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Introduction 

 

In abstract algebra, as in the case of most twentieth-century developments, the 

basic concepts and goals were fixed in the nineteenth century. The fact that algebra 

can deal with collections of objects that are not necessarily real or complex 

numbers was demonstrated in a dozen nineteenth-century creations. Vectors, 

quaternions, matrices, forms  such as ax
2
 + bxy + cy

2
, hyper numbers of various 

sorts, transformations. and substitutions or permutations are examples of objects 

that were combined under operations and laws of operation peculiar to the 

respective collections, liven the work on algebraic numbers, though it dealt with 

classes of complex numbers, brought to the lore the variety of algebras because it 

demonstrated that only some properties are applicable to these classes as opposed 

to the entire complex number system. 

These various classes of objects were distinguished in accordance with the 

properties that the operations in them possessed; and we have seen that such 

notions as group, ring, ideal, and field, and subordinate notions such as subgroup, 

invariant subgroup, and extension field were introduced to identify the sets of 

properties. However, nearly all the nineteenth-century work on these various types 

of  algebra dealt with the concrete systems mentioned above. It was only in the last 

decades of the nineteenth century that the mathematicians appreciated that they 

could move up to a new level of efficiency; by integrating many separate algebras 

through abstraction of their common content. Thus permutation groups, the groups 

of classes of forms treated by Gauss, hyper numbers under addition, and 

transformation groups could all be treated in one swoop by speaking of a set of 

elements or things subject to an operation whose nature is specified only by certain 

abstract properties, the foremost of these being that the operation elements of the 

set produces a third element of the set. The same advantages could be achieved for 

the various collections that formed rings and fields. Though the idea of working 

with abstract collections preceded the axiomatics of Pasch, Peano, and Hilbert, the 

latter development undoubtedly accelerated the acceptance of  the abstract 

approach to algebras. 
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Thus arose abstract algebra as the conscious study of entire classes of algebras, 

which individually were not only concrete but which served purposes in specific 

areas as substitution groups did in the theory of equations. The advantage of 

obtaining results that might be useful in many specific areas by considering 

abstract vectors was soon lost sight of, and the study of abstract structure and the 

derivation of their properties became an end in itself 

Abstract algebra has been one of the fevered fields of the twentieth century and is 

now a vast area. 

It is a fevered activity of historians, now that abstract theory is in existence, to 

trace how many of the abstarct ideas were foreshadowed by the concrete works of 

Gauss, Abel, Galois, Cauchy, Sylow and dozens of other men. 

In mathematics and abstract algebra, group theory studies the algebraic 

structures known as groups. The concept of a group is central to abstract algebra: 

other well-known algebraic structures, such as rings, fields, and vector spaces can 

all be seen as groups endowed with additional operations and axioms. Groups recur 

throughout mathematics, and the methods of group theory have strongly influenced 

many parts of algebra. Linear algebraic groups and Lie groups are two branches of 

group theory that have experienced tremendous advances and have become subject 

areas in their own right. 

Various physical systems, such as crystals and the hydrogen atom, can be modeled 

by symmetry groups. Thus group theory and the closely related representation 

theory have many applications in physics and chemistry. 

One of the most important mathematical achievements of the 20th century was the 

collaborative effort, taking up more than 10,000 journal pages and mostly 

published between 1960 and 1980, that culminated in a complete classification of 

finite simple groups. 

Group theory can be considered the study of symmetry; the collection of 

symmetries of some object preserving some of this structure from a group, in some 

sense all groups arise this way. Formally a group is a set G on which there is a 

multiplication (*) defined satisfying associative law, in addition, there is to be 

element (1) in G with 1*g = g*1 = g for every g ∈ G and every element g in G 

must have an inverse h satisfying g*h = h*g =1. 
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A particularly important class of groups is the set of permutation groups, those in 

which the elements are permutation of some set and the group operation is simply 

composition, for example the symmetric group on objects is the set of all N! 

rearrangements of the N elements. 

The symmetric group on n letters is generated by the transposition  

Si = (i, i+1), i=1, . . n-1). These generators satisfy the well known relations Si
2
 = 1, 

SiSj=SjSi ( |i-j| ≥ 2 ) and SiSi+1 +  Si = Si+1SiSi+1 

Moreover, the abstract group defined by the Si  with the given relations is a 

Coxeter group , isomorphic to Sn . 

This set {Si} can be presented by a graph on the vertices 1, . . . , n where Si is the 

edge connecting i and i+1. More generally, one can use any connected graph T on 

n vertices to define a Coxeter group C (T), from which there is a natural projection 

onto the corresponding symmetric group. 
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1. History of symmetric group 

 

The history of group theory, a mathematical domain studying groups in their 

various forms, has evolved in various parallel threads. There are three historical 

roots of group theory: the theory of algebraic equations, number theory and 

geometry. Lagrange, Abel and Galois were early researchers in the field of group 

theory. 

 Early 19th century 

 Development of permutation groups 

 Groups related to geometry  

 Appearance of groups in number theory  

 Convergence  

 Late 19th century 

 Early 20th century 

 Mid 20th century 

 Later 20th century 

 Late 20th century 

 Today 
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1.1. Early 19th century 

The earliest study of groups as such probably goes back to the work of Lagrange in 

the late 18th century. However, this work was somewhat isolated, and 1846 

publications of Cauchy and Galois are more commonly referred to as the beginning 

of group theory. The theory did not develop in a vacuum, and so 3 important 

threads in its pre-history are developed here. 

1.2. Development of permutation groups 

One foundational root of group theory was the quest of solutions of polynomial 

equations of degree higher than 4. 

An early source occurs in the problem of forming an equation of degree m having 

as its roots m of the roots of a given equation of degree n > m. For simple cases the 

problem goes back to Hudde (1659). Saunderson (1740) noted that the 

determination of the quadratic factors of a biquadratic expression necessarily leads 

to a sextic equation, and Le Sœur (1748) and Waring (1762 to 1782) still further 

elaborated the idea. 

A common foundation for the theory of equations on the basis of the group of 

permutations was found by mathematician Lagrange (1770, 1771), and on this was 

built the theory of substitutions. He discovered that the roots of all resolvents 

(résolvantes, réduites) which he examined are rational functions of the roots of the 

respective equations. To study the properties of these functions he invented a 

Calcul des Combinaisons. The contemporary work of Vandermonde (1770) also 

foreshadowed the coming theory. 

Ruffini (1799) attempted a proof of the impossibility of solving the quintic and 

higher equations. Ruffini distinguished what are now called intransitive and 

transitive, and imprimitive and primitive groups, and (1801) uses the group of an 

equation under the name l'assieme delle permutazioni. He also published a letter 

from Abbati to himself, in which the group idea is prominent. 

Galois found that if r1, r2, ... rn are the n roots of an equation, there is always a 

group of permutations of the r's such that every function of the roots invariable by 

the substitutions of the group is rationally known, and conversely, every rationally 

determinable function of the roots is invariant under the substitutions of the group.  
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In modern terms, the solvability of the Galois group attached to the equation 

determines the solvability of the equation with radicals. Galois also contributed to 

the theory of modular equations and to that of elliptic functions. His first 

publication on group theory was made at the age of eighteen (1829), but his 

contributions attracted little attention until the publication of his collected papers in 

1846 (Liouville, Vol. XI). Galois is honored as the first mathematician linking 

group theory and field theory, with the theory that is now called Galois theory. 

Groups similar to Galois groups are (today) called permutation groups, a concept 

investigated in particular by Cauchy. A number of important theorems in early 

group theory is due to Cauchy. Cayley's On the theory of groups, as depending on 

the symbolic equation θ
n
 = 1 (1854) gives the first abstract definition of finite 

groups. 

1.3. Groups related to geometry  

Secondly, the systematic uses of groups in geometry, mainly in the guise of 

symmetry groups, were initiated by Klein's 1872. The study of what are now called 

Lie groups started systematically in 1884 with Sophus Lie, followed by work of 

Killing, Study, Schur, Maurer, and Cartan. The discontinuous (discrete group) 

theory was built up by Felix Klein, Lie, Poincaré, and Charles Émile Picard, in 

connection in particular with modular forms and monodromy. 

1.4. Appearance of groups in number theory  

The third root of group theory was number theory. Certain abelian group structures 

had been implicitly used in number-theoretical work by Gauss, and more explicitly 

by Kronecker. Early attempts to prove Fermat's last theorem were led to a climax 

by Kummer by introducing groups describing factorization into prime numbers. 

1.5. Convergence  

Group theory as an increasingly independent subject was popularized by Serret, 

who devoted section IV of his algebra to the theory; by Camille Jordan, whose 

Traité des substitutions et des équations algébriques (1870) is a classic; and to 

Eugen Netto (1882), whose Theory of Substitutions and its Applications to Algebra 

was translated into English by Cole (1892). Other group theorists of the nineteenth 
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century were Bertrand, Charles Hermite, Frobenius, Leopold Kronecker, and Émile 

Mathieu; as well as Burnside, Dickson, Hölder, Moore, Sylow, and Weber. 

The convergence of the above three sources into a uniform theory started with 

Jordan's Traité and von Dyck (1882) who first defined a group in the full modern 

sense. The textbooks of Weber and Burnside helped establish group theory as a 

discipline. The abstract group formulation did not apply to a large portion of 19th 

century group theory, and an alternative formalism was given in terms of Lie 

algebras. 

1.6. Late 19th century 

Groups in the 1870-1900 period were described as the continuous groups of Lie, 

the discontinuous groups, finite groups of substitutions of roots (gradually being 

called permutations), and finite groups of linear substitutions (usually of finite 

fields). During the 1880-1920 period, groups described by presentations came into 

a life of their own through the work of Arthur Cayley, Walther von Dyck, Dehn, 

Nielsen, Schreier, and continued in the 1920-1940 period with the work of 

Coxeter, Magnus, and others to form the field of combinatorial group theory. 

Finite groups in the 1870-1900 period saw such highlights as the Sylow theorems, 

Hölder's classification of groups of square-free order, and the early beginnings of 

the character theory of Frobenius. Already by 1860, the groups of automorphisms 

of the finite projective planes had been studied (by Mathieu), and in the 1870s 

Felix Klein's group-theoretic vision of geometry was being realized in his Erlangen 

program. The automorphism groups of higher dimensional projective spaces were 

studied by Jordan in his Traité and included composition series for most of the so 

called classical groups, though he avoided non-prime fields and omitted the unitary 

groups. The study was continued by Moore and Burnside, and brought into 

comprehensive textbook form by Leonard Dickson in 1901. The role of simple 

groups was emphasized by Jordan, and criteria for non-simplicity were developed 

by Hölder until he was able to classify the simple groups of order less than 200. 

The study was continued by F. N. Cole (up to 660) and Burnside (up to 1902), and 

finally in an early "millennium project", up to 2001 by Miller and Ling in 1900. 
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Continuous groups in the 1870-1900 period developed rapidly. Killing and Lie's 

foundational papers were published, Hilbert's theorem in invariant theory 1882, 

etc. 

1.7. Early 20th century 

In the period 1900-1940, infinite "discontinuous" (now called discrete groups) 

groups gained life of their own. Burnside's famous problem ushered in the study of 

arbitrary subgroups of finite dimensional linear groups over arbitrary fields, and 

indeed arbitrary groups. Fundamental groups and reflection groups encouraged the 

developments of J. A. Todd and Coxeter, such as the Todd–Coxeter algorithm in 

combinatorial group theory. Algebraic groups, defined as solutions of polynomial 

equations (rather than acting on them, as in the earlier century), benefited heavily 

from the continuous theory of Lie. Neumann and Neumann produced their study of 

varieties of groups, groups defined by group theoretic equations rather than 

polynomial ones. 

Continuous groups also had explosive growth in the 1900-1940 period. 

Topological groups began to be studied as such. There were many great 

achievements in continuous groups: Cartan's classification of semisimple Lie 

algebras, Weyl's theory of representations of compact groups, Haar's work in the 

locally compact case. 

Finite groups in the 1900-1940 grew immensely. This period witnessed the birth of 

character theory by Frobenius, Burnside, and Schur which helped answer many of 

the 19th century questions in permutation groups, and opened the way to entirely 

new techniques in abstract finite groups. This period saw the work of Hall: on a 

generalization of Sylow's theorem to arbitrary sets of primes which revolutionized 

the study of finite soluble groups, and on the power-commutator structure of  

p-groups, including the ideas of regular p-groups and isoclinism of groups, which 

revolutionized the study of p-groups and was the first major result in this area since 

Sylow. This period saw Zassenhaus's famous Schur-Zassenhaus theorem on the 

existence of complements to Hall's generalization of Sylow subgroups, as well as 

his progress on Frobenius groups, and a near classification of Zassenhaus groups. 
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1.8. Mid 20th century 

Both depth, breadth and also the impact of group theory subsequently grew. The 

domain started branching out into areas such as algebraic groups, group extensions, 

and representation theory. Starting in the 1950s, in a huge collaborative effort, 

group theorists succeeded to classify all finite simple groups in 1982. Completing 

and simplifying the proof of the classification are areas of active research. 

Anatoly Maltsev also made important contributions to group theory during this 

time; his early work was in logic in the 1930s, but in the 1940s he proved 

important embedding properties of semi groups into groups, studied the 

isomorphism problem of group rings, established the Malçev correspondence for 

polycyclic groups, and in the 1960s return to logic proving various theories within 

the study of groups to be undecidable. Earlier, Alfred Tarski proved elementary 

group theory undecidable. 

1.9. Later 20th century 

The period of 1960-1980 was one of excitement in many areas of group theory. 

In finite groups, there were many independent milestones. One had the discovery 

of 22 new sporadic groups, and the completion of the first generation of the 

classification of finite simple groups. One had the influential idea of the Carter 

subgroup, and the subsequent creation of formation theory and the theory of 

classes of groups. One had the remarkable extensions of Clifford theory by Green 

to the indecomposable modules of group algebras. During this era, the field of 

computational group theory became a recognized field of study, due in part to its 

tremendous success during the first generation classification. 

In discrete groups, the geometric methods of Tits and the availability the 

surjectivity of Lang's map allowed a revolution in algebraic groups. The Burnside 

problem had tremendous progress, with better counterexamples constructed in the 

60s and early 80s, but the finishing touches "for all but finitely many" were not 

completed until the 90s. The work on the Burnside problem increased interest in 

Lie algebras in exponent p, and the methods of Lazard began to see a wider impact, 

especially in the study of p-groups. 
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Continuous groups broadened considerably, with p-adic analytic questions 

becoming important. Many conjectures were made during this time, including the 

coclass conjectures. 

1.10. Late 20th century 

The last twenty years of the twentieth century enjoyed the successes of over one 

hundred years of study in group theory. 

In finite groups, post classification results included the O'Nan–Scott theorem, the 

Aschbacher classification, the classification of multiply transitive finite groups, the 

determination of the maximal subgroups of the simple groups and the 

corresponding classifications of primitive groups. In finite geometry and 

combinatorics, many problems could now be settled. The modular representation 

theory entered a new era as the techniques of the classification was axiomatized, 

including fusion systems, Puig's theory of pairs and nilpotent blocks. The theory of 

finite soluble groups was likewise transformed by the influential book of Doerk–

Hawkes which brought the theory of projectors and injectors to a wider audience. 

In discrete groups, several areas of geometry came together to produce exciting 

new fields. Work on knot theory, orbifolds, hyperbolic manifolds, and groups 

acting on trees (the Bass–Serre theory), much enlivened the study of hyperbolic 

groups, automatic groups. Questions such as Thurston’s 1982 geometrization 

conjecture, inspired entirely new techniques in geometric group theory and low 

dimensional topology, and were involved in the solution of one of the Millennium 

Prize Problems, the Poincaré conjecture. 

Continuous groups saw the solution of the problem of hearing the shape of a drum 

in 1992 using symmetry groups of the laplacian operator. Continuous techniques 

were applied to many aspects of group theory using function spaces and quantum 

groups. Many 18th and 19th century problems are now revisited in this more 

general setting, and many questions in the theory of the representations of groups 

have answers. 

1.11. Today 

Group theory continues to be an intensely studied matter. Its importance to 

contemporary mathematics as a whole may be seen from the 2008 Abel Prize, 

awarded to John Griggs Thompson and Jacques Tits for their contributions to 

group theory. 
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2.1. Definition 1.  

A group is a set G with an operation (called the group product ) witch associates to 

each ordered pair (a, b) of elements of G an element ab of G in such a way that:  

(1) For any element a, b, c ∈ G, (ab)c = a(bc); 

(2) There is unique element e ∈ G such that ea = a = ae for any element a ∈ G 

Thus (1) and (2) are the conditions for G to be a semi group with identity ; 

(3) For each a ∈ G there is a
-1

 ∈ G such that a
-1

a = e = a a
-1

. 

2.2. Example 1.  

The additive group of integers (Z, +) 

(1)  a + 0 = a = 0 + a for every a ∈ Z. thus (Z, +) has an identity element  

(2)  If a, b, c are integers, ( a + b ) + c = a + ( b + c )  

i.e. (Z, + ) is a semi group  

(3)  If a ∈ Z, then – a in Z has the property a + ( - a) = 0 = ( - a ) + a 

i.e.  –a is an inverse of a in (Z, +)  

(Z, +) is a group  

2.3. Example 2.  

The set A = {-3, -2, -1, 0, 1, 2, 3} is not a group with respect to addition on I  

although 0 is the identity element, each element of A has an inverse, and addition 

is associative . The reason in, of course, that addition is not a binary operation on 

A, that is, the set A is not closed with respect to addition. 

2.4. Definition 2. 

A sub group of a group G is a nonempty subset H such that 

(1)  a, b ∈ H implies ab ∈ H  

(2)  a ∈ H implies a
-1

 ∈ H. 

2.5. Example 3.  

Is Z – {0} a subgroup of (Q
*
, ·), the multiplicative group of nonzero rational 

numbers?  
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1 is the identity. 3 ∈ Z – {0}, but 3 has no inverse in z – {0}. There for z – {0} is 

not a subgroup of (Q
*
, ·).  

2.6. Example 4.  

A proper subgroup of the multiplicative group G = {1, -1, i, -i} is H = {1, -1}  

2.7. Definition 3. 

Let X denotes a finite set. A permutations of X is a one-to-one onto mapping from 

X to X. 

The set A(x) of all permutation of X is a group in a natural way:   

if S,T ∈ A(x), then ST ∈ A(x) is the composite mapping given by (ST)(x)=S(T(x)) 

for x ∈ X, the inverse of  S ∈ A(x) is just the inverse mapping S
-1

, A sub group of 

A(x) will be called a group of permutations of X. 

A permutation group is a special kind of transformation group.  

If G is a group of permutations of the finite set X ,  then the action of G on X is 

given by g * x = g(x).  This action satisfies:  

(1) g*( h  *x ) =  (gh)* X for all g, h ∈ G and all x ∈ X ;  

(2) e * X =  X for all x  ∈  X ;  

(3) If g  *  X =  X for all x∈X ,  then g = e. 

Only conditions (1) and (2) are required for transformation groups in general. 

An action of G on X witch satisfies (3) is called effective, or alternatively, G is 

said to act effectively. It’s clearly that we could have made the definition:  

a permutation group is a group which acts effectively on a finite set. 

2.8. Example 5. 

There are exactly n! permutation of on n-element set. 

Proof 

For an n-element set S= {x,………,xn} we can construct a permutation action σ on 

S as follows. 

Assign one of the n elements of S to σ(x1) 



17 
 

Assign one of the n-1 elements of S-{σ (x1)} to   σ(x2) 

. 

. 

.  

n assign the 1 remaining element to σ (xn). 

This method can generate (n (n-1) …… 1=n!) different permutations of S. 

Furthermore it should be reasonably clear that these permutations are distinct, and 

that any permutation can be generated in this way and thus we know that there are 

exactly n! permutations of an n -elements set.             □ 

 

2.9. Definition 4. 

A group G acts on a set X (as a group of transformations) if to each pair 

(g, x) ∈ G X X there is associated an element g*x ∈ X in such a way that 

g* (h * x) = (gh) * x for all g, h ∈ G and all x ∈ X; 

e * x = x for all x ∈ X. (e is the identity element of G.) 

We note that each g ∈ G determines a one-to-one correspondence 

g: X X, given by g(x) = g * x, whose inverse is g
-1

: X X. (These one- 

to-one correspondences are sometimes called transformations of X.) 

As examples of transformation groups we note that every group G acts 

on itself by the rule g * h = gh for all g, h ∈ G, and more generally, if H 

is a subgroup of G, then G acts on the left coset space X = G/H by the 

rule g*(g'H) = (gg')H. 

2.10. Example 6. 

To make G act on itself by left multiplication, we let X = G and g ∙ x (for g ∈ G 

and x ∈ G) be the usual product of g and x. This example was used already in the 

proof of Cayley's theorem, and the definition of a group action is satisfied by the 

axioms for multiplication in G. 

Note that right multiplication of G on itself, given by rg(x) = xg for g and x in G, is 
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not an action since the order of composition gets reversed: rg1 o rg2 = rg2g1. But if we 

set rg (x) = xg
- 1

 then we do get an action. This could be called the action by right-

inverse multiplication (non-standard terminology). 

2.11. Example 7. 

To make G act on itself by conjugation, take X = G and let g ∙ x = gxg
-1

.  

Here   g∈G  and x ∈ G. Since e ∙ x = exe
-1

 = x and 

 g1 ∙ (g2∙ x)  = g1∙ (g2xg2
-1

) 

   = g1 (g2xg2
-1

)g1
-1

 

   = (g1g2)x(g1g2)
-1

 

   = g1g2) ∙ x, 

conjugation is a group action.  

Note: we use this application of this action to proof Sylow’s theorem.  

2.12. Definition 5  

Orbits: Let G be a group acting on the set X. e define an equivalence relation ~ on 

X by setting x ~ y if and only if y = g * x for some g ∈ G. An equivalence class 

under ~ is called an orbit. The orbit of x ∈  X is simply the set : 

𝐺 ∗ 𝑥 =  𝑦 ∈ 𝑿 /  𝒚 = 𝒈 ∗ 𝒙, 𝒇𝒐𝒓 𝒔𝒐𝒎𝒆 𝒈 ∈ 𝑮   

The quotient set X/~ is called the set of orbits of X under the action of G.  

2.13. Definition 6 

Let S be any subset of a group G, and let a be any element of G. The set  

𝑆𝑎 =   𝑥 ∈  𝐺 | 𝑎𝑥𝑎−1 ∈  𝑆  

Is called the Conjugate of S by a. we note that  𝑆𝑎 𝑏 =  𝑆𝑎𝑏  and that Se = S. 

2.14. Definition 7 

Coxeter group: 

Let M = (mij)1 ≤ i, j ≤ n be a symmetric n x n matrix with entries from N ∪{∞} such 

that mij = 1 for all i ∈ [n] and mij > 1 whenever i ≠ j. The Coxeter group of type M 

is the group  
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𝑊 𝑀 =    {(𝑠1 , . . . , 𝑠𝑛 )   𝑠𝑖𝑠𝑗  
𝑚 𝑖𝑗

= 1 /𝑖, 𝑗 ∈  𝑛 , 𝑚𝑖𝑗 < ∞}〉  

We often write S instead of {𝑠1 , . . . , 𝑠𝑛 }  and, if no confusion is imminent, W 

instead of W(M). The pair (W, S) is called the Coxeter system of type M. 

2.15. Definition 8 

Topological group: 

G is a topological space and group such that the group operation of product: 

G   G  G: (x, y) ↦ xy  

And taking inverses G  G: x ↦ x
-1

  

are continues function here, G  G is viewed as a topological space by using the 

product topology. 

2.16. Properties: 

Let a1, a2, . . . ak ∈ Nn be distinct integers we shall denote by (a1, . . . ak) 

 
a1 a2 …   ak  … 𝑖 …
a2 a3 …   a1   … 𝑖 …

  

Which carries a1  to  a2 , a2 to a3  , , , , , and ak  to ai leaving all the other elements of 

Ni fixed. We call ( a1 , a2 , , , , , an ) a cyclic permutation of order K  or a K-cycle, 

this notation is almost too efficient.  

(a1, a2, , , , ak) can denote an element of any one the groups Sn for which n ≥ k . 

A cycle permutation of order 2, ( a1 , a2 ) simply interchanges a1 and a2 is called 

transposition .  Two cyclic permutation ( a1 , a2 , , , , ak ) and ( b1 , , , , , , bt ) are 

disjoint if they have no entries in common. Disjoint cyclic permutations commute 

that is ( a1, a2 , , , , , , ak ) (b1 , b2 , , ,.  bt ) = ( b1, b2 , , , , bt ) (a1 , a2 , , , ak ) however 

the group Sn is not abelian for n >2 . 

2.17. Definition 9 

Group homomorphism 

Let G and G1 be groups and let υ: G  G1 be a mapping from G in to G1.  

If υ(ab) =  (υa). (υb) for all ab ∈ G, the υ called a group homomorphism 
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Example: 

let G be any group. And let a be any element of G. Define υ: Z G by υ(n) = a
n
 

for all n in Z this is a group homomorphism from Z to G. 

Example 2 

On homomorphism is very well known to the reader. It’s the logarithm function  

log: R
+
R 

from the group R
+
 of positive real numbers (under multiplication) into the group R 

of all real numbers (under addition). The homomorphism property of the logarithm 

function is the well known identity  

log ab = loga + logb that holds for all a, b ∈ R
+
. 

2.18. Definition 10 

Group isomorphism  

Let G and G1 be groups and let υ: G  G1 be a group isomorphism. Then υ is a 

group isomorphism if υ is bijection and we use the notation G ≅ G1.  

2.19. Example 8. 

If |S| = n then perm (S) ≅ Sn 

Proof: 

Since S has n elements .we can index them S = { x1, . . ., xn } 

Then our isomorphism υ: Sn →perm (S) operates simply as υ(σ)(xi) = xσ(i) 

which is clearly a homomorphism and clearly bijective .  

2.20. Theorem 1. (Cayley) 
Every finite group G can be embedded in a symmetric group. 

Proof 

To each g ∈ G, define the left multiplication function ℓg: G  G, where ℓg(x) = gx 

for x ∈ G. Each ℓg is a permutation of G as a set, with inverse ℓg
-1

. So ℓg belongs to 

Sym (G). Since  o =  (that is, g1(g2x) = (g1g2)x for all x ∈ G), 

associating g to ℓg gives a homomorphism of groups, G  Sym(G). This 

homomorphism is one-to-one since ℓg determines g (after all, ℓg(e) = g). Therefore 

the correspondence g  ℓg is an embedding of G as a subgroup of Sym (G).  

□ 
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Allowing an abstract group to behave like a group of permutations, as happened in 

the proof of Cayley's theorem, is a useful tool. 

□ 

2.21. Theorem 2. 

Let G act on X. If x ∈ X, g ∈ G, and y = g ∙ x, then x = g
-1

 ∙ y.   

If x ≠ x' then gx ≠ gx'. 

Proof:  

From y = g ∙ x we get g
-1

 ∙ y = g
-1

 ∙ (g ∙ x) = (g
-1

g) ∙ x = e ∙ x = x. To show 

x = x'  gx = gx', we show the contrapositive: if gx = gx' then applying g
-1

 to both 

sides gives g
-1

 ∙ (g ∙ x) = g
-1

 ∙ (g ∙ x'), so (g
-1

g) ∙ x = (g
-1

 g) ∙ x', so x = x'. □ 

 

2.22. Theorem 3. 

 Actions of the group G on the set X are the same as group homomorphisms from 

G to Sym(X), the group of permutations of X. 

Proof.  

Suppose we have an action of G on X. We view g ∙ x as a function of x (with g 

fixed). That is, for each g ∈ G we have a function πg: X — X by πg (x) = g ∙ x. 

The axiom e ∙ x = x says πe is the identity function on X. The axiom 

g1 ∙ (g2 ∙ x) = (g1g2) ∙ x 

says  o  = , so composition of functions on X corresponds to 

multiplication in G. Moreover, πg is an invertible function since is an inverse: 

the composite of πg and  is πe, which is the identity function on X. Therefore πg 

∈ Sym(X) and g  πg is a homomorphism G  Sym(X).  

Conversely, suppose we have a homomorphism f: G  Sym(X). For each g ∈ G, 

we have a permutation f (g) on X, and f (g1g2) = f (g1) o f (g2). Think about the 

effect of the permutation f (g) on x ∈ X as an action: g ∙ x = f (g)(x). This defines a 

group action of G on X, since the homomorphism properties of f yield the defining 

properties of a group action.  

□ 
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From this viewpoint, the set of g ∈ G which acts trivially (g ∙ x = x for all x ∈ X) 

is simply the kernel of the homomorphism G  Sym(X) associated to the action. 

Therefore those g which act trivially on X are said to lie in the kernel of the action. 

2.23. Lemma 1. 

Disjoint permutations commute. 

Proof:  

Let σ and τ be disjoint. If x is not in the support of σ or τ, then στx = xτσ x. If x is 

in the support of σ, then so is σ x, since σ x ≠ x implies σσx ≠ σ x;  

then στx = σ x = τσ x, since σ and τ are disjoint. Similarly, if x is in the support of 

τ, then στx = τ x = τσ x.  

□ 

2.24. Theorem 4. 

Every permutation on n letters is the product of disjoint cyclic permutation in 

exactly one way (except for the order of the factors). 

Proof: 

Let π ∈ Sn. We shall donate by H the cyclic subgroup of Sn generated by π. H acts 

on the set Nn = {1, 2, 3, . . ., n} dividing it into disjoint orbits, X1, X2, . . .,Xr. In 

other words, tow elements I and j of Nn belong to the same orbit if and only if  

j=π
k
(i) for some power π

k
 of π. In any orbit Xk we may list elements in order 

 , 

So that = π( ) and . We let  denote the cyclic permutation 

( ). We claim that . 

To prove this we need to only show that π and  have the same effect 

on every element x ∈Nn. If x ∈ Xk, then  for i ≠ k and . 

Therefore,  . 

Finally, the expression  is clearly unique except for the order of 

the . 

Note that we may include or exclude factors of the form  since every     

1-cyclic is the identity. 
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in practice it is a simple matter to express a permutation as the product of disjoint 

cyclic permutation. For example . 

 

2.25. Corollary 1. 

If α1, α 2, . . ., α s ∈ Sn are disjoint cyclic permutations  then the order of   

α1, α 2, . . ., α s is the least common multiple of the orders of factors ; 

Proof: 

Let ki denote the order of αi, and let k be the least common multiple of the ki . 

Since the αi’s commute we have (α1, α2, . . ., αs)
k
 =  ,  , . . .,  = e 

so that o(, α2, . . ., αs) = divides k since the αi’ are disjoint it follows that  

(α1, α2, . . ., αs)
i
 = e implies  αi

i
 = e for each i, then ki/L for each i , and thus 

k/L particular k/ o(α1, α2, . . ., αs) and therefore o(α1, α2, . . ., αs) = k  

□ 

2.26. Proposition 1. 

Every permutation is a product of transpositions. 

Proof:  

By induction on n. Proposition 1 is vacuous if n = 1. Let n > 1 and σ ∈ Sn. 

 If σn = n, then, by the induction hypothesis, the restriction of σ to {1, 2, . . ., n −1} 

is a product of transpositions; therefore σ is a product of transpositions.  

If σn = j ≠ n , then (n j) σ n = n , (n j) σ is a product of transpositions  

(n j) σ = τ1 τ2 . . . τr , and so is σ = (n j) τ1 τ2 . . .  τr . \ 

Example:-  write    =  as the 

product of disjoint cycles Solution :  

1 α = 2 , 2 α   = 4, 4 α   = 8, 8 α  = 1,  3 α   = 6,  6 α   = 12,  12 α  = 9,  9 α  = 3.   

5 α = 10, 10 α   = 5.    7 α = 14, 14 α   = 13, 13 α = 11, 11 α = 7.  Hence  

α  = (1,2,4,8)(3,6,12,9)(5,10)(7,14,13,11)  

 

□ 
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Even and odd permutations : 

We are interested in special subgroup of Sn the alternating group of degree n. 

usually denoted by An. This sub group An is obtained from Sn by singling out 

certain elements. 

To begin with consider S3 let   

Then 

 

If  then 

 
We say σ is even and τ is odd  

More generally, let us call σ ∈ Sn even (or an even permutation) if 

 

On the other hand, we call σ ∈ Sn odd (or an odd permutation) if  

 
The definition of even or odd is written more briefly as 

σ is even if 

 

σ is odd if 
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 We shell show that an element is in Sn is ether even or odd, i.e. 

  

It follows the set of even permutations is a subgroup of Sn called the alternating 

groups on n letters and customarily denoted An. We may regard sgn:Sn  K2 as 

homomorphism from Sn to K2 = {±1}, the group of square roots. This shows that 

An is normal subgroup of Sn and the quotient group S
’
n/An is isomorphic to 

‘
 K2 

2.27. Definition 11. 

 

 

2.28. Proposition 2. 

The function sgn: Sn  (+1, -1) satisfies sgn (τσ) = sgn(τ) sgn(σ) (τ, σ ∈Sn ) 

Proof:  

 

 

 

 

Since  
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 Indices in the product  

 

 

By Lemma:   is a bijection of T  

 

     

From (1) and (2) we get sgn (τσ) = sgn(τ) sgn(σ). 

 

□ 

2.29. Proposition 3.  

An is generated by all 3-cycles. 

Proof:  

First, (a b c) = (a b)(c b) for all distinct a, b, c , so that 3-cycles are even and An 

contains all 3-cycles. Now we show that every even permutation is a product of  

3-cycles. It is enough to show that every product (a b)(c d) of two transpositions is 

a product of 3-cycles. 

Let a ≠ b, c ≠ d. If {a, b} = {c, d}, then (a b)(c d) = 1. If {a, b} ∩ {c, d} has just 

one element, then we may assume that b = d, a ≠ c, and then  

(a b)(c d) = (a b)(c b) = (a b c).  

If {a, b} ∩ {c, d} = Ø, then (a b)(c d) = (a b)(c b)(b c)(d c) = (a b c)(b c d).  

□ 

2.30. Lemma 2. 

In Sn  (n≥2) ,the number of even permutation equals The number of odd 

permutation, and equals  . 

Proof: 
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An ≡ the Set of even permutation. 

Bn The Set of odd permutation. 

We define a map υi : An Bn by 

υ(σ) = σ(μ) where N(1,2) ∀ σ ∈ An  

if υ(σ) = υ(ρ) 

 σ μ = ρ μ 

 (σμ)μ = (ρμ)μ 

 σμ
2
 = ρμ

2
 

 σρ0= ρρ0 

 σ = ρ 

 υ = 1-1 

For any ρ ∈ Bn , there exist : 

ρμ ∈ An 

υ(ρμ) = (ρμ)μ 

 = ρμ
2
 

 = ρρ0 

 ρ
2
 

υ is onto 

Sn is finite 

|An| = |Bn|. 

□ 

2.31. Lemma 3. 

The product of: 

two even permutations is even 

two odd permutations is even 

an odd permutation and an even permutation is odd 

An even permutation and an odd permutation is odd. 

2.32. Lemma 4.  

An⊆ Sn  , (n ≥ 2) ,the subset of even permutations is a subgroup. 

An ≠ υ (since ρo ∈ An),  

let ρ, σ ∈ An  

ρ = μ’1, μ’2, . . , μ’2r , σ = μ1, μ2, . . ., μ2k  
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ρ σ
-1

 = (μ’1, μ’2, . . ., μ’2r)*(μ1, μ2, . . ., μ2k)
-1

 

 = (μ’1, μ’2, . . ., μ’2r)*( μ
-1

2k, . . . , μ
-1

2, μ
-1

1) 

 = μ’1 μ’2, . . ., μ’2r μ2k,. . ., μ2μ1 

ρ σ
-1

 is a product of even number of transposition 

ρ σ
-1

 ∈ An  

 An⊆ Sn  

□ 

2.33. Definition 12 

Normal subgroup: 

A subgroup, N, of a group, G, is called normal subgroup if it is invariant under 

conjugation that is for each element n in N each g in G the element gng
-1 

is still in 

N. we write N  G   n  N,  g  G, gng
-1

  N. 
 

Simple group:  

A simple group is a nontrivial group whose only normal subgroups are the trivial 

group and the group itself.  

2.34. Theorem 5.   

The alternating group An is simple except for  n = 4  

  Proof :                                                                                                                 

Recall that a group is simple of it has only itself and the trivial group as normal 

subgroups . For n < 4 the order of an is either 1 or 3, and An is obviously simple. 

The major part of the proof is the case n > 4.  

  Let N be a nontrivial normal subgroup of An for n > 4. We must show that           

N = An. The first step is to see that N contains a 3-cycle.  

  Let α ≠ e be an element of N which leaves fixed as many element of Nn as 

possible. As guaranteed by Theorem 4, let  

                         α = α1α2 …αs  

Where the α1 are disjoint cycles, which we may assume are given in order of 

decreasing length. Renumbering if necessary, we may assume that  
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α1 = ( 1,2,…..k ) 

and, when s > 1, that  

α2 = ( k + 1, k + 2,…..,L ) . 

we distinguish several cases .  

   Case 1. α moves each of the numbers 1, 2, 3, 4, 5. ( This occurs when s > 2, when 

s = 2 and α = ( 1, 2,…..k ) ( k + 1 , k + 2,…L ) with L > 4, or when s = 1 and α = α1 

= ( 1, 2,…..k ) for k > 4 ) Setting β
 
= ( 3, 4 , 5 ), the element β

-1
α

-1
β belongs to the 

normal subgroup N, and thus β
-1

α
-1

βα ∈ N. How- ever it is easily checked that 

permeation β
-1

α
-1

βα leaves the number 1 fixed in addition to leaving fixed all the 

elements fixed by α This contradicts the choice of α, and case l is impossible . 

   Case2. α moves the numbers 1,2,3,4 and no others ( This occurs only when            

α = ( 1,2 ) ( 3,4 ) , since ( 1,2,3,4 ) is an odd permutation ) Again we set β = ( 3,4,5) 

and argue that the element β
-1

α
-1

βα belongs to N . However,     

Direct computation shows that β
-1

α
-1

βα = (3, 4, 5) = β Thus, β ∈ N and β moves 

fewer elements than α . This contradiction eliminates case 2.  

  Case 3.  Moves the numbers 1,2,3 and no others. (This occurs only when α = (1,2, 

3) there are no other cases now that the first and second are eliminated. Thus, we 

have shown that N contains a 3-cycle, which we may assume to be (1, 2, 3). 

  It remains to show that N contains every 3-cycle. Choose an even permutation.  

𝜎 =   
1 2 3
𝑖 𝑗 𝑘

    
…
… ; 

Then,   σ(1,2,3)σ
-1

 = (i,j,k) belongs to the normal subgroup N. Varying i, j, and k, 

we obtain all 3-cycles . Thus, N contains every 3-cycle, and in view of proposition 

3, N = An, and we are finished.  
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2.35. Definition 13 

Solvable Group: 

A group G witch have subgroups G0, G1, . . ., Gn where G0 = G, Gn = the identity 

element alone, and each Gi is a normal subgroup of Gi-1 witch the quotient group 

 abelian. 

2.36. Theorem 6.  

For n > 4, the symmetric group Sn is not solvable. 

Proof: 

Since the groups K2 ≈ Sn/An and An (for n > 4) are simple, the normal series 

{e} ⊂ An ⊂ Sn 

Is a composition series for S When n > 4. However, An is not abelian for n > 3. 

(For example (1, 2, 3)(2, 3, 4) = (1, 2)(3, 4) while (2, 3, 4)(1, 2, 3) = (1, 3)(2, 4). ) 

Consequently, An is not cyclic for n > 3. As a result Sn is not solvable for n > 4. 

□ 

2.37. Theorem 7. 

If H is a subgroup of finite group G and H contains no nontrivial normal subgroup 

of G, then G is isomorphic to a subgroup of sym(G/H), the group of permutations 

of the set G/H. 

Proof: 

Define a homomorphism ф:G sym(G/H) by setting  Ф(g)(xH) = (gx)H all x ∈ G. 

Ker Ф is a normal subgroup of G. An element g belongs to Ker Ф if and only if 

(gx)H = xH for all x ∈ G, or what is the same thing, x
-1

gx ∈ H for all x ∈ G. In 

other words, Ker Ф ⊂ H and by hypothesis Ker Ф must be trivial. It follows that  

G ≈ Im Ф. 

 

2.38. Corollary2. 

For n >4 An is the only proper subgroup of index less the n in Sn . 

Proof: 
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If fllows that for n>4, An Is the only proper, nontrivial, normal subgroup of Sn. 

Supose that H is subgroup of Sn and [Sn:H]<n. If [Sn:H]= 2, then H is normal and 

H=An . On the other hand [Sn:H] >2 implies An⊄ H. Thus, the hypothesis of the 

theorem is satisfied, and Sn is isometric to subgroup of sym(Sn /H) . However, 

 

Which is contradiction. 
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3.  Applications and Problems  

 Problem 1. 

 Problem 2. 

 Problem 3. 

 Problem 4. 

 Problem 5. 

 Problem 6.  

 Problem7. 

 Application 1.  

 Problem8.  

 Application 2.  

 Problem 9.  
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3.1. Problem 1. 

A = {1, 2, 3} find the elements of S3 and show that (S3, 0) is a group but not 

abelian. 

Solution:  

elements of S3 i.e. |S3| = 3! = 6  

i =    2 =    2 =  

1 =    1 =    3 =  

We must compute the products. AS an example we calculate  σ1τ1 

1 1 = ( ) = ( ) = ( ) 

= 2 

The multiplication table for S3 is 

 i 1 2 1 2 3 

i i 1 2 1 2 3 

1 1 2 i 2 3 1 

2 2 i 1 3 1 2 

1 1 3 2 i 2 1 

2 2 1 3 1 i 2 

3 3 2 1 2 2 i 

 
Note that σ1τ1 = τ2 and τ1σ1 = τ3, so that σ1τ1 ≠ τ1σ1 

Hence S3 is not commutative . 
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3.2Problem2 :- Determine whether (a1,…am), so (a1,…am) is the product of m – 

1 transpositions . 

  (a1,…,am) = (a1,a2)(a1,a3) … (a1,am) , so (a1,…am) is the product of m – 

1 transpositions .  

Thus (a1,…am) is even or odd according as m is odd or even. 

 

3.3. Problem 3.  

Decompose 

 
into a product of transpositions. 

Solution:  

We have: 

σ = (3)(1 2 5 4) = (1 2 5 4) = (1 4)(1 5)(1 2) 

Some alternative decomposition are: 

σ = (2 1)(2 4)(2 5) = (5 2)(5 1)(5 4) 

 □ 

3.4. Problem 4. 

In the group Sn the cyclic permutation (i1 i2 . . . ir) of length r has order: 

 

Solution: 

Setting σ = (i1 i2 . . . ir), we have 
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hence |σ| ≤ r. As ik ≠ 1 for 1 < k ≤ r, r is the smallest such power which is l, hence 

|σ| = r. 

□ 

3.5. Problem 5. 

Calculate   , 
-1,  -1, ( )-1 

and ( )
-1. 

If  = ( ),  = ( ) 

Solution:  

 = ( ),  = ( ) 

To find  
-1 

we note that   x (
-1

) = x and hence 
-1

 must carry xα to x, now we 

determine which x is taken into 1,  = 1 

So we must have 1
-1 = 6 next since 1  = 2, 2  

-1
 =1 proceeding in this way we 

obtain 

 
-1 = ( ) 

An easy method of calculating the answer mechanically follows take 

 = ( ) 

Interchange the rows 

( ) 

Rearrange the columns so that the top row reads 1 2 3 4 5 6. 

 
-1

 = ( ) 
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This method is conceptually the same as the first. To find  
-1

 integrating the rows 

to obtain  

 ( ) 

And  
-1 = ( ), ( )

-1
 = ( ) 

 

( )
-1

 = ( ) 

 

3.6. Problem 6. 

Verify that   ) = ( )  where 

 =    ,     =   ,   =  

Solution: 

(  )  =    =  

)  =   =  

3.7. Problem 7. 

Is the subset R = {i, 1, 2} a subgroup of S3. 

R   from application 1of S3 the product of any two elements in R is again in R, 

since σ
-1

1 = σ2 and σ
-1

2 = σ1 it follow that (R is subgroup  ∀ x, y ∈ R, xy
-1

 ∈ R) 

for any x, y ∈ R. Hence R is subgroup of S3 

3.8. Application 1. 

S4 = { ( 1) , ( 12 ), ( 13), ( 14 ), ( 23 ), ( 24 ), ( 34 ),  = ( 123 ) , 
2
 = ( 132 ),  

= ( 124 ), 
2
 = ( 142 ),  = ( 134 ), 

2
 = ( 143 ), δ = ( 234 ), δ

2
 = ( 243), 
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 = ( 1234 ), 
2
 = ( 13 ) ( 24), 

3
 = ( 1432 ), σ = ( 1243 ), σ

2
 = ( 14 )( 23),  

σ
3
 = ( 1342 ), = ( 1324 ), 

2
 = ( 12 ) (34) , 

3
 = ( 1423 ) }. 

The subgroup of S4 (i) {(1) , (1 2 ) } (ii)  { (1) ,  , 
2
 } (iii)  = { (1) , (1 2) , (3 4) , 

(1 2) ( 3 4) } and (iv) A4 = { (1) ,  , 
2
 ,  , 

2
  ,

2
 ,  , 

2
 , 2 , 2 , 

2
 } 

are examples of  permutation groups on 4 symbols.  A4 consist of all even 

permutation in S4 and is known as the alternating group on 4 symbols. A4 

The sub set {u =(1), ρ, ρ
2
, ρ

3
, σ

2
, τ

2
, b= (13), e = (24)} of S4 is a group (see the 

operation tale below), called the octic group of a square or the general dihedral 

group D4. 

We shall now show how this permutation group may be obtained using properties 

of symmetry of a square. 

 

4  C  3 

    

A B 
 O 

  

1  D  2 

Figure 1 

Consider the square (figure 1) with vertices denoted by 1, 2, 3, 4; locate its center 

O the bisectors AOB and COD of its parallel sides, and the diagonals 1O3 and 

2O4. We shall be concerned with all rigid motions (rotations in the plane about O 

and in space about bisectors and diagonals) such that the square will look the same 

after the motion as before. 

Denote by ρ the counterclockwise rotation of the square about O through 90º. Its 

effect is to carry 1 into 2. 2 into 3, 2 into 4, and 4 into 1; thus, ρ = (1234).  

Now ρ
2
 = ρ ºρ = (13) (24) is a rotation about O of 180º ρ

3
 = (1432) is a rotation of 
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270º and ρ
4
 = (1) = u is rotation about O of 360º or 0º. The rotation of 180º about 

bisectors AOB and COD give rise respectively to σ
2
 = (14) (23) and τ

2
 = (12) (34) 

while the rotation through 180º about the diagonals 1O3 and  2O4 give rise to  

e = (24) and b = (13). 

The operation table for this group is 

 

 u ρ ρ
2
 ρ

3
 σ

2
 τ

2
 b e 

u u ρ ρ
2
 ρ

3
 σ

2
 τ

2
 b e 

ρ ρ ρ
2
 ρ

3
 u b e τ

2
 σ

2
 

ρ
2 

ρ
2
 ρ

3
 u ρ τ

2
 σ

2
 e b 

ρ
3
 ρ

3
 u ρ ρ

2
 e b σ

2
 τ

2
 

σ
2
 σ

2
 e τ

2
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3.9. Problem 8. 

Write out a multiplication table for (i) A1, (ii) A2, (iii) A3, 

Solution: 

There is only one element in S1, namely , and it’s an even 

permutation. Hence a multiplication table A1 is  . Notec A1 is the same 

as S1. 

 is an even permutation and  is an 

odd permutation there for  and  where 

  is a multiplication table for A2 

S3 contains six elements. The elements i, σ1 and σ2 are the even 

permutations, and a multiplication table for A3 is 

 

 

 

 

 

3.9. Application 2.  

Sn acts on X = {1, 2,..., n} in the usual way. Here πσ(i) = σ(i) in the usual notation. 

3.11. Problem 9. 

Prove An = Sn implies n = 1. 

Solution: 

If n>1, Sn must contain a permutation witch interchange 1 and 2 and leaves 

everything else fixed, i.e. 1r=2, 2r=1 and ir = i (i= 3, . . ., n). r ∉ An, since r is an 

 i σ1 σ2 

i i σ1 σ2 

σ1 σ1 σ2 i 

σ2 σ2 i σ1 
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odd permutation, and therefore An ≠ Sn. by problem  6 (i), A1= S1. Hence An = Sn 

implies n = 1. 

3.12. Problem 10. 

Definition derived group : 

The commuter subgroup (also called a derived group) of group G is the subgroup 

generated by the commentators of its elements, and is commonly denoted G
\
 or  

[G, G]. it is the smallest normal subgroup of G such that G/G
\
 is abilian. 

Prove that if G = An, n ≥ 5, then the derived group G
\
 of G is a G. 

Solution: 

We know that G
\
  G. Hence G

\
 = G or else G

\
 = {i} as a G is simple by theorem. 

If G
\ 
= {i} is abilian. But An is not abilian for n ≥ 5 For example  

 

But 

 

Therefore G
\
 = G. 
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