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FOREWORD

It became already tradition that Yugoslav graph theori-
sts meet once in a year each time in another city. First two
seminars, in Belgrade 1980, and in Ljubljana 1981, were called
Belgrade-Ljubljana graph theory seminars. We already had the
Third Yugoslav Seminar in Kragujevac 1982. The Fourth Yugoslav
Seminar on Graph Theory has been held on April 15 and 16, 1983
in Novi Sad at the Institute of Mathematics, Faculty of Sciences,
University of Novi Sad. There were about 20 participants from
Yugoslavia and a few from abroad. This volume contains most of
the papers presented at the seminar and a few others including
the papers sent by colleagues from abroad for this occassion.
We are very thankful for such contributions. The papers have
been refereed and revised.

For technical preparation of the manuscript we are very

thankful to Milan Vujofevié, Stevan Vaderna and Dragan Acketa.

Novi Sad, Februarv 15, 1984 Fditors
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Proceedings of the Fourth Yugoslav Seminar on
Graph Theory, Novi Sad 1983

GAMES DO CONNECT? AND “DON‘T cOnnECT”
AN K=GRADHS

Dragan Acketa, Ratko ToZié

Institute of Mathematics, University of Novi
Sad, 21001 Novi Sad, P.0.B. 224, Yugoslavia

ARSTRACT

We qeneralize and solve two well-known aames on araphs,

for the case of hyperaraphs of a special type.

N, PRELIMINARIES

A k-set is a set of cardinality k.

A k-araph G on V is an ordered pair (V,E), where V

is a family of distinct k-subsets of V.

is a finite set and F

and the sets of E are the vertices and

The elements of V

the k-ednes of G respectively.

We define an equivalence relation ~ on vertices of a

k-graph G: two vertices x and y of G are in relation »
if and only if there exists a sequence el,ez,...,ns of k-ed-

ges, such that
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x € e yee , e, e #@P for 1 < i < s-1.

1’ s i

The clases of ~ are the connected components of G. In
most cases they will be called just "components".

Given m,n € N, "restm(n)" will denote the remainder

of n, when divided by m.

1. INTRODUCTION

We intro&uce two games on k-graphs, which are generali-
zations of the well-known ([1],[3]) corresponding games on
2-graphs (that is, simple non-oriented graphs).

The initial position consists of the set V of n
isolated vertices. Two players, A (the first) and B (the se-
cond), alternatively choose a k-subset of V and create the
corresponding k-edge. Each k-subset may be chosen at most once.
The game ends after the move which makes a k-graph on V with
just one connected component. The player who makes this last
move is the winner in the game "DO CONNECT" and the loser in
the game "DON’T CONNECT".

Using some auxiliary results, we give the solutions
for these two games. The general solutions should be modifiéd

for k=2, k =3 and for some relatively small values of n.

2. SOME AUXILIARY RESULTS

E. Lucas [2] has proved a theorem, which has the follo-

wing special case:
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Let n,k € N and let at...azal, respectively bi"'

...b2 1’ be the binary expvansions of n, respectively
(L) k. The binomial coefficient [2] is odd if and only if
b, =1=>a, =1 for 1 < j < 1
J J

We derive several necessary consequences from (L).

Let i€ N be such that 237! < x < 21, Then:
(1) Given k € N, the parity of [2] is (uniquely) deter-
mined by rest i(n);
(2) rest ,(n) < k implies that fn is even;
21 3
(3) rest .(n) = k implies that (n) s odd;
21 ik
(4) rest i(n) = 2i -1 implies that {:] is odd;
2
(5) Given k € N,k > 4, there does not exist a maximal se-

quence of exactly k-2 consequtive remainders y from
the set {0,1,...,21—1), satisfying the property that

all the numbers [{} are of the same parity.
)

Proofs of the consequences

(1) According to (L), when k 1is given, then the parity
of [Q] depends solely on the binary word ai...azal. This word
is just the binary expansion of rest 1(n).
2

(2) Follows from (1) ana from [K} =0 for vy < k.

(k)
(3) Follows from (1) and from X, = 1

\
(4) Follows from (1) and (L), because the binary exmansion

of 21—1 consists of i 1's.
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(5) We primarily note that the sequence and the claim would
o )

|

J

be "empty" for k = 2, We give separate vproofs for [i even
- {

and for [i],odd:
{

a) The numbers are even

u).
k)

Using (1) - (4) and k > 21—1, we easily find that the
only possibility for appearance of the described sequence with

the numbers {y] even, is the following one:

k)
k=21 ana oy e [287har,2to2)
However, as thn'hina;y exnansion of 21_1 is 10La+0 5
. \ i-1
(L) gives that { {_1! is odd for all the remainders v from
o Ll

[21—1,21~1]. Thus the only vnossibility for a counterexamnle

fails, nrovided that k > 2.

(
b) The numbers 12] are odd

Lemma. Let the last s+l diagits of the binary ernansi-

on of k- be Db 1, b =b =...=h1=0, for some nonnenative in-

s+l ' s "s~-1

teqer s. Then the lennoth of any maximal sequance of cornsecutive
. <)

- (v

remainders v from {0,1,...,2" -1}, which satisfy that !y; is
: S

=

odd, equals 2°.

Proof of the lemma. According to (1), all the remain-

(¥)
1k

where c.=1 1if b.=1 andi c. € {0,1}
J ] J

ders v, which satisfy that is odd, have a hinary expansion

of the form ci"‘czcl'

if bj=0, for 1 < j < i. All the remainders from

-
T

ol w2®, 2ty
satisfy the last condition and it is easy to see that such re-

. . : . S
mainders always anpear in blocks of size 27.0.F.D.
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Observe that the definition of s gives that k is

of the form q-ZS for some odd g. On the other hand, the lemma
y

k
k-2 = ZS. This would imply that E§3 is an odd integer, which

says that a counterexample to (5) for [ J odd would give
is true only for k=3. Thus the counterexample does not exist

for k > 3.

3. THE SOLUTIONS

Theorem 1. Let k,n €N (k >3 and n > 3k) and
(1og2k] =i. If x € {0,1,...,21-1} 18 such that x+k = n(mod 21),
then the player A has a winning strategy in the game "DO CONN-
ECT" if and only if the number [i] i8 odd, otherwise the pla-

yer B has a winning strategy.

Proof. We primarily observe that one move can reduce
the number of (connected) components by at most k=-1. Namely,
a player can choose k vertices to create a k-edge from one up to
k distinct components. This implies that any position with
k+l components is critical in the game "DO CONNECT", The player
who reduces the number of components under k+1 1is the loser,
for his opponent makes one component in the next move.

Suppose that a position with k+1 components having
Ny sNoreeerny elements is produced. Then each player will try
to create k-edges only within these components. The maximal

number of such moves is given by

n n
(3.1) e [ 1J P (k“] .
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If both players play rationally, then the outcome of
the game depends solely on the parity of s: If s is even,
then B wins; if s is odd, then A wins,

We should decide which one of the players has a strate-
gy, which would nesessarily lead to a position on k+1 compo-
nents, which is convenient for him. This player can be determi-
ned‘by calculating x and checking parity of [i}, as described
in the theorem. We denote this player by W (winner) and his
opponent by L (loser).

Following (1) and (3.1), a position on q components

having nlnz,...,nq vertices is completely determined by

{restzi(nl),...,restzi(nq)}.

We do not write brackets and commas any more.

The initial position of the game may be written as

n k
n—-
We proceed with the description of a winning strategy

l...l. The position kl..,.l arises after the first move of A.

of W. It suffices to restrict attention to the part of the
game until the moment when (<) k+1 components are created.
The .-main rule of the strategy is:

If W leaves more than k+1 components after some

his move, then he leaves at most one component with the

remainder different from 1 .

The initial position enables. W to start applying this

rule. It can be easily checked that W can always keep this

type of position, regardless of the moves of L. Even more, W
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can always obey the mentioned rule in such a manner, that the
number of components, after each two moves of L and W res-
pectively, is reduced by k-1 (when L does not change the
components) or k.

The second rule of the strategy is:

If the number of components before some move of W
is greater than 3k, then W always applies the
above decribed reduction of the number of components.

W must be more careful with this reduction in the final
stage of the game. At the moment when the number of components
pefore his move enters the interval [2k+1,3k], W reduces the
number of components to 2k+1, unless L has not already done
so.

If L reduces the number of components under 2k+1,
then W wins by creating the position xl...1 in the next mo-
ve (the choice of the winner was actually z;sed on the parity
of this last position).

The position on 2k+1 components serves as a point fr-
om which W can control the end of the game. As there are no
more than two remainders different from 1 in this position, W

can produce after his next move anyone of the positions
xk+j i:iii ’ 2 < j < k, where xk+j is the element of
{0,1,...,21-1), which satisfies xk+j + (k+j=-1) = n (mod 21).
Given such a position, for some j between 2 and Kk,

L is forced to immediately reducz the number of components

to exactly k+l; otherwise W would make either the position
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Xl..,1 oOr just one component in the next move,
k

The only two possible answers of I are

xl,i.l and xk+j jl;'.l .
=1

The first answer obviously loses. Our next lemma will help us to
show that W can always reduce the number of components so

that the second position is also convenient for him.

Lemma. There exists some jo’ 2 <j_ <k, such that

[Xk;jo} + [;OJ = {ﬁJ (mod 2) .

Proof of the lemma. Suppose, on the contrary, that

{X]]:+j] + []3(] 7 {;] (mod 2), for all j, 2 < j <k,

Using (2) and (3), we have

X .
k+j} (x} s .
! mod 2), for 2 < j<k-1,
[ k g tkJ

(3.2)

—_—_—
o]
N
~
R T oy
o

{]’(‘J (mod 2)

We observe that x2k,...,xk+3,xk+2,x are k cyclically
consecutive remainders from the set {0,1,..,,21—1}. In fact,
due to (3.2) and (2)-(4), they are consecutive in the ordinary

sense, with the only possible exception for x=0. This implies

that (3.2) contradicts (5). The contradiction is also preserved
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with x=0, because the k-2 remainders vy with [i] odd are
consecutive in the ordinary sense. Q.F.D.

As restzi(n)=1 implies (by (2)) that [i] is even, the
lemma gives that there exists some jo, such that the positions

%la%al and ' B | 1

k

are convenient for the same player, that is for W.
We conclude that W should reduce a position on 2k+1
comoonents to the position x b I in the next move.

k+jo \Eiﬁg:ﬁ
This last position serves as a "support", which enables W to
jump safely over the "gap" between 2k+1 and k+1 components.

This completes the proof of the theorem for k > 4.
We point out that the claim (5) is not valid for k=3. A thorou-
gh inspection shows that the only exception arises with k=3
and rest4(n)=3. The "support" does not exists in that case.
The theorem says that B should win and this is true, but B
should alter his strateqy in this excentional case. One possi-
bility i5 the following:

B can make after each his move just one of the follo-
wing two types of positions:

l...1 (all 1's) or 31...1 (all 1's excent for one 3).

Such a strategy leads necessarily to one of the nossi-

tions 1,,.1 and 31,.,1. It is easy to check that the first
)
player who reduces the nosition l..,1, 1is the loser. However,
7

this position is "even" and B "can wait". If P has left
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the position 3l...1 after one his move, then he can leave

8
l,;,l after his next move, unless A has made 331.5.1 in

the preceding move. This last position is again "even" and the
first reduction loses. This implies that B can always win.
Q.E.D.

Theorem 2. Let k,n €N (k >3 and n > 2k+1)
flog2k1=i. If x e {0,1,...,2i-1} i8 such that x+1:=n (mod Zi),
then the player A has a winning strategy in the game "DON’T
CONNECT" on k-graphs with n vertices if and only <if the num-

ber {i] 18 odd, otherwise the player B has a winning strategy.

Proof. We can almost completely imitate the proof of
Theorem 1. The main difference is that the critical number of
components in the game "“DON’T CONNECT" is always two. The pla-
yer W should now jump over the "gap" between k+2 and 2
components.

The case k=3 requires again a special treatment. The
"support"” does not exist with k=3 and rest4(n)=1. The theorem
gives that B should win in that case. It is true, but he must
not use the general strategy. One possibility is to make always
the position of type l1...1 or 31...1 until B leaves one”

of the positions 1...1, or 31l...1l.

9 10
B can transform the second of these positions into the

first, unless A has made the position 331...1. B waits the

7 .
first reduction in any of the positions l...1 and 331...1 and
9 7
makes one of the positionsO0l..,.l and 1.,.1. He waits the next
5 5

reduction (all these positiohs are "even") and wins. Q.E.D.
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Remark. We cannot extend the assertions of theorems 1
and 2 to the case k=2. Given rest4(n) equals 0,1,2,3, in this
order, these theorems would give that the winners are A,A,B,B
for "DO CONNECT" and A,B,B,A in the case of "DON’T CONNECT".
However, the well-known results ([1],[3]) say that the actual
respective winners are A,B,B,A for "DO CONNECT" and B,B,A,A

for "DON'T CONNECT".

L, ADDITIONAL ANALYSIS OF CASES WITH ''SMALL' n

We assume ‘that k > 3 (k=2 is solved in [1],[3]).
In n < k, then no moves are allowed in any of these

games. The outcome may be defined arbitrarily.

""'DO CONNECT"

n = k: A wins in the first move.
k+1 < n<2k-1: B wins, for A must reduce the number of com-
ponents under k+1 in the first move.
n=2k: A wins, for kl...l is an "odd" position on k+1 components.
2k+1 < n < 3k-2: A mates after his first move one of the posi-
tions kl,..l, where k+1 < j < 2k-2

Nojplayer may create a k-edge on some k isolated
vertices, because this would yield 2+j-£ < k+1 components.
The only possibility left is that the first component should be
augmented until the number of components is lessened to k+l.

This implies that A 1is the winner for n = k+j (k+1 < j < 2k=2)
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if and only if [a] is odd and B is the winner otherwise.
This agrees with the general solutions, {

n = 3k-1: B wins, for he can make the "even" position kk;iiii

after his first move.

n > 3k: The general strategy (and Theorem 1) holds, for the num-

ber of components after the first move is not smaller than 2k+1.
We observe that the positions of type xk+jjl...l are

not always possible (for example, one cannot create a k-edge

on j isolated vertices, where j < k)., This makes no problems,

for the winner does not use these positions. It is even an ad-

vantage, for any position xk+j iiﬁli’ with the property that
the corresponding position xk+jjlﬁlil is impossible, may ser-

ve as the "support" for the winner.

“DON’T CONNECT"

n = k: B wins, for A makes one component in the first move,
n = k+1: A wins, for he makes the "odd" position k1 on two
components,

k+2 < n < 2k-1: A makes after his first move one of the posi-

tions kl...l, where 2 < Jj < k-1,

EXRIE W]
J
As j isolated vertices cannot be joined into a
k-edge, the only way to make two components is to let one of
them have k+j-1 vertices and the other one just one vertex.
This gives that A is the winner for [k+i_1] odd and B is
)

the winner otherwise, what again agrees with the general solu-

tion.
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n = 2k* B wins, for he can make the "even" position kk after
his first move. .

n > 2k+1: The general strategy (and Theorem 2) holds, for the
number of components after the first move is not smaller than

k+2. Non-possibility of some "alternative" positions on two

components again does not disturb the general solution.
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ABSTRACT

It is proved that each triangulation with no vertex
of degree smaller than 5 can be obtained from the icosahedron
graph by a finite number of applications of transformations of
given types.

From Euler“s formula it follows that every planar
graph has some vertices of degreee smaller than 6. Therefore
the maximal planar graphs (triangulations) with no vertex of
degree smaller than 5 are in some sense doubly maximal. They
have, for example, an important role in the proof of the Four

color theorem (5, page 62].
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An inductive class I is defined by giving [1,2]:

- initial specifications; which define the class B of
initial elements - the basis of T;

= generating specifications; which define the class R
of rules (modes) of combination - any such rule applied
to an appropriate sequence of elements, already in I,
produces an element of 1I.

The inductive class I = Cn(B;R) consists exactly of
the elements which can be obtained (constructed) from the basis
by a finite‘number of applications of the generating rules,

A powerfull proof technique for the properties of elements of
the inductive class is the inductive generalization (structural
induction) : in order to show that every element from I has
a certain property P, it is sufficient to establish that:

= every element of the basis has the property P;

~ the generating rules preserve the property P.

In this paper we shall prove the following theorem abhout
the structure of the class of all triangulations (of the sphere)
with no vertéx of degreee smaler than 5:

Theorem. The inductive class Cn(B;P1,P2,P3) with the

base graph B from Fig.1 (the icosahedron graph) :
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and the generating rules PI1,P2,P3 represented in Fig.2,

P1
Cc
"N
V2N
/ b,
o
(fl a
!~
P2 )J‘d
ol
I'n -_—‘A,
/"
/" a
P3

A4

Fig.2.

i8 equal to the class T(5) of all triangulations (of the

sphere) with no vertex of degree smaller than §. (The small
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triangles attached to the venrtices in the description of the
rules denote any number (zero or more) of edges. The rules

should bé undérstoog as embedded in the sphere (plane)).

Proof. The base graph B € T(5) and the rules P1,
P2 and P3 produce from a graph from T(5) a new graph
which is also in T(5). Therefore, by inductive generalization,
Cn(B;P1,P2,P3)C T(5).

To prove that also T(5)C Cn(B;P1,P2,P3) we have to show
that any graph G € T(5), G # B can be reduced with the in-
verse rules Pl_, P2 Vand P3° to a graph from T(5) with
fewer vertices. Note also that the icosahedron is the only
triangulation with all vertices of degree 5 [2, page 52].

Let x € V(G) be a vertex of maximal degree, i.e.,
deg(x) = A(G). Because G # B we have deg(x) 2> 6. Let us say
that in two triangles with a common edge the vertices, which
do not belong to this edge, are opposite. There are two possi-
biliﬁies:

A. There exists a vertex y opposite to x with

Fig.3.
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deg(y) 2 6 (it can be also a neighbour of x). In this case
we can apply the rule P1~ (see Fig.3).

B. All vertices opposite to x are of degreee 5. Let
us first show that no one of these vertices is a neighbour of
x. Let us suppose the opposite (see Fig.4) the vertex y oppo-
site to x, deg(y) = 5 1is also adjacent to x. Because there
are no parallel edges in G there is at least one vertex on

the segment yz of "circle" around x.

Fig.4.

Let v be the first among them from y. Because the vertex Yy
is "saturated" there must be an edge connecting vertices =z
and v. But, then the vertex 2z 1is also opposite to x and
by our assumption it is of degree 5. We may now repeat the sa-
me reasoning infinitely introducing a new vertex at each step.
Which contradicts the finiteness of the graph G. Therefore
we have the "crown" around x (see Fiqg.5; where black vertices

denote the vertices of degree 5).
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Fig.5.

We now turn our attention to the vertices on the circle around
X. There are the following possibilities to be considered:

Bl. There exists on the circle of x a pair of oppo-
site vertices u and v, both of degree at least 6 (see Fig.6;
the small squares denotes the vertices of degree at least 6).

In this case we can apply the rule P1-,

Fig.6.

This case includes as a subcase the case when deg(z) = 5, If

all vertices on the circle of x are degree at least 6 we can
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choose for u and v any pair of opposite vertices from the
circle.

B2. There exist on the circle of x a pair of conse-
cutive vertices of degree 5 surrounded (on the circle) on both
sides with vertices of degree at least 6 (see Fig.7a). We redu-

ce this case, applying the rule P3~, to the case Bl.

Fig.7.

B3. There exist on the circle of x at least 3 conse-
cutive vertices of degree 5. Then we have, because there is al-
so the crown around x, the configquration represented on Fig.8.

z

Fig.8.
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which can be continued in two ways:

B3.1. The vertex z 1is of degree at least 6 (see

Fig.9). We can apply the rule P2,

z

Fig.9.

B3.2. The vertex 2z is of degree 5. In this case we
have the configuration represented on Fig.10 (or its "mirror"

configuration) .

X

Fig.10.
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If deg(u) =5 or deg(v) =5 the vertex Yy is opposite to
x with degree at least 6 and we can apply the rule Pl .
Therefore we can assume in the following that deg(u) > 6 and
deg(v) > 6. We can also assume that deg (x) > 8; otherwise we
have the situation from the case Bl or B2 on the rest of
the circle. Therefore we have a configuration represented on
Fig.ll which can be reduced to the case Bl by applying the

rule P3 twice.

Fig.11.

This completes the proof of the theorem.

The generating rule P3 (diagonal transformation
(4, page 9; 3]), although simple, has an unpleasant property -
- to be bidirectional. Analyzing the proof of the theorem we
can see that we used it only in two places (case B2 and
case B3.2). Therefore we can replace it equivalently (with

respect to its generative power) by two "augmenting" rules:
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P3.1
a

where the heavy lines represent the essential parts of the rules,.

Fig.12,
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ABSTRACT

Several schemata for graph (vertices and/or lines)
traversing algorithms are unified into a sinale scheme.

In this paper, which is essentially a translation in
Fnglish of the second part of the manuscript [2], an attempt
is made to unify several schemata for graph traversing algo-
rithms [1, 3, 4, 5, 9] into a single scheme. For an indepen-
dent, but less general, discussion of the subject see also [7].

Let G = (V,L) be a graph with the set of vertices
V and the set of lines L. The set of lines is a disjoint
union of the set of edges F and the set of arcs A, i.e.,

L =FUA.

In the following we shall use the mappings:
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INIT : p — initial vertex of arc p
TERM : p — terminal vertex of arc p
EXT : p — set of endpoints of line »p

true ; p 1is an arc
ISARC : p —_—

false ; otherwise
and the sets
LINESTAR(G,v) = {p €L | v € EXT(p)}
and

OUTLINESTAR(G,v) = {p € E | v € EXT(p)} U

{pea|v=1INIT(p)}

We extend the mapping EXT to subsets by defining for the
subset L’ of the set of lines L
EXT(L') = U EXT(p)
peL’

In the description of the scheme we shall also need
the notion of the queue - an abstract data structure corres-
ponding to explicitely or implicitely ordered multiset.

A queue of objects of type T which is explicitely
ordered with components from an ordered type S is described

in pascal like notation by

type Q = queue of T key v ;
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where v : S 1s a selector from T,

Similary, a type declaration of the form
type Q = queue of T ;

describes an implicitely ordered queue where the order of ob-
jects in the queue is determined by the sequence of operations
on the queue during program execution.

Assuming
var 9 : Q 3 a : 4T ; t : boolean;

we can describe the effects of the following procedures and

functions:

CREATE (q) open empty queue q

ADD (q,a) add object a to the explicitely
ordered queue q

ADDMIN (q,a) add object a at the head of the
implicitely ordered queue ¢

ADDMAX (q,a) add object a to the end of the
implicitely ordered queue g

t := EMPTY (q) t = true iff the queue g 1is empty

a := MINFROM (q) assigns the pointer to the first
object from the.queue q to a and

removes the object from the queue

The explicitely ordered queues can be efficiently imp-

lemented by heaps; or by lists in the case of implicitly orde-
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red queues. Staks and (ordinary) queues are special cases of

general implicitely ordered queues:

stak (LIFO - last in first out)

PUSH(g,a) = ADDMIN(q,a)
POP (q) = MINFROM (q)
TOP (q) = MIN(q)

(ordinary) queue (FIFO - first in first out)

PUT (q,a)

ADDMAX (q,a)

GET (q)

MINFROM (q)

To obtain further improvements the problem specifics should
be considered.
Now we are ready to write down a general scheme for

graph traversing algorithms:

procedure TOUR(G : graph; vO:vertex) ;
var candidates: queue of record
lin: line ;
val: values ;
end key val ;
test, visited, component: vertexset ;
p: line; v: vertex ;

procedure USEVERTEX ...
procedure USELINE ...

funcetion ALLSEEN: boolean; cee
procedure ADDINIT ...

procedure ADDNEW ..,
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begin
CREATE (candidates) ;
component := [v0] + EXT(%%%STAR(G,v0)) ;
USEVERTEX (v0) 3
visited := [v0] ;
ADDINIT (candidates, $%%STAR(G,v0)) 3
while not ALLSEEN do begin
p := MINFROM (candidates) +.lin ;
test := EXT(p) - visited ;
USELINE (p) ;
if test <> [ | then begin
v := SELECT (test) ;
USEVERTEX (v) ;
ADDNEW (candidates, %%%STAR(G,Vv))
component := component + EXT (%33STAR(G,v)) ;
visited := visited + (v]
end
end
end {TOUR} ;

In pascal the set-theoretic symbols {, }, €, U, N, - are

replaced respectively by (, ], in, +, *, -. The function

SELECT has for its value element from a given nonempty set.

The procedures USEVERTEX and USELINE describe the
problem specifics - actions to be performed in visited
vertex/line. One of these two procedures can be empty.

The prefix $%%% selects the type of traversing of lines:
$%% = OUTLINE - traversing of all lines/vertices

lying on any path starting at voO

$%% = LINE - traversing of all lines/vertices

lying on any chain starting at voO0
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In the scheme for the procedure ADDNEW we shall use

the construct

<< condition : string »>»>

which indicates conditional compiling of the string,

procedure ADDNEW (var candidates: cand; lines: lineset);
var p: line ;
Lo & S
test: vertexset ;
begin
for p <n lines do begin
<< %%% = OUTLINE :
©f ISARC(p) then test := INIT(p) * visited
else test := EXT(p) = visited
>>
<< %%% = LINE : test := EXT(p) - visited ; »>»>
if test <> [ ] then begin
g.lin := p

[

<< &&& = : gq.val := value(p) ;>>
ADD&&& (candidates,q)
end
end
end {ADDNEW} ;

The condition test <> [ ] in the procedure ADDNEW
can be strengthened by specific problem constraints to improve
the efficiency of the algorithm.

The procedure ADDINIT is a simplified version of the

procedure ADDNEW,

The suffix a&& s8elects the order of traversing:
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&&& = MIN - FIFO queue - stack: depth first search
&& & = MAX - LIFO queue : breadth first search

&3& = - priority queue,

In the special case when
value(p) = random

we obtain the random search strategy [8]

The condition ALLSEEN determines the type of tra-

versing:

EMPTY (candidates) - traversing lines
ALLSEEN =

visited = component - traversing vertices
where variable component represents:

= %%% = LINE : (weakly) connected component containing the
vertex v0 of the graph G

- %%% = OUTLINE : set of vertices reachable from vO0.
Note also
EMPTY (candidates) == visited = component

In a strongly connected graph (or in a weakly connected graph,

if %%% = LINE) we have:

EMPTY (candidates) = visited =V

In this case we can remove from TOUR all the state-

ments containing the variable component.
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EXAMPLE: MINIMUM SPANNING TREE

Any traversing of vertices of an undirected connected
graph determines a spanning tree in it. If we take for a value
of the key of a queue element the value (nonnegative number)
of the corresponding edge the so obtained procedure corresponds
to the Prim’s algorithm for minimum spanning tree.

In this case the procedure USEVERTEX is empty and

the procedure USELINE consists of a single statement
if test <> [ ] then ADDLINE(T,p) ;

which is, because of "distributivity", transfered inside the

conditional statement.

procedure MINSPANTREE(G: graph; var T: graph) ;

begin
CREATEGRAPH (T) ; CREATE(candidates) ;
v := select(V) ; visited := [v] ;

ADDINIT (candidates, LINESTAR(G,v)) ;
while visited <> V do begin
p := MINFROM(candidates)+.lin ;
test := EXT(p) - visited ;
if test <> [ ] then begin
ADDLINE(T,p) ;
vV := SELECT(test)
ADDNEW (candidates, LINESTAR(G,v)) ;
visited := visited + [v]
end
end
end {MINSPANTREE} ;
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The procedure ADDINIT rest unchanged; while in the
refinement of the procedure ADDNEW it is worth-while to con-
sider that among the edges connecting a nonvisited vertex with
the already visited vertices the edge with the minimal value
will enter the minimum spanning tree.

For this purpose we introduce an array father which
for a given vertex contains the edge connecting it to the nea-
rest already visited vertex.

Because every edge from the queue candidates has exact-
ly one endpoint in the set visited the condition test <> [ ]

is always fulfilled and therefore it can be omited.

procedure MINSPANTREE (G: graph; var T: graph) ;

begin
CREATEGRAPH (T) ; CREATE (candidates) ;
v := SELECT(V); visited := [v]
for in V do father[u] := undefined ;

u

for p in LINESTAR(G,v) do begin
u := SELECT (EXT(p) - [v]) 3
father[u] :=p ;
ADD (candidates, (p,value(p)))

end;

while visited <> V do begin

p := MINFROM (candidates)+.lin ;

v SELECT (EXT (p) - visited) ;

ADDLINE(T,p) ;

for q 1in LINESTAR(G,v) do begin
u := SELECT (EXT(q) - [v]) ;

if not (u in visited) then

if father[u] = undefined then begin
ADD (candidates, (q,value(q))) ;
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father u := q
end else if value(q) < value (father [u]) then
begin

DELETE (candidates, father[u]) ;

ADD (candidates, (q,value(q)) 3

father[u] := g
end

end;
visited := visited + [v]
end
end {MINSPANTREE } H

In the implementation of this procedure we can also
consider that one endpoint (vertex v) of the edge father|[v]
is already known. Therefore the edge is uniquely determined by
its second endpoint, Also, at the end of the execution the
array father and the graph T contains the same edges,

In [6] an implementation of the queue is described
which allows us to implement the procedure MINSPANTREE in
the time O(|E]).

If we introduce in the procedure MINSPANTREE an

additional array d
d[v] = value of the shortest path from v0 to <

and we take for values of edges-candidates the adjusted

values
d [SELECT (EXT (p) * visited)] + value(p)

we obtain Dijkstra”’s shortest paths algorithm.
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ABSTRACT
A formula connecting the number of 1-factors in some
subgraphs of a graph is proved.

a graph

1-factor

A set of independent edges that cover all vertices of
is called a 1-factor of that graph. The number of

s of a graph G 1is denoted by K(G), with K(G) =1

if G has no vertices.

Proposition 1. If the edge u of a graph G with an

even number of vertices joins the vertices x and vy, then

(1)

K(G=x-y) *K(G=u) = J (K(G-Z))2 '
Z2
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where Z 1is a circuit of G and the summation on the r.h.s.

of (1) runs over all even circuits of G containing the edge u.

Proof. Let A and B be the sets of 1-factors of G

which contain and which do not contain u. Then

|a] = R(G-x~y) , IB| = R(G-u) .

If aiE A and bj & B, then cij = ai @] bj contains an even

circuit 2 passing through u. Both ai = ai\\z and

b3 = bj\\Z are l-factors of G-=2Z. The number of cij’s contai-
ning Z is equal to the number of ordered pairs (ai,bg), i.e.

(K(G-2)) 2. Since the total number of cij's is equal to |A||B]|,
we get (1).

This completes the proof.

Formula (1) has been proved in [1] for hexagonal ani-
mals and its validity is now extended to all graphs with an even
number of vertices.

Let now G be a graph with an odd number of vertices.
Subdividing the edge u with the new vertex =z we obtain from
G the graph G(u/i). Let us look for a number of l-factors in

G(u/z) . There are two possibilities represented in the Fig.l.

Fig.1.
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It is evident that

K(G(u/z)-x-2) K (G-x) K(G(u/Z)-uz) ’

(2)

K(G(u/z)-y-z) K(G-y) K(G(u/z)-u;) .

By (1) it follows also

(3) K(G(u/z) =x-2z) *K(G(u/z)-u,) = 1 (K(G(u/z)-z))Z ’
Z

where 7 runs over all even circuits of G(u/z) containing
the edge Uy and from (3) considering (2) we finally obtain

the following proposition.

Proposition 2. If the edge u of a graph G with an

odd number of vertices joins the vertices x and vy, then

(4) K(G=x) *K(G-y) = | (K(G-Z))2 ’
Z

where 2 runs over all odd circuits of G containing the
edge u.
Because graphs with odd number of vertices have no l1-factor

we can combine (1) and (4) in the following theorem.

Theorem. If the edge u of a graph G joins the ver-

tices X, y, then

K (G-x) *K (G-y) + K(G-x-y)*K(G-u) = J (K(G-2))2 ,
Z

where 2 runs over all circuits of G containing the edge .
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ABSTRACT

First experiences in theorem proving by the use of
the interactive programming system 'Graph' for the classifica-
tion and extension of knowledge in the field of graph theory
are described in this paper. Knowledge organization and some
examples of theorem proving are described. Further experiments
are necessary to make final conclusion about real effectiveness
of the system,

1. INTRODUCTION

The interactive programming system "Graph" for the
classification and extension of the knowledge in the field of
graph theory, announced in [l! has recently been implemen-
ted at University of Belgrade, Faculty of Electrical Enginee-
ring. The main topic concerning this system are described in
2] - [5] and also in this paper. For additional literature
on the system "Graoh" see the list of references in [4] . See
also [6] , [7]

The system graph consists of the following three main
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blocks: BIBLI, ALGOR, THEOR, The block BIBLI represents a com-
puterized graph theory bibliography [5] , ALGOR is a set of
graph theoretical algorithms for solving problems on particular
graphs [2] and THEOR is a system for manipulagion with sen-
tences, which represent assertions in graph theory, including
theorem proving [4] .

First experiences with the ALGOR part have been des-
cribed in [3] and in this paper we describe first experienc-
es with the THEOR part., First we shall describe the work with
"Graph" in general.

' The system "Graph" is certainly very helpful to a re-
searcher in the field of graph theqry and its applications. How-
ever, that does not mean that "Graph" replaces completely human
efforts., To get a result the researcher has to work hard and at
some time "Graph" perhaps helps something, facilitating or ac-
celerating the process of getting a new result,

The user can develop his own bibliography for a part
of graph theory he is interested in. A typical command for sto-
ring bibliographical data is the following one:

STORE BOOK: "HARRARY F., GRAPH THEORY, ADDISON-WESLEY, 1969."

By a command such as:

"FIND PAPERS OF HARRARY F. ABOUT GRAPH ENUMERATION FROM 1970-
=19807

the user can find the papers stored in the data base which ful-
fill certain requirements.

Hence, by the BIBLI part the user can produce sever-
al bibliographies or just find the papers he needs at the mom-

ent. More details about that vpart of the system can be found in

[5] .
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As described in [2] , [3] by the ALGOR part user
can define a particular graph and by special commands he can
ask the system to perform several tasks on that graph (e.g. to
find chromatic number or the complement of this graph, to check
whether it is planar, eulerian, hamiltonian, to calculate the
graph spectrum etc.). An important tool in this part is the in-
teractive graphics (graphical display with a light pen) what
enables visual interaction between the user and the system.

Main features of the THEOR part are described in [4]
and we shall assume that the reader is aquainted with this pa-
per,

Quite formally, any graph theory statement can be pro-
ved by means of the system "Graph". Since the system allows the
user to declare some subgoals as true, the user can say that
the main goal is true and we have done. The system will consi-
der the goal as proved. (Of course, for such a theorem proving
the system "Graph" is not necessary) ,

To speak more seriously, quite interesting theorems
can be proved if the user directs the proof in the right way.
Crucial points are the branching of a proof according to some
criterion (case analysis) and the introduction of a transition
subgoal (forward chainina). On the other hand, completely auto-
matic work (sending the goal or a subgoal to a resolution pro-
ver) 1is not much oromising,

Is then the theorem prover of the system "Graph" help-
ful at all? This paper tries to answer this question with more

details,



it Drago3 M.Cvetkovid

Generally, one of reasons why it is helpful is that
in graph theory there are very long proofs (consisting of sim-
ple steps) with many branchings (case analysis). Without com-
puter one can simply forget to consider all cases (as it occu-
rred in some published papers) .,

Another reason is that the user can interrupt the
proof at the moment and consider a subgoal on a model i.e. on
a concrete graph which can be created or defined by the user
in the ALGOR part. So, instead of checking whether a subgoal
is true by a long and slow proof procedure, a graphical algo-
rithm is invoked which does the job by a quick computation. Of
course, in this way a counterexample could be found and not the
proof of the validity of the sdbgoal. However, if some test on
random graphs or graphs on which the user suspects that they
could be counterexamples, gives positive results, the user is
more convinced that the nroof exists and will continue his ef-
forts.,

Third, it happens very often in proving theorems in
graph theory that a subgoal is a statement about a concrete
graph, As known, many theorems in graph theory hold for all but
a finite number of graphs. These exceptional graphs give rise
to the mentioned type of subgoals and again graphical algori-
thms from ALGOR can solve the problem,

The system "Graph" offers other possibilities to su-
pport indirectly a theorem proving process. Considering a sub-
goal the user could like to look at known theorems which are

similar to the subgoal. The words occurring in the sentence wh-
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ich corresponds to the subgoal can be the basis for forming key
phrases in the following command to the system:
FIND THEOREMS ABOUT "key phrases"

Also the user can consult the bibliography with the
same key phrases,

If the user 1is not satisfied by the search with key
phrases formed on the basis of a sentence S, he can ask the sys-
tem:

GENERATE SENTENCES EQUIVALENT TO S.
and form new key phrases on the basis of the sentences genera-
ted.

The system "Graph" is a good mean in teaching graph
theory. Students themselves can speak with the system and learn.
Together with the obvious suggestivity of the pictures of gra-
phs on the screen and existing possibilities of modifying them
with a light pen, the students can get definitions of graph the-
ory notions, theorems connecting several notions, they can po=-
se and check their own conjectures on concrete graphs using graph
theoretic algorithm or even try to prove them by the theorem
prover, They can get information about the literature.

Finally, system "Graph" is a nice toy. The messages
of the system are designed so that it seems as if "Graph" is a
human being., Therefore we shall refer to the system "Graph" with
the pronoune "he" instead of "it". He can react in the style
"I proved sentence S" or "The requested granh is not in the me-
mory and I cannot perform the task". System "Graph" is generally

polite and helpful: if you do not know how to tell him your re-

’
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quirement he would guide you to do that or would provide you
with additional information.

If you get acquainted well with several possibiliti-
es of "Graph" and get used to him and if you are patient and
persistent then he will be helpful to vou in many occasions.

He will become a good collaborator of yours,

Section 2 describes the way in which the knowledge
of graph theory is stored in the system "Graph". Section 3 ex-~
pléins’how some theorems are or can be proved using system "Gr-

aph", Concluding remarks are given in Section 4.

2, SOME DETAILS ABOUT THE KNOWLEDGE ORGANIZATION IN THE SYSTEM
"GRAPH"

The sentence which we want to prove using system
"Graph" should be typed in English (or more precisely in lang-
uage GTCL (Graph Theoretical Computer Language) , which repre=
sents a formalized subset of English) [4] . The sentence sho-
uld be understood by the system and that means that the defini-

tions of all necessary notions should be previously told to the
system, i.e. the system should be previously taught the corres-
ponding part of graph theory.

As explained elsewhere [1] , [4] the theory of graphs
is formalized within the system "Graph" by the so-called arith-
metical graph theory (AGT). The system translates the input En-
glish sentence into a formula of AGT and the theorem prover works
with this formula. If necessary, formulas created in the theorem

prover can be translated into 3TCL,
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The AGT is an extension of formal arithmetics and co-
vers all parts of (pure) graph theory (directed and undirected
graphs, multigraphs, etc)., A part of the theory of finite, un-
directed graphs without loops or multiple lines can be covered
by basic notions, definitions, axioms and lemmas given below.
(Note that several other ways of developing AGT are, of course,
possible),

GTCL sentences containing basic notions are followed
by their translations into AGT, i.e. basic predicates of AGT.

Basic predicates are denoted in the sequel by Bl, B2, ...

Bl, (Point) X and (point) Y are joined by (line) U ;
s1(x,Y,u) .

B2. Graph has N points;
Q1 (N) .

B3. Graph has M lines;

Q2 (M) .

Several versions of a sentence (with the same meaning)
can be given to the system as separate definitions. For example,
the last sentence can be reformulated in one of the following
forms: "There are M lines", "Graph contains M lines". So, GTCL
could be made richer in style, but that could make the work slo-
wer,

Definitions of graph theory notions are given in the
following form, Only the definiens of the GTCL - definition is
given, The whole definition is givegn as a formula of AGT (defi-

nens and definiendum connected by an equivalence)., Definitions
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are labelled by Dl’DZ’ ces o

D1,

D2,

Al.
A2,
A3,
A4,
A5,
A6,
A7,

A8,

Let us introduce the following predicates:
X is a point;
03 (X) <=> 1<SXA (¥N)XQL (N) => X < N) .
U is a line;
Q4 (U) <=>1<UA (¥M) (Q2(M) => U < M),
The basic predicates satisff the foliowing axioms:
IS51(X,X,U),
S1(X,Y,U)<=>S1(Y,X,0),

S1(X,Y,U) A S1(X,Y,V) => U =v ,

(@N) (N21AQ1(N)) A (01 (N1)AQL(N2) => N1 = N2) 7
(M) (M=1A02 (M)) A (Q2(M1)AQ§(M2) = Ml = M2) ,
S1(X,Y,U)AS1(X1,Y1,U)=> (X=XIAY=Y1)V (X=Y1AY=X1) ,
03 (X)AQ3 (Y)AS1 (X,Y,U)=>04 (U) ,

04 (U)=> (3X) (JY) (03 (X)AQ3 (Y)ASI (X,Y,U)) .

It is always understood in the sequel that a variable

X satisfies Q3(X) and that a line variable U satisfies Q4 (U).

As explained in [4], the system "Graph" generates these formulas

whenever a point or line variable occurs and the system considers

it as useful. Hence we have a specific axiom scheme which sim-

plifies the definitions which follow.

D3,

D4,

D5,

Points X and Y are adjacent;
R1(X,¥)<=> JU)s1(X,Y,U0) .

X and U are incident;
R2(X,U) <=> (d¥)s1(X,Y,U) .
Lines U and V are adjacent;

R3(U,V) <=> (IX) (R2 (X,U) AR2 (X, V) ) .
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D6, X is isolated;
Q5 (X) <=> (¥Y)IR1(X,Y) .
D7. Graph is complete;
Pl<=> (¥X) (VY) (X#Y=>R1 (X,Y)) .
D8. Graph is totally disconnected;
P2<=> (¥X) (¥Y)R1(X,Y) .
D9. Graph is trivial;
P3<=>Q1(1) .
D10. Graph has triangle;

P4<=> (IX1) (3X2) (3X3) (R1(X1,X2)AR1 (X1,X3)AR1 (X2,X3)).

Few interesting graph theory theorems can be formu-
lated in terms of notions introduced so far. Nevertheless,
when these notions are used later it is useful to have some
lemmas containing them so that the system is not forced to
use only axioms to achieve a goal in the proving process, Le-
mmas will be numbered by L1,L2, ... . It is convenient, among
other things, to declaire as lemmas the symmetry of predicates
R1(X,Y) and R2(U,V):

Ll1. R1(X,Y)=>R1(Y,X) ,
L2, R2(U,V)=>R2(V,U) ,

L3, P3<=>(¥X)(VY)X =Y .,

Connectivity and metric properties of graphs can be
described by introducing a new basic predicate:
B4, X and Y are joined by a walk of lenght K;
s2(X,Y,K) ,
which satisfies the following axioms:

A9, S2(X,Y,0)<=>X =Y
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AlQ, sz(x,r,x+1)<=>(3z)(sz(x,z,K)A(EU)51(z,Y,U)).

Of course, the predicate 52(X,Y,K) could be treated
a2s a non-basic predicate with a recursive definition consis-
ting of the two formulas just declared as axioms. However, we
want to avoid recursive définitions and, at least formally,
this can be done in the above manner,

The following notions can then easily be introduced:
Dll, X and Y are joined by a walk;

R4 (X,Y) <=> (JK)S2(X,Y,K) .
- D12, Graph is connected;
P5<=> (¥X) (V¥X) (¥Y)R4 (X,Y).
D13. X and Y are at distance K;
s3(x,Y,K)<=>sz(x,Y,K)A(vL)(L<K=>ﬂsz(x,Y,L)).
D14. Graph is of diameter K;
QS(K)<=>P5A(3X)(3Y)S3(X,Y,K)A(Vx1)(VYl)(VL)(SB(XI,YI,L)=>L5K).
D15. X is of excentricity K;
R5(X,K)<=>(3Y)S3(X,Y,K)A(VY1)(VL)(S3(X,Y1,L)=>LSK).
D16, Graph is of radius K;
Q7(K)<=>p5A(EXRS(X,K)A(VYHVY)(VL)(RS(Y,L)=>L2K).
D17, X is a central point;

Q8 (X) <=> (¥K) (RS5 (X,K)=>Q7 (K) ) .

The fqllowing lemmas are useful:
L4. S2(x,Y,1)<=>R1(X,Y),
LS, s2(x,Y,K+1)<=>(32)(SZ(X,Z,K)ARl(z,y)),
L6, S2(x,Y,K)<=>S2(Y,X,K),
L7, R4(X,Y)<=>R4(Y,X);

L8, R4 (X,Y)AR4(Y,2)=>R4 (X,2),
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L9. S3(X,Y,K)<=>S3(Y,X,K),

L10. S3(X,Y,1)<=>R1(X,Y).

We want to point out the importance of.these and o-
ther lemmas given in this section for the effectivnesé of the
theorem prover. It is hopeless to expect from the system to
infer everything from axioms. Among other things, it is desi-
rable to declare as lemmas those theorems which require the
induction in their proofs (although the theorem nrover can han-
dle the induction). The proposed lemmas represent, in fact, a
beginner “s knowledge of graph theory. Beside these lemmas, which
form a permanent part of the file of lemmas, the user can add
any other graph theory theorem to this file.

The next group of notions is related to the point
degree. We need more basic predicates:

B5. X and Y are joined by L of lines labelled by at most v;
T1(X,Y,V,L),

with axioms:

All. Tl(X,Y,l,l)<=>Sl(X,Y,1),

Al2, T1 (X,Y,V+1,K+1) <=> (T1 (X,Y,V,K)AS1 (X,Y,V+1)) v
(T1 (X,Y,V,K+1)A1S(X,Y,V+l) ),

A13, V<L=>1T1(X,Y,V,L).

Next we define:

D18. X and Y are joined by L lines;
s4(x,y,L)<->(VM)(02(M)->TI(X,Y,M,L)).

Another basic predicate:

B6. X is adjacent to K of points labelled by at most Yy H
S5(X,Y,K),

with axioms
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Al4, S5(X,1,K)<=>84(X,1,K),
Al5, S5(X,Y+1,K)<=> (L) (LSKAS5(X,Y,RK-L)AS4 (X,¥Y+1,L)).
Finally we define the degree of a point:
D19, X has degree K;
R6 (X,K) <=> (¥N) (01 (N)=>S5(X,N,K)) .
The following definitions are now straightforward:
D20. Graph is regular of degree K;
09 (K) <=> (¥X)R6 (X ,K) .
D21, Graph is regular;
P6<=> (3K) Q9 (K) .
D22, Graph is a circuitg
P7<=>P4AQ9(2) .
The following and some other lemmas are used in prac-
tical theorem proving rather than the above axioms:
L11l, 0Q1(N)AR6 (X,K)=>0<KAK<N-1 ’
L12. R6(X,K)AK>0=> (JY)R1 (X,Y),
L13, R6(X,0)<=>Q1 (X),
L14, (IX)R6(X,0)=>1P5,
L15. 01 (N)A(3X)R6 (X,N-1)=>P5
We can treat graph operations within AGT., Definitions
of graph operations will be denoted by OP1, OP2, ,.. . For ex-
ample, the complement of a graph can be introduced in the fo-
llowing way.
OPl. X and Y are adjacent in complement of G;
R1GAlL (X,Y)<=>X # YATRIG(X,Y).
OP2. X and Y are adjacent in line graph of G;
R1GA2 (X,Y) <=> (JU) (V) (X=UAY=VAR3G(U,V)).

Here an interesting effect of converting line vari-
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ables to point variables appears.

Binary operations can be treated as well:

OP3. X and Y are adjacent in product of G1 and G2;
R1G1G2A3 (X,Y) <=> (Ix1) (Ix2) (I¥1) (FY2) (¥M)
(QlGl(M)=>X=(X1-1)*M+Y1AY=(X2—1)*M+Y2A
R1G1 (X1,X2)AR1G2(Y1,Y2)).

As explained in [4], the system will be able to un-
derstand the sentences concerning complement such as "Comple-
ment of G is connected" and will translate it as P5GAl, etc,

Useful lemmas:

L16. Q1G(N)=>Q1GAl(N),

L17. 0O1G(N)AQ2G(M)=>02GAl (N* (N-1) /2-M),
L18. R6G(X,K)AO1G(N)=>R6GAl (X,N-1-K),
L19. 02G(M)=>01GA2 (M),

120, 0O1G1 (N1)AN1G2(N2)=>01G1G2A3 (N1*N2) ,

Introducing subgranhs will enable to define a number
of further granh theoretic notions. Subgraphs will be treated
as graphs obtained by some operations from the original graph.
The following three basic predicates are necessary:

B7. X and Y are adjacent in the induced subgraph number Lj
S6(X,Y,L).

B8. X and Y are adjacent in the spanning subgraph number L;
s7(X,Y,L)

B9. X and Y are adjacent in the spanning subgraph number L
of the induced subgraph number K;
S8(X,Y,K,L).

These oredicates satisfy axioms which involve some
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arithmetic functions and which are rather complex, They are
not reproduced‘here since they are used neither by the man nor
by the computer in practical theorem proving. However, the
system uses some lemmas (e.q., L21-1,25). Next three definiti-
ons introduce subgraphs,

OP4. X and Y are adjacent in an induced subgraph of

0]

R1GA4 (X,Y)<=> (JL) S6q (x,v,n),
OP5, X and Y are adjacent in a spanning subgraph of G;

R1GA5(X,Y) <=> (dr)s7¢ (x,v,n),
OP6. X and Y are adjacent in a subgraph of G;

R1GA6 (X,Y) <=> (IK) (3r)ssc (x,v,x,L) v

Now we have a series of definitions,

D23. Graph G has an induced circuit of length K;

Q10G (X) <=>01GA4 (K) AP7GA4. '

In this definition the statements Q1GA4 (K) and P7GA4
are related to the same induced subgraph and this is indicated
by underlining the operation symbol, This is an extralogical
rule but it enables a more flexible treatment of definitions.
Of course, the implementation of such a rule isg quite easy.
D24, Graph G is hamiltonian;

P8G<=> (¥M) (01G (M) =>Q2G£\_§(M) )/\P7G£.
DZS. Graph G has a circuit of length K;

Q116G (K) <=>01GA6 (K) AP7GA6
D26. Graph G has girth K;

012G (K) <=>010¢ (K) A (Y1) (010G (L)=>K<1) ,
D27. Graph G igs a forest;

P9G<=>7(3K) 011G (k) .
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D28, Graph G is a tree;
P10G<=>P5GAPIC,

D29, Granmh G has a K-matching;
QI3G(K)<=>QlGé§(K)AQ9Gﬁ§(1).

Some useful lemmas:

L21. O1G(N)AQ1GA4 (N1)=>N2N1,

L22. QIG(N)AQ1GA5(N1)=>N = N1

L23. 02G(M)AQ2GA6 (M1)=>M>M1,

L24, P1G=>P1GA4,

L25. P10AQ1 (N)AN22=> (3X)R6 (X,1).

Finally, we shall introduce the isomorphism of graphs.
Supvose that all permutations of the points of a graph are or-
dered (labelled). The k-th relabelling of a graph G 1is the graph
obtained from G by applying the k-th permutation to labels of
its vertices,

B10. X and Y are adjacent in relabellinqg number K;
S9(X,Y,K).

Axioms are again omitted.

OP7. X and Y in a relabelling of G are adjacent,
R1GA7 (X,Y) <=> (JK)S9(X,Y,K) .

D29, Graphs Gl and G2 are isomorphic;
P11G1/G2<=> (4K) (¥X) (¥Y) (R1G1 (X,Y) <=>$9G2(X,Y,K))

Since isomorphic graphs have the same global proper-
ties and the same values of (numerical) graph invariants we
have a series of lemmas such as:

L26. P11G1/G2AP1G1=>P1G2,

L27. P11Gl/G2AP5G1=>P5G2,
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L28. P11G1/G2A01G1 (N1)AQ1G2 (N2)=>N1=N2,
L29. P11G1/G2AQ2G1 (M1)AQ2G2 (M2)=>M1=M2,
L30. P11G1/G2AN6G1 (K1)AO6G2 (K2)=>K1=K2,

In fact we have here a lemma scheme and the system alone
generates them using the definition file and the types of pre-
dicates and variables in definitions. This lemma scheme is a-
nother example of domain specific features of the theorem vro-
ver of the system "Graph".

We shall not go on in this direction of considering
more than one gravh in one time. However, the notion of rela-
belling of aranhs could be used to introduce further notions
concerning one gravh,

D30. Gravh G is bivartite;

P12<=> (3K) (L) (¥X) (¥Y) ((XSLAYSL)V(X>LAY>L)=>7S9(X,Y,K)) .

In order to make the language (proper GTCL) and the
manipulation with formulas more flexible we introduce constants
01,02,..., and functions F1,F2,... by the following definitions.
Fl. The number of points is equal to N;

01 = N<=>01(N),

F2. The number of lines is equal to M;

02 = M<=>02 (M),

F3. The distance of X from Y is equal to K;

F1(X,Y) = R<=>S3(X,Y,K).

F4. The diameter is equal to K;

03 = K<=>Q6(K).

F5. The excentricity of X is edual to K;

F2(X) = K<=>R5(X,K),
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F6. The radius is equal to K;
04 = K<=>07(K).
F7. Degree of X is equal to Kj

F3(X) = K<=>R6(X,K).

3. EXAMPLES OF THEOREM PROVING

The Appendix of [4] contains the protocol of an in-

teractive proof of the following theorem.

Theorem 1. If the graph G is not connected then the
complement of G is connected.
As a subgoal in the proof of Theorem 1. the follo-

wing lemma apnears.

Lemma 1. If graph G is not connected and if points
X and Y are joined by a walk in graph G then there exists Z
such that X and 2 are not adiacent and Y and 7 are not adjacent.

Lemma 1. has been proved by a resolution based theo-
rem prover (c.f.[6]) which is incorporated in the interactive
prover. The resolution prover has used also the lemmas expre-
ssing the symmetry and transitivity of the relation "to be joi-
ned by a walk", i.e. R4(X,Y). The symmetry of this relation
acts as a built-in theorem,

Before an attempt of the resolution proof begins the
system consults the user about the usefulness of some relevant
definitions and lemmas for the nroof. The user should specify
binary predicates for which the system should assume symmetry

property. Also, the user could include induction as additional
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principle of inference, Excevnt for thie the proof procedure
is fully automatized,

Commands in the interactive theorem proving are u-
sually executed iﬁ a few seconds while the resolution prover
could work several hours., Lemma 1, has been proved in about
ten minutes (on a 32k machine under a nonoptimized overlay
scheme) ,

This automated theorem prover has proved or can ea-

sily prove such simple theorems as the following ones,

Proposition 1. If points X and ¥ ape tgolated then
XY end Y ave not adjacent,

Proposition 2, If X and ¥ are at.dietance 2, then
there exists point Z suech that x and Z ape adfacent and 7 gnd
Y are aajaaent,

Proposition 3, If graph <s connected, then it g
not true that thepe exists point X such that X s isolated,
or graph is triviql,

A natural deduction (interactive) proof of Proposi-
tion 3, can easily be achieved practically only by instantia-
tiné of definitions, The proof tree has no branching and isg
reproduced below,

1. P5=> (3X)05(x)ve3

2. P5=> (3X) (¥Y)IR1(x,¥)vo1 (1)

3. P5=>(¥x) (3¥)R1 (x,v) V01 (1)

4. (¥X1) (¥Y1)RA (X1,v1)=> (¥X) (3Y)R1 (X,¥)vo1 (1)

5. (¥X1) (vv1) (3K) 52 (X1,Y1,K)=> (wx) (Jy)R1 (X,Y) Vo1 (1)

6. (¥X1) (¥Y1) (9x) ((K=0AS2 (x1 2 Y1 ,K) YV (K>0AS2 (X1,Y1 'K)) )=
(¥X) (3¥)R1(X,Y) Vo1 (1)
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7. (¥X1) (¥Y1) (3K) ( (K=0AX1=Y1)V (K>0A (J2) (S2(X1,%,K-1)A
R1(Z,Y1))))=> (¥X) (Y)R1 (X,Y)VQ1 (1)

8. (¥X1) (¥Yl) (AK) (32) ( (K=0AX1=Y1)V (K>0AS2(X1,Z,R-1)A
R1(2Z,Y1))))=>(¥X) (FY)R1 (X,¥)VOL (1)

9. (VXl)(VYl)CHK)(32)(X1=Y1VR1(Z,Y1))=>(VX)CHY)RI(X,Y)V
01 (1)

10, (¥X1) (¥Y1) (32) (X1=Y1VR1 (Z,Y1))=> (¥X) (JY)R1(X,Y¥)VQl (1)

11. (¥Y1) ((¥X1)Y1=X1V(3Z)R1(Y1,Z))=>(¥X) (JY)RL(X,Y)V

(¥X2) (¥Y2) (X2=Y2).

Each step in this proof should be initiated by the
user, However, with the improvements which are in progress
the system can almost all steps do alone. Little intervention
of man is necessary in step 5-6 (case analysis), 8-9 (intro-
ducing a transition subgoal) and 10-11 (using a lemma), alth-
ough such steps (at least those in the form of this example)
will be automatized in the future.

Next example is more complicated.

Theorem 2. If graph G has 6 vertices then graph G
has a triangle or complement of G has a triangle.

A possible proof tree is given below. "Sons" of a
subgoal are given two characters to the riaht and below their
"father", ‘

1. Q1 (6)=>P4VP4Al
2. Q1(6)=>EX) (F3(X)23VF3Al (X)2 3)
3. (3X) (Ql (6) =>F3 (X) »3VF3Al (X)23)
4. (¥X) (Q1(6)=F3(X)23VF3Al (x) 23)

5. Q1(6)=>F3(X) >23VF3Al (X) 23)



62 Dragos3 M, Cvetkovid

6. 01 (6)AF3(X)<3=>F3A1 (X) 23
7. QL(6)AF3 (X) <3=»6-1-F3A1 (X) <3
true by lemma L18
8, 6-1-F3Al (X) <3=>F3Al (X) >3
true by arithmetical manipulation
9. (IX) (P3(X) 23VFP3A1 (X) »3) =>P4VP4Al
10. (3X) (F3 (X)23)V(JY) (F3A1 (Y) >3) =>PAVP4AL
11. (3X) (F3(X)23)=>P4VP4Al
12, F3(X)>3=>P4VP4Al
this subgoal will be treated below
13, (3Y) (F3A1(Y) »3)=>P4VP4Al
14, F3A1 (Y) >3=>P4VP4A1l
the procedure is similar as in subgoal 12.
The first step - spliting the goal 1 into subgoals 2 and
9 - is crucial and must be done by humane.
The subgoal 12 becomes the goal 1 in the next proof tree,
1. F3(X)23=>P4VP4Al
2. F3(X)23=>(Jv1) (3¥2) (3¥3) (Y1AY2AY1#Y3AY2#Y3ARL (X, Y1)
AR1 (X,¥2)ARL (X,Y3)) lemma
3. (JY1) (J¥2) (J¥3) (YIAY2AY1AY3INY 2£Y3AR]L (X,Y1)ARL (X,Y2)
AR1 (X,Y3) ) =>P4VP4Al
4. Y1#£Y2AY1#Y3AY2#Y3/ARI (X,Y1)ARL (X, Y2)ARL (X,Y3)=>
P4VP4Al
5. R1(X,Y1)AR1(X,Y2) A R1(X,Y3)=>P4VP4Al
6. RL1(Y1,Y2)AR1 (X,Y1)ARL (X,Y2)ARL (X,Y¥3)=>P4VP4A1l
7. RL(Y1,Y2)ARL (X,Y1)ARL (X,¥Y2)=>P4 true

8. TRL(Y1,¥2)ARL (X,Y1)ARL (X,Y2)AR1 (X,¥3) =>PAVP4A]L
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9, R1(Y1,¥Y3)AR1(Y1l,¥2)AR1(X,Y1)ARL (X,Y2)ARL (X,¥Y3)
=>P4VP4Al
10. R1(Y1,Y¥3)ARL (X,Y1)ARL (X,¥3)=>P4 true
11. TR1(Y1l,Y3)AOR1(Y1l,Y2)ARL (X,Y1)ARL (X,Y2)
R1 (X,Y3)=>P4VP4Al
12. R1(Y2,¥Y3)AQR1(Y1,¥Y3)ARL(¥Y1,Y2)ARL (X,Y1)
ARL (X,Y2)ARL (X,Y3)=>P4VP4Al
13. R1(Y2,¥3)AR1(X,Y¥2)ARL (X,¥Y3)=>P4 true
14. TR1(Y2,Y3)AR1 (Y1,¥Y3)AQR1(Y1,Y2)ARL (X,Y1)
ARL (X,Y2)ARL (X,Y¥Y3)=>P4VP4Al
15. TR1(Y2,Y3)AORL (Y1,Y3)AQR1(Y1l,Y2)=>P4Al
16. Y1#Y2AY1#Y3AY2#Y3AIR1 (Y1 ,Y2)A
OR1 (Y1,¥Y3)ANR1(Y2,Y3)=>P4Al true
Case analyses in the proof should be done by the humane
but there are some hopes that the computer processes them in

the next future.

Theorem 3. There exist X,Y s8uch that X#Y and degree
of X 18 equal to degree of Y.

We shall prove this theorem by contradiction, i.e. we
shall prove the following proposition from which Theorem 3
follows.

Proposition 4. If for all X,Y 1f X#Y then degree
of X 18 different from deagree of Y, then graph is connected
and araph 18 not connected.

1. (¥X) (YY) (X£Y=>F3 (X) #F3 (Y) ) =>P5AP5

2. (¥X) (YY) (X#Y=>F3 (X)#F3 (Y) ) =>P5
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3. (VX)(VY)(X¢Y=>F3(X)#F3(Y))=>(3X1)F3(x1)=01—1
4. (VX)(VY)(X#Y=>F3(X)#F3(Y))=>(VK)éﬂXl)F3(Xl)=K
arithmetic lemma

5. (IX1)F3(X1)=01-1=>P5

graph theoretic lemma

6. (¥X) (¥Y) (X#Y=>F3 (X) #F3 (Y) ) => 1 P5§
Te (VX)(VY)(X#Y=>I3(X)#FB(Y))=>(3X1)F3(X1)=0
8. (VX)(VY)(X#Y=>F3(X)#F3(Y))=>(VK)(3X1)F3(X1)=K
the same as 4.
9. (JX1)F3 (X1)=0=>1P5
graph theoretic lemma

The proof of the next theorem is only roughly outli-
ned. The idea is to point out characteristic featufes implied
by -the isomorphism relation and not to deliver all technical
details.

Theorem 4. If line graph of G <{s isomorphic to graph
G, then graph G <s regular of degree 2.

In the broof we uée the predicate 033 (L) with the
meaning: the sum of vertex degrees is equal to I.. We use also
the following lemma 02(M) => 033(2*M),

1. P11GA2/G=>09G(2)
2. P11GA2/G=>Q33G(’2*01G)/\—1(EIX)F3G(X)=o/\ﬁ(3Y)F3G(Y)=1
3. P11GA2/G=>033G (2*01G)
V 4. P11GA2/G=>01G=02G
5. P11GA2/G=>01GA2=01G
lemma schenie
6. 01GA2=01G=>OIG=02G

by L19
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7. 01G=02G=>Q33G (2*01G,
by the above lemma

8. P11GA2/G=>7(JX) F3G(X)=0

separate proof by contradiction

9. P11GA2/G=>"1(JY)F3G(Y)=0

the proof is similar as in 8.

10. 033G (2*01G)A1(IX)F3G (X) =0A(FX)F3G (Y)=1=>Q9G (2)

11. 033G (2*01G)A(IX)F3G (X) =0A(JY) F3G (Y) =1=>

(¥2)F3G(2) =2

12. 033G (2*01G)A(IX)F3G (X) <2=> (¥Z)F3G(2)=2
arithmetical lemma
The first step is again very hard.

The subgoal 8 is equivalent to subgoal 1 in the next
proof tree and this equivalence is a creative step in the proof.
In the sequel we use the predicate Q34 (N) with the meaning "a
component of the graph is a path of length N" and some lemmas
involving it.

1. P11GA2/GA(IX)F3G (X)=0=> (IN)O1G (N)A I (IN) O1G (N)
2. (3N 016G (NA(IN) QLG (N)
3. (AN)N1G(N)
axiom
4. 7(IN)01G(N)
5. P11GA2/GA(3X)F3G (X)=0=>"1(3IN)01G (N)
6. P11GA2/GA(3X)F3G (X)=0= P11GA2/GA(JY)F3GA2(Y)=0
lemma scheme
7. P11GA2/GA(3Y)F3GA2 (Y)=0=>" (IN)Q1G (N)
8. P11GA2/GAQ34G (0)=>71(3N)0Q1G (N)
9. P11GA2/GAQ34G (0)A (034G (N)=>034G (N+1) )

=>71(3N) 01G (N)
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10, PllGAZ/GAQ34G(O)A(Q34G(N)=>Q34G(N+l))=>(VN)Q34G(N)
11. 034G (0)A(Q34G (N)=>Q34G (N+1) ) => (¥N) 034 (N)
axiom scheme
12. (¥N)Q34G (N)=>71(3IN)Q1G (N)
13. (¥N)Q34G(N)=> (¥X1)0Q3G (X1)
lemma
14. (¥X1)03G(X1)=>71(3N)Q1G (N)
lemma
Theorems 2-4 can be nroved by the use of system
"Graph" in the way described above or along similar lines.
Crucial stevs should be done by man.rHowever, a user which is
well aquainted with the capabilities of the system could take
profit of the interactive work with the system,
We believe that the above examples are typical for
at least one part of graph theory and that they show both to

user and to designers of the prover what the vroblems are,

L. CONCLUDING REMARKS

Examples from Section 3 show that it is possible to
complete a oroof of graph theory theorems of considerable com-
plexity by the use of the system "Graoh". In fact, with somé
efforts, one can construct proofs of far less trivial theorems
in a similar way. However, in all these examnles the user diad
know in advance a (non-formal) proof of theorems considered.
Therefore, there does not exist so far an experience about re-
al usefulness of the system in Theorem proving nrocess, To ex-

plain the real help the system can provide the user, we must
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wait until a new theorem has been proved (if ever). We expect
these experiences alona the following two directions.

1, The svstem "Graph" has been used for some time in
other parts (graph theory algorithms) for scientific research
in graph theory. Now, the theorem vprover will also be used and
probably will help in proving new theorems. This will be sup-
ported by further development of knowledge stored in the sys-
tem as well as by further (slight) improvements of the system
"Graph".

2. Some experiments will be organized in which a known
theorem will be given for proof to people, not very well aqua-
inted with gramh theory (say, student or mathematician working
in other areas of mathematics).

Examples of Section 3 suggest also which modificati-
ons of system "Graph" should be performed to make the system
more effective. As announced [4], the system should do alone
some things which now are possible only with some intervention
of the user, In fact, a new module - an overdirector of the
proof tree - is being implemented. The overdirector would do
some simple steps (e.a., deleting superflous brackets or quan-
tifiers, apnlying tautologies etc.) but sometimes also more
serious action (e.g. instantiating a definition or using a le-

mma) ,
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ABSTRACT

Using root systems and forbidden subgraphs we prove
that the spectrum of a graph determines whether or not it is
a regular connected graph except for 17 cases. Several known
theorems follow from this result.

1. INTRODUCTION AND PRELIMINARY RESULTS

In this paper we shall investigate some of the relati-
onshins between a graph, G, and the spectrum of its 0-1 adja-
cency matrix, A(G). The amount of research concerning such re-

lationships has grown enormously in the past ten years, and
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this is reflected in the recent book [5] on the subject. In
this paper we shall use the terminology and notation of that
reference. One of the basic problems in this area is the reco-
very of graphic (topological) information about G from its
spectrum. Sometimes the graph itself is determined (up to iso-
morphism) , and in this case we say that the graph is characte-
rized by-its spectrum. Many papers have been written concerning
the chafacterization of graphs by their spectra and the cons-
truction of cospectral families of graphs. Regular line graphs
-have been of particular interest since it has been known for
several years that, with only a finite number of exceptions, a
graph that is cospectral with a given regular line graph is
also a regular line graph. Thus the properties of the root
graph come into play, and this often determines whether or not
a graph is a regqular line graph. The exceptions occur when the
root graph is either one of the 3-connected regular graphs on

8 vertices or one of the connected semi-regular bipartite graphs
n 64 31 vertises,

Several tools have been used in the study of spectral properties
of line graphs. A major one involves the theory of real root
systems; they were exploited in the important paper of Cameron,
et., al., [2]5 where the question of whether the spectrum deter-
mines if a graph'is a line graph or not was reduced to a finite
but rather large problem. Many new results were obtained, some
by extensive computer searches., In fact by such a computer

search it was seen that there could be only 17 exceptional
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cases for the regular line graphs described in the last parag-
raph [1, Table 1.5].

In Section 2 of this paper we shall investigate the
root systems that give rise to line graphs. These have been
classified previously [2], and have been derived by a variety
of sometimes delicate algebraic arguments. We shall show that
these arguments may be replaced by several short, straight-
forward, self-contained combinatorial ones, and an improved
understanding of the imbeddings of one root system into anot-
her results. These will be applied in Section 3 to regular line
graphs.

Another tool that has been useful is Seidel switching.
We shall see that this is a natural tool to use when looking
for cospectral graphs. In fact this will produce cospectral
graphs that are not line graphs in all 17 of the exceptional
cases.

A final tool is the construction of forbidden subgraphs.
Although much of the work in this area has been subsumed by
root system arguments, we shall see that it is still useful and
a necessary key for the completion of the proofs.

We first some well known theorems in this area. We de-

note the smallest eigenvalue of G by 1 (G).

Theorem 1.1. [5, p.94] . Let G be a graph with eigen-
values Ay 2 Ay 2 a2 ln. Then G 18 regular if and only if

n
ny, = ] )f. In that case )\, 18 equal to the degree of G.

i=1
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Theorem 1.2, [5, P.94]. Let G be a regular graph
with eigenvalues Ay o2 Ay 2 een 2 An' Then the number of co-
nnected components is equal to the mutiplicity of Aye

Theorem 1.3. [5, P.169] For any graph G, we have
MLI(G)) > =2. The bound is attained <f and only if G contains

an even cireuit or a connected component with two odd cireuits.

Theorem 1.4. Regular line graphs with least etgenvalue

greater than -2 are characterized by their spectra.

Proof. From Theorem 1.3, the multiplicity of -2 being
equal to zero implies that G is a tree or unicyclic with an
odd cycle. Thus the only regular graphs G are odd cycles and
complete graphs, both of which are characterized by their spec-
tra by Theorems 1.1 and 1.2 (see also [5,p72]).

Thus Theorem 1.1 tells us that the spectrum determines
whether or not a graph is regular, and Theorem 1.2 tells us
that when it is regular we can determine if it is connected.
Theorem 1.4 tells us that the spectrum determines whether or

not the graph is a regular line graph if A(G) > -2. Hence from

Theorem 1.3 we can focus our attention on graphs with A (G) = -2,

In order to do this, we must consider systems of lines in ge,

2 STAR-CLOSED SYSTEMS OF LINES IN Rn FROM A
COMBINATORIAL VIEWPOINT
In this section we wish to investigate the existence of
sets of lines passing through the origin in R® whose pairwise

angles are 60°, or 90°. We wish them to be star-closed (as de-
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fined in [2]), i.e., given two lines in the set that meet 60°,
the unique line that meets both of them at 60° is also in the
set. The set of three lines is then called a star. If a system
of lines always contains the third line of a star whenever the
first two are present, the system is then called star-closed.
We shall study the vectors that lie on these lines; the follo-

wing lemma is obvious:

Lemma 2.1. Let S be the set of all vectors of length
Y2 that lie on the lines of a star-closed system. Then these

vectors satisfy the following properties:

(P1) xey = 0 or t1 for all =z,y € S, x # ty,
(P2) Tex = 2

(P3) x+y = -1 1implies x + y € S, and

(P4) x € S 1implies -x € S,

A system of lines that can be partitioned so that they
lie in complementary orthogonal subspaces is called decomposa-
ble. The dimension of a system of lines is the dimension of
the smallest real vector space containing them. Some examples
of star-closed system and their relationship to real root sys-
tems are given in [2,16] and can be described as follows: let
(el,ez,...,en) be an orthonormal basis of Rn. In each of the
following cases the set of lines joining each point to the

origin will form a star-closed set of lines:

(1) Ay ¢ leg - ejll ¢l <3 < ny

(11) Dy & (e ¢ ejll <1 <3 < n}
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% 1 1 1
(iii) Eg: Dg U {t§e1 tse, .., ¢ 5eg} where the number

of positive coefficients of the ei’s is even.

(iv) Ej: {x € ESIX!Y = 0} for a given vector vy € Eg

(v) Ec: {x e E8|x-y = X+z = 0} for given vectors

v,z € E8 such that yez = -1,

Notice that all these defining vectors have length V2, E is

7

a subset of E8 orthogonal to a line in ES’ and E is a

6
subset orthogonal to a star in E8' The number of lines in

An is %n(n + 1), in Dn is n(n - 1), in E is 120, in E

8 7
is 63, and in E6 is 36. For our purposes linear transformati-
ons will be used to imbed one system of lines (and their vec-
tors of length /2) into another. In most cases they will be
defined by their action on an orthonormal basis., As an example
define ¢(ei) = ey, i=1,...,7, ¢(e8) = —eg. Thus ¢ multip-
iies the last coordinate by -1, preserves inner products and,
by looking at the range of E8 as defined above, gives a se-

1

" 1
cond description of Eg as Dg U {3, + (.. 3€g} where the

number of positive coefficients of the ei's is odd. A less
trivial example is given by using jn et oL+ e, and de=
fining ¢ : RS » RY py bley) = ey = Fg + Je,,i = 1,...,8.
One easily verifieg that the unique extension of this mapping
to a linear transformation takes Ra onto the hyperplane of
Rg orthogonal to jg, and that the image of the lines in the
second definition of EB consists of the lines through the
vestors of AB plus all those through vectors of the form

w§j§ + & + ey + em,l <k <« <m < 9, This is a useful alter-
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native definition of Eg and is also given in [2]. 1t also

shows that AS can be imbedded into EB'

this is essentially the only way to imbed AB into E

We shall see that

8"
As a final example, consider the vectors in {t%el +

1 1 V2
tFe, % ...t e >eq) U Ag where three of the first six

coordinates are positive, and let ¢ be defined by ¢(ei) =

=e, i=1,...,6, and ¢(e,) = %;(e7 - e This defines a

i’ 8).
linear transformation from R7 into Ra which preserves inner

products, and the image of the given set is precisely the set

of elements of E8 orthogonal to the star consisting of the

-l

1. .
lines through + egr 3lg T €4 T eg, 51ge Thus we have an

€7
alternate representation of EG'
The basic object we wish to study is the one-line ex-

and this will be useful later.

tension of a star-closed set. In the other words, we shall ta-
ke a star-closed set, add a new line through the origin, that
meets all the previous lines at 60° or 90°, and then star-close
the system, i.e., add the third line of a star whenever the
other two lines of it already appear in the system. If it meets
all lines at 90° then a decomposable system results. Since we
want to construct indecomposable systems, we shall always add

a new line in such a way that it meets some line in the origi-
nal system at 60°. Not only shall we see that the examples of
An, Dn' EB’ E7 and E6' are essentially the only indecomposab-
le ones, but we shall also see how the lower-dimensional examp-

les can be imbedded into the higher-dimensional ones.

Let us start by considering An. We add a new line,



76 ‘
Dragod Cvetkovid, Michael Doob

star-close, and then consider the vectors along the new lines
with length /2, We wish to consider the coordinates of the vec-
tors with respect to the original orthonormal basis {el,...,
en+1}' Adding a new line and star-closing will increase the
dimension of the system by at most one, and hence we do not

need to increase the size of the basis to describe the vectors
along the new lines, Using our indecomposibility assumption,

we may say that coordinates of a new vector with respect to
{el,...,en+l} are not all equal. By property (Pl) from Lemma 241,
any two unequal coordinates differ by 1, and hence there is a
real number u  such that each coordinate is equal to u or
u+l. Now if the ith coordinate is equal to u and the jth
is equal to u+l, the inner product with ey - ej is -1 and
hence by (P3) the éum is also in the system. This new vector
is ldentical with the old one except that the ith and jth
coordinates have been interchanged. Thus once one vector with
t coordinates equal to u+l and the remaining coordinates

equal to u is in the system, then all such vectors with exac-

tly t coordinates equal to wu+l are in the system.,

Lemma 2.2. Suppose that An is extended by a eingle
line, star-closed, and that V is the set of vectors of length

vz along the resulting lines. Then

(1) there ezists a real number u and a positive inte-
ger t such that V contains qll vectors with ¢t
coordinates equal to u+l and the remaining n+l-t

coordinates equal to u,
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(11) (h+ Du’ + 2tu + £ - 2 = 0
2 - e+ 2
=3

(iii) t > 2 implies n < ; and

(iv) n 2> 2t -1 .

Proof. The conclusion (i) has been explained and (ii)
follows directly from (P2) of Lemma 1. Since the equation (ii)
has real roots, it follows that t2 - (n+1)(t - 2) >0 and
hence (iii) follows. From (P4) we may assume t < 2—%—l, and

hence (iv) follows.

Putting properties (iii) and (iv) together we conclude
that 1 < t < 4. In fact all these values of t are realizable
for appropriate values of n.

Case 1. t = 4. Conclusions (iii) and (iv) of Lemma 2
imply n = 7, and (i) implies u = -%. Thus we have all vectors
with four coordinates equal to % and four equal to -i, so that
we have all vectors in E8 orthogonal to the line through %ja.
Thus we have extended A7 to Eg. Note that this extension of
A7 to E7 in R7 is in fact unique.

Case 2. t = 3. We now have 5 < n <8, For n =8 we
have u = —% which gives us the alternate representation of
EB mentioned previously. For n = 5,6,7, observe that two vec-
tors which never have the value u + 1 .in the same coordinate
will have an inner product =1 by equation (11) of Lemma 2.2:

Hence their sum is in the system by Lemma 2.1, and we have

n+1 n+1
6 3

added already. This gives a total of 36 lines for n = 5 and

] new vectors in addition to the

] that have been

63 lines for n = 6. For n =7 the 8 vectors with one coordi-
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dinate equal to 3u + 2 and the rest equal to 3u + 1 are

included by star=-closing a vector of the first type that was

added with one of the second type to give a total of 120 lines.
In each case we have imbedded An into En+1’ as can

be verified by considering the following maps: (i) ¢(ei) =

_ 1 1 _ ~ o _

ei -gjs + m(e7 68), i= l,¢.0,63 (ii) ¢(ei)
_ _ 2u + 1. 1 _ . N
& Tt T NI tIgm e s 1= 12,0075 (114) ¢(ey) =

2u + 1 - < i
= ey ETFG—¢—§Tj8' i=1,...,8. In each case this determines

a linear transformation from R™ to Re that preserves inner

products and imbeds An into E

n+l”
Case 3. t = 2. In this case define ¢ : Rn+l > Rn+1
to be linear with ¢(ei) =e; + %jn+l' We then have ¢ fixing
An and the image for the new vectors is Dn+1 - An' Since ¢

preserves inner products, the addition of the new line creates
an imbedding of An into Dn+l' Notice that vectors of this
type appeared in the last case (n = 7) so that in fact we have

A7C D8C E8'

Case 4. ¢ = 1. Define ¢ : RIHL |, pn*2 4o $le;) =
= ey ¥ E%Tjn+2 + E%Ten+2' This is an inner product preserving

linear' transformation that fixes An and takes the new vectors
into An+1 - An'
Gathering the various cases together, we get the follo-

wing result:

Theorem 2.1, Extending the system of lines An by a

single line gives preeisely the following inelusions:
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(1) A CA = 2,3...

n+1'n

(1ii) AnCD =2,3...

n+1'n

(i1i) A CE_,A_C E7,A7 c EB'AB e ES' and

5 6

(iv) A., C E7 .

6

Now, in an analogous manner, let us extend Dn by a

single line. Start by adding a new vector so that

€h+l

Rn+1

{el,...,e } in an orthonormal basis for . Since Dn

n+l
contains A__,, we may argue as we did for Lemma 2.2 that the
first n coordinates of a vector along the line are u + 1

+ e

or u for some real number u. In addition since e is

i 3
in D_, property (Pl) implies that u =0, u = - .} or u = -1,

n 2
Suppose u = 0. Then, in order to get a vector that is
not already in the system, we must assume that the final
coordinate is non-zero. This implies by (P2) that there is
exactly one coordinate equal to 1 and hence the final coordi-

nate is either 1 or -1. Using the vectors ey + ej and proper-

ties (P3) and (P4) of Lemma 2.1, we get all the lines D .

n+l
When u = -1, we use property (P4) of Lemma 2.1 to put
us in the case where u = 0.
Finally, suppose u = = %. Then the first n coordi-

nates are t% while the last coordinate is t% /8 = n. Thus

n <8 and if n =8 the extension lies in Qe, and clearly
consists of all vectors with an even number of positive and

an even number of negative coefficients, or of all vectors with
an odd number of positive and an odd number of negative coeffi-

cients. In either case we have EB' Since A3 and L)3 are
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isomorphic, the only new case arises when n = 4,5,6, or 7.
Now suppose we are in one of these cases and we are given a
vector with the first n coordinates equal to * %. By (P4) we
may assume the last coordinate is negative. For any two coordi-
nates i and j with 1 < i < J < n, one of the four vectors
te, tej has inner product =1 with the given vector and hen-
ce by (P3) there is a vector in the system identical with the
ofiginal one except that the ith and jth coordinates have
changed sign. Thus if the given vector has t of the first n
coordinates positive, then any other vector of the same form
whose number of positive coordinates has the same parity as t
also appears in the system. Note, however, that two vectors
with different parities cannot be in the system by (P1). For
n =7, this gives all the vectors in ES' For n = 6, let
¢(ei) =e,1=1,...,6 and ¢(e7) = %?fe7 + eg). For n =5,

let ¢(ei) = ei, i=1,...,5 and let ¢(e6) + e7 + e8).

_ 1
= -7_3_(e6

In each case we get Dn CZEn . For n = 4, there are 8 new

+1
vectors and these are easily identified with D5. Collecting

these results we get the following theorem:

Theorem 2.2, Extending Dn by a single line yields
precisgely the following inelusions:

(1) Dn CbpD = 2,3,+se4, OT

n+1 D
(ii) Dy C E¢,D, C E,,D, C Eg,Dg C Eg.

Corollary 2.1. The star-closed systems of line En
are maximal in Rn for n =6,7,8 and the star-closed sys-

tems Aﬁ and Dn are maximal for all other n.
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Proof. Suppose we add a line to E8; since Dé CZES,
adding this line to D8 produces an 8-dimensional extension

of DB' which by Theorem 2.2 must be E8. But D8 can be ex-
tended to E8 in two ways, and any new line from one meets

any new line from the other at an angle not equal to 60° or 90°.
Hence E8 must be maximal in RB. For E7, the result is even
easier, for A7 CIE7 and the extension of E7 is unique. The
system E6 contains D5 which in turn can be extended to E6
in two ways. As with ES’ these extensions are mutually exclu-
sive.

Theorem 2.3. The only one-line extension of E¢ 18

Eps the only one-line extension of E7 i8 E_,. The system E

8 8

cannot be further extended.
Proof. An extension of E8 would be nine-dimensional
by Corollary 2.1 and hence would be an extension of Dg C E;.

8
By Theorem 2.2 this can only be Dg. Since D has fewer

9
elements than Egs the extension of Eg would imply the exis-
tence of a nine-dimensional extension of 09 which is impossi-
ble. An extension of E7 would be an eight-dimensional exten-

sion of A7 and hence would contain Aa, D8 or E Since A

8° 8

and D8 both have fewer elements than E7, and EB is maximal

in RB, we must have extended E7 to Ea. Finally we consider

an extension of EG‘ As we saw before, we may represent EG by
1 1 1

the lines through the following points: (:§e1 t ze, t...t ye. 8

+ é;e7) U Ag U (:/§e7} where three of the first six coeffici-

ents are positive, Add a new line and form a star-closed set.
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We first show that there is a line contained in the hyperplane
of vectors with seventh coordinate equal to zero. Suppose z
is a vector of length V2 on a line in the system and is not

orthogonal to E6. Let z4 be the coefficient of e, for =z.

Assuming it is not zero, we have zq = % %?- and of the first

six coefficients, t < 3 are equal to u + 1 while the rest

are equal to u. Let x be a vector given in our definition

of E6 that has a coefficient of - % whenever z has a
coefficient of u +1, and a coefficient of -~z for €. Then
ZeX = = %(t + 1) =0 or #1, and hence t = 1. Thus Z°X = =1

so that x + z 4is in the system and has a coefficient of zero
for e Now any such vector in the system has its first six
coefficients equal to v or v + 1, and, by the same reasoning
as was used for the vector 2z, we get that t = 2, and hence

we get [g} = 15 new vectors for a total (so far) of 51. Fur-
ther, since this is an extension of AS with t = 2, we get
that D6 is contained in the extension, and hence the extensi-
on contains D7 or E7. If the extension contains D7, then it
properly contains D7 which is not possible in a seven-dimen-

sional space. Hence the extension contains E and thus the

7’
extension is E7.

3. REGULAR LINE GRAPHS WITH COSPECTRAL MATES

Suppose A is the adjacency matrix of a graph G with

least eigenvalue A(G) > -2. Then the matrix %A + I 1is posi-

tive semidefinite, symmetric with 1’sg on the diagonal, and has
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the remaining entries equal to 0 or %. Hence this matrix can be
interpreted as the Gram matrix of a set of unit vectors having
mutual angles of 60o or 900; the lines through these vectors
meet at the origin at the same angles.

Conversely, given a set of lines passing through the
origin of R™ and meeting at angles of 60° or 900, unit vec-
tors along the lines can be used to form a Gram matrix. This
matrix is then symmetric, has 1's on the diagonal, and has 0
or * % as entries so that in general we do not get a graph.
Since there are two unit vectors on each line, an adroit choice
can give rise to vectors that meet at angles of 60° or 90° so
that a graph does arise. If vectors of length Y2 are chosen
instead and BBT is the resulting Gram matrix, then BBT - 21
is the adjacency matrix of the corresponding graph. We then
say that the set of lines represents the graph. Hence the study
of graphs with A (G) > -2 involves the star-closed lines des-
cribed in the last section. Since the only maximal indecompo-
sable sets of lines in Rn, as described in Corollary 2.1, are

An and Dn whenever n # 6,7 or 8, and since An(: D the

n+l’
following proposition is clear:

Proposition 3.1. Let G be a connected graph with
A(G) = =2, Then G can be represented by lines in either Dn
or EB' In the latter case, the lines lie in a subspace of RB
of dimension 6,7 or 8.

The cocktail party graph CP(n) 1is the graph on 2n

vertices which is reqular with degree 2n - 2. In other words,
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it is the graph obtained from K by deleting a l~factor.

2n
Notice that CP(n) can be represented in R™! by the 2n
vectors e 41 + ei,t = lieaogn. For n = 0, it is the graph with
no.vertices,

éuppose G 1is a graph with n vertices, and (al,...,an)
is an n-tuple of nonneéative‘integers. Then the generalized
line graph L(G;al}...,an) is obtained by taking the line graph
L(G) and adjoining n disjoint cocktail party graphs
CP(ai),i -71,.;.,n. A vertex in CP(ai) is adjacent to one in
L(G) if and only if the vertex in L(G) corresponds to an
edge of G with vertex 1 as an end point.

If L(G;al,...,an) is a generalized line graph and
m = ? (1 + ai), then thé graph may be represented in R™ by
_ takiizlthg orthonormal basis {ei'jll <iem0 <3 < a;} and
the vectors {e:l_.'0 4+ ej’ol{i,j} an edge of G} U {ei'o +
S ei,kll <k < a;,1 < 1 < n}, Hence any generalized line graph
can be represented by vectors in Dm, and the least eigenvalue
of a generalized line_graph is bounded from below by -2. In
fact the singularity of the Grammian will insure that this
bound is attained if the number of vertices is greater than

n
I 1 +a

).
t=1 1

Proposttion 3.2 [2]. A graph can be represented by the
root system Dn if and only if it is a generalized line graph.

Proposition 3.3 [2]. A regular generalized line graph

is either a line graph or a cocktail party graph,



§5
Root Systems, Forbidden Subgraphs, ...

Proposition 3.4. If G 1is a regular connected graph
with least eigenvalue equal to -2, then
(1) G 1is a line graph,
(ii) G 1s a cocktail party graph, or
(111i) G 1is represented by an indecomposable set of

lines in R™, 6 < n < 8.

Proof. The result follows from Proposition 3.3 and
Corollary 2.1.

Proposition 3.5. If G 1is not a line graph but is
cospectral with a reqular, connected line graph, then G can
be represented by a set of lines in Rn, 6 < n < 8.

Proof. Cocktail party graphs are characterized by
their spectra by Theorem 1.1. Hence the result follows immedi-
ately from Proposition 3.4.

A graph G with n vertices that is cospectral to a
reqular connected line graph but is not itself a line graph is
called an exceptional graph. If the eigenvalue -2 has multipli-
city p, then the matrix I + %A is a Gram matrix of unit
vectors and has rank r where r = n - p. We wish to focus on
the eigenvalues of G greater than -2; this motivates the
following definition: the eigenvalues of a graph G greater
than ) (G) are called the prineipal eigenvalues of G.

Proposition 3.6 [1]. The number of principal eigenva-
lues of an exceptional graph is either 6,7 or 8.

Proof. The rank of the associated Gram matrix is the

dimension of the smallest real vector space containing the li-
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nes representing the graph. By Proposition 3.5 this dimension
is equal to 6,7 or 8.
The complement of graph G is denoted by G. Also,

the direct sum of the graphs G and H is denoted G({J H.

Proposition 3.7. A regular connected line graph can
have an exceptional cospectral mate only if it is the line
graph of one of the following 30 graphs:

(1) Km,n’2 <mz<n,7 <m+n < 9,
(ii) Kn,n =6,7,8,
(1ii) cP(n),n = 3,4,
(iv) T ,n =56,7,8,
) C UC, /imn} = (3,4},(3,5}, or {4,4}
(vi) G or G where G is reqular, connected, and
cubic with 8 vertices,
(vii) the semiregular bipartite graph with parameters

(mlnrrl 'r2) = (6,3,2,4).

Proof. As proven in [9], if G has m edges and n
vertices, then the multiplicity of -2 as an eigenvalue of
L(G) is m~n + 1 if G is bipartite and m - n otherwise.
Hence.the number of principal eigenvalues of L(G) is n - 1
Or n respectively. From Theorem 1.1 and Theorem 1.2 we see
that L(G) is regular and connected and hence G 1is connec-
ted and either regular or semiregular bipartite. From Proposi-
tidn 3.6 we see that the number of vertices G is at least
6 and at most 9., The only such graphs are those in the

conclusion.
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Given a subset X of the vertex set of a graph G, we
form a new graph Gx by letting two vertices in X or in the
complement of X be adjacent if they are adjacent in G while
a vertex in X and one in the complement are adjacent Gx if
and only if they are not adjacent in G. A graph H is called
Seidel switching equivalent to G 1f H 1is isomorphic to Gy
for some X € V(G). The necessary and sufficient condition on
X to switch a reqgular graph into one of the same degree is
easy to see.

Proposition 3.8. Suppose G 1is reqgular with n ver-
tices and degree r. Then Gx is regular of degree r if and
only if X 4induces a regular subgraph of degree k and
|X] = n - 2(r - k).

Proposition 3.9. If G and GX are reqular of the
same degree, then G and Gx are cospectral.

Proof. If x 1is an eigenvector of A(G) whose co-
rresponding eigenvalue is not the degree, and y 1is defined

by letting y, =% for 1 € X and Yq = -kia otherwise,

i

then y 1is an eigenvector A(Gx) with the same eigenvalue.
We now wish to use Seidel switching to produce cospec-

tral reqular line graphs. In other words, we wish to switch

with respect to a set of lines in the root graph that induce

a reqular graph in the line graph; thus these edges induce

a reqular or semiregular bipartite subgraph of G, In particu-

lar, if we use the value k = 0 from Proposition 3.8, then

the edaes in G are disjoint. If we use k = 1, then the edges
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in the root graph consist of copies of Kl 5
4

Proposition 3.10. Suppose G is regular and contains
a l-factor and a 4-cycle that intersect in a single edge. Then
there exists a graph H such that H and L(G) are cospec-

tral and hence L(G) is not characterized by its spectrum.

Proof. Let X be a subset of the l1-factor with cardi-
nality n - 2r that contains the edge of the circuit and apply
Proposition 3.8 with k = 0. Then switching L(G) with respect
to X produces a cospectral graph that contains a copy of K1,3
and hence is not even a line graph, much less isomorphic to L(G).

Proposition 3.11. The line graphs of the following 17

graphs are cospectral with an exceptional graph:

(1) Ky 41K ¢

(ii) cP(4),
(iii) Kg
(iv) Eé

(v) cmT‘c:—n,{m,n} = {3,4},{4,4},
(vi)-a G where G is reqular, connected, and cubic on
8 vertices (four graphs in all),
(vi)=b G where G is a regular, connected graph on 8
vertices (five graphs in all), and
(vii) the semiregqular bipartite graph with parameters

(m,n,r (6,3,2,4).

1772
Proof. 1In each of the cases ()= (vi), there is 1-fac-

tor and a 4-cycle satisfying the hypotesis of Proposition 3,10,
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L, FORBIDDEN SUBGRAPHS

In the last section we showed that 17 of the 30 possib-
le regular line graphs possessed cospectral mates. In this sec-
tion we show that the remaining 13 graphs from Proposition 3.7
are indeed characterized by their spectra. In this way we will
know the complete story as far as spectral characterizations
of reqgular line graphs is concerned.

The basic technique used in these characterizations
is to try to construct an exceptional graph and to deduce that
a subgraph occurs which is impossible. This method, first used
by A.J. Hoffman, is essentially a consequenée of the bounds
of the Rayleigh quotient (see [5, pP. 171] for further details).
The tools used for this technique are given by the following

propositions.

Proposition 4.1. Let G be a graph with ) (G) = =2,

Then none of the graphs in Fig.4.1 can be a subgraph of G.

SO

F| F} F5 FZ

Pig.4.1.

If v 1is a vertex of G, let Gv denote this sub-

graph induced by the vertices adjacent to v. If x 1is a ver-
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tex in Gv’ let d(x) and D(x) denote the degrees of x in

GV and G respectively.

Proposition 4.2. [6]. Let G be a graph with A(G) =
= -2, and let x, y and z be three vertices adjacent to v

but mutually nonadjacent. Then
d(x) + d(x) + d(z) > D(x) + D(y) + D(z) + D(v) - lv(g) | - 2.

Proof. Let X, Y and Z be the sets of vertices ad-
jacent to x, vy and =z respectively but not equal to v. Then
1 +d(x) + |X| =D(x), with similar equations holding for y
and z. Further, X, Y and 2 are pairwise disjoint, for -any
vertex in two of the sets would induce a subgraph in Fig.4.1.
Since [X| + [Y| + |z| + d(v) + 1 < |[V(G) |, we have the desired
result. |

Corollary 4.3. If G 1is a regular graph with degree
r and )(G) = -2 and x, y and 2z are three vertices adja-
cent to v but mutually nonadjacent, then either G is a

cubic graph or G satisfies
d(x) + d(y) + d(z) > 4r - [ve)| - 2.

Proof. Since D(x) = D(y) = D(z) = r, all that must be
shown is that the inequality of Proposition 4.2 is strict. If
equality is attained, then any u adjacent to v not equal
to x, vy or 2z must be adjacent to every further vertex ad-
jacent to v. This forces the existence of a forbidden subgraph
from Fig.4.1 with five vertices. If r = 3, then no such u

exists, but the graph is a cubic graph.
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Proposition 4.4. Let XA, > X\, > ... > An be the ei-

1 = "2 = -
genvalues of a graph G. Then the average number of triangles
n
containing a given vertex is t = %; ) ¥,
nooyo i

Proof. The proof is trivial; note that t is also
equal to the average number of edges in Gv'

Let FE(G) denote the edge set of G. The spectrum of
a graph is displayed by letting the exponent of a real number

be its multiplicity as an eigenvalue.

Proposition 4.65. L(E;) is characterized by its spec-
trum.

Proof. Since L(EZ) has 4,2,1°,-1 ,-23 as its
spectrum, Provosition 4.4 implies that t < 3. Thus there ex-
ists a vertex v with |E(Gv)| < 2. It is not possible for
|E(Gv)| to contain one or zero-elements because of Proposition
4.2. So consider a vertex v with !E(Gv)l = 2. The edges of
GV must be independent by Corollary 4.3. Now none of the re-
maining four vertices can be adjacent to three of the original
five vertices, again because of forbidden subgraphs. Thus the-
se four vertices form a cycle of length four, and the remain-
ing edges can only be added in two ways. One yields L(Gg) and
the other yields L(K3'3)(whose spectrum is 4,14,-24).

Let S denote the cubic graph on 8 vertices formed

5
by taking two copies of the graph on 4 vertices with 5 edges

and adding two edges to produce a regular graph.

Proposition 4.6. The graph L(SS) is characterized

by its spectrum,
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Proof. Suppose G has the spectrum of S i.e.,

4

5
4,1 + /5,2,0 ,1-/5}-24.,Then by Proposition 4.4, the average
number of edges in GV is 3. Let us first suppose that every
Gv has three edges. Then each Gv is K1,3'K3 U K1 or P3,
the path with three edges. If Gv is K1’3 and u is one of
the vertices of degree 1, then Gu has fewer than three edges,
a contradiction of our assumption. If Gv is K3 U K1 for one
vertex v, then it is Gv for every vertex v. Thus each ver-
tex is in exactly one complete graph with four vertices, and

G 1is covered by three copies of K4. The only graph with this
property is the line graph of a semiregular bipartite graph
and has 4,1+/§2,03,1-/52,—24 as its spectrum. If G, is Py
for every v, then there is only one completion of the graph,
and its spectrum is 4,1+/§2,03,l—/§2,—24. Thus there is a ver-
tex v such that Gv has fewer than three edges. It can not
have one or zero edges nor can it have two edges with a common

vertex because this would contradict Corollary 4.3. Thus Gv

has two ihdependent edges.

v s \4

Fig.4.2.
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Possible extensions of the graph are given in Fig.4.2.

It is easy now to complete the graph in each of the
cases. The only graph with the given spectrum, which is obtai-
ned in this way, is L(SS).

Details of the completion are left to the reader. Pro-
ving that a graph constructed does not have the spectrum given
can be done by counting the numbers of triangles, quadrilatera-
ls and pentagons. The completion can be done, of course, by
hand and pencil. However, a practical tool for performing such
extensions of graphs is the programming system "Graph", imple-
mented at University of Belgrade, where interactive graphic
(Light pen) and other facilities enable a suitable performing
and recording of several graph extensions as well as checking
whether the graph constructed has the spectrum given.

The same remarques hold for the next proposition.

Proposition 4.7. Graphs L(f;) and L(E:_U-E;) are
characterized by their spectra.

Proof. Suppose G 1is a regular graph on n = 14 ver-

tices of degree r = 6. If the diameter of G 1is greater than

e

o d b oo
G
AR LA

Pig.4.3.
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2, the graph G 1looks like in Fig.4.3. The subgraph G' is
reqular of degree r’ =5 and has n’ =12 vertices. It must
be only a line graph of a semiregular biparﬁite graph, The
parameters nl,nz,rl,r2 of this semiregular bipartite graph

are obtained from equations nr, = nyr, = 12, r. + r, =7, We

1 2

have (n),n,,r ,r (12,2,1,6) or (4,3,3,4). In the first

o)
case G'.= 2K6 and by interlacing theorem Az > 5 for G
holds. This is in contradiction with spectra of both L(E;)

and L(c, U C3). In the second case G’ = L(K which has

4,3
~ the spectrum 5,22,13,-26. By interlacing G cannot be cospec-
tral with L(E;3. The only way of expending L(K4'3) according
to Fig.4.3 so that the least eigenvalue does not drop below =2
is the way in which we get L(E:Tj—ﬁg).

Suppose now that diameter of G is equal to 2, For
both L(E;) and L(EZTj_Eg) we have t < 8 and hence there
is at least one vertex v of G for which Gv has less than
8 edges. For x,y,z € V(GV) and non adjacent we have |E(Gv)[z
2 d(x) +d(y) +d(z) > 4r - n - 2 = 8, where Proposition 4.2
is used. Hence 3 nonadjacent vertices do not exist, i.e. 5;
contains no triangles and IE(E;)I > 8. Further, C. is out and
Gv is bipartite. Hence, two disjoint cliques of Gv cover
vertices of Gv' The only possibilities for Gv are E1=K4U KZ'
E2 = 2K3 and E3 =_2K3 + x (two triangles joined by an edge),

Graphs E1 and E, lead quickly to a contradiction.,

Considering E3, let us notice that there exist at

least seven vertices v with Gv = E3. Therefore there exist
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adjacent vertices v and u such that Gv = Gu - E3. Partial
graphs on Fig.4.4 correspond to the posible situations in

this case.

Fig.4.4.

Completion of the graph vields only L(6;) or L(C3 U C4).

Proposition 4.8. The 13 graphs from Proposition 3.7,
not contained in Proposition 3,11, are characterized by their
spectra.

Proof. For 9 of these 13 graphs it has been already
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proved in the literatu:e that they are characterized by their

spectra: L(K5'4), L(K4’3),'L(K7,2L L(KG,Z)’ L(KS, (see [7]),

5)
L(K5’3) (see [6]), L(Ky), L(K.), (see [11]) and L(CP(3))
(see [13]).

The remaining graphs L(c‘s') » L(Sg), L(c_7‘) and
L(EZII7:;) are characterized by their spectra according to

Propositions 4.5, - 4.7,

5. CHARACTERIZING REGULAR LINE GRAPHS BY THEIR SPECTRA

We now have the tools to prove one of our main theorems,
Theorem 5.1. The spectrum of a graph G determines
whether or not it <is a regular connected line graph except for
17 cases. In these cases G has the spectrum of L(H) where
H s one of the 3-connected regular graphs on 8 vertices or

H 78 a connected semiregular bipartite graph on 6+3 vertices.

This theorem is a reformulation and generalization of
a theorem from [1]. It is a generalization in the sense that
the extensive computer searches used there are avoided comple-
tely and many details are sharpened.

Proof of Theorem 5.1. If H is a 3-connected regular
graph on 8 vertices or a connected semiregular bipartite graph
on 6 + 3 vertices, then L(H) is one of the 17 graphs from
Proposition 3,11, By Proposition 3,11, in these 17 cases it is
not possible to tell whether the graph is a line graph or a
cospectral mate obtained by Seidel switching. But in all other

cases we see from Proposition 3.7 and Proposition 4,8 that we
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can recognize a graph as being a regular connected line graph.

This theorem was first announced in [4]. It is still
possible, of course, for two nonisomorphic cospectral regular
line graphs to arise from nonisomorphic root graphs (see [1]
for more details about these possibilities).

Theorem 5.1 generalizes a large number of earlier res-
ults. The propositions below give a flavour of some of these

previous results,

Proposition 5.2. (Hoffman and Ray-Chaudhuri [15]). Let
G be a regular connected graph with degree greater than 16
and A(G) = -2. Then either G = CP(n) for some n or

G = L(H) for some H,

Proposition 5.3. (A.J. Hoffman [11]). The line graph of

a complete graph Kn has no cospectral mates unless n = 8,

Proposition 5.4. (S.S. Shrikhande [17], M. Doob [6,7],
D.M, Cvetkovié [3], F.C. Bussemaker, D.M. Cvetkovié, J.J. Seidel
[1]). The line graph of the complete bipartite graph Ko n

with m > n has no exceptional cospectral mates unless m = n =

4 or m=6 and n = 3,

Proposition §.5. (A.J. Hoffman, D.K. Ray-Chadhuri [14]).
The line graph of the flag graph of a symmetric balanced incomp-
lete block design with parameters (v,k,)) has no exceptional
cospectral mates unless v =4, k =3 and ) = 2,

Proposition §.6. (A.,J. Hoffman, B,A. Jamil [13]). The
line graph of the complete tripartite graph Kn is charac-

,n,n
terized by its spectrum,
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The results of Propositions 5.3. - 5.5 in fact contain
more information. When the graphs are not characterized by
their spectra, all of the cospectral mates are displayed., Si-
milar results for Theorem 5.1 will be the subject of a future
paper. In fact, using some recent result of Z. Radosavljevié
[18] all 68 exceptional graphs can be constructed in a natural
way without the aid of computer?® Proving that no further graphs

exist remains to be done.

REFERENCES

[1] F.C. Bussemaker, D.M. Cvetkovi¢, J.J. Seidel, Graph rela-
ted to exceptional root systems, "Proe. 5th Hung. Coll. on
Combinatorics”", ed.A. Hajnal, V.T. Sés, 1978, pp.185-191,
Technological University Eindhoven, T.H. Report 76-WSK-05,

[2] P.J. Cameron, J.M. Goethals, J.J. Seidel, E.E. Shult,
Line graphs, root systems, and elliptic geometry, J. of
Algebra, 43 (1976), 305-327.

[3] D.M. Cvetkovié, Graphs and their spectra, Univ. Beograd.
Publ. Elektrotehn. Fak. Ser.Mat. Fiz., 354-356 (1971), 1-50.

[4] Db.M. Cvetkovic, Some possible directions in further inves-
tigations of graph spectra, "Algebraic methods in graph
theory"”, Ed: L. Lovds, Vera S0s, North-Holland, Amsterdam-
Oxford-New York, 1981, pp. 47-67.

[5] D. Cvetkovié, M. Doob, H. Sachs, "Speetra of Graphs', Aca-
demic Press, New York, 1982.

»[6] M. Doob, On characterizing a line agraph by the spectrum of
its adjacency matrixz, Ph.D. thesis, City University of
New York, 1969. )

[7] M. Doob, on characterizing certain graphs with four eigen—
values by their spectra, Linear Algebra and its Appl.,
3 (1970), 461-482.

(8] M. Doob, 0On the spectral characterization of the lLine
graph of a BIBD, II, Proc. Manitoba Conf. on Numerical
Mathematics, 1971, pp.. 117-126.

* Added in proof. See the paper by D. Cvetkovid and
Z. Radosavljevid in these proceedings.




99
Root Systems, Forbidden Subgraphs, ...

M. Doob, An interrelation between line graphs, eigenvalu-
es and matroids, J. Combinatorial Theory, 15(B) (1973),
40-50.

M. Doob, A spectral characterizations of the line graph
of a BIBD with X = 1, Linear Algebra and its Appl.,
12 (1975), 11-20.

A.J. Hoffman, On the uniqueness of the triangular associ-
tion scheme, Ann.Math.Stat., 31 (1960), 492-497.

A.J. Hoffman, Some recent results on spectral properties
of graphs, '"Beitrdge zur Graphentheorie', Ed: H. Sachs,
H.-J. Voss, H. Walther, Leipzig, 1968, pp. 75-80.

A.J. Hoffman, B.A.Jamil, On the line of a complete tri-
partite graph, Linear and Multilinear Algebra,
5 (1977), 19-25.

A.J. Hoffman, D.K. Ray-Chaudhuri, On the line graph of
a symmetric balanced incomplete block design, Trans.
Amer.Math.Soc., 116 (1965), 238-252.

A.J. Hoffman, D.K. Ray-Chaudhuri, On a spectral characte-
rization of reagular line graph, unpublished manuscript.

J. Milnor, D. Husemoller, "Symmetric bilinear forms",
Springer Verlag, New York, 1973.

S.S. Shrikhade, On the uniqueness of the L, association
scheme, Ann.Math.Stat., 30 (1959), 781-798.

Z. Radosavljevié, Inequivalent regular factors of regular
araphs on 8 vertices, Publ.Inst.Math., Beograd,
29(43) (1981), 171-190.






Proceedings of the Fourth Yugoslav Seminar on
Graph Theory, Novi Sad, 1983

A CONSTRUCTION OF THE 68 CONNECTED, REGULAR GRAPHS,
NON-TSOMORPHIC BUT COSPECTRAL TO LINE GRAPHS

Drago$ Cvetkovié and Zoran Radosavljevié

University of Belgrade, Faculty of Electrical
Engineering, POB 816, 11001 Beograd, Yugoslavia

ABSTRACT

The araphs described in the title are constructed by
means of the Seidel switchinag, starting from all factorizations
of reqular qraphs on 8 vertices into two reqgular factors.

There are exactly 187 regular, connected graphs with
the least eigenvalue -2 which are neither line graphs nor cock-
tail-party graphs (shortly, exceptional graphs). They have been
constructed in [1] using a mixture of mathematical reasoning
and computer search. Exactly 68 of them are cospectral to some
line graphs. These line graphs, which are 17 in number, are
line graphs of some regular graphs on 8 vertices (15 graphs)
or of some semiregular bipartite graphs on 9 vertices (2 graphs),

Several theorems characterizing reqular line graphs by their
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spectra follow from these results [1], [2].
This paper is a part of efforts [2], [3] to prove all
these results without the use of computer,

The following was proved without computer [l]. An

exceptional graph of degree d on n vertices with

n < 2d + 4 is switching equivalent to the line graph of a

graph on 8 vertices. If an exceptional graph is cospectral

to a line graph then we do have n < 2d + 4 (in fact, n = 2d+4).
Hence, in order to construct the 68 exceptional graphs

cospectral to some line graphs one should switch line graphs of

all 8 vertex graphs in all possible ways. However, it is proved

by the computer search that it is sufficient to start with re-

gular graphs on 8 vertices and semiregular bipartite graphs on
9 vertices.

It is proved [1] without computer search that line

graphs of regular graphs on 8 vertices are switched into excep-
tional graphs only in the following way. Let H be a regular
graph on 8 vertices. Let FllJ F2 be a bipartition of its edge
set. L(H) 1is converted after switching with respect to Fl
into a regular graph (of the same degree) if and only if Fl
(or Fz) is a regular factor of H.

80 we should know all factorizations of regular graphs
on 8 vertices into two regular factors. Two factorizations of
a graph are called equivalent if there exists an automorphism

of the graph which maps one factorization into another. Obvio-

usly, equivalent factorizations give rise to isomorphic graphs



103
A Construction of the 68 Connected, Regular Graphs,

after switching. Therefore, it is sufficient to consider only
non-equivalent factorizations of regular graphs on 8 vertices
and such factorizations have been determined in [3] _without
computer.

Starting from results of [3] we construct 63 out of
the 68 graphs mentioned above. The difficulties in constructing
them are the following. Given a graph H and its factorization

F, U F,, if we switeh L(H) w.r.t. F. we could get again

1
L(H). Also, different (non-equivalent) factorizations can give
rise still to isomorphic graphs.

All interesting regular graphs on 8 vertices are given
in Fig.l together with a labeling of their edge sets. (The
case of Ky has been treated in [5]. Exactly three exceptio-

nal graphs appear (Chung graphs or graphs no.l161 - no,163

from [1]).
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The construction of exceptional graphs is given in the

following tables.
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For each of the graphs a table is given. To each nonequi-
valent factorization of a graph into two regular factors there
corresponds a row in the table. A row contains the following
information (some data are omitted) :

- a regular factor (determining a factorization) ;

- the identification number, referring to [1], of the
exceptional graph if it is obtained, or dash "-" if the graph
obtained after switching is isomorphic to the starting line
graph;

= to prove.that the obtained graph i1s exceptional, a
set of 4 edges is given which gives rise to a subgraph K1,3
which is forbidden for line graphs;

- the number of 4-cocliques (independent sets of 4
vertices) contained in the obtained graph (5-cocliques do not
exist and the number of 3-cocliques is determined by the spec-
trum in a regular graph);

- the number of 4-cliques (complete subgraphs on 4
vertices) contained in the obtained graph (the number of 3-¢li-
ques is determined by the spectrum) ;

= if nonequivalent factorizations give rise to isomor-
phic graphs, an isomorphism is given which maps the graph into
its isomorphic mate which is most highly placed in the table;
however, if the graph obtained by switching is again the star-
ting line graph, we have an isomorphism which maps the original
line graph on the obtained graph (isomorphisms are given as

permutations in the cyclic form where fixed points are omitted) .,
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By the number of 4-cocliques and 4-cliques we can
almost always distinguish between non-isomorphic graphs. The
cases in which these numbers are not sufficient are marked in
the tables by asterisks. This happens with the graphs 52, 53,
68 and E;Tj‘E;. The corresponding non-isomorphic exceptional
graphs can be distinguished by analysing the incidence between
vertices and 4-cocliques.

Graph §2: the exceptional graph 49 has exactly one
vertex (8) belonging to four 4-cocliques, the graph 50 has two
such vertices (5,6) and the graph 46 has none. The graph 51
has two vertices (14, 15) belonging to only one 4-coclique and
the graph 52 has no such vertices.

Graph §3: every vertex of the graph 38 belongs to a
4-coclique and in the graph 42 the vertex 14 does not.

Graph 58: in the graph 128 there is only one vertex
(15) which belongs to exactly two 4-cocliques, while in the
graph 131 there are three such vertices (15, 17, 20).

Graph E;Tj7fg: in the graph 113 the vertex 5 belongs

to six 4-cocliques and in the graph 116 there is no such vertex.

Fig.2.
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Semiregular bipartite graphs, interesting for our pur-
poses, are given in Fig.2 together with the factorizations
which produce the exceptional gravhs 6 and 70, respectively.
The detailes are left to the reader. Other semiregular bipar-
tite graphs on 9 vertices do not give rise to excentional
graphs (see [1]).

Tables in this paper are produced partly by the use of
a computer. In fact the interactive programming system "Graph"
[4] and computer facilities of TechnologicalfUniversity, Eind-
hoven, The Netherlands, have been used. However, the reader
can check for himself the correctness of the data; this can be
done easily in the principle, although always with some effort
of routine kind.

For example, 4-cocliques can be enumerated by counting
sets of 4 edges of certain structure in the starting graph &
on 8 vertices with a given factorization. These 4 edges are
either independent and belong to the same factor or form a
quadrangle, two nonadjacent of them belonging to a factor and
the remaining two to another one.

Similarly, to count 4-cliques we have to find the num-
ber of sets of 4 edges in H which fulfill one of the following:

- all edges have a common vertex and belong to the
same factor,

~- 3 edges belong to a factor and form Kl,3 or K3,
the fourth edge being adjacent to none of these 3 and belonging

to another factor,
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- the edges are partitioned into 2 pairs, where each
pair belongs to a different factor, edges from one vair are

non-adjacent to edges from another pair and each pair forms Kl ¢
r

In this way the presented tables give the construc-
tion of the 68 connected reqular graphs, non-isomorphic but
cospectral to some line graphs and provide a proof that there
are no more such graphs which can be obtained by switching

regular line graphs.
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ABSTRACT

In this paper is constructed an example of a aroup N
admitting two different non-trivial factorizations as a free

product with amalaamation of free aroups. If
N = N * N, = N, * N
1 le 2 3 N3b h
then it will be denoted by (rl'r2’r3'rh;dl'd2'd3’dh) where i
denotes the rank of N., and d. the index of amalqamated sub~-

aqroun in the aroup N.. The exa%ple obtained in this paper is
with parameters (111,166,56,111;3,2,4,2) and (183,274,92,183;
3!2""2)‘

1. INTRODUCTION

We are jinterested in examples of groups N admitting
two different non-trivial factorizations as a free product

with amalgamation of free groups, say,

(1.1) N=N, * N, = N, * N
1 Ny, 2 3 Nig 4
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The rank of N; will be denoted by r;, vwhile dy will
denote the index in Ni of the amalgamated subgroup
N12 (if i = 1,2) or N34 (if i = 3,4). This information about

factorizations (1.1) will be recorded in an 8-tuple
(rl rr21r3 rr45dl rd21d3 rd4)

to which we shall refer as its set of parameters.

Two such examples were exhibited in [2] with respective

parameters:
(1.2) (613,613,103,103;3,3,8,8), and
(1.3) (613,919,52,52;3,2,8,8).

In both examples the ranks r; are large and it would
be of interest to construct simpler examples. In the present

article we construct two additional examples with parameters

{1.4) (111,166,56,111;3,2,4,2), and

(1.5) (183,274,92,183;3,2,4,2).

While the ranks ry in these examples are still la;ge,

the indices di are rather small. In order to construct such

a group we follow the method developed in [1] and [2]. We first
construct a group G which acts faithfully on two trees E3
“and P4 of valence 3 and 4, respectively. Moreover, both ac-
tions are w-transitive. (For the definition of w-transitivity
and other undefined terms we refer the reader to our papers

(1] and [2].) Then we exhibit an epimorphism ¢ : G - PSLZ(il)
-and show that N = ker ¢ admits factorizations (1.1) with

parameters (1.4). Another epimorphism ¢ : G - PSL2(13) gives
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an N = ker y with parameters (1.5).

At the end we give a presentation of PSL2(13) in
terms of two generators x,E of order 3 which is symmetrical
in the sense that there is an involutory automorphism inter-

changing x and E£.

2. CONSTRUCTION OF THE GROUP G

We start with a diagram

Tl 41 T4
le T34
Gg =Gy~ 1G4

where

G, = <x,a,b : x3ma2ab?= (ab) 2=1,xax " l=b,xbx l=ab> ,

G = <X : x3=1>

12 !
G2 = <x,a,B : x3=a2-82=(a8)2=1,axa=xf1,8x=x8>,
2 42 2
623 = <a,B : a“=f"=(aB) "=1>,

Gy = <E,0,8 ¢ £o=a’=p’=(a8) =160t =8,E8E  =ap>,

G4 = <f,a,b : 53=a2=b2=(ab)2-1,a§ang-l,bg-§b>,
Gy, = <a/b : aZab?= (ab) 21>,

and all the arrows are the inclusion maps.
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e
e

. ¢ Yo .4
B 4" 72 4 ~ F3 X by
12 G34 37 and G23 G41 22 ZZ’ where An, Dn’ Z

denote respectively the alternating group of degree n, the

2]

Note that G

e
lie
e

G =3z

X

n

dihedral group of order ‘2n, and the cyclic group of order n.

Next we set

G, = G, * G, , G. = G, % G, i
W 16, 2 S 2 76,5 3
G, =G, * G, ; G, =G, * G, ,
E 3 Gy, 4 N 4 G, 1
= = G * G
H =8 * Gy » v 23 41
We have
(2.1) G, ﬂGE =V, By N Gy =H, and
(2.2) [, :v] = [Gp:v] =3, [Gg:H] = {GN=H] = 4,
We now form the products
= G > = B * 3 5
(2,3 €q = Su *v g - Sy = Gs *y Oy

The canonical map GH + G is an isoumorphism; we use it to

v
identify these two groups and set

{(2.4) G, = G, = G

This group is generated by a,b,a,8,%x,£ and has defining

relations
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2120220224221 22 (ab) 2= (08) 2=1;

(2.5) { xax—1=b,xbx_1=ab,axm=x—1,Bx=x8;

1 1

tag " =p,Epe  =ap,afa=E ", bE=ED.

It is apparent from this presentation that G0 has an involu-

tive automorphism 0 such that
(2.6) 8 (a)=a,0(b)=P,0(x)=£,0(a)=a,0 (R)=b,0 (§)=x.
Finally we define G to be the semidirect product
(2.7) G =G, x <y : y'=1>

where y acts on G as the automorphism 0.
It follows that G is generated by a,b,x,y and has

defining relations

{ a2=b?=y?=x3= (ab) 2=1,xax"'=b,xbx l=ab,

(2.8) ‘
| ayxya=yx_ly, byxy=yxvb.
Furthermore G has the following two factorizations

as free product with amalgamation:

» = G = G !

(2.9) G ('w 'V P N *" M

where

(2.10) P = <V,y> =V x <y>, M = <H,y> = <X,y> = <X>*<y>,
and

(2.11) (G:v] =3, [pP:v] =2, [Gg:H] =4, [M:n) = 2.
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3. THE ACTION OF G ON P3

Let I be the graph whose vertex-set is the set of

3
left cosets G/GW = {qu : u € G} and whose edge-set is the
set of left cosets G/P = {uP : u € G}, while the incidence is
defined as follows: an edge uP and a vertex uGW are inci-
dent iff up N va # . It follows that the end-points of the
edge uP are qu and uyGw. It follows from (2.9) and

(2,11) that T is a cubic tree, see [3L

3
G acts on P3 by left multiplication. The edge

€ = P has the end-points Gw and yGw. The element y stab-

lizes the edge e and interchanges its end-points. Since G

is transitive on G/P, it follows that the action of G on

;3 1is l-transitive (see [1] for the definition of s-transiti-

3
vity and w-transitivity).

Lemma 1. The action of G on P3 18 w-transitive.

Proof. In view of a theorem of Tutte [5] it suffices
to show that G is 6-transitive. To prove the latter, it su-
ffices to exhibit an element of G which fixes some 5-arc
(VO’VI"'°'VS) and interchanges the two neighbours of Vg

different from Ve Using the relations xax-1=b, xbx-1=ab,

axa=x"1

¢ Bx=xB8, ay=ya, by=yB it is easy to show that
4 4 4
(ae) ~ (xy) =(xy) baaaBbaabg and

(aa)4(xy)5=(xy)4x_1yaaa8abaﬁa3b .
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Hence the element (aa)4 fixes the 5-arc (vo,...,vs)-where
_ i-1
vi-(xy) Gy 0<1<5

and moves the vertex (xy)sGw adjacent to Vg

Lemma 2. H contains no non-trivial normal subgroup
of G.

Proof. Let Ho be the intersection of all conjugates
of H in G. We have to show that H, = {1}. Let
¢ : G+ Aut(P3) be the homomorphism induced by the action of
G on P3. It follows from Lemma 1 that G0 is locally
w-transitive on T;. Since ker 6 <V and H(V = {1}, the
restriction ¢|H is injective. Hence we may identify H with
its image ¢ (H) in Aut(P3). Since HO ] ¢(G°) q ¢(GO) and
HN 4(Gy) 1is not locally w-transitive, it follows from (2,
Theorem 1] that Hy ) #(Gy) = {1}. This implies that

Hy N Gy = {1} and consequently H, = {1}.

4L, THE ACTION OF G ON P“

Let P‘ be the graph whose vertex-set is the set of
left cosets G/G, = {uGN : u € G} and whose edge-set is the
set of left cosets G/M = {uM : u € G}, while the incidence
is defined as follows: an edge uM and a vertex vGN are
incident iff uM ) vGN # #. Thus the end-points of the edge

uM are uGN and uyG It follows from (2.9) and (2.11)

N*
that r‘4 is a tree in which every vertex has valence 4.

G acts on P‘ by left multiplication and by Lemma 2
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this action is faithful. Hence we may consider G as a sub-

group of Aut(Pq)o
Lemma 3. The action of G on P4 13 w~transitive.

Proof. Since G is transitive on G/M and the ele-
ment ¥y inerchanges the two end-points of the edge e = M,
we conclude that ¢ is I-transitive. The normal closure of

<x> 1in M is the stbgroup

M+ = <N, E> = <X>H<E> 2 Z3 * 23 5
- + “u + &
and M =M x <y> = M Z2. The end-points of the edge & =
are v_ = yGN and v, = GN' For any k (21) let Qk be
the set of vertices of T whose distance from is k

4 +
and whese distance from v_  is k+l. We shall denocte by
M+(k) the permutation group induced by mt on the set Qk
and by ¢k the canonical epimorphism Mt o M+(k).

We shall denote the elements of 91 by 6,1,2;

explicitly we have

N’ 2 = abyG

0 = ayGN, 1 = byG N

The elements of °2 will be written as i3 where

i, € <0,1,2>, They are defined as follows:

006 = aaGN, 01 = aBGN, 02 = aaBGN,
= o = } 3 = g
10 baMN, i1 bBCN, 12 baRGN,

= 3 = 3 = 3G .
20 abaCN, 21 abBCN, 22 abap N

By a straightforward computation one finds that
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¢, (x) = (012), ¢, () =1;
b, (x) = (00,10,20) (01,11,21) (02,12,22)
¢2(€) = (00,02,01)(10,11,12) (20,22,21)
For i =0,1,2 let o4 be the three cycle on 92 defined
by 0y = (10,i1,i2). It is easy to verify that

0g = ,xExE), o) = a0 exTrex TN, 0y = 0, (Ex T ER)
It follows that

M+(2) = (z3xz3xz3) » z3 = <co,ol,02> » <¢2(x)>

where
-1
¢2(x)oi¢2(x) =0, (indices mod 3).
Hence if 2z € M+ fixes all elements of 91 then 23 fixes
all elements of Qz. Since G 1is l-transitive on P4, we

conclude that if z € G fixes a vertex v and all four of its
neighbours then z3 fixes all vertices at distance 2 from

v. By an obvious induction this implies that if z € G fixes
k

a vertex v and all its four neighbours then z3 fixes all

vertices at distance k+1 from v.

In particular the element (xE)3 fixes the vertex v_

and all its four neighbours. Consequently the element
k
3
Zy (xE)

fixes each vertex at distance k from wv_. Since zy # 1 and
the action of G on T, is faithful this implies that G {is
w-transitive on TI,. (The argument is the same as in [2], the

last paragraph of the proof of Lemma 4.)
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Lemma 4. V contains no non-trivial normal subgroup
of G.

Proof. This follows from Lemma 3 in the same manner
as Lemma 2 follows from Lemma 1.

It follows from Lemma 4 that the action of G on T

3
is also faithful.

5. THE SUBGROUP N

By using the presentation (2.8) of G it is easy to

verify that there is an epimorphism ¢ : G - PSL2(11) such that

. _ {0 =1 _ 11 3 _ 5 =4 _ 2 1
d(a) = [l 0}’ ¢ (b) = [3 —l]’ ¢ (x) = [_3 _4}; ¢(Y) = {_5 _2J-

We set N = ker ¢, and
N, =N Gipr N, =N p, Nip =N N,,
Ny =N Gy N, = N[ M, Ny, = N3 ) Ny.

If N0 =N G0 then by [2, Theorem 1] we conclude

that NO is locally w~transitive on r; and r'y. Taking into

account that ¢(Go) = ¢(G), we infer that

ne
I

G/N GO/N0 GW/N1 = GN/N3

n N n
= V/Np, S M/Ny, 2 PSL,(11),

and that (1.1) is valid where the indices di (1 < i < 4) are
as given in (1.4). All the groups Ni (1 < i < 4) are free by

[3, Theorem 14, p.56]. Their ranks ri can be computed in the
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same manner as in [2]; one obtains the values listed in (1.4).
The same argument as in [2], based on a theorem of

Stebe [4], shows that G is residually finite.

6. ANOTHER SUBGROUP N

By using the presentation (2.8) of G one can easily

verify that we also have an epimorphism ¢ : G -+ PSL2(13)

such that
_ (0o -1 _ (5 o _ (3 2) (1 -4
lL(a) - [1 O]I lIJ(b) == [0 -5}’ U)(X) == {3 _2jr Ill(Y) - ‘\-6 -1 -

As in the previous section one shows that N = ker ¢

has two decompositions (1.1) where Ni (1 <1 < 4) are free
groups and the ranks ry and indices di are as indicated
in (1.5).

Finally we record the follow presentation of PSL2(13):

(6.1)  PSL,(13)=<x,£:x°=6"= (x£) ®= (x£ (x£%) ?) 2= (xg (x%6) %) 2=1>

Indeed the matrices x = . 1] and £ =[0 6] satis-
-1 0y (2 1
fy these relations and generate PSL2(13). On the other hand,
a coset enumeration (for which I am indebted to C. Sims) shows

that the group defined by this presentation has the same order

as PSL2(13).



136
Dragomir Z. Djokovid

REFERENCES

[1] D.Z. Djokovié, Another example of a finitely presented
infinite simple group, J. Algebra 69 (1981), 261-269.

fz] D.Z. Djokovié, A correction, a retraction and addenda to
my paper "Another example of a finitely presented infini-
te simple group”, J. Algebra, 82 (1983), 285-293.

[3} J.P. Serre, Trees, Berlin-Heidelberg-New York,
Springer 1980.

[h] P. Stebe, On free products of isomorphic free groups with
a single finitely generated amalgamated subgroup,
J. Algebra 11 (1969), 359-362.

—
A%}
L—

W. Tutte, A family of cubical graphs, Proc. Cambridge
Phil.Soc. 43 (1947), 459-474,



Proceedings of the Fourth Yugoslav Seminar on
Graph Theory, Novt Sad, 1983

A SURVFY OF THE UNIFYING EFFECTS OF F-POLYNOMIALS
IN COMBINATORICS AND GRAPH THEORY

E.J. Farrell

Department of Mathematics
The University of the West Indies
St. Augustine, Trinidad

ABSTRACT

An up to date account is given of the various F-poly-
nomials and their relation to polynomials in Combinatorics and
Graph Theory. These include the well-known orthogonal polyno-
mials found in Combinatorics and many of the familiar polyno-
mials in Graph Theory, such as chromatic polynomials, dichro-
matic polynomials and characteristic polynomials.

1. INTRODUCTION

Let F be a family of connected graphs. With each element of
a € F, let us associate an indeterminate or weight W . By
an F-cover of G we will mean a spanning subgraph of G 1in
which each component belongs to F. With each F-cover C of
G let us associate the weight

w(C) =1 L
a
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where the product is taken over all the elements o of C,

Then the F-polynomial of G is
F(G;w) = % w(C)

where the summation is taken over all the F-covers in a.
W 1is a vector of indeterminates associated with the weights
W For example, if we give each member of F with r nodes
a weight wr, then the elements of w will be wl,wz,w3, etc.
By considering specific fam;lies of graphs, we obtain
special F-polynomials., For example, we can take F to be the
family of nodes and edges only, or the family of Circuits,
trees, paths stars or complete graphs. By restricting the
members of the family, we can obtain simplified forms of F(Gsw)
which more easily lend themselves to detailed analyses and in-
vestigation. However, some work has been done on properties of
general F-polynomials and on general F-polynomials of certain
graphs (see Farrell [5]).

Many significant connections have been established between
certaln F-polynomials and several well-known polynomials found
in Combinatorics and Graph Theory. In the material which follow,
we will give an up to date account of these connections. The
significance of such connections is that they serve to unify
all the associated polynomials and therefore create new alter-
nate avenues by which the polynomials can be indirectly inves-

tigated.
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2. THE MATCHING POLYNOMIAL

Let F Dbe the family of (isolated) nodes and (inde-
pendent) edges. Then every F-cover of G will be a matching
in G. The resulting F-polynomial is called the matching poly-
nomial M(G;w) of G. In this case, w = (wl,wz). M(G;w) was
formally introduced in Farrell [6], although some special forms
of it existed in the chemical and physical literature several
years before (see Heilmann and Leib [17], Kunz [18], Gruber
and Kunz [15], Hosoya [19] and Aihara [1]).

The acyclic polynomial a(G), of a graph G, was intro-
duced by Gutman [16]. It was later shown (see Farrell [7]) that
a(G) was special case of M(G;w). The relationship is given

in the following theorem.

Theorem 1.

a(G;x) = M(G;x,-1) .

Theorem 1 shows that a(G) 1is a matching polynomial
and therefore an F-polynomial.

Godsil and Gutman [14] soon reported connections
between a(G) and some of the standard orthogonal polynomials
encountered in Combinatorics. These include the Chebyshev
polynomials, Hermite polynomials and Laquerre polynomials.
They were shown to be acyclic polynomials and hence matching
polynomials of certain graphs. The connections are given in
the following theorem which is a modified version of Theorem 3

f

of [14], using Theorem 1 above.
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Theorem 2. Let Pn' Cn' Kn denote the path, circuit

and complete graph respectively, on n nodes. Let Km #
r

denote the complete bipartite graph with bipartition m and

n. Then
M(cn;zx,-l) =21 () ,
M(P_i2),-1) =U (),
M(K ;1,-1) = He (\) ,
2“/2M(Kn;f2>\,—1) =H (\) ,
MK, id,-1) = D 0%,
and MK, idml) = LML M0,

where Tn and Un are Chebyshev polynomials of the first
and second kind, Hen and Hn are the two étandard forms of
the Hermite polynomials, while Ln and Lnk are the Laguerre
and the generalized Laguerre polynomials.

We note that the first four equations in Theorem 2
were essentially observed in [18]. This theorem shows that the
Chebyshev, Hermite and Laguerre polynomials are also F-poly-
nomials. One significance of the result is that it has now
given a graph-theoretical interpretation of these famous
" classical polynomials.

Another classical polynomial, the rook polynomial, was
also mentioned to be related to a(G) in l[14], although no
formal relation was given. The connection between the rook
polynomial and the matching polynomial is essentially given

in the folloving theorem.
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Theorem 3. Any bipartite graph G with p =m + n
nodes can be regarded as a chesshoard B with m rows and
n columns such that cell (i,j) belongs to B <if and only

h node

if in G, the ith node of im is adjacent to the j
of Rn' Then a k-matching in G is equivalent to the placing

of k mnon-taking rooks on B.

This theorem shows that rook polynomials are matching
polynomials and are therefore F-polynomials.

The results given in this section show that the mat-
ching polynomial can be very useful for establishing inter-
connections between certain classical polynomials. For example,
Theorem 2 and 3 can be used to establish a connection between
Laguerre polynomials and rook polynomials. The future of the
polynomial M(G;w) seems bright, and no doubt even more

useful connections are envisaged in the near future.

3. THE CIRCUIT POLYNOMIAL

Let F be the family of circuits. Then every F-cover
in G will be a set of circuits wich span G. In this case,
the F-polynomials is caled the circuit polynomial of G. If
we give each circuit with r nodes a weight W then we will
have w = (wl,wz,wj,...,wp), where p 1is the number of nodes
in G. The circuit polynomial of G will then be denoted by
C(Gjw). This polynomial was first mentioned in [5]. However
the basic paper on circuit polynomials is [8].

In [8], it was shown that the characteristic polynomial
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+

¢ (Gs;x) of a graph G 1is a special circuit polynomial. The
connection between the two polynomials is given in the follo-

wing theorem (Theorem 3 of [8]).

Theorem 4.

$(G;x) = C(G;x,-1,-2,-2,...,-2) .
t.e. ¢(G;x) <s obtained from C(G;w) by putting W, =X,
wy, = -1 and W, = 2 for r > 2,

It follows from the above theorem that the characte-
ristic polynomial of a graph is a circuit polynomial. Hepce
the characteristic polynomial is also an F-polynomial.

It is clear that a matching is a circuit cover in
which no circuit has more than two nodes. In this case, we
define a circuit with one and two nodes to be an isolated node
and an independent edge respectively. Hence we have the follo-

wing theorem.
Theorem 5.
M(G;wl,wz) = C(G;wl,w2,0,0,...,0)

Theorems 4 and 5 can be used in order to establish
interconnections between the circuit polynomial, the charac=
‘teristic polynomial and all the polynomial mentioned in Sec-
tion 2. For example, there is a connection between rook poly-
nomials and characteristic polynomials (Theorem 3, 4 and 5),
and between the orthogonal polynomials and characteristic
polynomials (Theorem 2, 4 and 5). Such connections between

these polynomials were not previously suspected.
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In 1972, Clarke [4] defined a polynomial P(G;x) asso-
ciated with the node adjacency matrix of a graph. This polyno-

mial was as follows:
P(G;x) = det.|A(G) + xI| , (1)

where A(G) is the adjacency matrix of the graph G with p
nodes and I is the p x p identity matrix. The following

result was established in Farrell and Grell [9].
Theorem 6.
P(G;x) = C(G3x,=-1,2,-2,2,...) .

i.e. P(G;x) is obtained from C(G;w) by putting W o= X,

W, = -1 and w. = (-1)r+12, for r > 2.

This theorem shows that P(G;x) 1is a circuit polynomial
and therefore an F-polynomial.

It is clear from Equation (1) that
[A(G)| = P(G;0) .
Hence we have the following result, which is also given in [9].
Corollary 6.1.
|aG)| = c(G;0,-1,2,-2,2,...) .

This corollary shows that the determinant of the node
adjacency matrix of a graph is a circuit polynomial and there-
fore an F-polynomial. In this case, the F-polynomial is a cons-
tant. The corollary is interesting for another reason. It
establishes a connection between circuit polynomials of graphs

and determinants of special matrices. We suspect that this
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connection could be extended to circuit polynomials and deter-
minants of arbitrary matrices. An investigation into this

would be wortwhile.

L. THE TREE POLYNOMIAL

When F is the family of trees an F-cover is a spanning
forest. In this case, the F-polynomial is called the tree poly-
nomial of G. This polynomial will bi denoted by T(G;w). The
tree polynomial was introduced in Farrell [10]. In this paper,
it was shown that the polyinomial T(G;w) is related to the
characteristic polynomial of G. The relation is given in the

following theorem.

Theorem 7. ILet T(G;w) be the tree polynomial of G,
Then ¢(G;x) is obtained from T(G;w) Dby assigning to each
component o of a tree cover, a weight nx - v.ga d(vi),
where n is the number of nodes in o and d?vi) 18 the

valency of node vy (belonging to a) in G.

Theorem 7 is the significant for two reasons., Firstly,
it shows that the characteristic polynomial of a graphs is a
special tree polynomial. We have already established that
¢ (G;x) is a circuit polynomial (Theorem 6) . These results
imply that there is some relation between the tree covers and
circuit covers of a graph. Secondly, Theorem 7 shows that the
characteristic polynomial of a graph depends on the tree sub-
graphs of the graph. It was well known (See Sachs [22]) that
the characteristic polynomial is related to the circuits in the

graph.
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“Moon [21] defined a polynomial T(G;6) which was used
to investigate the number of spanning trees in graphs. In [10]
it was shown that T(G;0) 1is a special tree polynomial. The
rela%ion is stated formally in the following theorem, in which
w o= (wl,wz,...,wp).

Theorem 8. The Moon polynomial T(G;0) of a graph
G is obtained from T(G;w) by putting W n(—e)lan, where

W 18 the weight of a component with n nodes.

This theorem shows that T(G;08) 1is a tree rolynomial

and therefore an F-polynomial.

5. THE SUBGRAPH POLYNOMIAL

When F is the family of all connected subgraphs of
the graph G, the resulting FF-polynomial is called the subagraph
polynomial of G. Tt is denoted by S(G;w). It was shown in
Farrell [11] that the chromatic nolynomial and the Tutte poly-
nomial are subgraph polynomials. The relationshins are given

in the following theorems.

Theorem 9. The polynomial obtained from S(G;w) by
putting W, = (-1)rx, where V. 18 the weight of a component

with r edges, 18 the chromatic polynomial of G.

Theorem 10. The polynomial obtained from S(G;w) by

P -n+
putting W - xve n+l

- , where w 18 the weight of a compo-
’

n,e

nent with n nodes and e edges, is the dichromatie polyno-

mial of G.
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The above theorems can be used in order to obtain re-
lationships between chromatic polynomials and dichromatic poly-
nomials. A relationship has already been given in Tutte [23].
The theorems show that both the chromatic and dichromatic poly-
nomials are subgraph polynomials and are therefore F-polynomi-
als. Theorem 9 is not surprising, since it is well known (see
Whitney [24]) that the chromatic polynomial of a graph is
connected with the spanning subgraphs of the graph.

Borzacchini and Pulito [3] defined a polynomial, called

the subgraph enumerating polynomial P(G;u,v,x) as follows.

. = i1k
P(G;u,v,x) i,%,k Cijku v ’

where Cijk is the number of spanning subgraphs of G with
j edges, k connected components and i non-isolated nodes,
and the sum is taken over all i, j and k. This polynomial
was investigated with respect to reconstruction, and it was
also shown to be related to the Tutte polynomial.

The folloving theorem was recently proved in Farrell
[12].

Theorem 11,

P(Gsu,v,x) = S(G;w’) ,
13

f . = > ’ = .
where wl'J u'v'x, for i 1 and wl'0 b4

This theorem shows that the subgraph enumerating poly-
nomial is a subgraph polynomial. It follows that it is also
an F-polynomial. Theorem 9 was used in [12] to establish

results in [3] by different techniques and also to establish
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interconnections between the associated polynomials.

In their quest to obtain a useful polynomial which
would characterize a graph (i.e. two graphs are equal if and
only if they have the same polynomial) Balasubramanian and
Parathasarathy [2] defined the frame polynomial. First of all,
a frame of a graph G 1s defined as a spanning subgraph of
G whose components are either nodes, edges, chains (tree with
nodes of valencies 1 and 2 only) or cycles. Let F be a frame
in G consisting of vy chains with i nodes (i=1,2,...,n),

and rj cycles with Jj nodes for j=3,4,...,n. Then

W(F) =

=z
el
[
=5

The frame polynomial of G 1is

F(Gip,c) = I w(F)

where the summation is taken over all the frames in G,
p = (pl,pz,...) and ¢ = (cl,cz,...). In [2] the authors co-
njectured that a graph G is characterized by F(G;p,c).

The folloving theorem was easily established in Farrell

Py

respectively with 1 nodes.

(13]. w, and w denote the weights of a cycle and chain
i

Theorem 12.
F(G;p,c) = S(Giw)

where wP1 = Py wCi =c, and W = 0V non-frame graphs.

Thus the frame polynomial is also a subgraph polynomial.

Hence it is an F-polynomial.
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Associated with F(G;E,g) were several other polyno-
mials defined in [2]. These were all shown to be specially
weighted subgraph polynomials, using Theorem 10. In fact, the
theorem was instrumental in obtaining interrelationships bet-
ween all the polynomials associated with the frame polynomial.

The conjecture that F(G;B,g) is a characterizing
polynomial for G, suggests that one might be able to find a
convenient subgraph polynomial which characterizes a graph.
Clearly, if one considers all the possible subgraph covers and
give a unique weight to each component, the resulting subgraph
polynomial should characterize the graph. However, such a poly-
nomial will be far too cumbersome to be of any practical use,
with even small graphs. It will be interesting therefore to
find out which subgraphs could be either not counted at all,
or given the same weight, without losing the characterizing
property of the polynomial. The conjecture in [2} suggests that

all we need to consider are the frames.

6. DISCUSSION

We have given a survey of some of the general F-poly-
nomials and their connections with the more popular (special)
F-polynomials found in Combinatorics and Graph Theory. As we
have pointed out, and have illustrated in the relevant papers,
the establishment of interconnections between the polynomials
has povided a view of some of the more popular polynomials,

from a different prospective. In some cases, this was useful



149
A Survey of the Unifying Effects of F-polynomials

for obtaining new properties of the special polynomials. In
other cases, well known properties were easier derived by wor-
king with the more general F-polynomials.

The most interesting feature of the study of the gene-
ral polynomials is the unifying effect on other polynomials.
We are now able to classify several polynomials according to
the "parent" F-polynomials. Also, we can deduce properties of

a polynomial by simply identifying its "parent".
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ABSTRACT

A speclal type of covering of hexagonal systems with
hexagons is introduced. This concept is of some relevance in
chemistry. The main results are summarized in Propositions 2
and 4. Proposition 7 offers a characterization of hexagonal
system with Hamiltonian cycles.

In the present paper we shall consider graphs called
hexagonal systems. Such graphs correspond to the network obta-
ined by paving the plane with congruent reqular hexagons, so
that two hexagons are either disjoint or have a common edge.

In addition we shall assume that the hexagonal system is simply
connected, i.e. has no "holes".

Graphs of this type have been named "hexagonal animals"

* Part XXV of the series "Topological Properties of

Benzenoid Systems”.
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[1,2] or "benzenoid systems" [3]. Recently H. Sachs proposed
the name "hexagonal system" as a kind of compromise [4,5].

For the theory of hexagonal systems (except their enu-
meration) the reader should consult a review [3], where also
the application of this class of graphs in chemistry is exten-
sively discussed.

Let H be a hexagonal system having h hexagons.
These hexagons will be labelled by Sl,Sz,...,Sh. Following [3]
we will divide the vertices of H into external and internal.
The external vertices of H form its perimeter.

For example, H and H2, on Fig.l, are two hexagonal

1

systems., H has three internal vertices (marked by heavy dots)

1
and 24 external vertices. Hence the perimeter of Hl is a
cycle of length 24. The hexagonal system H2 has no internal

vertices; all 30 vertices of H lie on its perimeter.

SsSsRs s N,

Hq H2
Fig.1.

If a hexagonal system has no internal vertices, it is
said to be cata-condensed., The set of all cata-condenset hexa-

gonal systems is denoted by €. If a hexagonal system has in-
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ternal vertices, it is said to be peri-condensed. The set of
all peri-condensed hexagonal systems is denoted by P. For
example, H, € P, H, € c.

Let K = {Sl,Sz,...,Sk}, k > 1, be a collection of
hexagons of a hexagonal system H. Then H-K will denote the
subgraph obtained by deleting from H all the vertices of all

hexagons S i=1,...k, and all the incident edges.

il
If G 1is a graph with n vertices, then a 1-factor
of G 1is a selection of n/2 independent edges of G (which,

of course, cover all vertices of G).

Definition. K 1s a cover of H (or K covers H) if
the hexagons Sl’ Sz,..., Sk are pairwise disjoint and if
H-K has a l-factor. (In the case when Sl' sz,..., Sk cover
all the vertices of H, we assume that the empty graph H-K
has a 1-factor.)

If K = (SI,SZ,...,Sk} is a cover of H, then we will
also say that the hexagons Sl' 52""’ Sk cover H.

The above definition is just a graph-theoretical refor-
mulation of a concept which occurs in chemistry, within the
so called Clar aromatic sextet theory. For more details along
these lines see [3,6]. It is worth noting that the maximal
cover of a hexagonal system plays an important role in chemical’
applications. (The definition of a maximal cover will be given
later on.)

Proposition 1. If K 1is a cover of H and K’ is

a non-empty subset of K, then K' 1is a cover of H.
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Proof. It is sufficient to prove that if S e K,

|K| > 1, then K’ = K\{S} covers H.

Let F be a l-factor of H-K (which exists by hypo-
thesis). Then a l-factor of H-K’ will be obtained by making
a union of F and of three independent edges of the hexagon s.O
Since three independent edges in a hexagon can be se-
lected in two different ways, we arrive to the following
result.
Corollary 1.1. If K is a cover of H and K| =k,

‘then H has at least 2k l-factors.,

Some additional statements of this kind are obtained
by similar reasoning.

Corollary 1.2. If K is a cover of H and |K| = k,

then H has at least 2k-1 distinct covers.

Corollary 1.3, If K = (S} is not a cover of H,

then no cover of H contains S.

Corollary 1.4. If H has no l-factor, then H has
no cover,

The reverse of Corollary 1.4 is also true.

Proposition 2. A hexagonal system has a cover if and

only if it has a l=-factor.

Proof. Having in mind Corollary 1.4, it remains to de-
monstrate only the "if" part of Proposition 2.
We will show a stronger result, namely the following

Lemma ,
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Lemma 2.1. Every 1-factor of a hexagonal system con-—

tains three edges which cover all the six vertices of a hexagon.

The following proof of Lemma 2,1 was suggested by
B. Mohar.

Proof. Let H be a simply connected hexagonal system
having n vertices, m edges and h hexagons, Let the size
of the perimeter of H be p.

The edges of H can be partitionea into external
(those which belong to the perimeter) and internal (those
which do not belong to the perimeter). There are p external
and m-p internal edges. Since every internal edge belongs to
two hexagons, we have 6h = 2(m-p) + p i.e. m = 3h + p/2.

On the other hand, by the Euler formula, n-m+h =1 and

consequently
(1) n-2h-p/2=1 .

Let F be a 1-factor of H, containing k external
and n/2-k internal edges of H, Suppose that Lemma 2.1 is
not true for F, that is suppose that at most two edges in
each hexagon belong to F. Then

2h > k + 2(n/2 - k) =n=-%k >n - p/2
and therefore,
n=-2h-p/2<0.

This latter relation is in contradiction with eq. (1). There-

fore a 1-factor of H in which at most two edges belong to
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each hexagon cannot exist.

Lemma 2.1 and Proposition 2 are thus proved. []

Proposition 3. If H e C, then every hexagon of H
covers H,
A result equivalent to the above proposition has been

proved in [6]. We offer now a generalization of Proposition 3.

Proposition 4. If H possesses a Hamiltonian cycle,

then every hexagon of H covers H,

Proof. Let S be a hexagon of H. Since H posse-
Sses a Hamiltonian cycle, its structure can be presented as
follows (see Fig.2; the heavy line indicates the Hamiltonian

cycle) . After the deletion of the vertices of S, the Hamilto-

Fig.2.

nian cycle of H will be decomposed into three (or less) paths
Each path will contain an even number of vertices (since all

cycles of H were of even size) and therefore a 1-factor.
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Consequently H-S has a 1-factor.
Note that the perimeter of a cata-condensed hexagonal
system is a Hamiltonian cycle. Therefore Proposition 3 is a

special case of Proposition 4.

Concluding this paper we would like to point at some
other closely related results. A cover K 1is said to be max-

imal if K 1is not a proper subset of any other cover.

Proposition 5. [6] If H e C and K is a maximal

cover of H, then H-K is a unique l-factor.

Hosoya and Yamaguchi [7] observed an interesting pro-
perty of cata-condensed hexagonal systems, which in the termi-
nology of the present paper can be stated as follows. This

result has been proved in [8].

Proposition 6. (7,8] If He C and H has f 1l-fac-
tors, then H has f-1 distinct covers.

Note that if H € C, then f > h+l [9].

Counterexamples show that neither Proposition 5 nor
Proposition 6 can be simply extended to peri-condensed hexago-
nal systems. A possible progress in this direction would be

the proof of the following three conjectures.

Conjecture 5.1. If H € P and K 1is a maximal cover
of H with maximal cardinality, then H-K has a unique

1-factor.
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Conjecture 6.1. If H has a Hamiltonian cycle and

H has £ 1-factors, then H has f-1 distinct covers.

Conjecture 6.2, If HE€ P and H has f l1-factors

(f > 0), then H has at least f-1 distinct covers.

Several statements in the present paper deal with
hexagonal systems possessing Hamiltonian cycles. Therefore we
would like to give a characterization of such systems,

Let H and H’ be two hexagonal systems having the
same vertex set. If H'’ can be obtained by deleting some

edges from H, then we say that H is e-transformable to H'’.

Proposition 7. (a) H € C has a Hamiltonian cycle.
(b) H € P has a Hamiltonian cycle if and only if H is

e-transformable to H’, such that H’ e C,

Proof. Statement (a) is obvious. Let us therefore
consider the case when H is peri-condensed.

Let H be e-transformable to H’, H’ € C. Then the
perimeter of H’ is the Hamiltonian éycle of H.

Let H has a Hamiltonian cycle. This cycle can be
‘interpreted as the perimeter of another hexagonal system H’.
This latter system cannot have internal vertices, i.e. H’' e C.
Obviously, H and H’ have equal vertex sets. H’ can be
obtained from H by deleting some edges. Hence H is e-trans-
formable to H',

This proves Proposition 7.0
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has a Hamiltonian cycle, then n

Corollary 7.1. If a hexagonal system with n vertices

2 (mod 4).
Proof. If He C, then H has 4h+2 vertices.U
Without proof we state another related result.

Proposition 8. If H has a Hamiltonian cycle, then

this cycle is unique.
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ABSTRACT

Let G be a graph with maximum degree n. The regula-
tion number r(G) is the smallest number of new points which
must be added to G to obtain a n-regular supergraph. Similar-
ly the induced regulation number ir(G) 1is the number of new
points needed to get a n-regular supergraph in which G is an
induced subgraph. We show that for all integers s and t
such that 0 < s<t, there exists a graph G with r(G) = s
and ir(G) = t.

L " INTRODUCTION

This area began with the first book on graph theory
ever written [6], when Kénig proved that for every graph G,
say with maximum degree n, there is an n-;egular supergraph H
which contains G as an ipduced subgraph. Erdés and Kelly [3]
specified the precise number of new points which must be added
to G for this purpose. A simpler problem was solved by
Akiyama, Era and Harary [1] who dropped the "induced" require-

ment and just regarded H as an n-regular supergraph of G.
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These considerations suggest two new invariants. The regulation
number r(G) is the minimum number of additional vertices
which must be added to G to construct an n-reqular supergraph
H. (Thus r(G) = 0 if and only if G has an n-regular spann-
ing supergraph) .

Similarly, the induced regulation number ir(G) is the
smallest number of new vertices needed to obtain an n-regular
supergraph H containing G as an induced subgraph. Obviously,
r(G) < ir(G). Our purpose is to prove a realization result that
for all integers s and t such that 0 < s < t, there exists
a graph G having r(G) = s and ir(G) = t.

We use standard graph theoretical notation, as in [4].
Let G = (V,E) be a graph with maximum degree A(G) = n. The
degree of v € V is denoted by d(v), and the deficiency of
v 1is the difference n - d(v). Let G’ = (V' ,E’) be disjoinﬁ
from G, For two disjoint vertex sets V, V', we write K(V,Vv")
for the complete bipartite graph joining them. By definition,

the join G + G’ is G U G'U K(V,V’); see (4, p. 21].

2. THE REALIZATION THEOREMS

We shall require just one preliminary, useful lemma.
It is well-known that Kp has a factorization into hamiltonian
cycles when p is odd, and a factorization into l-factors when
P is even; see, e.g. [4, p. 85]. Let N = {1,2,...} and

Np = {1,2,...,p}. Hence we have the following observation.

Lemma 1. Let V = {Vl,...,vp} and let k € No_;-
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If p or k 1is even, there exsists a k-regular graph G on
V. If p and k are both odd, there exists a graph G on V

such that d(vl) =k + 1 and for all other vertices, d(vi) = k.

Theorem 1. Let 0 < s < t where s,t € N. Then there
are infinitely many graphs G such that 1r(G) = s and

ir(G) = t.

Proof. We first consider s positive and then handle
s = 0. For given 0 < s < t we construct a graph G with s
and t as its regulation invariants. From the construction it
will be clear that there are infinitely many such graphs.

Let n>t, n even, and let G’ = (V',E’') be any

n-reqular graph. Let V" = {vl,...,v } be a set of n-s+l

n-s+1
new vertices. Then r(G'lJ V") = s because Kn+1 on V" and
s new points is the smallest graph such that H = G’ U Kn+1
is n-reqular.

We still must construct a graph G having not only
r(G) = s but also ir(G) = t. To do this, we have to add

edges between vertices of V". Note that the regulation number

s will not change.

Case 1. t even.

By Lemma 1 we can add edges between vertices of V"
such that the resulting graph G" on V" 1is (n - t)-regular.
Let G = G’ |J G". We now show that 1ir(G) = t.

Since G" # @ and n - d(vi) =t for all v, e V",

i
i(G) 2 ¢t.

Let Vt = (wl,...,wt} be a set of t new vertices.
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Since t is even and s - 1 < t, we conclude from Lemma 1 that
we can construct an (s - 1)-regular graph F on Vt' Hence
the graph (F + G") U G’ is n-regular. Thus ir(G) < t so

ir(G) = t,.

Case 2. t odd.

If s is also odd, the same construction can be used.
Hence we now consider the case that s is even. Then n-s+l1
and s -1 areoddand n-t+ 1 < n - s + 1. By Lemma 1
we can add new edges to V" so that d(vl) =n-t+1 and
d(vi) =n-t for i=2,...,n-s+1 in the resulting graph
G". Similarly we can construct a graph F on Vt in which
d(wl) = s and d(wi) =g -1 for i=2,...,t. Let
G =G’ |JG". Obviously ir(G) > t. And since ((F + G") U G') -
- VW is n-regular, ir(G) = t.

Finally, we consider now the case that s = 0., If
t =0 there is nothing to prove, so let t > 0. Now, let @G’
be any graph with maximum degree n, n even, in which the set
V, of vertices of degree 1 has n elements and is‘inde—
pendent. One example of such a graph G" is the star K

I\l,n'

By Lemma 1, we can add joining vertices in Vl such that in

the resulting graph G every vertex in Vl has degree n - t.
Then r(G) = 0 and ir(G) = t.

If s and t have the same parity, we can give an
alternate construction in which the graphs have arbitrarily

high connectivity.

Theorem 2. Let s,t €N, 0 < s < t, s = t(mod 2),
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and let m € N. Then there are infinitely many m—-connected

graphs G such that r(G) = s and 1ir(G) = t.

Proof. Choose n >m + t+ 1, n odd, and assume

that m 1is even.

Case 1. s odd.

It is easy to construct a graph G’ = (V,E’) of maxi-
mum degree n that is m-connected and has the following
.property: Every vertex of degree less than n has degree m
(so that there are just two different degrees n and m), and
the set Vm of these vertices is independent and contains
exactly n-s+1 elements.

Let k= (n-m=-=5)/2 and ¢ = (n-m - t)/2, and
let Ci = (vm’Ei)’ i=1,...,k, be pairwise edge disjoint
2-regular graphs, each a union of cycles. We define
G=G6"U ﬁ Cy- Then r(G) > s, since the deficiency of each
vertex in i;; is odd, IVm[ is odd, and every other vertex
has deficiency 0.

On the other hand, consider G | 1J§+1 c, and Ky
disjoint from G. Then H = (Kg + V) U G 1is n-reqular.

Furthermore we see that ir(G) > t. Since s - 1 |is
even, we can construct an (s - l)-reqular graph F with ¢t

vertices that is disjoint from G. Then H = (F + Vm)lJ G 1is

n-regular, hence ir(G) = t.

Case 2. s even.
It is easy to construct an m-connected graph G = (V,E)

with the following properties: V = anJ vn-t where each
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vertex in V, has degree i, V,#9 and |V =n-s+ 1.

1
Furthermore there is a vertex v € Vn

n-tl

-+ Such that Vn—t -V
is independent and v is adjacent to exactly n - t of the

vertices in Vn - V.

-t
Then r(G) = s and ir(G) = t.

3. UNSOLVED PROBLEM

What is the situation for digraphs? Beineke and
Pippert [2} derived the result for digraphs (and also for ori-
ented graphs) analogous to that of Erdds and Kelly [3] for
graphs. Similarly, Harary and Rarabed [5] proved for digraphs
the theorem corresponding to that of Akiyama, Era and Harary
[1] for graphs.

Conjecture. For all integers s and t such that

o
A
0]
IA

t, there exists a digraph D having r(D) = s and

ir (D) t.
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ABSTRACT

A combinatorial characterization of a class of graphs
known under the name of hexagonal animals is given for the
first time. The characterization is based on the cyclically
ordered sequence of the perimeter vertex degrees, which is

shown to be the invariant describing completely the hexagonal
animals.

1. INTRODUCTION

The class of graphs known in the literature as "hexa-

gonal animals" is used for modelling the structures of molecu-

Fiqg.l. Pig.2.
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les of a class of organic compounds. The atoms are represented
by the vertices, and covalent bonds by the edges of the graph.

These graphs have been used and studied through a cer-
tain period of time, but they still lack a graph-theoretic
characterization, despite of some endeavours made in that di-
rection [1].

A-graphical representation of g simple hexagonal animal,
imbedded in the hexagonal grid, is shown in Fig.l. In the se-
quel the abbreviation HA shall be used for hexagonal animals.

The fundamental role in the combinatorial characteri-
zation of HA is played by the notion of the mesh of a planar
graph G(V,E), The set of meshes, 0, of G(V,E) may be defined

as
o] ='{°il°i- is a circuit in GA every edge ey € E
is contained in exactly two meshes of 0}
For the class of two connected planar graphs, to which
the HA belong, we have o] = Ny = n, + 2, where n, = |E|
and n = (v].

The following necessary condition for a graph to be a

HA may ‘be deduced from Fig.1l:

Condition 1. A HA has a set of meshes with n -n +1
meshes of the length 6 and Oone mesh of the length np, which
is either 6 or > 10,

The mesh with the unique length np is called the
perimeter of the HA. In a graphical representation of a HA

imbedded in the hexagonal grid the perimeter is represented
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by the contour inclosing the drawing of the HA.
The example from Fig.2 shows that Condition 1 is not

sufficient.

2. INVARIANT CHARACTERIZATION OF HEXAGONAL ANIMALS

From Fig.3 it can be seen that to every HA corresponds
a unique cyclically ordered sequence of the perimeter-vertex
degree-values B = b ,b.,...,b_,b, € {2,3} which shall be
12 np i
called the "code B". The particular code B of the HA from
Fig.3 may be written as

B = 2222332223223333222322232323222333.

Group n_ Akb
22223333 4 +3
222333 3 +2
2233 2 +1
23 1 0
333 3 -1
33 2 =1
3 1 =1
222 0 +3
22 0 +2
2 0 +1
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That, conversely, a code B of a HA determines that
unique HA, may be verified by considering a tour around a gra-
phical representation of the perimeter when the HA is imbedded
in the hexagonal grid. Whenever a vertex is passed on such a
tour, a change in the direction of moving takes place. When
- the degree of the vertex is 2, the change is +w/3, and when
the degree is 3, the change is -m/3, assuming an anticlockwise
tour. Thus, the sequence of the perimeter-vertex degrees
determines completely the graphical representation of a HA
imbedded in the hexagonal grid, and consequently, it determi-
' nes the HA too,.
From Fig.2 it can be deduced that the code B of a

HA must satisfy the following necessary, but not the sufficient

condition,

Condition 2. The code B of a HA does not contain a
subsequence with more than four adjacent elements having the
value 3,

The consideration of more complex HA is needed in
order to obtain a similar, but stronger, condition for the
subsequences with more than four nonadjacent vertices of the
value 3. Such a necessary and sufficient condition, for a code
B to belong to a HA, in terms of the properties of these cri-
tical subsequences, has to exist because the code B contains
the complete information on the HA to which it belongs. The
great amount of the possible "shapes" the HA can take, has

prevented the author to find such a direct characterization.



171
A Basis for Characterization of Hexagonal Animals

Instead, the invariant characterization for the class of the
HA has been found in an indirect form, that includes the third
condition, imposed on another cyclical code, the code H, deri-
vable from the code B.

The code H is defined for graphs which satisfy Con-

dition 1 and Condition 2. Its form is
i L (xilyi)r xi'yi e z.

The set of the necessary and sufficient conditions for
a graph G to be a HA consists of three conditions: Conditi-

on 1, Condition 2 and

Condition 3. Every pair of the elements, (hi'hk) of
the code H of a HA which do not belong to two adjacent meshes

of the HA satisfies the relations:
Ix; - xk[ > 2V Iyi - yk| > 1.

A procedure for the calculation of elements of H 1is

given in part 3.

3. A PROCEDURE FOR CALCULATING THE CODE H

Given a graph G satisfying the Condition 1, its code
B 1is readily obtainable from the information on the perimeter.
If the code B satisfies Condition 2, one can proceed to the
calculation of the elements of the coée H using the following
method.

A preliminary step includes:
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a) finding, in the code B, one of the longest sub-

sequences, Bx' of the adjacent elements having the value 2;

b) cyclical permutation of the record of B which

places Bx on the beginning of the record;

¢) grouping the elements of B into the first four
groups of Table 1, in the order of appearance of the groups

in Table 1;

d) grouping the rest of elements of B into other
Six groups of Table 1, using the same system of priorities
as in c¢).

The code B record of the HA from Fig.3, obtained

after the application of the preliminary step, is
B = 22 2233 22 23 2233 33 22 23 22 23 23 23 222333,

Upon the completion of the preliminary step, the cal-
culation of the components of the code H elements, hi' for
is= 2,3,...,nh is further governed by the groups of elements
formed during the preliminary step. To évery group containing
at least one element of the value 3 corresponds one element
hi' The last three groups from Table 1, containing no elements
of value 3, do not generate an element in H. On the other
hand, they contribute to the values of the components, xj
and yj, of the code element introduced by the next group in
the sequence.

The calculation of the components, x and Yyr of the

i
i-th code H element, hi,-for i= 2,3,...,nh proceeds in

three steps:
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1) calculation of the coefficient kbi is done accor-
ding to the formula kbi = ki-l + Akbn + Akbg, where Akbn

and Akbg take their values from Table 1 as follows:

Akbg belongs to the group with ng # 0 generating hi'

Akbn belongs to the group with n, = 0, which immedia-
tely preceeds in B the group generating hia

if such a group does not exist, Akbn = 0.

2) calculations of Xy and y; are done according

to the formulas

s 5—|kb1—1|
g o= Xy b L kg A%y, = ""?T““‘l = [kpy-tl
n_-1
Yy =¥yt ) BY g TEEi:;T (2-18x,, 1), 24k,
2=0 b
byyy =
0p  Amkyy

3) calculation of the parameter ki is done using

the formula

The initial values for this calculation are arbitrarily

taken as
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L. MEANING OF THE CODE H

For the HA shown in Fig.3, the following code H is
obtained by the application of the procedure which is described

in part 3:

H = (0’0)' (-3'1)’ (-410) ’ (_412) r (_612) v (_7I_1) 4 (-BIZ) ’

(-6,2),(-4,2),(-2,-2)

Referring to Figs,4 and 5 it may be verified that the
elements of the code H represent the coordinates of the
hexagons of the hexagonal grid, as coded in Fig.4, which are
occupied by the perimeter meshes when the HA is imbedded in

the way shown in Fig,5,

Fig.4,. Fig.5,

5. CONCLUSION

The necessary and sufficient conditions for a graph to

be a hexagonal animal are givén in the terms of the graph
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invariants. The code B consisting of the cyclically ordered
sequence of the perimeter-vertex degree-values, is shown to
contain the necessary and sufficient information for the veri-
fication, whether the graph to which it belongs is, or is not,
a hexagonal animal. The existence of a more direct characteri-
zation, having a single condition on the code B, instead of

the Condition 2 and Condition 3, is conjectured.
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ABSTRACT

In this paper a survey of results concerning convex
hulls of hyperaraph classes is given. Some applications are
discussed and some open problems are pointed out.

1. INTRODUCTION, SPERNER-HYPERGRAPHS

Let X be a finite set of n elements and let 2X be

its power set. We call the pair (X,H) hypergraph where H C Zx'
The elements of X and H are called vertices and edges, resp.
(X,H) 1is k-uniform (or briefly uniform) if all of its edges

are of size k. If no edge of (X,H) contains another one we

say that (X,H) 1is a Sperner-hypergraph. It is easy to see

that any uniform hynergraph is a Sperner-hypergranh.

Sperner theorem {Jf]. A Sperner-hypergraph on n ver-
tices has maximally
(1

’ (\n))
3]

edges.
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The complete L%J -—uniform hypergraph shows that there
is a Sperner-hypergraph with this many edges. The non-trivial
part of the above theorem is that the number of edges is at
most (1). For a short proof see [13].

In order to study the possible sizes of the edges a
Sperner-hypergraph let us introduce the concept of the profile

of a hypergraph:
p(H) = (pO'pl'° --rpn)

where Py is the number of edges of (X,H) of size i

(0 < i < n). Therefore the profile of a hypergraph is a point
of the (n+l)-dimensional Euclidean space Rn+1. Let ¢ de-
note the set of profiles of all Sperner-hypergraphs. A good
approximation of o is its convex hull. The convexr hull &

of a set o C Rn+1 is

2 [
o = {iglciAj_ z AiE a 4, cizO (1<ice), £ c, =1 ,

that is, the set of all convex linear combinations of the

elements of o. A€ o is an extreme point of a iff A is not
a convex linear combination of elements of o different from
A. It is easy to see that 1) if o has finitely many extreme
points then any element A of o can be expressed as a con-
vex linear combination of the extreme points of a; 2) o and
@ have the same extreme points; 3) the extreme points of a

uniquely determine a.
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After these preliminaries we can formulate our first

(rather trivial)

Theorem 1. [5]. The extreme points of o (=set of

profiles of Sperner-hypergraphs) are

% = (0p644930)

and

vi=(o,...,o,('i‘),o,...,0) (0 < ic<n).

o i n

Proof. 7 1is the profile of the hypergraph without any

edge while Vi is the profile of the complete i -uniform

hypergraph. These are Sperner-hypergraphs, so 2,V, € o (0<ic<n).

i
Let us show that they are extreme points of o. Suppose that

L

(2) v, = jzl cyA4

2
where ey > 0, A€o (1 <3 <), J ¢, = 1. The components

2y d
of Aj are non-negative, therefore z;;ir k-th(k # i) compo-
nent must be 0 by (2). Their i-th components are 5(?), s0
their i-th components must be equal to (2), again by (2).
Hence Vi = Aj (1 < 1 <n), that is, Vi is an extreme point.
It can be shown in the same way that 2 1is also extreme point.
We will see that any element A € o is a convex linear

combination of 2 and V, (0 < i ¢ n). This obviously implies

i
that these are all the extreme points of o. Indeed, let
A= (po,...,pn) € o. We have to find coefficients ¢,

CorevesCp 2 0 satisfying
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n
(3) c+ J ¢, =1

and

)
c,V, .
iZ0 i'i

This latter equation is equivalent to

n) .

IA

_ n
p; = ci(i) (0 < i

That is, Cy are unambiguously determined. We can find a c >0

satisfying (3) iff

) n
(4) J

However, (4) is well known and called thg LYM inequality after
Lubell [13], Yamamoto [17] and Meshalkin (14]. The proof is
complete,

The convex hull of ¢ is bordered by the trivial

hyperplanes

A

Pizo (OSi n)

and by the hyperplane determined by (4). Therefore Theorem (1)
is only a reformulation of the LYM inequality. However this is

not so for other classes of hYpergraphs. In general, more non-tri-
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vial inequalities are needed. In the next section we will list

classes of hypergraphs whose extreme points are determined.

2., CONVEX HULLS OF SOME CLASSES OF HYPERGRAPHS

(X,H) is a k-Sperner-hypergraph if it contains no

k+1 different edges H ,...,H € H satisfying

1’ k+1

Hl C .. C Hk+1 .

A hypergraph is 1-Sperner iff it is a Sperner-hypergraph. The
set of profiles of the k-Sperner-hypergraphs will be denoted
by Op*
Theorem 2 [6]. The extreme points of o, are the vec-
n

tors whose i-th component i8 either zero or (i) but the number

of their non-zero components is at most k.

Using this theorem, it is easy to determine the maximum
number of edges of a k-Sperner-hypergraph (X,H). The number

n
of edges of (X,H) 1is nothing else but the sum p, of the

i=0
profile p(H) = (po,...,pn). It is easy to see that
n
max ) Py
(X,H) e Iy i=0

can be attained only for extreme points of Ope Hence the

maztimum number of edges in a k-Sperner-hypergraph is the sum

n+k-1
l J
n
! H
n-k+1
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of the k Llargest binomial coeffieitents. This is a well known
theorem of Erdds [3].

We say that (X,H) is an intersecting hypergraph if
any two edges have non-empty intersection. The set of profiles

of intersecting hypergraphs is denoted by 1.

Theorem 3 [6]. The extreme points of 1 are the

following ones:

n-=1 n=1. n-=1 n n
(3)  (0,eue, ()W (O Voeeorlpogm)) s Grogey) ree e (D) (12k<n/2),
0 k k+1 n-=k n=k+1 n

n-=1 n n
63 (Orsmnrlypgey) sy sneg ) sesanipl]

0 n/2 n/2+1 n

D o0, Bl D

2
and the veector obtained by replacing 1) any but the k—th com=
ponents of (5) by zero and 2) any components of (6) or (7)

by zero.

It is easy to construct hypergraphs with these profi-
les: take all the edges of size i with k < i < n-k contai-
ning a fixed vertex x and all the possible edges of size
> n-k. The rest of the proof is more complicated.

One can deduce from this theorem the maximum number of
edges of an intersecting hypergraph: 2n—1. However, even this
deduction is longer than the original proof in [4]. A more

interesting consequence of Theorem 3 is the Erdoés-Ko-Rado
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theorem [4]: The maxzimum number of edges of an intersgsecting

k-untform hypergraph is (;:i) if k < n/2. Indeed, the i-th

n-l)

component (k < n/2) of any extreme point of 1 1is S(k-l .

For a short direct proof of this theorem see [10].
The (up to now) deepest result of this theory is

Theorem 4 [5]. The extreme points of o (1 are

2 Vj (n/2 <j < n)
=1
Wi = (0peees(§o))0eess0) (1 < i < n/2)
0 b n

Wiy o= (0,...,(221),...,(“;1),...,0) (1 < i < n/2, i+l>n)
0 i j n

The main part of the statement of this theorem is that
the extreme points can have at most two non-zero components.

The Erdds-Ko-Rado theorem can be easily deduced, again.

n-l)

Indeed, the k-th component of any extreme point is s(k_l

if
k < n/2.

Let us consider the problem, what is the maximum number
of edges of an intersecting Sperner hypergraph. It is suffici-
ent to maximize the sum of the components of the extreme points
in Theorem 4. Fxamine first the extreme points wij'

j 2 n-i+1 > n/2 follows from the conditioﬁs 1 <1 <n/2,
i+j > n. Therefore

n-1 n-1 n-1 n-1
(i_l)+( j ) < (j-1)+(n-1+1)



184
G.0.H. Katona

gives an upper estimate for the sum of the components in W

ij-°
The only non-zero components of wi and Vj are (2:;) <
< n-1 and (n) < B resp. Consequently, the complete
= ln—ZJ 3" 7 | [n+a]|’ ) ' ?
2 | 2

lﬂglj—uniform hypergraph has the mazimum number of edges among
all intersecting Sperner-hypergraphs. This is a special case of
a theorem of Milner [15].
It is worth-while to determine the nontrivial hyper-
planes bordering the convex hull of o N l. The following class
-of inequalities contains the inequalities corresponding to

these hyperplanes:

P P.
i §
(8) (1-y ) —— + V. —d <1
lsizn/Z Ll (?_i) n/25§sn-l 3 (ngl)

for any (po,...,pn) € o1 and for any sequence y[n/2J+12"'2

zyn>0 satisfying

(9) vy£1-3  (m2<3<n.

It is interesting to mention that some authors tried to
find inequalities well characterizing the elements of o N1,
Bollobds [1] proved

. o,

1. <
l<i<n/2 (g_l)

1

which can be obtained from (8) by substituting y[n/2j+1 =

= oo =y, =0, while the inequality
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J

1<i<n/2 (1) n/2<j<n ()

of Greene, Katona and Kleitman [8] follows from (8) by choosing
yj = 1—% (n/2<j<n). Now it is clear that these inequalities
were too weak to characterize the elements of o)1, alone.
Many of them are needed.

Let us investigate a problem of somewhat different

character. Suppose that the hypergraphs (X, Hl)""'(x'Ht)

satisfy the following condition:

GGHC H, G#H, GeH HeHs, 143

(10) 4

implies

cd H

That is, two different hypergraphs cannot contain different
edges, one containing the other one. (But H1 N Hj is not
necessarily empty.) The profile of the sequence of the hyper-

graphs (X, H,),..., (X,H) 1is

t
P(H peoesl,) = T pPIH,) .
1 t 151 i

Let o(t) denote the set of the profiles of hypergraphs satis-
fying (10).

Theorem 5 [6]. The extreme pointe of o(t) are

Z, tVi

if t > n+l, Otherwise there are some additional extreme points
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with at least t+1 non-zero components p; = (?).

A theorem of Daykin, Frankl, Greene and Hilton [2]

easily follows:

5 n n

max ) [H; ] = max |t n |2 .
i=]1 -
KoH)powey (x,H) 4 12

satisfy (10)
3. APPLICATIONS
n
Let ¢, (0<i<n) be reals and suppose that ) e Py
i=0

has to be maximized for a certain class of hypergraphs. Let «
be the set of profiles of these hypergraphs. If the extreme

points of o are determined, our situation is very easy. We

n
have to maximize Z c;Py only for these extreme points,
i=0
In the previous section we applied this idea only for
o= = = = i ., = 1
the cases when (i) Cy c, e ch 1 and (ii) = v

cj =0 (j # 1). However, more complicated functions can be
arised. For instance, one could ask for the maximum of the sums
of the sizes of the edges in a hypergraph. That is, c; = i

(0<ic<n). [11] solves this problem for Sperner-hypergraphs:

3 [n]
(11) max £ 3 .

(PO:--qun) € o

This is an easy consequence of Theorem 1 (that is, of the LYM

inequality), Indeed, the extreme point Vi gives (?)i. It is
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easy to verify that max (?)i is equal to the right hand
i
side of (11). ‘

Another application can be found in [5] where

n
(12) ] (m-i)tpy
i=0

is to be maximized for intersecting Sperner-hypergraphs. We
have to use Theorem 4. (12) gives more for wij than for wi,
therefore we have to check only Vj (n/2<j<n) and Wij
(l<i<n/2,i+j>n) from the extreme point. If Vj = (po,...,pn)
then we have trivial inequality for (12)

(n—j)!(?) < (n=1)1+1 .

On the other hand, if wij = (po,...,pn) then the following

sequence of inequalities gives the same estimate:

(1) 1 Q2D+ =i 1 () = 4 mlhLinnd)
(
| = (n-1)! if 1 =1
| = (n-1) !+l if 4 = 2
) (n=1)! N (n=1) ! (i-1) J
S TI-11 (n=1i+1) ! \ (ngl)! + (n;l)! if 3<ic<n/2

(n < 4 should be checked
separately) .

Summarizing, (n-1)!+1 1is the maximum of (12). The hypergraph

(X,H), where
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H = {{x,y}: v & X=x} U {X-x} (x € X fixed) ,

gives the equality,

L., oPEN PROBLEMS

1. Any problem of the extremal hypergraphs (see e.g.
[12]) can be extended in the present way. However, some of
these extended questions are blocked by longstanding open prob-

lems. See e.g. the following condition for (X,H)
(13) H),H, € H implies B, N Hy| > k

Let us denote by 1(k) the set of profiles of the hypergraphs
satisfying (13). The extreme points of 1(1) =1 are determi-
ned in Theorem 3. However knowing the extreme points of 1 (k)

would imply the determination of max p for (po,...,pn) e 1(x),

n-=-k
(k)
(k > 15) (see [4], [7]). A nice open problem of this kind from

too. This is known to be only for n > (2+1) (k+1)

[4]: Is it true that the optimal construction of the above

problem for k = 2, n = 4m g = 2m is the hypergraph (X,H) with
H = {A: |Aﬂx1[ > m}

where

X.C %X , ]xl|=2m?

1

On the other hand, one extreme point of (k) maximi-

n
zing J P; 1is known [17],
i=0
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2. We determined the extreme points for several cases.

However it is non-trivial to make a detailed description of

these convex hulls. Determine e.g. the graph of the edges (1-di-

mensional faces) of the convex hulls,
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ABSTRACT

All simple 3-polytopes with up to 30 vertices which
have no trianqgular faces and no two adjacent quadrangular
faces are constructed. The obtained polytopes are used to show
that every simple 3-polytope having 30 or less vertices admits
a Hamiltonian circuit, which was independently shown by Okamura.

1. INTRODUCTION

3-connected planar cubic graphs were extensively stu-
died because of their close relationship with the Four Color
Problem. Tait once conjectured [7] that every 3-connected pla-
nar graph possesses a Hamiltonian circuit. The verification of
this conjecture (at least for cubic graphs) would have settled

the Four Color Conjecture. But in 1946, Tutte disproved this

This work was supported in part by the Boris Kidri& Fund,
Ljubljana, Yugoslavia.
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by coﬁstructing his now famous 3-connected cubic planar non-
-Hamiltonian graph on 46 vertices [8]. The smallest such graph
found to date is due to Bosdk (1] and Barnette, as reported by
Lederberg [6]. This graph has 38 vertices and is shown in
Pig.l, It is also known that there is no such graph on 22 or
less vertices [2,6]. The proof of this fact was obtained by
computer. Lederberg examined all the 44 cubic graphs on 18 or
less vertices which were possible counterexamples, while But-
ler had to examine 400 cyclically 4-connected graphs on 20

and 22 vertices. Note that our approach requires to consider

ohly 50 graphs having 22 or less vertices,

Fig.1.

In the present paper we confirm and extend the results
of Lederberg and Butler and show that every simple 3-polytope
with 30 or less vertices admits a Hamiltonian circuit. This
result was chtained by an exhaustive computer search. We greatly

reduce the number of graphs to be examined using results which
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are presented in Section 3.

After finishing the first version of this paper it ca-
me to the authors attention that N. Okamura [9,10] recently
obtained the same result without the use of a computer.

The numbers of obtained nonisomorphic simple polytopes
are also interesting. They increase very fast and it is seen
that the complete list of graphs on 32 vertices is almost

impossible to obtain.

2. BASIC DEFINITIONS

Wi will limit ourselves to defining only lesser known
terms and those which may cause confusion. Other definitions
may be found in standard textbooks, e.g. [4,5].

We note that the notion of a simple 3-polytopal graph
will be used to describe a cubic planar 3-connected graph.

The graphs are considered to be embedded on the 2-sphere (as
a l-skeleton of the corresponding polytope). The data about
the embedding are "superfluous" since 3-connected planar graphs
are (combinatorially) unicuely embeddable on the 2-sphere. The
graph itself therefore uniquely determines the corresponding
3-polytope.

We recall two well-known theorems which will be used in
the sequel:

(a) (Theorem of Steinitz) The graph G 1is a graph of
a 3-polytope iff it is planar and 3-connected.

(b) The graph is 3-connected iff the removal of any
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two or less vertices does not produce a disconnected or trivi-
al graph.

In the spirit of the above theorems and the unique
embeddability of 3-connected graphs we will not distinguish
between 3-polytopes and the corresponding polytopal graphs.

To refer to the number of edges of a face of a 3-polytope
we say that a (2-dimensional) face is a k-face if it is a
k-gonal face. Note that this is not a very standard notion and
that some authors use k-face to describe a k~dimensional face.
We adopt this notation because of our frequent use of it and

since we do not consider other than 2-dimensional faces.

3. BASIC THEOREMS

The search for a smallest non-Hamiltonian simple
3-polytope requires some preliminary theoretical work. We need
an algorithm to produce all graphs which are "of interest"., Tt
is based on Theorem 3. Next we want to reduce the class of "in-
teresting graphs” to‘be as small as possible., Theorem 1 and
Theorem 2 greatly reduce the number of graphs which have to be

examined. Two lemmas precede the theorems.

Lemma 1. Let G be a simple S-polytope which has two

adjacent triangular faces. Then G 1is the tetrahedron.

Proof. Denote by e the common edge of the triangular
faces. We have the situation shown in Fig.2. The vertices a
and b are not adjacent provided G is not a tetrahedron,

Then we obtain a disconnected graph if we remove the vertices
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a and b. This contradicts the 3-connectedness of G./////

Fig.2.

Lemma 2. Let G be a simple 3-polytope which has
three mutually adjacent 4-faces, Fl, Fz and F3. Suppose that
there 18 another 4-face F # F3 which 18 adjacent to Fl and
F,. Then G 18 the cube 3-polytope.

Proof. Suppose that G 1s not equal to the 3-cube
and that the assumptions of the lemma are satisfied. Then we
have the situation of Fig.3 with a # b and not adjacent.
Removing the vertices a and b we obtain a disconnected

graph. But this is not possible since G 1is 3-connected./////

Pig.3.

Theorem 1. The smallest non-Hamiltonian eimple 3-poly-

tope does not have any triangular faces.
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Proof. This is obvious, since a Hamiltonian circuit
through a triangle is equivalent to that through a vertex in
the graph obtained by shrunking the triangle to a single ver-
tex. The possibility of the reduction is guaranteed by Lemma 1./////
Theorem 2 will reduce our observations to polytopes

without adjacent quadrangular faces.

Theorem 2. A smallest non-Hamiltonian simple 3-poly-

tope has no two adiacent quadrangular faces.

Proof. Let G be one of the smallest non-Hamiltonian
simple 3-polytopes, i.e. every simple 3-polytope which has
less vertices than G 1is Hamiltonian. By Theorem 1, G has
no triangular faces. Suppose that G has two adjacent 4-faces,

Fl and F2. We distinguish three cases.

Case 1. There is another 4-face which is adjacent to
both, Fl and Fz. Since G is not the 3~cube, we may because
of Lemma 2 apply the reduction P2 of Theorem 3. P2  (G) has
a Hamiltonian circuit which is easily seen to be extendable to

a Hamiltonian circuit in G. This would contradict the non-

-Hamiltonicity of aG.

Case 2. The faces adjacent to F and F are not

1 2
4-gons and the reduction of Fig.4 produces a 3-connected graph
G’. This is also impossible since every Hamiltonian circuit

from G’ can be extended to a Hamiltonian circuit in G.
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Fig.4.

Case 3. The reduction of Fig.4 produces a graph which
is not 3-connected. Then we have the situation as shown in
Fig.5. Take new vertex v and join the vertices Vi v, and
vy of Gi to this vertex. Denote the obtained graph by G, .

Similarly we obtain a graph Gz by joining vertices u

1’ %3

and uy of Gé to a newly introduced vertex u.

Pig.s§.

Obviously, G1 and G2 are 3-connected planar cubic

graphs., One easily verifies that any Hamiltonian circuit in G
induces Hamiltonian circuits in G, and G,. A short examina-
tion shows that G is non-Hamiltonian iff every Hamiltonian

circuit in G

contains the edge v, and every Hamiltonian

1
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circuit in G2 by-passes the edge uu, (or symmetrically if

1

we change the rules of G and Gz). Assuming that G has

1

no triangular faces, G1 and - G2 can have at most one trian-

gular face, 3-faces could appear in G1 only if they contain

the added vertex v. By Lemma 1 there is at most one such face

in Gl' The same arguments apply to Gz.

Fig.6.

Fig.6 contains all 3-connected cubic planar graphs up to 12
vertices which have at most one triangular face. Using the

syrmetries of these graphs one immidiately verifies that all
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of them have the following property. For every edge there ex-
ists a Hamiltonian circuit containing it and for every edge
there exists a Hamiltonian circuit avoiding it. It was estab-
lished by computer that the same is true for all such graphs
having 14 vertices. There are examples on 16 vertices having
an edge which lies on every Hamiltonian circuit. But the graphs
up to 18 vertices admit for every edge a Hamiltonian circuit
containing this edge. This was also established by computer.
See also the results in [1,2].

Suppose that G1 has ki vertices (1 = 1,2). Then G
has k1 + k2 + 4 vertices. By the foregoing, if G does not
admit a Hamiltonian circuit, G1 has at least 16 and G2 has
at least 20 vertices. Therefore G should have at least
16 + 20 + 4 = 40 vertices. This would not be the smallest
non-Hamiltonian example since there are known examples having
38 vertices [1,2]./////

Theorem 3. Every simple 3-polytope without triangular
faces ia obtained from Qi the cube polyhedron, by a fintite

number of the following generating rules:

Pl : —
P2 : Y —_—

oo AL —
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Proof., 1t sufficies to show the following. Let G be
a simple 3-polytope without triangular faces, which is not equ-
al to Q3. Then it is possible to apply on G one of the in-
verse rules P1°, P2° or P3” to obtain a simple 3-polytope
without 3~faces having less vertices than G.

Before we continue we introduce some useful concepts.
We say that a 4-face is Pl-reducible if it admits the reduction
Pl-, i.e. P1 (G) is 3=connected and without 3-faces, Similar-
ly, a 5-face.is P3-reducible if it admits the reduction P3~,
P2-reducibility is defined on three mutually adjacent 4-faces.
Further we say for a 4-face ‘F that it is separated if there
are no two 4-faces P and F

1
are mutually adjacent.

such that F, P and F

2 1 2

We claim the following: let F be a separated quadr-

angular face in G, Then F is Pi-reducible.

FH
Fs By
%Iz

7
F F F _
2 &A

Fig.7.
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That the reduction Pl  is possible, i.e. Pl (G) is 3-conne-
cted, was shown by Bowen and Fisk [3]. If none of the faces
adjacent to F 1s a 4-gon then the reduction produces a poly-

tope without triangular faces. Otherwise suppose that F1 is

a 4-face (see Fig.7). The faces F2 and F3 are not 4-faces

since F is separated. After the reduction P11~  which pre-

serves the faces F1 and F3,

G’ has no triangular faces. Suppose that G’ is not 3-connec-

the obtained cubic plane graph

ted. This is possible iff the faces Fl and F3 are adjacent
in G. Then we have the situation shown in Fig.8. Removing the
vertices a and b we disconnect G which contradicts its

3-connectedness.,

Fig.8.

Suppose that G has no separated 4-faces and that F
is a 5-face of G. Then F 1is P3-reducible. To show this we

distinguish three cases. For the notations see Fig.9.
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Fig.9.

Case 1. Suppose that F3 and F5 are adjacent faces

of G. Then the face F4 cannot be adjacent either to F

1 °r
to Fz (consider G as embedded on the 2-sphere) , Moreover,
since F4 is not a triangle, F3 and F5 cannot be 4-gons.
To see this let F4 be a 4-gon. Removal of the vertices a
and b disconnects ‘G which contradicts its 3-connectedness.
From all this we conclude that thé reduction of Fig.9 is
possible.

Because of the symmetry of the reduction P3~, the
P3-reducibility is also proved if at least one of the following

pairs of faces of G are adjacent: F1 and F F and F

37 1 4’

and F_,

Fz and F4, F and FS' or F3 5

2
“ase 2. None of the above mentioned pairs of faces are

adjacent and for at least one pair, both faces are larger than
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four. Suppose that F3 and F5 are 5- or more-faces. Then

obviously the reduction P3~ of Fig.9 works.

Case 3. .All pairs (Fi,Fj), i -3j=2, contain a
4-gon. Then for an index k (1 <k <5), Fk’Fk+1 and Fk+2
are 4-gons (k+1 and k+2 are "modulo 5"). By the assumption,
there is no separated 4-face in G. Since Fk+1 is not sepa-
rated, there is another 4-gonal face which is adjacent to
Fk' Fk+1 and Fk+2‘ By Lemma 2 G 1is equal to Q3.

Finally, suppose that G has no 5-faces and that the-
re are three mutually adjacent 4-gons. By Lemma 2 the faces
surrounding these 4-gons are at least 6-gons. It is easy to
see that the reduction P2~ produces a 3-polytope which obvi-
ously does not contain any triangular faces.

It is known (e.g. [4]) that every 3-polytope contains
a k-face where k < 6. Since G has no triangular faces it
contains a 4-face or a 5-face. Every separated 4-face is
Pl-reducible; if there are no separated 4-faces then every
5-face is P3-reducible and every triple of nonseparated mutu-
ally adjacent 4-faces is p2-reducible if there are no 5-gons.
Therefore G admits at least one of the reductions Pl-, P2
or P3~ producing a simple 3-polytope without triangular
faces. /////



204 Bojan Mohar

L.  COMPUTATIONAL RESULTS

Using the deduction rules of Theorem 3 it was not very
difficult to write a computgr program to generate all simple
3-polytopes without triangular faces having up to a certain
number (i.e. 30) of vertices.

Because of simplicity we have dealt with the simplicial
3-polytopes, i.e. dual polytopes of simple 3-polytopes. The
simplicial pPolytopes are also called the triangulations (of
the 2-sphere). We adopt this notation. Note that there is a
one-to-one correspondence between the simplicial and simple
3-polytopes. The advantage of considering triangulations as
opposed to cubic graphs is in easier isomorphism checking,
since we may conclude that two triangulations are non-isomor-
phic if they have different vertex-degree Sequences. Moreover,
when constructing an isomorphism between two triangulations we
can make good use of the vertex-degrees information.

The most ‘important thing we use in the generating rou-
tine is a kind of maximality principle which can be described
as follows. Given a triangulation G’ and using the (dual)
reduction Pl  one may decide that the reduction is to be -
‘made at a vertex v of degree four which has some maximal
property. To distinguish between the two possible reductions

at vertex v we use the maximizing function
f(v) = 100 - (deg(a) + deg(c)) + deg (b) + deg(d)

(see Fig,.10) .
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Fig.10.

The generating procedure is as follows. Take a graph G.
Generate the graph G’ =P1(G). If the new vertex does not have
maximal value under f(v) then we disregard the graph G',
Note that f(v) must be computed at all separated vertices of
degree 4, and at every vertex possibly twice. Naturally, this
is to be done iff the reduction Pl is possible.

Consider P2, It must be applied iff P2(G) does not
have any separated vertex of degree 4 (at which Pl1~  could
be applied), and does not have any vertex of degree 5, since
then P3  can be used. P3 must be applied 1iff P3(G) does
not have any separated vertex of degree 4. In both cases maxi-
mality is tested. The maximality function is chosen in a simi-
lar way to the function for Pl, so that it distinguishes
between the five possible reductions at a vertex. We note that

many tests concerning maximality can be made in a graph G
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without our being always obliged to do the explicit generation
of P1(G), P2(G) and P3(G). The described process enables us
to obtain all triangulations without vertices of degree 3 up
to 30 faces (which correspond to the vertices of the dual simp-
le polytopes). As an example of how much the number of produced
triangulations is reduced as a consequence of the maximality
testing we state the somewhat surprising result: the ratio of
the number of produced graphs to the number of non-isomorphic
graphs is on average 2:1.

The numbers of nonisomorphic graphs obtained are pre-

sented in Table 1. T(n) is the number of simple 3-polytopes

Table 1

n T (n) 0 (n)
8 1 -
10 1 -
12 2 -
14 5 1
16 12 2
18 34 3
20 130 12
22 525 32
24 2472 123
26 - 506
28 - 2313
30 - 26933*
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without triangular faces. Bowen and Fisk [3] determined T(n)
up to n = 20 and our numbers agree with their results up to
this point. Q(n) is the number of such polytopes having no
two adjacent quadrangular faces. We also generated simple poly-
topes having no triangular faces on 26, 28 and 30 vertices but
we did not do any isomorphism checking. We carried out isomor-
phism testing only on the graphs without adjacent 4-faces. The
obtained numbers for n = 26 and n = 28 are given in Table 1.
The graphs on 30 vertices were not checked under isomorphism.
The number of obtained graphs is also given in Table 1 and is
marked with an asterisk. We esﬁimate that the number of non-
-isomorphic graphs is about one third of this number.

The following result is an important outcome of our
computational research. We have checked the Hamiltonicity of
the obtained polytopes without adjacent 4-faces. All of thgm
turned out to have a Hamiltonian circuit. Since there is always
some doubt in results obtained by computer, we formulate it

in the form of:

Computational result. Every simple 3-polytopal graph
having 30 or less vertices admits a Hamiltonian circuit.

In conclusion we note that all the computations were
run on the DEC - 10 computer at the Computer Center of the

E. Kardelj University, Ljubljana.
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ABSTRACT

A simplicial scheme is a graph with a certain additio-
nal structure. The purpose of this concept is a graph-theoreti-
cal description of pseudocomplexes. Theory can be applied only
in the case when the underlying polyhedron of the pseudocom-
plex is a pseudomanifold. We discuss some combinatorial proper-
ties of pseudocomplexes which are obtained from simplicial
schemes using combinatorial properties of the graphs on which
the simplicial schemes are defined. As the first application we
show that the dual graph of a simply connected combinatorial
manifold is bipartite iff every simplex of codimension two is
contained in an even number of top dimensional simplexes. This
result is extended to a larger family of simplicial complexes.
The second application concerns the colorability of vertices
of triangulated n-dimensional pseudomanifolds with n+1 colors.

1. INTRODUCTION

Suppose that we are given an n-dimensional simplicial

complex K. Usually we describe its structure by the incidence

** This work was supported in part by the Boris Kidrid Fund,

Ljubljana, Yugoslavia.
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relations between the simplexes of K. Such a description is
tedious and space consuming and is not very useful in many
instances. We shall introduce a new way of describing a large
class of simplicial complexes and pseudocomplexes which are
pseudomanifolds. The description is purely graph-theoretical
and enables us to use its properties to obtain some nontrivial
éombinato;ial results.'For example, the covering projections
between graphs correspond to nonsingular nondegenerate simpli-
cial maps between complexes described by the graphs. Hence we
may use any graph covering tool, e.g. voltage gr&phs, to des-
cribe nbnsingula: maps between complexes.

An approach similar to ours was given before by Pezzana,
Ferri, Gagliardi, et al. [Pe74, Fe79, Ga79a, Ga79b, FGG, FG81].
However, their main goal is topological - to represent PL-mani-
folds as simplicial pseudocomplexes, in particular as so called
crystallizations. These are n-dimensional pseudocomplexes such
that their set of O-simplexes has cardinality n+l. Their des-
cription - a special case of ours - applies to every PL-mani-
fold, and so it is useful for some topological purposes, e.g.
computing homology groups, computing the fundamental groups,
clasgifying PL-manifolds, etc. Our way is more combinatorial
in nature. We give up the special properties of crystalliza-
tions in order to be able to describe a much larger class of
pseudocomplexes. Our approach will be useful if we consider
combigatorial properties of simplicial complexes and pseudo-

complexes.
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Throughout this paper we shall use the term éraph for
what is usually called a "multigraph". Hence we allow multiple
edges but loops are forbidden. A graph is simple if it has no
multiple edges. Given a graph G, let V(G) and E(G) denote
its vertex-set and edge-set, respectively. Let S(G) denote
the set of directed edges of G. Every edge e € E(G) gives
rise to two directed edges (or arcs) in oposite direction having
same boundary vertices as e. We denote the elements of S (G)
by letters with arrows, e.g. e. If the initial vertex of 3,

E, is v and the terminal vertex, 3+3, is u, we also write
' 1

a—
-+ -+ -
e = vu provided there can be no confusion. With e we de-

note the inverse arc of 3, e.g. vﬁ-l = uv.

A walk W in a graph G 1is a sequence of directed
edges, W = (3132...3d), such that the initial vertex of 31+1
is the same as the terminal vertex of 31, i=1,2,¢0¢,4=1,
Hence a walk is supposed to have an orientation. A walk W 1is
closed if a_él = a+3d. For other terms of graph theory we
refer to [Ha69].

For the terms of topology we refer to any standard
text-book on topology or algebraic topology, e.g. [HWGO, Maé67,
RS72]. We only mention that a topological space is simply co-

nnected if it has trivial fundamental group.

2. BASIC DEFINITIONS OF COMBINATORIAL TOPOLOGY

It is supposed that the reader is familiar with basic

notions of combinatorial topology, such as simplexr of dimen-
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)
sion n (dlso n-simplex), it-face or i-dimensional face of a
simplex, simplieial ecomplex, dimension of a simplicial comp-
lex, codimenston'of a simplex in a complex, etc.
A pseudoébﬁplex K 1is a finite collection of topolo-

gical simplexes such that

(i) if Afe K and B& A is a face of A, then B € K,
(i1) if A,B €K, then AN B is a union of simplexes of K,
 and 3
(i11) if [K| = U{B; B € K}, then |K| = ||{B®; B e K}
where || denotes disjoint union and B® the
interior of B.-
The notioh of a pseudocomplex was introduced in [HWGO]
in order to simplify the calculations of homology groups.
A l-dimensional pseudocomplex is a graph. A graph is simple if
it is a éimplicial complex
A fseudocomplex K is homogeneous (of dimension n)
if every simplex in K is contained in an n-simplex of K.
K is strongly connected if for any two top-dimensional simp-
lexes A and B of K there exists a sequence of top simp-
lexes A = Pl’ P2, %% Pk-l' Pk = B such that Pi and
Pi+1, i=1,2,...k-1, have a common codimension-one face.

Suppose that

(1) K is homogenous of dimension n,
(2) K is strongly connected, and
(3) every (n-1)-simplex of K is contained in

eXactly two n-simplexes of X.
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Then K is said to be a (pseudotriangulated) pseudomanifold.
In a pseudocomplex K we define also the star and the

link of a simplex. If A € K then

1

star (A,K) {Be€X; Jc €K such that BE c and A CcC}

and

link (A,K) {B € star(A,K) ; BN A = g} .

If K 1is an n-dimensional pseudocomplex we define its
duyal graph G as the l-skeleton of the dual of K. G |is
connected iff K 1is strongly connected. If K 1is a pseudo-
manifold then the vertex-set of G 1is the set of n-simplexes
of K, and two arbitrary vertices are joined by one edge for
each common (n-1)-face of the corresponding two n-simplexes.

In this case G 1is (n+l)-regular and connected.

3. SIMPLICIAL SCHEMES

Let G be a connected regular graph. A presimplieial
gcheme g on G 1is a function which assigns to every directed

edge E € S(G) a bijective map
g(&) : star(y_é,G) —= star(d, é€,G)

such that the following conditions are fulfilled

(SS1) for every e es@G), glee = E-lr and
(852) for every & € S(G), g(e }) = (g(a) "} .
-+
Let W = (f £...f ) be a walk in G. An arc

172°°""d
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e e star(a_?l,G) is said to avoid the walk W {(w.r.t. a pre-

simplicial scheme g} if for i = 0,1,...,d=1

gE) ogE, o ...og) oagd e st

A presimplicial scheme g is called simplicial scheme
if, in addition to (SS1) and (S$52), also the following condi-

tion is satisfied

(883) for every closed walk W = (E fz..,Ed) and every

arc e € star(a_%l,G) which avoids W

(1) g(fd) o g(fd_l) O .00 O g(fl)e =e .

Simpicial schemas and pseudocomplexes meet in the
following construction. Let G be an (n+l)=-regular graph and
g be a simplicial scheme on G. Then we construct an n-dimen-
sional pseudocomplex K = K(G,g) such that G is isomorphic
with the dual graph of K. For each vertex v € V(G) take an
n-simplex Av and choose a bijective correspondence between
the edges in star(v,G) and the (n~l)-faces of AV. For every
arc & of star{v,G) dencte by face(é) the (n-1)~face of
Av corresponding to g, and let vert(g) be the vertex of |
Av opposite to face(é) (thus Av = vert(g) * face(g), where
#¥ means join).

We are now ready to define the pseudoconplex KI(G,qg).
It has n-simplexes Av, v € V(G}), and if £ is an arc from
v to u, then identify face(f)(: AV and face(%"l)C: Au

so that the vertices vert(g) and vert(g(%)%) are identi-
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fied, for every arc e € star (v,G) , e # £,

It is easy to see that a vertex a of Av is identi~-
fied with a vertex b of Au (by successive identifications
of (n-1)-faces) iff in G exists a walk W from v to wu,
and if @ is the arc of star(v,G) with vert(g) = a, then
¢ avoids W. This shows why we need the condition (SS3)

suppose that there is a closed walk W = (flfz...fA) and an arc
@ which avoids W but (1) is not true for é on W. Then
a vertex vert(e) of Av is identified with a vertex
vert(g(fd) O ... O g(fl)g) of Av and this vertex is diffe-
rent from vert(é). The n-simplex Av is in this case defor-
med to something that is not a simplex. We remark that also a
theory of complexes built from such deformed simplexes can
be developed.

Similarly, the n-simplexes Av and Au intersect in
a k-face iff there is a walk W from v to u, and there are
arcs Eo’él""’ék of star(v,G) which avoid W,

Above we have shown the folloving fact which will be
of great importance when considering the properties of pseudo-

complexes obtained from graphs and simplicial schemes.

3.1. Proposition. Let X and Y be n-dimensional

simplexes of K(G,g). If X and Y have a common k-face, then °

(1) there exists a walk W = (flfz,,,fd) in G such
that X = A and Y = A , and
2t 2,2, .

(2) there exists arcs eo’él""’ék in star(a_fl,c)

which avoid W.
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Conversely, if (1) and (2) are satisfied, then X and

Y have a common k-face with vertices vert(go),...,vert(gk).////

A simplicial pseudocomplex is a simplicial complex iff
for every simplexes A and B of X and for every two
common faces of A and of B, X and Y, there exists a common
face 2 of A and of B such that X and Y are faces of
Z. We may-restrict ourselves to the case where A and B are
top-dimensional simplexes and X and Y differ only by one
vertex, i.e. X =Cxx, Y =C = Y, 2 =C % x ¥ y, Hence, also,
X and Y are of same dimension. Let vertices v and u
correspond to A and B, respectively. If C is a (k-1) -sim-
plex, then X" and Y are k-simplexes. According to Propositi-
: on 3,1, there are arcs 31,32,...,3kA in star(v,G) (they de-
termine C), and arcs Ex and Ey (they determine x and Y,

respectively), and there are walks P and PY from v to

X
+> > -+
u such that el,ez,...,ek avoid both paths, PX and Py,
<> -
arc e, avoids PX (but not PY)’ and ey avoids PY (but

not PX). Cx x %y 1is not a common face of A and B iff
on every walk P from v to u at least one of the
-+ -+ - -+ > B .
arcs ex, ey, el, e2, g, ek does not avoid P. This is a
sufficient and necessary condition when a pseudocomplex is a
simplicial complex.
An easy consequence of Proposition 3.1 is the following

characterization of simplexes of codimension two. The proof

1s left as an easy exercise,
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Corollary 3.2. A cycle C = (flfz...fd) in G corre-

sponds to the star of a codimension-two simplex iff

-1 _ _
(2) ¥l =% ., 1=1,2,....4

where fd+1 is fl’ and fo is fd./////
We call the reader s attention to a work of Pezzana,
Ferri, Gagliardi, at.al. [Pe74, Fe79, Ga79a, Ga79b, FG81, FGG].
They define a simplicial scheme only in the case when the
graph G 1is l-factorable. In fact, they discuss also the ca-
se when G 1is not reqular, using edge-coloration instead of
l1-factorization. In this case, the obtained pseudocomplexes ha-
ve a "boundary" (there are some simplexes of codimension one
that are contained only in one top-dimensional simplex). Suppo-
se that we have a l-factorable graph G and choose a particu-
lar l-factorization of G. This l-factorization determines a
simplicial scheme g on G as follows. Let g(E); be the
arc of the l-factor to which e belongs and such that it has
B+E as the initial vertex. g 1is obviously a simplicial
scheme. On every closed walk, (1) is satisfied not only for
those arcs which avoid the walk but for every arc e from the
star of the initial vertex of the walk. Pezzana [Pe74] has
shown that every closed, connected n-dimensional PL-manifold
can be pseudo-triangulated so that the set of O-simplexes has
cardinality n+l. The corresponding simplicial scheme is ca-
lled a crystallization. The cited papers are mainly devoted

to the theory of crystallizations.
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Next we establish some combinatorial and topological
properties of K = K(G,g). The pseudocomplex X is homogeneous
by construction, and since G is connected, it is strongly
connacted. Every (n-1)-simplex is contained in exactly two
n-simplexes. Thus K is a pseudomanifold. It has some additi-
onal properties, Take a k-simplex A in X and consider
star {A,K) . By Proposition 3.1, for any n-simplexes, P and Q,
in star(A,K) there is a sequence of n-simplexes which connec=-
ts P and 0. That means that star(A,;K) is strongly connec-
ted. The subgraph of G which corresponds to star(A,K) is
fn—k)mregular and connected, and g can be restricted (in an
obvious meaning) to this subgraph. Conversely, if g can be
restricted to an (n-k)-regular connected subgraph of G, then
this subgraph corresponds to a star of a k-simplex. This is
also an immediate consequence of Proposition 3.1. It is easy
to see that this subgraph with the induced simplicial scheme
is isomorphic with the dual graph (and a simplicial scheme on
it) of link(A,K),vif K is simplicial complex.

Let K be a pseudomanifold of dimension .n. Then the
dual graph{ G of K 1is (n+l)-regular and connected. Define
a simpiicial scheme g on G as follows. Every arc e e 5{G)
corresponds to an (n-1)-simplex of K, denote it by face(g).
Suppose that v is a vertex in n-simplex which corresponds
to -8_3 and is opposite to face(g) in this n-simplex. Let
Vert(g) : =v, If 2 @ star(a_%,G), e e star(8+%,G),

-+ * . ; * o+ >, .
and verc(e) = vert(e”), then define g(fle : = e The obtained
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collection of maps {g(f); f e sG)) is a simplicial scheme
on G. Denote a pair (G,g) obtained from K by the above
construction by G(K).

To classify the complexes which can be obtained from
graphs and simplicial schemes we enlarge a definition of strong
connectedness. Let K be a pseudocomplex of dimension n and
let L be a subset of (n-1)-simplexes of K. We say that K
is strongly connected by L if for any two n-simplexes, A and
B of K there exists a sequence of n-simplexes
A =P ,Py...,P, =B suchthat P, and P, (1=1,2,...,k-1)
have a common (n-1)-face which belongs to L.

Theorem 3.3. Let G be a connected (n+l)-regular
graph and g a simplicial scheme on G. The pseudocomplex
K(G,g) 1is a pseudomanifold in which the star of every simplex
A 18 strongly connected by (n-1)-8implexes which contain A,

Moreover, G(K(G,g)) = (G,9).

Proof. We have shown before everything except that

G(K(G,g)) = (G,g). But this is immediate by constructions./////

Theorem 3.4. Let M be a pseudomanifold of dimension
n 8uch that the star of every simplex A €M tis gtrongly
connected by (n-1)-simplexes which contain A. Then

K(G(M)) = M.,

Proof. K(G(M)) 1is obtained as follows. Take a set of

n-simplexes {AI,A2,...,AP) such that there is a bijective

correspondence f : {Al'Azl--~'Ap)‘ {set of n-simplexes of M},
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and for every i =1,2,...,p take a simplicial isomorphism

fi : Ai-—+ f(Ai). If two n-simplexes, f(Ai) and f(A,) of

5|
M have a common (n-1)-face F then identify corresponding
(n-1)-faces, f;l(F) and fJTl(F), of A, and A, respectively.
As the identification map take f;lfi restricted to f;l(F).

If we make all the possible identifactions, ‘we obtain a pseudo-
complex K which is isomorphic with K(G(M)).

Define a simplicial map f: K— M such that the

following diagram is commutative

£ U U ... UF
1 2
A, A2U...UAp P M

where g is the natural projection onto K (K is a quotient
pseudocomplex of A, U a,U...U Ap). If f exists then it
is unique. We shall now prove that £ is well-defined. To see
this it suffices to establish that if q(A) = g(B), A a face

of Ai, B a face of Aj' then fi(A) = fj(B). If g(A) = gq(B)

then there is a sequence A, = A, ,A R = A, such that
i il i, ik B |
f(Ai ) and f(Ai ) have a common (n-1)-face which contains
r r+l1
fi(A)' Since the identification map between Ai and Ai
i r r+il
(r=1,2,...,k"1) is £;' £, , it follows that atert g, @) =
r+l1 r r

= qf7Y (£, (a))). By transitivity we conclude that
frap 1

Q(E]" (£, M) = a(£31 (£, (A))) . Since this is equal to q(a) =

= g(B), it follows that fj

(fi(A)) = B, and fi(A) = fj(B).
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f 1is a simplicial map which is onto by the construc-
tion. To prove that it is also one-by-one (and thus establish-
ing the theorem) it suffices to see that if a simplex A e M
is a face of f£(A;) and of £(A;) then qfj'(a) = qf;1 @A) .
By the assumptions of the theorem, star (A,M) is strongly

connected by (n-1)-simplexes which contain A. Therefore there

exists a sequence Ai = Ail, Aiz, esey Aik = Aj such that
f(Ai ) and f(Ai ) (r =1,2,...,k-1) have a common (n=1) -

s o i
-face which contains A. As above we see that afi (A)-qfi (a),

r+l
and consequently, qfi (A) = qu (a).///7//

At the end of this section we consider orientability
of KX(G,g). Let K be a pseudomanifold. As an ortentation
of K we refer to orientation (in the usual meaning) of |K|
minus [ (n-2)-skeleton of K|. If K is orientable (i.e. ad-
mits an orientation), it has exactly two different orientati-
ons. Every orientation is described as a choice of coherent
orientations at every n-simplex in K. Orientation of a simplex
can be described by a sequence of its vertices, and two sequ-
ences represent the same orientation iff they differ by an even
permutation. Suppose that n-simplexes A and B have a common
(n-1)-face, and that their vertex-sets are (a,xl,xz,...,xn}
and ‘b,xl,xz,...,xn}, respectively. Then the sequence (i.e.
orientations) (a,xl,xz,...,xn) and (b,xl,xz,...,xn) are
not coherent.

Let W = ({1’32""’fd) be a closed walk in G. Then

g(W) : = g(fd) O son O g(fz) o q(fl) can be viewed in an
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5
obvious way as a permutation of arcs of star(a_fl,G). Define
s(W,g) to be equal to 0O, if g (W) 4is an even permutation,
and equal to 1, otherwise. Note that s(W,g) is well-defined

and invariant with respect to cyclic permutations of W.

Theorem 3.5. KI(G,g) s orientable iff for every clo-

sed walk W, s(W,g) <s equal to the parity of the length of W.

Proof; The proof is an easy consequence of the follow-
ing fact. Let A and B be n-simplexes in K(G,g) which have
a common (n-1)-face F, let v, u € V(G) correspond to A and
B, respectively, and let g correspond to F in G (it is
supposed that f 1is directed from v. to u). If Eo’gl""’gn
are the arcs of star(Q,G) then for i =0,1,...,n, vertices
vert(gi) and vert(g(%)éi) are equal in K(G,g) provided
éi # E. That implies that orientations in A and in B rep-
resented by sequences (vert(go), vert(gl), ooy vert(én))
and (vert(g(%)go), vert(g(%)gl), “ sy vert(g(%)gn), respecti-
vely, are not coherent. By extending this along a closed walk
W we see that a sequence (vert(g(W)go,..., vert(g(W)gn))
represents in A the same orientation iff either the length
of W is even and g (W) is an even permutation, or the
length of W is odd and g(W) is odd permutation. The theo-
rem is thus established./////

Suppose that a simplicial scheme g on G is obtai-
ned from a l-factorization of G. For this case in [FGG} it

is shown that KX(G,g) is orientable iff G is bipartite.

This is also immediate by Theorem 3.5 since g (W) is equal
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to ideﬁtity on every closed walk W.

L., CATEGORY OF GRAPHS AND SIMPLICIAL SCHEMES

From a categorical point of view we consider a catego-

s
ry Gn

of n-regular graphs together with simplicial schemes.
A morphism p between (G,g) and (H,h) 1is a covering pro-
jection p : G— H which maps edges to edges, and for every
directed edge e e S(G) with initial vertex v and terminal

vertex u the following diagram comutes

g(e)
star (v,G) star (u,G)
p P
h(p(e))
star (p(v) ,H) + star (p(u) ,H)

Let é be a covering granh over G and let g be a
simplicial scheme on G. Then there exists exactly determined

simplicial scheme & on G such that the covering p : G + G
is a morphism from (G,§) onto (G,q).
Let K and L be homogeneous pseudocomplexes of di-
mesion n. A simplicial map f : K— L 1is nondegenarate iff
f maps every k-simplex (0 < k < n) onto a k-simplex, and is
nonaingular iff every two n-simplexes sharing a common (n-1)-
-face are manped under f onto two different n-simplexes in L.
A technical proof of the following theorem is left as

an exercise,
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Theorem 4.1. The asstgnment K which assigns a pseudo-
SLECTEOM Cads
complex X(G,g) with a patr (G,g) from Gi+1 78 a covariant
funetor from Gi+1 into category of n-dimensional homogeneous

peeudocomplexes and nondegenerate nonstingular maps./////

K
(G,q9) — K(G,q)
P K(p)
K
(H,h) — K(H,h)

Theorem 4.1 is an important tool when con51der1ng non-
singular maps between pseudocomplexes, We give two applications
of this. Another application can be found in |Mo|. Some nontri-
vial results of the same type can also be found in [Fi77],

For a simplex A in K, let p(A,K) denote the number

of top-dimensional simplexes which contain A,

Lemma 4.2. Let K = K(G,9) and L = K(H,h) be n-di-
mensitonal simplicial complexes, and let q: K— L -be a non-
degenerate nonsingular map. Suppose that the link of every
k-simplex in L, k < n=2, g simply connected, and that for any
(n-2)-simplex A of‘ K, p(A,K) = p(qg(a),L). Then q 8 a cove-

ring projection.

Proof. First of all note that g is onto since ¢
and H are assumed to be connected. Every nonsingular map is

covering projection in the interior of n- and (h-l)—simplexes.
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We have to show that q is covering on every simplex. Using
induction on the dimension k we shall show that for every
k-simplex A of KX, k < n-2, link(A,K) is isomorphic with
link(q(A),L). This is true for k = n-2, since link of (n-2)-

-simplex A is isomorphic with a cycle C and link of

o (A,K)

q(A) is isomorphic with Cp(q(A),L)'
For general k, k < n-2, suppose that for every (k+1)-

-simplex X, link(X,K) is isomorphic with link (g (X),L). Let

x be a vertex of 1link(A,K). By the induction hypothesis,

link(x » A,K) 1is isomorphic with link(g(x % A), L) =

= link(q(x) % gq(A), L). We know that

link(x # A, K) = link(x, link(A,K)) ,

and

link(q(x) »* q(A), L) = link(q(x), link(q(A), L)) .

Therefore 1link(x, lini(A,K)) is isomorphic with link (q(x),
link(g(A) ,L)). This is true for every vertex x of link(A,K),
and consequently q restricted to link(A,K) is a covering
projection of 1link(A,K) ongo link(q(A) ,L). By the assumption
of the lemma, link(A,K) 1is simply connected, and since it is
also connected (K is obtained as K(G,g)), it follows that

q restricted to link(A,K) 1is an isomorphism between link (A,K)

and link (q(A),L). This completes the proof./////

Theorem 4.3. Let L = K(H,h) be simply connected
n-dimensional simplicial complex such that the link of every
k-gimplex in L, k < n-2, ig aimply connected. If every (n-2)-
-simplex in L {8 contained in an even number of n-simplezxes,

then H 18 bipartite.
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Proof. Proof will be done by induction on the dimensi-
on n of K(H,h). If n =1, the only possible pseudomanifold
is a cycle Ck. It has exactly one (n-2)-simplex, namely the
empty set. The link of it is whole Ck and hence k is even

by assumption. Since the dual graph of C is isomorphic with

k
Ck' it is bipartite,

Let us now suppose that the theorem is true for every di-
mension less than n. Let G =H @ K2 be a tensor product of
H with K2. G 1s a 2-fold covering graph over H, and has
vertex-set V(H) X {0,1}, two vertices, (v,i) and (u,j) being
adjacent iff v is adjacent with u in H and j # i. It is
" known that G is connected iff H '}s not bipartite. Denote by

g the lift of the simplicial scheme h to G,

We shall use Lemma 4.2. To be able to do this we have
to prove that for any (n-2) -simplex A of K(G,g), p(A,K(G,q))
= p(a(A),L) where g is the nonsingular map determined by
the covering prejection p: H®@ K2-——+ H. This is obvious since
p(q(a),L) is even by assumption, and every closed walk of even
length 1lifts to two walks of the same length in G.

Next we have to prove that K(G,g) 1is a simplicial
complex. We shall use the notations introduced after Proposi-
tion 3.1 where we characterise when K(G,g) 1is a simplicial
complex. We only write (v,i) and (u,j) instead of v and
u, respectively. In H, the{arcs p(gx), P(gl),..., p(gk) avoid
the walk p(Px) and p(gy)) P(El),..., p(gk) avoid p(PY).

Since K(H,h) is simplicial complex, there is a walk PO such
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that all arcs p(gx), p(gy), p(El),..., p(ék) avoid Po. Let
P be a walk in G which is the 1lift of Po and has (v,1i)
as the initial vertex. The arcs Ex, ;y’ 31""’gk all avoid P.
We shall prove that the terminal vertex of P is (u,j) in
any case, thus establishing that K(G,g) 1is simplicial complex.

Suppose the contrary - the terminal vertex of P is
(u,1-j) . Then it is easy to see (use the definition of H ® Kz)
that the length of P has different parity as the length of
PX. Consequently, a closed walk W in H which is a concen-
tration of p(PX) and Po-I has odd length. But W 1lies as
a dual in star(p(C » x), K(H,h)). This means that in the dual
graph of 1link(p(C ® x), K(H,h)) there exists a closed walk of
odd length. In other words, the dual graph of the complex
link (p(C % x), K(H,h)) is not bipartite. Note that this complex
is of dimension less than n and satisfies the assumptions of
the theorem. Using the induction hypothesis we obtain a contra-
diction with non-bipartiteness of the dual graph.

All the assumptions for the map q: K(G,g) — K(H,h)
of Lemma 4.2 are satisfied. Hence q is a covering projection.
Now we use a fact that K(H,h) 1is simply connected. Hence it
admits only 1-fold connected covers. Since K(G,g) 1is a 2-fold

cover, it must consist of two components, hence G = H 8 K is

2
not connected. This implies that H is bipartite./////

Theorem 4.3 is well-known in the case where !K(H,h)|
is a 2 sphere, e.qg. [F177].
Next application concerns colorability of pseudomani-

folds. By a coloring of an n-dimensional pseudocomplex we mean
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a (n+l)-coloring of the vertices of the pseudocomplex, Suppose
that KX(G,g) is n-dimensional. It is easy to see that K(G,q)
admits a coloring iff the simplicial scheme g 1is induced by
some l-factorization of G..Let H be (n+l)-reqular graph on
two vertices, and let h be the simplicial scheme on H which
is induced by the l-factorization of H (in fact, this is the
only simplicial scheme on H) . The following theorem which is
easily proved can be useful when considering colorable comp=
lexes.

Theorem 4.4, Suppose that K(G,q) is orientable. Then

K(G,q9) admits a eoloring <ff (G,q) maps to (H,h)./////

In other words, every orientable n-dimensional colorab-
le pseudocomplex which can be obtained as K(G,g) can be des-
cribed by its dual which is a covering graph over H. The simp=-

licial scheme on G is exactly determined as a 1ift of h.
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ABSTRACT

We determine all graphs G such that the line graph
L(G) is a comparability araph.

1. INTRODUCTION

For several graph-theoretic properties characterizati-
ons of graphs whose line graphs have the property in question
have been given (cf. [2], [3]). Here we give such a characteri-

zation for the property of being a comparability graph.

Definition. A graph G 1is an ordered pair G = (V,E)
where V 1is a finite set and E 1is a binary relation in V:
ECVx V. If E is symmetric and irreflexive (l’:"1 = E,
ENT =@) then G 1is undirected. A binary realtion F C E

is an orientation of an undirected graph G if F[) F-l =(



232
Marko PetkovZek

and F U = E. An orientation F is transitive if F2§; F.
An undirected graph is a comparability graph if it admits a
transitive orientation. Otherwise it is an Zncomparability
graph.

We shall restrict our attention to undirected graphs.

More about comparability graphs can be found in [l].

Efample 1. Every bipartite graph is a comparability
graph since we can orient each edge from the first partitive
set of vertices to the second and get an orientation F with
F2 = (. (It is clear that only bipartite graphs admit such an

orientation as they have no odd cycles). Thus trees, even

cycles, and cubes (Q_) are comparability graphs.
n

Example 2. For every graph G its transitive closure
is a comparability graph. To construct a transitive orientation
assign different integers to vertices and orient the edges from
low to high. Thus complete graphs (Kn) are comparability graphs

since they are transitive clesures of themselves,

Example 3. The graphs Hl = H7 shown in Fig.l are
incomparability graphs. This can be verified by trying to ori-
ent their edges transitively and eventually deducing conflic-

ting orientations of the same edge.
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AAA

= KK, ) Hy = L(Hyp)
H H ) Hy )

Fig.1. Some incomparability graphs

Problem. Characterize graphs G such that the line
graph Luﬂ is a comparability graph!

To solve this problem we need some auxiliary lemmas.

Lemma 1. If G 18 a comparability graph, then every

induced subgraph H of G 18 a comparability graph as well.

Proof. Since the subgraph H 1is induced we can use

the same orientation of edges as in G.

Lemma 2. (a) If H <8 a subaraph of G, then L (H)
i8 an induced subgraph of LI(G).
(b) If K is an induced subgraoh of L(G), then there

~

exists a subaraph H of G 8uch that L(H) = K.
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Proof. (a) is obvious. (b) Let H be the subgraph of
G consisting of edges of G which correspond to the vertices

of K, and their endpoints.

Corollary 1. If L(G) is a comparability graph and
L(H) an incomparability graph, then G contains no subgraph

isomorphic to' H.

Proof. If H were a subgraph of G, then, by Lemma 2a,
L(H) would be an induced subgraph of L(G). But this is impo-

ssible, by Lemma 1.

Corollary 2. If L(G) is a comparability graph, then

G has no subgraph isomorphic to an odd cycle with

Coxs1

k 2 2, or to any of the graphs G1 = G7 shown in Fig.2.

¢//d//£\\Q\\b :%; ESE e N\
By=S(Ky 3)=L"" (Hy) 2 () ei0sU ) e oL ()

- _ °
=L (H¢) et )

Fig.2. TInverse line graphs of graphs HI -4,

Ge=L " (H

n

5) 5
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Proof. By Corollary 1, all we have to show is that the
line graphs of the said graphs are all incomparability graphs.
- L(C2k+1) = C2k+1' and for k > 2 this is clearly an incompa-
rability graph. - For the remaining graphs, note that the line
graphs of G1 = G7 are isomorphic to the incomparability
graphs Hl - H7 shown in Fig.l.

In sections 2 and 3, we shall prove the following re-

sult using Corollary 2.

Theorem. L(G) 1i8s a comparability graph if and only
if each connected component of G 1is of one of the following

types:

-l

(e)

Fiq.3. Some graphs of types (a) - (e)

(a) an even cycle with zero or more pendant edges in
each vertex,
(b) K4-e with zero or more pendant edges in vertices

of degree 2,
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(ec) K4-e with zero or more pendant edges in vertices
degree 3,

(d) Kyr

(e) a path with zero or more pendant edges in each
vertex, possibly with one triangle over one or
both end-edges.

A graph of each of the types (a) - (e) is shown in

Fig. 3.

2. NECESSITY

In this section we prove the necessity part of the Theorem
above: if L(G) 1is a comparability graph then each connected
component of G is of one of the types (a) - (e).

Take a connected component of G.

Case 1. G contains an even cvcle sz. Denote the set
of vertices that lie on the cycle by X and the set of the
vertices of G by VY.

First we consider the edges with at least one endpoint
in Y.

If there exists a path of length 2 or more such that
its first vertex is in X and its second and third vertices
are in Y, then G contains a subgraph isomorphic to Gl’ if
m > 3, or tor G2, if m = 2. (See Fig.4. The forbidden subgarphs
are shown with a dashed line). If there exists a vertex ¢ in

Y adjacent to vertices a and b from X, a # b, then G

congains:
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- C2m+1' if d(a,b) =1 (here m > 2)
- Gy if d(a,b) 2 3

- Gy if d(a,b) =2 and m > 3

- G3, if d(a,b) =2 and m = 2

(See Fig.5. The forbidden subgraph are shown with a dashed

line) . Here the distance is measured around the cycle sz.

,D
v e
?
A== 1
/ .
( \ | B
| |
\ / | |
Vo o o =gy
m = 3 m = 2
Fia.4.
C C
P
\
/
1 //°\\ h y \
/
4 ) '+ g b
\ /
\ / \
Y==ad Y
a pp— C
i =77
/ S 1? _-T /
3 /
P 2 !
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Thus, by Corollary 2, the only possible edges with at
least one endpoint in Y are the pendant edges in the vertices
of the cycle CZm'

Second, we consider edges which are not edges of the
cycle sz, but have both endpoints in» X, that is, the diago-
nals of the cycle. Take a diagonal D. If D cuts the cycle
into two -even cycles,then G contains G, if one of the new
cycles has length 6 or more, or G2, if at least one of the
new cycles os of length 4. (See Fig.6. The forbidden subgraphs
are shown with a dashed 1line).

If D splits the cycle into two odd cycles, they must
be triangles and m = 2. If there are pendant edges in two
consecutive vertices of Cy» then G contains Gg. If both
diagonals of C4 are present and there are pendant edges in

some vertex of C then G contains G (See Fig.7. The

a4’ 6°
forbidden subgraphs are shown with a dashed line).

)

Fig.6.

\
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?
|
S\ e
_7 /I I\\
|
L ;AN
u -L // \\\
e 7 AN
Fig.7.

Thus, by Corollary 2, if a connected component of G

contains an even cycle,it is of one of the type (a) - (d).

Case 2. G contains no even cycle.

Let P be one of the longest paths in G. Denote the set
of vertices that lie on P by X and the set of the rest of
the vertices of G by Y.

First we consider the edges with at least one endpoint
in Y. If there exists a path of length 2 or more, such that
its first vertex x is X and its second and third vertices
are in Y, then x must be at distance 2 or more from either
endpoint of P, or P were not a longest path. But then G con-
tains Gl' (See Fig.8. The forbidden subgraph is shown with a
dashed line).

If there exists a vertex c in Y adjacent to diffe-
rent vertices a and b from X, then d(a,b) 2 2 or P we-
re not a longest path. But then G contains a cycle of length

4 or more. (See Fig.9). Here the distance 1is measured along the

path P.
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?

C
+ N
| // \\
o-co———o——-(L———o——-—oo.- .-oo{-.._o_—>o--.
X a b
Fig.8. Fig.9.

Thus, by Corollary 2, the only nossible edges with at least one
endpoint in Y are the nendant edges in the vertices of the
path P. In fact, there may not be any nendant edges in the
endpoints of P, but we shall rather regard the end-edges as
rendant edges attached in the next-to-end vertices of P and
hence allow pendant edges in every vertex of ©P. Then, of cour-
se, P might cease to be a longest path.

Second, we consider edges connecting two nonconsecutive
vertices a,b of P (shortcuts).

If d(a,b) > 3, then G contains a cycle of length 4
or more. (See fig.l10). If a and b are both at distance 2
or more from either endroint of P, then G contains G,
(See Fig.ll).

There can be no nendant edges attached to the ton of
a triangle. For if neither of a and b 1is an endroint of P
then G would contain G4, and this is the case as P is a
longest nath. (See Fig.12 and 13).

Also two triangles-cannot share a common edae since then

G would contain C4. (See Fig.l14).
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———-

> ~

/ N T~
...J——-o——-o—-.a-.. ...o.---o-—-o’——-o--—\__.o._..o...
a b a h
Fia.10. Fig.11.

e 9

2 b a : b SN
'.'o--'o——'-b—— - oo ?-—-::é—o—p.., - -
N /j I L -q‘_é-——?nuo
~— N N /
N~ — -
Fig.12. Fig.13. Fio.14.

Thus, bv Corollarv 2, if a connected component of G contains

no even cycle, it is of type (e).

3. SUFFICIENCY

In this section we prove the sufficiency part of the
Theorem above: if each connected component of G is of one of
the tynmes (a) - (e), then L(G) 1is a comnarability graph. For
each of the tvmes (a) - (e) we first construct the line graph
and then assign a transitive orientation to its edqges.

A simnle closed curve in the figures reoresents a comp-
lete subqgranh. Tts edges are assigned a transitive orientation

as described in Examnle 2. Only the choice of the lowest and
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the highest vertices

is shown in the figures. They

by L and H respectively.

A transitive
of type (a) is shown
A transitive
of type (b) is shown
A transitive

of type (¢) is shown

5 -
zt

orientation of the line graph
in Fig.15.
orientation of the line graph
in Fig.16.
orientation of the line granh

in Fig.17.

Fig.15.

are denoted

of a graph

of a graph

of a graph
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Fig.17.

A transitive orientation of the octahedron which is

the line graph of the tetrahedron is shown in Fig.18.

Transitive orientations of the line graphs of some

graphs of type (d) are shown in Fig.19 - 21.

Pig.19.
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Fig.21.
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ON GRAPHS WHOSE SECOND SPREAD DOES NOT EXCEED 3/2

Miroslav M. Petrovidé
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ABSTRACT

The quantity Sp = A; = X9y where A; is the second
largest positive eigenvalue and E is the second least nega-
tive eigenvalue of a graph, is called the second spread of

the graph. In this paper all minimal graphs with the

property S, > 3/2, are determined. In addition, all connected
graphs with s, < 3/2 are described.

1. INTRODUCTION

All considered graphs in this paper are assumed to be
undirected graphs without loops or multiple edges. By eigen-
values of a graph we mean eigenvalues of its 0-1 adjacency
matrix,

Throughout the paper, we consider only the graphs
having at least two positive eigenvalues, the largest of which
is XI(G) and the second largest of which is X;(G). As is

easily seen, any such graph has at least two negative eigen-
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values, the least of which is AI(G) and the second least of

which is A;(G). For each such graph G, we denote by
s, 6) =1t - 2@
2 2 2

the second spread of G. For definition and properties of the
first spread of matrices, one can consult [2].
In this paper we determine all minimal graphs with

the property

(1) S, = A, = AL

2 2 " Ay > 3/2

and all graphs without isolated vertices with the property
(2) s, =X, = A, £ 3/2,
We first quote the following lemma, which is an

immediate consequence of the results J.H, Smith ([3]).

Lemma 1. A connected graph G has at least two posi-
tive eigenvalues if and only if it has one of the graphs dis-

played in Figure 1 as an induced subgraph.

Fig. 1,

Next, define an equivalence relation ~ in the vertex

set V(G) of G 1in the following way: vertices x and y
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are equivalent if and only if they have the same neighbours.
Let {Nl,...,Nk} be the corresponding quotient set and
IN n

(i=1,...,k) . The subsets Nl""'N (characteristic

il =y k
subsets of G) have the following property: any two vertices
from the same subset are not adjacent, and any two subsets are
completely adjacent or completely nonadjacent in G. The indu-
ced subgraph g of G obtained by choosing an arbitrary vertex

from each of the characteristic subsetsis said to be canonical

image of G.

Lemma 2. ([4]) Let G be a finite graph and g its
canontical image. Then the number p(G) of the non-zero eigen-—
values of G equals the number p(g) of the non-zero eigen-—
values of g.

The non-zero eigenvalues of G are determined by the

equation

- A
ij ny

f()) = det(b ) =0

61j

where B = [bij] i8 the adjacency matrix of g and 6 i8

i3
the Kronecker 6-eymbol*.

Denote by (:) any graph with n vertices and without
edges. Next, denote by éﬁ; the complete graph Km. The line

between two circles denotes that there are all possible edges

B
Although the proof was given for infinite graphs only,
the proof for finite graphs is completely similar.
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between corresponding graphs. Next, by P(&,m,n) and Q(m,n)

denote the following classes of graphs:

o—O0—C0O —O0—_0O—

P(2,m,n) Q (m,n)

v
Lemma 3. A graph G from the class P(%,m,n) satis-

fies (2) if and only if one of the following holds:

1° 2=2, m>1, n<2 ;
2o £ =3, m>1, n=1 ;
3° 2=4, m=n-=1.

Proof. Let G e P(,m,n). If § = 1, the canonical
image g of G is KZ' Then by Lemma 2, we conclude that G
has exactly two non-zero eigenvalues and does not satisfy (2).
If 2 > 2, then by Lemma 2, we have that non-zero

eigenvalues of G are determined by equation

L 2-1
£0) = L) - 63 (1) 2 2em (neg) A+ (2-1)mn) = 0 .
Hence we conclude that A; = -1 and A; < % if and

only if one of 1°, 2° or 3° holds.

Lemma 4. A graph G from the class Q(m,n) satis-

fies (2) <if and only if one of the following holds:
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Proof. By Lemma 2 we get that the non-zero eigenva-

lues of G € Q(m,n) are determined by equation

£ =22 0f - @m)a? 4 mn) =0 .

Hence we conclude that x; = IAEI 5% if and only if m =1,
n>1 or m=n=2 holds.
Next, denote by R(n) (n > 3) the graph obtained from

the complete graph Kn by removing two incidence edges.

Lemma 5. A graph G from the class R(n) satisfies

(2) for each n > 4.

Proof. As 1s easily shown, the characteristic poly-

nomial of G € R(n) 1is

p(A) = (A1) 3 (23 (n-3)22- (2n-5) A+ (n-3)) .

Hence we conclude that X; = -1 and A; < % for all n > 4.

2. MINIMAL GRAPHS WITH S,(G) > %

Recall that a graph is minimal with respect to the
property P 1if it has the property P and none of its proper
induced subgraphs has this property.

Now we determine all minimal graphs with the property
(1) .

Theorem 1. There are exactly 16 minimal graphs with
respect to the property of having the second spread greater

than 3/2 and they are displayed in Figure 2.
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@@\2@

Gﬁ
G2
G3
Fig.2.
Proof. As is easily seen, the graphs G, -G in Fi-

1 716
gure 2 are minimal with respect to the property (1).

Conversely, let G be any minimal graph with respect
to the property (1). We shall prove that G is one of the
graphs depicted in Figure 2.

The graph G obviously has no isolated vertices. If
G is a disconnected graph, then G1 is an induced subgraph
and hence equals G,

Next, let G be a connected graph. Acorrding to Lemma
1, G contains one of the labelled graphs devicted in Figure 1

as an induced subgraph. We distinguish the following two cases:

Case 1. G has H;, as an induced subgraph.
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Then, let '1‘i (1 < il < ... < i, < 4; 1 < k < 4)

1"'ik k

be the set of vertices from V(G)\V(Hl) which are adjacent

exactly to the vertices 11""'iy of Hl' Let T, be the

set of vertices from V(G)\V(Hl) which are not adjacent to

any vertex of H Excluding the symmetric cases, we disting-

1
uish the following subcases:

je T1 # . Then G2 is an induced subgraph, and
hence equals G.

2° T4 # f. Then G contains the proper induced

subgraph G contradicting the minimality condition.

1
o

3 T12 # #. Then G 1is G3.

4° T13 # #. Then G 1is G

4
0

5 T4 # #. Then G |is GS'

6° Tay # #. Then G contains the proper induced

subgraph G contradicting the minimality condition.

1
o
7 T134 # #. Then G 1is GG‘

[¢]

8 To # . Then G has a proper induced subgraph

with the property (1) contradicting the minimality condition.

Let next Tl = T2 = T4 = le = T13 = Tl4 = T23 =
=Toq = T34 = Tyaq = To3q = T = -

9° |1yl > 1. Then G is Gg.

10° |Tyl =1, T,y # #. Then G 1is G ,.

1° |r,l =1, T ,, # #. Then either G € P(2,m,2)

(and by Lemma 3, it satisfies (2)), or it has a proper induced
subgraph with the property (1), contradiction.

0 | -
12 ,T3] 1, T 5a4 # #. Then G |is Gyye
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Let next Ty = g.
)
13 |T123| > 2, Then G is Giye
o ; - :
) 14 ]T123| =2, T,,, # #. Then G is G5
- o _
15 |T123| =2, Tyy34 # #. Then G has a proper

induced subgraph with»the property (1) contradicting the mini-
mality condition.
0 _ i
16 [T123| =1, T124 # f. Then either G e P(3,m,1)
(and by Lemma’3, it satisfies (2)), or it has proper induced

subgraph with the ?roperty (1) , contradiction,

o =
17. IT 53] =1, Tio3q # ﬁf Then G is Gyye
Let next T123 =g,
18° |T124] > 1. Then either G € P(2,m,1) (and by

Lemma 3, it satisfies (2)), or G = H3 (and satisfies (2), too) ,
or it has a proper induced subgraph with the property (1),
contradiction.

13°
Finally, let Ti24 = #. Then obviously G is G

19° ITy241= 14 T 53, # 8. Then G is G
13°

Case 2. G has H2 and has no Hl as an induced

subgraph.
Let T and T have the same meaning as in
il...ik 0
the first case, now with respect to H2. Then le = T23 =

=T34 = T123 = Tip4 = Ty34 = Ty34 = Typyy = P. Fxcluding the

symmetric cases, we distinguish the following subcases:

19 T1 # f. Then G contains the proper induced
subgraph G1 contradicting the minimality condition.

2° T, # #. Then G is Gg -
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o

3 T14 # f#. Then G is G..

7
4° Ty # #. Then G has a proper induced subgraph
with the property (1) contradicting the minimality condition.
Finally, let T1 = T2 = T3 = T4 = T14 = To = fg.
5° T3 # #, T,, = #. Then G € Q(1,n) (and by
Lemma 4, it satisfies (2)), contradiction.

0

6 T4 # 0, Ty # g. Then G is G

16°
This completes the proof of Theorem 1.

3. GRAPHS WHOSE SECOND SPREAD DOES NOT EXCEED 3/2

In this section we determine all graphs without iso-

lated vertices whose second spread does not exceed 3/2.

Theorem 2. Let G be a graph without isolated verti-
ces. The second spread of G 18 not greater than 3/2 if and
only if one of the following holds:

(1) G e p(e,m,n) (2 =

2, m21, n¢<2; =3, m?2»1,
n=1 or ¢ =4, m=n=1);

(1i) GeQmn) (mMm=1, n>1 or m=n= 2);
(11i) G € R(n) (n 2 5);
G

(iv) is the graph H from Figure 3.

3

Proof. Let a graph G has

the second spread not greater than

\ i j l / 3/2. To describe G, we use the
method of impossible subgraphs.

Hy

By the Interlacing theorem we
Fig. 3.
conclude that G contains none
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of the graphs le - G16 from Figure 2 as an induced subgraph,

because they satisfy (1),

The graph G 1is connected, because in the contrary
case G1 is an induced subgraph, contradiction. According to
Lemma 1, G contains one of the graphs from Fig.l as an indu-

ced subgraph. We distinguish the following two cases:

Case 1. G has H1 as an induced subgraph.

Let T ; and T have the same meaning as in
il---lk o .
Theorem 1.

Then T1 =T, = f§, because in the contrary case G2

2
is an induced subgraph, contradiction. Similarly, we have that

Ty =Typ =Ty3 =Tyy =Ty3 =Ty = Tyy =Ty3y = Ty3q = F

(otherwise we obtain one of the graphs in Figure 2 as an indu-
ced subgraph, contradiction). Moreover, we have that To =4g.
Indeed, in the contrary case G has at least one of the

graphs Gl’ G2, G3, G4 as an induced subgraph, contradiction.
Thus, all these sets except eventually T, T123, 'I‘124 and

T1234 are empty. Next, we distinguish the following five

cases:

0 — — — —
17 Ty = Typ3 = Typq = Typ3e = 9

Then G = H1 € P(o,myn) (£ =2, m=mn=1),

0 _ _ _ .
T3 £ 0, le3 = T124 = T1234 = ff. In this case we

2
have that |[T,| =1, since G has no G, or G, as an induced

subgraph., Thus, G € P(%,m,n) (2 =2, m =1, n= 2).
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(o] — = =
37 Tya3 £ 8, T3 =Ty T 234 @#. Then the set

T123 cannot have two nonadjacent vertices, since otherwise

G4 is an induced subgraph, contradiction. But since T123

has no triangles (for G has no G14 as an induced subgraph),

we have that [T and G e P(&,m,n) (3 < & < 4,

123l <2
m=n-=1).

0 _ _ -
4 T} 04 £ 0, T3 = le3 = T1234 = ¢. Then the subgraph

H of G induced by the vertex set T124 is either K or

2
the graph without edges. Indeed, in the contrary case G has

at least one of the graphs G G12' G13 as an induced sub-

4'
graph, contradiction. Wherefrom, G = H3 or G € P(L,m,n)
(¢ =2, m>2, n=1).

50

T1234 # 0, T3 = T123 = T124 = f. Then the set
T1234 is complete, because otherwise G13 is an induced
subgraph, contradiction. Thus, G € R(n) (n > 5).

Now we determine the edge-relations between the sets

T3, T123, T124, '1‘1234 in G and represent them by Table 1.

Table 1

Ty | Ty23 | Tr2a | T1234
T, [ 1 g
Ti23 1 p
T124 0

If the corresponding sets are completely adjacent, completely

nonadjacent, or not consistent, the symbols 1, 0 or #,
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respectively, are used. So for example, the sets T3 and

T123 are not consistent, since G has no G4 or G11 as
an induced subgraph.

Taking into account all possible combinations with
the sets T3, T123, T124 and T1234, we can distinguish the
following three cases:

o _ _ .

6 T # 0, T124 # 0, T123 = T1234 = f. Then, having
in view 2° and 4°, we conclude that G e P(&,m,n) (& = 2,
m> 2, n= 2), Indeed, in the contrary case G contains G

11
as an induced subgraph, contradiction.

o _ _ = :

7 T123 # ﬂl T124 # ﬂl T3 = T1234 = ﬂ. Then, if the
subgraph induced by T124 is K2, we have that G has G13

as an induced subgraph, contradiction. Let T consist of

124
n 21 isolated vertices, Then if IT123| =2, G will be
an induced subgraph, contradiction, while if |T123[ =1, we

get that G € P(¢,m,n) (£ = 3, m > 2, n=1),

(o]

8 T124 # g’ T1234 # ﬂl T3 = T123 = ﬂ. Then if the

subgraph induced by leé is K, we have that G has G

1
as an induced subgraph, contradiction. If le4 consists of

n >1 isolated vertices, then G has one of G5, G as

12
an induced subgraph, provided that !T124l >1 or {T1234I > 1,

contradiction. In the remaining case, we obviously have

that G = H3.

Case 2. The graph G has H2 and has no H1 as an

induced subgraph.

Then, obviously, le = T23 = T34 =T =T =T =
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= T234 = T1234 = f. Besides, T1 = T4 = @, since otherwise G

contains Gl as an induced subgraph, contradiction. In a si-

milar way we conclude that T2 = T3 = T14 = @ (otherwise G con-
tains G8 or G7 as an induced subgraph, contradiction).
Similarly To = f, since otherwise G8 is an induced subgraph,

contradiction. Thus, all above sets except eventually '1‘13

and T24 must be empty.

The sets T13 and T24 consist only of isolated ver-

tices. Indeed, in the contrary case G has Hl as an induced

subgraph, contradiction. Next, each vertex from T must be

13

adjacent to any other vertex from T (otherwise G contains

24
the impossible subgraph Gl' contradiction) .

So, we determined the structure of the considered
graph. Taking into account all possible combinations and having

in mind the symmetry, we distinguish the following subcases:

(o}

1= Ty3 =Ty, =%. Then G € Q(mn) (m=n =1).

20 Ty3 # #, Ty, = #. Then G € Q(myn) (m =1, n > 2).

39 Ty3 # #, T,, # #. Then if IT 5l = [Tyy] = 1, we .

4l
have that G € Q(m,n) (m = n = 2), while if [Tl3l >1 or

|T24| > 1, we get that G contains G as an induced sub-

16
graph, contradiction.

This, together with Lemmas 3-5, completes the proof.
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ABSTRACT

In this paper we prove that every tournament T with
n =2k > 14 vertices, which contains a transitive subtournament
TT and does not contain a TTg, has an antidirected Hamiltoni-
an“circuit. From this fact and Rosenfeld’s result [6] it fol-
lows that every tournament T, with n = 2k > 16 wvertices has
an ADH circuit,

1. INTRODUCTION

An n-tournament Tn is an oriented comnlete graph with
n vertices. A simple path (circuit) in a diagraph is antidirec-
ted if every two adjacent edges of the path (circuit) have oppo-
site orientations. An antidirected Hamiltonian path (circuit) -
- ADH path (circuit) is a simple antidirected path (circuit) which
contains all vertices.

B. Griinbaum introduced the ADH paths and circuits in |3/
and proved that every tournament, excent Tg v Tg and Tg , has
an ADH path. A simpler proof with some adiitional results was gi-

ven by M.Rosenfeld in |4| . Since a tournament T~ can have ADH

circuit only if n 1is even and TB which contain a Tg cannot
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have an ADH circuit, B,Griinbaum conjectured that every tourna-
ment T, with n = 2k 2710 has an ADH circuit. The conjectu-
re was proved by C.Thomassen [5] for n > 50 and by M.Rosen-
feld [6] for n 2 26 . We prove that Griinbaum’s conjecture is
true for n 2 16 ,

DEFINITIONS AND NOTATIONS. TTn is a transitive tour-

nament with n vertices. We usually denote the vertex set of
TT, by {1,2,...,n} where i+j iff i<j . Tg and Tg are

unique regular tournaments with three and five vertices, res-
pectively, T? is a regular tournament with seven vertices

VO'vl""'VS where vi+vj if 1i-j is a quadratic residue mo-
dulo 7, Tp+Tq is every (p+q) - tournament in which P verti-
ces span a subtournament isomorphic to Tp while the remaining
g vertices span a subtournament isomorphic to Tq . If a vertex
v dominates vertices vl,vz,...,vk (k>1), we write v+{v1,v2,..
..,vk} « Similary we write A-+B to express the fact that every
vertex from the set A dominates €very vertex from the set B .
A vertex v 1is-a starting (terminating) vertex in Tn if there
exists an ADH path v*v1+...(v+v1+...) -« If v 1is both starting
and terminating vertex, then v is a double point.

We shall use the following results due to B.Griinbaum
and M.Rosenfeld ([3] , [4] , [6] ) -

(A) Every tournament with an odd number of vertices,

that has an ADH path, has a double point.

(o]

3 ¢ 7 and Tc , has

(B) Every tournament, except T g 7

an ADH path,
(C) (a) If n=2k ; then TTn has an ADH path starting

at i (i#n) and terminating at j except for following cases:
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(1) 3=1 ,
(i) i=1 , j=2 (n>2) ,
(iii) i=2k-1 , =2k .
(b) If n=2k+1 , then TTn has ADH path with i
and j as starting vertices if 1i,j#2k+1 and {i,j}={2k-1,2k},

(n>3) .

2. ADH-CIRCUITS
Let Tn be a tournament with n=2k2>14 vertices. Sin-
ce every tournament with at least 14 vertices has a transitive

subtournament TT. ([2]), we can consider T, as T =TT,

m=2k+129 . Denote by {1,2,3,4,5} and {vl,vz,...,vm} the ver-

+Tm ’

tex sets of TT5 and Tm , respectively. Without loss of ge-

nerality we may assume (by (A) and (B)) that

V,+Va+* ... +V *v
1 2 m=1 "m

is an ADH path in Tm and at least three vertices of TT do-

5
minate the vertex vy o

At first we shall prove some lemmas. In all these lem-
mas Tn is the above mentioned tournament. Furthermore we as-

sume that Tn does not contain a TT6

Lemma 1. For every vertex vy of Tm there are ver-
tices » and q of 'I"I’5 such that v,*p and vi+q .

Proof. It follows immediately from the condition
T, P T, .

Lemma 2. If the tournament Tn has no ADH circuits
and vl*(i,j,k) ({1,3,x} C (1,2,3,4,5) , 1i<j<k , 1<3) ,then

v, +{1,2,3,4} and vm*S .
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Proof. 1If Vm+£ » £ € {1,2,3,4} , then XPV +V >

coo*V v «f+>,,.+x 1is an ADH circuit in T _, where
m=1 m . %
_J1 for AL=2i ) _
X = {j Eor Ped and £+...+x is an ADH path in T'I‘5 which ex

ists by (C). This is in contradiction with conditions of the
lemma., So vm+{1,2,3,4} and by Lemma 1. v.*5 .

Lemma 3. If the tournament Tn has no ADH ceircuits,
v1+{3,4,5} and vl+{l,2} 7 then,vm+{1,2} .

Proof. 1If Vm+£ » L € {1,2}, then 3»v1+v2+...+vm_1+
+v #4+...+3 is an ADH circuit in T~ where £+...«3 is an
ADH path in TT ((c)).

Lemma 4. If the tournament Tn has no ADH circuits,
vl*{3,4,5} ’ vl*{l,Z} ; vm+{i,j} and vm+{1,2,k} ({i,3,k}={3,4,5})
then:

() v _,+{1,2,x} ,
(1) vm_z*{l,z,vm} .
(iid) vm_3+{1,2,vm_1,k} ’
(iv) vm_4*{1,2,vm_2} i
Proof.‘ .
(1) For v__.+£ , £ € {1,2,k} we have ADH circuit

m-1
x+v1+v2+...+vm_1*£+vm*y+...+x in TT  where x={ 3 for kid

§ 5 2 4 for k=3
_ or L=k -
y= {k for £sx 2and y+...+x is an ADH path in TTS\ {£3} ,

(11) Suppose that V-2t + £ € {1,2} . Let {x,y,k} =

= {3,4,5} and {2,2'} = {1,2} . By (i) £+vm_2+vm_3+...+vl+y+

>V +

m Vm-1"%*2'+k<f 1is an ADH circuit in T, . If , then,

v +V
m=-2 m

by (i) , x+v1+v2+...+vm_2+vm+k+£+vm_1+2+y+x is an ADH circuit

_ 13 for k+#3 _ | 4 for k=5
in T, with x= {4 for k=3 and Y‘{s for k#5 °

(111) 1f vm_3»£ , L e {1,2}, we have, according to

(i1), ADH circuit v <v_+,,.+v _-Ley Y Y

1 "2 m-3 m=-2 +x+£’*y+z+vl

=1
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({e,e"¥y={1,2} , {x,y,z}={(3,4,5}) . If Ve Ve then, accor-

ding to (i) and (ii), v1+v2*...+vm_3*vm_1«1*2«vm_2+vm+x+5+y»v1

({x,y}=1{3,4}) is an ADH circuit in T . Finally, suppose that

vm_3*k . If vm_l*j, then k«v o *Vp_ 4%

+2+«1+k is an ADH circuit in Tn . If vm_1+j (then vm_l*i by

...+v1*1+j+vm_l+vm+vm_2*

(1)), we have for vm_z*j ADH circuit k+vm_3¢vm_4«...*v1+j*

*vm_z*vm_l*i*1*2+vm*k and for v__.+j ADH circuit kev, Vo ¢

+...*vl«i+vm+vm_2»j+2*vm_1«1+k .

(iv) Let v «¢ , £ e {1,2} . Then by (1ii) &+v _,+

-4 4

m_s*...+v1+x+vm*vm_l*vm_2+vm_3+y+t’+z+£ ({e,2}y={1,2} ,

{x,y,z}={3,4,5}) is an ADH circuit in T c If Vo 4*Vine2o Ve

get from (ii) and (i1i) ADH circult v, «v *...2Ve Vo _>*V*

Vv

Vg Tl 2 aedsy

Since all cases lead to cntradictions, Lemma 4. is pro-
ved.,
Lemma 5. If the tournament Tn has no ADH circuits,

{vl,vm}*(3,4,5} ’ {vl,vm}*{l,Z} and v eV, then:

(1) vm_l*{2,4,5) ’
(11) v +{1,v ) .
Proof.

(1) For v +2 we have ADH circuit 2+vm_1*v +

m=1 m__z".-.

*v1*3*vm*4*5~1*2 . From conditions of the lemma it follows that
vm*vl#vz*...*vm_1

dual assertion of (C) (assuming that Tn has no ADH circuits)

is an ADH path in Tm and according to the

we get v _ +{4,5} .

(11) Since l*vm_z*vm_3*...*vl¢5‘vm~4+vm_l«2*3¢l is

an ADH circuit in Tn we conclude that vm_z*l . Suppose that

Vi-2Vm According to (i) and Lemma 1., three cases are possible:
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(a) Vm_l*l 3 vm_1+3 (b) vm_1+{1,3} (c) vm_1+1 ’ vm_l*3 .

«v_ >

But in the first case we have ADH circuit v RACIEEERA ANPL

1

in the second v, +v_ +...+Vv «V_+lev
m=2 m

1! e m-1"

+3+2->5<-4+v1 and in the third. v1+v2+...+Vm_2+vm+2+l+vm_l+4*

+2+1*5+4+Vm_1+3+v

+5+3+v1 .

This completes the proof of lLemma 5.

Now we can prove the main result of the paper.

Theorem 1. Every tournament Tn with n=2k>14 ver-
tices which does not contain a transitive subtournament TT,
has an ADH eireutt,

Proof. Since n214, Tn has a TTy, as a subtournament
[2] . Therefore we can write T,=TTg*+T , m29 , as in begining
of this chapter.

Let v ,+{i,j,k},({1i,5,k}C{1,2,3,4,5}, i<j<k) . There,
are two characteristic cases to be examined.

Case 1, i<3 ,
Let 2z be a vertex of TTy; such that Va-172 (it follows from

Lemma 1.)., If 2z#5 we have by Lemma 2. ADH circuit

X*V1+V2

m-1
_ J1 for z#i
where x = {j for z=4 ¢ @nd y+...+x 1is an ADH path in TTS\{z}

E e = +z+vm+y+,_,+x y
for suitably chosen y € {1,2,3,4}\{z} .
If v .-1>5 and vm_1+{1,2,3,4}, we have ADH circuit
1V 4V >ty aBeys, el
where Y*e.o*l 1s an ADH path in the transitive tournament
TT5 = {1,2,3,4,v } , y e {1,2,3,4\ {1} .

Thus case 1. is settled.
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It is obvious that v1+{3,4,5} and v1+{1,2} . Accor-
ding to Lemmas 1 and 3 we have to consider three cases:

(a) - is dominated by exactly one of the vertices
3,4, 5%

(b) P is dominated by exactly two of the vertices
3,4,5.

(c) v is domipated by all the vertices 3,4,5.
(@) v +i, vm*{1,2,j,k} , ({1,3,k}=(3,4,5}) . Denote by z a

vertex of TT5 such that Vo-1*?% - By Lemma 3. for z#i

XFV ¢V, %00 o *+V

1Y, e A
3 for z#3
is an ADH circuit in Tn ; where x = {4 for fwi and y+...+x

is an ADH path in TTS\{z) for suitably chosen z . For z=i

we have ADH circuit

PV YV, LtV +1{4]14924yv +y+x
* 2 * m-1 m"Y ’

1

3 for z#3
with x = {4 for z=y and {1,x,y}={3,4,5} .
(b) vm+{i,1} , vm+{1,2,k} , ({1,3,k}={3,4,5}) . Assume at first
that k#5 , By Lemma 4. (iii) and Lemma 1. vertex Vin=3 domi-
nates at least one of the vertices 1 and 4§ , If vm_3*i, then

1+vm_3+vm_4*...*vl*k*j*l+2+vm_2*vm+vm_l*i

is an ADH circuit in T, for Va-1*1 and

A A Rt AN JE EY

for Voi-1*1 . (Observe that in the last case vm_l*j by Lemma 4.

(1)). 1f v __,+j, we get ADH circuit

j*vm_3*vm_‘*...*vl*i*vm*vm_z*2*l*vm_1*k*j ’

where v __ +k (by Lemma 4. (1)) and k<j .

Examine now the case k=5 , The ADH circuit 4*vm -+



266
Vojislav Petrovid

Vgt _-fvl,+5*vm_1+1+2<-vm_ 2->Vm+3+4 implies that
(1) '. Va-3t4 .

From (1) and Lemma 4, it follqws that

(2) - vm_3+3 .

Further, ADH circuit . 3<«v

m_3+vm_4*...+v1+4+5+1+2+vm

<>
-2 Vm-1 ?

implies that
(3) v__.*3
aﬁd'according to Leﬁma 4,
(4) | vt
By Lemmas 1 and 4 Voa is dominated by at least one

of vertices 3,4 and 5. Using (1), (2), (3) and (4) we have ADH

circuits
3*vm_4+vm_5+...*v1+S*Vm_3+1+2+vm_2+vm+vm_1+4+3 ’
4+vm_4+vm_5*...»v1+5+vm_1+3+vm+vm_2+2+l*vm_3+4 ’
5+vm_4+vm_5+...+v1+4+vm_3+1+2+vm_2+vm+3+vm_1+5 ’
respectively,

(c) vm*f3,4,5} i Vm+{1,2} . We shall examine the three cases
mentioned in the proof of Lemma 5.

1) Vm-1"1 7 V13 . Notice at first that

(5) vm_z#{3,4,5} .

Indeed, if Va-o*ti , 1 € {3,4,5} , then i»v

Ve o PV V>
m=2 "m-3 1 m
»2+1+j+k+vm_1+i ({1,3,k}={3,4,5} , j>k) is an ADH circuit in The
The vertex V-3 dominates at least one of the vertices
1,2,3,4 and 5, If it is 1 or 2, we have, using (5) and Lemma

5., ADH circuits
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1+Vm_3+vm_4+,..+v1+3+5+2+4+vm +vm+vm_1+1 ’

-2

2+Vm_3+vm_4+,,,+v1+3+vm_1*4+vm+vm_2+5+1+2 ,

1f v .»i , i e {3,4,5}, then there is ADH circuit

m-3

+v hd D A A A B
i . n -

n=3 vm_4 1 +]+k+vm_1*2*i )

-2
where {i,3j,k}={3,4,5} and 3>k .

2) vm_3+{1,3} . Since 2+vm_2*vm_3*...+v1+4+vm+vm_1+
+3+1+5+«2 and 4+vm_2«vm_3*...+v1+vm*1*vm_1*3«2+5+4 are ADH
circuits in Tn we conclude that

(6) v _,+(2,4) .

Let v i,41ie{1,2,3,4,5} . For i€ {1,3} we ha-

m-'3+

ve, using (6), ADH circuit

i+v >y “, .Y +k+5+j¢l+v Yy 4V +1
1 m m

m-3 m-4 m-2 -1
- |3 for i=1 _ |2 for i=1 g - |4 for i=1
where k 4 for 1=3 ' 3 1 for i=3 ' 2 for im3 * FOT
i=2 we obtain ADH circuit
2+vm_3+vm_4+...*v1+3*5+4*vm+vm_1*1+vm_2+2 s
Finally, for i € {4,5} we get ADH circuit
1*vm_3+vm_4+...*v1+j*vm*vm_2¢1+vm_1*3+2*1
where {i,3}={4,5}
3) vpatl v y*3 . In this case
(7) Vo-2*12.3} .
Indeed, for vm_2+2 we have ADH circuit 2+vm_2*vm_3*...*vl*4*
*vm~vm_l43+1+5+2 and for vm_2*3 3*vm_2«vm_34...»v1+vm*2*1*

*vm_l*4*5«3 , by Lemma 5.

Let v

Ll 1e{1,2,3,4,5) . 1f 1€ (1,2,3), ve

get, using (7) and Lemma 5, ADH circuit
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1+vm_3+vm_4+..,+v1+5+vm+4+vm_l+j+k+vm_2+i
where {i,j,k}={1,2,3} , 4<k . For i e {4,5}

j_+vm_3->vm_4+. o .+V1<—j+vm+vm_1+3<-Vm_2->2<-]_->j_

with {i,j}={4,5} 4is an ADH circuit in T, -

In all cases we have obtained contradictions which pro-
ve Theorem 1.

Theorem 2. Every tournament Tn with n = 2k 2 16
vertices has an ADH eircuit.

Proof. It is proved in [1]| that every tournament

Tn with n216 vertices has a transitive subtournament TT5 .

If Tn does not contain TT6' the proof follows from Theorem 1.

The case TnZD 7T was proved by M., Rosenfeld [6] .

6
3. REMARKS

Three types of tournaments, TlO' T12 and T should

147

be checked to prove Griinbaum’s conjecture. Since every T14

r s - :
contains TT, [2], the conjecture is valid for n=14 if TiaD Te-

This is an immediate consequence of Theorem 1. According to [6L

_ cc
T14 = TT7 + T7 .

In our opinion, techniques similar to those used in the proof

the oniy case of interest for n=14 is

of Theorem 1. can be applied to this case as well. For tourna-

ments T10 and le the problem remains open,
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ABSTRACT

The purpose of this note is to show that -quadrilateral
embeddings are at least as important as triangular embeddtngs.
Namely, the study of cellular graph embeddings can be reduced
to the study of quadrilateral embeddings of bipartite graphs.
We show this by exhibiting an easily computable one-to-one
correspondence between cellular graph embeddings and quadrila-
teral embeddings of bipartite graphs. Finally, the diagonal
construction applied to the orientable embedding of the n-cube
graph is extensively studied.

1. INTRODUCTION

Triangulations are important in topology. In topologi-
cal graph theory where the embeddings of graphs into surfaces
are studied, they are important, too: by virtue of Euler’s equ-
ation any triangular embeddings is also minimal embedding
(i.e. it is a genus embedding if it is orientable). However,
we believe that the importance of triangular embeddings of

graphs was overemphasized in the past. Not all graphs admit
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triangular embeddings. Take for instance bipartite graphs: sin-
ce they possess no odd cycles the quadrilateral embeddings are

the best one can hope for.

2. THE PURPOSE

It is the purpose of this note to show that quadrila-
teral embeddings are at least as important as triangular embe-
ddings. Namely, the study of cellular graph embeddings can be
reduced to the study of quadrilateral embeddings of bipartite
graphs! We show this by exhibiting an easily computable one-
-to-one correspondence between cellular graph embeddings and
quadrilateral embeddings of bipartite graphs.

We start with an arbitrary cellular embedding of some
graph G 1into some orientable or non-orientable surface §S.
First, we construct the web graph W(G) determined by this
embedding. The embedding of G into S induces also a cellu-
lar embedding of W(G) into S. Its dual B(G) on S is a
quadrilaterally embedded bipartite graph.

The reverse process, which we call the diagonal con-
struction, produces - from a quadrilateral embedding of some
bipartite graph B into the surface S - dual embeddings on

S of graphs DO(B) and D, (B) in such a way that
W(D,(B)) = W(D, (B)) = B*, the dual of B.

Finally, the diagonal construction applied to the ori-

entable embedding of the n-cube graph is extensively studied,
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3. NOTATION AND TERMINOLOGY

It is assumed that the reader is familiar with the
fundamental results of the theory of graph embeddings in parti-
cular with the combinatorial tools that describe cellular embe-
ddings of graphs into surfaces. All embeddings in this note are
cellular! The survey paper [12] by Stahl is highly recommended,
since we adopt his point of view. However, the terminology and
notations differ slightly. For terms not defined here the rea-
der is reffered to any standard textbook on graph theory, e.g.

Harary [3].

L, THE WEB CONSTRUCTION

Let G be a graph and let (P,s) be any of its (gene-
ralized) embedding schemes. We call the triple (G,P,s) =S
an embedding of graph G 1into the surface S. This abuse of
language is suggested by Theorem 4 of Stahl [12]. Compare also
with Ringel [10].

Given an embedding (G,P,s) we construct the web graph
W(G) together with its embedding into the same surface § as
follows: let W(G) be a spanning subgraph of the line graph
L(G); two edges e and f of G are adjacent as vertices of
W(G) 1iff £ = (e)Pv for some vertex v of G.

Figure 1 represents an embedding of Kg o the complete
graph on 5 vertices, into Sl' the torus, together with the

corresponding web graph W(KS).
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Fig.1. Embedding of Kg and its web
W(K5) on the torus

If G is a simplicial graph with no vertices of
degree less’than 3, then W(G) is a simplicial graph, too.
We leave tog£he reader to fill in the detailes of the defini-
tion of W(G) if G has multiple edges, loops, or vertices
of degree one or two. See Figure 2 for help.

We omit the lengthy combinatorial description of the

induced embedding of the web graph.
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(a)

(b)

(c)

FPig.2. (a) An example of a planar graph G with loops,
multiple edgee, and vertices of degree one and two. (b) The
web construction applied to G. (c) The web graph W(G).



276
TomaZ Pisanski. and Aleksander Malnid

5. SOME PROPERTIES OF THE WEB GRAPH

5.1. Although W(G) was defined using the triple
(G,P,s), it turns out that it is independent of s. This can
be seen if we consider the line graph L(G). Recall that the
Krausz partition K of L(G) is the family of complete sub-
graphs of L(G) induced by the stars at vertices of G. (See
R.L, Hemminger and L.W. Beineke in [4, page 278]). Every edge
of L(G) is in exactly one member of the Krausz partition K
and every vertex is in exactly two members of K. Now we
change L(G) into W(G) by supstituting each complete graph
from the Krausz partition with an arbitrary Hamiltonian cycle,
Again, pay attention to the difficulties when G possesses
vertices of degree less than 3. To set a specific web induced
by say, (G,P,sn‘ we have to choose the Hamiltonian cycles indu-
ced by Pv' This proves that W(G) is independent of s. Even
more, if we change P by replacing Pv by its inverse Inv(PV)
at some vertices v then W(G) does not change.

This discussion suggests the following definition: a
eycle Kraussz partition of a graph H is a collection C of

subgraphs of H with the following three properties:

(1) Each member of C is a cycle (1 and 2-cycles allowed)
(1i) Every edge of H is in exactly one member of C.

(i1ii) Every vertex of H 1is in exactly two members of C.

5.2. Let H be a (connected) graph, then the follo-

wing statements are equivalent:
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(1) H 1is a web graph (of some graph).
(11) H has cycle Krausz partition.

(ii1) H 1is (connected) regular of degree 4.

We saw that (i) implies (ii) in 5.1. Now, (ii) implies
(1) . The cycle Krausz partition C of H can be augmented
into a (usual) Krausz partition K of some L(G) by changing
cycles into complete graphs. Now, apply again 5.1 to see that
H = W(G) for a suitable embedding of G. For instance take
the embedding (G,P,1), where Pv is induced by the corres-
ponding (oriented) cycle of C. Here 1 denotes the constant
map. It is trivial to see that (iii) follows from (ii).
The converse is a trivial corollary to the Petersen’s Theorenm,

e.g. [3, Theorem 9.9].

5.3. Let G* be the dual graph of graph G on the

surface S = (G,P,s). Then W(G*) = w(G).

We only give a sketch of the proof. Consider the embe-
dding of W(G) 4induced by (G,P,s). The regions of this embe-
dding fall into two classes. The regions of the first class
correspond to the regions of (G,P,s). The regions of the se-
cond class correspond to the local rotations Pv. Passing from
G to its dual G* we only interchange the regions and local
rotations. Therefore, W(G*) = w(G). Notice, that the regions
of the second class are bounded precisely by the cycles of the
cycle Krausz partition of W(G) induced by P. The remaining

regions correspond to the cycle Krausz partition of W(G.)-W(G)
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determined by the dual embedding (G*,P*,s*). Since the cycles
of the cycle Krausz partition are edge-disjoint we immediately

obtain the following:

5.4, Let W¥(G) be the dual of W(G) on §, where
the embedding of W(G) is induced by (G,P,s). Then W*(G) is

a bipartite graph, quadrilaterally embedded into §S.

5.5. As a by-product of the preceding discussion we
get:
(i) Every cellular embedding of é cubic graph G deter-
mines the same web graph W(G), namely the line graph L(G).
(ii) Every regular graph of degree 4 admits an embedding
with a bipartite dual. (The embedding can be chosen to be

orientable) .

5.6. Lastly, it might be noted that the quadrilate-—
rally embedded bipartite graph W*(G) corresponding to G and
G* can be nicely pictured directly from G and G*: given
a cellular embedding of G on S (with vertices represented by
solid dots, and edges by solid curves, say - see Fig.3), cons-
truct G* in the usual way (with vertices represented by open
dots and edges by dashed curves); now for each edge e of G,
draw "squiggly" curves connecting the endpoints of e with
the vertices of G* immediately on either side of e. The
result will be a bipartite graph B = W*(G) with vertices

those of G and G* and with edges the "squiggly" curves.
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Its (quadrilateral) faces contain as diagonals the pairs of

corresponding edges of G and g*,

Fig.3. Construction of B = H‘(G{
directly from G and its dual G
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6. EXAMPLE

Take for instance the complete bhipartite graph Km n°
14

Its line graph L(Km n) is isomorphic to the Cartesian product
14
the complete graphs: L(Km n) = Km x Kn' The Krausz partition
4
is given by both projections. It consists of m copies of Krl
and n copies of Km. Now, we may choose spanning cycles Cn
in Kn and Cm in Km in such a way that Cm x Cn is a spa-

nning subgraph of L(Km . The graph Cm x C intersects each

,n) n

element of the Krausz partition in a Hamiltonian cycle. This

proves that C_x C_ = W(X ) for some embedding of K -
m n m,n m

’ N

7. THE DIAGONAL CONSTRUCTION

We start with an arbitrary connected bipartite graph B,
quadrilaterally embedded into some surfacg S. Let Vo and Vl
be the bipartition of its vertex set V. Now we define two
graphs Go and Gl (togethér with their cellular embedding
into S). Let V(Gi) = Vi’ and E(Gi) = (diagonals of quadrila-
teral faces of the embedding of B with their endpoints in
Vi)' i=0,1.

This construction Gi = Di(B), i=0,1 is called the
diagonal construction. Notice, that the embedding of both graphs
Gi is specified at the same time. Again we omit its lengthy

combinatorial description. The result of the diagonal construc-

tion on the graph of Fig.4a can be seen on Fig.4b and 4c.
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(a)

(b)

Fig.4. (a) The diagonal construction applied to V'(G), where
G ia the graph of Fig.2a. One of the two grapha‘obtained in
this way (b) is G, and the other is its dual G ,» (o).
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8. SOME PROPERTIES OF THE DIAGONAL CONSTRUCTION

8.1. The embeddings of graphs Go and G1 as above
are cellular.

8.2, Even more! GO and G1 are duals on S.

8.3. It is not difficult to see that the dual of B
on S 1is precisely the web of Go (and/or Gl).

Moreover, if G and G* are dually embedded graphs on
a surface S, and if B is the dual of W(G) (= W(G*)), then

G* (although the subscript labels are

DO(B) = G and Dl(B)
arbitrary here).
This means that the study of arbitrary cellular graph
embeddings can be reduced via web construction and its dual to
the study of quadrilateral embeddings of bipartite graphs. No
informations is lost during this process: it can be completely

recovered by applying the diagonal construction.

9. EXAMPLE

Take for instance the product of two even cycles
C2m X C2n' This is a bipartite graph, quadrilaterally embeddab-
le into the torus, see A.T. White [16]. Figure 5 is showing the
case C4 x C6. If we apply the diagonal construction to

B =2C x C

om embedded into the torus we obtain duals

2n

Gi = Di(B), i =20, 1. It is easy to see that Go and G1 are

isomorphic and their union is precisely the tensor product of

the cycles Cop and C, : GolJ G, =¢C, 2 Cone
Since C2m and C2n are both bipartite, their tensor
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product is disconnected. It consists of two identical copies
of a graph D which we call the d<amond graph. D con-
m,n m,n
sists of 2mn vertices and is reqular of degree 4. This cons-
truction proves that Dm - admits a quadrilateral embedding
7

into the torus which is of course self-dual. Applying the web
construction to the quadrilateral embedding of Cm x Cn into
the torus we get that W(Cm x Cn) =D .

m,n

10. THE N-CUBE GRAPH

Let Qn denote the n-cube graph, the l-skeleton of
the n-dimensional cube. It is a bipartite graph on 2" verti-
ces, which is regular of degree n, therefore it contains
nZ(n-l) edges., G. Ringel computed its genus long ago [8]. For
some recent generalizations see Pisanski [7].

Since Qn is a Cayley graph of the 2=group 20 it is
possible to label the vertices of Qn by elements of 7z
that can be regarded as binary h-tuples.

Let H = {hl, h2""' hn} denote the set of generators

for the group z;, where

i3’ i,j=1,...,n

prj(hi) =4
(The function prj: Zg —_— Z2 means projection on j-th
component, and 51j is the Kronecker symbol) .
An edge e = uv of Qn is labeled by hi if and only
if u and v differ only in the i-th component.

Define the bipartition of the vertex set V(Qn) into Vi,
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n-1)
’

with card(Vi) = 2( for i =0,1 as follows:

the vertex u = (ul, Ugreees un) of Qn belongs to

Vi iff u, +u, + .o +u_ =1 (mod 2).
n

1 2
Now, we construct a quadrilateral orientable embedding
of Qn into the surface of genus 1 + (n - 4)2(n-3) that will
be used later on. For each vertex v define Pv' the cyclic
permutation of the edges incident with v. We choose once and
for all the cyclic permutation p of the set of generators H.

Assume p = (hl, h &% Wy hn).

91
This means that p(hi) = hi+1 (and p(hn) = hl)‘ Since
there are exactly n edges incident with v and each edge is
colored by one of the generators of H we may define the Pv
in terms of cyclic permutations of H. (This argument can be
used for all Cayley color graphs as was first discovered by
A.T. White [14]). Of course we choose P, to be induced by
the same p for all vertices v. To complete the definition
of the embedding (Qn,P,s) we only need to specify the 2-co-
loring s of edges of the n-cube. In our case we choose s
to be the constant -1 mapping. We leave to the reader the
simple argument showing that (Qn,P,s) is a quadrilateral
embedding. It is orientable as can be proved by Theorem 5
of [11].
The conditions for the diagonal construction are ful-
filled. The diagonal graphs Di(On), i =0,1 are isomorphic

to each other. llere is the proof!
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Define f: Zg — Z; as f(a) = a + hl' a ez

have f(a) + £(b) = a + b, for all a and b.

Since a and b are adjacent in Qn iff (a + b) is
an element of H, we see that £ is an automorphism of the
graph Qn' (Note, that £ 1is not a group homomorphism!).
Furthermore, £ interchanges the sets Vo and Vl. Concerning
the embedding (Qn,P,s), f carries the boundary of faces into
the boundary of faces. Therefore, it can be extended to the
homeémorphism of the surface onto itself preserving the embe-
dding.

The preceding discussion enables us to use a simpler
notation b(Qn) for both diagonal graphs and to conclude that
D(Qn) possesses a self-dual embedding.

The rest of this section is dedicated to the identifi-
cation of the graph D(Qn). This task is not too difficult.
Consider the graph DO(Qn) defined on the vertex set Vo' The
edges of Do(Qﬁ) can be labeled by the elements of the group
25-

as follows: the edges are diagonals of quadrilaterals. As we

Let K denote the set of n labels used. It is determined

know from above the edges of a quadrilateral are labeled by two
generators hi and hi+l’ (Non-adjacent edges of a quadrilate-
ral are labeled by the same generator). This labeling induces
the labeling of diagonals. We label the diagonal by the element
ki = hi + hi+1' (Obviously, we have to define kn to be hn+h1).
Let <K> denote the subgroup generated by K. The

group <K> is identified later on. Let E = {el,...,en_l}
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denote the set of standard generators for the group zg'l,
i.e. prj(ei) = sij’ 1,3 = lyeuss (n-1); and let e, be their
sum e = €, oot e e

Since Zn-1 can be viewed as a vector space over the field 2

2
the set E can be viewed as its basis. Now we define a homo-

2

morphism F: Zg_l———» Z; by specifying it on the basis:
F(ei) = ki’ for i=1,...,(n-1). Clearly, F(en) = kn.

The reader may verify that Ker F = 0 and Im F = <K>.
Hence, F 1is an isomorphism between Zn_1 and <K>., The group

2

<K> 1is a subgroup of 720 of index 2. It consists of all bi-

2
nary n-tuples with O check-sum mod 2. Therefore the vertices
of Vo are labeled precisely by the elements of <K>. Note,
that Do(Qn) represents the Cayley color graph for <K> 1if
we leave its vertices labeled by elements of <K> and its
edges labeled by generators from K, as we described above.

Changing the labels by applying the inverse of F to the existing

labels, the very same graph Do(Qn) now serves as a Cayley

color graph of the group z;'l, generated by the set E U (en).
Since the first (n-1) generators define Q__, it is

obvious that the last one, i.e. en = (1,1,...,1), defines

additional 2n-2 edges, joining antipodal vertices of Q

n-1°
Let Q; denote the augmented n-cube graph, i.e. the

Qn plus all edges joining antipodal vertices. We proved that

+
D) = Q. ;-
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11. SOME PROPERTIES OF THE AUGMENTED CUBRE

11.1. It is easy to see that the augmented cube Q;
is bipartite iff n is odd,

11.2. For n > 3 the girth of Q; is 4. The length
of any odd cycle in Q; is at least n+1. Obviously, odd cyc-
les exists only for n even: n = 2m. We could say that Q;m
is "almost bipartite" since it has no "short" cycles of odd
length. v

This property of the augmented cubes suggests thenintro-
duction of some new graph invariants, e.g. even (odd) girth
of graph G, i.e. the length of its shortest even (odd) cycle.

11.3. The augmented cube graph Q; admits a self-
-dual orientable embedding which is (n+l)-gonal as follows from
the diagonal construction of section 10 applied to Qn+1' Com-
bining this fact with 11.2 we deduce that any embedding of Q:
into an orientable surface of genus less than 1 + (n-3)2(n—2)
(this is the genus of Qn+l)' must exhibit at least one face
bounded by a cycle of even length!

We may speak about even (odd) embeddings in the case
of 2-cell embeddings with all faces even (odd). We may intro-
duce in the obvious way the notion of even (odd) genus of a
graph G. We may even talk about ecven (odd) non-orientable
genus. In the case of bipartite graphs the even genus coinci-
des with the (usual) genus and the odd genus is infinite
(doesn’t exist).

11.4. It is possible to find a quadrilateral embedding
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for Q; which is orientable for odd n and non-orientable
for even n, n > 3. Therefore, the orientable genus of Q;m+l'
m> 1, is Y(Q;m+l) =1 + 2(m—1)4m-1 while the non-orientable
genus of the graph Q;m’ m > 2, is 7(Q;m) =2 + (m-1)4™,
The upper bound for the non-orientable genus of Q;m+1,
m> 1, ;(Q;m+l) < 3 + (m—1)4m is obtained using the fact
y(G) < 2+.y(G) + 1. The upper bound for the orientable genus of
Q;m’ m > 2, Y(Q;m) £ 1 # (!!\'1)4m--1 is obtained by exhibiting
an ad hoc embedding of Q;m with the property that each ver-
tex is incident with 2m-1 quadrilaterals and 2 octagons.
11.5. Remark. We saw above that the augmented cube
graph admits a self-dual orientable embedding. This fact is
not new. It follows from a more general result of Stahl [13,
Lemma 3]. According to Stahl this lemma was proved independent-
ly by Bouchet in 1975. Bouchet s result, in turn, generalizes

those of White and Pengelley. Unfortunately, these results

were inaccessible to the authors.
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ABSTRACT

It is proved in [h] that a connected infinite graph G
is a generalized line graph if and only if its specially defi-

ned least eigenvalue A(G) is 2> -2. Here we offer another
shorter proof of this fact. Besides, we describe the automor-
phism group of an infinite generalized line graph.

1. INTRODUCTION

Throughout the paper, a graph G is a countable
connected infinite graph, without loops or multiple edges, who-
se vertex set is V(G) = N (the set of natural numbers).

If P,Q are arbitrary two finite or infinite graphs,
then PC 0 means that P is an induced subgraph of Q and
PC 0 means that P 1is a subgraph of Q (in a wider sense) .

1f G 1is a connected infinite graph, then its least

"limiting eigenvalue" 1) (G) (see [4]) can be defined by

A (G) = Ian(Fn) I_FnC_Z G} ,
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where the infimum is taken over all finite induced subgraphs
Fn of G with n vertices (n = 2,3,...). In the general
case we have that A(G) > ==, The question when A(G) is fini-
te remains open [4].

Throughout the paper, the abbreviations "GLG" and "GLIG"
will denote a finite generalized line graph and an infinite
generalized line graph, respectively. If G = L(H;E) is any
GLIG with a (finite or infinite) root graph H, and the corres-
ponding sequence of cardinals k = (ka) (ka_s?Co), then
c(k) = % CP(k,) is the underlying union of cocktail party
graphs of G (induced subgraph of G). The root graph H is
obviously connected, and if it is finite then at least one
between cocktail party graphs CP(ka) in G must be infinite.

If next, Gi = L(Hi;ii) (1 e N) is a sequence of GLGs,

then for brevity, the induced subgraphs C(Ei) = g CP (k of

ia)
Gi are denoted by Ci'
In this paper we prove that a connected infinite graph
G is a GLIG if and only if it has the property A (G) > -2.
The proposed proof is shorter than this in [4], which is based
on infinite root systems, and needs some recent results of
D. Cvetkovié, M. Doob and S. Simié ([1] or [2]). In the last
section, we consider the automorphism group of a GLIG in the

sense of definition given in [3], and find all GLIGs for which

this group is non-trivial.
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2. GRAPHS WITH THE PROPERTY A(G) > -2

First, let G be any connected infinite graph and
Gi (1 € N) be a strictly increasing (in the sense of induced
subgraphs) sequence of its finite connected induced subgraphs.
We call Gi a good sequence if all of Gi are GLG, and

G, = L(Hi;ki) where

8
a) UGi = G
b) both Hi (as subgraphs) and Ci = C(;i) (as in-
duced subgraphs) increase in 1.
Lemma. G 8 a GLIG 7f and only if it has a good

sequence of its induced subgraphs.

Proof. If G = L(H;E) is a GLIG, it obviously has
the mentioned property. The proof is slightly different depen-
ding on whether the root graph H 1is finite or infinite.
Conversely, assuming that Gi is a good sequence for
G, and denoting UHi = H, LJC(ii) = C(k), we easily have that

G = L(H;k), g.e.d.

Theorem 1. If two connected GLIGS are isomorphic,
then their root graphs and their underlying CP graphs are

tgomorphiec, too.

Proof. Let G = L(H;E) and G’ = L(H';;’) be such
two GLIGs, and w : G + G' be the corresponding isomorphism.
Next, let Gi = L(Hi;ii) be a good sequence of connected in-
duced subgraphs of G. Then, obviously, w(Gi) is a sequence
of connected GLG which are induced subgraphs of the graphs G'.

Let w(G,) = L(M, ;% Then by theorem 2.6 of [2], for |61! > 5

e
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we have that Hi’Mi as well as C(ii), C(Ei) are isomorphic.
Consequently, we easily find that w(Gi) is a good sequence
in G'. Therefore, we have that H’ = U m(Hi), and C(k') =
=U w(C(Ei)), whence we get that H and H’ as well as C(E)
and C(k’) are isomorphic.

We now prove the main theorem.

Theorem 2. A connected infinite graph G 1is a GLIG

if and only ©f X(G) 2 -2.

Proof. Assuming, first, that G 1is a GLIG and
Gi = L(Hi;ii) a good sequence of subgraphs in G, we get that

A(Gy) > -2 for each 1i. Whence, obviously,

A(G) = 1lim X(Gi) > =2 .
i

Next, assume that A(G) > -2 and prove that G must
be a GLIG. Note that X(G) > -2 is equivalent to the condition
AEL) 2 -2 valid for all finite connected an; G on n ver-
tices (n € N) .

First, as in [2], consider the next equivalence rela-
tion ~ 1in the set V(G): x vy if and only if they are not
adjacent and have the same neighbours.

We want to prove that there are no three equivalent
vertices in G. Indeed, in the contrary case, there is a
connected induced subgraph an; G which contains these verti-
ces, and these vertices are equivalent in Fn' But since, for
a sufficiently large n, Fn must be a GLG (for A(Fn) > =2),

we get a contradiction.
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Cconsider, next, the pairs of equivalent vertices in G
(if such pairs exisﬁ). If a,b and c,d are two such pairs,
then it is easily seen that there is either none or all possib-
le edges joining these pairs. This fact immediately gives that
all pairs of equivalent vertices in G (if such pairs exist)
are concentrated into a (finite or infinite) sequence of inde-
pendent cocktail party graphs CP(ki), each of which is either
finite or infinite.

Now choose an arbitrary strictly increasing sequence
Gi of connected induced subgraphs of G, such that LJGi =
= G.We can suppose that all Gi are GLGs, since they must be
such at least for [Gil > 37. Additionally, one can suppose
that in each G1 two vertices are equivalent if and only 1if
they are equivalent in G. Indeed, in the contrary case, we
can do following:

1) for any two equivalent vertices a,b from Gi
which are not equivalent in G, remove from Gi (and also from
all other Gk,k > i, in which a,b are equvalent) exactly
one of these vertices;

2) for any vertex a from Gi which is without
equiyalent vertex in Gi' but with equivalent vertex b from

G, add b to G and to all other Gk,k > 1. Then the sub-

i
graphs éi so obtained are connected, we have that
Ci€; Gy U G, = G, and as is easily seen, all G, have the

mentioned property.
In such a way we have that two vertices a,b from Gi

are equivalent in Gi if and only if they are equivalent in G,
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and consequently if and only if they are equivalent in Gi+1'

From this it is clear that if Gi = L(Hi;ki) and Gi+1 =

- sl " k) C
L(Hi+1'ki+1)' then there exists an H CZHi+1 and a C(k) &

c C(£i+1) such that G, = L(H;k) . But then, by Theorem 2.6

[2] (for |G,| > 5), we have that H, and G(Ei) ‘must be

i
isomorphic to H and C(E), respectively. So we get that

H C Hi+1 and c(Ei)g; C(Ei+l). In such a way, we have proved
that the sequence G1 is good, and Lemma completes the proof,

3. THE AUTOMORPHISM GROUP OF A GLIG

In this section we consider the automorphism group
(c.f. [3]) of an infinite generalized line graph.

If G 1is an arbitrary connected infinite graph, con-

sider all permutations P = [pij] of G (each Pi5 is 0 or 1)
satisfying the relation AP = PA, where A =[aij is the adja-
cency matrix of G defined by a4 = atti=2 ¢ i,j are
adjacent, and aij = 0 4in the contrary case (a is a fixed

positive constant less than 1). Each permutation P with this
property saves the adjacency relation in G, but the converse
is not true. The group of all such permutations on G is
denoted by TI'(G) and called the automorphism group of G.

In [3], we proved that [T(G)| < 2, and described the
graphs with the non-trivial automorphism group. In this
section we describe GLIGs with the non-trivial automorphism
group. If TI'(G) is non-trivial, then ([3}) a special relabe-

lling on V(G) must be performed.
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Theorem 3. The infinite two-way path is the only

GLIG with a non-trivial automorphism group.

Proof. As is proved in [3], a graph with non-trivial
automorphism group is bipartite and, hence, it contains no
triangles. If G = L(H;i) is such a GLIG, then obviously the
degrees of all vertices in H must be at most 2, thus H is
two-way or one-way infinite path. Additionally, each k

i
is < 1 and we have that k, = 0 for each vertex i of

i
degree 2.

Assuming, first, that H 1is an one-way infinite path
with the end-point i, we easily get that the non-trivial
automorphism w € I'(G) satisfies w(i) =1, in the both possi-
blle cases k; = 0 or 1. But then (Lemma 2 [3]) w must be
identity, contradiction. The rest of the proof is then trivial.O

As a trivial consequence of Theorem 3, we remark that

if a GLIG and its root graph have non-trivial automorphism

groups, then these groups are isomorphic.
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ABSTRACT

In this paper, all connected infinite graphs whose spe-
ctrum o(G;a) is uniformly bounded by € = /2+7§ , i.e. whose
spectrum lies in the interval [-e,e] for each value of the pa-
rameter a € (0,1) , are found.

1. INTRODUCTION

Throughout the paper, by an infinite graph G we mean
a connected countable (undirected) infinite graph without loops
or multiple edges, with the vertex set V(G) = N (set of natural
numbers) .

The adjacency matrix A(G) = [aij] of G 1is an infi-
nite NxN matrix, where a4 = al*td=2 ¢ vyvy are adjacent,
ind aij-o otherwise, and a 1is a fixed positive constant
(0<a<l). Hence, the whole graph G is labelled and weighted, and
the weight at the vertex v, 1is w, = At e [8] . Then we briefly

i i
say that G has (0-a) adjacency matrix.
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Matrix  A(G) - is the matrix of a symmetric Hilbert-
Schmidt operaﬁorv A in a separable Hilﬁert space H , with res-
pect to a fixédvorthonormal basis {ei} in H .

: The spectrum o0(G) of G is the spectrum of this ope-
rator; it con;isgs of the zero and of a sequence An of real ei-
genvalues of finife multiplicities, which is finite (for graphs
with finite spectrqm) or infinite., If ;t is infinite, then An+0
(n+e)

In each case,
o(G) = {x;,A,, ... YU {0} .

"In the génefal case, spectrum o(G) of @& depends on
the constant a (0<a<l) and on the labellings of the vertex set
V(G) . To stress it, we sometimes write. o(G) = o(G;a) .

The maximal and the minimal eigenvalue of G are de-
noted by r(G;a) and X (G;za) respectively. It is known that
r(G;a) = [|A(G)|| , and the whole spectrum o(G) 1lies in the in-
terval [-r(G;a),r(G;a)] .

Next, we need the following results (Proposition 1 and
Lemmas 2-3), which have been proved in [10] .

Proposition 1.

1° The funetion r(G;a) (0<a<l) <s strictly inereasing

in a

e

go'rhe limit

r (G)

lim r(G;a) = sup{r(Gja)|0<a<l}< + w
a+1

exigts for any G ;

3° We have

]

r (G) sup{r(Hn;l)[HngG} ,
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where the supremum is taken over all finite induced subgraphs
Hng;G (n € N) on n vertices.

It is immediate from 3° that the invariant r(G) of G
coincides with the spectral radius of G considered by B.Mohar
in [6] . It is proved in [6] that r(G) is finite iff G has
bounded degrees, i.e. sup deg(i)<+e .

The next lemma 1s obvious.

Lemma 1. For any connected infinite graph G , there
always exists a sequence of connected induced subgraphs Gnis;G
such that G & G and UG =G .

i i+1 i

Lemma 2. For each monotonically increasing sequence

{Gn } of connected induced subgraph Gni of G satisfying lJGni=G,

i

ve kave that lim r(G_ ;1) = r(G) .

i+e oF

Lemma 3. For each a € (0,1) , we have

r (G;a)<r(G) .

For any finite induced subgraph GS;G ,» we have
r (G, ;1)<r(G) .

Now, for any r>0 , denote by M(r) the class of all
connected infinite graphs whose spectrum is uniformly bounded by
r , that is o(Gja) C [-r,r] (for any a € (0,1)), or equiva-
lently r(G) < r .

Graph G 1is called a graph with uniformly bounded spe-
ctrum if G € M(r) for some r>0 . By [6] we then have that a
graph G € M(r) for some r>1 1if and only if it has bounded de-
grees di of vertices, thus d1 < K for each 1 € N .

The problem that we consider in this paper reads: Des-

cribe the class M(e) for € = /2+/5 = 2,06 .
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The similar problem for finite graphs is considered and
solved by J.H.Smith [7] and D.Cvetkovié, I.Gutman [3] for r=2
and D.Cvetkovié, M.Doob, I.Gutman [1] for r=e . Here, we shall
use their solutions, and some results of A.J.Hoffman.

A general property of the class M(r) , for any r>1 ,
is given by the following theorem.

Theorem 1, Each connected infinite graph G with the

unt formly bounded spectrum has, for any a € (0,1) , an infinite

speetrum.
Proof. Indeed, assume that r (G)<K for some K>0 .
Then the valencies di satisfy disd = K2 for each i €N .

Hence, obviously, each characteristic subset Np of G (p =1,
2,...) can have at most d elements, thus since V(G) = LJNp ’
there exists an infinite number of characteristic subsets in G
(see [9]), But this means that G has an infinite type, which
is by a result of [9] , equivalent to the claim that o(G) 1is
infinite (for any O0<a<l ),
2, ON THE CLASS HM(e)

1, We first consider the class M(2) . The main result
concerning this class is following.

Theorem 2. Infinite graphs P, P:, zZ, (Fig.l) are
the untque connected infinite graphs with the property r(G)<2.

Proof. By Proposition 1 (30) and Lemma 3, we have that
r(G)<2 .if and only if r(Gn;i)sz for each induced subgraph
%QG,aMawnmw n=2,3,... .

Let next, G be any infinite connected graph with the
property r(G)<2 . Then, by Lemma 1, there is a sequence of con-

nected induced subgraphs G_ ,G_ ,... in G such that G_CgG
np N M My
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(o]
Q
o]
o
(o]
Q
7
.

.

.

n Z oo

Fig.l.

and UG = G . Consequently, r(G )<2 , and according to [7]
: 5

or [3] , for n, > 10 , each of subgraphs G~ must be one of
i
the graphs P_ , Z_ , wn (Fig.1l).

n n
i i i
We prove that Gn #* wn . Indeed, in the contrary case,
i 5 N
each of the cases G = P 0 2 , W would be impossi-
Myl M Min P41

ble. Therefore, each G (n
ny i

P , 2 . But if G = 2 for some 1 =i , then easily

ny ny n, ny o

G = 7 (k>i+1) , and immediately, G = |JG =7 , If, final-

ny ny n, L

ly, each G_ =P , we obviously have that G = UG_ = P_ or

ny n, n, ©

> 10) must be one of the graphs

G =p .
Conversely, if G 1is any of graphs P_, P:, 2o then
by Proposition 1(3°%) r(c)<2 , which completes the proof.[]
Next, since any graph G € M(2) obviously contains an
infinite-path, and since

kw
G(Pn) = (2 COBnTllk-l,...,n} ¢

we have that r(Pn) + 2 (n+*=) , whence r(G) = 2 ,

Hence, we have
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Corollary. Amy infinite comnected graph G with the
property r(G)sZ i8 bipartite, and its spectral radius r(G)=2.

Remark. Example of the graph Z_ shows that for con-
nected infinite graphs the equality r(G) = r(G’) can hold, with
G’ as a proper induced subgraph of G , even if G’ = G-v (v €
e v(e)) .

2. Now, we can consider the class M(e) , more preci-
sely we describe the set M(e)\ M2) .

In the paper [1] , D.Cvetkovié, M.Doob and I.Gutman
described the class M(/E:??) for finite graphs, in fact,
they found all finite graphs Gn with the property 2<r(Gn;1)5
<e = /2+/5 , Following this, we do similarly for infinite connec-
ted graphs, finding all connected infinite graphs with the pro-
perty 2<r(G)<e , or by Lemma 3 , with the equivalent property
2<r(Gn;1)5e ;, for any finite induced subgraph GnQQG . The key-
-lemma is again Proposition 1 (30).

In the sequel, we again explicitly use the correspon-
ding solution from [1] , together with two classes of finite

graphs T(a,b,c), S(a,b,c) (a,b,c21) (Fig.2), appearing in [4]

and [1] .
=i |
S O~<¥—O—<}—I——O——O—4}—4}—JL—O—*}—O—#D
Y._.—./ A it sttt vl f R S—
3 b [
¢ S(‘a,b,c)
T(a,b,¢)

Fig.2.
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We shall also use the infinite graphs T(a,®,®), S(»,h,=)
and S(a,h,») (a,h>1) , defined in an obvious way.

We note another interesting fact.

There is a closed connection between our problem and
the problem considered by A.J.Hoffman [4] . Namely, by Proposi-
tion 1, the values r(G) of spectral radii of infinite graphs
are exactly the limit points of spectral radii of finite graphs,
investigated in the mentioned paper of A.J.Hoffman. Moreover, so-
me of his results are immediately applicable to our situation,

The main auxiliary results are the following.

Lemma 4. ([4]). The spectral radii of graphs T(l,n,n),
S(n,h,n), S(a,h,n) (a,h>1) converge as n+» .

Proposition 2. If G = T(l,=,®), then r(G)=e=/2+/5 .

Proof. By Prooosition 1, we have

r(¢) = lim r(T(1,n,n)) ,

n—+o

and by a Hoffman’s result [4] , this limit equals € .
Proposition 3. If G=T(2,2,») , then r(G) = € .
The proof is similar to the proof of Proposition 2,
Proposition 4. If G=T(1,h,~) (h22) , then 2<r(G)<e .
Proof. Indeed, r(G)>2 and r(G)<r(T(l,»,=))=¢€
Now, r(T(l,h,»)) 4is the maximal root of a characte-
ristic equation Fh’n(x)=0 , and assuming that it converges to
¢ as n+® we obtain that Jl=e. is the root of a limit equation.
But, by straightforward calculations, we obtain a contradicti-
on. We omit the details about the last equation.

Proposition §. If G=S(»,h,=) (h21), then r(G)>e .

Proof (partial). Obviously, r(S(=,h,=))>r(T(l,=,=)) =

= £. The proof that r(G)#e is similar to the corresponding one
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in the previous proposition, and we omit the details,

Proposition 6. If G=S(a,h,®) (a,h2l) , then xr(G)>e .

Proof. Obviously, Q(S(a,h,n))gr(s(l,h,n)). However,

A.J.Hoffman [4] proved that
r(s{(l,h,n))>r(T(1l,n,n)) ,

for n sﬁfficiently large, whénce as n+w , we obtain
r(s(l,h,»))>e . .
" We omit fﬁé'proof that r(G)#e .
Theorem 3, Graphs T(l,»,») , T(2,2,®) and T(1,h,=)

(h22) (Fig.3) are the only connected infinite graphs with

2<r(G)<e .
T(1,0° 40°) T(2,2,9°)
h T(1l,h,00)
Fig.3.

Proof. By Propositions 2,3 and 4, all the mentioned
infinite graphs have the property r(G) € (2,e] .

Conversely, let G be any connected infinite graph with
2<r(G)<e , and {Gni} be a fixed increasing sequence of induced
subgraphs of G such that U G =G . Then by Lemmas 2 and 3,

i
for 1 sufficiently large, we have

2 < r(Gni;l) < e ,

whence, by the main result in [1] , each Gn for sufficiently
i
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large i , must be one of graphs T(1l,h,n) (hz2) , T(2,2,n),
s(a,b,n) (a,b21) . Hence, one easily concludes that all candida-
tes for G are the graphs T(l,®,®), T(2,2,2), T(1,h,*) (h22),
as well as the graphs S(«,h,~) (h21) and S(a,h,=) (h>1) .
However, Propositions 5 and 6 exclude the last two

graphs, which completes the proof.

3, ON THE CLASS M(xr) CONTAINING ONLY BIPARTITE GRAPHS

We observe that class M(r) with r=/2+/5 contains
only bipartite infinite graphs, and pose the following question:
Find maximal r>0 such that the class M(r) contains only bi-
partite graphs.

Theorem 4. r=3//2 1is the marximal r such that the
eclass M(r) contains only bipartite aqraphs.

g{ﬁﬂi} We immediately have that the desired value

r=r satisfies
(1) r, = inf {r(G)!G infinite and not bipartite} .

Now, use the following characterization of non-biparti-
te graphs: G is non-bipartite if and only if it contains an odd

cycle as an induced subgraph.

C2p+l

Fig.4.
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Since all the considered r(G) in (1) can be assumed
= finite, we immediatelly conclude that each G from (1) con-
tains an odd cycle and a sequence of paths joined with the ver-
tices of cycle, whose lengths tend to infinity.

Consider now the following finite graph Tn : (Fig.4),
and denote r, = r(Tn) .

We have that r_ ¢

s Tosl and for each G from (1),

r(G) 2 lim r(Tn) =p .

n-e

But now, one can establish that p is the greatest ro-

ot of the equation

- 2
(042, 1) = (p, +1)?

Pap+110%F3p
where 6 = (A+VA2-4)/2 ,and P = (07-1/6™)/2 (meN) (see also

(«D ..

By a simplification, the last equation reduces to
0P 1923y =1 ,

whence 1f p=0(p) , we immediately have that 6(p)>6 (p+1) ,
8(p)+Y2Z (p*e) , the corresponding value A (p)>A(p+l), and
A(p)+3//2 (p+«) . Therefore, for each G from (1) we have
r(G)23//2 ; moreover r°=3//7 (=2,12) .

Finally, we find at least one bipartite infinite graph
G with r(G)=3//2 . Consider the graph T=T(w,»,x) from the

next figure, . *

T(o0 ,00,00)

Fig.5. LN
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By considering the corresponding finite graph T(n,n,n)

and putting n+e , we immediately have that r(G)=3/Y/2 , which

completes the proof.

Remark. It is interesting to note that in similar the-

orems for the finite case, as a rule, some exceptional graphs e-

xist, Such exceptions, which represent both difficulty and cha-

llenge, usually do not exist in the infinite case.
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ABSTRACT

A class of partizan graph games is defined which are nel-
ther normal nor misere. For the progressively finite game digraphs
the winning strategies are determined. Some take-away games are
treated in this way and solved completely.

1. INTRODUCTION

The games we shall consider are two-person games wit-
hout chance moves (such as rolling dice or shuffling cards) and
with complete information (i.e. both players know what is going
on). All definitions are taken from [1] and [2]. Two players we
shall call A and B (First and Second). There are several, usu-
ally finitely many, posiitons, and often a particular starting
position. There are clearly defined rules that specify the
moves that either player can make from a given position to its
options.

A and B move alternately, in the game as a whole. A
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play of a given game come to an end when some player is unable
to move under the ruies of the game. In the normal play conven-
tion a player unable to ﬁove loses. In the misSere play conven-
tion a player unable to move wins.

Games in which from any position exactly the same moves
are'available to either player are called impartial., Games in
which the two player may have different options are called
partizan.

Digraphs are natural representation of such games. The
vertices represent the positions in the game and the edges rep-
resent the moves. There is a directed edge from vertex u to
v 1iff the game can be transformed from position u to v by
a move permissible under the rules of the game. In the game
digraph of a partizan game not all edges are permissible moves

for each player,

2. THE RESULTS

As the game digraph we shall consider a digraph satis-
fying some special conditions.

Let G = (V,E) be a digraph and let EA
subsets of E such that EA U EB = E. It is not necessary for

and EB be two
EA and EB to be disjoint. It is sometimes suitable to consi-
der two digraphs GA = (V,EA) and GB = (V,EB) with the same set
of vertices V. We call elements of EA and EB A-arcs and
B-arcs respectively; We can consider G as game digraph in

which A-arcs represent the permissible moves for the first

player (player A) while B-arcs represent the permissible moves
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for the second player (player B).

Let T CV be the set of terminal vertices of G, and
T and TB the seté of terminal vertices of GA and GB
respectively.

Suppose that for some JAC vV and JBC Vv, the follo-
wing conditions are satisfied:

(@) TCIU g

(b) T, = Tg = T,

(c) For any nonterminal vertex u € V \JB, there is

a v e JA such that uv € EA,
(d) For any uv € EA such that u € JB’ v ¢ JA'
(e) For any nonterminal vertex u € V \JA' there is
a v e JB such that uv € EB'

(f) For any uv € Eg such that u € J,, v ] Jge

Each directed path from the starting vertex to a clo-
sing vertex in which there are neither two adjacent arc from
EA\\EB nor two adjacent arcs from EB\\EA represents one com-
plete play of the game. This path consists of arcs representing
the moves of two players alternately. We shall say that the
first player A is the winner if the terminal vertex of this
path is in JA\\JB' and that the second player B is the winner
if the terminal vertex is in JB\\JA' independently of the
fact which player brihgs the game to that closing position.

That is why we say that this game is neither normal nor misere

(nnnm) . If the terminal vertex is in JA[W Jg. the play is draw.
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Theorem 1. Let the game digraph of a nnnm game satig-—
fies the conditiones (a)-(f). Then:

(i) If the starting vertex is not in J then the

BJ
second player B has not aq winning strategy.

(t2) If the starting vertex is in J then the first

B?
player A has not a winning strategy.

Proof. (1) Suppose that starting vertex u ¢ JB. If
it is a terminal vertex, it must be in JA\\JB’ and the first
player A is the winner. If u is a nonterminal vertex, then
according to (c), A can by his first move select a vertex
v € JA. If v is a terminal, the game ends in a position which
is not in JB\\JA' so either A is the winner or the play is
draw. If v is not terminal, then according to (f), the second
player B must select some vertex w € V\\JB. If w is a termi-
nal vertex, then w € JA\JB and A is the winner. If w is
not terminal, then the play continues in such a way that when-

ever A takes turn, he can always select a vertex in J ; while

A
the second player B taking turn in a nonterminal position must
select some vertex in V\\JB. So, if the play ends, it obvious-
ly ends in a position belonging to JA' i.e. B can not be the
winner.

(1i) Suppose that the starting vertex u e Jg. If u
is a terminal vertex, then u é JA\\JB and A is not the winner.
If u is not terminal, then according to (d), A must select
some vertex v e V‘\JA. If v 1is terminal, then v e JB\\J i

and B is the winner. If v is not terminal, then the second

player B continues playing as the first player in the case (1).
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so, in this case, A has not a winning strategy.

Theorem 2. Let the game digraph of a nnnm game satis-
fying the conditions (a)-(f) and the additional condition

(g) TﬂJAnJB=¢
18 progressively finite. Then:

(7) If the starting vertex is not in J then the

BJ
first player A has a winning strategy, and A can win by always
selecting vertices in Jp.

(1) If the starting vertex i8 in J then the sec-

B?
ond player B has a winning strategy, and B can win by always
selecting vertices in Jge

Proof. (1) Each directed path representing one comp-
lete play must be finite, because the game digraph is progre-
ssively finite. So, each play must end. According to (g), the
play can not be draw. Now, it follows from Theorem 1, that A
can win by always selecting vertices in JA'
The proof of (ii) is similar.

3. THE ANALYSIS OF SOME TAKE - AWAY GAMES

) (n,m) - E - game.

Let two positive integers n and m are given, where
n is odd. A pile of n sticks is given and player A and B
take turns, each taking any number a of sticks from the pile,
where 1 < a < m. The play ends when all the sticks are taken
away from the pile. The player who has an even number of sticks

at the and of the play wins.
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Since the finite quantity of sticks will eventually

be exhausted} and exactly one of the players will have an even
number of sficks, it is obvious that the game allows no draw.
We shall call this game (n,m) - E - game.

o The game digraph of this game is G = (V,E), where V
is the set of ail threedimensional vectors (n-a-b,a,b) and a
“and b a;e integers'such that a > 0, b > 0, atb < n. An
A-arc from (n-al—bl, al,bl) to (n—az-bz,az,bz)exists iff b1=b2
lhd 1 < a,;-a, < m. A B-arc from (n-al-bl, al'bl) tb (n-az-bz,
az,bz) exists iff a =a, and 1 < bl-b < m, The starting

1 2 -

vertex (n,0,0) is the only veftex with zero in-degree. The set
T 6f terminal vertices is the set of all the vectors (0,a,b)
such that a+b=n. This digfaph is progressively finite because
it i1s a finite acyclic digraph.

Eaéh playvends in a terminal vertex (0,a,b). A wins
if a is even, B wins if a 1is odd. We shall analyse two cases
separately:

(1) m even

It can be checked that the game digraph of (n,m)-E-ga-

me satisfies all conditions (a)-(g) , where
Jy = {(n-a-b;a,b) | (n-a=b = 1(mod (m+2)) A b = 0(mod 2))V

V(n-a-b = m+1{mod (m+2)) A b = 1(mod 2))V
V(n-a-b = 0(mod(m+2)) A b

m

1(mod 2))}
and
Jg-= {(n-a-b,a,b)|(n-a=b = 1(mod (m+2)) A b = 0(mod 2))V

V(n-a-b = m+1(mod (m+2)) A b = 1(mod 2))V

1

V (n-a-b 0 (mod m+2)) A b 0(mod 2))1}.

m
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Since n

is odd, the starting vertex (n,0,0) is in JB

iff n = 1 (mod (m+2)). So, we have the following statement:

Theorem 3. Let m

If n % 1(mod(m+2)), then in (n

i8 an even integer.

Then:

,m) -E-game the first

player A has a winning strategy, and A can win by always trans-—

forming the instantaneous position into

a position in Jg- If

n = 1(mod (m+2)), then the second player B can win by always
transforming the instantaneous position into a position in Jg-
(11) m odd
It can be checked that the game digraph of (n,m)-E-
-game satisfies all conditions (a)-(g), where
Ip = { (n-a-b,a,b) | (n-a=b = 1(mod (2m+2)) A b = 0(mod 2))V
V(n-a-b = 0(mod(2m+2)) A b = 1(mod 2))V
V(n-a=b = m+2(mod (2m+2)) A b £ 1(mod 2))V
V(n-a-b = m+l (mod (2m+2)) A b = 0(mod 2))}
and
Jp = { (n-a-b,a,b) | (n=a=b = 1(mod (2m+2)) A b = 0(mod 2))V
V(n=a=b = 0(mod (2m+2)) A b = 0(mod 2))V
V{n=a=b = m+2(mod(2m+2)) A b = 1(mod 2))V
V(n-a-b = m+l (mod(2m+2)) A b = 1(mod 2))} .
Since n 1is odd, the starting vertex (n,0,0) is in
JB iff n = 1 (mod(2m+2)). So, we have the following statement:

Theorem 4. Let m 18 an odd 1%

nteger. Then:

If ﬁ £ 1(mod (2m+2)), then in (n,m)-E-game the first

player A has a winning strategy, and A

naforming the instantaneous position in

can win by always tra-

to a position in J

A
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If n £ 1(mod(2m+2)), then the second player B can win by al-
wvays transforming the instantaneous position into a position
in JB.

2, (n,2) -3-game

A pile of n sticks is given, where n 1is an integer
such that n = 0(mod 3). Two player A and B take turns, each
taking one or two sticks from the pile. The play ends when all
the sticks are taken away from the pile. Let a and b res-
pectively are the numbers of sticks which the first player A

and the second player B have at the end of the play. If

azb O(mod 3), then A is the winner, otherwise B wins. We
shall call this game (n,2)=3-game.
The game digraph of this game is G = (V,E), where V

is the same set is in (n,m) -E-game. An A-arc from

(n_al—bl'al’bl) to (n-az—bz,az,bg exists iff bl = b2 and
1< a,-a, < 2, A B-arc from (n—al-bl,al,bl) to (n-az-bz,az,bz)
exists iff a,; =a, and 1 < bl—b2 £ 2. The starting vertex

(n,0,0) is the only vertex with zero in - degree. The set T of
terminal vertices.is the set of all vectors (0,a,b) such that
a+b'== n. This digraph is also a finite acyclic digraph.

Each play ends in a terminal vertex (0,a,b). A wins
if a = b = 0(mod 3), otherwise B wins.

It can be checked that the game digraph of (n,2)-3-game

satisfies all conditions (a)-(g) , where

Iy = { (n-a-b,a,b) | (n-a~b = 1(mod 2) A b-a = 2(mod 3))V
V(n-a-b = O(mod 4).A\ b-a = 0 (mod 3))1}
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and

Ig = { (n-a-b,a,b) | (n-a=b = 1(mod 2) A b-a = 2(mod 3))V
1(mod 3))V

0(mod 3))V

V (n-a=b

m

0(mod 2) A b-a

V (n=a=b = 1(mod 2) A b-a

1
1

V(n-a=b = 0(mod 4) A b-a = 2(mod 3))} .

Stnce n = 0(mod 3), the starting vertex (n,0,0) is in
Jg 1ff n = 1(mod 2), t.e. 1ff n = 3(mod 6). So, we have the

following statement:

Theorem 5. If n = 0(mod 6), then in (n,2)-3-game the
first player A has a winning strategy, and A can win by always
transforming the instaneous position into a position in J pe

If n = 3(mod 6), then the second player B has a winning
strategy, and B can win by always transforming the instaneous
position into a position in J

B’
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