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Introduction

The study of groups arose early in the nineteenth century in connection with the
solution of equations. Originally a group was a set of permutations with the property that the
combination of any two permutations again belongs to the set. Subsequently this definition was
generalized to the concept of an abstract group, which was defined to be a set, not necessarily
of permutations, together with a method of combining its elements that is subject to a few
simple laws.

The theory of abstract groups plays an important part in present day mathematics and science.
Groups arise in a bewildering number of apparently unconnected subjects. Thus they appear in
crystallography and quantum mechanics, in geometry and topology, in analysis and algebra, in
physics, chemistry and even in biology.

In the early days of group theory attention was confined almost entirely to finite groups. But
recently, and above all in the last two decades, the infinite group has come into its own. The
results obtained on infinite abelian groups have been particularly penetrating.

So in this research we will talk about free abelian groups and the important theorems in this
topic.

We divided this research into four chapters as follows:
Chapter 1 presents the group theory in general, definitions, examples and some theorems.

Chapter 2 shows that the concept of direct product and direct sum of abelian groups and we
made clear that in the abelian group it is usual to use additive notation: x +y. The reason for
this is that while multiplication of various mathematical objects (matrices, functions etc.) is
non-commutative, addition invariably commutes. So by using additive notation the
commutativity seems perfectly natural.

Chapter 3 is concerned with the torsion and the basis of abelian groups and we explained the
definitions and the theorems and some examples.

Chapter 4 is on free abelian groups. Two important things of free abelian groups are treated:
the homomorphic property of free abelian groups and the subgroup of free abelian groups.



Chapter 1

The Groups: Definitions, Examples, Basic Properties

The Group:

In mathematics, a group is an algebraic structure consisting of a set together with an
operation that combines any two of its elements to form a third element. To qualify as a group,
the set and the operation must satisfy a few conditions called group axioms, namely closure,
associative, identity and inversibility.

Definition 1.01:
A group (G,*) is a nonempty set G together with a binary operation * on G such that
the following conditions hold:

1. Closure:
Foralla,b € G,a*b € G.
2. Associativity:
Foralla,b,c € G,(a*b)*c =ax*(b*c).
3. Identity element:
There exists an identity element e € G such thatforalla € G,a*xe = e *xa = a.
4. Inverse element:
For each a € G there exists an inverse element a™! € G such that

1

a*xal=al*a=e.

Terminology:

We shall call the group additive if the operation is a kind of addition. in this case, it is
standard to denote the operation by (+)(a + b), the identity by O and the inverse of a in G by
(—a). We shall call the group multiplicative if the operation is a kind of multiplication. In this
case we often write (ab) or (a - b) to denote the operation, and we denote the identity by e or
1, and the inverse of a in G by (a™1).

Basic Properties of groups:
1. {(Uniqueness of the identity): The identity element of G is unique.
2. (Properties of the inverse):
i. Everyelementa € G has a unique inverse.
ii. Foreverya € G, we have (a™1)™? = a (two inverses get back to the original)
ii. Foralla,b € G, the inverse of the productis givenby (@ b)™* =b~1-a™%.
3. (The cancellation law): let G be a group, and leta, b,c € G

4



i. |Ifab=ac,thenb=c
ii. Wfac=>bc,thena=>b

Examples of groups:

1.

The sets of integers, rational numbers, real numbers and complex numbers are groups,
where the group operation is the operation of addition.

The sets of non-zero rational numbers (Q \ {0}), non-zero real numbers (R \ {0}) and
non-zero complex numbers (C \ {0}) are also groups, where the group operation is the
operation of multiplication.

For each positive integer n the set Z,, of integers modulo n is a group, where the group
operation is addition modulo n(Z,, +).

For each positive integer n the set Z,,” of integers modulo n is a group, where the group
operation is multiplication modulo n.

For each positive integer n the set of all non-singular n X n matrices is a group, where
the group operation is matrix multiplication.

The set {1, —1} is a group with the operation multiplication.

The set {1,—1,i,—i} is a group with the operation multiplication.

First example: the integers(Z, +).

One of the most familiar groups is the set of integers Z which consists of the numbers:

e, —4,-3,-2,-1,0,1,2,34, ...

The following properties of integer addition serve as a model for the abstract group axioms

given in the definition below:

1.

For any two integers a and b, the sum (a + b) is also an integer. Thus, adding two
integers never yields some other type of number, such as a fraction. This property is
known as closure under addition.

For allintegers a,b and ¢, (a + b) + ¢ = a + (b + ¢). Expressed in words, adding a to b
first and then adding the result to ¢ gives the same final result as adding a to the sum of
band c, a property known as associativity.

if ais any integer, then 0 + a = a + 0 = a. Zero is called the identity element of
addition because adding it to any integer returns the same integer.

For every integer a, there is an integer b such thata + b = b + a = 0. The integer b is
called the inverse element of the integer a and is denoted(—a).

The integers together with the operation +, form a group and the integers with the operation

of multiplication instead of addition (Z,) do not form a group.



The closure, associativity and identity axioms are satisfied, but inverse does not exist. For
example a = 2 is an integer, but the only solution to the equation a - b = 1 in this case is

1 . .
b= > which is a rational number, but not an integer. Hence not every element of Z has a

(multiplicative) inverse.

Subgroups:

Definition 1.02:
A group G is said to be a finite group if the set G has a finite number of elements. In this
case, the number of elements is called the order of G, denoted by |G|.

Examples:
1. The order of Z,, is n.
2. The order of S, isnl.

Definition 1.03:
Let G be a group and let H be the subset of G. Then H is called a subgroup of G If H is
itself a group, under the operation induced by G.

If H is a subgroup of G, we shall write H < G.

Properties:
1. The set {e} whose only element is the identity is a subgroup of any group. It is called a
trivial subgroup.
2. Asubgroup H of G is said to be proper if H # G.
3. Every group is a subgroup of itself.
4. Thenullset{ }isnevera subgroup (since the definition of group states that the set
must be non-empty).

Theorem 1.01:
If H is a nonempty subset of the group G then H is a subgroup of G if and only if
a,b € H implies thatab™* € H.

Proof:
First we need to show if H is a subgroup of G then ab™ € H.

Since a,b € H then ab™! € H, because H is a group by itself. Now, suppose that if for any
a,b € H € G we have ab™! € H. We want to show that H is a subgroup. Which we will
accomplish by proving it holds the group axioms.



~ Since aa”! € H by hypothesis, we conclude that the identity element isin H: e € H.
(Existence of identity).

— Now that we know e € H for all a, b in H we have thateb™ = b~ € H so the inverses
of elements in H are also in H. (Existence of inverses).

— Leta,b € H. Then we know that b1 € H by last step. Appling hypothesis shows that
a(b™ )™ =ab€eH.

So H is closed under the operation.

Examples:
1. Q% and R* are subgroups of C*, the multiplicative group of complex numbers.
2. Subgroups of Z.
3. SL,(R), the set of all n X n matrices over R with determinant 1, is a subgroup of
GL,(R)

Normal subgroups:

Definition 1.04:
A subgroup, N of a group G, is called a normal subgroup of G if gng™ € N for every
g € G,wewrite N 2G.

N<GeVneNVgeG gng *eN.
For any subgroup, the following conditions are equivalent to normality.

—~ ForallginN,gNg"*cS N

— ForallginN,gNg™ =

— The sets of left and right cosets of N in G coincide.
— ForallginG,gN =Ng

Properties:

1. The subgroup {e} consisting of just the identity element of G and G itself are always
normal subgroups of G. And if these are the only normal subgroups, then G is said to be
simple.

2. All subgroups N of an abelian group G are normal, because gN = Ng.

Cyclic groups:

Definition 1.05:
In group theory, a cyclic group is a group that can be generated by a single element, i.e.,

a group G is called cyclic if there exists an element g in G such that



G = {g" / nis aninteger} (where the operation is multiplication),
G = {ng / nis aninteger} (where the operation is addition).

We refer to g as a generator of G.

Properties:
1. If G is a cyclic group then every subgroup of G is cyclic.
2. Every cyclic group is abelian.
Because if x,y are in G, then xy = a™a™ = a™*" = ™™ = g"a™ = yx.
3. Every finite cyclic group is isomorphic to the group of integers modulo n under addition.
Every infinite cyclic group is isomorphic to Z (the set of all integers) under addition.

Theorem 1.02:
Every subgroup of a cyclic group is cyclic.

Proof:
Let G be a cyclic group, so that G = (g), and let H < G. Then H is a set of powers of g.
Choose n to be the smallest positive exponent of elements in H:

n=min{i€N/i>Oandgi EH}.
Then | claim that every element of H is a power of a = g", giving the result.

indeed, if h € H is not the identity, then either h or h~1 is of the form g™ with m > 0, so that
m = n. Dividing m by n gives

m=qn-+r

With r < norr = 0 whence

g™ =(g")g", giving

g =g"@™m)"*

A product of elements of H, showing that g” € H. By the choice of m, we must have r = 0,
giving

h(or h™%) = g™ = (g™)*

Proving the result.

Examples:
1. The integers under addition is acyclic group. The numbers {1,—1} is a generator.



2. Thegroup G = {1,—1,i,—i} € C* (the group operation is multiplication of complex
numbers) is cyclic with generator i. Infact (i) = {i® = 1,i* = i,i* = ~-1,i* = —i} = G.
Note that —i also a generator for G since
(=) ={D°=1,(-D)'=—i,(-)?* = -1, (-)* =i} = G.

3. Thegroup G = Z;" is a cyclic group with generator 3.
3)={1=3°3=3%,2=3%6=3%4=3%5=3"}=0.

4. The group G = Zg" is not cyclic. Indeed since Zg" = {1,3,5,7} and (1) = {1}, (3) = {1,3},
(5) = {1,5}, (7) = {1,7}, it follows that Zg* # (a) for any a € Zg".

S. The group (Z,,, +) is cyclic group.

Permutation group:

Definition 1.06:
A permutation of a set of objects is an arrangement of those objects into a particular
order.

In algebra and particularly in group theory, a permutation of a set § is defined as a bijection
from S to itself (i.e., amap S — S for which every element of S occurs exactly once as image

value).
And the group operation is the composition of permutations in G.

Note that the group of all permutation of a set is the symmetric group. The term permutation
group is usually restricted to mean a subgroup of the symmetric group.

The number of permutations of n distinct objectsis:n X (n — 1) X (n — 2) X ... X 2 X 1, which

III

number is called “n factorial”, and written "n!”.

For example, there are six permutations of the set {1,2,3}, namely (12 3), (13 2), (213),
(231),(312),321).

Notations:
There are three main notations for permutations of a finite set S.

1. In Cauchy’s two-line notation:
One lists the elements of S in the first row, and for each one its image under the
permutation below it in the second row. For instance, a particular permutation of the
set {1,2,3,4,5} can be written as:
— (1 234 5)

25431
This means that ¢ satisfies (1) = 2,06(2) =5,06(3) =4,0(4) =3,0(5) = 1.

2. In one-line notation:



One gives only the second row of this array, so the one line notation of the permutation
aboveis (25431)

3. Cycle notation:
The third method of notation focuses on the effect of successively applying of the
permutation. It expresses the permutation as a product of cycle corresponding to the
orbits (with at least two elements) of the permutation.
There are in general many different cycle notations for the same permutation f. For

example:
(1 2345

Yea31)=129BH=6HD125)=34(E12)

Product and inverse:
The product of two permutations is defined as their composition as functions, in other

words o - 7 is the function that maps any element x of the set to a(n(x)). Note that the
rightmost permutation is applied to the argument first, because of the way function application
is written.

For example:

123 123y _ /123
(321) (213)‘(231)
The identity permutation, which maps every element of the set to itself, is the neutral element
for this product.

In two-line notation the identity is:
(1 23 .. n)
123 ..n
Since bijections have inverses, so do permutations, and the inverse o~ of o is again a

permutation. Explicitly, whenever o(x) = y one also has o~ 1(y) = x. In two-line notation the
inverse can be obtained by interchanging the two lines. For instance;

-1
G- G312

Quotient group:

In mathematics, specifically group theory, a quotient group (or factor group) is a group
obtained by identifying together elements of a larger group using an equivalence relation.

In a quotient group, the equivalence class of the identity element is always a normal subgroup
of the original group, and the other equivalence classes are the cosets of this normal subgroup.

10



The resulting quotient is writtenG / N, where G is the original group and N is the normal
subgroup. (This is pronounced “G modulo N”).

Definition 1.07:
Let N be a normal subgroup of a group G. We define the set ¢ / N to be the set of all
left cosets of N in G, i.e. G / N = {gN: g in G} together with binary operation given by:

gN - hN = ghN.

The group operation on G / N is the product of subsets of G. In other words, for each gN and
hN, the product of gN and hN is (gN)(hN). This operation is closed, because (gN)(hN) really
is a left coset. (gN)(hN) = g(Nh)N = g(hN)N = (gh)(NN) = (gh)N.

The normality of N is used in this equation. Because of the normality of N, the left cosets and
right cosets of N in G are equal, and so G / N could be defined as a set of right cosets of N in G.

For Example: Consider the group with addition modulo 6.
G = {0,1,2,3,4,5}, let N = {0,3}
The quotient group is:
G/N ={gN:geG}={g{03}ge{0,1,2,3,4,5}}.
= {0{0,3}, 1{0,3}, 2{0,3}, 3{0,3}, 4{0,3}, 5{0,3}}.

= {{(0 + 0)mod 6, (0 + 3) mod 6}, {(1 + 0)mod 6, ( 1
+ 3) mod 6},{(2 + 0)mod 6, (2 + 3) mod 6},{(3 + 0)mod 6, (3
+ 3) mod 6},{(4 + 0)mod 6, (4 + 3) mod 6},{(5 + 0)mod 6, (5
+ 3) mod 6}}

= {{0,3},{1,4},{2,5},{3,0},{4.1},{5,2}, } = {{0,3},{1,4},{2,5}}

Properties:

1. The quotient group G / G is isomorphic to the trivial group (the group with one
element), and G / {e} is isomorphic to G.

2. The order of G / N, by definition, the number of elements, is equal to |G: N|, the index
of N in G. If G is finite, the index is also equal to the order of ¢ divided by the order of
N. Note that G / N may be finite, although both G and N are infinite (e.g. Z / 2Z).

3. Every quotient group of acyclic group is cyclic.

4. Every quotient group of abelian group is also abelian.

11



Examples:

1. Consider the group of integers Z (under addition) and the subgroup 2Z consisting of all
even integers. This is a normal subgroup, because Z is abelian. There are only two
cosets: the set of even integers and the set of odd integers; therefore, the quotient
group Z / 27 is the cyclic group with two elements. This quotient group is isomorphic
with the set {0,1} with addition modulo 2; informally, it is sometimes said that Z / 2Z
equals the set {0,1} with addition modulo 2.

2. Aslight generalization of the last example. Once again consider the group of integers Z
under addition. Let n be any positive integer. We will consider the subgroup nZ of Z
consisiting all multiples of n. Once again nZ is normal in Z because Z is abelian. The
cosets are the collection {nZ, 1 +nZ, ..., (n—2)+nZ, (n—1) +nZ}.

3. Consider the group of real numbers R under addition, and the subgroup Z of integers.
The cosets of Z in R are all sets of the form a + Z, with 0 < a < 1 a real number.
Adding such cosets is done by adding the corresponding real numbers, and subtracting 1
if the result is greater than or equal to 1.

Abelian group:

In abstract algebra, an abelian group, also called a commutative group, is a group in
which the result of applying the group operation to two group elements does not depend on
their order (the axiom of commutativity).

Definition 1.08:
An abelian group is a set A together with an operation

“n

that combines any two
elements a and b to form another element denoted a - b. The symbol “-” is a general
placeholder for concretely given operation. To qualify as an abelian group, the set and
operation (A,") must satisfy five requirements known as the abelian group axioms: closure,
associativity, identity element, inverse element, and finally commutativity: Forall a, b in 4,
a-b=>b-a.

More compactly, an abelian group is a commutative group. A group in which the group
operation is not commutative is called a “non-abelian group” or “non-commutative group”.

Notation:
There are two main notational conventions for abelian groups — additive and multiplicative.

xy . 'é'm\-élr - - .

12




Remark
Every cyclic group is an abelian group although not every abelian group is a cyclic group. For
example the rational number under addition is not cyclic but is abelian.

Examples:
1. There are very familiar examples of groups under addition namely the integers Z, the
rational numbers Q, the real numbers R and the complex numbers C.
(Q*,), (R*,), (c*,”) where the star means “without 0”.
3. The set Z, of integers modulo n is abelian group under addition.
The set Z,," of integers modulo n is abelian group under multiplication.

There are more examples in the next chapter.

13



Chapter 2

Direct Product and Direct Sum of Abelian Groups

Direct product of groups
In the mathematical field of group theory, the direct product is an operation that takes

two groups G and H and constructs a new group. Usually denoted G X H. This operation is the
group-theoretic analogue of the Cartesian product of sets. And is one of several important
notions of direct product in mathematics.

In the context of abelian groups, the direct product is sometimes referred to as the direct sum,
and is denoted G@H. Direct sums play an important role in the classification of abelian groups:
according to fundamental theorem of finite abelian groups, every finite abelian group can be
expressed as the direct sum of cyclic groups.

Definition 2.01:
Given groups G and H, the direct product G X H is defined as follows:

1. The elements of G X H are ordered pairs (g, h) where g € G and h € H. That is, the set
of elements of G X H is the Cartesian product of the sets G and H.
2. The binary operation on G X H is defined componentwise:

(91, 1) - (g2, h2) = (g1° g2, h1 * h2)
The resulting algebraic object satisfies the axioms for a group specifically:

1. Associativity:
The binary operation on G X H is indeed associative.

2. ldentity element:
The direct product has an identity element, namely (15, 15), where 1;; is the identity
element of G and 1 is the identity element of H.

3. Inverse element:
The inverse of an element (g, h) of G X H is the pair (g7%,h™1). Where g1 is the
inverse of g in G, and h™" is the inverse of h in H.

Examples:

1 - Examples of product of abelian groups:

14



Let R be the group of real numbers under addition. Then the direct product R X R is the
abelian group of all two-component vectors (x, y) under the operation of vector
addition:

(1, 1) + Gz, ¥2) = (23 + x3, 91 + y2)

(Z4-I +)
Z4 = {0,1,2,3} modulo 4.

OC|WIN|I|=

WIN|=IO!+
WINIRIO|IO
RIO|W|ININ
NIRIOIWWw

Let & and H be cyclic groups with two elements each:

G H
*11 *111b
1 1(1|b
1 bibj|1

Then the direct product G X H is isomorphism to the Klein four-group.

* (1,1) | {a,1) | (1,b}) | {a,b)

(1,1) | (1,2) | (3,1) | (1,b) | (a,b)

(a,1) | (3,1) { (1,1) | (a,b) | (1,b)

(Lb) | (L,b) | (a,b) | (1,1) | (a,1)

(a,b) | (a,b) | (1,b) | (a,1) | (1,1)

We note G X H is abelian group.

iv.

Kiein four-group

In mathematics, the Klein four-group is the group Z, X Z,, the direct of two copies of
the cyclic group of order 2.

The Klein four-group is the smallest none-cyclic group. It is abelian and isomorphic to
the direct sum Z,@®Z,, and not isomorphic to Z,.

*

b [ab

b |ab

ab | b

ol R
(o ol VIR R P

ab|1 |a

ablab|b ja |1

15
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An elementary construction of the Klein four-group is the multiplication group {1,3,5,7} with the
action being multiplication modulo 8. Here ais 3, bis 5, and abis 3 X 5 = 15 = 7 (mod 8).

2- Examples of products of non-abelian groups:
i. Permutation group.
S, =1{1,23,...}, ISpl=1-2-3..n=mn!

S =1{1,2,3}, |S3] = 1-2-3 = 6. It has 6 elements
6.=(331) - %=(133) » 2=(3))
5=(351) + %=(13) - 9=(G13)
Ss=G-H

G = {1 2 3,2 1 3} = {¢0,¢4}.
H = {1 2 3,2 3 1,3 1 2} = {¢0,¢1,¢5}.
G X H g {ao (Qo, @0), al (¢0, ¢1), az (QO: @5); a3 (¢4: ¢O)l a4(¢4l ¢1)' aS (¢4’ ¢5)} .

GXxXH

(XO al az (Z3 a4 (15

Qo |ag | @y |y | A3 | &y | A5
@ |y @y | ay | @ |as | ag

a |ay jag | aq | as | az | ay
Az | a3 |y [ Q5 | Ay | Ay | A7
Ay lay |as |ag | aqg | ay | qq
s | a5 jaz | ag | a | ag | a3

We note G X H is abelian.

Because:

a az = ((Z)O: ¢5) ' (¢4-: Q)o) = (Q)o ) ¢4, ¢5 ' 00)
= (04,05) = as

az - a; = (B, Dg) - (Do, Ds) & (Dy - By, DBy~ Os)
= (04,05) = as

G-H = {0, B4} - {Bo, B4, B5}
= {(¢01 ¢0), (¢0; @1), (¢01 ¢S)r (¢4, ¢0)' (¢4, (2)1)‘ (¢4' ¢5)}
= {@y, B4, Bs5, D4, B, D3}

16



B

We note G - H is non-abelian
SoS;=G-H+ GXH

ii. GL(n,R) invertible n X n matrix:
(det A+ 0),n = 2.

a=[g 5] wi=-1-6=-7

[ mees

an=[ 2B N=G1F 3117
B'A=[§ é][é —21]=[§ig 140——13]:[154 3']
AB+ B-A

So, (GL(2,R),) is non-abelian group.

Direct sum of abelian groups:

The direct sum of abelian groups is a prototypical example of a direct sum.

Given two abelian groups (4,%) and (B,’) their direct sum A@B is the same as their direct
product, i.e. its underlying set is the Cartesian product A X B with the group operation o given

componentwise:
(a1,by) o (az,b;) = (a1 * ay by - bz)
This definition generalizes to direct sums of finitely many abelian groups.

For an infinite family of abelian groups A; for i € I, the direct sum @;¢;A is a proper subgroup
of the direct product. It consists of the elements (a;) € [T;er A; such that a; is the identity
element of A; for all but finitely many i.

17



In this case, the direct sum is indeed the coproduct in the category of abelian groups.

Definition 2.02:
An abelian group G is said to be the direct sum of its subgroups G, ... ... ... ..., G,if each
g € G can be expressed uniquely in the form

g=g¢+ ...... + gn
Whereg; € G;, i =1, ...... ... ,n. In this case, we write G = G;® ... ... ... DG, or
G =) G;.
fG = GiD.........0G,, thenG; nG; = {0} fori # j.

The following theorem provides a simple criterion for determining when a group is the direct
sum of its subgroups.

Theorem 2.01:
Let G4, Gy, -.. ... ..., Gy be subgroups of a group G and suppose each element of G can be
expressed as the sum of elements from the subgroups G, G,, ... ... ... , Gy

Suppose also that an equation

With g; € G, fori =1, ... ... ,n,holdsonlyifg, = g, = ------ =g, = 0.
Then G is the direct sum of the subgroups Gy, G, ... ... ... , Gy
Proof:

If g € G, then

Withg; € G;,i = 1,2, ... ... ,n. We need only show that this expression is unique. Suppose

Is another such expression. Then
0=(g1—9g1)+ + (Gn — 9n)
By our hypothesis,(g; — g1) = (92 —g2) = -+~ (gn —gn) =0.
Hence g; = g; fori = 1,2, ....... ... ,n and the two expressions for g are identical.
We generalize our definition of direct sum to apply to the direct sum of an infinite
number of subgroups.

Definition 2.03:
An abelian group G is said to be the direct sum of its subgroups G;, i € I, if for each

g € G,g # 0. There is a unique expression for g of the form
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Where gi€G,]=1,.. .. Jkwith 1,2, .. ... , k distinct elements of I and no gi is Zero.
We note that if G = Y;¢;G; and i,j € I,i # j then G; n G; = {0}.

Example:
Let G = HOK and H = L@®M. Prove that G = LOM®K.

Solution:

Every element g of G can be expressed in the formg = h + k whereh € Hand k € K.
Buth=1+mwherel € Landm € M.Hence g =1+ m + k.Nowif g = l; + my + k, with
lyeL,m €Mandk; EK,putly + my =h; € H.Theng = h +k = hy + k, and
consequently h = hy andk = k;.Ash=1+m =1, + my,l =, and m = m,. Hence the
result.

The difference between direct product and direct sum for infinite sum of
groups

Direct product and direct sum are really the same thing. Direct product is used for multiplicative

groups, and direct sum is used for additive (abelian) groups. Both of them assign a group
structure on the Cartesian product of two groups, the difference is only whether the groups are
written multiplicatively or additively.

Actually, to be specific, direct sums and direct products are not the same thing when an infinite
number of groups are involved, as a direct sum of free abelian groups is always free abelian,
while this is not true with direct products. In the infinite case, direct sums are sequences with
only finitely many non-identity (zeroes) elements, while direct products have no such
restriction.

Example: Z®N ¢ ZV
Integers Z = {0,+1,+2,43,......}.

Integers sequence: a,, a,, as, ... ... Y T mneN={1,23,.... }La, € 2).
ZN = {f:N - 2z} = {(ay, a5 a5, w)/an €Z,n € N}

f:N — Z function

1— a,

2— a,

3— aj
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a+b=(a, +by,a; +by,a;+bs,...)
(ZN, +) Abelian group.
HAi Choice functions
ieN
fE€ I_[Ai
[EN
1—a; €44
2—a, €A,
3 a3 € Az
Nl Ja roea
i€N
Infinite direct product
ZN = Hzi 2 =7
ieN
Ay XAy X ooeeee
T XTI KT K e ene
Subset of finite support sequences
(a;,az, .. ... ,a,,0,0, .. .. ) e zZN
(1,2,3,0,0,0, ... ... )
e; = (1,0,0,...)
e, = (0,1,0,...)
ZOZ® .. oo oo . = Aie + Ay + oo e e .+ A€, (@ny m but finite)
= A4, 2, -y A4, 0,0, cee e e l)

A = Set of all sequences with only finitely many non-zeroes element.
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SoAczZN A+ ZN

Aissubgroup,a,beEA=>a+b€EA

A =7

This is a direct sum.

Z@N c ZN

(1,2,3,0,0,...... )=1(1,0,0,0,..... Y+(0,2,0,0,...... )+(0,0,3,0,
=1'e,+2-e;+3-e3

e, = (0,0,0,.... ,1,0,.. ... ) basic sequence.

€1,€2, €3, o o form a basis in ZON,
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Chapter 3

The Torsion and the Basis of an Abelian Groups

The torsion of an abelian group

In abstract algebra, the term torsion refers to a number of concepts related to elements
of finite order in groups.

Definition 3.01:
Let G be a group. An element g of G is called a torsion element if g has finite order.

The torsion of a group G is the set T(G) = {g € G: g™ = e,n € N} in the multiplication or
T(G) ={g € G: g-n = 0,n € N}in the addition.

An abelian group G is called a torsion (or periodic) group if every element of G has finite
order, and is called torsion-free if every element of G except the identity has infinite order, i.e.

T(G) = {e}.

An abelian group that is neither periodic nor torsion-free is called mixed group.
(Z, ® Z) In this group, there are elements of order 2 and elements of infinite order.

The torsion subgroup T(G) of an abelian group G is the subgroup of G constisting of all
elements that have finite order.

Theorem 3.01:
The torsion subgroup T(G) of an abelian group G is a subgroup of G.

Proof:
Since 0 € T(G), T(G) isnotempty.Ifa,b € T(G),i.e. m-a=0andn-b = 0 for
some positive integers m,n then mn(a — b) = 0 andsoa — b € T(G), T(G) is a subgroup.

Properties:
1. Every free abelian group is torsion-free, but the converse is not true, as is shown by the
additive group of the rational number "Q". See the example page (32).

Theorem 3.02:
if A is free abelian group = A is torsion free.

Proof:
Otherwise, A is not torsion free = 3a € A,3n € N,na = 0,a # 0,n # 0.
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Contradiction, because na = 0.

Is non-trivial linear combination of 1 element (a).

niaq +nya; + e +na.=0=>n=n, =---- n. = 0.
But we have na = 0,a # 0,n #= 0.

So every free abelian group is torsion free.

2. Every finite abelian group is torsion group. Not every torsion group is finite.
For example (Q n [0, 1))
([0,1],4) is abelian group

B =0,B.B;
., _f(a+p if a+p<1

“+3‘&+3—1zfa+ﬁz1}
A = QNJ[0,1) is a subgroup.

A is infinite torsion group.

geAngL 0<p<gq
q.B:£+ ...... +~=0(=pmod7Z)
qa q

Theorem 3.03:
Every finite group is periodic (Gfinite — T(G) = G).

Proof:
G is finite group.

VxeG,x+0
{x,2x,3x,...,nx,..} S G
{nxneN}c G

dnnm eENNmx=nx,n<m

mx—nx=20
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m—n)x=0,m—-n>0
x has a finite order (x is a torsion element).

Theorem 3.04:
If G is an abelian group and T'(G) is its torsion subgroup then the factor group G /T(G)is
torsion-free.

Proof:

To show G /T(G) is torsion-free, suppose g + T(G) is a coset of finite order in G /T (G).
Then for some n € Z*,n(g + T(G)) = ng + T(G) = T(G). Thus ng € T(G) and so for some
m € Z*, m(ng) = 0. Hence g is of finite order, g € T(G) and so g + T(G) = T(G) is the zero
coset of G /T (G).

Examples:
1. (Z,,+) is torsion group
Z, =1{0,1,2,..,n—1}
Vx €Z,,n-x=0modn,n =+ 0.
x has finite order

2. (Q,+)is torsion-free
|4 P
. € Q, . 0
n-§=0——>%:0—>np=0—>n=0, p # 0.
% doesn’t have finite order.

3. (Z,+)is torsion —free
1€Z, n-1=n=+0
1 doesn’t have finite order

4. R* the group of non-zero real numbers under multiplication is a mixed group, its torsion
subgroup is {+1}.
x ER*
x istorsionif x™ = e
An:x"=1-> x=1lorx=-1.
R* is a mixed group and its torsion subgroup is {+1}.
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5. The torsion subgroup of R/Zis Q/Z (T(R/Z) = Q/Z)
InnneEN:n(a+7Z)=0
na+7Z=20
na € Z
a€Q
Because:na =p €Z
=P

a==-€qQ.

n

The basis of an abelian group

Definition 3.02:

A basis X of an abelian group G over integers is a linearly independent subset of G that
generates G.In more detail, suppose that X = {x;, x5, x3, ..., X, } is a finite subset of an abelian
group G over integers. Then X is a basis if it satisfies the following conditions:

e The linear independence property
Foralln; € Zand x; € X, if nyxy +nyxy + -+ -+ + n,.x, = 0, then necessarily

e The generating property
Every non-zero element g in G can be expressed in the form
g = nyx; + nyx, + .-+ n.x, forn; € Z and distinct x; € X.

Definition 3.03:
An abelian group is free if it has a basis.

Examples:
1. 72
The set S = {e;, e;} where e; = (1,0), e, = (0,1) is a generating set of 72

(ny,n,) = nie; + nye, itis also linearly independent.
nie; +nye; =0

- n;(1,0) + n,(0,1) = (0,0)

- (ny,0) + (0,n) = (0,0)

-»n,=0and n, =0
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Therefore S is a basis for Z2. It is called the standard basis for Z2. These vectors also
have a special name, (1, 0) is i and (0, 1) is j.

2. 73
Similarly, the standard basis for Z3 is the set {e,, e,, e5} where e; = (1,0,0), e; =
(0,1,0) and e; = (0,0,1).
These vectors also have a special name, they are i, j and k respectively.
3. The collection {i,i + j, 2j} is not a basis for R?.
i=(10),j=01,i+j=0Q,1),2j=(002)
nyl + nyj = (ng,ny)
It is not generating R? because ny,n; € Z so it doesn’t generate all of R2.

It is not linearly independent, no collection of 3 or more vectors from R? can be
independent.

4. The collection {i + j,j + k} is not a basis for R3.
i+j=(1,10)
j+k=(011)
n,(1,1,0) + n,(0,1,1) =0
(ny,ng,0) + (0,n,n,) = (0,0,0)
(n4,nq + ny,ny) = (0,0,0)
n,=0n,=0
Although it is linearly independent, it doesn’t generate all of R3.

Remark:
If G is an abelian group, and X = {x1, x5, ... ... , X, } is a basis of G, then we know that
every element g of G can be expressed as a linear combination in X in unique way.

In other word, there exists unique coefficients ny,n,, ..., n, such that
g = NniXxq + Ny Xy + -+ N, Xy

Theorem 3.05:
Let G denote an abelian group and X (x4, x5, ..., X;-) a basis of G. Every element in G can
be written in a unique way as a linear combination in X.
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Proof:

Since X is a basis, we know that it generates G. If g € G, then there exists cofficients
n4,Ny, ..., Ny such that g = nyx; + nyx; + n.x, , suppose there is another way to write g. That
is, there exists coefficients ¢y, ¢, ..., ¢, such that g = ¢;x;, + ¢;x, + -+ + ¢, x,. Then

nyxy +nyxy +nx, =0 xq + Cxy + -+
In other words, (ny — cy)x; + (ny — ¢3)xy + -+ - + (n, — ¢,)x, = 0. Since X is a basis, it must
be linearly independent. The unique solution to (n; — ¢y)x; + (ny; — ¢3)xp + -+ - +
(n, — ¢;)x, = 0 must be the trivial solution.

It follows thatn; —¢; = 0 fori = 1,2, ..,nin otherwordsn; = ¢; fori = 1,2, ... ... , .
Therefore, the two representations of g are the same.

Definition 3.04:
Every free abelian group F has many different bases, but all basses have the same
cardinality (number of elements) and this number is called the rank of F, denoted rk(F).

Properties:
1. Free abelian groups of rank 0 are exactly the periodic abelian groups.
2. The zero group is regarded as a free abelian group of rank 0.
3. Every subgroup H of a free abelian group F of rank r is a free abelian group of rank < r.
(See the theorem 4.03).
Ex:
let F = Zand H = 2Z.Then H < F as a proper subgroup with rk(F) = rk(H) = 1.

Examples:
1. Z
The group of integers is a free abelian group of rank 1 finitely generated by 1 or -1.

2. 7*
The set of all ordered pairs (x,y) where x and y are in Z. We have already seen that the
standard basis for Z? was {(1, 0), (0, 1)}.this basis has 2 elements, therefore rk(Z2) =
2.

3. 73
The set of all ordered triples (x,y, z) where x, y and z in Z. Similarly, the standard basis
for Z* is {(1, 0,0), (0, 1,0), (0,0,1)}. This basis has 3 elements, therefore rk(Z3) = 3.

4. I"
The set of all ordered n-tuples (x4, x5, ..., X,) where x4, x5, ... ... , X, are in Z. Similarly,
the standard basis for Z™ is {(1, 0,0, ...,0), (0, 1,0, ...,0), ..., (0,0,0, ...,0,1)}.
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This basis has n elements, therefore rk(Z™) = n.

So, the free abelian group of rank n for a natural number n is isomorphic to the group
Z™, which is a direct product of n copies of the group of integers.

Theorem 3.06:
Groups Z? and Z?3 are non-isomorphic. More generally, if n and m are different positive
integers, then Z™ and Z™ are non-isomorphic.

Proof:

Let A, A are free abelian groups.

A =(B), B ={by,b,, ... ... ,bp}, n = cardB(n = rankA).

A=(B), B={by,by,..... ,bp}, m = cardB(m =‘rankA).
fn=m—>A=A

rankA = rankA < A=A

Z% ={a,b), a = (1,0),b = (0,1), rankZ? = 2.

73 =(a,b,c), a=1(1,0,0),b=(0,1,0),c =(0,0,1), rankZ?® = 3.
72 =73 > rankZ? = rankZ3,i.e.2 =3

And this is not true, so Z2and Z?3 are non-isomorphic.
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Chapter 4

Free Abelian Groups

In abstract algebra, a free abelian group is an abelian group that has a “basis” in the
sense that every element of the group can be written in one and only one way as a finite linear
combination of elements of the basis, with integer coefficients.

And as well as we pointed out earlier that every abelian group is free if it has a basis and
every free abelian group is torsion-free, but the converse is not true. And this is evident
through the following example:

Example: (Q, +)
The rational numbers with addition is not free abelian group because it does not have a
basis although it is torsion-free.

leta,f €Q
a=" [gzp_'
q’ q’

p'ga+ (-pq)B =p'qt+ (-pa)
=p'p—pp'
=0

@, B are not independent.

So any two elements in Q are dependent over Z .

Also {a;, ..., ay }is not generating (generating set is not finite).
_Dpi
a; = '{'I—i'pirqi € Z'ai € Q

a=n, L N Pk (there is no such denominator).

q1 —‘?—k-
11 1 1
Let<;,-3— >= {n15+m§}
11 1 1
therefore i ¢ {ny St 5}

So Q is not free abelian group.
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The homomorphic property of free abelian groups

If F is a free abelian group with basis X, then we have the following universal property:
For every arbitrary function F from X to some abelian group A4, there exists a unique group
homomorphism from F to A which extends F. This universal property can also be used to
define free abelian group.

Let G = A®B and let H be a group which contains isomorphic copies 4 and B of 4 and
B respectively. Suppose that H = A + B (but not necessarily that H = A®B). What
connection, if any, is there between G and H?.

It turns out that H is homomorphic image of G. This follows from next theorem. This theorem
when applies to particular cases leads also to important result which is the concept of a free
abelian group.

Theorem 4.01:
Let G = A®B and let H be any group. Let O, @ be homomorphisms of A into H and B
into H respectively. Then there exists a homomorphism §: G — H such that &, = 8,&; = @.

N

ABB ——» H

\B/(p'
Proof:

If g € G, then g = a + b uniquely where a € 4,b € B. Define g& = a® + b@. § is
uniquely defined and so is a mapping of G to H.

Note that if g; = a; + b; wherea; € Aand b; € B (i = 1,2), then
(91 +92)¢ = ((a1 + by) + (az + b2))é = ((a; + az) + (by + by))E

= (a1 + a.z)@ + (b]_ + bz) @ = a1® + aze + b]_@ + b2¢
= a19 + b1¢ + a2@ + bz@ = (a1 + bl)f + (az + bz)f
= 01§ + 92§

Hence ¢ is the required homomorphism as &, = 0,¢é5 = @.
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In exactly the same way we can prove that if G = }};c; G; and if foreachi € 1,0;: G; -
H is a homomorphism of G; to H, then there exists a homomorphism 0: G — H such that
B¢, = ©;. We shall often say that © extends the mappings ©; or that © is an extension of the

mapping 0;.

Corollary:
The direct sum G = };¢; G; satisfies the following condition: for every mapping
©:X — H, H any abelian group, there exists a homomorphism 0*: G — H sush that @; = 6.

A group G which contains a subset X such that

D6 = gp(X).

(ii) For every mapping ©: X — H, H any abelian group, there exists a homomorphism
0*:G — H sush that 8; = 0O,

is called a free abelian group. G is said to be freely generated by X and X is called a basis for G.
We have shown that the direct sum of infinite cyclic groups is a free abelian group.
Conversely we have the following.

Theorem 4.02:
If G is a free abelian group freely generated by a set X = {x;|i € I}, then G is the direct
sum of its subgroups G; = gp(x;) and each G; is infinite cyclic for all i € I.

Proof:
This theorem is proved by showing that G is isomorphic to a direct sum of infinite cyclic
groups. To this end let H be the direct sum of its subgroups H;,
H = Z H;
i€l
where H; = gp(h;) is an infinite cyclic group generated by h; (we know a direct sum exists).

Let ©: X — H be the mapping defined by x;0 = h;. Then O can be extended to a
homomorphism @~ of G into H, by the definition of a free abelian group.

On the other hand H is the direct sum of the infinite cyclic groups H;. Thus by the last
corollary, the mapping @: {h;|i € I} — X defined by h;® = x; can be extended to a
homomorphism @* of H into G. Actually @" and @* are inverse isomorphisms. To see this,
suppose g € G.Then g = nyxyr + -+ n.x,» where 1', ..., € l and n, ... ... ,N, € Z.

Accordingly,
(900" = [, (xy0") + -+ + 1, (10 0)]@" = (nihy + -+ + n,hpr)0"
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=ny(hy®) + -+ n.(hs®) =nyxp + -+ n.x

=g
and so @*@" is the identity mapping on G. Similarly @*@" is the identity mapping on H.

This implies that ©* is a one-to-one mapping of G onto H. Forif g, g’ € G, then g0* = g'@"*
implies that (g@*)@* = (g'0")®". Since (gO@*)P* = gand (g'0")P* = g',wehave g = g'.

Further more if h € H, then h = (h®*)@". Thus @" is one-to-one and onto.

Note that each G; is infinite cyclic, since © is an isomorphism and G;0* = H;. Finally we
show that G is the direct sum of its subgroups G;. If 1', ..., r’ are distinct elements of I and
g1, ---» gr are nonzero elements of G, ..., G, respectively, then if
g1 t-+g-=0
it follows that g;0* + ---+ g,,0" = 0 . But then, as ;0" € H; and g;0" +# 0, we have a
contradiction as H = );¢; H;. Finally gp(G;li € I) = G, and so G = Y, G;.

Corollary:
Every abelian group is the homomorphic image of some free abelian group.

Proof:

If G is an arbitrary group whose elements are g;,i € I and gp(x;),i € I is infinite cyclic,
then as we have seen, F = Y;¢; gp(x;) is free abelian and the mapping 0: x; — g; extends to a
homomorphism of F onto G.

So a free abelian group is a direct sum of infinite cyclic groups. If these cyclic groups are
generated by elements x; (i € I), then the free abelian group F will be
F=@ie<x >

Thus, F consists of all finite linear combinations
g - n1x1 + nzxz + -+ nrxr
with different x4, ..., x,, where n; are integers # 0.

Example:
Let G be the group that is the direct sum Z @ Z of two copies of the infinite cyclic group
Z. Symbolically, ¢ = {(a,b)|a,b EL} =Z XL =7> =Z B Z.

One basis for this group is {(1,0), (0,1)}. If we say e; = (1,0) and e, = (0,1), then we
can write the element (4, 3) as

(4,3) = 4e, + 3e,. Where “multiplication” is defined in following way: 4e; = e; +e; + e, +

e;.
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Remark:

Note that a free abelian group is not a free group except in two cases: a free abelian
group having an empty basis (rank0, giving the trivial group) or having just 1 element in the
basis (rank1, giving the infinite cyclic group).

Other abelian groups are not free groups because in free groups ab must be different
from ba if a and b are different elements of the basis, while in free abelian groups they must be
identical.

The subgroup of free abelian group
If F is free abelian group, every subgroup H of F is free abelian group.

Theorem 4.03:
Let G be free abelian group of rank n. Then any subgroup H of G is free abelian group of
rank less than or equal to n.

We will prove this theorem by using a lemma about subgroups of free abelian groups.

Lemma:
Let G be free abelian group, the direct sum of n cyclic groups. Let H be a subgroup of G.
Then there exists a basis ¢y, ..., ¢, of G and integers uy, ..., u,, such that

H = gp(uycq,uzcy, ..., upnCy).

Proof:
We use a, b, ¢ to denote basis elements of G, h, k, [ to denote elements of H,
q,7,5,t,u, v to denote integers. We prove the result by induction on n. Forn = 1, G is cyclic.

Assume the result is true for free abelian groups of rank less than n where n > 1. Let G be free
abelian of rank n. We assume also that H # {0}. For if H = {0}, we may take an arbitraty basis
€1y Cp for G. Then H = gp(uqcy, ..., u,c,) whereu; = - = u, = 0.

To every basis we associate an integer, called its size (with respect to H). Let {a4, ...,a,} be a
basis for G and let g be the smallest nonnegative integer such that there exists h € H with

h=gqa; + qya, + -+ q,a,, q,,...,q, integers (1)
Then g is termed the size of the basis {ay, ..., a, }.

Assume {ay, ..., a, } is a basis of smallest size, i.e. if {b, ..., b, }. is a basis of G, then the size of
{by, ..., by} is not less than q.

Let h be as in equation (1).
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We show that g divides q,, ..., g,,. From the division algorithm, if g; is not divisible by
q,q; = 1;q + s; where 0 < s; < g. Hence
h=q(a, + riay) + -+ s;a; + -+ gpa,

But if we put by = a;,b; = ay, ..., b; = a; + 1;q;, ..., b, = a,,, we obtain a basis. Furthermore
this basis is of smaller size than the size of {ay, ..., a,}, contrary to our assumption. Thus s; = 0
and q divides g; fori = 2, ..., n. Let q; = r;q, then

h=q(a; + nnay, + -+ nay,)

Let ¢, = a; + rpa; + -+ r,a,. Then {c,,ay, ..., a,} is a basis for G. Also

h=gqc (2)

if k = tyay + -~ + tya, € H, it follows that ¢, is divisible by q. For if t; = uq + v with
0 <v <g,thenl =k —uh € H has v as its coefficient of a,. As v < g, by the minimality of
q,v = 0. Therefore

[ =k —uh € gp(ay, .., a,)

Hence I € gp(ay, ...,a,) N H = L, say. From this we conclude that if k € H, then

k=uh+1 (3)
where | € L.

By the inductive hypothesis there exist a basis c5, ..., ¢, and integers us, ..., u,, such that L is
generated by u,c,, ..., u, c,. Hence by (3) every element of H belongs to gp(h, u,c,, ..., unCy).
On other hand, H contains h,u,c,, ..., U, C,. Thus

H = gp(h,uycy, ..., uycy)

Putu,; = q. By (2)
H = gp(u ¢y, uyCy, ..., UnCy)
Also, ¢4, ..., ¢, a basis for G. Hence the resuit follows.
Proof:
By lemma above, there exists a basis cq, ..., ¢;, of G and integers ug, ..., u, such that
H = gp(us¢1, U363, ..., upcy). fuy, ..., u; are nonzero, and u; 1 = Uy = --- = u, = 0, then
gp(Us€1,UzCa, oo, UnCy) = gp(Uscy) D ... © gp(uicy)-

Example:
Let G = A @ B and let C, D be subgroups of A, B respectively, showthat C+ D = C P
D.

(This can obviously be generalized to the direct sum of any number of groups)
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Solution:
As {0} = ANB 2 CND, we have CND = {0}.

ThusC+D=C@D.

Theorem 4.04:
There are countably many countable non-isomorphic free abelian groups. They are
exactly: Z,Z2,Z3, ... ... ... 2 oo

Proof:
Every countable free abelian group A is isomorphic to some of these groups:

1. Ais countable.
2. Aisfree.
A = (S), S is a set of free generated, S € A, S must be at least countable.

o If|S|=n,n€ N,therankA=mn,s04 = Z".
o |S| =Ry i.e.S={sy,5 .. }, rank A = X,.
XEAx =ay5+ + a,s,, fors; €S,a; € Z.

So there are as many elements in A as there are finite linear combination.

Theorem 4.05:
Every two uncountable free abelian groups of the same cardinality are isomorphic.

Proof:
Suppose: Z4, ZB are free abelian groups.

z4=(4A), ZP=(B)
If |Z4| = |ZB], then Z4 = Z5.

We will prove if Z4 and Z® are uncountable free abelian groups of the same cardinality, then
|A| = |BI.

If Z4 is uncountable free abelian group then [Z4] = |A|.

ZA=(4), A={aq /i€l}

x€Z4, x=agaq+-- Ay, 04y, @y €EZ, Qg oo,y EA
So there are elements in Z# as there are finite sequence (ay, ... -.. 7 s PR , ),
o ST ,0n €EZ, aq, e ... ,a, EA
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A ={a,a,, .. .. 1, Al =k

Zo =ZUZ?*UZ3U- oo

Ay, =AUA?U A3 U -

ZA=7ZXAUZ?XA>UZ3 X A3 Ut

1ZA| = |Z X A] + |Z2 X A2) + |Z3 X A3 + - -
= ZI- 1Al +1ZI* - AP + 1Z]3 - JAP + - -

— No -k + Nozkz + Ngz 'k3 + e e

|Z4] = |Al =k
So |Al = |Z4| = |ZB] = |B|,i.e. |4] = |B]
i.e. rankZ* = rankZ® hence Z4 = Z5B.

Theorem 4.06:
If some abelian identity u = v holds on the group Z, then u = v is true in every abelian
group.

Proof:
u =vistruein Z.

u(Xy, Xz, e e , X)) = (X1, Xg, wen oo ) Xn)
Aq, Az, e one ,a, €EA
u(a, ay, ... ... ,an) = v(aq,ay, .. .. ,ay)

IfA,Bsuchthat AEu=vandBEu=vthen AXBEu=v
AndifAEu=vthenA2 Eu=v,A3u=mv,....

Suppose u = v holds in Z
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ZEu=mv, Z
ZEu=v, Z+7Z

ZPEu=mv, Z+Z+2Z

We proved u = v holds in all free abelian group of finite many.
Now let D be an abelian group, d;,d,, ... ... ,d, € D, thenu®?(d;,

Letuschoose Z" = Z + Z + --- --- + Z,rankZ™ = n.

VAL h » D
c
5 f
r= ()
Thereis h:Z™ — D
h(b;) = d;
uP(dy, ... ... ,dy) = uP(hby, ... ... ,hb,)
= h(u®(by, ... .., by))
= h(v% (by, ... .. ,bn))
— vP(hby, ... .., hb,)
=vP(d,, ... .. ,dy)
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