d2+dl f 'I(S) • • •. • • • • • • • •. • • .. • •. • •. • • ( - ) • 

I f X( S ) c ontains rP or dD t hen f r om (-) follows that it con-
s3 

tains n8 • 

COROLLARY. 1f fu normal associator subgroup A(S) .91..!!: ~ 

ring S with ~ is ~ ideal .21. S lli.!l.ll !§. ~ s-subgroup, 

contains its ~ !:..!..!!.• ig S , the .§.tl -r.,D + dD ={-d1+d2 I d1 

d1 ~:rP , d2~d~J and ~ distributor 2f the set B ig s . 

THEOREM 2. ~ normal asso_ciator subgroup A(S) ~ ~ right 

c~ left ) ~-ring s is i!1! ideal of s if it if! ~ right ( !! 

left) s-subgroul? , contains its own r.d . !!1 S, ~left !!,_. ("the 

~) Q1 t he set B in S and ~distributor LD \iD). Converse..!J) 

. .. 
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g the normal associator subgroup_ ";';:(s) .o.f Q righ! (~ left) ~ 

-ringS is~ ideal £.!!9_ s•otA(S) (o•st-A(S)) then it is~ S-

-subgroup and contains its Q!ill r.d. in S, i_he distributor J.P 

( Jl) .ill& the g,. of lli set B in s. 

~· This theorem follows from Th. 1. 

COROLLARY 1. ~ ~+. associator subgroup A(S) of ~ right (~ 

~) near-ring S with ~ 1§. §11 ideal if .e..llii only if it is 

~ right (~ Jill) S-subgroup, contains ~ ~ r.d. in S, the 

£. £f. lli ill_, B .:h!:!_ S ~£ ru_ distributor fJ ( JJ). 

COROLLARY 2. 1£ ~ normal associator subgroup A(S) of a 

right near-ring S contains its .Qlill. r .d. in s, lli l.d. of the 

set B in S, lli distributor JJ> and it is ~ right S-subgroup 

then S/A(S) ~ ~ associative near-ring. 

THEOREM 3. ~ S ~ ~ lks· rie;ht ( .Q.t .1:..Q.£!) near-ring. ~' 

ill normal associator subgroup A(S) is an ideal of S if it is 

~ left (.Q£ ~ right) S-subr;roup and s'frJ (.QE. s's ') is additive-

1Y commutative. ((~,·) i s a subfroupoid of the left (right) 

distributive elements of S vrhich ::J.dditively generateS). 

~· If the normal associator subr;roup 'A(s) of a ri ght d.g. 

near-rings is a left 8-subgroup then for each a=J:f=l(xi±ai

-xi) of I(s) holds ax=J:f=l(xix±aiX- XiX) . It remains t o prove 

that axtA(S) for a ll aEA(S) and all xE5. If s~3 is additivcly 

commutatitive then, for any s 1 , s 2 , s 3 , xEs , a=(s1s 2)s3-s1Cs2s 5) 

from A(S) and ax=((s1s?.)s 3- s 1 C s2sj))x=(~ince ((s1s 2)s3 )x-

- ( a1s 2 ) (s_,x)=a then ( ( s1 s 2 )s;)x=u+ ( c1s 2 ) ( a3x) )dO:+( s1s 2 ) ( s 3x)-

- (sl(s2s_,.))x=(Since (s1s~)(s 3x)-s1Cs2 C:.-:3x))~ the n (s 1s 2 )(~x)= 
:-i+s1Cs2Cs3x)) ) =a.:a+s1Cs2Cs 3x))-(s1(s2s))x.- (':.:jncc n 1(~..(s;.x)-
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-Cs2s 3)x)=s1a1 and since s 1a1=s 1 (s2 Cs 3x)-(s2s 3 )x)=J:i±~s2~x~ 
-Cs2s 3)x) ,. .ts1Cs2Cs3x)-(s2s :)x )± ••• ±sn(s2Cs3x )-(s2s, )x) • 

=*s1 Cs 2 (s 3x))~s1 ((s 2s 3 )x)! •• • ~sn(s2 Cs3x))+sn((s2s 3 )x = 

=(!s1± •• • ±sn)(s2 s;x))-(i s 1± ••• ±sn)((s2s 3 )x)=s1Cs2Cs
3
x)) 

-s1((s2s) )Y), then ~1 (s2 (s 3x))=slal+Sl((s2s3)x) ) = Q+~+SlSl+ 

+s1((s2s 3)x)-( s1(s2s,))x = a+W+s1a1+a2 t A(s ), where a2= 

=s1 CCs2s 3 )x)-(e1 Csds;) )x and siE~, i=l, ••• , n . 

Similarl y , x(s+a) - xs=J:i±xi(s+a)-J:i ±xi s = !xi ( s+a )! ••• ± 

! xk ( s+a )- (:tx1s± •.• .zxks )=±x1s±x1 a± ••• ±xks:t~a+~s+ ••• ±x1s EA (S) 

fo r al l x , s ES and aEA(S) . 

COROLLARY . If S is ~right !:b..g. near-ring, the as s ociator 

no rm a l sub group X ( s ) of S is ~ l eft S- subgroup and 

s~3 is additively commutative ~ sjA(s ) i s ~ associative 

near-ring . 

THEOREM '+. The normal ass ociator subgroup A(S) of ~ right (~ 

left) sb...5· near-ring S ~ an ideal gf S :!f fW& only if it is ~ 

right (~ ~) S-subgrou_E and contains the distributor LD \iD) • 
. Proof. If A(S) is a right ( a left) S-subgroup of (S,+) and 

contains the distri butor LD (dD) then -..re conclude as in the 

proof of Th. 1. that xaEA(S), for all aEA(S) and all xE s . But 
- "'\ i-since s is a right d.g. near-ring we have xa=~is a = 

=J:±cr (sixj:tsiaj-sixj) (A(S) for all xEs and all a{A(s). As 

in the proof of Th. 3. we see now that A(S) is an ideal of s. 

COROLLARY. If the normal associator subgrOUR A(S) of a right 

~· near-ring contains the distributor LD ~ it is~ right 

8-~ubgroup theE S/A(S) is ~ right distributively generated 

associative near-ri~. 
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THEOREM 5. If the 1&f.i (lli, right) normal distributor .§.Yh

group ~L (~d) Qf ~ near-ring S contains lli, associator A(S) 

Qf S ~it i§. ~ 1&f.i (l!, right) ~ of S. 

Proof. Next we prove that DL (Dd) is a left (a right) S-sub

group. Since, by the definition of DL (Dei, d'LE'I5L (dd fD d) if 

and only if there exist di,tDL (d~EDd ) and xi Es such that 

aL= J:~=l (xi ±d~-xi) ) then xdL=xJ:t1 (xi±4;-xi )=d+ L~=l(x_~:!: 
±x~L-xx.), for some dE'I51 and some nEN) (ddx=(J:~ 1 (x.±ddi_ 

~ J ~= ~ 

-xi))x = J:~=1 Cxix±d~x -xix)+'d, for some aE~d' some nEN and 

all xES. It remains to prove that xd~E'IiL (d~xE'Iid), for all 

x~S and all di,E'IiL (respec. d~E'Iid ~ 
By the definition of DL ,dLEDL if, and only if there exist 

s 1 ,s2 ,sES such that dL=s(s1+s2)-ss2- ss1 • Then, for every xES 

xdL=x(s(s1+s2 )-ss2-ss1 )=dL+x(s(s1+s2))-x (ss2 )- x(ss1 )= (Since 

x(s(s1 +s2 ) )-(xs)(s1 +s2 ) , ._a then x(s(s1 +s2 ) )=-a+(xs)(s1+s2); 

x (ss 2 )-(xs)s2=-a1~x(ss2 )=-a1+(xs)s2 and x(ss1 )-(xs)s1=-a~ 
~x(ss1 )=-a2+(xs)s1 )=~L-a+(xs)(s 1+s2 )-(xs)s2+a1-Cxs )s1+a2= 

=uL-a+(xs)(s1+s2 )-(xs)s2-(xs)s1+~a2=at-a+d£+~1+a2 E'I5L, becau

se di=Cxs)(s1+s2)-(xs)s2-(xs)s1 , a1~(xs)s 1=-(xs)s1+ai and , 

from here, a{=(xs)s1+a1-Cxs)s1 E'I5L 

Also, x(s+dL)-xs=dL+XS+xdL-xsE'IiL, for all x,sES and all dLE'IiL• 

(Similarly, ddxE'Iid and (s+dd)x-sxE'Iid' for all ddE'Iid and all 

x , sES) • 

THEOREM 6 . The left (~ right) normal distributor subgroup 

lJL (lld) of ~ right (~ left) associative near-ring S is an 

ideal of s. ---
Proof . We prove that DL (Dd ) is a right (a left) S- sub group . 
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For any dLtDL and any a,s1 ~s dLxc(a(s1+a2)-as2-ss1 )x a (s(s1+ 

+s2))x - (ss2 )x - (ss1 )x • s((a1+s2)x) - s(s~) - s(s1x) • 

=s(s 1x+s~)- s(s2x)-s(s1x) (:DL ; aLx • (Li (xi:td£-xi))x .. 

=~i(xix:tdi,x-xix)E~L~ for all aLEnL and all xEs. 

But DL (~d) is by Th.5. a lso a left (a right) ideal of B. 

THEOREM 7. Let E
0 

be the set of all endomorphisms of !!, K£.Q.'!!Q 

(G,+), E(G) the set of all mapa of the K£.Q.'!!Q (G,+) which i!;t 

additively generated }U all elements of E
0

; A., C, Dd the 

normal associator subgroup of the near-ring (E(G)xG,+,x) , ~ 

commutator subgroup of (G,+), the normal right distributor 

sub~roup of (E(G)xG,+,x) respectively, where +,x are point-
_...:::_____..;:;.... - -- - - -
wise addition in E(G)xG and affine multiplication: (f,g)x(~,gi= 

((ffl'fg1+ ~) , (f , c;) ,(fl'gl)EE(G)xG. Then, 1. {o}xC is~~ 

of E(G)xG , 2 . A = {o}xc = Dd ~ 3. E( G)xG/ f o} xc i s ~ ~· 

Proof. l. For every (f , g ),(f1 , g1 )EE(G)xG and every gEC 

((f,g)+(o,g ))( f 1 , g1 )-(f, g)(f1,g1 ) = (f, g+g)(f1 ,g1 )-(f,g~,Si)• 
=(o,fg1+g+g-g-fg1 ) E [ '?}x C and 

( f 1 ,g1 )((f,g)+(o,g)) - (f1 ,g1 )(f,g)=(f1 ,g1 )(f,g+g)-(f1f,~g+g~= 
=(f1f,f1( g+g)+g1 )-(f1f, f 1G+g1 )= (o, f 1(g+g)- f 1g) = (For any 

f 1EE(G) there exist fiEE
0

; i =l, ••• ,n; sue~ that f 1=J:i=1ifi)= 

(o, CJ:i±fi)(g+g)-~i±fig) = (o,:!:f1(g+g) ± ••• ±fn(g+g)+fng+ 

:;: ••• :;:f1g = (o, c .!f1g.! ••• !.fng +,rUg ~ ••• :;:f1g = (o,c)E{o}xc 

and {o.Jxc is an ideal of E( G )xG • 

2. The associator of E(G)xG is the set of all elements of the 

form ((f,g)(f1,g1 ))(f2,g2)- (f,g)((f1 ,g1)(f2,g2)) c 

= (o, fflg2+fgl-f(flg2+gl)), (f,g),(fl,gl),(f2,g2) fE(G)xG. 

It follows that the normal associator subgroup A is contai-
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ned in {o}x C • Namely fi'1g2+fg1-f(f1g2+g1 ) = J:i±fif1g2 + 

+J:i±fig1-J:i!fi(f1g2+g1 )fC, since the sumands of -J:i!f~~g2+ 
+g1 ) are of the form :;:fi(f1g2 ), :;:fig1 and we have x+y-x+z"' 

=x-x+y+(-y+x+y-x)+z=y+z+c for all x,y,zEG and some cfC. 

Conversely, if we take f=-e, f 1=e, then from (o, ff1g2+fg1-

-f(f1g2+g1))EA we have (o,-g2-g1+g2+g1 )f1t. Hence, [oJxCSX. 

So, I ={o}x C. 

Further, for every (f,g),(f1 ,g1 )~f2 ,g2 )tE(G)xG the right di

stributor: ((f1 ,g1 )+(f2 ,g2 ))(f,g)-(f2 ,g2 )(f,g)-(f1 , g1 )Cf,g)= 

=(o,f1g~f2g+g1-f2g-g1-f1g)t{o}xc ...•.•• (++)and follows 

Dd ~{o}xc. If put that f 2=e (identity of E(G)) and f 1 =o in 

(++) then (o,g+g1-g-g1 )E-Dd. Thus, Dd= A. 

3. 'l'heproofisstraightfarward and we omit it. 

A near-ring (S,+,•) is said to be solvable if and only if 

(~,+) has a solvable sequence of S-subgroups. 

A rightS-subgroup P of ~,+) is said to be a right smallS

subgroup if and only i f S=B for each other right S-subgroup 

B of S such tha t S=P+B . 

TllEOREM 8 . Let S be .!! left unitary near-ring with the di

stributor ideal Q and the associator ideal A which ~ ~ 

right ideals and (S , +,· ) is solvabl e . Then , the r adica l J(S) 

of S coincides Hith the quasiradical Q(S) and S/J(S) is Q 

ring . If J(S) is £ small right S- subgroup , then it coinci

des with the radical subgroup ll(S) also . 

Proof . Since '' and D are small right ideal s of S they are 

contained in every maxir.~al right ideal f'1 of s . Hence , for 

every maximal right ideal I: the ncar-ring S/ t·; is an ass ocia

tive and distributive ncar-rin[, . We prove that S/i·. is a ri~ 

and Lhat h is a ~odu-
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lar ideal of S • 

Since (S ,+,·) is solvable then there exists a s olvable series 

of S- subgroups : S=S
0 
~ Sn .. o • If f1 is a maximal 

right ideal t hen S M o is a normal series of S-subgroups 

since o •s(D M, for each s( ' , and hence M is aS-subgroup • 

amely, os=(o+o)s=os+os+d, i.e. os=d(D 1 for each s(S and for 

some d(D . How, ms"( (o+m)s-os)+os ( t-1 for all m(M and s(S. ~ 

have equivalent refinements which are solvable ( ooe (1.3 3 ) . 

If (S/1' 1 +) isn' t commutative then there exists a solvable se-

ries of S-aubgroups: S K o • Since K M A(S) , 

K M D and K is a normal 6-subgroup then K is right ideal. 

This~ acontradiction. Hence , (S/M,+) is a commutative group 

and S/M is a ring. From this fact it falows that H is a modu

lar right ideal. Hence, J(S) = Q(S) . But 8/J(S) = S/ M is a 

subdirect sum of the rings S/ M (M runing over all maxim 1 

ideals). Hence S/J(S) is also a ring. 

Since N(S) is the intersection of all maximal right s-subgrou~ 

and J(S) is contained in every such S-subgroup we have also ~S~ 

=N(S). Namely, S/J(S) is a ring, and every S-subgroup G of S 

containing J(S) is a right ideal of s. 
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